02a863250b0688e5aa187fbb03bd8da975eb69f0
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra <amodra@bigpond.net.au>
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24
25 /* The 64-bit PowerPC ELF ABI may be found at
26 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
27 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
28
29 #include "sysdep.h"
30 #include <stdarg.h>
31 #include "bfd.h"
32 #include "bfdlink.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/ppc64.h"
36 #include "elf64-ppc.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_vma opd_entry_value
57 (asection *, bfd_vma, asection **, bfd_vma *);
58
59 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
60 #define TARGET_LITTLE_NAME "elf64-powerpcle"
61 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
62 #define TARGET_BIG_NAME "elf64-powerpc"
63 #define ELF_ARCH bfd_arch_powerpc
64 #define ELF_MACHINE_CODE EM_PPC64
65 #define ELF_MAXPAGESIZE 0x10000
66 #define ELF_COMMONPAGESIZE 0x1000
67 #define elf_info_to_howto ppc64_elf_info_to_howto
68
69 #define elf_backend_want_got_sym 0
70 #define elf_backend_want_plt_sym 0
71 #define elf_backend_plt_alignment 3
72 #define elf_backend_plt_not_loaded 1
73 #define elf_backend_got_header_size 8
74 #define elf_backend_can_gc_sections 1
75 #define elf_backend_can_refcount 1
76 #define elf_backend_rela_normal 1
77 #define elf_backend_default_execstack 0
78
79 #define bfd_elf64_mkobject ppc64_elf_mkobject
80 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
81 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
82 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
83 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
84 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
85 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
86 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
87
88 #define elf_backend_object_p ppc64_elf_object_p
89 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
90 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
91 #define elf_backend_write_core_note ppc64_elf_write_core_note
92 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
93 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
94 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
95 #define elf_backend_check_directives ppc64_elf_process_dot_syms
96 #define elf_backend_as_needed_cleanup ppc64_elf_as_needed_cleanup
97 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
98 #define elf_backend_check_relocs ppc64_elf_check_relocs
99 #define elf_backend_gc_keep ppc64_elf_gc_keep
100 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
101 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
102 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
103 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
104 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
105 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
106 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
107 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
108 #define elf_backend_action_discarded ppc64_elf_action_discarded
109 #define elf_backend_relocate_section ppc64_elf_relocate_section
110 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
111 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
112 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
113 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
114 #define elf_backend_special_sections ppc64_elf_special_sections
115
116 /* The name of the dynamic interpreter. This is put in the .interp
117 section. */
118 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
119
120 /* The size in bytes of an entry in the procedure linkage table. */
121 #define PLT_ENTRY_SIZE 24
122
123 /* The initial size of the plt reserved for the dynamic linker. */
124 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
125
126 /* TOC base pointers offset from start of TOC. */
127 #define TOC_BASE_OFF 0x8000
128
129 /* Offset of tp and dtp pointers from start of TLS block. */
130 #define TP_OFFSET 0x7000
131 #define DTP_OFFSET 0x8000
132
133 /* .plt call stub instructions. The normal stub is like this, but
134 sometimes the .plt entry crosses a 64k boundary and we need to
135 insert an addi to adjust r12. */
136 #define PLT_CALL_STUB_SIZE (7*4)
137 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
138 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
139 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
140 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
141 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
142 /* ld %r11,xxx+16@l(%r12) */
143 #define BCTR 0x4e800420 /* bctr */
144
145
146 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,off@ha */
147 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
148 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
149 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
150
151 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
152 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
153
154 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
155
156 /* glink call stub instructions. We enter with the index in R0. */
157 #define GLINK_CALL_STUB_SIZE (16*4)
158 /* 0: */
159 /* .quad plt0-1f */
160 /* __glink: */
161 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
162 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
163 /* 1: */
164 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
165 #define LD_R2_M16R11 0xe84bfff0 /* ld %2,(0b-1b)(%11) */
166 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
167 #define ADD_R12_R2_R11 0x7d825a14 /* add %12,%2,%11 */
168 /* ld %11,0(%12) */
169 /* ld %2,8(%12) */
170 /* mtctr %11 */
171 /* ld %11,16(%12) */
172 /* bctr */
173
174 /* Pad with this. */
175 #define NOP 0x60000000
176
177 /* Some other nops. */
178 #define CROR_151515 0x4def7b82
179 #define CROR_313131 0x4ffffb82
180
181 /* .glink entries for the first 32k functions are two instructions. */
182 #define LI_R0_0 0x38000000 /* li %r0,0 */
183 #define B_DOT 0x48000000 /* b . */
184
185 /* After that, we need two instructions to load the index, followed by
186 a branch. */
187 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
188 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
189
190 /* Instructions used by the save and restore reg functions. */
191 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
192 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
193 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
194 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
195 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
196 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
197 #define LI_R12_0 0x39800000 /* li %r12,0 */
198 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
199 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
200 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
201 #define BLR 0x4e800020 /* blr */
202
203 /* Since .opd is an array of descriptors and each entry will end up
204 with identical R_PPC64_RELATIVE relocs, there is really no need to
205 propagate .opd relocs; The dynamic linker should be taught to
206 relocate .opd without reloc entries. */
207 #ifndef NO_OPD_RELOCS
208 #define NO_OPD_RELOCS 0
209 #endif
210 \f
211 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
212
213 /* Relocation HOWTO's. */
214 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
215
216 static reloc_howto_type ppc64_elf_howto_raw[] = {
217 /* This reloc does nothing. */
218 HOWTO (R_PPC64_NONE, /* type */
219 0, /* rightshift */
220 2, /* size (0 = byte, 1 = short, 2 = long) */
221 32, /* bitsize */
222 FALSE, /* pc_relative */
223 0, /* bitpos */
224 complain_overflow_dont, /* complain_on_overflow */
225 bfd_elf_generic_reloc, /* special_function */
226 "R_PPC64_NONE", /* name */
227 FALSE, /* partial_inplace */
228 0, /* src_mask */
229 0, /* dst_mask */
230 FALSE), /* pcrel_offset */
231
232 /* A standard 32 bit relocation. */
233 HOWTO (R_PPC64_ADDR32, /* type */
234 0, /* rightshift */
235 2, /* size (0 = byte, 1 = short, 2 = long) */
236 32, /* bitsize */
237 FALSE, /* pc_relative */
238 0, /* bitpos */
239 complain_overflow_bitfield, /* complain_on_overflow */
240 bfd_elf_generic_reloc, /* special_function */
241 "R_PPC64_ADDR32", /* name */
242 FALSE, /* partial_inplace */
243 0, /* src_mask */
244 0xffffffff, /* dst_mask */
245 FALSE), /* pcrel_offset */
246
247 /* An absolute 26 bit branch; the lower two bits must be zero.
248 FIXME: we don't check that, we just clear them. */
249 HOWTO (R_PPC64_ADDR24, /* type */
250 0, /* rightshift */
251 2, /* size (0 = byte, 1 = short, 2 = long) */
252 26, /* bitsize */
253 FALSE, /* pc_relative */
254 0, /* bitpos */
255 complain_overflow_bitfield, /* complain_on_overflow */
256 bfd_elf_generic_reloc, /* special_function */
257 "R_PPC64_ADDR24", /* name */
258 FALSE, /* partial_inplace */
259 0, /* src_mask */
260 0x03fffffc, /* dst_mask */
261 FALSE), /* pcrel_offset */
262
263 /* A standard 16 bit relocation. */
264 HOWTO (R_PPC64_ADDR16, /* type */
265 0, /* rightshift */
266 1, /* size (0 = byte, 1 = short, 2 = long) */
267 16, /* bitsize */
268 FALSE, /* pc_relative */
269 0, /* bitpos */
270 complain_overflow_bitfield, /* complain_on_overflow */
271 bfd_elf_generic_reloc, /* special_function */
272 "R_PPC64_ADDR16", /* name */
273 FALSE, /* partial_inplace */
274 0, /* src_mask */
275 0xffff, /* dst_mask */
276 FALSE), /* pcrel_offset */
277
278 /* A 16 bit relocation without overflow. */
279 HOWTO (R_PPC64_ADDR16_LO, /* type */
280 0, /* rightshift */
281 1, /* size (0 = byte, 1 = short, 2 = long) */
282 16, /* bitsize */
283 FALSE, /* pc_relative */
284 0, /* bitpos */
285 complain_overflow_dont,/* complain_on_overflow */
286 bfd_elf_generic_reloc, /* special_function */
287 "R_PPC64_ADDR16_LO", /* name */
288 FALSE, /* partial_inplace */
289 0, /* src_mask */
290 0xffff, /* dst_mask */
291 FALSE), /* pcrel_offset */
292
293 /* Bits 16-31 of an address. */
294 HOWTO (R_PPC64_ADDR16_HI, /* type */
295 16, /* rightshift */
296 1, /* size (0 = byte, 1 = short, 2 = long) */
297 16, /* bitsize */
298 FALSE, /* pc_relative */
299 0, /* bitpos */
300 complain_overflow_dont, /* complain_on_overflow */
301 bfd_elf_generic_reloc, /* special_function */
302 "R_PPC64_ADDR16_HI", /* name */
303 FALSE, /* partial_inplace */
304 0, /* src_mask */
305 0xffff, /* dst_mask */
306 FALSE), /* pcrel_offset */
307
308 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
309 bits, treated as a signed number, is negative. */
310 HOWTO (R_PPC64_ADDR16_HA, /* type */
311 16, /* rightshift */
312 1, /* size (0 = byte, 1 = short, 2 = long) */
313 16, /* bitsize */
314 FALSE, /* pc_relative */
315 0, /* bitpos */
316 complain_overflow_dont, /* complain_on_overflow */
317 ppc64_elf_ha_reloc, /* special_function */
318 "R_PPC64_ADDR16_HA", /* name */
319 FALSE, /* partial_inplace */
320 0, /* src_mask */
321 0xffff, /* dst_mask */
322 FALSE), /* pcrel_offset */
323
324 /* An absolute 16 bit branch; the lower two bits must be zero.
