* elf32-hppa.c (hppa_type_of_stub): Correct and simplify condition
[deliverable/binutils-gdb.git] / bfd / elf32-s390.c
1 /* IBM S/390-specific support for 32-bit ELF
2 Copyright 2000, 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Carl B. Pedersen and Martin Schwidefsky.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27
28 static reloc_howto_type *elf_s390_reloc_type_lookup
29 PARAMS ((bfd *, bfd_reloc_code_real_type));
30 static void elf_s390_info_to_howto
31 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
32 static boolean elf_s390_is_local_label_name
33 PARAMS ((bfd *, const char *));
34 static struct bfd_hash_entry *link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_s390_link_hash_table_create
37 PARAMS ((bfd *));
38 static boolean create_got_section
39 PARAMS((bfd *, struct bfd_link_info *));
40 static boolean elf_s390_create_dynamic_sections
41 PARAMS((bfd *, struct bfd_link_info *));
42 static void elf_s390_copy_indirect_symbol
43 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
44 static boolean elf_s390_check_relocs
45 PARAMS ((bfd *, struct bfd_link_info *, asection *,
46 const Elf_Internal_Rela *));
47 static asection *elf_s390_gc_mark_hook
48 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
49 struct elf_link_hash_entry *, Elf_Internal_Sym *));
50 static boolean elf_s390_gc_sweep_hook
51 PARAMS ((bfd *, struct bfd_link_info *, asection *,
52 const Elf_Internal_Rela *));
53 static boolean elf_s390_adjust_dynamic_symbol
54 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
55 static boolean allocate_dynrelocs
56 PARAMS ((struct elf_link_hash_entry *, PTR));
57 static boolean readonly_dynrelocs
58 PARAMS ((struct elf_link_hash_entry *, PTR));
59 static boolean elf_s390_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static boolean elf_s390_relocate_section
62 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
63 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
64 static boolean elf_s390_finish_dynamic_symbol
65 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
66 Elf_Internal_Sym *));
67 static enum elf_reloc_type_class elf_s390_reloc_type_class
68 PARAMS ((const Elf_Internal_Rela *));
69 static boolean elf_s390_finish_dynamic_sections
70 PARAMS ((bfd *, struct bfd_link_info *));
71 static boolean elf_s390_object_p PARAMS ((bfd *));
72 static boolean elf_s390_grok_prstatus PARAMS ((bfd *, Elf_Internal_Note *));
73
74 #define USE_RELA 1 /* We want RELA relocations, not REL. */
75
76 #include "elf/s390.h"
77
78 /* The relocation "howto" table. */
79
80 static reloc_howto_type elf_howto_table[] =
81 {
82 HOWTO (R_390_NONE, /* type */
83 0, /* rightshift */
84 0, /* size (0 = byte, 1 = short, 2 = long) */
85 0, /* bitsize */
86 false, /* pc_relative */
87 0, /* bitpos */
88 complain_overflow_dont, /* complain_on_overflow */
89 bfd_elf_generic_reloc, /* special_function */
90 "R_390_NONE", /* name */
91 false, /* partial_inplace */
92 0, /* src_mask */
93 0, /* dst_mask */
94 false), /* pcrel_offset */
95
96 HOWTO(R_390_8, 0, 0, 8, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_8", false, 0,0x000000ff, false),
97 HOWTO(R_390_12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_12", false, 0,0x00000fff, false),
98 HOWTO(R_390_16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_16", false, 0,0x0000ffff, false),
99 HOWTO(R_390_32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_32", false, 0,0xffffffff, false),
100 HOWTO(R_390_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC32", false, 0,0xffffffff, true),
101 HOWTO(R_390_GOT12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_GOT12", false, 0,0x00000fff, false),
102 HOWTO(R_390_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT32", false, 0,0xffffffff, false),
103 HOWTO(R_390_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT32", false, 0,0xffffffff, true),
104 HOWTO(R_390_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_COPY", false, 0,0xffffffff, false),
105 HOWTO(R_390_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GLOB_DAT",false, 0,0xffffffff, false),
106 HOWTO(R_390_JMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_JMP_SLOT",false, 0,0xffffffff, false),
107 HOWTO(R_390_RELATIVE, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_RELATIVE",false, 0,0xffffffff, false),
108 HOWTO(R_390_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTOFF", false, 0,0xffffffff, false),
109 HOWTO(R_390_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPC", false, 0,0xffffffff, true),
110 HOWTO(R_390_GOT16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT16", false, 0,0x0000ffff, false),
111 HOWTO(R_390_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16", false, 0,0x0000ffff, true),
112 HOWTO(R_390_PC16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16DBL", false, 0,0x0000ffff, true),
113 HOWTO(R_390_PLT16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT16DBL", false, 0,0x0000ffff, true),
114 HOWTO(R_390_PC32DBL, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC32DBL", false, 0,0xffffffff, true),
115 HOWTO(R_390_PLT32DBL, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT32DBL", false, 0,0xffffffff, true),
116 HOWTO(R_390_GOTPCDBL, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPCDBL", false, 0,0xffffffff, true),
117 HOWTO(R_390_GOTENT, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTENT", false, 0,0xffffffff, true),
118 };
119
120 /* GNU extension to record C++ vtable hierarchy. */
121 static reloc_howto_type elf32_s390_vtinherit_howto =
122 HOWTO (R_390_GNU_VTINHERIT, 0,2,0,false,0,complain_overflow_dont, NULL, "R_390_GNU_VTINHERIT", false,0, 0, false);
123 static reloc_howto_type elf32_s390_vtentry_howto =
124 HOWTO (R_390_GNU_VTENTRY, 0,2,0,false,0,complain_overflow_dont, _bfd_elf_rel_vtable_reloc_fn,"R_390_GNU_VTENTRY", false,0,0, false);
125
126 static reloc_howto_type *
127 elf_s390_reloc_type_lookup (abfd, code)
128 bfd *abfd ATTRIBUTE_UNUSED;
129 bfd_reloc_code_real_type code;
130 {
131 switch (code)
132 {
133 case BFD_RELOC_NONE:
134 return &elf_howto_table[(int) R_390_NONE];
135 case BFD_RELOC_8:
136 return &elf_howto_table[(int) R_390_8];
137 case BFD_RELOC_390_12:
138 return &elf_howto_table[(int) R_390_12];
139 case BFD_RELOC_16:
140 return &elf_howto_table[(int) R_390_16];
141 case BFD_RELOC_32:
142 return &elf_howto_table[(int) R_390_32];
143 case BFD_RELOC_CTOR:
144 return &elf_howto_table[(int) R_390_32];
145 case BFD_RELOC_32_PCREL:
146 return &elf_howto_table[(int) R_390_PC32];
147 case BFD_RELOC_390_GOT12:
148 return &elf_howto_table[(int) R_390_GOT12];
149 case BFD_RELOC_32_GOT_PCREL:
150 return &elf_howto_table[(int) R_390_GOT32];
151 case BFD_RELOC_390_PLT32:
152 return &elf_howto_table[(int) R_390_PLT32];
153 case BFD_RELOC_390_COPY:
154 return &elf_howto_table[(int) R_390_COPY];
155 case BFD_RELOC_390_GLOB_DAT:
156 return &elf_howto_table[(int) R_390_GLOB_DAT];
157 case BFD_RELOC_390_JMP_SLOT:
158 return &elf_howto_table[(int) R_390_JMP_SLOT];
159 case BFD_RELOC_390_RELATIVE:
160 return &elf_howto_table[(int) R_390_RELATIVE];
161 case BFD_RELOC_32_GOTOFF:
162 return &elf_howto_table[(int) R_390_GOTOFF];
163 case BFD_RELOC_390_GOTPC:
164 return &elf_howto_table[(int) R_390_GOTPC];
165 case BFD_RELOC_390_GOT16:
166 return &elf_howto_table[(int) R_390_GOT16];
167 case BFD_RELOC_16_PCREL:
168 return &elf_howto_table[(int) R_390_PC16];
169 case BFD_RELOC_390_PC16DBL:
170 return &elf_howto_table[(int) R_390_PC16DBL];
171 case BFD_RELOC_390_PLT16DBL:
172 return &elf_howto_table[(int) R_390_PLT16DBL];
173 case BFD_RELOC_390_PC32DBL:
174 return &elf_howto_table[(int) R_390_PC32DBL];
175 case BFD_RELOC_390_PLT32DBL:
176 return &elf_howto_table[(int) R_390_PLT32DBL];
177 case BFD_RELOC_390_GOTPCDBL:
178 return &elf_howto_table[(int) R_390_GOTPCDBL];
179 case BFD_RELOC_390_GOTENT:
180 return &elf_howto_table[(int) R_390_GOTENT];
181 case BFD_RELOC_VTABLE_INHERIT:
182 return &elf32_s390_vtinherit_howto;
183 case BFD_RELOC_VTABLE_ENTRY:
184 return &elf32_s390_vtentry_howto;
185 default:
186 break;
187 }
188 return 0;
189 }
190
191 /* We need to use ELF32_R_TYPE so we have our own copy of this function,
192 and elf32-s390.c has its own copy. */
193
194 static void
195 elf_s390_info_to_howto (abfd, cache_ptr, dst)
196 bfd *abfd ATTRIBUTE_UNUSED;
197 arelent *cache_ptr;
198 Elf_Internal_Rela *dst;
199 {
200 switch (ELF32_R_TYPE(dst->r_info))
201 {
202 case R_390_GNU_VTINHERIT:
203 cache_ptr->howto = &elf32_s390_vtinherit_howto;
204 break;
205
206 case R_390_GNU_VTENTRY:
207 cache_ptr->howto = &elf32_s390_vtentry_howto;
208 break;
209
210 default:
211 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_390_max);
212 cache_ptr->howto = &elf_howto_table[ELF32_R_TYPE(dst->r_info)];
213 }
214 }
215
216 static boolean
217 elf_s390_is_local_label_name (abfd, name)
218 bfd *abfd;
219 const char *name;
220 {
221 if (name[0] == '.' && (name[1] == 'X' || name[1] == 'L'))
222 return true;
223
224 return _bfd_elf_is_local_label_name (abfd, name);
225 }
226
227 /* Functions for the 390 ELF linker. */
228
229 /* The name of the dynamic interpreter. This is put in the .interp
230 section. */
231
232 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
233
234 /* The size in bytes of the first entry in the procedure linkage table. */
235 #define PLT_FIRST_ENTRY_SIZE 32
236 /* The size in bytes of an entry in the procedure linkage table. */
237 #define PLT_ENTRY_SIZE 32
238
239 #define GOT_ENTRY_SIZE 4
240
241 /* The first three entries in a procedure linkage table are reserved,
242 and the initial contents are unimportant (we zero them out).
