2001-12-19 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / bfd / elf32-s390.c
1 /* IBM S/390-specific support for 32-bit ELF
2 Copyright 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Carl B. Pedersen and Martin Schwidefsky.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27
28 static reloc_howto_type *elf_s390_reloc_type_lookup
29 PARAMS ((bfd *, bfd_reloc_code_real_type));
30 static void elf_s390_info_to_howto
31 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
32 static boolean elf_s390_is_local_label_name
33 PARAMS ((bfd *, const char *));
34 static struct bfd_hash_entry *link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_s390_link_hash_table_create
37 PARAMS ((bfd *));
38 static boolean create_got_section
39 PARAMS((bfd *, struct bfd_link_info *));
40 static boolean elf_s390_create_dynamic_sections
41 PARAMS((bfd *, struct bfd_link_info *));
42 static void elf_s390_copy_indirect_symbol
43 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
44 static boolean elf_s390_check_relocs
45 PARAMS ((bfd *, struct bfd_link_info *, asection *,
46 const Elf_Internal_Rela *));
47 static asection *elf_s390_gc_mark_hook
48 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
49 struct elf_link_hash_entry *, Elf_Internal_Sym *));
50 static boolean elf_s390_gc_sweep_hook
51 PARAMS ((bfd *, struct bfd_link_info *, asection *,
52 const Elf_Internal_Rela *));
53 static boolean elf_s390_adjust_dynamic_symbol
54 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
55 static boolean allocate_dynrelocs
56 PARAMS ((struct elf_link_hash_entry *, PTR));
57 static boolean readonly_dynrelocs
58 PARAMS ((struct elf_link_hash_entry *, PTR));
59 static boolean elf_s390_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static boolean elf_s390_relocate_section
62 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
63 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
64 static boolean elf_s390_finish_dynamic_symbol
65 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
66 Elf_Internal_Sym *));
67 static enum elf_reloc_type_class elf_s390_reloc_type_class
68 PARAMS ((const Elf_Internal_Rela *));
69 static boolean elf_s390_finish_dynamic_sections
70 PARAMS ((bfd *, struct bfd_link_info *));
71 static boolean elf_s390_object_p PARAMS ((bfd *));
72
73 #define USE_RELA 1 /* We want RELA relocations, not REL. */
74
75 #include "elf/s390.h"
76
77 /* The relocation "howto" table. */
78
79 static reloc_howto_type elf_howto_table[] =
80 {
81 HOWTO (R_390_NONE, /* type */
82 0, /* rightshift */
83 0, /* size (0 = byte, 1 = short, 2 = long) */
84 0, /* bitsize */
85 false, /* pc_relative */
86 0, /* bitpos */
87 complain_overflow_dont, /* complain_on_overflow */
88 bfd_elf_generic_reloc, /* special_function */
89 "R_390_NONE", /* name */
90 false, /* partial_inplace */
91 0, /* src_mask */
92 0, /* dst_mask */
93 false), /* pcrel_offset */
94
95 HOWTO(R_390_8, 0, 0, 8, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_8", false, 0,0x000000ff, false),
96 HOWTO(R_390_12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_12", false, 0,0x00000fff, false),
97 HOWTO(R_390_16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_16", false, 0,0x0000ffff, false),
98 HOWTO(R_390_32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_32", false, 0,0xffffffff, false),
99 HOWTO(R_390_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC32", false, 0,0xffffffff, true),
100 HOWTO(R_390_GOT12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_GOT12", false, 0,0x00000fff, false),
101 HOWTO(R_390_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT32", false, 0,0xffffffff, false),
102 HOWTO(R_390_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT32", false, 0,0xffffffff, true),
103 HOWTO(R_390_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_COPY", false, 0,0xffffffff, false),
104 HOWTO(R_390_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GLOB_DAT",false, 0,0xffffffff, false),
105 HOWTO(R_390_JMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_JMP_SLOT",false, 0,0xffffffff, false),
106 HOWTO(R_390_RELATIVE, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_RELATIVE",false, 0,0xffffffff, false),
107 HOWTO(R_390_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTOFF", false, 0,0xffffffff, false),
108 HOWTO(R_390_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPC", false, 0,0xffffffff, true),
109 HOWTO(R_390_GOT16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT16", false, 0,0x0000ffff, false),
110 HOWTO(R_390_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16", false, 0,0x0000ffff, true),
111 HOWTO(R_390_PC16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16DBL", false, 0,0x0000ffff, true),
112 HOWTO(R_390_PLT16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT16DBL", false, 0,0x0000ffff, true),
113 };
114
115 /* GNU extension to record C++ vtable hierarchy. */
116 static reloc_howto_type elf32_s390_vtinherit_howto =
117 HOWTO (R_390_GNU_VTINHERIT, 0,2,0,false,0,complain_overflow_dont, NULL, "R_390_GNU_VTINHERIT", false,0, 0, false);
118 static reloc_howto_type elf32_s390_vtentry_howto =
119 HOWTO (R_390_GNU_VTENTRY, 0,2,0,false,0,complain_overflow_dont, _bfd_elf_rel_vtable_reloc_fn,"R_390_GNU_VTENTRY", false,0,0, false);
120
121 static reloc_howto_type *
122 elf_s390_reloc_type_lookup (abfd, code)
123 bfd *abfd ATTRIBUTE_UNUSED;
124 bfd_reloc_code_real_type code;
125 {
126 switch (code)
127 {
128 case BFD_RELOC_NONE:
129 return &elf_howto_table[(int) R_390_NONE];
130 case BFD_RELOC_8:
131 return &elf_howto_table[(int) R_390_8];
132 case BFD_RELOC_390_12:
133 return &elf_howto_table[(int) R_390_12];
134 case BFD_RELOC_16:
135 return &elf_howto_table[(int) R_390_16];
136 case BFD_RELOC_32:
137 return &elf_howto_table[(int) R_390_32];
138 case BFD_RELOC_CTOR:
139 return &elf_howto_table[(int) R_390_32];
140 case BFD_RELOC_32_PCREL:
141 return &elf_howto_table[(int) R_390_PC32];
142 case BFD_RELOC_390_GOT12:
143 return &elf_howto_table[(int) R_390_GOT12];
144 case BFD_RELOC_32_GOT_PCREL:
145 return &elf_howto_table[(int) R_390_GOT32];
146 case BFD_RELOC_390_PLT32:
147 return &elf_howto_table[(int) R_390_PLT32];
148 case BFD_RELOC_390_COPY:
149 return &elf_howto_table[(int) R_390_COPY];
150 case BFD_RELOC_390_GLOB_DAT:
151 return &elf_howto_table[(int) R_390_GLOB_DAT];
152 case BFD_RELOC_390_JMP_SLOT:
153 return &elf_howto_table[(int) R_390_JMP_SLOT];
154 case BFD_RELOC_390_RELATIVE:
155 return &elf_howto_table[(int) R_390_RELATIVE];
156 case BFD_RELOC_32_GOTOFF:
157 return &elf_howto_table[(int) R_390_GOTOFF];
158 case BFD_RELOC_390_GOTPC:
159 return &elf_howto_table[(int) R_390_GOTPC];
160 case BFD_RELOC_390_GOT16:
161 return &elf_howto_table[(int) R_390_GOT16];
162 case BFD_RELOC_16_PCREL:
163 return &elf_howto_table[(int) R_390_PC16];
164 case BFD_RELOC_390_PC16DBL:
165 return &elf_howto_table[(int) R_390_PC16DBL];
166 case BFD_RELOC_390_PLT16DBL:
167 return &elf_howto_table[(int) R_390_PLT16DBL];
168 case BFD_RELOC_VTABLE_INHERIT:
169 return &elf32_s390_vtinherit_howto;
170 case BFD_RELOC_VTABLE_ENTRY:
171 return &elf32_s390_vtentry_howto;
172 default:
173 break;
174 }
175 return 0;
176 }
177
178 /* We need to use ELF32_R_TYPE so we have our own copy of this function,
179 and elf32-s390.c has its own copy. */
180
181 static void
182 elf_s390_info_to_howto (abfd, cache_ptr, dst)
183 bfd *abfd ATTRIBUTE_UNUSED;
184 arelent *cache_ptr;
185 Elf_Internal_Rela *dst;
186 {
187 switch (ELF32_R_TYPE(dst->r_info))
188 {
189 case R_390_GNU_VTINHERIT:
190 cache_ptr->howto = &elf32_s390_vtinherit_howto;
191 break;
192
193 case R_390_GNU_VTENTRY:
194 cache_ptr->howto = &elf32_s390_vtentry_howto;
195 break;
196
197 default:
198 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_390_max);
199 cache_ptr->howto = &elf_howto_table[ELF32_R_TYPE(dst->r_info)];
200 }
201 }
202
203 static boolean
204 elf_s390_is_local_label_name (abfd, name)
205 bfd *abfd;
206 const char *name;
207 {
208 if (name[0] == '.' && (name[1] == 'X' || name[1] == 'L'))
209 return true;
210
211 return _bfd_elf_is_local_label_name (abfd, name);
212 }
213
214 /* Functions for the 390 ELF linker. */
215
216 /* The name of the dynamic interpreter. This is put in the .interp
217 section. */
218
219 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
220
221 /* The size in bytes of the first entry in the procedure linkage table. */
222 #define PLT_FIRST_ENTRY_SIZE 32
223 /* The size in bytes of an entry in the procedure linkage table. */
224 #define PLT_ENTRY_SIZE 32
225
226 #define GOT_ENTRY_SIZE 4
227
228 /* The first three entries in a procedure linkage table are reserved,
229 and the initial contents are unimportant (we zero them out).
230 Subsequent entries look like this. See the SVR4 ABI 386
231 supplement to see how this works. */
232
233 /* For the s390, simple addr offset can only be 0 - 4096.
234 To use the full 2 GB address space, several instructions
235 are needed to load an address in a register and execute
236 a branch( or just saving the address)
237
238 Furthermore, only r 0 and 1 are free to use!!! */
239
240 /* The first 3 words in the GOT are then reserved.
241 Word 0 is the address of the dynamic table.
242 Word 1 is a pointer to a structure describing the object
243 Word 2 is used to point to the loader entry address.
244
245 The code for position independand PLT entries looks like this:
246
247 r12 holds addr of the current GOT at entry to the PLT
248
249 The GOT holds the address in the PLT to be executed.
250 The loader then gets:
251 24(15) = Pointer to the structure describing the object.
