2002-03-26 Fred Fish <fnf@redhat.com>
[deliverable/binutils-gdb.git] / bfd / elf32-mips.c
1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
29 different MIPS ELF from other targets. This matters when linking.
30 This file supports both, switching at runtime. */
31
32 #include "bfd.h"
33 #include "sysdep.h"
34 #include "libbfd.h"
35 #include "bfdlink.h"
36 #include "genlink.h"
37 #include "elf-bfd.h"
38 #include "elf/mips.h"
39
40 /* Get the ECOFF swapping routines. */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/internal.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46 #define ECOFF_SIGNED_32
47 #include "ecoffswap.h"
48
49 /* This structure is used to hold .got information when linking. It
50 is stored in the tdata field of the bfd_elf_section_data structure. */
51
52 struct mips_got_info
53 {
54 /* The global symbol in the GOT with the lowest index in the dynamic
55 symbol table. */
56 struct elf_link_hash_entry *global_gotsym;
57 /* The number of global .got entries. */
58 unsigned int global_gotno;
59 /* The number of local .got entries. */
60 unsigned int local_gotno;
61 /* The number of local .got entries we have used. */
62 unsigned int assigned_gotno;
63 };
64
65 /* The MIPS ELF linker needs additional information for each symbol in
66 the global hash table. */
67
68 struct mips_elf_link_hash_entry
69 {
70 struct elf_link_hash_entry root;
71
72 /* External symbol information. */
73 EXTR esym;
74
75 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
76 this symbol. */
77 unsigned int possibly_dynamic_relocs;
78
79 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
80 a readonly section. */
81 boolean readonly_reloc;
82
83 /* The index of the first dynamic relocation (in the .rel.dyn
84 section) against this symbol. */
85 unsigned int min_dyn_reloc_index;
86
87 /* We must not create a stub for a symbol that has relocations
88 related to taking the function's address, i.e. any but
89 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
90 p. 4-20. */
91 boolean no_fn_stub;
92
93 /* If there is a stub that 32 bit functions should use to call this
94 16 bit function, this points to the section containing the stub. */
95 asection *fn_stub;
96
97 /* Whether we need the fn_stub; this is set if this symbol appears
98 in any relocs other than a 16 bit call. */
99 boolean need_fn_stub;
100
101 /* If there is a stub that 16 bit functions should use to call this
102 32 bit function, this points to the section containing the stub. */
103 asection *call_stub;
104
105 /* This is like the call_stub field, but it is used if the function
106 being called returns a floating point value. */
107 asection *call_fp_stub;
108 };
109
110 static bfd_reloc_status_type mips32_64bit_reloc
111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112 static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
113 PARAMS ((bfd *, bfd_reloc_code_real_type));
114 static reloc_howto_type *mips_rtype_to_howto
115 PARAMS ((unsigned int));
116 static void mips_info_to_howto_rel
117 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
118 static void mips_info_to_howto_rela
119 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
120 static void bfd_mips_elf32_swap_gptab_in
121 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
122 static void bfd_mips_elf32_swap_gptab_out
123 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
124 #if 0
125 static void bfd_mips_elf_swap_msym_in
126 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
127 #endif
128 static void bfd_mips_elf_swap_msym_out
129 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
130 static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
131 static boolean mips_elf_create_procedure_table
132 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
133 struct ecoff_debug_info *));
134 static INLINE int elf_mips_isa PARAMS ((flagword));
135 static INLINE unsigned long elf_mips_mach PARAMS ((flagword));
136 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
137 static boolean mips_elf_is_local_label_name
138 PARAMS ((bfd *, const char *));
139 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
140 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
141 static int gptab_compare PARAMS ((const void *, const void *));
142 static bfd_reloc_status_type mips16_jump_reloc
143 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
144 static bfd_reloc_status_type mips16_gprel_reloc
145 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
146 static boolean mips_elf_create_compact_rel_section
147 PARAMS ((bfd *, struct bfd_link_info *));
148 static boolean mips_elf_create_got_section
149 PARAMS ((bfd *, struct bfd_link_info *));
150 static bfd_reloc_status_type mips_elf_final_gp
151 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
152 static bfd_byte *elf32_mips_get_relocated_section_contents
153 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
154 bfd_byte *, boolean, asymbol **));
155 static asection *mips_elf_create_msym_section
156 PARAMS ((bfd *));
157 static void mips_elf_irix6_finish_dynamic_symbol
158 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
159 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
160 static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
161 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
162 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
163 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
164 static bfd_vma mips_elf_global_got_index
165 PARAMS ((bfd *, struct elf_link_hash_entry *));
166 static bfd_vma mips_elf_local_got_index
167 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
168 static bfd_vma mips_elf_got_offset_from_index
169 PARAMS ((bfd *, bfd *, bfd_vma));
170 static boolean mips_elf_record_global_got_symbol
171 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
172 struct mips_got_info *));
173 static bfd_vma mips_elf_got_page
174 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
175 static const Elf_Internal_Rela *mips_elf_next_relocation
176 PARAMS ((unsigned int, const Elf_Internal_Rela *,
177 const Elf_Internal_Rela *));
178 static bfd_reloc_status_type mips_elf_calculate_relocation
179 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
180 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
181 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
182 boolean *));
183 static bfd_vma mips_elf_obtain_contents
184 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
185 static boolean mips_elf_perform_relocation
186 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
187 const Elf_Internal_Rela *, bfd_vma,
188 bfd *, asection *, bfd_byte *, boolean));
189 static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
190 static boolean mips_elf_sort_hash_table_f
191 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
192 static boolean mips_elf_sort_hash_table
193 PARAMS ((struct bfd_link_info *, unsigned long));
194 static asection * mips_elf_got_section PARAMS ((bfd *));
195 static struct mips_got_info *mips_elf_got_info
196 PARAMS ((bfd *, asection **));
197 static boolean mips_elf_local_relocation_p
198 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, boolean));
199 static bfd_vma mips_elf_create_local_got_entry
200 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
201 static bfd_vma mips_elf_got16_entry
202 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, boolean));
203 static boolean mips_elf_create_dynamic_relocation
204 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
205 struct mips_elf_link_hash_entry *, asection *,
206 bfd_vma, bfd_vma *, asection *));
207 static void mips_elf_allocate_dynamic_relocations
208 PARAMS ((bfd *, unsigned int));
209 static boolean mips_elf_stub_section_p
210 PARAMS ((bfd *, asection *));
211 static int sort_dynamic_relocs
212 PARAMS ((const void *, const void *));
213 static void _bfd_mips_elf_hide_symbol
214 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, boolean));
215 static void _bfd_mips_elf_copy_indirect_symbol
216 PARAMS ((struct elf_link_hash_entry *,
217 struct elf_link_hash_entry *));
218 static boolean _bfd_elf32_mips_grok_prstatus
219 PARAMS ((bfd *, Elf_Internal_Note *));
220 static boolean _bfd_elf32_mips_grok_psinfo
221 PARAMS ((bfd *, Elf_Internal_Note *));
222 static boolean _bfd_elf32_mips_discard_info
223 PARAMS ((bfd *, struct elf_reloc_cookie *, struct bfd_link_info *));
224 static boolean _bfd_elf32_mips_ignore_discarded_relocs
225 PARAMS ((asection *));
226 static boolean _bfd_elf32_mips_write_section
227 PARAMS ((bfd *, asection *, bfd_byte *));
228
229 extern const bfd_target bfd_elf32_tradbigmips_vec;
230 extern const bfd_target bfd_elf32_tradlittlemips_vec;
231 #ifdef BFD64
232 extern const bfd_target bfd_elf64_tradbigmips_vec;
233 extern const bfd_target bfd_elf64_tradlittlemips_vec;
234 #endif
235
236 /* The level of IRIX compatibility we're striving for. */
237
238 typedef enum {
239 ict_none,
240 ict_irix5,
241 ict_irix6
242 } irix_compat_t;
243
244 /* This will be used when we sort the dynamic relocation records. */
245 static bfd *reldyn_sorting_bfd;
246
247 /* Nonzero if ABFD is using the N32 ABI. */
248
249 #define ABI_N32_P(abfd) \
250 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
251
252 /* Nonzero if ABFD is using the 64-bit ABI. */
253 #define ABI_64_P(abfd) \
254 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
255
256 /* Depending on the target vector we generate some version of Irix
257 executables or "normal" MIPS ELF ABI executables. */
258 #ifdef BFD64
259 #define IRIX_COMPAT(abfd) \
260 (((abfd->xvec == &bfd_elf64_tradbigmips_vec) || \
261 (abfd->xvec == &bfd_elf64_tradlittlemips_vec) || \
262 (abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
263 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
264 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
265 #else
266 #define IRIX_COMPAT(abfd) \
267 (((abfd->xvec == &bfd_elf32_tradbigmips_vec) || \
268 (abfd->xvec == &bfd_elf32_tradlittlemips_vec)) ? ict_none : \
269 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5))
270 #endif
271
272 #define NEWABI_P(abfd) (ABI_N32_P(abfd) || ABI_64_P(abfd))
273
274 /* Whether we are trying to be compatible with IRIX at all. */
275 #define SGI_COMPAT(abfd) \
276 (IRIX_COMPAT (abfd) != ict_none)
277
278 /* The name of the msym section. */
279 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
280
281 /* The name of the srdata section. */
282 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
283
284 /* The name of the options section. */
285 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
286 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
287
288 /* The name of the stub section. */
289 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
290 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
291
292 /* The name of the dynamic relocation section. */
293 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
294
295 /* The size of an external REL relocation. */
296 #define MIPS_ELF_REL_SIZE(abfd) \
297 (get_elf_backend_data (abfd)->s->sizeof_rel)
298
299 /* The size of an external dynamic table entry. */
300 #define MIPS_ELF_DYN_SIZE(abfd) \
301 (get_elf_backend_data (abfd)->s->sizeof_dyn)
302
303 /* The size of a GOT entry. */
304 #define MIPS_ELF_GOT_SIZE(abfd) \
305 (get_elf_backend_data (abfd)->s->arch_size / 8)
306
307 /* The size of a symbol-table entry. */
308 #define MIPS_ELF_SYM_SIZE(abfd) \
309 (get_elf_backend_data (abfd)->s->sizeof_sym)
310
311 /* The default alignment for sections, as a power of two. */
312 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
313 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
314
315 /* Get word-sized data. */
316 #define MIPS_ELF_GET_WORD(abfd, ptr) \
317 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
318
319 /* Put out word-sized data. */
320 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
321 (ABI_64_P (abfd) \
322 ? bfd_put_64 (abfd, val, ptr) \
323 : bfd_put_32 (abfd, val, ptr))
324
325 /* Add a dynamic symbol table-entry. */
326 #ifdef BFD64
327 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
328 (ABI_64_P (elf_hash_table (info)->dynobj) \
329 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
330 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
331 #else
332 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
333 (ABI_64_P (elf_hash_table (info)->dynobj) \
334 ? (boolean) (abort (), false) \
335 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
336 #endif
337
338 /* The number of local .got entries we reserve. */
339 #define MIPS_RESERVED_GOTNO (2)
340
341 /* Instructions which appear in a stub. For some reason the stub is
342 slightly different on an SGI system. */
343 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
344 #define STUB_LW(abfd) \
345 (SGI_COMPAT (abfd) \
346 ? (ABI_64_P (abfd) \
347 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
348 : 0x8f998010) /* lw t9,0x8010(gp) */ \
349 : 0x8f998010) /* lw t9,0x8000(gp) */
350 #define STUB_MOVE(abfd) \
351 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
352 #define STUB_JALR 0x0320f809 /* jal t9 */
353 #define STUB_LI16(abfd) \
354 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
355 #define MIPS_FUNCTION_STUB_SIZE (16)
356
357 #if 0
358 /* We no longer try to identify particular sections for the .dynsym
359 section. When we do, we wind up crashing if there are other random
360 sections with relocations. */
361
362 /* Names of sections which appear in the .dynsym section in an Irix 5
363 executable. */
364
365 static const char * const mips_elf_dynsym_sec_names[] =
366 {
367 ".text",
368 ".init",
369 ".fini",
370 ".data",
371 ".rodata",
372 ".sdata",
373 ".sbss",
374 ".bss",
375 NULL
376 };
377
378 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
379 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
380
381 /* The number of entries in mips_elf_dynsym_sec_names which go in the
382 text segment. */
383
384 #define MIPS_TEXT_DYNSYM_SECNO (3)
385
386 #endif /* 0 */
387
388 /* The names of the runtime procedure table symbols used on Irix 5. */
389
390 static const char * const mips_elf_dynsym_rtproc_names[] =
391 {
392 "_procedure_table",
393 "_procedure_string_table",
394 "_procedure_table_size",
395 NULL
396 };
397
398 /* These structures are used to generate the .compact_rel section on
399 Irix 5. */
400
401 typedef struct
402 {
403 unsigned long id1; /* Always one? */
404 unsigned long num; /* Number of compact relocation entries. */
405 unsigned long id2; /* Always two? */
406 unsigned long offset; /* The file offset of the first relocation. */
407 unsigned long reserved0; /* Zero? */
408 unsigned long reserved1; /* Zero? */
409 } Elf32_compact_rel;
410
411 typedef struct
412 {
413 bfd_byte id1[4];
414 bfd_byte num[4];
415 bfd_byte id2[4];
416 bfd_byte offset[4];
417 bfd_byte reserved0[4];
418 bfd_byte reserved1[4];
419 } Elf32_External_compact_rel;
420
421 typedef struct
422 {
423 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
424 unsigned int rtype : 4; /* Relocation types. See below. */
425 unsigned int dist2to : 8;
426 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
427 unsigned long konst; /* KONST field. See below. */
428 unsigned long vaddr; /* VADDR to be relocated. */
429 } Elf32_crinfo;
430
431 typedef struct
432 {
433 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
434 unsigned int rtype : 4; /* Relocation types. See below. */
435 unsigned int dist2to : 8;
436 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
437 unsigned long konst; /* KONST field. See below. */
438 } Elf32_crinfo2;
439
440 typedef struct
441 {
442 bfd_byte info[4];
443 bfd_byte konst[4];
444 bfd_byte vaddr[4];
445 } Elf32_External_crinfo;
446
447 typedef struct
448 {
449 bfd_byte info[4];
450 bfd_byte konst[4];
451 } Elf32_External_crinfo2;
452
453 /* These are the constants used to swap the bitfields in a crinfo. */
454
455 #define CRINFO_CTYPE (0x1)
456 #define CRINFO_CTYPE_SH (31)
457 #define CRINFO_RTYPE (0xf)
458 #define CRINFO_RTYPE_SH (27)
459 #define CRINFO_DIST2TO (0xff)
460 #define CRINFO_DIST2TO_SH (19)
461 #define CRINFO_RELVADDR (0x7ffff)
462 #define CRINFO_RELVADDR_SH (0)
463
464 /* A compact relocation info has long (3 words) or short (2 words)
465 formats. A short format doesn't have VADDR field and relvaddr
466 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
467 #define CRF_MIPS_LONG 1
468 #define CRF_MIPS_SHORT 0
469
470 /* There are 4 types of compact relocation at least. The value KONST
471 has different meaning for each type:
472
473 (type) (konst)
474 CT_MIPS_REL32 Address in data
475 CT_MIPS_WORD Address in word (XXX)
476 CT_MIPS_GPHI_LO GP - vaddr
477 CT_MIPS_JMPAD Address to jump
478 */
479
480 #define CRT_MIPS_REL32 0xa
481 #define CRT_MIPS_WORD 0xb
482 #define CRT_MIPS_GPHI_LO 0xc
483 #define CRT_MIPS_JMPAD 0xd
484
485 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
486 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
487 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
488 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
489
490 static void bfd_elf32_swap_compact_rel_out
491 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
492 static void bfd_elf32_swap_crinfo_out
493 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
494
495 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
496 from smaller values. Start with zero, widen, *then* decrement. */
497 #define MINUS_ONE (((bfd_vma)0) - 1)
498
499 /* The relocation table used for SHT_REL sections. */
500
501 static reloc_howto_type elf_mips_howto_table_rel[] =
502 {
503 /* No relocation. */
504 HOWTO (R_MIPS_NONE, /* type */
505 0, /* rightshift */
506 0, /* size (0 = byte, 1 = short, 2 = long) */
507 0, /* bitsize */
508 false, /* pc_relative */
509 0, /* bitpos */
510 complain_overflow_dont, /* complain_on_overflow */
511 bfd_elf_generic_reloc, /* special_function */
512 "R_MIPS_NONE", /* name */
513 false, /* partial_inplace */
514 0, /* src_mask */
515 0, /* dst_mask */
516 false), /* pcrel_offset */
517
518 /* 16 bit relocation. */
519 HOWTO (R_MIPS_16, /* type */
520 0, /* rightshift */
521 2, /* size (0 = byte, 1 = short, 2 = long) */
522 16, /* bitsize */
523 false, /* pc_relative */
524 0, /* bitpos */
525 complain_overflow_signed, /* complain_on_overflow */
526 bfd_elf_generic_reloc, /* special_function */
527 "R_MIPS_16", /* name */
528 true, /* partial_inplace */
529 0x0000ffff, /* src_mask */
530 0x0000ffff, /* dst_mask */
531 false), /* pcrel_offset */
532
533 /* 32 bit relocation. */
534 HOWTO (R_MIPS_32, /* type */
535 0, /* rightshift */
536 2, /* size (0 = byte, 1 = short, 2 = long) */
537 32, /* bitsize */
538 false, /* pc_relative */
539 0, /* bitpos */
540 complain_overflow_dont, /* complain_on_overflow */
541 bfd_elf_generic_reloc, /* special_function */
542 "R_MIPS_32", /* name */
543 true, /* partial_inplace */
544 0xffffffff, /* src_mask */
545 0xffffffff, /* dst_mask */
546 false), /* pcrel_offset */
547
548 /* 32 bit symbol relative relocation. */
549 HOWTO (R_MIPS_REL32, /* type */
550 0, /* rightshift */
551 2, /* size (0 = byte, 1 = short, 2 = long) */
552 32, /* bitsize */
553 false, /* pc_relative */
554 0, /* bitpos */
555 complain_overflow_dont, /* complain_on_overflow */
556 bfd_elf_generic_reloc, /* special_function */
557 "R_MIPS_REL32", /* name */
558 true, /* partial_inplace */
559 0xffffffff, /* src_mask */
560 0xffffffff, /* dst_mask */
561 false), /* pcrel_offset */
562
563 /* 26 bit jump address. */
564 HOWTO (R_MIPS_26, /* type */
565 2, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 26, /* bitsize */
568 false, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_dont, /* complain_on_overflow */
571 /* This needs complex overflow
572 detection, because the upper four
573 bits must match the PC + 4. */
574 bfd_elf_generic_reloc, /* special_function */
575 "R_MIPS_26", /* name */
576 true, /* partial_inplace */
577 0x03ffffff, /* src_mask */
578 0x03ffffff, /* dst_mask */
579 false), /* pcrel_offset */
580
581 /* High 16 bits of symbol value. */
582 HOWTO (R_MIPS_HI16, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 16, /* bitsize */
586 false, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont, /* complain_on_overflow */
589 _bfd_mips_elf_hi16_reloc, /* special_function */
590 "R_MIPS_HI16", /* name */
591 true, /* partial_inplace */
592 0x0000ffff, /* src_mask */
593 0x0000ffff, /* dst_mask */
594 false), /* pcrel_offset */
595
596 /* Low 16 bits of symbol value. */
597 HOWTO (R_MIPS_LO16, /* type */
598 0, /* rightshift */
599 2, /* size (0 = byte, 1 = short, 2 = long) */
600 16, /* bitsize */
601 false, /* pc_relative */
602 0, /* bitpos */
603 complain_overflow_dont, /* complain_on_overflow */
604 _bfd_mips_elf_lo16_reloc, /* special_function */
605 "R_MIPS_LO16", /* name */
606 true, /* partial_inplace */
607 0x0000ffff, /* src_mask */
608 0x0000ffff, /* dst_mask */
609 false), /* pcrel_offset */
610
611 /* GP relative reference. */
612 HOWTO (R_MIPS_GPREL16, /* type */
613 0, /* rightshift */
614 2, /* size (0 = byte, 1 = short, 2 = long) */
615 16, /* bitsize */
616 false, /* pc_relative */
617 0, /* bitpos */
618 complain_overflow_signed, /* complain_on_overflow */
619 _bfd_mips_elf_gprel16_reloc, /* special_function */
620 "R_MIPS_GPREL16", /* name */
621 true, /* partial_inplace */
622 0x0000ffff, /* src_mask */
623 0x0000ffff, /* dst_mask */
624 false), /* pcrel_offset */
625
626 /* Reference to literal section. */
627 HOWTO (R_MIPS_LITERAL, /* type */
628 0, /* rightshift */
629 2, /* size (0 = byte, 1 = short, 2 = long) */
630 16, /* bitsize */
631 false, /* pc_relative */
632 0, /* bitpos */
633 complain_overflow_signed, /* complain_on_overflow */
634 _bfd_mips_elf_gprel16_reloc, /* special_function */
635 "R_MIPS_LITERAL", /* name */
636 true, /* partial_inplace */
637 0x0000ffff, /* src_mask */
638 0x0000ffff, /* dst_mask */
639 false), /* pcrel_offset */
640
641 /* Reference to global offset table. */
642 HOWTO (R_MIPS_GOT16, /* type */
643 0, /* rightshift */
644 2, /* size (0 = byte, 1 = short, 2 = long) */
645 16, /* bitsize */
646 false, /* pc_relative */
647 0, /* bitpos */
648 complain_overflow_signed, /* complain_on_overflow */
649 _bfd_mips_elf_got16_reloc, /* special_function */
650 "R_MIPS_GOT16", /* name */
651 true, /* partial_inplace */
652 0x0000ffff, /* src_mask */
653 0x0000ffff, /* dst_mask */
654 false), /* pcrel_offset */
655
656 /* 16 bit PC relative reference. */
657 HOWTO (R_MIPS_PC16, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 16, /* bitsize */
661 true, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed, /* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_MIPS_PC16", /* name */
666 true, /* partial_inplace */
667 0x0000ffff, /* src_mask */
668 0x0000ffff, /* dst_mask */
669 true), /* pcrel_offset */
670
671 /* 16 bit call through global offset table. */
672 HOWTO (R_MIPS_CALL16, /* type */
673 0, /* rightshift */
674 2, /* size (0 = byte, 1 = short, 2 = long) */
675 16, /* bitsize */
676 false, /* pc_relative */
677 0, /* bitpos */
678 complain_overflow_signed, /* complain_on_overflow */
679 bfd_elf_generic_reloc, /* special_function */
680 "R_MIPS_CALL16", /* name */
681 true, /* partial_inplace */
682 0x0000ffff, /* src_mask */
683 0x0000ffff, /* dst_mask */
684 false), /* pcrel_offset */
685
686 /* 32 bit GP relative reference. */
687 HOWTO (R_MIPS_GPREL32, /* type */
688 0, /* rightshift */
689 2, /* size (0 = byte, 1 = short, 2 = long) */
690 32, /* bitsize */
691 false, /* pc_relative */
692 0, /* bitpos */
693 complain_overflow_dont, /* complain_on_overflow */
694 _bfd_mips_elf_gprel32_reloc, /* special_function */
695 "R_MIPS_GPREL32", /* name */
696 true, /* partial_inplace */
697 0xffffffff, /* src_mask */
698 0xffffffff, /* dst_mask */
699 false), /* pcrel_offset */
700
701 /* The remaining relocs are defined on Irix 5, although they are
702 not defined by the ABI. */
703 EMPTY_HOWTO (13),
704 EMPTY_HOWTO (14),
705 EMPTY_HOWTO (15),
706
707 /* A 5 bit shift field. */
708 HOWTO (R_MIPS_SHIFT5, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 5, /* bitsize */
712 false, /* pc_relative */
713 6, /* bitpos */
714 complain_overflow_bitfield, /* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_MIPS_SHIFT5", /* name */
717 true, /* partial_inplace */
718 0x000007c0, /* src_mask */
719 0x000007c0, /* dst_mask */
720 false), /* pcrel_offset */
721
722 /* A 6 bit shift field. */
723 /* FIXME: This is not handled correctly; a special function is
724 needed to put the most significant bit in the right place. */
725 HOWTO (R_MIPS_SHIFT6, /* type */
726 0, /* rightshift */
727 2, /* size (0 = byte, 1 = short, 2 = long) */
728 6, /* bitsize */
729 false, /* pc_relative */
730 6, /* bitpos */
731 complain_overflow_bitfield, /* complain_on_overflow */
732 bfd_elf_generic_reloc, /* special_function */
733 "R_MIPS_SHIFT6", /* name */
734 true, /* partial_inplace */
735 0x000007c4, /* src_mask */
736 0x000007c4, /* dst_mask */
737 false), /* pcrel_offset */
738
739 /* A 64 bit relocation. */
740 HOWTO (R_MIPS_64, /* type */
741 0, /* rightshift */
742 4, /* size (0 = byte, 1 = short, 2 = long) */
743 64, /* bitsize */
744 false, /* pc_relative */
745 0, /* bitpos */
746 complain_overflow_dont, /* complain_on_overflow */
747 mips32_64bit_reloc, /* special_function */
748 "R_MIPS_64", /* name */
749 true, /* partial_inplace */
750 MINUS_ONE, /* src_mask */
751 MINUS_ONE, /* dst_mask */
752 false), /* pcrel_offset */
753
754 /* Displacement in the global offset table. */
755 HOWTO (R_MIPS_GOT_DISP, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 false, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_signed, /* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_MIPS_GOT_DISP", /* name */
764 true, /* partial_inplace */
765 0x0000ffff, /* src_mask */
766 0x0000ffff, /* dst_mask */
767 false), /* pcrel_offset */
768
769 /* Displacement to page pointer in the global offset table. */
770 HOWTO (R_MIPS_GOT_PAGE, /* type */
771 0, /* rightshift */
772 2, /* size (0 = byte, 1 = short, 2 = long) */
773 16, /* bitsize */
774 false, /* pc_relative */
775 0, /* bitpos */
776 complain_overflow_signed, /* complain_on_overflow */
777 bfd_elf_generic_reloc, /* special_function */
778 "R_MIPS_GOT_PAGE", /* name */
779 true, /* partial_inplace */
780 0x0000ffff, /* src_mask */
781 0x0000ffff, /* dst_mask */
782 false), /* pcrel_offset */
783
784 /* Offset from page pointer in the global offset table. */
785 HOWTO (R_MIPS_GOT_OFST, /* type */
786 0, /* rightshift */
787 2, /* size (0 = byte, 1 = short, 2 = long) */
788 16, /* bitsize */
789 false, /* pc_relative */
790 0, /* bitpos */
791 complain_overflow_signed, /* complain_on_overflow */
792 bfd_elf_generic_reloc, /* special_function */
793 "R_MIPS_GOT_OFST", /* name */
794 true, /* partial_inplace */
795 0x0000ffff, /* src_mask */
796 0x0000ffff, /* dst_mask */
797 false), /* pcrel_offset */
798
799 /* High 16 bits of displacement in global offset table. */
800 HOWTO (R_MIPS_GOT_HI16, /* type */
801 0, /* rightshift */
802 2, /* size (0 = byte, 1 = short, 2 = long) */
803 16, /* bitsize */
804 false, /* pc_relative */
805 0, /* bitpos */
806 complain_overflow_dont, /* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 "R_MIPS_GOT_HI16", /* name */
809 true, /* partial_inplace */
810 0x0000ffff, /* src_mask */
811 0x0000ffff, /* dst_mask */
812 false), /* pcrel_offset */
813
814 /* Low 16 bits of displacement in global offset table. */
815 HOWTO (R_MIPS_GOT_LO16, /* type */
816 0, /* rightshift */
817 2, /* size (0 = byte, 1 = short, 2 = long) */
818 16, /* bitsize */
819 false, /* pc_relative */
820 0, /* bitpos */
821 complain_overflow_dont, /* complain_on_overflow */
822 bfd_elf_generic_reloc, /* special_function */
823 "R_MIPS_GOT_LO16", /* name */
824 true, /* partial_inplace */
825 0x0000ffff, /* src_mask */
826 0x0000ffff, /* dst_mask */
827 false), /* pcrel_offset */
828
829 /* 64 bit subtraction. Used in the N32 ABI. */
830 HOWTO (R_MIPS_SUB, /* type */
831 0, /* rightshift */
832 4, /* size (0 = byte, 1 = short, 2 = long) */
833 64, /* bitsize */
834 false, /* pc_relative */
835 0, /* bitpos */
836 complain_overflow_dont, /* complain_on_overflow */
837 bfd_elf_generic_reloc, /* special_function */
838 "R_MIPS_SUB", /* name */
839 true, /* partial_inplace */
840 MINUS_ONE, /* src_mask */
841 MINUS_ONE, /* dst_mask */
842 false), /* pcrel_offset */
843
844 /* Used to cause the linker to insert and delete instructions? */
845 EMPTY_HOWTO (R_MIPS_INSERT_A),
846 EMPTY_HOWTO (R_MIPS_INSERT_B),
847 EMPTY_HOWTO (R_MIPS_DELETE),
848
849 /* Get the higher value of a 64 bit addend. */
850 HOWTO (R_MIPS_HIGHER, /* type */
851 0, /* rightshift */
852 2, /* size (0 = byte, 1 = short, 2 = long) */
853 16, /* bitsize */
854 false, /* pc_relative */
855 0, /* bitpos */
856 complain_overflow_dont, /* complain_on_overflow */
857 bfd_elf_generic_reloc, /* special_function */
858 "R_MIPS_HIGHER", /* name */
859 true, /* partial_inplace */
860 0x0000ffff, /* src_mask */
861 0x0000ffff, /* dst_mask */
862 false), /* pcrel_offset */
863
864 /* Get the highest value of a 64 bit addend. */
865 HOWTO (R_MIPS_HIGHEST, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 16, /* bitsize */
869 false, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont, /* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_MIPS_HIGHEST", /* name */
874 true, /* partial_inplace */
875 0x0000ffff, /* src_mask */
876 0x0000ffff, /* dst_mask */
877 false), /* pcrel_offset */
878
879 /* High 16 bits of displacement in global offset table. */
880 HOWTO (R_MIPS_CALL_HI16, /* type */
881 0, /* rightshift */
882 2, /* size (0 = byte, 1 = short, 2 = long) */
883 16, /* bitsize */
884 false, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont, /* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_MIPS_CALL_HI16", /* name */
889 true, /* partial_inplace */
890 0x0000ffff, /* src_mask */
891 0x0000ffff, /* dst_mask */
892 false), /* pcrel_offset */
893
894 /* Low 16 bits of displacement in global offset table. */
895 HOWTO (R_MIPS_CALL_LO16, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 16, /* bitsize */
899 false, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont, /* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_MIPS_CALL_LO16", /* name */
904 true, /* partial_inplace */
905 0x0000ffff, /* src_mask */
906 0x0000ffff, /* dst_mask */
907 false), /* pcrel_offset */
908
909 /* Section displacement. */
910 HOWTO (R_MIPS_SCN_DISP, /* type */
911 0, /* rightshift */
912 2, /* size (0 = byte, 1 = short, 2 = long) */
913 32, /* bitsize */
914 false, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_dont, /* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
918 "R_MIPS_SCN_DISP", /* name */
919 true, /* partial_inplace */
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
922 false), /* pcrel_offset */
923
924 EMPTY_HOWTO (R_MIPS_REL16),
925 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
926 EMPTY_HOWTO (R_MIPS_PJUMP),
927 EMPTY_HOWTO (R_MIPS_RELGOT),
928
929 /* Protected jump conversion. This is an optimization hint. No
930 relocation is required for correctness. */
931 HOWTO (R_MIPS_JALR, /* type */
932 0, /* rightshift */
933 2, /* size (0 = byte, 1 = short, 2 = long) */
934 32, /* bitsize */
935 false, /* pc_relative */
936 0, /* bitpos */
937 complain_overflow_dont, /* complain_on_overflow */
938 bfd_elf_generic_reloc, /* special_function */
939 "R_MIPS_JALR", /* name */
940 false, /* partial_inplace */
941 0x00000000, /* src_mask */
942 0x00000000, /* dst_mask */
943 false), /* pcrel_offset */
944 };
945
946 /* The relocation table used for SHT_RELA sections. */
947
948 static reloc_howto_type elf_mips_howto_table_rela[] =
949 {
950 /* No relocation. */
951 HOWTO (R_MIPS_NONE, /* type */
952 0, /* rightshift */
953 0, /* size (0 = byte, 1 = short, 2 = long) */
954 0, /* bitsize */
955 false, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_MIPS_NONE", /* name */
960 false, /* partial_inplace */
961 0, /* src_mask */
962 0, /* dst_mask */
963 false), /* pcrel_offset */
964
965 /* 16 bit relocation. */
966 HOWTO (R_MIPS_16, /* type */
967 0, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 16, /* bitsize */
970 false, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_signed, /* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 "R_MIPS_16", /* name */
975 false, /* partial_inplace */
976 0, /* src_mask */
977 0x0000, /* dst_mask */
978 false), /* pcrel_offset */
979
980 /* 32 bit relocation. */
981 HOWTO (R_MIPS_32, /* type */
982 0, /* rightshift */
983 2, /* size (0 = byte, 1 = short, 2 = long) */
984 32, /* bitsize */
985 false, /* pc_relative */
986 0, /* bitpos */
987 complain_overflow_dont, /* complain_on_overflow */
988 bfd_elf_generic_reloc, /* special_function */
989 "R_MIPS_32", /* name */
990 false, /* partial_inplace */
991 0, /* src_mask */
992 0xffffffff, /* dst_mask */
993 false), /* pcrel_offset */
994
995 /* 32 bit symbol relative relocation. */
996 HOWTO (R_MIPS_REL32, /* type */
997 0, /* rightshift */
998 2, /* size (0 = byte, 1 = short, 2 = long) */
999 32, /* bitsize */
1000 false, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_dont, /* complain_on_overflow */
1003 bfd_elf_generic_reloc, /* special_function */
1004 "R_MIPS_REL32", /* name */
1005 false, /* partial_inplace */
1006 0, /* src_mask */
1007 0xffffffff, /* dst_mask */
1008 false), /* pcrel_offset */
1009
1010 /* 26 bit jump address. */
1011 HOWTO (R_MIPS_26, /* type */
1012 2, /* rightshift */
1013 2, /* size (0 = byte, 1 = short, 2 = long) */
1014 26, /* bitsize */
1015 false, /* pc_relative */
1016 0, /* bitpos */
1017 complain_overflow_dont, /* complain_on_overflow */
1018 /* This needs complex overflow
1019 detection, because the upper 36
1020 bits must match the PC + 4. */
1021 bfd_elf_generic_reloc, /* special_function */
1022 "R_MIPS_26", /* name */
1023 false, /* partial_inplace */
1024 0, /* src_mask */
1025 0x03ffffff, /* dst_mask */
1026 false), /* pcrel_offset */
1027
1028 /* R_MIPS_HI16 and R_MIPS_LO16 are unsupported for 64 bit REL. */
1029 /* High 16 bits of symbol value. */
1030 HOWTO (R_MIPS_HI16, /* type */
1031 0, /* rightshift */
1032 2, /* size (0 = byte, 1 = short, 2 = long) */
1033 16, /* bitsize */
1034 false, /* pc_relative */
1035 0, /* bitpos */
1036 complain_overflow_dont, /* complain_on_overflow */
1037 bfd_elf_generic_reloc, /* special_function */
1038 "R_MIPS_HI16", /* name */
1039 false, /* partial_inplace */
1040 0, /* src_mask */
1041 0x0000ffff, /* dst_mask */
1042 false), /* pcrel_offset */
1043
1044 /* Low 16 bits of symbol value. */
1045 HOWTO (R_MIPS_LO16, /* type */
1046 0, /* rightshift */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1048 16, /* bitsize */
1049 false, /* pc_relative */
1050 0, /* bitpos */
1051 complain_overflow_dont, /* complain_on_overflow */
1052 bfd_elf_generic_reloc, /* special_function */
1053 "R_MIPS_LO16", /* name */
1054 false, /* partial_inplace */
1055 0, /* src_mask */
1056 0x0000ffff, /* dst_mask */
1057 false), /* pcrel_offset */
1058
1059 /* GP relative reference. */
1060 HOWTO (R_MIPS_GPREL16, /* type */
1061 0, /* rightshift */
1062 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 16, /* bitsize */
1064 false, /* pc_relative */
1065 0, /* bitpos */
1066 complain_overflow_signed, /* complain_on_overflow */
1067 _bfd_mips_elf_gprel16_reloc, /* special_function */
1068 "R_MIPS_GPREL16", /* name */
1069 false, /* partial_inplace */
1070 0, /* src_mask */
1071 0x0000ffff, /* dst_mask */
1072 false), /* pcrel_offset */
1073
1074 /* Reference to literal section. */
1075 HOWTO (R_MIPS_LITERAL, /* type */
1076 0, /* rightshift */
1077 2, /* size (0 = byte, 1 = short, 2 = long) */
1078 16, /* bitsize */
1079 false, /* pc_relative */
1080 0, /* bitpos */
1081 complain_overflow_signed, /* complain_on_overflow */
1082 _bfd_mips_elf_gprel16_reloc, /* special_function */
1083 "R_MIPS_LITERAL", /* name */
1084 false, /* partial_inplace */
1085 0, /* src_mask */
1086 0x0000ffff, /* dst_mask */
1087 false), /* pcrel_offset */
1088
1089 /* Reference to global offset table. */
1090 /* FIXME: This is not handled correctly. */
1091 HOWTO (R_MIPS_GOT16, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 16, /* bitsize */
1095 false, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_signed, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_MIPS_GOT16", /* name */
1100 false, /* partial_inplace */
1101 0, /* src_mask */
1102 0x0000ffff, /* dst_mask */
1103 false), /* pcrel_offset */
1104
1105 /* 16 bit PC relative reference. */
1106 HOWTO (R_MIPS_PC16, /* type */
1107 0, /* rightshift */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 16, /* bitsize */
1110 true, /* pc_relative */
1111 0, /* bitpos */
1112 complain_overflow_signed, /* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
1114 "R_MIPS_PC16", /* name */
1115 false, /* partial_inplace */
1116 0, /* src_mask */
1117 0x0000ffff, /* dst_mask */
1118 true), /* pcrel_offset */
1119
1120 /* 16 bit call through global offset table. */
1121 /* FIXME: This is not handled correctly. */
1122 HOWTO (R_MIPS_CALL16, /* type */
1123 0, /* rightshift */
1124 2, /* size (0 = byte, 1 = short, 2 = long) */
1125 16, /* bitsize */
1126 false, /* pc_relative */
1127 0, /* bitpos */
1128 complain_overflow_signed, /* complain_on_overflow */
1129 bfd_elf_generic_reloc, /* special_function */
1130 "R_MIPS_CALL16", /* name */
1131 false, /* partial_inplace */
1132 0, /* src_mask */
1133 0x0000ffff, /* dst_mask */
1134 false), /* pcrel_offset */
1135
1136 /* 32 bit GP relative reference. */
1137 HOWTO (R_MIPS_GPREL32, /* type */
1138 0, /* rightshift */
1139 2, /* size (0 = byte, 1 = short, 2 = long) */
1140 32, /* bitsize */
1141 false, /* pc_relative */
1142 0, /* bitpos */
1143 complain_overflow_dont, /* complain_on_overflow */
1144 _bfd_mips_elf_gprel32_reloc, /* special_function */
1145 "R_MIPS_GPREL32", /* name */
1146 false, /* partial_inplace */
1147 0, /* src_mask */
1148 0xffffffff, /* dst_mask */
1149 false), /* pcrel_offset */
1150
1151 EMPTY_HOWTO (13),
1152 EMPTY_HOWTO (14),
1153 EMPTY_HOWTO (15),
1154
1155 /* A 5 bit shift field. */
1156 HOWTO (R_MIPS_SHIFT5, /* type */
1157 0, /* rightshift */
1158 2, /* size (0 = byte, 1 = short, 2 = long) */
1159 5, /* bitsize */
1160 false, /* pc_relative */
1161 6, /* bitpos */
1162 complain_overflow_bitfield, /* complain_on_overflow */
1163 bfd_elf_generic_reloc, /* special_function */
1164 "R_MIPS_SHIFT5", /* name */
1165 false, /* partial_inplace */
1166 0, /* src_mask */
1167 0x000007c0, /* dst_mask */
1168 false), /* pcrel_offset */
1169
1170 /* A 6 bit shift field. */
1171 /* FIXME: Not handled correctly. */
1172 HOWTO (R_MIPS_SHIFT6, /* type */
1173 0, /* rightshift */
1174 2, /* size (0 = byte, 1 = short, 2 = long) */
1175 6, /* bitsize */
1176 false, /* pc_relative */
1177 6, /* bitpos */
1178 complain_overflow_bitfield, /* complain_on_overflow */
1179 bfd_elf_generic_reloc, /* special_function */
1180 "R_MIPS_SHIFT6", /* name */
1181 false, /* partial_inplace */
1182 0, /* src_mask */
1183 0x000007c4, /* dst_mask */
1184 false), /* pcrel_offset */
1185
1186 /* 64 bit relocation. */
1187 HOWTO (R_MIPS_64, /* type */
1188 0, /* rightshift */
1189 4, /* size (0 = byte, 1 = short, 2 = long) */
1190 64, /* bitsize */
1191 false, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_dont, /* complain_on_overflow */
1194 bfd_elf_generic_reloc, /* special_function */
1195 "R_MIPS_64", /* name */
1196 false, /* partial_inplace */
1197 0, /* src_mask */
1198 MINUS_ONE, /* dst_mask */
1199 false), /* pcrel_offset */
1200
1201 /* Displacement in the global offset table. */
1202 /* FIXME: Not handled correctly. */
1203 HOWTO (R_MIPS_GOT_DISP, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 16, /* bitsize */
1207 false, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_signed, /* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_MIPS_GOT_DISP", /* name */
1212 false, /* partial_inplace */
1213 0, /* src_mask */
1214 0x0000ffff, /* dst_mask */
1215 false), /* pcrel_offset */
1216
1217 /* Displacement to page pointer in the global offset table. */
1218 /* FIXME: Not handled correctly. */
1219 HOWTO (R_MIPS_GOT_PAGE, /* type */
1220 0, /* rightshift */
1221 2, /* size (0 = byte, 1 = short, 2 = long) */
1222 16, /* bitsize */
1223 false, /* pc_relative */
1224 0, /* bitpos */
1225 complain_overflow_signed, /* complain_on_overflow */
1226 bfd_elf_generic_reloc, /* special_function */
1227 "R_MIPS_GOT_PAGE", /* name */
1228 false, /* partial_inplace */
1229 0, /* src_mask */
1230 0x0000ffff, /* dst_mask */
1231 false), /* pcrel_offset */
1232
1233 /* Offset from page pointer in the global offset table. */
1234 /* FIXME: Not handled correctly. */
1235 HOWTO (R_MIPS_GOT_OFST, /* type */
1236 0, /* rightshift */
1237 2, /* size (0 = byte, 1 = short, 2 = long) */
1238 16, /* bitsize */
1239 false, /* pc_relative */
1240 0, /* bitpos */
1241 complain_overflow_signed, /* complain_on_overflow */
1242 bfd_elf_generic_reloc, /* special_function */
1243 "R_MIPS_GOT_OFST", /* name */
1244 false, /* partial_inplace */
1245 0, /* src_mask */
1246 0x0000ffff, /* dst_mask */
1247 false), /* pcrel_offset */
1248
1249 /* High 16 bits of displacement in global offset table. */
1250 /* FIXME: Not handled correctly. */
1251 HOWTO (R_MIPS_GOT_HI16, /* type */
1252 0, /* rightshift */
1253 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 16, /* bitsize */
1255 false, /* pc_relative */
1256 0, /* bitpos */
1257 complain_overflow_dont, /* complain_on_overflow */
1258 bfd_elf_generic_reloc, /* special_function */
1259 "R_MIPS_GOT_HI16", /* name */
1260 false, /* partial_inplace */
1261 0, /* src_mask */
1262 0x0000ffff, /* dst_mask */
1263 false), /* pcrel_offset */
1264
1265 /* Low 16 bits of displacement in global offset table. */
1266 /* FIXME: Not handled correctly. */
1267 HOWTO (R_MIPS_GOT_LO16, /* type */
1268 0, /* rightshift */
1269 2, /* size (0 = byte, 1 = short, 2 = long) */
1270 16, /* bitsize */
1271 false, /* pc_relative */
1272 0, /* bitpos */
1273 complain_overflow_dont, /* complain_on_overflow */
1274 bfd_elf_generic_reloc, /* special_function */
1275 "R_MIPS_GOT_LO16", /* name */
1276 false, /* partial_inplace */
1277 0, /* src_mask */
1278 0x0000ffff, /* dst_mask */
1279 false), /* pcrel_offset */
1280
1281 /* 64 bit substraction. */
1282 /* FIXME: Not handled correctly. */
1283 HOWTO (R_MIPS_SUB, /* type */
1284 0, /* rightshift */
1285 4, /* size (0 = byte, 1 = short, 2 = long) */
1286 64, /* bitsize */
1287 false, /* pc_relative */
1288 0, /* bitpos */
1289 complain_overflow_dont, /* complain_on_overflow */
1290 bfd_elf_generic_reloc, /* special_function */
1291 "R_MIPS_SUB", /* name */
1292 false, /* partial_inplace */
1293 0, /* src_mask */
1294 MINUS_ONE, /* dst_mask */
1295 false), /* pcrel_offset */
1296
1297 /* Insert the addend as an instruction. */
1298 /* FIXME: Not handled correctly. */
1299 HOWTO (R_MIPS_INSERT_A, /* type */
1300 0, /* rightshift */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1302 32, /* bitsize */
1303 false, /* pc_relative */
1304 0, /* bitpos */
1305 complain_overflow_dont, /* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 "R_MIPS_INSERT_A", /* name */
1308 false, /* partial_inplace */
1309 0, /* src_mask */
1310 0xffffffff, /* dst_mask */
1311 false), /* pcrel_offset */
1312
1313 /* Insert the addend as an instruction, and change all relocations
1314 to refer to the old instruction at the address. */
1315 /* FIXME: Not handled correctly. */
1316 HOWTO (R_MIPS_INSERT_B, /* type */
1317 0, /* rightshift */
1318 2, /* size (0 = byte, 1 = short, 2 = long) */
1319 32, /* bitsize */
1320 false, /* pc_relative */
1321 0, /* bitpos */
1322 complain_overflow_dont, /* complain_on_overflow */
1323 bfd_elf_generic_reloc, /* special_function */
1324 "R_MIPS_INSERT_B", /* name */
1325 false, /* partial_inplace */
1326 0, /* src_mask */
1327 0xffffffff, /* dst_mask */
1328 false), /* pcrel_offset */
1329
1330 /* Delete a 32 bit instruction. */
1331 /* FIXME: Not handled correctly. */
1332 HOWTO (R_MIPS_DELETE, /* type */
1333 0, /* rightshift */
1334 2, /* size (0 = byte, 1 = short, 2 = long) */
1335 32, /* bitsize */
1336 false, /* pc_relative */
1337 0, /* bitpos */
1338 complain_overflow_dont, /* complain_on_overflow */
1339 bfd_elf_generic_reloc, /* special_function */
1340 "R_MIPS_DELETE", /* name */
1341 false, /* partial_inplace */
1342 0, /* src_mask */
1343 0xffffffff, /* dst_mask */
1344 false), /* pcrel_offset */
1345
1346 /* Get the higher value of a 64 bit addend. */
1347 HOWTO (R_MIPS_HIGHER, /* type */
1348 0, /* rightshift */
1349 2, /* size (0 = byte, 1 = short, 2 = long) */
1350 16, /* bitsize */
1351 false, /* pc_relative */
1352 0, /* bitpos */
1353 complain_overflow_dont, /* complain_on_overflow */
1354 bfd_elf_generic_reloc, /* special_function */
1355 "R_MIPS_HIGHER", /* name */
1356 false, /* partial_inplace */
1357 0, /* src_mask */
1358 0x0000ffff, /* dst_mask */
1359 false), /* pcrel_offset */
1360
1361 /* Get the highest value of a 64 bit addend. */
1362 HOWTO (R_MIPS_HIGHEST, /* type */
1363 0, /* rightshift */
1364 2, /* size (0 = byte, 1 = short, 2 = long) */
1365 16, /* bitsize */
1366 false, /* pc_relative */
1367 0, /* bitpos */
1368 complain_overflow_dont, /* complain_on_overflow */
1369 bfd_elf_generic_reloc, /* special_function */
1370 "R_MIPS_HIGHEST", /* name */
1371 false, /* partial_inplace */
1372 0, /* src_mask */
1373 0x0000ffff, /* dst_mask */
1374 false), /* pcrel_offset */
1375
1376 /* High 16 bits of displacement in global offset table. */
1377 /* FIXME: Not handled correctly. */
1378 HOWTO (R_MIPS_CALL_HI16, /* type */
1379 0, /* rightshift */
1380 2, /* size (0 = byte, 1 = short, 2 = long) */
1381 16, /* bitsize */
1382 false, /* pc_relative */
1383 0, /* bitpos */
1384 complain_overflow_dont, /* complain_on_overflow */
1385 bfd_elf_generic_reloc, /* special_function */
1386 "R_MIPS_CALL_HI16", /* name */
1387 false, /* partial_inplace */
1388 0, /* src_mask */
1389 0x0000ffff, /* dst_mask */
1390 false), /* pcrel_offset */
1391
1392 /* Low 16 bits of displacement in global offset table. */
1393 /* FIXME: Not handled correctly. */
1394 HOWTO (R_MIPS_CALL_LO16, /* type */
1395 0, /* rightshift */
1396 2, /* size (0 = byte, 1 = short, 2 = long) */
1397 16, /* bitsize */
1398 false, /* pc_relative */
1399 0, /* bitpos */
1400 complain_overflow_dont, /* complain_on_overflow */
1401 bfd_elf_generic_reloc, /* special_function */
1402 "R_MIPS_CALL_LO16", /* name */
1403 false, /* partial_inplace */
1404 0, /* src_mask */
1405 0x0000ffff, /* dst_mask */
1406 false), /* pcrel_offset */
1407
1408 /* Section displacement, used by an associated event location section. */
1409 /* FIXME: Not handled correctly. */
1410 HOWTO (R_MIPS_SCN_DISP, /* type */
1411 0, /* rightshift */
1412 2, /* size (0 = byte, 1 = short, 2 = long) */
1413 32, /* bitsize */
1414 false, /* pc_relative */
1415 0, /* bitpos */
1416 complain_overflow_dont, /* complain_on_overflow */
1417 bfd_elf_generic_reloc, /* special_function */
1418 "R_MIPS_SCN_DISP", /* name */
1419 false, /* partial_inplace */
1420 0, /* src_mask */
1421 0xffffffff, /* dst_mask */
1422 false), /* pcrel_offset */
1423
1424 HOWTO (R_MIPS_REL16, /* type */
1425 0, /* rightshift */
1426 1, /* size (0 = byte, 1 = short, 2 = long) */
1427 16, /* bitsize */
1428 false, /* pc_relative */
1429 0, /* bitpos */
1430 complain_overflow_signed, /* complain_on_overflow */
1431 bfd_elf_generic_reloc, /* special_function */
1432 "R_MIPS_REL16", /* name */
1433 false, /* partial_inplace */
1434 0, /* src_mask */
1435 0xffff, /* dst_mask */
1436 false), /* pcrel_offset */
1437
1438 /* These two are obsolete. */
1439 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
1440 EMPTY_HOWTO (R_MIPS_PJUMP),
1441
1442 /* Similiar to R_MIPS_REL32, but used for relocations in a GOT section.
