88a249bb05e38991842fc985bae83d662f36502f
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
33
34 #define XTENSA_NO_NOP_REMOVAL 0
35
36 /* Local helper functions. */
37
38 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
46
47 /* Local functions to handle Xtensa configurability. */
48
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte *, bfd_size_type, bfd_size_type);
74
75 /* Functions for link-time code simplifications. */
76
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
83
84 /* Access to internal relocations, section contents and symbols. */
85
86 static Elf_Internal_Rela *retrieve_internal_relocs
87 (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
94
95 /* Miscellaneous utility functions. */
96
97 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101 (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_insntable_section (asection *);
107 static bfd_boolean xtensa_is_littable_section (asection *);
108 static bfd_boolean xtensa_is_proptable_section (asection *);
109 static int internal_reloc_compare (const void *, const void *);
110 static int internal_reloc_matches (const void *, const void *);
111 extern asection *xtensa_get_property_section (asection *, const char *);
112 static flagword xtensa_get_property_predef_flags (asection *);
113
114 /* Other functions called directly by the linker. */
115
116 typedef void (*deps_callback_t)
117 (asection *, bfd_vma, asection *, bfd_vma, void *);
118 extern bfd_boolean xtensa_callback_required_dependence
119 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
120
121
122 /* Globally visible flag for choosing size optimization of NOP removal
123 instead of branch-target-aware minimization for NOP removal.
124 When nonzero, narrow all instructions and remove all NOPs possible
125 around longcall expansions. */
126
127 int elf32xtensa_size_opt;
128
129
130 /* The "new_section_hook" is used to set up a per-section
131 "xtensa_relax_info" data structure with additional information used
132 during relaxation. */
133
134 typedef struct xtensa_relax_info_struct xtensa_relax_info;
135
136
137 /* The GNU tools do not easily allow extending interfaces to pass around
138 the pointer to the Xtensa ISA information, so instead we add a global
139 variable here (in BFD) that can be used by any of the tools that need
140 this information. */
141
142 xtensa_isa xtensa_default_isa;
143
144
145 /* When this is true, relocations may have been modified to refer to
146 symbols from other input files. The per-section list of "fix"
147 records needs to be checked when resolving relocations. */
148
149 static bfd_boolean relaxing_section = FALSE;
150
151 /* When this is true, during final links, literals that cannot be
152 coalesced and their relocations may be moved to other sections. */
153
154 int elf32xtensa_no_literal_movement = 1;
155
156 \f
157 static reloc_howto_type elf_howto_table[] =
158 {
159 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
160 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
161 FALSE, 0, 0, FALSE),
162 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
163 bfd_elf_xtensa_reloc, "R_XTENSA_32",
164 TRUE, 0xffffffff, 0xffffffff, FALSE),
165
166 /* Replace a 32-bit value with a value from the runtime linker (only
167 used by linker-generated stub functions). The r_addend value is
168 special: 1 means to substitute a pointer to the runtime linker's
169 dynamic resolver function; 2 means to substitute the link map for
170 the shared object. */
171 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
172 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
173
174 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
175 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
176 FALSE, 0, 0xffffffff, FALSE),
177 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
178 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
179 FALSE, 0, 0xffffffff, FALSE),
180 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
182 FALSE, 0, 0xffffffff, FALSE),
183 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
185 FALSE, 0, 0xffffffff, FALSE),
186
187 EMPTY_HOWTO (7),
188
189 /* Old relocations for backward compatibility. */
190 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
191 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
192 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
193 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
194 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
196
197 /* Assembly auto-expansion. */
198 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
199 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
200 /* Relax assembly auto-expansion. */
201 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
202 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
203
204 EMPTY_HOWTO (13),
205 EMPTY_HOWTO (14),
206
207 /* GNU extension to record C++ vtable hierarchy. */
208 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
209 NULL, "R_XTENSA_GNU_VTINHERIT",
210 FALSE, 0, 0, FALSE),
211 /* GNU extension to record C++ vtable member usage. */
212 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
213 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
214 FALSE, 0, 0, FALSE),
215
216 /* Relocations for supporting difference of symbols. */
217 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
218 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
219 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
220 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
221 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
222 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
223
224 /* General immediate operand relocations. */
225 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
226 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
227 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
228 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
229 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
230 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
231 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
232 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
233 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
235 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
237 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
239 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
241 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
243 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
245 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
247 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
249 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
251 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
253 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
255
256 /* "Alternate" relocations. The meaning of these is opcode-specific. */
257 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
259 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
261 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
263 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
265 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
287 };
288
289 #if DEBUG_GEN_RELOC
290 #define TRACE(str) \
291 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
292 #else
293 #define TRACE(str)
294 #endif
295
296 static reloc_howto_type *
297 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
298 bfd_reloc_code_real_type code)
299 {
300 switch (code)
301 {
302 case BFD_RELOC_NONE:
303 TRACE ("BFD_RELOC_NONE");
304 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
305
306 case BFD_RELOC_32:
307 TRACE ("BFD_RELOC_32");
308 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
309
310 case BFD_RELOC_XTENSA_DIFF8:
311 TRACE ("BFD_RELOC_XTENSA_DIFF8");
312 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
313
314 case BFD_RELOC_XTENSA_DIFF16:
315 TRACE ("BFD_RELOC_XTENSA_DIFF16");
316 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
317
318 case BFD_RELOC_XTENSA_DIFF32:
319 TRACE ("BFD_RELOC_XTENSA_DIFF32");
320 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
321
322 case BFD_RELOC_XTENSA_RTLD:
323 TRACE ("BFD_RELOC_XTENSA_RTLD");
324 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
325
326 case BFD_RELOC_XTENSA_GLOB_DAT:
327 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
328 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
329
330 case BFD_RELOC_XTENSA_JMP_SLOT:
331 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
332 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
333
334 case BFD_RELOC_XTENSA_RELATIVE:
335 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
336 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
337
338 case BFD_RELOC_XTENSA_PLT:
339 TRACE ("BFD_RELOC_XTENSA_PLT");
340 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
341
342 case BFD_RELOC_XTENSA_OP0:
343 TRACE ("BFD_RELOC_XTENSA_OP0");
344 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
345
346 case BFD_RELOC_XTENSA_OP1:
347 TRACE ("BFD_RELOC_XTENSA_OP1");
348 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
349
350 case BFD_RELOC_XTENSA_OP2:
351 TRACE ("BFD_RELOC_XTENSA_OP2");
352 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
353
354 case BFD_RELOC_XTENSA_ASM_EXPAND:
355 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
356 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
357
358 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
359 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
360 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
361
362 case BFD_RELOC_VTABLE_INHERIT:
363 TRACE ("BFD_RELOC_VTABLE_INHERIT");
364 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
365
366 case BFD_RELOC_VTABLE_ENTRY:
367 TRACE ("BFD_RELOC_VTABLE_ENTRY");
368 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
369
370 default:
371 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
372 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
373 {
374 unsigned n = (R_XTENSA_SLOT0_OP +
375 (code - BFD_RELOC_XTENSA_SLOT0_OP));
376 return &elf_howto_table[n];
377 }
378
379 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
380 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
381 {
382 unsigned n = (R_XTENSA_SLOT0_ALT +
383 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
384 return &elf_howto_table[n];
385 }
386
387 break;
388 }
389
390 TRACE ("Unknown");
391 return NULL;
392 }
393
394 static reloc_howto_type *
395 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
396 const char *r_name)
397 {
398 unsigned int i;
399
400 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
401 if (elf_howto_table[i].name != NULL
402 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
403 return &elf_howto_table[i];
404
405 return NULL;
406 }
407
408
409 /* Given an ELF "rela" relocation, find the corresponding howto and record
410 it in the BFD internal arelent representation of the relocation. */
411
412 static void
413 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
414 arelent *cache_ptr,
415 Elf_Internal_Rela *dst)
416 {
417 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
418
419 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
420 cache_ptr->howto = &elf_howto_table[r_type];
421 }
422
423 \f
424 /* Functions for the Xtensa ELF linker. */
425
426 /* The name of the dynamic interpreter. This is put in the .interp
427 section. */
428
429 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
430
431 /* The size in bytes of an entry in the procedure linkage table.
432 (This does _not_ include the space for the literals associated with
433 the PLT entry.) */
434
435 #define PLT_ENTRY_SIZE 16
436
437 /* For _really_ large PLTs, we may need to alternate between literals
438 and code to keep the literals within the 256K range of the L32R
439 instructions in the code. It's unlikely that anyone would ever need
440 such a big PLT, but an arbitrary limit on the PLT size would be bad.
441 Thus, we split the PLT into chunks. Since there's very little
442 overhead (2 extra literals) for each chunk, the chunk size is kept
443 small so that the code for handling multiple chunks get used and
444 tested regularly. With 254 entries, there are 1K of literals for
445 each chunk, and that seems like a nice round number. */
446
447 #define PLT_ENTRIES_PER_CHUNK 254
448
449 /* PLT entries are actually used as stub functions for lazy symbol
450 resolution. Once the symbol is resolved, the stub function is never
451 invoked. Note: the 32-byte frame size used here cannot be changed
452 without a corresponding change in the runtime linker. */
453
454 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
455 {
456 0x6c, 0x10, 0x04, /* entry sp, 32 */
457 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
458 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
459 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
460 0x0a, 0x80, 0x00, /* jx a8 */
461 0 /* unused */
462 };
463
464 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
465 {
466 0x36, 0x41, 0x00, /* entry sp, 32 */
467 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
468 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
469 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
470 0xa0, 0x08, 0x00, /* jx a8 */
471 0 /* unused */
472 };
473
474 /* Xtensa ELF linker hash table. */
475
476 struct elf_xtensa_link_hash_table
477 {
478 struct elf_link_hash_table elf;
479
480 /* Short-cuts to get to dynamic linker sections. */
481 asection *sgot;
482 asection *sgotplt;
483 asection *srelgot;
484 asection *splt;
485 asection *srelplt;
486 asection *sgotloc;
487 asection *spltlittbl;
488
489 /* Total count of PLT relocations seen during check_relocs.
490 The actual PLT code must be split into multiple sections and all
491 the sections have to be created before size_dynamic_sections,
492 where we figure out the exact number of PLT entries that will be
493 needed. It is OK if this count is an overestimate, e.g., some
494 relocations may be removed by GC. */
495 int plt_reloc_count;
496 };
497
498 /* Get the Xtensa ELF linker hash table from a link_info structure. */
499
500 #define elf_xtensa_hash_table(p) \
501 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
502
503 /* Create an Xtensa ELF linker hash table. */
504
505 static struct bfd_link_hash_table *
506 elf_xtensa_link_hash_table_create (bfd *abfd)
507 {
508 struct elf_xtensa_link_hash_table *ret;
509 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
510
511 ret = bfd_malloc (amt);
512 if (ret == NULL)
513 return NULL;
514
515 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
516 _bfd_elf_link_hash_newfunc,
517 sizeof (struct elf_link_hash_entry)))
518 {
519 free (ret);
520 return NULL;
521 }
522
523 ret->sgot = NULL;
524 ret->sgotplt = NULL;
525 ret->srelgot = NULL;
526 ret->splt = NULL;
527 ret->srelplt = NULL;
528 ret->sgotloc = NULL;
529 ret->spltlittbl = NULL;
530
531 ret->plt_reloc_count = 0;
532
533 return &ret->elf.root;
534 }
535
536 static inline bfd_boolean
537 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
538 struct bfd_link_info *info)
539 {
540 /* Check if we should do dynamic things to this symbol. The
541 "ignore_protected" argument need not be set, because Xtensa code
542 does not require special handling of STV_PROTECTED to make function
543 pointer comparisons work properly. The PLT addresses are never
544 used for function pointers. */
545
546 return _bfd_elf_dynamic_symbol_p (h, info, 0);
547 }
548
549 \f
550 static int
551 property_table_compare (const void *ap, const void *bp)
552 {
553 const property_table_entry *a = (const property_table_entry *) ap;
554 const property_table_entry *b = (const property_table_entry *) bp;
555
556 if (a->address == b->address)
557 {
558 if (a->size != b->size)
559 return (a->size - b->size);
560
561 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
562 return ((b->flags & XTENSA_PROP_ALIGN)
563 - (a->flags & XTENSA_PROP_ALIGN));
564
565 if ((a->flags & XTENSA_PROP_ALIGN)
566 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
567 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
568 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
569 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
570
571 if ((a->flags & XTENSA_PROP_UNREACHABLE)
572 != (b->flags & XTENSA_PROP_UNREACHABLE))
573 return ((b->flags & XTENSA_PROP_UNREACHABLE)
574 - (a->flags & XTENSA_PROP_UNREACHABLE));
575
576 return (a->flags - b->flags);
577 }
578
579 return (a->address - b->address);
580 }
581
582
583 static int
584 property_table_matches (const void *ap, const void *bp)
585 {
586 const property_table_entry *a = (const property_table_entry *) ap;
587 const property_table_entry *b = (const property_table_entry *) bp;
588
589 /* Check if one entry overlaps with the other. */
590 if ((b->address >= a->address && b->address < (a->address + a->size))
591 || (a->address >= b->address && a->address < (b->address + b->size)))
592 return 0;
593
594 return (a->address - b->address);
595 }
596
597
598 /* Get the literal table or property table entries for the given
599 section. Sets TABLE_P and returns the number of entries. On
600 error, returns a negative value. */
601
602 static int
603 xtensa_read_table_entries (bfd *abfd,
604 asection *section,
605 property_table_entry **table_p,
606 const char *sec_name,
607 bfd_boolean output_addr)
608 {
609 asection *table_section;
610 bfd_size_type table_size = 0;
611 bfd_byte *table_data;
612 property_table_entry *blocks;
613 int blk, block_count;
614 bfd_size_type num_records;
615 Elf_Internal_Rela *internal_relocs;
616 bfd_vma section_addr;
617 flagword predef_flags;
618 bfd_size_type table_entry_size;
619
620 if (!section
621 || !(section->flags & SEC_ALLOC)
622 || (section->flags & SEC_DEBUGGING))
623 {
624 *table_p = NULL;
625 return 0;
626 }
627
628 table_section = xtensa_get_property_section (section, sec_name);
629 if (table_section)
630 table_size = table_section->size;
631
632 if (table_size == 0)
633 {
634 *table_p = NULL;
635 return 0;
636 }
637
638 predef_flags = xtensa_get_property_predef_flags (table_section);
639 table_entry_size = 12;
640 if (predef_flags)
641 table_entry_size -= 4;
642
643 num_records = table_size / table_entry_size;
644 table_data = retrieve_contents (abfd, table_section, TRUE);
645 blocks = (property_table_entry *)
646 bfd_malloc (num_records * sizeof (property_table_entry));
647 block_count = 0;
648
649 if (output_addr)
650 section_addr = section->output_section->vma + section->output_offset;
651 else
652 section_addr = section->vma;
653
654 /* If the file has not yet been relocated, process the relocations
655 and sort out the table entries that apply to the specified section. */
656 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
657 if (internal_relocs && !table_section->reloc_done)
658 {
659 unsigned i;
660
661 for (i = 0; i < table_section->reloc_count; i++)
662 {
663 Elf_Internal_Rela *rel = &internal_relocs[i];
664 unsigned long r_symndx;
665
666 if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE)
667 continue;
668
669 BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32);
670 r_symndx = ELF32_R_SYM (rel->r_info);
671
672 if (get_elf_r_symndx_section (abfd, r_symndx) == section)
673 {
674 bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
675 BFD_ASSERT (sym_off == 0);
676 blocks[block_count].address =
677 (section_addr + sym_off + rel->r_addend
678 + bfd_get_32 (abfd, table_data + rel->r_offset));
679 blocks[block_count].size =
680 bfd_get_32 (abfd, table_data + rel->r_offset + 4);
681 if (predef_flags)
682 blocks[block_count].flags = predef_flags;
683 else
684 blocks[block_count].flags =
685 bfd_get_32 (abfd, table_data + rel->r_offset + 8);
686 block_count++;
687 }
688 }
689 }
690 else
691 {
692 /* The file has already been relocated and the addresses are
693 already in the table. */
694 bfd_vma off;
695 bfd_size_type section_limit = bfd_get_section_limit (abfd, section);
696
697 for (off = 0; off < table_size; off += table_entry_size)
698 {
699 bfd_vma address = bfd_get_32 (abfd, table_data + off);
700
701 if (address >= section_addr
702 && address < section_addr + section_limit)
703 {
704 blocks[block_count].address = address;
705 blocks[block_count].size =
706 bfd_get_32 (abfd, table_data + off + 4);
707 if (predef_flags)
708 blocks[block_count].flags = predef_flags;
709 else
710 blocks[block_count].flags =
711 bfd_get_32 (abfd, table_data + off + 8);
712 block_count++;
713 }
714 }
715 }
716
717 release_contents (table_section, table_data);
718 release_internal_relocs (table_section, internal_relocs);
719
720 if (block_count > 0)
721 {
722 /* Now sort them into address order for easy reference. */
723 qsort (blocks, block_count, sizeof (property_table_entry),
724 property_table_compare);
725
726 /* Check that the table contents are valid. Problems may occur,
727 for example, if an unrelocated object file is stripped. */
728 for (blk = 1; blk < block_count; blk++)
729 {
730 /* The only circumstance where two entries may legitimately
731 have the same address is when one of them is a zero-size
732 placeholder to mark a place where fill can be inserted.
733 The zero-size entry should come first. */
734 if (blocks[blk - 1].address == blocks[blk].address &&
735 blocks[blk - 1].size != 0)
736 {
737 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
738 abfd, section);
739 bfd_set_error (bfd_error_bad_value);
740 free (blocks);
741 return -1;
742 }
743 }
744 }
745
746 *table_p = blocks;
747 return block_count;
748 }
749
750
751 static property_table_entry *
752 elf_xtensa_find_property_entry (property_table_entry *property_table,
753 int property_table_size,
754 bfd_vma addr)
755 {
756 property_table_entry entry;
757 property_table_entry *rv;
758
759 if (property_table_size == 0)
760 return NULL;
761
762 entry.address = addr;
763 entry.size = 1;
764 entry.flags = 0;
765
766 rv = bsearch (&entry, property_table, property_table_size,
767 sizeof (property_table_entry), property_table_matches);
768 return rv;
769 }
770
771
772 static bfd_boolean
773 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
774 int lit_table_size,
775 bfd_vma addr)
776 {
777 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
778 return TRUE;
779
780 return FALSE;
781 }
782
783 \f
784 /* Look through the relocs for a section during the first phase, and
785 calculate needed space in the dynamic reloc sections. */
786
787 static bfd_boolean
788 elf_xtensa_check_relocs (bfd *abfd,
789 struct bfd_link_info *info,
790 asection *sec,
791 const Elf_Internal_Rela *relocs)
792 {
793 struct elf_xtensa_link_hash_table *htab;
794 Elf_Internal_Shdr *symtab_hdr;
795 struct elf_link_hash_entry **sym_hashes;
796 const Elf_Internal_Rela *rel;
797 const Elf_Internal_Rela *rel_end;
798
799 if (info->relocatable)
800 return TRUE;
801
802 htab = elf_xtensa_hash_table (info);
803 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
804 sym_hashes = elf_sym_hashes (abfd);
805
806 rel_end = relocs + sec->reloc_count;
807 for (rel = relocs; rel < rel_end; rel++)
808 {
809 unsigned int r_type;
810 unsigned long r_symndx;
811 struct elf_link_hash_entry *h;
812
813 r_symndx = ELF32_R_SYM (rel->r_info);
814 r_type = ELF32_R_TYPE (rel->r_info);
815
816 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
817 {
818 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
819 abfd, r_symndx);
820 return FALSE;
821 }
822
823 if (r_symndx < symtab_hdr->sh_info)
824 h = NULL;
825 else
826 {
827 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
828 while (h->root.type == bfd_link_hash_indirect
829 || h->root.type == bfd_link_hash_warning)
830 h = (struct elf_link_hash_entry *) h->root.u.i.link;
831 }
832
833 switch (r_type)
834 {
835 case R_XTENSA_32:
836 if (h == NULL)
837 goto local_literal;
838
839 if ((sec->flags & SEC_ALLOC) != 0)
840 {
841 if (h->got.refcount <= 0)
842 h->got.refcount = 1;
843 else
844 h->got.refcount += 1;
845 }
846 break;
847
848 case R_XTENSA_PLT:
849 /* If this relocation is against a local symbol, then it's
850 exactly the same as a normal local GOT entry. */
851 if (h == NULL)
852 goto local_literal;
853
854 if ((sec->flags & SEC_ALLOC) != 0)
855 {
856 if (h->plt.refcount <= 0)
857 {
858 h->needs_plt = 1;
859 h->plt.refcount = 1;
860 }
861 else
862 h->plt.refcount += 1;
863
864 /* Keep track of the total PLT relocation count even if we
865 don't yet know whether the dynamic sections will be
866 created. */
867 htab->plt_reloc_count += 1;
868
869 if (elf_hash_table (info)->dynamic_sections_created)
870 {
871 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
872 return FALSE;
873 }
874 }
875 break;
876
877 local_literal:
878 if ((sec->flags & SEC_ALLOC) != 0)
879 {
880 bfd_signed_vma *local_got_refcounts;
881
882 /* This is a global offset table entry for a local symbol. */
883 local_got_refcounts = elf_local_got_refcounts (abfd);
884 if (local_got_refcounts == NULL)
885 {
886 bfd_size_type size;
887
888 size = symtab_hdr->sh_info;
889 size *= sizeof (bfd_signed_vma);
890 local_got_refcounts =
891 (bfd_signed_vma *) bfd_zalloc (abfd, size);
892 if (local_got_refcounts == NULL)
893 return FALSE;
894 elf_local_got_refcounts (abfd) = local_got_refcounts;
895 }
896 local_got_refcounts[r_symndx] += 1;
897 }
898 break;
899
900 case R_XTENSA_OP0:
901 case R_XTENSA_OP1:
902 case R_XTENSA_OP2:
903 case R_XTENSA_SLOT0_OP:
904 case R_XTENSA_SLOT1_OP:
905 case R_XTENSA_SLOT2_OP:
906 case R_XTENSA_SLOT3_OP:
907 case R_XTENSA_SLOT4_OP:
908 case R_XTENSA_SLOT5_OP:
909 case R_XTENSA_SLOT6_OP:
910 case R_XTENSA_SLOT7_OP:
911 case R_XTENSA_SLOT8_OP:
912 case R_XTENSA_SLOT9_OP:
913 case R_XTENSA_SLOT10_OP:
914 case R_XTENSA_SLOT11_OP:
915 case R_XTENSA_SLOT12_OP:
916 case R_XTENSA_SLOT13_OP:
917 case R_XTENSA_SLOT14_OP:
918 case R_XTENSA_SLOT0_ALT:
919 case R_XTENSA_SLOT1_ALT:
920 case R_XTENSA_SLOT2_ALT:
921 case R_XTENSA_SLOT3_ALT:
922 case R_XTENSA_SLOT4_ALT:
923 case R_XTENSA_SLOT5_ALT:
924 case R_XTENSA_SLOT6_ALT:
925 case R_XTENSA_SLOT7_ALT:
926 case R_XTENSA_SLOT8_ALT:
927 case R_XTENSA_SLOT9_ALT:
928 case R_XTENSA_SLOT10_ALT:
929 case R_XTENSA_SLOT11_ALT:
930 case R_XTENSA_SLOT12_ALT:
931 case R_XTENSA_SLOT13_ALT:
932 case R_XTENSA_SLOT14_ALT:
933 case R_XTENSA_ASM_EXPAND:
934 case R_XTENSA_ASM_SIMPLIFY:
935 case R_XTENSA_DIFF8:
936 case R_XTENSA_DIFF16:
937 case R_XTENSA_DIFF32:
938 /* Nothing to do for these. */
939 break;
940
941 case R_XTENSA_GNU_VTINHERIT:
942 /* This relocation describes the C++ object vtable hierarchy.
943 Reconstruct it for later use during GC. */
944 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
945 return FALSE;
946 break;
947
948 case R_XTENSA_GNU_VTENTRY:
949 /* This relocation describes which C++ vtable entries are actually
950 used. Record for later use during GC. */
951 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
952 return FALSE;
953 break;
954
955 default:
956 break;
957 }
958 }
959
960 return TRUE;
961 }
962
963
964 /* Return the section that should be marked against GC for a given
965 relocation. */
966
967 static asection *
968 elf_xtensa_gc_mark_hook (asection *sec,
969 struct bfd_link_info *info,
970 Elf_Internal_Rela *rel,
971 struct elf_link_hash_entry *h,
972 Elf_Internal_Sym *sym)
973 {
974 /* Property sections are marked "KEEP" in the linker scripts, but they
975 should not cause other sections to be marked. (This approach relies
976 on elf_xtensa_discard_info to remove property table entries that
977 describe discarded sections. Alternatively, it might be more
978 efficient to avoid using "KEEP" in the linker scripts and instead use
979 the gc_mark_extra_sections hook to mark only the property sections
980 that describe marked sections. That alternative does not work well
981 with the current property table sections, which do not correspond
982 one-to-one with the sections they describe, but that should be fixed
983 someday.) */
984 if (xtensa_is_property_section (sec))
985 return NULL;
986
987 if (h != NULL)
988 switch (ELF32_R_TYPE (rel->r_info))
989 {
990 case R_XTENSA_GNU_VTINHERIT:
991 case R_XTENSA_GNU_VTENTRY:
992 return NULL;
993 }
994
995 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
996 }
997
998
999 /* Update the GOT & PLT entry reference counts
1000 for the section being removed. */
1001
1002 static bfd_boolean
1003 elf_xtensa_gc_sweep_hook (bfd *abfd,
1004 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1005 asection *sec,
1006 const Elf_Internal_Rela *relocs)
1007 {
1008 Elf_Internal_Shdr *symtab_hdr;
1009 struct elf_link_hash_entry **sym_hashes;
1010 bfd_signed_vma *local_got_refcounts;
1011 const Elf_Internal_Rela *rel, *relend;
1012
1013 if ((sec->flags & SEC_ALLOC) == 0)
1014 return TRUE;
1015
1016 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1017 sym_hashes = elf_sym_hashes (abfd);
1018 local_got_refcounts = elf_local_got_refcounts (abfd);
1019
1020 relend = relocs + sec->reloc_count;
1021 for (rel = relocs; rel < relend; rel++)
1022 {
1023 unsigned long r_symndx;
1024 unsigned int r_type;
1025 struct elf_link_hash_entry *h = NULL;
1026
1027 r_symndx = ELF32_R_SYM (rel->r_info);
1028 if (r_symndx >= symtab_hdr->sh_info)
1029 {
1030 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1031 while (h->root.type == bfd_link_hash_indirect
1032 || h->root.type == bfd_link_hash_warning)
1033 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1034 }
1035
1036 r_type = ELF32_R_TYPE (rel->r_info);
1037 switch (r_type)
1038 {
1039 case R_XTENSA_32:
1040 if (h == NULL)
1041 goto local_literal;
1042 if (h->got.refcount > 0)
1043 h->got.refcount--;
1044 break;
1045
1046 case R_XTENSA_PLT:
1047 if (h == NULL)
1048 goto local_literal;
1049 if (h->plt.refcount > 0)
1050 h->plt.refcount--;
1051 break;
1052
1053 local_literal:
1054 if (local_got_refcounts[r_symndx] > 0)
1055 local_got_refcounts[r_symndx] -= 1;
1056 break;
1057
1058 default:
1059 break;
1060 }
1061 }
1062
1063 return TRUE;
1064 }
1065
1066
1067 /* Create all the dynamic sections. */
1068
1069 static bfd_boolean
1070 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1071 {
1072 struct elf_xtensa_link_hash_table *htab;
1073 flagword flags, noalloc_flags;
1074
1075 htab = elf_xtensa_hash_table (info);
1076
1077 /* First do all the standard stuff. */
1078 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1079 return FALSE;
1080 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1081 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1082 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1083 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
1084
1085 /* Create any extra PLT sections in case check_relocs has already
1086 been called on all the non-dynamic input files. */
1087 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1088 return FALSE;
1089
1090 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1091 | SEC_LINKER_CREATED | SEC_READONLY);
1092 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1093
1094 /* Mark the ".got.plt" section READONLY. */
1095 if (htab->sgotplt == NULL
1096 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1097 return FALSE;
1098
1099 /* Create ".rela.got". */
1100 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1101 if (htab->srelgot == NULL
1102 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
1103 return FALSE;
1104
1105 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1106 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1107 if (htab->sgotloc == NULL
1108 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1109 return FALSE;
1110
1111 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1112 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1113 noalloc_flags);
1114 if (htab->spltlittbl == NULL
1115 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1116 return FALSE;
1117
1118 return TRUE;
1119 }
1120
1121
1122 static bfd_boolean
1123 add_extra_plt_sections (struct bfd_link_info *info, int count)
1124 {
1125 bfd *dynobj = elf_hash_table (info)->dynobj;
1126 int chunk;
1127
1128 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1129 ".got.plt" sections. */
1130 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1131 {
1132 char *sname;
1133 flagword flags;
1134 asection *s;
1135
1136 /* Stop when we find a section has already been created. */
1137 if (elf_xtensa_get_plt_section (info, chunk))
1138 break;
1139
1140 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1141 | SEC_LINKER_CREATED | SEC_READONLY);
1142
1143 sname = (char *) bfd_malloc (10);
1144 sprintf (sname, ".plt.%u", chunk);
1145 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
1146 if (s == NULL
1147 || ! bfd_set_section_alignment (dynobj, s, 2))
1148 return FALSE;
1149
1150 sname = (char *) bfd_malloc (14);
1151 sprintf (sname, ".got.plt.%u", chunk);
1152 s = bfd_make_section_with_flags (dynobj, sname, flags);
1153 if (s == NULL
1154 || ! bfd_set_section_alignment (dynobj, s, 2))
1155 return FALSE;
1156 }
1157
1158 return TRUE;
1159 }
1160
1161
1162 /* Adjust a symbol defined by a dynamic object and referenced by a
1163 regular object. The current definition is in some section of the
1164 dynamic object, but we're not including those sections. We have to
1165 change the definition to something the rest of the link can
1166 understand. */
1167
1168 static bfd_boolean
1169 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1170 struct elf_link_hash_entry *h)
1171 {
1172 /* If this is a weak symbol, and there is a real definition, the
1173 processor independent code will have arranged for us to see the
1174 real definition first, and we can just use the same value. */
1175 if (h->u.weakdef)
1176 {
1177 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1178 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1179 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1180 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1181 return TRUE;
1182 }
1183
1184 /* This is a reference to a symbol defined by a dynamic object. The
1185 reference must go through the GOT, so there's no need for COPY relocs,
1186 .dynbss, etc. */
1187
1188 return TRUE;
1189 }
1190
1191
1192 static bfd_boolean
1193 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1194 {
1195 struct bfd_link_info *info;
1196 struct elf_xtensa_link_hash_table *htab;
1197 bfd_boolean is_dynamic;
1198
1199 if (h->root.type == bfd_link_hash_indirect)
1200 return TRUE;
1201
1202 if (h->root.type == bfd_link_hash_warning)
1203 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1204
1205 info = (struct bfd_link_info *) arg;
1206 htab = elf_xtensa_hash_table (info);
1207
1208 is_dynamic = elf_xtensa_dynamic_symbol_p (h, info);
1209
1210 if (! is_dynamic)
1211 {
1212 if (info->shared)
1213 {
1214 /* For shared objects, there's no need for PLT entries for local
1215 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1216 if (h->plt.refcount > 0)
1217 {
1218 if (h->got.refcount < 0)
1219 h->got.refcount = 0;
1220 h->got.refcount += h->plt.refcount;
1221 h->plt.refcount = 0;
1222 }
1223 }
1224 else
1225 {
1226 /* Don't need any dynamic relocations at all. */
1227 h->plt.refcount = 0;
1228 h->got.refcount = 0;
1229 }
1230 }
1231
1232 if (h->plt.refcount > 0)
1233 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1234
1235 if (h->got.refcount > 0)
1236 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1237
1238 return TRUE;
1239 }
1240
1241
1242 static void
1243 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1244 {
1245 struct elf_xtensa_link_hash_table *htab;
1246 bfd *i;
1247
1248 htab = elf_xtensa_hash_table (info);
1249
1250 for (i = info->input_bfds; i; i = i->link_next)
1251 {
1252 bfd_signed_vma *local_got_refcounts;
1253 bfd_size_type j, cnt;
1254 Elf_Internal_Shdr *symtab_hdr;
1255
1256 local_got_refcounts = elf_local_got_refcounts (i);
1257 if (!local_got_refcounts)
1258 continue;
1259
1260 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1261 cnt = symtab_hdr->sh_info;
1262
1263 for (j = 0; j < cnt; ++j)
1264 {
1265 if (local_got_refcounts[j] > 0)
1266 htab->srelgot->size += (local_got_refcounts[j]
1267 * sizeof (Elf32_External_Rela));
1268 }
1269 }
1270 }
1271
1272
1273 /* Set the sizes of the dynamic sections. */
1274
1275 static bfd_boolean
1276 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1277 struct bfd_link_info *info)
1278 {
1279 struct elf_xtensa_link_hash_table *htab;
1280 bfd *dynobj, *abfd;
1281 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1282 bfd_boolean relplt, relgot;
1283 int plt_entries, plt_chunks, chunk;
1284
1285 plt_entries = 0;
1286 plt_chunks = 0;
1287
1288 htab = elf_xtensa_hash_table (info);
1289 dynobj = elf_hash_table (info)->dynobj;
1290 if (dynobj == NULL)
1291 abort ();
1292 srelgot = htab->srelgot;
1293 srelplt = htab->srelplt;
1294
1295 if (elf_hash_table (info)->dynamic_sections_created)
1296 {
1297 BFD_ASSERT (htab->srelgot != NULL
1298 && htab->srelplt != NULL
1299 && htab->sgot != NULL
1300 && htab->spltlittbl != NULL
1301 && htab->sgotloc != NULL);
1302
1303 /* Set the contents of the .interp section to the interpreter. */
1304 if (info->executable)
1305 {
1306 s = bfd_get_section_by_name (dynobj, ".interp");
1307 if (s == NULL)
1308 abort ();
1309 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1310 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1311 }
1312
1313 /* Allocate room for one word in ".got". */
1314 htab->sgot->size = 4;
1315
1316 /* Allocate space in ".rela.got" for literals that reference global
1317 symbols and space in ".rela.plt" for literals that have PLT
1318 entries. */
1319 elf_link_hash_traverse (elf_hash_table (info),
1320 elf_xtensa_allocate_dynrelocs,
1321 (void *) info);
1322
1323 /* If we are generating a shared object, we also need space in
1324 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1325 reference local symbols. */
1326 if (info->shared)
1327 elf_xtensa_allocate_local_got_size (info);
1328
1329 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1330 each PLT entry, we need the PLT code plus a 4-byte literal.
1331 For each chunk of ".plt", we also need two more 4-byte
1332 literals, two corresponding entries in ".rela.got", and an
1333 8-byte entry in ".xt.lit.plt". */
1334 spltlittbl = htab->spltlittbl;
1335 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1336 plt_chunks =
1337 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1338
1339 /* Iterate over all the PLT chunks, including any extra sections
1340 created earlier because the initial count of PLT relocations
1341 was an overestimate. */
1342 for (chunk = 0;
1343 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1344 chunk++)
1345 {
1346 int chunk_entries;
1347
1348 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1349 BFD_ASSERT (sgotplt != NULL);
1350
1351 if (chunk < plt_chunks - 1)
1352 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1353 else if (chunk == plt_chunks - 1)
1354 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1355 else
1356 chunk_entries = 0;
1357
1358 if (chunk_entries != 0)
1359 {
1360 sgotplt->size = 4 * (chunk_entries + 2);
1361 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1362 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1363 spltlittbl->size += 8;
1364 }
1365 else
1366 {
1367 sgotplt->size = 0;
1368 splt->size = 0;
1369 }
1370 }
1371
1372 /* Allocate space in ".got.loc" to match the total size of all the
1373 literal tables. */
1374 sgotloc = htab->sgotloc;
1375 sgotloc->size = spltlittbl->size;
1376 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1377 {
1378 if (abfd->flags & DYNAMIC)
1379 continue;
1380 for (s = abfd->sections; s != NULL; s = s->next)
1381 {
1382 if (! elf_discarded_section (s)
1383 && xtensa_is_littable_section (s)
1384 && s != spltlittbl)
1385 sgotloc->size += s->size;
1386 }
1387 }
1388 }
1389
1390 /* Allocate memory for dynamic sections. */
1391 relplt = FALSE;
1392 relgot = FALSE;
1393 for (s = dynobj->sections; s != NULL; s = s->next)
1394 {
1395 const char *name;
1396
1397 if ((s->flags & SEC_LINKER_CREATED) == 0)
1398 continue;
1399
1400 /* It's OK to base decisions on the section name, because none
1401 of the dynobj section names depend upon the input files. */
1402 name = bfd_get_section_name (dynobj, s);
1403
1404 if (CONST_STRNEQ (name, ".rela"))
1405 {
1406 if (s->size != 0)
1407 {
1408 if (strcmp (name, ".rela.plt") == 0)
1409 relplt = TRUE;
1410 else if (strcmp (name, ".rela.got") == 0)
1411 relgot = TRUE;
1412
1413 /* We use the reloc_count field as a counter if we need
1414 to copy relocs into the output file. */
1415 s->reloc_count = 0;
1416 }
1417 }
1418 else if (! CONST_STRNEQ (name, ".plt.")