252 28(15) = Offset in symbol table
253
254 The loader must then find the module where the function is
255 and insert the address in the GOT.
256
257 Note: 390 can only address +- 64 K relative.
258 We check if offset > 65536, then make a relative branch -64xxx
259 back to a previous defined branch
260
261 PLT1: BASR 1,0 # 2 bytes
262 L 1,22(1) # 4 bytes Load offset in GOT in r 1
263 L 1,(1,12) # 4 bytes Load address from GOT in r1
264 BCR 15,1 # 2 bytes Jump to address
265 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
266 L 1,14(1) # 4 bytes Load offset in symol table in r1
267 BRC 15,-x # 4 bytes Jump to start of PLT
268 .word 0 # 2 bytes filler
269 .long ? # 4 bytes offset in GOT
270 .long ? # 4 bytes offset into symbol table
271
272 This was the general case. There are two additional, optimizes PLT
273 definitions. One for GOT offsets < 4096 and one for GOT offsets < 32768.
274 First the one for GOT offsets < 4096:
275
276 PLT1: L 1,<offset>(12) # 4 bytes Load address from GOT in R1
277 BCR 15,1 # 2 bytes Jump to address
278 .word 0,0,0 # 6 bytes filler
279 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
280 L 1,14(1) # 4 bytes Load offset in symbol table in r1
281 BRC 15,-x # 4 bytes Jump to start of PLT
282 .word 0,0,0 # 6 bytes filler
283 .long ? # 4 bytes offset into symbol table
284
285 Second the one for GOT offsets < 32768:
286
287 PLT1: LHI 1,<offset> # 4 bytes Load offset in GOT to r1
288 L 1,(1,12) # 4 bytes Load address from GOT to r1
289 BCR 15,1 # 2 bytes Jump to address
290 .word 0 # 2 bytes filler
291 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
292 L 1,14(1) # 4 bytes Load offset in symbol table in r1
293 BRC 15,-x # 4 bytes Jump to start of PLT
294 .word 0,0,0 # 6 bytes filler
295 .long ? # 4 bytes offset into symbol table
296
297 Total = 32 bytes per PLT entry
298
299 The code for static build PLT entries looks like this:
300
301 PLT1: BASR 1,0 # 2 bytes
302 L 1,22(1) # 4 bytes Load address of GOT entry
303 L 1,0(0,1) # 4 bytes Load address from GOT in r1
304 BCR 15,1 # 2 bytes Jump to address
305 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
306 L 1,14(1) # 4 bytes Load offset in symbol table in r1
307 BRC 15,-x # 4 bytes Jump to start of PLT
308 .word 0 # 2 bytes filler
309 .long ? # 4 bytes address of GOT entry
310 .long ? # 4 bytes offset into symbol table */
311
312 #define PLT_PIC_ENTRY_WORD0 0x0d105810
313 #define PLT_PIC_ENTRY_WORD1 0x10165811
314 #define PLT_PIC_ENTRY_WORD2 0xc00007f1
315 #define PLT_PIC_ENTRY_WORD3 0x0d105810
316 #define PLT_PIC_ENTRY_WORD4 0x100ea7f4
317
318 #define PLT_PIC12_ENTRY_WORD0 0x5810c000
319 #define PLT_PIC12_ENTRY_WORD1 0x07f10000
320 #define PLT_PIC12_ENTRY_WORD2 0x00000000
321 #define PLT_PIC12_ENTRY_WORD3 0x0d105810
322 #define PLT_PIC12_ENTRY_WORD4 0x100ea7f4
323
324 #define PLT_PIC16_ENTRY_WORD0 0xa7180000
325 #define PLT_PIC16_ENTRY_WORD1 0x5811c000
326 #define PLT_PIC16_ENTRY_WORD2 0x07f10000
327 #define PLT_PIC16_ENTRY_WORD3 0x0d105810
328 #define PLT_PIC16_ENTRY_WORD4 0x100ea7f4
329
330 #define PLT_ENTRY_WORD0 0x0d105810
331 #define PLT_ENTRY_WORD1 0x10165810
332 #define PLT_ENTRY_WORD2 0x100007f1
333 #define PLT_ENTRY_WORD3 0x0d105810
334 #define PLT_ENTRY_WORD4 0x100ea7f4
335
336 /* The first PLT entry pushes the offset into the symbol table
337 from R1 onto the stack at 8(15) and the loader object info
338 at 12(15), loads the loader address in R1 and jumps to it. */
339
340 /* The first entry in the PLT for PIC code:
341
342 PLT0:
343 ST 1,28(15) # R1 has offset into symbol table
344 L 1,4(12) # Get loader ino(object struct address)
345 ST 1,24(15) # Store address
346 L 1,8(12) # Entry address of loader in R1
347 BR 1 # Jump to loader
348
349 The first entry in the PLT for static code:
350
351 PLT0:
352 ST 1,28(15) # R1 has offset into symbol table
353 BASR 1,0
354 L 1,18(0,1) # Get address of GOT
355 MVC 24(4,15),4(1) # Move loader ino to stack
356 L 1,8(1) # Get address of loader
357 BR 1 # Jump to loader
358 .word 0 # filler
359 .long got # address of GOT */
360
361 #define PLT_PIC_FIRST_ENTRY_WORD0 0x5010f01c
362 #define PLT_PIC_FIRST_ENTRY_WORD1 0x5810c004
363 #define PLT_PIC_FIRST_ENTRY_WORD2 0x5010f018
364 #define PLT_PIC_FIRST_ENTRY_WORD3 0x5810c008
365 #define PLT_PIC_FIRST_ENTRY_WORD4 0x07f10000
366
367 #define PLT_FIRST_ENTRY_WORD0 0x5010f01c
368 #define PLT_FIRST_ENTRY_WORD1 0x0d105810
369 #define PLT_FIRST_ENTRY_WORD2 0x1012D203
370 #define PLT_FIRST_ENTRY_WORD3 0xf0181004
371 #define PLT_FIRST_ENTRY_WORD4 0x58101008
372 #define PLT_FIRST_ENTRY_WORD5 0x07f10000
373
374 /* The s390 linker needs to keep track of the number of relocs that it
375 decides to copy as dynamic relocs in check_relocs for each symbol.
376 This is so that it can later discard them if they are found to be
377 unnecessary. We store the information in a field extending the
378 regular ELF linker hash table. */
379
380 struct elf_s390_dyn_relocs
381 {
382 struct elf_s390_dyn_relocs *next;
383
384 /* The input section of the reloc. */
385 asection *sec;
386
387 /* Total number of relocs copied for the input section. */
388 bfd_size_type count;
389
390 /* Number of pc-relative relocs copied for the input section. */
391 bfd_size_type pc_count;
392 };
393
394 /* s390 ELF linker hash entry. */
395
396 struct elf_s390_link_hash_entry
397 {
398 struct elf_link_hash_entry elf;
399
400 /* Track dynamic relocs copied for this symbol. */
401 struct elf_s390_dyn_relocs *dyn_relocs;
402 };
403
404 /* s390 ELF linker hash table. */
405
406 struct elf_s390_link_hash_table
407 {
408 struct elf_link_hash_table elf;
409
410 /* Short-cuts to get to dynamic linker sections. */
411 asection *sgot;
412 asection *sgotplt;
413 asection *srelgot;
414 asection *splt;
415 asection *srelplt;
416 asection *sdynbss;
417 asection *srelbss;
418
419 /* Small local sym to section mapping cache. */
420 struct sym_sec_cache sym_sec;
421 };
422
423 /* Get the s390 ELF linker hash table from a link_info structure. */
424
425 #define elf_s390_hash_table(p) \
426 ((struct elf_s390_link_hash_table *) ((p)->hash))
427
428 /* Create an entry in an s390 ELF linker hash table. */
429
430 static struct bfd_hash_entry *
431 link_hash_newfunc (entry, table, string)
432 struct bfd_hash_entry *entry;
433 struct bfd_hash_table *table;
434 const char *string;
435 {
436 /* Allocate the structure if it has not already been allocated by a
437 subclass. */
438 if (entry == NULL)
439 {
440 entry = bfd_hash_allocate (table,
441 sizeof (struct elf_s390_link_hash_entry));
442 if (entry == NULL)
443 return entry;
444 }
445
446 /* Call the allocation method of the superclass. */
447 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
448 if (entry != NULL)
449 {
450 struct elf_s390_link_hash_entry *eh;
451
452 eh = (struct elf_s390_link_hash_entry *) entry;
453 eh->dyn_relocs = NULL;
454 }
455
456 return entry;
457 }
458
459 /* Create an s390 ELF linker hash table. */
460
461 static struct bfd_link_hash_table *
462 elf_s390_link_hash_table_create (abfd)
463 bfd *abfd;
464 {
465 struct elf_s390_link_hash_table *ret;
466 bfd_size_type amt = sizeof (struct elf_s390_link_hash_table);
467
468 ret = (struct elf_s390_link_hash_table *) bfd_alloc (abfd, amt);
469 if (ret == NULL)
470 return NULL;
471
472 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
473 {
474 bfd_release (abfd, ret);
475 return NULL;
476 }
477
478 ret->sgot = NULL;
479 ret->sgotplt = NULL;
480 ret->srelgot = NULL;
481 ret->splt = NULL;
482 ret->srelplt = NULL;
483 ret->sdynbss = NULL;
484 ret->srelbss = NULL;
485 ret->sym_sec.abfd = NULL;
486
487 return &ret->elf.root;
488 }
489
490 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
491 shortcuts to them in our hash table. */
492
493 static boolean
494 create_got_section (dynobj, info)
495 bfd *dynobj;
496 struct bfd_link_info *info;
497 {
498 struct elf_s390_link_hash_table *htab;
499
500 if (! _bfd_elf_create_got_section (dynobj, info))
501 return false;
502
503 htab = elf_s390_hash_table (info);
504 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
505 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
506 if (!htab->sgot || !htab->sgotplt)
507 abort ();
508
509 htab->srelgot = bfd_make_section (dynobj, ".rela.got");
510 if (htab->srelgot == NULL
511 || ! bfd_set_section_flags (dynobj, htab->srelgot,
512 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
513 | SEC_IN_MEMORY | SEC_LINKER_CREATED
514 | SEC_READONLY))
515 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
516 return false;
517 return true;
518 }
519
520 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
521 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
522 hash table. */
523
524 static boolean
525 elf_s390_create_dynamic_sections (dynobj, info)
526 bfd *dynobj;
527 struct bfd_link_info *info;
528 {
529 struct elf_s390_link_hash_table *htab;
530
531 htab = elf_s390_hash_table (info);
532 if (!htab->sgot && !create_got_section (dynobj, info))
533 return false;
534
535 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
536 return false;
537
538 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
539 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
540 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
541 if (!info->shared)