243 Subsequent entries look like this. See the SVR4 ABI 386
244 supplement to see how this works. */
245
246 /* For the s390, simple addr offset can only be 0 - 4096.
247 To use the full 2 GB address space, several instructions
248 are needed to load an address in a register and execute
249 a branch( or just saving the address)
250
251 Furthermore, only r 0 and 1 are free to use!!! */
252
253 /* The first 3 words in the GOT are then reserved.
254 Word 0 is the address of the dynamic table.
255 Word 1 is a pointer to a structure describing the object
256 Word 2 is used to point to the loader entry address.
257
258 The code for position independand PLT entries looks like this:
259
260 r12 holds addr of the current GOT at entry to the PLT
261
262 The GOT holds the address in the PLT to be executed.
263 The loader then gets:
264 24(15) = Pointer to the structure describing the object.
265 28(15) = Offset in symbol table
266
267 The loader must then find the module where the function is
268 and insert the address in the GOT.
269
270 Note: 390 can only address +- 64 K relative.
271 We check if offset > 65536, then make a relative branch -64xxx
272 back to a previous defined branch
273
274 PLT1: BASR 1,0 # 2 bytes
275 L 1,22(1) # 4 bytes Load offset in GOT in r 1
276 L 1,(1,12) # 4 bytes Load address from GOT in r1
277 BCR 15,1 # 2 bytes Jump to address
278 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
279 L 1,14(1) # 4 bytes Load offset in symol table in r1
280 BRC 15,-x # 4 bytes Jump to start of PLT
281 .word 0 # 2 bytes filler
282 .long ? # 4 bytes offset in GOT
283 .long ? # 4 bytes offset into symbol table
284
285 This was the general case. There are two additional, optimizes PLT
286 definitions. One for GOT offsets < 4096 and one for GOT offsets < 32768.
287 First the one for GOT offsets < 4096:
288
289 PLT1: L 1,<offset>(12) # 4 bytes Load address from GOT in R1
290 BCR 15,1 # 2 bytes Jump to address
291 .word 0,0,0 # 6 bytes filler
292 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
293 L 1,14(1) # 4 bytes Load offset in symbol table in r1
294 BRC 15,-x # 4 bytes Jump to start of PLT
295 .word 0,0,0 # 6 bytes filler
296 .long ? # 4 bytes offset into symbol table
297
298 Second the one for GOT offsets < 32768:
299
300 PLT1: LHI 1,<offset> # 4 bytes Load offset in GOT to r1
301 L 1,(1,12) # 4 bytes Load address from GOT to r1
302 BCR 15,1 # 2 bytes Jump to address
303 .word 0 # 2 bytes filler
304 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
305 L 1,14(1) # 4 bytes Load offset in symbol table in r1
306 BRC 15,-x # 4 bytes Jump to start of PLT
307 .word 0,0,0 # 6 bytes filler
308 .long ? # 4 bytes offset into symbol table
309
310 Total = 32 bytes per PLT entry
311
312 The code for static build PLT entries looks like this:
313
314 PLT1: BASR 1,0 # 2 bytes
315 L 1,22(1) # 4 bytes Load address of GOT entry
316 L 1,0(0,1) # 4 bytes Load address from GOT in r1
317 BCR 15,1 # 2 bytes Jump to address
318 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
319 L 1,14(1) # 4 bytes Load offset in symbol table in r1
320 BRC 15,-x # 4 bytes Jump to start of PLT
321 .word 0 # 2 bytes filler
322 .long ? # 4 bytes address of GOT entry
323 .long ? # 4 bytes offset into symbol table */
324
325 #define PLT_PIC_ENTRY_WORD0 0x0d105810
326 #define PLT_PIC_ENTRY_WORD1 0x10165811
327 #define PLT_PIC_ENTRY_WORD2 0xc00007f1
328 #define PLT_PIC_ENTRY_WORD3 0x0d105810
329 #define PLT_PIC_ENTRY_WORD4 0x100ea7f4
330
331 #define PLT_PIC12_ENTRY_WORD0 0x5810c000
332 #define PLT_PIC12_ENTRY_WORD1 0x07f10000
333 #define PLT_PIC12_ENTRY_WORD2 0x00000000
334 #define PLT_PIC12_ENTRY_WORD3 0x0d105810
335 #define PLT_PIC12_ENTRY_WORD4 0x100ea7f4
336
337 #define PLT_PIC16_ENTRY_WORD0 0xa7180000
338 #define PLT_PIC16_ENTRY_WORD1 0x5811c000
339 #define PLT_PIC16_ENTRY_WORD2 0x07f10000
340 #define PLT_PIC16_ENTRY_WORD3 0x0d105810
341 #define PLT_PIC16_ENTRY_WORD4 0x100ea7f4
342
343 #define PLT_ENTRY_WORD0 0x0d105810
344 #define PLT_ENTRY_WORD1 0x10165810
345 #define PLT_ENTRY_WORD2 0x100007f1
346 #define PLT_ENTRY_WORD3 0x0d105810
347 #define PLT_ENTRY_WORD4 0x100ea7f4
348
349 /* The first PLT entry pushes the offset into the symbol table
350 from R1 onto the stack at 8(15) and the loader object info
351 at 12(15), loads the loader address in R1 and jumps to it. */
352
353 /* The first entry in the PLT for PIC code:
354
355 PLT0:
356 ST 1,28(15) # R1 has offset into symbol table
357 L 1,4(12) # Get loader ino(object struct address)
358 ST 1,24(15) # Store address
359 L 1,8(12) # Entry address of loader in R1
360 BR 1 # Jump to loader
361
362 The first entry in the PLT for static code:
363
364 PLT0:
365 ST 1,28(15) # R1 has offset into symbol table
366 BASR 1,0
367 L 1,18(0,1) # Get address of GOT
368 MVC 24(4,15),4(1) # Move loader ino to stack
369 L 1,8(1) # Get address of loader
370 BR 1 # Jump to loader
371 .word 0 # filler
372 .long got # address of GOT */
373
374 #define PLT_PIC_FIRST_ENTRY_WORD0 0x5010f01c
375 #define PLT_PIC_FIRST_ENTRY_WORD1 0x5810c004
376 #define PLT_PIC_FIRST_ENTRY_WORD2 0x5010f018
377 #define PLT_PIC_FIRST_ENTRY_WORD3 0x5810c008
378 #define PLT_PIC_FIRST_ENTRY_WORD4 0x07f10000
379
380 #define PLT_FIRST_ENTRY_WORD0 0x5010f01c
381 #define PLT_FIRST_ENTRY_WORD1 0x0d105810
382 #define PLT_FIRST_ENTRY_WORD2 0x1012D203
383 #define PLT_FIRST_ENTRY_WORD3 0xf0181004
384 #define PLT_FIRST_ENTRY_WORD4 0x58101008
385 #define PLT_FIRST_ENTRY_WORD5 0x07f10000
386
387 /* The s390 linker needs to keep track of the number of relocs that it
388 decides to copy as dynamic relocs in check_relocs for each symbol.
389 This is so that it can later discard them if they are found to be
390 unnecessary. We store the information in a field extending the
391 regular ELF linker hash table. */
392
393 struct elf_s390_dyn_relocs
394 {
395 struct elf_s390_dyn_relocs *next;
396
397 /* The input section of the reloc. */
398 asection *sec;
399
400 /* Total number of relocs copied for the input section. */
401 bfd_size_type count;
402
403 /* Number of pc-relative relocs copied for the input section. */
404 bfd_size_type pc_count;
405 };
406
407 /* s390 ELF linker hash entry. */
408
409 struct elf_s390_link_hash_entry
410 {
411 struct elf_link_hash_entry elf;
412
413 /* Track dynamic relocs copied for this symbol. */
414 struct elf_s390_dyn_relocs *dyn_relocs;
415 };
416
417 /* s390 ELF linker hash table. */
418
419 struct elf_s390_link_hash_table
420 {
421 struct elf_link_hash_table elf;
422
423 /* Short-cuts to get to dynamic linker sections. */
424 asection *sgot;
425 asection *sgotplt;
426 asection *srelgot;
427 asection *splt;
428 asection *srelplt;
429 asection *sdynbss;
430 asection *srelbss;
431
432 /* Small local sym to section mapping cache. */
433 struct sym_sec_cache sym_sec;
434 };
435
436 /* Get the s390 ELF linker hash table from a link_info structure. */
437
438 #define elf_s390_hash_table(p) \
439 ((struct elf_s390_link_hash_table *) ((p)->hash))
440
441 /* Create an entry in an s390 ELF linker hash table. */
442
443 static struct bfd_hash_entry *
444 link_hash_newfunc (entry, table, string)
445 struct bfd_hash_entry *entry;
446 struct bfd_hash_table *table;
447 const char *string;
448 {
449 /* Allocate the structure if it has not already been allocated by a
450 subclass. */
451 if (entry == NULL)
452 {
453 entry = bfd_hash_allocate (table,
454 sizeof (struct elf_s390_link_hash_entry));
455 if (entry == NULL)
456 return entry;
457 }
458
459 /* Call the allocation method of the superclass. */
460 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
461 if (entry != NULL)
462 {
463 struct elf_s390_link_hash_entry *eh;
464
465 eh = (struct elf_s390_link_hash_entry *) entry;
466 eh->dyn_relocs = NULL;
467 }
468
469 return entry;
470 }
471
472 /* Create an s390 ELF linker hash table. */
473
474 static struct bfd_link_hash_table *
475 elf_s390_link_hash_table_create (abfd)
476 bfd *abfd;
477 {
478 struct elf_s390_link_hash_table *ret;
479 bfd_size_type amt = sizeof (struct elf_s390_link_hash_table);
480
481 ret = (struct elf_s390_link_hash_table *) bfd_malloc (amt);
482 if (ret == NULL)
483 return NULL;
484
485 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
486 {
487 free (ret);
488 return NULL;
489 }
490
491 ret->sgot = NULL;
492 ret->sgotplt = NULL;
493 ret->srelgot = NULL;
494 ret->splt = NULL;
495 ret->srelplt = NULL;
496 ret->sdynbss = NULL;
497 ret->srelbss = NULL;
498 ret->sym_sec.abfd = NULL;
499
500 return &ret->elf.root;
501 }
502
503 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
504 shortcuts to them in our hash table. */
505
506 static boolean
507 create_got_section (dynobj, info)
508 bfd *dynobj;
509 struct bfd_link_info *info;
510 {
511 struct elf_s390_link_hash_table *htab;
512
513 if (! _bfd_elf_create_got_section (dynobj, info))
514 return false;
515
516 htab = elf_s390_hash_table (info);
517 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
518 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
519 if (!htab->sgot || !htab->sgotplt)
520 abort ();
521
522 htab->srelgot = bfd_make_section (dynobj, ".rela.got");
523 if (htab->srelgot == NULL
524 || ! bfd_set_section_flags (dynobj, htab->srelgot,
525 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
526 | SEC_IN_MEMORY | SEC_LINKER_CREATED
527 | SEC_READONLY))
