872370b23fde206bc257f0e5de7117362743d9a8
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
33
34 #define XTENSA_NO_NOP_REMOVAL 0
35
36 /* Local helper functions. */
37
38 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
46
47 /* Local functions to handle Xtensa configurability. */
48
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte *, bfd_size_type, bfd_size_type);
74
75 /* Functions for link-time code simplifications. */
76
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
83
84 /* Access to internal relocations, section contents and symbols. */
85
86 static Elf_Internal_Rela *retrieve_internal_relocs
87 (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
94
95 /* Miscellaneous utility functions. */
96
97 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101 (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_insntable_section (asection *);
107 static bfd_boolean xtensa_is_littable_section (asection *);
108 static bfd_boolean xtensa_is_proptable_section (asection *);
109 static int internal_reloc_compare (const void *, const void *);
110 static int internal_reloc_matches (const void *, const void *);
111 static asection *xtensa_get_property_section (asection *, const char *);
112 extern asection *xtensa_make_property_section (asection *, const char *);
113 static flagword xtensa_get_property_predef_flags (asection *);
114
115 /* Other functions called directly by the linker. */
116
117 typedef void (*deps_callback_t)
118 (asection *, bfd_vma, asection *, bfd_vma, void *);
119 extern bfd_boolean xtensa_callback_required_dependence
120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
121
122
123 /* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
127
128 int elf32xtensa_size_opt;
129
130
131 /* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
134
135 typedef struct xtensa_relax_info_struct xtensa_relax_info;
136
137
138 /* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
141 this information. */
142
143 xtensa_isa xtensa_default_isa;
144
145
146 /* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
149
150 static bfd_boolean relaxing_section = FALSE;
151
152 /* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
154
155 int elf32xtensa_no_literal_movement = 1;
156
157 /* Rename one of the generic section flags to better document how it
158 is used here. */
159 /* Whether relocations have been processed. */
160 #define reloc_done sec_flg0
161 \f
162 static reloc_howto_type elf_howto_table[] =
163 {
164 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
165 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
166 FALSE, 0, 0, FALSE),
167 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_xtensa_reloc, "R_XTENSA_32",
169 TRUE, 0xffffffff, 0xffffffff, FALSE),
170
171 /* Replace a 32-bit value with a value from the runtime linker (only
172 used by linker-generated stub functions). The r_addend value is
173 special: 1 means to substitute a pointer to the runtime linker's
174 dynamic resolver function; 2 means to substitute the link map for
175 the shared object. */
176 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
177 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
178
179 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
180 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
181 FALSE, 0, 0xffffffff, FALSE),
182 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
183 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
184 FALSE, 0, 0xffffffff, FALSE),
185 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
186 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
187 FALSE, 0, 0xffffffff, FALSE),
188 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
190 FALSE, 0, 0xffffffff, FALSE),
191
192 EMPTY_HOWTO (7),
193
194 /* Old relocations for backward compatibility. */
195 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
196 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
199 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
200 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
201
202 /* Assembly auto-expansion. */
203 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
204 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
205 /* Relax assembly auto-expansion. */
206 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
207 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
208
209 EMPTY_HOWTO (13),
210
211 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
212 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
213 FALSE, 0, 0xffffffff, TRUE),
214
215 /* GNU extension to record C++ vtable hierarchy. */
216 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
217 NULL, "R_XTENSA_GNU_VTINHERIT",
218 FALSE, 0, 0, FALSE),
219 /* GNU extension to record C++ vtable member usage. */
220 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
221 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
222 FALSE, 0, 0, FALSE),
223
224 /* Relocations for supporting difference of symbols. */
225 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
226 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
227 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
228 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
231
232 /* General immediate operand relocations. */
233 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
235 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
237 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
239 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
241 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
243 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
245 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
247 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
249 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
251 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
253 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
255 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
257 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
259 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
261 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
263
264 /* "Alternate" relocations. The meaning of these is opcode-specific. */
265 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
287 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
289 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
291 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
293 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
295
296 /* TLS relocations. */
297 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
299 FALSE, 0, 0xffffffff, FALSE),
300 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
301 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
302 FALSE, 0, 0xffffffff, FALSE),
303 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
305 FALSE, 0, 0xffffffff, FALSE),
306 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
307 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
308 FALSE, 0, 0xffffffff, FALSE),
309 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
310 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
311 FALSE, 0, 0, FALSE),
312 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
313 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
314 FALSE, 0, 0, FALSE),
315 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
316 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
317 FALSE, 0, 0, FALSE),
318 };
319
320 #if DEBUG_GEN_RELOC
321 #define TRACE(str) \
322 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
323 #else
324 #define TRACE(str)
325 #endif
326
327 static reloc_howto_type *
328 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
329 bfd_reloc_code_real_type code)
330 {
331 switch (code)
332 {
333 case BFD_RELOC_NONE:
334 TRACE ("BFD_RELOC_NONE");
335 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
336
337 case BFD_RELOC_32:
338 TRACE ("BFD_RELOC_32");
339 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
340
341 case BFD_RELOC_32_PCREL:
342 TRACE ("BFD_RELOC_32_PCREL");
343 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
344
345 case BFD_RELOC_XTENSA_DIFF8:
346 TRACE ("BFD_RELOC_XTENSA_DIFF8");
347 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
348
349 case BFD_RELOC_XTENSA_DIFF16:
350 TRACE ("BFD_RELOC_XTENSA_DIFF16");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
352
353 case BFD_RELOC_XTENSA_DIFF32:
354 TRACE ("BFD_RELOC_XTENSA_DIFF32");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
356
357 case BFD_RELOC_XTENSA_RTLD:
358 TRACE ("BFD_RELOC_XTENSA_RTLD");
359 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
360
361 case BFD_RELOC_XTENSA_GLOB_DAT:
362 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
363 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
364
365 case BFD_RELOC_XTENSA_JMP_SLOT:
366 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
367 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
368
369 case BFD_RELOC_XTENSA_RELATIVE:
370 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
371 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
372
373 case BFD_RELOC_XTENSA_PLT:
374 TRACE ("BFD_RELOC_XTENSA_PLT");
375 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
376
377 case BFD_RELOC_XTENSA_OP0:
378 TRACE ("BFD_RELOC_XTENSA_OP0");
379 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
380
381 case BFD_RELOC_XTENSA_OP1:
382 TRACE ("BFD_RELOC_XTENSA_OP1");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
384
385 case BFD_RELOC_XTENSA_OP2:
386 TRACE ("BFD_RELOC_XTENSA_OP2");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
388
389 case BFD_RELOC_XTENSA_ASM_EXPAND:
390 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
391 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
392
393 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
394 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
396
397 case BFD_RELOC_VTABLE_INHERIT:
398 TRACE ("BFD_RELOC_VTABLE_INHERIT");
399 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
400
401 case BFD_RELOC_VTABLE_ENTRY:
402 TRACE ("BFD_RELOC_VTABLE_ENTRY");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
404
405 case BFD_RELOC_XTENSA_TLSDESC_FN:
406 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
407 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
408
409 case BFD_RELOC_XTENSA_TLSDESC_ARG:
410 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
411 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
412
413 case BFD_RELOC_XTENSA_TLS_DTPOFF:
414 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
415 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
416
417 case BFD_RELOC_XTENSA_TLS_TPOFF:
418 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
419 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
420
421 case BFD_RELOC_XTENSA_TLS_FUNC:
422 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
423 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
424
425 case BFD_RELOC_XTENSA_TLS_ARG:
426 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
427 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
428
429 case BFD_RELOC_XTENSA_TLS_CALL:
430 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
431 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
432
433 default:
434 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
435 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
436 {
437 unsigned n = (R_XTENSA_SLOT0_OP +
438 (code - BFD_RELOC_XTENSA_SLOT0_OP));
439 return &elf_howto_table[n];
440 }
441
442 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
443 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
444 {
445 unsigned n = (R_XTENSA_SLOT0_ALT +
446 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
447 return &elf_howto_table[n];
448 }
449
450 break;
451 }
452
453 TRACE ("Unknown");
454 return NULL;
455 }
456
457 static reloc_howto_type *
458 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
459 const char *r_name)
460 {
461 unsigned int i;
462
463 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
464 if (elf_howto_table[i].name != NULL
465 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
466 return &elf_howto_table[i];
467
468 return NULL;
469 }
470
471
472 /* Given an ELF "rela" relocation, find the corresponding howto and record
473 it in the BFD internal arelent representation of the relocation. */
474
475 static void
476 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
477 arelent *cache_ptr,
478 Elf_Internal_Rela *dst)
479 {
480 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
481
482 if (r_type >= (unsigned int) R_XTENSA_max)
483 {
484 _bfd_error_handler (_("%B: invalid XTENSA reloc number: %d"), abfd, r_type);
485 r_type = 0;
486 }
487 cache_ptr->howto = &elf_howto_table[r_type];
488 }
489
490 \f
491 /* Functions for the Xtensa ELF linker. */
492
493 /* The name of the dynamic interpreter. This is put in the .interp
494 section. */
495
496 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
497
498 /* The size in bytes of an entry in the procedure linkage table.
499 (This does _not_ include the space for the literals associated with
500 the PLT entry.) */
501
502 #define PLT_ENTRY_SIZE 16
503
504 /* For _really_ large PLTs, we may need to alternate between literals
505 and code to keep the literals within the 256K range of the L32R
506 instructions in the code. It's unlikely that anyone would ever need
507 such a big PLT, but an arbitrary limit on the PLT size would be bad.
508 Thus, we split the PLT into chunks. Since there's very little
509 overhead (2 extra literals) for each chunk, the chunk size is kept
510 small so that the code for handling multiple chunks get used and
511 tested regularly. With 254 entries, there are 1K of literals for
512 each chunk, and that seems like a nice round number. */
513
514 #define PLT_ENTRIES_PER_CHUNK 254
515
516 /* PLT entries are actually used as stub functions for lazy symbol
517 resolution. Once the symbol is resolved, the stub function is never
518 invoked. Note: the 32-byte frame size used here cannot be changed
519 without a corresponding change in the runtime linker. */
520
521 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
522 {
523 0x6c, 0x10, 0x04, /* entry sp, 32 */
524 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
525 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
526 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
527 0x0a, 0x80, 0x00, /* jx a8 */
528 0 /* unused */
529 };
530
531 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
532 {
533 0x36, 0x41, 0x00, /* entry sp, 32 */
534 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
535 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
536 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
537 0xa0, 0x08, 0x00, /* jx a8 */
538 0 /* unused */
539 };
540
541 /* The size of the thread control block. */
542 #define TCB_SIZE 8
543
544 struct elf_xtensa_link_hash_entry
545 {
546 struct elf_link_hash_entry elf;
547
548 bfd_signed_vma tlsfunc_refcount;
549
550 #define GOT_UNKNOWN 0
551 #define GOT_NORMAL 1
552 #define GOT_TLS_GD 2 /* global or local dynamic */
553 #define GOT_TLS_IE 4 /* initial or local exec */
554 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
555 unsigned char tls_type;
556 };
557
558 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
559
560 struct elf_xtensa_obj_tdata
561 {
562 struct elf_obj_tdata root;
563
564 /* tls_type for each local got entry. */
565 char *local_got_tls_type;
566
567 bfd_signed_vma *local_tlsfunc_refcounts;
568 };
569
570 #define elf_xtensa_tdata(abfd) \
571 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
572
573 #define elf_xtensa_local_got_tls_type(abfd) \
574 (elf_xtensa_tdata (abfd)->local_got_tls_type)
575
576 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
577 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
578
579 #define is_xtensa_elf(bfd) \
580 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
581 && elf_tdata (bfd) != NULL \
582 && elf_object_id (bfd) == XTENSA_ELF_DATA)
583
584 static bfd_boolean
585 elf_xtensa_mkobject (bfd *abfd)
586 {
587 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
588 XTENSA_ELF_DATA);
589 }
590
591 /* Xtensa ELF linker hash table. */
592
593 struct elf_xtensa_link_hash_table
594 {
595 struct elf_link_hash_table elf;
596
597 /* Short-cuts to get to dynamic linker sections. */
598 asection *sgot;
599 asection *sgotplt;
600 asection *srelgot;
601 asection *splt;
602 asection *srelplt;
603 asection *sgotloc;
604 asection *spltlittbl;
605
606 /* Total count of PLT relocations seen during check_relocs.
607 The actual PLT code must be split into multiple sections and all
608 the sections have to be created before size_dynamic_sections,
609 where we figure out the exact number of PLT entries that will be
610 needed. It is OK if this count is an overestimate, e.g., some
611 relocations may be removed by GC. */
612 int plt_reloc_count;
613
614 struct elf_xtensa_link_hash_entry *tlsbase;
615 };
616
617 /* Get the Xtensa ELF linker hash table from a link_info structure. */
618
619 #define elf_xtensa_hash_table(p) \
620 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
621 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
622
623 /* Create an entry in an Xtensa ELF linker hash table. */
624
625 static struct bfd_hash_entry *
626 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
627 struct bfd_hash_table *table,
628 const char *string)
629 {
630 /* Allocate the structure if it has not already been allocated by a
631 subclass. */
632 if (entry == NULL)
633 {
634 entry = bfd_hash_allocate (table,
635 sizeof (struct elf_xtensa_link_hash_entry));
636 if (entry == NULL)
637 return entry;
638 }
639
640 /* Call the allocation method of the superclass. */
641 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
642 if (entry != NULL)
643 {
644 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
645 eh->tlsfunc_refcount = 0;
646 eh->tls_type = GOT_UNKNOWN;
647 }
648
649 return entry;
650 }
651
652 /* Create an Xtensa ELF linker hash table. */
653
654 static struct bfd_link_hash_table *
655 elf_xtensa_link_hash_table_create (bfd *abfd)
656 {
657 struct elf_link_hash_entry *tlsbase;
658 struct elf_xtensa_link_hash_table *ret;
659 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
660
661 ret = bfd_zmalloc (amt);
662 if (ret == NULL)
663 return NULL;
664
665 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
666 elf_xtensa_link_hash_newfunc,
667 sizeof (struct elf_xtensa_link_hash_entry),
668 XTENSA_ELF_DATA))
669 {
670 free (ret);
671 return NULL;
672 }
673
674 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
675 for it later. */
676 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
677 TRUE, FALSE, FALSE);
678 tlsbase->root.type = bfd_link_hash_new;
679 tlsbase->root.u.undef.abfd = NULL;
680 tlsbase->non_elf = 0;
681 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
682 ret->tlsbase->tls_type = GOT_UNKNOWN;
683
684 return &ret->elf.root;
685 }
686
687 /* Copy the extra info we tack onto an elf_link_hash_entry. */
688
689 static void
690 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
691 struct elf_link_hash_entry *dir,
692 struct elf_link_hash_entry *ind)
693 {
694 struct elf_xtensa_link_hash_entry *edir, *eind;
695
696 edir = elf_xtensa_hash_entry (dir);
697 eind = elf_xtensa_hash_entry (ind);
698
699 if (ind->root.type == bfd_link_hash_indirect)
700 {
701 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
702 eind->tlsfunc_refcount = 0;
703
704 if (dir->got.refcount <= 0)
705 {
706 edir->tls_type = eind->tls_type;
707 eind->tls_type = GOT_UNKNOWN;
708 }
709 }
710
711 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
712 }
713
714 static inline bfd_boolean
715 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
716 struct bfd_link_info *info)
717 {
718 /* Check if we should do dynamic things to this symbol. The
719 "ignore_protected" argument need not be set, because Xtensa code
720 does not require special handling of STV_PROTECTED to make function
721 pointer comparisons work properly. The PLT addresses are never
722 used for function pointers. */
723
724 return _bfd_elf_dynamic_symbol_p (h, info, 0);
725 }
726
727 \f
728 static int
729 property_table_compare (const void *ap, const void *bp)
730 {
731 const property_table_entry *a = (const property_table_entry *) ap;
732 const property_table_entry *b = (const property_table_entry *) bp;
733
734 if (a->address == b->address)
735 {
736 if (a->size != b->size)
737 return (a->size - b->size);
738
739 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
740 return ((b->flags & XTENSA_PROP_ALIGN)
741 - (a->flags & XTENSA_PROP_ALIGN));
742
743 if ((a->flags & XTENSA_PROP_ALIGN)
744 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
745 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
746 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
747 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
748
749 if ((a->flags & XTENSA_PROP_UNREACHABLE)
750 != (b->flags & XTENSA_PROP_UNREACHABLE))
751 return ((b->flags & XTENSA_PROP_UNREACHABLE)
752 - (a->flags & XTENSA_PROP_UNREACHABLE));
753
754 return (a->flags - b->flags);
755 }
756
757 return (a->address - b->address);
758 }
759
760
761 static int
762 property_table_matches (const void *ap, const void *bp)
763 {
764 const property_table_entry *a = (const property_table_entry *) ap;
765 const property_table_entry *b = (const property_table_entry *) bp;
766
767 /* Check if one entry overlaps with the other. */
768 if ((b->address >= a->address && b->address < (a->address + a->size))
769 || (a->address >= b->address && a->address < (b->address + b->size)))
770 return 0;
771
772 return (a->address - b->address);
773 }
774
775
776 /* Get the literal table or property table entries for the given
777 section. Sets TABLE_P and returns the number of entries. On
778 error, returns a negative value. */
779
780 static int
781 xtensa_read_table_entries (bfd *abfd,
782 asection *section,
783 property_table_entry **table_p,
784 const char *sec_name,
785 bfd_boolean output_addr)
786 {
787 asection *table_section;
788 bfd_size_type table_size = 0;
789 bfd_byte *table_data;
790 property_table_entry *blocks;
791 int blk, block_count;
792 bfd_size_type num_records;
793 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
794 bfd_vma section_addr, off;
795 flagword predef_flags;
796 bfd_size_type table_entry_size, section_limit;
797
798 if (!section
799 || !(section->flags & SEC_ALLOC)
800 || (section->flags & SEC_DEBUGGING))
801 {
802 *table_p = NULL;
803 return 0;
804 }
805
806 table_section = xtensa_get_property_section (section, sec_name);
807 if (table_section)
808 table_size = table_section->size;
809
810 if (table_size == 0)
811 {
812 *table_p = NULL;
813 return 0;
814 }
815
816 predef_flags = xtensa_get_property_predef_flags (table_section);
817 table_entry_size = 12;
818 if (predef_flags)
819 table_entry_size -= 4;
820
821 num_records = table_size / table_entry_size;
822 table_data = retrieve_contents (abfd, table_section, TRUE);
823 blocks = (property_table_entry *)
824 bfd_malloc (num_records * sizeof (property_table_entry));
825 block_count = 0;
826
827 if (output_addr)
828 section_addr = section->output_section->vma + section->output_offset;
829 else
830 section_addr = section->vma;
831
832 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
833 if (internal_relocs && !table_section->reloc_done)
834 {
835 qsort (internal_relocs, table_section->reloc_count,
836 sizeof (Elf_Internal_Rela), internal_reloc_compare);
837 irel = internal_relocs;
838 }
839 else
840 irel = NULL;
841
842 section_limit = bfd_get_section_limit (abfd, section);
843 rel_end = internal_relocs + table_section->reloc_count;
844
845 for (off = 0; off < table_size; off += table_entry_size)
846 {
847 bfd_vma address = bfd_get_32 (abfd, table_data + off);
848
849 /* Skip any relocations before the current offset. This should help
850 avoid confusion caused by unexpected relocations for the preceding
851 table entry. */
852 while (irel &&
853 (irel->r_offset < off
854 || (irel->r_offset == off
855 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
856 {
857 irel += 1;
858 if (irel >= rel_end)
859 irel = 0;
860 }
861
862 if (irel && irel->r_offset == off)
863 {
864 bfd_vma sym_off;
865 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
866 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
867
868 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
869 continue;
870
871 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
872 BFD_ASSERT (sym_off == 0);
873 address += (section_addr + sym_off + irel->r_addend);
874 }
875 else
876 {
877 if (address < section_addr
878 || address >= section_addr + section_limit)
879 continue;
880 }
881
882 blocks[block_count].address = address;
883 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
884 if (predef_flags)
885 blocks[block_count].flags = predef_flags;
886 else
887 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
888 block_count++;
889 }
890
891 release_contents (table_section, table_data);
892 release_internal_relocs (table_section, internal_relocs);
893
894 if (block_count > 0)
895 {
896 /* Now sort them into address order for easy reference. */
897 qsort (blocks, block_count, sizeof (property_table_entry),
898 property_table_compare);
899
900 /* Check that the table contents are valid. Problems may occur,
901 for example, if an unrelocated object file is stripped. */
902 for (blk = 1; blk < block_count; blk++)
903 {
904 /* The only circumstance where two entries may legitimately
905 have the same address is when one of them is a zero-size
906 placeholder to mark a place where fill can be inserted.
907 The zero-size entry should come first. */
908 if (blocks[blk - 1].address == blocks[blk].address &&
909 blocks[blk - 1].size != 0)
910 {
911 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
912 abfd, section);
913 bfd_set_error (bfd_error_bad_value);
914 free (blocks);
915 return -1;
916 }
917 }
918 }
919
920 *table_p = blocks;
921 return block_count;
922 }
923
924
925 static property_table_entry *
926 elf_xtensa_find_property_entry (property_table_entry *property_table,
927 int property_table_size,
928 bfd_vma addr)
929 {
930 property_table_entry entry;
931 property_table_entry *rv;
932
933 if (property_table_size == 0)
934 return NULL;
935
936 entry.address = addr;
937 entry.size = 1;
938 entry.flags = 0;
939
940 rv = bsearch (&entry, property_table, property_table_size,
941 sizeof (property_table_entry), property_table_matches);
942 return rv;
943 }
944
945
946 static bfd_boolean
947 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
948 int lit_table_size,
949 bfd_vma addr)
950 {
951 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
952 return TRUE;
953
954 return FALSE;
955 }
956
957 \f
958 /* Look through the relocs for a section during the first phase, and
959 calculate needed space in the dynamic reloc sections. */
960
961 static bfd_boolean
962 elf_xtensa_check_relocs (bfd *abfd,
963 struct bfd_link_info *info,
964 asection *sec,
965 const Elf_Internal_Rela *relocs)
966 {
967 struct elf_xtensa_link_hash_table *htab;
968 Elf_Internal_Shdr *symtab_hdr;
969 struct elf_link_hash_entry **sym_hashes;
970 const Elf_Internal_Rela *rel;
971 const Elf_Internal_Rela *rel_end;
972
973 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0)
974 return TRUE;
975
976 BFD_ASSERT (is_xtensa_elf (abfd));
977
978 htab = elf_xtensa_hash_table (info);
979 if (htab == NULL)
980 return FALSE;
981
982 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
983 sym_hashes = elf_sym_hashes (abfd);
984
985 rel_end = relocs + sec->reloc_count;
986 for (rel = relocs; rel < rel_end; rel++)
987 {
988 unsigned int r_type;
989 unsigned long r_symndx;
990 struct elf_link_hash_entry *h = NULL;
991 struct elf_xtensa_link_hash_entry *eh;
992 int tls_type, old_tls_type;
993 bfd_boolean is_got = FALSE;
994 bfd_boolean is_plt = FALSE;
995 bfd_boolean is_tlsfunc = FALSE;
996
997 r_symndx = ELF32_R_SYM (rel->r_info);
998 r_type = ELF32_R_TYPE (rel->r_info);
999
1000 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1001 {
1002 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1003 abfd, r_symndx);
1004 return FALSE;
1005 }
1006
1007 if (r_symndx >= symtab_hdr->sh_info)
1008 {
1009 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1010 while (h->root.type == bfd_link_hash_indirect
1011 || h->root.type == bfd_link_hash_warning)
1012 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1013
1014 /* PR15323, ref flags aren't set for references in the same
1015 object. */
1016 h->root.non_ir_ref = 1;
1017 }
1018 eh = elf_xtensa_hash_entry (h);
1019
1020 switch (r_type)
1021 {
1022 case R_XTENSA_TLSDESC_FN:
1023 if (info->shared)
1024 {
1025 tls_type = GOT_TLS_GD;
1026 is_got = TRUE;
1027 is_tlsfunc = TRUE;
1028 }
1029 else
1030 tls_type = GOT_TLS_IE;
1031 break;
1032
1033 case R_XTENSA_TLSDESC_ARG:
1034 if (info->shared)
1035 {
1036 tls_type = GOT_TLS_GD;
1037 is_got = TRUE;
1038 }
1039 else
1040 {
1041 tls_type = GOT_TLS_IE;
1042 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1043 is_got = TRUE;
1044 }
1045 break;
1046
1047 case R_XTENSA_TLS_DTPOFF:
1048 if (info->shared)
1049 tls_type = GOT_TLS_GD;
1050 else
1051 tls_type = GOT_TLS_IE;
1052 break;
1053
1054 case R_XTENSA_TLS_TPOFF:
1055 tls_type = GOT_TLS_IE;
1056 if (info->shared)
1057 info->flags |= DF_STATIC_TLS;
1058 if (info->shared || h)
1059 is_got = TRUE;
1060 break;
1061
1062 case R_XTENSA_32:
1063 tls_type = GOT_NORMAL;
1064 is_got = TRUE;
1065 break;
1066
1067 case R_XTENSA_PLT:
1068 tls_type = GOT_NORMAL;
1069 is_plt = TRUE;
1070 break;
1071
1072 case R_XTENSA_GNU_VTINHERIT:
1073 /* This relocation describes the C++ object vtable hierarchy.
1074 Reconstruct it for later use during GC. */
1075 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1076 return FALSE;
1077 continue;
1078
1079 case R_XTENSA_GNU_VTENTRY:
1080 /* This relocation describes which C++ vtable entries are actually
1081 used. Record for later use during GC. */
1082 BFD_ASSERT (h != NULL);
1083 if (h != NULL
1084 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1085 return FALSE;
1086 continue;
1087
1088 default:
1089 /* Nothing to do for any other relocations. */
1090 continue;
1091 }
1092
1093 if (h)
1094 {
1095 if (is_plt)
1096 {
1097 if (h->plt.refcount <= 0)
1098 {
1099 h->needs_plt = 1;
1100 h->plt.refcount = 1;
1101 }
1102 else
1103 h->plt.refcount += 1;
1104
1105 /* Keep track of the total PLT relocation count even if we
1106 don't yet know whether the dynamic sections will be
1107 created. */
1108 htab->plt_reloc_count += 1;
1109
1110 if (elf_hash_table (info)->dynamic_sections_created)
1111 {
1112 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1113 return FALSE;
1114 }
1115 }
1116 else if (is_got)
1117 {
1118 if (h->got.refcount <= 0)
1119 h->got.refcount = 1;
1120 else
1121 h->got.refcount += 1;
1122 }
1123
1124 if (is_tlsfunc)
1125 eh->tlsfunc_refcount += 1;
1126
1127 old_tls_type = eh->tls_type;
1128 }
1129 else
1130 {
1131 /* Allocate storage the first time. */
1132 if (elf_local_got_refcounts (abfd) == NULL)
1133 {
1134 bfd_size_type size = symtab_hdr->sh_info;
1135 void *mem;
1136
1137 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1138 if (mem == NULL)
1139 return FALSE;
1140 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1141
1142 mem = bfd_zalloc (abfd, size);
1143 if (mem == NULL)
1144 return FALSE;
1145 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1146
1147 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1148 if (mem == NULL)
1149 return FALSE;
1150 elf_xtensa_local_tlsfunc_refcounts (abfd)
1151 = (bfd_signed_vma *) mem;
1152 }
1153
1154 /* This is a global offset table entry for a local symbol. */
1155 if (is_got || is_plt)
1156 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1157
1158 if (is_tlsfunc)
1159 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1160
1161 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1162 }
1163
1164 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1165 tls_type |= old_tls_type;
1166 /* If a TLS symbol is accessed using IE at least once,
1167 there is no point to use a dynamic model for it. */
1168 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1169 && ((old_tls_type & GOT_TLS_GD) == 0
1170 || (tls_type & GOT_TLS_IE) == 0))
1171 {
1172 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1173 tls_type = old_tls_type;
1174 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1175 tls_type |= old_tls_type;
1176 else
1177 {
1178 (*_bfd_error_handler)
1179 (_("%B: `%s' accessed both as normal and thread local symbol"),
1180 abfd,
1181 h ? h->root.root.string : "<local>");
1182 return FALSE;
1183 }
1184 }
1185
1186 if (old_tls_type != tls_type)
1187 {
1188 if (eh)
1189 eh->tls_type = tls_type;
1190 else
1191 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1192 }
1193 }
1194
1195 return TRUE;
1196 }
1197
1198
1199 static void
1200 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1201 struct elf_link_hash_entry *h)
1202 {
1203 if (info->shared)
1204 {
1205 if (h->plt.refcount > 0)
1206 {
1207 /* For shared objects, there's no need for PLT entries for local
1208 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1209 if (h->got.refcount < 0)
1210 h->got.refcount = 0;
1211 h->got.refcount += h->plt.refcount;
1212 h->plt.refcount = 0;
1213 }
1214 }
1215 else
1216 {
1217 /* Don't need any dynamic relocations at all. */
1218 h->plt.refcount = 0;
1219 h->got.refcount = 0;
1220 }
1221 }
1222
1223
1224 static void
1225 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1226 struct elf_link_hash_entry *h,
1227 bfd_boolean force_local)
1228 {
1229 /* For a shared link, move the plt refcount to the got refcount to leave
1230 space for RELATIVE relocs. */
1231 elf_xtensa_make_sym_local (info, h);
1232
1233 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1234 }
1235
1236
1237 /* Return the section that should be marked against GC for a given
1238 relocation. */
1239
1240 static asection *
1241 elf_xtensa_gc_mark_hook (asection *sec,
1242 struct bfd_link_info *info,
1243 Elf_Internal_Rela *rel,
1244 struct elf_link_hash_entry *h,
1245 Elf_Internal_Sym *sym)
1246 {
1247 /* Property sections are marked "KEEP" in the linker scripts, but they
1248 should not cause other sections to be marked. (This approach relies
1249 on elf_xtensa_discard_info to remove property table entries that
1250 describe discarded sections. Alternatively, it might be more
1251 efficient to avoid using "KEEP" in the linker scripts and instead use
1252 the gc_mark_extra_sections hook to mark only the property sections
1253 that describe marked sections. That alternative does not work well
1254 with the current property table sections, which do not correspond
1255 one-to-one with the sections they describe, but that should be fixed
1256 someday.) */
1257 if (xtensa_is_property_section (sec))
1258 return NULL;
1259
1260 if (h != NULL)
1261 switch (ELF32_R_TYPE (rel->r_info))
1262 {
1263 case R_XTENSA_GNU_VTINHERIT:
1264 case R_XTENSA_GNU_VTENTRY:
1265 return NULL;
1266 }
1267
1268 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1269 }
1270
1271
1272 /* Update the GOT & PLT entry reference counts
1273 for the section being removed. */
1274
1275 static bfd_boolean
1276 elf_xtensa_gc_sweep_hook (bfd *abfd,
1277 struct bfd_link_info *info,
1278 asection *sec,
1279 const Elf_Internal_Rela *relocs)
1280 {
1281 Elf_Internal_Shdr *symtab_hdr;
1282 struct elf_link_hash_entry **sym_hashes;
1283 const Elf_Internal_Rela *rel, *relend;
1284 struct elf_xtensa_link_hash_table *htab;
1285
1286 htab = elf_xtensa_hash_table (info);
1287 if (htab == NULL)
1288 return FALSE;
1289
1290 if (info->relocatable)
1291 return TRUE;
1292
1293 if ((sec->flags & SEC_ALLOC) == 0)
1294 return TRUE;
1295
1296 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1297 sym_hashes = elf_sym_hashes (abfd);
1298
1299 relend = relocs + sec->reloc_count;
1300 for (rel = relocs; rel < relend; rel++)
1301 {
1302 unsigned long r_symndx;
1303 unsigned int r_type;
1304 struct elf_link_hash_entry *h = NULL;
1305 struct elf_xtensa_link_hash_entry *eh;
1306 bfd_boolean is_got = FALSE;
1307 bfd_boolean is_plt = FALSE;
1308 bfd_boolean is_tlsfunc = FALSE;
1309
1310 r_symndx = ELF32_R_SYM (rel->r_info);
1311 if (r_symndx >= symtab_hdr->sh_info)
1312 {
1313 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1314 while (h->root.type == bfd_link_hash_indirect
1315 || h->root.type == bfd_link_hash_warning)
1316 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1317 }
1318 eh = elf_xtensa_hash_entry (h);
1319
1320 r_type = ELF32_R_TYPE (rel->r_info);
1321 switch (r_type)
1322 {
1323 case R_XTENSA_TLSDESC_FN:
1324 if (info->shared)
1325 {
1326 is_got = TRUE;
1327 is_tlsfunc = TRUE;
1328 }
1329 break;
1330
1331 case R_XTENSA_TLSDESC_ARG:
1332 if (info->shared)
1333 is_got = TRUE;
1334 else
1335 {
1336 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1337 is_got = TRUE;
1338 }
1339 break;
1340
1341 case R_XTENSA_TLS_TPOFF:
1342 if (info->shared || h)
1343 is_got = TRUE;
1344 break;
1345
1346 case R_XTENSA_32:
1347 is_got = TRUE;
1348 break;
1349
1350 case R_XTENSA_PLT:
1351 is_plt = TRUE;
1352 break;
1353
1354 default:
1355 continue;
1356 }
1357
1358 if (h)
1359 {
1360 if (is_plt)
1361 {
1362 if (h->plt.refcount > 0)
1363 h->plt.refcount--;
1364 }
1365 else if (is_got)
1366 {
1367 if (h->got.refcount > 0)
1368 h->got.refcount--;
1369 }
1370 if (is_tlsfunc)
1371 {
1372 if (eh->tlsfunc_refcount > 0)
1373 eh->tlsfunc_refcount--;
1374 }
1375 }
1376 else
1377 {
1378 if (is_got || is_plt)
1379 {
1380 bfd_signed_vma *got_refcount
1381 = &elf_local_got_refcounts (abfd) [r_symndx];
1382 if (*got_refcount > 0)
1383 *got_refcount -= 1;
1384 }
1385 if (is_tlsfunc)
1386 {
1387 bfd_signed_vma *tlsfunc_refcount
1388 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1389 if (*tlsfunc_refcount > 0)
1390 *tlsfunc_refcount -= 1;
1391 }
1392 }
1393 }
1394
1395 return TRUE;
1396 }
1397
1398
1399 /* Create all the dynamic sections. */
1400
1401 static bfd_boolean
1402 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1403 {
1404 struct elf_xtensa_link_hash_table *htab;
1405 flagword flags, noalloc_flags;
1406
1407 htab = elf_xtensa_hash_table (info);
1408 if (htab == NULL)
1409 return FALSE;
1410
1411 /* First do all the standard stuff. */
1412 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1413 return FALSE;
1414 htab->splt = bfd_get_linker_section (dynobj, ".plt");
1415 htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt");
1416 htab->sgot = bfd_get_linker_section (dynobj, ".got");
1417 htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
1418 htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got");
1419
1420 /* Create any extra PLT sections in case check_relocs has already
1421 been called on all the non-dynamic input files. */
1422 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1423 return FALSE;
1424
1425 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1426 | SEC_LINKER_CREATED | SEC_READONLY);
1427 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1428
1429 /* Mark the ".got.plt" section READONLY. */
1430 if (htab->sgotplt == NULL
1431 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1432 return FALSE;
1433
1434 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1435 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1436 flags);
1437 if (htab->sgotloc == NULL
1438 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1439 return FALSE;
1440
1441 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1442 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1443 noalloc_flags);
1444 if (htab->spltlittbl == NULL
1445 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1446 return FALSE;
1447
1448 return TRUE;
1449 }
1450
1451
1452 static bfd_boolean
1453 add_extra_plt_sections (struct bfd_link_info *info, int count)
1454 {
1455 bfd *dynobj = elf_hash_table (info)->dynobj;
1456 int chunk;
1457
1458 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1459 ".got.plt" sections. */
1460 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1461 {
1462 char *sname;
1463 flagword flags;
1464 asection *s;
1465
1466 /* Stop when we find a section has already been created. */
1467 if (elf_xtensa_get_plt_section (info, chunk))
1468 break;
1469
1470 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1471 | SEC_LINKER_CREATED | SEC_READONLY);
1472
1473 sname = (char *) bfd_malloc (10);
1474 sprintf (sname, ".plt.%u", chunk);
1475 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1476 if (s == NULL
1477 || ! bfd_set_section_alignment (dynobj, s, 2))
1478 return FALSE;
1479
1480 sname = (char *) bfd_malloc (14);
1481 sprintf (sname, ".got.plt.%u", chunk);
1482 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1483 if (s == NULL
1484 || ! bfd_set_section_alignment (dynobj, s, 2))
1485 return FALSE;
1486 }
1487
1488 return TRUE;
1489 }
1490
1491
1492 /* Adjust a symbol defined by a dynamic object and referenced by a
1493 regular object. The current definition is in some section of the
1494 dynamic object, but we're not including those sections. We have to
1495 change the definition to something the rest of the link can
1496 understand. */
1497
1498 static bfd_boolean
1499 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1500 struct elf_link_hash_entry *h)
1501 {
1502 /* If this is a weak symbol, and there is a real definition, the
1503 processor independent code will have arranged for us to see the
1504 real definition first, and we can just use the same value. */
1505 if (h->u.weakdef)
1506 {
1507 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1508 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1509 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1510 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1511 return TRUE;
1512 }
1513
1514 /* This is a reference to a symbol defined by a dynamic object. The
1515 reference must go through the GOT, so there's no need for COPY relocs,
1516 .dynbss, etc. */
1517
1518 return TRUE;
1519 }
1520
1521
1522 static bfd_boolean
1523 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1524 {
1525 struct bfd_link_info *info;
1526 struct elf_xtensa_link_hash_table *htab;
1527 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1528
1529 if (h->root.type == bfd_link_hash_indirect)
1530 return TRUE;
1531
1532 info = (struct bfd_link_info *) arg;
1533 htab = elf_xtensa_hash_table (info);
1534 if (htab == NULL)
1535 return FALSE;
1536
1537 /* If we saw any use of an IE model for this symbol, we can then optimize
1538 away GOT entries for any TLSDESC_FN relocs. */
1539 if ((eh->tls_type & GOT_TLS_IE) != 0)
1540 {
1541 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1542 h->got.refcount -= eh->tlsfunc_refcount;
1543 }
1544
1545 if (! elf_xtensa_dynamic_symbol_p (h, info))
1546 elf_xtensa_make_sym_local (info, h);
1547
1548 if (h->plt.refcount > 0)
1549 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1550
1551 if (h->got.refcount > 0)
1552 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1553
1554 return TRUE;
1555 }
1556
1557
1558 static void
1559 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1560 {
1561 struct elf_xtensa_link_hash_table *htab;
1562 bfd *i;
1563
1564 htab = elf_xtensa_hash_table (info);
1565 if (htab == NULL)
1566 return;
1567
1568 for (i = info->input_bfds; i; i = i->link.next)
1569 {
1570 bfd_signed_vma *local_got_refcounts;
1571 bfd_size_type j, cnt;
1572 Elf_Internal_Shdr *symtab_hdr;
1573
1574 local_got_refcounts = elf_local_got_refcounts (i);
1575 if (!local_got_refcounts)
1576 continue;
1577
1578 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1579 cnt = symtab_hdr->sh_info;
1580
1581 for (j = 0; j < cnt; ++j)
1582 {
1583 /* If we saw any use of an IE model for this symbol, we can
1584 then optimize away GOT entries for any TLSDESC_FN relocs. */
1585 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1586 {
1587 bfd_signed_vma *tlsfunc_refcount
1588 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1589 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1590 local_got_refcounts[j] -= *tlsfunc_refcount;
1591 }
1592
1593 if (local_got_refcounts[j] > 0)
1594 htab->srelgot->size += (local_got_refcounts[j]
1595 * sizeof (Elf32_External_Rela));
1596 }
1597 }
1598 }
1599
1600
1601 /* Set the sizes of the dynamic sections. */
1602
1603 static bfd_boolean
1604 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1605 struct bfd_link_info *info)
1606 {
1607 struct elf_xtensa_link_hash_table *htab;
1608 bfd *dynobj, *abfd;
1609 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1610 bfd_boolean relplt, relgot;
1611 int plt_entries, plt_chunks, chunk;
1612
1613 plt_entries = 0;
1614 plt_chunks = 0;
1615
1616 htab = elf_xtensa_hash_table (info);
1617 if (htab == NULL)
1618 return FALSE;
1619
1620 dynobj = elf_hash_table (info)->dynobj;
1621 if (dynobj == NULL)
1622 abort ();
1623 srelgot = htab->srelgot;
1624 srelplt = htab->srelplt;
1625
1626 if (elf_hash_table (info)->dynamic_sections_created)
1627 {
1628 BFD_ASSERT (htab->srelgot != NULL
1629 && htab->srelplt != NULL
1630 && htab->sgot != NULL
1631 && htab->spltlittbl != NULL
1632 && htab->sgotloc != NULL);
1633
1634 /* Set the contents of the .interp section to the interpreter. */
1635 if (info->executable)
1636 {
1637 s = bfd_get_linker_section (dynobj, ".interp");
1638 if (s == NULL)
1639 abort ();
1640 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1641 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1642 }
1643
1644 /* Allocate room for one word in ".got". */
1645 htab->sgot->size = 4;
1646
1647 /* Allocate space in ".rela.got" for literals that reference global
1648 symbols and space in ".rela.plt" for literals that have PLT
1649 entries. */
1650 elf_link_hash_traverse (elf_hash_table (info),
1651 elf_xtensa_allocate_dynrelocs,
1652 (void *) info);
1653
1654 /* If we are generating a shared object, we also need space in
1655 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1656 reference local symbols. */
1657 if (info->shared)
1658 elf_xtensa_allocate_local_got_size (info);
1659
1660 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1661 each PLT entry, we need the PLT code plus a 4-byte literal.
