* elflink.c (_bfd_elf_dynamic_symbol_p): New.
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "alloca-conf.h"
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/hppa.h"
26 #include "libhppa.h"
27 #include "elf64-hppa.h"
28 #define ARCH_SIZE 64
29
30 #define PLT_ENTRY_SIZE 0x10
31 #define DLT_ENTRY_SIZE 0x8
32 #define OPD_ENTRY_SIZE 0x20
33
34 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36 /* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49 struct elf64_hppa_dyn_hash_entry
50 {
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
59 /* The symbol table entry, if any, that this was derived from. */
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108 };
109
110 struct elf64_hppa_dyn_hash_table
111 {
112 struct bfd_hash_table root;
113 };
114
115 struct elf64_hppa_link_hash_table
116 {
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151 };
152
153 #define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156 typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
159 static bfd_boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 bfd_boolean create, bfd_boolean copy));
170 static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
172 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
173 PTR info));
174
175 static const char *get_dyn_name
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
178
179 /* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181 #include "elf-hppa.h"
182
183 static bfd_boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
185
186 static bfd_boolean elf64_hppa_section_from_shdr
187 PARAMS ((bfd *, Elf_Internal_Shdr *, const char *));
188
189 static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
191
192 static bfd_boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
194
195 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
198 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
199 PARAMS ((struct elf_link_hash_entry *, PTR));
200
201 static bfd_boolean elf64_hppa_size_dynamic_sections
202 PARAMS ((bfd *, struct bfd_link_info *));
203
204 static bfd_boolean elf64_hppa_link_output_symbol_hook
205 PARAMS ((bfd *abfd, struct bfd_link_info *, const char *,
206 Elf_Internal_Sym *, asection *input_sec));
207
208 static bfd_boolean elf64_hppa_finish_dynamic_symbol
209 PARAMS ((bfd *, struct bfd_link_info *,
210 struct elf_link_hash_entry *, Elf_Internal_Sym *));
211
212 static int elf64_hppa_additional_program_headers
213 PARAMS ((bfd *));
214
215 static bfd_boolean elf64_hppa_modify_segment_map
216 PARAMS ((bfd *));
217
218 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
219 PARAMS ((const Elf_Internal_Rela *));
220
221 static bfd_boolean elf64_hppa_finish_dynamic_sections
222 PARAMS ((bfd *, struct bfd_link_info *));
223
224 static bfd_boolean elf64_hppa_check_relocs
225 PARAMS ((bfd *, struct bfd_link_info *,
226 asection *, const Elf_Internal_Rela *));
227
228 static bfd_boolean elf64_hppa_dynamic_symbol_p
229 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
230
231 static bfd_boolean elf64_hppa_mark_exported_functions
232 PARAMS ((struct elf_link_hash_entry *, PTR));
233
234 static bfd_boolean elf64_hppa_finalize_opd
235 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
236
237 static bfd_boolean elf64_hppa_finalize_dlt
238 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
239
240 static bfd_boolean allocate_global_data_dlt
241 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
242
243 static bfd_boolean allocate_global_data_plt
244 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
245
246 static bfd_boolean allocate_global_data_stub
247 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
248
249 static bfd_boolean allocate_global_data_opd
250 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
251
252 static bfd_boolean get_reloc_section
253 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
254
255 static bfd_boolean count_dyn_reloc
256 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
257 int, asection *, int, bfd_vma, bfd_vma));
258
259 static bfd_boolean allocate_dynrel_entries
260 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
261
262 static bfd_boolean elf64_hppa_finalize_dynreloc
263 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
264
265 static bfd_boolean get_opd
266 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
267
268 static bfd_boolean get_plt
269 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
270
271 static bfd_boolean get_dlt
272 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
273
274 static bfd_boolean get_stub
275 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
276
277 static int elf64_hppa_elf_get_symbol_type
278 PARAMS ((Elf_Internal_Sym *, int));
279
280 static bfd_boolean
281 elf64_hppa_dyn_hash_table_init (ht, abfd, new)
282 struct elf64_hppa_dyn_hash_table *ht;
283 bfd *abfd ATTRIBUTE_UNUSED;
284 new_hash_entry_func new;
285 {
286 memset (ht, 0, sizeof (*ht));
287 return bfd_hash_table_init (&ht->root, new);
288 }
289
290 static struct bfd_hash_entry*
291 elf64_hppa_new_dyn_hash_entry (entry, table, string)
292 struct bfd_hash_entry *entry;
293 struct bfd_hash_table *table;
294 const char *string;
295 {
296 struct elf64_hppa_dyn_hash_entry *ret;
297 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
298
299 /* Allocate the structure if it has not already been allocated by a
300 subclass. */
301 if (!ret)
302 ret = bfd_hash_allocate (table, sizeof (*ret));
303
304 if (!ret)
305 return 0;
306
307 /* Initialize our local data. All zeros, and definitely easier
308 than setting 8 bit fields. */
309 memset (ret, 0, sizeof (*ret));
310
311 /* Call the allocation method of the superclass. */
312 ret = ((struct elf64_hppa_dyn_hash_entry *)
313 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
314
315 return &ret->root;
316 }
317
318 /* Create the derived linker hash table. The PA64 ELF port uses this
319 derived hash table to keep information specific to the PA ElF
320 linker (without using static variables). */
321
322 static struct bfd_link_hash_table*
323 elf64_hppa_hash_table_create (abfd)
324 bfd *abfd;
325 {
326 struct elf64_hppa_link_hash_table *ret;
327
328 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
329 if (!ret)
330 return 0;
331 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
332 _bfd_elf_link_hash_newfunc))
333 {
334 bfd_release (abfd, ret);
335 return 0;
336 }
337
338 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
339 elf64_hppa_new_dyn_hash_entry))
340 return 0;
341 return &ret->root.root;
342 }
343
344 /* Look up an entry in a PA64 ELF linker hash table. */
345
346 static struct elf64_hppa_dyn_hash_entry *
347 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
348 struct elf64_hppa_dyn_hash_table *table;
349 const char *string;
350 bfd_boolean create, copy;
351 {
352 return ((struct elf64_hppa_dyn_hash_entry *)
353 bfd_hash_lookup (&table->root, string, create, copy));
354 }
355
356 /* Traverse a PA64 ELF linker hash table. */
357
358 static void
359 elf64_hppa_dyn_hash_traverse (table, func, info)
360 struct elf64_hppa_dyn_hash_table *table;
361 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
362 PTR info;
363 {
364 (bfd_hash_traverse
365 (&table->root,
366 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
367 info));
368 }
369 \f
370 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
371
372 Additionally we set the default architecture and machine. */
373 static bfd_boolean
374 elf64_hppa_object_p (abfd)
375 bfd *abfd;
376 {
377 Elf_Internal_Ehdr * i_ehdrp;
378 unsigned int flags;
379
380 i_ehdrp = elf_elfheader (abfd);
381 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
382 {
383 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
384 return FALSE;
385 }
386 else
387 {
388 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
389 return FALSE;
390 }
391
392 flags = i_ehdrp->e_flags;
393 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
394 {
395 case EFA_PARISC_1_0:
396 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
397 case EFA_PARISC_1_1:
398 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
399 case EFA_PARISC_2_0:
400 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
401 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
402 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
403 }
404 /* Don't be fussy. */
405 return TRUE;
406 }
407
408 /* Given section type (hdr->sh_type), return a boolean indicating
409 whether or not the section is an elf64-hppa specific section. */
410 static bfd_boolean
411 elf64_hppa_section_from_shdr (abfd, hdr, name)
412 bfd *abfd;
413 Elf_Internal_Shdr *hdr;
414 const char *name;
415 {
416 asection *newsect;
417
418 switch (hdr->sh_type)
419 {
420 case SHT_PARISC_EXT:
421 if (strcmp (name, ".PARISC.archext") != 0)
422 return FALSE;
423 break;
424 case SHT_PARISC_UNWIND:
425 if (strcmp (name, ".PARISC.unwind") != 0)
426 return FALSE;
427 break;
428 case SHT_PARISC_DOC:
429 case SHT_PARISC_ANNOT:
430 default:
431 return FALSE;
432 }
433
434 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
435 return FALSE;
436 newsect = hdr->bfd_section;
437
438 return TRUE;
439 }
440
441 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
442 name describes what was once potentially anonymous memory. We
443 allocate memory as necessary, possibly reusing PBUF/PLEN. */
444
445 static const char *
446 get_dyn_name (sec, h, rel, pbuf, plen)
447 asection *sec;
448 struct elf_link_hash_entry *h;
449 const Elf_Internal_Rela *rel;
450 char **pbuf;
451 size_t *plen;
452 {
453 size_t nlen, tlen;
454 char *buf;
455 size_t len;
456
457 if (h && rel->r_addend == 0)
458 return h->root.root.string;
459
460 if (h)
461 nlen = strlen (h->root.root.string);
462 else
463 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
464 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
465
466 len = *plen;
467 buf = *pbuf;
468 if (len < tlen)
469 {
470 if (buf)
471 free (buf);
472 *pbuf = buf = malloc (tlen);
473 *plen = len = tlen;
474 if (!buf)
475 return NULL;
476 }
477
478 if (h)
479 {
480 memcpy (buf, h->root.root.string, nlen);
481 buf[nlen++] = '+';
482 sprintf_vma (buf + nlen, rel->r_addend);
483 }
484 else
485 {
486 nlen = sprintf (buf, "%x:%lx",
487 sec->id & 0xffffffff,
488 (long) ELF64_R_SYM (rel->r_info));
489 if (rel->r_addend)
490 {
491 buf[nlen++] = '+';
492 sprintf_vma (buf + nlen, rel->r_addend);
493 }
494 }
495
496 return buf;
497 }
498
499 /* SEC is a section containing relocs for an input BFD when linking; return
500 a suitable section for holding relocs in the output BFD for a link. */
501
502 static bfd_boolean
503 get_reloc_section (abfd, hppa_info, sec)
504 bfd *abfd;
505 struct elf64_hppa_link_hash_table *hppa_info;
506 asection *sec;
507 {
508 const char *srel_name;
509 asection *srel;
510 bfd *dynobj;
511
512 srel_name = (bfd_elf_string_from_elf_section
513 (abfd, elf_elfheader(abfd)->e_shstrndx,
514 elf_section_data(sec)->rel_hdr.sh_name));
515 if (srel_name == NULL)
516 return FALSE;
517
518 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
519 && strcmp (bfd_get_section_name (abfd, sec),
520 srel_name+5) == 0)
521 || (strncmp (srel_name, ".rel", 4) == 0
522 && strcmp (bfd_get_section_name (abfd, sec),
523 srel_name+4) == 0));
524
525 dynobj = hppa_info->root.dynobj;
526 if (!dynobj)
527 hppa_info->root.dynobj = dynobj = abfd;
528
529 srel = bfd_get_section_by_name (dynobj, srel_name);
530 if (srel == NULL)
531 {
532 srel = bfd_make_section (dynobj, srel_name);
533 if (srel == NULL
534 || !bfd_set_section_flags (dynobj, srel,
535 (SEC_ALLOC
536 | SEC_LOAD
537 | SEC_HAS_CONTENTS
538 | SEC_IN_MEMORY
539 | SEC_LINKER_CREATED
540 | SEC_READONLY))
541 || !bfd_set_section_alignment (dynobj, srel, 3))
542 return FALSE;
543 }
544
545 hppa_info->other_rel_sec = srel;
546 return TRUE;
547 }
548
549 /* Add a new entry to the list of dynamic relocations against DYN_H.