325 FIXME: we don't check that, we just clear them. */
326 HOWTO (R_PPC64_ADDR14, /* type */
327 0, /* rightshift */
328 2, /* size (0 = byte, 1 = short, 2 = long) */
329 16, /* bitsize */
330 FALSE, /* pc_relative */
331 0, /* bitpos */
332 complain_overflow_bitfield, /* complain_on_overflow */
333 ppc64_elf_branch_reloc, /* special_function */
334 "R_PPC64_ADDR14", /* name */
335 FALSE, /* partial_inplace */
336 0, /* src_mask */
337 0x0000fffc, /* dst_mask */
338 FALSE), /* pcrel_offset */
339
340 /* An absolute 16 bit branch, for which bit 10 should be set to
341 indicate that the branch is expected to be taken. The lower two
342 bits must be zero. */
343 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
344 0, /* rightshift */
345 2, /* size (0 = byte, 1 = short, 2 = long) */
346 16, /* bitsize */
347 FALSE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 ppc64_elf_brtaken_reloc, /* special_function */
351 "R_PPC64_ADDR14_BRTAKEN",/* name */
352 FALSE, /* partial_inplace */
353 0, /* src_mask */
354 0x0000fffc, /* dst_mask */
355 FALSE), /* pcrel_offset */
356
357 /* An absolute 16 bit branch, for which bit 10 should be set to
358 indicate that the branch is not expected to be taken. The lower
359 two bits must be zero. */
360 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
361 0, /* rightshift */
362 2, /* size (0 = byte, 1 = short, 2 = long) */
363 16, /* bitsize */
364 FALSE, /* pc_relative */
365 0, /* bitpos */
366 complain_overflow_bitfield, /* complain_on_overflow */
367 ppc64_elf_brtaken_reloc, /* special_function */
368 "R_PPC64_ADDR14_BRNTAKEN",/* name */
369 FALSE, /* partial_inplace */
370 0, /* src_mask */
371 0x0000fffc, /* dst_mask */
372 FALSE), /* pcrel_offset */
373
374 /* A relative 26 bit branch; the lower two bits must be zero. */
375 HOWTO (R_PPC64_REL24, /* type */
376 0, /* rightshift */
377 2, /* size (0 = byte, 1 = short, 2 = long) */
378 26, /* bitsize */
379 TRUE, /* pc_relative */
380 0, /* bitpos */
381 complain_overflow_signed, /* complain_on_overflow */
382 ppc64_elf_branch_reloc, /* special_function */
383 "R_PPC64_REL24", /* name */
384 FALSE, /* partial_inplace */
385 0, /* src_mask */
386 0x03fffffc, /* dst_mask */
387 TRUE), /* pcrel_offset */
388
389 /* A relative 16 bit branch; the lower two bits must be zero. */
390 HOWTO (R_PPC64_REL14, /* type */
391 0, /* rightshift */
392 2, /* size (0 = byte, 1 = short, 2 = long) */
393 16, /* bitsize */
394 TRUE, /* pc_relative */
395 0, /* bitpos */
396 complain_overflow_signed, /* complain_on_overflow */
397 ppc64_elf_branch_reloc, /* special_function */
398 "R_PPC64_REL14", /* name */
399 FALSE, /* partial_inplace */
400 0, /* src_mask */
401 0x0000fffc, /* dst_mask */
402 TRUE), /* pcrel_offset */
403
404 /* A relative 16 bit branch. Bit 10 should be set to indicate that
405 the branch is expected to be taken. The lower two bits must be
406 zero. */
407 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
408 0, /* rightshift */
409 2, /* size (0 = byte, 1 = short, 2 = long) */
410 16, /* bitsize */
411 TRUE, /* pc_relative */
412 0, /* bitpos */
413 complain_overflow_signed, /* complain_on_overflow */
414 ppc64_elf_brtaken_reloc, /* special_function */
415 "R_PPC64_REL14_BRTAKEN", /* name */
416 FALSE, /* partial_inplace */
417 0, /* src_mask */
418 0x0000fffc, /* dst_mask */
419 TRUE), /* pcrel_offset */
420
421 /* A relative 16 bit branch. Bit 10 should be set to indicate that
422 the branch is not expected to be taken. The lower two bits must
423 be zero. */
424 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
425 0, /* rightshift */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
427 16, /* bitsize */
428 TRUE, /* pc_relative */
429 0, /* bitpos */
430 complain_overflow_signed, /* complain_on_overflow */
431 ppc64_elf_brtaken_reloc, /* special_function */
432 "R_PPC64_REL14_BRNTAKEN",/* name */
433 FALSE, /* partial_inplace */
434 0, /* src_mask */
435 0x0000fffc, /* dst_mask */
436 TRUE), /* pcrel_offset */
437
438 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
439 symbol. */
440 HOWTO (R_PPC64_GOT16, /* type */
441 0, /* rightshift */
442 1, /* size (0 = byte, 1 = short, 2 = long) */
443 16, /* bitsize */
444 FALSE, /* pc_relative */
445 0, /* bitpos */
446 complain_overflow_signed, /* complain_on_overflow */
447 ppc64_elf_unhandled_reloc, /* special_function */
448 "R_PPC64_GOT16", /* name */
449 FALSE, /* partial_inplace */
450 0, /* src_mask */
451 0xffff, /* dst_mask */
452 FALSE), /* pcrel_offset */
453
454 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
455 the symbol. */
456 HOWTO (R_PPC64_GOT16_LO, /* type */
457 0, /* rightshift */
458 1, /* size (0 = byte, 1 = short, 2 = long) */
459 16, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_dont, /* complain_on_overflow */
463 ppc64_elf_unhandled_reloc, /* special_function */
464 "R_PPC64_GOT16_LO", /* name */
465 FALSE, /* partial_inplace */
466 0, /* src_mask */
467 0xffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
471 the symbol. */
472 HOWTO (R_PPC64_GOT16_HI, /* type */
473 16, /* rightshift */
474 1, /* size (0 = byte, 1 = short, 2 = long) */
475 16, /* bitsize */
476 FALSE, /* pc_relative */
477 0, /* bitpos */
478 complain_overflow_dont,/* complain_on_overflow */
479 ppc64_elf_unhandled_reloc, /* special_function */
480 "R_PPC64_GOT16_HI", /* name */
481 FALSE, /* partial_inplace */
482 0, /* src_mask */
483 0xffff, /* dst_mask */
484 FALSE), /* pcrel_offset */
485
486 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
487 the symbol. */
488 HOWTO (R_PPC64_GOT16_HA, /* type */
489 16, /* rightshift */
490 1, /* size (0 = byte, 1 = short, 2 = long) */
491 16, /* bitsize */
492 FALSE, /* pc_relative */
493 0, /* bitpos */
494 complain_overflow_dont,/* complain_on_overflow */
495 ppc64_elf_unhandled_reloc, /* special_function */
496 "R_PPC64_GOT16_HA", /* name */
497 FALSE, /* partial_inplace */
498 0, /* src_mask */
499 0xffff, /* dst_mask */
500 FALSE), /* pcrel_offset */
501
502 /* This is used only by the dynamic linker. The symbol should exist
503 both in the object being run and in some shared library. The
504 dynamic linker copies the data addressed by the symbol from the
505 shared library into the object, because the object being
506 run has to have the data at some particular address. */
507 HOWTO (R_PPC64_COPY, /* type */
508 0, /* rightshift */
509 0, /* this one is variable size */
510 0, /* bitsize */
511 FALSE, /* pc_relative */
512 0, /* bitpos */
513 complain_overflow_dont, /* complain_on_overflow */
514 ppc64_elf_unhandled_reloc, /* special_function */
515 "R_PPC64_COPY", /* name */
516 FALSE, /* partial_inplace */
517 0, /* src_mask */
518 0, /* dst_mask */
519 FALSE), /* pcrel_offset */
520
521 /* Like R_PPC64_ADDR64, but used when setting global offset table
522 entries. */
523 HOWTO (R_PPC64_GLOB_DAT, /* type */
524 0, /* rightshift */
525 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
526 64, /* bitsize */
527 FALSE, /* pc_relative */
528 0, /* bitpos */
529 complain_overflow_dont, /* complain_on_overflow */
530 ppc64_elf_unhandled_reloc, /* special_function */
531 "R_PPC64_GLOB_DAT", /* name */
532 FALSE, /* partial_inplace */
533 0, /* src_mask */
534 ONES (64), /* dst_mask */
535 FALSE), /* pcrel_offset */
536
537 /* Created by the link editor. Marks a procedure linkage table
538 entry for a symbol. */
539 HOWTO (R_PPC64_JMP_SLOT, /* type */
540 0, /* rightshift */
541 0, /* size (0 = byte, 1 = short, 2 = long) */
542 0, /* bitsize */
543 FALSE, /* pc_relative */
544 0, /* bitpos */
545 complain_overflow_dont, /* complain_on_overflow */
546 ppc64_elf_unhandled_reloc, /* special_function */
547 "R_PPC64_JMP_SLOT", /* name */
548 FALSE, /* partial_inplace */
549 0, /* src_mask */
550 0, /* dst_mask */
551 FALSE), /* pcrel_offset */
552
553 /* Used only by the dynamic linker. When the object is run, this
554 doubleword64 is set to the load address of the object, plus the
555 addend. */
556 HOWTO (R_PPC64_RELATIVE, /* type */
557 0, /* rightshift */
558 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
559 64, /* bitsize */
560 FALSE, /* pc_relative */
561 0, /* bitpos */
562 complain_overflow_dont, /* complain_on_overflow */
563 bfd_elf_generic_reloc, /* special_function */
564 "R_PPC64_RELATIVE", /* name */
565 FALSE, /* partial_inplace */
566 0, /* src_mask */
567 ONES (64), /* dst_mask */
568 FALSE), /* pcrel_offset */
569
570 /* Like R_PPC64_ADDR32, but may be unaligned. */
571 HOWTO (R_PPC64_UADDR32, /* type */
572 0, /* rightshift */
573 2, /* size (0 = byte, 1 = short, 2 = long) */
574 32, /* bitsize */
575 FALSE, /* pc_relative */
576 0, /* bitpos */
577 complain_overflow_bitfield, /* complain_on_overflow */
578 bfd_elf_generic_reloc, /* special_function */
579 "R_PPC64_UADDR32", /* name */
580 FALSE, /* partial_inplace */
581 0, /* src_mask */
582 0xffffffff, /* dst_mask */
583 FALSE), /* pcrel_offset */
584
585 /* Like R_PPC64_ADDR16, but may be unaligned. */
586 HOWTO (R_PPC64_UADDR16, /* type */
587 0, /* rightshift */
588 1, /* size (0 = byte, 1 = short, 2 = long) */
589 16, /* bitsize */
590 FALSE, /* pc_relative */
591 0, /* bitpos */
592 complain_overflow_bitfield, /* complain_on_overflow */
593 bfd_elf_generic_reloc, /* special_function */
594 "R_PPC64_UADDR16", /* name */
595 FALSE, /* partial_inplace */
596 0, /* src_mask */
597 0xffff, /* dst_mask */
598 FALSE), /* pcrel_offset */
599
600 /* 32-bit PC relative. */
601 HOWTO (R_PPC64_REL32, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 32, /* bitsize */
605 TRUE, /* pc_relative */
606 0, /* bitpos */
607 /* FIXME: Verify. Was complain_overflow_bitfield. */
608 complain_overflow_signed, /* complain_on_overflow */
609 bfd_elf_generic_reloc, /* special_function */
610 "R_PPC64_REL32", /* name */
611 FALSE, /* partial_inplace */
612 0, /* src_mask */
613 0xffffffff, /* dst_mask */
614 TRUE), /* pcrel_offset */
615
616 /* 32-bit relocation to the symbol's procedure linkage table. */
617 HOWTO (R_PPC64_PLT32, /* type */
618 0, /* rightshift */
619 2, /* size (0 = byte, 1 = short, 2 = long) */
620 32, /* bitsize */
621 FALSE, /* pc_relative */
622 0, /* bitpos */
623 complain_overflow_bitfield, /* complain_on_overflow */
624 ppc64_elf_unhandled_reloc, /* special_function */
625 "R_PPC64_PLT32", /* name */
626 FALSE, /* partial_inplace */
627 0, /* src_mask */
628 0xffffffff, /* dst_mask */
629 FALSE), /* pcrel_offset */
630
631 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
632 FIXME: R_PPC64_PLTREL32 not supported. */
633 HOWTO (R_PPC64_PLTREL32, /* type */
634 0, /* rightshift */
635 2, /* size (0 = byte, 1 = short, 2 = long) */
636 32, /* bitsize */
637 TRUE, /* pc_relative */
638 0, /* bitpos */
639 complain_overflow_signed, /* complain_on_overflow */
640 bfd_elf_generic_reloc, /* special_function */
641 "R_PPC64_PLTREL32", /* name */
642 FALSE, /* partial_inplace */
643 0, /* src_mask */
644 0xffffffff, /* dst_mask */
645 TRUE), /* pcrel_offset */
646
647 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
648 the symbol. */
649 HOWTO (R_PPC64_PLT16_LO, /* type */
650 0, /* rightshift */
651 1, /* size (0 = byte, 1 = short, 2 = long) */
652 16, /* bitsize */
653 FALSE, /* pc_relative */
654 0, /* bitpos */
655 complain_overflow_dont, /* complain_on_overflow */
656 ppc64_elf_unhandled_reloc, /* special_function */
657 "R_PPC64_PLT16_LO", /* name */
658 FALSE, /* partial_inplace */
659 0, /* src_mask */
660 0xffff, /* dst_mask */
661 FALSE), /* pcrel_offset */
