include/elf/
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
33
34 #define XTENSA_NO_NOP_REMOVAL 0
35
36 /* Local helper functions. */
37
38 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
46
47 /* Local functions to handle Xtensa configurability. */
48
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte *, bfd_size_type, bfd_size_type);
74
75 /* Functions for link-time code simplifications. */
76
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
83
84 /* Access to internal relocations, section contents and symbols. */
85
86 static Elf_Internal_Rela *retrieve_internal_relocs
87 (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
94
95 /* Miscellaneous utility functions. */
96
97 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101 (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_insntable_section (asection *);
107 static bfd_boolean xtensa_is_littable_section (asection *);
108 static bfd_boolean xtensa_is_proptable_section (asection *);
109 static int internal_reloc_compare (const void *, const void *);
110 static int internal_reloc_matches (const void *, const void *);
111 extern asection *xtensa_get_property_section (asection *, const char *);
112 static flagword xtensa_get_property_predef_flags (asection *);
113
114 /* Other functions called directly by the linker. */
115
116 typedef void (*deps_callback_t)
117 (asection *, bfd_vma, asection *, bfd_vma, void *);
118 extern bfd_boolean xtensa_callback_required_dependence
119 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
120
121
122 /* Globally visible flag for choosing size optimization of NOP removal
123 instead of branch-target-aware minimization for NOP removal.
124 When nonzero, narrow all instructions and remove all NOPs possible
125 around longcall expansions. */
126
127 int elf32xtensa_size_opt;
128
129
130 /* The "new_section_hook" is used to set up a per-section
131 "xtensa_relax_info" data structure with additional information used
132 during relaxation. */
133
134 typedef struct xtensa_relax_info_struct xtensa_relax_info;
135
136
137 /* The GNU tools do not easily allow extending interfaces to pass around
138 the pointer to the Xtensa ISA information, so instead we add a global
139 variable here (in BFD) that can be used by any of the tools that need
140 this information. */
141
142 xtensa_isa xtensa_default_isa;
143
144
145 /* When this is true, relocations may have been modified to refer to
146 symbols from other input files. The per-section list of "fix"
147 records needs to be checked when resolving relocations. */
148
149 static bfd_boolean relaxing_section = FALSE;
150
151 /* When this is true, during final links, literals that cannot be
152 coalesced and their relocations may be moved to other sections. */
153
154 int elf32xtensa_no_literal_movement = 1;
155
156 \f
157 static reloc_howto_type elf_howto_table[] =
158 {
159 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
160 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
161 FALSE, 0, 0, FALSE),
162 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
163 bfd_elf_xtensa_reloc, "R_XTENSA_32",
164 TRUE, 0xffffffff, 0xffffffff, FALSE),
165
166 /* Replace a 32-bit value with a value from the runtime linker (only
167 used by linker-generated stub functions). The r_addend value is
168 special: 1 means to substitute a pointer to the runtime linker's
169 dynamic resolver function; 2 means to substitute the link map for
170 the shared object. */
171 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
172 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
173
174 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
175 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
176 FALSE, 0, 0xffffffff, FALSE),
177 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
178 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
179 FALSE, 0, 0xffffffff, FALSE),
180 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
182 FALSE, 0, 0xffffffff, FALSE),
183 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
185 FALSE, 0, 0xffffffff, FALSE),
186
187 EMPTY_HOWTO (7),
188
189 /* Old relocations for backward compatibility. */
190 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
191 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
192 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
193 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
194 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
196
197 /* Assembly auto-expansion. */
198 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
199 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
200 /* Relax assembly auto-expansion. */
201 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
202 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
203
204 EMPTY_HOWTO (13),
205 EMPTY_HOWTO (14),
206
207 /* GNU extension to record C++ vtable hierarchy. */
208 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
209 NULL, "R_XTENSA_GNU_VTINHERIT",
210 FALSE, 0, 0, FALSE),
211 /* GNU extension to record C++ vtable member usage. */
212 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
213 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
214 FALSE, 0, 0, FALSE),
215
216 /* Relocations for supporting difference of symbols. */
217 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
218 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
219 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
220 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
221 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
222 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
223
224 /* General immediate operand relocations. */
225 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
226 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
227 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
228 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
229 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
230 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
231 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
232 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
233 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
235 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
237 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
239 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
241 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
243 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
245 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
247 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
249 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
251 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
253 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
255
256 /* "Alternate" relocations. The meaning of these is opcode-specific. */
257 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
259 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
261 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
263 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
265 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
287 };
288
289 #if DEBUG_GEN_RELOC
290 #define TRACE(str) \
291 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
292 #else
293 #define TRACE(str)
294 #endif
295
296 static reloc_howto_type *
297 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
298 bfd_reloc_code_real_type code)
299 {
300 switch (code)
301 {
302 case BFD_RELOC_NONE:
303 TRACE ("BFD_RELOC_NONE");
304 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
305
306 case BFD_RELOC_32:
307 TRACE ("BFD_RELOC_32");
308 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
309
310 case BFD_RELOC_XTENSA_DIFF8:
311 TRACE ("BFD_RELOC_XTENSA_DIFF8");
312 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
313
314 case BFD_RELOC_XTENSA_DIFF16:
315 TRACE ("BFD_RELOC_XTENSA_DIFF16");
316 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
317
318 case BFD_RELOC_XTENSA_DIFF32:
319 TRACE ("BFD_RELOC_XTENSA_DIFF32");
320 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
321
322 case BFD_RELOC_XTENSA_RTLD:
323 TRACE ("BFD_RELOC_XTENSA_RTLD");
324 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
325
326 case BFD_RELOC_XTENSA_GLOB_DAT:
327 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
328 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
329
330 case BFD_RELOC_XTENSA_JMP_SLOT:
331 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
332 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
333
334 case BFD_RELOC_XTENSA_RELATIVE:
335 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
336 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
337
338 case BFD_RELOC_XTENSA_PLT:
339 TRACE ("BFD_RELOC_XTENSA_PLT");
340 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
341
342 case BFD_RELOC_XTENSA_OP0:
343 TRACE ("BFD_RELOC_XTENSA_OP0");
344 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
345
346 case BFD_RELOC_XTENSA_OP1:
347 TRACE ("BFD_RELOC_XTENSA_OP1");
348 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
349
350 case BFD_RELOC_XTENSA_OP2:
351 TRACE ("BFD_RELOC_XTENSA_OP2");
352 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
353
354 case BFD_RELOC_XTENSA_ASM_EXPAND:
355 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
356 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
357
358 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
359 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
360 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
361
362 case BFD_RELOC_VTABLE_INHERIT:
363 TRACE ("BFD_RELOC_VTABLE_INHERIT");
364 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
365
366 case BFD_RELOC_VTABLE_ENTRY:
367 TRACE ("BFD_RELOC_VTABLE_ENTRY");
368 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
369
370 default:
371 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
372 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
373 {
374 unsigned n = (R_XTENSA_SLOT0_OP +
375 (code - BFD_RELOC_XTENSA_SLOT0_OP));
376 return &elf_howto_table[n];
377 }
378
379 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
380 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
381 {
382 unsigned n = (R_XTENSA_SLOT0_ALT +
383 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
384 return &elf_howto_table[n];
385 }
386
387 break;
388 }
389
390 TRACE ("Unknown");
391 return NULL;
392 }
393
394 static reloc_howto_type *
395 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
396 const char *r_name)
397 {
398 unsigned int i;
399
400 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
401 if (elf_howto_table[i].name != NULL
402 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
403 return &elf_howto_table[i];
404
405 return NULL;
406 }
407
408
409 /* Given an ELF "rela" relocation, find the corresponding howto and record
410 it in the BFD internal arelent representation of the relocation. */
411
412 static void
413 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
414 arelent *cache_ptr,
415 Elf_Internal_Rela *dst)
416 {
417 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
418
419 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
420 cache_ptr->howto = &elf_howto_table[r_type];
421 }
422
423 \f
424 /* Functions for the Xtensa ELF linker. */
425
426 /* The name of the dynamic interpreter. This is put in the .interp
427 section. */
428
429 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
430
431 /* The size in bytes of an entry in the procedure linkage table.
432 (This does _not_ include the space for the literals associated with
433 the PLT entry.) */
434
435 #define PLT_ENTRY_SIZE 16
436
437 /* For _really_ large PLTs, we may need to alternate between literals
438 and code to keep the literals within the 256K range of the L32R
439 instructions in the code. It's unlikely that anyone would ever need
440 such a big PLT, but an arbitrary limit on the PLT size would be bad.
441 Thus, we split the PLT into chunks. Since there's very little
442 overhead (2 extra literals) for each chunk, the chunk size is kept
443 small so that the code for handling multiple chunks get used and
444 tested regularly. With 254 entries, there are 1K of literals for
445 each chunk, and that seems like a nice round number. */
446
447 #define PLT_ENTRIES_PER_CHUNK 254
448
449 /* PLT entries are actually used as stub functions for lazy symbol
450 resolution. Once the symbol is resolved, the stub function is never
451 invoked. Note: the 32-byte frame size used here cannot be changed
452 without a corresponding change in the runtime linker. */
453
454 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
455 {
456 0x6c, 0x10, 0x04, /* entry sp, 32 */
457 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
458 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
459 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
460 0x0a, 0x80, 0x00, /* jx a8 */
461 0 /* unused */
462 };
463
464 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
465 {
466 0x36, 0x41, 0x00, /* entry sp, 32 */
467 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
468 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
469 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
470 0xa0, 0x08, 0x00, /* jx a8 */
471 0 /* unused */
472 };
473
474 /* Xtensa ELF linker hash table. */
475
476 struct elf_xtensa_link_hash_table
477 {
478 struct elf_link_hash_table elf;
479
480 /* Short-cuts to get to dynamic linker sections. */
481 asection *sgot;
482 asection *sgotplt;
483 asection *srelgot;
484 asection *splt;
485 asection *srelplt;
486 asection *sgotloc;
487 asection *spltlittbl;
488
489 /* Total count of PLT relocations seen during check_relocs.
490 The actual PLT code must be split into multiple sections and all
491 the sections have to be created before size_dynamic_sections,
492 where we figure out the exact number of PLT entries that will be
493 needed. It is OK if this count is an overestimate, e.g., some
494 relocations may be removed by GC. */
495 int plt_reloc_count;
496 };
497
498 /* Get the Xtensa ELF linker hash table from a link_info structure. */
499
500 #define elf_xtensa_hash_table(p) \
501 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
502
503 /* Create an Xtensa ELF linker hash table. */
504
505 static struct bfd_link_hash_table *
506 elf_xtensa_link_hash_table_create (bfd *abfd)
507 {
508 struct elf_xtensa_link_hash_table *ret;
509 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
510
511 ret = bfd_malloc (amt);
512 if (ret == NULL)
513 return NULL;
514
515 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
516 _bfd_elf_link_hash_newfunc,
517 sizeof (struct elf_link_hash_entry)))
518 {
519 free (ret);
520 return NULL;
521 }
522
523 ret->sgot = NULL;
524 ret->sgotplt = NULL;
525 ret->srelgot = NULL;
526 ret->splt = NULL;
527 ret->srelplt = NULL;
528 ret->sgotloc = NULL;
529 ret->spltlittbl = NULL;
530
531 ret->plt_reloc_count = 0;
532
533 return &ret->elf.root;
534 }
535
536 static inline bfd_boolean
537 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
538 struct bfd_link_info *info)
539 {
540 /* Check if we should do dynamic things to this symbol. The
541 "ignore_protected" argument need not be set, because Xtensa code
542 does not require special handling of STV_PROTECTED to make function
543 pointer comparisons work properly. The PLT addresses are never
544 used for function pointers. */
545
546 return _bfd_elf_dynamic_symbol_p (h, info, 0);
547 }
548
549 \f
550 static int
551 property_table_compare (const void *ap, const void *bp)
552 {
553 const property_table_entry *a = (const property_table_entry *) ap;
554 const property_table_entry *b = (const property_table_entry *) bp;
555
556 if (a->address == b->address)
557 {
558 if (a->size != b->size)
559 return (a->size - b->size);
560
561 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
562 return ((b->flags & XTENSA_PROP_ALIGN)
563 - (a->flags & XTENSA_PROP_ALIGN));
564
565 if ((a->flags & XTENSA_PROP_ALIGN)
566 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
567 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
568 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
569 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
570
571 if ((a->flags & XTENSA_PROP_UNREACHABLE)
572 != (b->flags & XTENSA_PROP_UNREACHABLE))
573 return ((b->flags & XTENSA_PROP_UNREACHABLE)
574 - (a->flags & XTENSA_PROP_UNREACHABLE));
575
576 return (a->flags - b->flags);
577 }
578
579 return (a->address - b->address);
580 }
581
582
583 static int
584 property_table_matches (const void *ap, const void *bp)
585 {
586 const property_table_entry *a = (const property_table_entry *) ap;
587 const property_table_entry *b = (const property_table_entry *) bp;
588
589 /* Check if one entry overlaps with the other. */
590 if ((b->address >= a->address && b->address < (a->address + a->size))
591 || (a->address >= b->address && a->address < (b->address + b->size)))
592 return 0;
593
594 return (a->address - b->address);
595 }
596
597
598 /* Get the literal table or property table entries for the given
599 section. Sets TABLE_P and returns the number of entries. On
600 error, returns a negative value. */
601
602 static int
603 xtensa_read_table_entries (bfd *abfd,
604 asection *section,
605 property_table_entry **table_p,
606 const char *sec_name,
607 bfd_boolean output_addr)
608 {
609 asection *table_section;
610 bfd_size_type table_size = 0;
611 bfd_byte *table_data;
612 property_table_entry *blocks;
613 int blk, block_count;
614 bfd_size_type num_records;
615 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
616 bfd_vma section_addr, off;
617 flagword predef_flags;
618 bfd_size_type table_entry_size, section_limit;
619
620 if (!section
621 || !(section->flags & SEC_ALLOC)
622 || (section->flags & SEC_DEBUGGING))
623 {
624 *table_p = NULL;
625 return 0;
626 }
627
628 table_section = xtensa_get_property_section (section, sec_name);
629 if (table_section)
630 table_size = table_section->size;
631
632 if (table_size == 0)
633 {
634 *table_p = NULL;
635 return 0;
636 }
637
638 predef_flags = xtensa_get_property_predef_flags (table_section);
639 table_entry_size = 12;
640 if (predef_flags)
641 table_entry_size -= 4;
642
643 num_records = table_size / table_entry_size;
644 table_data = retrieve_contents (abfd, table_section, TRUE);
645 blocks = (property_table_entry *)
646 bfd_malloc (num_records * sizeof (property_table_entry));
647 block_count = 0;
648
649 if (output_addr)
650 section_addr = section->output_section->vma + section->output_offset;
651 else
652 section_addr = section->vma;
653
654 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
655 if (internal_relocs && !table_section->reloc_done)
656 {
657 qsort (internal_relocs, table_section->reloc_count,
658 sizeof (Elf_Internal_Rela), internal_reloc_compare);
659 irel = internal_relocs;
660 }
661 else
662 irel = NULL;
663
664 section_limit = bfd_get_section_limit (abfd, section);
665 rel_end = internal_relocs + table_section->reloc_count;
666
667 for (off = 0; off < table_size; off += table_entry_size)
668 {
669 bfd_vma address = bfd_get_32 (abfd, table_data + off);
670
671 /* Skip any relocations before the current offset. This should help
672 avoid confusion caused by unexpected relocations for the preceding
673 table entry. */
674 while (irel &&
675 (irel->r_offset < off
676 || (irel->r_offset == off
677 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
678 {
679 irel += 1;
680 if (irel >= rel_end)
681 irel = 0;
682 }
683
684 if (irel && irel->r_offset == off)
685 {
686 bfd_vma sym_off;
687 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
688 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
689
690 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
691 continue;
692
693 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
694 BFD_ASSERT (sym_off == 0);
695 address += (section_addr + sym_off + irel->r_addend);
696 }
697 else
698 {
699 if (address < section_addr
700 || address >= section_addr + section_limit)
701 continue;
702 }
703
704 blocks[block_count].address = address;
705 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
706 if (predef_flags)
707 blocks[block_count].flags = predef_flags;
708 else
709 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
710 block_count++;
711 }
712
713 release_contents (table_section, table_data);
714 release_internal_relocs (table_section, internal_relocs);
715
716 if (block_count > 0)
717 {
718 /* Now sort them into address order for easy reference. */
719 qsort (blocks, block_count, sizeof (property_table_entry),
720 property_table_compare);
721
722 /* Check that the table contents are valid. Problems may occur,
723 for example, if an unrelocated object file is stripped. */
724 for (blk = 1; blk < block_count; blk++)
725 {
726 /* The only circumstance where two entries may legitimately
727 have the same address is when one of them is a zero-size
728 placeholder to mark a place where fill can be inserted.
729 The zero-size entry should come first. */
730 if (blocks[blk - 1].address == blocks[blk].address &&
731 blocks[blk - 1].size != 0)
732 {
733 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
734 abfd, section);
735 bfd_set_error (bfd_error_bad_value);
736 free (blocks);
737 return -1;
738 }
739 }
740 }
741
742 *table_p = blocks;
743 return block_count;
744 }
745
746
747 static property_table_entry *
748 elf_xtensa_find_property_entry (property_table_entry *property_table,
749 int property_table_size,
750 bfd_vma addr)
751 {
752 property_table_entry entry;
753 property_table_entry *rv;
754
755 if (property_table_size == 0)
756 return NULL;
757
758 entry.address = addr;
759 entry.size = 1;
760 entry.flags = 0;
761
762 rv = bsearch (&entry, property_table, property_table_size,
763 sizeof (property_table_entry), property_table_matches);
764 return rv;
765 }
766
767
768 static bfd_boolean
769 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
770 int lit_table_size,
771 bfd_vma addr)
772 {
773 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
774 return TRUE;
775
776 return FALSE;
777 }
778
779 \f
780 /* Look through the relocs for a section during the first phase, and
781 calculate needed space in the dynamic reloc sections. */
782
783 static bfd_boolean
784 elf_xtensa_check_relocs (bfd *abfd,
785 struct bfd_link_info *info,
786 asection *sec,
787 const Elf_Internal_Rela *relocs)
788 {
789 struct elf_xtensa_link_hash_table *htab;
790 Elf_Internal_Shdr *symtab_hdr;
791 struct elf_link_hash_entry **sym_hashes;
792 const Elf_Internal_Rela *rel;
793 const Elf_Internal_Rela *rel_end;
794
795 if (info->relocatable)
796 return TRUE;
797
798 htab = elf_xtensa_hash_table (info);
799 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
800 sym_hashes = elf_sym_hashes (abfd);
801
802 rel_end = relocs + sec->reloc_count;
803 for (rel = relocs; rel < rel_end; rel++)
804 {
805 unsigned int r_type;
806 unsigned long r_symndx;
807 struct elf_link_hash_entry *h;
808
809 r_symndx = ELF32_R_SYM (rel->r_info);
810 r_type = ELF32_R_TYPE (rel->r_info);
811
812 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
813 {
814 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
815 abfd, r_symndx);
816 return FALSE;
817 }
818
819 if (r_symndx < symtab_hdr->sh_info)
820 h = NULL;
821 else
822 {
823 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
824 while (h->root.type == bfd_link_hash_indirect
825 || h->root.type == bfd_link_hash_warning)
826 h = (struct elf_link_hash_entry *) h->root.u.i.link;
827 }
828
829 switch (r_type)
830 {
831 case R_XTENSA_32:
832 if (h == NULL)
833 goto local_literal;
834
835 if ((sec->flags & SEC_ALLOC) != 0)
836 {
837 if (h->got.refcount <= 0)
838 h->got.refcount = 1;
839 else
840 h->got.refcount += 1;
841 }
842 break;
843
844 case R_XTENSA_PLT:
845 /* If this relocation is against a local symbol, then it's
846 exactly the same as a normal local GOT entry. */
847 if (h == NULL)
848 goto local_literal;
849
850 if ((sec->flags & SEC_ALLOC) != 0)
851 {
852 if (h->plt.refcount <= 0)
853 {
854 h->needs_plt = 1;
855 h->plt.refcount = 1;
856 }
857 else
858 h->plt.refcount += 1;
859
860 /* Keep track of the total PLT relocation count even if we
861 don't yet know whether the dynamic sections will be
862 created. */
863 htab->plt_reloc_count += 1;
864
865 if (elf_hash_table (info)->dynamic_sections_created)
866 {
867 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
868 return FALSE;
869 }
870 }
871 break;
872
873 local_literal:
874 if ((sec->flags & SEC_ALLOC) != 0)
875 {
876 bfd_signed_vma *local_got_refcounts;
877
878 /* This is a global offset table entry for a local symbol. */
879 local_got_refcounts = elf_local_got_refcounts (abfd);
880 if (local_got_refcounts == NULL)
881 {
882 bfd_size_type size;
883
884 size = symtab_hdr->sh_info;
885 size *= sizeof (bfd_signed_vma);
886 local_got_refcounts =
887 (bfd_signed_vma *) bfd_zalloc (abfd, size);
888 if (local_got_refcounts == NULL)
889 return FALSE;
890 elf_local_got_refcounts (abfd) = local_got_refcounts;
891 }
892 local_got_refcounts[r_symndx] += 1;
893 }
894 break;
895
896 case R_XTENSA_OP0:
897 case R_XTENSA_OP1:
898 case R_XTENSA_OP2:
899 case R_XTENSA_SLOT0_OP:
900 case R_XTENSA_SLOT1_OP:
901 case R_XTENSA_SLOT2_OP:
902 case R_XTENSA_SLOT3_OP:
903 case R_XTENSA_SLOT4_OP:
904 case R_XTENSA_SLOT5_OP:
905 case R_XTENSA_SLOT6_OP:
906 case R_XTENSA_SLOT7_OP:
907 case R_XTENSA_SLOT8_OP:
908 case R_XTENSA_SLOT9_OP:
909 case R_XTENSA_SLOT10_OP:
910 case R_XTENSA_SLOT11_OP:
911 case R_XTENSA_SLOT12_OP:
912 case R_XTENSA_SLOT13_OP:
913 case R_XTENSA_SLOT14_OP:
914 case R_XTENSA_SLOT0_ALT:
915 case R_XTENSA_SLOT1_ALT:
916 case R_XTENSA_SLOT2_ALT:
917 case R_XTENSA_SLOT3_ALT:
918 case R_XTENSA_SLOT4_ALT:
919 case R_XTENSA_SLOT5_ALT:
920 case R_XTENSA_SLOT6_ALT:
921 case R_XTENSA_SLOT7_ALT:
922 case R_XTENSA_SLOT8_ALT:
923 case R_XTENSA_SLOT9_ALT:
924 case R_XTENSA_SLOT10_ALT:
925 case R_XTENSA_SLOT11_ALT:
926 case R_XTENSA_SLOT12_ALT:
927 case R_XTENSA_SLOT13_ALT:
928 case R_XTENSA_SLOT14_ALT:
929 case R_XTENSA_ASM_EXPAND:
930 case R_XTENSA_ASM_SIMPLIFY:
931 case R_XTENSA_DIFF8:
932 case R_XTENSA_DIFF16:
933 case R_XTENSA_DIFF32:
934 /* Nothing to do for these. */
935 break;
936
937 case R_XTENSA_GNU_VTINHERIT:
938 /* This relocation describes the C++ object vtable hierarchy.
939 Reconstruct it for later use during GC. */
940 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
941 return FALSE;
942 break;
943
944 case R_XTENSA_GNU_VTENTRY:
945 /* This relocation describes which C++ vtable entries are actually
946 used. Record for later use during GC. */
947 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
948 return FALSE;
949 break;
950
951 default:
952 break;
953 }
954 }
955
956 return TRUE;
957 }
958
959
960 static void
961 elf_xtensa_make_sym_local (struct bfd_link_info *info,
962 struct elf_link_hash_entry *h)
963 {
964 if (info->shared)
965 {
966 if (h->plt.refcount > 0)
967 {
968 /* For shared objects, there's no need for PLT entries for local
969 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
970 if (h->got.refcount < 0)
971 h->got.refcount = 0;
972 h->got.refcount += h->plt.refcount;
973 h->plt.refcount = 0;
974 }
975 }
976 else
977 {
978 /* Don't need any dynamic relocations at all. */
979 h->plt.refcount = 0;
980 h->got.refcount = 0;
981 }
982 }
983
984
985 static void
986 elf_xtensa_hide_symbol (struct bfd_link_info *info,
987 struct elf_link_hash_entry *h,
988 bfd_boolean force_local)
989 {
990 /* For a shared link, move the plt refcount to the got refcount to leave
991 space for RELATIVE relocs. */
992 elf_xtensa_make_sym_local (info, h);
993
994 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
995 }
996
997
998 /* Return the section that should be marked against GC for a given
999 relocation. */
1000
1001 static asection *
1002 elf_xtensa_gc_mark_hook (asection *sec,
1003 struct bfd_link_info *info,
1004 Elf_Internal_Rela *rel,
1005 struct elf_link_hash_entry *h,
1006 Elf_Internal_Sym *sym)
1007 {
1008 /* Property sections are marked "KEEP" in the linker scripts, but they
1009 should not cause other sections to be marked. (This approach relies
1010 on elf_xtensa_discard_info to remove property table entries that
1011 describe discarded sections. Alternatively, it might be more
1012 efficient to avoid using "KEEP" in the linker scripts and instead use
1013 the gc_mark_extra_sections hook to mark only the property sections
1014 that describe marked sections. That alternative does not work well
1015 with the current property table sections, which do not correspond
1016 one-to-one with the sections they describe, but that should be fixed
1017 someday.) */
1018 if (xtensa_is_property_section (sec))
1019 return NULL;
1020
1021 if (h != NULL)
1022 switch (ELF32_R_TYPE (rel->r_info))
1023 {
1024 case R_XTENSA_GNU_VTINHERIT:
1025 case R_XTENSA_GNU_VTENTRY:
1026 return NULL;
1027 }
1028
1029 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1030 }
1031
1032
1033 /* Update the GOT & PLT entry reference counts
1034 for the section being removed. */
1035
1036 static bfd_boolean
1037 elf_xtensa_gc_sweep_hook (bfd *abfd,
1038 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1039 asection *sec,
1040 const Elf_Internal_Rela *relocs)
1041 {
1042 Elf_Internal_Shdr *symtab_hdr;
1043 struct elf_link_hash_entry **sym_hashes;
1044 bfd_signed_vma *local_got_refcounts;
1045 const Elf_Internal_Rela *rel, *relend;
1046
1047 if ((sec->flags & SEC_ALLOC) == 0)
1048 return TRUE;
1049
1050 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1051 sym_hashes = elf_sym_hashes (abfd);
1052 local_got_refcounts = elf_local_got_refcounts (abfd);
1053
1054 relend = relocs + sec->reloc_count;
1055 for (rel = relocs; rel < relend; rel++)
1056 {
1057 unsigned long r_symndx;
1058 unsigned int r_type;
1059 struct elf_link_hash_entry *h = NULL;
1060
1061 r_symndx = ELF32_R_SYM (rel->r_info);
1062 if (r_symndx >= symtab_hdr->sh_info)
1063 {
1064 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1065 while (h->root.type == bfd_link_hash_indirect
1066 || h->root.type == bfd_link_hash_warning)
1067 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1068 }
1069
1070 r_type = ELF32_R_TYPE (rel->r_info);
1071 switch (r_type)
1072 {
1073 case R_XTENSA_32:
1074 if (h == NULL)
1075 goto local_literal;
1076 if (h->got.refcount > 0)
1077 h->got.refcount--;
1078 break;
1079
1080 case R_XTENSA_PLT:
1081 if (h == NULL)
1082 goto local_literal;
1083 if (h->plt.refcount > 0)
1084 h->plt.refcount--;
1085 break;
1086
1087 local_literal:
1088 if (local_got_refcounts[r_symndx] > 0)
1089 local_got_refcounts[r_symndx] -= 1;
1090 break;
1091
1092 default:
1093 break;
1094 }
1095 }
1096
1097 return TRUE;
1098 }
1099
1100
1101 /* Create all the dynamic sections. */
1102
1103 static bfd_boolean
1104 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1105 {
1106 struct elf_xtensa_link_hash_table *htab;
1107 flagword flags, noalloc_flags;
1108
1109 htab = elf_xtensa_hash_table (info);
1110
1111 /* First do all the standard stuff. */
1112 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1113 return FALSE;
1114 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1115 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1116 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1117 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
1118
1119 /* Create any extra PLT sections in case check_relocs has already
1120 been called on all the non-dynamic input files. */
1121 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1122 return FALSE;
1123
1124 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1125 | SEC_LINKER_CREATED | SEC_READONLY);
1126 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1127
1128 /* Mark the ".got.plt" section READONLY. */
1129 if (htab->sgotplt == NULL
1130 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1131 return FALSE;
1132
1133 /* Create ".rela.got". */
1134 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1135 if (htab->srelgot == NULL
1136 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
1137 return FALSE;
1138
1139 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1140 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1141 if (htab->sgotloc == NULL
1142 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1143 return FALSE;
1144
1145 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1146 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1147 noalloc_flags);
1148 if (htab->spltlittbl == NULL
1149 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1150 return FALSE;
1151
1152 return TRUE;
1153 }
1154
1155
1156 static bfd_boolean
1157 add_extra_plt_sections (struct bfd_link_info *info, int count)
1158 {
1159 bfd *dynobj = elf_hash_table (info)->dynobj;
1160 int chunk;
1161
1162 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1163 ".got.plt" sections. */
1164 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1165 {
1166 char *sname;
1167 flagword flags;
1168 asection *s;
1169
1170 /* Stop when we find a section has already been created. */
1171 if (elf_xtensa_get_plt_section (info, chunk))
1172 break;
1173
1174 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1175 | SEC_LINKER_CREATED | SEC_READONLY);
1176
1177 sname = (char *) bfd_malloc (10);
1178 sprintf (sname, ".plt.%u", chunk);
1179 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
1180 if (s == NULL
1181 || ! bfd_set_section_alignment (dynobj, s, 2))
1182 return FALSE;
1183
1184 sname = (char *) bfd_malloc (14);
1185 sprintf (sname, ".got.plt.%u", chunk);
1186 s = bfd_make_section_with_flags (dynobj, sname, flags);
1187 if (s == NULL
1188 || ! bfd_set_section_alignment (dynobj, s, 2))
1189 return FALSE;
1190 }
1191
1192 return TRUE;
1193 }
1194
1195
1196 /* Adjust a symbol defined by a dynamic object and referenced by a
1197 regular object. The current definition is in some section of the
1198 dynamic object, but we're not including those sections. We have to
1199 change the definition to something the rest of the link can
1200 understand. */
1201
1202 static bfd_boolean
1203 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1204 struct elf_link_hash_entry *h)
1205 {
1206 /* If this is a weak symbol, and there is a real definition, the
1207 processor independent code will have arranged for us to see the
1208 real definition first, and we can just use the same value. */
1209 if (h->u.weakdef)
1210 {
1211 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1212 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1213 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1214 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1215 return TRUE;
1216 }
1217
1218 /* This is a reference to a symbol defined by a dynamic object. The
1219 reference must go through the GOT, so there's no need for COPY relocs,
1220 .dynbss, etc. */
1221
1222 return TRUE;
1223 }
1224
1225
1226 static bfd_boolean
1227 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1228 {
1229 struct bfd_link_info *info;
1230 struct elf_xtensa_link_hash_table *htab;
1231 bfd_boolean is_dynamic;
1232
1233 if (h->root.type == bfd_link_hash_indirect)
1234 return TRUE;
1235
1236 if (h->root.type == bfd_link_hash_warning)
1237 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1238
1239 info = (struct bfd_link_info *) arg;
1240 htab = elf_xtensa_hash_table (info);
1241
1242 is_dynamic = elf_xtensa_dynamic_symbol_p (h, info);
1243
1244 if (! is_dynamic)
1245 elf_xtensa_make_sym_local (info, h);
1246
1247 if (h->plt.refcount > 0)
1248 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1249
1250 if (h->got.refcount > 0)
1251 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1252
1253 return TRUE;
1254 }
1255
1256
1257 static void
1258 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1259 {
1260 struct elf_xtensa_link_hash_table *htab;
1261 bfd *i;
1262
1263 htab = elf_xtensa_hash_table (info);
1264
1265 for (i = info->input_bfds; i; i = i->link_next)
1266 {
1267 bfd_signed_vma *local_got_refcounts;
1268 bfd_size_type j, cnt;
1269 Elf_Internal_Shdr *symtab_hdr;
1270
1271 local_got_refcounts = elf_local_got_refcounts (i);
1272 if (!local_got_refcounts)
1273 continue;
1274
1275 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1276 cnt = symtab_hdr->sh_info;
1277
1278 for (j = 0; j < cnt; ++j)
1279 {
1280 if (local_got_refcounts[j] > 0)
1281 htab->srelgot->size += (local_got_refcounts[j]
1282 * sizeof (Elf32_External_Rela));
1283 }
1284 }
1285 }
1286
1287
1288 /* Set the sizes of the dynamic sections. */
1289
1290 static bfd_boolean
1291 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1292 struct bfd_link_info *info)
1293 {
1294 struct elf_xtensa_link_hash_table *htab;
1295 bfd *dynobj, *abfd;
1296 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1297 bfd_boolean relplt, relgot;
1298 int plt_entries, plt_chunks, chunk;
1299
1300 plt_entries = 0;
1301 plt_chunks = 0;
1302
1303 htab = elf_xtensa_hash_table (info);
1304 dynobj = elf_hash_table (info)->dynobj;
1305 if (dynobj == NULL)
1306 abort ();
1307 srelgot = htab->srelgot;
1308 srelplt = htab->srelplt;
1309
1310 if (elf_hash_table (info)->dynamic_sections_created)
1311 {
1312 BFD_ASSERT (htab->srelgot != NULL
1313 && htab->srelplt != NULL
1314 && htab->sgot != NULL
1315 && htab->spltlittbl != NULL
1316 && htab->sgotloc != NULL);
1317
1318 /* Set the contents of the .interp section to the interpreter. */
1319 if (info->executable)
1320 {
1321 s = bfd_get_section_by_name (dynobj, ".interp");
1322 if (s == NULL)
1323 abort ();
1324 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1325 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1326 }
1327
1328 /* Allocate room for one word in ".got". */
1329 htab->sgot->size = 4;
1330
1331 /* Allocate space in ".rela.got" for literals that reference global
1332 symbols and space in ".rela.plt" for literals that have PLT
1333 entries. */
1334 elf_link_hash_traverse (elf_hash_table (info),
1335 elf_xtensa_allocate_dynrelocs,
1336 (void *) info);
1337
1338 /* If we are generating a shared object, we also need space in
1339 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1340 reference local symbols. */
1341 if (info->shared)
1342 elf_xtensa_allocate_local_got_size (info);
1343
1344 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1345 each PLT entry, we need the PLT code plus a 4-byte literal.
1346 For each chunk of ".plt", we also need two more 4-byte
1347 literals, two corresponding entries in ".rela.got", and an
1348 8-byte entry in ".xt.lit.plt". */
1349 spltlittbl = htab->spltlittbl;
1350 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1351 plt_chunks =
1352 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1353
1354 /* Iterate over all the PLT chunks, including any extra sections
1355 created earlier because the initial count of PLT relocations
1356 was an overestimate. */
1357 for (chunk = 0;
1358 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1359 chunk++)
1360 {
1361 int chunk_entries;
1362
1363 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1364 BFD_ASSERT (sgotplt != NULL);
1365
1366 if (chunk < plt_chunks - 1)
1367 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1368 else if (chunk == plt_chunks - 1)
1369 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1370 else
1371 chunk_entries = 0;
1372
1373 if (chunk_entries != 0)
1374 {
1375 sgotplt->size = 4 * (chunk_entries + 2);
1376 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1377 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1378 spltlittbl->size += 8;
1379 }
1380 else
1381 {
1382 sgotplt->size = 0;
1383 splt->size = 0;
1384 }
1385 }
1386
1387 /* Allocate space in ".got.loc" to match the total size of all the
1388 literal tables. */
1389 sgotloc = htab->sgotloc;
1390 sgotloc->size = spltlittbl->size;
1391 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1392 {
1393 if (abfd->flags & DYNAMIC)
1394 continue;
1395 for (s = abfd->sections; s != NULL; s = s->next)
1396 {
1397 if (! elf_discarded_section (s)
1398 && xtensa_is_littable_section (s)
1399 && s != spltlittbl)
1400 sgotloc->size += s->size;
1401 }
1402 }
1403 }
1404
1405 /* Allocate memory for dynamic sections. */
1406 relplt = FALSE;
1407 relgot = FALSE;
1408 for (s = dynobj->sections; s != NULL; s = s->next)
1409 {
1410 const char *name;
1411
1412 if ((s->flags & SEC_LINKER_CREATED) == 0)
1413 continue;
1414
1415 /* It's OK to base decisions on the section name, because none
1416 of the dynobj section names depend upon the input files. */
1417 name = bfd_get_section_name (dynobj, s);
1418
1419 if (CONST_STRNEQ (name, ".rela"))
1420 {
1421 if (s->size != 0)
1422 {
1423 if (strcmp (name, ".rela.plt") == 0)
1424 relplt = TRUE;
1425 else if (strcmp (name, ".rela.got") == 0)
1426 relgot = TRUE;
1427
1428 /* We use the reloc_count field as a counter if we need
1429 to copy relocs into the output file. */
1430 s->reloc_count = 0;
1431 }
1432 }
1433 else if (! CONST_STRNEQ (name, ".plt.")