1419 && ! CONST_STRNEQ (name, ".got.plt.")
1420 && strcmp (name, ".got") != 0
1421 && strcmp (name, ".plt") != 0
1422 && strcmp (name, ".got.plt") != 0
1423 && strcmp (name, ".xt.lit.plt") != 0
1424 && strcmp (name, ".got.loc") != 0)
1425 {
1426 /* It's not one of our sections, so don't allocate space. */
1427 continue;
1428 }
1429
1430 if (s->size == 0)
1431 {
1432 /* If we don't need this section, strip it from the output
1433 file. We must create the ".plt*" and ".got.plt*"
1434 sections in create_dynamic_sections and/or check_relocs
1435 based on a conservative estimate of the PLT relocation
1436 count, because the sections must be created before the
1437 linker maps input sections to output sections. The
1438 linker does that before size_dynamic_sections, where we
1439 compute the exact size of the PLT, so there may be more
1440 of these sections than are actually needed. */
1441 s->flags |= SEC_EXCLUDE;
1442 }
1443 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1444 {
1445 /* Allocate memory for the section contents. */
1446 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1447 if (s->contents == NULL)
1448 return FALSE;
1449 }
1450 }
1451
1452 if (elf_hash_table (info)->dynamic_sections_created)
1453 {
1454 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1455 known until finish_dynamic_sections, but we need to get the relocs
1456 in place before they are sorted. */
1457 for (chunk = 0; chunk < plt_chunks; chunk++)
1458 {
1459 Elf_Internal_Rela irela;
1460 bfd_byte *loc;
1461
1462 irela.r_offset = 0;
1463 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1464 irela.r_addend = 0;
1465
1466 loc = (srelgot->contents
1467 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1468 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1469 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1470 loc + sizeof (Elf32_External_Rela));
1471 srelgot->reloc_count += 2;
1472 }
1473
1474 /* Add some entries to the .dynamic section. We fill in the
1475 values later, in elf_xtensa_finish_dynamic_sections, but we
1476 must add the entries now so that we get the correct size for
1477 the .dynamic section. The DT_DEBUG entry is filled in by the
1478 dynamic linker and used by the debugger. */
1479 #define add_dynamic_entry(TAG, VAL) \
1480 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1481
1482 if (info->executable)
1483 {
1484 if (!add_dynamic_entry (DT_DEBUG, 0))
1485 return FALSE;
1486 }
1487
1488 if (relplt)
1489 {
1490 if (!add_dynamic_entry (DT_PLTGOT, 0)
1491 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1492 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1493 || !add_dynamic_entry (DT_JMPREL, 0))
1494 return FALSE;
1495 }
1496
1497 if (relgot)
1498 {
1499 if (!add_dynamic_entry (DT_RELA, 0)
1500 || !add_dynamic_entry (DT_RELASZ, 0)
1501 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1502 return FALSE;
1503 }
1504
1505 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1506 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1507 return FALSE;
1508 }
1509 #undef add_dynamic_entry
1510
1511 return TRUE;
1512 }
1513
1514 \f
1515 /* Perform the specified relocation. The instruction at (contents + address)
1516 is modified to set one operand to represent the value in "relocation". The
1517 operand position is determined by the relocation type recorded in the
1518 howto. */
1519
1520 #define CALL_SEGMENT_BITS (30)
1521 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1522
1523 static bfd_reloc_status_type
1524 elf_xtensa_do_reloc (reloc_howto_type *howto,
1525 bfd *abfd,
1526 asection *input_section,
1527 bfd_vma relocation,
1528 bfd_byte *contents,
1529 bfd_vma address,
1530 bfd_boolean is_weak_undef,
1531 char **error_message)
1532 {
1533 xtensa_format fmt;
1534 xtensa_opcode opcode;
1535 xtensa_isa isa = xtensa_default_isa;
1536 static xtensa_insnbuf ibuff = NULL;
1537 static xtensa_insnbuf sbuff = NULL;
1538 bfd_vma self_address = 0;
1539 bfd_size_type input_size;
1540 int opnd, slot;
1541 uint32 newval;
1542
1543 if (!ibuff)
1544 {
1545 ibuff = xtensa_insnbuf_alloc (isa);
1546 sbuff = xtensa_insnbuf_alloc (isa);
1547 }
1548
1549 input_size = bfd_get_section_limit (abfd, input_section);
1550
1551 switch (howto->type)
1552 {
1553 case R_XTENSA_NONE:
1554 case R_XTENSA_DIFF8:
1555 case R_XTENSA_DIFF16:
1556 case R_XTENSA_DIFF32:
1557 return bfd_reloc_ok;
1558
1559 case R_XTENSA_ASM_EXPAND:
1560 if (!is_weak_undef)
1561 {
1562 /* Check for windowed CALL across a 1GB boundary. */
1563 xtensa_opcode opcode =
1564 get_expanded_call_opcode (contents + address,
1565 input_size - address, 0);
1566 if (is_windowed_call_opcode (opcode))
1567 {
1568 self_address = (input_section->output_section->vma
1569 + input_section->output_offset
1570 + address);
1571 if ((self_address >> CALL_SEGMENT_BITS)
1572 != (relocation >> CALL_SEGMENT_BITS))
1573 {
1574 *error_message = "windowed longcall crosses 1GB boundary; "
1575 "return may fail";
1576 return bfd_reloc_dangerous;
1577 }
1578 }
1579 }
1580 return bfd_reloc_ok;
1581
1582 case R_XTENSA_ASM_SIMPLIFY:
1583 {
1584 /* Convert the L32R/CALLX to CALL. */
1585 bfd_reloc_status_type retval =
1586 elf_xtensa_do_asm_simplify (contents, address, input_size,
1587 error_message);
1588 if (retval != bfd_reloc_ok)
1589 return bfd_reloc_dangerous;
1590
1591 /* The CALL needs to be relocated. Continue below for that part. */
1592 address += 3;
1593 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1594 }
1595 break;
1596
1597 case R_XTENSA_32:
1598 case R_XTENSA_PLT:
1599 {
1600 bfd_vma x;
1601 x = bfd_get_32 (abfd, contents + address);
1602 x = x + relocation;
1603 bfd_put_32 (abfd, x, contents + address);
1604 }
1605 return bfd_reloc_ok;
1606 }
1607
1608 /* Only instruction slot-specific relocations handled below.... */
1609 slot = get_relocation_slot (howto->type);
1610 if (slot == XTENSA_UNDEFINED)
1611 {
1612 *error_message = "unexpected relocation";
1613 return bfd_reloc_dangerous;
1614 }
1615
1616 /* Read the instruction into a buffer and decode the opcode. */
1617 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1618 input_size - address);
1619 fmt = xtensa_format_decode (isa, ibuff);
1620 if (fmt == XTENSA_UNDEFINED)
1621 {
1622 *error_message = "cannot decode instruction format";
1623 return bfd_reloc_dangerous;
1624 }
1625
1626 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1627
1628 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1629 if (opcode == XTENSA_UNDEFINED)
1630 {
1631 *error_message = "cannot decode instruction opcode";
1632 return bfd_reloc_dangerous;
1633 }
1634
1635 /* Check for opcode-specific "alternate" relocations. */
1636 if (is_alt_relocation (howto->type))
1637 {
1638 if (opcode == get_l32r_opcode ())
1639 {
1640 /* Handle the special-case of non-PC-relative L32R instructions. */
1641 bfd *output_bfd = input_section->output_section->owner;
1642 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1643 if (!lit4_sec)
1644 {
1645 *error_message = "relocation references missing .lit4 section";
1646 return bfd_reloc_dangerous;
1647 }
1648 self_address = ((lit4_sec->vma & ~0xfff)
1649 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1650 newval = relocation;
1651 opnd = 1;
1652 }
1653 else if (opcode == get_const16_opcode ())
1654 {
1655 /* ALT used for high 16 bits. */
1656 newval = relocation >> 16;
1657 opnd = 1;
1658 }
1659 else
1660 {
1661 /* No other "alternate" relocations currently defined. */
1662 *error_message = "unexpected relocation";
1663 return bfd_reloc_dangerous;
1664 }
1665 }
1666 else /* Not an "alternate" relocation.... */
1667 {
1668 if (opcode == get_const16_opcode ())
1669 {
1670 newval = relocation & 0xffff;
1671 opnd = 1;
1672 }
1673 else
1674 {
1675 /* ...normal PC-relative relocation.... */
1676
1677 /* Determine which operand is being relocated. */
1678 opnd = get_relocation_opnd (opcode, howto->type);
1679 if (opnd == XTENSA_UNDEFINED)
1680 {
1681 *error_message = "unexpected relocation";
1682 return bfd_reloc_dangerous;
1683 }
1684
1685 if (!howto->pc_relative)
1686 {
1687 *error_message = "expected PC-relative relocation";
1688 return bfd_reloc_dangerous;
1689 }
1690
1691 /* Calculate the PC address for this instruction. */
1692 self_address = (input_section->output_section->vma
1693 + input_section->output_offset
1694 + address);
1695
1696 newval = relocation;
1697 }
1698 }
1699
1700 /* Apply the relocation. */
1701 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1702 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1703 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1704 sbuff, newval))
1705 {
1706 const char *opname = xtensa_opcode_name (isa, opcode);
1707 const char *msg;
1708
1709 msg = "cannot encode";
1710 if (is_direct_call_opcode (opcode))
1711 {
1712 if ((relocation & 0x3) != 0)
1713 msg = "misaligned call target";
1714 else
1715 msg = "call target out of range";
1716 }
1717 else if (opcode == get_l32r_opcode ())
1718 {
1719 if ((relocation & 0x3) != 0)
1720 msg = "misaligned literal target";
1721 else if (is_alt_relocation (howto->type))
1722 msg = "literal target out of range (too many literals)";
1723 else if (self_address > relocation)
1724 msg = "literal target out of range (try using text-section-literals)";
1725 else
1726 msg = "literal placed after use";
1727 }
1728
1729 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
1730 return bfd_reloc_dangerous;
1731 }
1732
1733 /* Check for calls across 1GB boundaries. */
1734 if (is_direct_call_opcode (opcode)
1735 && is_windowed_call_opcode (opcode))
1736 {
1737 if ((self_address >> CALL_SEGMENT_BITS)
1738 != (relocation >> CALL_SEGMENT_BITS))
1739 {
1740 *error_message =
1741 "windowed call crosses 1GB boundary; return may fail";
1742 return bfd_reloc_dangerous;
1743 }
1744 }
1745
1746 /* Write the modified instruction back out of the buffer. */
1747 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1748 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1749 input_size - address);
1750 return bfd_reloc_ok;
1751 }
1752
1753
1754 static char *
1755 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
1756 {
1757 /* To reduce the size of the memory leak,
1758 we only use a single message buffer. */
1759 static bfd_size_type alloc_size = 0;
1760 static char *message = NULL;
1761 bfd_size_type orig_len, len = 0;
1762 bfd_boolean is_append;
1763
1764 VA_OPEN (ap, arglen);
1765 VA_FIXEDARG (ap, const char *, origmsg);
1766
1767 is_append = (origmsg == message);
1768
1769 orig_len = strlen (origmsg);
1770 len = orig_len + strlen (fmt) + arglen + 20;
1771 if (len > alloc_size)
1772 {
1773 message = (char *) bfd_realloc (message, len);
1774 alloc_size = len;
1775 }
1776 if (!is_append)
1777 memcpy (message, origmsg, orig_len);
1778 vsprintf (message + orig_len, fmt, ap);
1779 VA_CLOSE (ap);
1780 return message;
1781 }
1782
1783
1784 /* This function is registered as the "special_function" in the
1785 Xtensa howto for handling simplify operations.
1786 bfd_perform_relocation / bfd_install_relocation use it to
1787 perform (install) the specified relocation. Since this replaces the code
1788 in bfd_perform_relocation, it is basically an Xtensa-specific,
1789 stripped-down version of bfd_perform_relocation. */
1790
1791 static bfd_reloc_status_type
1792 bfd_elf_xtensa_reloc (bfd *abfd,
1793 arelent *reloc_entry,
1794 asymbol *symbol,
1795 void *data,
1796 asection *input_section,
1797 bfd *output_bfd,
1798 char **error_message)
1799 {
1800 bfd_vma relocation;
1801 bfd_reloc_status_type flag;
1802 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1803 bfd_vma output_base = 0;
1804 reloc_howto_type *howto = reloc_entry->howto;
1805 asection *reloc_target_output_section;
1806 bfd_boolean is_weak_undef;
1807
1808 if (!xtensa_default_isa)
1809 xtensa_default_isa = xtensa_isa_init (0, 0);
1810
1811 /* ELF relocs are against symbols. If we are producing relocatable
1812 output, and the reloc is against an external symbol, the resulting
1813 reloc will also be against the same symbol. In such a case, we
1814 don't want to change anything about the way the reloc is handled,
1815 since it will all be done at final link time. This test is similar
1816 to what bfd_elf_generic_reloc does except that it lets relocs with
1817 howto->partial_inplace go through even if the addend is non-zero.
1818 (The real problem is that partial_inplace is set for XTENSA_32
1819 relocs to begin with, but that's a long story and there's little we
1820 can do about it now....) */
1821
1822 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
1823 {
1824 reloc_entry->address += input_section->output_offset;
1825 return bfd_reloc_ok;
1826 }
1827
1828 /* Is the address of the relocation really within the section? */
1829 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1830 return bfd_reloc_outofrange;
1831
1832 /* Work out which section the relocation is targeted at and the
1833 initial relocation command value. */
1834
1835 /* Get symbol value. (Common symbols are special.) */
1836 if (bfd_is_com_section (symbol->section))
1837 relocation = 0;
1838 else
1839 relocation = symbol->value;
1840
1841 reloc_target_output_section = symbol->section->output_section;
1842
1843 /* Convert input-section-relative symbol value to absolute. */
1844 if ((output_bfd && !howto->partial_inplace)
1845 || reloc_target_output_section == NULL)
1846 output_base = 0;
1847 else
1848 output_base = reloc_target_output_section->vma;
1849
1850 relocation += output_base + symbol->section->output_offset;
1851
1852 /* Add in supplied addend. */
1853 relocation += reloc_entry->addend;
1854
1855 /* Here the variable relocation holds the final address of the
1856 symbol we are relocating against, plus any addend. */
1857 if (output_bfd)
1858 {
1859 if (!howto->partial_inplace)
1860 {
1861 /* This is a partial relocation, and we want to apply the relocation
1862 to the reloc entry rather than the raw data. Everything except
1863 relocations against section symbols has already been handled
1864 above. */
1865
1866 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1867 reloc_entry->addend = relocation;
1868 reloc_entry->address += input_section->output_offset;
1869 return bfd_reloc_ok;
1870 }
1871 else
1872 {
1873 reloc_entry->address += input_section->output_offset;
1874 reloc_entry->addend = 0;
1875 }
1876 }
1877
1878 is_weak_undef = (bfd_is_und_section (symbol->section)
1879 && (symbol->flags & BSF_WEAK) != 0);
1880 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1881 (bfd_byte *) data, (bfd_vma) octets,
1882 is_weak_undef, error_message);
1883
1884 if (flag == bfd_reloc_dangerous)
1885 {
1886 /* Add the symbol name to the error message. */
1887 if (! *error_message)
1888 *error_message = "";
1889 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1890 strlen (symbol->name) + 17,
1891 symbol->name,
1892 (unsigned long) reloc_entry->addend);
1893 }
1894
1895 return flag;
1896 }
1897
1898
1899 /* Set up an entry in the procedure linkage table. */
1900
1901 static bfd_vma
1902 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
1903 bfd *output_bfd,
1904 unsigned reloc_index)
1905 {
1906 asection *splt, *sgotplt;
1907 bfd_vma plt_base, got_base;
1908 bfd_vma code_offset, lit_offset;
1909 int chunk;
1910
1911 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1912 splt = elf_xtensa_get_plt_section (info, chunk);
1913 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1914 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1915
1916 plt_base = splt->output_section->vma + splt->output_offset;
1917 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1918
1919 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1920 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1921
1922 /* Fill in the literal entry. This is the offset of the dynamic
1923 relocation entry. */
1924 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1925 sgotplt->contents + lit_offset);
1926
1927 /* Fill in the entry in the procedure linkage table. */
1928 memcpy (splt->contents + code_offset,
1929 (bfd_big_endian (output_bfd)
1930 ? elf_xtensa_be_plt_entry
1931 : elf_xtensa_le_plt_entry),
1932 PLT_ENTRY_SIZE);
1933 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1934 plt_base + code_offset + 3),
1935 splt->contents + code_offset + 4);
1936 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1937 plt_base + code_offset + 6),
1938 splt->contents + code_offset + 7);
1939 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1940 plt_base + code_offset + 9),
1941 splt->contents + code_offset + 10);
1942
1943 return plt_base + code_offset;
1944 }
1945
1946
1947 /* Relocate an Xtensa ELF section. This is invoked by the linker for
1948 both relocatable and final links. */
1949
1950 static bfd_boolean
1951 elf_xtensa_relocate_section (bfd *output_bfd,
1952 struct bfd_link_info *info,
1953 bfd *input_bfd,
1954 asection *input_section,
1955 bfd_byte *contents,
1956 Elf_Internal_Rela *relocs,
1957 Elf_Internal_Sym *local_syms,
1958 asection **local_sections)
1959 {
1960 struct elf_xtensa_link_hash_table *htab;
1961 Elf_Internal_Shdr *symtab_hdr;
1962 Elf_Internal_Rela *rel;
1963 Elf_Internal_Rela *relend;
1964 struct elf_link_hash_entry **sym_hashes;
1965 property_table_entry *lit_table = 0;
1966 int ltblsize = 0;
1967 char *error_message = NULL;
1968 bfd_size_type input_size;
1969
1970 if (!xtensa_default_isa)
1971 xtensa_default_isa = xtensa_isa_init (0, 0);
1972
1973 htab = elf_xtensa_hash_table (info);
1974 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1975 sym_hashes = elf_sym_hashes (input_bfd);
1976
1977 if (elf_hash_table (info)->dynamic_sections_created)
1978 {
1979 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
1980 &lit_table, XTENSA_LIT_SEC_NAME,
1981 TRUE);
1982 if (ltblsize < 0)
1983 return FALSE;
1984 }
1985
1986 input_size = bfd_get_section_limit (input_bfd, input_section);
1987
1988 rel = relocs;
1989 relend = relocs + input_section->reloc_count;
1990 for (; rel < relend; rel++)
1991 {
1992 int r_type;
1993 reloc_howto_type *howto;
1994 unsigned long r_symndx;
1995 struct elf_link_hash_entry *h;
1996 Elf_Internal_Sym *sym;
1997 asection *sec;
1998 bfd_vma relocation;
1999 bfd_reloc_status_type r;
2000 bfd_boolean is_weak_undef;
2001 bfd_boolean unresolved_reloc;
2002 bfd_boolean warned;
2003
2004 r_type = ELF32_R_TYPE (rel->r_info);
2005 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2006 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2007 continue;
2008
2009 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2010 {
2011 bfd_set_error (bfd_error_bad_value);
2012 return FALSE;
2013 }
2014 howto = &elf_howto_table[r_type];
2015
2016 r_symndx = ELF32_R_SYM (rel->r_info);
2017
2018 h = NULL;
2019 sym = NULL;
2020 sec = NULL;
2021 is_weak_undef = FALSE;
2022 unresolved_reloc = FALSE;
2023 warned = FALSE;
2024
2025 if (howto->partial_inplace && !info->relocatable)
2026 {
2027 /* Because R_XTENSA_32 was made partial_inplace to fix some
2028 problems with DWARF info in partial links, there may be
2029 an addend stored in the contents. Take it out of there
2030 and move it back into the addend field of the reloc. */
2031 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2032 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2033 }
2034
2035 if (r_symndx < symtab_hdr->sh_info)
2036 {
2037 sym = local_syms + r_symndx;
2038 sec = local_sections[r_symndx];
2039 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2040 }
2041 else
2042 {
2043 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2044 r_symndx, symtab_hdr, sym_hashes,
2045 h, sec, relocation,
2046 unresolved_reloc, warned);
2047
2048 if (relocation == 0
2049 && !unresolved_reloc
2050 && h->root.type == bfd_link_hash_undefweak)
2051 is_weak_undef = TRUE;
2052 }
2053
2054 if (sec != NULL && elf_discarded_section (sec))
2055 {
2056 /* For relocs against symbols from removed linkonce sections,
2057 or sections discarded by a linker script, we just want the
2058 section contents zeroed. Avoid any special processing. */
2059 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2060 rel->r_info = 0;
2061 rel->r_addend = 0;
2062 continue;
2063 }
2064
2065 if (info->relocatable)
2066 {
2067 /* This is a relocatable link.
2068 1) If the reloc is against a section symbol, adjust
2069 according to the output section.
2070 2) If there is a new target for this relocation,
2071 the new target will be in the same output section.
2072 We adjust the relocation by the output section
2073 difference. */
2074
2075 if (relaxing_section)
2076 {
2077 /* Check if this references a section in another input file. */
2078 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2079 contents))
2080 return FALSE;
2081 r_type = ELF32_R_TYPE (rel->r_info);
2082 }
2083
2084 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2085 {
2086 char *error_message = NULL;
2087 /* Convert ASM_SIMPLIFY into the simpler relocation
2088 so that they never escape a relaxing link. */
2089 r = contract_asm_expansion (contents, input_size, rel,
2090 &error_message);
2091 if (r != bfd_reloc_ok)
2092 {
2093 if (!((*info->callbacks->reloc_dangerous)
2094 (info, error_message, input_bfd, input_section,
2095 rel->r_offset)))
2096 return FALSE;
2097 }
2098 r_type = ELF32_R_TYPE (rel->r_info);
2099 }
2100
2101 /* This is a relocatable link, so we don't have to change
2102 anything unless the reloc is against a section symbol,
2103 in which case we have to adjust according to where the
2104 section symbol winds up in the output section. */
2105 if (r_symndx < symtab_hdr->sh_info)
2106 {
2107 sym = local_syms + r_symndx;
2108 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2109 {
2110 sec = local_sections[r_symndx];
2111 rel->r_addend += sec->output_offset + sym->st_value;
2112 }
2113 }
2114
2115 /* If there is an addend with a partial_inplace howto,
2116 then move the addend to the contents. This is a hack
2117 to work around problems with DWARF in relocatable links
2118 with some previous version of BFD. Now we can't easily get
2119 rid of the hack without breaking backward compatibility.... */
2120 if (rel->r_addend)
2121 {
2122 howto = &elf_howto_table[r_type];
2123 if (howto->partial_inplace)
2124 {
2125 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2126 rel->r_addend, contents,
2127 rel->r_offset, FALSE,
2128 &error_message);
2129 if (r != bfd_reloc_ok)
2130 {
2131 if (!((*info->callbacks->reloc_dangerous)
2132 (info, error_message, input_bfd, input_section,
2133 rel->r_offset)))
2134 return FALSE;
2135 }
2136 rel->r_addend = 0;
2137 }
2138 }
2139
2140 /* Done with work for relocatable link; continue with next reloc. */
2141 continue;
2142 }
2143
2144 /* This is a final link. */
2145
2146 if (relaxing_section)
2147 {
2148 /* Check if this references a section in another input file. */
2149 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2150 &relocation);
2151
2152 /* Update some already cached values. */
2153 r_type = ELF32_R_TYPE (rel->r_info);
2154 howto = &elf_howto_table[r_type];
2155 }
2156
2157 /* Sanity check the address. */
2158 if (rel->r_offset >= input_size
2159 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2160 {
2161 (*_bfd_error_handler)
2162 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2163 input_bfd, input_section, rel->r_offset, input_size);
2164 bfd_set_error (bfd_error_bad_value);
2165 return FALSE;
2166 }
2167
2168 /* Generate dynamic relocations. */
2169 if (elf_hash_table (info)->dynamic_sections_created)
2170 {
2171 bfd_boolean dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2172
2173 if (dynamic_symbol && is_operand_relocation (r_type))
2174 {
2175 /* This is an error. The symbol's real value won't be known
2176 until runtime and it's likely to be out of range anyway. */
2177 const char *name = h->root.root.string;
2178 error_message = vsprint_msg ("invalid relocation for dynamic "
2179 "symbol", ": %s",
2180 strlen (name) + 2, name);
2181 if (!((*info->callbacks->reloc_dangerous)
2182 (info, error_message, input_bfd, input_section,
2183 rel->r_offset)))
2184 return FALSE;
2185 }
2186 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2187 && (input_section->flags & SEC_ALLOC) != 0
2188 && (dynamic_symbol || info->shared))
2189 {
2190 Elf_Internal_Rela outrel;
2191 bfd_byte *loc;
2192 asection *srel;
2193
2194 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2195 srel = htab->srelplt;
2196 else
2197 srel = htab->srelgot;
2198
2199 BFD_ASSERT (srel != NULL);
2200
2201 outrel.r_offset =
2202 _bfd_elf_section_offset (output_bfd, info,
2203 input_section, rel->r_offset);
2204
2205 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2206 memset (&outrel, 0, sizeof outrel);
2207 else
2208 {
2209 outrel.r_offset += (input_section->output_section->vma
2210 + input_section->output_offset);
2211
2212 /* Complain if the relocation is in a read-only section
2213 and not in a literal pool. */
2214 if ((input_section->flags & SEC_READONLY) != 0
2215 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2216 outrel.r_offset))
2217 {
2218 error_message =
2219 _("dynamic relocation in read-only section");
2220 if (!((*info->callbacks->reloc_dangerous)
2221 (info, error_message, input_bfd, input_section,
2222 rel->r_offset)))
2223 return FALSE;
2224 }
2225
2226 if (dynamic_symbol)
2227 {
2228 outrel.r_addend = rel->r_addend;
2229 rel->r_addend = 0;
2230
2231 if (r_type == R_XTENSA_32)
2232 {
2233 outrel.r_info =
2234 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2235 relocation = 0;
2236 }
2237 else /* r_type == R_XTENSA_PLT */
2238 {
2239 outrel.r_info =
2240 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2241
2242 /* Create the PLT entry and set the initial
2243 contents of the literal entry to the address of
2244 the PLT entry. */
2245 relocation =
2246 elf_xtensa_create_plt_entry (info, output_bfd,
2247 srel->reloc_count);
2248 }
2249 unresolved_reloc = FALSE;
2250 }
2251 else
2252 {
2253 /* Generate a RELATIVE relocation. */
2254 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2255 outrel.r_addend = 0;
2256 }
2257 }
2258
2259 loc = (srel->contents
2260 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2261 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2262 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2263 <= srel->size);
2264 }
2265 }
2266
2267 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2268 because such sections are not SEC_ALLOC and thus ld.so will
2269 not process them. */
2270 if (unresolved_reloc
2271 && !((input_section->flags & SEC_DEBUGGING) != 0
2272 && h->def_dynamic))
2273 {
2274 (*_bfd_error_handler)
2275 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2276 input_bfd,
2277 input_section,
2278 (long) rel->r_offset,
2279 howto->name,
2280 h->root.root.string);
2281 return FALSE;
2282 }
2283
2284 /* There's no point in calling bfd_perform_relocation here.
2285 Just go directly to our "special function". */
2286 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2287 relocation + rel->r_addend,
2288 contents, rel->r_offset, is_weak_undef,
2289 &error_message);
2290
2291 if (r != bfd_reloc_ok && !warned)
2292 {
2293 const char *name;
2294
2295 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2296 BFD_ASSERT (error_message != NULL);
2297
2298 if (h)
2299 name = h->root.root.string;
2300 else
2301 {
2302 name = bfd_elf_string_from_elf_section
2303 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2304 if (name && *name == '\0')
2305 name = bfd_section_name (input_bfd, sec);
2306 }
2307 if (name)
2308 {
2309 if (rel->r_addend == 0)
2310 error_message = vsprint_msg (error_message, ": %s",
2311 strlen (name) + 2, name);
2312 else
2313 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2314 strlen (name) + 22,
2315 name, (int)rel->r_addend);
2316 }
2317
2318 if (!((*info->callbacks->reloc_dangerous)
2319 (info, error_message, input_bfd, input_section,
2320 rel->r_offset)))
2321 return FALSE;
2322 }
2323 }
2324
2325 if (lit_table)
2326 free (lit_table);
2327
2328 input_section->reloc_done = TRUE;
2329
2330 return TRUE;
2331 }
2332
2333
2334 /* Finish up dynamic symbol handling. There's not much to do here since
2335 the PLT and GOT entries are all set up by relocate_section. */
2336
2337 static bfd_boolean
2338 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2339 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2340 struct elf_link_hash_entry *h,
2341 Elf_Internal_Sym *sym)
2342 {
2343 if (h->needs_plt && !h->def_regular)
2344 {
2345 /* Mark the symbol as undefined, rather than as defined in
2346 the .plt section. Leave the value alone. */
2347 sym->st_shndx = SHN_UNDEF;
2348 /* If the symbol is weak, we do need to clear the value.
2349 Otherwise, the PLT entry would provide a definition for
2350 the symbol even if the symbol wasn't defined anywhere,
2351 and so the symbol would never be NULL. */
2352 if (!h->ref_regular_nonweak)
2353 sym->st_value = 0;
2354 }
2355
2356 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2357 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2358 || h == elf_hash_table (info)->hgot)
2359 sym->st_shndx = SHN_ABS;
2360
2361 return TRUE;
2362 }
2363
2364
2365 /* Combine adjacent literal table entries in the output. Adjacent
2366 entries within each input section may have been removed during
2367 relaxation, but we repeat the process here, even though it's too late
2368 to shrink the output section, because it's important to minimize the
2369 number of literal table entries to reduce the start-up work for the
2370 runtime linker. Returns the number of remaining table entries or -1
2371 on error. */
2372
2373 static int
2374 elf_xtensa_combine_prop_entries (bfd *output_bfd,
2375 asection *sxtlit,
2376 asection *sgotloc)
2377 {
2378 bfd_byte *contents;
2379 property_table_entry *table;
2380 bfd_size_type section_size, sgotloc_size;
2381 bfd_vma offset;
2382 int n, m, num;
2383
2384 section_size = sxtlit->size;
2385 BFD_ASSERT (section_size % 8 == 0);
2386 num = section_size / 8;
2387
2388 sgotloc_size = sgotloc->size;
2389 if (sgotloc_size != section_size)
2390 {
2391 (*_bfd_error_handler)
2392 (_("internal inconsistency in size of .got.loc section"));
2393 return -1;
2394 }
2395
2396 table = bfd_malloc (num * sizeof (property_table_entry));
2397 if (table == 0)
2398 return -1;
2399
2400 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2401 propagates to the output section, where it doesn't really apply and
2402 where it breaks the following call to bfd_malloc_and_get_section. */
2403 sxtlit->flags &= ~SEC_IN_MEMORY;
2404
2405 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2406 {
2407 if (contents != 0)
2408 free (contents);
2409 free (table);
2410 return -1;
2411 }
2412
2413 /* There should never be any relocations left at this point, so this
2414 is quite a bit easier than what is done during relaxation. */
2415
2416 /* Copy the raw contents into a property table array and sort it. */
2417 offset = 0;
2418 for (n = 0; n < num; n++)
2419 {
2420 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2421 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2422 offset += 8;
2423 }
2424 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2425
2426 for (n = 0; n < num; n++)
2427 {
2428 bfd_boolean remove = FALSE;
2429
2430 if (table[n].size == 0)
2431 remove = TRUE;
2432 else if (n > 0 &&
2433 (table[n-1].address + table[n-1].size == table[n].address))
2434 {
2435 table[n-1].size += table[n].size;
2436 remove = TRUE;
2437 }
2438
2439 if (remove)
2440 {
2441 for (m = n; m < num - 1; m++)
2442 {
2443 table[m].address = table[m+1].address;
2444 table[m].size = table[m+1].size;
2445 }
2446
2447 n--;
2448 num--;
2449 }
2450 }
2451
2452 /* Copy the data back to the raw contents. */
2453 offset = 0;
2454 for (n = 0; n < num; n++)
2455 {
2456 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2457 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2458 offset += 8;
2459 }
2460
2461 /* Clear the removed bytes. */
2462 if ((bfd_size_type) (num * 8) < section_size)
2463 memset (&contents[num * 8], 0, section_size - num * 8);
2464
2465 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2466 section_size))
2467 return -1;
2468
2469 /* Copy the contents to ".got.loc". */
2470 memcpy (sgotloc->contents, contents, section_size);
2471
2472 free (contents);
2473 free (table);
2474 return num;
2475 }
2476
2477
2478 /* Finish up the dynamic sections. */
2479
2480 static bfd_boolean
2481 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2482 struct bfd_link_info *info)
2483 {
2484 struct elf_xtensa_link_hash_table *htab;
2485 bfd *dynobj;
2486 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
2487 Elf32_External_Dyn *dyncon, *dynconend;
2488 int num_xtlit_entries;
2489
2490 if (! elf_hash_table (info)->dynamic_sections_created)
2491 return TRUE;
2492
2493 htab = elf_xtensa_hash_table (info);
2494 dynobj = elf_hash_table (info)->dynobj;
2495 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2496 BFD_ASSERT (sdyn != NULL);
2497
2498 /* Set the first entry in the global offset table to the address of
2499 the dynamic section. */
2500 sgot = htab->sgot;
2501 if (sgot)
2502 {
2503 BFD_ASSERT (sgot->size == 4);
2504 if (sdyn == NULL)
2505 bfd_put_32 (output_bfd, 0, sgot->contents);
2506 else
2507 bfd_put_32 (output_bfd,
2508 sdyn->output_section->vma + sdyn->output_offset,
2509 sgot->contents);
2510 }
2511
2512 srelplt = htab->srelplt;
2513 if (srelplt && srelplt->size != 0)
2514 {
2515 asection *sgotplt, *srelgot, *spltlittbl;
2516 int chunk, plt_chunks, plt_entries;
2517 Elf_Internal_Rela irela;
2518 bfd_byte *loc;
2519 unsigned rtld_reloc;
2520
2521 srelgot = htab->srelgot;
2522 spltlittbl = htab->spltlittbl;
2523 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
2524
2525 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2526 of them follow immediately after.... */
2527 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2528 {
2529 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2530 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2531 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2532 break;
2533 }
2534 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2535
2536 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
2537 plt_chunks =
2538 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2539
2540 for (chunk = 0; chunk < plt_chunks; chunk++)
2541 {
2542 int chunk_entries = 0;
2543
2544 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2545 BFD_ASSERT (sgotplt != NULL);
2546
2547 /* Emit special RTLD relocations for the first two entries in
2548 each chunk of the .got.plt section. */
2549
2550 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2551 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2552 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2553 irela.r_offset = (sgotplt->output_section->vma
2554 + sgotplt->output_offset);
2555 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2556 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2557 rtld_reloc += 1;
2558 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2559
2560 /* Next literal immediately follows the first. */
2561 loc += sizeof (Elf32_External_Rela);
2562 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2563 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2564 irela.r_offset = (sgotplt->output_section->vma
2565 + sgotplt->output_offset + 4);
2566 /* Tell rtld to set value to object's link map. */
2567 irela.r_addend = 2;
2568 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2569 rtld_reloc += 1;
2570 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2571
2572 /* Fill in the literal table. */
2573 if (chunk < plt_chunks - 1)
2574 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2575 else
2576 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2577
2578 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
2579 bfd_put_32 (output_bfd,
2580 sgotplt->output_section->vma + sgotplt->output_offset,
2581 spltlittbl->contents + (chunk * 8) + 0);
2582 bfd_put_32 (output_bfd,
2583 8 + (chunk_entries * 4),
2584 spltlittbl->contents + (chunk * 8) + 4);
2585 }
2586
2587 /* All the dynamic relocations have been emitted at this point.
