add more extern C
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
34
35 #define XTENSA_NO_NOP_REMOVAL 0
36
37 /* Local helper functions. */
38
39 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
47
48 /* Local functions to handle Xtensa configurability. */
49
50 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53 static xtensa_opcode get_const16_opcode (void);
54 static xtensa_opcode get_l32r_opcode (void);
55 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56 static int get_relocation_opnd (xtensa_opcode, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
60 static bfd_boolean is_l32r_relocation
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62 static bfd_boolean is_alt_relocation (int);
63 static bfd_boolean is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte *, bfd_size_type, bfd_size_type);
66 static xtensa_opcode insn_decode_opcode
67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
68 static bfd_boolean check_branch_target_aligned
69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
70 static bfd_boolean check_loop_aligned
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
73 static bfd_size_type get_asm_simplify_size
74 (bfd_byte *, bfd_size_type, bfd_size_type);
75
76 /* Functions for link-time code simplifications. */
77
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79 (bfd_byte *, bfd_vma, bfd_vma, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
84
85 /* Access to internal relocations, section contents and symbols. */
86
87 static Elf_Internal_Rela *retrieve_internal_relocs
88 (bfd *, asection *, bfd_boolean);
89 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92 static void pin_contents (asection *, bfd_byte *);
93 static void release_contents (asection *, bfd_byte *);
94 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
95
96 /* Miscellaneous utility functions. */
97
98 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
100 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
101 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
102 (bfd *, unsigned long);
103 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106 static bfd_boolean xtensa_is_property_section (asection *);
107 static bfd_boolean xtensa_is_insntable_section (asection *);
108 static bfd_boolean xtensa_is_littable_section (asection *);
109 static bfd_boolean xtensa_is_proptable_section (asection *);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection *xtensa_get_property_section (asection *, const char *);
113 extern asection *xtensa_make_property_section (asection *, const char *);
114 static flagword xtensa_get_property_predef_flags (asection *);
115
116 /* Other functions called directly by the linker. */
117
118 typedef void (*deps_callback_t)
119 (asection *, bfd_vma, asection *, bfd_vma, void *);
120 extern bfd_boolean xtensa_callback_required_dependence
121 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
122
123
124 /* Globally visible flag for choosing size optimization of NOP removal
125 instead of branch-target-aware minimization for NOP removal.
126 When nonzero, narrow all instructions and remove all NOPs possible
127 around longcall expansions. */
128
129 int elf32xtensa_size_opt;
130
131
132 /* The "new_section_hook" is used to set up a per-section
133 "xtensa_relax_info" data structure with additional information used
134 during relaxation. */
135
136 typedef struct xtensa_relax_info_struct xtensa_relax_info;
137
138
139 /* The GNU tools do not easily allow extending interfaces to pass around
140 the pointer to the Xtensa ISA information, so instead we add a global
141 variable here (in BFD) that can be used by any of the tools that need
142 this information. */
143
144 xtensa_isa xtensa_default_isa;
145
146
147 /* When this is true, relocations may have been modified to refer to
148 symbols from other input files. The per-section list of "fix"
149 records needs to be checked when resolving relocations. */
150
151 static bfd_boolean relaxing_section = FALSE;
152
153 /* When this is true, during final links, literals that cannot be
154 coalesced and their relocations may be moved to other sections. */
155
156 int elf32xtensa_no_literal_movement = 1;
157
158 /* Rename one of the generic section flags to better document how it
159 is used here. */
160 /* Whether relocations have been processed. */
161 #define reloc_done sec_flg0
162 \f
163 static reloc_howto_type elf_howto_table[] =
164 {
165 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
166 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
167 FALSE, 0, 0, FALSE),
168 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_xtensa_reloc, "R_XTENSA_32",
170 TRUE, 0xffffffff, 0xffffffff, FALSE),
171
172 /* Replace a 32-bit value with a value from the runtime linker (only
173 used by linker-generated stub functions). The r_addend value is
174 special: 1 means to substitute a pointer to the runtime linker's
175 dynamic resolver function; 2 means to substitute the link map for
176 the shared object. */
177 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
178 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
179
180 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
182 FALSE, 0, 0xffffffff, FALSE),
183 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
185 FALSE, 0, 0xffffffff, FALSE),
186 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
187 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
188 FALSE, 0, 0xffffffff, FALSE),
189 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
191 FALSE, 0, 0xffffffff, FALSE),
192
193 EMPTY_HOWTO (7),
194
195 /* Old relocations for backward compatibility. */
196 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
197 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
198 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
199 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
202
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
206 /* Relax assembly auto-expansion. */
207 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
208 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
209
210 EMPTY_HOWTO (13),
211
212 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
213 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
214 FALSE, 0, 0xffffffff, TRUE),
215
216 /* GNU extension to record C++ vtable hierarchy. */
217 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
218 NULL, "R_XTENSA_GNU_VTINHERIT",
219 FALSE, 0, 0, FALSE),
220 /* GNU extension to record C++ vtable member usage. */
221 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
222 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
223 FALSE, 0, 0, FALSE),
224
225 /* Relocations for supporting difference of symbols. */
226 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
228 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
229 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
230 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
231 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
236 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
237 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
238 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
240 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
242 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
244 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
246 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
248 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
250 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
252 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
254 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
256 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
258 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
260 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
262 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
264
265 /* "Alternate" relocations. The meaning of these is opcode-specific. */
266 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
268 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
270 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
272 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
274 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
276 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
278 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
280 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
282 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
284 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
286 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
288 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
290 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
292 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
293 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
294 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
296
297 /* TLS relocations. */
298 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
299 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
300 FALSE, 0, 0xffffffff, FALSE),
301 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
302 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
303 FALSE, 0, 0xffffffff, FALSE),
304 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
305 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
306 FALSE, 0, 0xffffffff, FALSE),
307 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
309 FALSE, 0, 0xffffffff, FALSE),
310 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
311 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
312 FALSE, 0, 0, FALSE),
313 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
314 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
315 FALSE, 0, 0, FALSE),
316 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
317 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
318 FALSE, 0, 0, FALSE),
319 };
320
321 #if DEBUG_GEN_RELOC
322 #define TRACE(str) \
323 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
324 #else
325 #define TRACE(str)
326 #endif
327
328 static reloc_howto_type *
329 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
330 bfd_reloc_code_real_type code)
331 {
332 switch (code)
333 {
334 case BFD_RELOC_NONE:
335 TRACE ("BFD_RELOC_NONE");
336 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
337
338 case BFD_RELOC_32:
339 TRACE ("BFD_RELOC_32");
340 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
341
342 case BFD_RELOC_32_PCREL:
343 TRACE ("BFD_RELOC_32_PCREL");
344 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
345
346 case BFD_RELOC_XTENSA_DIFF8:
347 TRACE ("BFD_RELOC_XTENSA_DIFF8");
348 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
349
350 case BFD_RELOC_XTENSA_DIFF16:
351 TRACE ("BFD_RELOC_XTENSA_DIFF16");
352 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
353
354 case BFD_RELOC_XTENSA_DIFF32:
355 TRACE ("BFD_RELOC_XTENSA_DIFF32");
356 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
357
358 case BFD_RELOC_XTENSA_RTLD:
359 TRACE ("BFD_RELOC_XTENSA_RTLD");
360 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
361
362 case BFD_RELOC_XTENSA_GLOB_DAT:
363 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
364 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
365
366 case BFD_RELOC_XTENSA_JMP_SLOT:
367 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
368 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
369
370 case BFD_RELOC_XTENSA_RELATIVE:
371 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
372 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
373
374 case BFD_RELOC_XTENSA_PLT:
375 TRACE ("BFD_RELOC_XTENSA_PLT");
376 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
377
378 case BFD_RELOC_XTENSA_OP0:
379 TRACE ("BFD_RELOC_XTENSA_OP0");
380 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
381
382 case BFD_RELOC_XTENSA_OP1:
383 TRACE ("BFD_RELOC_XTENSA_OP1");
384 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
385
386 case BFD_RELOC_XTENSA_OP2:
387 TRACE ("BFD_RELOC_XTENSA_OP2");
388 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
389
390 case BFD_RELOC_XTENSA_ASM_EXPAND:
391 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
392 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
393
394 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
395 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
396 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
397
398 case BFD_RELOC_VTABLE_INHERIT:
399 TRACE ("BFD_RELOC_VTABLE_INHERIT");
400 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
401
402 case BFD_RELOC_VTABLE_ENTRY:
403 TRACE ("BFD_RELOC_VTABLE_ENTRY");
404 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
405
406 case BFD_RELOC_XTENSA_TLSDESC_FN:
407 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
408 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
409
410 case BFD_RELOC_XTENSA_TLSDESC_ARG:
411 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
412 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
413
414 case BFD_RELOC_XTENSA_TLS_DTPOFF:
415 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
416 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
417
418 case BFD_RELOC_XTENSA_TLS_TPOFF:
419 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
420 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
421
422 case BFD_RELOC_XTENSA_TLS_FUNC:
423 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
424 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
425
426 case BFD_RELOC_XTENSA_TLS_ARG:
427 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
428 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
429
430 case BFD_RELOC_XTENSA_TLS_CALL:
431 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
432 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
433
434 default:
435 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
436 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
437 {
438 unsigned n = (R_XTENSA_SLOT0_OP +
439 (code - BFD_RELOC_XTENSA_SLOT0_OP));
440 return &elf_howto_table[n];
441 }
442
443 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
444 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
445 {
446 unsigned n = (R_XTENSA_SLOT0_ALT +
447 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
448 return &elf_howto_table[n];
449 }
450
451 break;
452 }
453
454 TRACE ("Unknown");
455 return NULL;
456 }
457
458 static reloc_howto_type *
459 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
460 const char *r_name)
461 {
462 unsigned int i;
463
464 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
465 if (elf_howto_table[i].name != NULL
466 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
467 return &elf_howto_table[i];
468
469 return NULL;
470 }
471
472
473 /* Given an ELF "rela" relocation, find the corresponding howto and record
474 it in the BFD internal arelent representation of the relocation. */
475
476 static void
477 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
478 arelent *cache_ptr,
479 Elf_Internal_Rela *dst)
480 {
481 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
482
483 if (r_type >= (unsigned int) R_XTENSA_max)
484 {
485 _bfd_error_handler (_("%B: invalid XTENSA reloc number: %d"), abfd, r_type);
486 r_type = 0;
487 }
488 cache_ptr->howto = &elf_howto_table[r_type];
489 }
490
491 \f
492 /* Functions for the Xtensa ELF linker. */
493
494 /* The name of the dynamic interpreter. This is put in the .interp
495 section. */
496
497 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
498
499 /* The size in bytes of an entry in the procedure linkage table.
500 (This does _not_ include the space for the literals associated with
501 the PLT entry.) */
502
503 #define PLT_ENTRY_SIZE 16
504
505 /* For _really_ large PLTs, we may need to alternate between literals
506 and code to keep the literals within the 256K range of the L32R
507 instructions in the code. It's unlikely that anyone would ever need
508 such a big PLT, but an arbitrary limit on the PLT size would be bad.
509 Thus, we split the PLT into chunks. Since there's very little
510 overhead (2 extra literals) for each chunk, the chunk size is kept
511 small so that the code for handling multiple chunks get used and
512 tested regularly. With 254 entries, there are 1K of literals for
513 each chunk, and that seems like a nice round number. */
514
515 #define PLT_ENTRIES_PER_CHUNK 254
516
517 /* PLT entries are actually used as stub functions for lazy symbol
518 resolution. Once the symbol is resolved, the stub function is never
519 invoked. Note: the 32-byte frame size used here cannot be changed
520 without a corresponding change in the runtime linker. */
521
522 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
523 {
524 #if XSHAL_ABI == XTHAL_ABI_WINDOWED
525 0x6c, 0x10, 0x04, /* entry sp, 32 */
526 #endif
527 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
528 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
529 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
530 0x0a, 0x80, 0x00, /* jx a8 */
531 0 /* unused */
532 };
533
534 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
535 {
536 #if XSHAL_ABI == XTHAL_ABI_WINDOWED
537 0x36, 0x41, 0x00, /* entry sp, 32 */
538 #endif
539 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
540 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
541 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
542 0xa0, 0x08, 0x00, /* jx a8 */
543 0 /* unused */
544 };
545
546 /* The size of the thread control block. */
547 #define TCB_SIZE 8
548
549 struct elf_xtensa_link_hash_entry
550 {
551 struct elf_link_hash_entry elf;
552
553 bfd_signed_vma tlsfunc_refcount;
554
555 #define GOT_UNKNOWN 0
556 #define GOT_NORMAL 1
557 #define GOT_TLS_GD 2 /* global or local dynamic */
558 #define GOT_TLS_IE 4 /* initial or local exec */
559 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
560 unsigned char tls_type;
561 };
562
563 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
564
565 struct elf_xtensa_obj_tdata
566 {
567 struct elf_obj_tdata root;
568
569 /* tls_type for each local got entry. */
570 char *local_got_tls_type;
571
572 bfd_signed_vma *local_tlsfunc_refcounts;
573 };
574
575 #define elf_xtensa_tdata(abfd) \
576 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
577
578 #define elf_xtensa_local_got_tls_type(abfd) \
579 (elf_xtensa_tdata (abfd)->local_got_tls_type)
580
581 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
582 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
583
584 #define is_xtensa_elf(bfd) \
585 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
586 && elf_tdata (bfd) != NULL \
587 && elf_object_id (bfd) == XTENSA_ELF_DATA)
588
589 static bfd_boolean
590 elf_xtensa_mkobject (bfd *abfd)
591 {
592 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
593 XTENSA_ELF_DATA);
594 }
595
596 /* Xtensa ELF linker hash table. */
597
598 struct elf_xtensa_link_hash_table
599 {
600 struct elf_link_hash_table elf;
601
602 /* Short-cuts to get to dynamic linker sections. */
603 asection *sgot;
604 asection *sgotplt;
605 asection *srelgot;
606 asection *splt;
607 asection *srelplt;
608 asection *sgotloc;
609 asection *spltlittbl;
610
611 /* Total count of PLT relocations seen during check_relocs.
612 The actual PLT code must be split into multiple sections and all
613 the sections have to be created before size_dynamic_sections,
614 where we figure out the exact number of PLT entries that will be
615 needed. It is OK if this count is an overestimate, e.g., some
616 relocations may be removed by GC. */
617 int plt_reloc_count;
618
619 struct elf_xtensa_link_hash_entry *tlsbase;
620 };
621
622 /* Get the Xtensa ELF linker hash table from a link_info structure. */
623
624 #define elf_xtensa_hash_table(p) \
625 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
626 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
627
628 /* Create an entry in an Xtensa ELF linker hash table. */
629
630 static struct bfd_hash_entry *
631 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
632 struct bfd_hash_table *table,
633 const char *string)
634 {
635 /* Allocate the structure if it has not already been allocated by a
636 subclass. */
637 if (entry == NULL)
638 {
639 entry = bfd_hash_allocate (table,
640 sizeof (struct elf_xtensa_link_hash_entry));
641 if (entry == NULL)
642 return entry;
643 }
644
645 /* Call the allocation method of the superclass. */
646 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
647 if (entry != NULL)
648 {
649 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
650 eh->tlsfunc_refcount = 0;
651 eh->tls_type = GOT_UNKNOWN;
652 }
653
654 return entry;
655 }
656
657 /* Create an Xtensa ELF linker hash table. */
658
659 static struct bfd_link_hash_table *
660 elf_xtensa_link_hash_table_create (bfd *abfd)
661 {
662 struct elf_link_hash_entry *tlsbase;
663 struct elf_xtensa_link_hash_table *ret;
664 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
665
666 ret = bfd_zmalloc (amt);
667 if (ret == NULL)
668 return NULL;
669
670 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
671 elf_xtensa_link_hash_newfunc,
672 sizeof (struct elf_xtensa_link_hash_entry),
673 XTENSA_ELF_DATA))
674 {
675 free (ret);
676 return NULL;
677 }
678
679 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
680 for it later. */
681 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
682 TRUE, FALSE, FALSE);
683 tlsbase->root.type = bfd_link_hash_new;
684 tlsbase->root.u.undef.abfd = NULL;
685 tlsbase->non_elf = 0;
686 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
687 ret->tlsbase->tls_type = GOT_UNKNOWN;
688
689 return &ret->elf.root;
690 }
691
692 /* Copy the extra info we tack onto an elf_link_hash_entry. */
693
694 static void
695 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
696 struct elf_link_hash_entry *dir,
697 struct elf_link_hash_entry *ind)
698 {
699 struct elf_xtensa_link_hash_entry *edir, *eind;
700
701 edir = elf_xtensa_hash_entry (dir);
702 eind = elf_xtensa_hash_entry (ind);
703
704 if (ind->root.type == bfd_link_hash_indirect)
705 {
706 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
707 eind->tlsfunc_refcount = 0;
708
709 if (dir->got.refcount <= 0)
710 {
711 edir->tls_type = eind->tls_type;
712 eind->tls_type = GOT_UNKNOWN;
713 }
714 }
715
716 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
717 }
718
719 static inline bfd_boolean
720 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
721 struct bfd_link_info *info)
722 {
723 /* Check if we should do dynamic things to this symbol. The
724 "ignore_protected" argument need not be set, because Xtensa code
725 does not require special handling of STV_PROTECTED to make function
726 pointer comparisons work properly. The PLT addresses are never
727 used for function pointers. */
728
729 return _bfd_elf_dynamic_symbol_p (h, info, 0);
730 }
731
732 \f
733 static int
734 property_table_compare (const void *ap, const void *bp)
735 {
736 const property_table_entry *a = (const property_table_entry *) ap;
737 const property_table_entry *b = (const property_table_entry *) bp;
738
739 if (a->address == b->address)
740 {
741 if (a->size != b->size)
742 return (a->size - b->size);
743
744 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
745 return ((b->flags & XTENSA_PROP_ALIGN)
746 - (a->flags & XTENSA_PROP_ALIGN));
747
748 if ((a->flags & XTENSA_PROP_ALIGN)
749 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
750 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
751 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
752 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
753
754 if ((a->flags & XTENSA_PROP_UNREACHABLE)
755 != (b->flags & XTENSA_PROP_UNREACHABLE))
756 return ((b->flags & XTENSA_PROP_UNREACHABLE)
757 - (a->flags & XTENSA_PROP_UNREACHABLE));
758
759 return (a->flags - b->flags);
760 }
761
762 return (a->address - b->address);
763 }
764
765
766 static int
767 property_table_matches (const void *ap, const void *bp)
768 {
769 const property_table_entry *a = (const property_table_entry *) ap;
770 const property_table_entry *b = (const property_table_entry *) bp;
771
772 /* Check if one entry overlaps with the other. */
773 if ((b->address >= a->address && b->address < (a->address + a->size))
774 || (a->address >= b->address && a->address < (b->address + b->size)))
775 return 0;
776
777 return (a->address - b->address);
778 }
779
780
781 /* Get the literal table or property table entries for the given
782 section. Sets TABLE_P and returns the number of entries. On
783 error, returns a negative value. */
784
785 static int
786 xtensa_read_table_entries (bfd *abfd,
787 asection *section,
788 property_table_entry **table_p,
789 const char *sec_name,
790 bfd_boolean output_addr)
791 {
792 asection *table_section;
793 bfd_size_type table_size = 0;
794 bfd_byte *table_data;
795 property_table_entry *blocks;
796 int blk, block_count;
797 bfd_size_type num_records;
798 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
799 bfd_vma section_addr, off;
800 flagword predef_flags;
801 bfd_size_type table_entry_size, section_limit;
802
803 if (!section
804 || !(section->flags & SEC_ALLOC)
805 || (section->flags & SEC_DEBUGGING))
806 {
807 *table_p = NULL;
808 return 0;
809 }
810
811 table_section = xtensa_get_property_section (section, sec_name);
812 if (table_section)
813 table_size = table_section->size;
814
815 if (table_size == 0)
816 {
817 *table_p = NULL;
818 return 0;
819 }
820
821 predef_flags = xtensa_get_property_predef_flags (table_section);
822 table_entry_size = 12;
823 if (predef_flags)
824 table_entry_size -= 4;
825
826 num_records = table_size / table_entry_size;
827 table_data = retrieve_contents (abfd, table_section, TRUE);
828 blocks = (property_table_entry *)
829 bfd_malloc (num_records * sizeof (property_table_entry));
830 block_count = 0;
831
832 if (output_addr)
833 section_addr = section->output_section->vma + section->output_offset;
834 else
835 section_addr = section->vma;
836
837 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
838 if (internal_relocs && !table_section->reloc_done)
839 {
840 qsort (internal_relocs, table_section->reloc_count,
841 sizeof (Elf_Internal_Rela), internal_reloc_compare);
842 irel = internal_relocs;
843 }
844 else
845 irel = NULL;
846
847 section_limit = bfd_get_section_limit (abfd, section);
848 rel_end = internal_relocs + table_section->reloc_count;
849
850 for (off = 0; off < table_size; off += table_entry_size)
851 {
852 bfd_vma address = bfd_get_32 (abfd, table_data + off);
853
854 /* Skip any relocations before the current offset. This should help
855 avoid confusion caused by unexpected relocations for the preceding
856 table entry. */
857 while (irel &&
858 (irel->r_offset < off
859 || (irel->r_offset == off
860 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
861 {
862 irel += 1;
863 if (irel >= rel_end)
864 irel = 0;
865 }
866
867 if (irel && irel->r_offset == off)
868 {
869 bfd_vma sym_off;
870 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
871 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
872
873 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
874 continue;
875
876 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
877 BFD_ASSERT (sym_off == 0);
878 address += (section_addr + sym_off + irel->r_addend);
879 }
880 else
881 {
882 if (address < section_addr
883 || address >= section_addr + section_limit)
884 continue;
885 }
886
887 blocks[block_count].address = address;
888 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
889 if (predef_flags)
890 blocks[block_count].flags = predef_flags;
891 else
892 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
893 block_count++;
894 }
895
896 release_contents (table_section, table_data);
897 release_internal_relocs (table_section, internal_relocs);
898
899 if (block_count > 0)
900 {
901 /* Now sort them into address order for easy reference. */
902 qsort (blocks, block_count, sizeof (property_table_entry),
903 property_table_compare);
904
905 /* Check that the table contents are valid. Problems may occur,
906 for example, if an unrelocated object file is stripped. */
907 for (blk = 1; blk < block_count; blk++)
908 {
909 /* The only circumstance where two entries may legitimately
910 have the same address is when one of them is a zero-size
911 placeholder to mark a place where fill can be inserted.
912 The zero-size entry should come first. */
913 if (blocks[blk - 1].address == blocks[blk].address &&
914 blocks[blk - 1].size != 0)
915 {
916 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
917 abfd, section);
918 bfd_set_error (bfd_error_bad_value);
919 free (blocks);
920 return -1;
921 }
922 }
923 }
924
925 *table_p = blocks;
926 return block_count;
927 }
928
929
930 static property_table_entry *
931 elf_xtensa_find_property_entry (property_table_entry *property_table,
932 int property_table_size,
933 bfd_vma addr)
934 {
935 property_table_entry entry;
936 property_table_entry *rv;
937
938 if (property_table_size == 0)
939 return NULL;
940
941 entry.address = addr;
942 entry.size = 1;
943 entry.flags = 0;
944
945 rv = bsearch (&entry, property_table, property_table_size,
946 sizeof (property_table_entry), property_table_matches);
947 return rv;
948 }
949
950
951 static bfd_boolean
952 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
953 int lit_table_size,
954 bfd_vma addr)
955 {
956 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
957 return TRUE;
958
959 return FALSE;
960 }
961
962 \f
963 /* Look through the relocs for a section during the first phase, and
964 calculate needed space in the dynamic reloc sections. */
965
966 static bfd_boolean
967 elf_xtensa_check_relocs (bfd *abfd,
968 struct bfd_link_info *info,
969 asection *sec,
970 const Elf_Internal_Rela *relocs)
971 {
972 struct elf_xtensa_link_hash_table *htab;
973 Elf_Internal_Shdr *symtab_hdr;
974 struct elf_link_hash_entry **sym_hashes;
975 const Elf_Internal_Rela *rel;
976 const Elf_Internal_Rela *rel_end;
977
978 if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
979 return TRUE;
980
981 BFD_ASSERT (is_xtensa_elf (abfd));
982
983 htab = elf_xtensa_hash_table (info);
984 if (htab == NULL)
985 return FALSE;
986
987 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
988 sym_hashes = elf_sym_hashes (abfd);
989
990 rel_end = relocs + sec->reloc_count;
991 for (rel = relocs; rel < rel_end; rel++)
992 {
993 unsigned int r_type;
994 unsigned long r_symndx;
995 struct elf_link_hash_entry *h = NULL;
996 struct elf_xtensa_link_hash_entry *eh;
997 int tls_type, old_tls_type;
998 bfd_boolean is_got = FALSE;
999 bfd_boolean is_plt = FALSE;
1000 bfd_boolean is_tlsfunc = FALSE;
1001
1002 r_symndx = ELF32_R_SYM (rel->r_info);
1003 r_type = ELF32_R_TYPE (rel->r_info);
1004
1005 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1006 {
1007 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1008 abfd, r_symndx);
1009 return FALSE;
1010 }
1011
1012 if (r_symndx >= symtab_hdr->sh_info)
1013 {
1014 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1015 while (h->root.type == bfd_link_hash_indirect
1016 || h->root.type == bfd_link_hash_warning)
1017 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1018
1019 /* PR15323, ref flags aren't set for references in the same
1020 object. */
1021 h->root.non_ir_ref = 1;
1022 }
1023 eh = elf_xtensa_hash_entry (h);
1024
1025 switch (r_type)
1026 {
1027 case R_XTENSA_TLSDESC_FN:
1028 if (bfd_link_pic (info))
1029 {
1030 tls_type = GOT_TLS_GD;
1031 is_got = TRUE;
1032 is_tlsfunc = TRUE;
1033 }
1034 else
1035 tls_type = GOT_TLS_IE;
1036 break;
1037
1038 case R_XTENSA_TLSDESC_ARG:
1039 if (bfd_link_pic (info))
1040 {
1041 tls_type = GOT_TLS_GD;
1042 is_got = TRUE;
1043 }
1044 else
1045 {
1046 tls_type = GOT_TLS_IE;
1047 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1048 is_got = TRUE;
1049 }
1050 break;
1051
1052 case R_XTENSA_TLS_DTPOFF:
1053 if (bfd_link_pic (info))
1054 tls_type = GOT_TLS_GD;
1055 else
1056 tls_type = GOT_TLS_IE;
1057 break;
1058
1059 case R_XTENSA_TLS_TPOFF:
1060 tls_type = GOT_TLS_IE;
1061 if (bfd_link_pic (info))
1062 info->flags |= DF_STATIC_TLS;
1063 if (bfd_link_pic (info) || h)
1064 is_got = TRUE;
1065 break;
1066
1067 case R_XTENSA_32:
1068 tls_type = GOT_NORMAL;
1069 is_got = TRUE;
1070 break;
1071
1072 case R_XTENSA_PLT:
1073 tls_type = GOT_NORMAL;
1074 is_plt = TRUE;
1075 break;
1076
1077 case R_XTENSA_GNU_VTINHERIT:
1078 /* This relocation describes the C++ object vtable hierarchy.
1079 Reconstruct it for later use during GC. */
1080 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1081 return FALSE;
1082 continue;
1083
1084 case R_XTENSA_GNU_VTENTRY:
1085 /* This relocation describes which C++ vtable entries are actually
1086 used. Record for later use during GC. */
1087 BFD_ASSERT (h != NULL);
1088 if (h != NULL
1089 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1090 return FALSE;
1091 continue;
1092
1093 default:
1094 /* Nothing to do for any other relocations. */
1095 continue;
1096 }
1097
1098 if (h)
1099 {
1100 if (is_plt)
1101 {
1102 if (h->plt.refcount <= 0)
1103 {
1104 h->needs_plt = 1;
1105 h->plt.refcount = 1;
1106 }
1107 else
1108 h->plt.refcount += 1;
1109
1110 /* Keep track of the total PLT relocation count even if we
1111 don't yet know whether the dynamic sections will be
1112 created. */
1113 htab->plt_reloc_count += 1;
1114
1115 if (elf_hash_table (info)->dynamic_sections_created)
1116 {
1117 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1118 return FALSE;
1119 }
1120 }
1121 else if (is_got)
1122 {
1123 if (h->got.refcount <= 0)
1124 h->got.refcount = 1;
1125 else
1126 h->got.refcount += 1;
1127 }
1128
1129 if (is_tlsfunc)
1130 eh->tlsfunc_refcount += 1;
1131
1132 old_tls_type = eh->tls_type;
1133 }
1134 else
1135 {
1136 /* Allocate storage the first time. */
1137 if (elf_local_got_refcounts (abfd) == NULL)
1138 {
1139 bfd_size_type size = symtab_hdr->sh_info;
1140 void *mem;
1141
1142 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1143 if (mem == NULL)
1144 return FALSE;
1145 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1146
1147 mem = bfd_zalloc (abfd, size);
1148 if (mem == NULL)
1149 return FALSE;
1150 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1151
1152 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1153 if (mem == NULL)
1154 return FALSE;
1155 elf_xtensa_local_tlsfunc_refcounts (abfd)
1156 = (bfd_signed_vma *) mem;
1157 }
1158
1159 /* This is a global offset table entry for a local symbol. */
1160 if (is_got || is_plt)
1161 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1162
1163 if (is_tlsfunc)
1164 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1165
1166 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1167 }
1168
1169 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1170 tls_type |= old_tls_type;
1171 /* If a TLS symbol is accessed using IE at least once,
1172 there is no point to use a dynamic model for it. */
1173 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1174 && ((old_tls_type & GOT_TLS_GD) == 0
1175 || (tls_type & GOT_TLS_IE) == 0))
1176 {
1177 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1178 tls_type = old_tls_type;
1179 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1180 tls_type |= old_tls_type;
1181 else
1182 {
1183 (*_bfd_error_handler)
1184 (_("%B: `%s' accessed both as normal and thread local symbol"),
1185 abfd,
1186 h ? h->root.root.string : "<local>");
1187 return FALSE;
1188 }
1189 }
1190
1191 if (old_tls_type != tls_type)
1192 {
1193 if (eh)
1194 eh->tls_type = tls_type;
1195 else
1196 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1197 }
1198 }
1199
1200 return TRUE;
1201 }
1202
1203
1204 static void
1205 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1206 struct elf_link_hash_entry *h)
1207 {
1208 if (bfd_link_pic (info))
1209 {
1210 if (h->plt.refcount > 0)
1211 {
1212 /* For shared objects, there's no need for PLT entries for local
1213 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1214 if (h->got.refcount < 0)
1215 h->got.refcount = 0;
1216 h->got.refcount += h->plt.refcount;
1217 h->plt.refcount = 0;
1218 }
1219 }
1220 else
1221 {
1222 /* Don't need any dynamic relocations at all. */
1223 h->plt.refcount = 0;
1224 h->got.refcount = 0;
1225 }
1226 }
1227
1228
1229 static void
1230 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1231 struct elf_link_hash_entry *h,
1232 bfd_boolean force_local)
1233 {
1234 /* For a shared link, move the plt refcount to the got refcount to leave
1235 space for RELATIVE relocs. */
1236 elf_xtensa_make_sym_local (info, h);
1237
1238 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1239 }
1240
1241
1242 /* Return the section that should be marked against GC for a given
1243 relocation. */
1244
1245 static asection *
1246 elf_xtensa_gc_mark_hook (asection *sec,
1247 struct bfd_link_info *info,
1248 Elf_Internal_Rela *rel,
1249 struct elf_link_hash_entry *h,
1250 Elf_Internal_Sym *sym)
1251 {
1252 /* Property sections are marked "KEEP" in the linker scripts, but they
1253 should not cause other sections to be marked. (This approach relies
1254 on elf_xtensa_discard_info to remove property table entries that
1255 describe discarded sections. Alternatively, it might be more
1256 efficient to avoid using "KEEP" in the linker scripts and instead use
1257 the gc_mark_extra_sections hook to mark only the property sections
1258 that describe marked sections. That alternative does not work well
1259 with the current property table sections, which do not correspond
1260 one-to-one with the sections they describe, but that should be fixed
1261 someday.) */
1262 if (xtensa_is_property_section (sec))
1263 return NULL;
1264
1265 if (h != NULL)
1266 switch (ELF32_R_TYPE (rel->r_info))
1267 {
1268 case R_XTENSA_GNU_VTINHERIT:
1269 case R_XTENSA_GNU_VTENTRY:
1270 return NULL;
1271 }
1272
1273 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1274 }
1275
1276
1277 /* Update the GOT & PLT entry reference counts
1278 for the section being removed. */
1279
1280 static bfd_boolean
1281 elf_xtensa_gc_sweep_hook (bfd *abfd,
1282 struct bfd_link_info *info,
1283 asection *sec,
1284 const Elf_Internal_Rela *relocs)
1285 {
1286 Elf_Internal_Shdr *symtab_hdr;
1287 struct elf_link_hash_entry **sym_hashes;
1288 const Elf_Internal_Rela *rel, *relend;
1289 struct elf_xtensa_link_hash_table *htab;
1290
1291 htab = elf_xtensa_hash_table (info);
1292 if (htab == NULL)
1293 return FALSE;
1294
1295 if (bfd_link_relocatable (info))
1296 return TRUE;
1297
1298 if ((sec->flags & SEC_ALLOC) == 0)
1299 return TRUE;
1300
1301 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1302 sym_hashes = elf_sym_hashes (abfd);
1303
1304 relend = relocs + sec->reloc_count;
1305 for (rel = relocs; rel < relend; rel++)
1306 {
1307 unsigned long r_symndx;
1308 unsigned int r_type;
1309 struct elf_link_hash_entry *h = NULL;
1310 struct elf_xtensa_link_hash_entry *eh;
1311 bfd_boolean is_got = FALSE;
1312 bfd_boolean is_plt = FALSE;
1313 bfd_boolean is_tlsfunc = FALSE;
1314
1315 r_symndx = ELF32_R_SYM (rel->r_info);
1316 if (r_symndx >= symtab_hdr->sh_info)
1317 {
1318 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1319 while (h->root.type == bfd_link_hash_indirect
1320 || h->root.type == bfd_link_hash_warning)
1321 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1322 }
1323 eh = elf_xtensa_hash_entry (h);
1324
1325 r_type = ELF32_R_TYPE (rel->r_info);
1326 switch (r_type)
1327 {
1328 case R_XTENSA_TLSDESC_FN:
1329 if (bfd_link_pic (info))
1330 {
1331 is_got = TRUE;
1332 is_tlsfunc = TRUE;
1333 }
1334 break;
1335
1336 case R_XTENSA_TLSDESC_ARG:
1337 if (bfd_link_pic (info))
1338 is_got = TRUE;
1339 else
1340 {
1341 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1342 is_got = TRUE;
1343 }
1344 break;
1345
1346 case R_XTENSA_TLS_TPOFF:
1347 if (bfd_link_pic (info) || h)
1348 is_got = TRUE;
1349 break;
1350
1351 case R_XTENSA_32:
1352 is_got = TRUE;
1353 break;
1354
1355 case R_XTENSA_PLT:
1356 is_plt = TRUE;
1357 break;
1358
1359 default:
1360 continue;
1361 }
1362
1363 if (h)
1364 {
1365 if (is_plt)
1366 {
1367 /* If the symbol has been localized its plt.refcount got moved
1368 to got.refcount. Handle it as GOT. */
1369 if (h->plt.refcount > 0)
1370 h->plt.refcount--;
1371 else
1372 is_got = TRUE;
1373 }
1374 if (is_got)
1375 {
1376 if (h->got.refcount > 0)
1377 h->got.refcount--;
1378 }
1379 if (is_tlsfunc)
1380 {
1381 if (eh->tlsfunc_refcount > 0)
1382 eh->tlsfunc_refcount--;
1383 }
1384 }
1385 else
1386 {
1387 if (is_got || is_plt)
1388 {
1389 bfd_signed_vma *got_refcount
1390 = &elf_local_got_refcounts (abfd) [r_symndx];
1391 if (*got_refcount > 0)
1392 *got_refcount -= 1;
1393 }
1394 if (is_tlsfunc)
1395 {
1396 bfd_signed_vma *tlsfunc_refcount
1397 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1398 if (*tlsfunc_refcount > 0)
1399 *tlsfunc_refcount -= 1;
1400 }
1401 }
1402 }
1403
1404 return TRUE;
1405 }
1406
1407
1408 /* Create all the dynamic sections. */
1409
1410 static bfd_boolean
1411 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1412 {
1413 struct elf_xtensa_link_hash_table *htab;
1414 flagword flags, noalloc_flags;
1415
1416 htab = elf_xtensa_hash_table (info);
1417 if (htab == NULL)
1418 return FALSE;
1419
1420 /* First do all the standard stuff. */
1421 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1422 return FALSE;
1423 htab->splt = bfd_get_linker_section (dynobj, ".plt");
1424 htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt");
1425 htab->sgot = bfd_get_linker_section (dynobj, ".got");
1426 htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
1427 htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got");
1428
1429 /* Create any extra PLT sections in case check_relocs has already
1430 been called on all the non-dynamic input files. */
1431 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1432 return FALSE;
1433
1434 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1435 | SEC_LINKER_CREATED | SEC_READONLY);
1436 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1437
1438 /* Mark the ".got.plt" section READONLY. */
1439 if (htab->sgotplt == NULL
1440 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1441 return FALSE;
1442
1443 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1444 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1445 flags);
1446 if (htab->sgotloc == NULL
1447 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1448 return FALSE;
1449
1450 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1451 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1452 noalloc_flags);
1453 if (htab->spltlittbl == NULL
1454 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1455 return FALSE;
1456
1457 return TRUE;
1458 }
1459
1460
1461 static bfd_boolean
1462 add_extra_plt_sections (struct bfd_link_info *info, int count)
1463 {
1464 bfd *dynobj = elf_hash_table (info)->dynobj;
1465 int chunk;
1466
1467 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1468 ".got.plt" sections. */
1469 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1470 {
1471 char *sname;
1472 flagword flags;
1473 asection *s;
1474
1475 /* Stop when we find a section has already been created. */
1476 if (elf_xtensa_get_plt_section (info, chunk))
1477 break;
1478
1479 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1480 | SEC_LINKER_CREATED | SEC_READONLY);
1481
1482 sname = (char *) bfd_malloc (10);
1483 sprintf (sname, ".plt.%u", chunk);
1484 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1485 if (s == NULL
1486 || ! bfd_set_section_alignment (dynobj, s, 2))
1487 return FALSE;
1488
1489 sname = (char *) bfd_malloc (14);
1490 sprintf (sname, ".got.plt.%u", chunk);
1491 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1492 if (s == NULL
1493 || ! bfd_set_section_alignment (dynobj, s, 2))
1494 return FALSE;
1495 }
1496
1497 return TRUE;
1498 }
1499
1500
1501 /* Adjust a symbol defined by a dynamic object and referenced by a
1502 regular object. The current definition is in some section of the
1503 dynamic object, but we're not including those sections. We have to
1504 change the definition to something the rest of the link can
1505 understand. */
1506
1507 static bfd_boolean
1508 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1509 struct elf_link_hash_entry *h)
1510 {
1511 /* If this is a weak symbol, and there is a real definition, the
1512 processor independent code will have arranged for us to see the
1513 real definition first, and we can just use the same value. */
1514 if (h->u.weakdef)
1515 {
1516 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1517 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1518 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1519 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1520 return TRUE;
1521 }
1522
1523 /* This is a reference to a symbol defined by a dynamic object. The
1524 reference must go through the GOT, so there's no need for COPY relocs,
1525 .dynbss, etc. */
1526
1527 return TRUE;
1528 }
1529
1530
1531 static bfd_boolean
1532 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1533 {
1534 struct bfd_link_info *info;
1535 struct elf_xtensa_link_hash_table *htab;
1536 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1537
1538 if (h->root.type == bfd_link_hash_indirect)
1539 return TRUE;
1540
1541 info = (struct bfd_link_info *) arg;
1542 htab = elf_xtensa_hash_table (info);
1543 if (htab == NULL)
1544 return FALSE;
1545
1546 /* If we saw any use of an IE model for this symbol, we can then optimize
1547 away GOT entries for any TLSDESC_FN relocs. */
1548 if ((eh->tls_type & GOT_TLS_IE) != 0)
1549 {
1550 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1551 h->got.refcount -= eh->tlsfunc_refcount;
1552 }
1553
1554 if (! elf_xtensa_dynamic_symbol_p (h, info))
1555 elf_xtensa_make_sym_local (info, h);
1556
1557 if (h->plt.refcount > 0)
1558 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1559
1560 if (h->got.refcount > 0)
1561 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1562
1563 return TRUE;
1564 }
1565
1566
1567 static void
1568 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1569 {
1570 struct elf_xtensa_link_hash_table *htab;
1571 bfd *i;
1572
1573 htab = elf_xtensa_hash_table (info);
1574 if (htab == NULL)
1575 return;
1576
1577 for (i = info->input_bfds; i; i = i->link.next)
1578 {
1579 bfd_signed_vma *local_got_refcounts;
1580 bfd_size_type j, cnt;
1581 Elf_Internal_Shdr *symtab_hdr;
1582
1583 local_got_refcounts = elf_local_got_refcounts (i);
1584 if (!local_got_refcounts)
1585 continue;
1586
1587 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1588 cnt = symtab_hdr->sh_info;
1589
1590 for (j = 0; j < cnt; ++j)
1591 {
1592 /* If we saw any use of an IE model for this symbol, we can
1593 then optimize away GOT entries for any TLSDESC_FN relocs. */
1594 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1595 {
1596 bfd_signed_vma *tlsfunc_refcount
1597 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1598 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1599 local_got_refcounts[j] -= *tlsfunc_refcount;
1600 }
1601
1602 if (local_got_refcounts[j] > 0)
1603 htab->srelgot->size += (local_got_refcounts[j]
1604 * sizeof (Elf32_External_Rela));
1605 }
1606 }
1607 }
1608
1609
1610 /* Set the sizes of the dynamic sections. */
1611
1612 static bfd_boolean
1613 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1614 struct bfd_link_info *info)
1615 {
1616 struct elf_xtensa_link_hash_table *htab;
1617 bfd *dynobj, *abfd;
1618 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1619 bfd_boolean relplt, relgot;
1620 int plt_entries, plt_chunks, chunk;
1621
1622 plt_entries = 0;
1623 plt_chunks = 0;
1624
1625 htab = elf_xtensa_hash_table (info);
1626 if (htab == NULL)
1627 return FALSE;
1628
1629 dynobj = elf_hash_table (info)->dynobj;
1630 if (dynobj == NULL)
1631 abort ();
1632 srelgot = htab->srelgot;
1633 srelplt = htab->srelplt;
1634
1635 if (elf_hash_table (info)->dynamic_sections_created)
1636 {
1637 BFD_ASSERT (htab->srelgot != NULL
1638 && htab->srelplt != NULL
1639 && htab->sgot != NULL
1640 && htab->spltlittbl != NULL
1641 && htab->sgotloc != NULL);
1642
1643 /* Set the contents of the .interp section to the interpreter. */
1644 if (bfd_link_executable (info) && !info->nointerp)
1645 {
1646 s = bfd_get_linker_section (dynobj, ".interp");
1647 if (s == NULL)
1648 abort ();
1649 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1650 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1651 }
1652
1653 /* Allocate room for one word in ".got". */
1654 htab->sgot->size = 4;
1655
1656 /* Allocate space in ".rela.got" for literals that reference global
1657 symbols and space in ".rela.plt" for literals that have PLT
1658 entries. */
1659 elf_link_hash_traverse (elf_hash_table (info),
1660 elf_xtensa_allocate_dynrelocs,
1661 (void *) info);
1662
1663 /* If we are generating a shared object, we also need space in
1664 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1665 reference local symbols. */
1666 if (bfd_link_pic (info))
1667 elf_xtensa_allocate_local_got_size (info);
1668
1669 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1670 each PLT entry, we need the PLT code plus a 4-byte literal.
