* configure: Regenerate.
[deliverable/binutils-gdb.git] / bfd / elf32-mips.c
1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
29 different MIPS ELF from other targets. This matters when linking.
30 This file supports both, switching at runtime. */
31
32 #include "bfd.h"
33 #include "sysdep.h"
34 #include "libbfd.h"
35 #include "bfdlink.h"
36 #include "genlink.h"
37 #include "elf-bfd.h"
38 #include "elf/mips.h"
39
40 /* Get the ECOFF swapping routines. */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/internal.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46 #define ECOFF_SIGNED_32
47 #include "ecoffswap.h"
48
49 /* This structure is used to hold .got information when linking. It
50 is stored in the tdata field of the bfd_elf_section_data structure. */
51
52 struct mips_got_info
53 {
54 /* The global symbol in the GOT with the lowest index in the dynamic
55 symbol table. */
56 struct elf_link_hash_entry *global_gotsym;
57 /* The number of global .got entries. */
58 unsigned int global_gotno;
59 /* The number of local .got entries. */
60 unsigned int local_gotno;
61 /* The number of local .got entries we have used. */
62 unsigned int assigned_gotno;
63 };
64
65 /* The MIPS ELF linker needs additional information for each symbol in
66 the global hash table. */
67
68 struct mips_elf_link_hash_entry
69 {
70 struct elf_link_hash_entry root;
71
72 /* External symbol information. */
73 EXTR esym;
74
75 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
76 this symbol. */
77 unsigned int possibly_dynamic_relocs;
78
79 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
80 a readonly section. */
81 boolean readonly_reloc;
82
83 /* The index of the first dynamic relocation (in the .rel.dyn
84 section) against this symbol. */
85 unsigned int min_dyn_reloc_index;
86
87 /* We must not create a stub for a symbol that has relocations
88 related to taking the function's address, i.e. any but
89 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
90 p. 4-20. */
91 boolean no_fn_stub;
92
93 /* If there is a stub that 32 bit functions should use to call this
94 16 bit function, this points to the section containing the stub. */
95 asection *fn_stub;
96
97 /* Whether we need the fn_stub; this is set if this symbol appears
98 in any relocs other than a 16 bit call. */
99 boolean need_fn_stub;
100
101 /* If there is a stub that 16 bit functions should use to call this
102 32 bit function, this points to the section containing the stub. */
103 asection *call_stub;
104
105 /* This is like the call_stub field, but it is used if the function
106 being called returns a floating point value. */
107 asection *call_fp_stub;
108 };
109
110 static bfd_reloc_status_type mips32_64bit_reloc
111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112 static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
113 PARAMS ((bfd *, bfd_reloc_code_real_type));
114 static reloc_howto_type *mips_rtype_to_howto
115 PARAMS ((unsigned int));
116 static void mips_info_to_howto_rel
117 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
118 static void mips_info_to_howto_rela
119 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
120 static void bfd_mips_elf32_swap_gptab_in
121 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
122 static void bfd_mips_elf32_swap_gptab_out
123 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
124 #if 0
125 static void bfd_mips_elf_swap_msym_in
126 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
127 #endif
128 static void bfd_mips_elf_swap_msym_out
129 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
130 static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
131 static boolean mips_elf_create_procedure_table
132 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
133 struct ecoff_debug_info *));
134 static INLINE int elf_mips_isa PARAMS ((flagword));
135 static INLINE unsigned long elf_mips_mach PARAMS ((flagword));
136 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
137 static boolean mips_elf_is_local_label_name
138 PARAMS ((bfd *, const char *));
139 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
140 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
141 static int gptab_compare PARAMS ((const void *, const void *));
142 static bfd_reloc_status_type mips16_jump_reloc
143 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
144 static bfd_reloc_status_type mips16_gprel_reloc
145 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
146 static boolean mips_elf_create_compact_rel_section
147 PARAMS ((bfd *, struct bfd_link_info *));
148 static boolean mips_elf_create_got_section
149 PARAMS ((bfd *, struct bfd_link_info *));
150 static bfd_reloc_status_type mips_elf_final_gp
151 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
152 static bfd_byte *elf32_mips_get_relocated_section_contents
153 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
154 bfd_byte *, boolean, asymbol **));
155 static asection *mips_elf_create_msym_section
156 PARAMS ((bfd *));
157 static void mips_elf_irix6_finish_dynamic_symbol
158 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
159 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
160 static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
161 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
162 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
163 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
164 static bfd_vma mips_elf_global_got_index
165 PARAMS ((bfd *, struct elf_link_hash_entry *));
166 static bfd_vma mips_elf_local_got_index
167 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
168 static bfd_vma mips_elf_got_offset_from_index
169 PARAMS ((bfd *, bfd *, bfd_vma));
170 static boolean mips_elf_record_global_got_symbol
171 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
172 struct mips_got_info *));
173 static bfd_vma mips_elf_got_page
174 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
175 static const Elf_Internal_Rela *mips_elf_next_relocation
176 PARAMS ((unsigned int, const Elf_Internal_Rela *,
177 const Elf_Internal_Rela *));
178 static bfd_reloc_status_type mips_elf_calculate_relocation
179 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
180 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
181 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
182 boolean *));
183 static bfd_vma mips_elf_obtain_contents
184 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
185 static boolean mips_elf_perform_relocation
186 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
187 const Elf_Internal_Rela *, bfd_vma,
188 bfd *, asection *, bfd_byte *, boolean));
189 static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
190 static boolean mips_elf_sort_hash_table_f
191 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
192 static boolean mips_elf_sort_hash_table
193 PARAMS ((struct bfd_link_info *, unsigned long));
194 static asection * mips_elf_got_section PARAMS ((bfd *));
195 static struct mips_got_info *mips_elf_got_info
196 PARAMS ((bfd *, asection **));
197 static boolean mips_elf_local_relocation_p
198 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean));
199 static bfd_vma mips_elf_create_local_got_entry
200 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
201 static bfd_vma mips_elf_got16_entry
202 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean));
203 static boolean mips_elf_create_dynamic_relocation
204 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
205 struct mips_elf_link_hash_entry *, asection *,
206 bfd_vma, bfd_vma *, asection *));
207 static void mips_elf_allocate_dynamic_relocations
208 PARAMS ((bfd *, unsigned int));
209 static boolean mips_elf_stub_section_p
210 PARAMS ((bfd *, asection *));
211 static int sort_dynamic_relocs
212 PARAMS ((const void *, const void *));
213 static void _bfd_mips_elf_hide_symbol
214 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
215 static void _bfd_mips_elf_copy_indirect_symbol
216 PARAMS ((struct elf_link_hash_entry *,
217 struct elf_link_hash_entry *));
218 static boolean _bfd_elf32_mips_grok_prstatus
219 PARAMS ((bfd *, Elf_Internal_Note *));
220 static boolean _bfd_elf32_mips_grok_psinfo
221 PARAMS ((bfd *, Elf_Internal_Note *));
222 static boolean _bfd_elf32_mips_discard_info
223 PARAMS ((bfd *, struct elf_reloc_cookie *, struct bfd_link_info *));
224 static boolean _bfd_elf32_mips_ignore_discarded_relocs
225 PARAMS ((asection *));
226 static boolean _bfd_elf32_mips_write_section
227 PARAMS ((bfd *, asection *, bfd_byte *));
228
229 extern const bfd_target bfd_elf32_tradbigmips_vec;
230 extern const bfd_target bfd_elf32_tradlittlemips_vec;
231 #ifdef BFD64
232 extern const bfd_target bfd_elf64_tradbigmips_vec;
233 extern const bfd_target bfd_elf64_tradlittlemips_vec;
234 #endif
235
236 /* The level of IRIX compatibility we're striving for. */
237
238 typedef enum {
239 ict_none,
240 ict_irix5,
241 ict_irix6
242 } irix_compat_t;
243
244 /* This will be used when we sort the dynamic relocation records. */
245 static bfd *reldyn_sorting_bfd;
246
247 /* Nonzero if ABFD is using the N32 ABI. */
248
249 #define ABI_N32_P(abfd) \
250 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
251
252 /* Nonzero if ABFD is using the 64-bit ABI. */
253 #define ABI_64_P(abfd) \
254 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
255
256 /* Depending on the target vector we generate some version of Irix
257 executables or "normal" MIPS ELF ABI executables. */
258 #ifdef BFD64
259 #define IRIX_COMPAT(abfd) \
260 (((abfd->xvec == &bfd_elf64_tradbigmips_vec) || \
261 (abfd->xvec == &bfd_elf64_tradlittlemips_vec) || \
262 (abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
263 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
264 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
265 #else
266 #define IRIX_COMPAT(abfd) \
267 (((abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
268 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
269 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
270 #endif
271
272 #define NEWABI_P(abfd) (ABI_N32_P(abfd) || ABI_64_P(abfd))
273
274 /* Whether we are trying to be compatible with IRIX at all. */
275 #define SGI_COMPAT(abfd) \
276 (IRIX_COMPAT (abfd) != ict_none)
277
278 /* The name of the msym section. */
279 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
280
281 /* The name of the srdata section. */
282 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
283
284 /* The name of the options section. */
285 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
286 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
287
288 /* The name of the stub section. */
289 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
290 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
291
292 /* The name of the dynamic relocation section. */
293 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
294
295 /* The size of an external REL relocation. */
296 #define MIPS_ELF_REL_SIZE(abfd) \
297 (get_elf_backend_data (abfd)->s->sizeof_rel)
298
299 /* The size of an external dynamic table entry. */
300 #define MIPS_ELF_DYN_SIZE(abfd) \
301 (get_elf_backend_data (abfd)->s->sizeof_dyn)
302
303 /* The size of a GOT entry. */
304 #define MIPS_ELF_GOT_SIZE(abfd) \
305 (get_elf_backend_data (abfd)->s->arch_size / 8)
306
307 /* The size of a symbol-table entry. */
308 #define MIPS_ELF_SYM_SIZE(abfd) \
309 (get_elf_backend_data (abfd)->s->sizeof_sym)
310
311 /* The default alignment for sections, as a power of two. */
312 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
313 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
314
315 /* Get word-sized data. */
316 #define MIPS_ELF_GET_WORD(abfd, ptr) \
317 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
318
319 /* Put out word-sized data. */
320 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
321 (ABI_64_P (abfd) \
322 ? bfd_put_64 (abfd, val, ptr) \
323 : bfd_put_32 (abfd, val, ptr))
324
325 /* Add a dynamic symbol table-entry. */
326 #ifdef BFD64
327 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
328 (ABI_64_P (elf_hash_table (info)->dynobj) \
329 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
330 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
331 #else
332 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
333 (ABI_64_P (elf_hash_table (info)->dynobj) \
334 ? (boolean) (abort (), false) \
335 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
336 #endif
337
338 /* The number of local .got entries we reserve. */
339 #define MIPS_RESERVED_GOTNO (2)
340
341 /* Instructions which appear in a stub. For some reason the stub is
342 slightly different on an SGI system. */
343 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
344 #define STUB_LW(abfd) \
345 (SGI_COMPAT (abfd) \
346 ? (ABI_64_P (abfd) \
347 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
348 : 0x8f998010) /* lw t9,0x8010(gp) */ \
349 : 0x8f998010) /* lw t9,0x8000(gp) */
350 #define STUB_MOVE(abfd) \
351 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
352 #define STUB_JALR 0x0320f809 /* jal t9 */
353 #define STUB_LI16(abfd) \
354 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
355 #define MIPS_FUNCTION_STUB_SIZE (16)
356
357 #if 0
358 /* We no longer try to identify particular sections for the .dynsym
359 section. When we do, we wind up crashing if there are other random
360 sections with relocations. */
361
362 /* Names of sections which appear in the .dynsym section in an Irix 5
363 executable. */
364
365 static const char * const mips_elf_dynsym_sec_names[] =
366 {
367 ".text",
368 ".init",
369 ".fini",
370 ".data",
371 ".rodata",
372 ".sdata",
373 ".sbss",
374 ".bss",
375 NULL
376 };
377
378 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
379 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
380
381 /* The number of entries in mips_elf_dynsym_sec_names which go in the
382 text segment. */
383
384 #define MIPS_TEXT_DYNSYM_SECNO (3)
385
386 #endif /* 0 */
387
388 /* The names of the runtime procedure table symbols used on Irix 5. */
389
390 static const char * const mips_elf_dynsym_rtproc_names[] =
391 {
392 "_procedure_table",
393 "_procedure_string_table",
394 "_procedure_table_size",
395 NULL
396 };
397
398 /* These structures are used to generate the .compact_rel section on
399 Irix 5. */
400
401 typedef struct
402 {
403 unsigned long id1; /* Always one? */
404 unsigned long num; /* Number of compact relocation entries. */
405 unsigned long id2; /* Always two? */
406 unsigned long offset; /* The file offset of the first relocation. */
407 unsigned long reserved0; /* Zero? */
408 unsigned long reserved1; /* Zero? */
409 } Elf32_compact_rel;
410
411 typedef struct
412 {
413 bfd_byte id1[4];
414 bfd_byte num[4];
415 bfd_byte id2[4];
416 bfd_byte offset[4];
417 bfd_byte reserved0[4];
418 bfd_byte reserved1[4];
419 } Elf32_External_compact_rel;
420
421 typedef struct
422 {
423 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
424 unsigned int rtype : 4; /* Relocation types. See below. */
425 unsigned int dist2to : 8;
426 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
427 unsigned long konst; /* KONST field. See below. */
428 unsigned long vaddr; /* VADDR to be relocated. */
429 } Elf32_crinfo;
430
431 typedef struct
432 {
433 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
434 unsigned int rtype : 4; /* Relocation types. See below. */
435 unsigned int dist2to : 8;
436 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
437 unsigned long konst; /* KONST field. See below. */
438 } Elf32_crinfo2;
439
440 typedef struct
441 {
442 bfd_byte info[4];
443 bfd_byte konst[4];
444 bfd_byte vaddr[4];
445 } Elf32_External_crinfo;
446
447 typedef struct
448 {
449 bfd_byte info[4];
450 bfd_byte konst[4];
451 } Elf32_External_crinfo2;
452
453 /* These are the constants used to swap the bitfields in a crinfo. */
454
455 #define CRINFO_CTYPE (0x1)
456 #define CRINFO_CTYPE_SH (31)
457 #define CRINFO_RTYPE (0xf)
458 #define CRINFO_RTYPE_SH (27)
459 #define CRINFO_DIST2TO (0xff)
460 #define CRINFO_DIST2TO_SH (19)
461 #define CRINFO_RELVADDR (0x7ffff)
462 #define CRINFO_RELVADDR_SH (0)
463
464 /* A compact relocation info has long (3 words) or short (2 words)
465 formats. A short format doesn't have VADDR field and relvaddr
466 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
467 #define CRF_MIPS_LONG 1
468 #define CRF_MIPS_SHORT 0
469
470 /* There are 4 types of compact relocation at least. The value KONST
471 has different meaning for each type:
472
473 (type) (konst)
474 CT_MIPS_REL32 Address in data
475 CT_MIPS_WORD Address in word (XXX)
476 CT_MIPS_GPHI_LO GP - vaddr
477 CT_MIPS_JMPAD Address to jump
478 */
479
480 #define CRT_MIPS_REL32 0xa
481 #define CRT_MIPS_WORD 0xb
482 #define CRT_MIPS_GPHI_LO 0xc
483 #define CRT_MIPS_JMPAD 0xd
484
485 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
486 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
487 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
488 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
489
490 static void bfd_elf32_swap_compact_rel_out
491 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
492 static void bfd_elf32_swap_crinfo_out
493 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
494
495 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
496 from smaller values. Start with zero, widen, *then* decrement. */
497 #define MINUS_ONE (((bfd_vma)0) - 1)
498
499 /* The relocation table used for SHT_REL sections. */
500
501 static reloc_howto_type elf_mips_howto_table_rel[] =
502 {
503 /* No relocation. */
504 HOWTO (R_MIPS_NONE, /* type */
505 0, /* rightshift */
506 0, /* size (0 = byte, 1 = short, 2 = long) */
507 0, /* bitsize */
508 false, /* pc_relative */
509 0, /* bitpos */
510 complain_overflow_dont, /* complain_on_overflow */
511 bfd_elf_generic_reloc, /* special_function */
512 "R_MIPS_NONE", /* name */
513 false, /* partial_inplace */
514 0, /* src_mask */
515 0, /* dst_mask */
516 false), /* pcrel_offset */
517
518 /* 16 bit relocation. */
519 HOWTO (R_MIPS_16, /* type */
520 0, /* rightshift */
521 2, /* size (0 = byte, 1 = short, 2 = long) */
522 16, /* bitsize */
523 false, /* pc_relative */
524 0, /* bitpos */
525 complain_overflow_signed, /* complain_on_overflow */
526 bfd_elf_generic_reloc, /* special_function */
527 "R_MIPS_16", /* name */
528 true, /* partial_inplace */
529 0x0000ffff, /* src_mask */
530 0x0000ffff, /* dst_mask */
531 false), /* pcrel_offset */
532
533 /* 32 bit relocation. */
534 HOWTO (R_MIPS_32, /* type */
535 0, /* rightshift */
536 2, /* size (0 = byte, 1 = short, 2 = long) */
537 32, /* bitsize */
538 false, /* pc_relative */
539 0, /* bitpos */
540 complain_overflow_dont, /* complain_on_overflow */
541 bfd_elf_generic_reloc, /* special_function */
542 "R_MIPS_32", /* name */
543 true, /* partial_inplace */
544 0xffffffff, /* src_mask */
545 0xffffffff, /* dst_mask */
546 false), /* pcrel_offset */
547
548 /* 32 bit symbol relative relocation. */
549 HOWTO (R_MIPS_REL32, /* type */
550 0, /* rightshift */
551 2, /* size (0 = byte, 1 = short, 2 = long) */
552 32, /* bitsize */
553 false, /* pc_relative */
554 0, /* bitpos */
555 complain_overflow_dont, /* complain_on_overflow */
556 bfd_elf_generic_reloc, /* special_function */
557 "R_MIPS_REL32", /* name */
558 true, /* partial_inplace */
559 0xffffffff, /* src_mask */
560 0xffffffff, /* dst_mask */
561 false), /* pcrel_offset */
562
563 /* 26 bit jump address. */
564 HOWTO (R_MIPS_26, /* type */
565 2, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 26, /* bitsize */
568 false, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_dont, /* complain_on_overflow */
571 /* This needs complex overflow
572 detection, because the upper four
573 bits must match the PC + 4. */
574 bfd_elf_generic_reloc, /* special_function */
575 "R_MIPS_26", /* name */
576 true, /* partial_inplace */
577 0x03ffffff, /* src_mask */
578 0x03ffffff, /* dst_mask */
579 false), /* pcrel_offset */
580
581 /* High 16 bits of symbol value. */
582 HOWTO (R_MIPS_HI16, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 16, /* bitsize */
586 false, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont, /* complain_on_overflow */
589 _bfd_mips_elf_hi16_reloc, /* special_function */
590 "R_MIPS_HI16", /* name */
591 true, /* partial_inplace */
592 0x0000ffff, /* src_mask */
593 0x0000ffff, /* dst_mask */
594 false), /* pcrel_offset */
595
596 /* Low 16 bits of symbol value. */
597 HOWTO (R_MIPS_LO16, /* type */
598 0, /* rightshift */
599 2, /* size (0 = byte, 1 = short, 2 = long) */
600 16, /* bitsize */
601 false, /* pc_relative */
602 0, /* bitpos */
603 complain_overflow_dont, /* complain_on_overflow */
604 _bfd_mips_elf_lo16_reloc, /* special_function */
605 "R_MIPS_LO16", /* name */
606 true, /* partial_inplace */
607 0x0000ffff, /* src_mask */
608 0x0000ffff, /* dst_mask */
609 false), /* pcrel_offset */
610
611 /* GP relative reference. */
612 HOWTO (R_MIPS_GPREL16, /* type */
613 0, /* rightshift */
614 2, /* size (0 = byte, 1 = short, 2 = long) */
615 16, /* bitsize */
616 false, /* pc_relative */
617 0, /* bitpos */
618 complain_overflow_signed, /* complain_on_overflow */
619 _bfd_mips_elf_gprel16_reloc, /* special_function */
620 "R_MIPS_GPREL16", /* name */
621 true, /* partial_inplace */
622 0x0000ffff, /* src_mask */
623 0x0000ffff, /* dst_mask */
624 false), /* pcrel_offset */
625
626 /* Reference to literal section. */
627 HOWTO (R_MIPS_LITERAL, /* type */
628 0, /* rightshift */
629 2, /* size (0 = byte, 1 = short, 2 = long) */
630 16, /* bitsize */
631 false, /* pc_relative */
632 0, /* bitpos */
633 complain_overflow_signed, /* complain_on_overflow */
634 _bfd_mips_elf_gprel16_reloc, /* special_function */
635 "R_MIPS_LITERAL", /* name */
636 true, /* partial_inplace */
637 0x0000ffff, /* src_mask */
638 0x0000ffff, /* dst_mask */
639 false), /* pcrel_offset */
640
641 /* Reference to global offset table. */
642 HOWTO (R_MIPS_GOT16, /* type */
643 0, /* rightshift */
644 2, /* size (0 = byte, 1 = short, 2 = long) */
645 16, /* bitsize */
646 false, /* pc_relative */
647 0, /* bitpos */
648 complain_overflow_signed, /* complain_on_overflow */
649 _bfd_mips_elf_got16_reloc, /* special_function */
650 "R_MIPS_GOT16", /* name */
651 true, /* partial_inplace */
652 0x0000ffff, /* src_mask */
653 0x0000ffff, /* dst_mask */
654 false), /* pcrel_offset */
655
656 /* 16 bit PC relative reference. */
657 HOWTO (R_MIPS_PC16, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 16, /* bitsize */
661 true, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed, /* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_MIPS_PC16", /* name */
666 true, /* partial_inplace */
667 0x0000ffff, /* src_mask */
668 0x0000ffff, /* dst_mask */
669 true), /* pcrel_offset */
670
671 /* 16 bit call through global offset table. */
672 HOWTO (R_MIPS_CALL16, /* type */
673 0, /* rightshift */
674 2, /* size (0 = byte, 1 = short, 2 = long) */
675 16, /* bitsize */
676 false, /* pc_relative */
677 0, /* bitpos */
678 complain_overflow_signed, /* complain_on_overflow */
679 bfd_elf_generic_reloc, /* special_function */
680 "R_MIPS_CALL16", /* name */
681 true, /* partial_inplace */
682 0x0000ffff, /* src_mask */
683 0x0000ffff, /* dst_mask */
684 false), /* pcrel_offset */
685
686 /* 32 bit GP relative reference. */
687 HOWTO (R_MIPS_GPREL32, /* type */
688 0, /* rightshift */
689 2, /* size (0 = byte, 1 = short, 2 = long) */
690 32, /* bitsize */
691 false, /* pc_relative */
692 0, /* bitpos */
693 complain_overflow_dont, /* complain_on_overflow */
694 _bfd_mips_elf_gprel32_reloc, /* special_function */
695 "R_MIPS_GPREL32", /* name */
696 true, /* partial_inplace */
697 0xffffffff, /* src_mask */
698 0xffffffff, /* dst_mask */
699 false), /* pcrel_offset */
700
701 /* The remaining relocs are defined on Irix 5, although they are
702 not defined by the ABI. */
703 EMPTY_HOWTO (13),
704 EMPTY_HOWTO (14),
705 EMPTY_HOWTO (15),
706
707 /* A 5 bit shift field. */
708 HOWTO (R_MIPS_SHIFT5, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 5, /* bitsize */
712 false, /* pc_relative */
713 6, /* bitpos */
714 complain_overflow_bitfield, /* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_MIPS_SHIFT5", /* name */
717 true, /* partial_inplace */
718 0x000007c0, /* src_mask */
719 0x000007c0, /* dst_mask */
720 false), /* pcrel_offset */
721
722 /* A 6 bit shift field. */
723 /* FIXME: This is not handled correctly; a special function is
724 needed to put the most significant bit in the right place. */
725 HOWTO (R_MIPS_SHIFT6, /* type */
726 0, /* rightshift */
727 2, /* size (0 = byte, 1 = short, 2 = long) */
728 6, /* bitsize */
729 false, /* pc_relative */
730 6, /* bitpos */
731 complain_overflow_bitfield, /* complain_on_overflow */
732 bfd_elf_generic_reloc, /* special_function */
733 "R_MIPS_SHIFT6", /* name */
734 true, /* partial_inplace */
735 0x000007c4, /* src_mask */
736 0x000007c4, /* dst_mask */
737 false), /* pcrel_offset */
738
739 /* A 64 bit relocation. */
740 HOWTO (R_MIPS_64, /* type */
741 0, /* rightshift */
742 4, /* size (0 = byte, 1 = short, 2 = long) */
743 64, /* bitsize */
744 false, /* pc_relative */
745 0, /* bitpos */
746 complain_overflow_dont, /* complain_on_overflow */
747 mips32_64bit_reloc, /* special_function */
748 "R_MIPS_64", /* name */
749 true, /* partial_inplace */
750 MINUS_ONE, /* src_mask */
751 MINUS_ONE, /* dst_mask */
752 false), /* pcrel_offset */
753
754 /* Displacement in the global offset table. */
755 HOWTO (R_MIPS_GOT_DISP, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 false, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_signed, /* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_MIPS_GOT_DISP", /* name */
764 true, /* partial_inplace */
765 0x0000ffff, /* src_mask */
766 0x0000ffff, /* dst_mask */
767 false), /* pcrel_offset */
768
769 /* Displacement to page pointer in the global offset table. */
770 HOWTO (R_MIPS_GOT_PAGE, /* type */
771 0, /* rightshift */
772 2, /* size (0 = byte, 1 = short, 2 = long) */
773 16, /* bitsize */
774 false, /* pc_relative */
775 0, /* bitpos */
776 complain_overflow_signed, /* complain_on_overflow */
777 bfd_elf_generic_reloc, /* special_function */
778 "R_MIPS_GOT_PAGE", /* name */
779 true, /* partial_inplace */
780 0x0000ffff, /* src_mask */
781 0x0000ffff, /* dst_mask */
782 false), /* pcrel_offset */
783
784 /* Offset from page pointer in the global offset table. */
785 HOWTO (R_MIPS_GOT_OFST, /* type */
786 0, /* rightshift */
787 2, /* size (0 = byte, 1 = short, 2 = long) */
788 16, /* bitsize */
789 false, /* pc_relative */
790 0, /* bitpos */
791 complain_overflow_signed, /* complain_on_overflow */
792 bfd_elf_generic_reloc, /* special_function */
793 "R_MIPS_GOT_OFST", /* name */
794 true, /* partial_inplace */
795 0x0000ffff, /* src_mask */
796 0x0000ffff, /* dst_mask */
797 false), /* pcrel_offset */
798
799 /* High 16 bits of displacement in global offset table. */
800 HOWTO (R_MIPS_GOT_HI16, /* type */
801 0, /* rightshift */
802 2, /* size (0 = byte, 1 = short, 2 = long) */
803 16, /* bitsize */
804 false, /* pc_relative */
805 0, /* bitpos */
806 complain_overflow_dont, /* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 "R_MIPS_GOT_HI16", /* name */
809 true, /* partial_inplace */
810 0x0000ffff, /* src_mask */
811 0x0000ffff, /* dst_mask */
812 false), /* pcrel_offset */
813
814 /* Low 16 bits of displacement in global offset table. */
815 HOWTO (R_MIPS_GOT_LO16, /* type */
816 0, /* rightshift */
817 2, /* size (0 = byte, 1 = short, 2 = long) */
818 16, /* bitsize */
819 false, /* pc_relative */
820 0, /* bitpos */
821 complain_overflow_dont, /* complain_on_overflow */
822 bfd_elf_generic_reloc, /* special_function */
823 "R_MIPS_GOT_LO16", /* name */
824 true, /* partial_inplace */
825 0x0000ffff, /* src_mask */
826 0x0000ffff, /* dst_mask */
827 false), /* pcrel_offset */
828
829 /* 64 bit subtraction. Used in the N32 ABI. */
830 HOWTO (R_MIPS_SUB, /* type */
831 0, /* rightshift */
832 4, /* size (0 = byte, 1 = short, 2 = long) */
833 64, /* bitsize */
834 false, /* pc_relative */
835 0, /* bitpos */
836 complain_overflow_dont, /* complain_on_overflow */
837 bfd_elf_generic_reloc, /* special_function */
838 "R_MIPS_SUB", /* name */
839 true, /* partial_inplace */
840 MINUS_ONE, /* src_mask */
841 MINUS_ONE, /* dst_mask */
842 false), /* pcrel_offset */
843
844 /* Used to cause the linker to insert and delete instructions? */
845 EMPTY_HOWTO (R_MIPS_INSERT_A),
846 EMPTY_HOWTO (R_MIPS_INSERT_B),
847 EMPTY_HOWTO (R_MIPS_DELETE),
848
849 /* Get the higher value of a 64 bit addend. */
850 HOWTO (R_MIPS_HIGHER, /* type */
851 0, /* rightshift */
852 2, /* size (0 = byte, 1 = short, 2 = long) */
853 16, /* bitsize */
854 false, /* pc_relative */
855 0, /* bitpos */
856 complain_overflow_dont, /* complain_on_overflow */
857 bfd_elf_generic_reloc, /* special_function */
858 "R_MIPS_HIGHER", /* name */
859 true, /* partial_inplace */
860 0x0000ffff, /* src_mask */
861 0x0000ffff, /* dst_mask */
862 false), /* pcrel_offset */
863
864 /* Get the highest value of a 64 bit addend. */
865 HOWTO (R_MIPS_HIGHEST, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 16, /* bitsize */
869 false, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont, /* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_MIPS_HIGHEST", /* name */
874 true, /* partial_inplace */
875 0x0000ffff, /* src_mask */
876 0x0000ffff, /* dst_mask */
877 false), /* pcrel_offset */
878
879 /* High 16 bits of displacement in global offset table. */
880 HOWTO (R_MIPS_CALL_HI16, /* type */
881 0, /* rightshift */
882 2, /* size (0 = byte, 1 = short, 2 = long) */
883 16, /* bitsize */
884 false, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont, /* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_MIPS_CALL_HI16", /* name */
889 true, /* partial_inplace */
890 0x0000ffff, /* src_mask */
891 0x0000ffff, /* dst_mask */
892 false), /* pcrel_offset */
893
894 /* Low 16 bits of displacement in global offset table. */
895 HOWTO (R_MIPS_CALL_LO16, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 16, /* bitsize */
899 false, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont, /* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_MIPS_CALL_LO16", /* name */
904 true, /* partial_inplace */
905 0x0000ffff, /* src_mask */
906 0x0000ffff, /* dst_mask */
907 false), /* pcrel_offset */
908
909 /* Section displacement. */
910 HOWTO (R_MIPS_SCN_DISP, /* type */
911 0, /* rightshift */
912 2, /* size (0 = byte, 1 = short, 2 = long) */
913 32, /* bitsize */
914 false, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_dont, /* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
918 "R_MIPS_SCN_DISP", /* name */
919 true, /* partial_inplace */
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
922 false), /* pcrel_offset */
923
924 EMPTY_HOWTO (R_MIPS_REL16),
925 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
926 EMPTY_HOWTO (R_MIPS_PJUMP),
927 EMPTY_HOWTO (R_MIPS_RELGOT),
928
929 /* Protected jump conversion. This is an optimization hint. No
930 relocation is required for correctness. */
931 HOWTO (R_MIPS_JALR, /* type */
932 0, /* rightshift */
933 2, /* size (0 = byte, 1 = short, 2 = long) */
934 32, /* bitsize */
935 false, /* pc_relative */
936 0, /* bitpos */
937 complain_overflow_dont, /* complain_on_overflow */
938 bfd_elf_generic_reloc, /* special_function */
939 "R_MIPS_JALR", /* name */
940 false, /* partial_inplace */
941 0x00000000, /* src_mask */
942 0x00000000, /* dst_mask */
943 false), /* pcrel_offset */
944 };
945
946 /* The relocation table used for SHT_RELA sections. */
947
948 static reloc_howto_type elf_mips_howto_table_rela[] =
949 {
950 /* No relocation. */
951 HOWTO (R_MIPS_NONE, /* type */
952 0, /* rightshift */
953 0, /* size (0 = byte, 1 = short, 2 = long) */
954 0, /* bitsize */
955 false, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_MIPS_NONE", /* name */
960 false, /* partial_inplace */
961 0, /* src_mask */
962 0, /* dst_mask */
963 false), /* pcrel_offset */
964
965 /* 16 bit relocation. */
966 HOWTO (R_MIPS_16, /* type */
967 0, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 16, /* bitsize */
970 false, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_signed, /* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 "R_MIPS_16", /* name */
975 false, /* partial_inplace */
976 0, /* src_mask */
977 0x0000, /* dst_mask */
978 false), /* pcrel_offset */
979
980 /* 32 bit relocation. */
981 HOWTO (R_MIPS_32, /* type */
982 0, /* rightshift */
983 2, /* size (0 = byte, 1 = short, 2 = long) */
984 32, /* bitsize */
985 false, /* pc_relative */
986 0, /* bitpos */
987 complain_overflow_dont, /* complain_on_overflow */
988 bfd_elf_generic_reloc, /* special_function */
989 "R_MIPS_32", /* name */
990 false, /* partial_inplace */
991 0, /* src_mask */
992 0xffffffff, /* dst_mask */
993 false), /* pcrel_offset */
994
995 /* 32 bit symbol relative relocation. */
996 HOWTO (R_MIPS_REL32, /* type */
997 0, /* rightshift */
998 2, /* size (0 = byte, 1 = short, 2 = long) */
999 32, /* bitsize */
1000 false, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_dont, /* complain_on_overflow */
1003 bfd_elf_generic_reloc, /* special_function */
1004 "R_MIPS_REL32", /* name */
1005 false, /* partial_inplace */
1006 0, /* src_mask */
1007 0xffffffff, /* dst_mask */
1008 false), /* pcrel_offset */
1009
1010 /* 26 bit jump address. */
1011 HOWTO (R_MIPS_26, /* type */
1012 2, /* rightshift */
1013 2, /* size (0 = byte, 1 = short, 2 = long) */
1014 26, /* bitsize */
1015 false, /* pc_relative */
1016 0, /* bitpos */
1017 complain_overflow_dont, /* complain_on_overflow */
1018 /* This needs complex overflow
1019 detection, because the upper 36
1020 bits must match the PC + 4. */
1021 bfd_elf_generic_reloc, /* special_function */
1022 "R_MIPS_26", /* name */
1023 false, /* partial_inplace */
1024 0, /* src_mask */
1025 0x03ffffff, /* dst_mask */
1026 false), /* pcrel_offset */
1027
1028 /* R_MIPS_HI16 and R_MIPS_LO16 are unsupported for 64 bit REL. */
1029 /* High 16 bits of symbol value. */
1030 HOWTO (R_MIPS_HI16, /* type */
1031 0, /* rightshift */
1032 2, /* size (0 = byte, 1 = short, 2 = long) */
1033 16, /* bitsize */
1034 false, /* pc_relative */
1035 0, /* bitpos */
1036 complain_overflow_dont, /* complain_on_overflow */
1037 bfd_elf_generic_reloc, /* special_function */
1038 "R_MIPS_HI16", /* name */
1039 false, /* partial_inplace */
1040 0, /* src_mask */
1041 0x0000ffff, /* dst_mask */
1042 false), /* pcrel_offset */
1043
1044 /* Low 16 bits of symbol value. */
1045 HOWTO (R_MIPS_LO16, /* type */
1046 0, /* rightshift */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1048 16, /* bitsize */
1049 false, /* pc_relative */
1050 0, /* bitpos */
1051 complain_overflow_dont, /* complain_on_overflow */
1052 bfd_elf_generic_reloc, /* special_function */
1053 "R_MIPS_LO16", /* name */
1054 false, /* partial_inplace */
1055 0, /* src_mask */
1056 0x0000ffff, /* dst_mask */
1057 false), /* pcrel_offset */
1058
1059 /* GP relative reference. */
1060 HOWTO (R_MIPS_GPREL16, /* type */
1061 0, /* rightshift */
1062 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 16, /* bitsize */
1064 false, /* pc_relative */
1065 0, /* bitpos */
1066 complain_overflow_signed, /* complain_on_overflow */
1067 _bfd_mips_elf_gprel16_reloc, /* special_function */
1068 "R_MIPS_GPREL16", /* name */
1069 false, /* partial_inplace */
1070 0, /* src_mask */
1071 0x0000ffff, /* dst_mask */
1072 false), /* pcrel_offset */
1073
1074 /* Reference to literal section. */
1075 HOWTO (R_MIPS_LITERAL, /* type */
1076 0, /* rightshift */
1077 2, /* size (0 = byte, 1 = short, 2 = long) */
1078 16, /* bitsize */
1079 false, /* pc_relative */
1080 0, /* bitpos */
1081 complain_overflow_signed, /* complain_on_overflow */
1082 _bfd_mips_elf_gprel16_reloc, /* special_function */
1083 "R_MIPS_LITERAL", /* name */
1084 false, /* partial_inplace */
1085 0, /* src_mask */
1086 0x0000ffff, /* dst_mask */
1087 false), /* pcrel_offset */
1088
1089 /* Reference to global offset table. */
1090 /* FIXME: This is not handled correctly. */
1091 HOWTO (R_MIPS_GOT16, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 16, /* bitsize */
1095 false, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_signed, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_MIPS_GOT16", /* name */
1100 false, /* partial_inplace */
1101 0, /* src_mask */
1102 0x0000ffff, /* dst_mask */
1103 false), /* pcrel_offset */
1104
1105 /* 16 bit PC relative reference. */
1106 HOWTO (R_MIPS_PC16, /* type */
1107 0, /* rightshift */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 16, /* bitsize */
1110 true, /* pc_relative */
1111 0, /* bitpos */
1112 complain_overflow_signed, /* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
1114 "R_MIPS_PC16", /* name */
1115 false, /* partial_inplace */
1116 0, /* src_mask */
1117 0x0000ffff, /* dst_mask */
1118 true), /* pcrel_offset */
1119
1120 /* 16 bit call through global offset table. */
1121 /* FIXME: This is not handled correctly. */
1122 HOWTO (R_MIPS_CALL16, /* type */
1123 0, /* rightshift */
1124 2, /* size (0 = byte, 1 = short, 2 = long) */
1125 16, /* bitsize */
1126 false, /* pc_relative */
1127 0, /* bitpos */
1128 complain_overflow_signed, /* complain_on_overflow */
1129 bfd_elf_generic_reloc, /* special_function */
1130 "R_MIPS_CALL16", /* name */
1131 false, /* partial_inplace */
1132 0, /* src_mask */
1133 0x0000ffff, /* dst_mask */
1134 false), /* pcrel_offset */
1135
1136 /* 32 bit GP relative reference. */
1137 HOWTO (R_MIPS_GPREL32, /* type */
1138 0, /* rightshift */
1139 2, /* size (0 = byte, 1 = short, 2 = long) */
1140 32, /* bitsize */
1141 false, /* pc_relative */
1142 0, /* bitpos */
1143 complain_overflow_dont, /* complain_on_overflow */
1144 _bfd_mips_elf_gprel32_reloc, /* special_function */
1145 "R_MIPS_GPREL32", /* name */
1146 false, /* partial_inplace */
1147 0, /* src_mask */
1148 0xffffffff, /* dst_mask */
1149 false), /* pcrel_offset */
1150
1151 EMPTY_HOWTO (13),
1152 EMPTY_HOWTO (14),
1153 EMPTY_HOWTO (15),
1154
1155 /* A 5 bit shift field. */
1156 HOWTO (R_MIPS_SHIFT5, /* type */
1157 0, /* rightshift */
1158 2, /* size (0 = byte, 1 = short, 2 = long) */
1159 5, /* bitsize */
1160 false, /* pc_relative */
1161 6, /* bitpos */
1162 complain_overflow_bitfield, /* complain_on_overflow */
1163 bfd_elf_generic_reloc, /* special_function */
1164 "R_MIPS_SHIFT5", /* name */
1165 false, /* partial_inplace */
1166 0, /* src_mask */
1167 0x000007c0, /* dst_mask */
1168 false), /* pcrel_offset */
1169
1170 /* A 6 bit shift field. */
1171 /* FIXME: Not handled correctly. */
1172 HOWTO (R_MIPS_SHIFT6, /* type */
1173 0, /* rightshift */
1174 2, /* size (0 = byte, 1 = short, 2 = long) */
1175 6, /* bitsize */
1176 false, /* pc_relative */
1177 6, /* bitpos */
1178 complain_overflow_bitfield, /* complain_on_overflow */
1179 bfd_elf_generic_reloc, /* special_function */
1180 "R_MIPS_SHIFT6", /* name */
1181 false, /* partial_inplace */
1182 0, /* src_mask */
1183 0x000007c4, /* dst_mask */
1184 false), /* pcrel_offset */
1185
1186 /* 64 bit relocation. */
1187 HOWTO (R_MIPS_64, /* type */
1188 0, /* rightshift */
1189 4, /* size (0 = byte, 1 = short, 2 = long) */
1190 64, /* bitsize */
1191 false, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_dont, /* complain_on_overflow */
1194 bfd_elf_generic_reloc, /* special_function */
1195 "R_MIPS_64", /* name */
1196 false, /* partial_inplace */
1197 0, /* src_mask */
1198 MINUS_ONE, /* dst_mask */
1199 false), /* pcrel_offset */
1200
1201 /* Displacement in the global offset table. */
1202 /* FIXME: Not handled correctly. */
1203 HOWTO (R_MIPS_GOT_DISP, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 16, /* bitsize */
1207 false, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_signed, /* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_MIPS_GOT_DISP", /* name */
1212 false, /* partial_inplace */
1213 0, /* src_mask */
1214 0x0000ffff, /* dst_mask */
1215 false), /* pcrel_offset */
1216
1217 /* Displacement to page pointer in the global offset table. */
1218 /* FIXME: Not handled correctly. */
1219 HOWTO (R_MIPS_GOT_PAGE, /* type */
1220 0, /* rightshift */
1221 2, /* size (0 = byte, 1 = short, 2 = long) */
1222 16, /* bitsize */
1223 false, /* pc_relative */
1224 0, /* bitpos */
1225 complain_overflow_signed, /* complain_on_overflow */
1226 bfd_elf_generic_reloc, /* special_function */
1227 "R_MIPS_GOT_PAGE", /* name */
1228 false, /* partial_inplace */
1229 0, /* src_mask */
1230 0x0000ffff, /* dst_mask */
1231 false), /* pcrel_offset */
1232
1233 /* Offset from page pointer in the global offset table. */
1234 /* FIXME: Not handled correctly. */
1235 HOWTO (R_MIPS_GOT_OFST, /* type */
1236 0, /* rightshift */
1237 2, /* size (0 = byte, 1 = short, 2 = long) */
1238 16, /* bitsize */
1239 false, /* pc_relative */
1240 0, /* bitpos */
1241 complain_overflow_signed, /* complain_on_overflow */
1242 bfd_elf_generic_reloc, /* special_function */
1243 "R_MIPS_GOT_OFST", /* name */
1244 false, /* partial_inplace */
1245 0, /* src_mask */
1246 0x0000ffff, /* dst_mask */
1247 false), /* pcrel_offset */
1248
1249 /* High 16 bits of displacement in global offset table. */
1250 /* FIXME: Not handled correctly. */
1251 HOWTO (R_MIPS_GOT_HI16, /* type */
1252 0, /* rightshift */
1253 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 16, /* bitsize */
1255 false, /* pc_relative */
1256 0, /* bitpos */
1257 complain_overflow_dont, /* complain_on_overflow */
1258 bfd_elf_generic_reloc, /* special_function */
1259 "R_MIPS_GOT_HI16", /* name */
1260 false, /* partial_inplace */
1261 0, /* src_mask */
1262 0x0000ffff, /* dst_mask */
1263 false), /* pcrel_offset */
1264
1265 /* Low 16 bits of displacement in global offset table. */
1266 /* FIXME: Not handled correctly. */
1267 HOWTO (R_MIPS_GOT_LO16, /* type */
1268 0, /* rightshift */
1269 2, /* size (0 = byte, 1 = short, 2 = long) */
1270 16, /* bitsize */
1271 false, /* pc_relative */
1272 0, /* bitpos */
1273 complain_overflow_dont, /* complain_on_overflow */
1274 bfd_elf_generic_reloc, /* special_function */
1275 "R_MIPS_GOT_LO16", /* name */
1276 false, /* partial_inplace */
1277 0, /* src_mask */
1278 0x0000ffff, /* dst_mask */
1279 false), /* pcrel_offset */
1280
1281 /* 64 bit substraction. */
1282 /* FIXME: Not handled correctly. */
1283 HOWTO (R_MIPS_SUB, /* type */
1284 0, /* rightshift */
1285 4, /* size (0 = byte, 1 = short, 2 = long) */
1286 64, /* bitsize */
1287 false, /* pc_relative */
1288 0, /* bitpos */
1289 complain_overflow_dont, /* complain_on_overflow */
1290 bfd_elf_generic_reloc, /* special_function */
1291 "R_MIPS_SUB", /* name */
1292 false, /* partial_inplace */
1293 0, /* src_mask */
1294 MINUS_ONE, /* dst_mask */
1295 false), /* pcrel_offset */
1296
1297 /* Insert the addend as an instruction. */
1298 /* FIXME: Not handled correctly. */
1299 HOWTO (R_MIPS_INSERT_A, /* type */
1300 0, /* rightshift */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1302 32, /* bitsize */
1303 false, /* pc_relative */
1304 0, /* bitpos */
1305 complain_overflow_dont, /* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 "R_MIPS_INSERT_A", /* name */
1308 false, /* partial_inplace */
1309 0, /* src_mask */
1310 0xffffffff, /* dst_mask */
1311 false), /* pcrel_offset */
1312
1313 /* Insert the addend as an instruction, and change all relocations
1314 to refer to the old instruction at the address. */
1315 /* FIXME: Not handled correctly. */
1316 HOWTO (R_MIPS_INSERT_B, /* type */
1317 0, /* rightshift */
1318 2, /* size (0 = byte, 1 = short, 2 = long) */
1319 32, /* bitsize */
1320 false, /* pc_relative */
1321 0, /* bitpos */
1322 complain_overflow_dont, /* complain_on_overflow */
1323 bfd_elf_generic_reloc, /* special_function */
1324 "R_MIPS_INSERT_B", /* name */
1325 false, /* partial_inplace */
1326 0, /* src_mask */
1327 0xffffffff, /* dst_mask */
1328 false), /* pcrel_offset */
1329
1330 /* Delete a 32 bit instruction. */
1331 /* FIXME: Not handled correctly. */
1332 HOWTO (R_MIPS_DELETE, /* type */
1333 0, /* rightshift */
1334 2, /* size (0 = byte, 1 = short, 2 = long) */
1335 32, /* bitsize */
1336 false, /* pc_relative */
1337 0, /* bitpos */
1338 complain_overflow_dont, /* complain_on_overflow */
1339 bfd_elf_generic_reloc, /* special_function */
1340 "R_MIPS_DELETE", /* name */
1341 false, /* partial_inplace */
1342 0, /* src_mask */
1343 0xffffffff, /* dst_mask */
1344 false), /* pcrel_offset */
1345
1346 /* Get the higher value of a 64 bit addend. */
1347 HOWTO (R_MIPS_HIGHER, /* type */
1348 0, /* rightshift */
1349 2, /* size (0 = byte, 1 = short, 2 = long) */
1350 16, /* bitsize */
1351 false, /* pc_relative */
1352 0, /* bitpos */
1353 complain_overflow_dont, /* complain_on_overflow */
1354 bfd_elf_generic_reloc, /* special_function */
1355 "R_MIPS_HIGHER", /* name */
1356 false, /* partial_inplace */
1357 0, /* src_mask */
1358 0x0000ffff, /* dst_mask */
1359 false), /* pcrel_offset */
1360
1361 /* Get the highest value of a 64 bit addend. */
1362 HOWTO (R_MIPS_HIGHEST, /* type */
1363 0, /* rightshift */
1364 2, /* size (0 = byte, 1 = short, 2 = long) */
1365 16, /* bitsize */
1366 false, /* pc_relative */
1367 0, /* bitpos */
1368 complain_overflow_dont, /* complain_on_overflow */
1369 bfd_elf_generic_reloc, /* special_function */
1370 "R_MIPS_HIGHEST", /* name */
1371 false, /* partial_inplace */
1372 0, /* src_mask */
1373 0x0000ffff, /* dst_mask */
1374 false), /* pcrel_offset */
1375
1376 /* High 16 bits of displacement in global offset table. */
1377 /* FIXME: Not handled correctly. */
1378 HOWTO (R_MIPS_CALL_HI16, /* type */
1379 0, /* rightshift */
1380 2, /* size (0 = byte, 1 = short, 2 = long) */
1381 16, /* bitsize */
1382 false, /* pc_relative */
1383 0, /* bitpos */
1384 complain_overflow_dont, /* complain_on_overflow */
1385 bfd_elf_generic_reloc, /* special_function */
1386 "R_MIPS_CALL_HI16", /* name */
1387 false, /* partial_inplace */
1388 0, /* src_mask */
1389 0x0000ffff, /* dst_mask */
1390 false), /* pcrel_offset */
1391
1392 /* Low 16 bits of displacement in global offset table. */
1393 /* FIXME: Not handled correctly. */
1394 HOWTO (R_MIPS_CALL_LO16, /* type */
1395 0, /* rightshift */
1396 2, /* size (0 = byte, 1 = short, 2 = long) */
1397 16, /* bitsize */
1398 false, /* pc_relative */
1399 0, /* bitpos */
1400 complain_overflow_dont, /* complain_on_overflow */
1401 bfd_elf_generic_reloc, /* special_function */
1402 "R_MIPS_CALL_LO16", /* name */
1403 false, /* partial_inplace */
1404 0, /* src_mask */
1405 0x0000ffff, /* dst_mask */
1406 false), /* pcrel_offset */
1407
1408 /* Section displacement, used by an associated event location section. */
1409 /* FIXME: Not handled correctly. */
1410 HOWTO (R_MIPS_SCN_DISP, /* type */
1411 0, /* rightshift */
1412 2, /* size (0 = byte, 1 = short, 2 = long) */
1413 32, /* bitsize */
1414 false, /* pc_relative */
1415 0, /* bitpos */
1416 complain_overflow_dont, /* complain_on_overflow */
1417 bfd_elf_generic_reloc, /* special_function */
1418 "R_MIPS_SCN_DISP", /* name */
1419 false, /* partial_inplace */
1420 0, /* src_mask */
1421 0xffffffff, /* dst_mask */
1422 false), /* pcrel_offset */
1423
1424 HOWTO (R_MIPS_REL16, /* type */
1425 0, /* rightshift */
1426 1, /* size (0 = byte, 1 = short, 2 = long) */
1427 16, /* bitsize */
1428 false, /* pc_relative */
1429 0, /* bitpos */
1430 complain_overflow_signed, /* complain_on_overflow */
1431 bfd_elf_generic_reloc, /* special_function */
1432 "R_MIPS_REL16", /* name */
1433 false, /* partial_inplace */
1434 0, /* src_mask */
1435 0xffff, /* dst_mask */
1436 false), /* pcrel_offset */
1437
1438 /* These two are obsolete. */
1439 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
1440 EMPTY_HOWTO (R_MIPS_PJUMP),
1441
1442 /* Similiar to R_MIPS_REL32, but used for relocations in a GOT section.