2588 Make sure the relocation sections are the correct size. */
2589 if (srelgot->size != (sizeof (Elf32_External_Rela)
2590 * srelgot->reloc_count)
2591 || srelplt->size != (sizeof (Elf32_External_Rela)
2592 * srelplt->reloc_count))
2593 abort ();
2594
2595 /* The .xt.lit.plt section has just been modified. This must
2596 happen before the code below which combines adjacent literal
2597 table entries, and the .xt.lit.plt contents have to be forced to
2598 the output here. */
2599 if (! bfd_set_section_contents (output_bfd,
2600 spltlittbl->output_section,
2601 spltlittbl->contents,
2602 spltlittbl->output_offset,
2603 spltlittbl->size))
2604 return FALSE;
2605 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2606 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2607 }
2608
2609 /* Combine adjacent literal table entries. */
2610 BFD_ASSERT (! info->relocatable);
2611 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2612 sgotloc = htab->sgotloc;
2613 BFD_ASSERT (sxtlit && sgotloc);
2614 num_xtlit_entries =
2615 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
2616 if (num_xtlit_entries < 0)
2617 return FALSE;
2618
2619 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2620 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
2621 for (; dyncon < dynconend; dyncon++)
2622 {
2623 Elf_Internal_Dyn dyn;
2624
2625 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2626
2627 switch (dyn.d_tag)
2628 {
2629 default:
2630 break;
2631
2632 case DT_XTENSA_GOT_LOC_SZ:
2633 dyn.d_un.d_val = num_xtlit_entries;
2634 break;
2635
2636 case DT_XTENSA_GOT_LOC_OFF:
2637 dyn.d_un.d_ptr = htab->sgotloc->vma;
2638 break;
2639
2640 case DT_PLTGOT:
2641 dyn.d_un.d_ptr = htab->sgot->vma;
2642 break;
2643
2644 case DT_JMPREL:
2645 dyn.d_un.d_ptr = htab->srelplt->vma;
2646 break;
2647
2648 case DT_PLTRELSZ:
2649 dyn.d_un.d_val = htab->srelplt->size;
2650 break;
2651
2652 case DT_RELASZ:
2653 /* Adjust RELASZ to not include JMPREL. This matches what
2654 glibc expects and what is done for several other ELF
2655 targets (e.g., i386, alpha), but the "correct" behavior
2656 seems to be unresolved. Since the linker script arranges
2657 for .rela.plt to follow all other relocation sections, we
2658 don't have to worry about changing the DT_RELA entry. */
2659 if (htab->srelplt)
2660 dyn.d_un.d_val -= htab->srelplt->size;
2661 break;
2662 }
2663
2664 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2665 }
2666
2667 return TRUE;
2668 }
2669
2670 \f
2671 /* Functions for dealing with the e_flags field. */
2672
2673 /* Merge backend specific data from an object file to the output
2674 object file when linking. */
2675
2676 static bfd_boolean
2677 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2678 {
2679 unsigned out_mach, in_mach;
2680 flagword out_flag, in_flag;
2681
2682 /* Check if we have the same endianess. */
2683 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2684 return FALSE;
2685
2686 /* Don't even pretend to support mixed-format linking. */
2687 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2688 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2689 return FALSE;
2690
2691 out_flag = elf_elfheader (obfd)->e_flags;
2692 in_flag = elf_elfheader (ibfd)->e_flags;
2693
2694 out_mach = out_flag & EF_XTENSA_MACH;
2695 in_mach = in_flag & EF_XTENSA_MACH;
2696 if (out_mach != in_mach)
2697 {
2698 (*_bfd_error_handler)
2699 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
2700 ibfd, out_mach, in_mach);
2701 bfd_set_error (bfd_error_wrong_format);
2702 return FALSE;
2703 }
2704
2705 if (! elf_flags_init (obfd))
2706 {
2707 elf_flags_init (obfd) = TRUE;
2708 elf_elfheader (obfd)->e_flags = in_flag;
2709
2710 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2711 && bfd_get_arch_info (obfd)->the_default)
2712 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2713 bfd_get_mach (ibfd));
2714
2715 return TRUE;
2716 }
2717
2718 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2719 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
2720
2721 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2722 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
2723
2724 return TRUE;
2725 }
2726
2727
2728 static bfd_boolean
2729 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
2730 {
2731 BFD_ASSERT (!elf_flags_init (abfd)
2732 || elf_elfheader (abfd)->e_flags == flags);
2733
2734 elf_elfheader (abfd)->e_flags |= flags;
2735 elf_flags_init (abfd) = TRUE;
2736
2737 return TRUE;
2738 }
2739
2740
2741 static bfd_boolean
2742 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
2743 {
2744 FILE *f = (FILE *) farg;
2745 flagword e_flags = elf_elfheader (abfd)->e_flags;
2746
2747 fprintf (f, "\nXtensa header:\n");
2748 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
2749 fprintf (f, "\nMachine = Base\n");
2750 else
2751 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2752
2753 fprintf (f, "Insn tables = %s\n",
2754 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2755
2756 fprintf (f, "Literal tables = %s\n",
2757 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2758
2759 return _bfd_elf_print_private_bfd_data (abfd, farg);
2760 }
2761
2762
2763 /* Set the right machine number for an Xtensa ELF file. */
2764
2765 static bfd_boolean
2766 elf_xtensa_object_p (bfd *abfd)
2767 {
2768 int mach;
2769 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2770
2771 switch (arch)
2772 {
2773 case E_XTENSA_MACH:
2774 mach = bfd_mach_xtensa;
2775 break;
2776 default:
2777 return FALSE;
2778 }
2779
2780 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2781 return TRUE;
2782 }
2783
2784
2785 /* The final processing done just before writing out an Xtensa ELF object
2786 file. This gets the Xtensa architecture right based on the machine
2787 number. */
2788
2789 static void
2790 elf_xtensa_final_write_processing (bfd *abfd,
2791 bfd_boolean linker ATTRIBUTE_UNUSED)
2792 {
2793 int mach;
2794 unsigned long val;
2795
2796 switch (mach = bfd_get_mach (abfd))
2797 {
2798 case bfd_mach_xtensa:
2799 val = E_XTENSA_MACH;
2800 break;
2801 default:
2802 return;
2803 }
2804
2805 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2806 elf_elfheader (abfd)->e_flags |= val;
2807 }
2808
2809
2810 static enum elf_reloc_type_class
2811 elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
2812 {
2813 switch ((int) ELF32_R_TYPE (rela->r_info))
2814 {
2815 case R_XTENSA_RELATIVE:
2816 return reloc_class_relative;
2817 case R_XTENSA_JMP_SLOT:
2818 return reloc_class_plt;
2819 default:
2820 return reloc_class_normal;
2821 }
2822 }
2823
2824 \f
2825 static bfd_boolean
2826 elf_xtensa_discard_info_for_section (bfd *abfd,
2827 struct elf_reloc_cookie *cookie,
2828 struct bfd_link_info *info,
2829 asection *sec)
2830 {
2831 bfd_byte *contents;
2832 bfd_vma section_size;
2833 bfd_vma offset, actual_offset;
2834 bfd_size_type removed_bytes = 0;
2835 bfd_size_type entry_size;
2836
2837 if (sec->output_section
2838 && bfd_is_abs_section (sec->output_section))
2839 return FALSE;
2840
2841 if (xtensa_is_proptable_section (sec))
2842 entry_size = 12;
2843 else
2844 entry_size = 8;
2845
2846 section_size = sec->size;
2847 if (section_size == 0 || section_size % entry_size != 0)
2848 return FALSE;
2849
2850 contents = retrieve_contents (abfd, sec, info->keep_memory);
2851 if (!contents)
2852 return FALSE;
2853
2854 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2855 if (!cookie->rels)
2856 {
2857 release_contents (sec, contents);
2858 return FALSE;
2859 }
2860
2861 /* Sort the relocations. They should already be in order when
2862 relaxation is enabled, but it might not be. */
2863 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
2864 internal_reloc_compare);
2865
2866 cookie->rel = cookie->rels;
2867 cookie->relend = cookie->rels + sec->reloc_count;
2868
2869 for (offset = 0; offset < section_size; offset += entry_size)
2870 {
2871 actual_offset = offset - removed_bytes;
2872
2873 /* The ...symbol_deleted_p function will skip over relocs but it
2874 won't adjust their offsets, so do that here. */
2875 while (cookie->rel < cookie->relend
2876 && cookie->rel->r_offset < offset)
2877 {
2878 cookie->rel->r_offset -= removed_bytes;
2879 cookie->rel++;
2880 }
2881
2882 while (cookie->rel < cookie->relend
2883 && cookie->rel->r_offset == offset)
2884 {
2885 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
2886 {
2887 /* Remove the table entry. (If the reloc type is NONE, then
2888 the entry has already been merged with another and deleted
2889 during relaxation.) */
2890 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2891 {
2892 /* Shift the contents up. */
2893 if (offset + entry_size < section_size)
2894 memmove (&contents[actual_offset],
2895 &contents[actual_offset + entry_size],
2896 section_size - offset - entry_size);
2897 removed_bytes += entry_size;
2898 }
2899
2900 /* Remove this relocation. */
2901 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2902 }
2903
2904 /* Adjust the relocation offset for previous removals. This
2905 should not be done before calling ...symbol_deleted_p
2906 because it might mess up the offset comparisons there.
2907 Make sure the offset doesn't underflow in the case where
2908 the first entry is removed. */
2909 if (cookie->rel->r_offset >= removed_bytes)
2910 cookie->rel->r_offset -= removed_bytes;
2911 else
2912 cookie->rel->r_offset = 0;
2913
2914 cookie->rel++;
2915 }
2916 }
2917
2918 if (removed_bytes != 0)
2919 {
2920 /* Adjust any remaining relocs (shouldn't be any). */
2921 for (; cookie->rel < cookie->relend; cookie->rel++)
2922 {
2923 if (cookie->rel->r_offset >= removed_bytes)
2924 cookie->rel->r_offset -= removed_bytes;
2925 else
2926 cookie->rel->r_offset = 0;
2927 }
2928
2929 /* Clear the removed bytes. */
2930 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2931
2932 pin_contents (sec, contents);
2933 pin_internal_relocs (sec, cookie->rels);
2934
2935 /* Shrink size. */
2936 sec->size = section_size - removed_bytes;
2937
2938 if (xtensa_is_littable_section (sec))
2939 {
2940 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
2941 if (sgotloc)
2942 sgotloc->size -= removed_bytes;
2943 }
2944 }
2945 else
2946 {
2947 release_contents (sec, contents);
2948 release_internal_relocs (sec, cookie->rels);
2949 }
2950
2951 return (removed_bytes != 0);
2952 }
2953
2954
2955 static bfd_boolean
2956 elf_xtensa_discard_info (bfd *abfd,
2957 struct elf_reloc_cookie *cookie,
2958 struct bfd_link_info *info)
2959 {
2960 asection *sec;
2961 bfd_boolean changed = FALSE;
2962
2963 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2964 {
2965 if (xtensa_is_property_section (sec))
2966 {
2967 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2968 changed = TRUE;
2969 }
2970 }
2971
2972 return changed;
2973 }
2974
2975
2976 static bfd_boolean
2977 elf_xtensa_ignore_discarded_relocs (asection *sec)
2978 {
2979 return xtensa_is_property_section (sec);
2980 }
2981
2982
2983 static unsigned int
2984 elf_xtensa_action_discarded (asection *sec)
2985 {
2986 if (strcmp (".xt_except_table", sec->name) == 0)
2987 return 0;
2988
2989 if (strcmp (".xt_except_desc", sec->name) == 0)
2990 return 0;
2991
2992 return _bfd_elf_default_action_discarded (sec);
2993 }
2994
2995 \f
2996 /* Support for core dump NOTE sections. */
2997
2998 static bfd_boolean
2999 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3000 {
3001 int offset;
3002 unsigned int size;
3003
3004 /* The size for Xtensa is variable, so don't try to recognize the format
3005 based on the size. Just assume this is GNU/Linux. */
3006
3007 /* pr_cursig */
3008 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3009
3010 /* pr_pid */
3011 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3012
3013 /* pr_reg */
3014 offset = 72;
3015 size = note->descsz - offset - 4;
3016
3017 /* Make a ".reg/999" section. */
3018 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3019 size, note->descpos + offset);
3020 }
3021
3022
3023 static bfd_boolean
3024 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3025 {
3026 switch (note->descsz)
3027 {
3028 default:
3029 return FALSE;
3030
3031 case 128: /* GNU/Linux elf_prpsinfo */
3032 elf_tdata (abfd)->core_program
3033 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3034 elf_tdata (abfd)->core_command
3035 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3036 }
3037
3038 /* Note that for some reason, a spurious space is tacked
3039 onto the end of the args in some (at least one anyway)
3040 implementations, so strip it off if it exists. */
3041
3042 {
3043 char *command = elf_tdata (abfd)->core_command;
3044 int n = strlen (command);
3045
3046 if (0 < n && command[n - 1] == ' ')
3047 command[n - 1] = '\0';
3048 }
3049
3050 return TRUE;
3051 }
3052
3053 \f
3054 /* Generic Xtensa configurability stuff. */
3055
3056 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3057 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3058 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3059 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3060 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3061 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3062 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3063 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3064
3065 static void
3066 init_call_opcodes (void)
3067 {
3068 if (callx0_op == XTENSA_UNDEFINED)
3069 {
3070 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3071 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3072 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3073 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3074 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3075 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3076 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3077 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3078 }
3079 }
3080
3081
3082 static bfd_boolean
3083 is_indirect_call_opcode (xtensa_opcode opcode)
3084 {
3085 init_call_opcodes ();
3086 return (opcode == callx0_op
3087 || opcode == callx4_op
3088 || opcode == callx8_op
3089 || opcode == callx12_op);
3090 }
3091
3092
3093 static bfd_boolean
3094 is_direct_call_opcode (xtensa_opcode opcode)
3095 {
3096 init_call_opcodes ();
3097 return (opcode == call0_op
3098 || opcode == call4_op
3099 || opcode == call8_op
3100 || opcode == call12_op);
3101 }
3102
3103
3104 static bfd_boolean
3105 is_windowed_call_opcode (xtensa_opcode opcode)
3106 {
3107 init_call_opcodes ();
3108 return (opcode == call4_op
3109 || opcode == call8_op
3110 || opcode == call12_op
3111 || opcode == callx4_op
3112 || opcode == callx8_op
3113 || opcode == callx12_op);
3114 }
3115
3116
3117 static xtensa_opcode
3118 get_const16_opcode (void)
3119 {
3120 static bfd_boolean done_lookup = FALSE;
3121 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3122 if (!done_lookup)
3123 {
3124 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3125 done_lookup = TRUE;
3126 }
3127 return const16_opcode;
3128 }
3129
3130
3131 static xtensa_opcode
3132 get_l32r_opcode (void)
3133 {
3134 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3135 static bfd_boolean done_lookup = FALSE;
3136
3137 if (!done_lookup)
3138 {
3139 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3140 done_lookup = TRUE;
3141 }
3142 return l32r_opcode;
3143 }
3144
3145
3146 static bfd_vma
3147 l32r_offset (bfd_vma addr, bfd_vma pc)
3148 {
3149 bfd_vma offset;
3150
3151 offset = addr - ((pc+3) & -4);
3152 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3153 offset = (signed int) offset >> 2;
3154 BFD_ASSERT ((signed int) offset >> 16 == -1);
3155 return offset;
3156 }
3157
3158
3159 static int
3160 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3161 {
3162 xtensa_isa isa = xtensa_default_isa;
3163 int last_immed, last_opnd, opi;
3164
3165 if (opcode == XTENSA_UNDEFINED)
3166 return XTENSA_UNDEFINED;
3167
3168 /* Find the last visible PC-relative immediate operand for the opcode.
3169 If there are no PC-relative immediates, then choose the last visible
3170 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3171 last_immed = XTENSA_UNDEFINED;
3172 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3173 for (opi = last_opnd - 1; opi >= 0; opi--)
3174 {
3175 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3176 continue;
3177 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3178 {
3179 last_immed = opi;
3180 break;
3181 }
3182 if (last_immed == XTENSA_UNDEFINED
3183 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3184 last_immed = opi;
3185 }
3186 if (last_immed < 0)
3187 return XTENSA_UNDEFINED;
3188
3189 /* If the operand number was specified in an old-style relocation,
3190 check for consistency with the operand computed above. */
3191 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3192 {
3193 int reloc_opnd = r_type - R_XTENSA_OP0;
3194 if (reloc_opnd != last_immed)
3195 return XTENSA_UNDEFINED;
3196 }
3197
3198 return last_immed;
3199 }
3200
3201
3202 int
3203 get_relocation_slot (int r_type)
3204 {
3205 switch (r_type)
3206 {
3207 case R_XTENSA_OP0:
3208 case R_XTENSA_OP1:
3209 case R_XTENSA_OP2:
3210 return 0;
3211
3212 default:
3213 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3214 return r_type - R_XTENSA_SLOT0_OP;
3215 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3216 return r_type - R_XTENSA_SLOT0_ALT;
3217 break;
3218 }
3219
3220 return XTENSA_UNDEFINED;
3221 }
3222
3223
3224 /* Get the opcode for a relocation. */
3225
3226 static xtensa_opcode
3227 get_relocation_opcode (bfd *abfd,
3228 asection *sec,
3229 bfd_byte *contents,
3230 Elf_Internal_Rela *irel)
3231 {
3232 static xtensa_insnbuf ibuff = NULL;
3233 static xtensa_insnbuf sbuff = NULL;
3234 xtensa_isa isa = xtensa_default_isa;
3235 xtensa_format fmt;
3236 int slot;
3237
3238 if (contents == NULL)
3239 return XTENSA_UNDEFINED;
3240
3241 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3242 return XTENSA_UNDEFINED;
3243
3244 if (ibuff == NULL)
3245 {
3246 ibuff = xtensa_insnbuf_alloc (isa);
3247 sbuff = xtensa_insnbuf_alloc (isa);
3248 }
3249
3250 /* Decode the instruction. */
3251 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3252 sec->size - irel->r_offset);
3253 fmt = xtensa_format_decode (isa, ibuff);
3254 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3255 if (slot == XTENSA_UNDEFINED)
3256 return XTENSA_UNDEFINED;
3257 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3258 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3259 }
3260
3261
3262 bfd_boolean
3263 is_l32r_relocation (bfd *abfd,
3264 asection *sec,
3265 bfd_byte *contents,
3266 Elf_Internal_Rela *irel)
3267 {
3268 xtensa_opcode opcode;
3269 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
3270 return FALSE;
3271 opcode = get_relocation_opcode (abfd, sec, contents, irel);
3272 return (opcode == get_l32r_opcode ());
3273 }
3274
3275
3276 static bfd_size_type
3277 get_asm_simplify_size (bfd_byte *contents,
3278 bfd_size_type content_len,
3279 bfd_size_type offset)
3280 {
3281 bfd_size_type insnlen, size = 0;
3282
3283 /* Decode the size of the next two instructions. */
3284 insnlen = insn_decode_len (contents, content_len, offset);
3285 if (insnlen == 0)
3286 return 0;
3287
3288 size += insnlen;
3289
3290 insnlen = insn_decode_len (contents, content_len, offset + size);
3291 if (insnlen == 0)
3292 return 0;
3293
3294 size += insnlen;
3295 return size;
3296 }
3297
3298
3299 bfd_boolean
3300 is_alt_relocation (int r_type)
3301 {
3302 return (r_type >= R_XTENSA_SLOT0_ALT
3303 && r_type <= R_XTENSA_SLOT14_ALT);
3304 }
3305
3306
3307 bfd_boolean
3308 is_operand_relocation (int r_type)
3309 {
3310 switch (r_type)
3311 {
3312 case R_XTENSA_OP0:
3313 case R_XTENSA_OP1:
3314 case R_XTENSA_OP2:
3315 return TRUE;
3316
3317 default:
3318 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3319 return TRUE;
3320 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3321 return TRUE;
3322 break;
3323 }
3324
3325 return FALSE;
3326 }
3327
3328
3329 #define MIN_INSN_LENGTH 2
3330
3331 /* Return 0 if it fails to decode. */
3332
3333 bfd_size_type
3334 insn_decode_len (bfd_byte *contents,
3335 bfd_size_type content_len,
3336 bfd_size_type offset)
3337 {
3338 int insn_len;
3339 xtensa_isa isa = xtensa_default_isa;
3340 xtensa_format fmt;
3341 static xtensa_insnbuf ibuff = NULL;
3342
3343 if (offset + MIN_INSN_LENGTH > content_len)
3344 return 0;
3345
3346 if (ibuff == NULL)
3347 ibuff = xtensa_insnbuf_alloc (isa);
3348 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3349 content_len - offset);
3350 fmt = xtensa_format_decode (isa, ibuff);
3351 if (fmt == XTENSA_UNDEFINED)
3352 return 0;
3353 insn_len = xtensa_format_length (isa, fmt);
3354 if (insn_len == XTENSA_UNDEFINED)
3355 return 0;
3356 return insn_len;
3357 }
3358
3359
3360 /* Decode the opcode for a single slot instruction.
3361 Return 0 if it fails to decode or the instruction is multi-slot. */
3362
3363 xtensa_opcode
3364 insn_decode_opcode (bfd_byte *contents,
3365 bfd_size_type content_len,
3366 bfd_size_type offset,
3367 int slot)
3368 {
3369 xtensa_isa isa = xtensa_default_isa;
3370 xtensa_format fmt;
3371 static xtensa_insnbuf insnbuf = NULL;
3372 static xtensa_insnbuf slotbuf = NULL;
3373
3374 if (offset + MIN_INSN_LENGTH > content_len)
3375 return XTENSA_UNDEFINED;
3376
3377 if (insnbuf == NULL)
3378 {
3379 insnbuf = xtensa_insnbuf_alloc (isa);
3380 slotbuf = xtensa_insnbuf_alloc (isa);
3381 }
3382
3383 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3384 content_len - offset);
3385 fmt = xtensa_format_decode (isa, insnbuf);
3386 if (fmt == XTENSA_UNDEFINED)
3387 return XTENSA_UNDEFINED;
3388
3389 if (slot >= xtensa_format_num_slots (isa, fmt))
3390 return XTENSA_UNDEFINED;
3391
3392 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3393 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3394 }
3395
3396
3397 /* The offset is the offset in the contents.
3398 The address is the address of that offset. */
3399
3400 static bfd_boolean
3401 check_branch_target_aligned (bfd_byte *contents,
3402 bfd_size_type content_length,
3403 bfd_vma offset,
3404 bfd_vma address)
3405 {
3406 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3407 if (insn_len == 0)
3408 return FALSE;
3409 return check_branch_target_aligned_address (address, insn_len);
3410 }
3411
3412
3413 static bfd_boolean
3414 check_loop_aligned (bfd_byte *contents,
3415 bfd_size_type content_length,
3416 bfd_vma offset,
3417 bfd_vma address)
3418 {
3419 bfd_size_type loop_len, insn_len;
3420 xtensa_opcode opcode;
3421
3422 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3423 if (opcode == XTENSA_UNDEFINED
3424 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3425 {
3426 BFD_ASSERT (FALSE);
3427 return FALSE;
3428 }
3429
3430 loop_len = insn_decode_len (contents, content_length, offset);
3431 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3432 if (loop_len == 0 || insn_len == 0)
3433 {
3434 BFD_ASSERT (FALSE);
3435 return FALSE;
3436 }
3437
3438 return check_branch_target_aligned_address (address + loop_len, insn_len);
3439 }
3440
3441
3442 static bfd_boolean
3443 check_branch_target_aligned_address (bfd_vma addr, int len)
3444 {
3445 if (len == 8)
3446 return (addr % 8 == 0);
3447 return ((addr >> 2) == ((addr + len - 1) >> 2));
3448 }
3449
3450 \f
3451 /* Instruction widening and narrowing. */
3452
3453 /* When FLIX is available we need to access certain instructions only
3454 when they are 16-bit or 24-bit instructions. This table caches
3455 information about such instructions by walking through all the
3456 opcodes and finding the smallest single-slot format into which each
3457 can be encoded. */
3458
3459 static xtensa_format *op_single_fmt_table = NULL;
3460
3461
3462 static void
3463 init_op_single_format_table (void)
3464 {
3465 xtensa_isa isa = xtensa_default_isa;
3466 xtensa_insnbuf ibuf;
3467 xtensa_opcode opcode;
3468 xtensa_format fmt;
3469 int num_opcodes;
3470
3471 if (op_single_fmt_table)
3472 return;
3473
3474 ibuf = xtensa_insnbuf_alloc (isa);
3475 num_opcodes = xtensa_isa_num_opcodes (isa);
3476
3477 op_single_fmt_table = (xtensa_format *)
3478 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3479 for (opcode = 0; opcode < num_opcodes; opcode++)
3480 {
3481 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3482 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3483 {
3484 if (xtensa_format_num_slots (isa, fmt) == 1
3485 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3486 {
3487 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3488 int fmt_length = xtensa_format_length (isa, fmt);
3489 if (old_fmt == XTENSA_UNDEFINED
3490 || fmt_length < xtensa_format_length (isa, old_fmt))
3491 op_single_fmt_table[opcode] = fmt;
3492 }
3493 }
3494 }
3495 xtensa_insnbuf_free (isa, ibuf);
3496 }
3497
3498
3499 static xtensa_format
3500 get_single_format (xtensa_opcode opcode)
3501 {
3502 init_op_single_format_table ();
3503 return op_single_fmt_table[opcode];
3504 }
3505
3506
3507 /* For the set of narrowable instructions we do NOT include the
3508 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3509 involved during linker relaxation that may require these to
3510 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3511 requires special case code to ensure it only works when op1 == op2. */
3512
3513 struct string_pair
3514 {
3515 const char *wide;
3516 const char *narrow;
3517 };
3518
3519 struct string_pair narrowable[] =
3520 {
3521 { "add", "add.n" },
3522 { "addi", "addi.n" },
3523 { "addmi", "addi.n" },
3524 { "l32i", "l32i.n" },
3525 { "movi", "movi.n" },
3526 { "ret", "ret.n" },
3527 { "retw", "retw.n" },
3528 { "s32i", "s32i.n" },
3529 { "or", "mov.n" } /* special case only when op1 == op2 */
3530 };
3531
3532 struct string_pair widenable[] =
3533 {
3534 { "add", "add.n" },
3535 { "addi", "addi.n" },
3536 { "addmi", "addi.n" },
3537 { "beqz", "beqz.n" },
3538 { "bnez", "bnez.n" },
3539 { "l32i", "l32i.n" },
3540 { "movi", "movi.n" },
3541 { "ret", "ret.n" },
3542 { "retw", "retw.n" },
3543 { "s32i", "s32i.n" },
3544 { "or", "mov.n" } /* special case only when op1 == op2 */
3545 };
3546
3547
3548 /* Check if an instruction can be "narrowed", i.e., changed from a standard
3549 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3550 return the instruction buffer holding the narrow instruction. Otherwise,
3551 return 0. The set of valid narrowing are specified by a string table
3552 but require some special case operand checks in some cases. */
3553
3554 static xtensa_insnbuf
3555 can_narrow_instruction (xtensa_insnbuf slotbuf,
3556 xtensa_format fmt,
3557 xtensa_opcode opcode)
3558 {
3559 xtensa_isa isa = xtensa_default_isa;
3560 xtensa_format o_fmt;
3561 unsigned opi;
3562
3563 static xtensa_insnbuf o_insnbuf = NULL;
3564 static xtensa_insnbuf o_slotbuf = NULL;
3565
3566 if (o_insnbuf == NULL)
3567 {
3568 o_insnbuf = xtensa_insnbuf_alloc (isa);
3569 o_slotbuf = xtensa_insnbuf_alloc (isa);
3570 }
3571
3572 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
3573 {
3574 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
3575
3576 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3577 {
3578 uint32 value, newval;
3579 int i, operand_count, o_operand_count;
3580 xtensa_opcode o_opcode;
3581
3582 /* Address does not matter in this case. We might need to
3583 fix it to handle branches/jumps. */
3584 bfd_vma self_address = 0;
3585
3586 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3587 if (o_opcode == XTENSA_UNDEFINED)
3588 return 0;
3589 o_fmt = get_single_format (o_opcode);
3590 if (o_fmt == XTENSA_UNDEFINED)
3591 return 0;
3592
3593 if (xtensa_format_length (isa, fmt) != 3
3594 || xtensa_format_length (isa, o_fmt) != 2)
3595 return 0;
3596
3597 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3598 operand_count = xtensa_opcode_num_operands (isa, opcode);
3599 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3600
3601 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3602 return 0;
3603
3604 if (!is_or)
3605 {
3606 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3607 return 0;
3608 }
3609 else
3610 {
3611 uint32 rawval0, rawval1, rawval2;
3612
3613 if (o_operand_count + 1 != operand_count
3614 || xtensa_operand_get_field (isa, opcode, 0,
3615 fmt, 0, slotbuf, &rawval0) != 0
3616 || xtensa_operand_get_field (isa, opcode, 1,
3617 fmt, 0, slotbuf, &rawval1) != 0
3618 || xtensa_operand_get_field (isa, opcode, 2,
3619 fmt, 0, slotbuf, &rawval2) != 0
3620 || rawval1 != rawval2
3621 || rawval0 == rawval1 /* it is a nop */)
3622 return 0;
3623 }
3624
3625 for (i = 0; i < o_operand_count; ++i)
3626 {
3627 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3628 slotbuf, &value)
3629 || xtensa_operand_decode (isa, opcode, i, &value))
3630 return 0;
3631
3632 /* PC-relative branches need adjustment, but
3633 the PC-rel operand will always have a relocation. */
3634 newval = value;
3635 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3636 self_address)
3637 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3638 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3639 o_slotbuf, newval))
3640 return 0;
3641 }
3642
3643 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3644 return 0;
3645
3646 return o_insnbuf;
3647 }
3648 }
3649 return 0;
3650 }
3651
3652
3653 /* Attempt to narrow an instruction. If the narrowing is valid, perform
3654 the action in-place directly into the contents and return TRUE. Otherwise,
3655 the return value is FALSE and the contents are not modified. */
3656
3657 static bfd_boolean
3658 narrow_instruction (bfd_byte *contents,
3659 bfd_size_type content_length,
3660 bfd_size_type offset)
3661 {
3662 xtensa_opcode opcode;
3663 bfd_size_type insn_len;
3664 xtensa_isa isa = xtensa_default_isa;
3665 xtensa_format fmt;
3666 xtensa_insnbuf o_insnbuf;
3667
3668 static xtensa_insnbuf insnbuf = NULL;
3669 static xtensa_insnbuf slotbuf = NULL;
3670
3671 if (insnbuf == NULL)
3672 {
3673 insnbuf = xtensa_insnbuf_alloc (isa);
3674 slotbuf = xtensa_insnbuf_alloc (isa);
3675 }
3676
3677 BFD_ASSERT (offset < content_length);
3678
3679 if (content_length < 2)
3680 return FALSE;
3681
3682 /* We will hand-code a few of these for a little while.
3683 These have all been specified in the assembler aleady. */
3684 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3685 content_length - offset);
3686 fmt = xtensa_format_decode (isa, insnbuf);
3687 if (xtensa_format_num_slots (isa, fmt) != 1)
3688 return FALSE;
3689
3690 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3691 return FALSE;
3692
3693 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3694 if (opcode == XTENSA_UNDEFINED)
3695 return FALSE;
3696 insn_len = xtensa_format_length (isa, fmt);
3697 if (insn_len > content_length)
3698 return FALSE;
3699
3700 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3701 if (o_insnbuf)
3702 {
3703 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3704 content_length - offset);
3705 return TRUE;
3706 }
3707
3708 return FALSE;
3709 }
3710
3711
3712 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
3713 "density" instruction to a standard 3-byte instruction. If it is valid,
3714 return the instruction buffer holding the wide instruction. Otherwise,
3715 return 0. The set of valid widenings are specified by a string table
3716 but require some special case operand checks in some cases. */
3717
3718 static xtensa_insnbuf
3719 can_widen_instruction (xtensa_insnbuf slotbuf,
3720 xtensa_format fmt,
3721 xtensa_opcode opcode)
3722 {
3723 xtensa_isa isa = xtensa_default_isa;
3724 xtensa_format o_fmt;
3725 unsigned opi;
3726
3727 static xtensa_insnbuf o_insnbuf = NULL;
3728 static xtensa_insnbuf o_slotbuf = NULL;
3729
3730 if (o_insnbuf == NULL)
3731 {
3732 o_insnbuf = xtensa_insnbuf_alloc (isa);
3733 o_slotbuf = xtensa_insnbuf_alloc (isa);
3734 }
3735
3736 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
3737 {
3738 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3739 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3740 || strcmp ("bnez", widenable[opi].wide) == 0);
3741
3742 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3743 {
3744 uint32 value, newval;
3745 int i, operand_count, o_operand_count, check_operand_count;
3746 xtensa_opcode o_opcode;
3747
3748 /* Address does not matter in this case. We might need to fix it
3749 to handle branches/jumps. */
3750 bfd_vma self_address = 0;
3751
3752 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3753 if (o_opcode == XTENSA_UNDEFINED)
3754 return 0;
3755 o_fmt = get_single_format (o_opcode);
3756 if (o_fmt == XTENSA_UNDEFINED)
3757 return 0;
3758
3759 if (xtensa_format_length (isa, fmt) != 2
3760 || xtensa_format_length (isa, o_fmt) != 3)
3761 return 0;
3762
3763 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3764 operand_count = xtensa_opcode_num_operands (isa, opcode);
3765 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3766 check_operand_count = o_operand_count;
3767
3768 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3769 return 0;
3770
3771 if (!is_or)
3772 {
3773 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3774 return 0;
3775 }
3776 else
3777 {
3778 uint32 rawval0, rawval1;
3779
3780 if (o_operand_count != operand_count + 1
3781 || xtensa_operand_get_field (isa, opcode, 0,
3782 fmt, 0, slotbuf, &rawval0) != 0
3783 || xtensa_operand_get_field (isa, opcode, 1,
3784 fmt, 0, slotbuf, &rawval1) != 0
3785 || rawval0 == rawval1 /* it is a nop */)
3786 return 0;
3787 }
3788 if (is_branch)
3789 check_operand_count--;
3790
3791 for (i = 0; i < check_operand_count; i++)
3792 {
3793 int new_i = i;
3794 if (is_or && i == o_operand_count - 1)
3795 new_i = i - 1;
3796 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3797 slotbuf, &value)
3798 || xtensa_operand_decode (isa, opcode, new_i, &value))
3799 return 0;
3800
3801 /* PC-relative branches need adjustment, but
3802 the PC-rel operand will always have a relocation. */
3803 newval = value;
3804 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3805 self_address)
3806 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3807 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3808 o_slotbuf, newval))
3809 return 0;
3810 }
3811
3812 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3813 return 0;
3814
3815 return o_insnbuf;
3816 }
3817 }
3818 return 0;
3819 }
3820
3821
3822 /* Attempt to widen an instruction. If the widening is valid, perform
3823 the action in-place directly into the contents and return TRUE. Otherwise,
3824 the return value is FALSE and the contents are not modified. */
3825
3826 static bfd_boolean
3827 widen_instruction (bfd_byte *contents,
3828 bfd_size_type content_length,
3829 bfd_size_type offset)
3830 {
3831 xtensa_opcode opcode;
3832 bfd_size_type insn_len;
3833 xtensa_isa isa = xtensa_default_isa;
3834 xtensa_format fmt;
3835 xtensa_insnbuf o_insnbuf;
3836
3837 static xtensa_insnbuf insnbuf = NULL;
3838 static xtensa_insnbuf slotbuf = NULL;
3839
3840 if (insnbuf == NULL)
3841 {
3842 insnbuf = xtensa_insnbuf_alloc (isa);
3843 slotbuf = xtensa_insnbuf_alloc (isa);
3844 }
3845
3846 BFD_ASSERT (offset < content_length);
3847
3848 if (content_length < 2)
3849 return FALSE;
3850
3851 /* We will hand-code a few of these for a little while.