1671 For each chunk of ".plt", we also need two more 4-byte
1672 literals, two corresponding entries in ".rela.got", and an
1673 8-byte entry in ".xt.lit.plt". */
1674 spltlittbl = htab->spltlittbl;
1675 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1676 plt_chunks =
1677 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1678
1679 /* Iterate over all the PLT chunks, including any extra sections
1680 created earlier because the initial count of PLT relocations
1681 was an overestimate. */
1682 for (chunk = 0;
1683 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1684 chunk++)
1685 {
1686 int chunk_entries;
1687
1688 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1689 BFD_ASSERT (sgotplt != NULL);
1690
1691 if (chunk < plt_chunks - 1)
1692 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1693 else if (chunk == plt_chunks - 1)
1694 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1695 else
1696 chunk_entries = 0;
1697
1698 if (chunk_entries != 0)
1699 {
1700 sgotplt->size = 4 * (chunk_entries + 2);
1701 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1702 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1703 spltlittbl->size += 8;
1704 }
1705 else
1706 {
1707 sgotplt->size = 0;
1708 splt->size = 0;
1709 }
1710 }
1711
1712 /* Allocate space in ".got.loc" to match the total size of all the
1713 literal tables. */
1714 sgotloc = htab->sgotloc;
1715 sgotloc->size = spltlittbl->size;
1716 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1717 {
1718 if (abfd->flags & DYNAMIC)
1719 continue;
1720 for (s = abfd->sections; s != NULL; s = s->next)
1721 {
1722 if (! discarded_section (s)
1723 && xtensa_is_littable_section (s)
1724 && s != spltlittbl)
1725 sgotloc->size += s->size;
1726 }
1727 }
1728 }
1729
1730 /* Allocate memory for dynamic sections. */
1731 relplt = FALSE;
1732 relgot = FALSE;
1733 for (s = dynobj->sections; s != NULL; s = s->next)
1734 {
1735 const char *name;
1736
1737 if ((s->flags & SEC_LINKER_CREATED) == 0)
1738 continue;
1739
1740 /* It's OK to base decisions on the section name, because none
1741 of the dynobj section names depend upon the input files. */
1742 name = bfd_get_section_name (dynobj, s);
1743
1744 if (CONST_STRNEQ (name, ".rela"))
1745 {
1746 if (s->size != 0)
1747 {
1748 if (strcmp (name, ".rela.plt") == 0)
1749 relplt = TRUE;
1750 else if (strcmp (name, ".rela.got") == 0)
1751 relgot = TRUE;
1752
1753 /* We use the reloc_count field as a counter if we need
1754 to copy relocs into the output file. */
1755 s->reloc_count = 0;
1756 }
1757 }
1758 else if (! CONST_STRNEQ (name, ".plt.")
1759 && ! CONST_STRNEQ (name, ".got.plt.")
1760 && strcmp (name, ".got") != 0
1761 && strcmp (name, ".plt") != 0
1762 && strcmp (name, ".got.plt") != 0
1763 && strcmp (name, ".xt.lit.plt") != 0
1764 && strcmp (name, ".got.loc") != 0)
1765 {
1766 /* It's not one of our sections, so don't allocate space. */
1767 continue;
1768 }
1769
1770 if (s->size == 0)
1771 {
1772 /* If we don't need this section, strip it from the output
1773 file. We must create the ".plt*" and ".got.plt*"
1774 sections in create_dynamic_sections and/or check_relocs
1775 based on a conservative estimate of the PLT relocation
1776 count, because the sections must be created before the
1777 linker maps input sections to output sections. The
1778 linker does that before size_dynamic_sections, where we
1779 compute the exact size of the PLT, so there may be more
1780 of these sections than are actually needed. */
1781 s->flags |= SEC_EXCLUDE;
1782 }
1783 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1784 {
1785 /* Allocate memory for the section contents. */
1786 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1787 if (s->contents == NULL)
1788 return FALSE;
1789 }
1790 }
1791
1792 if (elf_hash_table (info)->dynamic_sections_created)
1793 {
1794 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1795 known until finish_dynamic_sections, but we need to get the relocs
1796 in place before they are sorted. */
1797 for (chunk = 0; chunk < plt_chunks; chunk++)
1798 {
1799 Elf_Internal_Rela irela;
1800 bfd_byte *loc;
1801
1802 irela.r_offset = 0;
1803 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1804 irela.r_addend = 0;
1805
1806 loc = (srelgot->contents
1807 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1808 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1809 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1810 loc + sizeof (Elf32_External_Rela));
1811 srelgot->reloc_count += 2;
1812 }
1813
1814 /* Add some entries to the .dynamic section. We fill in the
1815 values later, in elf_xtensa_finish_dynamic_sections, but we
1816 must add the entries now so that we get the correct size for
1817 the .dynamic section. The DT_DEBUG entry is filled in by the
1818 dynamic linker and used by the debugger. */
1819 #define add_dynamic_entry(TAG, VAL) \
1820 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1821
1822 if (bfd_link_executable (info))
1823 {
1824 if (!add_dynamic_entry (DT_DEBUG, 0))
1825 return FALSE;
1826 }
1827
1828 if (relplt)
1829 {
1830 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1831 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1832 || !add_dynamic_entry (DT_JMPREL, 0))
1833 return FALSE;
1834 }
1835
1836 if (relgot)
1837 {
1838 if (!add_dynamic_entry (DT_RELA, 0)
1839 || !add_dynamic_entry (DT_RELASZ, 0)
1840 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1841 return FALSE;
1842 }
1843
1844 if (!add_dynamic_entry (DT_PLTGOT, 0)
1845 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1846 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1847 return FALSE;
1848 }
1849 #undef add_dynamic_entry
1850
1851 return TRUE;
1852 }
1853
1854 static bfd_boolean
1855 elf_xtensa_always_size_sections (bfd *output_bfd,
1856 struct bfd_link_info *info)
1857 {
1858 struct elf_xtensa_link_hash_table *htab;
1859 asection *tls_sec;
1860
1861 htab = elf_xtensa_hash_table (info);
1862 if (htab == NULL)
1863 return FALSE;
1864
1865 tls_sec = htab->elf.tls_sec;
1866
1867 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1868 {
1869 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1870 struct bfd_link_hash_entry *bh = &tlsbase->root;
1871 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1872
1873 tlsbase->type = STT_TLS;
1874 if (!(_bfd_generic_link_add_one_symbol
1875 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1876 tls_sec, 0, NULL, FALSE,
1877 bed->collect, &bh)))
1878 return FALSE;
1879 tlsbase->def_regular = 1;
1880 tlsbase->other = STV_HIDDEN;
1881 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1882 }
1883
1884 return TRUE;
1885 }
1886
1887 \f
1888 /* Return the base VMA address which should be subtracted from real addresses
1889 when resolving @dtpoff relocation.
1890 This is PT_TLS segment p_vaddr. */
1891
1892 static bfd_vma
1893 dtpoff_base (struct bfd_link_info *info)
1894 {
1895 /* If tls_sec is NULL, we should have signalled an error already. */
1896 if (elf_hash_table (info)->tls_sec == NULL)
1897 return 0;
1898 return elf_hash_table (info)->tls_sec->vma;
1899 }
1900
1901 /* Return the relocation value for @tpoff relocation
1902 if STT_TLS virtual address is ADDRESS. */
1903
1904 static bfd_vma
1905 tpoff (struct bfd_link_info *info, bfd_vma address)
1906 {
1907 struct elf_link_hash_table *htab = elf_hash_table (info);
1908 bfd_vma base;
1909
1910 /* If tls_sec is NULL, we should have signalled an error already. */
1911 if (htab->tls_sec == NULL)
1912 return 0;
1913 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1914 return address - htab->tls_sec->vma + base;
1915 }
1916
1917 /* Perform the specified relocation. The instruction at (contents + address)
1918 is modified to set one operand to represent the value in "relocation". The
1919 operand position is determined by the relocation type recorded in the
1920 howto. */
1921
1922 #define CALL_SEGMENT_BITS (30)
1923 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1924
1925 static bfd_reloc_status_type
1926 elf_xtensa_do_reloc (reloc_howto_type *howto,
1927 bfd *abfd,
1928 asection *input_section,
1929 bfd_vma relocation,
1930 bfd_byte *contents,
1931 bfd_vma address,
1932 bfd_boolean is_weak_undef,
1933 char **error_message)
1934 {
1935 xtensa_format fmt;
1936 xtensa_opcode opcode;
1937 xtensa_isa isa = xtensa_default_isa;
1938 static xtensa_insnbuf ibuff = NULL;
1939 static xtensa_insnbuf sbuff = NULL;
1940 bfd_vma self_address;
1941 bfd_size_type input_size;
1942 int opnd, slot;
1943 uint32 newval;
1944
1945 if (!ibuff)
1946 {
1947 ibuff = xtensa_insnbuf_alloc (isa);
1948 sbuff = xtensa_insnbuf_alloc (isa);
1949 }
1950
1951 input_size = bfd_get_section_limit (abfd, input_section);
1952
1953 /* Calculate the PC address for this instruction. */
1954 self_address = (input_section->output_section->vma
1955 + input_section->output_offset
1956 + address);
1957
1958 switch (howto->type)
1959 {
1960 case R_XTENSA_NONE:
1961 case R_XTENSA_DIFF8:
1962 case R_XTENSA_DIFF16:
1963 case R_XTENSA_DIFF32:
1964 case R_XTENSA_TLS_FUNC:
1965 case R_XTENSA_TLS_ARG:
1966 case R_XTENSA_TLS_CALL:
1967 return bfd_reloc_ok;
1968
1969 case R_XTENSA_ASM_EXPAND:
1970 if (!is_weak_undef)
1971 {
1972 /* Check for windowed CALL across a 1GB boundary. */
1973 opcode = get_expanded_call_opcode (contents + address,
1974 input_size - address, 0);
1975 if (is_windowed_call_opcode (opcode))
1976 {
1977 if ((self_address >> CALL_SEGMENT_BITS)
1978 != (relocation >> CALL_SEGMENT_BITS))
1979 {
1980 *error_message = "windowed longcall crosses 1GB boundary; "
1981 "return may fail";
1982 return bfd_reloc_dangerous;
1983 }
1984 }
1985 }
1986 return bfd_reloc_ok;
1987
1988 case R_XTENSA_ASM_SIMPLIFY:
1989 {
1990 /* Convert the L32R/CALLX to CALL. */
1991 bfd_reloc_status_type retval =
1992 elf_xtensa_do_asm_simplify (contents, address, input_size,
1993 error_message);
1994 if (retval != bfd_reloc_ok)
1995 return bfd_reloc_dangerous;
1996
1997 /* The CALL needs to be relocated. Continue below for that part. */
1998 address += 3;
1999 self_address += 3;
2000 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
2001 }
2002 break;
2003
2004 case R_XTENSA_32:
2005 {
2006 bfd_vma x;
2007 x = bfd_get_32 (abfd, contents + address);
2008 x = x + relocation;
2009 bfd_put_32 (abfd, x, contents + address);
2010 }
2011 return bfd_reloc_ok;
2012
2013 case R_XTENSA_32_PCREL:
2014 bfd_put_32 (abfd, relocation - self_address, contents + address);
2015 return bfd_reloc_ok;
2016
2017 case R_XTENSA_PLT:
2018 case R_XTENSA_TLSDESC_FN:
2019 case R_XTENSA_TLSDESC_ARG:
2020 case R_XTENSA_TLS_DTPOFF:
2021 case R_XTENSA_TLS_TPOFF:
2022 bfd_put_32 (abfd, relocation, contents + address);
2023 return bfd_reloc_ok;
2024 }
2025
2026 /* Only instruction slot-specific relocations handled below.... */
2027 slot = get_relocation_slot (howto->type);
2028 if (slot == XTENSA_UNDEFINED)
2029 {
2030 *error_message = "unexpected relocation";
2031 return bfd_reloc_dangerous;
2032 }
2033
2034 /* Read the instruction into a buffer and decode the opcode. */
2035 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2036 input_size - address);
2037 fmt = xtensa_format_decode (isa, ibuff);
2038 if (fmt == XTENSA_UNDEFINED)
2039 {
2040 *error_message = "cannot decode instruction format";
2041 return bfd_reloc_dangerous;
2042 }
2043
2044 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
2045
2046 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2047 if (opcode == XTENSA_UNDEFINED)
2048 {
2049 *error_message = "cannot decode instruction opcode";
2050 return bfd_reloc_dangerous;
2051 }
2052
2053 /* Check for opcode-specific "alternate" relocations. */
2054 if (is_alt_relocation (howto->type))
2055 {
2056 if (opcode == get_l32r_opcode ())
2057 {
2058 /* Handle the special-case of non-PC-relative L32R instructions. */
2059 bfd *output_bfd = input_section->output_section->owner;
2060 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2061 if (!lit4_sec)
2062 {
2063 *error_message = "relocation references missing .lit4 section";
2064 return bfd_reloc_dangerous;
2065 }
2066 self_address = ((lit4_sec->vma & ~0xfff)
2067 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2068 newval = relocation;
2069 opnd = 1;
2070 }
2071 else if (opcode == get_const16_opcode ())
2072 {
2073 /* ALT used for high 16 bits. */
2074 newval = relocation >> 16;
2075 opnd = 1;
2076 }
2077 else
2078 {
2079 /* No other "alternate" relocations currently defined. */
2080 *error_message = "unexpected relocation";
2081 return bfd_reloc_dangerous;
2082 }
2083 }
2084 else /* Not an "alternate" relocation.... */
2085 {
2086 if (opcode == get_const16_opcode ())
2087 {
2088 newval = relocation & 0xffff;
2089 opnd = 1;
2090 }
2091 else
2092 {
2093 /* ...normal PC-relative relocation.... */
2094
2095 /* Determine which operand is being relocated. */
2096 opnd = get_relocation_opnd (opcode, howto->type);
2097 if (opnd == XTENSA_UNDEFINED)
2098 {
2099 *error_message = "unexpected relocation";
2100 return bfd_reloc_dangerous;
2101 }
2102
2103 if (!howto->pc_relative)
2104 {
2105 *error_message = "expected PC-relative relocation";
2106 return bfd_reloc_dangerous;
2107 }
2108
2109 newval = relocation;
2110 }
2111 }
2112
2113 /* Apply the relocation. */
2114 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2115 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2116 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2117 sbuff, newval))
2118 {
2119 const char *opname = xtensa_opcode_name (isa, opcode);
2120 const char *msg;
2121
2122 msg = "cannot encode";
2123 if (is_direct_call_opcode (opcode))
2124 {
2125 if ((relocation & 0x3) != 0)
2126 msg = "misaligned call target";
2127 else
2128 msg = "call target out of range";
2129 }
2130 else if (opcode == get_l32r_opcode ())
2131 {
2132 if ((relocation & 0x3) != 0)
2133 msg = "misaligned literal target";
2134 else if (is_alt_relocation (howto->type))
2135 msg = "literal target out of range (too many literals)";
2136 else if (self_address > relocation)
2137 msg = "literal target out of range (try using text-section-literals)";
2138 else
2139 msg = "literal placed after use";
2140 }
2141
2142 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2143 return bfd_reloc_dangerous;
2144 }
2145
2146 /* Check for calls across 1GB boundaries. */
2147 if (is_direct_call_opcode (opcode)
2148 && is_windowed_call_opcode (opcode))
2149 {
2150 if ((self_address >> CALL_SEGMENT_BITS)
2151 != (relocation >> CALL_SEGMENT_BITS))
2152 {
2153 *error_message =
2154 "windowed call crosses 1GB boundary; return may fail";
2155 return bfd_reloc_dangerous;
2156 }
2157 }
2158
2159 /* Write the modified instruction back out of the buffer. */
2160 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2161 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2162 input_size - address);
2163 return bfd_reloc_ok;
2164 }
2165
2166
2167 static char *
2168 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2169 {
2170 /* To reduce the size of the memory leak,
2171 we only use a single message buffer. */
2172 static bfd_size_type alloc_size = 0;
2173 static char *message = NULL;
2174 bfd_size_type orig_len, len = 0;
2175 bfd_boolean is_append;
2176 va_list ap;
2177
2178 va_start (ap, arglen);
2179
2180 is_append = (origmsg == message);
2181
2182 orig_len = strlen (origmsg);
2183 len = orig_len + strlen (fmt) + arglen + 20;
2184 if (len > alloc_size)
2185 {
2186 message = (char *) bfd_realloc_or_free (message, len);
2187 alloc_size = len;
2188 }
2189 if (message != NULL)
2190 {
2191 if (!is_append)
2192 memcpy (message, origmsg, orig_len);
2193 vsprintf (message + orig_len, fmt, ap);
2194 }
2195 va_end (ap);
2196 return message;
2197 }
2198
2199
2200 /* This function is registered as the "special_function" in the
2201 Xtensa howto for handling simplify operations.
2202 bfd_perform_relocation / bfd_install_relocation use it to
2203 perform (install) the specified relocation. Since this replaces the code
2204 in bfd_perform_relocation, it is basically an Xtensa-specific,
2205 stripped-down version of bfd_perform_relocation. */
2206
2207 static bfd_reloc_status_type
2208 bfd_elf_xtensa_reloc (bfd *abfd,
2209 arelent *reloc_entry,
2210 asymbol *symbol,
2211 void *data,
2212 asection *input_section,
2213 bfd *output_bfd,
2214 char **error_message)
2215 {
2216 bfd_vma relocation;
2217 bfd_reloc_status_type flag;
2218 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2219 bfd_vma output_base = 0;
2220 reloc_howto_type *howto = reloc_entry->howto;
2221 asection *reloc_target_output_section;
2222 bfd_boolean is_weak_undef;
2223
2224 if (!xtensa_default_isa)
2225 xtensa_default_isa = xtensa_isa_init (0, 0);
2226
2227 /* ELF relocs are against symbols. If we are producing relocatable
2228 output, and the reloc is against an external symbol, the resulting
2229 reloc will also be against the same symbol. In such a case, we
2230 don't want to change anything about the way the reloc is handled,
2231 since it will all be done at final link time. This test is similar
2232 to what bfd_elf_generic_reloc does except that it lets relocs with
2233 howto->partial_inplace go through even if the addend is non-zero.
2234 (The real problem is that partial_inplace is set for XTENSA_32
2235 relocs to begin with, but that's a long story and there's little we
2236 can do about it now....) */
2237
2238 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2239 {
2240 reloc_entry->address += input_section->output_offset;
2241 return bfd_reloc_ok;
2242 }
2243
2244 /* Is the address of the relocation really within the section? */
2245 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2246 return bfd_reloc_outofrange;
2247
2248 /* Work out which section the relocation is targeted at and the
2249 initial relocation command value. */
2250
2251 /* Get symbol value. (Common symbols are special.) */
2252 if (bfd_is_com_section (symbol->section))
2253 relocation = 0;
2254 else
2255 relocation = symbol->value;
2256
2257 reloc_target_output_section = symbol->section->output_section;
2258
2259 /* Convert input-section-relative symbol value to absolute. */
2260 if ((output_bfd && !howto->partial_inplace)
2261 || reloc_target_output_section == NULL)
2262 output_base = 0;
2263 else
2264 output_base = reloc_target_output_section->vma;
2265
2266 relocation += output_base + symbol->section->output_offset;
2267
2268 /* Add in supplied addend. */
2269 relocation += reloc_entry->addend;
2270
2271 /* Here the variable relocation holds the final address of the
2272 symbol we are relocating against, plus any addend. */
2273 if (output_bfd)
2274 {
2275 if (!howto->partial_inplace)
2276 {
2277 /* This is a partial relocation, and we want to apply the relocation
2278 to the reloc entry rather than the raw data. Everything except
2279 relocations against section symbols has already been handled
2280 above. */
2281
2282 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2283 reloc_entry->addend = relocation;
2284 reloc_entry->address += input_section->output_offset;
2285 return bfd_reloc_ok;
2286 }
2287 else
2288 {
2289 reloc_entry->address += input_section->output_offset;
2290 reloc_entry->addend = 0;
2291 }
2292 }
2293
2294 is_weak_undef = (bfd_is_und_section (symbol->section)
2295 && (symbol->flags & BSF_WEAK) != 0);
2296 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2297 (bfd_byte *) data, (bfd_vma) octets,
2298 is_weak_undef, error_message);
2299
2300 if (flag == bfd_reloc_dangerous)
2301 {
2302 /* Add the symbol name to the error message. */
2303 if (! *error_message)
2304 *error_message = "";
2305 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2306 strlen (symbol->name) + 17,
2307 symbol->name,
2308 (unsigned long) reloc_entry->addend);
2309 }
2310
2311 return flag;
2312 }
2313
2314
2315 /* Set up an entry in the procedure linkage table. */
2316
2317 static bfd_vma
2318 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2319 bfd *output_bfd,
2320 unsigned reloc_index)
2321 {
2322 asection *splt, *sgotplt;
2323 bfd_vma plt_base, got_base;
2324 bfd_vma code_offset, lit_offset, abi_offset;
2325 int chunk;
2326
2327 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2328 splt = elf_xtensa_get_plt_section (info, chunk);
2329 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2330 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2331
2332 plt_base = splt->output_section->vma + splt->output_offset;
2333 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2334
2335 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2336 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2337
2338 /* Fill in the literal entry. This is the offset of the dynamic
2339 relocation entry. */
2340 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2341 sgotplt->contents + lit_offset);
2342
2343 /* Fill in the entry in the procedure linkage table. */
2344 memcpy (splt->contents + code_offset,
2345 (bfd_big_endian (output_bfd)
2346 ? elf_xtensa_be_plt_entry
2347 : elf_xtensa_le_plt_entry),
2348 PLT_ENTRY_SIZE);
2349 abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
2350 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2351 plt_base + code_offset + abi_offset),
2352 splt->contents + code_offset + abi_offset + 1);
2353 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2354 plt_base + code_offset + abi_offset + 3),
2355 splt->contents + code_offset + abi_offset + 4);
2356 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2357 plt_base + code_offset + abi_offset + 6),
2358 splt->contents + code_offset + abi_offset + 7);
2359
2360 return plt_base + code_offset;
2361 }
2362
2363
2364 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2365
2366 static bfd_boolean
2367 replace_tls_insn (Elf_Internal_Rela *rel,
2368 bfd *abfd,
2369 asection *input_section,
2370 bfd_byte *contents,
2371 bfd_boolean is_ld_model,
2372 char **error_message)
2373 {
2374 static xtensa_insnbuf ibuff = NULL;
2375 static xtensa_insnbuf sbuff = NULL;
2376 xtensa_isa isa = xtensa_default_isa;
2377 xtensa_format fmt;
2378 xtensa_opcode old_op, new_op;
2379 bfd_size_type input_size;
2380 int r_type;
2381 unsigned dest_reg, src_reg;
2382
2383 if (ibuff == NULL)
2384 {
2385 ibuff = xtensa_insnbuf_alloc (isa);
2386 sbuff = xtensa_insnbuf_alloc (isa);
2387 }
2388
2389 input_size = bfd_get_section_limit (abfd, input_section);
2390
2391 /* Read the instruction into a buffer and decode the opcode. */
2392 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2393 input_size - rel->r_offset);
2394 fmt = xtensa_format_decode (isa, ibuff);
2395 if (fmt == XTENSA_UNDEFINED)
2396 {
2397 *error_message = "cannot decode instruction format";
2398 return FALSE;
2399 }
2400
2401 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2402 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2403
2404 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2405 if (old_op == XTENSA_UNDEFINED)
2406 {
2407 *error_message = "cannot decode instruction opcode";
2408 return FALSE;
2409 }
2410
2411 r_type = ELF32_R_TYPE (rel->r_info);
2412 switch (r_type)
2413 {
2414 case R_XTENSA_TLS_FUNC:
2415 case R_XTENSA_TLS_ARG:
2416 if (old_op != get_l32r_opcode ()
2417 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2418 sbuff, &dest_reg) != 0)
2419 {
2420 *error_message = "cannot extract L32R destination for TLS access";
2421 return FALSE;
2422 }
2423 break;
2424
2425 case R_XTENSA_TLS_CALL:
2426 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2427 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2428 sbuff, &src_reg) != 0)
2429 {
2430 *error_message = "cannot extract CALLXn operands for TLS access";
2431 return FALSE;
2432 }
2433 break;
2434
2435 default:
2436 abort ();
2437 }
2438
2439 if (is_ld_model)
2440 {
2441 switch (r_type)
2442 {
2443 case R_XTENSA_TLS_FUNC:
2444 case R_XTENSA_TLS_ARG:
2445 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2446 versions of Xtensa). */
2447 new_op = xtensa_opcode_lookup (isa, "nop");
2448 if (new_op == XTENSA_UNDEFINED)
2449 {
2450 new_op = xtensa_opcode_lookup (isa, "or");
2451 if (new_op == XTENSA_UNDEFINED
2452 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2453 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2454 sbuff, 1) != 0
2455 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2456 sbuff, 1) != 0
2457 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2458 sbuff, 1) != 0)
2459 {
2460 *error_message = "cannot encode OR for TLS access";
2461 return FALSE;
2462 }
2463 }
2464 else
2465 {
2466 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2467 {
2468 *error_message = "cannot encode NOP for TLS access";
2469 return FALSE;
2470 }
2471 }
2472 break;
2473
2474 case R_XTENSA_TLS_CALL:
2475 /* Read THREADPTR into the CALLX's return value register. */
2476 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2477 if (new_op == XTENSA_UNDEFINED
2478 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2479 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2480 sbuff, dest_reg + 2) != 0)
2481 {
2482 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2483 return FALSE;
2484 }
2485 break;
2486 }
2487 }
2488 else
2489 {
2490 switch (r_type)
2491 {
2492 case R_XTENSA_TLS_FUNC:
2493 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2494 if (new_op == XTENSA_UNDEFINED
2495 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2496 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2497 sbuff, dest_reg) != 0)
2498 {
2499 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2500 return FALSE;
2501 }
2502 break;
2503
2504 case R_XTENSA_TLS_ARG:
2505 /* Nothing to do. Keep the original L32R instruction. */
2506 return TRUE;
2507
2508 case R_XTENSA_TLS_CALL:
2509 /* Add the CALLX's src register (holding the THREADPTR value)
2510 to the first argument register (holding the offset) and put
2511 the result in the CALLX's return value register. */
2512 new_op = xtensa_opcode_lookup (isa, "add");
2513 if (new_op == XTENSA_UNDEFINED
2514 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2515 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2516 sbuff, dest_reg + 2) != 0
2517 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2518 sbuff, dest_reg + 2) != 0
2519 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2520 sbuff, src_reg) != 0)
2521 {
2522 *error_message = "cannot encode ADD for TLS access";
2523 return FALSE;
2524 }
2525 break;
2526 }
2527 }
2528
2529 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2530 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2531 input_size - rel->r_offset);
2532
2533 return TRUE;
2534 }
2535
2536
2537 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2538 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2539 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2540 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2541 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2542 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2543 || (R_TYPE) == R_XTENSA_TLS_ARG \
2544 || (R_TYPE) == R_XTENSA_TLS_CALL)
2545
2546 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2547 both relocatable and final links. */
2548
2549 static bfd_boolean
2550 elf_xtensa_relocate_section (bfd *output_bfd,
2551 struct bfd_link_info *info,
2552 bfd *input_bfd,
2553 asection *input_section,
2554 bfd_byte *contents,
2555 Elf_Internal_Rela *relocs,
2556 Elf_Internal_Sym *local_syms,
2557 asection **local_sections)
2558 {
2559 struct elf_xtensa_link_hash_table *htab;
2560 Elf_Internal_Shdr *symtab_hdr;
2561 Elf_Internal_Rela *rel;
2562 Elf_Internal_Rela *relend;
2563 struct elf_link_hash_entry **sym_hashes;
2564 property_table_entry *lit_table = 0;
2565 int ltblsize = 0;
2566 char *local_got_tls_types;
2567 char *error_message = NULL;
2568 bfd_size_type input_size;
2569 int tls_type;
2570
2571 if (!xtensa_default_isa)
2572 xtensa_default_isa = xtensa_isa_init (0, 0);
2573
2574 BFD_ASSERT (is_xtensa_elf (input_bfd));
2575
2576 htab = elf_xtensa_hash_table (info);
2577 if (htab == NULL)
2578 return FALSE;
2579
2580 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2581 sym_hashes = elf_sym_hashes (input_bfd);
2582 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2583
2584 if (elf_hash_table (info)->dynamic_sections_created)
2585 {
2586 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2587 &lit_table, XTENSA_LIT_SEC_NAME,
2588 TRUE);
2589 if (ltblsize < 0)
2590 return FALSE;
2591 }
2592
2593 input_size = bfd_get_section_limit (input_bfd, input_section);
2594
2595 rel = relocs;
2596 relend = relocs + input_section->reloc_count;
2597 for (; rel < relend; rel++)
2598 {
2599 int r_type;
2600 reloc_howto_type *howto;
2601 unsigned long r_symndx;
2602 struct elf_link_hash_entry *h;
2603 Elf_Internal_Sym *sym;
2604 char sym_type;
2605 const char *name;
2606 asection *sec;
2607 bfd_vma relocation;
2608 bfd_reloc_status_type r;
2609 bfd_boolean is_weak_undef;
2610 bfd_boolean unresolved_reloc;
2611 bfd_boolean warned;
2612 bfd_boolean dynamic_symbol;
2613
2614 r_type = ELF32_R_TYPE (rel->r_info);
2615 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2616 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2617 continue;
2618
2619 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2620 {
2621 bfd_set_error (bfd_error_bad_value);
2622 return FALSE;
2623 }
2624 howto = &elf_howto_table[r_type];
2625
2626 r_symndx = ELF32_R_SYM (rel->r_info);
2627
2628 h = NULL;
2629 sym = NULL;
2630 sec = NULL;
2631 is_weak_undef = FALSE;
2632 unresolved_reloc = FALSE;
2633 warned = FALSE;
2634
2635 if (howto->partial_inplace && !bfd_link_relocatable (info))
2636 {
2637 /* Because R_XTENSA_32 was made partial_inplace to fix some
2638 problems with DWARF info in partial links, there may be
2639 an addend stored in the contents. Take it out of there
2640 and move it back into the addend field of the reloc. */
2641 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2642 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2643 }
2644
2645 if (r_symndx < symtab_hdr->sh_info)
2646 {
2647 sym = local_syms + r_symndx;
2648 sym_type = ELF32_ST_TYPE (sym->st_info);
2649 sec = local_sections[r_symndx];
2650 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2651 }
2652 else
2653 {
2654 bfd_boolean ignored;
2655
2656 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2657 r_symndx, symtab_hdr, sym_hashes,
2658 h, sec, relocation,
2659 unresolved_reloc, warned, ignored);
2660
2661 if (relocation == 0
2662 && !unresolved_reloc
2663 && h->root.type == bfd_link_hash_undefweak)
2664 is_weak_undef = TRUE;
2665
2666 sym_type = h->type;
2667 }
2668
2669 if (sec != NULL && discarded_section (sec))
2670 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2671 rel, 1, relend, howto, 0, contents);
2672
2673 if (bfd_link_relocatable (info))
2674 {
2675 bfd_vma dest_addr;
2676 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2677
2678 /* This is a relocatable link.
2679 1) If the reloc is against a section symbol, adjust
2680 according to the output section.
2681 2) If there is a new target for this relocation,
2682 the new target will be in the same output section.
2683 We adjust the relocation by the output section
2684 difference. */
2685
2686 if (relaxing_section)
2687 {
2688 /* Check if this references a section in another input file. */
2689 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2690 contents))
2691 return FALSE;
2692 }
2693
2694 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2695 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2696
2697 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2698 {
2699 error_message = NULL;
2700 /* Convert ASM_SIMPLIFY into the simpler relocation
2701 so that they never escape a relaxing link. */
2702 r = contract_asm_expansion (contents, input_size, rel,
2703 &error_message);
2704 if (r != bfd_reloc_ok)
2705 (*info->callbacks->reloc_dangerous)
2706 (info, error_message,
2707 input_bfd, input_section, rel->r_offset);
2708
2709 r_type = ELF32_R_TYPE (rel->r_info);
2710 }
2711
2712 /* This is a relocatable link, so we don't have to change
2713 anything unless the reloc is against a section symbol,
2714 in which case we have to adjust according to where the
2715 section symbol winds up in the output section. */
2716 if (r_symndx < symtab_hdr->sh_info)
2717 {
2718 sym = local_syms + r_symndx;
2719 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2720 {
2721 sec = local_sections[r_symndx];
2722 rel->r_addend += sec->output_offset + sym->st_value;
2723 }
2724 }
2725
2726 /* If there is an addend with a partial_inplace howto,
2727 then move the addend to the contents. This is a hack
2728 to work around problems with DWARF in relocatable links
2729 with some previous version of BFD. Now we can't easily get
2730 rid of the hack without breaking backward compatibility.... */
2731 r = bfd_reloc_ok;
2732 howto = &elf_howto_table[r_type];
2733 if (howto->partial_inplace && rel->r_addend)
2734 {
2735 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2736 rel->r_addend, contents,
2737 rel->r_offset, FALSE,
2738 &error_message);
2739 rel->r_addend = 0;
2740 }
2741 else
2742 {
2743 /* Put the correct bits in the target instruction, even
2744 though the relocation will still be present in the output
2745 file. This makes disassembly clearer, as well as
2746 allowing loadable kernel modules to work without needing
2747 relocations on anything other than calls and l32r's. */
2748
2749 /* If it is not in the same section, there is nothing we can do. */
2750 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2751 sym_sec->output_section == input_section->output_section)
2752 {
2753 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2754 dest_addr, contents,
2755 rel->r_offset, FALSE,
2756 &error_message);
2757 }
2758 }
2759 if (r != bfd_reloc_ok)
2760 (*info->callbacks->reloc_dangerous)
2761 (info, error_message,
2762 input_bfd, input_section, rel->r_offset);
2763
2764 /* Done with work for relocatable link; continue with next reloc. */
2765 continue;
2766 }
2767
2768 /* This is a final link. */
2769
2770 if (relaxing_section)
2771 {
2772 /* Check if this references a section in another input file. */
2773 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2774 &relocation);
2775 }
2776
2777 /* Sanity check the address. */
2778 if (rel->r_offset >= input_size
2779 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2780 {
2781 (*_bfd_error_handler)
2782 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2783 input_bfd, input_section, rel->r_offset, input_size);
2784 bfd_set_error (bfd_error_bad_value);
2785 return FALSE;
2786 }
2787
2788 if (h != NULL)
2789 name = h->root.root.string;
2790 else
2791 {
2792 name = (bfd_elf_string_from_elf_section
2793 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2794 if (name == NULL || *name == '\0')
2795 name = bfd_section_name (input_bfd, sec);
2796 }
2797
2798 if (r_symndx != STN_UNDEF
2799 && r_type != R_XTENSA_NONE
2800 && (h == NULL
2801 || h->root.type == bfd_link_hash_defined
2802 || h->root.type == bfd_link_hash_defweak)
2803 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2804 {
2805 (*_bfd_error_handler)
2806 ((sym_type == STT_TLS
2807 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2808 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2809 input_bfd,
2810 input_section,
2811 (long) rel->r_offset,
2812 howto->name,
2813 name);
2814 }
2815
2816 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2817
2818 tls_type = GOT_UNKNOWN;
2819 if (h)
2820 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2821 else if (local_got_tls_types)
2822 tls_type = local_got_tls_types [r_symndx];
2823
2824 switch (r_type)
2825 {
2826 case R_XTENSA_32:
2827 case R_XTENSA_PLT:
2828 if (elf_hash_table (info)->dynamic_sections_created
2829 && (input_section->flags & SEC_ALLOC) != 0
2830 && (dynamic_symbol || bfd_link_pic (info)))
2831 {
2832 Elf_Internal_Rela outrel;
2833 bfd_byte *loc;
2834 asection *srel;
2835
2836 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2837 srel = htab->srelplt;
2838 else
2839 srel = htab->srelgot;
2840
2841 BFD_ASSERT (srel != NULL);
2842
2843 outrel.r_offset =
2844 _bfd_elf_section_offset (output_bfd, info,
2845 input_section, rel->r_offset);
2846
2847 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2848 memset (&outrel, 0, sizeof outrel);
2849 else
2850 {
2851 outrel.r_offset += (input_section->output_section->vma
2852 + input_section->output_offset);
2853
2854 /* Complain if the relocation is in a read-only section
2855 and not in a literal pool. */
2856 if ((input_section->flags & SEC_READONLY) != 0
2857 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2858 outrel.r_offset))
2859 {
2860 error_message =
2861 _("dynamic relocation in read-only section");
2862 (*info->callbacks->reloc_dangerous)
2863 (info, error_message,
2864 input_bfd, input_section, rel->r_offset);
2865 }
2866
2867 if (dynamic_symbol)
2868 {
2869 outrel.r_addend = rel->r_addend;
2870 rel->r_addend = 0;
2871
2872 if (r_type == R_XTENSA_32)
2873 {
2874 outrel.r_info =
2875 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2876 relocation = 0;
2877 }
2878 else /* r_type == R_XTENSA_PLT */
2879 {
2880 outrel.r_info =
2881 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2882
2883 /* Create the PLT entry and set the initial
2884 contents of the literal entry to the address of
2885 the PLT entry. */
2886 relocation =
2887 elf_xtensa_create_plt_entry (info, output_bfd,
2888 srel->reloc_count);
2889 }
2890 unresolved_reloc = FALSE;
2891 }
2892 else
2893 {
2894 /* Generate a RELATIVE relocation. */
2895 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2896 outrel.r_addend = 0;
2897 }
2898 }
2899
2900 loc = (srel->contents
2901 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2902 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2903 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2904 <= srel->size);
2905 }
2906 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2907 {
2908 /* This should only happen for non-PIC code, which is not
2909 supposed to be used on systems with dynamic linking.