1434 && ! CONST_STRNEQ (name, ".got.plt.")
1435 && strcmp (name, ".got") != 0
1436 && strcmp (name, ".plt") != 0
1437 && strcmp (name, ".got.plt") != 0
1438 && strcmp (name, ".xt.lit.plt") != 0
1439 && strcmp (name, ".got.loc") != 0)
1440 {
1441 /* It's not one of our sections, so don't allocate space. */
1442 continue;
1443 }
1444
1445 if (s->size == 0)
1446 {
1447 /* If we don't need this section, strip it from the output
1448 file. We must create the ".plt*" and ".got.plt*"
1449 sections in create_dynamic_sections and/or check_relocs
1450 based on a conservative estimate of the PLT relocation
1451 count, because the sections must be created before the
1452 linker maps input sections to output sections. The
1453 linker does that before size_dynamic_sections, where we
1454 compute the exact size of the PLT, so there may be more
1455 of these sections than are actually needed. */
1456 s->flags |= SEC_EXCLUDE;
1457 }
1458 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1459 {
1460 /* Allocate memory for the section contents. */
1461 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1462 if (s->contents == NULL)
1463 return FALSE;
1464 }
1465 }
1466
1467 if (elf_hash_table (info)->dynamic_sections_created)
1468 {
1469 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1470 known until finish_dynamic_sections, but we need to get the relocs
1471 in place before they are sorted. */
1472 for (chunk = 0; chunk < plt_chunks; chunk++)
1473 {
1474 Elf_Internal_Rela irela;
1475 bfd_byte *loc;
1476
1477 irela.r_offset = 0;
1478 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1479 irela.r_addend = 0;
1480
1481 loc = (srelgot->contents
1482 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1483 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1484 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1485 loc + sizeof (Elf32_External_Rela));
1486 srelgot->reloc_count += 2;
1487 }
1488
1489 /* Add some entries to the .dynamic section. We fill in the
1490 values later, in elf_xtensa_finish_dynamic_sections, but we
1491 must add the entries now so that we get the correct size for
1492 the .dynamic section. The DT_DEBUG entry is filled in by the
1493 dynamic linker and used by the debugger. */
1494 #define add_dynamic_entry(TAG, VAL) \
1495 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1496
1497 if (info->executable)
1498 {
1499 if (!add_dynamic_entry (DT_DEBUG, 0))
1500 return FALSE;
1501 }
1502
1503 if (relplt)
1504 {
1505 if (!add_dynamic_entry (DT_PLTGOT, 0)
1506 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1507 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1508 || !add_dynamic_entry (DT_JMPREL, 0))
1509 return FALSE;
1510 }
1511
1512 if (relgot)
1513 {
1514 if (!add_dynamic_entry (DT_RELA, 0)
1515 || !add_dynamic_entry (DT_RELASZ, 0)
1516 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1517 return FALSE;
1518 }
1519
1520 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1521 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1522 return FALSE;
1523 }
1524 #undef add_dynamic_entry
1525
1526 return TRUE;
1527 }
1528
1529 \f
1530 /* Perform the specified relocation. The instruction at (contents + address)
1531 is modified to set one operand to represent the value in "relocation". The
1532 operand position is determined by the relocation type recorded in the
1533 howto. */
1534
1535 #define CALL_SEGMENT_BITS (30)
1536 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1537
1538 static bfd_reloc_status_type
1539 elf_xtensa_do_reloc (reloc_howto_type *howto,
1540 bfd *abfd,
1541 asection *input_section,
1542 bfd_vma relocation,
1543 bfd_byte *contents,
1544 bfd_vma address,
1545 bfd_boolean is_weak_undef,
1546 char **error_message)
1547 {
1548 xtensa_format fmt;
1549 xtensa_opcode opcode;
1550 xtensa_isa isa = xtensa_default_isa;
1551 static xtensa_insnbuf ibuff = NULL;
1552 static xtensa_insnbuf sbuff = NULL;
1553 bfd_vma self_address = 0;
1554 bfd_size_type input_size;
1555 int opnd, slot;
1556 uint32 newval;
1557
1558 if (!ibuff)
1559 {
1560 ibuff = xtensa_insnbuf_alloc (isa);
1561 sbuff = xtensa_insnbuf_alloc (isa);
1562 }
1563
1564 input_size = bfd_get_section_limit (abfd, input_section);
1565
1566 switch (howto->type)
1567 {
1568 case R_XTENSA_NONE:
1569 case R_XTENSA_DIFF8:
1570 case R_XTENSA_DIFF16:
1571 case R_XTENSA_DIFF32:
1572 return bfd_reloc_ok;
1573
1574 case R_XTENSA_ASM_EXPAND:
1575 if (!is_weak_undef)
1576 {
1577 /* Check for windowed CALL across a 1GB boundary. */
1578 xtensa_opcode opcode =
1579 get_expanded_call_opcode (contents + address,
1580 input_size - address, 0);
1581 if (is_windowed_call_opcode (opcode))
1582 {
1583 self_address = (input_section->output_section->vma
1584 + input_section->output_offset
1585 + address);
1586 if ((self_address >> CALL_SEGMENT_BITS)
1587 != (relocation >> CALL_SEGMENT_BITS))
1588 {
1589 *error_message = "windowed longcall crosses 1GB boundary; "
1590 "return may fail";
1591 return bfd_reloc_dangerous;
1592 }
1593 }
1594 }
1595 return bfd_reloc_ok;
1596
1597 case R_XTENSA_ASM_SIMPLIFY:
1598 {
1599 /* Convert the L32R/CALLX to CALL. */
1600 bfd_reloc_status_type retval =
1601 elf_xtensa_do_asm_simplify (contents, address, input_size,
1602 error_message);
1603 if (retval != bfd_reloc_ok)
1604 return bfd_reloc_dangerous;
1605
1606 /* The CALL needs to be relocated. Continue below for that part. */
1607 address += 3;
1608 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1609 }
1610 break;
1611
1612 case R_XTENSA_32:
1613 case R_XTENSA_PLT:
1614 {
1615 bfd_vma x;
1616 x = bfd_get_32 (abfd, contents + address);
1617 x = x + relocation;
1618 bfd_put_32 (abfd, x, contents + address);
1619 }
1620 return bfd_reloc_ok;
1621 }
1622
1623 /* Only instruction slot-specific relocations handled below.... */
1624 slot = get_relocation_slot (howto->type);
1625 if (slot == XTENSA_UNDEFINED)
1626 {
1627 *error_message = "unexpected relocation";
1628 return bfd_reloc_dangerous;
1629 }
1630
1631 /* Read the instruction into a buffer and decode the opcode. */
1632 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1633 input_size - address);
1634 fmt = xtensa_format_decode (isa, ibuff);
1635 if (fmt == XTENSA_UNDEFINED)
1636 {
1637 *error_message = "cannot decode instruction format";
1638 return bfd_reloc_dangerous;
1639 }
1640
1641 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1642
1643 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1644 if (opcode == XTENSA_UNDEFINED)
1645 {
1646 *error_message = "cannot decode instruction opcode";
1647 return bfd_reloc_dangerous;
1648 }
1649
1650 /* Check for opcode-specific "alternate" relocations. */
1651 if (is_alt_relocation (howto->type))
1652 {
1653 if (opcode == get_l32r_opcode ())
1654 {
1655 /* Handle the special-case of non-PC-relative L32R instructions. */
1656 bfd *output_bfd = input_section->output_section->owner;
1657 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1658 if (!lit4_sec)
1659 {
1660 *error_message = "relocation references missing .lit4 section";
1661 return bfd_reloc_dangerous;
1662 }
1663 self_address = ((lit4_sec->vma & ~0xfff)
1664 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1665 newval = relocation;
1666 opnd = 1;
1667 }
1668 else if (opcode == get_const16_opcode ())
1669 {
1670 /* ALT used for high 16 bits. */
1671 newval = relocation >> 16;
1672 opnd = 1;
1673 }
1674 else
1675 {
1676 /* No other "alternate" relocations currently defined. */
1677 *error_message = "unexpected relocation";
1678 return bfd_reloc_dangerous;
1679 }
1680 }
1681 else /* Not an "alternate" relocation.... */
1682 {
1683 if (opcode == get_const16_opcode ())
1684 {
1685 newval = relocation & 0xffff;
1686 opnd = 1;
1687 }
1688 else
1689 {
1690 /* ...normal PC-relative relocation.... */
1691
1692 /* Determine which operand is being relocated. */
1693 opnd = get_relocation_opnd (opcode, howto->type);
1694 if (opnd == XTENSA_UNDEFINED)
1695 {
1696 *error_message = "unexpected relocation";
1697 return bfd_reloc_dangerous;
1698 }
1699
1700 if (!howto->pc_relative)
1701 {
1702 *error_message = "expected PC-relative relocation";
1703 return bfd_reloc_dangerous;
1704 }
1705
1706 /* Calculate the PC address for this instruction. */
1707 self_address = (input_section->output_section->vma
1708 + input_section->output_offset
1709 + address);
1710
1711 newval = relocation;
1712 }
1713 }
1714
1715 /* Apply the relocation. */
1716 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1717 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1718 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1719 sbuff, newval))
1720 {
1721 const char *opname = xtensa_opcode_name (isa, opcode);
1722 const char *msg;
1723
1724 msg = "cannot encode";
1725 if (is_direct_call_opcode (opcode))
1726 {
1727 if ((relocation & 0x3) != 0)
1728 msg = "misaligned call target";
1729 else
1730 msg = "call target out of range";
1731 }
1732 else if (opcode == get_l32r_opcode ())
1733 {
1734 if ((relocation & 0x3) != 0)
1735 msg = "misaligned literal target";
1736 else if (is_alt_relocation (howto->type))
1737 msg = "literal target out of range (too many literals)";
1738 else if (self_address > relocation)
1739 msg = "literal target out of range (try using text-section-literals)";
1740 else
1741 msg = "literal placed after use";
1742 }
1743
1744 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
1745 return bfd_reloc_dangerous;
1746 }
1747
1748 /* Check for calls across 1GB boundaries. */
1749 if (is_direct_call_opcode (opcode)
1750 && is_windowed_call_opcode (opcode))
1751 {
1752 if ((self_address >> CALL_SEGMENT_BITS)
1753 != (relocation >> CALL_SEGMENT_BITS))
1754 {
1755 *error_message =
1756 "windowed call crosses 1GB boundary; return may fail";
1757 return bfd_reloc_dangerous;
1758 }
1759 }
1760
1761 /* Write the modified instruction back out of the buffer. */
1762 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1763 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1764 input_size - address);
1765 return bfd_reloc_ok;
1766 }
1767
1768
1769 static char *
1770 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
1771 {
1772 /* To reduce the size of the memory leak,
1773 we only use a single message buffer. */
1774 static bfd_size_type alloc_size = 0;
1775 static char *message = NULL;
1776 bfd_size_type orig_len, len = 0;
1777 bfd_boolean is_append;
1778
1779 VA_OPEN (ap, arglen);
1780 VA_FIXEDARG (ap, const char *, origmsg);
1781
1782 is_append = (origmsg == message);
1783
1784 orig_len = strlen (origmsg);
1785 len = orig_len + strlen (fmt) + arglen + 20;
1786 if (len > alloc_size)
1787 {
1788 message = (char *) bfd_realloc (message, len);
1789 alloc_size = len;
1790 }
1791 if (!is_append)
1792 memcpy (message, origmsg, orig_len);
1793 vsprintf (message + orig_len, fmt, ap);
1794 VA_CLOSE (ap);
1795 return message;
1796 }
1797
1798
1799 /* This function is registered as the "special_function" in the
1800 Xtensa howto for handling simplify operations.
1801 bfd_perform_relocation / bfd_install_relocation use it to
1802 perform (install) the specified relocation. Since this replaces the code
1803 in bfd_perform_relocation, it is basically an Xtensa-specific,
1804 stripped-down version of bfd_perform_relocation. */
1805
1806 static bfd_reloc_status_type
1807 bfd_elf_xtensa_reloc (bfd *abfd,
1808 arelent *reloc_entry,
1809 asymbol *symbol,
1810 void *data,
1811 asection *input_section,
1812 bfd *output_bfd,
1813 char **error_message)
1814 {
1815 bfd_vma relocation;
1816 bfd_reloc_status_type flag;
1817 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1818 bfd_vma output_base = 0;
1819 reloc_howto_type *howto = reloc_entry->howto;
1820 asection *reloc_target_output_section;
1821 bfd_boolean is_weak_undef;
1822
1823 if (!xtensa_default_isa)
1824 xtensa_default_isa = xtensa_isa_init (0, 0);
1825
1826 /* ELF relocs are against symbols. If we are producing relocatable
1827 output, and the reloc is against an external symbol, the resulting
1828 reloc will also be against the same symbol. In such a case, we
1829 don't want to change anything about the way the reloc is handled,
1830 since it will all be done at final link time. This test is similar
1831 to what bfd_elf_generic_reloc does except that it lets relocs with
1832 howto->partial_inplace go through even if the addend is non-zero.
1833 (The real problem is that partial_inplace is set for XTENSA_32
1834 relocs to begin with, but that's a long story and there's little we
1835 can do about it now....) */
1836
1837 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
1838 {
1839 reloc_entry->address += input_section->output_offset;
1840 return bfd_reloc_ok;
1841 }
1842
1843 /* Is the address of the relocation really within the section? */
1844 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1845 return bfd_reloc_outofrange;
1846
1847 /* Work out which section the relocation is targeted at and the
1848 initial relocation command value. */
1849
1850 /* Get symbol value. (Common symbols are special.) */
1851 if (bfd_is_com_section (symbol->section))
1852 relocation = 0;
1853 else
1854 relocation = symbol->value;
1855
1856 reloc_target_output_section = symbol->section->output_section;
1857
1858 /* Convert input-section-relative symbol value to absolute. */
1859 if ((output_bfd && !howto->partial_inplace)
1860 || reloc_target_output_section == NULL)
1861 output_base = 0;
1862 else
1863 output_base = reloc_target_output_section->vma;
1864
1865 relocation += output_base + symbol->section->output_offset;
1866
1867 /* Add in supplied addend. */
1868 relocation += reloc_entry->addend;
1869
1870 /* Here the variable relocation holds the final address of the
1871 symbol we are relocating against, plus any addend. */
1872 if (output_bfd)
1873 {
1874 if (!howto->partial_inplace)
1875 {
1876 /* This is a partial relocation, and we want to apply the relocation
1877 to the reloc entry rather than the raw data. Everything except
1878 relocations against section symbols has already been handled
1879 above. */
1880
1881 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1882 reloc_entry->addend = relocation;
1883 reloc_entry->address += input_section->output_offset;
1884 return bfd_reloc_ok;
1885 }
1886 else
1887 {
1888 reloc_entry->address += input_section->output_offset;
1889 reloc_entry->addend = 0;
1890 }
1891 }
1892
1893 is_weak_undef = (bfd_is_und_section (symbol->section)
1894 && (symbol->flags & BSF_WEAK) != 0);
1895 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1896 (bfd_byte *) data, (bfd_vma) octets,
1897 is_weak_undef, error_message);
1898
1899 if (flag == bfd_reloc_dangerous)
1900 {
1901 /* Add the symbol name to the error message. */
1902 if (! *error_message)
1903 *error_message = "";
1904 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1905 strlen (symbol->name) + 17,
1906 symbol->name,
1907 (unsigned long) reloc_entry->addend);
1908 }
1909
1910 return flag;
1911 }
1912
1913
1914 /* Set up an entry in the procedure linkage table. */
1915
1916 static bfd_vma
1917 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
1918 bfd *output_bfd,
1919 unsigned reloc_index)
1920 {
1921 asection *splt, *sgotplt;
1922 bfd_vma plt_base, got_base;
1923 bfd_vma code_offset, lit_offset;
1924 int chunk;
1925
1926 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1927 splt = elf_xtensa_get_plt_section (info, chunk);
1928 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1929 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1930
1931 plt_base = splt->output_section->vma + splt->output_offset;
1932 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1933
1934 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1935 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1936
1937 /* Fill in the literal entry. This is the offset of the dynamic
1938 relocation entry. */
1939 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1940 sgotplt->contents + lit_offset);
1941
1942 /* Fill in the entry in the procedure linkage table. */
1943 memcpy (splt->contents + code_offset,
1944 (bfd_big_endian (output_bfd)
1945 ? elf_xtensa_be_plt_entry
1946 : elf_xtensa_le_plt_entry),
1947 PLT_ENTRY_SIZE);
1948 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1949 plt_base + code_offset + 3),
1950 splt->contents + code_offset + 4);
1951 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1952 plt_base + code_offset + 6),
1953 splt->contents + code_offset + 7);
1954 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1955 plt_base + code_offset + 9),
1956 splt->contents + code_offset + 10);
1957
1958 return plt_base + code_offset;
1959 }
1960
1961
1962 /* Relocate an Xtensa ELF section. This is invoked by the linker for
1963 both relocatable and final links. */
1964
1965 static bfd_boolean
1966 elf_xtensa_relocate_section (bfd *output_bfd,
1967 struct bfd_link_info *info,
1968 bfd *input_bfd,
1969 asection *input_section,
1970 bfd_byte *contents,
1971 Elf_Internal_Rela *relocs,
1972 Elf_Internal_Sym *local_syms,
1973 asection **local_sections)
1974 {
1975 struct elf_xtensa_link_hash_table *htab;
1976 Elf_Internal_Shdr *symtab_hdr;
1977 Elf_Internal_Rela *rel;
1978 Elf_Internal_Rela *relend;
1979 struct elf_link_hash_entry **sym_hashes;
1980 property_table_entry *lit_table = 0;
1981 int ltblsize = 0;
1982 char *error_message = NULL;
1983 bfd_size_type input_size;
1984
1985 if (!xtensa_default_isa)
1986 xtensa_default_isa = xtensa_isa_init (0, 0);
1987
1988 htab = elf_xtensa_hash_table (info);
1989 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1990 sym_hashes = elf_sym_hashes (input_bfd);
1991
1992 if (elf_hash_table (info)->dynamic_sections_created)
1993 {
1994 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
1995 &lit_table, XTENSA_LIT_SEC_NAME,
1996 TRUE);
1997 if (ltblsize < 0)
1998 return FALSE;
1999 }
2000
2001 input_size = bfd_get_section_limit (input_bfd, input_section);
2002
2003 rel = relocs;
2004 relend = relocs + input_section->reloc_count;
2005 for (; rel < relend; rel++)
2006 {
2007 int r_type;
2008 reloc_howto_type *howto;
2009 unsigned long r_symndx;
2010 struct elf_link_hash_entry *h;
2011 Elf_Internal_Sym *sym;
2012 asection *sec;
2013 bfd_vma relocation;
2014 bfd_reloc_status_type r;
2015 bfd_boolean is_weak_undef;
2016 bfd_boolean unresolved_reloc;
2017 bfd_boolean warned;
2018
2019 r_type = ELF32_R_TYPE (rel->r_info);
2020 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2021 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2022 continue;
2023
2024 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2025 {
2026 bfd_set_error (bfd_error_bad_value);
2027 return FALSE;
2028 }
2029 howto = &elf_howto_table[r_type];
2030
2031 r_symndx = ELF32_R_SYM (rel->r_info);
2032
2033 h = NULL;
2034 sym = NULL;
2035 sec = NULL;
2036 is_weak_undef = FALSE;
2037 unresolved_reloc = FALSE;
2038 warned = FALSE;
2039
2040 if (howto->partial_inplace && !info->relocatable)
2041 {
2042 /* Because R_XTENSA_32 was made partial_inplace to fix some
2043 problems with DWARF info in partial links, there may be
2044 an addend stored in the contents. Take it out of there
2045 and move it back into the addend field of the reloc. */
2046 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2047 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2048 }
2049
2050 if (r_symndx < symtab_hdr->sh_info)
2051 {
2052 sym = local_syms + r_symndx;
2053 sec = local_sections[r_symndx];
2054 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2055 }
2056 else
2057 {
2058 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2059 r_symndx, symtab_hdr, sym_hashes,
2060 h, sec, relocation,
2061 unresolved_reloc, warned);
2062
2063 if (relocation == 0
2064 && !unresolved_reloc
2065 && h->root.type == bfd_link_hash_undefweak)
2066 is_weak_undef = TRUE;
2067 }
2068
2069 if (sec != NULL && elf_discarded_section (sec))
2070 {
2071 /* For relocs against symbols from removed linkonce sections,
2072 or sections discarded by a linker script, we just want the
2073 section contents zeroed. Avoid any special processing. */
2074 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2075 rel->r_info = 0;
2076 rel->r_addend = 0;
2077 continue;
2078 }
2079
2080 if (info->relocatable)
2081 {
2082 /* This is a relocatable link.
2083 1) If the reloc is against a section symbol, adjust
2084 according to the output section.
2085 2) If there is a new target for this relocation,
2086 the new target will be in the same output section.
2087 We adjust the relocation by the output section
2088 difference. */
2089
2090 if (relaxing_section)
2091 {
2092 /* Check if this references a section in another input file. */
2093 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2094 contents))
2095 return FALSE;
2096 r_type = ELF32_R_TYPE (rel->r_info);
2097 }
2098
2099 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2100 {
2101 char *error_message = NULL;
2102 /* Convert ASM_SIMPLIFY into the simpler relocation
2103 so that they never escape a relaxing link. */
2104 r = contract_asm_expansion (contents, input_size, rel,
2105 &error_message);
2106 if (r != bfd_reloc_ok)
2107 {
2108 if (!((*info->callbacks->reloc_dangerous)
2109 (info, error_message, input_bfd, input_section,
2110 rel->r_offset)))
2111 return FALSE;
2112 }
2113 r_type = ELF32_R_TYPE (rel->r_info);
2114 }
2115
2116 /* This is a relocatable link, so we don't have to change
2117 anything unless the reloc is against a section symbol,
2118 in which case we have to adjust according to where the
2119 section symbol winds up in the output section. */
2120 if (r_symndx < symtab_hdr->sh_info)
2121 {
2122 sym = local_syms + r_symndx;
2123 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2124 {
2125 sec = local_sections[r_symndx];
2126 rel->r_addend += sec->output_offset + sym->st_value;
2127 }
2128 }
2129
2130 /* If there is an addend with a partial_inplace howto,
2131 then move the addend to the contents. This is a hack
2132 to work around problems with DWARF in relocatable links
2133 with some previous version of BFD. Now we can't easily get
2134 rid of the hack without breaking backward compatibility.... */
2135 if (rel->r_addend)
2136 {
2137 howto = &elf_howto_table[r_type];
2138 if (howto->partial_inplace)
2139 {
2140 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2141 rel->r_addend, contents,
2142 rel->r_offset, FALSE,
2143 &error_message);
2144 if (r != bfd_reloc_ok)
2145 {
2146 if (!((*info->callbacks->reloc_dangerous)
2147 (info, error_message, input_bfd, input_section,
2148 rel->r_offset)))
2149 return FALSE;
2150 }
2151 rel->r_addend = 0;
2152 }
2153 }
2154
2155 /* Done with work for relocatable link; continue with next reloc. */
2156 continue;
2157 }
2158
2159 /* This is a final link. */
2160
2161 if (relaxing_section)
2162 {
2163 /* Check if this references a section in another input file. */
2164 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2165 &relocation);
2166
2167 /* Update some already cached values. */
2168 r_type = ELF32_R_TYPE (rel->r_info);
2169 howto = &elf_howto_table[r_type];
2170 }
2171
2172 /* Sanity check the address. */
2173 if (rel->r_offset >= input_size
2174 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2175 {
2176 (*_bfd_error_handler)
2177 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2178 input_bfd, input_section, rel->r_offset, input_size);
2179 bfd_set_error (bfd_error_bad_value);
2180 return FALSE;
2181 }
2182
2183 /* Generate dynamic relocations. */
2184 if (elf_hash_table (info)->dynamic_sections_created)
2185 {
2186 bfd_boolean dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2187
2188 if (dynamic_symbol && is_operand_relocation (r_type))
2189 {
2190 /* This is an error. The symbol's real value won't be known
2191 until runtime and it's likely to be out of range anyway. */
2192 const char *name = h->root.root.string;
2193 error_message = vsprint_msg ("invalid relocation for dynamic "
2194 "symbol", ": %s",
2195 strlen (name) + 2, name);
2196 if (!((*info->callbacks->reloc_dangerous)
2197 (info, error_message, input_bfd, input_section,
2198 rel->r_offset)))
2199 return FALSE;
2200 }
2201 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2202 && (input_section->flags & SEC_ALLOC) != 0
2203 && (dynamic_symbol || info->shared))
2204 {
2205 Elf_Internal_Rela outrel;
2206 bfd_byte *loc;
2207 asection *srel;
2208
2209 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2210 srel = htab->srelplt;
2211 else
2212 srel = htab->srelgot;
2213
2214 BFD_ASSERT (srel != NULL);
2215
2216 outrel.r_offset =
2217 _bfd_elf_section_offset (output_bfd, info,
2218 input_section, rel->r_offset);
2219
2220 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2221 memset (&outrel, 0, sizeof outrel);
2222 else
2223 {
2224 outrel.r_offset += (input_section->output_section->vma
2225 + input_section->output_offset);
2226
2227 /* Complain if the relocation is in a read-only section
2228 and not in a literal pool. */
2229 if ((input_section->flags & SEC_READONLY) != 0
2230 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2231 outrel.r_offset))
2232 {
2233 error_message =
2234 _("dynamic relocation in read-only section");
2235 if (!((*info->callbacks->reloc_dangerous)
2236 (info, error_message, input_bfd, input_section,
2237 rel->r_offset)))
2238 return FALSE;
2239 }
2240
2241 if (dynamic_symbol)
2242 {
2243 outrel.r_addend = rel->r_addend;
2244 rel->r_addend = 0;
2245
2246 if (r_type == R_XTENSA_32)
2247 {
2248 outrel.r_info =
2249 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2250 relocation = 0;
2251 }
2252 else /* r_type == R_XTENSA_PLT */
2253 {
2254 outrel.r_info =
2255 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2256
2257 /* Create the PLT entry and set the initial
2258 contents of the literal entry to the address of
2259 the PLT entry. */
2260 relocation =
2261 elf_xtensa_create_plt_entry (info, output_bfd,
2262 srel->reloc_count);
2263 }
2264 unresolved_reloc = FALSE;
2265 }
2266 else
2267 {
2268 /* Generate a RELATIVE relocation. */
2269 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2270 outrel.r_addend = 0;
2271 }
2272 }
2273
2274 loc = (srel->contents
2275 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2276 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2277 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2278 <= srel->size);
2279 }
2280 }
2281
2282 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2283 because such sections are not SEC_ALLOC and thus ld.so will
2284 not process them. */
2285 if (unresolved_reloc
2286 && !((input_section->flags & SEC_DEBUGGING) != 0
2287 && h->def_dynamic))
2288 {
2289 (*_bfd_error_handler)
2290 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2291 input_bfd,
2292 input_section,
2293 (long) rel->r_offset,
2294 howto->name,
2295 h->root.root.string);
2296 return FALSE;
2297 }
2298
2299 /* There's no point in calling bfd_perform_relocation here.
2300 Just go directly to our "special function". */
2301 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2302 relocation + rel->r_addend,
2303 contents, rel->r_offset, is_weak_undef,
2304 &error_message);
2305
2306 if (r != bfd_reloc_ok && !warned)
2307 {
2308 const char *name;
2309
2310 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2311 BFD_ASSERT (error_message != NULL);
2312
2313 if (h)
2314 name = h->root.root.string;
2315 else
2316 {
2317 name = bfd_elf_string_from_elf_section
2318 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2319 if (name && *name == '\0')
2320 name = bfd_section_name (input_bfd, sec);
2321 }
2322 if (name)
2323 {
2324 if (rel->r_addend == 0)
2325 error_message = vsprint_msg (error_message, ": %s",
2326 strlen (name) + 2, name);
2327 else
2328 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2329 strlen (name) + 22,
2330 name, (int)rel->r_addend);
2331 }
2332
2333 if (!((*info->callbacks->reloc_dangerous)
2334 (info, error_message, input_bfd, input_section,
2335 rel->r_offset)))
2336 return FALSE;
2337 }
2338 }
2339
2340 if (lit_table)
2341 free (lit_table);
2342
2343 input_section->reloc_done = TRUE;
2344
2345 return TRUE;
2346 }
2347
2348
2349 /* Finish up dynamic symbol handling. There's not much to do here since
2350 the PLT and GOT entries are all set up by relocate_section. */
2351
2352 static bfd_boolean
2353 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2354 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2355 struct elf_link_hash_entry *h,
2356 Elf_Internal_Sym *sym)
2357 {
2358 if (h->needs_plt && !h->def_regular)
2359 {
2360 /* Mark the symbol as undefined, rather than as defined in
2361 the .plt section. Leave the value alone. */
2362 sym->st_shndx = SHN_UNDEF;
2363 /* If the symbol is weak, we do need to clear the value.
2364 Otherwise, the PLT entry would provide a definition for
2365 the symbol even if the symbol wasn't defined anywhere,
2366 and so the symbol would never be NULL. */
2367 if (!h->ref_regular_nonweak)
2368 sym->st_value = 0;
2369 }
2370
2371 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2372 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2373 || h == elf_hash_table (info)->hgot)
2374 sym->st_shndx = SHN_ABS;
2375
2376 return TRUE;
2377 }
2378
2379
2380 /* Combine adjacent literal table entries in the output. Adjacent
2381 entries within each input section may have been removed during
2382 relaxation, but we repeat the process here, even though it's too late
2383 to shrink the output section, because it's important to minimize the
2384 number of literal table entries to reduce the start-up work for the
2385 runtime linker. Returns the number of remaining table entries or -1
2386 on error. */
2387
2388 static int
2389 elf_xtensa_combine_prop_entries (bfd *output_bfd,
2390 asection *sxtlit,
2391 asection *sgotloc)
2392 {
2393 bfd_byte *contents;
2394 property_table_entry *table;
2395 bfd_size_type section_size, sgotloc_size;
2396 bfd_vma offset;
2397 int n, m, num;
2398
2399 section_size = sxtlit->size;
2400 BFD_ASSERT (section_size % 8 == 0);
2401 num = section_size / 8;
2402
2403 sgotloc_size = sgotloc->size;
2404 if (sgotloc_size != section_size)
2405 {
2406 (*_bfd_error_handler)
2407 (_("internal inconsistency in size of .got.loc section"));
2408 return -1;
2409 }
2410
2411 table = bfd_malloc (num * sizeof (property_table_entry));
2412 if (table == 0)
2413 return -1;
2414
2415 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2416 propagates to the output section, where it doesn't really apply and
2417 where it breaks the following call to bfd_malloc_and_get_section. */
2418 sxtlit->flags &= ~SEC_IN_MEMORY;
2419
2420 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2421 {
2422 if (contents != 0)
2423 free (contents);
2424 free (table);
2425 return -1;
2426 }
2427
2428 /* There should never be any relocations left at this point, so this
2429 is quite a bit easier than what is done during relaxation. */
2430
2431 /* Copy the raw contents into a property table array and sort it. */
2432 offset = 0;
2433 for (n = 0; n < num; n++)
2434 {
2435 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2436 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2437 offset += 8;
2438 }
2439 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2440
2441 for (n = 0; n < num; n++)
2442 {
2443 bfd_boolean remove = FALSE;
2444
2445 if (table[n].size == 0)
2446 remove = TRUE;
2447 else if (n > 0 &&
2448 (table[n-1].address + table[n-1].size == table[n].address))
2449 {
2450 table[n-1].size += table[n].size;
2451 remove = TRUE;
2452 }
2453
2454 if (remove)
2455 {
2456 for (m = n; m < num - 1; m++)
2457 {
2458 table[m].address = table[m+1].address;
2459 table[m].size = table[m+1].size;
2460 }
2461
2462 n--;
2463 num--;
2464 }
2465 }
2466
2467 /* Copy the data back to the raw contents. */
2468 offset = 0;
2469 for (n = 0; n < num; n++)
2470 {
2471 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2472 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2473 offset += 8;
2474 }
2475
2476 /* Clear the removed bytes. */
2477 if ((bfd_size_type) (num * 8) < section_size)
2478 memset (&contents[num * 8], 0, section_size - num * 8);
2479
2480 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2481 section_size))
2482 return -1;
2483
2484 /* Copy the contents to ".got.loc". */
2485 memcpy (sgotloc->contents, contents, section_size);
2486
2487 free (contents);
2488 free (table);
2489 return num;
2490 }
2491
2492
2493 /* Finish up the dynamic sections. */
2494
2495 static bfd_boolean
2496 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2497 struct bfd_link_info *info)
2498 {
2499 struct elf_xtensa_link_hash_table *htab;
2500 bfd *dynobj;
2501 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
2502 Elf32_External_Dyn *dyncon, *dynconend;
2503 int num_xtlit_entries;
2504
2505 if (! elf_hash_table (info)->dynamic_sections_created)
2506 return TRUE;
2507
2508 htab = elf_xtensa_hash_table (info);
2509 dynobj = elf_hash_table (info)->dynobj;
2510 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2511 BFD_ASSERT (sdyn != NULL);
2512
2513 /* Set the first entry in the global offset table to the address of
2514 the dynamic section. */
2515 sgot = htab->sgot;
2516 if (sgot)
2517 {
2518 BFD_ASSERT (sgot->size == 4);
2519 if (sdyn == NULL)
2520 bfd_put_32 (output_bfd, 0, sgot->contents);
2521 else
2522 bfd_put_32 (output_bfd,
2523 sdyn->output_section->vma + sdyn->output_offset,
2524 sgot->contents);
2525 }
2526
2527 srelplt = htab->srelplt;
2528 if (srelplt && srelplt->size != 0)
2529 {
2530 asection *sgotplt, *srelgot, *spltlittbl;
2531 int chunk, plt_chunks, plt_entries;
2532 Elf_Internal_Rela irela;
2533 bfd_byte *loc;
2534 unsigned rtld_reloc;
2535
2536 srelgot = htab->srelgot;
2537 spltlittbl = htab->spltlittbl;
2538 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
2539
2540 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2541 of them follow immediately after.... */
2542 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2543 {
2544 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2545 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2546 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2547 break;
2548 }
2549 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2550
2551 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
2552 plt_chunks =
2553 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2554
2555 for (chunk = 0; chunk < plt_chunks; chunk++)
2556 {
2557 int chunk_entries = 0;
2558
2559 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2560 BFD_ASSERT (sgotplt != NULL);
2561
2562 /* Emit special RTLD relocations for the first two entries in
2563 each chunk of the .got.plt section. */
2564
2565 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2566 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2567 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2568 irela.r_offset = (sgotplt->output_section->vma
2569 + sgotplt->output_offset);
2570 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2571 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2572 rtld_reloc += 1;
2573 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2574
2575 /* Next literal immediately follows the first. */
2576 loc += sizeof (Elf32_External_Rela);
2577 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2578 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2579 irela.r_offset = (sgotplt->output_section->vma
2580 + sgotplt->output_offset + 4);
2581 /* Tell rtld to set value to object's link map. */
2582 irela.r_addend = 2;
2583 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2584 rtld_reloc += 1;
2585 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2586
2587 /* Fill in the literal table. */
2588 if (chunk < plt_chunks - 1)
2589 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2590 else
2591 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2592
2593 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
2594 bfd_put_32 (output_bfd,
2595 sgotplt->output_section->vma + sgotplt->output_offset,
2596 spltlittbl->contents + (chunk * 8) + 0);
2597 bfd_put_32 (output_bfd,
2598 8 + (chunk_entries * 4),
2599 spltlittbl->contents + (chunk * 8) + 4);
2600 }
2601
2602 /* All the dynamic relocations have been emitted at this point.
