2001-08-10 H.J. Lu <hjl@gnu.org>
[deliverable/binutils-gdb.git] / bfd / elf32-mips.c
1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
29 different MIPS ELF from other targets. This matters when linking.
30 This file supports both, switching at runtime. */
31
32 #include "bfd.h"
33 #include "sysdep.h"
34 #include "libbfd.h"
35 #include "bfdlink.h"
36 #include "genlink.h"
37 #include "elf-bfd.h"
38 #include "elf/mips.h"
39
40 /* Get the ECOFF swapping routines. */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/internal.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46 #define ECOFF_SIGNED_32
47 #include "ecoffswap.h"
48
49 /* This structure is used to hold .got information when linking. It
50 is stored in the tdata field of the bfd_elf_section_data structure. */
51
52 struct mips_got_info
53 {
54 /* The global symbol in the GOT with the lowest index in the dynamic
55 symbol table. */
56 struct elf_link_hash_entry *global_gotsym;
57 /* The number of global .got entries. */
58 unsigned int global_gotno;
59 /* The number of local .got entries. */
60 unsigned int local_gotno;
61 /* The number of local .got entries we have used. */
62 unsigned int assigned_gotno;
63 };
64
65 /* The MIPS ELF linker needs additional information for each symbol in
66 the global hash table. */
67
68 struct mips_elf_link_hash_entry
69 {
70 struct elf_link_hash_entry root;
71
72 /* External symbol information. */
73 EXTR esym;
74
75 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
76 this symbol. */
77 unsigned int possibly_dynamic_relocs;
78
79 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
80 a readonly section. */
81 boolean readonly_reloc;
82
83 /* The index of the first dynamic relocation (in the .rel.dyn
84 section) against this symbol. */
85 unsigned int min_dyn_reloc_index;
86
87 /* We must not create a stub for a symbol that has relocations
88 related to taking the function's address, i.e. any but
89 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
90 p. 4-20. */
91 boolean no_fn_stub;
92
93 /* If there is a stub that 32 bit functions should use to call this
94 16 bit function, this points to the section containing the stub. */
95 asection *fn_stub;
96
97 /* Whether we need the fn_stub; this is set if this symbol appears
98 in any relocs other than a 16 bit call. */
99 boolean need_fn_stub;
100
101 /* If there is a stub that 16 bit functions should use to call this
102 32 bit function, this points to the section containing the stub. */
103 asection *call_stub;
104
105 /* This is like the call_stub field, but it is used if the function
106 being called returns a floating point value. */
107 asection *call_fp_stub;
108 };
109
110 static bfd_reloc_status_type mips32_64bit_reloc
111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112 static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
113 PARAMS ((bfd *, bfd_reloc_code_real_type));
114 static reloc_howto_type *mips_rtype_to_howto
115 PARAMS ((unsigned int));
116 static void mips_info_to_howto_rel
117 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
118 static void mips_info_to_howto_rela
119 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
120 static void bfd_mips_elf32_swap_gptab_in
121 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
122 static void bfd_mips_elf32_swap_gptab_out
123 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
124 #if 0
125 static void bfd_mips_elf_swap_msym_in
126 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
127 #endif
128 static void bfd_mips_elf_swap_msym_out
129 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
130 static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
131 static boolean mips_elf_create_procedure_table
132 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
133 struct ecoff_debug_info *));
134 static INLINE int elf_mips_isa PARAMS ((flagword));
135 static INLINE int elf_mips_mach PARAMS ((flagword));
136 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
137 static boolean mips_elf_is_local_label_name
138 PARAMS ((bfd *, const char *));
139 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
140 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
141 static int gptab_compare PARAMS ((const void *, const void *));
142 static bfd_reloc_status_type mips16_jump_reloc
143 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
144 static bfd_reloc_status_type mips16_gprel_reloc
145 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
146 static boolean mips_elf_create_compact_rel_section
147 PARAMS ((bfd *, struct bfd_link_info *));
148 static boolean mips_elf_create_got_section
149 PARAMS ((bfd *, struct bfd_link_info *));
150 static bfd_reloc_status_type mips_elf_final_gp
151 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
152 static bfd_byte *elf32_mips_get_relocated_section_contents
153 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
154 bfd_byte *, boolean, asymbol **));
155 static asection *mips_elf_create_msym_section
156 PARAMS ((bfd *));
157 static void mips_elf_irix6_finish_dynamic_symbol
158 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
159 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
160 static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
161 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
162 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
163 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
164 static bfd_vma mips_elf_global_got_index
165 PARAMS ((bfd *, struct elf_link_hash_entry *));
166 static bfd_vma mips_elf_local_got_index
167 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
168 static bfd_vma mips_elf_got_offset_from_index
169 PARAMS ((bfd *, bfd *, bfd_vma));
170 static boolean mips_elf_record_global_got_symbol
171 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
172 struct mips_got_info *));
173 static bfd_vma mips_elf_got_page
174 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
175 static const Elf_Internal_Rela *mips_elf_next_relocation
176 PARAMS ((unsigned int, const Elf_Internal_Rela *,
177 const Elf_Internal_Rela *));
178 static bfd_reloc_status_type mips_elf_calculate_relocation
179 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
180 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
181 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
182 boolean *));
183 static bfd_vma mips_elf_obtain_contents
184 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
185 static boolean mips_elf_perform_relocation
186 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
187 const Elf_Internal_Rela *, bfd_vma,
188 bfd *, asection *, bfd_byte *, boolean));
189 static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
190 static boolean mips_elf_sort_hash_table_f
191 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
192 static boolean mips_elf_sort_hash_table
193 PARAMS ((struct bfd_link_info *, unsigned long));
194 static asection * mips_elf_got_section PARAMS ((bfd *));
195 static struct mips_got_info *mips_elf_got_info
196 PARAMS ((bfd *, asection **));
197 static boolean mips_elf_local_relocation_p
198 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean));
199 static bfd_vma mips_elf_create_local_got_entry
200 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
201 static bfd_vma mips_elf_got16_entry
202 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean));
203 static boolean mips_elf_create_dynamic_relocation
204 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
205 struct mips_elf_link_hash_entry *, asection *,
206 bfd_vma, bfd_vma *, asection *));
207 static void mips_elf_allocate_dynamic_relocations
208 PARAMS ((bfd *, unsigned int));
209 static boolean mips_elf_stub_section_p
210 PARAMS ((bfd *, asection *));
211 static int sort_dynamic_relocs
212 PARAMS ((const void *, const void *));
213
214 extern const bfd_target bfd_elf32_tradbigmips_vec;
215 extern const bfd_target bfd_elf32_tradlittlemips_vec;
216 #ifdef BFD64
217 extern const bfd_target bfd_elf64_tradbigmips_vec;
218 extern const bfd_target bfd_elf64_tradlittlemips_vec;
219 #endif
220
221 /* The level of IRIX compatibility we're striving for. */
222
223 typedef enum {
224 ict_none,
225 ict_irix5,
226 ict_irix6
227 } irix_compat_t;
228
229 /* This will be used when we sort the dynamic relocation records. */
230 static bfd *reldyn_sorting_bfd;
231
232 /* Nonzero if ABFD is using the N32 ABI. */
233
234 #define ABI_N32_P(abfd) \
235 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
236
237 /* Nonzero if ABFD is using the 64-bit ABI. */
238 #define ABI_64_P(abfd) \
239 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
240
241 /* Depending on the target vector we generate some version of Irix
242 executables or "normal" MIPS ELF ABI executables. */
243 #ifdef BFD64
244 #define IRIX_COMPAT(abfd) \
245 (((abfd->xvec == &bfd_elf64_tradbigmips_vec) || \
246 (abfd->xvec == &bfd_elf64_tradlittlemips_vec) || \
247 (abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
248 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
249 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
250 #else
251 #define IRIX_COMPAT(abfd) \
252 (((abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
253 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
254 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
255 #endif
256
257 /* Whether we are trying to be compatible with IRIX at all. */
258 #define SGI_COMPAT(abfd) \
259 (IRIX_COMPAT (abfd) != ict_none)
260
261 /* The name of the msym section. */
262 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
263
264 /* The name of the srdata section. */
265 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
266
267 /* The name of the options section. */
268 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
269 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
270
271 /* The name of the stub section. */
272 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
273 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
274
275 /* The name of the dynamic relocation section. */
276 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
277
278 /* The size of an external REL relocation. */
279 #define MIPS_ELF_REL_SIZE(abfd) \
280 (get_elf_backend_data (abfd)->s->sizeof_rel)
281
282 /* The size of an external dynamic table entry. */
283 #define MIPS_ELF_DYN_SIZE(abfd) \
284 (get_elf_backend_data (abfd)->s->sizeof_dyn)
285
286 /* The size of a GOT entry. */
287 #define MIPS_ELF_GOT_SIZE(abfd) \
288 (get_elf_backend_data (abfd)->s->arch_size / 8)
289
290 /* The size of a symbol-table entry. */
291 #define MIPS_ELF_SYM_SIZE(abfd) \
292 (get_elf_backend_data (abfd)->s->sizeof_sym)
293
294 /* The default alignment for sections, as a power of two. */
295 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
296 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
297
298 /* Get word-sized data. */
299 #define MIPS_ELF_GET_WORD(abfd, ptr) \
300 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
301
302 /* Put out word-sized data. */
303 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
304 (ABI_64_P (abfd) \
305 ? bfd_put_64 (abfd, val, ptr) \
306 : bfd_put_32 (abfd, val, ptr))
307
308 /* Add a dynamic symbol table-entry. */
309 #ifdef BFD64
310 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
311 (ABI_64_P (elf_hash_table (info)->dynobj) \
312 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
313 : bfd_elf32_add_dynamic_entry (info, tag, val))
314 #else
315 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
316 (ABI_64_P (elf_hash_table (info)->dynobj) \
317 ? (abort (), false) \
318 : bfd_elf32_add_dynamic_entry (info, tag, val))
319 #endif
320
321 /* The number of local .got entries we reserve. */
322 #define MIPS_RESERVED_GOTNO (2)
323
324 /* Instructions which appear in a stub. For some reason the stub is
325 slightly different on an SGI system. */
326 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
327 #define STUB_LW(abfd) \
328 (SGI_COMPAT (abfd) \
329 ? (ABI_64_P (abfd) \
330 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
331 : 0x8f998010) /* lw t9,0x8010(gp) */ \
332 : 0x8f998010) /* lw t9,0x8000(gp) */
333 #define STUB_MOVE(abfd) \
334 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
335 #define STUB_JALR 0x0320f809 /* jal t9 */
336 #define STUB_LI16(abfd) \
337 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
338 #define MIPS_FUNCTION_STUB_SIZE (16)
339
340 #if 0
341 /* We no longer try to identify particular sections for the .dynsym
342 section. When we do, we wind up crashing if there are other random
343 sections with relocations. */
344
345 /* Names of sections which appear in the .dynsym section in an Irix 5
346 executable. */
347
348 static const char * const mips_elf_dynsym_sec_names[] =
349 {
350 ".text",
351 ".init",
352 ".fini",
353 ".data",
354 ".rodata",
355 ".sdata",
356 ".sbss",
357 ".bss",
358 NULL
359 };
360
361 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
362 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
363
364 /* The number of entries in mips_elf_dynsym_sec_names which go in the
365 text segment. */
366
367 #define MIPS_TEXT_DYNSYM_SECNO (3)
368
369 #endif /* 0 */
370
371 /* The names of the runtime procedure table symbols used on Irix 5. */
372
373 static const char * const mips_elf_dynsym_rtproc_names[] =
374 {
375 "_procedure_table",
376 "_procedure_string_table",
377 "_procedure_table_size",
378 NULL
379 };
380
381 /* These structures are used to generate the .compact_rel section on
382 Irix 5. */
383
384 typedef struct
385 {
386 unsigned long id1; /* Always one? */
387 unsigned long num; /* Number of compact relocation entries. */
388 unsigned long id2; /* Always two? */
389 unsigned long offset; /* The file offset of the first relocation. */
390 unsigned long reserved0; /* Zero? */
391 unsigned long reserved1; /* Zero? */
392 } Elf32_compact_rel;
393
394 typedef struct
395 {
396 bfd_byte id1[4];
397 bfd_byte num[4];
398 bfd_byte id2[4];
399 bfd_byte offset[4];
400 bfd_byte reserved0[4];
401 bfd_byte reserved1[4];
402 } Elf32_External_compact_rel;
403
404 typedef struct
405 {
406 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
407 unsigned int rtype : 4; /* Relocation types. See below. */
408 unsigned int dist2to : 8;
409 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
410 unsigned long konst; /* KONST field. See below. */
411 unsigned long vaddr; /* VADDR to be relocated. */
412 } Elf32_crinfo;
413
414 typedef struct
415 {
416 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
417 unsigned int rtype : 4; /* Relocation types. See below. */
418 unsigned int dist2to : 8;
419 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
420 unsigned long konst; /* KONST field. See below. */
421 } Elf32_crinfo2;
422
423 typedef struct
424 {
425 bfd_byte info[4];
426 bfd_byte konst[4];
427 bfd_byte vaddr[4];
428 } Elf32_External_crinfo;
429
430 typedef struct
431 {
432 bfd_byte info[4];
433 bfd_byte konst[4];
434 } Elf32_External_crinfo2;
435
436 /* These are the constants used to swap the bitfields in a crinfo. */
437
438 #define CRINFO_CTYPE (0x1)
439 #define CRINFO_CTYPE_SH (31)
440 #define CRINFO_RTYPE (0xf)
441 #define CRINFO_RTYPE_SH (27)
442 #define CRINFO_DIST2TO (0xff)
443 #define CRINFO_DIST2TO_SH (19)
444 #define CRINFO_RELVADDR (0x7ffff)
445 #define CRINFO_RELVADDR_SH (0)
446
447 /* A compact relocation info has long (3 words) or short (2 words)
448 formats. A short format doesn't have VADDR field and relvaddr
449 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
450 #define CRF_MIPS_LONG 1
451 #define CRF_MIPS_SHORT 0
452
453 /* There are 4 types of compact relocation at least. The value KONST
454 has different meaning for each type:
455
456 (type) (konst)
457 CT_MIPS_REL32 Address in data
458 CT_MIPS_WORD Address in word (XXX)
459 CT_MIPS_GPHI_LO GP - vaddr
460 CT_MIPS_JMPAD Address to jump
461 */
462
463 #define CRT_MIPS_REL32 0xa
464 #define CRT_MIPS_WORD 0xb
465 #define CRT_MIPS_GPHI_LO 0xc
466 #define CRT_MIPS_JMPAD 0xd
467
468 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
469 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
470 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
471 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
472
473 static void bfd_elf32_swap_compact_rel_out
474 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
475 static void bfd_elf32_swap_crinfo_out
476 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
477
478 #define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
479
480 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
481 from smaller values. Start with zero, widen, *then* decrement. */
482 #define MINUS_ONE (((bfd_vma)0) - 1)
483
484 static reloc_howto_type elf_mips_howto_table[] =
485 {
486 /* No relocation. */
487 HOWTO (R_MIPS_NONE, /* type */
488 0, /* rightshift */
489 0, /* size (0 = byte, 1 = short, 2 = long) */
490 0, /* bitsize */
491 false, /* pc_relative */
492 0, /* bitpos */
493 complain_overflow_dont, /* complain_on_overflow */
494 bfd_elf_generic_reloc, /* special_function */
495 "R_MIPS_NONE", /* name */
496 false, /* partial_inplace */
497 0, /* src_mask */
498 0, /* dst_mask */
499 false), /* pcrel_offset */
500
501 /* 16 bit relocation. */
502 HOWTO (R_MIPS_16, /* type */
503 0, /* rightshift */
504 1, /* size (0 = byte, 1 = short, 2 = long) */
505 16, /* bitsize */
506 false, /* pc_relative */
507 0, /* bitpos */
508 complain_overflow_bitfield, /* complain_on_overflow */
509 bfd_elf_generic_reloc, /* special_function */
510 "R_MIPS_16", /* name */
511 true, /* partial_inplace */
512 0xffff, /* src_mask */
513 0xffff, /* dst_mask */
514 false), /* pcrel_offset */
515
516 /* 32 bit relocation. */
517 HOWTO (R_MIPS_32, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 false, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_bitfield, /* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_MIPS_32", /* name */
526 true, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 false), /* pcrel_offset */
530
531 /* 32 bit symbol relative relocation. */
532 HOWTO (R_MIPS_REL32, /* type */
533 0, /* rightshift */
534 2, /* size (0 = byte, 1 = short, 2 = long) */
535 32, /* bitsize */
536 false, /* pc_relative */
537 0, /* bitpos */
538 complain_overflow_bitfield, /* complain_on_overflow */
539 bfd_elf_generic_reloc, /* special_function */
540 "R_MIPS_REL32", /* name */
541 true, /* partial_inplace */
542 0xffffffff, /* src_mask */
543 0xffffffff, /* dst_mask */
544 false), /* pcrel_offset */
545
546 /* 26 bit jump address. */
547 HOWTO (R_MIPS_26, /* type */
548 2, /* rightshift */
549 2, /* size (0 = byte, 1 = short, 2 = long) */
550 26, /* bitsize */
551 false, /* pc_relative */
552 0, /* bitpos */
553 complain_overflow_dont, /* complain_on_overflow */
554 /* This needs complex overflow
555 detection, because the upper four
556 bits must match the PC + 4. */
557 bfd_elf_generic_reloc, /* special_function */
558 "R_MIPS_26", /* name */
559 true, /* partial_inplace */
560 0x3ffffff, /* src_mask */
561 0x3ffffff, /* dst_mask */
562 false), /* pcrel_offset */
563
564 /* High 16 bits of symbol value. */
565 HOWTO (R_MIPS_HI16, /* type */
566 0, /* rightshift */
567 2, /* size (0 = byte, 1 = short, 2 = long) */
568 16, /* bitsize */
569 false, /* pc_relative */
570 0, /* bitpos */
571 complain_overflow_dont, /* complain_on_overflow */
572 _bfd_mips_elf_hi16_reloc, /* special_function */
573 "R_MIPS_HI16", /* name */
574 true, /* partial_inplace */
575 0xffff, /* src_mask */
576 0xffff, /* dst_mask */
577 false), /* pcrel_offset */
578
579 /* Low 16 bits of symbol value. */
580 HOWTO (R_MIPS_LO16, /* type */
581 0, /* rightshift */
582 2, /* size (0 = byte, 1 = short, 2 = long) */
583 16, /* bitsize */
584 false, /* pc_relative */
585 0, /* bitpos */
586 complain_overflow_dont, /* complain_on_overflow */
587 _bfd_mips_elf_lo16_reloc, /* special_function */
588 "R_MIPS_LO16", /* name */
589 true, /* partial_inplace */
590 0xffff, /* src_mask */
591 0xffff, /* dst_mask */
592 false), /* pcrel_offset */
593
594 /* GP relative reference. */
595 HOWTO (R_MIPS_GPREL16, /* type */
596 0, /* rightshift */
597 2, /* size (0 = byte, 1 = short, 2 = long) */
598 16, /* bitsize */
599 false, /* pc_relative */
600 0, /* bitpos */
601 complain_overflow_signed, /* complain_on_overflow */
602 _bfd_mips_elf_gprel16_reloc, /* special_function */
603 "R_MIPS_GPREL16", /* name */
604 true, /* partial_inplace */
605 0xffff, /* src_mask */
606 0xffff, /* dst_mask */
607 false), /* pcrel_offset */
608
609 /* Reference to literal section. */
610 HOWTO (R_MIPS_LITERAL, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 16, /* bitsize */
614 false, /* pc_relative */
615 0, /* bitpos */
616 complain_overflow_signed, /* complain_on_overflow */
617 _bfd_mips_elf_gprel16_reloc, /* special_function */
618 "R_MIPS_LITERAL", /* name */
619 true, /* partial_inplace */
620 0xffff, /* src_mask */
621 0xffff, /* dst_mask */
622 false), /* pcrel_offset */
623
624 /* Reference to global offset table. */
625 HOWTO (R_MIPS_GOT16, /* type */
626 0, /* rightshift */
627 2, /* size (0 = byte, 1 = short, 2 = long) */
628 16, /* bitsize */
629 false, /* pc_relative */
630 0, /* bitpos */
631 complain_overflow_signed, /* complain_on_overflow */
632 _bfd_mips_elf_got16_reloc, /* special_function */
633 "R_MIPS_GOT16", /* name */
634 false, /* partial_inplace */
635 0xffff, /* src_mask */
636 0xffff, /* dst_mask */
637 false), /* pcrel_offset */
638
639 /* 16 bit PC relative reference. */
640 HOWTO (R_MIPS_PC16, /* type */
641 0, /* rightshift */
642 2, /* size (0 = byte, 1 = short, 2 = long) */
643 16, /* bitsize */
644 true, /* pc_relative */
645 0, /* bitpos */
646 complain_overflow_signed, /* complain_on_overflow */
647 bfd_elf_generic_reloc, /* special_function */
648 "R_MIPS_PC16", /* name */
649 true, /* partial_inplace */
650 0xffff, /* src_mask */
651 0xffff, /* dst_mask */
652 true), /* pcrel_offset */
653
654 /* 16 bit call through global offset table. */
655 HOWTO (R_MIPS_CALL16, /* type */
656 0, /* rightshift */
657 2, /* size (0 = byte, 1 = short, 2 = long) */
658 16, /* bitsize */
659 false, /* pc_relative */
660 0, /* bitpos */
661 complain_overflow_signed, /* complain_on_overflow */
662 bfd_elf_generic_reloc, /* special_function */
663 "R_MIPS_CALL16", /* name */
664 false, /* partial_inplace */
665 0xffff, /* src_mask */
666 0xffff, /* dst_mask */
667 false), /* pcrel_offset */
668
669 /* 32 bit GP relative reference. */
670 HOWTO (R_MIPS_GPREL32, /* type */
671 0, /* rightshift */
672 2, /* size (0 = byte, 1 = short, 2 = long) */
673 32, /* bitsize */
674 false, /* pc_relative */
675 0, /* bitpos */
676 complain_overflow_bitfield, /* complain_on_overflow */
677 _bfd_mips_elf_gprel32_reloc, /* special_function */
678 "R_MIPS_GPREL32", /* name */
679 true, /* partial_inplace */
680 0xffffffff, /* src_mask */
681 0xffffffff, /* dst_mask */
682 false), /* pcrel_offset */
683
684 /* The remaining relocs are defined on Irix 5, although they are
685 not defined by the ABI. */
686 EMPTY_HOWTO (13),
687 EMPTY_HOWTO (14),
688 EMPTY_HOWTO (15),
689
690 /* A 5 bit shift field. */
691 HOWTO (R_MIPS_SHIFT5, /* type */
692 0, /* rightshift */
693 2, /* size (0 = byte, 1 = short, 2 = long) */
694 5, /* bitsize */
695 false, /* pc_relative */
696 6, /* bitpos */
697 complain_overflow_bitfield, /* complain_on_overflow */
698 bfd_elf_generic_reloc, /* special_function */
699 "R_MIPS_SHIFT5", /* name */
700 true, /* partial_inplace */
701 0x000007c0, /* src_mask */
702 0x000007c0, /* dst_mask */
703 false), /* pcrel_offset */
704
705 /* A 6 bit shift field. */
706 /* FIXME: This is not handled correctly; a special function is
707 needed to put the most significant bit in the right place. */
708 HOWTO (R_MIPS_SHIFT6, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 6, /* bitsize */
712 false, /* pc_relative */
713 6, /* bitpos */
714 complain_overflow_bitfield, /* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_MIPS_SHIFT6", /* name */
717 true, /* partial_inplace */
718 0x000007c4, /* src_mask */
719 0x000007c4, /* dst_mask */
720 false), /* pcrel_offset */
721
722 /* A 64 bit relocation. */
723 HOWTO (R_MIPS_64, /* type */
724 0, /* rightshift */
725 4, /* size (0 = byte, 1 = short, 2 = long) */
726 64, /* bitsize */
727 false, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_bitfield, /* complain_on_overflow */
730 mips32_64bit_reloc, /* special_function */
731 "R_MIPS_64", /* name */
732 true, /* partial_inplace */
733 MINUS_ONE, /* src_mask */
734 MINUS_ONE, /* dst_mask */
735 false), /* pcrel_offset */
736
737 /* Displacement in the global offset table. */
738 HOWTO (R_MIPS_GOT_DISP, /* type */
739 0, /* rightshift */
740 2, /* size (0 = byte, 1 = short, 2 = long) */
741 16, /* bitsize */
742 false, /* pc_relative */
743 0, /* bitpos */
744 complain_overflow_bitfield, /* complain_on_overflow */
745 bfd_elf_generic_reloc, /* special_function */
746 "R_MIPS_GOT_DISP", /* name */
747 true, /* partial_inplace */
748 0x0000ffff, /* src_mask */
749 0x0000ffff, /* dst_mask */
750 false), /* pcrel_offset */
751
752 /* Displacement to page pointer in the global offset table. */
753 HOWTO (R_MIPS_GOT_PAGE, /* type */
754 0, /* rightshift */
755 2, /* size (0 = byte, 1 = short, 2 = long) */
756 16, /* bitsize */
757 false, /* pc_relative */
758 0, /* bitpos */
759 complain_overflow_bitfield, /* complain_on_overflow */
760 bfd_elf_generic_reloc, /* special_function */
761 "R_MIPS_GOT_PAGE", /* name */
762 true, /* partial_inplace */
763 0x0000ffff, /* src_mask */
764 0x0000ffff, /* dst_mask */
765 false), /* pcrel_offset */
766
767 /* Offset from page pointer in the global offset table. */
768 HOWTO (R_MIPS_GOT_OFST, /* type */
769 0, /* rightshift */
770 2, /* size (0 = byte, 1 = short, 2 = long) */
771 16, /* bitsize */
772 false, /* pc_relative */
773 0, /* bitpos */
774 complain_overflow_bitfield, /* complain_on_overflow */
775 bfd_elf_generic_reloc, /* special_function */
776 "R_MIPS_GOT_OFST", /* name */
777 true, /* partial_inplace */
778 0x0000ffff, /* src_mask */
779 0x0000ffff, /* dst_mask */
780 false), /* pcrel_offset */
781
782 /* High 16 bits of displacement in global offset table. */
783 HOWTO (R_MIPS_GOT_HI16, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 false, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_dont, /* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_MIPS_GOT_HI16", /* name */
792 true, /* partial_inplace */
793 0x0000ffff, /* src_mask */
794 0x0000ffff, /* dst_mask */
795 false), /* pcrel_offset */
796
797 /* Low 16 bits of displacement in global offset table. */
798 HOWTO (R_MIPS_GOT_LO16, /* type */
799 0, /* rightshift */
800 2, /* size (0 = byte, 1 = short, 2 = long) */
801 16, /* bitsize */
802 false, /* pc_relative */
803 0, /* bitpos */
804 complain_overflow_dont, /* complain_on_overflow */
805 bfd_elf_generic_reloc, /* special_function */
806 "R_MIPS_GOT_LO16", /* name */
807 true, /* partial_inplace */
808 0x0000ffff, /* src_mask */
809 0x0000ffff, /* dst_mask */
810 false), /* pcrel_offset */
811
812 /* 64 bit subtraction. Used in the N32 ABI. */
813 HOWTO (R_MIPS_SUB, /* type */
814 0, /* rightshift */
815 4, /* size (0 = byte, 1 = short, 2 = long) */
816 64, /* bitsize */
817 false, /* pc_relative */
818 0, /* bitpos */
819 complain_overflow_bitfield, /* complain_on_overflow */
820 bfd_elf_generic_reloc, /* special_function */
821 "R_MIPS_SUB", /* name */
822 true, /* partial_inplace */
823 MINUS_ONE, /* src_mask */
824 MINUS_ONE, /* dst_mask */
825 false), /* pcrel_offset */
826
827 /* Used to cause the linker to insert and delete instructions? */
828 EMPTY_HOWTO (R_MIPS_INSERT_A),
829 EMPTY_HOWTO (R_MIPS_INSERT_B),
830 EMPTY_HOWTO (R_MIPS_DELETE),
831
832 /* Get the higher value of a 64 bit addend. */
833 HOWTO (R_MIPS_HIGHER, /* type */
834 0, /* rightshift */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
836 16, /* bitsize */
837 false, /* pc_relative */
838 0, /* bitpos */
839 complain_overflow_dont, /* complain_on_overflow */
840 bfd_elf_generic_reloc, /* special_function */
841 "R_MIPS_HIGHER", /* name */
842 true, /* partial_inplace */
843 0, /* src_mask */
844 0xffff, /* dst_mask */
845 false), /* pcrel_offset */
846
847 /* Get the highest value of a 64 bit addend. */
848 HOWTO (R_MIPS_HIGHEST, /* type */
849 0, /* rightshift */
850 2, /* size (0 = byte, 1 = short, 2 = long) */
851 16, /* bitsize */
852 false, /* pc_relative */
853 0, /* bitpos */
854 complain_overflow_dont, /* complain_on_overflow */
855 bfd_elf_generic_reloc, /* special_function */
856 "R_MIPS_HIGHEST", /* name */
857 true, /* partial_inplace */
858 0, /* src_mask */
859 0xffff, /* dst_mask */
860 false), /* pcrel_offset */
861
862 /* High 16 bits of displacement in global offset table. */
863 HOWTO (R_MIPS_CALL_HI16, /* type */
864 0, /* rightshift */
865 2, /* size (0 = byte, 1 = short, 2 = long) */
866 16, /* bitsize */
867 false, /* pc_relative */
868 0, /* bitpos */
869 complain_overflow_dont, /* complain_on_overflow */
870 bfd_elf_generic_reloc, /* special_function */
871 "R_MIPS_CALL_HI16", /* name */
872 true, /* partial_inplace */
873 0x0000ffff, /* src_mask */
874 0x0000ffff, /* dst_mask */
875 false), /* pcrel_offset */
876
877 /* Low 16 bits of displacement in global offset table. */
878 HOWTO (R_MIPS_CALL_LO16, /* type */
879 0, /* rightshift */
880 2, /* size (0 = byte, 1 = short, 2 = long) */
881 16, /* bitsize */
882 false, /* pc_relative */
883 0, /* bitpos */
884 complain_overflow_dont, /* complain_on_overflow */
885 bfd_elf_generic_reloc, /* special_function */
886 "R_MIPS_CALL_LO16", /* name */
887 true, /* partial_inplace */
888 0x0000ffff, /* src_mask */
889 0x0000ffff, /* dst_mask */
890 false), /* pcrel_offset */
891
892 /* Section displacement. */
893 HOWTO (R_MIPS_SCN_DISP, /* type */
894 0, /* rightshift */
895 2, /* size (0 = byte, 1 = short, 2 = long) */
896 32, /* bitsize */
897 false, /* pc_relative */
898 0, /* bitpos */
899 complain_overflow_dont, /* complain_on_overflow */
900 bfd_elf_generic_reloc, /* special_function */
901 "R_MIPS_SCN_DISP", /* name */
902 false, /* partial_inplace */
903 0xffffffff, /* src_mask */
904 0xffffffff, /* dst_mask */
905 false), /* pcrel_offset */
906
907 EMPTY_HOWTO (R_MIPS_REL16),
908 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
909 EMPTY_HOWTO (R_MIPS_PJUMP),
910 EMPTY_HOWTO (R_MIPS_RELGOT),
911
912 /* Protected jump conversion. This is an optimization hint. No
913 relocation is required for correctness. */
914 HOWTO (R_MIPS_JALR, /* type */
915 0, /* rightshift */
916 0, /* size (0 = byte, 1 = short, 2 = long) */
917 0, /* bitsize */
918 false, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont, /* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_MIPS_JALR", /* name */
923 false, /* partial_inplace */
924 0x00000000, /* src_mask */
925 0x00000000, /* dst_mask */
926 false), /* pcrel_offset */
927 };
928
929 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
930 is a hack to make the linker think that we need 64 bit values. */
931 static reloc_howto_type elf_mips_ctor64_howto =
932 HOWTO (R_MIPS_64, /* type */
933 0, /* rightshift */
934 4, /* size (0 = byte, 1 = short, 2 = long) */
935 32, /* bitsize */
936 false, /* pc_relative */
937 0, /* bitpos */
938 complain_overflow_signed, /* complain_on_overflow */
939 mips32_64bit_reloc, /* special_function */
940 "R_MIPS_64", /* name */
941 true, /* partial_inplace */
942 0xffffffff, /* src_mask */
943 0xffffffff, /* dst_mask */
944 false); /* pcrel_offset */
945
946 /* The reloc used for the mips16 jump instruction. */
947 static reloc_howto_type elf_mips16_jump_howto =
948 HOWTO (R_MIPS16_26, /* type */
949 2, /* rightshift */
950 2, /* size (0 = byte, 1 = short, 2 = long) */
951 26, /* bitsize */
952 false, /* pc_relative */
953 0, /* bitpos */
954 complain_overflow_dont, /* complain_on_overflow */
955 /* This needs complex overflow
956 detection, because the upper four
957 bits must match the PC. */
958 mips16_jump_reloc, /* special_function */
959 "R_MIPS16_26", /* name */
960 true, /* partial_inplace */
961 0x3ffffff, /* src_mask */
962 0x3ffffff, /* dst_mask */
963 false); /* pcrel_offset */
964
965 /* The reloc used for the mips16 gprel instruction. */
966 static reloc_howto_type elf_mips16_gprel_howto =
967 HOWTO (R_MIPS16_GPREL, /* type */
968 0, /* rightshift */
969 2, /* size (0 = byte, 1 = short, 2 = long) */
970 16, /* bitsize */
971 false, /* pc_relative */
972 0, /* bitpos */
973 complain_overflow_signed, /* complain_on_overflow */
974 mips16_gprel_reloc, /* special_function */
975 "R_MIPS16_GPREL", /* name */
976 true, /* partial_inplace */
977 0x07ff001f, /* src_mask */
978 0x07ff001f, /* dst_mask */
979 false); /* pcrel_offset */
980
981 /* GNU extensions for embedded-pic. */
982 /* High 16 bits of symbol value, pc-relative. */
983 static reloc_howto_type elf_mips_gnu_rel_hi16 =
984 HOWTO (R_MIPS_GNU_REL_HI16, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 16, /* bitsize */
988 true, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont, /* complain_on_overflow */
991 _bfd_mips_elf_hi16_reloc, /* special_function */
992 "R_MIPS_GNU_REL_HI16", /* name */
993 true, /* partial_inplace */
994 0xffff, /* src_mask */
995 0xffff, /* dst_mask */
996 true); /* pcrel_offset */
997
998 /* Low 16 bits of symbol value, pc-relative. */
999 static reloc_howto_type elf_mips_gnu_rel_lo16 =
1000 HOWTO (R_MIPS_GNU_REL_LO16, /* type */
1001 0, /* rightshift */
1002 2, /* size (0 = byte, 1 = short, 2 = long) */
1003 16, /* bitsize */
1004 true, /* pc_relative */
1005 0, /* bitpos */
1006 complain_overflow_dont, /* complain_on_overflow */
1007 _bfd_mips_elf_lo16_reloc, /* special_function */
1008 "R_MIPS_GNU_REL_LO16", /* name */
1009 true, /* partial_inplace */
1010 0xffff, /* src_mask */
1011 0xffff, /* dst_mask */
1012 true); /* pcrel_offset */
1013
1014 /* 16 bit offset for pc-relative branches. */
1015 static reloc_howto_type elf_mips_gnu_rel16_s2 =
1016 HOWTO (R_MIPS_GNU_REL16_S2, /* type */
1017 2, /* rightshift */
1018 2, /* size (0 = byte, 1 = short, 2 = long) */
1019 16, /* bitsize */
1020 true, /* pc_relative */
1021 0, /* bitpos */
1022 complain_overflow_signed, /* complain_on_overflow */
1023 bfd_elf_generic_reloc, /* special_function */
1024 "R_MIPS_GNU_REL16_S2", /* name */
1025 true, /* partial_inplace */
1026 0xffff, /* src_mask */
1027 0xffff, /* dst_mask */
1028 true); /* pcrel_offset */
1029
1030 /* 64 bit pc-relative. */
1031 static reloc_howto_type elf_mips_gnu_pcrel64 =
1032 HOWTO (R_MIPS_PC64, /* type */
1033 0, /* rightshift */
1034 4, /* size (0 = byte, 1 = short, 2 = long) */
1035 64, /* bitsize */
1036 true, /* pc_relative */
1037 0, /* bitpos */
1038 complain_overflow_signed, /* complain_on_overflow */
1039 bfd_elf_generic_reloc, /* special_function */
1040 "R_MIPS_PC64", /* name */
1041 true, /* partial_inplace */
1042 MINUS_ONE, /* src_mask */
1043 MINUS_ONE, /* dst_mask */
1044 true); /* pcrel_offset */
1045
1046 /* 32 bit pc-relative. */
1047 static reloc_howto_type elf_mips_gnu_pcrel32 =
1048 HOWTO (R_MIPS_PC32, /* type */
1049 0, /* rightshift */
1050 2, /* size (0 = byte, 1 = short, 2 = long) */
1051 32, /* bitsize */
1052 true, /* pc_relative */
1053 0, /* bitpos */
1054 complain_overflow_signed, /* complain_on_overflow */
1055 bfd_elf_generic_reloc, /* special_function */
1056 "R_MIPS_PC32", /* name */
1057 true, /* partial_inplace */
1058 0xffffffff, /* src_mask */
1059 0xffffffff, /* dst_mask */
1060 true); /* pcrel_offset */
1061
1062 /* GNU extension to record C++ vtable hierarchy */
1063 static reloc_howto_type elf_mips_gnu_vtinherit_howto =
1064 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
1065 0, /* rightshift */
1066 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 0, /* bitsize */
1068 false, /* pc_relative */
1069 0, /* bitpos */
1070 complain_overflow_dont, /* complain_on_overflow */
1071 NULL, /* special_function */
1072 "R_MIPS_GNU_VTINHERIT", /* name */
1073 false, /* partial_inplace */
1074 0, /* src_mask */
1075 0, /* dst_mask */
1076 false); /* pcrel_offset */
1077
1078 /* GNU extension to record C++ vtable member usage */
1079 static reloc_howto_type elf_mips_gnu_vtentry_howto =
1080 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
1081 0, /* rightshift */
1082 2, /* size (0 = byte, 1 = short, 2 = long) */
1083 0, /* bitsize */
1084 false, /* pc_relative */
1085 0, /* bitpos */
1086 complain_overflow_dont, /* complain_on_overflow */
1087 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1088 "R_MIPS_GNU_VTENTRY", /* name */
1089 false, /* partial_inplace */
1090 0, /* src_mask */
1091 0, /* dst_mask */
1092 false); /* pcrel_offset */
1093
1094 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
1095 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1096 the HI16. Here we just save the information we need; we do the
1097 actual relocation when we see the LO16. MIPS ELF requires that the
1098 LO16 immediately follow the HI16. As a GNU extension, we permit an
1099 arbitrary number of HI16 relocs to be associated with a single LO16
1100 reloc. This extension permits gcc to output the HI and LO relocs
1101 itself. */
1102
1103 struct mips_hi16
1104 {
1105 struct mips_hi16 *next;
1106 bfd_byte *addr;
1107 bfd_vma addend;
1108 };
1109
1110 /* FIXME: This should not be a static variable. */
1111
1112 static struct mips_hi16 *mips_hi16_list;
1113
1114 bfd_reloc_status_type
1115 _bfd_mips_elf_hi16_reloc (abfd,
1116 reloc_entry,
1117 symbol,
1118 data,
1119 input_section,
1120 output_bfd,
1121 error_message)
1122 bfd *abfd ATTRIBUTE_UNUSED;
1123 arelent *reloc_entry;
1124 asymbol *symbol;
1125 PTR data;
1126 asection *input_section;
1127 bfd *output_bfd;
1128 char **error_message;
1129 {
1130 bfd_reloc_status_type ret;
1131 bfd_vma relocation;
1132 struct mips_hi16 *n;
1133
1134 /* If we're relocating, and this an external symbol, we don't want
1135 to change anything. */
1136 if (output_bfd != (bfd *) NULL
1137 && (symbol->flags & BSF_SECTION_SYM) == 0
1138 && reloc_entry->addend == 0)
1139 {
1140 reloc_entry->address += input_section->output_offset;
1141 return bfd_reloc_ok;
1142 }
1143
1144 ret = bfd_reloc_ok;
1145
1146 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1147 {
1148 boolean relocateable;
1149 bfd_vma gp;
1150
1151 if (ret == bfd_reloc_undefined)
1152 abort ();
1153
1154 if (output_bfd != NULL)
1155 relocateable = true;
1156 else
1157 {
1158 relocateable = false;
1159 output_bfd = symbol->section->output_section->owner;
1160 }
1161
1162 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1163 error_message, &gp);
1164 if (ret != bfd_reloc_ok)
1165 return ret;
1166
1167 relocation = gp - reloc_entry->address;
1168 }
1169 else
1170 {
1171 if (bfd_is_und_section (symbol->section)
1172 && output_bfd == (bfd *) NULL)
1173 ret = bfd_reloc_undefined;
1174
1175 if (bfd_is_com_section (symbol->section))
1176 relocation = 0;
1177 else
1178 relocation = symbol->value;
1179 }
1180
1181 relocation += symbol->section->output_section->vma;
1182 relocation += symbol->section->output_offset;
1183 relocation += reloc_entry->addend;
1184
1185 if (reloc_entry->address > input_section->_cooked_size)
1186 return bfd_reloc_outofrange;
1187
1188 /* Save the information, and let LO16 do the actual relocation. */
1189 n = (struct mips_hi16 *) bfd_malloc (sizeof *n);
1190 if (n == NULL)
1191 return bfd_reloc_outofrange;
1192 n->addr = (bfd_byte *) data + reloc_entry->address;
1193 n->addend = relocation;
1194 n->next = mips_hi16_list;
1195 mips_hi16_list = n;
1196
1197 if (output_bfd != (bfd *) NULL)
1198 reloc_entry->address += input_section->output_offset;
1199
1200 return ret;
1201 }
1202
1203 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1204 inplace relocation; this function exists in order to do the
1205 R_MIPS_HI16 relocation described above. */
1206
1207 bfd_reloc_status_type
1208 _bfd_mips_elf_lo16_reloc (abfd,
1209 reloc_entry,
1210 symbol,
1211 data,
1212 input_section,
1213 output_bfd,
1214 error_message)
1215 bfd *abfd;
1216 arelent *reloc_entry;
1217 asymbol *symbol;
1218 PTR data;
1219 asection *input_section;
1220 bfd *output_bfd;
1221 char **error_message;
1222 {
1223 arelent gp_disp_relent;
1224
1225 if (mips_hi16_list != NULL)
1226 {
1227 struct mips_hi16 *l;
1228
1229 l = mips_hi16_list;
1230 while (l != NULL)
1231 {
1232 unsigned long insn;
1233 unsigned long val;
1234 unsigned long vallo;
1235 struct mips_hi16 *next;
1236
1237 /* Do the HI16 relocation. Note that we actually don't need
1238 to know anything about the LO16 itself, except where to
1239 find the low 16 bits of the addend needed by the LO16. */
1240 insn = bfd_get_32 (abfd, l->addr);
1241 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1242 & 0xffff);
1243 val = ((insn & 0xffff) << 16) + vallo;
1244 val += l->addend;
1245
1246 /* The low order 16 bits are always treated as a signed
1247 value. Therefore, a negative value in the low order bits
1248 requires an adjustment in the high order bits. We need
1249 to make this adjustment in two ways: once for the bits we
1250 took from the data, and once for the bits we are putting
1251 back in to the data. */
1252 if ((vallo & 0x8000) != 0)
1253 val -= 0x10000;
1254 if ((val & 0x8000) != 0)
1255 val += 0x10000;
1256
1257 insn = (insn & ~0xffff) | ((val >> 16) & 0xffff);
1258 bfd_put_32 (abfd, insn, l->addr);
1259
1260 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1261 {
1262 gp_disp_relent = *reloc_entry;
1263 reloc_entry = &gp_disp_relent;
1264 reloc_entry->addend = l->addend;
1265 }
1266
1267 next = l->next;
1268 free (l);
1269 l = next;
1270 }
1271
1272 mips_hi16_list = NULL;
1273 }
1274 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1275 {
1276 bfd_reloc_status_type ret;
1277 bfd_vma gp, relocation;
1278
1279 /* FIXME: Does this case ever occur? */
1280
1281 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1282 if (ret != bfd_reloc_ok)
1283 return ret;
1284
1285 relocation = gp - reloc_entry->address;
1286 relocation += symbol->section->output_section->vma;
1287 relocation += symbol->section->output_offset;
1288 relocation += reloc_entry->addend;
1289
1290 if (reloc_entry->address > input_section->_cooked_size)
1291 return bfd_reloc_outofrange;
1292
1293 gp_disp_relent = *reloc_entry;
1294 reloc_entry = &gp_disp_relent;
1295 reloc_entry->addend = relocation - 4;
1296 }
1297
1298 /* Now do the LO16 reloc in the usual way. */
1299 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1300 input_section, output_bfd, error_message);
1301 }
1302
1303 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1304 table used for PIC code. If the symbol is an external symbol, the
1305 instruction is modified to contain the offset of the appropriate
1306 entry in the global offset table. If the symbol is a section
1307 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1308 addends are combined to form the real addend against the section
1309 symbol; the GOT16 is modified to contain the offset of an entry in
1310 the global offset table, and the LO16 is modified to offset it
1311 appropriately. Thus an offset larger than 16 bits requires a
1312 modified value in the global offset table.