2910 Just ignore these relocations. */
2911 continue;
2912 }
2913 break;
2914
2915 case R_XTENSA_TLS_TPOFF:
2916 /* Switch to LE model for local symbols in an executable. */
2917 if (! bfd_link_pic (info) && ! dynamic_symbol)
2918 {
2919 relocation = tpoff (info, relocation);
2920 break;
2921 }
2922 /* fall through */
2923
2924 case R_XTENSA_TLSDESC_FN:
2925 case R_XTENSA_TLSDESC_ARG:
2926 {
2927 if (r_type == R_XTENSA_TLSDESC_FN)
2928 {
2929 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
2930 r_type = R_XTENSA_NONE;
2931 }
2932 else if (r_type == R_XTENSA_TLSDESC_ARG)
2933 {
2934 if (bfd_link_pic (info))
2935 {
2936 if ((tls_type & GOT_TLS_IE) != 0)
2937 r_type = R_XTENSA_TLS_TPOFF;
2938 }
2939 else
2940 {
2941 r_type = R_XTENSA_TLS_TPOFF;
2942 if (! dynamic_symbol)
2943 {
2944 relocation = tpoff (info, relocation);
2945 break;
2946 }
2947 }
2948 }
2949
2950 if (r_type == R_XTENSA_NONE)
2951 /* Nothing to do here; skip to the next reloc. */
2952 continue;
2953
2954 if (! elf_hash_table (info)->dynamic_sections_created)
2955 {
2956 error_message =
2957 _("TLS relocation invalid without dynamic sections");
2958 (*info->callbacks->reloc_dangerous)
2959 (info, error_message,
2960 input_bfd, input_section, rel->r_offset);
2961 }
2962 else
2963 {
2964 Elf_Internal_Rela outrel;
2965 bfd_byte *loc;
2966 asection *srel = htab->srelgot;
2967 int indx;
2968
2969 outrel.r_offset = (input_section->output_section->vma
2970 + input_section->output_offset
2971 + rel->r_offset);
2972
2973 /* Complain if the relocation is in a read-only section
2974 and not in a literal pool. */
2975 if ((input_section->flags & SEC_READONLY) != 0
2976 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2977 outrel.r_offset))
2978 {
2979 error_message =
2980 _("dynamic relocation in read-only section");
2981 (*info->callbacks->reloc_dangerous)
2982 (info, error_message,
2983 input_bfd, input_section, rel->r_offset);
2984 }
2985
2986 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2987 if (indx == 0)
2988 outrel.r_addend = relocation - dtpoff_base (info);
2989 else
2990 outrel.r_addend = 0;
2991 rel->r_addend = 0;
2992
2993 outrel.r_info = ELF32_R_INFO (indx, r_type);
2994 relocation = 0;
2995 unresolved_reloc = FALSE;
2996
2997 BFD_ASSERT (srel);
2998 loc = (srel->contents
2999 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
3000 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3001 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
3002 <= srel->size);
3003 }
3004 }
3005 break;
3006
3007 case R_XTENSA_TLS_DTPOFF:
3008 if (! bfd_link_pic (info))
3009 /* Switch from LD model to LE model. */
3010 relocation = tpoff (info, relocation);
3011 else
3012 relocation -= dtpoff_base (info);
3013 break;
3014
3015 case R_XTENSA_TLS_FUNC:
3016 case R_XTENSA_TLS_ARG:
3017 case R_XTENSA_TLS_CALL:
3018 /* Check if optimizing to IE or LE model. */
3019 if ((tls_type & GOT_TLS_IE) != 0)
3020 {
3021 bfd_boolean is_ld_model =
3022 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3023 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3024 is_ld_model, &error_message))
3025 (*info->callbacks->reloc_dangerous)
3026 (info, error_message,
3027 input_bfd, input_section, rel->r_offset);
3028
3029 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3030 {
3031 /* Skip subsequent relocations on the same instruction. */
3032 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3033 rel++;
3034 }
3035 }
3036 continue;
3037
3038 default:
3039 if (elf_hash_table (info)->dynamic_sections_created
3040 && dynamic_symbol && (is_operand_relocation (r_type)
3041 || r_type == R_XTENSA_32_PCREL))
3042 {
3043 error_message =
3044 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3045 strlen (name) + 2, name);
3046 (*info->callbacks->reloc_dangerous)
3047 (info, error_message, input_bfd, input_section, rel->r_offset);
3048 continue;
3049 }
3050 break;
3051 }
3052
3053 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3054 because such sections are not SEC_ALLOC and thus ld.so will
3055 not process them. */
3056 if (unresolved_reloc
3057 && !((input_section->flags & SEC_DEBUGGING) != 0
3058 && h->def_dynamic)
3059 && _bfd_elf_section_offset (output_bfd, info, input_section,
3060 rel->r_offset) != (bfd_vma) -1)
3061 {
3062 (*_bfd_error_handler)
3063 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3064 input_bfd,
3065 input_section,
3066 (long) rel->r_offset,
3067 howto->name,
3068 name);
3069 return FALSE;
3070 }
3071
3072 /* TLS optimizations may have changed r_type; update "howto". */
3073 howto = &elf_howto_table[r_type];
3074
3075 /* There's no point in calling bfd_perform_relocation here.
3076 Just go directly to our "special function". */
3077 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3078 relocation + rel->r_addend,
3079 contents, rel->r_offset, is_weak_undef,
3080 &error_message);
3081
3082 if (r != bfd_reloc_ok && !warned)
3083 {
3084 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3085 BFD_ASSERT (error_message != NULL);
3086
3087 if (rel->r_addend == 0)
3088 error_message = vsprint_msg (error_message, ": %s",
3089 strlen (name) + 2, name);
3090 else
3091 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3092 strlen (name) + 22,
3093 name, (int) rel->r_addend);
3094
3095 (*info->callbacks->reloc_dangerous)
3096 (info, error_message, input_bfd, input_section, rel->r_offset);
3097 }
3098 }
3099
3100 if (lit_table)
3101 free (lit_table);
3102
3103 input_section->reloc_done = TRUE;
3104
3105 return TRUE;
3106 }
3107
3108
3109 /* Finish up dynamic symbol handling. There's not much to do here since
3110 the PLT and GOT entries are all set up by relocate_section. */
3111
3112 static bfd_boolean
3113 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3114 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3115 struct elf_link_hash_entry *h,
3116 Elf_Internal_Sym *sym)
3117 {
3118 if (h->needs_plt && !h->def_regular)
3119 {
3120 /* Mark the symbol as undefined, rather than as defined in
3121 the .plt section. Leave the value alone. */
3122 sym->st_shndx = SHN_UNDEF;
3123 /* If the symbol is weak, we do need to clear the value.
3124 Otherwise, the PLT entry would provide a definition for
3125 the symbol even if the symbol wasn't defined anywhere,
3126 and so the symbol would never be NULL. */
3127 if (!h->ref_regular_nonweak)
3128 sym->st_value = 0;
3129 }
3130
3131 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3132 if (h == elf_hash_table (info)->hdynamic
3133 || h == elf_hash_table (info)->hgot)
3134 sym->st_shndx = SHN_ABS;
3135
3136 return TRUE;
3137 }
3138
3139
3140 /* Combine adjacent literal table entries in the output. Adjacent
3141 entries within each input section may have been removed during
3142 relaxation, but we repeat the process here, even though it's too late
3143 to shrink the output section, because it's important to minimize the
3144 number of literal table entries to reduce the start-up work for the
3145 runtime linker. Returns the number of remaining table entries or -1
3146 on error. */
3147
3148 static int
3149 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3150 asection *sxtlit,
3151 asection *sgotloc)
3152 {
3153 bfd_byte *contents;
3154 property_table_entry *table;
3155 bfd_size_type section_size, sgotloc_size;
3156 bfd_vma offset;
3157 int n, m, num;
3158
3159 section_size = sxtlit->size;
3160 BFD_ASSERT (section_size % 8 == 0);
3161 num = section_size / 8;
3162
3163 sgotloc_size = sgotloc->size;
3164 if (sgotloc_size != section_size)
3165 {
3166 (*_bfd_error_handler)
3167 (_("internal inconsistency in size of .got.loc section"));
3168 return -1;
3169 }
3170
3171 table = bfd_malloc (num * sizeof (property_table_entry));
3172 if (table == 0)
3173 return -1;
3174
3175 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3176 propagates to the output section, where it doesn't really apply and
3177 where it breaks the following call to bfd_malloc_and_get_section. */
3178 sxtlit->flags &= ~SEC_IN_MEMORY;
3179
3180 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3181 {
3182 if (contents != 0)
3183 free (contents);
3184 free (table);
3185 return -1;
3186 }
3187
3188 /* There should never be any relocations left at this point, so this
3189 is quite a bit easier than what is done during relaxation. */
3190
3191 /* Copy the raw contents into a property table array and sort it. */
3192 offset = 0;
3193 for (n = 0; n < num; n++)
3194 {
3195 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3196 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3197 offset += 8;
3198 }
3199 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3200
3201 for (n = 0; n < num; n++)
3202 {
3203 bfd_boolean remove_entry = FALSE;
3204
3205 if (table[n].size == 0)
3206 remove_entry = TRUE;
3207 else if (n > 0
3208 && (table[n-1].address + table[n-1].size == table[n].address))
3209 {
3210 table[n-1].size += table[n].size;
3211 remove_entry = TRUE;
3212 }
3213
3214 if (remove_entry)
3215 {
3216 for (m = n; m < num - 1; m++)
3217 {
3218 table[m].address = table[m+1].address;
3219 table[m].size = table[m+1].size;
3220 }
3221
3222 n--;
3223 num--;
3224 }
3225 }
3226
3227 /* Copy the data back to the raw contents. */
3228 offset = 0;
3229 for (n = 0; n < num; n++)
3230 {
3231 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3232 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3233 offset += 8;
3234 }
3235
3236 /* Clear the removed bytes. */
3237 if ((bfd_size_type) (num * 8) < section_size)
3238 memset (&contents[num * 8], 0, section_size - num * 8);
3239
3240 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3241 section_size))
3242 return -1;
3243
3244 /* Copy the contents to ".got.loc". */
3245 memcpy (sgotloc->contents, contents, section_size);
3246
3247 free (contents);
3248 free (table);
3249 return num;
3250 }
3251
3252
3253 /* Finish up the dynamic sections. */
3254
3255 static bfd_boolean
3256 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3257 struct bfd_link_info *info)
3258 {
3259 struct elf_xtensa_link_hash_table *htab;
3260 bfd *dynobj;
3261 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
3262 Elf32_External_Dyn *dyncon, *dynconend;
3263 int num_xtlit_entries = 0;
3264
3265 if (! elf_hash_table (info)->dynamic_sections_created)
3266 return TRUE;
3267
3268 htab = elf_xtensa_hash_table (info);
3269 if (htab == NULL)
3270 return FALSE;
3271
3272 dynobj = elf_hash_table (info)->dynobj;
3273 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3274 BFD_ASSERT (sdyn != NULL);
3275
3276 /* Set the first entry in the global offset table to the address of
3277 the dynamic section. */
3278 sgot = htab->sgot;
3279 if (sgot)
3280 {
3281 BFD_ASSERT (sgot->size == 4);
3282 if (sdyn == NULL)
3283 bfd_put_32 (output_bfd, 0, sgot->contents);
3284 else
3285 bfd_put_32 (output_bfd,
3286 sdyn->output_section->vma + sdyn->output_offset,
3287 sgot->contents);
3288 }
3289
3290 srelplt = htab->srelplt;
3291 if (srelplt && srelplt->size != 0)
3292 {
3293 asection *sgotplt, *srelgot, *spltlittbl;
3294 int chunk, plt_chunks, plt_entries;
3295 Elf_Internal_Rela irela;
3296 bfd_byte *loc;
3297 unsigned rtld_reloc;
3298
3299 srelgot = htab->srelgot;
3300 spltlittbl = htab->spltlittbl;
3301 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3302
3303 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3304 of them follow immediately after.... */
3305 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3306 {
3307 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3308 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3309 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3310 break;
3311 }
3312 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3313
3314 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3315 plt_chunks =
3316 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3317
3318 for (chunk = 0; chunk < plt_chunks; chunk++)
3319 {
3320 int chunk_entries = 0;
3321
3322 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3323 BFD_ASSERT (sgotplt != NULL);
3324
3325 /* Emit special RTLD relocations for the first two entries in
3326 each chunk of the .got.plt section. */
3327
3328 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3329 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3330 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3331 irela.r_offset = (sgotplt->output_section->vma
3332 + sgotplt->output_offset);
3333 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3334 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3335 rtld_reloc += 1;
3336 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3337
3338 /* Next literal immediately follows the first. */
3339 loc += sizeof (Elf32_External_Rela);
3340 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3341 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3342 irela.r_offset = (sgotplt->output_section->vma
3343 + sgotplt->output_offset + 4);
3344 /* Tell rtld to set value to object's link map. */
3345 irela.r_addend = 2;
3346 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3347 rtld_reloc += 1;
3348 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3349
3350 /* Fill in the literal table. */
3351 if (chunk < plt_chunks - 1)
3352 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3353 else
3354 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3355
3356 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3357 bfd_put_32 (output_bfd,
3358 sgotplt->output_section->vma + sgotplt->output_offset,
3359 spltlittbl->contents + (chunk * 8) + 0);
3360 bfd_put_32 (output_bfd,
3361 8 + (chunk_entries * 4),
3362 spltlittbl->contents + (chunk * 8) + 4);
3363 }
3364
3365 /* All the dynamic relocations have been emitted at this point.
3366 Make sure the relocation sections are the correct size. */
3367 if (srelgot->size != (sizeof (Elf32_External_Rela)
3368 * srelgot->reloc_count)
3369 || srelplt->size != (sizeof (Elf32_External_Rela)
3370 * srelplt->reloc_count))
3371 abort ();
3372
3373 /* The .xt.lit.plt section has just been modified. This must
3374 happen before the code below which combines adjacent literal
3375 table entries, and the .xt.lit.plt contents have to be forced to
3376 the output here. */
3377 if (! bfd_set_section_contents (output_bfd,
3378 spltlittbl->output_section,
3379 spltlittbl->contents,
3380 spltlittbl->output_offset,
3381 spltlittbl->size))
3382 return FALSE;
3383 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3384 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3385 }
3386
3387 /* Combine adjacent literal table entries. */
3388 BFD_ASSERT (! bfd_link_relocatable (info));
3389 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3390 sgotloc = htab->sgotloc;
3391 BFD_ASSERT (sgotloc);
3392 if (sxtlit)
3393 {
3394 num_xtlit_entries =
3395 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3396 if (num_xtlit_entries < 0)
3397 return FALSE;
3398 }
3399
3400 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3401 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3402 for (; dyncon < dynconend; dyncon++)
3403 {
3404 Elf_Internal_Dyn dyn;
3405
3406 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3407
3408 switch (dyn.d_tag)
3409 {
3410 default:
3411 break;
3412
3413 case DT_XTENSA_GOT_LOC_SZ:
3414 dyn.d_un.d_val = num_xtlit_entries;
3415 break;
3416
3417 case DT_XTENSA_GOT_LOC_OFF:
3418 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3419 + htab->sgotloc->output_offset);
3420 break;
3421
3422 case DT_PLTGOT:
3423 dyn.d_un.d_ptr = (htab->sgot->output_section->vma
3424 + htab->sgot->output_offset);
3425 break;
3426
3427 case DT_JMPREL:
3428 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
3429 + htab->srelplt->output_offset);
3430 break;
3431
3432 case DT_PLTRELSZ:
3433 dyn.d_un.d_val = htab->srelplt->size;
3434 break;
3435
3436 case DT_RELASZ:
3437 /* Adjust RELASZ to not include JMPREL. This matches what
3438 glibc expects and what is done for several other ELF
3439 targets (e.g., i386, alpha), but the "correct" behavior
3440 seems to be unresolved. Since the linker script arranges
3441 for .rela.plt to follow all other relocation sections, we
3442 don't have to worry about changing the DT_RELA entry. */
3443 if (htab->srelplt)
3444 dyn.d_un.d_val -= htab->srelplt->size;
3445 break;
3446 }
3447
3448 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3449 }
3450
3451 return TRUE;
3452 }
3453
3454 \f
3455 /* Functions for dealing with the e_flags field. */
3456
3457 /* Merge backend specific data from an object file to the output
3458 object file when linking. */
3459
3460 static bfd_boolean
3461 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
3462 {
3463 unsigned out_mach, in_mach;
3464 flagword out_flag, in_flag;
3465
3466 /* Check if we have the same endianness. */
3467 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3468 return FALSE;
3469
3470 /* Don't even pretend to support mixed-format linking. */
3471 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3472 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3473 return FALSE;
3474
3475 out_flag = elf_elfheader (obfd)->e_flags;
3476 in_flag = elf_elfheader (ibfd)->e_flags;
3477
3478 out_mach = out_flag & EF_XTENSA_MACH;
3479 in_mach = in_flag & EF_XTENSA_MACH;
3480 if (out_mach != in_mach)
3481 {
3482 (*_bfd_error_handler)
3483 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3484 ibfd, out_mach, in_mach);
3485 bfd_set_error (bfd_error_wrong_format);
3486 return FALSE;
3487 }
3488
3489 if (! elf_flags_init (obfd))
3490 {
3491 elf_flags_init (obfd) = TRUE;
3492 elf_elfheader (obfd)->e_flags = in_flag;
3493
3494 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3495 && bfd_get_arch_info (obfd)->the_default)
3496 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3497 bfd_get_mach (ibfd));
3498
3499 return TRUE;
3500 }
3501
3502 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3503 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3504
3505 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3506 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3507
3508 return TRUE;
3509 }
3510
3511
3512 static bfd_boolean
3513 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3514 {
3515 BFD_ASSERT (!elf_flags_init (abfd)
3516 || elf_elfheader (abfd)->e_flags == flags);
3517
3518 elf_elfheader (abfd)->e_flags |= flags;
3519 elf_flags_init (abfd) = TRUE;
3520
3521 return TRUE;
3522 }
3523
3524
3525 static bfd_boolean
3526 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3527 {
3528 FILE *f = (FILE *) farg;
3529 flagword e_flags = elf_elfheader (abfd)->e_flags;
3530
3531 fprintf (f, "\nXtensa header:\n");
3532 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3533 fprintf (f, "\nMachine = Base\n");
3534 else
3535 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3536
3537 fprintf (f, "Insn tables = %s\n",
3538 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3539
3540 fprintf (f, "Literal tables = %s\n",
3541 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3542
3543 return _bfd_elf_print_private_bfd_data (abfd, farg);
3544 }
3545
3546
3547 /* Set the right machine number for an Xtensa ELF file. */
3548
3549 static bfd_boolean
3550 elf_xtensa_object_p (bfd *abfd)
3551 {
3552 int mach;
3553 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3554
3555 switch (arch)
3556 {
3557 case E_XTENSA_MACH:
3558 mach = bfd_mach_xtensa;
3559 break;
3560 default:
3561 return FALSE;
3562 }
3563
3564 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3565 return TRUE;
3566 }
3567
3568
3569 /* The final processing done just before writing out an Xtensa ELF object
3570 file. This gets the Xtensa architecture right based on the machine
3571 number. */
3572
3573 static void
3574 elf_xtensa_final_write_processing (bfd *abfd,
3575 bfd_boolean linker ATTRIBUTE_UNUSED)
3576 {
3577 int mach;
3578 unsigned long val;
3579
3580 switch (mach = bfd_get_mach (abfd))
3581 {
3582 case bfd_mach_xtensa:
3583 val = E_XTENSA_MACH;
3584 break;
3585 default:
3586 return;
3587 }
3588
3589 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3590 elf_elfheader (abfd)->e_flags |= val;
3591 }
3592
3593
3594 static enum elf_reloc_type_class
3595 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3596 const asection *rel_sec ATTRIBUTE_UNUSED,
3597 const Elf_Internal_Rela *rela)
3598 {
3599 switch ((int) ELF32_R_TYPE (rela->r_info))
3600 {
3601 case R_XTENSA_RELATIVE:
3602 return reloc_class_relative;
3603 case R_XTENSA_JMP_SLOT:
3604 return reloc_class_plt;
3605 default:
3606 return reloc_class_normal;
3607 }
3608 }
3609
3610 \f
3611 static bfd_boolean
3612 elf_xtensa_discard_info_for_section (bfd *abfd,
3613 struct elf_reloc_cookie *cookie,
3614 struct bfd_link_info *info,
3615 asection *sec)
3616 {
3617 bfd_byte *contents;
3618 bfd_vma offset, actual_offset;
3619 bfd_size_type removed_bytes = 0;
3620 bfd_size_type entry_size;
3621
3622 if (sec->output_section
3623 && bfd_is_abs_section (sec->output_section))
3624 return FALSE;
3625
3626 if (xtensa_is_proptable_section (sec))
3627 entry_size = 12;
3628 else
3629 entry_size = 8;
3630
3631 if (sec->size == 0 || sec->size % entry_size != 0)
3632 return FALSE;
3633
3634 contents = retrieve_contents (abfd, sec, info->keep_memory);
3635 if (!contents)
3636 return FALSE;
3637
3638 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3639 if (!cookie->rels)
3640 {
3641 release_contents (sec, contents);
3642 return FALSE;
3643 }
3644
3645 /* Sort the relocations. They should already be in order when
3646 relaxation is enabled, but it might not be. */
3647 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3648 internal_reloc_compare);
3649
3650 cookie->rel = cookie->rels;
3651 cookie->relend = cookie->rels + sec->reloc_count;
3652
3653 for (offset = 0; offset < sec->size; offset += entry_size)
3654 {
3655 actual_offset = offset - removed_bytes;
3656
3657 /* The ...symbol_deleted_p function will skip over relocs but it
3658 won't adjust their offsets, so do that here. */
3659 while (cookie->rel < cookie->relend
3660 && cookie->rel->r_offset < offset)
3661 {
3662 cookie->rel->r_offset -= removed_bytes;
3663 cookie->rel++;
3664 }
3665
3666 while (cookie->rel < cookie->relend
3667 && cookie->rel->r_offset == offset)
3668 {
3669 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3670 {
3671 /* Remove the table entry. (If the reloc type is NONE, then
3672 the entry has already been merged with another and deleted
3673 during relaxation.) */
3674 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3675 {
3676 /* Shift the contents up. */
3677 if (offset + entry_size < sec->size)
3678 memmove (&contents[actual_offset],
3679 &contents[actual_offset + entry_size],
3680 sec->size - offset - entry_size);
3681 removed_bytes += entry_size;
3682 }
3683
3684 /* Remove this relocation. */
3685 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3686 }
3687
3688 /* Adjust the relocation offset for previous removals. This
3689 should not be done before calling ...symbol_deleted_p
3690 because it might mess up the offset comparisons there.
3691 Make sure the offset doesn't underflow in the case where
3692 the first entry is removed. */
3693 if (cookie->rel->r_offset >= removed_bytes)
3694 cookie->rel->r_offset -= removed_bytes;
3695 else
3696 cookie->rel->r_offset = 0;
3697
3698 cookie->rel++;
3699 }
3700 }
3701
3702 if (removed_bytes != 0)
3703 {
3704 /* Adjust any remaining relocs (shouldn't be any). */
3705 for (; cookie->rel < cookie->relend; cookie->rel++)
3706 {
3707 if (cookie->rel->r_offset >= removed_bytes)
3708 cookie->rel->r_offset -= removed_bytes;
3709 else
3710 cookie->rel->r_offset = 0;
3711 }
3712
3713 /* Clear the removed bytes. */
3714 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3715
3716 pin_contents (sec, contents);
3717 pin_internal_relocs (sec, cookie->rels);
3718
3719 /* Shrink size. */
3720 if (sec->rawsize == 0)
3721 sec->rawsize = sec->size;
3722 sec->size -= removed_bytes;
3723
3724 if (xtensa_is_littable_section (sec))
3725 {
3726 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3727 if (sgotloc)
3728 sgotloc->size -= removed_bytes;
3729 }
3730 }
3731 else
3732 {
3733 release_contents (sec, contents);
3734 release_internal_relocs (sec, cookie->rels);
3735 }
3736
3737 return (removed_bytes != 0);
3738 }
3739
3740
3741 static bfd_boolean
3742 elf_xtensa_discard_info (bfd *abfd,
3743 struct elf_reloc_cookie *cookie,
3744 struct bfd_link_info *info)
3745 {
3746 asection *sec;
3747 bfd_boolean changed = FALSE;
3748
3749 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3750 {
3751 if (xtensa_is_property_section (sec))
3752 {
3753 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3754 changed = TRUE;
3755 }
3756 }
3757
3758 return changed;
3759 }
3760
3761
3762 static bfd_boolean
3763 elf_xtensa_ignore_discarded_relocs (asection *sec)
3764 {
3765 return xtensa_is_property_section (sec);
3766 }
3767
3768
3769 static unsigned int
3770 elf_xtensa_action_discarded (asection *sec)
3771 {
3772 if (strcmp (".xt_except_table", sec->name) == 0)
3773 return 0;
3774
3775 if (strcmp (".xt_except_desc", sec->name) == 0)
3776 return 0;
3777
3778 return _bfd_elf_default_action_discarded (sec);
3779 }
3780
3781 \f
3782 /* Support for core dump NOTE sections. */
3783
3784 static bfd_boolean
3785 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3786 {
3787 int offset;
3788 unsigned int size;
3789
3790 /* The size for Xtensa is variable, so don't try to recognize the format
3791 based on the size. Just assume this is GNU/Linux. */
3792
3793 /* pr_cursig */
3794 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3795
3796 /* pr_pid */
3797 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3798
3799 /* pr_reg */
3800 offset = 72;
3801 size = note->descsz - offset - 4;
3802
3803 /* Make a ".reg/999" section. */
3804 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3805 size, note->descpos + offset);
3806 }
3807
3808
3809 static bfd_boolean
3810 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3811 {
3812 switch (note->descsz)
3813 {
3814 default:
3815 return FALSE;
3816
3817 case 128: /* GNU/Linux elf_prpsinfo */
3818 elf_tdata (abfd)->core->program
3819 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3820 elf_tdata (abfd)->core->command
3821 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3822 }
3823
3824 /* Note that for some reason, a spurious space is tacked
3825 onto the end of the args in some (at least one anyway)
3826 implementations, so strip it off if it exists. */
3827
3828 {
3829 char *command = elf_tdata (abfd)->core->command;
3830 int n = strlen (command);
3831
3832 if (0 < n && command[n - 1] == ' ')
3833 command[n - 1] = '\0';
3834 }
3835
3836 return TRUE;
3837 }
3838
3839 \f
3840 /* Generic Xtensa configurability stuff. */
3841
3842 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3843 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3844 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3845 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3846 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3847 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3848 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3849 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3850
3851 static void
3852 init_call_opcodes (void)
3853 {
3854 if (callx0_op == XTENSA_UNDEFINED)
3855 {
3856 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3857 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3858 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3859 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3860 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3861 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3862 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3863 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3864 }
3865 }
3866
3867
3868 static bfd_boolean
3869 is_indirect_call_opcode (xtensa_opcode opcode)
3870 {
3871 init_call_opcodes ();
3872 return (opcode == callx0_op
3873 || opcode == callx4_op
3874 || opcode == callx8_op
3875 || opcode == callx12_op);
3876 }
3877
3878
3879 static bfd_boolean
3880 is_direct_call_opcode (xtensa_opcode opcode)
3881 {
3882 init_call_opcodes ();
3883 return (opcode == call0_op
3884 || opcode == call4_op
3885 || opcode == call8_op
3886 || opcode == call12_op);
3887 }
3888
3889
3890 static bfd_boolean
3891 is_windowed_call_opcode (xtensa_opcode opcode)
3892 {
3893 init_call_opcodes ();
3894 return (opcode == call4_op
3895 || opcode == call8_op
3896 || opcode == call12_op
3897 || opcode == callx4_op
3898 || opcode == callx8_op
3899 || opcode == callx12_op);
3900 }
3901
3902
3903 static bfd_boolean
3904 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3905 {
3906 unsigned dst = (unsigned) -1;
3907
3908 init_call_opcodes ();
3909 if (opcode == callx0_op)
3910 dst = 0;
3911 else if (opcode == callx4_op)
3912 dst = 4;
3913 else if (opcode == callx8_op)
3914 dst = 8;
3915 else if (opcode == callx12_op)
3916 dst = 12;
3917
3918 if (dst == (unsigned) -1)
3919 return FALSE;
3920
3921 *pdst = dst;
3922 return TRUE;
3923 }
3924
3925
3926 static xtensa_opcode
3927 get_const16_opcode (void)
3928 {
3929 static bfd_boolean done_lookup = FALSE;
3930 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3931 if (!done_lookup)
3932 {
3933 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3934 done_lookup = TRUE;
3935 }
3936 return const16_opcode;
3937 }
3938
3939
3940 static xtensa_opcode
3941 get_l32r_opcode (void)
3942 {
3943 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3944 static bfd_boolean done_lookup = FALSE;
3945
3946 if (!done_lookup)
3947 {
3948 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3949 done_lookup = TRUE;
3950 }
3951 return l32r_opcode;
3952 }
3953
3954
3955 static bfd_vma
3956 l32r_offset (bfd_vma addr, bfd_vma pc)
3957 {
3958 bfd_vma offset;
3959
3960 offset = addr - ((pc+3) & -4);
3961 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3962 offset = (signed int) offset >> 2;
3963 BFD_ASSERT ((signed int) offset >> 16 == -1);
3964 return offset;
3965 }
3966
3967
3968 static int
3969 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3970 {
3971 xtensa_isa isa = xtensa_default_isa;
3972 int last_immed, last_opnd, opi;
3973
3974 if (opcode == XTENSA_UNDEFINED)
3975 return XTENSA_UNDEFINED;
3976
3977 /* Find the last visible PC-relative immediate operand for the opcode.
3978 If there are no PC-relative immediates, then choose the last visible
3979 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3980 last_immed = XTENSA_UNDEFINED;
3981 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3982 for (opi = last_opnd - 1; opi >= 0; opi--)
3983 {
3984 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3985 continue;
3986 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3987 {
3988 last_immed = opi;
3989 break;
3990 }
3991 if (last_immed == XTENSA_UNDEFINED
3992 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3993 last_immed = opi;
3994 }
3995 if (last_immed < 0)
3996 return XTENSA_UNDEFINED;
3997
3998 /* If the operand number was specified in an old-style relocation,
3999 check for consistency with the operand computed above. */
4000 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
4001 {
4002 int reloc_opnd = r_type - R_XTENSA_OP0;
4003 if (reloc_opnd != last_immed)
4004 return XTENSA_UNDEFINED;
4005 }
4006
4007 return last_immed;
4008 }
4009
4010
4011 int
4012 get_relocation_slot (int r_type)
4013 {
4014 switch (r_type)
4015 {
4016 case R_XTENSA_OP0:
4017 case R_XTENSA_OP1:
4018 case R_XTENSA_OP2:
4019 return 0;
4020
4021 default:
4022 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4023 return r_type - R_XTENSA_SLOT0_OP;
4024 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4025 return r_type - R_XTENSA_SLOT0_ALT;
4026 break;
4027 }
4028
4029 return XTENSA_UNDEFINED;
4030 }
4031
4032
4033 /* Get the opcode for a relocation. */
4034
4035 static xtensa_opcode
4036 get_relocation_opcode (bfd *abfd,
4037 asection *sec,
4038 bfd_byte *contents,
4039 Elf_Internal_Rela *irel)
4040 {
4041 static xtensa_insnbuf ibuff = NULL;
4042 static xtensa_insnbuf sbuff = NULL;
4043 xtensa_isa isa = xtensa_default_isa;
4044 xtensa_format fmt;
4045 int slot;
4046
4047 if (contents == NULL)
4048 return XTENSA_UNDEFINED;
4049
4050 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4051 return XTENSA_UNDEFINED;
4052
4053 if (ibuff == NULL)
4054 {
4055 ibuff = xtensa_insnbuf_alloc (isa);
4056 sbuff = xtensa_insnbuf_alloc (isa);
4057 }
4058
4059 /* Decode the instruction. */
4060 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4061 sec->size - irel->r_offset);
4062 fmt = xtensa_format_decode (isa, ibuff);
4063 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4064 if (slot == XTENSA_UNDEFINED)
4065 return XTENSA_UNDEFINED;
4066 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4067 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4068 }
4069
4070
4071 bfd_boolean
4072 is_l32r_relocation (bfd *abfd,
4073 asection *sec,
4074 bfd_byte *contents,
4075 Elf_Internal_Rela *irel)
4076 {
4077 xtensa_opcode opcode;
4078 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4079 return FALSE;
4080 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4081 return (opcode == get_l32r_opcode ());
4082 }
4083
4084
4085 static bfd_size_type
4086 get_asm_simplify_size (bfd_byte *contents,
4087 bfd_size_type content_len,
4088 bfd_size_type offset)
4089 {
4090 bfd_size_type insnlen, size = 0;
4091
4092 /* Decode the size of the next two instructions. */
4093 insnlen = insn_decode_len (contents, content_len, offset);
4094 if (insnlen == 0)
4095 return 0;
4096
4097 size += insnlen;
4098
4099 insnlen = insn_decode_len (contents, content_len, offset + size);
4100 if (insnlen == 0)
4101 return 0;
4102
4103 size += insnlen;
4104 return size;
4105 }
4106
4107
4108 bfd_boolean
4109 is_alt_relocation (int r_type)
4110 {
4111 return (r_type >= R_XTENSA_SLOT0_ALT
4112 && r_type <= R_XTENSA_SLOT14_ALT);
4113 }
4114
4115
4116 bfd_boolean
4117 is_operand_relocation (int r_type)
4118 {
4119 switch (r_type)
4120 {
4121 case R_XTENSA_OP0:
4122 case R_XTENSA_OP1:
4123 case R_XTENSA_OP2:
4124 return TRUE;
4125
4126 default:
4127 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4128 return TRUE;
4129 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4130 return TRUE;
4131 break;
4132 }
4133
4134 return FALSE;
4135 }
4136
4137
4138 #define MIN_INSN_LENGTH 2
4139
4140 /* Return 0 if it fails to decode. */
4141
4142 bfd_size_type
4143 insn_decode_len (bfd_byte *contents,
4144 bfd_size_type content_len,
4145 bfd_size_type offset)
4146 {
4147 int insn_len;
4148 xtensa_isa isa = xtensa_default_isa;
4149 xtensa_format fmt;
4150 static xtensa_insnbuf ibuff = NULL;
4151
4152 if (offset + MIN_INSN_LENGTH > content_len)
4153 return 0;
4154
4155 if (ibuff == NULL)
4156 ibuff = xtensa_insnbuf_alloc (isa);
4157 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4158 content_len - offset);
4159 fmt = xtensa_format_decode (isa, ibuff);
4160 if (fmt == XTENSA_UNDEFINED)
4161 return 0;
4162 insn_len = xtensa_format_length (isa, fmt);
4163 if (insn_len == XTENSA_UNDEFINED)
4164 return 0;
4165 return insn_len;
4166 }
4167
4168
4169 /* Decode the opcode for a single slot instruction.
4170 Return 0 if it fails to decode or the instruction is multi-slot. */
4171
4172 xtensa_opcode
4173 insn_decode_opcode (bfd_byte *contents,
4174 bfd_size_type content_len,
4175 bfd_size_type offset,
4176 int slot)
4177 {
4178 xtensa_isa isa = xtensa_default_isa;
4179 xtensa_format fmt;
4180 static xtensa_insnbuf insnbuf = NULL;
4181 static xtensa_insnbuf slotbuf = NULL;
4182
4183 if (offset + MIN_INSN_LENGTH > content_len)
4184 return XTENSA_UNDEFINED;
4185
4186 if (insnbuf == NULL)
4187 {
4188 insnbuf = xtensa_insnbuf_alloc (isa);
4189 slotbuf = xtensa_insnbuf_alloc (isa);
4190 }
4191
4192 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4193 content_len - offset);
4194 fmt = xtensa_format_decode (isa, insnbuf);
4195 if (fmt == XTENSA_UNDEFINED)
4196 return XTENSA_UNDEFINED;
4197
4198 if (slot >= xtensa_format_num_slots (isa, fmt))
4199 return XTENSA_UNDEFINED;
4200
4201 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4202 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4203 }
4204
4205
4206 /* The offset is the offset in the contents.
4207 The address is the address of that offset. */
4208
4209 static bfd_boolean
4210 check_branch_target_aligned (bfd_byte *contents,
4211 bfd_size_type content_length,
4212 bfd_vma offset,
4213 bfd_vma address)
4214 {
4215 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4216 if (insn_len == 0)
4217 return FALSE;
4218 return check_branch_target_aligned_address (address, insn_len);
4219 }
4220
4221
4222 static bfd_boolean
4223 check_loop_aligned (bfd_byte *contents,
4224 bfd_size_type content_length,
4225 bfd_vma offset,
4226 bfd_vma address)
4227 {
4228 bfd_size_type loop_len, insn_len;
4229 xtensa_opcode opcode;
4230
4231 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4232 if (opcode == XTENSA_UNDEFINED
4233 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4234 {
4235 BFD_ASSERT (FALSE);
4236 return FALSE;
4237 }
4238
4239 loop_len = insn_decode_len (contents, content_length, offset);
4240 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4241 if (loop_len == 0 || insn_len == 0)
4242 {
4243 BFD_ASSERT (FALSE);
4244 return FALSE;
4245 }
4246
4247 return check_branch_target_aligned_address (address + loop_len, insn_len);
4248 }
4249
4250
4251 static bfd_boolean
4252 check_branch_target_aligned_address (bfd_vma addr, int len)
4253 {
4254 if (len == 8)
4255 return (addr % 8 == 0);
4256 return ((addr >> 2) == ((addr + len - 1) >> 2));
4257 }
4258
4259 \f
4260 /* Instruction widening and narrowing. */
4261
4262 /* When FLIX is available we need to access certain instructions only
4263 when they are 16-bit or 24-bit instructions. This table caches
4264 information about such instructions by walking through all the
4265 opcodes and finding the smallest single-slot format into which each
4266 can be encoded. */
4267
4268 static xtensa_format *op_single_fmt_table = NULL;
4269
4270
4271 static void
4272 init_op_single_format_table (void)
4273 {
4274 xtensa_isa isa = xtensa_default_isa;
4275 xtensa_insnbuf ibuf;
4276 xtensa_opcode opcode;
4277 xtensa_format fmt;
4278 int num_opcodes;
4279
4280 if (op_single_fmt_table)
4281 return;
4282
4283 ibuf = xtensa_insnbuf_alloc (isa);
4284 num_opcodes = xtensa_isa_num_opcodes (isa);
4285
4286 op_single_fmt_table = (xtensa_format *)
4287 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4288 for (opcode = 0; opcode < num_opcodes; opcode++)
4289 {
4290 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4291 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4292 {
4293 if (xtensa_format_num_slots (isa, fmt) == 1
4294 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4295 {
4296 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4297 int fmt_length = xtensa_format_length (isa, fmt);
4298 if (old_fmt == XTENSA_UNDEFINED
4299 || fmt_length < xtensa_format_length (isa, old_fmt))
4300 op_single_fmt_table[opcode] = fmt;
4301 }
4302 }
4303 }
4304 xtensa_insnbuf_free (isa, ibuf);
4305 }
4306
4307
4308 static xtensa_format
4309 get_single_format (xtensa_opcode opcode)
4310 {
4311 init_op_single_format_table ();
4312 return op_single_fmt_table[opcode];
4313 }
4314
4315
4316 /* For the set of narrowable instructions we do NOT include the
4317 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4318 involved during linker relaxation that may require these to
4319 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4320 requires special case code to ensure it only works when op1 == op2. */
4321
4322 struct string_pair
4323 {
4324 const char *wide;
4325 const char *narrow;
4326 };
4327
4328 struct string_pair narrowable[] =
4329 {
4330 { "add", "add.n" },
4331 { "addi", "addi.n" },
4332 { "addmi", "addi.n" },
4333 { "l32i", "l32i.n" },
4334 { "movi", "movi.n" },
4335 { "ret", "ret.n" },
4336 { "retw", "retw.n" },
4337 { "s32i", "s32i.n" },
4338 { "or", "mov.n" } /* special case only when op1 == op2 */
4339 };
4340
4341 struct string_pair widenable[] =
4342 {
4343 { "add", "add.n" },
4344 { "addi", "addi.n" },
4345 { "addmi", "addi.n" },
4346 { "beqz", "beqz.n" },
4347 { "bnez", "bnez.n" },
4348 { "l32i", "l32i.n" },
4349 { "movi", "movi.n" },
4350 { "ret", "ret.n" },
4351 { "retw", "retw.n" },
4352 { "s32i", "s32i.n" },
4353 { "or", "mov.n" } /* special case only when op1 == op2 */
4354 };
4355
4356
4357 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4358 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4359 return the instruction buffer holding the narrow instruction. Otherwise,
4360 return 0. The set of valid narrowing are specified by a string table
4361 but require some special case operand checks in some cases. */
4362
4363 static xtensa_insnbuf
4364 can_narrow_instruction (xtensa_insnbuf slotbuf,
4365 xtensa_format fmt,
4366 xtensa_opcode opcode)
4367 {
4368 xtensa_isa isa = xtensa_default_isa;
4369 xtensa_format o_fmt;
4370 unsigned opi;
4371
4372 static xtensa_insnbuf o_insnbuf = NULL;
4373 static xtensa_insnbuf o_slotbuf = NULL;
4374
4375 if (o_insnbuf == NULL)
4376 {
4377 o_insnbuf = xtensa_insnbuf_alloc (isa);
4378 o_slotbuf = xtensa_insnbuf_alloc (isa);
4379 }
4380
4381 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4382 {
4383 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4384
4385 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4386 {
4387 uint32 value, newval;
4388 int i, operand_count, o_operand_count;
4389 xtensa_opcode o_opcode;
4390
4391 /* Address does not matter in this case. We might need to
4392 fix it to handle branches/jumps. */
4393 bfd_vma self_address = 0;
4394
4395 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4396 if (o_opcode == XTENSA_UNDEFINED)
4397 return 0;
4398 o_fmt = get_single_format (o_opcode);
4399 if (o_fmt == XTENSA_UNDEFINED)
4400 return 0;
4401
4402 if (xtensa_format_length (isa, fmt) != 3
4403 || xtensa_format_length (isa, o_fmt) != 2)
4404 return 0;
4405
4406 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4407 operand_count = xtensa_opcode_num_operands (isa, opcode);
4408 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4409
4410 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4411 return 0;
4412
4413 if (!is_or)
4414 {
4415 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4416 return 0;
4417 }
4418 else
4419 {
4420 uint32 rawval0, rawval1, rawval2;
4421
4422 if (o_operand_count + 1 != operand_count
4423 || xtensa_operand_get_field (isa, opcode, 0,
4424 fmt, 0, slotbuf, &rawval0) != 0
4425 || xtensa_operand_get_field (isa, opcode, 1,
4426 fmt, 0, slotbuf, &rawval1) != 0
4427 || xtensa_operand_get_field (isa, opcode, 2,
4428 fmt, 0, slotbuf, &rawval2) != 0
4429 || rawval1 != rawval2
4430 || rawval0 == rawval1 /* it is a nop */)
4431 return 0;
4432 }
4433
4434 for (i = 0; i < o_operand_count; ++i)
4435 {
4436 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4437 slotbuf, &value)
4438 || xtensa_operand_decode (isa, opcode, i, &value))
4439 return 0;
4440
4441 /* PC-relative branches need adjustment, but
4442 the PC-rel operand will always have a relocation. */
4443 newval = value;
4444 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4445 self_address)
4446 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4447 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4448 o_slotbuf, newval))
4449 return 0;
4450 }
4451
4452 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4453 return 0;
4454
4455 return o_insnbuf;
4456 }
4457 }
4458 return 0;
4459 }
4460
4461
4462 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4463 the action in-place directly into the contents and return TRUE. Otherwise,
4464 the return value is FALSE and the contents are not modified. */
4465
4466 static bfd_boolean
4467 narrow_instruction (bfd_byte *contents,
4468 bfd_size_type content_length,
4469 bfd_size_type offset)
4470 {
4471 xtensa_opcode opcode;
4472 bfd_size_type insn_len;
4473 xtensa_isa isa = xtensa_default_isa;
4474 xtensa_format fmt;
4475 xtensa_insnbuf o_insnbuf;
4476
4477 static xtensa_insnbuf insnbuf = NULL;
4478 static xtensa_insnbuf slotbuf = NULL;
4479
4480 if (insnbuf == NULL)
4481 {
4482 insnbuf = xtensa_insnbuf_alloc (isa);
4483 slotbuf = xtensa_insnbuf_alloc (isa);
4484 }
4485
4486 BFD_ASSERT (offset < content_length);
4487
4488 if (content_length < 2)
4489 return FALSE;
4490
4491 /* We will hand-code a few of these for a little while.