1443 It must be used for multigot GOT's (and only there). */
1444 HOWTO (R_MIPS_RELGOT, /* type */
1445 0, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 32, /* bitsize */
1448 false, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 "R_MIPS_RELGOT", /* name */
1453 false, /* partial_inplace */
1454 0, /* src_mask */
1455 0xffffffff, /* dst_mask */
1456 false), /* pcrel_offset */
1457
1458 /* Protected jump conversion. This is an optimization hint. No
1459 relocation is required for correctness. */
1460 HOWTO (R_MIPS_JALR, /* type */
1461 0, /* rightshift */
1462 2, /* size (0 = byte, 1 = short, 2 = long) */
1463 32, /* bitsize */
1464 false, /* pc_relative */
1465 0, /* bitpos */
1466 complain_overflow_dont, /* complain_on_overflow */
1467 bfd_elf_generic_reloc, /* special_function */
1468 "R_MIPS_JALR", /* name */
1469 false, /* partial_inplace */
1470 0, /* src_mask */
1471 0xffffffff, /* dst_mask */
1472 false), /* pcrel_offset */
1473 };
1474
1475 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
1476 is a hack to make the linker think that we need 64 bit values. */
1477 static reloc_howto_type elf_mips_ctor64_howto =
1478 HOWTO (R_MIPS_64, /* type */
1479 0, /* rightshift */
1480 4, /* size (0 = byte, 1 = short, 2 = long) */
1481 32, /* bitsize */
1482 false, /* pc_relative */
1483 0, /* bitpos */
1484 complain_overflow_signed, /* complain_on_overflow */
1485 mips32_64bit_reloc, /* special_function */
1486 "R_MIPS_64", /* name */
1487 true, /* partial_inplace */
1488 0xffffffff, /* src_mask */
1489 0xffffffff, /* dst_mask */
1490 false); /* pcrel_offset */
1491
1492 /* The reloc used for the mips16 jump instruction. */
1493 static reloc_howto_type elf_mips16_jump_howto =
1494 HOWTO (R_MIPS16_26, /* type */
1495 2, /* rightshift */
1496 2, /* size (0 = byte, 1 = short, 2 = long) */
1497 26, /* bitsize */
1498 false, /* pc_relative */
1499 0, /* bitpos */
1500 complain_overflow_dont, /* complain_on_overflow */
1501 /* This needs complex overflow
1502 detection, because the upper four
1503 bits must match the PC. */
1504 mips16_jump_reloc, /* special_function */
1505 "R_MIPS16_26", /* name */
1506 true, /* partial_inplace */
1507 0x3ffffff, /* src_mask */
1508 0x3ffffff, /* dst_mask */
1509 false); /* pcrel_offset */
1510
1511 /* The reloc used for the mips16 gprel instruction. */
1512 static reloc_howto_type elf_mips16_gprel_howto =
1513 HOWTO (R_MIPS16_GPREL, /* type */
1514 0, /* rightshift */
1515 2, /* size (0 = byte, 1 = short, 2 = long) */
1516 16, /* bitsize */
1517 false, /* pc_relative */
1518 0, /* bitpos */
1519 complain_overflow_signed, /* complain_on_overflow */
1520 mips16_gprel_reloc, /* special_function */
1521 "R_MIPS16_GPREL", /* name */
1522 true, /* partial_inplace */
1523 0x07ff001f, /* src_mask */
1524 0x07ff001f, /* dst_mask */
1525 false); /* pcrel_offset */
1526
1527 /* GNU extensions for embedded-pic. */
1528 /* High 16 bits of symbol value, pc-relative. */
1529 static reloc_howto_type elf_mips_gnu_rel_hi16 =
1530 HOWTO (R_MIPS_GNU_REL_HI16, /* type */
1531 0, /* rightshift */
1532 2, /* size (0 = byte, 1 = short, 2 = long) */
1533 16, /* bitsize */
1534 true, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 _bfd_mips_elf_hi16_reloc, /* special_function */
1538 "R_MIPS_GNU_REL_HI16", /* name */
1539 true, /* partial_inplace */
1540 0xffff, /* src_mask */
1541 0xffff, /* dst_mask */
1542 true); /* pcrel_offset */
1543
1544 /* Low 16 bits of symbol value, pc-relative. */
1545 static reloc_howto_type elf_mips_gnu_rel_lo16 =
1546 HOWTO (R_MIPS_GNU_REL_LO16, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 16, /* bitsize */
1550 true, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_dont, /* complain_on_overflow */
1553 _bfd_mips_elf_lo16_reloc, /* special_function */
1554 "R_MIPS_GNU_REL_LO16", /* name */
1555 true, /* partial_inplace */
1556 0xffff, /* src_mask */
1557 0xffff, /* dst_mask */
1558 true); /* pcrel_offset */
1559
1560 /* 16 bit offset for pc-relative branches. */
1561 static reloc_howto_type elf_mips_gnu_rel16_s2 =
1562 HOWTO (R_MIPS_GNU_REL16_S2, /* type */
1563 2, /* rightshift */
1564 2, /* size (0 = byte, 1 = short, 2 = long) */
1565 16, /* bitsize */
1566 true, /* pc_relative */
1567 0, /* bitpos */
1568 complain_overflow_signed, /* complain_on_overflow */
1569 bfd_elf_generic_reloc, /* special_function */
1570 "R_MIPS_GNU_REL16_S2", /* name */
1571 true, /* partial_inplace */
1572 0xffff, /* src_mask */
1573 0xffff, /* dst_mask */
1574 true); /* pcrel_offset */
1575
1576 /* 64 bit pc-relative. */
1577 static reloc_howto_type elf_mips_gnu_pcrel64 =
1578 HOWTO (R_MIPS_PC64, /* type */
1579 0, /* rightshift */
1580 4, /* size (0 = byte, 1 = short, 2 = long) */
1581 64, /* bitsize */
1582 true, /* pc_relative */
1583 0, /* bitpos */
1584 complain_overflow_signed, /* complain_on_overflow */
1585 bfd_elf_generic_reloc, /* special_function */
1586 "R_MIPS_PC64", /* name */
1587 true, /* partial_inplace */
1588 MINUS_ONE, /* src_mask */
1589 MINUS_ONE, /* dst_mask */
1590 true); /* pcrel_offset */
1591
1592 /* 32 bit pc-relative. */
1593 static reloc_howto_type elf_mips_gnu_pcrel32 =
1594 HOWTO (R_MIPS_PC32, /* type */
1595 0, /* rightshift */
1596 2, /* size (0 = byte, 1 = short, 2 = long) */
1597 32, /* bitsize */
1598 true, /* pc_relative */
1599 0, /* bitpos */
1600 complain_overflow_signed, /* complain_on_overflow */
1601 bfd_elf_generic_reloc, /* special_function */
1602 "R_MIPS_PC32", /* name */
1603 true, /* partial_inplace */
1604 0xffffffff, /* src_mask */
1605 0xffffffff, /* dst_mask */
1606 true); /* pcrel_offset */
1607
1608 /* GNU extension to record C++ vtable hierarchy */
1609 static reloc_howto_type elf_mips_gnu_vtinherit_howto =
1610 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
1611 0, /* rightshift */
1612 2, /* size (0 = byte, 1 = short, 2 = long) */
1613 0, /* bitsize */
1614 false, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_dont, /* complain_on_overflow */
1617 NULL, /* special_function */
1618 "R_MIPS_GNU_VTINHERIT", /* name */
1619 false, /* partial_inplace */
1620 0, /* src_mask */
1621 0, /* dst_mask */
1622 false); /* pcrel_offset */
1623
1624 /* GNU extension to record C++ vtable member usage */
1625 static reloc_howto_type elf_mips_gnu_vtentry_howto =
1626 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
1627 0, /* rightshift */
1628 2, /* size (0 = byte, 1 = short, 2 = long) */
1629 0, /* bitsize */
1630 false, /* pc_relative */
1631 0, /* bitpos */
1632 complain_overflow_dont, /* complain_on_overflow */
1633 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1634 "R_MIPS_GNU_VTENTRY", /* name */
1635 false, /* partial_inplace */
1636 0, /* src_mask */
1637 0, /* dst_mask */
1638 false); /* pcrel_offset */
1639
1640 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
1641 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1642 the HI16. Here we just save the information we need; we do the
1643 actual relocation when we see the LO16. MIPS ELF requires that the
1644 LO16 immediately follow the HI16. As a GNU extension, we permit an
1645 arbitrary number of HI16 relocs to be associated with a single LO16
1646 reloc. This extension permits gcc to output the HI and LO relocs
1647 itself. */
1648
1649 struct mips_hi16
1650 {
1651 struct mips_hi16 *next;
1652 bfd_byte *addr;
1653 bfd_vma addend;
1654 };
1655
1656 /* FIXME: This should not be a static variable. */
1657
1658 static struct mips_hi16 *mips_hi16_list;
1659
1660 bfd_reloc_status_type
1661 _bfd_mips_elf_hi16_reloc (abfd,
1662 reloc_entry,
1663 symbol,
1664 data,
1665 input_section,
1666 output_bfd,
1667 error_message)
1668 bfd *abfd ATTRIBUTE_UNUSED;
1669 arelent *reloc_entry;
1670 asymbol *symbol;
1671 PTR data;
1672 asection *input_section;
1673 bfd *output_bfd;
1674 char **error_message;
1675 {
1676 bfd_reloc_status_type ret;
1677 bfd_vma relocation;
1678 struct mips_hi16 *n;
1679
1680 /* If we're relocating, and this an external symbol, we don't want
1681 to change anything. */
1682 if (output_bfd != (bfd *) NULL
1683 && (symbol->flags & BSF_SECTION_SYM) == 0
1684 && reloc_entry->addend == 0)
1685 {
1686 reloc_entry->address += input_section->output_offset;
1687 return bfd_reloc_ok;
1688 }
1689
1690 ret = bfd_reloc_ok;
1691
1692 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1693 {
1694 boolean relocateable;
1695 bfd_vma gp;
1696
1697 if (ret == bfd_reloc_undefined)
1698 abort ();
1699
1700 if (output_bfd != NULL)
1701 relocateable = true;
1702 else
1703 {
1704 relocateable = false;
1705 output_bfd = symbol->section->output_section->owner;
1706 }
1707
1708 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1709 error_message, &gp);
1710 if (ret != bfd_reloc_ok)
1711 return ret;
1712
1713 relocation = gp - reloc_entry->address;
1714 }
1715 else
1716 {
1717 if (bfd_is_und_section (symbol->section)
1718 && output_bfd == (bfd *) NULL)
1719 ret = bfd_reloc_undefined;
1720
1721 if (bfd_is_com_section (symbol->section))
1722 relocation = 0;
1723 else
1724 relocation = symbol->value;
1725 }
1726
1727 relocation += symbol->section->output_section->vma;
1728 relocation += symbol->section->output_offset;
1729 relocation += reloc_entry->addend;
1730 if (reloc_entry->howto->pc_relative)
1731 relocation -= reloc_entry->address;
1732
1733 if (reloc_entry->address > input_section->_cooked_size)
1734 return bfd_reloc_outofrange;
1735
1736 /* Save the information, and let LO16 do the actual relocation. */
1737 n = (struct mips_hi16 *) bfd_malloc ((bfd_size_type) sizeof *n);
1738 if (n == NULL)
1739 return bfd_reloc_outofrange;
1740 n->addr = (bfd_byte *) data + reloc_entry->address;
1741 n->addend = relocation;
1742 n->next = mips_hi16_list;
1743 mips_hi16_list = n;
1744
1745 if (output_bfd != (bfd *) NULL)
1746 reloc_entry->address += input_section->output_offset;
1747
1748 return ret;
1749 }
1750
1751 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1752 inplace relocation; this function exists in order to do the
1753 R_MIPS_HI16 relocation described above. */
1754
1755 bfd_reloc_status_type
1756 _bfd_mips_elf_lo16_reloc (abfd,
1757 reloc_entry,
1758 symbol,
1759 data,
1760 input_section,
1761 output_bfd,
1762 error_message)
1763 bfd *abfd;
1764 arelent *reloc_entry;
1765 asymbol *symbol;
1766 PTR data;
1767 asection *input_section;
1768 bfd *output_bfd;
1769 char **error_message;
1770 {
1771 arelent gp_disp_relent;
1772
1773 if (mips_hi16_list != NULL)
1774 {
1775 struct mips_hi16 *l;
1776
1777 l = mips_hi16_list;
1778 while (l != NULL)
1779 {
1780 unsigned long insn;
1781 unsigned long val;
1782 unsigned long vallo;
1783 struct mips_hi16 *next;
1784
1785 /* Do the HI16 relocation. Note that we actually don't need
1786 to know anything about the LO16 itself, except where to
1787 find the low 16 bits of the addend needed by the LO16. */
1788 insn = bfd_get_32 (abfd, l->addr);
1789 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1790 & 0xffff);
1791 val = ((insn & 0xffff) << 16) + vallo;
1792 val += l->addend;
1793
1794 /* The low order 16 bits are always treated as a signed
1795 value. Therefore, a negative value in the low order bits
1796 requires an adjustment in the high order bits. We need
1797 to make this adjustment in two ways: once for the bits we
1798 took from the data, and once for the bits we are putting
1799 back in to the data. */
1800 if ((vallo & 0x8000) != 0)
1801 val -= 0x10000;
1802 if ((val & 0x8000) != 0)
1803 val += 0x10000;
1804
1805 insn = (insn &~ (bfd_vma) 0xffff) | ((val >> 16) & 0xffff);
1806 bfd_put_32 (abfd, (bfd_vma) insn, l->addr);
1807
1808 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1809 {
1810 gp_disp_relent = *reloc_entry;
1811 reloc_entry = &gp_disp_relent;
1812 reloc_entry->addend = l->addend;
1813 }
1814
1815 next = l->next;
1816 free (l);
1817 l = next;
1818 }
1819
1820 mips_hi16_list = NULL;
1821 }
1822 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1823 {
1824 bfd_reloc_status_type ret;
1825 bfd_vma gp, relocation;
1826
1827 /* FIXME: Does this case ever occur? */
1828
1829 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1830 if (ret != bfd_reloc_ok)
1831 return ret;
1832
1833 relocation = gp - reloc_entry->address;
1834 relocation += symbol->section->output_section->vma;
1835 relocation += symbol->section->output_offset;
1836 relocation += reloc_entry->addend;
1837
1838 if (reloc_entry->address > input_section->_cooked_size)
1839 return bfd_reloc_outofrange;
1840
1841 gp_disp_relent = *reloc_entry;
1842 reloc_entry = &gp_disp_relent;
1843 reloc_entry->addend = relocation - 4;
1844 }
1845
1846 /* Now do the LO16 reloc in the usual way. */
1847 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1848 input_section, output_bfd, error_message);
1849 }
1850
1851 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1852 table used for PIC code. If the symbol is an external symbol, the
1853 instruction is modified to contain the offset of the appropriate
1854 entry in the global offset table. If the symbol is a section
1855 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1856 addends are combined to form the real addend against the section
1857 symbol; the GOT16 is modified to contain the offset of an entry in
1858 the global offset table, and the LO16 is modified to offset it
1859 appropriately. Thus an offset larger than 16 bits requires a
1860 modified value in the global offset table.
1861
1862 This implementation suffices for the assembler, but the linker does
1863 not yet know how to create global offset tables. */
1864
1865 bfd_reloc_status_type
1866 _bfd_mips_elf_got16_reloc (abfd,
1867 reloc_entry,
1868 symbol,
1869 data,
1870 input_section,
1871 output_bfd,
1872 error_message)
1873 bfd *abfd;
1874 arelent *reloc_entry;
1875 asymbol *symbol;
1876 PTR data;
1877 asection *input_section;
1878 bfd *output_bfd;
1879 char **error_message;
1880 {
1881 /* If we're relocating, and this an external symbol, we don't want
1882 to change anything. */
1883 if (output_bfd != (bfd *) NULL
1884 && (symbol->flags & BSF_SECTION_SYM) == 0
1885 && reloc_entry->addend == 0)
1886 {
1887 reloc_entry->address += input_section->output_offset;
1888 return bfd_reloc_ok;
1889 }
1890
1891 /* If we're relocating, and this is a local symbol, we can handle it
1892 just like HI16. */
1893 if (output_bfd != (bfd *) NULL
1894 && (symbol->flags & BSF_SECTION_SYM) != 0)
1895 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1896 input_section, output_bfd, error_message);
1897
1898 abort ();
1899 }
1900
1901 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1902 dangerous relocation. */
1903
1904 static boolean
1905 mips_elf_assign_gp (output_bfd, pgp)
1906 bfd *output_bfd;
1907 bfd_vma *pgp;
1908 {
1909 unsigned int count;
1910 asymbol **sym;
1911 unsigned int i;
1912
1913 /* If we've already figured out what GP will be, just return it. */
1914 *pgp = _bfd_get_gp_value (output_bfd);
1915 if (*pgp)
1916 return true;
1917
1918 count = bfd_get_symcount (output_bfd);
1919 sym = bfd_get_outsymbols (output_bfd);
1920
1921 /* The linker script will have created a symbol named `_gp' with the
1922 appropriate value. */
1923 if (sym == (asymbol **) NULL)
1924 i = count;
1925 else
1926 {
1927 for (i = 0; i < count; i++, sym++)
1928 {
1929 register const char *name;
1930
1931 name = bfd_asymbol_name (*sym);
1932 if (*name == '_' && strcmp (name, "_gp") == 0)
1933 {
1934 *pgp = bfd_asymbol_value (*sym);
1935 _bfd_set_gp_value (output_bfd, *pgp);
1936 break;
1937 }
1938 }
1939 }
1940
1941 if (i >= count)
1942 {
1943 /* Only get the error once. */
1944 *pgp = 4;
1945 _bfd_set_gp_value (output_bfd, *pgp);
1946 return false;
1947 }
1948
1949 return true;
1950 }
1951
1952 /* We have to figure out the gp value, so that we can adjust the
1953 symbol value correctly. We look up the symbol _gp in the output
1954 BFD. If we can't find it, we're stuck. We cache it in the ELF
1955 target data. We don't need to adjust the symbol value for an
1956 external symbol if we are producing relocateable output. */
1957
1958 static bfd_reloc_status_type
1959 mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1960 bfd *output_bfd;
1961 asymbol *symbol;
1962 boolean relocateable;
1963 char **error_message;
1964 bfd_vma *pgp;
1965 {
1966 if (bfd_is_und_section (symbol->section)
1967 && ! relocateable)
1968 {
1969 *pgp = 0;
1970 return bfd_reloc_undefined;
1971 }
1972
1973 *pgp = _bfd_get_gp_value (output_bfd);
1974 if (*pgp == 0
1975 && (! relocateable
1976 || (symbol->flags & BSF_SECTION_SYM) != 0))
1977 {
1978 if (relocateable)
1979 {
1980 /* Make up a value. */
1981 *pgp = symbol->section->output_section->vma + 0x4000;
1982 _bfd_set_gp_value (output_bfd, *pgp);
1983 }
1984 else if (!mips_elf_assign_gp (output_bfd, pgp))
1985 {
1986 *error_message =
1987 (char *) _("GP relative relocation when _gp not defined");
1988 return bfd_reloc_dangerous;
1989 }
1990 }
1991
1992 return bfd_reloc_ok;
1993 }
1994
1995 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1996 become the offset from the gp register. This function also handles
1997 R_MIPS_LITERAL relocations, although those can be handled more
1998 cleverly because the entries in the .lit8 and .lit4 sections can be
1999 merged. */
2000
2001 static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
2002 arelent *, asection *,
2003 boolean, PTR, bfd_vma));
2004
2005 bfd_reloc_status_type
2006 _bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
2007 output_bfd, error_message)
2008 bfd *abfd;
2009 arelent *reloc_entry;
2010 asymbol *symbol;
2011 PTR data;
2012 asection *input_section;
2013 bfd *output_bfd;
2014 char **error_message;
2015 {
2016 boolean relocateable;
2017 bfd_reloc_status_type ret;
2018 bfd_vma gp;
2019
2020 /* If we're relocating, and this is an external symbol with no
2021 addend, we don't want to change anything. We will only have an
2022 addend if this is a newly created reloc, not read from an ELF
2023 file. */
2024 if (output_bfd != (bfd *) NULL
2025 && (symbol->flags & BSF_SECTION_SYM) == 0
2026 && reloc_entry->addend == 0)
2027 {
2028 reloc_entry->address += input_section->output_offset;
2029 return bfd_reloc_ok;
2030 }
2031
2032 if (output_bfd != (bfd *) NULL)
2033 relocateable = true;
2034 else
2035 {
2036 relocateable = false;
2037 output_bfd = symbol->section->output_section->owner;
2038 }
2039
2040 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
2041 &gp);
2042 if (ret != bfd_reloc_ok)
2043 return ret;
2044
2045 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
2046 relocateable, data, gp);
2047 }
2048
2049 static bfd_reloc_status_type
2050 gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
2051 gp)
2052 bfd *abfd;
2053 asymbol *symbol;
2054 arelent *reloc_entry;
2055 asection *input_section;
2056 boolean relocateable;
2057 PTR data;
2058 bfd_vma gp;
2059 {
2060 bfd_vma relocation;
2061 unsigned long insn;
2062 unsigned long val;
2063
2064 if (bfd_is_com_section (symbol->section))
2065 relocation = 0;
2066 else
2067 relocation = symbol->value;
2068
2069 relocation += symbol->section->output_section->vma;
2070 relocation += symbol->section->output_offset;
2071
2072 if (reloc_entry->address > input_section->_cooked_size)
2073 return bfd_reloc_outofrange;
2074
2075 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
2076
2077 /* Set val to the offset into the section or symbol. */
2078 if (reloc_entry->howto->src_mask == 0)
2079 {
2080 /* This case occurs with the 64-bit MIPS ELF ABI. */
2081 val = reloc_entry->addend;
2082 }
2083 else
2084 {
2085 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
2086 if (val & 0x8000)
2087 val -= 0x10000;
2088 }
2089
2090 /* Adjust val for the final section location and GP value. If we
2091 are producing relocateable output, we don't want to do this for
2092 an external symbol. */
2093 if (! relocateable
2094 || (symbol->flags & BSF_SECTION_SYM) != 0)
2095 val += relocation - gp;
2096
2097 insn = (insn & ~0xffff) | (val & 0xffff);
2098 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
2099
2100 if (relocateable)
2101 reloc_entry->address += input_section->output_offset;
2102
2103 /* Make sure it fit in 16 bits. */
2104 if ((long) val >= 0x8000 || (long) val < -0x8000)
2105 return bfd_reloc_overflow;
2106
2107 return bfd_reloc_ok;
2108 }
2109
2110 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
2111 from the gp register? XXX */
2112
2113 static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
2114 arelent *, asection *,
2115 boolean, PTR, bfd_vma));
2116
2117 bfd_reloc_status_type
2118 _bfd_mips_elf_gprel32_reloc (abfd,
2119 reloc_entry,
2120 symbol,
2121 data,
2122 input_section,
2123 output_bfd,
2124 error_message)
2125 bfd *abfd;
2126 arelent *reloc_entry;
2127 asymbol *symbol;
2128 PTR data;
2129 asection *input_section;
2130 bfd *output_bfd;
2131 char **error_message;
2132 {
2133 boolean relocateable;
2134 bfd_reloc_status_type ret;
2135 bfd_vma gp;
2136
2137 /* If we're relocating, and this is an external symbol with no
2138 addend, we don't want to change anything. We will only have an
2139 addend if this is a newly created reloc, not read from an ELF
2140 file. */
2141 if (output_bfd != (bfd *) NULL
2142 && (symbol->flags & BSF_SECTION_SYM) == 0
2143 && reloc_entry->addend == 0)
2144 {
2145 *error_message = (char *)
2146 _("32bits gp relative relocation occurs for an external symbol");
2147 return bfd_reloc_outofrange;
2148 }
2149
2150 if (output_bfd != (bfd *) NULL)
2151 {
2152 relocateable = true;
2153 gp = _bfd_get_gp_value (output_bfd);
2154 }
2155 else
2156 {
2157 relocateable = false;
2158 output_bfd = symbol->section->output_section->owner;
2159
2160 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
2161 error_message, &gp);
2162 if (ret != bfd_reloc_ok)
2163 return ret;
2164 }
2165
2166 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
2167 relocateable, data, gp);
2168 }
2169
2170 static bfd_reloc_status_type
2171 gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
2172 gp)
2173 bfd *abfd;
2174 asymbol *symbol;
2175 arelent *reloc_entry;
2176 asection *input_section;
2177 boolean relocateable;
2178 PTR data;
2179 bfd_vma gp;
2180 {
2181 bfd_vma relocation;
2182 unsigned long val;
2183
2184 if (bfd_is_com_section (symbol->section))
2185 relocation = 0;
2186 else
2187 relocation = symbol->value;
2188
2189 relocation += symbol->section->output_section->vma;
2190 relocation += symbol->section->output_offset;
2191
2192 if (reloc_entry->address > input_section->_cooked_size)
2193 return bfd_reloc_outofrange;
2194
2195 if (reloc_entry->howto->src_mask == 0)
2196 {
2197 /* This case arises with the 64-bit MIPS ELF ABI. */
2198 val = 0;
2199 }
2200 else
2201 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
2202
2203 /* Set val to the offset into the section or symbol. */
2204 val += reloc_entry->addend;
2205
2206 /* Adjust val for the final section location and GP value. If we
2207 are producing relocateable output, we don't want to do this for
2208 an external symbol. */
2209 if (! relocateable
2210 || (symbol->flags & BSF_SECTION_SYM) != 0)
2211 val += relocation - gp;
2212
2213 bfd_put_32 (abfd, (bfd_vma) val, (bfd_byte *) data + reloc_entry->address);
2214
2215 if (relocateable)
2216 reloc_entry->address += input_section->output_offset;
2217
2218 return bfd_reloc_ok;
2219 }
2220
2221 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
2222 generated when addresses are 64 bits. The upper 32 bits are a simple
2223 sign extension. */
2224
2225 static bfd_reloc_status_type
2226 mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
2227 output_bfd, error_message)
2228 bfd *abfd;
2229 arelent *reloc_entry;
2230 asymbol *symbol;
2231 PTR data;
2232 asection *input_section;
2233 bfd *output_bfd;
2234 char **error_message;
2235 {
2236 bfd_reloc_status_type r;
2237 arelent reloc32;
2238 unsigned long val;
2239 bfd_size_type addr;
2240
2241 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2242 input_section, output_bfd, error_message);
2243 if (r != bfd_reloc_continue)
2244 return r;
2245
2246 /* Do a normal 32 bit relocation on the lower 32 bits. */
2247 reloc32 = *reloc_entry;
2248 if (bfd_big_endian (abfd))
2249 reloc32.address += 4;
2250 reloc32.howto = &elf_mips_howto_table_rel[R_MIPS_32];
2251 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
2252 output_bfd, error_message);
2253
2254 /* Sign extend into the upper 32 bits. */
2255 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
2256 if ((val & 0x80000000) != 0)
2257 val = 0xffffffff;
2258 else
2259 val = 0;
2260 addr = reloc_entry->address;
2261 if (bfd_little_endian (abfd))
2262 addr += 4;
2263 bfd_put_32 (abfd, (bfd_vma) val, (bfd_byte *) data + addr);
2264
2265 return r;
2266 }
2267
2268 /* Handle a mips16 jump. */
2269
2270 static bfd_reloc_status_type
2271 mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
2272 output_bfd, error_message)
2273 bfd *abfd ATTRIBUTE_UNUSED;
2274 arelent *reloc_entry;
2275 asymbol *symbol;
2276 PTR data ATTRIBUTE_UNUSED;
2277 asection *input_section;
2278 bfd *output_bfd;
2279 char **error_message ATTRIBUTE_UNUSED;
2280 {
2281 if (output_bfd != (bfd *) NULL
2282 && (symbol->flags & BSF_SECTION_SYM) == 0
2283 && reloc_entry->addend == 0)
2284 {
2285 reloc_entry->address += input_section->output_offset;
2286 return bfd_reloc_ok;
2287 }
2288
2289 /* FIXME. */
2290 {
2291 static boolean warned;
2292
2293 if (! warned)
2294 (*_bfd_error_handler)
2295 (_("Linking mips16 objects into %s format is not supported"),
2296 bfd_get_target (input_section->output_section->owner));
2297 warned = true;
2298 }
2299
2300 return bfd_reloc_undefined;
2301 }
2302
2303 /* Handle a mips16 GP relative reloc. */
2304
2305 static bfd_reloc_status_type
2306 mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
2307 output_bfd, error_message)
2308 bfd *abfd;
2309 arelent *reloc_entry;
2310 asymbol *symbol;
2311 PTR data;
2312 asection *input_section;
2313 bfd *output_bfd;
2314 char **error_message;
2315 {
2316 boolean relocateable;
2317 bfd_reloc_status_type ret;
2318 bfd_vma gp;
2319 unsigned short extend, insn;
2320 unsigned long final;
2321
2322 /* If we're relocating, and this is an external symbol with no
2323 addend, we don't want to change anything. We will only have an
2324 addend if this is a newly created reloc, not read from an ELF
2325 file. */
2326 if (output_bfd != NULL
2327 && (symbol->flags & BSF_SECTION_SYM) == 0
2328 && reloc_entry->addend == 0)
2329 {
2330 reloc_entry->address += input_section->output_offset;
2331 return bfd_reloc_ok;
2332 }
2333
2334 if (output_bfd != NULL)
2335 relocateable = true;
2336 else
2337 {
2338 relocateable = false;
2339 output_bfd = symbol->section->output_section->owner;
2340 }
2341
2342 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
2343 &gp);
2344 if (ret != bfd_reloc_ok)
2345 return ret;
2346
2347 if (reloc_entry->address > input_section->_cooked_size)
2348 return bfd_reloc_outofrange;
2349
2350 /* Pick up the mips16 extend instruction and the real instruction. */
2351 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
2352 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
2353
2354 /* Stuff the current addend back as a 32 bit value, do the usual
2355 relocation, and then clean up. */
2356 bfd_put_32 (abfd,
2357 (bfd_vma) (((extend & 0x1f) << 11)
2358 | (extend & 0x7e0)
2359 | (insn & 0x1f)),
2360 (bfd_byte *) data + reloc_entry->address);
2361
2362 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
2363 relocateable, data, gp);
2364
2365 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
2366 bfd_put_16 (abfd,
2367 (bfd_vma) ((extend & 0xf800)
2368 | ((final >> 11) & 0x1f)
2369 | (final & 0x7e0)),
2370 (bfd_byte *) data + reloc_entry->address);
2371 bfd_put_16 (abfd,
2372 (bfd_vma) ((insn & 0xffe0)
2373 | (final & 0x1f)),
2374 (bfd_byte *) data + reloc_entry->address + 2);
2375
2376 return ret;
2377 }
2378
2379 /* Return the ISA for a MIPS e_flags value. */
2380
2381 static INLINE int
2382 elf_mips_isa (flags)
2383 flagword flags;
2384 {
2385 switch (flags & EF_MIPS_ARCH)
2386 {
2387 case E_MIPS_ARCH_1:
2388 return 1;
2389 case E_MIPS_ARCH_2:
2390 return 2;
2391 case E_MIPS_ARCH_3:
2392 return 3;
2393 case E_MIPS_ARCH_4:
2394 return 4;
2395 case E_MIPS_ARCH_5:
2396 return 5;
2397 case E_MIPS_ARCH_32:
2398 return 32;
2399 case E_MIPS_ARCH_64:
2400 return 64;
2401 }
2402 return 4;
2403 }
2404
2405 /* Return the MACH for a MIPS e_flags value. */
2406
2407 static INLINE unsigned long
2408 elf_mips_mach (flags)
2409 flagword flags;
2410 {
2411 switch (flags & EF_MIPS_MACH)
2412 {
2413 case E_MIPS_MACH_3900:
2414 return bfd_mach_mips3900;
2415
2416 case E_MIPS_MACH_4010:
2417 return bfd_mach_mips4010;
2418
2419 case E_MIPS_MACH_4100:
2420 return bfd_mach_mips4100;
2421
2422 case E_MIPS_MACH_4111:
2423 return bfd_mach_mips4111;
2424
2425 case E_MIPS_MACH_4650:
2426 return bfd_mach_mips4650;
2427
2428 case E_MIPS_MACH_SB1:
2429 return bfd_mach_mips_sb1;
2430
2431 default:
2432 switch (flags & EF_MIPS_ARCH)
2433 {
2434 default:
2435 case E_MIPS_ARCH_1:
2436 return bfd_mach_mips3000;
2437 break;
2438
2439 case E_MIPS_ARCH_2:
2440 return bfd_mach_mips6000;
2441 break;
2442
2443 case E_MIPS_ARCH_3:
2444 return bfd_mach_mips4000;
2445 break;
2446
2447 case E_MIPS_ARCH_4:
2448 return bfd_mach_mips8000;
2449 break;
2450
2451 case E_MIPS_ARCH_5:
2452 return bfd_mach_mips5;
2453 break;
2454
2455 case E_MIPS_ARCH_32:
2456 return bfd_mach_mipsisa32;
2457 break;
2458
2459 case E_MIPS_ARCH_64:
2460 return bfd_mach_mipsisa64;
2461 break;
2462 }
2463 }
2464
2465 return 0;
2466 }
2467
2468 /* Return printable name for ABI. */
2469
2470 static INLINE char *
2471 elf_mips_abi_name (abfd)
2472 bfd *abfd;
2473 {
2474 flagword flags;
2475
2476 flags = elf_elfheader (abfd)->e_flags;
2477 switch (flags & EF_MIPS_ABI)
2478 {
2479 case 0:
2480 if (ABI_N32_P (abfd))
2481 return "N32";
2482 else if (ABI_64_P (abfd))
2483 return "64";
2484 else
2485 return "none";
2486 case E_MIPS_ABI_O32:
2487 return "O32";
2488 case E_MIPS_ABI_O64:
2489 return "O64";
2490 case E_MIPS_ABI_EABI32:
2491 return "EABI32";
2492 case E_MIPS_ABI_EABI64:
2493 return "EABI64";
2494 default:
2495 return "unknown abi";
2496 }
2497 }
2498
2499 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
2500
2501 struct elf_reloc_map {
2502 bfd_reloc_code_real_type bfd_reloc_val;
2503 enum elf_mips_reloc_type elf_reloc_val;
2504 };
2505
2506 static const struct elf_reloc_map mips_reloc_map[] =
2507 {
2508 { BFD_RELOC_NONE, R_MIPS_NONE, },
2509 { BFD_RELOC_16, R_MIPS_16 },
2510 { BFD_RELOC_32, R_MIPS_32 },
2511 { BFD_RELOC_64, R_MIPS_64 },
2512 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
2513 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
2514 { BFD_RELOC_LO16, R_MIPS_LO16 },
2515 { BFD_RELOC_GPREL16, R_MIPS_GPREL16 },
2516 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
2517 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
2518 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
2519 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
2520 { BFD_RELOC_GPREL32, R_MIPS_GPREL32 },
2521 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
2522 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
2523 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
2524 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
2525 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
2526 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
2527 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
2528 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
2529 };
2530
2531 /* Given a BFD reloc type, return a howto structure. */
2532
2533 static reloc_howto_type *
2534 bfd_elf32_bfd_reloc_type_lookup (abfd, code)
2535 bfd *abfd;
2536 bfd_reloc_code_real_type code;
2537 {
2538 unsigned int i;
2539
2540 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
2541 {
2542 if (mips_reloc_map[i].bfd_reloc_val == code)
2543 return &elf_mips_howto_table_rel[(int) mips_reloc_map[i].elf_reloc_val];
2544 }
2545
2546 switch (code)
2547 {
2548 default:
2549 bfd_set_error (bfd_error_bad_value);
2550 return NULL;
2551
2552 case BFD_RELOC_CTOR:
2553 /* We need to handle BFD_RELOC_CTOR specially.