2603 Make sure the relocation sections are the correct size. */
2604 if (srelgot->size != (sizeof (Elf32_External_Rela)
2605 * srelgot->reloc_count)
2606 || srelplt->size != (sizeof (Elf32_External_Rela)
2607 * srelplt->reloc_count))
2608 abort ();
2609
2610 /* The .xt.lit.plt section has just been modified. This must
2611 happen before the code below which combines adjacent literal
2612 table entries, and the .xt.lit.plt contents have to be forced to
2613 the output here. */
2614 if (! bfd_set_section_contents (output_bfd,
2615 spltlittbl->output_section,
2616 spltlittbl->contents,
2617 spltlittbl->output_offset,
2618 spltlittbl->size))
2619 return FALSE;
2620 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2621 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2622 }
2623
2624 /* Combine adjacent literal table entries. */
2625 BFD_ASSERT (! info->relocatable);
2626 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2627 sgotloc = htab->sgotloc;
2628 BFD_ASSERT (sxtlit && sgotloc);
2629 num_xtlit_entries =
2630 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
2631 if (num_xtlit_entries < 0)
2632 return FALSE;
2633
2634 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2635 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
2636 for (; dyncon < dynconend; dyncon++)
2637 {
2638 Elf_Internal_Dyn dyn;
2639
2640 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2641
2642 switch (dyn.d_tag)
2643 {
2644 default:
2645 break;
2646
2647 case DT_XTENSA_GOT_LOC_SZ:
2648 dyn.d_un.d_val = num_xtlit_entries;
2649 break;
2650
2651 case DT_XTENSA_GOT_LOC_OFF:
2652 dyn.d_un.d_ptr = htab->sgotloc->vma;
2653 break;
2654
2655 case DT_PLTGOT:
2656 dyn.d_un.d_ptr = htab->sgot->vma;
2657 break;
2658
2659 case DT_JMPREL:
2660 dyn.d_un.d_ptr = htab->srelplt->vma;
2661 break;
2662
2663 case DT_PLTRELSZ:
2664 dyn.d_un.d_val = htab->srelplt->size;
2665 break;
2666
2667 case DT_RELASZ:
2668 /* Adjust RELASZ to not include JMPREL. This matches what
2669 glibc expects and what is done for several other ELF
2670 targets (e.g., i386, alpha), but the "correct" behavior
2671 seems to be unresolved. Since the linker script arranges
2672 for .rela.plt to follow all other relocation sections, we
2673 don't have to worry about changing the DT_RELA entry. */
2674 if (htab->srelplt)
2675 dyn.d_un.d_val -= htab->srelplt->size;
2676 break;
2677 }
2678
2679 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2680 }
2681
2682 return TRUE;
2683 }
2684
2685 \f
2686 /* Functions for dealing with the e_flags field. */
2687
2688 /* Merge backend specific data from an object file to the output
2689 object file when linking. */
2690
2691 static bfd_boolean
2692 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2693 {
2694 unsigned out_mach, in_mach;
2695 flagword out_flag, in_flag;
2696
2697 /* Check if we have the same endianess. */
2698 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2699 return FALSE;
2700
2701 /* Don't even pretend to support mixed-format linking. */
2702 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2703 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2704 return FALSE;
2705
2706 out_flag = elf_elfheader (obfd)->e_flags;
2707 in_flag = elf_elfheader (ibfd)->e_flags;
2708
2709 out_mach = out_flag & EF_XTENSA_MACH;
2710 in_mach = in_flag & EF_XTENSA_MACH;
2711 if (out_mach != in_mach)
2712 {
2713 (*_bfd_error_handler)
2714 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
2715 ibfd, out_mach, in_mach);
2716 bfd_set_error (bfd_error_wrong_format);
2717 return FALSE;
2718 }
2719
2720 if (! elf_flags_init (obfd))
2721 {
2722 elf_flags_init (obfd) = TRUE;
2723 elf_elfheader (obfd)->e_flags = in_flag;
2724
2725 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2726 && bfd_get_arch_info (obfd)->the_default)
2727 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2728 bfd_get_mach (ibfd));
2729
2730 return TRUE;
2731 }
2732
2733 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2734 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
2735
2736 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2737 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
2738
2739 return TRUE;
2740 }
2741
2742
2743 static bfd_boolean
2744 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
2745 {
2746 BFD_ASSERT (!elf_flags_init (abfd)
2747 || elf_elfheader (abfd)->e_flags == flags);
2748
2749 elf_elfheader (abfd)->e_flags |= flags;
2750 elf_flags_init (abfd) = TRUE;
2751
2752 return TRUE;
2753 }
2754
2755
2756 static bfd_boolean
2757 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
2758 {
2759 FILE *f = (FILE *) farg;
2760 flagword e_flags = elf_elfheader (abfd)->e_flags;
2761
2762 fprintf (f, "\nXtensa header:\n");
2763 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
2764 fprintf (f, "\nMachine = Base\n");
2765 else
2766 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2767
2768 fprintf (f, "Insn tables = %s\n",
2769 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2770
2771 fprintf (f, "Literal tables = %s\n",
2772 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2773
2774 return _bfd_elf_print_private_bfd_data (abfd, farg);
2775 }
2776
2777
2778 /* Set the right machine number for an Xtensa ELF file. */
2779
2780 static bfd_boolean
2781 elf_xtensa_object_p (bfd *abfd)
2782 {
2783 int mach;
2784 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2785
2786 switch (arch)
2787 {
2788 case E_XTENSA_MACH:
2789 mach = bfd_mach_xtensa;
2790 break;
2791 default:
2792 return FALSE;
2793 }
2794
2795 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2796 return TRUE;
2797 }
2798
2799
2800 /* The final processing done just before writing out an Xtensa ELF object
2801 file. This gets the Xtensa architecture right based on the machine
2802 number. */
2803
2804 static void
2805 elf_xtensa_final_write_processing (bfd *abfd,
2806 bfd_boolean linker ATTRIBUTE_UNUSED)
2807 {
2808 int mach;
2809 unsigned long val;
2810
2811 switch (mach = bfd_get_mach (abfd))
2812 {
2813 case bfd_mach_xtensa:
2814 val = E_XTENSA_MACH;
2815 break;
2816 default:
2817 return;
2818 }
2819
2820 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2821 elf_elfheader (abfd)->e_flags |= val;
2822 }
2823
2824
2825 static enum elf_reloc_type_class
2826 elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
2827 {
2828 switch ((int) ELF32_R_TYPE (rela->r_info))
2829 {
2830 case R_XTENSA_RELATIVE:
2831 return reloc_class_relative;
2832 case R_XTENSA_JMP_SLOT:
2833 return reloc_class_plt;
2834 default:
2835 return reloc_class_normal;
2836 }
2837 }
2838
2839 \f
2840 static bfd_boolean
2841 elf_xtensa_discard_info_for_section (bfd *abfd,
2842 struct elf_reloc_cookie *cookie,
2843 struct bfd_link_info *info,
2844 asection *sec)
2845 {
2846 bfd_byte *contents;
2847 bfd_vma section_size;
2848 bfd_vma offset, actual_offset;
2849 bfd_size_type removed_bytes = 0;
2850 bfd_size_type entry_size;
2851
2852 if (sec->output_section
2853 && bfd_is_abs_section (sec->output_section))
2854 return FALSE;
2855
2856 if (xtensa_is_proptable_section (sec))
2857 entry_size = 12;
2858 else
2859 entry_size = 8;
2860
2861 section_size = sec->size;
2862 if (section_size == 0 || section_size % entry_size != 0)
2863 return FALSE;
2864
2865 contents = retrieve_contents (abfd, sec, info->keep_memory);
2866 if (!contents)
2867 return FALSE;
2868
2869 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2870 if (!cookie->rels)
2871 {
2872 release_contents (sec, contents);
2873 return FALSE;
2874 }
2875
2876 /* Sort the relocations. They should already be in order when
2877 relaxation is enabled, but it might not be. */
2878 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
2879 internal_reloc_compare);
2880
2881 cookie->rel = cookie->rels;
2882 cookie->relend = cookie->rels + sec->reloc_count;
2883
2884 for (offset = 0; offset < section_size; offset += entry_size)
2885 {
2886 actual_offset = offset - removed_bytes;
2887
2888 /* The ...symbol_deleted_p function will skip over relocs but it
2889 won't adjust their offsets, so do that here. */
2890 while (cookie->rel < cookie->relend
2891 && cookie->rel->r_offset < offset)
2892 {
2893 cookie->rel->r_offset -= removed_bytes;
2894 cookie->rel++;
2895 }
2896
2897 while (cookie->rel < cookie->relend
2898 && cookie->rel->r_offset == offset)
2899 {
2900 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
2901 {
2902 /* Remove the table entry. (If the reloc type is NONE, then
2903 the entry has already been merged with another and deleted
2904 during relaxation.) */
2905 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2906 {
2907 /* Shift the contents up. */
2908 if (offset + entry_size < section_size)
2909 memmove (&contents[actual_offset],
2910 &contents[actual_offset + entry_size],
2911 section_size - offset - entry_size);
2912 removed_bytes += entry_size;
2913 }
2914
2915 /* Remove this relocation. */
2916 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2917 }
2918
2919 /* Adjust the relocation offset for previous removals. This
2920 should not be done before calling ...symbol_deleted_p
2921 because it might mess up the offset comparisons there.
2922 Make sure the offset doesn't underflow in the case where
2923 the first entry is removed. */
2924 if (cookie->rel->r_offset >= removed_bytes)
2925 cookie->rel->r_offset -= removed_bytes;
2926 else
2927 cookie->rel->r_offset = 0;
2928
2929 cookie->rel++;
2930 }
2931 }
2932
2933 if (removed_bytes != 0)
2934 {
2935 /* Adjust any remaining relocs (shouldn't be any). */
2936 for (; cookie->rel < cookie->relend; cookie->rel++)
2937 {
2938 if (cookie->rel->r_offset >= removed_bytes)
2939 cookie->rel->r_offset -= removed_bytes;
2940 else
2941 cookie->rel->r_offset = 0;
2942 }
2943
2944 /* Clear the removed bytes. */
2945 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2946
2947 pin_contents (sec, contents);
2948 pin_internal_relocs (sec, cookie->rels);
2949
2950 /* Shrink size. */
2951 sec->size = section_size - removed_bytes;
2952
2953 if (xtensa_is_littable_section (sec))
2954 {
2955 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
2956 if (sgotloc)
2957 sgotloc->size -= removed_bytes;
2958 }
2959 }
2960 else
2961 {
2962 release_contents (sec, contents);
2963 release_internal_relocs (sec, cookie->rels);
2964 }
2965
2966 return (removed_bytes != 0);
2967 }
2968
2969
2970 static bfd_boolean
2971 elf_xtensa_discard_info (bfd *abfd,
2972 struct elf_reloc_cookie *cookie,
2973 struct bfd_link_info *info)
2974 {
2975 asection *sec;
2976 bfd_boolean changed = FALSE;
2977
2978 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2979 {
2980 if (xtensa_is_property_section (sec))
2981 {
2982 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2983 changed = TRUE;
2984 }
2985 }
2986
2987 return changed;
2988 }
2989
2990
2991 static bfd_boolean
2992 elf_xtensa_ignore_discarded_relocs (asection *sec)
2993 {
2994 return xtensa_is_property_section (sec);
2995 }
2996
2997
2998 static unsigned int
2999 elf_xtensa_action_discarded (asection *sec)
3000 {
3001 if (strcmp (".xt_except_table", sec->name) == 0)
3002 return 0;
3003
3004 if (strcmp (".xt_except_desc", sec->name) == 0)
3005 return 0;
3006
3007 return _bfd_elf_default_action_discarded (sec);
3008 }
3009
3010 \f
3011 /* Support for core dump NOTE sections. */
3012
3013 static bfd_boolean
3014 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3015 {
3016 int offset;
3017 unsigned int size;
3018
3019 /* The size for Xtensa is variable, so don't try to recognize the format
3020 based on the size. Just assume this is GNU/Linux. */
3021
3022 /* pr_cursig */
3023 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3024
3025 /* pr_pid */
3026 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3027
3028 /* pr_reg */
3029 offset = 72;
3030 size = note->descsz - offset - 4;
3031
3032 /* Make a ".reg/999" section. */
3033 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3034 size, note->descpos + offset);
3035 }
3036
3037
3038 static bfd_boolean
3039 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3040 {
3041 switch (note->descsz)
3042 {
3043 default:
3044 return FALSE;
3045
3046 case 128: /* GNU/Linux elf_prpsinfo */
3047 elf_tdata (abfd)->core_program
3048 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3049 elf_tdata (abfd)->core_command
3050 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3051 }
3052
3053 /* Note that for some reason, a spurious space is tacked
3054 onto the end of the args in some (at least one anyway)
3055 implementations, so strip it off if it exists. */
3056
3057 {
3058 char *command = elf_tdata (abfd)->core_command;
3059 int n = strlen (command);
3060
3061 if (0 < n && command[n - 1] == ' ')
3062 command[n - 1] = '\0';
3063 }
3064
3065 return TRUE;
3066 }
3067
3068 \f
3069 /* Generic Xtensa configurability stuff. */
3070
3071 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3072 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3073 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3074 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3075 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3076 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3077 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3078 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3079
3080 static void
3081 init_call_opcodes (void)
3082 {
3083 if (callx0_op == XTENSA_UNDEFINED)
3084 {
3085 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3086 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3087 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3088 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3089 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3090 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3091 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3092 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3093 }
3094 }
3095
3096
3097 static bfd_boolean
3098 is_indirect_call_opcode (xtensa_opcode opcode)
3099 {
3100 init_call_opcodes ();
3101 return (opcode == callx0_op
3102 || opcode == callx4_op
3103 || opcode == callx8_op
3104 || opcode == callx12_op);
3105 }
3106
3107
3108 static bfd_boolean
3109 is_direct_call_opcode (xtensa_opcode opcode)
3110 {
3111 init_call_opcodes ();
3112 return (opcode == call0_op
3113 || opcode == call4_op
3114 || opcode == call8_op
3115 || opcode == call12_op);
3116 }
3117
3118
3119 static bfd_boolean
3120 is_windowed_call_opcode (xtensa_opcode opcode)
3121 {
3122 init_call_opcodes ();
3123 return (opcode == call4_op
3124 || opcode == call8_op
3125 || opcode == call12_op
3126 || opcode == callx4_op
3127 || opcode == callx8_op
3128 || opcode == callx12_op);
3129 }
3130
3131
3132 static xtensa_opcode
3133 get_const16_opcode (void)
3134 {
3135 static bfd_boolean done_lookup = FALSE;
3136 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3137 if (!done_lookup)
3138 {
3139 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3140 done_lookup = TRUE;
3141 }
3142 return const16_opcode;
3143 }
3144
3145
3146 static xtensa_opcode
3147 get_l32r_opcode (void)
3148 {
3149 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3150 static bfd_boolean done_lookup = FALSE;
3151
3152 if (!done_lookup)
3153 {
3154 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3155 done_lookup = TRUE;
3156 }
3157 return l32r_opcode;
3158 }
3159
3160
3161 static bfd_vma
3162 l32r_offset (bfd_vma addr, bfd_vma pc)
3163 {
3164 bfd_vma offset;
3165
3166 offset = addr - ((pc+3) & -4);
3167 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3168 offset = (signed int) offset >> 2;
3169 BFD_ASSERT ((signed int) offset >> 16 == -1);
3170 return offset;
3171 }
3172
3173
3174 static int
3175 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3176 {
3177 xtensa_isa isa = xtensa_default_isa;
3178 int last_immed, last_opnd, opi;
3179
3180 if (opcode == XTENSA_UNDEFINED)
3181 return XTENSA_UNDEFINED;
3182
3183 /* Find the last visible PC-relative immediate operand for the opcode.
3184 If there are no PC-relative immediates, then choose the last visible
3185 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3186 last_immed = XTENSA_UNDEFINED;
3187 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3188 for (opi = last_opnd - 1; opi >= 0; opi--)
3189 {
3190 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3191 continue;
3192 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3193 {
3194 last_immed = opi;
3195 break;
3196 }
3197 if (last_immed == XTENSA_UNDEFINED
3198 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3199 last_immed = opi;
3200 }
3201 if (last_immed < 0)
3202 return XTENSA_UNDEFINED;
3203
3204 /* If the operand number was specified in an old-style relocation,
3205 check for consistency with the operand computed above. */
3206 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3207 {
3208 int reloc_opnd = r_type - R_XTENSA_OP0;
3209 if (reloc_opnd != last_immed)
3210 return XTENSA_UNDEFINED;
3211 }
3212
3213 return last_immed;
3214 }
3215
3216
3217 int
3218 get_relocation_slot (int r_type)
3219 {
3220 switch (r_type)
3221 {
3222 case R_XTENSA_OP0:
3223 case R_XTENSA_OP1:
3224 case R_XTENSA_OP2:
3225 return 0;
3226
3227 default:
3228 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3229 return r_type - R_XTENSA_SLOT0_OP;
3230 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3231 return r_type - R_XTENSA_SLOT0_ALT;
3232 break;
3233 }
3234
3235 return XTENSA_UNDEFINED;
3236 }
3237
3238
3239 /* Get the opcode for a relocation. */
3240
3241 static xtensa_opcode
3242 get_relocation_opcode (bfd *abfd,
3243 asection *sec,
3244 bfd_byte *contents,
3245 Elf_Internal_Rela *irel)
3246 {
3247 static xtensa_insnbuf ibuff = NULL;
3248 static xtensa_insnbuf sbuff = NULL;
3249 xtensa_isa isa = xtensa_default_isa;
3250 xtensa_format fmt;
3251 int slot;
3252
3253 if (contents == NULL)
3254 return XTENSA_UNDEFINED;
3255
3256 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3257 return XTENSA_UNDEFINED;
3258
3259 if (ibuff == NULL)
3260 {
3261 ibuff = xtensa_insnbuf_alloc (isa);
3262 sbuff = xtensa_insnbuf_alloc (isa);
3263 }
3264
3265 /* Decode the instruction. */
3266 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3267 sec->size - irel->r_offset);
3268 fmt = xtensa_format_decode (isa, ibuff);
3269 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3270 if (slot == XTENSA_UNDEFINED)
3271 return XTENSA_UNDEFINED;
3272 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3273 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3274 }
3275
3276
3277 bfd_boolean
3278 is_l32r_relocation (bfd *abfd,
3279 asection *sec,
3280 bfd_byte *contents,
3281 Elf_Internal_Rela *irel)
3282 {
3283 xtensa_opcode opcode;
3284 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
3285 return FALSE;
3286 opcode = get_relocation_opcode (abfd, sec, contents, irel);
3287 return (opcode == get_l32r_opcode ());
3288 }
3289
3290
3291 static bfd_size_type
3292 get_asm_simplify_size (bfd_byte *contents,
3293 bfd_size_type content_len,
3294 bfd_size_type offset)
3295 {
3296 bfd_size_type insnlen, size = 0;
3297
3298 /* Decode the size of the next two instructions. */
3299 insnlen = insn_decode_len (contents, content_len, offset);
3300 if (insnlen == 0)
3301 return 0;
3302
3303 size += insnlen;
3304
3305 insnlen = insn_decode_len (contents, content_len, offset + size);
3306 if (insnlen == 0)
3307 return 0;
3308
3309 size += insnlen;
3310 return size;
3311 }
3312
3313
3314 bfd_boolean
3315 is_alt_relocation (int r_type)
3316 {
3317 return (r_type >= R_XTENSA_SLOT0_ALT
3318 && r_type <= R_XTENSA_SLOT14_ALT);
3319 }
3320
3321
3322 bfd_boolean
3323 is_operand_relocation (int r_type)
3324 {
3325 switch (r_type)
3326 {
3327 case R_XTENSA_OP0:
3328 case R_XTENSA_OP1:
3329 case R_XTENSA_OP2:
3330 return TRUE;
3331
3332 default:
3333 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3334 return TRUE;
3335 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3336 return TRUE;
3337 break;
3338 }
3339
3340 return FALSE;
3341 }
3342
3343
3344 #define MIN_INSN_LENGTH 2
3345
3346 /* Return 0 if it fails to decode. */
3347
3348 bfd_size_type
3349 insn_decode_len (bfd_byte *contents,
3350 bfd_size_type content_len,
3351 bfd_size_type offset)
3352 {
3353 int insn_len;
3354 xtensa_isa isa = xtensa_default_isa;
3355 xtensa_format fmt;
3356 static xtensa_insnbuf ibuff = NULL;
3357
3358 if (offset + MIN_INSN_LENGTH > content_len)
3359 return 0;
3360
3361 if (ibuff == NULL)
3362 ibuff = xtensa_insnbuf_alloc (isa);
3363 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3364 content_len - offset);
3365 fmt = xtensa_format_decode (isa, ibuff);
3366 if (fmt == XTENSA_UNDEFINED)
3367 return 0;
3368 insn_len = xtensa_format_length (isa, fmt);
3369 if (insn_len == XTENSA_UNDEFINED)
3370 return 0;
3371 return insn_len;
3372 }
3373
3374
3375 /* Decode the opcode for a single slot instruction.
3376 Return 0 if it fails to decode or the instruction is multi-slot. */
3377
3378 xtensa_opcode
3379 insn_decode_opcode (bfd_byte *contents,
3380 bfd_size_type content_len,
3381 bfd_size_type offset,
3382 int slot)
3383 {
3384 xtensa_isa isa = xtensa_default_isa;
3385 xtensa_format fmt;
3386 static xtensa_insnbuf insnbuf = NULL;
3387 static xtensa_insnbuf slotbuf = NULL;
3388
3389 if (offset + MIN_INSN_LENGTH > content_len)
3390 return XTENSA_UNDEFINED;
3391
3392 if (insnbuf == NULL)
3393 {
3394 insnbuf = xtensa_insnbuf_alloc (isa);
3395 slotbuf = xtensa_insnbuf_alloc (isa);
3396 }
3397
3398 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3399 content_len - offset);
3400 fmt = xtensa_format_decode (isa, insnbuf);
3401 if (fmt == XTENSA_UNDEFINED)
3402 return XTENSA_UNDEFINED;
3403
3404 if (slot >= xtensa_format_num_slots (isa, fmt))
3405 return XTENSA_UNDEFINED;
3406
3407 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3408 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3409 }
3410
3411
3412 /* The offset is the offset in the contents.
3413 The address is the address of that offset. */
3414
3415 static bfd_boolean
3416 check_branch_target_aligned (bfd_byte *contents,
3417 bfd_size_type content_length,
3418 bfd_vma offset,
3419 bfd_vma address)
3420 {
3421 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3422 if (insn_len == 0)
3423 return FALSE;
3424 return check_branch_target_aligned_address (address, insn_len);
3425 }
3426
3427
3428 static bfd_boolean
3429 check_loop_aligned (bfd_byte *contents,
3430 bfd_size_type content_length,
3431 bfd_vma offset,
3432 bfd_vma address)
3433 {
3434 bfd_size_type loop_len, insn_len;
3435 xtensa_opcode opcode;
3436
3437 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3438 if (opcode == XTENSA_UNDEFINED
3439 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3440 {
3441 BFD_ASSERT (FALSE);
3442 return FALSE;
3443 }
3444
3445 loop_len = insn_decode_len (contents, content_length, offset);
3446 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3447 if (loop_len == 0 || insn_len == 0)
3448 {
3449 BFD_ASSERT (FALSE);
3450 return FALSE;
3451 }
3452
3453 return check_branch_target_aligned_address (address + loop_len, insn_len);
3454 }
3455
3456
3457 static bfd_boolean
3458 check_branch_target_aligned_address (bfd_vma addr, int len)
3459 {
3460 if (len == 8)
3461 return (addr % 8 == 0);
3462 return ((addr >> 2) == ((addr + len - 1) >> 2));
3463 }
3464
3465 \f
3466 /* Instruction widening and narrowing. */
3467
3468 /* When FLIX is available we need to access certain instructions only
3469 when they are 16-bit or 24-bit instructions. This table caches
3470 information about such instructions by walking through all the
3471 opcodes and finding the smallest single-slot format into which each
3472 can be encoded. */
3473
3474 static xtensa_format *op_single_fmt_table = NULL;
3475
3476
3477 static void
3478 init_op_single_format_table (void)
3479 {
3480 xtensa_isa isa = xtensa_default_isa;
3481 xtensa_insnbuf ibuf;
3482 xtensa_opcode opcode;
3483 xtensa_format fmt;
3484 int num_opcodes;
3485
3486 if (op_single_fmt_table)
3487 return;
3488
3489 ibuf = xtensa_insnbuf_alloc (isa);
3490 num_opcodes = xtensa_isa_num_opcodes (isa);
3491
3492 op_single_fmt_table = (xtensa_format *)
3493 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3494 for (opcode = 0; opcode < num_opcodes; opcode++)
3495 {
3496 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3497 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3498 {
3499 if (xtensa_format_num_slots (isa, fmt) == 1
3500 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3501 {
3502 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3503 int fmt_length = xtensa_format_length (isa, fmt);
3504 if (old_fmt == XTENSA_UNDEFINED
3505 || fmt_length < xtensa_format_length (isa, old_fmt))
3506 op_single_fmt_table[opcode] = fmt;
3507 }
3508 }
3509 }
3510 xtensa_insnbuf_free (isa, ibuf);
3511 }
3512
3513
3514 static xtensa_format
3515 get_single_format (xtensa_opcode opcode)
3516 {
3517 init_op_single_format_table ();
3518 return op_single_fmt_table[opcode];
3519 }
3520
3521
3522 /* For the set of narrowable instructions we do NOT include the
3523 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3524 involved during linker relaxation that may require these to
3525 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3526 requires special case code to ensure it only works when op1 == op2. */
3527
3528 struct string_pair
3529 {
3530 const char *wide;
3531 const char *narrow;
3532 };
3533
3534 struct string_pair narrowable[] =
3535 {
3536 { "add", "add.n" },
3537 { "addi", "addi.n" },
3538 { "addmi", "addi.n" },
3539 { "l32i", "l32i.n" },
3540 { "movi", "movi.n" },
3541 { "ret", "ret.n" },
3542 { "retw", "retw.n" },
3543 { "s32i", "s32i.n" },
3544 { "or", "mov.n" } /* special case only when op1 == op2 */
3545 };
3546
3547 struct string_pair widenable[] =
3548 {
3549 { "add", "add.n" },
3550 { "addi", "addi.n" },
3551 { "addmi", "addi.n" },
3552 { "beqz", "beqz.n" },
3553 { "bnez", "bnez.n" },
3554 { "l32i", "l32i.n" },
3555 { "movi", "movi.n" },
3556 { "ret", "ret.n" },
3557 { "retw", "retw.n" },
3558 { "s32i", "s32i.n" },
3559 { "or", "mov.n" } /* special case only when op1 == op2 */
3560 };
3561
3562
3563 /* Check if an instruction can be "narrowed", i.e., changed from a standard
3564 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3565 return the instruction buffer holding the narrow instruction. Otherwise,
3566 return 0. The set of valid narrowing are specified by a string table
3567 but require some special case operand checks in some cases. */
3568
3569 static xtensa_insnbuf
3570 can_narrow_instruction (xtensa_insnbuf slotbuf,
3571 xtensa_format fmt,
3572 xtensa_opcode opcode)
3573 {
3574 xtensa_isa isa = xtensa_default_isa;
3575 xtensa_format o_fmt;
3576 unsigned opi;
3577
3578 static xtensa_insnbuf o_insnbuf = NULL;
3579 static xtensa_insnbuf o_slotbuf = NULL;
3580
3581 if (o_insnbuf == NULL)
3582 {
3583 o_insnbuf = xtensa_insnbuf_alloc (isa);
3584 o_slotbuf = xtensa_insnbuf_alloc (isa);
3585 }
3586
3587 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
3588 {
3589 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
3590
3591 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3592 {
3593 uint32 value, newval;
3594 int i, operand_count, o_operand_count;
3595 xtensa_opcode o_opcode;
3596
3597 /* Address does not matter in this case. We might need to
3598 fix it to handle branches/jumps. */
3599 bfd_vma self_address = 0;
3600
3601 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3602 if (o_opcode == XTENSA_UNDEFINED)
3603 return 0;
3604 o_fmt = get_single_format (o_opcode);
3605 if (o_fmt == XTENSA_UNDEFINED)
3606 return 0;
3607
3608 if (xtensa_format_length (isa, fmt) != 3
3609 || xtensa_format_length (isa, o_fmt) != 2)
3610 return 0;
3611
3612 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3613 operand_count = xtensa_opcode_num_operands (isa, opcode);
3614 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3615
3616 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3617 return 0;
3618
3619 if (!is_or)
3620 {
3621 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3622 return 0;
3623 }
3624 else
3625 {
3626 uint32 rawval0, rawval1, rawval2;
3627
3628 if (o_operand_count + 1 != operand_count
3629 || xtensa_operand_get_field (isa, opcode, 0,
3630 fmt, 0, slotbuf, &rawval0) != 0
3631 || xtensa_operand_get_field (isa, opcode, 1,
3632 fmt, 0, slotbuf, &rawval1) != 0
3633 || xtensa_operand_get_field (isa, opcode, 2,
3634 fmt, 0, slotbuf, &rawval2) != 0
3635 || rawval1 != rawval2
3636 || rawval0 == rawval1 /* it is a nop */)
3637 return 0;
3638 }
3639
3640 for (i = 0; i < o_operand_count; ++i)
3641 {
3642 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3643 slotbuf, &value)
3644 || xtensa_operand_decode (isa, opcode, i, &value))
3645 return 0;
3646
3647 /* PC-relative branches need adjustment, but
3648 the PC-rel operand will always have a relocation. */
3649 newval = value;
3650 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3651 self_address)
3652 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3653 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3654 o_slotbuf, newval))
3655 return 0;
3656 }
3657
3658 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3659 return 0;
3660
3661 return o_insnbuf;
3662 }
3663 }
3664 return 0;
3665 }
3666
3667
3668 /* Attempt to narrow an instruction. If the narrowing is valid, perform
3669 the action in-place directly into the contents and return TRUE. Otherwise,
3670 the return value is FALSE and the contents are not modified. */
3671
3672 static bfd_boolean
3673 narrow_instruction (bfd_byte *contents,
3674 bfd_size_type content_length,
3675 bfd_size_type offset)
3676 {
3677 xtensa_opcode opcode;
3678 bfd_size_type insn_len;
3679 xtensa_isa isa = xtensa_default_isa;
3680 xtensa_format fmt;
3681 xtensa_insnbuf o_insnbuf;
3682
3683 static xtensa_insnbuf insnbuf = NULL;
3684 static xtensa_insnbuf slotbuf = NULL;
3685
3686 if (insnbuf == NULL)
3687 {
3688 insnbuf = xtensa_insnbuf_alloc (isa);
3689 slotbuf = xtensa_insnbuf_alloc (isa);
3690 }
3691
3692 BFD_ASSERT (offset < content_length);
3693
3694 if (content_length < 2)
3695 return FALSE;
3696
3697 /* We will hand-code a few of these for a little while.
3698 These have all been specified in the assembler aleady. */
3699 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3700 content_length - offset);
3701 fmt = xtensa_format_decode (isa, insnbuf);
3702 if (xtensa_format_num_slots (isa, fmt) != 1)
3703 return FALSE;
3704
3705 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3706 return FALSE;
3707
3708 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3709 if (opcode == XTENSA_UNDEFINED)
3710 return FALSE;
3711 insn_len = xtensa_format_length (isa, fmt);
3712 if (insn_len > content_length)
3713 return FALSE;
3714
3715 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3716 if (o_insnbuf)
3717 {
3718 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3719 content_length - offset);
3720 return TRUE;
3721 }
3722
3723 return FALSE;
3724 }
3725
3726
3727 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
3728 "density" instruction to a standard 3-byte instruction. If it is valid,
3729 return the instruction buffer holding the wide instruction. Otherwise,
3730 return 0. The set of valid widenings are specified by a string table
3731 but require some special case operand checks in some cases. */
3732
3733 static xtensa_insnbuf
3734 can_widen_instruction (xtensa_insnbuf slotbuf,
3735 xtensa_format fmt,
3736 xtensa_opcode opcode)
3737 {
3738 xtensa_isa isa = xtensa_default_isa;
3739 xtensa_format o_fmt;
3740 unsigned opi;
3741
3742 static xtensa_insnbuf o_insnbuf = NULL;
3743 static xtensa_insnbuf o_slotbuf = NULL;
3744
3745 if (o_insnbuf == NULL)
3746 {
3747 o_insnbuf = xtensa_insnbuf_alloc (isa);
3748 o_slotbuf = xtensa_insnbuf_alloc (isa);
3749 }
3750
3751 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
3752 {
3753 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3754 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3755 || strcmp ("bnez", widenable[opi].wide) == 0);
3756
3757 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3758 {
3759 uint32 value, newval;
3760 int i, operand_count, o_operand_count, check_operand_count;
3761 xtensa_opcode o_opcode;
3762
3763 /* Address does not matter in this case. We might need to fix it
3764 to handle branches/jumps. */
3765 bfd_vma self_address = 0;
3766
3767 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3768 if (o_opcode == XTENSA_UNDEFINED)
3769 return 0;
3770 o_fmt = get_single_format (o_opcode);
3771 if (o_fmt == XTENSA_UNDEFINED)
3772 return 0;
3773
3774 if (xtensa_format_length (isa, fmt) != 2
3775 || xtensa_format_length (isa, o_fmt) != 3)
3776 return 0;
3777
3778 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3779 operand_count = xtensa_opcode_num_operands (isa, opcode);
3780 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3781 check_operand_count = o_operand_count;
3782
3783 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3784 return 0;
3785
3786 if (!is_or)
3787 {
3788 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3789 return 0;
3790 }
3791 else
3792 {
3793 uint32 rawval0, rawval1;
3794
3795 if (o_operand_count != operand_count + 1
3796 || xtensa_operand_get_field (isa, opcode, 0,
3797 fmt, 0, slotbuf, &rawval0) != 0
3798 || xtensa_operand_get_field (isa, opcode, 1,
3799 fmt, 0, slotbuf, &rawval1) != 0
3800 || rawval0 == rawval1 /* it is a nop */)
3801 return 0;
3802 }
3803 if (is_branch)
3804 check_operand_count--;
3805
3806 for (i = 0; i < check_operand_count; i++)
3807 {
3808 int new_i = i;
3809 if (is_or && i == o_operand_count - 1)
3810 new_i = i - 1;
3811 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3812 slotbuf, &value)
3813 || xtensa_operand_decode (isa, opcode, new_i, &value))
3814 return 0;
3815
3816 /* PC-relative branches need adjustment, but
3817 the PC-rel operand will always have a relocation. */
3818 newval = value;
3819 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3820 self_address)
3821 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3822 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3823 o_slotbuf, newval))
3824 return 0;
3825 }
3826
3827 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3828 return 0;
3829
3830 return o_insnbuf;
3831 }
3832 }
3833 return 0;
3834 }
3835
3836
3837 /* Attempt to widen an instruction. If the widening is valid, perform
3838 the action in-place directly into the contents and return TRUE. Otherwise,
3839 the return value is FALSE and the contents are not modified. */
3840
3841 static bfd_boolean
3842 widen_instruction (bfd_byte *contents,
3843 bfd_size_type content_length,
3844 bfd_size_type offset)
3845 {
3846 xtensa_opcode opcode;
3847 bfd_size_type insn_len;
3848 xtensa_isa isa = xtensa_default_isa;
3849 xtensa_format fmt;
3850 xtensa_insnbuf o_insnbuf;
3851
3852 static xtensa_insnbuf insnbuf = NULL;
3853 static xtensa_insnbuf slotbuf = NULL;
3854
3855 if (insnbuf == NULL)
3856 {
3857 insnbuf = xtensa_insnbuf_alloc (isa);
3858 slotbuf = xtensa_insnbuf_alloc (isa);
3859 }
3860
3861 BFD_ASSERT (offset < content_length);
3862
3863 if (content_length < 2)
3864 return FALSE;
3865
3866 /* We will hand-code a few of these for a little while.