4492 These have all been specified in the assembler aleady. */
4493 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4494 content_length - offset);
4495 fmt = xtensa_format_decode (isa, insnbuf);
4496 if (xtensa_format_num_slots (isa, fmt) != 1)
4497 return FALSE;
4498
4499 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4500 return FALSE;
4501
4502 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4503 if (opcode == XTENSA_UNDEFINED)
4504 return FALSE;
4505 insn_len = xtensa_format_length (isa, fmt);
4506 if (insn_len > content_length)
4507 return FALSE;
4508
4509 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4510 if (o_insnbuf)
4511 {
4512 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4513 content_length - offset);
4514 return TRUE;
4515 }
4516
4517 return FALSE;
4518 }
4519
4520
4521 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4522 "density" instruction to a standard 3-byte instruction. If it is valid,
4523 return the instruction buffer holding the wide instruction. Otherwise,
4524 return 0. The set of valid widenings are specified by a string table
4525 but require some special case operand checks in some cases. */
4526
4527 static xtensa_insnbuf
4528 can_widen_instruction (xtensa_insnbuf slotbuf,
4529 xtensa_format fmt,
4530 xtensa_opcode opcode)
4531 {
4532 xtensa_isa isa = xtensa_default_isa;
4533 xtensa_format o_fmt;
4534 unsigned opi;
4535
4536 static xtensa_insnbuf o_insnbuf = NULL;
4537 static xtensa_insnbuf o_slotbuf = NULL;
4538
4539 if (o_insnbuf == NULL)
4540 {
4541 o_insnbuf = xtensa_insnbuf_alloc (isa);
4542 o_slotbuf = xtensa_insnbuf_alloc (isa);
4543 }
4544
4545 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4546 {
4547 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4548 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4549 || strcmp ("bnez", widenable[opi].wide) == 0);
4550
4551 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4552 {
4553 uint32 value, newval;
4554 int i, operand_count, o_operand_count, check_operand_count;
4555 xtensa_opcode o_opcode;
4556
4557 /* Address does not matter in this case. We might need to fix it
4558 to handle branches/jumps. */
4559 bfd_vma self_address = 0;
4560
4561 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4562 if (o_opcode == XTENSA_UNDEFINED)
4563 return 0;
4564 o_fmt = get_single_format (o_opcode);
4565 if (o_fmt == XTENSA_UNDEFINED)
4566 return 0;
4567
4568 if (xtensa_format_length (isa, fmt) != 2
4569 || xtensa_format_length (isa, o_fmt) != 3)
4570 return 0;
4571
4572 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4573 operand_count = xtensa_opcode_num_operands (isa, opcode);
4574 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4575 check_operand_count = o_operand_count;
4576
4577 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4578 return 0;
4579
4580 if (!is_or)
4581 {
4582 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4583 return 0;
4584 }
4585 else
4586 {
4587 uint32 rawval0, rawval1;
4588
4589 if (o_operand_count != operand_count + 1
4590 || xtensa_operand_get_field (isa, opcode, 0,
4591 fmt, 0, slotbuf, &rawval0) != 0
4592 || xtensa_operand_get_field (isa, opcode, 1,
4593 fmt, 0, slotbuf, &rawval1) != 0
4594 || rawval0 == rawval1 /* it is a nop */)
4595 return 0;
4596 }
4597 if (is_branch)
4598 check_operand_count--;
4599
4600 for (i = 0; i < check_operand_count; i++)
4601 {
4602 int new_i = i;
4603 if (is_or && i == o_operand_count - 1)
4604 new_i = i - 1;
4605 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4606 slotbuf, &value)
4607 || xtensa_operand_decode (isa, opcode, new_i, &value))
4608 return 0;
4609
4610 /* PC-relative branches need adjustment, but
4611 the PC-rel operand will always have a relocation. */
4612 newval = value;
4613 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4614 self_address)
4615 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4616 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4617 o_slotbuf, newval))
4618 return 0;
4619 }
4620
4621 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4622 return 0;
4623
4624 return o_insnbuf;
4625 }
4626 }
4627 return 0;
4628 }
4629
4630
4631 /* Attempt to widen an instruction. If the widening is valid, perform
4632 the action in-place directly into the contents and return TRUE. Otherwise,
4633 the return value is FALSE and the contents are not modified. */
4634
4635 static bfd_boolean
4636 widen_instruction (bfd_byte *contents,
4637 bfd_size_type content_length,
4638 bfd_size_type offset)
4639 {
4640 xtensa_opcode opcode;
4641 bfd_size_type insn_len;
4642 xtensa_isa isa = xtensa_default_isa;
4643 xtensa_format fmt;
4644 xtensa_insnbuf o_insnbuf;
4645
4646 static xtensa_insnbuf insnbuf = NULL;
4647 static xtensa_insnbuf slotbuf = NULL;
4648
4649 if (insnbuf == NULL)
4650 {
4651 insnbuf = xtensa_insnbuf_alloc (isa);
4652 slotbuf = xtensa_insnbuf_alloc (isa);
4653 }
4654
4655 BFD_ASSERT (offset < content_length);
4656
4657 if (content_length < 2)
4658 return FALSE;
4659
4660 /* We will hand-code a few of these for a little while.
4661 These have all been specified in the assembler aleady. */
4662 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4663 content_length - offset);
4664 fmt = xtensa_format_decode (isa, insnbuf);
4665 if (xtensa_format_num_slots (isa, fmt) != 1)
4666 return FALSE;
4667
4668 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4669 return FALSE;
4670
4671 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4672 if (opcode == XTENSA_UNDEFINED)
4673 return FALSE;
4674 insn_len = xtensa_format_length (isa, fmt);
4675 if (insn_len > content_length)
4676 return FALSE;
4677
4678 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4679 if (o_insnbuf)
4680 {
4681 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4682 content_length - offset);
4683 return TRUE;
4684 }
4685 return FALSE;
4686 }
4687
4688 \f
4689 /* Code for transforming CALLs at link-time. */
4690
4691 static bfd_reloc_status_type
4692 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4693 bfd_vma address,
4694 bfd_vma content_length,
4695 char **error_message)
4696 {
4697 static xtensa_insnbuf insnbuf = NULL;
4698 static xtensa_insnbuf slotbuf = NULL;
4699 xtensa_format core_format = XTENSA_UNDEFINED;
4700 xtensa_opcode opcode;
4701 xtensa_opcode direct_call_opcode;
4702 xtensa_isa isa = xtensa_default_isa;
4703 bfd_byte *chbuf = contents + address;
4704 int opn;
4705
4706 if (insnbuf == NULL)
4707 {
4708 insnbuf = xtensa_insnbuf_alloc (isa);
4709 slotbuf = xtensa_insnbuf_alloc (isa);
4710 }
4711
4712 if (content_length < address)
4713 {
4714 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4715 return bfd_reloc_other;
4716 }
4717
4718 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4719 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4720 if (direct_call_opcode == XTENSA_UNDEFINED)
4721 {
4722 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4723 return bfd_reloc_other;
4724 }
4725
4726 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4727 core_format = xtensa_format_lookup (isa, "x24");
4728 opcode = xtensa_opcode_lookup (isa, "or");
4729 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4730 for (opn = 0; opn < 3; opn++)
4731 {
4732 uint32 regno = 1;
4733 xtensa_operand_encode (isa, opcode, opn, &regno);
4734 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4735 slotbuf, regno);
4736 }
4737 xtensa_format_encode (isa, core_format, insnbuf);
4738 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4739 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4740
4741 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4742 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4743 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4744
4745 xtensa_format_encode (isa, core_format, insnbuf);
4746 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4747 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4748 content_length - address - 3);
4749
4750 return bfd_reloc_ok;
4751 }
4752
4753
4754 static bfd_reloc_status_type
4755 contract_asm_expansion (bfd_byte *contents,
4756 bfd_vma content_length,
4757 Elf_Internal_Rela *irel,
4758 char **error_message)
4759 {
4760 bfd_reloc_status_type retval =
4761 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4762 error_message);
4763
4764 if (retval != bfd_reloc_ok)
4765 return bfd_reloc_dangerous;
4766
4767 /* Update the irel->r_offset field so that the right immediate and
4768 the right instruction are modified during the relocation. */
4769 irel->r_offset += 3;
4770 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4771 return bfd_reloc_ok;
4772 }
4773
4774
4775 static xtensa_opcode
4776 swap_callx_for_call_opcode (xtensa_opcode opcode)
4777 {
4778 init_call_opcodes ();
4779
4780 if (opcode == callx0_op) return call0_op;
4781 if (opcode == callx4_op) return call4_op;
4782 if (opcode == callx8_op) return call8_op;
4783 if (opcode == callx12_op) return call12_op;
4784
4785 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4786 return XTENSA_UNDEFINED;
4787 }
4788
4789
4790 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4791 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4792 If not, return XTENSA_UNDEFINED. */
4793
4794 #define L32R_TARGET_REG_OPERAND 0
4795 #define CONST16_TARGET_REG_OPERAND 0
4796 #define CALLN_SOURCE_OPERAND 0
4797
4798 static xtensa_opcode
4799 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4800 {
4801 static xtensa_insnbuf insnbuf = NULL;
4802 static xtensa_insnbuf slotbuf = NULL;
4803 xtensa_format fmt;
4804 xtensa_opcode opcode;
4805 xtensa_isa isa = xtensa_default_isa;
4806 uint32 regno, const16_regno, call_regno;
4807 int offset = 0;
4808
4809 if (insnbuf == NULL)
4810 {
4811 insnbuf = xtensa_insnbuf_alloc (isa);
4812 slotbuf = xtensa_insnbuf_alloc (isa);
4813 }
4814
4815 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4816 fmt = xtensa_format_decode (isa, insnbuf);
4817 if (fmt == XTENSA_UNDEFINED
4818 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4819 return XTENSA_UNDEFINED;
4820
4821 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4822 if (opcode == XTENSA_UNDEFINED)
4823 return XTENSA_UNDEFINED;
4824
4825 if (opcode == get_l32r_opcode ())
4826 {
4827 if (p_uses_l32r)
4828 *p_uses_l32r = TRUE;
4829 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4830 fmt, 0, slotbuf, &regno)
4831 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4832 &regno))
4833 return XTENSA_UNDEFINED;
4834 }
4835 else if (opcode == get_const16_opcode ())
4836 {
4837 if (p_uses_l32r)
4838 *p_uses_l32r = FALSE;
4839 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4840 fmt, 0, slotbuf, &regno)
4841 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4842 &regno))
4843 return XTENSA_UNDEFINED;
4844
4845 /* Check that the next instruction is also CONST16. */
4846 offset += xtensa_format_length (isa, fmt);
4847 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4848 fmt = xtensa_format_decode (isa, insnbuf);
4849 if (fmt == XTENSA_UNDEFINED
4850 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4851 return XTENSA_UNDEFINED;
4852 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4853 if (opcode != get_const16_opcode ())
4854 return XTENSA_UNDEFINED;
4855
4856 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4857 fmt, 0, slotbuf, &const16_regno)
4858 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4859 &const16_regno)
4860 || const16_regno != regno)
4861 return XTENSA_UNDEFINED;
4862 }
4863 else
4864 return XTENSA_UNDEFINED;
4865
4866 /* Next instruction should be an CALLXn with operand 0 == regno. */
4867 offset += xtensa_format_length (isa, fmt);
4868 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4869 fmt = xtensa_format_decode (isa, insnbuf);
4870 if (fmt == XTENSA_UNDEFINED
4871 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4872 return XTENSA_UNDEFINED;
4873 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4874 if (opcode == XTENSA_UNDEFINED
4875 || !is_indirect_call_opcode (opcode))
4876 return XTENSA_UNDEFINED;
4877
4878 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4879 fmt, 0, slotbuf, &call_regno)
4880 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4881 &call_regno))
4882 return XTENSA_UNDEFINED;
4883
4884 if (call_regno != regno)
4885 return XTENSA_UNDEFINED;
4886
4887 return opcode;
4888 }
4889
4890 \f
4891 /* Data structures used during relaxation. */
4892
4893 /* r_reloc: relocation values. */
4894
4895 /* Through the relaxation process, we need to keep track of the values
4896 that will result from evaluating relocations. The standard ELF
4897 relocation structure is not sufficient for this purpose because we're
4898 operating on multiple input files at once, so we need to know which
4899 input file a relocation refers to. The r_reloc structure thus
4900 records both the input file (bfd) and ELF relocation.
4901
4902 For efficiency, an r_reloc also contains a "target_offset" field to
4903 cache the target-section-relative offset value that is represented by
4904 the relocation.
4905
4906 The r_reloc also contains a virtual offset that allows multiple
4907 inserted literals to be placed at the same "address" with
4908 different offsets. */
4909
4910 typedef struct r_reloc_struct r_reloc;
4911
4912 struct r_reloc_struct
4913 {
4914 bfd *abfd;
4915 Elf_Internal_Rela rela;
4916 bfd_vma target_offset;
4917 bfd_vma virtual_offset;
4918 };
4919
4920
4921 /* The r_reloc structure is included by value in literal_value, but not
4922 every literal_value has an associated relocation -- some are simple
4923 constants. In such cases, we set all the fields in the r_reloc
4924 struct to zero. The r_reloc_is_const function should be used to
4925 detect this case. */
4926
4927 static bfd_boolean
4928 r_reloc_is_const (const r_reloc *r_rel)
4929 {
4930 return (r_rel->abfd == NULL);
4931 }
4932
4933
4934 static bfd_vma
4935 r_reloc_get_target_offset (const r_reloc *r_rel)
4936 {
4937 bfd_vma target_offset;
4938 unsigned long r_symndx;
4939
4940 BFD_ASSERT (!r_reloc_is_const (r_rel));
4941 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4942 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4943 return (target_offset + r_rel->rela.r_addend);
4944 }
4945
4946
4947 static struct elf_link_hash_entry *
4948 r_reloc_get_hash_entry (const r_reloc *r_rel)
4949 {
4950 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4951 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4952 }
4953
4954
4955 static asection *
4956 r_reloc_get_section (const r_reloc *r_rel)
4957 {
4958 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4959 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4960 }
4961
4962
4963 static bfd_boolean
4964 r_reloc_is_defined (const r_reloc *r_rel)
4965 {
4966 asection *sec;
4967 if (r_rel == NULL)
4968 return FALSE;
4969
4970 sec = r_reloc_get_section (r_rel);
4971 if (sec == bfd_abs_section_ptr
4972 || sec == bfd_com_section_ptr
4973 || sec == bfd_und_section_ptr)
4974 return FALSE;
4975 return TRUE;
4976 }
4977
4978
4979 static void
4980 r_reloc_init (r_reloc *r_rel,
4981 bfd *abfd,
4982 Elf_Internal_Rela *irel,
4983 bfd_byte *contents,
4984 bfd_size_type content_length)
4985 {
4986 int r_type;
4987 reloc_howto_type *howto;
4988
4989 if (irel)
4990 {
4991 r_rel->rela = *irel;
4992 r_rel->abfd = abfd;
4993 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4994 r_rel->virtual_offset = 0;
4995 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4996 howto = &elf_howto_table[r_type];
4997 if (howto->partial_inplace)
4998 {
4999 bfd_vma inplace_val;
5000 BFD_ASSERT (r_rel->rela.r_offset < content_length);
5001
5002 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5003 r_rel->target_offset += inplace_val;
5004 }
5005 }
5006 else
5007 memset (r_rel, 0, sizeof (r_reloc));
5008 }
5009
5010
5011 #if DEBUG
5012
5013 static void
5014 print_r_reloc (FILE *fp, const r_reloc *r_rel)
5015 {
5016 if (r_reloc_is_defined (r_rel))
5017 {
5018 asection *sec = r_reloc_get_section (r_rel);
5019 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5020 }
5021 else if (r_reloc_get_hash_entry (r_rel))
5022 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5023 else
5024 fprintf (fp, " ?? + ");
5025
5026 fprintf_vma (fp, r_rel->target_offset);
5027 if (r_rel->virtual_offset)
5028 {
5029 fprintf (fp, " + ");
5030 fprintf_vma (fp, r_rel->virtual_offset);
5031 }
5032
5033 fprintf (fp, ")");
5034 }
5035
5036 #endif /* DEBUG */
5037
5038 \f
5039 /* source_reloc: relocations that reference literals. */
5040
5041 /* To determine whether literals can be coalesced, we need to first
5042 record all the relocations that reference the literals. The
5043 source_reloc structure below is used for this purpose. The
5044 source_reloc entries are kept in a per-literal-section array, sorted
5045 by offset within the literal section (i.e., target offset).
5046
5047 The source_sec and r_rel.rela.r_offset fields identify the source of
5048 the relocation. The r_rel field records the relocation value, i.e.,
5049 the offset of the literal being referenced. The opnd field is needed
5050 to determine the range of the immediate field to which the relocation
5051 applies, so we can determine whether another literal with the same
5052 value is within range. The is_null field is true when the relocation
5053 is being removed (e.g., when an L32R is being removed due to a CALLX
5054 that is converted to a direct CALL). */
5055
5056 typedef struct source_reloc_struct source_reloc;
5057
5058 struct source_reloc_struct
5059 {
5060 asection *source_sec;
5061 r_reloc r_rel;
5062 xtensa_opcode opcode;
5063 int opnd;
5064 bfd_boolean is_null;
5065 bfd_boolean is_abs_literal;
5066 };
5067
5068
5069 static void
5070 init_source_reloc (source_reloc *reloc,
5071 asection *source_sec,
5072 const r_reloc *r_rel,
5073 xtensa_opcode opcode,
5074 int opnd,
5075 bfd_boolean is_abs_literal)
5076 {
5077 reloc->source_sec = source_sec;
5078 reloc->r_rel = *r_rel;
5079 reloc->opcode = opcode;
5080 reloc->opnd = opnd;
5081 reloc->is_null = FALSE;
5082 reloc->is_abs_literal = is_abs_literal;
5083 }
5084
5085
5086 /* Find the source_reloc for a particular source offset and relocation
5087 type. Note that the array is sorted by _target_ offset, so this is
5088 just a linear search. */
5089
5090 static source_reloc *
5091 find_source_reloc (source_reloc *src_relocs,
5092 int src_count,
5093 asection *sec,
5094 Elf_Internal_Rela *irel)
5095 {
5096 int i;
5097
5098 for (i = 0; i < src_count; i++)
5099 {
5100 if (src_relocs[i].source_sec == sec
5101 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5102 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5103 == ELF32_R_TYPE (irel->r_info)))
5104 return &src_relocs[i];
5105 }
5106
5107 return NULL;
5108 }
5109
5110
5111 static int
5112 source_reloc_compare (const void *ap, const void *bp)
5113 {
5114 const source_reloc *a = (const source_reloc *) ap;
5115 const source_reloc *b = (const source_reloc *) bp;
5116
5117 if (a->r_rel.target_offset != b->r_rel.target_offset)
5118 return (a->r_rel.target_offset - b->r_rel.target_offset);
5119
5120 /* We don't need to sort on these criteria for correctness,
5121 but enforcing a more strict ordering prevents unstable qsort
5122 from behaving differently with different implementations.
5123 Without the code below we get correct but different results
5124 on Solaris 2.7 and 2.8. We would like to always produce the
5125 same results no matter the host. */
5126
5127 if ((!a->is_null) - (!b->is_null))
5128 return ((!a->is_null) - (!b->is_null));
5129 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5130 }
5131
5132 \f
5133 /* Literal values and value hash tables. */
5134
5135 /* Literals with the same value can be coalesced. The literal_value
5136 structure records the value of a literal: the "r_rel" field holds the
5137 information from the relocation on the literal (if there is one) and
5138 the "value" field holds the contents of the literal word itself.
5139
5140 The value_map structure records a literal value along with the
5141 location of a literal holding that value. The value_map hash table
5142 is indexed by the literal value, so that we can quickly check if a
5143 particular literal value has been seen before and is thus a candidate
5144 for coalescing. */
5145
5146 typedef struct literal_value_struct literal_value;
5147 typedef struct value_map_struct value_map;
5148 typedef struct value_map_hash_table_struct value_map_hash_table;
5149
5150 struct literal_value_struct
5151 {
5152 r_reloc r_rel;
5153 unsigned long value;
5154 bfd_boolean is_abs_literal;
5155 };
5156
5157 struct value_map_struct
5158 {
5159 literal_value val; /* The literal value. */
5160 r_reloc loc; /* Location of the literal. */
5161 value_map *next;
5162 };
5163
5164 struct value_map_hash_table_struct
5165 {
5166 unsigned bucket_count;
5167 value_map **buckets;
5168 unsigned count;
5169 bfd_boolean has_last_loc;
5170 r_reloc last_loc;
5171 };
5172
5173
5174 static void
5175 init_literal_value (literal_value *lit,
5176 const r_reloc *r_rel,
5177 unsigned long value,
5178 bfd_boolean is_abs_literal)
5179 {
5180 lit->r_rel = *r_rel;
5181 lit->value = value;
5182 lit->is_abs_literal = is_abs_literal;
5183 }
5184
5185
5186 static bfd_boolean
5187 literal_value_equal (const literal_value *src1,
5188 const literal_value *src2,
5189 bfd_boolean final_static_link)
5190 {
5191 struct elf_link_hash_entry *h1, *h2;
5192
5193 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5194 return FALSE;
5195
5196 if (r_reloc_is_const (&src1->r_rel))
5197 return (src1->value == src2->value);
5198
5199 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5200 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5201 return FALSE;
5202
5203 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5204 return FALSE;
5205
5206 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5207 return FALSE;
5208
5209 if (src1->value != src2->value)
5210 return FALSE;
5211
5212 /* Now check for the same section (if defined) or the same elf_hash
5213 (if undefined or weak). */
5214 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5215 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5216 if (r_reloc_is_defined (&src1->r_rel)
5217 && (final_static_link
5218 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5219 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5220 {
5221 if (r_reloc_get_section (&src1->r_rel)
5222 != r_reloc_get_section (&src2->r_rel))
5223 return FALSE;
5224 }
5225 else
5226 {
5227 /* Require that the hash entries (i.e., symbols) be identical. */
5228 if (h1 != h2 || h1 == 0)
5229 return FALSE;
5230 }
5231
5232 if (src1->is_abs_literal != src2->is_abs_literal)
5233 return FALSE;
5234
5235 return TRUE;
5236 }
5237
5238
5239 /* Must be power of 2. */
5240 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5241
5242 static value_map_hash_table *
5243 value_map_hash_table_init (void)
5244 {
5245 value_map_hash_table *values;
5246
5247 values = (value_map_hash_table *)
5248 bfd_zmalloc (sizeof (value_map_hash_table));
5249 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5250 values->count = 0;
5251 values->buckets = (value_map **)
5252 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5253 if (values->buckets == NULL)
5254 {
5255 free (values);
5256 return NULL;
5257 }
5258 values->has_last_loc = FALSE;
5259
5260 return values;
5261 }
5262
5263
5264 static void
5265 value_map_hash_table_delete (value_map_hash_table *table)
5266 {
5267 free (table->buckets);
5268 free (table);
5269 }
5270
5271
5272 static unsigned
5273 hash_bfd_vma (bfd_vma val)
5274 {
5275 return (val >> 2) + (val >> 10);
5276 }
5277
5278
5279 static unsigned
5280 literal_value_hash (const literal_value *src)
5281 {
5282 unsigned hash_val;
5283
5284 hash_val = hash_bfd_vma (src->value);
5285 if (!r_reloc_is_const (&src->r_rel))
5286 {
5287 void *sec_or_hash;
5288
5289 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5290 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5291 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5292
5293 /* Now check for the same section and the same elf_hash. */
5294 if (r_reloc_is_defined (&src->r_rel))
5295 sec_or_hash = r_reloc_get_section (&src->r_rel);
5296 else
5297 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5298 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5299 }
5300 return hash_val;
5301 }
5302
5303
5304 /* Check if the specified literal_value has been seen before. */
5305
5306 static value_map *
5307 value_map_get_cached_value (value_map_hash_table *map,
5308 const literal_value *val,
5309 bfd_boolean final_static_link)
5310 {
5311 value_map *map_e;
5312 value_map *bucket;
5313 unsigned idx;
5314
5315 idx = literal_value_hash (val);
5316 idx = idx & (map->bucket_count - 1);
5317 bucket = map->buckets[idx];
5318 for (map_e = bucket; map_e; map_e = map_e->next)
5319 {
5320 if (literal_value_equal (&map_e->val, val, final_static_link))
5321 return map_e;
5322 }
5323 return NULL;
5324 }
5325
5326
5327 /* Record a new literal value. It is illegal to call this if VALUE
5328 already has an entry here. */
5329
5330 static value_map *
5331 add_value_map (value_map_hash_table *map,
5332 const literal_value *val,
5333 const r_reloc *loc,
5334 bfd_boolean final_static_link)
5335 {
5336 value_map **bucket_p;
5337 unsigned idx;
5338
5339 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5340 if (val_e == NULL)
5341 {
5342 bfd_set_error (bfd_error_no_memory);
5343 return NULL;
5344 }
5345
5346 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5347 val_e->val = *val;
5348 val_e->loc = *loc;
5349
5350 idx = literal_value_hash (val);
5351 idx = idx & (map->bucket_count - 1);
5352 bucket_p = &map->buckets[idx];
5353
5354 val_e->next = *bucket_p;
5355 *bucket_p = val_e;
5356 map->count++;
5357 /* FIXME: Consider resizing the hash table if we get too many entries. */
5358
5359 return val_e;
5360 }
5361
5362 \f
5363 /* Lists of text actions (ta_) for narrowing, widening, longcall
5364 conversion, space fill, code & literal removal, etc. */
5365
5366 /* The following text actions are generated:
5367
5368 "ta_remove_insn" remove an instruction or instructions
5369 "ta_remove_longcall" convert longcall to call
5370 "ta_convert_longcall" convert longcall to nop/call
5371 "ta_narrow_insn" narrow a wide instruction
5372 "ta_widen" widen a narrow instruction
5373 "ta_fill" add fill or remove fill
5374 removed < 0 is a fill; branches to the fill address will be
5375 changed to address + fill size (e.g., address - removed)
5376 removed >= 0 branches to the fill address will stay unchanged
5377 "ta_remove_literal" remove a literal; this action is
5378 indicated when a literal is removed
5379 or replaced.
5380 "ta_add_literal" insert a new literal; this action is
5381 indicated when a literal has been moved.
5382 It may use a virtual_offset because
5383 multiple literals can be placed at the
5384 same location.
5385
5386 For each of these text actions, we also record the number of bytes
5387 removed by performing the text action. In the case of a "ta_widen"
5388 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5389
5390 typedef struct text_action_struct text_action;
5391 typedef struct text_action_list_struct text_action_list;
5392 typedef enum text_action_enum_t text_action_t;
5393
5394 enum text_action_enum_t
5395 {
5396 ta_none,
5397 ta_remove_insn, /* removed = -size */
5398 ta_remove_longcall, /* removed = -size */
5399 ta_convert_longcall, /* removed = 0 */
5400 ta_narrow_insn, /* removed = -1 */
5401 ta_widen_insn, /* removed = +1 */
5402 ta_fill, /* removed = +size */
5403 ta_remove_literal,
5404 ta_add_literal
5405 };
5406
5407
5408 /* Structure for a text action record. */
5409 struct text_action_struct
5410 {
5411 text_action_t action;
5412 asection *sec; /* Optional */
5413 bfd_vma offset;
5414 bfd_vma virtual_offset; /* Zero except for adding literals. */
5415 int removed_bytes;
5416 literal_value value; /* Only valid when adding literals. */
5417 };
5418
5419 struct removal_by_action_entry_struct
5420 {
5421 bfd_vma offset;
5422 int removed;
5423 int eq_removed;
5424 int eq_removed_before_fill;
5425 };
5426 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5427
5428 struct removal_by_action_map_struct
5429 {
5430 unsigned n_entries;
5431 removal_by_action_entry *entry;
5432 };
5433 typedef struct removal_by_action_map_struct removal_by_action_map;
5434
5435
5436 /* List of all of the actions taken on a text section. */
5437 struct text_action_list_struct
5438 {
5439 unsigned count;
5440 splay_tree tree;
5441 removal_by_action_map map;
5442 };
5443
5444
5445 static text_action *
5446 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5447 {
5448 text_action a;
5449
5450 /* It is not necessary to fill at the end of a section. */
5451 if (sec->size == offset)
5452 return NULL;
5453
5454 a.offset = offset;
5455 a.action = ta_fill;
5456
5457 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5458 if (node)
5459 return (text_action *)node->value;
5460 return NULL;
5461 }
5462
5463
5464 static int
5465 compute_removed_action_diff (const text_action *ta,
5466 asection *sec,
5467 bfd_vma offset,
5468 int removed,
5469 int removable_space)
5470 {
5471 int new_removed;
5472 int current_removed = 0;
5473
5474 if (ta)
5475 current_removed = ta->removed_bytes;
5476
5477 BFD_ASSERT (ta == NULL || ta->offset == offset);
5478 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5479
5480 /* It is not necessary to fill at the end of a section. Clean this up. */
5481 if (sec->size == offset)
5482 new_removed = removable_space - 0;
5483 else
5484 {
5485 int space;
5486 int added = -removed - current_removed;
5487 /* Ignore multiples of the section alignment. */
5488 added = ((1 << sec->alignment_power) - 1) & added;
5489 new_removed = (-added);
5490
5491 /* Modify for removable. */
5492 space = removable_space - new_removed;
5493 new_removed = (removable_space
5494 - (((1 << sec->alignment_power) - 1) & space));
5495 }
5496 return (new_removed - current_removed);
5497 }
5498
5499
5500 static void
5501 adjust_fill_action (text_action *ta, int fill_diff)
5502 {
5503 ta->removed_bytes += fill_diff;
5504 }
5505
5506
5507 static int
5508 text_action_compare (splay_tree_key a, splay_tree_key b)
5509 {
5510 text_action *pa = (text_action *)a;
5511 text_action *pb = (text_action *)b;
5512 static const int action_priority[] =
5513 {
5514 [ta_fill] = 0,
5515 [ta_none] = 1,
5516 [ta_convert_longcall] = 2,
5517 [ta_narrow_insn] = 3,
5518 [ta_remove_insn] = 4,
5519 [ta_remove_longcall] = 5,
5520 [ta_remove_literal] = 6,
5521 [ta_widen_insn] = 7,
5522 [ta_add_literal] = 8,
5523 };
5524
5525 if (pa->offset == pb->offset)
5526 {
5527 if (pa->action == pb->action)
5528 return 0;
5529 return action_priority[pa->action] - action_priority[pb->action];
5530 }
5531 else
5532 return pa->offset < pb->offset ? -1 : 1;
5533 }
5534
5535 static text_action *
5536 action_first (text_action_list *action_list)
5537 {
5538 splay_tree_node node = splay_tree_min (action_list->tree);
5539 return node ? (text_action *)node->value : NULL;
5540 }
5541
5542 static text_action *
5543 action_next (text_action_list *action_list, text_action *action)
5544 {
5545 splay_tree_node node = splay_tree_successor (action_list->tree,
5546 (splay_tree_key)action);
5547 return node ? (text_action *)node->value : NULL;
5548 }
5549
5550 /* Add a modification action to the text. For the case of adding or
5551 removing space, modify any current fill and assume that
5552 "unreachable_space" bytes can be freely contracted. Note that a
5553 negative removed value is a fill. */
5554
5555 static void
5556 text_action_add (text_action_list *l,
5557 text_action_t action,
5558 asection *sec,
5559 bfd_vma offset,
5560 int removed)
5561 {
5562 text_action *ta;
5563 text_action a;
5564
5565 /* It is not necessary to fill at the end of a section. */
5566 if (action == ta_fill && sec->size == offset)
5567 return;
5568
5569 /* It is not necessary to fill 0 bytes. */
5570 if (action == ta_fill && removed == 0)
5571 return;
5572
5573 a.action = action;
5574 a.offset = offset;
5575
5576 if (action == ta_fill)
5577 {
5578 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5579
5580 if (node)
5581 {
5582 ta = (text_action *)node->value;
5583 ta->removed_bytes += removed;
5584 return;
5585 }
5586 }
5587 else
5588 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
5589
5590 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5591 ta->action = action;
5592 ta->sec = sec;
5593 ta->offset = offset;
5594 ta->removed_bytes = removed;
5595 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5596 ++l->count;
5597 }
5598
5599
5600 static void
5601 text_action_add_literal (text_action_list *l,
5602 text_action_t action,
5603 const r_reloc *loc,
5604 const literal_value *value,
5605 int removed)
5606 {
5607 text_action *ta;
5608 asection *sec = r_reloc_get_section (loc);
5609 bfd_vma offset = loc->target_offset;
5610 bfd_vma virtual_offset = loc->virtual_offset;
5611
5612 BFD_ASSERT (action == ta_add_literal);
5613
5614 /* Create a new record and fill it up. */
5615 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5616 ta->action = action;
5617 ta->sec = sec;
5618 ta->offset = offset;
5619 ta->virtual_offset = virtual_offset;
5620 ta->value = *value;
5621 ta->removed_bytes = removed;
5622
5623 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5624 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5625 ++l->count;
5626 }
5627
5628
5629 /* Find the total offset adjustment for the relaxations specified by
5630 text_actions, beginning from a particular starting action. This is
5631 typically used from offset_with_removed_text to search an entire list of
5632 actions, but it may also be called directly when adjusting adjacent offsets
5633 so that each search may begin where the previous one left off. */
5634
5635 static int
5636 removed_by_actions (text_action_list *action_list,
5637 text_action **p_start_action,
5638 bfd_vma offset,
5639 bfd_boolean before_fill)
5640 {
5641 text_action *r;
5642 int removed = 0;
5643
5644 r = *p_start_action;
5645 if (r)
5646 {
5647 splay_tree_node node = splay_tree_lookup (action_list->tree,
5648 (splay_tree_key)r);
5649 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5650 }
5651
5652 while (r)
5653 {
5654 if (r->offset > offset)
5655 break;
5656
5657 if (r->offset == offset
5658 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5659 break;
5660
5661 removed += r->removed_bytes;
5662
5663 r = action_next (action_list, r);
5664 }
5665
5666 *p_start_action = r;
5667 return removed;
5668 }
5669
5670
5671 static bfd_vma
5672 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5673 {
5674 text_action *r = action_first (action_list);
5675
5676 return offset - removed_by_actions (action_list, &r, offset, FALSE);
5677 }
5678
5679
5680 static unsigned
5681 action_list_count (text_action_list *action_list)
5682 {
5683 return action_list->count;
5684 }
5685
5686 typedef struct map_action_fn_context_struct map_action_fn_context;
5687 struct map_action_fn_context_struct
5688 {
5689 int removed;
5690 removal_by_action_map map;
5691 bfd_boolean eq_complete;
5692 };
5693
5694 static int
5695 map_action_fn (splay_tree_node node, void *p)
5696 {
5697 map_action_fn_context *ctx = p;
5698 text_action *r = (text_action *)node->value;
5699 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
5700
5701 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
5702 {
5703 --ientry;
5704 }
5705 else
5706 {
5707 ++ctx->map.n_entries;
5708 ctx->eq_complete = FALSE;
5709 ientry->offset = r->offset;
5710 ientry->eq_removed_before_fill = ctx->removed;
5711 }
5712
5713 if (!ctx->eq_complete)
5714 {
5715 if (r->action != ta_fill || r->removed_bytes >= 0)
5716 {
5717 ientry->eq_removed = ctx->removed;
5718 ctx->eq_complete = TRUE;
5719 }
5720 else
5721 ientry->eq_removed = ctx->removed + r->removed_bytes;
5722 }
5723
5724 ctx->removed += r->removed_bytes;
5725 ientry->removed = ctx->removed;
5726 return 0;
5727 }
5728
5729 static void
5730 map_removal_by_action (text_action_list *action_list)
5731 {
5732 map_action_fn_context ctx;
5733
5734 ctx.removed = 0;
5735 ctx.map.n_entries = 0;
5736 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5737 sizeof (removal_by_action_entry));
5738 ctx.eq_complete = FALSE;
5739
5740 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5741 action_list->map = ctx.map;
5742 }
5743
5744 static int
5745 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5746 bfd_boolean before_fill)
5747 {
5748 unsigned a, b;
5749
5750 if (!action_list->map.entry)
5751 map_removal_by_action (action_list);
5752
5753 if (!action_list->map.n_entries)
5754 return 0;
5755
5756 a = 0;
5757 b = action_list->map.n_entries;
5758
5759 while (b - a > 1)
5760 {
5761 unsigned c = (a + b) / 2;
5762
5763 if (action_list->map.entry[c].offset <= offset)
5764 a = c;
5765 else
5766 b = c;
5767 }
5768
5769 if (action_list->map.entry[a].offset < offset)
5770 {
5771 return action_list->map.entry[a].removed;
5772 }
5773 else if (action_list->map.entry[a].offset == offset)
5774 {
5775 return before_fill ?
5776 action_list->map.entry[a].eq_removed_before_fill :
5777 action_list->map.entry[a].eq_removed;
5778 }
5779 else
5780 {
5781 return 0;
5782 }
5783 }
5784
5785 static bfd_vma
5786 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5787 {
5788 int removed = removed_by_actions_map (action_list, offset, FALSE);
5789 return offset - removed;
5790 }
5791
5792
5793 /* The find_insn_action routine will only find non-fill actions. */
5794
5795 static text_action *
5796 find_insn_action (text_action_list *action_list, bfd_vma offset)
5797 {
5798 static const text_action_t action[] =
5799 {
5800 ta_convert_longcall,
5801 ta_remove_longcall,
5802 ta_widen_insn,
5803 ta_narrow_insn,
5804 ta_remove_insn,
5805 };
5806 text_action a;
5807 unsigned i;
5808
5809 a.offset = offset;
5810 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5811 {
5812 splay_tree_node node;
5813
5814 a.action = action[i];
5815 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5816 if (node)
5817 return (text_action *)node->value;
5818 }
5819 return NULL;
5820 }
5821
5822
5823 #if DEBUG
5824
5825 static void
5826 print_action (FILE *fp, text_action *r)
5827 {
5828 const char *t = "unknown";
5829 switch (r->action)
5830 {
5831 case ta_remove_insn:
5832 t = "remove_insn"; break;
5833 case ta_remove_longcall:
5834 t = "remove_longcall"; break;
5835 case ta_convert_longcall:
5836 t = "convert_longcall"; break;
5837 case ta_narrow_insn:
5838 t = "narrow_insn"; break;
5839 case ta_widen_insn:
5840 t = "widen_insn"; break;
5841 case ta_fill:
5842 t = "fill"; break;
5843 case ta_none:
5844 t = "none"; break;
5845 case ta_remove_literal:
5846 t = "remove_literal"; break;
5847 case ta_add_literal:
5848 t = "add_literal"; break;
5849 }
5850
5851 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5852 r->sec->owner->filename,
5853 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5854 }
5855
5856 static int
5857 print_action_list_fn (splay_tree_node node, void *p)
5858 {
5859 text_action *r = (text_action *)node->value;
5860
5861 print_action (p, r);
5862 return 0;
5863 }
5864
5865 static void
5866 print_action_list (FILE *fp, text_action_list *action_list)
5867 {
5868 fprintf (fp, "Text Action\n");
5869 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
5870 }
5871
5872 #endif /* DEBUG */
5873
5874 \f
5875 /* Lists of literals being coalesced or removed. */
5876
5877 /* In the usual case, the literal identified by "from" is being
5878 coalesced with another literal identified by "to". If the literal is
5879 unused and is being removed altogether, "to.abfd" will be NULL.