550
551 We use this to keep a record of all the FPTR relocations against a
552 particular symbol so that we can create FPTR relocations in the
553 output file. */
554
555 static bfd_boolean
556 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
557 bfd *abfd;
558 struct elf64_hppa_dyn_hash_entry *dyn_h;
559 int type;
560 asection *sec;
561 int sec_symndx;
562 bfd_vma offset;
563 bfd_vma addend;
564 {
565 struct elf64_hppa_dyn_reloc_entry *rent;
566
567 rent = (struct elf64_hppa_dyn_reloc_entry *)
568 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
569 if (!rent)
570 return FALSE;
571
572 rent->next = dyn_h->reloc_entries;
573 rent->type = type;
574 rent->sec = sec;
575 rent->sec_symndx = sec_symndx;
576 rent->offset = offset;
577 rent->addend = addend;
578 dyn_h->reloc_entries = rent;
579
580 return TRUE;
581 }
582
583 /* Scan the RELOCS and record the type of dynamic entries that each
584 referenced symbol needs. */
585
586 static bfd_boolean
587 elf64_hppa_check_relocs (abfd, info, sec, relocs)
588 bfd *abfd;
589 struct bfd_link_info *info;
590 asection *sec;
591 const Elf_Internal_Rela *relocs;
592 {
593 struct elf64_hppa_link_hash_table *hppa_info;
594 const Elf_Internal_Rela *relend;
595 Elf_Internal_Shdr *symtab_hdr;
596 const Elf_Internal_Rela *rel;
597 asection *dlt, *plt, *stubs;
598 char *buf;
599 size_t buf_len;
600 int sec_symndx;
601
602 if (info->relocatable)
603 return TRUE;
604
605 /* If this is the first dynamic object found in the link, create
606 the special sections required for dynamic linking. */
607 if (! elf_hash_table (info)->dynamic_sections_created)
608 {
609 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
610 return FALSE;
611 }
612
613 hppa_info = elf64_hppa_hash_table (info);
614 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
615
616 /* If necessary, build a new table holding section symbols indices
617 for this BFD. */
618
619 if (info->shared && hppa_info->section_syms_bfd != abfd)
620 {
621 unsigned long i;
622 unsigned int highest_shndx;
623 Elf_Internal_Sym *local_syms = NULL;
624 Elf_Internal_Sym *isym, *isymend;
625 bfd_size_type amt;
626
627 /* We're done with the old cache of section index to section symbol
628 index information. Free it.
629
630 ?!? Note we leak the last section_syms array. Presumably we
631 could free it in one of the later routines in this file. */
632 if (hppa_info->section_syms)
633 free (hppa_info->section_syms);
634
635 /* Read this BFD's local symbols. */
636 if (symtab_hdr->sh_info != 0)
637 {
638 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
639 if (local_syms == NULL)
640 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
641 symtab_hdr->sh_info, 0,
642 NULL, NULL, NULL);
643 if (local_syms == NULL)
644 return FALSE;
645 }
646
647 /* Record the highest section index referenced by the local symbols. */
648 highest_shndx = 0;
649 isymend = local_syms + symtab_hdr->sh_info;
650 for (isym = local_syms; isym < isymend; isym++)
651 {
652 if (isym->st_shndx > highest_shndx)
653 highest_shndx = isym->st_shndx;
654 }
655
656 /* Allocate an array to hold the section index to section symbol index
657 mapping. Bump by one since we start counting at zero. */
658 highest_shndx++;
659 amt = highest_shndx;
660 amt *= sizeof (int);
661 hppa_info->section_syms = (int *) bfd_malloc (amt);
662
663 /* Now walk the local symbols again. If we find a section symbol,
664 record the index of the symbol into the section_syms array. */
665 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
666 {
667 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
668 hppa_info->section_syms[isym->st_shndx] = i;
669 }
670
671 /* We are finished with the local symbols. */
672 if (local_syms != NULL
673 && symtab_hdr->contents != (unsigned char *) local_syms)
674 {
675 if (! info->keep_memory)
676 free (local_syms);
677 else
678 {
679 /* Cache the symbols for elf_link_input_bfd. */
680 symtab_hdr->contents = (unsigned char *) local_syms;
681 }
682 }
683
684 /* Record which BFD we built the section_syms mapping for. */
685 hppa_info->section_syms_bfd = abfd;
686 }
687
688 /* Record the symbol index for this input section. We may need it for
689 relocations when building shared libraries. When not building shared
690 libraries this value is never really used, but assign it to zero to
691 prevent out of bounds memory accesses in other routines. */
692 if (info->shared)
693 {
694 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
695
696 /* If we did not find a section symbol for this section, then
697 something went terribly wrong above. */
698 if (sec_symndx == -1)
699 return FALSE;
700
701 sec_symndx = hppa_info->section_syms[sec_symndx];
702 }
703 else
704 sec_symndx = 0;
705
706 dlt = plt = stubs = NULL;
707 buf = NULL;
708 buf_len = 0;
709
710 relend = relocs + sec->reloc_count;
711 for (rel = relocs; rel < relend; ++rel)
712 {
713 enum {
714 NEED_DLT = 1,
715 NEED_PLT = 2,
716 NEED_STUB = 4,
717 NEED_OPD = 8,
718 NEED_DYNREL = 16,
719 };
720
721 struct elf_link_hash_entry *h = NULL;
722 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
723 struct elf64_hppa_dyn_hash_entry *dyn_h;
724 int need_entry;
725 const char *addr_name;
726 bfd_boolean maybe_dynamic;
727 int dynrel_type = R_PARISC_NONE;
728 static reloc_howto_type *howto;
729
730 if (r_symndx >= symtab_hdr->sh_info)
731 {
732 /* We're dealing with a global symbol -- find its hash entry
733 and mark it as being referenced. */
734 long indx = r_symndx - symtab_hdr->sh_info;
735 h = elf_sym_hashes (abfd)[indx];
736 while (h->root.type == bfd_link_hash_indirect
737 || h->root.type == bfd_link_hash_warning)
738 h = (struct elf_link_hash_entry *) h->root.u.i.link;
739
740 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
741 }
742
743 /* We can only get preliminary data on whether a symbol is
744 locally or externally defined, as not all of the input files
745 have yet been processed. Do something with what we know, as
746 this may help reduce memory usage and processing time later. */
747 maybe_dynamic = FALSE;
748 if (h && ((info->shared
749 && (!info->symbolic || info->allow_shlib_undefined) )
750 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
751 || h->root.type == bfd_link_hash_defweak))
752 maybe_dynamic = TRUE;
753
754 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
755 need_entry = 0;
756 switch (howto->type)
757 {
758 /* These are simple indirect references to symbols through the
759 DLT. We need to create a DLT entry for any symbols which
760 appears in a DLTIND relocation. */
761 case R_PARISC_DLTIND21L:
762 case R_PARISC_DLTIND14R:
763 case R_PARISC_DLTIND14F:
764 case R_PARISC_DLTIND14WR:
765 case R_PARISC_DLTIND14DR:
766 need_entry = NEED_DLT;
767 break;
768
769 /* ?!? These need a DLT entry. But I have no idea what to do with
770 the "link time TP value. */
771 case R_PARISC_LTOFF_TP21L:
772 case R_PARISC_LTOFF_TP14R:
773 case R_PARISC_LTOFF_TP14F:
774 case R_PARISC_LTOFF_TP64:
775 case R_PARISC_LTOFF_TP14WR:
776 case R_PARISC_LTOFF_TP14DR:
777 case R_PARISC_LTOFF_TP16F:
778 case R_PARISC_LTOFF_TP16WF:
779 case R_PARISC_LTOFF_TP16DF:
780 need_entry = NEED_DLT;
781 break;
782
783 /* These are function calls. Depending on their precise target we
784 may need to make a stub for them. The stub uses the PLT, so we
785 need to create PLT entries for these symbols too. */
786 case R_PARISC_PCREL12F:
787 case R_PARISC_PCREL17F:
788 case R_PARISC_PCREL22F:
789 case R_PARISC_PCREL32:
790 case R_PARISC_PCREL64:
791 case R_PARISC_PCREL21L:
792 case R_PARISC_PCREL17R:
793 case R_PARISC_PCREL17C:
794 case R_PARISC_PCREL14R:
795 case R_PARISC_PCREL14F:
796 case R_PARISC_PCREL22C:
797 case R_PARISC_PCREL14WR:
798 case R_PARISC_PCREL14DR:
799 case R_PARISC_PCREL16F:
800 case R_PARISC_PCREL16WF:
801 case R_PARISC_PCREL16DF:
802 need_entry = (NEED_PLT | NEED_STUB);
803 break;
804
805 case R_PARISC_PLTOFF21L:
806 case R_PARISC_PLTOFF14R:
807 case R_PARISC_PLTOFF14F:
808 case R_PARISC_PLTOFF14WR:
809 case R_PARISC_PLTOFF14DR:
810 case R_PARISC_PLTOFF16F:
811 case R_PARISC_PLTOFF16WF:
812 case R_PARISC_PLTOFF16DF:
813 need_entry = (NEED_PLT);
814 break;
815
816 case R_PARISC_DIR64:
817 if (info->shared || maybe_dynamic)
818 need_entry = (NEED_DYNREL);
819 dynrel_type = R_PARISC_DIR64;
820 break;
821
822 /* This is an indirect reference through the DLT to get the address
823 of a OPD descriptor. Thus we need to make a DLT entry that points
824 to an OPD entry. */
825 case R_PARISC_LTOFF_FPTR21L:
826 case R_PARISC_LTOFF_FPTR14R:
827 case R_PARISC_LTOFF_FPTR14WR:
828 case R_PARISC_LTOFF_FPTR14DR:
829 case R_PARISC_LTOFF_FPTR32:
830 case R_PARISC_LTOFF_FPTR64:
831 case R_PARISC_LTOFF_FPTR16F:
832 case R_PARISC_LTOFF_FPTR16WF:
833 case R_PARISC_LTOFF_FPTR16DF:
834 if (info->shared || maybe_dynamic)
835 need_entry = (NEED_DLT | NEED_OPD);
836 else
837 need_entry = (NEED_DLT | NEED_OPD);
838 dynrel_type = R_PARISC_FPTR64;
839 break;
840
841 /* This is a simple OPD entry. */
842 case R_PARISC_FPTR64:
843 if (info->shared || maybe_dynamic)
844 need_entry = (NEED_OPD | NEED_DYNREL);
845 else
846 need_entry = (NEED_OPD);
847 dynrel_type = R_PARISC_FPTR64;
848 break;
849
850 /* Add more cases as needed. */
851 }
852
853 if (!need_entry)
854 continue;
855
856 /* Collect a canonical name for this address. */
857 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
858
859 /* Collect the canonical entry data for this address. */
860 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
861 addr_name, TRUE, TRUE);
862 BFD_ASSERT (dyn_h);
863
864 /* Stash away enough information to be able to find this symbol
865 regardless of whether or not it is local or global. */
866 dyn_h->h = h;
867 dyn_h->owner = abfd;
868 dyn_h->sym_indx = r_symndx;
869
870 /* ?!? We may need to do some error checking in here. */
871 /* Create what's needed. */
872 if (need_entry & NEED_DLT)