1443 It must be used for multigot GOT's (and only there). */
1444 HOWTO (R_MIPS_RELGOT, /* type */
1445 0, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 32, /* bitsize */
1448 false, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 "R_MIPS_RELGOT", /* name */
1453 false, /* partial_inplace */
1454 0, /* src_mask */
1455 0xffffffff, /* dst_mask */
1456 false), /* pcrel_offset */
1457
1458 /* Protected jump conversion. This is an optimization hint. No
1459 relocation is required for correctness. */
1460 HOWTO (R_MIPS_JALR, /* type */
1461 0, /* rightshift */
1462 2, /* size (0 = byte, 1 = short, 2 = long) */
1463 32, /* bitsize */
1464 false, /* pc_relative */
1465 0, /* bitpos */
1466 complain_overflow_dont, /* complain_on_overflow */
1467 bfd_elf_generic_reloc, /* special_function */
1468 "R_MIPS_JALR", /* name */
1469 false, /* partial_inplace */
1470 0, /* src_mask */
1471 0xffffffff, /* dst_mask */
1472 false), /* pcrel_offset */
1473 };
1474
1475 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
1476 is a hack to make the linker think that we need 64 bit values. */
1477 static reloc_howto_type elf_mips_ctor64_howto =
1478 HOWTO (R_MIPS_64, /* type */
1479 0, /* rightshift */
1480 4, /* size (0 = byte, 1 = short, 2 = long) */
1481 32, /* bitsize */
1482 false, /* pc_relative */
1483 0, /* bitpos */
1484 complain_overflow_signed, /* complain_on_overflow */
1485 mips32_64bit_reloc, /* special_function */
1486 "R_MIPS_64", /* name */
1487 true, /* partial_inplace */
1488 0xffffffff, /* src_mask */
1489 0xffffffff, /* dst_mask */
1490 false); /* pcrel_offset */
1491
1492 /* The reloc used for the mips16 jump instruction. */
1493 static reloc_howto_type elf_mips16_jump_howto =
1494 HOWTO (R_MIPS16_26, /* type */
1495 2, /* rightshift */
1496 2, /* size (0 = byte, 1 = short, 2 = long) */
1497 26, /* bitsize */
1498 false, /* pc_relative */
1499 0, /* bitpos */
1500 complain_overflow_dont, /* complain_on_overflow */
1501 /* This needs complex overflow
1502 detection, because the upper four
1503 bits must match the PC. */
1504 mips16_jump_reloc, /* special_function */
1505 "R_MIPS16_26", /* name */
1506 true, /* partial_inplace */
1507 0x3ffffff, /* src_mask */
1508 0x3ffffff, /* dst_mask */
1509 false); /* pcrel_offset */
1510
1511 /* The reloc used for the mips16 gprel instruction. */
1512 static reloc_howto_type elf_mips16_gprel_howto =
1513 HOWTO (R_MIPS16_GPREL, /* type */
1514 0, /* rightshift */
1515 2, /* size (0 = byte, 1 = short, 2 = long) */
1516 16, /* bitsize */
1517 false, /* pc_relative */
1518 0, /* bitpos */
1519 complain_overflow_signed, /* complain_on_overflow */
1520 mips16_gprel_reloc, /* special_function */
1521 "R_MIPS16_GPREL", /* name */
1522 true, /* partial_inplace */
1523 0x07ff001f, /* src_mask */
1524 0x07ff001f, /* dst_mask */
1525 false); /* pcrel_offset */
1526
1527 /* GNU extensions for embedded-pic. */
1528 /* High 16 bits of symbol value, pc-relative. */
1529 static reloc_howto_type elf_mips_gnu_rel_hi16 =
1530 HOWTO (R_MIPS_GNU_REL_HI16, /* type */
1531 0, /* rightshift */
1532 2, /* size (0 = byte, 1 = short, 2 = long) */
1533 16, /* bitsize */
1534 true, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 _bfd_mips_elf_hi16_reloc, /* special_function */
1538 "R_MIPS_GNU_REL_HI16", /* name */
1539 true, /* partial_inplace */
1540 0xffff, /* src_mask */
1541 0xffff, /* dst_mask */
1542 true); /* pcrel_offset */
1543
1544 /* Low 16 bits of symbol value, pc-relative. */
1545 static reloc_howto_type elf_mips_gnu_rel_lo16 =
1546 HOWTO (R_MIPS_GNU_REL_LO16, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 16, /* bitsize */
1550 true, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_dont, /* complain_on_overflow */
1553 _bfd_mips_elf_lo16_reloc, /* special_function */
1554 "R_MIPS_GNU_REL_LO16", /* name */
1555 true, /* partial_inplace */
1556 0xffff, /* src_mask */
1557 0xffff, /* dst_mask */
1558 true); /* pcrel_offset */
1559
1560 /* 16 bit offset for pc-relative branches. */
1561 static reloc_howto_type elf_mips_gnu_rel16_s2 =
1562 HOWTO (R_MIPS_GNU_REL16_S2, /* type */
1563 2, /* rightshift */
1564 2, /* size (0 = byte, 1 = short, 2 = long) */
1565 16, /* bitsize */
1566 true, /* pc_relative */
1567 0, /* bitpos */
1568 complain_overflow_signed, /* complain_on_overflow */
1569 bfd_elf_generic_reloc, /* special_function */
1570 "R_MIPS_GNU_REL16_S2", /* name */
1571 true, /* partial_inplace */
1572 0xffff, /* src_mask */
1573 0xffff, /* dst_mask */
1574 true); /* pcrel_offset */
1575
1576 /* 64 bit pc-relative. */
1577 static reloc_howto_type elf_mips_gnu_pcrel64 =
1578 HOWTO (R_MIPS_PC64, /* type */
1579 0, /* rightshift */
1580 4, /* size (0 = byte, 1 = short, 2 = long) */
1581 64, /* bitsize */
1582 true, /* pc_relative */
1583 0, /* bitpos */
1584 complain_overflow_signed, /* complain_on_overflow */
1585 bfd_elf_generic_reloc, /* special_function */
1586 "R_MIPS_PC64", /* name */
1587 true, /* partial_inplace */
1588 MINUS_ONE, /* src_mask */
1589 MINUS_ONE, /* dst_mask */
1590 true); /* pcrel_offset */
1591
1592 /* 32 bit pc-relative. */
1593 static reloc_howto_type elf_mips_gnu_pcrel32 =
1594 HOWTO (R_MIPS_PC32, /* type */
1595 0, /* rightshift */
1596 2, /* size (0 = byte, 1 = short, 2 = long) */
1597 32, /* bitsize */
1598 true, /* pc_relative */
1599 0, /* bitpos */
1600 complain_overflow_signed, /* complain_on_overflow */
1601 bfd_elf_generic_reloc, /* special_function */
1602 "R_MIPS_PC32", /* name */
1603 true, /* partial_inplace */
1604 0xffffffff, /* src_mask */
1605 0xffffffff, /* dst_mask */
1606 true); /* pcrel_offset */
1607
1608 /* GNU extension to record C++ vtable hierarchy */
1609 static reloc_howto_type elf_mips_gnu_vtinherit_howto =
1610 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
1611 0, /* rightshift */
1612 2, /* size (0 = byte, 1 = short, 2 = long) */
1613 0, /* bitsize */
1614 false, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_dont, /* complain_on_overflow */
1617 NULL, /* special_function */
1618 "R_MIPS_GNU_VTINHERIT", /* name */
1619 false, /* partial_inplace */
1620 0, /* src_mask */
1621 0, /* dst_mask */
1622 false); /* pcrel_offset */
1623
1624 /* GNU extension to record C++ vtable member usage */
1625 static reloc_howto_type elf_mips_gnu_vtentry_howto =
1626 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
1627 0, /* rightshift */
1628 2, /* size (0 = byte, 1 = short, 2 = long) */
1629 0, /* bitsize */
1630 false, /* pc_relative */
1631 0, /* bitpos */
1632 complain_overflow_dont, /* complain_on_overflow */
1633 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1634 "R_MIPS_GNU_VTENTRY", /* name */
1635 false, /* partial_inplace */
1636 0, /* src_mask */
1637 0, /* dst_mask */
1638 false); /* pcrel_offset */
1639
1640 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
1641 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
1642 the HI16. Here we just save the information we need; we do the
1643 actual relocation when we see the LO16.
1644
1645 MIPS ELF requires that the LO16 immediately follow the HI16. As a
1646 GNU extension, for non-pc-relative relocations, we permit an
1647 arbitrary number of HI16 relocs to be associated with a single LO16
1648 reloc. This extension permits gcc to output the HI and LO relocs
1649 itself.
1650
1651 This cannot be done for PC-relative relocations because both the HI16
1652 and LO16 parts of the relocations must be done relative to the LO16
1653 part, and there can be carry to or borrow from the HI16 part. */
1654
1655 struct mips_hi16
1656 {
1657 struct mips_hi16 *next;
1658 bfd_byte *addr;
1659 bfd_vma addend;
1660 };
1661
1662 /* FIXME: This should not be a static variable. */
1663
1664 static struct mips_hi16 *mips_hi16_list;
1665
1666 bfd_reloc_status_type
1667 _bfd_mips_elf_hi16_reloc (abfd,
1668 reloc_entry,
1669 symbol,
1670 data,
1671 input_section,
1672 output_bfd,
1673 error_message)
1674 bfd *abfd ATTRIBUTE_UNUSED;
1675 arelent *reloc_entry;
1676 asymbol *symbol;
1677 PTR data;
1678 asection *input_section;
1679 bfd *output_bfd;
1680 char **error_message;
1681 {
1682 bfd_reloc_status_type ret;
1683 bfd_vma relocation;
1684 struct mips_hi16 *n;
1685
1686 /* If we're relocating, and this an external symbol, we don't want
1687 to change anything. */
1688 if (output_bfd != (bfd *) NULL
1689 && (symbol->flags & BSF_SECTION_SYM) == 0
1690 && reloc_entry->addend == 0)
1691 {
1692 reloc_entry->address += input_section->output_offset;
1693 return bfd_reloc_ok;
1694 }
1695
1696 ret = bfd_reloc_ok;
1697
1698 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1699 {
1700 boolean relocateable;
1701 bfd_vma gp;
1702
1703 if (ret == bfd_reloc_undefined)
1704 abort ();
1705
1706 if (output_bfd != NULL)
1707 relocateable = true;
1708 else
1709 {
1710 relocateable = false;
1711 output_bfd = symbol->section->output_section->owner;
1712 }
1713
1714 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1715 error_message, &gp);
1716 if (ret != bfd_reloc_ok)
1717 return ret;
1718
1719 relocation = gp - reloc_entry->address;
1720 }
1721 else
1722 {
1723 if (bfd_is_und_section (symbol->section)
1724 && output_bfd == (bfd *) NULL)
1725 ret = bfd_reloc_undefined;
1726
1727 if (bfd_is_com_section (symbol->section))
1728 relocation = 0;
1729 else
1730 relocation = symbol->value;
1731 }
1732
1733 relocation += symbol->section->output_section->vma;
1734 relocation += symbol->section->output_offset;
1735 relocation += reloc_entry->addend;
1736
1737 if (reloc_entry->address > input_section->_cooked_size)
1738 return bfd_reloc_outofrange;
1739
1740 /* Save the information, and let LO16 do the actual relocation. */
1741 n = (struct mips_hi16 *) bfd_malloc ((bfd_size_type) sizeof *n);
1742 if (n == NULL)
1743 return bfd_reloc_outofrange;
1744 n->addr = (bfd_byte *) data + reloc_entry->address;
1745 n->addend = relocation;
1746 n->next = mips_hi16_list;
1747 mips_hi16_list = n;
1748
1749 if (output_bfd != (bfd *) NULL)
1750 reloc_entry->address += input_section->output_offset;
1751
1752 return ret;
1753 }
1754
1755 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1756 inplace relocation; this function exists in order to do the
1757 R_MIPS_HI16 relocation described above. */
1758
1759 bfd_reloc_status_type
1760 _bfd_mips_elf_lo16_reloc (abfd,
1761 reloc_entry,
1762 symbol,
1763 data,
1764 input_section,
1765 output_bfd,
1766 error_message)
1767 bfd *abfd;
1768 arelent *reloc_entry;
1769 asymbol *symbol;
1770 PTR data;
1771 asection *input_section;
1772 bfd *output_bfd;
1773 char **error_message;
1774 {
1775 arelent gp_disp_relent;
1776
1777 if (mips_hi16_list != NULL)
1778 {
1779 struct mips_hi16 *l;
1780
1781 l = mips_hi16_list;
1782 while (l != NULL)
1783 {
1784 unsigned long insn;
1785 unsigned long val;
1786 unsigned long vallo;
1787 struct mips_hi16 *next;
1788
1789 /* Do the HI16 relocation. Note that we actually don't need
1790 to know anything about the LO16 itself, except where to
1791 find the low 16 bits of the addend needed by the LO16. */
1792 insn = bfd_get_32 (abfd, l->addr);
1793 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1794
1795 /* The low order 16 bits are always treated as a signed
1796 value. */
1797 vallo = ((vallo & 0xffff) ^ 0x8000) - 0x8000;
1798 val = ((insn & 0xffff) << 16) + vallo;
1799 val += l->addend;
1800
1801 /* If PC-relative, we need to subtract out the address of the LO
1802 half of the HI/LO. (The actual relocation is relative
1803 to that instruction.) */
1804 if (reloc_entry->howto->pc_relative)
1805 val -= reloc_entry->address;
1806
1807 /* At this point, "val" has the value of the combined HI/LO
1808 pair. If the low order 16 bits (which will be used for
1809 the LO16 insn) are negative, then we will need an
1810 adjustment for the high order 16 bits. */
1811 val += 0x8000;
1812 val = (val >> 16) & 0xffff;
1813
1814 insn &= ~ (bfd_vma) 0xffff;
1815 insn |= val;
1816 bfd_put_32 (abfd, (bfd_vma) insn, l->addr);
1817
1818 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1819 {
1820 gp_disp_relent = *reloc_entry;
1821 reloc_entry = &gp_disp_relent;
1822 reloc_entry->addend = l->addend;
1823 }
1824
1825 next = l->next;
1826 free (l);
1827 l = next;
1828 }
1829
1830 mips_hi16_list = NULL;
1831 }
1832 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1833 {
1834 bfd_reloc_status_type ret;
1835 bfd_vma gp, relocation;
1836
1837 /* FIXME: Does this case ever occur? */
1838
1839 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1840 if (ret != bfd_reloc_ok)
1841 return ret;
1842
1843 relocation = gp - reloc_entry->address;
1844 relocation += symbol->section->output_section->vma;
1845 relocation += symbol->section->output_offset;
1846 relocation += reloc_entry->addend;
1847
1848 if (reloc_entry->address > input_section->_cooked_size)
1849 return bfd_reloc_outofrange;
1850
1851 gp_disp_relent = *reloc_entry;
1852 reloc_entry = &gp_disp_relent;
1853 reloc_entry->addend = relocation - 4;
1854 }
1855
1856 /* Now do the LO16 reloc in the usual way. */
1857 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1858 input_section, output_bfd, error_message);
1859 }
1860
1861 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1862 table used for PIC code. If the symbol is an external symbol, the
1863 instruction is modified to contain the offset of the appropriate
1864 entry in the global offset table. If the symbol is a section
1865 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1866 addends are combined to form the real addend against the section
1867 symbol; the GOT16 is modified to contain the offset of an entry in
1868 the global offset table, and the LO16 is modified to offset it
1869 appropriately. Thus an offset larger than 16 bits requires a
1870 modified value in the global offset table.
1871
1872 This implementation suffices for the assembler, but the linker does
1873 not yet know how to create global offset tables. */
1874
1875 bfd_reloc_status_type
1876 _bfd_mips_elf_got16_reloc (abfd,
1877 reloc_entry,
1878 symbol,
1879 data,
1880 input_section,
1881 output_bfd,
1882 error_message)
1883 bfd *abfd;
1884 arelent *reloc_entry;
1885 asymbol *symbol;
1886 PTR data;
1887 asection *input_section;
1888 bfd *output_bfd;
1889 char **error_message;
1890 {
1891 /* If we're relocating, and this an external symbol, we don't want
1892 to change anything. */
1893 if (output_bfd != (bfd *) NULL
1894 && (symbol->flags & BSF_SECTION_SYM) == 0
1895 && reloc_entry->addend == 0)
1896 {
1897 reloc_entry->address += input_section->output_offset;
1898 return bfd_reloc_ok;
1899 }
1900
1901 /* If we're relocating, and this is a local symbol, we can handle it
1902 just like HI16. */
1903 if (output_bfd != (bfd *) NULL
1904 && (symbol->flags & BSF_SECTION_SYM) != 0)
1905 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1906 input_section, output_bfd, error_message);
1907
1908 abort ();
1909 }
1910
1911 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1912 dangerous relocation. */
1913
1914 static boolean
1915 mips_elf_assign_gp (output_bfd, pgp)
1916 bfd *output_bfd;
1917 bfd_vma *pgp;
1918 {
1919 unsigned int count;
1920 asymbol **sym;
1921 unsigned int i;
1922
1923 /* If we've already figured out what GP will be, just return it. */
1924 *pgp = _bfd_get_gp_value (output_bfd);
1925 if (*pgp)
1926 return true;
1927
1928 count = bfd_get_symcount (output_bfd);
1929 sym = bfd_get_outsymbols (output_bfd);
1930
1931 /* The linker script will have created a symbol named `_gp' with the
1932 appropriate value. */
1933 if (sym == (asymbol **) NULL)
1934 i = count;
1935 else
1936 {
1937 for (i = 0; i < count; i++, sym++)
1938 {
1939 register const char *name;
1940
1941 name = bfd_asymbol_name (*sym);
1942 if (*name == '_' && strcmp (name, "_gp") == 0)
1943 {
1944 *pgp = bfd_asymbol_value (*sym);
1945 _bfd_set_gp_value (output_bfd, *pgp);
1946 break;
1947 }
1948 }
1949 }
1950
1951 if (i >= count)
1952 {
1953 /* Only get the error once. */
1954 *pgp = 4;
1955 _bfd_set_gp_value (output_bfd, *pgp);
1956 return false;
1957 }
1958
1959 return true;
1960 }
1961
1962 /* We have to figure out the gp value, so that we can adjust the
1963 symbol value correctly. We look up the symbol _gp in the output
1964 BFD. If we can't find it, we're stuck. We cache it in the ELF
1965 target data. We don't need to adjust the symbol value for an
1966 external symbol if we are producing relocateable output. */
1967
1968 static bfd_reloc_status_type
1969 mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1970 bfd *output_bfd;
1971 asymbol *symbol;
1972 boolean relocateable;
1973 char **error_message;
1974 bfd_vma *pgp;
1975 {
1976 if (bfd_is_und_section (symbol->section)
1977 && ! relocateable)
1978 {
1979 *pgp = 0;
1980 return bfd_reloc_undefined;
1981 }
1982
1983 *pgp = _bfd_get_gp_value (output_bfd);
1984 if (*pgp == 0
1985 && (! relocateable
1986 || (symbol->flags & BSF_SECTION_SYM) != 0))
1987 {
1988 if (relocateable)
1989 {
1990 /* Make up a value. */
1991 *pgp = symbol->section->output_section->vma + 0x4000;
1992 _bfd_set_gp_value (output_bfd, *pgp);
1993 }
1994 else if (!mips_elf_assign_gp (output_bfd, pgp))
1995 {
1996 *error_message =
1997 (char *) _("GP relative relocation when _gp not defined");
1998 return bfd_reloc_dangerous;
1999 }
2000 }
2001
2002 return bfd_reloc_ok;
2003 }
2004
2005 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
2006 become the offset from the gp register. This function also handles
2007 R_MIPS_LITERAL relocations, although those can be handled more
2008 cleverly because the entries in the .lit8 and .lit4 sections can be
2009 merged. */
2010
2011 static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
2012 arelent *, asection *,
2013 boolean, PTR, bfd_vma));
2014
2015 bfd_reloc_status_type
2016 _bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
2017 output_bfd, error_message)
2018 bfd *abfd;
2019 arelent *reloc_entry;
2020 asymbol *symbol;
2021 PTR data;
2022 asection *input_section;
2023 bfd *output_bfd;
2024 char **error_message;
2025 {
2026 boolean relocateable;
2027 bfd_reloc_status_type ret;
2028 bfd_vma gp;
2029
2030 /* If we're relocating, and this is an external symbol with no
2031 addend, we don't want to change anything. We will only have an
2032 addend if this is a newly created reloc, not read from an ELF
2033 file. */
2034 if (output_bfd != (bfd *) NULL
2035 && (symbol->flags & BSF_SECTION_SYM) == 0
2036 && reloc_entry->addend == 0)
2037 {
2038 reloc_entry->address += input_section->output_offset;
2039 return bfd_reloc_ok;
2040 }
2041
2042 if (output_bfd != (bfd *) NULL)
2043 relocateable = true;
2044 else
2045 {
2046 relocateable = false;
2047 output_bfd = symbol->section->output_section->owner;
2048 }
2049
2050 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
2051 &gp);
2052 if (ret != bfd_reloc_ok)
2053 return ret;
2054
2055 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
2056 relocateable, data, gp);
2057 }
2058
2059 static bfd_reloc_status_type
2060 gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
2061 gp)
2062 bfd *abfd;
2063 asymbol *symbol;
2064 arelent *reloc_entry;
2065 asection *input_section;
2066 boolean relocateable;
2067 PTR data;
2068 bfd_vma gp;
2069 {
2070 bfd_vma relocation;
2071 unsigned long insn;
2072 unsigned long val;
2073
2074 if (bfd_is_com_section (symbol->section))
2075 relocation = 0;
2076 else
2077 relocation = symbol->value;
2078
2079 relocation += symbol->section->output_section->vma;
2080 relocation += symbol->section->output_offset;
2081
2082 if (reloc_entry->address > input_section->_cooked_size)
2083 return bfd_reloc_outofrange;
2084
2085 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
2086
2087 /* Set val to the offset into the section or symbol. */
2088 if (reloc_entry->howto->src_mask == 0)
2089 {
2090 /* This case occurs with the 64-bit MIPS ELF ABI. */
2091 val = reloc_entry->addend;
2092 }
2093 else
2094 {
2095 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
2096 if (val & 0x8000)
2097 val -= 0x10000;
2098 }
2099
2100 /* Adjust val for the final section location and GP value. If we
2101 are producing relocateable output, we don't want to do this for
2102 an external symbol. */
2103 if (! relocateable
2104 || (symbol->flags & BSF_SECTION_SYM) != 0)
2105 val += relocation - gp;
2106
2107 insn = (insn & ~0xffff) | (val & 0xffff);
2108 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
2109
2110 if (relocateable)
2111 reloc_entry->address += input_section->output_offset;
2112
2113 /* Make sure it fit in 16 bits. */
2114 if ((long) val >= 0x8000 || (long) val < -0x8000)
2115 return bfd_reloc_overflow;
2116
2117 return bfd_reloc_ok;
2118 }
2119
2120 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
2121 from the gp register? XXX */
2122
2123 static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
2124 arelent *, asection *,
2125 boolean, PTR, bfd_vma));
2126
2127 bfd_reloc_status_type
2128 _bfd_mips_elf_gprel32_reloc (abfd,
2129 reloc_entry,
2130 symbol,
2131 data,
2132 input_section,
2133 output_bfd,
2134 error_message)
2135 bfd *abfd;
2136 arelent *reloc_entry;
2137 asymbol *symbol;
2138 PTR data;
2139 asection *input_section;
2140 bfd *output_bfd;
2141 char **error_message;
2142 {
2143 boolean relocateable;
2144 bfd_reloc_status_type ret;
2145 bfd_vma gp;
2146
2147 /* If we're relocating, and this is an external symbol with no
2148 addend, we don't want to change anything. We will only have an
2149 addend if this is a newly created reloc, not read from an ELF
2150 file. */
2151 if (output_bfd != (bfd *) NULL
2152 && (symbol->flags & BSF_SECTION_SYM) == 0
2153 && reloc_entry->addend == 0)
2154 {
2155 *error_message = (char *)
2156 _("32bits gp relative relocation occurs for an external symbol");
2157 return bfd_reloc_outofrange;
2158 }
2159
2160 if (output_bfd != (bfd *) NULL)
2161 {
2162 relocateable = true;
2163 gp = _bfd_get_gp_value (output_bfd);
2164 }
2165 else
2166 {
2167 relocateable = false;
2168 output_bfd = symbol->section->output_section->owner;
2169
2170 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
2171 error_message, &gp);
2172 if (ret != bfd_reloc_ok)
2173 return ret;
2174 }
2175
2176 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
2177 relocateable, data, gp);
2178 }
2179
2180 static bfd_reloc_status_type
2181 gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
2182 gp)
2183 bfd *abfd;
2184 asymbol *symbol;
2185 arelent *reloc_entry;
2186 asection *input_section;
2187 boolean relocateable;
2188 PTR data;
2189 bfd_vma gp;
2190 {
2191 bfd_vma relocation;
2192 unsigned long val;
2193
2194 if (bfd_is_com_section (symbol->section))
2195 relocation = 0;
2196 else
2197 relocation = symbol->value;
2198
2199 relocation += symbol->section->output_section->vma;
2200 relocation += symbol->section->output_offset;
2201
2202 if (reloc_entry->address > input_section->_cooked_size)
2203 return bfd_reloc_outofrange;
2204
2205 if (reloc_entry->howto->src_mask == 0)
2206 {
2207 /* This case arises with the 64-bit MIPS ELF ABI. */
2208 val = 0;
2209 }
2210 else
2211 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
2212
2213 /* Set val to the offset into the section or symbol. */
2214 val += reloc_entry->addend;
2215
2216 /* Adjust val for the final section location and GP value. If we
2217 are producing relocateable output, we don't want to do this for
2218 an external symbol. */
2219 if (! relocateable
2220 || (symbol->flags & BSF_SECTION_SYM) != 0)
2221 val += relocation - gp;
2222
2223 bfd_put_32 (abfd, (bfd_vma) val, (bfd_byte *) data + reloc_entry->address);
2224
2225 if (relocateable)
2226 reloc_entry->address += input_section->output_offset;
2227
2228 return bfd_reloc_ok;
2229 }
2230
2231 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
2232 generated when addresses are 64 bits. The upper 32 bits are a simple
2233 sign extension. */
2234
2235 static bfd_reloc_status_type
2236 mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
2237 output_bfd, error_message)
2238 bfd *abfd;
2239 arelent *reloc_entry;
2240 asymbol *symbol;
2241 PTR data;
2242 asection *input_section;
2243 bfd *output_bfd;
2244 char **error_message;
2245 {
2246 bfd_reloc_status_type r;
2247 arelent reloc32;
2248 unsigned long val;
2249 bfd_size_type addr;
2250
2251 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2252 input_section, output_bfd, error_message);
2253 if (r != bfd_reloc_continue)
2254 return r;
2255
2256 /* Do a normal 32 bit relocation on the lower 32 bits. */
2257 reloc32 = *reloc_entry;
2258 if (bfd_big_endian (abfd))
2259 reloc32.address += 4;
2260 reloc32.howto = &elf_mips_howto_table_rel[R_MIPS_32];
2261 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
2262 output_bfd, error_message);
2263
2264 /* Sign extend into the upper 32 bits. */
2265 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
2266 if ((val & 0x80000000) != 0)
2267 val = 0xffffffff;
2268 else
2269 val = 0;
2270 addr = reloc_entry->address;
2271 if (bfd_little_endian (abfd))
2272 addr += 4;
2273 bfd_put_32 (abfd, (bfd_vma) val, (bfd_byte *) data + addr);
2274
2275 return r;
2276 }
2277
2278 /* Handle a mips16 jump. */
2279
2280 static bfd_reloc_status_type
2281 mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
2282 output_bfd, error_message)
2283 bfd *abfd ATTRIBUTE_UNUSED;
2284 arelent *reloc_entry;
2285 asymbol *symbol;
2286 PTR data ATTRIBUTE_UNUSED;
2287 asection *input_section;
2288 bfd *output_bfd;
2289 char **error_message ATTRIBUTE_UNUSED;
2290 {
2291 if (output_bfd != (bfd *) NULL
2292 && (symbol->flags & BSF_SECTION_SYM) == 0
2293 && reloc_entry->addend == 0)
2294 {
2295 reloc_entry->address += input_section->output_offset;
2296 return bfd_reloc_ok;
2297 }
2298
2299 /* FIXME. */
2300 {
2301 static boolean warned;
2302
2303 if (! warned)
2304 (*_bfd_error_handler)
2305 (_("Linking mips16 objects into %s format is not supported"),
2306 bfd_get_target (input_section->output_section->owner));
2307 warned = true;
2308 }
2309
2310 return bfd_reloc_undefined;
2311 }
2312
2313 /* Handle a mips16 GP relative reloc. */
2314
2315 static bfd_reloc_status_type
2316 mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
2317 output_bfd, error_message)
2318 bfd *abfd;
2319 arelent *reloc_entry;
2320 asymbol *symbol;
2321 PTR data;
2322 asection *input_section;
2323 bfd *output_bfd;
2324 char **error_message;
2325 {
2326 boolean relocateable;
2327 bfd_reloc_status_type ret;
2328 bfd_vma gp;
2329 unsigned short extend, insn;
2330 unsigned long final;
2331
2332 /* If we're relocating, and this is an external symbol with no
2333 addend, we don't want to change anything. We will only have an
2334 addend if this is a newly created reloc, not read from an ELF
2335 file. */
2336 if (output_bfd != NULL
2337 && (symbol->flags & BSF_SECTION_SYM) == 0
2338 && reloc_entry->addend == 0)
2339 {
2340 reloc_entry->address += input_section->output_offset;
2341 return bfd_reloc_ok;
2342 }
2343
2344 if (output_bfd != NULL)
2345 relocateable = true;
2346 else
2347 {
2348 relocateable = false;
2349 output_bfd = symbol->section->output_section->owner;
2350 }
2351
2352 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
2353 &gp);
2354 if (ret != bfd_reloc_ok)
2355 return ret;
2356
2357 if (reloc_entry->address > input_section->_cooked_size)
2358 return bfd_reloc_outofrange;
2359
2360 /* Pick up the mips16 extend instruction and the real instruction. */
2361 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
2362 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
2363
2364 /* Stuff the current addend back as a 32 bit value, do the usual
2365 relocation, and then clean up. */
2366 bfd_put_32 (abfd,
2367 (bfd_vma) (((extend & 0x1f) << 11)
2368 | (extend & 0x7e0)
2369 | (insn & 0x1f)),
2370 (bfd_byte *) data + reloc_entry->address);
2371
2372 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
2373 relocateable, data, gp);
2374
2375 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
2376 bfd_put_16 (abfd,
2377 (bfd_vma) ((extend & 0xf800)
2378 | ((final >> 11) & 0x1f)
2379 | (final & 0x7e0)),
2380 (bfd_byte *) data + reloc_entry->address);
2381 bfd_put_16 (abfd,
2382 (bfd_vma) ((insn & 0xffe0)
2383 | (final & 0x1f)),
2384 (bfd_byte *) data + reloc_entry->address + 2);
2385
2386 return ret;
2387 }
2388
2389 /* Return the ISA for a MIPS e_flags value. */
2390
2391 static INLINE int
2392 elf_mips_isa (flags)
2393 flagword flags;
2394 {
2395 switch (flags & EF_MIPS_ARCH)
2396 {
2397 case E_MIPS_ARCH_1:
2398 return 1;
2399 case E_MIPS_ARCH_2:
2400 return 2;
2401 case E_MIPS_ARCH_3:
2402 return 3;
2403 case E_MIPS_ARCH_4:
2404 return 4;
2405 case E_MIPS_ARCH_5:
2406 return 5;
2407 case E_MIPS_ARCH_32:
2408 return 32;
2409 case E_MIPS_ARCH_64:
2410 return 64;
2411 }
2412 return 4;
2413 }
2414
2415 /* Return the MACH for a MIPS e_flags value. */
2416
2417 static INLINE unsigned long
2418 elf_mips_mach (flags)
2419 flagword flags;
2420 {
2421 switch (flags & EF_MIPS_MACH)
2422 {
2423 case E_MIPS_MACH_3900:
2424 return bfd_mach_mips3900;
2425
2426 case E_MIPS_MACH_4010:
2427 return bfd_mach_mips4010;
2428
2429 case E_MIPS_MACH_4100:
2430 return bfd_mach_mips4100;
2431
2432 case E_MIPS_MACH_4111:
2433 return bfd_mach_mips4111;
2434
2435 case E_MIPS_MACH_4650:
2436 return bfd_mach_mips4650;
2437
2438 case E_MIPS_MACH_SB1:
2439 return bfd_mach_mips_sb1;
2440
2441 default:
2442 switch (flags & EF_MIPS_ARCH)
2443 {
2444 default:
2445 case E_MIPS_ARCH_1:
2446 return bfd_mach_mips3000;
2447 break;
2448
2449 case E_MIPS_ARCH_2:
2450 return bfd_mach_mips6000;
2451 break;
2452
2453 case E_MIPS_ARCH_3:
2454 return bfd_mach_mips4000;
2455 break;
2456
2457 case E_MIPS_ARCH_4:
2458 return bfd_mach_mips8000;
2459 break;
2460
2461 case E_MIPS_ARCH_5:
2462 return bfd_mach_mips5;
2463 break;
2464
2465 case E_MIPS_ARCH_32:
2466 return bfd_mach_mipsisa32;
2467 break;
2468
2469 case E_MIPS_ARCH_64:
2470 return bfd_mach_mipsisa64;
2471 break;
2472 }
2473 }
2474
2475 return 0;
2476 }
2477
2478 /* Return printable name for ABI. */
2479
2480 static INLINE char *
2481 elf_mips_abi_name (abfd)
2482 bfd *abfd;
2483 {
2484 flagword flags;
2485
2486 flags = elf_elfheader (abfd)->e_flags;
2487 switch (flags & EF_MIPS_ABI)
2488 {
2489 case 0:
2490 if (ABI_N32_P (abfd))
2491 return "N32";
2492 else if (ABI_64_P (abfd))
2493 return "64";
2494 else
2495 return "none";
2496 case E_MIPS_ABI_O32:
2497 return "O32";
2498 case E_MIPS_ABI_O64:
2499 return "O64";
2500 case E_MIPS_ABI_EABI32:
2501 return "EABI32";
2502 case E_MIPS_ABI_EABI64:
2503 return "EABI64";
2504 default:
2505 return "unknown abi";
2506 }
2507 }
2508
2509 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
2510
2511 struct elf_reloc_map {
2512 bfd_reloc_code_real_type bfd_reloc_val;
2513 enum elf_mips_reloc_type elf_reloc_val;
2514 };
2515
2516 static const struct elf_reloc_map mips_reloc_map[] =
2517 {
2518 { BFD_RELOC_NONE, R_MIPS_NONE, },
2519 { BFD_RELOC_16, R_MIPS_16 },
2520 { BFD_RELOC_32, R_MIPS_32 },
2521 { BFD_RELOC_64, R_MIPS_64 },
2522 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
2523 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
2524 { BFD_RELOC_LO16, R_MIPS_LO16 },
2525 { BFD_RELOC_GPREL16, R_MIPS_GPREL16 },
2526 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
2527 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
2528 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
2529 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
2530 { BFD_RELOC_GPREL32, R_MIPS_GPREL32 },
2531 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
2532 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
2533 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
2534 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
2535 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
2536 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
2537 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
2538 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
2539 };
2540
2541 /* Given a BFD reloc type, return a howto structure. */
2542
2543 static reloc_howto_type *
2544 bfd_elf32_bfd_reloc_type_lookup (abfd, code)
2545 bfd *abfd;
2546 bfd_reloc_code_real_type code;
2547 {
2548 unsigned int i;
2549
2550 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
2551 {
2552 if (mips_reloc_map[i].bfd_reloc_val == code)
2553 return &elf_mips_howto_table_rel[(int) mips_reloc_map[i].elf_reloc_val];
2554 }
2555
2556 switch (code)
2557 {
2558 default:
2559 bfd_set_error (bfd_error_bad_value);
2560 return NULL;
2561
2562 case BFD_RELOC_CTOR:
2563 /* We need to handle BFD_RELOC_CTOR specially.