5880 The removed_literal entries are kept on a per-section list, sorted
5881 by the "from" offset field. */
5882
5883 typedef struct removed_literal_struct removed_literal;
5884 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5885 typedef struct removed_literal_list_struct removed_literal_list;
5886
5887 struct removed_literal_struct
5888 {
5889 r_reloc from;
5890 r_reloc to;
5891 removed_literal *next;
5892 };
5893
5894 struct removed_literal_map_entry_struct
5895 {
5896 bfd_vma addr;
5897 removed_literal *literal;
5898 };
5899
5900 struct removed_literal_list_struct
5901 {
5902 removed_literal *head;
5903 removed_literal *tail;
5904
5905 unsigned n_map;
5906 removed_literal_map_entry *map;
5907 };
5908
5909
5910 /* Record that the literal at "from" is being removed. If "to" is not
5911 NULL, the "from" literal is being coalesced with the "to" literal. */
5912
5913 static void
5914 add_removed_literal (removed_literal_list *removed_list,
5915 const r_reloc *from,
5916 const r_reloc *to)
5917 {
5918 removed_literal *r, *new_r, *next_r;
5919
5920 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5921
5922 new_r->from = *from;
5923 if (to)
5924 new_r->to = *to;
5925 else
5926 new_r->to.abfd = NULL;
5927 new_r->next = NULL;
5928
5929 r = removed_list->head;
5930 if (r == NULL)
5931 {
5932 removed_list->head = new_r;
5933 removed_list->tail = new_r;
5934 }
5935 /* Special check for common case of append. */
5936 else if (removed_list->tail->from.target_offset < from->target_offset)
5937 {
5938 removed_list->tail->next = new_r;
5939 removed_list->tail = new_r;
5940 }
5941 else
5942 {
5943 while (r->from.target_offset < from->target_offset && r->next)
5944 {
5945 r = r->next;
5946 }
5947 next_r = r->next;
5948 r->next = new_r;
5949 new_r->next = next_r;
5950 if (next_r == NULL)
5951 removed_list->tail = new_r;
5952 }
5953 }
5954
5955 static void
5956 map_removed_literal (removed_literal_list *removed_list)
5957 {
5958 unsigned n_map = 0;
5959 unsigned i;
5960 removed_literal_map_entry *map = NULL;
5961 removed_literal *r = removed_list->head;
5962
5963 for (i = 0; r; ++i, r = r->next)
5964 {
5965 if (i == n_map)
5966 {
5967 n_map = (n_map * 2) + 2;
5968 map = bfd_realloc (map, n_map * sizeof (*map));
5969 }
5970 map[i].addr = r->from.target_offset;
5971 map[i].literal = r;
5972 }
5973 removed_list->map = map;
5974 removed_list->n_map = i;
5975 }
5976
5977 static int
5978 removed_literal_compare (const void *a, const void *b)
5979 {
5980 const removed_literal_map_entry *pa = a;
5981 const removed_literal_map_entry *pb = b;
5982
5983 if (pa->addr == pb->addr)
5984 return 0;
5985 else
5986 return pa->addr < pb->addr ? -1 : 1;
5987 }
5988
5989 /* Check if the list of removed literals contains an entry for the
5990 given address. Return the entry if found. */
5991
5992 static removed_literal *
5993 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5994 {
5995 removed_literal_map_entry *p;
5996 removed_literal *r = NULL;
5997
5998 if (removed_list->map == NULL)
5999 map_removed_literal (removed_list);
6000
6001 p = bsearch (&addr, removed_list->map, removed_list->n_map,
6002 sizeof (*removed_list->map), removed_literal_compare);
6003 if (p)
6004 {
6005 while (p != removed_list->map && (p - 1)->addr == addr)
6006 --p;
6007 r = p->literal;
6008 }
6009 return r;
6010 }
6011
6012
6013 #if DEBUG
6014
6015 static void
6016 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
6017 {
6018 removed_literal *r;
6019 r = removed_list->head;
6020 if (r)
6021 fprintf (fp, "Removed Literals\n");
6022 for (; r != NULL; r = r->next)
6023 {
6024 print_r_reloc (fp, &r->from);
6025 fprintf (fp, " => ");
6026 if (r->to.abfd == NULL)
6027 fprintf (fp, "REMOVED");
6028 else
6029 print_r_reloc (fp, &r->to);
6030 fprintf (fp, "\n");
6031 }
6032 }
6033
6034 #endif /* DEBUG */
6035
6036 \f
6037 /* Per-section data for relaxation. */
6038
6039 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
6040
6041 struct xtensa_relax_info_struct
6042 {
6043 bfd_boolean is_relaxable_literal_section;
6044 bfd_boolean is_relaxable_asm_section;
6045 int visited; /* Number of times visited. */
6046
6047 source_reloc *src_relocs; /* Array[src_count]. */
6048 int src_count;
6049 int src_next; /* Next src_relocs entry to assign. */
6050
6051 removed_literal_list removed_list;
6052 text_action_list action_list;
6053
6054 reloc_bfd_fix *fix_list;
6055 reloc_bfd_fix *fix_array;
6056 unsigned fix_array_count;
6057
6058 /* Support for expanding the reloc array that is stored
6059 in the section structure. If the relocations have been
6060 reallocated, the newly allocated relocations will be referenced
6061 here along with the actual size allocated. The relocation
6062 count will always be found in the section structure. */
6063 Elf_Internal_Rela *allocated_relocs;
6064 unsigned relocs_count;
6065 unsigned allocated_relocs_count;
6066 };
6067
6068 struct elf_xtensa_section_data
6069 {
6070 struct bfd_elf_section_data elf;
6071 xtensa_relax_info relax_info;
6072 };
6073
6074
6075 static bfd_boolean
6076 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
6077 {
6078 if (!sec->used_by_bfd)
6079 {
6080 struct elf_xtensa_section_data *sdata;
6081 bfd_size_type amt = sizeof (*sdata);
6082
6083 sdata = bfd_zalloc (abfd, amt);
6084 if (sdata == NULL)
6085 return FALSE;
6086 sec->used_by_bfd = sdata;
6087 }
6088
6089 return _bfd_elf_new_section_hook (abfd, sec);
6090 }
6091
6092
6093 static xtensa_relax_info *
6094 get_xtensa_relax_info (asection *sec)
6095 {
6096 struct elf_xtensa_section_data *section_data;
6097
6098 /* No info available if no section or if it is an output section. */
6099 if (!sec || sec == sec->output_section)
6100 return NULL;
6101
6102 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
6103 return &section_data->relax_info;
6104 }
6105
6106
6107 static void
6108 init_xtensa_relax_info (asection *sec)
6109 {
6110 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6111
6112 relax_info->is_relaxable_literal_section = FALSE;
6113 relax_info->is_relaxable_asm_section = FALSE;
6114 relax_info->visited = 0;
6115
6116 relax_info->src_relocs = NULL;
6117 relax_info->src_count = 0;
6118 relax_info->src_next = 0;
6119
6120 relax_info->removed_list.head = NULL;
6121 relax_info->removed_list.tail = NULL;
6122
6123 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6124 NULL, NULL);
6125 relax_info->action_list.map.n_entries = 0;
6126 relax_info->action_list.map.entry = NULL;
6127
6128 relax_info->fix_list = NULL;
6129 relax_info->fix_array = NULL;
6130 relax_info->fix_array_count = 0;
6131
6132 relax_info->allocated_relocs = NULL;
6133 relax_info->relocs_count = 0;
6134 relax_info->allocated_relocs_count = 0;
6135 }
6136
6137 \f
6138 /* Coalescing literals may require a relocation to refer to a section in
6139 a different input file, but the standard relocation information
6140 cannot express that. Instead, the reloc_bfd_fix structures are used
6141 to "fix" the relocations that refer to sections in other input files.
6142 These structures are kept on per-section lists. The "src_type" field
6143 records the relocation type in case there are multiple relocations on
6144 the same location. FIXME: This is ugly; an alternative might be to
6145 add new symbols with the "owner" field to some other input file. */
6146
6147 struct reloc_bfd_fix_struct
6148 {
6149 asection *src_sec;
6150 bfd_vma src_offset;
6151 unsigned src_type; /* Relocation type. */
6152
6153 asection *target_sec;
6154 bfd_vma target_offset;
6155 bfd_boolean translated;
6156
6157 reloc_bfd_fix *next;
6158 };
6159
6160
6161 static reloc_bfd_fix *
6162 reloc_bfd_fix_init (asection *src_sec,
6163 bfd_vma src_offset,
6164 unsigned src_type,
6165 asection *target_sec,
6166 bfd_vma target_offset,
6167 bfd_boolean translated)
6168 {
6169 reloc_bfd_fix *fix;
6170
6171 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6172 fix->src_sec = src_sec;
6173 fix->src_offset = src_offset;
6174 fix->src_type = src_type;
6175 fix->target_sec = target_sec;
6176 fix->target_offset = target_offset;
6177 fix->translated = translated;
6178
6179 return fix;
6180 }
6181
6182
6183 static void
6184 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6185 {
6186 xtensa_relax_info *relax_info;
6187
6188 relax_info = get_xtensa_relax_info (src_sec);
6189 fix->next = relax_info->fix_list;
6190 relax_info->fix_list = fix;
6191 }
6192
6193
6194 static int
6195 fix_compare (const void *ap, const void *bp)
6196 {
6197 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6198 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6199
6200 if (a->src_offset != b->src_offset)
6201 return (a->src_offset - b->src_offset);
6202 return (a->src_type - b->src_type);
6203 }
6204
6205
6206 static void
6207 cache_fix_array (asection *sec)
6208 {
6209 unsigned i, count = 0;
6210 reloc_bfd_fix *r;
6211 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6212
6213 if (relax_info == NULL)
6214 return;
6215 if (relax_info->fix_list == NULL)
6216 return;
6217
6218 for (r = relax_info->fix_list; r != NULL; r = r->next)
6219 count++;
6220
6221 relax_info->fix_array =
6222 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6223 relax_info->fix_array_count = count;
6224
6225 r = relax_info->fix_list;
6226 for (i = 0; i < count; i++, r = r->next)
6227 {
6228 relax_info->fix_array[count - 1 - i] = *r;
6229 relax_info->fix_array[count - 1 - i].next = NULL;
6230 }
6231
6232 qsort (relax_info->fix_array, relax_info->fix_array_count,
6233 sizeof (reloc_bfd_fix), fix_compare);
6234 }
6235
6236
6237 static reloc_bfd_fix *
6238 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6239 {
6240 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6241 reloc_bfd_fix *rv;
6242 reloc_bfd_fix key;
6243
6244 if (relax_info == NULL)
6245 return NULL;
6246 if (relax_info->fix_list == NULL)
6247 return NULL;
6248
6249 if (relax_info->fix_array == NULL)
6250 cache_fix_array (sec);
6251
6252 key.src_offset = offset;
6253 key.src_type = type;
6254 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6255 sizeof (reloc_bfd_fix), fix_compare);
6256 return rv;
6257 }
6258
6259 \f
6260 /* Section caching. */
6261
6262 typedef struct section_cache_struct section_cache_t;
6263
6264 struct section_cache_struct
6265 {
6266 asection *sec;
6267
6268 bfd_byte *contents; /* Cache of the section contents. */
6269 bfd_size_type content_length;
6270
6271 property_table_entry *ptbl; /* Cache of the section property table. */
6272 unsigned pte_count;
6273
6274 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6275 unsigned reloc_count;
6276 };
6277
6278
6279 static void
6280 init_section_cache (section_cache_t *sec_cache)
6281 {
6282 memset (sec_cache, 0, sizeof (*sec_cache));
6283 }
6284
6285
6286 static void
6287 free_section_cache (section_cache_t *sec_cache)
6288 {
6289 if (sec_cache->sec)
6290 {
6291 release_contents (sec_cache->sec, sec_cache->contents);
6292 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6293 if (sec_cache->ptbl)
6294 free (sec_cache->ptbl);
6295 }
6296 }
6297
6298
6299 static bfd_boolean
6300 section_cache_section (section_cache_t *sec_cache,
6301 asection *sec,
6302 struct bfd_link_info *link_info)
6303 {
6304 bfd *abfd;
6305 property_table_entry *prop_table = NULL;
6306 int ptblsize = 0;
6307 bfd_byte *contents = NULL;
6308 Elf_Internal_Rela *internal_relocs = NULL;
6309 bfd_size_type sec_size;
6310
6311 if (sec == NULL)
6312 return FALSE;
6313 if (sec == sec_cache->sec)
6314 return TRUE;
6315
6316 abfd = sec->owner;
6317 sec_size = bfd_get_section_limit (abfd, sec);
6318
6319 /* Get the contents. */
6320 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6321 if (contents == NULL && sec_size != 0)
6322 goto err;
6323
6324 /* Get the relocations. */
6325 internal_relocs = retrieve_internal_relocs (abfd, sec,
6326 link_info->keep_memory);
6327
6328 /* Get the entry table. */
6329 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6330 XTENSA_PROP_SEC_NAME, FALSE);
6331 if (ptblsize < 0)
6332 goto err;
6333
6334 /* Fill in the new section cache. */
6335 free_section_cache (sec_cache);
6336 init_section_cache (sec_cache);
6337
6338 sec_cache->sec = sec;
6339 sec_cache->contents = contents;
6340 sec_cache->content_length = sec_size;
6341 sec_cache->relocs = internal_relocs;
6342 sec_cache->reloc_count = sec->reloc_count;
6343 sec_cache->pte_count = ptblsize;
6344 sec_cache->ptbl = prop_table;
6345
6346 return TRUE;
6347
6348 err:
6349 release_contents (sec, contents);
6350 release_internal_relocs (sec, internal_relocs);
6351 if (prop_table)
6352 free (prop_table);
6353 return FALSE;
6354 }
6355
6356 \f
6357 /* Extended basic blocks. */
6358
6359 /* An ebb_struct represents an Extended Basic Block. Within this
6360 range, we guarantee that all instructions are decodable, the
6361 property table entries are contiguous, and no property table
6362 specifies a segment that cannot have instructions moved. This
6363 structure contains caches of the contents, property table and
6364 relocations for the specified section for easy use. The range is
6365 specified by ranges of indices for the byte offset, property table
6366 offsets and relocation offsets. These must be consistent. */
6367
6368 typedef struct ebb_struct ebb_t;
6369
6370 struct ebb_struct
6371 {
6372 asection *sec;
6373
6374 bfd_byte *contents; /* Cache of the section contents. */
6375 bfd_size_type content_length;
6376
6377 property_table_entry *ptbl; /* Cache of the section property table. */
6378 unsigned pte_count;
6379
6380 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6381 unsigned reloc_count;
6382
6383 bfd_vma start_offset; /* Offset in section. */
6384 unsigned start_ptbl_idx; /* Offset in the property table. */
6385 unsigned start_reloc_idx; /* Offset in the relocations. */
6386
6387 bfd_vma end_offset;
6388 unsigned end_ptbl_idx;
6389 unsigned end_reloc_idx;
6390
6391 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6392
6393 /* The unreachable property table at the end of this set of blocks;
6394 NULL if the end is not an unreachable block. */
6395 property_table_entry *ends_unreachable;
6396 };
6397
6398
6399 enum ebb_target_enum
6400 {
6401 EBB_NO_ALIGN = 0,
6402 EBB_DESIRE_TGT_ALIGN,
6403 EBB_REQUIRE_TGT_ALIGN,
6404 EBB_REQUIRE_LOOP_ALIGN,
6405 EBB_REQUIRE_ALIGN
6406 };
6407
6408
6409 /* proposed_action_struct is similar to the text_action_struct except
6410 that is represents a potential transformation, not one that will
6411 occur. We build a list of these for an extended basic block
6412 and use them to compute the actual actions desired. We must be
6413 careful that the entire set of actual actions we perform do not
6414 break any relocations that would fit if the actions were not
6415 performed. */
6416
6417 typedef struct proposed_action_struct proposed_action;
6418
6419 struct proposed_action_struct
6420 {
6421 enum ebb_target_enum align_type; /* for the target alignment */
6422 bfd_vma alignment_pow;
6423 text_action_t action;
6424 bfd_vma offset;
6425 int removed_bytes;
6426 bfd_boolean do_action; /* If false, then we will not perform the action. */
6427 };
6428
6429
6430 /* The ebb_constraint_struct keeps a set of proposed actions for an
6431 extended basic block. */
6432
6433 typedef struct ebb_constraint_struct ebb_constraint;
6434
6435 struct ebb_constraint_struct
6436 {
6437 ebb_t ebb;
6438 bfd_boolean start_movable;
6439
6440 /* Bytes of extra space at the beginning if movable. */
6441 int start_extra_space;
6442
6443 enum ebb_target_enum start_align;
6444
6445 bfd_boolean end_movable;
6446
6447 /* Bytes of extra space at the end if movable. */
6448 int end_extra_space;
6449
6450 unsigned action_count;
6451 unsigned action_allocated;
6452
6453 /* Array of proposed actions. */
6454 proposed_action *actions;
6455
6456 /* Action alignments -- one for each proposed action. */
6457 enum ebb_target_enum *action_aligns;
6458 };
6459
6460
6461 static void
6462 init_ebb_constraint (ebb_constraint *c)
6463 {
6464 memset (c, 0, sizeof (ebb_constraint));
6465 }
6466
6467
6468 static void
6469 free_ebb_constraint (ebb_constraint *c)
6470 {
6471 if (c->actions)
6472 free (c->actions);
6473 }
6474
6475
6476 static void
6477 init_ebb (ebb_t *ebb,
6478 asection *sec,
6479 bfd_byte *contents,
6480 bfd_size_type content_length,
6481 property_table_entry *prop_table,
6482 unsigned ptblsize,
6483 Elf_Internal_Rela *internal_relocs,
6484 unsigned reloc_count)
6485 {
6486 memset (ebb, 0, sizeof (ebb_t));
6487 ebb->sec = sec;
6488 ebb->contents = contents;
6489 ebb->content_length = content_length;
6490 ebb->ptbl = prop_table;
6491 ebb->pte_count = ptblsize;
6492 ebb->relocs = internal_relocs;
6493 ebb->reloc_count = reloc_count;
6494 ebb->start_offset = 0;
6495 ebb->end_offset = ebb->content_length - 1;
6496 ebb->start_ptbl_idx = 0;
6497 ebb->end_ptbl_idx = ptblsize;
6498 ebb->start_reloc_idx = 0;
6499 ebb->end_reloc_idx = reloc_count;
6500 }
6501
6502
6503 /* Extend the ebb to all decodable contiguous sections. The algorithm
6504 for building a basic block around an instruction is to push it
6505 forward until we hit the end of a section, an unreachable block or
6506 a block that cannot be transformed. Then we push it backwards
6507 searching for similar conditions. */
6508
6509 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6510 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6511 static bfd_size_type insn_block_decodable_len
6512 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6513
6514 static bfd_boolean
6515 extend_ebb_bounds (ebb_t *ebb)
6516 {
6517 if (!extend_ebb_bounds_forward (ebb))
6518 return FALSE;
6519 if (!extend_ebb_bounds_backward (ebb))
6520 return FALSE;
6521 return TRUE;
6522 }
6523
6524
6525 static bfd_boolean
6526 extend_ebb_bounds_forward (ebb_t *ebb)
6527 {
6528 property_table_entry *the_entry, *new_entry;
6529
6530 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6531
6532 /* Stop when (1) we cannot decode an instruction, (2) we are at
6533 the end of the property tables, (3) we hit a non-contiguous property
6534 table entry, (4) we hit a NO_TRANSFORM region. */
6535
6536 while (1)
6537 {
6538 bfd_vma entry_end;
6539 bfd_size_type insn_block_len;
6540
6541 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6542 insn_block_len =
6543 insn_block_decodable_len (ebb->contents, ebb->content_length,
6544 ebb->end_offset,
6545 entry_end - ebb->end_offset);
6546 if (insn_block_len != (entry_end - ebb->end_offset))
6547 {
6548 (*_bfd_error_handler)
6549 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6550 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6551 return FALSE;
6552 }
6553 ebb->end_offset += insn_block_len;
6554
6555 if (ebb->end_offset == ebb->sec->size)
6556 ebb->ends_section = TRUE;
6557
6558 /* Update the reloc counter. */
6559 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6560 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6561 < ebb->end_offset))
6562 {
6563 ebb->end_reloc_idx++;
6564 }
6565
6566 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6567 return TRUE;
6568
6569 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6570 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6571 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6572 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6573 break;
6574
6575 if (the_entry->address + the_entry->size != new_entry->address)
6576 break;
6577
6578 the_entry = new_entry;
6579 ebb->end_ptbl_idx++;
6580 }
6581
6582 /* Quick check for an unreachable or end of file just at the end. */
6583 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6584 {
6585 if (ebb->end_offset == ebb->content_length)
6586 ebb->ends_section = TRUE;
6587 }
6588 else
6589 {
6590 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6591 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6592 && the_entry->address + the_entry->size == new_entry->address)
6593 ebb->ends_unreachable = new_entry;
6594 }
6595
6596 /* Any other ending requires exact alignment. */
6597 return TRUE;
6598 }
6599
6600
6601 static bfd_boolean
6602 extend_ebb_bounds_backward (ebb_t *ebb)
6603 {
6604 property_table_entry *the_entry, *new_entry;
6605
6606 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6607
6608 /* Stop when (1) we cannot decode the instructions in the current entry.
6609 (2) we are at the beginning of the property tables, (3) we hit a
6610 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6611
6612 while (1)
6613 {
6614 bfd_vma block_begin;
6615 bfd_size_type insn_block_len;
6616
6617 block_begin = the_entry->address - ebb->sec->vma;
6618 insn_block_len =
6619 insn_block_decodable_len (ebb->contents, ebb->content_length,
6620 block_begin,
6621 ebb->start_offset - block_begin);
6622 if (insn_block_len != ebb->start_offset - block_begin)
6623 {
6624 (*_bfd_error_handler)
6625 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6626 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6627 return FALSE;
6628 }
6629 ebb->start_offset -= insn_block_len;
6630
6631 /* Update the reloc counter. */
6632 while (ebb->start_reloc_idx > 0
6633 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6634 >= ebb->start_offset))
6635 {
6636 ebb->start_reloc_idx--;
6637 }
6638
6639 if (ebb->start_ptbl_idx == 0)
6640 return TRUE;
6641
6642 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6643 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6644 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6645 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6646 return TRUE;
6647 if (new_entry->address + new_entry->size != the_entry->address)
6648 return TRUE;
6649
6650 the_entry = new_entry;
6651 ebb->start_ptbl_idx--;
6652 }
6653 return TRUE;
6654 }
6655
6656
6657 static bfd_size_type
6658 insn_block_decodable_len (bfd_byte *contents,
6659 bfd_size_type content_len,
6660 bfd_vma block_offset,
6661 bfd_size_type block_len)
6662 {
6663 bfd_vma offset = block_offset;
6664
6665 while (offset < block_offset + block_len)
6666 {
6667 bfd_size_type insn_len = 0;
6668
6669 insn_len = insn_decode_len (contents, content_len, offset);
6670 if (insn_len == 0)
6671 return (offset - block_offset);
6672 offset += insn_len;
6673 }
6674 return (offset - block_offset);
6675 }
6676
6677
6678 static void
6679 ebb_propose_action (ebb_constraint *c,
6680 enum ebb_target_enum align_type,
6681 bfd_vma alignment_pow,
6682 text_action_t action,
6683 bfd_vma offset,
6684 int removed_bytes,
6685 bfd_boolean do_action)
6686 {
6687 proposed_action *act;
6688
6689 if (c->action_allocated <= c->action_count)
6690 {
6691 unsigned new_allocated, i;
6692 proposed_action *new_actions;
6693
6694 new_allocated = (c->action_count + 2) * 2;
6695 new_actions = (proposed_action *)
6696 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6697
6698 for (i = 0; i < c->action_count; i++)
6699 new_actions[i] = c->actions[i];
6700 if (c->actions)
6701 free (c->actions);
6702 c->actions = new_actions;
6703 c->action_allocated = new_allocated;
6704 }
6705
6706 act = &c->actions[c->action_count];
6707 act->align_type = align_type;
6708 act->alignment_pow = alignment_pow;
6709 act->action = action;
6710 act->offset = offset;
6711 act->removed_bytes = removed_bytes;
6712 act->do_action = do_action;
6713
6714 c->action_count++;
6715 }
6716
6717 \f
6718 /* Access to internal relocations, section contents and symbols. */
6719
6720 /* During relaxation, we need to modify relocations, section contents,
6721 and symbol definitions, and we need to keep the original values from
6722 being reloaded from the input files, i.e., we need to "pin" the
6723 modified values in memory. We also want to continue to observe the
6724 setting of the "keep-memory" flag. The following functions wrap the
6725 standard BFD functions to take care of this for us. */
6726
6727 static Elf_Internal_Rela *
6728 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6729 {
6730 Elf_Internal_Rela *internal_relocs;
6731
6732 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6733 return NULL;
6734
6735 internal_relocs = elf_section_data (sec)->relocs;
6736 if (internal_relocs == NULL)
6737 internal_relocs = (_bfd_elf_link_read_relocs
6738 (abfd, sec, NULL, NULL, keep_memory));
6739 return internal_relocs;
6740 }
6741
6742
6743 static void
6744 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6745 {
6746 elf_section_data (sec)->relocs = internal_relocs;
6747 }
6748
6749
6750 static void
6751 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6752 {
6753 if (internal_relocs
6754 && elf_section_data (sec)->relocs != internal_relocs)
6755 free (internal_relocs);
6756 }
6757
6758
6759 static bfd_byte *
6760 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6761 {
6762 bfd_byte *contents;
6763 bfd_size_type sec_size;
6764
6765 sec_size = bfd_get_section_limit (abfd, sec);
6766 contents = elf_section_data (sec)->this_hdr.contents;
6767
6768 if (contents == NULL && sec_size != 0)
6769 {
6770 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6771 {
6772 if (contents)
6773 free (contents);
6774 return NULL;
6775 }
6776 if (keep_memory)
6777 elf_section_data (sec)->this_hdr.contents = contents;
6778 }
6779 return contents;
6780 }
6781
6782
6783 static void
6784 pin_contents (asection *sec, bfd_byte *contents)
6785 {
6786 elf_section_data (sec)->this_hdr.contents = contents;
6787 }
6788
6789
6790 static void
6791 release_contents (asection *sec, bfd_byte *contents)
6792 {
6793 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6794 free (contents);
6795 }
6796
6797
6798 static Elf_Internal_Sym *
6799 retrieve_local_syms (bfd *input_bfd)
6800 {
6801 Elf_Internal_Shdr *symtab_hdr;
6802 Elf_Internal_Sym *isymbuf;
6803 size_t locsymcount;
6804
6805 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6806 locsymcount = symtab_hdr->sh_info;
6807
6808 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6809 if (isymbuf == NULL && locsymcount != 0)
6810 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6811 NULL, NULL, NULL);
6812
6813 /* Save the symbols for this input file so they won't be read again. */
6814 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6815 symtab_hdr->contents = (unsigned char *) isymbuf;
6816
6817 return isymbuf;
6818 }
6819
6820 \f
6821 /* Code for link-time relaxation. */
6822
6823 /* Initialization for relaxation: */
6824 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6825 static bfd_boolean find_relaxable_sections
6826 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6827 static bfd_boolean collect_source_relocs
6828 (bfd *, asection *, struct bfd_link_info *);
6829 static bfd_boolean is_resolvable_asm_expansion
6830 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6831 bfd_boolean *);
6832 static Elf_Internal_Rela *find_associated_l32r_irel
6833 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6834 static bfd_boolean compute_text_actions
6835 (bfd *, asection *, struct bfd_link_info *);
6836 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6837 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6838 typedef struct reloc_range_list_struct reloc_range_list;
6839 static bfd_boolean check_section_ebb_pcrels_fit
6840 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6841 reloc_range_list *, const ebb_constraint *,
6842 const xtensa_opcode *);
6843 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6844 static void text_action_add_proposed
6845 (text_action_list *, const ebb_constraint *, asection *);
6846 static int compute_fill_extra_space (property_table_entry *);
6847
6848 /* First pass: */
6849 static bfd_boolean compute_removed_literals
6850 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6851 static Elf_Internal_Rela *get_irel_at_offset
6852 (asection *, Elf_Internal_Rela *, bfd_vma);
6853 static bfd_boolean is_removable_literal
6854 (const source_reloc *, int, const source_reloc *, int, asection *,
6855 property_table_entry *, int);
6856 static bfd_boolean remove_dead_literal
6857 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6858 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6859 static bfd_boolean identify_literal_placement
6860 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6861 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6862 source_reloc *, property_table_entry *, int, section_cache_t *,
6863 bfd_boolean);
6864 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6865 static bfd_boolean coalesce_shared_literal
6866 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6867 static bfd_boolean move_shared_literal
6868 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6869 int, const r_reloc *, const literal_value *, section_cache_t *);
6870
6871 /* Second pass: */
6872 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6873 static bfd_boolean translate_section_fixes (asection *);
6874 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6875 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6876 static void shrink_dynamic_reloc_sections
6877 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6878 static bfd_boolean move_literal
6879 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6880 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6881 static bfd_boolean relax_property_section
6882 (bfd *, asection *, struct bfd_link_info *);
6883
6884 /* Third pass: */
6885 static bfd_boolean relax_section_symbols (bfd *, asection *);
6886
6887
6888 static bfd_boolean
6889 elf_xtensa_relax_section (bfd *abfd,
6890 asection *sec,
6891 struct bfd_link_info *link_info,
6892 bfd_boolean *again)
6893 {
6894 static value_map_hash_table *values = NULL;
6895 static bfd_boolean relocations_analyzed = FALSE;
6896 xtensa_relax_info *relax_info;
6897
6898 if (!relocations_analyzed)
6899 {
6900 /* Do some overall initialization for relaxation. */
6901 values = value_map_hash_table_init ();
6902 if (values == NULL)
6903 return FALSE;
6904 relaxing_section = TRUE;
6905 if (!analyze_relocations (link_info))
6906 return FALSE;
6907 relocations_analyzed = TRUE;
6908 }
6909 *again = FALSE;
6910
6911 /* Don't mess with linker-created sections. */
6912 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6913 return TRUE;
6914
6915 relax_info = get_xtensa_relax_info (sec);
6916 BFD_ASSERT (relax_info != NULL);
6917
6918 switch (relax_info->visited)
6919 {
6920 case 0:
6921 /* Note: It would be nice to fold this pass into
6922 analyze_relocations, but it is important for this step that the
6923 sections be examined in link order. */
6924 if (!compute_removed_literals (abfd, sec, link_info, values))
6925 return FALSE;
6926 *again = TRUE;
6927 break;
6928
6929 case 1:
6930 if (values)
6931 value_map_hash_table_delete (values);
6932 values = NULL;
6933 if (!relax_section (abfd, sec, link_info))
6934 return FALSE;
6935 *again = TRUE;
6936 break;
6937
6938 case 2:
6939 if (!relax_section_symbols (abfd, sec))
6940 return FALSE;
6941 break;
6942 }
6943
6944 relax_info->visited++;
6945 return TRUE;
6946 }
6947
6948 \f
6949 /* Initialization for relaxation. */
6950
6951 /* This function is called once at the start of relaxation. It scans
6952 all the input sections and marks the ones that are relaxable (i.e.,
6953 literal sections with L32R relocations against them), and then
6954 collects source_reloc information for all the relocations against
6955 those relaxable sections. During this process, it also detects
6956 longcalls, i.e., calls relaxed by the assembler into indirect
6957 calls, that can be optimized back into direct calls. Within each
6958 extended basic block (ebb) containing an optimized longcall, it
6959 computes a set of "text actions" that can be performed to remove
6960 the L32R associated with the longcall while optionally preserving
6961 branch target alignments. */
6962
6963 static bfd_boolean
6964 analyze_relocations (struct bfd_link_info *link_info)
6965 {
6966 bfd *abfd;
6967 asection *sec;
6968 bfd_boolean is_relaxable = FALSE;
6969
6970 /* Initialize the per-section relaxation info. */
6971 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6972 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6973 {
6974 init_xtensa_relax_info (sec);
6975 }
6976
6977 /* Mark relaxable sections (and count relocations against each one). */
6978 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6979 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6980 {
6981 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6982 return FALSE;
6983 }
6984
6985 /* Bail out if there are no relaxable sections. */
6986 if (!is_relaxable)
6987 return TRUE;
6988
6989 /* Allocate space for source_relocs. */
6990 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6991 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6992 {
6993 xtensa_relax_info *relax_info;
6994
6995 relax_info = get_xtensa_relax_info (sec);
6996 if (relax_info->is_relaxable_literal_section
6997 || relax_info->is_relaxable_asm_section)
6998 {
6999 relax_info->src_relocs = (source_reloc *)
7000 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
7001 }
7002 else
7003 relax_info->src_count = 0;
7004 }
7005
7006 /* Collect info on relocations against each relaxable section. */
7007 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7008 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7009 {
7010 if (!collect_source_relocs (abfd, sec, link_info))
7011 return FALSE;
7012 }
7013
7014 /* Compute the text actions. */
7015 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7016 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7017 {
7018 if (!compute_text_actions (abfd, sec, link_info))
7019 return FALSE;
7020 }
7021
7022 return TRUE;
7023 }
7024
7025
7026 /* Find all the sections that might be relaxed. The motivation for
7027 this pass is that collect_source_relocs() needs to record _all_ the
7028 relocations that target each relaxable section. That is expensive
7029 and unnecessary unless the target section is actually going to be
7030 relaxed. This pass identifies all such sections by checking if
7031 they have L32Rs pointing to them. In the process, the total number
7032 of relocations targeting each section is also counted so that we
7033 know how much space to allocate for source_relocs against each
7034 relaxable literal section. */
7035
7036 static bfd_boolean
7037 find_relaxable_sections (bfd *abfd,
7038 asection *sec,
7039 struct bfd_link_info *link_info,
7040 bfd_boolean *is_relaxable_p)
7041 {
7042 Elf_Internal_Rela *internal_relocs;
7043 bfd_byte *contents;
7044 bfd_boolean ok = TRUE;
7045 unsigned i;
7046 xtensa_relax_info *source_relax_info;
7047 bfd_boolean is_l32r_reloc;
7048
7049 internal_relocs = retrieve_internal_relocs (abfd, sec,
7050 link_info->keep_memory);
7051 if (internal_relocs == NULL)
7052 return ok;
7053
7054 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7055 if (contents == NULL && sec->size != 0)
7056 {
7057 ok = FALSE;
7058 goto error_return;
7059 }
7060
7061 source_relax_info = get_xtensa_relax_info (sec);
7062 for (i = 0; i < sec->reloc_count; i++)
7063 {
7064 Elf_Internal_Rela *irel = &internal_relocs[i];
7065 r_reloc r_rel;
7066 asection *target_sec;
7067 xtensa_relax_info *target_relax_info;
7068
7069 /* If this section has not already been marked as "relaxable", and
7070 if it contains any ASM_EXPAND relocations (marking expanded
7071 longcalls) that can be optimized into direct calls, then mark
7072 the section as "relaxable". */
7073 if (source_relax_info
7074 && !source_relax_info->is_relaxable_asm_section
7075 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
7076 {
7077 bfd_boolean is_reachable = FALSE;
7078 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
7079 link_info, &is_reachable)
7080 && is_reachable)
7081 {
7082 source_relax_info->is_relaxable_asm_section = TRUE;
7083 *is_relaxable_p = TRUE;
7084 }
7085 }
7086
7087 r_reloc_init (&r_rel, abfd, irel, contents,
7088 bfd_get_section_limit (abfd, sec));
7089
7090 target_sec = r_reloc_get_section (&r_rel);
7091 target_relax_info = get_xtensa_relax_info (target_sec);
7092 if (!target_relax_info)
7093 continue;
7094
7095 /* Count PC-relative operand relocations against the target section.
7096 Note: The conditions tested here must match the conditions under
7097 which init_source_reloc is called in collect_source_relocs(). */
7098 is_l32r_reloc = FALSE;
7099 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7100 {
7101 xtensa_opcode opcode =
7102 get_relocation_opcode (abfd, sec, contents, irel);
7103 if (opcode != XTENSA_UNDEFINED)
7104 {
7105 is_l32r_reloc = (opcode == get_l32r_opcode ());
7106 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7107 || is_l32r_reloc)
7108 target_relax_info->src_count++;
7109 }
7110 }
7111
7112 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
7113 {
7114 /* Mark the target section as relaxable. */
7115 target_relax_info->is_relaxable_literal_section = TRUE;
7116 *is_relaxable_p = TRUE;
7117 }
7118 }
7119
7120 error_return:
7121 release_contents (sec, contents);
7122 release_internal_relocs (sec, internal_relocs);
7123 return ok;
7124 }
7125
7126
7127 /* Record _all_ the relocations that point to relaxable sections, and
7128 get rid of ASM_EXPAND relocs by either converting them to
7129 ASM_SIMPLIFY or by removing them. */
7130
7131 static bfd_boolean
7132 collect_source_relocs (bfd *abfd,
7133 asection *sec,
7134 struct bfd_link_info *link_info)
7135 {
7136 Elf_Internal_Rela *internal_relocs;
7137 bfd_byte *contents;
7138 bfd_boolean ok = TRUE;
7139 unsigned i;
7140 bfd_size_type sec_size;
7141
7142 internal_relocs = retrieve_internal_relocs (abfd, sec,
7143 link_info->keep_memory);
7144 if (internal_relocs == NULL)
7145 return ok;
7146
7147 sec_size = bfd_get_section_limit (abfd, sec);
7148 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7149 if (contents == NULL && sec_size != 0)
7150 {
7151 ok = FALSE;
7152 goto error_return;
7153 }
7154
7155 /* Record relocations against relaxable literal sections. */
7156 for (i = 0; i < sec->reloc_count; i++)
7157 {
7158 Elf_Internal_Rela *irel = &internal_relocs[i];
7159 r_reloc r_rel;
7160 asection *target_sec;
7161 xtensa_relax_info *target_relax_info;
7162
7163 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7164
7165 target_sec = r_reloc_get_section (&r_rel);
7166 target_relax_info = get_xtensa_relax_info (target_sec);
7167
7168 if (target_relax_info
7169 && (target_relax_info->is_relaxable_literal_section
7170 || target_relax_info->is_relaxable_asm_section))
7171 {
7172 xtensa_opcode opcode = XTENSA_UNDEFINED;
7173 int opnd = -1;
7174 bfd_boolean is_abs_literal = FALSE;
7175
7176 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7177 {
7178 /* None of the current alternate relocs are PC-relative,
7179 and only PC-relative relocs matter here. However, we
7180 still need to record the opcode for literal
7181 coalescing. */
7182 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7183 if (opcode == get_l32r_opcode ())
7184 {
7185 is_abs_literal = TRUE;
7186 opnd = 1;
7187 }
7188 else
7189 opcode = XTENSA_UNDEFINED;
7190 }
7191 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7192 {
7193 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7194 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7195 }
7196
7197 if (opcode != XTENSA_UNDEFINED)
7198 {
7199 int src_next = target_relax_info->src_next++;
7200 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7201
7202 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7203 is_abs_literal);
7204 }
7205 }
7206 }
7207
7208 /* Now get rid of ASM_EXPAND relocations. At this point, the
7209 src_relocs array for the target literal section may still be
7210 incomplete, but it must at least contain the entries for the L32R
7211 relocations associated with ASM_EXPANDs because they were just
7212 added in the preceding loop over the relocations. */
7213
7214 for (i = 0; i < sec->reloc_count; i++)
7215 {
7216 Elf_Internal_Rela *irel = &internal_relocs[i];
7217 bfd_boolean is_reachable;
7218
7219 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7220 &is_reachable))
7221 continue;
7222
7223 if (is_reachable)
7224 {
7225 Elf_Internal_Rela *l32r_irel;
7226 r_reloc r_rel;
7227 asection *target_sec;
7228 xtensa_relax_info *target_relax_info;
7229
7230 /* Mark the source_reloc for the L32R so that it will be
7231 removed in compute_removed_literals(), along with the
7232 associated literal. */
7233 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7234 irel, internal_relocs);
7235 if (l32r_irel == NULL)
7236 continue;
7237
7238 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7239
7240 target_sec = r_reloc_get_section (&r_rel);
7241 target_relax_info = get_xtensa_relax_info (target_sec);
7242
7243 if (target_relax_info
7244 && (target_relax_info->is_relaxable_literal_section
7245 || target_relax_info->is_relaxable_asm_section))
7246 {
7247 source_reloc *s_reloc;
7248
7249 /* Search the source_relocs for the entry corresponding to
7250 the l32r_irel. Note: The src_relocs array is not yet
7251 sorted, but it wouldn't matter anyway because we're
7252 searching by source offset instead of target offset. */
7253 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7254 target_relax_info->src_next,
7255 sec, l32r_irel);
7256 BFD_ASSERT (s_reloc);
7257 s_reloc->is_null = TRUE;
7258 }
7259
7260 /* Convert this reloc to ASM_SIMPLIFY. */
7261 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7262 R_XTENSA_ASM_SIMPLIFY);
7263 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7264
7265 pin_internal_relocs (sec, internal_relocs);
7266 }
7267 else
7268 {
7269 /* It is resolvable but doesn't reach. We resolve now
7270 by eliminating the relocation -- the call will remain
7271 expanded into L32R/CALLX. */
7272 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7273 pin_internal_relocs (sec, internal_relocs);
7274 }
7275 }
7276
7277 error_return:
7278 release_contents (sec, contents);
7279 release_internal_relocs (sec, internal_relocs);
7280 return ok;
7281 }
7282
7283
7284 /* Return TRUE if the asm expansion can be resolved. Generally it can
7285 be resolved on a final link or when a partial link locates it in the
7286 same section as the target. Set "is_reachable" flag if the target of
7287 the call is within the range of a direct call, given the current VMA
7288 for this section and the target section. */
7289
7290 bfd_boolean
7291 is_resolvable_asm_expansion (bfd *abfd,
7292 asection *sec,
7293 bfd_byte *contents,
7294 Elf_Internal_Rela *irel,
7295 struct bfd_link_info *link_info,
7296 bfd_boolean *is_reachable_p)
7297 {
7298 asection *target_sec;
7299 bfd_vma target_offset;
7300 r_reloc r_rel;
7301 xtensa_opcode opcode, direct_call_opcode;
7302 bfd_vma self_address;
7303 bfd_vma dest_address;
7304 bfd_boolean uses_l32r;
7305 bfd_size_type sec_size;
7306
7307 *is_reachable_p = FALSE;
7308
7309 if (contents == NULL)
7310 return FALSE;
7311
7312 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7313 return FALSE;
7314
7315 sec_size = bfd_get_section_limit (abfd, sec);
7316 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7317 sec_size - irel->r_offset, &uses_l32r);
7318 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7319 if (!uses_l32r)
7320 return FALSE;
7321
7322 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7323 if (direct_call_opcode == XTENSA_UNDEFINED)
7324 return FALSE;
7325
7326 /* Check and see that the target resolves. */
7327 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7328 if (!r_reloc_is_defined (&r_rel))
7329 return FALSE;
7330
7331 target_sec = r_reloc_get_section (&r_rel);
7332 target_offset = r_rel.target_offset;
7333
7334 /* If the target is in a shared library, then it doesn't reach. This
7335 isn't supposed to come up because the compiler should never generate
7336 non-PIC calls on systems that use shared libraries, but the linker
7337 shouldn't crash regardless. */
7338 if (!target_sec->output_section)
7339 return FALSE;
7340
7341 /* For relocatable sections, we can only simplify when the output
7342 section of the target is the same as the output section of the
7343 source. */
7344 if (bfd_link_relocatable (link_info)
7345 && (target_sec->output_section != sec->output_section
7346 || is_reloc_sym_weak (abfd, irel)))
7347 return FALSE;
7348
7349 if (target_sec->output_section != sec->output_section)
7350 {
7351 /* If the two sections are sufficiently far away that relaxation
7352 might take the call out of range, we can't simplify. For
7353 example, a positive displacement call into another memory
7354 could get moved to a lower address due to literal removal,
7355 but the destination won't move, and so the displacment might
7356 get larger.