1662 For each chunk of ".plt", we also need two more 4-byte
1663 literals, two corresponding entries in ".rela.got", and an
1664 8-byte entry in ".xt.lit.plt". */
1665 spltlittbl = htab->spltlittbl;
1666 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1667 plt_chunks =
1668 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1669
1670 /* Iterate over all the PLT chunks, including any extra sections
1671 created earlier because the initial count of PLT relocations
1672 was an overestimate. */
1673 for (chunk = 0;
1674 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1675 chunk++)
1676 {
1677 int chunk_entries;
1678
1679 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1680 BFD_ASSERT (sgotplt != NULL);
1681
1682 if (chunk < plt_chunks - 1)
1683 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1684 else if (chunk == plt_chunks - 1)
1685 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1686 else
1687 chunk_entries = 0;
1688
1689 if (chunk_entries != 0)
1690 {
1691 sgotplt->size = 4 * (chunk_entries + 2);
1692 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1693 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1694 spltlittbl->size += 8;
1695 }
1696 else
1697 {
1698 sgotplt->size = 0;
1699 splt->size = 0;
1700 }
1701 }
1702
1703 /* Allocate space in ".got.loc" to match the total size of all the
1704 literal tables. */
1705 sgotloc = htab->sgotloc;
1706 sgotloc->size = spltlittbl->size;
1707 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1708 {
1709 if (abfd->flags & DYNAMIC)
1710 continue;
1711 for (s = abfd->sections; s != NULL; s = s->next)
1712 {
1713 if (! discarded_section (s)
1714 && xtensa_is_littable_section (s)
1715 && s != spltlittbl)
1716 sgotloc->size += s->size;
1717 }
1718 }
1719 }
1720
1721 /* Allocate memory for dynamic sections. */
1722 relplt = FALSE;
1723 relgot = FALSE;
1724 for (s = dynobj->sections; s != NULL; s = s->next)
1725 {
1726 const char *name;
1727
1728 if ((s->flags & SEC_LINKER_CREATED) == 0)
1729 continue;
1730
1731 /* It's OK to base decisions on the section name, because none
1732 of the dynobj section names depend upon the input files. */
1733 name = bfd_get_section_name (dynobj, s);
1734
1735 if (CONST_STRNEQ (name, ".rela"))
1736 {
1737 if (s->size != 0)
1738 {
1739 if (strcmp (name, ".rela.plt") == 0)
1740 relplt = TRUE;
1741 else if (strcmp (name, ".rela.got") == 0)
1742 relgot = TRUE;
1743
1744 /* We use the reloc_count field as a counter if we need
1745 to copy relocs into the output file. */
1746 s->reloc_count = 0;
1747 }
1748 }
1749 else if (! CONST_STRNEQ (name, ".plt.")
1750 && ! CONST_STRNEQ (name, ".got.plt.")
1751 && strcmp (name, ".got") != 0
1752 && strcmp (name, ".plt") != 0
1753 && strcmp (name, ".got.plt") != 0
1754 && strcmp (name, ".xt.lit.plt") != 0
1755 && strcmp (name, ".got.loc") != 0)
1756 {
1757 /* It's not one of our sections, so don't allocate space. */
1758 continue;
1759 }
1760
1761 if (s->size == 0)
1762 {
1763 /* If we don't need this section, strip it from the output
1764 file. We must create the ".plt*" and ".got.plt*"
1765 sections in create_dynamic_sections and/or check_relocs
1766 based on a conservative estimate of the PLT relocation
1767 count, because the sections must be created before the
1768 linker maps input sections to output sections. The
1769 linker does that before size_dynamic_sections, where we
1770 compute the exact size of the PLT, so there may be more
1771 of these sections than are actually needed. */
1772 s->flags |= SEC_EXCLUDE;
1773 }
1774 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1775 {
1776 /* Allocate memory for the section contents. */
1777 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1778 if (s->contents == NULL)
1779 return FALSE;
1780 }
1781 }
1782
1783 if (elf_hash_table (info)->dynamic_sections_created)
1784 {
1785 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1786 known until finish_dynamic_sections, but we need to get the relocs
1787 in place before they are sorted. */
1788 for (chunk = 0; chunk < plt_chunks; chunk++)
1789 {
1790 Elf_Internal_Rela irela;
1791 bfd_byte *loc;
1792
1793 irela.r_offset = 0;
1794 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1795 irela.r_addend = 0;
1796
1797 loc = (srelgot->contents
1798 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1799 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1800 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1801 loc + sizeof (Elf32_External_Rela));
1802 srelgot->reloc_count += 2;
1803 }
1804
1805 /* Add some entries to the .dynamic section. We fill in the
1806 values later, in elf_xtensa_finish_dynamic_sections, but we
1807 must add the entries now so that we get the correct size for
1808 the .dynamic section. The DT_DEBUG entry is filled in by the
1809 dynamic linker and used by the debugger. */
1810 #define add_dynamic_entry(TAG, VAL) \
1811 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1812
1813 if (info->executable)
1814 {
1815 if (!add_dynamic_entry (DT_DEBUG, 0))
1816 return FALSE;
1817 }
1818
1819 if (relplt)
1820 {
1821 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1822 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1823 || !add_dynamic_entry (DT_JMPREL, 0))
1824 return FALSE;
1825 }
1826
1827 if (relgot)
1828 {
1829 if (!add_dynamic_entry (DT_RELA, 0)
1830 || !add_dynamic_entry (DT_RELASZ, 0)
1831 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1832 return FALSE;
1833 }
1834
1835 if (!add_dynamic_entry (DT_PLTGOT, 0)
1836 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1837 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1838 return FALSE;
1839 }
1840 #undef add_dynamic_entry
1841
1842 return TRUE;
1843 }
1844
1845 static bfd_boolean
1846 elf_xtensa_always_size_sections (bfd *output_bfd,
1847 struct bfd_link_info *info)
1848 {
1849 struct elf_xtensa_link_hash_table *htab;
1850 asection *tls_sec;
1851
1852 htab = elf_xtensa_hash_table (info);
1853 if (htab == NULL)
1854 return FALSE;
1855
1856 tls_sec = htab->elf.tls_sec;
1857
1858 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1859 {
1860 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1861 struct bfd_link_hash_entry *bh = &tlsbase->root;
1862 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1863
1864 tlsbase->type = STT_TLS;
1865 if (!(_bfd_generic_link_add_one_symbol
1866 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1867 tls_sec, 0, NULL, FALSE,
1868 bed->collect, &bh)))
1869 return FALSE;
1870 tlsbase->def_regular = 1;
1871 tlsbase->other = STV_HIDDEN;
1872 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1873 }
1874
1875 return TRUE;
1876 }
1877
1878 \f
1879 /* Return the base VMA address which should be subtracted from real addresses
1880 when resolving @dtpoff relocation.
1881 This is PT_TLS segment p_vaddr. */
1882
1883 static bfd_vma
1884 dtpoff_base (struct bfd_link_info *info)
1885 {
1886 /* If tls_sec is NULL, we should have signalled an error already. */
1887 if (elf_hash_table (info)->tls_sec == NULL)
1888 return 0;
1889 return elf_hash_table (info)->tls_sec->vma;
1890 }
1891
1892 /* Return the relocation value for @tpoff relocation
1893 if STT_TLS virtual address is ADDRESS. */
1894
1895 static bfd_vma
1896 tpoff (struct bfd_link_info *info, bfd_vma address)
1897 {
1898 struct elf_link_hash_table *htab = elf_hash_table (info);
1899 bfd_vma base;
1900
1901 /* If tls_sec is NULL, we should have signalled an error already. */
1902 if (htab->tls_sec == NULL)
1903 return 0;
1904 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1905 return address - htab->tls_sec->vma + base;
1906 }
1907
1908 /* Perform the specified relocation. The instruction at (contents + address)
1909 is modified to set one operand to represent the value in "relocation". The
1910 operand position is determined by the relocation type recorded in the
1911 howto. */
1912
1913 #define CALL_SEGMENT_BITS (30)
1914 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1915
1916 static bfd_reloc_status_type
1917 elf_xtensa_do_reloc (reloc_howto_type *howto,
1918 bfd *abfd,
1919 asection *input_section,
1920 bfd_vma relocation,
1921 bfd_byte *contents,
1922 bfd_vma address,
1923 bfd_boolean is_weak_undef,
1924 char **error_message)
1925 {
1926 xtensa_format fmt;
1927 xtensa_opcode opcode;
1928 xtensa_isa isa = xtensa_default_isa;
1929 static xtensa_insnbuf ibuff = NULL;
1930 static xtensa_insnbuf sbuff = NULL;
1931 bfd_vma self_address;
1932 bfd_size_type input_size;
1933 int opnd, slot;
1934 uint32 newval;
1935
1936 if (!ibuff)
1937 {
1938 ibuff = xtensa_insnbuf_alloc (isa);
1939 sbuff = xtensa_insnbuf_alloc (isa);
1940 }
1941
1942 input_size = bfd_get_section_limit (abfd, input_section);
1943
1944 /* Calculate the PC address for this instruction. */
1945 self_address = (input_section->output_section->vma
1946 + input_section->output_offset
1947 + address);
1948
1949 switch (howto->type)
1950 {
1951 case R_XTENSA_NONE:
1952 case R_XTENSA_DIFF8:
1953 case R_XTENSA_DIFF16:
1954 case R_XTENSA_DIFF32:
1955 case R_XTENSA_TLS_FUNC:
1956 case R_XTENSA_TLS_ARG:
1957 case R_XTENSA_TLS_CALL:
1958 return bfd_reloc_ok;
1959
1960 case R_XTENSA_ASM_EXPAND:
1961 if (!is_weak_undef)
1962 {
1963 /* Check for windowed CALL across a 1GB boundary. */
1964 opcode = get_expanded_call_opcode (contents + address,
1965 input_size - address, 0);
1966 if (is_windowed_call_opcode (opcode))
1967 {
1968 if ((self_address >> CALL_SEGMENT_BITS)
1969 != (relocation >> CALL_SEGMENT_BITS))
1970 {
1971 *error_message = "windowed longcall crosses 1GB boundary; "
1972 "return may fail";
1973 return bfd_reloc_dangerous;
1974 }
1975 }
1976 }
1977 return bfd_reloc_ok;
1978
1979 case R_XTENSA_ASM_SIMPLIFY:
1980 {
1981 /* Convert the L32R/CALLX to CALL. */
1982 bfd_reloc_status_type retval =
1983 elf_xtensa_do_asm_simplify (contents, address, input_size,
1984 error_message);
1985 if (retval != bfd_reloc_ok)
1986 return bfd_reloc_dangerous;
1987
1988 /* The CALL needs to be relocated. Continue below for that part. */
1989 address += 3;
1990 self_address += 3;
1991 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1992 }
1993 break;
1994
1995 case R_XTENSA_32:
1996 {
1997 bfd_vma x;
1998 x = bfd_get_32 (abfd, contents + address);
1999 x = x + relocation;
2000 bfd_put_32 (abfd, x, contents + address);
2001 }
2002 return bfd_reloc_ok;
2003
2004 case R_XTENSA_32_PCREL:
2005 bfd_put_32 (abfd, relocation - self_address, contents + address);
2006 return bfd_reloc_ok;
2007
2008 case R_XTENSA_PLT:
2009 case R_XTENSA_TLSDESC_FN:
2010 case R_XTENSA_TLSDESC_ARG:
2011 case R_XTENSA_TLS_DTPOFF:
2012 case R_XTENSA_TLS_TPOFF:
2013 bfd_put_32 (abfd, relocation, contents + address);
2014 return bfd_reloc_ok;
2015 }
2016
2017 /* Only instruction slot-specific relocations handled below.... */
2018 slot = get_relocation_slot (howto->type);
2019 if (slot == XTENSA_UNDEFINED)
2020 {
2021 *error_message = "unexpected relocation";
2022 return bfd_reloc_dangerous;
2023 }
2024
2025 /* Read the instruction into a buffer and decode the opcode. */
2026 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2027 input_size - address);
2028 fmt = xtensa_format_decode (isa, ibuff);
2029 if (fmt == XTENSA_UNDEFINED)
2030 {
2031 *error_message = "cannot decode instruction format";
2032 return bfd_reloc_dangerous;
2033 }
2034
2035 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
2036
2037 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2038 if (opcode == XTENSA_UNDEFINED)
2039 {
2040 *error_message = "cannot decode instruction opcode";
2041 return bfd_reloc_dangerous;
2042 }
2043
2044 /* Check for opcode-specific "alternate" relocations. */
2045 if (is_alt_relocation (howto->type))
2046 {
2047 if (opcode == get_l32r_opcode ())
2048 {
2049 /* Handle the special-case of non-PC-relative L32R instructions. */
2050 bfd *output_bfd = input_section->output_section->owner;
2051 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2052 if (!lit4_sec)
2053 {
2054 *error_message = "relocation references missing .lit4 section";
2055 return bfd_reloc_dangerous;
2056 }
2057 self_address = ((lit4_sec->vma & ~0xfff)
2058 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2059 newval = relocation;
2060 opnd = 1;
2061 }
2062 else if (opcode == get_const16_opcode ())
2063 {
2064 /* ALT used for high 16 bits. */
2065 newval = relocation >> 16;
2066 opnd = 1;
2067 }
2068 else
2069 {
2070 /* No other "alternate" relocations currently defined. */
2071 *error_message = "unexpected relocation";
2072 return bfd_reloc_dangerous;
2073 }
2074 }
2075 else /* Not an "alternate" relocation.... */
2076 {
2077 if (opcode == get_const16_opcode ())
2078 {
2079 newval = relocation & 0xffff;
2080 opnd = 1;
2081 }
2082 else
2083 {
2084 /* ...normal PC-relative relocation.... */
2085
2086 /* Determine which operand is being relocated. */
2087 opnd = get_relocation_opnd (opcode, howto->type);
2088 if (opnd == XTENSA_UNDEFINED)
2089 {
2090 *error_message = "unexpected relocation";
2091 return bfd_reloc_dangerous;
2092 }
2093
2094 if (!howto->pc_relative)
2095 {
2096 *error_message = "expected PC-relative relocation";
2097 return bfd_reloc_dangerous;
2098 }
2099
2100 newval = relocation;
2101 }
2102 }
2103
2104 /* Apply the relocation. */
2105 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2106 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2107 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2108 sbuff, newval))
2109 {
2110 const char *opname = xtensa_opcode_name (isa, opcode);
2111 const char *msg;
2112
2113 msg = "cannot encode";
2114 if (is_direct_call_opcode (opcode))
2115 {
2116 if ((relocation & 0x3) != 0)
2117 msg = "misaligned call target";
2118 else
2119 msg = "call target out of range";
2120 }
2121 else if (opcode == get_l32r_opcode ())
2122 {
2123 if ((relocation & 0x3) != 0)
2124 msg = "misaligned literal target";
2125 else if (is_alt_relocation (howto->type))
2126 msg = "literal target out of range (too many literals)";
2127 else if (self_address > relocation)
2128 msg = "literal target out of range (try using text-section-literals)";
2129 else
2130 msg = "literal placed after use";
2131 }
2132
2133 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2134 return bfd_reloc_dangerous;
2135 }
2136
2137 /* Check for calls across 1GB boundaries. */
2138 if (is_direct_call_opcode (opcode)
2139 && is_windowed_call_opcode (opcode))
2140 {
2141 if ((self_address >> CALL_SEGMENT_BITS)
2142 != (relocation >> CALL_SEGMENT_BITS))
2143 {
2144 *error_message =
2145 "windowed call crosses 1GB boundary; return may fail";
2146 return bfd_reloc_dangerous;
2147 }
2148 }
2149
2150 /* Write the modified instruction back out of the buffer. */
2151 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2152 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2153 input_size - address);
2154 return bfd_reloc_ok;
2155 }
2156
2157
2158 static char *
2159 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2160 {
2161 /* To reduce the size of the memory leak,
2162 we only use a single message buffer. */
2163 static bfd_size_type alloc_size = 0;
2164 static char *message = NULL;
2165 bfd_size_type orig_len, len = 0;
2166 bfd_boolean is_append;
2167 va_list ap;
2168
2169 va_start (ap, arglen);
2170
2171 is_append = (origmsg == message);
2172
2173 orig_len = strlen (origmsg);
2174 len = orig_len + strlen (fmt) + arglen + 20;
2175 if (len > alloc_size)
2176 {
2177 message = (char *) bfd_realloc_or_free (message, len);
2178 alloc_size = len;
2179 }
2180 if (message != NULL)
2181 {
2182 if (!is_append)
2183 memcpy (message, origmsg, orig_len);
2184 vsprintf (message + orig_len, fmt, ap);
2185 }
2186 va_end (ap);
2187 return message;
2188 }
2189
2190
2191 /* This function is registered as the "special_function" in the
2192 Xtensa howto for handling simplify operations.
2193 bfd_perform_relocation / bfd_install_relocation use it to
2194 perform (install) the specified relocation. Since this replaces the code
2195 in bfd_perform_relocation, it is basically an Xtensa-specific,
2196 stripped-down version of bfd_perform_relocation. */
2197
2198 static bfd_reloc_status_type
2199 bfd_elf_xtensa_reloc (bfd *abfd,
2200 arelent *reloc_entry,
2201 asymbol *symbol,
2202 void *data,
2203 asection *input_section,
2204 bfd *output_bfd,
2205 char **error_message)
2206 {
2207 bfd_vma relocation;
2208 bfd_reloc_status_type flag;
2209 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2210 bfd_vma output_base = 0;
2211 reloc_howto_type *howto = reloc_entry->howto;
2212 asection *reloc_target_output_section;
2213 bfd_boolean is_weak_undef;
2214
2215 if (!xtensa_default_isa)
2216 xtensa_default_isa = xtensa_isa_init (0, 0);
2217
2218 /* ELF relocs are against symbols. If we are producing relocatable
2219 output, and the reloc is against an external symbol, the resulting
2220 reloc will also be against the same symbol. In such a case, we
2221 don't want to change anything about the way the reloc is handled,
2222 since it will all be done at final link time. This test is similar
2223 to what bfd_elf_generic_reloc does except that it lets relocs with
2224 howto->partial_inplace go through even if the addend is non-zero.
2225 (The real problem is that partial_inplace is set for XTENSA_32
2226 relocs to begin with, but that's a long story and there's little we
2227 can do about it now....) */
2228
2229 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2230 {
2231 reloc_entry->address += input_section->output_offset;
2232 return bfd_reloc_ok;
2233 }
2234
2235 /* Is the address of the relocation really within the section? */
2236 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2237 return bfd_reloc_outofrange;
2238
2239 /* Work out which section the relocation is targeted at and the
2240 initial relocation command value. */
2241
2242 /* Get symbol value. (Common symbols are special.) */
2243 if (bfd_is_com_section (symbol->section))
2244 relocation = 0;
2245 else
2246 relocation = symbol->value;
2247
2248 reloc_target_output_section = symbol->section->output_section;
2249
2250 /* Convert input-section-relative symbol value to absolute. */
2251 if ((output_bfd && !howto->partial_inplace)
2252 || reloc_target_output_section == NULL)
2253 output_base = 0;
2254 else
2255 output_base = reloc_target_output_section->vma;
2256
2257 relocation += output_base + symbol->section->output_offset;
2258
2259 /* Add in supplied addend. */
2260 relocation += reloc_entry->addend;
2261
2262 /* Here the variable relocation holds the final address of the
2263 symbol we are relocating against, plus any addend. */
2264 if (output_bfd)
2265 {
2266 if (!howto->partial_inplace)
2267 {
2268 /* This is a partial relocation, and we want to apply the relocation
2269 to the reloc entry rather than the raw data. Everything except
2270 relocations against section symbols has already been handled
2271 above. */
2272
2273 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2274 reloc_entry->addend = relocation;
2275 reloc_entry->address += input_section->output_offset;
2276 return bfd_reloc_ok;
2277 }
2278 else
2279 {
2280 reloc_entry->address += input_section->output_offset;
2281 reloc_entry->addend = 0;
2282 }
2283 }
2284
2285 is_weak_undef = (bfd_is_und_section (symbol->section)
2286 && (symbol->flags & BSF_WEAK) != 0);
2287 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2288 (bfd_byte *) data, (bfd_vma) octets,
2289 is_weak_undef, error_message);
2290
2291 if (flag == bfd_reloc_dangerous)
2292 {
2293 /* Add the symbol name to the error message. */
2294 if (! *error_message)
2295 *error_message = "";
2296 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2297 strlen (symbol->name) + 17,
2298 symbol->name,
2299 (unsigned long) reloc_entry->addend);
2300 }
2301
2302 return flag;
2303 }
2304
2305
2306 /* Set up an entry in the procedure linkage table. */
2307
2308 static bfd_vma
2309 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2310 bfd *output_bfd,
2311 unsigned reloc_index)
2312 {
2313 asection *splt, *sgotplt;
2314 bfd_vma plt_base, got_base;
2315 bfd_vma code_offset, lit_offset;
2316 int chunk;
2317
2318 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2319 splt = elf_xtensa_get_plt_section (info, chunk);
2320 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2321 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2322
2323 plt_base = splt->output_section->vma + splt->output_offset;
2324 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2325
2326 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2327 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2328
2329 /* Fill in the literal entry. This is the offset of the dynamic
2330 relocation entry. */
2331 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2332 sgotplt->contents + lit_offset);
2333
2334 /* Fill in the entry in the procedure linkage table. */
2335 memcpy (splt->contents + code_offset,
2336 (bfd_big_endian (output_bfd)
2337 ? elf_xtensa_be_plt_entry
2338 : elf_xtensa_le_plt_entry),
2339 PLT_ENTRY_SIZE);
2340 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2341 plt_base + code_offset + 3),
2342 splt->contents + code_offset + 4);
2343 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2344 plt_base + code_offset + 6),
2345 splt->contents + code_offset + 7);
2346 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2347 plt_base + code_offset + 9),
2348 splt->contents + code_offset + 10);
2349
2350 return plt_base + code_offset;
2351 }
2352
2353
2354 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2355
2356 static bfd_boolean
2357 replace_tls_insn (Elf_Internal_Rela *rel,
2358 bfd *abfd,
2359 asection *input_section,
2360 bfd_byte *contents,
2361 bfd_boolean is_ld_model,
2362 char **error_message)
2363 {
2364 static xtensa_insnbuf ibuff = NULL;
2365 static xtensa_insnbuf sbuff = NULL;
2366 xtensa_isa isa = xtensa_default_isa;
2367 xtensa_format fmt;
2368 xtensa_opcode old_op, new_op;
2369 bfd_size_type input_size;
2370 int r_type;
2371 unsigned dest_reg, src_reg;
2372
2373 if (ibuff == NULL)
2374 {
2375 ibuff = xtensa_insnbuf_alloc (isa);
2376 sbuff = xtensa_insnbuf_alloc (isa);
2377 }
2378
2379 input_size = bfd_get_section_limit (abfd, input_section);
2380
2381 /* Read the instruction into a buffer and decode the opcode. */
2382 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2383 input_size - rel->r_offset);
2384 fmt = xtensa_format_decode (isa, ibuff);
2385 if (fmt == XTENSA_UNDEFINED)
2386 {
2387 *error_message = "cannot decode instruction format";
2388 return FALSE;
2389 }
2390
2391 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2392 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2393
2394 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2395 if (old_op == XTENSA_UNDEFINED)
2396 {
2397 *error_message = "cannot decode instruction opcode";
2398 return FALSE;
2399 }
2400
2401 r_type = ELF32_R_TYPE (rel->r_info);
2402 switch (r_type)
2403 {
2404 case R_XTENSA_TLS_FUNC:
2405 case R_XTENSA_TLS_ARG:
2406 if (old_op != get_l32r_opcode ()
2407 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2408 sbuff, &dest_reg) != 0)
2409 {
2410 *error_message = "cannot extract L32R destination for TLS access";
2411 return FALSE;
2412 }
2413 break;
2414
2415 case R_XTENSA_TLS_CALL:
2416 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2417 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2418 sbuff, &src_reg) != 0)
2419 {
2420 *error_message = "cannot extract CALLXn operands for TLS access";
2421 return FALSE;
2422 }
2423 break;
2424
2425 default:
2426 abort ();
2427 }
2428
2429 if (is_ld_model)
2430 {
2431 switch (r_type)
2432 {
2433 case R_XTENSA_TLS_FUNC:
2434 case R_XTENSA_TLS_ARG:
2435 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2436 versions of Xtensa). */
2437 new_op = xtensa_opcode_lookup (isa, "nop");
2438 if (new_op == XTENSA_UNDEFINED)
2439 {
2440 new_op = xtensa_opcode_lookup (isa, "or");
2441 if (new_op == XTENSA_UNDEFINED
2442 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2443 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2444 sbuff, 1) != 0
2445 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2446 sbuff, 1) != 0
2447 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2448 sbuff, 1) != 0)
2449 {
2450 *error_message = "cannot encode OR for TLS access";
2451 return FALSE;
2452 }
2453 }
2454 else
2455 {
2456 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2457 {
2458 *error_message = "cannot encode NOP for TLS access";
2459 return FALSE;
2460 }
2461 }
2462 break;
2463
2464 case R_XTENSA_TLS_CALL:
2465 /* Read THREADPTR into the CALLX's return value register. */
2466 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2467 if (new_op == XTENSA_UNDEFINED
2468 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2469 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2470 sbuff, dest_reg + 2) != 0)
2471 {
2472 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2473 return FALSE;
2474 }
2475 break;
2476 }
2477 }
2478 else
2479 {
2480 switch (r_type)
2481 {
2482 case R_XTENSA_TLS_FUNC:
2483 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2484 if (new_op == XTENSA_UNDEFINED
2485 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2486 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2487 sbuff, dest_reg) != 0)
2488 {
2489 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2490 return FALSE;
2491 }
2492 break;
2493
2494 case R_XTENSA_TLS_ARG:
2495 /* Nothing to do. Keep the original L32R instruction. */
2496 return TRUE;
2497
2498 case R_XTENSA_TLS_CALL:
2499 /* Add the CALLX's src register (holding the THREADPTR value)
2500 to the first argument register (holding the offset) and put
2501 the result in the CALLX's return value register. */
2502 new_op = xtensa_opcode_lookup (isa, "add");
2503 if (new_op == XTENSA_UNDEFINED
2504 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2505 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2506 sbuff, dest_reg + 2) != 0
2507 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2508 sbuff, dest_reg + 2) != 0
2509 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2510 sbuff, src_reg) != 0)
2511 {
2512 *error_message = "cannot encode ADD for TLS access";
2513 return FALSE;
2514 }
2515 break;
2516 }
2517 }
2518
2519 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2520 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2521 input_size - rel->r_offset);
2522
2523 return TRUE;
2524 }
2525
2526
2527 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2528 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2529 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2530 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2531 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2532 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2533 || (R_TYPE) == R_XTENSA_TLS_ARG \
2534 || (R_TYPE) == R_XTENSA_TLS_CALL)
2535
2536 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2537 both relocatable and final links. */
2538
2539 static bfd_boolean
2540 elf_xtensa_relocate_section (bfd *output_bfd,
2541 struct bfd_link_info *info,
2542 bfd *input_bfd,
2543 asection *input_section,
2544 bfd_byte *contents,
2545 Elf_Internal_Rela *relocs,
2546 Elf_Internal_Sym *local_syms,
2547 asection **local_sections)
2548 {
2549 struct elf_xtensa_link_hash_table *htab;
2550 Elf_Internal_Shdr *symtab_hdr;
2551 Elf_Internal_Rela *rel;
2552 Elf_Internal_Rela *relend;
2553 struct elf_link_hash_entry **sym_hashes;
2554 property_table_entry *lit_table = 0;
2555 int ltblsize = 0;
2556 char *local_got_tls_types;
2557 char *error_message = NULL;
2558 bfd_size_type input_size;
2559 int tls_type;
2560
2561 if (!xtensa_default_isa)
2562 xtensa_default_isa = xtensa_isa_init (0, 0);
2563
2564 BFD_ASSERT (is_xtensa_elf (input_bfd));
2565
2566 htab = elf_xtensa_hash_table (info);
2567 if (htab == NULL)
2568 return FALSE;
2569
2570 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2571 sym_hashes = elf_sym_hashes (input_bfd);
2572 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2573
2574 if (elf_hash_table (info)->dynamic_sections_created)
2575 {
2576 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2577 &lit_table, XTENSA_LIT_SEC_NAME,
2578 TRUE);
2579 if (ltblsize < 0)
2580 return FALSE;
2581 }
2582
2583 input_size = bfd_get_section_limit (input_bfd, input_section);
2584
2585 rel = relocs;
2586 relend = relocs + input_section->reloc_count;
2587 for (; rel < relend; rel++)
2588 {
2589 int r_type;
2590 reloc_howto_type *howto;
2591 unsigned long r_symndx;
2592 struct elf_link_hash_entry *h;
2593 Elf_Internal_Sym *sym;
2594 char sym_type;
2595 const char *name;
2596 asection *sec;
2597 bfd_vma relocation;
2598 bfd_reloc_status_type r;
2599 bfd_boolean is_weak_undef;
2600 bfd_boolean unresolved_reloc;
2601 bfd_boolean warned;
2602 bfd_boolean dynamic_symbol;
2603
2604 r_type = ELF32_R_TYPE (rel->r_info);
2605 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2606 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2607 continue;
2608
2609 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2610 {
2611 bfd_set_error (bfd_error_bad_value);
2612 return FALSE;
2613 }
2614 howto = &elf_howto_table[r_type];
2615
2616 r_symndx = ELF32_R_SYM (rel->r_info);
2617
2618 h = NULL;
2619 sym = NULL;
2620 sec = NULL;
2621 is_weak_undef = FALSE;
2622 unresolved_reloc = FALSE;
2623 warned = FALSE;
2624
2625 if (howto->partial_inplace && !info->relocatable)
2626 {
2627 /* Because R_XTENSA_32 was made partial_inplace to fix some
2628 problems with DWARF info in partial links, there may be
2629 an addend stored in the contents. Take it out of there
2630 and move it back into the addend field of the reloc. */
2631 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2632 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2633 }
2634
2635 if (r_symndx < symtab_hdr->sh_info)
2636 {
2637 sym = local_syms + r_symndx;
2638 sym_type = ELF32_ST_TYPE (sym->st_info);
2639 sec = local_sections[r_symndx];
2640 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2641 }
2642 else
2643 {
2644 bfd_boolean ignored;
2645
2646 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2647 r_symndx, symtab_hdr, sym_hashes,
2648 h, sec, relocation,
2649 unresolved_reloc, warned, ignored);
2650
2651 if (relocation == 0
2652 && !unresolved_reloc
2653 && h->root.type == bfd_link_hash_undefweak)
2654 is_weak_undef = TRUE;
2655
2656 sym_type = h->type;
2657 }
2658
2659 if (sec != NULL && discarded_section (sec))
2660 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2661 rel, 1, relend, howto, 0, contents);
2662
2663 if (info->relocatable)
2664 {
2665 bfd_vma dest_addr;
2666 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2667
2668 /* This is a relocatable link.
2669 1) If the reloc is against a section symbol, adjust
2670 according to the output section.
2671 2) If there is a new target for this relocation,
2672 the new target will be in the same output section.
2673 We adjust the relocation by the output section
2674 difference. */
2675
2676 if (relaxing_section)
2677 {
2678 /* Check if this references a section in another input file. */
2679 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2680 contents))
2681 return FALSE;
2682 }
2683
2684 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2685 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2686
2687 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2688 {
2689 error_message = NULL;
2690 /* Convert ASM_SIMPLIFY into the simpler relocation
2691 so that they never escape a relaxing link. */
2692 r = contract_asm_expansion (contents, input_size, rel,
2693 &error_message);
2694 if (r != bfd_reloc_ok)
2695 {
2696 if (!((*info->callbacks->reloc_dangerous)
2697 (info, error_message, input_bfd, input_section,
2698 rel->r_offset)))
2699 return FALSE;
2700 }
2701 r_type = ELF32_R_TYPE (rel->r_info);
2702 }
2703
2704 /* This is a relocatable link, so we don't have to change
2705 anything unless the reloc is against a section symbol,
2706 in which case we have to adjust according to where the
2707 section symbol winds up in the output section. */
2708 if (r_symndx < symtab_hdr->sh_info)
2709 {
2710 sym = local_syms + r_symndx;
2711 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2712 {
2713 sec = local_sections[r_symndx];
2714 rel->r_addend += sec->output_offset + sym->st_value;
2715 }
2716 }
2717
2718 /* If there is an addend with a partial_inplace howto,
2719 then move the addend to the contents. This is a hack
2720 to work around problems with DWARF in relocatable links
2721 with some previous version of BFD. Now we can't easily get
2722 rid of the hack without breaking backward compatibility.... */
2723 r = bfd_reloc_ok;
2724 howto = &elf_howto_table[r_type];
2725 if (howto->partial_inplace && rel->r_addend)
2726 {
2727 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2728 rel->r_addend, contents,
2729 rel->r_offset, FALSE,
2730 &error_message);
2731 rel->r_addend = 0;
2732 }
2733 else
2734 {
2735 /* Put the correct bits in the target instruction, even
2736 though the relocation will still be present in the output
2737 file. This makes disassembly clearer, as well as
2738 allowing loadable kernel modules to work without needing
2739 relocations on anything other than calls and l32r's. */
2740
2741 /* If it is not in the same section, there is nothing we can do. */
2742 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2743 sym_sec->output_section == input_section->output_section)
2744 {
2745 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2746 dest_addr, contents,
2747 rel->r_offset, FALSE,
2748 &error_message);
2749 }
2750 }
2751 if (r != bfd_reloc_ok)
2752 {
2753 if (!((*info->callbacks->reloc_dangerous)
2754 (info, error_message, input_bfd, input_section,
2755 rel->r_offset)))
2756 return FALSE;
2757 }
2758
2759 /* Done with work for relocatable link; continue with next reloc. */
2760 continue;
2761 }
2762
2763 /* This is a final link. */
2764
2765 if (relaxing_section)
2766 {
2767 /* Check if this references a section in another input file. */
2768 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2769 &relocation);
2770 }
2771
2772 /* Sanity check the address. */
2773 if (rel->r_offset >= input_size
2774 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2775 {
2776 (*_bfd_error_handler)
2777 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2778 input_bfd, input_section, rel->r_offset, input_size);
2779 bfd_set_error (bfd_error_bad_value);
2780 return FALSE;
2781 }
2782
2783 if (h != NULL)
2784 name = h->root.root.string;
2785 else
2786 {
2787 name = (bfd_elf_string_from_elf_section
2788 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2789 if (name == NULL || *name == '\0')
2790 name = bfd_section_name (input_bfd, sec);
2791 }
2792
2793 if (r_symndx != STN_UNDEF
2794 && r_type != R_XTENSA_NONE
2795 && (h == NULL
2796 || h->root.type == bfd_link_hash_defined
2797 || h->root.type == bfd_link_hash_defweak)
2798 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2799 {
2800 (*_bfd_error_handler)
2801 ((sym_type == STT_TLS
2802 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2803 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2804 input_bfd,
2805 input_section,
2806 (long) rel->r_offset,
2807 howto->name,
2808 name);
2809 }
2810
2811 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2812
2813 tls_type = GOT_UNKNOWN;
2814 if (h)
2815 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2816 else if (local_got_tls_types)
2817 tls_type = local_got_tls_types [r_symndx];
2818
2819 switch (r_type)
2820 {
2821 case R_XTENSA_32:
2822 case R_XTENSA_PLT:
2823 if (elf_hash_table (info)->dynamic_sections_created
2824 && (input_section->flags & SEC_ALLOC) != 0
2825 && (dynamic_symbol || info->shared))
2826 {
2827 Elf_Internal_Rela outrel;
2828 bfd_byte *loc;
2829 asection *srel;
2830
2831 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2832 srel = htab->srelplt;
2833 else
2834 srel = htab->srelgot;
2835
2836 BFD_ASSERT (srel != NULL);
2837
2838 outrel.r_offset =
2839 _bfd_elf_section_offset (output_bfd, info,
2840 input_section, rel->r_offset);
2841
2842 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2843 memset (&outrel, 0, sizeof outrel);
2844 else
2845 {
2846 outrel.r_offset += (input_section->output_section->vma
2847 + input_section->output_offset);
2848
2849 /* Complain if the relocation is in a read-only section
2850 and not in a literal pool. */
2851 if ((input_section->flags & SEC_READONLY) != 0
2852 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2853 outrel.r_offset))
2854 {
2855 error_message =
2856 _("dynamic relocation in read-only section");
2857 if (!((*info->callbacks->reloc_dangerous)
2858 (info, error_message, input_bfd, input_section,
2859 rel->r_offset)))
2860 return FALSE;
2861 }
2862
2863 if (dynamic_symbol)
2864 {
2865 outrel.r_addend = rel->r_addend;
2866 rel->r_addend = 0;
2867
2868 if (r_type == R_XTENSA_32)
2869 {
2870 outrel.r_info =
2871 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2872 relocation = 0;
2873 }
2874 else /* r_type == R_XTENSA_PLT */
2875 {
2876 outrel.r_info =
2877 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2878
2879 /* Create the PLT entry and set the initial
2880 contents of the literal entry to the address of
2881 the PLT entry. */
2882 relocation =
2883 elf_xtensa_create_plt_entry (info, output_bfd,
2884 srel->reloc_count);
2885 }
2886 unresolved_reloc = FALSE;
2887 }
2888 else
2889 {
2890 /* Generate a RELATIVE relocation. */
2891 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2892 outrel.r_addend = 0;
2893 }
2894 }
2895
2896 loc = (srel->contents
2897 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2898 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2899 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2900 <= srel->size);
2901 }
2902 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2903 {
2904 /* This should only happen for non-PIC code, which is not
2905 supposed to be used on systems with dynamic linking.