528 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
529 return false;
530 return true;
531 }
532
533 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
534 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
535 hash table. */
536
537 static boolean
538 elf_s390_create_dynamic_sections (dynobj, info)
539 bfd *dynobj;
540 struct bfd_link_info *info;
541 {
542 struct elf_s390_link_hash_table *htab;
543
544 htab = elf_s390_hash_table (info);
545 if (!htab->sgot && !create_got_section (dynobj, info))
546 return false;
547
548 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
549 return false;
550
551 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
552 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
553 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
554 if (!info->shared)
555 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
556
557 if (!htab->splt || !htab->srelplt || !htab->sdynbss
558 || (!info->shared && !htab->srelbss))
559 abort ();
560
561 return true;
562 }
563
564 /* Copy the extra info we tack onto an elf_link_hash_entry. */
565
566 static void
567 elf_s390_copy_indirect_symbol (dir, ind)
568 struct elf_link_hash_entry *dir, *ind;
569 {
570 struct elf_s390_link_hash_entry *edir, *eind;
571
572 edir = (struct elf_s390_link_hash_entry *) dir;
573 eind = (struct elf_s390_link_hash_entry *) ind;
574
575 if (eind->dyn_relocs != NULL)
576 {
577 if (edir->dyn_relocs != NULL)
578 {
579 struct elf_s390_dyn_relocs **pp;
580 struct elf_s390_dyn_relocs *p;
581
582 if (ind->root.type == bfd_link_hash_indirect)
583 abort ();
584
585 /* Add reloc counts against the weak sym to the strong sym
586 list. Merge any entries against the same section. */
587 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
588 {
589 struct elf_s390_dyn_relocs *q;
590
591 for (q = edir->dyn_relocs; q != NULL; q = q->next)
592 if (q->sec == p->sec)
593 {
594 q->pc_count += p->pc_count;
595 q->count += p->count;
596 *pp = p->next;
597 break;
598 }
599 if (q == NULL)
600 pp = &p->next;
601 }
602 *pp = edir->dyn_relocs;
603 }
604
605 edir->dyn_relocs = eind->dyn_relocs;
606 eind->dyn_relocs = NULL;
607 }
608
609 _bfd_elf_link_hash_copy_indirect (dir, ind);
610 }
611
612 /* Look through the relocs for a section during the first phase, and
613 allocate space in the global offset table or procedure linkage
614 table. */
615
616 static boolean
617 elf_s390_check_relocs (abfd, info, sec, relocs)
618 bfd *abfd;
619 struct bfd_link_info *info;
620 asection *sec;
621 const Elf_Internal_Rela *relocs;
622 {
623 struct elf_s390_link_hash_table *htab;
624 Elf_Internal_Shdr *symtab_hdr;
625 struct elf_link_hash_entry **sym_hashes;
626 const Elf_Internal_Rela *rel;
627 const Elf_Internal_Rela *rel_end;
628 asection *sreloc;
629
630 if (info->relocateable)
631 return true;
632
633 htab = elf_s390_hash_table (info);
634 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
635 sym_hashes = elf_sym_hashes (abfd);
636
637 sreloc = NULL;
638
639 rel_end = relocs + sec->reloc_count;
640 for (rel = relocs; rel < rel_end; rel++)
641 {
642 unsigned long r_symndx;
643 struct elf_link_hash_entry *h;
644
645 r_symndx = ELF32_R_SYM (rel->r_info);
646
647 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
648 {
649 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
650 bfd_archive_filename (abfd),
651 r_symndx);
652 return false;
653 }
654
655 if (r_symndx < symtab_hdr->sh_info)
656 h = NULL;
657 else
658 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
659
660 switch (ELF32_R_TYPE (rel->r_info))
661 {
662 case R_390_GOT12:
663 case R_390_GOT16:
664 case R_390_GOT32:
665 case R_390_GOTENT:
666 /* This symbol requires a global offset table entry. */
667 if (h != NULL)
668 {
669 h->got.refcount += 1;
670 }
671 else
672 {
673 bfd_signed_vma *local_got_refcounts;
674
675 /* This is a global offset table entry for a local symbol. */
676 local_got_refcounts = elf_local_got_refcounts (abfd);
677 if (local_got_refcounts == NULL)
678 {
679 bfd_size_type size;
680
681 size = symtab_hdr->sh_info;
682 size *= sizeof (bfd_signed_vma);
683 local_got_refcounts = ((bfd_signed_vma *)
684 bfd_zalloc (abfd, size));
685 if (local_got_refcounts == NULL)
686 return false;
687 elf_local_got_refcounts (abfd) = local_got_refcounts;
688 }
689 local_got_refcounts[r_symndx] += 1;
690 }
691 /* Fall through */
692
693 case R_390_GOTOFF:
694 case R_390_GOTPC:
695 case R_390_GOTPCDBL:
696 if (htab->sgot == NULL)
697 {
698 if (htab->elf.dynobj == NULL)
699 htab->elf.dynobj = abfd;
700 if (!create_got_section (htab->elf.dynobj, info))
701 return false;
702 }
703 break;
704
705 case R_390_PLT16DBL:
706 case R_390_PLT32DBL:
707 case R_390_PLT32:
708 /* This symbol requires a procedure linkage table entry. We
709 actually build the entry in adjust_dynamic_symbol,
710 because this might be a case of linking PIC code which is
711 never referenced by a dynamic object, in which case we
712 don't need to generate a procedure linkage table entry
713 after all. */
714
715 /* If this is a local symbol, we resolve it directly without
716 creating a procedure linkage table entry. */
717 if (h == NULL)
718 continue;
719
720 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
721 h->plt.refcount += 1;
722 break;
723
724 case R_390_8:
725 case R_390_16:
726 case R_390_32:
727 case R_390_PC16:
728 case R_390_PC16DBL:
729 case R_390_PC32DBL:
730 case R_390_PC32:
731 if (h != NULL && !info->shared)
732 {
733 /* If this reloc is in a read-only section, we might
734 need a copy reloc. We can't check reliably at this
735 stage whether the section is read-only, as input
736 sections have not yet been mapped to output sections.
737 Tentatively set the flag for now, and correct in
738 adjust_dynamic_symbol. */
739 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
740
741 /* We may need a .plt entry if the function this reloc
742 refers to is in a shared lib. */
743 h->plt.refcount += 1;
744 }
745
746 /* If we are creating a shared library, and this is a reloc
747 against a global symbol, or a non PC relative reloc
748 against a local symbol, then we need to copy the reloc
749 into the shared library. However, if we are linking with
750 -Bsymbolic, we do not need to copy a reloc against a
751 global symbol which is defined in an object we are
752 including in the link (i.e., DEF_REGULAR is set). At
753 this point we have not seen all the input files, so it is
754 possible that DEF_REGULAR is not set now but will be set
755 later (it is never cleared). In case of a weak definition,
756 DEF_REGULAR may be cleared later by a strong definition in
757 a shared library. We account for that possibility below by
758 storing information in the relocs_copied field of the hash
759 table entry. A similar situation occurs when creating
760 shared libraries and symbol visibility changes render the
761 symbol local.
762
763 If on the other hand, we are creating an executable, we
764 may need to keep relocations for symbols satisfied by a
765 dynamic library if we manage to avoid copy relocs for the
766 symbol. */
767 if ((info->shared
768 && (sec->flags & SEC_ALLOC) != 0
769 && ((ELF32_R_TYPE (rel->r_info) != R_390_PC16
770 && ELF32_R_TYPE (rel->r_info) != R_390_PC16DBL
771 && ELF32_R_TYPE (rel->r_info) != R_390_PC32DBL
772 && ELF32_R_TYPE (rel->r_info) != R_390_PC32)
773 || (h != NULL
774 && (! info->symbolic
775 || h->root.type == bfd_link_hash_defweak
776 || (h->elf_link_hash_flags
777 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
778 || (!info->shared
779 && (sec->flags & SEC_ALLOC) != 0
780 && h != NULL
781 && (h->root.type == bfd_link_hash_defweak
782 || (h->elf_link_hash_flags
783 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
784 {
785 struct elf_s390_dyn_relocs *p;
786 struct elf_s390_dyn_relocs **head;
787
788 /* We must copy these reloc types into the output file.
789 Create a reloc section in dynobj and make room for
790 this reloc. */
791 if (sreloc == NULL)
792 {
793 const char *name;
794 bfd *dynobj;
795
796 name = (bfd_elf_string_from_elf_section
797 (abfd,
798 elf_elfheader (abfd)->e_shstrndx,
799 elf_section_data (sec)->rel_hdr.sh_name));
800 if (name == NULL)
801 return false;
802
803 if (strncmp (name, ".rela", 5) != 0
804 || strcmp (bfd_get_section_name (abfd, sec),
805 name + 5) != 0)
806 {
807 (*_bfd_error_handler)
808 (_("%s: bad relocation section name `%s\'"),
809 bfd_archive_filename (abfd), name);
810 }
811
812 if (htab->elf.dynobj == NULL)
813 htab->elf.dynobj = abfd;
814
815 dynobj = htab->elf.dynobj;
816 sreloc = bfd_get_section_by_name (dynobj, name);
817 if (sreloc == NULL)
818 {
819 flagword flags;
820
821 sreloc = bfd_make_section (dynobj, name);
822 flags = (SEC_HAS_CONTENTS | SEC_READONLY
823 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
824 if ((sec->flags & SEC_ALLOC) != 0)
825 flags |= SEC_ALLOC | SEC_LOAD;
826 if (sreloc == NULL
827 || ! bfd_set_section_flags (dynobj, sreloc, flags)
828 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
829 return false;
830 }
831 elf_section_data (sec)->sreloc = sreloc;
832 }
833
834 /* If this is a global symbol, we count the number of
835 relocations we need for this symbol. */
836 if (h != NULL)
837 {
838 head = &((struct elf_s390_link_hash_entry *) h)->dyn_relocs;
839 }
840 else
841 {
842 /* Track dynamic relocs needed for local syms too.