662
663 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
664 the symbol. */
665 HOWTO (R_PPC64_PLT16_HI, /* type */
666 16, /* rightshift */
667 1, /* size (0 = byte, 1 = short, 2 = long) */
668 16, /* bitsize */
669 FALSE, /* pc_relative */
670 0, /* bitpos */
671 complain_overflow_dont, /* complain_on_overflow */
672 ppc64_elf_unhandled_reloc, /* special_function */
673 "R_PPC64_PLT16_HI", /* name */
674 FALSE, /* partial_inplace */
675 0, /* src_mask */
676 0xffff, /* dst_mask */
677 FALSE), /* pcrel_offset */
678
679 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
680 the symbol. */
681 HOWTO (R_PPC64_PLT16_HA, /* type */
682 16, /* rightshift */
683 1, /* size (0 = byte, 1 = short, 2 = long) */
684 16, /* bitsize */
685 FALSE, /* pc_relative */
686 0, /* bitpos */
687 complain_overflow_dont, /* complain_on_overflow */
688 ppc64_elf_unhandled_reloc, /* special_function */
689 "R_PPC64_PLT16_HA", /* name */
690 FALSE, /* partial_inplace */
691 0, /* src_mask */
692 0xffff, /* dst_mask */
693 FALSE), /* pcrel_offset */
694
695 /* 16-bit section relative relocation. */
696 HOWTO (R_PPC64_SECTOFF, /* type */
697 0, /* rightshift */
698 1, /* size (0 = byte, 1 = short, 2 = long) */
699 16, /* bitsize */
700 FALSE, /* pc_relative */
701 0, /* bitpos */
702 complain_overflow_bitfield, /* complain_on_overflow */
703 ppc64_elf_sectoff_reloc, /* special_function */
704 "R_PPC64_SECTOFF", /* name */
705 FALSE, /* partial_inplace */
706 0, /* src_mask */
707 0xffff, /* dst_mask */
708 FALSE), /* pcrel_offset */
709
710 /* Like R_PPC64_SECTOFF, but no overflow warning. */
711 HOWTO (R_PPC64_SECTOFF_LO, /* type */
712 0, /* rightshift */
713 1, /* size (0 = byte, 1 = short, 2 = long) */
714 16, /* bitsize */
715 FALSE, /* pc_relative */
716 0, /* bitpos */
717 complain_overflow_dont, /* complain_on_overflow */
718 ppc64_elf_sectoff_reloc, /* special_function */
719 "R_PPC64_SECTOFF_LO", /* name */
720 FALSE, /* partial_inplace */
721 0, /* src_mask */
722 0xffff, /* dst_mask */
723 FALSE), /* pcrel_offset */
724
725 /* 16-bit upper half section relative relocation. */
726 HOWTO (R_PPC64_SECTOFF_HI, /* type */
727 16, /* rightshift */
728 1, /* size (0 = byte, 1 = short, 2 = long) */
729 16, /* bitsize */
730 FALSE, /* pc_relative */
731 0, /* bitpos */
732 complain_overflow_dont, /* complain_on_overflow */
733 ppc64_elf_sectoff_reloc, /* special_function */
734 "R_PPC64_SECTOFF_HI", /* name */
735 FALSE, /* partial_inplace */
736 0, /* src_mask */
737 0xffff, /* dst_mask */
738 FALSE), /* pcrel_offset */
739
740 /* 16-bit upper half adjusted section relative relocation. */
741 HOWTO (R_PPC64_SECTOFF_HA, /* type */
742 16, /* rightshift */
743 1, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont, /* complain_on_overflow */
748 ppc64_elf_sectoff_ha_reloc, /* special_function */
749 "R_PPC64_SECTOFF_HA", /* name */
750 FALSE, /* partial_inplace */
751 0, /* src_mask */
752 0xffff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 /* Like R_PPC64_REL24 without touching the two least significant bits. */
756 HOWTO (R_PPC64_REL30, /* type */
757 2, /* rightshift */
758 2, /* size (0 = byte, 1 = short, 2 = long) */
759 30, /* bitsize */
760 TRUE, /* pc_relative */
761 0, /* bitpos */
762 complain_overflow_dont, /* complain_on_overflow */
763 bfd_elf_generic_reloc, /* special_function */
764 "R_PPC64_REL30", /* name */
765 FALSE, /* partial_inplace */
766 0, /* src_mask */
767 0xfffffffc, /* dst_mask */
768 TRUE), /* pcrel_offset */
769
770 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
771
772 /* A standard 64-bit relocation. */
773 HOWTO (R_PPC64_ADDR64, /* type */
774 0, /* rightshift */
775 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
776 64, /* bitsize */
777 FALSE, /* pc_relative */
778 0, /* bitpos */
779 complain_overflow_dont, /* complain_on_overflow */
780 bfd_elf_generic_reloc, /* special_function */
781 "R_PPC64_ADDR64", /* name */
782 FALSE, /* partial_inplace */
783 0, /* src_mask */
784 ONES (64), /* dst_mask */
785 FALSE), /* pcrel_offset */
786
787 /* The bits 32-47 of an address. */
788 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
789 32, /* rightshift */
790 1, /* size (0 = byte, 1 = short, 2 = long) */
791 16, /* bitsize */
792 FALSE, /* pc_relative */
793 0, /* bitpos */
794 complain_overflow_dont, /* complain_on_overflow */
795 bfd_elf_generic_reloc, /* special_function */
796 "R_PPC64_ADDR16_HIGHER", /* name */
797 FALSE, /* partial_inplace */
798 0, /* src_mask */
799 0xffff, /* dst_mask */
800 FALSE), /* pcrel_offset */
801
802 /* The bits 32-47 of an address, plus 1 if the contents of the low
803 16 bits, treated as a signed number, is negative. */
804 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
805 32, /* rightshift */
806 1, /* size (0 = byte, 1 = short, 2 = long) */
807 16, /* bitsize */
808 FALSE, /* pc_relative */
809 0, /* bitpos */
810 complain_overflow_dont, /* complain_on_overflow */
811 ppc64_elf_ha_reloc, /* special_function */
812 "R_PPC64_ADDR16_HIGHERA", /* name */
813 FALSE, /* partial_inplace */
814 0, /* src_mask */
815 0xffff, /* dst_mask */
816 FALSE), /* pcrel_offset */
817
818 /* The bits 48-63 of an address. */
819 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
820 48, /* rightshift */
821 1, /* size (0 = byte, 1 = short, 2 = long) */
822 16, /* bitsize */
823 FALSE, /* pc_relative */
824 0, /* bitpos */
825 complain_overflow_dont, /* complain_on_overflow */
826 bfd_elf_generic_reloc, /* special_function */
827 "R_PPC64_ADDR16_HIGHEST", /* name */
828 FALSE, /* partial_inplace */
829 0, /* src_mask */
830 0xffff, /* dst_mask */
831 FALSE), /* pcrel_offset */
832
833 /* The bits 48-63 of an address, plus 1 if the contents of the low
834 16 bits, treated as a signed number, is negative. */
835 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
836 48, /* rightshift */
837 1, /* size (0 = byte, 1 = short, 2 = long) */
838 16, /* bitsize */
839 FALSE, /* pc_relative */
840 0, /* bitpos */
841 complain_overflow_dont, /* complain_on_overflow */
842 ppc64_elf_ha_reloc, /* special_function */
843 "R_PPC64_ADDR16_HIGHESTA", /* name */
844 FALSE, /* partial_inplace */
845 0, /* src_mask */
846 0xffff, /* dst_mask */
847 FALSE), /* pcrel_offset */
848
849 /* Like ADDR64, but may be unaligned. */
850 HOWTO (R_PPC64_UADDR64, /* type */
851 0, /* rightshift */
852 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
853 64, /* bitsize */
854 FALSE, /* pc_relative */
855 0, /* bitpos */
856 complain_overflow_dont, /* complain_on_overflow */
857 bfd_elf_generic_reloc, /* special_function */
858 "R_PPC64_UADDR64", /* name */
859 FALSE, /* partial_inplace */
860 0, /* src_mask */
861 ONES (64), /* dst_mask */
862 FALSE), /* pcrel_offset */
863
864 /* 64-bit relative relocation. */
865 HOWTO (R_PPC64_REL64, /* type */
866 0, /* rightshift */
867 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
868 64, /* bitsize */
869 TRUE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont, /* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_PPC64_REL64", /* name */
874 FALSE, /* partial_inplace */
875 0, /* src_mask */
876 ONES (64), /* dst_mask */
877 TRUE), /* pcrel_offset */
878
879 /* 64-bit relocation to the symbol's procedure linkage table. */
880 HOWTO (R_PPC64_PLT64, /* type */
881 0, /* rightshift */
882 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
883 64, /* bitsize */
884 FALSE, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont, /* complain_on_overflow */
887 ppc64_elf_unhandled_reloc, /* special_function */
888 "R_PPC64_PLT64", /* name */
889 FALSE, /* partial_inplace */
890 0, /* src_mask */
891 ONES (64), /* dst_mask */
892 FALSE), /* pcrel_offset */
893
894 /* 64-bit PC relative relocation to the symbol's procedure linkage
895 table. */
896 /* FIXME: R_PPC64_PLTREL64 not supported. */
897 HOWTO (R_PPC64_PLTREL64, /* type */
898 0, /* rightshift */
899 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
900 64, /* bitsize */
901 TRUE, /* pc_relative */
902 0, /* bitpos */
903 complain_overflow_dont, /* complain_on_overflow */
904 ppc64_elf_unhandled_reloc, /* special_function */
905 "R_PPC64_PLTREL64", /* name */
906 FALSE, /* partial_inplace */
907 0, /* src_mask */
908 ONES (64), /* dst_mask */
909 TRUE), /* pcrel_offset */
910
911 /* 16 bit TOC-relative relocation. */
912
913 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
914 HOWTO (R_PPC64_TOC16, /* type */
915 0, /* rightshift */
916 1, /* size (0 = byte, 1 = short, 2 = long) */
917 16, /* bitsize */
918 FALSE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_signed, /* complain_on_overflow */
921 ppc64_elf_toc_reloc, /* special_function */
922 "R_PPC64_TOC16", /* name */
923 FALSE, /* partial_inplace */
924 0, /* src_mask */
925 0xffff, /* dst_mask */
926 FALSE), /* pcrel_offset */
927
928 /* 16 bit TOC-relative relocation without overflow. */
929
930 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
931 HOWTO (R_PPC64_TOC16_LO, /* type */
932 0, /* rightshift */
933 1, /* size (0 = byte, 1 = short, 2 = long) */
934 16, /* bitsize */
935 FALSE, /* pc_relative */
936 0, /* bitpos */
937 complain_overflow_dont, /* complain_on_overflow */
938 ppc64_elf_toc_reloc, /* special_function */
939 "R_PPC64_TOC16_LO", /* name */
940 FALSE, /* partial_inplace */
941 0, /* src_mask */
942 0xffff, /* dst_mask */
943 FALSE), /* pcrel_offset */
944
945 /* 16 bit TOC-relative relocation, high 16 bits. */
946
947 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
948 HOWTO (R_PPC64_TOC16_HI, /* type */
949 16, /* rightshift */
950 1, /* size (0 = byte, 1 = short, 2 = long) */
951 16, /* bitsize */
952 FALSE, /* pc_relative */
953 0, /* bitpos */
954 complain_overflow_dont, /* complain_on_overflow */
955 ppc64_elf_toc_reloc, /* special_function */
956 "R_PPC64_TOC16_HI", /* name */
957 FALSE, /* partial_inplace */
958 0, /* src_mask */
959 0xffff, /* dst_mask */
960 FALSE), /* pcrel_offset */
961
962 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
963 contents of the low 16 bits, treated as a signed number, is
964 negative. */
965
966 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
967 HOWTO (R_PPC64_TOC16_HA, /* type */
968 16, /* rightshift */
969 1, /* size (0 = byte, 1 = short, 2 = long) */
970 16, /* bitsize */
971 FALSE, /* pc_relative */
972 0, /* bitpos */
973 complain_overflow_dont, /* complain_on_overflow */
974 ppc64_elf_toc_ha_reloc, /* special_function */
975 "R_PPC64_TOC16_HA", /* name */
976 FALSE, /* partial_inplace */
977 0, /* src_mask */
978 0xffff, /* dst_mask */
979 FALSE), /* pcrel_offset */
980
981 /* 64-bit relocation; insert value of TOC base (.TOC.). */
982
983 /* R_PPC64_TOC 51 doubleword64 .TOC. */
984 HOWTO (R_PPC64_TOC, /* type */
985 0, /* rightshift */
986 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
987 64, /* bitsize */
988 FALSE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_bitfield, /* complain_on_overflow */
991 ppc64_elf_toc64_reloc, /* special_function */
992 "R_PPC64_TOC", /* name */
993 FALSE, /* partial_inplace */
994 0, /* src_mask */
995 ONES (64), /* dst_mask */
996 FALSE), /* pcrel_offset */
997
998 /* Like R_PPC64_GOT16, but also informs the link editor that the
999 value to relocate may (!) refer to a PLT entry which the link
1000 editor (a) may replace with the symbol value. If the link editor
1001 is unable to fully resolve the symbol, it may (b) create a PLT
1002 entry and store the address to the new PLT entry in the GOT.