2906 Just ignore these relocations. */
2907 continue;
2908 }
2909 break;
2910
2911 case R_XTENSA_TLS_TPOFF:
2912 /* Switch to LE model for local symbols in an executable. */
2913 if (! info->shared && ! dynamic_symbol)
2914 {
2915 relocation = tpoff (info, relocation);
2916 break;
2917 }
2918 /* fall through */
2919
2920 case R_XTENSA_TLSDESC_FN:
2921 case R_XTENSA_TLSDESC_ARG:
2922 {
2923 if (r_type == R_XTENSA_TLSDESC_FN)
2924 {
2925 if (! info->shared || (tls_type & GOT_TLS_IE) != 0)
2926 r_type = R_XTENSA_NONE;
2927 }
2928 else if (r_type == R_XTENSA_TLSDESC_ARG)
2929 {
2930 if (info->shared)
2931 {
2932 if ((tls_type & GOT_TLS_IE) != 0)
2933 r_type = R_XTENSA_TLS_TPOFF;
2934 }
2935 else
2936 {
2937 r_type = R_XTENSA_TLS_TPOFF;
2938 if (! dynamic_symbol)
2939 {
2940 relocation = tpoff (info, relocation);
2941 break;
2942 }
2943 }
2944 }
2945
2946 if (r_type == R_XTENSA_NONE)
2947 /* Nothing to do here; skip to the next reloc. */
2948 continue;
2949
2950 if (! elf_hash_table (info)->dynamic_sections_created)
2951 {
2952 error_message =
2953 _("TLS relocation invalid without dynamic sections");
2954 if (!((*info->callbacks->reloc_dangerous)
2955 (info, error_message, input_bfd, input_section,
2956 rel->r_offset)))
2957 return FALSE;
2958 }
2959 else
2960 {
2961 Elf_Internal_Rela outrel;
2962 bfd_byte *loc;
2963 asection *srel = htab->srelgot;
2964 int indx;
2965
2966 outrel.r_offset = (input_section->output_section->vma
2967 + input_section->output_offset
2968 + rel->r_offset);
2969
2970 /* Complain if the relocation is in a read-only section
2971 and not in a literal pool. */
2972 if ((input_section->flags & SEC_READONLY) != 0
2973 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2974 outrel.r_offset))
2975 {
2976 error_message =
2977 _("dynamic relocation in read-only section");
2978 if (!((*info->callbacks->reloc_dangerous)
2979 (info, error_message, input_bfd, input_section,
2980 rel->r_offset)))
2981 return FALSE;
2982 }
2983
2984 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2985 if (indx == 0)
2986 outrel.r_addend = relocation - dtpoff_base (info);
2987 else
2988 outrel.r_addend = 0;
2989 rel->r_addend = 0;
2990
2991 outrel.r_info = ELF32_R_INFO (indx, r_type);
2992 relocation = 0;
2993 unresolved_reloc = FALSE;
2994
2995 BFD_ASSERT (srel);
2996 loc = (srel->contents
2997 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2998 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2999 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
3000 <= srel->size);
3001 }
3002 }
3003 break;
3004
3005 case R_XTENSA_TLS_DTPOFF:
3006 if (! info->shared)
3007 /* Switch from LD model to LE model. */
3008 relocation = tpoff (info, relocation);
3009 else
3010 relocation -= dtpoff_base (info);
3011 break;
3012
3013 case R_XTENSA_TLS_FUNC:
3014 case R_XTENSA_TLS_ARG:
3015 case R_XTENSA_TLS_CALL:
3016 /* Check if optimizing to IE or LE model. */
3017 if ((tls_type & GOT_TLS_IE) != 0)
3018 {
3019 bfd_boolean is_ld_model =
3020 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3021 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3022 is_ld_model, &error_message))
3023 {
3024 if (!((*info->callbacks->reloc_dangerous)
3025 (info, error_message, input_bfd, input_section,
3026 rel->r_offset)))
3027 return FALSE;
3028 }
3029
3030 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3031 {
3032 /* Skip subsequent relocations on the same instruction. */
3033 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3034 rel++;
3035 }
3036 }
3037 continue;
3038
3039 default:
3040 if (elf_hash_table (info)->dynamic_sections_created
3041 && dynamic_symbol && (is_operand_relocation (r_type)
3042 || r_type == R_XTENSA_32_PCREL))
3043 {
3044 error_message =
3045 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3046 strlen (name) + 2, name);
3047 if (!((*info->callbacks->reloc_dangerous)
3048 (info, error_message, input_bfd, input_section,
3049 rel->r_offset)))
3050 return FALSE;
3051 continue;
3052 }
3053 break;
3054 }
3055
3056 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3057 because such sections are not SEC_ALLOC and thus ld.so will
3058 not process them. */
3059 if (unresolved_reloc
3060 && !((input_section->flags & SEC_DEBUGGING) != 0
3061 && h->def_dynamic)
3062 && _bfd_elf_section_offset (output_bfd, info, input_section,
3063 rel->r_offset) != (bfd_vma) -1)
3064 {
3065 (*_bfd_error_handler)
3066 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3067 input_bfd,
3068 input_section,
3069 (long) rel->r_offset,
3070 howto->name,
3071 name);
3072 return FALSE;
3073 }
3074
3075 /* TLS optimizations may have changed r_type; update "howto". */
3076 howto = &elf_howto_table[r_type];
3077
3078 /* There's no point in calling bfd_perform_relocation here.
3079 Just go directly to our "special function". */
3080 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3081 relocation + rel->r_addend,
3082 contents, rel->r_offset, is_weak_undef,
3083 &error_message);
3084
3085 if (r != bfd_reloc_ok && !warned)
3086 {
3087 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3088 BFD_ASSERT (error_message != NULL);
3089
3090 if (rel->r_addend == 0)
3091 error_message = vsprint_msg (error_message, ": %s",
3092 strlen (name) + 2, name);
3093 else
3094 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3095 strlen (name) + 22,
3096 name, (int) rel->r_addend);
3097
3098 if (!((*info->callbacks->reloc_dangerous)
3099 (info, error_message, input_bfd, input_section,
3100 rel->r_offset)))
3101 return FALSE;
3102 }
3103 }
3104
3105 if (lit_table)
3106 free (lit_table);
3107
3108 input_section->reloc_done = TRUE;
3109
3110 return TRUE;
3111 }
3112
3113
3114 /* Finish up dynamic symbol handling. There's not much to do here since
3115 the PLT and GOT entries are all set up by relocate_section. */
3116
3117 static bfd_boolean
3118 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3119 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3120 struct elf_link_hash_entry *h,
3121 Elf_Internal_Sym *sym)
3122 {
3123 if (h->needs_plt && !h->def_regular)
3124 {
3125 /* Mark the symbol as undefined, rather than as defined in
3126 the .plt section. Leave the value alone. */
3127 sym->st_shndx = SHN_UNDEF;
3128 /* If the symbol is weak, we do need to clear the value.
3129 Otherwise, the PLT entry would provide a definition for
3130 the symbol even if the symbol wasn't defined anywhere,
3131 and so the symbol would never be NULL. */
3132 if (!h->ref_regular_nonweak)
3133 sym->st_value = 0;
3134 }
3135
3136 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3137 if (h == elf_hash_table (info)->hdynamic
3138 || h == elf_hash_table (info)->hgot)
3139 sym->st_shndx = SHN_ABS;
3140
3141 return TRUE;
3142 }
3143
3144
3145 /* Combine adjacent literal table entries in the output. Adjacent
3146 entries within each input section may have been removed during
3147 relaxation, but we repeat the process here, even though it's too late
3148 to shrink the output section, because it's important to minimize the
3149 number of literal table entries to reduce the start-up work for the
3150 runtime linker. Returns the number of remaining table entries or -1
3151 on error. */
3152
3153 static int
3154 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3155 asection *sxtlit,
3156 asection *sgotloc)
3157 {
3158 bfd_byte *contents;
3159 property_table_entry *table;
3160 bfd_size_type section_size, sgotloc_size;
3161 bfd_vma offset;
3162 int n, m, num;
3163
3164 section_size = sxtlit->size;
3165 BFD_ASSERT (section_size % 8 == 0);
3166 num = section_size / 8;
3167
3168 sgotloc_size = sgotloc->size;
3169 if (sgotloc_size != section_size)
3170 {
3171 (*_bfd_error_handler)
3172 (_("internal inconsistency in size of .got.loc section"));
3173 return -1;
3174 }
3175
3176 table = bfd_malloc (num * sizeof (property_table_entry));
3177 if (table == 0)
3178 return -1;
3179
3180 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3181 propagates to the output section, where it doesn't really apply and
3182 where it breaks the following call to bfd_malloc_and_get_section. */
3183 sxtlit->flags &= ~SEC_IN_MEMORY;
3184
3185 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3186 {
3187 if (contents != 0)
3188 free (contents);
3189 free (table);
3190 return -1;
3191 }
3192
3193 /* There should never be any relocations left at this point, so this
3194 is quite a bit easier than what is done during relaxation. */
3195
3196 /* Copy the raw contents into a property table array and sort it. */
3197 offset = 0;
3198 for (n = 0; n < num; n++)
3199 {
3200 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3201 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3202 offset += 8;
3203 }
3204 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3205
3206 for (n = 0; n < num; n++)
3207 {
3208 bfd_boolean remove_entry = FALSE;
3209
3210 if (table[n].size == 0)
3211 remove_entry = TRUE;
3212 else if (n > 0
3213 && (table[n-1].address + table[n-1].size == table[n].address))
3214 {
3215 table[n-1].size += table[n].size;
3216 remove_entry = TRUE;
3217 }
3218
3219 if (remove_entry)
3220 {
3221 for (m = n; m < num - 1; m++)
3222 {
3223 table[m].address = table[m+1].address;
3224 table[m].size = table[m+1].size;
3225 }
3226
3227 n--;
3228 num--;
3229 }
3230 }
3231
3232 /* Copy the data back to the raw contents. */
3233 offset = 0;
3234 for (n = 0; n < num; n++)
3235 {
3236 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3237 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3238 offset += 8;
3239 }
3240
3241 /* Clear the removed bytes. */
3242 if ((bfd_size_type) (num * 8) < section_size)
3243 memset (&contents[num * 8], 0, section_size - num * 8);
3244
3245 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3246 section_size))
3247 return -1;
3248
3249 /* Copy the contents to ".got.loc". */
3250 memcpy (sgotloc->contents, contents, section_size);
3251
3252 free (contents);
3253 free (table);
3254 return num;
3255 }
3256
3257
3258 /* Finish up the dynamic sections. */
3259
3260 static bfd_boolean
3261 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3262 struct bfd_link_info *info)
3263 {
3264 struct elf_xtensa_link_hash_table *htab;
3265 bfd *dynobj;
3266 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
3267 Elf32_External_Dyn *dyncon, *dynconend;
3268 int num_xtlit_entries = 0;
3269
3270 if (! elf_hash_table (info)->dynamic_sections_created)
3271 return TRUE;
3272
3273 htab = elf_xtensa_hash_table (info);
3274 if (htab == NULL)
3275 return FALSE;
3276
3277 dynobj = elf_hash_table (info)->dynobj;
3278 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3279 BFD_ASSERT (sdyn != NULL);
3280
3281 /* Set the first entry in the global offset table to the address of
3282 the dynamic section. */
3283 sgot = htab->sgot;
3284 if (sgot)
3285 {
3286 BFD_ASSERT (sgot->size == 4);
3287 if (sdyn == NULL)
3288 bfd_put_32 (output_bfd, 0, sgot->contents);
3289 else
3290 bfd_put_32 (output_bfd,
3291 sdyn->output_section->vma + sdyn->output_offset,
3292 sgot->contents);
3293 }
3294
3295 srelplt = htab->srelplt;
3296 if (srelplt && srelplt->size != 0)
3297 {
3298 asection *sgotplt, *srelgot, *spltlittbl;
3299 int chunk, plt_chunks, plt_entries;
3300 Elf_Internal_Rela irela;
3301 bfd_byte *loc;
3302 unsigned rtld_reloc;
3303
3304 srelgot = htab->srelgot;
3305 spltlittbl = htab->spltlittbl;
3306 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3307
3308 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3309 of them follow immediately after.... */
3310 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3311 {
3312 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3313 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3314 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3315 break;
3316 }
3317 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3318
3319 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3320 plt_chunks =
3321 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3322
3323 for (chunk = 0; chunk < plt_chunks; chunk++)
3324 {
3325 int chunk_entries = 0;
3326
3327 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3328 BFD_ASSERT (sgotplt != NULL);
3329
3330 /* Emit special RTLD relocations for the first two entries in
3331 each chunk of the .got.plt section. */
3332
3333 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3334 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3335 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3336 irela.r_offset = (sgotplt->output_section->vma
3337 + sgotplt->output_offset);
3338 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3339 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3340 rtld_reloc += 1;
3341 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3342
3343 /* Next literal immediately follows the first. */
3344 loc += sizeof (Elf32_External_Rela);
3345 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3346 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3347 irela.r_offset = (sgotplt->output_section->vma
3348 + sgotplt->output_offset + 4);
3349 /* Tell rtld to set value to object's link map. */
3350 irela.r_addend = 2;
3351 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3352 rtld_reloc += 1;
3353 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3354
3355 /* Fill in the literal table. */
3356 if (chunk < plt_chunks - 1)
3357 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3358 else
3359 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3360
3361 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3362 bfd_put_32 (output_bfd,
3363 sgotplt->output_section->vma + sgotplt->output_offset,
3364 spltlittbl->contents + (chunk * 8) + 0);
3365 bfd_put_32 (output_bfd,
3366 8 + (chunk_entries * 4),
3367 spltlittbl->contents + (chunk * 8) + 4);
3368 }
3369
3370 /* All the dynamic relocations have been emitted at this point.
3371 Make sure the relocation sections are the correct size. */
3372 if (srelgot->size != (sizeof (Elf32_External_Rela)
3373 * srelgot->reloc_count)
3374 || srelplt->size != (sizeof (Elf32_External_Rela)
3375 * srelplt->reloc_count))
3376 abort ();
3377
3378 /* The .xt.lit.plt section has just been modified. This must
3379 happen before the code below which combines adjacent literal
3380 table entries, and the .xt.lit.plt contents have to be forced to
3381 the output here. */
3382 if (! bfd_set_section_contents (output_bfd,
3383 spltlittbl->output_section,
3384 spltlittbl->contents,
3385 spltlittbl->output_offset,
3386 spltlittbl->size))
3387 return FALSE;
3388 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3389 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3390 }
3391
3392 /* Combine adjacent literal table entries. */
3393 BFD_ASSERT (! info->relocatable);
3394 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3395 sgotloc = htab->sgotloc;
3396 BFD_ASSERT (sgotloc);
3397 if (sxtlit)
3398 {
3399 num_xtlit_entries =
3400 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3401 if (num_xtlit_entries < 0)
3402 return FALSE;
3403 }
3404
3405 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3406 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3407 for (; dyncon < dynconend; dyncon++)
3408 {
3409 Elf_Internal_Dyn dyn;
3410
3411 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3412
3413 switch (dyn.d_tag)
3414 {
3415 default:
3416 break;
3417
3418 case DT_XTENSA_GOT_LOC_SZ:
3419 dyn.d_un.d_val = num_xtlit_entries;
3420 break;
3421
3422 case DT_XTENSA_GOT_LOC_OFF:
3423 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
3424 break;
3425
3426 case DT_PLTGOT:
3427 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
3428 break;
3429
3430 case DT_JMPREL:
3431 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3432 break;
3433
3434 case DT_PLTRELSZ:
3435 dyn.d_un.d_val = htab->srelplt->output_section->size;
3436 break;
3437
3438 case DT_RELASZ:
3439 /* Adjust RELASZ to not include JMPREL. This matches what
3440 glibc expects and what is done for several other ELF
3441 targets (e.g., i386, alpha), but the "correct" behavior
3442 seems to be unresolved. Since the linker script arranges
3443 for .rela.plt to follow all other relocation sections, we
3444 don't have to worry about changing the DT_RELA entry. */
3445 if (htab->srelplt)
3446 dyn.d_un.d_val -= htab->srelplt->output_section->size;
3447 break;
3448 }
3449
3450 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3451 }
3452
3453 return TRUE;
3454 }
3455
3456 \f
3457 /* Functions for dealing with the e_flags field. */
3458
3459 /* Merge backend specific data from an object file to the output
3460 object file when linking. */
3461
3462 static bfd_boolean
3463 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
3464 {
3465 unsigned out_mach, in_mach;
3466 flagword out_flag, in_flag;
3467
3468 /* Check if we have the same endianness. */
3469 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3470 return FALSE;
3471
3472 /* Don't even pretend to support mixed-format linking. */
3473 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3474 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3475 return FALSE;
3476
3477 out_flag = elf_elfheader (obfd)->e_flags;
3478 in_flag = elf_elfheader (ibfd)->e_flags;
3479
3480 out_mach = out_flag & EF_XTENSA_MACH;
3481 in_mach = in_flag & EF_XTENSA_MACH;
3482 if (out_mach != in_mach)
3483 {
3484 (*_bfd_error_handler)
3485 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3486 ibfd, out_mach, in_mach);
3487 bfd_set_error (bfd_error_wrong_format);
3488 return FALSE;
3489 }
3490
3491 if (! elf_flags_init (obfd))
3492 {
3493 elf_flags_init (obfd) = TRUE;
3494 elf_elfheader (obfd)->e_flags = in_flag;
3495
3496 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3497 && bfd_get_arch_info (obfd)->the_default)
3498 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3499 bfd_get_mach (ibfd));
3500
3501 return TRUE;
3502 }
3503
3504 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3505 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3506
3507 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3508 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3509
3510 return TRUE;
3511 }
3512
3513
3514 static bfd_boolean
3515 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3516 {
3517 BFD_ASSERT (!elf_flags_init (abfd)
3518 || elf_elfheader (abfd)->e_flags == flags);
3519
3520 elf_elfheader (abfd)->e_flags |= flags;
3521 elf_flags_init (abfd) = TRUE;
3522
3523 return TRUE;
3524 }
3525
3526
3527 static bfd_boolean
3528 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3529 {
3530 FILE *f = (FILE *) farg;
3531 flagword e_flags = elf_elfheader (abfd)->e_flags;
3532
3533 fprintf (f, "\nXtensa header:\n");
3534 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3535 fprintf (f, "\nMachine = Base\n");
3536 else
3537 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3538
3539 fprintf (f, "Insn tables = %s\n",
3540 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3541
3542 fprintf (f, "Literal tables = %s\n",
3543 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3544
3545 return _bfd_elf_print_private_bfd_data (abfd, farg);
3546 }
3547
3548
3549 /* Set the right machine number for an Xtensa ELF file. */
3550
3551 static bfd_boolean
3552 elf_xtensa_object_p (bfd *abfd)
3553 {
3554 int mach;
3555 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3556
3557 switch (arch)
3558 {
3559 case E_XTENSA_MACH:
3560 mach = bfd_mach_xtensa;
3561 break;
3562 default:
3563 return FALSE;
3564 }
3565
3566 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3567 return TRUE;
3568 }
3569
3570
3571 /* The final processing done just before writing out an Xtensa ELF object
3572 file. This gets the Xtensa architecture right based on the machine
3573 number. */
3574
3575 static void
3576 elf_xtensa_final_write_processing (bfd *abfd,
3577 bfd_boolean linker ATTRIBUTE_UNUSED)
3578 {
3579 int mach;
3580 unsigned long val;
3581
3582 switch (mach = bfd_get_mach (abfd))
3583 {
3584 case bfd_mach_xtensa:
3585 val = E_XTENSA_MACH;
3586 break;
3587 default:
3588 return;
3589 }
3590
3591 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3592 elf_elfheader (abfd)->e_flags |= val;
3593 }
3594
3595
3596 static enum elf_reloc_type_class
3597 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3598 const asection *rel_sec ATTRIBUTE_UNUSED,
3599 const Elf_Internal_Rela *rela)
3600 {
3601 switch ((int) ELF32_R_TYPE (rela->r_info))
3602 {
3603 case R_XTENSA_RELATIVE:
3604 return reloc_class_relative;
3605 case R_XTENSA_JMP_SLOT:
3606 return reloc_class_plt;
3607 default:
3608 return reloc_class_normal;
3609 }
3610 }
3611
3612 \f
3613 static bfd_boolean
3614 elf_xtensa_discard_info_for_section (bfd *abfd,
3615 struct elf_reloc_cookie *cookie,
3616 struct bfd_link_info *info,
3617 asection *sec)
3618 {
3619 bfd_byte *contents;
3620 bfd_vma offset, actual_offset;
3621 bfd_size_type removed_bytes = 0;
3622 bfd_size_type entry_size;
3623
3624 if (sec->output_section
3625 && bfd_is_abs_section (sec->output_section))
3626 return FALSE;
3627
3628 if (xtensa_is_proptable_section (sec))
3629 entry_size = 12;
3630 else
3631 entry_size = 8;
3632
3633 if (sec->size == 0 || sec->size % entry_size != 0)
3634 return FALSE;
3635
3636 contents = retrieve_contents (abfd, sec, info->keep_memory);
3637 if (!contents)
3638 return FALSE;
3639
3640 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3641 if (!cookie->rels)
3642 {
3643 release_contents (sec, contents);
3644 return FALSE;
3645 }
3646
3647 /* Sort the relocations. They should already be in order when
3648 relaxation is enabled, but it might not be. */
3649 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3650 internal_reloc_compare);
3651
3652 cookie->rel = cookie->rels;
3653 cookie->relend = cookie->rels + sec->reloc_count;
3654
3655 for (offset = 0; offset < sec->size; offset += entry_size)
3656 {
3657 actual_offset = offset - removed_bytes;
3658
3659 /* The ...symbol_deleted_p function will skip over relocs but it
3660 won't adjust their offsets, so do that here. */
3661 while (cookie->rel < cookie->relend
3662 && cookie->rel->r_offset < offset)
3663 {
3664 cookie->rel->r_offset -= removed_bytes;
3665 cookie->rel++;
3666 }
3667
3668 while (cookie->rel < cookie->relend
3669 && cookie->rel->r_offset == offset)
3670 {
3671 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3672 {
3673 /* Remove the table entry. (If the reloc type is NONE, then
3674 the entry has already been merged with another and deleted
3675 during relaxation.) */
3676 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3677 {
3678 /* Shift the contents up. */
3679 if (offset + entry_size < sec->size)
3680 memmove (&contents[actual_offset],
3681 &contents[actual_offset + entry_size],
3682 sec->size - offset - entry_size);
3683 removed_bytes += entry_size;
3684 }
3685
3686 /* Remove this relocation. */
3687 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3688 }
3689
3690 /* Adjust the relocation offset for previous removals. This
3691 should not be done before calling ...symbol_deleted_p
3692 because it might mess up the offset comparisons there.
3693 Make sure the offset doesn't underflow in the case where
3694 the first entry is removed. */
3695 if (cookie->rel->r_offset >= removed_bytes)
3696 cookie->rel->r_offset -= removed_bytes;
3697 else
3698 cookie->rel->r_offset = 0;
3699
3700 cookie->rel++;
3701 }
3702 }
3703
3704 if (removed_bytes != 0)
3705 {
3706 /* Adjust any remaining relocs (shouldn't be any). */
3707 for (; cookie->rel < cookie->relend; cookie->rel++)
3708 {
3709 if (cookie->rel->r_offset >= removed_bytes)
3710 cookie->rel->r_offset -= removed_bytes;
3711 else
3712 cookie->rel->r_offset = 0;
3713 }
3714
3715 /* Clear the removed bytes. */
3716 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3717
3718 pin_contents (sec, contents);
3719 pin_internal_relocs (sec, cookie->rels);
3720
3721 /* Shrink size. */
3722 if (sec->rawsize == 0)
3723 sec->rawsize = sec->size;
3724 sec->size -= removed_bytes;
3725
3726 if (xtensa_is_littable_section (sec))
3727 {
3728 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3729 if (sgotloc)
3730 sgotloc->size -= removed_bytes;
3731 }
3732 }
3733 else
3734 {
3735 release_contents (sec, contents);
3736 release_internal_relocs (sec, cookie->rels);
3737 }
3738
3739 return (removed_bytes != 0);
3740 }
3741
3742
3743 static bfd_boolean
3744 elf_xtensa_discard_info (bfd *abfd,
3745 struct elf_reloc_cookie *cookie,
3746 struct bfd_link_info *info)
3747 {
3748 asection *sec;
3749 bfd_boolean changed = FALSE;
3750
3751 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3752 {
3753 if (xtensa_is_property_section (sec))
3754 {
3755 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3756 changed = TRUE;
3757 }
3758 }
3759
3760 return changed;
3761 }
3762
3763
3764 static bfd_boolean
3765 elf_xtensa_ignore_discarded_relocs (asection *sec)
3766 {
3767 return xtensa_is_property_section (sec);
3768 }
3769
3770
3771 static unsigned int
3772 elf_xtensa_action_discarded (asection *sec)
3773 {
3774 if (strcmp (".xt_except_table", sec->name) == 0)
3775 return 0;
3776
3777 if (strcmp (".xt_except_desc", sec->name) == 0)
3778 return 0;
3779
3780 return _bfd_elf_default_action_discarded (sec);
3781 }
3782
3783 \f
3784 /* Support for core dump NOTE sections. */
3785
3786 static bfd_boolean
3787 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3788 {
3789 int offset;
3790 unsigned int size;
3791
3792 /* The size for Xtensa is variable, so don't try to recognize the format
3793 based on the size. Just assume this is GNU/Linux. */
3794
3795 /* pr_cursig */
3796 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3797
3798 /* pr_pid */
3799 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3800
3801 /* pr_reg */
3802 offset = 72;
3803 size = note->descsz - offset - 4;
3804
3805 /* Make a ".reg/999" section. */
3806 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3807 size, note->descpos + offset);
3808 }
3809
3810
3811 static bfd_boolean
3812 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3813 {
3814 switch (note->descsz)
3815 {
3816 default:
3817 return FALSE;
3818
3819 case 128: /* GNU/Linux elf_prpsinfo */
3820 elf_tdata (abfd)->core->program
3821 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3822 elf_tdata (abfd)->core->command
3823 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3824 }
3825
3826 /* Note that for some reason, a spurious space is tacked
3827 onto the end of the args in some (at least one anyway)
3828 implementations, so strip it off if it exists. */
3829
3830 {
3831 char *command = elf_tdata (abfd)->core->command;
3832 int n = strlen (command);
3833
3834 if (0 < n && command[n - 1] == ' ')
3835 command[n - 1] = '\0';
3836 }
3837
3838 return TRUE;
3839 }
3840
3841 \f
3842 /* Generic Xtensa configurability stuff. */
3843
3844 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3845 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3846 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3847 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3848 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3849 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3850 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3851 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3852
3853 static void
3854 init_call_opcodes (void)
3855 {
3856 if (callx0_op == XTENSA_UNDEFINED)
3857 {
3858 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3859 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3860 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3861 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3862 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3863 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3864 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3865 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3866 }
3867 }
3868
3869
3870 static bfd_boolean
3871 is_indirect_call_opcode (xtensa_opcode opcode)
3872 {
3873 init_call_opcodes ();
3874 return (opcode == callx0_op
3875 || opcode == callx4_op
3876 || opcode == callx8_op
3877 || opcode == callx12_op);
3878 }
3879
3880
3881 static bfd_boolean
3882 is_direct_call_opcode (xtensa_opcode opcode)
3883 {
3884 init_call_opcodes ();
3885 return (opcode == call0_op
3886 || opcode == call4_op
3887 || opcode == call8_op
3888 || opcode == call12_op);
3889 }
3890
3891
3892 static bfd_boolean
3893 is_windowed_call_opcode (xtensa_opcode opcode)
3894 {
3895 init_call_opcodes ();
3896 return (opcode == call4_op
3897 || opcode == call8_op
3898 || opcode == call12_op
3899 || opcode == callx4_op
3900 || opcode == callx8_op
3901 || opcode == callx12_op);
3902 }
3903
3904
3905 static bfd_boolean
3906 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3907 {
3908 unsigned dst = (unsigned) -1;
3909
3910 init_call_opcodes ();
3911 if (opcode == callx0_op)
3912 dst = 0;
3913 else if (opcode == callx4_op)
3914 dst = 4;
3915 else if (opcode == callx8_op)
3916 dst = 8;
3917 else if (opcode == callx12_op)
3918 dst = 12;
3919
3920 if (dst == (unsigned) -1)
3921 return FALSE;
3922
3923 *pdst = dst;
3924 return TRUE;
3925 }
3926
3927
3928 static xtensa_opcode
3929 get_const16_opcode (void)
3930 {
3931 static bfd_boolean done_lookup = FALSE;
3932 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3933 if (!done_lookup)
3934 {
3935 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3936 done_lookup = TRUE;
3937 }
3938 return const16_opcode;
3939 }
3940
3941
3942 static xtensa_opcode
3943 get_l32r_opcode (void)
3944 {
3945 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3946 static bfd_boolean done_lookup = FALSE;
3947
3948 if (!done_lookup)
3949 {
3950 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3951 done_lookup = TRUE;
3952 }
3953 return l32r_opcode;
3954 }
3955
3956
3957 static bfd_vma
3958 l32r_offset (bfd_vma addr, bfd_vma pc)
3959 {
3960 bfd_vma offset;
3961
3962 offset = addr - ((pc+3) & -4);
3963 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3964 offset = (signed int) offset >> 2;
3965 BFD_ASSERT ((signed int) offset >> 16 == -1);
3966 return offset;
3967 }
3968
3969
3970 static int
3971 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3972 {
3973 xtensa_isa isa = xtensa_default_isa;
3974 int last_immed, last_opnd, opi;
3975
3976 if (opcode == XTENSA_UNDEFINED)
3977 return XTENSA_UNDEFINED;
3978
3979 /* Find the last visible PC-relative immediate operand for the opcode.
3980 If there are no PC-relative immediates, then choose the last visible
3981 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3982 last_immed = XTENSA_UNDEFINED;
3983 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3984 for (opi = last_opnd - 1; opi >= 0; opi--)
3985 {
3986 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3987 continue;
3988 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3989 {
3990 last_immed = opi;
3991 break;
3992 }
3993 if (last_immed == XTENSA_UNDEFINED
3994 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3995 last_immed = opi;
3996 }
3997 if (last_immed < 0)
3998 return XTENSA_UNDEFINED;
3999
4000 /* If the operand number was specified in an old-style relocation,
4001 check for consistency with the operand computed above. */
4002 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
4003 {
4004 int reloc_opnd = r_type - R_XTENSA_OP0;
4005 if (reloc_opnd != last_immed)
4006 return XTENSA_UNDEFINED;
4007 }
4008
4009 return last_immed;
4010 }
4011
4012
4013 int
4014 get_relocation_slot (int r_type)
4015 {
4016 switch (r_type)
4017 {
4018 case R_XTENSA_OP0:
4019 case R_XTENSA_OP1:
4020 case R_XTENSA_OP2:
4021 return 0;
4022
4023 default:
4024 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4025 return r_type - R_XTENSA_SLOT0_OP;
4026 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4027 return r_type - R_XTENSA_SLOT0_ALT;
4028 break;
4029 }
4030
4031 return XTENSA_UNDEFINED;
4032 }
4033
4034
4035 /* Get the opcode for a relocation. */
4036
4037 static xtensa_opcode
4038 get_relocation_opcode (bfd *abfd,
4039 asection *sec,
4040 bfd_byte *contents,
4041 Elf_Internal_Rela *irel)
4042 {
4043 static xtensa_insnbuf ibuff = NULL;
4044 static xtensa_insnbuf sbuff = NULL;
4045 xtensa_isa isa = xtensa_default_isa;
4046 xtensa_format fmt;
4047 int slot;
4048
4049 if (contents == NULL)
4050 return XTENSA_UNDEFINED;
4051
4052 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4053 return XTENSA_UNDEFINED;
4054
4055 if (ibuff == NULL)
4056 {
4057 ibuff = xtensa_insnbuf_alloc (isa);
4058 sbuff = xtensa_insnbuf_alloc (isa);
4059 }
4060
4061 /* Decode the instruction. */
4062 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4063 sec->size - irel->r_offset);
4064 fmt = xtensa_format_decode (isa, ibuff);
4065 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4066 if (slot == XTENSA_UNDEFINED)
4067 return XTENSA_UNDEFINED;
4068 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4069 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4070 }
4071
4072
4073 bfd_boolean
4074 is_l32r_relocation (bfd *abfd,
4075 asection *sec,
4076 bfd_byte *contents,
4077 Elf_Internal_Rela *irel)
4078 {
4079 xtensa_opcode opcode;
4080 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4081 return FALSE;
4082 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4083 return (opcode == get_l32r_opcode ());
4084 }
4085
4086
4087 static bfd_size_type
4088 get_asm_simplify_size (bfd_byte *contents,
4089 bfd_size_type content_len,
4090 bfd_size_type offset)
4091 {
4092 bfd_size_type insnlen, size = 0;
4093
4094 /* Decode the size of the next two instructions. */
4095 insnlen = insn_decode_len (contents, content_len, offset);
4096 if (insnlen == 0)
4097 return 0;
4098
4099 size += insnlen;
4100
4101 insnlen = insn_decode_len (contents, content_len, offset + size);
4102 if (insnlen == 0)
4103 return 0;
4104
4105 size += insnlen;
4106 return size;
4107 }
4108
4109
4110 bfd_boolean
4111 is_alt_relocation (int r_type)
4112 {
4113 return (r_type >= R_XTENSA_SLOT0_ALT
4114 && r_type <= R_XTENSA_SLOT14_ALT);
4115 }
4116
4117
4118 bfd_boolean
4119 is_operand_relocation (int r_type)
4120 {
4121 switch (r_type)
4122 {
4123 case R_XTENSA_OP0:
4124 case R_XTENSA_OP1:
4125 case R_XTENSA_OP2:
4126 return TRUE;
4127
4128 default:
4129 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4130 return TRUE;
4131 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4132 return TRUE;
4133 break;
4134 }
4135
4136 return FALSE;
4137 }
4138
4139
4140 #define MIN_INSN_LENGTH 2
4141
4142 /* Return 0 if it fails to decode. */
4143
4144 bfd_size_type
4145 insn_decode_len (bfd_byte *contents,
4146 bfd_size_type content_len,
4147 bfd_size_type offset)
4148 {
4149 int insn_len;
4150 xtensa_isa isa = xtensa_default_isa;
4151 xtensa_format fmt;
4152 static xtensa_insnbuf ibuff = NULL;
4153
4154 if (offset + MIN_INSN_LENGTH > content_len)
4155 return 0;
4156
4157 if (ibuff == NULL)
4158 ibuff = xtensa_insnbuf_alloc (isa);
4159 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4160 content_len - offset);
4161 fmt = xtensa_format_decode (isa, ibuff);
4162 if (fmt == XTENSA_UNDEFINED)
4163 return 0;
4164 insn_len = xtensa_format_length (isa, fmt);
4165 if (insn_len == XTENSA_UNDEFINED)
4166 return 0;
4167 return insn_len;
4168 }
4169
4170
4171 /* Decode the opcode for a single slot instruction.
4172 Return 0 if it fails to decode or the instruction is multi-slot. */
4173
4174 xtensa_opcode
4175 insn_decode_opcode (bfd_byte *contents,
4176 bfd_size_type content_len,
4177 bfd_size_type offset,
4178 int slot)
4179 {
4180 xtensa_isa isa = xtensa_default_isa;
4181 xtensa_format fmt;
4182 static xtensa_insnbuf insnbuf = NULL;
4183 static xtensa_insnbuf slotbuf = NULL;
4184
4185 if (offset + MIN_INSN_LENGTH > content_len)
4186 return XTENSA_UNDEFINED;
4187
4188 if (insnbuf == NULL)
4189 {
4190 insnbuf = xtensa_insnbuf_alloc (isa);
4191 slotbuf = xtensa_insnbuf_alloc (isa);
4192 }
4193
4194 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4195 content_len - offset);
4196 fmt = xtensa_format_decode (isa, insnbuf);
4197 if (fmt == XTENSA_UNDEFINED)
4198 return XTENSA_UNDEFINED;
4199
4200 if (slot >= xtensa_format_num_slots (isa, fmt))
4201 return XTENSA_UNDEFINED;
4202
4203 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4204 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4205 }
4206
4207
4208 /* The offset is the offset in the contents.
4209 The address is the address of that offset. */
4210
4211 static bfd_boolean
4212 check_branch_target_aligned (bfd_byte *contents,
4213 bfd_size_type content_length,
4214 bfd_vma offset,
4215 bfd_vma address)
4216 {
4217 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4218 if (insn_len == 0)
4219 return FALSE;
4220 return check_branch_target_aligned_address (address, insn_len);
4221 }
4222
4223
4224 static bfd_boolean
4225 check_loop_aligned (bfd_byte *contents,
4226 bfd_size_type content_length,
4227 bfd_vma offset,
4228 bfd_vma address)
4229 {
4230 bfd_size_type loop_len, insn_len;
4231 xtensa_opcode opcode;
4232
4233 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4234 if (opcode == XTENSA_UNDEFINED
4235 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4236 {
4237 BFD_ASSERT (FALSE);
4238 return FALSE;
4239 }
4240
4241 loop_len = insn_decode_len (contents, content_length, offset);
4242 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4243 if (loop_len == 0 || insn_len == 0)
4244 {
4245 BFD_ASSERT (FALSE);
4246 return FALSE;
4247 }
4248
4249 return check_branch_target_aligned_address (address + loop_len, insn_len);
4250 }
4251
4252
4253 static bfd_boolean
4254 check_branch_target_aligned_address (bfd_vma addr, int len)
4255 {
4256 if (len == 8)
4257 return (addr % 8 == 0);
4258 return ((addr >> 2) == ((addr + len - 1) >> 2));
4259 }
4260
4261 \f
4262 /* Instruction widening and narrowing. */
4263
4264 /* When FLIX is available we need to access certain instructions only
4265 when they are 16-bit or 24-bit instructions. This table caches
4266 information about such instructions by walking through all the
4267 opcodes and finding the smallest single-slot format into which each
4268 can be encoded. */
4269
4270 static xtensa_format *op_single_fmt_table = NULL;
4271
4272
4273 static void
4274 init_op_single_format_table (void)
4275 {
4276 xtensa_isa isa = xtensa_default_isa;
4277 xtensa_insnbuf ibuf;
4278 xtensa_opcode opcode;
4279 xtensa_format fmt;
4280 int num_opcodes;
4281
4282 if (op_single_fmt_table)
4283 return;
4284
4285 ibuf = xtensa_insnbuf_alloc (isa);
4286 num_opcodes = xtensa_isa_num_opcodes (isa);
4287
4288 op_single_fmt_table = (xtensa_format *)
4289 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4290 for (opcode = 0; opcode < num_opcodes; opcode++)
4291 {
4292 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4293 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4294 {
4295 if (xtensa_format_num_slots (isa, fmt) == 1
4296 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4297 {
4298 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4299 int fmt_length = xtensa_format_length (isa, fmt);
4300 if (old_fmt == XTENSA_UNDEFINED
4301 || fmt_length < xtensa_format_length (isa, old_fmt))
4302 op_single_fmt_table[opcode] = fmt;
4303 }
4304 }
4305 }
4306 xtensa_insnbuf_free (isa, ibuf);
4307 }
4308
4309
4310 static xtensa_format
4311 get_single_format (xtensa_opcode opcode)
4312 {
4313 init_op_single_format_table ();
4314 return op_single_fmt_table[opcode];
4315 }
4316
4317
4318 /* For the set of narrowable instructions we do NOT include the
4319 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4320 involved during linker relaxation that may require these to
4321 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4322 requires special case code to ensure it only works when op1 == op2. */
4323
4324 struct string_pair
4325 {
4326 const char *wide;
4327 const char *narrow;
4328 };
4329
4330 struct string_pair narrowable[] =
4331 {
4332 { "add", "add.n" },
4333 { "addi", "addi.n" },
4334 { "addmi", "addi.n" },
4335 { "l32i", "l32i.n" },
4336 { "movi", "movi.n" },
4337 { "ret", "ret.n" },
4338 { "retw", "retw.n" },
4339 { "s32i", "s32i.n" },
4340 { "or", "mov.n" } /* special case only when op1 == op2 */
4341 };
4342
4343 struct string_pair widenable[] =
4344 {
4345 { "add", "add.n" },
4346 { "addi", "addi.n" },
4347 { "addmi", "addi.n" },
4348 { "beqz", "beqz.n" },
4349 { "bnez", "bnez.n" },
4350 { "l32i", "l32i.n" },
4351 { "movi", "movi.n" },
4352 { "ret", "ret.n" },
4353 { "retw", "retw.n" },
4354 { "s32i", "s32i.n" },
4355 { "or", "mov.n" } /* special case only when op1 == op2 */
4356 };
4357
4358
4359 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4360 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4361 return the instruction buffer holding the narrow instruction. Otherwise,
4362 return 0. The set of valid narrowing are specified by a string table
4363 but require some special case operand checks in some cases. */
4364
4365 static xtensa_insnbuf
4366 can_narrow_instruction (xtensa_insnbuf slotbuf,
4367 xtensa_format fmt,
4368 xtensa_opcode opcode)
4369 {
4370 xtensa_isa isa = xtensa_default_isa;
4371 xtensa_format o_fmt;
4372 unsigned opi;
4373
4374 static xtensa_insnbuf o_insnbuf = NULL;
4375 static xtensa_insnbuf o_slotbuf = NULL;
4376
4377 if (o_insnbuf == NULL)
4378 {
4379 o_insnbuf = xtensa_insnbuf_alloc (isa);
4380 o_slotbuf = xtensa_insnbuf_alloc (isa);
4381 }
4382
4383 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4384 {
4385 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4386
4387 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4388 {
4389 uint32 value, newval;
4390 int i, operand_count, o_operand_count;
4391 xtensa_opcode o_opcode;
4392
4393 /* Address does not matter in this case. We might need to
4394 fix it to handle branches/jumps. */
4395 bfd_vma self_address = 0;
4396
4397 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4398 if (o_opcode == XTENSA_UNDEFINED)
4399 return 0;
4400 o_fmt = get_single_format (o_opcode);
4401 if (o_fmt == XTENSA_UNDEFINED)
4402 return 0;
4403
4404 if (xtensa_format_length (isa, fmt) != 3
4405 || xtensa_format_length (isa, o_fmt) != 2)
4406 return 0;
4407
4408 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4409 operand_count = xtensa_opcode_num_operands (isa, opcode);
4410 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4411
4412 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4413 return 0;
4414
4415 if (!is_or)
4416 {
4417 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4418 return 0;
4419 }
4420 else
4421 {
4422 uint32 rawval0, rawval1, rawval2;
4423
4424 if (o_operand_count + 1 != operand_count
4425 || xtensa_operand_get_field (isa, opcode, 0,
4426 fmt, 0, slotbuf, &rawval0) != 0
4427 || xtensa_operand_get_field (isa, opcode, 1,
4428 fmt, 0, slotbuf, &rawval1) != 0
4429 || xtensa_operand_get_field (isa, opcode, 2,
4430 fmt, 0, slotbuf, &rawval2) != 0
4431 || rawval1 != rawval2
4432 || rawval0 == rawval1 /* it is a nop */)
4433 return 0;
4434 }
4435
4436 for (i = 0; i < o_operand_count; ++i)
4437 {
4438 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4439 slotbuf, &value)
4440 || xtensa_operand_decode (isa, opcode, i, &value))
4441 return 0;
4442
4443 /* PC-relative branches need adjustment, but
4444 the PC-rel operand will always have a relocation. */
4445 newval = value;
4446 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4447 self_address)
4448 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4449 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4450 o_slotbuf, newval))
4451 return 0;
4452 }
4453
4454 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4455 return 0;
4456
4457 return o_insnbuf;
4458 }
4459 }
4460 return 0;
4461 }
4462
4463
4464 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4465 the action in-place directly into the contents and return TRUE. Otherwise,
4466 the return value is FALSE and the contents are not modified. */
4467
4468 static bfd_boolean
4469 narrow_instruction (bfd_byte *contents,
4470 bfd_size_type content_length,
4471 bfd_size_type offset)
4472 {
4473 xtensa_opcode opcode;
4474 bfd_size_type insn_len;
4475 xtensa_isa isa = xtensa_default_isa;
4476 xtensa_format fmt;
4477 xtensa_insnbuf o_insnbuf;
4478
4479 static xtensa_insnbuf insnbuf = NULL;
4480 static xtensa_insnbuf slotbuf = NULL;
4481
4482 if (insnbuf == NULL)
4483 {
4484 insnbuf = xtensa_insnbuf_alloc (isa);
4485 slotbuf = xtensa_insnbuf_alloc (isa);
4486 }
4487
4488 BFD_ASSERT (offset < content_length);
4489
4490 if (content_length < 2)
4491 return FALSE;
4492
4493 /* We will hand-code a few of these for a little while.