3852 These have all been specified in the assembler aleady. */
3853 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3854 content_length - offset);
3855 fmt = xtensa_format_decode (isa, insnbuf);
3856 if (xtensa_format_num_slots (isa, fmt) != 1)
3857 return FALSE;
3858
3859 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3860 return FALSE;
3861
3862 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3863 if (opcode == XTENSA_UNDEFINED)
3864 return FALSE;
3865 insn_len = xtensa_format_length (isa, fmt);
3866 if (insn_len > content_length)
3867 return FALSE;
3868
3869 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3870 if (o_insnbuf)
3871 {
3872 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3873 content_length - offset);
3874 return TRUE;
3875 }
3876 return FALSE;
3877 }
3878
3879 \f
3880 /* Code for transforming CALLs at link-time. */
3881
3882 static bfd_reloc_status_type
3883 elf_xtensa_do_asm_simplify (bfd_byte *contents,
3884 bfd_vma address,
3885 bfd_vma content_length,
3886 char **error_message)
3887 {
3888 static xtensa_insnbuf insnbuf = NULL;
3889 static xtensa_insnbuf slotbuf = NULL;
3890 xtensa_format core_format = XTENSA_UNDEFINED;
3891 xtensa_opcode opcode;
3892 xtensa_opcode direct_call_opcode;
3893 xtensa_isa isa = xtensa_default_isa;
3894 bfd_byte *chbuf = contents + address;
3895 int opn;
3896
3897 if (insnbuf == NULL)
3898 {
3899 insnbuf = xtensa_insnbuf_alloc (isa);
3900 slotbuf = xtensa_insnbuf_alloc (isa);
3901 }
3902
3903 if (content_length < address)
3904 {
3905 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3906 return bfd_reloc_other;
3907 }
3908
3909 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3910 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3911 if (direct_call_opcode == XTENSA_UNDEFINED)
3912 {
3913 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3914 return bfd_reloc_other;
3915 }
3916
3917 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3918 core_format = xtensa_format_lookup (isa, "x24");
3919 opcode = xtensa_opcode_lookup (isa, "or");
3920 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3921 for (opn = 0; opn < 3; opn++)
3922 {
3923 uint32 regno = 1;
3924 xtensa_operand_encode (isa, opcode, opn, &regno);
3925 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3926 slotbuf, regno);
3927 }
3928 xtensa_format_encode (isa, core_format, insnbuf);
3929 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3930 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
3931
3932 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3933 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3934 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
3935
3936 xtensa_format_encode (isa, core_format, insnbuf);
3937 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3938 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3939 content_length - address - 3);
3940
3941 return bfd_reloc_ok;
3942 }
3943
3944
3945 static bfd_reloc_status_type
3946 contract_asm_expansion (bfd_byte *contents,
3947 bfd_vma content_length,
3948 Elf_Internal_Rela *irel,
3949 char **error_message)
3950 {
3951 bfd_reloc_status_type retval =
3952 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3953 error_message);
3954
3955 if (retval != bfd_reloc_ok)
3956 return bfd_reloc_dangerous;
3957
3958 /* Update the irel->r_offset field so that the right immediate and
3959 the right instruction are modified during the relocation. */
3960 irel->r_offset += 3;
3961 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3962 return bfd_reloc_ok;
3963 }
3964
3965
3966 static xtensa_opcode
3967 swap_callx_for_call_opcode (xtensa_opcode opcode)
3968 {
3969 init_call_opcodes ();
3970
3971 if (opcode == callx0_op) return call0_op;
3972 if (opcode == callx4_op) return call4_op;
3973 if (opcode == callx8_op) return call8_op;
3974 if (opcode == callx12_op) return call12_op;
3975
3976 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3977 return XTENSA_UNDEFINED;
3978 }
3979
3980
3981 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3982 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3983 If not, return XTENSA_UNDEFINED. */
3984
3985 #define L32R_TARGET_REG_OPERAND 0
3986 #define CONST16_TARGET_REG_OPERAND 0
3987 #define CALLN_SOURCE_OPERAND 0
3988
3989 static xtensa_opcode
3990 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
3991 {
3992 static xtensa_insnbuf insnbuf = NULL;
3993 static xtensa_insnbuf slotbuf = NULL;
3994 xtensa_format fmt;
3995 xtensa_opcode opcode;
3996 xtensa_isa isa = xtensa_default_isa;
3997 uint32 regno, const16_regno, call_regno;
3998 int offset = 0;
3999
4000 if (insnbuf == NULL)
4001 {
4002 insnbuf = xtensa_insnbuf_alloc (isa);
4003 slotbuf = xtensa_insnbuf_alloc (isa);
4004 }
4005
4006 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4007 fmt = xtensa_format_decode (isa, insnbuf);
4008 if (fmt == XTENSA_UNDEFINED
4009 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4010 return XTENSA_UNDEFINED;
4011
4012 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4013 if (opcode == XTENSA_UNDEFINED)
4014 return XTENSA_UNDEFINED;
4015
4016 if (opcode == get_l32r_opcode ())
4017 {
4018 if (p_uses_l32r)
4019 *p_uses_l32r = TRUE;
4020 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4021 fmt, 0, slotbuf, &regno)
4022 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4023 &regno))
4024 return XTENSA_UNDEFINED;
4025 }
4026 else if (opcode == get_const16_opcode ())
4027 {
4028 if (p_uses_l32r)
4029 *p_uses_l32r = FALSE;
4030 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4031 fmt, 0, slotbuf, &regno)
4032 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4033 &regno))
4034 return XTENSA_UNDEFINED;
4035
4036 /* Check that the next instruction is also CONST16. */
4037 offset += xtensa_format_length (isa, fmt);
4038 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4039 fmt = xtensa_format_decode (isa, insnbuf);
4040 if (fmt == XTENSA_UNDEFINED
4041 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4042 return XTENSA_UNDEFINED;
4043 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4044 if (opcode != get_const16_opcode ())
4045 return XTENSA_UNDEFINED;
4046
4047 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4048 fmt, 0, slotbuf, &const16_regno)
4049 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4050 &const16_regno)
4051 || const16_regno != regno)
4052 return XTENSA_UNDEFINED;
4053 }
4054 else
4055 return XTENSA_UNDEFINED;
4056
4057 /* Next instruction should be an CALLXn with operand 0 == regno. */
4058 offset += xtensa_format_length (isa, fmt);
4059 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4060 fmt = xtensa_format_decode (isa, insnbuf);
4061 if (fmt == XTENSA_UNDEFINED
4062 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4063 return XTENSA_UNDEFINED;
4064 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4065 if (opcode == XTENSA_UNDEFINED
4066 || !is_indirect_call_opcode (opcode))
4067 return XTENSA_UNDEFINED;
4068
4069 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4070 fmt, 0, slotbuf, &call_regno)
4071 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4072 &call_regno))
4073 return XTENSA_UNDEFINED;
4074
4075 if (call_regno != regno)
4076 return XTENSA_UNDEFINED;
4077
4078 return opcode;
4079 }
4080
4081 \f
4082 /* Data structures used during relaxation. */
4083
4084 /* r_reloc: relocation values. */
4085
4086 /* Through the relaxation process, we need to keep track of the values
4087 that will result from evaluating relocations. The standard ELF
4088 relocation structure is not sufficient for this purpose because we're
4089 operating on multiple input files at once, so we need to know which
4090 input file a relocation refers to. The r_reloc structure thus
4091 records both the input file (bfd) and ELF relocation.
4092
4093 For efficiency, an r_reloc also contains a "target_offset" field to
4094 cache the target-section-relative offset value that is represented by
4095 the relocation.
4096
4097 The r_reloc also contains a virtual offset that allows multiple
4098 inserted literals to be placed at the same "address" with
4099 different offsets. */
4100
4101 typedef struct r_reloc_struct r_reloc;
4102
4103 struct r_reloc_struct
4104 {
4105 bfd *abfd;
4106 Elf_Internal_Rela rela;
4107 bfd_vma target_offset;
4108 bfd_vma virtual_offset;
4109 };
4110
4111
4112 /* The r_reloc structure is included by value in literal_value, but not
4113 every literal_value has an associated relocation -- some are simple
4114 constants. In such cases, we set all the fields in the r_reloc
4115 struct to zero. The r_reloc_is_const function should be used to
4116 detect this case. */
4117
4118 static bfd_boolean
4119 r_reloc_is_const (const r_reloc *r_rel)
4120 {
4121 return (r_rel->abfd == NULL);
4122 }
4123
4124
4125 static bfd_vma
4126 r_reloc_get_target_offset (const r_reloc *r_rel)
4127 {
4128 bfd_vma target_offset;
4129 unsigned long r_symndx;
4130
4131 BFD_ASSERT (!r_reloc_is_const (r_rel));
4132 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4133 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4134 return (target_offset + r_rel->rela.r_addend);
4135 }
4136
4137
4138 static struct elf_link_hash_entry *
4139 r_reloc_get_hash_entry (const r_reloc *r_rel)
4140 {
4141 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4142 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4143 }
4144
4145
4146 static asection *
4147 r_reloc_get_section (const r_reloc *r_rel)
4148 {
4149 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4150 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4151 }
4152
4153
4154 static bfd_boolean
4155 r_reloc_is_defined (const r_reloc *r_rel)
4156 {
4157 asection *sec;
4158 if (r_rel == NULL)
4159 return FALSE;
4160
4161 sec = r_reloc_get_section (r_rel);
4162 if (sec == bfd_abs_section_ptr
4163 || sec == bfd_com_section_ptr
4164 || sec == bfd_und_section_ptr)
4165 return FALSE;
4166 return TRUE;
4167 }
4168
4169
4170 static void
4171 r_reloc_init (r_reloc *r_rel,
4172 bfd *abfd,
4173 Elf_Internal_Rela *irel,
4174 bfd_byte *contents,
4175 bfd_size_type content_length)
4176 {
4177 int r_type;
4178 reloc_howto_type *howto;
4179
4180 if (irel)
4181 {
4182 r_rel->rela = *irel;
4183 r_rel->abfd = abfd;
4184 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4185 r_rel->virtual_offset = 0;
4186 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4187 howto = &elf_howto_table[r_type];
4188 if (howto->partial_inplace)
4189 {
4190 bfd_vma inplace_val;
4191 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4192
4193 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4194 r_rel->target_offset += inplace_val;
4195 }
4196 }
4197 else
4198 memset (r_rel, 0, sizeof (r_reloc));
4199 }
4200
4201
4202 #if DEBUG
4203
4204 static void
4205 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4206 {
4207 if (r_reloc_is_defined (r_rel))
4208 {
4209 asection *sec = r_reloc_get_section (r_rel);
4210 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4211 }
4212 else if (r_reloc_get_hash_entry (r_rel))
4213 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4214 else
4215 fprintf (fp, " ?? + ");
4216
4217 fprintf_vma (fp, r_rel->target_offset);
4218 if (r_rel->virtual_offset)
4219 {
4220 fprintf (fp, " + ");
4221 fprintf_vma (fp, r_rel->virtual_offset);
4222 }
4223
4224 fprintf (fp, ")");
4225 }
4226
4227 #endif /* DEBUG */
4228
4229 \f
4230 /* source_reloc: relocations that reference literals. */
4231
4232 /* To determine whether literals can be coalesced, we need to first
4233 record all the relocations that reference the literals. The
4234 source_reloc structure below is used for this purpose. The
4235 source_reloc entries are kept in a per-literal-section array, sorted
4236 by offset within the literal section (i.e., target offset).
4237
4238 The source_sec and r_rel.rela.r_offset fields identify the source of
4239 the relocation. The r_rel field records the relocation value, i.e.,
4240 the offset of the literal being referenced. The opnd field is needed
4241 to determine the range of the immediate field to which the relocation
4242 applies, so we can determine whether another literal with the same
4243 value is within range. The is_null field is true when the relocation
4244 is being removed (e.g., when an L32R is being removed due to a CALLX
4245 that is converted to a direct CALL). */
4246
4247 typedef struct source_reloc_struct source_reloc;
4248
4249 struct source_reloc_struct
4250 {
4251 asection *source_sec;
4252 r_reloc r_rel;
4253 xtensa_opcode opcode;
4254 int opnd;
4255 bfd_boolean is_null;
4256 bfd_boolean is_abs_literal;
4257 };
4258
4259
4260 static void
4261 init_source_reloc (source_reloc *reloc,
4262 asection *source_sec,
4263 const r_reloc *r_rel,
4264 xtensa_opcode opcode,
4265 int opnd,
4266 bfd_boolean is_abs_literal)
4267 {
4268 reloc->source_sec = source_sec;
4269 reloc->r_rel = *r_rel;
4270 reloc->opcode = opcode;
4271 reloc->opnd = opnd;
4272 reloc->is_null = FALSE;
4273 reloc->is_abs_literal = is_abs_literal;
4274 }
4275
4276
4277 /* Find the source_reloc for a particular source offset and relocation
4278 type. Note that the array is sorted by _target_ offset, so this is
4279 just a linear search. */
4280
4281 static source_reloc *
4282 find_source_reloc (source_reloc *src_relocs,
4283 int src_count,
4284 asection *sec,
4285 Elf_Internal_Rela *irel)
4286 {
4287 int i;
4288
4289 for (i = 0; i < src_count; i++)
4290 {
4291 if (src_relocs[i].source_sec == sec
4292 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4293 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4294 == ELF32_R_TYPE (irel->r_info)))
4295 return &src_relocs[i];
4296 }
4297
4298 return NULL;
4299 }
4300
4301
4302 static int
4303 source_reloc_compare (const void *ap, const void *bp)
4304 {
4305 const source_reloc *a = (const source_reloc *) ap;
4306 const source_reloc *b = (const source_reloc *) bp;
4307
4308 if (a->r_rel.target_offset != b->r_rel.target_offset)
4309 return (a->r_rel.target_offset - b->r_rel.target_offset);
4310
4311 /* We don't need to sort on these criteria for correctness,
4312 but enforcing a more strict ordering prevents unstable qsort
4313 from behaving differently with different implementations.
4314 Without the code below we get correct but different results
4315 on Solaris 2.7 and 2.8. We would like to always produce the
4316 same results no matter the host. */
4317
4318 if ((!a->is_null) - (!b->is_null))
4319 return ((!a->is_null) - (!b->is_null));
4320 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
4321 }
4322
4323 \f
4324 /* Literal values and value hash tables. */
4325
4326 /* Literals with the same value can be coalesced. The literal_value
4327 structure records the value of a literal: the "r_rel" field holds the
4328 information from the relocation on the literal (if there is one) and
4329 the "value" field holds the contents of the literal word itself.
4330
4331 The value_map structure records a literal value along with the
4332 location of a literal holding that value. The value_map hash table
4333 is indexed by the literal value, so that we can quickly check if a
4334 particular literal value has been seen before and is thus a candidate
4335 for coalescing. */
4336
4337 typedef struct literal_value_struct literal_value;
4338 typedef struct value_map_struct value_map;
4339 typedef struct value_map_hash_table_struct value_map_hash_table;
4340
4341 struct literal_value_struct
4342 {
4343 r_reloc r_rel;
4344 unsigned long value;
4345 bfd_boolean is_abs_literal;
4346 };
4347
4348 struct value_map_struct
4349 {
4350 literal_value val; /* The literal value. */
4351 r_reloc loc; /* Location of the literal. */
4352 value_map *next;
4353 };
4354
4355 struct value_map_hash_table_struct
4356 {
4357 unsigned bucket_count;
4358 value_map **buckets;
4359 unsigned count;
4360 bfd_boolean has_last_loc;
4361 r_reloc last_loc;
4362 };
4363
4364
4365 static void
4366 init_literal_value (literal_value *lit,
4367 const r_reloc *r_rel,
4368 unsigned long value,
4369 bfd_boolean is_abs_literal)
4370 {
4371 lit->r_rel = *r_rel;
4372 lit->value = value;
4373 lit->is_abs_literal = is_abs_literal;
4374 }
4375
4376
4377 static bfd_boolean
4378 literal_value_equal (const literal_value *src1,
4379 const literal_value *src2,
4380 bfd_boolean final_static_link)
4381 {
4382 struct elf_link_hash_entry *h1, *h2;
4383
4384 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4385 return FALSE;
4386
4387 if (r_reloc_is_const (&src1->r_rel))
4388 return (src1->value == src2->value);
4389
4390 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4391 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4392 return FALSE;
4393
4394 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4395 return FALSE;
4396
4397 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4398 return FALSE;
4399
4400 if (src1->value != src2->value)
4401 return FALSE;
4402
4403 /* Now check for the same section (if defined) or the same elf_hash
4404 (if undefined or weak). */
4405 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4406 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4407 if (r_reloc_is_defined (&src1->r_rel)
4408 && (final_static_link
4409 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4410 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4411 {
4412 if (r_reloc_get_section (&src1->r_rel)
4413 != r_reloc_get_section (&src2->r_rel))
4414 return FALSE;
4415 }
4416 else
4417 {
4418 /* Require that the hash entries (i.e., symbols) be identical. */
4419 if (h1 != h2 || h1 == 0)
4420 return FALSE;
4421 }
4422
4423 if (src1->is_abs_literal != src2->is_abs_literal)
4424 return FALSE;
4425
4426 return TRUE;
4427 }
4428
4429
4430 /* Must be power of 2. */
4431 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
4432
4433 static value_map_hash_table *
4434 value_map_hash_table_init (void)
4435 {
4436 value_map_hash_table *values;
4437
4438 values = (value_map_hash_table *)
4439 bfd_zmalloc (sizeof (value_map_hash_table));
4440 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4441 values->count = 0;
4442 values->buckets = (value_map **)
4443 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4444 if (values->buckets == NULL)
4445 {
4446 free (values);
4447 return NULL;
4448 }
4449 values->has_last_loc = FALSE;
4450
4451 return values;
4452 }
4453
4454
4455 static void
4456 value_map_hash_table_delete (value_map_hash_table *table)
4457 {
4458 free (table->buckets);
4459 free (table);
4460 }
4461
4462
4463 static unsigned
4464 hash_bfd_vma (bfd_vma val)
4465 {
4466 return (val >> 2) + (val >> 10);
4467 }
4468
4469
4470 static unsigned
4471 literal_value_hash (const literal_value *src)
4472 {
4473 unsigned hash_val;
4474
4475 hash_val = hash_bfd_vma (src->value);
4476 if (!r_reloc_is_const (&src->r_rel))
4477 {
4478 void *sec_or_hash;
4479
4480 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4481 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4482 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4483
4484 /* Now check for the same section and the same elf_hash. */
4485 if (r_reloc_is_defined (&src->r_rel))
4486 sec_or_hash = r_reloc_get_section (&src->r_rel);
4487 else
4488 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
4489 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
4490 }
4491 return hash_val;
4492 }
4493
4494
4495 /* Check if the specified literal_value has been seen before. */
4496
4497 static value_map *
4498 value_map_get_cached_value (value_map_hash_table *map,
4499 const literal_value *val,
4500 bfd_boolean final_static_link)
4501 {
4502 value_map *map_e;
4503 value_map *bucket;
4504 unsigned idx;
4505
4506 idx = literal_value_hash (val);
4507 idx = idx & (map->bucket_count - 1);
4508 bucket = map->buckets[idx];
4509 for (map_e = bucket; map_e; map_e = map_e->next)
4510 {
4511 if (literal_value_equal (&map_e->val, val, final_static_link))
4512 return map_e;
4513 }
4514 return NULL;
4515 }
4516
4517
4518 /* Record a new literal value. It is illegal to call this if VALUE
4519 already has an entry here. */
4520
4521 static value_map *
4522 add_value_map (value_map_hash_table *map,
4523 const literal_value *val,
4524 const r_reloc *loc,
4525 bfd_boolean final_static_link)
4526 {
4527 value_map **bucket_p;
4528 unsigned idx;
4529
4530 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4531 if (val_e == NULL)
4532 {
4533 bfd_set_error (bfd_error_no_memory);
4534 return NULL;
4535 }
4536
4537 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4538 val_e->val = *val;
4539 val_e->loc = *loc;
4540
4541 idx = literal_value_hash (val);
4542 idx = idx & (map->bucket_count - 1);
4543 bucket_p = &map->buckets[idx];
4544
4545 val_e->next = *bucket_p;
4546 *bucket_p = val_e;
4547 map->count++;
4548 /* FIXME: Consider resizing the hash table if we get too many entries. */
4549
4550 return val_e;
4551 }
4552
4553 \f
4554 /* Lists of text actions (ta_) for narrowing, widening, longcall
4555 conversion, space fill, code & literal removal, etc. */
4556
4557 /* The following text actions are generated:
4558
4559 "ta_remove_insn" remove an instruction or instructions
4560 "ta_remove_longcall" convert longcall to call
4561 "ta_convert_longcall" convert longcall to nop/call
4562 "ta_narrow_insn" narrow a wide instruction
4563 "ta_widen" widen a narrow instruction
4564 "ta_fill" add fill or remove fill
4565 removed < 0 is a fill; branches to the fill address will be
4566 changed to address + fill size (e.g., address - removed)
4567 removed >= 0 branches to the fill address will stay unchanged
4568 "ta_remove_literal" remove a literal; this action is
4569 indicated when a literal is removed
4570 or replaced.
4571 "ta_add_literal" insert a new literal; this action is
4572 indicated when a literal has been moved.
4573 It may use a virtual_offset because
4574 multiple literals can be placed at the
4575 same location.
4576
4577 For each of these text actions, we also record the number of bytes
4578 removed by performing the text action. In the case of a "ta_widen"
4579 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4580
4581 typedef struct text_action_struct text_action;
4582 typedef struct text_action_list_struct text_action_list;
4583 typedef enum text_action_enum_t text_action_t;
4584
4585 enum text_action_enum_t
4586 {
4587 ta_none,
4588 ta_remove_insn, /* removed = -size */
4589 ta_remove_longcall, /* removed = -size */
4590 ta_convert_longcall, /* removed = 0 */
4591 ta_narrow_insn, /* removed = -1 */
4592 ta_widen_insn, /* removed = +1 */
4593 ta_fill, /* removed = +size */
4594 ta_remove_literal,
4595 ta_add_literal
4596 };
4597
4598
4599 /* Structure for a text action record. */
4600 struct text_action_struct
4601 {
4602 text_action_t action;
4603 asection *sec; /* Optional */
4604 bfd_vma offset;
4605 bfd_vma virtual_offset; /* Zero except for adding literals. */
4606 int removed_bytes;
4607 literal_value value; /* Only valid when adding literals. */
4608
4609 text_action *next;
4610 };
4611
4612
4613 /* List of all of the actions taken on a text section. */
4614 struct text_action_list_struct
4615 {
4616 text_action *head;
4617 };
4618
4619
4620 static text_action *
4621 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
4622 {
4623 text_action **m_p;
4624
4625 /* It is not necessary to fill at the end of a section. */
4626 if (sec->size == offset)
4627 return NULL;
4628
4629 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4630 {
4631 text_action *t = *m_p;
4632 /* When the action is another fill at the same address,
4633 just increase the size. */
4634 if (t->offset == offset && t->action == ta_fill)
4635 return t;
4636 }
4637 return NULL;
4638 }
4639
4640
4641 static int
4642 compute_removed_action_diff (const text_action *ta,
4643 asection *sec,
4644 bfd_vma offset,
4645 int removed,
4646 int removable_space)
4647 {
4648 int new_removed;
4649 int current_removed = 0;
4650
4651 if (ta)
4652 current_removed = ta->removed_bytes;
4653
4654 BFD_ASSERT (ta == NULL || ta->offset == offset);
4655 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4656
4657 /* It is not necessary to fill at the end of a section. Clean this up. */
4658 if (sec->size == offset)
4659 new_removed = removable_space - 0;
4660 else
4661 {
4662 int space;
4663 int added = -removed - current_removed;
4664 /* Ignore multiples of the section alignment. */
4665 added = ((1 << sec->alignment_power) - 1) & added;
4666 new_removed = (-added);
4667
4668 /* Modify for removable. */
4669 space = removable_space - new_removed;
4670 new_removed = (removable_space
4671 - (((1 << sec->alignment_power) - 1) & space));
4672 }
4673 return (new_removed - current_removed);
4674 }
4675
4676
4677 static void
4678 adjust_fill_action (text_action *ta, int fill_diff)
4679 {
4680 ta->removed_bytes += fill_diff;
4681 }
4682
4683
4684 /* Add a modification action to the text. For the case of adding or
4685 removing space, modify any current fill and assume that
4686 "unreachable_space" bytes can be freely contracted. Note that a
4687 negative removed value is a fill. */
4688
4689 static void
4690 text_action_add (text_action_list *l,
4691 text_action_t action,
4692 asection *sec,
4693 bfd_vma offset,
4694 int removed)
4695 {
4696 text_action **m_p;
4697 text_action *ta;
4698
4699 /* It is not necessary to fill at the end of a section. */
4700 if (action == ta_fill && sec->size == offset)
4701 return;
4702
4703 /* It is not necessary to fill 0 bytes. */
4704 if (action == ta_fill && removed == 0)
4705 return;
4706
4707 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4708 {
4709 text_action *t = *m_p;
4710 /* When the action is another fill at the same address,
4711 just increase the size. */
4712 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4713 {
4714 t->removed_bytes += removed;
4715 return;
4716 }
4717 }
4718
4719 /* Create a new record and fill it up. */
4720 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4721 ta->action = action;
4722 ta->sec = sec;
4723 ta->offset = offset;
4724 ta->removed_bytes = removed;
4725 ta->next = (*m_p);
4726 *m_p = ta;
4727 }
4728
4729
4730 static void
4731 text_action_add_literal (text_action_list *l,
4732 text_action_t action,
4733 const r_reloc *loc,
4734 const literal_value *value,
4735 int removed)
4736 {
4737 text_action **m_p;
4738 text_action *ta;
4739 asection *sec = r_reloc_get_section (loc);
4740 bfd_vma offset = loc->target_offset;
4741 bfd_vma virtual_offset = loc->virtual_offset;
4742
4743 BFD_ASSERT (action == ta_add_literal);
4744
4745 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4746 {
4747 if ((*m_p)->offset > offset
4748 && ((*m_p)->offset != offset
4749 || (*m_p)->virtual_offset > virtual_offset))
4750 break;
4751 }
4752
4753 /* Create a new record and fill it up. */
4754 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4755 ta->action = action;
4756 ta->sec = sec;
4757 ta->offset = offset;
4758 ta->virtual_offset = virtual_offset;
4759 ta->value = *value;
4760 ta->removed_bytes = removed;
4761 ta->next = (*m_p);
4762 *m_p = ta;
4763 }
4764
4765
4766 static bfd_vma
4767 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
4768 {
4769 text_action *r;
4770 int removed = 0;
4771
4772 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4773 {
4774 if (r->offset < offset
4775 || (r->action == ta_fill && r->removed_bytes < 0))
4776 removed += r->removed_bytes;
4777 }
4778
4779 return (offset - removed);
4780 }
4781
4782
4783 static unsigned
4784 action_list_count (text_action_list *action_list)
4785 {
4786 text_action *r = action_list->head;
4787 unsigned count = 0;
4788 for (r = action_list->head; r != NULL; r = r->next)
4789 {
4790 count++;
4791 }
4792 return count;
4793 }
4794
4795
4796 static bfd_vma
4797 offset_with_removed_text_before_fill (text_action_list *action_list,
4798 bfd_vma offset)
4799 {
4800 text_action *r;
4801 int removed = 0;
4802
4803 for (r = action_list->head; r && r->offset < offset; r = r->next)
4804 removed += r->removed_bytes;
4805
4806 return (offset - removed);
4807 }
4808
4809
4810 /* The find_insn_action routine will only find non-fill actions. */
4811
4812 static text_action *
4813 find_insn_action (text_action_list *action_list, bfd_vma offset)
4814 {
4815 text_action *t;
4816 for (t = action_list->head; t; t = t->next)
4817 {
4818 if (t->offset == offset)
4819 {
4820 switch (t->action)
4821 {
4822 case ta_none:
4823 case ta_fill:
4824 break;
4825 case ta_remove_insn:
4826 case ta_remove_longcall:
4827 case ta_convert_longcall:
4828 case ta_narrow_insn:
4829 case ta_widen_insn:
4830 return t;
4831 case ta_remove_literal:
4832 case ta_add_literal:
4833 BFD_ASSERT (0);
4834 break;
4835 }
4836 }
4837 }
4838 return NULL;
4839 }
4840
4841
4842 #if DEBUG
4843
4844 static void
4845 print_action_list (FILE *fp, text_action_list *action_list)
4846 {
4847 text_action *r;
4848
4849 fprintf (fp, "Text Action\n");
4850 for (r = action_list->head; r != NULL; r = r->next)
4851 {
4852 const char *t = "unknown";
4853 switch (r->action)
4854 {
4855 case ta_remove_insn:
4856 t = "remove_insn"; break;
4857 case ta_remove_longcall:
4858 t = "remove_longcall"; break;
4859 case ta_convert_longcall:
4860 t = "remove_longcall"; break;
4861 case ta_narrow_insn:
4862 t = "narrow_insn"; break;
4863 case ta_widen_insn:
4864 t = "widen_insn"; break;
4865 case ta_fill:
4866 t = "fill"; break;
4867 case ta_none:
4868 t = "none"; break;
4869 case ta_remove_literal:
4870 t = "remove_literal"; break;
4871 case ta_add_literal:
4872 t = "add_literal"; break;
4873 }
4874
4875 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4876 r->sec->owner->filename,
4877 r->sec->name, r->offset, t, r->removed_bytes);
4878 }
4879 }
4880
4881 #endif /* DEBUG */
4882
4883 \f
4884 /* Lists of literals being coalesced or removed. */
4885
4886 /* In the usual case, the literal identified by "from" is being
4887 coalesced with another literal identified by "to". If the literal is
4888 unused and is being removed altogether, "to.abfd" will be NULL.
4889 The removed_literal entries are kept on a per-section list, sorted
4890 by the "from" offset field. */
4891
4892 typedef struct removed_literal_struct removed_literal;
4893 typedef struct removed_literal_list_struct removed_literal_list;
4894
4895 struct removed_literal_struct
4896 {
4897 r_reloc from;
4898 r_reloc to;
4899 removed_literal *next;
4900 };
4901
4902 struct removed_literal_list_struct
4903 {
4904 removed_literal *head;
4905 removed_literal *tail;
4906 };
4907
4908
4909 /* Record that the literal at "from" is being removed. If "to" is not
4910 NULL, the "from" literal is being coalesced with the "to" literal. */
4911
4912 static void
4913 add_removed_literal (removed_literal_list *removed_list,
4914 const r_reloc *from,
4915 const r_reloc *to)
4916 {
4917 removed_literal *r, *new_r, *next_r;
4918
4919 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4920
4921 new_r->from = *from;
4922 if (to)
4923 new_r->to = *to;
4924 else
4925 new_r->to.abfd = NULL;
4926 new_r->next = NULL;
4927
4928 r = removed_list->head;
4929 if (r == NULL)
4930 {
4931 removed_list->head = new_r;
4932 removed_list->tail = new_r;
4933 }
4934 /* Special check for common case of append. */
4935 else if (removed_list->tail->from.target_offset < from->target_offset)
4936 {
4937 removed_list->tail->next = new_r;
4938 removed_list->tail = new_r;
4939 }
4940 else
4941 {
4942 while (r->from.target_offset < from->target_offset && r->next)
4943 {
4944 r = r->next;
4945 }
4946 next_r = r->next;
4947 r->next = new_r;
4948 new_r->next = next_r;
4949 if (next_r == NULL)
4950 removed_list->tail = new_r;
4951 }
4952 }
4953
4954
4955 /* Check if the list of removed literals contains an entry for the
4956 given address. Return the entry if found. */
4957
4958 static removed_literal *
4959 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
4960 {
4961 removed_literal *r = removed_list->head;
4962 while (r && r->from.target_offset < addr)
4963 r = r->next;
4964 if (r && r->from.target_offset == addr)
4965 return r;
4966 return NULL;
4967 }
4968
4969
4970 #if DEBUG
4971
4972 static void
4973 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
4974 {
4975 removed_literal *r;
4976 r = removed_list->head;
4977 if (r)
4978 fprintf (fp, "Removed Literals\n");
4979 for (; r != NULL; r = r->next)
4980 {
4981 print_r_reloc (fp, &r->from);
4982 fprintf (fp, " => ");
4983 if (r->to.abfd == NULL)
4984 fprintf (fp, "REMOVED");
4985 else
4986 print_r_reloc (fp, &r->to);
4987 fprintf (fp, "\n");
4988 }
4989 }
4990
4991 #endif /* DEBUG */
4992
4993 \f
4994 /* Per-section data for relaxation. */
4995
4996 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
4997
4998 struct xtensa_relax_info_struct
4999 {
5000 bfd_boolean is_relaxable_literal_section;
5001 bfd_boolean is_relaxable_asm_section;
5002 int visited; /* Number of times visited. */
5003
5004 source_reloc *src_relocs; /* Array[src_count]. */
5005 int src_count;
5006 int src_next; /* Next src_relocs entry to assign. */
5007
5008 removed_literal_list removed_list;
5009 text_action_list action_list;
5010
5011 reloc_bfd_fix *fix_list;
5012 reloc_bfd_fix *fix_array;
5013 unsigned fix_array_count;
5014
5015 /* Support for expanding the reloc array that is stored
5016 in the section structure. If the relocations have been
5017 reallocated, the newly allocated relocations will be referenced
5018 here along with the actual size allocated. The relocation
5019 count will always be found in the section structure. */
5020 Elf_Internal_Rela *allocated_relocs;
5021 unsigned relocs_count;
5022 unsigned allocated_relocs_count;
5023 };
5024
5025 struct elf_xtensa_section_data
5026 {
5027 struct bfd_elf_section_data elf;
5028 xtensa_relax_info relax_info;
5029 };
5030
5031
5032 static bfd_boolean
5033 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5034 {
5035 if (!sec->used_by_bfd)
5036 {
5037 struct elf_xtensa_section_data *sdata;
5038 bfd_size_type amt = sizeof (*sdata);
5039
5040 sdata = bfd_zalloc (abfd, amt);
5041 if (sdata == NULL)
5042 return FALSE;
5043 sec->used_by_bfd = sdata;
5044 }
5045
5046 return _bfd_elf_new_section_hook (abfd, sec);
5047 }
5048
5049
5050 static xtensa_relax_info *
5051 get_xtensa_relax_info (asection *sec)
5052 {
5053 struct elf_xtensa_section_data *section_data;
5054
5055 /* No info available if no section or if it is an output section. */
5056 if (!sec || sec == sec->output_section)
5057 return NULL;
5058
5059 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5060 return &section_data->relax_info;
5061 }
5062
5063
5064 static void
5065 init_xtensa_relax_info (asection *sec)
5066 {
5067 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5068
5069 relax_info->is_relaxable_literal_section = FALSE;
5070 relax_info->is_relaxable_asm_section = FALSE;
5071 relax_info->visited = 0;
5072
5073 relax_info->src_relocs = NULL;
5074 relax_info->src_count = 0;
5075 relax_info->src_next = 0;
5076
5077 relax_info->removed_list.head = NULL;
5078 relax_info->removed_list.tail = NULL;
5079
5080 relax_info->action_list.head = NULL;
5081
5082 relax_info->fix_list = NULL;
5083 relax_info->fix_array = NULL;
5084 relax_info->fix_array_count = 0;
5085
5086 relax_info->allocated_relocs = NULL;
5087 relax_info->relocs_count = 0;
5088 relax_info->allocated_relocs_count = 0;
5089 }
5090
5091 \f
5092 /* Coalescing literals may require a relocation to refer to a section in
5093 a different input file, but the standard relocation information
5094 cannot express that. Instead, the reloc_bfd_fix structures are used
5095 to "fix" the relocations that refer to sections in other input files.