2554 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
2555 size of addresses on this architecture. */
2556 if (bfd_arch_bits_per_address (abfd) == 32)
2557 return &elf_mips_howto_table_rel[(int) R_MIPS_32];
2558 else
2559 return &elf_mips_ctor64_howto;
2560
2561 case BFD_RELOC_MIPS16_JMP:
2562 return &elf_mips16_jump_howto;
2563 case BFD_RELOC_MIPS16_GPREL:
2564 return &elf_mips16_gprel_howto;
2565 case BFD_RELOC_VTABLE_INHERIT:
2566 return &elf_mips_gnu_vtinherit_howto;
2567 case BFD_RELOC_VTABLE_ENTRY:
2568 return &elf_mips_gnu_vtentry_howto;
2569 case BFD_RELOC_PCREL_HI16_S:
2570 return &elf_mips_gnu_rel_hi16;
2571 case BFD_RELOC_PCREL_LO16:
2572 return &elf_mips_gnu_rel_lo16;
2573 case BFD_RELOC_16_PCREL_S2:
2574 return &elf_mips_gnu_rel16_s2;
2575 case BFD_RELOC_64_PCREL:
2576 return &elf_mips_gnu_pcrel64;
2577 case BFD_RELOC_32_PCREL:
2578 return &elf_mips_gnu_pcrel32;
2579 }
2580 }
2581
2582 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2583
2584 static reloc_howto_type *
2585 mips_rtype_to_howto (r_type)
2586 unsigned int r_type;
2587 {
2588 switch (r_type)
2589 {
2590 case R_MIPS16_26:
2591 return &elf_mips16_jump_howto;
2592 break;
2593 case R_MIPS16_GPREL:
2594 return &elf_mips16_gprel_howto;
2595 break;
2596 case R_MIPS_GNU_VTINHERIT:
2597 return &elf_mips_gnu_vtinherit_howto;
2598 break;
2599 case R_MIPS_GNU_VTENTRY:
2600 return &elf_mips_gnu_vtentry_howto;
2601 break;
2602 case R_MIPS_GNU_REL_HI16:
2603 return &elf_mips_gnu_rel_hi16;
2604 break;
2605 case R_MIPS_GNU_REL_LO16:
2606 return &elf_mips_gnu_rel_lo16;
2607 break;
2608 case R_MIPS_GNU_REL16_S2:
2609 return &elf_mips_gnu_rel16_s2;
2610 break;
2611 case R_MIPS_PC64:
2612 return &elf_mips_gnu_pcrel64;
2613 break;
2614 case R_MIPS_PC32:
2615 return &elf_mips_gnu_pcrel32;
2616 break;
2617
2618 default:
2619 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
2620 return &elf_mips_howto_table_rel[r_type];
2621 break;
2622 }
2623 }
2624
2625 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2626
2627 static void
2628 mips_info_to_howto_rel (abfd, cache_ptr, dst)
2629 bfd *abfd;
2630 arelent *cache_ptr;
2631 Elf32_Internal_Rel *dst;
2632 {
2633 unsigned int r_type;
2634
2635 r_type = ELF32_R_TYPE (dst->r_info);
2636 cache_ptr->howto = mips_rtype_to_howto (r_type);
2637
2638 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2639 value for the object file. We get the addend now, rather than
2640 when we do the relocation, because the symbol manipulations done
2641 by the linker may cause us to lose track of the input BFD. */
2642 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
2643 && (r_type == (unsigned int) R_MIPS_GPREL16
2644 || r_type == (unsigned int) R_MIPS_LITERAL))
2645 cache_ptr->addend = elf_gp (abfd);
2646 }
2647
2648 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2649
2650 static void
2651 mips_info_to_howto_rela (abfd, cache_ptr, dst)
2652 bfd *abfd;
2653 arelent *cache_ptr;
2654 Elf32_Internal_Rela *dst;
2655 {
2656 /* Since an Elf32_Internal_Rel is an initial prefix of an
2657 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2658 above. */
2659 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
2660
2661 /* If we ever need to do any extra processing with dst->r_addend
2662 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2663 }
2664 \f
2665 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2666 routines swap this structure in and out. They are used outside of
2667 BFD, so they are globally visible. */
2668
2669 void
2670 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
2671 bfd *abfd;
2672 const Elf32_External_RegInfo *ex;
2673 Elf32_RegInfo *in;
2674 {
2675 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2676 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2677 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2678 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2679 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2680 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2681 }
2682
2683 void
2684 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
2685 bfd *abfd;
2686 const Elf32_RegInfo *in;
2687 Elf32_External_RegInfo *ex;
2688 {
2689 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2690 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2691 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2692 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2693 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2694 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2695 }
2696
2697 /* In the 64 bit ABI, the .MIPS.options section holds register
2698 information in an Elf64_Reginfo structure. These routines swap
2699 them in and out. They are globally visible because they are used
2700 outside of BFD. These routines are here so that gas can call them
2701 without worrying about whether the 64 bit ABI has been included. */
2702
2703 void
2704 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2705 bfd *abfd;
2706 const Elf64_External_RegInfo *ex;
2707 Elf64_Internal_RegInfo *in;
2708 {
2709 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2710 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2711 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2712 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2713 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2714 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2715 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2716 }
2717
2718 void
2719 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2720 bfd *abfd;
2721 const Elf64_Internal_RegInfo *in;
2722 Elf64_External_RegInfo *ex;
2723 {
2724 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2725 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2726 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2727 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2728 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2729 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2730 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2731 }
2732
2733 /* Swap an entry in a .gptab section. Note that these routines rely
2734 on the equivalence of the two elements of the union. */
2735
2736 static void
2737 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2738 bfd *abfd;
2739 const Elf32_External_gptab *ex;
2740 Elf32_gptab *in;
2741 {
2742 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2743 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2744 }
2745
2746 static void
2747 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2748 bfd *abfd;
2749 const Elf32_gptab *in;
2750 Elf32_External_gptab *ex;
2751 {
2752 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2753 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2754 }
2755
2756 static void
2757 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2758 bfd *abfd;
2759 const Elf32_compact_rel *in;
2760 Elf32_External_compact_rel *ex;
2761 {
2762 H_PUT_32 (abfd, in->id1, ex->id1);
2763 H_PUT_32 (abfd, in->num, ex->num);
2764 H_PUT_32 (abfd, in->id2, ex->id2);
2765 H_PUT_32 (abfd, in->offset, ex->offset);
2766 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2767 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2768 }
2769
2770 static void
2771 bfd_elf32_swap_crinfo_out (abfd, in, ex)
2772 bfd *abfd;
2773 const Elf32_crinfo *in;
2774 Elf32_External_crinfo *ex;
2775 {
2776 unsigned long l;
2777
2778 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2779 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2780 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2781 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2782 H_PUT_32 (abfd, l, ex->info);
2783 H_PUT_32 (abfd, in->konst, ex->konst);
2784 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2785 }
2786
2787 /* Swap in an options header. */
2788
2789 void
2790 bfd_mips_elf_swap_options_in (abfd, ex, in)
2791 bfd *abfd;
2792 const Elf_External_Options *ex;
2793 Elf_Internal_Options *in;
2794 {
2795 in->kind = H_GET_8 (abfd, ex->kind);
2796 in->size = H_GET_8 (abfd, ex->size);
2797 in->section = H_GET_16 (abfd, ex->section);
2798 in->info = H_GET_32 (abfd, ex->info);
2799 }
2800
2801 /* Swap out an options header. */
2802
2803 void
2804 bfd_mips_elf_swap_options_out (abfd, in, ex)
2805 bfd *abfd;
2806 const Elf_Internal_Options *in;
2807 Elf_External_Options *ex;
2808 {
2809 H_PUT_8 (abfd, in->kind, ex->kind);
2810 H_PUT_8 (abfd, in->size, ex->size);
2811 H_PUT_16 (abfd, in->section, ex->section);
2812 H_PUT_32 (abfd, in->info, ex->info);
2813 }
2814 #if 0
2815 /* Swap in an MSYM entry. */
2816
2817 static void
2818 bfd_mips_elf_swap_msym_in (abfd, ex, in)
2819 bfd *abfd;
2820 const Elf32_External_Msym *ex;
2821 Elf32_Internal_Msym *in;
2822 {
2823 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
2824 in->ms_info = H_GET_32 (abfd, ex->ms_info);
2825 }
2826 #endif
2827 /* Swap out an MSYM entry. */
2828
2829 static void
2830 bfd_mips_elf_swap_msym_out (abfd, in, ex)
2831 bfd *abfd;
2832 const Elf32_Internal_Msym *in;
2833 Elf32_External_Msym *ex;
2834 {
2835 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2836 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
2837 }
2838 \f
2839 /* Determine whether a symbol is global for the purposes of splitting
2840 the symbol table into global symbols and local symbols. At least
2841 on Irix 5, this split must be between section symbols and all other
2842 symbols. On most ELF targets the split is between static symbols
2843 and externally visible symbols. */
2844
2845 static boolean
2846 mips_elf_sym_is_global (abfd, sym)
2847 bfd *abfd ATTRIBUTE_UNUSED;
2848 asymbol *sym;
2849 {
2850 if (SGI_COMPAT (abfd))
2851 return (sym->flags & BSF_SECTION_SYM) == 0;
2852 else
2853 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2854 || bfd_is_und_section (bfd_get_section (sym))
2855 || bfd_is_com_section (bfd_get_section (sym)));
2856 }
2857 \f
2858 /* Set the right machine number for a MIPS ELF file. This is used for
2859 both the 32-bit and the 64-bit ABI. */
2860
2861 boolean
2862 _bfd_mips_elf_object_p (abfd)
2863 bfd *abfd;
2864 {
2865 /* Irix 5 and 6 are broken. Object file symbol tables are not always
2866 sorted correctly such that local symbols precede global symbols,
2867 and the sh_info field in the symbol table is not always right. */
2868 if (SGI_COMPAT(abfd))
2869 elf_bad_symtab (abfd) = true;
2870
2871 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2872 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2873 return true;
2874 }
2875
2876 /* The final processing done just before writing out a MIPS ELF object
2877 file. This gets the MIPS architecture right based on the machine
2878 number. This is used by both the 32-bit and the 64-bit ABI. */
2879
2880 void
2881 _bfd_mips_elf_final_write_processing (abfd, linker)
2882 bfd *abfd;
2883 boolean linker ATTRIBUTE_UNUSED;
2884 {
2885 unsigned long val;
2886 unsigned int i;
2887 Elf_Internal_Shdr **hdrpp;
2888 const char *name;
2889 asection *sec;
2890
2891 switch (bfd_get_mach (abfd))
2892 {
2893 default:
2894 case bfd_mach_mips3000:
2895 val = E_MIPS_ARCH_1;
2896 break;
2897
2898 case bfd_mach_mips3900:
2899 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2900 break;
2901
2902 case bfd_mach_mips6000:
2903 val = E_MIPS_ARCH_2;
2904 break;
2905
2906 case bfd_mach_mips4000:
2907 case bfd_mach_mips4300:
2908 case bfd_mach_mips4400:
2909 case bfd_mach_mips4600:
2910 val = E_MIPS_ARCH_3;
2911 break;
2912
2913 case bfd_mach_mips4010:
2914 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2915 break;
2916
2917 case bfd_mach_mips4100:
2918 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2919 break;
2920
2921 case bfd_mach_mips4111:
2922 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2923 break;
2924
2925 case bfd_mach_mips4650:
2926 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2927 break;
2928
2929 case bfd_mach_mips5000:
2930 case bfd_mach_mips8000:
2931 case bfd_mach_mips10000:
2932 case bfd_mach_mips12000:
2933 val = E_MIPS_ARCH_4;
2934 break;
2935
2936 case bfd_mach_mips5:
2937 val = E_MIPS_ARCH_5;
2938 break;
2939
2940 case bfd_mach_mips_sb1:
2941 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
2942 break;
2943
2944 case bfd_mach_mipsisa32:
2945 val = E_MIPS_ARCH_32;
2946 break;
2947
2948 case bfd_mach_mipsisa64:
2949 val = E_MIPS_ARCH_64;
2950 }
2951
2952 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2953 elf_elfheader (abfd)->e_flags |= val;
2954
2955 /* Set the sh_info field for .gptab sections and other appropriate
2956 info for each special section. */
2957 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2958 i < elf_elfheader (abfd)->e_shnum;
2959 i++, hdrpp++)
2960 {
2961 switch ((*hdrpp)->sh_type)
2962 {
2963 case SHT_MIPS_MSYM:
2964 case SHT_MIPS_LIBLIST:
2965 sec = bfd_get_section_by_name (abfd, ".dynstr");
2966 if (sec != NULL)
2967 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2968 break;
2969
2970 case SHT_MIPS_GPTAB:
2971 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2972 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2973 BFD_ASSERT (name != NULL
2974 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2975 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2976 BFD_ASSERT (sec != NULL);
2977 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2978 break;
2979
2980 case SHT_MIPS_CONTENT:
2981 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2982 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2983 BFD_ASSERT (name != NULL
2984 && strncmp (name, ".MIPS.content",
2985 sizeof ".MIPS.content" - 1) == 0);
2986 sec = bfd_get_section_by_name (abfd,
2987 name + sizeof ".MIPS.content" - 1);
2988 BFD_ASSERT (sec != NULL);
2989 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2990 break;
2991
2992 case SHT_MIPS_SYMBOL_LIB:
2993 sec = bfd_get_section_by_name (abfd, ".dynsym");
2994 if (sec != NULL)
2995 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2996 sec = bfd_get_section_by_name (abfd, ".liblist");
2997 if (sec != NULL)
2998 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2999 break;
3000
3001 case SHT_MIPS_EVENTS:
3002 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
3003 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
3004 BFD_ASSERT (name != NULL);
3005 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
3006 sec = bfd_get_section_by_name (abfd,
3007 name + sizeof ".MIPS.events" - 1);
3008 else
3009 {
3010 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
3011 sizeof ".MIPS.post_rel" - 1) == 0);
3012 sec = bfd_get_section_by_name (abfd,
3013 (name
3014 + sizeof ".MIPS.post_rel" - 1));
3015 }
3016 BFD_ASSERT (sec != NULL);
3017 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
3018 break;
3019
3020 }
3021 }
3022 }
3023 \f
3024 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
3025
3026 boolean
3027 _bfd_mips_elf_set_private_flags (abfd, flags)
3028 bfd *abfd;
3029 flagword flags;
3030 {
3031 BFD_ASSERT (!elf_flags_init (abfd)
3032 || elf_elfheader (abfd)->e_flags == flags);
3033
3034 elf_elfheader (abfd)->e_flags = flags;
3035 elf_flags_init (abfd) = true;
3036 return true;
3037 }
3038
3039 /* Copy backend specific data from one object module to another */
3040
3041 boolean
3042 _bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
3043 bfd *ibfd;
3044 bfd *obfd;
3045 {
3046 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3047 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3048 return true;
3049
3050 BFD_ASSERT (!elf_flags_init (obfd)
3051 || (elf_elfheader (obfd)->e_flags
3052 == elf_elfheader (ibfd)->e_flags));
3053
3054 elf_gp (obfd) = elf_gp (ibfd);
3055 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
3056 elf_flags_init (obfd) = true;
3057 return true;
3058 }
3059
3060 /* Merge backend specific data from an object file to the output
3061 object file when linking. */
3062
3063 boolean
3064 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
3065 bfd *ibfd;
3066 bfd *obfd;
3067 {
3068 flagword old_flags;
3069 flagword new_flags;
3070 boolean ok;
3071 boolean null_input_bfd = true;
3072 asection *sec;
3073
3074 /* Check if we have the same endianess */
3075 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
3076 return false;
3077
3078 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3079 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3080 return true;
3081
3082 new_flags = elf_elfheader (ibfd)->e_flags;
3083 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
3084 old_flags = elf_elfheader (obfd)->e_flags;
3085
3086 if (! elf_flags_init (obfd))
3087 {
3088 elf_flags_init (obfd) = true;
3089 elf_elfheader (obfd)->e_flags = new_flags;
3090 elf_elfheader (obfd)->e_ident[EI_CLASS]
3091 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
3092
3093 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3094 && bfd_get_arch_info (obfd)->the_default)
3095 {
3096 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3097 bfd_get_mach (ibfd)))
3098 return false;
3099 }
3100
3101 return true;
3102 }
3103
3104 /* Check flag compatibility. */
3105
3106 new_flags &= ~EF_MIPS_NOREORDER;
3107 old_flags &= ~EF_MIPS_NOREORDER;
3108
3109 if (new_flags == old_flags)
3110 return true;
3111
3112 /* Check to see if the input BFD actually contains any sections.
3113 If not, its flags may not have been initialised either, but it cannot
3114 actually cause any incompatibility. */
3115 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
3116 {
3117 /* Ignore synthetic sections and empty .text, .data and .bss sections
3118 which are automatically generated by gas. */
3119 if (strcmp (sec->name, ".reginfo")
3120 && strcmp (sec->name, ".mdebug")
3121 && ((!strcmp (sec->name, ".text")
3122 || !strcmp (sec->name, ".data")
3123 || !strcmp (sec->name, ".bss"))
3124 && sec->_raw_size != 0))
3125 {
3126 null_input_bfd = false;
3127 break;
3128 }
3129 }
3130 if (null_input_bfd)
3131 return true;
3132
3133 ok = true;
3134
3135 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
3136 {
3137 new_flags &= ~EF_MIPS_PIC;
3138 old_flags &= ~EF_MIPS_PIC;
3139 (*_bfd_error_handler)
3140 (_("%s: linking PIC files with non-PIC files"),
3141 bfd_archive_filename (ibfd));
3142 ok = false;
3143 }
3144
3145 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
3146 {
3147 new_flags &= ~EF_MIPS_CPIC;
3148 old_flags &= ~EF_MIPS_CPIC;
3149 (*_bfd_error_handler)
3150 (_("%s: linking abicalls files with non-abicalls files"),
3151 bfd_archive_filename (ibfd));
3152 ok = false;
3153 }
3154
3155 /* Compare the ISA's. */
3156 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
3157 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
3158 {
3159 int new_mach = new_flags & EF_MIPS_MACH;
3160 int old_mach = old_flags & EF_MIPS_MACH;
3161 int new_isa = elf_mips_isa (new_flags);
3162 int old_isa = elf_mips_isa (old_flags);
3163
3164 /* If either has no machine specified, just compare the general isa's.
3165 Some combinations of machines are ok, if the isa's match. */
3166 if (! new_mach
3167 || ! old_mach
3168 || new_mach == old_mach
3169 )
3170 {
3171 /* Don't warn about mixing code using 32-bit ISAs, or mixing code
3172 using 64-bit ISAs. They will normally use the same data sizes
3173 and calling conventions. */
3174
3175 if (( (new_isa == 1 || new_isa == 2 || new_isa == 32)
3176 ^ (old_isa == 1 || old_isa == 2 || old_isa == 32)) != 0)
3177 {
3178 (*_bfd_error_handler)
3179 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
3180 bfd_archive_filename (ibfd), new_isa, old_isa);
3181 ok = false;
3182 }
3183 }
3184
3185 else
3186 {
3187 (*_bfd_error_handler)
3188 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
3189 bfd_archive_filename (ibfd),
3190 elf_mips_mach (new_flags),
3191 elf_mips_mach (old_flags));
3192 ok = false;
3193 }
3194
3195 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
3196 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
3197 }
3198
3199 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
3200 does set EI_CLASS differently from any 32-bit ABI. */
3201 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
3202 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
3203 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
3204 {
3205 /* Only error if both are set (to different values). */
3206 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
3207 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
3208 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
3209 {
3210 (*_bfd_error_handler)
3211 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
3212 bfd_archive_filename (ibfd),
3213 elf_mips_abi_name (ibfd),
3214 elf_mips_abi_name (obfd));
3215 ok = false;
3216 }
3217 new_flags &= ~EF_MIPS_ABI;
3218 old_flags &= ~EF_MIPS_ABI;
3219 }
3220
3221 /* Warn about any other mismatches */
3222 if (new_flags != old_flags)
3223 {
3224 (*_bfd_error_handler)
3225 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3226 bfd_archive_filename (ibfd), (unsigned long) new_flags,
3227 (unsigned long) old_flags);
3228 ok = false;
3229 }
3230
3231 if (! ok)
3232 {
3233 bfd_set_error (bfd_error_bad_value);
3234 return false;
3235 }
3236
3237 return true;
3238 }
3239 \f
3240 boolean
3241 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
3242 bfd *abfd;
3243 PTR ptr;
3244 {
3245 FILE *file = (FILE *) ptr;
3246
3247 BFD_ASSERT (abfd != NULL && ptr != NULL);
3248
3249 /* Print normal ELF private data. */
3250 _bfd_elf_print_private_bfd_data (abfd, ptr);
3251
3252 /* xgettext:c-format */
3253 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
3254
3255 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
3256 fprintf (file, _(" [abi=O32]"));
3257 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
3258 fprintf (file, _(" [abi=O64]"));
3259 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
3260 fprintf (file, _(" [abi=EABI32]"));
3261 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
3262 fprintf (file, _(" [abi=EABI64]"));
3263 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
3264 fprintf (file, _(" [abi unknown]"));
3265 else if (ABI_N32_P (abfd))
3266 fprintf (file, _(" [abi=N32]"));
3267 else if (ABI_64_P (abfd))
3268 fprintf (file, _(" [abi=64]"));
3269 else
3270 fprintf (file, _(" [no abi set]"));
3271
3272 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
3273 fprintf (file, _(" [mips1]"));
3274 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
3275 fprintf (file, _(" [mips2]"));
3276 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
3277 fprintf (file, _(" [mips3]"));
3278 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
3279 fprintf (file, _(" [mips4]"));
3280 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
3281 fprintf (file, _ (" [mips5]"));
3282 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
3283 fprintf (file, _ (" [mips32]"));
3284 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
3285 fprintf (file, _ (" [mips64]"));
3286 else
3287 fprintf (file, _(" [unknown ISA]"));
3288
3289 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
3290 fprintf (file, _(" [32bitmode]"));
3291 else
3292 fprintf (file, _(" [not 32bitmode]"));
3293
3294 fputc ('\n', file);
3295
3296 return true;
3297 }
3298 \f
3299 /* Handle a MIPS specific section when reading an object file. This
3300 is called when elfcode.h finds a section with an unknown type.
3301 This routine supports both the 32-bit and 64-bit ELF ABI.
3302
3303 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
3304 how to. */
3305
3306 boolean
3307 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
3308 bfd *abfd;
3309 Elf_Internal_Shdr *hdr;
3310 char *name;
3311 {
3312 flagword flags = 0;
3313
3314 /* There ought to be a place to keep ELF backend specific flags, but
3315 at the moment there isn't one. We just keep track of the
3316 sections by their name, instead. Fortunately, the ABI gives
3317 suggested names for all the MIPS specific sections, so we will
3318 probably get away with this. */
3319 switch (hdr->sh_type)
3320 {
3321 case SHT_MIPS_LIBLIST:
3322 if (strcmp (name, ".liblist") != 0)
3323 return false;
3324 break;
3325 case SHT_MIPS_MSYM:
3326 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
3327 return false;
3328 break;
3329 case SHT_MIPS_CONFLICT:
3330 if (strcmp (name, ".conflict") != 0)
3331 return false;
3332 break;
3333 case SHT_MIPS_GPTAB:
3334 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
3335 return false;
3336 break;
3337 case SHT_MIPS_UCODE:
3338 if (strcmp (name, ".ucode") != 0)
3339 return false;
3340 break;
3341 case SHT_MIPS_DEBUG:
3342 if (strcmp (name, ".mdebug") != 0)
3343 return false;
3344 flags = SEC_DEBUGGING;
3345 break;
3346 case SHT_MIPS_REGINFO:
3347 if (strcmp (name, ".reginfo") != 0
3348 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
3349 return false;
3350 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
3351 break;
3352 case SHT_MIPS_IFACE:
3353 if (strcmp (name, ".MIPS.interfaces") != 0)
3354 return false;
3355 break;
3356 case SHT_MIPS_CONTENT:
3357 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
3358 return false;
3359 break;
3360 case SHT_MIPS_OPTIONS:
3361 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
3362 return false;
3363 break;
3364 case SHT_MIPS_DWARF:
3365 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
3366 return false;
3367 break;
3368 case SHT_MIPS_SYMBOL_LIB:
3369 if (strcmp (name, ".MIPS.symlib") != 0)
3370 return false;
3371 break;
3372 case SHT_MIPS_EVENTS:
3373 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
3374 && strncmp (name, ".MIPS.post_rel",
3375 sizeof ".MIPS.post_rel" - 1) != 0)
3376 return false;
3377 break;
3378 default:
3379 return false;
3380 }
3381
3382 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
3383 return false;
3384
3385 if (flags)
3386 {
3387 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
3388 (bfd_get_section_flags (abfd,
3389 hdr->bfd_section)
3390 | flags)))
3391 return false;
3392 }
3393
3394 /* FIXME: We should record sh_info for a .gptab section. */
3395
3396 /* For a .reginfo section, set the gp value in the tdata information
3397 from the contents of this section. We need the gp value while
3398 processing relocs, so we just get it now. The .reginfo section
3399 is not used in the 64-bit MIPS ELF ABI. */
3400 if (hdr->sh_type == SHT_MIPS_REGINFO)
3401 {
3402 Elf32_External_RegInfo ext;
3403 Elf32_RegInfo s;
3404
3405 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
3406 (file_ptr) 0,
3407 (bfd_size_type) sizeof ext))
3408 return false;
3409 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
3410 elf_gp (abfd) = s.ri_gp_value;
3411 }
3412
3413 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
3414 set the gp value based on what we find. We may see both
3415 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
3416 they should agree. */
3417 if (hdr->sh_type == SHT_MIPS_OPTIONS)
3418 {
3419 bfd_byte *contents, *l, *lend;
3420
3421 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
3422 if (contents == NULL)
3423 return false;
3424 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
3425 (file_ptr) 0, hdr->sh_size))
3426 {
3427 free (contents);
3428 return false;
3429 }
3430 l = contents;
3431 lend = contents + hdr->sh_size;
3432 while (l + sizeof (Elf_External_Options) <= lend)
3433 {
3434 Elf_Internal_Options intopt;
3435
3436 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3437 &intopt);
3438 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3439 {
3440 Elf64_Internal_RegInfo intreg;
3441
3442 bfd_mips_elf64_swap_reginfo_in
3443 (abfd,
3444 ((Elf64_External_RegInfo *)
3445 (l + sizeof (Elf_External_Options))),
3446 &intreg);
3447 elf_gp (abfd) = intreg.ri_gp_value;
3448 }
3449 else if (intopt.kind == ODK_REGINFO)
3450 {
3451 Elf32_RegInfo intreg;
3452
3453 bfd_mips_elf32_swap_reginfo_in
3454 (abfd,
3455 ((Elf32_External_RegInfo *)
3456 (l + sizeof (Elf_External_Options))),
3457 &intreg);
3458 elf_gp (abfd) = intreg.ri_gp_value;
3459 }
3460 l += intopt.size;
3461 }
3462 free (contents);
3463 }
3464
3465 return true;
3466 }
3467
3468 /* Set the correct type for a MIPS ELF section. We do this by the
3469 section name, which is a hack, but ought to work. This routine is
3470 used by both the 32-bit and the 64-bit ABI. */
3471
3472 boolean
3473 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
3474 bfd *abfd;
3475 Elf32_Internal_Shdr *hdr;
3476 asection *sec;
3477 {
3478 register const char *name;
3479
3480 name = bfd_get_section_name (abfd, sec);
3481
3482 if (strcmp (name, ".liblist") == 0)
3483 {
3484 hdr->sh_type = SHT_MIPS_LIBLIST;
3485 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
3486 /* The sh_link field is set in final_write_processing. */
3487 }
3488 else if (strcmp (name, ".conflict") == 0)
3489 hdr->sh_type = SHT_MIPS_CONFLICT;
3490 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
3491 {
3492 hdr->sh_type = SHT_MIPS_GPTAB;
3493 hdr->sh_entsize = sizeof (Elf32_External_gptab);
3494 /* The sh_info field is set in final_write_processing. */
3495 }
3496 else if (strcmp (name, ".ucode") == 0)
3497 hdr->sh_type = SHT_MIPS_UCODE;
3498 else if (strcmp (name, ".mdebug") == 0)
3499 {
3500 hdr->sh_type = SHT_MIPS_DEBUG;
3501 /* In a shared object on Irix 5.3, the .mdebug section has an
3502 entsize of 0. FIXME: Does this matter? */
3503 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
3504 hdr->sh_entsize = 0;
3505 else
3506 hdr->sh_entsize = 1;
3507 }
3508 else if (strcmp (name, ".reginfo") == 0)
3509 {
3510 hdr->sh_type = SHT_MIPS_REGINFO;
3511 /* In a shared object on Irix 5.3, the .reginfo section has an
3512 entsize of 0x18. FIXME: Does this matter? */
3513 if (SGI_COMPAT (abfd))
3514 {
3515 if ((abfd->flags & DYNAMIC) != 0)
3516 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
3517 else
3518 hdr->sh_entsize = 1;
3519 }
3520 else
3521 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
3522 }
3523 else if (SGI_COMPAT (abfd)
3524 && (strcmp (name, ".hash") == 0
3525 || strcmp (name, ".dynamic") == 0
3526 || strcmp (name, ".dynstr") == 0))
3527 {
3528 if (SGI_COMPAT (abfd))
3529 hdr->sh_entsize = 0;
3530 #if 0
3531 /* This isn't how the Irix 6 linker behaves. */
3532 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
3533 #endif
3534 }
3535 else if (strcmp (name, ".got") == 0
3536 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
3537 || strcmp (name, ".sdata") == 0
3538 || strcmp (name, ".sbss") == 0
3539 || strcmp (name, ".lit4") == 0
3540 || strcmp (name, ".lit8") == 0)
3541 hdr->sh_flags |= SHF_MIPS_GPREL;
3542 else if (strcmp (name, ".MIPS.interfaces") == 0)
3543 {
3544 hdr->sh_type = SHT_MIPS_IFACE;
3545 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3546 }
3547 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
3548 {
3549 hdr->sh_type = SHT_MIPS_CONTENT;
3550 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3551 /* The sh_info field is set in final_write_processing. */
3552 }
3553 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3554 {
3555 hdr->sh_type = SHT_MIPS_OPTIONS;
3556 hdr->sh_entsize = 1;
3557 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3558 }
3559 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
3560 hdr->sh_type = SHT_MIPS_DWARF;
3561 else if (strcmp (name, ".MIPS.symlib") == 0)
3562 {
3563 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
3564 /* The sh_link and sh_info fields are set in
3565 final_write_processing. */
3566 }
3567 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
3568 || strncmp (name, ".MIPS.post_rel",
3569 sizeof ".MIPS.post_rel" - 1) == 0)
3570 {
3571 hdr->sh_type = SHT_MIPS_EVENTS;
3572 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3573 /* The sh_link field is set in final_write_processing. */
3574 }
3575 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
3576 {
3577 hdr->sh_type = SHT_MIPS_MSYM;
3578 hdr->sh_flags |= SHF_ALLOC;
3579 hdr->sh_entsize = 8;
3580 }
3581
3582 /* The generic elf_fake_sections will set up REL_HDR using the
3583 default kind of relocations. But, we may actually need both
3584 kinds of relocations, so we set up the second header here. */
3585 if ((sec->flags & SEC_RELOC) != 0)
3586 {
3587 struct bfd_elf_section_data *esd;
3588 bfd_size_type amt = sizeof (Elf_Internal_Shdr);
3589
3590 esd = elf_section_data (sec);
3591 BFD_ASSERT (esd->rel_hdr2 == NULL);
3592 esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
3593 if (!esd->rel_hdr2)
3594 return false;
3595 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
3596 !elf_section_data (sec)->use_rela_p);
3597 }
3598
3599 return true;
3600 }
3601
3602 /* Given a BFD section, try to locate the corresponding ELF section
3603 index. This is used by both the 32-bit and the 64-bit ABI.
3604 Actually, it's not clear to me that the 64-bit ABI supports these,
3605 but for non-PIC objects we will certainly want support for at least
3606 the .scommon section. */
3607
3608 boolean
3609 _bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
3610 bfd *abfd ATTRIBUTE_UNUSED;
3611 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3612 asection *sec;
3613 int *retval;
3614 {
3615 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
3616 {
3617 *retval = SHN_MIPS_SCOMMON;
3618 return true;
3619 }
3620 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
3621 {
3622 *retval = SHN_MIPS_ACOMMON;
3623 return true;
3624 }
3625 return false;
3626 }
3627
3628 /* When are writing out the .options or .MIPS.options section,
3629 remember the bytes we are writing out, so that we can install the
3630 GP value in the section_processing routine. */
3631
3632 boolean
3633 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
3634 bfd *abfd;
3635 sec_ptr section;
3636 PTR location;
3637 file_ptr offset;
3638 bfd_size_type count;
3639 {
3640 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3641 {
3642 bfd_byte *c;
3643
3644 if (elf_section_data (section) == NULL)
3645 {
3646 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
3647 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
3648 if (elf_section_data (section) == NULL)
3649 return false;
3650 }
3651 c = (bfd_byte *) elf_section_data (section)->tdata;
3652 if (c == NULL)
3653 {
3654 bfd_size_type size;
3655
3656 if (section->_cooked_size != 0)
3657 size = section->_cooked_size;
3658 else
3659 size = section->_raw_size;
3660 c = (bfd_byte *) bfd_zalloc (abfd, size);
3661 if (c == NULL)
3662 return false;
3663 elf_section_data (section)->tdata = (PTR) c;
3664 }
3665
3666 memcpy (c + offset, location, (size_t) count);
3667 }
3668
3669 return _bfd_elf_set_section_contents (abfd, section, location, offset,
3670 count);
3671 }
3672
3673 /* Work over a section just before writing it out. This routine is
3674 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3675 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3676 a better way. */
3677
3678 boolean
3679 _bfd_mips_elf_section_processing (abfd, hdr)
3680 bfd *abfd;
3681 Elf_Internal_Shdr *hdr;
3682 {
3683 if (hdr->sh_type == SHT_MIPS_REGINFO
3684 && hdr->sh_size > 0)
3685 {
3686 bfd_byte buf[4];
3687
3688 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3689 BFD_ASSERT (hdr->contents == NULL);
3690
3691 if (bfd_seek (abfd,
3692 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
3693 SEEK_SET) != 0)
3694 return false;
3695 H_PUT_32 (abfd, elf_gp (abfd), buf);
3696 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
3697 return false;
3698 }
3699
3700 if (hdr->sh_type == SHT_MIPS_OPTIONS
3701 && hdr->bfd_section != NULL
3702 && elf_section_data (hdr->bfd_section) != NULL
3703 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3704 {
3705 bfd_byte *contents, *l, *lend;
3706
3707 /* We stored the section contents in the elf_section_data tdata
3708 field in the set_section_contents routine. We save the
3709 section contents so that we don't have to read them again.