1003 This permits lazy resolution of function symbols at run time.
1004 The link editor may also skip all of this and just (c) emit a
1005 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1006 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1007 HOWTO (R_PPC64_PLTGOT16, /* type */
1008 0, /* rightshift */
1009 1, /* size (0 = byte, 1 = short, 2 = long) */
1010 16, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_signed, /* complain_on_overflow */
1014 ppc64_elf_unhandled_reloc, /* special_function */
1015 "R_PPC64_PLTGOT16", /* name */
1016 FALSE, /* partial_inplace */
1017 0, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 /* Like R_PPC64_PLTGOT16, but without overflow. */
1022 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1023 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1024 0, /* rightshift */
1025 1, /* size (0 = byte, 1 = short, 2 = long) */
1026 16, /* bitsize */
1027 FALSE, /* pc_relative */
1028 0, /* bitpos */
1029 complain_overflow_dont, /* complain_on_overflow */
1030 ppc64_elf_unhandled_reloc, /* special_function */
1031 "R_PPC64_PLTGOT16_LO", /* name */
1032 FALSE, /* partial_inplace */
1033 0, /* src_mask */
1034 0xffff, /* dst_mask */
1035 FALSE), /* pcrel_offset */
1036
1037 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1038 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1039 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1040 16, /* rightshift */
1041 1, /* size (0 = byte, 1 = short, 2 = long) */
1042 16, /* bitsize */
1043 FALSE, /* pc_relative */
1044 0, /* bitpos */
1045 complain_overflow_dont, /* complain_on_overflow */
1046 ppc64_elf_unhandled_reloc, /* special_function */
1047 "R_PPC64_PLTGOT16_HI", /* name */
1048 FALSE, /* partial_inplace */
1049 0, /* src_mask */
1050 0xffff, /* dst_mask */
1051 FALSE), /* pcrel_offset */
1052
1053 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1054 1 if the contents of the low 16 bits, treated as a signed number,
1055 is negative. */
1056 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1057 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1058 16, /* rightshift */
1059 1, /* size (0 = byte, 1 = short, 2 = long) */
1060 16, /* bitsize */
1061 FALSE, /* pc_relative */
1062 0, /* bitpos */
1063 complain_overflow_dont,/* complain_on_overflow */
1064 ppc64_elf_unhandled_reloc, /* special_function */
1065 "R_PPC64_PLTGOT16_HA", /* name */
1066 FALSE, /* partial_inplace */
1067 0, /* src_mask */
1068 0xffff, /* dst_mask */
1069 FALSE), /* pcrel_offset */
1070
1071 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1072 HOWTO (R_PPC64_ADDR16_DS, /* type */
1073 0, /* rightshift */
1074 1, /* size (0 = byte, 1 = short, 2 = long) */
1075 16, /* bitsize */
1076 FALSE, /* pc_relative */
1077 0, /* bitpos */
1078 complain_overflow_bitfield, /* complain_on_overflow */
1079 bfd_elf_generic_reloc, /* special_function */
1080 "R_PPC64_ADDR16_DS", /* name */
1081 FALSE, /* partial_inplace */
1082 0, /* src_mask */
1083 0xfffc, /* dst_mask */
1084 FALSE), /* pcrel_offset */
1085
1086 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1087 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1088 0, /* rightshift */
1089 1, /* size (0 = byte, 1 = short, 2 = long) */
1090 16, /* bitsize */
1091 FALSE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_dont,/* complain_on_overflow */
1094 bfd_elf_generic_reloc, /* special_function */
1095 "R_PPC64_ADDR16_LO_DS",/* name */
1096 FALSE, /* partial_inplace */
1097 0, /* src_mask */
1098 0xfffc, /* dst_mask */
1099 FALSE), /* pcrel_offset */
1100
1101 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1102 HOWTO (R_PPC64_GOT16_DS, /* type */
1103 0, /* rightshift */
1104 1, /* size (0 = byte, 1 = short, 2 = long) */
1105 16, /* bitsize */
1106 FALSE, /* pc_relative */
1107 0, /* bitpos */
1108 complain_overflow_signed, /* complain_on_overflow */
1109 ppc64_elf_unhandled_reloc, /* special_function */
1110 "R_PPC64_GOT16_DS", /* name */
1111 FALSE, /* partial_inplace */
1112 0, /* src_mask */
1113 0xfffc, /* dst_mask */
1114 FALSE), /* pcrel_offset */
1115
1116 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1117 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1118 0, /* rightshift */
1119 1, /* size (0 = byte, 1 = short, 2 = long) */
1120 16, /* bitsize */
1121 FALSE, /* pc_relative */
1122 0, /* bitpos */
1123 complain_overflow_dont, /* complain_on_overflow */
1124 ppc64_elf_unhandled_reloc, /* special_function */
1125 "R_PPC64_GOT16_LO_DS", /* name */
1126 FALSE, /* partial_inplace */
1127 0, /* src_mask */
1128 0xfffc, /* dst_mask */
1129 FALSE), /* pcrel_offset */
1130
1131 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1132 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1133 0, /* rightshift */
1134 1, /* size (0 = byte, 1 = short, 2 = long) */
1135 16, /* bitsize */
1136 FALSE, /* pc_relative */
1137 0, /* bitpos */
1138 complain_overflow_dont, /* complain_on_overflow */
1139 ppc64_elf_unhandled_reloc, /* special_function */
1140 "R_PPC64_PLT16_LO_DS", /* name */
1141 FALSE, /* partial_inplace */
1142 0, /* src_mask */
1143 0xfffc, /* dst_mask */
1144 FALSE), /* pcrel_offset */
1145
1146 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1147 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1148 0, /* rightshift */
1149 1, /* size (0 = byte, 1 = short, 2 = long) */
1150 16, /* bitsize */
1151 FALSE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_bitfield, /* complain_on_overflow */
1154 ppc64_elf_sectoff_reloc, /* special_function */
1155 "R_PPC64_SECTOFF_DS", /* name */
1156 FALSE, /* partial_inplace */
1157 0, /* src_mask */
1158 0xfffc, /* dst_mask */
1159 FALSE), /* pcrel_offset */
1160
1161 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1162 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1163 0, /* rightshift */
1164 1, /* size (0 = byte, 1 = short, 2 = long) */
1165 16, /* bitsize */
1166 FALSE, /* pc_relative */
1167 0, /* bitpos */
1168 complain_overflow_dont, /* complain_on_overflow */
1169 ppc64_elf_sectoff_reloc, /* special_function */
1170 "R_PPC64_SECTOFF_LO_DS",/* name */
1171 FALSE, /* partial_inplace */
1172 0, /* src_mask */
1173 0xfffc, /* dst_mask */
1174 FALSE), /* pcrel_offset */
1175
1176 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1177 HOWTO (R_PPC64_TOC16_DS, /* type */
1178 0, /* rightshift */
1179 1, /* size (0 = byte, 1 = short, 2 = long) */
1180 16, /* bitsize */
1181 FALSE, /* pc_relative */
1182 0, /* bitpos */
1183 complain_overflow_signed, /* complain_on_overflow */
1184 ppc64_elf_toc_reloc, /* special_function */
1185 "R_PPC64_TOC16_DS", /* name */
1186 FALSE, /* partial_inplace */
1187 0, /* src_mask */
1188 0xfffc, /* dst_mask */
1189 FALSE), /* pcrel_offset */
1190
1191 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1192 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1193 0, /* rightshift */
1194 1, /* size (0 = byte, 1 = short, 2 = long) */
1195 16, /* bitsize */
1196 FALSE, /* pc_relative */
1197 0, /* bitpos */
1198 complain_overflow_dont, /* complain_on_overflow */
1199 ppc64_elf_toc_reloc, /* special_function */
1200 "R_PPC64_TOC16_LO_DS", /* name */
1201 FALSE, /* partial_inplace */
1202 0, /* src_mask */
1203 0xfffc, /* dst_mask */
1204 FALSE), /* pcrel_offset */
1205
1206 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1207 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1208 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1209 0, /* rightshift */
1210 1, /* size (0 = byte, 1 = short, 2 = long) */
1211 16, /* bitsize */
1212 FALSE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_signed, /* complain_on_overflow */
1215 ppc64_elf_unhandled_reloc, /* special_function */
1216 "R_PPC64_PLTGOT16_DS", /* name */
1217 FALSE, /* partial_inplace */
1218 0, /* src_mask */
1219 0xfffc, /* dst_mask */
1220 FALSE), /* pcrel_offset */
1221
1222 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1223 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1224 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1225 0, /* rightshift */
1226 1, /* size (0 = byte, 1 = short, 2 = long) */
1227 16, /* bitsize */
1228 FALSE, /* pc_relative */
1229 0, /* bitpos */
1230 complain_overflow_dont, /* complain_on_overflow */
1231 ppc64_elf_unhandled_reloc, /* special_function */
1232 "R_PPC64_PLTGOT16_LO_DS",/* name */
1233 FALSE, /* partial_inplace */
1234 0, /* src_mask */
1235 0xfffc, /* dst_mask */
1236 FALSE), /* pcrel_offset */
1237
1238 /* Marker reloc for TLS. */
1239 HOWTO (R_PPC64_TLS,
1240 0, /* rightshift */
1241 2, /* size (0 = byte, 1 = short, 2 = long) */
1242 32, /* bitsize */
1243 FALSE, /* pc_relative */
1244 0, /* bitpos */
1245 complain_overflow_dont, /* complain_on_overflow */
1246 bfd_elf_generic_reloc, /* special_function */
1247 "R_PPC64_TLS", /* name */
1248 FALSE, /* partial_inplace */
1249 0, /* src_mask */
1250 0, /* dst_mask */
1251 FALSE), /* pcrel_offset */
1252
1253 /* Computes the load module index of the load module that contains the
1254 definition of its TLS sym. */
1255 HOWTO (R_PPC64_DTPMOD64,
1256 0, /* rightshift */
1257 4, /* size (0 = byte, 1 = short, 2 = long) */
1258 64, /* bitsize */
1259 FALSE, /* pc_relative */
1260 0, /* bitpos */
1261 complain_overflow_dont, /* complain_on_overflow */
1262 ppc64_elf_unhandled_reloc, /* special_function */
1263 "R_PPC64_DTPMOD64", /* name */
1264 FALSE, /* partial_inplace */
1265 0, /* src_mask */
1266 ONES (64), /* dst_mask */
1267 FALSE), /* pcrel_offset */
1268
1269 /* Computes a dtv-relative displacement, the difference between the value
1270 of sym+add and the base address of the thread-local storage block that
1271 contains the definition of sym, minus 0x8000. */
1272 HOWTO (R_PPC64_DTPREL64,
1273 0, /* rightshift */
1274 4, /* size (0 = byte, 1 = short, 2 = long) */
1275 64, /* bitsize */
1276 FALSE, /* pc_relative */
1277 0, /* bitpos */
1278 complain_overflow_dont, /* complain_on_overflow */
1279 ppc64_elf_unhandled_reloc, /* special_function */
1280 "R_PPC64_DTPREL64", /* name */
1281 FALSE, /* partial_inplace */
1282 0, /* src_mask */
1283 ONES (64), /* dst_mask */
1284 FALSE), /* pcrel_offset */
1285
1286 /* A 16 bit dtprel reloc. */
1287 HOWTO (R_PPC64_DTPREL16,
1288 0, /* rightshift */
1289 1, /* size (0 = byte, 1 = short, 2 = long) */
1290 16, /* bitsize */
1291 FALSE, /* pc_relative */
1292 0, /* bitpos */
1293 complain_overflow_signed, /* complain_on_overflow */
1294 ppc64_elf_unhandled_reloc, /* special_function */
1295 "R_PPC64_DTPREL16", /* name */
1296 FALSE, /* partial_inplace */
1297 0, /* src_mask */
1298 0xffff, /* dst_mask */
1299 FALSE), /* pcrel_offset */
1300
1301 /* Like DTPREL16, but no overflow. */
1302 HOWTO (R_PPC64_DTPREL16_LO,
1303 0, /* rightshift */
1304 1, /* size (0 = byte, 1 = short, 2 = long) */
1305 16, /* bitsize */
1306 FALSE, /* pc_relative */
1307 0, /* bitpos */
1308 complain_overflow_dont, /* complain_on_overflow */
1309 ppc64_elf_unhandled_reloc, /* special_function */
1310 "R_PPC64_DTPREL16_LO", /* name */
1311 FALSE, /* partial_inplace */
1312 0, /* src_mask */
1313 0xffff, /* dst_mask */
1314 FALSE), /* pcrel_offset */
1315
1316 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1317 HOWTO (R_PPC64_DTPREL16_HI,
1318 16, /* rightshift */
1319 1, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont, /* complain_on_overflow */
1324 ppc64_elf_unhandled_reloc, /* special_function */
1325 "R_PPC64_DTPREL16_HI", /* name */
1326 FALSE, /* partial_inplace */
1327 0, /* src_mask */
1328 0xffff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1332 HOWTO (R_PPC64_DTPREL16_HA,
1333 16, /* rightshift */
1334 1, /* size (0 = byte, 1 = short, 2 = long) */
1335 16, /* bitsize */
1336 FALSE, /* pc_relative */
1337 0, /* bitpos */
1338 complain_overflow_dont, /* complain_on_overflow */
1339 ppc64_elf_unhandled_reloc, /* special_function */
1340 "R_PPC64_DTPREL16_HA", /* name */
1341 FALSE, /* partial_inplace */
1342 0, /* src_mask */
1343 0xffff, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1347 HOWTO (R_PPC64_DTPREL16_HIGHER,
1348 32, /* rightshift */
1349 1, /* size (0 = byte, 1 = short, 2 = long) */
1350 16, /* bitsize */
1351 FALSE, /* pc_relative */
1352 0, /* bitpos */
1353 complain_overflow_dont, /* complain_on_overflow */
1354 ppc64_elf_unhandled_reloc, /* special_function */
1355 "R_PPC64_DTPREL16_HIGHER", /* name */
1356 FALSE, /* partial_inplace */
1357 0, /* src_mask */
1358 0xffff, /* dst_mask */
1359 FALSE), /* pcrel_offset */
1360
1361 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1362 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1363 32, /* rightshift */
1364 1, /* size (0 = byte, 1 = short, 2 = long) */
1365 16, /* bitsize */