2564 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
2565 size of addresses on this architecture. */
2566 if (bfd_arch_bits_per_address (abfd) == 32)
2567 return &elf_mips_howto_table_rel[(int) R_MIPS_32];
2568 else
2569 return &elf_mips_ctor64_howto;
2570
2571 case BFD_RELOC_MIPS16_JMP:
2572 return &elf_mips16_jump_howto;
2573 case BFD_RELOC_MIPS16_GPREL:
2574 return &elf_mips16_gprel_howto;
2575 case BFD_RELOC_VTABLE_INHERIT:
2576 return &elf_mips_gnu_vtinherit_howto;
2577 case BFD_RELOC_VTABLE_ENTRY:
2578 return &elf_mips_gnu_vtentry_howto;
2579 case BFD_RELOC_PCREL_HI16_S:
2580 return &elf_mips_gnu_rel_hi16;
2581 case BFD_RELOC_PCREL_LO16:
2582 return &elf_mips_gnu_rel_lo16;
2583 case BFD_RELOC_16_PCREL_S2:
2584 return &elf_mips_gnu_rel16_s2;
2585 case BFD_RELOC_64_PCREL:
2586 return &elf_mips_gnu_pcrel64;
2587 case BFD_RELOC_32_PCREL:
2588 return &elf_mips_gnu_pcrel32;
2589 }
2590 }
2591
2592 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2593
2594 static reloc_howto_type *
2595 mips_rtype_to_howto (r_type)
2596 unsigned int r_type;
2597 {
2598 switch (r_type)
2599 {
2600 case R_MIPS16_26:
2601 return &elf_mips16_jump_howto;
2602 break;
2603 case R_MIPS16_GPREL:
2604 return &elf_mips16_gprel_howto;
2605 break;
2606 case R_MIPS_GNU_VTINHERIT:
2607 return &elf_mips_gnu_vtinherit_howto;
2608 break;
2609 case R_MIPS_GNU_VTENTRY:
2610 return &elf_mips_gnu_vtentry_howto;
2611 break;
2612 case R_MIPS_GNU_REL_HI16:
2613 return &elf_mips_gnu_rel_hi16;
2614 break;
2615 case R_MIPS_GNU_REL_LO16:
2616 return &elf_mips_gnu_rel_lo16;
2617 break;
2618 case R_MIPS_GNU_REL16_S2:
2619 return &elf_mips_gnu_rel16_s2;
2620 break;
2621 case R_MIPS_PC64:
2622 return &elf_mips_gnu_pcrel64;
2623 break;
2624 case R_MIPS_PC32:
2625 return &elf_mips_gnu_pcrel32;
2626 break;
2627
2628 default:
2629 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
2630 return &elf_mips_howto_table_rel[r_type];
2631 break;
2632 }
2633 }
2634
2635 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
2636
2637 static void
2638 mips_info_to_howto_rel (abfd, cache_ptr, dst)
2639 bfd *abfd;
2640 arelent *cache_ptr;
2641 Elf32_Internal_Rel *dst;
2642 {
2643 unsigned int r_type;
2644
2645 r_type = ELF32_R_TYPE (dst->r_info);
2646 cache_ptr->howto = mips_rtype_to_howto (r_type);
2647
2648 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
2649 value for the object file. We get the addend now, rather than
2650 when we do the relocation, because the symbol manipulations done
2651 by the linker may cause us to lose track of the input BFD. */
2652 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
2653 && (r_type == (unsigned int) R_MIPS_GPREL16
2654 || r_type == (unsigned int) R_MIPS_LITERAL))
2655 cache_ptr->addend = elf_gp (abfd);
2656 }
2657
2658 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
2659
2660 static void
2661 mips_info_to_howto_rela (abfd, cache_ptr, dst)
2662 bfd *abfd;
2663 arelent *cache_ptr;
2664 Elf32_Internal_Rela *dst;
2665 {
2666 /* Since an Elf32_Internal_Rel is an initial prefix of an
2667 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
2668 above. */
2669 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
2670
2671 /* If we ever need to do any extra processing with dst->r_addend
2672 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
2673 }
2674 \f
2675 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2676 routines swap this structure in and out. They are used outside of
2677 BFD, so they are globally visible. */
2678
2679 void
2680 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
2681 bfd *abfd;
2682 const Elf32_External_RegInfo *ex;
2683 Elf32_RegInfo *in;
2684 {
2685 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2686 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2687 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2688 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2689 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2690 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2691 }
2692
2693 void
2694 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
2695 bfd *abfd;
2696 const Elf32_RegInfo *in;
2697 Elf32_External_RegInfo *ex;
2698 {
2699 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2700 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2701 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2702 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2703 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2704 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2705 }
2706
2707 /* In the 64 bit ABI, the .MIPS.options section holds register
2708 information in an Elf64_Reginfo structure. These routines swap
2709 them in and out. They are globally visible because they are used
2710 outside of BFD. These routines are here so that gas can call them
2711 without worrying about whether the 64 bit ABI has been included. */
2712
2713 void
2714 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2715 bfd *abfd;
2716 const Elf64_External_RegInfo *ex;
2717 Elf64_Internal_RegInfo *in;
2718 {
2719 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2720 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2721 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2722 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2723 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2724 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2725 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2726 }
2727
2728 void
2729 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2730 bfd *abfd;
2731 const Elf64_Internal_RegInfo *in;
2732 Elf64_External_RegInfo *ex;
2733 {
2734 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2735 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2736 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2737 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2738 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2739 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2740 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2741 }
2742
2743 /* Swap an entry in a .gptab section. Note that these routines rely
2744 on the equivalence of the two elements of the union. */
2745
2746 static void
2747 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2748 bfd *abfd;
2749 const Elf32_External_gptab *ex;
2750 Elf32_gptab *in;
2751 {
2752 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2753 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2754 }
2755
2756 static void
2757 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2758 bfd *abfd;
2759 const Elf32_gptab *in;
2760 Elf32_External_gptab *ex;
2761 {
2762 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2763 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2764 }
2765
2766 static void
2767 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2768 bfd *abfd;
2769 const Elf32_compact_rel *in;
2770 Elf32_External_compact_rel *ex;
2771 {
2772 H_PUT_32 (abfd, in->id1, ex->id1);
2773 H_PUT_32 (abfd, in->num, ex->num);
2774 H_PUT_32 (abfd, in->id2, ex->id2);
2775 H_PUT_32 (abfd, in->offset, ex->offset);
2776 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2777 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2778 }
2779
2780 static void
2781 bfd_elf32_swap_crinfo_out (abfd, in, ex)
2782 bfd *abfd;
2783 const Elf32_crinfo *in;
2784 Elf32_External_crinfo *ex;
2785 {
2786 unsigned long l;
2787
2788 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2789 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2790 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2791 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2792 H_PUT_32 (abfd, l, ex->info);
2793 H_PUT_32 (abfd, in->konst, ex->konst);
2794 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2795 }
2796
2797 /* Swap in an options header. */
2798
2799 void
2800 bfd_mips_elf_swap_options_in (abfd, ex, in)
2801 bfd *abfd;
2802 const Elf_External_Options *ex;
2803 Elf_Internal_Options *in;
2804 {
2805 in->kind = H_GET_8 (abfd, ex->kind);
2806 in->size = H_GET_8 (abfd, ex->size);
2807 in->section = H_GET_16 (abfd, ex->section);
2808 in->info = H_GET_32 (abfd, ex->info);
2809 }
2810
2811 /* Swap out an options header. */
2812
2813 void
2814 bfd_mips_elf_swap_options_out (abfd, in, ex)
2815 bfd *abfd;
2816 const Elf_Internal_Options *in;
2817 Elf_External_Options *ex;
2818 {
2819 H_PUT_8 (abfd, in->kind, ex->kind);
2820 H_PUT_8 (abfd, in->size, ex->size);
2821 H_PUT_16 (abfd, in->section, ex->section);
2822 H_PUT_32 (abfd, in->info, ex->info);
2823 }
2824 #if 0
2825 /* Swap in an MSYM entry. */
2826
2827 static void
2828 bfd_mips_elf_swap_msym_in (abfd, ex, in)
2829 bfd *abfd;
2830 const Elf32_External_Msym *ex;
2831 Elf32_Internal_Msym *in;
2832 {
2833 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
2834 in->ms_info = H_GET_32 (abfd, ex->ms_info);
2835 }
2836 #endif
2837 /* Swap out an MSYM entry. */
2838
2839 static void
2840 bfd_mips_elf_swap_msym_out (abfd, in, ex)
2841 bfd *abfd;
2842 const Elf32_Internal_Msym *in;
2843 Elf32_External_Msym *ex;
2844 {
2845 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2846 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
2847 }
2848 \f
2849 /* Determine whether a symbol is global for the purposes of splitting
2850 the symbol table into global symbols and local symbols. At least
2851 on Irix 5, this split must be between section symbols and all other
2852 symbols. On most ELF targets the split is between static symbols
2853 and externally visible symbols. */
2854
2855 static boolean
2856 mips_elf_sym_is_global (abfd, sym)
2857 bfd *abfd ATTRIBUTE_UNUSED;
2858 asymbol *sym;
2859 {
2860 if (SGI_COMPAT (abfd))
2861 return (sym->flags & BSF_SECTION_SYM) == 0;
2862 else
2863 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2864 || bfd_is_und_section (bfd_get_section (sym))
2865 || bfd_is_com_section (bfd_get_section (sym)));
2866 }
2867 \f
2868 /* Set the right machine number for a MIPS ELF file. This is used for
2869 both the 32-bit and the 64-bit ABI. */
2870
2871 boolean
2872 _bfd_mips_elf_object_p (abfd)
2873 bfd *abfd;
2874 {
2875 /* Irix 5 and 6 are broken. Object file symbol tables are not always
2876 sorted correctly such that local symbols precede global symbols,
2877 and the sh_info field in the symbol table is not always right. */
2878 if (SGI_COMPAT(abfd))
2879 elf_bad_symtab (abfd) = true;
2880
2881 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2882 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2883 return true;
2884 }
2885
2886 /* The final processing done just before writing out a MIPS ELF object
2887 file. This gets the MIPS architecture right based on the machine
2888 number. This is used by both the 32-bit and the 64-bit ABI. */
2889
2890 void
2891 _bfd_mips_elf_final_write_processing (abfd, linker)
2892 bfd *abfd;
2893 boolean linker ATTRIBUTE_UNUSED;
2894 {
2895 unsigned long val;
2896 unsigned int i;
2897 Elf_Internal_Shdr **hdrpp;
2898 const char *name;
2899 asection *sec;
2900
2901 switch (bfd_get_mach (abfd))
2902 {
2903 default:
2904 case bfd_mach_mips3000:
2905 val = E_MIPS_ARCH_1;
2906 break;
2907
2908 case bfd_mach_mips3900:
2909 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2910 break;
2911
2912 case bfd_mach_mips6000:
2913 val = E_MIPS_ARCH_2;
2914 break;
2915
2916 case bfd_mach_mips4000:
2917 case bfd_mach_mips4300:
2918 case bfd_mach_mips4400:
2919 case bfd_mach_mips4600:
2920 val = E_MIPS_ARCH_3;
2921 break;
2922
2923 case bfd_mach_mips4010:
2924 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2925 break;
2926
2927 case bfd_mach_mips4100:
2928 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2929 break;
2930
2931 case bfd_mach_mips4111:
2932 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2933 break;
2934
2935 case bfd_mach_mips4650:
2936 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2937 break;
2938
2939 case bfd_mach_mips5000:
2940 case bfd_mach_mips8000:
2941 case bfd_mach_mips10000:
2942 case bfd_mach_mips12000:
2943 val = E_MIPS_ARCH_4;
2944 break;
2945
2946 case bfd_mach_mips5:
2947 val = E_MIPS_ARCH_5;
2948 break;
2949
2950 case bfd_mach_mips_sb1:
2951 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
2952 break;
2953
2954 case bfd_mach_mipsisa32:
2955 val = E_MIPS_ARCH_32;
2956 break;
2957
2958 case bfd_mach_mipsisa64:
2959 val = E_MIPS_ARCH_64;
2960 }
2961
2962 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
2963 elf_elfheader (abfd)->e_flags |= val;
2964
2965 /* Set the sh_info field for .gptab sections and other appropriate
2966 info for each special section. */
2967 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2968 i < elf_numsections (abfd);
2969 i++, hdrpp++)
2970 {
2971 switch ((*hdrpp)->sh_type)
2972 {
2973 case SHT_MIPS_MSYM:
2974 case SHT_MIPS_LIBLIST:
2975 sec = bfd_get_section_by_name (abfd, ".dynstr");
2976 if (sec != NULL)
2977 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2978 break;
2979
2980 case SHT_MIPS_GPTAB:
2981 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2982 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2983 BFD_ASSERT (name != NULL
2984 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2985 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2986 BFD_ASSERT (sec != NULL);
2987 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2988 break;
2989
2990 case SHT_MIPS_CONTENT:
2991 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2992 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2993 BFD_ASSERT (name != NULL
2994 && strncmp (name, ".MIPS.content",
2995 sizeof ".MIPS.content" - 1) == 0);
2996 sec = bfd_get_section_by_name (abfd,
2997 name + sizeof ".MIPS.content" - 1);
2998 BFD_ASSERT (sec != NULL);
2999 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
3000 break;
3001
3002 case SHT_MIPS_SYMBOL_LIB:
3003 sec = bfd_get_section_by_name (abfd, ".dynsym");
3004 if (sec != NULL)
3005 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
3006 sec = bfd_get_section_by_name (abfd, ".liblist");
3007 if (sec != NULL)
3008 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
3009 break;
3010
3011 case SHT_MIPS_EVENTS:
3012 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
3013 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
3014 BFD_ASSERT (name != NULL);
3015 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
3016 sec = bfd_get_section_by_name (abfd,
3017 name + sizeof ".MIPS.events" - 1);
3018 else
3019 {
3020 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
3021 sizeof ".MIPS.post_rel" - 1) == 0);
3022 sec = bfd_get_section_by_name (abfd,
3023 (name
3024 + sizeof ".MIPS.post_rel" - 1));
3025 }
3026 BFD_ASSERT (sec != NULL);
3027 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
3028 break;
3029
3030 }
3031 }
3032 }
3033 \f
3034 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
3035
3036 boolean
3037 _bfd_mips_elf_set_private_flags (abfd, flags)
3038 bfd *abfd;
3039 flagword flags;
3040 {
3041 BFD_ASSERT (!elf_flags_init (abfd)
3042 || elf_elfheader (abfd)->e_flags == flags);
3043
3044 elf_elfheader (abfd)->e_flags = flags;
3045 elf_flags_init (abfd) = true;
3046 return true;
3047 }
3048
3049 /* Merge backend specific data from an object file to the output
3050 object file when linking. */
3051
3052 boolean
3053 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
3054 bfd *ibfd;
3055 bfd *obfd;
3056 {
3057 flagword old_flags;
3058 flagword new_flags;
3059 boolean ok;
3060 boolean null_input_bfd = true;
3061 asection *sec;
3062
3063 /* Check if we have the same endianess */
3064 if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
3065 return false;
3066
3067 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3068 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3069 return true;
3070
3071 new_flags = elf_elfheader (ibfd)->e_flags;
3072 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
3073 old_flags = elf_elfheader (obfd)->e_flags;
3074
3075 if (! elf_flags_init (obfd))
3076 {
3077 elf_flags_init (obfd) = true;
3078 elf_elfheader (obfd)->e_flags = new_flags;
3079 elf_elfheader (obfd)->e_ident[EI_CLASS]
3080 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
3081
3082 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3083 && bfd_get_arch_info (obfd)->the_default)
3084 {
3085 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3086 bfd_get_mach (ibfd)))
3087 return false;
3088 }
3089
3090 return true;
3091 }
3092
3093 /* Check flag compatibility. */
3094
3095 new_flags &= ~EF_MIPS_NOREORDER;
3096 old_flags &= ~EF_MIPS_NOREORDER;
3097
3098 if (new_flags == old_flags)
3099 return true;
3100
3101 /* Check to see if the input BFD actually contains any sections.
3102 If not, its flags may not have been initialised either, but it cannot
3103 actually cause any incompatibility. */
3104 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
3105 {
3106 /* Ignore synthetic sections and empty .text, .data and .bss sections
3107 which are automatically generated by gas. */
3108 if (strcmp (sec->name, ".reginfo")
3109 && strcmp (sec->name, ".mdebug")
3110 && ((!strcmp (sec->name, ".text")
3111 || !strcmp (sec->name, ".data")
3112 || !strcmp (sec->name, ".bss"))
3113 && sec->_raw_size != 0))
3114 {
3115 null_input_bfd = false;
3116 break;
3117 }
3118 }
3119 if (null_input_bfd)
3120 return true;
3121
3122 ok = true;
3123
3124 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
3125 {
3126 new_flags &= ~EF_MIPS_PIC;
3127 old_flags &= ~EF_MIPS_PIC;
3128 (*_bfd_error_handler)
3129 (_("%s: linking PIC files with non-PIC files"),
3130 bfd_archive_filename (ibfd));
3131 ok = false;
3132 }
3133
3134 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
3135 {
3136 new_flags &= ~EF_MIPS_CPIC;
3137 old_flags &= ~EF_MIPS_CPIC;
3138 (*_bfd_error_handler)
3139 (_("%s: linking abicalls files with non-abicalls files"),
3140 bfd_archive_filename (ibfd));
3141 ok = false;
3142 }
3143
3144 /* Compare the ISA's. */
3145 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
3146 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
3147 {
3148 int new_mach = new_flags & EF_MIPS_MACH;
3149 int old_mach = old_flags & EF_MIPS_MACH;
3150 int new_isa = elf_mips_isa (new_flags);
3151 int old_isa = elf_mips_isa (old_flags);
3152
3153 /* If either has no machine specified, just compare the general isa's.
3154 Some combinations of machines are ok, if the isa's match. */
3155 if (! new_mach
3156 || ! old_mach
3157 || new_mach == old_mach
3158 )
3159 {
3160 /* Don't warn about mixing code using 32-bit ISAs, or mixing code
3161 using 64-bit ISAs. They will normally use the same data sizes
3162 and calling conventions. */
3163
3164 if (( (new_isa == 1 || new_isa == 2 || new_isa == 32)
3165 ^ (old_isa == 1 || old_isa == 2 || old_isa == 32)) != 0)
3166 {
3167 (*_bfd_error_handler)
3168 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
3169 bfd_archive_filename (ibfd), new_isa, old_isa);
3170 ok = false;
3171 }
3172 else
3173 {
3174 /* Do we need to update the mach field? */
3175 if (old_mach == 0 && new_mach != 0)
3176 elf_elfheader (obfd)->e_flags |= new_mach;
3177
3178 /* Do we need to update the ISA field? */
3179 if (new_isa > old_isa)
3180 {
3181 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_ARCH;
3182 elf_elfheader (obfd)->e_flags
3183 |= new_flags & EF_MIPS_ARCH;
3184 }
3185 }
3186 }
3187 else
3188 {
3189 (*_bfd_error_handler)
3190 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
3191 bfd_archive_filename (ibfd),
3192 elf_mips_mach (new_flags),
3193 elf_mips_mach (old_flags));
3194 ok = false;
3195 }
3196
3197 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
3198 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
3199 }
3200
3201 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
3202 does set EI_CLASS differently from any 32-bit ABI. */
3203 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
3204 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
3205 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
3206 {
3207 /* Only error if both are set (to different values). */
3208 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
3209 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
3210 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
3211 {
3212 (*_bfd_error_handler)
3213 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
3214 bfd_archive_filename (ibfd),
3215 elf_mips_abi_name (ibfd),
3216 elf_mips_abi_name (obfd));
3217 ok = false;
3218 }
3219 new_flags &= ~EF_MIPS_ABI;
3220 old_flags &= ~EF_MIPS_ABI;
3221 }
3222
3223 /* Warn about any other mismatches */
3224 if (new_flags != old_flags)
3225 {
3226 (*_bfd_error_handler)
3227 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3228 bfd_archive_filename (ibfd), (unsigned long) new_flags,
3229 (unsigned long) old_flags);
3230 ok = false;
3231 }
3232
3233 if (! ok)
3234 {
3235 bfd_set_error (bfd_error_bad_value);
3236 return false;
3237 }
3238
3239 return true;
3240 }
3241 \f
3242 boolean
3243 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
3244 bfd *abfd;
3245 PTR ptr;
3246 {
3247 FILE *file = (FILE *) ptr;
3248
3249 BFD_ASSERT (abfd != NULL && ptr != NULL);
3250
3251 /* Print normal ELF private data. */
3252 _bfd_elf_print_private_bfd_data (abfd, ptr);
3253
3254 /* xgettext:c-format */
3255 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
3256
3257 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
3258 fprintf (file, _(" [abi=O32]"));
3259 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
3260 fprintf (file, _(" [abi=O64]"));
3261 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
3262 fprintf (file, _(" [abi=EABI32]"));
3263 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
3264 fprintf (file, _(" [abi=EABI64]"));
3265 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
3266 fprintf (file, _(" [abi unknown]"));
3267 else if (ABI_N32_P (abfd))
3268 fprintf (file, _(" [abi=N32]"));
3269 else if (ABI_64_P (abfd))
3270 fprintf (file, _(" [abi=64]"));
3271 else
3272 fprintf (file, _(" [no abi set]"));
3273
3274 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
3275 fprintf (file, _(" [mips1]"));
3276 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
3277 fprintf (file, _(" [mips2]"));
3278 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
3279 fprintf (file, _(" [mips3]"));
3280 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
3281 fprintf (file, _(" [mips4]"));
3282 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
3283 fprintf (file, _(" [mips5]"));
3284 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
3285 fprintf (file, _(" [mips32]"));
3286 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
3287 fprintf (file, _(" [mips64]"));
3288 else
3289 fprintf (file, _(" [unknown ISA]"));
3290
3291 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
3292 fprintf (file, _(" [32bitmode]"));
3293 else
3294 fprintf (file, _(" [not 32bitmode]"));
3295
3296 fputc ('\n', file);
3297
3298 return true;
3299 }
3300 \f
3301 /* Handle a MIPS specific section when reading an object file. This
3302 is called when elfcode.h finds a section with an unknown type.
3303 This routine supports both the 32-bit and 64-bit ELF ABI.
3304
3305 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
3306 how to. */
3307
3308 boolean
3309 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
3310 bfd *abfd;
3311 Elf_Internal_Shdr *hdr;
3312 char *name;
3313 {
3314 flagword flags = 0;
3315
3316 /* There ought to be a place to keep ELF backend specific flags, but
3317 at the moment there isn't one. We just keep track of the
3318 sections by their name, instead. Fortunately, the ABI gives
3319 suggested names for all the MIPS specific sections, so we will
3320 probably get away with this. */
3321 switch (hdr->sh_type)
3322 {
3323 case SHT_MIPS_LIBLIST:
3324 if (strcmp (name, ".liblist") != 0)
3325 return false;
3326 break;
3327 case SHT_MIPS_MSYM:
3328 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
3329 return false;
3330 break;
3331 case SHT_MIPS_CONFLICT:
3332 if (strcmp (name, ".conflict") != 0)
3333 return false;
3334 break;
3335 case SHT_MIPS_GPTAB:
3336 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
3337 return false;
3338 break;
3339 case SHT_MIPS_UCODE:
3340 if (strcmp (name, ".ucode") != 0)
3341 return false;
3342 break;
3343 case SHT_MIPS_DEBUG:
3344 if (strcmp (name, ".mdebug") != 0)
3345 return false;
3346 flags = SEC_DEBUGGING;
3347 break;
3348 case SHT_MIPS_REGINFO:
3349 if (strcmp (name, ".reginfo") != 0
3350 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
3351 return false;
3352 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
3353 break;
3354 case SHT_MIPS_IFACE:
3355 if (strcmp (name, ".MIPS.interfaces") != 0)
3356 return false;
3357 break;
3358 case SHT_MIPS_CONTENT:
3359 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
3360 return false;
3361 break;
3362 case SHT_MIPS_OPTIONS:
3363 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
3364 return false;
3365 break;
3366 case SHT_MIPS_DWARF:
3367 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
3368 return false;
3369 break;
3370 case SHT_MIPS_SYMBOL_LIB:
3371 if (strcmp (name, ".MIPS.symlib") != 0)
3372 return false;
3373 break;
3374 case SHT_MIPS_EVENTS:
3375 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
3376 && strncmp (name, ".MIPS.post_rel",
3377 sizeof ".MIPS.post_rel" - 1) != 0)
3378 return false;
3379 break;
3380 default:
3381 return false;
3382 }
3383
3384 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
3385 return false;
3386
3387 if (flags)
3388 {
3389 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
3390 (bfd_get_section_flags (abfd,
3391 hdr->bfd_section)
3392 | flags)))
3393 return false;
3394 }
3395
3396 /* FIXME: We should record sh_info for a .gptab section. */
3397
3398 /* For a .reginfo section, set the gp value in the tdata information
3399 from the contents of this section. We need the gp value while
3400 processing relocs, so we just get it now. The .reginfo section
3401 is not used in the 64-bit MIPS ELF ABI. */
3402 if (hdr->sh_type == SHT_MIPS_REGINFO)
3403 {
3404 Elf32_External_RegInfo ext;
3405 Elf32_RegInfo s;
3406
3407 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
3408 (file_ptr) 0,
3409 (bfd_size_type) sizeof ext))
3410 return false;
3411 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
3412 elf_gp (abfd) = s.ri_gp_value;
3413 }
3414
3415 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
3416 set the gp value based on what we find. We may see both
3417 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
3418 they should agree. */
3419 if (hdr->sh_type == SHT_MIPS_OPTIONS)
3420 {
3421 bfd_byte *contents, *l, *lend;
3422
3423 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
3424 if (contents == NULL)
3425 return false;
3426 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
3427 (file_ptr) 0, hdr->sh_size))
3428 {
3429 free (contents);
3430 return false;
3431 }
3432 l = contents;
3433 lend = contents + hdr->sh_size;
3434 while (l + sizeof (Elf_External_Options) <= lend)
3435 {
3436 Elf_Internal_Options intopt;
3437
3438 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3439 &intopt);
3440 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3441 {
3442 Elf64_Internal_RegInfo intreg;
3443
3444 bfd_mips_elf64_swap_reginfo_in
3445 (abfd,
3446 ((Elf64_External_RegInfo *)
3447 (l + sizeof (Elf_External_Options))),
3448 &intreg);
3449 elf_gp (abfd) = intreg.ri_gp_value;
3450 }
3451 else if (intopt.kind == ODK_REGINFO)
3452 {
3453 Elf32_RegInfo intreg;
3454
3455 bfd_mips_elf32_swap_reginfo_in
3456 (abfd,
3457 ((Elf32_External_RegInfo *)
3458 (l + sizeof (Elf_External_Options))),
3459 &intreg);
3460 elf_gp (abfd) = intreg.ri_gp_value;
3461 }
3462 l += intopt.size;
3463 }
3464 free (contents);
3465 }
3466
3467 return true;
3468 }
3469
3470 /* Set the correct type for a MIPS ELF section. We do this by the
3471 section name, which is a hack, but ought to work. This routine is
3472 used by both the 32-bit and the 64-bit ABI. */
3473
3474 boolean
3475 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
3476 bfd *abfd;
3477 Elf32_Internal_Shdr *hdr;
3478 asection *sec;
3479 {
3480 register const char *name;
3481
3482 name = bfd_get_section_name (abfd, sec);
3483
3484 if (strcmp (name, ".liblist") == 0)
3485 {
3486 hdr->sh_type = SHT_MIPS_LIBLIST;
3487 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
3488 /* The sh_link field is set in final_write_processing. */
3489 }
3490 else if (strcmp (name, ".conflict") == 0)
3491 hdr->sh_type = SHT_MIPS_CONFLICT;
3492 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
3493 {
3494 hdr->sh_type = SHT_MIPS_GPTAB;
3495 hdr->sh_entsize = sizeof (Elf32_External_gptab);
3496 /* The sh_info field is set in final_write_processing. */
3497 }
3498 else if (strcmp (name, ".ucode") == 0)
3499 hdr->sh_type = SHT_MIPS_UCODE;
3500 else if (strcmp (name, ".mdebug") == 0)
3501 {
3502 hdr->sh_type = SHT_MIPS_DEBUG;
3503 /* In a shared object on Irix 5.3, the .mdebug section has an
3504 entsize of 0. FIXME: Does this matter? */
3505 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
3506 hdr->sh_entsize = 0;
3507 else
3508 hdr->sh_entsize = 1;
3509 }
3510 else if (strcmp (name, ".reginfo") == 0)
3511 {
3512 hdr->sh_type = SHT_MIPS_REGINFO;
3513 /* In a shared object on Irix 5.3, the .reginfo section has an
3514 entsize of 0x18. FIXME: Does this matter? */
3515 if (SGI_COMPAT (abfd))
3516 {
3517 if ((abfd->flags & DYNAMIC) != 0)
3518 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
3519 else
3520 hdr->sh_entsize = 1;
3521 }
3522 else
3523 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
3524 }
3525 else if (SGI_COMPAT (abfd)
3526 && (strcmp (name, ".hash") == 0
3527 || strcmp (name, ".dynamic") == 0
3528 || strcmp (name, ".dynstr") == 0))
3529 {
3530 if (SGI_COMPAT (abfd))
3531 hdr->sh_entsize = 0;
3532 #if 0
3533 /* This isn't how the Irix 6 linker behaves. */
3534 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
3535 #endif
3536 }
3537 else if (strcmp (name, ".got") == 0
3538 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
3539 || strcmp (name, ".sdata") == 0
3540 || strcmp (name, ".sbss") == 0
3541 || strcmp (name, ".lit4") == 0
3542 || strcmp (name, ".lit8") == 0)
3543 hdr->sh_flags |= SHF_MIPS_GPREL;
3544 else if (strcmp (name, ".MIPS.interfaces") == 0)
3545 {
3546 hdr->sh_type = SHT_MIPS_IFACE;
3547 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3548 }
3549 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
3550 {
3551 hdr->sh_type = SHT_MIPS_CONTENT;
3552 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3553 /* The sh_info field is set in final_write_processing. */
3554 }
3555 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3556 {
3557 hdr->sh_type = SHT_MIPS_OPTIONS;
3558 hdr->sh_entsize = 1;
3559 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3560 }
3561 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
3562 hdr->sh_type = SHT_MIPS_DWARF;
3563 else if (strcmp (name, ".MIPS.symlib") == 0)
3564 {
3565 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
3566 /* The sh_link and sh_info fields are set in
3567 final_write_processing. */
3568 }
3569 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
3570 || strncmp (name, ".MIPS.post_rel",
3571 sizeof ".MIPS.post_rel" - 1) == 0)
3572 {
3573 hdr->sh_type = SHT_MIPS_EVENTS;
3574 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
3575 /* The sh_link field is set in final_write_processing. */
3576 }
3577 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
3578 {
3579 hdr->sh_type = SHT_MIPS_MSYM;
3580 hdr->sh_flags |= SHF_ALLOC;
3581 hdr->sh_entsize = 8;
3582 }
3583
3584 /* The generic elf_fake_sections will set up REL_HDR using the
3585 default kind of relocations. But, we may actually need both
3586 kinds of relocations, so we set up the second header here.
3587
3588 This is not necessary for the O32 ABI since that only uses Elf32_Rel
3589 relocations (cf. System V ABI, MIPS RISC Processor Supplement,
3590 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one
3591 of the resulting empty .rela.<section> sections starts with
3592 sh_offset == object size, and ld doesn't allow that. While the check
3593 is arguably bogus for empty or SHT_NOBITS sections, it can easily be
3594 avoided by not emitting those useless sections in the first place. */
3595 if (IRIX_COMPAT (abfd) != ict_irix5 && (sec->flags & SEC_RELOC) != 0)
3596 {
3597 struct bfd_elf_section_data *esd;
3598 bfd_size_type amt = sizeof (Elf_Internal_Shdr);
3599
3600 esd = elf_section_data (sec);
3601 BFD_ASSERT (esd->rel_hdr2 == NULL);
3602 esd->rel_hdr2 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, amt);
3603 if (!esd->rel_hdr2)
3604 return false;
3605 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
3606 !elf_section_data (sec)->use_rela_p);
3607 }
3608
3609 return true;
3610 }
3611
3612 /* Given a BFD section, try to locate the corresponding ELF section
3613 index. This is used by both the 32-bit and the 64-bit ABI.
3614 Actually, it's not clear to me that the 64-bit ABI supports these,
3615 but for non-PIC objects we will certainly want support for at least
3616 the .scommon section. */
3617
3618 boolean
3619 _bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
3620 bfd *abfd ATTRIBUTE_UNUSED;
3621 asection *sec;
3622 int *retval;
3623 {
3624 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
3625 {
3626 *retval = SHN_MIPS_SCOMMON;
3627 return true;
3628 }
3629 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
3630 {
3631 *retval = SHN_MIPS_ACOMMON;
3632 return true;
3633 }
3634 return false;
3635 }
3636
3637 /* When are writing out the .options or .MIPS.options section,
3638 remember the bytes we are writing out, so that we can install the
3639 GP value in the section_processing routine. */
3640
3641 boolean
3642 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
3643 bfd *abfd;
3644 sec_ptr section;
3645 PTR location;
3646 file_ptr offset;
3647 bfd_size_type count;
3648 {
3649 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
3650 {
3651 bfd_byte *c;
3652
3653 if (elf_section_data (section) == NULL)
3654 {
3655 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
3656 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
3657 if (elf_section_data (section) == NULL)
3658 return false;
3659 }
3660 c = (bfd_byte *) elf_section_data (section)->tdata;
3661 if (c == NULL)
3662 {
3663 bfd_size_type size;
3664
3665 if (section->_cooked_size != 0)
3666 size = section->_cooked_size;
3667 else
3668 size = section->_raw_size;
3669 c = (bfd_byte *) bfd_zalloc (abfd, size);
3670 if (c == NULL)
3671 return false;
3672 elf_section_data (section)->tdata = (PTR) c;
3673 }
3674
3675 memcpy (c + offset, location, (size_t) count);
3676 }
3677
3678 return _bfd_elf_set_section_contents (abfd, section, location, offset,
3679 count);
3680 }
3681
3682 /* Work over a section just before writing it out. This routine is
3683 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3684 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3685 a better way. */
3686
3687 boolean
3688 _bfd_mips_elf_section_processing (abfd, hdr)
3689 bfd *abfd;
3690 Elf_Internal_Shdr *hdr;
3691 {
3692 if (hdr->sh_type == SHT_MIPS_REGINFO
3693 && hdr->sh_size > 0)
3694 {
3695 bfd_byte buf[4];
3696
3697 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
3698 BFD_ASSERT (hdr->contents == NULL);
3699
3700 if (bfd_seek (abfd,
3701 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
3702 SEEK_SET) != 0)
3703 return false;
3704 H_PUT_32 (abfd, elf_gp (abfd), buf);
3705 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
3706 return false;
3707 }
3708
3709 if (hdr->sh_type == SHT_MIPS_OPTIONS
3710 && hdr->bfd_section != NULL
3711 && elf_section_data (hdr->bfd_section) != NULL
3712 && elf_section_data (hdr->bfd_section)->tdata != NULL)
3713 {
3714 bfd_byte *contents, *l, *lend;
3715
3716 /* We stored the section contents in the elf_section_data tdata
3717 field in the set_section_contents routine. We save the
3718 section contents so that we don't have to read them again.
3719 At this point we know that elf_gp is set, so we can look
3720 through the section contents to see if there is an
3721 ODK_REGINFO structure. */
3722
3723 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
3724 l = contents;
3725 lend = contents + hdr->sh_size;
3726 while (l + sizeof (Elf_External_Options) <= lend)
3727 {
3728 Elf_Internal_Options intopt;
3729
3730 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
3731 &intopt);
3732 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
3733 {
3734 bfd_byte buf[8];
3735
3736 if (bfd_seek (abfd,
3737 (hdr->sh_offset
3738 + (l - contents)
3739 + sizeof (Elf_External_Options)
3740 + (sizeof (Elf64_External_RegInfo) - 8)),
3741 SEEK_SET) != 0)
3742 return false;
3743 H_PUT_64 (abfd, elf_gp (abfd), buf);
3744 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
3745 return false;
3746 }
3747 else if (intopt.kind == ODK_REGINFO)
3748 {
3749 bfd_byte buf[4];
3750
3751 if (bfd_seek (abfd,
3752 (hdr->sh_offset
3753 + (l - contents)
3754 + sizeof (Elf_External_Options)
3755 + (sizeof (Elf32_External_RegInfo) - 4)),
3756 SEEK_SET) != 0)
3757 return false;
3758 H_PUT_32 (abfd, elf_gp (abfd), buf);
3759 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
3760 return false;
3761 }
3762 l += intopt.size;
3763 }
3764 }
3765
3766 if (hdr->bfd_section != NULL)
3767 {
3768 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3769
3770 if (strcmp (name, ".sdata") == 0
3771 || strcmp (name, ".lit8") == 0
3772 || strcmp (name, ".lit4") == 0)
3773 {
3774 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3775 hdr->sh_type = SHT_PROGBITS;
3776 }
3777 else if (strcmp (name, ".sbss") == 0)
3778 {
3779 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3780 hdr->sh_type = SHT_NOBITS;
3781 }
3782 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3783 {
3784 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3785 hdr->sh_type = SHT_PROGBITS;
3786 }
3787 else if (strcmp (name, ".compact_rel") == 0)
3788 {
3789 hdr->sh_flags = 0;
3790 hdr->sh_type = SHT_PROGBITS;
3791 }
3792 else if (strcmp (name, ".rtproc") == 0)
3793 {
3794 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3795 {
3796 unsigned int adjust;
3797
3798 adjust = hdr->sh_size % hdr->sh_addralign;
3799 if (adjust != 0)
3800 hdr->sh_size += hdr->sh_addralign - adjust;
3801 }
3802 }
3803 }
3804
3805 return true;
3806 }
3807 \f
3808 /* MIPS ELF uses two common sections. One is the usual one, and the
3809 other is for small objects. All the small objects are kept
3810 together, and then referenced via the gp pointer, which yields
3811 faster assembler code. This is what we use for the small common
3812 section. This approach is copied from ecoff.c. */
3813 static asection mips_elf_scom_section;
3814 static asymbol mips_elf_scom_symbol;
3815 static asymbol *mips_elf_scom_symbol_ptr;
3816
3817 /* MIPS ELF also uses an acommon section, which represents an
3818 allocated common symbol which may be overridden by a
3819 definition in a shared library. */
3820 static asection mips_elf_acom_section;
3821 static asymbol mips_elf_acom_symbol;
3822 static asymbol *mips_elf_acom_symbol_ptr;
3823
3824 /* Handle the special MIPS section numbers that a symbol may use.