5096 These structures are kept on per-section lists. The "src_type" field
5097 records the relocation type in case there are multiple relocations on
5098 the same location. FIXME: This is ugly; an alternative might be to
5099 add new symbols with the "owner" field to some other input file. */
5100
5101 struct reloc_bfd_fix_struct
5102 {
5103 asection *src_sec;
5104 bfd_vma src_offset;
5105 unsigned src_type; /* Relocation type. */
5106
5107 bfd *target_abfd;
5108 asection *target_sec;
5109 bfd_vma target_offset;
5110 bfd_boolean translated;
5111
5112 reloc_bfd_fix *next;
5113 };
5114
5115
5116 static reloc_bfd_fix *
5117 reloc_bfd_fix_init (asection *src_sec,
5118 bfd_vma src_offset,
5119 unsigned src_type,
5120 bfd *target_abfd,
5121 asection *target_sec,
5122 bfd_vma target_offset,
5123 bfd_boolean translated)
5124 {
5125 reloc_bfd_fix *fix;
5126
5127 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5128 fix->src_sec = src_sec;
5129 fix->src_offset = src_offset;
5130 fix->src_type = src_type;
5131 fix->target_abfd = target_abfd;
5132 fix->target_sec = target_sec;
5133 fix->target_offset = target_offset;
5134 fix->translated = translated;
5135
5136 return fix;
5137 }
5138
5139
5140 static void
5141 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5142 {
5143 xtensa_relax_info *relax_info;
5144
5145 relax_info = get_xtensa_relax_info (src_sec);
5146 fix->next = relax_info->fix_list;
5147 relax_info->fix_list = fix;
5148 }
5149
5150
5151 static int
5152 fix_compare (const void *ap, const void *bp)
5153 {
5154 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5155 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5156
5157 if (a->src_offset != b->src_offset)
5158 return (a->src_offset - b->src_offset);
5159 return (a->src_type - b->src_type);
5160 }
5161
5162
5163 static void
5164 cache_fix_array (asection *sec)
5165 {
5166 unsigned i, count = 0;
5167 reloc_bfd_fix *r;
5168 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5169
5170 if (relax_info == NULL)
5171 return;
5172 if (relax_info->fix_list == NULL)
5173 return;
5174
5175 for (r = relax_info->fix_list; r != NULL; r = r->next)
5176 count++;
5177
5178 relax_info->fix_array =
5179 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5180 relax_info->fix_array_count = count;
5181
5182 r = relax_info->fix_list;
5183 for (i = 0; i < count; i++, r = r->next)
5184 {
5185 relax_info->fix_array[count - 1 - i] = *r;
5186 relax_info->fix_array[count - 1 - i].next = NULL;
5187 }
5188
5189 qsort (relax_info->fix_array, relax_info->fix_array_count,
5190 sizeof (reloc_bfd_fix), fix_compare);
5191 }
5192
5193
5194 static reloc_bfd_fix *
5195 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
5196 {
5197 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5198 reloc_bfd_fix *rv;
5199 reloc_bfd_fix key;
5200
5201 if (relax_info == NULL)
5202 return NULL;
5203 if (relax_info->fix_list == NULL)
5204 return NULL;
5205
5206 if (relax_info->fix_array == NULL)
5207 cache_fix_array (sec);
5208
5209 key.src_offset = offset;
5210 key.src_type = type;
5211 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5212 sizeof (reloc_bfd_fix), fix_compare);
5213 return rv;
5214 }
5215
5216 \f
5217 /* Section caching. */
5218
5219 typedef struct section_cache_struct section_cache_t;
5220
5221 struct section_cache_struct
5222 {
5223 asection *sec;
5224
5225 bfd_byte *contents; /* Cache of the section contents. */
5226 bfd_size_type content_length;
5227
5228 property_table_entry *ptbl; /* Cache of the section property table. */
5229 unsigned pte_count;
5230
5231 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5232 unsigned reloc_count;
5233 };
5234
5235
5236 static void
5237 init_section_cache (section_cache_t *sec_cache)
5238 {
5239 memset (sec_cache, 0, sizeof (*sec_cache));
5240 }
5241
5242
5243 static void
5244 clear_section_cache (section_cache_t *sec_cache)
5245 {
5246 if (sec_cache->sec)
5247 {
5248 release_contents (sec_cache->sec, sec_cache->contents);
5249 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5250 if (sec_cache->ptbl)
5251 free (sec_cache->ptbl);
5252 memset (sec_cache, 0, sizeof (sec_cache));
5253 }
5254 }
5255
5256
5257 static bfd_boolean
5258 section_cache_section (section_cache_t *sec_cache,
5259 asection *sec,
5260 struct bfd_link_info *link_info)
5261 {
5262 bfd *abfd;
5263 property_table_entry *prop_table = NULL;
5264 int ptblsize = 0;
5265 bfd_byte *contents = NULL;
5266 Elf_Internal_Rela *internal_relocs = NULL;
5267 bfd_size_type sec_size;
5268
5269 if (sec == NULL)
5270 return FALSE;
5271 if (sec == sec_cache->sec)
5272 return TRUE;
5273
5274 abfd = sec->owner;
5275 sec_size = bfd_get_section_limit (abfd, sec);
5276
5277 /* Get the contents. */
5278 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5279 if (contents == NULL && sec_size != 0)
5280 goto err;
5281
5282 /* Get the relocations. */
5283 internal_relocs = retrieve_internal_relocs (abfd, sec,
5284 link_info->keep_memory);
5285
5286 /* Get the entry table. */
5287 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5288 XTENSA_PROP_SEC_NAME, FALSE);
5289 if (ptblsize < 0)
5290 goto err;
5291
5292 /* Fill in the new section cache. */
5293 clear_section_cache (sec_cache);
5294 memset (sec_cache, 0, sizeof (sec_cache));
5295
5296 sec_cache->sec = sec;
5297 sec_cache->contents = contents;
5298 sec_cache->content_length = sec_size;
5299 sec_cache->relocs = internal_relocs;
5300 sec_cache->reloc_count = sec->reloc_count;
5301 sec_cache->pte_count = ptblsize;
5302 sec_cache->ptbl = prop_table;
5303
5304 return TRUE;
5305
5306 err:
5307 release_contents (sec, contents);
5308 release_internal_relocs (sec, internal_relocs);
5309 if (prop_table)
5310 free (prop_table);
5311 return FALSE;
5312 }
5313
5314 \f
5315 /* Extended basic blocks. */
5316
5317 /* An ebb_struct represents an Extended Basic Block. Within this
5318 range, we guarantee that all instructions are decodable, the
5319 property table entries are contiguous, and no property table
5320 specifies a segment that cannot have instructions moved. This
5321 structure contains caches of the contents, property table and
5322 relocations for the specified section for easy use. The range is
5323 specified by ranges of indices for the byte offset, property table
5324 offsets and relocation offsets. These must be consistent. */
5325
5326 typedef struct ebb_struct ebb_t;
5327
5328 struct ebb_struct
5329 {
5330 asection *sec;
5331
5332 bfd_byte *contents; /* Cache of the section contents. */
5333 bfd_size_type content_length;
5334
5335 property_table_entry *ptbl; /* Cache of the section property table. */
5336 unsigned pte_count;
5337
5338 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5339 unsigned reloc_count;
5340
5341 bfd_vma start_offset; /* Offset in section. */
5342 unsigned start_ptbl_idx; /* Offset in the property table. */
5343 unsigned start_reloc_idx; /* Offset in the relocations. */
5344
5345 bfd_vma end_offset;
5346 unsigned end_ptbl_idx;
5347 unsigned end_reloc_idx;
5348
5349 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5350
5351 /* The unreachable property table at the end of this set of blocks;
5352 NULL if the end is not an unreachable block. */
5353 property_table_entry *ends_unreachable;
5354 };
5355
5356
5357 enum ebb_target_enum
5358 {
5359 EBB_NO_ALIGN = 0,
5360 EBB_DESIRE_TGT_ALIGN,
5361 EBB_REQUIRE_TGT_ALIGN,
5362 EBB_REQUIRE_LOOP_ALIGN,
5363 EBB_REQUIRE_ALIGN
5364 };
5365
5366
5367 /* proposed_action_struct is similar to the text_action_struct except
5368 that is represents a potential transformation, not one that will
5369 occur. We build a list of these for an extended basic block
5370 and use them to compute the actual actions desired. We must be
5371 careful that the entire set of actual actions we perform do not
5372 break any relocations that would fit if the actions were not
5373 performed. */
5374
5375 typedef struct proposed_action_struct proposed_action;
5376
5377 struct proposed_action_struct
5378 {
5379 enum ebb_target_enum align_type; /* for the target alignment */
5380 bfd_vma alignment_pow;
5381 text_action_t action;
5382 bfd_vma offset;
5383 int removed_bytes;
5384 bfd_boolean do_action; /* If false, then we will not perform the action. */
5385 };
5386
5387
5388 /* The ebb_constraint_struct keeps a set of proposed actions for an
5389 extended basic block. */
5390
5391 typedef struct ebb_constraint_struct ebb_constraint;
5392
5393 struct ebb_constraint_struct
5394 {
5395 ebb_t ebb;
5396 bfd_boolean start_movable;
5397
5398 /* Bytes of extra space at the beginning if movable. */
5399 int start_extra_space;
5400
5401 enum ebb_target_enum start_align;
5402
5403 bfd_boolean end_movable;
5404
5405 /* Bytes of extra space at the end if movable. */
5406 int end_extra_space;
5407
5408 unsigned action_count;
5409 unsigned action_allocated;
5410
5411 /* Array of proposed actions. */
5412 proposed_action *actions;
5413
5414 /* Action alignments -- one for each proposed action. */
5415 enum ebb_target_enum *action_aligns;
5416 };
5417
5418
5419 static void
5420 init_ebb_constraint (ebb_constraint *c)
5421 {
5422 memset (c, 0, sizeof (ebb_constraint));
5423 }
5424
5425
5426 static void
5427 free_ebb_constraint (ebb_constraint *c)
5428 {
5429 if (c->actions)
5430 free (c->actions);
5431 }
5432
5433
5434 static void
5435 init_ebb (ebb_t *ebb,
5436 asection *sec,
5437 bfd_byte *contents,
5438 bfd_size_type content_length,
5439 property_table_entry *prop_table,
5440 unsigned ptblsize,
5441 Elf_Internal_Rela *internal_relocs,
5442 unsigned reloc_count)
5443 {
5444 memset (ebb, 0, sizeof (ebb_t));
5445 ebb->sec = sec;
5446 ebb->contents = contents;
5447 ebb->content_length = content_length;
5448 ebb->ptbl = prop_table;
5449 ebb->pte_count = ptblsize;
5450 ebb->relocs = internal_relocs;
5451 ebb->reloc_count = reloc_count;
5452 ebb->start_offset = 0;
5453 ebb->end_offset = ebb->content_length - 1;
5454 ebb->start_ptbl_idx = 0;
5455 ebb->end_ptbl_idx = ptblsize;
5456 ebb->start_reloc_idx = 0;
5457 ebb->end_reloc_idx = reloc_count;
5458 }
5459
5460
5461 /* Extend the ebb to all decodable contiguous sections. The algorithm
5462 for building a basic block around an instruction is to push it
5463 forward until we hit the end of a section, an unreachable block or
5464 a block that cannot be transformed. Then we push it backwards
5465 searching for similar conditions. */
5466
5467 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5468 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5469 static bfd_size_type insn_block_decodable_len
5470 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5471
5472 static bfd_boolean
5473 extend_ebb_bounds (ebb_t *ebb)
5474 {
5475 if (!extend_ebb_bounds_forward (ebb))
5476 return FALSE;
5477 if (!extend_ebb_bounds_backward (ebb))
5478 return FALSE;
5479 return TRUE;
5480 }
5481
5482
5483 static bfd_boolean
5484 extend_ebb_bounds_forward (ebb_t *ebb)
5485 {
5486 property_table_entry *the_entry, *new_entry;
5487
5488 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5489
5490 /* Stop when (1) we cannot decode an instruction, (2) we are at
5491 the end of the property tables, (3) we hit a non-contiguous property
5492 table entry, (4) we hit a NO_TRANSFORM region. */
5493
5494 while (1)
5495 {
5496 bfd_vma entry_end;
5497 bfd_size_type insn_block_len;
5498
5499 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5500 insn_block_len =
5501 insn_block_decodable_len (ebb->contents, ebb->content_length,
5502 ebb->end_offset,
5503 entry_end - ebb->end_offset);
5504 if (insn_block_len != (entry_end - ebb->end_offset))
5505 {
5506 (*_bfd_error_handler)
5507 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5508 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5509 return FALSE;
5510 }
5511 ebb->end_offset += insn_block_len;
5512
5513 if (ebb->end_offset == ebb->sec->size)
5514 ebb->ends_section = TRUE;
5515
5516 /* Update the reloc counter. */
5517 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5518 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5519 < ebb->end_offset))
5520 {
5521 ebb->end_reloc_idx++;
5522 }
5523
5524 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5525 return TRUE;
5526
5527 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5528 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5529 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5530 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5531 break;
5532
5533 if (the_entry->address + the_entry->size != new_entry->address)
5534 break;
5535
5536 the_entry = new_entry;
5537 ebb->end_ptbl_idx++;
5538 }
5539
5540 /* Quick check for an unreachable or end of file just at the end. */
5541 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5542 {
5543 if (ebb->end_offset == ebb->content_length)
5544 ebb->ends_section = TRUE;
5545 }
5546 else
5547 {
5548 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5549 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5550 && the_entry->address + the_entry->size == new_entry->address)
5551 ebb->ends_unreachable = new_entry;
5552 }
5553
5554 /* Any other ending requires exact alignment. */
5555 return TRUE;
5556 }
5557
5558
5559 static bfd_boolean
5560 extend_ebb_bounds_backward (ebb_t *ebb)
5561 {
5562 property_table_entry *the_entry, *new_entry;
5563
5564 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5565
5566 /* Stop when (1) we cannot decode the instructions in the current entry.
5567 (2) we are at the beginning of the property tables, (3) we hit a
5568 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5569
5570 while (1)
5571 {
5572 bfd_vma block_begin;
5573 bfd_size_type insn_block_len;
5574
5575 block_begin = the_entry->address - ebb->sec->vma;
5576 insn_block_len =
5577 insn_block_decodable_len (ebb->contents, ebb->content_length,
5578 block_begin,
5579 ebb->start_offset - block_begin);
5580 if (insn_block_len != ebb->start_offset - block_begin)
5581 {
5582 (*_bfd_error_handler)
5583 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5584 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5585 return FALSE;
5586 }
5587 ebb->start_offset -= insn_block_len;
5588
5589 /* Update the reloc counter. */
5590 while (ebb->start_reloc_idx > 0
5591 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5592 >= ebb->start_offset))
5593 {
5594 ebb->start_reloc_idx--;
5595 }
5596
5597 if (ebb->start_ptbl_idx == 0)
5598 return TRUE;
5599
5600 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5601 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5602 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5603 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5604 return TRUE;
5605 if (new_entry->address + new_entry->size != the_entry->address)
5606 return TRUE;
5607
5608 the_entry = new_entry;
5609 ebb->start_ptbl_idx--;
5610 }
5611 return TRUE;
5612 }
5613
5614
5615 static bfd_size_type
5616 insn_block_decodable_len (bfd_byte *contents,
5617 bfd_size_type content_len,
5618 bfd_vma block_offset,
5619 bfd_size_type block_len)
5620 {
5621 bfd_vma offset = block_offset;
5622
5623 while (offset < block_offset + block_len)
5624 {
5625 bfd_size_type insn_len = 0;
5626
5627 insn_len = insn_decode_len (contents, content_len, offset);
5628 if (insn_len == 0)
5629 return (offset - block_offset);
5630 offset += insn_len;
5631 }
5632 return (offset - block_offset);
5633 }
5634
5635
5636 static void
5637 ebb_propose_action (ebb_constraint *c,
5638 enum ebb_target_enum align_type,
5639 bfd_vma alignment_pow,
5640 text_action_t action,
5641 bfd_vma offset,
5642 int removed_bytes,
5643 bfd_boolean do_action)
5644 {
5645 proposed_action *act;
5646
5647 if (c->action_allocated <= c->action_count)
5648 {
5649 unsigned new_allocated, i;
5650 proposed_action *new_actions;
5651
5652 new_allocated = (c->action_count + 2) * 2;
5653 new_actions = (proposed_action *)
5654 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5655
5656 for (i = 0; i < c->action_count; i++)
5657 new_actions[i] = c->actions[i];
5658 if (c->actions)
5659 free (c->actions);
5660 c->actions = new_actions;
5661 c->action_allocated = new_allocated;
5662 }
5663
5664 act = &c->actions[c->action_count];
5665 act->align_type = align_type;
5666 act->alignment_pow = alignment_pow;
5667 act->action = action;
5668 act->offset = offset;
5669 act->removed_bytes = removed_bytes;
5670 act->do_action = do_action;
5671
5672 c->action_count++;
5673 }
5674
5675 \f
5676 /* Access to internal relocations, section contents and symbols. */
5677
5678 /* During relaxation, we need to modify relocations, section contents,
5679 and symbol definitions, and we need to keep the original values from
5680 being reloaded from the input files, i.e., we need to "pin" the
5681 modified values in memory. We also want to continue to observe the
5682 setting of the "keep-memory" flag. The following functions wrap the
5683 standard BFD functions to take care of this for us. */
5684
5685 static Elf_Internal_Rela *
5686 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5687 {
5688 Elf_Internal_Rela *internal_relocs;
5689
5690 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5691 return NULL;
5692
5693 internal_relocs = elf_section_data (sec)->relocs;
5694 if (internal_relocs == NULL)
5695 internal_relocs = (_bfd_elf_link_read_relocs
5696 (abfd, sec, NULL, NULL, keep_memory));
5697 return internal_relocs;
5698 }
5699
5700
5701 static void
5702 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5703 {
5704 elf_section_data (sec)->relocs = internal_relocs;
5705 }
5706
5707
5708 static void
5709 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5710 {
5711 if (internal_relocs
5712 && elf_section_data (sec)->relocs != internal_relocs)
5713 free (internal_relocs);
5714 }
5715
5716
5717 static bfd_byte *
5718 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5719 {
5720 bfd_byte *contents;
5721 bfd_size_type sec_size;
5722
5723 sec_size = bfd_get_section_limit (abfd, sec);
5724 contents = elf_section_data (sec)->this_hdr.contents;
5725
5726 if (contents == NULL && sec_size != 0)
5727 {
5728 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5729 {
5730 if (contents)
5731 free (contents);
5732 return NULL;
5733 }
5734 if (keep_memory)
5735 elf_section_data (sec)->this_hdr.contents = contents;
5736 }
5737 return contents;
5738 }
5739
5740
5741 static void
5742 pin_contents (asection *sec, bfd_byte *contents)
5743 {
5744 elf_section_data (sec)->this_hdr.contents = contents;
5745 }
5746
5747
5748 static void
5749 release_contents (asection *sec, bfd_byte *contents)
5750 {
5751 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5752 free (contents);
5753 }
5754
5755
5756 static Elf_Internal_Sym *
5757 retrieve_local_syms (bfd *input_bfd)
5758 {
5759 Elf_Internal_Shdr *symtab_hdr;
5760 Elf_Internal_Sym *isymbuf;
5761 size_t locsymcount;
5762
5763 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5764 locsymcount = symtab_hdr->sh_info;
5765
5766 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5767 if (isymbuf == NULL && locsymcount != 0)
5768 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5769 NULL, NULL, NULL);
5770
5771 /* Save the symbols for this input file so they won't be read again. */
5772 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5773 symtab_hdr->contents = (unsigned char *) isymbuf;
5774
5775 return isymbuf;
5776 }
5777
5778 \f
5779 /* Code for link-time relaxation. */
5780
5781 /* Initialization for relaxation: */
5782 static bfd_boolean analyze_relocations (struct bfd_link_info *);
5783 static bfd_boolean find_relaxable_sections
5784 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
5785 static bfd_boolean collect_source_relocs
5786 (bfd *, asection *, struct bfd_link_info *);
5787 static bfd_boolean is_resolvable_asm_expansion
5788 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5789 bfd_boolean *);
5790 static Elf_Internal_Rela *find_associated_l32r_irel
5791 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
5792 static bfd_boolean compute_text_actions
5793 (bfd *, asection *, struct bfd_link_info *);
5794 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5795 static bfd_boolean compute_ebb_actions (ebb_constraint *);
5796 static bfd_boolean check_section_ebb_pcrels_fit
5797 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5798 const xtensa_opcode *);
5799 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
5800 static void text_action_add_proposed
5801 (text_action_list *, const ebb_constraint *, asection *);
5802 static int compute_fill_extra_space (property_table_entry *);
5803
5804 /* First pass: */
5805 static bfd_boolean compute_removed_literals
5806 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
5807 static Elf_Internal_Rela *get_irel_at_offset
5808 (asection *, Elf_Internal_Rela *, bfd_vma);
5809 static bfd_boolean is_removable_literal
5810 (const source_reloc *, int, const source_reloc *, int);
5811 static bfd_boolean remove_dead_literal
5812 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5813 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5814 static bfd_boolean identify_literal_placement
5815 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5816 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5817 source_reloc *, property_table_entry *, int, section_cache_t *,
5818 bfd_boolean);
5819 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
5820 static bfd_boolean coalesce_shared_literal
5821 (asection *, source_reloc *, property_table_entry *, int, value_map *);
5822 static bfd_boolean move_shared_literal
5823 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5824 int, const r_reloc *, const literal_value *, section_cache_t *);
5825
5826 /* Second pass: */
5827 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5828 static bfd_boolean translate_section_fixes (asection *);
5829 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5830 static void translate_reloc (const r_reloc *, r_reloc *);
5831 static void shrink_dynamic_reloc_sections
5832 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
5833 static bfd_boolean move_literal
5834 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5835 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
5836 static bfd_boolean relax_property_section
5837 (bfd *, asection *, struct bfd_link_info *);
5838
5839 /* Third pass: */
5840 static bfd_boolean relax_section_symbols (bfd *, asection *);
5841
5842
5843 static bfd_boolean
5844 elf_xtensa_relax_section (bfd *abfd,
5845 asection *sec,
5846 struct bfd_link_info *link_info,
5847 bfd_boolean *again)
5848 {
5849 static value_map_hash_table *values = NULL;
5850 static bfd_boolean relocations_analyzed = FALSE;
5851 xtensa_relax_info *relax_info;
5852
5853 if (!relocations_analyzed)
5854 {
5855 /* Do some overall initialization for relaxation. */
5856 values = value_map_hash_table_init ();
5857 if (values == NULL)
5858 return FALSE;
5859 relaxing_section = TRUE;
5860 if (!analyze_relocations (link_info))
5861 return FALSE;
5862 relocations_analyzed = TRUE;
5863 }
5864 *again = FALSE;
5865
5866 /* Don't mess with linker-created sections. */
5867 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5868 return TRUE;
5869
5870 relax_info = get_xtensa_relax_info (sec);
5871 BFD_ASSERT (relax_info != NULL);
5872
5873 switch (relax_info->visited)
5874 {
5875 case 0:
5876 /* Note: It would be nice to fold this pass into
5877 analyze_relocations, but it is important for this step that the
5878 sections be examined in link order. */
5879 if (!compute_removed_literals (abfd, sec, link_info, values))
5880 return FALSE;
5881 *again = TRUE;
5882 break;
5883
5884 case 1:
5885 if (values)
5886 value_map_hash_table_delete (values);
5887 values = NULL;
5888 if (!relax_section (abfd, sec, link_info))
5889 return FALSE;
5890 *again = TRUE;
5891 break;
5892
5893 case 2:
5894 if (!relax_section_symbols (abfd, sec))
5895 return FALSE;
5896 break;
5897 }
5898
5899 relax_info->visited++;
5900 return TRUE;
5901 }
5902
5903 \f
5904 /* Initialization for relaxation. */
5905
5906 /* This function is called once at the start of relaxation. It scans
5907 all the input sections and marks the ones that are relaxable (i.e.,
5908 literal sections with L32R relocations against them), and then
5909 collects source_reloc information for all the relocations against
5910 those relaxable sections. During this process, it also detects
5911 longcalls, i.e., calls relaxed by the assembler into indirect
5912 calls, that can be optimized back into direct calls. Within each
5913 extended basic block (ebb) containing an optimized longcall, it
5914 computes a set of "text actions" that can be performed to remove
5915 the L32R associated with the longcall while optionally preserving
5916 branch target alignments. */
5917
5918 static bfd_boolean
5919 analyze_relocations (struct bfd_link_info *link_info)
5920 {
5921 bfd *abfd;
5922 asection *sec;
5923 bfd_boolean is_relaxable = FALSE;
5924
5925 /* Initialize the per-section relaxation info. */
5926 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5927 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5928 {
5929 init_xtensa_relax_info (sec);
5930 }
5931
5932 /* Mark relaxable sections (and count relocations against each one). */
5933 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5934 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5935 {
5936 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5937 return FALSE;
5938 }
5939
5940 /* Bail out if there are no relaxable sections. */
5941 if (!is_relaxable)
5942 return TRUE;
5943
5944 /* Allocate space for source_relocs. */
5945 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5946 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5947 {
5948 xtensa_relax_info *relax_info;
5949
5950 relax_info = get_xtensa_relax_info (sec);
5951 if (relax_info->is_relaxable_literal_section
5952 || relax_info->is_relaxable_asm_section)
5953 {
5954 relax_info->src_relocs = (source_reloc *)
5955 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5956 }
5957 else
5958 relax_info->src_count = 0;
5959 }
5960
5961 /* Collect info on relocations against each relaxable section. */
5962 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5963 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5964 {
5965 if (!collect_source_relocs (abfd, sec, link_info))
5966 return FALSE;
5967 }
5968
5969 /* Compute the text actions. */
5970 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5971 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5972 {
5973 if (!compute_text_actions (abfd, sec, link_info))
5974 return FALSE;
5975 }
5976
5977 return TRUE;
5978 }
5979
5980
5981 /* Find all the sections that might be relaxed. The motivation for
5982 this pass is that collect_source_relocs() needs to record _all_ the
5983 relocations that target each relaxable section. That is expensive
5984 and unnecessary unless the target section is actually going to be
5985 relaxed. This pass identifies all such sections by checking if
5986 they have L32Rs pointing to them. In the process, the total number
5987 of relocations targeting each section is also counted so that we
5988 know how much space to allocate for source_relocs against each
5989 relaxable literal section. */
5990
5991 static bfd_boolean
5992 find_relaxable_sections (bfd *abfd,
5993 asection *sec,
5994 struct bfd_link_info *link_info,
5995 bfd_boolean *is_relaxable_p)
5996 {
5997 Elf_Internal_Rela *internal_relocs;
5998 bfd_byte *contents;
5999 bfd_boolean ok = TRUE;
6000 unsigned i;
6001 xtensa_relax_info *source_relax_info;
6002 bfd_boolean is_l32r_reloc;
6003
6004 internal_relocs = retrieve_internal_relocs (abfd, sec,
6005 link_info->keep_memory);
6006 if (internal_relocs == NULL)
6007 return ok;
6008
6009 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6010 if (contents == NULL && sec->size != 0)
6011 {
6012 ok = FALSE;
6013 goto error_return;
6014 }
6015
6016 source_relax_info = get_xtensa_relax_info (sec);
6017 for (i = 0; i < sec->reloc_count; i++)
6018 {
6019 Elf_Internal_Rela *irel = &internal_relocs[i];
6020 r_reloc r_rel;
6021 asection *target_sec;
6022 xtensa_relax_info *target_relax_info;
6023
6024 /* If this section has not already been marked as "relaxable", and
6025 if it contains any ASM_EXPAND relocations (marking expanded
6026 longcalls) that can be optimized into direct calls, then mark
6027 the section as "relaxable". */
6028 if (source_relax_info
6029 && !source_relax_info->is_relaxable_asm_section
6030 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6031 {
6032 bfd_boolean is_reachable = FALSE;
6033 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6034 link_info, &is_reachable)
6035 && is_reachable)
6036 {
6037 source_relax_info->is_relaxable_asm_section = TRUE;
6038 *is_relaxable_p = TRUE;
6039 }
6040 }
6041
6042 r_reloc_init (&r_rel, abfd, irel, contents,
6043 bfd_get_section_limit (abfd, sec));
6044
6045 target_sec = r_reloc_get_section (&r_rel);
6046 target_relax_info = get_xtensa_relax_info (target_sec);
6047 if (!target_relax_info)
6048 continue;
6049
6050 /* Count PC-relative operand relocations against the target section.
6051 Note: The conditions tested here must match the conditions under
6052 which init_source_reloc is called in collect_source_relocs(). */
6053 is_l32r_reloc = FALSE;
6054 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6055 {
6056 xtensa_opcode opcode =
6057 get_relocation_opcode (abfd, sec, contents, irel);
6058 if (opcode != XTENSA_UNDEFINED)
6059 {
6060 is_l32r_reloc = (opcode == get_l32r_opcode ());
6061 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6062 || is_l32r_reloc)
6063 target_relax_info->src_count++;
6064 }
6065 }
6066
6067 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6068 {
6069 /* Mark the target section as relaxable. */
6070 target_relax_info->is_relaxable_literal_section = TRUE;
6071 *is_relaxable_p = TRUE;
6072 }
6073 }
6074
6075 error_return:
6076 release_contents (sec, contents);
6077 release_internal_relocs (sec, internal_relocs);
6078 return ok;
6079 }
6080
6081
6082 /* Record _all_ the relocations that point to relaxable sections, and
6083 get rid of ASM_EXPAND relocs by either converting them to
6084 ASM_SIMPLIFY or by removing them. */
6085
6086 static bfd_boolean
6087 collect_source_relocs (bfd *abfd,
6088 asection *sec,
6089 struct bfd_link_info *link_info)
6090 {
6091 Elf_Internal_Rela *internal_relocs;
6092 bfd_byte *contents;
6093 bfd_boolean ok = TRUE;
6094 unsigned i;
6095 bfd_size_type sec_size;
6096
6097 internal_relocs = retrieve_internal_relocs (abfd, sec,
6098 link_info->keep_memory);
6099 if (internal_relocs == NULL)
6100 return ok;
6101
6102 sec_size = bfd_get_section_limit (abfd, sec);
6103 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6104 if (contents == NULL && sec_size != 0)
6105 {
6106 ok = FALSE;
6107 goto error_return;
6108 }
6109
6110 /* Record relocations against relaxable literal sections. */
6111 for (i = 0; i < sec->reloc_count; i++)
6112 {
6113 Elf_Internal_Rela *irel = &internal_relocs[i];
6114 r_reloc r_rel;
6115 asection *target_sec;
6116 xtensa_relax_info *target_relax_info;
6117
6118 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6119
6120 target_sec = r_reloc_get_section (&r_rel);
6121 target_relax_info = get_xtensa_relax_info (target_sec);
6122
6123 if (target_relax_info
6124 && (target_relax_info->is_relaxable_literal_section
6125 || target_relax_info->is_relaxable_asm_section))
6126 {
6127 xtensa_opcode opcode = XTENSA_UNDEFINED;
6128 int opnd = -1;
6129 bfd_boolean is_abs_literal = FALSE;
6130
6131 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6132 {
6133 /* None of the current alternate relocs are PC-relative,
6134 and only PC-relative relocs matter here. However, we
6135 still need to record the opcode for literal
6136 coalescing. */
6137 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6138 if (opcode == get_l32r_opcode ())
6139 {
6140 is_abs_literal = TRUE;
6141 opnd = 1;
6142 }
6143 else
6144 opcode = XTENSA_UNDEFINED;
6145 }
6146 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6147 {
6148 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6149 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6150 }
6151
6152 if (opcode != XTENSA_UNDEFINED)
6153 {
6154 int src_next = target_relax_info->src_next++;
6155 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6156
6157 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6158 is_abs_literal);
6159 }
6160 }
6161 }
6162
6163 /* Now get rid of ASM_EXPAND relocations. At this point, the
6164 src_relocs array for the target literal section may still be
6165 incomplete, but it must at least contain the entries for the L32R
6166 relocations associated with ASM_EXPANDs because they were just
6167 added in the preceding loop over the relocations. */
6168
6169 for (i = 0; i < sec->reloc_count; i++)
6170 {
6171 Elf_Internal_Rela *irel = &internal_relocs[i];
6172 bfd_boolean is_reachable;
6173
6174 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6175 &is_reachable))
6176 continue;
6177
6178 if (is_reachable)
6179 {
6180 Elf_Internal_Rela *l32r_irel;
6181 r_reloc r_rel;
6182 asection *target_sec;
6183 xtensa_relax_info *target_relax_info;
6184
6185 /* Mark the source_reloc for the L32R so that it will be
6186 removed in compute_removed_literals(), along with the
6187 associated literal. */
6188 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6189 irel, internal_relocs);
6190 if (l32r_irel == NULL)
6191 continue;
6192
6193 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6194
6195 target_sec = r_reloc_get_section (&r_rel);
6196 target_relax_info = get_xtensa_relax_info (target_sec);
6197
6198 if (target_relax_info
6199 && (target_relax_info->is_relaxable_literal_section
6200 || target_relax_info->is_relaxable_asm_section))
6201 {
6202 source_reloc *s_reloc;
6203
6204 /* Search the source_relocs for the entry corresponding to
6205 the l32r_irel. Note: The src_relocs array is not yet
6206 sorted, but it wouldn't matter anyway because we're
6207 searching by source offset instead of target offset. */
6208 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6209 target_relax_info->src_next,
6210 sec, l32r_irel);
6211 BFD_ASSERT (s_reloc);
6212 s_reloc->is_null = TRUE;
6213 }
6214
6215 /* Convert this reloc to ASM_SIMPLIFY. */
6216 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6217 R_XTENSA_ASM_SIMPLIFY);
6218 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6219
6220 pin_internal_relocs (sec, internal_relocs);
6221 }
6222 else
6223 {
6224 /* It is resolvable but doesn't reach. We resolve now
6225 by eliminating the relocation -- the call will remain
6226 expanded into L32R/CALLX. */
6227 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6228 pin_internal_relocs (sec, internal_relocs);
6229 }
6230 }
6231
6232 error_return:
6233 release_contents (sec, contents);
6234 release_internal_relocs (sec, internal_relocs);
6235 return ok;
6236 }
6237
6238
6239 /* Return TRUE if the asm expansion can be resolved. Generally it can
6240 be resolved on a final link or when a partial link locates it in the
6241 same section as the target. Set "is_reachable" flag if the target of
6242 the call is within the range of a direct call, given the current VMA
6243 for this section and the target section. */
6244
6245 bfd_boolean
6246 is_resolvable_asm_expansion (bfd *abfd,
6247 asection *sec,
6248 bfd_byte *contents,
6249 Elf_Internal_Rela *irel,
6250 struct bfd_link_info *link_info,
6251 bfd_boolean *is_reachable_p)
6252 {
6253 asection *target_sec;
6254 bfd_vma target_offset;
6255 r_reloc r_rel;
6256 xtensa_opcode opcode, direct_call_opcode;
6257 bfd_vma self_address;
6258 bfd_vma dest_address;
6259 bfd_boolean uses_l32r;
6260 bfd_size_type sec_size;
6261
6262 *is_reachable_p = FALSE;
6263
6264 if (contents == NULL)
6265 return FALSE;
6266
6267 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6268 return FALSE;
6269
6270 sec_size = bfd_get_section_limit (abfd, sec);
6271 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6272 sec_size - irel->r_offset, &uses_l32r);
6273 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6274 if (!uses_l32r)
6275 return FALSE;
6276
6277 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6278 if (direct_call_opcode == XTENSA_UNDEFINED)
6279 return FALSE;
6280
6281 /* Check and see that the target resolves. */
6282 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6283 if (!r_reloc_is_defined (&r_rel))
6284 return FALSE;
6285
6286 target_sec = r_reloc_get_section (&r_rel);
6287 target_offset = r_rel.target_offset;
6288
6289 /* If the target is in a shared library, then it doesn't reach. This
6290 isn't supposed to come up because the compiler should never generate
6291 non-PIC calls on systems that use shared libraries, but the linker
6292 shouldn't crash regardless. */
6293 if (!target_sec->output_section)
6294 return FALSE;
6295
6296 /* For relocatable sections, we can only simplify when the output
6297 section of the target is the same as the output section of the
6298 source. */
6299 if (link_info->relocatable
6300 && (target_sec->output_section != sec->output_section
6301 || is_reloc_sym_weak (abfd, irel)))
6302 return FALSE;
6303
6304 self_address = (sec->output_section->vma
6305 + sec->output_offset + irel->r_offset + 3);
6306 dest_address = (target_sec->output_section->vma
6307 + target_sec->output_offset + target_offset);
6308
6309 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6310 self_address, dest_address);
6311
6312 if ((self_address >> CALL_SEGMENT_BITS) !=
6313 (dest_address >> CALL_SEGMENT_BITS))
6314 return FALSE;
6315
6316 return TRUE;
6317 }
6318
6319
6320 static Elf_Internal_Rela *
6321 find_associated_l32r_irel (bfd *abfd,
6322 asection *sec,
6323 bfd_byte *contents,
6324 Elf_Internal_Rela *other_irel,
6325 Elf_Internal_Rela *internal_relocs)
6326 {
6327 unsigned i;
6328
6329 for (i = 0; i < sec->reloc_count; i++)
6330 {
6331 Elf_Internal_Rela *irel = &internal_relocs[i];
6332
6333 if (irel == other_irel)
6334 continue;
6335 if (irel->r_offset != other_irel->r_offset)
6336 continue;
6337 if (is_l32r_relocation (abfd, sec, contents, irel))
6338 return irel;
6339 }
6340
6341 return NULL;
6342 }
6343
6344
6345 static xtensa_opcode *
6346 build_reloc_opcodes (bfd *abfd,
6347 asection *sec,
6348 bfd_byte *contents,
6349 Elf_Internal_Rela *internal_relocs)
6350 {
6351 unsigned i;
6352 xtensa_opcode *reloc_opcodes =
6353 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6354 for (i = 0; i < sec->reloc_count; i++)
6355 {
6356 Elf_Internal_Rela *irel = &internal_relocs[i];
6357 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6358 }
6359 return reloc_opcodes;
6360 }
6361
6362
6363 /* The compute_text_actions function will build a list of potential
6364 transformation actions for code in the extended basic block of each
6365 longcall that is optimized to a direct call. From this list we
6366 generate a set of actions to actually perform that optimizes for
6367 space and, if not using size_opt, maintains branch target
6368 alignments.