1366 FALSE, /* pc_relative */
1367 0, /* bitpos */
1368 complain_overflow_dont, /* complain_on_overflow */
1369 ppc64_elf_unhandled_reloc, /* special_function */
1370 "R_PPC64_DTPREL16_HIGHERA", /* name */
1371 FALSE, /* partial_inplace */
1372 0, /* src_mask */
1373 0xffff, /* dst_mask */
1374 FALSE), /* pcrel_offset */
1375
1376 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1377 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1378 48, /* rightshift */
1379 1, /* size (0 = byte, 1 = short, 2 = long) */
1380 16, /* bitsize */
1381 FALSE, /* pc_relative */
1382 0, /* bitpos */
1383 complain_overflow_dont, /* complain_on_overflow */
1384 ppc64_elf_unhandled_reloc, /* special_function */
1385 "R_PPC64_DTPREL16_HIGHEST", /* name */
1386 FALSE, /* partial_inplace */
1387 0, /* src_mask */
1388 0xffff, /* dst_mask */
1389 FALSE), /* pcrel_offset */
1390
1391 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1392 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1393 48, /* rightshift */
1394 1, /* size (0 = byte, 1 = short, 2 = long) */
1395 16, /* bitsize */
1396 FALSE, /* pc_relative */
1397 0, /* bitpos */
1398 complain_overflow_dont, /* complain_on_overflow */
1399 ppc64_elf_unhandled_reloc, /* special_function */
1400 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1401 FALSE, /* partial_inplace */
1402 0, /* src_mask */
1403 0xffff, /* dst_mask */
1404 FALSE), /* pcrel_offset */
1405
1406 /* Like DTPREL16, but for insns with a DS field. */
1407 HOWTO (R_PPC64_DTPREL16_DS,
1408 0, /* rightshift */
1409 1, /* size (0 = byte, 1 = short, 2 = long) */
1410 16, /* bitsize */
1411 FALSE, /* pc_relative */
1412 0, /* bitpos */
1413 complain_overflow_signed, /* complain_on_overflow */
1414 ppc64_elf_unhandled_reloc, /* special_function */
1415 "R_PPC64_DTPREL16_DS", /* name */
1416 FALSE, /* partial_inplace */
1417 0, /* src_mask */
1418 0xfffc, /* dst_mask */
1419 FALSE), /* pcrel_offset */
1420
1421 /* Like DTPREL16_DS, but no overflow. */
1422 HOWTO (R_PPC64_DTPREL16_LO_DS,
1423 0, /* rightshift */
1424 1, /* size (0 = byte, 1 = short, 2 = long) */
1425 16, /* bitsize */
1426 FALSE, /* pc_relative */
1427 0, /* bitpos */
1428 complain_overflow_dont, /* complain_on_overflow */
1429 ppc64_elf_unhandled_reloc, /* special_function */
1430 "R_PPC64_DTPREL16_LO_DS", /* name */
1431 FALSE, /* partial_inplace */
1432 0, /* src_mask */
1433 0xfffc, /* dst_mask */
1434 FALSE), /* pcrel_offset */
1435
1436 /* Computes a tp-relative displacement, the difference between the value of
1437 sym+add and the value of the thread pointer (r13). */
1438 HOWTO (R_PPC64_TPREL64,
1439 0, /* rightshift */
1440 4, /* size (0 = byte, 1 = short, 2 = long) */
1441 64, /* bitsize */
1442 FALSE, /* pc_relative */
1443 0, /* bitpos */
1444 complain_overflow_dont, /* complain_on_overflow */
1445 ppc64_elf_unhandled_reloc, /* special_function */
1446 "R_PPC64_TPREL64", /* name */
1447 FALSE, /* partial_inplace */
1448 0, /* src_mask */
1449 ONES (64), /* dst_mask */
1450 FALSE), /* pcrel_offset */
1451
1452 /* A 16 bit tprel reloc. */
1453 HOWTO (R_PPC64_TPREL16,
1454 0, /* rightshift */
1455 1, /* size (0 = byte, 1 = short, 2 = long) */
1456 16, /* bitsize */
1457 FALSE, /* pc_relative */
1458 0, /* bitpos */
1459 complain_overflow_signed, /* complain_on_overflow */
1460 ppc64_elf_unhandled_reloc, /* special_function */
1461 "R_PPC64_TPREL16", /* name */
1462 FALSE, /* partial_inplace */
1463 0, /* src_mask */
1464 0xffff, /* dst_mask */
1465 FALSE), /* pcrel_offset */
1466
1467 /* Like TPREL16, but no overflow. */
1468 HOWTO (R_PPC64_TPREL16_LO,
1469 0, /* rightshift */
1470 1, /* size (0 = byte, 1 = short, 2 = long) */
1471 16, /* bitsize */
1472 FALSE, /* pc_relative */
1473 0, /* bitpos */
1474 complain_overflow_dont, /* complain_on_overflow */
1475 ppc64_elf_unhandled_reloc, /* special_function */
1476 "R_PPC64_TPREL16_LO", /* name */
1477 FALSE, /* partial_inplace */
1478 0, /* src_mask */
1479 0xffff, /* dst_mask */
1480 FALSE), /* pcrel_offset */
1481
1482 /* Like TPREL16_LO, but next higher group of 16 bits. */
1483 HOWTO (R_PPC64_TPREL16_HI,
1484 16, /* rightshift */
1485 1, /* size (0 = byte, 1 = short, 2 = long) */
1486 16, /* bitsize */
1487 FALSE, /* pc_relative */
1488 0, /* bitpos */
1489 complain_overflow_dont, /* complain_on_overflow */
1490 ppc64_elf_unhandled_reloc, /* special_function */
1491 "R_PPC64_TPREL16_HI", /* name */
1492 FALSE, /* partial_inplace */
1493 0, /* src_mask */
1494 0xffff, /* dst_mask */
1495 FALSE), /* pcrel_offset */
1496
1497 /* Like TPREL16_HI, but adjust for low 16 bits. */
1498 HOWTO (R_PPC64_TPREL16_HA,
1499 16, /* rightshift */
1500 1, /* size (0 = byte, 1 = short, 2 = long) */
1501 16, /* bitsize */
1502 FALSE, /* pc_relative */
1503 0, /* bitpos */
1504 complain_overflow_dont, /* complain_on_overflow */
1505 ppc64_elf_unhandled_reloc, /* special_function */
1506 "R_PPC64_TPREL16_HA", /* name */
1507 FALSE, /* partial_inplace */
1508 0, /* src_mask */
1509 0xffff, /* dst_mask */
1510 FALSE), /* pcrel_offset */
1511
1512 /* Like TPREL16_HI, but next higher group of 16 bits. */
1513 HOWTO (R_PPC64_TPREL16_HIGHER,
1514 32, /* rightshift */
1515 1, /* size (0 = byte, 1 = short, 2 = long) */
1516 16, /* bitsize */
1517 FALSE, /* pc_relative */
1518 0, /* bitpos */
1519 complain_overflow_dont, /* complain_on_overflow */
1520 ppc64_elf_unhandled_reloc, /* special_function */
1521 "R_PPC64_TPREL16_HIGHER", /* name */
1522 FALSE, /* partial_inplace */
1523 0, /* src_mask */
1524 0xffff, /* dst_mask */
1525 FALSE), /* pcrel_offset */
1526
1527 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1528 HOWTO (R_PPC64_TPREL16_HIGHERA,
1529 32, /* rightshift */
1530 1, /* size (0 = byte, 1 = short, 2 = long) */
1531 16, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_dont, /* complain_on_overflow */
1535 ppc64_elf_unhandled_reloc, /* special_function */
1536 "R_PPC64_TPREL16_HIGHERA", /* name */
1537 FALSE, /* partial_inplace */
1538 0, /* src_mask */
1539 0xffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1543 HOWTO (R_PPC64_TPREL16_HIGHEST,
1544 48, /* rightshift */
1545 1, /* size (0 = byte, 1 = short, 2 = long) */
1546 16, /* bitsize */
1547 FALSE, /* pc_relative */
1548 0, /* bitpos */
1549 complain_overflow_dont, /* complain_on_overflow */
1550 ppc64_elf_unhandled_reloc, /* special_function */
1551 "R_PPC64_TPREL16_HIGHEST", /* name */
1552 FALSE, /* partial_inplace */
1553 0, /* src_mask */
1554 0xffff, /* dst_mask */
1555 FALSE), /* pcrel_offset */
1556
1557 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1558 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1559 48, /* rightshift */
1560 1, /* size (0 = byte, 1 = short, 2 = long) */
1561 16, /* bitsize */
1562 FALSE, /* pc_relative */
1563 0, /* bitpos */
1564 complain_overflow_dont, /* complain_on_overflow */
1565 ppc64_elf_unhandled_reloc, /* special_function */
1566 "R_PPC64_TPREL16_HIGHESTA", /* name */
1567 FALSE, /* partial_inplace */
1568 0, /* src_mask */
1569 0xffff, /* dst_mask */
1570 FALSE), /* pcrel_offset */
1571
1572 /* Like TPREL16, but for insns with a DS field. */
1573 HOWTO (R_PPC64_TPREL16_DS,
1574 0, /* rightshift */
1575 1, /* size (0 = byte, 1 = short, 2 = long) */
1576 16, /* bitsize */
1577 FALSE, /* pc_relative */
1578 0, /* bitpos */
1579 complain_overflow_signed, /* complain_on_overflow */
1580 ppc64_elf_unhandled_reloc, /* special_function */
1581 "R_PPC64_TPREL16_DS", /* name */
1582 FALSE, /* partial_inplace */
1583 0, /* src_mask */
1584 0xfffc, /* dst_mask */
1585 FALSE), /* pcrel_offset */
1586
1587 /* Like TPREL16_DS, but no overflow. */
1588 HOWTO (R_PPC64_TPREL16_LO_DS,
1589 0, /* rightshift */
1590 1, /* size (0 = byte, 1 = short, 2 = long) */
1591 16, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_dont, /* complain_on_overflow */
1595 ppc64_elf_unhandled_reloc, /* special_function */
1596 "R_PPC64_TPREL16_LO_DS", /* name */
1597 FALSE, /* partial_inplace */
1598 0, /* src_mask */
1599 0xfffc, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1603 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1604 to the first entry relative to the TOC base (r2). */
1605 HOWTO (R_PPC64_GOT_TLSGD16,
1606 0, /* rightshift */
1607 1, /* size (0 = byte, 1 = short, 2 = long) */
1608 16, /* bitsize */
1609 FALSE, /* pc_relative */
1610 0, /* bitpos */
1611 complain_overflow_signed, /* complain_on_overflow */
1612 ppc64_elf_unhandled_reloc, /* special_function */
1613 "R_PPC64_GOT_TLSGD16", /* name */
1614 FALSE, /* partial_inplace */
1615 0, /* src_mask */
1616 0xffff, /* dst_mask */
1617 FALSE), /* pcrel_offset */
1618
1619 /* Like GOT_TLSGD16, but no overflow. */
1620 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1621 0, /* rightshift */
1622 1, /* size (0 = byte, 1 = short, 2 = long) */
1623 16, /* bitsize */
1624 FALSE, /* pc_relative */
1625 0, /* bitpos */
1626 complain_overflow_dont, /* complain_on_overflow */
1627 ppc64_elf_unhandled_reloc, /* special_function */
1628 "R_PPC64_GOT_TLSGD16_LO", /* name */
1629 FALSE, /* partial_inplace */
1630 0, /* src_mask */
1631 0xffff, /* dst_mask */
1632 FALSE), /* pcrel_offset */
1633
1634 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1635 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1636 16, /* rightshift */
1637 1, /* size (0 = byte, 1 = short, 2 = long) */
1638 16, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont, /* complain_on_overflow */
1642 ppc64_elf_unhandled_reloc, /* special_function */
1643 "R_PPC64_GOT_TLSGD16_HI", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0xffff, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1650 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1651 16, /* rightshift */
1652 1, /* size (0 = byte, 1 = short, 2 = long) */
1653 16, /* bitsize */
1654 FALSE, /* pc_relative */
1655 0, /* bitpos */
1656 complain_overflow_dont, /* complain_on_overflow */
1657 ppc64_elf_unhandled_reloc, /* special_function */
1658 "R_PPC64_GOT_TLSGD16_HA", /* name */
1659 FALSE, /* partial_inplace */
1660 0, /* src_mask */
1661 0xffff, /* dst_mask */
1662 FALSE), /* pcrel_offset */
1663
1664 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1665 with values (sym+add)@dtpmod and zero, and computes the offset to the
1666 first entry relative to the TOC base (r2). */
1667 HOWTO (R_PPC64_GOT_TLSLD16,
1668 0, /* rightshift */
1669 1, /* size (0 = byte, 1 = short, 2 = long) */
1670 16, /* bitsize */
1671 FALSE, /* pc_relative */
1672 0, /* bitpos */
1673 complain_overflow_signed, /* complain_on_overflow */
1674 ppc64_elf_unhandled_reloc, /* special_function */
1675 "R_PPC64_GOT_TLSLD16", /* name */
1676 FALSE, /* partial_inplace */
1677 0, /* src_mask */
1678 0xffff, /* dst_mask */
1679 FALSE), /* pcrel_offset */
1680
1681 /* Like GOT_TLSLD16, but no overflow. */
1682 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1683 0, /* rightshift */
1684 1, /* size (0 = byte, 1 = short, 2 = long) */
1685 16, /* bitsize */
1686 FALSE, /* pc_relative */
1687 0, /* bitpos */
1688 complain_overflow_dont, /* complain_on_overflow */
1689 ppc64_elf_unhandled_reloc, /* special_function */
1690 "R_PPC64_GOT_TLSLD16_LO", /* name */
1691 FALSE, /* partial_inplace */
1692 0, /* src_mask */
1693 0xffff, /* dst_mask */
1694 FALSE), /* pcrel_offset */
1695
1696 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1697 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1698 16, /* rightshift */
1699 1, /* size (0 = byte, 1 = short, 2 = long) */
1700 16, /* bitsize */
1701 FALSE, /* pc_relative */
1702 0, /* bitpos */
1703 complain_overflow_dont, /* complain_on_overflow */
1704 ppc64_elf_unhandled_reloc, /* special_function */
1705 "R_PPC64_GOT_TLSLD16_HI", /* name */
1706 FALSE, /* partial_inplace */
1707 0, /* src_mask */
1708 0xffff, /* dst_mask */
1709 FALSE), /* pcrel_offset */
1710
1711 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1712 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1713 16, /* rightshift */
1714 1, /* size (0 = byte, 1 = short, 2 = long) */
1715 16, /* bitsize */
1716 FALSE, /* pc_relative */
1717 0, /* bitpos */
1718 complain_overflow_dont, /* complain_on_overflow */
1719 ppc64_elf_unhandled_reloc, /* special_function */
1720 "R_PPC64_GOT_TLSLD16_HA", /* name */
1721 FALSE, /* partial_inplace */
1722 0, /* src_mask */
1723 0xffff, /* dst_mask */
1724 FALSE), /* pcrel_offset */
1725
1726 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1727 the offset to the entry relative to the TOC base (r2). */
1728 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1729 0, /* rightshift */
1730 1, /* size (0 = byte, 1 = short, 2 = long) */
1731 16, /* bitsize */
1732 FALSE, /* pc_relative */
1733 0, /* bitpos */