3825 This is used for both the 32-bit and the 64-bit ABI. */
3826
3827 void
3828 _bfd_mips_elf_symbol_processing (abfd, asym)
3829 bfd *abfd;
3830 asymbol *asym;
3831 {
3832 elf_symbol_type *elfsym;
3833
3834 elfsym = (elf_symbol_type *) asym;
3835 switch (elfsym->internal_elf_sym.st_shndx)
3836 {
3837 case SHN_MIPS_ACOMMON:
3838 /* This section is used in a dynamically linked executable file.
3839 It is an allocated common section. The dynamic linker can
3840 either resolve these symbols to something in a shared
3841 library, or it can just leave them here. For our purposes,
3842 we can consider these symbols to be in a new section. */
3843 if (mips_elf_acom_section.name == NULL)
3844 {
3845 /* Initialize the acommon section. */
3846 mips_elf_acom_section.name = ".acommon";
3847 mips_elf_acom_section.flags = SEC_ALLOC;
3848 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3849 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3850 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3851 mips_elf_acom_symbol.name = ".acommon";
3852 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3853 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3854 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3855 }
3856 asym->section = &mips_elf_acom_section;
3857 break;
3858
3859 case SHN_COMMON:
3860 /* Common symbols less than the GP size are automatically
3861 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3862 if (asym->value > elf_gp_size (abfd)
3863 || IRIX_COMPAT (abfd) == ict_irix6)
3864 break;
3865 /* Fall through. */
3866 case SHN_MIPS_SCOMMON:
3867 if (mips_elf_scom_section.name == NULL)
3868 {
3869 /* Initialize the small common section. */
3870 mips_elf_scom_section.name = ".scommon";
3871 mips_elf_scom_section.flags = SEC_IS_COMMON;
3872 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3873 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3874 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3875 mips_elf_scom_symbol.name = ".scommon";
3876 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3877 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3878 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3879 }
3880 asym->section = &mips_elf_scom_section;
3881 asym->value = elfsym->internal_elf_sym.st_size;
3882 break;
3883
3884 case SHN_MIPS_SUNDEFINED:
3885 asym->section = bfd_und_section_ptr;
3886 break;
3887
3888 #if 0 /* for SGI_COMPAT */
3889 case SHN_MIPS_TEXT:
3890 asym->section = mips_elf_text_section_ptr;
3891 break;
3892
3893 case SHN_MIPS_DATA:
3894 asym->section = mips_elf_data_section_ptr;
3895 break;
3896 #endif
3897 }
3898 }
3899 \f
3900 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3901 segments. */
3902
3903 int
3904 _bfd_mips_elf_additional_program_headers (abfd)
3905 bfd *abfd;
3906 {
3907 asection *s;
3908 int ret = 0;
3909
3910 /* See if we need a PT_MIPS_REGINFO segment. */
3911 s = bfd_get_section_by_name (abfd, ".reginfo");
3912 if (s && (s->flags & SEC_LOAD))
3913 ++ret;
3914
3915 /* See if we need a PT_MIPS_OPTIONS segment. */
3916 if (IRIX_COMPAT (abfd) == ict_irix6
3917 && bfd_get_section_by_name (abfd,
3918 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3919 ++ret;
3920
3921 /* See if we need a PT_MIPS_RTPROC segment. */
3922 if (IRIX_COMPAT (abfd) == ict_irix5
3923 && bfd_get_section_by_name (abfd, ".dynamic")
3924 && bfd_get_section_by_name (abfd, ".mdebug"))
3925 ++ret;
3926
3927 return ret;
3928 }
3929
3930 /* Modify the segment map for an Irix 5 executable. */
3931
3932 boolean
3933 _bfd_mips_elf_modify_segment_map (abfd)
3934 bfd *abfd;
3935 {
3936 asection *s;
3937 struct elf_segment_map *m, **pm;
3938 bfd_size_type amt;
3939
3940 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3941 segment. */
3942 s = bfd_get_section_by_name (abfd, ".reginfo");
3943 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3944 {
3945 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3946 if (m->p_type == PT_MIPS_REGINFO)
3947 break;
3948 if (m == NULL)
3949 {
3950 amt = sizeof *m;
3951 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3952 if (m == NULL)
3953 return false;
3954
3955 m->p_type = PT_MIPS_REGINFO;
3956 m->count = 1;
3957 m->sections[0] = s;
3958
3959 /* We want to put it after the PHDR and INTERP segments. */
3960 pm = &elf_tdata (abfd)->segment_map;
3961 while (*pm != NULL
3962 && ((*pm)->p_type == PT_PHDR
3963 || (*pm)->p_type == PT_INTERP))
3964 pm = &(*pm)->next;
3965
3966 m->next = *pm;
3967 *pm = m;
3968 }
3969 }
3970
3971 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3972 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3973 PT_OPTIONS segement immediately following the program header
3974 table. */
3975 if (IRIX_COMPAT (abfd) == ict_irix6)
3976 {
3977 for (s = abfd->sections; s; s = s->next)
3978 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
3979 break;
3980
3981 if (s)
3982 {
3983 struct elf_segment_map *options_segment;
3984
3985 /* Usually, there's a program header table. But, sometimes
3986 there's not (like when running the `ld' testsuite). So,
3987 if there's no program header table, we just put the
3988 options segement at the end. */
3989 for (pm = &elf_tdata (abfd)->segment_map;
3990 *pm != NULL;
3991 pm = &(*pm)->next)
3992 if ((*pm)->p_type == PT_PHDR)
3993 break;
3994
3995 amt = sizeof (struct elf_segment_map);
3996 options_segment = bfd_zalloc (abfd, amt);
3997 options_segment->next = *pm;
3998 options_segment->p_type = PT_MIPS_OPTIONS;
3999 options_segment->p_flags = PF_R;
4000 options_segment->p_flags_valid = true;
4001 options_segment->count = 1;
4002 options_segment->sections[0] = s;
4003 *pm = options_segment;
4004 }
4005 }
4006 else
4007 {
4008 if (IRIX_COMPAT (abfd) == ict_irix5)
4009 {
4010 /* If there are .dynamic and .mdebug sections, we make a room
4011 for the RTPROC header. FIXME: Rewrite without section names. */
4012 if (bfd_get_section_by_name (abfd, ".interp") == NULL
4013 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
4014 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
4015 {
4016 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4017 if (m->p_type == PT_MIPS_RTPROC)
4018 break;
4019 if (m == NULL)
4020 {
4021 amt = sizeof *m;
4022 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4023 if (m == NULL)
4024 return false;
4025
4026 m->p_type = PT_MIPS_RTPROC;
4027
4028 s = bfd_get_section_by_name (abfd, ".rtproc");
4029 if (s == NULL)
4030 {
4031 m->count = 0;
4032 m->p_flags = 0;
4033 m->p_flags_valid = 1;
4034 }
4035 else
4036 {
4037 m->count = 1;
4038 m->sections[0] = s;
4039 }
4040
4041 /* We want to put it after the DYNAMIC segment. */
4042 pm = &elf_tdata (abfd)->segment_map;
4043 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
4044 pm = &(*pm)->next;
4045 if (*pm != NULL)
4046 pm = &(*pm)->next;
4047
4048 m->next = *pm;
4049 *pm = m;
4050 }
4051 }
4052 }
4053 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
4054 .dynstr, .dynsym, and .hash sections, and everything in
4055 between. */
4056 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
4057 pm = &(*pm)->next)
4058 if ((*pm)->p_type == PT_DYNAMIC)
4059 break;
4060 m = *pm;
4061 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
4062 {
4063 /* For a normal mips executable the permissions for the PT_DYNAMIC
4064 segment are read, write and execute. We do that here since
4065 the code in elf.c sets only the read permission. This matters
4066 sometimes for the dynamic linker. */
4067 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4068 {
4069 m->p_flags = PF_R | PF_W | PF_X;
4070 m->p_flags_valid = 1;
4071 }
4072 }
4073 if (m != NULL
4074 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
4075 {
4076 static const char *sec_names[] =
4077 {
4078 ".dynamic", ".dynstr", ".dynsym", ".hash"
4079 };
4080 bfd_vma low, high;
4081 unsigned int i, c;
4082 struct elf_segment_map *n;
4083
4084 low = 0xffffffff;
4085 high = 0;
4086 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
4087 {
4088 s = bfd_get_section_by_name (abfd, sec_names[i]);
4089 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4090 {
4091 bfd_size_type sz;
4092
4093 if (low > s->vma)
4094 low = s->vma;
4095 sz = s->_cooked_size;
4096 if (sz == 0)
4097 sz = s->_raw_size;
4098 if (high < s->vma + sz)
4099 high = s->vma + sz;
4100 }
4101 }
4102
4103 c = 0;
4104 for (s = abfd->sections; s != NULL; s = s->next)
4105 if ((s->flags & SEC_LOAD) != 0
4106 && s->vma >= low
4107 && ((s->vma
4108 + (s->_cooked_size !=
4109 0 ? s->_cooked_size : s->_raw_size)) <= high))
4110 ++c;
4111
4112 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
4113 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4114 if (n == NULL)
4115 return false;
4116 *n = *m;
4117 n->count = c;
4118
4119 i = 0;
4120 for (s = abfd->sections; s != NULL; s = s->next)
4121 {
4122 if ((s->flags & SEC_LOAD) != 0
4123 && s->vma >= low
4124 && ((s->vma
4125 + (s->_cooked_size != 0 ?
4126 s->_cooked_size : s->_raw_size)) <= high))
4127 {
4128 n->sections[i] = s;
4129 ++i;
4130 }
4131 }
4132
4133 *pm = n;
4134 }
4135 }
4136
4137 return true;
4138 }
4139 \f
4140 /* The structure of the runtime procedure descriptor created by the
4141 loader for use by the static exception system. */
4142
4143 typedef struct runtime_pdr {
4144 bfd_vma adr; /* memory address of start of procedure */
4145 long regmask; /* save register mask */
4146 long regoffset; /* save register offset */
4147 long fregmask; /* save floating point register mask */
4148 long fregoffset; /* save floating point register offset */
4149 long frameoffset; /* frame size */
4150 short framereg; /* frame pointer register */
4151 short pcreg; /* offset or reg of return pc */
4152 long irpss; /* index into the runtime string table */
4153 long reserved;
4154 struct exception_info *exception_info;/* pointer to exception array */
4155 } RPDR, *pRPDR;
4156 #define cbRPDR sizeof (RPDR)
4157 #define rpdNil ((pRPDR) 0)
4158
4159 /* Swap RPDR (runtime procedure table entry) for output. */
4160
4161 static void ecoff_swap_rpdr_out
4162 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
4163
4164 static void
4165 ecoff_swap_rpdr_out (abfd, in, ex)
4166 bfd *abfd;
4167 const RPDR *in;
4168 struct rpdr_ext *ex;
4169 {
4170 /* ECOFF_PUT_OFF was defined in ecoffswap.h. */
4171 ECOFF_PUT_OFF (abfd, in->adr, ex->p_adr);
4172 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
4173 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
4174 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
4175 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
4176 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
4177
4178 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
4179 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
4180
4181 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
4182 #if 0 /* FIXME */
4183 ECOFF_PUT_OFF (abfd, in->exception_info, ex->p_exception_info);
4184 #endif
4185 }
4186 \f
4187 /* Read ECOFF debugging information from a .mdebug section into a
4188 ecoff_debug_info structure. */
4189
4190 boolean
4191 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
4192 bfd *abfd;
4193 asection *section;
4194 struct ecoff_debug_info *debug;
4195 {
4196 HDRR *symhdr;
4197 const struct ecoff_debug_swap *swap;
4198 char *ext_hdr = NULL;
4199
4200 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4201 memset (debug, 0, sizeof (*debug));
4202
4203 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
4204 if (ext_hdr == NULL && swap->external_hdr_size != 0)
4205 goto error_return;
4206
4207 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
4208 swap->external_hdr_size)
4209 == false)
4210 goto error_return;
4211
4212 symhdr = &debug->symbolic_header;
4213 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
4214
4215 /* The symbolic header contains absolute file offsets and sizes to
4216 read. */
4217 #define READ(ptr, offset, count, size, type) \
4218 if (symhdr->count == 0) \
4219 debug->ptr = NULL; \
4220 else \
4221 { \
4222 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
4223 debug->ptr = (type) bfd_malloc (amt); \
4224 if (debug->ptr == NULL) \
4225 goto error_return; \
4226 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
4227 || bfd_bread (debug->ptr, amt, abfd) != amt) \
4228 goto error_return; \
4229 }
4230
4231 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
4232 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
4233 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
4234 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
4235 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
4236 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
4237 union aux_ext *);
4238 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
4239 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
4240 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
4241 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
4242 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
4243 #undef READ
4244
4245 debug->fdr = NULL;
4246 debug->adjust = NULL;
4247
4248 return true;
4249
4250 error_return:
4251 if (ext_hdr != NULL)
4252 free (ext_hdr);
4253 if (debug->line != NULL)
4254 free (debug->line);
4255 if (debug->external_dnr != NULL)
4256 free (debug->external_dnr);
4257 if (debug->external_pdr != NULL)
4258 free (debug->external_pdr);
4259 if (debug->external_sym != NULL)
4260 free (debug->external_sym);
4261 if (debug->external_opt != NULL)
4262 free (debug->external_opt);
4263 if (debug->external_aux != NULL)
4264 free (debug->external_aux);
4265 if (debug->ss != NULL)
4266 free (debug->ss);
4267 if (debug->ssext != NULL)
4268 free (debug->ssext);
4269 if (debug->external_fdr != NULL)
4270 free (debug->external_fdr);
4271 if (debug->external_rfd != NULL)
4272 free (debug->external_rfd);
4273 if (debug->external_ext != NULL)
4274 free (debug->external_ext);
4275 return false;
4276 }
4277 \f
4278 /* MIPS ELF local labels start with '$', not 'L'. */
4279
4280 static boolean
4281 mips_elf_is_local_label_name (abfd, name)
4282 bfd *abfd;
4283 const char *name;
4284 {
4285 if (name[0] == '$')
4286 return true;
4287
4288 /* On Irix 6, the labels go back to starting with '.', so we accept
4289 the generic ELF local label syntax as well. */
4290 return _bfd_elf_is_local_label_name (abfd, name);
4291 }
4292
4293 /* MIPS ELF uses a special find_nearest_line routine in order the
4294 handle the ECOFF debugging information. */
4295
4296 struct mips_elf_find_line
4297 {
4298 struct ecoff_debug_info d;
4299 struct ecoff_find_line i;
4300 };
4301
4302 boolean
4303 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4304 functionname_ptr, line_ptr)
4305 bfd *abfd;
4306 asection *section;
4307 asymbol **symbols;
4308 bfd_vma offset;
4309 const char **filename_ptr;
4310 const char **functionname_ptr;
4311 unsigned int *line_ptr;
4312 {
4313 asection *msec;
4314
4315 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
4316 filename_ptr, functionname_ptr,
4317 line_ptr))
4318 return true;
4319
4320 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
4321 filename_ptr, functionname_ptr,
4322 line_ptr,
4323 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
4324 &elf_tdata (abfd)->dwarf2_find_line_info))
4325 return true;
4326
4327 msec = bfd_get_section_by_name (abfd, ".mdebug");
4328 if (msec != NULL)
4329 {
4330 flagword origflags;
4331 struct mips_elf_find_line *fi;
4332 const struct ecoff_debug_swap * const swap =
4333 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4334
4335 /* If we are called during a link, mips_elf_final_link may have
4336 cleared the SEC_HAS_CONTENTS field. We force it back on here
4337 if appropriate (which it normally will be). */
4338 origflags = msec->flags;
4339 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
4340 msec->flags |= SEC_HAS_CONTENTS;
4341
4342 fi = elf_tdata (abfd)->find_line_info;
4343 if (fi == NULL)
4344 {
4345 bfd_size_type external_fdr_size;
4346 char *fraw_src;
4347 char *fraw_end;
4348 struct fdr *fdr_ptr;
4349 bfd_size_type amt = sizeof (struct mips_elf_find_line);
4350
4351 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
4352 if (fi == NULL)
4353 {
4354 msec->flags = origflags;
4355 return false;
4356 }
4357
4358 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
4359 {
4360 msec->flags = origflags;
4361 return false;
4362 }
4363
4364 /* Swap in the FDR information. */
4365 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
4366 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
4367 if (fi->d.fdr == NULL)
4368 {
4369 msec->flags = origflags;
4370 return false;
4371 }
4372 external_fdr_size = swap->external_fdr_size;
4373 fdr_ptr = fi->d.fdr;
4374 fraw_src = (char *) fi->d.external_fdr;
4375 fraw_end = (fraw_src
4376 + fi->d.symbolic_header.ifdMax * external_fdr_size);
4377 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
4378 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
4379
4380 elf_tdata (abfd)->find_line_info = fi;
4381
4382 /* Note that we don't bother to ever free this information.
4383 find_nearest_line is either called all the time, as in
4384 objdump -l, so the information should be saved, or it is
4385 rarely called, as in ld error messages, so the memory
4386 wasted is unimportant. Still, it would probably be a
4387 good idea for free_cached_info to throw it away. */
4388 }
4389
4390 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
4391 &fi->i, filename_ptr, functionname_ptr,
4392 line_ptr))
4393 {
4394 msec->flags = origflags;
4395 return true;
4396 }
4397
4398 msec->flags = origflags;
4399 }
4400
4401 /* Fall back on the generic ELF find_nearest_line routine. */
4402
4403 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
4404 filename_ptr, functionname_ptr,
4405 line_ptr);
4406 }
4407 \f
4408 /* The mips16 compiler uses a couple of special sections to handle
4409 floating point arguments.
4410
4411 Section names that look like .mips16.fn.FNNAME contain stubs that
4412 copy floating point arguments from the fp regs to the gp regs and
4413 then jump to FNNAME. If any 32 bit function calls FNNAME, the
4414 call should be redirected to the stub instead. If no 32 bit
4415 function calls FNNAME, the stub should be discarded. We need to
4416 consider any reference to the function, not just a call, because
4417 if the address of the function is taken we will need the stub,
4418 since the address might be passed to a 32 bit function.
4419
4420 Section names that look like .mips16.call.FNNAME contain stubs
4421 that copy floating point arguments from the gp regs to the fp
4422 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
4423 then any 16 bit function that calls FNNAME should be redirected
4424 to the stub instead. If FNNAME is not a 32 bit function, the
4425 stub should be discarded.
4426
4427 .mips16.call.fp.FNNAME sections are similar, but contain stubs
4428 which call FNNAME and then copy the return value from the fp regs
4429 to the gp regs. These stubs store the return value in $18 while
4430 calling FNNAME; any function which might call one of these stubs
4431 must arrange to save $18 around the call. (This case is not
4432 needed for 32 bit functions that call 16 bit functions, because
4433 16 bit functions always return floating point values in both
4434 $f0/$f1 and $2/$3.)
4435
4436 Note that in all cases FNNAME might be defined statically.
4437 Therefore, FNNAME is not used literally. Instead, the relocation
4438 information will indicate which symbol the section is for.
4439
4440 We record any stubs that we find in the symbol table. */
4441
4442 #define FN_STUB ".mips16.fn."
4443 #define CALL_STUB ".mips16.call."
4444 #define CALL_FP_STUB ".mips16.call.fp."
4445
4446 /* MIPS ELF linker hash table. */
4447
4448 struct mips_elf_link_hash_table
4449 {
4450 struct elf_link_hash_table root;
4451 #if 0
4452 /* We no longer use this. */
4453 /* String section indices for the dynamic section symbols. */
4454 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
4455 #endif
4456 /* The number of .rtproc entries. */
4457 bfd_size_type procedure_count;
4458 /* The size of the .compact_rel section (if SGI_COMPAT). */
4459 bfd_size_type compact_rel_size;
4460 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
4461 entry is set to the address of __rld_obj_head as in Irix 5. */
4462 boolean use_rld_obj_head;
4463 /* This is the value of the __rld_map or __rld_obj_head symbol. */
4464 bfd_vma rld_value;
4465 /* This is set if we see any mips16 stub sections. */
4466 boolean mips16_stubs_seen;
4467 };
4468
4469 /* Look up an entry in a MIPS ELF linker hash table. */
4470
4471 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
4472 ((struct mips_elf_link_hash_entry *) \
4473 elf_link_hash_lookup (&(table)->root, (string), (create), \
4474 (copy), (follow)))
4475
4476 /* Traverse a MIPS ELF linker hash table. */
4477
4478 #define mips_elf_link_hash_traverse(table, func, info) \
4479 (elf_link_hash_traverse \
4480 (&(table)->root, \
4481 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
4482 (info)))
4483
4484 /* Get the MIPS ELF linker hash table from a link_info structure. */
4485
4486 #define mips_elf_hash_table(p) \
4487 ((struct mips_elf_link_hash_table *) ((p)->hash))
4488
4489 static boolean mips_elf_output_extsym
4490 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
4491
4492 /* Create an entry in a MIPS ELF linker hash table. */
4493
4494 static struct bfd_hash_entry *
4495 mips_elf_link_hash_newfunc (entry, table, string)
4496 struct bfd_hash_entry *entry;
4497 struct bfd_hash_table *table;
4498 const char *string;
4499 {
4500 struct mips_elf_link_hash_entry *ret =
4501 (struct mips_elf_link_hash_entry *) entry;
4502
4503 /* Allocate the structure if it has not already been allocated by a
4504 subclass. */
4505 if (ret == (struct mips_elf_link_hash_entry *) NULL)
4506 ret = ((struct mips_elf_link_hash_entry *)
4507 bfd_hash_allocate (table,
4508 sizeof (struct mips_elf_link_hash_entry)));
4509 if (ret == (struct mips_elf_link_hash_entry *) NULL)
4510 return (struct bfd_hash_entry *) ret;
4511
4512 /* Call the allocation method of the superclass. */
4513 ret = ((struct mips_elf_link_hash_entry *)
4514 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
4515 table, string));
4516 if (ret != (struct mips_elf_link_hash_entry *) NULL)
4517 {
4518 /* Set local fields. */
4519 memset (&ret->esym, 0, sizeof (EXTR));
4520 /* We use -2 as a marker to indicate that the information has
4521 not been set. -1 means there is no associated ifd. */
4522 ret->esym.ifd = -2;
4523 ret->possibly_dynamic_relocs = 0;
4524 ret->readonly_reloc = false;
4525 ret->min_dyn_reloc_index = 0;
4526 ret->no_fn_stub = false;
4527 ret->fn_stub = NULL;
4528 ret->need_fn_stub = false;
4529 ret->call_stub = NULL;
4530 ret->call_fp_stub = NULL;
4531 }
4532
4533 return (struct bfd_hash_entry *) ret;
4534 }
4535
4536 static void
4537 _bfd_mips_elf_hide_symbol (info, entry, force_local)
4538 struct bfd_link_info *info;
4539 struct elf_link_hash_entry *entry;
4540 boolean force_local;
4541 {
4542 bfd *dynobj;
4543 asection *got;
4544 struct mips_got_info *g;
4545 struct mips_elf_link_hash_entry *h;
4546 h = (struct mips_elf_link_hash_entry *) entry;
4547 dynobj = elf_hash_table (info)->dynobj;
4548 got = bfd_get_section_by_name (dynobj, ".got");
4549 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4550
4551 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
4552
4553 /* FIXME: Do we allocate too much GOT space here? */
4554 g->local_gotno++;
4555 got->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
4556 }
4557
4558 /* Create a MIPS ELF linker hash table. */
4559
4560 struct bfd_link_hash_table *
4561 _bfd_mips_elf_link_hash_table_create (abfd)
4562 bfd *abfd;
4563 {
4564 struct mips_elf_link_hash_table *ret;
4565 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
4566
4567 ret = (struct mips_elf_link_hash_table *) bfd_alloc (abfd, amt);
4568 if (ret == (struct mips_elf_link_hash_table *) NULL)
4569 return NULL;
4570
4571 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
4572 mips_elf_link_hash_newfunc))
4573 {
4574 bfd_release (abfd, ret);
4575 return NULL;
4576 }
4577
4578 #if 0
4579 /* We no longer use this. */
4580 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
4581 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
4582 #endif
4583 ret->procedure_count = 0;
4584 ret->compact_rel_size = 0;
4585 ret->use_rld_obj_head = false;
4586 ret->rld_value = 0;
4587 ret->mips16_stubs_seen = false;
4588
4589 return &ret->root.root;
4590 }
4591
4592 /* Hook called by the linker routine which adds symbols from an object
4593 file. We must handle the special MIPS section numbers here. */
4594
4595 boolean
4596 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4597 bfd *abfd;
4598 struct bfd_link_info *info;
4599 const Elf_Internal_Sym *sym;
4600 const char **namep;
4601 flagword *flagsp ATTRIBUTE_UNUSED;
4602 asection **secp;
4603 bfd_vma *valp;
4604 {
4605 if (SGI_COMPAT (abfd)
4606 && (abfd->flags & DYNAMIC) != 0
4607 && strcmp (*namep, "_rld_new_interface") == 0)
4608 {
4609 /* Skip Irix 5 rld entry name. */
4610 *namep = NULL;
4611 return true;
4612 }
4613
4614 switch (sym->st_shndx)
4615 {
4616 case SHN_COMMON:
4617 /* Common symbols less than the GP size are automatically
4618 treated as SHN_MIPS_SCOMMON symbols. */
4619 if (sym->st_size > elf_gp_size (abfd)
4620 || IRIX_COMPAT (abfd) == ict_irix6)
4621 break;
4622 /* Fall through. */
4623 case SHN_MIPS_SCOMMON:
4624 *secp = bfd_make_section_old_way (abfd, ".scommon");
4625 (*secp)->flags |= SEC_IS_COMMON;
4626 *valp = sym->st_size;
4627 break;
4628
4629 case SHN_MIPS_TEXT:
4630 /* This section is used in a shared object. */
4631 if (elf_tdata (abfd)->elf_text_section == NULL)
4632 {
4633 asymbol *elf_text_symbol;
4634 asection *elf_text_section;
4635 bfd_size_type amt = sizeof (asection);
4636
4637 elf_text_section = bfd_zalloc (abfd, amt);
4638 if (elf_text_section == NULL)
4639 return false;
4640
4641 amt = sizeof (asymbol);
4642 elf_text_symbol = bfd_zalloc (abfd, amt);
4643 if (elf_text_symbol == NULL)
4644 return false;
4645
4646 /* Initialize the section. */
4647
4648 elf_tdata (abfd)->elf_text_section = elf_text_section;
4649 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4650
4651 elf_text_section->symbol = elf_text_symbol;
4652 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4653
4654 elf_text_section->name = ".text";
4655 elf_text_section->flags = SEC_NO_FLAGS;
4656 elf_text_section->output_section = NULL;
4657 elf_text_section->owner = abfd;
4658 elf_text_symbol->name = ".text";
4659 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4660 elf_text_symbol->section = elf_text_section;
4661 }
4662 /* This code used to do *secp = bfd_und_section_ptr if
4663 info->shared. I don't know why, and that doesn't make sense,
4664 so I took it out. */
4665 *secp = elf_tdata (abfd)->elf_text_section;
4666 break;
4667
4668 case SHN_MIPS_ACOMMON:
4669 /* Fall through. XXX Can we treat this as allocated data? */
4670 case SHN_MIPS_DATA:
4671 /* This section is used in a shared object. */
4672 if (elf_tdata (abfd)->elf_data_section == NULL)
4673 {
4674 asymbol *elf_data_symbol;
4675 asection *elf_data_section;
4676 bfd_size_type amt = sizeof (asection);
4677
4678 elf_data_section = bfd_zalloc (abfd, amt);
4679 if (elf_data_section == NULL)
4680 return false;
4681
4682 amt = sizeof (asymbol);
4683 elf_data_symbol = bfd_zalloc (abfd, amt);
4684 if (elf_data_symbol == NULL)
4685 return false;
4686
4687 /* Initialize the section. */
4688
4689 elf_tdata (abfd)->elf_data_section = elf_data_section;
4690 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4691
4692 elf_data_section->symbol = elf_data_symbol;
4693 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4694
4695 elf_data_section->name = ".data";
4696 elf_data_section->flags = SEC_NO_FLAGS;
4697 elf_data_section->output_section = NULL;
4698 elf_data_section->owner = abfd;
4699 elf_data_symbol->name = ".data";
4700 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4701 elf_data_symbol->section = elf_data_section;
4702 }
4703 /* This code used to do *secp = bfd_und_section_ptr if
4704 info->shared. I don't know why, and that doesn't make sense,
4705 so I took it out. */
4706 *secp = elf_tdata (abfd)->elf_data_section;
4707 break;
4708
4709 case SHN_MIPS_SUNDEFINED:
4710 *secp = bfd_und_section_ptr;
4711 break;
4712 }
4713
4714 if (SGI_COMPAT (abfd)
4715 && ! info->shared
4716 && info->hash->creator == abfd->xvec
4717 && strcmp (*namep, "__rld_obj_head") == 0)
4718 {
4719 struct elf_link_hash_entry *h;
4720
4721 /* Mark __rld_obj_head as dynamic. */
4722 h = NULL;
4723 if (! (_bfd_generic_link_add_one_symbol
4724 (info, abfd, *namep, BSF_GLOBAL, *secp,
4725 (bfd_vma) *valp, (const char *) NULL, false,
4726 get_elf_backend_data (abfd)->collect,
4727 (struct bfd_link_hash_entry **) &h)))
4728 return false;
4729 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4730 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4731 h->type = STT_OBJECT;
4732
4733 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4734 return false;
4735
4736 mips_elf_hash_table (info)->use_rld_obj_head = true;
4737 }
4738
4739 /* If this is a mips16 text symbol, add 1 to the value to make it
4740 odd. This will cause something like .word SYM to come up with
4741 the right value when it is loaded into the PC. */
4742 if (sym->st_other == STO_MIPS16)
4743 ++*valp;
4744
4745 return true;
4746 }
4747
4748 /* Structure used to pass information to mips_elf_output_extsym. */
4749
4750 struct extsym_info
4751 {
4752 bfd *abfd;
4753 struct bfd_link_info *info;
4754 struct ecoff_debug_info *debug;
4755 const struct ecoff_debug_swap *swap;
4756 boolean failed;
4757 };
4758
4759 /* This routine is used to write out ECOFF debugging external symbol
4760 information. It is called via mips_elf_link_hash_traverse. The
4761 ECOFF external symbol information must match the ELF external
4762 symbol information. Unfortunately, at this point we don't know
4763 whether a symbol is required by reloc information, so the two
4764 tables may wind up being different. We must sort out the external
4765 symbol information before we can set the final size of the .mdebug
4766 section, and we must set the size of the .mdebug section before we
4767 can relocate any sections, and we can't know which symbols are
4768 required by relocation until we relocate the sections.
4769 Fortunately, it is relatively unlikely that any symbol will be
4770 stripped but required by a reloc. In particular, it can not happen
4771 when generating a final executable. */
4772
4773 static boolean
4774 mips_elf_output_extsym (h, data)
4775 struct mips_elf_link_hash_entry *h;
4776 PTR data;
4777 {
4778 struct extsym_info *einfo = (struct extsym_info *) data;
4779 boolean strip;
4780 asection *sec, *output_section;
4781
4782 if (h->root.indx == -2)
4783 strip = false;
4784 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4785 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4786 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4787 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4788 strip = true;
4789 else if (einfo->info->strip == strip_all
4790 || (einfo->info->strip == strip_some
4791 && bfd_hash_lookup (einfo->info->keep_hash,
4792 h->root.root.root.string,
4793 false, false) == NULL))
4794 strip = true;
4795 else
4796 strip = false;
4797
4798 if (strip)
4799 return true;
4800
4801 if (h->esym.ifd == -2)
4802 {
4803 h->esym.jmptbl = 0;
4804 h->esym.cobol_main = 0;
4805 h->esym.weakext = 0;
4806 h->esym.reserved = 0;
4807 h->esym.ifd = ifdNil;
4808 h->esym.asym.value = 0;
4809 h->esym.asym.st = stGlobal;
4810
4811 if (h->root.root.type == bfd_link_hash_undefined
4812 || h->root.root.type == bfd_link_hash_undefweak)
4813 {
4814 const char *name;
4815
4816 /* Use undefined class. Also, set class and type for some
4817 special symbols. */
4818 name = h->root.root.root.string;
4819 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4820 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4821 {
4822 h->esym.asym.sc = scData;
4823 h->esym.asym.st = stLabel;
4824 h->esym.asym.value = 0;
4825 }
4826 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4827 {
4828 h->esym.asym.sc = scAbs;
4829 h->esym.asym.st = stLabel;
4830 h->esym.asym.value =
4831 mips_elf_hash_table (einfo->info)->procedure_count;
4832 }
4833 else if (strcmp (name, "_gp_disp") == 0)
4834 {
4835 h->esym.asym.sc = scAbs;
4836 h->esym.asym.st = stLabel;
4837 h->esym.asym.value = elf_gp (einfo->abfd);
4838 }
4839 else
4840 h->esym.asym.sc = scUndefined;
4841 }
4842 else if (h->root.root.type != bfd_link_hash_defined
4843 && h->root.root.type != bfd_link_hash_defweak)
4844 h->esym.asym.sc = scAbs;
4845 else
4846 {
4847 const char *name;
4848
4849 sec = h->root.root.u.def.section;
4850 output_section = sec->output_section;
4851
4852 /* When making a shared library and symbol h is the one from
4853 the another shared library, OUTPUT_SECTION may be null. */
4854 if (output_section == NULL)
4855 h->esym.asym.sc = scUndefined;
4856 else
4857 {
4858 name = bfd_section_name (output_section->owner, output_section);
4859
4860 if (strcmp (name, ".text") == 0)
4861 h->esym.asym.sc = scText;
4862 else if (strcmp (name, ".data") == 0)
4863 h->esym.asym.sc = scData;
4864 else if (strcmp (name, ".sdata") == 0)
4865 h->esym.asym.sc = scSData;
4866 else if (strcmp (name, ".rodata") == 0
4867 || strcmp (name, ".rdata") == 0)
4868 h->esym.asym.sc = scRData;
4869 else if (strcmp (name, ".bss") == 0)
4870 h->esym.asym.sc = scBss;
4871 else if (strcmp (name, ".sbss") == 0)
4872 h->esym.asym.sc = scSBss;
4873 else if (strcmp (name, ".init") == 0)
4874 h->esym.asym.sc = scInit;
4875 else if (strcmp (name, ".fini") == 0)
4876 h->esym.asym.sc = scFini;
4877 else
4878 h->esym.asym.sc = scAbs;
4879 }
4880 }
4881
4882 h->esym.asym.reserved = 0;
4883 h->esym.asym.index = indexNil;
4884 }
4885
4886 if (h->root.root.type == bfd_link_hash_common)
4887 h->esym.asym.value = h->root.root.u.c.size;
4888 else if (h->root.root.type == bfd_link_hash_defined
4889 || h->root.root.type == bfd_link_hash_defweak)
4890 {
4891 if (h->esym.asym.sc == scCommon)
4892 h->esym.asym.sc = scBss;
4893 else if (h->esym.asym.sc == scSCommon)
4894 h->esym.asym.sc = scSBss;
4895
4896 sec = h->root.root.u.def.section;
4897 output_section = sec->output_section;
4898 if (output_section != NULL)
4899 h->esym.asym.value = (h->root.root.u.def.value
4900 + sec->output_offset
4901 + output_section->vma);
4902 else
4903 h->esym.asym.value = 0;
4904 }
4905 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4906 {
4907 struct mips_elf_link_hash_entry *hd = h;
4908 boolean no_fn_stub = h->no_fn_stub;
4909
4910 while (hd->root.root.type == bfd_link_hash_indirect)
4911 {
4912 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
4913 no_fn_stub = no_fn_stub || hd->no_fn_stub;
4914 }
4915
4916 if (!no_fn_stub)
4917 {
4918 /* Set type and value for a symbol with a function stub. */
4919 h->esym.asym.st = stProc;
4920 sec = hd->root.root.u.def.section;
4921 if (sec == NULL)
4922 h->esym.asym.value = 0;
4923 else
4924 {
4925 output_section = sec->output_section;
4926 if (output_section != NULL)
4927 h->esym.asym.value = (hd->root.plt.offset
4928 + sec->output_offset
4929 + output_section->vma);
4930 else
4931 h->esym.asym.value = 0;
4932 }
4933 #if 0 /* FIXME? */
4934 h->esym.ifd = 0;
4935 #endif
4936 }
4937 }
4938
4939 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4940 h->root.root.root.string,
4941 &h->esym))
4942 {
4943 einfo->failed = true;
4944 return false;
4945 }
4946
4947 return true;
4948 }
4949
4950 /* Create a runtime procedure table from the .mdebug section. */
4951
4952 static boolean
4953 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4954 PTR handle;
4955 bfd *abfd;
4956 struct bfd_link_info *info;
4957 asection *s;
4958 struct ecoff_debug_info *debug;
4959 {
4960 const struct ecoff_debug_swap *swap;
4961 HDRR *hdr = &debug->symbolic_header;
4962 RPDR *rpdr, *rp;
4963 struct rpdr_ext *erp;
4964 PTR rtproc;
4965 struct pdr_ext *epdr;
4966 struct sym_ext *esym;
4967 char *ss, **sv;
4968 char *str;
4969 bfd_size_type size;
4970 bfd_size_type count;
4971 unsigned long sindex;
4972 unsigned long i;
4973 PDR pdr;
4974 SYMR sym;
4975 const char *no_name_func = _("static procedure (no name)");
4976
4977 epdr = NULL;
4978 rpdr = NULL;
4979 esym = NULL;
4980 ss = NULL;
4981 sv = NULL;
4982
4983 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4984
4985 sindex = strlen (no_name_func) + 1;
4986 count = hdr->ipdMax;
4987 if (count > 0)
4988 {
4989 size = swap->external_pdr_size;
4990
4991 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4992 if (epdr == NULL)
4993 goto error_return;
4994
4995 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4996 goto error_return;
4997
4998 size = sizeof (RPDR);
4999 rp = rpdr = (RPDR *) bfd_malloc (size * count);
5000 if (rpdr == NULL)
5001 goto error_return;
5002
5003 size = sizeof (char *);
5004 sv = (char **) bfd_malloc (size * count);
5005 if (sv == NULL)
5006 goto error_return;
5007
5008 count = hdr->isymMax;
5009 size = swap->external_sym_size;
5010 esym = (struct sym_ext *) bfd_malloc (size * count);
5011 if (esym == NULL)
5012 goto error_return;
5013
5014 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
5015 goto error_return;
5016
5017 count = hdr->issMax;
5018 ss = (char *) bfd_malloc (count);
5019 if (ss == NULL)
5020 goto error_return;
5021 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
5022 goto error_return;
5023
5024 count = hdr->ipdMax;
5025 for (i = 0; i < (unsigned long) count; i++, rp++)
5026 {
5027 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
5028 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
5029 rp->adr = sym.value;
5030 rp->regmask = pdr.regmask;
5031 rp->regoffset = pdr.regoffset;
5032 rp->fregmask = pdr.fregmask;
5033 rp->fregoffset = pdr.fregoffset;
5034 rp->frameoffset = pdr.frameoffset;
5035 rp->framereg = pdr.framereg;
5036 rp->pcreg = pdr.pcreg;
5037 rp->irpss = sindex;
5038 sv[i] = ss + sym.iss;
5039 sindex += strlen (sv[i]) + 1;
5040 }
5041 }
5042
5043 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
5044 size = BFD_ALIGN (size, 16);
5045 rtproc = (PTR) bfd_alloc (abfd, size);
5046 if (rtproc == NULL)
5047 {
5048 mips_elf_hash_table (info)->procedure_count = 0;
5049 goto error_return;
5050 }
5051
5052 mips_elf_hash_table (info)->procedure_count = count + 2;
5053
5054 erp = (struct rpdr_ext *) rtproc;
5055 memset (erp, 0, sizeof (struct rpdr_ext));
5056 erp++;
5057 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
5058 strcpy (str, no_name_func);
5059 str += strlen (no_name_func) + 1;
5060 for (i = 0; i < count; i++)
5061 {
5062 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
5063 strcpy (str, sv[i]);
5064 str += strlen (sv[i]) + 1;
5065 }
5066 ECOFF_PUT_OFF (abfd, -1, (erp + count)->p_adr);
5067
5068 /* Set the size and contents of .rtproc section. */
5069 s->_raw_size = size;
5070 s->contents = (bfd_byte *) rtproc;
5071
5072 /* Skip this section later on (I don't think this currently
5073 matters, but someday it might). */
5074 s->link_order_head = (struct bfd_link_order *) NULL;
5075
5076 if (epdr != NULL)
5077 free (epdr);
5078 if (rpdr != NULL)
5079 free (rpdr);
5080 if (esym != NULL)
5081 free (esym);
5082 if (ss != NULL)
5083 free (ss);
5084 if (sv != NULL)
5085 free (sv);
5086
5087 return true;
5088
5089 error_return:
5090 if (epdr != NULL)
5091 free (epdr);
5092 if (rpdr != NULL)
5093 free (rpdr);
5094 if (esym != NULL)
5095 free (esym);
5096 if (ss != NULL)
5097 free (ss);
5098 if (sv != NULL)
5099 free (sv);
5100 return false;
5101 }
5102
5103 /* A comparison routine used to sort .gptab entries. */
5104
5105 static int
5106 gptab_compare (p1, p2)
5107 const PTR p1;
5108 const PTR p2;
5109 {
5110 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
5111 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
5112
5113 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
5114 }
5115
5116 /* We need to use a special link routine to handle the .reginfo and
5117 the .mdebug sections. We need to merge all instances of these
5118 sections together, not write them all out sequentially. */
5119
5120 boolean
5121 _bfd_mips_elf_final_link (abfd, info)
5122 bfd *abfd;
5123 struct bfd_link_info *info;
5124 {
5125 asection **secpp;
5126 asection *o;
5127 struct bfd_link_order *p;
5128 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
5129 asection *rtproc_sec;
5130 Elf32_RegInfo reginfo;
5131 struct ecoff_debug_info debug;
5132 const struct ecoff_debug_swap *swap
5133 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
5134 HDRR *symhdr = &debug.symbolic_header;
5135 PTR mdebug_handle = NULL;
5136 asection *s;
5137 EXTR esym;
5138 unsigned int i;
5139 bfd_size_type amt;
5140
5141 static const char * const secname[] =
5142 {
5143 ".text", ".init", ".fini", ".data",
5144 ".rodata", ".sdata", ".sbss", ".bss"
5145 };
5146 static const int sc[] =
5147 {
5148 scText, scInit, scFini, scData,
5149 scRData, scSData, scSBss, scBss
5150 };
5151
5152 /* If all the things we linked together were PIC, but we're
5153 producing an executable (rather than a shared object), then the
5154 resulting file is CPIC (i.e., it calls PIC code.) */
5155 if (!info->shared
5156 && !info->relocateable
5157 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
5158 {
5159 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
5160 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
5161 }
5162
5163 /* We'd carefully arranged the dynamic symbol indices, and then the
5164 generic size_dynamic_sections renumbered them out from under us.