3710 At this point we know that elf_gp is set, so we can look
3711 through the section contents to see if there is an
3712 ODK_REGINFO structure. */
3713
3714 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3715 l = contents;
3716 lend = contents + hdr->sh_size;
3717 while (l + sizeof (Elf_External_Options) <= lend)
3718 {
3719 Elf_Internal_Options intopt;
3720
3721 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3722 &intopt);
3723 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3724 {
3725 bfd_byte buf[8];
3726
3727 if (bfd_seek (abfd,
3728 (hdr->sh_offset
3729 + (l - contents)
3730 + sizeof (Elf_External_Options)
3731 + (sizeof (Elf64_External_RegInfo) - 8)),
3732 SEEK_SET) != 0)
3733 return false;
3734 H_PUT_64 (abfd, elf_gp (abfd), buf);
3735 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
3736 return false;
3737 }
3738 else if (intopt.kind == ODK_REGINFO)
3739 {
3740 bfd_byte buf[4];
3741
3742 if (bfd_seek (abfd,
3743 (hdr->sh_offset
3744 + (l - contents)
3745 + sizeof (Elf_External_Options)
3746 + (sizeof (Elf32_External_RegInfo) - 4)),
3747 SEEK_SET) != 0)
3748 return false;
3749 H_PUT_32 (abfd, elf_gp (abfd), buf);
3750 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
3751 return false;
3752 }
3753 l += intopt.size;
3754 }
3755 }
3756
3757 if (hdr->bfd_section != NULL)
3758 {
3759 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3760
3761 if (strcmp (name, ".sdata") == 0
3762 || strcmp (name, ".lit8") == 0
3763 || strcmp (name, ".lit4") == 0)
3764 {
3765 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3766 hdr->sh_type = SHT_PROGBITS;
3767 }
3768 else if (strcmp (name, ".sbss") == 0)
3769 {
3770 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3771 hdr->sh_type = SHT_NOBITS;
3772 }
3773 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3774 {
3775 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3776 hdr->sh_type = SHT_PROGBITS;
3777 }
3778 else if (strcmp (name, ".compact_rel") == 0)
3779 {
3780 hdr->sh_flags = 0;
3781 hdr->sh_type = SHT_PROGBITS;
3782 }
3783 else if (strcmp (name, ".rtproc") == 0)
3784 {
3785 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3786 {
3787 unsigned int adjust;
3788
3789 adjust = hdr->sh_size % hdr->sh_addralign;
3790 if (adjust != 0)
3791 hdr->sh_size += hdr->sh_addralign - adjust;
3792 }
3793 }
3794 }
3795
3796 return true;
3797 }
3798 \f
3799 /* MIPS ELF uses two common sections. One is the usual one, and the
3800 other is for small objects. All the small objects are kept
3801 together, and then referenced via the gp pointer, which yields
3802 faster assembler code. This is what we use for the small common
3803 section. This approach is copied from ecoff.c. */
3804 static asection mips_elf_scom_section;
3805 static asymbol mips_elf_scom_symbol;
3806 static asymbol *mips_elf_scom_symbol_ptr;
3807
3808 /* MIPS ELF also uses an acommon section, which represents an
3809 allocated common symbol which may be overridden by a
3810 definition in a shared library. */
3811 static asection mips_elf_acom_section;
3812 static asymbol mips_elf_acom_symbol;
3813 static asymbol *mips_elf_acom_symbol_ptr;
3814
3815 /* Handle the special MIPS section numbers that a symbol may use.
3816 This is used for both the 32-bit and the 64-bit ABI. */
3817
3818 void
3819 _bfd_mips_elf_symbol_processing (abfd, asym)
3820 bfd *abfd;
3821 asymbol *asym;
3822 {
3823 elf_symbol_type *elfsym;
3824
3825 elfsym = (elf_symbol_type *) asym;
3826 switch (elfsym->internal_elf_sym.st_shndx)
3827 {
3828 case SHN_MIPS_ACOMMON:
3829 /* This section is used in a dynamically linked executable file.
3830 It is an allocated common section. The dynamic linker can
3831 either resolve these symbols to something in a shared
3832 library, or it can just leave them here. For our purposes,
3833 we can consider these symbols to be in a new section. */
3834 if (mips_elf_acom_section.name == NULL)
3835 {
3836 /* Initialize the acommon section. */
3837 mips_elf_acom_section.name = ".acommon";
3838 mips_elf_acom_section.flags = SEC_ALLOC;
3839 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3840 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3841 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3842 mips_elf_acom_symbol.name = ".acommon";
3843 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3844 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3845 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3846 }
3847 asym->section = &mips_elf_acom_section;
3848 break;
3849
3850 case SHN_COMMON:
3851 /* Common symbols less than the GP size are automatically
3852 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3853 if (asym->value > elf_gp_size (abfd)
3854 || IRIX_COMPAT (abfd) == ict_irix6)
3855 break;
3856 /* Fall through. */
3857 case SHN_MIPS_SCOMMON:
3858 if (mips_elf_scom_section.name == NULL)
3859 {
3860 /* Initialize the small common section. */
3861 mips_elf_scom_section.name = ".scommon";
3862 mips_elf_scom_section.flags = SEC_IS_COMMON;
3863 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3864 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3865 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3866 mips_elf_scom_symbol.name = ".scommon";
3867 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3868 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3869 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3870 }
3871 asym->section = &mips_elf_scom_section;
3872 asym->value = elfsym->internal_elf_sym.st_size;
3873 break;
3874
3875 case SHN_MIPS_SUNDEFINED:
3876 asym->section = bfd_und_section_ptr;
3877 break;
3878
3879 #if 0 /* for SGI_COMPAT */
3880 case SHN_MIPS_TEXT:
3881 asym->section = mips_elf_text_section_ptr;
3882 break;
3883
3884 case SHN_MIPS_DATA:
3885 asym->section = mips_elf_data_section_ptr;
3886 break;
3887 #endif
3888 }
3889 }
3890 \f
3891 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3892 segments. */
3893
3894 int
3895 _bfd_mips_elf_additional_program_headers (abfd)
3896 bfd *abfd;
3897 {
3898 asection *s;
3899 int ret = 0;
3900
3901 /* See if we need a PT_MIPS_REGINFO segment. */
3902 s = bfd_get_section_by_name (abfd, ".reginfo");
3903 if (s && (s->flags & SEC_LOAD))
3904 ++ret;
3905
3906 /* See if we need a PT_MIPS_OPTIONS segment. */
3907 if (IRIX_COMPAT (abfd) == ict_irix6
3908 && bfd_get_section_by_name (abfd,
3909 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3910 ++ret;
3911
3912 /* See if we need a PT_MIPS_RTPROC segment. */
3913 if (IRIX_COMPAT (abfd) == ict_irix5
3914 && bfd_get_section_by_name (abfd, ".dynamic")
3915 && bfd_get_section_by_name (abfd, ".mdebug"))
3916 ++ret;
3917
3918 return ret;
3919 }
3920
3921 /* Modify the segment map for an Irix 5 executable. */
3922
3923 boolean
3924 _bfd_mips_elf_modify_segment_map (abfd)
3925 bfd *abfd;
3926 {
3927 asection *s;
3928 struct elf_segment_map *m, **pm;
3929 bfd_size_type amt;
3930
3931 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3932 segment. */
3933 s = bfd_get_section_by_name (abfd, ".reginfo");
3934 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3935 {
3936 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3937 if (m->p_type == PT_MIPS_REGINFO)
3938 break;
3939 if (m == NULL)
3940 {
3941 amt = sizeof *m;
3942 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3943 if (m == NULL)
3944 return false;
3945
3946 m->p_type = PT_MIPS_REGINFO;
3947 m->count = 1;
3948 m->sections[0] = s;
3949
3950 /* We want to put it after the PHDR and INTERP segments. */
3951 pm = &elf_tdata (abfd)->segment_map;
3952 while (*pm != NULL
3953 && ((*pm)->p_type == PT_PHDR
3954 || (*pm)->p_type == PT_INTERP))
3955 pm = &(*pm)->next;
3956
3957 m->next = *pm;
3958 *pm = m;
3959 }
3960 }
3961
3962 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3963 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3964 PT_OPTIONS segement immediately following the program header
3965 table. */
3966 if (IRIX_COMPAT (abfd) == ict_irix6)
3967 {
3968 for (s = abfd->sections; s; s = s->next)
3969 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
3970 break;
3971
3972 if (s)
3973 {
3974 struct elf_segment_map *options_segment;
3975
3976 /* Usually, there's a program header table. But, sometimes
3977 there's not (like when running the `ld' testsuite). So,
3978 if there's no program header table, we just put the
3979 options segement at the end. */
3980 for (pm = &elf_tdata (abfd)->segment_map;
3981 *pm != NULL;
3982 pm = &(*pm)->next)
3983 if ((*pm)->p_type == PT_PHDR)
3984 break;
3985
3986 amt = sizeof (struct elf_segment_map);
3987 options_segment = bfd_zalloc (abfd, amt);
3988 options_segment->next = *pm;
3989 options_segment->p_type = PT_MIPS_OPTIONS;
3990 options_segment->p_flags = PF_R;
3991 options_segment->p_flags_valid = true;
3992 options_segment->count = 1;
3993 options_segment->sections[0] = s;
3994 *pm = options_segment;
3995 }
3996 }
3997 else
3998 {
3999 if (IRIX_COMPAT (abfd) == ict_irix5)
4000 {
4001 /* If there are .dynamic and .mdebug sections, we make a room
4002 for the RTPROC header. FIXME: Rewrite without section names. */
4003 if (bfd_get_section_by_name (abfd, ".interp") == NULL
4004 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
4005 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
4006 {
4007 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4008 if (m->p_type == PT_MIPS_RTPROC)
4009 break;
4010 if (m == NULL)
4011 {
4012 amt = sizeof *m;
4013 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4014 if (m == NULL)
4015 return false;
4016
4017 m->p_type = PT_MIPS_RTPROC;
4018
4019 s = bfd_get_section_by_name (abfd, ".rtproc");
4020 if (s == NULL)
4021 {
4022 m->count = 0;
4023 m->p_flags = 0;
4024 m->p_flags_valid = 1;
4025 }
4026 else
4027 {
4028 m->count = 1;
4029 m->sections[0] = s;
4030 }
4031
4032 /* We want to put it after the DYNAMIC segment. */
4033 pm = &elf_tdata (abfd)->segment_map;
4034 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
4035 pm = &(*pm)->next;
4036 if (*pm != NULL)
4037 pm = &(*pm)->next;
4038
4039 m->next = *pm;
4040 *pm = m;
4041 }
4042 }
4043 }
4044 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
4045 .dynstr, .dynsym, and .hash sections, and everything in
4046 between. */
4047 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
4048 pm = &(*pm)->next)
4049 if ((*pm)->p_type == PT_DYNAMIC)
4050 break;
4051 m = *pm;
4052 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
4053 {
4054 /* For a normal mips executable the permissions for the PT_DYNAMIC
4055 segment are read, write and execute. We do that here since
4056 the code in elf.c sets only the read permission. This matters
4057 sometimes for the dynamic linker. */
4058 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4059 {
4060 m->p_flags = PF_R | PF_W | PF_X;
4061 m->p_flags_valid = 1;
4062 }
4063 }
4064 if (m != NULL
4065 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
4066 {
4067 static const char *sec_names[] =
4068 {
4069 ".dynamic", ".dynstr", ".dynsym", ".hash"
4070 };
4071 bfd_vma low, high;
4072 unsigned int i, c;
4073 struct elf_segment_map *n;
4074
4075 low = 0xffffffff;
4076 high = 0;
4077 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
4078 {
4079 s = bfd_get_section_by_name (abfd, sec_names[i]);
4080 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4081 {
4082 bfd_size_type sz;
4083
4084 if (low > s->vma)
4085 low = s->vma;
4086 sz = s->_cooked_size;
4087 if (sz == 0)
4088 sz = s->_raw_size;
4089 if (high < s->vma + sz)
4090 high = s->vma + sz;
4091 }
4092 }
4093
4094 c = 0;
4095 for (s = abfd->sections; s != NULL; s = s->next)
4096 if ((s->flags & SEC_LOAD) != 0
4097 && s->vma >= low
4098 && ((s->vma
4099 + (s->_cooked_size !=
4100 0 ? s->_cooked_size : s->_raw_size)) <= high))
4101 ++c;
4102
4103 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
4104 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4105 if (n == NULL)
4106 return false;
4107 *n = *m;
4108 n->count = c;
4109
4110 i = 0;
4111 for (s = abfd->sections; s != NULL; s = s->next)
4112 {
4113 if ((s->flags & SEC_LOAD) != 0
4114 && s->vma >= low
4115 && ((s->vma
4116 + (s->_cooked_size != 0 ?
4117 s->_cooked_size : s->_raw_size)) <= high))
4118 {
4119 n->sections[i] = s;
4120 ++i;
4121 }
4122 }
4123
4124 *pm = n;
4125 }
4126 }
4127
4128 return true;
4129 }
4130 \f
4131 /* The structure of the runtime procedure descriptor created by the
4132 loader for use by the static exception system. */
4133
4134 typedef struct runtime_pdr {
4135 bfd_vma adr; /* memory address of start of procedure */
4136 long regmask; /* save register mask */
4137 long regoffset; /* save register offset */
4138 long fregmask; /* save floating point register mask */
4139 long fregoffset; /* save floating point register offset */
4140 long frameoffset; /* frame size */
4141 short framereg; /* frame pointer register */
4142 short pcreg; /* offset or reg of return pc */
4143 long irpss; /* index into the runtime string table */
4144 long reserved;
4145 struct exception_info *exception_info;/* pointer to exception array */
4146 } RPDR, *pRPDR;
4147 #define cbRPDR sizeof (RPDR)
4148 #define rpdNil ((pRPDR) 0)
4149
4150 /* Swap RPDR (runtime procedure table entry) for output. */
4151
4152 static void ecoff_swap_rpdr_out
4153 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
4154
4155 static void
4156 ecoff_swap_rpdr_out (abfd, in, ex)
4157 bfd *abfd;
4158 const RPDR *in;
4159 struct rpdr_ext *ex;
4160 {
4161 /* ECOFF_PUT_OFF was defined in ecoffswap.h. */
4162 ECOFF_PUT_OFF (abfd, in->adr, ex->p_adr);
4163 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
4164 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
4165 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
4166 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
4167 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
4168
4169 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
4170 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
4171
4172 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
4173 #if 0 /* FIXME */
4174 ECOFF_PUT_OFF (abfd, in->exception_info, ex->p_exception_info);
4175 #endif
4176 }
4177 \f
4178 /* Read ECOFF debugging information from a .mdebug section into a
4179 ecoff_debug_info structure. */
4180
4181 boolean
4182 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
4183 bfd *abfd;
4184 asection *section;
4185 struct ecoff_debug_info *debug;
4186 {
4187 HDRR *symhdr;
4188 const struct ecoff_debug_swap *swap;
4189 char *ext_hdr = NULL;
4190
4191 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4192 memset (debug, 0, sizeof (*debug));
4193
4194 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
4195 if (ext_hdr == NULL && swap->external_hdr_size != 0)
4196 goto error_return;
4197
4198 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
4199 swap->external_hdr_size)
4200 == false)
4201 goto error_return;
4202
4203 symhdr = &debug->symbolic_header;
4204 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
4205
4206 /* The symbolic header contains absolute file offsets and sizes to
4207 read. */
4208 #define READ(ptr, offset, count, size, type) \
4209 if (symhdr->count == 0) \
4210 debug->ptr = NULL; \
4211 else \
4212 { \
4213 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
4214 debug->ptr = (type) bfd_malloc (amt); \
4215 if (debug->ptr == NULL) \
4216 goto error_return; \
4217 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
4218 || bfd_bread (debug->ptr, amt, abfd) != amt) \
4219 goto error_return; \
4220 }
4221
4222 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
4223 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
4224 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
4225 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
4226 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
4227 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
4228 union aux_ext *);
4229 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
4230 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
4231 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
4232 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
4233 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
4234 #undef READ
4235
4236 debug->fdr = NULL;
4237 debug->adjust = NULL;
4238
4239 return true;
4240
4241 error_return:
4242 if (ext_hdr != NULL)
4243 free (ext_hdr);
4244 if (debug->line != NULL)
4245 free (debug->line);
4246 if (debug->external_dnr != NULL)
4247 free (debug->external_dnr);
4248 if (debug->external_pdr != NULL)
4249 free (debug->external_pdr);
4250 if (debug->external_sym != NULL)
4251 free (debug->external_sym);
4252 if (debug->external_opt != NULL)
4253 free (debug->external_opt);
4254 if (debug->external_aux != NULL)
4255 free (debug->external_aux);
4256 if (debug->ss != NULL)
4257 free (debug->ss);
4258 if (debug->ssext != NULL)
4259 free (debug->ssext);
4260 if (debug->external_fdr != NULL)
4261 free (debug->external_fdr);
4262 if (debug->external_rfd != NULL)
4263 free (debug->external_rfd);
4264 if (debug->external_ext != NULL)
4265 free (debug->external_ext);
4266 return false;
4267 }
4268 \f
4269 /* MIPS ELF local labels start with '$', not 'L'. */
4270
4271 static boolean
4272 mips_elf_is_local_label_name (abfd, name)
4273 bfd *abfd;
4274 const char *name;
4275 {
4276 if (name[0] == '$')
4277 return true;
4278
4279 /* On Irix 6, the labels go back to starting with '.', so we accept
4280 the generic ELF local label syntax as well. */
4281 return _bfd_elf_is_local_label_name (abfd, name);
4282 }
4283
4284 /* MIPS ELF uses a special find_nearest_line routine in order the
4285 handle the ECOFF debugging information. */
4286
4287 struct mips_elf_find_line
4288 {
4289 struct ecoff_debug_info d;
4290 struct ecoff_find_line i;
4291 };
4292
4293 boolean
4294 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4295 functionname_ptr, line_ptr)
4296 bfd *abfd;
4297 asection *section;
4298 asymbol **symbols;
4299 bfd_vma offset;
4300 const char **filename_ptr;
4301 const char **functionname_ptr;
4302 unsigned int *line_ptr;
4303 {
4304 asection *msec;
4305
4306 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
4307 filename_ptr, functionname_ptr,
4308 line_ptr))
4309 return true;
4310
4311 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
4312 filename_ptr, functionname_ptr,
4313 line_ptr,
4314 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
4315 &elf_tdata (abfd)->dwarf2_find_line_info))
4316 return true;
4317
4318 msec = bfd_get_section_by_name (abfd, ".mdebug");
4319 if (msec != NULL)
4320 {
4321 flagword origflags;
4322 struct mips_elf_find_line *fi;
4323 const struct ecoff_debug_swap * const swap =
4324 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4325
4326 /* If we are called during a link, mips_elf_final_link may have
4327 cleared the SEC_HAS_CONTENTS field. We force it back on here
4328 if appropriate (which it normally will be). */
4329 origflags = msec->flags;
4330 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
4331 msec->flags |= SEC_HAS_CONTENTS;
4332
4333 fi = elf_tdata (abfd)->find_line_info;
4334 if (fi == NULL)
4335 {
4336 bfd_size_type external_fdr_size;
4337 char *fraw_src;
4338 char *fraw_end;
4339 struct fdr *fdr_ptr;
4340 bfd_size_type amt = sizeof (struct mips_elf_find_line);
4341
4342 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
4343 if (fi == NULL)
4344 {
4345 msec->flags = origflags;
4346 return false;
4347 }
4348
4349 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
4350 {
4351 msec->flags = origflags;
4352 return false;
4353 }
4354
4355 /* Swap in the FDR information. */
4356 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
4357 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
4358 if (fi->d.fdr == NULL)
4359 {
4360 msec->flags = origflags;
4361 return false;
4362 }
4363 external_fdr_size = swap->external_fdr_size;
4364 fdr_ptr = fi->d.fdr;
4365 fraw_src = (char *) fi->d.external_fdr;
4366 fraw_end = (fraw_src
4367 + fi->d.symbolic_header.ifdMax * external_fdr_size);
4368 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
4369 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
4370
4371 elf_tdata (abfd)->find_line_info = fi;
4372
4373 /* Note that we don't bother to ever free this information.
4374 find_nearest_line is either called all the time, as in
4375 objdump -l, so the information should be saved, or it is
4376 rarely called, as in ld error messages, so the memory
4377 wasted is unimportant. Still, it would probably be a
4378 good idea for free_cached_info to throw it away. */
4379 }
4380
4381 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
4382 &fi->i, filename_ptr, functionname_ptr,
4383 line_ptr))
4384 {
4385 msec->flags = origflags;
4386 return true;
4387 }
4388
4389 msec->flags = origflags;
4390 }
4391
4392 /* Fall back on the generic ELF find_nearest_line routine. */
4393
4394 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
4395 filename_ptr, functionname_ptr,
4396 line_ptr);
4397 }
4398 \f
4399 /* The mips16 compiler uses a couple of special sections to handle
4400 floating point arguments.
4401
4402 Section names that look like .mips16.fn.FNNAME contain stubs that
4403 copy floating point arguments from the fp regs to the gp regs and
4404 then jump to FNNAME. If any 32 bit function calls FNNAME, the
4405 call should be redirected to the stub instead. If no 32 bit
4406 function calls FNNAME, the stub should be discarded. We need to
4407 consider any reference to the function, not just a call, because
4408 if the address of the function is taken we will need the stub,
4409 since the address might be passed to a 32 bit function.
4410
4411 Section names that look like .mips16.call.FNNAME contain stubs
4412 that copy floating point arguments from the gp regs to the fp
4413 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
4414 then any 16 bit function that calls FNNAME should be redirected
4415 to the stub instead. If FNNAME is not a 32 bit function, the
4416 stub should be discarded.
4417
4418 .mips16.call.fp.FNNAME sections are similar, but contain stubs
4419 which call FNNAME and then copy the return value from the fp regs
4420 to the gp regs. These stubs store the return value in $18 while
4421 calling FNNAME; any function which might call one of these stubs
4422 must arrange to save $18 around the call. (This case is not
4423 needed for 32 bit functions that call 16 bit functions, because
4424 16 bit functions always return floating point values in both
4425 $f0/$f1 and $2/$3.)
4426
4427 Note that in all cases FNNAME might be defined statically.
4428 Therefore, FNNAME is not used literally. Instead, the relocation
4429 information will indicate which symbol the section is for.
4430
4431 We record any stubs that we find in the symbol table. */
4432
4433 #define FN_STUB ".mips16.fn."
4434 #define CALL_STUB ".mips16.call."
4435 #define CALL_FP_STUB ".mips16.call.fp."
4436
4437 /* MIPS ELF linker hash table. */
4438
4439 struct mips_elf_link_hash_table
4440 {
4441 struct elf_link_hash_table root;
4442 #if 0
4443 /* We no longer use this. */
4444 /* String section indices for the dynamic section symbols. */
4445 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
4446 #endif
4447 /* The number of .rtproc entries. */
4448 bfd_size_type procedure_count;
4449 /* The size of the .compact_rel section (if SGI_COMPAT). */
4450 bfd_size_type compact_rel_size;
4451 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
4452 entry is set to the address of __rld_obj_head as in Irix 5. */
4453 boolean use_rld_obj_head;
4454 /* This is the value of the __rld_map or __rld_obj_head symbol. */
4455 bfd_vma rld_value;
4456 /* This is set if we see any mips16 stub sections. */
4457 boolean mips16_stubs_seen;
4458 };
4459
4460 /* Look up an entry in a MIPS ELF linker hash table. */
4461
4462 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
4463 ((struct mips_elf_link_hash_entry *) \
4464 elf_link_hash_lookup (&(table)->root, (string), (create), \
4465 (copy), (follow)))
4466
4467 /* Traverse a MIPS ELF linker hash table. */
4468
4469 #define mips_elf_link_hash_traverse(table, func, info) \
4470 (elf_link_hash_traverse \
4471 (&(table)->root, \
4472 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
4473 (info)))
4474
4475 /* Get the MIPS ELF linker hash table from a link_info structure. */
4476
4477 #define mips_elf_hash_table(p) \
4478 ((struct mips_elf_link_hash_table *) ((p)->hash))
4479
4480 static boolean mips_elf_output_extsym
4481 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
4482
4483 /* Create an entry in a MIPS ELF linker hash table. */
4484
4485 static struct bfd_hash_entry *
4486 mips_elf_link_hash_newfunc (entry, table, string)
4487 struct bfd_hash_entry *entry;
4488 struct bfd_hash_table *table;
4489 const char *string;
4490 {
4491 struct mips_elf_link_hash_entry *ret =
4492 (struct mips_elf_link_hash_entry *) entry;
4493
4494 /* Allocate the structure if it has not already been allocated by a
4495 subclass. */
4496 if (ret == (struct mips_elf_link_hash_entry *) NULL)
4497 ret = ((struct mips_elf_link_hash_entry *)
4498 bfd_hash_allocate (table,
4499 sizeof (struct mips_elf_link_hash_entry)));
4500 if (ret == (struct mips_elf_link_hash_entry *) NULL)
4501 return (struct bfd_hash_entry *) ret;
4502
4503 /* Call the allocation method of the superclass. */
4504 ret = ((struct mips_elf_link_hash_entry *)
4505 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
4506 table, string));
4507 if (ret != (struct mips_elf_link_hash_entry *) NULL)
4508 {
4509 /* Set local fields. */
4510 memset (&ret->esym, 0, sizeof (EXTR));
4511 /* We use -2 as a marker to indicate that the information has
4512 not been set. -1 means there is no associated ifd. */
4513 ret->esym.ifd = -2;
4514 ret->possibly_dynamic_relocs = 0;
4515 ret->readonly_reloc = false;
4516 ret->min_dyn_reloc_index = 0;
4517 ret->no_fn_stub = false;
4518 ret->fn_stub = NULL;
4519 ret->need_fn_stub = false;
4520 ret->call_stub = NULL;
4521 ret->call_fp_stub = NULL;
4522 }
4523
4524 return (struct bfd_hash_entry *) ret;
4525 }
4526
4527 static void
4528 _bfd_mips_elf_hide_symbol (info, entry)
4529 struct bfd_link_info *info;
4530 struct elf_link_hash_entry *entry;
4531 {
4532 bfd *dynobj;
4533 asection *got;
4534 struct mips_got_info *g;
4535 struct mips_elf_link_hash_entry *h;
4536 h = (struct mips_elf_link_hash_entry *) entry;
4537 dynobj = elf_hash_table (info)->dynobj;
4538 got = bfd_get_section_by_name (dynobj, ".got");
4539 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4540
4541 h->root.elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
4542 h->root.plt.offset = (bfd_vma) -1;
4543 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4544 h->root.dynindx = -1;
4545
4546 /* FIXME: Do we allocate too much GOT space here? */
4547 g->local_gotno++;
4548 got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
4549 }
4550
4551 /* Create a MIPS ELF linker hash table. */
4552
4553 struct bfd_link_hash_table *
4554 _bfd_mips_elf_link_hash_table_create (abfd)
4555 bfd *abfd;
4556 {
4557 struct mips_elf_link_hash_table *ret;
4558 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
4559
4560 ret = (struct mips_elf_link_hash_table *) bfd_alloc (abfd, amt);
4561 if (ret == (struct mips_elf_link_hash_table *) NULL)
4562 return NULL;
4563
4564 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
4565 mips_elf_link_hash_newfunc))
4566 {
4567 bfd_release (abfd, ret);
4568 return NULL;
4569 }
4570
4571 #if 0
4572 /* We no longer use this. */
4573 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
4574 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
4575 #endif
4576 ret->procedure_count = 0;
4577 ret->compact_rel_size = 0;
4578 ret->use_rld_obj_head = false;
4579 ret->rld_value = 0;
4580 ret->mips16_stubs_seen = false;
4581
4582 return &ret->root.root;
4583 }
4584
4585 /* Hook called by the linker routine which adds symbols from an object
4586 file. We must handle the special MIPS section numbers here. */
4587
4588 boolean
4589 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4590 bfd *abfd;
4591 struct bfd_link_info *info;
4592 const Elf_Internal_Sym *sym;
4593 const char **namep;
4594 flagword *flagsp ATTRIBUTE_UNUSED;
4595 asection **secp;
4596 bfd_vma *valp;
4597 {
4598 if (SGI_COMPAT (abfd)
4599 && (abfd->flags & DYNAMIC) != 0
4600 && strcmp (*namep, "_rld_new_interface") == 0)
4601 {
4602 /* Skip Irix 5 rld entry name. */
4603 *namep = NULL;
4604 return true;
4605 }
4606
4607 switch (sym->st_shndx)
4608 {
4609 case SHN_COMMON:
4610 /* Common symbols less than the GP size are automatically
4611 treated as SHN_MIPS_SCOMMON symbols. */
4612 if (sym->st_size > elf_gp_size (abfd)
4613 || IRIX_COMPAT (abfd) == ict_irix6)
4614 break;
4615 /* Fall through. */
4616 case SHN_MIPS_SCOMMON:
4617 *secp = bfd_make_section_old_way (abfd, ".scommon");
4618 (*secp)->flags |= SEC_IS_COMMON;
4619 *valp = sym->st_size;
4620 break;
4621
4622 case SHN_MIPS_TEXT:
4623 /* This section is used in a shared object. */
4624 if (elf_tdata (abfd)->elf_text_section == NULL)
4625 {
4626 asymbol *elf_text_symbol;
4627 asection *elf_text_section;
4628 bfd_size_type amt = sizeof (asection);
4629
4630 elf_text_section = bfd_zalloc (abfd, amt);
4631 if (elf_text_section == NULL)
4632 return false;
4633
4634 amt = sizeof (asymbol);
4635 elf_text_symbol = bfd_zalloc (abfd, amt);
4636 if (elf_text_symbol == NULL)
4637 return false;
4638
4639 /* Initialize the section. */
4640
4641 elf_tdata (abfd)->elf_text_section = elf_text_section;
4642 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4643
4644 elf_text_section->symbol = elf_text_symbol;
4645 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4646
4647 elf_text_section->name = ".text";
4648 elf_text_section->flags = SEC_NO_FLAGS;
4649 elf_text_section->output_section = NULL;
4650 elf_text_section->owner = abfd;
4651 elf_text_symbol->name = ".text";
4652 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4653 elf_text_symbol->section = elf_text_section;
4654 }
4655 /* This code used to do *secp = bfd_und_section_ptr if
4656 info->shared. I don't know why, and that doesn't make sense,
4657 so I took it out. */
4658 *secp = elf_tdata (abfd)->elf_text_section;
4659 break;
4660
4661 case SHN_MIPS_ACOMMON:
4662 /* Fall through. XXX Can we treat this as allocated data? */
4663 case SHN_MIPS_DATA:
4664 /* This section is used in a shared object. */
4665 if (elf_tdata (abfd)->elf_data_section == NULL)
4666 {
4667 asymbol *elf_data_symbol;
4668 asection *elf_data_section;
4669 bfd_size_type amt = sizeof (asection);
4670
4671 elf_data_section = bfd_zalloc (abfd, amt);
4672 if (elf_data_section == NULL)
4673 return false;
4674
4675 amt = sizeof (asymbol);
4676 elf_data_symbol = bfd_zalloc (abfd, amt);
4677 if (elf_data_symbol == NULL)
4678 return false;
4679
4680 /* Initialize the section. */
4681
4682 elf_tdata (abfd)->elf_data_section = elf_data_section;
4683 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4684
4685 elf_data_section->symbol = elf_data_symbol;
4686 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4687
4688 elf_data_section->name = ".data";
4689 elf_data_section->flags = SEC_NO_FLAGS;
4690 elf_data_section->output_section = NULL;
4691 elf_data_section->owner = abfd;
4692 elf_data_symbol->name = ".data";
4693 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4694 elf_data_symbol->section = elf_data_section;
4695 }
4696 /* This code used to do *secp = bfd_und_section_ptr if
4697 info->shared. I don't know why, and that doesn't make sense,
4698 so I took it out. */
4699 *secp = elf_tdata (abfd)->elf_data_section;
4700 break;
4701
4702 case SHN_MIPS_SUNDEFINED:
4703 *secp = bfd_und_section_ptr;
4704 break;
4705 }
4706
4707 if (SGI_COMPAT (abfd)
4708 && ! info->shared
4709 && info->hash->creator == abfd->xvec
4710 && strcmp (*namep, "__rld_obj_head") == 0)
4711 {
4712 struct elf_link_hash_entry *h;
4713
4714 /* Mark __rld_obj_head as dynamic. */
4715 h = NULL;
4716 if (! (_bfd_generic_link_add_one_symbol
4717 (info, abfd, *namep, BSF_GLOBAL, *secp,
4718 (bfd_vma) *valp, (const char *) NULL, false,
4719 get_elf_backend_data (abfd)->collect,
4720 (struct bfd_link_hash_entry **) &h)))
4721 return false;
4722 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4723 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4724 h->type = STT_OBJECT;
4725
4726 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4727 return false;
4728
4729 mips_elf_hash_table (info)->use_rld_obj_head = true;
4730 }
4731
4732 /* If this is a mips16 text symbol, add 1 to the value to make it
4733 odd. This will cause something like .word SYM to come up with
4734 the right value when it is loaded into the PC. */
4735 if (sym->st_other == STO_MIPS16)
4736 ++*valp;
4737
4738 return true;
4739 }
4740
4741 /* Structure used to pass information to mips_elf_output_extsym. */
4742
4743 struct extsym_info
4744 {
4745 bfd *abfd;
4746 struct bfd_link_info *info;
4747 struct ecoff_debug_info *debug;
4748 const struct ecoff_debug_swap *swap;
4749 boolean failed;
4750 };
4751
4752 /* This routine is used to write out ECOFF debugging external symbol
4753 information. It is called via mips_elf_link_hash_traverse. The
4754 ECOFF external symbol information must match the ELF external
4755 symbol information. Unfortunately, at this point we don't know
4756 whether a symbol is required by reloc information, so the two
4757 tables may wind up being different. We must sort out the external
4758 symbol information before we can set the final size of the .mdebug
4759 section, and we must set the size of the .mdebug section before we
4760 can relocate any sections, and we can't know which symbols are
4761 required by relocation until we relocate the sections.
4762 Fortunately, it is relatively unlikely that any symbol will be
4763 stripped but required by a reloc. In particular, it can not happen
4764 when generating a final executable. */
4765
4766 static boolean
4767 mips_elf_output_extsym (h, data)
4768 struct mips_elf_link_hash_entry *h;
4769 PTR data;
4770 {
4771 struct extsym_info *einfo = (struct extsym_info *) data;
4772 boolean strip;
4773 asection *sec, *output_section;
4774
4775 if (h->root.indx == -2)
4776 strip = false;
4777 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4778 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4779 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4780 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4781 strip = true;
4782 else if (einfo->info->strip == strip_all
4783 || (einfo->info->strip == strip_some
4784 && bfd_hash_lookup (einfo->info->keep_hash,
4785 h->root.root.root.string,
4786 false, false) == NULL))
4787 strip = true;
4788 else
4789 strip = false;
4790
4791 if (strip)
4792 return true;
4793
4794 if (h->esym.ifd == -2)
4795 {
4796 h->esym.jmptbl = 0;
4797 h->esym.cobol_main = 0;
4798 h->esym.weakext = 0;
4799 h->esym.reserved = 0;
4800 h->esym.ifd = ifdNil;
4801 h->esym.asym.value = 0;
4802 h->esym.asym.st = stGlobal;
4803
4804 if (h->root.root.type == bfd_link_hash_undefined
4805 || h->root.root.type == bfd_link_hash_undefweak)
4806 {
4807 const char *name;
4808
4809 /* Use undefined class. Also, set class and type for some
4810 special symbols. */
4811 name = h->root.root.root.string;
4812 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4813 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4814 {
4815 h->esym.asym.sc = scData;
4816 h->esym.asym.st = stLabel;
4817 h->esym.asym.value = 0;
4818 }
4819 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4820 {
4821 h->esym.asym.sc = scAbs;
4822 h->esym.asym.st = stLabel;
4823 h->esym.asym.value =
4824 mips_elf_hash_table (einfo->info)->procedure_count;
4825 }
4826 else if (strcmp (name, "_gp_disp") == 0)
4827 {
4828 h->esym.asym.sc = scAbs;
4829 h->esym.asym.st = stLabel;
4830 h->esym.asym.value = elf_gp (einfo->abfd);
4831 }
4832 else
4833 h->esym.asym.sc = scUndefined;
4834 }
4835 else if (h->root.root.type != bfd_link_hash_defined
4836 && h->root.root.type != bfd_link_hash_defweak)
4837 h->esym.asym.sc = scAbs;
4838 else
4839 {
4840 const char *name;
4841
4842 sec = h->root.root.u.def.section;
4843 output_section = sec->output_section;
4844
4845 /* When making a shared library and symbol h is the one from
4846 the another shared library, OUTPUT_SECTION may be null. */
4847 if (output_section == NULL)
4848 h->esym.asym.sc = scUndefined;
4849 else
4850 {
4851 name = bfd_section_name (output_section->owner, output_section);
4852
4853 if (strcmp (name, ".text") == 0)
4854 h->esym.asym.sc = scText;
4855 else if (strcmp (name, ".data") == 0)
4856 h->esym.asym.sc = scData;
4857 else if (strcmp (name, ".sdata") == 0)
4858 h->esym.asym.sc = scSData;
4859 else if (strcmp (name, ".rodata") == 0
4860 || strcmp (name, ".rdata") == 0)
4861 h->esym.asym.sc = scRData;
4862 else if (strcmp (name, ".bss") == 0)
4863 h->esym.asym.sc = scBss;
4864 else if (strcmp (name, ".sbss") == 0)
4865 h->esym.asym.sc = scSBss;
4866 else if (strcmp (name, ".init") == 0)
4867 h->esym.asym.sc = scInit;
4868 else if (strcmp (name, ".fini") == 0)
4869 h->esym.asym.sc = scFini;
4870 else
4871 h->esym.asym.sc = scAbs;
4872 }
4873 }
4874
4875 h->esym.asym.reserved = 0;
4876 h->esym.asym.index = indexNil;
4877 }
4878
4879 if (h->root.root.type == bfd_link_hash_common)
4880 h->esym.asym.value = h->root.root.u.c.size;
4881 else if (h->root.root.type == bfd_link_hash_defined
4882 || h->root.root.type == bfd_link_hash_defweak)
4883 {
4884 if (h->esym.asym.sc == scCommon)
4885 h->esym.asym.sc = scBss;
4886 else if (h->esym.asym.sc == scSCommon)
4887 h->esym.asym.sc = scSBss;
4888
4889 sec = h->root.root.u.def.section;
4890 output_section = sec->output_section;
4891 if (output_section != NULL)
4892 h->esym.asym.value = (h->root.root.u.def.value
4893 + sec->output_offset
4894 + output_section->vma);
4895 else
4896 h->esym.asym.value = 0;
4897 }
4898 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4899 {
4900 struct mips_elf_link_hash_entry *hd = h;
4901 boolean no_fn_stub = h->no_fn_stub;
4902
4903 while (hd->root.root.type == bfd_link_hash_indirect)
4904 {
4905 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
4906 no_fn_stub = no_fn_stub || hd->no_fn_stub;
4907 }
4908
4909 if (!no_fn_stub)
4910 {
4911 /* Set type and value for a symbol with a function stub. */
4912 h->esym.asym.st = stProc;
4913 sec = hd->root.root.u.def.section;
4914 if (sec == NULL)
4915 h->esym.asym.value = 0;
4916 else
4917 {
4918 output_section = sec->output_section;
4919 if (output_section != NULL)
4920 h->esym.asym.value = (hd->root.plt.offset
4921 + sec->output_offset
4922 + output_section->vma);
4923 else
4924 h->esym.asym.value = 0;
4925 }
4926 #if 0 /* FIXME? */
4927 h->esym.ifd = 0;
4928 #endif
4929 }
4930 }
4931
4932 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4933 h->root.root.root.string,
4934 &h->esym))
4935 {
4936 einfo->failed = true;
4937 return false;
4938 }
4939
4940 return true;
4941 }
4942
4943 /* Create a runtime procedure table from the .mdebug section. */
4944
4945 static boolean
4946 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4947 PTR handle;
4948 bfd *abfd;
4949 struct bfd_link_info *info;
4950 asection *s;
4951 struct ecoff_debug_info *debug;
4952 {
4953 const struct ecoff_debug_swap *swap;
4954 HDRR *hdr = &debug->symbolic_header;
4955 RPDR *rpdr, *rp;
4956 struct rpdr_ext *erp;
4957 PTR rtproc;
4958 struct pdr_ext *epdr;
4959 struct sym_ext *esym;
4960 char *ss, **sv;
4961 char *str;
4962 bfd_size_type size;
4963 bfd_size_type count;
4964 unsigned long sindex;
4965 unsigned long i;
4966 PDR pdr;
4967 SYMR sym;
4968 const char *no_name_func = _("static procedure (no name)");
4969
4970 epdr = NULL;
4971 rpdr = NULL;
4972 esym = NULL;
4973 ss = NULL;
4974 sv = NULL;
4975
4976 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4977
4978 sindex = strlen (no_name_func) + 1;
4979 count = hdr->ipdMax;
4980 if (count > 0)
4981 {
4982 size = swap->external_pdr_size;
4983
4984 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4985 if (epdr == NULL)
4986 goto error_return;
4987
4988 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4989 goto error_return;
4990
4991 size = sizeof (RPDR);
4992 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4993 if (rpdr == NULL)
4994 goto error_return;
4995
4996 size = sizeof (char *);
4997 sv = (char **) bfd_malloc (size * count);
4998 if (sv == NULL)
4999 goto error_return;
5000
5001 count = hdr->isymMax;
5002 size = swap->external_sym_size;
5003 esym = (struct sym_ext *) bfd_malloc (size * count);
5004 if (esym == NULL)
5005 goto error_return;
5006
5007 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
5008 goto error_return;
5009
5010 count = hdr->issMax;
5011 ss = (char *) bfd_malloc (count);
5012 if (ss == NULL)
5013 goto error_return;
5014 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
5015 goto error_return;
5016
5017 count = hdr->ipdMax;
5018 for (i = 0; i < (unsigned long) count; i++, rp++)
5019 {
5020 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
5021 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
5022 rp->adr = sym.value;
5023 rp->regmask = pdr.regmask;
5024 rp->regoffset = pdr.regoffset;
5025 rp->fregmask = pdr.fregmask;
5026 rp->fregoffset = pdr.fregoffset;
5027 rp->frameoffset = pdr.frameoffset;
5028 rp->framereg = pdr.framereg;
5029 rp->pcreg = pdr.pcreg;
5030 rp->irpss = sindex;
5031 sv[i] = ss + sym.iss;
5032 sindex += strlen (sv[i]) + 1;
5033 }
5034 }
5035
5036 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
5037 size = BFD_ALIGN (size, 16);
5038 rtproc = (PTR) bfd_alloc (abfd, size);
5039 if (rtproc == NULL)
5040 {
5041 mips_elf_hash_table (info)->procedure_count = 0;
5042 goto error_return;
5043 }
5044
5045 mips_elf_hash_table (info)->procedure_count = count + 2;
5046
5047 erp = (struct rpdr_ext *) rtproc;
5048 memset (erp, 0, sizeof (struct rpdr_ext));
5049 erp++;
5050 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
5051 strcpy (str, no_name_func);
5052 str += strlen (no_name_func) + 1;
5053 for (i = 0; i < count; i++)
5054 {
5055 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
5056 strcpy (str, sv[i]);
5057 str += strlen (sv[i]) + 1;
5058 }
5059 ECOFF_PUT_OFF (abfd, -1, (erp + count)->p_adr);
5060
5061 /* Set the size and contents of .rtproc section. */
5062 s->_raw_size = size;
5063 s->contents = (bfd_byte *) rtproc;
5064
5065 /* Skip this section later on (I don't think this currently
5066 matters, but someday it might). */
5067 s->link_order_head = (struct bfd_link_order *) NULL;
5068
5069 if (epdr != NULL)
5070 free (epdr);
5071 if (rpdr != NULL)
5072 free (rpdr);
5073 if (esym != NULL)
5074 free (esym);
5075 if (ss != NULL)
5076 free (ss);
5077 if (sv != NULL)
5078 free (sv);
5079
5080 return true;
5081
5082 error_return:
5083 if (epdr != NULL)
5084 free (epdr);
5085 if (rpdr != NULL)
5086 free (rpdr);
5087 if (esym != NULL)
5088 free (esym);
5089 if (ss != NULL)
5090 free (ss);
5091 if (sv != NULL)
5092 free (sv);
5093 return false;
5094 }
5095
5096 /* A comparison routine used to sort .gptab entries. */
5097
5098 static int
5099 gptab_compare (p1, p2)
5100 const PTR p1;
5101 const PTR p2;
5102 {
5103 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
5104 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
5105
5106 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
5107 }
5108
5109 /* We need to use a special link routine to handle the .reginfo and
5110 the .mdebug sections. We need to merge all instances of these
5111 sections together, not write them all out sequentially. */
5112
5113 boolean
5114 _bfd_mips_elf_final_link (abfd, info)
5115 bfd *abfd;
5116 struct bfd_link_info *info;
5117 {
5118 asection **secpp;
5119 asection *o;
5120 struct bfd_link_order *p;
5121 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
5122 asection *rtproc_sec;
5123 Elf32_RegInfo reginfo;
5124 struct ecoff_debug_info debug;
5125 const struct ecoff_debug_swap *swap
5126 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
5127 HDRR *symhdr = &debug.symbolic_header;
5128 PTR mdebug_handle = NULL;
5129 asection *s;
5130 EXTR esym;
5131 unsigned int i;
5132 bfd_size_type amt;
5133
5134 static const char * const secname[] =
5135 {
5136 ".text", ".init", ".fini", ".data",
5137 ".rodata", ".sdata", ".sbss", ".bss"
5138 };
5139 static const int sc[] =
5140 {
5141 scText, scInit, scFini, scData,
5142 scRData, scSData, scSBss, scBss
5143 };
5144
5145 /* If all the things we linked together were PIC, but we're
5146 producing an executable (rather than a shared object), then the
5147 resulting file is CPIC (i.e., it calls PIC code.) */
5148 if (!info->shared
5149 && !info->relocateable
5150 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
5151 {
5152 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
5153 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
5154 }
5155
5156 /* We'd carefully arranged the dynamic symbol indices, and then the
5157 generic size_dynamic_sections renumbered them out from under us.