1313
1314 This implementation suffices for the assembler, but the linker does
1315 not yet know how to create global offset tables. */
1316
1317 bfd_reloc_status_type
1318 _bfd_mips_elf_got16_reloc (abfd,
1319 reloc_entry,
1320 symbol,
1321 data,
1322 input_section,
1323 output_bfd,
1324 error_message)
1325 bfd *abfd;
1326 arelent *reloc_entry;
1327 asymbol *symbol;
1328 PTR data;
1329 asection *input_section;
1330 bfd *output_bfd;
1331 char **error_message;
1332 {
1333 /* If we're relocating, and this an external symbol, we don't want
1334 to change anything. */
1335 if (output_bfd != (bfd *) NULL
1336 && (symbol->flags & BSF_SECTION_SYM) == 0
1337 && reloc_entry->addend == 0)
1338 {
1339 reloc_entry->address += input_section->output_offset;
1340 return bfd_reloc_ok;
1341 }
1342
1343 /* If we're relocating, and this is a local symbol, we can handle it
1344 just like HI16. */
1345 if (output_bfd != (bfd *) NULL
1346 && (symbol->flags & BSF_SECTION_SYM) != 0)
1347 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1348 input_section, output_bfd, error_message);
1349
1350 abort ();
1351 }
1352
1353 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1354 dangerous relocation. */
1355
1356 static boolean
1357 mips_elf_assign_gp (output_bfd, pgp)
1358 bfd *output_bfd;
1359 bfd_vma *pgp;
1360 {
1361 unsigned int count;
1362 asymbol **sym;
1363 unsigned int i;
1364
1365 /* If we've already figured out what GP will be, just return it. */
1366 *pgp = _bfd_get_gp_value (output_bfd);
1367 if (*pgp)
1368 return true;
1369
1370 count = bfd_get_symcount (output_bfd);
1371 sym = bfd_get_outsymbols (output_bfd);
1372
1373 /* The linker script will have created a symbol named `_gp' with the
1374 appropriate value. */
1375 if (sym == (asymbol **) NULL)
1376 i = count;
1377 else
1378 {
1379 for (i = 0; i < count; i++, sym++)
1380 {
1381 register CONST char *name;
1382
1383 name = bfd_asymbol_name (*sym);
1384 if (*name == '_' && strcmp (name, "_gp") == 0)
1385 {
1386 *pgp = bfd_asymbol_value (*sym);
1387 _bfd_set_gp_value (output_bfd, *pgp);
1388 break;
1389 }
1390 }
1391 }
1392
1393 if (i >= count)
1394 {
1395 /* Only get the error once. */
1396 *pgp = 4;
1397 _bfd_set_gp_value (output_bfd, *pgp);
1398 return false;
1399 }
1400
1401 return true;
1402 }
1403
1404 /* We have to figure out the gp value, so that we can adjust the
1405 symbol value correctly. We look up the symbol _gp in the output
1406 BFD. If we can't find it, we're stuck. We cache it in the ELF
1407 target data. We don't need to adjust the symbol value for an
1408 external symbol if we are producing relocateable output. */
1409
1410 static bfd_reloc_status_type
1411 mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1412 bfd *output_bfd;
1413 asymbol *symbol;
1414 boolean relocateable;
1415 char **error_message;
1416 bfd_vma *pgp;
1417 {
1418 if (bfd_is_und_section (symbol->section)
1419 && ! relocateable)
1420 {
1421 *pgp = 0;
1422 return bfd_reloc_undefined;
1423 }
1424
1425 *pgp = _bfd_get_gp_value (output_bfd);
1426 if (*pgp == 0
1427 && (! relocateable
1428 || (symbol->flags & BSF_SECTION_SYM) != 0))
1429 {
1430 if (relocateable)
1431 {
1432 /* Make up a value. */
1433 *pgp = symbol->section->output_section->vma + 0x4000;
1434 _bfd_set_gp_value (output_bfd, *pgp);
1435 }
1436 else if (!mips_elf_assign_gp (output_bfd, pgp))
1437 {
1438 *error_message =
1439 (char *) _("GP relative relocation when _gp not defined");
1440 return bfd_reloc_dangerous;
1441 }
1442 }
1443
1444 return bfd_reloc_ok;
1445 }
1446
1447 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1448 become the offset from the gp register. This function also handles
1449 R_MIPS_LITERAL relocations, although those can be handled more
1450 cleverly because the entries in the .lit8 and .lit4 sections can be
1451 merged. */
1452
1453 static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
1454 arelent *, asection *,
1455 boolean, PTR, bfd_vma));
1456
1457 bfd_reloc_status_type
1458 _bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
1459 output_bfd, error_message)
1460 bfd *abfd;
1461 arelent *reloc_entry;
1462 asymbol *symbol;
1463 PTR data;
1464 asection *input_section;
1465 bfd *output_bfd;
1466 char **error_message;
1467 {
1468 boolean relocateable;
1469 bfd_reloc_status_type ret;
1470 bfd_vma gp;
1471
1472 /* If we're relocating, and this is an external symbol with no
1473 addend, we don't want to change anything. We will only have an
1474 addend if this is a newly created reloc, not read from an ELF
1475 file. */
1476 if (output_bfd != (bfd *) NULL
1477 && (symbol->flags & BSF_SECTION_SYM) == 0
1478 && reloc_entry->addend == 0)
1479 {
1480 reloc_entry->address += input_section->output_offset;
1481 return bfd_reloc_ok;
1482 }
1483
1484 if (output_bfd != (bfd *) NULL)
1485 relocateable = true;
1486 else
1487 {
1488 relocateable = false;
1489 output_bfd = symbol->section->output_section->owner;
1490 }
1491
1492 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1493 &gp);
1494 if (ret != bfd_reloc_ok)
1495 return ret;
1496
1497 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1498 relocateable, data, gp);
1499 }
1500
1501 static bfd_reloc_status_type
1502 gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1503 gp)
1504 bfd *abfd;
1505 asymbol *symbol;
1506 arelent *reloc_entry;
1507 asection *input_section;
1508 boolean relocateable;
1509 PTR data;
1510 bfd_vma gp;
1511 {
1512 bfd_vma relocation;
1513 unsigned long insn;
1514 unsigned long val;
1515
1516 if (bfd_is_com_section (symbol->section))
1517 relocation = 0;
1518 else
1519 relocation = symbol->value;
1520
1521 relocation += symbol->section->output_section->vma;
1522 relocation += symbol->section->output_offset;
1523
1524 if (reloc_entry->address > input_section->_cooked_size)
1525 return bfd_reloc_outofrange;
1526
1527 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1528
1529 /* Set val to the offset into the section or symbol. */
1530 if (reloc_entry->howto->src_mask == 0)
1531 {
1532 /* This case occurs with the 64-bit MIPS ELF ABI. */
1533 val = reloc_entry->addend;
1534 }
1535 else
1536 {
1537 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1538 if (val & 0x8000)
1539 val -= 0x10000;
1540 }
1541
1542 /* Adjust val for the final section location and GP value. If we
1543 are producing relocateable output, we don't want to do this for
1544 an external symbol. */
1545 if (! relocateable
1546 || (symbol->flags & BSF_SECTION_SYM) != 0)
1547 val += relocation - gp;
1548
1549 insn = (insn & ~0xffff) | (val & 0xffff);
1550 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1551
1552 if (relocateable)
1553 reloc_entry->address += input_section->output_offset;
1554
1555 /* Make sure it fit in 16 bits. */
1556 if ((long) val >= 0x8000 || (long) val < -0x8000)
1557 return bfd_reloc_overflow;
1558
1559 return bfd_reloc_ok;
1560 }
1561
1562 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1563 from the gp register? XXX */
1564
1565 static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
1566 arelent *, asection *,
1567 boolean, PTR, bfd_vma));
1568
1569 bfd_reloc_status_type
1570 _bfd_mips_elf_gprel32_reloc (abfd,
1571 reloc_entry,
1572 symbol,
1573 data,
1574 input_section,
1575 output_bfd,
1576 error_message)
1577 bfd *abfd;
1578 arelent *reloc_entry;
1579 asymbol *symbol;
1580 PTR data;
1581 asection *input_section;
1582 bfd *output_bfd;
1583 char **error_message;
1584 {
1585 boolean relocateable;
1586 bfd_reloc_status_type ret;
1587 bfd_vma gp;
1588
1589 /* If we're relocating, and this is an external symbol with no
1590 addend, we don't want to change anything. We will only have an
1591 addend if this is a newly created reloc, not read from an ELF
1592 file. */
1593 if (output_bfd != (bfd *) NULL
1594 && (symbol->flags & BSF_SECTION_SYM) == 0
1595 && reloc_entry->addend == 0)
1596 {
1597 *error_message = (char *)
1598 _("32bits gp relative relocation occurs for an external symbol");
1599 return bfd_reloc_outofrange;
1600 }
1601
1602 if (output_bfd != (bfd *) NULL)
1603 {
1604 relocateable = true;
1605 gp = _bfd_get_gp_value (output_bfd);
1606 }
1607 else
1608 {
1609 relocateable = false;
1610 output_bfd = symbol->section->output_section->owner;
1611
1612 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1613 error_message, &gp);
1614 if (ret != bfd_reloc_ok)
1615 return ret;
1616 }
1617
1618 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
1619 relocateable, data, gp);
1620 }
1621
1622 static bfd_reloc_status_type
1623 gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1624 gp)
1625 bfd *abfd;
1626 asymbol *symbol;
1627 arelent *reloc_entry;
1628 asection *input_section;
1629 boolean relocateable;
1630 PTR data;
1631 bfd_vma gp;
1632 {
1633 bfd_vma relocation;
1634 unsigned long val;
1635
1636 if (bfd_is_com_section (symbol->section))
1637 relocation = 0;
1638 else
1639 relocation = symbol->value;
1640
1641 relocation += symbol->section->output_section->vma;
1642 relocation += symbol->section->output_offset;
1643
1644 if (reloc_entry->address > input_section->_cooked_size)
1645 return bfd_reloc_outofrange;
1646
1647 if (reloc_entry->howto->src_mask == 0)
1648 {
1649 /* This case arises with the 64-bit MIPS ELF ABI. */
1650 val = 0;
1651 }
1652 else
1653 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1654
1655 /* Set val to the offset into the section or symbol. */
1656 val += reloc_entry->addend;
1657
1658 /* Adjust val for the final section location and GP value. If we
1659 are producing relocateable output, we don't want to do this for
1660 an external symbol. */
1661 if (! relocateable
1662 || (symbol->flags & BSF_SECTION_SYM) != 0)
1663 val += relocation - gp;
1664
1665 bfd_put_32 (abfd, val, (bfd_byte *) data + reloc_entry->address);
1666
1667 if (relocateable)
1668 reloc_entry->address += input_section->output_offset;
1669
1670 return bfd_reloc_ok;
1671 }
1672
1673 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
1674 generated when addresses are 64 bits. The upper 32 bits are a simple
1675 sign extension. */
1676
1677 static bfd_reloc_status_type
1678 mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
1679 output_bfd, error_message)
1680 bfd *abfd;
1681 arelent *reloc_entry;
1682 asymbol *symbol;
1683 PTR data;
1684 asection *input_section;
1685 bfd *output_bfd;
1686 char **error_message;
1687 {
1688 bfd_reloc_status_type r;
1689 arelent reloc32;
1690 unsigned long val;
1691 bfd_size_type addr;
1692
1693 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1694 input_section, output_bfd, error_message);
1695 if (r != bfd_reloc_continue)
1696 return r;
1697
1698 /* Do a normal 32 bit relocation on the lower 32 bits. */
1699 reloc32 = *reloc_entry;
1700 if (bfd_big_endian (abfd))
1701 reloc32.address += 4;
1702 reloc32.howto = &elf_mips_howto_table[R_MIPS_32];
1703 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
1704 output_bfd, error_message);
1705
1706 /* Sign extend into the upper 32 bits. */
1707 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
1708 if ((val & 0x80000000) != 0)
1709 val = 0xffffffff;
1710 else
1711 val = 0;
1712 addr = reloc_entry->address;
1713 if (bfd_little_endian (abfd))
1714 addr += 4;
1715 bfd_put_32 (abfd, val, (bfd_byte *) data + addr);
1716
1717 return r;
1718 }
1719
1720 /* Handle a mips16 jump. */
1721
1722 static bfd_reloc_status_type
1723 mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
1724 output_bfd, error_message)
1725 bfd *abfd ATTRIBUTE_UNUSED;
1726 arelent *reloc_entry;
1727 asymbol *symbol;
1728 PTR data ATTRIBUTE_UNUSED;
1729 asection *input_section;
1730 bfd *output_bfd;
1731 char **error_message ATTRIBUTE_UNUSED;
1732 {
1733 if (output_bfd != (bfd *) NULL
1734 && (symbol->flags & BSF_SECTION_SYM) == 0
1735 && reloc_entry->addend == 0)
1736 {
1737 reloc_entry->address += input_section->output_offset;
1738 return bfd_reloc_ok;
1739 }
1740
1741 /* FIXME. */
1742 {
1743 static boolean warned;
1744
1745 if (! warned)
1746 (*_bfd_error_handler)
1747 (_("Linking mips16 objects into %s format is not supported"),
1748 bfd_get_target (input_section->output_section->owner));
1749 warned = true;
1750 }
1751
1752 return bfd_reloc_undefined;
1753 }
1754
1755 /* Handle a mips16 GP relative reloc. */
1756
1757 static bfd_reloc_status_type
1758 mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
1759 output_bfd, error_message)
1760 bfd *abfd;
1761 arelent *reloc_entry;
1762 asymbol *symbol;
1763 PTR data;
1764 asection *input_section;
1765 bfd *output_bfd;
1766 char **error_message;
1767 {
1768 boolean relocateable;
1769 bfd_reloc_status_type ret;
1770 bfd_vma gp;
1771 unsigned short extend, insn;
1772 unsigned long final;
1773
1774 /* If we're relocating, and this is an external symbol with no
1775 addend, we don't want to change anything. We will only have an
1776 addend if this is a newly created reloc, not read from an ELF
1777 file. */
1778 if (output_bfd != NULL
1779 && (symbol->flags & BSF_SECTION_SYM) == 0
1780 && reloc_entry->addend == 0)
1781 {
1782 reloc_entry->address += input_section->output_offset;
1783 return bfd_reloc_ok;
1784 }
1785
1786 if (output_bfd != NULL)
1787 relocateable = true;
1788 else
1789 {
1790 relocateable = false;
1791 output_bfd = symbol->section->output_section->owner;
1792 }
1793
1794 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1795 &gp);
1796 if (ret != bfd_reloc_ok)
1797 return ret;
1798
1799 if (reloc_entry->address > input_section->_cooked_size)
1800 return bfd_reloc_outofrange;
1801
1802 /* Pick up the mips16 extend instruction and the real instruction. */
1803 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
1804 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
1805
1806 /* Stuff the current addend back as a 32 bit value, do the usual
1807 relocation, and then clean up. */
1808 bfd_put_32 (abfd,
1809 (((extend & 0x1f) << 11)
1810 | (extend & 0x7e0)
1811 | (insn & 0x1f)),
1812 (bfd_byte *) data + reloc_entry->address);
1813
1814 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1815 relocateable, data, gp);
1816
1817 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1818 bfd_put_16 (abfd,
1819 ((extend & 0xf800)
1820 | ((final >> 11) & 0x1f)
1821 | (final & 0x7e0)),
1822 (bfd_byte *) data + reloc_entry->address);
1823 bfd_put_16 (abfd,
1824 ((insn & 0xffe0)
1825 | (final & 0x1f)),
1826 (bfd_byte *) data + reloc_entry->address + 2);
1827
1828 return ret;
1829 }
1830
1831 /* Return the ISA for a MIPS e_flags value. */
1832
1833 static INLINE int
1834 elf_mips_isa (flags)
1835 flagword flags;
1836 {
1837 switch (flags & EF_MIPS_ARCH)
1838 {
1839 case E_MIPS_ARCH_1:
1840 return 1;
1841 case E_MIPS_ARCH_2:
1842 return 2;
1843 case E_MIPS_ARCH_3:
1844 return 3;
1845 case E_MIPS_ARCH_4:
1846 return 4;
1847 case E_MIPS_ARCH_5:
1848 return 5;
1849 case E_MIPS_ARCH_32:
1850 return 32;
1851 case E_MIPS_ARCH_64:
1852 return 64;
1853 }
1854 return 4;
1855 }
1856
1857 /* Return the MACH for a MIPS e_flags value. */
1858
1859 static INLINE int
1860 elf_mips_mach (flags)
1861 flagword flags;
1862 {
1863 switch (flags & EF_MIPS_MACH)
1864 {
1865 case E_MIPS_MACH_3900:
1866 return bfd_mach_mips3900;
1867
1868 case E_MIPS_MACH_4010:
1869 return bfd_mach_mips4010;
1870
1871 case E_MIPS_MACH_4100:
1872 return bfd_mach_mips4100;
1873
1874 case E_MIPS_MACH_4111:
1875 return bfd_mach_mips4111;
1876
1877 case E_MIPS_MACH_4650:
1878 return bfd_mach_mips4650;
1879
1880 case E_MIPS_MACH_MIPS32_4K:
1881 return bfd_mach_mips32_4k;
1882
1883 case E_MIPS_MACH_SB1:
1884 return bfd_mach_mips_sb1;
1885
1886 default:
1887 switch (flags & EF_MIPS_ARCH)
1888 {
1889 default:
1890 case E_MIPS_ARCH_1:
1891 return bfd_mach_mips3000;
1892 break;
1893
1894 case E_MIPS_ARCH_2:
1895 return bfd_mach_mips6000;
1896 break;
1897
1898 case E_MIPS_ARCH_3:
1899 return bfd_mach_mips4000;
1900 break;
1901
1902 case E_MIPS_ARCH_4:
1903 return bfd_mach_mips8000;
1904 break;
1905
1906 case E_MIPS_ARCH_5:
1907 return bfd_mach_mips5;
1908 break;
1909
1910 case E_MIPS_ARCH_32:
1911 return bfd_mach_mips32;
1912 break;
1913
1914 case E_MIPS_ARCH_64:
1915 return bfd_mach_mips64;
1916 break;
1917 }
1918 }
1919
1920 return 0;
1921 }
1922
1923 /* Return printable name for ABI. */
1924
1925 static INLINE char *
1926 elf_mips_abi_name (abfd)
1927 bfd *abfd;
1928 {
1929 flagword flags;
1930
1931 if (ABI_N32_P (abfd))
1932 return "N32";
1933 else if (ABI_64_P (abfd))
1934 return "64";
1935
1936 flags = elf_elfheader (abfd)->e_flags;
1937 switch (flags & EF_MIPS_ABI)
1938 {
1939 case 0:
1940 return "none";
1941 case E_MIPS_ABI_O32:
1942 return "O32";
1943 case E_MIPS_ABI_O64:
1944 return "O64";
1945 case E_MIPS_ABI_EABI32:
1946 return "EABI32";
1947 case E_MIPS_ABI_EABI64:
1948 return "EABI64";
1949 default:
1950 return "unknown abi";
1951 }
1952 }
1953
1954 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
1955
1956 struct elf_reloc_map {
1957 bfd_reloc_code_real_type bfd_reloc_val;
1958 enum elf_mips_reloc_type elf_reloc_val;
1959 };
1960
1961 static CONST struct elf_reloc_map mips_reloc_map[] =
1962 {
1963 { BFD_RELOC_NONE, R_MIPS_NONE, },
1964 { BFD_RELOC_16, R_MIPS_16 },
1965 { BFD_RELOC_32, R_MIPS_32 },
1966 { BFD_RELOC_64, R_MIPS_64 },
1967 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
1968 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
1969 { BFD_RELOC_LO16, R_MIPS_LO16 },
1970 { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 },
1971 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
1972 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
1973 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
1974 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
1975 { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 },
1976 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
1977 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
1978 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
1979 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
1980 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
1981 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
1982 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
1983 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
1984 };
1985
1986 /* Given a BFD reloc type, return a howto structure. */
1987
1988 static reloc_howto_type *
1989 bfd_elf32_bfd_reloc_type_lookup (abfd, code)
1990 bfd *abfd;
1991 bfd_reloc_code_real_type code;
1992 {
1993 unsigned int i;
1994
1995 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
1996 {
1997 if (mips_reloc_map[i].bfd_reloc_val == code)
1998 return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val];
1999 }
2000
2001 switch (code)
2002 {
2003 default:
2004 bfd_set_error (bfd_error_bad_value);
2005 return NULL;
2006
2007 case BFD_RELOC_CTOR:
2008 /* We need to handle BFD_RELOC_CTOR specially.
2009 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
2010 size of addresses on this architecture. */
2011 if (bfd_arch_bits_per_address (abfd) == 32)
2012 return &elf_mips_howto_table[(int) R_MIPS_32];
2013 else
2014 return &elf_mips_ctor64_howto;
2015
2016 case BFD_RELOC_MIPS16_JMP:
2017 return &elf_mips16_jump_howto;
2018 case BFD_RELOC_MIPS16_GPREL:
2019 return &elf_mips16_gprel_howto;
2020 case BFD_RELOC_VTABLE_INHERIT:
2021 return &elf_mips_gnu_vtinherit_howto;
2022 case BFD_RELOC_VTABLE_ENTRY:
2023 return &elf_mips_gnu_vtentry_howto;
2024 case BFD_RELOC_PCREL_HI16_S:
2025 return &elf_mips_gnu_rel_hi16;
2026 case BFD_RELOC_PCREL_LO16:
2027 return &elf_mips_gnu_rel_lo16;
2028 case BFD_RELOC_16_PCREL_S2:
2029 return &elf_mips_gnu_rel16_s2;
2030 case BFD_RELOC_64_PCREL:
2031 return &elf_mips_gnu_pcrel64;
2032 case BFD_RELOC_32_PCREL:
2033 return &elf_mips_gnu_pcrel32;
2034 }
2035 }
2036
2037 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2038
2039 static reloc_howto_type *
2040 mips_rtype_to_howto (r_type)
2041 unsigned int r_type;
2042 {
2043 switch (r_type)
2044 {
2045 case R_MIPS16_26:
2046 return &elf_mips16_jump_howto;
2047 break;
2048 case R_MIPS16_GPREL:
2049 return &elf_mips16_gprel_howto;
2050 break;
2051 case R_MIPS_GNU_VTINHERIT:
2052 return &elf_mips_gnu_vtinherit_howto;
2053 break;
2054 case R_MIPS_GNU_VTENTRY:
2055 return &elf_mips_gnu_vtentry_howto;
2056 break;
2057 case R_MIPS_GNU_REL_HI16:
2058 return &elf_mips_gnu_rel_hi16;
2059 break;
2060 case R_MIPS_GNU_REL_LO16:
2061 return &elf_mips_gnu_rel_lo16;
2062 break;
2063 case R_MIPS_GNU_REL16_S2:
2064 return &elf_mips_gnu_rel16_s2;
2065 break;
2066 case R_MIPS_PC64:
2067 return &elf_mips_gnu_pcrel64;
2068 break;
2069 case R_MIPS_PC32:
2070 return &elf_mips_gnu_pcrel32;
2071 break;
2072
2073 default:
2074 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
2075 return &elf_mips_howto_table[r_type];
2076 break;
2077 }
2078 }
2079
2080 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2081
2082 static void
2083 mips_info_to_howto_rel (abfd, cache_ptr, dst)
2084 bfd *abfd;
2085 arelent *cache_ptr;
2086 Elf32_Internal_Rel *dst;
2087 {
2088 unsigned int r_type;
2089
2090 r_type = ELF32_R_TYPE (dst->r_info);
2091 cache_ptr->howto = mips_rtype_to_howto (r_type);
2092
2093 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2094 value for the object file. We get the addend now, rather than
2095 when we do the relocation, because the symbol manipulations done
2096 by the linker may cause us to lose track of the input BFD. */
2097 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
2098 && (r_type == (unsigned int) R_MIPS_GPREL16
2099 || r_type == (unsigned int) R_MIPS_LITERAL))
2100 cache_ptr->addend = elf_gp (abfd);
2101 }
2102
2103 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2104
2105 static void
2106 mips_info_to_howto_rela (abfd, cache_ptr, dst)
2107 bfd *abfd;
2108 arelent *cache_ptr;
2109 Elf32_Internal_Rela *dst;
2110 {
2111 /* Since an Elf32_Internal_Rel is an initial prefix of an
2112 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2113 above. */
2114 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
2115
2116 /* If we ever need to do any extra processing with dst->r_addend
2117 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2118 }
2119 \f
2120 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2121 routines swap this structure in and out. They are used outside of
2122 BFD, so they are globally visible. */
2123
2124 void
2125 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
2126 bfd *abfd;
2127 const Elf32_External_RegInfo *ex;
2128 Elf32_RegInfo *in;
2129 {
2130 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2131 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2132 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2133 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2134 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2135 in->ri_gp_value = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gp_value);
2136 }
2137
2138 void
2139 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
2140 bfd *abfd;
2141 const Elf32_RegInfo *in;
2142 Elf32_External_RegInfo *ex;
2143 {
2144 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2145 (bfd_byte *) ex->ri_gprmask);
2146 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2147 (bfd_byte *) ex->ri_cprmask[0]);
2148 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2149 (bfd_byte *) ex->ri_cprmask[1]);
2150 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2151 (bfd_byte *) ex->ri_cprmask[2]);
2152 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2153 (bfd_byte *) ex->ri_cprmask[3]);
2154 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gp_value,
2155 (bfd_byte *) ex->ri_gp_value);
2156 }
2157
2158 /* In the 64 bit ABI, the .MIPS.options section holds register
2159 information in an Elf64_Reginfo structure. These routines swap
2160 them in and out. They are globally visible because they are used
2161 outside of BFD. These routines are here so that gas can call them
2162 without worrying about whether the 64 bit ABI has been included. */
2163
2164 void
2165 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2166 bfd *abfd;
2167 const Elf64_External_RegInfo *ex;
2168 Elf64_Internal_RegInfo *in;
2169 {
2170 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2171 in->ri_pad = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_pad);
2172 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2173 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2174 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2175 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2176 in->ri_gp_value = bfd_h_get_64 (abfd, (bfd_byte *) ex->ri_gp_value);
2177 }
2178
2179 void
2180 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2181 bfd *abfd;
2182 const Elf64_Internal_RegInfo *in;
2183 Elf64_External_RegInfo *ex;
2184 {
2185 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2186 (bfd_byte *) ex->ri_gprmask);
2187 bfd_h_put_32 (abfd, (bfd_vma) in->ri_pad,
2188 (bfd_byte *) ex->ri_pad);
2189 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2190 (bfd_byte *) ex->ri_cprmask[0]);
2191 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2192 (bfd_byte *) ex->ri_cprmask[1]);
2193 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2194 (bfd_byte *) ex->ri_cprmask[2]);
2195 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2196 (bfd_byte *) ex->ri_cprmask[3]);
2197 bfd_h_put_64 (abfd, (bfd_vma) in->ri_gp_value,
2198 (bfd_byte *) ex->ri_gp_value);
2199 }
2200
2201 /* Swap an entry in a .gptab section. Note that these routines rely
2202 on the equivalence of the two elements of the union. */
2203
2204 static void
2205 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2206 bfd *abfd;
2207 const Elf32_External_gptab *ex;
2208 Elf32_gptab *in;
2209 {
2210 in->gt_entry.gt_g_value = bfd_h_get_32 (abfd, ex->gt_entry.gt_g_value);
2211 in->gt_entry.gt_bytes = bfd_h_get_32 (abfd, ex->gt_entry.gt_bytes);
2212 }
2213
2214 static void
2215 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2216 bfd *abfd;
2217 const Elf32_gptab *in;
2218 Elf32_External_gptab *ex;
2219 {
2220 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_g_value,
2221 ex->gt_entry.gt_g_value);
2222 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_bytes,
2223 ex->gt_entry.gt_bytes);
2224 }
2225
2226 static void
2227 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2228 bfd *abfd;
2229 const Elf32_compact_rel *in;
2230 Elf32_External_compact_rel *ex;
2231 {
2232 bfd_h_put_32 (abfd, (bfd_vma) in->id1, ex->id1);
2233 bfd_h_put_32 (abfd, (bfd_vma) in->num, ex->num);
2234 bfd_h_put_32 (abfd, (bfd_vma) in->id2, ex->id2);
2235 bfd_h_put_32 (abfd, (bfd_vma) in->offset, ex->offset);
2236 bfd_h_put_32 (abfd, (bfd_vma) in->reserved0, ex->reserved0);
2237 bfd_h_put_32 (abfd, (bfd_vma) in->reserved1, ex->reserved1);
2238 }
2239
2240 static void
2241 bfd_elf32_swap_crinfo_out (abfd, in, ex)
2242 bfd *abfd;
2243 const Elf32_crinfo *in;
2244 Elf32_External_crinfo *ex;
2245 {
2246 unsigned long l;
2247
2248 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2249 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2250 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2251 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2252 bfd_h_put_32 (abfd, (bfd_vma) l, ex->info);
2253 bfd_h_put_32 (abfd, (bfd_vma) in->konst, ex->konst);
2254 bfd_h_put_32 (abfd, (bfd_vma) in->vaddr, ex->vaddr);
2255 }
2256
2257 /* Swap in an options header. */
2258
2259 void
2260 bfd_mips_elf_swap_options_in (abfd, ex, in)
2261 bfd *abfd;
2262 const Elf_External_Options *ex;
2263 Elf_Internal_Options *in;
2264 {
2265 in->kind = bfd_h_get_8 (abfd, ex->kind);
2266 in->size = bfd_h_get_8 (abfd, ex->size);
2267 in->section = bfd_h_get_16 (abfd, ex->section);
2268 in->info = bfd_h_get_32 (abfd, ex->info);
2269 }
2270
2271 /* Swap out an options header. */
2272
2273 void
2274 bfd_mips_elf_swap_options_out (abfd, in, ex)
2275 bfd *abfd;
2276 const Elf_Internal_Options *in;
2277 Elf_External_Options *ex;
2278 {
2279 bfd_h_put_8 (abfd, in->kind, ex->kind);
2280 bfd_h_put_8 (abfd, in->size, ex->size);
2281 bfd_h_put_16 (abfd, in->section, ex->section);
2282 bfd_h_put_32 (abfd, in->info, ex->info);
2283 }
2284 #if 0
2285 /* Swap in an MSYM entry. */
2286
2287 static void
2288 bfd_mips_elf_swap_msym_in (abfd, ex, in)
2289 bfd *abfd;
2290 const Elf32_External_Msym *ex;
2291 Elf32_Internal_Msym *in;
2292 {
2293 in->ms_hash_value = bfd_h_get_32 (abfd, ex->ms_hash_value);
2294 in->ms_info = bfd_h_get_32 (abfd, ex->ms_info);
2295 }
2296 #endif
2297 /* Swap out an MSYM entry. */
2298
2299 static void
2300 bfd_mips_elf_swap_msym_out (abfd, in, ex)
2301 bfd *abfd;
2302 const Elf32_Internal_Msym *in;
2303 Elf32_External_Msym *ex;
2304 {
2305 bfd_h_put_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2306 bfd_h_put_32 (abfd, in->ms_info, ex->ms_info);
2307 }
2308 \f
2309 /* Determine whether a symbol is global for the purposes of splitting
2310 the symbol table into global symbols and local symbols. At least
2311 on Irix 5, this split must be between section symbols and all other
2312 symbols. On most ELF targets the split is between static symbols
2313 and externally visible symbols. */
2314
2315 static boolean
2316 mips_elf_sym_is_global (abfd, sym)
2317 bfd *abfd ATTRIBUTE_UNUSED;
2318 asymbol *sym;
2319 {
2320 if (SGI_COMPAT (abfd))
2321 return (sym->flags & BSF_SECTION_SYM) == 0;
2322 else
2323 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2324 || bfd_is_und_section (bfd_get_section (sym))
2325 || bfd_is_com_section (bfd_get_section (sym)));
2326 }
2327 \f
2328 /* Set the right machine number for a MIPS ELF file. This is used for
2329 both the 32-bit and the 64-bit ABI. */
2330
2331 boolean
2332 _bfd_mips_elf_object_p (abfd)
2333 bfd *abfd;
2334 {
2335 /* Irix 5 and 6 is broken. Object file symbol tables are not always
2336 sorted correctly such that local symbols precede global symbols,
2337 and the sh_info field in the symbol table is not always right. */
2338 if (SGI_COMPAT(abfd))
2339 elf_bad_symtab (abfd) = true;
2340
2341 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2342 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2343 return true;
2344 }
2345
2346 /* The final processing done just before writing out a MIPS ELF object
2347 file. This gets the MIPS architecture right based on the machine
2348 number. This is used by both the 32-bit and the 64-bit ABI. */
2349
2350 void
2351 _bfd_mips_elf_final_write_processing (abfd, linker)
2352 bfd *abfd;
2353 boolean linker ATTRIBUTE_UNUSED;
2354 {
2355 unsigned long val;
2356 unsigned int i;
2357 Elf_Internal_Shdr **hdrpp;
2358 const char *name;
2359 asection *sec;
2360
2361 switch (bfd_get_mach (abfd))
2362 {
2363 default:
2364 case bfd_mach_mips3000:
2365 val = E_MIPS_ARCH_1;
2366 break;
2367
2368 case bfd_mach_mips3900:
2369 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2370 break;
2371
2372 case bfd_mach_mips6000:
2373 val = E_MIPS_ARCH_2;
2374 break;
2375
2376 case bfd_mach_mips4000:
2377 case bfd_mach_mips4300:
2378 case bfd_mach_mips4400:
2379 case bfd_mach_mips4600:
2380 val = E_MIPS_ARCH_3;
2381 break;
2382
2383 case bfd_mach_mips4010:
2384 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2385 break;
2386
2387 case bfd_mach_mips4100:
2388 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2389 break;
2390
2391 case bfd_mach_mips4111:
2392 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2393 break;
2394
2395 case bfd_mach_mips4650:
2396 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2397 break;
2398
2399 case bfd_mach_mips5000:
2400 case bfd_mach_mips8000:
2401 case bfd_mach_mips10000:
2402 case bfd_mach_mips12000:
2403 val = E_MIPS_ARCH_4;
2404 break;
2405
2406 case bfd_mach_mips32:
2407 val = E_MIPS_ARCH_32;
2408 break;
2409
2410 case bfd_mach_mips32_4k:
2411 val = E_MIPS_ARCH_32 | E_MIPS_MACH_MIPS32_4K;
2412 break;
2413
2414 case bfd_mach_mips5:
2415 val = E_MIPS_ARCH_5;
2416 break;
2417
2418 case bfd_mach_mips64:
2419 val = E_MIPS_ARCH_64;
2420 break;
2421
2422 case bfd_mach_mips_sb1:
2423 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
2424 break;
2425 }
2426
2427 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2428 elf_elfheader (abfd)->e_flags |= val;
2429
2430 /* Set the sh_info field for .gptab sections and other appropriate
2431 info for each special section. */
2432 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2433 i < elf_elfheader (abfd)->e_shnum;
2434 i++, hdrpp++)
2435 {
2436 switch ((*hdrpp)->sh_type)
2437 {
2438 case SHT_MIPS_MSYM:
2439 case SHT_MIPS_LIBLIST:
2440 sec = bfd_get_section_by_name (abfd, ".dynstr");
2441 if (sec != NULL)
2442 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2443 break;
2444
2445 case SHT_MIPS_GPTAB:
2446 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2447 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2448 BFD_ASSERT (name != NULL
2449 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2450 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2451 BFD_ASSERT (sec != NULL);
2452 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2453 break;
2454
2455 case SHT_MIPS_CONTENT:
2456 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2457 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2458 BFD_ASSERT (name != NULL
2459 && strncmp (name, ".MIPS.content",
2460 sizeof ".MIPS.content" - 1) == 0);
2461 sec = bfd_get_section_by_name (abfd,
2462 name + sizeof ".MIPS.content" - 1);
2463 BFD_ASSERT (sec != NULL);
2464 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2465 break;
2466
2467 case SHT_MIPS_SYMBOL_LIB:
2468 sec = bfd_get_section_by_name (abfd, ".dynsym");
2469 if (sec != NULL)
2470 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2471 sec = bfd_get_section_by_name (abfd, ".liblist");
2472 if (sec != NULL)
2473 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2474 break;
2475
2476 case SHT_MIPS_EVENTS:
2477 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2478 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2479 BFD_ASSERT (name != NULL);
2480 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2481 sec = bfd_get_section_by_name (abfd,
2482 name + sizeof ".MIPS.events" - 1);
2483 else
2484 {
2485 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
2486 sizeof ".MIPS.post_rel" - 1) == 0);
2487 sec = bfd_get_section_by_name (abfd,
2488 (name
2489 + sizeof ".MIPS.post_rel" - 1));
2490 }
2491 BFD_ASSERT (sec != NULL);
2492 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2493 break;
2494
2495 }
2496 }
2497 }
2498 \f
2499 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
2500
2501 boolean
2502 _bfd_mips_elf_set_private_flags (abfd, flags)
2503 bfd *abfd;
2504 flagword flags;
2505 {
2506 BFD_ASSERT (!elf_flags_init (abfd)
2507 || elf_elfheader (abfd)->e_flags == flags);
2508
2509 elf_elfheader (abfd)->e_flags = flags;
2510 elf_flags_init (abfd) = true;
2511 return true;
2512 }
2513
2514 /* Copy backend specific data from one object module to another */
2515
2516 boolean
2517 _bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
2518 bfd *ibfd;
2519 bfd *obfd;
2520 {
2521 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2522 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2523 return true;
2524
2525 BFD_ASSERT (!elf_flags_init (obfd)
2526 || (elf_elfheader (obfd)->e_flags
2527 == elf_elfheader (ibfd)->e_flags));
2528
2529 elf_gp (obfd) = elf_gp (ibfd);
2530 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2531 elf_flags_init (obfd) = true;
2532 return true;
2533 }
2534
2535 /* Merge backend specific data from an object file to the output
2536 object file when linking. */
2537
2538 boolean
2539 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
2540 bfd *ibfd;
2541 bfd *obfd;
2542 {
2543 flagword old_flags;
2544 flagword new_flags;
2545 boolean ok;
2546 boolean null_input_bfd = true;
2547 asection *sec;
2548
2549 /* Check if we have the same endianess */
2550 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
2551 return false;
2552
2553 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2554 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2555 return true;
2556
2557 new_flags = elf_elfheader (ibfd)->e_flags;
2558 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
2559 old_flags = elf_elfheader (obfd)->e_flags;
2560
2561 if (! elf_flags_init (obfd))
2562 {
2563 elf_flags_init (obfd) = true;
2564 elf_elfheader (obfd)->e_flags = new_flags;
2565 elf_elfheader (obfd)->e_ident[EI_CLASS]
2566 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
2567
2568 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2569 && bfd_get_arch_info (obfd)->the_default)
2570 {
2571 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2572 bfd_get_mach (ibfd)))
2573 return false;
2574 }
2575
2576 return true;
2577 }
2578
2579 /* Check flag compatibility. */
2580
2581 new_flags &= ~EF_MIPS_NOREORDER;
2582 old_flags &= ~EF_MIPS_NOREORDER;
2583
2584 if (new_flags == old_flags)
2585 return true;
2586
2587 /* Check to see if the input BFD actually contains any sections.