1734 complain_overflow_signed, /* complain_on_overflow */
1735 ppc64_elf_unhandled_reloc, /* special_function */
1736 "R_PPC64_GOT_DTPREL16_DS", /* name */
1737 FALSE, /* partial_inplace */
1738 0, /* src_mask */
1739 0xfffc, /* dst_mask */
1740 FALSE), /* pcrel_offset */
1741
1742 /* Like GOT_DTPREL16_DS, but no overflow. */
1743 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1744 0, /* rightshift */
1745 1, /* size (0 = byte, 1 = short, 2 = long) */
1746 16, /* bitsize */
1747 FALSE, /* pc_relative */
1748 0, /* bitpos */
1749 complain_overflow_dont, /* complain_on_overflow */
1750 ppc64_elf_unhandled_reloc, /* special_function */
1751 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1752 FALSE, /* partial_inplace */
1753 0, /* src_mask */
1754 0xfffc, /* dst_mask */
1755 FALSE), /* pcrel_offset */
1756
1757 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1758 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1759 16, /* rightshift */
1760 1, /* size (0 = byte, 1 = short, 2 = long) */
1761 16, /* bitsize */
1762 FALSE, /* pc_relative */
1763 0, /* bitpos */
1764 complain_overflow_dont, /* complain_on_overflow */
1765 ppc64_elf_unhandled_reloc, /* special_function */
1766 "R_PPC64_GOT_DTPREL16_HI", /* name */
1767 FALSE, /* partial_inplace */
1768 0, /* src_mask */
1769 0xffff, /* dst_mask */
1770 FALSE), /* pcrel_offset */
1771
1772 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1773 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1774 16, /* rightshift */
1775 1, /* size (0 = byte, 1 = short, 2 = long) */
1776 16, /* bitsize */
1777 FALSE, /* pc_relative */
1778 0, /* bitpos */
1779 complain_overflow_dont, /* complain_on_overflow */
1780 ppc64_elf_unhandled_reloc, /* special_function */
1781 "R_PPC64_GOT_DTPREL16_HA", /* name */
1782 FALSE, /* partial_inplace */
1783 0, /* src_mask */
1784 0xffff, /* dst_mask */
1785 FALSE), /* pcrel_offset */
1786
1787 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1788 offset to the entry relative to the TOC base (r2). */
1789 HOWTO (R_PPC64_GOT_TPREL16_DS,
1790 0, /* rightshift */
1791 1, /* size (0 = byte, 1 = short, 2 = long) */
1792 16, /* bitsize */
1793 FALSE, /* pc_relative */
1794 0, /* bitpos */
1795 complain_overflow_signed, /* complain_on_overflow */
1796 ppc64_elf_unhandled_reloc, /* special_function */
1797 "R_PPC64_GOT_TPREL16_DS", /* name */
1798 FALSE, /* partial_inplace */
1799 0, /* src_mask */
1800 0xfffc, /* dst_mask */
1801 FALSE), /* pcrel_offset */
1802
1803 /* Like GOT_TPREL16_DS, but no overflow. */
1804 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1805 0, /* rightshift */
1806 1, /* size (0 = byte, 1 = short, 2 = long) */
1807 16, /* bitsize */
1808 FALSE, /* pc_relative */
1809 0, /* bitpos */
1810 complain_overflow_dont, /* complain_on_overflow */
1811 ppc64_elf_unhandled_reloc, /* special_function */
1812 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1813 FALSE, /* partial_inplace */
1814 0, /* src_mask */
1815 0xfffc, /* dst_mask */
1816 FALSE), /* pcrel_offset */
1817
1818 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1819 HOWTO (R_PPC64_GOT_TPREL16_HI,
1820 16, /* rightshift */
1821 1, /* size (0 = byte, 1 = short, 2 = long) */
1822 16, /* bitsize */
1823 FALSE, /* pc_relative */
1824 0, /* bitpos */
1825 complain_overflow_dont, /* complain_on_overflow */
1826 ppc64_elf_unhandled_reloc, /* special_function */
1827 "R_PPC64_GOT_TPREL16_HI", /* name */
1828 FALSE, /* partial_inplace */
1829 0, /* src_mask */
1830 0xffff, /* dst_mask */
1831 FALSE), /* pcrel_offset */
1832
1833 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1834 HOWTO (R_PPC64_GOT_TPREL16_HA,
1835 16, /* rightshift */
1836 1, /* size (0 = byte, 1 = short, 2 = long) */
1837 16, /* bitsize */
1838 FALSE, /* pc_relative */
1839 0, /* bitpos */
1840 complain_overflow_dont, /* complain_on_overflow */
1841 ppc64_elf_unhandled_reloc, /* special_function */
1842 "R_PPC64_GOT_TPREL16_HA", /* name */
1843 FALSE, /* partial_inplace */
1844 0, /* src_mask */
1845 0xffff, /* dst_mask */
1846 FALSE), /* pcrel_offset */
1847
1848 /* GNU extension to record C++ vtable hierarchy. */
1849 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1850 0, /* rightshift */
1851 0, /* size (0 = byte, 1 = short, 2 = long) */
1852 0, /* bitsize */
1853 FALSE, /* pc_relative */
1854 0, /* bitpos */
1855 complain_overflow_dont, /* complain_on_overflow */
1856 NULL, /* special_function */
1857 "R_PPC64_GNU_VTINHERIT", /* name */
1858 FALSE, /* partial_inplace */
1859 0, /* src_mask */
1860 0, /* dst_mask */
1861 FALSE), /* pcrel_offset */
1862
1863 /* GNU extension to record C++ vtable member usage. */
1864 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
1865 0, /* rightshift */
1866 0, /* size (0 = byte, 1 = short, 2 = long) */
1867 0, /* bitsize */
1868 FALSE, /* pc_relative */
1869 0, /* bitpos */
1870 complain_overflow_dont, /* complain_on_overflow */
1871 NULL, /* special_function */
1872 "R_PPC64_GNU_VTENTRY", /* name */
1873 FALSE, /* partial_inplace */
1874 0, /* src_mask */
1875 0, /* dst_mask */
1876 FALSE), /* pcrel_offset */
1877 };
1878
1879 \f
1880 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
1881 be done. */
1882
1883 static void
1884 ppc_howto_init (void)
1885 {
1886 unsigned int i, type;
1887
1888 for (i = 0;
1889 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
1890 i++)
1891 {
1892 type = ppc64_elf_howto_raw[i].type;
1893 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
1894 / sizeof (ppc64_elf_howto_table[0])));
1895 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1896 }
1897 }
1898
1899 static reloc_howto_type *
1900 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1901 bfd_reloc_code_real_type code)
1902 {
1903 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1904
1905 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1906 /* Initialize howto table if needed. */
1907 ppc_howto_init ();
1908
1909 switch (code)
1910 {
1911 default:
1912 return NULL;
1913
1914 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1915 break;
1916 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1917 break;
1918 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1919 break;
1920 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1921 break;
1922 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1923 break;
1924 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1925 break;
1926 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1927 break;
1928 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1929 break;
1930 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1931 break;
1932 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1933 break;
1934 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1935 break;
1936 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1937 break;
1938 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1939 break;
1940 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1941 break;
1942 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1943 break;
1944 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1945 break;
1946 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1947 break;
1948 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1949 break;
1950 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1951 break;
1952 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1953 break;
1954 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1955 break;
1956 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1957 break;
1958 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1959 break;
1960 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1961 break;
1962 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1963 break;
1964 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1965 break;
1966 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1967 break;
1968 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1969 break;
1970 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1971 break;
1972 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1973 break;
1974 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1975 break;
1976 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1977 break;
1978 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1979 break;
1980 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1981 break;
1982 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1983 break;
1984 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1985 break;
1986 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1987 break;
1988 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1989 break;
1990 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1991 break;
1992 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1993 break;
1994 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1995 break;
1996 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1997 break;
1998 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1999 break;
2000 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2001 break;
2002 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2003 break;
2004 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2005 break;
2006 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2007 break;
2008 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2009 break;
2010 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2011 break;
2012 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2013 break;
2014 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2015 break;
2016 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2017 break;
2018 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2019 break;
2020 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2021 break;
2022 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2023 break;
2024 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2025 break;
2026 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2027 break;
2028 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2029 break;
2030 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2031 break;
2032 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2033 break;
2034 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2035 break;
2036 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2037 break;
2038 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2039 break;
2040 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2041 break;
2042 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2043 break;
2044 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2045 break;
2046 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2047 break;
2048 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2049 break;
2050 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2051 break;
2052 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2053 break;
2054 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2055 break;
2056 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2057 break;
2058 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2059 break;
2060 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2061 break;
2062 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2063 break;
2064 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2065 break;
2066 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2067 break;
2068 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2069 break;
2070 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2071 break;
2072 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2073 break;
2074 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2075 break;
2076 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2077 break;
2078 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2079 break;
2080 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2081 break;
2082 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2083 break;
2084 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2085 break;
2086 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2087 break;
2088 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2089 break;
2090 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2091 break;
2092 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2093 break;
2094 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2095 break;
2096 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2097 break;
2098 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2099 break;
2100 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2101 break;
2102 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2103 break;
2104 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2105 break;