542 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
543
544 if (!htab->splt || !htab->srelplt || !htab->sdynbss
545 || (!info->shared && !htab->srelbss))
546 abort ();
547
548 return true;
549 }
550
551 /* Copy the extra info we tack onto an elf_link_hash_entry. */
552
553 static void
554 elf_s390_copy_indirect_symbol (dir, ind)
555 struct elf_link_hash_entry *dir, *ind;
556 {
557 struct elf_s390_link_hash_entry *edir, *eind;
558
559 edir = (struct elf_s390_link_hash_entry *) dir;
560 eind = (struct elf_s390_link_hash_entry *) ind;
561
562 if (eind->dyn_relocs != NULL)
563 {
564 if (edir->dyn_relocs != NULL)
565 {
566 struct elf_s390_dyn_relocs **pp;
567 struct elf_s390_dyn_relocs *p;
568
569 if (ind->root.type == bfd_link_hash_indirect)
570 abort ();
571
572 /* Add reloc counts against the weak sym to the strong sym
573 list. Merge any entries against the same section. */
574 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
575 {
576 struct elf_s390_dyn_relocs *q;
577
578 for (q = edir->dyn_relocs; q != NULL; q = q->next)
579 if (q->sec == p->sec)
580 {
581 q->pc_count += p->pc_count;
582 q->count += p->count;
583 *pp = p->next;
584 break;
585 }
586 if (q == NULL)
587 pp = &p->next;
588 }
589 *pp = edir->dyn_relocs;
590 }
591
592 edir->dyn_relocs = eind->dyn_relocs;
593 eind->dyn_relocs = NULL;
594 }
595
596 _bfd_elf_link_hash_copy_indirect (dir, ind);
597 }
598
599 /* Look through the relocs for a section during the first phase, and
600 allocate space in the global offset table or procedure linkage
601 table. */
602
603 static boolean
604 elf_s390_check_relocs (abfd, info, sec, relocs)
605 bfd *abfd;
606 struct bfd_link_info *info;
607 asection *sec;
608 const Elf_Internal_Rela *relocs;
609 {
610 struct elf_s390_link_hash_table *htab;
611 Elf_Internal_Shdr *symtab_hdr;
612 struct elf_link_hash_entry **sym_hashes;
613 const Elf_Internal_Rela *rel;
614 const Elf_Internal_Rela *rel_end;
615 asection *sreloc;
616
617 if (info->relocateable)
618 return true;
619
620 htab = elf_s390_hash_table (info);
621 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
622 sym_hashes = elf_sym_hashes (abfd);
623
624 sreloc = NULL;
625
626 rel_end = relocs + sec->reloc_count;
627 for (rel = relocs; rel < rel_end; rel++)
628 {
629 unsigned long r_symndx;
630 struct elf_link_hash_entry *h;
631
632 r_symndx = ELF32_R_SYM (rel->r_info);
633
634 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
635 {
636 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
637 bfd_archive_filename (abfd),
638 r_symndx);
639 return false;
640 }
641
642 if (r_symndx < symtab_hdr->sh_info)
643 h = NULL;
644 else
645 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
646
647 switch (ELF32_R_TYPE (rel->r_info))
648 {
649 case R_390_GOT12:
650 case R_390_GOT16:
651 case R_390_GOT32:
652 /* This symbol requires a global offset table entry. */
653 if (h != NULL)
654 {
655 h->got.refcount += 1;
656 }
657 else
658 {
659 bfd_signed_vma *local_got_refcounts;
660
661 /* This is a global offset table entry for a local symbol. */
662 local_got_refcounts = elf_local_got_refcounts (abfd);
663 if (local_got_refcounts == NULL)
664 {
665 bfd_size_type size;
666
667 size = symtab_hdr->sh_info;
668 size *= sizeof (bfd_signed_vma);
669 local_got_refcounts = ((bfd_signed_vma *)
670 bfd_zalloc (abfd, size));
671 if (local_got_refcounts == NULL)
672 return false;
673 elf_local_got_refcounts (abfd) = local_got_refcounts;
674 }
675 local_got_refcounts[r_symndx] += 1;
676 }
677 /* Fall through */
678
679 case R_390_GOTOFF:
680 case R_390_GOTPC:
681 if (htab->sgot == NULL)
682 {
683 if (htab->elf.dynobj == NULL)
684 htab->elf.dynobj = abfd;
685 if (!create_got_section (htab->elf.dynobj, info))
686 return false;
687 }
688 break;
689
690 case R_390_PLT16DBL:
691 case R_390_PLT32:
692 /* This symbol requires a procedure linkage table entry. We
693 actually build the entry in adjust_dynamic_symbol,
694 because this might be a case of linking PIC code which is
695 never referenced by a dynamic object, in which case we
696 don't need to generate a procedure linkage table entry
697 after all. */
698
699 /* If this is a local symbol, we resolve it directly without
700 creating a procedure linkage table entry. */
701 if (h == NULL)
702 continue;
703
704 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
705 h->plt.refcount += 1;
706 break;
707
708 case R_390_8:
709 case R_390_16:
710 case R_390_32:
711 case R_390_PC16:
712 case R_390_PC16DBL:
713 case R_390_PC32:
714 if (h != NULL && !info->shared)
715 {
716 /* If this reloc is in a read-only section, we might
717 need a copy reloc. We can't check reliably at this
718 stage whether the section is read-only, as input
719 sections have not yet been mapped to output sections.
720 Tentatively set the flag for now, and correct in
721 adjust_dynamic_symbol. */
722 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
723
724 /* We may need a .plt entry if the function this reloc
725 refers to is in a shared lib. */
726 h->plt.refcount += 1;
727 }
728
729 /* If we are creating a shared library, and this is a reloc
730 against a global symbol, or a non PC relative reloc
731 against a local symbol, then we need to copy the reloc
732 into the shared library. However, if we are linking with
733 -Bsymbolic, we do not need to copy a reloc against a
734 global symbol which is defined in an object we are
735 including in the link (i.e., DEF_REGULAR is set). At
736 this point we have not seen all the input files, so it is
737 possible that DEF_REGULAR is not set now but will be set
738 later (it is never cleared). In case of a weak definition,
739 DEF_REGULAR may be cleared later by a strong definition in
740 a shared library. We account for that possibility below by
741 storing information in the relocs_copied field of the hash
742 table entry. A similar situation occurs when creating
743 shared libraries and symbol visibility changes render the
744 symbol local.
745
746 If on the other hand, we are creating an executable, we
747 may need to keep relocations for symbols satisfied by a
748 dynamic library if we manage to avoid copy relocs for the
749 symbol. */
750 if ((info->shared
751 && (sec->flags & SEC_ALLOC) != 0
752 && ((ELF32_R_TYPE (rel->r_info) != R_390_PC16
753 && ELF32_R_TYPE (rel->r_info) != R_390_PC16DBL
754 && ELF32_R_TYPE (rel->r_info) != R_390_PC32)
755 || (h != NULL
756 && (! info->symbolic
757 || h->root.type == bfd_link_hash_defweak
758 || (h->elf_link_hash_flags
759 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
760 || (!info->shared
761 && (sec->flags & SEC_ALLOC) != 0
762 && h != NULL
763 && (h->root.type == bfd_link_hash_defweak
764 || (h->elf_link_hash_flags
765 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
766 {
767 struct elf_s390_dyn_relocs *p;
768 struct elf_s390_dyn_relocs **head;
769
770 /* We must copy these reloc types into the output file.
771 Create a reloc section in dynobj and make room for
772 this reloc. */
773 if (sreloc == NULL)
774 {
775 const char *name;
776 bfd *dynobj;
777
778 name = (bfd_elf_string_from_elf_section
779 (abfd,
780 elf_elfheader (abfd)->e_shstrndx,
781 elf_section_data (sec)->rel_hdr.sh_name));
782 if (name == NULL)
783 return false;
784
785 if (strncmp (name, ".rela", 5) != 0
786 || strcmp (bfd_get_section_name (abfd, sec),
787 name + 5) != 0)
788 {
789 (*_bfd_error_handler)
790 (_("%s: bad relocation section name `%s\'"),
791 bfd_archive_filename (abfd), name);
792 }
793
794 if (htab->elf.dynobj == NULL)
795 htab->elf.dynobj = abfd;
796
797 dynobj = htab->elf.dynobj;
798 sreloc = bfd_get_section_by_name (dynobj, name);
799 if (sreloc == NULL)
800 {
801 flagword flags;
802
803 sreloc = bfd_make_section (dynobj, name);
804 flags = (SEC_HAS_CONTENTS | SEC_READONLY
805 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
806 if ((sec->flags & SEC_ALLOC) != 0)
807 flags |= SEC_ALLOC | SEC_LOAD;
808 if (sreloc == NULL
809 || ! bfd_set_section_flags (dynobj, sreloc, flags)
810 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
811 return false;
812 }
813 elf_section_data (sec)->sreloc = sreloc;
814 }
815
816 /* If this is a global symbol, we count the number of
817 relocations we need for this symbol. */
818 if (h != NULL)
819 {
820 head = &((struct elf_s390_link_hash_entry *) h)->dyn_relocs;
821 }
822 else
823 {
824 /* Track dynamic relocs needed for local syms too.
825 We really need local syms available to do this
826 easily. Oh well. */
827
828 asection *s;
829 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
830 sec, r_symndx);
831 if (s == NULL)
832 return false;
833
834 head = ((struct elf_s390_dyn_relocs **)
835 &elf_section_data (s)->local_dynrel);
836 }
837
838 p = *head;
839 if (p == NULL || p->sec != sec)
840 {
841 bfd_size_type amt = sizeof *p;
842 p = ((struct elf_s390_dyn_relocs *)
843 bfd_alloc (htab->elf.dynobj, amt));
844 if (p == NULL)
845 return false;
846 p->next = *head;
847 *head = p;
848 p->sec = sec;
849 p->count = 0;
850 p->pc_count = 0;
851 }
852
853 p->count += 1;
854 if (ELF32_R_TYPE (rel->r_info) == R_390_PC16
855 || ELF32_R_TYPE (rel->r_info) == R_390_PC16DBL
856 || ELF32_R_TYPE (rel->r_info) == R_390_PC32)
857 p->pc_count += 1;
858 }
859 break;
860
861 /* This relocation describes the C++ object vtable hierarchy.