843 We really need local syms available to do this
844 easily. Oh well. */
845
846 asection *s;
847 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
848 sec, r_symndx);
849 if (s == NULL)
850 return false;
851
852 head = ((struct elf_s390_dyn_relocs **)
853 &elf_section_data (s)->local_dynrel);
854 }
855
856 p = *head;
857 if (p == NULL || p->sec != sec)
858 {
859 bfd_size_type amt = sizeof *p;
860 p = ((struct elf_s390_dyn_relocs *)
861 bfd_alloc (htab->elf.dynobj, amt));
862 if (p == NULL)
863 return false;
864 p->next = *head;
865 *head = p;
866 p->sec = sec;
867 p->count = 0;
868 p->pc_count = 0;
869 }
870
871 p->count += 1;
872 if (ELF32_R_TYPE (rel->r_info) == R_390_PC16
873 || ELF32_R_TYPE (rel->r_info) == R_390_PC16DBL
874 || ELF32_R_TYPE (rel->r_info) == R_390_PC32DBL
875 || ELF32_R_TYPE (rel->r_info) == R_390_PC32)
876 p->pc_count += 1;
877 }
878 break;
879
880 /* This relocation describes the C++ object vtable hierarchy.
881 Reconstruct it for later use during GC. */
882 case R_390_GNU_VTINHERIT:
883 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
884 return false;
885 break;
886
887 /* This relocation describes which C++ vtable entries are actually
888 used. Record for later use during GC. */
889 case R_390_GNU_VTENTRY:
890 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_addend))
891 return false;
892 break;
893
894 default:
895 break;
896 }
897 }
898
899 return true;
900 }
901
902 /* Return the section that should be marked against GC for a given
903 relocation. */
904
905 static asection *
906 elf_s390_gc_mark_hook (abfd, info, rel, h, sym)
907 bfd *abfd;
908 struct bfd_link_info *info ATTRIBUTE_UNUSED;
909 Elf_Internal_Rela *rel;
910 struct elf_link_hash_entry *h;
911 Elf_Internal_Sym *sym;
912 {
913 if (h != NULL)
914 {
915 switch (ELF32_R_TYPE (rel->r_info))
916 {
917 case R_390_GNU_VTINHERIT:
918 case R_390_GNU_VTENTRY:
919 break;
920
921 default:
922 switch (h->root.type)
923 {
924 case bfd_link_hash_defined:
925 case bfd_link_hash_defweak:
926 return h->root.u.def.section;
927
928 case bfd_link_hash_common:
929 return h->root.u.c.p->section;
930
931 default:
932 break;
933 }
934 }
935 }
936 else
937 {
938 return bfd_section_from_elf_index (abfd, sym->st_shndx);
939 }
940
941 return NULL;
942 }
943
944 /* Update the got entry reference counts for the section being removed. */
945
946 static boolean
947 elf_s390_gc_sweep_hook (abfd, info, sec, relocs)
948 bfd *abfd;
949 struct bfd_link_info *info;
950 asection *sec;
951 const Elf_Internal_Rela *relocs;
952 {
953 Elf_Internal_Shdr *symtab_hdr;
954 struct elf_link_hash_entry **sym_hashes;
955 bfd_signed_vma *local_got_refcounts;
956 const Elf_Internal_Rela *rel, *relend;
957 unsigned long r_symndx;
958 struct elf_link_hash_entry *h;
959
960 elf_section_data (sec)->local_dynrel = NULL;
961
962 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
963 sym_hashes = elf_sym_hashes (abfd);
964 local_got_refcounts = elf_local_got_refcounts (abfd);
965
966 relend = relocs + sec->reloc_count;
967 for (rel = relocs; rel < relend; rel++)
968 switch (ELF32_R_TYPE (rel->r_info))
969 {
970 case R_390_GOT12:
971 case R_390_GOT16:
972 case R_390_GOT32:
973 case R_390_GOTOFF:
974 case R_390_GOTPC:
975 case R_390_GOTPCDBL:
976 case R_390_GOTENT:
977 r_symndx = ELF32_R_SYM (rel->r_info);
978 if (r_symndx >= symtab_hdr->sh_info)
979 {
980 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
981 if (h->got.refcount > 0)
982 h->got.refcount -= 1;
983 }
984 else if (local_got_refcounts != NULL)
985 {
986 if (local_got_refcounts[r_symndx] > 0)
987 local_got_refcounts[r_symndx] -= 1;
988 }
989 break;
990
991 case R_390_8:
992 case R_390_12:
993 case R_390_16:
994 case R_390_32:
995 case R_390_PC16:
996 case R_390_PC16DBL:
997 case R_390_PC32DBL:
998 case R_390_PC32:
999 r_symndx = ELF32_R_SYM (rel->r_info);
1000 if (r_symndx >= symtab_hdr->sh_info)
1001 {
1002 struct elf_s390_link_hash_entry *eh;
1003 struct elf_s390_dyn_relocs **pp;
1004 struct elf_s390_dyn_relocs *p;
1005
1006 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1007
1008 if (!info->shared && h->plt.refcount > 0)
1009 h->plt.refcount -= 1;
1010
1011 eh = (struct elf_s390_link_hash_entry *) h;
1012
1013 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1014 if (p->sec == sec)
1015 {
1016 if (ELF32_R_TYPE (rel->r_info) == R_390_PC16
1017 || ELF32_R_TYPE (rel->r_info) == R_390_PC16DBL
1018 || ELF32_R_TYPE (rel->r_info) == R_390_PC32DBL
1019 || ELF32_R_TYPE (rel->r_info) == R_390_PC32)
1020 p->pc_count -= 1;
1021 p->count -= 1;
1022 if (p->count == 0)
1023 *pp = p->next;
1024 break;
1025 }
1026 }
1027 break;
1028
1029 case R_390_PLT16DBL:
1030 case R_390_PLT32DBL:
1031 case R_390_PLT32:
1032 r_symndx = ELF32_R_SYM (rel->r_info);
1033 if (r_symndx >= symtab_hdr->sh_info)
1034 {
1035 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1036 if (h->plt.refcount > 0)
1037 h->plt.refcount -= 1;
1038 }
1039 break;
1040
1041 default:
1042 break;
1043 }
1044
1045 return true;
1046 }
1047
1048 /* Adjust a symbol defined by a dynamic object and referenced by a
1049 regular object. The current definition is in some section of the
1050 dynamic object, but we're not including those sections. We have to
1051 change the definition to something the rest of the link can
1052 understand. */
1053
1054 static boolean
1055 elf_s390_adjust_dynamic_symbol (info, h)
1056 struct bfd_link_info *info;
1057 struct elf_link_hash_entry *h;
1058 {
1059 struct elf_s390_link_hash_table *htab;
1060 struct elf_s390_link_hash_entry * eh;
1061 struct elf_s390_dyn_relocs *p;
1062 asection *s;
1063 unsigned int power_of_two;
1064
1065 /* If this is a function, put it in the procedure linkage table. We
1066 will fill in the contents of the procedure linkage table later
1067 (although we could actually do it here). */
1068 if (h->type == STT_FUNC
1069 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1070 {
1071 if (h->plt.refcount <= 0
1072 || (! info->shared
1073 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1074 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0
1075 && h->root.type != bfd_link_hash_undefweak
1076 && h->root.type != bfd_link_hash_undefined))
1077 {
1078 /* This case can occur if we saw a PLT32 reloc in an input
1079 file, but the symbol was never referred to by a dynamic
1080 object, or if all references were garbage collected. In
1081 such a case, we don't actually need to build a procedure
1082 linkage table, and we can just do a PC32 reloc instead. */
1083 h->plt.offset = (bfd_vma) -1;
1084 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1085 }
1086
1087 return true;
1088 }
1089 else
1090 /* It's possible that we incorrectly decided a .plt reloc was
1091 needed for an R_390_PC32 reloc to a non-function sym in
1092 check_relocs. We can't decide accurately between function and
1093 non-function syms in check-relocs; Objects loaded later in
1094 the link may change h->type. So fix it now. */
1095 h->plt.offset = (bfd_vma) -1;
1096
1097 /* If this is a weak symbol, and there is a real definition, the
1098 processor independent code will have arranged for us to see the
1099 real definition first, and we can just use the same value. */
1100 if (h->weakdef != NULL)
1101 {
1102 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1103 || h->weakdef->root.type == bfd_link_hash_defweak);
1104 h->root.u.def.section = h->weakdef->root.u.def.section;
1105 h->root.u.def.value = h->weakdef->root.u.def.value;
1106 return true;
1107 }
1108
1109 /* This is a reference to a symbol defined by a dynamic object which
1110 is not a function. */
1111
1112 /* If we are creating a shared library, we must presume that the
1113 only references to the symbol are via the global offset table.
1114 For such cases we need not do anything here; the relocations will
1115 be handled correctly by relocate_section. */
1116 if (info->shared)
1117 return true;
1118
1119 /* If there are no references to this symbol that do not use the
1120 GOT, we don't need to generate a copy reloc. */
1121 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1122 return true;
1123
1124 /* If -z nocopyreloc was given, we won't generate them either. */
1125 if (info->nocopyreloc)
1126 {
1127 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1128 return true;
1129 }
1130
1131 eh = (struct elf_s390_link_hash_entry *) h;
1132 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1133 {
1134 s = p->sec->output_section;
1135 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1136 break;
1137 }
1138
1139 /* If we didn't find any dynamic relocs in read-only sections, then
1140 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1141 if (p == NULL)
1142 {
1143 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1144 return true;
1145 }
1146
1147 /* We must allocate the symbol in our .dynbss section, which will
1148 become part of the .bss section of the executable. There will be
1149 an entry for this symbol in the .dynsym section. The dynamic
1150 object will contain position independent code, so all references
1151 from the dynamic object to this symbol will go through the global
1152 offset table. The dynamic linker will use the .dynsym entry to
1153 determine the address it must put in the global offset table, so
1154 both the dynamic object and the regular object will refer to the
1155 same memory location for the variable. */
1156
1157 htab = elf_s390_hash_table (info);
1158
1159 /* We must generate a R_390_COPY reloc to tell the dynamic linker to
1160 copy the initial value out of the dynamic object and into the
1161 runtime process image. */
1162 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1163 {
1164 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1165 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1166 }
1167
1168 /* We need to figure out the alignment required for this symbol. I
1169 have no idea how ELF linkers handle this. */
1170 power_of_two = bfd_log2 (h->size);
1171 if (power_of_two > 3)
1172 power_of_two = 3;
1173
1174 /* Apply the required alignment. */
1175 s = htab->sdynbss;
1176 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1177 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1178 {
1179 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1180 return false;
1181 }
1182
1183 /* Define the symbol as being at this point in the section. */
1184 h->root.u.def.section = s;
1185 h->root.u.def.value = s->_raw_size;
1186
1187 /* Increment the section size to make room for the symbol. */
1188 s->_raw_size += h->size;
1189
1190 return true;
1191 }
1192
1193 /* This is the condition under which elf_s390_finish_dynamic_symbol
1194 will be called from elflink.h. If elflink.h doesn't call our
1195 finish_dynamic_symbol routine, we'll need to do something about
1196 initializing any .plt and .got entries in elf_s390_relocate_section. */
1197 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1198 ((DYN) \
1199 && ((INFO)->shared \
1200 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1201 && ((H)->dynindx != -1 \
1202 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1203
1204 /* Allocate space in .plt, .got and associated reloc sections for
1205 dynamic relocs. */
1206
1207 static boolean
1208 allocate_dynrelocs (h, inf)
1209 struct elf_link_hash_entry *h;
1210 PTR inf;
1211 {
1212 struct bfd_link_info *info;
1213 struct elf_s390_link_hash_table *htab;
1214 struct elf_s390_link_hash_entry *eh;
1215 struct elf_s390_dyn_relocs *p;
1216
1217 if (h->root.type == bfd_link_hash_indirect)
1218 return true;
1219
1220 if (h->root.type == bfd_link_hash_warning)
1221 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1222
1223 info = (struct bfd_link_info *) inf;
1224 htab = elf_s390_hash_table (info);
1225
1226 if (htab->elf.dynamic_sections_created
1227 && h->plt.refcount > 0)
1228 {
1229 /* Make sure this symbol is output as a dynamic symbol.