3867 These have all been specified in the assembler aleady. */
3868 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3869 content_length - offset);
3870 fmt = xtensa_format_decode (isa, insnbuf);
3871 if (xtensa_format_num_slots (isa, fmt) != 1)
3872 return FALSE;
3873
3874 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3875 return FALSE;
3876
3877 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3878 if (opcode == XTENSA_UNDEFINED)
3879 return FALSE;
3880 insn_len = xtensa_format_length (isa, fmt);
3881 if (insn_len > content_length)
3882 return FALSE;
3883
3884 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3885 if (o_insnbuf)
3886 {
3887 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3888 content_length - offset);
3889 return TRUE;
3890 }
3891 return FALSE;
3892 }
3893
3894 \f
3895 /* Code for transforming CALLs at link-time. */
3896
3897 static bfd_reloc_status_type
3898 elf_xtensa_do_asm_simplify (bfd_byte *contents,
3899 bfd_vma address,
3900 bfd_vma content_length,
3901 char **error_message)
3902 {
3903 static xtensa_insnbuf insnbuf = NULL;
3904 static xtensa_insnbuf slotbuf = NULL;
3905 xtensa_format core_format = XTENSA_UNDEFINED;
3906 xtensa_opcode opcode;
3907 xtensa_opcode direct_call_opcode;
3908 xtensa_isa isa = xtensa_default_isa;
3909 bfd_byte *chbuf = contents + address;
3910 int opn;
3911
3912 if (insnbuf == NULL)
3913 {
3914 insnbuf = xtensa_insnbuf_alloc (isa);
3915 slotbuf = xtensa_insnbuf_alloc (isa);
3916 }
3917
3918 if (content_length < address)
3919 {
3920 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3921 return bfd_reloc_other;
3922 }
3923
3924 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3925 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3926 if (direct_call_opcode == XTENSA_UNDEFINED)
3927 {
3928 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3929 return bfd_reloc_other;
3930 }
3931
3932 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3933 core_format = xtensa_format_lookup (isa, "x24");
3934 opcode = xtensa_opcode_lookup (isa, "or");
3935 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3936 for (opn = 0; opn < 3; opn++)
3937 {
3938 uint32 regno = 1;
3939 xtensa_operand_encode (isa, opcode, opn, &regno);
3940 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3941 slotbuf, regno);
3942 }
3943 xtensa_format_encode (isa, core_format, insnbuf);
3944 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3945 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
3946
3947 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3948 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3949 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
3950
3951 xtensa_format_encode (isa, core_format, insnbuf);
3952 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3953 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3954 content_length - address - 3);
3955
3956 return bfd_reloc_ok;
3957 }
3958
3959
3960 static bfd_reloc_status_type
3961 contract_asm_expansion (bfd_byte *contents,
3962 bfd_vma content_length,
3963 Elf_Internal_Rela *irel,
3964 char **error_message)
3965 {
3966 bfd_reloc_status_type retval =
3967 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3968 error_message);
3969
3970 if (retval != bfd_reloc_ok)
3971 return bfd_reloc_dangerous;
3972
3973 /* Update the irel->r_offset field so that the right immediate and
3974 the right instruction are modified during the relocation. */
3975 irel->r_offset += 3;
3976 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3977 return bfd_reloc_ok;
3978 }
3979
3980
3981 static xtensa_opcode
3982 swap_callx_for_call_opcode (xtensa_opcode opcode)
3983 {
3984 init_call_opcodes ();
3985
3986 if (opcode == callx0_op) return call0_op;
3987 if (opcode == callx4_op) return call4_op;
3988 if (opcode == callx8_op) return call8_op;
3989 if (opcode == callx12_op) return call12_op;
3990
3991 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3992 return XTENSA_UNDEFINED;
3993 }
3994
3995
3996 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3997 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3998 If not, return XTENSA_UNDEFINED. */
3999
4000 #define L32R_TARGET_REG_OPERAND 0
4001 #define CONST16_TARGET_REG_OPERAND 0
4002 #define CALLN_SOURCE_OPERAND 0
4003
4004 static xtensa_opcode
4005 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4006 {
4007 static xtensa_insnbuf insnbuf = NULL;
4008 static xtensa_insnbuf slotbuf = NULL;
4009 xtensa_format fmt;
4010 xtensa_opcode opcode;
4011 xtensa_isa isa = xtensa_default_isa;
4012 uint32 regno, const16_regno, call_regno;
4013 int offset = 0;
4014
4015 if (insnbuf == NULL)
4016 {
4017 insnbuf = xtensa_insnbuf_alloc (isa);
4018 slotbuf = xtensa_insnbuf_alloc (isa);
4019 }
4020
4021 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4022 fmt = xtensa_format_decode (isa, insnbuf);
4023 if (fmt == XTENSA_UNDEFINED
4024 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4025 return XTENSA_UNDEFINED;
4026
4027 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4028 if (opcode == XTENSA_UNDEFINED)
4029 return XTENSA_UNDEFINED;
4030
4031 if (opcode == get_l32r_opcode ())
4032 {
4033 if (p_uses_l32r)
4034 *p_uses_l32r = TRUE;
4035 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4036 fmt, 0, slotbuf, &regno)
4037 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4038 &regno))
4039 return XTENSA_UNDEFINED;
4040 }
4041 else if (opcode == get_const16_opcode ())
4042 {
4043 if (p_uses_l32r)
4044 *p_uses_l32r = FALSE;
4045 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4046 fmt, 0, slotbuf, &regno)
4047 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4048 &regno))
4049 return XTENSA_UNDEFINED;
4050
4051 /* Check that the next instruction is also CONST16. */
4052 offset += xtensa_format_length (isa, fmt);
4053 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4054 fmt = xtensa_format_decode (isa, insnbuf);
4055 if (fmt == XTENSA_UNDEFINED
4056 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4057 return XTENSA_UNDEFINED;
4058 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4059 if (opcode != get_const16_opcode ())
4060 return XTENSA_UNDEFINED;
4061
4062 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4063 fmt, 0, slotbuf, &const16_regno)
4064 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4065 &const16_regno)
4066 || const16_regno != regno)
4067 return XTENSA_UNDEFINED;
4068 }
4069 else
4070 return XTENSA_UNDEFINED;
4071
4072 /* Next instruction should be an CALLXn with operand 0 == regno. */
4073 offset += xtensa_format_length (isa, fmt);
4074 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4075 fmt = xtensa_format_decode (isa, insnbuf);
4076 if (fmt == XTENSA_UNDEFINED
4077 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4078 return XTENSA_UNDEFINED;
4079 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4080 if (opcode == XTENSA_UNDEFINED
4081 || !is_indirect_call_opcode (opcode))
4082 return XTENSA_UNDEFINED;
4083
4084 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4085 fmt, 0, slotbuf, &call_regno)
4086 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4087 &call_regno))
4088 return XTENSA_UNDEFINED;
4089
4090 if (call_regno != regno)
4091 return XTENSA_UNDEFINED;
4092
4093 return opcode;
4094 }
4095
4096 \f
4097 /* Data structures used during relaxation. */
4098
4099 /* r_reloc: relocation values. */
4100
4101 /* Through the relaxation process, we need to keep track of the values
4102 that will result from evaluating relocations. The standard ELF
4103 relocation structure is not sufficient for this purpose because we're
4104 operating on multiple input files at once, so we need to know which
4105 input file a relocation refers to. The r_reloc structure thus
4106 records both the input file (bfd) and ELF relocation.
4107
4108 For efficiency, an r_reloc also contains a "target_offset" field to
4109 cache the target-section-relative offset value that is represented by
4110 the relocation.
4111
4112 The r_reloc also contains a virtual offset that allows multiple
4113 inserted literals to be placed at the same "address" with
4114 different offsets. */
4115
4116 typedef struct r_reloc_struct r_reloc;
4117
4118 struct r_reloc_struct
4119 {
4120 bfd *abfd;
4121 Elf_Internal_Rela rela;
4122 bfd_vma target_offset;
4123 bfd_vma virtual_offset;
4124 };
4125
4126
4127 /* The r_reloc structure is included by value in literal_value, but not
4128 every literal_value has an associated relocation -- some are simple
4129 constants. In such cases, we set all the fields in the r_reloc
4130 struct to zero. The r_reloc_is_const function should be used to
4131 detect this case. */
4132
4133 static bfd_boolean
4134 r_reloc_is_const (const r_reloc *r_rel)
4135 {
4136 return (r_rel->abfd == NULL);
4137 }
4138
4139
4140 static bfd_vma
4141 r_reloc_get_target_offset (const r_reloc *r_rel)
4142 {
4143 bfd_vma target_offset;
4144 unsigned long r_symndx;
4145
4146 BFD_ASSERT (!r_reloc_is_const (r_rel));
4147 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4148 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4149 return (target_offset + r_rel->rela.r_addend);
4150 }
4151
4152
4153 static struct elf_link_hash_entry *
4154 r_reloc_get_hash_entry (const r_reloc *r_rel)
4155 {
4156 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4157 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4158 }
4159
4160
4161 static asection *
4162 r_reloc_get_section (const r_reloc *r_rel)
4163 {
4164 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4165 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4166 }
4167
4168
4169 static bfd_boolean
4170 r_reloc_is_defined (const r_reloc *r_rel)
4171 {
4172 asection *sec;
4173 if (r_rel == NULL)
4174 return FALSE;
4175
4176 sec = r_reloc_get_section (r_rel);
4177 if (sec == bfd_abs_section_ptr
4178 || sec == bfd_com_section_ptr
4179 || sec == bfd_und_section_ptr)
4180 return FALSE;
4181 return TRUE;
4182 }
4183
4184
4185 static void
4186 r_reloc_init (r_reloc *r_rel,
4187 bfd *abfd,
4188 Elf_Internal_Rela *irel,
4189 bfd_byte *contents,
4190 bfd_size_type content_length)
4191 {
4192 int r_type;
4193 reloc_howto_type *howto;
4194
4195 if (irel)
4196 {
4197 r_rel->rela = *irel;
4198 r_rel->abfd = abfd;
4199 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4200 r_rel->virtual_offset = 0;
4201 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4202 howto = &elf_howto_table[r_type];
4203 if (howto->partial_inplace)
4204 {
4205 bfd_vma inplace_val;
4206 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4207
4208 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4209 r_rel->target_offset += inplace_val;
4210 }
4211 }
4212 else
4213 memset (r_rel, 0, sizeof (r_reloc));
4214 }
4215
4216
4217 #if DEBUG
4218
4219 static void
4220 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4221 {
4222 if (r_reloc_is_defined (r_rel))
4223 {
4224 asection *sec = r_reloc_get_section (r_rel);
4225 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4226 }
4227 else if (r_reloc_get_hash_entry (r_rel))
4228 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4229 else
4230 fprintf (fp, " ?? + ");
4231
4232 fprintf_vma (fp, r_rel->target_offset);
4233 if (r_rel->virtual_offset)
4234 {
4235 fprintf (fp, " + ");
4236 fprintf_vma (fp, r_rel->virtual_offset);
4237 }
4238
4239 fprintf (fp, ")");
4240 }
4241
4242 #endif /* DEBUG */
4243
4244 \f
4245 /* source_reloc: relocations that reference literals. */
4246
4247 /* To determine whether literals can be coalesced, we need to first
4248 record all the relocations that reference the literals. The
4249 source_reloc structure below is used for this purpose. The
4250 source_reloc entries are kept in a per-literal-section array, sorted
4251 by offset within the literal section (i.e., target offset).
4252
4253 The source_sec and r_rel.rela.r_offset fields identify the source of
4254 the relocation. The r_rel field records the relocation value, i.e.,
4255 the offset of the literal being referenced. The opnd field is needed
4256 to determine the range of the immediate field to which the relocation
4257 applies, so we can determine whether another literal with the same
4258 value is within range. The is_null field is true when the relocation
4259 is being removed (e.g., when an L32R is being removed due to a CALLX
4260 that is converted to a direct CALL). */
4261
4262 typedef struct source_reloc_struct source_reloc;
4263
4264 struct source_reloc_struct
4265 {
4266 asection *source_sec;
4267 r_reloc r_rel;
4268 xtensa_opcode opcode;
4269 int opnd;
4270 bfd_boolean is_null;
4271 bfd_boolean is_abs_literal;
4272 };
4273
4274
4275 static void
4276 init_source_reloc (source_reloc *reloc,
4277 asection *source_sec,
4278 const r_reloc *r_rel,
4279 xtensa_opcode opcode,
4280 int opnd,
4281 bfd_boolean is_abs_literal)
4282 {
4283 reloc->source_sec = source_sec;
4284 reloc->r_rel = *r_rel;
4285 reloc->opcode = opcode;
4286 reloc->opnd = opnd;
4287 reloc->is_null = FALSE;
4288 reloc->is_abs_literal = is_abs_literal;
4289 }
4290
4291
4292 /* Find the source_reloc for a particular source offset and relocation
4293 type. Note that the array is sorted by _target_ offset, so this is
4294 just a linear search. */
4295
4296 static source_reloc *
4297 find_source_reloc (source_reloc *src_relocs,
4298 int src_count,
4299 asection *sec,
4300 Elf_Internal_Rela *irel)
4301 {
4302 int i;
4303
4304 for (i = 0; i < src_count; i++)
4305 {
4306 if (src_relocs[i].source_sec == sec
4307 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4308 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4309 == ELF32_R_TYPE (irel->r_info)))
4310 return &src_relocs[i];
4311 }
4312
4313 return NULL;
4314 }
4315
4316
4317 static int
4318 source_reloc_compare (const void *ap, const void *bp)
4319 {
4320 const source_reloc *a = (const source_reloc *) ap;
4321 const source_reloc *b = (const source_reloc *) bp;
4322
4323 if (a->r_rel.target_offset != b->r_rel.target_offset)
4324 return (a->r_rel.target_offset - b->r_rel.target_offset);
4325
4326 /* We don't need to sort on these criteria for correctness,
4327 but enforcing a more strict ordering prevents unstable qsort
4328 from behaving differently with different implementations.
4329 Without the code below we get correct but different results
4330 on Solaris 2.7 and 2.8. We would like to always produce the
4331 same results no matter the host. */
4332
4333 if ((!a->is_null) - (!b->is_null))
4334 return ((!a->is_null) - (!b->is_null));
4335 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
4336 }
4337
4338 \f
4339 /* Literal values and value hash tables. */
4340
4341 /* Literals with the same value can be coalesced. The literal_value
4342 structure records the value of a literal: the "r_rel" field holds the
4343 information from the relocation on the literal (if there is one) and
4344 the "value" field holds the contents of the literal word itself.
4345
4346 The value_map structure records a literal value along with the
4347 location of a literal holding that value. The value_map hash table
4348 is indexed by the literal value, so that we can quickly check if a
4349 particular literal value has been seen before and is thus a candidate
4350 for coalescing. */
4351
4352 typedef struct literal_value_struct literal_value;
4353 typedef struct value_map_struct value_map;
4354 typedef struct value_map_hash_table_struct value_map_hash_table;
4355
4356 struct literal_value_struct
4357 {
4358 r_reloc r_rel;
4359 unsigned long value;
4360 bfd_boolean is_abs_literal;
4361 };
4362
4363 struct value_map_struct
4364 {
4365 literal_value val; /* The literal value. */
4366 r_reloc loc; /* Location of the literal. */
4367 value_map *next;
4368 };
4369
4370 struct value_map_hash_table_struct
4371 {
4372 unsigned bucket_count;
4373 value_map **buckets;
4374 unsigned count;
4375 bfd_boolean has_last_loc;
4376 r_reloc last_loc;
4377 };
4378
4379
4380 static void
4381 init_literal_value (literal_value *lit,
4382 const r_reloc *r_rel,
4383 unsigned long value,
4384 bfd_boolean is_abs_literal)
4385 {
4386 lit->r_rel = *r_rel;
4387 lit->value = value;
4388 lit->is_abs_literal = is_abs_literal;
4389 }
4390
4391
4392 static bfd_boolean
4393 literal_value_equal (const literal_value *src1,
4394 const literal_value *src2,
4395 bfd_boolean final_static_link)
4396 {
4397 struct elf_link_hash_entry *h1, *h2;
4398
4399 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4400 return FALSE;
4401
4402 if (r_reloc_is_const (&src1->r_rel))
4403 return (src1->value == src2->value);
4404
4405 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4406 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4407 return FALSE;
4408
4409 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4410 return FALSE;
4411
4412 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4413 return FALSE;
4414
4415 if (src1->value != src2->value)
4416 return FALSE;
4417
4418 /* Now check for the same section (if defined) or the same elf_hash
4419 (if undefined or weak). */
4420 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4421 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4422 if (r_reloc_is_defined (&src1->r_rel)
4423 && (final_static_link
4424 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4425 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4426 {
4427 if (r_reloc_get_section (&src1->r_rel)
4428 != r_reloc_get_section (&src2->r_rel))
4429 return FALSE;
4430 }
4431 else
4432 {
4433 /* Require that the hash entries (i.e., symbols) be identical. */
4434 if (h1 != h2 || h1 == 0)
4435 return FALSE;
4436 }
4437
4438 if (src1->is_abs_literal != src2->is_abs_literal)
4439 return FALSE;
4440
4441 return TRUE;
4442 }
4443
4444
4445 /* Must be power of 2. */
4446 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
4447
4448 static value_map_hash_table *
4449 value_map_hash_table_init (void)
4450 {
4451 value_map_hash_table *values;
4452
4453 values = (value_map_hash_table *)
4454 bfd_zmalloc (sizeof (value_map_hash_table));
4455 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4456 values->count = 0;
4457 values->buckets = (value_map **)
4458 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4459 if (values->buckets == NULL)
4460 {
4461 free (values);
4462 return NULL;
4463 }
4464 values->has_last_loc = FALSE;
4465
4466 return values;
4467 }
4468
4469
4470 static void
4471 value_map_hash_table_delete (value_map_hash_table *table)
4472 {
4473 free (table->buckets);
4474 free (table);
4475 }
4476
4477
4478 static unsigned
4479 hash_bfd_vma (bfd_vma val)
4480 {
4481 return (val >> 2) + (val >> 10);
4482 }
4483
4484
4485 static unsigned
4486 literal_value_hash (const literal_value *src)
4487 {
4488 unsigned hash_val;
4489
4490 hash_val = hash_bfd_vma (src->value);
4491 if (!r_reloc_is_const (&src->r_rel))
4492 {
4493 void *sec_or_hash;
4494
4495 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4496 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4497 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4498
4499 /* Now check for the same section and the same elf_hash. */
4500 if (r_reloc_is_defined (&src->r_rel))
4501 sec_or_hash = r_reloc_get_section (&src->r_rel);
4502 else
4503 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
4504 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
4505 }
4506 return hash_val;
4507 }
4508
4509
4510 /* Check if the specified literal_value has been seen before. */
4511
4512 static value_map *
4513 value_map_get_cached_value (value_map_hash_table *map,
4514 const literal_value *val,
4515 bfd_boolean final_static_link)
4516 {
4517 value_map *map_e;
4518 value_map *bucket;
4519 unsigned idx;
4520
4521 idx = literal_value_hash (val);
4522 idx = idx & (map->bucket_count - 1);
4523 bucket = map->buckets[idx];
4524 for (map_e = bucket; map_e; map_e = map_e->next)
4525 {
4526 if (literal_value_equal (&map_e->val, val, final_static_link))
4527 return map_e;
4528 }
4529 return NULL;
4530 }
4531
4532
4533 /* Record a new literal value. It is illegal to call this if VALUE
4534 already has an entry here. */
4535
4536 static value_map *
4537 add_value_map (value_map_hash_table *map,
4538 const literal_value *val,
4539 const r_reloc *loc,
4540 bfd_boolean final_static_link)
4541 {
4542 value_map **bucket_p;
4543 unsigned idx;
4544
4545 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4546 if (val_e == NULL)
4547 {
4548 bfd_set_error (bfd_error_no_memory);
4549 return NULL;
4550 }
4551
4552 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4553 val_e->val = *val;
4554 val_e->loc = *loc;
4555
4556 idx = literal_value_hash (val);
4557 idx = idx & (map->bucket_count - 1);
4558 bucket_p = &map->buckets[idx];
4559
4560 val_e->next = *bucket_p;
4561 *bucket_p = val_e;
4562 map->count++;
4563 /* FIXME: Consider resizing the hash table if we get too many entries. */
4564
4565 return val_e;
4566 }
4567
4568 \f
4569 /* Lists of text actions (ta_) for narrowing, widening, longcall
4570 conversion, space fill, code & literal removal, etc. */
4571
4572 /* The following text actions are generated:
4573
4574 "ta_remove_insn" remove an instruction or instructions
4575 "ta_remove_longcall" convert longcall to call
4576 "ta_convert_longcall" convert longcall to nop/call
4577 "ta_narrow_insn" narrow a wide instruction
4578 "ta_widen" widen a narrow instruction
4579 "ta_fill" add fill or remove fill
4580 removed < 0 is a fill; branches to the fill address will be
4581 changed to address + fill size (e.g., address - removed)
4582 removed >= 0 branches to the fill address will stay unchanged
4583 "ta_remove_literal" remove a literal; this action is
4584 indicated when a literal is removed
4585 or replaced.
4586 "ta_add_literal" insert a new literal; this action is
4587 indicated when a literal has been moved.
4588 It may use a virtual_offset because
4589 multiple literals can be placed at the
4590 same location.
4591
4592 For each of these text actions, we also record the number of bytes
4593 removed by performing the text action. In the case of a "ta_widen"
4594 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4595
4596 typedef struct text_action_struct text_action;
4597 typedef struct text_action_list_struct text_action_list;
4598 typedef enum text_action_enum_t text_action_t;
4599
4600 enum text_action_enum_t
4601 {
4602 ta_none,
4603 ta_remove_insn, /* removed = -size */
4604 ta_remove_longcall, /* removed = -size */
4605 ta_convert_longcall, /* removed = 0 */
4606 ta_narrow_insn, /* removed = -1 */
4607 ta_widen_insn, /* removed = +1 */
4608 ta_fill, /* removed = +size */
4609 ta_remove_literal,
4610 ta_add_literal
4611 };
4612
4613
4614 /* Structure for a text action record. */
4615 struct text_action_struct
4616 {
4617 text_action_t action;
4618 asection *sec; /* Optional */
4619 bfd_vma offset;
4620 bfd_vma virtual_offset; /* Zero except for adding literals. */
4621 int removed_bytes;
4622 literal_value value; /* Only valid when adding literals. */
4623
4624 text_action *next;
4625 };
4626
4627
4628 /* List of all of the actions taken on a text section. */
4629 struct text_action_list_struct
4630 {
4631 text_action *head;
4632 };
4633
4634
4635 static text_action *
4636 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
4637 {
4638 text_action **m_p;
4639
4640 /* It is not necessary to fill at the end of a section. */
4641 if (sec->size == offset)
4642 return NULL;
4643
4644 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4645 {
4646 text_action *t = *m_p;
4647 /* When the action is another fill at the same address,
4648 just increase the size. */
4649 if (t->offset == offset && t->action == ta_fill)
4650 return t;
4651 }
4652 return NULL;
4653 }
4654
4655
4656 static int
4657 compute_removed_action_diff (const text_action *ta,
4658 asection *sec,
4659 bfd_vma offset,
4660 int removed,
4661 int removable_space)
4662 {
4663 int new_removed;
4664 int current_removed = 0;
4665
4666 if (ta)
4667 current_removed = ta->removed_bytes;
4668
4669 BFD_ASSERT (ta == NULL || ta->offset == offset);
4670 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4671
4672 /* It is not necessary to fill at the end of a section. Clean this up. */
4673 if (sec->size == offset)
4674 new_removed = removable_space - 0;
4675 else
4676 {
4677 int space;
4678 int added = -removed - current_removed;
4679 /* Ignore multiples of the section alignment. */
4680 added = ((1 << sec->alignment_power) - 1) & added;
4681 new_removed = (-added);
4682
4683 /* Modify for removable. */
4684 space = removable_space - new_removed;
4685 new_removed = (removable_space
4686 - (((1 << sec->alignment_power) - 1) & space));
4687 }
4688 return (new_removed - current_removed);
4689 }
4690
4691
4692 static void
4693 adjust_fill_action (text_action *ta, int fill_diff)
4694 {
4695 ta->removed_bytes += fill_diff;
4696 }
4697
4698
4699 /* Add a modification action to the text. For the case of adding or
4700 removing space, modify any current fill and assume that
4701 "unreachable_space" bytes can be freely contracted. Note that a
4702 negative removed value is a fill. */
4703
4704 static void
4705 text_action_add (text_action_list *l,
4706 text_action_t action,
4707 asection *sec,
4708 bfd_vma offset,
4709 int removed)
4710 {
4711 text_action **m_p;
4712 text_action *ta;
4713
4714 /* It is not necessary to fill at the end of a section. */
4715 if (action == ta_fill && sec->size == offset)
4716 return;
4717
4718 /* It is not necessary to fill 0 bytes. */
4719 if (action == ta_fill && removed == 0)
4720 return;
4721
4722 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4723 {
4724 text_action *t = *m_p;
4725 /* When the action is another fill at the same address,
4726 just increase the size. */
4727 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4728 {
4729 t->removed_bytes += removed;
4730 return;
4731 }
4732 }
4733
4734 /* Create a new record and fill it up. */
4735 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4736 ta->action = action;
4737 ta->sec = sec;
4738 ta->offset = offset;
4739 ta->removed_bytes = removed;
4740 ta->next = (*m_p);
4741 *m_p = ta;
4742 }
4743
4744
4745 static void
4746 text_action_add_literal (text_action_list *l,
4747 text_action_t action,
4748 const r_reloc *loc,
4749 const literal_value *value,
4750 int removed)
4751 {
4752 text_action **m_p;
4753 text_action *ta;
4754 asection *sec = r_reloc_get_section (loc);
4755 bfd_vma offset = loc->target_offset;
4756 bfd_vma virtual_offset = loc->virtual_offset;
4757
4758 BFD_ASSERT (action == ta_add_literal);
4759
4760 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4761 {
4762 if ((*m_p)->offset > offset
4763 && ((*m_p)->offset != offset
4764 || (*m_p)->virtual_offset > virtual_offset))
4765 break;
4766 }
4767
4768 /* Create a new record and fill it up. */
4769 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4770 ta->action = action;
4771 ta->sec = sec;
4772 ta->offset = offset;
4773 ta->virtual_offset = virtual_offset;
4774 ta->value = *value;
4775 ta->removed_bytes = removed;
4776 ta->next = (*m_p);
4777 *m_p = ta;
4778 }
4779
4780
4781 static bfd_vma
4782 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
4783 {
4784 text_action *r;
4785 int removed = 0;
4786
4787 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4788 {
4789 if (r->offset < offset
4790 || (r->action == ta_fill && r->removed_bytes < 0))
4791 removed += r->removed_bytes;
4792 }
4793
4794 return (offset - removed);
4795 }
4796
4797
4798 static unsigned
4799 action_list_count (text_action_list *action_list)
4800 {
4801 text_action *r = action_list->head;
4802 unsigned count = 0;
4803 for (r = action_list->head; r != NULL; r = r->next)
4804 {
4805 count++;
4806 }
4807 return count;
4808 }
4809
4810
4811 static bfd_vma
4812 offset_with_removed_text_before_fill (text_action_list *action_list,
4813 bfd_vma offset)
4814 {
4815 text_action *r;
4816 int removed = 0;
4817
4818 for (r = action_list->head; r && r->offset < offset; r = r->next)
4819 removed += r->removed_bytes;
4820
4821 return (offset - removed);
4822 }
4823
4824
4825 /* The find_insn_action routine will only find non-fill actions. */
4826
4827 static text_action *
4828 find_insn_action (text_action_list *action_list, bfd_vma offset)
4829 {
4830 text_action *t;
4831 for (t = action_list->head; t; t = t->next)
4832 {
4833 if (t->offset == offset)
4834 {
4835 switch (t->action)
4836 {
4837 case ta_none:
4838 case ta_fill:
4839 break;
4840 case ta_remove_insn:
4841 case ta_remove_longcall:
4842 case ta_convert_longcall:
4843 case ta_narrow_insn:
4844 case ta_widen_insn:
4845 return t;
4846 case ta_remove_literal:
4847 case ta_add_literal:
4848 BFD_ASSERT (0);
4849 break;
4850 }
4851 }
4852 }
4853 return NULL;
4854 }
4855
4856
4857 #if DEBUG
4858
4859 static void
4860 print_action_list (FILE *fp, text_action_list *action_list)
4861 {
4862 text_action *r;
4863
4864 fprintf (fp, "Text Action\n");
4865 for (r = action_list->head; r != NULL; r = r->next)
4866 {
4867 const char *t = "unknown";
4868 switch (r->action)
4869 {
4870 case ta_remove_insn:
4871 t = "remove_insn"; break;
4872 case ta_remove_longcall:
4873 t = "remove_longcall"; break;
4874 case ta_convert_longcall:
4875 t = "remove_longcall"; break;
4876 case ta_narrow_insn:
4877 t = "narrow_insn"; break;
4878 case ta_widen_insn:
4879 t = "widen_insn"; break;
4880 case ta_fill:
4881 t = "fill"; break;
4882 case ta_none:
4883 t = "none"; break;
4884 case ta_remove_literal:
4885 t = "remove_literal"; break;
4886 case ta_add_literal:
4887 t = "add_literal"; break;
4888 }
4889
4890 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4891 r->sec->owner->filename,
4892 r->sec->name, r->offset, t, r->removed_bytes);
4893 }
4894 }
4895
4896 #endif /* DEBUG */
4897
4898 \f
4899 /* Lists of literals being coalesced or removed. */
4900
4901 /* In the usual case, the literal identified by "from" is being
4902 coalesced with another literal identified by "to". If the literal is
4903 unused and is being removed altogether, "to.abfd" will be NULL.
4904 The removed_literal entries are kept on a per-section list, sorted
4905 by the "from" offset field. */
4906
4907 typedef struct removed_literal_struct removed_literal;
4908 typedef struct removed_literal_list_struct removed_literal_list;
4909
4910 struct removed_literal_struct
4911 {
4912 r_reloc from;
4913 r_reloc to;
4914 removed_literal *next;
4915 };
4916
4917 struct removed_literal_list_struct
4918 {
4919 removed_literal *head;
4920 removed_literal *tail;
4921 };
4922
4923
4924 /* Record that the literal at "from" is being removed. If "to" is not
4925 NULL, the "from" literal is being coalesced with the "to" literal. */
4926
4927 static void
4928 add_removed_literal (removed_literal_list *removed_list,
4929 const r_reloc *from,
4930 const r_reloc *to)
4931 {
4932 removed_literal *r, *new_r, *next_r;
4933
4934 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4935
4936 new_r->from = *from;
4937 if (to)
4938 new_r->to = *to;
4939 else
4940 new_r->to.abfd = NULL;
4941 new_r->next = NULL;
4942
4943 r = removed_list->head;
4944 if (r == NULL)
4945 {
4946 removed_list->head = new_r;
4947 removed_list->tail = new_r;
4948 }
4949 /* Special check for common case of append. */
4950 else if (removed_list->tail->from.target_offset < from->target_offset)
4951 {
4952 removed_list->tail->next = new_r;
4953 removed_list->tail = new_r;
4954 }
4955 else
4956 {
4957 while (r->from.target_offset < from->target_offset && r->next)
4958 {
4959 r = r->next;
4960 }
4961 next_r = r->next;
4962 r->next = new_r;
4963 new_r->next = next_r;
4964 if (next_r == NULL)
4965 removed_list->tail = new_r;
4966 }
4967 }
4968
4969
4970 /* Check if the list of removed literals contains an entry for the
4971 given address. Return the entry if found. */
4972
4973 static removed_literal *
4974 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
4975 {
4976 removed_literal *r = removed_list->head;
4977 while (r && r->from.target_offset < addr)
4978 r = r->next;
4979 if (r && r->from.target_offset == addr)
4980 return r;
4981 return NULL;
4982 }
4983
4984
4985 #if DEBUG
4986
4987 static void
4988 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
4989 {
4990 removed_literal *r;
4991 r = removed_list->head;
4992 if (r)
4993 fprintf (fp, "Removed Literals\n");
4994 for (; r != NULL; r = r->next)
4995 {
4996 print_r_reloc (fp, &r->from);
4997 fprintf (fp, " => ");
4998 if (r->to.abfd == NULL)
4999 fprintf (fp, "REMOVED");
5000 else
5001 print_r_reloc (fp, &r->to);
5002 fprintf (fp, "\n");
5003 }
5004 }
5005
5006 #endif /* DEBUG */
5007
5008 \f
5009 /* Per-section data for relaxation. */
5010
5011 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5012
5013 struct xtensa_relax_info_struct
5014 {
5015 bfd_boolean is_relaxable_literal_section;
5016 bfd_boolean is_relaxable_asm_section;
5017 int visited; /* Number of times visited. */
5018
5019 source_reloc *src_relocs; /* Array[src_count]. */
5020 int src_count;
5021 int src_next; /* Next src_relocs entry to assign. */
5022
5023 removed_literal_list removed_list;
5024 text_action_list action_list;
5025
5026 reloc_bfd_fix *fix_list;
5027 reloc_bfd_fix *fix_array;
5028 unsigned fix_array_count;
5029
5030 /* Support for expanding the reloc array that is stored
5031 in the section structure. If the relocations have been
5032 reallocated, the newly allocated relocations will be referenced
5033 here along with the actual size allocated. The relocation
5034 count will always be found in the section structure. */
5035 Elf_Internal_Rela *allocated_relocs;
5036 unsigned relocs_count;
5037 unsigned allocated_relocs_count;
5038 };
5039
5040 struct elf_xtensa_section_data
5041 {
5042 struct bfd_elf_section_data elf;
5043 xtensa_relax_info relax_info;
5044 };
5045
5046
5047 static bfd_boolean
5048 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5049 {
5050 if (!sec->used_by_bfd)
5051 {
5052 struct elf_xtensa_section_data *sdata;
5053 bfd_size_type amt = sizeof (*sdata);
5054
5055 sdata = bfd_zalloc (abfd, amt);
5056 if (sdata == NULL)
5057 return FALSE;
5058 sec->used_by_bfd = sdata;
5059 }
5060
5061 return _bfd_elf_new_section_hook (abfd, sec);
5062 }
5063
5064
5065 static xtensa_relax_info *
5066 get_xtensa_relax_info (asection *sec)
5067 {
5068 struct elf_xtensa_section_data *section_data;
5069
5070 /* No info available if no section or if it is an output section. */
5071 if (!sec || sec == sec->output_section)
5072 return NULL;
5073
5074 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5075 return &section_data->relax_info;
5076 }
5077
5078
5079 static void
5080 init_xtensa_relax_info (asection *sec)
5081 {
5082 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5083
5084 relax_info->is_relaxable_literal_section = FALSE;
5085 relax_info->is_relaxable_asm_section = FALSE;
5086 relax_info->visited = 0;
5087
5088 relax_info->src_relocs = NULL;
5089 relax_info->src_count = 0;
5090 relax_info->src_next = 0;
5091
5092 relax_info->removed_list.head = NULL;
5093 relax_info->removed_list.tail = NULL;
5094
5095 relax_info->action_list.head = NULL;
5096
5097 relax_info->fix_list = NULL;
5098 relax_info->fix_array = NULL;
5099 relax_info->fix_array_count = 0;
5100
5101 relax_info->allocated_relocs = NULL;
5102 relax_info->relocs_count = 0;
5103 relax_info->allocated_relocs_count = 0;
5104 }
5105
5106 \f
5107 /* Coalescing literals may require a relocation to refer to a section in
5108 a different input file, but the standard relocation information
5109 cannot express that. Instead, the reloc_bfd_fix structures are used
5110 to "fix" the relocations that refer to sections in other input files.