2588 If not, its flags may not have been initialised either, but it cannot
2589 actually cause any incompatibility. */
2590 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2591 {
2592 /* Ignore synthetic sections and empty .text, .data and .bss sections
2593 which are automatically generated by gas. */
2594 if (strcmp (sec->name, ".reginfo")
2595 && strcmp (sec->name, ".mdebug")
2596 && ((!strcmp (sec->name, ".text")
2597 || !strcmp (sec->name, ".data")
2598 || !strcmp (sec->name, ".bss"))
2599 && sec->_raw_size != 0))
2600 {
2601 null_input_bfd = false;
2602 break;
2603 }
2604 }
2605 if (null_input_bfd)
2606 return true;
2607
2608 ok = true;
2609
2610 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
2611 {
2612 new_flags &= ~EF_MIPS_PIC;
2613 old_flags &= ~EF_MIPS_PIC;
2614 (*_bfd_error_handler)
2615 (_("%s: linking PIC files with non-PIC files"),
2616 bfd_get_filename (ibfd));
2617 ok = false;
2618 }
2619
2620 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
2621 {
2622 new_flags &= ~EF_MIPS_CPIC;
2623 old_flags &= ~EF_MIPS_CPIC;
2624 (*_bfd_error_handler)
2625 (_("%s: linking abicalls files with non-abicalls files"),
2626 bfd_get_filename (ibfd));
2627 ok = false;
2628 }
2629
2630 /* Compare the ISA's. */
2631 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
2632 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
2633 {
2634 int new_mach = new_flags & EF_MIPS_MACH;
2635 int old_mach = old_flags & EF_MIPS_MACH;
2636 int new_isa = elf_mips_isa (new_flags);
2637 int old_isa = elf_mips_isa (old_flags);
2638
2639 /* If either has no machine specified, just compare the general isa's.
2640 Some combinations of machines are ok, if the isa's match. */
2641 if (! new_mach
2642 || ! old_mach
2643 || new_mach == old_mach
2644 )
2645 {
2646 /* Don't warn about mixing code using 32-bit ISAs, or mixing code
2647 using 64-bit ISAs. They will normally use the same data sizes
2648 and calling conventions. */
2649
2650 if (( (new_isa == 1 || new_isa == 2 || new_isa == 32)
2651 ^ (old_isa == 1 || old_isa == 2 || old_isa == 32)) != 0)
2652 {
2653 (*_bfd_error_handler)
2654 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
2655 bfd_get_filename (ibfd), new_isa, old_isa);
2656 ok = false;
2657 }
2658 }
2659
2660 else
2661 {
2662 (*_bfd_error_handler)
2663 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
2664 bfd_get_filename (ibfd),
2665 elf_mips_mach (new_flags),
2666 elf_mips_mach (old_flags));
2667 ok = false;
2668 }
2669
2670 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2671 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2672 }
2673
2674 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2675 does set EI_CLASS differently from any 32-bit ABI. */
2676 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
2677 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2678 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2679 {
2680 /* Only error if both are set (to different values). */
2681 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
2682 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2683 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2684 {
2685 (*_bfd_error_handler)
2686 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
2687 bfd_get_filename (ibfd),
2688 elf_mips_abi_name (ibfd),
2689 elf_mips_abi_name (obfd));
2690 ok = false;
2691 }
2692 new_flags &= ~EF_MIPS_ABI;
2693 old_flags &= ~EF_MIPS_ABI;
2694 }
2695
2696 /* Warn about any other mismatches */
2697 if (new_flags != old_flags)
2698 {
2699 (*_bfd_error_handler)
2700 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2701 bfd_get_filename (ibfd), (unsigned long) new_flags,
2702 (unsigned long) old_flags);
2703 ok = false;
2704 }
2705
2706 if (! ok)
2707 {
2708 bfd_set_error (bfd_error_bad_value);
2709 return false;
2710 }
2711
2712 return true;
2713 }
2714 \f
2715 boolean
2716 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
2717 bfd *abfd;
2718 PTR ptr;
2719 {
2720 FILE *file = (FILE *) ptr;
2721
2722 BFD_ASSERT (abfd != NULL && ptr != NULL);
2723
2724 /* Print normal ELF private data. */
2725 _bfd_elf_print_private_bfd_data (abfd, ptr);
2726
2727 /* xgettext:c-format */
2728 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2729
2730 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
2731 fprintf (file, _(" [abi=O32]"));
2732 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
2733 fprintf (file, _(" [abi=O64]"));
2734 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
2735 fprintf (file, _(" [abi=EABI32]"));
2736 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
2737 fprintf (file, _(" [abi=EABI64]"));
2738 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
2739 fprintf (file, _(" [abi unknown]"));
2740 else if (ABI_N32_P (abfd))
2741 fprintf (file, _(" [abi=N32]"));
2742 else if (ABI_64_P (abfd))
2743 fprintf (file, _(" [abi=64]"));
2744 else
2745 fprintf (file, _(" [no abi set]"));
2746
2747 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
2748 fprintf (file, _(" [mips1]"));
2749 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
2750 fprintf (file, _(" [mips2]"));
2751 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
2752 fprintf (file, _(" [mips3]"));
2753 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
2754 fprintf (file, _(" [mips4]"));
2755 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
2756 fprintf (file, _ (" [mips5]"));
2757 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
2758 fprintf (file, _ (" [mips32]"));
2759 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
2760 fprintf (file, _ (" [mips64]"));
2761 else
2762 fprintf (file, _(" [unknown ISA]"));
2763
2764 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
2765 fprintf (file, _(" [32bitmode]"));
2766 else
2767 fprintf (file, _(" [not 32bitmode]"));
2768
2769 fputc ('\n', file);
2770
2771 return true;
2772 }
2773 \f
2774 /* Handle a MIPS specific section when reading an object file. This
2775 is called when elfcode.h finds a section with an unknown type.
2776 This routine supports both the 32-bit and 64-bit ELF ABI.
2777
2778 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2779 how to. */
2780
2781 boolean
2782 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
2783 bfd *abfd;
2784 Elf_Internal_Shdr *hdr;
2785 char *name;
2786 {
2787 flagword flags = 0;
2788
2789 /* There ought to be a place to keep ELF backend specific flags, but
2790 at the moment there isn't one. We just keep track of the
2791 sections by their name, instead. Fortunately, the ABI gives
2792 suggested names for all the MIPS specific sections, so we will
2793 probably get away with this. */
2794 switch (hdr->sh_type)
2795 {
2796 case SHT_MIPS_LIBLIST:
2797 if (strcmp (name, ".liblist") != 0)
2798 return false;
2799 break;
2800 case SHT_MIPS_MSYM:
2801 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
2802 return false;
2803 break;
2804 case SHT_MIPS_CONFLICT:
2805 if (strcmp (name, ".conflict") != 0)
2806 return false;
2807 break;
2808 case SHT_MIPS_GPTAB:
2809 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
2810 return false;
2811 break;
2812 case SHT_MIPS_UCODE:
2813 if (strcmp (name, ".ucode") != 0)
2814 return false;
2815 break;
2816 case SHT_MIPS_DEBUG:
2817 if (strcmp (name, ".mdebug") != 0)
2818 return false;
2819 flags = SEC_DEBUGGING;
2820 break;
2821 case SHT_MIPS_REGINFO:
2822 if (strcmp (name, ".reginfo") != 0
2823 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
2824 return false;
2825 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
2826 break;
2827 case SHT_MIPS_IFACE:
2828 if (strcmp (name, ".MIPS.interfaces") != 0)
2829 return false;
2830 break;
2831 case SHT_MIPS_CONTENT:
2832 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2833 return false;
2834 break;
2835 case SHT_MIPS_OPTIONS:
2836 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
2837 return false;
2838 break;
2839 case SHT_MIPS_DWARF:
2840 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
2841 return false;
2842 break;
2843 case SHT_MIPS_SYMBOL_LIB:
2844 if (strcmp (name, ".MIPS.symlib") != 0)
2845 return false;
2846 break;
2847 case SHT_MIPS_EVENTS:
2848 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2849 && strncmp (name, ".MIPS.post_rel",
2850 sizeof ".MIPS.post_rel" - 1) != 0)
2851 return false;
2852 break;
2853 default:
2854 return false;
2855 }
2856
2857 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2858 return false;
2859
2860 if (flags)
2861 {
2862 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
2863 (bfd_get_section_flags (abfd,
2864 hdr->bfd_section)
2865 | flags)))
2866 return false;
2867 }
2868
2869 /* FIXME: We should record sh_info for a .gptab section. */
2870
2871 /* For a .reginfo section, set the gp value in the tdata information
2872 from the contents of this section. We need the gp value while
2873 processing relocs, so we just get it now. The .reginfo section
2874 is not used in the 64-bit MIPS ELF ABI. */
2875 if (hdr->sh_type == SHT_MIPS_REGINFO)
2876 {
2877 Elf32_External_RegInfo ext;
2878 Elf32_RegInfo s;
2879
2880 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
2881 (file_ptr) 0, sizeof ext))
2882 return false;
2883 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
2884 elf_gp (abfd) = s.ri_gp_value;
2885 }
2886
2887 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2888 set the gp value based on what we find. We may see both
2889 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2890 they should agree. */
2891 if (hdr->sh_type == SHT_MIPS_OPTIONS)
2892 {
2893 bfd_byte *contents, *l, *lend;
2894
2895 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
2896 if (contents == NULL)
2897 return false;
2898 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
2899 (file_ptr) 0, hdr->sh_size))
2900 {
2901 free (contents);
2902 return false;
2903 }
2904 l = contents;
2905 lend = contents + hdr->sh_size;
2906 while (l + sizeof (Elf_External_Options) <= lend)
2907 {
2908 Elf_Internal_Options intopt;
2909
2910 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2911 &intopt);
2912 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2913 {
2914 Elf64_Internal_RegInfo intreg;
2915
2916 bfd_mips_elf64_swap_reginfo_in
2917 (abfd,
2918 ((Elf64_External_RegInfo *)
2919 (l + sizeof (Elf_External_Options))),
2920 &intreg);
2921 elf_gp (abfd) = intreg.ri_gp_value;
2922 }
2923 else if (intopt.kind == ODK_REGINFO)
2924 {
2925 Elf32_RegInfo intreg;
2926
2927 bfd_mips_elf32_swap_reginfo_in
2928 (abfd,
2929 ((Elf32_External_RegInfo *)
2930 (l + sizeof (Elf_External_Options))),
2931 &intreg);
2932 elf_gp (abfd) = intreg.ri_gp_value;
2933 }
2934 l += intopt.size;
2935 }
2936 free (contents);
2937 }
2938
2939 return true;
2940 }
2941
2942 /* Set the correct type for a MIPS ELF section. We do this by the
2943 section name, which is a hack, but ought to work. This routine is
2944 used by both the 32-bit and the 64-bit ABI. */
2945
2946 boolean
2947 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
2948 bfd *abfd;
2949 Elf32_Internal_Shdr *hdr;
2950 asection *sec;
2951 {
2952 register const char *name;
2953
2954 name = bfd_get_section_name (abfd, sec);
2955
2956 if (strcmp (name, ".liblist") == 0)
2957 {
2958 hdr->sh_type = SHT_MIPS_LIBLIST;
2959 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
2960 /* The sh_link field is set in final_write_processing. */
2961 }
2962 else if (strcmp (name, ".conflict") == 0)
2963 hdr->sh_type = SHT_MIPS_CONFLICT;
2964 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
2965 {
2966 hdr->sh_type = SHT_MIPS_GPTAB;
2967 hdr->sh_entsize = sizeof (Elf32_External_gptab);
2968 /* The sh_info field is set in final_write_processing. */
2969 }
2970 else if (strcmp (name, ".ucode") == 0)
2971 hdr->sh_type = SHT_MIPS_UCODE;
2972 else if (strcmp (name, ".mdebug") == 0)
2973 {
2974 hdr->sh_type = SHT_MIPS_DEBUG;
2975 /* In a shared object on Irix 5.3, the .mdebug section has an
2976 entsize of 0. FIXME: Does this matter? */
2977 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2978 hdr->sh_entsize = 0;
2979 else
2980 hdr->sh_entsize = 1;
2981 }
2982 else if (strcmp (name, ".reginfo") == 0)
2983 {
2984 hdr->sh_type = SHT_MIPS_REGINFO;
2985 /* In a shared object on Irix 5.3, the .reginfo section has an
2986 entsize of 0x18. FIXME: Does this matter? */
2987 if (SGI_COMPAT (abfd))
2988 {
2989 if ((abfd->flags & DYNAMIC) != 0)
2990 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2991 else
2992 hdr->sh_entsize = 1;
2993 }
2994 else
2995 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2996 }
2997 else if (SGI_COMPAT (abfd)
2998 && (strcmp (name, ".hash") == 0
2999 || strcmp (name, ".dynamic") == 0
3000 || strcmp (name, ".dynstr") == 0))
3001 {
3002 if (SGI_COMPAT (abfd))
3003 hdr->sh_entsize = 0;
3004 #if 0
3005 /* This isn't how the Irix 6 linker behaves. */
3006 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
3007 #endif
3008 }
3009 else if (strcmp (name, ".got") == 0
3010 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
3011 || strcmp (name, ".sdata") == 0
3012 || strcmp (name, ".sbss") == 0
3013 || strcmp (name, ".lit4") == 0
3014 || strcmp (name, ".lit8") == 0)
3015 hdr->sh_flags |= SHF_MIPS_GPREL;
3016 else if (strcmp (name, ".MIPS.interfaces") == 0)
3017 {
3018 hdr->sh_type = SHT_MIPS_IFACE;
3019 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3020 }
3021 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
3022 {
3023 hdr->sh_type = SHT_MIPS_CONTENT;
3024 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3025 /* The sh_info field is set in final_write_processing. */
3026 }
3027 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3028 {
3029 hdr->sh_type = SHT_MIPS_OPTIONS;
3030 hdr->sh_entsize = 1;
3031 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3032 }
3033 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
3034 hdr->sh_type = SHT_MIPS_DWARF;
3035 else if (strcmp (name, ".MIPS.symlib") == 0)
3036 {
3037 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
3038 /* The sh_link and sh_info fields are set in
3039 final_write_processing. */
3040 }
3041 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
3042 || strncmp (name, ".MIPS.post_rel",
3043 sizeof ".MIPS.post_rel" - 1) == 0)
3044 {
3045 hdr->sh_type = SHT_MIPS_EVENTS;
3046 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3047 /* The sh_link field is set in final_write_processing. */
3048 }
3049 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
3050 {
3051 hdr->sh_type = SHT_MIPS_MSYM;
3052 hdr->sh_flags |= SHF_ALLOC;
3053 hdr->sh_entsize = 8;
3054 }
3055
3056 /* The generic elf_fake_sections will set up REL_HDR using the
3057 default kind of relocations. But, we may actually need both
3058 kinds of relocations, so we set up the second header here. */
3059 if ((sec->flags & SEC_RELOC) != 0)
3060 {
3061 struct bfd_elf_section_data *esd;
3062
3063 esd = elf_section_data (sec);
3064 BFD_ASSERT (esd->rel_hdr2 == NULL);
3065 esd->rel_hdr2
3066 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3067 if (!esd->rel_hdr2)
3068 return false;
3069 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
3070 !elf_section_data (sec)->use_rela_p);
3071 }
3072
3073 return true;
3074 }
3075
3076 /* Given a BFD section, try to locate the corresponding ELF section
3077 index. This is used by both the 32-bit and the 64-bit ABI.
3078 Actually, it's not clear to me that the 64-bit ABI supports these,
3079 but for non-PIC objects we will certainly want support for at least
3080 the .scommon section. */
3081
3082 boolean
3083 _bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
3084 bfd *abfd ATTRIBUTE_UNUSED;
3085 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3086 asection *sec;
3087 int *retval;
3088 {
3089 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
3090 {
3091 *retval = SHN_MIPS_SCOMMON;
3092 return true;
3093 }
3094 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
3095 {
3096 *retval = SHN_MIPS_ACOMMON;
3097 return true;
3098 }
3099 return false;
3100 }
3101
3102 /* When are writing out the .options or .MIPS.options section,
3103 remember the bytes we are writing out, so that we can install the
3104 GP value in the section_processing routine. */
3105
3106 boolean
3107 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
3108 bfd *abfd;
3109 sec_ptr section;
3110 PTR location;
3111 file_ptr offset;
3112 bfd_size_type count;
3113 {
3114 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3115 {
3116 bfd_byte *c;
3117
3118 if (elf_section_data (section) == NULL)
3119 {
3120 section->used_by_bfd =
3121 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
3122 if (elf_section_data (section) == NULL)
3123 return false;
3124 }
3125 c = (bfd_byte *) elf_section_data (section)->tdata;
3126 if (c == NULL)
3127 {
3128 bfd_size_type size;
3129
3130 if (section->_cooked_size != 0)
3131 size = section->_cooked_size;
3132 else
3133 size = section->_raw_size;
3134 c = (bfd_byte *) bfd_zalloc (abfd, size);
3135 if (c == NULL)
3136 return false;
3137 elf_section_data (section)->tdata = (PTR) c;
3138 }
3139
3140 memcpy (c + offset, location, count);
3141 }
3142
3143 return _bfd_elf_set_section_contents (abfd, section, location, offset,
3144 count);
3145 }
3146
3147 /* Work over a section just before writing it out. This routine is
3148 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3149 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3150 a better way. */
3151
3152 boolean
3153 _bfd_mips_elf_section_processing (abfd, hdr)
3154 bfd *abfd;
3155 Elf_Internal_Shdr *hdr;
3156 {
3157 if (hdr->sh_type == SHT_MIPS_REGINFO
3158 && hdr->sh_size > 0)
3159 {
3160 bfd_byte buf[4];
3161
3162 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3163 BFD_ASSERT (hdr->contents == NULL);
3164
3165 if (bfd_seek (abfd,
3166 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
3167 SEEK_SET) == -1)
3168 return false;
3169 bfd_h_put_32 (abfd, (bfd_vma) elf_gp (abfd), buf);
3170 if (bfd_write (buf, (bfd_size_type) 1, (bfd_size_type) 4, abfd) != 4)
3171 return false;
3172 }
3173
3174 if (hdr->sh_type == SHT_MIPS_OPTIONS
3175 && hdr->bfd_section != NULL
3176 && elf_section_data (hdr->bfd_section) != NULL
3177 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3178 {
3179 bfd_byte *contents, *l, *lend;
3180
3181 /* We stored the section contents in the elf_section_data tdata
3182 field in the set_section_contents routine. We save the
3183 section contents so that we don't have to read them again.
3184 At this point we know that elf_gp is set, so we can look
3185 through the section contents to see if there is an
3186 ODK_REGINFO structure. */
3187
3188 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3189 l = contents;
3190 lend = contents + hdr->sh_size;
3191 while (l + sizeof (Elf_External_Options) <= lend)
3192 {
3193 Elf_Internal_Options intopt;
3194
3195 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3196 &intopt);
3197 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3198 {
3199 bfd_byte buf[8];
3200
3201 if (bfd_seek (abfd,
3202 (hdr->sh_offset
3203 + (l - contents)
3204 + sizeof (Elf_External_Options)
3205 + (sizeof (Elf64_External_RegInfo) - 8)),
3206 SEEK_SET) == -1)
3207 return false;
3208 bfd_h_put_64 (abfd, elf_gp (abfd), buf);
3209 if (bfd_write (buf, 1, 8, abfd) != 8)
3210 return false;
3211 }
3212 else if (intopt.kind == ODK_REGINFO)
3213 {
3214 bfd_byte buf[4];
3215
3216 if (bfd_seek (abfd,
3217 (hdr->sh_offset
3218 + (l - contents)
3219 + sizeof (Elf_External_Options)
3220 + (sizeof (Elf32_External_RegInfo) - 4)),
3221 SEEK_SET) == -1)
3222 return false;
3223 bfd_h_put_32 (abfd, elf_gp (abfd), buf);
3224 if (bfd_write (buf, 1, 4, abfd) != 4)
3225 return false;
3226 }
3227 l += intopt.size;
3228 }
3229 }
3230
3231 if (hdr->bfd_section != NULL)
3232 {
3233 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3234
3235 if (strcmp (name, ".sdata") == 0
3236 || strcmp (name, ".lit8") == 0
3237 || strcmp (name, ".lit4") == 0)
3238 {
3239 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3240 hdr->sh_type = SHT_PROGBITS;
3241 }
3242 else if (strcmp (name, ".sbss") == 0)
3243 {
3244 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3245 hdr->sh_type = SHT_NOBITS;
3246 }
3247 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3248 {
3249 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3250 hdr->sh_type = SHT_PROGBITS;
3251 }
3252 else if (strcmp (name, ".compact_rel") == 0)
3253 {
3254 hdr->sh_flags = 0;
3255 hdr->sh_type = SHT_PROGBITS;
3256 }
3257 else if (strcmp (name, ".rtproc") == 0)
3258 {
3259 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3260 {
3261 unsigned int adjust;
3262
3263 adjust = hdr->sh_size % hdr->sh_addralign;
3264 if (adjust != 0)
3265 hdr->sh_size += hdr->sh_addralign - adjust;
3266 }
3267 }
3268 }
3269
3270 return true;
3271 }
3272 \f
3273 /* MIPS ELF uses two common sections. One is the usual one, and the
3274 other is for small objects. All the small objects are kept
3275 together, and then referenced via the gp pointer, which yields
3276 faster assembler code. This is what we use for the small common
3277 section. This approach is copied from ecoff.c. */
3278 static asection mips_elf_scom_section;
3279 static asymbol mips_elf_scom_symbol;
3280 static asymbol *mips_elf_scom_symbol_ptr;
3281
3282 /* MIPS ELF also uses an acommon section, which represents an
3283 allocated common symbol which may be overridden by a
3284 definition in a shared library. */
3285 static asection mips_elf_acom_section;
3286 static asymbol mips_elf_acom_symbol;
3287 static asymbol *mips_elf_acom_symbol_ptr;
3288
3289 /* Handle the special MIPS section numbers that a symbol may use.
3290 This is used for both the 32-bit and the 64-bit ABI. */
3291
3292 void
3293 _bfd_mips_elf_symbol_processing (abfd, asym)
3294 bfd *abfd;
3295 asymbol *asym;
3296 {
3297 elf_symbol_type *elfsym;
3298
3299 elfsym = (elf_symbol_type *) asym;
3300 switch (elfsym->internal_elf_sym.st_shndx)
3301 {
3302 case SHN_MIPS_ACOMMON:
3303 /* This section is used in a dynamically linked executable file.
3304 It is an allocated common section. The dynamic linker can
3305 either resolve these symbols to something in a shared
3306 library, or it can just leave them here. For our purposes,
3307 we can consider these symbols to be in a new section. */
3308 if (mips_elf_acom_section.name == NULL)
3309 {
3310 /* Initialize the acommon section. */
3311 mips_elf_acom_section.name = ".acommon";
3312 mips_elf_acom_section.flags = SEC_ALLOC;
3313 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3314 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3315 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3316 mips_elf_acom_symbol.name = ".acommon";
3317 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3318 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3319 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3320 }
3321 asym->section = &mips_elf_acom_section;
3322 break;
3323
3324 case SHN_COMMON:
3325 /* Common symbols less than the GP size are automatically
3326 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3327 if (asym->value > elf_gp_size (abfd)
3328 || IRIX_COMPAT (abfd) == ict_irix6)
3329 break;
3330 /* Fall through. */
3331 case SHN_MIPS_SCOMMON:
3332 if (mips_elf_scom_section.name == NULL)
3333 {
3334 /* Initialize the small common section. */
3335 mips_elf_scom_section.name = ".scommon";
3336 mips_elf_scom_section.flags = SEC_IS_COMMON;
3337 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3338 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3339 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3340 mips_elf_scom_symbol.name = ".scommon";
3341 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3342 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3343 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3344 }
3345 asym->section = &mips_elf_scom_section;
3346 asym->value = elfsym->internal_elf_sym.st_size;
3347 break;
3348
3349 case SHN_MIPS_SUNDEFINED:
3350 asym->section = bfd_und_section_ptr;
3351 break;
3352
3353 #if 0 /* for SGI_COMPAT */
3354 case SHN_MIPS_TEXT:
3355 asym->section = mips_elf_text_section_ptr;
3356 break;
3357
3358 case SHN_MIPS_DATA:
3359 asym->section = mips_elf_data_section_ptr;
3360 break;
3361 #endif
3362 }
3363 }
3364 \f
3365 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3366 segments. */
3367
3368 int
3369 _bfd_mips_elf_additional_program_headers (abfd)
3370 bfd *abfd;
3371 {
3372 asection *s;
3373 int ret = 0;
3374
3375 /* See if we need a PT_MIPS_REGINFO segment. */
3376 s = bfd_get_section_by_name (abfd, ".reginfo");
3377 if (s && (s->flags & SEC_LOAD))
3378 ++ret;
3379
3380 /* See if we need a PT_MIPS_OPTIONS segment. */
3381 if (IRIX_COMPAT (abfd) == ict_irix6
3382 && bfd_get_section_by_name (abfd,
3383 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3384 ++ret;
3385
3386 /* See if we need a PT_MIPS_RTPROC segment. */
3387 if (IRIX_COMPAT (abfd) == ict_irix5
3388 && bfd_get_section_by_name (abfd, ".dynamic")
3389 && bfd_get_section_by_name (abfd, ".mdebug"))
3390 ++ret;
3391
3392 return ret;
3393 }
3394
3395 /* Modify the segment map for an Irix 5 executable. */
3396
3397 boolean
3398 _bfd_mips_elf_modify_segment_map (abfd)
3399 bfd *abfd;
3400 {
3401 asection *s;
3402 struct elf_segment_map *m, **pm;
3403
3404 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3405 segment. */
3406 s = bfd_get_section_by_name (abfd, ".reginfo");
3407 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3408 {
3409 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3410 if (m->p_type == PT_MIPS_REGINFO)
3411 break;
3412 if (m == NULL)
3413 {
3414 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3415 if (m == NULL)
3416 return false;
3417
3418 m->p_type = PT_MIPS_REGINFO;
3419 m->count = 1;
3420 m->sections[0] = s;
3421
3422 /* We want to put it after the PHDR and INTERP segments. */
3423 pm = &elf_tdata (abfd)->segment_map;
3424 while (*pm != NULL
3425 && ((*pm)->p_type == PT_PHDR
3426 || (*pm)->p_type == PT_INTERP))
3427 pm = &(*pm)->next;
3428
3429 m->next = *pm;
3430 *pm = m;
3431 }
3432 }
3433
3434 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3435 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3436 PT_OPTIONS segement immediately following the program header
3437 table. */
3438 if (IRIX_COMPAT (abfd) == ict_irix6)
3439 {
3440 asection *s;
3441
3442 for (s = abfd->sections; s; s = s->next)
3443 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
3444 break;
3445
3446 if (s)
3447 {
3448 struct elf_segment_map *options_segment;
3449
3450 /* Usually, there's a program header table. But, sometimes
3451 there's not (like when running the `ld' testsuite). So,
3452 if there's no program header table, we just put the
3453 options segement at the end. */
3454 for (pm = &elf_tdata (abfd)->segment_map;
3455 *pm != NULL;
3456 pm = &(*pm)->next)
3457 if ((*pm)->p_type == PT_PHDR)
3458 break;
3459
3460 options_segment = bfd_zalloc (abfd,
3461 sizeof (struct elf_segment_map));
3462 options_segment->next = *pm;
3463 options_segment->p_type = PT_MIPS_OPTIONS;
3464 options_segment->p_flags = PF_R;
3465 options_segment->p_flags_valid = true;
3466 options_segment->count = 1;
3467 options_segment->sections[0] = s;
3468 *pm = options_segment;
3469 }
3470 }
3471 else
3472 {
3473 if (IRIX_COMPAT (abfd) == ict_irix5)
3474 {
3475 /* If there are .dynamic and .mdebug sections, we make a room
3476 for the RTPROC header. FIXME: Rewrite without section names. */
3477 if (bfd_get_section_by_name (abfd, ".interp") == NULL
3478 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
3479 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
3480 {
3481 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3482 if (m->p_type == PT_MIPS_RTPROC)
3483 break;
3484 if (m == NULL)
3485 {
3486 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3487 if (m == NULL)
3488 return false;
3489
3490 m->p_type = PT_MIPS_RTPROC;
3491
3492 s = bfd_get_section_by_name (abfd, ".rtproc");
3493 if (s == NULL)
3494 {
3495 m->count = 0;
3496 m->p_flags = 0;
3497 m->p_flags_valid = 1;
3498 }
3499 else
3500 {
3501 m->count = 1;
3502 m->sections[0] = s;
3503 }
3504
3505 /* We want to put it after the DYNAMIC segment. */
3506 pm = &elf_tdata (abfd)->segment_map;
3507 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
3508 pm = &(*pm)->next;
3509 if (*pm != NULL)
3510 pm = &(*pm)->next;
3511
3512 m->next = *pm;
3513 *pm = m;
3514 }
3515 }
3516 }
3517 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3518 .dynstr, .dynsym, and .hash sections, and everything in
3519 between. */
3520 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
3521 pm = &(*pm)->next)
3522 if ((*pm)->p_type == PT_DYNAMIC)
3523 break;
3524 m = *pm;
3525 if (IRIX_COMPAT (abfd) == ict_none)
3526 {
3527 /* For a normal mips executable the permissions for the PT_DYNAMIC
3528 segment are read, write and execute. We do that here since
3529 the code in elf.c sets only the read permission. This matters
3530 sometimes for the dynamic linker. */
3531 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3532 {
3533 m->p_flags = PF_R | PF_W | PF_X;
3534 m->p_flags_valid = 1;
3535 }
3536 }
3537 if (m != NULL
3538 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
3539 {
3540 static const char *sec_names[] =
3541 {
3542 ".dynamic", ".dynstr", ".dynsym", ".hash"
3543 };
3544 bfd_vma low, high;
3545 unsigned int i, c;
3546 struct elf_segment_map *n;
3547
3548 low = 0xffffffff;
3549 high = 0;
3550 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
3551 {
3552 s = bfd_get_section_by_name (abfd, sec_names[i]);
3553 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3554 {
3555 bfd_size_type sz;
3556
3557 if (low > s->vma)
3558 low = s->vma;
3559 sz = s->_cooked_size;
3560 if (sz == 0)
3561 sz = s->_raw_size;
3562 if (high < s->vma + sz)
3563 high = s->vma + sz;
3564 }
3565 }
3566
3567 c = 0;
3568 for (s = abfd->sections; s != NULL; s = s->next)
3569 if ((s->flags & SEC_LOAD) != 0
3570 && s->vma >= low
3571 && ((s->vma
3572 + (s->_cooked_size !=
3573 0 ? s->_cooked_size : s->_raw_size)) <= high))
3574 ++c;
3575
3576 n = ((struct elf_segment_map *)
3577 bfd_zalloc (abfd, sizeof *n + (c - 1) * sizeof (asection *)));
3578 if (n == NULL)
3579 return false;
3580 *n = *m;
3581 n->count = c;
3582
3583 i = 0;
3584 for (s = abfd->sections; s != NULL; s = s->next)
3585 {
3586 if ((s->flags & SEC_LOAD) != 0
3587 && s->vma >= low
3588 && ((s->vma
3589 + (s->_cooked_size != 0 ?