4494 These have all been specified in the assembler aleady. */
4495 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4496 content_length - offset);
4497 fmt = xtensa_format_decode (isa, insnbuf);
4498 if (xtensa_format_num_slots (isa, fmt) != 1)
4499 return FALSE;
4500
4501 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4502 return FALSE;
4503
4504 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4505 if (opcode == XTENSA_UNDEFINED)
4506 return FALSE;
4507 insn_len = xtensa_format_length (isa, fmt);
4508 if (insn_len > content_length)
4509 return FALSE;
4510
4511 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4512 if (o_insnbuf)
4513 {
4514 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4515 content_length - offset);
4516 return TRUE;
4517 }
4518
4519 return FALSE;
4520 }
4521
4522
4523 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4524 "density" instruction to a standard 3-byte instruction. If it is valid,
4525 return the instruction buffer holding the wide instruction. Otherwise,
4526 return 0. The set of valid widenings are specified by a string table
4527 but require some special case operand checks in some cases. */
4528
4529 static xtensa_insnbuf
4530 can_widen_instruction (xtensa_insnbuf slotbuf,
4531 xtensa_format fmt,
4532 xtensa_opcode opcode)
4533 {
4534 xtensa_isa isa = xtensa_default_isa;
4535 xtensa_format o_fmt;
4536 unsigned opi;
4537
4538 static xtensa_insnbuf o_insnbuf = NULL;
4539 static xtensa_insnbuf o_slotbuf = NULL;
4540
4541 if (o_insnbuf == NULL)
4542 {
4543 o_insnbuf = xtensa_insnbuf_alloc (isa);
4544 o_slotbuf = xtensa_insnbuf_alloc (isa);
4545 }
4546
4547 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4548 {
4549 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4550 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4551 || strcmp ("bnez", widenable[opi].wide) == 0);
4552
4553 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4554 {
4555 uint32 value, newval;
4556 int i, operand_count, o_operand_count, check_operand_count;
4557 xtensa_opcode o_opcode;
4558
4559 /* Address does not matter in this case. We might need to fix it
4560 to handle branches/jumps. */
4561 bfd_vma self_address = 0;
4562
4563 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4564 if (o_opcode == XTENSA_UNDEFINED)
4565 return 0;
4566 o_fmt = get_single_format (o_opcode);
4567 if (o_fmt == XTENSA_UNDEFINED)
4568 return 0;
4569
4570 if (xtensa_format_length (isa, fmt) != 2
4571 || xtensa_format_length (isa, o_fmt) != 3)
4572 return 0;
4573
4574 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4575 operand_count = xtensa_opcode_num_operands (isa, opcode);
4576 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4577 check_operand_count = o_operand_count;
4578
4579 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4580 return 0;
4581
4582 if (!is_or)
4583 {
4584 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4585 return 0;
4586 }
4587 else
4588 {
4589 uint32 rawval0, rawval1;
4590
4591 if (o_operand_count != operand_count + 1
4592 || xtensa_operand_get_field (isa, opcode, 0,
4593 fmt, 0, slotbuf, &rawval0) != 0
4594 || xtensa_operand_get_field (isa, opcode, 1,
4595 fmt, 0, slotbuf, &rawval1) != 0
4596 || rawval0 == rawval1 /* it is a nop */)
4597 return 0;
4598 }
4599 if (is_branch)
4600 check_operand_count--;
4601
4602 for (i = 0; i < check_operand_count; i++)
4603 {
4604 int new_i = i;
4605 if (is_or && i == o_operand_count - 1)
4606 new_i = i - 1;
4607 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4608 slotbuf, &value)
4609 || xtensa_operand_decode (isa, opcode, new_i, &value))
4610 return 0;
4611
4612 /* PC-relative branches need adjustment, but
4613 the PC-rel operand will always have a relocation. */
4614 newval = value;
4615 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4616 self_address)
4617 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4618 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4619 o_slotbuf, newval))
4620 return 0;
4621 }
4622
4623 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4624 return 0;
4625
4626 return o_insnbuf;
4627 }
4628 }
4629 return 0;
4630 }
4631
4632
4633 /* Attempt to widen an instruction. If the widening is valid, perform
4634 the action in-place directly into the contents and return TRUE. Otherwise,
4635 the return value is FALSE and the contents are not modified. */
4636
4637 static bfd_boolean
4638 widen_instruction (bfd_byte *contents,
4639 bfd_size_type content_length,
4640 bfd_size_type offset)
4641 {
4642 xtensa_opcode opcode;
4643 bfd_size_type insn_len;
4644 xtensa_isa isa = xtensa_default_isa;
4645 xtensa_format fmt;
4646 xtensa_insnbuf o_insnbuf;
4647
4648 static xtensa_insnbuf insnbuf = NULL;
4649 static xtensa_insnbuf slotbuf = NULL;
4650
4651 if (insnbuf == NULL)
4652 {
4653 insnbuf = xtensa_insnbuf_alloc (isa);
4654 slotbuf = xtensa_insnbuf_alloc (isa);
4655 }
4656
4657 BFD_ASSERT (offset < content_length);
4658
4659 if (content_length < 2)
4660 return FALSE;
4661
4662 /* We will hand-code a few of these for a little while.
4663 These have all been specified in the assembler aleady. */
4664 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4665 content_length - offset);
4666 fmt = xtensa_format_decode (isa, insnbuf);
4667 if (xtensa_format_num_slots (isa, fmt) != 1)
4668 return FALSE;
4669
4670 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4671 return FALSE;
4672
4673 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4674 if (opcode == XTENSA_UNDEFINED)
4675 return FALSE;
4676 insn_len = xtensa_format_length (isa, fmt);
4677 if (insn_len > content_length)
4678 return FALSE;
4679
4680 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4681 if (o_insnbuf)
4682 {
4683 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4684 content_length - offset);
4685 return TRUE;
4686 }
4687 return FALSE;
4688 }
4689
4690 \f
4691 /* Code for transforming CALLs at link-time. */
4692
4693 static bfd_reloc_status_type
4694 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4695 bfd_vma address,
4696 bfd_vma content_length,
4697 char **error_message)
4698 {
4699 static xtensa_insnbuf insnbuf = NULL;
4700 static xtensa_insnbuf slotbuf = NULL;
4701 xtensa_format core_format = XTENSA_UNDEFINED;
4702 xtensa_opcode opcode;
4703 xtensa_opcode direct_call_opcode;
4704 xtensa_isa isa = xtensa_default_isa;
4705 bfd_byte *chbuf = contents + address;
4706 int opn;
4707
4708 if (insnbuf == NULL)
4709 {
4710 insnbuf = xtensa_insnbuf_alloc (isa);
4711 slotbuf = xtensa_insnbuf_alloc (isa);
4712 }
4713
4714 if (content_length < address)
4715 {
4716 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4717 return bfd_reloc_other;
4718 }
4719
4720 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4721 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4722 if (direct_call_opcode == XTENSA_UNDEFINED)
4723 {
4724 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4725 return bfd_reloc_other;
4726 }
4727
4728 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4729 core_format = xtensa_format_lookup (isa, "x24");
4730 opcode = xtensa_opcode_lookup (isa, "or");
4731 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4732 for (opn = 0; opn < 3; opn++)
4733 {
4734 uint32 regno = 1;
4735 xtensa_operand_encode (isa, opcode, opn, &regno);
4736 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4737 slotbuf, regno);
4738 }
4739 xtensa_format_encode (isa, core_format, insnbuf);
4740 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4741 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4742
4743 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4744 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4745 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4746
4747 xtensa_format_encode (isa, core_format, insnbuf);
4748 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4749 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4750 content_length - address - 3);
4751
4752 return bfd_reloc_ok;
4753 }
4754
4755
4756 static bfd_reloc_status_type
4757 contract_asm_expansion (bfd_byte *contents,
4758 bfd_vma content_length,
4759 Elf_Internal_Rela *irel,
4760 char **error_message)
4761 {
4762 bfd_reloc_status_type retval =
4763 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4764 error_message);
4765
4766 if (retval != bfd_reloc_ok)
4767 return bfd_reloc_dangerous;
4768
4769 /* Update the irel->r_offset field so that the right immediate and
4770 the right instruction are modified during the relocation. */
4771 irel->r_offset += 3;
4772 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4773 return bfd_reloc_ok;
4774 }
4775
4776
4777 static xtensa_opcode
4778 swap_callx_for_call_opcode (xtensa_opcode opcode)
4779 {
4780 init_call_opcodes ();
4781
4782 if (opcode == callx0_op) return call0_op;
4783 if (opcode == callx4_op) return call4_op;
4784 if (opcode == callx8_op) return call8_op;
4785 if (opcode == callx12_op) return call12_op;
4786
4787 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4788 return XTENSA_UNDEFINED;
4789 }
4790
4791
4792 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4793 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4794 If not, return XTENSA_UNDEFINED. */
4795
4796 #define L32R_TARGET_REG_OPERAND 0
4797 #define CONST16_TARGET_REG_OPERAND 0
4798 #define CALLN_SOURCE_OPERAND 0
4799
4800 static xtensa_opcode
4801 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4802 {
4803 static xtensa_insnbuf insnbuf = NULL;
4804 static xtensa_insnbuf slotbuf = NULL;
4805 xtensa_format fmt;
4806 xtensa_opcode opcode;
4807 xtensa_isa isa = xtensa_default_isa;
4808 uint32 regno, const16_regno, call_regno;
4809 int offset = 0;
4810
4811 if (insnbuf == NULL)
4812 {
4813 insnbuf = xtensa_insnbuf_alloc (isa);
4814 slotbuf = xtensa_insnbuf_alloc (isa);
4815 }
4816
4817 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4818 fmt = xtensa_format_decode (isa, insnbuf);
4819 if (fmt == XTENSA_UNDEFINED
4820 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4821 return XTENSA_UNDEFINED;
4822
4823 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4824 if (opcode == XTENSA_UNDEFINED)
4825 return XTENSA_UNDEFINED;
4826
4827 if (opcode == get_l32r_opcode ())
4828 {
4829 if (p_uses_l32r)
4830 *p_uses_l32r = TRUE;
4831 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4832 fmt, 0, slotbuf, &regno)
4833 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4834 &regno))
4835 return XTENSA_UNDEFINED;
4836 }
4837 else if (opcode == get_const16_opcode ())
4838 {
4839 if (p_uses_l32r)
4840 *p_uses_l32r = FALSE;
4841 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4842 fmt, 0, slotbuf, &regno)
4843 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4844 &regno))
4845 return XTENSA_UNDEFINED;
4846
4847 /* Check that the next instruction is also CONST16. */
4848 offset += xtensa_format_length (isa, fmt);
4849 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4850 fmt = xtensa_format_decode (isa, insnbuf);
4851 if (fmt == XTENSA_UNDEFINED
4852 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4853 return XTENSA_UNDEFINED;
4854 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4855 if (opcode != get_const16_opcode ())
4856 return XTENSA_UNDEFINED;
4857
4858 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4859 fmt, 0, slotbuf, &const16_regno)
4860 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4861 &const16_regno)
4862 || const16_regno != regno)
4863 return XTENSA_UNDEFINED;
4864 }
4865 else
4866 return XTENSA_UNDEFINED;
4867
4868 /* Next instruction should be an CALLXn with operand 0 == regno. */
4869 offset += xtensa_format_length (isa, fmt);
4870 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4871 fmt = xtensa_format_decode (isa, insnbuf);
4872 if (fmt == XTENSA_UNDEFINED
4873 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4874 return XTENSA_UNDEFINED;
4875 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4876 if (opcode == XTENSA_UNDEFINED
4877 || !is_indirect_call_opcode (opcode))
4878 return XTENSA_UNDEFINED;
4879
4880 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4881 fmt, 0, slotbuf, &call_regno)
4882 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4883 &call_regno))
4884 return XTENSA_UNDEFINED;
4885
4886 if (call_regno != regno)
4887 return XTENSA_UNDEFINED;
4888
4889 return opcode;
4890 }
4891
4892 \f
4893 /* Data structures used during relaxation. */
4894
4895 /* r_reloc: relocation values. */
4896
4897 /* Through the relaxation process, we need to keep track of the values
4898 that will result from evaluating relocations. The standard ELF
4899 relocation structure is not sufficient for this purpose because we're
4900 operating on multiple input files at once, so we need to know which
4901 input file a relocation refers to. The r_reloc structure thus
4902 records both the input file (bfd) and ELF relocation.
4903
4904 For efficiency, an r_reloc also contains a "target_offset" field to
4905 cache the target-section-relative offset value that is represented by
4906 the relocation.
4907
4908 The r_reloc also contains a virtual offset that allows multiple
4909 inserted literals to be placed at the same "address" with
4910 different offsets. */
4911
4912 typedef struct r_reloc_struct r_reloc;
4913
4914 struct r_reloc_struct
4915 {
4916 bfd *abfd;
4917 Elf_Internal_Rela rela;
4918 bfd_vma target_offset;
4919 bfd_vma virtual_offset;
4920 };
4921
4922
4923 /* The r_reloc structure is included by value in literal_value, but not
4924 every literal_value has an associated relocation -- some are simple
4925 constants. In such cases, we set all the fields in the r_reloc
4926 struct to zero. The r_reloc_is_const function should be used to
4927 detect this case. */
4928
4929 static bfd_boolean
4930 r_reloc_is_const (const r_reloc *r_rel)
4931 {
4932 return (r_rel->abfd == NULL);
4933 }
4934
4935
4936 static bfd_vma
4937 r_reloc_get_target_offset (const r_reloc *r_rel)
4938 {
4939 bfd_vma target_offset;
4940 unsigned long r_symndx;
4941
4942 BFD_ASSERT (!r_reloc_is_const (r_rel));
4943 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4944 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4945 return (target_offset + r_rel->rela.r_addend);
4946 }
4947
4948
4949 static struct elf_link_hash_entry *
4950 r_reloc_get_hash_entry (const r_reloc *r_rel)
4951 {
4952 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4953 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4954 }
4955
4956
4957 static asection *
4958 r_reloc_get_section (const r_reloc *r_rel)
4959 {
4960 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4961 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4962 }
4963
4964
4965 static bfd_boolean
4966 r_reloc_is_defined (const r_reloc *r_rel)
4967 {
4968 asection *sec;
4969 if (r_rel == NULL)
4970 return FALSE;
4971
4972 sec = r_reloc_get_section (r_rel);
4973 if (sec == bfd_abs_section_ptr
4974 || sec == bfd_com_section_ptr
4975 || sec == bfd_und_section_ptr)
4976 return FALSE;
4977 return TRUE;
4978 }
4979
4980
4981 static void
4982 r_reloc_init (r_reloc *r_rel,
4983 bfd *abfd,
4984 Elf_Internal_Rela *irel,
4985 bfd_byte *contents,
4986 bfd_size_type content_length)
4987 {
4988 int r_type;
4989 reloc_howto_type *howto;
4990
4991 if (irel)
4992 {
4993 r_rel->rela = *irel;
4994 r_rel->abfd = abfd;
4995 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4996 r_rel->virtual_offset = 0;
4997 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4998 howto = &elf_howto_table[r_type];
4999 if (howto->partial_inplace)
5000 {
5001 bfd_vma inplace_val;
5002 BFD_ASSERT (r_rel->rela.r_offset < content_length);
5003
5004 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5005 r_rel->target_offset += inplace_val;
5006 }
5007 }
5008 else
5009 memset (r_rel, 0, sizeof (r_reloc));
5010 }
5011
5012
5013 #if DEBUG
5014
5015 static void
5016 print_r_reloc (FILE *fp, const r_reloc *r_rel)
5017 {
5018 if (r_reloc_is_defined (r_rel))
5019 {
5020 asection *sec = r_reloc_get_section (r_rel);
5021 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5022 }
5023 else if (r_reloc_get_hash_entry (r_rel))
5024 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5025 else
5026 fprintf (fp, " ?? + ");
5027
5028 fprintf_vma (fp, r_rel->target_offset);
5029 if (r_rel->virtual_offset)
5030 {
5031 fprintf (fp, " + ");
5032 fprintf_vma (fp, r_rel->virtual_offset);
5033 }
5034
5035 fprintf (fp, ")");
5036 }
5037
5038 #endif /* DEBUG */
5039
5040 \f
5041 /* source_reloc: relocations that reference literals. */
5042
5043 /* To determine whether literals can be coalesced, we need to first
5044 record all the relocations that reference the literals. The
5045 source_reloc structure below is used for this purpose. The
5046 source_reloc entries are kept in a per-literal-section array, sorted
5047 by offset within the literal section (i.e., target offset).
5048
5049 The source_sec and r_rel.rela.r_offset fields identify the source of
5050 the relocation. The r_rel field records the relocation value, i.e.,
5051 the offset of the literal being referenced. The opnd field is needed
5052 to determine the range of the immediate field to which the relocation
5053 applies, so we can determine whether another literal with the same
5054 value is within range. The is_null field is true when the relocation
5055 is being removed (e.g., when an L32R is being removed due to a CALLX
5056 that is converted to a direct CALL). */
5057
5058 typedef struct source_reloc_struct source_reloc;
5059
5060 struct source_reloc_struct
5061 {
5062 asection *source_sec;
5063 r_reloc r_rel;
5064 xtensa_opcode opcode;
5065 int opnd;
5066 bfd_boolean is_null;
5067 bfd_boolean is_abs_literal;
5068 };
5069
5070
5071 static void
5072 init_source_reloc (source_reloc *reloc,
5073 asection *source_sec,
5074 const r_reloc *r_rel,
5075 xtensa_opcode opcode,
5076 int opnd,
5077 bfd_boolean is_abs_literal)
5078 {
5079 reloc->source_sec = source_sec;
5080 reloc->r_rel = *r_rel;
5081 reloc->opcode = opcode;
5082 reloc->opnd = opnd;
5083 reloc->is_null = FALSE;
5084 reloc->is_abs_literal = is_abs_literal;
5085 }
5086
5087
5088 /* Find the source_reloc for a particular source offset and relocation
5089 type. Note that the array is sorted by _target_ offset, so this is
5090 just a linear search. */
5091
5092 static source_reloc *
5093 find_source_reloc (source_reloc *src_relocs,
5094 int src_count,
5095 asection *sec,
5096 Elf_Internal_Rela *irel)
5097 {
5098 int i;
5099
5100 for (i = 0; i < src_count; i++)
5101 {
5102 if (src_relocs[i].source_sec == sec
5103 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5104 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5105 == ELF32_R_TYPE (irel->r_info)))
5106 return &src_relocs[i];
5107 }
5108
5109 return NULL;
5110 }
5111
5112
5113 static int
5114 source_reloc_compare (const void *ap, const void *bp)
5115 {
5116 const source_reloc *a = (const source_reloc *) ap;
5117 const source_reloc *b = (const source_reloc *) bp;
5118
5119 if (a->r_rel.target_offset != b->r_rel.target_offset)
5120 return (a->r_rel.target_offset - b->r_rel.target_offset);
5121
5122 /* We don't need to sort on these criteria for correctness,
5123 but enforcing a more strict ordering prevents unstable qsort
5124 from behaving differently with different implementations.
5125 Without the code below we get correct but different results
5126 on Solaris 2.7 and 2.8. We would like to always produce the
5127 same results no matter the host. */
5128
5129 if ((!a->is_null) - (!b->is_null))
5130 return ((!a->is_null) - (!b->is_null));
5131 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5132 }
5133
5134 \f
5135 /* Literal values and value hash tables. */
5136
5137 /* Literals with the same value can be coalesced. The literal_value
5138 structure records the value of a literal: the "r_rel" field holds the
5139 information from the relocation on the literal (if there is one) and
5140 the "value" field holds the contents of the literal word itself.
5141
5142 The value_map structure records a literal value along with the
5143 location of a literal holding that value. The value_map hash table
5144 is indexed by the literal value, so that we can quickly check if a
5145 particular literal value has been seen before and is thus a candidate
5146 for coalescing. */
5147
5148 typedef struct literal_value_struct literal_value;
5149 typedef struct value_map_struct value_map;
5150 typedef struct value_map_hash_table_struct value_map_hash_table;
5151
5152 struct literal_value_struct
5153 {
5154 r_reloc r_rel;
5155 unsigned long value;
5156 bfd_boolean is_abs_literal;
5157 };
5158
5159 struct value_map_struct
5160 {
5161 literal_value val; /* The literal value. */
5162 r_reloc loc; /* Location of the literal. */
5163 value_map *next;
5164 };
5165
5166 struct value_map_hash_table_struct
5167 {
5168 unsigned bucket_count;
5169 value_map **buckets;
5170 unsigned count;
5171 bfd_boolean has_last_loc;
5172 r_reloc last_loc;
5173 };
5174
5175
5176 static void
5177 init_literal_value (literal_value *lit,
5178 const r_reloc *r_rel,
5179 unsigned long value,
5180 bfd_boolean is_abs_literal)
5181 {
5182 lit->r_rel = *r_rel;
5183 lit->value = value;
5184 lit->is_abs_literal = is_abs_literal;
5185 }
5186
5187
5188 static bfd_boolean
5189 literal_value_equal (const literal_value *src1,
5190 const literal_value *src2,
5191 bfd_boolean final_static_link)
5192 {
5193 struct elf_link_hash_entry *h1, *h2;
5194
5195 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5196 return FALSE;
5197
5198 if (r_reloc_is_const (&src1->r_rel))
5199 return (src1->value == src2->value);
5200
5201 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5202 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5203 return FALSE;
5204
5205 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5206 return FALSE;
5207
5208 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5209 return FALSE;
5210
5211 if (src1->value != src2->value)
5212 return FALSE;
5213
5214 /* Now check for the same section (if defined) or the same elf_hash
5215 (if undefined or weak). */
5216 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5217 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5218 if (r_reloc_is_defined (&src1->r_rel)
5219 && (final_static_link
5220 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5221 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5222 {
5223 if (r_reloc_get_section (&src1->r_rel)
5224 != r_reloc_get_section (&src2->r_rel))
5225 return FALSE;
5226 }
5227 else
5228 {
5229 /* Require that the hash entries (i.e., symbols) be identical. */
5230 if (h1 != h2 || h1 == 0)
5231 return FALSE;
5232 }
5233
5234 if (src1->is_abs_literal != src2->is_abs_literal)
5235 return FALSE;
5236
5237 return TRUE;
5238 }
5239
5240
5241 /* Must be power of 2. */
5242 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5243
5244 static value_map_hash_table *
5245 value_map_hash_table_init (void)
5246 {
5247 value_map_hash_table *values;
5248
5249 values = (value_map_hash_table *)
5250 bfd_zmalloc (sizeof (value_map_hash_table));
5251 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5252 values->count = 0;
5253 values->buckets = (value_map **)
5254 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5255 if (values->buckets == NULL)
5256 {
5257 free (values);
5258 return NULL;
5259 }
5260 values->has_last_loc = FALSE;
5261
5262 return values;
5263 }
5264
5265
5266 static void
5267 value_map_hash_table_delete (value_map_hash_table *table)
5268 {
5269 free (table->buckets);
5270 free (table);
5271 }
5272
5273
5274 static unsigned
5275 hash_bfd_vma (bfd_vma val)
5276 {
5277 return (val >> 2) + (val >> 10);
5278 }
5279
5280
5281 static unsigned
5282 literal_value_hash (const literal_value *src)
5283 {
5284 unsigned hash_val;
5285
5286 hash_val = hash_bfd_vma (src->value);
5287 if (!r_reloc_is_const (&src->r_rel))
5288 {
5289 void *sec_or_hash;
5290
5291 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5292 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5293 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5294
5295 /* Now check for the same section and the same elf_hash. */
5296 if (r_reloc_is_defined (&src->r_rel))
5297 sec_or_hash = r_reloc_get_section (&src->r_rel);
5298 else
5299 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5300 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5301 }
5302 return hash_val;
5303 }
5304
5305
5306 /* Check if the specified literal_value has been seen before. */
5307
5308 static value_map *
5309 value_map_get_cached_value (value_map_hash_table *map,
5310 const literal_value *val,
5311 bfd_boolean final_static_link)
5312 {
5313 value_map *map_e;
5314 value_map *bucket;
5315 unsigned idx;
5316
5317 idx = literal_value_hash (val);
5318 idx = idx & (map->bucket_count - 1);
5319 bucket = map->buckets[idx];
5320 for (map_e = bucket; map_e; map_e = map_e->next)
5321 {
5322 if (literal_value_equal (&map_e->val, val, final_static_link))
5323 return map_e;
5324 }
5325 return NULL;
5326 }
5327
5328
5329 /* Record a new literal value. It is illegal to call this if VALUE
5330 already has an entry here. */
5331
5332 static value_map *
5333 add_value_map (value_map_hash_table *map,
5334 const literal_value *val,
5335 const r_reloc *loc,
5336 bfd_boolean final_static_link)
5337 {
5338 value_map **bucket_p;
5339 unsigned idx;
5340
5341 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5342 if (val_e == NULL)
5343 {
5344 bfd_set_error (bfd_error_no_memory);
5345 return NULL;
5346 }
5347
5348 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5349 val_e->val = *val;
5350 val_e->loc = *loc;
5351
5352 idx = literal_value_hash (val);
5353 idx = idx & (map->bucket_count - 1);
5354 bucket_p = &map->buckets[idx];
5355
5356 val_e->next = *bucket_p;
5357 *bucket_p = val_e;
5358 map->count++;
5359 /* FIXME: Consider resizing the hash table if we get too many entries. */
5360
5361 return val_e;
5362 }
5363
5364 \f
5365 /* Lists of text actions (ta_) for narrowing, widening, longcall
5366 conversion, space fill, code & literal removal, etc. */
5367
5368 /* The following text actions are generated:
5369
5370 "ta_remove_insn" remove an instruction or instructions
5371 "ta_remove_longcall" convert longcall to call
5372 "ta_convert_longcall" convert longcall to nop/call
5373 "ta_narrow_insn" narrow a wide instruction
5374 "ta_widen" widen a narrow instruction
5375 "ta_fill" add fill or remove fill
5376 removed < 0 is a fill; branches to the fill address will be
5377 changed to address + fill size (e.g., address - removed)
5378 removed >= 0 branches to the fill address will stay unchanged
5379 "ta_remove_literal" remove a literal; this action is
5380 indicated when a literal is removed
5381 or replaced.
5382 "ta_add_literal" insert a new literal; this action is
5383 indicated when a literal has been moved.
5384 It may use a virtual_offset because
5385 multiple literals can be placed at the
5386 same location.
5387
5388 For each of these text actions, we also record the number of bytes
5389 removed by performing the text action. In the case of a "ta_widen"
5390 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5391
5392 typedef struct text_action_struct text_action;
5393 typedef struct text_action_list_struct text_action_list;
5394 typedef enum text_action_enum_t text_action_t;
5395
5396 enum text_action_enum_t
5397 {
5398 ta_none,
5399 ta_remove_insn, /* removed = -size */
5400 ta_remove_longcall, /* removed = -size */
5401 ta_convert_longcall, /* removed = 0 */
5402 ta_narrow_insn, /* removed = -1 */
5403 ta_widen_insn, /* removed = +1 */
5404 ta_fill, /* removed = +size */
5405 ta_remove_literal,
5406 ta_add_literal
5407 };
5408
5409
5410 /* Structure for a text action record. */
5411 struct text_action_struct
5412 {
5413 text_action_t action;
5414 asection *sec; /* Optional */
5415 bfd_vma offset;
5416 bfd_vma virtual_offset; /* Zero except for adding literals. */
5417 int removed_bytes;
5418 literal_value value; /* Only valid when adding literals. */
5419
5420 text_action *next;
5421 };
5422
5423
5424 /* List of all of the actions taken on a text section. */
5425 struct text_action_list_struct
5426 {
5427 text_action *head;
5428 };
5429
5430
5431 static text_action *
5432 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5433 {
5434 text_action **m_p;
5435
5436 /* It is not necessary to fill at the end of a section. */
5437 if (sec->size == offset)
5438 return NULL;
5439
5440 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5441 {
5442 text_action *t = *m_p;
5443 /* When the action is another fill at the same address,
5444 just increase the size. */
5445 if (t->offset == offset && t->action == ta_fill)
5446 return t;
5447 }
5448 return NULL;
5449 }
5450
5451
5452 static int
5453 compute_removed_action_diff (const text_action *ta,
5454 asection *sec,
5455 bfd_vma offset,
5456 int removed,
5457 int removable_space)
5458 {
5459 int new_removed;
5460 int current_removed = 0;
5461
5462 if (ta)
5463 current_removed = ta->removed_bytes;
5464
5465 BFD_ASSERT (ta == NULL || ta->offset == offset);
5466 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5467
5468 /* It is not necessary to fill at the end of a section. Clean this up. */
5469 if (sec->size == offset)
5470 new_removed = removable_space - 0;
5471 else
5472 {
5473 int space;
5474 int added = -removed - current_removed;
5475 /* Ignore multiples of the section alignment. */
5476 added = ((1 << sec->alignment_power) - 1) & added;
5477 new_removed = (-added);
5478
5479 /* Modify for removable. */
5480 space = removable_space - new_removed;
5481 new_removed = (removable_space
5482 - (((1 << sec->alignment_power) - 1) & space));
5483 }
5484 return (new_removed - current_removed);
5485 }
5486
5487
5488 static void
5489 adjust_fill_action (text_action *ta, int fill_diff)
5490 {
5491 ta->removed_bytes += fill_diff;
5492 }
5493
5494
5495 /* Add a modification action to the text. For the case of adding or
5496 removing space, modify any current fill and assume that
5497 "unreachable_space" bytes can be freely contracted. Note that a
5498 negative removed value is a fill. */
5499
5500 static void
5501 text_action_add (text_action_list *l,
5502 text_action_t action,
5503 asection *sec,
5504 bfd_vma offset,
5505 int removed)
5506 {
5507 text_action **m_p;
5508 text_action *ta;
5509
5510 /* It is not necessary to fill at the end of a section. */
5511 if (action == ta_fill && sec->size == offset)
5512 return;
5513
5514 /* It is not necessary to fill 0 bytes. */
5515 if (action == ta_fill && removed == 0)
5516 return;
5517
5518 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
5519 {
5520 text_action *t = *m_p;
5521
5522 if (action == ta_fill)
5523 {
5524 /* When the action is another fill at the same address,
5525 just increase the size. */
5526 if (t->offset == offset && t->action == ta_fill)
5527 {
5528 t->removed_bytes += removed;
5529 return;
5530 }
5531 /* Fills need to happen before widens so that we don't
5532 insert fill bytes into the instruction stream. */
5533 if (t->offset == offset && t->action == ta_widen_insn)
5534 break;
5535 }
5536 }
5537
5538 /* Create a new record and fill it up. */
5539 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5540 ta->action = action;
5541 ta->sec = sec;
5542 ta->offset = offset;
5543 ta->removed_bytes = removed;
5544 ta->next = (*m_p);
5545 *m_p = ta;
5546 }
5547
5548
5549 static void
5550 text_action_add_literal (text_action_list *l,
5551 text_action_t action,
5552 const r_reloc *loc,
5553 const literal_value *value,
5554 int removed)
5555 {
5556 text_action **m_p;
5557 text_action *ta;
5558 asection *sec = r_reloc_get_section (loc);
5559 bfd_vma offset = loc->target_offset;
5560 bfd_vma virtual_offset = loc->virtual_offset;
5561
5562 BFD_ASSERT (action == ta_add_literal);
5563
5564 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
5565 {
5566 if ((*m_p)->offset > offset
5567 && ((*m_p)->offset != offset
5568 || (*m_p)->virtual_offset > virtual_offset))
5569 break;
5570 }
5571
5572 /* Create a new record and fill it up. */
5573 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5574 ta->action = action;
5575 ta->sec = sec;
5576 ta->offset = offset;
5577 ta->virtual_offset = virtual_offset;
5578 ta->value = *value;
5579 ta->removed_bytes = removed;
5580 ta->next = (*m_p);
5581 *m_p = ta;
5582 }
5583
5584
5585 /* Find the total offset adjustment for the relaxations specified by
5586 text_actions, beginning from a particular starting action. This is
5587 typically used from offset_with_removed_text to search an entire list of
5588 actions, but it may also be called directly when adjusting adjacent offsets
5589 so that each search may begin where the previous one left off. */
5590
5591 static int
5592 removed_by_actions (text_action **p_start_action,
5593 bfd_vma offset,
5594 bfd_boolean before_fill)
5595 {
5596 text_action *r;
5597 int removed = 0;
5598
5599 r = *p_start_action;
5600 while (r)
5601 {
5602 if (r->offset > offset)
5603 break;
5604
5605 if (r->offset == offset
5606 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5607 break;
5608
5609 removed += r->removed_bytes;
5610
5611 r = r->next;
5612 }
5613
5614 *p_start_action = r;
5615 return removed;
5616 }
5617
5618
5619 static bfd_vma
5620 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5621 {
5622 text_action *r = action_list->head;
5623 return offset - removed_by_actions (&r, offset, FALSE);
5624 }
5625
5626
5627 static unsigned
5628 action_list_count (text_action_list *action_list)
5629 {
5630 text_action *r = action_list->head;
5631 unsigned count = 0;
5632 for (r = action_list->head; r != NULL; r = r->next)
5633 {
5634 count++;
5635 }
5636 return count;
5637 }
5638
5639
5640 /* The find_insn_action routine will only find non-fill actions. */
5641
5642 static text_action *
5643 find_insn_action (text_action_list *action_list, bfd_vma offset)
5644 {
5645 text_action *t;
5646 for (t = action_list->head; t; t = t->next)
5647 {
5648 if (t->offset == offset)
5649 {
5650 switch (t->action)
5651 {
5652 case ta_none:
5653 case ta_fill:
5654 break;
5655 case ta_remove_insn:
5656 case ta_remove_longcall:
5657 case ta_convert_longcall:
5658 case ta_narrow_insn:
5659 case ta_widen_insn:
5660 return t;
5661 case ta_remove_literal:
5662 case ta_add_literal:
5663 BFD_ASSERT (0);
5664 break;
5665 }
5666 }
5667 }
5668 return NULL;
5669 }
5670
5671
5672 #if DEBUG
5673
5674 static void
5675 print_action_list (FILE *fp, text_action_list *action_list)
5676 {
5677 text_action *r;
5678
5679 fprintf (fp, "Text Action\n");
5680 for (r = action_list->head; r != NULL; r = r->next)
5681 {
5682 const char *t = "unknown";
5683 switch (r->action)
5684 {
5685 case ta_remove_insn:
5686 t = "remove_insn"; break;
5687 case ta_remove_longcall:
5688 t = "remove_longcall"; break;
5689 case ta_convert_longcall:
5690 t = "convert_longcall"; break;
5691 case ta_narrow_insn:
5692 t = "narrow_insn"; break;
5693 case ta_widen_insn:
5694 t = "widen_insn"; break;
5695 case ta_fill:
5696 t = "fill"; break;
5697 case ta_none:
5698 t = "none"; break;
5699 case ta_remove_literal:
5700 t = "remove_literal"; break;
5701 case ta_add_literal:
5702 t = "add_literal"; break;
5703 }
5704
5705 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5706 r->sec->owner->filename,
5707 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5708 }
5709 }
5710
5711 #endif /* DEBUG */
5712
5713 \f
5714 /* Lists of literals being coalesced or removed. */
5715
5716 /* In the usual case, the literal identified by "from" is being
5717 coalesced with another literal identified by "to". If the literal is
5718 unused and is being removed altogether, "to.abfd" will be NULL.