5158 Rather than trying somehow to prevent the renumbering, just do
5159 the sort again. */
5160 if (elf_hash_table (info)->dynamic_sections_created)
5161 {
5162 bfd *dynobj;
5163 asection *got;
5164 struct mips_got_info *g;
5165
5166 /* When we resort, we must tell mips_elf_sort_hash_table what
5167 the lowest index it may use is. That's the number of section
5168 symbols we're going to add. The generic ELF linker only
5169 adds these symbols when building a shared object. Note that
5170 we count the sections after (possibly) removing the .options
5171 section above. */
5172 if (!mips_elf_sort_hash_table (info, (info->shared
5173 ? bfd_count_sections (abfd) + 1
5174 : 1)))
5175 return false;
5176
5177 /* Make sure we didn't grow the global .got region. */
5178 dynobj = elf_hash_table (info)->dynobj;
5179 got = bfd_get_section_by_name (dynobj, ".got");
5180 g = (struct mips_got_info *) elf_section_data (got)->tdata;
5181
5182 if (g->global_gotsym != NULL)
5183 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
5184 - g->global_gotsym->dynindx)
5185 <= g->global_gotno);
5186 }
5187
5188 /* On IRIX5, we omit the .options section. On IRIX6, however, we
5189 include it, even though we don't process it quite right. (Some
5190 entries are supposed to be merged.) Empirically, we seem to be
5191 better off including it then not. */
5192 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5193 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
5194 {
5195 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
5196 {
5197 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
5198 if (p->type == bfd_indirect_link_order)
5199 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
5200 (*secpp)->link_order_head = NULL;
5201 *secpp = (*secpp)->next;
5202 --abfd->section_count;
5203
5204 break;
5205 }
5206 }
5207
5208 /* Get a value for the GP register. */
5209 if (elf_gp (abfd) == 0)
5210 {
5211 struct bfd_link_hash_entry *h;
5212
5213 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
5214 if (h != (struct bfd_link_hash_entry *) NULL
5215 && h->type == bfd_link_hash_defined)
5216 elf_gp (abfd) = (h->u.def.value
5217 + h->u.def.section->output_section->vma
5218 + h->u.def.section->output_offset);
5219 else if (info->relocateable)
5220 {
5221 bfd_vma lo;
5222
5223 /* Find the GP-relative section with the lowest offset. */
5224 lo = (bfd_vma) -1;
5225 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5226 if (o->vma < lo
5227 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
5228 lo = o->vma;
5229
5230 /* And calculate GP relative to that. */
5231 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
5232 }
5233 else
5234 {
5235 /* If the relocate_section function needs to do a reloc
5236 involving the GP value, it should make a reloc_dangerous
5237 callback to warn that GP is not defined. */
5238 }
5239 }
5240
5241 /* Go through the sections and collect the .reginfo and .mdebug
5242 information. */
5243 reginfo_sec = NULL;
5244 mdebug_sec = NULL;
5245 gptab_data_sec = NULL;
5246 gptab_bss_sec = NULL;
5247 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5248 {
5249 if (strcmp (o->name, ".reginfo") == 0)
5250 {
5251 memset (&reginfo, 0, sizeof reginfo);
5252
5253 /* We have found the .reginfo section in the output file.
5254 Look through all the link_orders comprising it and merge
5255 the information together. */
5256 for (p = o->link_order_head;
5257 p != (struct bfd_link_order *) NULL;
5258 p = p->next)
5259 {
5260 asection *input_section;
5261 bfd *input_bfd;
5262 Elf32_External_RegInfo ext;
5263 Elf32_RegInfo sub;
5264
5265 if (p->type != bfd_indirect_link_order)
5266 {
5267 if (p->type == bfd_fill_link_order)
5268 continue;
5269 abort ();
5270 }
5271
5272 input_section = p->u.indirect.section;
5273 input_bfd = input_section->owner;
5274
5275 /* The linker emulation code has probably clobbered the
5276 size to be zero bytes. */
5277 if (input_section->_raw_size == 0)
5278 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
5279
5280 if (! bfd_get_section_contents (input_bfd, input_section,
5281 (PTR) &ext,
5282 (file_ptr) 0,
5283 (bfd_size_type) sizeof ext))
5284 return false;
5285
5286 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
5287
5288 reginfo.ri_gprmask |= sub.ri_gprmask;
5289 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
5290 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
5291 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
5292 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
5293
5294 /* ri_gp_value is set by the function
5295 mips_elf32_section_processing when the section is
5296 finally written out. */
5297
5298 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5299 elf_link_input_bfd ignores this section. */
5300 input_section->flags &= ~SEC_HAS_CONTENTS;
5301 }
5302
5303 /* Size has been set in mips_elf_always_size_sections */
5304 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
5305
5306 /* Skip this section later on (I don't think this currently
5307 matters, but someday it might). */
5308 o->link_order_head = (struct bfd_link_order *) NULL;
5309
5310 reginfo_sec = o;
5311 }
5312
5313 if (strcmp (o->name, ".mdebug") == 0)
5314 {
5315 struct extsym_info einfo;
5316 bfd_vma last;
5317
5318 /* We have found the .mdebug section in the output file.
5319 Look through all the link_orders comprising it and merge
5320 the information together. */
5321 symhdr->magic = swap->sym_magic;
5322 /* FIXME: What should the version stamp be? */
5323 symhdr->vstamp = 0;
5324 symhdr->ilineMax = 0;
5325 symhdr->cbLine = 0;
5326 symhdr->idnMax = 0;
5327 symhdr->ipdMax = 0;
5328 symhdr->isymMax = 0;
5329 symhdr->ioptMax = 0;
5330 symhdr->iauxMax = 0;
5331 symhdr->issMax = 0;
5332 symhdr->issExtMax = 0;
5333 symhdr->ifdMax = 0;
5334 symhdr->crfd = 0;
5335 symhdr->iextMax = 0;
5336
5337 /* We accumulate the debugging information itself in the
5338 debug_info structure. */
5339 debug.line = NULL;
5340 debug.external_dnr = NULL;
5341 debug.external_pdr = NULL;
5342 debug.external_sym = NULL;
5343 debug.external_opt = NULL;
5344 debug.external_aux = NULL;
5345 debug.ss = NULL;
5346 debug.ssext = debug.ssext_end = NULL;
5347 debug.external_fdr = NULL;
5348 debug.external_rfd = NULL;
5349 debug.external_ext = debug.external_ext_end = NULL;
5350
5351 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
5352 if (mdebug_handle == (PTR) NULL)
5353 return false;
5354
5355 esym.jmptbl = 0;
5356 esym.cobol_main = 0;
5357 esym.weakext = 0;
5358 esym.reserved = 0;
5359 esym.ifd = ifdNil;
5360 esym.asym.iss = issNil;
5361 esym.asym.st = stLocal;
5362 esym.asym.reserved = 0;
5363 esym.asym.index = indexNil;
5364 last = 0;
5365 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
5366 {
5367 esym.asym.sc = sc[i];
5368 s = bfd_get_section_by_name (abfd, secname[i]);
5369 if (s != NULL)
5370 {
5371 esym.asym.value = s->vma;
5372 last = s->vma + s->_raw_size;
5373 }
5374 else
5375 esym.asym.value = last;
5376 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
5377 secname[i], &esym))
5378 return false;
5379 }
5380
5381 for (p = o->link_order_head;
5382 p != (struct bfd_link_order *) NULL;
5383 p = p->next)
5384 {
5385 asection *input_section;
5386 bfd *input_bfd;
5387 const struct ecoff_debug_swap *input_swap;
5388 struct ecoff_debug_info input_debug;
5389 char *eraw_src;
5390 char *eraw_end;
5391
5392 if (p->type != bfd_indirect_link_order)
5393 {
5394 if (p->type == bfd_fill_link_order)
5395 continue;
5396 abort ();
5397 }
5398
5399 input_section = p->u.indirect.section;
5400 input_bfd = input_section->owner;
5401
5402 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
5403 || (get_elf_backend_data (input_bfd)
5404 ->elf_backend_ecoff_debug_swap) == NULL)
5405 {
5406 /* I don't know what a non MIPS ELF bfd would be
5407 doing with a .mdebug section, but I don't really
5408 want to deal with it. */
5409 continue;
5410 }
5411
5412 input_swap = (get_elf_backend_data (input_bfd)
5413 ->elf_backend_ecoff_debug_swap);
5414
5415 BFD_ASSERT (p->size == input_section->_raw_size);
5416
5417 /* The ECOFF linking code expects that we have already
5418 read in the debugging information and set up an
5419 ecoff_debug_info structure, so we do that now. */
5420 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
5421 &input_debug))
5422 return false;
5423
5424 if (! (bfd_ecoff_debug_accumulate
5425 (mdebug_handle, abfd, &debug, swap, input_bfd,
5426 &input_debug, input_swap, info)))
5427 return false;
5428
5429 /* Loop through the external symbols. For each one with
5430 interesting information, try to find the symbol in
5431 the linker global hash table and save the information
5432 for the output external symbols. */
5433 eraw_src = input_debug.external_ext;
5434 eraw_end = (eraw_src
5435 + (input_debug.symbolic_header.iextMax
5436 * input_swap->external_ext_size));
5437 for (;
5438 eraw_src < eraw_end;
5439 eraw_src += input_swap->external_ext_size)
5440 {
5441 EXTR ext;
5442 const char *name;
5443 struct mips_elf_link_hash_entry *h;
5444
5445 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
5446 if (ext.asym.sc == scNil
5447 || ext.asym.sc == scUndefined
5448 || ext.asym.sc == scSUndefined)
5449 continue;
5450
5451 name = input_debug.ssext + ext.asym.iss;
5452 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
5453 name, false, false, true);
5454 if (h == NULL || h->esym.ifd != -2)
5455 continue;
5456
5457 if (ext.ifd != -1)
5458 {
5459 BFD_ASSERT (ext.ifd
5460 < input_debug.symbolic_header.ifdMax);
5461 ext.ifd = input_debug.ifdmap[ext.ifd];
5462 }
5463
5464 h->esym = ext;
5465 }
5466
5467 /* Free up the information we just read. */
5468 free (input_debug.line);
5469 free (input_debug.external_dnr);
5470 free (input_debug.external_pdr);
5471 free (input_debug.external_sym);
5472 free (input_debug.external_opt);
5473 free (input_debug.external_aux);
5474 free (input_debug.ss);
5475 free (input_debug.ssext);
5476 free (input_debug.external_fdr);
5477 free (input_debug.external_rfd);
5478 free (input_debug.external_ext);
5479
5480 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5481 elf_link_input_bfd ignores this section. */
5482 input_section->flags &= ~SEC_HAS_CONTENTS;
5483 }
5484
5485 if (SGI_COMPAT (abfd) && info->shared)
5486 {
5487 /* Create .rtproc section. */
5488 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5489 if (rtproc_sec == NULL)
5490 {
5491 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
5492 | SEC_LINKER_CREATED | SEC_READONLY);
5493
5494 rtproc_sec = bfd_make_section (abfd, ".rtproc");
5495 if (rtproc_sec == NULL
5496 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
5497 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
5498 return false;
5499 }
5500
5501 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
5502 info, rtproc_sec, &debug))
5503 return false;
5504 }
5505
5506 /* Build the external symbol information. */
5507 einfo.abfd = abfd;
5508 einfo.info = info;
5509 einfo.debug = &debug;
5510 einfo.swap = swap;
5511 einfo.failed = false;
5512 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5513 mips_elf_output_extsym,
5514 (PTR) &einfo);
5515 if (einfo.failed)
5516 return false;
5517
5518 /* Set the size of the .mdebug section. */
5519 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
5520
5521 /* Skip this section later on (I don't think this currently
5522 matters, but someday it might). */
5523 o->link_order_head = (struct bfd_link_order *) NULL;
5524
5525 mdebug_sec = o;
5526 }
5527
5528 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
5529 {
5530 const char *subname;
5531 unsigned int c;
5532 Elf32_gptab *tab;
5533 Elf32_External_gptab *ext_tab;
5534 unsigned int j;
5535
5536 /* The .gptab.sdata and .gptab.sbss sections hold
5537 information describing how the small data area would
5538 change depending upon the -G switch. These sections
5539 not used in executables files. */
5540 if (! info->relocateable)
5541 {
5542 for (p = o->link_order_head;
5543 p != (struct bfd_link_order *) NULL;
5544 p = p->next)
5545 {
5546 asection *input_section;
5547
5548 if (p->type != bfd_indirect_link_order)
5549 {
5550 if (p->type == bfd_fill_link_order)
5551 continue;
5552 abort ();
5553 }
5554
5555 input_section = p->u.indirect.section;
5556
5557 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5558 elf_link_input_bfd ignores this section. */
5559 input_section->flags &= ~SEC_HAS_CONTENTS;
5560 }
5561
5562 /* Skip this section later on (I don't think this
5563 currently matters, but someday it might). */
5564 o->link_order_head = (struct bfd_link_order *) NULL;
5565
5566 /* Really remove the section. */
5567 for (secpp = &abfd->sections;
5568 *secpp != o;
5569 secpp = &(*secpp)->next)
5570 ;
5571 *secpp = (*secpp)->next;
5572 --abfd->section_count;
5573
5574 continue;
5575 }
5576
5577 /* There is one gptab for initialized data, and one for
5578 uninitialized data. */
5579 if (strcmp (o->name, ".gptab.sdata") == 0)
5580 gptab_data_sec = o;
5581 else if (strcmp (o->name, ".gptab.sbss") == 0)
5582 gptab_bss_sec = o;
5583 else
5584 {
5585 (*_bfd_error_handler)
5586 (_("%s: illegal section name `%s'"),
5587 bfd_get_filename (abfd), o->name);
5588 bfd_set_error (bfd_error_nonrepresentable_section);
5589 return false;
5590 }
5591
5592 /* The linker script always combines .gptab.data and
5593 .gptab.sdata into .gptab.sdata, and likewise for
5594 .gptab.bss and .gptab.sbss. It is possible that there is
5595 no .sdata or .sbss section in the output file, in which
5596 case we must change the name of the output section. */
5597 subname = o->name + sizeof ".gptab" - 1;
5598 if (bfd_get_section_by_name (abfd, subname) == NULL)
5599 {
5600 if (o == gptab_data_sec)
5601 o->name = ".gptab.data";
5602 else
5603 o->name = ".gptab.bss";
5604 subname = o->name + sizeof ".gptab" - 1;
5605 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
5606 }
5607
5608 /* Set up the first entry. */
5609 c = 1;
5610 amt = c * sizeof (Elf32_gptab);
5611 tab = (Elf32_gptab *) bfd_malloc (amt);
5612 if (tab == NULL)
5613 return false;
5614 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
5615 tab[0].gt_header.gt_unused = 0;
5616
5617 /* Combine the input sections. */
5618 for (p = o->link_order_head;
5619 p != (struct bfd_link_order *) NULL;
5620 p = p->next)
5621 {
5622 asection *input_section;
5623 bfd *input_bfd;
5624 bfd_size_type size;
5625 unsigned long last;
5626 bfd_size_type gpentry;
5627
5628 if (p->type != bfd_indirect_link_order)
5629 {
5630 if (p->type == bfd_fill_link_order)
5631 continue;
5632 abort ();
5633 }
5634
5635 input_section = p->u.indirect.section;
5636 input_bfd = input_section->owner;
5637
5638 /* Combine the gptab entries for this input section one
5639 by one. We know that the input gptab entries are
5640 sorted by ascending -G value. */
5641 size = bfd_section_size (input_bfd, input_section);
5642 last = 0;
5643 for (gpentry = sizeof (Elf32_External_gptab);
5644 gpentry < size;
5645 gpentry += sizeof (Elf32_External_gptab))
5646 {
5647 Elf32_External_gptab ext_gptab;
5648 Elf32_gptab int_gptab;
5649 unsigned long val;
5650 unsigned long add;
5651 boolean exact;
5652 unsigned int look;
5653
5654 if (! (bfd_get_section_contents
5655 (input_bfd, input_section, (PTR) &ext_gptab,
5656 (file_ptr) gpentry,
5657 (bfd_size_type) sizeof (Elf32_External_gptab))))
5658 {
5659 free (tab);
5660 return false;
5661 }
5662
5663 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
5664 &int_gptab);
5665 val = int_gptab.gt_entry.gt_g_value;
5666 add = int_gptab.gt_entry.gt_bytes - last;
5667
5668 exact = false;
5669 for (look = 1; look < c; look++)
5670 {
5671 if (tab[look].gt_entry.gt_g_value >= val)
5672 tab[look].gt_entry.gt_bytes += add;
5673
5674 if (tab[look].gt_entry.gt_g_value == val)
5675 exact = true;
5676 }
5677
5678 if (! exact)
5679 {
5680 Elf32_gptab *new_tab;
5681 unsigned int max;
5682
5683 /* We need a new table entry. */
5684 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
5685 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
5686 if (new_tab == NULL)
5687 {
5688 free (tab);
5689 return false;
5690 }
5691 tab = new_tab;
5692 tab[c].gt_entry.gt_g_value = val;
5693 tab[c].gt_entry.gt_bytes = add;
5694
5695 /* Merge in the size for the next smallest -G
5696 value, since that will be implied by this new
5697 value. */
5698 max = 0;
5699 for (look = 1; look < c; look++)
5700 {
5701 if (tab[look].gt_entry.gt_g_value < val
5702 && (max == 0
5703 || (tab[look].gt_entry.gt_g_value
5704 > tab[max].gt_entry.gt_g_value)))
5705 max = look;
5706 }
5707 if (max != 0)
5708 tab[c].gt_entry.gt_bytes +=
5709 tab[max].gt_entry.gt_bytes;
5710
5711 ++c;
5712 }
5713
5714 last = int_gptab.gt_entry.gt_bytes;
5715 }
5716
5717 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5718 elf_link_input_bfd ignores this section. */
5719 input_section->flags &= ~SEC_HAS_CONTENTS;
5720 }
5721
5722 /* The table must be sorted by -G value. */
5723 if (c > 2)
5724 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
5725
5726 /* Swap out the table. */
5727 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
5728 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
5729 if (ext_tab == NULL)
5730 {
5731 free (tab);
5732 return false;
5733 }
5734
5735 for (j = 0; j < c; j++)
5736 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
5737 free (tab);
5738
5739 o->_raw_size = c * sizeof (Elf32_External_gptab);
5740 o->contents = (bfd_byte *) ext_tab;
5741
5742 /* Skip this section later on (I don't think this currently
5743 matters, but someday it might). */
5744 o->link_order_head = (struct bfd_link_order *) NULL;
5745 }
5746 }
5747
5748 /* Invoke the regular ELF backend linker to do all the work. */
5749 if (ABI_64_P (abfd))
5750 {
5751 #ifdef BFD64
5752 if (!bfd_elf64_bfd_final_link (abfd, info))
5753 return false;
5754 #else
5755 abort ();
5756 return false;
5757 #endif /* BFD64 */
5758 }
5759 else if (!bfd_elf32_bfd_final_link (abfd, info))
5760 return false;
5761
5762 /* Now write out the computed sections. */
5763
5764 if (reginfo_sec != (asection *) NULL)
5765 {
5766 Elf32_External_RegInfo ext;
5767
5768 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
5769 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
5770 (file_ptr) 0, (bfd_size_type) sizeof ext))
5771 return false;
5772 }
5773
5774 if (mdebug_sec != (asection *) NULL)
5775 {
5776 BFD_ASSERT (abfd->output_has_begun);
5777 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5778 swap, info,
5779 mdebug_sec->filepos))
5780 return false;
5781
5782 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5783 }
5784
5785 if (gptab_data_sec != (asection *) NULL)
5786 {
5787 if (! bfd_set_section_contents (abfd, gptab_data_sec,
5788 gptab_data_sec->contents,
5789 (file_ptr) 0,
5790 gptab_data_sec->_raw_size))
5791 return false;
5792 }
5793
5794 if (gptab_bss_sec != (asection *) NULL)
5795 {
5796 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
5797 gptab_bss_sec->contents,
5798 (file_ptr) 0,
5799 gptab_bss_sec->_raw_size))
5800 return false;
5801 }
5802
5803 if (SGI_COMPAT (abfd))
5804 {
5805 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5806 if (rtproc_sec != NULL)
5807 {
5808 if (! bfd_set_section_contents (abfd, rtproc_sec,
5809 rtproc_sec->contents,
5810 (file_ptr) 0,
5811 rtproc_sec->_raw_size))
5812 return false;
5813 }
5814 }
5815
5816 return true;
5817 }
5818
5819 /* This function is called via qsort() to sort the dynamic relocation
5820 entries by increasing r_symndx value. */
5821
5822 static int
5823 sort_dynamic_relocs (arg1, arg2)
5824 const PTR arg1;
5825 const PTR arg2;
5826 {
5827 const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1;
5828 const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2;
5829
5830 Elf_Internal_Rel int_reloc1;
5831 Elf_Internal_Rel int_reloc2;
5832
5833 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc1, &int_reloc1);
5834 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc2, &int_reloc2);
5835
5836 return (ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info));
5837 }
5838
5839 /* Returns the GOT section for ABFD. */
5840
5841 static asection *
5842 mips_elf_got_section (abfd)
5843 bfd *abfd;
5844 {
5845 return bfd_get_section_by_name (abfd, ".got");
5846 }
5847
5848 /* Returns the GOT information associated with the link indicated by
5849 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5850 section. */
5851
5852 static struct mips_got_info *
5853 mips_elf_got_info (abfd, sgotp)
5854 bfd *abfd;
5855 asection **sgotp;
5856 {
5857 asection *sgot;
5858 struct mips_got_info *g;
5859
5860 sgot = mips_elf_got_section (abfd);
5861 BFD_ASSERT (sgot != NULL);
5862 BFD_ASSERT (elf_section_data (sgot) != NULL);
5863 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5864 BFD_ASSERT (g != NULL);
5865
5866 if (sgotp)
5867 *sgotp = sgot;
5868 return g;
5869 }
5870
5871 /* Return whether a relocation is against a local symbol. */
5872
5873 static boolean
5874 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
5875 check_forced)
5876 bfd *input_bfd;
5877 const Elf_Internal_Rela *relocation;
5878 asection **local_sections;
5879 boolean check_forced;
5880 {
5881 unsigned long r_symndx;
5882 Elf_Internal_Shdr *symtab_hdr;
5883 struct mips_elf_link_hash_entry *h;
5884 size_t extsymoff;
5885
5886 r_symndx = ELF32_R_SYM (relocation->r_info);
5887 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5888 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5889
5890 if (r_symndx < extsymoff)
5891 return true;
5892 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5893 return true;
5894
5895 if (check_forced)
5896 {
5897 /* Look up the hash table to check whether the symbol
5898 was forced local. */
5899 h = (struct mips_elf_link_hash_entry *)
5900 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
5901 /* Find the real hash-table entry for this symbol. */
5902 while (h->root.root.type == bfd_link_hash_indirect
5903 || h->root.root.type == bfd_link_hash_warning)
5904 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5905 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5906 return true;
5907 }
5908
5909 return false;
5910 }
5911
5912 /* Sign-extend VALUE, which has the indicated number of BITS. */
5913
5914 static bfd_vma
5915 mips_elf_sign_extend (value, bits)
5916 bfd_vma value;
5917 int bits;
5918 {
5919 if (value & ((bfd_vma) 1 << (bits - 1)))
5920 /* VALUE is negative. */
5921 value |= ((bfd_vma) - 1) << bits;
5922
5923 return value;
5924 }
5925
5926 /* Return non-zero if the indicated VALUE has overflowed the maximum
5927 range expressable by a signed number with the indicated number of
5928 BITS. */
5929
5930 static boolean
5931 mips_elf_overflow_p (value, bits)
5932 bfd_vma value;
5933 int bits;
5934 {
5935 bfd_signed_vma svalue = (bfd_signed_vma) value;
5936
5937 if (svalue > (1 << (bits - 1)) - 1)
5938 /* The value is too big. */
5939 return true;
5940 else if (svalue < -(1 << (bits - 1)))
5941 /* The value is too small. */
5942 return true;
5943
5944 /* All is well. */
5945 return false;
5946 }
5947
5948 /* Calculate the %high function. */
5949
5950 static bfd_vma
5951 mips_elf_high (value)
5952 bfd_vma value;
5953 {
5954 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5955 }
5956
5957 /* Calculate the %higher function. */
5958
5959 static bfd_vma
5960 mips_elf_higher (value)
5961 bfd_vma value ATTRIBUTE_UNUSED;
5962 {
5963 #ifdef BFD64
5964 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5965 #else
5966 abort ();
5967 return (bfd_vma) -1;
5968 #endif
5969 }
5970
5971 /* Calculate the %highest function. */
5972
5973 static bfd_vma
5974 mips_elf_highest (value)
5975 bfd_vma value ATTRIBUTE_UNUSED;
5976 {
5977 #ifdef BFD64
5978 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
5979 #else
5980 abort ();
5981 return (bfd_vma) -1;
5982 #endif
5983 }
5984
5985 /* Returns the GOT index for the global symbol indicated by H. */
5986
5987 static bfd_vma
5988 mips_elf_global_got_index (abfd, h)
5989 bfd *abfd;
5990 struct elf_link_hash_entry *h;
5991 {
5992 bfd_vma index;
5993 asection *sgot;
5994 struct mips_got_info *g;
5995
5996 g = mips_elf_got_info (abfd, &sgot);
5997
5998 /* Once we determine the global GOT entry with the lowest dynamic
5999 symbol table index, we must put all dynamic symbols with greater
6000 indices into the GOT. That makes it easy to calculate the GOT
6001 offset. */
6002 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
6003 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
6004 * MIPS_ELF_GOT_SIZE (abfd));
6005 BFD_ASSERT (index < sgot->_raw_size);
6006
6007 return index;
6008 }
6009
6010 /* Returns the offset for the entry at the INDEXth position
6011 in the GOT. */
6012
6013 static bfd_vma
6014 mips_elf_got_offset_from_index (dynobj, output_bfd, index)
6015 bfd *dynobj;
6016 bfd *output_bfd;
6017 bfd_vma index;
6018 {
6019 asection *sgot;
6020 bfd_vma gp;
6021
6022 sgot = mips_elf_got_section (dynobj);
6023 gp = _bfd_get_gp_value (output_bfd);
6024 return (sgot->output_section->vma + sgot->output_offset + index -
6025 gp);
6026 }
6027
6028 /* If H is a symbol that needs a global GOT entry, but has a dynamic
6029 symbol table index lower than any we've seen to date, record it for
6030 posterity. */
6031
6032 static boolean
6033 mips_elf_record_global_got_symbol (h, info, g)
6034 struct elf_link_hash_entry *h;
6035 struct bfd_link_info *info;
6036 struct mips_got_info *g ATTRIBUTE_UNUSED;
6037 {
6038 /* A global symbol in the GOT must also be in the dynamic symbol
6039 table. */
6040 if (h->dynindx == -1
6041 && !bfd_elf32_link_record_dynamic_symbol (info, h))
6042 return false;
6043
6044 /* If we've already marked this entry as needing GOT space, we don't
6045 need to do it again. */
6046 if (h->got.offset != (bfd_vma) -1)
6047 return true;
6048
6049 /* By setting this to a value other than -1, we are indicating that
6050 there needs to be a GOT entry for H. Avoid using zero, as the
6051 generic ELF copy_indirect_symbol tests for <= 0. */
6052 h->got.offset = 1;
6053
6054 return true;
6055 }
6056
6057 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
6058 the dynamic symbols. */
6059
6060 struct mips_elf_hash_sort_data
6061 {
6062 /* The symbol in the global GOT with the lowest dynamic symbol table
6063 index. */
6064 struct elf_link_hash_entry *low;
6065 /* The least dynamic symbol table index corresponding to a symbol
6066 with a GOT entry. */
6067 long min_got_dynindx;
6068 /* The greatest dynamic symbol table index not corresponding to a
6069 symbol without a GOT entry. */
6070 long max_non_got_dynindx;
6071 };
6072
6073 /* If H needs a GOT entry, assign it the highest available dynamic
6074 index. Otherwise, assign it the lowest available dynamic
6075 index. */
6076
6077 static boolean
6078 mips_elf_sort_hash_table_f (h, data)
6079 struct mips_elf_link_hash_entry *h;
6080 PTR data;
6081 {
6082 struct mips_elf_hash_sort_data *hsd
6083 = (struct mips_elf_hash_sort_data *) data;
6084
6085 /* Symbols without dynamic symbol table entries aren't interesting
6086 at all. */
6087 if (h->root.dynindx == -1)
6088 return true;
6089
6090 if (h->root.got.offset != 1)
6091 h->root.dynindx = hsd->max_non_got_dynindx++;
6092 else
6093 {
6094 h->root.dynindx = --hsd->min_got_dynindx;
6095 hsd->low = (struct elf_link_hash_entry *) h;
6096 }
6097
6098 return true;
6099 }
6100
6101 /* Sort the dynamic symbol table so that symbols that need GOT entries
6102 appear towards the end. This reduces the amount of GOT space
6103 required. MAX_LOCAL is used to set the number of local symbols
6104 known to be in the dynamic symbol table. During
6105 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
6106 section symbols are added and the count is higher. */
6107
6108 static boolean
6109 mips_elf_sort_hash_table (info, max_local)
6110 struct bfd_link_info *info;
6111 unsigned long max_local;
6112 {
6113 struct mips_elf_hash_sort_data hsd;
6114 struct mips_got_info *g;
6115 bfd *dynobj;
6116
6117 dynobj = elf_hash_table (info)->dynobj;
6118
6119 hsd.low = NULL;
6120 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
6121 hsd.max_non_got_dynindx = max_local;
6122 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
6123 elf_hash_table (info)),
6124 mips_elf_sort_hash_table_f,
6125 &hsd);
6126
6127 /* There should have been enough room in the symbol table to
6128 accomodate both the GOT and non-GOT symbols. */
6129 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
6130
6131 /* Now we know which dynamic symbol has the lowest dynamic symbol
6132 table index in the GOT. */
6133 g = mips_elf_got_info (dynobj, NULL);
6134 g->global_gotsym = hsd.low;
6135
6136 return true;
6137 }
6138
6139 /* Create a local GOT entry for VALUE. Return the index of the entry,
6140 or -1 if it could not be created. */
6141
6142 static bfd_vma
6143 mips_elf_create_local_got_entry (abfd, g, sgot, value)
6144 bfd *abfd;
6145 struct mips_got_info *g;
6146 asection *sgot;
6147 bfd_vma value;
6148 {
6149 if (g->assigned_gotno >= g->local_gotno)
6150 {
6151 /* We didn't allocate enough space in the GOT. */
6152 (*_bfd_error_handler)
6153 (_("not enough GOT space for local GOT entries"));
6154 bfd_set_error (bfd_error_bad_value);
6155 return (bfd_vma) -1;
6156 }
6157
6158 MIPS_ELF_PUT_WORD (abfd, value,
6159 (sgot->contents
6160 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
6161 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
6162 }
6163
6164 /* Returns the GOT offset at which the indicated address can be found.
6165 If there is not yet a GOT entry for this value, create one. Returns
6166 -1 if no satisfactory GOT offset can be found. */
6167
6168 static bfd_vma
6169 mips_elf_local_got_index (abfd, info, value)
6170 bfd *abfd;
6171 struct bfd_link_info *info;
6172 bfd_vma value;
6173 {
6174 asection *sgot;
6175 struct mips_got_info *g;
6176 bfd_byte *entry;
6177
6178 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
6179
6180 /* Look to see if we already have an appropriate entry. */
6181 for (entry = (sgot->contents
6182 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
6183 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
6184 entry += MIPS_ELF_GOT_SIZE (abfd))
6185 {
6186 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
6187 if (address == value)
6188 return entry - sgot->contents;
6189 }
6190
6191 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
6192 }
6193
6194 /* Find a GOT entry that is within 32KB of the VALUE. These entries
6195 are supposed to be placed at small offsets in the GOT, i.e.,
6196 within 32KB of GP. Return the index into the GOT for this page,
6197 and store the offset from this entry to the desired address in
6198 OFFSETP, if it is non-NULL. */
6199
6200 static bfd_vma
6201 mips_elf_got_page (abfd, info, value, offsetp)
6202 bfd *abfd;
6203 struct bfd_link_info *info;
6204 bfd_vma value;
6205 bfd_vma *offsetp;
6206 {
6207 asection *sgot;
6208 struct mips_got_info *g;
6209 bfd_byte *entry;
6210 bfd_byte *last_entry;
6211 bfd_vma index = 0;
6212 bfd_vma address;
6213
6214 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
6215
6216 /* Look to see if we aleady have an appropriate entry. */
6217 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
6218 for (entry = (sgot->contents
6219 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
6220 entry != last_entry;
6221 entry += MIPS_ELF_GOT_SIZE (abfd))
6222 {
6223 address = MIPS_ELF_GET_WORD (abfd, entry);
6224
6225 if (!mips_elf_overflow_p (value - address, 16))
6226 {
6227 /* This entry will serve as the page pointer. We can add a
6228 16-bit number to it to get the actual address. */
6229 index = entry - sgot->contents;
6230 break;
6231 }
6232 }
6233
6234 /* If we didn't have an appropriate entry, we create one now. */
6235 if (entry == last_entry)
6236 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
6237
6238 if (offsetp)
6239 {
6240 address = MIPS_ELF_GET_WORD (abfd, entry);
6241 *offsetp = value - address;
6242 }
6243
6244 return index;
6245 }
6246
6247 /* Find a GOT entry whose higher-order 16 bits are the same as those
6248 for value. Return the index into the GOT for this entry. */
6249
6250 static bfd_vma
6251 mips_elf_got16_entry (abfd, info, value, external)
6252 bfd *abfd;
6253 struct bfd_link_info *info;
6254 bfd_vma value;
6255 boolean external;
6256 {
6257 asection *sgot;
6258 struct mips_got_info *g;
6259 bfd_byte *entry;
6260 bfd_byte *last_entry;
6261 bfd_vma index = 0;
6262 bfd_vma address;
6263
6264 if (! external)
6265 {
6266 /* Although the ABI says that it is "the high-order 16 bits" that we
6267 want, it is really the %high value. The complete value is
6268 calculated with a `addiu' of a LO16 relocation, just as with a
6269 HI16/LO16 pair. */
6270 value = mips_elf_high (value) << 16;
6271 }
6272
6273 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
6274
6275 /* Look to see if we already have an appropriate entry. */
6276 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
6277 for (entry = (sgot->contents
6278 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
6279 entry != last_entry;
6280 entry += MIPS_ELF_GOT_SIZE (abfd))
6281 {
6282 address = MIPS_ELF_GET_WORD (abfd, entry);
6283 if (address == value)
6284 {
6285 /* This entry has the right high-order 16 bits, and the low-order
6286 16 bits are set to zero. */
6287 index = entry - sgot->contents;
6288 break;
6289 }
6290 }
6291
6292 /* If we didn't have an appropriate entry, we create one now. */
6293 if (entry == last_entry)
6294 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
6295
6296 return index;
6297 }
6298
6299 /* Returns the first relocation of type r_type found, beginning with
6300 RELOCATION. RELEND is one-past-the-end of the relocation table. */
6301
6302 static const Elf_Internal_Rela *
6303 mips_elf_next_relocation (r_type, relocation, relend)
6304 unsigned int r_type;
6305 const Elf_Internal_Rela *relocation;
6306 const Elf_Internal_Rela *relend;
6307 {
6308 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
6309 immediately following. However, for the IRIX6 ABI, the next
6310 relocation may be a composed relocation consisting of several
6311 relocations for the same address. In that case, the R_MIPS_LO16
6312 relocation may occur as one of these. We permit a similar
6313 extension in general, as that is useful for GCC. */
6314 while (relocation < relend)
6315 {
6316 if (ELF32_R_TYPE (relocation->r_info) == r_type)
6317 return relocation;
6318
6319 ++relocation;
6320 }
6321
6322 /* We didn't find it. */
6323 bfd_set_error (bfd_error_bad_value);
6324 return NULL;
6325 }
6326
6327 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6328 is the original relocation, which is now being transformed into a
6329 dynamic relocation. The ADDENDP is adjusted if necessary; the
6330 caller should store the result in place of the original addend. */
6331
6332 static boolean
6333 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
6334 symbol, addendp, input_section)
6335 bfd *output_bfd;
6336 struct bfd_link_info *info;
6337 const Elf_Internal_Rela *rel;
6338 struct mips_elf_link_hash_entry *h;
6339 asection *sec;
6340 bfd_vma symbol;
6341 bfd_vma *addendp;
6342 asection *input_section;
6343 {
6344 Elf_Internal_Rel outrel;
6345 boolean skip;
6346 asection *sreloc;
6347 bfd *dynobj;
6348 int r_type;
6349
6350 r_type = ELF32_R_TYPE (rel->r_info);
6351 dynobj = elf_hash_table (info)->dynobj;
6352 sreloc
6353 = bfd_get_section_by_name (dynobj,
6354 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
6355 BFD_ASSERT (sreloc != NULL);
6356 BFD_ASSERT (sreloc->contents != NULL);
6357 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6358 < sreloc->_raw_size);
6359
6360 skip = false;
6361
6362 /* We begin by assuming that the offset for the dynamic relocation
6363 is the same as for the original relocation. We'll adjust this
6364 later to reflect the correct output offsets. */
6365 if (elf_section_data (input_section)->stab_info == NULL)
6366 outrel.r_offset = rel->r_offset;
6367 else
6368 {
6369 /* Except that in a stab section things are more complex.