3590 s->_cooked_size : s->_raw_size)) <= high))
3591 {
3592 n->sections[i] = s;
3593 ++i;
3594 }
3595 }
3596
3597 *pm = n;
3598 }
3599 }
3600
3601 return true;
3602 }
3603 \f
3604 /* The structure of the runtime procedure descriptor created by the
3605 loader for use by the static exception system. */
3606
3607 typedef struct runtime_pdr {
3608 bfd_vma adr; /* memory address of start of procedure */
3609 long regmask; /* save register mask */
3610 long regoffset; /* save register offset */
3611 long fregmask; /* save floating point register mask */
3612 long fregoffset; /* save floating point register offset */
3613 long frameoffset; /* frame size */
3614 short framereg; /* frame pointer register */
3615 short pcreg; /* offset or reg of return pc */
3616 long irpss; /* index into the runtime string table */
3617 long reserved;
3618 struct exception_info *exception_info;/* pointer to exception array */
3619 } RPDR, *pRPDR;
3620 #define cbRPDR sizeof (RPDR)
3621 #define rpdNil ((pRPDR) 0)
3622
3623 /* Swap RPDR (runtime procedure table entry) for output. */
3624
3625 static void ecoff_swap_rpdr_out
3626 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
3627
3628 static void
3629 ecoff_swap_rpdr_out (abfd, in, ex)
3630 bfd *abfd;
3631 const RPDR *in;
3632 struct rpdr_ext *ex;
3633 {
3634 /* ecoff_put_off was defined in ecoffswap.h. */
3635 ecoff_put_off (abfd, in->adr, (bfd_byte *) ex->p_adr);
3636 bfd_h_put_32 (abfd, in->regmask, (bfd_byte *) ex->p_regmask);
3637 bfd_h_put_32 (abfd, in->regoffset, (bfd_byte *) ex->p_regoffset);
3638 bfd_h_put_32 (abfd, in->fregmask, (bfd_byte *) ex->p_fregmask);
3639 bfd_h_put_32 (abfd, in->fregoffset, (bfd_byte *) ex->p_fregoffset);
3640 bfd_h_put_32 (abfd, in->frameoffset, (bfd_byte *) ex->p_frameoffset);
3641
3642 bfd_h_put_16 (abfd, in->framereg, (bfd_byte *) ex->p_framereg);
3643 bfd_h_put_16 (abfd, in->pcreg, (bfd_byte *) ex->p_pcreg);
3644
3645 bfd_h_put_32 (abfd, in->irpss, (bfd_byte *) ex->p_irpss);
3646 #if 0 /* FIXME */
3647 ecoff_put_off (abfd, in->exception_info, (bfd_byte *) ex->p_exception_info);
3648 #endif
3649 }
3650 \f
3651 /* Read ECOFF debugging information from a .mdebug section into a
3652 ecoff_debug_info structure. */
3653
3654 boolean
3655 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
3656 bfd *abfd;
3657 asection *section;
3658 struct ecoff_debug_info *debug;
3659 {
3660 HDRR *symhdr;
3661 const struct ecoff_debug_swap *swap;
3662 char *ext_hdr = NULL;
3663
3664 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3665 memset (debug, 0, sizeof (*debug));
3666
3667 ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size);
3668 if (ext_hdr == NULL && swap->external_hdr_size != 0)
3669 goto error_return;
3670
3671 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
3672 swap->external_hdr_size)
3673 == false)
3674 goto error_return;
3675
3676 symhdr = &debug->symbolic_header;
3677 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
3678
3679 /* The symbolic header contains absolute file offsets and sizes to
3680 read. */
3681 #define READ(ptr, offset, count, size, type) \
3682 if (symhdr->count == 0) \
3683 debug->ptr = NULL; \
3684 else \
3685 { \
3686 debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \
3687 if (debug->ptr == NULL) \
3688 goto error_return; \
3689 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
3690 || (bfd_read (debug->ptr, size, symhdr->count, \
3691 abfd) != size * symhdr->count)) \
3692 goto error_return; \
3693 }
3694
3695 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
3696 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
3697 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
3698 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
3699 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
3700 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
3701 union aux_ext *);
3702 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
3703 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
3704 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
3705 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
3706 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
3707 #undef READ
3708
3709 debug->fdr = NULL;
3710 debug->adjust = NULL;
3711
3712 return true;
3713
3714 error_return:
3715 if (ext_hdr != NULL)
3716 free (ext_hdr);
3717 if (debug->line != NULL)
3718 free (debug->line);
3719 if (debug->external_dnr != NULL)
3720 free (debug->external_dnr);
3721 if (debug->external_pdr != NULL)
3722 free (debug->external_pdr);
3723 if (debug->external_sym != NULL)
3724 free (debug->external_sym);
3725 if (debug->external_opt != NULL)
3726 free (debug->external_opt);
3727 if (debug->external_aux != NULL)
3728 free (debug->external_aux);
3729 if (debug->ss != NULL)
3730 free (debug->ss);
3731 if (debug->ssext != NULL)
3732 free (debug->ssext);
3733 if (debug->external_fdr != NULL)
3734 free (debug->external_fdr);
3735 if (debug->external_rfd != NULL)
3736 free (debug->external_rfd);
3737 if (debug->external_ext != NULL)
3738 free (debug->external_ext);
3739 return false;
3740 }
3741 \f
3742 /* MIPS ELF local labels start with '$', not 'L'. */
3743
3744 static boolean
3745 mips_elf_is_local_label_name (abfd, name)
3746 bfd *abfd;
3747 const char *name;
3748 {
3749 if (name[0] == '$')
3750 return true;
3751
3752 /* On Irix 6, the labels go back to starting with '.', so we accept
3753 the generic ELF local label syntax as well. */
3754 return _bfd_elf_is_local_label_name (abfd, name);
3755 }
3756
3757 /* MIPS ELF uses a special find_nearest_line routine in order the
3758 handle the ECOFF debugging information. */
3759
3760 struct mips_elf_find_line
3761 {
3762 struct ecoff_debug_info d;
3763 struct ecoff_find_line i;
3764 };
3765
3766 boolean
3767 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
3768 functionname_ptr, line_ptr)
3769 bfd *abfd;
3770 asection *section;
3771 asymbol **symbols;
3772 bfd_vma offset;
3773 const char **filename_ptr;
3774 const char **functionname_ptr;
3775 unsigned int *line_ptr;
3776 {
3777 asection *msec;
3778
3779 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
3780 filename_ptr, functionname_ptr,
3781 line_ptr))
3782 return true;
3783
3784 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3785 filename_ptr, functionname_ptr,
3786 line_ptr,
3787 ABI_64_P (abfd) ? 8 : 0,
3788 &elf_tdata (abfd)->dwarf2_find_line_info))
3789 return true;
3790
3791 msec = bfd_get_section_by_name (abfd, ".mdebug");
3792 if (msec != NULL)
3793 {
3794 flagword origflags;
3795 struct mips_elf_find_line *fi;
3796 const struct ecoff_debug_swap * const swap =
3797 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3798
3799 /* If we are called during a link, mips_elf_final_link may have
3800 cleared the SEC_HAS_CONTENTS field. We force it back on here
3801 if appropriate (which it normally will be). */
3802 origflags = msec->flags;
3803 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
3804 msec->flags |= SEC_HAS_CONTENTS;
3805
3806 fi = elf_tdata (abfd)->find_line_info;
3807 if (fi == NULL)
3808 {
3809 bfd_size_type external_fdr_size;
3810 char *fraw_src;
3811 char *fraw_end;
3812 struct fdr *fdr_ptr;
3813
3814 fi = ((struct mips_elf_find_line *)
3815 bfd_zalloc (abfd, sizeof (struct mips_elf_find_line)));
3816 if (fi == NULL)
3817 {
3818 msec->flags = origflags;
3819 return false;
3820 }
3821
3822 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
3823 {
3824 msec->flags = origflags;
3825 return false;
3826 }
3827
3828 /* Swap in the FDR information. */
3829 fi->d.fdr = ((struct fdr *)
3830 bfd_alloc (abfd,
3831 (fi->d.symbolic_header.ifdMax *
3832 sizeof (struct fdr))));
3833 if (fi->d.fdr == NULL)
3834 {
3835 msec->flags = origflags;
3836 return false;
3837 }
3838 external_fdr_size = swap->external_fdr_size;
3839 fdr_ptr = fi->d.fdr;
3840 fraw_src = (char *) fi->d.external_fdr;
3841 fraw_end = (fraw_src
3842 + fi->d.symbolic_header.ifdMax * external_fdr_size);
3843 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
3844 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
3845
3846 elf_tdata (abfd)->find_line_info = fi;
3847
3848 /* Note that we don't bother to ever free this information.
3849 find_nearest_line is either called all the time, as in
3850 objdump -l, so the information should be saved, or it is
3851 rarely called, as in ld error messages, so the memory
3852 wasted is unimportant. Still, it would probably be a
3853 good idea for free_cached_info to throw it away. */
3854 }
3855
3856 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
3857 &fi->i, filename_ptr, functionname_ptr,
3858 line_ptr))
3859 {
3860 msec->flags = origflags;
3861 return true;
3862 }
3863
3864 msec->flags = origflags;
3865 }
3866
3867 /* Fall back on the generic ELF find_nearest_line routine. */
3868
3869 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
3870 filename_ptr, functionname_ptr,
3871 line_ptr);
3872 }
3873 \f
3874 /* The mips16 compiler uses a couple of special sections to handle
3875 floating point arguments.
3876
3877 Section names that look like .mips16.fn.FNNAME contain stubs that
3878 copy floating point arguments from the fp regs to the gp regs and
3879 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3880 call should be redirected to the stub instead. If no 32 bit
3881 function calls FNNAME, the stub should be discarded. We need to
3882 consider any reference to the function, not just a call, because
3883 if the address of the function is taken we will need the stub,
3884 since the address might be passed to a 32 bit function.
3885
3886 Section names that look like .mips16.call.FNNAME contain stubs
3887 that copy floating point arguments from the gp regs to the fp
3888 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3889 then any 16 bit function that calls FNNAME should be redirected
3890 to the stub instead. If FNNAME is not a 32 bit function, the
3891 stub should be discarded.
3892
3893 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3894 which call FNNAME and then copy the return value from the fp regs
3895 to the gp regs. These stubs store the return value in $18 while
3896 calling FNNAME; any function which might call one of these stubs
3897 must arrange to save $18 around the call. (This case is not
3898 needed for 32 bit functions that call 16 bit functions, because
3899 16 bit functions always return floating point values in both
3900 $f0/$f1 and $2/$3.)
3901
3902 Note that in all cases FNNAME might be defined statically.
3903 Therefore, FNNAME is not used literally. Instead, the relocation
3904 information will indicate which symbol the section is for.
3905
3906 We record any stubs that we find in the symbol table. */
3907
3908 #define FN_STUB ".mips16.fn."
3909 #define CALL_STUB ".mips16.call."
3910 #define CALL_FP_STUB ".mips16.call.fp."
3911
3912 /* MIPS ELF linker hash table. */
3913
3914 struct mips_elf_link_hash_table
3915 {
3916 struct elf_link_hash_table root;
3917 #if 0
3918 /* We no longer use this. */
3919 /* String section indices for the dynamic section symbols. */
3920 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
3921 #endif
3922 /* The number of .rtproc entries. */
3923 bfd_size_type procedure_count;
3924 /* The size of the .compact_rel section (if SGI_COMPAT). */
3925 bfd_size_type compact_rel_size;
3926 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
3927 entry is set to the address of __rld_obj_head as in Irix 5. */
3928 boolean use_rld_obj_head;
3929 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3930 bfd_vma rld_value;
3931 /* This is set if we see any mips16 stub sections. */
3932 boolean mips16_stubs_seen;
3933 };
3934
3935 /* Look up an entry in a MIPS ELF linker hash table. */
3936
3937 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3938 ((struct mips_elf_link_hash_entry *) \
3939 elf_link_hash_lookup (&(table)->root, (string), (create), \
3940 (copy), (follow)))
3941
3942 /* Traverse a MIPS ELF linker hash table. */
3943
3944 #define mips_elf_link_hash_traverse(table, func, info) \
3945 (elf_link_hash_traverse \
3946 (&(table)->root, \
3947 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3948 (info)))
3949
3950 /* Get the MIPS ELF linker hash table from a link_info structure. */
3951
3952 #define mips_elf_hash_table(p) \
3953 ((struct mips_elf_link_hash_table *) ((p)->hash))
3954
3955 static boolean mips_elf_output_extsym
3956 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
3957
3958 /* Create an entry in a MIPS ELF linker hash table. */
3959
3960 static struct bfd_hash_entry *
3961 mips_elf_link_hash_newfunc (entry, table, string)
3962 struct bfd_hash_entry *entry;
3963 struct bfd_hash_table *table;
3964 const char *string;
3965 {
3966 struct mips_elf_link_hash_entry *ret =
3967 (struct mips_elf_link_hash_entry *) entry;
3968
3969 /* Allocate the structure if it has not already been allocated by a
3970 subclass. */
3971 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3972 ret = ((struct mips_elf_link_hash_entry *)
3973 bfd_hash_allocate (table,
3974 sizeof (struct mips_elf_link_hash_entry)));
3975 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3976 return (struct bfd_hash_entry *) ret;
3977
3978 /* Call the allocation method of the superclass. */
3979 ret = ((struct mips_elf_link_hash_entry *)
3980 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3981 table, string));
3982 if (ret != (struct mips_elf_link_hash_entry *) NULL)
3983 {
3984 /* Set local fields. */
3985 memset (&ret->esym, 0, sizeof (EXTR));
3986 /* We use -2 as a marker to indicate that the information has
3987 not been set. -1 means there is no associated ifd. */
3988 ret->esym.ifd = -2;
3989 ret->possibly_dynamic_relocs = 0;
3990 ret->readonly_reloc = false;
3991 ret->min_dyn_reloc_index = 0;
3992 ret->no_fn_stub = false;
3993 ret->fn_stub = NULL;
3994 ret->need_fn_stub = false;
3995 ret->call_stub = NULL;
3996 ret->call_fp_stub = NULL;
3997 }
3998
3999 return (struct bfd_hash_entry *) ret;
4000 }
4001
4002 void
4003 _bfd_mips_elf_hide_symbol (info, h)
4004 struct bfd_link_info *info;
4005 struct mips_elf_link_hash_entry *h;
4006 {
4007 bfd *dynobj;
4008 asection *got;
4009 struct mips_got_info *g;
4010 dynobj = elf_hash_table (info)->dynobj;
4011 got = bfd_get_section_by_name (dynobj, ".got");
4012 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4013
4014 h->root.elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
4015 h->root.plt.offset = (bfd_vma) -1;
4016 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4017 h->root.dynindx = -1;
4018
4019 /* FIXME: Do we allocate too much GOT space here? */
4020 g->local_gotno++;
4021 got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
4022 }
4023
4024 /* Create a MIPS ELF linker hash table. */
4025
4026 struct bfd_link_hash_table *
4027 _bfd_mips_elf_link_hash_table_create (abfd)
4028 bfd *abfd;
4029 {
4030 struct mips_elf_link_hash_table *ret;
4031
4032 ret = ((struct mips_elf_link_hash_table *)
4033 bfd_alloc (abfd, sizeof (struct mips_elf_link_hash_table)));
4034 if (ret == (struct mips_elf_link_hash_table *) NULL)
4035 return NULL;
4036
4037 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
4038 mips_elf_link_hash_newfunc))
4039 {
4040 bfd_release (abfd, ret);
4041 return NULL;
4042 }
4043
4044 #if 0
4045 /* We no longer use this. */
4046 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
4047 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
4048 #endif
4049 ret->procedure_count = 0;
4050 ret->compact_rel_size = 0;
4051 ret->use_rld_obj_head = false;
4052 ret->rld_value = 0;
4053 ret->mips16_stubs_seen = false;
4054
4055 return &ret->root.root;
4056 }
4057
4058 /* Hook called by the linker routine which adds symbols from an object
4059 file. We must handle the special MIPS section numbers here. */
4060
4061 boolean
4062 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4063 bfd *abfd;
4064 struct bfd_link_info *info;
4065 const Elf_Internal_Sym *sym;
4066 const char **namep;
4067 flagword *flagsp ATTRIBUTE_UNUSED;
4068 asection **secp;
4069 bfd_vma *valp;
4070 {
4071 if (SGI_COMPAT (abfd)
4072 && (abfd->flags & DYNAMIC) != 0
4073 && strcmp (*namep, "_rld_new_interface") == 0)
4074 {
4075 /* Skip Irix 5 rld entry name. */
4076 *namep = NULL;
4077 return true;
4078 }
4079
4080 switch (sym->st_shndx)
4081 {
4082 case SHN_COMMON:
4083 /* Common symbols less than the GP size are automatically
4084 treated as SHN_MIPS_SCOMMON symbols. */
4085 if (sym->st_size > elf_gp_size (abfd)
4086 || IRIX_COMPAT (abfd) == ict_irix6)
4087 break;
4088 /* Fall through. */
4089 case SHN_MIPS_SCOMMON:
4090 *secp = bfd_make_section_old_way (abfd, ".scommon");
4091 (*secp)->flags |= SEC_IS_COMMON;
4092 *valp = sym->st_size;
4093 break;
4094
4095 case SHN_MIPS_TEXT:
4096 /* This section is used in a shared object. */
4097 if (elf_tdata (abfd)->elf_text_section == NULL)
4098 {
4099 asymbol *elf_text_symbol;
4100 asection *elf_text_section;
4101
4102 elf_text_section = bfd_zalloc (abfd, sizeof (asection));
4103 if (elf_text_section == NULL)
4104 return false;
4105
4106 elf_text_symbol = bfd_zalloc (abfd, sizeof (asymbol));
4107 if (elf_text_symbol == NULL)
4108 return false;
4109
4110 /* Initialize the section. */
4111
4112 elf_tdata (abfd)->elf_text_section = elf_text_section;
4113 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4114
4115 elf_text_section->symbol = elf_text_symbol;
4116 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4117
4118 elf_text_section->name = ".text";
4119 elf_text_section->flags = SEC_NO_FLAGS;
4120 elf_text_section->output_section = NULL;
4121 elf_text_section->owner = abfd;
4122 elf_text_symbol->name = ".text";
4123 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4124 elf_text_symbol->section = elf_text_section;
4125 }
4126 /* This code used to do *secp = bfd_und_section_ptr if
4127 info->shared. I don't know why, and that doesn't make sense,
4128 so I took it out. */
4129 *secp = elf_tdata (abfd)->elf_text_section;
4130 break;
4131
4132 case SHN_MIPS_ACOMMON:
4133 /* Fall through. XXX Can we treat this as allocated data? */
4134 case SHN_MIPS_DATA:
4135 /* This section is used in a shared object. */
4136 if (elf_tdata (abfd)->elf_data_section == NULL)
4137 {
4138 asymbol *elf_data_symbol;
4139 asection *elf_data_section;
4140
4141 elf_data_section = bfd_zalloc (abfd, sizeof (asection));
4142 if (elf_data_section == NULL)
4143 return false;
4144
4145 elf_data_symbol = bfd_zalloc (abfd, sizeof (asymbol));
4146 if (elf_data_symbol == NULL)
4147 return false;
4148
4149 /* Initialize the section. */
4150
4151 elf_tdata (abfd)->elf_data_section = elf_data_section;
4152 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4153
4154 elf_data_section->symbol = elf_data_symbol;
4155 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4156
4157 elf_data_section->name = ".data";
4158 elf_data_section->flags = SEC_NO_FLAGS;
4159 elf_data_section->output_section = NULL;
4160 elf_data_section->owner = abfd;
4161 elf_data_symbol->name = ".data";
4162 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4163 elf_data_symbol->section = elf_data_section;
4164 }
4165 /* This code used to do *secp = bfd_und_section_ptr if
4166 info->shared. I don't know why, and that doesn't make sense,
4167 so I took it out. */
4168 *secp = elf_tdata (abfd)->elf_data_section;
4169 break;
4170
4171 case SHN_MIPS_SUNDEFINED:
4172 *secp = bfd_und_section_ptr;
4173 break;
4174 }
4175
4176 if (SGI_COMPAT (abfd)
4177 && ! info->shared
4178 && info->hash->creator == abfd->xvec
4179 && strcmp (*namep, "__rld_obj_head") == 0)
4180 {
4181 struct elf_link_hash_entry *h;
4182
4183 /* Mark __rld_obj_head as dynamic. */
4184 h = NULL;
4185 if (! (_bfd_generic_link_add_one_symbol
4186 (info, abfd, *namep, BSF_GLOBAL, *secp,
4187 (bfd_vma) *valp, (const char *) NULL, false,
4188 get_elf_backend_data (abfd)->collect,
4189 (struct bfd_link_hash_entry **) &h)))
4190 return false;
4191 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4192 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4193 h->type = STT_OBJECT;
4194
4195 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4196 return false;
4197
4198 mips_elf_hash_table (info)->use_rld_obj_head = true;
4199 }
4200
4201 /* If this is a mips16 text symbol, add 1 to the value to make it
4202 odd. This will cause something like .word SYM to come up with
4203 the right value when it is loaded into the PC. */
4204 if (sym->st_other == STO_MIPS16)
4205 ++*valp;
4206
4207 return true;
4208 }
4209
4210 /* Structure used to pass information to mips_elf_output_extsym. */
4211
4212 struct extsym_info
4213 {
4214 bfd *abfd;
4215 struct bfd_link_info *info;
4216 struct ecoff_debug_info *debug;
4217 const struct ecoff_debug_swap *swap;
4218 boolean failed;
4219 };
4220
4221 /* This routine is used to write out ECOFF debugging external symbol
4222 information. It is called via mips_elf_link_hash_traverse. The
4223 ECOFF external symbol information must match the ELF external
4224 symbol information. Unfortunately, at this point we don't know
4225 whether a symbol is required by reloc information, so the two
4226 tables may wind up being different. We must sort out the external
4227 symbol information before we can set the final size of the .mdebug
4228 section, and we must set the size of the .mdebug section before we
4229 can relocate any sections, and we can't know which symbols are
4230 required by relocation until we relocate the sections.
4231 Fortunately, it is relatively unlikely that any symbol will be
4232 stripped but required by a reloc. In particular, it can not happen
4233 when generating a final executable. */
4234
4235 static boolean
4236 mips_elf_output_extsym (h, data)
4237 struct mips_elf_link_hash_entry *h;
4238 PTR data;
4239 {
4240 struct extsym_info *einfo = (struct extsym_info *) data;
4241 boolean strip;
4242 asection *sec, *output_section;
4243
4244 if (h->root.indx == -2)
4245 strip = false;
4246 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4247 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4248 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4249 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4250 strip = true;
4251 else if (einfo->info->strip == strip_all
4252 || (einfo->info->strip == strip_some
4253 && bfd_hash_lookup (einfo->info->keep_hash,
4254 h->root.root.root.string,
4255 false, false) == NULL))
4256 strip = true;
4257 else
4258 strip = false;
4259
4260 if (strip)
4261 return true;
4262
4263 if (h->esym.ifd == -2)
4264 {
4265 h->esym.jmptbl = 0;
4266 h->esym.cobol_main = 0;
4267 h->esym.weakext = 0;
4268 h->esym.reserved = 0;
4269 h->esym.ifd = ifdNil;
4270 h->esym.asym.value = 0;
4271 h->esym.asym.st = stGlobal;
4272
4273 if (h->root.root.type == bfd_link_hash_undefined
4274 || h->root.root.type == bfd_link_hash_undefweak)
4275 {
4276 const char *name;
4277
4278 /* Use undefined class. Also, set class and type for some
4279 special symbols. */
4280 name = h->root.root.root.string;
4281 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4282 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4283 {
4284 h->esym.asym.sc = scData;
4285 h->esym.asym.st = stLabel;
4286 h->esym.asym.value = 0;
4287 }
4288 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4289 {
4290 h->esym.asym.sc = scAbs;
4291 h->esym.asym.st = stLabel;
4292 h->esym.asym.value =
4293 mips_elf_hash_table (einfo->info)->procedure_count;
4294 }
4295 else if (strcmp (name, "_gp_disp") == 0)
4296 {
4297 h->esym.asym.sc = scAbs;
4298 h->esym.asym.st = stLabel;
4299 h->esym.asym.value = elf_gp (einfo->abfd);
4300 }
4301 else
4302 h->esym.asym.sc = scUndefined;
4303 }
4304 else if (h->root.root.type != bfd_link_hash_defined
4305 && h->root.root.type != bfd_link_hash_defweak)
4306 h->esym.asym.sc = scAbs;
4307 else
4308 {
4309 const char *name;
4310
4311 sec = h->root.root.u.def.section;
4312 output_section = sec->output_section;
4313
4314 /* When making a shared library and symbol h is the one from
4315 the another shared library, OUTPUT_SECTION may be null. */
4316 if (output_section == NULL)
4317 h->esym.asym.sc = scUndefined;
4318 else
4319 {
4320 name = bfd_section_name (output_section->owner, output_section);
4321
4322 if (strcmp (name, ".text") == 0)
4323 h->esym.asym.sc = scText;
4324 else if (strcmp (name, ".data") == 0)
4325 h->esym.asym.sc = scData;
4326 else if (strcmp (name, ".sdata") == 0)
4327 h->esym.asym.sc = scSData;
4328 else if (strcmp (name, ".rodata") == 0
4329 || strcmp (name, ".rdata") == 0)
4330 h->esym.asym.sc = scRData;
4331 else if (strcmp (name, ".bss") == 0)
4332 h->esym.asym.sc = scBss;
4333 else if (strcmp (name, ".sbss") == 0)
4334 h->esym.asym.sc = scSBss;
4335 else if (strcmp (name, ".init") == 0)
4336 h->esym.asym.sc = scInit;
4337 else if (strcmp (name, ".fini") == 0)
4338 h->esym.asym.sc = scFini;
4339 else
4340 h->esym.asym.sc = scAbs;
4341 }
4342 }
4343
4344 h->esym.asym.reserved = 0;
4345 h->esym.asym.index = indexNil;
4346 }
4347
4348 if (h->root.root.type == bfd_link_hash_common)
4349 h->esym.asym.value = h->root.root.u.c.size;
4350 else if (h->root.root.type == bfd_link_hash_defined
4351 || h->root.root.type == bfd_link_hash_defweak)
4352 {
4353 if (h->esym.asym.sc == scCommon)
4354 h->esym.asym.sc = scBss;
4355 else if (h->esym.asym.sc == scSCommon)
4356 h->esym.asym.sc = scSBss;
4357
4358 sec = h->root.root.u.def.section;
4359 output_section = sec->output_section;
4360 if (output_section != NULL)
4361 h->esym.asym.value = (h->root.root.u.def.value
4362 + sec->output_offset
4363 + output_section->vma);
4364 else
4365 h->esym.asym.value = 0;
4366 }
4367 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4368 {
4369 struct mips_elf_link_hash_entry *hd = h;
4370 boolean no_fn_stub = h->no_fn_stub;
4371
4372 while (hd->root.root.type == bfd_link_hash_indirect)
4373 {
4374 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
4375 no_fn_stub = no_fn_stub || hd->no_fn_stub;
4376 }
4377
4378 if (!no_fn_stub)
4379 {
4380 /* Set type and value for a symbol with a function stub. */
4381 h->esym.asym.st = stProc;
4382 sec = hd->root.root.u.def.section;
4383 if (sec == NULL)
4384 h->esym.asym.value = 0;
4385 else
4386 {
4387 output_section = sec->output_section;
4388 if (output_section != NULL)
4389 h->esym.asym.value = (hd->root.plt.offset
4390 + sec->output_offset
4391 + output_section->vma);
4392 else
4393 h->esym.asym.value = 0;
4394 }
4395 #if 0 /* FIXME? */
4396 h->esym.ifd = 0;
4397 #endif
4398 }
4399 }
4400
4401 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4402 h->root.root.root.string,
4403 &h->esym))
4404 {
4405 einfo->failed = true;
4406 return false;
4407 }
4408
4409 return true;
4410 }
4411
4412 /* Create a runtime procedure table from the .mdebug section. */
4413
4414 static boolean
4415 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4416 PTR handle;
4417 bfd *abfd;
4418 struct bfd_link_info *info;
4419 asection *s;
4420 struct ecoff_debug_info *debug;
4421 {
4422 const struct ecoff_debug_swap *swap;
4423 HDRR *hdr = &debug->symbolic_header;
4424 RPDR *rpdr, *rp;
4425 struct rpdr_ext *erp;
4426 PTR rtproc;
4427 struct pdr_ext *epdr;
4428 struct sym_ext *esym;
4429 char *ss, **sv;
4430 char *str;
4431 unsigned long size, count;
4432 unsigned long sindex;
4433 unsigned long i;
4434 PDR pdr;
4435 SYMR sym;
4436 const char *no_name_func = _("static procedure (no name)");
4437
4438 epdr = NULL;
4439 rpdr = NULL;
4440 esym = NULL;
4441 ss = NULL;
4442 sv = NULL;
4443
4444 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4445
4446 sindex = strlen (no_name_func) + 1;
4447 count = hdr->ipdMax;
4448 if (count > 0)
4449 {
4450 size = swap->external_pdr_size;
4451
4452 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4453 if (epdr == NULL)
4454 goto error_return;
4455
4456 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4457 goto error_return;
4458
4459 size = sizeof (RPDR);
4460 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4461 if (rpdr == NULL)
4462 goto error_return;
4463
4464 sv = (char **) bfd_malloc (sizeof (char *) * count);
4465 if (sv == NULL)
4466 goto error_return;
4467
4468 count = hdr->isymMax;
4469 size = swap->external_sym_size;
4470 esym = (struct sym_ext *) bfd_malloc (size * count);
4471 if (esym == NULL)
4472 goto error_return;
4473
4474 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
4475 goto error_return;
4476
4477 count = hdr->issMax;
4478 ss = (char *) bfd_malloc (count);
4479 if (ss == NULL)
4480 goto error_return;
4481 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
4482 goto error_return;
4483
4484 count = hdr->ipdMax;
4485 for (i = 0; i < count; i++, rp++)
4486 {
4487 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
4488 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
4489 rp->adr = sym.value;
4490 rp->regmask = pdr.regmask;
4491 rp->regoffset = pdr.regoffset;
4492 rp->fregmask = pdr.fregmask;
4493 rp->fregoffset = pdr.fregoffset;
4494 rp->frameoffset = pdr.frameoffset;
4495 rp->framereg = pdr.framereg;
4496 rp->pcreg = pdr.pcreg;
4497 rp->irpss = sindex;
4498 sv[i] = ss + sym.iss;
4499 sindex += strlen (sv[i]) + 1;
4500 }
4501 }
4502
4503 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
4504 size = BFD_ALIGN (size, 16);
4505 rtproc = (PTR) bfd_alloc (abfd, size);
4506 if (rtproc == NULL)
4507 {
4508 mips_elf_hash_table (info)->procedure_count = 0;
4509 goto error_return;
4510 }
4511
4512 mips_elf_hash_table (info)->procedure_count = count + 2;
4513
4514 erp = (struct rpdr_ext *) rtproc;
4515 memset (erp, 0, sizeof (struct rpdr_ext));
4516 erp++;
4517 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
4518 strcpy (str, no_name_func);
4519 str += strlen (no_name_func) + 1;
4520 for (i = 0; i < count; i++)
4521 {
4522 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
4523 strcpy (str, sv[i]);
4524 str += strlen (sv[i]) + 1;
4525 }
4526 ecoff_put_off (abfd, (bfd_vma) -1, (bfd_byte *) (erp + count)->p_adr);
4527
4528 /* Set the size and contents of .rtproc section. */
4529 s->_raw_size = size;
4530 s->contents = (bfd_byte *) rtproc;
4531
4532 /* Skip this section later on (I don't think this currently
4533 matters, but someday it might). */
4534 s->link_order_head = (struct bfd_link_order *) NULL;
4535
4536 if (epdr != NULL)
4537 free (epdr);
4538 if (rpdr != NULL)
4539 free (rpdr);
4540 if (esym != NULL)
4541 free (esym);
4542 if (ss != NULL)
4543 free (ss);
4544 if (sv != NULL)
4545 free (sv);
4546
4547 return true;
4548
4549 error_return:
4550 if (epdr != NULL)
4551 free (epdr);
4552 if (rpdr != NULL)
4553 free (rpdr);
4554 if (esym != NULL)
4555 free (esym);
4556 if (ss != NULL)
4557 free (ss);
4558 if (sv != NULL)
4559 free (sv);
4560 return false;
4561 }
4562
4563 /* A comparison routine used to sort .gptab entries. */
4564
4565 static int
4566 gptab_compare (p1, p2)
4567 const PTR p1;
4568 const PTR p2;
4569 {
4570 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
4571 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
4572
4573 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
4574 }
4575
4576 /* We need to use a special link routine to handle the .reginfo and
4577 the .mdebug sections. We need to merge all instances of these
4578 sections together, not write them all out sequentially. */
4579
4580 boolean
4581 _bfd_mips_elf_final_link (abfd, info)
4582 bfd *abfd;
4583 struct bfd_link_info *info;
4584 {
4585 asection **secpp;
4586 asection *o;
4587 struct bfd_link_order *p;
4588 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
4589 asection *rtproc_sec;
4590 Elf32_RegInfo reginfo;
4591 struct ecoff_debug_info debug;
4592 const struct ecoff_debug_swap *swap
4593 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4594 HDRR *symhdr = &debug.symbolic_header;
4595 PTR mdebug_handle = NULL;
4596 asection *s;
4597 EXTR esym;
4598 bfd_vma last;
4599 unsigned int i;
4600 static const char * const name[] =
4601 {
4602 ".text", ".init", ".fini", ".data",
4603 ".rodata", ".sdata", ".sbss", ".bss"
4604 };
4605 static const int sc[] =
4606 {
4607 scText, scInit, scFini, scData,
4608 scRData, scSData, scSBss, scBss
4609 };
4610
4611 /* If all the things we linked together were PIC, but we're
4612 producing an executable (rather than a shared object), then the
4613 resulting file is CPIC (i.e., it calls PIC code.) */
4614 if (!info->shared
4615 && !info->relocateable
4616 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
4617 {
4618 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
4619 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
4620 }
4621
4622 /* We'd carefully arranged the dynamic symbol indices, and then the
4623 generic size_dynamic_sections renumbered them out from under us.
4624 Rather than trying somehow to prevent the renumbering, just do
4625 the sort again. */
4626 if (elf_hash_table (info)->dynamic_sections_created)
4627 {
4628 bfd *dynobj;
4629 asection *got;
4630 struct mips_got_info *g;
4631
4632 /* When we resort, we must tell mips_elf_sort_hash_table what
4633 the lowest index it may use is. That's the number of section
4634 symbols we're going to add. The generic ELF linker only
4635 adds these symbols when building a shared object. Note that
4636 we count the sections after (possibly) removing the .options
4637 section above. */
4638 if (!mips_elf_sort_hash_table (info, (info->shared
4639 ? bfd_count_sections (abfd) + 1
4640 : 1)))
4641 return false;
4642
4643 /* Make sure we didn't grow the global .got region. */
4644 dynobj = elf_hash_table (info)->dynobj;
4645 got = bfd_get_section_by_name (dynobj, ".got");
4646 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4647
4648 if (g->global_gotsym != NULL)
4649 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
4650 - g->global_gotsym->dynindx)
4651 <= g->global_gotno);
4652 }
4653
4654 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4655 include it, even though we don't process it quite right. (Some
4656 entries are supposed to be merged.) Empirically, we seem to be
4657 better off including it then not. */
4658 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4659 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
4660 {
4661 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4662 {
4663 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
4664 if (p->type == bfd_indirect_link_order)
4665 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
4666 (*secpp)->link_order_head = NULL;
4667 *secpp = (*secpp)->next;
4668 --abfd->section_count;
4669
4670 break;
4671 }
4672 }
4673
4674 /* Get a value for the GP register. */
4675 if (elf_gp (abfd) == 0)
4676 {
4677 struct bfd_link_hash_entry *h;
4678
4679 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
4680 if (h != (struct bfd_link_hash_entry *) NULL
4681 && h->type == bfd_link_hash_defined)
4682 elf_gp (abfd) = (h->u.def.value
4683 + h->u.def.section->output_section->vma
4684 + h->u.def.section->output_offset);
4685 else if (info->relocateable)
4686 {
4687 bfd_vma lo;
4688
4689 /* Find the GP-relative section with the lowest offset. */
4690 lo = (bfd_vma) -1;
4691 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4692 if (o->vma < lo
4693 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
4694 lo = o->vma;
4695
4696 /* And calculate GP relative to that. */
4697 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
4698 }
4699 else
4700 {
4701 /* If the relocate_section function needs to do a reloc
4702 involving the GP value, it should make a reloc_dangerous
4703 callback to warn that GP is not defined. */
4704 }
4705 }
4706
4707 /* Go through the sections and collect the .reginfo and .mdebug
4708 information. */
4709 reginfo_sec = NULL;
4710 mdebug_sec = NULL;
4711 gptab_data_sec = NULL;
4712 gptab_bss_sec = NULL;
4713 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4714 {
4715 if (strcmp (o->name, ".reginfo") == 0)
4716 {
4717 memset (&reginfo, 0, sizeof reginfo);
4718
4719 /* We have found the .reginfo section in the output file.