5719 The removed_literal entries are kept on a per-section list, sorted
5720 by the "from" offset field. */
5721
5722 typedef struct removed_literal_struct removed_literal;
5723 typedef struct removed_literal_list_struct removed_literal_list;
5724
5725 struct removed_literal_struct
5726 {
5727 r_reloc from;
5728 r_reloc to;
5729 removed_literal *next;
5730 };
5731
5732 struct removed_literal_list_struct
5733 {
5734 removed_literal *head;
5735 removed_literal *tail;
5736 };
5737
5738
5739 /* Record that the literal at "from" is being removed. If "to" is not
5740 NULL, the "from" literal is being coalesced with the "to" literal. */
5741
5742 static void
5743 add_removed_literal (removed_literal_list *removed_list,
5744 const r_reloc *from,
5745 const r_reloc *to)
5746 {
5747 removed_literal *r, *new_r, *next_r;
5748
5749 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5750
5751 new_r->from = *from;
5752 if (to)
5753 new_r->to = *to;
5754 else
5755 new_r->to.abfd = NULL;
5756 new_r->next = NULL;
5757
5758 r = removed_list->head;
5759 if (r == NULL)
5760 {
5761 removed_list->head = new_r;
5762 removed_list->tail = new_r;
5763 }
5764 /* Special check for common case of append. */
5765 else if (removed_list->tail->from.target_offset < from->target_offset)
5766 {
5767 removed_list->tail->next = new_r;
5768 removed_list->tail = new_r;
5769 }
5770 else
5771 {
5772 while (r->from.target_offset < from->target_offset && r->next)
5773 {
5774 r = r->next;
5775 }
5776 next_r = r->next;
5777 r->next = new_r;
5778 new_r->next = next_r;
5779 if (next_r == NULL)
5780 removed_list->tail = new_r;
5781 }
5782 }
5783
5784
5785 /* Check if the list of removed literals contains an entry for the
5786 given address. Return the entry if found. */
5787
5788 static removed_literal *
5789 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5790 {
5791 removed_literal *r = removed_list->head;
5792 while (r && r->from.target_offset < addr)
5793 r = r->next;
5794 if (r && r->from.target_offset == addr)
5795 return r;
5796 return NULL;
5797 }
5798
5799
5800 #if DEBUG
5801
5802 static void
5803 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
5804 {
5805 removed_literal *r;
5806 r = removed_list->head;
5807 if (r)
5808 fprintf (fp, "Removed Literals\n");
5809 for (; r != NULL; r = r->next)
5810 {
5811 print_r_reloc (fp, &r->from);
5812 fprintf (fp, " => ");
5813 if (r->to.abfd == NULL)
5814 fprintf (fp, "REMOVED");
5815 else
5816 print_r_reloc (fp, &r->to);
5817 fprintf (fp, "\n");
5818 }
5819 }
5820
5821 #endif /* DEBUG */
5822
5823 \f
5824 /* Per-section data for relaxation. */
5825
5826 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5827
5828 struct xtensa_relax_info_struct
5829 {
5830 bfd_boolean is_relaxable_literal_section;
5831 bfd_boolean is_relaxable_asm_section;
5832 int visited; /* Number of times visited. */
5833
5834 source_reloc *src_relocs; /* Array[src_count]. */
5835 int src_count;
5836 int src_next; /* Next src_relocs entry to assign. */
5837
5838 removed_literal_list removed_list;
5839 text_action_list action_list;
5840
5841 reloc_bfd_fix *fix_list;
5842 reloc_bfd_fix *fix_array;
5843 unsigned fix_array_count;
5844
5845 /* Support for expanding the reloc array that is stored
5846 in the section structure. If the relocations have been
5847 reallocated, the newly allocated relocations will be referenced
5848 here along with the actual size allocated. The relocation
5849 count will always be found in the section structure. */
5850 Elf_Internal_Rela *allocated_relocs;
5851 unsigned relocs_count;
5852 unsigned allocated_relocs_count;
5853 };
5854
5855 struct elf_xtensa_section_data
5856 {
5857 struct bfd_elf_section_data elf;
5858 xtensa_relax_info relax_info;
5859 };
5860
5861
5862 static bfd_boolean
5863 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5864 {
5865 if (!sec->used_by_bfd)
5866 {
5867 struct elf_xtensa_section_data *sdata;
5868 bfd_size_type amt = sizeof (*sdata);
5869
5870 sdata = bfd_zalloc (abfd, amt);
5871 if (sdata == NULL)
5872 return FALSE;
5873 sec->used_by_bfd = sdata;
5874 }
5875
5876 return _bfd_elf_new_section_hook (abfd, sec);
5877 }
5878
5879
5880 static xtensa_relax_info *
5881 get_xtensa_relax_info (asection *sec)
5882 {
5883 struct elf_xtensa_section_data *section_data;
5884
5885 /* No info available if no section or if it is an output section. */
5886 if (!sec || sec == sec->output_section)
5887 return NULL;
5888
5889 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5890 return &section_data->relax_info;
5891 }
5892
5893
5894 static void
5895 init_xtensa_relax_info (asection *sec)
5896 {
5897 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5898
5899 relax_info->is_relaxable_literal_section = FALSE;
5900 relax_info->is_relaxable_asm_section = FALSE;
5901 relax_info->visited = 0;
5902
5903 relax_info->src_relocs = NULL;
5904 relax_info->src_count = 0;
5905 relax_info->src_next = 0;
5906
5907 relax_info->removed_list.head = NULL;
5908 relax_info->removed_list.tail = NULL;
5909
5910 relax_info->action_list.head = NULL;
5911
5912 relax_info->fix_list = NULL;
5913 relax_info->fix_array = NULL;
5914 relax_info->fix_array_count = 0;
5915
5916 relax_info->allocated_relocs = NULL;
5917 relax_info->relocs_count = 0;
5918 relax_info->allocated_relocs_count = 0;
5919 }
5920
5921 \f
5922 /* Coalescing literals may require a relocation to refer to a section in
5923 a different input file, but the standard relocation information
5924 cannot express that. Instead, the reloc_bfd_fix structures are used
5925 to "fix" the relocations that refer to sections in other input files.
5926 These structures are kept on per-section lists. The "src_type" field
5927 records the relocation type in case there are multiple relocations on
5928 the same location. FIXME: This is ugly; an alternative might be to
5929 add new symbols with the "owner" field to some other input file. */
5930
5931 struct reloc_bfd_fix_struct
5932 {
5933 asection *src_sec;
5934 bfd_vma src_offset;
5935 unsigned src_type; /* Relocation type. */
5936
5937 asection *target_sec;
5938 bfd_vma target_offset;
5939 bfd_boolean translated;
5940
5941 reloc_bfd_fix *next;
5942 };
5943
5944
5945 static reloc_bfd_fix *
5946 reloc_bfd_fix_init (asection *src_sec,
5947 bfd_vma src_offset,
5948 unsigned src_type,
5949 asection *target_sec,
5950 bfd_vma target_offset,
5951 bfd_boolean translated)
5952 {
5953 reloc_bfd_fix *fix;
5954
5955 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5956 fix->src_sec = src_sec;
5957 fix->src_offset = src_offset;
5958 fix->src_type = src_type;
5959 fix->target_sec = target_sec;
5960 fix->target_offset = target_offset;
5961 fix->translated = translated;
5962
5963 return fix;
5964 }
5965
5966
5967 static void
5968 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5969 {
5970 xtensa_relax_info *relax_info;
5971
5972 relax_info = get_xtensa_relax_info (src_sec);
5973 fix->next = relax_info->fix_list;
5974 relax_info->fix_list = fix;
5975 }
5976
5977
5978 static int
5979 fix_compare (const void *ap, const void *bp)
5980 {
5981 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5982 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5983
5984 if (a->src_offset != b->src_offset)
5985 return (a->src_offset - b->src_offset);
5986 return (a->src_type - b->src_type);
5987 }
5988
5989
5990 static void
5991 cache_fix_array (asection *sec)
5992 {
5993 unsigned i, count = 0;
5994 reloc_bfd_fix *r;
5995 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5996
5997 if (relax_info == NULL)
5998 return;
5999 if (relax_info->fix_list == NULL)
6000 return;
6001
6002 for (r = relax_info->fix_list; r != NULL; r = r->next)
6003 count++;
6004
6005 relax_info->fix_array =
6006 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6007 relax_info->fix_array_count = count;
6008
6009 r = relax_info->fix_list;
6010 for (i = 0; i < count; i++, r = r->next)
6011 {
6012 relax_info->fix_array[count - 1 - i] = *r;
6013 relax_info->fix_array[count - 1 - i].next = NULL;
6014 }
6015
6016 qsort (relax_info->fix_array, relax_info->fix_array_count,
6017 sizeof (reloc_bfd_fix), fix_compare);
6018 }
6019
6020
6021 static reloc_bfd_fix *
6022 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6023 {
6024 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6025 reloc_bfd_fix *rv;
6026 reloc_bfd_fix key;
6027
6028 if (relax_info == NULL)
6029 return NULL;
6030 if (relax_info->fix_list == NULL)
6031 return NULL;
6032
6033 if (relax_info->fix_array == NULL)
6034 cache_fix_array (sec);
6035
6036 key.src_offset = offset;
6037 key.src_type = type;
6038 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6039 sizeof (reloc_bfd_fix), fix_compare);
6040 return rv;
6041 }
6042
6043 \f
6044 /* Section caching. */
6045
6046 typedef struct section_cache_struct section_cache_t;
6047
6048 struct section_cache_struct
6049 {
6050 asection *sec;
6051
6052 bfd_byte *contents; /* Cache of the section contents. */
6053 bfd_size_type content_length;
6054
6055 property_table_entry *ptbl; /* Cache of the section property table. */
6056 unsigned pte_count;
6057
6058 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6059 unsigned reloc_count;
6060 };
6061
6062
6063 static void
6064 init_section_cache (section_cache_t *sec_cache)
6065 {
6066 memset (sec_cache, 0, sizeof (*sec_cache));
6067 }
6068
6069
6070 static void
6071 free_section_cache (section_cache_t *sec_cache)
6072 {
6073 if (sec_cache->sec)
6074 {
6075 release_contents (sec_cache->sec, sec_cache->contents);
6076 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6077 if (sec_cache->ptbl)
6078 free (sec_cache->ptbl);
6079 }
6080 }
6081
6082
6083 static bfd_boolean
6084 section_cache_section (section_cache_t *sec_cache,
6085 asection *sec,
6086 struct bfd_link_info *link_info)
6087 {
6088 bfd *abfd;
6089 property_table_entry *prop_table = NULL;
6090 int ptblsize = 0;
6091 bfd_byte *contents = NULL;
6092 Elf_Internal_Rela *internal_relocs = NULL;
6093 bfd_size_type sec_size;
6094
6095 if (sec == NULL)
6096 return FALSE;
6097 if (sec == sec_cache->sec)
6098 return TRUE;
6099
6100 abfd = sec->owner;
6101 sec_size = bfd_get_section_limit (abfd, sec);
6102
6103 /* Get the contents. */
6104 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6105 if (contents == NULL && sec_size != 0)
6106 goto err;
6107
6108 /* Get the relocations. */
6109 internal_relocs = retrieve_internal_relocs (abfd, sec,
6110 link_info->keep_memory);
6111
6112 /* Get the entry table. */
6113 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6114 XTENSA_PROP_SEC_NAME, FALSE);
6115 if (ptblsize < 0)
6116 goto err;
6117
6118 /* Fill in the new section cache. */
6119 free_section_cache (sec_cache);
6120 init_section_cache (sec_cache);
6121
6122 sec_cache->sec = sec;
6123 sec_cache->contents = contents;
6124 sec_cache->content_length = sec_size;
6125 sec_cache->relocs = internal_relocs;
6126 sec_cache->reloc_count = sec->reloc_count;
6127 sec_cache->pte_count = ptblsize;
6128 sec_cache->ptbl = prop_table;
6129
6130 return TRUE;
6131
6132 err:
6133 release_contents (sec, contents);
6134 release_internal_relocs (sec, internal_relocs);
6135 if (prop_table)
6136 free (prop_table);
6137 return FALSE;
6138 }
6139
6140 \f
6141 /* Extended basic blocks. */
6142
6143 /* An ebb_struct represents an Extended Basic Block. Within this
6144 range, we guarantee that all instructions are decodable, the
6145 property table entries are contiguous, and no property table
6146 specifies a segment that cannot have instructions moved. This
6147 structure contains caches of the contents, property table and
6148 relocations for the specified section for easy use. The range is
6149 specified by ranges of indices for the byte offset, property table
6150 offsets and relocation offsets. These must be consistent. */
6151
6152 typedef struct ebb_struct ebb_t;
6153
6154 struct ebb_struct
6155 {
6156 asection *sec;
6157
6158 bfd_byte *contents; /* Cache of the section contents. */
6159 bfd_size_type content_length;
6160
6161 property_table_entry *ptbl; /* Cache of the section property table. */
6162 unsigned pte_count;
6163
6164 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6165 unsigned reloc_count;
6166
6167 bfd_vma start_offset; /* Offset in section. */
6168 unsigned start_ptbl_idx; /* Offset in the property table. */
6169 unsigned start_reloc_idx; /* Offset in the relocations. */
6170
6171 bfd_vma end_offset;
6172 unsigned end_ptbl_idx;
6173 unsigned end_reloc_idx;
6174
6175 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6176
6177 /* The unreachable property table at the end of this set of blocks;
6178 NULL if the end is not an unreachable block. */
6179 property_table_entry *ends_unreachable;
6180 };
6181
6182
6183 enum ebb_target_enum
6184 {
6185 EBB_NO_ALIGN = 0,
6186 EBB_DESIRE_TGT_ALIGN,
6187 EBB_REQUIRE_TGT_ALIGN,
6188 EBB_REQUIRE_LOOP_ALIGN,
6189 EBB_REQUIRE_ALIGN
6190 };
6191
6192
6193 /* proposed_action_struct is similar to the text_action_struct except
6194 that is represents a potential transformation, not one that will
6195 occur. We build a list of these for an extended basic block
6196 and use them to compute the actual actions desired. We must be
6197 careful that the entire set of actual actions we perform do not
6198 break any relocations that would fit if the actions were not
6199 performed. */
6200
6201 typedef struct proposed_action_struct proposed_action;
6202
6203 struct proposed_action_struct
6204 {
6205 enum ebb_target_enum align_type; /* for the target alignment */
6206 bfd_vma alignment_pow;
6207 text_action_t action;
6208 bfd_vma offset;
6209 int removed_bytes;
6210 bfd_boolean do_action; /* If false, then we will not perform the action. */
6211 };
6212
6213
6214 /* The ebb_constraint_struct keeps a set of proposed actions for an
6215 extended basic block. */
6216
6217 typedef struct ebb_constraint_struct ebb_constraint;
6218
6219 struct ebb_constraint_struct
6220 {
6221 ebb_t ebb;
6222 bfd_boolean start_movable;
6223
6224 /* Bytes of extra space at the beginning if movable. */
6225 int start_extra_space;
6226
6227 enum ebb_target_enum start_align;
6228
6229 bfd_boolean end_movable;
6230
6231 /* Bytes of extra space at the end if movable. */
6232 int end_extra_space;
6233
6234 unsigned action_count;
6235 unsigned action_allocated;
6236
6237 /* Array of proposed actions. */
6238 proposed_action *actions;
6239
6240 /* Action alignments -- one for each proposed action. */
6241 enum ebb_target_enum *action_aligns;
6242 };
6243
6244
6245 static void
6246 init_ebb_constraint (ebb_constraint *c)
6247 {
6248 memset (c, 0, sizeof (ebb_constraint));
6249 }
6250
6251
6252 static void
6253 free_ebb_constraint (ebb_constraint *c)
6254 {
6255 if (c->actions)
6256 free (c->actions);
6257 }
6258
6259
6260 static void
6261 init_ebb (ebb_t *ebb,
6262 asection *sec,
6263 bfd_byte *contents,
6264 bfd_size_type content_length,
6265 property_table_entry *prop_table,
6266 unsigned ptblsize,
6267 Elf_Internal_Rela *internal_relocs,
6268 unsigned reloc_count)
6269 {
6270 memset (ebb, 0, sizeof (ebb_t));
6271 ebb->sec = sec;
6272 ebb->contents = contents;
6273 ebb->content_length = content_length;
6274 ebb->ptbl = prop_table;
6275 ebb->pte_count = ptblsize;
6276 ebb->relocs = internal_relocs;
6277 ebb->reloc_count = reloc_count;
6278 ebb->start_offset = 0;
6279 ebb->end_offset = ebb->content_length - 1;
6280 ebb->start_ptbl_idx = 0;
6281 ebb->end_ptbl_idx = ptblsize;
6282 ebb->start_reloc_idx = 0;
6283 ebb->end_reloc_idx = reloc_count;
6284 }
6285
6286
6287 /* Extend the ebb to all decodable contiguous sections. The algorithm
6288 for building a basic block around an instruction is to push it
6289 forward until we hit the end of a section, an unreachable block or
6290 a block that cannot be transformed. Then we push it backwards
6291 searching for similar conditions. */
6292
6293 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6294 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6295 static bfd_size_type insn_block_decodable_len
6296 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6297
6298 static bfd_boolean
6299 extend_ebb_bounds (ebb_t *ebb)
6300 {
6301 if (!extend_ebb_bounds_forward (ebb))
6302 return FALSE;
6303 if (!extend_ebb_bounds_backward (ebb))
6304 return FALSE;
6305 return TRUE;
6306 }
6307
6308
6309 static bfd_boolean
6310 extend_ebb_bounds_forward (ebb_t *ebb)
6311 {
6312 property_table_entry *the_entry, *new_entry;
6313
6314 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6315
6316 /* Stop when (1) we cannot decode an instruction, (2) we are at
6317 the end of the property tables, (3) we hit a non-contiguous property
6318 table entry, (4) we hit a NO_TRANSFORM region. */
6319
6320 while (1)
6321 {
6322 bfd_vma entry_end;
6323 bfd_size_type insn_block_len;
6324
6325 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6326 insn_block_len =
6327 insn_block_decodable_len (ebb->contents, ebb->content_length,
6328 ebb->end_offset,
6329 entry_end - ebb->end_offset);
6330 if (insn_block_len != (entry_end - ebb->end_offset))
6331 {
6332 (*_bfd_error_handler)
6333 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6334 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6335 return FALSE;
6336 }
6337 ebb->end_offset += insn_block_len;
6338
6339 if (ebb->end_offset == ebb->sec->size)
6340 ebb->ends_section = TRUE;
6341
6342 /* Update the reloc counter. */
6343 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6344 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6345 < ebb->end_offset))
6346 {
6347 ebb->end_reloc_idx++;
6348 }
6349
6350 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6351 return TRUE;
6352
6353 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6354 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6355 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6356 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6357 break;
6358
6359 if (the_entry->address + the_entry->size != new_entry->address)
6360 break;
6361
6362 the_entry = new_entry;
6363 ebb->end_ptbl_idx++;
6364 }
6365
6366 /* Quick check for an unreachable or end of file just at the end. */
6367 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6368 {
6369 if (ebb->end_offset == ebb->content_length)
6370 ebb->ends_section = TRUE;
6371 }
6372 else
6373 {
6374 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6375 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6376 && the_entry->address + the_entry->size == new_entry->address)
6377 ebb->ends_unreachable = new_entry;
6378 }
6379
6380 /* Any other ending requires exact alignment. */
6381 return TRUE;
6382 }
6383
6384
6385 static bfd_boolean
6386 extend_ebb_bounds_backward (ebb_t *ebb)
6387 {
6388 property_table_entry *the_entry, *new_entry;
6389
6390 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6391
6392 /* Stop when (1) we cannot decode the instructions in the current entry.
6393 (2) we are at the beginning of the property tables, (3) we hit a
6394 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6395
6396 while (1)
6397 {
6398 bfd_vma block_begin;
6399 bfd_size_type insn_block_len;
6400
6401 block_begin = the_entry->address - ebb->sec->vma;
6402 insn_block_len =
6403 insn_block_decodable_len (ebb->contents, ebb->content_length,
6404 block_begin,
6405 ebb->start_offset - block_begin);
6406 if (insn_block_len != ebb->start_offset - block_begin)
6407 {
6408 (*_bfd_error_handler)
6409 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6410 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6411 return FALSE;
6412 }
6413 ebb->start_offset -= insn_block_len;
6414
6415 /* Update the reloc counter. */
6416 while (ebb->start_reloc_idx > 0
6417 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6418 >= ebb->start_offset))
6419 {
6420 ebb->start_reloc_idx--;
6421 }
6422
6423 if (ebb->start_ptbl_idx == 0)
6424 return TRUE;
6425
6426 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6427 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6428 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6429 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6430 return TRUE;
6431 if (new_entry->address + new_entry->size != the_entry->address)
6432 return TRUE;
6433
6434 the_entry = new_entry;
6435 ebb->start_ptbl_idx--;
6436 }
6437 return TRUE;
6438 }
6439
6440
6441 static bfd_size_type
6442 insn_block_decodable_len (bfd_byte *contents,
6443 bfd_size_type content_len,
6444 bfd_vma block_offset,
6445 bfd_size_type block_len)
6446 {
6447 bfd_vma offset = block_offset;
6448
6449 while (offset < block_offset + block_len)
6450 {
6451 bfd_size_type insn_len = 0;
6452
6453 insn_len = insn_decode_len (contents, content_len, offset);
6454 if (insn_len == 0)
6455 return (offset - block_offset);
6456 offset += insn_len;
6457 }
6458 return (offset - block_offset);
6459 }
6460
6461
6462 static void
6463 ebb_propose_action (ebb_constraint *c,
6464 enum ebb_target_enum align_type,
6465 bfd_vma alignment_pow,
6466 text_action_t action,
6467 bfd_vma offset,
6468 int removed_bytes,
6469 bfd_boolean do_action)
6470 {
6471 proposed_action *act;
6472
6473 if (c->action_allocated <= c->action_count)
6474 {
6475 unsigned new_allocated, i;
6476 proposed_action *new_actions;
6477
6478 new_allocated = (c->action_count + 2) * 2;
6479 new_actions = (proposed_action *)
6480 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6481
6482 for (i = 0; i < c->action_count; i++)
6483 new_actions[i] = c->actions[i];
6484 if (c->actions)
6485 free (c->actions);
6486 c->actions = new_actions;
6487 c->action_allocated = new_allocated;
6488 }
6489
6490 act = &c->actions[c->action_count];
6491 act->align_type = align_type;
6492 act->alignment_pow = alignment_pow;
6493 act->action = action;
6494 act->offset = offset;
6495 act->removed_bytes = removed_bytes;
6496 act->do_action = do_action;
6497
6498 c->action_count++;
6499 }
6500
6501 \f
6502 /* Access to internal relocations, section contents and symbols. */
6503
6504 /* During relaxation, we need to modify relocations, section contents,
6505 and symbol definitions, and we need to keep the original values from
6506 being reloaded from the input files, i.e., we need to "pin" the
6507 modified values in memory. We also want to continue to observe the
6508 setting of the "keep-memory" flag. The following functions wrap the
6509 standard BFD functions to take care of this for us. */
6510
6511 static Elf_Internal_Rela *
6512 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6513 {
6514 Elf_Internal_Rela *internal_relocs;
6515
6516 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6517 return NULL;
6518
6519 internal_relocs = elf_section_data (sec)->relocs;
6520 if (internal_relocs == NULL)
6521 internal_relocs = (_bfd_elf_link_read_relocs
6522 (abfd, sec, NULL, NULL, keep_memory));
6523 return internal_relocs;
6524 }
6525
6526
6527 static void
6528 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6529 {
6530 elf_section_data (sec)->relocs = internal_relocs;
6531 }
6532
6533
6534 static void
6535 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6536 {
6537 if (internal_relocs
6538 && elf_section_data (sec)->relocs != internal_relocs)
6539 free (internal_relocs);
6540 }
6541
6542
6543 static bfd_byte *
6544 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6545 {
6546 bfd_byte *contents;
6547 bfd_size_type sec_size;
6548
6549 sec_size = bfd_get_section_limit (abfd, sec);
6550 contents = elf_section_data (sec)->this_hdr.contents;
6551
6552 if (contents == NULL && sec_size != 0)
6553 {
6554 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6555 {
6556 if (contents)
6557 free (contents);
6558 return NULL;
6559 }
6560 if (keep_memory)
6561 elf_section_data (sec)->this_hdr.contents = contents;
6562 }
6563 return contents;
6564 }
6565
6566
6567 static void
6568 pin_contents (asection *sec, bfd_byte *contents)
6569 {
6570 elf_section_data (sec)->this_hdr.contents = contents;
6571 }
6572
6573
6574 static void
6575 release_contents (asection *sec, bfd_byte *contents)
6576 {
6577 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6578 free (contents);
6579 }
6580
6581
6582 static Elf_Internal_Sym *
6583 retrieve_local_syms (bfd *input_bfd)
6584 {
6585 Elf_Internal_Shdr *symtab_hdr;
6586 Elf_Internal_Sym *isymbuf;
6587 size_t locsymcount;
6588
6589 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6590 locsymcount = symtab_hdr->sh_info;
6591
6592 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6593 if (isymbuf == NULL && locsymcount != 0)
6594 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6595 NULL, NULL, NULL);
6596
6597 /* Save the symbols for this input file so they won't be read again. */
6598 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6599 symtab_hdr->contents = (unsigned char *) isymbuf;
6600
6601 return isymbuf;
6602 }
6603
6604 \f
6605 /* Code for link-time relaxation. */
6606
6607 /* Initialization for relaxation: */
6608 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6609 static bfd_boolean find_relaxable_sections
6610 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6611 static bfd_boolean collect_source_relocs
6612 (bfd *, asection *, struct bfd_link_info *);
6613 static bfd_boolean is_resolvable_asm_expansion
6614 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6615 bfd_boolean *);
6616 static Elf_Internal_Rela *find_associated_l32r_irel
6617 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6618 static bfd_boolean compute_text_actions
6619 (bfd *, asection *, struct bfd_link_info *);
6620 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6621 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6622 typedef struct reloc_range_list_struct reloc_range_list;
6623 static bfd_boolean check_section_ebb_pcrels_fit
6624 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6625 reloc_range_list *, const ebb_constraint *,
6626 const xtensa_opcode *);
6627 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6628 static void text_action_add_proposed
6629 (text_action_list *, const ebb_constraint *, asection *);
6630 static int compute_fill_extra_space (property_table_entry *);
6631
6632 /* First pass: */
6633 static bfd_boolean compute_removed_literals
6634 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6635 static Elf_Internal_Rela *get_irel_at_offset
6636 (asection *, Elf_Internal_Rela *, bfd_vma);
6637 static bfd_boolean is_removable_literal
6638 (const source_reloc *, int, const source_reloc *, int, asection *,
6639 property_table_entry *, int);
6640 static bfd_boolean remove_dead_literal
6641 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6642 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6643 static bfd_boolean identify_literal_placement
6644 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6645 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6646 source_reloc *, property_table_entry *, int, section_cache_t *,
6647 bfd_boolean);
6648 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6649 static bfd_boolean coalesce_shared_literal
6650 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6651 static bfd_boolean move_shared_literal
6652 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6653 int, const r_reloc *, const literal_value *, section_cache_t *);
6654
6655 /* Second pass: */
6656 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6657 static bfd_boolean translate_section_fixes (asection *);
6658 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6659 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6660 static void shrink_dynamic_reloc_sections
6661 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6662 static bfd_boolean move_literal
6663 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6664 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6665 static bfd_boolean relax_property_section
6666 (bfd *, asection *, struct bfd_link_info *);
6667
6668 /* Third pass: */
6669 static bfd_boolean relax_section_symbols (bfd *, asection *);
6670
6671
6672 static bfd_boolean
6673 elf_xtensa_relax_section (bfd *abfd,
6674 asection *sec,
6675 struct bfd_link_info *link_info,
6676 bfd_boolean *again)
6677 {
6678 static value_map_hash_table *values = NULL;
6679 static bfd_boolean relocations_analyzed = FALSE;
6680 xtensa_relax_info *relax_info;
6681
6682 if (!relocations_analyzed)
6683 {
6684 /* Do some overall initialization for relaxation. */
6685 values = value_map_hash_table_init ();
6686 if (values == NULL)
6687 return FALSE;
6688 relaxing_section = TRUE;
6689 if (!analyze_relocations (link_info))
6690 return FALSE;
6691 relocations_analyzed = TRUE;
6692 }
6693 *again = FALSE;
6694
6695 /* Don't mess with linker-created sections. */
6696 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6697 return TRUE;
6698
6699 relax_info = get_xtensa_relax_info (sec);
6700 BFD_ASSERT (relax_info != NULL);
6701
6702 switch (relax_info->visited)
6703 {
6704 case 0:
6705 /* Note: It would be nice to fold this pass into
6706 analyze_relocations, but it is important for this step that the
6707 sections be examined in link order. */
6708 if (!compute_removed_literals (abfd, sec, link_info, values))
6709 return FALSE;
6710 *again = TRUE;
6711 break;
6712
6713 case 1:
6714 if (values)
6715 value_map_hash_table_delete (values);
6716 values = NULL;
6717 if (!relax_section (abfd, sec, link_info))
6718 return FALSE;
6719 *again = TRUE;
6720 break;
6721
6722 case 2:
6723 if (!relax_section_symbols (abfd, sec))
6724 return FALSE;
6725 break;
6726 }
6727
6728 relax_info->visited++;
6729 return TRUE;
6730 }
6731
6732 \f
6733 /* Initialization for relaxation. */
6734
6735 /* This function is called once at the start of relaxation. It scans
6736 all the input sections and marks the ones that are relaxable (i.e.,
6737 literal sections with L32R relocations against them), and then
6738 collects source_reloc information for all the relocations against
6739 those relaxable sections. During this process, it also detects
6740 longcalls, i.e., calls relaxed by the assembler into indirect
6741 calls, that can be optimized back into direct calls. Within each
6742 extended basic block (ebb) containing an optimized longcall, it
6743 computes a set of "text actions" that can be performed to remove
6744 the L32R associated with the longcall while optionally preserving
6745 branch target alignments. */
6746
6747 static bfd_boolean
6748 analyze_relocations (struct bfd_link_info *link_info)
6749 {
6750 bfd *abfd;
6751 asection *sec;
6752 bfd_boolean is_relaxable = FALSE;
6753
6754 /* Initialize the per-section relaxation info. */
6755 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6756 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6757 {
6758 init_xtensa_relax_info (sec);
6759 }
6760
6761 /* Mark relaxable sections (and count relocations against each one). */
6762 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6763 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6764 {
6765 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6766 return FALSE;
6767 }
6768
6769 /* Bail out if there are no relaxable sections. */
6770 if (!is_relaxable)
6771 return TRUE;
6772
6773 /* Allocate space for source_relocs. */
6774 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6775 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6776 {
6777 xtensa_relax_info *relax_info;
6778
6779 relax_info = get_xtensa_relax_info (sec);
6780 if (relax_info->is_relaxable_literal_section
6781 || relax_info->is_relaxable_asm_section)
6782 {
6783 relax_info->src_relocs = (source_reloc *)
6784 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6785 }
6786 else
6787 relax_info->src_count = 0;
6788 }
6789
6790 /* Collect info on relocations against each relaxable section. */
6791 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6792 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6793 {
6794 if (!collect_source_relocs (abfd, sec, link_info))
6795 return FALSE;
6796 }
6797
6798 /* Compute the text actions. */
6799 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6800 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6801 {
6802 if (!compute_text_actions (abfd, sec, link_info))
6803 return FALSE;
6804 }
6805
6806 return TRUE;
6807 }
6808
6809
6810 /* Find all the sections that might be relaxed. The motivation for
6811 this pass is that collect_source_relocs() needs to record _all_ the
6812 relocations that target each relaxable section. That is expensive
6813 and unnecessary unless the target section is actually going to be
6814 relaxed. This pass identifies all such sections by checking if
6815 they have L32Rs pointing to them. In the process, the total number
6816 of relocations targeting each section is also counted so that we
6817 know how much space to allocate for source_relocs against each
6818 relaxable literal section. */
6819
6820 static bfd_boolean
6821 find_relaxable_sections (bfd *abfd,
6822 asection *sec,
6823 struct bfd_link_info *link_info,
6824 bfd_boolean *is_relaxable_p)
6825 {
6826 Elf_Internal_Rela *internal_relocs;
6827 bfd_byte *contents;
6828 bfd_boolean ok = TRUE;
6829 unsigned i;
6830 xtensa_relax_info *source_relax_info;
6831 bfd_boolean is_l32r_reloc;
6832
6833 internal_relocs = retrieve_internal_relocs (abfd, sec,
6834 link_info->keep_memory);
6835 if (internal_relocs == NULL)
6836 return ok;
6837
6838 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6839 if (contents == NULL && sec->size != 0)
6840 {
6841 ok = FALSE;
6842 goto error_return;
6843 }
6844
6845 source_relax_info = get_xtensa_relax_info (sec);
6846 for (i = 0; i < sec->reloc_count; i++)
6847 {
6848 Elf_Internal_Rela *irel = &internal_relocs[i];
6849 r_reloc r_rel;
6850 asection *target_sec;
6851 xtensa_relax_info *target_relax_info;
6852
6853 /* If this section has not already been marked as "relaxable", and
6854 if it contains any ASM_EXPAND relocations (marking expanded
6855 longcalls) that can be optimized into direct calls, then mark
6856 the section as "relaxable". */
6857 if (source_relax_info
6858 && !source_relax_info->is_relaxable_asm_section
6859 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6860 {
6861 bfd_boolean is_reachable = FALSE;
6862 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6863 link_info, &is_reachable)
6864 && is_reachable)
6865 {
6866 source_relax_info->is_relaxable_asm_section = TRUE;
6867 *is_relaxable_p = TRUE;
6868 }
6869 }
6870
6871 r_reloc_init (&r_rel, abfd, irel, contents,
6872 bfd_get_section_limit (abfd, sec));
6873
6874 target_sec = r_reloc_get_section (&r_rel);
6875 target_relax_info = get_xtensa_relax_info (target_sec);
6876 if (!target_relax_info)
6877 continue;
6878
6879 /* Count PC-relative operand relocations against the target section.
6880 Note: The conditions tested here must match the conditions under
6881 which init_source_reloc is called in collect_source_relocs(). */
6882 is_l32r_reloc = FALSE;
6883 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6884 {
6885 xtensa_opcode opcode =
6886 get_relocation_opcode (abfd, sec, contents, irel);
6887 if (opcode != XTENSA_UNDEFINED)
6888 {
6889 is_l32r_reloc = (opcode == get_l32r_opcode ());
6890 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6891 || is_l32r_reloc)
6892 target_relax_info->src_count++;
6893 }
6894 }
6895
6896 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6897 {
6898 /* Mark the target section as relaxable. */
6899 target_relax_info->is_relaxable_literal_section = TRUE;
6900 *is_relaxable_p = TRUE;
6901 }
6902 }
6903
6904 error_return:
6905 release_contents (sec, contents);
6906 release_internal_relocs (sec, internal_relocs);
6907 return ok;
6908 }
6909
6910
6911 /* Record _all_ the relocations that point to relaxable sections, and
6912 get rid of ASM_EXPAND relocs by either converting them to
6913 ASM_SIMPLIFY or by removing them. */
6914
6915 static bfd_boolean
6916 collect_source_relocs (bfd *abfd,
6917 asection *sec,
6918 struct bfd_link_info *link_info)
6919 {
6920 Elf_Internal_Rela *internal_relocs;
6921 bfd_byte *contents;
6922 bfd_boolean ok = TRUE;
6923 unsigned i;
6924 bfd_size_type sec_size;
6925
6926 internal_relocs = retrieve_internal_relocs (abfd, sec,
6927 link_info->keep_memory);
6928 if (internal_relocs == NULL)
6929 return ok;
6930
6931 sec_size = bfd_get_section_limit (abfd, sec);
6932 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6933 if (contents == NULL && sec_size != 0)
6934 {
6935 ok = FALSE;
6936 goto error_return;
6937 }
6938
6939 /* Record relocations against relaxable literal sections. */
6940 for (i = 0; i < sec->reloc_count; i++)
6941 {
6942 Elf_Internal_Rela *irel = &internal_relocs[i];
6943 r_reloc r_rel;
6944 asection *target_sec;
6945 xtensa_relax_info *target_relax_info;
6946
6947 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6948
6949 target_sec = r_reloc_get_section (&r_rel);
6950 target_relax_info = get_xtensa_relax_info (target_sec);
6951
6952 if (target_relax_info
6953 && (target_relax_info->is_relaxable_literal_section
6954 || target_relax_info->is_relaxable_asm_section))
6955 {
6956 xtensa_opcode opcode = XTENSA_UNDEFINED;
6957 int opnd = -1;
6958 bfd_boolean is_abs_literal = FALSE;
6959
6960 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6961 {
6962 /* None of the current alternate relocs are PC-relative,
6963 and only PC-relative relocs matter here. However, we
6964 still need to record the opcode for literal
6965 coalescing. */
6966 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6967 if (opcode == get_l32r_opcode ())
6968 {
6969 is_abs_literal = TRUE;
6970 opnd = 1;
6971 }
6972 else
6973 opcode = XTENSA_UNDEFINED;
6974 }
6975 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6976 {
6977 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6978 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6979 }
6980
6981 if (opcode != XTENSA_UNDEFINED)
6982 {
6983 int src_next = target_relax_info->src_next++;
6984 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6985
6986 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6987 is_abs_literal);
6988 }
6989 }
6990 }
6991
6992 /* Now get rid of ASM_EXPAND relocations. At this point, the
6993 src_relocs array for the target literal section may still be
6994 incomplete, but it must at least contain the entries for the L32R
6995 relocations associated with ASM_EXPANDs because they were just
6996 added in the preceding loop over the relocations. */
6997
6998 for (i = 0; i < sec->reloc_count; i++)
6999 {
7000 Elf_Internal_Rela *irel = &internal_relocs[i];
7001 bfd_boolean is_reachable;
7002
7003 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7004 &is_reachable))
7005 continue;
7006
7007 if (is_reachable)
7008 {
7009 Elf_Internal_Rela *l32r_irel;
7010 r_reloc r_rel;
7011 asection *target_sec;
7012 xtensa_relax_info *target_relax_info;
7013
7014 /* Mark the source_reloc for the L32R so that it will be
7015 removed in compute_removed_literals(), along with the
7016 associated literal. */
7017 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7018 irel, internal_relocs);
7019 if (l32r_irel == NULL)
7020 continue;
7021
7022 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7023
7024 target_sec = r_reloc_get_section (&r_rel);
7025 target_relax_info = get_xtensa_relax_info (target_sec);
7026
7027 if (target_relax_info
7028 && (target_relax_info->is_relaxable_literal_section
7029 || target_relax_info->is_relaxable_asm_section))
7030 {
7031 source_reloc *s_reloc;
7032
7033 /* Search the source_relocs for the entry corresponding to
7034 the l32r_irel. Note: The src_relocs array is not yet
7035 sorted, but it wouldn't matter anyway because we're
7036 searching by source offset instead of target offset. */
7037 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7038 target_relax_info->src_next,
7039 sec, l32r_irel);
7040 BFD_ASSERT (s_reloc);
7041 s_reloc->is_null = TRUE;
7042 }
7043
7044 /* Convert this reloc to ASM_SIMPLIFY. */
7045 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7046 R_XTENSA_ASM_SIMPLIFY);
7047 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7048
7049 pin_internal_relocs (sec, internal_relocs);
7050 }
7051 else
7052 {
7053 /* It is resolvable but doesn't reach. We resolve now
7054 by eliminating the relocation -- the call will remain
7055 expanded into L32R/CALLX. */
7056 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7057 pin_internal_relocs (sec, internal_relocs);
7058 }
7059 }
7060
7061 error_return:
7062 release_contents (sec, contents);
7063 release_internal_relocs (sec, internal_relocs);
7064 return ok;
7065 }
7066
7067
7068 /* Return TRUE if the asm expansion can be resolved. Generally it can
7069 be resolved on a final link or when a partial link locates it in the
7070 same section as the target. Set "is_reachable" flag if the target of
7071 the call is within the range of a direct call, given the current VMA
7072 for this section and the target section. */
7073
7074 bfd_boolean
7075 is_resolvable_asm_expansion (bfd *abfd,
7076 asection *sec,
7077 bfd_byte *contents,
7078 Elf_Internal_Rela *irel,
7079 struct bfd_link_info *link_info,
7080 bfd_boolean *is_reachable_p)
7081 {
7082 asection *target_sec;
7083 bfd_vma target_offset;
7084 r_reloc r_rel;
7085 xtensa_opcode opcode, direct_call_opcode;
7086 bfd_vma self_address;
7087 bfd_vma dest_address;
7088 bfd_boolean uses_l32r;
7089 bfd_size_type sec_size;
7090
7091 *is_reachable_p = FALSE;
7092
7093 if (contents == NULL)
7094 return FALSE;
7095
7096 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7097 return FALSE;
7098
7099 sec_size = bfd_get_section_limit (abfd, sec);
7100 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7101 sec_size - irel->r_offset, &uses_l32r);
7102 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7103 if (!uses_l32r)
7104 return FALSE;
7105
7106 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7107 if (direct_call_opcode == XTENSA_UNDEFINED)
7108 return FALSE;
7109
7110 /* Check and see that the target resolves. */
7111 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7112 if (!r_reloc_is_defined (&r_rel))
7113 return FALSE;
7114
7115 target_sec = r_reloc_get_section (&r_rel);
7116 target_offset = r_rel.target_offset;
7117
7118 /* If the target is in a shared library, then it doesn't reach. This
7119 isn't supposed to come up because the compiler should never generate
7120 non-PIC calls on systems that use shared libraries, but the linker
7121 shouldn't crash regardless. */
7122 if (!target_sec->output_section)
7123 return FALSE;
7124
7125 /* For relocatable sections, we can only simplify when the output
7126 section of the target is the same as the output section of the
7127 source. */
7128 if (link_info->relocatable
7129 && (target_sec->output_section != sec->output_section
7130 || is_reloc_sym_weak (abfd, irel)))
7131 return FALSE;
7132
7133 if (target_sec->output_section != sec->output_section)
7134 {
7135 /* If the two sections are sufficiently far away that relaxation
7136 might take the call out of range, we can't simplify. For
7137 example, a positive displacement call into another memory
7138 could get moved to a lower address due to literal removal,
7139 but the destination won't move, and so the displacment might
7140 get larger.
7141
7142 If the displacement is negative, assume the destination could
7143 move as far back as the start of the output section. The
7144 self_address will be at least as far into the output section
7145 as it is prior to relaxation.