1230 Undefined weak syms won't yet be marked as dynamic. */
1231 if (h->dynindx == -1
1232 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1233 {
1234 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1235 return false;
1236 }
1237
1238 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1239 {
1240 asection *s = htab->splt;
1241
1242 /* If this is the first .plt entry, make room for the special
1243 first entry. */
1244 if (s->_raw_size == 0)
1245 s->_raw_size += PLT_FIRST_ENTRY_SIZE;
1246
1247 h->plt.offset = s->_raw_size;
1248
1249 /* If this symbol is not defined in a regular file, and we are
1250 not generating a shared library, then set the symbol to this
1251 location in the .plt. This is required to make function
1252 pointers compare as equal between the normal executable and
1253 the shared library. */
1254 if (! info->shared
1255 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1256 {
1257 h->root.u.def.section = s;
1258 h->root.u.def.value = h->plt.offset;
1259 }
1260
1261 /* Make room for this entry. */
1262 s->_raw_size += PLT_ENTRY_SIZE;
1263
1264 /* We also need to make an entry in the .got.plt section, which
1265 will be placed in the .got section by the linker script. */
1266 htab->sgotplt->_raw_size += GOT_ENTRY_SIZE;
1267
1268 /* We also need to make an entry in the .rela.plt section. */
1269 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
1270 }
1271 else
1272 {
1273 h->plt.offset = (bfd_vma) -1;
1274 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1275 }
1276 }
1277 else
1278 {
1279 h->plt.offset = (bfd_vma) -1;
1280 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1281 }
1282
1283 if (h->got.refcount > 0)
1284 {
1285 asection *s;
1286 boolean dyn;
1287
1288 /* Make sure this symbol is output as a dynamic symbol.
1289 Undefined weak syms won't yet be marked as dynamic. */
1290 if (h->dynindx == -1
1291 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1292 {
1293 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1294 return false;
1295 }
1296
1297 s = htab->sgot;
1298 h->got.offset = s->_raw_size;
1299 s->_raw_size += GOT_ENTRY_SIZE;
1300 dyn = htab->elf.dynamic_sections_created;
1301 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1302 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
1303 }
1304 else
1305 h->got.offset = (bfd_vma) -1;
1306
1307 eh = (struct elf_s390_link_hash_entry *) h;
1308 if (eh->dyn_relocs == NULL)
1309 return true;
1310
1311 /* In the shared -Bsymbolic case, discard space allocated for
1312 dynamic pc-relative relocs against symbols which turn out to be
1313 defined in regular objects. For the normal shared case, discard
1314 space for pc-relative relocs that have become local due to symbol
1315 visibility changes. */
1316
1317 if (info->shared)
1318 {
1319 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1320 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1321 || info->symbolic))
1322 {
1323 struct elf_s390_dyn_relocs **pp;
1324
1325 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1326 {
1327 p->count -= p->pc_count;
1328 p->pc_count = 0;
1329 if (p->count == 0)
1330 *pp = p->next;
1331 else
1332 pp = &p->next;
1333 }
1334 }
1335 }
1336 else
1337 {
1338 /* For the non-shared case, discard space for relocs against
1339 symbols which turn out to need copy relocs or are not
1340 dynamic. */
1341
1342 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1343 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1344 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1345 || (htab->elf.dynamic_sections_created
1346 && (h->root.type == bfd_link_hash_undefweak
1347 || h->root.type == bfd_link_hash_undefined))))
1348 {
1349 /* Make sure this symbol is output as a dynamic symbol.
1350 Undefined weak syms won't yet be marked as dynamic. */
1351 if (h->dynindx == -1
1352 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1353 {
1354 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1355 return false;
1356 }
1357
1358 /* If that succeeded, we know we'll be keeping all the
1359 relocs. */
1360 if (h->dynindx != -1)
1361 goto keep;
1362 }
1363
1364 eh->dyn_relocs = NULL;
1365
1366 keep: ;
1367 }
1368
1369 /* Finally, allocate space. */
1370 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1371 {
1372 asection *sreloc = elf_section_data (p->sec)->sreloc;
1373 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
1374 }
1375
1376 return true;
1377 }
1378
1379 /* Find any dynamic relocs that apply to read-only sections. */
1380
1381 static boolean
1382 readonly_dynrelocs (h, inf)
1383 struct elf_link_hash_entry *h;
1384 PTR inf;
1385 {
1386 struct elf_s390_link_hash_entry *eh;
1387 struct elf_s390_dyn_relocs *p;
1388
1389 if (h->root.type == bfd_link_hash_warning)
1390 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1391
1392 eh = (struct elf_s390_link_hash_entry *) h;
1393 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1394 {
1395 asection *s = p->sec->output_section;
1396
1397 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1398 {
1399 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1400
1401 info->flags |= DF_TEXTREL;
1402
1403 /* Not an error, just cut short the traversal. */
1404 return false;
1405 }
1406 }
1407 return true;
1408 }
1409
1410 /* Set the sizes of the dynamic sections. */
1411
1412 static boolean
1413 elf_s390_size_dynamic_sections (output_bfd, info)
1414 bfd *output_bfd ATTRIBUTE_UNUSED;
1415 struct bfd_link_info *info;
1416 {
1417 struct elf_s390_link_hash_table *htab;
1418 bfd *dynobj;
1419 asection *s;
1420 boolean relocs;
1421 bfd *ibfd;
1422
1423 htab = elf_s390_hash_table (info);
1424 dynobj = htab->elf.dynobj;
1425 if (dynobj == NULL)
1426 abort ();
1427
1428 if (htab->elf.dynamic_sections_created)
1429 {
1430 /* Set the contents of the .interp section to the interpreter. */
1431 if (! info->shared)
1432 {
1433 s = bfd_get_section_by_name (dynobj, ".interp");
1434 if (s == NULL)
1435 abort ();
1436 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1437 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1438 }
1439 }
1440
1441 /* Set up .got offsets for local syms, and space for local dynamic
1442 relocs. */
1443 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1444 {
1445 bfd_signed_vma *local_got;
1446 bfd_signed_vma *end_local_got;
1447 bfd_size_type locsymcount;
1448 Elf_Internal_Shdr *symtab_hdr;
1449 asection *srela;
1450
1451 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1452 continue;
1453
1454 for (s = ibfd->sections; s != NULL; s = s->next)
1455 {
1456 struct elf_s390_dyn_relocs *p;
1457
1458 for (p = *((struct elf_s390_dyn_relocs **)
1459 &elf_section_data (s)->local_dynrel);
1460 p != NULL;
1461 p = p->next)
1462 {
1463 if (!bfd_is_abs_section (p->sec)
1464 && bfd_is_abs_section (p->sec->output_section))
1465 {
1466 /* Input section has been discarded, either because
1467 it is a copy of a linkonce section or due to
1468 linker script /DISCARD/, so we'll be discarding
1469 the relocs too. */
1470 }
1471 else if (p->count != 0)
1472 {
1473 srela = elf_section_data (p->sec)->sreloc;
1474 srela->_raw_size += p->count * sizeof (Elf32_External_Rela);
1475 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1476 info->flags |= DF_TEXTREL;
1477 }
1478 }
1479 }
1480
1481 local_got = elf_local_got_refcounts (ibfd);
1482 if (!local_got)
1483 continue;
1484
1485 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1486 locsymcount = symtab_hdr->sh_info;
1487 end_local_got = local_got + locsymcount;
1488 s = htab->sgot;
1489 srela = htab->srelgot;
1490 for (; local_got < end_local_got; ++local_got)
1491 {
1492 if (*local_got > 0)
1493 {
1494 *local_got = s->_raw_size;
1495 s->_raw_size += GOT_ENTRY_SIZE;
1496 if (info->shared)
1497 srela->_raw_size += sizeof (Elf32_External_Rela);
1498 }
1499 else
1500 *local_got = (bfd_vma) -1;
1501 }
1502 }
1503
1504 /* Allocate global sym .plt and .got entries, and space for global
1505 sym dynamic relocs. */
1506 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1507
1508 /* We now have determined the sizes of the various dynamic sections.