862 Reconstruct it for later use during GC. */
863 case R_390_GNU_VTINHERIT:
864 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
865 return false;
866 break;
867
868 /* This relocation describes which C++ vtable entries are actually
869 used. Record for later use during GC. */
870 case R_390_GNU_VTENTRY:
871 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_addend))
872 return false;
873 break;
874
875 default:
876 break;
877 }
878 }
879
880 return true;
881 }
882
883 /* Return the section that should be marked against GC for a given
884 relocation. */
885
886 static asection *
887 elf_s390_gc_mark_hook (abfd, info, rel, h, sym)
888 bfd *abfd;
889 struct bfd_link_info *info ATTRIBUTE_UNUSED;
890 Elf_Internal_Rela *rel;
891 struct elf_link_hash_entry *h;
892 Elf_Internal_Sym *sym;
893 {
894 if (h != NULL)
895 {
896 switch (ELF32_R_TYPE (rel->r_info))
897 {
898 case R_390_GNU_VTINHERIT:
899 case R_390_GNU_VTENTRY:
900 break;
901
902 default:
903 switch (h->root.type)
904 {
905 case bfd_link_hash_defined:
906 case bfd_link_hash_defweak:
907 return h->root.u.def.section;
908
909 case bfd_link_hash_common:
910 return h->root.u.c.p->section;
911
912 default:
913 break;
914 }
915 }
916 }
917 else
918 {
919 return bfd_section_from_elf_index (abfd, sym->st_shndx);
920 }
921
922 return NULL;
923 }
924
925 /* Update the got entry reference counts for the section being removed. */
926
927 static boolean
928 elf_s390_gc_sweep_hook (abfd, info, sec, relocs)
929 bfd *abfd;
930 struct bfd_link_info *info;
931 asection *sec;
932 const Elf_Internal_Rela *relocs;
933 {
934 Elf_Internal_Shdr *symtab_hdr;
935 struct elf_link_hash_entry **sym_hashes;
936 bfd_signed_vma *local_got_refcounts;
937 const Elf_Internal_Rela *rel, *relend;
938 unsigned long r_symndx;
939 struct elf_link_hash_entry *h;
940
941 elf_section_data (sec)->local_dynrel = NULL;
942
943 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
944 sym_hashes = elf_sym_hashes (abfd);
945 local_got_refcounts = elf_local_got_refcounts (abfd);
946
947 relend = relocs + sec->reloc_count;
948 for (rel = relocs; rel < relend; rel++)
949 switch (ELF32_R_TYPE (rel->r_info))
950 {
951 case R_390_GOT12:
952 case R_390_GOT16:
953 case R_390_GOT32:
954 case R_390_GOTOFF:
955 case R_390_GOTPC:
956 r_symndx = ELF32_R_SYM (rel->r_info);
957 if (r_symndx >= symtab_hdr->sh_info)
958 {
959 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
960 if (h->got.refcount > 0)
961 h->got.refcount -= 1;
962 }
963 else if (local_got_refcounts != NULL)
964 {
965 if (local_got_refcounts[r_symndx] > 0)
966 local_got_refcounts[r_symndx] -= 1;
967 }
968 break;
969
970 case R_390_8:
971 case R_390_12:
972 case R_390_16:
973 case R_390_32:
974 case R_390_PC16:
975 case R_390_PC16DBL:
976 case R_390_PC32:
977 r_symndx = ELF32_R_SYM (rel->r_info);
978 if (r_symndx >= symtab_hdr->sh_info)
979 {
980 struct elf_s390_link_hash_entry *eh;
981 struct elf_s390_dyn_relocs **pp;
982 struct elf_s390_dyn_relocs *p;
983
984 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
985
986 if (!info->shared && h->plt.refcount > 0)
987 h->plt.refcount -= 1;
988
989 eh = (struct elf_s390_link_hash_entry *) h;
990
991 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
992 if (p->sec == sec)
993 {
994 if (ELF32_R_TYPE (rel->r_info) == R_390_PC16
995 || ELF32_R_TYPE (rel->r_info) == R_390_PC16DBL
996 || ELF32_R_TYPE (rel->r_info) == R_390_PC32)
997 p->pc_count -= 1;
998 p->count -= 1;
999 if (p->count == 0)
1000 *pp = p->next;
1001 break;
1002 }
1003 }
1004 break;
1005
1006 case R_390_PLT16DBL:
1007 case R_390_PLT32:
1008 r_symndx = ELF32_R_SYM (rel->r_info);
1009 if (r_symndx >= symtab_hdr->sh_info)
1010 {
1011 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1012 if (h->plt.refcount > 0)
1013 h->plt.refcount -= 1;
1014 }
1015 break;
1016
1017 default:
1018 break;
1019 }
1020
1021 return true;
1022 }
1023
1024 /* Adjust a symbol defined by a dynamic object and referenced by a
1025 regular object. The current definition is in some section of the
1026 dynamic object, but we're not including those sections. We have to
1027 change the definition to something the rest of the link can
1028 understand. */
1029
1030 static boolean
1031 elf_s390_adjust_dynamic_symbol (info, h)
1032 struct bfd_link_info *info;
1033 struct elf_link_hash_entry *h;
1034 {
1035 struct elf_s390_link_hash_table *htab;
1036 struct elf_s390_link_hash_entry * eh;
1037 struct elf_s390_dyn_relocs *p;
1038 asection *s;
1039 unsigned int power_of_two;
1040
1041 /* If this is a function, put it in the procedure linkage table. We
1042 will fill in the contents of the procedure linkage table later
1043 (although we could actually do it here). */
1044 if (h->type == STT_FUNC
1045 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1046 {
1047 if (h->plt.refcount <= 0
1048 || (! info->shared
1049 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1050 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
1051 {
1052 /* This case can occur if we saw a PLT32 reloc in an input
1053 file, but the symbol was never referred to by a dynamic
1054 object, or if all references were garbage collected. In
1055 such a case, we don't actually need to build a procedure
1056 linkage table, and we can just do a PC32 reloc instead. */
1057 h->plt.offset = (bfd_vma) -1;
1058 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1059 }
1060
1061 return true;
1062 }
1063 else
1064 /* It's possible that we incorrectly decided a .plt reloc was
1065 needed for an R_390_PC32 reloc to a non-function sym in
1066 check_relocs. We can't decide accurately between function and
1067 non-function syms in check-relocs; Objects loaded later in
1068 the link may change h->type. So fix it now. */
1069 h->plt.offset = (bfd_vma) -1;
1070
1071 /* If this is a weak symbol, and there is a real definition, the
1072 processor independent code will have arranged for us to see the
1073 real definition first, and we can just use the same value. */
1074 if (h->weakdef != NULL)
1075 {
1076 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1077 || h->weakdef->root.type == bfd_link_hash_defweak);
1078 h->root.u.def.section = h->weakdef->root.u.def.section;
1079 h->root.u.def.value = h->weakdef->root.u.def.value;
1080 return true;
1081 }
1082
1083 /* This is a reference to a symbol defined by a dynamic object which
1084 is not a function. */
1085
1086 /* If we are creating a shared library, we must presume that the
1087 only references to the symbol are via the global offset table.
1088 For such cases we need not do anything here; the relocations will
1089 be handled correctly by relocate_section. */
1090 if (info->shared)
1091 return true;
1092
1093 /* If there are no references to this symbol that do not use the
1094 GOT, we don't need to generate a copy reloc. */
1095 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1096 return true;
1097
1098 /* If -z nocopyreloc was given, we won't generate them either. */
1099 if (info->nocopyreloc)
1100 {
1101 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1102 return true;
1103 }
1104
1105 eh = (struct elf_s390_link_hash_entry *) h;
1106 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1107 {
1108 s = p->sec->output_section;
1109 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1110 break;
1111 }
1112
1113 /* If we didn't find any dynamic relocs in read-only sections, then
1114 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1115 if (p == NULL)
1116 {
1117 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1118 return true;
1119 }
1120
1121 /* We must allocate the symbol in our .dynbss section, which will
1122 become part of the .bss section of the executable. There will be
1123 an entry for this symbol in the .dynsym section. The dynamic
1124 object will contain position independent code, so all references
1125 from the dynamic object to this symbol will go through the global
1126 offset table. The dynamic linker will use the .dynsym entry to
1127 determine the address it must put in the global offset table, so
1128 both the dynamic object and the regular object will refer to the
1129 same memory location for the variable. */
1130
1131 htab = elf_s390_hash_table (info);
1132
1133 /* We must generate a R_390_COPY reloc to tell the dynamic linker to
1134 copy the initial value out of the dynamic object and into the
1135 runtime process image. */
1136 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1137 {
1138 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1139 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1140 }
1141
1142 /* We need to figure out the alignment required for this symbol. I
1143 have no idea how ELF linkers handle this. */
1144 power_of_two = bfd_log2 (h->size);
1145 if (power_of_two > 3)
1146 power_of_two = 3;
1147
1148 /* Apply the required alignment. */
1149 s = htab->sdynbss;
1150 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1151 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1152 {
1153 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1154 return false;
1155 }
1156
1157 /* Define the symbol as being at this point in the section. */
1158 h->root.u.def.section = s;
1159 h->root.u.def.value = s->_raw_size;
1160
1161 /* Increment the section size to make room for the symbol. */
1162 s->_raw_size += h->size;
1163
1164 return true;
1165 }
1166
1167 /* This is the condition under which elf_s390_finish_dynamic_symbol
1168 will be called from elflink.h. If elflink.h doesn't call our
1169 finish_dynamic_symbol routine, we'll need to do something about
1170 initializing any .plt and .got entries in elf_s390_relocate_section. */
1171 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1172 ((DYN) \
1173 && ((INFO)->shared \
1174 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1175 && ((H)->dynindx != -1 \
1176 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1177
1178 /* Allocate space in .plt, .got and associated reloc sections for
1179 dynamic relocs. */
1180
1181 static boolean
1182 allocate_dynrelocs (h, inf)
1183 struct elf_link_hash_entry *h;
1184 PTR inf;
1185 {
1186 struct bfd_link_info *info;
1187 struct elf_s390_link_hash_table *htab;
1188 struct elf_s390_link_hash_entry *eh;
1189 struct elf_s390_dyn_relocs *p;
1190
1191 if (h->root.type == bfd_link_hash_indirect
1192 || h->root.type == bfd_link_hash_warning)
1193 return true;
1194
1195 info = (struct bfd_link_info *) inf;
1196 htab = elf_s390_hash_table (info);
1197
1198 if (htab->elf.dynamic_sections_created
1199 && h->plt.refcount > 0)
1200 {
1201 /* Make sure this symbol is output as a dynamic symbol.