2106 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2107 break;
2108 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2109 break;
2110 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2111 break;
2112 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2113 break;
2114 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2115 break;
2116 }
2117
2118 return ppc64_elf_howto_table[r];
2119 };
2120
2121 static reloc_howto_type *
2122 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2123 const char *r_name)
2124 {
2125 unsigned int i;
2126
2127 for (i = 0;
2128 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2129 i++)
2130 if (ppc64_elf_howto_raw[i].name != NULL
2131 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2132 return &ppc64_elf_howto_raw[i];
2133
2134 return NULL;
2135 }
2136
2137 /* Set the howto pointer for a PowerPC ELF reloc. */
2138
2139 static void
2140 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2141 Elf_Internal_Rela *dst)
2142 {
2143 unsigned int type;
2144
2145 /* Initialize howto table if needed. */
2146 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2147 ppc_howto_init ();
2148
2149 type = ELF64_R_TYPE (dst->r_info);
2150 if (type >= (sizeof (ppc64_elf_howto_table)
2151 / sizeof (ppc64_elf_howto_table[0])))
2152 {
2153 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2154 abfd, (int) type);
2155 type = R_PPC64_NONE;
2156 }
2157 cache_ptr->howto = ppc64_elf_howto_table[type];
2158 }
2159
2160 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2161
2162 static bfd_reloc_status_type
2163 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2164 void *data, asection *input_section,
2165 bfd *output_bfd, char **error_message)
2166 {
2167 /* If this is a relocatable link (output_bfd test tells us), just
2168 call the generic function. Any adjustment will be done at final
2169 link time. */
2170 if (output_bfd != NULL)
2171 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2172 input_section, output_bfd, error_message);
2173
2174 /* Adjust the addend for sign extension of the low 16 bits.
2175 We won't actually be using the low 16 bits, so trashing them
2176 doesn't matter. */
2177 reloc_entry->addend += 0x8000;
2178 return bfd_reloc_continue;
2179 }
2180
2181 static bfd_reloc_status_type
2182 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2183 void *data, asection *input_section,
2184 bfd *output_bfd, char **error_message)
2185 {
2186 if (output_bfd != NULL)
2187 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2188 input_section, output_bfd, error_message);
2189
2190 if (strcmp (symbol->section->name, ".opd") == 0
2191 && (symbol->section->owner->flags & DYNAMIC) == 0)
2192 {
2193 bfd_vma dest = opd_entry_value (symbol->section,
2194 symbol->value + reloc_entry->addend,
2195 NULL, NULL);
2196 if (dest != (bfd_vma) -1)
2197 reloc_entry->addend = dest - (symbol->value
2198 + symbol->section->output_section->vma
2199 + symbol->section->output_offset);
2200 }
2201 return bfd_reloc_continue;
2202 }
2203
2204 static bfd_reloc_status_type
2205 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2206 void *data, asection *input_section,
2207 bfd *output_bfd, char **error_message)
2208 {
2209 long insn;
2210 enum elf_ppc64_reloc_type r_type;
2211 bfd_size_type octets;
2212 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
2213 bfd_boolean is_power4 = FALSE;
2214
2215 /* If this is a relocatable link (output_bfd test tells us), just
2216 call the generic function. Any adjustment will be done at final
2217 link time. */
2218 if (output_bfd != NULL)
2219 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2220 input_section, output_bfd, error_message);
2221
2222 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2223 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2224 insn &= ~(0x01 << 21);
2225 r_type = reloc_entry->howto->type;
2226 if (r_type == R_PPC64_ADDR14_BRTAKEN
2227 || r_type == R_PPC64_REL14_BRTAKEN)
2228 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2229
2230 if (is_power4)
2231 {
2232 /* Set 'a' bit. This is 0b00010 in BO field for branch
2233 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2234 for branch on CTR insns (BO == 1a00t or 1a01t). */
2235 if ((insn & (0x14 << 21)) == (0x04 << 21))
2236 insn |= 0x02 << 21;
2237 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2238 insn |= 0x08 << 21;
2239 else
2240 goto out;
2241 }
2242 else
2243 {
2244 bfd_vma target = 0;
2245 bfd_vma from;
2246
2247 if (!bfd_is_com_section (symbol->section))
2248 target = symbol->value;
2249 target += symbol->section->output_section->vma;
2250 target += symbol->section->output_offset;
2251 target += reloc_entry->addend;
2252
2253 from = (reloc_entry->address
2254 + input_section->output_offset
2255 + input_section->output_section->vma);
2256
2257 /* Invert 'y' bit if not the default. */
2258 if ((bfd_signed_vma) (target - from) < 0)
2259 insn ^= 0x01 << 21;
2260 }
2261 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2262 out:
2263 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2264 input_section, output_bfd, error_message);
2265 }
2266
2267 static bfd_reloc_status_type
2268 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2269 void *data, asection *input_section,
2270 bfd *output_bfd, char **error_message)
2271 {
2272 /* If this is a relocatable link (output_bfd test tells us), just
2273 call the generic function. Any adjustment will be done at final
2274 link time. */
2275 if (output_bfd != NULL)
2276 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2277 input_section, output_bfd, error_message);
2278
2279 /* Subtract the symbol section base address. */
2280 reloc_entry->addend -= symbol->section->output_section->vma;
2281 return bfd_reloc_continue;
2282 }
2283
2284 static bfd_reloc_status_type
2285 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2286 void *data, asection *input_section,
2287 bfd *output_bfd, char **error_message)
2288 {
2289 /* If this is a relocatable link (output_bfd test tells us), just
2290 call the generic function. Any adjustment will be done at final
2291 link time. */
2292 if (output_bfd != NULL)
2293 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2294 input_section, output_bfd, error_message);
2295
2296 /* Subtract the symbol section base address. */
2297 reloc_entry->addend -= symbol->section->output_section->vma;
2298
2299 /* Adjust the addend for sign extension of the low 16 bits. */
2300 reloc_entry->addend += 0x8000;
2301 return bfd_reloc_continue;
2302 }
2303
2304 static bfd_reloc_status_type
2305 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2306 void *data, asection *input_section,
2307 bfd *output_bfd, char **error_message)
2308 {
2309 bfd_vma TOCstart;
2310
2311 /* If this is a relocatable link (output_bfd test tells us), just
2312 call the generic function. Any adjustment will be done at final
2313 link time. */
2314 if (output_bfd != NULL)
2315 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2316 input_section, output_bfd, error_message);
2317
2318 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2319 if (TOCstart == 0)
2320 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2321
2322 /* Subtract the TOC base address. */
2323 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2324 return bfd_reloc_continue;
2325 }
2326
2327 static bfd_reloc_status_type
2328 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2329 void *data, asection *input_section,
2330 bfd *output_bfd, char **error_message)
2331 {
2332 bfd_vma TOCstart;
2333
2334 /* If this is a relocatable link (output_bfd test tells us), just
2335 call the generic function. Any adjustment will be done at final
2336 link time. */
2337 if (output_bfd != NULL)
2338 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2339 input_section, output_bfd, error_message);
2340
2341 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2342 if (TOCstart == 0)
2343 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2344
2345 /* Subtract the TOC base address. */
2346 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2347
2348 /* Adjust the addend for sign extension of the low 16 bits. */
2349 reloc_entry->addend += 0x8000;
2350 return bfd_reloc_continue;
2351 }
2352
2353 static bfd_reloc_status_type
2354 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2355 void *data, asection *input_section,
2356 bfd *output_bfd, char **error_message)
2357 {
2358 bfd_vma TOCstart;
2359 bfd_size_type octets;
2360
2361 /* If this is a relocatable link (output_bfd test tells us), just
2362 call the generic function. Any adjustment will be done at final
2363 link time. */
2364 if (output_bfd != NULL)
2365 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2366 input_section, output_bfd, error_message);
2367
2368 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2369 if (TOCstart == 0)
2370 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2371
2372 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2373 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2374 return bfd_reloc_ok;
2375 }
2376
2377 static bfd_reloc_status_type
2378 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2379 void *data, asection *input_section,
2380 bfd *output_bfd, char **error_message)
2381 {
2382 /* If this is a relocatable link (output_bfd test tells us), just
2383 call the generic function. Any adjustment will be done at final
2384 link time. */
2385 if (output_bfd != NULL)
2386 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2387 input_section, output_bfd, error_message);
2388
2389 if (error_message != NULL)
2390 {
2391 static char buf[60];
2392 sprintf (buf, "generic linker can't handle %s",
2393 reloc_entry->howto->name);
2394 *error_message = buf;
2395 }
2396 return bfd_reloc_dangerous;
2397 }
2398
2399 struct ppc64_elf_obj_tdata
2400 {
2401 struct elf_obj_tdata elf;
2402
2403 /* Shortcuts to dynamic linker sections. */
2404 asection *got;
2405 asection *relgot;
2406
2407 /* Used during garbage collection. We attach global symbols defined
2408 on removed .opd entries to this section so that the sym is removed. */
2409 asection *deleted_section;
2410
2411 /* TLS local dynamic got entry handling. Suppose for multiple GOT
2412 sections means we potentially need one of these for each input bfd. */
2413 union {
2414 bfd_signed_vma refcount;
2415 bfd_vma offset;
2416 } tlsld_got;
2417
2418 /* A copy of relocs before they are modified for --emit-relocs. */
2419 Elf_Internal_Rela *opd_relocs;
2420 };
2421
2422 #define ppc64_elf_tdata(bfd) \
2423 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2424
2425 #define ppc64_tlsld_got(bfd) \
2426 (&ppc64_elf_tdata (bfd)->tlsld_got)
2427
2428 #define is_ppc64_elf(bfd) \
2429 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2430 && elf_object_id (bfd) == PPC64_ELF_TDATA)
2431
2432 /* Override the generic function because we store some extras. */
2433
2434 static bfd_boolean
2435 ppc64_elf_mkobject (bfd *abfd)
2436 {
2437 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2438 PPC64_ELF_TDATA);
2439 }
2440
2441 /* Fix bad default arch selected for a 64 bit input bfd when the
2442 default is 32 bit. */
2443
2444 static bfd_boolean
2445 ppc64_elf_object_p (bfd *abfd)
2446 {
2447 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2448 {
2449 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2450
2451 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2452 {
2453 /* Relies on arch after 32 bit default being 64 bit default. */
2454 abfd->arch_info = abfd->arch_info->next;
2455 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2456 }
2457 }
2458 return TRUE;
2459 }
2460
2461 /* Support for core dump NOTE sections. */
2462
2463 static bfd_boolean
2464 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2465 {
2466 size_t offset, size;
2467
2468 if (note->descsz != 504)
2469 return FALSE;
2470
2471 /* pr_cursig */
2472 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2473
2474 /* pr_pid */
2475 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2476
2477 /* pr_reg */
2478 offset = 112;
2479 size = 384;
2480
2481 /* Make a ".reg/999" section. */
2482 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2483 size, note->descpos + offset);
2484 }
2485
2486 static bfd_boolean
2487 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2488 {
2489 if (note->descsz != 136)
2490 return FALSE;
2491
2492 elf_tdata (abfd)->core_program
2493 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2494 elf_tdata (abfd)->core_command
2495 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2496
2497 return TRUE;
2498 }
2499
2500 static char *
2501 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2502 ...)