6369
6370 These actions to be performed are placed on a per-section list.
6371 The actual changes are performed by relax_section() in the second
6372 pass. */
6373
6374 bfd_boolean
6375 compute_text_actions (bfd *abfd,
6376 asection *sec,
6377 struct bfd_link_info *link_info)
6378 {
6379 xtensa_opcode *reloc_opcodes = NULL;
6380 xtensa_relax_info *relax_info;
6381 bfd_byte *contents;
6382 Elf_Internal_Rela *internal_relocs;
6383 bfd_boolean ok = TRUE;
6384 unsigned i;
6385 property_table_entry *prop_table = 0;
6386 int ptblsize = 0;
6387 bfd_size_type sec_size;
6388
6389 relax_info = get_xtensa_relax_info (sec);
6390 BFD_ASSERT (relax_info);
6391 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
6392
6393 /* Do nothing if the section contains no optimized longcalls. */
6394 if (!relax_info->is_relaxable_asm_section)
6395 return ok;
6396
6397 internal_relocs = retrieve_internal_relocs (abfd, sec,
6398 link_info->keep_memory);
6399
6400 if (internal_relocs)
6401 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6402 internal_reloc_compare);
6403
6404 sec_size = bfd_get_section_limit (abfd, sec);
6405 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6406 if (contents == NULL && sec_size != 0)
6407 {
6408 ok = FALSE;
6409 goto error_return;
6410 }
6411
6412 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6413 XTENSA_PROP_SEC_NAME, FALSE);
6414 if (ptblsize < 0)
6415 {
6416 ok = FALSE;
6417 goto error_return;
6418 }
6419
6420 for (i = 0; i < sec->reloc_count; i++)
6421 {
6422 Elf_Internal_Rela *irel = &internal_relocs[i];
6423 bfd_vma r_offset;
6424 property_table_entry *the_entry;
6425 int ptbl_idx;
6426 ebb_t *ebb;
6427 ebb_constraint ebb_table;
6428 bfd_size_type simplify_size;
6429
6430 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6431 continue;
6432 r_offset = irel->r_offset;
6433
6434 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6435 if (simplify_size == 0)
6436 {
6437 (*_bfd_error_handler)
6438 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6439 sec->owner, sec, r_offset);
6440 continue;
6441 }
6442
6443 /* If the instruction table is not around, then don't do this
6444 relaxation. */
6445 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6446 sec->vma + irel->r_offset);
6447 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6448 {
6449 text_action_add (&relax_info->action_list,
6450 ta_convert_longcall, sec, r_offset,
6451 0);
6452 continue;
6453 }
6454
6455 /* If the next longcall happens to be at the same address as an
6456 unreachable section of size 0, then skip forward. */
6457 ptbl_idx = the_entry - prop_table;
6458 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6459 && the_entry->size == 0
6460 && ptbl_idx + 1 < ptblsize
6461 && (prop_table[ptbl_idx + 1].address
6462 == prop_table[ptbl_idx].address))
6463 {
6464 ptbl_idx++;
6465 the_entry++;
6466 }
6467
6468 if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)
6469 /* NO_REORDER is OK */
6470 continue;
6471
6472 init_ebb_constraint (&ebb_table);
6473 ebb = &ebb_table.ebb;
6474 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6475 internal_relocs, sec->reloc_count);
6476 ebb->start_offset = r_offset + simplify_size;
6477 ebb->end_offset = r_offset + simplify_size;
6478 ebb->start_ptbl_idx = ptbl_idx;
6479 ebb->end_ptbl_idx = ptbl_idx;
6480 ebb->start_reloc_idx = i;
6481 ebb->end_reloc_idx = i;
6482
6483 /* Precompute the opcode for each relocation. */
6484 if (reloc_opcodes == NULL)
6485 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6486 internal_relocs);
6487
6488 if (!extend_ebb_bounds (ebb)
6489 || !compute_ebb_proposed_actions (&ebb_table)
6490 || !compute_ebb_actions (&ebb_table)
6491 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
6492 internal_relocs, &ebb_table,
6493 reloc_opcodes)
6494 || !check_section_ebb_reduces (&ebb_table))
6495 {
6496 /* If anything goes wrong or we get unlucky and something does
6497 not fit, with our plan because of expansion between
6498 critical branches, just convert to a NOP. */
6499
6500 text_action_add (&relax_info->action_list,
6501 ta_convert_longcall, sec, r_offset, 0);
6502 i = ebb_table.ebb.end_reloc_idx;
6503 free_ebb_constraint (&ebb_table);
6504 continue;
6505 }
6506
6507 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6508
6509 /* Update the index so we do not go looking at the relocations
6510 we have already processed. */
6511 i = ebb_table.ebb.end_reloc_idx;
6512 free_ebb_constraint (&ebb_table);
6513 }
6514
6515 #if DEBUG
6516 if (relax_info->action_list.head)
6517 print_action_list (stderr, &relax_info->action_list);
6518 #endif
6519
6520 error_return:
6521 release_contents (sec, contents);
6522 release_internal_relocs (sec, internal_relocs);
6523 if (prop_table)
6524 free (prop_table);
6525 if (reloc_opcodes)
6526 free (reloc_opcodes);
6527
6528 return ok;
6529 }
6530
6531
6532 /* Do not widen an instruction if it is preceeded by a
6533 loop opcode. It might cause misalignment. */
6534
6535 static bfd_boolean
6536 prev_instr_is_a_loop (bfd_byte *contents,
6537 bfd_size_type content_length,
6538 bfd_size_type offset)
6539 {
6540 xtensa_opcode prev_opcode;
6541
6542 if (offset < 3)
6543 return FALSE;
6544 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6545 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6546 }
6547
6548
6549 /* Find all of the possible actions for an extended basic block. */
6550
6551 bfd_boolean
6552 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
6553 {
6554 const ebb_t *ebb = &ebb_table->ebb;
6555 unsigned rel_idx = ebb->start_reloc_idx;
6556 property_table_entry *entry, *start_entry, *end_entry;
6557 bfd_vma offset = 0;
6558 xtensa_isa isa = xtensa_default_isa;
6559 xtensa_format fmt;
6560 static xtensa_insnbuf insnbuf = NULL;
6561 static xtensa_insnbuf slotbuf = NULL;
6562
6563 if (insnbuf == NULL)
6564 {
6565 insnbuf = xtensa_insnbuf_alloc (isa);
6566 slotbuf = xtensa_insnbuf_alloc (isa);
6567 }
6568
6569 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6570 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6571
6572 for (entry = start_entry; entry <= end_entry; entry++)
6573 {
6574 bfd_vma start_offset, end_offset;
6575 bfd_size_type insn_len;
6576
6577 start_offset = entry->address - ebb->sec->vma;
6578 end_offset = entry->address + entry->size - ebb->sec->vma;
6579
6580 if (entry == start_entry)
6581 start_offset = ebb->start_offset;
6582 if (entry == end_entry)
6583 end_offset = ebb->end_offset;
6584 offset = start_offset;
6585
6586 if (offset == entry->address - ebb->sec->vma
6587 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6588 {
6589 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6590 BFD_ASSERT (offset != end_offset);
6591 if (offset == end_offset)
6592 return FALSE;
6593
6594 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6595 offset);
6596 if (insn_len == 0)
6597 goto decode_error;
6598
6599 if (check_branch_target_aligned_address (offset, insn_len))
6600 align_type = EBB_REQUIRE_TGT_ALIGN;
6601
6602 ebb_propose_action (ebb_table, align_type, 0,
6603 ta_none, offset, 0, TRUE);
6604 }
6605
6606 while (offset != end_offset)
6607 {
6608 Elf_Internal_Rela *irel;
6609 xtensa_opcode opcode;
6610
6611 while (rel_idx < ebb->end_reloc_idx
6612 && (ebb->relocs[rel_idx].r_offset < offset
6613 || (ebb->relocs[rel_idx].r_offset == offset
6614 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6615 != R_XTENSA_ASM_SIMPLIFY))))
6616 rel_idx++;
6617
6618 /* Check for longcall. */
6619 irel = &ebb->relocs[rel_idx];
6620 if (irel->r_offset == offset
6621 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6622 {
6623 bfd_size_type simplify_size;
6624
6625 simplify_size = get_asm_simplify_size (ebb->contents,
6626 ebb->content_length,
6627 irel->r_offset);
6628 if (simplify_size == 0)
6629 goto decode_error;
6630
6631 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6632 ta_convert_longcall, offset, 0, TRUE);
6633
6634 offset += simplify_size;
6635 continue;
6636 }
6637
6638 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6639 goto decode_error;
6640 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6641 ebb->content_length - offset);
6642 fmt = xtensa_format_decode (isa, insnbuf);
6643 if (fmt == XTENSA_UNDEFINED)
6644 goto decode_error;
6645 insn_len = xtensa_format_length (isa, fmt);
6646 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6647 goto decode_error;
6648
6649 if (xtensa_format_num_slots (isa, fmt) != 1)
6650 {
6651 offset += insn_len;
6652 continue;
6653 }
6654
6655 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6656 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6657 if (opcode == XTENSA_UNDEFINED)
6658 goto decode_error;
6659
6660 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6661 && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6662 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
6663 {
6664 /* Add an instruction narrow action. */
6665 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6666 ta_narrow_insn, offset, 0, FALSE);
6667 }
6668 else if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6669 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6670 && ! prev_instr_is_a_loop (ebb->contents,
6671 ebb->content_length, offset))
6672 {
6673 /* Add an instruction widen action. */
6674 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6675 ta_widen_insn, offset, 0, FALSE);
6676 }
6677 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
6678 {
6679 /* Check for branch targets. */
6680 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6681 ta_none, offset, 0, TRUE);
6682 }
6683
6684 offset += insn_len;
6685 }
6686 }
6687
6688 if (ebb->ends_unreachable)
6689 {
6690 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6691 ta_fill, ebb->end_offset, 0, TRUE);
6692 }
6693
6694 return TRUE;
6695
6696 decode_error:
6697 (*_bfd_error_handler)
6698 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6699 ebb->sec->owner, ebb->sec, offset);
6700 return FALSE;
6701 }
6702
6703
6704 /* After all of the information has collected about the
6705 transformations possible in an EBB, compute the appropriate actions
6706 here in compute_ebb_actions. We still must check later to make
6707 sure that the actions do not break any relocations. The algorithm
6708 used here is pretty greedy. Basically, it removes as many no-ops
6709 as possible so that the end of the EBB has the same alignment
6710 characteristics as the original. First, it uses narrowing, then
6711 fill space at the end of the EBB, and finally widenings. If that
6712 does not work, it tries again with one fewer no-op removed. The
6713 optimization will only be performed if all of the branch targets
6714 that were aligned before transformation are also aligned after the
6715 transformation.
6716
6717 When the size_opt flag is set, ignore the branch target alignments,
6718 narrow all wide instructions, and remove all no-ops unless the end
6719 of the EBB prevents it. */
6720
6721 bfd_boolean
6722 compute_ebb_actions (ebb_constraint *ebb_table)
6723 {
6724 unsigned i = 0;
6725 unsigned j;
6726 int removed_bytes = 0;
6727 ebb_t *ebb = &ebb_table->ebb;
6728 unsigned seg_idx_start = 0;
6729 unsigned seg_idx_end = 0;
6730
6731 /* We perform this like the assembler relaxation algorithm: Start by
6732 assuming all instructions are narrow and all no-ops removed; then
6733 walk through.... */
6734
6735 /* For each segment of this that has a solid constraint, check to
6736 see if there are any combinations that will keep the constraint.
6737 If so, use it. */
6738 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
6739 {
6740 bfd_boolean requires_text_end_align = FALSE;
6741 unsigned longcall_count = 0;
6742 unsigned longcall_convert_count = 0;
6743 unsigned narrowable_count = 0;
6744 unsigned narrowable_convert_count = 0;
6745 unsigned widenable_count = 0;
6746 unsigned widenable_convert_count = 0;
6747
6748 proposed_action *action = NULL;
6749 int align = (1 << ebb_table->ebb.sec->alignment_power);
6750
6751 seg_idx_start = seg_idx_end;
6752
6753 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6754 {
6755 action = &ebb_table->actions[i];
6756 if (action->action == ta_convert_longcall)
6757 longcall_count++;
6758 if (action->action == ta_narrow_insn)
6759 narrowable_count++;
6760 if (action->action == ta_widen_insn)
6761 widenable_count++;
6762 if (action->action == ta_fill)
6763 break;
6764 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6765 break;
6766 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6767 && !elf32xtensa_size_opt)
6768 break;
6769 }
6770 seg_idx_end = i;
6771
6772 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6773 requires_text_end_align = TRUE;
6774
6775 if (elf32xtensa_size_opt && !requires_text_end_align
6776 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6777 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6778 {
6779 longcall_convert_count = longcall_count;
6780 narrowable_convert_count = narrowable_count;
6781 widenable_convert_count = 0;
6782 }
6783 else
6784 {
6785 /* There is a constraint. Convert the max number of longcalls. */
6786 narrowable_convert_count = 0;
6787 longcall_convert_count = 0;
6788 widenable_convert_count = 0;
6789
6790 for (j = 0; j < longcall_count; j++)
6791 {
6792 int removed = (longcall_count - j) * 3 & (align - 1);
6793 unsigned desire_narrow = (align - removed) & (align - 1);
6794 unsigned desire_widen = removed;
6795 if (desire_narrow <= narrowable_count)
6796 {
6797 narrowable_convert_count = desire_narrow;
6798 narrowable_convert_count +=
6799 (align * ((narrowable_count - narrowable_convert_count)
6800 / align));
6801 longcall_convert_count = (longcall_count - j);
6802 widenable_convert_count = 0;
6803 break;
6804 }
6805 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6806 {
6807 narrowable_convert_count = 0;
6808 longcall_convert_count = longcall_count - j;
6809 widenable_convert_count = desire_widen;
6810 break;
6811 }
6812 }
6813 }
6814
6815 /* Now the number of conversions are saved. Do them. */
6816 for (i = seg_idx_start; i < seg_idx_end; i++)
6817 {
6818 action = &ebb_table->actions[i];
6819 switch (action->action)
6820 {
6821 case ta_convert_longcall:
6822 if (longcall_convert_count != 0)
6823 {
6824 action->action = ta_remove_longcall;
6825 action->do_action = TRUE;
6826 action->removed_bytes += 3;
6827 longcall_convert_count--;
6828 }
6829 break;
6830 case ta_narrow_insn:
6831 if (narrowable_convert_count != 0)
6832 {
6833 action->do_action = TRUE;
6834 action->removed_bytes += 1;
6835 narrowable_convert_count--;
6836 }
6837 break;
6838 case ta_widen_insn:
6839 if (widenable_convert_count != 0)
6840 {
6841 action->do_action = TRUE;
6842 action->removed_bytes -= 1;
6843 widenable_convert_count--;
6844 }
6845 break;
6846 default:
6847 break;
6848 }
6849 }
6850 }
6851
6852 /* Now we move on to some local opts. Try to remove each of the
6853 remaining longcalls. */
6854
6855 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6856 {
6857 removed_bytes = 0;
6858 for (i = 0; i < ebb_table->action_count; i++)
6859 {
6860 int old_removed_bytes = removed_bytes;
6861 proposed_action *action = &ebb_table->actions[i];
6862
6863 if (action->do_action && action->action == ta_convert_longcall)
6864 {
6865 bfd_boolean bad_alignment = FALSE;
6866 removed_bytes += 3;
6867 for (j = i + 1; j < ebb_table->action_count; j++)
6868 {
6869 proposed_action *new_action = &ebb_table->actions[j];
6870 bfd_vma offset = new_action->offset;
6871 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6872 {
6873 if (!check_branch_target_aligned
6874 (ebb_table->ebb.contents,
6875 ebb_table->ebb.content_length,
6876 offset, offset - removed_bytes))
6877 {
6878 bad_alignment = TRUE;
6879 break;
6880 }
6881 }
6882 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6883 {
6884 if (!check_loop_aligned (ebb_table->ebb.contents,
6885 ebb_table->ebb.content_length,
6886 offset,
6887 offset - removed_bytes))
6888 {
6889 bad_alignment = TRUE;
6890 break;
6891 }
6892 }
6893 if (new_action->action == ta_narrow_insn
6894 && !new_action->do_action
6895 && ebb_table->ebb.sec->alignment_power == 2)
6896 {
6897 /* Narrow an instruction and we are done. */
6898 new_action->do_action = TRUE;
6899 new_action->removed_bytes += 1;
6900 bad_alignment = FALSE;
6901 break;
6902 }
6903 if (new_action->action == ta_widen_insn
6904 && new_action->do_action
6905 && ebb_table->ebb.sec->alignment_power == 2)
6906 {
6907 /* Narrow an instruction and we are done. */
6908 new_action->do_action = FALSE;
6909 new_action->removed_bytes += 1;
6910 bad_alignment = FALSE;
6911 break;
6912 }
6913 }
6914 if (!bad_alignment)
6915 {
6916 action->removed_bytes += 3;
6917 action->action = ta_remove_longcall;
6918 action->do_action = TRUE;
6919 }
6920 }
6921 removed_bytes = old_removed_bytes;
6922 if (action->do_action)
6923 removed_bytes += action->removed_bytes;
6924 }
6925 }
6926
6927 removed_bytes = 0;
6928 for (i = 0; i < ebb_table->action_count; ++i)
6929 {
6930 proposed_action *action = &ebb_table->actions[i];
6931 if (action->do_action)
6932 removed_bytes += action->removed_bytes;
6933 }
6934
6935 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6936 && ebb->ends_unreachable)
6937 {
6938 proposed_action *action;
6939 int br;
6940 int extra_space;
6941
6942 BFD_ASSERT (ebb_table->action_count != 0);
6943 action = &ebb_table->actions[ebb_table->action_count - 1];
6944 BFD_ASSERT (action->action == ta_fill);
6945 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6946
6947 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6948 br = action->removed_bytes + removed_bytes + extra_space;
6949 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6950
6951 action->removed_bytes = extra_space - br;
6952 }
6953 return TRUE;
6954 }
6955
6956
6957 /* The xlate_map is a sorted array of address mappings designed to
6958 answer the offset_with_removed_text() query with a binary search instead
6959 of a linear search through the section's action_list. */
6960
6961 typedef struct xlate_map_entry xlate_map_entry_t;
6962 typedef struct xlate_map xlate_map_t;
6963
6964 struct xlate_map_entry
6965 {
6966 unsigned orig_address;
6967 unsigned new_address;
6968 unsigned size;
6969 };
6970
6971 struct xlate_map
6972 {
6973 unsigned entry_count;
6974 xlate_map_entry_t *entry;
6975 };
6976
6977
6978 static int
6979 xlate_compare (const void *a_v, const void *b_v)
6980 {
6981 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6982 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6983 if (a->orig_address < b->orig_address)
6984 return -1;
6985 if (a->orig_address > (b->orig_address + b->size - 1))
6986 return 1;
6987 return 0;
6988 }
6989
6990
6991 static bfd_vma
6992 xlate_offset_with_removed_text (const xlate_map_t *map,
6993 text_action_list *action_list,
6994 bfd_vma offset)
6995 {
6996 xlate_map_entry_t tmp;
6997 void *r;
6998 xlate_map_entry_t *e;
6999
7000 if (map == NULL)
7001 return offset_with_removed_text (action_list, offset);
7002
7003 if (map->entry_count == 0)
7004 return offset;
7005
7006 tmp.orig_address = offset;
7007 tmp.new_address = offset;
7008 tmp.size = 1;
7009
7010 r = bsearch (&offset, map->entry, map->entry_count,
7011 sizeof (xlate_map_entry_t), &xlate_compare);
7012 e = (xlate_map_entry_t *) r;
7013
7014 BFD_ASSERT (e != NULL);
7015 if (e == NULL)
7016 return offset;
7017 return e->new_address - e->orig_address + offset;
7018 }
7019
7020
7021 /* Build a binary searchable offset translation map from a section's
7022 action list. */
7023
7024 static xlate_map_t *
7025 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7026 {
7027 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7028 text_action_list *action_list = &relax_info->action_list;
7029 unsigned num_actions = 0;
7030 text_action *r;
7031 int removed;
7032 xlate_map_entry_t *current_entry;
7033
7034 if (map == NULL)
7035 return NULL;
7036
7037 num_actions = action_list_count (action_list);
7038 map->entry = (xlate_map_entry_t *)
7039 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7040 if (map->entry == NULL)
7041 {
7042 free (map);
7043 return NULL;
7044 }
7045 map->entry_count = 0;
7046
7047 removed = 0;
7048 current_entry = &map->entry[0];
7049
7050 current_entry->orig_address = 0;
7051 current_entry->new_address = 0;
7052 current_entry->size = 0;
7053
7054 for (r = action_list->head; r != NULL; r = r->next)
7055 {
7056 unsigned orig_size = 0;
7057 switch (r->action)
7058 {
7059 case ta_none:
7060 case ta_remove_insn:
7061 case ta_convert_longcall:
7062 case ta_remove_literal:
7063 case ta_add_literal:
7064 break;
7065 case ta_remove_longcall:
7066 orig_size = 6;
7067 break;
7068 case ta_narrow_insn:
7069 orig_size = 3;
7070 break;
7071 case ta_widen_insn:
7072 orig_size = 2;
7073 break;
7074 case ta_fill:
7075 break;
7076 }
7077 current_entry->size =
7078 r->offset + orig_size - current_entry->orig_address;
7079 if (current_entry->size != 0)
7080 {
7081 current_entry++;
7082 map->entry_count++;
7083 }
7084 current_entry->orig_address = r->offset + orig_size;
7085 removed += r->removed_bytes;
7086 current_entry->new_address = r->offset + orig_size - removed;
7087 current_entry->size = 0;
7088 }
7089
7090 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7091 - current_entry->orig_address);
7092 if (current_entry->size != 0)
7093 map->entry_count++;
7094
7095 return map;
7096 }
7097
7098
7099 /* Free an offset translation map. */
7100
7101 static void
7102 free_xlate_map (xlate_map_t *map)
7103 {
7104 if (map && map->entry)
7105 free (map->entry);
7106 if (map)
7107 free (map);
7108 }
7109
7110
7111 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7112 relocations in a section will fit if a proposed set of actions
7113 are performed. */
7114
7115 static bfd_boolean
7116 check_section_ebb_pcrels_fit (bfd *abfd,
7117 asection *sec,
7118 bfd_byte *contents,
7119 Elf_Internal_Rela *internal_relocs,
7120 const ebb_constraint *constraint,
7121 const xtensa_opcode *reloc_opcodes)
7122 {
7123 unsigned i, j;
7124 Elf_Internal_Rela *irel;
7125 xlate_map_t *xmap = NULL;
7126 bfd_boolean ok = TRUE;
7127 xtensa_relax_info *relax_info;
7128
7129 relax_info = get_xtensa_relax_info (sec);
7130
7131 if (relax_info && sec->reloc_count > 100)
7132 {
7133 xmap = build_xlate_map (sec, relax_info);
7134 /* NULL indicates out of memory, but the slow version
7135 can still be used. */
7136 }
7137
7138 for (i = 0; i < sec->reloc_count; i++)
7139 {
7140 r_reloc r_rel;
7141 bfd_vma orig_self_offset, orig_target_offset;
7142 bfd_vma self_offset, target_offset;
7143 int r_type;
7144 reloc_howto_type *howto;
7145 int self_removed_bytes, target_removed_bytes;
7146
7147 irel = &internal_relocs[i];
7148 r_type = ELF32_R_TYPE (irel->r_info);
7149
7150 howto = &elf_howto_table[r_type];
7151 /* We maintain the required invariant: PC-relative relocations
7152 that fit before linking must fit after linking. Thus we only
7153 need to deal with relocations to the same section that are
7154 PC-relative. */
7155 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7156 || !howto->pc_relative)
7157 continue;
7158
7159 r_reloc_init (&r_rel, abfd, irel, contents,
7160 bfd_get_section_limit (abfd, sec));
7161
7162 if (r_reloc_get_section (&r_rel) != sec)
7163 continue;
7164
7165 orig_self_offset = irel->r_offset;
7166 orig_target_offset = r_rel.target_offset;
7167
7168 self_offset = orig_self_offset;
7169 target_offset = orig_target_offset;
7170
7171 if (relax_info)
7172 {
7173 self_offset =
7174 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7175 orig_self_offset);
7176 target_offset =
7177 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7178 orig_target_offset);
7179 }
7180
7181 self_removed_bytes = 0;
7182 target_removed_bytes = 0;
7183
7184 for (j = 0; j < constraint->action_count; ++j)
7185 {
7186 proposed_action *action = &constraint->actions[j];
7187 bfd_vma offset = action->offset;
7188 int removed_bytes = action->removed_bytes;
7189 if (offset < orig_self_offset
7190 || (offset == orig_self_offset && action->action == ta_fill
7191 && action->removed_bytes < 0))
7192 self_removed_bytes += removed_bytes;
7193 if (offset < orig_target_offset
7194 || (offset == orig_target_offset && action->action == ta_fill
7195 && action->removed_bytes < 0))
7196 target_removed_bytes += removed_bytes;
7197 }
7198 self_offset -= self_removed_bytes;
7199 target_offset -= target_removed_bytes;
7200
7201 /* Try to encode it. Get the operand and check. */
7202 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7203 {
7204 /* None of the current alternate relocs are PC-relative,
7205 and only PC-relative relocs matter here. */
7206 }
7207 else
7208 {
7209 xtensa_opcode opcode;
7210 int opnum;
7211
7212 if (reloc_opcodes)
7213 opcode = reloc_opcodes[i];
7214 else
7215 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7216 if (opcode == XTENSA_UNDEFINED)
7217 {
7218 ok = FALSE;
7219 break;
7220 }
7221
7222 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7223 if (opnum == XTENSA_UNDEFINED)
7224 {
7225 ok = FALSE;
7226 break;
7227 }
7228
7229 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
7230 {
7231 ok = FALSE;
7232 break;
7233 }
7234 }
7235 }
7236
7237 if (xmap)
7238 free_xlate_map (xmap);
7239
7240 return ok;
7241 }
7242
7243
7244 static bfd_boolean
7245 check_section_ebb_reduces (const ebb_constraint *constraint)
7246 {
7247 int removed = 0;
7248 unsigned i;
7249
7250 for (i = 0; i < constraint->action_count; i++)
7251 {
7252 const proposed_action *action = &constraint->actions[i];
7253 if (action->do_action)
7254 removed += action->removed_bytes;
7255 }
7256 if (removed < 0)
7257 return FALSE;
7258
7259 return TRUE;
7260 }
7261
7262
7263 void
7264 text_action_add_proposed (text_action_list *l,
7265 const ebb_constraint *ebb_table,
7266 asection *sec)
7267 {
7268 unsigned i;
7269
7270 for (i = 0; i < ebb_table->action_count; i++)
7271 {
7272 proposed_action *action = &ebb_table->actions[i];
7273
7274 if (!action->do_action)
7275 continue;
7276 switch (action->action)
7277 {
7278 case ta_remove_insn:
7279 case ta_remove_longcall:
7280 case ta_convert_longcall:
7281 case ta_narrow_insn:
7282 case ta_widen_insn:
7283 case ta_fill:
7284 case ta_remove_literal:
7285 text_action_add (l, action->action, sec, action->offset,
7286 action->removed_bytes);
7287 break;
7288 case ta_none:
7289 break;
7290 default:
7291 BFD_ASSERT (0);
7292 break;
7293 }
7294 }
7295 }
7296
7297
7298 int
7299 compute_fill_extra_space (property_table_entry *entry)
7300 {
7301 int fill_extra_space;
7302
7303 if (!entry)
7304 return 0;
7305
7306 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7307 return 0;
7308
7309 fill_extra_space = entry->size;
7310 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7311 {
7312 /* Fill bytes for alignment:
7313 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7314 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7315 int nsm = (1 << pow) - 1;
7316 bfd_vma addr = entry->address + entry->size;
7317 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7318 fill_extra_space += align_fill;
7319 }
7320 return fill_extra_space;
7321 }
7322
7323 \f
7324 /* First relaxation pass. */
7325
7326 /* If the section contains relaxable literals, check each literal to
7327 see if it has the same value as another literal that has already
7328 been seen, either in the current section or a previous one. If so,
7329 add an entry to the per-section list of removed literals. The
7330 actual changes are deferred until the next pass. */
7331
7332 static bfd_boolean
7333 compute_removed_literals (bfd *abfd,
7334 asection *sec,
7335 struct bfd_link_info *link_info,
7336 value_map_hash_table *values)
7337 {
7338 xtensa_relax_info *relax_info;
7339 bfd_byte *contents;
7340 Elf_Internal_Rela *internal_relocs;
7341 source_reloc *src_relocs, *rel;
7342 bfd_boolean ok = TRUE;
7343 property_table_entry *prop_table = NULL;
7344 int ptblsize;
7345 int i, prev_i;
7346 bfd_boolean last_loc_is_prev = FALSE;
7347 bfd_vma last_target_offset = 0;
7348 section_cache_t target_sec_cache;
7349 bfd_size_type sec_size;
7350
7351 init_section_cache (&target_sec_cache);
7352
7353 /* Do nothing if it is not a relaxable literal section. */
7354 relax_info = get_xtensa_relax_info (sec);
7355 BFD_ASSERT (relax_info);
7356 if (!relax_info->is_relaxable_literal_section)
7357 return ok;
7358
7359 internal_relocs = retrieve_internal_relocs (abfd, sec,
7360 link_info->keep_memory);
7361
7362 sec_size = bfd_get_section_limit (abfd, sec);
7363 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7364 if (contents == NULL && sec_size != 0)
7365 {
7366 ok = FALSE;
7367 goto error_return;
7368 }
7369
7370 /* Sort the source_relocs by target offset. */
7371 src_relocs = relax_info->src_relocs;
7372 qsort (src_relocs, relax_info->src_count,
7373 sizeof (source_reloc), source_reloc_compare);
7374 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7375 internal_reloc_compare);
7376
7377 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7378 XTENSA_PROP_SEC_NAME, FALSE);
7379 if (ptblsize < 0)
7380 {
7381 ok = FALSE;
7382 goto error_return;
7383 }
7384
7385 prev_i = -1;
7386 for (i = 0; i < relax_info->src_count; i++)
7387 {
7388 Elf_Internal_Rela *irel = NULL;
7389
7390 rel = &src_relocs[i];
7391 if (get_l32r_opcode () != rel->opcode)
7392 continue;
7393 irel = get_irel_at_offset (sec, internal_relocs,
7394 rel->r_rel.target_offset);
7395
7396 /* If the relocation on this is not a simple R_XTENSA_32 or
7397 R_XTENSA_PLT then do not consider it. This may happen when
7398 the difference of two symbols is used in a literal. */
7399 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7400 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7401 continue;
7402
7403 /* If the target_offset for this relocation is the same as the
7404 previous relocation, then we've already considered whether the
7405 literal can be coalesced. Skip to the next one.... */
7406 if (i != 0 && prev_i != -1
7407 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
7408 continue;
7409 prev_i = i;
7410
7411 if (last_loc_is_prev &&
7412 last_target_offset + 4 != rel->r_rel.target_offset)
7413 last_loc_is_prev = FALSE;
7414
7415 /* Check if the relocation was from an L32R that is being removed
7416 because a CALLX was converted to a direct CALL, and check if
7417 there are no other relocations to the literal. */
7418 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count))
7419 {
7420 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7421 irel, rel, prop_table, ptblsize))
7422 {
7423 ok = FALSE;
7424 goto error_return;
7425 }
7426 last_target_offset = rel->r_rel.target_offset;
7427 continue;
7428 }
7429
7430 if (!identify_literal_placement (abfd, sec, contents, link_info,
7431 values,
7432 &last_loc_is_prev, irel,
7433 relax_info->src_count - i, rel,
7434 prop_table, ptblsize,
7435 &target_sec_cache, rel->is_abs_literal))
7436 {
7437 ok = FALSE;
7438 goto error_return;
7439 }
7440 last_target_offset = rel->r_rel.target_offset;
7441 }
7442
7443 #if DEBUG
7444 print_removed_literals (stderr, &relax_info->removed_list);
7445 print_action_list (stderr, &relax_info->action_list);
7446 #endif /* DEBUG */
7447
7448 error_return:
7449 if (prop_table) free (prop_table);
7450 clear_section_cache (&target_sec_cache);
7451
7452 release_contents (sec, contents);
7453 release_internal_relocs (sec, internal_relocs);
7454 return ok;
7455 }
7456
7457
7458 static Elf_Internal_Rela *
7459 get_irel_at_offset (asection *sec,
7460 Elf_Internal_Rela *internal_relocs,
7461 bfd_vma offset)
7462 {
7463 unsigned i;
7464 Elf_Internal_Rela *irel;
7465 unsigned r_type;
7466 Elf_Internal_Rela key;
7467
7468 if (!internal_relocs)
7469 return NULL;
7470
7471 key.r_offset = offset;
7472 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7473 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7474 if (!irel)
7475 return NULL;
7476
7477 /* bsearch does not guarantee which will be returned if there are
7478 multiple matches. We need the first that is not an alignment. */
7479 i = irel - internal_relocs;
7480 while (i > 0)
7481 {
7482 if (internal_relocs[i-1].r_offset != offset)
7483 break;
7484 i--;
7485 }
7486 for ( ; i < sec->reloc_count; i++)
7487 {
7488 irel = &internal_relocs[i];
7489 r_type = ELF32_R_TYPE (irel->r_info);
7490 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7491 return irel;
7492 }
7493
7494 return NULL;
7495 }
7496
7497
7498 bfd_boolean
7499 is_removable_literal (const source_reloc *rel,
7500 int i,
7501 const source_reloc *src_relocs,
7502 int src_count)
7503 {
7504 const source_reloc *curr_rel;
7505 if (!rel->is_null)
7506 return FALSE;
7507
7508 for (++i; i < src_count; ++i)
7509 {
7510 curr_rel = &src_relocs[i];
7511 /* If all others have the same target offset.... */
7512 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7513 return TRUE;
7514
7515 if (!curr_rel->is_null
7516 && !xtensa_is_property_section (curr_rel->source_sec)
7517 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7518 return FALSE;
7519 }
7520 return TRUE;
7521 }
7522
7523
7524 bfd_boolean
7525 remove_dead_literal (bfd *abfd,
7526 asection *sec,
7527 struct bfd_link_info *link_info,
7528 Elf_Internal_Rela *internal_relocs,
7529 Elf_Internal_Rela *irel,
7530 source_reloc *rel,
7531 property_table_entry *prop_table,
7532 int ptblsize)
7533 {
7534 property_table_entry *entry;
7535 xtensa_relax_info *relax_info;
7536
7537 relax_info = get_xtensa_relax_info (sec);
7538 if (!relax_info)
7539 return FALSE;
7540
7541 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7542 sec->vma + rel->r_rel.target_offset);
7543
7544 /* Mark the unused literal so that it will be removed. */
7545 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7546
7547 text_action_add (&relax_info->action_list,
7548 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7549
7550 /* If the section is 4-byte aligned, do not add fill. */
7551 if (sec->alignment_power > 2)
7552 {
7553 int fill_extra_space;
7554 bfd_vma entry_sec_offset;
7555 text_action *fa;
7556 property_table_entry *the_add_entry;
7557 int removed_diff;
7558
7559 if (entry)
7560 entry_sec_offset = entry->address - sec->vma + entry->size;
7561 else
7562 entry_sec_offset = rel->r_rel.target_offset + 4;
7563
7564 /* If the literal range is at the end of the section,
7565 do not add fill. */
7566 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7567 entry_sec_offset);
7568 fill_extra_space = compute_fill_extra_space (the_add_entry);
7569
7570 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7571 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7572 -4, fill_extra_space);
7573 if (fa)
7574 adjust_fill_action (fa, removed_diff);
7575 else
7576 text_action_add (&relax_info->action_list,
7577 ta_fill, sec, entry_sec_offset, removed_diff);
7578 }
7579
7580 /* Zero out the relocation on this literal location. */
7581 if (irel)
7582 {
7583 if (elf_hash_table (link_info)->dynamic_sections_created)
7584 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7585
7586 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7587 pin_internal_relocs (sec, internal_relocs);
7588 }
7589
7590 /* Do not modify "last_loc_is_prev". */
7591 return TRUE;
7592 }
7593
7594
7595 bfd_boolean
7596 identify_literal_placement (bfd *abfd,
7597 asection *sec,
7598 bfd_byte *contents,
7599 struct bfd_link_info *link_info,
7600 value_map_hash_table *values,
7601 bfd_boolean *last_loc_is_prev_p,
7602 Elf_Internal_Rela *irel,
7603 int remaining_src_rels,
7604 source_reloc *rel,
7605 property_table_entry *prop_table,
7606 int ptblsize,
7607 section_cache_t *target_sec_cache,
7608 bfd_boolean is_abs_literal)
7609 {
7610 literal_value val;
7611 value_map *val_map;
7612 xtensa_relax_info *relax_info;
7613 bfd_boolean literal_placed = FALSE;
7614 r_reloc r_rel;
7615 unsigned long value;
7616 bfd_boolean final_static_link;
7617 bfd_size_type sec_size;
7618
7619 relax_info = get_xtensa_relax_info (sec);
7620 if (!relax_info)
7621 return FALSE;
7622
7623 sec_size = bfd_get_section_limit (abfd, sec);
7624
7625 final_static_link =
7626 (!link_info->relocatable
7627 && !elf_hash_table (link_info)->dynamic_sections_created);
7628
7629 /* The placement algorithm first checks to see if the literal is
7630 already in the value map. If so and the value map is reachable
7631 from all uses, then the literal is moved to that location. If
7632 not, then we identify the last location where a fresh literal was
7633 placed. If the literal can be safely moved there, then we do so.