5111 These structures are kept on per-section lists. The "src_type" field
5112 records the relocation type in case there are multiple relocations on
5113 the same location. FIXME: This is ugly; an alternative might be to
5114 add new symbols with the "owner" field to some other input file. */
5115
5116 struct reloc_bfd_fix_struct
5117 {
5118 asection *src_sec;
5119 bfd_vma src_offset;
5120 unsigned src_type; /* Relocation type. */
5121
5122 bfd *target_abfd;
5123 asection *target_sec;
5124 bfd_vma target_offset;
5125 bfd_boolean translated;
5126
5127 reloc_bfd_fix *next;
5128 };
5129
5130
5131 static reloc_bfd_fix *
5132 reloc_bfd_fix_init (asection *src_sec,
5133 bfd_vma src_offset,
5134 unsigned src_type,
5135 bfd *target_abfd,
5136 asection *target_sec,
5137 bfd_vma target_offset,
5138 bfd_boolean translated)
5139 {
5140 reloc_bfd_fix *fix;
5141
5142 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5143 fix->src_sec = src_sec;
5144 fix->src_offset = src_offset;
5145 fix->src_type = src_type;
5146 fix->target_abfd = target_abfd;
5147 fix->target_sec = target_sec;
5148 fix->target_offset = target_offset;
5149 fix->translated = translated;
5150
5151 return fix;
5152 }
5153
5154
5155 static void
5156 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5157 {
5158 xtensa_relax_info *relax_info;
5159
5160 relax_info = get_xtensa_relax_info (src_sec);
5161 fix->next = relax_info->fix_list;
5162 relax_info->fix_list = fix;
5163 }
5164
5165
5166 static int
5167 fix_compare (const void *ap, const void *bp)
5168 {
5169 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5170 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5171
5172 if (a->src_offset != b->src_offset)
5173 return (a->src_offset - b->src_offset);
5174 return (a->src_type - b->src_type);
5175 }
5176
5177
5178 static void
5179 cache_fix_array (asection *sec)
5180 {
5181 unsigned i, count = 0;
5182 reloc_bfd_fix *r;
5183 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5184
5185 if (relax_info == NULL)
5186 return;
5187 if (relax_info->fix_list == NULL)
5188 return;
5189
5190 for (r = relax_info->fix_list; r != NULL; r = r->next)
5191 count++;
5192
5193 relax_info->fix_array =
5194 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5195 relax_info->fix_array_count = count;
5196
5197 r = relax_info->fix_list;
5198 for (i = 0; i < count; i++, r = r->next)
5199 {
5200 relax_info->fix_array[count - 1 - i] = *r;
5201 relax_info->fix_array[count - 1 - i].next = NULL;
5202 }
5203
5204 qsort (relax_info->fix_array, relax_info->fix_array_count,
5205 sizeof (reloc_bfd_fix), fix_compare);
5206 }
5207
5208
5209 static reloc_bfd_fix *
5210 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
5211 {
5212 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5213 reloc_bfd_fix *rv;
5214 reloc_bfd_fix key;
5215
5216 if (relax_info == NULL)
5217 return NULL;
5218 if (relax_info->fix_list == NULL)
5219 return NULL;
5220
5221 if (relax_info->fix_array == NULL)
5222 cache_fix_array (sec);
5223
5224 key.src_offset = offset;
5225 key.src_type = type;
5226 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5227 sizeof (reloc_bfd_fix), fix_compare);
5228 return rv;
5229 }
5230
5231 \f
5232 /* Section caching. */
5233
5234 typedef struct section_cache_struct section_cache_t;
5235
5236 struct section_cache_struct
5237 {
5238 asection *sec;
5239
5240 bfd_byte *contents; /* Cache of the section contents. */
5241 bfd_size_type content_length;
5242
5243 property_table_entry *ptbl; /* Cache of the section property table. */
5244 unsigned pte_count;
5245
5246 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5247 unsigned reloc_count;
5248 };
5249
5250
5251 static void
5252 init_section_cache (section_cache_t *sec_cache)
5253 {
5254 memset (sec_cache, 0, sizeof (*sec_cache));
5255 }
5256
5257
5258 static void
5259 clear_section_cache (section_cache_t *sec_cache)
5260 {
5261 if (sec_cache->sec)
5262 {
5263 release_contents (sec_cache->sec, sec_cache->contents);
5264 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5265 if (sec_cache->ptbl)
5266 free (sec_cache->ptbl);
5267 memset (sec_cache, 0, sizeof (sec_cache));
5268 }
5269 }
5270
5271
5272 static bfd_boolean
5273 section_cache_section (section_cache_t *sec_cache,
5274 asection *sec,
5275 struct bfd_link_info *link_info)
5276 {
5277 bfd *abfd;
5278 property_table_entry *prop_table = NULL;
5279 int ptblsize = 0;
5280 bfd_byte *contents = NULL;
5281 Elf_Internal_Rela *internal_relocs = NULL;
5282 bfd_size_type sec_size;
5283
5284 if (sec == NULL)
5285 return FALSE;
5286 if (sec == sec_cache->sec)
5287 return TRUE;
5288
5289 abfd = sec->owner;
5290 sec_size = bfd_get_section_limit (abfd, sec);
5291
5292 /* Get the contents. */
5293 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5294 if (contents == NULL && sec_size != 0)
5295 goto err;
5296
5297 /* Get the relocations. */
5298 internal_relocs = retrieve_internal_relocs (abfd, sec,
5299 link_info->keep_memory);
5300
5301 /* Get the entry table. */
5302 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5303 XTENSA_PROP_SEC_NAME, FALSE);
5304 if (ptblsize < 0)
5305 goto err;
5306
5307 /* Fill in the new section cache. */
5308 clear_section_cache (sec_cache);
5309 memset (sec_cache, 0, sizeof (sec_cache));
5310
5311 sec_cache->sec = sec;
5312 sec_cache->contents = contents;
5313 sec_cache->content_length = sec_size;
5314 sec_cache->relocs = internal_relocs;
5315 sec_cache->reloc_count = sec->reloc_count;
5316 sec_cache->pte_count = ptblsize;
5317 sec_cache->ptbl = prop_table;
5318
5319 return TRUE;
5320
5321 err:
5322 release_contents (sec, contents);
5323 release_internal_relocs (sec, internal_relocs);
5324 if (prop_table)
5325 free (prop_table);
5326 return FALSE;
5327 }
5328
5329 \f
5330 /* Extended basic blocks. */
5331
5332 /* An ebb_struct represents an Extended Basic Block. Within this
5333 range, we guarantee that all instructions are decodable, the
5334 property table entries are contiguous, and no property table
5335 specifies a segment that cannot have instructions moved. This
5336 structure contains caches of the contents, property table and
5337 relocations for the specified section for easy use. The range is
5338 specified by ranges of indices for the byte offset, property table
5339 offsets and relocation offsets. These must be consistent. */
5340
5341 typedef struct ebb_struct ebb_t;
5342
5343 struct ebb_struct
5344 {
5345 asection *sec;
5346
5347 bfd_byte *contents; /* Cache of the section contents. */
5348 bfd_size_type content_length;
5349
5350 property_table_entry *ptbl; /* Cache of the section property table. */
5351 unsigned pte_count;
5352
5353 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5354 unsigned reloc_count;
5355
5356 bfd_vma start_offset; /* Offset in section. */
5357 unsigned start_ptbl_idx; /* Offset in the property table. */
5358 unsigned start_reloc_idx; /* Offset in the relocations. */
5359
5360 bfd_vma end_offset;
5361 unsigned end_ptbl_idx;
5362 unsigned end_reloc_idx;
5363
5364 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5365
5366 /* The unreachable property table at the end of this set of blocks;
5367 NULL if the end is not an unreachable block. */
5368 property_table_entry *ends_unreachable;
5369 };
5370
5371
5372 enum ebb_target_enum
5373 {
5374 EBB_NO_ALIGN = 0,
5375 EBB_DESIRE_TGT_ALIGN,
5376 EBB_REQUIRE_TGT_ALIGN,
5377 EBB_REQUIRE_LOOP_ALIGN,
5378 EBB_REQUIRE_ALIGN
5379 };
5380
5381
5382 /* proposed_action_struct is similar to the text_action_struct except
5383 that is represents a potential transformation, not one that will
5384 occur. We build a list of these for an extended basic block
5385 and use them to compute the actual actions desired. We must be
5386 careful that the entire set of actual actions we perform do not
5387 break any relocations that would fit if the actions were not
5388 performed. */
5389
5390 typedef struct proposed_action_struct proposed_action;
5391
5392 struct proposed_action_struct
5393 {
5394 enum ebb_target_enum align_type; /* for the target alignment */
5395 bfd_vma alignment_pow;
5396 text_action_t action;
5397 bfd_vma offset;
5398 int removed_bytes;
5399 bfd_boolean do_action; /* If false, then we will not perform the action. */
5400 };
5401
5402
5403 /* The ebb_constraint_struct keeps a set of proposed actions for an
5404 extended basic block. */
5405
5406 typedef struct ebb_constraint_struct ebb_constraint;
5407
5408 struct ebb_constraint_struct
5409 {
5410 ebb_t ebb;
5411 bfd_boolean start_movable;
5412
5413 /* Bytes of extra space at the beginning if movable. */
5414 int start_extra_space;
5415
5416 enum ebb_target_enum start_align;
5417
5418 bfd_boolean end_movable;
5419
5420 /* Bytes of extra space at the end if movable. */
5421 int end_extra_space;
5422
5423 unsigned action_count;
5424 unsigned action_allocated;
5425
5426 /* Array of proposed actions. */
5427 proposed_action *actions;
5428
5429 /* Action alignments -- one for each proposed action. */
5430 enum ebb_target_enum *action_aligns;
5431 };
5432
5433
5434 static void
5435 init_ebb_constraint (ebb_constraint *c)
5436 {
5437 memset (c, 0, sizeof (ebb_constraint));
5438 }
5439
5440
5441 static void
5442 free_ebb_constraint (ebb_constraint *c)
5443 {
5444 if (c->actions)
5445 free (c->actions);
5446 }
5447
5448
5449 static void
5450 init_ebb (ebb_t *ebb,
5451 asection *sec,
5452 bfd_byte *contents,
5453 bfd_size_type content_length,
5454 property_table_entry *prop_table,
5455 unsigned ptblsize,
5456 Elf_Internal_Rela *internal_relocs,
5457 unsigned reloc_count)
5458 {
5459 memset (ebb, 0, sizeof (ebb_t));
5460 ebb->sec = sec;
5461 ebb->contents = contents;
5462 ebb->content_length = content_length;
5463 ebb->ptbl = prop_table;
5464 ebb->pte_count = ptblsize;
5465 ebb->relocs = internal_relocs;
5466 ebb->reloc_count = reloc_count;
5467 ebb->start_offset = 0;
5468 ebb->end_offset = ebb->content_length - 1;
5469 ebb->start_ptbl_idx = 0;
5470 ebb->end_ptbl_idx = ptblsize;
5471 ebb->start_reloc_idx = 0;
5472 ebb->end_reloc_idx = reloc_count;
5473 }
5474
5475
5476 /* Extend the ebb to all decodable contiguous sections. The algorithm
5477 for building a basic block around an instruction is to push it
5478 forward until we hit the end of a section, an unreachable block or
5479 a block that cannot be transformed. Then we push it backwards
5480 searching for similar conditions. */
5481
5482 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5483 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5484 static bfd_size_type insn_block_decodable_len
5485 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5486
5487 static bfd_boolean
5488 extend_ebb_bounds (ebb_t *ebb)
5489 {
5490 if (!extend_ebb_bounds_forward (ebb))
5491 return FALSE;
5492 if (!extend_ebb_bounds_backward (ebb))
5493 return FALSE;
5494 return TRUE;
5495 }
5496
5497
5498 static bfd_boolean
5499 extend_ebb_bounds_forward (ebb_t *ebb)
5500 {
5501 property_table_entry *the_entry, *new_entry;
5502
5503 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5504
5505 /* Stop when (1) we cannot decode an instruction, (2) we are at
5506 the end of the property tables, (3) we hit a non-contiguous property
5507 table entry, (4) we hit a NO_TRANSFORM region. */
5508
5509 while (1)
5510 {
5511 bfd_vma entry_end;
5512 bfd_size_type insn_block_len;
5513
5514 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5515 insn_block_len =
5516 insn_block_decodable_len (ebb->contents, ebb->content_length,
5517 ebb->end_offset,
5518 entry_end - ebb->end_offset);
5519 if (insn_block_len != (entry_end - ebb->end_offset))
5520 {
5521 (*_bfd_error_handler)
5522 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5523 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5524 return FALSE;
5525 }
5526 ebb->end_offset += insn_block_len;
5527
5528 if (ebb->end_offset == ebb->sec->size)
5529 ebb->ends_section = TRUE;
5530
5531 /* Update the reloc counter. */
5532 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5533 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5534 < ebb->end_offset))
5535 {
5536 ebb->end_reloc_idx++;
5537 }
5538
5539 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5540 return TRUE;
5541
5542 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5543 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5544 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5545 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5546 break;
5547
5548 if (the_entry->address + the_entry->size != new_entry->address)
5549 break;
5550
5551 the_entry = new_entry;
5552 ebb->end_ptbl_idx++;
5553 }
5554
5555 /* Quick check for an unreachable or end of file just at the end. */
5556 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5557 {
5558 if (ebb->end_offset == ebb->content_length)
5559 ebb->ends_section = TRUE;
5560 }
5561 else
5562 {
5563 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5564 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5565 && the_entry->address + the_entry->size == new_entry->address)
5566 ebb->ends_unreachable = new_entry;
5567 }
5568
5569 /* Any other ending requires exact alignment. */
5570 return TRUE;
5571 }
5572
5573
5574 static bfd_boolean
5575 extend_ebb_bounds_backward (ebb_t *ebb)
5576 {
5577 property_table_entry *the_entry, *new_entry;
5578
5579 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5580
5581 /* Stop when (1) we cannot decode the instructions in the current entry.
5582 (2) we are at the beginning of the property tables, (3) we hit a
5583 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5584
5585 while (1)
5586 {
5587 bfd_vma block_begin;
5588 bfd_size_type insn_block_len;
5589
5590 block_begin = the_entry->address - ebb->sec->vma;
5591 insn_block_len =
5592 insn_block_decodable_len (ebb->contents, ebb->content_length,
5593 block_begin,
5594 ebb->start_offset - block_begin);
5595 if (insn_block_len != ebb->start_offset - block_begin)
5596 {
5597 (*_bfd_error_handler)
5598 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5599 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5600 return FALSE;
5601 }
5602 ebb->start_offset -= insn_block_len;
5603
5604 /* Update the reloc counter. */
5605 while (ebb->start_reloc_idx > 0
5606 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5607 >= ebb->start_offset))
5608 {
5609 ebb->start_reloc_idx--;
5610 }
5611
5612 if (ebb->start_ptbl_idx == 0)
5613 return TRUE;
5614
5615 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5616 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5617 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5618 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5619 return TRUE;
5620 if (new_entry->address + new_entry->size != the_entry->address)
5621 return TRUE;
5622
5623 the_entry = new_entry;
5624 ebb->start_ptbl_idx--;
5625 }
5626 return TRUE;
5627 }
5628
5629
5630 static bfd_size_type
5631 insn_block_decodable_len (bfd_byte *contents,
5632 bfd_size_type content_len,
5633 bfd_vma block_offset,
5634 bfd_size_type block_len)
5635 {
5636 bfd_vma offset = block_offset;
5637
5638 while (offset < block_offset + block_len)
5639 {
5640 bfd_size_type insn_len = 0;
5641
5642 insn_len = insn_decode_len (contents, content_len, offset);
5643 if (insn_len == 0)
5644 return (offset - block_offset);
5645 offset += insn_len;
5646 }
5647 return (offset - block_offset);
5648 }
5649
5650
5651 static void
5652 ebb_propose_action (ebb_constraint *c,
5653 enum ebb_target_enum align_type,
5654 bfd_vma alignment_pow,
5655 text_action_t action,
5656 bfd_vma offset,
5657 int removed_bytes,
5658 bfd_boolean do_action)
5659 {
5660 proposed_action *act;
5661
5662 if (c->action_allocated <= c->action_count)
5663 {
5664 unsigned new_allocated, i;
5665 proposed_action *new_actions;
5666
5667 new_allocated = (c->action_count + 2) * 2;
5668 new_actions = (proposed_action *)
5669 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5670
5671 for (i = 0; i < c->action_count; i++)
5672 new_actions[i] = c->actions[i];
5673 if (c->actions)
5674 free (c->actions);
5675 c->actions = new_actions;
5676 c->action_allocated = new_allocated;
5677 }
5678
5679 act = &c->actions[c->action_count];
5680 act->align_type = align_type;
5681 act->alignment_pow = alignment_pow;
5682 act->action = action;
5683 act->offset = offset;
5684 act->removed_bytes = removed_bytes;
5685 act->do_action = do_action;
5686
5687 c->action_count++;
5688 }
5689
5690 \f
5691 /* Access to internal relocations, section contents and symbols. */
5692
5693 /* During relaxation, we need to modify relocations, section contents,
5694 and symbol definitions, and we need to keep the original values from
5695 being reloaded from the input files, i.e., we need to "pin" the
5696 modified values in memory. We also want to continue to observe the
5697 setting of the "keep-memory" flag. The following functions wrap the
5698 standard BFD functions to take care of this for us. */
5699
5700 static Elf_Internal_Rela *
5701 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5702 {
5703 Elf_Internal_Rela *internal_relocs;
5704
5705 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5706 return NULL;
5707
5708 internal_relocs = elf_section_data (sec)->relocs;
5709 if (internal_relocs == NULL)
5710 internal_relocs = (_bfd_elf_link_read_relocs
5711 (abfd, sec, NULL, NULL, keep_memory));
5712 return internal_relocs;
5713 }
5714
5715
5716 static void
5717 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5718 {
5719 elf_section_data (sec)->relocs = internal_relocs;
5720 }
5721
5722
5723 static void
5724 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5725 {
5726 if (internal_relocs
5727 && elf_section_data (sec)->relocs != internal_relocs)
5728 free (internal_relocs);
5729 }
5730
5731
5732 static bfd_byte *
5733 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5734 {
5735 bfd_byte *contents;
5736 bfd_size_type sec_size;
5737
5738 sec_size = bfd_get_section_limit (abfd, sec);
5739 contents = elf_section_data (sec)->this_hdr.contents;
5740
5741 if (contents == NULL && sec_size != 0)
5742 {
5743 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5744 {
5745 if (contents)
5746 free (contents);
5747 return NULL;
5748 }
5749 if (keep_memory)
5750 elf_section_data (sec)->this_hdr.contents = contents;
5751 }
5752 return contents;
5753 }
5754
5755
5756 static void
5757 pin_contents (asection *sec, bfd_byte *contents)
5758 {
5759 elf_section_data (sec)->this_hdr.contents = contents;
5760 }
5761
5762
5763 static void
5764 release_contents (asection *sec, bfd_byte *contents)
5765 {
5766 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5767 free (contents);
5768 }
5769
5770
5771 static Elf_Internal_Sym *
5772 retrieve_local_syms (bfd *input_bfd)
5773 {
5774 Elf_Internal_Shdr *symtab_hdr;
5775 Elf_Internal_Sym *isymbuf;
5776 size_t locsymcount;
5777
5778 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5779 locsymcount = symtab_hdr->sh_info;
5780
5781 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5782 if (isymbuf == NULL && locsymcount != 0)
5783 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5784 NULL, NULL, NULL);
5785
5786 /* Save the symbols for this input file so they won't be read again. */
5787 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5788 symtab_hdr->contents = (unsigned char *) isymbuf;
5789
5790 return isymbuf;
5791 }
5792
5793 \f
5794 /* Code for link-time relaxation. */
5795
5796 /* Initialization for relaxation: */
5797 static bfd_boolean analyze_relocations (struct bfd_link_info *);
5798 static bfd_boolean find_relaxable_sections
5799 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
5800 static bfd_boolean collect_source_relocs
5801 (bfd *, asection *, struct bfd_link_info *);
5802 static bfd_boolean is_resolvable_asm_expansion
5803 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5804 bfd_boolean *);
5805 static Elf_Internal_Rela *find_associated_l32r_irel
5806 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
5807 static bfd_boolean compute_text_actions
5808 (bfd *, asection *, struct bfd_link_info *);
5809 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5810 static bfd_boolean compute_ebb_actions (ebb_constraint *);
5811 static bfd_boolean check_section_ebb_pcrels_fit
5812 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5813 const xtensa_opcode *);
5814 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
5815 static void text_action_add_proposed
5816 (text_action_list *, const ebb_constraint *, asection *);
5817 static int compute_fill_extra_space (property_table_entry *);
5818
5819 /* First pass: */
5820 static bfd_boolean compute_removed_literals
5821 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
5822 static Elf_Internal_Rela *get_irel_at_offset
5823 (asection *, Elf_Internal_Rela *, bfd_vma);
5824 static bfd_boolean is_removable_literal
5825 (const source_reloc *, int, const source_reloc *, int);
5826 static bfd_boolean remove_dead_literal
5827 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5828 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5829 static bfd_boolean identify_literal_placement
5830 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5831 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5832 source_reloc *, property_table_entry *, int, section_cache_t *,
5833 bfd_boolean);
5834 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
5835 static bfd_boolean coalesce_shared_literal
5836 (asection *, source_reloc *, property_table_entry *, int, value_map *);
5837 static bfd_boolean move_shared_literal
5838 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5839 int, const r_reloc *, const literal_value *, section_cache_t *);
5840
5841 /* Second pass: */
5842 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5843 static bfd_boolean translate_section_fixes (asection *);
5844 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5845 static void translate_reloc (const r_reloc *, r_reloc *);
5846 static void shrink_dynamic_reloc_sections
5847 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
5848 static bfd_boolean move_literal
5849 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5850 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
5851 static bfd_boolean relax_property_section
5852 (bfd *, asection *, struct bfd_link_info *);
5853
5854 /* Third pass: */
5855 static bfd_boolean relax_section_symbols (bfd *, asection *);
5856
5857
5858 static bfd_boolean
5859 elf_xtensa_relax_section (bfd *abfd,
5860 asection *sec,
5861 struct bfd_link_info *link_info,
5862 bfd_boolean *again)
5863 {
5864 static value_map_hash_table *values = NULL;
5865 static bfd_boolean relocations_analyzed = FALSE;
5866 xtensa_relax_info *relax_info;
5867
5868 if (!relocations_analyzed)
5869 {
5870 /* Do some overall initialization for relaxation. */
5871 values = value_map_hash_table_init ();
5872 if (values == NULL)
5873 return FALSE;
5874 relaxing_section = TRUE;
5875 if (!analyze_relocations (link_info))
5876 return FALSE;
5877 relocations_analyzed = TRUE;
5878 }
5879 *again = FALSE;
5880
5881 /* Don't mess with linker-created sections. */
5882 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5883 return TRUE;
5884
5885 relax_info = get_xtensa_relax_info (sec);
5886 BFD_ASSERT (relax_info != NULL);
5887
5888 switch (relax_info->visited)
5889 {
5890 case 0:
5891 /* Note: It would be nice to fold this pass into
5892 analyze_relocations, but it is important for this step that the
5893 sections be examined in link order. */
5894 if (!compute_removed_literals (abfd, sec, link_info, values))
5895 return FALSE;
5896 *again = TRUE;
5897 break;
5898
5899 case 1:
5900 if (values)
5901 value_map_hash_table_delete (values);
5902 values = NULL;
5903 if (!relax_section (abfd, sec, link_info))
5904 return FALSE;
5905 *again = TRUE;
5906 break;
5907
5908 case 2:
5909 if (!relax_section_symbols (abfd, sec))
5910 return FALSE;
5911 break;
5912 }
5913
5914 relax_info->visited++;
5915 return TRUE;
5916 }
5917
5918 \f
5919 /* Initialization for relaxation. */
5920
5921 /* This function is called once at the start of relaxation. It scans
5922 all the input sections and marks the ones that are relaxable (i.e.,
5923 literal sections with L32R relocations against them), and then
5924 collects source_reloc information for all the relocations against
5925 those relaxable sections. During this process, it also detects
5926 longcalls, i.e., calls relaxed by the assembler into indirect
5927 calls, that can be optimized back into direct calls. Within each
5928 extended basic block (ebb) containing an optimized longcall, it
5929 computes a set of "text actions" that can be performed to remove
5930 the L32R associated with the longcall while optionally preserving
5931 branch target alignments. */
5932
5933 static bfd_boolean
5934 analyze_relocations (struct bfd_link_info *link_info)
5935 {
5936 bfd *abfd;
5937 asection *sec;
5938 bfd_boolean is_relaxable = FALSE;
5939
5940 /* Initialize the per-section relaxation info. */
5941 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5942 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5943 {
5944 init_xtensa_relax_info (sec);
5945 }
5946
5947 /* Mark relaxable sections (and count relocations against each one). */
5948 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5949 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5950 {
5951 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5952 return FALSE;
5953 }
5954
5955 /* Bail out if there are no relaxable sections. */
5956 if (!is_relaxable)
5957 return TRUE;
5958
5959 /* Allocate space for source_relocs. */
5960 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5961 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5962 {
5963 xtensa_relax_info *relax_info;
5964
5965 relax_info = get_xtensa_relax_info (sec);
5966 if (relax_info->is_relaxable_literal_section
5967 || relax_info->is_relaxable_asm_section)
5968 {
5969 relax_info->src_relocs = (source_reloc *)
5970 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5971 }
5972 else
5973 relax_info->src_count = 0;
5974 }
5975
5976 /* Collect info on relocations against each relaxable section. */
5977 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5978 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5979 {
5980 if (!collect_source_relocs (abfd, sec, link_info))
5981 return FALSE;
5982 }
5983
5984 /* Compute the text actions. */
5985 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5986 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5987 {
5988 if (!compute_text_actions (abfd, sec, link_info))
5989 return FALSE;
5990 }
5991
5992 return TRUE;
5993 }
5994
5995
5996 /* Find all the sections that might be relaxed. The motivation for
5997 this pass is that collect_source_relocs() needs to record _all_ the
5998 relocations that target each relaxable section. That is expensive
5999 and unnecessary unless the target section is actually going to be
6000 relaxed. This pass identifies all such sections by checking if
6001 they have L32Rs pointing to them. In the process, the total number
6002 of relocations targeting each section is also counted so that we
6003 know how much space to allocate for source_relocs against each
6004 relaxable literal section. */
6005
6006 static bfd_boolean
6007 find_relaxable_sections (bfd *abfd,
6008 asection *sec,
6009 struct bfd_link_info *link_info,
6010 bfd_boolean *is_relaxable_p)
6011 {
6012 Elf_Internal_Rela *internal_relocs;
6013 bfd_byte *contents;
6014 bfd_boolean ok = TRUE;
6015 unsigned i;
6016 xtensa_relax_info *source_relax_info;
6017 bfd_boolean is_l32r_reloc;
6018
6019 internal_relocs = retrieve_internal_relocs (abfd, sec,
6020 link_info->keep_memory);
6021 if (internal_relocs == NULL)
6022 return ok;
6023
6024 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6025 if (contents == NULL && sec->size != 0)
6026 {
6027 ok = FALSE;
6028 goto error_return;
6029 }
6030
6031 source_relax_info = get_xtensa_relax_info (sec);
6032 for (i = 0; i < sec->reloc_count; i++)
6033 {
6034 Elf_Internal_Rela *irel = &internal_relocs[i];
6035 r_reloc r_rel;
6036 asection *target_sec;
6037 xtensa_relax_info *target_relax_info;
6038
6039 /* If this section has not already been marked as "relaxable", and
6040 if it contains any ASM_EXPAND relocations (marking expanded
6041 longcalls) that can be optimized into direct calls, then mark
6042 the section as "relaxable". */
6043 if (source_relax_info
6044 && !source_relax_info->is_relaxable_asm_section
6045 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6046 {
6047 bfd_boolean is_reachable = FALSE;
6048 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6049 link_info, &is_reachable)
6050 && is_reachable)
6051 {
6052 source_relax_info->is_relaxable_asm_section = TRUE;
6053 *is_relaxable_p = TRUE;
6054 }
6055 }
6056
6057 r_reloc_init (&r_rel, abfd, irel, contents,
6058 bfd_get_section_limit (abfd, sec));
6059
6060 target_sec = r_reloc_get_section (&r_rel);
6061 target_relax_info = get_xtensa_relax_info (target_sec);
6062 if (!target_relax_info)
6063 continue;
6064
6065 /* Count PC-relative operand relocations against the target section.
6066 Note: The conditions tested here must match the conditions under
6067 which init_source_reloc is called in collect_source_relocs(). */
6068 is_l32r_reloc = FALSE;
6069 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6070 {
6071 xtensa_opcode opcode =
6072 get_relocation_opcode (abfd, sec, contents, irel);
6073 if (opcode != XTENSA_UNDEFINED)
6074 {
6075 is_l32r_reloc = (opcode == get_l32r_opcode ());
6076 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6077 || is_l32r_reloc)
6078 target_relax_info->src_count++;
6079 }
6080 }
6081
6082 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6083 {
6084 /* Mark the target section as relaxable. */
6085 target_relax_info->is_relaxable_literal_section = TRUE;
6086 *is_relaxable_p = TRUE;
6087 }
6088 }
6089
6090 error_return:
6091 release_contents (sec, contents);
6092 release_internal_relocs (sec, internal_relocs);
6093 return ok;
6094 }
6095
6096
6097 /* Record _all_ the relocations that point to relaxable sections, and
6098 get rid of ASM_EXPAND relocs by either converting them to
6099 ASM_SIMPLIFY or by removing them. */
6100
6101 static bfd_boolean
6102 collect_source_relocs (bfd *abfd,
6103 asection *sec,
6104 struct bfd_link_info *link_info)
6105 {
6106 Elf_Internal_Rela *internal_relocs;
6107 bfd_byte *contents;
6108 bfd_boolean ok = TRUE;
6109 unsigned i;
6110 bfd_size_type sec_size;
6111
6112 internal_relocs = retrieve_internal_relocs (abfd, sec,
6113 link_info->keep_memory);
6114 if (internal_relocs == NULL)
6115 return ok;
6116
6117 sec_size = bfd_get_section_limit (abfd, sec);
6118 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6119 if (contents == NULL && sec_size != 0)
6120 {
6121 ok = FALSE;
6122 goto error_return;
6123 }
6124
6125 /* Record relocations against relaxable literal sections. */
6126 for (i = 0; i < sec->reloc_count; i++)
6127 {
6128 Elf_Internal_Rela *irel = &internal_relocs[i];
6129 r_reloc r_rel;
6130 asection *target_sec;
6131 xtensa_relax_info *target_relax_info;
6132
6133 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6134
6135 target_sec = r_reloc_get_section (&r_rel);
6136 target_relax_info = get_xtensa_relax_info (target_sec);
6137
6138 if (target_relax_info
6139 && (target_relax_info->is_relaxable_literal_section
6140 || target_relax_info->is_relaxable_asm_section))
6141 {
6142 xtensa_opcode opcode = XTENSA_UNDEFINED;
6143 int opnd = -1;
6144 bfd_boolean is_abs_literal = FALSE;
6145
6146 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6147 {
6148 /* None of the current alternate relocs are PC-relative,
6149 and only PC-relative relocs matter here. However, we
6150 still need to record the opcode for literal
6151 coalescing. */
6152 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6153 if (opcode == get_l32r_opcode ())
6154 {
6155 is_abs_literal = TRUE;
6156 opnd = 1;
6157 }
6158 else
6159 opcode = XTENSA_UNDEFINED;
6160 }
6161 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6162 {
6163 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6164 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6165 }
6166
6167 if (opcode != XTENSA_UNDEFINED)
6168 {
6169 int src_next = target_relax_info->src_next++;
6170 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6171
6172 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6173 is_abs_literal);
6174 }
6175 }
6176 }
6177
6178 /* Now get rid of ASM_EXPAND relocations. At this point, the
6179 src_relocs array for the target literal section may still be
6180 incomplete, but it must at least contain the entries for the L32R
6181 relocations associated with ASM_EXPANDs because they were just
6182 added in the preceding loop over the relocations. */
6183
6184 for (i = 0; i < sec->reloc_count; i++)
6185 {
6186 Elf_Internal_Rela *irel = &internal_relocs[i];
6187 bfd_boolean is_reachable;
6188
6189 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6190 &is_reachable))
6191 continue;
6192
6193 if (is_reachable)
6194 {
6195 Elf_Internal_Rela *l32r_irel;
6196 r_reloc r_rel;
6197 asection *target_sec;
6198 xtensa_relax_info *target_relax_info;
6199
6200 /* Mark the source_reloc for the L32R so that it will be
6201 removed in compute_removed_literals(), along with the
6202 associated literal. */
6203 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6204 irel, internal_relocs);
6205 if (l32r_irel == NULL)
6206 continue;
6207
6208 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6209
6210 target_sec = r_reloc_get_section (&r_rel);
6211 target_relax_info = get_xtensa_relax_info (target_sec);
6212
6213 if (target_relax_info
6214 && (target_relax_info->is_relaxable_literal_section
6215 || target_relax_info->is_relaxable_asm_section))
6216 {
6217 source_reloc *s_reloc;
6218
6219 /* Search the source_relocs for the entry corresponding to
6220 the l32r_irel. Note: The src_relocs array is not yet
6221 sorted, but it wouldn't matter anyway because we're
6222 searching by source offset instead of target offset. */
6223 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6224 target_relax_info->src_next,
6225 sec, l32r_irel);
6226 BFD_ASSERT (s_reloc);
6227 s_reloc->is_null = TRUE;
6228 }
6229
6230 /* Convert this reloc to ASM_SIMPLIFY. */
6231 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6232 R_XTENSA_ASM_SIMPLIFY);
6233 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6234
6235 pin_internal_relocs (sec, internal_relocs);
6236 }
6237 else
6238 {
6239 /* It is resolvable but doesn't reach. We resolve now
6240 by eliminating the relocation -- the call will remain
6241 expanded into L32R/CALLX. */
6242 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6243 pin_internal_relocs (sec, internal_relocs);
6244 }
6245 }
6246
6247 error_return:
6248 release_contents (sec, contents);
6249 release_internal_relocs (sec, internal_relocs);
6250 return ok;
6251 }
6252
6253
6254 /* Return TRUE if the asm expansion can be resolved. Generally it can
6255 be resolved on a final link or when a partial link locates it in the
6256 same section as the target. Set "is_reachable" flag if the target of
6257 the call is within the range of a direct call, given the current VMA
6258 for this section and the target section. */
6259
6260 bfd_boolean
6261 is_resolvable_asm_expansion (bfd *abfd,
6262 asection *sec,
6263 bfd_byte *contents,
6264 Elf_Internal_Rela *irel,
6265 struct bfd_link_info *link_info,
6266 bfd_boolean *is_reachable_p)
6267 {
6268 asection *target_sec;
6269 bfd_vma target_offset;
6270 r_reloc r_rel;
6271 xtensa_opcode opcode, direct_call_opcode;
6272 bfd_vma self_address;
6273 bfd_vma dest_address;
6274 bfd_boolean uses_l32r;
6275 bfd_size_type sec_size;
6276
6277 *is_reachable_p = FALSE;
6278
6279 if (contents == NULL)
6280 return FALSE;
6281
6282 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6283 return FALSE;
6284
6285 sec_size = bfd_get_section_limit (abfd, sec);
6286 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6287 sec_size - irel->r_offset, &uses_l32r);
6288 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6289 if (!uses_l32r)
6290 return FALSE;
6291
6292 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6293 if (direct_call_opcode == XTENSA_UNDEFINED)
6294 return FALSE;
6295
6296 /* Check and see that the target resolves. */
6297 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6298 if (!r_reloc_is_defined (&r_rel))
6299 return FALSE;
6300
6301 target_sec = r_reloc_get_section (&r_rel);
6302 target_offset = r_rel.target_offset;
6303
6304 /* If the target is in a shared library, then it doesn't reach. This
6305 isn't supposed to come up because the compiler should never generate
6306 non-PIC calls on systems that use shared libraries, but the linker
6307 shouldn't crash regardless. */
6308 if (!target_sec->output_section)
6309 return FALSE;
6310
6311 /* For relocatable sections, we can only simplify when the output
6312 section of the target is the same as the output section of the
6313 source. */
6314 if (link_info->relocatable
6315 && (target_sec->output_section != sec->output_section
6316 || is_reloc_sym_weak (abfd, irel)))
6317 return FALSE;
6318
6319 self_address = (sec->output_section->vma
6320 + sec->output_offset + irel->r_offset + 3);
6321 dest_address = (target_sec->output_section->vma
6322 + target_sec->output_offset + target_offset);
6323
6324 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6325 self_address, dest_address);
6326
6327 if ((self_address >> CALL_SEGMENT_BITS) !=
6328 (dest_address >> CALL_SEGMENT_BITS))
6329 return FALSE;
6330
6331 return TRUE;
6332 }
6333
6334
6335 static Elf_Internal_Rela *
6336 find_associated_l32r_irel (bfd *abfd,
6337 asection *sec,
6338 bfd_byte *contents,
6339 Elf_Internal_Rela *other_irel,
6340 Elf_Internal_Rela *internal_relocs)
6341 {
6342 unsigned i;
6343
6344 for (i = 0; i < sec->reloc_count; i++)
6345 {
6346 Elf_Internal_Rela *irel = &internal_relocs[i];
6347
6348 if (irel == other_irel)
6349 continue;
6350 if (irel->r_offset != other_irel->r_offset)
6351 continue;
6352 if (is_l32r_relocation (abfd, sec, contents, irel))
6353 return irel;
6354 }
6355
6356 return NULL;
6357 }
6358
6359
6360 static xtensa_opcode *
6361 build_reloc_opcodes (bfd *abfd,
6362 asection *sec,
6363 bfd_byte *contents,
6364 Elf_Internal_Rela *internal_relocs)
6365 {
6366 unsigned i;
6367 xtensa_opcode *reloc_opcodes =
6368 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6369 for (i = 0; i < sec->reloc_count; i++)
6370 {
6371 Elf_Internal_Rela *irel = &internal_relocs[i];
6372 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6373 }
6374 return reloc_opcodes;
6375 }
6376
6377
6378 /* The compute_text_actions function will build a list of potential
6379 transformation actions for code in the extended basic block of each
6380 longcall that is optimized to a direct call. From this list we
6381 generate a set of actions to actually perform that optimizes for
6382 space and, if not using size_opt, maintains branch target
6383 alignments.