4720 Look through all the link_orders comprising it and merge
4721 the information together. */
4722 for (p = o->link_order_head;
4723 p != (struct bfd_link_order *) NULL;
4724 p = p->next)
4725 {
4726 asection *input_section;
4727 bfd *input_bfd;
4728 Elf32_External_RegInfo ext;
4729 Elf32_RegInfo sub;
4730
4731 if (p->type != bfd_indirect_link_order)
4732 {
4733 if (p->type == bfd_fill_link_order)
4734 continue;
4735 abort ();
4736 }
4737
4738 input_section = p->u.indirect.section;
4739 input_bfd = input_section->owner;
4740
4741 /* The linker emulation code has probably clobbered the
4742 size to be zero bytes. */
4743 if (input_section->_raw_size == 0)
4744 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
4745
4746 if (! bfd_get_section_contents (input_bfd, input_section,
4747 (PTR) &ext,
4748 (file_ptr) 0,
4749 sizeof ext))
4750 return false;
4751
4752 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
4753
4754 reginfo.ri_gprmask |= sub.ri_gprmask;
4755 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
4756 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
4757 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
4758 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
4759
4760 /* ri_gp_value is set by the function
4761 mips_elf32_section_processing when the section is
4762 finally written out. */
4763
4764 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4765 elf_link_input_bfd ignores this section. */
4766 input_section->flags &= ~SEC_HAS_CONTENTS;
4767 }
4768
4769 /* Size has been set in mips_elf_always_size_sections */
4770 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
4771
4772 /* Skip this section later on (I don't think this currently
4773 matters, but someday it might). */
4774 o->link_order_head = (struct bfd_link_order *) NULL;
4775
4776 reginfo_sec = o;
4777 }
4778
4779 if (strcmp (o->name, ".mdebug") == 0)
4780 {
4781 struct extsym_info einfo;
4782
4783 /* We have found the .mdebug section in the output file.
4784 Look through all the link_orders comprising it and merge
4785 the information together. */
4786 symhdr->magic = swap->sym_magic;
4787 /* FIXME: What should the version stamp be? */
4788 symhdr->vstamp = 0;
4789 symhdr->ilineMax = 0;
4790 symhdr->cbLine = 0;
4791 symhdr->idnMax = 0;
4792 symhdr->ipdMax = 0;
4793 symhdr->isymMax = 0;
4794 symhdr->ioptMax = 0;
4795 symhdr->iauxMax = 0;
4796 symhdr->issMax = 0;
4797 symhdr->issExtMax = 0;
4798 symhdr->ifdMax = 0;
4799 symhdr->crfd = 0;
4800 symhdr->iextMax = 0;
4801
4802 /* We accumulate the debugging information itself in the
4803 debug_info structure. */
4804 debug.line = NULL;
4805 debug.external_dnr = NULL;
4806 debug.external_pdr = NULL;
4807 debug.external_sym = NULL;
4808 debug.external_opt = NULL;
4809 debug.external_aux = NULL;
4810 debug.ss = NULL;
4811 debug.ssext = debug.ssext_end = NULL;
4812 debug.external_fdr = NULL;
4813 debug.external_rfd = NULL;
4814 debug.external_ext = debug.external_ext_end = NULL;
4815
4816 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
4817 if (mdebug_handle == (PTR) NULL)
4818 return false;
4819
4820 esym.jmptbl = 0;
4821 esym.cobol_main = 0;
4822 esym.weakext = 0;
4823 esym.reserved = 0;
4824 esym.ifd = ifdNil;
4825 esym.asym.iss = issNil;
4826 esym.asym.st = stLocal;
4827 esym.asym.reserved = 0;
4828 esym.asym.index = indexNil;
4829 last = 0;
4830 for (i = 0; i < 8; i++)
4831 {
4832 esym.asym.sc = sc[i];
4833 s = bfd_get_section_by_name (abfd, name[i]);
4834 if (s != NULL)
4835 {
4836 esym.asym.value = s->vma;
4837 last = s->vma + s->_raw_size;
4838 }
4839 else
4840 esym.asym.value = last;
4841 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
4842 name[i], &esym))
4843 return false;
4844 }
4845
4846 for (p = o->link_order_head;
4847 p != (struct bfd_link_order *) NULL;
4848 p = p->next)
4849 {
4850 asection *input_section;
4851 bfd *input_bfd;
4852 const struct ecoff_debug_swap *input_swap;
4853 struct ecoff_debug_info input_debug;
4854 char *eraw_src;
4855 char *eraw_end;
4856
4857 if (p->type != bfd_indirect_link_order)
4858 {
4859 if (p->type == bfd_fill_link_order)
4860 continue;
4861 abort ();
4862 }
4863
4864 input_section = p->u.indirect.section;
4865 input_bfd = input_section->owner;
4866
4867 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
4868 || (get_elf_backend_data (input_bfd)
4869 ->elf_backend_ecoff_debug_swap) == NULL)
4870 {
4871 /* I don't know what a non MIPS ELF bfd would be
4872 doing with a .mdebug section, but I don't really
4873 want to deal with it. */
4874 continue;
4875 }
4876
4877 input_swap = (get_elf_backend_data (input_bfd)
4878 ->elf_backend_ecoff_debug_swap);
4879
4880 BFD_ASSERT (p->size == input_section->_raw_size);
4881
4882 /* The ECOFF linking code expects that we have already
4883 read in the debugging information and set up an
4884 ecoff_debug_info structure, so we do that now. */
4885 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
4886 &input_debug))
4887 return false;
4888
4889 if (! (bfd_ecoff_debug_accumulate
4890 (mdebug_handle, abfd, &debug, swap, input_bfd,
4891 &input_debug, input_swap, info)))
4892 return false;
4893
4894 /* Loop through the external symbols. For each one with
4895 interesting information, try to find the symbol in
4896 the linker global hash table and save the information
4897 for the output external symbols. */
4898 eraw_src = input_debug.external_ext;
4899 eraw_end = (eraw_src
4900 + (input_debug.symbolic_header.iextMax
4901 * input_swap->external_ext_size));
4902 for (;
4903 eraw_src < eraw_end;
4904 eraw_src += input_swap->external_ext_size)
4905 {
4906 EXTR ext;
4907 const char *name;
4908 struct mips_elf_link_hash_entry *h;
4909
4910 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
4911 if (ext.asym.sc == scNil
4912 || ext.asym.sc == scUndefined
4913 || ext.asym.sc == scSUndefined)
4914 continue;
4915
4916 name = input_debug.ssext + ext.asym.iss;
4917 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
4918 name, false, false, true);
4919 if (h == NULL || h->esym.ifd != -2)
4920 continue;
4921
4922 if (ext.ifd != -1)
4923 {
4924 BFD_ASSERT (ext.ifd
4925 < input_debug.symbolic_header.ifdMax);
4926 ext.ifd = input_debug.ifdmap[ext.ifd];
4927 }
4928
4929 h->esym = ext;
4930 }
4931
4932 /* Free up the information we just read. */
4933 free (input_debug.line);
4934 free (input_debug.external_dnr);
4935 free (input_debug.external_pdr);
4936 free (input_debug.external_sym);
4937 free (input_debug.external_opt);
4938 free (input_debug.external_aux);
4939 free (input_debug.ss);
4940 free (input_debug.ssext);
4941 free (input_debug.external_fdr);
4942 free (input_debug.external_rfd);
4943 free (input_debug.external_ext);
4944
4945 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4946 elf_link_input_bfd ignores this section. */
4947 input_section->flags &= ~SEC_HAS_CONTENTS;
4948 }
4949
4950 if (SGI_COMPAT (abfd) && info->shared)
4951 {
4952 /* Create .rtproc section. */
4953 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
4954 if (rtproc_sec == NULL)
4955 {
4956 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
4957 | SEC_LINKER_CREATED | SEC_READONLY);
4958
4959 rtproc_sec = bfd_make_section (abfd, ".rtproc");
4960 if (rtproc_sec == NULL
4961 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
4962 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
4963 return false;
4964 }
4965
4966 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
4967 info, rtproc_sec, &debug))
4968 return false;
4969 }
4970
4971 /* Build the external symbol information. */
4972 einfo.abfd = abfd;
4973 einfo.info = info;
4974 einfo.debug = &debug;
4975 einfo.swap = swap;
4976 einfo.failed = false;
4977 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4978 mips_elf_output_extsym,
4979 (PTR) &einfo);
4980 if (einfo.failed)
4981 return false;
4982
4983 /* Set the size of the .mdebug section. */
4984 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
4985
4986 /* Skip this section later on (I don't think this currently
4987 matters, but someday it might). */
4988 o->link_order_head = (struct bfd_link_order *) NULL;
4989
4990 mdebug_sec = o;
4991 }
4992
4993 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
4994 {
4995 const char *subname;
4996 unsigned int c;
4997 Elf32_gptab *tab;
4998 Elf32_External_gptab *ext_tab;
4999 unsigned int i;
5000
5001 /* The .gptab.sdata and .gptab.sbss sections hold
5002 information describing how the small data area would
5003 change depending upon the -G switch. These sections
5004 not used in executables files. */
5005 if (! info->relocateable)
5006 {
5007 asection **secpp;
5008
5009 for (p = o->link_order_head;
5010 p != (struct bfd_link_order *) NULL;
5011 p = p->next)
5012 {
5013 asection *input_section;
5014
5015 if (p->type != bfd_indirect_link_order)
5016 {
5017 if (p->type == bfd_fill_link_order)
5018 continue;
5019 abort ();
5020 }
5021
5022 input_section = p->u.indirect.section;
5023
5024 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5025 elf_link_input_bfd ignores this section. */
5026 input_section->flags &= ~SEC_HAS_CONTENTS;
5027 }
5028
5029 /* Skip this section later on (I don't think this
5030 currently matters, but someday it might). */
5031 o->link_order_head = (struct bfd_link_order *) NULL;
5032
5033 /* Really remove the section. */
5034 for (secpp = &abfd->sections;
5035 *secpp != o;
5036 secpp = &(*secpp)->next)
5037 ;
5038 *secpp = (*secpp)->next;
5039 --abfd->section_count;
5040
5041 continue;
5042 }
5043
5044 /* There is one gptab for initialized data, and one for
5045 uninitialized data. */
5046 if (strcmp (o->name, ".gptab.sdata") == 0)
5047 gptab_data_sec = o;
5048 else if (strcmp (o->name, ".gptab.sbss") == 0)
5049 gptab_bss_sec = o;
5050 else
5051 {
5052 (*_bfd_error_handler)
5053 (_("%s: illegal section name `%s'"),
5054 bfd_get_filename (abfd), o->name);
5055 bfd_set_error (bfd_error_nonrepresentable_section);
5056 return false;
5057 }
5058
5059 /* The linker script always combines .gptab.data and
5060 .gptab.sdata into .gptab.sdata, and likewise for
5061 .gptab.bss and .gptab.sbss. It is possible that there is
5062 no .sdata or .sbss section in the output file, in which
5063 case we must change the name of the output section. */
5064 subname = o->name + sizeof ".gptab" - 1;
5065 if (bfd_get_section_by_name (abfd, subname) == NULL)
5066 {
5067 if (o == gptab_data_sec)
5068 o->name = ".gptab.data";
5069 else
5070 o->name = ".gptab.bss";
5071 subname = o->name + sizeof ".gptab" - 1;
5072 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
5073 }
5074
5075 /* Set up the first entry. */
5076 c = 1;
5077 tab = (Elf32_gptab *) bfd_malloc (c * sizeof (Elf32_gptab));
5078 if (tab == NULL)
5079 return false;
5080 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
5081 tab[0].gt_header.gt_unused = 0;
5082
5083 /* Combine the input sections. */
5084 for (p = o->link_order_head;
5085 p != (struct bfd_link_order *) NULL;
5086 p = p->next)
5087 {
5088 asection *input_section;
5089 bfd *input_bfd;
5090 bfd_size_type size;
5091 unsigned long last;
5092 bfd_size_type gpentry;
5093
5094 if (p->type != bfd_indirect_link_order)
5095 {
5096 if (p->type == bfd_fill_link_order)
5097 continue;
5098 abort ();
5099 }
5100
5101 input_section = p->u.indirect.section;
5102 input_bfd = input_section->owner;
5103
5104 /* Combine the gptab entries for this input section one
5105 by one. We know that the input gptab entries are
5106 sorted by ascending -G value. */
5107 size = bfd_section_size (input_bfd, input_section);
5108 last = 0;
5109 for (gpentry = sizeof (Elf32_External_gptab);
5110 gpentry < size;
5111 gpentry += sizeof (Elf32_External_gptab))
5112 {
5113 Elf32_External_gptab ext_gptab;
5114 Elf32_gptab int_gptab;
5115 unsigned long val;
5116 unsigned long add;
5117 boolean exact;
5118 unsigned int look;
5119
5120 if (! (bfd_get_section_contents
5121 (input_bfd, input_section, (PTR) &ext_gptab,
5122 gpentry, sizeof (Elf32_External_gptab))))
5123 {
5124 free (tab);
5125 return false;
5126 }
5127
5128 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
5129 &int_gptab);
5130 val = int_gptab.gt_entry.gt_g_value;
5131 add = int_gptab.gt_entry.gt_bytes - last;
5132
5133 exact = false;
5134 for (look = 1; look < c; look++)
5135 {
5136 if (tab[look].gt_entry.gt_g_value >= val)
5137 tab[look].gt_entry.gt_bytes += add;
5138
5139 if (tab[look].gt_entry.gt_g_value == val)
5140 exact = true;
5141 }
5142
5143 if (! exact)
5144 {
5145 Elf32_gptab *new_tab;
5146 unsigned int max;
5147
5148 /* We need a new table entry. */
5149 new_tab = ((Elf32_gptab *)
5150 bfd_realloc ((PTR) tab,
5151 (c + 1) * sizeof (Elf32_gptab)));
5152 if (new_tab == NULL)
5153 {
5154 free (tab);
5155 return false;
5156 }
5157 tab = new_tab;
5158 tab[c].gt_entry.gt_g_value = val;
5159 tab[c].gt_entry.gt_bytes = add;
5160
5161 /* Merge in the size for the next smallest -G
5162 value, since that will be implied by this new
5163 value. */
5164 max = 0;
5165 for (look = 1; look < c; look++)
5166 {
5167 if (tab[look].gt_entry.gt_g_value < val
5168 && (max == 0
5169 || (tab[look].gt_entry.gt_g_value
5170 > tab[max].gt_entry.gt_g_value)))
5171 max = look;
5172 }
5173 if (max != 0)
5174 tab[c].gt_entry.gt_bytes +=
5175 tab[max].gt_entry.gt_bytes;
5176
5177 ++c;
5178 }
5179
5180 last = int_gptab.gt_entry.gt_bytes;
5181 }
5182
5183 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5184 elf_link_input_bfd ignores this section. */
5185 input_section->flags &= ~SEC_HAS_CONTENTS;
5186 }
5187
5188 /* The table must be sorted by -G value. */
5189 if (c > 2)
5190 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
5191
5192 /* Swap out the table. */
5193 ext_tab = ((Elf32_External_gptab *)
5194 bfd_alloc (abfd, c * sizeof (Elf32_External_gptab)));
5195 if (ext_tab == NULL)
5196 {
5197 free (tab);
5198 return false;
5199 }
5200
5201 for (i = 0; i < c; i++)
5202 bfd_mips_elf32_swap_gptab_out (abfd, tab + i, ext_tab + i);
5203 free (tab);
5204
5205 o->_raw_size = c * sizeof (Elf32_External_gptab);
5206 o->contents = (bfd_byte *) ext_tab;
5207
5208 /* Skip this section later on (I don't think this currently
5209 matters, but someday it might). */
5210 o->link_order_head = (struct bfd_link_order *) NULL;
5211 }
5212 }
5213
5214 /* Invoke the regular ELF backend linker to do all the work. */
5215 if (ABI_64_P (abfd))
5216 {
5217 #ifdef BFD64
5218 if (!bfd_elf64_bfd_final_link (abfd, info))
5219 return false;
5220 #else
5221 abort ();
5222 return false;
5223 #endif /* BFD64 */
5224 }
5225 else if (!bfd_elf32_bfd_final_link (abfd, info))
5226 return false;
5227
5228 /* Now write out the computed sections. */
5229
5230 if (reginfo_sec != (asection *) NULL)
5231 {
5232 Elf32_External_RegInfo ext;
5233
5234 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
5235 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
5236 (file_ptr) 0, sizeof ext))
5237 return false;
5238 }
5239
5240 if (mdebug_sec != (asection *) NULL)
5241 {
5242 BFD_ASSERT (abfd->output_has_begun);
5243 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5244 swap, info,
5245 mdebug_sec->filepos))
5246 return false;
5247
5248 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5249 }
5250
5251 if (gptab_data_sec != (asection *) NULL)
5252 {
5253 if (! bfd_set_section_contents (abfd, gptab_data_sec,
5254 gptab_data_sec->contents,
5255 (file_ptr) 0,
5256 gptab_data_sec->_raw_size))
5257 return false;
5258 }
5259
5260 if (gptab_bss_sec != (asection *) NULL)
5261 {
5262 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
5263 gptab_bss_sec->contents,
5264 (file_ptr) 0,
5265 gptab_bss_sec->_raw_size))
5266 return false;
5267 }
5268
5269 if (SGI_COMPAT (abfd))
5270 {
5271 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5272 if (rtproc_sec != NULL)
5273 {
5274 if (! bfd_set_section_contents (abfd, rtproc_sec,
5275 rtproc_sec->contents,
5276 (file_ptr) 0,
5277 rtproc_sec->_raw_size))
5278 return false;
5279 }
5280 }
5281
5282 return true;
5283 }
5284
5285 /* This function is called via qsort() to sort the dynamic relocation
5286 entries by increasing r_symndx value. */
5287
5288 static int
5289 sort_dynamic_relocs (arg1, arg2)
5290 const PTR arg1;
5291 const PTR arg2;
5292 {
5293 const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1;
5294 const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2;
5295
5296 Elf_Internal_Rel int_reloc1;
5297 Elf_Internal_Rel int_reloc2;
5298
5299 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc1, &int_reloc1);
5300 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc2, &int_reloc2);
5301
5302 return (ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info));
5303 }
5304
5305 /* Returns the GOT section for ABFD. */
5306
5307 static asection *
5308 mips_elf_got_section (abfd)
5309 bfd *abfd;
5310 {
5311 return bfd_get_section_by_name (abfd, ".got");
5312 }
5313
5314 /* Returns the GOT information associated with the link indicated by
5315 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5316 section. */
5317
5318 static struct mips_got_info *
5319 mips_elf_got_info (abfd, sgotp)
5320 bfd *abfd;
5321 asection **sgotp;
5322 {
5323 asection *sgot;
5324 struct mips_got_info *g;
5325
5326 sgot = mips_elf_got_section (abfd);
5327 BFD_ASSERT (sgot != NULL);
5328 BFD_ASSERT (elf_section_data (sgot) != NULL);
5329 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5330 BFD_ASSERT (g != NULL);
5331
5332 if (sgotp)
5333 *sgotp = sgot;
5334 return g;
5335 }
5336
5337 /* Return whether a relocation is against a local symbol. */
5338
5339 static boolean
5340 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
5341 check_forced)
5342 bfd *input_bfd;
5343 const Elf_Internal_Rela *relocation;
5344 asection **local_sections;
5345 boolean check_forced;
5346 {
5347 unsigned long r_symndx;
5348 Elf_Internal_Shdr *symtab_hdr;
5349 struct mips_elf_link_hash_entry *h;
5350 size_t extsymoff;
5351
5352 r_symndx = ELF32_R_SYM (relocation->r_info);
5353 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5354 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5355
5356 if (r_symndx < extsymoff)
5357 return true;
5358 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5359 return true;
5360
5361 if (check_forced)
5362 {
5363 /* Look up the hash table to check whether the symbol
5364 was forced local. */
5365 h = (struct mips_elf_link_hash_entry *)
5366 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
5367 /* Find the real hash-table entry for this symbol. */
5368 while (h->root.root.type == bfd_link_hash_indirect
5369 || h->root.root.type == bfd_link_hash_warning)
5370 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5371 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5372 return true;
5373 }
5374
5375 return false;
5376 }
5377
5378 /* Sign-extend VALUE, which has the indicated number of BITS. */
5379
5380 static bfd_vma
5381 mips_elf_sign_extend (value, bits)
5382 bfd_vma value;
5383 int bits;
5384 {
5385 if (value & ((bfd_vma) 1 << (bits - 1)))
5386 /* VALUE is negative. */
5387 value |= ((bfd_vma) - 1) << bits;
5388
5389 return value;
5390 }
5391
5392 /* Return non-zero if the indicated VALUE has overflowed the maximum
5393 range expressable by a signed number with the indicated number of
5394 BITS. */
5395
5396 static boolean
5397 mips_elf_overflow_p (value, bits)
5398 bfd_vma value;
5399 int bits;
5400 {
5401 bfd_signed_vma svalue = (bfd_signed_vma) value;
5402
5403 if (svalue > (1 << (bits - 1)) - 1)
5404 /* The value is too big. */
5405 return true;
5406 else if (svalue < -(1 << (bits - 1)))
5407 /* The value is too small. */
5408 return true;
5409
5410 /* All is well. */
5411 return false;
5412 }
5413
5414 /* Calculate the %high function. */
5415
5416 static bfd_vma
5417 mips_elf_high (value)
5418 bfd_vma value;
5419 {
5420 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5421 }
5422
5423 /* Calculate the %higher function. */
5424
5425 static bfd_vma
5426 mips_elf_higher (value)
5427 bfd_vma value ATTRIBUTE_UNUSED;
5428 {
5429 #ifdef BFD64
5430 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5431 #else
5432 abort ();
5433 return (bfd_vma) -1;
5434 #endif
5435 }
5436
5437 /* Calculate the %highest function. */
5438
5439 static bfd_vma
5440 mips_elf_highest (value)
5441 bfd_vma value ATTRIBUTE_UNUSED;
5442 {
5443 #ifdef BFD64
5444 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
5445 #else
5446 abort ();
5447 return (bfd_vma) -1;
5448 #endif
5449 }
5450
5451 /* Returns the GOT index for the global symbol indicated by H. */
5452
5453 static bfd_vma
5454 mips_elf_global_got_index (abfd, h)
5455 bfd *abfd;
5456 struct elf_link_hash_entry *h;
5457 {
5458 bfd_vma index;
5459 asection *sgot;
5460 struct mips_got_info *g;
5461
5462 g = mips_elf_got_info (abfd, &sgot);
5463
5464 /* Once we determine the global GOT entry with the lowest dynamic
5465 symbol table index, we must put all dynamic symbols with greater
5466 indices into the GOT. That makes it easy to calculate the GOT
5467 offset. */
5468 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
5469 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
5470 * MIPS_ELF_GOT_SIZE (abfd));
5471 BFD_ASSERT (index < sgot->_raw_size);
5472
5473 return index;
5474 }
5475
5476 /* Returns the offset for the entry at the INDEXth position
5477 in the GOT. */
5478
5479 static bfd_vma
5480 mips_elf_got_offset_from_index (dynobj, output_bfd, index)
5481 bfd *dynobj;
5482 bfd *output_bfd;
5483 bfd_vma index;
5484 {
5485 asection *sgot;
5486 bfd_vma gp;
5487
5488 sgot = mips_elf_got_section (dynobj);
5489 gp = _bfd_get_gp_value (output_bfd);
5490 return (sgot->output_section->vma + sgot->output_offset + index -
5491 gp);
5492 }
5493
5494 /* If H is a symbol that needs a global GOT entry, but has a dynamic
5495 symbol table index lower than any we've seen to date, record it for
5496 posterity. */
5497
5498 static boolean
5499 mips_elf_record_global_got_symbol (h, info, g)
5500 struct elf_link_hash_entry *h;
5501 struct bfd_link_info *info;
5502 struct mips_got_info *g ATTRIBUTE_UNUSED;
5503 {
5504 /* A global symbol in the GOT must also be in the dynamic symbol
5505 table. */
5506 if (h->dynindx == -1
5507 && !bfd_elf32_link_record_dynamic_symbol (info, h))
5508 return false;
5509
5510 /* If we've already marked this entry as need GOT space, we don't
5511 need to do it again. */
5512 if (h->got.offset != (bfd_vma) - 1)
5513 return true;
5514
5515 /* By setting this to a value other than -1, we are indicating that
5516 there needs to be a GOT entry for H. */
5517 h->got.offset = 0;
5518
5519 return true;
5520 }
5521
5522 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
5523 the dynamic symbols. */
5524
5525 struct mips_elf_hash_sort_data
5526 {
5527 /* The symbol in the global GOT with the lowest dynamic symbol table
5528 index. */
5529 struct elf_link_hash_entry *low;
5530 /* The least dynamic symbol table index corresponding to a symbol
5531 with a GOT entry. */
5532 long min_got_dynindx;
5533 /* The greatest dynamic symbol table index not corresponding to a
5534 symbol without a GOT entry. */
5535 long max_non_got_dynindx;
5536 };
5537
5538 /* If H needs a GOT entry, assign it the highest available dynamic
5539 index. Otherwise, assign it the lowest available dynamic
5540 index. */
5541
5542 static boolean
5543 mips_elf_sort_hash_table_f (h, data)
5544 struct mips_elf_link_hash_entry *h;
5545 PTR data;
5546 {
5547 struct mips_elf_hash_sort_data *hsd
5548 = (struct mips_elf_hash_sort_data *) data;
5549
5550 /* Symbols without dynamic symbol table entries aren't interesting
5551 at all. */
5552 if (h->root.dynindx == -1)
5553 return true;
5554
5555 if (h->root.got.offset != 0)
5556 h->root.dynindx = hsd->max_non_got_dynindx++;
5557 else
5558 {
5559 h->root.dynindx = --hsd->min_got_dynindx;
5560 hsd->low = (struct elf_link_hash_entry *) h;
5561 }
5562
5563 return true;
5564 }
5565
5566 /* Sort the dynamic symbol table so that symbols that need GOT entries
5567 appear towards the end. This reduces the amount of GOT space
5568 required. MAX_LOCAL is used to set the number of local symbols
5569 known to be in the dynamic symbol table. During
5570 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5571 section symbols are added and the count is higher. */
5572
5573 static boolean
5574 mips_elf_sort_hash_table (info, max_local)
5575 struct bfd_link_info *info;
5576 unsigned long max_local;
5577 {
5578 struct mips_elf_hash_sort_data hsd;
5579 struct mips_got_info *g;
5580 bfd *dynobj;
5581
5582 dynobj = elf_hash_table (info)->dynobj;
5583
5584 hsd.low = NULL;
5585 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
5586 hsd.max_non_got_dynindx = max_local;
5587 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
5588 elf_hash_table (info)),
5589 mips_elf_sort_hash_table_f,
5590 &hsd);
5591
5592 /* There shoud have been enough room in the symbol table to
5593 accomodate both the GOT and non-GOT symbols. */
5594 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
5595
5596 /* Now we know which dynamic symbol has the lowest dynamic symbol
5597 table index in the GOT. */
5598 g = mips_elf_got_info (dynobj, NULL);
5599 g->global_gotsym = hsd.low;
5600
5601 return true;
5602 }
5603
5604 /* Create a local GOT entry for VALUE. Return the index of the entry,
5605 or -1 if it could not be created. */
5606
5607 static bfd_vma
5608 mips_elf_create_local_got_entry (abfd, g, sgot, value)
5609 bfd *abfd;
5610 struct mips_got_info *g;
5611 asection *sgot;
5612 bfd_vma value;
5613 {
5614 if (g->assigned_gotno >= g->local_gotno)
5615 {
5616 /* We didn't allocate enough space in the GOT. */
5617 (*_bfd_error_handler)
5618 (_("not enough GOT space for local GOT entries"));
5619 bfd_set_error (bfd_error_bad_value);
5620 return (bfd_vma) -1;
5621 }
5622
5623 MIPS_ELF_PUT_WORD (abfd, value,
5624 (sgot->contents
5625 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
5626 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
5627 }
5628
5629 /* Returns the GOT offset at which the indicated address can be found.
5630 If there is not yet a GOT entry for this value, create one. Returns
5631 -1 if no satisfactory GOT offset can be found. */
5632
5633 static bfd_vma
5634 mips_elf_local_got_index (abfd, info, value)
5635 bfd *abfd;
5636 struct bfd_link_info *info;
5637 bfd_vma value;
5638 {
5639 asection *sgot;
5640 struct mips_got_info *g;
5641 bfd_byte *entry;
5642
5643 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5644
5645 /* Look to see if we already have an appropriate entry. */
5646 for (entry = (sgot->contents
5647 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5648 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5649 entry += MIPS_ELF_GOT_SIZE (abfd))
5650 {
5651 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
5652 if (address == value)
5653 return entry - sgot->contents;
5654 }
5655
5656 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
5657 }
5658
5659 /* Find a GOT entry that is within 32KB of the VALUE. These entries
5660 are supposed to be placed at small offsets in the GOT, i.e.,
5661 within 32KB of GP. Return the index into the GOT for this page,
5662 and store the offset from this entry to the desired address in
5663 OFFSETP, if it is non-NULL. */
5664
5665 static bfd_vma
5666 mips_elf_got_page (abfd, info, value, offsetp)
5667 bfd *abfd;
5668 struct bfd_link_info *info;
5669 bfd_vma value;
5670 bfd_vma *offsetp;
5671 {
5672 asection *sgot;
5673 struct mips_got_info *g;
5674 bfd_byte *entry;
5675 bfd_byte *last_entry;
5676 bfd_vma index = 0;
5677 bfd_vma address;
5678
5679 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5680
5681 /* Look to see if we aleady have an appropriate entry. */
5682 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5683 for (entry = (sgot->contents
5684 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5685 entry != last_entry;
5686 entry += MIPS_ELF_GOT_SIZE (abfd))
5687 {
5688 address = MIPS_ELF_GET_WORD (abfd, entry);
5689
5690 if (!mips_elf_overflow_p (value - address, 16))
5691 {
5692 /* This entry will serve as the page pointer. We can add a
5693 16-bit number to it to get the actual address. */
5694 index = entry - sgot->contents;
5695 break;
5696 }
5697 }
5698
5699 /* If we didn't have an appropriate entry, we create one now. */
5700 if (entry == last_entry)
5701 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5702
5703 if (offsetp)
5704 {
5705 address = MIPS_ELF_GET_WORD (abfd, entry);
5706 *offsetp = value - address;
5707 }
5708
5709 return index;
5710 }
5711
5712 /* Find a GOT entry whose higher-order 16 bits are the same as those
5713 for value. Return the index into the GOT for this entry. */
5714
5715 static bfd_vma
5716 mips_elf_got16_entry (abfd, info, value, external)
5717 bfd *abfd;
5718 struct bfd_link_info *info;
5719 bfd_vma value;
5720 boolean external;
5721 {
5722 asection *sgot;
5723 struct mips_got_info *g;
5724 bfd_byte *entry;
5725 bfd_byte *last_entry;
5726 bfd_vma index = 0;
5727 bfd_vma address;
5728
5729 if (! external)
5730 {
5731 /* Although the ABI says that it is "the high-order 16 bits" that we
5732 want, it is really the %high value. The complete value is
5733 calculated with a `addiu' of a LO16 relocation, just as with a
5734 HI16/LO16 pair. */
5735 value = mips_elf_high (value) << 16;
5736 }
5737
5738 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5739
5740 /* Look to see if we already have an appropriate entry. */
5741 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5742 for (entry = (sgot->contents
5743 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5744 entry != last_entry;
5745 entry += MIPS_ELF_GOT_SIZE (abfd))
5746 {
5747 address = MIPS_ELF_GET_WORD (abfd, entry);
5748 if (address == value)
5749 {
5750 /* This entry has the right high-order 16 bits, and the low-order
5751 16 bits are set to zero. */
5752 index = entry - sgot->contents;
5753 break;
5754 }
5755 }
5756
5757 /* If we didn't have an appropriate entry, we create one now. */
5758 if (entry == last_entry)
5759 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5760
5761 return index;
5762 }
5763
5764 /* Returns the first relocation of type r_type found, beginning with
5765 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5766
5767 static const Elf_Internal_Rela *
5768 mips_elf_next_relocation (r_type, relocation, relend)
5769 unsigned int r_type;
5770 const Elf_Internal_Rela *relocation;
5771 const Elf_Internal_Rela *relend;
5772 {
5773 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5774 immediately following. However, for the IRIX6 ABI, the next
5775 relocation may be a composed relocation consisting of several
5776 relocations for the same address. In that case, the R_MIPS_LO16
5777 relocation may occur as one of these. We permit a similar
5778 extension in general, as that is useful for GCC. */
5779 while (relocation < relend)
5780 {
5781 if (ELF32_R_TYPE (relocation->r_info) == r_type)
5782 return relocation;
5783
5784 ++relocation;
5785 }
5786
5787 /* We didn't find it. */
5788 bfd_set_error (bfd_error_bad_value);
5789 return NULL;
5790 }
5791
5792 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5793 is the original relocation, which is now being transformed into a
5794 dynamic relocation. The ADDENDP is adjusted if necessary; the
5795 caller should store the result in place of the original addend. */
5796
5797 static boolean
5798 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
5799 symbol, addendp, input_section)
5800 bfd *output_bfd;
5801 struct bfd_link_info *info;
5802 const Elf_Internal_Rela *rel;
5803 struct mips_elf_link_hash_entry *h;
5804 asection *sec;
5805 bfd_vma symbol;
5806 bfd_vma *addendp;
5807 asection *input_section;
5808 {
5809 Elf_Internal_Rel outrel;
5810 boolean skip;
5811 asection *sreloc;
5812 bfd *dynobj;
5813 int r_type;
5814
5815 r_type = ELF32_R_TYPE (rel->r_info);
5816 dynobj = elf_hash_table (info)->dynobj;
5817 sreloc
5818 = bfd_get_section_by_name (dynobj,
5819 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
5820 BFD_ASSERT (sreloc != NULL);
5821 BFD_ASSERT (sreloc->contents != NULL);
5822
5823 skip = false;
5824
5825 /* We begin by assuming that the offset for the dynamic relocation
5826 is the same as for the original relocation. We'll adjust this
5827 later to reflect the correct output offsets. */
5828 if (elf_section_data (input_section)->stab_info == NULL)
5829 outrel.r_offset = rel->r_offset;
5830 else
5831 {
5832 /* Except that in a stab section things are more complex.
5833 Because we compress stab information, the offset given in the
5834 relocation may not be the one we want; we must let the stabs
5835 machinery tell us the offset. */
5836 outrel.r_offset
5837 = (_bfd_stab_section_offset
5838 (output_bfd, &elf_hash_table (info)->stab_info,
5839 input_section,
5840 &elf_section_data (input_section)->stab_info,
5841 rel->r_offset));
5842 /* If we didn't need the relocation at all, this value will be
5843 -1. */
5844 if (outrel.r_offset == (bfd_vma) -1)
5845 skip = true;
5846 }
5847
5848 /* If we've decided to skip this relocation, just output an empty
5849 record. Note that R_MIPS_NONE == 0, so that this call to memset
5850 is a way of setting R_TYPE to R_MIPS_NONE. */
5851 if (skip)
5852 memset (&outrel, 0, sizeof (outrel));
5853 else
5854 {
5855 long indx;
5856 bfd_vma section_offset;
5857
5858 /* We must now calculate the dynamic symbol table index to use
5859 in the relocation. */
5860 if (h != NULL
5861 && (! info->symbolic || (h->root.elf_link_hash_flags
5862 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5863 {
5864 indx = h->root.dynindx;
5865 /* h->root.dynindx may be -1 if this symbol was marked to
5866 become local. */
5867 if (indx == -1)
5868 indx = 0;
5869 }
5870 else
5871 {
5872 if (sec != NULL && bfd_is_abs_section (sec))
5873 indx = 0;
5874 else if (sec == NULL || sec->owner == NULL)
5875 {
5876 bfd_set_error (bfd_error_bad_value);
5877 return false;
5878 }
5879 else
5880 {
5881 indx = elf_section_data (sec->output_section)->dynindx;
5882 if (indx == 0)
5883 abort ();
5884 }
5885
5886 /* Figure out how far the target of the relocation is from
5887 the beginning of its section. */
5888 section_offset = symbol - sec->output_section->vma;
5889 /* The relocation we're building is section-relative.
5890 Therefore, the original addend must be adjusted by the
5891 section offset. */
5892 *addendp += section_offset;
5893 /* Now, the relocation is just against the section. */
5894 symbol = sec->output_section->vma;
5895 }
5896
5897 /* If the relocation was previously an absolute relocation and
5898 this symbol will not be referred to by the relocation, we must
5899 adjust it by the value we give it in the dynamic symbol table.