1509 Allocate memory for them. */
1510 relocs = false;
1511 for (s = dynobj->sections; s != NULL; s = s->next)
1512 {
1513 if ((s->flags & SEC_LINKER_CREATED) == 0)
1514 continue;
1515
1516 if (s == htab->splt
1517 || s == htab->sgot
1518 || s == htab->sgotplt)
1519 {
1520 /* Strip this section if we don't need it; see the
1521 comment below. */
1522 }
1523 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
1524 {
1525 if (s->_raw_size != 0 && s != htab->srelplt)
1526 relocs = true;
1527
1528 /* We use the reloc_count field as a counter if we need
1529 to copy relocs into the output file. */
1530 s->reloc_count = 0;
1531 }
1532 else
1533 {
1534 /* It's not one of our sections, so don't allocate space. */
1535 continue;
1536 }
1537
1538 if (s->_raw_size == 0)
1539 {
1540 /* If we don't need this section, strip it from the
1541 output file. This is to handle .rela.bss and
1542 .rela.plt. We must create it in
1543 create_dynamic_sections, because it must be created
1544 before the linker maps input sections to output
1545 sections. The linker does that before
1546 adjust_dynamic_symbol is called, and it is that
1547 function which decides whether anything needs to go
1548 into these sections. */
1549
1550 _bfd_strip_section_from_output (info, s);
1551 continue;
1552 }
1553
1554 /* Allocate memory for the section contents. We use bfd_zalloc
1555 here in case unused entries are not reclaimed before the
1556 section's contents are written out. This should not happen,
1557 but this way if it does, we get a R_390_NONE reloc instead
1558 of garbage. */
1559 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1560 if (s->contents == NULL)
1561 return false;
1562 }
1563
1564 if (htab->elf.dynamic_sections_created)
1565 {
1566 /* Add some entries to the .dynamic section. We fill in the
1567 values later, in elf_s390_finish_dynamic_sections, but we
1568 must add the entries now so that we get the correct size for
1569 the .dynamic section. The DT_DEBUG entry is filled in by the
1570 dynamic linker and used by the debugger. */
1571 #define add_dynamic_entry(TAG, VAL) \
1572 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1573
1574 if (! info->shared)
1575 {
1576 if (!add_dynamic_entry (DT_DEBUG, 0))
1577 return false;
1578 }
1579
1580 if (htab->splt->_raw_size != 0)
1581 {
1582 if (!add_dynamic_entry (DT_PLTGOT, 0)
1583 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1584 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1585 || !add_dynamic_entry (DT_JMPREL, 0))
1586 return false;
1587 }
1588
1589 if (relocs)
1590 {
1591 if (!add_dynamic_entry (DT_RELA, 0)
1592 || !add_dynamic_entry (DT_RELASZ, 0)
1593 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1594 return false;
1595
1596 /* If any dynamic relocs apply to a read-only section,
1597 then we need a DT_TEXTREL entry. */
1598 if ((info->flags & DF_TEXTREL) == 0)
1599 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1600 (PTR) info);
1601
1602 if ((info->flags & DF_TEXTREL) != 0)
1603 {
1604 if (!add_dynamic_entry (DT_TEXTREL, 0))
1605 return false;
1606 }
1607 }
1608 }
1609 #undef add_dynamic_entry
1610
1611 return true;
1612 }
1613
1614 /* Relocate a 390 ELF section. */
1615
1616 static boolean
1617 elf_s390_relocate_section (output_bfd, info, input_bfd, input_section,
1618 contents, relocs, local_syms, local_sections)
1619 bfd *output_bfd;
1620 struct bfd_link_info *info;
1621 bfd *input_bfd;
1622 asection *input_section;
1623 bfd_byte *contents;
1624 Elf_Internal_Rela *relocs;
1625 Elf_Internal_Sym *local_syms;
1626 asection **local_sections;
1627 {
1628 struct elf_s390_link_hash_table *htab;
1629 Elf_Internal_Shdr *symtab_hdr;
1630 struct elf_link_hash_entry **sym_hashes;
1631 bfd_vma *local_got_offsets;
1632 Elf_Internal_Rela *rel;
1633 Elf_Internal_Rela *relend;
1634
1635 htab = elf_s390_hash_table (info);
1636 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1637 sym_hashes = elf_sym_hashes (input_bfd);
1638 local_got_offsets = elf_local_got_offsets (input_bfd);
1639
1640 rel = relocs;
1641 relend = relocs + input_section->reloc_count;
1642 for (; rel < relend; rel++)
1643 {
1644 int r_type;
1645 reloc_howto_type *howto;
1646 unsigned long r_symndx;
1647 struct elf_link_hash_entry *h;
1648 Elf_Internal_Sym *sym;
1649 asection *sec;
1650 bfd_vma off;
1651 bfd_vma relocation;
1652 boolean unresolved_reloc;
1653 bfd_reloc_status_type r;
1654
1655 r_type = ELF32_R_TYPE (rel->r_info);
1656 if (r_type == (int) R_390_GNU_VTINHERIT
1657 || r_type == (int) R_390_GNU_VTENTRY)
1658 continue;
1659 if (r_type < 0 || r_type >= (int) R_390_max)
1660 {
1661 bfd_set_error (bfd_error_bad_value);
1662 return false;
1663 }
1664 howto = elf_howto_table + r_type;
1665
1666 r_symndx = ELF32_R_SYM (rel->r_info);
1667
1668 if (info->relocateable)
1669 {
1670 /* This is a relocateable link. We don't have to change
1671 anything, unless the reloc is against a section symbol,
1672 in which case we have to adjust according to where the
1673 section symbol winds up in the output section. */
1674 if (r_symndx < symtab_hdr->sh_info)
1675 {
1676 sym = local_syms + r_symndx;
1677 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1678 {
1679 sec = local_sections[r_symndx];
1680 rel->r_addend += sec->output_offset + sym->st_value;
1681 }
1682 }
1683
1684 continue;
1685 }
1686
1687 /* This is a final link. */
1688 h = NULL;
1689 sym = NULL;
1690 sec = NULL;
1691 unresolved_reloc = false;
1692 if (r_symndx < symtab_hdr->sh_info)
1693 {
1694 sym = local_syms + r_symndx;
1695 sec = local_sections[r_symndx];
1696 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1697 }
1698 else
1699 {
1700 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1701 while (h->root.type == bfd_link_hash_indirect
1702 || h->root.type == bfd_link_hash_warning)
1703 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1704
1705 if (h->root.type == bfd_link_hash_defined
1706 || h->root.type == bfd_link_hash_defweak)
1707 {
1708 sec = h->root.u.def.section;
1709 if (sec->output_section == NULL)
1710 {
1711 /* Set a flag that will be cleared later if we find a
1712 relocation value for this symbol. output_section
1713 is typically NULL for symbols satisfied by a shared
1714 library. */
1715 unresolved_reloc = true;
1716 relocation = 0;
1717 }
1718 else
1719 relocation = (h->root.u.def.value
1720 + sec->output_section->vma
1721 + sec->output_offset);
1722 }
1723 else if (h->root.type == bfd_link_hash_undefweak)
1724 relocation = 0;
1725 else if (info->shared
1726 && (!info->symbolic || info->allow_shlib_undefined)
1727 && !info->no_undefined
1728 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1729 relocation = 0;
1730 else
1731 {
1732 if (! ((*info->callbacks->undefined_symbol)
1733 (info, h->root.root.string, input_bfd,
1734 input_section, rel->r_offset,
1735 (!info->shared || info->no_undefined
1736 || ELF_ST_VISIBILITY (h->other)))))
1737 return false;
1738 relocation = 0;
1739 }
1740 }
1741
1742 switch (r_type)
1743 {
1744 case R_390_GOT12:
1745 case R_390_GOT16:
1746 case R_390_GOT32:
1747 case R_390_GOTENT:
1748 /* Relocation is to the entry for this symbol in the global
1749 offset table. */
1750 if (htab->sgot == NULL)
1751 abort ();
1752
1753 if (h != NULL)
1754 {
1755 boolean dyn;
1756
1757 off = h->got.offset;
1758 dyn = htab->elf.dynamic_sections_created;
1759 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1760 || (info->shared
1761 && (info->symbolic
1762 || h->dynindx == -1
1763 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1764 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1765 {
1766 /* This is actually a static link, or it is a
1767 -Bsymbolic link and the symbol is defined
1768 locally, or the symbol was forced to be local
1769 because of a version file. We must initialize
1770 this entry in the global offset table. Since the
1771 offset must always be a multiple of 2, we use the
1772 least significant bit to record whether we have
1773 initialized it already.
1774
1775 When doing a dynamic link, we create a .rel.got
1776 relocation entry to initialize the value. This
1777 is done in the finish_dynamic_symbol routine. */
1778 if ((off & 1) != 0)
1779 off &= ~1;
1780 else
1781 {
1782 bfd_put_32 (output_bfd, relocation,
1783 htab->sgot->contents + off);
1784 h->got.offset |= 1;
1785 }
1786 }
1787 else
1788 unresolved_reloc = false;
1789 }
1790 else
1791 {
1792 if (local_got_offsets == NULL)
1793 abort ();
1794
1795 off = local_got_offsets[r_symndx];
1796
1797 /* The offset must always be a multiple of 4. We use
1798 the least significant bit to record whether we have
1799 already generated the necessary reloc. */
1800 if ((off & 1) != 0)
1801 off &= ~1;
1802 else
1803 {
1804 bfd_put_32 (output_bfd, relocation,
1805 htab->sgot->contents + off);
1806
1807 if (info->shared)
1808 {
1809 asection *srelgot;
1810 Elf_Internal_Rela outrel;
1811 Elf32_External_Rela *loc;
1812
1813 srelgot = htab->srelgot;
1814 if (srelgot == NULL)
1815 abort ();
1816
1817 outrel.r_offset = (htab->sgot->output_section->vma
1818 + htab->sgot->output_offset
1819 + off);
1820 outrel.r_info = ELF32_R_INFO (0, R_390_RELATIVE);
1821 outrel.r_addend = relocation;
1822 loc = (Elf32_External_Rela *) srelgot->contents;
1823 loc += srelgot->reloc_count++;
1824 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
1825 }
1826
1827 local_got_offsets[r_symndx] |= 1;
1828 }
1829 }
1830
1831 if (off >= (bfd_vma) -2)
1832 abort ();
1833
1834 relocation = htab->sgot->output_offset + off;
1835
1836 /*
1837 * For @GOTENT the relocation is against the offset between
1838 * the instruction and the symbols entry in the GOT and not
1839 * between the start of the GOT and the symbols entry. We
1840 * add the vma of the GOT to get the correct value.