6384
6385 These actions to be performed are placed on a per-section list.
6386 The actual changes are performed by relax_section() in the second
6387 pass. */
6388
6389 bfd_boolean
6390 compute_text_actions (bfd *abfd,
6391 asection *sec,
6392 struct bfd_link_info *link_info)
6393 {
6394 xtensa_opcode *reloc_opcodes = NULL;
6395 xtensa_relax_info *relax_info;
6396 bfd_byte *contents;
6397 Elf_Internal_Rela *internal_relocs;
6398 bfd_boolean ok = TRUE;
6399 unsigned i;
6400 property_table_entry *prop_table = 0;
6401 int ptblsize = 0;
6402 bfd_size_type sec_size;
6403
6404 relax_info = get_xtensa_relax_info (sec);
6405 BFD_ASSERT (relax_info);
6406 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
6407
6408 /* Do nothing if the section contains no optimized longcalls. */
6409 if (!relax_info->is_relaxable_asm_section)
6410 return ok;
6411
6412 internal_relocs = retrieve_internal_relocs (abfd, sec,
6413 link_info->keep_memory);
6414
6415 if (internal_relocs)
6416 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6417 internal_reloc_compare);
6418
6419 sec_size = bfd_get_section_limit (abfd, sec);
6420 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6421 if (contents == NULL && sec_size != 0)
6422 {
6423 ok = FALSE;
6424 goto error_return;
6425 }
6426
6427 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6428 XTENSA_PROP_SEC_NAME, FALSE);
6429 if (ptblsize < 0)
6430 {
6431 ok = FALSE;
6432 goto error_return;
6433 }
6434
6435 for (i = 0; i < sec->reloc_count; i++)
6436 {
6437 Elf_Internal_Rela *irel = &internal_relocs[i];
6438 bfd_vma r_offset;
6439 property_table_entry *the_entry;
6440 int ptbl_idx;
6441 ebb_t *ebb;
6442 ebb_constraint ebb_table;
6443 bfd_size_type simplify_size;
6444
6445 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6446 continue;
6447 r_offset = irel->r_offset;
6448
6449 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6450 if (simplify_size == 0)
6451 {
6452 (*_bfd_error_handler)
6453 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6454 sec->owner, sec, r_offset);
6455 continue;
6456 }
6457
6458 /* If the instruction table is not around, then don't do this
6459 relaxation. */
6460 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6461 sec->vma + irel->r_offset);
6462 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6463 {
6464 text_action_add (&relax_info->action_list,
6465 ta_convert_longcall, sec, r_offset,
6466 0);
6467 continue;
6468 }
6469
6470 /* If the next longcall happens to be at the same address as an
6471 unreachable section of size 0, then skip forward. */
6472 ptbl_idx = the_entry - prop_table;
6473 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6474 && the_entry->size == 0
6475 && ptbl_idx + 1 < ptblsize
6476 && (prop_table[ptbl_idx + 1].address
6477 == prop_table[ptbl_idx].address))
6478 {
6479 ptbl_idx++;
6480 the_entry++;
6481 }
6482
6483 if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)
6484 /* NO_REORDER is OK */
6485 continue;
6486
6487 init_ebb_constraint (&ebb_table);
6488 ebb = &ebb_table.ebb;
6489 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6490 internal_relocs, sec->reloc_count);
6491 ebb->start_offset = r_offset + simplify_size;
6492 ebb->end_offset = r_offset + simplify_size;
6493 ebb->start_ptbl_idx = ptbl_idx;
6494 ebb->end_ptbl_idx = ptbl_idx;
6495 ebb->start_reloc_idx = i;
6496 ebb->end_reloc_idx = i;
6497
6498 /* Precompute the opcode for each relocation. */
6499 if (reloc_opcodes == NULL)
6500 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6501 internal_relocs);
6502
6503 if (!extend_ebb_bounds (ebb)
6504 || !compute_ebb_proposed_actions (&ebb_table)
6505 || !compute_ebb_actions (&ebb_table)
6506 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
6507 internal_relocs, &ebb_table,
6508 reloc_opcodes)
6509 || !check_section_ebb_reduces (&ebb_table))
6510 {
6511 /* If anything goes wrong or we get unlucky and something does
6512 not fit, with our plan because of expansion between
6513 critical branches, just convert to a NOP. */
6514
6515 text_action_add (&relax_info->action_list,
6516 ta_convert_longcall, sec, r_offset, 0);
6517 i = ebb_table.ebb.end_reloc_idx;
6518 free_ebb_constraint (&ebb_table);
6519 continue;
6520 }
6521
6522 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6523
6524 /* Update the index so we do not go looking at the relocations
6525 we have already processed. */
6526 i = ebb_table.ebb.end_reloc_idx;
6527 free_ebb_constraint (&ebb_table);
6528 }
6529
6530 #if DEBUG
6531 if (relax_info->action_list.head)
6532 print_action_list (stderr, &relax_info->action_list);
6533 #endif
6534
6535 error_return:
6536 release_contents (sec, contents);
6537 release_internal_relocs (sec, internal_relocs);
6538 if (prop_table)
6539 free (prop_table);
6540 if (reloc_opcodes)
6541 free (reloc_opcodes);
6542
6543 return ok;
6544 }
6545
6546
6547 /* Do not widen an instruction if it is preceeded by a
6548 loop opcode. It might cause misalignment. */
6549
6550 static bfd_boolean
6551 prev_instr_is_a_loop (bfd_byte *contents,
6552 bfd_size_type content_length,
6553 bfd_size_type offset)
6554 {
6555 xtensa_opcode prev_opcode;
6556
6557 if (offset < 3)
6558 return FALSE;
6559 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6560 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6561 }
6562
6563
6564 /* Find all of the possible actions for an extended basic block. */
6565
6566 bfd_boolean
6567 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
6568 {
6569 const ebb_t *ebb = &ebb_table->ebb;
6570 unsigned rel_idx = ebb->start_reloc_idx;
6571 property_table_entry *entry, *start_entry, *end_entry;
6572 bfd_vma offset = 0;
6573 xtensa_isa isa = xtensa_default_isa;
6574 xtensa_format fmt;
6575 static xtensa_insnbuf insnbuf = NULL;
6576 static xtensa_insnbuf slotbuf = NULL;
6577
6578 if (insnbuf == NULL)
6579 {
6580 insnbuf = xtensa_insnbuf_alloc (isa);
6581 slotbuf = xtensa_insnbuf_alloc (isa);
6582 }
6583
6584 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6585 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6586
6587 for (entry = start_entry; entry <= end_entry; entry++)
6588 {
6589 bfd_vma start_offset, end_offset;
6590 bfd_size_type insn_len;
6591
6592 start_offset = entry->address - ebb->sec->vma;
6593 end_offset = entry->address + entry->size - ebb->sec->vma;
6594
6595 if (entry == start_entry)
6596 start_offset = ebb->start_offset;
6597 if (entry == end_entry)
6598 end_offset = ebb->end_offset;
6599 offset = start_offset;
6600
6601 if (offset == entry->address - ebb->sec->vma
6602 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6603 {
6604 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6605 BFD_ASSERT (offset != end_offset);
6606 if (offset == end_offset)
6607 return FALSE;
6608
6609 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6610 offset);
6611 if (insn_len == 0)
6612 goto decode_error;
6613
6614 if (check_branch_target_aligned_address (offset, insn_len))
6615 align_type = EBB_REQUIRE_TGT_ALIGN;
6616
6617 ebb_propose_action (ebb_table, align_type, 0,
6618 ta_none, offset, 0, TRUE);
6619 }
6620
6621 while (offset != end_offset)
6622 {
6623 Elf_Internal_Rela *irel;
6624 xtensa_opcode opcode;
6625
6626 while (rel_idx < ebb->end_reloc_idx
6627 && (ebb->relocs[rel_idx].r_offset < offset
6628 || (ebb->relocs[rel_idx].r_offset == offset
6629 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6630 != R_XTENSA_ASM_SIMPLIFY))))
6631 rel_idx++;
6632
6633 /* Check for longcall. */
6634 irel = &ebb->relocs[rel_idx];
6635 if (irel->r_offset == offset
6636 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6637 {
6638 bfd_size_type simplify_size;
6639
6640 simplify_size = get_asm_simplify_size (ebb->contents,
6641 ebb->content_length,
6642 irel->r_offset);
6643 if (simplify_size == 0)
6644 goto decode_error;
6645
6646 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6647 ta_convert_longcall, offset, 0, TRUE);
6648
6649 offset += simplify_size;
6650 continue;
6651 }
6652
6653 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6654 goto decode_error;
6655 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6656 ebb->content_length - offset);
6657 fmt = xtensa_format_decode (isa, insnbuf);
6658 if (fmt == XTENSA_UNDEFINED)
6659 goto decode_error;
6660 insn_len = xtensa_format_length (isa, fmt);
6661 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6662 goto decode_error;
6663
6664 if (xtensa_format_num_slots (isa, fmt) != 1)
6665 {
6666 offset += insn_len;
6667 continue;
6668 }
6669
6670 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6671 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6672 if (opcode == XTENSA_UNDEFINED)
6673 goto decode_error;
6674
6675 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6676 && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6677 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
6678 {
6679 /* Add an instruction narrow action. */
6680 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6681 ta_narrow_insn, offset, 0, FALSE);
6682 }
6683 else if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6684 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6685 && ! prev_instr_is_a_loop (ebb->contents,
6686 ebb->content_length, offset))
6687 {
6688 /* Add an instruction widen action. */
6689 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6690 ta_widen_insn, offset, 0, FALSE);
6691 }
6692 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
6693 {
6694 /* Check for branch targets. */
6695 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6696 ta_none, offset, 0, TRUE);
6697 }
6698
6699 offset += insn_len;
6700 }
6701 }
6702
6703 if (ebb->ends_unreachable)
6704 {
6705 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6706 ta_fill, ebb->end_offset, 0, TRUE);
6707 }
6708
6709 return TRUE;
6710
6711 decode_error:
6712 (*_bfd_error_handler)
6713 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6714 ebb->sec->owner, ebb->sec, offset);
6715 return FALSE;
6716 }
6717
6718
6719 /* After all of the information has collected about the
6720 transformations possible in an EBB, compute the appropriate actions
6721 here in compute_ebb_actions. We still must check later to make
6722 sure that the actions do not break any relocations. The algorithm
6723 used here is pretty greedy. Basically, it removes as many no-ops
6724 as possible so that the end of the EBB has the same alignment
6725 characteristics as the original. First, it uses narrowing, then
6726 fill space at the end of the EBB, and finally widenings. If that
6727 does not work, it tries again with one fewer no-op removed. The
6728 optimization will only be performed if all of the branch targets
6729 that were aligned before transformation are also aligned after the
6730 transformation.
6731
6732 When the size_opt flag is set, ignore the branch target alignments,
6733 narrow all wide instructions, and remove all no-ops unless the end
6734 of the EBB prevents it. */
6735
6736 bfd_boolean
6737 compute_ebb_actions (ebb_constraint *ebb_table)
6738 {
6739 unsigned i = 0;
6740 unsigned j;
6741 int removed_bytes = 0;
6742 ebb_t *ebb = &ebb_table->ebb;
6743 unsigned seg_idx_start = 0;
6744 unsigned seg_idx_end = 0;
6745
6746 /* We perform this like the assembler relaxation algorithm: Start by
6747 assuming all instructions are narrow and all no-ops removed; then
6748 walk through.... */
6749
6750 /* For each segment of this that has a solid constraint, check to
6751 see if there are any combinations that will keep the constraint.
6752 If so, use it. */
6753 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
6754 {
6755 bfd_boolean requires_text_end_align = FALSE;
6756 unsigned longcall_count = 0;
6757 unsigned longcall_convert_count = 0;
6758 unsigned narrowable_count = 0;
6759 unsigned narrowable_convert_count = 0;
6760 unsigned widenable_count = 0;
6761 unsigned widenable_convert_count = 0;
6762
6763 proposed_action *action = NULL;
6764 int align = (1 << ebb_table->ebb.sec->alignment_power);
6765
6766 seg_idx_start = seg_idx_end;
6767
6768 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6769 {
6770 action = &ebb_table->actions[i];
6771 if (action->action == ta_convert_longcall)
6772 longcall_count++;
6773 if (action->action == ta_narrow_insn)
6774 narrowable_count++;
6775 if (action->action == ta_widen_insn)
6776 widenable_count++;
6777 if (action->action == ta_fill)
6778 break;
6779 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6780 break;
6781 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6782 && !elf32xtensa_size_opt)
6783 break;
6784 }
6785 seg_idx_end = i;
6786
6787 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6788 requires_text_end_align = TRUE;
6789
6790 if (elf32xtensa_size_opt && !requires_text_end_align
6791 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6792 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6793 {
6794 longcall_convert_count = longcall_count;
6795 narrowable_convert_count = narrowable_count;
6796 widenable_convert_count = 0;
6797 }
6798 else
6799 {
6800 /* There is a constraint. Convert the max number of longcalls. */
6801 narrowable_convert_count = 0;
6802 longcall_convert_count = 0;
6803 widenable_convert_count = 0;
6804
6805 for (j = 0; j < longcall_count; j++)
6806 {
6807 int removed = (longcall_count - j) * 3 & (align - 1);
6808 unsigned desire_narrow = (align - removed) & (align - 1);
6809 unsigned desire_widen = removed;
6810 if (desire_narrow <= narrowable_count)
6811 {
6812 narrowable_convert_count = desire_narrow;
6813 narrowable_convert_count +=
6814 (align * ((narrowable_count - narrowable_convert_count)
6815 / align));
6816 longcall_convert_count = (longcall_count - j);
6817 widenable_convert_count = 0;
6818 break;
6819 }
6820 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6821 {
6822 narrowable_convert_count = 0;
6823 longcall_convert_count = longcall_count - j;
6824 widenable_convert_count = desire_widen;
6825 break;
6826 }
6827 }
6828 }
6829
6830 /* Now the number of conversions are saved. Do them. */
6831 for (i = seg_idx_start; i < seg_idx_end; i++)
6832 {
6833 action = &ebb_table->actions[i];
6834 switch (action->action)
6835 {
6836 case ta_convert_longcall:
6837 if (longcall_convert_count != 0)
6838 {
6839 action->action = ta_remove_longcall;
6840 action->do_action = TRUE;
6841 action->removed_bytes += 3;
6842 longcall_convert_count--;
6843 }
6844 break;
6845 case ta_narrow_insn:
6846 if (narrowable_convert_count != 0)
6847 {
6848 action->do_action = TRUE;
6849 action->removed_bytes += 1;
6850 narrowable_convert_count--;
6851 }
6852 break;
6853 case ta_widen_insn:
6854 if (widenable_convert_count != 0)
6855 {
6856 action->do_action = TRUE;
6857 action->removed_bytes -= 1;
6858 widenable_convert_count--;
6859 }
6860 break;
6861 default:
6862 break;
6863 }
6864 }
6865 }
6866
6867 /* Now we move on to some local opts. Try to remove each of the
6868 remaining longcalls. */
6869
6870 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6871 {
6872 removed_bytes = 0;
6873 for (i = 0; i < ebb_table->action_count; i++)
6874 {
6875 int old_removed_bytes = removed_bytes;
6876 proposed_action *action = &ebb_table->actions[i];
6877
6878 if (action->do_action && action->action == ta_convert_longcall)
6879 {
6880 bfd_boolean bad_alignment = FALSE;
6881 removed_bytes += 3;
6882 for (j = i + 1; j < ebb_table->action_count; j++)
6883 {
6884 proposed_action *new_action = &ebb_table->actions[j];
6885 bfd_vma offset = new_action->offset;
6886 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6887 {
6888 if (!check_branch_target_aligned
6889 (ebb_table->ebb.contents,
6890 ebb_table->ebb.content_length,
6891 offset, offset - removed_bytes))
6892 {
6893 bad_alignment = TRUE;
6894 break;
6895 }
6896 }
6897 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6898 {
6899 if (!check_loop_aligned (ebb_table->ebb.contents,
6900 ebb_table->ebb.content_length,
6901 offset,
6902 offset - removed_bytes))
6903 {
6904 bad_alignment = TRUE;
6905 break;
6906 }
6907 }
6908 if (new_action->action == ta_narrow_insn
6909 && !new_action->do_action
6910 && ebb_table->ebb.sec->alignment_power == 2)
6911 {
6912 /* Narrow an instruction and we are done. */
6913 new_action->do_action = TRUE;
6914 new_action->removed_bytes += 1;
6915 bad_alignment = FALSE;
6916 break;
6917 }
6918 if (new_action->action == ta_widen_insn
6919 && new_action->do_action
6920 && ebb_table->ebb.sec->alignment_power == 2)
6921 {
6922 /* Narrow an instruction and we are done. */
6923 new_action->do_action = FALSE;
6924 new_action->removed_bytes += 1;
6925 bad_alignment = FALSE;
6926 break;
6927 }
6928 }
6929 if (!bad_alignment)
6930 {
6931 action->removed_bytes += 3;
6932 action->action = ta_remove_longcall;
6933 action->do_action = TRUE;
6934 }
6935 }
6936 removed_bytes = old_removed_bytes;
6937 if (action->do_action)
6938 removed_bytes += action->removed_bytes;
6939 }
6940 }
6941
6942 removed_bytes = 0;
6943 for (i = 0; i < ebb_table->action_count; ++i)
6944 {
6945 proposed_action *action = &ebb_table->actions[i];
6946 if (action->do_action)
6947 removed_bytes += action->removed_bytes;
6948 }
6949
6950 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6951 && ebb->ends_unreachable)
6952 {
6953 proposed_action *action;
6954 int br;
6955 int extra_space;
6956
6957 BFD_ASSERT (ebb_table->action_count != 0);
6958 action = &ebb_table->actions[ebb_table->action_count - 1];
6959 BFD_ASSERT (action->action == ta_fill);
6960 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6961
6962 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6963 br = action->removed_bytes + removed_bytes + extra_space;
6964 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6965
6966 action->removed_bytes = extra_space - br;
6967 }
6968 return TRUE;
6969 }
6970
6971
6972 /* The xlate_map is a sorted array of address mappings designed to
6973 answer the offset_with_removed_text() query with a binary search instead
6974 of a linear search through the section's action_list. */
6975
6976 typedef struct xlate_map_entry xlate_map_entry_t;
6977 typedef struct xlate_map xlate_map_t;
6978
6979 struct xlate_map_entry
6980 {
6981 unsigned orig_address;
6982 unsigned new_address;
6983 unsigned size;
6984 };
6985
6986 struct xlate_map
6987 {
6988 unsigned entry_count;
6989 xlate_map_entry_t *entry;
6990 };
6991
6992
6993 static int
6994 xlate_compare (const void *a_v, const void *b_v)
6995 {
6996 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6997 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6998 if (a->orig_address < b->orig_address)
6999 return -1;
7000 if (a->orig_address > (b->orig_address + b->size - 1))
7001 return 1;
7002 return 0;
7003 }
7004
7005
7006 static bfd_vma
7007 xlate_offset_with_removed_text (const xlate_map_t *map,
7008 text_action_list *action_list,
7009 bfd_vma offset)
7010 {
7011 xlate_map_entry_t tmp;
7012 void *r;
7013 xlate_map_entry_t *e;
7014
7015 if (map == NULL)
7016 return offset_with_removed_text (action_list, offset);
7017
7018 if (map->entry_count == 0)
7019 return offset;
7020
7021 tmp.orig_address = offset;
7022 tmp.new_address = offset;
7023 tmp.size = 1;
7024
7025 r = bsearch (&offset, map->entry, map->entry_count,
7026 sizeof (xlate_map_entry_t), &xlate_compare);
7027 e = (xlate_map_entry_t *) r;
7028
7029 BFD_ASSERT (e != NULL);
7030 if (e == NULL)
7031 return offset;
7032 return e->new_address - e->orig_address + offset;
7033 }
7034
7035
7036 /* Build a binary searchable offset translation map from a section's
7037 action list. */
7038
7039 static xlate_map_t *
7040 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7041 {
7042 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7043 text_action_list *action_list = &relax_info->action_list;
7044 unsigned num_actions = 0;
7045 text_action *r;
7046 int removed;
7047 xlate_map_entry_t *current_entry;
7048
7049 if (map == NULL)
7050 return NULL;
7051
7052 num_actions = action_list_count (action_list);
7053 map->entry = (xlate_map_entry_t *)
7054 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7055 if (map->entry == NULL)
7056 {
7057 free (map);
7058 return NULL;
7059 }
7060 map->entry_count = 0;
7061
7062 removed = 0;
7063 current_entry = &map->entry[0];
7064
7065 current_entry->orig_address = 0;
7066 current_entry->new_address = 0;
7067 current_entry->size = 0;
7068
7069 for (r = action_list->head; r != NULL; r = r->next)
7070 {
7071 unsigned orig_size = 0;
7072 switch (r->action)
7073 {
7074 case ta_none:
7075 case ta_remove_insn:
7076 case ta_convert_longcall:
7077 case ta_remove_literal:
7078 case ta_add_literal:
7079 break;
7080 case ta_remove_longcall:
7081 orig_size = 6;
7082 break;
7083 case ta_narrow_insn:
7084 orig_size = 3;
7085 break;
7086 case ta_widen_insn:
7087 orig_size = 2;
7088 break;
7089 case ta_fill:
7090 break;
7091 }
7092 current_entry->size =
7093 r->offset + orig_size - current_entry->orig_address;
7094 if (current_entry->size != 0)
7095 {
7096 current_entry++;
7097 map->entry_count++;
7098 }
7099 current_entry->orig_address = r->offset + orig_size;
7100 removed += r->removed_bytes;
7101 current_entry->new_address = r->offset + orig_size - removed;
7102 current_entry->size = 0;
7103 }
7104
7105 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7106 - current_entry->orig_address);
7107 if (current_entry->size != 0)
7108 map->entry_count++;
7109
7110 return map;
7111 }
7112
7113
7114 /* Free an offset translation map. */
7115
7116 static void
7117 free_xlate_map (xlate_map_t *map)
7118 {
7119 if (map && map->entry)
7120 free (map->entry);
7121 if (map)
7122 free (map);
7123 }
7124
7125
7126 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7127 relocations in a section will fit if a proposed set of actions
7128 are performed. */
7129
7130 static bfd_boolean
7131 check_section_ebb_pcrels_fit (bfd *abfd,
7132 asection *sec,
7133 bfd_byte *contents,
7134 Elf_Internal_Rela *internal_relocs,
7135 const ebb_constraint *constraint,
7136 const xtensa_opcode *reloc_opcodes)
7137 {
7138 unsigned i, j;
7139 Elf_Internal_Rela *irel;
7140 xlate_map_t *xmap = NULL;
7141 bfd_boolean ok = TRUE;
7142 xtensa_relax_info *relax_info;
7143
7144 relax_info = get_xtensa_relax_info (sec);
7145
7146 if (relax_info && sec->reloc_count > 100)
7147 {
7148 xmap = build_xlate_map (sec, relax_info);
7149 /* NULL indicates out of memory, but the slow version
7150 can still be used. */
7151 }
7152
7153 for (i = 0; i < sec->reloc_count; i++)
7154 {
7155 r_reloc r_rel;
7156 bfd_vma orig_self_offset, orig_target_offset;
7157 bfd_vma self_offset, target_offset;
7158 int r_type;
7159 reloc_howto_type *howto;
7160 int self_removed_bytes, target_removed_bytes;
7161
7162 irel = &internal_relocs[i];
7163 r_type = ELF32_R_TYPE (irel->r_info);
7164
7165 howto = &elf_howto_table[r_type];
7166 /* We maintain the required invariant: PC-relative relocations
7167 that fit before linking must fit after linking. Thus we only
7168 need to deal with relocations to the same section that are
7169 PC-relative. */
7170 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7171 || !howto->pc_relative)
7172 continue;
7173
7174 r_reloc_init (&r_rel, abfd, irel, contents,
7175 bfd_get_section_limit (abfd, sec));
7176
7177 if (r_reloc_get_section (&r_rel) != sec)
7178 continue;
7179
7180 orig_self_offset = irel->r_offset;
7181 orig_target_offset = r_rel.target_offset;
7182
7183 self_offset = orig_self_offset;
7184 target_offset = orig_target_offset;
7185
7186 if (relax_info)
7187 {
7188 self_offset =
7189 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7190 orig_self_offset);
7191 target_offset =
7192 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7193 orig_target_offset);
7194 }
7195
7196 self_removed_bytes = 0;
7197 target_removed_bytes = 0;
7198
7199 for (j = 0; j < constraint->action_count; ++j)
7200 {
7201 proposed_action *action = &constraint->actions[j];
7202 bfd_vma offset = action->offset;
7203 int removed_bytes = action->removed_bytes;
7204 if (offset < orig_self_offset
7205 || (offset == orig_self_offset && action->action == ta_fill
7206 && action->removed_bytes < 0))
7207 self_removed_bytes += removed_bytes;
7208 if (offset < orig_target_offset
7209 || (offset == orig_target_offset && action->action == ta_fill
7210 && action->removed_bytes < 0))
7211 target_removed_bytes += removed_bytes;
7212 }
7213 self_offset -= self_removed_bytes;
7214 target_offset -= target_removed_bytes;
7215
7216 /* Try to encode it. Get the operand and check. */
7217 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7218 {
7219 /* None of the current alternate relocs are PC-relative,
7220 and only PC-relative relocs matter here. */
7221 }
7222 else
7223 {
7224 xtensa_opcode opcode;
7225 int opnum;
7226
7227 if (reloc_opcodes)
7228 opcode = reloc_opcodes[i];
7229 else
7230 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7231 if (opcode == XTENSA_UNDEFINED)
7232 {
7233 ok = FALSE;
7234 break;
7235 }
7236
7237 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7238 if (opnum == XTENSA_UNDEFINED)
7239 {
7240 ok = FALSE;
7241 break;
7242 }
7243
7244 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
7245 {
7246 ok = FALSE;
7247 break;
7248 }
7249 }
7250 }
7251
7252 if (xmap)
7253 free_xlate_map (xmap);
7254
7255 return ok;
7256 }
7257
7258
7259 static bfd_boolean
7260 check_section_ebb_reduces (const ebb_constraint *constraint)
7261 {
7262 int removed = 0;
7263 unsigned i;
7264
7265 for (i = 0; i < constraint->action_count; i++)
7266 {
7267 const proposed_action *action = &constraint->actions[i];
7268 if (action->do_action)
7269 removed += action->removed_bytes;
7270 }
7271 if (removed < 0)
7272 return FALSE;
7273
7274 return TRUE;
7275 }
7276
7277
7278 void
7279 text_action_add_proposed (text_action_list *l,
7280 const ebb_constraint *ebb_table,
7281 asection *sec)
7282 {
7283 unsigned i;
7284
7285 for (i = 0; i < ebb_table->action_count; i++)
7286 {
7287 proposed_action *action = &ebb_table->actions[i];
7288
7289 if (!action->do_action)
7290 continue;
7291 switch (action->action)
7292 {
7293 case ta_remove_insn:
7294 case ta_remove_longcall:
7295 case ta_convert_longcall:
7296 case ta_narrow_insn:
7297 case ta_widen_insn:
7298 case ta_fill:
7299 case ta_remove_literal:
7300 text_action_add (l, action->action, sec, action->offset,
7301 action->removed_bytes);
7302 break;
7303 case ta_none:
7304 break;
7305 default:
7306 BFD_ASSERT (0);
7307 break;
7308 }
7309 }
7310 }
7311
7312
7313 int
7314 compute_fill_extra_space (property_table_entry *entry)
7315 {
7316 int fill_extra_space;
7317
7318 if (!entry)
7319 return 0;
7320
7321 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7322 return 0;
7323
7324 fill_extra_space = entry->size;
7325 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7326 {
7327 /* Fill bytes for alignment:
7328 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7329 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7330 int nsm = (1 << pow) - 1;
7331 bfd_vma addr = entry->address + entry->size;
7332 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7333 fill_extra_space += align_fill;
7334 }
7335 return fill_extra_space;
7336 }
7337
7338 \f
7339 /* First relaxation pass. */
7340
7341 /* If the section contains relaxable literals, check each literal to
7342 see if it has the same value as another literal that has already
7343 been seen, either in the current section or a previous one. If so,
7344 add an entry to the per-section list of removed literals. The
7345 actual changes are deferred until the next pass. */
7346
7347 static bfd_boolean
7348 compute_removed_literals (bfd *abfd,
7349 asection *sec,
7350 struct bfd_link_info *link_info,
7351 value_map_hash_table *values)
7352 {
7353 xtensa_relax_info *relax_info;
7354 bfd_byte *contents;
7355 Elf_Internal_Rela *internal_relocs;
7356 source_reloc *src_relocs, *rel;
7357 bfd_boolean ok = TRUE;
7358 property_table_entry *prop_table = NULL;
7359 int ptblsize;
7360 int i, prev_i;
7361 bfd_boolean last_loc_is_prev = FALSE;
7362 bfd_vma last_target_offset = 0;
7363 section_cache_t target_sec_cache;
7364 bfd_size_type sec_size;
7365
7366 init_section_cache (&target_sec_cache);
7367
7368 /* Do nothing if it is not a relaxable literal section. */
7369 relax_info = get_xtensa_relax_info (sec);
7370 BFD_ASSERT (relax_info);
7371 if (!relax_info->is_relaxable_literal_section)
7372 return ok;
7373
7374 internal_relocs = retrieve_internal_relocs (abfd, sec,
7375 link_info->keep_memory);
7376
7377 sec_size = bfd_get_section_limit (abfd, sec);
7378 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7379 if (contents == NULL && sec_size != 0)
7380 {
7381 ok = FALSE;
7382 goto error_return;
7383 }
7384
7385 /* Sort the source_relocs by target offset. */
7386 src_relocs = relax_info->src_relocs;
7387 qsort (src_relocs, relax_info->src_count,
7388 sizeof (source_reloc), source_reloc_compare);
7389 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7390 internal_reloc_compare);
7391
7392 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7393 XTENSA_PROP_SEC_NAME, FALSE);
7394 if (ptblsize < 0)
7395 {
7396 ok = FALSE;
7397 goto error_return;
7398 }
7399
7400 prev_i = -1;
7401 for (i = 0; i < relax_info->src_count; i++)
7402 {
7403 Elf_Internal_Rela *irel = NULL;
7404
7405 rel = &src_relocs[i];
7406 if (get_l32r_opcode () != rel->opcode)
7407 continue;
7408 irel = get_irel_at_offset (sec, internal_relocs,
7409 rel->r_rel.target_offset);
7410
7411 /* If the relocation on this is not a simple R_XTENSA_32 or
7412 R_XTENSA_PLT then do not consider it. This may happen when
7413 the difference of two symbols is used in a literal. */
7414 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7415 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7416 continue;
7417
7418 /* If the target_offset for this relocation is the same as the
7419 previous relocation, then we've already considered whether the
7420 literal can be coalesced. Skip to the next one.... */
7421 if (i != 0 && prev_i != -1
7422 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
7423 continue;
7424 prev_i = i;
7425
7426 if (last_loc_is_prev &&
7427 last_target_offset + 4 != rel->r_rel.target_offset)
7428 last_loc_is_prev = FALSE;
7429
7430 /* Check if the relocation was from an L32R that is being removed
7431 because a CALLX was converted to a direct CALL, and check if
7432 there are no other relocations to the literal. */
7433 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count))
7434 {
7435 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7436 irel, rel, prop_table, ptblsize))
7437 {
7438 ok = FALSE;
7439 goto error_return;
7440 }
7441 last_target_offset = rel->r_rel.target_offset;
7442 continue;
7443 }
7444
7445 if (!identify_literal_placement (abfd, sec, contents, link_info,
7446 values,
7447 &last_loc_is_prev, irel,
7448 relax_info->src_count - i, rel,
7449 prop_table, ptblsize,
7450 &target_sec_cache, rel->is_abs_literal))
7451 {
7452 ok = FALSE;
7453 goto error_return;
7454 }
7455 last_target_offset = rel->r_rel.target_offset;
7456 }
7457
7458 #if DEBUG
7459 print_removed_literals (stderr, &relax_info->removed_list);
7460 print_action_list (stderr, &relax_info->action_list);
7461 #endif /* DEBUG */
7462
7463 error_return:
7464 if (prop_table) free (prop_table);
7465 clear_section_cache (&target_sec_cache);
7466
7467 release_contents (sec, contents);
7468 release_internal_relocs (sec, internal_relocs);
7469 return ok;
7470 }
7471
7472
7473 static Elf_Internal_Rela *
7474 get_irel_at_offset (asection *sec,
7475 Elf_Internal_Rela *internal_relocs,
7476 bfd_vma offset)
7477 {
7478 unsigned i;
7479 Elf_Internal_Rela *irel;
7480 unsigned r_type;
7481 Elf_Internal_Rela key;
7482
7483 if (!internal_relocs)
7484 return NULL;
7485
7486 key.r_offset = offset;
7487 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7488 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7489 if (!irel)
7490 return NULL;
7491
7492 /* bsearch does not guarantee which will be returned if there are
7493 multiple matches. We need the first that is not an alignment. */
7494 i = irel - internal_relocs;
7495 while (i > 0)
7496 {
7497 if (internal_relocs[i-1].r_offset != offset)
7498 break;
7499 i--;
7500 }
7501 for ( ; i < sec->reloc_count; i++)
7502 {
7503 irel = &internal_relocs[i];
7504 r_type = ELF32_R_TYPE (irel->r_info);
7505 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7506 return irel;
7507 }
7508
7509 return NULL;
7510 }
7511
7512
7513 bfd_boolean
7514 is_removable_literal (const source_reloc *rel,
7515 int i,
7516 const source_reloc *src_relocs,
7517 int src_count)
7518 {
7519 const source_reloc *curr_rel;
7520 if (!rel->is_null)
7521 return FALSE;
7522
7523 for (++i; i < src_count; ++i)
7524 {
7525 curr_rel = &src_relocs[i];
7526 /* If all others have the same target offset.... */
7527 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7528 return TRUE;
7529
7530 if (!curr_rel->is_null
7531 && !xtensa_is_property_section (curr_rel->source_sec)
7532 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7533 return FALSE;
7534 }
7535 return TRUE;
7536 }
7537
7538
7539 bfd_boolean
7540 remove_dead_literal (bfd *abfd,
7541 asection *sec,
7542 struct bfd_link_info *link_info,
7543 Elf_Internal_Rela *internal_relocs,
7544 Elf_Internal_Rela *irel,
7545 source_reloc *rel,
7546 property_table_entry *prop_table,
7547 int ptblsize)
7548 {
7549 property_table_entry *entry;
7550 xtensa_relax_info *relax_info;
7551
7552 relax_info = get_xtensa_relax_info (sec);
7553 if (!relax_info)
7554 return FALSE;
7555
7556 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7557 sec->vma + rel->r_rel.target_offset);
7558
7559 /* Mark the unused literal so that it will be removed. */
7560 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7561
7562 text_action_add (&relax_info->action_list,
7563 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7564
7565 /* If the section is 4-byte aligned, do not add fill. */
7566 if (sec->alignment_power > 2)
7567 {
7568 int fill_extra_space;
7569 bfd_vma entry_sec_offset;
7570 text_action *fa;
7571 property_table_entry *the_add_entry;
7572 int removed_diff;
7573
7574 if (entry)
7575 entry_sec_offset = entry->address - sec->vma + entry->size;
7576 else
7577 entry_sec_offset = rel->r_rel.target_offset + 4;
7578
7579 /* If the literal range is at the end of the section,
7580 do not add fill. */
7581 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7582 entry_sec_offset);
7583 fill_extra_space = compute_fill_extra_space (the_add_entry);
7584
7585 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7586 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7587 -4, fill_extra_space);
7588 if (fa)
7589 adjust_fill_action (fa, removed_diff);
7590 else
7591 text_action_add (&relax_info->action_list,
7592 ta_fill, sec, entry_sec_offset, removed_diff);
7593 }
7594
7595 /* Zero out the relocation on this literal location. */
7596 if (irel)
7597 {
7598 if (elf_hash_table (link_info)->dynamic_sections_created)
7599 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7600
7601 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7602 pin_internal_relocs (sec, internal_relocs);
7603 }
7604
7605 /* Do not modify "last_loc_is_prev". */
7606 return TRUE;
7607 }
7608
7609
7610 bfd_boolean
7611 identify_literal_placement (bfd *abfd,
7612 asection *sec,
7613 bfd_byte *contents,
7614 struct bfd_link_info *link_info,
7615 value_map_hash_table *values,
7616 bfd_boolean *last_loc_is_prev_p,
7617 Elf_Internal_Rela *irel,
7618 int remaining_src_rels,
7619 source_reloc *rel,
7620 property_table_entry *prop_table,
7621 int ptblsize,
7622 section_cache_t *target_sec_cache,
7623 bfd_boolean is_abs_literal)
7624 {
7625 literal_value val;
7626 value_map *val_map;
7627 xtensa_relax_info *relax_info;
7628 bfd_boolean literal_placed = FALSE;
7629 r_reloc r_rel;
7630 unsigned long value;
7631 bfd_boolean final_static_link;
7632 bfd_size_type sec_size;
7633
7634 relax_info = get_xtensa_relax_info (sec);
7635 if (!relax_info)
7636 return FALSE;
7637
7638 sec_size = bfd_get_section_limit (abfd, sec);
7639
7640 final_static_link =
7641 (!link_info->relocatable
7642 && !elf_hash_table (link_info)->dynamic_sections_created);
7643
7644 /* The placement algorithm first checks to see if the literal is
7645 already in the value map. If so and the value map is reachable
7646 from all uses, then the literal is moved to that location. If
7647 not, then we identify the last location where a fresh literal was
7648 placed. If the literal can be safely moved there, then we do so.