7146
7147 If the displacement is postive, assume the destination will be in
7148 it's pre-relaxed location (because relaxation only makes sections
7149 smaller). The self_address could go all the way to the beginning
7150 of the output section. */
7151
7152 dest_address = target_sec->output_section->vma;
7153 self_address = sec->output_section->vma;
7154
7155 if (sec->output_section->vma > target_sec->output_section->vma)
7156 self_address += sec->output_offset + irel->r_offset + 3;
7157 else
7158 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7159 /* Call targets should be four-byte aligned. */
7160 dest_address = (dest_address + 3) & ~3;
7161 }
7162 else
7163 {
7164
7165 self_address = (sec->output_section->vma
7166 + sec->output_offset + irel->r_offset + 3);
7167 dest_address = (target_sec->output_section->vma
7168 + target_sec->output_offset + target_offset);
7169 }
7170
7171 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7172 self_address, dest_address);
7173
7174 if ((self_address >> CALL_SEGMENT_BITS) !=
7175 (dest_address >> CALL_SEGMENT_BITS))
7176 return FALSE;
7177
7178 return TRUE;
7179 }
7180
7181
7182 static Elf_Internal_Rela *
7183 find_associated_l32r_irel (bfd *abfd,
7184 asection *sec,
7185 bfd_byte *contents,
7186 Elf_Internal_Rela *other_irel,
7187 Elf_Internal_Rela *internal_relocs)
7188 {
7189 unsigned i;
7190
7191 for (i = 0; i < sec->reloc_count; i++)
7192 {
7193 Elf_Internal_Rela *irel = &internal_relocs[i];
7194
7195 if (irel == other_irel)
7196 continue;
7197 if (irel->r_offset != other_irel->r_offset)
7198 continue;
7199 if (is_l32r_relocation (abfd, sec, contents, irel))
7200 return irel;
7201 }
7202
7203 return NULL;
7204 }
7205
7206
7207 static xtensa_opcode *
7208 build_reloc_opcodes (bfd *abfd,
7209 asection *sec,
7210 bfd_byte *contents,
7211 Elf_Internal_Rela *internal_relocs)
7212 {
7213 unsigned i;
7214 xtensa_opcode *reloc_opcodes =
7215 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7216 for (i = 0; i < sec->reloc_count; i++)
7217 {
7218 Elf_Internal_Rela *irel = &internal_relocs[i];
7219 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7220 }
7221 return reloc_opcodes;
7222 }
7223
7224 struct reloc_range_struct
7225 {
7226 bfd_vma addr;
7227 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7228 /* Original irel index in the array of relocations for a section. */
7229 unsigned irel_index;
7230 };
7231 typedef struct reloc_range_struct reloc_range;
7232
7233 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7234 struct reloc_range_list_entry_struct
7235 {
7236 reloc_range_list_entry *next;
7237 reloc_range_list_entry *prev;
7238 Elf_Internal_Rela *irel;
7239 xtensa_opcode opcode;
7240 int opnum;
7241 };
7242
7243 struct reloc_range_list_struct
7244 {
7245 /* The rest of the structure is only meaningful when ok is TRUE. */
7246 bfd_boolean ok;
7247
7248 unsigned n_range; /* Number of range markers. */
7249 reloc_range *range; /* Sorted range markers. */
7250
7251 unsigned first; /* Index of a first range element in the list. */
7252 unsigned last; /* One past index of a last range element in the list. */
7253
7254 unsigned n_list; /* Number of list elements. */
7255 reloc_range_list_entry *reloc; /* */
7256 reloc_range_list_entry list_root;
7257 };
7258
7259 static int
7260 reloc_range_compare (const void *a, const void *b)
7261 {
7262 const reloc_range *ra = a;
7263 const reloc_range *rb = b;
7264
7265 if (ra->addr != rb->addr)
7266 return ra->addr < rb->addr ? -1 : 1;
7267 if (ra->add != rb->add)
7268 return ra->add ? -1 : 1;
7269 return 0;
7270 }
7271
7272 static void
7273 build_reloc_ranges (bfd *abfd, asection *sec,
7274 bfd_byte *contents,
7275 Elf_Internal_Rela *internal_relocs,
7276 xtensa_opcode *reloc_opcodes,
7277 reloc_range_list *list)
7278 {
7279 unsigned i;
7280 size_t n = 0;
7281 size_t max_n = 0;
7282 reloc_range *ranges = NULL;
7283 reloc_range_list_entry *reloc =
7284 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7285
7286 memset (list, 0, sizeof (*list));
7287 list->ok = TRUE;
7288
7289 for (i = 0; i < sec->reloc_count; i++)
7290 {
7291 Elf_Internal_Rela *irel = &internal_relocs[i];
7292 int r_type = ELF32_R_TYPE (irel->r_info);
7293 reloc_howto_type *howto = &elf_howto_table[r_type];
7294 r_reloc r_rel;
7295
7296 if (r_type == R_XTENSA_ASM_SIMPLIFY
7297 || r_type == R_XTENSA_32_PCREL
7298 || !howto->pc_relative)
7299 continue;
7300
7301 r_reloc_init (&r_rel, abfd, irel, contents,
7302 bfd_get_section_limit (abfd, sec));
7303
7304 if (r_reloc_get_section (&r_rel) != sec)
7305 continue;
7306
7307 if (n + 2 > max_n)
7308 {
7309 max_n = (max_n + 2) * 2;
7310 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7311 }
7312
7313 ranges[n].addr = irel->r_offset;
7314 ranges[n + 1].addr = r_rel.target_offset;
7315
7316 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7317 ranges[n + 1].add = !ranges[n].add;
7318
7319 ranges[n].irel_index = i;
7320 ranges[n + 1].irel_index = i;
7321
7322 n += 2;
7323
7324 reloc[i].irel = irel;
7325
7326 /* Every relocation won't possibly be checked in the optimized version of
7327 check_section_ebb_pcrels_fit, so this needs to be done here. */
7328 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7329 {
7330 /* None of the current alternate relocs are PC-relative,
7331 and only PC-relative relocs matter here. */
7332 }
7333 else
7334 {
7335 xtensa_opcode opcode;
7336 int opnum;
7337
7338 if (reloc_opcodes)
7339 opcode = reloc_opcodes[i];
7340 else
7341 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7342
7343 if (opcode == XTENSA_UNDEFINED)
7344 {
7345 list->ok = FALSE;
7346 break;
7347 }
7348
7349 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7350 if (opnum == XTENSA_UNDEFINED)
7351 {
7352 list->ok = FALSE;
7353 break;
7354 }
7355
7356 /* Record relocation opcode and opnum as we've calculated them
7357 anyway and they won't change. */
7358 reloc[i].opcode = opcode;
7359 reloc[i].opnum = opnum;
7360 }
7361 }
7362
7363 if (list->ok)
7364 {
7365 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7366 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7367
7368 list->n_range = n;
7369 list->range = ranges;
7370 list->reloc = reloc;
7371 list->list_root.prev = &list->list_root;
7372 list->list_root.next = &list->list_root;
7373 }
7374 else
7375 {
7376 free (ranges);
7377 free (reloc);
7378 }
7379 }
7380
7381 static void reloc_range_list_append (reloc_range_list *list,
7382 unsigned irel_index)
7383 {
7384 reloc_range_list_entry *entry = list->reloc + irel_index;
7385
7386 entry->prev = list->list_root.prev;
7387 entry->next = &list->list_root;
7388 entry->prev->next = entry;
7389 entry->next->prev = entry;
7390 ++list->n_list;
7391 }
7392
7393 static void reloc_range_list_remove (reloc_range_list *list,
7394 unsigned irel_index)
7395 {
7396 reloc_range_list_entry *entry = list->reloc + irel_index;
7397
7398 entry->next->prev = entry->prev;
7399 entry->prev->next = entry->next;
7400 --list->n_list;
7401 }
7402
7403 /* Update relocation list object so that it lists all relocations that cross
7404 [first; last] range. Range bounds should not decrease with successive
7405 invocations. */
7406 static void reloc_range_list_update_range (reloc_range_list *list,
7407 bfd_vma first, bfd_vma last)
7408 {
7409 /* This should not happen: EBBs are iterated from lower addresses to higher.
7410 But even if that happens there's no need to break: just flush current list
7411 and start from scratch. */
7412 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7413 (list->first > 0 && list->range[list->first - 1].addr >= first))
7414 {
7415 list->first = 0;
7416 list->last = 0;
7417 list->n_list = 0;
7418 list->list_root.next = &list->list_root;
7419 list->list_root.prev = &list->list_root;
7420 fprintf (stderr, "%s: move backwards requested\n", __func__);
7421 }
7422
7423 for (; list->last < list->n_range &&
7424 list->range[list->last].addr <= last; ++list->last)
7425 if (list->range[list->last].add)
7426 reloc_range_list_append (list, list->range[list->last].irel_index);
7427
7428 for (; list->first < list->n_range &&
7429 list->range[list->first].addr < first; ++list->first)
7430 if (!list->range[list->first].add)
7431 reloc_range_list_remove (list, list->range[list->first].irel_index);
7432 }
7433
7434 static void free_reloc_range_list (reloc_range_list *list)
7435 {
7436 free (list->range);
7437 free (list->reloc);
7438 }
7439
7440 /* The compute_text_actions function will build a list of potential
7441 transformation actions for code in the extended basic block of each
7442 longcall that is optimized to a direct call. From this list we
7443 generate a set of actions to actually perform that optimizes for
7444 space and, if not using size_opt, maintains branch target
7445 alignments.
7446
7447 These actions to be performed are placed on a per-section list.
7448 The actual changes are performed by relax_section() in the second
7449 pass. */
7450
7451 bfd_boolean
7452 compute_text_actions (bfd *abfd,
7453 asection *sec,
7454 struct bfd_link_info *link_info)
7455 {
7456 xtensa_opcode *reloc_opcodes = NULL;
7457 xtensa_relax_info *relax_info;
7458 bfd_byte *contents;
7459 Elf_Internal_Rela *internal_relocs;
7460 bfd_boolean ok = TRUE;
7461 unsigned i;
7462 property_table_entry *prop_table = 0;
7463 int ptblsize = 0;
7464 bfd_size_type sec_size;
7465 reloc_range_list relevant_relocs;
7466
7467 relax_info = get_xtensa_relax_info (sec);
7468 BFD_ASSERT (relax_info);
7469 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7470
7471 /* Do nothing if the section contains no optimized longcalls. */
7472 if (!relax_info->is_relaxable_asm_section)
7473 return ok;
7474
7475 internal_relocs = retrieve_internal_relocs (abfd, sec,
7476 link_info->keep_memory);
7477
7478 if (internal_relocs)
7479 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7480 internal_reloc_compare);
7481
7482 sec_size = bfd_get_section_limit (abfd, sec);
7483 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7484 if (contents == NULL && sec_size != 0)
7485 {
7486 ok = FALSE;
7487 goto error_return;
7488 }
7489
7490 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7491 XTENSA_PROP_SEC_NAME, FALSE);
7492 if (ptblsize < 0)
7493 {
7494 ok = FALSE;
7495 goto error_return;
7496 }
7497
7498 /* Precompute the opcode for each relocation. */
7499 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7500
7501 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7502 &relevant_relocs);
7503
7504 for (i = 0; i < sec->reloc_count; i++)
7505 {
7506 Elf_Internal_Rela *irel = &internal_relocs[i];
7507 bfd_vma r_offset;
7508 property_table_entry *the_entry;
7509 int ptbl_idx;
7510 ebb_t *ebb;
7511 ebb_constraint ebb_table;
7512 bfd_size_type simplify_size;
7513
7514 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7515 continue;
7516 r_offset = irel->r_offset;
7517
7518 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7519 if (simplify_size == 0)
7520 {
7521 (*_bfd_error_handler)
7522 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7523 sec->owner, sec, r_offset);
7524 continue;
7525 }
7526
7527 /* If the instruction table is not around, then don't do this
7528 relaxation. */
7529 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7530 sec->vma + irel->r_offset);
7531 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7532 {
7533 text_action_add (&relax_info->action_list,
7534 ta_convert_longcall, sec, r_offset,
7535 0);
7536 continue;
7537 }
7538
7539 /* If the next longcall happens to be at the same address as an
7540 unreachable section of size 0, then skip forward. */
7541 ptbl_idx = the_entry - prop_table;
7542 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7543 && the_entry->size == 0
7544 && ptbl_idx + 1 < ptblsize
7545 && (prop_table[ptbl_idx + 1].address
7546 == prop_table[ptbl_idx].address))
7547 {
7548 ptbl_idx++;
7549 the_entry++;
7550 }
7551
7552 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7553 /* NO_REORDER is OK */
7554 continue;
7555
7556 init_ebb_constraint (&ebb_table);
7557 ebb = &ebb_table.ebb;
7558 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7559 internal_relocs, sec->reloc_count);
7560 ebb->start_offset = r_offset + simplify_size;
7561 ebb->end_offset = r_offset + simplify_size;
7562 ebb->start_ptbl_idx = ptbl_idx;
7563 ebb->end_ptbl_idx = ptbl_idx;
7564 ebb->start_reloc_idx = i;
7565 ebb->end_reloc_idx = i;
7566
7567 if (!extend_ebb_bounds (ebb)
7568 || !compute_ebb_proposed_actions (&ebb_table)
7569 || !compute_ebb_actions (&ebb_table)
7570 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7571 internal_relocs,
7572 &relevant_relocs,
7573 &ebb_table, reloc_opcodes)
7574 || !check_section_ebb_reduces (&ebb_table))
7575 {
7576 /* If anything goes wrong or we get unlucky and something does
7577 not fit, with our plan because of expansion between
7578 critical branches, just convert to a NOP. */
7579
7580 text_action_add (&relax_info->action_list,
7581 ta_convert_longcall, sec, r_offset, 0);
7582 i = ebb_table.ebb.end_reloc_idx;
7583 free_ebb_constraint (&ebb_table);
7584 continue;
7585 }
7586
7587 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7588
7589 /* Update the index so we do not go looking at the relocations
7590 we have already processed. */
7591 i = ebb_table.ebb.end_reloc_idx;
7592 free_ebb_constraint (&ebb_table);
7593 }
7594
7595 free_reloc_range_list (&relevant_relocs);
7596
7597 #if DEBUG
7598 if (relax_info->action_list.head)
7599 print_action_list (stderr, &relax_info->action_list);
7600 #endif
7601
7602 error_return:
7603 release_contents (sec, contents);
7604 release_internal_relocs (sec, internal_relocs);
7605 if (prop_table)
7606 free (prop_table);
7607 if (reloc_opcodes)
7608 free (reloc_opcodes);
7609
7610 return ok;
7611 }
7612
7613
7614 /* Do not widen an instruction if it is preceeded by a
7615 loop opcode. It might cause misalignment. */
7616
7617 static bfd_boolean
7618 prev_instr_is_a_loop (bfd_byte *contents,
7619 bfd_size_type content_length,
7620 bfd_size_type offset)
7621 {
7622 xtensa_opcode prev_opcode;
7623
7624 if (offset < 3)
7625 return FALSE;
7626 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7627 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7628 }
7629
7630
7631 /* Find all of the possible actions for an extended basic block. */
7632
7633 bfd_boolean
7634 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7635 {
7636 const ebb_t *ebb = &ebb_table->ebb;
7637 unsigned rel_idx = ebb->start_reloc_idx;
7638 property_table_entry *entry, *start_entry, *end_entry;
7639 bfd_vma offset = 0;
7640 xtensa_isa isa = xtensa_default_isa;
7641 xtensa_format fmt;
7642 static xtensa_insnbuf insnbuf = NULL;
7643 static xtensa_insnbuf slotbuf = NULL;
7644
7645 if (insnbuf == NULL)
7646 {
7647 insnbuf = xtensa_insnbuf_alloc (isa);
7648 slotbuf = xtensa_insnbuf_alloc (isa);
7649 }
7650
7651 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7652 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7653
7654 for (entry = start_entry; entry <= end_entry; entry++)
7655 {
7656 bfd_vma start_offset, end_offset;
7657 bfd_size_type insn_len;
7658
7659 start_offset = entry->address - ebb->sec->vma;
7660 end_offset = entry->address + entry->size - ebb->sec->vma;
7661
7662 if (entry == start_entry)
7663 start_offset = ebb->start_offset;
7664 if (entry == end_entry)
7665 end_offset = ebb->end_offset;
7666 offset = start_offset;
7667
7668 if (offset == entry->address - ebb->sec->vma
7669 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7670 {
7671 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7672 BFD_ASSERT (offset != end_offset);
7673 if (offset == end_offset)
7674 return FALSE;
7675
7676 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7677 offset);
7678 if (insn_len == 0)
7679 goto decode_error;
7680
7681 if (check_branch_target_aligned_address (offset, insn_len))
7682 align_type = EBB_REQUIRE_TGT_ALIGN;
7683
7684 ebb_propose_action (ebb_table, align_type, 0,
7685 ta_none, offset, 0, TRUE);
7686 }
7687
7688 while (offset != end_offset)
7689 {
7690 Elf_Internal_Rela *irel;
7691 xtensa_opcode opcode;
7692
7693 while (rel_idx < ebb->end_reloc_idx
7694 && (ebb->relocs[rel_idx].r_offset < offset
7695 || (ebb->relocs[rel_idx].r_offset == offset
7696 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7697 != R_XTENSA_ASM_SIMPLIFY))))
7698 rel_idx++;
7699
7700 /* Check for longcall. */
7701 irel = &ebb->relocs[rel_idx];
7702 if (irel->r_offset == offset
7703 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7704 {
7705 bfd_size_type simplify_size;
7706
7707 simplify_size = get_asm_simplify_size (ebb->contents,
7708 ebb->content_length,
7709 irel->r_offset);
7710 if (simplify_size == 0)
7711 goto decode_error;
7712
7713 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7714 ta_convert_longcall, offset, 0, TRUE);
7715
7716 offset += simplify_size;
7717 continue;
7718 }
7719
7720 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7721 goto decode_error;
7722 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7723 ebb->content_length - offset);
7724 fmt = xtensa_format_decode (isa, insnbuf);
7725 if (fmt == XTENSA_UNDEFINED)
7726 goto decode_error;
7727 insn_len = xtensa_format_length (isa, fmt);
7728 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7729 goto decode_error;
7730
7731 if (xtensa_format_num_slots (isa, fmt) != 1)
7732 {
7733 offset += insn_len;
7734 continue;
7735 }
7736
7737 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7738 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7739 if (opcode == XTENSA_UNDEFINED)
7740 goto decode_error;
7741
7742 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7743 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7744 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7745 {
7746 /* Add an instruction narrow action. */
7747 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7748 ta_narrow_insn, offset, 0, FALSE);
7749 }
7750 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7751 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7752 && ! prev_instr_is_a_loop (ebb->contents,
7753 ebb->content_length, offset))
7754 {
7755 /* Add an instruction widen action. */
7756 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7757 ta_widen_insn, offset, 0, FALSE);
7758 }
7759 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7760 {
7761 /* Check for branch targets. */
7762 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7763 ta_none, offset, 0, TRUE);
7764 }
7765
7766 offset += insn_len;
7767 }
7768 }
7769
7770 if (ebb->ends_unreachable)
7771 {
7772 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7773 ta_fill, ebb->end_offset, 0, TRUE);
7774 }
7775
7776 return TRUE;
7777
7778 decode_error:
7779 (*_bfd_error_handler)
7780 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7781 ebb->sec->owner, ebb->sec, offset);
7782 return FALSE;
7783 }
7784
7785
7786 /* After all of the information has collected about the
7787 transformations possible in an EBB, compute the appropriate actions
7788 here in compute_ebb_actions. We still must check later to make
7789 sure that the actions do not break any relocations. The algorithm
7790 used here is pretty greedy. Basically, it removes as many no-ops
7791 as possible so that the end of the EBB has the same alignment
7792 characteristics as the original. First, it uses narrowing, then
7793 fill space at the end of the EBB, and finally widenings. If that
7794 does not work, it tries again with one fewer no-op removed. The
7795 optimization will only be performed if all of the branch targets
7796 that were aligned before transformation are also aligned after the
7797 transformation.
7798
7799 When the size_opt flag is set, ignore the branch target alignments,
7800 narrow all wide instructions, and remove all no-ops unless the end
7801 of the EBB prevents it. */
7802
7803 bfd_boolean
7804 compute_ebb_actions (ebb_constraint *ebb_table)
7805 {
7806 unsigned i = 0;
7807 unsigned j;
7808 int removed_bytes = 0;
7809 ebb_t *ebb = &ebb_table->ebb;
7810 unsigned seg_idx_start = 0;
7811 unsigned seg_idx_end = 0;
7812
7813 /* We perform this like the assembler relaxation algorithm: Start by
7814 assuming all instructions are narrow and all no-ops removed; then
7815 walk through.... */
7816
7817 /* For each segment of this that has a solid constraint, check to
7818 see if there are any combinations that will keep the constraint.
7819 If so, use it. */
7820 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
7821 {
7822 bfd_boolean requires_text_end_align = FALSE;
7823 unsigned longcall_count = 0;
7824 unsigned longcall_convert_count = 0;
7825 unsigned narrowable_count = 0;
7826 unsigned narrowable_convert_count = 0;
7827 unsigned widenable_count = 0;
7828 unsigned widenable_convert_count = 0;
7829
7830 proposed_action *action = NULL;
7831 int align = (1 << ebb_table->ebb.sec->alignment_power);
7832
7833 seg_idx_start = seg_idx_end;
7834
7835 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7836 {
7837 action = &ebb_table->actions[i];
7838 if (action->action == ta_convert_longcall)
7839 longcall_count++;
7840 if (action->action == ta_narrow_insn)
7841 narrowable_count++;
7842 if (action->action == ta_widen_insn)
7843 widenable_count++;
7844 if (action->action == ta_fill)
7845 break;
7846 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7847 break;
7848 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7849 && !elf32xtensa_size_opt)
7850 break;
7851 }
7852 seg_idx_end = i;
7853
7854 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7855 requires_text_end_align = TRUE;
7856
7857 if (elf32xtensa_size_opt && !requires_text_end_align
7858 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7859 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7860 {
7861 longcall_convert_count = longcall_count;
7862 narrowable_convert_count = narrowable_count;
7863 widenable_convert_count = 0;
7864 }
7865 else
7866 {
7867 /* There is a constraint. Convert the max number of longcalls. */
7868 narrowable_convert_count = 0;
7869 longcall_convert_count = 0;
7870 widenable_convert_count = 0;
7871
7872 for (j = 0; j < longcall_count; j++)
7873 {
7874 int removed = (longcall_count - j) * 3 & (align - 1);
7875 unsigned desire_narrow = (align - removed) & (align - 1);
7876 unsigned desire_widen = removed;
7877 if (desire_narrow <= narrowable_count)
7878 {
7879 narrowable_convert_count = desire_narrow;
7880 narrowable_convert_count +=
7881 (align * ((narrowable_count - narrowable_convert_count)
7882 / align));
7883 longcall_convert_count = (longcall_count - j);
7884 widenable_convert_count = 0;
7885 break;
7886 }
7887 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7888 {
7889 narrowable_convert_count = 0;
7890 longcall_convert_count = longcall_count - j;
7891 widenable_convert_count = desire_widen;
7892 break;
7893 }
7894 }
7895 }
7896
7897 /* Now the number of conversions are saved. Do them. */
7898 for (i = seg_idx_start; i < seg_idx_end; i++)
7899 {
7900 action = &ebb_table->actions[i];
7901 switch (action->action)
7902 {
7903 case ta_convert_longcall:
7904 if (longcall_convert_count != 0)
7905 {
7906 action->action = ta_remove_longcall;
7907 action->do_action = TRUE;
7908 action->removed_bytes += 3;
7909 longcall_convert_count--;
7910 }
7911 break;
7912 case ta_narrow_insn:
7913 if (narrowable_convert_count != 0)
7914 {
7915 action->do_action = TRUE;
7916 action->removed_bytes += 1;
7917 narrowable_convert_count--;
7918 }
7919 break;
7920 case ta_widen_insn:
7921 if (widenable_convert_count != 0)
7922 {
7923 action->do_action = TRUE;
7924 action->removed_bytes -= 1;
7925 widenable_convert_count--;
7926 }
7927 break;
7928 default:
7929 break;
7930 }
7931 }
7932 }
7933
7934 /* Now we move on to some local opts. Try to remove each of the
7935 remaining longcalls. */
7936
7937 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
7938 {
7939 removed_bytes = 0;
7940 for (i = 0; i < ebb_table->action_count; i++)
7941 {
7942 int old_removed_bytes = removed_bytes;
7943 proposed_action *action = &ebb_table->actions[i];
7944
7945 if (action->do_action && action->action == ta_convert_longcall)
7946 {
7947 bfd_boolean bad_alignment = FALSE;
7948 removed_bytes += 3;
7949 for (j = i + 1; j < ebb_table->action_count; j++)
7950 {
7951 proposed_action *new_action = &ebb_table->actions[j];
7952 bfd_vma offset = new_action->offset;
7953 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
7954 {
7955 if (!check_branch_target_aligned
7956 (ebb_table->ebb.contents,
7957 ebb_table->ebb.content_length,
7958 offset, offset - removed_bytes))
7959 {
7960 bad_alignment = TRUE;
7961 break;
7962 }
7963 }
7964 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7965 {
7966 if (!check_loop_aligned (ebb_table->ebb.contents,
7967 ebb_table->ebb.content_length,
7968 offset,
7969 offset - removed_bytes))
7970 {
7971 bad_alignment = TRUE;
7972 break;
7973 }
7974 }
7975 if (new_action->action == ta_narrow_insn
7976 && !new_action->do_action
7977 && ebb_table->ebb.sec->alignment_power == 2)
7978 {
7979 /* Narrow an instruction and we are done. */
7980 new_action->do_action = TRUE;
7981 new_action->removed_bytes += 1;
7982 bad_alignment = FALSE;
7983 break;
7984 }
7985 if (new_action->action == ta_widen_insn
7986 && new_action->do_action
7987 && ebb_table->ebb.sec->alignment_power == 2)
7988 {
7989 /* Narrow an instruction and we are done. */
7990 new_action->do_action = FALSE;
7991 new_action->removed_bytes += 1;
7992 bad_alignment = FALSE;
7993 break;
7994 }
7995 if (new_action->do_action)
7996 removed_bytes += new_action->removed_bytes;
7997 }
7998 if (!bad_alignment)
7999 {
8000 action->removed_bytes += 3;
8001 action->action = ta_remove_longcall;
8002 action->do_action = TRUE;
8003 }
8004 }
8005 removed_bytes = old_removed_bytes;
8006 if (action->do_action)
8007 removed_bytes += action->removed_bytes;
8008 }
8009 }
8010
8011 removed_bytes = 0;
8012 for (i = 0; i < ebb_table->action_count; ++i)
8013 {
8014 proposed_action *action = &ebb_table->actions[i];
8015 if (action->do_action)
8016 removed_bytes += action->removed_bytes;
8017 }
8018
8019 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8020 && ebb->ends_unreachable)
8021 {
8022 proposed_action *action;
8023 int br;
8024 int extra_space;
8025
8026 BFD_ASSERT (ebb_table->action_count != 0);
8027 action = &ebb_table->actions[ebb_table->action_count - 1];
8028 BFD_ASSERT (action->action == ta_fill);
8029 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8030
8031 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
8032 br = action->removed_bytes + removed_bytes + extra_space;
8033 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8034
8035 action->removed_bytes = extra_space - br;
8036 }
8037 return TRUE;
8038 }
8039
8040
8041 /* The xlate_map is a sorted array of address mappings designed to
8042 answer the offset_with_removed_text() query with a binary search instead
8043 of a linear search through the section's action_list. */
8044
8045 typedef struct xlate_map_entry xlate_map_entry_t;
8046 typedef struct xlate_map xlate_map_t;
8047
8048 struct xlate_map_entry
8049 {
8050 unsigned orig_address;
8051 unsigned new_address;
8052 unsigned size;
8053 };
8054
8055 struct xlate_map
8056 {
8057 unsigned entry_count;
8058 xlate_map_entry_t *entry;
8059 };
8060
8061
8062 static int
8063 xlate_compare (const void *a_v, const void *b_v)
8064 {
8065 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8066 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8067 if (a->orig_address < b->orig_address)
8068 return -1;
8069 if (a->orig_address > (b->orig_address + b->size - 1))
8070 return 1;
8071 return 0;
8072 }
8073
8074
8075 static bfd_vma
8076 xlate_offset_with_removed_text (const xlate_map_t *map,
8077 text_action_list *action_list,
8078 bfd_vma offset)
8079 {
8080 void *r;
8081 xlate_map_entry_t *e;
8082
8083 if (map == NULL)
8084 return offset_with_removed_text (action_list, offset);
8085
8086 if (map->entry_count == 0)
8087 return offset;
8088
8089 r = bsearch (&offset, map->entry, map->entry_count,
8090 sizeof (xlate_map_entry_t), &xlate_compare);
8091 e = (xlate_map_entry_t *) r;
8092
8093 BFD_ASSERT (e != NULL);
8094 if (e == NULL)
8095 return offset;
8096 return e->new_address - e->orig_address + offset;
8097 }
8098
8099
8100 /* Build a binary searchable offset translation map from a section's
8101 action list. */
8102
8103 static xlate_map_t *
8104 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8105 {
8106 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8107 text_action_list *action_list = &relax_info->action_list;
8108 unsigned num_actions = 0;
8109 text_action *r;
8110 int removed;
8111 xlate_map_entry_t *current_entry;
8112
8113 if (map == NULL)
8114 return NULL;
8115
8116 num_actions = action_list_count (action_list);
8117 map->entry = (xlate_map_entry_t *)
8118 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8119 if (map->entry == NULL)
8120 {
8121 free (map);
8122 return NULL;
8123 }
8124 map->entry_count = 0;
8125
8126 removed = 0;
8127 current_entry = &map->entry[0];
8128
8129 current_entry->orig_address = 0;
8130 current_entry->new_address = 0;
8131 current_entry->size = 0;
8132
8133 for (r = action_list->head; r != NULL; r = r->next)
8134 {
8135 unsigned orig_size = 0;
8136 switch (r->action)
8137 {
8138 case ta_none:
8139 case ta_remove_insn:
8140 case ta_convert_longcall:
8141 case ta_remove_literal:
8142 case ta_add_literal:
8143 break;
8144 case ta_remove_longcall:
8145 orig_size = 6;
8146 break;
8147 case ta_narrow_insn:
8148 orig_size = 3;
8149 break;
8150 case ta_widen_insn:
8151 orig_size = 2;
8152 break;
8153 case ta_fill:
8154 break;
8155 }
8156 current_entry->size =
8157 r->offset + orig_size - current_entry->orig_address;
8158 if (current_entry->size != 0)
8159 {
8160 current_entry++;
8161 map->entry_count++;
8162 }
8163 current_entry->orig_address = r->offset + orig_size;
8164 removed += r->removed_bytes;
8165 current_entry->new_address = r->offset + orig_size - removed;
8166 current_entry->size = 0;
8167 }
8168
8169 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8170 - current_entry->orig_address);
8171 if (current_entry->size != 0)
8172 map->entry_count++;
8173
8174 return map;
8175 }
8176
8177
8178 /* Free an offset translation map. */
8179
8180 static void
8181 free_xlate_map (xlate_map_t *map)
8182 {
8183 if (map && map->entry)
8184 free (map->entry);
8185 if (map)
8186 free (map);
8187 }
8188
8189
8190 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8191 relocations in a section will fit if a proposed set of actions
8192 are performed. */
8193
8194 static bfd_boolean
8195 check_section_ebb_pcrels_fit (bfd *abfd,
8196 asection *sec,
8197 bfd_byte *contents,
8198 Elf_Internal_Rela *internal_relocs,
8199 reloc_range_list *relevant_relocs,
8200 const ebb_constraint *constraint,
8201 const xtensa_opcode *reloc_opcodes)
8202 {
8203 unsigned i, j;
8204 unsigned n = sec->reloc_count;
8205 Elf_Internal_Rela *irel;
8206 xlate_map_t *xmap = NULL;
8207 bfd_boolean ok = TRUE;
8208 xtensa_relax_info *relax_info;
8209 reloc_range_list_entry *entry = NULL;
8210
8211 relax_info = get_xtensa_relax_info (sec);
8212
8213 if (relax_info && sec->reloc_count > 100)
8214 {
8215 xmap = build_xlate_map (sec, relax_info);
8216 /* NULL indicates out of memory, but the slow version
8217 can still be used. */
8218 }
8219
8220 if (relevant_relocs && constraint->action_count)
8221 {
8222 if (!relevant_relocs->ok)
8223 {
8224 ok = FALSE;
8225 n = 0;
8226 }
8227 else
8228 {
8229 bfd_vma min_offset, max_offset;
8230 min_offset = max_offset = constraint->actions[0].offset;
8231
8232 for (i = 1; i < constraint->action_count; ++i)
8233 {
8234 proposed_action *action = &constraint->actions[i];
8235 bfd_vma offset = action->offset;
8236
8237 if (offset < min_offset)
8238 min_offset = offset;
8239 if (offset > max_offset)
8240 max_offset = offset;
8241 }
8242 reloc_range_list_update_range (relevant_relocs, min_offset,
8243 max_offset);
8244 n = relevant_relocs->n_list;
8245 entry = &relevant_relocs->list_root;
8246 }
8247 }
8248 else
8249 {
8250 relevant_relocs = NULL;
8251 }
8252
8253 for (i = 0; i < n; i++)
8254 {
8255 r_reloc r_rel;
8256 bfd_vma orig_self_offset, orig_target_offset;
8257 bfd_vma self_offset, target_offset;
8258 int r_type;
8259 reloc_howto_type *howto;
8260 int self_removed_bytes, target_removed_bytes;
8261
8262 if (relevant_relocs)
8263 {
8264 entry = entry->next;
8265 irel = entry->irel;
8266 }
8267 else
8268 {
8269 irel = internal_relocs + i;
8270 }
8271 r_type = ELF32_R_TYPE (irel->r_info);
8272
8273 howto = &elf_howto_table[r_type];
8274 /* We maintain the required invariant: PC-relative relocations
8275 that fit before linking must fit after linking. Thus we only
8276 need to deal with relocations to the same section that are
8277 PC-relative. */
8278 if (r_type == R_XTENSA_ASM_SIMPLIFY
8279 || r_type == R_XTENSA_32_PCREL
8280 || !howto->pc_relative)
8281 continue;
8282
8283 r_reloc_init (&r_rel, abfd, irel, contents,
8284 bfd_get_section_limit (abfd, sec));
8285
8286 if (r_reloc_get_section (&r_rel) != sec)
8287 continue;
8288
8289 orig_self_offset = irel->r_offset;
8290 orig_target_offset = r_rel.target_offset;
8291
8292 self_offset = orig_self_offset;
8293 target_offset = orig_target_offset;
8294
8295 if (relax_info)
8296 {
8297 self_offset =
8298 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8299 orig_self_offset);
8300 target_offset =
8301 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8302 orig_target_offset);
8303 }
8304
8305 self_removed_bytes = 0;
8306 target_removed_bytes = 0;
8307
8308 for (j = 0; j < constraint->action_count; ++j)
8309 {
8310 proposed_action *action = &constraint->actions[j];
8311 bfd_vma offset = action->offset;
8312 int removed_bytes = action->removed_bytes;
8313 if (offset < orig_self_offset
8314 || (offset == orig_self_offset && action->action == ta_fill
8315 && action->removed_bytes < 0))
8316 self_removed_bytes += removed_bytes;
8317 if (offset < orig_target_offset
8318 || (offset == orig_target_offset && action->action == ta_fill
8319 && action->removed_bytes < 0))
8320 target_removed_bytes += removed_bytes;
8321 }
8322 self_offset -= self_removed_bytes;
8323 target_offset -= target_removed_bytes;
8324
8325 /* Try to encode it. Get the operand and check. */
8326 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8327 {
8328 /* None of the current alternate relocs are PC-relative,
8329 and only PC-relative relocs matter here. */
8330 }
8331 else
8332 {
8333 xtensa_opcode opcode;
8334 int opnum;
8335
8336 if (relevant_relocs)
8337 {
8338 opcode = entry->opcode;
8339 opnum = entry->opnum;
8340 }
8341 else
8342 {
8343 if (reloc_opcodes)
8344 opcode = reloc_opcodes[relevant_relocs ?