1202 Undefined weak syms won't yet be marked as dynamic. */
1203 if (h->dynindx == -1
1204 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1205 {
1206 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1207 return false;
1208 }
1209
1210 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1211 {
1212 asection *s = htab->splt;
1213
1214 /* If this is the first .plt entry, make room for the special
1215 first entry. */
1216 if (s->_raw_size == 0)
1217 s->_raw_size += PLT_FIRST_ENTRY_SIZE;
1218
1219 h->plt.offset = s->_raw_size;
1220
1221 /* If this symbol is not defined in a regular file, and we are
1222 not generating a shared library, then set the symbol to this
1223 location in the .plt. This is required to make function
1224 pointers compare as equal between the normal executable and
1225 the shared library. */
1226 if (! info->shared
1227 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1228 {
1229 h->root.u.def.section = s;
1230 h->root.u.def.value = h->plt.offset;
1231 }
1232
1233 /* Make room for this entry. */
1234 s->_raw_size += PLT_ENTRY_SIZE;
1235
1236 /* We also need to make an entry in the .got.plt section, which
1237 will be placed in the .got section by the linker script. */
1238 htab->sgotplt->_raw_size += GOT_ENTRY_SIZE;
1239
1240 /* We also need to make an entry in the .rela.plt section. */
1241 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
1242 }
1243 else
1244 {
1245 h->plt.offset = (bfd_vma) -1;
1246 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1247 }
1248 }
1249 else
1250 {
1251 h->plt.offset = (bfd_vma) -1;
1252 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1253 }
1254
1255 if (h->got.refcount > 0)
1256 {
1257 asection *s;
1258 boolean dyn;
1259
1260 /* Make sure this symbol is output as a dynamic symbol.
1261 Undefined weak syms won't yet be marked as dynamic. */
1262 if (h->dynindx == -1
1263 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1264 {
1265 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1266 return false;
1267 }
1268
1269 s = htab->sgot;
1270 h->got.offset = s->_raw_size;
1271 s->_raw_size += GOT_ENTRY_SIZE;
1272 dyn = htab->elf.dynamic_sections_created;
1273 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1274 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
1275 }
1276 else
1277 h->got.offset = (bfd_vma) -1;
1278
1279 eh = (struct elf_s390_link_hash_entry *) h;
1280 if (eh->dyn_relocs == NULL)
1281 return true;
1282
1283 /* In the shared -Bsymbolic case, discard space allocated for
1284 dynamic pc-relative relocs against symbols which turn out to be
1285 defined in regular objects. For the normal shared case, discard
1286 space for pc-relative relocs that have become local due to symbol
1287 visibility changes. */
1288
1289 if (info->shared)
1290 {
1291 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1292 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1293 || info->symbolic))
1294 {
1295 struct elf_s390_dyn_relocs **pp;
1296
1297 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1298 {
1299 p->count -= p->pc_count;
1300 p->pc_count = 0;
1301 if (p->count == 0)
1302 *pp = p->next;
1303 else
1304 pp = &p->next;
1305 }
1306 }
1307 }
1308 else
1309 {
1310 /* For the non-shared case, discard space for relocs against
1311 symbols which turn out to need copy relocs or are not
1312 dynamic. */
1313
1314 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1315 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1316 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1317 || (htab->elf.dynamic_sections_created
1318 && (h->root.type == bfd_link_hash_undefweak
1319 || h->root.type == bfd_link_hash_undefined))))
1320 {
1321 /* Make sure this symbol is output as a dynamic symbol.
1322 Undefined weak syms won't yet be marked as dynamic. */
1323 if (h->dynindx == -1
1324 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1325 {
1326 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1327 return false;
1328 }
1329
1330 /* If that succeeded, we know we'll be keeping all the
1331 relocs. */
1332 if (h->dynindx != -1)
1333 goto keep;
1334 }
1335
1336 eh->dyn_relocs = NULL;
1337
1338 keep: ;
1339 }
1340
1341 /* Finally, allocate space. */
1342 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1343 {
1344 asection *sreloc = elf_section_data (p->sec)->sreloc;
1345 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
1346 }
1347
1348 return true;
1349 }
1350
1351 /* Find any dynamic relocs that apply to read-only sections. */
1352
1353 static boolean
1354 readonly_dynrelocs (h, inf)
1355 struct elf_link_hash_entry *h;
1356 PTR inf;
1357 {
1358 struct elf_s390_link_hash_entry *eh;
1359 struct elf_s390_dyn_relocs *p;
1360
1361 eh = (struct elf_s390_link_hash_entry *) h;
1362 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1363 {
1364 asection *s = p->sec->output_section;
1365
1366 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1367 {
1368 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1369
1370 info->flags |= DF_TEXTREL;
1371
1372 /* Not an error, just cut short the traversal. */
1373 return false;
1374 }
1375 }
1376 return true;
1377 }
1378
1379 /* Set the sizes of the dynamic sections. */
1380
1381 static boolean
1382 elf_s390_size_dynamic_sections (output_bfd, info)
1383 bfd *output_bfd ATTRIBUTE_UNUSED;
1384 struct bfd_link_info *info;
1385 {
1386 struct elf_s390_link_hash_table *htab;
1387 bfd *dynobj;
1388 asection *s;
1389 boolean relocs;
1390 bfd *ibfd;
1391
1392 htab = elf_s390_hash_table (info);
1393 dynobj = htab->elf.dynobj;
1394 if (dynobj == NULL)
1395 abort ();
1396
1397 if (htab->elf.dynamic_sections_created)
1398 {
1399 /* Set the contents of the .interp section to the interpreter. */
1400 if (! info->shared)
1401 {
1402 s = bfd_get_section_by_name (dynobj, ".interp");
1403 if (s == NULL)
1404 abort ();
1405 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1406 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1407 }
1408 }
1409
1410 /* Set up .got offsets for local syms, and space for local dynamic
1411 relocs. */
1412 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1413 {
1414 bfd_signed_vma *local_got;
1415 bfd_signed_vma *end_local_got;
1416 bfd_size_type locsymcount;
1417 Elf_Internal_Shdr *symtab_hdr;
1418 asection *srela;
1419
1420 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1421 continue;
1422
1423 for (s = ibfd->sections; s != NULL; s = s->next)
1424 {
1425 struct elf_s390_dyn_relocs *p;
1426
1427 for (p = *((struct elf_s390_dyn_relocs **)
1428 &elf_section_data (s)->local_dynrel);
1429 p != NULL;
1430 p = p->next)
1431 {
1432 if (!bfd_is_abs_section (p->sec)
1433 && bfd_is_abs_section (p->sec->output_section))
1434 {
1435 /* Input section has been discarded, either because
1436 it is a copy of a linkonce section or due to
1437 linker script /DISCARD/, so we'll be discarding
1438 the relocs too. */
1439 }
1440 else
1441 {
1442 srela = elf_section_data (p->sec)->sreloc;
1443 srela->_raw_size += p->count * sizeof (Elf32_External_Rela);
1444 }
1445 }
1446 }
1447
1448 local_got = elf_local_got_refcounts (ibfd);
1449 if (!local_got)
1450 continue;
1451
1452 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1453 locsymcount = symtab_hdr->sh_info;
1454 end_local_got = local_got + locsymcount;
1455 s = htab->sgot;
1456 srela = htab->srelgot;
1457 for (; local_got < end_local_got; ++local_got)
1458 {
1459 if (*local_got > 0)
1460 {
1461 *local_got = s->_raw_size;
1462 s->_raw_size += GOT_ENTRY_SIZE;
1463 if (info->shared)
1464 srela->_raw_size += sizeof (Elf32_External_Rela);
1465 }
1466 else
1467 *local_got = (bfd_vma) -1;
1468 }
1469 }
1470
1471 /* Allocate global sym .plt and .got entries, and space for global
1472 sym dynamic relocs. */
1473 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1474
1475 /* We now have determined the sizes of the various dynamic sections.