5165 Rather than trying somehow to prevent the renumbering, just do
5166 the sort again. */
5167 if (elf_hash_table (info)->dynamic_sections_created)
5168 {
5169 bfd *dynobj;
5170 asection *got;
5171 struct mips_got_info *g;
5172
5173 /* When we resort, we must tell mips_elf_sort_hash_table what
5174 the lowest index it may use is. That's the number of section
5175 symbols we're going to add. The generic ELF linker only
5176 adds these symbols when building a shared object. Note that
5177 we count the sections after (possibly) removing the .options
5178 section above. */
5179 if (!mips_elf_sort_hash_table (info, (info->shared
5180 ? bfd_count_sections (abfd) + 1
5181 : 1)))
5182 return false;
5183
5184 /* Make sure we didn't grow the global .got region. */
5185 dynobj = elf_hash_table (info)->dynobj;
5186 got = bfd_get_section_by_name (dynobj, ".got");
5187 g = (struct mips_got_info *) elf_section_data (got)->tdata;
5188
5189 if (g->global_gotsym != NULL)
5190 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
5191 - g->global_gotsym->dynindx)
5192 <= g->global_gotno);
5193 }
5194
5195 /* On IRIX5, we omit the .options section. On IRIX6, however, we
5196 include it, even though we don't process it quite right. (Some
5197 entries are supposed to be merged.) Empirically, we seem to be
5198 better off including it then not. */
5199 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5200 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
5201 {
5202 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
5203 {
5204 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
5205 if (p->type == bfd_indirect_link_order)
5206 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
5207 (*secpp)->link_order_head = NULL;
5208 bfd_section_list_remove (abfd, secpp);
5209 --abfd->section_count;
5210
5211 break;
5212 }
5213 }
5214
5215 /* Get a value for the GP register. */
5216 if (elf_gp (abfd) == 0)
5217 {
5218 struct bfd_link_hash_entry *h;
5219
5220 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
5221 if (h != (struct bfd_link_hash_entry *) NULL
5222 && h->type == bfd_link_hash_defined)
5223 elf_gp (abfd) = (h->u.def.value
5224 + h->u.def.section->output_section->vma
5225 + h->u.def.section->output_offset);
5226 else if (info->relocateable)
5227 {
5228 bfd_vma lo;
5229
5230 /* Find the GP-relative section with the lowest offset. */
5231 lo = (bfd_vma) -1;
5232 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5233 if (o->vma < lo
5234 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
5235 lo = o->vma;
5236
5237 /* And calculate GP relative to that. */
5238 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
5239 }
5240 else
5241 {
5242 /* If the relocate_section function needs to do a reloc
5243 involving the GP value, it should make a reloc_dangerous
5244 callback to warn that GP is not defined. */
5245 }
5246 }
5247
5248 /* Go through the sections and collect the .reginfo and .mdebug
5249 information. */
5250 reginfo_sec = NULL;
5251 mdebug_sec = NULL;
5252 gptab_data_sec = NULL;
5253 gptab_bss_sec = NULL;
5254 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5255 {
5256 if (strcmp (o->name, ".reginfo") == 0)
5257 {
5258 memset (&reginfo, 0, sizeof reginfo);
5259
5260 /* We have found the .reginfo section in the output file.
5261 Look through all the link_orders comprising it and merge
5262 the information together. */
5263 for (p = o->link_order_head;
5264 p != (struct bfd_link_order *) NULL;
5265 p = p->next)
5266 {
5267 asection *input_section;
5268 bfd *input_bfd;
5269 Elf32_External_RegInfo ext;
5270 Elf32_RegInfo sub;
5271
5272 if (p->type != bfd_indirect_link_order)
5273 {
5274 if (p->type == bfd_data_link_order)
5275 continue;
5276 abort ();
5277 }
5278
5279 input_section = p->u.indirect.section;
5280 input_bfd = input_section->owner;
5281
5282 /* The linker emulation code has probably clobbered the
5283 size to be zero bytes. */
5284 if (input_section->_raw_size == 0)
5285 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
5286
5287 if (! bfd_get_section_contents (input_bfd, input_section,
5288 (PTR) &ext,
5289 (file_ptr) 0,
5290 (bfd_size_type) sizeof ext))
5291 return false;
5292
5293 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
5294
5295 reginfo.ri_gprmask |= sub.ri_gprmask;
5296 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
5297 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
5298 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
5299 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
5300
5301 /* ri_gp_value is set by the function
5302 mips_elf32_section_processing when the section is
5303 finally written out. */
5304
5305 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5306 elf_link_input_bfd ignores this section. */
5307 input_section->flags &= ~SEC_HAS_CONTENTS;
5308 }
5309
5310 /* Size has been set in mips_elf_always_size_sections */
5311 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
5312
5313 /* Skip this section later on (I don't think this currently
5314 matters, but someday it might). */
5315 o->link_order_head = (struct bfd_link_order *) NULL;
5316
5317 reginfo_sec = o;
5318 }
5319
5320 if (strcmp (o->name, ".mdebug") == 0)
5321 {
5322 struct extsym_info einfo;
5323 bfd_vma last;
5324
5325 /* We have found the .mdebug section in the output file.
5326 Look through all the link_orders comprising it and merge
5327 the information together. */
5328 symhdr->magic = swap->sym_magic;
5329 /* FIXME: What should the version stamp be? */
5330 symhdr->vstamp = 0;
5331 symhdr->ilineMax = 0;
5332 symhdr->cbLine = 0;
5333 symhdr->idnMax = 0;
5334 symhdr->ipdMax = 0;
5335 symhdr->isymMax = 0;
5336 symhdr->ioptMax = 0;
5337 symhdr->iauxMax = 0;
5338 symhdr->issMax = 0;
5339 symhdr->issExtMax = 0;
5340 symhdr->ifdMax = 0;
5341 symhdr->crfd = 0;
5342 symhdr->iextMax = 0;
5343
5344 /* We accumulate the debugging information itself in the
5345 debug_info structure. */
5346 debug.line = NULL;
5347 debug.external_dnr = NULL;
5348 debug.external_pdr = NULL;
5349 debug.external_sym = NULL;
5350 debug.external_opt = NULL;
5351 debug.external_aux = NULL;
5352 debug.ss = NULL;
5353 debug.ssext = debug.ssext_end = NULL;
5354 debug.external_fdr = NULL;
5355 debug.external_rfd = NULL;
5356 debug.external_ext = debug.external_ext_end = NULL;
5357
5358 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
5359 if (mdebug_handle == (PTR) NULL)
5360 return false;
5361
5362 esym.jmptbl = 0;
5363 esym.cobol_main = 0;
5364 esym.weakext = 0;
5365 esym.reserved = 0;
5366 esym.ifd = ifdNil;
5367 esym.asym.iss = issNil;
5368 esym.asym.st = stLocal;
5369 esym.asym.reserved = 0;
5370 esym.asym.index = indexNil;
5371 last = 0;
5372 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
5373 {
5374 esym.asym.sc = sc[i];
5375 s = bfd_get_section_by_name (abfd, secname[i]);
5376 if (s != NULL)
5377 {
5378 esym.asym.value = s->vma;
5379 last = s->vma + s->_raw_size;
5380 }
5381 else
5382 esym.asym.value = last;
5383 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
5384 secname[i], &esym))
5385 return false;
5386 }
5387
5388 for (p = o->link_order_head;
5389 p != (struct bfd_link_order *) NULL;
5390 p = p->next)
5391 {
5392 asection *input_section;
5393 bfd *input_bfd;
5394 const struct ecoff_debug_swap *input_swap;
5395 struct ecoff_debug_info input_debug;
5396 char *eraw_src;
5397 char *eraw_end;
5398
5399 if (p->type != bfd_indirect_link_order)
5400 {
5401 if (p->type == bfd_data_link_order)
5402 continue;
5403 abort ();
5404 }
5405
5406 input_section = p->u.indirect.section;
5407 input_bfd = input_section->owner;
5408
5409 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
5410 || (get_elf_backend_data (input_bfd)
5411 ->elf_backend_ecoff_debug_swap) == NULL)
5412 {
5413 /* I don't know what a non MIPS ELF bfd would be
5414 doing with a .mdebug section, but I don't really
5415 want to deal with it. */
5416 continue;
5417 }
5418
5419 input_swap = (get_elf_backend_data (input_bfd)
5420 ->elf_backend_ecoff_debug_swap);
5421
5422 BFD_ASSERT (p->size == input_section->_raw_size);
5423
5424 /* The ECOFF linking code expects that we have already
5425 read in the debugging information and set up an
5426 ecoff_debug_info structure, so we do that now. */
5427 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
5428 &input_debug))
5429 return false;
5430
5431 if (! (bfd_ecoff_debug_accumulate
5432 (mdebug_handle, abfd, &debug, swap, input_bfd,
5433 &input_debug, input_swap, info)))
5434 return false;
5435
5436 /* Loop through the external symbols. For each one with
5437 interesting information, try to find the symbol in
5438 the linker global hash table and save the information
5439 for the output external symbols. */
5440 eraw_src = input_debug.external_ext;
5441 eraw_end = (eraw_src
5442 + (input_debug.symbolic_header.iextMax
5443 * input_swap->external_ext_size));
5444 for (;
5445 eraw_src < eraw_end;
5446 eraw_src += input_swap->external_ext_size)
5447 {
5448 EXTR ext;
5449 const char *name;
5450 struct mips_elf_link_hash_entry *h;
5451
5452 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
5453 if (ext.asym.sc == scNil
5454 || ext.asym.sc == scUndefined
5455 || ext.asym.sc == scSUndefined)
5456 continue;
5457
5458 name = input_debug.ssext + ext.asym.iss;
5459 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
5460 name, false, false, true);
5461 if (h == NULL || h->esym.ifd != -2)
5462 continue;
5463
5464 if (ext.ifd != -1)
5465 {
5466 BFD_ASSERT (ext.ifd
5467 < input_debug.symbolic_header.ifdMax);
5468 ext.ifd = input_debug.ifdmap[ext.ifd];
5469 }
5470
5471 h->esym = ext;
5472 }
5473
5474 /* Free up the information we just read. */
5475 free (input_debug.line);
5476 free (input_debug.external_dnr);
5477 free (input_debug.external_pdr);
5478 free (input_debug.external_sym);
5479 free (input_debug.external_opt);
5480 free (input_debug.external_aux);
5481 free (input_debug.ss);
5482 free (input_debug.ssext);
5483 free (input_debug.external_fdr);
5484 free (input_debug.external_rfd);
5485 free (input_debug.external_ext);
5486
5487 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5488 elf_link_input_bfd ignores this section. */
5489 input_section->flags &= ~SEC_HAS_CONTENTS;
5490 }
5491
5492 if (SGI_COMPAT (abfd) && info->shared)
5493 {
5494 /* Create .rtproc section. */
5495 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5496 if (rtproc_sec == NULL)
5497 {
5498 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
5499 | SEC_LINKER_CREATED | SEC_READONLY);
5500
5501 rtproc_sec = bfd_make_section (abfd, ".rtproc");
5502 if (rtproc_sec == NULL
5503 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
5504 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
5505 return false;
5506 }
5507
5508 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
5509 info, rtproc_sec, &debug))
5510 return false;
5511 }
5512
5513 /* Build the external symbol information. */
5514 einfo.abfd = abfd;
5515 einfo.info = info;
5516 einfo.debug = &debug;
5517 einfo.swap = swap;
5518 einfo.failed = false;
5519 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5520 mips_elf_output_extsym,
5521 (PTR) &einfo);
5522 if (einfo.failed)
5523 return false;
5524
5525 /* Set the size of the .mdebug section. */
5526 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
5527
5528 /* Skip this section later on (I don't think this currently
5529 matters, but someday it might). */
5530 o->link_order_head = (struct bfd_link_order *) NULL;
5531
5532 mdebug_sec = o;
5533 }
5534
5535 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
5536 {
5537 const char *subname;
5538 unsigned int c;
5539 Elf32_gptab *tab;
5540 Elf32_External_gptab *ext_tab;
5541 unsigned int j;
5542
5543 /* The .gptab.sdata and .gptab.sbss sections hold
5544 information describing how the small data area would
5545 change depending upon the -G switch. These sections
5546 not used in executables files. */
5547 if (! info->relocateable)
5548 {
5549 for (p = o->link_order_head;
5550 p != (struct bfd_link_order *) NULL;
5551 p = p->next)
5552 {
5553 asection *input_section;
5554
5555 if (p->type != bfd_indirect_link_order)
5556 {
5557 if (p->type == bfd_data_link_order)
5558 continue;
5559 abort ();
5560 }
5561
5562 input_section = p->u.indirect.section;
5563
5564 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5565 elf_link_input_bfd ignores this section. */
5566 input_section->flags &= ~SEC_HAS_CONTENTS;
5567 }
5568
5569 /* Skip this section later on (I don't think this
5570 currently matters, but someday it might). */
5571 o->link_order_head = (struct bfd_link_order *) NULL;
5572
5573 /* Really remove the section. */
5574 for (secpp = &abfd->sections;
5575 *secpp != o;
5576 secpp = &(*secpp)->next)
5577 ;
5578 bfd_section_list_remove (abfd, secpp);
5579 --abfd->section_count;
5580
5581 continue;
5582 }
5583
5584 /* There is one gptab for initialized data, and one for
5585 uninitialized data. */
5586 if (strcmp (o->name, ".gptab.sdata") == 0)
5587 gptab_data_sec = o;
5588 else if (strcmp (o->name, ".gptab.sbss") == 0)
5589 gptab_bss_sec = o;
5590 else
5591 {
5592 (*_bfd_error_handler)
5593 (_("%s: illegal section name `%s'"),
5594 bfd_get_filename (abfd), o->name);
5595 bfd_set_error (bfd_error_nonrepresentable_section);
5596 return false;
5597 }
5598
5599 /* The linker script always combines .gptab.data and
5600 .gptab.sdata into .gptab.sdata, and likewise for
5601 .gptab.bss and .gptab.sbss. It is possible that there is
5602 no .sdata or .sbss section in the output file, in which
5603 case we must change the name of the output section. */
5604 subname = o->name + sizeof ".gptab" - 1;
5605 if (bfd_get_section_by_name (abfd, subname) == NULL)
5606 {
5607 if (o == gptab_data_sec)
5608 o->name = ".gptab.data";
5609 else
5610 o->name = ".gptab.bss";
5611 subname = o->name + sizeof ".gptab" - 1;
5612 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
5613 }
5614
5615 /* Set up the first entry. */
5616 c = 1;
5617 amt = c * sizeof (Elf32_gptab);
5618 tab = (Elf32_gptab *) bfd_malloc (amt);
5619 if (tab == NULL)
5620 return false;
5621 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
5622 tab[0].gt_header.gt_unused = 0;
5623
5624 /* Combine the input sections. */
5625 for (p = o->link_order_head;
5626 p != (struct bfd_link_order *) NULL;
5627 p = p->next)
5628 {
5629 asection *input_section;
5630 bfd *input_bfd;
5631 bfd_size_type size;
5632 unsigned long last;
5633 bfd_size_type gpentry;
5634
5635 if (p->type != bfd_indirect_link_order)
5636 {
5637 if (p->type == bfd_data_link_order)
5638 continue;
5639 abort ();
5640 }
5641
5642 input_section = p->u.indirect.section;
5643 input_bfd = input_section->owner;
5644
5645 /* Combine the gptab entries for this input section one
5646 by one. We know that the input gptab entries are
5647 sorted by ascending -G value. */
5648 size = bfd_section_size (input_bfd, input_section);
5649 last = 0;
5650 for (gpentry = sizeof (Elf32_External_gptab);
5651 gpentry < size;
5652 gpentry += sizeof (Elf32_External_gptab))
5653 {
5654 Elf32_External_gptab ext_gptab;
5655 Elf32_gptab int_gptab;
5656 unsigned long val;
5657 unsigned long add;
5658 boolean exact;
5659 unsigned int look;
5660
5661 if (! (bfd_get_section_contents
5662 (input_bfd, input_section, (PTR) &ext_gptab,
5663 (file_ptr) gpentry,
5664 (bfd_size_type) sizeof (Elf32_External_gptab))))
5665 {
5666 free (tab);
5667 return false;
5668 }
5669
5670 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
5671 &int_gptab);
5672 val = int_gptab.gt_entry.gt_g_value;
5673 add = int_gptab.gt_entry.gt_bytes - last;
5674
5675 exact = false;
5676 for (look = 1; look < c; look++)
5677 {
5678 if (tab[look].gt_entry.gt_g_value >= val)
5679 tab[look].gt_entry.gt_bytes += add;
5680
5681 if (tab[look].gt_entry.gt_g_value == val)
5682 exact = true;
5683 }
5684
5685 if (! exact)
5686 {
5687 Elf32_gptab *new_tab;
5688 unsigned int max;
5689
5690 /* We need a new table entry. */
5691 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
5692 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
5693 if (new_tab == NULL)
5694 {
5695 free (tab);
5696 return false;
5697 }
5698 tab = new_tab;
5699 tab[c].gt_entry.gt_g_value = val;
5700 tab[c].gt_entry.gt_bytes = add;
5701
5702 /* Merge in the size for the next smallest -G
5703 value, since that will be implied by this new
5704 value. */
5705 max = 0;
5706 for (look = 1; look < c; look++)
5707 {
5708 if (tab[look].gt_entry.gt_g_value < val
5709 && (max == 0
5710 || (tab[look].gt_entry.gt_g_value
5711 > tab[max].gt_entry.gt_g_value)))
5712 max = look;
5713 }
5714 if (max != 0)
5715 tab[c].gt_entry.gt_bytes +=
5716 tab[max].gt_entry.gt_bytes;
5717
5718 ++c;
5719 }
5720
5721 last = int_gptab.gt_entry.gt_bytes;
5722 }
5723
5724 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5725 elf_link_input_bfd ignores this section. */
5726 input_section->flags &= ~SEC_HAS_CONTENTS;
5727 }
5728
5729 /* The table must be sorted by -G value. */
5730 if (c > 2)
5731 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
5732
5733 /* Swap out the table. */
5734 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
5735 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
5736 if (ext_tab == NULL)
5737 {
5738 free (tab);
5739 return false;
5740 }
5741
5742 for (j = 0; j < c; j++)
5743 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
5744 free (tab);
5745
5746 o->_raw_size = c * sizeof (Elf32_External_gptab);
5747 o->contents = (bfd_byte *) ext_tab;
5748
5749 /* Skip this section later on (I don't think this currently
5750 matters, but someday it might). */
5751 o->link_order_head = (struct bfd_link_order *) NULL;
5752 }
5753 }
5754
5755 /* Invoke the regular ELF backend linker to do all the work. */
5756 if (ABI_64_P (abfd))
5757 {
5758 #ifdef BFD64
5759 if (!bfd_elf64_bfd_final_link (abfd, info))
5760 return false;
5761 #else
5762 abort ();
5763 return false;
5764 #endif /* BFD64 */
5765 }
5766 else if (!bfd_elf32_bfd_final_link (abfd, info))
5767 return false;
5768
5769 /* Now write out the computed sections. */
5770
5771 if (reginfo_sec != (asection *) NULL)
5772 {
5773 Elf32_External_RegInfo ext;
5774
5775 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
5776 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
5777 (file_ptr) 0, (bfd_size_type) sizeof ext))
5778 return false;
5779 }
5780
5781 if (mdebug_sec != (asection *) NULL)
5782 {
5783 BFD_ASSERT (abfd->output_has_begun);
5784 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5785 swap, info,
5786 mdebug_sec->filepos))
5787 return false;
5788
5789 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5790 }
5791
5792 if (gptab_data_sec != (asection *) NULL)
5793 {
5794 if (! bfd_set_section_contents (abfd, gptab_data_sec,
5795 gptab_data_sec->contents,
5796 (file_ptr) 0,
5797 gptab_data_sec->_raw_size))
5798 return false;
5799 }
5800
5801 if (gptab_bss_sec != (asection *) NULL)
5802 {
5803 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
5804 gptab_bss_sec->contents,
5805 (file_ptr) 0,
5806 gptab_bss_sec->_raw_size))
5807 return false;
5808 }
5809
5810 if (SGI_COMPAT (abfd))
5811 {
5812 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5813 if (rtproc_sec != NULL)
5814 {
5815 if (! bfd_set_section_contents (abfd, rtproc_sec,
5816 rtproc_sec->contents,
5817 (file_ptr) 0,
5818 rtproc_sec->_raw_size))
5819 return false;
5820 }
5821 }
5822
5823 return true;
5824 }
5825
5826 /* This function is called via qsort() to sort the dynamic relocation
5827 entries by increasing r_symndx value. */
5828
5829 static int
5830 sort_dynamic_relocs (arg1, arg2)
5831 const PTR arg1;
5832 const PTR arg2;
5833 {
5834 const Elf32_External_Rel *ext_reloc1 = (const Elf32_External_Rel *) arg1;
5835 const Elf32_External_Rel *ext_reloc2 = (const Elf32_External_Rel *) arg2;
5836
5837 Elf_Internal_Rel int_reloc1;
5838 Elf_Internal_Rel int_reloc2;
5839
5840 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc1, &int_reloc1);
5841 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, ext_reloc2, &int_reloc2);
5842
5843 return (ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info));
5844 }
5845
5846 /* Returns the GOT section for ABFD. */
5847
5848 static asection *
5849 mips_elf_got_section (abfd)
5850 bfd *abfd;
5851 {
5852 return bfd_get_section_by_name (abfd, ".got");
5853 }
5854
5855 /* Returns the GOT information associated with the link indicated by
5856 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5857 section. */
5858
5859 static struct mips_got_info *
5860 mips_elf_got_info (abfd, sgotp)
5861 bfd *abfd;
5862 asection **sgotp;
5863 {
5864 asection *sgot;
5865 struct mips_got_info *g;
5866
5867 sgot = mips_elf_got_section (abfd);
5868 BFD_ASSERT (sgot != NULL);
5869 BFD_ASSERT (elf_section_data (sgot) != NULL);
5870 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5871 BFD_ASSERT (g != NULL);
5872
5873 if (sgotp)
5874 *sgotp = sgot;
5875 return g;
5876 }
5877
5878 /* Return whether a relocation is against a local symbol. */
5879
5880 static boolean
5881 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
5882 check_forced)
5883 bfd *input_bfd;
5884 const Elf_Internal_Rela *relocation;
5885 asection **local_sections;
5886 boolean check_forced;
5887 {
5888 unsigned long r_symndx;
5889 Elf_Internal_Shdr *symtab_hdr;
5890 struct mips_elf_link_hash_entry *h;
5891 size_t extsymoff;
5892
5893 r_symndx = ELF32_R_SYM (relocation->r_info);
5894 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5895 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5896
5897 if (r_symndx < extsymoff)
5898 return true;
5899 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5900 return true;
5901
5902 if (check_forced)
5903 {
5904 /* Look up the hash table to check whether the symbol
5905 was forced local. */
5906 h = (struct mips_elf_link_hash_entry *)
5907 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
5908 /* Find the real hash-table entry for this symbol. */
5909 while (h->root.root.type == bfd_link_hash_indirect
5910 || h->root.root.type == bfd_link_hash_warning)
5911 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5912 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5913 return true;
5914 }
5915
5916 return false;
5917 }
5918
5919 /* Sign-extend VALUE, which has the indicated number of BITS. */
5920
5921 static bfd_vma
5922 mips_elf_sign_extend (value, bits)
5923 bfd_vma value;
5924 int bits;
5925 {
5926 if (value & ((bfd_vma) 1 << (bits - 1)))
5927 /* VALUE is negative. */
5928 value |= ((bfd_vma) - 1) << bits;
5929
5930 return value;
5931 }
5932
5933 /* Return non-zero if the indicated VALUE has overflowed the maximum
5934 range expressable by a signed number with the indicated number of
5935 BITS. */
5936
5937 static boolean
5938 mips_elf_overflow_p (value, bits)
5939 bfd_vma value;
5940 int bits;
5941 {
5942 bfd_signed_vma svalue = (bfd_signed_vma) value;
5943
5944 if (svalue > (1 << (bits - 1)) - 1)
5945 /* The value is too big. */
5946 return true;
5947 else if (svalue < -(1 << (bits - 1)))
5948 /* The value is too small. */
5949 return true;
5950
5951 /* All is well. */
5952 return false;
5953 }
5954
5955 /* Calculate the %high function. */
5956
5957 static bfd_vma
5958 mips_elf_high (value)
5959 bfd_vma value;
5960 {
5961 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5962 }
5963
5964 /* Calculate the %higher function. */
5965
5966 static bfd_vma
5967 mips_elf_higher (value)
5968 bfd_vma value ATTRIBUTE_UNUSED;
5969 {
5970 #ifdef BFD64
5971 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5972 #else
5973 abort ();
5974 return (bfd_vma) -1;
5975 #endif
5976 }
5977
5978 /* Calculate the %highest function. */
5979
5980 static bfd_vma
5981 mips_elf_highest (value)
5982 bfd_vma value ATTRIBUTE_UNUSED;
5983 {
5984 #ifdef BFD64
5985 return ((value + (bfd_vma) 0x800080008000) >> 48) & 0xffff;
5986 #else
5987 abort ();
5988 return (bfd_vma) -1;
5989 #endif
5990 }
5991
5992 /* Returns the GOT index for the global symbol indicated by H. */
5993
5994 static bfd_vma
5995 mips_elf_global_got_index (abfd, h)
5996 bfd *abfd;
5997 struct elf_link_hash_entry *h;
5998 {
5999 bfd_vma index;
6000 asection *sgot;
6001 struct mips_got_info *g;
6002
6003 g = mips_elf_got_info (abfd, &sgot);
6004
6005 /* Once we determine the global GOT entry with the lowest dynamic
6006 symbol table index, we must put all dynamic symbols with greater
6007 indices into the GOT. That makes it easy to calculate the GOT
6008 offset. */
6009 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
6010 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
6011 * MIPS_ELF_GOT_SIZE (abfd));
6012 BFD_ASSERT (index < sgot->_raw_size);
6013
6014 return index;
6015 }
6016
6017 /* Returns the offset for the entry at the INDEXth position
6018 in the GOT. */
6019
6020 static bfd_vma
6021 mips_elf_got_offset_from_index (dynobj, output_bfd, index)
6022 bfd *dynobj;
6023 bfd *output_bfd;
6024 bfd_vma index;
6025 {
6026 asection *sgot;
6027 bfd_vma gp;
6028
6029 sgot = mips_elf_got_section (dynobj);
6030 gp = _bfd_get_gp_value (output_bfd);
6031 return (sgot->output_section->vma + sgot->output_offset + index -
6032 gp);
6033 }
6034
6035 /* If H is a symbol that needs a global GOT entry, but has a dynamic
6036 symbol table index lower than any we've seen to date, record it for
6037 posterity. */
6038
6039 static boolean
6040 mips_elf_record_global_got_symbol (h, info, g)
6041 struct elf_link_hash_entry *h;
6042 struct bfd_link_info *info;
6043 struct mips_got_info *g ATTRIBUTE_UNUSED;
6044 {
6045 /* A global symbol in the GOT must also be in the dynamic symbol
6046 table. */
6047 if (h->dynindx == -1
6048 && !bfd_elf32_link_record_dynamic_symbol (info, h))
6049 return false;
6050
6051 /* If we've already marked this entry as needing GOT space, we don't
6052 need to do it again. */
6053 if (h->got.offset != (bfd_vma) -1)
6054 return true;
6055
6056 /* By setting this to a value other than -1, we are indicating that
6057 there needs to be a GOT entry for H. Avoid using zero, as the
6058 generic ELF copy_indirect_symbol tests for <= 0. */
6059 h->got.offset = 1;
6060
6061 return true;
6062 }
6063
6064 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
6065 the dynamic symbols. */
6066
6067 struct mips_elf_hash_sort_data
6068 {
6069 /* The symbol in the global GOT with the lowest dynamic symbol table
6070 index. */
6071 struct elf_link_hash_entry *low;
6072 /* The least dynamic symbol table index corresponding to a symbol
6073 with a GOT entry. */
6074 long min_got_dynindx;
6075 /* The greatest dynamic symbol table index not corresponding to a
6076 symbol without a GOT entry. */
6077 long max_non_got_dynindx;
6078 };
6079
6080 /* If H needs a GOT entry, assign it the highest available dynamic
6081 index. Otherwise, assign it the lowest available dynamic
6082 index. */
6083
6084 static boolean
6085 mips_elf_sort_hash_table_f (h, data)
6086 struct mips_elf_link_hash_entry *h;
6087 PTR data;
6088 {
6089 struct mips_elf_hash_sort_data *hsd
6090 = (struct mips_elf_hash_sort_data *) data;
6091
6092 /* Symbols without dynamic symbol table entries aren't interesting
6093 at all. */
6094 if (h->root.dynindx == -1)
6095 return true;
6096
6097 if (h->root.got.offset != 1)
6098 h->root.dynindx = hsd->max_non_got_dynindx++;
6099 else
6100 {
6101 h->root.dynindx = --hsd->min_got_dynindx;
6102 hsd->low = (struct elf_link_hash_entry *) h;
6103 }
6104
6105 return true;
6106 }
6107
6108 /* Sort the dynamic symbol table so that symbols that need GOT entries
6109 appear towards the end. This reduces the amount of GOT space
6110 required. MAX_LOCAL is used to set the number of local symbols
6111 known to be in the dynamic symbol table. During
6112 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
6113 section symbols are added and the count is higher. */
6114
6115 static boolean
6116 mips_elf_sort_hash_table (info, max_local)
6117 struct bfd_link_info *info;
6118 unsigned long max_local;
6119 {
6120 struct mips_elf_hash_sort_data hsd;
6121 struct mips_got_info *g;
6122 bfd *dynobj;
6123
6124 dynobj = elf_hash_table (info)->dynobj;
6125
6126 hsd.low = NULL;
6127 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
6128 hsd.max_non_got_dynindx = max_local;
6129 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
6130 elf_hash_table (info)),
6131 mips_elf_sort_hash_table_f,
6132 &hsd);
6133
6134 /* There should have been enough room in the symbol table to
6135 accomodate both the GOT and non-GOT symbols. */
6136 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
6137
6138 /* Now we know which dynamic symbol has the lowest dynamic symbol
6139 table index in the GOT. */
6140 g = mips_elf_got_info (dynobj, NULL);
6141 g->global_gotsym = hsd.low;
6142
6143 return true;
6144 }
6145
6146 /* Create a local GOT entry for VALUE. Return the index of the entry,
6147 or -1 if it could not be created. */
6148
6149 static bfd_vma
6150 mips_elf_create_local_got_entry (abfd, g, sgot, value)
6151 bfd *abfd;
6152 struct mips_got_info *g;
6153 asection *sgot;
6154 bfd_vma value;
6155 {
6156 if (g->assigned_gotno >= g->local_gotno)
6157 {
6158 /* We didn't allocate enough space in the GOT. */
6159 (*_bfd_error_handler)
6160 (_("not enough GOT space for local GOT entries"));
6161 bfd_set_error (bfd_error_bad_value);
6162 return (bfd_vma) -1;
6163 }
6164
6165 MIPS_ELF_PUT_WORD (abfd, value,
6166 (sgot->contents
6167 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
6168 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
6169 }
6170
6171 /* Returns the GOT offset at which the indicated address can be found.
6172 If there is not yet a GOT entry for this value, create one. Returns
6173 -1 if no satisfactory GOT offset can be found. */
6174
6175 static bfd_vma
6176 mips_elf_local_got_index (abfd, info, value)
6177 bfd *abfd;
6178 struct bfd_link_info *info;
6179 bfd_vma value;
6180 {
6181 asection *sgot;
6182 struct mips_got_info *g;
6183 bfd_byte *entry;
6184
6185 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
6186
6187 /* Look to see if we already have an appropriate entry. */
6188 for (entry = (sgot->contents
6189 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
6190 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
6191 entry += MIPS_ELF_GOT_SIZE (abfd))
6192 {
6193 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
6194 if (address == value)
6195 return entry - sgot->contents;
6196 }
6197
6198 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
6199 }
6200
6201 /* Find a GOT entry that is within 32KB of the VALUE. These entries
6202 are supposed to be placed at small offsets in the GOT, i.e.,
6203 within 32KB of GP. Return the index into the GOT for this page,
6204 and store the offset from this entry to the desired address in
6205 OFFSETP, if it is non-NULL. */
6206
6207 static bfd_vma
6208 mips_elf_got_page (abfd, info, value, offsetp)
6209 bfd *abfd;
6210 struct bfd_link_info *info;
6211 bfd_vma value;
6212 bfd_vma *offsetp;
6213 {
6214 asection *sgot;
6215 struct mips_got_info *g;
6216 bfd_byte *entry;
6217 bfd_byte *last_entry;
6218 bfd_vma index = 0;
6219 bfd_vma address;
6220
6221 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
6222
6223 /* Look to see if we aleady have an appropriate entry. */
6224 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
6225 for (entry = (sgot->contents
6226 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
6227 entry != last_entry;
6228 entry += MIPS_ELF_GOT_SIZE (abfd))
6229 {
6230 address = MIPS_ELF_GET_WORD (abfd, entry);
6231
6232 if (!mips_elf_overflow_p (value - address, 16))
6233 {
6234 /* This entry will serve as the page pointer. We can add a
6235 16-bit number to it to get the actual address. */
6236 index = entry - sgot->contents;
6237 break;
6238 }
6239 }
6240
6241 /* If we didn't have an appropriate entry, we create one now. */
6242 if (entry == last_entry)
6243 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
6244
6245 if (offsetp)
6246 {
6247 address = MIPS_ELF_GET_WORD (abfd, entry);
6248 *offsetp = value - address;
6249 }
6250
6251 return index;
6252 }
6253
6254 /* Find a GOT entry whose higher-order 16 bits are the same as those
6255 for value. Return the index into the GOT for this entry. */
6256
6257 static bfd_vma
6258 mips_elf_got16_entry (abfd, info, value, external)
6259 bfd *abfd;
6260 struct bfd_link_info *info;
6261 bfd_vma value;
6262 boolean external;
6263 {
6264 asection *sgot;
6265 struct mips_got_info *g;
6266 bfd_byte *entry;
6267 bfd_byte *last_entry;
6268 bfd_vma index = 0;
6269 bfd_vma address;
6270
6271 if (! external)
6272 {
6273 /* Although the ABI says that it is "the high-order 16 bits" that we
6274 want, it is really the %high value. The complete value is
6275 calculated with a `addiu' of a LO16 relocation, just as with a
6276 HI16/LO16 pair. */
6277 value = mips_elf_high (value) << 16;
6278 }
6279
6280 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
6281
6282 /* Look to see if we already have an appropriate entry. */
6283 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
6284 for (entry = (sgot->contents
6285 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
6286 entry != last_entry;
6287 entry += MIPS_ELF_GOT_SIZE (abfd))
6288 {
6289 address = MIPS_ELF_GET_WORD (abfd, entry);
6290 if (address == value)
6291 {
6292 /* This entry has the right high-order 16 bits, and the low-order
6293 16 bits are set to zero. */
6294 index = entry - sgot->contents;
6295 break;
6296 }
6297 }
6298
6299 /* If we didn't have an appropriate entry, we create one now. */
6300 if (entry == last_entry)
6301 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
6302
6303 return index;
6304 }
6305
6306 /* Returns the first relocation of type r_type found, beginning with
6307 RELOCATION. RELEND is one-past-the-end of the relocation table. */
6308
6309 static const Elf_Internal_Rela *
6310 mips_elf_next_relocation (r_type, relocation, relend)
6311 unsigned int r_type;
6312 const Elf_Internal_Rela *relocation;
6313 const Elf_Internal_Rela *relend;
6314 {
6315 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
6316 immediately following. However, for the IRIX6 ABI, the next
6317 relocation may be a composed relocation consisting of several
6318 relocations for the same address. In that case, the R_MIPS_LO16
6319 relocation may occur as one of these. We permit a similar
6320 extension in general, as that is useful for GCC. */
6321 while (relocation < relend)
6322 {
6323 if (ELF32_R_TYPE (relocation->r_info) == r_type)
6324 return relocation;
6325
6326 ++relocation;
6327 }
6328
6329 /* We didn't find it. */
6330 bfd_set_error (bfd_error_bad_value);
6331 return NULL;
6332 }
6333
6334 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6335 is the original relocation, which is now being transformed into a
6336 dynamic relocation. The ADDENDP is adjusted if necessary; the
6337 caller should store the result in place of the original addend. */
6338
6339 static boolean
6340 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
6341 symbol, addendp, input_section)
6342 bfd *output_bfd;
6343 struct bfd_link_info *info;
6344 const Elf_Internal_Rela *rel;
6345 struct mips_elf_link_hash_entry *h;
6346 asection *sec;
6347 bfd_vma symbol;
6348 bfd_vma *addendp;
6349 asection *input_section;
6350 {
6351 Elf_Internal_Rel outrel;
6352 boolean skip;
6353 asection *sreloc;
6354 bfd *dynobj;
6355 int r_type;
6356
6357 r_type = ELF32_R_TYPE (rel->r_info);
6358 dynobj = elf_hash_table (info)->dynobj;
6359 sreloc
6360 = bfd_get_section_by_name (dynobj,
6361 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
6362 BFD_ASSERT (sreloc != NULL);
6363 BFD_ASSERT (sreloc->contents != NULL);
6364 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6365 < sreloc->_raw_size);
6366
6367 skip = false;
6368 outrel.r_offset =
6369 _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset);
6370 if (outrel.r_offset == (bfd_vma) -1)
6371 skip = true;
6372 /* FIXME: For -2 runtime relocation needs to be skipped, but
6373 properly resolved statically and installed. */
6374 BFD_ASSERT (outrel.r_offset != (bfd_vma) -2);
6375
6376 /* If we've decided to skip this relocation, just output an empty
6377 record. Note that R_MIPS_NONE == 0, so that this call to memset
6378 is a way of setting R_TYPE to R_MIPS_NONE. */
6379 if (skip)
6380 memset (&outrel, 0, sizeof (outrel));
6381 else
6382 {
6383 long indx;
6384 bfd_vma section_offset;
6385
6386 /* We must now calculate the dynamic symbol table index to use
6387 in the relocation. */
6388 if (h != NULL
6389 && (! info->symbolic || (h->root.elf_link_hash_flags
6390 & ELF_LINK_HASH_DEF_REGULAR) == 0))
6391 {
6392 indx = h->root.dynindx;
6393 /* h->root.dynindx may be -1 if this symbol was marked to
6394 become local. */
6395 if (indx == -1)
6396 indx = 0;
6397 }
6398 else
6399 {
6400 if (sec != NULL && bfd_is_abs_section (sec))
6401 indx = 0;
6402 else if (sec == NULL || sec->owner == NULL)
6403 {
6404 bfd_set_error (bfd_error_bad_value);
6405 return false;
6406 }
6407 else
6408 {
6409 indx = elf_section_data (sec->output_section)->dynindx;
6410 if (indx == 0)
6411 abort ();
6412 }
6413
6414 /* Figure out how far the target of the relocation is from
6415 the beginning of its section. */
6416 section_offset = symbol - sec->output_section->vma;
6417 /* The relocation we're building is section-relative.
6418 Therefore, the original addend must be adjusted by the
6419 section offset. */
6420 *addendp += section_offset;
6421 /* Now, the relocation is just against the section. */
6422 symbol = sec->output_section->vma;
6423 }
6424
6425 /* If the relocation was previously an absolute relocation and
6426 this symbol will not be referred to by the relocation, we must
6427 adjust it by the value we give it in the dynamic symbol table.
6428 Otherwise leave the job up to the dynamic linker. */
6429 if (!indx && r_type != R_MIPS_REL32)
6430 *addendp += symbol;
6431
6432 /* The relocation is always an REL32 relocation because we don't
6433 know where the shared library will wind up at load-time. */
6434 outrel.r_info = ELF32_R_INFO (indx, R_MIPS_REL32);
6435
6436 /* Adjust the output offset of the relocation to reference the
6437 correct location in the output file. */
6438 outrel.r_offset += (input_section->output_section->vma
6439 + input_section->output_offset);
6440 }
6441
6442 /* Put the relocation back out. We have to use the special
6443 relocation outputter in the 64-bit case since the 64-bit
6444 relocation format is non-standard. */
6445 if (ABI_64_P (output_bfd))
6446 {
6447 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6448 (output_bfd, &outrel,
6449 (sreloc->contents
6450 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6451 }
6452 else
6453 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
6454 (((Elf32_External_Rel *)
6455 sreloc->contents)
6456 + sreloc->reloc_count));
6457
6458 /* Record the index of the first relocation referencing H. This
6459 information is later emitted in the .msym section. */
6460 if (h != NULL
6461 && (h->min_dyn_reloc_index == 0
6462 || sreloc->reloc_count < h->min_dyn_reloc_index))
6463 h->min_dyn_reloc_index = sreloc->reloc_count;
6464
6465 /* We've now added another relocation. */
6466 ++sreloc->reloc_count;
6467
6468 /* Make sure the output section is writable. The dynamic linker
6469 will be writing to it. */
6470 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6471 |= SHF_WRITE;
6472
6473 /* On IRIX5, make an entry of compact relocation info. */
6474 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
6475 {
6476 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
6477 bfd_byte *cr;
6478
6479 if (scpt)
6480 {
6481 Elf32_crinfo cptrel;
6482
6483 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6484 cptrel.vaddr = (rel->r_offset
6485 + input_section->output_section->vma
6486 + input_section->output_offset);
6487 if (r_type == R_MIPS_REL32)
6488 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6489 else
6490 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6491 mips_elf_set_cr_dist2to (cptrel, 0);
6492 cptrel.konst = *addendp;
6493
6494 cr = (scpt->contents
6495 + sizeof (Elf32_External_compact_rel));
6496 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6497 ((Elf32_External_crinfo *) cr
6498 + scpt->reloc_count));
6499 ++scpt->reloc_count;
6500 }
6501 }
6502
6503 return true;
6504 }
6505
6506 /* Calculate the value produced by the RELOCATION (which comes from
6507 the INPUT_BFD). The ADDEND is the addend to use for this
6508 RELOCATION; RELOCATION->R_ADDEND is ignored.
6509
6510 The result of the relocation calculation is stored in VALUEP.
6511 REQUIRE_JALXP indicates whether or not the opcode used with this
6512 relocation must be JALX.