7357
7358 If the displacement is negative, assume the destination could
7359 move as far back as the start of the output section. The
7360 self_address will be at least as far into the output section
7361 as it is prior to relaxation.
7362
7363 If the displacement is postive, assume the destination will be in
7364 it's pre-relaxed location (because relaxation only makes sections
7365 smaller). The self_address could go all the way to the beginning
7366 of the output section. */
7367
7368 dest_address = target_sec->output_section->vma;
7369 self_address = sec->output_section->vma;
7370
7371 if (sec->output_section->vma > target_sec->output_section->vma)
7372 self_address += sec->output_offset + irel->r_offset + 3;
7373 else
7374 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7375 /* Call targets should be four-byte aligned. */
7376 dest_address = (dest_address + 3) & ~3;
7377 }
7378 else
7379 {
7380
7381 self_address = (sec->output_section->vma
7382 + sec->output_offset + irel->r_offset + 3);
7383 dest_address = (target_sec->output_section->vma
7384 + target_sec->output_offset + target_offset);
7385 }
7386
7387 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7388 self_address, dest_address);
7389
7390 if ((self_address >> CALL_SEGMENT_BITS) !=
7391 (dest_address >> CALL_SEGMENT_BITS))
7392 return FALSE;
7393
7394 return TRUE;
7395 }
7396
7397
7398 static Elf_Internal_Rela *
7399 find_associated_l32r_irel (bfd *abfd,
7400 asection *sec,
7401 bfd_byte *contents,
7402 Elf_Internal_Rela *other_irel,
7403 Elf_Internal_Rela *internal_relocs)
7404 {
7405 unsigned i;
7406
7407 for (i = 0; i < sec->reloc_count; i++)
7408 {
7409 Elf_Internal_Rela *irel = &internal_relocs[i];
7410
7411 if (irel == other_irel)
7412 continue;
7413 if (irel->r_offset != other_irel->r_offset)
7414 continue;
7415 if (is_l32r_relocation (abfd, sec, contents, irel))
7416 return irel;
7417 }
7418
7419 return NULL;
7420 }
7421
7422
7423 static xtensa_opcode *
7424 build_reloc_opcodes (bfd *abfd,
7425 asection *sec,
7426 bfd_byte *contents,
7427 Elf_Internal_Rela *internal_relocs)
7428 {
7429 unsigned i;
7430 xtensa_opcode *reloc_opcodes =
7431 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7432 for (i = 0; i < sec->reloc_count; i++)
7433 {
7434 Elf_Internal_Rela *irel = &internal_relocs[i];
7435 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7436 }
7437 return reloc_opcodes;
7438 }
7439
7440 struct reloc_range_struct
7441 {
7442 bfd_vma addr;
7443 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7444 /* Original irel index in the array of relocations for a section. */
7445 unsigned irel_index;
7446 };
7447 typedef struct reloc_range_struct reloc_range;
7448
7449 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7450 struct reloc_range_list_entry_struct
7451 {
7452 reloc_range_list_entry *next;
7453 reloc_range_list_entry *prev;
7454 Elf_Internal_Rela *irel;
7455 xtensa_opcode opcode;
7456 int opnum;
7457 };
7458
7459 struct reloc_range_list_struct
7460 {
7461 /* The rest of the structure is only meaningful when ok is TRUE. */
7462 bfd_boolean ok;
7463
7464 unsigned n_range; /* Number of range markers. */
7465 reloc_range *range; /* Sorted range markers. */
7466
7467 unsigned first; /* Index of a first range element in the list. */
7468 unsigned last; /* One past index of a last range element in the list. */
7469
7470 unsigned n_list; /* Number of list elements. */
7471 reloc_range_list_entry *reloc; /* */
7472 reloc_range_list_entry list_root;
7473 };
7474
7475 static int
7476 reloc_range_compare (const void *a, const void *b)
7477 {
7478 const reloc_range *ra = a;
7479 const reloc_range *rb = b;
7480
7481 if (ra->addr != rb->addr)
7482 return ra->addr < rb->addr ? -1 : 1;
7483 if (ra->add != rb->add)
7484 return ra->add ? -1 : 1;
7485 return 0;
7486 }
7487
7488 static void
7489 build_reloc_ranges (bfd *abfd, asection *sec,
7490 bfd_byte *contents,
7491 Elf_Internal_Rela *internal_relocs,
7492 xtensa_opcode *reloc_opcodes,
7493 reloc_range_list *list)
7494 {
7495 unsigned i;
7496 size_t n = 0;
7497 size_t max_n = 0;
7498 reloc_range *ranges = NULL;
7499 reloc_range_list_entry *reloc =
7500 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7501
7502 memset (list, 0, sizeof (*list));
7503 list->ok = TRUE;
7504
7505 for (i = 0; i < sec->reloc_count; i++)
7506 {
7507 Elf_Internal_Rela *irel = &internal_relocs[i];
7508 int r_type = ELF32_R_TYPE (irel->r_info);
7509 reloc_howto_type *howto = &elf_howto_table[r_type];
7510 r_reloc r_rel;
7511
7512 if (r_type == R_XTENSA_ASM_SIMPLIFY
7513 || r_type == R_XTENSA_32_PCREL
7514 || !howto->pc_relative)
7515 continue;
7516
7517 r_reloc_init (&r_rel, abfd, irel, contents,
7518 bfd_get_section_limit (abfd, sec));
7519
7520 if (r_reloc_get_section (&r_rel) != sec)
7521 continue;
7522
7523 if (n + 2 > max_n)
7524 {
7525 max_n = (max_n + 2) * 2;
7526 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7527 }
7528
7529 ranges[n].addr = irel->r_offset;
7530 ranges[n + 1].addr = r_rel.target_offset;
7531
7532 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7533 ranges[n + 1].add = !ranges[n].add;
7534
7535 ranges[n].irel_index = i;
7536 ranges[n + 1].irel_index = i;
7537
7538 n += 2;
7539
7540 reloc[i].irel = irel;
7541
7542 /* Every relocation won't possibly be checked in the optimized version of
7543 check_section_ebb_pcrels_fit, so this needs to be done here. */
7544 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7545 {
7546 /* None of the current alternate relocs are PC-relative,
7547 and only PC-relative relocs matter here. */
7548 }
7549 else
7550 {
7551 xtensa_opcode opcode;
7552 int opnum;
7553
7554 if (reloc_opcodes)
7555 opcode = reloc_opcodes[i];
7556 else
7557 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7558
7559 if (opcode == XTENSA_UNDEFINED)
7560 {
7561 list->ok = FALSE;
7562 break;
7563 }
7564
7565 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7566 if (opnum == XTENSA_UNDEFINED)
7567 {
7568 list->ok = FALSE;
7569 break;
7570 }
7571
7572 /* Record relocation opcode and opnum as we've calculated them
7573 anyway and they won't change. */
7574 reloc[i].opcode = opcode;
7575 reloc[i].opnum = opnum;
7576 }
7577 }
7578
7579 if (list->ok)
7580 {
7581 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7582 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7583
7584 list->n_range = n;
7585 list->range = ranges;
7586 list->reloc = reloc;
7587 list->list_root.prev = &list->list_root;
7588 list->list_root.next = &list->list_root;
7589 }
7590 else
7591 {
7592 free (ranges);
7593 free (reloc);
7594 }
7595 }
7596
7597 static void reloc_range_list_append (reloc_range_list *list,
7598 unsigned irel_index)
7599 {
7600 reloc_range_list_entry *entry = list->reloc + irel_index;
7601
7602 entry->prev = list->list_root.prev;
7603 entry->next = &list->list_root;
7604 entry->prev->next = entry;
7605 entry->next->prev = entry;
7606 ++list->n_list;
7607 }
7608
7609 static void reloc_range_list_remove (reloc_range_list *list,
7610 unsigned irel_index)
7611 {
7612 reloc_range_list_entry *entry = list->reloc + irel_index;
7613
7614 entry->next->prev = entry->prev;
7615 entry->prev->next = entry->next;
7616 --list->n_list;
7617 }
7618
7619 /* Update relocation list object so that it lists all relocations that cross
7620 [first; last] range. Range bounds should not decrease with successive
7621 invocations. */
7622 static void reloc_range_list_update_range (reloc_range_list *list,
7623 bfd_vma first, bfd_vma last)
7624 {
7625 /* This should not happen: EBBs are iterated from lower addresses to higher.
7626 But even if that happens there's no need to break: just flush current list
7627 and start from scratch. */
7628 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7629 (list->first > 0 && list->range[list->first - 1].addr >= first))
7630 {
7631 list->first = 0;
7632 list->last = 0;
7633 list->n_list = 0;
7634 list->list_root.next = &list->list_root;
7635 list->list_root.prev = &list->list_root;
7636 fprintf (stderr, "%s: move backwards requested\n", __func__);
7637 }
7638
7639 for (; list->last < list->n_range &&
7640 list->range[list->last].addr <= last; ++list->last)
7641 if (list->range[list->last].add)
7642 reloc_range_list_append (list, list->range[list->last].irel_index);
7643
7644 for (; list->first < list->n_range &&
7645 list->range[list->first].addr < first; ++list->first)
7646 if (!list->range[list->first].add)
7647 reloc_range_list_remove (list, list->range[list->first].irel_index);
7648 }
7649
7650 static void free_reloc_range_list (reloc_range_list *list)
7651 {
7652 free (list->range);
7653 free (list->reloc);
7654 }
7655
7656 /* The compute_text_actions function will build a list of potential
7657 transformation actions for code in the extended basic block of each
7658 longcall that is optimized to a direct call. From this list we
7659 generate a set of actions to actually perform that optimizes for
7660 space and, if not using size_opt, maintains branch target
7661 alignments.
7662
7663 These actions to be performed are placed on a per-section list.
7664 The actual changes are performed by relax_section() in the second
7665 pass. */
7666
7667 bfd_boolean
7668 compute_text_actions (bfd *abfd,
7669 asection *sec,
7670 struct bfd_link_info *link_info)
7671 {
7672 xtensa_opcode *reloc_opcodes = NULL;
7673 xtensa_relax_info *relax_info;
7674 bfd_byte *contents;
7675 Elf_Internal_Rela *internal_relocs;
7676 bfd_boolean ok = TRUE;
7677 unsigned i;
7678 property_table_entry *prop_table = 0;
7679 int ptblsize = 0;
7680 bfd_size_type sec_size;
7681 reloc_range_list relevant_relocs;
7682
7683 relax_info = get_xtensa_relax_info (sec);
7684 BFD_ASSERT (relax_info);
7685 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7686
7687 /* Do nothing if the section contains no optimized longcalls. */
7688 if (!relax_info->is_relaxable_asm_section)
7689 return ok;
7690
7691 internal_relocs = retrieve_internal_relocs (abfd, sec,
7692 link_info->keep_memory);
7693
7694 if (internal_relocs)
7695 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7696 internal_reloc_compare);
7697
7698 sec_size = bfd_get_section_limit (abfd, sec);
7699 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7700 if (contents == NULL && sec_size != 0)
7701 {
7702 ok = FALSE;
7703 goto error_return;
7704 }
7705
7706 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7707 XTENSA_PROP_SEC_NAME, FALSE);
7708 if (ptblsize < 0)
7709 {
7710 ok = FALSE;
7711 goto error_return;
7712 }
7713
7714 /* Precompute the opcode for each relocation. */
7715 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7716
7717 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7718 &relevant_relocs);
7719
7720 for (i = 0; i < sec->reloc_count; i++)
7721 {
7722 Elf_Internal_Rela *irel = &internal_relocs[i];
7723 bfd_vma r_offset;
7724 property_table_entry *the_entry;
7725 int ptbl_idx;
7726 ebb_t *ebb;
7727 ebb_constraint ebb_table;
7728 bfd_size_type simplify_size;
7729
7730 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7731 continue;
7732 r_offset = irel->r_offset;
7733
7734 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7735 if (simplify_size == 0)
7736 {
7737 (*_bfd_error_handler)
7738 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7739 sec->owner, sec, r_offset);
7740 continue;
7741 }
7742
7743 /* If the instruction table is not around, then don't do this
7744 relaxation. */
7745 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7746 sec->vma + irel->r_offset);
7747 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7748 {
7749 text_action_add (&relax_info->action_list,
7750 ta_convert_longcall, sec, r_offset,
7751 0);
7752 continue;
7753 }
7754
7755 /* If the next longcall happens to be at the same address as an
7756 unreachable section of size 0, then skip forward. */
7757 ptbl_idx = the_entry - prop_table;
7758 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7759 && the_entry->size == 0
7760 && ptbl_idx + 1 < ptblsize
7761 && (prop_table[ptbl_idx + 1].address
7762 == prop_table[ptbl_idx].address))
7763 {
7764 ptbl_idx++;
7765 the_entry++;
7766 }
7767
7768 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7769 /* NO_REORDER is OK */
7770 continue;
7771
7772 init_ebb_constraint (&ebb_table);
7773 ebb = &ebb_table.ebb;
7774 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7775 internal_relocs, sec->reloc_count);
7776 ebb->start_offset = r_offset + simplify_size;
7777 ebb->end_offset = r_offset + simplify_size;
7778 ebb->start_ptbl_idx = ptbl_idx;
7779 ebb->end_ptbl_idx = ptbl_idx;
7780 ebb->start_reloc_idx = i;
7781 ebb->end_reloc_idx = i;
7782
7783 if (!extend_ebb_bounds (ebb)
7784 || !compute_ebb_proposed_actions (&ebb_table)
7785 || !compute_ebb_actions (&ebb_table)
7786 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7787 internal_relocs,
7788 &relevant_relocs,
7789 &ebb_table, reloc_opcodes)
7790 || !check_section_ebb_reduces (&ebb_table))
7791 {
7792 /* If anything goes wrong or we get unlucky and something does
7793 not fit, with our plan because of expansion between
7794 critical branches, just convert to a NOP. */
7795
7796 text_action_add (&relax_info->action_list,
7797 ta_convert_longcall, sec, r_offset, 0);
7798 i = ebb_table.ebb.end_reloc_idx;
7799 free_ebb_constraint (&ebb_table);
7800 continue;
7801 }
7802
7803 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7804
7805 /* Update the index so we do not go looking at the relocations
7806 we have already processed. */
7807 i = ebb_table.ebb.end_reloc_idx;
7808 free_ebb_constraint (&ebb_table);
7809 }
7810
7811 free_reloc_range_list (&relevant_relocs);
7812
7813 #if DEBUG
7814 if (action_list_count (&relax_info->action_list))
7815 print_action_list (stderr, &relax_info->action_list);
7816 #endif
7817
7818 error_return:
7819 release_contents (sec, contents);
7820 release_internal_relocs (sec, internal_relocs);
7821 if (prop_table)
7822 free (prop_table);
7823 if (reloc_opcodes)
7824 free (reloc_opcodes);
7825
7826 return ok;
7827 }
7828
7829
7830 /* Do not widen an instruction if it is preceeded by a
7831 loop opcode. It might cause misalignment. */
7832
7833 static bfd_boolean
7834 prev_instr_is_a_loop (bfd_byte *contents,
7835 bfd_size_type content_length,
7836 bfd_size_type offset)
7837 {
7838 xtensa_opcode prev_opcode;
7839
7840 if (offset < 3)
7841 return FALSE;
7842 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7843 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7844 }
7845
7846
7847 /* Find all of the possible actions for an extended basic block. */
7848
7849 bfd_boolean
7850 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7851 {
7852 const ebb_t *ebb = &ebb_table->ebb;
7853 unsigned rel_idx = ebb->start_reloc_idx;
7854 property_table_entry *entry, *start_entry, *end_entry;
7855 bfd_vma offset = 0;
7856 xtensa_isa isa = xtensa_default_isa;
7857 xtensa_format fmt;
7858 static xtensa_insnbuf insnbuf = NULL;
7859 static xtensa_insnbuf slotbuf = NULL;
7860
7861 if (insnbuf == NULL)
7862 {
7863 insnbuf = xtensa_insnbuf_alloc (isa);
7864 slotbuf = xtensa_insnbuf_alloc (isa);
7865 }
7866
7867 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7868 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7869
7870 for (entry = start_entry; entry <= end_entry; entry++)
7871 {
7872 bfd_vma start_offset, end_offset;
7873 bfd_size_type insn_len;
7874
7875 start_offset = entry->address - ebb->sec->vma;
7876 end_offset = entry->address + entry->size - ebb->sec->vma;
7877
7878 if (entry == start_entry)
7879 start_offset = ebb->start_offset;
7880 if (entry == end_entry)
7881 end_offset = ebb->end_offset;
7882 offset = start_offset;
7883
7884 if (offset == entry->address - ebb->sec->vma
7885 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7886 {
7887 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7888 BFD_ASSERT (offset != end_offset);
7889 if (offset == end_offset)
7890 return FALSE;
7891
7892 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7893 offset);
7894 if (insn_len == 0)
7895 goto decode_error;
7896
7897 if (check_branch_target_aligned_address (offset, insn_len))
7898 align_type = EBB_REQUIRE_TGT_ALIGN;
7899
7900 ebb_propose_action (ebb_table, align_type, 0,
7901 ta_none, offset, 0, TRUE);
7902 }
7903
7904 while (offset != end_offset)
7905 {
7906 Elf_Internal_Rela *irel;
7907 xtensa_opcode opcode;
7908
7909 while (rel_idx < ebb->end_reloc_idx
7910 && (ebb->relocs[rel_idx].r_offset < offset
7911 || (ebb->relocs[rel_idx].r_offset == offset
7912 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7913 != R_XTENSA_ASM_SIMPLIFY))))
7914 rel_idx++;
7915
7916 /* Check for longcall. */
7917 irel = &ebb->relocs[rel_idx];
7918 if (irel->r_offset == offset
7919 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7920 {
7921 bfd_size_type simplify_size;
7922
7923 simplify_size = get_asm_simplify_size (ebb->contents,
7924 ebb->content_length,
7925 irel->r_offset);
7926 if (simplify_size == 0)
7927 goto decode_error;
7928
7929 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7930 ta_convert_longcall, offset, 0, TRUE);
7931
7932 offset += simplify_size;
7933 continue;
7934 }
7935
7936 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7937 goto decode_error;
7938 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7939 ebb->content_length - offset);
7940 fmt = xtensa_format_decode (isa, insnbuf);
7941 if (fmt == XTENSA_UNDEFINED)
7942 goto decode_error;
7943 insn_len = xtensa_format_length (isa, fmt);
7944 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7945 goto decode_error;
7946
7947 if (xtensa_format_num_slots (isa, fmt) != 1)
7948 {
7949 offset += insn_len;
7950 continue;
7951 }
7952
7953 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7954 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7955 if (opcode == XTENSA_UNDEFINED)
7956 goto decode_error;
7957
7958 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7959 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7960 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7961 {
7962 /* Add an instruction narrow action. */
7963 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7964 ta_narrow_insn, offset, 0, FALSE);
7965 }
7966 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7967 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7968 && ! prev_instr_is_a_loop (ebb->contents,
7969 ebb->content_length, offset))
7970 {
7971 /* Add an instruction widen action. */
7972 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7973 ta_widen_insn, offset, 0, FALSE);
7974 }
7975 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7976 {
7977 /* Check for branch targets. */
7978 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7979 ta_none, offset, 0, TRUE);
7980 }
7981
7982 offset += insn_len;
7983 }
7984 }
7985
7986 if (ebb->ends_unreachable)
7987 {
7988 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7989 ta_fill, ebb->end_offset, 0, TRUE);
7990 }
7991
7992 return TRUE;
7993
7994 decode_error:
7995 (*_bfd_error_handler)
7996 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7997 ebb->sec->owner, ebb->sec, offset);
7998 return FALSE;
7999 }
8000
8001
8002 /* After all of the information has collected about the
8003 transformations possible in an EBB, compute the appropriate actions
8004 here in compute_ebb_actions. We still must check later to make
8005 sure that the actions do not break any relocations. The algorithm
8006 used here is pretty greedy. Basically, it removes as many no-ops
8007 as possible so that the end of the EBB has the same alignment
8008 characteristics as the original. First, it uses narrowing, then
8009 fill space at the end of the EBB, and finally widenings. If that
8010 does not work, it tries again with one fewer no-op removed. The
8011 optimization will only be performed if all of the branch targets
8012 that were aligned before transformation are also aligned after the
8013 transformation.
8014
8015 When the size_opt flag is set, ignore the branch target alignments,
8016 narrow all wide instructions, and remove all no-ops unless the end
8017 of the EBB prevents it. */
8018
8019 bfd_boolean
8020 compute_ebb_actions (ebb_constraint *ebb_table)
8021 {
8022 unsigned i = 0;
8023 unsigned j;
8024 int removed_bytes = 0;
8025 ebb_t *ebb = &ebb_table->ebb;
8026 unsigned seg_idx_start = 0;
8027 unsigned seg_idx_end = 0;
8028
8029 /* We perform this like the assembler relaxation algorithm: Start by
8030 assuming all instructions are narrow and all no-ops removed; then
8031 walk through.... */
8032
8033 /* For each segment of this that has a solid constraint, check to
8034 see if there are any combinations that will keep the constraint.
8035 If so, use it. */
8036 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
8037 {
8038 bfd_boolean requires_text_end_align = FALSE;
8039 unsigned longcall_count = 0;
8040 unsigned longcall_convert_count = 0;
8041 unsigned narrowable_count = 0;
8042 unsigned narrowable_convert_count = 0;
8043 unsigned widenable_count = 0;
8044 unsigned widenable_convert_count = 0;
8045
8046 proposed_action *action = NULL;
8047 int align = (1 << ebb_table->ebb.sec->alignment_power);
8048
8049 seg_idx_start = seg_idx_end;
8050
8051 for (i = seg_idx_start; i < ebb_table->action_count; i++)
8052 {
8053 action = &ebb_table->actions[i];
8054 if (action->action == ta_convert_longcall)
8055 longcall_count++;
8056 if (action->action == ta_narrow_insn)
8057 narrowable_count++;
8058 if (action->action == ta_widen_insn)
8059 widenable_count++;
8060 if (action->action == ta_fill)
8061 break;
8062 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8063 break;
8064 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8065 && !elf32xtensa_size_opt)
8066 break;
8067 }
8068 seg_idx_end = i;
8069
8070 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8071 requires_text_end_align = TRUE;
8072
8073 if (elf32xtensa_size_opt && !requires_text_end_align
8074 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8075 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8076 {
8077 longcall_convert_count = longcall_count;
8078 narrowable_convert_count = narrowable_count;
8079 widenable_convert_count = 0;
8080 }
8081 else
8082 {
8083 /* There is a constraint. Convert the max number of longcalls. */
8084 narrowable_convert_count = 0;
8085 longcall_convert_count = 0;
8086 widenable_convert_count = 0;
8087
8088 for (j = 0; j < longcall_count; j++)
8089 {
8090 int removed = (longcall_count - j) * 3 & (align - 1);
8091 unsigned desire_narrow = (align - removed) & (align - 1);
8092 unsigned desire_widen = removed;
8093 if (desire_narrow <= narrowable_count)
8094 {
8095 narrowable_convert_count = desire_narrow;
8096 narrowable_convert_count +=
8097 (align * ((narrowable_count - narrowable_convert_count)
8098 / align));
8099 longcall_convert_count = (longcall_count - j);
8100 widenable_convert_count = 0;
8101 break;
8102 }
8103 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8104 {
8105 narrowable_convert_count = 0;
8106 longcall_convert_count = longcall_count - j;
8107 widenable_convert_count = desire_widen;
8108 break;
8109 }
8110 }
8111 }
8112
8113 /* Now the number of conversions are saved. Do them. */
8114 for (i = seg_idx_start; i < seg_idx_end; i++)
8115 {
8116 action = &ebb_table->actions[i];
8117 switch (action->action)
8118 {
8119 case ta_convert_longcall:
8120 if (longcall_convert_count != 0)
8121 {
8122 action->action = ta_remove_longcall;
8123 action->do_action = TRUE;
8124 action->removed_bytes += 3;
8125 longcall_convert_count--;
8126 }
8127 break;
8128 case ta_narrow_insn:
8129 if (narrowable_convert_count != 0)
8130 {
8131 action->do_action = TRUE;
8132 action->removed_bytes += 1;
8133 narrowable_convert_count--;
8134 }
8135 break;
8136 case ta_widen_insn:
8137 if (widenable_convert_count != 0)
8138 {
8139 action->do_action = TRUE;
8140 action->removed_bytes -= 1;
8141 widenable_convert_count--;
8142 }
8143 break;
8144 default:
8145 break;
8146 }
8147 }
8148 }
8149
8150 /* Now we move on to some local opts. Try to remove each of the
8151 remaining longcalls. */
8152
8153 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8154 {
8155 removed_bytes = 0;
8156 for (i = 0; i < ebb_table->action_count; i++)
8157 {
8158 int old_removed_bytes = removed_bytes;
8159 proposed_action *action = &ebb_table->actions[i];
8160
8161 if (action->do_action && action->action == ta_convert_longcall)
8162 {
8163 bfd_boolean bad_alignment = FALSE;
8164 removed_bytes += 3;
8165 for (j = i + 1; j < ebb_table->action_count; j++)
8166 {
8167 proposed_action *new_action = &ebb_table->actions[j];
8168 bfd_vma offset = new_action->offset;
8169 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8170 {
8171 if (!check_branch_target_aligned
8172 (ebb_table->ebb.contents,
8173 ebb_table->ebb.content_length,
8174 offset, offset - removed_bytes))
8175 {
8176 bad_alignment = TRUE;
8177 break;
8178 }
8179 }
8180 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8181 {
8182 if (!check_loop_aligned (ebb_table->ebb.contents,
8183 ebb_table->ebb.content_length,
8184 offset,
8185 offset - removed_bytes))
8186 {
8187 bad_alignment = TRUE;
8188 break;
8189 }
8190 }
8191 if (new_action->action == ta_narrow_insn
8192 && !new_action->do_action
8193 && ebb_table->ebb.sec->alignment_power == 2)
8194 {
8195 /* Narrow an instruction and we are done. */
8196 new_action->do_action = TRUE;
8197 new_action->removed_bytes += 1;
8198 bad_alignment = FALSE;
8199 break;
8200 }
8201 if (new_action->action == ta_widen_insn
8202 && new_action->do_action
8203 && ebb_table->ebb.sec->alignment_power == 2)
8204 {
8205 /* Narrow an instruction and we are done. */
8206 new_action->do_action = FALSE;
8207 new_action->removed_bytes += 1;
8208 bad_alignment = FALSE;
8209 break;
8210 }
8211 if (new_action->do_action)
8212 removed_bytes += new_action->removed_bytes;
8213 }
8214 if (!bad_alignment)
8215 {
8216 action->removed_bytes += 3;
8217 action->action = ta_remove_longcall;
8218 action->do_action = TRUE;
8219 }
8220 }
8221 removed_bytes = old_removed_bytes;
8222 if (action->do_action)
8223 removed_bytes += action->removed_bytes;
8224 }
8225 }
8226
8227 removed_bytes = 0;
8228 for (i = 0; i < ebb_table->action_count; ++i)
8229 {
8230 proposed_action *action = &ebb_table->actions[i];
8231 if (action->do_action)
8232 removed_bytes += action->removed_bytes;
8233 }
8234
8235 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8236 && ebb->ends_unreachable)
8237 {
8238 proposed_action *action;
8239 int br;
8240 int extra_space;
8241
8242 BFD_ASSERT (ebb_table->action_count != 0);
8243 action = &ebb_table->actions[ebb_table->action_count - 1];
8244 BFD_ASSERT (action->action == ta_fill);
8245 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8246
8247 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
8248 br = action->removed_bytes + removed_bytes + extra_space;
8249 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8250
8251 action->removed_bytes = extra_space - br;
8252 }
8253 return TRUE;
8254 }
8255
8256
8257 /* The xlate_map is a sorted array of address mappings designed to
8258 answer the offset_with_removed_text() query with a binary search instead
8259 of a linear search through the section's action_list. */
8260
8261 typedef struct xlate_map_entry xlate_map_entry_t;
8262 typedef struct xlate_map xlate_map_t;
8263
8264 struct xlate_map_entry
8265 {
8266 unsigned orig_address;
8267 unsigned new_address;
8268 unsigned size;
8269 };
8270
8271 struct xlate_map
8272 {
8273 unsigned entry_count;
8274 xlate_map_entry_t *entry;
8275 };
8276
8277
8278 static int
8279 xlate_compare (const void *a_v, const void *b_v)
8280 {
8281 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8282 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8283 if (a->orig_address < b->orig_address)
8284 return -1;
8285 if (a->orig_address > (b->orig_address + b->size - 1))
8286 return 1;
8287 return 0;
8288 }
8289
8290
8291 static bfd_vma
8292 xlate_offset_with_removed_text (const xlate_map_t *map,
8293 text_action_list *action_list,
8294 bfd_vma offset)
8295 {
8296 void *r;
8297 xlate_map_entry_t *e;
8298
8299 if (map == NULL)
8300 return offset_with_removed_text (action_list, offset);
8301
8302 if (map->entry_count == 0)
8303 return offset;
8304
8305 r = bsearch (&offset, map->entry, map->entry_count,
8306 sizeof (xlate_map_entry_t), &xlate_compare);
8307 e = (xlate_map_entry_t *) r;
8308
8309 BFD_ASSERT (e != NULL);
8310 if (e == NULL)
8311 return offset;
8312 return e->new_address - e->orig_address + offset;
8313 }
8314
8315 typedef struct xlate_map_context_struct xlate_map_context;
8316 struct xlate_map_context_struct
8317 {
8318 xlate_map_t *map;
8319 xlate_map_entry_t *current_entry;
8320 int removed;
8321 };
8322
8323 static int
8324 xlate_map_fn (splay_tree_node node, void *p)
8325 {
8326 text_action *r = (text_action *)node->value;
8327 xlate_map_context *ctx = p;
8328 unsigned orig_size = 0;
8329
8330 switch (r->action)
8331 {
8332 case ta_none:
8333 case ta_remove_insn:
8334 case ta_convert_longcall:
8335 case ta_remove_literal:
8336 case ta_add_literal:
8337 break;
8338 case ta_remove_longcall:
8339 orig_size = 6;
8340 break;
8341 case ta_narrow_insn:
8342 orig_size = 3;
8343 break;
8344 case ta_widen_insn:
8345 orig_size = 2;
8346 break;
8347 case ta_fill:
8348 break;
8349 }
8350 ctx->current_entry->size =
8351 r->offset + orig_size - ctx->current_entry->orig_address;
8352 if (ctx->current_entry->size != 0)
8353 {
8354 ctx->current_entry++;
8355 ctx->map->entry_count++;
8356 }
8357 ctx->current_entry->orig_address = r->offset + orig_size;
8358 ctx->removed += r->removed_bytes;
8359 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8360 ctx->current_entry->size = 0;
8361 return 0;
8362 }
8363
8364 /* Build a binary searchable offset translation map from a section's
8365 action list. */
8366
8367 static xlate_map_t *
8368 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8369 {
8370 text_action_list *action_list = &relax_info->action_list;
8371 unsigned num_actions = 0;
8372 xlate_map_context ctx;
8373
8374 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8375
8376 if (ctx.map == NULL)
8377 return NULL;
8378
8379 num_actions = action_list_count (action_list);
8380 ctx.map->entry = (xlate_map_entry_t *)
8381 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8382 if (ctx.map->entry == NULL)
8383 {
8384 free (ctx.map);
8385 return NULL;
8386 }
8387 ctx.map->entry_count = 0;
8388
8389 ctx.removed = 0;
8390 ctx.current_entry = &ctx.map->entry[0];
8391
8392 ctx.current_entry->orig_address = 0;
8393 ctx.current_entry->new_address = 0;
8394 ctx.current_entry->size = 0;
8395
8396 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
8397
8398 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8399 - ctx.current_entry->orig_address);
8400 if (ctx.current_entry->size != 0)
8401 ctx.map->entry_count++;
8402
8403 return ctx.map;
8404 }
8405
8406
8407 /* Free an offset translation map. */
8408
8409 static void
8410 free_xlate_map (xlate_map_t *map)
8411 {
8412 if (map && map->entry)
8413 free (map->entry);
8414 if (map)
8415 free (map);
8416 }
8417
8418
8419 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8420 relocations in a section will fit if a proposed set of actions
8421 are performed. */
8422
8423 static bfd_boolean
8424 check_section_ebb_pcrels_fit (bfd *abfd,
8425 asection *sec,
8426 bfd_byte *contents,
8427 Elf_Internal_Rela *internal_relocs,
8428 reloc_range_list *relevant_relocs,
8429 const ebb_constraint *constraint,
8430 const xtensa_opcode *reloc_opcodes)
8431 {
8432 unsigned i, j;
8433 unsigned n = sec->reloc_count;
8434 Elf_Internal_Rela *irel;
8435 xlate_map_t *xmap = NULL;
8436 bfd_boolean ok = TRUE;
8437 xtensa_relax_info *relax_info;
8438 reloc_range_list_entry *entry = NULL;
8439
8440 relax_info = get_xtensa_relax_info (sec);
8441
8442 if (relax_info && sec->reloc_count > 100)
8443 {
8444 xmap = build_xlate_map (sec, relax_info);
8445 /* NULL indicates out of memory, but the slow version
8446 can still be used. */
8447 }
8448
8449 if (relevant_relocs && constraint->action_count)
8450 {
8451 if (!relevant_relocs->ok)
8452 {
8453 ok = FALSE;
8454 n = 0;
8455 }
8456 else
8457 {
8458 bfd_vma min_offset, max_offset;
8459 min_offset = max_offset = constraint->actions[0].offset;
8460
8461 for (i = 1; i < constraint->action_count; ++i)
8462 {
8463 proposed_action *action = &constraint->actions[i];
8464 bfd_vma offset = action->offset;
8465
8466 if (offset < min_offset)
8467 min_offset = offset;
8468 if (offset > max_offset)
8469 max_offset = offset;
8470 }
8471 reloc_range_list_update_range (relevant_relocs, min_offset,
8472 max_offset);
8473 n = relevant_relocs->n_list;
8474 entry = &relevant_relocs->list_root;
8475 }
8476 }
8477 else
8478 {
8479 relevant_relocs = NULL;
8480 }
8481
8482 for (i = 0; i < n; i++)
8483 {
8484 r_reloc r_rel;
8485 bfd_vma orig_self_offset, orig_target_offset;
8486 bfd_vma self_offset, target_offset;
8487 int r_type;
8488 reloc_howto_type *howto;
8489 int self_removed_bytes, target_removed_bytes;
8490
8491 if (relevant_relocs)
8492 {
8493 entry = entry->next;
8494 irel = entry->irel;
8495 }
8496 else
8497 {
8498 irel = internal_relocs + i;
8499 }
8500 r_type = ELF32_R_TYPE (irel->r_info);
8501
8502 howto = &elf_howto_table[r_type];
8503 /* We maintain the required invariant: PC-relative relocations
8504 that fit before linking must fit after linking. Thus we only
8505 need to deal with relocations to the same section that are
8506 PC-relative. */
8507 if (r_type == R_XTENSA_ASM_SIMPLIFY
8508 || r_type == R_XTENSA_32_PCREL
8509 || !howto->pc_relative)
8510 continue;
8511
8512 r_reloc_init (&r_rel, abfd, irel, contents,
8513 bfd_get_section_limit (abfd, sec));
8514
8515 if (r_reloc_get_section (&r_rel) != sec)
8516 continue;
8517
8518 orig_self_offset = irel->r_offset;
8519 orig_target_offset = r_rel.target_offset;
8520
8521 self_offset = orig_self_offset;
8522 target_offset = orig_target_offset;
8523
8524 if (relax_info)
8525 {
8526 self_offset =
8527 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8528 orig_self_offset);
8529 target_offset =
8530 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8531 orig_target_offset);
8532 }
8533
8534 self_removed_bytes = 0;
8535 target_removed_bytes = 0;
8536
8537 for (j = 0; j < constraint->action_count; ++j)
8538 {
8539 proposed_action *action = &constraint->actions[j];
8540 bfd_vma offset = action->offset;
8541 int removed_bytes = action->removed_bytes;
8542 if (offset < orig_self_offset
8543 || (offset == orig_self_offset && action->action == ta_fill
8544 && action->removed_bytes < 0))
8545 self_removed_bytes += removed_bytes;
8546 if (offset < orig_target_offset
8547 || (offset == orig_target_offset && action->action == ta_fill
8548 && action->removed_bytes < 0))
8549 target_removed_bytes += removed_bytes;
8550 }
8551 self_offset -= self_removed_bytes;
8552 target_offset -= target_removed_bytes;
8553
8554 /* Try to encode it. Get the operand and check. */
8555 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8556 {
8557 /* None of the current alternate relocs are PC-relative,
8558 and only PC-relative relocs matter here. */
8559 }
8560 else
8561 {
8562 xtensa_opcode opcode;
8563 int opnum;
8564
8565 if (relevant_relocs)
8566 {
8567 opcode = entry->opcode;
8568 opnum = entry->opnum;
8569 }
8570 else
8571 {
8572 if (reloc_opcodes)
8573 opcode = reloc_opcodes[relevant_relocs ?