873 {
874 if (! hppa_info->dlt_sec
875 && ! get_dlt (abfd, info, hppa_info))
876 goto err_out;
877 dyn_h->want_dlt = 1;
878 }
879
880 if (need_entry & NEED_PLT)
881 {
882 if (! hppa_info->plt_sec
883 && ! get_plt (abfd, info, hppa_info))
884 goto err_out;
885 dyn_h->want_plt = 1;
886 }
887
888 if (need_entry & NEED_STUB)
889 {
890 if (! hppa_info->stub_sec
891 && ! get_stub (abfd, info, hppa_info))
892 goto err_out;
893 dyn_h->want_stub = 1;
894 }
895
896 if (need_entry & NEED_OPD)
897 {
898 if (! hppa_info->opd_sec
899 && ! get_opd (abfd, info, hppa_info))
900 goto err_out;
901
902 dyn_h->want_opd = 1;
903
904 /* FPTRs are not allocated by the dynamic linker for PA64, though
905 it is possible that will change in the future. */
906
907 /* This could be a local function that had its address taken, in
908 which case H will be NULL. */
909 if (h)
910 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
911 }
912
913 /* Add a new dynamic relocation to the chain of dynamic
914 relocations for this symbol. */
915 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
916 {
917 if (! hppa_info->other_rel_sec
918 && ! get_reloc_section (abfd, hppa_info, sec))
919 goto err_out;
920
921 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
922 sec_symndx, rel->r_offset, rel->r_addend))
923 goto err_out;
924
925 /* If we are building a shared library and we just recorded
926 a dynamic R_PARISC_FPTR64 relocation, then make sure the
927 section symbol for this section ends up in the dynamic
928 symbol table. */
929 if (info->shared && dynrel_type == R_PARISC_FPTR64
930 && ! (_bfd_elf64_link_record_local_dynamic_symbol
931 (info, abfd, sec_symndx)))
932 return FALSE;
933 }
934 }
935
936 if (buf)
937 free (buf);
938 return TRUE;
939
940 err_out:
941 if (buf)
942 free (buf);
943 return FALSE;
944 }
945
946 struct elf64_hppa_allocate_data
947 {
948 struct bfd_link_info *info;
949 bfd_size_type ofs;
950 };
951
952 /* Should we do dynamic things to this symbol? */
953
954 static bfd_boolean
955 elf64_hppa_dynamic_symbol_p (h, info)
956 struct elf_link_hash_entry *h;
957 struct bfd_link_info *info;
958 {
959 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
960 and relocations that retrieve a function descriptor? Assume the
961 worst for now. */
962 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
963 {
964 /* ??? Why is this here and not elsewhere is_local_label_name. */
965 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
966 return FALSE;
967
968 return TRUE;
969 }
970 else
971 return FALSE;
972 }
973
974 /* Mark all funtions exported by this file so that we can later allocate
975 entries in .opd for them. */
976
977 static bfd_boolean
978 elf64_hppa_mark_exported_functions (h, data)
979 struct elf_link_hash_entry *h;
980 PTR data;
981 {
982 struct bfd_link_info *info = (struct bfd_link_info *)data;
983 struct elf64_hppa_link_hash_table *hppa_info;
984
985 hppa_info = elf64_hppa_hash_table (info);
986
987 if (h->root.type == bfd_link_hash_warning)
988 h = (struct elf_link_hash_entry *) h->root.u.i.link;
989
990 if (h
991 && (h->root.type == bfd_link_hash_defined
992 || h->root.type == bfd_link_hash_defweak)
993 && h->root.u.def.section->output_section != NULL
994 && h->type == STT_FUNC)
995 {
996 struct elf64_hppa_dyn_hash_entry *dyn_h;
997
998 /* Add this symbol to the PA64 linker hash table. */
999 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1000 h->root.root.string, TRUE, TRUE);
1001 BFD_ASSERT (dyn_h);
1002 dyn_h->h = h;
1003
1004 if (! hppa_info->opd_sec
1005 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1006 return FALSE;
1007
1008 dyn_h->want_opd = 1;
1009 /* Put a flag here for output_symbol_hook. */
1010 dyn_h->st_shndx = -1;
1011 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1012 }
1013
1014 return TRUE;
1015 }
1016
1017 /* Allocate space for a DLT entry. */
1018
1019 static bfd_boolean
1020 allocate_global_data_dlt (dyn_h, data)
1021 struct elf64_hppa_dyn_hash_entry *dyn_h;
1022 PTR data;
1023 {
1024 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1025
1026 if (dyn_h->want_dlt)
1027 {
1028 struct elf_link_hash_entry *h = dyn_h->h;
1029
1030 if (x->info->shared)
1031 {
1032 /* Possibly add the symbol to the local dynamic symbol
1033 table since we might need to create a dynamic relocation
1034 against it. */
1035 if (! h
1036 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1037 {
1038 bfd *owner;
1039 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1040
1041 if (! (_bfd_elf64_link_record_local_dynamic_symbol
1042 (x->info, owner, dyn_h->sym_indx)))
1043 return FALSE;
1044 }
1045 }
1046
1047 dyn_h->dlt_offset = x->ofs;
1048 x->ofs += DLT_ENTRY_SIZE;
1049 }
1050 return TRUE;
1051 }
1052
1053 /* Allocate space for a DLT.PLT entry. */
1054
1055 static bfd_boolean
1056 allocate_global_data_plt (dyn_h, data)
1057 struct elf64_hppa_dyn_hash_entry *dyn_h;
1058 PTR data;
1059 {
1060 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1061
1062 if (dyn_h->want_plt
1063 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1064 && !((dyn_h->h->root.type == bfd_link_hash_defined
1065 || dyn_h->h->root.type == bfd_link_hash_defweak)
1066 && dyn_h->h->root.u.def.section->output_section != NULL))
1067 {
1068 dyn_h->plt_offset = x->ofs;
1069 x->ofs += PLT_ENTRY_SIZE;
1070 if (dyn_h->plt_offset < 0x2000)
1071 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1072 }
1073 else
1074 dyn_h->want_plt = 0;
1075
1076 return TRUE;
1077 }
1078
1079 /* Allocate space for a STUB entry. */
1080
1081 static bfd_boolean
1082 allocate_global_data_stub (dyn_h, data)
1083 struct elf64_hppa_dyn_hash_entry *dyn_h;
1084 PTR data;
1085 {
1086 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1087
1088 if (dyn_h->want_stub
1089 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1090 && !((dyn_h->h->root.type == bfd_link_hash_defined
1091 || dyn_h->h->root.type == bfd_link_hash_defweak)
1092 && dyn_h->h->root.u.def.section->output_section != NULL))
1093 {
1094 dyn_h->stub_offset = x->ofs;
1095 x->ofs += sizeof (plt_stub);
1096 }
1097 else
1098 dyn_h->want_stub = 0;
1099 return TRUE;
1100 }
1101
1102 /* Allocate space for a FPTR entry. */
1103
1104 static bfd_boolean
1105 allocate_global_data_opd (dyn_h, data)
1106 struct elf64_hppa_dyn_hash_entry *dyn_h;
1107 PTR data;
1108 {
1109 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1110
1111 if (dyn_h->want_opd)
1112 {
1113 struct elf_link_hash_entry *h = dyn_h->h;
1114
1115 if (h)
1116 while (h->root.type == bfd_link_hash_indirect
1117 || h->root.type == bfd_link_hash_warning)
1118 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1119
1120 /* We never need an opd entry for a symbol which is not
1121 defined by this output file. */
1122 if (h && (h->root.type == bfd_link_hash_undefined
1123 || h->root.u.def.section->output_section == NULL))
1124 dyn_h->want_opd = 0;
1125
1126 /* If we are creating a shared library, took the address of a local
1127 function or might export this function from this object file, then
1128 we have to create an opd descriptor. */
1129 else if (x->info->shared
1130 || h == NULL
1131 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1132 || (h->root.type == bfd_link_hash_defined
1133 || h->root.type == bfd_link_hash_defweak))
1134 {
1135 /* If we are creating a shared library, then we will have to
1136 create a runtime relocation for the symbol to properly
1137 initialize the .opd entry. Make sure the symbol gets
1138 added to the dynamic symbol table. */
1139 if (x->info->shared
1140 && (h == NULL || (h->dynindx == -1)))
1141 {
1142 bfd *owner;
1143 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1144
1145 if (!_bfd_elf64_link_record_local_dynamic_symbol
1146 (x->info, owner, dyn_h->sym_indx))
1147 return FALSE;
1148 }
1149
1150 /* This may not be necessary or desirable anymore now that
1151 we have some support for dealing with section symbols
1152 in dynamic relocs. But name munging does make the result
1153 much easier to debug. ie, the EPLT reloc will reference
1154 a symbol like .foobar, instead of .text + offset. */
1155 if (x->info->shared && h)
1156 {
1157 char *new_name;
1158 struct elf_link_hash_entry *nh;
1159
1160 new_name = alloca (strlen (h->root.root.string) + 2);
1161 new_name[0] = '.';
1162 strcpy (new_name + 1, h->root.root.string);
1163
1164 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1165 new_name, TRUE, TRUE, TRUE);
1166
1167 nh->root.type = h->root.type;
1168 nh->root.u.def.value = h->root.u.def.value;
1169 nh->root.u.def.section = h->root.u.def.section;
1170
1171 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1172 return FALSE;
1173
1174 }
1175 dyn_h->opd_offset = x->ofs;
1176 x->ofs += OPD_ENTRY_SIZE;
1177 }
1178
1179 /* Otherwise we do not need an opd entry. */
1180 else
1181 dyn_h->want_opd = 0;
1182 }
1183 return TRUE;
1184 }
1185
1186 /* HP requires the EI_OSABI field to be filled in. The assignment to
1187 EI_ABIVERSION may not be strictly necessary. */
1188
1189 static void
1190 elf64_hppa_post_process_headers (abfd, link_info)
1191 bfd * abfd;
1192 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1193 {
1194 Elf_Internal_Ehdr * i_ehdrp;
1195
1196 i_ehdrp = elf_elfheader (abfd);
1197
1198 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1199 {
1200 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1201 }
1202 else
1203 {
1204 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1205 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1206 }
1207 }
1208
1209 /* Create function descriptor section (.opd). This section is called .opd
1210 because it contains "official prodecure descriptors". The "official"
1211 refers to the fact that these descriptors are used when taking the address
1212 of a procedure, thus ensuring a unique address for each procedure. */
1213
1214 static bfd_boolean
1215 get_opd (abfd, info, hppa_info)