1476 Allocate memory for them. */
1477 relocs = false;
1478 for (s = dynobj->sections; s != NULL; s = s->next)
1479 {
1480 if ((s->flags & SEC_LINKER_CREATED) == 0)
1481 continue;
1482
1483 if (s == htab->splt
1484 || s == htab->sgot
1485 || s == htab->sgotplt)
1486 {
1487 /* Strip this section if we don't need it; see the
1488 comment below. */
1489 }
1490 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
1491 {
1492 if (s->_raw_size != 0 && s != htab->srelplt)
1493 relocs = true;
1494
1495 /* We use the reloc_count field as a counter if we need
1496 to copy relocs into the output file. */
1497 s->reloc_count = 0;
1498 }
1499 else
1500 {
1501 /* It's not one of our sections, so don't allocate space. */
1502 continue;
1503 }
1504
1505 if (s->_raw_size == 0)
1506 {
1507 /* If we don't need this section, strip it from the
1508 output file. This is to handle .rela.bss and
1509 .rela.plt. We must create it in
1510 create_dynamic_sections, because it must be created
1511 before the linker maps input sections to output
1512 sections. The linker does that before
1513 adjust_dynamic_symbol is called, and it is that
1514 function which decides whether anything needs to go
1515 into these sections. */
1516
1517 _bfd_strip_section_from_output (info, s);
1518 continue;
1519 }
1520
1521 /* Allocate memory for the section contents. We use bfd_zalloc
1522 here in case unused entries are not reclaimed before the
1523 section's contents are written out. This should not happen,
1524 but this way if it does, we get a R_390_NONE reloc instead
1525 of garbage. */
1526 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1527 if (s->contents == NULL)
1528 return false;
1529 }
1530
1531 if (htab->elf.dynamic_sections_created)
1532 {
1533 /* Add some entries to the .dynamic section. We fill in the
1534 values later, in elf_s390_finish_dynamic_sections, but we
1535 must add the entries now so that we get the correct size for
1536 the .dynamic section. The DT_DEBUG entry is filled in by the
1537 dynamic linker and used by the debugger. */
1538 #define add_dynamic_entry(TAG, VAL) \
1539 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1540
1541 if (! info->shared)
1542 {
1543 if (!add_dynamic_entry (DT_DEBUG, 0))
1544 return false;
1545 }
1546
1547 if (htab->splt->_raw_size != 0)
1548 {
1549 if (!add_dynamic_entry (DT_PLTGOT, 0)
1550 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1551 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1552 || !add_dynamic_entry (DT_JMPREL, 0))
1553 return false;
1554 }
1555
1556 if (relocs)
1557 {
1558 if (!add_dynamic_entry (DT_RELA, 0)
1559 || !add_dynamic_entry (DT_RELASZ, 0)
1560 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1561 return false;
1562
1563 /* If any dynamic relocs apply to a read-only section,
1564 then we need a DT_TEXTREL entry. */
1565 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info);
1566
1567 if ((info->flags & DF_TEXTREL) != 0)
1568 {
1569 if (!add_dynamic_entry (DT_TEXTREL, 0))
1570 return false;
1571 }
1572 }
1573 }
1574 #undef add_dynamic_entry
1575
1576 return true;
1577 }
1578
1579 /* Relocate a 390 ELF section. */
1580
1581 static boolean
1582 elf_s390_relocate_section (output_bfd, info, input_bfd, input_section,
1583 contents, relocs, local_syms, local_sections)
1584 bfd *output_bfd;
1585 struct bfd_link_info *info;
1586 bfd *input_bfd;
1587 asection *input_section;
1588 bfd_byte *contents;
1589 Elf_Internal_Rela *relocs;
1590 Elf_Internal_Sym *local_syms;
1591 asection **local_sections;
1592 {
1593 struct elf_s390_link_hash_table *htab;
1594 Elf_Internal_Shdr *symtab_hdr;
1595 struct elf_link_hash_entry **sym_hashes;
1596 bfd_vma *local_got_offsets;
1597 Elf_Internal_Rela *rel;
1598 Elf_Internal_Rela *relend;
1599
1600 htab = elf_s390_hash_table (info);
1601 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1602 sym_hashes = elf_sym_hashes (input_bfd);
1603 local_got_offsets = elf_local_got_offsets (input_bfd);
1604
1605 rel = relocs;
1606 relend = relocs + input_section->reloc_count;
1607 for (; rel < relend; rel++)
1608 {
1609 int r_type;
1610 reloc_howto_type *howto;
1611 unsigned long r_symndx;
1612 struct elf_link_hash_entry *h;
1613 Elf_Internal_Sym *sym;
1614 asection *sec;
1615 bfd_vma off;
1616 bfd_vma relocation;
1617 boolean unresolved_reloc;
1618 bfd_reloc_status_type r;
1619
1620 r_type = ELF32_R_TYPE (rel->r_info);
1621 if (r_type == (int) R_390_GNU_VTINHERIT
1622 || r_type == (int) R_390_GNU_VTENTRY)
1623 continue;
1624 if (r_type < 0 || r_type >= (int) R_390_max)
1625 {
1626 bfd_set_error (bfd_error_bad_value);
1627 return false;
1628 }
1629 howto = elf_howto_table + r_type;
1630
1631 r_symndx = ELF32_R_SYM (rel->r_info);
1632
1633 if (info->relocateable)
1634 {
1635 /* This is a relocateable link. We don't have to change
1636 anything, unless the reloc is against a section symbol,
1637 in which case we have to adjust according to where the
1638 section symbol winds up in the output section. */
1639 if (r_symndx < symtab_hdr->sh_info)
1640 {
1641 sym = local_syms + r_symndx;
1642 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1643 {
1644 sec = local_sections[r_symndx];
1645 rel->r_addend += sec->output_offset + sym->st_value;
1646 }
1647 }
1648
1649 continue;
1650 }
1651
1652 /* This is a final link. */
1653 h = NULL;
1654 sym = NULL;
1655 sec = NULL;
1656 unresolved_reloc = false;
1657 if (r_symndx < symtab_hdr->sh_info)
1658 {
1659 sym = local_syms + r_symndx;
1660 sec = local_sections[r_symndx];
1661 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1662 }
1663 else
1664 {
1665 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1666 while (h->root.type == bfd_link_hash_indirect
1667 || h->root.type == bfd_link_hash_warning)
1668 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1669
1670 if (h->root.type == bfd_link_hash_defined
1671 || h->root.type == bfd_link_hash_defweak)
1672 {
1673 sec = h->root.u.def.section;
1674 if (sec->output_section == NULL)
1675 {
1676 /* Set a flag that will be cleared later if we find a
1677 relocation value for this symbol. output_section
1678 is typically NULL for symbols satisfied by a shared
1679 library. */
1680 unresolved_reloc = true;
1681 relocation = 0;
1682 }
1683 else
1684 relocation = (h->root.u.def.value
1685 + sec->output_section->vma
1686 + sec->output_offset);
1687 }
1688 else if (h->root.type == bfd_link_hash_undefweak)
1689 relocation = 0;
1690 else if (info->shared
1691 && (!info->symbolic || info->allow_shlib_undefined)
1692 && !info->no_undefined
1693 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1694 relocation = 0;
1695 else
1696 {
1697 if (! ((*info->callbacks->undefined_symbol)
1698 (info, h->root.root.string, input_bfd,
1699 input_section, rel->r_offset,
1700 (!info->shared || info->no_undefined
1701 || ELF_ST_VISIBILITY (h->other)))))
1702 return false;
1703 relocation = 0;
1704 }
1705 }
1706
1707 switch (r_type)
1708 {
1709 case R_390_GOT12:
1710 case R_390_GOT16:
1711 case R_390_GOT32:
1712 /* Relocation is to the entry for this symbol in the global
1713 offset table. */
1714 if (htab->sgot == NULL)
1715 abort ();
1716
1717 if (h != NULL)
1718 {
1719 boolean dyn;
1720
1721 off = h->got.offset;
1722 dyn = htab->elf.dynamic_sections_created;
1723 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1724 || (info->shared
1725 && (info->symbolic
1726 || h->dynindx == -1
1727 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1728 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1729 {
1730 /* This is actually a static link, or it is a
1731 -Bsymbolic link and the symbol is defined
1732 locally, or the symbol was forced to be local
1733 because of a version file. We must initialize
1734 this entry in the global offset table. Since the
1735 offset must always be a multiple of 2, we use the
1736 least significant bit to record whether we have
1737 initialized it already.
1738
1739 When doing a dynamic link, we create a .rel.got
1740 relocation entry to initialize the value. This
1741 is done in the finish_dynamic_symbol routine. */
1742 if ((off & 1) != 0)
1743 off &= ~1;
1744 else
1745 {
1746 bfd_put_32 (output_bfd, relocation,
1747 htab->sgot->contents + off);
1748 h->got.offset |= 1;
1749 }
1750 }
1751 else
1752 unresolved_reloc = false;
1753 }
1754 else
1755 {
1756 if (local_got_offsets == NULL)
1757 abort ();
1758
1759 off = local_got_offsets[r_symndx];
1760
1761 /* The offset must always be a multiple of 4. We use
1762 the least significant bit to record whether we have
1763 already generated the necessary reloc. */
1764 if ((off & 1) != 0)
1765 off &= ~1;
1766 else
1767 {
1768 bfd_put_32 (output_bfd, relocation,
1769 htab->sgot->contents + off);
1770
1771 if (info->shared)
1772 {
1773 asection *srelgot;
1774 Elf_Internal_Rela outrel;
1775 Elf32_External_Rela *loc;
1776
1777 srelgot = htab->srelgot;
1778 if (srelgot == NULL)
1779 abort ();
1780
1781 outrel.r_offset = (htab->sgot->output_section->vma
1782 + htab->sgot->output_offset
1783 + off);
1784 outrel.r_info = ELF32_R_INFO (0, R_390_RELATIVE);
1785 outrel.r_addend = relocation;
1786 loc = (Elf32_External_Rela *) srelgot->contents;
1787 loc += srelgot->reloc_count++;
1788 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
1789 }
1790
1791 local_got_offsets[r_symndx] |= 1;
1792 }
1793 }
1794
1795 if (off >= (bfd_vma) -2)
1796 abort ();
1797
1798 relocation = htab->sgot->output_offset + off;
1799 break;
1800
1801 case R_390_GOTOFF:
1802 /* Relocation is relative to the start of the global offset
1803 table. */
1804
1805 /* Note that sgot->output_offset is not involved in this
1806 calculation. We always want the start of .got. If we
1807 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1808 permitted by the ABI, we might have to change this
1809 calculation. */
1810 relocation -= htab->sgot->output_section->vma;
1811 break;
1812
1813 case R_390_GOTPC:
1814 /* Use global offset table as symbol value. */
1815 relocation = htab->sgot->output_section->vma;
1816 unresolved_reloc = false;
1817 break;
1818
1819 case R_390_PLT16DBL:
1820 case R_390_PLT32:
1821 /* Relocation is to the entry for this symbol in the
1822 procedure linkage table. */
1823
1824 /* Resolve a PLT32 reloc against a local symbol directly,
1825 without using the procedure linkage table. */
1826 if (h == NULL)
1827 break;
1828
1829 if (h->plt.offset == (bfd_vma) -1
1830 || htab->splt == NULL)
1831 {
1832 /* We didn't make a PLT entry for this symbol. This
1833 happens when statically linking PIC code, or when
1834 using -Bsymbolic. */
1835 break;
1836 }
1837
1838 relocation = (htab->splt->output_section->vma
1839 + htab->splt->output_offset
1840 + h->plt.offset);
1841 unresolved_reloc = false;
1842 break;
1843
1844 case R_390_8:
1845 case R_390_16:
1846 case R_390_32:
1847 case R_390_PC16:
1848 case R_390_PC16DBL:
1849 case R_390_PC32:
1850 /* r_symndx will be zero only for relocs against symbols
1851 from removed linkonce sections, or sections discarded by
1852 a linker script. */
1853 if (r_symndx == 0
1854 || (input_section->flags & SEC_ALLOC) == 0)
1855 break;
1856
1857 if ((info->shared
1858 && ((r_type != R_390_PC16
1859 && r_type != R_390_PC16DBL
1860 && r_type != R_390_PC32)
1861 || (h != NULL
1862 && h->dynindx != -1
1863 && (! info->symbolic
1864 || (h->elf_link_hash_flags
1865 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1866 || (!info->shared
1867 && h != NULL
1868 && h->dynindx != -1
1869 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1870 && (((h->elf_link_hash_flags
1871 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1872 && (h->elf_link_hash_flags
1873 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1874 || h->root.type == bfd_link_hash_undefweak
1875 || h->root.type == bfd_link_hash_undefined)))
1876 {
1877 Elf_Internal_Rela outrel;
1878 boolean skip, relocate;
1879 asection *sreloc;
1880 Elf32_External_Rela *loc;
1881
1882 /* When generating a shared object, these relocations
1883 are copied into the output file to be resolved at run
1884 time. */
1885
1886 skip = false;
1887
1888 outrel.r_offset =
1889 _bfd_elf_section_offset (output_bfd, info, input_section,
1890 rel->r_offset);
1891 if (outrel.r_offset == (bfd_vma) -1)
1892 skip = true;
1893 outrel.r_offset += (input_section->output_section->vma
1894 + input_section->output_offset);
1895
1896 if (skip)
1897 {
1898 memset (&outrel, 0, sizeof outrel);
1899 relocate = false;
1900 }
1901 else if (h != NULL
1902 && h->dynindx != -1
1903 && (r_type == R_390_PC16
1904 || r_type == R_390_PC16DBL
1905 || r_type == R_390_PC32
1906 || !info->shared
1907 || !info->symbolic
1908 || (h->elf_link_hash_flags
1909 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1910 {
1911 relocate = false;
1912 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1913 outrel.r_addend = rel->r_addend;
1914 }
1915 else
1916 {
1917 /* This symbol is local, or marked to become local. */
1918 relocate = true;
1919 outrel.r_info = ELF32_R_INFO (0, R_390_RELATIVE);
1920 outrel.r_addend = relocation + rel->r_addend;
1921 }
1922
1923 sreloc = elf_section_data (input_section)->sreloc;
1924 if (sreloc == NULL)
1925 abort ();
1926
1927 loc = (Elf32_External_Rela *) sreloc->contents;
1928 loc += sreloc->reloc_count++;
1929 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
1930
1931 /* If this reloc is against an external symbol, we do
1932 not want to fiddle with the addend. Otherwise, we
1933 need to include the symbol value so that it becomes
1934 an addend for the dynamic reloc. */
1935 if (! relocate)
1936 continue;
1937 }
1938 break;
1939
1940 default:
1941 break;
1942 }
1943
1944 if (unresolved_reloc
1945 && !(info->shared
1946 && (input_section->flags & SEC_DEBUGGING) != 0
1947 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1948 (*_bfd_error_handler)
1949 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
1950 bfd_archive_filename (input_bfd),
1951 bfd_get_section_name (input_bfd, input_section),
1952 (long) rel->r_offset,
1953 h->root.root.string);
1954
1955 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1956 contents, rel->r_offset,
1957 relocation, rel->r_addend);
1958
1959 if (r != bfd_reloc_ok)
1960 {
1961 const char *name;
1962
1963 if (h != NULL)
1964 name = h->root.root.string;
1965 else
1966 {
1967 name = bfd_elf_string_from_elf_section (input_bfd,
1968 symtab_hdr->sh_link,
1969 sym->st_name);
1970 if (name == NULL)
1971 return false;
1972 if (*name == '\0')
1973 name = bfd_section_name (input_bfd, sec);
1974 }
1975
1976 if (r == bfd_reloc_overflow)
1977 {
1978
1979 if (! ((*info->callbacks->reloc_overflow)
1980 (info, name, howto->name, (bfd_vma) 0,
1981 input_bfd, input_section, rel->r_offset)))
1982 return false;
1983 }
1984 else
1985 {
1986 (*_bfd_error_handler)
1987 (_("%s(%s+0x%lx): reloc against `%s': error %d"),
1988 bfd_archive_filename (input_bfd),
1989 bfd_get_section_name (input_bfd, input_section),
1990 (long) rel->r_offset, name, (int) r);
1991 return false;
1992 }
1993 }
1994 }
1995
1996 return true;
1997 }
1998
1999 /* Finish up dynamic symbol handling. We set the contents of various
2000 dynamic sections here. */
2001
2002 static boolean
2003 elf_s390_finish_dynamic_symbol (output_bfd, info, h, sym)
2004 bfd *output_bfd;
2005 struct bfd_link_info *info;
2006 struct elf_link_hash_entry *h;
2007 Elf_Internal_Sym *sym;
2008 {
2009 struct elf_s390_link_hash_table *htab;
2010
2011 htab = elf_s390_hash_table (info);
2012
2013 if (h->plt.offset != (bfd_vma) -1)
2014 {
2015 bfd_vma plt_index;
2016 bfd_vma got_offset;
2017 Elf_Internal_Rela rela;
2018 Elf32_External_Rela *loc;
2019 bfd_vma relative_offset;
2020
2021 /* This symbol has an entry in the procedure linkage table. Set
2022 it up. */
2023
2024 if (h->dynindx == -1
2025 || htab->splt == NULL
2026 || htab->sgotplt == NULL
2027 || htab->srelplt == NULL)
2028 abort ();
2029
2030 /* Calc. index no.
2031 Current offset - size first entry / entry size. */
2032 plt_index = (h->plt.offset - PLT_FIRST_ENTRY_SIZE) / PLT_ENTRY_SIZE;
2033
2034 /* Offset in GOT is PLT index plus GOT headers(3) times 4,
2035 addr & GOT addr. */
2036 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
2037
2038 /* S390 uses halfwords for relative branch calc! */
2039 relative_offset = - ((PLT_FIRST_ENTRY_SIZE +
2040 (PLT_ENTRY_SIZE * plt_index) + 18) / 2);
2041 /* If offset is > 32768, branch to a previous branch
2042 390 can only handle +-64 K jumps. */
2043 if ( -32768 > (int) relative_offset )
2044 relative_offset =
2045 -(unsigned) (((65536 / PLT_ENTRY_SIZE - 1) * PLT_ENTRY_SIZE) / 2);
2046
2047 /* Fill in the entry in the procedure linkage table. */
2048 if (!info->shared)
2049 {
2050 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD0,
2051 htab->splt->contents + h->plt.offset);
2052 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD1,
2053 htab->splt->contents + h->plt.offset + 4);
2054 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD2,
2055 htab->splt->contents + h->plt.offset + 8);
2056 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD3,
2057 htab->splt->contents + h->plt.offset + 12);
2058 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD4,
2059 htab->splt->contents + h->plt.offset + 16);
2060 bfd_put_32 (output_bfd, (bfd_vma) 0+(relative_offset << 16),
2061 htab->splt->contents + h->plt.offset + 20);
2062 bfd_put_32 (output_bfd,
2063 (htab->sgotplt->output_section->vma
2064 + htab->sgotplt->output_offset
2065 + got_offset),
2066 htab->splt->contents + h->plt.offset + 24);
2067 }
2068 else if (got_offset < 4096)
2069 {
2070 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD0 + got_offset,
2071 htab->splt->contents + h->plt.offset);
2072 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD1,
2073 htab->splt->contents + h->plt.offset + 4);
2074 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD2,
2075 htab->splt->contents + h->plt.offset + 8);
2076 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD3,
2077 htab->splt->contents + h->plt.offset + 12);
2078 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC12_ENTRY_WORD4,
2079 htab->splt->contents + h->plt.offset + 16);
2080 bfd_put_32 (output_bfd, (bfd_vma) 0+(relative_offset << 16),
2081 htab->splt->contents + h->plt.offset + 20);
2082 bfd_put_32 (output_bfd, (bfd_vma) 0,
2083 htab->splt->contents + h->plt.offset + 24);
2084 }
2085 else if (got_offset < 32768)
2086 {
2087 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD0 + got_offset,
2088 htab->splt->contents + h->plt.offset);
2089 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD1,
2090 htab->splt->contents + h->plt.offset + 4);
2091 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD2,
2092 htab->splt->contents + h->plt.offset + 8);
2093 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD3,
2094 htab->splt->contents + h->plt.offset + 12);
2095 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC16_ENTRY_WORD4,
2096 htab->splt->contents + h->plt.offset + 16);
2097 bfd_put_32 (output_bfd, (bfd_vma) 0+(relative_offset << 16),
2098 htab->splt->contents + h->plt.offset + 20);
2099 bfd_put_32 (output_bfd, (bfd_vma) 0,
2100 htab->splt->contents + h->plt.offset + 24);
2101 }
2102 else
2103 {
2104 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD0,
2105 htab->splt->contents + h->plt.offset);
2106 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD1,
2107 htab->splt->contents + h->plt.offset + 4);
2108 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD2,
2109 htab->splt->contents + h->plt.offset + 8);
2110 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD3,
2111 htab->splt->contents + h->plt.offset + 12);
2112 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_ENTRY_WORD4,
2113 htab->splt->contents + h->plt.offset + 16);
2114 bfd_put_32 (output_bfd, (bfd_vma) 0+(relative_offset << 16),
2115 htab->splt->contents + h->plt.offset + 20);
2116 bfd_put_32 (output_bfd, got_offset,
2117 htab->splt->contents + h->plt.offset + 24);
2118 }
2119 /* Insert offset into reloc. table here. */
2120 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
2121 htab->splt->contents + h->plt.offset + 28);
2122
2123 /* Fill in the entry in the global offset table.
2124 Points to instruction after GOT offset. */
2125 bfd_put_32 (output_bfd,
2126 (htab->splt->output_section->vma
2127 + htab->splt->output_offset
2128 + h->plt.offset
2129 + 12),
2130 htab->sgotplt->contents + got_offset);
2131
2132 /* Fill in the entry in the .rela.plt section. */
2133 rela.r_offset = (htab->sgotplt->output_section->vma
2134 + htab->sgotplt->output_offset
2135 + got_offset);
2136 rela.r_info = ELF32_R_INFO (h->dynindx, R_390_JMP_SLOT);
2137 rela.r_addend = 0;
2138 loc = (Elf32_External_Rela *) htab->srelplt->contents + plt_index;
2139 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
2140
2141 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2142 {
2143 /* Mark the symbol as undefined, rather than as defined in
2144 the .plt section. Leave the value alone. This is a clue
2145 for the dynamic linker, to make function pointer
2146 comparisons work between an application and shared
2147 library. */
2148 sym->st_shndx = SHN_UNDEF;
2149 }
2150 }
2151
2152 if (h->got.offset != (bfd_vma) -1)
2153 {
2154 Elf_Internal_Rela rela;
2155 Elf32_External_Rela *loc;
2156
2157 /* This symbol has an entry in the global offset table. Set it
2158 up. */
2159
2160 if (htab->sgot == NULL || htab->srelgot == NULL)
2161 abort ();
2162
2163 rela.r_offset = (htab->sgot->output_section->vma
2164 + htab->sgot->output_offset
2165 + (h->got.offset &~ (bfd_vma) 1));
2166
2167 /* If this is a static link, or it is a -Bsymbolic link and the
2168 symbol is defined locally or was forced to be local because
2169 of a version file, we just want to emit a RELATIVE reloc.