5900 Otherwise leave the job up to the dynamic linker. */
5901 if (!indx && r_type != R_MIPS_REL32)
5902 *addendp += symbol;
5903
5904 /* The relocation is always an REL32 relocation because we don't
5905 know where the shared library will wind up at load-time. */
5906 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
5907
5908 /* Adjust the output offset of the relocation to reference the
5909 correct location in the output file. */
5910 outrel.r_offset += (input_section->output_section->vma
5911 + input_section->output_offset);
5912 }
5913
5914 /* Put the relocation back out. We have to use the special
5915 relocation outputter in the 64-bit case since the 64-bit
5916 relocation format is non-standard. */
5917 if (ABI_64_P (output_bfd))
5918 {
5919 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5920 (output_bfd, &outrel,
5921 (sreloc->contents
5922 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5923 }
5924 else
5925 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
5926 (((Elf32_External_Rel *)
5927 sreloc->contents)
5928 + sreloc->reloc_count));
5929
5930 /* Record the index of the first relocation referencing H. This
5931 information is later emitted in the .msym section. */
5932 if (h != NULL
5933 && (h->min_dyn_reloc_index == 0
5934 || sreloc->reloc_count < h->min_dyn_reloc_index))
5935 h->min_dyn_reloc_index = sreloc->reloc_count;
5936
5937 /* We've now added another relocation. */
5938 ++sreloc->reloc_count;
5939
5940 /* Make sure the output section is writable. The dynamic linker
5941 will be writing to it. */
5942 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5943 |= SHF_WRITE;
5944
5945 /* On IRIX5, make an entry of compact relocation info. */
5946 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
5947 {
5948 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5949 bfd_byte *cr;
5950
5951 if (scpt)
5952 {
5953 Elf32_crinfo cptrel;
5954
5955 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5956 cptrel.vaddr = (rel->r_offset
5957 + input_section->output_section->vma
5958 + input_section->output_offset);
5959 if (r_type == R_MIPS_REL32)
5960 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5961 else
5962 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5963 mips_elf_set_cr_dist2to (cptrel, 0);
5964 cptrel.konst = *addendp;
5965
5966 cr = (scpt->contents
5967 + sizeof (Elf32_External_compact_rel));
5968 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5969 ((Elf32_External_crinfo *) cr
5970 + scpt->reloc_count));
5971 ++scpt->reloc_count;
5972 }
5973 }
5974
5975 return true;
5976 }
5977
5978 /* Calculate the value produced by the RELOCATION (which comes from
5979 the INPUT_BFD). The ADDEND is the addend to use for this
5980 RELOCATION; RELOCATION->R_ADDEND is ignored.
5981
5982 The result of the relocation calculation is stored in VALUEP.
5983 REQUIRE_JALXP indicates whether or not the opcode used with this
5984 relocation must be JALX.
5985
5986 This function returns bfd_reloc_continue if the caller need take no
5987 further action regarding this relocation, bfd_reloc_notsupported if
5988 something goes dramatically wrong, bfd_reloc_overflow if an
5989 overflow occurs, and bfd_reloc_ok to indicate success. */
5990
5991 static bfd_reloc_status_type
5992 mips_elf_calculate_relocation (abfd,
5993 input_bfd,
5994 input_section,
5995 info,
5996 relocation,
5997 addend,
5998 howto,
5999 local_syms,
6000 local_sections,
6001 valuep,
6002 namep,
6003 require_jalxp)
6004 bfd *abfd;
6005 bfd *input_bfd;
6006 asection *input_section;
6007 struct bfd_link_info *info;
6008 const Elf_Internal_Rela *relocation;
6009 bfd_vma addend;
6010 reloc_howto_type *howto;
6011 Elf_Internal_Sym *local_syms;
6012 asection **local_sections;
6013 bfd_vma *valuep;
6014 const char **namep;
6015 boolean *require_jalxp;
6016 {
6017 /* The eventual value we will return. */
6018 bfd_vma value;
6019 /* The address of the symbol against which the relocation is
6020 occurring. */
6021 bfd_vma symbol = 0;
6022 /* The final GP value to be used for the relocatable, executable, or
6023 shared object file being produced. */
6024 bfd_vma gp = (bfd_vma) - 1;
6025 /* The place (section offset or address) of the storage unit being
6026 relocated. */
6027 bfd_vma p;
6028 /* The value of GP used to create the relocatable object. */
6029 bfd_vma gp0 = (bfd_vma) - 1;
6030 /* The offset into the global offset table at which the address of
6031 the relocation entry symbol, adjusted by the addend, resides
6032 during execution. */
6033 bfd_vma g = (bfd_vma) - 1;
6034 /* The section in which the symbol referenced by the relocation is
6035 located. */
6036 asection *sec = NULL;
6037 struct mips_elf_link_hash_entry *h = NULL;
6038 /* True if the symbol referred to by this relocation is a local
6039 symbol. */
6040 boolean local_p;
6041 /* True if the symbol referred to by this relocation is "_gp_disp". */
6042 boolean gp_disp_p = false;
6043 Elf_Internal_Shdr *symtab_hdr;
6044 size_t extsymoff;
6045 unsigned long r_symndx;
6046 int r_type;
6047 /* True if overflow occurred during the calculation of the
6048 relocation value. */
6049 boolean overflowed_p;
6050 /* True if this relocation refers to a MIPS16 function. */
6051 boolean target_is_16_bit_code_p = false;
6052
6053 /* Parse the relocation. */
6054 r_symndx = ELF32_R_SYM (relocation->r_info);
6055 r_type = ELF32_R_TYPE (relocation->r_info);
6056 p = (input_section->output_section->vma
6057 + input_section->output_offset
6058 + relocation->r_offset);
6059
6060 /* Assume that there will be no overflow. */
6061 overflowed_p = false;
6062
6063 /* Figure out whether or not the symbol is local, and get the offset
6064 used in the array of hash table entries. */
6065 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6066 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6067 local_sections, false);
6068 if (! elf_bad_symtab (input_bfd))
6069 extsymoff = symtab_hdr->sh_info;
6070 else
6071 {
6072 /* The symbol table does not follow the rule that local symbols
6073 must come before globals. */
6074 extsymoff = 0;
6075 }
6076
6077 /* Figure out the value of the symbol. */
6078 if (local_p)
6079 {
6080 Elf_Internal_Sym *sym;
6081
6082 sym = local_syms + r_symndx;
6083 sec = local_sections[r_symndx];
6084
6085 symbol = sec->output_section->vma + sec->output_offset;
6086 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6087 symbol += sym->st_value;
6088
6089 /* MIPS16 text labels should be treated as odd. */
6090 if (sym->st_other == STO_MIPS16)
6091 ++symbol;
6092
6093 /* Record the name of this symbol, for our caller. */
6094 *namep = bfd_elf_string_from_elf_section (input_bfd,
6095 symtab_hdr->sh_link,
6096 sym->st_name);
6097 if (*namep == '\0')
6098 *namep = bfd_section_name (input_bfd, sec);
6099
6100 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
6101 }
6102 else
6103 {
6104 /* For global symbols we look up the symbol in the hash-table. */
6105 h = ((struct mips_elf_link_hash_entry *)
6106 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
6107 /* Find the real hash-table entry for this symbol. */
6108 while (h->root.root.type == bfd_link_hash_indirect
6109 || h->root.root.type == bfd_link_hash_warning)
6110 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6111
6112 /* Record the name of this symbol, for our caller. */
6113 *namep = h->root.root.root.string;
6114
6115 /* See if this is the special _gp_disp symbol. Note that such a
6116 symbol must always be a global symbol. */
6117 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
6118 {
6119 /* Relocations against _gp_disp are permitted only with
6120 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
6121 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
6122 return bfd_reloc_notsupported;
6123
6124 gp_disp_p = true;
6125 }
6126 /* If this symbol is defined, calculate its address. Note that
6127 _gp_disp is a magic symbol, always implicitly defined by the
6128 linker, so it's inappropriate to check to see whether or not
6129 its defined. */
6130 else if ((h->root.root.type == bfd_link_hash_defined
6131 || h->root.root.type == bfd_link_hash_defweak)
6132 && h->root.root.u.def.section)
6133 {
6134 sec = h->root.root.u.def.section;
6135 if (sec->output_section)
6136 symbol = (h->root.root.u.def.value
6137 + sec->output_section->vma
6138 + sec->output_offset);
6139 else
6140 symbol = h->root.root.u.def.value;
6141 }
6142 else if (h->root.root.type == bfd_link_hash_undefweak)
6143 /* We allow relocations against undefined weak symbols, giving
6144 it the value zero, so that you can undefined weak functions
6145 and check to see if they exist by looking at their
6146 addresses. */
6147 symbol = 0;
6148 else if (info->shared && !info->symbolic && !info->no_undefined
6149 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
6150 symbol = 0;
6151 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
6152 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
6153 {
6154 /* If this is a dynamic link, we should have created a
6155 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
6156 in in mips_elf_create_dynamic_sections.
6157 Otherwise, we should define the symbol with a value of 0.
6158 FIXME: It should probably get into the symbol table
6159 somehow as well. */
6160 BFD_ASSERT (! info->shared);
6161 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
6162 symbol = 0;
6163 }
6164 else
6165 {
6166 if (! ((*info->callbacks->undefined_symbol)
6167 (info, h->root.root.root.string, input_bfd,
6168 input_section, relocation->r_offset,
6169 (!info->shared || info->no_undefined
6170 || ELF_ST_VISIBILITY (h->root.other)))))
6171 return bfd_reloc_undefined;
6172 symbol = 0;
6173 }
6174
6175 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
6176 }
6177
6178 /* If this is a 32-bit call to a 16-bit function with a stub, we
6179 need to redirect the call to the stub, unless we're already *in*
6180 a stub. */
6181 if (r_type != R_MIPS16_26 && !info->relocateable
6182 && ((h != NULL && h->fn_stub != NULL)
6183 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
6184 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
6185 && !mips_elf_stub_section_p (input_bfd, input_section))
6186 {
6187 /* This is a 32-bit call to a 16-bit function. We should
6188 have already noticed that we were going to need the
6189 stub. */
6190 if (local_p)
6191 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
6192 else
6193 {
6194 BFD_ASSERT (h->need_fn_stub);
6195 sec = h->fn_stub;
6196 }
6197
6198 symbol = sec->output_section->vma + sec->output_offset;
6199 }
6200 /* If this is a 16-bit call to a 32-bit function with a stub, we
6201 need to redirect the call to the stub. */
6202 else if (r_type == R_MIPS16_26 && !info->relocateable
6203 && h != NULL
6204 && (h->call_stub != NULL || h->call_fp_stub != NULL)
6205 && !target_is_16_bit_code_p)
6206 {
6207 /* If both call_stub and call_fp_stub are defined, we can figure
6208 out which one to use by seeing which one appears in the input
6209 file. */
6210 if (h->call_stub != NULL && h->call_fp_stub != NULL)
6211 {
6212 asection *o;
6213
6214 sec = NULL;
6215 for (o = input_bfd->sections; o != NULL; o = o->next)
6216 {
6217 if (strncmp (bfd_get_section_name (input_bfd, o),
6218 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6219 {
6220 sec = h->call_fp_stub;
6221 break;
6222 }
6223 }
6224 if (sec == NULL)
6225 sec = h->call_stub;
6226 }
6227 else if (h->call_stub != NULL)
6228 sec = h->call_stub;
6229 else
6230 sec = h->call_fp_stub;
6231
6232 BFD_ASSERT (sec->_raw_size > 0);
6233 symbol = sec->output_section->vma + sec->output_offset;
6234 }
6235
6236 /* Calls from 16-bit code to 32-bit code and vice versa require the
6237 special jalx instruction. */
6238 *require_jalxp = (!info->relocateable
6239 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
6240
6241 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6242 local_sections, true);
6243
6244 /* If we haven't already determined the GOT offset, or the GP value,
6245 and we're going to need it, get it now. */
6246 switch (r_type)
6247 {
6248 case R_MIPS_CALL16:
6249 case R_MIPS_GOT16:
6250 case R_MIPS_GOT_DISP:
6251 case R_MIPS_GOT_HI16:
6252 case R_MIPS_CALL_HI16:
6253 case R_MIPS_GOT_LO16:
6254 case R_MIPS_CALL_LO16:
6255 /* Find the index into the GOT where this value is located. */
6256 if (!local_p)
6257 {
6258 BFD_ASSERT (addend == 0);
6259 g = mips_elf_global_got_index
6260 (elf_hash_table (info)->dynobj,
6261 (struct elf_link_hash_entry *) h);
6262 if (! elf_hash_table(info)->dynamic_sections_created
6263 || (info->shared
6264 && (info->symbolic || h->root.dynindx == -1)
6265 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6266 {
6267 /* This is a static link or a -Bsymbolic link. The
6268 symbol is defined locally, or was forced to be local.
6269 We must initialize this entry in the GOT. */
6270 asection *sgot = mips_elf_got_section(elf_hash_table
6271 (info)->dynobj);
6272 MIPS_ELF_PUT_WORD (elf_hash_table (info)->dynobj,
6273 symbol + addend, sgot->contents + g);
6274 }
6275 }
6276 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
6277 /* There's no need to create a local GOT entry here; the
6278 calculation for a local GOT16 entry does not involve G. */
6279 break;
6280 else
6281 {
6282 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6283 if (g == (bfd_vma) -1)
6284 return false;
6285 }
6286
6287 /* Convert GOT indices to actual offsets. */
6288 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6289 abfd, g);
6290 break;
6291
6292 case R_MIPS_HI16:
6293 case R_MIPS_LO16:
6294 case R_MIPS_GPREL16:
6295 case R_MIPS_GPREL32:
6296 case R_MIPS_LITERAL:
6297 gp0 = _bfd_get_gp_value (input_bfd);
6298 gp = _bfd_get_gp_value (abfd);
6299 break;
6300
6301 default:
6302 break;
6303 }
6304
6305 /* Figure out what kind of relocation is being performed. */
6306 switch (r_type)
6307 {
6308 case R_MIPS_NONE:
6309 return bfd_reloc_continue;
6310
6311 case R_MIPS_16:
6312 value = symbol + mips_elf_sign_extend (addend, 16);
6313 overflowed_p = mips_elf_overflow_p (value, 16);
6314 break;
6315
6316 case R_MIPS_32:
6317 case R_MIPS_REL32:
6318 case R_MIPS_64:
6319 if ((info->shared
6320 || (elf_hash_table (info)->dynamic_sections_created
6321 && h != NULL
6322 && ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
6323 != 0)))
6324 && (input_section->flags & SEC_ALLOC) != 0)
6325 {
6326 /* If we're creating a shared library, or this relocation is
6327 against a symbol in a shared library, then we can't know
6328 where the symbol will end up. So, we create a relocation
6329 record in the output, and leave the job up to the dynamic
6330 linker. */
6331 value = addend;
6332 if (!mips_elf_create_dynamic_relocation (abfd,
6333 info,
6334 relocation,
6335 h,
6336 sec,
6337 symbol,
6338 &value,
6339 input_section))
6340 return false;
6341 }
6342 else
6343 {
6344 if (r_type != R_MIPS_REL32)
6345 value = symbol + addend;
6346 else
6347 value = addend;
6348 }
6349 value &= howto->dst_mask;
6350 break;
6351
6352 case R_MIPS_PC32:
6353 case R_MIPS_PC64:
6354 case R_MIPS_GNU_REL_LO16:
6355 value = symbol + addend - p;
6356 value &= howto->dst_mask;
6357 break;
6358
6359 case R_MIPS_GNU_REL16_S2:
6360 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
6361 overflowed_p = mips_elf_overflow_p (value, 18);
6362 value = (value >> 2) & howto->dst_mask;
6363 break;
6364
6365 case R_MIPS_GNU_REL_HI16:
6366 value = mips_elf_high (addend + symbol - p);
6367 value &= howto->dst_mask;
6368 break;
6369
6370 case R_MIPS16_26:
6371 /* The calculation for R_MIPS16_26 is just the same as for an
6372 R_MIPS_26. It's only the storage of the relocated field into
6373 the output file that's different. That's handled in
6374 mips_elf_perform_relocation. So, we just fall through to the
6375 R_MIPS_26 case here. */
6376 case R_MIPS_26:
6377 if (local_p)
6378 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
6379 else
6380 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6381 value &= howto->dst_mask;
6382 break;
6383
6384 case R_MIPS_HI16:
6385 if (!gp_disp_p)
6386 {
6387 value = mips_elf_high (addend + symbol);
6388 value &= howto->dst_mask;
6389 }
6390 else
6391 {
6392 value = mips_elf_high (addend + gp - p);
6393 overflowed_p = mips_elf_overflow_p (value, 16);
6394 }
6395 break;
6396
6397 case R_MIPS_LO16:
6398 if (!gp_disp_p)
6399 value = (symbol + addend) & howto->dst_mask;
6400 else
6401 {
6402 value = addend + gp - p + 4;
6403 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6404 for overflow. But, on, say, Irix 5, relocations against
6405 _gp_disp are normally generated from the .cpload
6406 pseudo-op. It generates code that normally looks like
6407 this:
6408
6409 lui $gp,%hi(_gp_disp)
6410 addiu $gp,$gp,%lo(_gp_disp)
6411 addu $gp,$gp,$t9
6412
6413 Here $t9 holds the address of the function being called,
6414 as required by the MIPS ELF ABI. The R_MIPS_LO16
6415 relocation can easily overflow in this situation, but the
6416 R_MIPS_HI16 relocation will handle the overflow.
6417 Therefore, we consider this a bug in the MIPS ABI, and do
6418 not check for overflow here. */
6419 }
6420 break;
6421
6422 case R_MIPS_LITERAL:
6423 /* Because we don't merge literal sections, we can handle this
6424 just like R_MIPS_GPREL16. In the long run, we should merge
6425 shared literals, and then we will need to additional work
6426 here. */
6427
6428 /* Fall through. */
6429
6430 case R_MIPS16_GPREL:
6431 /* The R_MIPS16_GPREL performs the same calculation as
6432 R_MIPS_GPREL16, but stores the relocated bits in a different
6433 order. We don't need to do anything special here; the
6434 differences are handled in mips_elf_perform_relocation. */
6435 case R_MIPS_GPREL16:
6436 if (local_p)
6437 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6438 else
6439 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6440 overflowed_p = mips_elf_overflow_p (value, 16);
6441 break;
6442
6443 case R_MIPS_GOT16:
6444 case R_MIPS_CALL16:
6445 if (local_p)
6446 {
6447 boolean forced;
6448
6449 /* The special case is when the symbol is forced to be local. We
6450 need the full address in the GOT since no R_MIPS_LO16 relocation
6451 follows. */
6452 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
6453 local_sections, false);
6454 value = mips_elf_got16_entry (abfd, info, symbol + addend, forced);
6455 if (value == (bfd_vma) -1)
6456 return false;
6457 value
6458 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6459 abfd,
6460 value);
6461 overflowed_p = mips_elf_overflow_p (value, 16);
6462 break;
6463 }
6464
6465 /* Fall through. */
6466
6467 case R_MIPS_GOT_DISP:
6468 value = g;
6469 overflowed_p = mips_elf_overflow_p (value, 16);
6470 break;
6471
6472 case R_MIPS_GPREL32:
6473 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6474 break;
6475
6476 case R_MIPS_PC16:
6477 value = mips_elf_sign_extend (addend, 16) + symbol - p;
6478 value = (bfd_vma) ((bfd_signed_vma) value / 4);
6479 overflowed_p = mips_elf_overflow_p (value, 16);
6480 break;
6481
6482 case R_MIPS_GOT_HI16:
6483 case R_MIPS_CALL_HI16:
6484 /* We're allowed to handle these two relocations identically.
6485 The dynamic linker is allowed to handle the CALL relocations
6486 differently by creating a lazy evaluation stub. */
6487 value = g;
6488 value = mips_elf_high (value);
6489 value &= howto->dst_mask;
6490 break;
6491
6492 case R_MIPS_GOT_LO16:
6493 case R_MIPS_CALL_LO16:
6494 value = g & howto->dst_mask;
6495 break;
6496
6497 case R_MIPS_GOT_PAGE:
6498 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
6499 if (value == (bfd_vma) -1)
6500 return false;
6501 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6502 abfd,
6503 value);
6504 overflowed_p = mips_elf_overflow_p (value, 16);
6505 break;
6506
6507 case R_MIPS_GOT_OFST:
6508 mips_elf_got_page (abfd, info, symbol + addend, &value);
6509 overflowed_p = mips_elf_overflow_p (value, 16);
6510 break;
6511
6512 case R_MIPS_SUB:
6513 value = symbol - addend;
6514 value &= howto->dst_mask;
6515 break;
6516
6517 case R_MIPS_HIGHER:
6518 value = mips_elf_higher (addend + symbol);
6519 value &= howto->dst_mask;
6520 break;
6521
6522 case R_MIPS_HIGHEST:
6523 value = mips_elf_highest (addend + symbol);
6524 value &= howto->dst_mask;
6525 break;
6526
6527 case R_MIPS_SCN_DISP:
6528 value = symbol + addend - sec->output_offset;
6529 value &= howto->dst_mask;
6530 break;
6531
6532 case R_MIPS_PJUMP:
6533 case R_MIPS_JALR:
6534 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6535 hint; we could improve performance by honoring that hint. */
6536 return bfd_reloc_continue;
6537
6538 case R_MIPS_GNU_VTINHERIT:
6539 case R_MIPS_GNU_VTENTRY:
6540 /* We don't do anything with these at present. */
6541 return bfd_reloc_continue;
6542
6543 default:
6544 /* An unrecognized relocation type. */
6545 return bfd_reloc_notsupported;
6546 }
6547
6548 /* Store the VALUE for our caller. */
6549 *valuep = value;
6550 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6551 }
6552
6553 /* Obtain the field relocated by RELOCATION. */
6554
6555 static bfd_vma
6556 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
6557 reloc_howto_type *howto;
6558 const Elf_Internal_Rela *relocation;
6559 bfd *input_bfd;
6560 bfd_byte *contents;
6561 {
6562 bfd_vma x;
6563 bfd_byte *location = contents + relocation->r_offset;
6564
6565 /* Obtain the bytes. */
6566 x = bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location);
6567
6568 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
6569 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
6570 && bfd_little_endian (input_bfd))
6571 /* The two 16-bit words will be reversed on a little-endian
6572 system. See mips_elf_perform_relocation for more details. */
6573 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6574
6575 return x;
6576 }
6577
6578 /* It has been determined that the result of the RELOCATION is the
6579 VALUE. Use HOWTO to place VALUE into the output file at the
6580 appropriate position. The SECTION is the section to which the
6581 relocation applies. If REQUIRE_JALX is true, then the opcode used
6582 for the relocation must be either JAL or JALX, and it is
6583 unconditionally converted to JALX.
6584
6585 Returns false if anything goes wrong. */
6586
6587 static boolean
6588 mips_elf_perform_relocation (info, howto, relocation, value,
6589 input_bfd, input_section,
6590 contents, require_jalx)
6591 struct bfd_link_info *info;
6592 reloc_howto_type *howto;
6593 const Elf_Internal_Rela *relocation;
6594 bfd_vma value;
6595 bfd *input_bfd;
6596 asection *input_section;
6597 bfd_byte *contents;
6598 boolean require_jalx;
6599 {
6600 bfd_vma x;
6601 bfd_byte *location;
6602 int r_type = ELF32_R_TYPE (relocation->r_info);
6603
6604 /* Figure out where the relocation is occurring. */
6605 location = contents + relocation->r_offset;
6606
6607 /* Obtain the current value. */
6608 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6609
6610 /* Clear the field we are setting. */
6611 x &= ~howto->dst_mask;
6612
6613 /* If this is the R_MIPS16_26 relocation, we must store the
6614 value in a funny way. */
6615 if (r_type == R_MIPS16_26)
6616 {
6617 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6618 Most mips16 instructions are 16 bits, but these instructions
6619 are 32 bits.
6620
6621 The format of these instructions is:
6622
6623 +--------------+--------------------------------+
6624 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6625 +--------------+--------------------------------+
6626 ! Immediate 15:0 !
6627 +-----------------------------------------------+
6628
6629 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6630 Note that the immediate value in the first word is swapped.
6631
6632 When producing a relocateable object file, R_MIPS16_26 is
6633 handled mostly like R_MIPS_26. In particular, the addend is
6634 stored as a straight 26-bit value in a 32-bit instruction.
6635 (gas makes life simpler for itself by never adjusting a
6636 R_MIPS16_26 reloc to be against a section, so the addend is
6637 always zero). However, the 32 bit instruction is stored as 2
6638 16-bit values, rather than a single 32-bit value. In a
6639 big-endian file, the result is the same; in a little-endian
6640 file, the two 16-bit halves of the 32 bit value are swapped.
6641 This is so that a disassembler can recognize the jal
6642 instruction.
6643
6644 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6645 instruction stored as two 16-bit values. The addend A is the
6646 contents of the targ26 field. The calculation is the same as
6647 R_MIPS_26. When storing the calculated value, reorder the
6648 immediate value as shown above, and don't forget to store the
6649 value as two 16-bit values.
6650
6651 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6652 defined as
6653
6654 big-endian:
6655 +--------+----------------------+
6656 | | |
6657 | | targ26-16 |
6658 |31 26|25 0|
6659 +--------+----------------------+
6660
6661 little-endian:
6662 +----------+------+-------------+
6663 | | | |
6664 | sub1 | | sub2 |
6665 |0 9|10 15|16 31|
6666 +----------+--------------------+
6667 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6668 ((sub1 << 16) | sub2)).
6669
6670 When producing a relocateable object file, the calculation is
6671 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
6672 When producing a fully linked file, the calculation is
6673 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
6674 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6675
6676 if (!info->relocateable)
6677 /* Shuffle the bits according to the formula above. */
6678 value = (((value & 0x1f0000) << 5)
6679 | ((value & 0x3e00000) >> 5)
6680 | (value & 0xffff));
6681 }
6682 else if (r_type == R_MIPS16_GPREL)
6683 {
6684 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6685 mode. A typical instruction will have a format like this:
6686
6687 +--------------+--------------------------------+
6688 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6689 +--------------+--------------------------------+
6690 ! Major ! rx ! ry ! Imm 4:0 !
6691 +--------------+--------------------------------+
6692
6693 EXTEND is the five bit value 11110. Major is the instruction
6694 opcode.
6695
6696 This is handled exactly like R_MIPS_GPREL16, except that the
6697 addend is retrieved and stored as shown in this diagram; that
6698 is, the Imm fields above replace the V-rel16 field.
6699
6700 All we need to do here is shuffle the bits appropriately. As
6701 above, the two 16-bit halves must be swapped on a
6702 little-endian system. */
6703 value = (((value & 0x7e0) << 16)
6704 | ((value & 0xf800) << 5)
6705 | (value & 0x1f));
6706 }
6707
6708 /* Set the field. */
6709 x |= (value & howto->dst_mask);
6710
6711 /* If required, turn JAL into JALX. */
6712 if (require_jalx)
6713 {
6714 boolean ok;
6715 bfd_vma opcode = x >> 26;
6716 bfd_vma jalx_opcode;
6717
6718 /* Check to see if the opcode is already JAL or JALX. */
6719 if (r_type == R_MIPS16_26)
6720 {
6721 ok = ((opcode == 0x6) || (opcode == 0x7));
6722 jalx_opcode = 0x7;
6723 }
6724 else
6725 {
6726 ok = ((opcode == 0x3) || (opcode == 0x1d));
6727 jalx_opcode = 0x1d;
6728 }
6729
6730 /* If the opcode is not JAL or JALX, there's a problem. */
6731 if (!ok)
6732 {
6733 (*_bfd_error_handler)
6734 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
6735 bfd_get_filename (input_bfd),
6736 input_section->name,
6737 (unsigned long) relocation->r_offset);
6738 bfd_set_error (bfd_error_bad_value);
6739 return false;
6740 }
6741
6742 /* Make this the JALX opcode. */
6743 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6744 }
6745
6746 /* Swap the high- and low-order 16 bits on little-endian systems
6747 when doing a MIPS16 relocation. */
6748 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
6749 && bfd_little_endian (input_bfd))
6750 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6751
6752 /* Put the value into the output. */
6753 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6754 return true;
6755 }
6756
6757 /* Returns true if SECTION is a MIPS16 stub section. */
6758
6759 static boolean
6760 mips_elf_stub_section_p (abfd, section)
6761 bfd *abfd ATTRIBUTE_UNUSED;
6762 asection *section;
6763 {
6764 const char *name = bfd_get_section_name (abfd, section);
6765
6766 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
6767 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6768 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
6769 }
6770
6771 /* Relocate a MIPS ELF section. */
6772
6773 boolean
6774 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6775 contents, relocs, local_syms, local_sections)
6776 bfd *output_bfd;
6777 struct bfd_link_info *info;
6778 bfd *input_bfd;
6779 asection *input_section;
6780 bfd_byte *contents;
6781 Elf_Internal_Rela *relocs;
6782 Elf_Internal_Sym *local_syms;
6783 asection **local_sections;
6784 {
6785 Elf_Internal_Rela *rel;
6786 const Elf_Internal_Rela *relend;
6787 bfd_vma addend = 0;
6788 boolean use_saved_addend_p = false;
6789 struct elf_backend_data *bed;
6790
6791 bed = get_elf_backend_data (output_bfd);
6792 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6793 for (rel = relocs; rel < relend; ++rel)
6794 {
6795 const char *name;
6796 bfd_vma value;
6797 reloc_howto_type *howto;
6798 boolean require_jalx;
6799 /* True if the relocation is a RELA relocation, rather than a
6800 REL relocation. */
6801 boolean rela_relocation_p = true;
6802 int r_type = ELF32_R_TYPE (rel->r_info);
6803 const char * msg = (const char *) NULL;
6804
6805 /* Find the relocation howto for this relocation. */
6806 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6807 {
6808 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6809 64-bit code, but make sure all their addresses are in the
6810 lowermost or uppermost 32-bit section of the 64-bit address
6811 space. Thus, when they use an R_MIPS_64 they mean what is
6812 usually meant by R_MIPS_32, with the exception that the
6813 stored value is sign-extended to 64 bits. */
6814 howto = elf_mips_howto_table + R_MIPS_32;
6815
6816 /* On big-endian systems, we need to lie about the position
6817 of the reloc. */
6818 if (bfd_big_endian (input_bfd))
6819 rel->r_offset += 4;
6820 }
6821 else
6822 howto = mips_rtype_to_howto (r_type);
6823
6824 if (!use_saved_addend_p)
6825 {
6826 Elf_Internal_Shdr *rel_hdr;
6827
6828 /* If these relocations were originally of the REL variety,
6829 we must pull the addend out of the field that will be
6830 relocated. Otherwise, we simply use the contents of the
6831 RELA relocation. To determine which flavor or relocation
6832 this is, we depend on the fact that the INPUT_SECTION's
6833 REL_HDR is read before its REL_HDR2. */
6834 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6835 if ((size_t) (rel - relocs)
6836 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6837 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6838 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6839 {
6840 /* Note that this is a REL relocation. */
6841 rela_relocation_p = false;
6842
6843 /* Get the addend, which is stored in the input file. */
6844 addend = mips_elf_obtain_contents (howto,
6845 rel,
6846 input_bfd,
6847 contents);
6848 addend &= howto->src_mask;
6849
6850 /* For some kinds of relocations, the ADDEND is a
6851 combination of the addend stored in two different
6852 relocations. */
6853 if (r_type == R_MIPS_HI16
6854 || r_type == R_MIPS_GNU_REL_HI16
6855 || (r_type == R_MIPS_GOT16
6856 && mips_elf_local_relocation_p (input_bfd, rel,
6857 local_sections, false)))
6858 {
6859 bfd_vma l;
6860 const Elf_Internal_Rela *lo16_relocation;
6861 reloc_howto_type *lo16_howto;
6862 int lo;
6863
6864 /* The combined value is the sum of the HI16 addend,
6865 left-shifted by sixteen bits, and the LO16
6866 addend, sign extended. (Usually, the code does
6867 a `lui' of the HI16 value, and then an `addiu' of
6868 the LO16 value.)
6869
6870 Scan ahead to find a matching LO16 relocation. */
6871 if (r_type == R_MIPS_GNU_REL_HI16)
6872 lo = R_MIPS_GNU_REL_LO16;
6873 else
6874 lo = R_MIPS_LO16;
6875 lo16_relocation
6876 = mips_elf_next_relocation (lo, rel, relend);
6877 if (lo16_relocation == NULL)
6878 return false;
6879
6880 /* Obtain the addend kept there. */
6881 lo16_howto = mips_rtype_to_howto (lo);
6882 l = mips_elf_obtain_contents (lo16_howto,
6883 lo16_relocation,
6884 input_bfd, contents);
6885 l &= lo16_howto->src_mask;
6886 l = mips_elf_sign_extend (l, 16);
6887
6888 addend <<= 16;
6889
6890 /* Compute the combined addend. */
6891 addend += l;
6892 }
6893 else if (r_type == R_MIPS16_GPREL)
6894 {
6895 /* The addend is scrambled in the object file. See
6896 mips_elf_perform_relocation for details on the
6897 format. */
6898 addend = (((addend & 0x1f0000) >> 5)
6899 | ((addend & 0x7e00000) >> 16)
6900 | (addend & 0x1f));
6901 }
6902 }
6903 else
6904 addend = rel->r_addend;
6905 }
6906
6907 if (info->relocateable)
6908 {
6909 Elf_Internal_Sym *sym;
6910 unsigned long r_symndx;
6911
6912 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
6913 && bfd_big_endian (input_bfd))
6914 rel->r_offset -= 4;
6915
6916 /* Since we're just relocating, all we need to do is copy
6917 the relocations back out to the object file, unless
6918 they're against a section symbol, in which case we need
6919 to adjust by the section offset, or unless they're GP
6920 relative in which case we need to adjust by the amount
6921 that we're adjusting GP in this relocateable object. */
6922
6923 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6924 false))
6925 /* There's nothing to do for non-local relocations. */
6926 continue;
6927
6928 if (r_type == R_MIPS16_GPREL
6929 || r_type == R_MIPS_GPREL16
6930 || r_type == R_MIPS_GPREL32
6931 || r_type == R_MIPS_LITERAL)
6932 addend -= (_bfd_get_gp_value (output_bfd)
6933 - _bfd_get_gp_value (input_bfd));
6934 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6935 || r_type == R_MIPS_GNU_REL16_S2)
6936 /* The addend is stored without its two least
6937 significant bits (which are always zero.) In a
6938 non-relocateable link, calculate_relocation will do
6939 this shift; here, we must do it ourselves. */
6940 addend <<= 2;
6941
6942 r_symndx = ELF32_R_SYM (rel->r_info);
6943 sym = local_syms + r_symndx;
6944 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6945 /* Adjust the addend appropriately. */
6946 addend += local_sections[r_symndx]->output_offset;
6947
6948 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6949 then we only want to write out the high-order 16 bits.
6950 The subsequent R_MIPS_LO16 will handle the low-order bits. */
6951 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6952 || r_type == R_MIPS_GNU_REL_HI16)
6953 addend = mips_elf_high (addend);
6954 /* If the relocation is for an R_MIPS_26 relocation, then
6955 the two low-order bits are not stored in the object file;
6956 they are implicitly zero. */
6957 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
6958 || r_type == R_MIPS_GNU_REL16_S2)
6959 addend >>= 2;
6960
6961 if (rela_relocation_p)
6962 /* If this is a RELA relocation, just update the addend.