6513
6514 This function returns bfd_reloc_continue if the caller need take no
6515 further action regarding this relocation, bfd_reloc_notsupported if
6516 something goes dramatically wrong, bfd_reloc_overflow if an
6517 overflow occurs, and bfd_reloc_ok to indicate success. */
6518
6519 static bfd_reloc_status_type
6520 mips_elf_calculate_relocation (abfd,
6521 input_bfd,
6522 input_section,
6523 info,
6524 relocation,
6525 addend,
6526 howto,
6527 local_syms,
6528 local_sections,
6529 valuep,
6530 namep,
6531 require_jalxp)
6532 bfd *abfd;
6533 bfd *input_bfd;
6534 asection *input_section;
6535 struct bfd_link_info *info;
6536 const Elf_Internal_Rela *relocation;
6537 bfd_vma addend;
6538 reloc_howto_type *howto;
6539 Elf_Internal_Sym *local_syms;
6540 asection **local_sections;
6541 bfd_vma *valuep;
6542 const char **namep;
6543 boolean *require_jalxp;
6544 {
6545 /* The eventual value we will return. */
6546 bfd_vma value;
6547 /* The address of the symbol against which the relocation is
6548 occurring. */
6549 bfd_vma symbol = 0;
6550 /* The final GP value to be used for the relocatable, executable, or
6551 shared object file being produced. */
6552 bfd_vma gp = (bfd_vma) - 1;
6553 /* The place (section offset or address) of the storage unit being
6554 relocated. */
6555 bfd_vma p;
6556 /* The value of GP used to create the relocatable object. */
6557 bfd_vma gp0 = (bfd_vma) - 1;
6558 /* The offset into the global offset table at which the address of
6559 the relocation entry symbol, adjusted by the addend, resides
6560 during execution. */
6561 bfd_vma g = (bfd_vma) - 1;
6562 /* The section in which the symbol referenced by the relocation is
6563 located. */
6564 asection *sec = NULL;
6565 struct mips_elf_link_hash_entry *h = NULL;
6566 /* True if the symbol referred to by this relocation is a local
6567 symbol. */
6568 boolean local_p;
6569 /* True if the symbol referred to by this relocation is "_gp_disp". */
6570 boolean gp_disp_p = false;
6571 Elf_Internal_Shdr *symtab_hdr;
6572 size_t extsymoff;
6573 unsigned long r_symndx;
6574 int r_type;
6575 /* True if overflow occurred during the calculation of the
6576 relocation value. */
6577 boolean overflowed_p;
6578 /* True if this relocation refers to a MIPS16 function. */
6579 boolean target_is_16_bit_code_p = false;
6580
6581 /* Parse the relocation. */
6582 r_symndx = ELF32_R_SYM (relocation->r_info);
6583 r_type = ELF32_R_TYPE (relocation->r_info);
6584 p = (input_section->output_section->vma
6585 + input_section->output_offset
6586 + relocation->r_offset);
6587
6588 /* Assume that there will be no overflow. */
6589 overflowed_p = false;
6590
6591 /* Figure out whether or not the symbol is local, and get the offset
6592 used in the array of hash table entries. */
6593 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6594 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6595 local_sections, false);
6596 if (! elf_bad_symtab (input_bfd))
6597 extsymoff = symtab_hdr->sh_info;
6598 else
6599 {
6600 /* The symbol table does not follow the rule that local symbols
6601 must come before globals. */
6602 extsymoff = 0;
6603 }
6604
6605 /* Figure out the value of the symbol. */
6606 if (local_p)
6607 {
6608 Elf_Internal_Sym *sym;
6609
6610 sym = local_syms + r_symndx;
6611 sec = local_sections[r_symndx];
6612
6613 symbol = sec->output_section->vma + sec->output_offset;
6614 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6615 symbol += sym->st_value;
6616
6617 /* MIPS16 text labels should be treated as odd. */
6618 if (sym->st_other == STO_MIPS16)
6619 ++symbol;
6620
6621 /* Record the name of this symbol, for our caller. */
6622 *namep = bfd_elf_string_from_elf_section (input_bfd,
6623 symtab_hdr->sh_link,
6624 sym->st_name);
6625 if (*namep == '\0')
6626 *namep = bfd_section_name (input_bfd, sec);
6627
6628 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
6629 }
6630 else
6631 {
6632 /* For global symbols we look up the symbol in the hash-table. */
6633 h = ((struct mips_elf_link_hash_entry *)
6634 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
6635 /* Find the real hash-table entry for this symbol. */
6636 while (h->root.root.type == bfd_link_hash_indirect
6637 || h->root.root.type == bfd_link_hash_warning)
6638 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6639
6640 /* Record the name of this symbol, for our caller. */
6641 *namep = h->root.root.root.string;
6642
6643 /* See if this is the special _gp_disp symbol. Note that such a
6644 symbol must always be a global symbol. */
6645 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
6646 {
6647 /* Relocations against _gp_disp are permitted only with
6648 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
6649 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
6650 return bfd_reloc_notsupported;
6651
6652 gp_disp_p = true;
6653 }
6654 /* If this symbol is defined, calculate its address. Note that
6655 _gp_disp is a magic symbol, always implicitly defined by the
6656 linker, so it's inappropriate to check to see whether or not
6657 its defined. */
6658 else if ((h->root.root.type == bfd_link_hash_defined
6659 || h->root.root.type == bfd_link_hash_defweak)
6660 && h->root.root.u.def.section)
6661 {
6662 sec = h->root.root.u.def.section;
6663 if (sec->output_section)
6664 symbol = (h->root.root.u.def.value
6665 + sec->output_section->vma
6666 + sec->output_offset);
6667 else
6668 symbol = h->root.root.u.def.value;
6669 }
6670 else if (h->root.root.type == bfd_link_hash_undefweak)
6671 /* We allow relocations against undefined weak symbols, giving
6672 it the value zero, so that you can undefined weak functions
6673 and check to see if they exist by looking at their
6674 addresses. */
6675 symbol = 0;
6676 else if (info->shared
6677 && (!info->symbolic || info->allow_shlib_undefined)
6678 && !info->no_undefined
6679 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
6680 symbol = 0;
6681 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
6682 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
6683 {
6684 /* If this is a dynamic link, we should have created a
6685 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
6686 in in mips_elf_create_dynamic_sections.
6687 Otherwise, we should define the symbol with a value of 0.
6688 FIXME: It should probably get into the symbol table
6689 somehow as well. */
6690 BFD_ASSERT (! info->shared);
6691 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
6692 symbol = 0;
6693 }
6694 else
6695 {
6696 if (! ((*info->callbacks->undefined_symbol)
6697 (info, h->root.root.root.string, input_bfd,
6698 input_section, relocation->r_offset,
6699 (!info->shared || info->no_undefined
6700 || ELF_ST_VISIBILITY (h->root.other)))))
6701 return bfd_reloc_undefined;
6702 symbol = 0;
6703 }
6704
6705 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
6706 }
6707
6708 /* If this is a 32-bit call to a 16-bit function with a stub, we
6709 need to redirect the call to the stub, unless we're already *in*
6710 a stub. */
6711 if (r_type != R_MIPS16_26 && !info->relocateable
6712 && ((h != NULL && h->fn_stub != NULL)
6713 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
6714 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
6715 && !mips_elf_stub_section_p (input_bfd, input_section))
6716 {
6717 /* This is a 32-bit call to a 16-bit function. We should
6718 have already noticed that we were going to need the
6719 stub. */
6720 if (local_p)
6721 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
6722 else
6723 {
6724 BFD_ASSERT (h->need_fn_stub);
6725 sec = h->fn_stub;
6726 }
6727
6728 symbol = sec->output_section->vma + sec->output_offset;
6729 }
6730 /* If this is a 16-bit call to a 32-bit function with a stub, we
6731 need to redirect the call to the stub. */
6732 else if (r_type == R_MIPS16_26 && !info->relocateable
6733 && h != NULL
6734 && (h->call_stub != NULL || h->call_fp_stub != NULL)
6735 && !target_is_16_bit_code_p)
6736 {
6737 /* If both call_stub and call_fp_stub are defined, we can figure
6738 out which one to use by seeing which one appears in the input
6739 file. */
6740 if (h->call_stub != NULL && h->call_fp_stub != NULL)
6741 {
6742 asection *o;
6743
6744 sec = NULL;
6745 for (o = input_bfd->sections; o != NULL; o = o->next)
6746 {
6747 if (strncmp (bfd_get_section_name (input_bfd, o),
6748 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6749 {
6750 sec = h->call_fp_stub;
6751 break;
6752 }
6753 }
6754 if (sec == NULL)
6755 sec = h->call_stub;
6756 }
6757 else if (h->call_stub != NULL)
6758 sec = h->call_stub;
6759 else
6760 sec = h->call_fp_stub;
6761
6762 BFD_ASSERT (sec->_raw_size > 0);
6763 symbol = sec->output_section->vma + sec->output_offset;
6764 }
6765
6766 /* Calls from 16-bit code to 32-bit code and vice versa require the
6767 special jalx instruction. */
6768 *require_jalxp = (!info->relocateable
6769 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
6770 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
6771
6772 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
6773 local_sections, true);
6774
6775 /* If we haven't already determined the GOT offset, or the GP value,
6776 and we're going to need it, get it now. */
6777 switch (r_type)
6778 {
6779 case R_MIPS_CALL16:
6780 case R_MIPS_GOT16:
6781 case R_MIPS_GOT_DISP:
6782 case R_MIPS_GOT_HI16:
6783 case R_MIPS_CALL_HI16:
6784 case R_MIPS_GOT_LO16:
6785 case R_MIPS_CALL_LO16:
6786 /* Find the index into the GOT where this value is located. */
6787 if (!local_p)
6788 {
6789 BFD_ASSERT (addend == 0);
6790 g = mips_elf_global_got_index
6791 (elf_hash_table (info)->dynobj,
6792 (struct elf_link_hash_entry *) h);
6793 if (! elf_hash_table(info)->dynamic_sections_created
6794 || (info->shared
6795 && (info->symbolic || h->root.dynindx == -1)
6796 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6797 {
6798 /* This is a static link or a -Bsymbolic link. The
6799 symbol is defined locally, or was forced to be local.
6800 We must initialize this entry in the GOT. */
6801 asection *sgot = mips_elf_got_section(elf_hash_table
6802 (info)->dynobj);
6803 MIPS_ELF_PUT_WORD (elf_hash_table (info)->dynobj,
6804 symbol + addend, sgot->contents + g);
6805 }
6806 }
6807 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
6808 /* There's no need to create a local GOT entry here; the
6809 calculation for a local GOT16 entry does not involve G. */
6810 break;
6811 else
6812 {
6813 g = mips_elf_local_got_index (abfd, info, symbol + addend);
6814 if (g == (bfd_vma) -1)
6815 return bfd_reloc_outofrange;
6816 }
6817
6818 /* Convert GOT indices to actual offsets. */
6819 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6820 abfd, g);
6821 break;
6822
6823 case R_MIPS_HI16:
6824 case R_MIPS_LO16:
6825 case R_MIPS16_GPREL:
6826 case R_MIPS_GPREL16:
6827 case R_MIPS_GPREL32:
6828 case R_MIPS_LITERAL:
6829 gp0 = _bfd_get_gp_value (input_bfd);
6830 gp = _bfd_get_gp_value (abfd);
6831 break;
6832
6833 default:
6834 break;
6835 }
6836
6837 /* Figure out what kind of relocation is being performed. */
6838 switch (r_type)
6839 {
6840 case R_MIPS_NONE:
6841 return bfd_reloc_continue;
6842
6843 case R_MIPS_16:
6844 value = symbol + mips_elf_sign_extend (addend, 16);
6845 overflowed_p = mips_elf_overflow_p (value, 16);
6846 break;
6847
6848 case R_MIPS_32:
6849 case R_MIPS_REL32:
6850 case R_MIPS_64:
6851 if ((info->shared
6852 || (elf_hash_table (info)->dynamic_sections_created
6853 && h != NULL
6854 && ((h->root.elf_link_hash_flags
6855 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6856 && ((h->root.elf_link_hash_flags
6857 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6858 && r_symndx != 0
6859 && (input_section->flags & SEC_ALLOC) != 0)
6860 {
6861 /* If we're creating a shared library, or this relocation is
6862 against a symbol in a shared library, then we can't know
6863 where the symbol will end up. So, we create a relocation
6864 record in the output, and leave the job up to the dynamic
6865 linker. */
6866 value = addend;
6867 if (!mips_elf_create_dynamic_relocation (abfd,
6868 info,
6869 relocation,
6870 h,
6871 sec,
6872 symbol,
6873 &value,
6874 input_section))
6875 return bfd_reloc_undefined;
6876 }
6877 else
6878 {
6879 if (r_type != R_MIPS_REL32)
6880 value = symbol + addend;
6881 else
6882 value = addend;
6883 }
6884 value &= howto->dst_mask;
6885 break;
6886
6887 case R_MIPS_PC32:
6888 case R_MIPS_PC64:
6889 case R_MIPS_GNU_REL_LO16:
6890 value = symbol + addend - p;
6891 value &= howto->dst_mask;
6892 break;
6893
6894 case R_MIPS_GNU_REL16_S2:
6895 value = symbol + mips_elf_sign_extend (addend << 2, 18) - p;
6896 overflowed_p = mips_elf_overflow_p (value, 18);
6897 value = (value >> 2) & howto->dst_mask;
6898 break;
6899
6900 case R_MIPS_GNU_REL_HI16:
6901 /* Instead of subtracting 'p' here, we should be subtracting the
6902 equivalent value for the LO part of the reloc, since the value
6903 here is relative to that address. Because that's not easy to do,
6904 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
6905 the comment there for more information. */
6906 value = mips_elf_high (addend + symbol - p);
6907 value &= howto->dst_mask;
6908 break;
6909
6910 case R_MIPS16_26:
6911 /* The calculation for R_MIPS16_26 is just the same as for an
6912 R_MIPS_26. It's only the storage of the relocated field into
6913 the output file that's different. That's handled in
6914 mips_elf_perform_relocation. So, we just fall through to the
6915 R_MIPS_26 case here. */
6916 case R_MIPS_26:
6917 if (local_p)
6918 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
6919 else
6920 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6921 value &= howto->dst_mask;
6922 break;
6923
6924 case R_MIPS_HI16:
6925 if (!gp_disp_p)
6926 {
6927 value = mips_elf_high (addend + symbol);
6928 value &= howto->dst_mask;
6929 }
6930 else
6931 {
6932 value = mips_elf_high (addend + gp - p);
6933 overflowed_p = mips_elf_overflow_p (value, 16);
6934 }
6935 break;
6936
6937 case R_MIPS_LO16:
6938 if (!gp_disp_p)
6939 value = (symbol + addend) & howto->dst_mask;
6940 else
6941 {
6942 value = addend + gp - p + 4;
6943 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6944 for overflow. But, on, say, Irix 5, relocations against
6945 _gp_disp are normally generated from the .cpload
6946 pseudo-op. It generates code that normally looks like
6947 this:
6948
6949 lui $gp,%hi(_gp_disp)
6950 addiu $gp,$gp,%lo(_gp_disp)
6951 addu $gp,$gp,$t9
6952
6953 Here $t9 holds the address of the function being called,
6954 as required by the MIPS ELF ABI. The R_MIPS_LO16
6955 relocation can easily overflow in this situation, but the
6956 R_MIPS_HI16 relocation will handle the overflow.
6957 Therefore, we consider this a bug in the MIPS ABI, and do
6958 not check for overflow here. */
6959 }
6960 break;
6961
6962 case R_MIPS_LITERAL:
6963 /* Because we don't merge literal sections, we can handle this
6964 just like R_MIPS_GPREL16. In the long run, we should merge
6965 shared literals, and then we will need to additional work
6966 here. */
6967
6968 /* Fall through. */
6969
6970 case R_MIPS16_GPREL:
6971 /* The R_MIPS16_GPREL performs the same calculation as
6972 R_MIPS_GPREL16, but stores the relocated bits in a different
6973 order. We don't need to do anything special here; the
6974 differences are handled in mips_elf_perform_relocation. */
6975 case R_MIPS_GPREL16:
6976 if (local_p)
6977 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6978 else
6979 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6980 overflowed_p = mips_elf_overflow_p (value, 16);
6981 break;
6982
6983 case R_MIPS_GOT16:
6984 case R_MIPS_CALL16:
6985 if (local_p)
6986 {
6987 boolean forced;
6988
6989 /* The special case is when the symbol is forced to be local. We
6990 need the full address in the GOT since no R_MIPS_LO16 relocation
6991 follows. */
6992 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
6993 local_sections, false);
6994 value = mips_elf_got16_entry (abfd, info, symbol + addend, forced);
6995 if (value == (bfd_vma) -1)
6996 return bfd_reloc_outofrange;
6997 value
6998 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6999 abfd,
7000 value);
7001 overflowed_p = mips_elf_overflow_p (value, 16);
7002 break;
7003 }
7004
7005 /* Fall through. */
7006
7007 case R_MIPS_GOT_DISP:
7008 value = g;
7009 overflowed_p = mips_elf_overflow_p (value, 16);
7010 break;
7011
7012 case R_MIPS_GPREL32:
7013 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
7014 break;
7015
7016 case R_MIPS_PC16:
7017 value = mips_elf_sign_extend (addend, 16) + symbol - p;
7018 overflowed_p = mips_elf_overflow_p (value, 16);
7019 value = (bfd_vma) ((bfd_signed_vma) value / 4);
7020 break;
7021
7022 case R_MIPS_GOT_HI16:
7023 case R_MIPS_CALL_HI16:
7024 /* We're allowed to handle these two relocations identically.
7025 The dynamic linker is allowed to handle the CALL relocations
7026 differently by creating a lazy evaluation stub. */
7027 value = g;
7028 value = mips_elf_high (value);
7029 value &= howto->dst_mask;
7030 break;
7031
7032 case R_MIPS_GOT_LO16:
7033 case R_MIPS_CALL_LO16:
7034 value = g & howto->dst_mask;
7035 break;
7036
7037 case R_MIPS_GOT_PAGE:
7038 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
7039 if (value == (bfd_vma) -1)
7040 return bfd_reloc_outofrange;
7041 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
7042 abfd,
7043 value);
7044 overflowed_p = mips_elf_overflow_p (value, 16);
7045 break;
7046
7047 case R_MIPS_GOT_OFST:
7048 mips_elf_got_page (abfd, info, symbol + addend, &value);
7049 overflowed_p = mips_elf_overflow_p (value, 16);
7050 break;
7051
7052 case R_MIPS_SUB:
7053 value = symbol - addend;
7054 value &= howto->dst_mask;
7055 break;
7056
7057 case R_MIPS_HIGHER:
7058 value = mips_elf_higher (addend + symbol);
7059 value &= howto->dst_mask;
7060 break;
7061
7062 case R_MIPS_HIGHEST:
7063 value = mips_elf_highest (addend + symbol);
7064 value &= howto->dst_mask;
7065 break;
7066
7067 case R_MIPS_SCN_DISP:
7068 value = symbol + addend - sec->output_offset;
7069 value &= howto->dst_mask;
7070 break;
7071
7072 case R_MIPS_PJUMP:
7073 case R_MIPS_JALR:
7074 /* Both of these may be ignored. R_MIPS_JALR is an optimization
7075 hint; we could improve performance by honoring that hint. */
7076 return bfd_reloc_continue;
7077
7078 case R_MIPS_GNU_VTINHERIT:
7079 case R_MIPS_GNU_VTENTRY:
7080 /* We don't do anything with these at present. */
7081 return bfd_reloc_continue;
7082
7083 default:
7084 /* An unrecognized relocation type. */
7085 return bfd_reloc_notsupported;
7086 }
7087
7088 /* Store the VALUE for our caller. */
7089 *valuep = value;
7090 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
7091 }
7092
7093 /* Obtain the field relocated by RELOCATION. */
7094
7095 static bfd_vma
7096 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
7097 reloc_howto_type *howto;
7098 const Elf_Internal_Rela *relocation;
7099 bfd *input_bfd;
7100 bfd_byte *contents;
7101 {
7102 bfd_vma x;
7103 bfd_byte *location = contents + relocation->r_offset;
7104
7105 /* Obtain the bytes. */
7106 x = bfd_get (((bfd_vma)(8 * bfd_get_reloc_size (howto))), input_bfd, location);
7107
7108 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
7109 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
7110 && bfd_little_endian (input_bfd))
7111 /* The two 16-bit words will be reversed on a little-endian
7112 system. See mips_elf_perform_relocation for more details. */
7113 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
7114
7115 return x;
7116 }
7117
7118 /* It has been determined that the result of the RELOCATION is the
7119 VALUE. Use HOWTO to place VALUE into the output file at the
7120 appropriate position. The SECTION is the section to which the
7121 relocation applies. If REQUIRE_JALX is true, then the opcode used
7122 for the relocation must be either JAL or JALX, and it is
7123 unconditionally converted to JALX.
7124
7125 Returns false if anything goes wrong. */
7126
7127 static boolean
7128 mips_elf_perform_relocation (info, howto, relocation, value,
7129 input_bfd, input_section,
7130 contents, require_jalx)
7131 struct bfd_link_info *info;
7132 reloc_howto_type *howto;
7133 const Elf_Internal_Rela *relocation;
7134 bfd_vma value;
7135 bfd *input_bfd;
7136 asection *input_section;
7137 bfd_byte *contents;
7138 boolean require_jalx;
7139 {
7140 bfd_vma x;
7141 bfd_byte *location;
7142 int r_type = ELF32_R_TYPE (relocation->r_info);
7143
7144 /* Figure out where the relocation is occurring. */
7145 location = contents + relocation->r_offset;
7146
7147 /* Obtain the current value. */
7148 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
7149
7150 /* Clear the field we are setting. */
7151 x &= ~howto->dst_mask;
7152
7153 /* If this is the R_MIPS16_26 relocation, we must store the
7154 value in a funny way. */
7155 if (r_type == R_MIPS16_26)
7156 {
7157 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
7158 Most mips16 instructions are 16 bits, but these instructions
7159 are 32 bits.
7160
7161 The format of these instructions is:
7162
7163 +--------------+--------------------------------+
7164 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
7165 +--------------+--------------------------------+
7166 ! Immediate 15:0 !
7167 +-----------------------------------------------+
7168
7169 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
7170 Note that the immediate value in the first word is swapped.
7171
7172 When producing a relocateable object file, R_MIPS16_26 is
7173 handled mostly like R_MIPS_26. In particular, the addend is
7174 stored as a straight 26-bit value in a 32-bit instruction.
7175 (gas makes life simpler for itself by never adjusting a
7176 R_MIPS16_26 reloc to be against a section, so the addend is
7177 always zero). However, the 32 bit instruction is stored as 2
7178 16-bit values, rather than a single 32-bit value. In a
7179 big-endian file, the result is the same; in a little-endian
7180 file, the two 16-bit halves of the 32 bit value are swapped.
7181 This is so that a disassembler can recognize the jal
7182 instruction.
7183
7184 When doing a final link, R_MIPS16_26 is treated as a 32 bit
7185 instruction stored as two 16-bit values. The addend A is the
7186 contents of the targ26 field. The calculation is the same as
7187 R_MIPS_26. When storing the calculated value, reorder the
7188 immediate value as shown above, and don't forget to store the
7189 value as two 16-bit values.
7190
7191 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
7192 defined as
7193
7194 big-endian:
7195 +--------+----------------------+
7196 | | |
7197 | | targ26-16 |
7198 |31 26|25 0|
7199 +--------+----------------------+
7200
7201 little-endian:
7202 +----------+------+-------------+
7203 | | | |
7204 | sub1 | | sub2 |
7205 |0 9|10 15|16 31|
7206 +----------+--------------------+
7207 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
7208 ((sub1 << 16) | sub2)).
7209
7210 When producing a relocateable object file, the calculation is
7211 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
7212 When producing a fully linked file, the calculation is
7213 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
7214 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
7215
7216 if (!info->relocateable)
7217 /* Shuffle the bits according to the formula above. */
7218 value = (((value & 0x1f0000) << 5)
7219 | ((value & 0x3e00000) >> 5)
7220 | (value & 0xffff));
7221 }
7222 else if (r_type == R_MIPS16_GPREL)
7223 {
7224 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
7225 mode. A typical instruction will have a format like this:
7226
7227 +--------------+--------------------------------+
7228 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
7229 +--------------+--------------------------------+
7230 ! Major ! rx ! ry ! Imm 4:0 !
7231 +--------------+--------------------------------+
7232
7233 EXTEND is the five bit value 11110. Major is the instruction
7234 opcode.
7235
7236 This is handled exactly like R_MIPS_GPREL16, except that the
7237 addend is retrieved and stored as shown in this diagram; that
7238 is, the Imm fields above replace the V-rel16 field.
7239
7240 All we need to do here is shuffle the bits appropriately. As
7241 above, the two 16-bit halves must be swapped on a
7242 little-endian system. */
7243 value = (((value & 0x7e0) << 16)
7244 | ((value & 0xf800) << 5)
7245 | (value & 0x1f));
7246 }
7247
7248 /* Set the field. */
7249 x |= (value & howto->dst_mask);
7250
7251 /* If required, turn JAL into JALX. */
7252 if (require_jalx)
7253 {
7254 boolean ok;
7255 bfd_vma opcode = x >> 26;
7256 bfd_vma jalx_opcode;
7257
7258 /* Check to see if the opcode is already JAL or JALX. */
7259 if (r_type == R_MIPS16_26)
7260 {
7261 ok = ((opcode == 0x6) || (opcode == 0x7));
7262 jalx_opcode = 0x7;
7263 }
7264 else
7265 {
7266 ok = ((opcode == 0x3) || (opcode == 0x1d));
7267 jalx_opcode = 0x1d;
7268 }
7269
7270 /* If the opcode is not JAL or JALX, there's a problem. */
7271 if (!ok)
7272 {
7273 (*_bfd_error_handler)
7274 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
7275 bfd_archive_filename (input_bfd),
7276 input_section->name,
7277 (unsigned long) relocation->r_offset);
7278 bfd_set_error (bfd_error_bad_value);
7279 return false;
7280 }
7281
7282 /* Make this the JALX opcode. */
7283 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
7284 }
7285
7286 /* Swap the high- and low-order 16 bits on little-endian systems
7287 when doing a MIPS16 relocation. */
7288 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
7289 && bfd_little_endian (input_bfd))
7290 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
7291
7292 /* Put the value into the output. */
7293 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
7294 return true;
7295 }
7296
7297 /* Returns true if SECTION is a MIPS16 stub section. */
7298
7299 static boolean
7300 mips_elf_stub_section_p (abfd, section)
7301 bfd *abfd ATTRIBUTE_UNUSED;
7302 asection *section;
7303 {
7304 const char *name = bfd_get_section_name (abfd, section);
7305
7306 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
7307 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7308 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
7309 }
7310
7311 /* Relocate a MIPS ELF section. */
7312
7313 boolean
7314 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
7315 contents, relocs, local_syms, local_sections)
7316 bfd *output_bfd;
7317 struct bfd_link_info *info;
7318 bfd *input_bfd;
7319 asection *input_section;
7320 bfd_byte *contents;
7321 Elf_Internal_Rela *relocs;
7322 Elf_Internal_Sym *local_syms;
7323 asection **local_sections;
7324 {
7325 Elf_Internal_Rela *rel;
7326 const Elf_Internal_Rela *relend;
7327 bfd_vma addend = 0;
7328 boolean use_saved_addend_p = false;
7329 struct elf_backend_data *bed;
7330
7331 bed = get_elf_backend_data (output_bfd);
7332 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7333 for (rel = relocs; rel < relend; ++rel)
7334 {
7335 const char *name;
7336 bfd_vma value;
7337 reloc_howto_type *howto;
7338 boolean require_jalx;
7339 /* True if the relocation is a RELA relocation, rather than a
7340 REL relocation. */
7341 boolean rela_relocation_p = true;
7342 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
7343 const char * msg = (const char *) NULL;
7344
7345 /* Find the relocation howto for this relocation. */
7346 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
7347 {
7348 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7349 64-bit code, but make sure all their addresses are in the
7350 lowermost or uppermost 32-bit section of the 64-bit address
7351 space. Thus, when they use an R_MIPS_64 they mean what is
7352 usually meant by R_MIPS_32, with the exception that the
7353 stored value is sign-extended to 64 bits. */
7354 howto = elf_mips_howto_table_rel + R_MIPS_32;
7355
7356 /* On big-endian systems, we need to lie about the position
7357 of the reloc. */
7358 if (bfd_big_endian (input_bfd))
7359 rel->r_offset += 4;
7360 }
7361 else
7362 howto = mips_rtype_to_howto (r_type);
7363
7364 if (!use_saved_addend_p)
7365 {
7366 Elf_Internal_Shdr *rel_hdr;
7367
7368 /* If these relocations were originally of the REL variety,
7369 we must pull the addend out of the field that will be
7370 relocated. Otherwise, we simply use the contents of the
7371 RELA relocation. To determine which flavor or relocation
7372 this is, we depend on the fact that the INPUT_SECTION's
7373 REL_HDR is read before its REL_HDR2. */
7374 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7375 if ((size_t) (rel - relocs)
7376 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7377 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7378 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7379 {
7380 /* Note that this is a REL relocation. */
7381 rela_relocation_p = false;
7382
7383 /* Get the addend, which is stored in the input file. */
7384 addend = mips_elf_obtain_contents (howto,
7385 rel,
7386 input_bfd,
7387 contents);
7388 addend &= howto->src_mask;
7389
7390 /* For some kinds of relocations, the ADDEND is a
7391 combination of the addend stored in two different
7392 relocations. */
7393 if (r_type == R_MIPS_HI16
7394 || r_type == R_MIPS_GNU_REL_HI16
7395 || (r_type == R_MIPS_GOT16
7396 && mips_elf_local_relocation_p (input_bfd, rel,
7397 local_sections, false)))
7398 {
7399 bfd_vma l;
7400 const Elf_Internal_Rela *lo16_relocation;
7401 reloc_howto_type *lo16_howto;
7402 unsigned int lo;
7403
7404 /* The combined value is the sum of the HI16 addend,
7405 left-shifted by sixteen bits, and the LO16
7406 addend, sign extended. (Usually, the code does
7407 a `lui' of the HI16 value, and then an `addiu' of
7408 the LO16 value.)
7409
7410 Scan ahead to find a matching LO16 relocation. */
7411 if (r_type == R_MIPS_GNU_REL_HI16)
7412 lo = R_MIPS_GNU_REL_LO16;
7413 else
7414 lo = R_MIPS_LO16;
7415 lo16_relocation
7416 = mips_elf_next_relocation (lo, rel, relend);
7417 if (lo16_relocation == NULL)
7418 return false;
7419
7420 /* Obtain the addend kept there. */
7421 lo16_howto = mips_rtype_to_howto (lo);
7422 l = mips_elf_obtain_contents (lo16_howto,
7423 lo16_relocation,
7424 input_bfd, contents);
7425 l &= lo16_howto->src_mask;
7426 l = mips_elf_sign_extend (l, 16);
7427
7428 addend <<= 16;
7429
7430 /* Compute the combined addend. */
7431 addend += l;
7432
7433 /* If PC-relative, subtract the difference between the
7434 address of the LO part of the reloc and the address of
7435 the HI part. The relocation is relative to the LO
7436 part, but mips_elf_calculate_relocation() doesn't know
7437 it address or the difference from the HI part, so
7438 we subtract that difference here. See also the
7439 comment in mips_elf_calculate_relocation(). */
7440 if (r_type == R_MIPS_GNU_REL_HI16)
7441 addend -= (lo16_relocation->r_offset - rel->r_offset);
7442 }
7443 else if (r_type == R_MIPS16_GPREL)
7444 {
7445 /* The addend is scrambled in the object file. See
7446 mips_elf_perform_relocation for details on the
7447 format. */
7448 addend = (((addend & 0x1f0000) >> 5)
7449 | ((addend & 0x7e00000) >> 16)
7450 | (addend & 0x1f));
7451 }
7452 }
7453 else
7454 addend = rel->r_addend;
7455 }
7456
7457 if (info->relocateable)
7458 {
7459 Elf_Internal_Sym *sym;
7460 unsigned long r_symndx;
7461
7462 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd)
7463 && bfd_big_endian (input_bfd))
7464 rel->r_offset -= 4;
7465
7466 /* Since we're just relocating, all we need to do is copy
7467 the relocations back out to the object file, unless
7468 they're against a section symbol, in which case we need
7469 to adjust by the section offset, or unless they're GP
7470 relative in which case we need to adjust by the amount
7471 that we're adjusting GP in this relocateable object. */
7472
7473 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections,
7474 false))
7475 /* There's nothing to do for non-local relocations. */
7476 continue;
7477
7478 if (r_type == R_MIPS16_GPREL
7479 || r_type == R_MIPS_GPREL16
7480 || r_type == R_MIPS_GPREL32
7481 || r_type == R_MIPS_LITERAL)
7482 addend -= (_bfd_get_gp_value (output_bfd)
7483 - _bfd_get_gp_value (input_bfd));
7484 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
7485 || r_type == R_MIPS_GNU_REL16_S2)
7486 /* The addend is stored without its two least
7487 significant bits (which are always zero.) In a
7488 non-relocateable link, calculate_relocation will do
7489 this shift; here, we must do it ourselves. */
7490 addend <<= 2;
7491
7492 r_symndx = ELF32_R_SYM (rel->r_info);
7493 sym = local_syms + r_symndx;
7494 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7495 /* Adjust the addend appropriately. */
7496 addend += local_sections[r_symndx]->output_offset;
7497
7498 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
7499 then we only want to write out the high-order 16 bits.
7500 The subsequent R_MIPS_LO16 will handle the low-order bits. */
7501 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
7502 || r_type == R_MIPS_GNU_REL_HI16)
7503 addend = mips_elf_high (addend);
7504 /* If the relocation is for an R_MIPS_26 relocation, then
7505 the two low-order bits are not stored in the object file;
7506 they are implicitly zero. */
7507 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26
7508 || r_type == R_MIPS_GNU_REL16_S2)
7509 addend >>= 2;
7510
7511 if (rela_relocation_p)
7512 /* If this is a RELA relocation, just update the addend.