8574 (unsigned)(entry - relevant_relocs->reloc) : i];
8575 else
8576 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8577 if (opcode == XTENSA_UNDEFINED)
8578 {
8579 ok = FALSE;
8580 break;
8581 }
8582
8583 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8584 if (opnum == XTENSA_UNDEFINED)
8585 {
8586 ok = FALSE;
8587 break;
8588 }
8589 }
8590
8591 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8592 {
8593 ok = FALSE;
8594 break;
8595 }
8596 }
8597 }
8598
8599 if (xmap)
8600 free_xlate_map (xmap);
8601
8602 return ok;
8603 }
8604
8605
8606 static bfd_boolean
8607 check_section_ebb_reduces (const ebb_constraint *constraint)
8608 {
8609 int removed = 0;
8610 unsigned i;
8611
8612 for (i = 0; i < constraint->action_count; i++)
8613 {
8614 const proposed_action *action = &constraint->actions[i];
8615 if (action->do_action)
8616 removed += action->removed_bytes;
8617 }
8618 if (removed < 0)
8619 return FALSE;
8620
8621 return TRUE;
8622 }
8623
8624
8625 void
8626 text_action_add_proposed (text_action_list *l,
8627 const ebb_constraint *ebb_table,
8628 asection *sec)
8629 {
8630 unsigned i;
8631
8632 for (i = 0; i < ebb_table->action_count; i++)
8633 {
8634 proposed_action *action = &ebb_table->actions[i];
8635
8636 if (!action->do_action)
8637 continue;
8638 switch (action->action)
8639 {
8640 case ta_remove_insn:
8641 case ta_remove_longcall:
8642 case ta_convert_longcall:
8643 case ta_narrow_insn:
8644 case ta_widen_insn:
8645 case ta_fill:
8646 case ta_remove_literal:
8647 text_action_add (l, action->action, sec, action->offset,
8648 action->removed_bytes);
8649 break;
8650 case ta_none:
8651 break;
8652 default:
8653 BFD_ASSERT (0);
8654 break;
8655 }
8656 }
8657 }
8658
8659
8660 int
8661 compute_fill_extra_space (property_table_entry *entry)
8662 {
8663 int fill_extra_space;
8664
8665 if (!entry)
8666 return 0;
8667
8668 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8669 return 0;
8670
8671 fill_extra_space = entry->size;
8672 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8673 {
8674 /* Fill bytes for alignment:
8675 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8676 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8677 int nsm = (1 << pow) - 1;
8678 bfd_vma addr = entry->address + entry->size;
8679 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8680 fill_extra_space += align_fill;
8681 }
8682 return fill_extra_space;
8683 }
8684
8685 \f
8686 /* First relaxation pass. */
8687
8688 /* If the section contains relaxable literals, check each literal to
8689 see if it has the same value as another literal that has already
8690 been seen, either in the current section or a previous one. If so,
8691 add an entry to the per-section list of removed literals. The
8692 actual changes are deferred until the next pass. */
8693
8694 static bfd_boolean
8695 compute_removed_literals (bfd *abfd,
8696 asection *sec,
8697 struct bfd_link_info *link_info,
8698 value_map_hash_table *values)
8699 {
8700 xtensa_relax_info *relax_info;
8701 bfd_byte *contents;
8702 Elf_Internal_Rela *internal_relocs;
8703 source_reloc *src_relocs, *rel;
8704 bfd_boolean ok = TRUE;
8705 property_table_entry *prop_table = NULL;
8706 int ptblsize;
8707 int i, prev_i;
8708 bfd_boolean last_loc_is_prev = FALSE;
8709 bfd_vma last_target_offset = 0;
8710 section_cache_t target_sec_cache;
8711 bfd_size_type sec_size;
8712
8713 init_section_cache (&target_sec_cache);
8714
8715 /* Do nothing if it is not a relaxable literal section. */
8716 relax_info = get_xtensa_relax_info (sec);
8717 BFD_ASSERT (relax_info);
8718 if (!relax_info->is_relaxable_literal_section)
8719 return ok;
8720
8721 internal_relocs = retrieve_internal_relocs (abfd, sec,
8722 link_info->keep_memory);
8723
8724 sec_size = bfd_get_section_limit (abfd, sec);
8725 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8726 if (contents == NULL && sec_size != 0)
8727 {
8728 ok = FALSE;
8729 goto error_return;
8730 }
8731
8732 /* Sort the source_relocs by target offset. */
8733 src_relocs = relax_info->src_relocs;
8734 qsort (src_relocs, relax_info->src_count,
8735 sizeof (source_reloc), source_reloc_compare);
8736 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8737 internal_reloc_compare);
8738
8739 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8740 XTENSA_PROP_SEC_NAME, FALSE);
8741 if (ptblsize < 0)
8742 {
8743 ok = FALSE;
8744 goto error_return;
8745 }
8746
8747 prev_i = -1;
8748 for (i = 0; i < relax_info->src_count; i++)
8749 {
8750 Elf_Internal_Rela *irel = NULL;
8751
8752 rel = &src_relocs[i];
8753 if (get_l32r_opcode () != rel->opcode)
8754 continue;
8755 irel = get_irel_at_offset (sec, internal_relocs,
8756 rel->r_rel.target_offset);
8757
8758 /* If the relocation on this is not a simple R_XTENSA_32 or
8759 R_XTENSA_PLT then do not consider it. This may happen when
8760 the difference of two symbols is used in a literal. */
8761 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8762 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8763 continue;
8764
8765 /* If the target_offset for this relocation is the same as the
8766 previous relocation, then we've already considered whether the
8767 literal can be coalesced. Skip to the next one.... */
8768 if (i != 0 && prev_i != -1
8769 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8770 continue;
8771 prev_i = i;
8772
8773 if (last_loc_is_prev &&
8774 last_target_offset + 4 != rel->r_rel.target_offset)
8775 last_loc_is_prev = FALSE;
8776
8777 /* Check if the relocation was from an L32R that is being removed
8778 because a CALLX was converted to a direct CALL, and check if
8779 there are no other relocations to the literal. */
8780 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8781 sec, prop_table, ptblsize))
8782 {
8783 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8784 irel, rel, prop_table, ptblsize))
8785 {
8786 ok = FALSE;
8787 goto error_return;
8788 }
8789 last_target_offset = rel->r_rel.target_offset;
8790 continue;
8791 }
8792
8793 if (!identify_literal_placement (abfd, sec, contents, link_info,
8794 values,
8795 &last_loc_is_prev, irel,
8796 relax_info->src_count - i, rel,
8797 prop_table, ptblsize,
8798 &target_sec_cache, rel->is_abs_literal))
8799 {
8800 ok = FALSE;
8801 goto error_return;
8802 }
8803 last_target_offset = rel->r_rel.target_offset;
8804 }
8805
8806 #if DEBUG
8807 print_removed_literals (stderr, &relax_info->removed_list);
8808 print_action_list (stderr, &relax_info->action_list);
8809 #endif /* DEBUG */
8810
8811 error_return:
8812 if (prop_table)
8813 free (prop_table);
8814 free_section_cache (&target_sec_cache);
8815
8816 release_contents (sec, contents);
8817 release_internal_relocs (sec, internal_relocs);
8818 return ok;
8819 }
8820
8821
8822 static Elf_Internal_Rela *
8823 get_irel_at_offset (asection *sec,
8824 Elf_Internal_Rela *internal_relocs,
8825 bfd_vma offset)
8826 {
8827 unsigned i;
8828 Elf_Internal_Rela *irel;
8829 unsigned r_type;
8830 Elf_Internal_Rela key;
8831
8832 if (!internal_relocs)
8833 return NULL;
8834
8835 key.r_offset = offset;
8836 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8837 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8838 if (!irel)
8839 return NULL;
8840
8841 /* bsearch does not guarantee which will be returned if there are
8842 multiple matches. We need the first that is not an alignment. */
8843 i = irel - internal_relocs;
8844 while (i > 0)
8845 {
8846 if (internal_relocs[i-1].r_offset != offset)
8847 break;
8848 i--;
8849 }
8850 for ( ; i < sec->reloc_count; i++)
8851 {
8852 irel = &internal_relocs[i];
8853 r_type = ELF32_R_TYPE (irel->r_info);
8854 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8855 return irel;
8856 }
8857
8858 return NULL;
8859 }
8860
8861
8862 bfd_boolean
8863 is_removable_literal (const source_reloc *rel,
8864 int i,
8865 const source_reloc *src_relocs,
8866 int src_count,
8867 asection *sec,
8868 property_table_entry *prop_table,
8869 int ptblsize)
8870 {
8871 const source_reloc *curr_rel;
8872 property_table_entry *entry;
8873
8874 if (!rel->is_null)
8875 return FALSE;
8876
8877 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8878 sec->vma + rel->r_rel.target_offset);
8879 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8880 return FALSE;
8881
8882 for (++i; i < src_count; ++i)
8883 {
8884 curr_rel = &src_relocs[i];
8885 /* If all others have the same target offset.... */
8886 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8887 return TRUE;
8888
8889 if (!curr_rel->is_null
8890 && !xtensa_is_property_section (curr_rel->source_sec)
8891 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8892 return FALSE;
8893 }
8894 return TRUE;
8895 }
8896
8897
8898 bfd_boolean
8899 remove_dead_literal (bfd *abfd,
8900 asection *sec,
8901 struct bfd_link_info *link_info,
8902 Elf_Internal_Rela *internal_relocs,
8903 Elf_Internal_Rela *irel,
8904 source_reloc *rel,
8905 property_table_entry *prop_table,
8906 int ptblsize)
8907 {
8908 property_table_entry *entry;
8909 xtensa_relax_info *relax_info;
8910
8911 relax_info = get_xtensa_relax_info (sec);
8912 if (!relax_info)
8913 return FALSE;
8914
8915 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8916 sec->vma + rel->r_rel.target_offset);
8917
8918 /* Mark the unused literal so that it will be removed. */
8919 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8920
8921 text_action_add (&relax_info->action_list,
8922 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8923
8924 /* If the section is 4-byte aligned, do not add fill. */
8925 if (sec->alignment_power > 2)
8926 {
8927 int fill_extra_space;
8928 bfd_vma entry_sec_offset;
8929 text_action *fa;
8930 property_table_entry *the_add_entry;
8931 int removed_diff;
8932
8933 if (entry)
8934 entry_sec_offset = entry->address - sec->vma + entry->size;
8935 else
8936 entry_sec_offset = rel->r_rel.target_offset + 4;
8937
8938 /* If the literal range is at the end of the section,
8939 do not add fill. */
8940 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8941 entry_sec_offset);
8942 fill_extra_space = compute_fill_extra_space (the_add_entry);
8943
8944 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8945 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8946 -4, fill_extra_space);
8947 if (fa)
8948 adjust_fill_action (fa, removed_diff);
8949 else
8950 text_action_add (&relax_info->action_list,
8951 ta_fill, sec, entry_sec_offset, removed_diff);
8952 }
8953
8954 /* Zero out the relocation on this literal location. */
8955 if (irel)
8956 {
8957 if (elf_hash_table (link_info)->dynamic_sections_created)
8958 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8959
8960 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8961 pin_internal_relocs (sec, internal_relocs);
8962 }
8963
8964 /* Do not modify "last_loc_is_prev". */
8965 return TRUE;
8966 }
8967
8968
8969 bfd_boolean
8970 identify_literal_placement (bfd *abfd,
8971 asection *sec,
8972 bfd_byte *contents,
8973 struct bfd_link_info *link_info,
8974 value_map_hash_table *values,
8975 bfd_boolean *last_loc_is_prev_p,
8976 Elf_Internal_Rela *irel,
8977 int remaining_src_rels,
8978 source_reloc *rel,
8979 property_table_entry *prop_table,
8980 int ptblsize,
8981 section_cache_t *target_sec_cache,
8982 bfd_boolean is_abs_literal)
8983 {
8984 literal_value val;
8985 value_map *val_map;
8986 xtensa_relax_info *relax_info;
8987 bfd_boolean literal_placed = FALSE;
8988 r_reloc r_rel;
8989 unsigned long value;
8990 bfd_boolean final_static_link;
8991 bfd_size_type sec_size;
8992
8993 relax_info = get_xtensa_relax_info (sec);
8994 if (!relax_info)
8995 return FALSE;
8996
8997 sec_size = bfd_get_section_limit (abfd, sec);
8998
8999 final_static_link =
9000 (!bfd_link_relocatable (link_info)
9001 && !elf_hash_table (link_info)->dynamic_sections_created);
9002
9003 /* The placement algorithm first checks to see if the literal is
9004 already in the value map. If so and the value map is reachable
9005 from all uses, then the literal is moved to that location. If
9006 not, then we identify the last location where a fresh literal was
9007 placed. If the literal can be safely moved there, then we do so.
9008 If not, then we assume that the literal is not to move and leave
9009 the literal where it is, marking it as the last literal
9010 location. */
9011
9012 /* Find the literal value. */
9013 value = 0;
9014 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9015 if (!irel)
9016 {
9017 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
9018 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
9019 }
9020 init_literal_value (&val, &r_rel, value, is_abs_literal);
9021
9022 /* Check if we've seen another literal with the same value that
9023 is in the same output section. */
9024 val_map = value_map_get_cached_value (values, &val, final_static_link);
9025
9026 if (val_map
9027 && (r_reloc_get_section (&val_map->loc)->output_section
9028 == sec->output_section)
9029 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
9030 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
9031 {
9032 /* No change to last_loc_is_prev. */
9033 literal_placed = TRUE;
9034 }
9035
9036 /* For relocatable links, do not try to move literals. To do it
9037 correctly might increase the number of relocations in an input
9038 section making the default relocatable linking fail. */
9039 if (!bfd_link_relocatable (link_info) && !literal_placed
9040 && values->has_last_loc && !(*last_loc_is_prev_p))
9041 {
9042 asection *target_sec = r_reloc_get_section (&values->last_loc);
9043 if (target_sec && target_sec->output_section == sec->output_section)
9044 {
9045 /* Increment the virtual offset. */
9046 r_reloc try_loc = values->last_loc;
9047 try_loc.virtual_offset += 4;
9048
9049 /* There is a last loc that was in the same output section. */
9050 if (relocations_reach (rel, remaining_src_rels, &try_loc)
9051 && move_shared_literal (sec, link_info, rel,
9052 prop_table, ptblsize,
9053 &try_loc, &val, target_sec_cache))
9054 {
9055 values->last_loc.virtual_offset += 4;
9056 literal_placed = TRUE;
9057 if (!val_map)
9058 val_map = add_value_map (values, &val, &try_loc,
9059 final_static_link);
9060 else
9061 val_map->loc = try_loc;
9062 }
9063 }
9064 }
9065
9066 if (!literal_placed)
9067 {
9068 /* Nothing worked, leave the literal alone but update the last loc. */
9069 values->has_last_loc = TRUE;
9070 values->last_loc = rel->r_rel;
9071 if (!val_map)
9072 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
9073 else
9074 val_map->loc = rel->r_rel;
9075 *last_loc_is_prev_p = TRUE;
9076 }
9077
9078 return TRUE;
9079 }
9080
9081
9082 /* Check if the original relocations (presumably on L32R instructions)
9083 identified by reloc[0..N] can be changed to reference the literal
9084 identified by r_rel. If r_rel is out of range for any of the
9085 original relocations, then we don't want to coalesce the original
9086 literal with the one at r_rel. We only check reloc[0..N], where the
9087 offsets are all the same as for reloc[0] (i.e., they're all
9088 referencing the same literal) and where N is also bounded by the
9089 number of remaining entries in the "reloc" array. The "reloc" array
9090 is sorted by target offset so we know all the entries for the same
9091 literal will be contiguous. */
9092
9093 static bfd_boolean
9094 relocations_reach (source_reloc *reloc,
9095 int remaining_relocs,
9096 const r_reloc *r_rel)
9097 {
9098 bfd_vma from_offset, source_address, dest_address;
9099 asection *sec;
9100 int i;
9101
9102 if (!r_reloc_is_defined (r_rel))
9103 return FALSE;
9104
9105 sec = r_reloc_get_section (r_rel);
9106 from_offset = reloc[0].r_rel.target_offset;
9107
9108 for (i = 0; i < remaining_relocs; i++)
9109 {
9110 if (reloc[i].r_rel.target_offset != from_offset)
9111 break;
9112
9113 /* Ignore relocations that have been removed. */
9114 if (reloc[i].is_null)
9115 continue;
9116
9117 /* The original and new output section for these must be the same
9118 in order to coalesce. */
9119 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9120 != sec->output_section)
9121 return FALSE;
9122
9123 /* Absolute literals in the same output section can always be
9124 combined. */
9125 if (reloc[i].is_abs_literal)
9126 continue;
9127
9128 /* A literal with no PC-relative relocations can be moved anywhere. */
9129 if (reloc[i].opnd != -1)
9130 {
9131 /* Otherwise, check to see that it fits. */
9132 source_address = (reloc[i].source_sec->output_section->vma
9133 + reloc[i].source_sec->output_offset
9134 + reloc[i].r_rel.rela.r_offset);
9135 dest_address = (sec->output_section->vma
9136 + sec->output_offset
9137 + r_rel->target_offset);
9138
9139 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9140 source_address, dest_address))
9141 return FALSE;
9142 }
9143 }
9144
9145 return TRUE;
9146 }
9147
9148
9149 /* Move a literal to another literal location because it is
9150 the same as the other literal value. */
9151
9152 static bfd_boolean
9153 coalesce_shared_literal (asection *sec,
9154 source_reloc *rel,
9155 property_table_entry *prop_table,
9156 int ptblsize,
9157 value_map *val_map)
9158 {
9159 property_table_entry *entry;
9160 text_action *fa;
9161 property_table_entry *the_add_entry;
9162 int removed_diff;
9163 xtensa_relax_info *relax_info;
9164
9165 relax_info = get_xtensa_relax_info (sec);
9166 if (!relax_info)
9167 return FALSE;
9168
9169 entry = elf_xtensa_find_property_entry
9170 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9171 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9172 return TRUE;
9173
9174 /* Mark that the literal will be coalesced. */
9175 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9176
9177 text_action_add (&relax_info->action_list,
9178 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9179
9180 /* If the section is 4-byte aligned, do not add fill. */
9181 if (sec->alignment_power > 2)
9182 {
9183 int fill_extra_space;
9184 bfd_vma entry_sec_offset;
9185
9186 if (entry)
9187 entry_sec_offset = entry->address - sec->vma + entry->size;
9188 else
9189 entry_sec_offset = rel->r_rel.target_offset + 4;
9190
9191 /* If the literal range is at the end of the section,
9192 do not add fill. */
9193 fill_extra_space = 0;
9194 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9195 entry_sec_offset);
9196 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9197 fill_extra_space = the_add_entry->size;
9198
9199 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9200 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9201 -4, fill_extra_space);
9202 if (fa)
9203 adjust_fill_action (fa, removed_diff);
9204 else
9205 text_action_add (&relax_info->action_list,
9206 ta_fill, sec, entry_sec_offset, removed_diff);
9207 }
9208
9209 return TRUE;
9210 }
9211
9212
9213 /* Move a literal to another location. This may actually increase the
9214 total amount of space used because of alignments so we need to do
9215 this carefully. Also, it may make a branch go out of range. */
9216
9217 static bfd_boolean
9218 move_shared_literal (asection *sec,
9219 struct bfd_link_info *link_info,
9220 source_reloc *rel,
9221 property_table_entry *prop_table,
9222 int ptblsize,
9223 const r_reloc *target_loc,
9224 const literal_value *lit_value,
9225 section_cache_t *target_sec_cache)
9226 {
9227 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9228 text_action *fa, *target_fa;
9229 int removed_diff;
9230 xtensa_relax_info *relax_info, *target_relax_info;
9231 asection *target_sec;
9232 ebb_t *ebb;
9233 ebb_constraint ebb_table;
9234 bfd_boolean relocs_fit;
9235
9236 /* If this routine always returns FALSE, the literals that cannot be
9237 coalesced will not be moved. */
9238 if (elf32xtensa_no_literal_movement)
9239 return FALSE;
9240
9241 relax_info = get_xtensa_relax_info (sec);
9242 if (!relax_info)
9243 return FALSE;
9244
9245 target_sec = r_reloc_get_section (target_loc);
9246 target_relax_info = get_xtensa_relax_info (target_sec);
9247
9248 /* Literals to undefined sections may not be moved because they
9249 must report an error. */
9250 if (bfd_is_und_section (target_sec))
9251 return FALSE;
9252
9253 src_entry = elf_xtensa_find_property_entry
9254 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9255
9256 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9257 return FALSE;
9258
9259 target_entry = elf_xtensa_find_property_entry
9260 (target_sec_cache->ptbl, target_sec_cache->pte_count,
9261 target_sec->vma + target_loc->target_offset);
9262
9263 if (!target_entry)
9264 return FALSE;
9265
9266 /* Make sure that we have not broken any branches. */
9267 relocs_fit = FALSE;
9268
9269 init_ebb_constraint (&ebb_table);
9270 ebb = &ebb_table.ebb;
9271 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9272 target_sec_cache->content_length,
9273 target_sec_cache->ptbl, target_sec_cache->pte_count,
9274 target_sec_cache->relocs, target_sec_cache->reloc_count);
9275
9276 /* Propose to add 4 bytes + worst-case alignment size increase to
9277 destination. */
9278 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9279 ta_fill, target_loc->target_offset,
9280 -4 - (1 << target_sec->alignment_power), TRUE);
9281
9282 /* Check all of the PC-relative relocations to make sure they still fit. */
9283 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9284 target_sec_cache->contents,
9285 target_sec_cache->relocs, NULL,
9286 &ebb_table, NULL);
9287
9288 if (!relocs_fit)
9289 return FALSE;
9290
9291 text_action_add_literal (&target_relax_info->action_list,
9292 ta_add_literal, target_loc, lit_value, -4);
9293
9294 if (target_sec->alignment_power > 2 && target_entry != src_entry)
9295 {
9296 /* May need to add or remove some fill to maintain alignment. */
9297 int fill_extra_space;
9298 bfd_vma entry_sec_offset;
9299
9300 entry_sec_offset =
9301 target_entry->address - target_sec->vma + target_entry->size;
9302
9303 /* If the literal range is at the end of the section,
9304 do not add fill. */
9305 fill_extra_space = 0;
9306 the_add_entry =
9307 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9308 target_sec_cache->pte_count,
9309 entry_sec_offset);
9310 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9311 fill_extra_space = the_add_entry->size;
9312
9313 target_fa = find_fill_action (&target_relax_info->action_list,
9314 target_sec, entry_sec_offset);
9315 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9316 entry_sec_offset, 4,
9317 fill_extra_space);
9318 if (target_fa)
9319 adjust_fill_action (target_fa, removed_diff);
9320 else
9321 text_action_add (&target_relax_info->action_list,
9322 ta_fill, target_sec, entry_sec_offset, removed_diff);
9323 }
9324
9325 /* Mark that the literal will be moved to the new location. */
9326 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9327
9328 /* Remove the literal. */
9329 text_action_add (&relax_info->action_list,
9330 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9331
9332 /* If the section is 4-byte aligned, do not add fill. */
9333 if (sec->alignment_power > 2 && target_entry != src_entry)
9334 {
9335 int fill_extra_space;
9336 bfd_vma entry_sec_offset;
9337
9338 if (src_entry)
9339 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9340 else
9341 entry_sec_offset = rel->r_rel.target_offset+4;
9342
9343 /* If the literal range is at the end of the section,
9344 do not add fill. */
9345 fill_extra_space = 0;
9346 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9347 entry_sec_offset);
9348 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9349 fill_extra_space = the_add_entry->size;
9350
9351 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9352 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9353 -4, fill_extra_space);
9354 if (fa)
9355 adjust_fill_action (fa, removed_diff);
9356 else
9357 text_action_add (&relax_info->action_list,
9358 ta_fill, sec, entry_sec_offset, removed_diff);
9359 }
9360
9361 return TRUE;
9362 }
9363
9364 \f
9365 /* Second relaxation pass. */
9366
9367 static int
9368 action_remove_bytes_fn (splay_tree_node node, void *p)
9369 {
9370 bfd_size_type *final_size = p;
9371 text_action *action = (text_action *)node->value;
9372
9373 *final_size -= action->removed_bytes;
9374 return 0;
9375 }
9376
9377 /* Modify all of the relocations to point to the right spot, and if this
9378 is a relaxable section, delete the unwanted literals and fix the
9379 section size. */
9380
9381 bfd_boolean
9382 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9383 {
9384 Elf_Internal_Rela *internal_relocs;
9385 xtensa_relax_info *relax_info;
9386 bfd_byte *contents;
9387 bfd_boolean ok = TRUE;
9388 unsigned i;
9389 bfd_boolean rv = FALSE;
9390 bfd_boolean virtual_action;
9391 bfd_size_type sec_size;
9392
9393 sec_size = bfd_get_section_limit (abfd, sec);
9394 relax_info = get_xtensa_relax_info (sec);
9395 BFD_ASSERT (relax_info);
9396
9397 /* First translate any of the fixes that have been added already. */
9398 translate_section_fixes (sec);
9399
9400 /* Handle property sections (e.g., literal tables) specially. */
9401 if (xtensa_is_property_section (sec))
9402 {
9403 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9404 return relax_property_section (abfd, sec, link_info);
9405 }
9406
9407 internal_relocs = retrieve_internal_relocs (abfd, sec,
9408 link_info->keep_memory);
9409 if (!internal_relocs && !action_list_count (&relax_info->action_list))
9410 return TRUE;
9411
9412 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9413 if (contents == NULL && sec_size != 0)
9414 {
9415 ok = FALSE;
9416 goto error_return;
9417 }
9418
9419 if (internal_relocs)
9420 {
9421 for (i = 0; i < sec->reloc_count; i++)
9422 {
9423 Elf_Internal_Rela *irel;
9424 xtensa_relax_info *target_relax_info;
9425 bfd_vma source_offset, old_source_offset;
9426 r_reloc r_rel;
9427 unsigned r_type;
9428 asection *target_sec;
9429
9430 /* Locally change the source address.
9431 Translate the target to the new target address.
9432 If it points to this section and has been removed,
9433 NULLify it.
9434 Write it back. */
9435
9436 irel = &internal_relocs[i];
9437 source_offset = irel->r_offset;
9438 old_source_offset = source_offset;
9439
9440 r_type = ELF32_R_TYPE (irel->r_info);
9441 r_reloc_init (&r_rel, abfd, irel, contents,
9442 bfd_get_section_limit (abfd, sec));
9443
9444 /* If this section could have changed then we may need to
9445 change the relocation's offset. */
9446
9447 if (relax_info->is_relaxable_literal_section
9448 || relax_info->is_relaxable_asm_section)
9449 {
9450 pin_internal_relocs (sec, internal_relocs);
9451
9452 if (r_type != R_XTENSA_NONE
9453 && find_removed_literal (&relax_info->removed_list,
9454 irel->r_offset))
9455 {
9456 /* Remove this relocation. */
9457 if (elf_hash_table (link_info)->dynamic_sections_created)
9458 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9459 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9460 irel->r_offset = offset_with_removed_text_map
9461 (&relax_info->action_list, irel->r_offset);
9462 continue;
9463 }
9464
9465 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9466 {
9467 text_action *action =
9468 find_insn_action (&relax_info->action_list,
9469 irel->r_offset);
9470 if (action && (action->action == ta_convert_longcall
9471 || action->action == ta_remove_longcall))
9472 {
9473 bfd_reloc_status_type retval;
9474 char *error_message = NULL;
9475
9476 retval = contract_asm_expansion (contents, sec_size,
9477 irel, &error_message);
9478 if (retval != bfd_reloc_ok)
9479 {
9480 (*link_info->callbacks->reloc_dangerous)
9481 (link_info, error_message, abfd, sec,
9482 irel->r_offset);
9483 goto error_return;
9484 }
9485 /* Update the action so that the code that moves
9486 the contents will do the right thing. */
9487 /* ta_remove_longcall and ta_remove_insn actions are
9488 grouped together in the tree as well as
9489 ta_convert_longcall and ta_none, so that changes below
9490 can be done w/o removing and reinserting action into
9491 the tree. */
9492
9493 if (action->action == ta_remove_longcall)
9494 action->action = ta_remove_insn;
9495 else
9496 action->action = ta_none;
9497 /* Refresh the info in the r_rel. */
9498 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9499 r_type = ELF32_R_TYPE (irel->r_info);
9500 }
9501 }
9502
9503 source_offset = offset_with_removed_text_map
9504 (&relax_info->action_list, irel->r_offset);
9505 irel->r_offset = source_offset;
9506 }
9507
9508 /* If the target section could have changed then
9509 we may need to change the relocation's target offset. */
9510
9511 target_sec = r_reloc_get_section (&r_rel);
9512
9513 /* For a reference to a discarded section from a DWARF section,
9514 i.e., where action_discarded is PRETEND, the symbol will
9515 eventually be modified to refer to the kept section (at least if
9516 the kept and discarded sections are the same size). Anticipate
9517 that here and adjust things accordingly. */
9518 if (! elf_xtensa_ignore_discarded_relocs (sec)
9519 && elf_xtensa_action_discarded (sec) == PRETEND
9520 && sec->sec_info_type != SEC_INFO_TYPE_STABS
9521 && target_sec != NULL
9522 && discarded_section (target_sec))
9523 {
9524 /* It would be natural to call _bfd_elf_check_kept_section
9525 here, but it's not exported from elflink.c. It's also a
9526 fairly expensive check. Adjusting the relocations to the
9527 discarded section is fairly harmless; it will only adjust
9528 some addends and difference values. If it turns out that
9529 _bfd_elf_check_kept_section fails later, it won't matter,
9530 so just compare the section names to find the right group
9531 member. */
9532 asection *kept = target_sec->kept_section;
9533 if (kept != NULL)
9534 {
9535 if ((kept->flags & SEC_GROUP) != 0)
9536 {
9537 asection *first = elf_next_in_group (kept);
9538 asection *s = first;
9539
9540 kept = NULL;
9541 while (s != NULL)
9542 {
9543 if (strcmp (s->name, target_sec->name) == 0)
9544 {
9545 kept = s;
9546 break;
9547 }
9548 s = elf_next_in_group (s);
9549 if (s == first)
9550 break;
9551 }
9552 }
9553 }
9554 if (kept != NULL
9555 && ((target_sec->rawsize != 0
9556 ? target_sec->rawsize : target_sec->size)
9557 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9558 target_sec = kept;
9559 }
9560
9561 target_relax_info = get_xtensa_relax_info (target_sec);
9562 if (target_relax_info
9563 && (target_relax_info->is_relaxable_literal_section
9564 || target_relax_info->is_relaxable_asm_section))
9565 {
9566 r_reloc new_reloc;
9567 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9568
9569 if (r_type == R_XTENSA_DIFF8
9570 || r_type == R_XTENSA_DIFF16
9571 || r_type == R_XTENSA_DIFF32)
9572 {
9573 bfd_signed_vma diff_value = 0;
9574 bfd_vma new_end_offset, diff_mask = 0;
9575
9576 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9577 {
9578 (*link_info->callbacks->reloc_dangerous)
9579 (link_info, _("invalid relocation address"),
9580 abfd, sec, old_source_offset);
9581 goto error_return;
9582 }
9583
9584 switch (r_type)
9585 {
9586 case R_XTENSA_DIFF8:
9587 diff_value =
9588 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9589 break;
9590 case R_XTENSA_DIFF16:
9591 diff_value =
9592 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9593 break;
9594 case R_XTENSA_DIFF32:
9595 diff_value =
9596 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9597 break;
9598 }
9599
9600 new_end_offset = offset_with_removed_text_map
9601 (&target_relax_info->action_list,
9602 r_rel.target_offset + diff_value);
9603 diff_value = new_end_offset - new_reloc.target_offset;
9604
9605 switch (r_type)
9606 {
9607 case R_XTENSA_DIFF8:
9608 diff_mask = 0x7f;
9609 bfd_put_signed_8 (abfd, diff_value,
9610 &contents[old_source_offset]);
9611 break;
9612 case R_XTENSA_DIFF16:
9613 diff_mask = 0x7fff;
9614 bfd_put_signed_16 (abfd, diff_value,
9615 &contents[old_source_offset]);
9616 break;
9617 case R_XTENSA_DIFF32:
9618 diff_mask = 0x7fffffff;
9619 bfd_put_signed_32 (abfd, diff_value,
9620 &contents[old_source_offset]);
9621 break;
9622 }
9623
9624 /* Check for overflow. Sign bits must be all zeroes or all ones */
9625 if ((diff_value & ~diff_mask) != 0 &&
9626 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
9627 {
9628 (*link_info->callbacks->reloc_dangerous)
9629 (link_info, _("overflow after relaxation"),
9630 abfd, sec, old_source_offset);
9631 goto error_return;
9632 }
9633
9634 pin_contents (sec, contents);
9635 }
9636
9637 /* If the relocation still references a section in the same
9638 input file, modify the relocation directly instead of
9639 adding a "fix" record. */
9640 if (target_sec->owner == abfd)
9641 {
9642 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9643 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9644 irel->r_addend = new_reloc.rela.r_addend;
9645 pin_internal_relocs (sec, internal_relocs);
9646 }
9647 else
9648 {
9649 bfd_vma addend_displacement;
9650 reloc_bfd_fix *fix;
9651
9652 addend_displacement =
9653 new_reloc.target_offset + new_reloc.virtual_offset;
9654 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9655 target_sec,
9656 addend_displacement, TRUE);
9657 add_fix (sec, fix);
9658 }
9659 }
9660 }
9661 }
9662
9663 if ((relax_info->is_relaxable_literal_section
9664 || relax_info->is_relaxable_asm_section)
9665 && action_list_count (&relax_info->action_list))
9666 {
9667 /* Walk through the planned actions and build up a table
9668 of move, copy and fill records. Use the move, copy and
9669 fill records to perform the actions once. */
9670
9671 bfd_size_type final_size, copy_size, orig_insn_size;
9672 bfd_byte *scratch = NULL;
9673 bfd_byte *dup_contents = NULL;
9674 bfd_size_type orig_size = sec->size;
9675 bfd_vma orig_dot = 0;
9676 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9677 orig dot in physical memory. */
9678 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9679 bfd_vma dup_dot = 0;
9680
9681 text_action *action;
9682
9683 final_size = sec->size;
9684
9685 splay_tree_foreach (relax_info->action_list.tree,
9686 action_remove_bytes_fn, &final_size);
9687 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9688 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9689
9690 /* The dot is the current fill location. */
9691 #if DEBUG
9692 print_action_list (stderr, &relax_info->action_list);
9693 #endif
9694
9695 for (action = action_first (&relax_info->action_list); action;
9696 action = action_next (&relax_info->action_list, action))
9697 {
9698 virtual_action = FALSE;
9699 if (action->offset > orig_dot)
9700 {
9701 orig_dot += orig_dot_copied;
9702 orig_dot_copied = 0;
9703 orig_dot_vo = 0;
9704 /* Out of the virtual world. */
9705 }
9706
9707 if (action->offset > orig_dot)
9708 {
9709 copy_size = action->offset - orig_dot;
9710 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9711 orig_dot += copy_size;
9712 dup_dot += copy_size;
9713 BFD_ASSERT (action->offset == orig_dot);
9714 }
9715 else if (action->offset < orig_dot)
9716 {
9717 if (action->action == ta_fill
9718 && action->offset - action->removed_bytes == orig_dot)
9719 {
9720 /* This is OK because the fill only effects the dup_dot. */
9721 }
9722 else if (action->action == ta_add_literal)
9723 {
9724 /* TBD. Might need to handle this. */
9725 }
9726 }
9727 if (action->offset == orig_dot)
9728 {
9729 if (action->virtual_offset > orig_dot_vo)
9730 {
9731 if (orig_dot_vo == 0)
9732 {
9733 /* Need to copy virtual_offset bytes. Probably four. */
9734 copy_size = action->virtual_offset - orig_dot_vo;
9735 memmove (&dup_contents[dup_dot],
9736 &contents[orig_dot], copy_size);
9737 orig_dot_copied = copy_size;
9738 dup_dot += copy_size;
9739 }
9740 virtual_action = TRUE;
9741 }
9742 else
9743 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9744 }
9745 switch (action->action)
9746 {
9747 case ta_remove_literal:
9748 case ta_remove_insn:
9749 BFD_ASSERT (action->removed_bytes >= 0);
9750 orig_dot += action->removed_bytes;
9751 break;
9752
9753 case ta_narrow_insn:
9754 orig_insn_size = 3;
9755 copy_size = 2;
9756 memmove (scratch, &contents[orig_dot], orig_insn_size);
9757 BFD_ASSERT (action->removed_bytes == 1);
9758 rv = narrow_instruction (scratch, final_size, 0);
9759 BFD_ASSERT (rv);
9760 memmove (&dup_contents[dup_dot], scratch, copy_size);
9761 orig_dot += orig_insn_size;
9762 dup_dot += copy_size;
9763 break;
9764
9765 case ta_fill:
9766 if (action->removed_bytes >= 0)
9767 orig_dot += action->removed_bytes;
9768 else
9769 {
9770 /* Already zeroed in dup_contents. Just bump the
9771 counters. */
9772 dup_dot += (-action->removed_bytes);
9773 }
9774 break;
9775
9776 case ta_none:
9777 BFD_ASSERT (action->removed_bytes == 0);
9778 break;
9779
9780 case ta_convert_longcall:
9781 case ta_remove_longcall:
9782 /* These will be removed or converted before we get here. */
9783 BFD_ASSERT (0);
9784 break;
9785
9786 case ta_widen_insn:
9787 orig_insn_size = 2;
9788 copy_size = 3;
9789 memmove (scratch, &contents[orig_dot], orig_insn_size);
9790 BFD_ASSERT (action->removed_bytes == -1);
9791 rv = widen_instruction (scratch, final_size, 0);
9792 BFD_ASSERT (rv);
9793 memmove (&dup_contents[dup_dot], scratch, copy_size);
9794 orig_dot += orig_insn_size;
9795 dup_dot += copy_size;
9796 break;
9797
9798 case ta_add_literal:
9799 orig_insn_size = 0;
9800 copy_size = 4;
9801 BFD_ASSERT (action->removed_bytes == -4);
9802 /* TBD -- place the literal value here and insert
9803 into the table. */
9804 memset (&dup_contents[dup_dot], 0, 4);
9805 pin_internal_relocs (sec, internal_relocs);
9806 pin_contents (sec, contents);
9807
9808 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9809 relax_info, &internal_relocs, &action->value))
9810 goto error_return;
9811
9812 if (virtual_action)
9813 orig_dot_vo += copy_size;
9814
9815 orig_dot += orig_insn_size;
9816 dup_dot += copy_size;
9817 break;
9818
9819 default:
9820 /* Not implemented yet. */
9821 BFD_ASSERT (0);
9822 break;
9823 }
9824
9825 BFD_ASSERT (dup_dot <= final_size);
9826 BFD_ASSERT (orig_dot <= orig_size);
9827 }
9828
9829 orig_dot += orig_dot_copied;
9830 orig_dot_copied = 0;
9831
9832 if (orig_dot != orig_size)
9833 {
9834 copy_size = orig_size - orig_dot;
9835 BFD_ASSERT (orig_size > orig_dot);
9836 BFD_ASSERT (dup_dot + copy_size == final_size);
9837 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9838 orig_dot += copy_size;
9839 dup_dot += copy_size;
9840 }
9841 BFD_ASSERT (orig_size == orig_dot);
9842 BFD_ASSERT (final_size == dup_dot);
9843
9844 /* Move the dup_contents back. */
9845 if (final_size > orig_size)
9846 {
9847 /* Contents need to be reallocated. Swap the dup_contents into
9848 contents. */
9849 sec->contents = dup_contents;
9850 free (contents);
9851 contents = dup_contents;
9852 pin_contents (sec, contents);
9853 }
9854 else
9855 {
9856 BFD_ASSERT (final_size <= orig_size);
9857 memset (contents, 0, orig_size);
9858 memcpy (contents, dup_contents, final_size);
9859 free (dup_contents);
9860 }
9861 free (scratch);
9862 pin_contents (sec, contents);
9863
9864 if (sec->rawsize == 0)
9865 sec->rawsize = sec->size;
9866 sec->size = final_size;
9867 }
9868
9869 error_return:
9870 release_internal_relocs (sec, internal_relocs);
9871 release_contents (sec, contents);
9872 return ok;
9873 }
9874
9875
9876 static bfd_boolean
9877 translate_section_fixes (asection *sec)
9878 {
9879 xtensa_relax_info *relax_info;
9880 reloc_bfd_fix *r;
9881
9882 relax_info = get_xtensa_relax_info (sec);
9883 if (!relax_info)
9884 return TRUE;
9885
9886 for (r = relax_info->fix_list; r != NULL; r = r->next)
9887 if (!translate_reloc_bfd_fix (r))
9888 return FALSE;
9889
9890 return TRUE;
9891 }
9892
9893
9894 /* Translate a fix given the mapping in the relax info for the target
9895 section. If it has already been translated, no work is required. */
9896
9897 static bfd_boolean
9898 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9899 {
9900 reloc_bfd_fix new_fix;
9901 asection *sec;
9902 xtensa_relax_info *relax_info;
9903 removed_literal *removed;
9904 bfd_vma new_offset, target_offset;
9905
9906 if (fix->translated)
9907 return TRUE;
9908
9909 sec = fix->target_sec;
9910 target_offset = fix->target_offset;
9911
9912 relax_info = get_xtensa_relax_info (sec);
9913 if (!relax_info)
9914 {
9915 fix->translated = TRUE;
9916 return TRUE;
9917 }
9918
9919 new_fix = *fix;
9920
9921 /* The fix does not need to be translated if the section cannot change. */
9922 if (!relax_info->is_relaxable_literal_section
9923 && !relax_info->is_relaxable_asm_section)
9924 {
9925 fix->translated = TRUE;
9926 return TRUE;
9927 }
9928
9929 /* If the literal has been moved and this relocation was on an
9930 opcode, then the relocation should move to the new literal
9931 location. Otherwise, the relocation should move within the
9932 section. */
9933
9934 removed = FALSE;
9935 if (is_operand_relocation (fix->src_type))
9936 {
9937 /* Check if the original relocation is against a literal being
9938 removed. */
9939 removed = find_removed_literal (&relax_info->removed_list,
9940 target_offset);
9941 }
9942
9943 if (removed)
9944 {
9945 asection *new_sec;
9946
9947 /* The fact that there is still a relocation to this literal indicates
9948 that the literal is being coalesced, not simply removed. */
9949 BFD_ASSERT (removed->to.abfd != NULL);
9950
9951 /* This was moved to some other address (possibly another section). */
9952 new_sec = r_reloc_get_section (&removed->to);
9953 if (new_sec != sec)
9954 {
9955 sec = new_sec;
9956 relax_info = get_xtensa_relax_info (sec);
9957 if (!relax_info ||
9958 (!relax_info->is_relaxable_literal_section
9959 && !relax_info->is_relaxable_asm_section))
9960 {
9961 target_offset = removed->to.target_offset;
9962 new_fix.target_sec = new_sec;
9963 new_fix.target_offset = target_offset;
9964 new_fix.translated = TRUE;
9965 *fix = new_fix;
9966 return TRUE;
9967 }
9968 }
9969 target_offset = removed->to.target_offset;
9970 new_fix.target_sec = new_sec;
9971 }
9972
9973 /* The target address may have been moved within its section. */
9974 new_offset = offset_with_removed_text (&relax_info->action_list,
9975 target_offset);
9976
9977 new_fix.target_offset = new_offset;
9978 new_fix.target_offset = new_offset;
9979 new_fix.translated = TRUE;
9980 *fix = new_fix;
9981 return TRUE;
9982 }
9983
9984
9985 /* Fix up a relocation to take account of removed literals. */
9986
9987 static asection *
9988 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9989 {
9990 xtensa_relax_info *relax_info;
9991 removed_literal *removed;
9992 bfd_vma target_offset, base_offset;
9993
9994 *new_rel = *orig_rel;
9995
9996 if (!r_reloc_is_defined (orig_rel))
9997 return sec ;
9998
9999 relax_info = get_xtensa_relax_info (sec);
10000 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
10001 || relax_info->is_relaxable_asm_section));
10002
10003 target_offset = orig_rel->target_offset;
10004
10005 removed = FALSE;
10006 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
10007 {
10008 /* Check if the original relocation is against a literal being
10009 removed. */
10010 removed = find_removed_literal (&relax_info->removed_list,
10011 target_offset);
10012 }
10013 if (removed && removed->to.abfd)
10014 {
10015 asection *new_sec;
10016
10017 /* The fact that there is still a relocation to this literal indicates
10018 that the literal is being coalesced, not simply removed. */
10019 BFD_ASSERT (removed->to.abfd != NULL);
10020
10021 /* This was moved to some other address
10022 (possibly in another section). */
10023 *new_rel = removed->to;
10024 new_sec = r_reloc_get_section (new_rel);
10025 if (new_sec != sec)
10026 {
10027 sec = new_sec;
10028 relax_info = get_xtensa_relax_info (sec);
10029 if (!relax_info
10030 || (!relax_info->is_relaxable_literal_section
10031 && !relax_info->is_relaxable_asm_section))
10032 return sec;
10033 }
10034 target_offset = new_rel->target_offset;
10035 }
10036
10037 /* Find the base offset of the reloc symbol, excluding any addend from the
10038 reloc or from the section contents (for a partial_inplace reloc). Then
10039 find the adjusted values of the offsets due to relaxation. The base
10040 offset is needed to determine the change to the reloc's addend; the reloc
10041 addend should not be adjusted due to relaxations located before the base
10042 offset. */
10043
10044 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
10045 if (base_offset <= target_offset)
10046 {
10047 int base_removed = removed_by_actions_map (&relax_info->action_list,
10048 base_offset, FALSE);
10049 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10050 target_offset, FALSE) -
10051 base_removed;
10052
10053 new_rel->target_offset = target_offset - base_removed - addend_removed;
10054 new_rel->rela.r_addend -= addend_removed;
10055 }
10056 else
10057 {
10058 /* Handle a negative addend. The base offset comes first. */
10059 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10060 target_offset, FALSE);
10061 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10062 base_offset, FALSE) -
10063 tgt_removed;
10064
10065 new_rel->target_offset = target_offset - tgt_removed;
10066 new_rel->rela.r_addend += addend_removed;
10067 }
10068
10069 return sec;
10070 }
10071
10072
10073 /* For dynamic links, there may be a dynamic relocation for each
10074 literal. The number of dynamic relocations must be computed in
10075 size_dynamic_sections, which occurs before relaxation. When a
10076 literal is removed, this function checks if there is a corresponding
10077 dynamic relocation and shrinks the size of the appropriate dynamic
10078 relocation section accordingly. At this point, the contents of the
10079 dynamic relocation sections have not yet been filled in, so there's
10080 nothing else that needs to be done. */
10081
10082 static void
10083 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10084 bfd *abfd,
10085 asection *input_section,
10086 Elf_Internal_Rela *rel)
10087 {
10088 struct elf_xtensa_link_hash_table *htab;
10089 Elf_Internal_Shdr *symtab_hdr;
10090 struct elf_link_hash_entry **sym_hashes;
10091 unsigned long r_symndx;
10092 int r_type;
10093 struct elf_link_hash_entry *h;
10094 bfd_boolean dynamic_symbol;
10095
10096 htab = elf_xtensa_hash_table (info);
10097 if (htab == NULL)
10098 return;
10099
10100 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10101 sym_hashes = elf_sym_hashes (abfd);
10102
10103 r_type = ELF32_R_TYPE (rel->r_info);
10104 r_symndx = ELF32_R_SYM (rel->r_info);
10105
10106 if (r_symndx < symtab_hdr->sh_info)
10107 h = NULL;
10108 else
10109 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10110
10111 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
10112
10113 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10114 && (input_section->flags & SEC_ALLOC) != 0
10115 && (dynamic_symbol || bfd_link_pic (info)))
10116 {
10117 asection *srel;
10118 bfd_boolean is_plt = FALSE;
10119
10120 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10121 {
10122 srel = htab->srelplt;
10123 is_plt = TRUE;
10124 }
10125 else
10126 srel = htab->srelgot;
10127
10128 /* Reduce size of the .rela.* section by one reloc. */
10129 BFD_ASSERT (srel != NULL);
10130 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10131 srel->size -= sizeof (Elf32_External_Rela);
10132
10133 if (is_plt)
10134 {
10135 asection *splt, *sgotplt, *srelgot;
10136 int reloc_index, chunk;
10137
10138 /* Find the PLT reloc index of the entry being removed. This
10139 is computed from the size of ".rela.plt". It is needed to
10140 figure out which PLT chunk to resize. Usually "last index
10141 = size - 1" since the index starts at zero, but in this
10142 context, the size has just been decremented so there's no
10143 need to subtract one. */
10144 reloc_index = srel->size / sizeof (Elf32_External_Rela);
10145
10146 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10147 splt = elf_xtensa_get_plt_section (info, chunk);
10148 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10149 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10150
10151 /* Check if an entire PLT chunk has just been eliminated. */
10152 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10153 {
10154 /* The two magic GOT entries for that chunk can go away. */
10155 srelgot = htab->srelgot;
10156 BFD_ASSERT (srelgot != NULL);
10157 srelgot->reloc_count -= 2;
10158 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10159 sgotplt->size -= 8;
10160
10161 /* There should be only one entry left (and it will be
10162 removed below). */
10163 BFD_ASSERT (sgotplt->size == 4);
10164 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10165 }
10166
10167 BFD_ASSERT (sgotplt->size >= 4);
10168 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10169
10170 sgotplt->size -= 4;
10171 splt->size -= PLT_ENTRY_SIZE;
10172 }
10173 }
10174 }
10175
10176
10177 /* Take an r_rel and move it to another section. This usually
10178 requires extending the interal_relocation array and pinning it. If
10179 the original r_rel is from the same BFD, we can complete this here.