6963 We have to cast away constness for REL. */
6964 rel->r_addend = addend;
6965 else
6966 {
6967 /* Otherwise, we have to write the value back out. Note
6968 that we use the source mask, rather than the
6969 destination mask because the place to which we are
6970 writing will be source of the addend in the final
6971 link. */
6972 addend &= howto->src_mask;
6973
6974 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6975 /* See the comment above about using R_MIPS_64 in the 32-bit
6976 ABI. Here, we need to update the addend. It would be
6977 possible to get away with just using the R_MIPS_32 reloc
6978 but for endianness. */
6979 {
6980 bfd_vma sign_bits;
6981 bfd_vma low_bits;
6982 bfd_vma high_bits;
6983
6984 if (addend & ((bfd_vma) 1 << 31))
6985 sign_bits = ((bfd_vma) 1 << 32) - 1;
6986 else
6987 sign_bits = 0;
6988
6989 /* If we don't know that we have a 64-bit type,
6990 do two separate stores. */
6991 if (bfd_big_endian (input_bfd))
6992 {
6993 /* Store the sign-bits (which are most significant)
6994 first. */
6995 low_bits = sign_bits;
6996 high_bits = addend;
6997 }
6998 else
6999 {
7000 low_bits = addend;
7001 high_bits = sign_bits;
7002 }
7003 bfd_put_32 (input_bfd, low_bits,
7004 contents + rel->r_offset);
7005 bfd_put_32 (input_bfd, high_bits,
7006 contents + rel->r_offset + 4);
7007 continue;
7008 }
7009
7010 if (!mips_elf_perform_relocation (info, howto, rel, addend,
7011 input_bfd, input_section,
7012 contents, false))
7013 return false;
7014 }
7015
7016 /* Go on to the next relocation. */
7017 continue;
7018 }
7019
7020 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7021 relocations for the same offset. In that case we are
7022 supposed to treat the output of each relocation as the addend
7023 for the next. */
7024 if (rel + 1 < relend
7025 && rel->r_offset == rel[1].r_offset
7026 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
7027 use_saved_addend_p = true;
7028 else
7029 use_saved_addend_p = false;
7030
7031 /* Figure out what value we are supposed to relocate. */
7032 switch (mips_elf_calculate_relocation (output_bfd,
7033 input_bfd,
7034 input_section,
7035 info,
7036 rel,
7037 addend,
7038 howto,
7039 local_syms,
7040 local_sections,
7041 &value,
7042 &name,
7043 &require_jalx))
7044 {
7045 case bfd_reloc_continue:
7046 /* There's nothing to do. */
7047 continue;
7048
7049 case bfd_reloc_undefined:
7050 /* mips_elf_calculate_relocation already called the
7051 undefined_symbol callback. There's no real point in
7052 trying to perform the relocation at this point, so we
7053 just skip ahead to the next relocation. */
7054 continue;
7055
7056 case bfd_reloc_notsupported:
7057 msg = _("internal error: unsupported relocation error");
7058 info->callbacks->warning
7059 (info, msg, name, input_bfd, input_section, rel->r_offset);
7060 return false;
7061
7062 case bfd_reloc_overflow:
7063 if (use_saved_addend_p)
7064 /* Ignore overflow until we reach the last relocation for
7065 a given location. */
7066 ;
7067 else
7068 {
7069 BFD_ASSERT (name != NULL);
7070 if (! ((*info->callbacks->reloc_overflow)
7071 (info, name, howto->name, (bfd_vma) 0,
7072 input_bfd, input_section, rel->r_offset)))
7073 return false;
7074 }
7075 break;
7076
7077 case bfd_reloc_ok:
7078 break;
7079
7080 default:
7081 abort ();
7082 break;
7083 }
7084
7085 /* If we've got another relocation for the address, keep going
7086 until we reach the last one. */
7087 if (use_saved_addend_p)
7088 {
7089 addend = value;
7090 continue;
7091 }
7092
7093 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
7094 /* See the comment above about using R_MIPS_64 in the 32-bit
7095 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7096 that calculated the right value. Now, however, we
7097 sign-extend the 32-bit result to 64-bits, and store it as a
7098 64-bit value. We are especially generous here in that we
7099 go to extreme lengths to support this usage on systems with
7100 only a 32-bit VMA. */
7101 {
7102 bfd_vma sign_bits;
7103 bfd_vma low_bits;
7104 bfd_vma high_bits;
7105
7106 if (value & ((bfd_vma) 1 << 31))
7107 sign_bits = ((bfd_vma) 1 << 32) - 1;
7108 else
7109 sign_bits = 0;
7110
7111 /* If we don't know that we have a 64-bit type,
7112 do two separate stores. */
7113 if (bfd_big_endian (input_bfd))
7114 {
7115 /* Undo what we did above. */
7116 rel->r_offset -= 4;
7117 /* Store the sign-bits (which are most significant)
7118 first. */
7119 low_bits = sign_bits;
7120 high_bits = value;
7121 }
7122 else
7123 {
7124 low_bits = value;
7125 high_bits = sign_bits;
7126 }
7127 bfd_put_32 (input_bfd, low_bits,
7128 contents + rel->r_offset);
7129 bfd_put_32 (input_bfd, high_bits,
7130 contents + rel->r_offset + 4);
7131 continue;
7132 }
7133
7134 /* Actually perform the relocation. */
7135 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
7136 input_section, contents,
7137 require_jalx))
7138 return false;
7139 }
7140
7141 return true;
7142 }
7143
7144 /* This hook function is called before the linker writes out a global
7145 symbol. We mark symbols as small common if appropriate. This is
7146 also where we undo the increment of the value for a mips16 symbol. */
7147
7148 boolean
7149 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
7150 bfd *abfd ATTRIBUTE_UNUSED;
7151 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7152 const char *name ATTRIBUTE_UNUSED;
7153 Elf_Internal_Sym *sym;
7154 asection *input_sec;
7155 {
7156 /* If we see a common symbol, which implies a relocatable link, then
7157 if a symbol was small common in an input file, mark it as small
7158 common in the output file. */
7159 if (sym->st_shndx == SHN_COMMON
7160 && strcmp (input_sec->name, ".scommon") == 0)
7161 sym->st_shndx = SHN_MIPS_SCOMMON;
7162
7163 if (sym->st_other == STO_MIPS16
7164 && (sym->st_value & 1) != 0)
7165 --sym->st_value;
7166
7167 return true;
7168 }
7169 \f
7170 /* Functions for the dynamic linker. */
7171
7172 /* The name of the dynamic interpreter. This is put in the .interp
7173 section. */
7174
7175 #define ELF_DYNAMIC_INTERPRETER(abfd) \
7176 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
7177 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
7178 : "/usr/lib/libc.so.1")
7179
7180 /* Create dynamic sections when linking against a dynamic object. */
7181
7182 boolean
7183 _bfd_mips_elf_create_dynamic_sections (abfd, info)
7184 bfd *abfd;
7185 struct bfd_link_info *info;
7186 {
7187 struct elf_link_hash_entry *h;
7188 flagword flags;
7189 register asection *s;
7190 const char * const *namep;
7191
7192 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7193 | SEC_LINKER_CREATED | SEC_READONLY);
7194
7195 /* Mips ABI requests the .dynamic section to be read only. */
7196 s = bfd_get_section_by_name (abfd, ".dynamic");
7197 if (s != NULL)
7198 {
7199 if (! bfd_set_section_flags (abfd, s, flags))
7200 return false;
7201 }
7202
7203 /* We need to create .got section. */
7204 if (! mips_elf_create_got_section (abfd, info))
7205 return false;
7206
7207 /* Create the .msym section on IRIX6. It is used by the dynamic
7208 linker to speed up dynamic relocations, and to avoid computing
7209 the ELF hash for symbols. */
7210 if (IRIX_COMPAT (abfd) == ict_irix6
7211 && !mips_elf_create_msym_section (abfd))
7212 return false;
7213
7214 /* Create .stub section. */
7215 if (bfd_get_section_by_name (abfd,
7216 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
7217 {
7218 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
7219 if (s == NULL
7220 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
7221 || ! bfd_set_section_alignment (abfd, s,
7222 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7223 return false;
7224 }
7225
7226 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7227 && !info->shared
7228 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7229 {
7230 s = bfd_make_section (abfd, ".rld_map");
7231 if (s == NULL
7232 || ! bfd_set_section_flags (abfd, s, flags & ~SEC_READONLY)
7233 || ! bfd_set_section_alignment (abfd, s,
7234 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7235 return false;
7236 }
7237
7238 /* On IRIX5, we adjust add some additional symbols and change the
7239 alignments of several sections. There is no ABI documentation
7240 indicating that this is necessary on IRIX6, nor any evidence that
7241 the linker takes such action. */
7242 if (IRIX_COMPAT (abfd) == ict_irix5)
7243 {
7244 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7245 {
7246 h = NULL;
7247 if (! (_bfd_generic_link_add_one_symbol
7248 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
7249 (bfd_vma) 0, (const char *) NULL, false,
7250 get_elf_backend_data (abfd)->collect,
7251 (struct bfd_link_hash_entry **) &h)))
7252 return false;
7253 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7254 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7255 h->type = STT_SECTION;
7256
7257 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7258 return false;
7259 }
7260
7261 /* We need to create a .compact_rel section. */
7262 if (SGI_COMPAT (abfd))
7263 {
7264 if (!mips_elf_create_compact_rel_section (abfd, info))
7265 return false;
7266 }
7267
7268 /* Change aligments of some sections. */
7269 s = bfd_get_section_by_name (abfd, ".hash");
7270 if (s != NULL)
7271 bfd_set_section_alignment (abfd, s, 4);
7272 s = bfd_get_section_by_name (abfd, ".dynsym");
7273 if (s != NULL)
7274 bfd_set_section_alignment (abfd, s, 4);
7275 s = bfd_get_section_by_name (abfd, ".dynstr");
7276 if (s != NULL)
7277 bfd_set_section_alignment (abfd, s, 4);
7278 s = bfd_get_section_by_name (abfd, ".reginfo");
7279 if (s != NULL)
7280 bfd_set_section_alignment (abfd, s, 4);
7281 s = bfd_get_section_by_name (abfd, ".dynamic");
7282 if (s != NULL)
7283 bfd_set_section_alignment (abfd, s, 4);
7284 }
7285
7286 if (!info->shared)
7287 {
7288 h = NULL;
7289 if (SGI_COMPAT (abfd))
7290 {
7291 if (!(_bfd_generic_link_add_one_symbol
7292 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7293 (bfd_vma) 0, (const char *) NULL, false,
7294 get_elf_backend_data (abfd)->collect,
7295 (struct bfd_link_hash_entry **) &h)))
7296 return false;
7297 }
7298 else
7299 {
7300 /* For normal mips it is _DYNAMIC_LINKING. */
7301 if (!(_bfd_generic_link_add_one_symbol
7302 (info, abfd, "_DYNAMIC_LINKING", BSF_GLOBAL,
7303 bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false,
7304 get_elf_backend_data (abfd)->collect,
7305 (struct bfd_link_hash_entry **) &h)))
7306 return false;
7307 }
7308 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7309 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7310 h->type = STT_SECTION;
7311
7312 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7313 return false;
7314
7315 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7316 {
7317 /* __rld_map is a four byte word located in the .data section
7318 and is filled in by the rtld to contain a pointer to
7319 the _r_debug structure. Its symbol value will be set in
7320 mips_elf_finish_dynamic_symbol. */
7321 s = bfd_get_section_by_name (abfd, ".rld_map");
7322 BFD_ASSERT (s != NULL);
7323
7324 h = NULL;
7325 if (SGI_COMPAT (abfd))
7326 {
7327 if (!(_bfd_generic_link_add_one_symbol
7328 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7329 (bfd_vma) 0, (const char *) NULL, false,
7330 get_elf_backend_data (abfd)->collect,
7331 (struct bfd_link_hash_entry **) &h)))
7332 return false;
7333 }
7334 else
7335 {
7336 /* For normal mips the symbol is __RLD_MAP. */
7337 if (!(_bfd_generic_link_add_one_symbol
7338 (info, abfd, "__RLD_MAP", BSF_GLOBAL, s,
7339 (bfd_vma) 0, (const char *) NULL, false,
7340 get_elf_backend_data (abfd)->collect,
7341 (struct bfd_link_hash_entry **) &h)))
7342 return false;
7343 }
7344 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7345 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7346 h->type = STT_OBJECT;
7347
7348 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7349 return false;
7350 }
7351 }
7352
7353 return true;
7354 }
7355
7356 /* Create the .compact_rel section. */
7357
7358 static boolean
7359 mips_elf_create_compact_rel_section (abfd, info)
7360 bfd *abfd;
7361 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7362 {
7363 flagword flags;
7364 register asection *s;
7365
7366 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7367 {
7368 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7369 | SEC_READONLY);
7370
7371 s = bfd_make_section (abfd, ".compact_rel");
7372 if (s == NULL
7373 || ! bfd_set_section_flags (abfd, s, flags)
7374 || ! bfd_set_section_alignment (abfd, s,
7375 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7376 return false;
7377
7378 s->_raw_size = sizeof (Elf32_External_compact_rel);
7379 }
7380
7381 return true;
7382 }
7383
7384 /* Create the .got section to hold the global offset table. */
7385
7386 static boolean
7387 mips_elf_create_got_section (abfd, info)
7388 bfd *abfd;
7389 struct bfd_link_info *info;
7390 {
7391 flagword flags;
7392 register asection *s;
7393 struct elf_link_hash_entry *h;
7394 struct mips_got_info *g;
7395
7396 /* This function may be called more than once. */
7397 if (mips_elf_got_section (abfd))
7398 return true;
7399
7400 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7401 | SEC_LINKER_CREATED);
7402
7403 s = bfd_make_section (abfd, ".got");
7404 if (s == NULL
7405 || ! bfd_set_section_flags (abfd, s, flags)
7406 || ! bfd_set_section_alignment (abfd, s, 4))
7407 return false;
7408
7409 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7410 linker script because we don't want to define the symbol if we
7411 are not creating a global offset table. */
7412 h = NULL;
7413 if (! (_bfd_generic_link_add_one_symbol
7414 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7415 (bfd_vma) 0, (const char *) NULL, false,
7416 get_elf_backend_data (abfd)->collect,
7417 (struct bfd_link_hash_entry **) &h)))
7418 return false;
7419 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7420 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7421 h->type = STT_OBJECT;
7422
7423 if (info->shared
7424 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7425 return false;
7426
7427 /* The first several global offset table entries are reserved. */
7428 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
7429
7430 g = (struct mips_got_info *) bfd_alloc (abfd,
7431 sizeof (struct mips_got_info));
7432 if (g == NULL)
7433 return false;
7434 g->global_gotsym = NULL;
7435 g->local_gotno = MIPS_RESERVED_GOTNO;
7436 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7437 if (elf_section_data (s) == NULL)
7438 {
7439 s->used_by_bfd =
7440 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
7441 if (elf_section_data (s) == NULL)
7442 return false;
7443 }
7444 elf_section_data (s)->tdata = (PTR) g;
7445 elf_section_data (s)->this_hdr.sh_flags
7446 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7447
7448 return true;
7449 }
7450
7451 /* Returns the .msym section for ABFD, creating it if it does not
7452 already exist. Returns NULL to indicate error. */
7453
7454 static asection *
7455 mips_elf_create_msym_section (abfd)
7456 bfd *abfd;
7457 {
7458 asection *s;
7459
7460 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7461 if (!s)
7462 {
7463 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7464 if (!s
7465 || !bfd_set_section_flags (abfd, s,
7466 SEC_ALLOC
7467 | SEC_LOAD
7468 | SEC_HAS_CONTENTS
7469 | SEC_LINKER_CREATED
7470 | SEC_READONLY)
7471 || !bfd_set_section_alignment (abfd, s,
7472 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7473 return NULL;
7474 }
7475
7476 return s;
7477 }
7478
7479 /* Add room for N relocations to the .rel.dyn section in ABFD. */
7480
7481 static void
7482 mips_elf_allocate_dynamic_relocations (abfd, n)
7483 bfd *abfd;
7484 unsigned int n;
7485 {
7486 asection *s;
7487
7488 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
7489 BFD_ASSERT (s != NULL);
7490
7491 if (s->_raw_size == 0)
7492 {
7493 /* Make room for a null element. */
7494 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
7495 ++s->reloc_count;
7496 }
7497 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
7498 }
7499
7500 /* Look through the relocs for a section during the first phase, and
7501 allocate space in the global offset table. */
7502
7503 boolean
7504 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
7505 bfd *abfd;
7506 struct bfd_link_info *info;
7507 asection *sec;
7508 const Elf_Internal_Rela *relocs;
7509 {
7510 const char *name;
7511 bfd *dynobj;
7512 Elf_Internal_Shdr *symtab_hdr;
7513 struct elf_link_hash_entry **sym_hashes;
7514 struct mips_got_info *g;
7515 size_t extsymoff;
7516 const Elf_Internal_Rela *rel;
7517 const Elf_Internal_Rela *rel_end;
7518 asection *sgot;
7519 asection *sreloc;
7520 struct elf_backend_data *bed;
7521
7522 if (info->relocateable)
7523 return true;
7524
7525 dynobj = elf_hash_table (info)->dynobj;
7526 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7527 sym_hashes = elf_sym_hashes (abfd);
7528 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7529
7530 /* Check for the mips16 stub sections. */
7531
7532 name = bfd_get_section_name (abfd, sec);
7533 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
7534 {
7535 unsigned long r_symndx;
7536
7537 /* Look at the relocation information to figure out which symbol
7538 this is for. */
7539
7540 r_symndx = ELF32_R_SYM (relocs->r_info);
7541
7542 if (r_symndx < extsymoff
7543 || sym_hashes[r_symndx - extsymoff] == NULL)
7544 {
7545 asection *o;
7546
7547 /* This stub is for a local symbol. This stub will only be
7548 needed if there is some relocation in this BFD, other
7549 than a 16 bit function call, which refers to this symbol. */
7550 for (o = abfd->sections; o != NULL; o = o->next)
7551 {
7552 Elf_Internal_Rela *sec_relocs;
7553 const Elf_Internal_Rela *r, *rend;
7554
7555 /* We can ignore stub sections when looking for relocs. */
7556 if ((o->flags & SEC_RELOC) == 0
7557 || o->reloc_count == 0
7558 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
7559 sizeof FN_STUB - 1) == 0
7560 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
7561 sizeof CALL_STUB - 1) == 0
7562 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
7563 sizeof CALL_FP_STUB - 1) == 0)
7564 continue;
7565
7566 sec_relocs = (_bfd_elf32_link_read_relocs
7567 (abfd, o, (PTR) NULL,
7568 (Elf_Internal_Rela *) NULL,
7569 info->keep_memory));
7570 if (sec_relocs == NULL)
7571 return false;
7572
7573 rend = sec_relocs + o->reloc_count;
7574 for (r = sec_relocs; r < rend; r++)
7575 if (ELF32_R_SYM (r->r_info) == r_symndx
7576 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
7577 break;
7578
7579 if (! info->keep_memory)
7580 free (sec_relocs);
7581
7582 if (r < rend)
7583 break;
7584 }
7585
7586 if (o == NULL)
7587 {
7588 /* There is no non-call reloc for this stub, so we do
7589 not need it. Since this function is called before
7590 the linker maps input sections to output sections, we
7591 can easily discard it by setting the SEC_EXCLUDE
7592 flag. */
7593 sec->flags |= SEC_EXCLUDE;
7594 return true;
7595 }
7596
7597 /* Record this stub in an array of local symbol stubs for
7598 this BFD. */
7599 if (elf_tdata (abfd)->local_stubs == NULL)
7600 {
7601 unsigned long symcount;
7602 asection **n;
7603
7604 if (elf_bad_symtab (abfd))
7605 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7606 else
7607 symcount = symtab_hdr->sh_info;
7608 n = (asection **) bfd_zalloc (abfd,
7609 symcount * sizeof (asection *));
7610 if (n == NULL)
7611 return false;
7612 elf_tdata (abfd)->local_stubs = n;
7613 }
7614
7615 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7616
7617 /* We don't need to set mips16_stubs_seen in this case.
7618 That flag is used to see whether we need to look through
7619 the global symbol table for stubs. We don't need to set
7620 it here, because we just have a local stub. */
7621 }
7622 else
7623 {
7624 struct mips_elf_link_hash_entry *h;
7625
7626 h = ((struct mips_elf_link_hash_entry *)
7627 sym_hashes[r_symndx - extsymoff]);
7628
7629 /* H is the symbol this stub is for. */
7630
7631 h->fn_stub = sec;
7632 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7633 }
7634 }
7635 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7636 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7637 {
7638 unsigned long r_symndx;
7639 struct mips_elf_link_hash_entry *h;
7640 asection **loc;
7641
7642 /* Look at the relocation information to figure out which symbol
7643 this is for. */
7644
7645 r_symndx = ELF32_R_SYM (relocs->r_info);
7646
7647 if (r_symndx < extsymoff
7648 || sym_hashes[r_symndx - extsymoff] == NULL)
7649 {
7650 /* This stub was actually built for a static symbol defined
7651 in the same file. We assume that all static symbols in
7652 mips16 code are themselves mips16, so we can simply
7653 discard this stub. Since this function is called before
7654 the linker maps input sections to output sections, we can
7655 easily discard it by setting the SEC_EXCLUDE flag. */
7656 sec->flags |= SEC_EXCLUDE;
7657 return true;
7658 }
7659
7660 h = ((struct mips_elf_link_hash_entry *)
7661 sym_hashes[r_symndx - extsymoff]);
7662
7663 /* H is the symbol this stub is for. */
7664
7665 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7666 loc = &h->call_fp_stub;
7667 else
7668 loc = &h->call_stub;
7669
7670 /* If we already have an appropriate stub for this function, we
7671 don't need another one, so we can discard this one. Since
7672 this function is called before the linker maps input sections
7673 to output sections, we can easily discard it by setting the
7674 SEC_EXCLUDE flag. We can also discard this section if we
7675 happen to already know that this is a mips16 function; it is
7676 not necessary to check this here, as it is checked later, but
7677 it is slightly faster to check now. */
7678 if (*loc != NULL || h->root.other == STO_MIPS16)
7679 {
7680 sec->flags |= SEC_EXCLUDE;
7681 return true;
7682 }
7683
7684 *loc = sec;
7685 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7686 }
7687
7688 if (dynobj == NULL)
7689 {
7690 sgot = NULL;
7691 g = NULL;
7692 }
7693 else
7694 {
7695 sgot = mips_elf_got_section (dynobj);
7696 if (sgot == NULL)
7697 g = NULL;
7698 else
7699 {
7700 BFD_ASSERT (elf_section_data (sgot) != NULL);
7701 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
7702 BFD_ASSERT (g != NULL);
7703 }
7704 }
7705
7706 sreloc = NULL;
7707 bed = get_elf_backend_data (abfd);
7708 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7709 for (rel = relocs; rel < rel_end; ++rel)
7710 {
7711 unsigned long r_symndx;
7712 int r_type;
7713 struct elf_link_hash_entry *h;
7714
7715 r_symndx = ELF32_R_SYM (rel->r_info);
7716 r_type = ELF32_R_TYPE (rel->r_info);
7717
7718 if (r_symndx < extsymoff)
7719 h = NULL;
7720 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7721 {
7722 (*_bfd_error_handler)
7723 (_("Malformed reloc detected for section %s"), name);
7724 bfd_set_error (bfd_error_bad_value);
7725 return false;
7726 }
7727 else
7728 {
7729 h = sym_hashes[r_symndx - extsymoff];
7730
7731 /* This may be an indirect symbol created because of a version. */
7732 if (h != NULL)
7733 {
7734 while (h->root.type == bfd_link_hash_indirect)
7735 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7736 }
7737 }
7738
7739 /* Some relocs require a global offset table. */
7740 if (dynobj == NULL || sgot == NULL)
7741 {
7742 switch (r_type)
7743 {
7744 case R_MIPS_GOT16:
7745 case R_MIPS_CALL16:
7746 case R_MIPS_CALL_HI16:
7747 case R_MIPS_CALL_LO16:
7748 case R_MIPS_GOT_HI16:
7749 case R_MIPS_GOT_LO16:
7750 case R_MIPS_GOT_PAGE:
7751 case R_MIPS_GOT_OFST:
7752 case R_MIPS_GOT_DISP:
7753 if (dynobj == NULL)
7754 elf_hash_table (info)->dynobj = dynobj = abfd;
7755 if (! mips_elf_create_got_section (dynobj, info))
7756 return false;
7757 g = mips_elf_got_info (dynobj, &sgot);
7758 break;
7759
7760 case R_MIPS_32:
7761 case R_MIPS_REL32:
7762 case R_MIPS_64:
7763 if (dynobj == NULL
7764 && (info->shared || h != NULL)
7765 && (sec->flags & SEC_ALLOC) != 0)
7766 elf_hash_table (info)->dynobj = dynobj = abfd;
7767 break;
7768
7769 default:
7770 break;
7771 }
7772 }
7773
7774 if (!h && (r_type == R_MIPS_CALL_LO16
7775 || r_type == R_MIPS_GOT_LO16
7776 || r_type == R_MIPS_GOT_DISP))
7777 {
7778 /* We may need a local GOT entry for this relocation. We
7779 don't count R_MIPS_GOT_PAGE because we can estimate the
7780 maximum number of pages needed by looking at the size of
7781 the segment. Similar comments apply to R_MIPS_GOT16 and
7782 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
7783 R_MIPS_CALL_HI16 because these are always followed by an
7784 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
7785
7786 This estimation is very conservative since we can merge
7787 duplicate entries in the GOT. In order to be less
7788 conservative, we could actually build the GOT here,
7789 rather than in relocate_section. */
7790 g->local_gotno++;
7791 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
7792 }
7793
7794 switch (r_type)
7795 {
7796 case R_MIPS_CALL16:
7797 if (h == NULL)
7798 {
7799 (*_bfd_error_handler)
7800 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
7801 bfd_get_filename (abfd), (unsigned long) rel->r_offset);
7802 bfd_set_error (bfd_error_bad_value);
7803 return false;
7804 }
7805 /* Fall through. */
7806
7807 case R_MIPS_CALL_HI16:
7808 case R_MIPS_CALL_LO16:
7809 if (h != NULL)
7810 {
7811 /* This symbol requires a global offset table entry. */
7812 if (!mips_elf_record_global_got_symbol (h, info, g))
7813 return false;
7814
7815 /* We need a stub, not a plt entry for the undefined
7816 function. But we record it as if it needs plt. See
7817 elf_adjust_dynamic_symbol in elflink.h. */
7818 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
7819 h->type = STT_FUNC;
7820 }
7821 break;
7822
7823 case R_MIPS_GOT16:
7824 case R_MIPS_GOT_HI16:
7825 case R_MIPS_GOT_LO16:
7826 case R_MIPS_GOT_DISP:
7827 /* This symbol requires a global offset table entry. */
7828 if (h && !mips_elf_record_global_got_symbol (h, info, g))
7829 return false;
7830 break;
7831
7832 case R_MIPS_32:
7833 case R_MIPS_REL32:
7834 case R_MIPS_64:
7835 if ((info->shared || h != NULL)
7836 && (sec->flags & SEC_ALLOC) != 0)
7837 {
7838 if (sreloc == NULL)
7839 {
7840 const char *name = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
7841
7842 sreloc = bfd_get_section_by_name (dynobj, name);
7843 if (sreloc == NULL)
7844 {
7845 sreloc = bfd_make_section (dynobj, name);
7846 if (sreloc == NULL
7847 || ! bfd_set_section_flags (dynobj, sreloc,
7848 (SEC_ALLOC
7849 | SEC_LOAD
7850 | SEC_HAS_CONTENTS
7851 | SEC_IN_MEMORY
7852 | SEC_LINKER_CREATED
7853 | SEC_READONLY))
7854 || ! bfd_set_section_alignment (dynobj, sreloc,
7855 4))
7856 return false;
7857 }
7858 }
7859 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
7860 if (info->shared)
7861 {
7862 /* When creating a shared object, we must copy these
7863 reloc types into the output file as R_MIPS_REL32
7864 relocs. We make room for this reloc in the
7865 .rel.dyn reloc section. */
7866 mips_elf_allocate_dynamic_relocations (dynobj, 1);
7867 if ((sec->flags & MIPS_READONLY_SECTION)
7868 == MIPS_READONLY_SECTION)
7869 /* We tell the dynamic linker that there are
7870 relocations against the text segment. */
7871 info->flags |= DF_TEXTREL;
7872 }
7873 else
7874 {
7875 struct mips_elf_link_hash_entry *hmips;
7876
7877 /* We only need to copy this reloc if the symbol is
7878 defined in a dynamic object. */
7879 hmips = (struct mips_elf_link_hash_entry *) h;
7880 ++hmips->possibly_dynamic_relocs;
7881 if ((sec->flags & MIPS_READONLY_SECTION)
7882 == MIPS_READONLY_SECTION)
7883 /* We need it to tell the dynamic linker if there
7884 are relocations against the text segment. */
7885 hmips->readonly_reloc = true;
7886 }
7887
7888 /* Even though we don't directly need a GOT entry for
7889 this symbol, a symbol must have a dynamic symbol
7890 table index greater that DT_MIPS_GOTSYM if there are
7891 dynamic relocations against it. */
7892 if (h != NULL
7893 && !mips_elf_record_global_got_symbol (h, info, g))
7894 return false;
7895 }
7896
7897 if (SGI_COMPAT (abfd))
7898 mips_elf_hash_table (info)->compact_rel_size +=
7899 sizeof (Elf32_External_crinfo);
7900 break;
7901
7902 case R_MIPS_26:
7903 case R_MIPS_GPREL16:
7904 case R_MIPS_LITERAL:
7905 case R_MIPS_GPREL32:
7906 if (SGI_COMPAT (abfd))
7907 mips_elf_hash_table (info)->compact_rel_size +=
7908 sizeof (Elf32_External_crinfo);
7909 break;
7910
7911 /* This relocation describes the C++ object vtable hierarchy.
7912 Reconstruct it for later use during GC. */
7913 case R_MIPS_GNU_VTINHERIT:
7914 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7915 return false;
7916 break;
7917
7918 /* This relocation describes which C++ vtable entries are actually
7919 used. Record for later use during GC. */
7920 case R_MIPS_GNU_VTENTRY:
7921 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7922 return false;
7923 break;
7924
7925 default:
7926 break;
7927 }
7928
7929 /* We must not create a stub for a symbol that has relocations
7930 related to taking the function's address. */
7931 switch (r_type)
7932 {
7933 default:
7934 if (h != NULL)
7935 {
7936 struct mips_elf_link_hash_entry *mh;
7937
7938 mh = (struct mips_elf_link_hash_entry *) h;
7939 mh->no_fn_stub = true;
7940 }
7941 break;
7942 case R_MIPS_CALL16:
7943 case R_MIPS_CALL_HI16:
7944 case R_MIPS_CALL_LO16:
7945 break;
7946 }
7947
7948 /* If this reloc is not a 16 bit call, and it has a global
7949 symbol, then we will need the fn_stub if there is one.
7950 References from a stub section do not count. */
7951 if (h != NULL
7952 && r_type != R_MIPS16_26
7953 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
7954 sizeof FN_STUB - 1) != 0
7955 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
7956 sizeof CALL_STUB - 1) != 0
7957 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
7958 sizeof CALL_FP_STUB - 1) != 0)
7959 {
7960 struct mips_elf_link_hash_entry *mh;
7961
7962 mh = (struct mips_elf_link_hash_entry *) h;
7963 mh->need_fn_stub = true;
7964 }
7965 }
7966
7967 return true;
7968 }
7969
7970 /* Return the section that should be marked against GC for a given
7971 relocation. */
7972
7973 asection *
7974 _bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
7975 bfd *abfd;
7976 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7977 Elf_Internal_Rela *rel;
7978 struct elf_link_hash_entry *h;
7979 Elf_Internal_Sym *sym;
7980 {
7981 /* ??? Do mips16 stub sections need to be handled special? */
7982
7983 if (h != NULL)
7984 {
7985 switch (ELF32_R_TYPE (rel->r_info))
7986 {
7987 case R_MIPS_GNU_VTINHERIT:
7988 case R_MIPS_GNU_VTENTRY:
7989 break;
7990
7991 default:
7992 switch (h->root.type)
7993 {
7994 case bfd_link_hash_defined:
7995 case bfd_link_hash_defweak:
7996 return h->root.u.def.section;
7997
7998 case bfd_link_hash_common:
7999 return h->root.u.c.p->section;
8000
8001 default:
8002 break;
8003 }
8004 }
8005 }
8006 else
8007 {
8008 if (!(elf_bad_symtab (abfd)
8009 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8010 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
8011 && sym->st_shndx != SHN_COMMON))
8012 {
8013 return bfd_section_from_elf_index (abfd, sym->st_shndx);
8014 }
8015 }
8016
8017 return NULL;
8018 }
8019
8020 /* Update the got entry reference counts for the section being removed. */
8021
8022 boolean
8023 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
8024 bfd *abfd ATTRIBUTE_UNUSED;
8025 struct bfd_link_info *info ATTRIBUTE_UNUSED;
8026 asection *sec ATTRIBUTE_UNUSED;
8027 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
8028 {
8029 #if 0
8030 Elf_Internal_Shdr *symtab_hdr;
8031 struct elf_link_hash_entry **sym_hashes;
8032 bfd_signed_vma *local_got_refcounts;
8033 const Elf_Internal_Rela *rel, *relend;
8034 unsigned long r_symndx;
8035 struct elf_link_hash_entry *h;
8036
8037 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8038 sym_hashes = elf_sym_hashes (abfd);
8039 local_got_refcounts = elf_local_got_refcounts (abfd);
8040
8041 relend = relocs + sec->reloc_count;
8042 for (rel = relocs; rel < relend; rel++)
8043 switch (ELF32_R_TYPE (rel->r_info))
8044 {
8045 case R_MIPS_GOT16:
8046 case R_MIPS_CALL16:
8047 case R_MIPS_CALL_HI16:
8048 case R_MIPS_CALL_LO16:
8049 case R_MIPS_GOT_HI16:
8050 case R_MIPS_GOT_LO16:
8051 /* ??? It would seem that the existing MIPS code does no sort
8052 of reference counting or whatnot on its GOT and PLT entries,
8053 so it is not possible to garbage collect them at this time. */
8054 break;
8055
8056 default:
8057 break;
8058 }
8059 #endif
8060
8061 return true;
8062 }
8063
8064 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8065 hiding the old indirect symbol. Process additional relocation
8066 information. */
8067
8068 void
8069 _bfd_mips_elf_copy_indirect_symbol (dir, ind)
8070 struct elf_link_hash_entry *dir, *ind;
8071 {
8072 struct mips_elf_link_hash_entry *dirmips, *indmips;
8073
8074 _bfd_elf_link_hash_copy_indirect (dir, ind);
8075
8076 dirmips = (struct mips_elf_link_hash_entry *) dir;
8077 indmips = (struct mips_elf_link_hash_entry *) ind;
8078 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
8079 if (indmips->readonly_reloc)
8080 dirmips->readonly_reloc = true;
8081 if (dirmips->min_dyn_reloc_index == 0
8082 || (indmips->min_dyn_reloc_index != 0
8083 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
8084 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
8085 if (indmips->no_fn_stub)
8086 dirmips->no_fn_stub = true;
8087 }
8088
8089 /* Adjust a symbol defined by a dynamic object and referenced by a
8090 regular object. The current definition is in some section of the
8091 dynamic object, but we're not including those sections. We have to
8092 change the definition to something the rest of the link can
8093 understand. */
8094
8095 boolean
8096 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
8097 struct bfd_link_info *info;
8098 struct elf_link_hash_entry *h;
8099 {
8100 bfd *dynobj;
8101 struct mips_elf_link_hash_entry *hmips;
8102 asection *s;
8103
8104 dynobj = elf_hash_table (info)->dynobj;
8105
8106 /* Make sure we know what is going on here. */
8107 BFD_ASSERT (dynobj != NULL
8108 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
8109 || h->weakdef != NULL
8110 || ((h->elf_link_hash_flags
8111 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
8112 && (h->elf_link_hash_flags
8113 & ELF_LINK_HASH_REF_REGULAR) != 0
8114 && (h->elf_link_hash_flags
8115 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
8116
8117 /* If this symbol is defined in a dynamic object, we need to copy
8118 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
8119 file. */
8120 hmips = (struct mips_elf_link_hash_entry *) h;
8121 if (! info->relocateable
8122 && hmips->possibly_dynamic_relocs != 0
8123 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
8124 {
8125 mips_elf_allocate_dynamic_relocations (dynobj,
8126 hmips->possibly_dynamic_relocs);
8127 if (hmips->readonly_reloc)
8128 /* We tell the dynamic linker that there are relocations
8129 against the text segment. */
8130 info->flags |= DF_TEXTREL;
8131 }
8132
8133 /* For a function, create a stub, if allowed. */
8134 if (! hmips->no_fn_stub
8135 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
8136 {
8137 if (! elf_hash_table (info)->dynamic_sections_created)
8138 return true;
8139
8140 /* If this symbol is not defined in a regular file, then set
8141 the symbol to the stub location. This is required to make
8142 function pointers compare as equal between the normal
8143 executable and the shared library. */
8144 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
8145 {
8146 /* We need .stub section. */
8147 s = bfd_get_section_by_name (dynobj,
8148 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8149 BFD_ASSERT (s != NULL);
8150
8151 h->root.u.def.section = s;
8152 h->root.u.def.value = s->_raw_size;
8153
8154 /* XXX Write this stub address somewhere. */
8155 h->plt.offset = s->_raw_size;
8156
8157 /* Make room for this stub code. */
8158 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8159
8160 /* The last half word of the stub will be filled with the index
8161 of this symbol in .dynsym section. */
8162 return true;
8163 }
8164 }
8165 else if ((h->type == STT_FUNC)
8166 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
8167 {
8168 /* This will set the entry for this symbol in the GOT to 0, and
8169 the dynamic linker will take care of this. */
8170 h->root.u.def.value = 0;
8171 return true;
8172 }
8173
8174 /* If this is a weak symbol, and there is a real definition, the
8175 processor independent code will have arranged for us to see the
8176 real definition first, and we can just use the same value. */
8177 if (h->weakdef != NULL)
8178 {
8179 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
8180 || h->weakdef->root.type == bfd_link_hash_defweak);
8181 h->root.u.def.section = h->weakdef->root.u.def.section;
8182 h->root.u.def.value = h->weakdef->root.u.def.value;
8183 return true;
8184 }
8185
8186 /* This is a reference to a symbol defined by a dynamic object which
8187 is not a function. */
8188
8189 return true;
8190 }
8191
8192 /* This function is called after all the input files have been read,
8193 and the input sections have been assigned to output sections. We
8194 check for any mips16 stub sections that we can discard. */
8195
8196 static boolean mips_elf_check_mips16_stubs
8197 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
8198
8199 boolean
8200 _bfd_mips_elf_always_size_sections (output_bfd, info)
8201 bfd *output_bfd;
8202 struct bfd_link_info *info;
8203 {
8204 asection *ri;
8205
8206 /* The .reginfo section has a fixed size. */
8207 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8208 if (ri != NULL)
8209 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8210
8211 if (info->relocateable
8212 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
8213 return true;
8214
8215 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8216 mips_elf_check_mips16_stubs,
8217 (PTR) NULL);
8218
8219 return true;
8220 }
8221
8222 /* Check the mips16 stubs for a particular symbol, and see if we can
8223 discard them. */
8224
8225 static boolean
8226 mips_elf_check_mips16_stubs (h, data)
8227 struct mips_elf_link_hash_entry *h;
8228 PTR data ATTRIBUTE_UNUSED;
8229 {
8230 if (h->fn_stub != NULL
8231 && ! h->need_fn_stub)
8232 {
8233 /* We don't need the fn_stub; the only references to this symbol
8234 are 16 bit calls. Clobber the size to 0 to prevent it from
8235 being included in the link. */
8236 h->fn_stub->_raw_size = 0;
8237 h->fn_stub->_cooked_size = 0;
8238 h->fn_stub->flags &= ~SEC_RELOC;
8239 h->fn_stub->reloc_count = 0;
8240 h->fn_stub->flags |= SEC_EXCLUDE;
8241 }
8242
8243 if (h->call_stub != NULL
8244 && h->root.other == STO_MIPS16)
8245 {
8246 /* We don't need the call_stub; this is a 16 bit function, so
8247 calls from other 16 bit functions are OK. Clobber the size
8248 to 0 to prevent it from being included in the link. */
8249 h->call_stub->_raw_size = 0;
8250 h->call_stub->_cooked_size = 0;
8251 h->call_stub->flags &= ~SEC_RELOC;
8252 h->call_stub->reloc_count = 0;
8253 h->call_stub->flags |= SEC_EXCLUDE;
8254 }
8255
8256 if (h->call_fp_stub != NULL
8257 && h->root.other == STO_MIPS16)
8258 {
8259 /* We don't need the call_stub; this is a 16 bit function, so
8260 calls from other 16 bit functions are OK. Clobber the size
8261 to 0 to prevent it from being included in the link. */
8262 h->call_fp_stub->_raw_size = 0;
8263 h->call_fp_stub->_cooked_size = 0;
8264 h->call_fp_stub->flags &= ~SEC_RELOC;
8265 h->call_fp_stub->reloc_count = 0;
8266 h->call_fp_stub->flags |= SEC_EXCLUDE;
8267 }
8268
8269 return true;
8270 }
8271
8272 /* Set the sizes of the dynamic sections. */
8273
8274 boolean
8275 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
8276 bfd *output_bfd;
8277 struct bfd_link_info *info;
8278 {
8279 bfd *dynobj;
8280 asection *s;
8281 boolean reltext;
8282 struct mips_got_info *g = NULL;
8283
8284 dynobj = elf_hash_table (info)->dynobj;
8285 BFD_ASSERT (dynobj != NULL);
8286
8287 if (elf_hash_table (info)->dynamic_sections_created)
8288 {
8289 /* Set the contents of the .interp section to the interpreter. */
8290 if (! info->shared)
8291 {
8292 s = bfd_get_section_by_name (dynobj, ".interp");
8293 BFD_ASSERT (s != NULL);
8294 s->_raw_size
8295 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8296 s->contents
8297 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8298 }
8299 }
8300
8301 /* The check_relocs and adjust_dynamic_symbol entry points have
8302 determined the sizes of the various dynamic sections. Allocate
8303 memory for them. */
8304 reltext = false;
8305 for (s = dynobj->sections; s != NULL; s = s->next)
8306 {
8307 const char *name;
8308 boolean strip;
8309
8310 /* It's OK to base decisions on the section name, because none
8311 of the dynobj section names depend upon the input files. */
8312 name = bfd_get_section_name (dynobj, s);
8313
8314 if ((s->flags & SEC_LINKER_CREATED) == 0)
8315 continue;
8316
8317 strip = false;
8318
8319 if (strncmp (name, ".rel", 4) == 0)
8320 {
8321 if (s->_raw_size == 0)
8322 {
8323 /* We only strip the section if the output section name
8324 has the same name. Otherwise, there might be several
8325 input sections for this output section. FIXME: This
8326 code is probably not needed these days anyhow, since
8327 the linker now does not create empty output sections. */
8328 if (s->output_section != NULL
8329 && strcmp (name,
8330 bfd_get_section_name (s->output_section->owner,
8331 s->output_section)) == 0)
8332 strip = true;
8333 }
8334 else
8335 {
8336 const char *outname;
8337 asection *target;
8338
8339 /* If this relocation section applies to a read only
8340 section, then we probably need a DT_TEXTREL entry.