7649 If not, then we assume that the literal is not to move and leave
7650 the literal where it is, marking it as the last literal
7651 location. */
7652
7653 /* Find the literal value. */
7654 value = 0;
7655 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7656 if (!irel)
7657 {
7658 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7659 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7660 }
7661 init_literal_value (&val, &r_rel, value, is_abs_literal);
7662
7663 /* Check if we've seen another literal with the same value that
7664 is in the same output section. */
7665 val_map = value_map_get_cached_value (values, &val, final_static_link);
7666
7667 if (val_map
7668 && (r_reloc_get_section (&val_map->loc)->output_section
7669 == sec->output_section)
7670 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7671 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7672 {
7673 /* No change to last_loc_is_prev. */
7674 literal_placed = TRUE;
7675 }
7676
7677 /* For relocatable links, do not try to move literals. To do it
7678 correctly might increase the number of relocations in an input
7679 section making the default relocatable linking fail. */
7680 if (!link_info->relocatable && !literal_placed
7681 && values->has_last_loc && !(*last_loc_is_prev_p))
7682 {
7683 asection *target_sec = r_reloc_get_section (&values->last_loc);
7684 if (target_sec && target_sec->output_section == sec->output_section)
7685 {
7686 /* Increment the virtual offset. */
7687 r_reloc try_loc = values->last_loc;
7688 try_loc.virtual_offset += 4;
7689
7690 /* There is a last loc that was in the same output section. */
7691 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7692 && move_shared_literal (sec, link_info, rel,
7693 prop_table, ptblsize,
7694 &try_loc, &val, target_sec_cache))
7695 {
7696 values->last_loc.virtual_offset += 4;
7697 literal_placed = TRUE;
7698 if (!val_map)
7699 val_map = add_value_map (values, &val, &try_loc,
7700 final_static_link);
7701 else
7702 val_map->loc = try_loc;
7703 }
7704 }
7705 }
7706
7707 if (!literal_placed)
7708 {
7709 /* Nothing worked, leave the literal alone but update the last loc. */
7710 values->has_last_loc = TRUE;
7711 values->last_loc = rel->r_rel;
7712 if (!val_map)
7713 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
7714 else
7715 val_map->loc = rel->r_rel;
7716 *last_loc_is_prev_p = TRUE;
7717 }
7718
7719 return TRUE;
7720 }
7721
7722
7723 /* Check if the original relocations (presumably on L32R instructions)
7724 identified by reloc[0..N] can be changed to reference the literal
7725 identified by r_rel. If r_rel is out of range for any of the
7726 original relocations, then we don't want to coalesce the original
7727 literal with the one at r_rel. We only check reloc[0..N], where the
7728 offsets are all the same as for reloc[0] (i.e., they're all
7729 referencing the same literal) and where N is also bounded by the
7730 number of remaining entries in the "reloc" array. The "reloc" array
7731 is sorted by target offset so we know all the entries for the same
7732 literal will be contiguous. */
7733
7734 static bfd_boolean
7735 relocations_reach (source_reloc *reloc,
7736 int remaining_relocs,
7737 const r_reloc *r_rel)
7738 {
7739 bfd_vma from_offset, source_address, dest_address;
7740 asection *sec;
7741 int i;
7742
7743 if (!r_reloc_is_defined (r_rel))
7744 return FALSE;
7745
7746 sec = r_reloc_get_section (r_rel);
7747 from_offset = reloc[0].r_rel.target_offset;
7748
7749 for (i = 0; i < remaining_relocs; i++)
7750 {
7751 if (reloc[i].r_rel.target_offset != from_offset)
7752 break;
7753
7754 /* Ignore relocations that have been removed. */
7755 if (reloc[i].is_null)
7756 continue;
7757
7758 /* The original and new output section for these must be the same
7759 in order to coalesce. */
7760 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7761 != sec->output_section)
7762 return FALSE;
7763
7764 /* Absolute literals in the same output section can always be
7765 combined. */
7766 if (reloc[i].is_abs_literal)
7767 continue;
7768
7769 /* A literal with no PC-relative relocations can be moved anywhere. */
7770 if (reloc[i].opnd != -1)
7771 {
7772 /* Otherwise, check to see that it fits. */
7773 source_address = (reloc[i].source_sec->output_section->vma
7774 + reloc[i].source_sec->output_offset
7775 + reloc[i].r_rel.rela.r_offset);
7776 dest_address = (sec->output_section->vma
7777 + sec->output_offset
7778 + r_rel->target_offset);
7779
7780 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7781 source_address, dest_address))
7782 return FALSE;
7783 }
7784 }
7785
7786 return TRUE;
7787 }
7788
7789
7790 /* Move a literal to another literal location because it is
7791 the same as the other literal value. */
7792
7793 static bfd_boolean
7794 coalesce_shared_literal (asection *sec,
7795 source_reloc *rel,
7796 property_table_entry *prop_table,
7797 int ptblsize,
7798 value_map *val_map)
7799 {
7800 property_table_entry *entry;
7801 text_action *fa;
7802 property_table_entry *the_add_entry;
7803 int removed_diff;
7804 xtensa_relax_info *relax_info;
7805
7806 relax_info = get_xtensa_relax_info (sec);
7807 if (!relax_info)
7808 return FALSE;
7809
7810 entry = elf_xtensa_find_property_entry
7811 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7812 if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM))
7813 return TRUE;
7814
7815 /* Mark that the literal will be coalesced. */
7816 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7817
7818 text_action_add (&relax_info->action_list,
7819 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7820
7821 /* If the section is 4-byte aligned, do not add fill. */
7822 if (sec->alignment_power > 2)
7823 {
7824 int fill_extra_space;
7825 bfd_vma entry_sec_offset;
7826
7827 if (entry)
7828 entry_sec_offset = entry->address - sec->vma + entry->size;
7829 else
7830 entry_sec_offset = rel->r_rel.target_offset + 4;
7831
7832 /* If the literal range is at the end of the section,
7833 do not add fill. */
7834 fill_extra_space = 0;
7835 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7836 entry_sec_offset);
7837 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7838 fill_extra_space = the_add_entry->size;
7839
7840 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7841 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7842 -4, fill_extra_space);
7843 if (fa)
7844 adjust_fill_action (fa, removed_diff);
7845 else
7846 text_action_add (&relax_info->action_list,
7847 ta_fill, sec, entry_sec_offset, removed_diff);
7848 }
7849
7850 return TRUE;
7851 }
7852
7853
7854 /* Move a literal to another location. This may actually increase the
7855 total amount of space used because of alignments so we need to do
7856 this carefully. Also, it may make a branch go out of range. */
7857
7858 static bfd_boolean
7859 move_shared_literal (asection *sec,
7860 struct bfd_link_info *link_info,
7861 source_reloc *rel,
7862 property_table_entry *prop_table,
7863 int ptblsize,
7864 const r_reloc *target_loc,
7865 const literal_value *lit_value,
7866 section_cache_t *target_sec_cache)
7867 {
7868 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7869 text_action *fa, *target_fa;
7870 int removed_diff;
7871 xtensa_relax_info *relax_info, *target_relax_info;
7872 asection *target_sec;
7873 ebb_t *ebb;
7874 ebb_constraint ebb_table;
7875 bfd_boolean relocs_fit;
7876
7877 /* If this routine always returns FALSE, the literals that cannot be
7878 coalesced will not be moved. */
7879 if (elf32xtensa_no_literal_movement)
7880 return FALSE;
7881
7882 relax_info = get_xtensa_relax_info (sec);
7883 if (!relax_info)
7884 return FALSE;
7885
7886 target_sec = r_reloc_get_section (target_loc);
7887 target_relax_info = get_xtensa_relax_info (target_sec);
7888
7889 /* Literals to undefined sections may not be moved because they
7890 must report an error. */
7891 if (bfd_is_und_section (target_sec))
7892 return FALSE;
7893
7894 src_entry = elf_xtensa_find_property_entry
7895 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7896
7897 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7898 return FALSE;
7899
7900 target_entry = elf_xtensa_find_property_entry
7901 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7902 target_sec->vma + target_loc->target_offset);
7903
7904 if (!target_entry)
7905 return FALSE;
7906
7907 /* Make sure that we have not broken any branches. */
7908 relocs_fit = FALSE;
7909
7910 init_ebb_constraint (&ebb_table);
7911 ebb = &ebb_table.ebb;
7912 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7913 target_sec_cache->content_length,
7914 target_sec_cache->ptbl, target_sec_cache->pte_count,
7915 target_sec_cache->relocs, target_sec_cache->reloc_count);
7916
7917 /* Propose to add 4 bytes + worst-case alignment size increase to
7918 destination. */
7919 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7920 ta_fill, target_loc->target_offset,
7921 -4 - (1 << target_sec->alignment_power), TRUE);
7922
7923 /* Check all of the PC-relative relocations to make sure they still fit. */
7924 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7925 target_sec_cache->contents,
7926 target_sec_cache->relocs,
7927 &ebb_table, NULL);
7928
7929 if (!relocs_fit)
7930 return FALSE;
7931
7932 text_action_add_literal (&target_relax_info->action_list,
7933 ta_add_literal, target_loc, lit_value, -4);
7934
7935 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7936 {
7937 /* May need to add or remove some fill to maintain alignment. */
7938 int fill_extra_space;
7939 bfd_vma entry_sec_offset;
7940
7941 entry_sec_offset =
7942 target_entry->address - target_sec->vma + target_entry->size;
7943
7944 /* If the literal range is at the end of the section,
7945 do not add fill. */
7946 fill_extra_space = 0;
7947 the_add_entry =
7948 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7949 target_sec_cache->pte_count,
7950 entry_sec_offset);
7951 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7952 fill_extra_space = the_add_entry->size;
7953
7954 target_fa = find_fill_action (&target_relax_info->action_list,
7955 target_sec, entry_sec_offset);
7956 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7957 entry_sec_offset, 4,
7958 fill_extra_space);
7959 if (target_fa)
7960 adjust_fill_action (target_fa, removed_diff);
7961 else
7962 text_action_add (&target_relax_info->action_list,
7963 ta_fill, target_sec, entry_sec_offset, removed_diff);
7964 }
7965
7966 /* Mark that the literal will be moved to the new location. */
7967 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7968
7969 /* Remove the literal. */
7970 text_action_add (&relax_info->action_list,
7971 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7972
7973 /* If the section is 4-byte aligned, do not add fill. */
7974 if (sec->alignment_power > 2 && target_entry != src_entry)
7975 {
7976 int fill_extra_space;
7977 bfd_vma entry_sec_offset;
7978
7979 if (src_entry)
7980 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7981 else
7982 entry_sec_offset = rel->r_rel.target_offset+4;
7983
7984 /* If the literal range is at the end of the section,
7985 do not add fill. */
7986 fill_extra_space = 0;
7987 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7988 entry_sec_offset);
7989 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7990 fill_extra_space = the_add_entry->size;
7991
7992 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7993 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7994 -4, fill_extra_space);
7995 if (fa)
7996 adjust_fill_action (fa, removed_diff);
7997 else
7998 text_action_add (&relax_info->action_list,
7999 ta_fill, sec, entry_sec_offset, removed_diff);
8000 }
8001
8002 return TRUE;
8003 }
8004
8005 \f
8006 /* Second relaxation pass. */
8007
8008 /* Modify all of the relocations to point to the right spot, and if this
8009 is a relaxable section, delete the unwanted literals and fix the
8010 section size. */
8011
8012 bfd_boolean
8013 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
8014 {
8015 Elf_Internal_Rela *internal_relocs;
8016 xtensa_relax_info *relax_info;
8017 bfd_byte *contents;
8018 bfd_boolean ok = TRUE;
8019 unsigned i;
8020 bfd_boolean rv = FALSE;
8021 bfd_boolean virtual_action;
8022 bfd_size_type sec_size;
8023
8024 sec_size = bfd_get_section_limit (abfd, sec);
8025 relax_info = get_xtensa_relax_info (sec);
8026 BFD_ASSERT (relax_info);
8027
8028 /* First translate any of the fixes that have been added already. */
8029 translate_section_fixes (sec);
8030
8031 /* Handle property sections (e.g., literal tables) specially. */
8032 if (xtensa_is_property_section (sec))
8033 {
8034 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8035 return relax_property_section (abfd, sec, link_info);
8036 }
8037
8038 internal_relocs = retrieve_internal_relocs (abfd, sec,
8039 link_info->keep_memory);
8040 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8041 if (contents == NULL && sec_size != 0)
8042 {
8043 ok = FALSE;
8044 goto error_return;
8045 }
8046
8047 if (internal_relocs)
8048 {
8049 for (i = 0; i < sec->reloc_count; i++)
8050 {
8051 Elf_Internal_Rela *irel;
8052 xtensa_relax_info *target_relax_info;
8053 bfd_vma source_offset, old_source_offset;
8054 r_reloc r_rel;
8055 unsigned r_type;
8056 asection *target_sec;
8057
8058 /* Locally change the source address.
8059 Translate the target to the new target address.
8060 If it points to this section and has been removed,
8061 NULLify it.
8062 Write it back. */
8063
8064 irel = &internal_relocs[i];
8065 source_offset = irel->r_offset;
8066 old_source_offset = source_offset;
8067
8068 r_type = ELF32_R_TYPE (irel->r_info);
8069 r_reloc_init (&r_rel, abfd, irel, contents,
8070 bfd_get_section_limit (abfd, sec));
8071
8072 /* If this section could have changed then we may need to
8073 change the relocation's offset. */
8074
8075 if (relax_info->is_relaxable_literal_section
8076 || relax_info->is_relaxable_asm_section)
8077 {
8078 if (r_type != R_XTENSA_NONE
8079 && find_removed_literal (&relax_info->removed_list,
8080 irel->r_offset))
8081 {
8082 /* Remove this relocation. */
8083 if (elf_hash_table (link_info)->dynamic_sections_created)
8084 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8085 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8086 irel->r_offset = offset_with_removed_text
8087 (&relax_info->action_list, irel->r_offset);
8088 pin_internal_relocs (sec, internal_relocs);
8089 continue;
8090 }
8091
8092 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8093 {
8094 text_action *action =
8095 find_insn_action (&relax_info->action_list,
8096 irel->r_offset);
8097 if (action && (action->action == ta_convert_longcall
8098 || action->action == ta_remove_longcall))
8099 {
8100 bfd_reloc_status_type retval;
8101 char *error_message = NULL;
8102
8103 retval = contract_asm_expansion (contents, sec_size,
8104 irel, &error_message);
8105 if (retval != bfd_reloc_ok)
8106 {
8107 (*link_info->callbacks->reloc_dangerous)
8108 (link_info, error_message, abfd, sec,
8109 irel->r_offset);
8110 goto error_return;
8111 }
8112 /* Update the action so that the code that moves
8113 the contents will do the right thing. */
8114 if (action->action == ta_remove_longcall)
8115 action->action = ta_remove_insn;
8116 else
8117 action->action = ta_none;
8118 /* Refresh the info in the r_rel. */
8119 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8120 r_type = ELF32_R_TYPE (irel->r_info);
8121 }
8122 }
8123
8124 source_offset = offset_with_removed_text
8125 (&relax_info->action_list, irel->r_offset);
8126 irel->r_offset = source_offset;
8127 }
8128
8129 /* If the target section could have changed then
8130 we may need to change the relocation's target offset. */
8131
8132 target_sec = r_reloc_get_section (&r_rel);
8133 target_relax_info = get_xtensa_relax_info (target_sec);
8134
8135 if (target_relax_info
8136 && (target_relax_info->is_relaxable_literal_section
8137 || target_relax_info->is_relaxable_asm_section))
8138 {
8139 r_reloc new_reloc;
8140 reloc_bfd_fix *fix;
8141 bfd_vma addend_displacement;
8142
8143 translate_reloc (&r_rel, &new_reloc);
8144
8145 if (r_type == R_XTENSA_DIFF8
8146 || r_type == R_XTENSA_DIFF16
8147 || r_type == R_XTENSA_DIFF32)
8148 {
8149 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8150
8151 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8152 {
8153 (*link_info->callbacks->reloc_dangerous)
8154 (link_info, _("invalid relocation address"),
8155 abfd, sec, old_source_offset);
8156 goto error_return;
8157 }
8158
8159 switch (r_type)
8160 {
8161 case R_XTENSA_DIFF8:
8162 diff_value =
8163 bfd_get_8 (abfd, &contents[old_source_offset]);
8164 break;
8165 case R_XTENSA_DIFF16:
8166 diff_value =
8167 bfd_get_16 (abfd, &contents[old_source_offset]);
8168 break;
8169 case R_XTENSA_DIFF32:
8170 diff_value =
8171 bfd_get_32 (abfd, &contents[old_source_offset]);
8172 break;
8173 }
8174
8175 new_end_offset = offset_with_removed_text
8176 (&target_relax_info->action_list,
8177 r_rel.target_offset + diff_value);
8178 diff_value = new_end_offset - new_reloc.target_offset;
8179
8180 switch (r_type)
8181 {
8182 case R_XTENSA_DIFF8:
8183 diff_mask = 0xff;
8184 bfd_put_8 (abfd, diff_value,
8185 &contents[old_source_offset]);
8186 break;
8187 case R_XTENSA_DIFF16:
8188 diff_mask = 0xffff;
8189 bfd_put_16 (abfd, diff_value,
8190 &contents[old_source_offset]);
8191 break;
8192 case R_XTENSA_DIFF32:
8193 diff_mask = 0xffffffff;
8194 bfd_put_32 (abfd, diff_value,
8195 &contents[old_source_offset]);
8196 break;
8197 }
8198
8199 /* Check for overflow. */
8200 if ((diff_value & ~diff_mask) != 0)
8201 {
8202 (*link_info->callbacks->reloc_dangerous)
8203 (link_info, _("overflow after relaxation"),
8204 abfd, sec, old_source_offset);
8205 goto error_return;
8206 }
8207
8208 pin_contents (sec, contents);
8209 }
8210
8211 /* FIXME: If the relocation still references a section in
8212 the same input file, the relocation should be modified
8213 directly instead of adding a "fix" record. */
8214
8215 addend_displacement =
8216 new_reloc.target_offset + new_reloc.virtual_offset;
8217
8218 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
8219 r_reloc_get_section (&new_reloc),
8220 addend_displacement, TRUE);
8221 add_fix (sec, fix);
8222 }
8223
8224 pin_internal_relocs (sec, internal_relocs);
8225 }
8226 }
8227
8228 if ((relax_info->is_relaxable_literal_section
8229 || relax_info->is_relaxable_asm_section)
8230 && relax_info->action_list.head)
8231 {
8232 /* Walk through the planned actions and build up a table
8233 of move, copy and fill records. Use the move, copy and
8234 fill records to perform the actions once. */
8235
8236 bfd_size_type size = sec->size;
8237 int removed = 0;
8238 bfd_size_type final_size, copy_size, orig_insn_size;
8239 bfd_byte *scratch = NULL;
8240 bfd_byte *dup_contents = NULL;
8241 bfd_size_type orig_size = size;
8242 bfd_vma orig_dot = 0;
8243 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8244 orig dot in physical memory. */
8245 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8246 bfd_vma dup_dot = 0;
8247
8248 text_action *action = relax_info->action_list.head;
8249
8250 final_size = sec->size;
8251 for (action = relax_info->action_list.head; action;
8252 action = action->next)
8253 {
8254 final_size -= action->removed_bytes;
8255 }
8256
8257 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8258 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8259
8260 /* The dot is the current fill location. */
8261 #if DEBUG
8262 print_action_list (stderr, &relax_info->action_list);
8263 #endif
8264
8265 for (action = relax_info->action_list.head; action;
8266 action = action->next)
8267 {
8268 virtual_action = FALSE;
8269 if (action->offset > orig_dot)
8270 {
8271 orig_dot += orig_dot_copied;
8272 orig_dot_copied = 0;
8273 orig_dot_vo = 0;
8274 /* Out of the virtual world. */
8275 }
8276
8277 if (action->offset > orig_dot)
8278 {
8279 copy_size = action->offset - orig_dot;
8280 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8281 orig_dot += copy_size;
8282 dup_dot += copy_size;
8283 BFD_ASSERT (action->offset == orig_dot);
8284 }
8285 else if (action->offset < orig_dot)
8286 {
8287 if (action->action == ta_fill
8288 && action->offset - action->removed_bytes == orig_dot)
8289 {
8290 /* This is OK because the fill only effects the dup_dot. */
8291 }
8292 else if (action->action == ta_add_literal)
8293 {
8294 /* TBD. Might need to handle this. */
8295 }
8296 }
8297 if (action->offset == orig_dot)
8298 {
8299 if (action->virtual_offset > orig_dot_vo)
8300 {
8301 if (orig_dot_vo == 0)
8302 {
8303 /* Need to copy virtual_offset bytes. Probably four. */
8304 copy_size = action->virtual_offset - orig_dot_vo;
8305 memmove (&dup_contents[dup_dot],
8306 &contents[orig_dot], copy_size);
8307 orig_dot_copied = copy_size;
8308 dup_dot += copy_size;
8309 }
8310 virtual_action = TRUE;
8311 }
8312 else
8313 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8314 }
8315 switch (action->action)
8316 {
8317 case ta_remove_literal:
8318 case ta_remove_insn:
8319 BFD_ASSERT (action->removed_bytes >= 0);
8320 orig_dot += action->removed_bytes;
8321 break;
8322
8323 case ta_narrow_insn:
8324 orig_insn_size = 3;
8325 copy_size = 2;
8326 memmove (scratch, &contents[orig_dot], orig_insn_size);
8327 BFD_ASSERT (action->removed_bytes == 1);
8328 rv = narrow_instruction (scratch, final_size, 0);
8329 BFD_ASSERT (rv);
8330 memmove (&dup_contents[dup_dot], scratch, copy_size);
8331 orig_dot += orig_insn_size;
8332 dup_dot += copy_size;
8333 break;
8334
8335 case ta_fill:
8336 if (action->removed_bytes >= 0)
8337 orig_dot += action->removed_bytes;
8338 else
8339 {
8340 /* Already zeroed in dup_contents. Just bump the
8341 counters. */
8342 dup_dot += (-action->removed_bytes);
8343 }
8344 break;
8345
8346 case ta_none:
8347 BFD_ASSERT (action->removed_bytes == 0);
8348 break;
8349
8350 case ta_convert_longcall:
8351 case ta_remove_longcall:
8352 /* These will be removed or converted before we get here. */
8353 BFD_ASSERT (0);
8354 break;
8355
8356 case ta_widen_insn:
8357 orig_insn_size = 2;
8358 copy_size = 3;
8359 memmove (scratch, &contents[orig_dot], orig_insn_size);
8360 BFD_ASSERT (action->removed_bytes == -1);
8361 rv = widen_instruction (scratch, final_size, 0);
8362 BFD_ASSERT (rv);
8363 memmove (&dup_contents[dup_dot], scratch, copy_size);
8364 orig_dot += orig_insn_size;
8365 dup_dot += copy_size;
8366 break;
8367
8368 case ta_add_literal:
8369 orig_insn_size = 0;
8370 copy_size = 4;
8371 BFD_ASSERT (action->removed_bytes == -4);
8372 /* TBD -- place the literal value here and insert
8373 into the table. */
8374 memset (&dup_contents[dup_dot], 0, 4);
8375 pin_internal_relocs (sec, internal_relocs);
8376 pin_contents (sec, contents);
8377
8378 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8379 relax_info, &internal_relocs, &action->value))
8380 goto error_return;
8381
8382 if (virtual_action)
8383 orig_dot_vo += copy_size;
8384
8385 orig_dot += orig_insn_size;
8386 dup_dot += copy_size;
8387 break;
8388
8389 default:
8390 /* Not implemented yet. */
8391 BFD_ASSERT (0);
8392 break;
8393 }
8394
8395 size -= action->removed_bytes;
8396 removed += action->removed_bytes;
8397 BFD_ASSERT (dup_dot <= final_size);
8398 BFD_ASSERT (orig_dot <= orig_size);
8399 }
8400
8401 orig_dot += orig_dot_copied;
8402 orig_dot_copied = 0;
8403
8404 if (orig_dot != orig_size)
8405 {
8406 copy_size = orig_size - orig_dot;
8407 BFD_ASSERT (orig_size > orig_dot);
8408 BFD_ASSERT (dup_dot + copy_size == final_size);
8409 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8410 orig_dot += copy_size;
8411 dup_dot += copy_size;
8412 }
8413 BFD_ASSERT (orig_size == orig_dot);
8414 BFD_ASSERT (final_size == dup_dot);
8415
8416 /* Move the dup_contents back. */
8417 if (final_size > orig_size)
8418 {
8419 /* Contents need to be reallocated. Swap the dup_contents into
8420 contents. */
8421 sec->contents = dup_contents;
8422 free (contents);
8423 contents = dup_contents;
8424 pin_contents (sec, contents);
8425 }
8426 else
8427 {
8428 BFD_ASSERT (final_size <= orig_size);
8429 memset (contents, 0, orig_size);
8430 memcpy (contents, dup_contents, final_size);
8431 free (dup_contents);
8432 }
8433 free (scratch);
8434 pin_contents (sec, contents);
8435
8436 sec->size = final_size;
8437 }
8438
8439 error_return:
8440 release_internal_relocs (sec, internal_relocs);
8441 release_contents (sec, contents);
8442 return ok;
8443 }
8444
8445
8446 static bfd_boolean
8447 translate_section_fixes (asection *sec)
8448 {
8449 xtensa_relax_info *relax_info;
8450 reloc_bfd_fix *r;
8451
8452 relax_info = get_xtensa_relax_info (sec);
8453 if (!relax_info)
8454 return TRUE;
8455
8456 for (r = relax_info->fix_list; r != NULL; r = r->next)
8457 if (!translate_reloc_bfd_fix (r))
8458 return FALSE;
8459
8460 return TRUE;
8461 }
8462
8463
8464 /* Translate a fix given the mapping in the relax info for the target
8465 section. If it has already been translated, no work is required. */
8466
8467 static bfd_boolean
8468 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
8469 {
8470 reloc_bfd_fix new_fix;
8471 asection *sec;
8472 xtensa_relax_info *relax_info;
8473 removed_literal *removed;
8474 bfd_vma new_offset, target_offset;
8475
8476 if (fix->translated)
8477 return TRUE;
8478
8479 sec = fix->target_sec;
8480 target_offset = fix->target_offset;
8481
8482 relax_info = get_xtensa_relax_info (sec);
8483 if (!relax_info)
8484 {
8485 fix->translated = TRUE;
8486 return TRUE;
8487 }
8488
8489 new_fix = *fix;
8490
8491 /* The fix does not need to be translated if the section cannot change. */
8492 if (!relax_info->is_relaxable_literal_section
8493 && !relax_info->is_relaxable_asm_section)
8494 {
8495 fix->translated = TRUE;
8496 return TRUE;
8497 }
8498
8499 /* If the literal has been moved and this relocation was on an
8500 opcode, then the relocation should move to the new literal
8501 location. Otherwise, the relocation should move within the
8502 section. */
8503
8504 removed = FALSE;
8505 if (is_operand_relocation (fix->src_type))
8506 {
8507 /* Check if the original relocation is against a literal being
8508 removed. */
8509 removed = find_removed_literal (&relax_info->removed_list,
8510 target_offset);
8511 }
8512
8513 if (removed)
8514 {
8515 asection *new_sec;
8516
8517 /* The fact that there is still a relocation to this literal indicates
8518 that the literal is being coalesced, not simply removed. */
8519 BFD_ASSERT (removed->to.abfd != NULL);
8520
8521 /* This was moved to some other address (possibly another section). */
8522 new_sec = r_reloc_get_section (&removed->to);
8523 if (new_sec != sec)
8524 {
8525 sec = new_sec;
8526 relax_info = get_xtensa_relax_info (sec);
8527 if (!relax_info ||
8528 (!relax_info->is_relaxable_literal_section
8529 && !relax_info->is_relaxable_asm_section))
8530 {
8531 target_offset = removed->to.target_offset;
8532 new_fix.target_sec = new_sec;
8533 new_fix.target_offset = target_offset;
8534 new_fix.translated = TRUE;
8535 *fix = new_fix;
8536 return TRUE;
8537 }
8538 }
8539 target_offset = removed->to.target_offset;
8540 new_fix.target_sec = new_sec;
8541 }
8542
8543 /* The target address may have been moved within its section. */
8544 new_offset = offset_with_removed_text (&relax_info->action_list,
8545 target_offset);
8546
8547 new_fix.target_offset = new_offset;
8548 new_fix.target_offset = new_offset;
8549 new_fix.translated = TRUE;
8550 *fix = new_fix;
8551 return TRUE;
8552 }
8553
8554
8555 /* Fix up a relocation to take account of removed literals. */
8556
8557 static void
8558 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
8559 {
8560 asection *sec;
8561 xtensa_relax_info *relax_info;
8562 removed_literal *removed;
8563 bfd_vma new_offset, target_offset, removed_bytes;
8564
8565 *new_rel = *orig_rel;
8566
8567 if (!r_reloc_is_defined (orig_rel))
8568 return;
8569 sec = r_reloc_get_section (orig_rel);
8570
8571 relax_info = get_xtensa_relax_info (sec);
8572 BFD_ASSERT (relax_info);
8573
8574 if (!relax_info->is_relaxable_literal_section
8575 && !relax_info->is_relaxable_asm_section)
8576 return;
8577
8578 target_offset = orig_rel->target_offset;
8579
8580 removed = FALSE;
8581 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8582 {
8583 /* Check if the original relocation is against a literal being
8584 removed. */
8585 removed = find_removed_literal (&relax_info->removed_list,
8586 target_offset);
8587 }
8588 if (removed && removed->to.abfd)
8589 {
8590 asection *new_sec;
8591
8592 /* The fact that there is still a relocation to this literal indicates
8593 that the literal is being coalesced, not simply removed. */
8594 BFD_ASSERT (removed->to.abfd != NULL);
8595
8596 /* This was moved to some other address
8597 (possibly in another section). */
8598 *new_rel = removed->to;
8599 new_sec = r_reloc_get_section (new_rel);
8600 if (new_sec != sec)
8601 {
8602 sec = new_sec;
8603 relax_info = get_xtensa_relax_info (sec);
8604 if (!relax_info
8605 || (!relax_info->is_relaxable_literal_section
8606 && !relax_info->is_relaxable_asm_section))
8607 return;
8608 }
8609 target_offset = new_rel->target_offset;
8610 }
8611
8612 /* ...and the target address may have been moved within its section. */
8613 new_offset = offset_with_removed_text (&relax_info->action_list,
8614 target_offset);
8615
8616 /* Modify the offset and addend. */
8617 removed_bytes = target_offset - new_offset;
8618 new_rel->target_offset = new_offset;
8619 new_rel->rela.r_addend -= removed_bytes;
8620 }
8621
8622
8623 /* For dynamic links, there may be a dynamic relocation for each
8624 literal. The number of dynamic relocations must be computed in
8625 size_dynamic_sections, which occurs before relaxation. When a
8626 literal is removed, this function checks if there is a corresponding
8627 dynamic relocation and shrinks the size of the appropriate dynamic
8628 relocation section accordingly. At this point, the contents of the
8629 dynamic relocation sections have not yet been filled in, so there's
8630 nothing else that needs to be done. */
8631
8632 static void
8633 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8634 bfd *abfd,
8635 asection *input_section,
8636 Elf_Internal_Rela *rel)
8637 {
8638 struct elf_xtensa_link_hash_table *htab;
8639 Elf_Internal_Shdr *symtab_hdr;
8640 struct elf_link_hash_entry **sym_hashes;
8641 unsigned long r_symndx;
8642 int r_type;
8643 struct elf_link_hash_entry *h;
8644 bfd_boolean dynamic_symbol;
8645
8646 htab = elf_xtensa_hash_table (info);
8647 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8648 sym_hashes = elf_sym_hashes (abfd);
8649
8650 r_type = ELF32_R_TYPE (rel->r_info);
8651 r_symndx = ELF32_R_SYM (rel->r_info);
8652
8653 if (r_symndx < symtab_hdr->sh_info)
8654 h = NULL;
8655 else
8656 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8657
8658 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
8659
8660 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8661 && (input_section->flags & SEC_ALLOC) != 0
8662 && (dynamic_symbol || info->shared))
8663 {
8664 asection *srel;
8665 bfd_boolean is_plt = FALSE;
8666
8667 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8668 {
8669 srel = htab->srelplt;
8670 is_plt = TRUE;
8671 }
8672 else
8673 srel = htab->srelgot;
8674
8675 /* Reduce size of the .rela.* section by one reloc. */
8676 BFD_ASSERT (srel != NULL);
8677 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8678 srel->size -= sizeof (Elf32_External_Rela);
8679
8680 if (is_plt)
8681 {
8682 asection *splt, *sgotplt, *srelgot;
8683 int reloc_index, chunk;
8684
8685 /* Find the PLT reloc index of the entry being removed. This
8686 is computed from the size of ".rela.plt". It is needed to
8687 figure out which PLT chunk to resize. Usually "last index
8688 = size - 1" since the index starts at zero, but in this
8689 context, the size has just been decremented so there's no
8690 need to subtract one. */
8691 reloc_index = srel->size / sizeof (Elf32_External_Rela);
8692
8693 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8694 splt = elf_xtensa_get_plt_section (info, chunk);
8695 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
8696 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8697
8698 /* Check if an entire PLT chunk has just been eliminated. */
8699 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8700 {
8701 /* The two magic GOT entries for that chunk can go away. */
8702 srelgot = htab->srelgot;
8703 BFD_ASSERT (srelgot != NULL);
8704 srelgot->reloc_count -= 2;
8705 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8706 sgotplt->size -= 8;
8707
8708 /* There should be only one entry left (and it will be
8709 removed below). */
8710 BFD_ASSERT (sgotplt->size == 4);
8711 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
8712 }
8713
8714 BFD_ASSERT (sgotplt->size >= 4);
8715 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
8716
8717 sgotplt->size -= 4;
8718 splt->size -= PLT_ENTRY_SIZE;
8719 }
8720 }
8721 }
8722
8723
8724 /* Take an r_rel and move it to another section. This usually
8725 requires extending the interal_relocation array and pinning it. If
8726 the original r_rel is from the same BFD, we can complete this here.