7513 We have to cast away constness for REL. */
7514 rel->r_addend = addend;
7515 else
7516 {
7517 /* Otherwise, we have to write the value back out. Note
7518 that we use the source mask, rather than the
7519 destination mask because the place to which we are
7520 writing will be source of the addend in the final
7521 link. */
7522 addend &= howto->src_mask;
7523
7524 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
7525 /* See the comment above about using R_MIPS_64 in the 32-bit
7526 ABI. Here, we need to update the addend. It would be
7527 possible to get away with just using the R_MIPS_32 reloc
7528 but for endianness. */
7529 {
7530 bfd_vma sign_bits;
7531 bfd_vma low_bits;
7532 bfd_vma high_bits;
7533
7534 if (addend & ((bfd_vma) 1 << 31))
7535 #ifdef BFD64
7536 sign_bits = ((bfd_vma) 1 << 32) - 1;
7537 #else
7538 sign_bits = -1;
7539 #endif
7540 else
7541 sign_bits = 0;
7542
7543 /* If we don't know that we have a 64-bit type,
7544 do two separate stores. */
7545 if (bfd_big_endian (input_bfd))
7546 {
7547 /* Store the sign-bits (which are most significant)
7548 first. */
7549 low_bits = sign_bits;
7550 high_bits = addend;
7551 }
7552 else
7553 {
7554 low_bits = addend;
7555 high_bits = sign_bits;
7556 }
7557 bfd_put_32 (input_bfd, low_bits,
7558 contents + rel->r_offset);
7559 bfd_put_32 (input_bfd, high_bits,
7560 contents + rel->r_offset + 4);
7561 continue;
7562 }
7563
7564 if (!mips_elf_perform_relocation (info, howto, rel, addend,
7565 input_bfd, input_section,
7566 contents, false))
7567 return false;
7568 }
7569
7570 /* Go on to the next relocation. */
7571 continue;
7572 }
7573
7574 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7575 relocations for the same offset. In that case we are
7576 supposed to treat the output of each relocation as the addend
7577 for the next. */
7578 if (rel + 1 < relend
7579 && rel->r_offset == rel[1].r_offset
7580 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
7581 use_saved_addend_p = true;
7582 else
7583 use_saved_addend_p = false;
7584
7585 /* Figure out what value we are supposed to relocate. */
7586 switch (mips_elf_calculate_relocation (output_bfd,
7587 input_bfd,
7588 input_section,
7589 info,
7590 rel,
7591 addend,
7592 howto,
7593 local_syms,
7594 local_sections,
7595 &value,
7596 &name,
7597 &require_jalx))
7598 {
7599 case bfd_reloc_continue:
7600 /* There's nothing to do. */
7601 continue;
7602
7603 case bfd_reloc_undefined:
7604 /* mips_elf_calculate_relocation already called the
7605 undefined_symbol callback. There's no real point in
7606 trying to perform the relocation at this point, so we
7607 just skip ahead to the next relocation. */
7608 continue;
7609
7610 case bfd_reloc_notsupported:
7611 msg = _("internal error: unsupported relocation error");
7612 info->callbacks->warning
7613 (info, msg, name, input_bfd, input_section, rel->r_offset);
7614 return false;
7615
7616 case bfd_reloc_overflow:
7617 if (use_saved_addend_p)
7618 /* Ignore overflow until we reach the last relocation for
7619 a given location. */
7620 ;
7621 else
7622 {
7623 BFD_ASSERT (name != NULL);
7624 if (! ((*info->callbacks->reloc_overflow)
7625 (info, name, howto->name, (bfd_vma) 0,
7626 input_bfd, input_section, rel->r_offset)))
7627 return false;
7628 }
7629 break;
7630
7631 case bfd_reloc_ok:
7632 break;
7633
7634 default:
7635 abort ();
7636 break;
7637 }
7638
7639 /* If we've got another relocation for the address, keep going
7640 until we reach the last one. */
7641 if (use_saved_addend_p)
7642 {
7643 addend = value;
7644 continue;
7645 }
7646
7647 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
7648 /* See the comment above about using R_MIPS_64 in the 32-bit
7649 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7650 that calculated the right value. Now, however, we
7651 sign-extend the 32-bit result to 64-bits, and store it as a
7652 64-bit value. We are especially generous here in that we
7653 go to extreme lengths to support this usage on systems with
7654 only a 32-bit VMA. */
7655 {
7656 bfd_vma sign_bits;
7657 bfd_vma low_bits;
7658 bfd_vma high_bits;
7659
7660 if (value & ((bfd_vma) 1 << 31))
7661 #ifdef BFD64
7662 sign_bits = ((bfd_vma) 1 << 32) - 1;
7663 #else
7664 sign_bits = -1;
7665 #endif
7666 else
7667 sign_bits = 0;
7668
7669 /* If we don't know that we have a 64-bit type,
7670 do two separate stores. */
7671 if (bfd_big_endian (input_bfd))
7672 {
7673 /* Undo what we did above. */
7674 rel->r_offset -= 4;
7675 /* Store the sign-bits (which are most significant)
7676 first. */
7677 low_bits = sign_bits;
7678 high_bits = value;
7679 }
7680 else
7681 {
7682 low_bits = value;
7683 high_bits = sign_bits;
7684 }
7685 bfd_put_32 (input_bfd, low_bits,
7686 contents + rel->r_offset);
7687 bfd_put_32 (input_bfd, high_bits,
7688 contents + rel->r_offset + 4);
7689 continue;
7690 }
7691
7692 /* Actually perform the relocation. */
7693 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
7694 input_section, contents,
7695 require_jalx))
7696 return false;
7697 }
7698
7699 return true;
7700 }
7701
7702 /* This hook function is called before the linker writes out a global
7703 symbol. We mark symbols as small common if appropriate. This is
7704 also where we undo the increment of the value for a mips16 symbol. */
7705
7706 boolean
7707 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
7708 bfd *abfd ATTRIBUTE_UNUSED;
7709 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7710 const char *name ATTRIBUTE_UNUSED;
7711 Elf_Internal_Sym *sym;
7712 asection *input_sec;
7713 {
7714 /* If we see a common symbol, which implies a relocatable link, then
7715 if a symbol was small common in an input file, mark it as small
7716 common in the output file. */
7717 if (sym->st_shndx == SHN_COMMON
7718 && strcmp (input_sec->name, ".scommon") == 0)
7719 sym->st_shndx = SHN_MIPS_SCOMMON;
7720
7721 if (sym->st_other == STO_MIPS16
7722 && (sym->st_value & 1) != 0)
7723 --sym->st_value;
7724
7725 return true;
7726 }
7727 \f
7728 /* Functions for the dynamic linker. */
7729
7730 /* The name of the dynamic interpreter. This is put in the .interp
7731 section. */
7732
7733 #define ELF_DYNAMIC_INTERPRETER(abfd) \
7734 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
7735 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
7736 : "/usr/lib/libc.so.1")
7737
7738 /* Create dynamic sections when linking against a dynamic object. */
7739
7740 boolean
7741 _bfd_mips_elf_create_dynamic_sections (abfd, info)
7742 bfd *abfd;
7743 struct bfd_link_info *info;
7744 {
7745 struct elf_link_hash_entry *h;
7746 flagword flags;
7747 register asection *s;
7748 const char * const *namep;
7749
7750 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7751 | SEC_LINKER_CREATED | SEC_READONLY);
7752
7753 /* Mips ABI requests the .dynamic section to be read only. */
7754 s = bfd_get_section_by_name (abfd, ".dynamic");
7755 if (s != NULL)
7756 {
7757 if (! bfd_set_section_flags (abfd, s, flags))
7758 return false;
7759 }
7760
7761 /* We need to create .got section. */
7762 if (! mips_elf_create_got_section (abfd, info))
7763 return false;
7764
7765 /* Create the .msym section on IRIX6. It is used by the dynamic
7766 linker to speed up dynamic relocations, and to avoid computing
7767 the ELF hash for symbols. */
7768 if (IRIX_COMPAT (abfd) == ict_irix6
7769 && !mips_elf_create_msym_section (abfd))
7770 return false;
7771
7772 /* Create .stub section. */
7773 if (bfd_get_section_by_name (abfd,
7774 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
7775 {
7776 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
7777 if (s == NULL
7778 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
7779 || ! bfd_set_section_alignment (abfd, s,
7780 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7781 return false;
7782 }
7783
7784 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7785 && !info->shared
7786 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7787 {
7788 s = bfd_make_section (abfd, ".rld_map");
7789 if (s == NULL
7790 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
7791 || ! bfd_set_section_alignment (abfd, s,
7792 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7793 return false;
7794 }
7795
7796 /* On IRIX5, we adjust add some additional symbols and change the
7797 alignments of several sections. There is no ABI documentation
7798 indicating that this is necessary on IRIX6, nor any evidence that
7799 the linker takes such action. */
7800 if (IRIX_COMPAT (abfd) == ict_irix5)
7801 {
7802 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7803 {
7804 h = NULL;
7805 if (! (_bfd_generic_link_add_one_symbol
7806 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
7807 (bfd_vma) 0, (const char *) NULL, false,
7808 get_elf_backend_data (abfd)->collect,
7809 (struct bfd_link_hash_entry **) &h)))
7810 return false;
7811 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7812 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7813 h->type = STT_SECTION;
7814
7815 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7816 return false;
7817 }
7818
7819 /* We need to create a .compact_rel section. */
7820 if (SGI_COMPAT (abfd))
7821 {
7822 if (!mips_elf_create_compact_rel_section (abfd, info))
7823 return false;
7824 }
7825
7826 /* Change aligments of some sections. */
7827 s = bfd_get_section_by_name (abfd, ".hash");
7828 if (s != NULL)
7829 bfd_set_section_alignment (abfd, s, 4);
7830 s = bfd_get_section_by_name (abfd, ".dynsym");
7831 if (s != NULL)
7832 bfd_set_section_alignment (abfd, s, 4);
7833 s = bfd_get_section_by_name (abfd, ".dynstr");
7834 if (s != NULL)
7835 bfd_set_section_alignment (abfd, s, 4);
7836 s = bfd_get_section_by_name (abfd, ".reginfo");
7837 if (s != NULL)
7838 bfd_set_section_alignment (abfd, s, 4);
7839 s = bfd_get_section_by_name (abfd, ".dynamic");
7840 if (s != NULL)
7841 bfd_set_section_alignment (abfd, s, 4);
7842 }
7843
7844 if (!info->shared)
7845 {
7846 h = NULL;
7847 if (SGI_COMPAT (abfd))
7848 {
7849 if (!(_bfd_generic_link_add_one_symbol
7850 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
7851 (bfd_vma) 0, (const char *) NULL, false,
7852 get_elf_backend_data (abfd)->collect,
7853 (struct bfd_link_hash_entry **) &h)))
7854 return false;
7855 }
7856 else
7857 {
7858 /* For normal mips it is _DYNAMIC_LINKING. */
7859 if (!(_bfd_generic_link_add_one_symbol
7860 (info, abfd, "_DYNAMIC_LINKING", BSF_GLOBAL,
7861 bfd_abs_section_ptr, (bfd_vma) 0, (const char *) NULL, false,
7862 get_elf_backend_data (abfd)->collect,
7863 (struct bfd_link_hash_entry **) &h)))
7864 return false;
7865 }
7866 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7867 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7868 h->type = STT_SECTION;
7869
7870 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7871 return false;
7872
7873 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7874 {
7875 /* __rld_map is a four byte word located in the .data section
7876 and is filled in by the rtld to contain a pointer to
7877 the _r_debug structure. Its symbol value will be set in
7878 mips_elf_finish_dynamic_symbol. */
7879 s = bfd_get_section_by_name (abfd, ".rld_map");
7880 BFD_ASSERT (s != NULL);
7881
7882 h = NULL;
7883 if (SGI_COMPAT (abfd))
7884 {
7885 if (!(_bfd_generic_link_add_one_symbol
7886 (info, abfd, "__rld_map", BSF_GLOBAL, s,
7887 (bfd_vma) 0, (const char *) NULL, false,
7888 get_elf_backend_data (abfd)->collect,
7889 (struct bfd_link_hash_entry **) &h)))
7890 return false;
7891 }
7892 else
7893 {
7894 /* For normal mips the symbol is __RLD_MAP. */
7895 if (!(_bfd_generic_link_add_one_symbol
7896 (info, abfd, "__RLD_MAP", BSF_GLOBAL, s,
7897 (bfd_vma) 0, (const char *) NULL, false,
7898 get_elf_backend_data (abfd)->collect,
7899 (struct bfd_link_hash_entry **) &h)))
7900 return false;
7901 }
7902 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7903 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7904 h->type = STT_OBJECT;
7905
7906 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
7907 return false;
7908 }
7909 }
7910
7911 return true;
7912 }
7913
7914 /* Create the .compact_rel section. */
7915
7916 static boolean
7917 mips_elf_create_compact_rel_section (abfd, info)
7918 bfd *abfd;
7919 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7920 {
7921 flagword flags;
7922 register asection *s;
7923
7924 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
7925 {
7926 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
7927 | SEC_READONLY);
7928
7929 s = bfd_make_section (abfd, ".compact_rel");
7930 if (s == NULL
7931 || ! bfd_set_section_flags (abfd, s, flags)
7932 || ! bfd_set_section_alignment (abfd, s,
7933 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7934 return false;
7935
7936 s->_raw_size = sizeof (Elf32_External_compact_rel);
7937 }
7938
7939 return true;
7940 }
7941
7942 /* Create the .got section to hold the global offset table. */
7943
7944 static boolean
7945 mips_elf_create_got_section (abfd, info)
7946 bfd *abfd;
7947 struct bfd_link_info *info;
7948 {
7949 flagword flags;
7950 register asection *s;
7951 struct elf_link_hash_entry *h;
7952 struct mips_got_info *g;
7953 bfd_size_type amt;
7954
7955 /* This function may be called more than once. */
7956 if (mips_elf_got_section (abfd))
7957 return true;
7958
7959 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7960 | SEC_LINKER_CREATED);
7961
7962 s = bfd_make_section (abfd, ".got");
7963 if (s == NULL
7964 || ! bfd_set_section_flags (abfd, s, flags)
7965 || ! bfd_set_section_alignment (abfd, s, 4))
7966 return false;
7967
7968 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7969 linker script because we don't want to define the symbol if we
7970 are not creating a global offset table. */
7971 h = NULL;
7972 if (! (_bfd_generic_link_add_one_symbol
7973 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7974 (bfd_vma) 0, (const char *) NULL, false,
7975 get_elf_backend_data (abfd)->collect,
7976 (struct bfd_link_hash_entry **) &h)))
7977 return false;
7978 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
7979 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7980 h->type = STT_OBJECT;
7981
7982 if (info->shared
7983 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7984 return false;
7985
7986 /* The first several global offset table entries are reserved. */
7987 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
7988
7989 amt = sizeof (struct mips_got_info);
7990 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
7991 if (g == NULL)
7992 return false;
7993 g->global_gotsym = NULL;
7994 g->local_gotno = MIPS_RESERVED_GOTNO;
7995 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7996 if (elf_section_data (s) == NULL)
7997 {
7998 amt = sizeof (struct bfd_elf_section_data);
7999 s->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
8000 if (elf_section_data (s) == NULL)
8001 return false;
8002 }
8003 elf_section_data (s)->tdata = (PTR) g;
8004 elf_section_data (s)->this_hdr.sh_flags
8005 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
8006
8007 return true;
8008 }
8009
8010 /* Returns the .msym section for ABFD, creating it if it does not
8011 already exist. Returns NULL to indicate error. */
8012
8013 static asection *
8014 mips_elf_create_msym_section (abfd)
8015 bfd *abfd;
8016 {
8017 asection *s;
8018
8019 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
8020 if (!s)
8021 {
8022 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
8023 if (!s
8024 || !bfd_set_section_flags (abfd, s,
8025 SEC_ALLOC
8026 | SEC_LOAD
8027 | SEC_HAS_CONTENTS
8028 | SEC_LINKER_CREATED
8029 | SEC_READONLY)
8030 || !bfd_set_section_alignment (abfd, s,
8031 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
8032 return NULL;
8033 }
8034
8035 return s;
8036 }
8037
8038 /* Add room for N relocations to the .rel.dyn section in ABFD. */
8039
8040 static void
8041 mips_elf_allocate_dynamic_relocations (abfd, n)
8042 bfd *abfd;
8043 unsigned int n;
8044 {
8045 asection *s;
8046
8047 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
8048 BFD_ASSERT (s != NULL);
8049
8050 if (s->_raw_size == 0)
8051 {
8052 /* Make room for a null element. */
8053 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
8054 ++s->reloc_count;
8055 }
8056 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
8057 }
8058
8059 /* Look through the relocs for a section during the first phase, and
8060 allocate space in the global offset table. */
8061
8062 boolean
8063 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
8064 bfd *abfd;
8065 struct bfd_link_info *info;
8066 asection *sec;
8067 const Elf_Internal_Rela *relocs;
8068 {
8069 const char *name;
8070 bfd *dynobj;
8071 Elf_Internal_Shdr *symtab_hdr;
8072 struct elf_link_hash_entry **sym_hashes;
8073 struct mips_got_info *g;
8074 size_t extsymoff;
8075 const Elf_Internal_Rela *rel;
8076 const Elf_Internal_Rela *rel_end;
8077 asection *sgot;
8078 asection *sreloc;
8079 struct elf_backend_data *bed;
8080
8081 if (info->relocateable)
8082 return true;
8083
8084 dynobj = elf_hash_table (info)->dynobj;
8085 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8086 sym_hashes = elf_sym_hashes (abfd);
8087 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8088
8089 /* Check for the mips16 stub sections. */
8090
8091 name = bfd_get_section_name (abfd, sec);
8092 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
8093 {
8094 unsigned long r_symndx;
8095
8096 /* Look at the relocation information to figure out which symbol
8097 this is for. */
8098
8099 r_symndx = ELF32_R_SYM (relocs->r_info);
8100
8101 if (r_symndx < extsymoff
8102 || sym_hashes[r_symndx - extsymoff] == NULL)
8103 {
8104 asection *o;
8105
8106 /* This stub is for a local symbol. This stub will only be
8107 needed if there is some relocation in this BFD, other
8108 than a 16 bit function call, which refers to this symbol. */
8109 for (o = abfd->sections; o != NULL; o = o->next)
8110 {
8111 Elf_Internal_Rela *sec_relocs;
8112 const Elf_Internal_Rela *r, *rend;
8113
8114 /* We can ignore stub sections when looking for relocs. */
8115 if ((o->flags & SEC_RELOC) == 0
8116 || o->reloc_count == 0
8117 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
8118 sizeof FN_STUB - 1) == 0
8119 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
8120 sizeof CALL_STUB - 1) == 0
8121 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
8122 sizeof CALL_FP_STUB - 1) == 0)
8123 continue;
8124
8125 sec_relocs = (_bfd_elf32_link_read_relocs
8126 (abfd, o, (PTR) NULL,
8127 (Elf_Internal_Rela *) NULL,
8128 info->keep_memory));
8129 if (sec_relocs == NULL)
8130 return false;
8131
8132 rend = sec_relocs + o->reloc_count;
8133 for (r = sec_relocs; r < rend; r++)
8134 if (ELF32_R_SYM (r->r_info) == r_symndx
8135 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
8136 break;
8137
8138 if (! info->keep_memory)
8139 free (sec_relocs);
8140
8141 if (r < rend)
8142 break;
8143 }
8144
8145 if (o == NULL)
8146 {
8147 /* There is no non-call reloc for this stub, so we do
8148 not need it. Since this function is called before
8149 the linker maps input sections to output sections, we
8150 can easily discard it by setting the SEC_EXCLUDE
8151 flag. */
8152 sec->flags |= SEC_EXCLUDE;
8153 return true;
8154 }
8155
8156 /* Record this stub in an array of local symbol stubs for
8157 this BFD. */
8158 if (elf_tdata (abfd)->local_stubs == NULL)
8159 {
8160 unsigned long symcount;
8161 asection **n;
8162 bfd_size_type amt;
8163
8164 if (elf_bad_symtab (abfd))
8165 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8166 else
8167 symcount = symtab_hdr->sh_info;
8168 amt = symcount * sizeof (asection *);
8169 n = (asection **) bfd_zalloc (abfd, amt);
8170 if (n == NULL)
8171 return false;
8172 elf_tdata (abfd)->local_stubs = n;
8173 }
8174
8175 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8176
8177 /* We don't need to set mips16_stubs_seen in this case.
8178 That flag is used to see whether we need to look through
8179 the global symbol table for stubs. We don't need to set
8180 it here, because we just have a local stub. */
8181 }
8182 else
8183 {
8184 struct mips_elf_link_hash_entry *h;
8185
8186 h = ((struct mips_elf_link_hash_entry *)
8187 sym_hashes[r_symndx - extsymoff]);
8188
8189 /* H is the symbol this stub is for. */
8190
8191 h->fn_stub = sec;
8192 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8193 }
8194 }
8195 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
8196 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
8197 {
8198 unsigned long r_symndx;
8199 struct mips_elf_link_hash_entry *h;
8200 asection **loc;
8201
8202 /* Look at the relocation information to figure out which symbol
8203 this is for. */
8204
8205 r_symndx = ELF32_R_SYM (relocs->r_info);
8206
8207 if (r_symndx < extsymoff
8208 || sym_hashes[r_symndx - extsymoff] == NULL)
8209 {
8210 /* This stub was actually built for a static symbol defined
8211 in the same file. We assume that all static symbols in
8212 mips16 code are themselves mips16, so we can simply
8213 discard this stub. Since this function is called before
8214 the linker maps input sections to output sections, we can
8215 easily discard it by setting the SEC_EXCLUDE flag. */
8216 sec->flags |= SEC_EXCLUDE;
8217 return true;
8218 }
8219
8220 h = ((struct mips_elf_link_hash_entry *)
8221 sym_hashes[r_symndx - extsymoff]);
8222
8223 /* H is the symbol this stub is for. */
8224
8225 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
8226 loc = &h->call_fp_stub;
8227 else
8228 loc = &h->call_stub;
8229
8230 /* If we already have an appropriate stub for this function, we
8231 don't need another one, so we can discard this one. Since
8232 this function is called before the linker maps input sections
8233 to output sections, we can easily discard it by setting the
8234 SEC_EXCLUDE flag. We can also discard this section if we
8235 happen to already know that this is a mips16 function; it is
8236 not necessary to check this here, as it is checked later, but
8237 it is slightly faster to check now. */
8238 if (*loc != NULL || h->root.other == STO_MIPS16)
8239 {
8240 sec->flags |= SEC_EXCLUDE;
8241 return true;
8242 }
8243
8244 *loc = sec;
8245 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8246 }
8247
8248 if (dynobj == NULL)
8249 {
8250 sgot = NULL;
8251 g = NULL;
8252 }
8253 else
8254 {
8255 sgot = mips_elf_got_section (dynobj);
8256 if (sgot == NULL)
8257 g = NULL;
8258 else
8259 {
8260 BFD_ASSERT (elf_section_data (sgot) != NULL);
8261 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8262 BFD_ASSERT (g != NULL);
8263 }
8264 }
8265
8266 sreloc = NULL;
8267 bed = get_elf_backend_data (abfd);
8268 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8269 for (rel = relocs; rel < rel_end; ++rel)
8270 {
8271 unsigned long r_symndx;
8272 unsigned int r_type;
8273 struct elf_link_hash_entry *h;
8274
8275 r_symndx = ELF32_R_SYM (rel->r_info);
8276 r_type = ELF32_R_TYPE (rel->r_info);
8277
8278 if (r_symndx < extsymoff)
8279 h = NULL;
8280 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8281 {
8282 (*_bfd_error_handler)
8283 (_("%s: Malformed reloc detected for section %s"),
8284 bfd_archive_filename (abfd), name);
8285 bfd_set_error (bfd_error_bad_value);
8286 return false;
8287 }
8288 else
8289 {
8290 h = sym_hashes[r_symndx - extsymoff];
8291
8292 /* This may be an indirect symbol created because of a version. */
8293 if (h != NULL)
8294 {
8295 while (h->root.type == bfd_link_hash_indirect)
8296 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8297 }
8298 }
8299
8300 /* Some relocs require a global offset table. */
8301 if (dynobj == NULL || sgot == NULL)
8302 {
8303 switch (r_type)
8304 {
8305 case R_MIPS_GOT16:
8306 case R_MIPS_CALL16:
8307 case R_MIPS_CALL_HI16:
8308 case R_MIPS_CALL_LO16:
8309 case R_MIPS_GOT_HI16:
8310 case R_MIPS_GOT_LO16:
8311 case R_MIPS_GOT_PAGE:
8312 case R_MIPS_GOT_OFST:
8313 case R_MIPS_GOT_DISP:
8314 if (dynobj == NULL)
8315 elf_hash_table (info)->dynobj = dynobj = abfd;
8316 if (! mips_elf_create_got_section (dynobj, info))
8317 return false;
8318 g = mips_elf_got_info (dynobj, &sgot);
8319 break;
8320
8321 case R_MIPS_32:
8322 case R_MIPS_REL32:
8323 case R_MIPS_64:
8324 if (dynobj == NULL
8325 && (info->shared || h != NULL)
8326 && (sec->flags & SEC_ALLOC) != 0)
8327 elf_hash_table (info)->dynobj = dynobj = abfd;
8328 break;
8329
8330 default:
8331 break;
8332 }
8333 }
8334
8335 if (!h && (r_type == R_MIPS_CALL_LO16
8336 || r_type == R_MIPS_GOT_LO16
8337 || r_type == R_MIPS_GOT_DISP))
8338 {
8339 /* We may need a local GOT entry for this relocation. We
8340 don't count R_MIPS_GOT_PAGE because we can estimate the
8341 maximum number of pages needed by looking at the size of
8342 the segment. Similar comments apply to R_MIPS_GOT16 and
8343 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
8344 R_MIPS_CALL_HI16 because these are always followed by an
8345 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
8346
8347 This estimation is very conservative since we can merge
8348 duplicate entries in the GOT. In order to be less
8349 conservative, we could actually build the GOT here,
8350 rather than in relocate_section. */
8351 g->local_gotno++;
8352 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
8353 }
8354
8355 switch (r_type)
8356 {
8357 case R_MIPS_CALL16:
8358 if (h == NULL)
8359 {
8360 (*_bfd_error_handler)
8361 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
8362 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
8363 bfd_set_error (bfd_error_bad_value);
8364 return false;
8365 }
8366 /* Fall through. */
8367
8368 case R_MIPS_CALL_HI16:
8369 case R_MIPS_CALL_LO16:
8370 if (h != NULL)
8371 {
8372 /* This symbol requires a global offset table entry. */
8373 if (!mips_elf_record_global_got_symbol (h, info, g))
8374 return false;
8375
8376 /* We need a stub, not a plt entry for the undefined
8377 function. But we record it as if it needs plt. See
8378 elf_adjust_dynamic_symbol in elflink.h. */
8379 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
8380 h->type = STT_FUNC;
8381 }
8382 break;
8383
8384 case R_MIPS_GOT16:
8385 case R_MIPS_GOT_HI16:
8386 case R_MIPS_GOT_LO16:
8387 case R_MIPS_GOT_DISP:
8388 /* This symbol requires a global offset table entry. */
8389 if (h && !mips_elf_record_global_got_symbol (h, info, g))
8390 return false;
8391 break;
8392
8393 case R_MIPS_32:
8394 case R_MIPS_REL32:
8395 case R_MIPS_64:
8396 if ((info->shared || h != NULL)
8397 && (sec->flags & SEC_ALLOC) != 0)
8398 {
8399 if (sreloc == NULL)
8400 {
8401 const char *dname = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
8402
8403 sreloc = bfd_get_section_by_name (dynobj, dname);
8404 if (sreloc == NULL)
8405 {
8406 sreloc = bfd_make_section (dynobj, dname);
8407 if (sreloc == NULL
8408 || ! bfd_set_section_flags (dynobj, sreloc,
8409 (SEC_ALLOC
8410 | SEC_LOAD
8411 | SEC_HAS_CONTENTS
8412 | SEC_IN_MEMORY
8413 | SEC_LINKER_CREATED
8414 | SEC_READONLY))
8415 || ! bfd_set_section_alignment (dynobj, sreloc,
8416 4))
8417 return false;
8418 }
8419 }
8420 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
8421 if (info->shared)
8422 {
8423 /* When creating a shared object, we must copy these
8424 reloc types into the output file as R_MIPS_REL32
8425 relocs. We make room for this reloc in the
8426 .rel.dyn reloc section. */
8427 mips_elf_allocate_dynamic_relocations (dynobj, 1);
8428 if ((sec->flags & MIPS_READONLY_SECTION)
8429 == MIPS_READONLY_SECTION)
8430 /* We tell the dynamic linker that there are
8431 relocations against the text segment. */
8432 info->flags |= DF_TEXTREL;
8433 }
8434 else
8435 {
8436 struct mips_elf_link_hash_entry *hmips;
8437
8438 /* We only need to copy this reloc if the symbol is
8439 defined in a dynamic object. */
8440 hmips = (struct mips_elf_link_hash_entry *) h;
8441 ++hmips->possibly_dynamic_relocs;
8442 if ((sec->flags & MIPS_READONLY_SECTION)
8443 == MIPS_READONLY_SECTION)
8444 /* We need it to tell the dynamic linker if there
8445 are relocations against the text segment. */
8446 hmips->readonly_reloc = true;
8447 }
8448
8449 /* Even though we don't directly need a GOT entry for
8450 this symbol, a symbol must have a dynamic symbol
8451 table index greater that DT_MIPS_GOTSYM if there are
8452 dynamic relocations against it. */
8453 if (h != NULL
8454 && !mips_elf_record_global_got_symbol (h, info, g))
8455 return false;
8456 }
8457
8458 if (SGI_COMPAT (abfd))
8459 mips_elf_hash_table (info)->compact_rel_size +=
8460 sizeof (Elf32_External_crinfo);
8461 break;
8462
8463 case R_MIPS_26:
8464 case R_MIPS_GPREL16:
8465 case R_MIPS_LITERAL:
8466 case R_MIPS_GPREL32:
8467 if (SGI_COMPAT (abfd))
8468 mips_elf_hash_table (info)->compact_rel_size +=
8469 sizeof (Elf32_External_crinfo);
8470 break;
8471
8472 /* This relocation describes the C++ object vtable hierarchy.
8473 Reconstruct it for later use during GC. */
8474 case R_MIPS_GNU_VTINHERIT:
8475 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8476 return false;
8477 break;
8478
8479 /* This relocation describes which C++ vtable entries are actually
8480 used. Record for later use during GC. */
8481 case R_MIPS_GNU_VTENTRY:
8482 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8483 return false;
8484 break;
8485
8486 default:
8487 break;
8488 }
8489
8490 /* We must not create a stub for a symbol that has relocations
8491 related to taking the function's address. */
8492 switch (r_type)
8493 {
8494 default:
8495 if (h != NULL)
8496 {
8497 struct mips_elf_link_hash_entry *mh;
8498
8499 mh = (struct mips_elf_link_hash_entry *) h;
8500 mh->no_fn_stub = true;
8501 }
8502 break;
8503 case R_MIPS_CALL16:
8504 case R_MIPS_CALL_HI16:
8505 case R_MIPS_CALL_LO16:
8506 break;
8507 }
8508
8509 /* If this reloc is not a 16 bit call, and it has a global
8510 symbol, then we will need the fn_stub if there is one.
8511 References from a stub section do not count. */
8512 if (h != NULL
8513 && r_type != R_MIPS16_26
8514 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
8515 sizeof FN_STUB - 1) != 0
8516 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
8517 sizeof CALL_STUB - 1) != 0
8518 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
8519 sizeof CALL_FP_STUB - 1) != 0)
8520 {
8521 struct mips_elf_link_hash_entry *mh;
8522
8523 mh = (struct mips_elf_link_hash_entry *) h;
8524 mh->need_fn_stub = true;
8525 }
8526 }
8527
8528 return true;
8529 }
8530
8531 /* Return the section that should be marked against GC for a given
8532 relocation. */
8533
8534 asection *
8535 _bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
8536 bfd *abfd;
8537 struct bfd_link_info *info ATTRIBUTE_UNUSED;
8538 Elf_Internal_Rela *rel;
8539 struct elf_link_hash_entry *h;
8540 Elf_Internal_Sym *sym;
8541 {
8542 /* ??? Do mips16 stub sections need to be handled special? */
8543
8544 if (h != NULL)
8545 {
8546 switch (ELF32_R_TYPE (rel->r_info))
8547 {
8548 case R_MIPS_GNU_VTINHERIT:
8549 case R_MIPS_GNU_VTENTRY:
8550 break;
8551
8552 default:
8553 switch (h->root.type)
8554 {
8555 case bfd_link_hash_defined:
8556 case bfd_link_hash_defweak:
8557 return h->root.u.def.section;
8558
8559 case bfd_link_hash_common:
8560 return h->root.u.c.p->section;
8561
8562 default:
8563 break;
8564 }
8565 }
8566 }
8567 else
8568 {
8569 return bfd_section_from_elf_index (abfd, sym->st_shndx);
8570 }
8571
8572 return NULL;
8573 }
8574
8575 /* Update the got entry reference counts for the section being removed. */
8576
8577 boolean
8578 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
8579 bfd *abfd ATTRIBUTE_UNUSED;
8580 struct bfd_link_info *info ATTRIBUTE_UNUSED;
8581 asection *sec ATTRIBUTE_UNUSED;
8582 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
8583 {
8584 #if 0
8585 Elf_Internal_Shdr *symtab_hdr;
8586 struct elf_link_hash_entry **sym_hashes;
8587 bfd_signed_vma *local_got_refcounts;
8588 const Elf_Internal_Rela *rel, *relend;
8589 unsigned long r_symndx;
8590 struct elf_link_hash_entry *h;
8591
8592 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8593 sym_hashes = elf_sym_hashes (abfd);
8594 local_got_refcounts = elf_local_got_refcounts (abfd);
8595
8596 relend = relocs + sec->reloc_count;
8597 for (rel = relocs; rel < relend; rel++)
8598 switch (ELF32_R_TYPE (rel->r_info))
8599 {
8600 case R_MIPS_GOT16:
8601 case R_MIPS_CALL16:
8602 case R_MIPS_CALL_HI16:
8603 case R_MIPS_CALL_LO16:
8604 case R_MIPS_GOT_HI16:
8605 case R_MIPS_GOT_LO16:
8606 /* ??? It would seem that the existing MIPS code does no sort
8607 of reference counting or whatnot on its GOT and PLT entries,
8608 so it is not possible to garbage collect them at this time. */
8609 break;
8610
8611 default:
8612 break;
8613 }
8614 #endif
8615
8616 return true;
8617 }
8618
8619 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8620 hiding the old indirect symbol. Process additional relocation
8621 information. Also called for weakdefs, in which case we just let
8622 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
8623
8624 static void
8625 _bfd_mips_elf_copy_indirect_symbol (dir, ind)
8626 struct elf_link_hash_entry *dir, *ind;
8627 {
8628 struct mips_elf_link_hash_entry *dirmips, *indmips;
8629
8630 _bfd_elf_link_hash_copy_indirect (dir, ind);
8631
8632 if (ind->root.type != bfd_link_hash_indirect)
8633 return;
8634
8635 dirmips = (struct mips_elf_link_hash_entry *) dir;
8636 indmips = (struct mips_elf_link_hash_entry *) ind;
8637 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
8638 if (indmips->readonly_reloc)
8639 dirmips->readonly_reloc = true;
8640 if (dirmips->min_dyn_reloc_index == 0
8641 || (indmips->min_dyn_reloc_index != 0
8642 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
8643 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
8644 if (indmips->no_fn_stub)
8645 dirmips->no_fn_stub = true;
8646 }
8647
8648 /* Adjust a symbol defined by a dynamic object and referenced by a
8649 regular object. The current definition is in some section of the
8650 dynamic object, but we're not including those sections. We have to
8651 change the definition to something the rest of the link can
8652 understand. */
8653
8654 boolean
8655 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
8656 struct bfd_link_info *info;
8657 struct elf_link_hash_entry *h;
8658 {
8659 bfd *dynobj;
8660 struct mips_elf_link_hash_entry *hmips;
8661 asection *s;
8662
8663 dynobj = elf_hash_table (info)->dynobj;
8664
8665 /* Make sure we know what is going on here. */
8666 BFD_ASSERT (dynobj != NULL
8667 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
8668 || h->weakdef != NULL
8669 || ((h->elf_link_hash_flags
8670 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
8671 && (h->elf_link_hash_flags
8672 & ELF_LINK_HASH_REF_REGULAR) != 0
8673 && (h->elf_link_hash_flags
8674 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
8675
8676 /* If this symbol is defined in a dynamic object, we need to copy
8677 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
8678 file. */
8679 hmips = (struct mips_elf_link_hash_entry *) h;
8680 if (! info->relocateable
8681 && hmips->possibly_dynamic_relocs != 0
8682 && (h->root.type == bfd_link_hash_defweak
8683 || (h->elf_link_hash_flags
8684 & ELF_LINK_HASH_DEF_REGULAR) == 0))
8685 {
8686 mips_elf_allocate_dynamic_relocations (dynobj,
8687 hmips->possibly_dynamic_relocs);
8688 if (hmips->readonly_reloc)
8689 /* We tell the dynamic linker that there are relocations
8690 against the text segment. */
8691 info->flags |= DF_TEXTREL;
8692 }
8693
8694 /* For a function, create a stub, if allowed. */
8695 if (! hmips->no_fn_stub
8696 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
8697 {
8698 if (! elf_hash_table (info)->dynamic_sections_created)
8699 return true;
8700
8701 /* If this symbol is not defined in a regular file, then set
8702 the symbol to the stub location. This is required to make
8703 function pointers compare as equal between the normal
8704 executable and the shared library. */
8705 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
8706 {
8707 /* We need .stub section. */
8708 s = bfd_get_section_by_name (dynobj,
8709 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8710 BFD_ASSERT (s != NULL);
8711
8712 h->root.u.def.section = s;
8713 h->root.u.def.value = s->_raw_size;
8714
8715 /* XXX Write this stub address somewhere. */
8716 h->plt.offset = s->_raw_size;
8717
8718 /* Make room for this stub code. */
8719 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8720
8721 /* The last half word of the stub will be filled with the index
8722 of this symbol in .dynsym section. */
8723 return true;
8724 }
8725 }
8726 else if ((h->type == STT_FUNC)
8727 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
8728 {
8729 /* This will set the entry for this symbol in the GOT to 0, and
8730 the dynamic linker will take care of this. */
8731 h->root.u.def.value = 0;
8732 return true;
8733 }
8734
8735 /* If this is a weak symbol, and there is a real definition, the
8736 processor independent code will have arranged for us to see the
8737 real definition first, and we can just use the same value. */
8738 if (h->weakdef != NULL)
8739 {
8740 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
8741 || h->weakdef->root.type == bfd_link_hash_defweak);
8742 h->root.u.def.section = h->weakdef->root.u.def.section;
8743 h->root.u.def.value = h->weakdef->root.u.def.value;
8744 return true;
8745 }
8746
8747 /* This is a reference to a symbol defined by a dynamic object which
8748 is not a function. */
8749
8750 return true;
8751 }
8752
8753 /* This function is called after all the input files have been read,
8754 and the input sections have been assigned to output sections. We
8755 check for any mips16 stub sections that we can discard. */
8756
8757 static boolean mips_elf_check_mips16_stubs
8758 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
8759
8760 boolean
8761 _bfd_mips_elf_always_size_sections (output_bfd, info)
8762 bfd *output_bfd;
8763 struct bfd_link_info *info;
8764 {
8765 asection *ri;
8766
8767 /* The .reginfo section has a fixed size. */
8768 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8769 if (ri != NULL)
8770 bfd_set_section_size (output_bfd, ri,
8771 (bfd_size_type) sizeof (Elf32_External_RegInfo));
8772
8773 if (info->relocateable
8774 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
8775 return true;
8776
8777 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8778 mips_elf_check_mips16_stubs,
8779 (PTR) NULL);
8780
8781 return true;
8782 }
8783
8784 /* Check the mips16 stubs for a particular symbol, and see if we can
8785 discard them. */
8786
8787 static boolean
8788 mips_elf_check_mips16_stubs (h, data)
8789 struct mips_elf_link_hash_entry *h;
8790 PTR data ATTRIBUTE_UNUSED;
8791 {
8792 if (h->fn_stub != NULL
8793 && ! h->need_fn_stub)
8794 {
8795 /* We don't need the fn_stub; the only references to this symbol
8796 are 16 bit calls. Clobber the size to 0 to prevent it from
8797 being included in the link. */
8798 h->fn_stub->_raw_size = 0;
8799 h->fn_stub->_cooked_size = 0;
8800 h->fn_stub->flags &= ~SEC_RELOC;
8801 h->fn_stub->reloc_count = 0;
8802 h->fn_stub->flags |= SEC_EXCLUDE;
8803 }
8804
8805 if (h->call_stub != NULL
8806 && h->root.other == STO_MIPS16)
8807 {
8808 /* We don't need the call_stub; this is a 16 bit function, so
8809 calls from other 16 bit functions are OK. Clobber the size
8810 to 0 to prevent it from being included in the link. */
8811 h->call_stub->_raw_size = 0;
8812 h->call_stub->_cooked_size = 0;
8813 h->call_stub->flags &= ~SEC_RELOC;
8814 h->call_stub->reloc_count = 0;
8815 h->call_stub->flags |= SEC_EXCLUDE;
8816 }
8817
8818 if (h->call_fp_stub != NULL
8819 && h->root.other == STO_MIPS16)
8820 {
8821 /* We don't need the call_stub; this is a 16 bit function, so
8822 calls from other 16 bit functions are OK. Clobber the size
8823 to 0 to prevent it from being included in the link. */
8824 h->call_fp_stub->_raw_size = 0;
8825 h->call_fp_stub->_cooked_size = 0;
8826 h->call_fp_stub->flags &= ~SEC_RELOC;
8827 h->call_fp_stub->reloc_count = 0;
8828 h->call_fp_stub->flags |= SEC_EXCLUDE;
8829 }
8830
8831 return true;
8832 }
8833
8834 /* Set the sizes of the dynamic sections. */
8835
8836 boolean
8837 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
8838 bfd *output_bfd;
8839 struct bfd_link_info *info;
8840 {
8841 bfd *dynobj;
8842 asection *s;
8843 boolean reltext;
8844 struct mips_got_info *g = NULL;
8845
8846 dynobj = elf_hash_table (info)->dynobj;
8847 BFD_ASSERT (dynobj != NULL);
8848
8849 if (elf_hash_table (info)->dynamic_sections_created)
8850 {
8851 /* Set the contents of the .interp section to the interpreter. */
8852 if (! info->shared)
8853 {
8854 s = bfd_get_section_by_name (dynobj, ".interp");
8855 BFD_ASSERT (s != NULL);
8856 s->_raw_size
8857 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8858 s->contents
8859 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8860 }
8861 }
8862
8863 /* The check_relocs and adjust_dynamic_symbol entry points have
8864 determined the sizes of the various dynamic sections. Allocate
8865 memory for them. */
8866 reltext = false;
8867 for (s = dynobj->sections; s != NULL; s = s->next)
8868 {
8869 const char *name;
8870 boolean strip;
8871
8872 /* It's OK to base decisions on the section name, because none
8873 of the dynobj section names depend upon the input files. */
8874 name = bfd_get_section_name (dynobj, s);
8875
8876 if ((s->flags & SEC_LINKER_CREATED) == 0)
8877 continue;
8878
8879 strip = false;
8880
8881 if (strncmp (name, ".rel", 4) == 0)
8882 {
8883 if (s->_raw_size == 0)
8884 {
8885 /* We only strip the section if the output section name
8886 has the same name. Otherwise, there might be several
8887 input sections for this output section. FIXME: This
8888 code is probably not needed these days anyhow, since
8889 the linker now does not create empty output sections. */
8890 if (s->output_section != NULL
8891 && strcmp (name,
8892 bfd_get_section_name (s->output_section->owner,
8893 s->output_section)) == 0)
8894 strip = true;
8895 }
8896 else
8897 {
8898 const char *outname;
8899 asection *target;
8900
8901 /* If this relocation section applies to a read only
8902 section, then we probably need a DT_TEXTREL entry.