1216 bfd *abfd;
1217 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1218 struct elf64_hppa_link_hash_table *hppa_info;
1219 {
1220 asection *opd;
1221 bfd *dynobj;
1222
1223 opd = hppa_info->opd_sec;
1224 if (!opd)
1225 {
1226 dynobj = hppa_info->root.dynobj;
1227 if (!dynobj)
1228 hppa_info->root.dynobj = dynobj = abfd;
1229
1230 opd = bfd_make_section (dynobj, ".opd");
1231 if (!opd
1232 || !bfd_set_section_flags (dynobj, opd,
1233 (SEC_ALLOC
1234 | SEC_LOAD
1235 | SEC_HAS_CONTENTS
1236 | SEC_IN_MEMORY
1237 | SEC_LINKER_CREATED))
1238 || !bfd_set_section_alignment (abfd, opd, 3))
1239 {
1240 BFD_ASSERT (0);
1241 return FALSE;
1242 }
1243
1244 hppa_info->opd_sec = opd;
1245 }
1246
1247 return TRUE;
1248 }
1249
1250 /* Create the PLT section. */
1251
1252 static bfd_boolean
1253 get_plt (abfd, info, hppa_info)
1254 bfd *abfd;
1255 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1256 struct elf64_hppa_link_hash_table *hppa_info;
1257 {
1258 asection *plt;
1259 bfd *dynobj;
1260
1261 plt = hppa_info->plt_sec;
1262 if (!plt)
1263 {
1264 dynobj = hppa_info->root.dynobj;
1265 if (!dynobj)
1266 hppa_info->root.dynobj = dynobj = abfd;
1267
1268 plt = bfd_make_section (dynobj, ".plt");
1269 if (!plt
1270 || !bfd_set_section_flags (dynobj, plt,
1271 (SEC_ALLOC
1272 | SEC_LOAD
1273 | SEC_HAS_CONTENTS
1274 | SEC_IN_MEMORY
1275 | SEC_LINKER_CREATED))
1276 || !bfd_set_section_alignment (abfd, plt, 3))
1277 {
1278 BFD_ASSERT (0);
1279 return FALSE;
1280 }
1281
1282 hppa_info->plt_sec = plt;
1283 }
1284
1285 return TRUE;
1286 }
1287
1288 /* Create the DLT section. */
1289
1290 static bfd_boolean
1291 get_dlt (abfd, info, hppa_info)
1292 bfd *abfd;
1293 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1294 struct elf64_hppa_link_hash_table *hppa_info;
1295 {
1296 asection *dlt;
1297 bfd *dynobj;
1298
1299 dlt = hppa_info->dlt_sec;
1300 if (!dlt)
1301 {
1302 dynobj = hppa_info->root.dynobj;
1303 if (!dynobj)
1304 hppa_info->root.dynobj = dynobj = abfd;
1305
1306 dlt = bfd_make_section (dynobj, ".dlt");
1307 if (!dlt
1308 || !bfd_set_section_flags (dynobj, dlt,
1309 (SEC_ALLOC
1310 | SEC_LOAD
1311 | SEC_HAS_CONTENTS
1312 | SEC_IN_MEMORY
1313 | SEC_LINKER_CREATED))
1314 || !bfd_set_section_alignment (abfd, dlt, 3))
1315 {
1316 BFD_ASSERT (0);
1317 return FALSE;
1318 }
1319
1320 hppa_info->dlt_sec = dlt;
1321 }
1322
1323 return TRUE;
1324 }
1325
1326 /* Create the stubs section. */
1327
1328 static bfd_boolean
1329 get_stub (abfd, info, hppa_info)
1330 bfd *abfd;
1331 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1332 struct elf64_hppa_link_hash_table *hppa_info;
1333 {
1334 asection *stub;
1335 bfd *dynobj;
1336
1337 stub = hppa_info->stub_sec;
1338 if (!stub)
1339 {
1340 dynobj = hppa_info->root.dynobj;
1341 if (!dynobj)
1342 hppa_info->root.dynobj = dynobj = abfd;
1343
1344 stub = bfd_make_section (dynobj, ".stub");
1345 if (!stub
1346 || !bfd_set_section_flags (dynobj, stub,
1347 (SEC_ALLOC
1348 | SEC_LOAD
1349 | SEC_HAS_CONTENTS
1350 | SEC_IN_MEMORY
1351 | SEC_READONLY
1352 | SEC_LINKER_CREATED))
1353 || !bfd_set_section_alignment (abfd, stub, 3))
1354 {
1355 BFD_ASSERT (0);
1356 return FALSE;
1357 }
1358
1359 hppa_info->stub_sec = stub;
1360 }
1361
1362 return TRUE;
1363 }
1364
1365 /* Create sections necessary for dynamic linking. This is only a rough
1366 cut and will likely change as we learn more about the somewhat
1367 unusual dynamic linking scheme HP uses.
1368
1369 .stub:
1370 Contains code to implement cross-space calls. The first time one
1371 of the stubs is used it will call into the dynamic linker, later
1372 calls will go straight to the target.
1373
1374 The only stub we support right now looks like
1375
1376 ldd OFFSET(%dp),%r1
1377 bve %r0(%r1)
1378 ldd OFFSET+8(%dp),%dp
1379
1380 Other stubs may be needed in the future. We may want the remove
1381 the break/nop instruction. It is only used right now to keep the
1382 offset of a .plt entry and a .stub entry in sync.
1383
1384 .dlt:
1385 This is what most people call the .got. HP used a different name.
1386 Losers.
1387
1388 .rela.dlt:
1389 Relocations for the DLT.
1390
1391 .plt:
1392 Function pointers as address,gp pairs.
1393
1394 .rela.plt:
1395 Should contain dynamic IPLT (and EPLT?) relocations.
1396
1397 .opd:
1398 FPTRS
1399
1400 .rela.opd:
1401 EPLT relocations for symbols exported from shared libraries. */
1402
1403 static bfd_boolean
1404 elf64_hppa_create_dynamic_sections (abfd, info)
1405 bfd *abfd;
1406 struct bfd_link_info *info;
1407 {
1408 asection *s;
1409
1410 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1411 return FALSE;
1412
1413 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1414 return FALSE;
1415
1416 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1417 return FALSE;
1418
1419 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1420 return FALSE;
1421
1422 s = bfd_make_section(abfd, ".rela.dlt");
1423 if (s == NULL
1424 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1425 | SEC_HAS_CONTENTS
1426 | SEC_IN_MEMORY
1427 | SEC_READONLY
1428 | SEC_LINKER_CREATED))
1429 || !bfd_set_section_alignment (abfd, s, 3))
1430 return FALSE;
1431 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1432
1433 s = bfd_make_section(abfd, ".rela.plt");
1434 if (s == NULL
1435 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1436 | SEC_HAS_CONTENTS
1437 | SEC_IN_MEMORY
1438 | SEC_READONLY
1439 | SEC_LINKER_CREATED))
1440 || !bfd_set_section_alignment (abfd, s, 3))
1441 return FALSE;
1442 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1443
1444 s = bfd_make_section(abfd, ".rela.data");
1445 if (s == NULL
1446 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1447 | SEC_HAS_CONTENTS
1448 | SEC_IN_MEMORY
1449 | SEC_READONLY
1450 | SEC_LINKER_CREATED))
1451 || !bfd_set_section_alignment (abfd, s, 3))
1452 return FALSE;
1453 elf64_hppa_hash_table (info)->other_rel_sec = s;
1454
1455 s = bfd_make_section(abfd, ".rela.opd");
1456 if (s == NULL
1457 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1458 | SEC_HAS_CONTENTS
1459 | SEC_IN_MEMORY
1460 | SEC_READONLY
1461 | SEC_LINKER_CREATED))
1462 || !bfd_set_section_alignment (abfd, s, 3))
1463 return FALSE;
1464 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1465
1466 return TRUE;
1467 }
1468
1469 /* Allocate dynamic relocations for those symbols that turned out
1470 to be dynamic. */
1471
1472 static bfd_boolean
1473 allocate_dynrel_entries (dyn_h, data)
1474 struct elf64_hppa_dyn_hash_entry *dyn_h;
1475 PTR data;
1476 {
1477 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1478 struct elf64_hppa_link_hash_table *hppa_info;
1479 struct elf64_hppa_dyn_reloc_entry *rent;
1480 bfd_boolean dynamic_symbol, shared;
1481
1482 hppa_info = elf64_hppa_hash_table (x->info);
1483 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1484 shared = x->info->shared;
1485
1486 /* We may need to allocate relocations for a non-dynamic symbol
1487 when creating a shared library. */
1488 if (!dynamic_symbol && !shared)
1489 return TRUE;
1490
1491 /* Take care of the normal data relocations. */
1492
1493 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1494 {
1495 /* Allocate one iff we are building a shared library, the relocation
1496 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1497 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1498 continue;
1499
1500 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1501
1502 /* Make sure this symbol gets into the dynamic symbol table if it is
1503 not already recorded. ?!? This should not be in the loop since
1504 the symbol need only be added once. */
1505 if (dyn_h->h == 0
1506 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1507 if (!_bfd_elf64_link_record_local_dynamic_symbol
1508 (x->info, rent->sec->owner, dyn_h->sym_indx))
1509 return FALSE;
1510 }
1511
1512 /* Take care of the GOT and PLT relocations. */
1513
1514 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1515 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1516
1517 /* If we are building a shared library, then every symbol that has an
1518 opd entry will need an EPLT relocation to relocate the symbol's address
1519 and __gp value based on the runtime load address. */
1520 if (shared && dyn_h->want_opd)
1521 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1522
1523 if (dyn_h->want_plt && dynamic_symbol)
1524 {
1525 bfd_size_type t = 0;
1526
1527 /* Dynamic symbols get one IPLT relocation. Local symbols in
1528 shared libraries get two REL relocations. Local symbols in
1529 main applications get nothing. */
1530 if (dynamic_symbol)
1531 t = sizeof (Elf64_External_Rela);
1532 else if (shared)
1533 t = 2 * sizeof (Elf64_External_Rela);
1534
1535 hppa_info->plt_rel_sec->_raw_size += t;
1536 }
1537
1538 return TRUE;
1539 }
1540
1541 /* Adjust a symbol defined by a dynamic object and referenced by a
1542 regular object. */
1543
1544 static bfd_boolean
1545 elf64_hppa_adjust_dynamic_symbol (info, h)
1546 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1547 struct elf_link_hash_entry *h;
1548 {
1549 /* ??? Undefined symbols with PLT entries should be re-defined
1550 to be the PLT entry. */
1551
1552 /* If this is a weak symbol, and there is a real definition, the
1553 processor independent code will have arranged for us to see the
1554 real definition first, and we can just use the same value. */
1555 if (h->weakdef != NULL)
1556 {
1557 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1558 || h->weakdef->root.type == bfd_link_hash_defweak);
1559 h->root.u.def.section = h->weakdef->root.u.def.section;
1560 h->root.u.def.value = h->weakdef->root.u.def.value;
1561 return TRUE;
1562 }
1563
1564 /* If this is a reference to a symbol defined by a dynamic object which
1565 is not a function, we might allocate the symbol in our .dynbss section
1566 and allocate a COPY dynamic relocation.