6370 Because we compress stab information, the offset given in the
6371 relocation may not be the one we want; we must let the stabs
6372 machinery tell us the offset. */
6373 outrel.r_offset
6374 = (_bfd_stab_section_offset
6375 (output_bfd, &elf_hash_table (info)->stab_info,
6376 input_section,
6377 &elf_section_data (input_section)->stab_info,
6378 rel->r_offset));
6379 /* If we didn't need the relocation at all, this value will be
6380 -1. */
6381 if (outrel.r_offset == (bfd_vma) -1)
6382 skip = true;
6383 }
6384
6385 /* If we've decided to skip this relocation, just output an empty
6386 record. Note that R_MIPS_NONE == 0, so that this call to memset
6387 is a way of setting R_TYPE to R_MIPS_NONE. */
6388 if (skip)
6389 memset (&outrel, 0, sizeof (outrel));
6390 else
6391 {
6392 long indx;
6393 bfd_vma section_offset;
6394
6395 /* We must now calculate the dynamic symbol table index to use
6396 in the relocation. */
6397 if (h != NULL
6398 && (! info->symbolic || (h->root.elf_link_hash_flags
6399 & ELF_LINK_HASH_DEF_REGULAR) == 0))
6400 {
6401 indx = h->root.dynindx;
6402 /* h->root.dynindx may be -1 if this symbol was marked to
6403 become local. */
6404 if (indx == -1)
6405 indx = 0;
6406 }
6407 else
6408 {
6409 if (sec != NULL && bfd_is_abs_section (sec))
6410 indx = 0;
6411 else if (sec == NULL || sec->owner == NULL)
6412 {
6413 bfd_set_error (bfd_error_bad_value);
6414 return false;
6415 }
6416 else
6417 {
6418 indx = elf_section_data (sec->output_section)->dynindx;
6419 if (indx == 0)
6420 abort ();
6421 }
6422
6423 /* Figure out how far the target of the relocation is from
6424 the beginning of its section. */
6425 section_offset = symbol - sec->output_section->vma;
6426 /* The relocation we're building is section-relative.
6427 Therefore, the original addend must be adjusted by the
6428 section offset. */
6429 *addendp += section_offset;
6430 /* Now, the relocation is just against the section. */
6431 symbol = sec->output_section->vma;
6432 }
6433
6434 /* If the relocation was previously an absolute relocation and
6435 this symbol will not be referred to by the relocation, we must
6436 adjust it by the value we give it in the dynamic symbol table.
6437 Otherwise leave the job up to the dynamic linker. */
6438 if (!indx && r_type != R_MIPS_REL32)
6439 *addendp += symbol;
6440
6441 /* The relocation is always an REL32 relocation because we don't
6442 know where the shared library will wind up at load-time. */
6443 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
6444
6445 /* Adjust the output offset of the relocation to reference the
6446 correct location in the output file. */
6447 outrel.r_offset += (input_section->output_section->vma
6448 + input_section->output_offset);
6449 }
6450
6451 /* Put the relocation back out. We have to use the special
6452 relocation outputter in the 64-bit case since the 64-bit
6453 relocation format is non-standard. */
6454 if (ABI_64_P (output_bfd))
6455 {
6456 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6457 (output_bfd, &outrel,
6458 (sreloc->contents
6459 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6460 }
6461 else
6462 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
6463 (((Elf32_External_Rel *)
6464 sreloc->contents)
6465 + sreloc->reloc_count));
6466
6467 /* Record the index of the first relocation referencing H. This
6468 information is later emitted in the .msym section. */
6469 if (h != NULL
6470 && (h->min_dyn_reloc_index == 0
6471 || sreloc->reloc_count < h->min_dyn_reloc_index))
6472 h->min_dyn_reloc_index = sreloc->reloc_count;
6473
6474 /* We've now added another relocation. */
6475 ++sreloc->reloc_count;
6476
6477 /* Make sure the output section is writable. The dynamic linker
6478 will be writing to it. */
6479 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6480 |= SHF_WRITE;
6481
6482 /* On IRIX5, make an entry of compact relocation info. */
6483 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
6484 {
6485 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
6486 bfd_byte *cr;
6487
6488 if (scpt)
6489 {
6490 Elf32_crinfo cptrel;
6491
6492 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6493 cptrel.vaddr = (rel->r_offset
6494 + input_section->output_section->vma
6495 + input_section->output_offset);
6496 if (r_type == R_MIPS_REL32)
6497 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6498 else
6499 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6500 mips_elf_set_cr_dist2to (cptrel, 0);
6501 cptrel.konst = *addendp;
6502
6503 cr = (scpt->contents
6504 + sizeof (Elf32_External_compact_rel));
6505 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6506 ((Elf32_External_crinfo *) cr
6507 + scpt->reloc_count));
6508 ++scpt->reloc_count;
6509 }
6510 }
6511
6512 return true;
6513 }
6514
6515 /* Calculate the value produced by the RELOCATION (which comes from
6516 the INPUT_BFD). The ADDEND is the addend to use for this
6517 RELOCATION; RELOCATION->R_ADDEND is ignored.
6518
6519 The result of the relocation calculation is stored in VALUEP.
6520 REQUIRE_JALXP indicates whether or not the opcode used with this
6521 relocation must be JALX.
6522
6523 This function returns bfd_reloc_continue if the caller need take no
6524 further action regarding this relocation, bfd_reloc_notsupported if
6525 something goes dramatically wrong, bfd_reloc_overflow if an
6526 overflow occurs, and bfd_reloc_ok to indicate success. */
6527
6528 static bfd_reloc_status_type
6529 mips_elf_calculate_relocation (abfd,
6530 input_bfd,
6531 input_section,
6532 info,
6533 relocation,
6534 addend,
6535 howto,
6536 local_syms,
6537 local_sections,
6538 valuep,
6539 namep,
6540 require_jalxp)
6541 bfd *abfd;
6542 bfd *input_bfd;
6543 asection *input_section;
6544 struct bfd_link_info *info;
6545 const Elf_Internal_Rela *relocation;
6546 bfd_vma addend;
6547 reloc_howto_type *howto;
6548 Elf_Internal_Sym *local_syms;
6549 asection **local_sections;
6550 bfd_vma *valuep;
6551 const char **namep;
6552 boolean *require_jalxp;
6553 {
6554 /* The eventual value we will return. */
6555 bfd_vma value;
6556 /* The address of the symbol against which the relocation is
6557 occurring. */
6558 bfd_vma symbol = 0;
6559 /* The final GP value to be used for the relocatable, executable, or
6560 shared object file being produced. */
6561 bfd_vma gp = (bfd_vma) - 1;
6562 /* The place (section offset or address) of the storage unit being
6563 relocated. */
6564 bfd_vma p;
6565 /* The value of GP used to create the relocatable object. */
6566 bfd_vma gp0 = (bfd_vma) - 1;
6567 /* The offset into the global offset table at which the address of
6568 the relocation entry symbol, adjusted by the addend, resides
6569 during execution. */
6570 bfd_vma g = (bfd_vma) - 1;
6571 /* The section in which the symbol referenced by the relocation is
6572 located. */
6573 asection *sec = NULL;
6574 struct mips_elf_link_hash_entry *h = NULL;
6575 /* True if the symbol referred to by this relocation is a local
6576 symbol. */
6577 boolean local_p;
6578 /* True if the symbol referred to by this relocation is "_gp_disp". */
6579 boolean gp_disp_p = false;
6580 Elf_Internal_Shdr *symtab_hdr;
6581 size_t extsymoff;
6582 unsigned long r_symndx;
6583 int r_type;
6584 /* True if overflow occurred during the calculation of the
6585 relocation value. */
6586 boolean overflowed_p;
6587 /* True if this relocation refers to a MIPS16 function. */
6588 boolean target_is_16_bit_code_p = false;
6589
6590 /* Parse the relocation. */
6591 r_symndx = ELF32_R_SYM (relocation->r_info);
6592 r_type = ELF32_R_TYPE (relocation->r_info);
6593 p = (input_section->output_section->vma
6594 + input_section->output_offset
6595 + relocation->r_offset);
6596
6597 /* Assume that there will be no overflow. */
6598 overflowed_p = false;
6599
6600 /* Figure out whether or not the symbol is local, and get the offset
6601 used in the array of hash table entries. */
6602 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6603 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6604 local_sections, false);
6605 if (! elf_bad_symtab (input_bfd))
6606 extsymoff = symtab_hdr->sh_info;
6607 else
6608 {
6609 /* The symbol table does not follow the rule that local symbols
6610 must come before globals. */
6611 extsymoff = 0;
6612 }
6613
6614 /* Figure out the value of the symbol. */
6615 if (local_p)
6616 {
6617 Elf_Internal_Sym *sym;
6618
6619 sym = local_syms + r_symndx;
6620 sec = local_sections[r_symndx];
6621
6622 symbol = sec->output_section->vma + sec->output_offset;
6623 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6624 symbol += sym->st_value;
6625
6626 /* MIPS16 text labels should be treated as odd. */
6627 if (sym->st_other == STO_MIPS16)
6628 ++symbol;
6629
6630 /* Record the name of this symbol, for our caller. */
6631 *namep = bfd_elf_string_from_elf_section (input_bfd,
6632 symtab_hdr->sh_link,
6633 sym->st_name);
6634 if (*namep == '\0')
6635 *namep = bfd_section_name (input_bfd, sec);
6636
6637 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
6638 }
6639 else
6640 {
6641 /* For global symbols we look up the symbol in the hash-table. */
6642 h = ((struct mips_elf_link_hash_entry *)
6643 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
6644 /* Find the real hash-table entry for this symbol. */
6645 while (h->root.root.type == bfd_link_hash_indirect
6646 || h->root.root.type == bfd_link_hash_warning)
6647 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6648
6649 /* Record the name of this symbol, for our caller. */
6650 *namep = h->root.root.root.string;
6651
6652 /* See if this is the special _gp_disp symbol. Note that such a
6653 symbol must always be a global symbol. */
6654 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
6655 {
6656 /* Relocations against _gp_disp are permitted only with
6657 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
6658 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
6659 return bfd_reloc_notsupported;
6660
6661 gp_disp_p = true;
6662 }
6663 /* If this symbol is defined, calculate its address. Note that
6664 _gp_disp is a magic symbol, always implicitly defined by the
6665 linker, so it's inappropriate to check to see whether or not
6666 its defined. */
6667 else if ((h->root.root.type == bfd_link_hash_defined
6668 || h->root.root.type == bfd_link_hash_defweak)
6669 && h->root.root.u.def.section)
6670 {
6671 sec = h->root.root.u.def.section;
6672 if (sec->output_section)
6673 symbol = (h->root.root.u.def.value
6674 + sec->output_section->vma
6675 + sec->output_offset);
6676 else
6677 symbol = h->root.root.u.def.value;
6678 }
6679 else if (h->root.root.type == bfd_link_hash_undefweak)
6680 /* We allow relocations against undefined weak symbols, giving
6681 it the value zero, so that you can undefined weak functions
6682 and check to see if they exist by looking at their
6683 addresses. */
6684 symbol = 0;
6685 else if (info->shared
6686 && (!info->symbolic || info->allow_shlib_undefined)
6687 && !info->no_undefined
6688 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
6689 symbol = 0;
6690 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
6691 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
6692 {
6693 /* If this is a dynamic link, we should have created a
6694 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
6695 in in mips_elf_create_dynamic_sections.
6696 Otherwise, we should define the symbol with a value of 0.
6697 FIXME: It should probably get into the symbol table
6698 somehow as well. */
6699 BFD_ASSERT (! info->shared);
6700 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
6701 symbol = 0;
6702 }
6703 else
6704 {
6705 if (! ((*info->callbacks->undefined_symbol)
6706 (info, h->root.root.root.string, input_bfd,
6707 input_section, relocation->r_offset,
6708 (!info->shared || info->no_undefined
6709 || ELF_ST_VISIBILITY (h->root.other)))))
6710 return bfd_reloc_undefined;
6711 symbol = 0;
6712 }
6713
6714 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
6715 }
6716
6717 /* If this is a 32-bit call to a 16-bit function with a stub, we
6718 need to redirect the call to the stub, unless we're already *in*
6719 a stub. */
6720 if (r_type != R_MIPS16_26 && !info->relocateable
6721 && ((h != NULL && h->fn_stub != NULL)
6722 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
6723 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
6724 && !mips_elf_stub_section_p (input_bfd, input_section))
6725 {
6726 /* This is a 32-bit call to a 16-bit function. We should
6727 have already noticed that we were going to need the
6728 stub. */
6729 if (local_p)
6730 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
6731 else
6732 {
6733 BFD_ASSERT (h->need_fn_stub);
6734 sec = h->fn_stub;
6735 }
6736
6737 symbol = sec->output_section->vma + sec->output_offset;
6738 }
6739 /* If this is a 16-bit call to a 32-bit function with a stub, we
6740 need to redirect the call to the stub. */
6741 else if (r_type == R_MIPS16_26 && !info->relocateable
6742 && h != NULL
6743 && (h->call_stub != NULL || h->call_fp_stub != NULL)
6744 && !target_is_16_bit_code_p)
6745 {
6746 /* If both call_stub and call_fp_stub are defined, we can figure
6747 out which one to use by seeing which one appears in the input
6748 file. */
6749 if (h->call_stub != NULL && h->call_fp_stub != NULL)
6750 {
6751 asection *o;
6752
6753 sec = NULL;
6754 for (o = input_bfd->sections; o != NULL; o = o->next)
6755 {
6756 if (strncmp (bfd_get_section_name (input_bfd, o),
6757 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6758 {
6759 sec = h->call_fp_stub;
6760 break;
6761 }
6762 }
6763 if (sec == NULL)
6764 sec = h->call_stub;
6765 }
6766 else if (h->call_stub != NULL)
6767 sec = h->call_stub;
6768 else
6769 sec = h->call_fp_stub;
6770
6771 BFD_ASSERT (sec->_raw_size > 0);
6772 symbol = sec->output_section->vma + sec->output_offset;
6773 }
6774
6775 /* Calls from 16-bit code to 32-bit code and vice versa require the
6776 special jalx instruction. */
6777 *require_jalxp = (!info->relocateable
6778 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
6779
6780 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6781 local_sections, true);
6782
6783 /* If we haven't already determined the GOT offset, or the GP value,
6784 and we're going to need it, get it now. */
6785 switch (r_type)
6786 {
6787 case R_MIPS_CALL16:
6788 case R_MIPS_GOT16:
6789 case R_MIPS_GOT_DISP:
6790 case R_MIPS_GOT_HI16:
6791 case R_MIPS_CALL_HI16:
6792 case R_MIPS_GOT_LO16:
6793 case R_MIPS_CALL_LO16:
6794 /* Find the index into the GOT where this value is located. */
6795 if (!local_p)
6796 {
6797 BFD_ASSERT (addend == 0);
6798 g = mips_elf_global_got_index
6799 (elf_hash_table (info)->dynobj,
6800 (struct elf_link_hash_entry *) h);
6801 if (! elf_hash_table(info)->dynamic_sections_created
6802 || (info->shared
6803 && (info->symbolic || h->root.dynindx == -1)
6804 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6805 {
6806 /* This is a static link or a -Bsymbolic link. The
6807 symbol is defined locally, or was forced to be local.
6808 We must initialize this entry in the GOT. */
6809 asection *sgot = mips_elf_got_section(elf_hash_table
6810 (info)->dynobj);
6811 MIPS_ELF_PUT_WORD (elf_hash_table (info)->dynobj,
6812 symbol + addend, sgot->contents + g);
6813 }
6814 }
6815 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
6816 /* There's no need to create a local GOT entry here; the
6817 calculation for a local GOT16 entry does not involve G. */
6818 break;
6819 else
6820 {
6821 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6822 if (g == (bfd_vma) -1)
6823 return false;
6824 }
6825
6826 /* Convert GOT indices to actual offsets. */
6827 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6828 abfd, g);
6829 break;
6830
6831 case R_MIPS_HI16:
6832 case R_MIPS_LO16:
6833 case R_MIPS_GPREL16:
6834 case R_MIPS_GPREL32:
6835 case R_MIPS_LITERAL:
6836 gp0 = _bfd_get_gp_value (input_bfd);
6837 gp = _bfd_get_gp_value (abfd);
6838 break;
6839
6840 default:
6841 break;
6842 }
6843
6844 /* Figure out what kind of relocation is being performed. */
6845 switch (r_type)
6846 {
6847 case R_MIPS_NONE:
6848 return bfd_reloc_continue;
6849
6850 case R_MIPS_16:
6851 value = symbol + mips_elf_sign_extend (addend, 16);
6852 overflowed_p = mips_elf_overflow_p (value, 16);
6853 break;
6854
6855 case R_MIPS_32:
6856 case R_MIPS_REL32:
6857 case R_MIPS_64:
6858 if ((info->shared
6859 || (elf_hash_table (info)->dynamic_sections_created
6860 && h != NULL
6861 && ((h->root.elf_link_hash_flags
6862 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6863 && ((h->root.elf_link_hash_flags
6864 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6865 && r_symndx != 0
6866 && (input_section->flags & SEC_ALLOC) != 0)
6867 {
6868 /* If we're creating a shared library, or this relocation is
6869 against a symbol in a shared library, then we can't know
6870 where the symbol will end up. So, we create a relocation
6871 record in the output, and leave the job up to the dynamic
6872 linker. */
6873 value = addend;
6874 if (!mips_elf_create_dynamic_relocation (abfd,
6875 info,
6876 relocation,
6877 h,
6878 sec,
6879 symbol,
6880 &value,
6881 input_section))
6882 return false;
6883 }
6884 else
6885 {
6886 if (r_type != R_MIPS_REL32)
6887 value = symbol + addend;
6888 else
6889 value = addend;
6890 }
6891 value &= howto->dst_mask;
6892 break;
6893
6894 case R_MIPS_PC32:
6895 case R_MIPS_PC64:
6896 case R_MIPS_GNU_REL_LO16:
6897 value = symbol + addend - p;
6898 value &= howto->dst_mask;
6899 break;
6900
6901 case R_MIPS_GNU_REL16_S2:
6902 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
6903 overflowed_p = mips_elf_overflow_p (value, 18);
6904 value = (value >> 2) & howto->dst_mask;
6905 break;
6906
6907 case R_MIPS_GNU_REL_HI16:
6908 value = mips_elf_high (addend + symbol - p);
6909 value &= howto->dst_mask;
6910 break;
6911
6912 case R_MIPS16_26:
6913 /* The calculation for R_MIPS16_26 is just the same as for an
6914 R_MIPS_26. It's only the storage of the relocated field into
6915 the output file that's different. That's handled in
6916 mips_elf_perform_relocation. So, we just fall through to the
6917 R_MIPS_26 case here. */
6918 case R_MIPS_26:
6919 if (local_p)
6920 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
6921 else
6922 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6923 value &= howto->dst_mask;
6924 break;
6925
6926 case R_MIPS_HI16:
6927 if (!gp_disp_p)
6928 {
6929 value = mips_elf_high (addend + symbol);
6930 value &= howto->dst_mask;
6931 }
6932 else
6933 {
6934 value = mips_elf_high (addend + gp - p);
6935 overflowed_p = mips_elf_overflow_p (value, 16);
6936 }
6937 break;
6938
6939 case R_MIPS_LO16:
6940 if (!gp_disp_p)
6941 value = (symbol + addend) & howto->dst_mask;
6942 else
6943 {
6944 value = addend + gp - p + 4;
6945 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6946 for overflow. But, on, say, Irix 5, relocations against
6947 _gp_disp are normally generated from the .cpload
6948 pseudo-op. It generates code that normally looks like
6949 this:
6950
6951 lui $gp,%hi(_gp_disp)
6952 addiu $gp,$gp,%lo(_gp_disp)
6953 addu $gp,$gp,$t9
6954
6955 Here $t9 holds the address of the function being called,
6956 as required by the MIPS ELF ABI. The R_MIPS_LO16
6957 relocation can easily overflow in this situation, but the
6958 R_MIPS_HI16 relocation will handle the overflow.
6959 Therefore, we consider this a bug in the MIPS ABI, and do
6960 not check for overflow here. */
6961 }
6962 break;
6963
6964 case R_MIPS_LITERAL:
6965 /* Because we don't merge literal sections, we can handle this
6966 just like R_MIPS_GPREL16. In the long run, we should merge
6967 shared literals, and then we will need to additional work
6968 here. */
6969
6970 /* Fall through. */
6971
6972 case R_MIPS16_GPREL:
6973 /* The R_MIPS16_GPREL performs the same calculation as
6974 R_MIPS_GPREL16, but stores the relocated bits in a different
6975 order. We don't need to do anything special here; the
6976 differences are handled in mips_elf_perform_relocation. */
6977 case R_MIPS_GPREL16:
6978 if (local_p)
6979 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6980 else
6981 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6982 overflowed_p = mips_elf_overflow_p (value, 16);
6983 break;
6984
6985 case R_MIPS_GOT16:
6986 case R_MIPS_CALL16:
6987 if (local_p)
6988 {
6989 boolean forced;
6990
6991 /* The special case is when the symbol is forced to be local. We
6992 need the full address in the GOT since no R_MIPS_LO16 relocation
6993 follows. */
6994 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
6995 local_sections, false);
6996 value = mips_elf_got16_entry (abfd, info, symbol + addend, forced);
6997 if (value == (bfd_vma) -1)
6998 return false;
6999 value
7000 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
7001 abfd,
7002 value);
7003 overflowed_p = mips_elf_overflow_p (value, 16);
7004 break;
7005 }
7006
7007 /* Fall through. */
7008
7009 case R_MIPS_GOT_DISP:
7010 value = g;
7011 overflowed_p = mips_elf_overflow_p (value, 16);
7012 break;
7013
7014 case R_MIPS_GPREL32:
7015 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
7016 break;
7017
7018 case R_MIPS_PC16:
7019 value = mips_elf_sign_extend (addend, 16) + symbol - p;
7020 overflowed_p = mips_elf_overflow_p (value, 16);
7021 value = (bfd_vma) ((bfd_signed_vma) value / 4);
7022 break;
7023
7024 case R_MIPS_GOT_HI16:
7025 case R_MIPS_CALL_HI16:
7026 /* We're allowed to handle these two relocations identically.
7027 The dynamic linker is allowed to handle the CALL relocations
7028 differently by creating a lazy evaluation stub. */
7029 value = g;
7030 value = mips_elf_high (value);
7031 value &= howto->dst_mask;
7032 break;
7033
7034 case R_MIPS_GOT_LO16:
7035 case R_MIPS_CALL_LO16:
7036 value = g & howto->dst_mask;
7037 break;
7038
7039 case R_MIPS_GOT_PAGE:
7040 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
7041 if (value == (bfd_vma) -1)
7042 return false;
7043 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
7044 abfd,
7045 value);
7046 overflowed_p = mips_elf_overflow_p (value, 16);
7047 break;
7048
7049 case R_MIPS_GOT_OFST:
7050 mips_elf_got_page (abfd, info, symbol + addend, &value);
7051 overflowed_p = mips_elf_overflow_p (value, 16);
7052 break;
7053
7054 case R_MIPS_SUB:
7055 value = symbol - addend;
7056 value &= howto->dst_mask;
7057 break;
7058
7059 case R_MIPS_HIGHER:
7060 value = mips_elf_higher (addend + symbol);
7061 value &= howto->dst_mask;
7062 break;
7063
7064 case R_MIPS_HIGHEST:
7065 value = mips_elf_highest (addend + symbol);
7066 value &= howto->dst_mask;
7067 break;
7068
7069 case R_MIPS_SCN_DISP:
7070 value = symbol + addend - sec->output_offset;
7071 value &= howto->dst_mask;
7072 break;
7073
7074 case R_MIPS_PJUMP:
7075 case R_MIPS_JALR:
7076 /* Both of these may be ignored. R_MIPS_JALR is an optimization
7077 hint; we could improve performance by honoring that hint. */
7078 return bfd_reloc_continue;
7079
7080 case R_MIPS_GNU_VTINHERIT:
7081 case R_MIPS_GNU_VTENTRY:
7082 /* We don't do anything with these at present. */
7083 return bfd_reloc_continue;
7084
7085 default:
7086 /* An unrecognized relocation type. */
7087 return bfd_reloc_notsupported;
7088 }
7089
7090 /* Store the VALUE for our caller. */
7091 *valuep = value;
7092 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
7093 }
7094
7095 /* Obtain the field relocated by RELOCATION. */
7096
7097 static bfd_vma
7098 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
7099 reloc_howto_type *howto;
7100 const Elf_Internal_Rela *relocation;
7101 bfd *input_bfd;
7102 bfd_byte *contents;
7103 {
7104 bfd_vma x;
7105 bfd_byte *location = contents + relocation->r_offset;
7106
7107 /* Obtain the bytes. */
7108 x = bfd_get (((bfd_vma)(8 * bfd_get_reloc_size (howto))), input_bfd, location);
7109
7110 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
7111 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
7112 && bfd_little_endian (input_bfd))
7113 /* The two 16-bit words will be reversed on a little-endian
7114 system. See mips_elf_perform_relocation for more details. */
7115 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
7116
7117 return x;
7118 }
7119
7120 /* It has been determined that the result of the RELOCATION is the
7121 VALUE. Use HOWTO to place VALUE into the output file at the
7122 appropriate position. The SECTION is the section to which the
7123 relocation applies. If REQUIRE_JALX is true, then the opcode used
7124 for the relocation must be either JAL or JALX, and it is
7125 unconditionally converted to JALX.
7126
7127 Returns false if anything goes wrong. */
7128
7129 static boolean
7130 mips_elf_perform_relocation (info, howto, relocation, value,
7131 input_bfd, input_section,
7132 contents, require_jalx)
7133 struct bfd_link_info *info;
7134 reloc_howto_type *howto;
7135 const Elf_Internal_Rela *relocation;
7136 bfd_vma value;
7137 bfd *input_bfd;
7138 asection *input_section;
7139 bfd_byte *contents;
7140 boolean require_jalx;
7141 {
7142 bfd_vma x;
7143 bfd_byte *location;
7144 int r_type = ELF32_R_TYPE (relocation->r_info);
7145
7146 /* Figure out where the relocation is occurring. */
7147 location = contents + relocation->r_offset;
7148
7149 /* Obtain the current value. */
7150 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
7151
7152 /* Clear the field we are setting. */
7153 x &= ~howto->dst_mask;
7154
7155 /* If this is the R_MIPS16_26 relocation, we must store the
7156 value in a funny way. */
7157 if (r_type == R_MIPS16_26)
7158 {
7159 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
7160 Most mips16 instructions are 16 bits, but these instructions
7161 are 32 bits.
7162
7163 The format of these instructions is:
7164
7165 +--------------+--------------------------------+
7166 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
7167 +--------------+--------------------------------+
7168 ! Immediate 15:0 !
7169 +-----------------------------------------------+
7170
7171 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
7172 Note that the immediate value in the first word is swapped.
7173
7174 When producing a relocateable object file, R_MIPS16_26 is
7175 handled mostly like R_MIPS_26. In particular, the addend is
7176 stored as a straight 26-bit value in a 32-bit instruction.
7177 (gas makes life simpler for itself by never adjusting a
7178 R_MIPS16_26 reloc to be against a section, so the addend is
7179 always zero). However, the 32 bit instruction is stored as 2
7180 16-bit values, rather than a single 32-bit value. In a
7181 big-endian file, the result is the same; in a little-endian
7182 file, the two 16-bit halves of the 32 bit value are swapped.
7183 This is so that a disassembler can recognize the jal
7184 instruction.
7185
7186 When doing a final link, R_MIPS16_26 is treated as a 32 bit
7187 instruction stored as two 16-bit values. The addend A is the
7188 contents of the targ26 field. The calculation is the same as
7189 R_MIPS_26. When storing the calculated value, reorder the
7190 immediate value as shown above, and don't forget to store the
7191 value as two 16-bit values.
7192
7193 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
7194 defined as
7195
7196 big-endian:
7197 +--------+----------------------+
7198 | | |
7199 | | targ26-16 |
7200 |31 26|25 0|
7201 +--------+----------------------+
7202
7203 little-endian:
7204 +----------+------+-------------+
7205 | | | |
7206 | sub1 | | sub2 |
7207 |0 9|10 15|16 31|
7208 +----------+--------------------+
7209 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
7210 ((sub1 << 16) | sub2)).
7211
7212 When producing a relocateable object file, the calculation is
7213 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
7214 When producing a fully linked file, the calculation is
7215 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
7216 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
7217
7218 if (!info->relocateable)
7219 /* Shuffle the bits according to the formula above. */
7220 value = (((value & 0x1f0000) << 5)
7221 | ((value & 0x3e00000) >> 5)
7222 | (value & 0xffff));
7223 }
7224 else if (r_type == R_MIPS16_GPREL)
7225 {
7226 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
7227 mode. A typical instruction will have a format like this:
7228
7229 +--------------+--------------------------------+
7230 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
7231 +--------------+--------------------------------+
7232 ! Major ! rx ! ry ! Imm 4:0 !
7233 +--------------+--------------------------------+
7234
7235 EXTEND is the five bit value 11110. Major is the instruction
7236 opcode.
7237
7238 This is handled exactly like R_MIPS_GPREL16, except that the
7239 addend is retrieved and stored as shown in this diagram; that
7240 is, the Imm fields above replace the V-rel16 field.
7241
7242 All we need to do here is shuffle the bits appropriately. As
7243 above, the two 16-bit halves must be swapped on a
7244 little-endian system. */
7245 value = (((value & 0x7e0) << 16)
7246 | ((value & 0xf800) << 5)
7247 | (value & 0x1f));
7248 }
7249
7250 /* Set the field. */
7251 x |= (value & howto->dst_mask);
7252
7253 /* If required, turn JAL into JALX. */
7254 if (require_jalx)
7255 {
7256 boolean ok;
7257 bfd_vma opcode = x >> 26;
7258 bfd_vma jalx_opcode;
7259
7260 /* Check to see if the opcode is already JAL or JALX. */
7261 if (r_type == R_MIPS16_26)
7262 {
7263 ok = ((opcode == 0x6) || (opcode == 0x7));
7264 jalx_opcode = 0x7;
7265 }
7266 else
7267 {
7268 ok = ((opcode == 0x3) || (opcode == 0x1d));
7269 jalx_opcode = 0x1d;
7270 }
7271
7272 /* If the opcode is not JAL or JALX, there's a problem. */
7273 if (!ok)
7274 {
7275 (*_bfd_error_handler)
7276 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
7277 bfd_archive_filename (input_bfd),
7278 input_section->name,
7279 (unsigned long) relocation->r_offset);
7280 bfd_set_error (bfd_error_bad_value);
7281 return false;
7282 }
7283
7284 /* Make this the JALX opcode. */
7285 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
7286 }
7287
7288 /* Swap the high- and low-order 16 bits on little-endian systems
7289 when doing a MIPS16 relocation. */
7290 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
7291 && bfd_little_endian (input_bfd))
7292 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
7293
7294 /* Put the value into the output. */
7295 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
7296 return true;
7297 }
7298
7299 /* Returns true if SECTION is a MIPS16 stub section. */
7300
7301 static boolean
7302 mips_elf_stub_section_p (abfd, section)
7303 bfd *abfd ATTRIBUTE_UNUSED;
7304 asection *section;
7305 {
7306 const char *name = bfd_get_section_name (abfd, section);
7307
7308 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
7309 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7310 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
7311 }
7312
7313 /* Relocate a MIPS ELF section. */
7314
7315 boolean
7316 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
7317 contents, relocs, local_syms, local_sections)
7318 bfd *output_bfd;
7319 struct bfd_link_info *info;
7320 bfd *input_bfd;
7321 asection *input_section;
7322 bfd_byte *contents;
7323 Elf_Internal_Rela *relocs;
7324 Elf_Internal_Sym *local_syms;
7325 asection **local_sections;
7326 {
7327 Elf_Internal_Rela *rel;
7328 const Elf_Internal_Rela *relend;
7329 bfd_vma addend = 0;
7330 boolean use_saved_addend_p = false;
7331 struct elf_backend_data *bed;
7332
7333 bed = get_elf_backend_data (output_bfd);
7334 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7335 for (rel = relocs; rel < relend; ++rel)
7336 {
7337 const char *name;
7338 bfd_vma value;
7339 reloc_howto_type *howto;
7340 boolean require_jalx;
7341 /* True if the relocation is a RELA relocation, rather than a
7342 REL relocation. */
7343 boolean rela_relocation_p = true;
7344 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
7345 const char * msg = (const char *) NULL;
7346
7347 /* Find the relocation howto for this relocation. */
7348 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
7349 {
7350 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7351 64-bit code, but make sure all their addresses are in the
7352 lowermost or uppermost 32-bit section of the 64-bit address
7353 space. Thus, when they use an R_MIPS_64 they mean what is
7354 usually meant by R_MIPS_32, with the exception that the
7355 stored value is sign-extended to 64 bits. */
7356 howto = elf_mips_howto_table_rel + R_MIPS_32;
7357
7358 /* On big-endian systems, we need to lie about the position
7359 of the reloc. */
7360 if (bfd_big_endian (input_bfd))
7361 rel->r_offset += 4;
7362 }
7363 else
7364 howto = mips_rtype_to_howto (r_type);
7365
7366 if (!use_saved_addend_p)
7367 {
7368 Elf_Internal_Shdr *rel_hdr;
7369
7370 /* If these relocations were originally of the REL variety,
7371 we must pull the addend out of the field that will be
7372 relocated. Otherwise, we simply use the contents of the
7373 RELA relocation. To determine which flavor or relocation
7374 this is, we depend on the fact that the INPUT_SECTION's
7375 REL_HDR is read before its REL_HDR2. */
7376 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7377 if ((size_t) (rel - relocs)
7378 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7379 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7380 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7381 {
7382 /* Note that this is a REL relocation. */
7383 rela_relocation_p = false;
7384
7385 /* Get the addend, which is stored in the input file. */
7386 addend = mips_elf_obtain_contents (howto,
7387 rel,
7388 input_bfd,
7389 contents);
7390 addend &= howto->src_mask;
7391
7392 /* For some kinds of relocations, the ADDEND is a
7393 combination of the addend stored in two different
7394 relocations. */
7395 if (r_type == R_MIPS_HI16
7396 || r_type == R_MIPS_GNU_REL_HI16
7397 || (r_type == R_MIPS_GOT16
7398 && mips_elf_local_relocation_p (input_bfd, rel,
7399 local_sections, false)))
7400 {
7401 bfd_vma l;
7402 const Elf_Internal_Rela *lo16_relocation;
7403 reloc_howto_type *lo16_howto;
7404 unsigned int lo;
7405
7406 /* The combined value is the sum of the HI16 addend,
7407 left-shifted by sixteen bits, and the LO16
7408 addend, sign extended. (Usually, the code does
7409 a `lui' of the HI16 value, and then an `addiu' of
7410 the LO16 value.)
7411
7412 Scan ahead to find a matching LO16 relocation. */
7413 if (r_type == R_MIPS_GNU_REL_HI16)
7414 lo = R_MIPS_GNU_REL_LO16;
7415 else
7416 lo = R_MIPS_LO16;
7417 lo16_relocation
7418 = mips_elf_next_relocation (lo, rel, relend);
7419 if (lo16_relocation == NULL)
7420 return false;
7421
7422 /* Obtain the addend kept there. */
7423 lo16_howto = mips_rtype_to_howto (lo);
7424 l = mips_elf_obtain_contents (lo16_howto,
7425 lo16_relocation,
7426 input_bfd, contents);
7427 l &= lo16_howto->src_mask;
7428 l = mips_elf_sign_extend (l, 16);
7429
7430 addend <<= 16;
7431
7432 /* Compute the combined addend. */
7433 addend += l;
7434 }
7435 else if (r_type == R_MIPS16_GPREL)
7436 {
7437 /* The addend is scrambled in the object file. See
7438 mips_elf_perform_relocation for details on the
7439 format. */
7440 addend = (((addend & 0x1f0000) >> 5)
7441 | ((addend & 0x7e00000) >> 16)
7442 | (addend & 0x1f));
7443 }
7444 }
7445 else
7446 addend = rel->r_addend;
7447 }
7448
7449 if (info->relocateable)
7450 {
7451 Elf_Internal_Sym *sym;
7452 unsigned long r_symndx;
7453
7454 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
7455 && bfd_big_endian (input_bfd))
7456 rel->r_offset -= 4;
7457
7458 /* Since we're just relocating, all we need to do is copy
7459 the relocations back out to the object file, unless
7460 they're against a section symbol, in which case we need
7461 to adjust by the section offset, or unless they're GP
7462 relative in which case we need to adjust by the amount
7463 that we're adjusting GP in this relocateable object. */
7464
7465 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections,
7466 false))
7467 /* There's nothing to do for non-local relocations. */
7468 continue;
7469
7470 if (r_type == R_MIPS16_GPREL
7471 || r_type == R_MIPS_GPREL16
7472 || r_type == R_MIPS_GPREL32
7473 || r_type == R_MIPS_LITERAL)
7474 addend -= (_bfd_get_gp_value (output_bfd)
7475 - _bfd_get_gp_value (input_bfd));
7476 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
7477 || r_type == R_MIPS_GNU_REL16_S2)
7478 /* The addend is stored without its two least
7479 significant bits (which are always zero.) In a
7480 non-relocateable link, calculate_relocation will do
7481 this shift; here, we must do it ourselves. */
7482 addend <<= 2;
7483
7484 r_symndx = ELF32_R_SYM (rel->r_info);
7485 sym = local_syms + r_symndx;
7486 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7487 /* Adjust the addend appropriately. */
7488 addend += local_sections[r_symndx]->output_offset;
7489
7490 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
7491 then we only want to write out the high-order 16 bits.
7492 The subsequent R_MIPS_LO16 will handle the low-order bits. */
7493 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
7494 || r_type == R_MIPS_GNU_REL_HI16)
7495 addend = mips_elf_high (addend);
7496 /* If the relocation is for an R_MIPS_26 relocation, then
7497 the two low-order bits are not stored in the object file;
7498 they are implicitly zero. */
7499 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
7500 || r_type == R_MIPS_GNU_REL16_S2)
7501 addend >>= 2;
7502
7503 if (rela_relocation_p)
7504 /* If this is a RELA relocation, just update the addend.