8345 (unsigned)(entry - relevant_relocs->reloc) : i];
8346 else
8347 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8348 if (opcode == XTENSA_UNDEFINED)
8349 {
8350 ok = FALSE;
8351 break;
8352 }
8353
8354 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8355 if (opnum == XTENSA_UNDEFINED)
8356 {
8357 ok = FALSE;
8358 break;
8359 }
8360 }
8361
8362 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8363 {
8364 ok = FALSE;
8365 break;
8366 }
8367 }
8368 }
8369
8370 if (xmap)
8371 free_xlate_map (xmap);
8372
8373 return ok;
8374 }
8375
8376
8377 static bfd_boolean
8378 check_section_ebb_reduces (const ebb_constraint *constraint)
8379 {
8380 int removed = 0;
8381 unsigned i;
8382
8383 for (i = 0; i < constraint->action_count; i++)
8384 {
8385 const proposed_action *action = &constraint->actions[i];
8386 if (action->do_action)
8387 removed += action->removed_bytes;
8388 }
8389 if (removed < 0)
8390 return FALSE;
8391
8392 return TRUE;
8393 }
8394
8395
8396 void
8397 text_action_add_proposed (text_action_list *l,
8398 const ebb_constraint *ebb_table,
8399 asection *sec)
8400 {
8401 unsigned i;
8402
8403 for (i = 0; i < ebb_table->action_count; i++)
8404 {
8405 proposed_action *action = &ebb_table->actions[i];
8406
8407 if (!action->do_action)
8408 continue;
8409 switch (action->action)
8410 {
8411 case ta_remove_insn:
8412 case ta_remove_longcall:
8413 case ta_convert_longcall:
8414 case ta_narrow_insn:
8415 case ta_widen_insn:
8416 case ta_fill:
8417 case ta_remove_literal:
8418 text_action_add (l, action->action, sec, action->offset,
8419 action->removed_bytes);
8420 break;
8421 case ta_none:
8422 break;
8423 default:
8424 BFD_ASSERT (0);
8425 break;
8426 }
8427 }
8428 }
8429
8430
8431 int
8432 compute_fill_extra_space (property_table_entry *entry)
8433 {
8434 int fill_extra_space;
8435
8436 if (!entry)
8437 return 0;
8438
8439 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8440 return 0;
8441
8442 fill_extra_space = entry->size;
8443 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8444 {
8445 /* Fill bytes for alignment:
8446 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8447 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8448 int nsm = (1 << pow) - 1;
8449 bfd_vma addr = entry->address + entry->size;
8450 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8451 fill_extra_space += align_fill;
8452 }
8453 return fill_extra_space;
8454 }
8455
8456 \f
8457 /* First relaxation pass. */
8458
8459 /* If the section contains relaxable literals, check each literal to
8460 see if it has the same value as another literal that has already
8461 been seen, either in the current section or a previous one. If so,
8462 add an entry to the per-section list of removed literals. The
8463 actual changes are deferred until the next pass. */
8464
8465 static bfd_boolean
8466 compute_removed_literals (bfd *abfd,
8467 asection *sec,
8468 struct bfd_link_info *link_info,
8469 value_map_hash_table *values)
8470 {
8471 xtensa_relax_info *relax_info;
8472 bfd_byte *contents;
8473 Elf_Internal_Rela *internal_relocs;
8474 source_reloc *src_relocs, *rel;
8475 bfd_boolean ok = TRUE;
8476 property_table_entry *prop_table = NULL;
8477 int ptblsize;
8478 int i, prev_i;
8479 bfd_boolean last_loc_is_prev = FALSE;
8480 bfd_vma last_target_offset = 0;
8481 section_cache_t target_sec_cache;
8482 bfd_size_type sec_size;
8483
8484 init_section_cache (&target_sec_cache);
8485
8486 /* Do nothing if it is not a relaxable literal section. */
8487 relax_info = get_xtensa_relax_info (sec);
8488 BFD_ASSERT (relax_info);
8489 if (!relax_info->is_relaxable_literal_section)
8490 return ok;
8491
8492 internal_relocs = retrieve_internal_relocs (abfd, sec,
8493 link_info->keep_memory);
8494
8495 sec_size = bfd_get_section_limit (abfd, sec);
8496 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8497 if (contents == NULL && sec_size != 0)
8498 {
8499 ok = FALSE;
8500 goto error_return;
8501 }
8502
8503 /* Sort the source_relocs by target offset. */
8504 src_relocs = relax_info->src_relocs;
8505 qsort (src_relocs, relax_info->src_count,
8506 sizeof (source_reloc), source_reloc_compare);
8507 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8508 internal_reloc_compare);
8509
8510 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8511 XTENSA_PROP_SEC_NAME, FALSE);
8512 if (ptblsize < 0)
8513 {
8514 ok = FALSE;
8515 goto error_return;
8516 }
8517
8518 prev_i = -1;
8519 for (i = 0; i < relax_info->src_count; i++)
8520 {
8521 Elf_Internal_Rela *irel = NULL;
8522
8523 rel = &src_relocs[i];
8524 if (get_l32r_opcode () != rel->opcode)
8525 continue;
8526 irel = get_irel_at_offset (sec, internal_relocs,
8527 rel->r_rel.target_offset);
8528
8529 /* If the relocation on this is not a simple R_XTENSA_32 or
8530 R_XTENSA_PLT then do not consider it. This may happen when
8531 the difference of two symbols is used in a literal. */
8532 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8533 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8534 continue;
8535
8536 /* If the target_offset for this relocation is the same as the
8537 previous relocation, then we've already considered whether the
8538 literal can be coalesced. Skip to the next one.... */
8539 if (i != 0 && prev_i != -1
8540 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8541 continue;
8542 prev_i = i;
8543
8544 if (last_loc_is_prev &&
8545 last_target_offset + 4 != rel->r_rel.target_offset)
8546 last_loc_is_prev = FALSE;
8547
8548 /* Check if the relocation was from an L32R that is being removed
8549 because a CALLX was converted to a direct CALL, and check if
8550 there are no other relocations to the literal. */
8551 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8552 sec, prop_table, ptblsize))
8553 {
8554 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8555 irel, rel, prop_table, ptblsize))
8556 {
8557 ok = FALSE;
8558 goto error_return;
8559 }
8560 last_target_offset = rel->r_rel.target_offset;
8561 continue;
8562 }
8563
8564 if (!identify_literal_placement (abfd, sec, contents, link_info,
8565 values,
8566 &last_loc_is_prev, irel,
8567 relax_info->src_count - i, rel,
8568 prop_table, ptblsize,
8569 &target_sec_cache, rel->is_abs_literal))
8570 {
8571 ok = FALSE;
8572 goto error_return;
8573 }
8574 last_target_offset = rel->r_rel.target_offset;
8575 }
8576
8577 #if DEBUG
8578 print_removed_literals (stderr, &relax_info->removed_list);
8579 print_action_list (stderr, &relax_info->action_list);
8580 #endif /* DEBUG */
8581
8582 error_return:
8583 if (prop_table)
8584 free (prop_table);
8585 free_section_cache (&target_sec_cache);
8586
8587 release_contents (sec, contents);
8588 release_internal_relocs (sec, internal_relocs);
8589 return ok;
8590 }
8591
8592
8593 static Elf_Internal_Rela *
8594 get_irel_at_offset (asection *sec,
8595 Elf_Internal_Rela *internal_relocs,
8596 bfd_vma offset)
8597 {
8598 unsigned i;
8599 Elf_Internal_Rela *irel;
8600 unsigned r_type;
8601 Elf_Internal_Rela key;
8602
8603 if (!internal_relocs)
8604 return NULL;
8605
8606 key.r_offset = offset;
8607 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8608 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8609 if (!irel)
8610 return NULL;
8611
8612 /* bsearch does not guarantee which will be returned if there are
8613 multiple matches. We need the first that is not an alignment. */
8614 i = irel - internal_relocs;
8615 while (i > 0)
8616 {
8617 if (internal_relocs[i-1].r_offset != offset)
8618 break;
8619 i--;
8620 }
8621 for ( ; i < sec->reloc_count; i++)
8622 {
8623 irel = &internal_relocs[i];
8624 r_type = ELF32_R_TYPE (irel->r_info);
8625 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8626 return irel;
8627 }
8628
8629 return NULL;
8630 }
8631
8632
8633 bfd_boolean
8634 is_removable_literal (const source_reloc *rel,
8635 int i,
8636 const source_reloc *src_relocs,
8637 int src_count,
8638 asection *sec,
8639 property_table_entry *prop_table,
8640 int ptblsize)
8641 {
8642 const source_reloc *curr_rel;
8643 property_table_entry *entry;
8644
8645 if (!rel->is_null)
8646 return FALSE;
8647
8648 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8649 sec->vma + rel->r_rel.target_offset);
8650 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8651 return FALSE;
8652
8653 for (++i; i < src_count; ++i)
8654 {
8655 curr_rel = &src_relocs[i];
8656 /* If all others have the same target offset.... */
8657 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8658 return TRUE;
8659
8660 if (!curr_rel->is_null
8661 && !xtensa_is_property_section (curr_rel->source_sec)
8662 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8663 return FALSE;
8664 }
8665 return TRUE;
8666 }
8667
8668
8669 bfd_boolean
8670 remove_dead_literal (bfd *abfd,
8671 asection *sec,
8672 struct bfd_link_info *link_info,
8673 Elf_Internal_Rela *internal_relocs,
8674 Elf_Internal_Rela *irel,
8675 source_reloc *rel,
8676 property_table_entry *prop_table,
8677 int ptblsize)
8678 {
8679 property_table_entry *entry;
8680 xtensa_relax_info *relax_info;
8681
8682 relax_info = get_xtensa_relax_info (sec);
8683 if (!relax_info)
8684 return FALSE;
8685
8686 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8687 sec->vma + rel->r_rel.target_offset);
8688
8689 /* Mark the unused literal so that it will be removed. */
8690 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8691
8692 text_action_add (&relax_info->action_list,
8693 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8694
8695 /* If the section is 4-byte aligned, do not add fill. */
8696 if (sec->alignment_power > 2)
8697 {
8698 int fill_extra_space;
8699 bfd_vma entry_sec_offset;
8700 text_action *fa;
8701 property_table_entry *the_add_entry;
8702 int removed_diff;
8703
8704 if (entry)
8705 entry_sec_offset = entry->address - sec->vma + entry->size;
8706 else
8707 entry_sec_offset = rel->r_rel.target_offset + 4;
8708
8709 /* If the literal range is at the end of the section,
8710 do not add fill. */
8711 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8712 entry_sec_offset);
8713 fill_extra_space = compute_fill_extra_space (the_add_entry);
8714
8715 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8716 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8717 -4, fill_extra_space);
8718 if (fa)
8719 adjust_fill_action (fa, removed_diff);
8720 else
8721 text_action_add (&relax_info->action_list,
8722 ta_fill, sec, entry_sec_offset, removed_diff);
8723 }
8724
8725 /* Zero out the relocation on this literal location. */
8726 if (irel)
8727 {
8728 if (elf_hash_table (link_info)->dynamic_sections_created)
8729 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8730
8731 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8732 pin_internal_relocs (sec, internal_relocs);
8733 }
8734
8735 /* Do not modify "last_loc_is_prev". */
8736 return TRUE;
8737 }
8738
8739
8740 bfd_boolean
8741 identify_literal_placement (bfd *abfd,
8742 asection *sec,
8743 bfd_byte *contents,
8744 struct bfd_link_info *link_info,
8745 value_map_hash_table *values,
8746 bfd_boolean *last_loc_is_prev_p,
8747 Elf_Internal_Rela *irel,
8748 int remaining_src_rels,
8749 source_reloc *rel,
8750 property_table_entry *prop_table,
8751 int ptblsize,
8752 section_cache_t *target_sec_cache,
8753 bfd_boolean is_abs_literal)
8754 {
8755 literal_value val;
8756 value_map *val_map;
8757 xtensa_relax_info *relax_info;
8758 bfd_boolean literal_placed = FALSE;
8759 r_reloc r_rel;
8760 unsigned long value;
8761 bfd_boolean final_static_link;
8762 bfd_size_type sec_size;
8763
8764 relax_info = get_xtensa_relax_info (sec);
8765 if (!relax_info)
8766 return FALSE;
8767
8768 sec_size = bfd_get_section_limit (abfd, sec);
8769
8770 final_static_link =
8771 (!link_info->relocatable
8772 && !elf_hash_table (link_info)->dynamic_sections_created);
8773
8774 /* The placement algorithm first checks to see if the literal is
8775 already in the value map. If so and the value map is reachable
8776 from all uses, then the literal is moved to that location. If
8777 not, then we identify the last location where a fresh literal was
8778 placed. If the literal can be safely moved there, then we do so.
8779 If not, then we assume that the literal is not to move and leave
8780 the literal where it is, marking it as the last literal
8781 location. */
8782
8783 /* Find the literal value. */
8784 value = 0;
8785 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8786 if (!irel)
8787 {
8788 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8789 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8790 }
8791 init_literal_value (&val, &r_rel, value, is_abs_literal);
8792
8793 /* Check if we've seen another literal with the same value that
8794 is in the same output section. */
8795 val_map = value_map_get_cached_value (values, &val, final_static_link);
8796
8797 if (val_map
8798 && (r_reloc_get_section (&val_map->loc)->output_section
8799 == sec->output_section)
8800 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8801 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8802 {
8803 /* No change to last_loc_is_prev. */
8804 literal_placed = TRUE;
8805 }
8806
8807 /* For relocatable links, do not try to move literals. To do it
8808 correctly might increase the number of relocations in an input
8809 section making the default relocatable linking fail. */
8810 if (!link_info->relocatable && !literal_placed
8811 && values->has_last_loc && !(*last_loc_is_prev_p))
8812 {
8813 asection *target_sec = r_reloc_get_section (&values->last_loc);
8814 if (target_sec && target_sec->output_section == sec->output_section)
8815 {
8816 /* Increment the virtual offset. */
8817 r_reloc try_loc = values->last_loc;
8818 try_loc.virtual_offset += 4;
8819
8820 /* There is a last loc that was in the same output section. */
8821 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8822 && move_shared_literal (sec, link_info, rel,
8823 prop_table, ptblsize,
8824 &try_loc, &val, target_sec_cache))
8825 {
8826 values->last_loc.virtual_offset += 4;
8827 literal_placed = TRUE;
8828 if (!val_map)
8829 val_map = add_value_map (values, &val, &try_loc,
8830 final_static_link);
8831 else
8832 val_map->loc = try_loc;
8833 }
8834 }
8835 }
8836
8837 if (!literal_placed)
8838 {
8839 /* Nothing worked, leave the literal alone but update the last loc. */
8840 values->has_last_loc = TRUE;
8841 values->last_loc = rel->r_rel;
8842 if (!val_map)
8843 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
8844 else
8845 val_map->loc = rel->r_rel;
8846 *last_loc_is_prev_p = TRUE;
8847 }
8848
8849 return TRUE;
8850 }
8851
8852
8853 /* Check if the original relocations (presumably on L32R instructions)
8854 identified by reloc[0..N] can be changed to reference the literal
8855 identified by r_rel. If r_rel is out of range for any of the
8856 original relocations, then we don't want to coalesce the original
8857 literal with the one at r_rel. We only check reloc[0..N], where the
8858 offsets are all the same as for reloc[0] (i.e., they're all
8859 referencing the same literal) and where N is also bounded by the
8860 number of remaining entries in the "reloc" array. The "reloc" array
8861 is sorted by target offset so we know all the entries for the same
8862 literal will be contiguous. */
8863
8864 static bfd_boolean
8865 relocations_reach (source_reloc *reloc,
8866 int remaining_relocs,
8867 const r_reloc *r_rel)
8868 {
8869 bfd_vma from_offset, source_address, dest_address;
8870 asection *sec;
8871 int i;
8872
8873 if (!r_reloc_is_defined (r_rel))
8874 return FALSE;
8875
8876 sec = r_reloc_get_section (r_rel);
8877 from_offset = reloc[0].r_rel.target_offset;
8878
8879 for (i = 0; i < remaining_relocs; i++)
8880 {
8881 if (reloc[i].r_rel.target_offset != from_offset)
8882 break;
8883
8884 /* Ignore relocations that have been removed. */
8885 if (reloc[i].is_null)
8886 continue;
8887
8888 /* The original and new output section for these must be the same
8889 in order to coalesce. */
8890 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
8891 != sec->output_section)
8892 return FALSE;
8893
8894 /* Absolute literals in the same output section can always be
8895 combined. */
8896 if (reloc[i].is_abs_literal)
8897 continue;
8898
8899 /* A literal with no PC-relative relocations can be moved anywhere. */
8900 if (reloc[i].opnd != -1)
8901 {
8902 /* Otherwise, check to see that it fits. */
8903 source_address = (reloc[i].source_sec->output_section->vma
8904 + reloc[i].source_sec->output_offset
8905 + reloc[i].r_rel.rela.r_offset);
8906 dest_address = (sec->output_section->vma
8907 + sec->output_offset
8908 + r_rel->target_offset);
8909
8910 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
8911 source_address, dest_address))
8912 return FALSE;
8913 }
8914 }
8915
8916 return TRUE;
8917 }
8918
8919
8920 /* Move a literal to another literal location because it is
8921 the same as the other literal value. */
8922
8923 static bfd_boolean
8924 coalesce_shared_literal (asection *sec,
8925 source_reloc *rel,
8926 property_table_entry *prop_table,
8927 int ptblsize,
8928 value_map *val_map)
8929 {
8930 property_table_entry *entry;
8931 text_action *fa;
8932 property_table_entry *the_add_entry;
8933 int removed_diff;
8934 xtensa_relax_info *relax_info;
8935
8936 relax_info = get_xtensa_relax_info (sec);
8937 if (!relax_info)
8938 return FALSE;
8939
8940 entry = elf_xtensa_find_property_entry
8941 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
8942 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8943 return TRUE;
8944
8945 /* Mark that the literal will be coalesced. */
8946 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
8947
8948 text_action_add (&relax_info->action_list,
8949 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8950
8951 /* If the section is 4-byte aligned, do not add fill. */
8952 if (sec->alignment_power > 2)
8953 {
8954 int fill_extra_space;
8955 bfd_vma entry_sec_offset;
8956
8957 if (entry)
8958 entry_sec_offset = entry->address - sec->vma + entry->size;
8959 else
8960 entry_sec_offset = rel->r_rel.target_offset + 4;
8961
8962 /* If the literal range is at the end of the section,
8963 do not add fill. */
8964 fill_extra_space = 0;
8965 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8966 entry_sec_offset);
8967 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8968 fill_extra_space = the_add_entry->size;
8969
8970 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8971 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8972 -4, fill_extra_space);
8973 if (fa)
8974 adjust_fill_action (fa, removed_diff);
8975 else
8976 text_action_add (&relax_info->action_list,
8977 ta_fill, sec, entry_sec_offset, removed_diff);
8978 }
8979
8980 return TRUE;
8981 }
8982
8983
8984 /* Move a literal to another location. This may actually increase the
8985 total amount of space used because of alignments so we need to do
8986 this carefully. Also, it may make a branch go out of range. */
8987
8988 static bfd_boolean
8989 move_shared_literal (asection *sec,
8990 struct bfd_link_info *link_info,
8991 source_reloc *rel,
8992 property_table_entry *prop_table,
8993 int ptblsize,
8994 const r_reloc *target_loc,
8995 const literal_value *lit_value,
8996 section_cache_t *target_sec_cache)
8997 {
8998 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
8999 text_action *fa, *target_fa;
9000 int removed_diff;
9001 xtensa_relax_info *relax_info, *target_relax_info;
9002 asection *target_sec;
9003 ebb_t *ebb;
9004 ebb_constraint ebb_table;
9005 bfd_boolean relocs_fit;
9006
9007 /* If this routine always returns FALSE, the literals that cannot be
9008 coalesced will not be moved. */
9009 if (elf32xtensa_no_literal_movement)
9010 return FALSE;
9011
9012 relax_info = get_xtensa_relax_info (sec);
9013 if (!relax_info)
9014 return FALSE;
9015
9016 target_sec = r_reloc_get_section (target_loc);
9017 target_relax_info = get_xtensa_relax_info (target_sec);
9018
9019 /* Literals to undefined sections may not be moved because they
9020 must report an error. */
9021 if (bfd_is_und_section (target_sec))
9022 return FALSE;
9023
9024 src_entry = elf_xtensa_find_property_entry
9025 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9026
9027 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9028 return FALSE;
9029
9030 target_entry = elf_xtensa_find_property_entry
9031 (target_sec_cache->ptbl, target_sec_cache->pte_count,
9032 target_sec->vma + target_loc->target_offset);
9033
9034 if (!target_entry)
9035 return FALSE;
9036
9037 /* Make sure that we have not broken any branches. */
9038 relocs_fit = FALSE;
9039
9040 init_ebb_constraint (&ebb_table);
9041 ebb = &ebb_table.ebb;
9042 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9043 target_sec_cache->content_length,
9044 target_sec_cache->ptbl, target_sec_cache->pte_count,
9045 target_sec_cache->relocs, target_sec_cache->reloc_count);
9046
9047 /* Propose to add 4 bytes + worst-case alignment size increase to
9048 destination. */
9049 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9050 ta_fill, target_loc->target_offset,
9051 -4 - (1 << target_sec->alignment_power), TRUE);
9052
9053 /* Check all of the PC-relative relocations to make sure they still fit. */
9054 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9055 target_sec_cache->contents,
9056 target_sec_cache->relocs, NULL,
9057 &ebb_table, NULL);
9058
9059 if (!relocs_fit)
9060 return FALSE;
9061
9062 text_action_add_literal (&target_relax_info->action_list,
9063 ta_add_literal, target_loc, lit_value, -4);
9064
9065 if (target_sec->alignment_power > 2 && target_entry != src_entry)
9066 {
9067 /* May need to add or remove some fill to maintain alignment. */
9068 int fill_extra_space;
9069 bfd_vma entry_sec_offset;
9070
9071 entry_sec_offset =
9072 target_entry->address - target_sec->vma + target_entry->size;
9073
9074 /* If the literal range is at the end of the section,
9075 do not add fill. */
9076 fill_extra_space = 0;
9077 the_add_entry =
9078 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9079 target_sec_cache->pte_count,
9080 entry_sec_offset);
9081 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9082 fill_extra_space = the_add_entry->size;
9083
9084 target_fa = find_fill_action (&target_relax_info->action_list,
9085 target_sec, entry_sec_offset);
9086 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9087 entry_sec_offset, 4,
9088 fill_extra_space);
9089 if (target_fa)
9090 adjust_fill_action (target_fa, removed_diff);
9091 else
9092 text_action_add (&target_relax_info->action_list,
9093 ta_fill, target_sec, entry_sec_offset, removed_diff);
9094 }
9095
9096 /* Mark that the literal will be moved to the new location. */
9097 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9098
9099 /* Remove the literal. */
9100 text_action_add (&relax_info->action_list,
9101 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9102
9103 /* If the section is 4-byte aligned, do not add fill. */
9104 if (sec->alignment_power > 2 && target_entry != src_entry)
9105 {
9106 int fill_extra_space;
9107 bfd_vma entry_sec_offset;
9108
9109 if (src_entry)
9110 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9111 else
9112 entry_sec_offset = rel->r_rel.target_offset+4;
9113
9114 /* If the literal range is at the end of the section,
9115 do not add fill. */
9116 fill_extra_space = 0;
9117 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9118 entry_sec_offset);
9119 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9120 fill_extra_space = the_add_entry->size;
9121
9122 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9123 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9124 -4, fill_extra_space);
9125 if (fa)
9126 adjust_fill_action (fa, removed_diff);
9127 else
9128 text_action_add (&relax_info->action_list,
9129 ta_fill, sec, entry_sec_offset, removed_diff);
9130 }
9131
9132 return TRUE;
9133 }
9134
9135 \f
9136 /* Second relaxation pass. */
9137
9138 /* Modify all of the relocations to point to the right spot, and if this
9139 is a relaxable section, delete the unwanted literals and fix the
9140 section size. */
9141
9142 bfd_boolean
9143 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9144 {
9145 Elf_Internal_Rela *internal_relocs;
9146 xtensa_relax_info *relax_info;
9147 bfd_byte *contents;
9148 bfd_boolean ok = TRUE;
9149 unsigned i;
9150 bfd_boolean rv = FALSE;
9151 bfd_boolean virtual_action;
9152 bfd_size_type sec_size;
9153
9154 sec_size = bfd_get_section_limit (abfd, sec);
9155 relax_info = get_xtensa_relax_info (sec);
9156 BFD_ASSERT (relax_info);
9157
9158 /* First translate any of the fixes that have been added already. */
9159 translate_section_fixes (sec);
9160
9161 /* Handle property sections (e.g., literal tables) specially. */
9162 if (xtensa_is_property_section (sec))
9163 {
9164 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9165 return relax_property_section (abfd, sec, link_info);
9166 }
9167
9168 internal_relocs = retrieve_internal_relocs (abfd, sec,
9169 link_info->keep_memory);
9170 if (!internal_relocs && !relax_info->action_list.head)
9171 return TRUE;
9172
9173 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9174 if (contents == NULL && sec_size != 0)
9175 {
9176 ok = FALSE;
9177 goto error_return;
9178 }
9179
9180 if (internal_relocs)
9181 {
9182 for (i = 0; i < sec->reloc_count; i++)
9183 {
9184 Elf_Internal_Rela *irel;
9185 xtensa_relax_info *target_relax_info;
9186 bfd_vma source_offset, old_source_offset;
9187 r_reloc r_rel;
9188 unsigned r_type;
9189 asection *target_sec;
9190
9191 /* Locally change the source address.
9192 Translate the target to the new target address.
9193 If it points to this section and has been removed,
9194 NULLify it.
9195 Write it back. */
9196
9197 irel = &internal_relocs[i];
9198 source_offset = irel->r_offset;
9199 old_source_offset = source_offset;
9200
9201 r_type = ELF32_R_TYPE (irel->r_info);
9202 r_reloc_init (&r_rel, abfd, irel, contents,
9203 bfd_get_section_limit (abfd, sec));
9204
9205 /* If this section could have changed then we may need to
9206 change the relocation's offset. */
9207
9208 if (relax_info->is_relaxable_literal_section
9209 || relax_info->is_relaxable_asm_section)
9210 {
9211 pin_internal_relocs (sec, internal_relocs);
9212
9213 if (r_type != R_XTENSA_NONE
9214 && find_removed_literal (&relax_info->removed_list,
9215 irel->r_offset))
9216 {
9217 /* Remove this relocation. */
9218 if (elf_hash_table (link_info)->dynamic_sections_created)
9219 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9220 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9221 irel->r_offset = offset_with_removed_text
9222 (&relax_info->action_list, irel->r_offset);
9223 continue;
9224 }
9225
9226 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9227 {
9228 text_action *action =
9229 find_insn_action (&relax_info->action_list,
9230 irel->r_offset);
9231 if (action && (action->action == ta_convert_longcall
9232 || action->action == ta_remove_longcall))
9233 {
9234 bfd_reloc_status_type retval;
9235 char *error_message = NULL;
9236
9237 retval = contract_asm_expansion (contents, sec_size,
9238 irel, &error_message);
9239 if (retval != bfd_reloc_ok)
9240 {
9241 (*link_info->callbacks->reloc_dangerous)
9242 (link_info, error_message, abfd, sec,
9243 irel->r_offset);
9244 goto error_return;
9245 }
9246 /* Update the action so that the code that moves
9247 the contents will do the right thing. */
9248 if (action->action == ta_remove_longcall)
9249 action->action = ta_remove_insn;
9250 else
9251 action->action = ta_none;
9252 /* Refresh the info in the r_rel. */
9253 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9254 r_type = ELF32_R_TYPE (irel->r_info);
9255 }
9256 }
9257
9258 source_offset = offset_with_removed_text
9259 (&relax_info->action_list, irel->r_offset);
9260 irel->r_offset = source_offset;
9261 }
9262
9263 /* If the target section could have changed then
9264 we may need to change the relocation's target offset. */
9265
9266 target_sec = r_reloc_get_section (&r_rel);
9267
9268 /* For a reference to a discarded section from a DWARF section,
9269 i.e., where action_discarded is PRETEND, the symbol will
9270 eventually be modified to refer to the kept section (at least if
9271 the kept and discarded sections are the same size). Anticipate
9272 that here and adjust things accordingly. */
9273 if (! elf_xtensa_ignore_discarded_relocs (sec)
9274 && elf_xtensa_action_discarded (sec) == PRETEND
9275 && sec->sec_info_type != SEC_INFO_TYPE_STABS
9276 && target_sec != NULL
9277 && discarded_section (target_sec))
9278 {
9279 /* It would be natural to call _bfd_elf_check_kept_section
9280 here, but it's not exported from elflink.c. It's also a
9281 fairly expensive check. Adjusting the relocations to the
9282 discarded section is fairly harmless; it will only adjust
9283 some addends and difference values. If it turns out that
9284 _bfd_elf_check_kept_section fails later, it won't matter,
9285 so just compare the section names to find the right group
9286 member. */
9287 asection *kept = target_sec->kept_section;
9288 if (kept != NULL)
9289 {
9290 if ((kept->flags & SEC_GROUP) != 0)
9291 {
9292 asection *first = elf_next_in_group (kept);
9293 asection *s = first;
9294
9295 kept = NULL;
9296 while (s != NULL)
9297 {
9298 if (strcmp (s->name, target_sec->name) == 0)
9299 {
9300 kept = s;
9301 break;
9302 }
9303 s = elf_next_in_group (s);
9304 if (s == first)
9305 break;
9306 }
9307 }
9308 }
9309 if (kept != NULL
9310 && ((target_sec->rawsize != 0
9311 ? target_sec->rawsize : target_sec->size)
9312 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9313 target_sec = kept;
9314 }
9315
9316 target_relax_info = get_xtensa_relax_info (target_sec);
9317 if (target_relax_info
9318 && (target_relax_info->is_relaxable_literal_section
9319 || target_relax_info->is_relaxable_asm_section))
9320 {
9321 r_reloc new_reloc;
9322 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9323
9324 if (r_type == R_XTENSA_DIFF8
9325 || r_type == R_XTENSA_DIFF16
9326 || r_type == R_XTENSA_DIFF32)
9327 {
9328 bfd_signed_vma diff_value = 0;
9329 bfd_vma new_end_offset, diff_mask = 0;
9330
9331 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9332 {
9333 (*link_info->callbacks->reloc_dangerous)
9334 (link_info, _("invalid relocation address"),
9335 abfd, sec, old_source_offset);
9336 goto error_return;
9337 }
9338
9339 switch (r_type)
9340 {
9341 case R_XTENSA_DIFF8:
9342 diff_value =
9343 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9344 break;
9345 case R_XTENSA_DIFF16:
9346 diff_value =
9347 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9348 break;
9349 case R_XTENSA_DIFF32:
9350 diff_value =
9351 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9352 break;
9353 }
9354
9355 new_end_offset = offset_with_removed_text
9356 (&target_relax_info->action_list,
9357 r_rel.target_offset + diff_value);
9358 diff_value = new_end_offset - new_reloc.target_offset;
9359
9360 switch (r_type)
9361 {
9362 case R_XTENSA_DIFF8:
9363 diff_mask = 0x7f;
9364 bfd_put_signed_8 (abfd, diff_value,
9365 &contents[old_source_offset]);
9366 break;
9367 case R_XTENSA_DIFF16:
9368 diff_mask = 0x7fff;
9369 bfd_put_signed_16 (abfd, diff_value,
9370 &contents[old_source_offset]);
9371 break;
9372 case R_XTENSA_DIFF32:
9373 diff_mask = 0x7fffffff;
9374 bfd_put_signed_32 (abfd, diff_value,
9375 &contents[old_source_offset]);
9376 break;
9377 }
9378
9379 /* Check for overflow. Sign bits must be all zeroes or all ones */
9380 if ((diff_value & ~diff_mask) != 0 &&
9381 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
9382 {
9383 (*link_info->callbacks->reloc_dangerous)
9384 (link_info, _("overflow after relaxation"),
9385 abfd, sec, old_source_offset);
9386 goto error_return;
9387 }
9388
9389 pin_contents (sec, contents);
9390 }
9391
9392 /* If the relocation still references a section in the same
9393 input file, modify the relocation directly instead of
9394 adding a "fix" record. */
9395 if (target_sec->owner == abfd)
9396 {
9397 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9398 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9399 irel->r_addend = new_reloc.rela.r_addend;
9400 pin_internal_relocs (sec, internal_relocs);
9401 }
9402 else
9403 {
9404 bfd_vma addend_displacement;
9405 reloc_bfd_fix *fix;
9406
9407 addend_displacement =
9408 new_reloc.target_offset + new_reloc.virtual_offset;
9409 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9410 target_sec,
9411 addend_displacement, TRUE);
9412 add_fix (sec, fix);
9413 }
9414 }
9415 }
9416 }
9417
9418 if ((relax_info->is_relaxable_literal_section
9419 || relax_info->is_relaxable_asm_section)
9420 && relax_info->action_list.head)
9421 {
9422 /* Walk through the planned actions and build up a table
9423 of move, copy and fill records. Use the move, copy and
9424 fill records to perform the actions once. */
9425
9426 int removed = 0;
9427 bfd_size_type final_size, copy_size, orig_insn_size;
9428 bfd_byte *scratch = NULL;
9429 bfd_byte *dup_contents = NULL;
9430 bfd_size_type orig_size = sec->size;
9431 bfd_vma orig_dot = 0;
9432 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9433 orig dot in physical memory. */
9434 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9435 bfd_vma dup_dot = 0;
9436
9437 text_action *action = relax_info->action_list.head;
9438
9439 final_size = sec->size;
9440 for (action = relax_info->action_list.head; action;
9441 action = action->next)
9442 {
9443 final_size -= action->removed_bytes;
9444 }
9445
9446 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9447 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9448
9449 /* The dot is the current fill location. */
9450 #if DEBUG
9451 print_action_list (stderr, &relax_info->action_list);
9452 #endif
9453
9454 for (action = relax_info->action_list.head; action;
9455 action = action->next)
9456 {
9457 virtual_action = FALSE;
9458 if (action->offset > orig_dot)
9459 {
9460 orig_dot += orig_dot_copied;
9461 orig_dot_copied = 0;
9462 orig_dot_vo = 0;
9463 /* Out of the virtual world. */
9464 }
9465
9466 if (action->offset > orig_dot)
9467 {
9468 copy_size = action->offset - orig_dot;
9469 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9470 orig_dot += copy_size;
9471 dup_dot += copy_size;
9472 BFD_ASSERT (action->offset == orig_dot);
9473 }
9474 else if (action->offset < orig_dot)
9475 {
9476 if (action->action == ta_fill
9477 && action->offset - action->removed_bytes == orig_dot)
9478 {
9479 /* This is OK because the fill only effects the dup_dot. */
9480 }
9481 else if (action->action == ta_add_literal)
9482 {
9483 /* TBD. Might need to handle this. */
9484 }
9485 }
9486 if (action->offset == orig_dot)
9487 {
9488 if (action->virtual_offset > orig_dot_vo)
9489 {
9490 if (orig_dot_vo == 0)
9491 {
9492 /* Need to copy virtual_offset bytes. Probably four. */
9493 copy_size = action->virtual_offset - orig_dot_vo;
9494 memmove (&dup_contents[dup_dot],
9495 &contents[orig_dot], copy_size);
9496 orig_dot_copied = copy_size;
9497 dup_dot += copy_size;
9498 }
9499 virtual_action = TRUE;
9500 }
9501 else
9502 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9503 }
9504 switch (action->action)
9505 {
9506 case ta_remove_literal:
9507 case ta_remove_insn:
9508 BFD_ASSERT (action->removed_bytes >= 0);
9509 orig_dot += action->removed_bytes;
9510 break;
9511
9512 case ta_narrow_insn:
9513 orig_insn_size = 3;
9514 copy_size = 2;
9515 memmove (scratch, &contents[orig_dot], orig_insn_size);
9516 BFD_ASSERT (action->removed_bytes == 1);
9517 rv = narrow_instruction (scratch, final_size, 0);
9518 BFD_ASSERT (rv);
9519 memmove (&dup_contents[dup_dot], scratch, copy_size);
9520 orig_dot += orig_insn_size;
9521 dup_dot += copy_size;
9522 break;
9523
9524 case ta_fill:
9525 if (action->removed_bytes >= 0)
9526 orig_dot += action->removed_bytes;
9527 else
9528 {
9529 /* Already zeroed in dup_contents. Just bump the
9530 counters. */
9531 dup_dot += (-action->removed_bytes);
9532 }
9533 break;
9534
9535 case ta_none:
9536 BFD_ASSERT (action->removed_bytes == 0);
9537 break;
9538
9539 case ta_convert_longcall:
9540 case ta_remove_longcall:
9541 /* These will be removed or converted before we get here. */
9542 BFD_ASSERT (0);
9543 break;
9544
9545 case ta_widen_insn:
9546 orig_insn_size = 2;
9547 copy_size = 3;
9548 memmove (scratch, &contents[orig_dot], orig_insn_size);
9549 BFD_ASSERT (action->removed_bytes == -1);
9550 rv = widen_instruction (scratch, final_size, 0);
9551 BFD_ASSERT (rv);
9552 memmove (&dup_contents[dup_dot], scratch, copy_size);
9553 orig_dot += orig_insn_size;
9554 dup_dot += copy_size;
9555 break;
9556
9557 case ta_add_literal:
9558 orig_insn_size = 0;
9559 copy_size = 4;
9560 BFD_ASSERT (action->removed_bytes == -4);
9561 /* TBD -- place the literal value here and insert
9562 into the table. */
9563 memset (&dup_contents[dup_dot], 0, 4);
9564 pin_internal_relocs (sec, internal_relocs);
9565 pin_contents (sec, contents);
9566
9567 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9568 relax_info, &internal_relocs, &action->value))
9569 goto error_return;
9570
9571 if (virtual_action)
9572 orig_dot_vo += copy_size;
9573
9574 orig_dot += orig_insn_size;
9575 dup_dot += copy_size;
9576 break;
9577
9578 default:
9579 /* Not implemented yet. */
9580 BFD_ASSERT (0);
9581 break;
9582 }
9583
9584 removed += action->removed_bytes;
9585 BFD_ASSERT (dup_dot <= final_size);
9586 BFD_ASSERT (orig_dot <= orig_size);
9587 }
9588
9589 orig_dot += orig_dot_copied;
9590 orig_dot_copied = 0;
9591
9592 if (orig_dot != orig_size)
9593 {
9594 copy_size = orig_size - orig_dot;
9595 BFD_ASSERT (orig_size > orig_dot);
9596 BFD_ASSERT (dup_dot + copy_size == final_size);
9597 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9598 orig_dot += copy_size;
9599 dup_dot += copy_size;
9600 }
9601 BFD_ASSERT (orig_size == orig_dot);
9602 BFD_ASSERT (final_size == dup_dot);
9603
9604 /* Move the dup_contents back. */
9605 if (final_size > orig_size)
9606 {
9607 /* Contents need to be reallocated. Swap the dup_contents into
9608 contents. */
9609 sec->contents = dup_contents;
9610 free (contents);
9611 contents = dup_contents;
9612 pin_contents (sec, contents);
9613 }
9614 else
9615 {
9616 BFD_ASSERT (final_size <= orig_size);
9617 memset (contents, 0, orig_size);
9618 memcpy (contents, dup_contents, final_size);
9619 free (dup_contents);
9620 }
9621 free (scratch);
9622 pin_contents (sec, contents);
9623
9624 if (sec->rawsize == 0)
9625 sec->rawsize = sec->size;
9626 sec->size = final_size;
9627 }
9628
9629 error_return:
9630 release_internal_relocs (sec, internal_relocs);
9631 release_contents (sec, contents);
9632 return ok;
9633 }
9634
9635
9636 static bfd_boolean
9637 translate_section_fixes (asection *sec)
9638 {
9639 xtensa_relax_info *relax_info;
9640 reloc_bfd_fix *r;
9641
9642 relax_info = get_xtensa_relax_info (sec);
9643 if (!relax_info)
9644 return TRUE;
9645
9646 for (r = relax_info->fix_list; r != NULL; r = r->next)
9647 if (!translate_reloc_bfd_fix (r))
9648 return FALSE;
9649
9650 return TRUE;
9651 }
9652
9653
9654 /* Translate a fix given the mapping in the relax info for the target
9655 section. If it has already been translated, no work is required. */
9656
9657 static bfd_boolean
9658 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9659 {
9660 reloc_bfd_fix new_fix;
9661 asection *sec;
9662 xtensa_relax_info *relax_info;
9663 removed_literal *removed;
9664 bfd_vma new_offset, target_offset;
9665
9666 if (fix->translated)
9667 return TRUE;
9668
9669 sec = fix->target_sec;
9670 target_offset = fix->target_offset;
9671
9672 relax_info = get_xtensa_relax_info (sec);
9673 if (!relax_info)
9674 {
9675 fix->translated = TRUE;
9676 return TRUE;
9677 }
9678
9679 new_fix = *fix;
9680
9681 /* The fix does not need to be translated if the section cannot change. */
9682 if (!relax_info->is_relaxable_literal_section
9683 && !relax_info->is_relaxable_asm_section)
9684 {
9685 fix->translated = TRUE;
9686 return TRUE;
9687 }
9688
9689 /* If the literal has been moved and this relocation was on an
9690 opcode, then the relocation should move to the new literal
9691 location. Otherwise, the relocation should move within the
9692 section. */
9693
9694 removed = FALSE;
9695 if (is_operand_relocation (fix->src_type))
9696 {
9697 /* Check if the original relocation is against a literal being
9698 removed. */
9699 removed = find_removed_literal (&relax_info->removed_list,
9700 target_offset);
9701 }
9702
9703 if (removed)
9704 {
9705 asection *new_sec;
9706
9707 /* The fact that there is still a relocation to this literal indicates
9708 that the literal is being coalesced, not simply removed. */
9709 BFD_ASSERT (removed->to.abfd != NULL);
9710
9711 /* This was moved to some other address (possibly another section). */
9712 new_sec = r_reloc_get_section (&removed->to);
9713 if (new_sec != sec)
9714 {
9715 sec = new_sec;
9716 relax_info = get_xtensa_relax_info (sec);
9717 if (!relax_info ||
9718 (!relax_info->is_relaxable_literal_section
9719 && !relax_info->is_relaxable_asm_section))
9720 {
9721 target_offset = removed->to.target_offset;
9722 new_fix.target_sec = new_sec;
9723 new_fix.target_offset = target_offset;
9724 new_fix.translated = TRUE;
9725 *fix = new_fix;
9726 return TRUE;
9727 }
9728 }
9729 target_offset = removed->to.target_offset;
9730 new_fix.target_sec = new_sec;
9731 }
9732
9733 /* The target address may have been moved within its section. */
9734 new_offset = offset_with_removed_text (&relax_info->action_list,
9735 target_offset);
9736
9737 new_fix.target_offset = new_offset;
9738 new_fix.target_offset = new_offset;
9739 new_fix.translated = TRUE;
9740 *fix = new_fix;
9741 return TRUE;
9742 }
9743
9744
9745 /* Fix up a relocation to take account of removed literals. */
9746
9747 static asection *
9748 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9749 {
9750 xtensa_relax_info *relax_info;
9751 removed_literal *removed;
9752 bfd_vma target_offset, base_offset;
9753 text_action *act;
9754
9755 *new_rel = *orig_rel;
9756
9757 if (!r_reloc_is_defined (orig_rel))
9758 return sec ;
9759
9760 relax_info = get_xtensa_relax_info (sec);
9761 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9762 || relax_info->is_relaxable_asm_section));
9763
9764 target_offset = orig_rel->target_offset;
9765
9766 removed = FALSE;
9767 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9768 {
9769 /* Check if the original relocation is against a literal being
9770 removed. */
9771 removed = find_removed_literal (&relax_info->removed_list,
9772 target_offset);
9773 }
9774 if (removed && removed->to.abfd)
9775 {
9776 asection *new_sec;
9777
9778 /* The fact that there is still a relocation to this literal indicates
9779 that the literal is being coalesced, not simply removed. */
9780 BFD_ASSERT (removed->to.abfd != NULL);
9781
9782 /* This was moved to some other address
9783 (possibly in another section). */
9784 *new_rel = removed->to;
9785 new_sec = r_reloc_get_section (new_rel);
9786 if (new_sec != sec)
9787 {
9788 sec = new_sec;
9789 relax_info = get_xtensa_relax_info (sec);
9790 if (!relax_info
9791 || (!relax_info->is_relaxable_literal_section
9792 && !relax_info->is_relaxable_asm_section))
9793 return sec;
9794 }
9795 target_offset = new_rel->target_offset;
9796 }
9797
9798 /* Find the base offset of the reloc symbol, excluding any addend from the
9799 reloc or from the section contents (for a partial_inplace reloc). Then
9800 find the adjusted values of the offsets due to relaxation. The base
9801 offset is needed to determine the change to the reloc's addend; the reloc
9802 addend should not be adjusted due to relaxations located before the base
9803 offset. */
9804
9805 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9806 act = relax_info->action_list.head;
9807 if (base_offset <= target_offset)
9808 {
9809 int base_removed = removed_by_actions (&act, base_offset, FALSE);
9810 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
9811 new_rel->target_offset = target_offset - base_removed - addend_removed;
9812 new_rel->rela.r_addend -= addend_removed;
9813 }
9814 else
9815 {
9816 /* Handle a negative addend. The base offset comes first. */
9817 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
9818 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
9819 new_rel->target_offset = target_offset - tgt_removed;
9820 new_rel->rela.r_addend += addend_removed;
9821 }
9822
9823 return sec;
9824 }
9825
9826
9827 /* For dynamic links, there may be a dynamic relocation for each
9828 literal. The number of dynamic relocations must be computed in
9829 size_dynamic_sections, which occurs before relaxation. When a
9830 literal is removed, this function checks if there is a corresponding
9831 dynamic relocation and shrinks the size of the appropriate dynamic
9832 relocation section accordingly. At this point, the contents of the
9833 dynamic relocation sections have not yet been filled in, so there's
9834 nothing else that needs to be done. */
9835
9836 static void
9837 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9838 bfd *abfd,
9839 asection *input_section,
9840 Elf_Internal_Rela *rel)
9841 {
9842 struct elf_xtensa_link_hash_table *htab;
9843 Elf_Internal_Shdr *symtab_hdr;
9844 struct elf_link_hash_entry **sym_hashes;
9845 unsigned long r_symndx;
9846 int r_type;
9847 struct elf_link_hash_entry *h;
9848 bfd_boolean dynamic_symbol;
9849
9850 htab = elf_xtensa_hash_table (info);
9851 if (htab == NULL)
9852 return;
9853
9854 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9855 sym_hashes = elf_sym_hashes (abfd);
9856
9857 r_type = ELF32_R_TYPE (rel->r_info);
9858 r_symndx = ELF32_R_SYM (rel->r_info);
9859
9860 if (r_symndx < symtab_hdr->sh_info)
9861 h = NULL;
9862 else
9863 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9864
9865 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
9866
9867 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
9868 && (input_section->flags & SEC_ALLOC) != 0
9869 && (dynamic_symbol || info->shared))
9870 {
9871 asection *srel;
9872 bfd_boolean is_plt = FALSE;
9873
9874 if (dynamic_symbol && r_type == R_XTENSA_PLT)
9875 {
9876 srel = htab->srelplt;
9877 is_plt = TRUE;
9878 }
9879 else
9880 srel = htab->srelgot;
9881
9882 /* Reduce size of the .rela.* section by one reloc. */
9883 BFD_ASSERT (srel != NULL);
9884 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
9885 srel->size -= sizeof (Elf32_External_Rela);
9886
9887 if (is_plt)
9888 {
9889 asection *splt, *sgotplt, *srelgot;
9890 int reloc_index, chunk;
9891
9892 /* Find the PLT reloc index of the entry being removed. This
9893 is computed from the size of ".rela.plt". It is needed to
9894 figure out which PLT chunk to resize. Usually "last index
9895 = size - 1" since the index starts at zero, but in this
9896 context, the size has just been decremented so there's no
9897 need to subtract one. */
9898 reloc_index = srel->size / sizeof (Elf32_External_Rela);
9899
9900 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
9901 splt = elf_xtensa_get_plt_section (info, chunk);
9902 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
9903 BFD_ASSERT (splt != NULL && sgotplt != NULL);
9904
9905 /* Check if an entire PLT chunk has just been eliminated. */
9906 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
9907 {
9908 /* The two magic GOT entries for that chunk can go away. */
9909 srelgot = htab->srelgot;
9910 BFD_ASSERT (srelgot != NULL);
9911 srelgot->reloc_count -= 2;
9912 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
9913 sgotplt->size -= 8;
9914
9915 /* There should be only one entry left (and it will be
9916 removed below). */
9917 BFD_ASSERT (sgotplt->size == 4);
9918 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
9919 }
9920
9921 BFD_ASSERT (sgotplt->size >= 4);
9922 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
9923
9924 sgotplt->size -= 4;
9925 splt->size -= PLT_ENTRY_SIZE;
9926 }
9927 }
9928 }
9929
9930
9931 /* Take an r_rel and move it to another section. This usually
9932 requires extending the interal_relocation array and pinning it. If
9933 the original r_rel is from the same BFD, we can complete this here.