10180 Otherwise, we add a fix record to let the final link fix the
10181 appropriate address. Contents and internal relocations for the
10182 section must be pinned after calling this routine. */
10183
10184 static bfd_boolean
10185 move_literal (bfd *abfd,
10186 struct bfd_link_info *link_info,
10187 asection *sec,
10188 bfd_vma offset,
10189 bfd_byte *contents,
10190 xtensa_relax_info *relax_info,
10191 Elf_Internal_Rela **internal_relocs_p,
10192 const literal_value *lit)
10193 {
10194 Elf_Internal_Rela *new_relocs = NULL;
10195 size_t new_relocs_count = 0;
10196 Elf_Internal_Rela this_rela;
10197 const r_reloc *r_rel;
10198
10199 r_rel = &lit->r_rel;
10200 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10201
10202 if (r_reloc_is_const (r_rel))
10203 bfd_put_32 (abfd, lit->value, contents + offset);
10204 else
10205 {
10206 int r_type;
10207 unsigned i;
10208 reloc_bfd_fix *fix;
10209 unsigned insert_at;
10210
10211 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10212
10213 /* This is the difficult case. We have to create a fix up. */
10214 this_rela.r_offset = offset;
10215 this_rela.r_info = ELF32_R_INFO (0, r_type);
10216 this_rela.r_addend =
10217 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10218 bfd_put_32 (abfd, lit->value, contents + offset);
10219
10220 /* Currently, we cannot move relocations during a relocatable link. */
10221 BFD_ASSERT (!bfd_link_relocatable (link_info));
10222 fix = reloc_bfd_fix_init (sec, offset, r_type,
10223 r_reloc_get_section (r_rel),
10224 r_rel->target_offset + r_rel->virtual_offset,
10225 FALSE);
10226 /* We also need to mark that relocations are needed here. */
10227 sec->flags |= SEC_RELOC;
10228
10229 translate_reloc_bfd_fix (fix);
10230 /* This fix has not yet been translated. */
10231 add_fix (sec, fix);
10232
10233 /* Add the relocation. If we have already allocated our own
10234 space for the relocations and we have room for more, then use
10235 it. Otherwise, allocate new space and move the literals. */
10236 insert_at = sec->reloc_count;
10237 for (i = 0; i < sec->reloc_count; ++i)
10238 {
10239 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10240 {
10241 insert_at = i;
10242 break;
10243 }
10244 }
10245
10246 if (*internal_relocs_p != relax_info->allocated_relocs
10247 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10248 {
10249 BFD_ASSERT (relax_info->allocated_relocs == NULL
10250 || sec->reloc_count == relax_info->relocs_count);
10251
10252 if (relax_info->allocated_relocs_count == 0)
10253 new_relocs_count = (sec->reloc_count + 2) * 2;
10254 else
10255 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10256
10257 new_relocs = (Elf_Internal_Rela *)
10258 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10259 if (!new_relocs)
10260 return FALSE;
10261
10262 /* We could handle this more quickly by finding the split point. */
10263 if (insert_at != 0)
10264 memcpy (new_relocs, *internal_relocs_p,
10265 insert_at * sizeof (Elf_Internal_Rela));
10266
10267 new_relocs[insert_at] = this_rela;
10268
10269 if (insert_at != sec->reloc_count)
10270 memcpy (new_relocs + insert_at + 1,
10271 (*internal_relocs_p) + insert_at,
10272 (sec->reloc_count - insert_at)
10273 * sizeof (Elf_Internal_Rela));
10274
10275 if (*internal_relocs_p != relax_info->allocated_relocs)
10276 {
10277 /* The first time we re-allocate, we can only free the
10278 old relocs if they were allocated with bfd_malloc.
10279 This is not true when keep_memory is in effect. */
10280 if (!link_info->keep_memory)
10281 free (*internal_relocs_p);
10282 }
10283 else
10284 free (*internal_relocs_p);
10285 relax_info->allocated_relocs = new_relocs;
10286 relax_info->allocated_relocs_count = new_relocs_count;
10287 elf_section_data (sec)->relocs = new_relocs;
10288 sec->reloc_count++;
10289 relax_info->relocs_count = sec->reloc_count;
10290 *internal_relocs_p = new_relocs;
10291 }
10292 else
10293 {
10294 if (insert_at != sec->reloc_count)
10295 {
10296 unsigned idx;
10297 for (idx = sec->reloc_count; idx > insert_at; idx--)
10298 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10299 }
10300 (*internal_relocs_p)[insert_at] = this_rela;
10301 sec->reloc_count++;
10302 if (relax_info->allocated_relocs)
10303 relax_info->relocs_count = sec->reloc_count;
10304 }
10305 }
10306 return TRUE;
10307 }
10308
10309
10310 /* This is similar to relax_section except that when a target is moved,
10311 we shift addresses up. We also need to modify the size. This
10312 algorithm does NOT allow for relocations into the middle of the
10313 property sections. */
10314
10315 static bfd_boolean
10316 relax_property_section (bfd *abfd,
10317 asection *sec,
10318 struct bfd_link_info *link_info)
10319 {
10320 Elf_Internal_Rela *internal_relocs;
10321 bfd_byte *contents;
10322 unsigned i;
10323 bfd_boolean ok = TRUE;
10324 bfd_boolean is_full_prop_section;
10325 size_t last_zfill_target_offset = 0;
10326 asection *last_zfill_target_sec = NULL;
10327 bfd_size_type sec_size;
10328 bfd_size_type entry_size;
10329
10330 sec_size = bfd_get_section_limit (abfd, sec);
10331 internal_relocs = retrieve_internal_relocs (abfd, sec,
10332 link_info->keep_memory);
10333 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10334 if (contents == NULL && sec_size != 0)
10335 {
10336 ok = FALSE;
10337 goto error_return;
10338 }
10339
10340 is_full_prop_section = xtensa_is_proptable_section (sec);
10341 if (is_full_prop_section)
10342 entry_size = 12;
10343 else
10344 entry_size = 8;
10345
10346 if (internal_relocs)
10347 {
10348 for (i = 0; i < sec->reloc_count; i++)
10349 {
10350 Elf_Internal_Rela *irel;
10351 xtensa_relax_info *target_relax_info;
10352 unsigned r_type;
10353 asection *target_sec;
10354 literal_value val;
10355 bfd_byte *size_p, *flags_p;
10356
10357 /* Locally change the source address.
10358 Translate the target to the new target address.
10359 If it points to this section and has been removed, MOVE IT.
10360 Also, don't forget to modify the associated SIZE at
10361 (offset + 4). */
10362
10363 irel = &internal_relocs[i];
10364 r_type = ELF32_R_TYPE (irel->r_info);
10365 if (r_type == R_XTENSA_NONE)
10366 continue;
10367
10368 /* Find the literal value. */
10369 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10370 size_p = &contents[irel->r_offset + 4];
10371 flags_p = NULL;
10372 if (is_full_prop_section)
10373 flags_p = &contents[irel->r_offset + 8];
10374 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10375
10376 target_sec = r_reloc_get_section (&val.r_rel);
10377 target_relax_info = get_xtensa_relax_info (target_sec);
10378
10379 if (target_relax_info
10380 && (target_relax_info->is_relaxable_literal_section
10381 || target_relax_info->is_relaxable_asm_section ))
10382 {
10383 /* Translate the relocation's destination. */
10384 bfd_vma old_offset = val.r_rel.target_offset;
10385 bfd_vma new_offset;
10386 long old_size, new_size;
10387 int removed_by_old_offset =
10388 removed_by_actions_map (&target_relax_info->action_list,
10389 old_offset, FALSE);
10390 new_offset = old_offset - removed_by_old_offset;
10391
10392 /* Assert that we are not out of bounds. */
10393 old_size = bfd_get_32 (abfd, size_p);
10394 new_size = old_size;
10395
10396 if (old_size == 0)
10397 {
10398 /* Only the first zero-sized unreachable entry is
10399 allowed to expand. In this case the new offset
10400 should be the offset before the fill and the new
10401 size is the expansion size. For other zero-sized
10402 entries the resulting size should be zero with an
10403 offset before or after the fill address depending
10404 on whether the expanding unreachable entry
10405 preceeds it. */
10406 if (last_zfill_target_sec == 0
10407 || last_zfill_target_sec != target_sec
10408 || last_zfill_target_offset != old_offset)
10409 {
10410 bfd_vma new_end_offset = new_offset;
10411
10412 /* Recompute the new_offset, but this time don't
10413 include any fill inserted by relaxation. */
10414 removed_by_old_offset =
10415 removed_by_actions_map (&target_relax_info->action_list,
10416 old_offset, TRUE);
10417 new_offset = old_offset - removed_by_old_offset;
10418
10419 /* If it is not unreachable and we have not yet
10420 seen an unreachable at this address, place it
10421 before the fill address. */
10422 if (flags_p && (bfd_get_32 (abfd, flags_p)
10423 & XTENSA_PROP_UNREACHABLE) != 0)
10424 {
10425 new_size = new_end_offset - new_offset;
10426
10427 last_zfill_target_sec = target_sec;
10428 last_zfill_target_offset = old_offset;
10429 }
10430 }
10431 }
10432 else
10433 {
10434 int removed_by_old_offset_size =
10435 removed_by_actions_map (&target_relax_info->action_list,
10436 old_offset + old_size, TRUE);
10437 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10438 }
10439
10440 if (new_size != old_size)
10441 {
10442 bfd_put_32 (abfd, new_size, size_p);
10443 pin_contents (sec, contents);
10444 }
10445
10446 if (new_offset != old_offset)
10447 {
10448 bfd_vma diff = new_offset - old_offset;
10449 irel->r_addend += diff;
10450 pin_internal_relocs (sec, internal_relocs);
10451 }
10452 }
10453 }
10454 }
10455
10456 /* Combine adjacent property table entries. This is also done in
10457 finish_dynamic_sections() but at that point it's too late to
10458 reclaim the space in the output section, so we do this twice. */
10459
10460 if (internal_relocs && (!bfd_link_relocatable (link_info)
10461 || xtensa_is_littable_section (sec)))
10462 {
10463 Elf_Internal_Rela *last_irel = NULL;
10464 Elf_Internal_Rela *irel, *next_rel, *rel_end;
10465 int removed_bytes = 0;
10466 bfd_vma offset;
10467 flagword predef_flags;
10468
10469 predef_flags = xtensa_get_property_predef_flags (sec);
10470
10471 /* Walk over memory and relocations at the same time.
10472 This REQUIRES that the internal_relocs be sorted by offset. */
10473 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10474 internal_reloc_compare);
10475
10476 pin_internal_relocs (sec, internal_relocs);
10477 pin_contents (sec, contents);
10478
10479 next_rel = internal_relocs;
10480 rel_end = internal_relocs + sec->reloc_count;
10481
10482 BFD_ASSERT (sec->size % entry_size == 0);
10483
10484 for (offset = 0; offset < sec->size; offset += entry_size)
10485 {
10486 Elf_Internal_Rela *offset_rel, *extra_rel;
10487 bfd_vma bytes_to_remove, size, actual_offset;
10488 bfd_boolean remove_this_rel;
10489 flagword flags;
10490
10491 /* Find the first relocation for the entry at the current offset.
10492 Adjust the offsets of any extra relocations for the previous
10493 entry. */
10494 offset_rel = NULL;
10495 if (next_rel)
10496 {
10497 for (irel = next_rel; irel < rel_end; irel++)
10498 {
10499 if ((irel->r_offset == offset
10500 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10501 || irel->r_offset > offset)
10502 {
10503 offset_rel = irel;
10504 break;
10505 }
10506 irel->r_offset -= removed_bytes;
10507 }
10508 }
10509
10510 /* Find the next relocation (if there are any left). */
10511 extra_rel = NULL;
10512 if (offset_rel)
10513 {
10514 for (irel = offset_rel + 1; irel < rel_end; irel++)
10515 {
10516 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10517 {
10518 extra_rel = irel;
10519 break;
10520 }
10521 }
10522 }
10523
10524 /* Check if there are relocations on the current entry. There
10525 should usually be a relocation on the offset field. If there
10526 are relocations on the size or flags, then we can't optimize
10527 this entry. Also, find the next relocation to examine on the
10528 next iteration. */
10529 if (offset_rel)
10530 {
10531 if (offset_rel->r_offset >= offset + entry_size)
10532 {
10533 next_rel = offset_rel;
10534 /* There are no relocations on the current entry, but we
10535 might still be able to remove it if the size is zero. */
10536 offset_rel = NULL;
10537 }
10538 else if (offset_rel->r_offset > offset
10539 || (extra_rel
10540 && extra_rel->r_offset < offset + entry_size))
10541 {
10542 /* There is a relocation on the size or flags, so we can't
10543 do anything with this entry. Continue with the next. */
10544 next_rel = offset_rel;
10545 continue;
10546 }
10547 else
10548 {
10549 BFD_ASSERT (offset_rel->r_offset == offset);
10550 offset_rel->r_offset -= removed_bytes;
10551 next_rel = offset_rel + 1;
10552 }
10553 }
10554 else
10555 next_rel = NULL;
10556
10557 remove_this_rel = FALSE;
10558 bytes_to_remove = 0;
10559 actual_offset = offset - removed_bytes;
10560 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10561
10562 if (is_full_prop_section)
10563 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10564 else
10565 flags = predef_flags;
10566
10567 if (size == 0
10568 && (flags & XTENSA_PROP_ALIGN) == 0
10569 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10570 {
10571 /* Always remove entries with zero size and no alignment. */
10572 bytes_to_remove = entry_size;
10573 if (offset_rel)
10574 remove_this_rel = TRUE;
10575 }
10576 else if (offset_rel
10577 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10578 {
10579 if (last_irel)
10580 {
10581 flagword old_flags;
10582 bfd_vma old_size =
10583 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10584 bfd_vma old_address =
10585 (last_irel->r_addend
10586 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10587 bfd_vma new_address =
10588 (offset_rel->r_addend
10589 + bfd_get_32 (abfd, &contents[actual_offset]));
10590 if (is_full_prop_section)
10591 old_flags = bfd_get_32
10592 (abfd, &contents[last_irel->r_offset + 8]);
10593 else
10594 old_flags = predef_flags;
10595
10596 if ((ELF32_R_SYM (offset_rel->r_info)
10597 == ELF32_R_SYM (last_irel->r_info))
10598 && old_address + old_size == new_address
10599 && old_flags == flags
10600 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10601 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10602 {
10603 /* Fix the old size. */
10604 bfd_put_32 (abfd, old_size + size,
10605 &contents[last_irel->r_offset + 4]);
10606 bytes_to_remove = entry_size;
10607 remove_this_rel = TRUE;
10608 }
10609 else
10610 last_irel = offset_rel;
10611 }
10612 else
10613 last_irel = offset_rel;
10614 }
10615
10616 if (remove_this_rel)
10617 {
10618 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10619 offset_rel->r_offset = 0;
10620 }
10621
10622 if (bytes_to_remove != 0)
10623 {
10624 removed_bytes += bytes_to_remove;
10625 if (offset + bytes_to_remove < sec->size)
10626 memmove (&contents[actual_offset],
10627 &contents[actual_offset + bytes_to_remove],
10628 sec->size - offset - bytes_to_remove);
10629 }
10630 }
10631
10632 if (removed_bytes)
10633 {
10634 /* Fix up any extra relocations on the last entry. */
10635 for (irel = next_rel; irel < rel_end; irel++)
10636 irel->r_offset -= removed_bytes;
10637
10638 /* Clear the removed bytes. */
10639 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10640
10641 if (sec->rawsize == 0)
10642 sec->rawsize = sec->size;
10643 sec->size -= removed_bytes;
10644
10645 if (xtensa_is_littable_section (sec))
10646 {
10647 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10648 if (sgotloc)
10649 sgotloc->size -= removed_bytes;
10650 }
10651 }
10652 }
10653
10654 error_return:
10655 release_internal_relocs (sec, internal_relocs);
10656 release_contents (sec, contents);
10657 return ok;
10658 }
10659
10660 \f
10661 /* Third relaxation pass. */
10662
10663 /* Change symbol values to account for removed literals. */
10664
10665 bfd_boolean
10666 relax_section_symbols (bfd *abfd, asection *sec)
10667 {
10668 xtensa_relax_info *relax_info;
10669 unsigned int sec_shndx;
10670 Elf_Internal_Shdr *symtab_hdr;
10671 Elf_Internal_Sym *isymbuf;
10672 unsigned i, num_syms, num_locals;
10673
10674 relax_info = get_xtensa_relax_info (sec);
10675 BFD_ASSERT (relax_info);
10676
10677 if (!relax_info->is_relaxable_literal_section
10678 && !relax_info->is_relaxable_asm_section)
10679 return TRUE;
10680
10681 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10682
10683 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10684 isymbuf = retrieve_local_syms (abfd);
10685
10686 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10687 num_locals = symtab_hdr->sh_info;
10688
10689 /* Adjust the local symbols defined in this section. */
10690 for (i = 0; i < num_locals; i++)
10691 {
10692 Elf_Internal_Sym *isym = &isymbuf[i];
10693
10694 if (isym->st_shndx == sec_shndx)
10695 {
10696 bfd_vma orig_addr = isym->st_value;
10697 int removed = removed_by_actions_map (&relax_info->action_list,
10698 orig_addr, FALSE);
10699
10700 isym->st_value -= removed;
10701 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10702 isym->st_size -=
10703 removed_by_actions_map (&relax_info->action_list,
10704 orig_addr + isym->st_size, FALSE) -
10705 removed;
10706 }
10707 }
10708
10709 /* Now adjust the global symbols defined in this section. */
10710 for (i = 0; i < (num_syms - num_locals); i++)
10711 {
10712 struct elf_link_hash_entry *sym_hash;
10713
10714 sym_hash = elf_sym_hashes (abfd)[i];
10715
10716 if (sym_hash->root.type == bfd_link_hash_warning)
10717 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10718
10719 if ((sym_hash->root.type == bfd_link_hash_defined
10720 || sym_hash->root.type == bfd_link_hash_defweak)
10721 && sym_hash->root.u.def.section == sec)
10722 {
10723 bfd_vma orig_addr = sym_hash->root.u.def.value;
10724 int removed = removed_by_actions_map (&relax_info->action_list,
10725 orig_addr, FALSE);
10726
10727 sym_hash->root.u.def.value -= removed;
10728
10729 if (sym_hash->type == STT_FUNC)
10730 sym_hash->size -=
10731 removed_by_actions_map (&relax_info->action_list,
10732 orig_addr + sym_hash->size, FALSE) -
10733 removed;
10734 }
10735 }
10736
10737 return TRUE;
10738 }
10739
10740 \f
10741 /* "Fix" handling functions, called while performing relocations. */
10742
10743 static bfd_boolean
10744 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10745 bfd *input_bfd,
10746 asection *input_section,
10747 bfd_byte *contents)
10748 {
10749 r_reloc r_rel;
10750 asection *sec, *old_sec;
10751 bfd_vma old_offset;
10752 int r_type = ELF32_R_TYPE (rel->r_info);
10753 reloc_bfd_fix *fix;
10754
10755 if (r_type == R_XTENSA_NONE)
10756 return TRUE;
10757
10758 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10759 if (!fix)
10760 return TRUE;
10761
10762 r_reloc_init (&r_rel, input_bfd, rel, contents,
10763 bfd_get_section_limit (input_bfd, input_section));
10764 old_sec = r_reloc_get_section (&r_rel);
10765 old_offset = r_rel.target_offset;
10766
10767 if (!old_sec || !r_reloc_is_defined (&r_rel))
10768 {
10769 if (r_type != R_XTENSA_ASM_EXPAND)
10770 {
10771 (*_bfd_error_handler)
10772 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10773 input_bfd, input_section, rel->r_offset,
10774 elf_howto_table[r_type].name);
10775 return FALSE;
10776 }
10777 /* Leave it be. Resolution will happen in a later stage. */
10778 }
10779 else
10780 {
10781 sec = fix->target_sec;
10782 rel->r_addend += ((sec->output_offset + fix->target_offset)
10783 - (old_sec->output_offset + old_offset));
10784 }
10785 return TRUE;
10786 }
10787
10788
10789 static void
10790 do_fix_for_final_link (Elf_Internal_Rela *rel,
10791 bfd *input_bfd,
10792 asection *input_section,
10793 bfd_byte *contents,
10794 bfd_vma *relocationp)
10795 {
10796 asection *sec;
10797 int r_type = ELF32_R_TYPE (rel->r_info);
10798 reloc_bfd_fix *fix;
10799 bfd_vma fixup_diff;
10800
10801 if (r_type == R_XTENSA_NONE)
10802 return;
10803
10804 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10805 if (!fix)
10806 return;
10807
10808 sec = fix->target_sec;
10809
10810 fixup_diff = rel->r_addend;
10811 if (elf_howto_table[fix->src_type].partial_inplace)
10812 {
10813 bfd_vma inplace_val;
10814 BFD_ASSERT (fix->src_offset
10815 < bfd_get_section_limit (input_bfd, input_section));
10816 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10817 fixup_diff += inplace_val;
10818 }
10819
10820 *relocationp = (sec->output_section->vma
10821 + sec->output_offset
10822 + fix->target_offset - fixup_diff);
10823 }
10824
10825 \f
10826 /* Miscellaneous utility functions.... */
10827
10828 static asection *
10829 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10830 {
10831 struct elf_xtensa_link_hash_table *htab;
10832 bfd *dynobj;
10833 char plt_name[10];
10834
10835 if (chunk == 0)
10836 {
10837 htab = elf_xtensa_hash_table (info);
10838 if (htab == NULL)
10839 return NULL;
10840
10841 return htab->splt;
10842 }
10843
10844 dynobj = elf_hash_table (info)->dynobj;
10845 sprintf (plt_name, ".plt.%u", chunk);
10846 return bfd_get_linker_section (dynobj, plt_name);
10847 }
10848
10849
10850 static asection *
10851 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10852 {
10853 struct elf_xtensa_link_hash_table *htab;
10854 bfd *dynobj;
10855 char got_name[14];
10856
10857 if (chunk == 0)
10858 {
10859 htab = elf_xtensa_hash_table (info);
10860 if (htab == NULL)
10861 return NULL;
10862 return htab->sgotplt;
10863 }
10864
10865 dynobj = elf_hash_table (info)->dynobj;
10866 sprintf (got_name, ".got.plt.%u", chunk);
10867 return bfd_get_linker_section (dynobj, got_name);
10868 }
10869
10870
10871 /* Get the input section for a given symbol index.
10872 If the symbol is:
10873 . a section symbol, return the section;
10874 . a common symbol, return the common section;
10875 . an undefined symbol, return the undefined section;
10876 . an indirect symbol, follow the links;
10877 . an absolute value, return the absolute section. */
10878
10879 static asection *
10880 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10881 {
10882 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10883 asection *target_sec = NULL;
10884 if (r_symndx < symtab_hdr->sh_info)
10885 {
10886 Elf_Internal_Sym *isymbuf;
10887 unsigned int section_index;
10888
10889 isymbuf = retrieve_local_syms (abfd);
10890 section_index = isymbuf[r_symndx].st_shndx;
10891
10892 if (section_index == SHN_UNDEF)
10893 target_sec = bfd_und_section_ptr;
10894 else if (section_index == SHN_ABS)
10895 target_sec = bfd_abs_section_ptr;
10896 else if (section_index == SHN_COMMON)
10897 target_sec = bfd_com_section_ptr;
10898 else
10899 target_sec = bfd_section_from_elf_index (abfd, section_index);
10900 }
10901 else
10902 {
10903 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10904 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10905
10906 while (h->root.type == bfd_link_hash_indirect
10907 || h->root.type == bfd_link_hash_warning)
10908 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10909
10910 switch (h->root.type)
10911 {
10912 case bfd_link_hash_defined:
10913 case bfd_link_hash_defweak:
10914 target_sec = h->root.u.def.section;
10915 break;
10916 case bfd_link_hash_common:
10917 target_sec = bfd_com_section_ptr;
10918 break;
10919 case bfd_link_hash_undefined:
10920 case bfd_link_hash_undefweak:
10921 target_sec = bfd_und_section_ptr;
10922 break;
10923 default: /* New indirect warning. */
10924 target_sec = bfd_und_section_ptr;
10925 break;
10926 }
10927 }
10928 return target_sec;
10929 }
10930
10931
10932 static struct elf_link_hash_entry *
10933 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10934 {
10935 unsigned long indx;
10936 struct elf_link_hash_entry *h;
10937 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10938
10939 if (r_symndx < symtab_hdr->sh_info)
10940 return NULL;
10941
10942 indx = r_symndx - symtab_hdr->sh_info;
10943 h = elf_sym_hashes (abfd)[indx];
10944 while (h->root.type == bfd_link_hash_indirect
10945 || h->root.type == bfd_link_hash_warning)
10946 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10947 return h;
10948 }
10949
10950
10951 /* Get the section-relative offset for a symbol number. */
10952
10953 static bfd_vma
10954 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10955 {
10956 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10957 bfd_vma offset = 0;
10958
10959 if (r_symndx < symtab_hdr->sh_info)
10960 {
10961 Elf_Internal_Sym *isymbuf;
10962 isymbuf = retrieve_local_syms (abfd);
10963 offset = isymbuf[r_symndx].st_value;
10964 }
10965 else
10966 {
10967 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10968 struct elf_link_hash_entry *h =
10969 elf_sym_hashes (abfd)[indx];
10970
10971 while (h->root.type == bfd_link_hash_indirect
10972 || h->root.type == bfd_link_hash_warning)
10973 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10974 if (h->root.type == bfd_link_hash_defined
10975 || h->root.type == bfd_link_hash_defweak)
10976 offset = h->root.u.def.value;
10977 }
10978 return offset;
10979 }
10980
10981
10982 static bfd_boolean
10983 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10984 {
10985 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10986 struct elf_link_hash_entry *h;
10987
10988 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10989 if (h && h->root.type == bfd_link_hash_defweak)
10990 return TRUE;
10991 return FALSE;
10992 }
10993
10994
10995 static bfd_boolean
10996 pcrel_reloc_fits (xtensa_opcode opc,
10997 int opnd,
10998 bfd_vma self_address,
10999 bfd_vma dest_address)
11000 {
11001 xtensa_isa isa = xtensa_default_isa;
11002 uint32 valp = dest_address;
11003 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
11004 || xtensa_operand_encode (isa, opc, opnd, &valp))
11005 return FALSE;
11006 return TRUE;
11007 }
11008
11009
11010 static bfd_boolean
11011 xtensa_is_property_section (asection *sec)
11012 {
11013 if (xtensa_is_insntable_section (sec)
11014 || xtensa_is_littable_section (sec)
11015 || xtensa_is_proptable_section (sec))
11016 return TRUE;
11017
11018 return FALSE;
11019 }
11020
11021
11022 static bfd_boolean
11023 xtensa_is_insntable_section (asection *sec)
11024 {
11025 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
11026 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
11027 return TRUE;
11028
11029 return FALSE;
11030 }
11031
11032
11033 static bfd_boolean
11034 xtensa_is_littable_section (asection *sec)
11035 {
11036 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
11037 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
11038 return TRUE;
11039
11040 return FALSE;
11041 }
11042
11043
11044 static bfd_boolean
11045 xtensa_is_proptable_section (asection *sec)
11046 {
11047 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
11048 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
11049 return TRUE;
11050
11051 return FALSE;
11052 }
11053
11054
11055 static int
11056 internal_reloc_compare (const void *ap, const void *bp)
11057 {
11058 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11059 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11060
11061 if (a->r_offset != b->r_offset)
11062 return (a->r_offset - b->r_offset);
11063
11064 /* We don't need to sort on these criteria for correctness,
11065 but enforcing a more strict ordering prevents unstable qsort
11066 from behaving differently with different implementations.
11067 Without the code below we get correct but different results
11068 on Solaris 2.7 and 2.8. We would like to always produce the
11069 same results no matter the host. */
11070
11071 if (a->r_info != b->r_info)
11072 return (a->r_info - b->r_info);
11073
11074 return (a->r_addend - b->r_addend);
11075 }
11076
11077
11078 static int
11079 internal_reloc_matches (const void *ap, const void *bp)
11080 {
11081 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11082 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11083
11084 /* Check if one entry overlaps with the other; this shouldn't happen
11085 except when searching for a match. */
11086 return (a->r_offset - b->r_offset);
11087 }
11088
11089
11090 /* Predicate function used to look up a section in a particular group. */
11091
11092 static bfd_boolean
11093 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11094 {
11095 const char *gname = inf;
11096 const char *group_name = elf_group_name (sec);
11097
11098 return (group_name == gname
11099 || (group_name != NULL
11100 && gname != NULL
11101 && strcmp (group_name, gname) == 0));
11102 }
11103
11104
11105 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11106
11107 static char *
11108 xtensa_property_section_name (asection *sec, const char *base_name)
11109 {
11110 const char *suffix, *group_name;
11111 char *prop_sec_name;
11112
11113 group_name = elf_group_name (sec);
11114 if (group_name)
11115 {
11116 suffix = strrchr (sec->name, '.');
11117 if (suffix == sec->name)
11118 suffix = 0;
11119 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
11120 + (suffix ? strlen (suffix) : 0));
11121 strcpy (prop_sec_name, base_name);
11122 if (suffix)
11123 strcat (prop_sec_name, suffix);
11124 }
11125 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
11126 {
11127 char *linkonce_kind = 0;
11128
11129 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11130 linkonce_kind = "x.";
11131 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11132 linkonce_kind = "p.";
11133 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11134 linkonce_kind = "prop.";
11135 else
11136 abort ();
11137
11138 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11139 + strlen (linkonce_kind) + 1);
11140 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11141 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11142
11143 suffix = sec->name + linkonce_len;
11144 /* For backward compatibility, replace "t." instead of inserting
11145 the new linkonce_kind (but not for "prop" sections). */
11146 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
11147 suffix += 2;
11148 strcat (prop_sec_name + linkonce_len, suffix);
11149 }
11150 else
11151 prop_sec_name = strdup (base_name);
11152
11153 return prop_sec_name;
11154 }
11155
11156
11157 static asection *
11158 xtensa_get_property_section (asection *sec, const char *base_name)
11159 {
11160 char *prop_sec_name;
11161 asection *prop_sec;
11162
11163 prop_sec_name = xtensa_property_section_name (sec, base_name);
11164 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11165 match_section_group,
11166 (void *) elf_group_name (sec));
11167 free (prop_sec_name);
11168 return prop_sec;
11169 }
11170
11171
11172 asection *
11173 xtensa_make_property_section (asection *sec, const char *base_name)
11174 {
11175 char *prop_sec_name;
11176 asection *prop_sec;
11177
11178 /* Check if the section already exists. */
11179 prop_sec_name = xtensa_property_section_name (sec, base_name);
11180 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11181 match_section_group,
11182 (void *) elf_group_name (sec));
11183 /* If not, create it. */
11184 if (! prop_sec)
11185 {
11186 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11187 flags |= (bfd_get_section_flags (sec->owner, sec)
11188 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11189
11190 prop_sec = bfd_make_section_anyway_with_flags
11191 (sec->owner, strdup (prop_sec_name), flags);
11192 if (! prop_sec)
11193 return 0;
11194
11195 elf_group_name (prop_sec) = elf_group_name (sec);
11196 }
11197
11198 free (prop_sec_name);
11199 return prop_sec;
11200 }
11201
11202
11203 flagword
11204 xtensa_get_property_predef_flags (asection *sec)
11205 {
11206 if (xtensa_is_insntable_section (sec))
11207 return (XTENSA_PROP_INSN
11208 | XTENSA_PROP_NO_TRANSFORM
11209 | XTENSA_PROP_INSN_NO_REORDER);
11210
11211 if (xtensa_is_littable_section (sec))
11212 return (XTENSA_PROP_LITERAL
11213 | XTENSA_PROP_NO_TRANSFORM
11214 | XTENSA_PROP_INSN_NO_REORDER);
11215
11216 return 0;
11217 }
11218
11219 \f
11220 /* Other functions called directly by the linker. */
11221
11222 bfd_boolean
11223 xtensa_callback_required_dependence (bfd *abfd,
11224 asection *sec,
11225 struct bfd_link_info *link_info,
11226 deps_callback_t callback,
11227 void *closure)
11228 {
11229 Elf_Internal_Rela *internal_relocs;
11230 bfd_byte *contents;
11231 unsigned i;
11232 bfd_boolean ok = TRUE;
11233 bfd_size_type sec_size;
11234
11235 sec_size = bfd_get_section_limit (abfd, sec);
11236
11237 /* ".plt*" sections have no explicit relocations but they contain L32R
11238 instructions that reference the corresponding ".got.plt*" sections. */
11239 if ((sec->flags & SEC_LINKER_CREATED) != 0
11240 && CONST_STRNEQ (sec->name, ".plt"))
11241 {
11242 asection *sgotplt;
11243
11244 /* Find the corresponding ".got.plt*" section. */
11245 if (sec->name[4] == '\0')
11246 sgotplt = bfd_get_linker_section (sec->owner, ".got.plt");
11247 else
11248 {
11249 char got_name[14];
11250 int chunk = 0;
11251
11252 BFD_ASSERT (sec->name[4] == '.');
11253 chunk = strtol (&sec->name[5], NULL, 10);
11254
11255 sprintf (got_name, ".got.plt.%u", chunk);
11256 sgotplt = bfd_get_linker_section (sec->owner, got_name);
11257 }
11258 BFD_ASSERT (sgotplt);
11259
11260 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11261 section referencing a literal at the very beginning of
11262 ".got.plt". This is very close to the real dependence, anyway. */
11263 (*callback) (sec, sec_size, sgotplt, 0, closure);
11264 }
11265
11266 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11267 when building uclibc, which runs "ld -b binary /dev/null". */
11268 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11269 return ok;
11270
11271 internal_relocs = retrieve_internal_relocs (abfd, sec,
11272 link_info->keep_memory);
11273 if (internal_relocs == NULL
11274 || sec->reloc_count == 0)
11275 return ok;
11276
11277 /* Cache the contents for the duration of this scan. */
11278 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11279 if (contents == NULL && sec_size != 0)
11280 {
11281 ok = FALSE;
11282 goto error_return;
11283 }
11284
11285 if (!xtensa_default_isa)
11286 xtensa_default_isa = xtensa_isa_init (0, 0);
11287
11288 for (i = 0; i < sec->reloc_count; i++)
11289 {
11290 Elf_Internal_Rela *irel = &internal_relocs[i];
11291 if (is_l32r_relocation (abfd, sec, contents, irel))
11292 {
11293 r_reloc l32r_rel;
11294 asection *target_sec;
11295 bfd_vma target_offset;
11296
11297 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11298 target_sec = NULL;
11299 target_offset = 0;
11300 /* L32Rs must be local to the input file. */
11301 if (r_reloc_is_defined (&l32r_rel))
11302 {
11303 target_sec = r_reloc_get_section (&l32r_rel);
11304 target_offset = l32r_rel.target_offset;
11305 }
11306 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11307 closure);
11308 }
11309 }
11310
11311 error_return:
11312 release_internal_relocs (sec, internal_relocs);
11313 release_contents (sec, contents);
11314 return ok;
11315 }
11316
11317 /* The default literal sections should always be marked as "code" (i.e.,
11318 SHF_EXECINSTR). This is particularly important for the Linux kernel
11319 module loader so that the literals are not placed after the text. */
11320 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11321 {
11322 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11323 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11324 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11325 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11326 { NULL, 0, 0, 0, 0 }
11327 };
11328 \f
11329 #define ELF_TARGET_ID XTENSA_ELF_DATA
11330 #ifndef ELF_ARCH
11331 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11332 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11333 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11334 #define TARGET_BIG_NAME "elf32-xtensa-be"
11335 #define ELF_ARCH bfd_arch_xtensa
11336
11337 #define ELF_MACHINE_CODE EM_XTENSA
11338 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11339
11340 #if XCHAL_HAVE_MMU
11341 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
11342 #else /* !XCHAL_HAVE_MMU */
11343 #define ELF_MAXPAGESIZE 1
11344 #endif /* !XCHAL_HAVE_MMU */
11345 #endif /* ELF_ARCH */
11346
11347 #define elf_backend_can_gc_sections 1
11348 #define elf_backend_can_refcount 1
11349 #define elf_backend_plt_readonly 1
11350 #define elf_backend_got_header_size 4
11351 #define elf_backend_want_dynbss 0
11352 #define elf_backend_want_got_plt 1
11353
11354 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11355
11356 #define bfd_elf32_mkobject elf_xtensa_mkobject
11357
11358 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11359 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11360 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11361 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11362 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11363 #define bfd_elf32_bfd_reloc_name_lookup \
11364 elf_xtensa_reloc_name_lookup
11365 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11366 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11367
11368 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11369 #define elf_backend_check_relocs elf_xtensa_check_relocs
11370 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11371 #define elf_backend_discard_info elf_xtensa_discard_info
11372 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11373 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11374 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11375 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11376 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11377 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
11378 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11379 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11380 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11381 #define elf_backend_object_p elf_xtensa_object_p
11382 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11383 #define elf_backend_relocate_section elf_xtensa_relocate_section
11384 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11385 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11386 #define elf_backend_omit_section_dynsym \
11387 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
11388 #define elf_backend_special_sections elf_xtensa_special_sections
11389 #define elf_backend_action_discarded elf_xtensa_action_discarded
11390 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11391
11392 #include "elf32-target.h"
This page took 0.554689 seconds and 4 git commands to generate.