1567
1568 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1569 of hackery. */
1570
1571 return TRUE;
1572 }
1573
1574 /* This function is called via elf_link_hash_traverse to mark millicode
1575 symbols with a dynindx of -1 and to remove the string table reference
1576 from the dynamic symbol table. If the symbol is not a millicode symbol,
1577 elf64_hppa_mark_exported_functions is called. */
1578
1579 static bfd_boolean
1580 elf64_hppa_mark_milli_and_exported_functions (h, data)
1581 struct elf_link_hash_entry *h;
1582 PTR data;
1583 {
1584 struct bfd_link_info *info = (struct bfd_link_info *)data;
1585 struct elf_link_hash_entry *elf = h;
1586
1587 if (elf->root.type == bfd_link_hash_warning)
1588 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1589
1590 if (elf->type == STT_PARISC_MILLI)
1591 {
1592 if (elf->dynindx != -1)
1593 {
1594 elf->dynindx = -1;
1595 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1596 elf->dynstr_index);
1597 }
1598 return TRUE;
1599 }
1600
1601 return elf64_hppa_mark_exported_functions (h, data);
1602 }
1603
1604 /* Set the final sizes of the dynamic sections and allocate memory for
1605 the contents of our special sections. */
1606
1607 static bfd_boolean
1608 elf64_hppa_size_dynamic_sections (output_bfd, info)
1609 bfd *output_bfd;
1610 struct bfd_link_info *info;
1611 {
1612 bfd *dynobj;
1613 asection *s;
1614 bfd_boolean plt;
1615 bfd_boolean relocs;
1616 bfd_boolean reltext;
1617 struct elf64_hppa_allocate_data data;
1618 struct elf64_hppa_link_hash_table *hppa_info;
1619
1620 hppa_info = elf64_hppa_hash_table (info);
1621
1622 dynobj = elf_hash_table (info)->dynobj;
1623 BFD_ASSERT (dynobj != NULL);
1624
1625 /* Mark each function this program exports so that we will allocate
1626 space in the .opd section for each function's FPTR. If we are
1627 creating dynamic sections, change the dynamic index of millicode
1628 symbols to -1 and remove them from the string table for .dynstr.
1629
1630 We have to traverse the main linker hash table since we have to
1631 find functions which may not have been mentioned in any relocs. */
1632 elf_link_hash_traverse (elf_hash_table (info),
1633 (elf_hash_table (info)->dynamic_sections_created
1634 ? elf64_hppa_mark_milli_and_exported_functions
1635 : elf64_hppa_mark_exported_functions),
1636 info);
1637
1638 if (elf_hash_table (info)->dynamic_sections_created)
1639 {
1640 /* Set the contents of the .interp section to the interpreter. */
1641 if (! info->shared)
1642 {
1643 s = bfd_get_section_by_name (dynobj, ".interp");
1644 BFD_ASSERT (s != NULL);
1645 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1646 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1647 }
1648 }
1649 else
1650 {
1651 /* We may have created entries in the .rela.got section.
1652 However, if we are not creating the dynamic sections, we will
1653 not actually use these entries. Reset the size of .rela.dlt,
1654 which will cause it to get stripped from the output file
1655 below. */
1656 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1657 if (s != NULL)
1658 s->_raw_size = 0;
1659 }
1660
1661 /* Allocate the GOT entries. */
1662
1663 data.info = info;
1664 if (elf64_hppa_hash_table (info)->dlt_sec)
1665 {
1666 data.ofs = 0x0;
1667 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1668 allocate_global_data_dlt, &data);
1669 hppa_info->dlt_sec->_raw_size = data.ofs;
1670
1671 data.ofs = 0x0;
1672 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1673 allocate_global_data_plt, &data);
1674 hppa_info->plt_sec->_raw_size = data.ofs;
1675
1676 data.ofs = 0x0;
1677 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1678 allocate_global_data_stub, &data);
1679 hppa_info->stub_sec->_raw_size = data.ofs;
1680 }
1681
1682 /* Allocate space for entries in the .opd section. */
1683 if (elf64_hppa_hash_table (info)->opd_sec)
1684 {
1685 data.ofs = 0;
1686 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1687 allocate_global_data_opd, &data);
1688 hppa_info->opd_sec->_raw_size = data.ofs;
1689 }
1690
1691 /* Now allocate space for dynamic relocations, if necessary. */
1692 if (hppa_info->root.dynamic_sections_created)
1693 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1694 allocate_dynrel_entries, &data);
1695
1696 /* The sizes of all the sections are set. Allocate memory for them. */
1697 plt = FALSE;
1698 relocs = FALSE;
1699 reltext = FALSE;
1700 for (s = dynobj->sections; s != NULL; s = s->next)
1701 {
1702 const char *name;
1703 bfd_boolean strip;
1704
1705 if ((s->flags & SEC_LINKER_CREATED) == 0)
1706 continue;
1707
1708 /* It's OK to base decisions on the section name, because none
1709 of the dynobj section names depend upon the input files. */
1710 name = bfd_get_section_name (dynobj, s);
1711
1712 strip = 0;
1713
1714 if (strcmp (name, ".plt") == 0)
1715 {
1716 /* Strip this section if we don't need it; see the comment below. */
1717 if (s->_raw_size == 0)
1718 {
1719 strip = TRUE;
1720 }
1721 else
1722 {
1723 /* Remember whether there is a PLT. */
1724 plt = TRUE;
1725 }
1726 }
1727 else if (strcmp (name, ".dlt") == 0)
1728 {
1729 /* Strip this section if we don't need it; see the comment below. */
1730 if (s->_raw_size == 0)
1731 {
1732 strip = TRUE;
1733 }
1734 }
1735 else if (strcmp (name, ".opd") == 0)
1736 {
1737 /* Strip this section if we don't need it; see the comment below. */
1738 if (s->_raw_size == 0)
1739 {
1740 strip = TRUE;
1741 }
1742 }
1743 else if (strncmp (name, ".rela", 5) == 0)
1744 {
1745 /* If we don't need this section, strip it from the output file.
1746 This is mostly to handle .rela.bss and .rela.plt. We must
1747 create both sections in create_dynamic_sections, because they
1748 must be created before the linker maps input sections to output
1749 sections. The linker does that before adjust_dynamic_symbol
1750 is called, and it is that function which decides whether
1751 anything needs to go into these sections. */
1752 if (s->_raw_size == 0)
1753 {
1754 /* If we don't need this section, strip it from the
1755 output file. This is mostly to handle .rela.bss and
1756 .rela.plt. We must create both sections in
1757 create_dynamic_sections, because they must be created
1758 before the linker maps input sections to output
1759 sections. The linker does that before
1760 adjust_dynamic_symbol is called, and it is that
1761 function which decides whether anything needs to go
1762 into these sections. */
1763 strip = TRUE;
1764 }
1765 else
1766 {
1767 asection *target;
1768
1769 /* Remember whether there are any reloc sections other
1770 than .rela.plt. */
1771 if (strcmp (name, ".rela.plt") != 0)
1772 {
1773 const char *outname;
1774
1775 relocs = TRUE;
1776
1777 /* If this relocation section applies to a read only
1778 section, then we probably need a DT_TEXTREL
1779 entry. The entries in the .rela.plt section
1780 really apply to the .got section, which we
1781 created ourselves and so know is not readonly. */
1782 outname = bfd_get_section_name (output_bfd,
1783 s->output_section);
1784 target = bfd_get_section_by_name (output_bfd, outname + 4);
1785 if (target != NULL
1786 && (target->flags & SEC_READONLY) != 0
1787 && (target->flags & SEC_ALLOC) != 0)
1788 reltext = TRUE;
1789 }
1790
1791 /* We use the reloc_count field as a counter if we need
1792 to copy relocs into the output file. */
1793 s->reloc_count = 0;
1794 }
1795 }
1796 else if (strncmp (name, ".dlt", 4) != 0
1797 && strcmp (name, ".stub") != 0
1798 && strcmp (name, ".got") != 0)
1799 {
1800 /* It's not one of our sections, so don't allocate space. */
1801 continue;
1802 }
1803
1804 if (strip)
1805 {
1806 _bfd_strip_section_from_output (info, s);
1807 continue;
1808 }
1809
1810 /* Allocate memory for the section contents if it has not
1811 been allocated already. We use bfd_zalloc here in case
1812 unused entries are not reclaimed before the section's
1813 contents are written out. This should not happen, but this
1814 way if it does, we get a R_PARISC_NONE reloc instead of
1815 garbage. */
1816 if (s->contents == NULL)
1817 {
1818 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1819 if (s->contents == NULL && s->_raw_size != 0)
1820 return FALSE;
1821 }
1822 }
1823
1824 if (elf_hash_table (info)->dynamic_sections_created)
1825 {
1826 /* Always create a DT_PLTGOT. It actually has nothing to do with
1827 the PLT, it is how we communicate the __gp value of a load
1828 module to the dynamic linker. */
1829 #define add_dynamic_entry(TAG, VAL) \
1830 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1831
1832 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1833 || !add_dynamic_entry (DT_PLTGOT, 0))
1834 return FALSE;
1835
1836 /* Add some entries to the .dynamic section. We fill in the
1837 values later, in elf64_hppa_finish_dynamic_sections, but we
1838 must add the entries now so that we get the correct size for
1839 the .dynamic section. The DT_DEBUG entry is filled in by the
1840 dynamic linker and used by the debugger. */
1841 if (! info->shared)
1842 {
1843 if (!add_dynamic_entry (DT_DEBUG, 0)
1844 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1845 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1846 return FALSE;
1847 }
1848
1849 /* Force DT_FLAGS to always be set.