9934 Otherwise, we add a fix record to let the final link fix the
9935 appropriate address. Contents and internal relocations for the
9936 section must be pinned after calling this routine. */
9937
9938 static bfd_boolean
9939 move_literal (bfd *abfd,
9940 struct bfd_link_info *link_info,
9941 asection *sec,
9942 bfd_vma offset,
9943 bfd_byte *contents,
9944 xtensa_relax_info *relax_info,
9945 Elf_Internal_Rela **internal_relocs_p,
9946 const literal_value *lit)
9947 {
9948 Elf_Internal_Rela *new_relocs = NULL;
9949 size_t new_relocs_count = 0;
9950 Elf_Internal_Rela this_rela;
9951 const r_reloc *r_rel;
9952
9953 r_rel = &lit->r_rel;
9954 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
9955
9956 if (r_reloc_is_const (r_rel))
9957 bfd_put_32 (abfd, lit->value, contents + offset);
9958 else
9959 {
9960 int r_type;
9961 unsigned i;
9962 reloc_bfd_fix *fix;
9963 unsigned insert_at;
9964
9965 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
9966
9967 /* This is the difficult case. We have to create a fix up. */
9968 this_rela.r_offset = offset;
9969 this_rela.r_info = ELF32_R_INFO (0, r_type);
9970 this_rela.r_addend =
9971 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
9972 bfd_put_32 (abfd, lit->value, contents + offset);
9973
9974 /* Currently, we cannot move relocations during a relocatable link. */
9975 BFD_ASSERT (!link_info->relocatable);
9976 fix = reloc_bfd_fix_init (sec, offset, r_type,
9977 r_reloc_get_section (r_rel),
9978 r_rel->target_offset + r_rel->virtual_offset,
9979 FALSE);
9980 /* We also need to mark that relocations are needed here. */
9981 sec->flags |= SEC_RELOC;
9982
9983 translate_reloc_bfd_fix (fix);
9984 /* This fix has not yet been translated. */
9985 add_fix (sec, fix);
9986
9987 /* Add the relocation. If we have already allocated our own
9988 space for the relocations and we have room for more, then use
9989 it. Otherwise, allocate new space and move the literals. */
9990 insert_at = sec->reloc_count;
9991 for (i = 0; i < sec->reloc_count; ++i)
9992 {
9993 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
9994 {
9995 insert_at = i;
9996 break;
9997 }
9998 }
9999
10000 if (*internal_relocs_p != relax_info->allocated_relocs
10001 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10002 {
10003 BFD_ASSERT (relax_info->allocated_relocs == NULL
10004 || sec->reloc_count == relax_info->relocs_count);
10005
10006 if (relax_info->allocated_relocs_count == 0)
10007 new_relocs_count = (sec->reloc_count + 2) * 2;
10008 else
10009 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10010
10011 new_relocs = (Elf_Internal_Rela *)
10012 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10013 if (!new_relocs)
10014 return FALSE;
10015
10016 /* We could handle this more quickly by finding the split point. */
10017 if (insert_at != 0)
10018 memcpy (new_relocs, *internal_relocs_p,
10019 insert_at * sizeof (Elf_Internal_Rela));
10020
10021 new_relocs[insert_at] = this_rela;
10022
10023 if (insert_at != sec->reloc_count)
10024 memcpy (new_relocs + insert_at + 1,
10025 (*internal_relocs_p) + insert_at,
10026 (sec->reloc_count - insert_at)
10027 * sizeof (Elf_Internal_Rela));
10028
10029 if (*internal_relocs_p != relax_info->allocated_relocs)
10030 {
10031 /* The first time we re-allocate, we can only free the
10032 old relocs if they were allocated with bfd_malloc.
10033 This is not true when keep_memory is in effect. */
10034 if (!link_info->keep_memory)
10035 free (*internal_relocs_p);
10036 }
10037 else
10038 free (*internal_relocs_p);
10039 relax_info->allocated_relocs = new_relocs;
10040 relax_info->allocated_relocs_count = new_relocs_count;
10041 elf_section_data (sec)->relocs = new_relocs;
10042 sec->reloc_count++;
10043 relax_info->relocs_count = sec->reloc_count;
10044 *internal_relocs_p = new_relocs;
10045 }
10046 else
10047 {
10048 if (insert_at != sec->reloc_count)
10049 {
10050 unsigned idx;
10051 for (idx = sec->reloc_count; idx > insert_at; idx--)
10052 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10053 }
10054 (*internal_relocs_p)[insert_at] = this_rela;
10055 sec->reloc_count++;
10056 if (relax_info->allocated_relocs)
10057 relax_info->relocs_count = sec->reloc_count;
10058 }
10059 }
10060 return TRUE;
10061 }
10062
10063
10064 /* This is similar to relax_section except that when a target is moved,
10065 we shift addresses up. We also need to modify the size. This
10066 algorithm does NOT allow for relocations into the middle of the
10067 property sections. */
10068
10069 static bfd_boolean
10070 relax_property_section (bfd *abfd,
10071 asection *sec,
10072 struct bfd_link_info *link_info)
10073 {
10074 Elf_Internal_Rela *internal_relocs;
10075 bfd_byte *contents;
10076 unsigned i;
10077 bfd_boolean ok = TRUE;
10078 bfd_boolean is_full_prop_section;
10079 size_t last_zfill_target_offset = 0;
10080 asection *last_zfill_target_sec = NULL;
10081 bfd_size_type sec_size;
10082 bfd_size_type entry_size;
10083
10084 sec_size = bfd_get_section_limit (abfd, sec);
10085 internal_relocs = retrieve_internal_relocs (abfd, sec,
10086 link_info->keep_memory);
10087 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10088 if (contents == NULL && sec_size != 0)
10089 {
10090 ok = FALSE;
10091 goto error_return;
10092 }
10093
10094 is_full_prop_section = xtensa_is_proptable_section (sec);
10095 if (is_full_prop_section)
10096 entry_size = 12;
10097 else
10098 entry_size = 8;
10099
10100 if (internal_relocs)
10101 {
10102 for (i = 0; i < sec->reloc_count; i++)
10103 {
10104 Elf_Internal_Rela *irel;
10105 xtensa_relax_info *target_relax_info;
10106 unsigned r_type;
10107 asection *target_sec;
10108 literal_value val;
10109 bfd_byte *size_p, *flags_p;
10110
10111 /* Locally change the source address.
10112 Translate the target to the new target address.
10113 If it points to this section and has been removed, MOVE IT.
10114 Also, don't forget to modify the associated SIZE at
10115 (offset + 4). */
10116
10117 irel = &internal_relocs[i];
10118 r_type = ELF32_R_TYPE (irel->r_info);
10119 if (r_type == R_XTENSA_NONE)
10120 continue;
10121
10122 /* Find the literal value. */
10123 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10124 size_p = &contents[irel->r_offset + 4];
10125 flags_p = NULL;
10126 if (is_full_prop_section)
10127 flags_p = &contents[irel->r_offset + 8];
10128 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10129
10130 target_sec = r_reloc_get_section (&val.r_rel);
10131 target_relax_info = get_xtensa_relax_info (target_sec);
10132
10133 if (target_relax_info
10134 && (target_relax_info->is_relaxable_literal_section
10135 || target_relax_info->is_relaxable_asm_section ))
10136 {
10137 /* Translate the relocation's destination. */
10138 bfd_vma old_offset = val.r_rel.target_offset;
10139 bfd_vma new_offset;
10140 long old_size, new_size;
10141 text_action *act = target_relax_info->action_list.head;
10142 new_offset = old_offset -
10143 removed_by_actions (&act, old_offset, FALSE);
10144
10145 /* Assert that we are not out of bounds. */
10146 old_size = bfd_get_32 (abfd, size_p);
10147 new_size = old_size;
10148
10149 if (old_size == 0)
10150 {
10151 /* Only the first zero-sized unreachable entry is
10152 allowed to expand. In this case the new offset
10153 should be the offset before the fill and the new
10154 size is the expansion size. For other zero-sized
10155 entries the resulting size should be zero with an
10156 offset before or after the fill address depending
10157 on whether the expanding unreachable entry
10158 preceeds it. */
10159 if (last_zfill_target_sec == 0
10160 || last_zfill_target_sec != target_sec
10161 || last_zfill_target_offset != old_offset)
10162 {
10163 bfd_vma new_end_offset = new_offset;
10164
10165 /* Recompute the new_offset, but this time don't
10166 include any fill inserted by relaxation. */
10167 act = target_relax_info->action_list.head;
10168 new_offset = old_offset -
10169 removed_by_actions (&act, old_offset, TRUE);
10170
10171 /* If it is not unreachable and we have not yet
10172 seen an unreachable at this address, place it
10173 before the fill address. */
10174 if (flags_p && (bfd_get_32 (abfd, flags_p)
10175 & XTENSA_PROP_UNREACHABLE) != 0)
10176 {
10177 new_size = new_end_offset - new_offset;
10178
10179 last_zfill_target_sec = target_sec;
10180 last_zfill_target_offset = old_offset;
10181 }
10182 }
10183 }
10184 else
10185 new_size -=
10186 removed_by_actions (&act, old_offset + old_size, TRUE);
10187
10188 if (new_size != old_size)
10189 {
10190 bfd_put_32 (abfd, new_size, size_p);
10191 pin_contents (sec, contents);
10192 }
10193
10194 if (new_offset != old_offset)
10195 {
10196 bfd_vma diff = new_offset - old_offset;
10197 irel->r_addend += diff;
10198 pin_internal_relocs (sec, internal_relocs);
10199 }
10200 }
10201 }
10202 }
10203
10204 /* Combine adjacent property table entries. This is also done in
10205 finish_dynamic_sections() but at that point it's too late to
10206 reclaim the space in the output section, so we do this twice. */
10207
10208 if (internal_relocs && (!link_info->relocatable
10209 || xtensa_is_littable_section (sec)))
10210 {
10211 Elf_Internal_Rela *last_irel = NULL;
10212 Elf_Internal_Rela *irel, *next_rel, *rel_end;
10213 int removed_bytes = 0;
10214 bfd_vma offset;
10215 flagword predef_flags;
10216
10217 predef_flags = xtensa_get_property_predef_flags (sec);
10218
10219 /* Walk over memory and relocations at the same time.
10220 This REQUIRES that the internal_relocs be sorted by offset. */
10221 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10222 internal_reloc_compare);
10223
10224 pin_internal_relocs (sec, internal_relocs);
10225 pin_contents (sec, contents);
10226
10227 next_rel = internal_relocs;
10228 rel_end = internal_relocs + sec->reloc_count;
10229
10230 BFD_ASSERT (sec->size % entry_size == 0);
10231
10232 for (offset = 0; offset < sec->size; offset += entry_size)
10233 {
10234 Elf_Internal_Rela *offset_rel, *extra_rel;
10235 bfd_vma bytes_to_remove, size, actual_offset;
10236 bfd_boolean remove_this_rel;
10237 flagword flags;
10238
10239 /* Find the first relocation for the entry at the current offset.
10240 Adjust the offsets of any extra relocations for the previous
10241 entry. */
10242 offset_rel = NULL;
10243 if (next_rel)
10244 {
10245 for (irel = next_rel; irel < rel_end; irel++)
10246 {
10247 if ((irel->r_offset == offset
10248 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10249 || irel->r_offset > offset)
10250 {
10251 offset_rel = irel;
10252 break;
10253 }
10254 irel->r_offset -= removed_bytes;
10255 }
10256 }
10257
10258 /* Find the next relocation (if there are any left). */
10259 extra_rel = NULL;
10260 if (offset_rel)
10261 {
10262 for (irel = offset_rel + 1; irel < rel_end; irel++)
10263 {
10264 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10265 {
10266 extra_rel = irel;
10267 break;
10268 }
10269 }
10270 }
10271
10272 /* Check if there are relocations on the current entry. There
10273 should usually be a relocation on the offset field. If there
10274 are relocations on the size or flags, then we can't optimize
10275 this entry. Also, find the next relocation to examine on the
10276 next iteration. */
10277 if (offset_rel)
10278 {
10279 if (offset_rel->r_offset >= offset + entry_size)
10280 {
10281 next_rel = offset_rel;
10282 /* There are no relocations on the current entry, but we
10283 might still be able to remove it if the size is zero. */
10284 offset_rel = NULL;
10285 }
10286 else if (offset_rel->r_offset > offset
10287 || (extra_rel
10288 && extra_rel->r_offset < offset + entry_size))
10289 {
10290 /* There is a relocation on the size or flags, so we can't
10291 do anything with this entry. Continue with the next. */
10292 next_rel = offset_rel;
10293 continue;
10294 }
10295 else
10296 {
10297 BFD_ASSERT (offset_rel->r_offset == offset);
10298 offset_rel->r_offset -= removed_bytes;
10299 next_rel = offset_rel + 1;
10300 }
10301 }
10302 else
10303 next_rel = NULL;
10304
10305 remove_this_rel = FALSE;
10306 bytes_to_remove = 0;
10307 actual_offset = offset - removed_bytes;
10308 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10309
10310 if (is_full_prop_section)
10311 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10312 else
10313 flags = predef_flags;
10314
10315 if (size == 0
10316 && (flags & XTENSA_PROP_ALIGN) == 0
10317 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10318 {
10319 /* Always remove entries with zero size and no alignment. */
10320 bytes_to_remove = entry_size;
10321 if (offset_rel)
10322 remove_this_rel = TRUE;
10323 }
10324 else if (offset_rel
10325 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10326 {
10327 if (last_irel)
10328 {
10329 flagword old_flags;
10330 bfd_vma old_size =
10331 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10332 bfd_vma old_address =
10333 (last_irel->r_addend
10334 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10335 bfd_vma new_address =
10336 (offset_rel->r_addend
10337 + bfd_get_32 (abfd, &contents[actual_offset]));
10338 if (is_full_prop_section)
10339 old_flags = bfd_get_32
10340 (abfd, &contents[last_irel->r_offset + 8]);
10341 else
10342 old_flags = predef_flags;
10343
10344 if ((ELF32_R_SYM (offset_rel->r_info)
10345 == ELF32_R_SYM (last_irel->r_info))
10346 && old_address + old_size == new_address
10347 && old_flags == flags
10348 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10349 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10350 {
10351 /* Fix the old size. */
10352 bfd_put_32 (abfd, old_size + size,
10353 &contents[last_irel->r_offset + 4]);
10354 bytes_to_remove = entry_size;
10355 remove_this_rel = TRUE;
10356 }
10357 else
10358 last_irel = offset_rel;
10359 }
10360 else
10361 last_irel = offset_rel;
10362 }
10363
10364 if (remove_this_rel)
10365 {
10366 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10367 offset_rel->r_offset = 0;
10368 }
10369
10370 if (bytes_to_remove != 0)
10371 {
10372 removed_bytes += bytes_to_remove;
10373 if (offset + bytes_to_remove < sec->size)
10374 memmove (&contents[actual_offset],
10375 &contents[actual_offset + bytes_to_remove],
10376 sec->size - offset - bytes_to_remove);
10377 }
10378 }
10379
10380 if (removed_bytes)
10381 {
10382 /* Fix up any extra relocations on the last entry. */
10383 for (irel = next_rel; irel < rel_end; irel++)
10384 irel->r_offset -= removed_bytes;
10385
10386 /* Clear the removed bytes. */
10387 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10388
10389 if (sec->rawsize == 0)
10390 sec->rawsize = sec->size;
10391 sec->size -= removed_bytes;
10392
10393 if (xtensa_is_littable_section (sec))
10394 {
10395 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10396 if (sgotloc)
10397 sgotloc->size -= removed_bytes;
10398 }
10399 }
10400 }
10401
10402 error_return:
10403 release_internal_relocs (sec, internal_relocs);
10404 release_contents (sec, contents);
10405 return ok;
10406 }
10407
10408 \f
10409 /* Third relaxation pass. */
10410
10411 /* Change symbol values to account for removed literals. */
10412
10413 bfd_boolean
10414 relax_section_symbols (bfd *abfd, asection *sec)
10415 {
10416 xtensa_relax_info *relax_info;
10417 unsigned int sec_shndx;
10418 Elf_Internal_Shdr *symtab_hdr;
10419 Elf_Internal_Sym *isymbuf;
10420 unsigned i, num_syms, num_locals;
10421
10422 relax_info = get_xtensa_relax_info (sec);
10423 BFD_ASSERT (relax_info);
10424
10425 if (!relax_info->is_relaxable_literal_section
10426 && !relax_info->is_relaxable_asm_section)
10427 return TRUE;
10428
10429 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10430
10431 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10432 isymbuf = retrieve_local_syms (abfd);
10433
10434 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10435 num_locals = symtab_hdr->sh_info;
10436
10437 /* Adjust the local symbols defined in this section. */
10438 for (i = 0; i < num_locals; i++)
10439 {
10440 Elf_Internal_Sym *isym = &isymbuf[i];
10441
10442 if (isym->st_shndx == sec_shndx)
10443 {
10444 text_action *act = relax_info->action_list.head;
10445 bfd_vma orig_addr = isym->st_value;
10446
10447 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
10448
10449 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10450 isym->st_size -=
10451 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
10452 }
10453 }
10454
10455 /* Now adjust the global symbols defined in this section. */
10456 for (i = 0; i < (num_syms - num_locals); i++)
10457 {
10458 struct elf_link_hash_entry *sym_hash;
10459
10460 sym_hash = elf_sym_hashes (abfd)[i];
10461
10462 if (sym_hash->root.type == bfd_link_hash_warning)
10463 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10464
10465 if ((sym_hash->root.type == bfd_link_hash_defined
10466 || sym_hash->root.type == bfd_link_hash_defweak)
10467 && sym_hash->root.u.def.section == sec)
10468 {
10469 text_action *act = relax_info->action_list.head;
10470 bfd_vma orig_addr = sym_hash->root.u.def.value;
10471
10472 sym_hash->root.u.def.value -=
10473 removed_by_actions (&act, orig_addr, FALSE);
10474
10475 if (sym_hash->type == STT_FUNC)
10476 sym_hash->size -=
10477 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
10478 }
10479 }
10480
10481 return TRUE;
10482 }
10483
10484 \f
10485 /* "Fix" handling functions, called while performing relocations. */
10486
10487 static bfd_boolean
10488 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10489 bfd *input_bfd,
10490 asection *input_section,
10491 bfd_byte *contents)
10492 {
10493 r_reloc r_rel;
10494 asection *sec, *old_sec;
10495 bfd_vma old_offset;
10496 int r_type = ELF32_R_TYPE (rel->r_info);
10497 reloc_bfd_fix *fix;
10498
10499 if (r_type == R_XTENSA_NONE)
10500 return TRUE;
10501
10502 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10503 if (!fix)
10504 return TRUE;
10505
10506 r_reloc_init (&r_rel, input_bfd, rel, contents,
10507 bfd_get_section_limit (input_bfd, input_section));
10508 old_sec = r_reloc_get_section (&r_rel);
10509 old_offset = r_rel.target_offset;
10510
10511 if (!old_sec || !r_reloc_is_defined (&r_rel))
10512 {
10513 if (r_type != R_XTENSA_ASM_EXPAND)
10514 {
10515 (*_bfd_error_handler)
10516 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10517 input_bfd, input_section, rel->r_offset,
10518 elf_howto_table[r_type].name);
10519 return FALSE;
10520 }
10521 /* Leave it be. Resolution will happen in a later stage. */
10522 }
10523 else
10524 {
10525 sec = fix->target_sec;
10526 rel->r_addend += ((sec->output_offset + fix->target_offset)
10527 - (old_sec->output_offset + old_offset));
10528 }
10529 return TRUE;
10530 }
10531
10532
10533 static void
10534 do_fix_for_final_link (Elf_Internal_Rela *rel,
10535 bfd *input_bfd,
10536 asection *input_section,
10537 bfd_byte *contents,
10538 bfd_vma *relocationp)
10539 {
10540 asection *sec;
10541 int r_type = ELF32_R_TYPE (rel->r_info);
10542 reloc_bfd_fix *fix;
10543 bfd_vma fixup_diff;
10544
10545 if (r_type == R_XTENSA_NONE)
10546 return;
10547
10548 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10549 if (!fix)
10550 return;
10551
10552 sec = fix->target_sec;
10553
10554 fixup_diff = rel->r_addend;
10555 if (elf_howto_table[fix->src_type].partial_inplace)
10556 {
10557 bfd_vma inplace_val;
10558 BFD_ASSERT (fix->src_offset
10559 < bfd_get_section_limit (input_bfd, input_section));
10560 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10561 fixup_diff += inplace_val;
10562 }
10563
10564 *relocationp = (sec->output_section->vma
10565 + sec->output_offset
10566 + fix->target_offset - fixup_diff);
10567 }
10568
10569 \f
10570 /* Miscellaneous utility functions.... */
10571
10572 static asection *
10573 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10574 {
10575 struct elf_xtensa_link_hash_table *htab;
10576 bfd *dynobj;
10577 char plt_name[10];
10578
10579 if (chunk == 0)
10580 {
10581 htab = elf_xtensa_hash_table (info);
10582 if (htab == NULL)
10583 return NULL;
10584
10585 return htab->splt;
10586 }
10587
10588 dynobj = elf_hash_table (info)->dynobj;
10589 sprintf (plt_name, ".plt.%u", chunk);
10590 return bfd_get_linker_section (dynobj, plt_name);
10591 }
10592
10593
10594 static asection *
10595 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10596 {
10597 struct elf_xtensa_link_hash_table *htab;
10598 bfd *dynobj;
10599 char got_name[14];
10600
10601 if (chunk == 0)
10602 {
10603 htab = elf_xtensa_hash_table (info);
10604 if (htab == NULL)
10605 return NULL;
10606 return htab->sgotplt;
10607 }
10608
10609 dynobj = elf_hash_table (info)->dynobj;
10610 sprintf (got_name, ".got.plt.%u", chunk);
10611 return bfd_get_linker_section (dynobj, got_name);
10612 }
10613
10614
10615 /* Get the input section for a given symbol index.
10616 If the symbol is:
10617 . a section symbol, return the section;
10618 . a common symbol, return the common section;
10619 . an undefined symbol, return the undefined section;
10620 . an indirect symbol, follow the links;
10621 . an absolute value, return the absolute section. */
10622
10623 static asection *
10624 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10625 {
10626 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10627 asection *target_sec = NULL;
10628 if (r_symndx < symtab_hdr->sh_info)
10629 {
10630 Elf_Internal_Sym *isymbuf;
10631 unsigned int section_index;
10632
10633 isymbuf = retrieve_local_syms (abfd);
10634 section_index = isymbuf[r_symndx].st_shndx;
10635
10636 if (section_index == SHN_UNDEF)
10637 target_sec = bfd_und_section_ptr;
10638 else if (section_index == SHN_ABS)
10639 target_sec = bfd_abs_section_ptr;
10640 else if (section_index == SHN_COMMON)
10641 target_sec = bfd_com_section_ptr;
10642 else
10643 target_sec = bfd_section_from_elf_index (abfd, section_index);
10644 }
10645 else
10646 {
10647 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10648 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10649
10650 while (h->root.type == bfd_link_hash_indirect
10651 || h->root.type == bfd_link_hash_warning)
10652 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10653
10654 switch (h->root.type)
10655 {
10656 case bfd_link_hash_defined:
10657 case bfd_link_hash_defweak:
10658 target_sec = h->root.u.def.section;
10659 break;
10660 case bfd_link_hash_common:
10661 target_sec = bfd_com_section_ptr;
10662 break;
10663 case bfd_link_hash_undefined:
10664 case bfd_link_hash_undefweak:
10665 target_sec = bfd_und_section_ptr;
10666 break;
10667 default: /* New indirect warning. */
10668 target_sec = bfd_und_section_ptr;
10669 break;
10670 }
10671 }
10672 return target_sec;
10673 }
10674
10675
10676 static struct elf_link_hash_entry *
10677 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10678 {
10679 unsigned long indx;
10680 struct elf_link_hash_entry *h;
10681 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10682
10683 if (r_symndx < symtab_hdr->sh_info)
10684 return NULL;
10685
10686 indx = r_symndx - symtab_hdr->sh_info;
10687 h = elf_sym_hashes (abfd)[indx];
10688 while (h->root.type == bfd_link_hash_indirect
10689 || h->root.type == bfd_link_hash_warning)
10690 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10691 return h;
10692 }
10693
10694
10695 /* Get the section-relative offset for a symbol number. */
10696
10697 static bfd_vma
10698 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10699 {
10700 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10701 bfd_vma offset = 0;
10702
10703 if (r_symndx < symtab_hdr->sh_info)
10704 {
10705 Elf_Internal_Sym *isymbuf;
10706 isymbuf = retrieve_local_syms (abfd);
10707 offset = isymbuf[r_symndx].st_value;
10708 }
10709 else
10710 {
10711 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10712 struct elf_link_hash_entry *h =
10713 elf_sym_hashes (abfd)[indx];
10714
10715 while (h->root.type == bfd_link_hash_indirect
10716 || h->root.type == bfd_link_hash_warning)
10717 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10718 if (h->root.type == bfd_link_hash_defined
10719 || h->root.type == bfd_link_hash_defweak)
10720 offset = h->root.u.def.value;
10721 }
10722 return offset;
10723 }
10724
10725
10726 static bfd_boolean
10727 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10728 {
10729 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10730 struct elf_link_hash_entry *h;
10731
10732 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10733 if (h && h->root.type == bfd_link_hash_defweak)
10734 return TRUE;
10735 return FALSE;
10736 }
10737
10738
10739 static bfd_boolean
10740 pcrel_reloc_fits (xtensa_opcode opc,
10741 int opnd,
10742 bfd_vma self_address,
10743 bfd_vma dest_address)
10744 {
10745 xtensa_isa isa = xtensa_default_isa;
10746 uint32 valp = dest_address;
10747 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10748 || xtensa_operand_encode (isa, opc, opnd, &valp))
10749 return FALSE;
10750 return TRUE;
10751 }
10752
10753
10754 static bfd_boolean
10755 xtensa_is_property_section (asection *sec)
10756 {
10757 if (xtensa_is_insntable_section (sec)
10758 || xtensa_is_littable_section (sec)
10759 || xtensa_is_proptable_section (sec))
10760 return TRUE;
10761
10762 return FALSE;
10763 }
10764
10765
10766 static bfd_boolean
10767 xtensa_is_insntable_section (asection *sec)
10768 {
10769 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10770 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
10771 return TRUE;
10772
10773 return FALSE;
10774 }
10775
10776
10777 static bfd_boolean
10778 xtensa_is_littable_section (asection *sec)
10779 {
10780 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10781 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
10782 return TRUE;
10783
10784 return FALSE;
10785 }
10786
10787
10788 static bfd_boolean
10789 xtensa_is_proptable_section (asection *sec)
10790 {
10791 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10792 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
10793 return TRUE;
10794
10795 return FALSE;
10796 }
10797
10798
10799 static int
10800 internal_reloc_compare (const void *ap, const void *bp)
10801 {
10802 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10803 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10804
10805 if (a->r_offset != b->r_offset)
10806 return (a->r_offset - b->r_offset);
10807
10808 /* We don't need to sort on these criteria for correctness,
10809 but enforcing a more strict ordering prevents unstable qsort
10810 from behaving differently with different implementations.
10811 Without the code below we get correct but different results
10812 on Solaris 2.7 and 2.8. We would like to always produce the
10813 same results no matter the host. */
10814
10815 if (a->r_info != b->r_info)
10816 return (a->r_info - b->r_info);
10817
10818 return (a->r_addend - b->r_addend);
10819 }
10820
10821
10822 static int
10823 internal_reloc_matches (const void *ap, const void *bp)
10824 {
10825 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10826 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10827
10828 /* Check if one entry overlaps with the other; this shouldn't happen
10829 except when searching for a match. */
10830 return (a->r_offset - b->r_offset);
10831 }
10832
10833
10834 /* Predicate function used to look up a section in a particular group. */
10835
10836 static bfd_boolean
10837 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10838 {
10839 const char *gname = inf;
10840 const char *group_name = elf_group_name (sec);
10841
10842 return (group_name == gname
10843 || (group_name != NULL
10844 && gname != NULL
10845 && strcmp (group_name, gname) == 0));
10846 }
10847
10848
10849 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10850
10851 static char *
10852 xtensa_property_section_name (asection *sec, const char *base_name)
10853 {
10854 const char *suffix, *group_name;
10855 char *prop_sec_name;
10856
10857 group_name = elf_group_name (sec);
10858 if (group_name)
10859 {
10860 suffix = strrchr (sec->name, '.');
10861 if (suffix == sec->name)
10862 suffix = 0;
10863 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10864 + (suffix ? strlen (suffix) : 0));
10865 strcpy (prop_sec_name, base_name);
10866 if (suffix)
10867 strcat (prop_sec_name, suffix);
10868 }
10869 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
10870 {
10871 char *linkonce_kind = 0;
10872
10873 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
10874 linkonce_kind = "x.";
10875 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
10876 linkonce_kind = "p.";
10877 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
10878 linkonce_kind = "prop.";
10879 else
10880 abort ();
10881
10882 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
10883 + strlen (linkonce_kind) + 1);
10884 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
10885 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
10886
10887 suffix = sec->name + linkonce_len;
10888 /* For backward compatibility, replace "t." instead of inserting
10889 the new linkonce_kind (but not for "prop" sections). */
10890 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
10891 suffix += 2;
10892 strcat (prop_sec_name + linkonce_len, suffix);
10893 }
10894 else
10895 prop_sec_name = strdup (base_name);
10896
10897 return prop_sec_name;
10898 }
10899
10900
10901 static asection *
10902 xtensa_get_property_section (asection *sec, const char *base_name)
10903 {
10904 char *prop_sec_name;
10905 asection *prop_sec;
10906
10907 prop_sec_name = xtensa_property_section_name (sec, base_name);
10908 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10909 match_section_group,
10910 (void *) elf_group_name (sec));
10911 free (prop_sec_name);
10912 return prop_sec;
10913 }
10914
10915
10916 asection *
10917 xtensa_make_property_section (asection *sec, const char *base_name)
10918 {
10919 char *prop_sec_name;
10920 asection *prop_sec;
10921
10922 /* Check if the section already exists. */
10923 prop_sec_name = xtensa_property_section_name (sec, base_name);
10924 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
10925 match_section_group,
10926 (void *) elf_group_name (sec));
10927 /* If not, create it. */
10928 if (! prop_sec)
10929 {
10930 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
10931 flags |= (bfd_get_section_flags (sec->owner, sec)
10932 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
10933
10934 prop_sec = bfd_make_section_anyway_with_flags
10935 (sec->owner, strdup (prop_sec_name), flags);
10936 if (! prop_sec)
10937 return 0;
10938
10939 elf_group_name (prop_sec) = elf_group_name (sec);
10940 }
10941
10942 free (prop_sec_name);
10943 return prop_sec;
10944 }
10945
10946
10947 flagword
10948 xtensa_get_property_predef_flags (asection *sec)
10949 {
10950 if (xtensa_is_insntable_section (sec))
10951 return (XTENSA_PROP_INSN
10952 | XTENSA_PROP_NO_TRANSFORM
10953 | XTENSA_PROP_INSN_NO_REORDER);
10954
10955 if (xtensa_is_littable_section (sec))
10956 return (XTENSA_PROP_LITERAL
10957 | XTENSA_PROP_NO_TRANSFORM
10958 | XTENSA_PROP_INSN_NO_REORDER);
10959
10960 return 0;
10961 }
10962
10963 \f
10964 /* Other functions called directly by the linker. */
10965
10966 bfd_boolean
10967 xtensa_callback_required_dependence (bfd *abfd,
10968 asection *sec,
10969 struct bfd_link_info *link_info,
10970 deps_callback_t callback,
10971 void *closure)
10972 {
10973 Elf_Internal_Rela *internal_relocs;
10974 bfd_byte *contents;
10975 unsigned i;
10976 bfd_boolean ok = TRUE;
10977 bfd_size_type sec_size;
10978
10979 sec_size = bfd_get_section_limit (abfd, sec);
10980
10981 /* ".plt*" sections have no explicit relocations but they contain L32R
10982 instructions that reference the corresponding ".got.plt*" sections. */
10983 if ((sec->flags & SEC_LINKER_CREATED) != 0
10984 && CONST_STRNEQ (sec->name, ".plt"))
10985 {
10986 asection *sgotplt;
10987
10988 /* Find the corresponding ".got.plt*" section. */
10989 if (sec->name[4] == '\0')
10990 sgotplt = bfd_get_linker_section (sec->owner, ".got.plt");
10991 else
10992 {
10993 char got_name[14];
10994 int chunk = 0;
10995
10996 BFD_ASSERT (sec->name[4] == '.');
10997 chunk = strtol (&sec->name[5], NULL, 10);
10998
10999 sprintf (got_name, ".got.plt.%u", chunk);
11000 sgotplt = bfd_get_linker_section (sec->owner, got_name);
11001 }
11002 BFD_ASSERT (sgotplt);
11003
11004 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11005 section referencing a literal at the very beginning of
11006 ".got.plt". This is very close to the real dependence, anyway. */
11007 (*callback) (sec, sec_size, sgotplt, 0, closure);
11008 }
11009
11010 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11011 when building uclibc, which runs "ld -b binary /dev/null". */
11012 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11013 return ok;
11014
11015 internal_relocs = retrieve_internal_relocs (abfd, sec,
11016 link_info->keep_memory);
11017 if (internal_relocs == NULL
11018 || sec->reloc_count == 0)
11019 return ok;
11020
11021 /* Cache the contents for the duration of this scan. */
11022 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11023 if (contents == NULL && sec_size != 0)
11024 {
11025 ok = FALSE;
11026 goto error_return;
11027 }
11028
11029 if (!xtensa_default_isa)
11030 xtensa_default_isa = xtensa_isa_init (0, 0);
11031
11032 for (i = 0; i < sec->reloc_count; i++)
11033 {
11034 Elf_Internal_Rela *irel = &internal_relocs[i];
11035 if (is_l32r_relocation (abfd, sec, contents, irel))
11036 {
11037 r_reloc l32r_rel;
11038 asection *target_sec;
11039 bfd_vma target_offset;
11040
11041 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11042 target_sec = NULL;
11043 target_offset = 0;
11044 /* L32Rs must be local to the input file. */
11045 if (r_reloc_is_defined (&l32r_rel))
11046 {
11047 target_sec = r_reloc_get_section (&l32r_rel);
11048 target_offset = l32r_rel.target_offset;
11049 }
11050 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11051 closure);
11052 }
11053 }
11054
11055 error_return:
11056 release_internal_relocs (sec, internal_relocs);
11057 release_contents (sec, contents);
11058 return ok;
11059 }
11060
11061 /* The default literal sections should always be marked as "code" (i.e.,
11062 SHF_EXECINSTR). This is particularly important for the Linux kernel
11063 module loader so that the literals are not placed after the text. */
11064 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11065 {
11066 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11067 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11068 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11069 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11070 { NULL, 0, 0, 0, 0 }
11071 };
11072 \f
11073 #define ELF_TARGET_ID XTENSA_ELF_DATA
11074 #ifndef ELF_ARCH
11075 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11076 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11077 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11078 #define TARGET_BIG_NAME "elf32-xtensa-be"
11079 #define ELF_ARCH bfd_arch_xtensa
11080
11081 #define ELF_MACHINE_CODE EM_XTENSA
11082 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11083
11084 #if XCHAL_HAVE_MMU
11085 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
11086 #else /* !XCHAL_HAVE_MMU */
11087 #define ELF_MAXPAGESIZE 1
11088 #endif /* !XCHAL_HAVE_MMU */
11089 #endif /* ELF_ARCH */
11090
11091 #define elf_backend_can_gc_sections 1
11092 #define elf_backend_can_refcount 1
11093 #define elf_backend_plt_readonly 1
11094 #define elf_backend_got_header_size 4
11095 #define elf_backend_want_dynbss 0
11096 #define elf_backend_want_got_plt 1
11097
11098 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11099
11100 #define bfd_elf32_mkobject elf_xtensa_mkobject
11101
11102 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11103 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11104 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11105 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11106 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11107 #define bfd_elf32_bfd_reloc_name_lookup \
11108 elf_xtensa_reloc_name_lookup
11109 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11110 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11111
11112 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11113 #define elf_backend_check_relocs elf_xtensa_check_relocs
11114 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11115 #define elf_backend_discard_info elf_xtensa_discard_info
11116 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11117 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11118 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11119 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11120 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11121 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
11122 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11123 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11124 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11125 #define elf_backend_object_p elf_xtensa_object_p
11126 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11127 #define elf_backend_relocate_section elf_xtensa_relocate_section
11128 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11129 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11130 #define elf_backend_omit_section_dynsym \
11131 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
11132 #define elf_backend_special_sections elf_xtensa_special_sections
11133 #define elf_backend_action_discarded elf_xtensa_action_discarded
11134 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11135
11136 #include "elf32-target.h"
This page took 0.360956 seconds and 4 git commands to generate.