1841 */
1842 if (r_type == R_390_GOTENT)
1843 relocation += htab->sgot->output_section->vma;
1844
1845 break;
1846
1847 case R_390_GOTOFF:
1848 /* Relocation is relative to the start of the global offset
1849 table. */
1850
1851 /* Note that sgot->output_offset is not involved in this
1852 calculation. We always want the start of .got. If we
1853 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1854 permitted by the ABI, we might have to change this
1855 calculation. */
1856 relocation -= htab->sgot->output_section->vma;
1857 break;
1858
1859 case R_390_GOTPC:
1860 case R_390_GOTPCDBL:
1861 /* Use global offset table as symbol value. */
1862 relocation = htab->sgot->output_section->vma;
1863 unresolved_reloc = false;
1864 break;
1865
1866 case R_390_PLT16DBL:
1867 case R_390_PLT32DBL:
1868 case R_390_PLT32:
1869 /* Relocation is to the entry for this symbol in the
1870 procedure linkage table. */
1871
1872 /* Resolve a PLT32 reloc against a local symbol directly,
1873 without using the procedure linkage table. */
1874 if (h == NULL)
1875 break;
1876
1877 if (h->plt.offset == (bfd_vma) -1
1878 || htab->splt == NULL)
1879 {
1880 /* We didn't make a PLT entry for this symbol. This
1881 happens when statically linking PIC code, or when
1882 using -Bsymbolic. */
1883 break;
1884 }
1885
1886 relocation = (htab->splt->output_section->vma
1887 + htab->splt->output_offset
1888 + h->plt.offset);
1889 unresolved_reloc = false;
1890 break;
1891
1892 case R_390_8:
1893 case R_390_16:
1894 case R_390_32:
1895 case R_390_PC16:
1896 case R_390_PC16DBL:
1897 case R_390_PC32DBL:
1898 case R_390_PC32:
1899 /* r_symndx will be zero only for relocs against symbols
1900 from removed linkonce sections, or sections discarded by
1901 a linker script. */
1902 if (r_symndx == 0
1903 || (input_section->flags & SEC_ALLOC) == 0)
1904 break;
1905
1906 if ((info->shared
1907 && ((r_type != R_390_PC16
1908 && r_type != R_390_PC16DBL
1909 && r_type != R_390_PC32DBL
1910 && r_type != R_390_PC32)
1911 || (h != NULL
1912 && h->dynindx != -1
1913 && (! info->symbolic
1914 || (h->elf_link_hash_flags
1915 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1916 || (!info->shared
1917 && h != NULL
1918 && h->dynindx != -1
1919 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1920 && (((h->elf_link_hash_flags
1921 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1922 && (h->elf_link_hash_flags
1923 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1924 || h->root.type == bfd_link_hash_undefweak
1925 || h->root.type == bfd_link_hash_undefined)))
1926 {
1927 Elf_Internal_Rela outrel;
1928 boolean skip, relocate;
1929 asection *sreloc;
1930 Elf32_External_Rela *loc;
1931
1932 /* When generating a shared object, these relocations
1933 are copied into the output file to be resolved at run
1934 time. */
1935
1936 skip = false;
1937 relocate = false;
1938
1939 outrel.r_offset =
1940 _bfd_elf_section_offset (output_bfd, info, input_section,
1941 rel->r_offset);
1942 if (outrel.r_offset == (bfd_vma) -1)
1943 skip = true;
1944 else if (outrel.r_offset == (bfd_vma) -2)
1945 skip = true, relocate = true;
1946 outrel.r_offset += (input_section->output_section->vma
1947 + input_section->output_offset);
1948
1949 if (skip)
1950 memset (&outrel, 0, sizeof outrel);
1951 else if (h != NULL
1952 && h->dynindx != -1
1953 && (r_type == R_390_PC16
1954 || r_type == R_390_PC16DBL
1955 || r_type == R_390_PC32DBL
1956 || r_type == R_390_PC32
1957 || !info->shared
1958 || !info->symbolic
1959 || (h->elf_link_hash_flags
1960 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1961 {
1962 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1963 outrel.r_addend = rel->r_addend;
1964 }
1965 else
1966 {
1967 /* This symbol is local, or marked to become local. */
1968 relocate = true;
1969 outrel.r_info = ELF32_R_INFO (0, R_390_RELATIVE);
1970 outrel.r_addend = relocation + rel->r_addend;
1971 }
1972
1973 sreloc = elf_section_data (input_section)->sreloc;
1974 if (sreloc == NULL)
1975 abort ();
1976
1977 loc = (Elf32_External_Rela *) sreloc->contents;
1978 loc += sreloc->reloc_count++;
1979 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
1980
1981 /* If this reloc is against an external symbol, we do
1982 not want to fiddle with the addend. Otherwise, we
1983 need to include the symbol value so that it becomes
1984 an addend for the dynamic reloc. */
1985 if (! relocate)
1986 continue;
1987 }
1988 break;
1989
1990 default:
1991 break;
1992 }
1993
1994 if (unresolved_reloc
1995 && !(info->shared
1996 && (input_section->flags & SEC_DEBUGGING) != 0
1997 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1998 (*_bfd_error_handler)
1999 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2000 bfd_archive_filename (input_bfd),
2001 bfd_get_section_name (input_bfd, input_section),
2002 (long) rel->r_offset,
2003 h->root.root.string);
2004
2005 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2006 contents, rel->r_offset,
2007 relocation, rel->r_addend);
2008
2009 if (r != bfd_reloc_ok)
2010 {
2011 const char *name;
2012
2013 if (h != NULL)
2014 name = h->root.root.string;
2015 else
2016 {
2017 name = bfd_elf_string_from_elf_section (input_bfd,
2018 symtab_hdr->sh_link,
2019 sym->st_name);
2020 if (name == NULL)
2021 return false;
2022 if (*name == '\0')
2023 name = bfd_section_name (input_bfd, sec);
2024 }
2025
2026 if (r == bfd_reloc_overflow)
2027 {
2028
2029 if (! ((*info->callbacks->reloc_overflow)
2030 (info, name, howto->name, (bfd_vma) 0,
2031 input_bfd, input_section, rel->r_offset)))
2032 return false;
2033 }
2034 else
2035 {
2036 (*_bfd_error_handler)
2037 (_("%s(%s+0x%lx): reloc against `%s': error %d"),
2038 bfd_archive_filename (input_bfd),
2039 bfd_get_section_name (input_bfd, input_section),
2040 (long) rel->r_offset, name, (int) r);
2041 return false;
2042 }
2043 }
2044 }
2045
2046 return true;
2047 }
2048
2049 /* Finish up dynamic symbol handling. We set the contents of various
2050 dynamic sections here. */
2051
2052 static boolean
2053 elf_s390_finish_dynamic_symbol (output_bfd, info, h, sym)
2054 bfd *output_bfd;
2055 struct bfd_link_info *info;
2056 struct elf_link_hash_entry *h;
2057 Elf_Internal_Sym *sym;
2058 {
2059 struct elf_s390_link_hash_table *htab;
2060
2061 htab = elf_s390_hash_table (info);
2062
2063 if (h->plt.offset != (bfd_vma) -1)
2064 {
2065 bfd_vma plt_index;
2066 bfd_vma got_offset;
2067 Elf_Internal_Rela rela;
2068 Elf32_External_Rela *loc;
2069 bfd_vma relative_offset;
2070
2071 /* This symbol has an entry in the procedure linkage table. Set
2072 it up. */
2073
2074 if (h->dynindx == -1
2075 || htab->splt == NULL
2076 || htab->sgotplt == NULL
2077 || htab->srelplt == NULL)
2078 abort ();
2079
2080 /* Calc. index no.
2081 Current offset - size first entry / entry size. */
2082 plt_index = (h->plt.offset - PLT_FIRST_ENTRY_SIZE) / PLT_ENTRY_SIZE;
2083
2084 /* Offset in GOT is PLT index plus GOT headers(3) times 4,
2085 addr & GOT addr. */
2086 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
2087
2088 /* S390 uses halfwords for relative branch calc! */
2089 relative_offset = - ((PLT_FIRST_ENTRY_SIZE +
2090 (PLT_ENTRY_SIZE * plt_index) + 18) / 2);
2091 /* If offset is > 32768, branch to a previous branch
2092 390 can only handle +-64 K jumps. */
2093 if ( -32768 > (int) relative_offset )
2094 relative_offset =
2095 -(unsigned) (((65536 / PLT_ENTRY_SIZE - 1) * PLT_ENTRY_SIZE) / 2);
2096
2097 /* Fill in the entry in the procedure linkage table. */
2098 if (!info->shared)
2099 {
2100 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD0,
2101 htab->splt->contents + h->plt.offset);
2102 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD1,
2103 htab->splt->contents + h->plt.offset + 4);
2104 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD2,
2105 htab->splt->contents + h->plt.offset + 8);
2106 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD3,
2107 htab->splt->contents + h->plt.offset + 12);
2108 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD4,
2109 htab->splt->contents + h->plt.offset + 16);
2110 bfd_put_32 (output_bfd, (bfd_vma) 0+(relative_offset << 16),
2111 htab->splt->contents + h->plt.offset + 20);
2112 bfd_put_32 (output_bfd,
2113 (htab->sgotplt->output_section->vma
2114 + htab->sgotplt->output_offset
2115 + got_offset),
2116 htab->splt->contents + h->plt.offset + 24);
2117 }
2118 else if (got_offset < 4096)
2119 {
2120 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD0 + got_offset,
2121 htab->splt->contents + h->plt.offset);
2122 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD1,
2123 htab->splt->contents + h->plt.offset + 4);
2124 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD2,
2125 htab->splt->contents + h->plt.offset + 8);
2126 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD3,
2127 htab->splt->contents + h->plt.offset + 12);
2128 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD4,
2129 htab->splt->contents + h->plt.offset + 16);
2130 bfd_put_32 (output_bfd, (bfd_vma) 0+(relative_offset << 16),
2131 htab->splt->contents + h->plt.offset + 20);
2132 bfd_put_32 (output_bfd, (bfd_vma) 0,
2133 htab->splt->contents + h->plt.offset + 24);
2134 }
2135 else if (got_offset < 32768)
2136 {
2137 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD0 + got_offset,
2138 htab->splt->contents + h->plt.offset);
2139 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD1,
2140 htab->splt->contents + h->plt.offset + 4);
2141 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD2,
2142 htab->splt->contents + h->plt.offset + 8);
2143 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD3,
2144 htab->splt->contents + h->plt.offset + 12);
2145 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD4,
2146 htab->splt->contents + h->plt.offset + 16);
2147 bfd_put_32 (output_bfd, (bfd_vma) 0+(relative_offset << 16),
2148 htab->splt->contents + h->plt.offset + 20);
2149 bfd_put_32 (output_bfd, (bfd_vma) 0,
2150 htab->splt->contents + h->plt.offset + 24);
2151 }
2152 else
2153 {
2154 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD0,
2155 htab->splt->contents + h->plt.offset);
2156 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD1,
2157 htab->splt->contents + h->plt.offset + 4);
2158 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD2,
2159 htab->splt->contents + h->plt.offset + 8);
2160 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD3,
2161 htab->splt->contents + h->plt.offset + 12);
2162 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD4,
2163 htab->splt->contents + h->plt.offset + 16);
2164 bfd_put_32 (output_bfd, (bfd_vma) 0+(relative_offset << 16),
2165 htab->splt->contents + h->plt.offset + 20);
2166 bfd_put_32 (output_bfd, got_offset,
2167 htab->splt->contents + h->plt.offset + 24);
2168 }
2169 /* Insert offset into reloc. table here. */
2170 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
2171 htab->splt->contents + h->plt.offset + 28);
2172
2173 /* Fill in the entry in the global offset table.