1850 Required by HPUX 11.00 patch PHSS_26559. */
1851 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1852 return FALSE;
1853
1854 if (plt)
1855 {
1856 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1857 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1858 || !add_dynamic_entry (DT_JMPREL, 0))
1859 return FALSE;
1860 }
1861
1862 if (relocs)
1863 {
1864 if (!add_dynamic_entry (DT_RELA, 0)
1865 || !add_dynamic_entry (DT_RELASZ, 0)
1866 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1867 return FALSE;
1868 }
1869
1870 if (reltext)
1871 {
1872 if (!add_dynamic_entry (DT_TEXTREL, 0))
1873 return FALSE;
1874 info->flags |= DF_TEXTREL;
1875 }
1876 }
1877 #undef add_dynamic_entry
1878
1879 return TRUE;
1880 }
1881
1882 /* Called after we have output the symbol into the dynamic symbol
1883 table, but before we output the symbol into the normal symbol
1884 table.
1885
1886 For some symbols we had to change their address when outputting
1887 the dynamic symbol table. We undo that change here so that
1888 the symbols have their expected value in the normal symbol
1889 table. Ick. */
1890
1891 static bfd_boolean
1892 elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
1893 bfd *abfd ATTRIBUTE_UNUSED;
1894 struct bfd_link_info *info;
1895 const char *name;
1896 Elf_Internal_Sym *sym;
1897 asection *input_sec ATTRIBUTE_UNUSED;
1898 {
1899 struct elf64_hppa_link_hash_table *hppa_info;
1900 struct elf64_hppa_dyn_hash_entry *dyn_h;
1901
1902 /* We may be called with the file symbol or section symbols.
1903 They never need munging, so it is safe to ignore them. */
1904 if (!name)
1905 return TRUE;
1906
1907 /* Get the PA dyn_symbol (if any) associated with NAME. */
1908 hppa_info = elf64_hppa_hash_table (info);
1909 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1910 name, FALSE, FALSE);
1911
1912 /* Function symbols for which we created .opd entries *may* have been
1913 munged by finish_dynamic_symbol and have to be un-munged here.
1914
1915 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1916 into non-dynamic ones, so we initialize st_shndx to -1 in
1917 mark_exported_functions and check to see if it was overwritten
1918 here instead of just checking dyn_h->h->dynindx. */
1919 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
1920 {
1921 /* Restore the saved value and section index. */
1922 sym->st_value = dyn_h->st_value;
1923 sym->st_shndx = dyn_h->st_shndx;
1924 }
1925
1926 return TRUE;
1927 }
1928
1929 /* Finish up dynamic symbol handling. We set the contents of various
1930 dynamic sections here. */
1931
1932 static bfd_boolean
1933 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1934 bfd *output_bfd;
1935 struct bfd_link_info *info;
1936 struct elf_link_hash_entry *h;
1937 Elf_Internal_Sym *sym;
1938 {
1939 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1940 struct elf64_hppa_link_hash_table *hppa_info;
1941 struct elf64_hppa_dyn_hash_entry *dyn_h;
1942
1943 hppa_info = elf64_hppa_hash_table (info);
1944 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1945 h->root.root.string, FALSE, FALSE);
1946
1947 stub = hppa_info->stub_sec;
1948 splt = hppa_info->plt_sec;
1949 sdlt = hppa_info->dlt_sec;
1950 sopd = hppa_info->opd_sec;
1951 spltrel = hppa_info->plt_rel_sec;
1952 sdltrel = hppa_info->dlt_rel_sec;
1953
1954 /* Incredible. It is actually necessary to NOT use the symbol's real
1955 value when building the dynamic symbol table for a shared library.
1956 At least for symbols that refer to functions.
1957
1958 We will store a new value and section index into the symbol long
1959 enough to output it into the dynamic symbol table, then we restore
1960 the original values (in elf64_hppa_link_output_symbol_hook). */
1961 if (dyn_h && dyn_h->want_opd)
1962 {
1963 BFD_ASSERT (sopd != NULL)
1964
1965 /* Save away the original value and section index so that we
1966 can restore them later. */
1967 dyn_h->st_value = sym->st_value;
1968 dyn_h->st_shndx = sym->st_shndx;
1969
1970 /* For the dynamic symbol table entry, we want the value to be
1971 address of this symbol's entry within the .opd section. */
1972 sym->st_value = (dyn_h->opd_offset
1973 + sopd->output_offset
1974 + sopd->output_section->vma);
1975 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1976 sopd->output_section);
1977 }
1978
1979 /* Initialize a .plt entry if requested. */
1980 if (dyn_h && dyn_h->want_plt
1981 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1982 {
1983 bfd_vma value;
1984 Elf_Internal_Rela rel;
1985 bfd_byte *loc;
1986
1987 BFD_ASSERT (splt != NULL && spltrel != NULL)
1988
1989 /* We do not actually care about the value in the PLT entry
1990 if we are creating a shared library and the symbol is
1991 still undefined, we create a dynamic relocation to fill
1992 in the correct value. */
1993 if (info->shared && h->root.type == bfd_link_hash_undefined)
1994 value = 0;
1995 else
1996 value = (h->root.u.def.value + h->root.u.def.section->vma);
1997
1998 /* Fill in the entry in the procedure linkage table.
1999
2000 The format of a plt entry is
2001 <funcaddr> <__gp>.
2002
2003 plt_offset is the offset within the PLT section at which to
2004 install the PLT entry.
2005
2006 We are modifying the in-memory PLT contents here, so we do not add
2007 in the output_offset of the PLT section. */
2008
2009 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2010 value = _bfd_get_gp_value (splt->output_section->owner);
2011 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2012
2013 /* Create a dynamic IPLT relocation for this entry.
2014
2015 We are creating a relocation in the output file's PLT section,
2016 which is included within the DLT secton. So we do need to include
2017 the PLT's output_offset in the computation of the relocation's
2018 address. */
2019 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2020 + splt->output_section->vma);
2021 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2022 rel.r_addend = 0;
2023
2024 loc = spltrel->contents;
2025 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2026 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2027 }
2028
2029 /* Initialize an external call stub entry if requested. */
2030 if (dyn_h && dyn_h->want_stub
2031 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2032 {
2033 bfd_vma value;
2034 int insn;
2035 unsigned int max_offset;
2036
2037 BFD_ASSERT (stub != NULL)
2038
2039 /* Install the generic stub template.
2040
2041 We are modifying the contents of the stub section, so we do not
2042 need to include the stub section's output_offset here. */
2043 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2044
2045 /* Fix up the first ldd instruction.
2046
2047 We are modifying the contents of the STUB section in memory,
2048 so we do not need to include its output offset in this computation.
2049
2050 Note the plt_offset value is the value of the PLT entry relative to
2051 the start of the PLT section. These instructions will reference
2052 data relative to the value of __gp, which may not necessarily have
2053 the same address as the start of the PLT section.
2054
2055 gp_offset contains the offset of __gp within the PLT section. */
2056 value = dyn_h->plt_offset - hppa_info->gp_offset;
2057
2058 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2059 if (output_bfd->arch_info->mach >= 25)
2060 {
2061 /* Wide mode allows 16 bit offsets. */
2062 max_offset = 32768;
2063 insn &= ~ 0xfff1;
2064 insn |= re_assemble_16 ((int) value);
2065 }
2066 else
2067 {
2068 max_offset = 8192;
2069 insn &= ~ 0x3ff1;
2070 insn |= re_assemble_14 ((int) value);
2071 }
2072
2073 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2074 {
2075 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2076 dyn_h->root.string,
2077 (long) value);
2078 return FALSE;
2079 }
2080
2081 bfd_put_32 (stub->owner, (bfd_vma) insn,
2082 stub->contents + dyn_h->stub_offset);
2083
2084 /* Fix up the second ldd instruction. */
2085 value += 8;
2086 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2087 if (output_bfd->arch_info->mach >= 25)
2088 {
2089 insn &= ~ 0xfff1;
2090 insn |= re_assemble_16 ((int) value);
2091 }
2092 else
2093 {
2094 insn &= ~ 0x3ff1;
2095 insn |= re_assemble_14 ((int) value);
2096 }
2097 bfd_put_32 (stub->owner, (bfd_vma) insn,
2098 stub->contents + dyn_h->stub_offset + 8);
2099 }
2100
2101 return TRUE;
2102 }
2103
2104 /* The .opd section contains FPTRs for each function this file
2105 exports. Initialize the FPTR entries. */
2106
2107 static bfd_boolean
2108 elf64_hppa_finalize_opd (dyn_h, data)
2109 struct elf64_hppa_dyn_hash_entry *dyn_h;
2110 PTR data;
2111 {
2112 struct bfd_link_info *info = (struct bfd_link_info *)data;
2113 struct elf64_hppa_link_hash_table *hppa_info;
2114 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2115 asection *sopd;
2116 asection *sopdrel;
2117
2118 hppa_info = elf64_hppa_hash_table (info);
2119 sopd = hppa_info->opd_sec;
2120 sopdrel = hppa_info->opd_rel_sec;
2121
2122 if (h && dyn_h->want_opd)
2123 {
2124 bfd_vma value;
2125
2126 /* The first two words of an .opd entry are zero.