8727 Otherwise, we add a fix record to let the final link fix the
8728 appropriate address. Contents and internal relocations for the
8729 section must be pinned after calling this routine. */
8730
8731 static bfd_boolean
8732 move_literal (bfd *abfd,
8733 struct bfd_link_info *link_info,
8734 asection *sec,
8735 bfd_vma offset,
8736 bfd_byte *contents,
8737 xtensa_relax_info *relax_info,
8738 Elf_Internal_Rela **internal_relocs_p,
8739 const literal_value *lit)
8740 {
8741 Elf_Internal_Rela *new_relocs = NULL;
8742 size_t new_relocs_count = 0;
8743 Elf_Internal_Rela this_rela;
8744 const r_reloc *r_rel;
8745
8746 r_rel = &lit->r_rel;
8747 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8748
8749 if (r_reloc_is_const (r_rel))
8750 bfd_put_32 (abfd, lit->value, contents + offset);
8751 else
8752 {
8753 int r_type;
8754 unsigned i;
8755 asection *target_sec;
8756 reloc_bfd_fix *fix;
8757 unsigned insert_at;
8758
8759 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8760 target_sec = r_reloc_get_section (r_rel);
8761
8762 /* This is the difficult case. We have to create a fix up. */
8763 this_rela.r_offset = offset;
8764 this_rela.r_info = ELF32_R_INFO (0, r_type);
8765 this_rela.r_addend =
8766 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8767 bfd_put_32 (abfd, lit->value, contents + offset);
8768
8769 /* Currently, we cannot move relocations during a relocatable link. */
8770 BFD_ASSERT (!link_info->relocatable);
8771 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8772 r_reloc_get_section (r_rel),
8773 r_rel->target_offset + r_rel->virtual_offset,
8774 FALSE);
8775 /* We also need to mark that relocations are needed here. */
8776 sec->flags |= SEC_RELOC;
8777
8778 translate_reloc_bfd_fix (fix);
8779 /* This fix has not yet been translated. */
8780 add_fix (sec, fix);
8781
8782 /* Add the relocation. If we have already allocated our own
8783 space for the relocations and we have room for more, then use
8784 it. Otherwise, allocate new space and move the literals. */
8785 insert_at = sec->reloc_count;
8786 for (i = 0; i < sec->reloc_count; ++i)
8787 {
8788 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8789 {
8790 insert_at = i;
8791 break;
8792 }
8793 }
8794
8795 if (*internal_relocs_p != relax_info->allocated_relocs
8796 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8797 {
8798 BFD_ASSERT (relax_info->allocated_relocs == NULL
8799 || sec->reloc_count == relax_info->relocs_count);
8800
8801 if (relax_info->allocated_relocs_count == 0)
8802 new_relocs_count = (sec->reloc_count + 2) * 2;
8803 else
8804 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8805
8806 new_relocs = (Elf_Internal_Rela *)
8807 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8808 if (!new_relocs)
8809 return FALSE;
8810
8811 /* We could handle this more quickly by finding the split point. */
8812 if (insert_at != 0)
8813 memcpy (new_relocs, *internal_relocs_p,
8814 insert_at * sizeof (Elf_Internal_Rela));
8815
8816 new_relocs[insert_at] = this_rela;
8817
8818 if (insert_at != sec->reloc_count)
8819 memcpy (new_relocs + insert_at + 1,
8820 (*internal_relocs_p) + insert_at,
8821 (sec->reloc_count - insert_at)
8822 * sizeof (Elf_Internal_Rela));
8823
8824 if (*internal_relocs_p != relax_info->allocated_relocs)
8825 {
8826 /* The first time we re-allocate, we can only free the
8827 old relocs if they were allocated with bfd_malloc.
8828 This is not true when keep_memory is in effect. */
8829 if (!link_info->keep_memory)
8830 free (*internal_relocs_p);
8831 }
8832 else
8833 free (*internal_relocs_p);
8834 relax_info->allocated_relocs = new_relocs;
8835 relax_info->allocated_relocs_count = new_relocs_count;
8836 elf_section_data (sec)->relocs = new_relocs;
8837 sec->reloc_count++;
8838 relax_info->relocs_count = sec->reloc_count;
8839 *internal_relocs_p = new_relocs;
8840 }
8841 else
8842 {
8843 if (insert_at != sec->reloc_count)
8844 {
8845 unsigned idx;
8846 for (idx = sec->reloc_count; idx > insert_at; idx--)
8847 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8848 }
8849 (*internal_relocs_p)[insert_at] = this_rela;
8850 sec->reloc_count++;
8851 if (relax_info->allocated_relocs)
8852 relax_info->relocs_count = sec->reloc_count;
8853 }
8854 }
8855 return TRUE;
8856 }
8857
8858
8859 /* This is similar to relax_section except that when a target is moved,
8860 we shift addresses up. We also need to modify the size. This
8861 algorithm does NOT allow for relocations into the middle of the
8862 property sections. */
8863
8864 static bfd_boolean
8865 relax_property_section (bfd *abfd,
8866 asection *sec,
8867 struct bfd_link_info *link_info)
8868 {
8869 Elf_Internal_Rela *internal_relocs;
8870 bfd_byte *contents;
8871 unsigned i;
8872 bfd_boolean ok = TRUE;
8873 bfd_boolean is_full_prop_section;
8874 size_t last_zfill_target_offset = 0;
8875 asection *last_zfill_target_sec = NULL;
8876 bfd_size_type sec_size;
8877 bfd_size_type entry_size;
8878
8879 sec_size = bfd_get_section_limit (abfd, sec);
8880 internal_relocs = retrieve_internal_relocs (abfd, sec,
8881 link_info->keep_memory);
8882 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8883 if (contents == NULL && sec_size != 0)
8884 {
8885 ok = FALSE;
8886 goto error_return;
8887 }
8888
8889 is_full_prop_section = xtensa_is_proptable_section (sec);
8890 if (is_full_prop_section)
8891 entry_size = 12;
8892 else
8893 entry_size = 8;
8894
8895 if (internal_relocs)
8896 {
8897 for (i = 0; i < sec->reloc_count; i++)
8898 {
8899 Elf_Internal_Rela *irel;
8900 xtensa_relax_info *target_relax_info;
8901 unsigned r_type;
8902 asection *target_sec;
8903 literal_value val;
8904 bfd_byte *size_p, *flags_p;
8905
8906 /* Locally change the source address.
8907 Translate the target to the new target address.
8908 If it points to this section and has been removed, MOVE IT.
8909 Also, don't forget to modify the associated SIZE at
8910 (offset + 4). */
8911
8912 irel = &internal_relocs[i];
8913 r_type = ELF32_R_TYPE (irel->r_info);
8914 if (r_type == R_XTENSA_NONE)
8915 continue;
8916
8917 /* Find the literal value. */
8918 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8919 size_p = &contents[irel->r_offset + 4];
8920 flags_p = NULL;
8921 if (is_full_prop_section)
8922 flags_p = &contents[irel->r_offset + 8];
8923 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
8924
8925 target_sec = r_reloc_get_section (&val.r_rel);
8926 target_relax_info = get_xtensa_relax_info (target_sec);
8927
8928 if (target_relax_info
8929 && (target_relax_info->is_relaxable_literal_section
8930 || target_relax_info->is_relaxable_asm_section ))
8931 {
8932 /* Translate the relocation's destination. */
8933 bfd_vma new_offset, new_end_offset;
8934 long old_size, new_size;
8935
8936 new_offset = offset_with_removed_text
8937 (&target_relax_info->action_list, val.r_rel.target_offset);
8938
8939 /* Assert that we are not out of bounds. */
8940 old_size = bfd_get_32 (abfd, size_p);
8941
8942 if (old_size == 0)
8943 {
8944 /* Only the first zero-sized unreachable entry is
8945 allowed to expand. In this case the new offset
8946 should be the offset before the fill and the new
8947 size is the expansion size. For other zero-sized
8948 entries the resulting size should be zero with an
8949 offset before or after the fill address depending
8950 on whether the expanding unreachable entry
8951 preceeds it. */
8952 if (last_zfill_target_sec
8953 && last_zfill_target_sec == target_sec
8954 && last_zfill_target_offset == val.r_rel.target_offset)
8955 new_end_offset = new_offset;
8956 else
8957 {
8958 new_end_offset = new_offset;
8959 new_offset = offset_with_removed_text_before_fill
8960 (&target_relax_info->action_list,
8961 val.r_rel.target_offset);
8962
8963 /* If it is not unreachable and we have not yet
8964 seen an unreachable at this address, place it
8965 before the fill address. */
8966 if (!flags_p
8967 || (bfd_get_32 (abfd, flags_p)
8968 & XTENSA_PROP_UNREACHABLE) == 0)
8969 new_end_offset = new_offset;
8970 else
8971 {
8972 last_zfill_target_sec = target_sec;
8973 last_zfill_target_offset = val.r_rel.target_offset;
8974 }
8975 }
8976 }
8977 else
8978 {
8979 new_end_offset = offset_with_removed_text_before_fill
8980 (&target_relax_info->action_list,
8981 val.r_rel.target_offset + old_size);
8982 }
8983
8984 new_size = new_end_offset - new_offset;
8985
8986 if (new_size != old_size)
8987 {
8988 bfd_put_32 (abfd, new_size, size_p);
8989 pin_contents (sec, contents);
8990 }
8991
8992 if (new_offset != val.r_rel.target_offset)
8993 {
8994 bfd_vma diff = new_offset - val.r_rel.target_offset;
8995 irel->r_addend += diff;
8996 pin_internal_relocs (sec, internal_relocs);
8997 }
8998 }
8999 }
9000 }
9001
9002 /* Combine adjacent property table entries. This is also done in
9003 finish_dynamic_sections() but at that point it's too late to
9004 reclaim the space in the output section, so we do this twice. */
9005
9006 if (internal_relocs && (!link_info->relocatable
9007 || xtensa_is_littable_section (sec)))
9008 {
9009 Elf_Internal_Rela *last_irel = NULL;
9010 Elf_Internal_Rela *irel, *next_rel, *rel_end;
9011 int removed_bytes = 0;
9012 bfd_vma offset;
9013 bfd_vma section_size;
9014 flagword predef_flags;
9015
9016 predef_flags = xtensa_get_property_predef_flags (sec);
9017
9018 /* Walk over memory and relocations at the same time.
9019 This REQUIRES that the internal_relocs be sorted by offset. */
9020 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9021 internal_reloc_compare);
9022
9023 pin_internal_relocs (sec, internal_relocs);
9024 pin_contents (sec, contents);
9025
9026 next_rel = internal_relocs;
9027 rel_end = internal_relocs + sec->reloc_count;
9028
9029 section_size = sec->size;
9030 BFD_ASSERT (section_size % entry_size == 0);
9031
9032 for (offset = 0; offset < section_size; offset += entry_size)
9033 {
9034 Elf_Internal_Rela *offset_rel, *extra_rel;
9035 bfd_vma bytes_to_remove, size, actual_offset;
9036 bfd_boolean remove_this_rel;
9037 flagword flags;
9038
9039 /* Find the first relocation for the entry at the current offset.
9040 Adjust the offsets of any extra relocations for the previous
9041 entry. */
9042 offset_rel = NULL;
9043 if (next_rel)
9044 {
9045 for (irel = next_rel; irel < rel_end; irel++)
9046 {
9047 if ((irel->r_offset == offset
9048 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9049 || irel->r_offset > offset)
9050 {
9051 offset_rel = irel;
9052 break;
9053 }
9054 irel->r_offset -= removed_bytes;
9055 }
9056 }
9057
9058 /* Find the next relocation (if there are any left). */
9059 extra_rel = NULL;
9060 if (offset_rel)
9061 {
9062 for (irel = offset_rel + 1; irel < rel_end; irel++)
9063 {
9064 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9065 {
9066 extra_rel = irel;
9067 break;
9068 }
9069 }
9070 }
9071
9072 /* Check if there are relocations on the current entry. There
9073 should usually be a relocation on the offset field. If there
9074 are relocations on the size or flags, then we can't optimize
9075 this entry. Also, find the next relocation to examine on the
9076 next iteration. */
9077 if (offset_rel)
9078 {
9079 if (offset_rel->r_offset >= offset + entry_size)
9080 {
9081 next_rel = offset_rel;
9082 /* There are no relocations on the current entry, but we
9083 might still be able to remove it if the size is zero. */
9084 offset_rel = NULL;
9085 }
9086 else if (offset_rel->r_offset > offset
9087 || (extra_rel
9088 && extra_rel->r_offset < offset + entry_size))
9089 {
9090 /* There is a relocation on the size or flags, so we can't
9091 do anything with this entry. Continue with the next. */
9092 next_rel = offset_rel;
9093 continue;
9094 }
9095 else
9096 {
9097 BFD_ASSERT (offset_rel->r_offset == offset);
9098 offset_rel->r_offset -= removed_bytes;
9099 next_rel = offset_rel + 1;
9100 }
9101 }
9102 else
9103 next_rel = NULL;
9104
9105 remove_this_rel = FALSE;
9106 bytes_to_remove = 0;
9107 actual_offset = offset - removed_bytes;
9108 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9109
9110 if (is_full_prop_section)
9111 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9112 else
9113 flags = predef_flags;
9114
9115 if (size == 0
9116 && (flags & XTENSA_PROP_ALIGN) == 0
9117 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
9118 {
9119 /* Always remove entries with zero size and no alignment. */
9120 bytes_to_remove = entry_size;
9121 if (offset_rel)
9122 remove_this_rel = TRUE;
9123 }
9124 else if (offset_rel
9125 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
9126 {
9127 if (last_irel)
9128 {
9129 flagword old_flags;
9130 bfd_vma old_size =
9131 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9132 bfd_vma old_address =
9133 (last_irel->r_addend
9134 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9135 bfd_vma new_address =
9136 (offset_rel->r_addend
9137 + bfd_get_32 (abfd, &contents[actual_offset]));
9138 if (is_full_prop_section)
9139 old_flags = bfd_get_32
9140 (abfd, &contents[last_irel->r_offset + 8]);
9141 else
9142 old_flags = predef_flags;
9143
9144 if ((ELF32_R_SYM (offset_rel->r_info)
9145 == ELF32_R_SYM (last_irel->r_info))
9146 && old_address + old_size == new_address
9147 && old_flags == flags
9148 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9149 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
9150 {
9151 /* Fix the old size. */
9152 bfd_put_32 (abfd, old_size + size,
9153 &contents[last_irel->r_offset + 4]);
9154 bytes_to_remove = entry_size;
9155 remove_this_rel = TRUE;
9156 }
9157 else
9158 last_irel = offset_rel;
9159 }
9160 else
9161 last_irel = offset_rel;
9162 }
9163
9164 if (remove_this_rel)
9165 {
9166 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9167 /* In case this is the last entry, move the relocation offset
9168 to the previous entry, if there is one. */
9169 if (offset_rel->r_offset >= bytes_to_remove)
9170 offset_rel->r_offset -= bytes_to_remove;
9171 else
9172 offset_rel->r_offset = 0;
9173 }
9174
9175 if (bytes_to_remove != 0)
9176 {
9177 removed_bytes += bytes_to_remove;
9178 if (offset + bytes_to_remove < section_size)
9179 memmove (&contents[actual_offset],
9180 &contents[actual_offset + bytes_to_remove],
9181 section_size - offset - bytes_to_remove);
9182 }
9183 }
9184
9185 if (removed_bytes)
9186 {
9187 /* Fix up any extra relocations on the last entry. */
9188 for (irel = next_rel; irel < rel_end; irel++)
9189 irel->r_offset -= removed_bytes;
9190
9191 /* Clear the removed bytes. */
9192 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9193
9194 sec->size = section_size - removed_bytes;
9195
9196 if (xtensa_is_littable_section (sec))
9197 {
9198 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
9199 if (sgotloc)
9200 sgotloc->size -= removed_bytes;
9201 }
9202 }
9203 }
9204
9205 error_return:
9206 release_internal_relocs (sec, internal_relocs);
9207 release_contents (sec, contents);
9208 return ok;
9209 }
9210
9211 \f
9212 /* Third relaxation pass. */
9213
9214 /* Change symbol values to account for removed literals. */
9215
9216 bfd_boolean
9217 relax_section_symbols (bfd *abfd, asection *sec)
9218 {
9219 xtensa_relax_info *relax_info;
9220 unsigned int sec_shndx;
9221 Elf_Internal_Shdr *symtab_hdr;
9222 Elf_Internal_Sym *isymbuf;
9223 unsigned i, num_syms, num_locals;
9224
9225 relax_info = get_xtensa_relax_info (sec);
9226 BFD_ASSERT (relax_info);
9227
9228 if (!relax_info->is_relaxable_literal_section
9229 && !relax_info->is_relaxable_asm_section)
9230 return TRUE;
9231
9232 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9233
9234 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9235 isymbuf = retrieve_local_syms (abfd);
9236
9237 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9238 num_locals = symtab_hdr->sh_info;
9239
9240 /* Adjust the local symbols defined in this section. */
9241 for (i = 0; i < num_locals; i++)
9242 {
9243 Elf_Internal_Sym *isym = &isymbuf[i];
9244
9245 if (isym->st_shndx == sec_shndx)
9246 {
9247 bfd_vma new_address = offset_with_removed_text
9248 (&relax_info->action_list, isym->st_value);
9249 bfd_vma new_size = isym->st_size;
9250
9251 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9252 {
9253 bfd_vma new_end = offset_with_removed_text
9254 (&relax_info->action_list, isym->st_value + isym->st_size);
9255 new_size = new_end - new_address;
9256 }
9257
9258 isym->st_value = new_address;
9259 isym->st_size = new_size;
9260 }
9261 }
9262
9263 /* Now adjust the global symbols defined in this section. */
9264 for (i = 0; i < (num_syms - num_locals); i++)
9265 {
9266 struct elf_link_hash_entry *sym_hash;
9267
9268 sym_hash = elf_sym_hashes (abfd)[i];
9269
9270 if (sym_hash->root.type == bfd_link_hash_warning)
9271 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9272
9273 if ((sym_hash->root.type == bfd_link_hash_defined
9274 || sym_hash->root.type == bfd_link_hash_defweak)
9275 && sym_hash->root.u.def.section == sec)
9276 {
9277 bfd_vma new_address = offset_with_removed_text
9278 (&relax_info->action_list, sym_hash->root.u.def.value);
9279 bfd_vma new_size = sym_hash->size;
9280
9281 if (sym_hash->type == STT_FUNC)
9282 {
9283 bfd_vma new_end = offset_with_removed_text
9284 (&relax_info->action_list,
9285 sym_hash->root.u.def.value + sym_hash->size);
9286 new_size = new_end - new_address;
9287 }
9288
9289 sym_hash->root.u.def.value = new_address;
9290 sym_hash->size = new_size;
9291 }
9292 }
9293
9294 return TRUE;
9295 }
9296
9297 \f
9298 /* "Fix" handling functions, called while performing relocations. */
9299
9300 static bfd_boolean
9301 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9302 bfd *input_bfd,
9303 asection *input_section,
9304 bfd_byte *contents)
9305 {
9306 r_reloc r_rel;
9307 asection *sec, *old_sec;
9308 bfd_vma old_offset;
9309 int r_type = ELF32_R_TYPE (rel->r_info);
9310 reloc_bfd_fix *fix;
9311
9312 if (r_type == R_XTENSA_NONE)
9313 return TRUE;
9314
9315 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9316 if (!fix)
9317 return TRUE;
9318
9319 r_reloc_init (&r_rel, input_bfd, rel, contents,
9320 bfd_get_section_limit (input_bfd, input_section));
9321 old_sec = r_reloc_get_section (&r_rel);
9322 old_offset = r_rel.target_offset;
9323
9324 if (!old_sec || !r_reloc_is_defined (&r_rel))
9325 {
9326 if (r_type != R_XTENSA_ASM_EXPAND)
9327 {
9328 (*_bfd_error_handler)
9329 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9330 input_bfd, input_section, rel->r_offset,
9331 elf_howto_table[r_type].name);
9332 return FALSE;
9333 }
9334 /* Leave it be. Resolution will happen in a later stage. */
9335 }
9336 else
9337 {
9338 sec = fix->target_sec;
9339 rel->r_addend += ((sec->output_offset + fix->target_offset)
9340 - (old_sec->output_offset + old_offset));
9341 }
9342 return TRUE;
9343 }
9344
9345
9346 static void
9347 do_fix_for_final_link (Elf_Internal_Rela *rel,
9348 bfd *input_bfd,
9349 asection *input_section,
9350 bfd_byte *contents,
9351 bfd_vma *relocationp)
9352 {
9353 asection *sec;
9354 int r_type = ELF32_R_TYPE (rel->r_info);
9355 reloc_bfd_fix *fix;
9356 bfd_vma fixup_diff;
9357
9358 if (r_type == R_XTENSA_NONE)
9359 return;
9360
9361 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9362 if (!fix)
9363 return;
9364
9365 sec = fix->target_sec;
9366
9367 fixup_diff = rel->r_addend;
9368 if (elf_howto_table[fix->src_type].partial_inplace)
9369 {
9370 bfd_vma inplace_val;
9371 BFD_ASSERT (fix->src_offset
9372 < bfd_get_section_limit (input_bfd, input_section));
9373 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9374 fixup_diff += inplace_val;
9375 }
9376
9377 *relocationp = (sec->output_section->vma
9378 + sec->output_offset
9379 + fix->target_offset - fixup_diff);
9380 }
9381
9382 \f
9383 /* Miscellaneous utility functions.... */
9384
9385 static asection *
9386 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
9387 {
9388 struct elf_xtensa_link_hash_table *htab;
9389 bfd *dynobj;
9390 char plt_name[10];
9391
9392 if (chunk == 0)
9393 {
9394 htab = elf_xtensa_hash_table (info);
9395 return htab->splt;
9396 }
9397
9398 dynobj = elf_hash_table (info)->dynobj;
9399 sprintf (plt_name, ".plt.%u", chunk);
9400 return bfd_get_section_by_name (dynobj, plt_name);
9401 }
9402
9403
9404 static asection *
9405 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
9406 {
9407 struct elf_xtensa_link_hash_table *htab;
9408 bfd *dynobj;
9409 char got_name[14];
9410
9411 if (chunk == 0)
9412 {
9413 htab = elf_xtensa_hash_table (info);
9414 return htab->sgotplt;
9415 }
9416
9417 dynobj = elf_hash_table (info)->dynobj;
9418 sprintf (got_name, ".got.plt.%u", chunk);
9419 return bfd_get_section_by_name (dynobj, got_name);
9420 }
9421
9422
9423 /* Get the input section for a given symbol index.
9424 If the symbol is:
9425 . a section symbol, return the section;
9426 . a common symbol, return the common section;
9427 . an undefined symbol, return the undefined section;
9428 . an indirect symbol, follow the links;
9429 . an absolute value, return the absolute section. */
9430
9431 static asection *
9432 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
9433 {
9434 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9435 asection *target_sec = NULL;
9436 if (r_symndx < symtab_hdr->sh_info)
9437 {
9438 Elf_Internal_Sym *isymbuf;
9439 unsigned int section_index;
9440
9441 isymbuf = retrieve_local_syms (abfd);
9442 section_index = isymbuf[r_symndx].st_shndx;
9443
9444 if (section_index == SHN_UNDEF)
9445 target_sec = bfd_und_section_ptr;
9446 else if (section_index > 0 && section_index < SHN_LORESERVE)
9447 target_sec = bfd_section_from_elf_index (abfd, section_index);
9448 else if (section_index == SHN_ABS)
9449 target_sec = bfd_abs_section_ptr;
9450 else if (section_index == SHN_COMMON)
9451 target_sec = bfd_com_section_ptr;
9452 else
9453 /* Who knows? */
9454 target_sec = NULL;
9455 }
9456 else
9457 {
9458 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9459 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9460
9461 while (h->root.type == bfd_link_hash_indirect
9462 || h->root.type == bfd_link_hash_warning)
9463 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9464
9465 switch (h->root.type)
9466 {
9467 case bfd_link_hash_defined:
9468 case bfd_link_hash_defweak:
9469 target_sec = h->root.u.def.section;
9470 break;
9471 case bfd_link_hash_common:
9472 target_sec = bfd_com_section_ptr;
9473 break;
9474 case bfd_link_hash_undefined:
9475 case bfd_link_hash_undefweak:
9476 target_sec = bfd_und_section_ptr;
9477 break;
9478 default: /* New indirect warning. */
9479 target_sec = bfd_und_section_ptr;
9480 break;
9481 }
9482 }
9483 return target_sec;
9484 }
9485
9486
9487 static struct elf_link_hash_entry *
9488 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
9489 {
9490 unsigned long indx;
9491 struct elf_link_hash_entry *h;
9492 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9493
9494 if (r_symndx < symtab_hdr->sh_info)
9495 return NULL;
9496
9497 indx = r_symndx - symtab_hdr->sh_info;
9498 h = elf_sym_hashes (abfd)[indx];
9499 while (h->root.type == bfd_link_hash_indirect
9500 || h->root.type == bfd_link_hash_warning)
9501 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9502 return h;
9503 }
9504
9505
9506 /* Get the section-relative offset for a symbol number. */
9507
9508 static bfd_vma
9509 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
9510 {
9511 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9512 bfd_vma offset = 0;
9513
9514 if (r_symndx < symtab_hdr->sh_info)
9515 {
9516 Elf_Internal_Sym *isymbuf;
9517 isymbuf = retrieve_local_syms (abfd);
9518 offset = isymbuf[r_symndx].st_value;
9519 }
9520 else
9521 {
9522 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9523 struct elf_link_hash_entry *h =
9524 elf_sym_hashes (abfd)[indx];
9525
9526 while (h->root.type == bfd_link_hash_indirect
9527 || h->root.type == bfd_link_hash_warning)
9528 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9529 if (h->root.type == bfd_link_hash_defined
9530 || h->root.type == bfd_link_hash_defweak)
9531 offset = h->root.u.def.value;
9532 }
9533 return offset;
9534 }
9535
9536
9537 static bfd_boolean
9538 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
9539 {
9540 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9541 struct elf_link_hash_entry *h;
9542
9543 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9544 if (h && h->root.type == bfd_link_hash_defweak)
9545 return TRUE;
9546 return FALSE;
9547 }
9548
9549
9550 static bfd_boolean
9551 pcrel_reloc_fits (xtensa_opcode opc,
9552 int opnd,
9553 bfd_vma self_address,
9554 bfd_vma dest_address)
9555 {
9556 xtensa_isa isa = xtensa_default_isa;
9557 uint32 valp = dest_address;
9558 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9559 || xtensa_operand_encode (isa, opc, opnd, &valp))
9560 return FALSE;
9561 return TRUE;
9562 }
9563
9564
9565 static bfd_boolean
9566 xtensa_is_property_section (asection *sec)
9567 {
9568 if (xtensa_is_insntable_section (sec)
9569 || xtensa_is_littable_section (sec)
9570 || xtensa_is_proptable_section (sec))
9571 return TRUE;
9572
9573 return FALSE;
9574 }
9575
9576
9577 static bfd_boolean
9578 xtensa_is_insntable_section (asection *sec)
9579 {
9580 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9581 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
9582 return TRUE;
9583
9584 return FALSE;
9585 }
9586
9587
9588 static bfd_boolean
9589 xtensa_is_littable_section (asection *sec)
9590 {
9591 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
9592 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
9593 return TRUE;
9594
9595 return FALSE;
9596 }
9597
9598
9599 static bfd_boolean
9600 xtensa_is_proptable_section (asection *sec)
9601 {
9602 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
9603 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
9604 return TRUE;
9605
9606 return FALSE;
9607 }
9608
9609
9610 static int
9611 internal_reloc_compare (const void *ap, const void *bp)
9612 {
9613 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9614 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9615
9616 if (a->r_offset != b->r_offset)
9617 return (a->r_offset - b->r_offset);
9618
9619 /* We don't need to sort on these criteria for correctness,
9620 but enforcing a more strict ordering prevents unstable qsort
9621 from behaving differently with different implementations.
9622 Without the code below we get correct but different results
9623 on Solaris 2.7 and 2.8. We would like to always produce the
9624 same results no matter the host. */
9625
9626 if (a->r_info != b->r_info)
9627 return (a->r_info - b->r_info);
9628
9629 return (a->r_addend - b->r_addend);
9630 }
9631
9632
9633 static int
9634 internal_reloc_matches (const void *ap, const void *bp)
9635 {
9636 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9637 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9638
9639 /* Check if one entry overlaps with the other; this shouldn't happen
9640 except when searching for a match. */
9641 return (a->r_offset - b->r_offset);
9642 }
9643
9644
9645 /* Predicate function used to look up a section in a particular group. */
9646
9647 static bfd_boolean
9648 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
9649 {
9650 const char *gname = inf;
9651 const char *group_name = elf_group_name (sec);
9652
9653 return (group_name == gname
9654 || (group_name != NULL
9655 && gname != NULL
9656 && strcmp (group_name, gname) == 0));
9657 }
9658
9659
9660 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9661
9662 asection *
9663 xtensa_get_property_section (asection *sec, const char *base_name)
9664 {
9665 const char *suffix, *group_name;
9666 char *prop_sec_name;
9667 asection *prop_sec;
9668
9669 group_name = elf_group_name (sec);
9670 if (group_name)
9671 {
9672 suffix = strrchr (sec->name, '.');
9673 if (suffix == sec->name)
9674 suffix = 0;
9675 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
9676 + (suffix ? strlen (suffix) : 0));
9677 strcpy (prop_sec_name, base_name);
9678 if (suffix)
9679 strcat (prop_sec_name, suffix);
9680 }
9681 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
9682 {
9683 char *linkonce_kind = 0;
9684
9685 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
9686 linkonce_kind = "x.";
9687 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
9688 linkonce_kind = "p.";
9689 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9690 linkonce_kind = "prop.";
9691 else
9692 abort ();
9693
9694 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9695 + strlen (linkonce_kind) + 1);
9696 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
9697 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
9698
9699 suffix = sec->name + linkonce_len;
9700 /* For backward compatibility, replace "t." instead of inserting
9701 the new linkonce_kind (but not for "prop" sections). */
9702 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
9703 suffix += 2;
9704 strcat (prop_sec_name + linkonce_len, suffix);
9705 }
9706 else
9707 prop_sec_name = strdup (base_name);
9708
9709 /* Check if the section already exists. */
9710 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9711 match_section_group,
9712 (void *) group_name);
9713 /* If not, create it. */
9714 if (! prop_sec)
9715 {
9716 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
9717 flags |= (bfd_get_section_flags (sec->owner, sec)
9718 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
9719
9720 prop_sec = bfd_make_section_anyway_with_flags
9721 (sec->owner, strdup (prop_sec_name), flags);
9722 if (! prop_sec)
9723 return 0;
9724
9725 elf_group_name (prop_sec) = group_name;
9726 }
9727
9728 free (prop_sec_name);
9729 return prop_sec;
9730 }
9731
9732
9733 flagword
9734 xtensa_get_property_predef_flags (asection *sec)
9735 {
9736 if (xtensa_is_insntable_section (sec))
9737 return (XTENSA_PROP_INSN
9738 | XTENSA_PROP_INSN_NO_TRANSFORM
9739 | XTENSA_PROP_INSN_NO_REORDER);
9740
9741 if (xtensa_is_littable_section (sec))
9742 return (XTENSA_PROP_LITERAL
9743 | XTENSA_PROP_INSN_NO_TRANSFORM
9744 | XTENSA_PROP_INSN_NO_REORDER);
9745
9746 return 0;
9747 }
9748
9749 \f
9750 /* Other functions called directly by the linker. */
9751
9752 bfd_boolean
9753 xtensa_callback_required_dependence (bfd *abfd,
9754 asection *sec,
9755 struct bfd_link_info *link_info,
9756 deps_callback_t callback,
9757 void *closure)
9758 {
9759 Elf_Internal_Rela *internal_relocs;
9760 bfd_byte *contents;
9761 unsigned i;
9762 bfd_boolean ok = TRUE;
9763 bfd_size_type sec_size;
9764
9765 sec_size = bfd_get_section_limit (abfd, sec);
9766
9767 /* ".plt*" sections have no explicit relocations but they contain L32R
9768 instructions that reference the corresponding ".got.plt*" sections. */
9769 if ((sec->flags & SEC_LINKER_CREATED) != 0
9770 && CONST_STRNEQ (sec->name, ".plt"))
9771 {
9772 asection *sgotplt;
9773
9774 /* Find the corresponding ".got.plt*" section. */
9775 if (sec->name[4] == '\0')
9776 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9777 else
9778 {
9779 char got_name[14];
9780 int chunk = 0;
9781
9782 BFD_ASSERT (sec->name[4] == '.');
9783 chunk = strtol (&sec->name[5], NULL, 10);
9784
9785 sprintf (got_name, ".got.plt.%u", chunk);
9786 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9787 }
9788 BFD_ASSERT (sgotplt);
9789
9790 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9791 section referencing a literal at the very beginning of
9792 ".got.plt". This is very close to the real dependence, anyway. */
9793 (*callback) (sec, sec_size, sgotplt, 0, closure);
9794 }
9795
9796 internal_relocs = retrieve_internal_relocs (abfd, sec,
9797 link_info->keep_memory);
9798 if (internal_relocs == NULL
9799 || sec->reloc_count == 0)
9800 return ok;
9801
9802 /* Cache the contents for the duration of this scan. */
9803 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9804 if (contents == NULL && sec_size != 0)
9805 {
9806 ok = FALSE;
9807 goto error_return;
9808 }
9809
9810 if (!xtensa_default_isa)
9811 xtensa_default_isa = xtensa_isa_init (0, 0);
9812
9813 for (i = 0; i < sec->reloc_count; i++)
9814 {
9815 Elf_Internal_Rela *irel = &internal_relocs[i];
9816 if (is_l32r_relocation (abfd, sec, contents, irel))
9817 {
9818 r_reloc l32r_rel;
9819 asection *target_sec;
9820 bfd_vma target_offset;
9821
9822 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
9823 target_sec = NULL;
9824 target_offset = 0;
9825 /* L32Rs must be local to the input file. */
9826 if (r_reloc_is_defined (&l32r_rel))
9827 {
9828 target_sec = r_reloc_get_section (&l32r_rel);
9829 target_offset = l32r_rel.target_offset;
9830 }
9831 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9832 closure);
9833 }
9834 }
9835
9836 error_return:
9837 release_internal_relocs (sec, internal_relocs);
9838 release_contents (sec, contents);
9839 return ok;
9840 }
9841
9842 /* The default literal sections should always be marked as "code" (i.e.,
9843 SHF_EXECINSTR). This is particularly important for the Linux kernel
9844 module loader so that the literals are not placed after the text. */
9845 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
9846 {
9847 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9848 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9849 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9850 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
9851 { NULL, 0, 0, 0, 0 }
9852 };
9853 \f
9854 #ifndef ELF_ARCH
9855 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9856 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
9857 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9858 #define TARGET_BIG_NAME "elf32-xtensa-be"
9859 #define ELF_ARCH bfd_arch_xtensa
9860
9861 #define ELF_MACHINE_CODE EM_XTENSA
9862 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
9863
9864 #if XCHAL_HAVE_MMU
9865 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9866 #else /* !XCHAL_HAVE_MMU */
9867 #define ELF_MAXPAGESIZE 1
9868 #endif /* !XCHAL_HAVE_MMU */
9869 #endif /* ELF_ARCH */
9870
9871 #define elf_backend_can_gc_sections 1
9872 #define elf_backend_can_refcount 1
9873 #define elf_backend_plt_readonly 1
9874 #define elf_backend_got_header_size 4
9875 #define elf_backend_want_dynbss 0
9876 #define elf_backend_want_got_plt 1
9877
9878 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
9879
9880 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9881 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9882 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9883 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9884 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9885 #define bfd_elf32_bfd_reloc_name_lookup \
9886 elf_xtensa_reloc_name_lookup
9887 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9888 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
9889
9890 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9891 #define elf_backend_check_relocs elf_xtensa_check_relocs
9892 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9893 #define elf_backend_discard_info elf_xtensa_discard_info
9894 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9895 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
9896 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9897 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9898 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9899 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9900 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9901 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9902 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
9903 #define elf_backend_object_p elf_xtensa_object_p
9904 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9905 #define elf_backend_relocate_section elf_xtensa_relocate_section
9906 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
9907 #define elf_backend_omit_section_dynsym \
9908 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
9909 #define elf_backend_special_sections elf_xtensa_special_sections
9910 #define elf_backend_action_discarded elf_xtensa_action_discarded
9911
9912 #include "elf32-target.h"
This page took 0.24014 seconds and 4 git commands to generate.