2174 Points to instruction after GOT offset. */
2175 bfd_put_32 (output_bfd,
2176 (htab->splt->output_section->vma
2177 + htab->splt->output_offset
2178 + h->plt.offset
2179 + 12),
2180 htab->sgotplt->contents + got_offset);
2181
2182 /* Fill in the entry in the .rela.plt section. */
2183 rela.r_offset = (htab->sgotplt->output_section->vma
2184 + htab->sgotplt->output_offset
2185 + got_offset);
2186 rela.r_info = ELF32_R_INFO (h->dynindx, R_390_JMP_SLOT);
2187 rela.r_addend = 0;
2188 loc = (Elf32_External_Rela *) htab->srelplt->contents + plt_index;
2189 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
2190
2191 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2192 {
2193 /* Mark the symbol as undefined, rather than as defined in
2194 the .plt section. Leave the value alone. This is a clue
2195 for the dynamic linker, to make function pointer
2196 comparisons work between an application and shared
2197 library. */
2198 sym->st_shndx = SHN_UNDEF;
2199 }
2200 }
2201
2202 if (h->got.offset != (bfd_vma) -1)
2203 {
2204 Elf_Internal_Rela rela;
2205 Elf32_External_Rela *loc;
2206
2207 /* This symbol has an entry in the global offset table. Set it
2208 up. */
2209
2210 if (htab->sgot == NULL || htab->srelgot == NULL)
2211 abort ();
2212
2213 rela.r_offset = (htab->sgot->output_section->vma
2214 + htab->sgot->output_offset
2215 + (h->got.offset &~ (bfd_vma) 1));
2216
2217 /* If this is a static link, or it is a -Bsymbolic link and the
2218 symbol is defined locally or was forced to be local because
2219 of a version file, we just want to emit a RELATIVE reloc.
2220 The entry in the global offset table will already have been
2221 initialized in the relocate_section function. */
2222 if (info->shared
2223 && (info->symbolic
2224 || h->dynindx == -1
2225 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2226 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2227 {
2228 BFD_ASSERT((h->got.offset & 1) != 0);
2229 rela.r_info = ELF32_R_INFO (0, R_390_RELATIVE);
2230 rela.r_addend = (h->root.u.def.value
2231 + h->root.u.def.section->output_section->vma
2232 + h->root.u.def.section->output_offset);
2233 }
2234 else
2235 {
2236 BFD_ASSERT((h->got.offset & 1) == 0);
2237 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgot->contents + h->got.offset);
2238 rela.r_info = ELF32_R_INFO (h->dynindx, R_390_GLOB_DAT);
2239 rela.r_addend = 0;
2240 }
2241
2242 loc = (Elf32_External_Rela *) htab->srelgot->contents;
2243 loc += htab->srelgot->reloc_count++;
2244 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
2245 }
2246
2247 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2248 {
2249 Elf_Internal_Rela rela;
2250 Elf32_External_Rela *loc;
2251
2252 /* This symbols needs a copy reloc. Set it up. */
2253
2254 if (h->dynindx == -1
2255 || (h->root.type != bfd_link_hash_defined
2256 && h->root.type != bfd_link_hash_defweak)
2257 || htab->srelbss == NULL)
2258 abort ();
2259
2260 rela.r_offset = (h->root.u.def.value
2261 + h->root.u.def.section->output_section->vma
2262 + h->root.u.def.section->output_offset);
2263 rela.r_info = ELF32_R_INFO (h->dynindx, R_390_COPY);
2264 rela.r_addend = 0;
2265 loc = (Elf32_External_Rela *) htab->srelbss->contents;
2266 loc += htab->srelbss->reloc_count++;
2267 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
2268 }
2269
2270 /* Mark some specially defined symbols as absolute. */
2271 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2272 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2273 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2274 sym->st_shndx = SHN_ABS;
2275
2276 return true;
2277 }
2278
2279 /* Used to decide how to sort relocs in an optimal manner for the
2280 dynamic linker, before writing them out. */
2281
2282 static enum elf_reloc_type_class
2283 elf_s390_reloc_type_class (rela)
2284 const Elf_Internal_Rela *rela;
2285 {
2286 switch ((int) ELF32_R_TYPE (rela->r_info))
2287 {
2288 case R_390_RELATIVE:
2289 return reloc_class_relative;
2290 case R_390_JMP_SLOT:
2291 return reloc_class_plt;
2292 case R_390_COPY:
2293 return reloc_class_copy;
2294 default:
2295 return reloc_class_normal;
2296 }
2297 }
2298
2299 /* Finish up the dynamic sections. */
2300
2301 static boolean
2302 elf_s390_finish_dynamic_sections (output_bfd, info)
2303 bfd *output_bfd;
2304 struct bfd_link_info *info;
2305 {
2306 struct elf_s390_link_hash_table *htab;
2307 bfd *dynobj;
2308 asection *sdyn;
2309
2310 htab = elf_s390_hash_table (info);
2311 dynobj = htab->elf.dynobj;
2312 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2313
2314 if (htab->elf.dynamic_sections_created)
2315 {
2316 Elf32_External_Dyn *dyncon, *dynconend;
2317
2318 if (sdyn == NULL || htab->sgot == NULL)
2319 abort ();
2320
2321 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2322 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2323 for (; dyncon < dynconend; dyncon++)
2324 {
2325 Elf_Internal_Dyn dyn;
2326 asection *s;
2327
2328 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2329
2330 switch (dyn.d_tag)
2331 {
2332 default:
2333 continue;
2334
2335 case DT_PLTGOT:
2336 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2337 break;
2338
2339 case DT_JMPREL:
2340 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2341 break;
2342
2343 case DT_PLTRELSZ:
2344 s = htab->srelplt->output_section;
2345 if (s->_cooked_size != 0)
2346 dyn.d_un.d_val = s->_cooked_size;
2347 else
2348 dyn.d_un.d_val = s->_raw_size;
2349 break;
2350 }
2351
2352 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2353 }
2354
2355 /* Fill in the special first entry in the procedure linkage table. */
2356 if (htab->splt && htab->splt->_raw_size > 0)
2357 {
2358 memset (htab->splt->contents, 0, PLT_FIRST_ENTRY_SIZE);
2359 if (info->shared)
2360 {
2361 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD0,
2362 htab->splt->contents );
2363 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD1,
2364 htab->splt->contents +4 );
2365 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD2,
2366 htab->splt->contents +8 );
2367 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD3,
2368 htab->splt->contents +12 );
2369 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD4,
2370 htab->splt->contents +16 );
2371 }
2372 else
2373 {
2374 bfd_put_32 (output_bfd, (bfd_vma)PLT_FIRST_ENTRY_WORD0,
2375 htab->splt->contents );
2376 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD1,
2377 htab->splt->contents +4 );
2378 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD2,
2379 htab->splt->contents +8 );
2380 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD3,
2381 htab->splt->contents +12 );
2382 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD4,
2383 htab->splt->contents +16 );
2384 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD5,
2385 htab->splt->contents +20 );
2386 bfd_put_32 (output_bfd,
2387 htab->sgotplt->output_section->vma
2388 + htab->sgotplt->output_offset,
2389 htab->splt->contents + 24);
2390 }
2391 elf_section_data (htab->splt->output_section)
2392 ->this_hdr.sh_entsize = 4;
2393 }
2394
2395 }
2396
2397 if (htab->sgotplt)
2398 {
2399 /* Fill in the first three entries in the global offset table. */
2400 if (htab->sgotplt->_raw_size > 0)
2401 {
2402 bfd_put_32 (output_bfd,
2403 (sdyn == NULL ? (bfd_vma) 0
2404 : sdyn->output_section->vma + sdyn->output_offset),
2405 htab->sgotplt->contents);
2406 /* One entry for shared object struct ptr. */
2407 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2408 /* One entry for _dl_runtime_resolve. */
2409 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2410 }
2411
2412 elf_section_data (htab->sgotplt->output_section)
2413 ->this_hdr.sh_entsize = 4;
2414 }
2415 return true;
2416 }
2417
2418 static boolean
2419 elf_s390_object_p (abfd)
2420 bfd *abfd;
2421 {
2422 return bfd_default_set_arch_mach (abfd, bfd_arch_s390, bfd_mach_s390_31);
2423 }
2424
2425 static boolean
2426 elf_s390_grok_prstatus (abfd, note)
2427 bfd * abfd;
2428 Elf_Internal_Note * note;
2429 {
2430 int offset;
2431 unsigned int raw_size;
2432
2433 switch (note->descsz)
2434 {
2435 default:
2436 return false;
2437
2438 case 224: /* S/390 Linux. */
2439 /* pr_cursig */
2440 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2441
2442 /* pr_pid */
2443 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
2444
2445 /* pr_reg */
2446 offset = 72;
2447 raw_size = 144;
2448 break;
2449 }
2450
2451 /* Make a ".reg/999" section. */
2452 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2453 raw_size, note->descpos + offset);
2454 }
2455
2456 #define TARGET_BIG_SYM bfd_elf32_s390_vec
2457 #define TARGET_BIG_NAME "elf32-s390"
2458 #define ELF_ARCH bfd_arch_s390
2459 #define ELF_MACHINE_CODE EM_S390
2460 #define ELF_MACHINE_ALT1 EM_S390_OLD
2461 #define ELF_MAXPAGESIZE 0x1000
2462
2463 #define elf_backend_can_gc_sections 1
2464 #define elf_backend_can_refcount 1
2465 #define elf_backend_want_got_plt 1
2466 #define elf_backend_plt_readonly 1
2467 #define elf_backend_want_plt_sym 0
2468 #define elf_backend_got_header_size 12
2469 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2470
2471 #define elf_info_to_howto elf_s390_info_to_howto
2472
2473 #define bfd_elf32_bfd_is_local_label_name elf_s390_is_local_label_name
2474 #define bfd_elf32_bfd_link_hash_table_create elf_s390_link_hash_table_create
2475 #define bfd_elf32_bfd_reloc_type_lookup elf_s390_reloc_type_lookup
2476
2477 #define elf_backend_adjust_dynamic_symbol elf_s390_adjust_dynamic_symbol
2478 #define elf_backend_check_relocs elf_s390_check_relocs
2479 #define elf_backend_copy_indirect_symbol elf_s390_copy_indirect_symbol
2480 #define elf_backend_create_dynamic_sections elf_s390_create_dynamic_sections
2481 #define elf_backend_finish_dynamic_sections elf_s390_finish_dynamic_sections
2482 #define elf_backend_finish_dynamic_symbol elf_s390_finish_dynamic_symbol
2483 #define elf_backend_gc_mark_hook elf_s390_gc_mark_hook
2484 #define elf_backend_gc_sweep_hook elf_s390_gc_sweep_hook
2485 #define elf_backend_reloc_type_class elf_s390_reloc_type_class
2486 #define elf_backend_relocate_section elf_s390_relocate_section
2487 #define elf_backend_size_dynamic_sections elf_s390_size_dynamic_sections
2488 #define elf_backend_reloc_type_class elf_s390_reloc_type_class
2489 #define elf_backend_grok_prstatus elf_s390_grok_prstatus
2490
2491 #define elf_backend_object_p elf_s390_object_p
2492
2493 #include "elf32-target.h"
This page took 0.084091 seconds and 4 git commands to generate.