7505 We have to cast away constness for REL. */
7506 rel->r_addend = addend;
7507 else
7508 {
7509 /* Otherwise, we have to write the value back out. Note
7510 that we use the source mask, rather than the
7511 destination mask because the place to which we are
7512 writing will be source of the addend in the final
7513 link. */
7514 addend &= howto->src_mask;
7515
7516 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
7517 /* See the comment above about using R_MIPS_64 in the 32-bit
7518 ABI. Here, we need to update the addend. It would be
7519 possible to get away with just using the R_MIPS_32 reloc
7520 but for endianness. */
7521 {
7522 bfd_vma sign_bits;
7523 bfd_vma low_bits;
7524 bfd_vma high_bits;
7525
7526 if (addend & ((bfd_vma) 1 << 31))
7527 #ifdef BFD64
7528 sign_bits = ((bfd_vma) 1 << 32) - 1;
7529 #else
7530 sign_bits = -1;
7531 #endif
7532 else
7533 sign_bits = 0;
7534
7535 /* If we don't know that we have a 64-bit type,
7536 do two separate stores. */
7537 if (bfd_big_endian (input_bfd))
7538 {
7539 /* Store the sign-bits (which are most significant)
7540 first. */
7541 low_bits = sign_bits;
7542 high_bits = addend;
7543 }
7544 else
7545 {
7546 low_bits = addend;
7547 high_bits = sign_bits;
7548 }
7549 bfd_put_32 (input_bfd, low_bits,
7550 contents + rel->r_offset);
7551 bfd_put_32 (input_bfd, high_bits,
7552 contents + rel->r_offset + 4);
7553 continue;
7554 }
7555
7556 if (!mips_elf_perform_relocation (info, howto, rel, addend,
7557 input_bfd, input_section,
7558 contents, false))
7559 return false;
7560 }
7561
7562 /* Go on to the next relocation. */
7563 continue;
7564 }
7565
7566 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7567 relocations for the same offset. In that case we are
7568 supposed to treat the output of each relocation as the addend
7569 for the next. */
7570 if (rel + 1 < relend
7571 && rel->r_offset == rel[1].r_offset
7572 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
7573 use_saved_addend_p = true;
7574 else
7575 use_saved_addend_p = false;
7576
7577 /* Figure out what value we are supposed to relocate. */
7578 switch (mips_elf_calculate_relocation (output_bfd,
7579 input_bfd,
7580 input_section,
7581 info,
7582 rel,
7583 addend,
7584 howto,
7585 local_syms,
7586 local_sections,
7587 &value,
7588 &name,
7589 &require_jalx))
7590 {
7591 case bfd_reloc_continue:
7592 /* There's nothing to do. */
7593 continue;
7594
7595 case bfd_reloc_undefined:
7596 /* mips_elf_calculate_relocation already called the
7597 undefined_symbol callback. There's no real point in
7598 trying to perform the relocation at this point, so we
7599 just skip ahead to the next relocation. */
7600 continue;
7601
7602 case bfd_reloc_notsupported:
7603 msg = _("internal error: unsupported relocation error");
7604 info->callbacks->warning
7605 (info, msg, name, input_bfd, input_section, rel->r_offset);
7606 return false;
7607
7608 case bfd_reloc_overflow:
7609 if (use_saved_addend_p)
7610 /* Ignore overflow until we reach the last relocation for
7611 a given location. */
7612 ;
7613 else
7614 {
7615 BFD_ASSERT (name != NULL);
7616 if (! ((*info->callbacks->reloc_overflow)
7617 (info, name, howto->name, (bfd_vma) 0,
7618 input_bfd, input_section, rel->r_offset)))
7619 return false;
7620 }
7621 break;
7622
7623 case bfd_reloc_ok:
7624 break;
7625
7626 default:
7627 abort ();
7628 break;
7629 }
7630
7631 /* If we've got another relocation for the address, keep going
7632 until we reach the last one. */
7633 if (use_saved_addend_p)
7634 {
7635 addend = value;
7636 continue;
7637 }
7638
7639 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
7640 /* See the comment above about using R_MIPS_64 in the 32-bit
7641 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7642 that calculated the right value. Now, however, we
7643 sign-extend the 32-bit result to 64-bits, and store it as a
7644 64-bit value. We are especially generous here in that we
7645 go to extreme lengths to support this usage on systems with
7646 only a 32-bit VMA. */
7647 {
7648 bfd_vma sign_bits;
7649 bfd_vma low_bits;
7650 bfd_vma high_bits;
7651
7652 if (value & ((bfd_vma) 1 << 31))
7653 #ifdef BFD64
7654 sign_bits = ((bfd_vma) 1 << 32) - 1;
7655 #else
7656 sign_bits = -1;
7657 #endif
7658 else
7659 sign_bits = 0;
7660
7661 /* If we don't know that we have a 64-bit type,
7662 do two separate stores. */
7663 if (bfd_big_endian (input_bfd))
7664 {
7665 /* Undo what we did above. */
7666 rel->r_offset -= 4;
7667 /* Store the sign-bits (which are most significant)
7668 first. */
7669 low_bits = sign_bits;
7670 high_bits = value;
7671 }
7672 else
7673 {
7674 low_bits = value;
7675 high_bits = sign_bits;
7676 }
7677 bfd_put_32 (input_bfd, low_bits,
7678 contents + rel->r_offset);
7679 bfd_put_32 (input_bfd, high_bits,
7680 contents + rel->r_offset + 4);
7681 continue;
7682 }
7683
7684 /* Actually perform the relocation. */
7685 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
7686 input_section, contents,
7687 require_jalx))
7688 return false;
7689 }
7690
7691 return true;
7692 }
7693
7694 /* This hook function is called before the linker writes out a global
7695 symbol. We mark symbols as small common if appropriate. This is
7696 also where we undo the increment of the value for a mips16 symbol. */
7697
7698 boolean
7699 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
7700 bfd *abfd ATTRIBUTE_UNUSED;
7701 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7702 const char *name ATTRIBUTE_UNUSED;
7703 Elf_Internal_Sym *sym;
7704 asection *input_sec;
7705 {
7706 /* If we see a common symbol, which implies a relocatable link, then
7707 if a symbol was small common in an input file, mark it as small
7708 common in the output file. */
7709 if (sym->st_shndx == SHN_COMMON
7710 && strcmp (input_sec->name, ".scommon") == 0)
7711 sym->st_shndx = SHN_MIPS_SCOMMON;
7712
7713 if (sym->st_other == STO_MIPS16
7714 && (sym->st_value & 1) != 0)
7715 --sym->st_value;
7716
7717 return true;
7718 }
7719 \f
7720 /* Functions for the dynamic linker. */
7721
7722 /* The name of the dynamic interpreter. This is put in the .interp
7723 section. */
7724
7725 #define ELF_DYNAMIC_INTERPRETER(abfd) \
7726 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
7727 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
7728 : "/usr/lib/libc.so.1")
7729
7730 /* Create dynamic sections when linking against a dynamic object. */
7731
7732 boolean
7733 _bfd_mips_elf_create_dynamic_sections (abfd, info)
7734 bfd *abfd;
7735 struct bfd_link_info *info;
7736 {
7737 struct elf_link_hash_entry *h;
7738 flagword flags;
7739 register asection *s;
7740 const char * const *namep;
7741
7742 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7743 | SEC_LINKER_CREATED | SEC_READONLY);
7744
7745 /* Mips ABI requests the .dynamic section to be read only. */
7746 s = bfd_get_section_by_name (abfd, ".dynamic");
7747 if (s != NULL)
7748 {
7749 if (! bfd_set_section_flags (abfd, s, flags))
7750 return false;
7751 }
7752
7753 /* We need to create .got section. */
7754 if (! mips_elf_create_got_section (abfd, info))
7755 return false;
7756
7757 /* Create the .msym section on IRIX6. It is used by the dynamic
7758 linker to speed up dynamic relocations, and to avoid computing
7759 the ELF hash for symbols. */
7760 if (IRIX_COMPAT (abfd) == ict_irix6
7761 && !mips_elf_create_msym_section (abfd))
7762 return false;
7763
7764 /* Create .stub section. */
7765 if (bfd_get_section_by_name (abfd,
7766 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
7767 {
7768 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
7769 if (s == NULL
7770 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
7771 || ! bfd_set_section_alignment (abfd, s,
7772 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7773 return false;
7774 }
7775
7776 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7777 && !info->shared
7778 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7779 {
7780 s = bfd_make_section (abfd, ".rld_map");
7781 if (s == NULL
7782 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
7783 || ! bfd_set_section_alignment (abfd, s,
7784 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7785 return false;
7786 }
7787
7788 /* On IRIX5, we adjust add some additional symbols and change the
7789 alignments of several sections. There is no ABI documentation
7790 indicating that this is necessary on IRIX6, nor any evidence that
7791 the linker takes such action. */
7792 if (IRIX_COMPAT (abfd) == ict_irix5)
7793 {
7794 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7795 {
7796 h = NULL;
7797 if (! (_bfd_generic_link_add_one_symbol
7798 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
7799 (bfd_vma) 0, (const char *) NULL, false,
7800 get_elf_backend_data (abfd)->collect,
7801 (struct bfd_link_hash_entry **) &h)))
7802 return false;
7803 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7804 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7805 h->type = STT_SECTION;
7806
7807 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7808 return false;
7809 }
7810
7811 /* We need to create a .compact_rel section. */
7812 if (SGI_COMPAT (abfd))
7813 {
7814 if (!mips_elf_create_compact_rel_section (abfd, info))
7815 return false;
7816 }
7817
7818 /* Change aligments of some sections. */
7819 s = bfd_get_section_by_name (abfd, ".hash");
7820 if (s != NULL)
7821 bfd_set_section_alignment (abfd, s, 4);
7822 s = bfd_get_section_by_name (abfd, ".dynsym");
7823 if (s != NULL)
7824 bfd_set_section_alignment (abfd, s, 4);
7825 s = bfd_get_section_by_name (abfd, ".dynstr");
7826 if (s != NULL)
7827 bfd_set_section_alignment (abfd, s, 4);
7828 s = bfd_get_section_by_name (abfd, ".reginfo");
7829 if (s != NULL)
7830 bfd_set_section_alignment (abfd, s, 4);
7831 s = bfd_get_section_by_name (abfd, ".dynamic");
7832 if (s != NULL)
7833 bfd_set_section_alignment (abfd, s, 4);
7834 }
7835
7836 if (!info->shared)
7837 {
7838 h = NULL;
7839 if (SGI_COMPAT (abfd))
7840 {
7841 if (!(_bfd_generic_link_add_one_symbol
7842 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7843 (bfd_vma) 0, (const char *) NULL, false,
7844 get_elf_backend_data (abfd)->collect,
7845 (struct bfd_link_hash_entry **) &h)))
7846 return false;
7847 }
7848 else
7849 {
7850 /* For normal mips it is _DYNAMIC_LINKING. */
7851 if (!(_bfd_generic_link_add_one_symbol
7852 (info, abfd, "_DYNAMIC_LINKING", BSF_GLOBAL,
7853 bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false,
7854 get_elf_backend_data (abfd)->collect,
7855 (struct bfd_link_hash_entry **) &h)))
7856 return false;
7857 }
7858 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7859 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7860 h->type = STT_SECTION;
7861
7862 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7863 return false;
7864
7865 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7866 {
7867 /* __rld_map is a four byte word located in the .data section
7868 and is filled in by the rtld to contain a pointer to
7869 the _r_debug structure. Its symbol value will be set in
7870 mips_elf_finish_dynamic_symbol. */
7871 s = bfd_get_section_by_name (abfd, ".rld_map");
7872 BFD_ASSERT (s != NULL);
7873
7874 h = NULL;
7875 if (SGI_COMPAT (abfd))
7876 {
7877 if (!(_bfd_generic_link_add_one_symbol
7878 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7879 (bfd_vma) 0, (const char *) NULL, false,
7880 get_elf_backend_data (abfd)->collect,
7881 (struct bfd_link_hash_entry **) &h)))
7882 return false;
7883 }
7884 else
7885 {
7886 /* For normal mips the symbol is __RLD_MAP. */
7887 if (!(_bfd_generic_link_add_one_symbol
7888 (info, abfd, "__RLD_MAP", BSF_GLOBAL, s,
7889 (bfd_vma) 0, (const char *) NULL, false,
7890 get_elf_backend_data (abfd)->collect,
7891 (struct bfd_link_hash_entry **) &h)))
7892 return false;
7893 }
7894 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7895 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7896 h->type = STT_OBJECT;
7897
7898 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7899 return false;
7900 }
7901 }
7902
7903 return true;
7904 }
7905
7906 /* Create the .compact_rel section. */
7907
7908 static boolean
7909 mips_elf_create_compact_rel_section (abfd, info)
7910 bfd *abfd;
7911 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7912 {
7913 flagword flags;
7914 register asection *s;
7915
7916 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7917 {
7918 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7919 | SEC_READONLY);
7920
7921 s = bfd_make_section (abfd, ".compact_rel");
7922 if (s == NULL
7923 || ! bfd_set_section_flags (abfd, s, flags)
7924 || ! bfd_set_section_alignment (abfd, s,
7925 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7926 return false;
7927
7928 s->_raw_size = sizeof (Elf32_External_compact_rel);
7929 }
7930
7931 return true;
7932 }
7933
7934 /* Create the .got section to hold the global offset table. */
7935
7936 static boolean
7937 mips_elf_create_got_section (abfd, info)
7938 bfd *abfd;
7939 struct bfd_link_info *info;
7940 {
7941 flagword flags;
7942 register asection *s;
7943 struct elf_link_hash_entry *h;
7944 struct mips_got_info *g;
7945 bfd_size_type amt;
7946
7947 /* This function may be called more than once. */
7948 if (mips_elf_got_section (abfd))
7949 return true;
7950
7951 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7952 | SEC_LINKER_CREATED);
7953
7954 s = bfd_make_section (abfd, ".got");
7955 if (s == NULL
7956 || ! bfd_set_section_flags (abfd, s, flags)
7957 || ! bfd_set_section_alignment (abfd, s, 4))
7958 return false;
7959
7960 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7961 linker script because we don't want to define the symbol if we
7962 are not creating a global offset table. */
7963 h = NULL;
7964 if (! (_bfd_generic_link_add_one_symbol
7965 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7966 (bfd_vma) 0, (const char *) NULL, false,
7967 get_elf_backend_data (abfd)->collect,
7968 (struct bfd_link_hash_entry **) &h)))
7969 return false;
7970 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7971 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7972 h->type = STT_OBJECT;
7973
7974 if (info->shared
7975 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7976 return false;
7977
7978 /* The first several global offset table entries are reserved. */
7979 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
7980
7981 amt = sizeof (struct mips_got_info);
7982 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
7983 if (g == NULL)
7984 return false;
7985 g->global_gotsym = NULL;
7986 g->local_gotno = MIPS_RESERVED_GOTNO;
7987 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7988 if (elf_section_data (s) == NULL)
7989 {
7990 amt = sizeof (struct bfd_elf_section_data);
7991 s->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
7992 if (elf_section_data (s) == NULL)
7993 return false;
7994 }
7995 elf_section_data (s)->tdata = (PTR) g;
7996 elf_section_data (s)->this_hdr.sh_flags
7997 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7998
7999 return true;
8000 }
8001
8002 /* Returns the .msym section for ABFD, creating it if it does not
8003 already exist. Returns NULL to indicate error. */
8004
8005 static asection *
8006 mips_elf_create_msym_section (abfd)
8007 bfd *abfd;
8008 {
8009 asection *s;
8010
8011 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
8012 if (!s)
8013 {
8014 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
8015 if (!s
8016 || !bfd_set_section_flags (abfd, s,
8017 SEC_ALLOC
8018 | SEC_LOAD
8019 | SEC_HAS_CONTENTS
8020 | SEC_LINKER_CREATED
8021 | SEC_READONLY)
8022 || !bfd_set_section_alignment (abfd, s,
8023 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
8024 return NULL;
8025 }
8026
8027 return s;
8028 }
8029
8030 /* Add room for N relocations to the .rel.dyn section in ABFD. */
8031
8032 static void
8033 mips_elf_allocate_dynamic_relocations (abfd, n)
8034 bfd *abfd;
8035 unsigned int n;
8036 {
8037 asection *s;
8038
8039 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
8040 BFD_ASSERT (s != NULL);
8041
8042 if (s->_raw_size == 0)
8043 {
8044 /* Make room for a null element. */
8045 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
8046 ++s->reloc_count;
8047 }
8048 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
8049 }
8050
8051 /* Look through the relocs for a section during the first phase, and
8052 allocate space in the global offset table. */
8053
8054 boolean
8055 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
8056 bfd *abfd;
8057 struct bfd_link_info *info;
8058 asection *sec;
8059 const Elf_Internal_Rela *relocs;
8060 {
8061 const char *name;
8062 bfd *dynobj;
8063 Elf_Internal_Shdr *symtab_hdr;
8064 struct elf_link_hash_entry **sym_hashes;
8065 struct mips_got_info *g;
8066 size_t extsymoff;
8067 const Elf_Internal_Rela *rel;
8068 const Elf_Internal_Rela *rel_end;
8069 asection *sgot;
8070 asection *sreloc;
8071 struct elf_backend_data *bed;
8072
8073 if (info->relocateable)
8074 return true;
8075
8076 dynobj = elf_hash_table (info)->dynobj;
8077 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8078 sym_hashes = elf_sym_hashes (abfd);
8079 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8080
8081 /* Check for the mips16 stub sections. */
8082
8083 name = bfd_get_section_name (abfd, sec);
8084 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
8085 {
8086 unsigned long r_symndx;
8087
8088 /* Look at the relocation information to figure out which symbol
8089 this is for. */
8090
8091 r_symndx = ELF32_R_SYM (relocs->r_info);
8092
8093 if (r_symndx < extsymoff
8094 || sym_hashes[r_symndx - extsymoff] == NULL)
8095 {
8096 asection *o;
8097
8098 /* This stub is for a local symbol. This stub will only be
8099 needed if there is some relocation in this BFD, other
8100 than a 16 bit function call, which refers to this symbol. */
8101 for (o = abfd->sections; o != NULL; o = o->next)
8102 {
8103 Elf_Internal_Rela *sec_relocs;
8104 const Elf_Internal_Rela *r, *rend;
8105
8106 /* We can ignore stub sections when looking for relocs. */
8107 if ((o->flags & SEC_RELOC) == 0
8108 || o->reloc_count == 0
8109 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
8110 sizeof FN_STUB - 1) == 0
8111 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
8112 sizeof CALL_STUB - 1) == 0
8113 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
8114 sizeof CALL_FP_STUB - 1) == 0)
8115 continue;
8116
8117 sec_relocs = (_bfd_elf32_link_read_relocs
8118 (abfd, o, (PTR) NULL,
8119 (Elf_Internal_Rela *) NULL,
8120 info->keep_memory));
8121 if (sec_relocs == NULL)
8122 return false;
8123
8124 rend = sec_relocs + o->reloc_count;
8125 for (r = sec_relocs; r < rend; r++)
8126 if (ELF32_R_SYM (r->r_info) == r_symndx
8127 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
8128 break;
8129
8130 if (! info->keep_memory)
8131 free (sec_relocs);
8132
8133 if (r < rend)
8134 break;
8135 }
8136
8137 if (o == NULL)
8138 {
8139 /* There is no non-call reloc for this stub, so we do
8140 not need it. Since this function is called before
8141 the linker maps input sections to output sections, we
8142 can easily discard it by setting the SEC_EXCLUDE
8143 flag. */
8144 sec->flags |= SEC_EXCLUDE;
8145 return true;
8146 }
8147
8148 /* Record this stub in an array of local symbol stubs for
8149 this BFD. */
8150 if (elf_tdata (abfd)->local_stubs == NULL)
8151 {
8152 unsigned long symcount;
8153 asection **n;
8154 bfd_size_type amt;
8155
8156 if (elf_bad_symtab (abfd))
8157 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8158 else
8159 symcount = symtab_hdr->sh_info;
8160 amt = symcount * sizeof (asection *);
8161 n = (asection **) bfd_zalloc (abfd, amt);
8162 if (n == NULL)
8163 return false;
8164 elf_tdata (abfd)->local_stubs = n;
8165 }
8166
8167 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8168
8169 /* We don't need to set mips16_stubs_seen in this case.
8170 That flag is used to see whether we need to look through
8171 the global symbol table for stubs. We don't need to set
8172 it here, because we just have a local stub. */
8173 }
8174 else
8175 {
8176 struct mips_elf_link_hash_entry *h;
8177
8178 h = ((struct mips_elf_link_hash_entry *)
8179 sym_hashes[r_symndx - extsymoff]);
8180
8181 /* H is the symbol this stub is for. */
8182
8183 h->fn_stub = sec;
8184 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8185 }
8186 }
8187 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
8188 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
8189 {
8190 unsigned long r_symndx;
8191 struct mips_elf_link_hash_entry *h;
8192 asection **loc;
8193
8194 /* Look at the relocation information to figure out which symbol
8195 this is for. */
8196
8197 r_symndx = ELF32_R_SYM (relocs->r_info);
8198
8199 if (r_symndx < extsymoff
8200 || sym_hashes[r_symndx - extsymoff] == NULL)
8201 {
8202 /* This stub was actually built for a static symbol defined
8203 in the same file. We assume that all static symbols in
8204 mips16 code are themselves mips16, so we can simply
8205 discard this stub. Since this function is called before
8206 the linker maps input sections to output sections, we can
8207 easily discard it by setting the SEC_EXCLUDE flag. */
8208 sec->flags |= SEC_EXCLUDE;
8209 return true;
8210 }
8211
8212 h = ((struct mips_elf_link_hash_entry *)
8213 sym_hashes[r_symndx - extsymoff]);
8214
8215 /* H is the symbol this stub is for. */
8216
8217 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
8218 loc = &h->call_fp_stub;
8219 else
8220 loc = &h->call_stub;
8221
8222 /* If we already have an appropriate stub for this function, we
8223 don't need another one, so we can discard this one. Since
8224 this function is called before the linker maps input sections
8225 to output sections, we can easily discard it by setting the
8226 SEC_EXCLUDE flag. We can also discard this section if we
8227 happen to already know that this is a mips16 function; it is
8228 not necessary to check this here, as it is checked later, but
8229 it is slightly faster to check now. */
8230 if (*loc != NULL || h->root.other == STO_MIPS16)
8231 {
8232 sec->flags |= SEC_EXCLUDE;
8233 return true;
8234 }
8235
8236 *loc = sec;
8237 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8238 }
8239
8240 if (dynobj == NULL)
8241 {
8242 sgot = NULL;
8243 g = NULL;
8244 }
8245 else
8246 {
8247 sgot = mips_elf_got_section (dynobj);
8248 if (sgot == NULL)
8249 g = NULL;
8250 else
8251 {
8252 BFD_ASSERT (elf_section_data (sgot) != NULL);
8253 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8254 BFD_ASSERT (g != NULL);
8255 }
8256 }
8257
8258 sreloc = NULL;
8259 bed = get_elf_backend_data (abfd);
8260 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8261 for (rel = relocs; rel < rel_end; ++rel)
8262 {
8263 unsigned long r_symndx;
8264 unsigned int r_type;
8265 struct elf_link_hash_entry *h;
8266
8267 r_symndx = ELF32_R_SYM (rel->r_info);
8268 r_type = ELF32_R_TYPE (rel->r_info);
8269
8270 if (r_symndx < extsymoff)
8271 h = NULL;
8272 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8273 {
8274 (*_bfd_error_handler)
8275 (_("%s: Malformed reloc detected for section %s"),
8276 bfd_archive_filename (abfd), name);
8277 bfd_set_error (bfd_error_bad_value);
8278 return false;
8279 }
8280 else
8281 {
8282 h = sym_hashes[r_symndx - extsymoff];
8283
8284 /* This may be an indirect symbol created because of a version. */
8285 if (h != NULL)
8286 {
8287 while (h->root.type == bfd_link_hash_indirect)
8288 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8289 }
8290 }
8291
8292 /* Some relocs require a global offset table. */
8293 if (dynobj == NULL || sgot == NULL)
8294 {
8295 switch (r_type)
8296 {
8297 case R_MIPS_GOT16:
8298 case R_MIPS_CALL16:
8299 case R_MIPS_CALL_HI16:
8300 case R_MIPS_CALL_LO16:
8301 case R_MIPS_GOT_HI16:
8302 case R_MIPS_GOT_LO16:
8303 case R_MIPS_GOT_PAGE:
8304 case R_MIPS_GOT_OFST:
8305 case R_MIPS_GOT_DISP:
8306 if (dynobj == NULL)
8307 elf_hash_table (info)->dynobj = dynobj = abfd;
8308 if (! mips_elf_create_got_section (dynobj, info))
8309 return false;
8310 g = mips_elf_got_info (dynobj, &sgot);
8311 break;
8312
8313 case R_MIPS_32:
8314 case R_MIPS_REL32:
8315 case R_MIPS_64:
8316 if (dynobj == NULL
8317 && (info->shared || h != NULL)
8318 && (sec->flags & SEC_ALLOC) != 0)
8319 elf_hash_table (info)->dynobj = dynobj = abfd;
8320 break;
8321
8322 default:
8323 break;
8324 }
8325 }
8326
8327 if (!h && (r_type == R_MIPS_CALL_LO16
8328 || r_type == R_MIPS_GOT_LO16
8329 || r_type == R_MIPS_GOT_DISP))
8330 {
8331 /* We may need a local GOT entry for this relocation. We
8332 don't count R_MIPS_GOT_PAGE because we can estimate the
8333 maximum number of pages needed by looking at the size of
8334 the segment. Similar comments apply to R_MIPS_GOT16 and
8335 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
8336 R_MIPS_CALL_HI16 because these are always followed by an
8337 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
8338
8339 This estimation is very conservative since we can merge
8340 duplicate entries in the GOT. In order to be less
8341 conservative, we could actually build the GOT here,
8342 rather than in relocate_section. */
8343 g->local_gotno++;
8344 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
8345 }
8346
8347 switch (r_type)
8348 {
8349 case R_MIPS_CALL16:
8350 if (h == NULL)
8351 {
8352 (*_bfd_error_handler)
8353 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
8354 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
8355 bfd_set_error (bfd_error_bad_value);
8356 return false;
8357 }
8358 /* Fall through. */
8359
8360 case R_MIPS_CALL_HI16:
8361 case R_MIPS_CALL_LO16:
8362 if (h != NULL)
8363 {
8364 /* This symbol requires a global offset table entry. */
8365 if (!mips_elf_record_global_got_symbol (h, info, g))
8366 return false;
8367
8368 /* We need a stub, not a plt entry for the undefined
8369 function. But we record it as if it needs plt. See
8370 elf_adjust_dynamic_symbol in elflink.h. */
8371 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
8372 h->type = STT_FUNC;
8373 }
8374 break;
8375
8376 case R_MIPS_GOT16:
8377 case R_MIPS_GOT_HI16:
8378 case R_MIPS_GOT_LO16:
8379 case R_MIPS_GOT_DISP:
8380 /* This symbol requires a global offset table entry. */
8381 if (h && !mips_elf_record_global_got_symbol (h, info, g))
8382 return false;
8383 break;
8384
8385 case R_MIPS_32:
8386 case R_MIPS_REL32:
8387 case R_MIPS_64:
8388 if ((info->shared || h != NULL)
8389 && (sec->flags & SEC_ALLOC) != 0)
8390 {
8391 if (sreloc == NULL)
8392 {
8393 const char *dname = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
8394
8395 sreloc = bfd_get_section_by_name (dynobj, dname);
8396 if (sreloc == NULL)
8397 {
8398 sreloc = bfd_make_section (dynobj, dname);
8399 if (sreloc == NULL
8400 || ! bfd_set_section_flags (dynobj, sreloc,
8401 (SEC_ALLOC
8402 | SEC_LOAD
8403 | SEC_HAS_CONTENTS
8404 | SEC_IN_MEMORY
8405 | SEC_LINKER_CREATED
8406 | SEC_READONLY))
8407 || ! bfd_set_section_alignment (dynobj, sreloc,
8408 4))
8409 return false;
8410 }
8411 }
8412 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
8413 if (info->shared)
8414 {
8415 /* When creating a shared object, we must copy these
8416 reloc types into the output file as R_MIPS_REL32
8417 relocs. We make room for this reloc in the
8418 .rel.dyn reloc section. */
8419 mips_elf_allocate_dynamic_relocations (dynobj, 1);
8420 if ((sec->flags & MIPS_READONLY_SECTION)
8421 == MIPS_READONLY_SECTION)
8422 /* We tell the dynamic linker that there are
8423 relocations against the text segment. */
8424 info->flags |= DF_TEXTREL;
8425 }
8426 else
8427 {
8428 struct mips_elf_link_hash_entry *hmips;
8429
8430 /* We only need to copy this reloc if the symbol is
8431 defined in a dynamic object. */
8432 hmips = (struct mips_elf_link_hash_entry *) h;
8433 ++hmips->possibly_dynamic_relocs;
8434 if ((sec->flags & MIPS_READONLY_SECTION)
8435 == MIPS_READONLY_SECTION)
8436 /* We need it to tell the dynamic linker if there
8437 are relocations against the text segment. */
8438 hmips->readonly_reloc = true;
8439 }
8440
8441 /* Even though we don't directly need a GOT entry for
8442 this symbol, a symbol must have a dynamic symbol
8443 table index greater that DT_MIPS_GOTSYM if there are
8444 dynamic relocations against it. */
8445 if (h != NULL
8446 && !mips_elf_record_global_got_symbol (h, info, g))
8447 return false;
8448 }
8449
8450 if (SGI_COMPAT (abfd))
8451 mips_elf_hash_table (info)->compact_rel_size +=
8452 sizeof (Elf32_External_crinfo);
8453 break;
8454
8455 case R_MIPS_26:
8456 case R_MIPS_GPREL16:
8457 case R_MIPS_LITERAL:
8458 case R_MIPS_GPREL32:
8459 if (SGI_COMPAT (abfd))
8460 mips_elf_hash_table (info)->compact_rel_size +=
8461 sizeof (Elf32_External_crinfo);
8462 break;
8463
8464 /* This relocation describes the C++ object vtable hierarchy.
8465 Reconstruct it for later use during GC. */
8466 case R_MIPS_GNU_VTINHERIT:
8467 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8468 return false;
8469 break;
8470
8471 /* This relocation describes which C++ vtable entries are actually
8472 used. Record for later use during GC. */
8473 case R_MIPS_GNU_VTENTRY:
8474 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8475 return false;
8476 break;
8477
8478 default:
8479 break;
8480 }
8481
8482 /* We must not create a stub for a symbol that has relocations
8483 related to taking the function's address. */
8484 switch (r_type)
8485 {
8486 default:
8487 if (h != NULL)
8488 {
8489 struct mips_elf_link_hash_entry *mh;
8490
8491 mh = (struct mips_elf_link_hash_entry *) h;
8492 mh->no_fn_stub = true;
8493 }
8494 break;
8495 case R_MIPS_CALL16:
8496 case R_MIPS_CALL_HI16:
8497 case R_MIPS_CALL_LO16:
8498 break;
8499 }
8500
8501 /* If this reloc is not a 16 bit call, and it has a global
8502 symbol, then we will need the fn_stub if there is one.
8503 References from a stub section do not count. */
8504 if (h != NULL
8505 && r_type != R_MIPS16_26
8506 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
8507 sizeof FN_STUB - 1) != 0
8508 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
8509 sizeof CALL_STUB - 1) != 0
8510 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
8511 sizeof CALL_FP_STUB - 1) != 0)
8512 {
8513 struct mips_elf_link_hash_entry *mh;
8514
8515 mh = (struct mips_elf_link_hash_entry *) h;
8516 mh->need_fn_stub = true;
8517 }
8518 }
8519
8520 return true;
8521 }
8522
8523 /* Return the section that should be marked against GC for a given
8524 relocation. */
8525
8526 asection *
8527 _bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
8528 bfd *abfd;
8529 struct bfd_link_info *info ATTRIBUTE_UNUSED;
8530 Elf_Internal_Rela *rel;
8531 struct elf_link_hash_entry *h;
8532 Elf_Internal_Sym *sym;
8533 {
8534 /* ??? Do mips16 stub sections need to be handled special? */
8535
8536 if (h != NULL)
8537 {
8538 switch (ELF32_R_TYPE (rel->r_info))
8539 {
8540 case R_MIPS_GNU_VTINHERIT:
8541 case R_MIPS_GNU_VTENTRY:
8542 break;
8543
8544 default:
8545 switch (h->root.type)
8546 {
8547 case bfd_link_hash_defined:
8548 case bfd_link_hash_defweak:
8549 return h->root.u.def.section;
8550
8551 case bfd_link_hash_common:
8552 return h->root.u.c.p->section;
8553
8554 default:
8555 break;
8556 }
8557 }
8558 }
8559 else
8560 {
8561 if (!(elf_bad_symtab (abfd)
8562 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8563 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
8564 && sym->st_shndx != SHN_COMMON))
8565 {
8566 return bfd_section_from_elf_index (abfd, sym->st_shndx);
8567 }
8568 }
8569
8570 return NULL;
8571 }
8572
8573 /* Update the got entry reference counts for the section being removed. */
8574
8575 boolean
8576 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
8577 bfd *abfd ATTRIBUTE_UNUSED;
8578 struct bfd_link_info *info ATTRIBUTE_UNUSED;
8579 asection *sec ATTRIBUTE_UNUSED;
8580 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
8581 {
8582 #if 0
8583 Elf_Internal_Shdr *symtab_hdr;
8584 struct elf_link_hash_entry **sym_hashes;
8585 bfd_signed_vma *local_got_refcounts;
8586 const Elf_Internal_Rela *rel, *relend;
8587 unsigned long r_symndx;
8588 struct elf_link_hash_entry *h;
8589
8590 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8591 sym_hashes = elf_sym_hashes (abfd);
8592 local_got_refcounts = elf_local_got_refcounts (abfd);
8593
8594 relend = relocs + sec->reloc_count;
8595 for (rel = relocs; rel < relend; rel++)
8596 switch (ELF32_R_TYPE (rel->r_info))
8597 {
8598 case R_MIPS_GOT16:
8599 case R_MIPS_CALL16:
8600 case R_MIPS_CALL_HI16:
8601 case R_MIPS_CALL_LO16:
8602 case R_MIPS_GOT_HI16:
8603 case R_MIPS_GOT_LO16:
8604 /* ??? It would seem that the existing MIPS code does no sort
8605 of reference counting or whatnot on its GOT and PLT entries,
8606 so it is not possible to garbage collect them at this time. */
8607 break;
8608
8609 default:
8610 break;
8611 }
8612 #endif
8613
8614 return true;
8615 }
8616
8617 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8618 hiding the old indirect symbol. Process additional relocation
8619 information. Also called for weakdefs, in which case we just let
8620 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
8621
8622 static void
8623 _bfd_mips_elf_copy_indirect_symbol (dir, ind)
8624 struct elf_link_hash_entry *dir, *ind;
8625 {
8626 struct mips_elf_link_hash_entry *dirmips, *indmips;
8627
8628 _bfd_elf_link_hash_copy_indirect (dir, ind);
8629
8630 if (ind->root.type != bfd_link_hash_indirect)
8631 return;
8632
8633 dirmips = (struct mips_elf_link_hash_entry *) dir;
8634 indmips = (struct mips_elf_link_hash_entry *) ind;
8635 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
8636 if (indmips->readonly_reloc)
8637 dirmips->readonly_reloc = true;
8638 if (dirmips->min_dyn_reloc_index == 0
8639 || (indmips->min_dyn_reloc_index != 0
8640 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
8641 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
8642 if (indmips->no_fn_stub)
8643 dirmips->no_fn_stub = true;
8644 }
8645
8646 /* Adjust a symbol defined by a dynamic object and referenced by a
8647 regular object. The current definition is in some section of the
8648 dynamic object, but we're not including those sections. We have to
8649 change the definition to something the rest of the link can
8650 understand. */
8651
8652 boolean
8653 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
8654 struct bfd_link_info *info;
8655 struct elf_link_hash_entry *h;
8656 {
8657 bfd *dynobj;
8658 struct mips_elf_link_hash_entry *hmips;
8659 asection *s;
8660
8661 dynobj = elf_hash_table (info)->dynobj;
8662
8663 /* Make sure we know what is going on here. */
8664 BFD_ASSERT (dynobj != NULL
8665 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
8666 || h->weakdef != NULL
8667 || ((h->elf_link_hash_flags
8668 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
8669 && (h->elf_link_hash_flags
8670 & ELF_LINK_HASH_REF_REGULAR) != 0
8671 && (h->elf_link_hash_flags
8672 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
8673
8674 /* If this symbol is defined in a dynamic object, we need to copy
8675 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
8676 file. */
8677 hmips = (struct mips_elf_link_hash_entry *) h;
8678 if (! info->relocateable
8679 && hmips->possibly_dynamic_relocs != 0
8680 && (h->root.type == bfd_link_hash_defweak
8681 || (h->elf_link_hash_flags
8682 & ELF_LINK_HASH_DEF_REGULAR) == 0))
8683 {
8684 mips_elf_allocate_dynamic_relocations (dynobj,
8685 hmips->possibly_dynamic_relocs);
8686 if (hmips->readonly_reloc)
8687 /* We tell the dynamic linker that there are relocations
8688 against the text segment. */
8689 info->flags |= DF_TEXTREL;
8690 }
8691
8692 /* For a function, create a stub, if allowed. */
8693 if (! hmips->no_fn_stub
8694 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
8695 {
8696 if (! elf_hash_table (info)->dynamic_sections_created)
8697 return true;
8698
8699 /* If this symbol is not defined in a regular file, then set
8700 the symbol to the stub location. This is required to make
8701 function pointers compare as equal between the normal
8702 executable and the shared library. */
8703 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
8704 {
8705 /* We need .stub section. */
8706 s = bfd_get_section_by_name (dynobj,
8707 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8708 BFD_ASSERT (s != NULL);
8709
8710 h->root.u.def.section = s;
8711 h->root.u.def.value = s->_raw_size;
8712
8713 /* XXX Write this stub address somewhere. */
8714 h->plt.offset = s->_raw_size;
8715
8716 /* Make room for this stub code. */
8717 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8718
8719 /* The last half word of the stub will be filled with the index
8720 of this symbol in .dynsym section. */
8721 return true;
8722 }
8723 }
8724 else if ((h->type == STT_FUNC)
8725 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
8726 {
8727 /* This will set the entry for this symbol in the GOT to 0, and
8728 the dynamic linker will take care of this. */
8729 h->root.u.def.value = 0;
8730 return true;
8731 }
8732
8733 /* If this is a weak symbol, and there is a real definition, the
8734 processor independent code will have arranged for us to see the
8735 real definition first, and we can just use the same value. */
8736 if (h->weakdef != NULL)
8737 {
8738 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
8739 || h->weakdef->root.type == bfd_link_hash_defweak);
8740 h->root.u.def.section = h->weakdef->root.u.def.section;
8741 h->root.u.def.value = h->weakdef->root.u.def.value;
8742 return true;
8743 }
8744
8745 /* This is a reference to a symbol defined by a dynamic object which
8746 is not a function. */
8747
8748 return true;
8749 }
8750
8751 /* This function is called after all the input files have been read,
8752 and the input sections have been assigned to output sections. We
8753 check for any mips16 stub sections that we can discard. */
8754
8755 static boolean mips_elf_check_mips16_stubs
8756 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
8757
8758 boolean
8759 _bfd_mips_elf_always_size_sections (output_bfd, info)
8760 bfd *output_bfd;
8761 struct bfd_link_info *info;
8762 {
8763 asection *ri;
8764
8765 /* The .reginfo section has a fixed size. */
8766 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8767 if (ri != NULL)
8768 bfd_set_section_size (output_bfd, ri,
8769 (bfd_size_type) sizeof (Elf32_External_RegInfo));
8770
8771 if (info->relocateable
8772 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
8773 return true;
8774
8775 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8776 mips_elf_check_mips16_stubs,
8777 (PTR) NULL);
8778
8779 return true;
8780 }
8781
8782 /* Check the mips16 stubs for a particular symbol, and see if we can
8783 discard them. */
8784
8785 static boolean
8786 mips_elf_check_mips16_stubs (h, data)
8787 struct mips_elf_link_hash_entry *h;
8788 PTR data ATTRIBUTE_UNUSED;
8789 {
8790 if (h->fn_stub != NULL
8791 && ! h->need_fn_stub)
8792 {
8793 /* We don't need the fn_stub; the only references to this symbol
8794 are 16 bit calls. Clobber the size to 0 to prevent it from
8795 being included in the link. */
8796 h->fn_stub->_raw_size = 0;
8797 h->fn_stub->_cooked_size = 0;
8798 h->fn_stub->flags &= ~SEC_RELOC;
8799 h->fn_stub->reloc_count = 0;
8800 h->fn_stub->flags |= SEC_EXCLUDE;
8801 }
8802
8803 if (h->call_stub != NULL
8804 && h->root.other == STO_MIPS16)
8805 {
8806 /* We don't need the call_stub; this is a 16 bit function, so
8807 calls from other 16 bit functions are OK. Clobber the size
8808 to 0 to prevent it from being included in the link. */
8809 h->call_stub->_raw_size = 0;
8810 h->call_stub->_cooked_size = 0;
8811 h->call_stub->flags &= ~SEC_RELOC;
8812 h->call_stub->reloc_count = 0;
8813 h->call_stub->flags |= SEC_EXCLUDE;
8814 }
8815
8816 if (h->call_fp_stub != NULL
8817 && h->root.other == STO_MIPS16)
8818 {
8819 /* We don't need the call_stub; this is a 16 bit function, so
8820 calls from other 16 bit functions are OK. Clobber the size
8821 to 0 to prevent it from being included in the link. */
8822 h->call_fp_stub->_raw_size = 0;
8823 h->call_fp_stub->_cooked_size = 0;
8824 h->call_fp_stub->flags &= ~SEC_RELOC;
8825 h->call_fp_stub->reloc_count = 0;
8826 h->call_fp_stub->flags |= SEC_EXCLUDE;
8827 }
8828
8829 return true;
8830 }
8831
8832 /* Set the sizes of the dynamic sections. */
8833
8834 boolean
8835 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
8836 bfd *output_bfd;
8837 struct bfd_link_info *info;
8838 {
8839 bfd *dynobj;
8840 asection *s;
8841 boolean reltext;
8842 struct mips_got_info *g = NULL;
8843
8844 dynobj = elf_hash_table (info)->dynobj;
8845 BFD_ASSERT (dynobj != NULL);
8846
8847 if (elf_hash_table (info)->dynamic_sections_created)
8848 {
8849 /* Set the contents of the .interp section to the interpreter. */
8850 if (! info->shared)
8851 {
8852 s = bfd_get_section_by_name (dynobj, ".interp");
8853 BFD_ASSERT (s != NULL);
8854 s->_raw_size
8855 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8856 s->contents
8857 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8858 }
8859 }
8860
8861 /* The check_relocs and adjust_dynamic_symbol entry points have
8862 determined the sizes of the various dynamic sections. Allocate
8863 memory for them. */
8864 reltext = false;
8865 for (s = dynobj->sections; s != NULL; s = s->next)
8866 {
8867 const char *name;
8868 boolean strip;
8869
8870 /* It's OK to base decisions on the section name, because none
8871 of the dynobj section names depend upon the input files. */
8872 name = bfd_get_section_name (dynobj, s);
8873
8874 if ((s->flags & SEC_LINKER_CREATED) == 0)
8875 continue;
8876
8877 strip = false;
8878
8879 if (strncmp (name, ".rel", 4) == 0)
8880 {
8881 if (s->_raw_size == 0)
8882 {
8883 /* We only strip the section if the output section name
8884 has the same name. Otherwise, there might be several
8885 input sections for this output section. FIXME: This
8886 code is probably not needed these days anyhow, since
8887 the linker now does not create empty output sections. */
8888 if (s->output_section != NULL
8889 && strcmp (name,
8890 bfd_get_section_name (s->output_section->owner,
8891 s->output_section)) == 0)
8892 strip = true;
8893 }
8894 else
8895 {
8896 const char *outname;
8897 asection *target;
8898
8899 /* If this relocation section applies to a read only
8900 section, then we probably need a DT_TEXTREL entry.