2170 The entry in the global offset table will already have been
2171 initialized in the relocate_section function. */
2172 if (info->shared
2173 && (info->symbolic
2174 || h->dynindx == -1
2175 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2176 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2177 {
2178 BFD_ASSERT((h->got.offset & 1) != 0);
2179 rela.r_info = ELF32_R_INFO (0, R_390_RELATIVE);
2180 rela.r_addend = (h->root.u.def.value
2181 + h->root.u.def.section->output_section->vma
2182 + h->root.u.def.section->output_offset);
2183 }
2184 else
2185 {
2186 BFD_ASSERT((h->got.offset & 1) == 0);
2187 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgot->contents + h->got.offset);
2188 rela.r_info = ELF32_R_INFO (h->dynindx, R_390_GLOB_DAT);
2189 rela.r_addend = 0;
2190 }
2191
2192 loc = (Elf32_External_Rela *) htab->srelgot->contents;
2193 loc += htab->srelgot->reloc_count++;
2194 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
2195 }
2196
2197 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2198 {
2199 Elf_Internal_Rela rela;
2200 Elf32_External_Rela *loc;
2201
2202 /* This symbols needs a copy reloc. Set it up. */
2203
2204 if (h->dynindx == -1
2205 || (h->root.type != bfd_link_hash_defined
2206 && h->root.type != bfd_link_hash_defweak)
2207 || htab->srelbss == NULL)
2208 abort ();
2209
2210 rela.r_offset = (h->root.u.def.value
2211 + h->root.u.def.section->output_section->vma
2212 + h->root.u.def.section->output_offset);
2213 rela.r_info = ELF32_R_INFO (h->dynindx, R_390_COPY);
2214 rela.r_addend = 0;
2215 loc = (Elf32_External_Rela *) htab->srelbss->contents;
2216 loc += htab->srelbss->reloc_count++;
2217 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
2218 }
2219
2220 /* Mark some specially defined symbols as absolute. */
2221 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2222 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2223 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2224 sym->st_shndx = SHN_ABS;
2225
2226 return true;
2227 }
2228
2229 /* Used to decide how to sort relocs in an optimal manner for the
2230 dynamic linker, before writing them out. */
2231
2232 static enum elf_reloc_type_class
2233 elf_s390_reloc_type_class (rela)
2234 const Elf_Internal_Rela *rela;
2235 {
2236 switch ((int) ELF32_R_TYPE (rela->r_info))
2237 {
2238 case R_390_RELATIVE:
2239 return reloc_class_relative;
2240 case R_390_JMP_SLOT:
2241 return reloc_class_plt;
2242 case R_390_COPY:
2243 return reloc_class_copy;
2244 default:
2245 return reloc_class_normal;
2246 }
2247 }
2248
2249 /* Finish up the dynamic sections. */
2250
2251 static boolean
2252 elf_s390_finish_dynamic_sections (output_bfd, info)
2253 bfd *output_bfd;
2254 struct bfd_link_info *info;
2255 {
2256 struct elf_s390_link_hash_table *htab;
2257 bfd *dynobj;
2258 asection *sdyn;
2259
2260 htab = elf_s390_hash_table (info);
2261 dynobj = htab->elf.dynobj;
2262 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2263
2264 if (htab->elf.dynamic_sections_created)
2265 {
2266 Elf32_External_Dyn *dyncon, *dynconend;
2267
2268 if (sdyn == NULL || htab->sgot == NULL)
2269 abort ();
2270
2271 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2272 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2273 for (; dyncon < dynconend; dyncon++)
2274 {
2275 Elf_Internal_Dyn dyn;
2276 asection *s;
2277
2278 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2279
2280 switch (dyn.d_tag)
2281 {
2282 default:
2283 continue;
2284
2285 case DT_PLTGOT:
2286 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2287 break;
2288
2289 case DT_JMPREL:
2290 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2291 break;
2292
2293 case DT_PLTRELSZ:
2294 s = htab->srelplt->output_section;
2295 if (s->_cooked_size != 0)
2296 dyn.d_un.d_val = s->_cooked_size;
2297 else
2298 dyn.d_un.d_val = s->_raw_size;
2299 break;
2300 }
2301
2302 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2303 }
2304
2305 /* Fill in the special first entry in the procedure linkage table. */
2306 if (htab->splt && htab->splt->_raw_size > 0)
2307 {
2308 memset (htab->splt->contents, 0, PLT_FIRST_ENTRY_SIZE);
2309 if (info->shared)
2310 {
2311 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD0,
2312 htab->splt->contents );
2313 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD1,
2314 htab->splt->contents +4 );
2315 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD2,
2316 htab->splt->contents +8 );
2317 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD3,
2318 htab->splt->contents +12 );
2319 bfd_put_32 (output_bfd, (bfd_vma) PLT_PIC_FIRST_ENTRY_WORD4,
2320 htab->splt->contents +16 );
2321 }
2322 else
2323 {
2324 bfd_put_32 (output_bfd, (bfd_vma)PLT_FIRST_ENTRY_WORD0,
2325 htab->splt->contents );
2326 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD1,
2327 htab->splt->contents +4 );
2328 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD2,
2329 htab->splt->contents +8 );
2330 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD3,
2331 htab->splt->contents +12 );
2332 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD4,
2333 htab->splt->contents +16 );
2334 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD5,
2335 htab->splt->contents +20 );
2336 bfd_put_32 (output_bfd,
2337 htab->sgotplt->output_section->vma
2338 + htab->sgotplt->output_offset,
2339 htab->splt->contents + 24);
2340 }
2341 elf_section_data (htab->splt->output_section)
2342 ->this_hdr.sh_entsize = 4;
2343 }
2344
2345 }
2346
2347 if (htab->sgotplt)
2348 {
2349 /* Fill in the first three entries in the global offset table. */
2350 if (htab->sgotplt->_raw_size > 0)
2351 {
2352 bfd_put_32 (output_bfd,
2353 (sdyn == NULL ? (bfd_vma) 0
2354 : sdyn->output_section->vma + sdyn->output_offset),
2355 htab->sgotplt->contents);
2356 /* One entry for shared object struct ptr. */
2357 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2358 /* One entry for _dl_runtime_resolve. */
2359 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2360 }
2361
2362 elf_section_data (htab->sgotplt->output_section)
2363 ->this_hdr.sh_entsize = 4;
2364 }
2365 return true;
2366 }
2367
2368 static boolean
2369 elf_s390_object_p (abfd)
2370 bfd *abfd;
2371 {
2372 return bfd_default_set_arch_mach (abfd, bfd_arch_s390, bfd_mach_s390_esa);
2373 }
2374
2375 static boolean
2376 elf_s390_grok_prstatus (abfd, note)
2377 bfd * abfd;
2378 Elf_Internal_Note * note;
2379 {
2380 int offset;
2381 unsigned int raw_size;
2382
2383 switch (note->descsz)
2384 {
2385 default:
2386 return false;
2387
2388 case 224: /* S/390 Linux. */
2389 /* pr_cursig */
2390 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2391
2392 /* pr_pid */
2393 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
2394
2395 /* pr_reg */
2396 offset = 72;
2397 raw_size = 144;
2398 break;
2399 }
2400
2401 /* Make a ".reg/999" section. */
2402 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2403 raw_size, note->descpos + offset);
2404 }
2405
2406 #define TARGET_BIG_SYM bfd_elf32_s390_vec
2407 #define TARGET_BIG_NAME "elf32-s390"
2408 #define ELF_ARCH bfd_arch_s390
2409 #define ELF_MACHINE_CODE EM_S390
2410 #define ELF_MACHINE_ALT1 EM_S390_OLD
2411 #define ELF_MAXPAGESIZE 0x1000
2412
2413 #define elf_backend_can_gc_sections 1
2414 #define elf_backend_can_refcount 1
2415 #define elf_backend_want_got_plt 1
2416 #define elf_backend_plt_readonly 1
2417 #define elf_backend_want_plt_sym 0
2418 #define elf_backend_got_header_size 12
2419 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2420
2421 #define elf_info_to_howto elf_s390_info_to_howto
2422
2423 #define bfd_elf32_bfd_is_local_label_name elf_s390_is_local_label_name
2424 #define bfd_elf32_bfd_link_hash_table_create elf_s390_link_hash_table_create
2425 #define bfd_elf32_bfd_reloc_type_lookup elf_s390_reloc_type_lookup
2426
2427 #define elf_backend_adjust_dynamic_symbol elf_s390_adjust_dynamic_symbol
2428 #define elf_backend_check_relocs elf_s390_check_relocs
2429 #define elf_backend_copy_indirect_symbol elf_s390_copy_indirect_symbol
2430 #define elf_backend_create_dynamic_sections elf_s390_create_dynamic_sections
2431 #define elf_backend_finish_dynamic_sections elf_s390_finish_dynamic_sections
2432 #define elf_backend_finish_dynamic_symbol elf_s390_finish_dynamic_symbol
2433 #define elf_backend_gc_mark_hook elf_s390_gc_mark_hook
2434 #define elf_backend_gc_sweep_hook elf_s390_gc_sweep_hook
2435 #define elf_backend_reloc_type_class elf_s390_reloc_type_class
2436 #define elf_backend_relocate_section elf_s390_relocate_section
2437 #define elf_backend_size_dynamic_sections elf_s390_size_dynamic_sections
2438 #define elf_backend_reloc_type_class elf_s390_reloc_type_class
2439 #define elf_backend_grok_prstatus elf_s390_grok_prstatus
2440
2441 #define elf_backend_object_p elf_s390_object_p
2442
2443 #include "elf32-target.h"
This page took 0.080174 seconds and 4 git commands to generate.