8903 If the relocation section is .rel.dyn, we always
8904 assert a DT_TEXTREL entry rather than testing whether
8905 there exists a relocation to a read only section or
8906 not. */
8907 outname = bfd_get_section_name (output_bfd,
8908 s->output_section);
8909 target = bfd_get_section_by_name (output_bfd, outname + 4);
8910 if ((target != NULL
8911 && (target->flags & SEC_READONLY) != 0
8912 && (target->flags & SEC_ALLOC) != 0)
8913 || strcmp (outname,
8914 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
8915 reltext = true;
8916
8917 /* We use the reloc_count field as a counter if we need
8918 to copy relocs into the output file. */
8919 if (strcmp (name,
8920 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
8921 s->reloc_count = 0;
8922 }
8923 }
8924 else if (strncmp (name, ".got", 4) == 0)
8925 {
8926 int i;
8927 bfd_size_type loadable_size = 0;
8928 bfd_size_type local_gotno;
8929 bfd *sub;
8930
8931 BFD_ASSERT (elf_section_data (s) != NULL);
8932 g = (struct mips_got_info *) elf_section_data (s)->tdata;
8933 BFD_ASSERT (g != NULL);
8934
8935 /* Calculate the total loadable size of the output. That
8936 will give us the maximum number of GOT_PAGE entries
8937 required. */
8938 for (sub = info->input_bfds; sub; sub = sub->link_next)
8939 {
8940 asection *subsection;
8941
8942 for (subsection = sub->sections;
8943 subsection;
8944 subsection = subsection->next)
8945 {
8946 if ((subsection->flags & SEC_ALLOC) == 0)
8947 continue;
8948 loadable_size += ((subsection->_raw_size + 0xf)
8949 &~ (bfd_size_type) 0xf);
8950 }
8951 }
8952 loadable_size += MIPS_FUNCTION_STUB_SIZE;
8953
8954 /* Assume there are two loadable segments consisting of
8955 contiguous sections. Is 5 enough? */
8956 local_gotno = (loadable_size >> 16) + 5;
8957 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8958 /* It's possible we will need GOT_PAGE entries as well as
8959 GOT16 entries. Often, these will be able to share GOT
8960 entries, but not always. */
8961 local_gotno *= 2;
8962
8963 g->local_gotno += local_gotno;
8964 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
8965
8966 /* There has to be a global GOT entry for every symbol with
8967 a dynamic symbol table index of DT_MIPS_GOTSYM or
8968 higher. Therefore, it make sense to put those symbols
8969 that need GOT entries at the end of the symbol table. We
8970 do that here. */
8971 if (!mips_elf_sort_hash_table (info, 1))
8972 return false;
8973
8974 if (g->global_gotsym != NULL)
8975 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
8976 else
8977 /* If there are no global symbols, or none requiring
8978 relocations, then GLOBAL_GOTSYM will be NULL. */
8979 i = 0;
8980 g->global_gotno = i;
8981 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
8982 }
8983 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
8984 {
8985 /* Irix rld assumes that the function stub isn't at the end
8986 of .text section. So put a dummy. XXX */
8987 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
8988 }
8989 else if (! info->shared
8990 && ! mips_elf_hash_table (info)->use_rld_obj_head
8991 && strncmp (name, ".rld_map", 8) == 0)
8992 {
8993 /* We add a room for __rld_map. It will be filled in by the
8994 rtld to contain a pointer to the _r_debug structure. */
8995 s->_raw_size += 4;
8996 }
8997 else if (SGI_COMPAT (output_bfd)
8998 && strncmp (name, ".compact_rel", 12) == 0)
8999 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
9000 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
9001 == 0)
9002 s->_raw_size = (sizeof (Elf32_External_Msym)
9003 * (elf_hash_table (info)->dynsymcount
9004 + bfd_count_sections (output_bfd)));
9005 else if (strncmp (name, ".init", 5) != 0)
9006 {
9007 /* It's not one of our sections, so don't allocate space. */
9008 continue;
9009 }
9010
9011 if (strip)
9012 {
9013 _bfd_strip_section_from_output (info, s);
9014 continue;
9015 }
9016
9017 /* Allocate memory for the section contents. */
9018 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
9019 if (s->contents == NULL && s->_raw_size != 0)
9020 {
9021 bfd_set_error (bfd_error_no_memory);
9022 return false;
9023 }
9024 }
9025
9026 if (elf_hash_table (info)->dynamic_sections_created)
9027 {
9028 /* Add some entries to the .dynamic section. We fill in the
9029 values later, in elf_mips_finish_dynamic_sections, but we
9030 must add the entries now so that we get the correct size for
9031 the .dynamic section. The DT_DEBUG entry is filled in by the
9032 dynamic linker and used by the debugger. */
9033 if (! info->shared)
9034 {
9035 /* SGI object has the equivalence of DT_DEBUG in the
9036 DT_MIPS_RLD_MAP entry. */
9037 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9038 return false;
9039 if (!SGI_COMPAT (output_bfd))
9040 {
9041 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9042 return false;
9043 }
9044 }
9045 else
9046 {
9047 /* Shared libraries on traditional mips have DT_DEBUG. */
9048 if (!SGI_COMPAT (output_bfd))
9049 {
9050 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9051 return false;
9052 }
9053 }
9054
9055 if (reltext && SGI_COMPAT (output_bfd))
9056 info->flags |= DF_TEXTREL;
9057
9058 if ((info->flags & DF_TEXTREL) != 0)
9059 {
9060 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9061 return false;
9062 }
9063
9064 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9065 return false;
9066
9067 if (bfd_get_section_by_name (dynobj,
9068 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
9069 {
9070 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9071 return false;
9072
9073 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9074 return false;
9075
9076 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9077 return false;
9078 }
9079
9080 if (SGI_COMPAT (output_bfd))
9081 {
9082 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
9083 return false;
9084 }
9085
9086 if (SGI_COMPAT (output_bfd))
9087 {
9088 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
9089 return false;
9090 }
9091
9092 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
9093 {
9094 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
9095 return false;
9096
9097 s = bfd_get_section_by_name (dynobj, ".liblist");
9098 BFD_ASSERT (s != NULL);
9099
9100 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
9101 return false;
9102 }
9103
9104 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9105 return false;
9106
9107 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9108 return false;
9109
9110 #if 0
9111 /* Time stamps in executable files are a bad idea. */
9112 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
9113 return false;
9114 #endif
9115
9116 #if 0 /* FIXME */
9117 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
9118 return false;
9119 #endif
9120
9121 #if 0 /* FIXME */
9122 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
9123 return false;
9124 #endif
9125
9126 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9127 return false;
9128
9129 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9130 return false;
9131
9132 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9133 return false;
9134
9135 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9136 return false;
9137
9138 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9139 return false;
9140
9141 if (IRIX_COMPAT (dynobj) == ict_irix5
9142 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9143 return false;
9144
9145 if (IRIX_COMPAT (dynobj) == ict_irix6
9146 && (bfd_get_section_by_name
9147 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9148 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9149 return false;
9150
9151 if (bfd_get_section_by_name (dynobj,
9152 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
9153 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
9154 return false;
9155 }
9156
9157 return true;
9158 }
9159
9160 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9161 adjust it appropriately now. */
9162
9163 static void
9164 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
9165 bfd *abfd ATTRIBUTE_UNUSED;
9166 const char *name;
9167 Elf_Internal_Sym *sym;
9168 {
9169 /* The linker script takes care of providing names and values for
9170 these, but we must place them into the right sections. */
9171 static const char* const text_section_symbols[] = {
9172 "_ftext",
9173 "_etext",
9174 "__dso_displacement",
9175 "__elf_header",
9176 "__program_header_table",
9177 NULL
9178 };
9179
9180 static const char* const data_section_symbols[] = {
9181 "_fdata",
9182 "_edata",
9183 "_end",
9184 "_fbss",
9185 NULL
9186 };
9187
9188 const char* const *p;
9189 int i;
9190
9191 for (i = 0; i < 2; ++i)
9192 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9193 *p;
9194 ++p)
9195 if (strcmp (*p, name) == 0)
9196 {
9197 /* All of these symbols are given type STT_SECTION by the
9198 IRIX6 linker. */
9199 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9200
9201 /* The IRIX linker puts these symbols in special sections. */
9202 if (i == 0)
9203 sym->st_shndx = SHN_MIPS_TEXT;
9204 else
9205 sym->st_shndx = SHN_MIPS_DATA;
9206
9207 break;
9208 }
9209 }
9210
9211 /* Finish up dynamic symbol handling. We set the contents of various
9212 dynamic sections here. */
9213
9214 boolean
9215 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
9216 bfd *output_bfd;
9217 struct bfd_link_info *info;
9218 struct elf_link_hash_entry *h;
9219 Elf_Internal_Sym *sym;
9220 {
9221 bfd *dynobj;
9222 bfd_vma gval;
9223 asection *sgot;
9224 asection *smsym;
9225 struct mips_got_info *g;
9226 const char *name;
9227 struct mips_elf_link_hash_entry *mh;
9228
9229 dynobj = elf_hash_table (info)->dynobj;
9230 gval = sym->st_value;
9231 mh = (struct mips_elf_link_hash_entry *) h;
9232
9233 if (h->plt.offset != (bfd_vma) -1)
9234 {
9235 asection *s;
9236 bfd_byte *p;
9237 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
9238
9239 /* This symbol has a stub. Set it up. */
9240
9241 BFD_ASSERT (h->dynindx != -1);
9242
9243 s = bfd_get_section_by_name (dynobj,
9244 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9245 BFD_ASSERT (s != NULL);
9246
9247 /* Fill the stub. */
9248 p = stub;
9249 bfd_put_32 (output_bfd, (bfd_vma) STUB_LW (output_bfd), p);
9250 p += 4;
9251 bfd_put_32 (output_bfd, (bfd_vma) STUB_MOVE (output_bfd), p);
9252 p += 4;
9253
9254 /* FIXME: Can h->dynindex be more than 64K? */
9255 if (h->dynindx & 0xffff0000)
9256 return false;
9257
9258 bfd_put_32 (output_bfd, (bfd_vma) STUB_JALR, p);
9259 p += 4;
9260 bfd_put_32 (output_bfd, (bfd_vma) STUB_LI16 (output_bfd) + h->dynindx, p);
9261
9262 BFD_ASSERT (h->plt.offset <= s->_raw_size);
9263 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
9264
9265 /* Mark the symbol as undefined. plt.offset != -1 occurs
9266 only for the referenced symbol. */
9267 sym->st_shndx = SHN_UNDEF;
9268
9269 /* The run-time linker uses the st_value field of the symbol
9270 to reset the global offset table entry for this external
9271 to its stub address when unlinking a shared object. */
9272 gval = s->output_section->vma + s->output_offset + h->plt.offset;
9273 sym->st_value = gval;
9274 }
9275
9276 BFD_ASSERT (h->dynindx != -1
9277 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
9278
9279 sgot = mips_elf_got_section (dynobj);
9280 BFD_ASSERT (sgot != NULL);
9281 BFD_ASSERT (elf_section_data (sgot) != NULL);
9282 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
9283 BFD_ASSERT (g != NULL);
9284
9285 /* Run through the global symbol table, creating GOT entries for all
9286 the symbols that need them. */
9287 if (g->global_gotsym != NULL
9288 && h->dynindx >= g->global_gotsym->dynindx)
9289 {
9290 bfd_vma offset;
9291 bfd_vma value;
9292
9293 if (sym->st_value)
9294 value = sym->st_value;
9295 else
9296 {
9297 /* For an entity defined in a shared object, this will be
9298 NULL. (For functions in shared objects for
9299 which we have created stubs, ST_VALUE will be non-NULL.
9300 That's because such the functions are now no longer defined
9301 in a shared object.) */
9302
9303 if (info->shared && h->root.type == bfd_link_hash_undefined)
9304 value = 0;
9305 else
9306 value = h->root.u.def.value;
9307 }
9308 offset = mips_elf_global_got_index (dynobj, h);
9309 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9310 }
9311
9312 /* Create a .msym entry, if appropriate. */
9313 smsym = bfd_get_section_by_name (dynobj,
9314 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
9315 if (smsym)
9316 {
9317 Elf32_Internal_Msym msym;
9318
9319 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
9320 /* It is undocumented what the `1' indicates, but IRIX6 uses
9321 this value. */
9322 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
9323 bfd_mips_elf_swap_msym_out
9324 (dynobj, &msym,
9325 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
9326 }
9327
9328 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9329 name = h->root.root.string;
9330 if (strcmp (name, "_DYNAMIC") == 0
9331 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
9332 sym->st_shndx = SHN_ABS;
9333 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9334 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9335 {
9336 sym->st_shndx = SHN_ABS;
9337 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9338 sym->st_value = 1;
9339 }
9340 else if (strcmp (name, "_gp_disp") == 0)
9341 {
9342 sym->st_shndx = SHN_ABS;
9343 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9344 sym->st_value = elf_gp (output_bfd);
9345 }
9346 else if (SGI_COMPAT (output_bfd))
9347 {
9348 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9349 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9350 {
9351 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9352 sym->st_other = STO_PROTECTED;
9353 sym->st_value = 0;
9354 sym->st_shndx = SHN_MIPS_DATA;
9355 }
9356 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9357 {
9358 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9359 sym->st_other = STO_PROTECTED;
9360 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9361 sym->st_shndx = SHN_ABS;
9362 }
9363 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9364 {
9365 if (h->type == STT_FUNC)
9366 sym->st_shndx = SHN_MIPS_TEXT;
9367 else if (h->type == STT_OBJECT)
9368 sym->st_shndx = SHN_MIPS_DATA;
9369 }
9370 }
9371
9372 /* Handle the IRIX6-specific symbols. */
9373 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9374 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9375
9376 if (! info->shared)
9377 {
9378 if (! mips_elf_hash_table (info)->use_rld_obj_head
9379 && (strcmp (name, "__rld_map") == 0
9380 || strcmp (name, "__RLD_MAP") == 0))
9381 {
9382 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9383 BFD_ASSERT (s != NULL);
9384 sym->st_value = s->output_section->vma + s->output_offset;
9385 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
9386 if (mips_elf_hash_table (info)->rld_value == 0)
9387 mips_elf_hash_table (info)->rld_value = sym->st_value;
9388 }
9389 else if (mips_elf_hash_table (info)->use_rld_obj_head
9390 && strcmp (name, "__rld_obj_head") == 0)
9391 {
9392 /* IRIX6 does not use a .rld_map section. */
9393 if (IRIX_COMPAT (output_bfd) == ict_irix5
9394 || IRIX_COMPAT (output_bfd) == ict_none)
9395 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9396 != NULL);
9397 mips_elf_hash_table (info)->rld_value = sym->st_value;
9398 }
9399 }
9400
9401 /* If this is a mips16 symbol, force the value to be even. */
9402 if (sym->st_other == STO_MIPS16
9403 && (sym->st_value & 1) != 0)
9404 --sym->st_value;
9405
9406 return true;
9407 }
9408
9409 /* Finish up the dynamic sections. */
9410
9411 boolean
9412 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
9413 bfd *output_bfd;
9414 struct bfd_link_info *info;
9415 {
9416 bfd *dynobj;
9417 asection *sdyn;
9418 asection *sgot;
9419 struct mips_got_info *g;
9420
9421 dynobj = elf_hash_table (info)->dynobj;
9422
9423 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9424
9425 sgot = mips_elf_got_section (dynobj);
9426 if (sgot == NULL)
9427 g = NULL;
9428 else
9429 {
9430 BFD_ASSERT (elf_section_data (sgot) != NULL);
9431 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
9432 BFD_ASSERT (g != NULL);
9433 }
9434
9435 if (elf_hash_table (info)->dynamic_sections_created)
9436 {
9437 bfd_byte *b;
9438
9439 BFD_ASSERT (sdyn != NULL);
9440 BFD_ASSERT (g != NULL);
9441
9442 for (b = sdyn->contents;
9443 b < sdyn->contents + sdyn->_raw_size;
9444 b += MIPS_ELF_DYN_SIZE (dynobj))
9445 {
9446 Elf_Internal_Dyn dyn;
9447 const char *name;
9448 size_t elemsize;
9449 asection *s;
9450 boolean swap_out_p;
9451
9452 /* Read in the current dynamic entry. */
9453 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9454
9455 /* Assume that we're going to modify it and write it out. */
9456 swap_out_p = true;
9457
9458 switch (dyn.d_tag)
9459 {
9460 case DT_RELENT:
9461 s = (bfd_get_section_by_name
9462 (dynobj,
9463 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
9464 BFD_ASSERT (s != NULL);
9465 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
9466 break;
9467
9468 case DT_STRSZ:
9469 /* Rewrite DT_STRSZ. */
9470 dyn.d_un.d_val =
9471 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
9472 break;
9473
9474 case DT_PLTGOT:
9475 name = ".got";
9476 goto get_vma;
9477 case DT_MIPS_CONFLICT:
9478 name = ".conflict";
9479 goto get_vma;
9480 case DT_MIPS_LIBLIST:
9481 name = ".liblist";
9482 get_vma:
9483 s = bfd_get_section_by_name (output_bfd, name);
9484 BFD_ASSERT (s != NULL);
9485 dyn.d_un.d_ptr = s->vma;
9486 break;
9487
9488 case DT_MIPS_RLD_VERSION:
9489 dyn.d_un.d_val = 1; /* XXX */
9490 break;
9491
9492 case DT_MIPS_FLAGS:
9493 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
9494 break;
9495
9496 case DT_MIPS_CONFLICTNO:
9497 name = ".conflict";
9498 elemsize = sizeof (Elf32_Conflict);
9499 goto set_elemno;
9500
9501 case DT_MIPS_LIBLISTNO:
9502 name = ".liblist";
9503 elemsize = sizeof (Elf32_Lib);
9504 set_elemno:
9505 s = bfd_get_section_by_name (output_bfd, name);
9506 if (s != NULL)
9507 {
9508 if (s->_cooked_size != 0)
9509 dyn.d_un.d_val = s->_cooked_size / elemsize;
9510 else
9511 dyn.d_un.d_val = s->_raw_size / elemsize;
9512 }
9513 else
9514 dyn.d_un.d_val = 0;
9515 break;
9516
9517 case DT_MIPS_TIME_STAMP:
9518 time ((time_t *) &dyn.d_un.d_val);
9519 break;
9520
9521 case DT_MIPS_ICHECKSUM:
9522 /* XXX FIXME: */
9523 swap_out_p = false;
9524 break;
9525
9526 case DT_MIPS_IVERSION:
9527 /* XXX FIXME: */
9528 swap_out_p = false;
9529 break;
9530
9531 case DT_MIPS_BASE_ADDRESS:
9532 s = output_bfd->sections;
9533 BFD_ASSERT (s != NULL);
9534 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
9535 break;
9536
9537 case DT_MIPS_LOCAL_GOTNO:
9538 dyn.d_un.d_val = g->local_gotno;
9539 break;
9540
9541 case DT_MIPS_UNREFEXTNO:
9542 /* The index into the dynamic symbol table which is the
9543 entry of the first external symbol that is not
9544 referenced within the same object. */
9545 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
9546 break;
9547
9548 case DT_MIPS_GOTSYM:
9549 if (g->global_gotsym)
9550 {
9551 dyn.d_un.d_val = g->global_gotsym->dynindx;
9552 break;
9553 }
9554 /* In case if we don't have global got symbols we default
9555 to setting DT_MIPS_GOTSYM to the same value as
9556 DT_MIPS_SYMTABNO, so we just fall through. */
9557
9558 case DT_MIPS_SYMTABNO:
9559 name = ".dynsym";
9560 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
9561 s = bfd_get_section_by_name (output_bfd, name);
9562 BFD_ASSERT (s != NULL);
9563
9564 if (s->_cooked_size != 0)
9565 dyn.d_un.d_val = s->_cooked_size / elemsize;
9566 else
9567 dyn.d_un.d_val = s->_raw_size / elemsize;
9568 break;
9569
9570 case DT_MIPS_HIPAGENO:
9571 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
9572 break;
9573
9574 case DT_MIPS_RLD_MAP:
9575 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
9576 break;
9577
9578 case DT_MIPS_OPTIONS:
9579 s = (bfd_get_section_by_name
9580 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
9581 dyn.d_un.d_ptr = s->vma;
9582 break;
9583
9584 case DT_MIPS_MSYM:
9585 s = (bfd_get_section_by_name
9586 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
9587 dyn.d_un.d_ptr = s->vma;
9588 break;
9589
9590 default:
9591 swap_out_p = false;
9592 break;
9593 }
9594
9595 if (swap_out_p)
9596 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9597 (dynobj, &dyn, b);
9598 }
9599 }
9600
9601 /* The first entry of the global offset table will be filled at
9602 runtime. The second entry will be used by some runtime loaders.
9603 This isn't the case of Irix rld. */
9604 if (sgot != NULL && sgot->_raw_size > 0)
9605 {
9606 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
9607 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
9608 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9609 }
9610
9611 if (sgot != NULL)
9612 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9613 = MIPS_ELF_GOT_SIZE (output_bfd);
9614
9615 {
9616 asection *smsym;
9617 asection *s;
9618 Elf32_compact_rel cpt;
9619
9620 /* ??? The section symbols for the output sections were set up in
9621 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
9622 symbols. Should we do so? */
9623
9624 smsym = bfd_get_section_by_name (dynobj,
9625 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
9626 if (smsym != NULL)
9627 {
9628 Elf32_Internal_Msym msym;
9629
9630 msym.ms_hash_value = 0;
9631 msym.ms_info = ELF32_MS_INFO (0, 1);
9632
9633 for (s = output_bfd->sections; s != NULL; s = s->next)
9634 {
9635 long dynindx = elf_section_data (s)->dynindx;
9636
9637 bfd_mips_elf_swap_msym_out
9638 (output_bfd, &msym,
9639 (((Elf32_External_Msym *) smsym->contents)
9640 + dynindx));
9641 }
9642 }
9643
9644 if (SGI_COMPAT (output_bfd))
9645 {
9646 /* Write .compact_rel section out. */
9647 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9648 if (s != NULL)
9649 {
9650 cpt.id1 = 1;
9651 cpt.num = s->reloc_count;
9652 cpt.id2 = 2;
9653 cpt.offset = (s->output_section->filepos
9654 + sizeof (Elf32_External_compact_rel));
9655 cpt.reserved0 = 0;
9656 cpt.reserved1 = 0;
9657 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9658 ((Elf32_External_compact_rel *)
9659 s->contents));
9660
9661 /* Clean up a dummy stub function entry in .text. */
9662 s = bfd_get_section_by_name (dynobj,
9663 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9664 if (s != NULL)
9665 {
9666 file_ptr dummy_offset;
9667
9668 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
9669 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
9670 memset (s->contents + dummy_offset, 0,
9671 MIPS_FUNCTION_STUB_SIZE);
9672 }
9673 }
9674 }
9675
9676 /* We need to sort the entries of the dynamic relocation section. */
9677
9678 if (!ABI_64_P (output_bfd))
9679 {
9680 asection *reldyn;
9681
9682 reldyn = bfd_get_section_by_name (dynobj,
9683 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9684 if (reldyn != NULL && reldyn->reloc_count > 2)
9685 {
9686 reldyn_sorting_bfd = output_bfd;
9687 qsort ((Elf32_External_Rel *) reldyn->contents + 1,
9688 (size_t) reldyn->reloc_count - 1,
9689 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
9690 }
9691 }
9692
9693 /* Clean up a first relocation in .rel.dyn. */
9694 s = bfd_get_section_by_name (dynobj,
9695 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
9696 if (s != NULL && s->_raw_size > 0)
9697 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
9698 }
9699
9700 return true;
9701 }
9702 \f
9703 /* Support for core dump NOTE sections */
9704 static boolean
9705 _bfd_elf32_mips_grok_prstatus (abfd, note)
9706 bfd *abfd;
9707 Elf_Internal_Note *note;
9708 {
9709 int offset;
9710 unsigned int raw_size;
9711
9712 switch (note->descsz)
9713 {
9714 default:
9715 return false;
9716
9717 case 256: /* Linux/MIPS */
9718 /* pr_cursig */
9719 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
9720
9721 /* pr_pid */
9722 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
9723
9724 /* pr_reg */
9725 offset = 72;
9726 raw_size = 180;
9727
9728 break;
9729 }
9730
9731 /* Make a ".reg/999" section. */
9732 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9733 raw_size, note->descpos + offset);
9734 }
9735
9736 static boolean
9737 _bfd_elf32_mips_grok_psinfo (abfd, note)
9738 bfd *abfd;
9739 Elf_Internal_Note *note;
9740 {
9741 switch (note->descsz)
9742 {
9743 default:
9744 return false;
9745
9746 case 128: /* Linux/MIPS elf_prpsinfo */
9747 elf_tdata (abfd)->core_program
9748 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
9749 elf_tdata (abfd)->core_command
9750 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
9751 }
9752
9753 /* Note that for some reason, a spurious space is tacked
9754 onto the end of the args in some (at least one anyway)
9755 implementations, so strip it off if it exists. */
9756
9757 {
9758 char *command = elf_tdata (abfd)->core_command;
9759 int n = strlen (command);
9760
9761 if (0 < n && command[n - 1] == ' ')
9762 command[n - 1] = '\0';
9763 }
9764
9765 return true;
9766 }
9767 \f
9768 #define PDR_SIZE 32
9769
9770 static boolean
9771 _bfd_elf32_mips_discard_info (abfd, cookie, info)
9772 bfd *abfd;
9773 struct elf_reloc_cookie *cookie;
9774 struct bfd_link_info *info;
9775 {
9776 asection *o;
9777 struct elf_backend_data *bed = get_elf_backend_data (abfd);
9778 boolean ret = false;
9779 unsigned char *tdata;
9780 size_t i, skip;
9781
9782 o = bfd_get_section_by_name (abfd, ".pdr");
9783 if (! o)
9784 return false;
9785 if (o->_raw_size == 0)
9786 return false;
9787 if (o->_raw_size % PDR_SIZE != 0)
9788 return false;
9789 if (o->output_section != NULL
9790 && bfd_is_abs_section (o->output_section))
9791 return false;
9792
9793 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
9794 if (! tdata)
9795 return false;
9796
9797 cookie->rels = _bfd_elf32_link_read_relocs (abfd, o, (PTR) NULL,
9798 (Elf_Internal_Rela *) NULL,
9799 info->keep_memory);
9800 if (!cookie->rels)
9801 {
9802 free (tdata);
9803 return false;
9804 }
9805
9806 cookie->rel = cookie->rels;
9807 cookie->relend =
9808 cookie->rels + o->reloc_count * bed->s->int_rels_per_ext_rel;
9809
9810 for (i = 0, skip = 0; i < o->_raw_size; i ++)
9811 {
9812 if (_bfd_elf32_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9813 {
9814 tdata[i] = 1;
9815 skip ++;
9816 }
9817 }
9818
9819 if (skip != 0)
9820 {
9821 elf_section_data (o)->tdata = tdata;
9822 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
9823 ret = true;
9824 }
9825 else
9826 free (tdata);
9827
9828 if (! info->keep_memory)
9829 free (cookie->rels);
9830
9831 return ret;
9832 }
9833
9834 static boolean
9835 _bfd_elf32_mips_ignore_discarded_relocs (sec)
9836 asection *sec;
9837 {
9838 if (strcmp (sec->name, ".pdr") == 0)
9839 return true;
9840 return false;
9841 }
9842
9843 static boolean
9844 _bfd_elf32_mips_write_section (output_bfd, sec, contents)
9845 bfd *output_bfd;
9846 asection *sec;
9847 bfd_byte *contents;
9848 {
9849 bfd_byte *to, *from, *end;
9850 int i;
9851
9852 if (strcmp (sec->name, ".pdr") != 0)
9853 return false;
9854
9855 if (elf_section_data (sec)->tdata == NULL)
9856 return false;
9857
9858 to = contents;
9859 end = contents + sec->_raw_size;
9860 for (from = contents, i = 0;
9861 from < end;
9862 from += PDR_SIZE, i++)
9863 {
9864 if (((unsigned char *)elf_section_data (sec)->tdata)[i] == 1)
9865 continue;
9866 if (to != from)
9867 memcpy (to, from, PDR_SIZE);
9868 to += PDR_SIZE;
9869 }
9870 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9871 (file_ptr) sec->output_offset,
9872 sec->_cooked_size);
9873 return true;
9874 }
9875 \f
9876 /* Given a data section and an in-memory embedded reloc section, store
9877 relocation information into the embedded reloc section which can be
9878 used at runtime to relocate the data section. This is called by the
9879 linker when the --embedded-relocs switch is used. This is called
9880 after the add_symbols entry point has been called for all the
9881 objects, and before the final_link entry point is called. */
9882
9883 boolean
9884 bfd_mips_elf32_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
9885 bfd *abfd;
9886 struct bfd_link_info *info;
9887 asection *datasec;
9888 asection *relsec;
9889 char **errmsg;
9890 {
9891 Elf_Internal_Shdr *symtab_hdr;
9892 Elf_Internal_Shdr *shndx_hdr;
9893 Elf32_External_Sym *extsyms;
9894 Elf32_External_Sym *free_extsyms = NULL;
9895 Elf_External_Sym_Shndx *shndx_buf = NULL;
9896 Elf_Internal_Rela *internal_relocs;
9897 Elf_Internal_Rela *free_relocs = NULL;
9898 Elf_Internal_Rela *irel, *irelend;
9899 bfd_byte *p;
9900 bfd_size_type amt;
9901
9902 BFD_ASSERT (! info->relocateable);
9903
9904 *errmsg = NULL;
9905
9906 if (datasec->reloc_count == 0)
9907 return true;
9908
9909 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9910 /* Read this BFD's symbols if we haven't done so already, or get the cached
9911 copy if it exists. */
9912 if (symtab_hdr->contents != NULL)
9913 extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
9914 else
9915 {
9916 /* Go get them off disk. */
9917 if (info->keep_memory)
9918 extsyms = ((Elf32_External_Sym *)
9919 bfd_alloc (abfd, symtab_hdr->sh_size));
9920 else
9921 extsyms = ((Elf32_External_Sym *)
9922 bfd_malloc (symtab_hdr->sh_size));
9923 if (extsyms == NULL)
9924 goto error_return;
9925 if (! info->keep_memory)
9926 free_extsyms = extsyms;
9927 if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
9928 || (bfd_bread (extsyms, symtab_hdr->sh_size, abfd)
9929 != symtab_hdr->sh_size))
9930 goto error_return;
9931 if (info->keep_memory)
9932 symtab_hdr->contents = (unsigned char *) extsyms;
9933 }
9934
9935 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
9936 if (shndx_hdr->sh_size != 0)
9937 {
9938 amt = symtab_hdr->sh_info * sizeof (Elf_External_Sym_Shndx);
9939 shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
9940 if (shndx_buf == NULL)
9941 goto error_return;
9942 if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0
9943 || bfd_bread ((PTR) shndx_buf, amt, abfd) != amt)
9944 goto error_return;
9945 }
9946
9947 /* Get a copy of the native relocations. */
9948 internal_relocs = (_bfd_elf32_link_read_relocs
9949 (abfd, datasec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
9950 info->keep_memory));
9951 if (internal_relocs == NULL)
9952 goto error_return;
9953 if (! info->keep_memory)
9954 free_relocs = internal_relocs;
9955
9956 relsec->contents = (bfd_byte *) bfd_alloc (abfd, datasec->reloc_count * 12);
9957 if (relsec->contents == NULL)
9958 goto error_return;
9959
9960 p = relsec->contents;
9961
9962 irelend = internal_relocs + datasec->reloc_count;
9963
9964 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
9965 {
9966 asection *targetsec;
9967
9968 /* We are going to write a four byte longword into the runtime
9969 reloc section. The longword will be the address in the data
9970 section which must be relocated. It is followed by the name
9971 of the target section NUL-padded or truncated to 8
9972 characters. */
9973
9974 /* We can only relocate absolute longword relocs at run time. */
9975 if ((ELF32_R_TYPE (irel->r_info) != (int) R_MIPS_32) &&
9976 (ELF32_R_TYPE (irel->r_info) != (int) R_MIPS_64))
9977 {
9978 *errmsg = _("unsupported reloc type");
9979 bfd_set_error (bfd_error_bad_value);
9980 goto error_return;
9981 }
9982 /* Get the target section referred to by the reloc. */
9983 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
9984 {
9985 Elf32_External_Sym *esym;
9986 Elf_External_Sym_Shndx *shndx;
9987 Elf_Internal_Sym isym;
9988
9989 /* A local symbol. */
9990 esym = extsyms + ELF32_R_SYM (irel->r_info);
9991 shndx = shndx_buf + (shndx_buf ? ELF32_R_SYM (irel->r_info) : 0);
9992 bfd_elf32_swap_symbol_in (abfd, esym, shndx, &isym);
9993
9994 targetsec = bfd_section_from_elf_index (abfd, isym.st_shndx);
9995 }
9996 else
9997 {
9998 unsigned long indx;
9999 struct elf_link_hash_entry *h;
10000
10001 /* An external symbol. */
10002 indx = ELF32_R_SYM (irel->r_info);
10003 h = elf_sym_hashes (abfd)[indx];
10004 targetsec = NULL;
10005 /*
10006 * For some reason, in certain programs, the symbol will
10007 * not be in the hash table. It seems to happen when you
10008 * declare a static table of pointers to const external structures.
10009 * In this case, the relocs are relative to data, not
10010 * text, so just treating it like an undefined link
10011 * should be sufficient.
10012 */
10013 BFD_ASSERT(h != NULL);
10014 if (h->root.type == bfd_link_hash_defined
10015 || h->root.type == bfd_link_hash_defweak)
10016 targetsec = h->root.u.def.section;
10017 }
10018
10019
10020 /*
10021 * Set the low bit of the relocation offset if it's a MIPS64 reloc.
10022 * Relocations will always be on (at least) 32-bit boundaries.
10023 */
10024
10025 bfd_put_32 (abfd, ((irel->r_offset + datasec->output_offset) +
10026 ((ELF32_R_TYPE (irel->r_info) == (int) R_MIPS_64) ? 1 : 0)),
10027 p);
10028 memset (p + 4, 0, 8);
10029 if (targetsec != NULL)
10030 strncpy (p + 4, targetsec->output_section->name, 8);
10031 }
10032
10033 if (shndx_buf != NULL)
10034 free (shndx_buf);
10035 if (free_extsyms != NULL)
10036 free (free_extsyms);
10037 if (free_relocs != NULL)
10038 free (free_relocs);
10039 return true;
10040
10041 error_return:
10042 if (shndx_buf != NULL)
10043 free (shndx_buf);
10044 if (free_extsyms != NULL)
10045 free (free_extsyms);
10046 if (free_relocs != NULL)
10047 free (free_relocs);
10048 return false;
10049 }
10050 \f
10051 /* This is almost identical to bfd_generic_get_... except that some
10052 MIPS relocations need to be handled specially. Sigh. */
10053
10054 static bfd_byte *
10055 elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
10056 relocateable, symbols)
10057 bfd *abfd;
10058 struct bfd_link_info *link_info;
10059 struct bfd_link_order *link_order;
10060 bfd_byte *data;
10061 boolean relocateable;
10062 asymbol **symbols;
10063 {
10064 /* Get enough memory to hold the stuff */
10065 bfd *input_bfd = link_order->u.indirect.section->owner;
10066 asection *input_section = link_order->u.indirect.section;
10067
10068 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10069 arelent **reloc_vector = NULL;
10070 long reloc_count;
10071
10072 if (reloc_size < 0)
10073 goto error_return;
10074
10075 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
10076 if (reloc_vector == NULL && reloc_size != 0)
10077 goto error_return;
10078
10079 /* read in the section */
10080 if (!bfd_get_section_contents (input_bfd,
10081 input_section,
10082 (PTR) data,
10083 (file_ptr) 0,
10084 input_section->_raw_size))
10085 goto error_return;
10086
10087 /* We're not relaxing the section, so just copy the size info */
10088 input_section->_cooked_size = input_section->_raw_size;
10089 input_section->reloc_done = true;
10090
10091 reloc_count = bfd_canonicalize_reloc (input_bfd,
10092 input_section,
10093 reloc_vector,
10094 symbols);
10095 if (reloc_count < 0)
10096 goto error_return;
10097
10098 if (reloc_count > 0)
10099 {
10100 arelent **parent;
10101 /* for mips */
10102 int gp_found;
10103 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10104
10105 {
10106 struct bfd_hash_entry *h;
10107 struct bfd_link_hash_entry *lh;
10108 /* Skip all this stuff if we aren't mixing formats. */
10109 if (abfd && input_bfd
10110 && abfd->xvec == input_bfd->xvec)
10111 lh = 0;
10112 else
10113 {
10114 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
10115 lh = (struct bfd_link_hash_entry *) h;
10116 }
10117 lookup:
10118 if (lh)
10119 {
10120 switch (lh->type)
10121 {
10122 case bfd_link_hash_undefined:
10123 case bfd_link_hash_undefweak:
10124 case bfd_link_hash_common:
10125 gp_found = 0;
10126 break;
10127 case bfd_link_hash_defined:
10128 case bfd_link_hash_defweak:
10129 gp_found = 1;
10130 gp = lh->u.def.value;
10131 break;
10132 case bfd_link_hash_indirect:
10133 case bfd_link_hash_warning:
10134 lh = lh->u.i.link;
10135 /* @@FIXME ignoring warning for now */
10136 goto lookup;
10137 case bfd_link_hash_new:
10138 default:
10139 abort ();
10140 }
10141 }
10142 else
10143 gp_found = 0;
10144 }
10145 /* end mips */
10146 for (parent = reloc_vector; *parent != (arelent *) NULL;
10147 parent++)
10148 {
10149 char *error_message = (char *) NULL;
10150 bfd_reloc_status_type r;
10151
10152 /* Specific to MIPS: Deal with relocation types that require
10153 knowing the gp of the output bfd. */
10154 asymbol *sym = *(*parent)->sym_ptr_ptr;
10155 if (bfd_is_abs_section (sym->section) && abfd)
10156 {
10157 /* The special_function wouldn't get called anyways. */
10158 }
10159 else if (!gp_found)
10160 {
10161 /* The gp isn't there; let the special function code
10162 fall over on its own. */
10163 }
10164 else if ((*parent)->howto->special_function
10165 == _bfd_mips_elf_gprel16_reloc)
10166 {
10167 /* bypass special_function call */
10168 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
10169 relocateable, (PTR) data, gp);
10170 goto skip_bfd_perform_relocation;
10171 }
10172 /* end mips specific stuff */
10173
10174 r = bfd_perform_relocation (input_bfd,
10175 *parent,
10176 (PTR) data,
10177 input_section,
10178 relocateable ? abfd : (bfd *) NULL,
10179 &error_message);
10180 skip_bfd_perform_relocation:
10181
10182 if (relocateable)
10183 {
10184 asection *os = input_section->output_section;
10185
10186 /* A partial link, so keep the relocs */
10187 os->orelocation[os->reloc_count] = *parent;
10188 os->reloc_count++;
10189 }
10190
10191 if (r != bfd_reloc_ok)
10192 {
10193 switch (r)
10194 {
10195 case bfd_reloc_undefined:
10196 if (!((*link_info->callbacks->undefined_symbol)
10197 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10198 input_bfd, input_section, (*parent)->address,
10199 true)))
10200 goto error_return;
10201 break;
10202 case bfd_reloc_dangerous:
10203 BFD_ASSERT (error_message != (char *) NULL);
10204 if (!((*link_info->callbacks->reloc_dangerous)
10205 (link_info, error_message, input_bfd, input_section,
10206 (*parent)->address)))
10207 goto error_return;
10208 break;
10209 case bfd_reloc_overflow:
10210 if (!((*link_info->callbacks->reloc_overflow)
10211 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10212 (*parent)->howto->name, (*parent)->addend,
10213 input_bfd, input_section, (*parent)->address)))
10214 goto error_return;
10215 break;
10216 case bfd_reloc_outofrange:
10217 default:
10218 abort ();
10219 break;
10220 }
10221
10222 }
10223 }
10224 }
10225 if (reloc_vector != NULL)
10226 free (reloc_vector);
10227 return data;
10228
10229 error_return:
10230 if (reloc_vector != NULL)
10231 free (reloc_vector);
10232 return NULL;
10233 }
10234
10235 #define bfd_elf32_bfd_get_relocated_section_contents \
10236 elf32_mips_get_relocated_section_contents
10237 \f
10238 /* ECOFF swapping routines. These are used when dealing with the
10239 .mdebug section, which is in the ECOFF debugging format. */
10240 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap = {
10241 /* Symbol table magic number. */
10242 magicSym,
10243 /* Alignment of debugging information. E.g., 4. */
10244 4,
10245 /* Sizes of external symbolic information. */
10246 sizeof (struct hdr_ext),
10247 sizeof (struct dnr_ext),
10248 sizeof (struct pdr_ext),
10249 sizeof (struct sym_ext),
10250 sizeof (struct opt_ext),
10251 sizeof (struct fdr_ext),
10252 sizeof (struct rfd_ext),
10253 sizeof (struct ext_ext),
10254 /* Functions to swap in external symbolic data. */
10255 ecoff_swap_hdr_in,
10256 ecoff_swap_dnr_in,
10257 ecoff_swap_pdr_in,
10258 ecoff_swap_sym_in,
10259 ecoff_swap_opt_in,
10260 ecoff_swap_fdr_in,
10261 ecoff_swap_rfd_in,
10262 ecoff_swap_ext_in,
10263 _bfd_ecoff_swap_tir_in,
10264 _bfd_ecoff_swap_rndx_in,
10265 /* Functions to swap out external symbolic data. */
10266 ecoff_swap_hdr_out,
10267 ecoff_swap_dnr_out,
10268 ecoff_swap_pdr_out,
10269 ecoff_swap_sym_out,
10270 ecoff_swap_opt_out,
10271 ecoff_swap_fdr_out,
10272 ecoff_swap_rfd_out,
10273 ecoff_swap_ext_out,
10274 _bfd_ecoff_swap_tir_out,
10275 _bfd_ecoff_swap_rndx_out,
10276 /* Function to read in symbolic data. */
10277 _bfd_mips_elf_read_ecoff_info
10278 };
10279 \f
10280 #define ELF_ARCH bfd_arch_mips
10281 #define ELF_MACHINE_CODE EM_MIPS
10282
10283 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
10284 a value of 0x1000, and we are compatible. */
10285 #define ELF_MAXPAGESIZE 0x1000
10286
10287 #define elf_backend_collect true
10288 #define elf_backend_type_change_ok true
10289 #define elf_backend_can_gc_sections true
10290 #define elf_info_to_howto mips_info_to_howto_rela
10291 #define elf_info_to_howto_rel mips_info_to_howto_rel
10292 #define elf_backend_sym_is_global mips_elf_sym_is_global
10293 #define elf_backend_object_p _bfd_mips_elf_object_p
10294 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
10295 #define elf_backend_section_processing _bfd_mips_elf_section_processing
10296 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
10297 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
10298 #define elf_backend_section_from_bfd_section \
10299 _bfd_mips_elf_section_from_bfd_section
10300 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
10301 #define elf_backend_link_output_symbol_hook \
10302 _bfd_mips_elf_link_output_symbol_hook
10303 #define elf_backend_create_dynamic_sections \
10304 _bfd_mips_elf_create_dynamic_sections
10305 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
10306 #define elf_backend_adjust_dynamic_symbol \
10307 _bfd_mips_elf_adjust_dynamic_symbol
10308 #define elf_backend_always_size_sections \
10309 _bfd_mips_elf_always_size_sections
10310 #define elf_backend_size_dynamic_sections \
10311 _bfd_mips_elf_size_dynamic_sections
10312 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
10313 #define elf_backend_finish_dynamic_symbol \
10314 _bfd_mips_elf_finish_dynamic_symbol
10315 #define elf_backend_finish_dynamic_sections \
10316 _bfd_mips_elf_finish_dynamic_sections
10317 #define elf_backend_final_write_processing \
10318 _bfd_mips_elf_final_write_processing
10319 #define elf_backend_additional_program_headers \
10320 _bfd_mips_elf_additional_program_headers
10321 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
10322 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
10323 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
10324 #define elf_backend_copy_indirect_symbol \
10325 _bfd_mips_elf_copy_indirect_symbol
10326 #define elf_backend_hide_symbol _bfd_mips_elf_hide_symbol
10327 #define elf_backend_grok_prstatus _bfd_elf32_mips_grok_prstatus
10328 #define elf_backend_grok_psinfo _bfd_elf32_mips_grok_psinfo
10329 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
10330
10331 #define elf_backend_got_header_size (4 * MIPS_RESERVED_GOTNO)
10332 #define elf_backend_plt_header_size 0
10333 #define elf_backend_may_use_rel_p 1
10334 #define elf_backend_may_use_rela_p 0
10335 #define elf_backend_default_use_rela_p 0
10336 #define elf_backend_sign_extend_vma true
10337
10338 #define elf_backend_discard_info _bfd_elf32_mips_discard_info
10339 #define elf_backend_ignore_discarded_relocs \
10340 _bfd_elf32_mips_ignore_discarded_relocs
10341 #define elf_backend_write_section _bfd_elf32_mips_write_section
10342
10343 #define bfd_elf32_bfd_is_local_label_name \
10344 mips_elf_is_local_label_name
10345 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
10346 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
10347 #define bfd_elf32_bfd_link_hash_table_create \
10348 _bfd_mips_elf_link_hash_table_create
10349 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
10350 #define bfd_elf32_bfd_merge_private_bfd_data \
10351 _bfd_mips_elf_merge_private_bfd_data
10352 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
10353 #define bfd_elf32_bfd_print_private_bfd_data \
10354 _bfd_mips_elf_print_private_bfd_data
10355
10356 /* Support for SGI-ish mips targets. */
10357 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
10358 #define TARGET_LITTLE_NAME "elf32-littlemips"
10359 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
10360 #define TARGET_BIG_NAME "elf32-bigmips"
10361
10362 #include "elf32-target.h"
10363
10364 /* Support for traditional mips targets. */
10365 #define INCLUDED_TARGET_FILE /* More a type of flag. */
10366
10367 #undef TARGET_LITTLE_SYM
10368 #undef TARGET_LITTLE_NAME
10369 #undef TARGET_BIG_SYM
10370 #undef TARGET_BIG_NAME
10371
10372 #define TARGET_LITTLE_SYM bfd_elf32_tradlittlemips_vec
10373 #define TARGET_LITTLE_NAME "elf32-tradlittlemips"
10374 #define TARGET_BIG_SYM bfd_elf32_tradbigmips_vec
10375 #define TARGET_BIG_NAME "elf32-tradbigmips"
10376
10377 /* Include the target file again for this target */
10378 #include "elf32-target.h"
This page took 0.265702 seconds and 4 git commands to generate.