7634 If not, then we assume that the literal is not to move and leave
7635 the literal where it is, marking it as the last literal
7636 location. */
7637
7638 /* Find the literal value. */
7639 value = 0;
7640 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7641 if (!irel)
7642 {
7643 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7644 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7645 }
7646 init_literal_value (&val, &r_rel, value, is_abs_literal);
7647
7648 /* Check if we've seen another literal with the same value that
7649 is in the same output section. */
7650 val_map = value_map_get_cached_value (values, &val, final_static_link);
7651
7652 if (val_map
7653 && (r_reloc_get_section (&val_map->loc)->output_section
7654 == sec->output_section)
7655 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7656 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7657 {
7658 /* No change to last_loc_is_prev. */
7659 literal_placed = TRUE;
7660 }
7661
7662 /* For relocatable links, do not try to move literals. To do it
7663 correctly might increase the number of relocations in an input
7664 section making the default relocatable linking fail. */
7665 if (!link_info->relocatable && !literal_placed
7666 && values->has_last_loc && !(*last_loc_is_prev_p))
7667 {
7668 asection *target_sec = r_reloc_get_section (&values->last_loc);
7669 if (target_sec && target_sec->output_section == sec->output_section)
7670 {
7671 /* Increment the virtual offset. */
7672 r_reloc try_loc = values->last_loc;
7673 try_loc.virtual_offset += 4;
7674
7675 /* There is a last loc that was in the same output section. */
7676 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7677 && move_shared_literal (sec, link_info, rel,
7678 prop_table, ptblsize,
7679 &try_loc, &val, target_sec_cache))
7680 {
7681 values->last_loc.virtual_offset += 4;
7682 literal_placed = TRUE;
7683 if (!val_map)
7684 val_map = add_value_map (values, &val, &try_loc,
7685 final_static_link);
7686 else
7687 val_map->loc = try_loc;
7688 }
7689 }
7690 }
7691
7692 if (!literal_placed)
7693 {
7694 /* Nothing worked, leave the literal alone but update the last loc. */
7695 values->has_last_loc = TRUE;
7696 values->last_loc = rel->r_rel;
7697 if (!val_map)
7698 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
7699 else
7700 val_map->loc = rel->r_rel;
7701 *last_loc_is_prev_p = TRUE;
7702 }
7703
7704 return TRUE;
7705 }
7706
7707
7708 /* Check if the original relocations (presumably on L32R instructions)
7709 identified by reloc[0..N] can be changed to reference the literal
7710 identified by r_rel. If r_rel is out of range for any of the
7711 original relocations, then we don't want to coalesce the original
7712 literal with the one at r_rel. We only check reloc[0..N], where the
7713 offsets are all the same as for reloc[0] (i.e., they're all
7714 referencing the same literal) and where N is also bounded by the
7715 number of remaining entries in the "reloc" array. The "reloc" array
7716 is sorted by target offset so we know all the entries for the same
7717 literal will be contiguous. */
7718
7719 static bfd_boolean
7720 relocations_reach (source_reloc *reloc,
7721 int remaining_relocs,
7722 const r_reloc *r_rel)
7723 {
7724 bfd_vma from_offset, source_address, dest_address;
7725 asection *sec;
7726 int i;
7727
7728 if (!r_reloc_is_defined (r_rel))
7729 return FALSE;
7730
7731 sec = r_reloc_get_section (r_rel);
7732 from_offset = reloc[0].r_rel.target_offset;
7733
7734 for (i = 0; i < remaining_relocs; i++)
7735 {
7736 if (reloc[i].r_rel.target_offset != from_offset)
7737 break;
7738
7739 /* Ignore relocations that have been removed. */
7740 if (reloc[i].is_null)
7741 continue;
7742
7743 /* The original and new output section for these must be the same
7744 in order to coalesce. */
7745 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7746 != sec->output_section)
7747 return FALSE;
7748
7749 /* Absolute literals in the same output section can always be
7750 combined. */
7751 if (reloc[i].is_abs_literal)
7752 continue;
7753
7754 /* A literal with no PC-relative relocations can be moved anywhere. */
7755 if (reloc[i].opnd != -1)
7756 {
7757 /* Otherwise, check to see that it fits. */
7758 source_address = (reloc[i].source_sec->output_section->vma
7759 + reloc[i].source_sec->output_offset
7760 + reloc[i].r_rel.rela.r_offset);
7761 dest_address = (sec->output_section->vma
7762 + sec->output_offset
7763 + r_rel->target_offset);
7764
7765 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7766 source_address, dest_address))
7767 return FALSE;
7768 }
7769 }
7770
7771 return TRUE;
7772 }
7773
7774
7775 /* Move a literal to another literal location because it is
7776 the same as the other literal value. */
7777
7778 static bfd_boolean
7779 coalesce_shared_literal (asection *sec,
7780 source_reloc *rel,
7781 property_table_entry *prop_table,
7782 int ptblsize,
7783 value_map *val_map)
7784 {
7785 property_table_entry *entry;
7786 text_action *fa;
7787 property_table_entry *the_add_entry;
7788 int removed_diff;
7789 xtensa_relax_info *relax_info;
7790
7791 relax_info = get_xtensa_relax_info (sec);
7792 if (!relax_info)
7793 return FALSE;
7794
7795 entry = elf_xtensa_find_property_entry
7796 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7797 if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM))
7798 return TRUE;
7799
7800 /* Mark that the literal will be coalesced. */
7801 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7802
7803 text_action_add (&relax_info->action_list,
7804 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7805
7806 /* If the section is 4-byte aligned, do not add fill. */
7807 if (sec->alignment_power > 2)
7808 {
7809 int fill_extra_space;
7810 bfd_vma entry_sec_offset;
7811
7812 if (entry)
7813 entry_sec_offset = entry->address - sec->vma + entry->size;
7814 else
7815 entry_sec_offset = rel->r_rel.target_offset + 4;
7816
7817 /* If the literal range is at the end of the section,
7818 do not add fill. */
7819 fill_extra_space = 0;
7820 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7821 entry_sec_offset);
7822 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7823 fill_extra_space = the_add_entry->size;
7824
7825 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7826 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7827 -4, fill_extra_space);
7828 if (fa)
7829 adjust_fill_action (fa, removed_diff);
7830 else
7831 text_action_add (&relax_info->action_list,
7832 ta_fill, sec, entry_sec_offset, removed_diff);
7833 }
7834
7835 return TRUE;
7836 }
7837
7838
7839 /* Move a literal to another location. This may actually increase the
7840 total amount of space used because of alignments so we need to do
7841 this carefully. Also, it may make a branch go out of range. */
7842
7843 static bfd_boolean
7844 move_shared_literal (asection *sec,
7845 struct bfd_link_info *link_info,
7846 source_reloc *rel,
7847 property_table_entry *prop_table,
7848 int ptblsize,
7849 const r_reloc *target_loc,
7850 const literal_value *lit_value,
7851 section_cache_t *target_sec_cache)
7852 {
7853 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7854 text_action *fa, *target_fa;
7855 int removed_diff;
7856 xtensa_relax_info *relax_info, *target_relax_info;
7857 asection *target_sec;
7858 ebb_t *ebb;
7859 ebb_constraint ebb_table;
7860 bfd_boolean relocs_fit;
7861
7862 /* If this routine always returns FALSE, the literals that cannot be
7863 coalesced will not be moved. */
7864 if (elf32xtensa_no_literal_movement)
7865 return FALSE;
7866
7867 relax_info = get_xtensa_relax_info (sec);
7868 if (!relax_info)
7869 return FALSE;
7870
7871 target_sec = r_reloc_get_section (target_loc);
7872 target_relax_info = get_xtensa_relax_info (target_sec);
7873
7874 /* Literals to undefined sections may not be moved because they
7875 must report an error. */
7876 if (bfd_is_und_section (target_sec))
7877 return FALSE;
7878
7879 src_entry = elf_xtensa_find_property_entry
7880 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7881
7882 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7883 return FALSE;
7884
7885 target_entry = elf_xtensa_find_property_entry
7886 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7887 target_sec->vma + target_loc->target_offset);
7888
7889 if (!target_entry)
7890 return FALSE;
7891
7892 /* Make sure that we have not broken any branches. */
7893 relocs_fit = FALSE;
7894
7895 init_ebb_constraint (&ebb_table);
7896 ebb = &ebb_table.ebb;
7897 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7898 target_sec_cache->content_length,
7899 target_sec_cache->ptbl, target_sec_cache->pte_count,
7900 target_sec_cache->relocs, target_sec_cache->reloc_count);
7901
7902 /* Propose to add 4 bytes + worst-case alignment size increase to
7903 destination. */
7904 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7905 ta_fill, target_loc->target_offset,
7906 -4 - (1 << target_sec->alignment_power), TRUE);
7907
7908 /* Check all of the PC-relative relocations to make sure they still fit. */
7909 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7910 target_sec_cache->contents,
7911 target_sec_cache->relocs,
7912 &ebb_table, NULL);
7913
7914 if (!relocs_fit)
7915 return FALSE;
7916
7917 text_action_add_literal (&target_relax_info->action_list,
7918 ta_add_literal, target_loc, lit_value, -4);
7919
7920 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7921 {
7922 /* May need to add or remove some fill to maintain alignment. */
7923 int fill_extra_space;
7924 bfd_vma entry_sec_offset;
7925
7926 entry_sec_offset =
7927 target_entry->address - target_sec->vma + target_entry->size;
7928
7929 /* If the literal range is at the end of the section,
7930 do not add fill. */
7931 fill_extra_space = 0;
7932 the_add_entry =
7933 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7934 target_sec_cache->pte_count,
7935 entry_sec_offset);
7936 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7937 fill_extra_space = the_add_entry->size;
7938
7939 target_fa = find_fill_action (&target_relax_info->action_list,
7940 target_sec, entry_sec_offset);
7941 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7942 entry_sec_offset, 4,
7943 fill_extra_space);
7944 if (target_fa)
7945 adjust_fill_action (target_fa, removed_diff);
7946 else
7947 text_action_add (&target_relax_info->action_list,
7948 ta_fill, target_sec, entry_sec_offset, removed_diff);
7949 }
7950
7951 /* Mark that the literal will be moved to the new location. */
7952 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7953
7954 /* Remove the literal. */
7955 text_action_add (&relax_info->action_list,
7956 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7957
7958 /* If the section is 4-byte aligned, do not add fill. */
7959 if (sec->alignment_power > 2 && target_entry != src_entry)
7960 {
7961 int fill_extra_space;
7962 bfd_vma entry_sec_offset;
7963
7964 if (src_entry)
7965 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7966 else
7967 entry_sec_offset = rel->r_rel.target_offset+4;
7968
7969 /* If the literal range is at the end of the section,
7970 do not add fill. */
7971 fill_extra_space = 0;
7972 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7973 entry_sec_offset);
7974 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7975 fill_extra_space = the_add_entry->size;
7976
7977 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7978 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7979 -4, fill_extra_space);
7980 if (fa)
7981 adjust_fill_action (fa, removed_diff);
7982 else
7983 text_action_add (&relax_info->action_list,
7984 ta_fill, sec, entry_sec_offset, removed_diff);
7985 }
7986
7987 return TRUE;
7988 }
7989
7990 \f
7991 /* Second relaxation pass. */
7992
7993 /* Modify all of the relocations to point to the right spot, and if this
7994 is a relaxable section, delete the unwanted literals and fix the
7995 section size. */
7996
7997 bfd_boolean
7998 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
7999 {
8000 Elf_Internal_Rela *internal_relocs;
8001 xtensa_relax_info *relax_info;
8002 bfd_byte *contents;
8003 bfd_boolean ok = TRUE;
8004 unsigned i;
8005 bfd_boolean rv = FALSE;
8006 bfd_boolean virtual_action;
8007 bfd_size_type sec_size;
8008
8009 sec_size = bfd_get_section_limit (abfd, sec);
8010 relax_info = get_xtensa_relax_info (sec);
8011 BFD_ASSERT (relax_info);
8012
8013 /* First translate any of the fixes that have been added already. */
8014 translate_section_fixes (sec);
8015
8016 /* Handle property sections (e.g., literal tables) specially. */
8017 if (xtensa_is_property_section (sec))
8018 {
8019 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8020 return relax_property_section (abfd, sec, link_info);
8021 }
8022
8023 internal_relocs = retrieve_internal_relocs (abfd, sec,
8024 link_info->keep_memory);
8025 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8026 if (contents == NULL && sec_size != 0)
8027 {
8028 ok = FALSE;
8029 goto error_return;
8030 }
8031
8032 if (internal_relocs)
8033 {
8034 for (i = 0; i < sec->reloc_count; i++)
8035 {
8036 Elf_Internal_Rela *irel;
8037 xtensa_relax_info *target_relax_info;
8038 bfd_vma source_offset, old_source_offset;
8039 r_reloc r_rel;
8040 unsigned r_type;
8041 asection *target_sec;
8042
8043 /* Locally change the source address.
8044 Translate the target to the new target address.
8045 If it points to this section and has been removed,
8046 NULLify it.
8047 Write it back. */
8048
8049 irel = &internal_relocs[i];
8050 source_offset = irel->r_offset;
8051 old_source_offset = source_offset;
8052
8053 r_type = ELF32_R_TYPE (irel->r_info);
8054 r_reloc_init (&r_rel, abfd, irel, contents,
8055 bfd_get_section_limit (abfd, sec));
8056
8057 /* If this section could have changed then we may need to
8058 change the relocation's offset. */
8059
8060 if (relax_info->is_relaxable_literal_section
8061 || relax_info->is_relaxable_asm_section)
8062 {
8063 if (r_type != R_XTENSA_NONE
8064 && find_removed_literal (&relax_info->removed_list,
8065 irel->r_offset))
8066 {
8067 /* Remove this relocation. */
8068 if (elf_hash_table (link_info)->dynamic_sections_created)
8069 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8070 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8071 irel->r_offset = offset_with_removed_text
8072 (&relax_info->action_list, irel->r_offset);
8073 pin_internal_relocs (sec, internal_relocs);
8074 continue;
8075 }
8076
8077 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8078 {
8079 text_action *action =
8080 find_insn_action (&relax_info->action_list,
8081 irel->r_offset);
8082 if (action && (action->action == ta_convert_longcall
8083 || action->action == ta_remove_longcall))
8084 {
8085 bfd_reloc_status_type retval;
8086 char *error_message = NULL;
8087
8088 retval = contract_asm_expansion (contents, sec_size,
8089 irel, &error_message);
8090 if (retval != bfd_reloc_ok)
8091 {
8092 (*link_info->callbacks->reloc_dangerous)
8093 (link_info, error_message, abfd, sec,
8094 irel->r_offset);
8095 goto error_return;
8096 }
8097 /* Update the action so that the code that moves
8098 the contents will do the right thing. */
8099 if (action->action == ta_remove_longcall)
8100 action->action = ta_remove_insn;
8101 else
8102 action->action = ta_none;
8103 /* Refresh the info in the r_rel. */
8104 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8105 r_type = ELF32_R_TYPE (irel->r_info);
8106 }
8107 }
8108
8109 source_offset = offset_with_removed_text
8110 (&relax_info->action_list, irel->r_offset);
8111 irel->r_offset = source_offset;
8112 }
8113
8114 /* If the target section could have changed then
8115 we may need to change the relocation's target offset. */
8116
8117 target_sec = r_reloc_get_section (&r_rel);
8118 target_relax_info = get_xtensa_relax_info (target_sec);
8119
8120 if (target_relax_info
8121 && (target_relax_info->is_relaxable_literal_section
8122 || target_relax_info->is_relaxable_asm_section))
8123 {
8124 r_reloc new_reloc;
8125 reloc_bfd_fix *fix;
8126 bfd_vma addend_displacement;
8127
8128 translate_reloc (&r_rel, &new_reloc);
8129
8130 if (r_type == R_XTENSA_DIFF8
8131 || r_type == R_XTENSA_DIFF16
8132 || r_type == R_XTENSA_DIFF32)
8133 {
8134 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8135
8136 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8137 {
8138 (*link_info->callbacks->reloc_dangerous)
8139 (link_info, _("invalid relocation address"),
8140 abfd, sec, old_source_offset);
8141 goto error_return;
8142 }
8143
8144 switch (r_type)
8145 {
8146 case R_XTENSA_DIFF8:
8147 diff_value =
8148 bfd_get_8 (abfd, &contents[old_source_offset]);
8149 break;
8150 case R_XTENSA_DIFF16:
8151 diff_value =
8152 bfd_get_16 (abfd, &contents[old_source_offset]);
8153 break;
8154 case R_XTENSA_DIFF32:
8155 diff_value =
8156 bfd_get_32 (abfd, &contents[old_source_offset]);
8157 break;
8158 }
8159
8160 new_end_offset = offset_with_removed_text
8161 (&target_relax_info->action_list,
8162 r_rel.target_offset + diff_value);
8163 diff_value = new_end_offset - new_reloc.target_offset;
8164
8165 switch (r_type)
8166 {
8167 case R_XTENSA_DIFF8:
8168 diff_mask = 0xff;
8169 bfd_put_8 (abfd, diff_value,
8170 &contents[old_source_offset]);
8171 break;
8172 case R_XTENSA_DIFF16:
8173 diff_mask = 0xffff;
8174 bfd_put_16 (abfd, diff_value,
8175 &contents[old_source_offset]);
8176 break;
8177 case R_XTENSA_DIFF32:
8178 diff_mask = 0xffffffff;
8179 bfd_put_32 (abfd, diff_value,
8180 &contents[old_source_offset]);
8181 break;
8182 }
8183
8184 /* Check for overflow. */
8185 if ((diff_value & ~diff_mask) != 0)
8186 {
8187 (*link_info->callbacks->reloc_dangerous)
8188 (link_info, _("overflow after relaxation"),
8189 abfd, sec, old_source_offset);
8190 goto error_return;
8191 }
8192
8193 pin_contents (sec, contents);
8194 }
8195
8196 /* FIXME: If the relocation still references a section in
8197 the same input file, the relocation should be modified
8198 directly instead of adding a "fix" record. */
8199
8200 addend_displacement =
8201 new_reloc.target_offset + new_reloc.virtual_offset;
8202
8203 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
8204 r_reloc_get_section (&new_reloc),
8205 addend_displacement, TRUE);
8206 add_fix (sec, fix);
8207 }
8208
8209 pin_internal_relocs (sec, internal_relocs);
8210 }
8211 }
8212
8213 if ((relax_info->is_relaxable_literal_section
8214 || relax_info->is_relaxable_asm_section)
8215 && relax_info->action_list.head)
8216 {
8217 /* Walk through the planned actions and build up a table
8218 of move, copy and fill records. Use the move, copy and
8219 fill records to perform the actions once. */
8220
8221 bfd_size_type size = sec->size;
8222 int removed = 0;
8223 bfd_size_type final_size, copy_size, orig_insn_size;
8224 bfd_byte *scratch = NULL;
8225 bfd_byte *dup_contents = NULL;
8226 bfd_size_type orig_size = size;
8227 bfd_vma orig_dot = 0;
8228 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8229 orig dot in physical memory. */
8230 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8231 bfd_vma dup_dot = 0;
8232
8233 text_action *action = relax_info->action_list.head;
8234
8235 final_size = sec->size;
8236 for (action = relax_info->action_list.head; action;
8237 action = action->next)
8238 {
8239 final_size -= action->removed_bytes;
8240 }
8241
8242 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8243 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8244
8245 /* The dot is the current fill location. */
8246 #if DEBUG
8247 print_action_list (stderr, &relax_info->action_list);
8248 #endif
8249
8250 for (action = relax_info->action_list.head; action;
8251 action = action->next)
8252 {
8253 virtual_action = FALSE;
8254 if (action->offset > orig_dot)
8255 {
8256 orig_dot += orig_dot_copied;
8257 orig_dot_copied = 0;
8258 orig_dot_vo = 0;
8259 /* Out of the virtual world. */
8260 }
8261
8262 if (action->offset > orig_dot)
8263 {
8264 copy_size = action->offset - orig_dot;
8265 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8266 orig_dot += copy_size;
8267 dup_dot += copy_size;
8268 BFD_ASSERT (action->offset == orig_dot);
8269 }
8270 else if (action->offset < orig_dot)
8271 {
8272 if (action->action == ta_fill
8273 && action->offset - action->removed_bytes == orig_dot)
8274 {
8275 /* This is OK because the fill only effects the dup_dot. */
8276 }
8277 else if (action->action == ta_add_literal)
8278 {
8279 /* TBD. Might need to handle this. */
8280 }
8281 }
8282 if (action->offset == orig_dot)
8283 {
8284 if (action->virtual_offset > orig_dot_vo)
8285 {
8286 if (orig_dot_vo == 0)
8287 {
8288 /* Need to copy virtual_offset bytes. Probably four. */
8289 copy_size = action->virtual_offset - orig_dot_vo;
8290 memmove (&dup_contents[dup_dot],
8291 &contents[orig_dot], copy_size);
8292 orig_dot_copied = copy_size;
8293 dup_dot += copy_size;
8294 }
8295 virtual_action = TRUE;
8296 }
8297 else
8298 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8299 }
8300 switch (action->action)
8301 {
8302 case ta_remove_literal:
8303 case ta_remove_insn:
8304 BFD_ASSERT (action->removed_bytes >= 0);
8305 orig_dot += action->removed_bytes;
8306 break;
8307
8308 case ta_narrow_insn:
8309 orig_insn_size = 3;
8310 copy_size = 2;
8311 memmove (scratch, &contents[orig_dot], orig_insn_size);
8312 BFD_ASSERT (action->removed_bytes == 1);
8313 rv = narrow_instruction (scratch, final_size, 0);
8314 BFD_ASSERT (rv);
8315 memmove (&dup_contents[dup_dot], scratch, copy_size);
8316 orig_dot += orig_insn_size;
8317 dup_dot += copy_size;
8318 break;
8319
8320 case ta_fill:
8321 if (action->removed_bytes >= 0)
8322 orig_dot += action->removed_bytes;
8323 else
8324 {
8325 /* Already zeroed in dup_contents. Just bump the
8326 counters. */
8327 dup_dot += (-action->removed_bytes);
8328 }
8329 break;
8330
8331 case ta_none:
8332 BFD_ASSERT (action->removed_bytes == 0);
8333 break;
8334
8335 case ta_convert_longcall:
8336 case ta_remove_longcall:
8337 /* These will be removed or converted before we get here. */
8338 BFD_ASSERT (0);
8339 break;
8340
8341 case ta_widen_insn:
8342 orig_insn_size = 2;
8343 copy_size = 3;
8344 memmove (scratch, &contents[orig_dot], orig_insn_size);
8345 BFD_ASSERT (action->removed_bytes == -1);
8346 rv = widen_instruction (scratch, final_size, 0);
8347 BFD_ASSERT (rv);
8348 memmove (&dup_contents[dup_dot], scratch, copy_size);
8349 orig_dot += orig_insn_size;
8350 dup_dot += copy_size;
8351 break;
8352
8353 case ta_add_literal:
8354 orig_insn_size = 0;
8355 copy_size = 4;
8356 BFD_ASSERT (action->removed_bytes == -4);
8357 /* TBD -- place the literal value here and insert
8358 into the table. */
8359 memset (&dup_contents[dup_dot], 0, 4);
8360 pin_internal_relocs (sec, internal_relocs);
8361 pin_contents (sec, contents);
8362
8363 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8364 relax_info, &internal_relocs, &action->value))
8365 goto error_return;
8366
8367 if (virtual_action)
8368 orig_dot_vo += copy_size;
8369
8370 orig_dot += orig_insn_size;
8371 dup_dot += copy_size;
8372 break;
8373
8374 default:
8375 /* Not implemented yet. */
8376 BFD_ASSERT (0);
8377 break;
8378 }
8379
8380 size -= action->removed_bytes;
8381 removed += action->removed_bytes;
8382 BFD_ASSERT (dup_dot <= final_size);
8383 BFD_ASSERT (orig_dot <= orig_size);
8384 }
8385
8386 orig_dot += orig_dot_copied;
8387 orig_dot_copied = 0;
8388
8389 if (orig_dot != orig_size)
8390 {
8391 copy_size = orig_size - orig_dot;
8392 BFD_ASSERT (orig_size > orig_dot);
8393 BFD_ASSERT (dup_dot + copy_size == final_size);
8394 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8395 orig_dot += copy_size;
8396 dup_dot += copy_size;
8397 }
8398 BFD_ASSERT (orig_size == orig_dot);
8399 BFD_ASSERT (final_size == dup_dot);
8400
8401 /* Move the dup_contents back. */
8402 if (final_size > orig_size)
8403 {
8404 /* Contents need to be reallocated. Swap the dup_contents into
8405 contents. */
8406 sec->contents = dup_contents;
8407 free (contents);
8408 contents = dup_contents;
8409 pin_contents (sec, contents);
8410 }
8411 else
8412 {
8413 BFD_ASSERT (final_size <= orig_size);
8414 memset (contents, 0, orig_size);
8415 memcpy (contents, dup_contents, final_size);
8416 free (dup_contents);
8417 }
8418 free (scratch);
8419 pin_contents (sec, contents);
8420
8421 sec->size = final_size;
8422 }
8423
8424 error_return:
8425 release_internal_relocs (sec, internal_relocs);
8426 release_contents (sec, contents);
8427 return ok;
8428 }
8429
8430
8431 static bfd_boolean
8432 translate_section_fixes (asection *sec)
8433 {
8434 xtensa_relax_info *relax_info;
8435 reloc_bfd_fix *r;
8436
8437 relax_info = get_xtensa_relax_info (sec);
8438 if (!relax_info)
8439 return TRUE;
8440
8441 for (r = relax_info->fix_list; r != NULL; r = r->next)
8442 if (!translate_reloc_bfd_fix (r))
8443 return FALSE;
8444
8445 return TRUE;
8446 }
8447
8448
8449 /* Translate a fix given the mapping in the relax info for the target
8450 section. If it has already been translated, no work is required. */
8451
8452 static bfd_boolean
8453 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
8454 {
8455 reloc_bfd_fix new_fix;
8456 asection *sec;
8457 xtensa_relax_info *relax_info;
8458 removed_literal *removed;
8459 bfd_vma new_offset, target_offset;
8460
8461 if (fix->translated)
8462 return TRUE;
8463
8464 sec = fix->target_sec;
8465 target_offset = fix->target_offset;
8466
8467 relax_info = get_xtensa_relax_info (sec);
8468 if (!relax_info)
8469 {
8470 fix->translated = TRUE;
8471 return TRUE;
8472 }
8473
8474 new_fix = *fix;
8475
8476 /* The fix does not need to be translated if the section cannot change. */
8477 if (!relax_info->is_relaxable_literal_section
8478 && !relax_info->is_relaxable_asm_section)
8479 {
8480 fix->translated = TRUE;
8481 return TRUE;
8482 }
8483
8484 /* If the literal has been moved and this relocation was on an
8485 opcode, then the relocation should move to the new literal
8486 location. Otherwise, the relocation should move within the
8487 section. */
8488
8489 removed = FALSE;
8490 if (is_operand_relocation (fix->src_type))
8491 {
8492 /* Check if the original relocation is against a literal being
8493 removed. */
8494 removed = find_removed_literal (&relax_info->removed_list,
8495 target_offset);
8496 }
8497
8498 if (removed)
8499 {
8500 asection *new_sec;
8501
8502 /* The fact that there is still a relocation to this literal indicates
8503 that the literal is being coalesced, not simply removed. */
8504 BFD_ASSERT (removed->to.abfd != NULL);
8505
8506 /* This was moved to some other address (possibly another section). */
8507 new_sec = r_reloc_get_section (&removed->to);
8508 if (new_sec != sec)
8509 {
8510 sec = new_sec;
8511 relax_info = get_xtensa_relax_info (sec);
8512 if (!relax_info ||
8513 (!relax_info->is_relaxable_literal_section
8514 && !relax_info->is_relaxable_asm_section))
8515 {
8516 target_offset = removed->to.target_offset;
8517 new_fix.target_sec = new_sec;
8518 new_fix.target_offset = target_offset;
8519 new_fix.translated = TRUE;
8520 *fix = new_fix;
8521 return TRUE;
8522 }
8523 }
8524 target_offset = removed->to.target_offset;
8525 new_fix.target_sec = new_sec;
8526 }
8527
8528 /* The target address may have been moved within its section. */
8529 new_offset = offset_with_removed_text (&relax_info->action_list,
8530 target_offset);
8531
8532 new_fix.target_offset = new_offset;
8533 new_fix.target_offset = new_offset;
8534 new_fix.translated = TRUE;
8535 *fix = new_fix;
8536 return TRUE;
8537 }
8538
8539
8540 /* Fix up a relocation to take account of removed literals. */
8541
8542 static void
8543 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
8544 {
8545 asection *sec;
8546 xtensa_relax_info *relax_info;
8547 removed_literal *removed;
8548 bfd_vma new_offset, target_offset, removed_bytes;
8549
8550 *new_rel = *orig_rel;
8551
8552 if (!r_reloc_is_defined (orig_rel))
8553 return;
8554 sec = r_reloc_get_section (orig_rel);
8555
8556 relax_info = get_xtensa_relax_info (sec);
8557 BFD_ASSERT (relax_info);
8558
8559 if (!relax_info->is_relaxable_literal_section
8560 && !relax_info->is_relaxable_asm_section)
8561 return;
8562
8563 target_offset = orig_rel->target_offset;
8564
8565 removed = FALSE;
8566 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8567 {
8568 /* Check if the original relocation is against a literal being
8569 removed. */
8570 removed = find_removed_literal (&relax_info->removed_list,
8571 target_offset);
8572 }
8573 if (removed && removed->to.abfd)
8574 {
8575 asection *new_sec;
8576
8577 /* The fact that there is still a relocation to this literal indicates
8578 that the literal is being coalesced, not simply removed. */
8579 BFD_ASSERT (removed->to.abfd != NULL);
8580
8581 /* This was moved to some other address
8582 (possibly in another section). */
8583 *new_rel = removed->to;
8584 new_sec = r_reloc_get_section (new_rel);
8585 if (new_sec != sec)
8586 {
8587 sec = new_sec;
8588 relax_info = get_xtensa_relax_info (sec);
8589 if (!relax_info
8590 || (!relax_info->is_relaxable_literal_section
8591 && !relax_info->is_relaxable_asm_section))
8592 return;
8593 }
8594 target_offset = new_rel->target_offset;
8595 }
8596
8597 /* ...and the target address may have been moved within its section. */
8598 new_offset = offset_with_removed_text (&relax_info->action_list,
8599 target_offset);
8600
8601 /* Modify the offset and addend. */
8602 removed_bytes = target_offset - new_offset;
8603 new_rel->target_offset = new_offset;
8604 new_rel->rela.r_addend -= removed_bytes;
8605 }
8606
8607
8608 /* For dynamic links, there may be a dynamic relocation for each
8609 literal. The number of dynamic relocations must be computed in
8610 size_dynamic_sections, which occurs before relaxation. When a
8611 literal is removed, this function checks if there is a corresponding
8612 dynamic relocation and shrinks the size of the appropriate dynamic
8613 relocation section accordingly. At this point, the contents of the
8614 dynamic relocation sections have not yet been filled in, so there's
8615 nothing else that needs to be done. */
8616
8617 static void
8618 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8619 bfd *abfd,
8620 asection *input_section,
8621 Elf_Internal_Rela *rel)
8622 {
8623 struct elf_xtensa_link_hash_table *htab;
8624 Elf_Internal_Shdr *symtab_hdr;
8625 struct elf_link_hash_entry **sym_hashes;
8626 unsigned long r_symndx;
8627 int r_type;
8628 struct elf_link_hash_entry *h;
8629 bfd_boolean dynamic_symbol;
8630
8631 htab = elf_xtensa_hash_table (info);
8632 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8633 sym_hashes = elf_sym_hashes (abfd);
8634
8635 r_type = ELF32_R_TYPE (rel->r_info);
8636 r_symndx = ELF32_R_SYM (rel->r_info);
8637
8638 if (r_symndx < symtab_hdr->sh_info)
8639 h = NULL;
8640 else
8641 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8642
8643 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
8644
8645 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8646 && (input_section->flags & SEC_ALLOC) != 0
8647 && (dynamic_symbol || info->shared))
8648 {
8649 asection *srel;
8650 bfd_boolean is_plt = FALSE;
8651
8652 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8653 {
8654 srel = htab->srelplt;
8655 is_plt = TRUE;
8656 }
8657 else
8658 srel = htab->srelgot;
8659
8660 /* Reduce size of the .rela.* section by one reloc. */
8661 BFD_ASSERT (srel != NULL);
8662 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8663 srel->size -= sizeof (Elf32_External_Rela);
8664
8665 if (is_plt)
8666 {
8667 asection *splt, *sgotplt, *srelgot;
8668 int reloc_index, chunk;
8669
8670 /* Find the PLT reloc index of the entry being removed. This
8671 is computed from the size of ".rela.plt". It is needed to
8672 figure out which PLT chunk to resize. Usually "last index
8673 = size - 1" since the index starts at zero, but in this
8674 context, the size has just been decremented so there's no
8675 need to subtract one. */
8676 reloc_index = srel->size / sizeof (Elf32_External_Rela);
8677
8678 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8679 splt = elf_xtensa_get_plt_section (info, chunk);
8680 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
8681 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8682
8683 /* Check if an entire PLT chunk has just been eliminated. */
8684 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8685 {
8686 /* The two magic GOT entries for that chunk can go away. */
8687 srelgot = htab->srelgot;
8688 BFD_ASSERT (srelgot != NULL);
8689 srelgot->reloc_count -= 2;
8690 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8691 sgotplt->size -= 8;
8692
8693 /* There should be only one entry left (and it will be
8694 removed below). */
8695 BFD_ASSERT (sgotplt->size == 4);
8696 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
8697 }
8698
8699 BFD_ASSERT (sgotplt->size >= 4);
8700 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
8701
8702 sgotplt->size -= 4;
8703 splt->size -= PLT_ENTRY_SIZE;
8704 }
8705 }
8706 }
8707
8708
8709 /* Take an r_rel and move it to another section. This usually
8710 requires extending the interal_relocation array and pinning it. If
8711 the original r_rel is from the same BFD, we can complete this here.