2127
2128 We are modifying the contents of the OPD section in memory, so we
2129 do not need to include its output offset in this computation. */
2130 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2131
2132 value = (h->root.u.def.value
2133 + h->root.u.def.section->output_section->vma
2134 + h->root.u.def.section->output_offset);
2135
2136 /* The next word is the address of the function. */
2137 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2138
2139 /* The last word is our local __gp value. */
2140 value = _bfd_get_gp_value (sopd->output_section->owner);
2141 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2142 }
2143
2144 /* If we are generating a shared library, we must generate EPLT relocations
2145 for each entry in the .opd, even for static functions (they may have
2146 had their address taken). */
2147 if (info->shared && dyn_h && dyn_h->want_opd)
2148 {
2149 Elf_Internal_Rela rel;
2150 bfd_byte *loc;
2151 int dynindx;
2152
2153 /* We may need to do a relocation against a local symbol, in
2154 which case we have to look up it's dynamic symbol index off
2155 the local symbol hash table. */
2156 if (h && h->dynindx != -1)
2157 dynindx = h->dynindx;
2158 else
2159 dynindx
2160 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2161 dyn_h->sym_indx);
2162
2163 /* The offset of this relocation is the absolute address of the
2164 .opd entry for this symbol. */
2165 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2166 + sopd->output_section->vma);
2167
2168 /* If H is non-null, then we have an external symbol.
2169
2170 It is imperative that we use a different dynamic symbol for the
2171 EPLT relocation if the symbol has global scope.
2172
2173 In the dynamic symbol table, the function symbol will have a value
2174 which is address of the function's .opd entry.
2175
2176 Thus, we can not use that dynamic symbol for the EPLT relocation
2177 (if we did, the data in the .opd would reference itself rather
2178 than the actual address of the function). Instead we have to use
2179 a new dynamic symbol which has the same value as the original global
2180 function symbol.
2181
2182 We prefix the original symbol with a "." and use the new symbol in
2183 the EPLT relocation. This new symbol has already been recorded in
2184 the symbol table, we just have to look it up and use it.
2185
2186 We do not have such problems with static functions because we do
2187 not make their addresses in the dynamic symbol table point to
2188 the .opd entry. Ultimately this should be safe since a static
2189 function can not be directly referenced outside of its shared
2190 library.
2191
2192 We do have to play similar games for FPTR relocations in shared
2193 libraries, including those for static symbols. See the FPTR
2194 handling in elf64_hppa_finalize_dynreloc. */
2195 if (h)
2196 {
2197 char *new_name;
2198 struct elf_link_hash_entry *nh;
2199
2200 new_name = alloca (strlen (h->root.root.string) + 2);
2201 new_name[0] = '.';
2202 strcpy (new_name + 1, h->root.root.string);
2203
2204 nh = elf_link_hash_lookup (elf_hash_table (info),
2205 new_name, FALSE, FALSE, FALSE);
2206
2207 /* All we really want from the new symbol is its dynamic
2208 symbol index. */
2209 dynindx = nh->dynindx;
2210 }
2211
2212 rel.r_addend = 0;
2213 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2214
2215 loc = sopdrel->contents;
2216 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2217 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2218 }
2219 return TRUE;
2220 }
2221
2222 /* The .dlt section contains addresses for items referenced through the
2223 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2224 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2225
2226 static bfd_boolean
2227 elf64_hppa_finalize_dlt (dyn_h, data)
2228 struct elf64_hppa_dyn_hash_entry *dyn_h;
2229 PTR data;
2230 {
2231 struct bfd_link_info *info = (struct bfd_link_info *)data;
2232 struct elf64_hppa_link_hash_table *hppa_info;
2233 asection *sdlt, *sdltrel;
2234 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2235
2236 hppa_info = elf64_hppa_hash_table (info);
2237
2238 sdlt = hppa_info->dlt_sec;
2239 sdltrel = hppa_info->dlt_rel_sec;
2240
2241 /* H/DYN_H may refer to a local variable and we know it's
2242 address, so there is no need to create a relocation. Just install
2243 the proper value into the DLT, note this shortcut can not be
2244 skipped when building a shared library. */
2245 if (! info->shared && h && dyn_h->want_dlt)
2246 {
2247 bfd_vma value;
2248
2249 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2250 to point to the FPTR entry in the .opd section.
2251
2252 We include the OPD's output offset in this computation as
2253 we are referring to an absolute address in the resulting
2254 object file. */
2255 if (dyn_h->want_opd)
2256 {
2257 value = (dyn_h->opd_offset
2258 + hppa_info->opd_sec->output_offset
2259 + hppa_info->opd_sec->output_section->vma);
2260 }
2261 else if (h->root.u.def.section)
2262 {
2263 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2264 if (h->root.u.def.section->output_section)
2265 value += h->root.u.def.section->output_section->vma;
2266 else
2267 value += h->root.u.def.section->vma;
2268 }
2269 else
2270 /* We have an undefined function reference. */
2271 value = 0;
2272
2273 /* We do not need to include the output offset of the DLT section
2274 here because we are modifying the in-memory contents. */
2275 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2276 }
2277
2278 /* Create a relocation for the DLT entry assocated with this symbol.
2279 When building a shared library the symbol does not have to be dynamic. */
2280 if (dyn_h->want_dlt
2281 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2282 {
2283 Elf_Internal_Rela rel;
2284 bfd_byte *loc;
2285 int dynindx;
2286
2287 /* We may need to do a relocation against a local symbol, in
2288 which case we have to look up it's dynamic symbol index off
2289 the local symbol hash table. */
2290 if (h && h->dynindx != -1)
2291 dynindx = h->dynindx;
2292 else
2293 dynindx
2294 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2295 dyn_h->sym_indx);
2296
2297 /* Create a dynamic relocation for this entry. Do include the output
2298 offset of the DLT entry since we need an absolute address in the
2299 resulting object file. */
2300 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2301 + sdlt->output_section->vma);
2302 if (h && h->type == STT_FUNC)
2303 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2304 else
2305 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2306 rel.r_addend = 0;
2307
2308 loc = sdltrel->contents;
2309 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2310 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2311 }
2312 return TRUE;
2313 }
2314
2315 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2316 for dynamic functions used to initialize static data. */
2317
2318 static bfd_boolean
2319 elf64_hppa_finalize_dynreloc (dyn_h, data)
2320 struct elf64_hppa_dyn_hash_entry *dyn_h;
2321 PTR data;
2322 {
2323 struct bfd_link_info *info = (struct bfd_link_info *)data;
2324 struct elf64_hppa_link_hash_table *hppa_info;
2325 struct elf_link_hash_entry *h;
2326 int dynamic_symbol;
2327
2328 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2329
2330 if (!dynamic_symbol && !info->shared)
2331 return TRUE;
2332
2333 if (dyn_h->reloc_entries)
2334 {
2335 struct elf64_hppa_dyn_reloc_entry *rent;
2336 int dynindx;
2337
2338 hppa_info = elf64_hppa_hash_table (info);
2339 h = dyn_h->h;
2340
2341 /* We may need to do a relocation against a local symbol, in
2342 which case we have to look up it's dynamic symbol index off
2343 the local symbol hash table. */
2344 if (h && h->dynindx != -1)
2345 dynindx = h->dynindx;
2346 else
2347 dynindx
2348 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2349 dyn_h->sym_indx);
2350
2351 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2352 {
2353 Elf_Internal_Rela rel;
2354 bfd_byte *loc;
2355
2356 /* Allocate one iff we are building a shared library, the relocation
2357 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2358 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2359 continue;
2360
2361 /* Create a dynamic relocation for this entry.
2362
2363 We need the output offset for the reloc's section because
2364 we are creating an absolute address in the resulting object
2365 file. */
2366 rel.r_offset = (rent->offset + rent->sec->output_offset
2367 + rent->sec->output_section->vma);
2368
2369 /* An FPTR64 relocation implies that we took the address of
2370 a function and that the function has an entry in the .opd
2371 section. We want the FPTR64 relocation to reference the
2372 entry in .opd.
2373
2374 We could munge the symbol value in the dynamic symbol table
2375 (in fact we already do for functions with global scope) to point
2376 to the .opd entry. Then we could use that dynamic symbol in
2377 this relocation.
2378
2379 Or we could do something sensible, not munge the symbol's
2380 address and instead just use a different symbol to reference
2381 the .opd entry. At least that seems sensible until you
2382 realize there's no local dynamic symbols we can use for that
2383 purpose. Thus the hair in the check_relocs routine.
2384
2385 We use a section symbol recorded by check_relocs as the
2386 base symbol for the relocation. The addend is the difference
2387 between the section symbol and the address of the .opd entry. */
2388 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2389 {
2390 bfd_vma value, value2;
2391
2392 /* First compute the address of the opd entry for this symbol. */
2393 value = (dyn_h->opd_offset
2394 + hppa_info->opd_sec->output_section->vma
2395 + hppa_info->opd_sec->output_offset);
2396
2397 /* Compute the value of the start of the section with
2398 the relocation. */
2399 value2 = (rent->sec->output_section->vma
2400 + rent->sec->output_offset);
2401
2402 /* Compute the difference between the start of the section
2403 with the relocation and the opd entry. */
2404 value -= value2;
2405
2406 /* The result becomes the addend of the relocation. */
2407 rel.r_addend = value;
2408
2409 /* The section symbol becomes the symbol for the dynamic
2410 relocation. */
2411 dynindx
2412 = _bfd_elf_link_lookup_local_dynindx (info,
2413 rent->sec->owner,
2414 rent->sec_symndx);
2415 }
2416 else
2417 rel.r_addend = rent->addend;
2418
2419 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2420
2421 loc = hppa_info->other_rel_sec->contents;
2422 loc += (hppa_info->other_rel_sec->reloc_count++
2423 * sizeof (Elf64_External_Rela));
2424 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2425 &rel, loc);
2426 }
2427 }
2428
2429 return TRUE;
2430 }
2431
2432 /* Used to decide how to sort relocs in an optimal manner for the
2433 dynamic linker, before writing them out. */
2434
2435 static enum elf_reloc_type_class
2436 elf64_hppa_reloc_type_class (rela)
2437 const Elf_Internal_Rela *rela;
2438 {
2439 if (ELF64_R_SYM (rela->r_info) == 0)
2440 return reloc_class_relative;
2441
2442 switch ((int) ELF64_R_TYPE (rela->r_info))
2443 {
2444 case R_PARISC_IPLT:
2445 return reloc_class_plt;
2446 case R_PARISC_COPY:
2447 return reloc_class_copy;
2448 default:
2449 return reloc_class_normal;
2450 }
2451 }
2452
2453 /* Finish up the dynamic sections. */
2454
2455 static bfd_boolean
2456 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2457 bfd *output_bfd;
2458 struct bfd_link_info *info;
2459 {
2460 bfd *dynobj;
2461 asection *sdyn;
2462 struct elf64_hppa_link_hash_table *hppa_info;
2463
2464 hppa_info = elf64_hppa_hash_table (info);
2465
2466 /* Finalize the contents of the .opd section. */
2467 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2468 elf64_hppa_finalize_opd,
2469 info);
2470
2471 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2472 elf64_hppa_finalize_dynreloc,
2473 info);
2474
2475 /* Finalize the contents of the .dlt section. */
2476 dynobj = elf_hash_table (info)->dynobj;
2477 /* Finalize the contents of the .dlt section. */
2478 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2479 elf64_hppa_finalize_dlt,
2480 info);
2481
2482 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2483
2484 if (elf_hash_table (info)->dynamic_sections_created)
2485 {
2486 Elf64_External_Dyn *dyncon, *dynconend;
2487
2488 BFD_ASSERT (sdyn != NULL);
2489
2490 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2491 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2492 for (; dyncon < dynconend; dyncon++)
2493 {
2494 Elf_Internal_Dyn dyn;
2495 asection *s;
2496
2497 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2498
2499 switch (dyn.d_tag)
2500 {
2501 default:
2502 break;
2503
2504 case DT_HP_LOAD_MAP:
2505 /* Compute the absolute address of 16byte scratchpad area
2506 for the dynamic linker.