8901 If the relocation section is .rel.dyn, we always
8902 assert a DT_TEXTREL entry rather than testing whether
8903 there exists a relocation to a read only section or
8904 not. */
8905 outname = bfd_get_section_name (output_bfd,
8906 s->output_section);
8907 target = bfd_get_section_by_name (output_bfd, outname + 4);
8908 if ((target != NULL
8909 && (target->flags & SEC_READONLY) != 0
8910 && (target->flags & SEC_ALLOC) != 0)
8911 || strcmp (outname,
8912 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
8913 reltext = true;
8914
8915 /* We use the reloc_count field as a counter if we need
8916 to copy relocs into the output file. */
8917 if (strcmp (name,
8918 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
8919 s->reloc_count = 0;
8920 }
8921 }
8922 else if (strncmp (name, ".got", 4) == 0)
8923 {
8924 int i;
8925 bfd_size_type loadable_size = 0;
8926 bfd_size_type local_gotno;
8927 bfd *sub;
8928
8929 BFD_ASSERT (elf_section_data (s) != NULL);
8930 g = (struct mips_got_info *) elf_section_data (s)->tdata;
8931 BFD_ASSERT (g != NULL);
8932
8933 /* Calculate the total loadable size of the output. That
8934 will give us the maximum number of GOT_PAGE entries
8935 required. */
8936 for (sub = info->input_bfds; sub; sub = sub->link_next)
8937 {
8938 asection *subsection;
8939
8940 for (subsection = sub->sections;
8941 subsection;
8942 subsection = subsection->next)
8943 {
8944 if ((subsection->flags & SEC_ALLOC) == 0)
8945 continue;
8946 loadable_size += ((subsection->_raw_size + 0xf)
8947 &~ (bfd_size_type) 0xf);
8948 }
8949 }
8950 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8951
8952 /* Assume there are two loadable segments consisting of
8953 contiguous sections. Is 5 enough? */
8954 local_gotno = (loadable_size >> 16) + 5;
8955 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8956 /* It's possible we will need GOT_PAGE entries as well as
8957 GOT16 entries. Often, these will be able to share GOT
8958 entries, but not always. */
8959 local_gotno *= 2;
8960
8961 g->local_gotno += local_gotno;
8962 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
8963
8964 /* There has to be a global GOT entry for every symbol with
8965 a dynamic symbol table index of DT_MIPS_GOTSYM or
8966 higher. Therefore, it make sense to put those symbols
8967 that need GOT entries at the end of the symbol table. We
8968 do that here. */
8969 if (!mips_elf_sort_hash_table (info, 1))
8970 return false;
8971
8972 if (g->global_gotsym != NULL)
8973 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8974 else
8975 /* If there are no global symbols, or none requiring
8976 relocations, then GLOBAL_GOTSYM will be NULL. */
8977 i = 0;
8978 g->global_gotno = i;
8979 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
8980 }
8981 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
8982 {
8983 /* Irix rld assumes that the function stub isn't at the end
8984 of .text section. So put a dummy. XXX */
8985 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8986 }
8987 else if (! info->shared
8988 && ! mips_elf_hash_table (info)->use_rld_obj_head
8989 && strncmp (name, ".rld_map", 8) == 0)
8990 {
8991 /* We add a room for __rld_map. It will be filled in by the
8992 rtld to contain a pointer to the _r_debug structure. */
8993 s->_raw_size += 4;
8994 }
8995 else if (SGI_COMPAT (output_bfd)
8996 && strncmp (name, ".compact_rel", 12) == 0)
8997 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
8998 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
8999 == 0)
9000 s->_raw_size = (sizeof (Elf32_External_Msym)
9001 * (elf_hash_table (info)->dynsymcount
9002 + bfd_count_sections (output_bfd)));
9003 else if (strncmp (name, ".init", 5) != 0)
9004 {
9005 /* It's not one of our sections, so don't allocate space. */
9006 continue;
9007 }
9008
9009 if (strip)
9010 {
9011 _bfd_strip_section_from_output (info, s);
9012 continue;
9013 }
9014
9015 /* Allocate memory for the section contents. */
9016 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
9017 if (s->contents == NULL && s->_raw_size != 0)
9018 {
9019 bfd_set_error (bfd_error_no_memory);
9020 return false;
9021 }
9022 }
9023
9024 if (elf_hash_table (info)->dynamic_sections_created)
9025 {
9026 /* Add some entries to the .dynamic section. We fill in the
9027 values later, in elf_mips_finish_dynamic_sections, but we
9028 must add the entries now so that we get the correct size for
9029 the .dynamic section. The DT_DEBUG entry is filled in by the
9030 dynamic linker and used by the debugger. */
9031 if (! info->shared)
9032 {
9033 /* SGI object has the equivalence of DT_DEBUG in the
9034 DT_MIPS_RLD_MAP entry. */
9035 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9036 return false;
9037 if (!SGI_COMPAT (output_bfd))
9038 {
9039 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9040 return false;
9041 }
9042 }
9043 else
9044 {
9045 /* Shared libraries on traditional mips have DT_DEBUG. */
9046 if (!SGI_COMPAT (output_bfd))
9047 {
9048 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9049 return false;
9050 }
9051 }
9052
9053 if (reltext && SGI_COMPAT (output_bfd))
9054 info->flags |= DF_TEXTREL;
9055
9056 if ((info->flags & DF_TEXTREL) != 0)
9057 {
9058 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9059 return false;
9060 }
9061
9062 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9063 return false;
9064
9065 if (bfd_get_section_by_name (dynobj,
9066 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
9067 {
9068 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9069 return false;
9070
9071 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9072 return false;
9073
9074 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9075 return false;
9076 }
9077
9078 if (SGI_COMPAT (output_bfd))
9079 {
9080 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
9081 return false;
9082 }
9083
9084 if (SGI_COMPAT (output_bfd))
9085 {
9086 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
9087 return false;
9088 }
9089
9090 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
9091 {
9092 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
9093 return false;
9094
9095 s = bfd_get_section_by_name (dynobj, ".liblist");
9096 BFD_ASSERT (s != NULL);
9097
9098 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
9099 return false;
9100 }
9101
9102 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9103 return false;
9104
9105 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9106 return false;
9107
9108 #if 0
9109 /* Time stamps in executable files are a bad idea. */
9110 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
9111 return false;
9112 #endif
9113
9114 #if 0 /* FIXME */
9115 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
9116 return false;
9117 #endif
9118
9119 #if 0 /* FIXME */
9120 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
9121 return false;
9122 #endif
9123
9124 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9125 return false;
9126
9127 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9128 return false;
9129
9130 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9131 return false;
9132
9133 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9134 return false;
9135
9136 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9137 return false;
9138
9139 if (IRIX_COMPAT (dynobj) == ict_irix5
9140 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9141 return false;
9142
9143 if (IRIX_COMPAT (dynobj) == ict_irix6
9144 && (bfd_get_section_by_name
9145 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9146 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9147 return false;
9148
9149 if (bfd_get_section_by_name (dynobj,
9150 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
9151 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
9152 return false;
9153 }
9154
9155 return true;
9156 }
9157
9158 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9159 adjust it appropriately now. */
9160
9161 static void
9162 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
9163 bfd *abfd ATTRIBUTE_UNUSED;
9164 const char *name;
9165 Elf_Internal_Sym *sym;
9166 {
9167 /* The linker script takes care of providing names and values for
9168 these, but we must place them into the right sections. */
9169 static const char* const text_section_symbols[] = {
9170 "_ftext",
9171 "_etext",
9172 "__dso_displacement",
9173 "__elf_header",
9174 "__program_header_table",
9175 NULL
9176 };
9177
9178 static const char* const data_section_symbols[] = {
9179 "_fdata",
9180 "_edata",
9181 "_end",
9182 "_fbss",
9183 NULL
9184 };
9185
9186 const char* const *p;
9187 int i;
9188
9189 for (i = 0; i < 2; ++i)
9190 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9191 *p;
9192 ++p)
9193 if (strcmp (*p, name) == 0)
9194 {
9195 /* All of these symbols are given type STT_SECTION by the
9196 IRIX6 linker. */
9197 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9198
9199 /* The IRIX linker puts these symbols in special sections. */
9200 if (i == 0)
9201 sym->st_shndx = SHN_MIPS_TEXT;
9202 else
9203 sym->st_shndx = SHN_MIPS_DATA;
9204
9205 break;
9206 }
9207 }
9208
9209 /* Finish up dynamic symbol handling. We set the contents of various
9210 dynamic sections here. */
9211
9212 boolean
9213 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
9214 bfd *output_bfd;
9215 struct bfd_link_info *info;
9216 struct elf_link_hash_entry *h;
9217 Elf_Internal_Sym *sym;
9218 {
9219 bfd *dynobj;
9220 bfd_vma gval;
9221 asection *sgot;
9222 asection *smsym;
9223 struct mips_got_info *g;
9224 const char *name;
9225 struct mips_elf_link_hash_entry *mh;
9226
9227 dynobj = elf_hash_table (info)->dynobj;
9228 gval = sym->st_value;
9229 mh = (struct mips_elf_link_hash_entry *) h;
9230
9231 if (h->plt.offset != (bfd_vma) -1)
9232 {
9233 asection *s;
9234 bfd_byte *p;
9235 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
9236
9237 /* This symbol has a stub. Set it up. */
9238
9239 BFD_ASSERT (h->dynindx != -1);
9240
9241 s = bfd_get_section_by_name (dynobj,
9242 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9243 BFD_ASSERT (s != NULL);
9244
9245 /* Fill the stub. */
9246 p = stub;
9247 bfd_put_32 (output_bfd, (bfd_vma) STUB_LW (output_bfd), p);
9248 p += 4;
9249 bfd_put_32 (output_bfd, (bfd_vma) STUB_MOVE (output_bfd), p);
9250 p += 4;
9251
9252 /* FIXME: Can h->dynindex be more than 64K? */
9253 if (h->dynindx & 0xffff0000)
9254 return false;
9255
9256 bfd_put_32 (output_bfd, (bfd_vma) STUB_JALR, p);
9257 p += 4;
9258 bfd_put_32 (output_bfd, (bfd_vma) STUB_LI16 (output_bfd) + h->dynindx, p);
9259
9260 BFD_ASSERT (h->plt.offset <= s->_raw_size);
9261 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
9262
9263 /* Mark the symbol as undefined. plt.offset != -1 occurs
9264 only for the referenced symbol. */
9265 sym->st_shndx = SHN_UNDEF;
9266
9267 /* The run-time linker uses the st_value field of the symbol
9268 to reset the global offset table entry for this external
9269 to its stub address when unlinking a shared object. */
9270 gval = s->output_section->vma + s->output_offset + h->plt.offset;
9271 sym->st_value = gval;
9272 }
9273
9274 BFD_ASSERT (h->dynindx != -1
9275 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
9276
9277 sgot = mips_elf_got_section (dynobj);
9278 BFD_ASSERT (sgot != NULL);
9279 BFD_ASSERT (elf_section_data (sgot) != NULL);
9280 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
9281 BFD_ASSERT (g != NULL);
9282
9283 /* Run through the global symbol table, creating GOT entries for all
9284 the symbols that need them. */
9285 if (g->global_gotsym != NULL
9286 && h->dynindx >= g->global_gotsym->dynindx)
9287 {
9288 bfd_vma offset;
9289 bfd_vma value;
9290
9291 if (sym->st_value)
9292 value = sym->st_value;
9293 else
9294 {
9295 /* For an entity defined in a shared object, this will be
9296 NULL. (For functions in shared objects for
9297 which we have created stubs, ST_VALUE will be non-NULL.
9298 That's because such the functions are now no longer defined
9299 in a shared object.) */
9300
9301 if (info->shared && h->root.type == bfd_link_hash_undefined)
9302 value = 0;
9303 else
9304 value = h->root.u.def.value;
9305 }
9306 offset = mips_elf_global_got_index (dynobj, h);
9307 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9308 }
9309
9310 /* Create a .msym entry, if appropriate. */
9311 smsym = bfd_get_section_by_name (dynobj,
9312 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
9313 if (smsym)
9314 {
9315 Elf32_Internal_Msym msym;
9316
9317 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
9318 /* It is undocumented what the `1' indicates, but IRIX6 uses
9319 this value. */
9320 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
9321 bfd_mips_elf_swap_msym_out
9322 (dynobj, &msym,
9323 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
9324 }
9325
9326 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9327 name = h->root.root.string;
9328 if (strcmp (name, "_DYNAMIC") == 0
9329 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
9330 sym->st_shndx = SHN_ABS;
9331 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9332 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9333 {
9334 sym->st_shndx = SHN_ABS;
9335 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9336 sym->st_value = 1;
9337 }
9338 else if (strcmp (name, "_gp_disp") == 0)
9339 {
9340 sym->st_shndx = SHN_ABS;
9341 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9342 sym->st_value = elf_gp (output_bfd);
9343 }
9344 else if (SGI_COMPAT (output_bfd))
9345 {
9346 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9347 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9348 {
9349 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9350 sym->st_other = STO_PROTECTED;
9351 sym->st_value = 0;
9352 sym->st_shndx = SHN_MIPS_DATA;
9353 }
9354 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9355 {
9356 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9357 sym->st_other = STO_PROTECTED;
9358 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9359 sym->st_shndx = SHN_ABS;
9360 }
9361 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9362 {
9363 if (h->type == STT_FUNC)
9364 sym->st_shndx = SHN_MIPS_TEXT;
9365 else if (h->type == STT_OBJECT)
9366 sym->st_shndx = SHN_MIPS_DATA;
9367 }
9368 }
9369
9370 /* Handle the IRIX6-specific symbols. */
9371 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9372 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9373
9374 if (! info->shared)
9375 {
9376 if (! mips_elf_hash_table (info)->use_rld_obj_head
9377 && (strcmp (name, "__rld_map") == 0
9378 || strcmp (name, "__RLD_MAP") == 0))
9379 {
9380 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9381 BFD_ASSERT (s != NULL);
9382 sym->st_value = s->output_section->vma + s->output_offset;
9383 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
9384 if (mips_elf_hash_table (info)->rld_value == 0)
9385 mips_elf_hash_table (info)->rld_value = sym->st_value;
9386 }
9387 else if (mips_elf_hash_table (info)->use_rld_obj_head
9388 && strcmp (name, "__rld_obj_head") == 0)
9389 {
9390 /* IRIX6 does not use a .rld_map section. */
9391 if (IRIX_COMPAT (output_bfd) == ict_irix5
9392 || IRIX_COMPAT (output_bfd) == ict_none)
9393 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9394 != NULL);
9395 mips_elf_hash_table (info)->rld_value = sym->st_value;
9396 }
9397 }
9398
9399 /* If this is a mips16 symbol, force the value to be even. */
9400 if (sym->st_other == STO_MIPS16
9401 && (sym->st_value & 1) != 0)
9402 --sym->st_value;
9403
9404 return true;
9405 }
9406
9407 /* Finish up the dynamic sections. */
9408
9409 boolean
9410 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
9411 bfd *output_bfd;
9412 struct bfd_link_info *info;
9413 {
9414 bfd *dynobj;
9415 asection *sdyn;
9416 asection *sgot;
9417 struct mips_got_info *g;
9418
9419 dynobj = elf_hash_table (info)->dynobj;
9420
9421 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9422
9423 sgot = mips_elf_got_section (dynobj);
9424 if (sgot == NULL)
9425 g = NULL;
9426 else
9427 {
9428 BFD_ASSERT (elf_section_data (sgot) != NULL);
9429 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
9430 BFD_ASSERT (g != NULL);
9431 }
9432
9433 if (elf_hash_table (info)->dynamic_sections_created)
9434 {
9435 bfd_byte *b;
9436
9437 BFD_ASSERT (sdyn != NULL);
9438 BFD_ASSERT (g != NULL);
9439
9440 for (b = sdyn->contents;
9441 b < sdyn->contents + sdyn->_raw_size;
9442 b += MIPS_ELF_DYN_SIZE (dynobj))
9443 {
9444 Elf_Internal_Dyn dyn;
9445 const char *name;
9446 size_t elemsize;
9447 asection *s;
9448 boolean swap_out_p;
9449
9450 /* Read in the current dynamic entry. */
9451 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9452
9453 /* Assume that we're going to modify it and write it out. */
9454 swap_out_p = true;
9455
9456 switch (dyn.d_tag)
9457 {
9458 case DT_RELENT:
9459 s = (bfd_get_section_by_name
9460 (dynobj,
9461 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
9462 BFD_ASSERT (s != NULL);
9463 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
9464 break;
9465
9466 case DT_STRSZ:
9467 /* Rewrite DT_STRSZ. */
9468 dyn.d_un.d_val =
9469 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
9470 break;
9471
9472 case DT_PLTGOT:
9473 name = ".got";
9474 goto get_vma;
9475 case DT_MIPS_CONFLICT:
9476 name = ".conflict";
9477 goto get_vma;
9478 case DT_MIPS_LIBLIST:
9479 name = ".liblist";
9480 get_vma:
9481 s = bfd_get_section_by_name (output_bfd, name);
9482 BFD_ASSERT (s != NULL);
9483 dyn.d_un.d_ptr = s->vma;
9484 break;
9485
9486 case DT_MIPS_RLD_VERSION:
9487 dyn.d_un.d_val = 1; /* XXX */
9488 break;
9489
9490 case DT_MIPS_FLAGS:
9491 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
9492 break;
9493
9494 case DT_MIPS_CONFLICTNO:
9495 name = ".conflict";
9496 elemsize = sizeof (Elf32_Conflict);
9497 goto set_elemno;
9498
9499 case DT_MIPS_LIBLISTNO:
9500 name = ".liblist";
9501 elemsize = sizeof (Elf32_Lib);
9502 set_elemno:
9503 s = bfd_get_section_by_name (output_bfd, name);
9504 if (s != NULL)
9505 {
9506 if (s->_cooked_size != 0)
9507 dyn.d_un.d_val = s->_cooked_size / elemsize;
9508 else
9509 dyn.d_un.d_val = s->_raw_size / elemsize;
9510 }
9511 else
9512 dyn.d_un.d_val = 0;
9513 break;
9514
9515 case DT_MIPS_TIME_STAMP:
9516 time ((time_t *) &dyn.d_un.d_val);
9517 break;
9518
9519 case DT_MIPS_ICHECKSUM:
9520 /* XXX FIXME: */
9521 swap_out_p = false;
9522 break;
9523
9524 case DT_MIPS_IVERSION:
9525 /* XXX FIXME: */
9526 swap_out_p = false;
9527 break;
9528
9529 case DT_MIPS_BASE_ADDRESS:
9530 s = output_bfd->sections;
9531 BFD_ASSERT (s != NULL);
9532 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
9533 break;
9534
9535 case DT_MIPS_LOCAL_GOTNO:
9536 dyn.d_un.d_val = g->local_gotno;
9537 break;
9538
9539 case DT_MIPS_UNREFEXTNO:
9540 /* The index into the dynamic symbol table which is the
9541 entry of the first external symbol that is not
9542 referenced within the same object. */
9543 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
9544 break;
9545
9546 case DT_MIPS_GOTSYM:
9547 if (g->global_gotsym)
9548 {
9549 dyn.d_un.d_val = g->global_gotsym->dynindx;
9550 break;
9551 }
9552 /* In case if we don't have global got symbols we default
9553 to setting DT_MIPS_GOTSYM to the same value as
9554 DT_MIPS_SYMTABNO, so we just fall through. */
9555
9556 case DT_MIPS_SYMTABNO:
9557 name = ".dynsym";
9558 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
9559 s = bfd_get_section_by_name (output_bfd, name);
9560 BFD_ASSERT (s != NULL);
9561
9562 if (s->_cooked_size != 0)
9563 dyn.d_un.d_val = s->_cooked_size / elemsize;
9564 else
9565 dyn.d_un.d_val = s->_raw_size / elemsize;
9566 break;
9567
9568 case DT_MIPS_HIPAGENO:
9569 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
9570 break;
9571
9572 case DT_MIPS_RLD_MAP:
9573 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
9574 break;
9575
9576 case DT_MIPS_OPTIONS:
9577 s = (bfd_get_section_by_name
9578 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
9579 dyn.d_un.d_ptr = s->vma;
9580 break;
9581
9582 case DT_MIPS_MSYM:
9583 s = (bfd_get_section_by_name
9584 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
9585 dyn.d_un.d_ptr = s->vma;
9586 break;
9587
9588 default:
9589 swap_out_p = false;
9590 break;
9591 }
9592
9593 if (swap_out_p)
9594 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9595 (dynobj, &dyn, b);
9596 }
9597 }
9598
9599 /* The first entry of the global offset table will be filled at
9600 runtime. The second entry will be used by some runtime loaders.
9601 This isn't the case of Irix rld. */
9602 if (sgot != NULL && sgot->_raw_size > 0)
9603 {
9604 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
9605 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
9606 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9607 }
9608
9609 if (sgot != NULL)
9610 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9611 = MIPS_ELF_GOT_SIZE (output_bfd);
9612
9613 {
9614 asection *smsym;
9615 asection *s;
9616 Elf32_compact_rel cpt;
9617
9618 /* ??? The section symbols for the output sections were set up in
9619 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
9620 symbols. Should we do so? */
9621
9622 smsym = bfd_get_section_by_name (dynobj,
9623 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
9624 if (smsym != NULL)
9625 {
9626 Elf32_Internal_Msym msym;
9627
9628 msym.ms_hash_value = 0;
9629 msym.ms_info = ELF32_MS_INFO (0, 1);
9630
9631 for (s = output_bfd->sections; s != NULL; s = s->next)
9632 {
9633 long dynindx = elf_section_data (s)->dynindx;
9634
9635 bfd_mips_elf_swap_msym_out
9636 (output_bfd, &msym,
9637 (((Elf32_External_Msym *) smsym->contents)
9638 + dynindx));
9639 }
9640 }
9641
9642 if (SGI_COMPAT (output_bfd))
9643 {
9644 /* Write .compact_rel section out. */
9645 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9646 if (s != NULL)
9647 {
9648 cpt.id1 = 1;
9649 cpt.num = s->reloc_count;
9650 cpt.id2 = 2;
9651 cpt.offset = (s->output_section->filepos
9652 + sizeof (Elf32_External_compact_rel));
9653 cpt.reserved0 = 0;
9654 cpt.reserved1 = 0;
9655 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9656 ((Elf32_External_compact_rel *)
9657 s->contents));
9658
9659 /* Clean up a dummy stub function entry in .text. */
9660 s = bfd_get_section_by_name (dynobj,
9661 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9662 if (s != NULL)
9663 {
9664 file_ptr dummy_offset;
9665
9666 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
9667 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
9668 memset (s->contents + dummy_offset, 0,
9669 MIPS_FUNCTION_STUB_SIZE);
9670 }
9671 }
9672 }
9673
9674 /* We need to sort the entries of the dynamic relocation section. */
9675
9676 if (!ABI_64_P (output_bfd))
9677 {
9678 asection *reldyn;
9679
9680 reldyn = bfd_get_section_by_name (dynobj,
9681 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9682 if (reldyn != NULL && reldyn->reloc_count > 2)
9683 {
9684 reldyn_sorting_bfd = output_bfd;
9685 qsort ((Elf32_External_Rel *) reldyn->contents + 1,
9686 (size_t) reldyn->reloc_count - 1,
9687 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
9688 }
9689 }
9690
9691 /* Clean up a first relocation in .rel.dyn. */
9692 s = bfd_get_section_by_name (dynobj,
9693 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9694 if (s != NULL && s->_raw_size > 0)
9695 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
9696 }
9697
9698 return true;
9699 }
9700 \f
9701 /* Support for core dump NOTE sections */
9702 static boolean
9703 _bfd_elf32_mips_grok_prstatus (abfd, note)
9704 bfd *abfd;
9705 Elf_Internal_Note *note;
9706 {
9707 int offset;
9708 unsigned int raw_size;
9709
9710 switch (note->descsz)
9711 {
9712 default:
9713 return false;
9714
9715 case 256: /* Linux/MIPS */
9716 /* pr_cursig */
9717 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
9718
9719 /* pr_pid */
9720 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
9721
9722 /* pr_reg */
9723 offset = 72;
9724 raw_size = 180;
9725
9726 break;
9727 }
9728
9729 /* Make a ".reg/999" section. */
9730 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9731 raw_size, note->descpos + offset);
9732 }
9733
9734 static boolean
9735 _bfd_elf32_mips_grok_psinfo (abfd, note)
9736 bfd *abfd;
9737 Elf_Internal_Note *note;
9738 {
9739 switch (note->descsz)
9740 {
9741 default:
9742 return false;
9743
9744 case 128: /* Linux/MIPS elf_prpsinfo */
9745 elf_tdata (abfd)->core_program
9746 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
9747 elf_tdata (abfd)->core_command
9748 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
9749 }
9750
9751 /* Note that for some reason, a spurious space is tacked
9752 onto the end of the args in some (at least one anyway)
9753 implementations, so strip it off if it exists. */
9754
9755 {
9756 char *command = elf_tdata (abfd)->core_command;
9757 int n = strlen (command);
9758
9759 if (0 < n && command[n - 1] == ' ')
9760 command[n - 1] = '\0';
9761 }
9762
9763 return true;
9764 }
9765 \f
9766 #define PDR_SIZE 32
9767
9768 static boolean
9769 _bfd_elf32_mips_discard_info (abfd, cookie, info)
9770 bfd *abfd;
9771 struct elf_reloc_cookie *cookie;
9772 struct bfd_link_info *info;
9773 {
9774 asection *o;
9775 struct elf_backend_data *bed = get_elf_backend_data (abfd);
9776 boolean ret = false;
9777 unsigned char *tdata;
9778 size_t i, skip;
9779
9780 o = bfd_get_section_by_name (abfd, ".pdr");
9781 if (! o)
9782 return false;
9783 if (o->_raw_size == 0)
9784 return false;
9785 if (o->_raw_size % PDR_SIZE != 0)
9786 return false;
9787 if (o->output_section != NULL
9788 && bfd_is_abs_section (o->output_section))
9789 return false;
9790
9791 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
9792 if (! tdata)
9793 return false;
9794
9795 cookie->rels = _bfd_elf32_link_read_relocs (abfd, o, (PTR) NULL,
9796 (Elf_Internal_Rela *) NULL,
9797 info->keep_memory);
9798 if (!cookie->rels)
9799 {
9800 free (tdata);
9801 return false;
9802 }
9803
9804 cookie->rel = cookie->rels;
9805 cookie->relend =
9806 cookie->rels + o->reloc_count * bed->s->int_rels_per_ext_rel;
9807
9808 for (i = 0, skip = 0; i < o->_raw_size; i ++)
9809 {
9810 if (_bfd_elf32_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9811 {
9812 tdata[i] = 1;
9813 skip ++;
9814 }
9815 }
9816
9817 if (skip != 0)
9818 {
9819 elf_section_data (o)->tdata = tdata;
9820 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
9821 ret = true;
9822 }
9823 else
9824 free (tdata);
9825
9826 if (! info->keep_memory)
9827 free (cookie->rels);
9828
9829 return ret;
9830 }
9831
9832 static boolean
9833 _bfd_elf32_mips_ignore_discarded_relocs (sec)
9834 asection *sec;
9835 {
9836 if (strcmp (sec->name, ".pdr") == 0)
9837 return true;
9838 return false;
9839 }
9840
9841 static boolean
9842 _bfd_elf32_mips_write_section (output_bfd, sec, contents)
9843 bfd *output_bfd;
9844 asection *sec;
9845 bfd_byte *contents;
9846 {
9847 bfd_byte *to, *from, *end;
9848 int i;
9849
9850 if (strcmp (sec->name, ".pdr") != 0)
9851 return false;
9852
9853 if (elf_section_data (sec)->tdata == NULL)
9854 return false;
9855
9856 to = contents;
9857 end = contents + sec->_raw_size;
9858 for (from = contents, i = 0;
9859 from < end;
9860 from += PDR_SIZE, i++)
9861 {
9862 if (((unsigned char *)elf_section_data (sec)->tdata)[i] == 1)
9863 continue;
9864 if (to != from)
9865 memcpy (to, from, PDR_SIZE);
9866 to += PDR_SIZE;
9867 }
9868 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9869 (file_ptr) sec->output_offset,
9870 sec->_cooked_size);
9871 return true;
9872 }
9873 \f
9874 /* This is almost identical to bfd_generic_get_... except that some
9875 MIPS relocations need to be handled specially. Sigh. */
9876
9877 static bfd_byte *
9878 elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
9879 relocateable, symbols)
9880 bfd *abfd;
9881 struct bfd_link_info *link_info;
9882 struct bfd_link_order *link_order;
9883 bfd_byte *data;
9884 boolean relocateable;
9885 asymbol **symbols;
9886 {
9887 /* Get enough memory to hold the stuff */
9888 bfd *input_bfd = link_order->u.indirect.section->owner;
9889 asection *input_section = link_order->u.indirect.section;
9890
9891 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9892 arelent **reloc_vector = NULL;
9893 long reloc_count;
9894
9895 if (reloc_size < 0)
9896 goto error_return;
9897
9898 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
9899 if (reloc_vector == NULL && reloc_size != 0)
9900 goto error_return;
9901
9902 /* read in the section */
9903 if (!bfd_get_section_contents (input_bfd,
9904 input_section,
9905 (PTR) data,
9906 (file_ptr) 0,
9907 input_section->_raw_size))
9908 goto error_return;
9909
9910 /* We're not relaxing the section, so just copy the size info */
9911 input_section->_cooked_size = input_section->_raw_size;
9912 input_section->reloc_done = true;
9913
9914 reloc_count = bfd_canonicalize_reloc (input_bfd,
9915 input_section,
9916 reloc_vector,
9917 symbols);
9918 if (reloc_count < 0)
9919 goto error_return;
9920
9921 if (reloc_count > 0)
9922 {
9923 arelent **parent;
9924 /* for mips */
9925 int gp_found;
9926 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9927
9928 {
9929 struct bfd_hash_entry *h;
9930 struct bfd_link_hash_entry *lh;
9931 /* Skip all this stuff if we aren't mixing formats. */
9932 if (abfd && input_bfd
9933 && abfd->xvec == input_bfd->xvec)
9934 lh = 0;
9935 else
9936 {
9937 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
9938 lh = (struct bfd_link_hash_entry *) h;
9939 }
9940 lookup:
9941 if (lh)
9942 {
9943 switch (lh->type)
9944 {
9945 case bfd_link_hash_undefined:
9946 case bfd_link_hash_undefweak:
9947 case bfd_link_hash_common:
9948 gp_found = 0;
9949 break;
9950 case bfd_link_hash_defined:
9951 case bfd_link_hash_defweak:
9952 gp_found = 1;
9953 gp = lh->u.def.value;
9954 break;
9955 case bfd_link_hash_indirect:
9956 case bfd_link_hash_warning:
9957 lh = lh->u.i.link;
9958 /* @@FIXME ignoring warning for now */
9959 goto lookup;
9960 case bfd_link_hash_new:
9961 default:
9962 abort ();
9963 }
9964 }
9965 else
9966 gp_found = 0;
9967 }
9968 /* end mips */
9969 for (parent = reloc_vector; *parent != (arelent *) NULL;
9970 parent++)
9971 {
9972 char *error_message = (char *) NULL;
9973 bfd_reloc_status_type r;
9974
9975 /* Specific to MIPS: Deal with relocation types that require
9976 knowing the gp of the output bfd. */
9977 asymbol *sym = *(*parent)->sym_ptr_ptr;
9978 if (bfd_is_abs_section (sym->section) && abfd)
9979 {
9980 /* The special_function wouldn't get called anyways. */
9981 }
9982 else if (!gp_found)
9983 {
9984 /* The gp isn't there; let the special function code
9985 fall over on its own. */
9986 }
9987 else if ((*parent)->howto->special_function
9988 == _bfd_mips_elf_gprel16_reloc)
9989 {
9990 /* bypass special_function call */
9991 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
9992 relocateable, (PTR) data, gp);
9993 goto skip_bfd_perform_relocation;
9994 }
9995 /* end mips specific stuff */
9996
9997 r = bfd_perform_relocation (input_bfd,
9998 *parent,
9999 (PTR) data,
10000 input_section,
10001 relocateable ? abfd : (bfd *) NULL,
10002 &error_message);
10003 skip_bfd_perform_relocation:
10004
10005 if (relocateable)
10006 {
10007 asection *os = input_section->output_section;
10008
10009 /* A partial link, so keep the relocs */
10010 os->orelocation[os->reloc_count] = *parent;
10011 os->reloc_count++;
10012 }
10013
10014 if (r != bfd_reloc_ok)
10015 {
10016 switch (r)
10017 {
10018 case bfd_reloc_undefined:
10019 if (!((*link_info->callbacks->undefined_symbol)
10020 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10021 input_bfd, input_section, (*parent)->address,
10022 true)))
10023 goto error_return;
10024 break;
10025 case bfd_reloc_dangerous:
10026 BFD_ASSERT (error_message != (char *) NULL);
10027 if (!((*link_info->callbacks->reloc_dangerous)
10028 (link_info, error_message, input_bfd, input_section,
10029 (*parent)->address)))
10030 goto error_return;
10031 break;
10032 case bfd_reloc_overflow:
10033 if (!((*link_info->callbacks->reloc_overflow)
10034 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10035 (*parent)->howto->name, (*parent)->addend,
10036 input_bfd, input_section, (*parent)->address)))
10037 goto error_return;
10038 break;
10039 case bfd_reloc_outofrange:
10040 default:
10041 abort ();
10042 break;
10043 }
10044
10045 }
10046 }
10047 }
10048 if (reloc_vector != NULL)
10049 free (reloc_vector);
10050 return data;
10051
10052 error_return:
10053 if (reloc_vector != NULL)
10054 free (reloc_vector);
10055 return NULL;
10056 }
10057
10058 #define bfd_elf32_bfd_get_relocated_section_contents \
10059 elf32_mips_get_relocated_section_contents
10060 \f
10061 /* ECOFF swapping routines. These are used when dealing with the
10062 .mdebug section, which is in the ECOFF debugging format. */
10063 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap = {
10064 /* Symbol table magic number. */
10065 magicSym,
10066 /* Alignment of debugging information. E.g., 4. */
10067 4,
10068 /* Sizes of external symbolic information. */
10069 sizeof (struct hdr_ext),
10070 sizeof (struct dnr_ext),
10071 sizeof (struct pdr_ext),
10072 sizeof (struct sym_ext),
10073 sizeof (struct opt_ext),
10074 sizeof (struct fdr_ext),
10075 sizeof (struct rfd_ext),
10076 sizeof (struct ext_ext),
10077 /* Functions to swap in external symbolic data. */
10078 ecoff_swap_hdr_in,
10079 ecoff_swap_dnr_in,
10080 ecoff_swap_pdr_in,
10081 ecoff_swap_sym_in,
10082 ecoff_swap_opt_in,
10083 ecoff_swap_fdr_in,
10084 ecoff_swap_rfd_in,
10085 ecoff_swap_ext_in,
10086 _bfd_ecoff_swap_tir_in,
10087 _bfd_ecoff_swap_rndx_in,
10088 /* Functions to swap out external symbolic data. */
10089 ecoff_swap_hdr_out,
10090 ecoff_swap_dnr_out,
10091 ecoff_swap_pdr_out,
10092 ecoff_swap_sym_out,
10093 ecoff_swap_opt_out,
10094 ecoff_swap_fdr_out,
10095 ecoff_swap_rfd_out,
10096 ecoff_swap_ext_out,
10097 _bfd_ecoff_swap_tir_out,
10098 _bfd_ecoff_swap_rndx_out,
10099 /* Function to read in symbolic data. */
10100 _bfd_mips_elf_read_ecoff_info
10101 };
10102 \f
10103 #define ELF_ARCH bfd_arch_mips
10104 #define ELF_MACHINE_CODE EM_MIPS
10105
10106 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
10107 a value of 0x1000, and we are compatible. */
10108 #define ELF_MAXPAGESIZE 0x1000
10109
10110 #define elf_backend_collect true
10111 #define elf_backend_type_change_ok true
10112 #define elf_backend_can_gc_sections true
10113 #define elf_info_to_howto mips_info_to_howto_rela
10114 #define elf_info_to_howto_rel mips_info_to_howto_rel
10115 #define elf_backend_sym_is_global mips_elf_sym_is_global
10116 #define elf_backend_object_p _bfd_mips_elf_object_p
10117 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
10118 #define elf_backend_section_processing _bfd_mips_elf_section_processing
10119 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
10120 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
10121 #define elf_backend_section_from_bfd_section \
10122 _bfd_mips_elf_section_from_bfd_section
10123 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
10124 #define elf_backend_link_output_symbol_hook \
10125 _bfd_mips_elf_link_output_symbol_hook
10126 #define elf_backend_create_dynamic_sections \
10127 _bfd_mips_elf_create_dynamic_sections
10128 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
10129 #define elf_backend_adjust_dynamic_symbol \
10130 _bfd_mips_elf_adjust_dynamic_symbol
10131 #define elf_backend_always_size_sections \
10132 _bfd_mips_elf_always_size_sections
10133 #define elf_backend_size_dynamic_sections \
10134 _bfd_mips_elf_size_dynamic_sections
10135 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
10136 #define elf_backend_finish_dynamic_symbol \
10137 _bfd_mips_elf_finish_dynamic_symbol
10138 #define elf_backend_finish_dynamic_sections \
10139 _bfd_mips_elf_finish_dynamic_sections
10140 #define elf_backend_final_write_processing \
10141 _bfd_mips_elf_final_write_processing
10142 #define elf_backend_additional_program_headers \
10143 _bfd_mips_elf_additional_program_headers
10144 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
10145 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
10146 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
10147 #define elf_backend_copy_indirect_symbol \
10148 _bfd_mips_elf_copy_indirect_symbol
10149 #define elf_backend_hide_symbol _bfd_mips_elf_hide_symbol
10150 #define elf_backend_grok_prstatus _bfd_elf32_mips_grok_prstatus
10151 #define elf_backend_grok_psinfo _bfd_elf32_mips_grok_psinfo
10152 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
10153
10154 #define elf_backend_got_header_size (4 * MIPS_RESERVED_GOTNO)
10155 #define elf_backend_plt_header_size 0
10156 #define elf_backend_may_use_rel_p 1
10157 #define elf_backend_may_use_rela_p 0
10158 #define elf_backend_default_use_rela_p 0
10159 #define elf_backend_sign_extend_vma true
10160
10161 #define elf_backend_discard_info _bfd_elf32_mips_discard_info
10162 #define elf_backend_ignore_discarded_relocs \
10163 _bfd_elf32_mips_ignore_discarded_relocs
10164 #define elf_backend_write_section _bfd_elf32_mips_write_section
10165
10166 #define bfd_elf32_bfd_is_local_label_name \
10167 mips_elf_is_local_label_name
10168 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
10169 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
10170 #define bfd_elf32_bfd_link_hash_table_create \
10171 _bfd_mips_elf_link_hash_table_create
10172 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
10173 #define bfd_elf32_bfd_copy_private_bfd_data \
10174 _bfd_mips_elf_copy_private_bfd_data
10175 #define bfd_elf32_bfd_merge_private_bfd_data \
10176 _bfd_mips_elf_merge_private_bfd_data
10177 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
10178 #define bfd_elf32_bfd_print_private_bfd_data \
10179 _bfd_mips_elf_print_private_bfd_data
10180
10181 /* Support for SGI-ish mips targets. */
10182 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
10183 #define TARGET_LITTLE_NAME "elf32-littlemips"
10184 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
10185 #define TARGET_BIG_NAME "elf32-bigmips"
10186
10187 #include "elf32-target.h"
10188
10189 /* Support for traditional mips targets. */
10190 #define INCLUDED_TARGET_FILE /* More a type of flag. */
10191
10192 #undef TARGET_LITTLE_SYM
10193 #undef TARGET_LITTLE_NAME
10194 #undef TARGET_BIG_SYM
10195 #undef TARGET_BIG_NAME
10196
10197 #define TARGET_LITTLE_SYM bfd_elf32_tradlittlemips_vec
10198 #define TARGET_LITTLE_NAME "elf32-tradlittlemips"
10199 #define TARGET_BIG_SYM bfd_elf32_tradbigmips_vec
10200 #define TARGET_BIG_NAME "elf32-tradbigmips"
10201
10202 /* Include the target file again for this target */
10203 #include "elf32-target.h"
This page took 0.243513 seconds and 4 git commands to generate.