8712 Otherwise, we add a fix record to let the final link fix the
8713 appropriate address. Contents and internal relocations for the
8714 section must be pinned after calling this routine. */
8715
8716 static bfd_boolean
8717 move_literal (bfd *abfd,
8718 struct bfd_link_info *link_info,
8719 asection *sec,
8720 bfd_vma offset,
8721 bfd_byte *contents,
8722 xtensa_relax_info *relax_info,
8723 Elf_Internal_Rela **internal_relocs_p,
8724 const literal_value *lit)
8725 {
8726 Elf_Internal_Rela *new_relocs = NULL;
8727 size_t new_relocs_count = 0;
8728 Elf_Internal_Rela this_rela;
8729 const r_reloc *r_rel;
8730
8731 r_rel = &lit->r_rel;
8732 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8733
8734 if (r_reloc_is_const (r_rel))
8735 bfd_put_32 (abfd, lit->value, contents + offset);
8736 else
8737 {
8738 int r_type;
8739 unsigned i;
8740 asection *target_sec;
8741 reloc_bfd_fix *fix;
8742 unsigned insert_at;
8743
8744 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8745 target_sec = r_reloc_get_section (r_rel);
8746
8747 /* This is the difficult case. We have to create a fix up. */
8748 this_rela.r_offset = offset;
8749 this_rela.r_info = ELF32_R_INFO (0, r_type);
8750 this_rela.r_addend =
8751 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8752 bfd_put_32 (abfd, lit->value, contents + offset);
8753
8754 /* Currently, we cannot move relocations during a relocatable link. */
8755 BFD_ASSERT (!link_info->relocatable);
8756 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8757 r_reloc_get_section (r_rel),
8758 r_rel->target_offset + r_rel->virtual_offset,
8759 FALSE);
8760 /* We also need to mark that relocations are needed here. */
8761 sec->flags |= SEC_RELOC;
8762
8763 translate_reloc_bfd_fix (fix);
8764 /* This fix has not yet been translated. */
8765 add_fix (sec, fix);
8766
8767 /* Add the relocation. If we have already allocated our own
8768 space for the relocations and we have room for more, then use
8769 it. Otherwise, allocate new space and move the literals. */
8770 insert_at = sec->reloc_count;
8771 for (i = 0; i < sec->reloc_count; ++i)
8772 {
8773 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8774 {
8775 insert_at = i;
8776 break;
8777 }
8778 }
8779
8780 if (*internal_relocs_p != relax_info->allocated_relocs
8781 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8782 {
8783 BFD_ASSERT (relax_info->allocated_relocs == NULL
8784 || sec->reloc_count == relax_info->relocs_count);
8785
8786 if (relax_info->allocated_relocs_count == 0)
8787 new_relocs_count = (sec->reloc_count + 2) * 2;
8788 else
8789 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8790
8791 new_relocs = (Elf_Internal_Rela *)
8792 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8793 if (!new_relocs)
8794 return FALSE;
8795
8796 /* We could handle this more quickly by finding the split point. */
8797 if (insert_at != 0)
8798 memcpy (new_relocs, *internal_relocs_p,
8799 insert_at * sizeof (Elf_Internal_Rela));
8800
8801 new_relocs[insert_at] = this_rela;
8802
8803 if (insert_at != sec->reloc_count)
8804 memcpy (new_relocs + insert_at + 1,
8805 (*internal_relocs_p) + insert_at,
8806 (sec->reloc_count - insert_at)
8807 * sizeof (Elf_Internal_Rela));
8808
8809 if (*internal_relocs_p != relax_info->allocated_relocs)
8810 {
8811 /* The first time we re-allocate, we can only free the
8812 old relocs if they were allocated with bfd_malloc.
8813 This is not true when keep_memory is in effect. */
8814 if (!link_info->keep_memory)
8815 free (*internal_relocs_p);
8816 }
8817 else
8818 free (*internal_relocs_p);
8819 relax_info->allocated_relocs = new_relocs;
8820 relax_info->allocated_relocs_count = new_relocs_count;
8821 elf_section_data (sec)->relocs = new_relocs;
8822 sec->reloc_count++;
8823 relax_info->relocs_count = sec->reloc_count;
8824 *internal_relocs_p = new_relocs;
8825 }
8826 else
8827 {
8828 if (insert_at != sec->reloc_count)
8829 {
8830 unsigned idx;
8831 for (idx = sec->reloc_count; idx > insert_at; idx--)
8832 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8833 }
8834 (*internal_relocs_p)[insert_at] = this_rela;
8835 sec->reloc_count++;
8836 if (relax_info->allocated_relocs)
8837 relax_info->relocs_count = sec->reloc_count;
8838 }
8839 }
8840 return TRUE;
8841 }
8842
8843
8844 /* This is similar to relax_section except that when a target is moved,
8845 we shift addresses up. We also need to modify the size. This
8846 algorithm does NOT allow for relocations into the middle of the
8847 property sections. */
8848
8849 static bfd_boolean
8850 relax_property_section (bfd *abfd,
8851 asection *sec,
8852 struct bfd_link_info *link_info)
8853 {
8854 Elf_Internal_Rela *internal_relocs;
8855 bfd_byte *contents;
8856 unsigned i;
8857 bfd_boolean ok = TRUE;
8858 bfd_boolean is_full_prop_section;
8859 size_t last_zfill_target_offset = 0;
8860 asection *last_zfill_target_sec = NULL;
8861 bfd_size_type sec_size;
8862 bfd_size_type entry_size;
8863
8864 sec_size = bfd_get_section_limit (abfd, sec);
8865 internal_relocs = retrieve_internal_relocs (abfd, sec,
8866 link_info->keep_memory);
8867 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8868 if (contents == NULL && sec_size != 0)
8869 {
8870 ok = FALSE;
8871 goto error_return;
8872 }
8873
8874 is_full_prop_section = xtensa_is_proptable_section (sec);
8875 if (is_full_prop_section)
8876 entry_size = 12;
8877 else
8878 entry_size = 8;
8879
8880 if (internal_relocs)
8881 {
8882 for (i = 0; i < sec->reloc_count; i++)
8883 {
8884 Elf_Internal_Rela *irel;
8885 xtensa_relax_info *target_relax_info;
8886 unsigned r_type;
8887 asection *target_sec;
8888 literal_value val;
8889 bfd_byte *size_p, *flags_p;
8890
8891 /* Locally change the source address.
8892 Translate the target to the new target address.
8893 If it points to this section and has been removed, MOVE IT.
8894 Also, don't forget to modify the associated SIZE at
8895 (offset + 4). */
8896
8897 irel = &internal_relocs[i];
8898 r_type = ELF32_R_TYPE (irel->r_info);
8899 if (r_type == R_XTENSA_NONE)
8900 continue;
8901
8902 /* Find the literal value. */
8903 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8904 size_p = &contents[irel->r_offset + 4];
8905 flags_p = NULL;
8906 if (is_full_prop_section)
8907 flags_p = &contents[irel->r_offset + 8];
8908 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
8909
8910 target_sec = r_reloc_get_section (&val.r_rel);
8911 target_relax_info = get_xtensa_relax_info (target_sec);
8912
8913 if (target_relax_info
8914 && (target_relax_info->is_relaxable_literal_section
8915 || target_relax_info->is_relaxable_asm_section ))
8916 {
8917 /* Translate the relocation's destination. */
8918 bfd_vma new_offset, new_end_offset;
8919 long old_size, new_size;
8920
8921 new_offset = offset_with_removed_text
8922 (&target_relax_info->action_list, val.r_rel.target_offset);
8923
8924 /* Assert that we are not out of bounds. */
8925 old_size = bfd_get_32 (abfd, size_p);
8926
8927 if (old_size == 0)
8928 {
8929 /* Only the first zero-sized unreachable entry is
8930 allowed to expand. In this case the new offset
8931 should be the offset before the fill and the new
8932 size is the expansion size. For other zero-sized
8933 entries the resulting size should be zero with an
8934 offset before or after the fill address depending
8935 on whether the expanding unreachable entry
8936 preceeds it. */
8937 if (last_zfill_target_sec
8938 && last_zfill_target_sec == target_sec
8939 && last_zfill_target_offset == val.r_rel.target_offset)
8940 new_end_offset = new_offset;
8941 else
8942 {
8943 new_end_offset = new_offset;
8944 new_offset = offset_with_removed_text_before_fill
8945 (&target_relax_info->action_list,
8946 val.r_rel.target_offset);
8947
8948 /* If it is not unreachable and we have not yet
8949 seen an unreachable at this address, place it
8950 before the fill address. */
8951 if (!flags_p
8952 || (bfd_get_32 (abfd, flags_p)
8953 & XTENSA_PROP_UNREACHABLE) == 0)
8954 new_end_offset = new_offset;
8955 else
8956 {
8957 last_zfill_target_sec = target_sec;
8958 last_zfill_target_offset = val.r_rel.target_offset;
8959 }
8960 }
8961 }
8962 else
8963 {
8964 new_end_offset = offset_with_removed_text_before_fill
8965 (&target_relax_info->action_list,
8966 val.r_rel.target_offset + old_size);
8967 }
8968
8969 new_size = new_end_offset - new_offset;
8970
8971 if (new_size != old_size)
8972 {
8973 bfd_put_32 (abfd, new_size, size_p);
8974 pin_contents (sec, contents);
8975 }
8976
8977 if (new_offset != val.r_rel.target_offset)
8978 {
8979 bfd_vma diff = new_offset - val.r_rel.target_offset;
8980 irel->r_addend += diff;
8981 pin_internal_relocs (sec, internal_relocs);
8982 }
8983 }
8984 }
8985 }
8986
8987 /* Combine adjacent property table entries. This is also done in
8988 finish_dynamic_sections() but at that point it's too late to
8989 reclaim the space in the output section, so we do this twice. */
8990
8991 if (internal_relocs && (!link_info->relocatable
8992 || xtensa_is_littable_section (sec)))
8993 {
8994 Elf_Internal_Rela *last_irel = NULL;
8995 Elf_Internal_Rela *irel, *next_rel, *rel_end;
8996 int removed_bytes = 0;
8997 bfd_vma offset;
8998 bfd_vma section_size;
8999 flagword predef_flags;
9000
9001 predef_flags = xtensa_get_property_predef_flags (sec);
9002
9003 /* Walk over memory and relocations at the same time.
9004 This REQUIRES that the internal_relocs be sorted by offset. */
9005 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9006 internal_reloc_compare);
9007
9008 pin_internal_relocs (sec, internal_relocs);
9009 pin_contents (sec, contents);
9010
9011 next_rel = internal_relocs;
9012 rel_end = internal_relocs + sec->reloc_count;
9013
9014 section_size = sec->size;
9015 BFD_ASSERT (section_size % entry_size == 0);
9016
9017 for (offset = 0; offset < section_size; offset += entry_size)
9018 {
9019 Elf_Internal_Rela *offset_rel, *extra_rel;
9020 bfd_vma bytes_to_remove, size, actual_offset;
9021 bfd_boolean remove_this_rel;
9022 flagword flags;
9023
9024 /* Find the first relocation for the entry at the current offset.
9025 Adjust the offsets of any extra relocations for the previous
9026 entry. */
9027 offset_rel = NULL;
9028 if (next_rel)
9029 {
9030 for (irel = next_rel; irel < rel_end; irel++)
9031 {
9032 if ((irel->r_offset == offset
9033 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9034 || irel->r_offset > offset)
9035 {
9036 offset_rel = irel;
9037 break;
9038 }
9039 irel->r_offset -= removed_bytes;
9040 irel++;
9041 }
9042 }
9043
9044 /* Find the next relocation (if there are any left). */
9045 extra_rel = NULL;
9046 if (offset_rel)
9047 {
9048 for (irel = offset_rel + 1; irel < rel_end; irel++)
9049 {
9050 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9051 {
9052 extra_rel = irel;
9053 break;
9054 }
9055 }
9056 }
9057
9058 /* Check if there are relocations on the current entry. There
9059 should usually be a relocation on the offset field. If there
9060 are relocations on the size or flags, then we can't optimize
9061 this entry. Also, find the next relocation to examine on the
9062 next iteration. */
9063 if (offset_rel)
9064 {
9065 if (offset_rel->r_offset >= offset + entry_size)
9066 {
9067 next_rel = offset_rel;
9068 /* There are no relocations on the current entry, but we
9069 might still be able to remove it if the size is zero. */
9070 offset_rel = NULL;
9071 }
9072 else if (offset_rel->r_offset > offset
9073 || (extra_rel
9074 && extra_rel->r_offset < offset + entry_size))
9075 {
9076 /* There is a relocation on the size or flags, so we can't
9077 do anything with this entry. Continue with the next. */
9078 next_rel = offset_rel;
9079 continue;
9080 }
9081 else
9082 {
9083 BFD_ASSERT (offset_rel->r_offset == offset);
9084 offset_rel->r_offset -= removed_bytes;
9085 next_rel = offset_rel + 1;
9086 }
9087 }
9088 else
9089 next_rel = NULL;
9090
9091 remove_this_rel = FALSE;
9092 bytes_to_remove = 0;
9093 actual_offset = offset - removed_bytes;
9094 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9095
9096 if (is_full_prop_section)
9097 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9098 else
9099 flags = predef_flags;
9100
9101 if (size == 0
9102 && (flags & XTENSA_PROP_ALIGN) == 0
9103 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
9104 {
9105 /* Always remove entries with zero size and no alignment. */
9106 bytes_to_remove = entry_size;
9107 if (offset_rel)
9108 remove_this_rel = TRUE;
9109 }
9110 else if (offset_rel
9111 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
9112 {
9113 if (last_irel)
9114 {
9115 flagword old_flags;
9116 bfd_vma old_size =
9117 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9118 bfd_vma old_address =
9119 (last_irel->r_addend
9120 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9121 bfd_vma new_address =
9122 (offset_rel->r_addend
9123 + bfd_get_32 (abfd, &contents[actual_offset]));
9124 if (is_full_prop_section)
9125 old_flags = bfd_get_32
9126 (abfd, &contents[last_irel->r_offset + 8]);
9127 else
9128 old_flags = predef_flags;
9129
9130 if ((ELF32_R_SYM (offset_rel->r_info)
9131 == ELF32_R_SYM (last_irel->r_info))
9132 && old_address + old_size == new_address
9133 && old_flags == flags
9134 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9135 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
9136 {
9137 /* Fix the old size. */
9138 bfd_put_32 (abfd, old_size + size,
9139 &contents[last_irel->r_offset + 4]);
9140 bytes_to_remove = entry_size;
9141 remove_this_rel = TRUE;
9142 }
9143 else
9144 last_irel = offset_rel;
9145 }
9146 else
9147 last_irel = offset_rel;
9148 }
9149
9150 if (remove_this_rel)
9151 {
9152 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9153 /* In case this is the last entry, move the relocation offset
9154 to the previous entry, if there is one. */
9155 if (offset_rel->r_offset >= bytes_to_remove)
9156 offset_rel->r_offset -= bytes_to_remove;
9157 else
9158 offset_rel->r_offset = 0;
9159 }
9160
9161 if (bytes_to_remove != 0)
9162 {
9163 removed_bytes += bytes_to_remove;
9164 if (offset + bytes_to_remove < section_size)
9165 memmove (&contents[actual_offset],
9166 &contents[actual_offset + bytes_to_remove],
9167 section_size - offset - bytes_to_remove);
9168 }
9169 }
9170
9171 if (removed_bytes)
9172 {
9173 /* Fix up any extra relocations on the last entry. */
9174 for (irel = next_rel; irel < rel_end; irel++)
9175 irel->r_offset -= removed_bytes;
9176
9177 /* Clear the removed bytes. */
9178 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9179
9180 sec->size = section_size - removed_bytes;
9181
9182 if (xtensa_is_littable_section (sec))
9183 {
9184 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
9185 if (sgotloc)
9186 sgotloc->size -= removed_bytes;
9187 }
9188 }
9189 }
9190
9191 error_return:
9192 release_internal_relocs (sec, internal_relocs);
9193 release_contents (sec, contents);
9194 return ok;
9195 }
9196
9197 \f
9198 /* Third relaxation pass. */
9199
9200 /* Change symbol values to account for removed literals. */
9201
9202 bfd_boolean
9203 relax_section_symbols (bfd *abfd, asection *sec)
9204 {
9205 xtensa_relax_info *relax_info;
9206 unsigned int sec_shndx;
9207 Elf_Internal_Shdr *symtab_hdr;
9208 Elf_Internal_Sym *isymbuf;
9209 unsigned i, num_syms, num_locals;
9210
9211 relax_info = get_xtensa_relax_info (sec);
9212 BFD_ASSERT (relax_info);
9213
9214 if (!relax_info->is_relaxable_literal_section
9215 && !relax_info->is_relaxable_asm_section)
9216 return TRUE;
9217
9218 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9219
9220 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9221 isymbuf = retrieve_local_syms (abfd);
9222
9223 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9224 num_locals = symtab_hdr->sh_info;
9225
9226 /* Adjust the local symbols defined in this section. */
9227 for (i = 0; i < num_locals; i++)
9228 {
9229 Elf_Internal_Sym *isym = &isymbuf[i];
9230
9231 if (isym->st_shndx == sec_shndx)
9232 {
9233 bfd_vma new_address = offset_with_removed_text
9234 (&relax_info->action_list, isym->st_value);
9235 bfd_vma new_size = isym->st_size;
9236
9237 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9238 {
9239 bfd_vma new_end = offset_with_removed_text
9240 (&relax_info->action_list, isym->st_value + isym->st_size);
9241 new_size = new_end - new_address;
9242 }
9243
9244 isym->st_value = new_address;
9245 isym->st_size = new_size;
9246 }
9247 }
9248
9249 /* Now adjust the global symbols defined in this section. */
9250 for (i = 0; i < (num_syms - num_locals); i++)
9251 {
9252 struct elf_link_hash_entry *sym_hash;
9253
9254 sym_hash = elf_sym_hashes (abfd)[i];
9255
9256 if (sym_hash->root.type == bfd_link_hash_warning)
9257 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9258
9259 if ((sym_hash->root.type == bfd_link_hash_defined
9260 || sym_hash->root.type == bfd_link_hash_defweak)
9261 && sym_hash->root.u.def.section == sec)
9262 {
9263 bfd_vma new_address = offset_with_removed_text
9264 (&relax_info->action_list, sym_hash->root.u.def.value);
9265 bfd_vma new_size = sym_hash->size;
9266
9267 if (sym_hash->type == STT_FUNC)
9268 {
9269 bfd_vma new_end = offset_with_removed_text
9270 (&relax_info->action_list,
9271 sym_hash->root.u.def.value + sym_hash->size);
9272 new_size = new_end - new_address;
9273 }
9274
9275 sym_hash->root.u.def.value = new_address;
9276 sym_hash->size = new_size;
9277 }
9278 }
9279
9280 return TRUE;
9281 }
9282
9283 \f
9284 /* "Fix" handling functions, called while performing relocations. */
9285
9286 static bfd_boolean
9287 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9288 bfd *input_bfd,
9289 asection *input_section,
9290 bfd_byte *contents)
9291 {
9292 r_reloc r_rel;
9293 asection *sec, *old_sec;
9294 bfd_vma old_offset;
9295 int r_type = ELF32_R_TYPE (rel->r_info);
9296 reloc_bfd_fix *fix;
9297
9298 if (r_type == R_XTENSA_NONE)
9299 return TRUE;
9300
9301 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9302 if (!fix)
9303 return TRUE;
9304
9305 r_reloc_init (&r_rel, input_bfd, rel, contents,
9306 bfd_get_section_limit (input_bfd, input_section));
9307 old_sec = r_reloc_get_section (&r_rel);
9308 old_offset = r_rel.target_offset;
9309
9310 if (!old_sec || !r_reloc_is_defined (&r_rel))
9311 {
9312 if (r_type != R_XTENSA_ASM_EXPAND)
9313 {
9314 (*_bfd_error_handler)
9315 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9316 input_bfd, input_section, rel->r_offset,
9317 elf_howto_table[r_type].name);
9318 return FALSE;
9319 }
9320 /* Leave it be. Resolution will happen in a later stage. */
9321 }
9322 else
9323 {
9324 sec = fix->target_sec;
9325 rel->r_addend += ((sec->output_offset + fix->target_offset)
9326 - (old_sec->output_offset + old_offset));
9327 }
9328 return TRUE;
9329 }
9330
9331
9332 static void
9333 do_fix_for_final_link (Elf_Internal_Rela *rel,
9334 bfd *input_bfd,
9335 asection *input_section,
9336 bfd_byte *contents,
9337 bfd_vma *relocationp)
9338 {
9339 asection *sec;
9340 int r_type = ELF32_R_TYPE (rel->r_info);
9341 reloc_bfd_fix *fix;
9342 bfd_vma fixup_diff;
9343
9344 if (r_type == R_XTENSA_NONE)
9345 return;
9346
9347 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9348 if (!fix)
9349 return;
9350
9351 sec = fix->target_sec;
9352
9353 fixup_diff = rel->r_addend;
9354 if (elf_howto_table[fix->src_type].partial_inplace)
9355 {
9356 bfd_vma inplace_val;
9357 BFD_ASSERT (fix->src_offset
9358 < bfd_get_section_limit (input_bfd, input_section));
9359 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9360 fixup_diff += inplace_val;
9361 }
9362
9363 *relocationp = (sec->output_section->vma
9364 + sec->output_offset
9365 + fix->target_offset - fixup_diff);
9366 }
9367
9368 \f
9369 /* Miscellaneous utility functions.... */
9370
9371 static asection *
9372 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
9373 {
9374 struct elf_xtensa_link_hash_table *htab;
9375 bfd *dynobj;
9376 char plt_name[10];
9377
9378 if (chunk == 0)
9379 {
9380 htab = elf_xtensa_hash_table (info);
9381 return htab->splt;
9382 }
9383
9384 dynobj = elf_hash_table (info)->dynobj;
9385 sprintf (plt_name, ".plt.%u", chunk);
9386 return bfd_get_section_by_name (dynobj, plt_name);
9387 }
9388
9389
9390 static asection *
9391 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
9392 {
9393 struct elf_xtensa_link_hash_table *htab;
9394 bfd *dynobj;
9395 char got_name[14];
9396
9397 if (chunk == 0)
9398 {
9399 htab = elf_xtensa_hash_table (info);
9400 return htab->sgotplt;
9401 }
9402
9403 dynobj = elf_hash_table (info)->dynobj;
9404 sprintf (got_name, ".got.plt.%u", chunk);
9405 return bfd_get_section_by_name (dynobj, got_name);
9406 }
9407
9408
9409 /* Get the input section for a given symbol index.
9410 If the symbol is:
9411 . a section symbol, return the section;
9412 . a common symbol, return the common section;
9413 . an undefined symbol, return the undefined section;
9414 . an indirect symbol, follow the links;
9415 . an absolute value, return the absolute section. */
9416
9417 static asection *
9418 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
9419 {
9420 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9421 asection *target_sec = NULL;
9422 if (r_symndx < symtab_hdr->sh_info)
9423 {
9424 Elf_Internal_Sym *isymbuf;
9425 unsigned int section_index;
9426
9427 isymbuf = retrieve_local_syms (abfd);
9428 section_index = isymbuf[r_symndx].st_shndx;
9429
9430 if (section_index == SHN_UNDEF)
9431 target_sec = bfd_und_section_ptr;
9432 else if (section_index > 0 && section_index < SHN_LORESERVE)
9433 target_sec = bfd_section_from_elf_index (abfd, section_index);
9434 else if (section_index == SHN_ABS)
9435 target_sec = bfd_abs_section_ptr;
9436 else if (section_index == SHN_COMMON)
9437 target_sec = bfd_com_section_ptr;
9438 else
9439 /* Who knows? */
9440 target_sec = NULL;
9441 }
9442 else
9443 {
9444 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9445 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9446
9447 while (h->root.type == bfd_link_hash_indirect
9448 || h->root.type == bfd_link_hash_warning)
9449 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9450
9451 switch (h->root.type)
9452 {
9453 case bfd_link_hash_defined:
9454 case bfd_link_hash_defweak:
9455 target_sec = h->root.u.def.section;
9456 break;
9457 case bfd_link_hash_common:
9458 target_sec = bfd_com_section_ptr;
9459 break;
9460 case bfd_link_hash_undefined:
9461 case bfd_link_hash_undefweak:
9462 target_sec = bfd_und_section_ptr;
9463 break;
9464 default: /* New indirect warning. */
9465 target_sec = bfd_und_section_ptr;
9466 break;
9467 }
9468 }
9469 return target_sec;
9470 }
9471
9472
9473 static struct elf_link_hash_entry *
9474 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
9475 {
9476 unsigned long indx;
9477 struct elf_link_hash_entry *h;
9478 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9479
9480 if (r_symndx < symtab_hdr->sh_info)
9481 return NULL;
9482
9483 indx = r_symndx - symtab_hdr->sh_info;
9484 h = elf_sym_hashes (abfd)[indx];
9485 while (h->root.type == bfd_link_hash_indirect
9486 || h->root.type == bfd_link_hash_warning)
9487 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9488 return h;
9489 }
9490
9491
9492 /* Get the section-relative offset for a symbol number. */
9493
9494 static bfd_vma
9495 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
9496 {
9497 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9498 bfd_vma offset = 0;
9499
9500 if (r_symndx < symtab_hdr->sh_info)
9501 {
9502 Elf_Internal_Sym *isymbuf;
9503 isymbuf = retrieve_local_syms (abfd);
9504 offset = isymbuf[r_symndx].st_value;
9505 }
9506 else
9507 {
9508 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9509 struct elf_link_hash_entry *h =
9510 elf_sym_hashes (abfd)[indx];
9511
9512 while (h->root.type == bfd_link_hash_indirect
9513 || h->root.type == bfd_link_hash_warning)
9514 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9515 if (h->root.type == bfd_link_hash_defined
9516 || h->root.type == bfd_link_hash_defweak)
9517 offset = h->root.u.def.value;
9518 }
9519 return offset;
9520 }
9521
9522
9523 static bfd_boolean
9524 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
9525 {
9526 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9527 struct elf_link_hash_entry *h;
9528
9529 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9530 if (h && h->root.type == bfd_link_hash_defweak)
9531 return TRUE;
9532 return FALSE;
9533 }
9534
9535
9536 static bfd_boolean
9537 pcrel_reloc_fits (xtensa_opcode opc,
9538 int opnd,
9539 bfd_vma self_address,
9540 bfd_vma dest_address)
9541 {
9542 xtensa_isa isa = xtensa_default_isa;
9543 uint32 valp = dest_address;
9544 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9545 || xtensa_operand_encode (isa, opc, opnd, &valp))
9546 return FALSE;
9547 return TRUE;
9548 }
9549
9550
9551 static bfd_boolean
9552 xtensa_is_property_section (asection *sec)
9553 {
9554 if (xtensa_is_insntable_section (sec)
9555 || xtensa_is_littable_section (sec)
9556 || xtensa_is_proptable_section (sec))
9557 return TRUE;
9558
9559 return FALSE;
9560 }
9561
9562
9563 static bfd_boolean
9564 xtensa_is_insntable_section (asection *sec)
9565 {
9566 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9567 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
9568 return TRUE;
9569
9570 return FALSE;
9571 }
9572
9573
9574 static bfd_boolean
9575 xtensa_is_littable_section (asection *sec)
9576 {
9577 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
9578 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
9579 return TRUE;
9580
9581 return FALSE;
9582 }
9583
9584
9585 static bfd_boolean
9586 xtensa_is_proptable_section (asection *sec)
9587 {
9588 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
9589 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
9590 return TRUE;
9591
9592 return FALSE;
9593 }
9594
9595
9596 static int
9597 internal_reloc_compare (const void *ap, const void *bp)
9598 {
9599 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9600 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9601
9602 if (a->r_offset != b->r_offset)
9603 return (a->r_offset - b->r_offset);
9604
9605 /* We don't need to sort on these criteria for correctness,
9606 but enforcing a more strict ordering prevents unstable qsort
9607 from behaving differently with different implementations.
9608 Without the code below we get correct but different results
9609 on Solaris 2.7 and 2.8. We would like to always produce the
9610 same results no matter the host. */
9611
9612 if (a->r_info != b->r_info)
9613 return (a->r_info - b->r_info);
9614
9615 return (a->r_addend - b->r_addend);
9616 }
9617
9618
9619 static int
9620 internal_reloc_matches (const void *ap, const void *bp)
9621 {
9622 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9623 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9624
9625 /* Check if one entry overlaps with the other; this shouldn't happen
9626 except when searching for a match. */
9627 return (a->r_offset - b->r_offset);
9628 }
9629
9630
9631 /* Predicate function used to look up a section in a particular group. */
9632
9633 static bfd_boolean
9634 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
9635 {
9636 const char *gname = inf;
9637 const char *group_name = elf_group_name (sec);
9638
9639 return (group_name == gname
9640 || (group_name != NULL
9641 && gname != NULL
9642 && strcmp (group_name, gname) == 0));
9643 }
9644
9645
9646 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9647
9648 asection *
9649 xtensa_get_property_section (asection *sec, const char *base_name)
9650 {
9651 const char *suffix, *group_name;
9652 char *prop_sec_name;
9653 asection *prop_sec;
9654
9655 group_name = elf_group_name (sec);
9656 if (group_name)
9657 {
9658 suffix = strrchr (sec->name, '.');
9659 if (suffix == sec->name)
9660 suffix = 0;
9661 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
9662 + (suffix ? strlen (suffix) : 0));
9663 strcpy (prop_sec_name, base_name);
9664 if (suffix)
9665 strcat (prop_sec_name, suffix);
9666 }
9667 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
9668 {
9669 char *linkonce_kind = 0;
9670
9671 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
9672 linkonce_kind = "x.";
9673 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
9674 linkonce_kind = "p.";
9675 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9676 linkonce_kind = "prop.";
9677 else
9678 abort ();
9679
9680 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9681 + strlen (linkonce_kind) + 1);
9682 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
9683 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
9684
9685 suffix = sec->name + linkonce_len;
9686 /* For backward compatibility, replace "t." instead of inserting
9687 the new linkonce_kind (but not for "prop" sections). */
9688 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
9689 suffix += 2;
9690 strcat (prop_sec_name + linkonce_len, suffix);
9691 }
9692 else
9693 prop_sec_name = strdup (base_name);
9694
9695 /* Check if the section already exists. */
9696 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9697 match_section_group,
9698 (void *) group_name);
9699 /* If not, create it. */
9700 if (! prop_sec)
9701 {
9702 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
9703 flags |= (bfd_get_section_flags (sec->owner, sec)
9704 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
9705
9706 prop_sec = bfd_make_section_anyway_with_flags
9707 (sec->owner, strdup (prop_sec_name), flags);
9708 if (! prop_sec)
9709 return 0;
9710
9711 elf_group_name (prop_sec) = group_name;
9712 }
9713
9714 free (prop_sec_name);
9715 return prop_sec;
9716 }
9717
9718
9719 flagword
9720 xtensa_get_property_predef_flags (asection *sec)
9721 {
9722 if (xtensa_is_insntable_section (sec))
9723 return (XTENSA_PROP_INSN
9724 | XTENSA_PROP_INSN_NO_TRANSFORM
9725 | XTENSA_PROP_INSN_NO_REORDER);
9726
9727 if (xtensa_is_littable_section (sec))
9728 return (XTENSA_PROP_LITERAL
9729 | XTENSA_PROP_INSN_NO_TRANSFORM
9730 | XTENSA_PROP_INSN_NO_REORDER);
9731
9732 return 0;
9733 }
9734
9735 \f
9736 /* Other functions called directly by the linker. */
9737
9738 bfd_boolean
9739 xtensa_callback_required_dependence (bfd *abfd,
9740 asection *sec,
9741 struct bfd_link_info *link_info,
9742 deps_callback_t callback,
9743 void *closure)
9744 {
9745 Elf_Internal_Rela *internal_relocs;
9746 bfd_byte *contents;
9747 unsigned i;
9748 bfd_boolean ok = TRUE;
9749 bfd_size_type sec_size;
9750
9751 sec_size = bfd_get_section_limit (abfd, sec);
9752
9753 /* ".plt*" sections have no explicit relocations but they contain L32R
9754 instructions that reference the corresponding ".got.plt*" sections. */
9755 if ((sec->flags & SEC_LINKER_CREATED) != 0
9756 && CONST_STRNEQ (sec->name, ".plt"))
9757 {
9758 asection *sgotplt;
9759
9760 /* Find the corresponding ".got.plt*" section. */
9761 if (sec->name[4] == '\0')
9762 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9763 else
9764 {
9765 char got_name[14];
9766 int chunk = 0;
9767
9768 BFD_ASSERT (sec->name[4] == '.');
9769 chunk = strtol (&sec->name[5], NULL, 10);
9770
9771 sprintf (got_name, ".got.plt.%u", chunk);
9772 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9773 }
9774 BFD_ASSERT (sgotplt);
9775
9776 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9777 section referencing a literal at the very beginning of
9778 ".got.plt". This is very close to the real dependence, anyway. */
9779 (*callback) (sec, sec_size, sgotplt, 0, closure);
9780 }
9781
9782 internal_relocs = retrieve_internal_relocs (abfd, sec,
9783 link_info->keep_memory);
9784 if (internal_relocs == NULL
9785 || sec->reloc_count == 0)
9786 return ok;
9787
9788 /* Cache the contents for the duration of this scan. */
9789 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9790 if (contents == NULL && sec_size != 0)
9791 {
9792 ok = FALSE;
9793 goto error_return;
9794 }
9795
9796 if (!xtensa_default_isa)
9797 xtensa_default_isa = xtensa_isa_init (0, 0);
9798
9799 for (i = 0; i < sec->reloc_count; i++)
9800 {
9801 Elf_Internal_Rela *irel = &internal_relocs[i];
9802 if (is_l32r_relocation (abfd, sec, contents, irel))
9803 {
9804 r_reloc l32r_rel;
9805 asection *target_sec;
9806 bfd_vma target_offset;
9807
9808 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
9809 target_sec = NULL;
9810 target_offset = 0;
9811 /* L32Rs must be local to the input file. */
9812 if (r_reloc_is_defined (&l32r_rel))
9813 {
9814 target_sec = r_reloc_get_section (&l32r_rel);
9815 target_offset = l32r_rel.target_offset;
9816 }
9817 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9818 closure);
9819 }
9820 }
9821
9822 error_return:
9823 release_internal_relocs (sec, internal_relocs);
9824 release_contents (sec, contents);
9825 return ok;
9826 }
9827
9828 /* The default literal sections should always be marked as "code" (i.e.,
9829 SHF_EXECINSTR). This is particularly important for the Linux kernel
9830 module loader so that the literals are not placed after the text. */
9831 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
9832 {
9833 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9834 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9835 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9836 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
9837 { NULL, 0, 0, 0, 0 }
9838 };
9839 \f
9840 #ifndef ELF_ARCH
9841 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9842 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
9843 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9844 #define TARGET_BIG_NAME "elf32-xtensa-be"
9845 #define ELF_ARCH bfd_arch_xtensa
9846
9847 #define ELF_MACHINE_CODE EM_XTENSA
9848 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
9849
9850 #if XCHAL_HAVE_MMU
9851 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9852 #else /* !XCHAL_HAVE_MMU */
9853 #define ELF_MAXPAGESIZE 1
9854 #endif /* !XCHAL_HAVE_MMU */
9855 #endif /* ELF_ARCH */
9856
9857 #define elf_backend_can_gc_sections 1
9858 #define elf_backend_can_refcount 1
9859 #define elf_backend_plt_readonly 1
9860 #define elf_backend_got_header_size 4
9861 #define elf_backend_want_dynbss 0
9862 #define elf_backend_want_got_plt 1
9863
9864 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
9865
9866 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9867 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9868 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9869 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9870 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9871 #define bfd_elf32_bfd_reloc_name_lookup \
9872 elf_xtensa_reloc_name_lookup
9873 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9874 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
9875
9876 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9877 #define elf_backend_check_relocs elf_xtensa_check_relocs
9878 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9879 #define elf_backend_discard_info elf_xtensa_discard_info
9880 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9881 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
9882 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9883 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9884 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9885 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9886 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9887 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9888 #define elf_backend_object_p elf_xtensa_object_p
9889 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9890 #define elf_backend_relocate_section elf_xtensa_relocate_section
9891 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
9892 #define elf_backend_omit_section_dynsym \
9893 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
9894 #define elf_backend_special_sections elf_xtensa_special_sections
9895 #define elf_backend_action_discarded elf_xtensa_action_discarded
9896
9897 #include "elf32-target.h"
This page took 0.237729 seconds and 4 git commands to generate.