2507
2508 By convention the linker script will allocate the scratchpad
2509 area at the start of the .data section. So all we have to
2510 to is find the start of the .data section. */
2511 s = bfd_get_section_by_name (output_bfd, ".data");
2512 dyn.d_un.d_ptr = s->vma;
2513 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2514 break;
2515
2516 case DT_PLTGOT:
2517 /* HP's use PLTGOT to set the GOT register. */
2518 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2519 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2520 break;
2521
2522 case DT_JMPREL:
2523 s = hppa_info->plt_rel_sec;
2524 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2525 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2526 break;
2527
2528 case DT_PLTRELSZ:
2529 s = hppa_info->plt_rel_sec;
2530 dyn.d_un.d_val = s->_raw_size;
2531 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2532 break;
2533
2534 case DT_RELA:
2535 s = hppa_info->other_rel_sec;
2536 if (! s || ! s->_raw_size)
2537 s = hppa_info->dlt_rel_sec;
2538 if (! s || ! s->_raw_size)
2539 s = hppa_info->opd_rel_sec;
2540 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2541 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2542 break;
2543
2544 case DT_RELASZ:
2545 s = hppa_info->other_rel_sec;
2546 dyn.d_un.d_val = s->_raw_size;
2547 s = hppa_info->dlt_rel_sec;
2548 dyn.d_un.d_val += s->_raw_size;
2549 s = hppa_info->opd_rel_sec;
2550 dyn.d_un.d_val += s->_raw_size;
2551 /* There is some question about whether or not the size of
2552 the PLT relocs should be included here. HP's tools do
2553 it, so we'll emulate them. */
2554 s = hppa_info->plt_rel_sec;
2555 dyn.d_un.d_val += s->_raw_size;
2556 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2557 break;
2558
2559 }
2560 }
2561 }
2562
2563 return TRUE;
2564 }
2565
2566 /* Return the number of additional phdrs we will need.
2567
2568 The generic ELF code only creates PT_PHDRs for executables. The HP
2569 dynamic linker requires PT_PHDRs for dynamic libraries too.
2570
2571 This routine indicates that the backend needs one additional program
2572 header for that case.
2573
2574 Note we do not have access to the link info structure here, so we have
2575 to guess whether or not we are building a shared library based on the
2576 existence of a .interp section. */
2577
2578 static int
2579 elf64_hppa_additional_program_headers (abfd)
2580 bfd *abfd;
2581 {
2582 asection *s;
2583
2584 /* If we are creating a shared library, then we have to create a
2585 PT_PHDR segment. HP's dynamic linker chokes without it. */
2586 s = bfd_get_section_by_name (abfd, ".interp");
2587 if (! s)
2588 return 1;
2589 return 0;
2590 }
2591
2592 /* Allocate and initialize any program headers required by this
2593 specific backend.
2594
2595 The generic ELF code only creates PT_PHDRs for executables. The HP
2596 dynamic linker requires PT_PHDRs for dynamic libraries too.
2597
2598 This allocates the PT_PHDR and initializes it in a manner suitable
2599 for the HP linker.
2600
2601 Note we do not have access to the link info structure here, so we have
2602 to guess whether or not we are building a shared library based on the
2603 existence of a .interp section. */
2604
2605 static bfd_boolean
2606 elf64_hppa_modify_segment_map (abfd)
2607 bfd *abfd;
2608 {
2609 struct elf_segment_map *m;
2610 asection *s;
2611
2612 s = bfd_get_section_by_name (abfd, ".interp");
2613 if (! s)
2614 {
2615 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2616 if (m->p_type == PT_PHDR)
2617 break;
2618 if (m == NULL)
2619 {
2620 m = ((struct elf_segment_map *)
2621 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2622 if (m == NULL)
2623 return FALSE;
2624
2625 m->p_type = PT_PHDR;
2626 m->p_flags = PF_R | PF_X;
2627 m->p_flags_valid = 1;
2628 m->p_paddr_valid = 1;
2629 m->includes_phdrs = 1;
2630
2631 m->next = elf_tdata (abfd)->segment_map;
2632 elf_tdata (abfd)->segment_map = m;
2633 }
2634 }
2635
2636 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2637 if (m->p_type == PT_LOAD)
2638 {
2639 unsigned int i;
2640
2641 for (i = 0; i < m->count; i++)
2642 {
2643 /* The code "hint" is not really a hint. It is a requirement
2644 for certain versions of the HP dynamic linker. Worse yet,
2645 it must be set even if the shared library does not have
2646 any code in its "text" segment (thus the check for .hash
2647 to catch this situation). */
2648 if (m->sections[i]->flags & SEC_CODE
2649 || (strcmp (m->sections[i]->name, ".hash") == 0))
2650 m->p_flags |= (PF_X | PF_HP_CODE);
2651 }
2652 }
2653
2654 return TRUE;
2655 }
2656
2657 /* Called when writing out an object file to decide the type of a
2658 symbol. */
2659 static int
2660 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2661 Elf_Internal_Sym *elf_sym;
2662 int type;
2663 {
2664 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2665 return STT_PARISC_MILLI;
2666 else
2667 return type;
2668 }
2669
2670 /* The hash bucket size is the standard one, namely 4. */
2671
2672 const struct elf_size_info hppa64_elf_size_info =
2673 {
2674 sizeof (Elf64_External_Ehdr),
2675 sizeof (Elf64_External_Phdr),
2676 sizeof (Elf64_External_Shdr),
2677 sizeof (Elf64_External_Rel),
2678 sizeof (Elf64_External_Rela),
2679 sizeof (Elf64_External_Sym),
2680 sizeof (Elf64_External_Dyn),
2681 sizeof (Elf_External_Note),
2682 4,
2683 1,
2684 64, 3,
2685 ELFCLASS64, EV_CURRENT,
2686 bfd_elf64_write_out_phdrs,
2687 bfd_elf64_write_shdrs_and_ehdr,
2688 bfd_elf64_write_relocs,
2689 bfd_elf64_swap_symbol_in,
2690 bfd_elf64_swap_symbol_out,
2691 bfd_elf64_slurp_reloc_table,
2692 bfd_elf64_slurp_symbol_table,
2693 bfd_elf64_swap_dyn_in,
2694 bfd_elf64_swap_dyn_out,
2695 bfd_elf64_swap_reloc_in,
2696 bfd_elf64_swap_reloc_out,
2697 bfd_elf64_swap_reloca_in,
2698 bfd_elf64_swap_reloca_out
2699 };
2700
2701 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2702 #define TARGET_BIG_NAME "elf64-hppa"
2703 #define ELF_ARCH bfd_arch_hppa
2704 #define ELF_MACHINE_CODE EM_PARISC
2705 /* This is not strictly correct. The maximum page size for PA2.0 is
2706 64M. But everything still uses 4k. */
2707 #define ELF_MAXPAGESIZE 0x1000
2708 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2709 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2710 #define elf_info_to_howto elf_hppa_info_to_howto
2711 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2712
2713 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2714 #define elf_backend_object_p elf64_hppa_object_p
2715 #define elf_backend_final_write_processing \
2716 elf_hppa_final_write_processing
2717 #define elf_backend_fake_sections elf_hppa_fake_sections
2718 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2719
2720 #define elf_backend_relocate_section elf_hppa_relocate_section
2721
2722 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2723
2724 #define elf_backend_create_dynamic_sections \
2725 elf64_hppa_create_dynamic_sections
2726 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2727
2728 #define elf_backend_adjust_dynamic_symbol \
2729 elf64_hppa_adjust_dynamic_symbol
2730
2731 #define elf_backend_size_dynamic_sections \
2732 elf64_hppa_size_dynamic_sections
2733
2734 #define elf_backend_finish_dynamic_symbol \
2735 elf64_hppa_finish_dynamic_symbol
2736 #define elf_backend_finish_dynamic_sections \
2737 elf64_hppa_finish_dynamic_sections
2738
2739 /* Stuff for the BFD linker: */
2740 #define bfd_elf64_bfd_link_hash_table_create \
2741 elf64_hppa_hash_table_create
2742
2743 #define elf_backend_check_relocs \
2744 elf64_hppa_check_relocs
2745
2746 #define elf_backend_size_info \
2747 hppa64_elf_size_info
2748
2749 #define elf_backend_additional_program_headers \
2750 elf64_hppa_additional_program_headers
2751
2752 #define elf_backend_modify_segment_map \
2753 elf64_hppa_modify_segment_map
2754
2755 #define elf_backend_link_output_symbol_hook \
2756 elf64_hppa_link_output_symbol_hook
2757
2758 #define elf_backend_want_got_plt 0
2759 #define elf_backend_plt_readonly 0
2760 #define elf_backend_want_plt_sym 0
2761 #define elf_backend_got_header_size 0
2762 #define elf_backend_plt_header_size 0
2763 #define elf_backend_type_change_ok TRUE
2764 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2765 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2766 #define elf_backend_rela_normal 1
2767
2768 #include "elf64-target.h"
2769
2770 #undef TARGET_BIG_SYM
2771 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2772 #undef TARGET_BIG_NAME
2773 #define TARGET_BIG_NAME "elf64-hppa-linux"
2774
2775 #define INCLUDED_TARGET_FILE 1
2776 #include "elf64-target.h"
This page took 0.115673 seconds and 4 git commands to generate.