8341 If the relocation section is .rel.dyn, we always
8342 assert a DT_TEXTREL entry rather than testing whether
8343 there exists a relocation to a read only section or
8344 not. */
8345 outname = bfd_get_section_name (output_bfd,
8346 s->output_section);
8347 target = bfd_get_section_by_name (output_bfd, outname + 4);
8348 if ((target != NULL
8349 && (target->flags & SEC_READONLY) != 0
8350 && (target->flags & SEC_ALLOC) != 0)
8351 || strcmp (outname,
8352 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
8353 reltext = true;
8354
8355 /* We use the reloc_count field as a counter if we need
8356 to copy relocs into the output file. */
8357 if (strcmp (name,
8358 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
8359 s->reloc_count = 0;
8360 }
8361 }
8362 else if (strncmp (name, ".got", 4) == 0)
8363 {
8364 int i;
8365 bfd_size_type loadable_size = 0;
8366 bfd_size_type local_gotno;
8367 bfd *sub;
8368
8369 BFD_ASSERT (elf_section_data (s) != NULL);
8370 g = (struct mips_got_info *) elf_section_data (s)->tdata;
8371 BFD_ASSERT (g != NULL);
8372
8373 /* Calculate the total loadable size of the output. That
8374 will give us the maximum number of GOT_PAGE entries
8375 required. */
8376 for (sub = info->input_bfds; sub; sub = sub->link_next)
8377 {
8378 asection *subsection;
8379
8380 for (subsection = sub->sections;
8381 subsection;
8382 subsection = subsection->next)
8383 {
8384 if ((subsection->flags & SEC_ALLOC) == 0)
8385 continue;
8386 loadable_size += (subsection->_raw_size + 0xf) & ~0xf;
8387 }
8388 }
8389 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8390
8391 /* Assume there are two loadable segments consisting of
8392 contiguous sections. Is 5 enough? */
8393 local_gotno = (loadable_size >> 16) + 5;
8394 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8395 /* It's possible we will need GOT_PAGE entries as well as
8396 GOT16 entries. Often, these will be able to share GOT
8397 entries, but not always. */
8398 local_gotno *= 2;
8399
8400 g->local_gotno += local_gotno;
8401 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
8402
8403 /* There has to be a global GOT entry for every symbol with
8404 a dynamic symbol table index of DT_MIPS_GOTSYM or
8405 higher. Therefore, it make sense to put those symbols
8406 that need GOT entries at the end of the symbol table. We
8407 do that here. */
8408 if (!mips_elf_sort_hash_table (info, 1))
8409 return false;
8410
8411 if (g->global_gotsym != NULL)
8412 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8413 else
8414 /* If there are no global symbols, or none requiring
8415 relocations, then GLOBAL_GOTSYM will be NULL. */
8416 i = 0;
8417 g->global_gotno = i;
8418 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
8419 }
8420 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
8421 {
8422 /* Irix rld assumes that the function stub isn't at the end
8423 of .text section. So put a dummy. XXX */
8424 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8425 }
8426 else if (! info->shared
8427 && ! mips_elf_hash_table (info)->use_rld_obj_head
8428 && strncmp (name, ".rld_map", 8) == 0)
8429 {
8430 /* We add a room for __rld_map. It will be filled in by the
8431 rtld to contain a pointer to the _r_debug structure. */
8432 s->_raw_size += 4;
8433 }
8434 else if (SGI_COMPAT (output_bfd)
8435 && strncmp (name, ".compact_rel", 12) == 0)
8436 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
8437 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
8438 == 0)
8439 s->_raw_size = (sizeof (Elf32_External_Msym)
8440 * (elf_hash_table (info)->dynsymcount
8441 + bfd_count_sections (output_bfd)));
8442 else if (strncmp (name, ".init", 5) != 0)
8443 {
8444 /* It's not one of our sections, so don't allocate space. */
8445 continue;
8446 }
8447
8448 if (strip)
8449 {
8450 _bfd_strip_section_from_output (info, s);
8451 continue;
8452 }
8453
8454 /* Allocate memory for the section contents. */
8455 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
8456 if (s->contents == NULL && s->_raw_size != 0)
8457 {
8458 bfd_set_error (bfd_error_no_memory);
8459 return false;
8460 }
8461 }
8462
8463 if (elf_hash_table (info)->dynamic_sections_created)
8464 {
8465 /* Add some entries to the .dynamic section. We fill in the
8466 values later, in elf_mips_finish_dynamic_sections, but we
8467 must add the entries now so that we get the correct size for
8468 the .dynamic section. The DT_DEBUG entry is filled in by the
8469 dynamic linker and used by the debugger. */
8470 if (! info->shared)
8471 {
8472 /* SGI object has the equivalence of DT_DEBUG in the
8473 DT_MIPS_RLD_MAP entry. */
8474 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8475 return false;
8476 if (!SGI_COMPAT (output_bfd))
8477 {
8478 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8479 return false;
8480 }
8481 }
8482 else
8483 {
8484 /* Shared libraries on traditional mips have DT_DEBUG. */
8485 if (!SGI_COMPAT (output_bfd))
8486 {
8487 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8488 return false;
8489 }
8490 }
8491
8492 if (reltext && SGI_COMPAT (output_bfd))
8493 info->flags |= DF_TEXTREL;
8494
8495 if ((info->flags & DF_TEXTREL) != 0)
8496 {
8497 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8498 return false;
8499 }
8500
8501 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8502 return false;
8503
8504 if (bfd_get_section_by_name (dynobj,
8505 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
8506 {
8507 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8508 return false;
8509
8510 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8511 return false;
8512
8513 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8514 return false;
8515 }
8516
8517 if (SGI_COMPAT (output_bfd))
8518 {
8519 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
8520 return false;
8521 }
8522
8523 if (SGI_COMPAT (output_bfd))
8524 {
8525 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
8526 return false;
8527 }
8528
8529 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
8530 {
8531 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
8532 return false;
8533
8534 s = bfd_get_section_by_name (dynobj, ".liblist");
8535 BFD_ASSERT (s != NULL);
8536
8537 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
8538 return false;
8539 }
8540
8541 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8542 return false;
8543
8544 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8545 return false;
8546
8547 #if 0
8548 /* Time stamps in executable files are a bad idea. */
8549 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
8550 return false;
8551 #endif
8552
8553 #if 0 /* FIXME */
8554 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
8555 return false;
8556 #endif
8557
8558 #if 0 /* FIXME */
8559 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
8560 return false;
8561 #endif
8562
8563 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8564 return false;
8565
8566 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8567 return false;
8568
8569 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8570 return false;
8571
8572 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8573 return false;
8574
8575 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8576 return false;
8577
8578 if (IRIX_COMPAT (dynobj) == ict_irix5
8579 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8580 return false;
8581
8582 if (IRIX_COMPAT (dynobj) == ict_irix6
8583 && (bfd_get_section_by_name
8584 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8585 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8586 return false;
8587
8588 if (bfd_get_section_by_name (dynobj,
8589 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
8590 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
8591 return false;
8592 }
8593
8594 return true;
8595 }
8596
8597 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8598 adjust it appropriately now. */
8599
8600 static void
8601 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
8602 bfd *abfd ATTRIBUTE_UNUSED;
8603 const char *name;
8604 Elf_Internal_Sym *sym;
8605 {
8606 /* The linker script takes care of providing names and values for
8607 these, but we must place them into the right sections. */
8608 static const char* const text_section_symbols[] = {
8609 "_ftext",
8610 "_etext",
8611 "__dso_displacement",
8612 "__elf_header",
8613 "__program_header_table",
8614 NULL
8615 };
8616
8617 static const char* const data_section_symbols[] = {
8618 "_fdata",
8619 "_edata",
8620 "_end",
8621 "_fbss",
8622 NULL
8623 };
8624
8625 const char* const *p;
8626 int i;
8627
8628 for (i = 0; i < 2; ++i)
8629 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8630 *p;
8631 ++p)
8632 if (strcmp (*p, name) == 0)
8633 {
8634 /* All of these symbols are given type STT_SECTION by the
8635 IRIX6 linker. */
8636 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8637
8638 /* The IRIX linker puts these symbols in special sections. */
8639 if (i == 0)
8640 sym->st_shndx = SHN_MIPS_TEXT;
8641 else
8642 sym->st_shndx = SHN_MIPS_DATA;
8643
8644 break;
8645 }
8646 }
8647
8648 /* Finish up dynamic symbol handling. We set the contents of various
8649 dynamic sections here. */
8650
8651 boolean
8652 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
8653 bfd *output_bfd;
8654 struct bfd_link_info *info;
8655 struct elf_link_hash_entry *h;
8656 Elf_Internal_Sym *sym;
8657 {
8658 bfd *dynobj;
8659 bfd_vma gval;
8660 asection *sgot;
8661 asection *smsym;
8662 struct mips_got_info *g;
8663 const char *name;
8664 struct mips_elf_link_hash_entry *mh;
8665
8666 dynobj = elf_hash_table (info)->dynobj;
8667 gval = sym->st_value;
8668 mh = (struct mips_elf_link_hash_entry *) h;
8669
8670 if (h->plt.offset != (bfd_vma) -1)
8671 {
8672 asection *s;
8673 bfd_byte *p;
8674 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
8675
8676 /* This symbol has a stub. Set it up. */
8677
8678 BFD_ASSERT (h->dynindx != -1);
8679
8680 s = bfd_get_section_by_name (dynobj,
8681 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8682 BFD_ASSERT (s != NULL);
8683
8684 /* Fill the stub. */
8685 p = stub;
8686 bfd_put_32 (output_bfd, STUB_LW (output_bfd), p);
8687 p += 4;
8688 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), p);
8689 p += 4;
8690
8691 /* FIXME: Can h->dynindex be more than 64K? */
8692 if (h->dynindx & 0xffff0000)
8693 return false;
8694
8695 bfd_put_32 (output_bfd, STUB_JALR, p);
8696 p += 4;
8697 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, p);
8698
8699 BFD_ASSERT (h->plt.offset <= s->_raw_size);
8700 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8701
8702 /* Mark the symbol as undefined. plt.offset != -1 occurs
8703 only for the referenced symbol. */
8704 sym->st_shndx = SHN_UNDEF;
8705
8706 /* The run-time linker uses the st_value field of the symbol
8707 to reset the global offset table entry for this external
8708 to its stub address when unlinking a shared object. */
8709 gval = s->output_section->vma + s->output_offset + h->plt.offset;
8710 sym->st_value = gval;
8711 }
8712
8713 BFD_ASSERT (h->dynindx != -1
8714 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
8715
8716 sgot = mips_elf_got_section (dynobj);
8717 BFD_ASSERT (sgot != NULL);
8718 BFD_ASSERT (elf_section_data (sgot) != NULL);
8719 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8720 BFD_ASSERT (g != NULL);
8721
8722 /* Run through the global symbol table, creating GOT entries for all
8723 the symbols that need them. */
8724 if (g->global_gotsym != NULL
8725 && h->dynindx >= g->global_gotsym->dynindx)
8726 {
8727 bfd_vma offset;
8728 bfd_vma value;
8729
8730 if (sym->st_value)
8731 value = sym->st_value;
8732 else
8733 {
8734 /* For an entity defined in a shared object, this will be
8735 NULL. (For functions in shared objects for
8736 which we have created stubs, ST_VALUE will be non-NULL.
8737 That's because such the functions are now no longer defined
8738 in a shared object.) */
8739
8740 if (info->shared && h->root.type == bfd_link_hash_undefined)
8741 value = 0;
8742 else
8743 value = h->root.u.def.value;
8744 }
8745 offset = mips_elf_global_got_index (dynobj, h);
8746 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8747 }
8748
8749 /* Create a .msym entry, if appropriate. */
8750 smsym = bfd_get_section_by_name (dynobj,
8751 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8752 if (smsym)
8753 {
8754 Elf32_Internal_Msym msym;
8755
8756 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
8757 /* It is undocumented what the `1' indicates, but IRIX6 uses
8758 this value. */
8759 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
8760 bfd_mips_elf_swap_msym_out
8761 (dynobj, &msym,
8762 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
8763 }
8764
8765 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8766 name = h->root.root.string;
8767 if (strcmp (name, "_DYNAMIC") == 0
8768 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
8769 sym->st_shndx = SHN_ABS;
8770 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8771 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8772 {
8773 sym->st_shndx = SHN_ABS;
8774 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8775 sym->st_value = 1;
8776 }
8777 else if (strcmp (name, "_gp_disp") == 0)
8778 {
8779 sym->st_shndx = SHN_ABS;
8780 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8781 sym->st_value = elf_gp (output_bfd);
8782 }
8783 else if (SGI_COMPAT (output_bfd))
8784 {
8785 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8786 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8787 {
8788 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8789 sym->st_other = STO_PROTECTED;
8790 sym->st_value = 0;
8791 sym->st_shndx = SHN_MIPS_DATA;
8792 }
8793 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8794 {
8795 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8796 sym->st_other = STO_PROTECTED;
8797 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8798 sym->st_shndx = SHN_ABS;
8799 }
8800 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8801 {
8802 if (h->type == STT_FUNC)
8803 sym->st_shndx = SHN_MIPS_TEXT;
8804 else if (h->type == STT_OBJECT)
8805 sym->st_shndx = SHN_MIPS_DATA;
8806 }
8807 }
8808
8809 /* Handle the IRIX6-specific symbols. */
8810 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8811 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8812
8813 if (! info->shared)
8814 {
8815 if (! mips_elf_hash_table (info)->use_rld_obj_head
8816 && (strcmp (name, "__rld_map") == 0
8817 || strcmp (name, "__RLD_MAP") == 0))
8818 {
8819 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8820 BFD_ASSERT (s != NULL);
8821 sym->st_value = s->output_section->vma + s->output_offset;
8822 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
8823 if (mips_elf_hash_table (info)->rld_value == 0)
8824 mips_elf_hash_table (info)->rld_value = sym->st_value;
8825 }
8826 else if (mips_elf_hash_table (info)->use_rld_obj_head
8827 && strcmp (name, "__rld_obj_head") == 0)
8828 {
8829 /* IRIX6 does not use a .rld_map section. */
8830 if (IRIX_COMPAT (output_bfd) == ict_irix5
8831 || IRIX_COMPAT (output_bfd) == ict_none)
8832 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8833 != NULL);
8834 mips_elf_hash_table (info)->rld_value = sym->st_value;
8835 }
8836 }
8837
8838 /* If this is a mips16 symbol, force the value to be even. */
8839 if (sym->st_other == STO_MIPS16
8840 && (sym->st_value & 1) != 0)
8841 --sym->st_value;
8842
8843 return true;
8844 }
8845
8846 /* Finish up the dynamic sections. */
8847
8848 boolean
8849 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
8850 bfd *output_bfd;
8851 struct bfd_link_info *info;
8852 {
8853 bfd *dynobj;
8854 asection *sdyn;
8855 asection *sgot;
8856 struct mips_got_info *g;
8857
8858 dynobj = elf_hash_table (info)->dynobj;
8859
8860 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8861
8862 sgot = mips_elf_got_section (dynobj);
8863 if (sgot == NULL)
8864 g = NULL;
8865 else
8866 {
8867 BFD_ASSERT (elf_section_data (sgot) != NULL);
8868 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8869 BFD_ASSERT (g != NULL);
8870 }
8871
8872 if (elf_hash_table (info)->dynamic_sections_created)
8873 {
8874 bfd_byte *b;
8875
8876 BFD_ASSERT (sdyn != NULL);
8877 BFD_ASSERT (g != NULL);
8878
8879 for (b = sdyn->contents;
8880 b < sdyn->contents + sdyn->_raw_size;
8881 b += MIPS_ELF_DYN_SIZE (dynobj))
8882 {
8883 Elf_Internal_Dyn dyn;
8884 const char *name;
8885 size_t elemsize;
8886 asection *s;
8887 boolean swap_out_p;
8888
8889 /* Read in the current dynamic entry. */
8890 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8891
8892 /* Assume that we're going to modify it and write it out. */
8893 swap_out_p = true;
8894
8895 switch (dyn.d_tag)
8896 {
8897 case DT_RELENT:
8898 s = (bfd_get_section_by_name
8899 (dynobj,
8900 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
8901 BFD_ASSERT (s != NULL);
8902 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8903 break;
8904
8905 case DT_STRSZ:
8906 /* Rewrite DT_STRSZ. */
8907 dyn.d_un.d_val =
8908 _bfd_stringtab_size (elf_hash_table (info)->dynstr);
8909 break;
8910
8911 case DT_PLTGOT:
8912 name = ".got";
8913 goto get_vma;
8914 case DT_MIPS_CONFLICT:
8915 name = ".conflict";
8916 goto get_vma;
8917 case DT_MIPS_LIBLIST:
8918 name = ".liblist";
8919 get_vma:
8920 s = bfd_get_section_by_name (output_bfd, name);
8921 BFD_ASSERT (s != NULL);
8922 dyn.d_un.d_ptr = s->vma;
8923 break;
8924
8925 case DT_MIPS_RLD_VERSION:
8926 dyn.d_un.d_val = 1; /* XXX */
8927 break;
8928
8929 case DT_MIPS_FLAGS:
8930 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8931 break;
8932
8933 case DT_MIPS_CONFLICTNO:
8934 name = ".conflict";
8935 elemsize = sizeof (Elf32_Conflict);
8936 goto set_elemno;
8937
8938 case DT_MIPS_LIBLISTNO:
8939 name = ".liblist";
8940 elemsize = sizeof (Elf32_Lib);
8941 set_elemno:
8942 s = bfd_get_section_by_name (output_bfd, name);
8943 if (s != NULL)
8944 {
8945 if (s->_cooked_size != 0)
8946 dyn.d_un.d_val = s->_cooked_size / elemsize;
8947 else
8948 dyn.d_un.d_val = s->_raw_size / elemsize;
8949 }
8950 else
8951 dyn.d_un.d_val = 0;
8952 break;
8953
8954 case DT_MIPS_TIME_STAMP:
8955 time ((time_t *) &dyn.d_un.d_val);
8956 break;
8957
8958 case DT_MIPS_ICHECKSUM:
8959 /* XXX FIXME: */
8960 swap_out_p = false;
8961 break;
8962
8963 case DT_MIPS_IVERSION:
8964 /* XXX FIXME: */
8965 swap_out_p = false;
8966 break;
8967
8968 case DT_MIPS_BASE_ADDRESS:
8969 s = output_bfd->sections;
8970 BFD_ASSERT (s != NULL);
8971 dyn.d_un.d_ptr = s->vma & ~(0xffff);
8972 break;
8973
8974 case DT_MIPS_LOCAL_GOTNO:
8975 dyn.d_un.d_val = g->local_gotno;
8976 break;
8977
8978 case DT_MIPS_UNREFEXTNO:
8979 /* The index into the dynamic symbol table which is the
8980 entry of the first external symbol that is not
8981 referenced within the same object. */
8982 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8983 break;
8984
8985 case DT_MIPS_GOTSYM:
8986 if (g->global_gotsym)
8987 {
8988 dyn.d_un.d_val = g->global_gotsym->dynindx;
8989 break;
8990 }
8991 /* In case if we don't have global got symbols we default
8992 to setting DT_MIPS_GOTSYM to the same value as
8993 DT_MIPS_SYMTABNO, so we just fall through. */
8994
8995 case DT_MIPS_SYMTABNO:
8996 name = ".dynsym";
8997 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8998 s = bfd_get_section_by_name (output_bfd, name);
8999 BFD_ASSERT (s != NULL);
9000
9001 if (s->_cooked_size != 0)
9002 dyn.d_un.d_val = s->_cooked_size / elemsize;
9003 else
9004 dyn.d_un.d_val = s->_raw_size / elemsize;
9005 break;
9006
9007 case DT_MIPS_HIPAGENO:
9008 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
9009 break;
9010
9011 case DT_MIPS_RLD_MAP:
9012 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
9013 break;
9014
9015 case DT_MIPS_OPTIONS:
9016 s = (bfd_get_section_by_name
9017 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
9018 dyn.d_un.d_ptr = s->vma;
9019 break;
9020
9021 case DT_MIPS_MSYM:
9022 s = (bfd_get_section_by_name
9023 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
9024 dyn.d_un.d_ptr = s->vma;
9025 break;
9026
9027 default:
9028 swap_out_p = false;
9029 break;
9030 }
9031
9032 if (swap_out_p)
9033 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9034 (dynobj, &dyn, b);
9035 }
9036 }
9037
9038 /* The first entry of the global offset table will be filled at
9039 runtime. The second entry will be used by some runtime loaders.
9040 This isn't the case of Irix rld. */
9041 if (sgot != NULL && sgot->_raw_size > 0)
9042 {
9043 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
9044 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
9045 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9046 }
9047
9048 if (sgot != NULL)
9049 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9050 = MIPS_ELF_GOT_SIZE (output_bfd);
9051
9052 {
9053 asection *smsym;
9054 asection *s;
9055 Elf32_compact_rel cpt;
9056
9057 /* ??? The section symbols for the output sections were set up in
9058 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
9059 symbols. Should we do so? */
9060
9061 smsym = bfd_get_section_by_name (dynobj,
9062 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
9063 if (smsym != NULL)
9064 {
9065 Elf32_Internal_Msym msym;
9066
9067 msym.ms_hash_value = 0;
9068 msym.ms_info = ELF32_MS_INFO (0, 1);
9069
9070 for (s = output_bfd->sections; s != NULL; s = s->next)
9071 {
9072 long dynindx = elf_section_data (s)->dynindx;
9073
9074 bfd_mips_elf_swap_msym_out
9075 (output_bfd, &msym,
9076 (((Elf32_External_Msym *) smsym->contents)
9077 + dynindx));
9078 }
9079 }
9080
9081 if (SGI_COMPAT (output_bfd))
9082 {
9083 /* Write .compact_rel section out. */
9084 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9085 if (s != NULL)
9086 {
9087 cpt.id1 = 1;
9088 cpt.num = s->reloc_count;
9089 cpt.id2 = 2;
9090 cpt.offset = (s->output_section->filepos
9091 + sizeof (Elf32_External_compact_rel));
9092 cpt.reserved0 = 0;
9093 cpt.reserved1 = 0;
9094 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9095 ((Elf32_External_compact_rel *)
9096 s->contents));
9097
9098 /* Clean up a dummy stub function entry in .text. */
9099 s = bfd_get_section_by_name (dynobj,
9100 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9101 if (s != NULL)
9102 {
9103 file_ptr dummy_offset;
9104
9105 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
9106 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
9107 memset (s->contents + dummy_offset, 0,
9108 MIPS_FUNCTION_STUB_SIZE);
9109 }
9110 }
9111 }
9112
9113 /* We need to sort the entries of the dynamic relocation section. */
9114
9115 if (!ABI_64_P (output_bfd))
9116 {
9117 asection *reldyn;
9118
9119 reldyn = bfd_get_section_by_name (dynobj,
9120 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9121 if (reldyn != NULL && reldyn->reloc_count > 2)
9122 {
9123 reldyn_sorting_bfd = output_bfd;
9124 qsort ((Elf32_External_Rel *) reldyn->contents + 1,
9125 (size_t) reldyn->reloc_count - 1,
9126 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
9127 }
9128 }
9129
9130 /* Clean up a first relocation in .rel.dyn. */
9131 s = bfd_get_section_by_name (dynobj,
9132 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9133 if (s != NULL && s->_raw_size > 0)
9134 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
9135 }
9136
9137 return true;
9138 }
9139 \f
9140 /* Support for core dump NOTE sections */
9141 static boolean
9142 _bfd_elf32_mips_grok_prstatus (abfd, note)
9143 bfd *abfd;
9144 Elf_Internal_Note *note;
9145 {
9146 int offset;
9147 int raw_size;
9148
9149 switch (note->descsz)
9150 {
9151 default:
9152 return false;
9153
9154 case 256: /* Linux/MIPS */
9155 /* pr_cursig */
9156 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
9157
9158 /* pr_pid */
9159 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
9160
9161 /* pr_reg */
9162 offset = 72;
9163 raw_size = 180;
9164
9165 break;
9166 }
9167
9168 /* Make a ".reg/999" section. */
9169 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9170 raw_size, note->descpos + offset);
9171 }
9172
9173 static boolean _bfd_elf32_mips_grok_psinfo (abfd, note)
9174 bfd *abfd;
9175 Elf_Internal_Note *note;
9176 {
9177 switch (note->descsz)
9178 {
9179 default:
9180 return false;
9181
9182 case 128: /* Linux/MIPS elf_prpsinfo */
9183 elf_tdata (abfd)->core_program
9184 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
9185 elf_tdata (abfd)->core_command
9186 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
9187 }
9188
9189 /* Note that for some reason, a spurious space is tacked
9190 onto the end of the args in some (at least one anyway)
9191 implementations, so strip it off if it exists. */
9192
9193 {
9194 char *command = elf_tdata (abfd)->core_command;
9195 int n = strlen (command);
9196
9197 if (0 < n && command[n - 1] == ' ')
9198 command[n - 1] = '\0';
9199 }
9200
9201 return true;
9202 }
9203 \f
9204 /* This is almost identical to bfd_generic_get_... except that some
9205 MIPS relocations need to be handled specially. Sigh. */
9206
9207 static bfd_byte *
9208 elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
9209 relocateable, symbols)
9210 bfd *abfd;
9211 struct bfd_link_info *link_info;
9212 struct bfd_link_order *link_order;
9213 bfd_byte *data;
9214 boolean relocateable;
9215 asymbol **symbols;
9216 {
9217 /* Get enough memory to hold the stuff */
9218 bfd *input_bfd = link_order->u.indirect.section->owner;
9219 asection *input_section = link_order->u.indirect.section;
9220
9221 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9222 arelent **reloc_vector = NULL;
9223 long reloc_count;
9224
9225 if (reloc_size < 0)
9226 goto error_return;
9227
9228 reloc_vector = (arelent **) bfd_malloc (reloc_size);
9229 if (reloc_vector == NULL && reloc_size != 0)
9230 goto error_return;
9231
9232 /* read in the section */
9233 if (!bfd_get_section_contents (input_bfd,
9234 input_section,
9235 (PTR) data,
9236 0,
9237 input_section->_raw_size))
9238 goto error_return;
9239
9240 /* We're not relaxing the section, so just copy the size info */
9241 input_section->_cooked_size = input_section->_raw_size;
9242 input_section->reloc_done = true;
9243
9244 reloc_count = bfd_canonicalize_reloc (input_bfd,
9245 input_section,
9246 reloc_vector,
9247 symbols);
9248 if (reloc_count < 0)
9249 goto error_return;
9250
9251 if (reloc_count > 0)
9252 {
9253 arelent **parent;
9254 /* for mips */
9255 int gp_found;
9256 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9257
9258 {
9259 struct bfd_hash_entry *h;
9260 struct bfd_link_hash_entry *lh;
9261 /* Skip all this stuff if we aren't mixing formats. */
9262 if (abfd && input_bfd
9263 && abfd->xvec == input_bfd->xvec)
9264 lh = 0;
9265 else
9266 {
9267 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
9268 lh = (struct bfd_link_hash_entry *) h;
9269 }
9270 lookup:
9271 if (lh)
9272 {
9273 switch (lh->type)
9274 {
9275 case bfd_link_hash_undefined:
9276 case bfd_link_hash_undefweak:
9277 case bfd_link_hash_common:
9278 gp_found = 0;
9279 break;
9280 case bfd_link_hash_defined:
9281 case bfd_link_hash_defweak:
9282 gp_found = 1;
9283 gp = lh->u.def.value;
9284 break;
9285 case bfd_link_hash_indirect:
9286 case bfd_link_hash_warning:
9287 lh = lh->u.i.link;
9288 /* @@FIXME ignoring warning for now */
9289 goto lookup;
9290 case bfd_link_hash_new:
9291 default:
9292 abort ();
9293 }
9294 }
9295 else
9296 gp_found = 0;
9297 }
9298 /* end mips */
9299 for (parent = reloc_vector; *parent != (arelent *) NULL;
9300 parent++)
9301 {
9302 char *error_message = (char *) NULL;
9303 bfd_reloc_status_type r;
9304
9305 /* Specific to MIPS: Deal with relocation types that require
9306 knowing the gp of the output bfd. */
9307 asymbol *sym = *(*parent)->sym_ptr_ptr;
9308 if (bfd_is_abs_section (sym->section) && abfd)
9309 {
9310 /* The special_function wouldn't get called anyways. */
9311 }
9312 else if (!gp_found)
9313 {
9314 /* The gp isn't there; let the special function code
9315 fall over on its own. */
9316 }
9317 else if ((*parent)->howto->special_function
9318 == _bfd_mips_elf_gprel16_reloc)
9319 {
9320 /* bypass special_function call */
9321 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
9322 relocateable, (PTR) data, gp);
9323 goto skip_bfd_perform_relocation;
9324 }
9325 /* end mips specific stuff */
9326
9327 r = bfd_perform_relocation (input_bfd,
9328 *parent,
9329 (PTR) data,
9330 input_section,
9331 relocateable ? abfd : (bfd *) NULL,
9332 &error_message);
9333 skip_bfd_perform_relocation:
9334
9335 if (relocateable)
9336 {
9337 asection *os = input_section->output_section;
9338
9339 /* A partial link, so keep the relocs */
9340 os->orelocation[os->reloc_count] = *parent;
9341 os->reloc_count++;
9342 }
9343
9344 if (r != bfd_reloc_ok)
9345 {
9346 switch (r)
9347 {
9348 case bfd_reloc_undefined:
9349 if (!((*link_info->callbacks->undefined_symbol)
9350 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9351 input_bfd, input_section, (*parent)->address,
9352 true)))
9353 goto error_return;
9354 break;
9355 case bfd_reloc_dangerous:
9356 BFD_ASSERT (error_message != (char *) NULL);
9357 if (!((*link_info->callbacks->reloc_dangerous)
9358 (link_info, error_message, input_bfd, input_section,
9359 (*parent)->address)))
9360 goto error_return;
9361 break;
9362 case bfd_reloc_overflow:
9363 if (!((*link_info->callbacks->reloc_overflow)
9364 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9365 (*parent)->howto->name, (*parent)->addend,
9366 input_bfd, input_section, (*parent)->address)))
9367 goto error_return;
9368 break;
9369 case bfd_reloc_outofrange:
9370 default:
9371 abort ();
9372 break;
9373 }
9374
9375 }
9376 }
9377 }
9378 if (reloc_vector != NULL)
9379 free (reloc_vector);
9380 return data;
9381
9382 error_return:
9383 if (reloc_vector != NULL)
9384 free (reloc_vector);
9385 return NULL;
9386 }
9387
9388 #define bfd_elf32_bfd_get_relocated_section_contents \
9389 elf32_mips_get_relocated_section_contents
9390 \f
9391 /* ECOFF swapping routines. These are used when dealing with the
9392 .mdebug section, which is in the ECOFF debugging format. */
9393 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap = {
9394 /* Symbol table magic number. */
9395 magicSym,
9396 /* Alignment of debugging information. E.g., 4. */
9397 4,
9398 /* Sizes of external symbolic information. */
9399 sizeof (struct hdr_ext),
9400 sizeof (struct dnr_ext),
9401 sizeof (struct pdr_ext),
9402 sizeof (struct sym_ext),
9403 sizeof (struct opt_ext),
9404 sizeof (struct fdr_ext),
9405 sizeof (struct rfd_ext),
9406 sizeof (struct ext_ext),
9407 /* Functions to swap in external symbolic data. */
9408 ecoff_swap_hdr_in,
9409 ecoff_swap_dnr_in,
9410 ecoff_swap_pdr_in,
9411 ecoff_swap_sym_in,
9412 ecoff_swap_opt_in,
9413 ecoff_swap_fdr_in,
9414 ecoff_swap_rfd_in,
9415 ecoff_swap_ext_in,
9416 _bfd_ecoff_swap_tir_in,
9417 _bfd_ecoff_swap_rndx_in,
9418 /* Functions to swap out external symbolic data. */
9419 ecoff_swap_hdr_out,
9420 ecoff_swap_dnr_out,
9421 ecoff_swap_pdr_out,
9422 ecoff_swap_sym_out,
9423 ecoff_swap_opt_out,
9424 ecoff_swap_fdr_out,
9425 ecoff_swap_rfd_out,
9426 ecoff_swap_ext_out,
9427 _bfd_ecoff_swap_tir_out,
9428 _bfd_ecoff_swap_rndx_out,
9429 /* Function to read in symbolic data. */
9430 _bfd_mips_elf_read_ecoff_info
9431 };
9432 \f
9433 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
9434 #define TARGET_LITTLE_NAME "elf32-littlemips"
9435 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
9436 #define TARGET_BIG_NAME "elf32-bigmips"
9437 #define ELF_ARCH bfd_arch_mips
9438 #define ELF_MACHINE_CODE EM_MIPS
9439
9440 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
9441 a value of 0x1000, and we are compatible. */
9442 #define ELF_MAXPAGESIZE 0x1000
9443
9444 #define elf_backend_collect true
9445 #define elf_backend_type_change_ok true
9446 #define elf_backend_can_gc_sections true
9447 #define elf_backend_sign_extend_vma true
9448 #define elf_info_to_howto mips_info_to_howto_rela
9449 #define elf_info_to_howto_rel mips_info_to_howto_rel
9450 #define elf_backend_sym_is_global mips_elf_sym_is_global
9451 #define elf_backend_object_p _bfd_mips_elf_object_p
9452 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
9453 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
9454 #define elf_backend_section_from_bfd_section \
9455 _bfd_mips_elf_section_from_bfd_section
9456 #define elf_backend_section_processing _bfd_mips_elf_section_processing
9457 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
9458 #define elf_backend_additional_program_headers \
9459 _bfd_mips_elf_additional_program_headers
9460 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
9461 #define elf_backend_final_write_processing \
9462 _bfd_mips_elf_final_write_processing
9463 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
9464 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
9465 #define elf_backend_create_dynamic_sections \
9466 _bfd_mips_elf_create_dynamic_sections
9467 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
9468 #define elf_backend_adjust_dynamic_symbol \
9469 _bfd_mips_elf_adjust_dynamic_symbol
9470 #define elf_backend_always_size_sections \
9471 _bfd_mips_elf_always_size_sections
9472 #define elf_backend_size_dynamic_sections \
9473 _bfd_mips_elf_size_dynamic_sections
9474 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
9475 #define elf_backend_link_output_symbol_hook \
9476 _bfd_mips_elf_link_output_symbol_hook
9477 #define elf_backend_finish_dynamic_symbol \
9478 _bfd_mips_elf_finish_dynamic_symbol
9479 #define elf_backend_finish_dynamic_sections \
9480 _bfd_mips_elf_finish_dynamic_sections
9481 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
9482 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
9483
9484 #define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
9485 #define elf_backend_plt_header_size 0
9486
9487 #define elf_backend_copy_indirect_symbol \
9488 _bfd_mips_elf_copy_indirect_symbol
9489
9490 #define elf_backend_hide_symbol _bfd_mips_elf_hide_symbol
9491 #define elf_backend_grok_prstatus _bfd_elf32_mips_grok_prstatus
9492 #define elf_backend_grok_psinfo _bfd_elf32_mips_grok_psinfo
9493
9494 #define bfd_elf32_bfd_is_local_label_name \
9495 mips_elf_is_local_label_name
9496 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
9497 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
9498 #define bfd_elf32_bfd_link_hash_table_create \
9499 _bfd_mips_elf_link_hash_table_create
9500 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
9501 #define bfd_elf32_bfd_copy_private_bfd_data \
9502 _bfd_mips_elf_copy_private_bfd_data
9503 #define bfd_elf32_bfd_merge_private_bfd_data \
9504 _bfd_mips_elf_merge_private_bfd_data
9505 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
9506 #define bfd_elf32_bfd_print_private_bfd_data \
9507 _bfd_mips_elf_print_private_bfd_data
9508 #include "elf32-target.h"
9509
9510 /* Support for traditional mips targets */
9511
9512 #define INCLUDED_TARGET_FILE /* More a type of flag */
9513
9514 #undef TARGET_LITTLE_SYM
9515 #undef TARGET_LITTLE_NAME
9516 #undef TARGET_BIG_SYM
9517 #undef TARGET_BIG_NAME
9518
9519 #define TARGET_LITTLE_SYM bfd_elf32_tradlittlemips_vec
9520 #define TARGET_LITTLE_NAME "elf32-tradlittlemips"
9521 #define TARGET_BIG_SYM bfd_elf32_tradbigmips_vec
9522 #define TARGET_BIG_NAME "elf32-tradbigmips"
9523
9524 /* Include the target file again for this target */
9525 #include "elf32-target.h"
This page took 0.35676 seconds and 4 git commands to generate.