2503 {
2504 switch (note_type)
2505 {
2506 default:
2507 return NULL;
2508
2509 case NT_PRPSINFO:
2510 {
2511 char data[136];
2512 va_list ap;
2513
2514 va_start (ap, note_type);
2515 memset (data, 0, 40);
2516 strncpy (data + 40, va_arg (ap, const char *), 16);
2517 strncpy (data + 56, va_arg (ap, const char *), 80);
2518 va_end (ap);
2519 return elfcore_write_note (abfd, buf, bufsiz,
2520 "CORE", note_type, data, sizeof (data));
2521 }
2522
2523 case NT_PRSTATUS:
2524 {
2525 char data[504];
2526 va_list ap;
2527 long pid;
2528 int cursig;
2529 const void *greg;
2530
2531 va_start (ap, note_type);
2532 memset (data, 0, 112);
2533 pid = va_arg (ap, long);
2534 bfd_put_32 (abfd, pid, data + 32);
2535 cursig = va_arg (ap, int);
2536 bfd_put_16 (abfd, cursig, data + 12);
2537 greg = va_arg (ap, const void *);
2538 memcpy (data + 112, greg, 384);
2539 memset (data + 496, 0, 8);
2540 va_end (ap);
2541 return elfcore_write_note (abfd, buf, bufsiz,
2542 "CORE", note_type, data, sizeof (data));
2543 }
2544 }
2545 }
2546
2547 /* Merge backend specific data from an object file to the output
2548 object file when linking. */
2549
2550 static bfd_boolean
2551 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2552 {
2553 /* Check if we have the same endianess. */
2554 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2555 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
2556 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2557 {
2558 const char *msg;
2559
2560 if (bfd_big_endian (ibfd))
2561 msg = _("%B: compiled for a big endian system "
2562 "and target is little endian");
2563 else
2564 msg = _("%B: compiled for a little endian system "
2565 "and target is big endian");
2566
2567 (*_bfd_error_handler) (msg, ibfd);
2568
2569 bfd_set_error (bfd_error_wrong_format);
2570 return FALSE;
2571 }
2572
2573 return TRUE;
2574 }
2575
2576 /* Add extra PPC sections. */
2577
2578 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2579 {
2580 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2581 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2582 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2583 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2584 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2585 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2586 { NULL, 0, 0, 0, 0 }
2587 };
2588
2589 enum _ppc64_sec_type {
2590 sec_normal = 0,
2591 sec_opd = 1,
2592 sec_toc = 2
2593 };
2594
2595 struct _ppc64_elf_section_data
2596 {
2597 struct bfd_elf_section_data elf;
2598
2599 union
2600 {
2601 /* An array with one entry for each opd function descriptor. */
2602 struct _opd_sec_data
2603 {
2604 /* Points to the function code section for local opd entries. */
2605 asection **func_sec;
2606
2607 /* After editing .opd, adjust references to opd local syms. */
2608 long *adjust;
2609 } opd;
2610
2611 /* An array for toc sections, indexed by offset/8.
2612 Specifies the relocation symbol index used at a given toc offset. */
2613 unsigned *t_symndx;
2614 } u;
2615
2616 enum _ppc64_sec_type sec_type:2;
2617
2618 /* Flag set when small branches are detected. Used to
2619 select suitable defaults for the stub group size. */
2620 unsigned int has_14bit_branch:1;
2621 };
2622
2623 #define ppc64_elf_section_data(sec) \
2624 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2625
2626 static bfd_boolean
2627 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2628 {
2629 if (!sec->used_by_bfd)
2630 {
2631 struct _ppc64_elf_section_data *sdata;
2632 bfd_size_type amt = sizeof (*sdata);
2633
2634 sdata = bfd_zalloc (abfd, amt);
2635 if (sdata == NULL)
2636 return FALSE;
2637 sec->used_by_bfd = sdata;
2638 }
2639
2640 return _bfd_elf_new_section_hook (abfd, sec);
2641 }
2642
2643 static struct _opd_sec_data *
2644 get_opd_info (asection * sec)
2645 {
2646 if (sec != NULL
2647 && ppc64_elf_section_data (sec) != NULL
2648 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2649 return &ppc64_elf_section_data (sec)->u.opd;
2650 return NULL;
2651 }
2652 \f
2653 /* Parameters for the qsort hook. */
2654 static asection *synthetic_opd;
2655 static bfd_boolean synthetic_relocatable;
2656
2657 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2658
2659 static int
2660 compare_symbols (const void *ap, const void *bp)
2661 {
2662 const asymbol *a = * (const asymbol **) ap;
2663 const asymbol *b = * (const asymbol **) bp;
2664
2665 /* Section symbols first. */
2666 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2667 return -1;
2668 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2669 return 1;
2670
2671 /* then .opd symbols. */
2672 if (a->section == synthetic_opd && b->section != synthetic_opd)
2673 return -1;
2674 if (a->section != synthetic_opd && b->section == synthetic_opd)
2675 return 1;
2676
2677 /* then other code symbols. */
2678 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2679 == (SEC_CODE | SEC_ALLOC)
2680 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2681 != (SEC_CODE | SEC_ALLOC))
2682 return -1;
2683
2684 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2685 != (SEC_CODE | SEC_ALLOC)
2686 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2687 == (SEC_CODE | SEC_ALLOC))
2688 return 1;
2689
2690 if (synthetic_relocatable)
2691 {
2692 if (a->section->id < b->section->id)
2693 return -1;
2694
2695 if (a->section->id > b->section->id)
2696 return 1;
2697 }
2698
2699 if (a->value + a->section->vma < b->value + b->section->vma)
2700 return -1;
2701
2702 if (a->value + a->section->vma > b->value + b->section->vma)
2703 return 1;
2704
2705 /* For syms with the same value, prefer strong dynamic global function
2706 syms over other syms. */
2707 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2708 return -1;
2709
2710 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2711 return 1;
2712
2713 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2714 return -1;
2715
2716 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2717 return 1;
2718
2719 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2720 return -1;
2721
2722 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2723 return 1;
2724
2725 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2726 return -1;
2727
2728 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2729 return 1;
2730
2731 return 0;
2732 }
2733
2734 /* Search SYMS for a symbol of the given VALUE. */
2735
2736 static asymbol *
2737 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2738 {
2739 long mid;
2740
2741 if (id == -1)
2742 {
2743 while (lo < hi)
2744 {
2745 mid = (lo + hi) >> 1;
2746 if (syms[mid]->value + syms[mid]->section->vma < value)
2747 lo = mid + 1;
2748 else if (syms[mid]->value + syms[mid]->section->vma > value)
2749 hi = mid;
2750 else
2751 return syms[mid];
2752 }
2753 }
2754 else
2755 {
2756 while (lo < hi)
2757 {
2758 mid = (lo + hi) >> 1;
2759 if (syms[mid]->section->id < id)
2760 lo = mid + 1;
2761 else if (syms[mid]->section->id > id)
2762 hi = mid;
2763 else if (syms[mid]->value < value)
2764 lo = mid + 1;
2765 else if (syms[mid]->value > value)
2766 hi = mid;
2767 else
2768 return syms[mid];
2769 }
2770 }
2771 return NULL;
2772 }
2773
2774 static bfd_boolean
2775 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2776 {
2777 bfd_vma vma = *(bfd_vma *) ptr;
2778 return ((section->flags & SEC_ALLOC) != 0
2779 && section->vma <= vma
2780 && vma < section->vma + section->size);
2781 }
2782
2783 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2784 entry syms. Also generate @plt symbols for the glink branch table. */
2785
2786 static long
2787 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2788 long static_count, asymbol **static_syms,
2789 long dyn_count, asymbol **dyn_syms,
2790 asymbol **ret)
2791 {
2792 asymbol *s;
2793 long i;
2794 long count;
2795 char *names;
2796 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2797 asection *opd;
2798 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2799 asymbol **syms;
2800
2801 *ret = NULL;
2802
2803 opd = bfd_get_section_by_name (abfd, ".opd");
2804 if (opd == NULL)
2805 return 0;
2806
2807 symcount = static_count;
2808 if (!relocatable)
2809 symcount += dyn_count;
2810 if (symcount == 0)
2811 return 0;
2812
2813 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2814 if (syms == NULL)
2815 return -1;
2816
2817 if (!relocatable && static_count != 0 && dyn_count != 0)
2818 {
2819 /* Use both symbol tables. */
2820 memcpy (syms, static_syms, static_count * sizeof (*syms));
2821 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
2822 }
2823 else if (!relocatable && static_count == 0)
2824 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2825 else
2826 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2827
2828 synthetic_opd = opd;
2829 synthetic_relocatable = relocatable;
2830 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2831
2832 if (!relocatable && symcount > 1)
2833 {
2834 long j;
2835 /* Trim duplicate syms, since we may have merged the normal and
2836 dynamic symbols. Actually, we only care about syms that have
2837 different values, so trim any with the same value. */
2838 for (i = 1, j = 1; i < symcount; ++i)
2839 if (syms[i - 1]->value + syms[i - 1]->section->vma
2840 != syms[i]->value + syms[i]->section->vma)
2841 syms[j++] = syms[i];
2842 symcount = j;
2843 }
2844
2845 i = 0;
2846 if (syms[i]->section == opd)
2847 ++i;
2848 codesecsym = i;
2849
2850 for (; i < symcount; ++i)
2851 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2852 != (SEC_CODE | SEC_ALLOC))
2853 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2854 break;
2855 codesecsymend = i;
2856
2857 for (; i < symcount; ++i)
2858 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2859 break;
2860 secsymend = i;
2861
2862 for (; i < symcount; ++i)
2863 if (syms[i]->section != opd)
2864 break;
2865 opdsymend = i;
2866
2867 for (; i < symcount; ++i)
2868 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2869 != (SEC_CODE | SEC_ALLOC))
2870 break;
2871 symcount = i;
2872
2873 count = 0;
2874
2875 if (relocatable)
2876 {
2877 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2878 arelent *r;
2879 size_t size;
2880 long relcount;
2881
2882 if (opdsymend == secsymend)
2883 goto done;
2884
2885 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2886 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2887 if (relcount == 0)
2888 goto done;
2889
2890 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2891 {
2892 count = -1;
2893 goto done;
2894 }
2895
2896 size = 0;
2897 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2898 {
2899 asymbol *sym;
2900
2901 while (r < opd->relocation + relcount
2902 && r->address < syms[i]->value + opd->vma)
2903 ++r;
2904
2905 if (r == opd->relocation + relcount)
2906 break;
2907
2908 if (r->address != syms[i]->value + opd->vma)
2909 continue;
2910
2911 if (r->howto->type != R_PPC64_ADDR64)
2912 continue;
2913
2914 sym = *r->sym_ptr_ptr;
2915 if (!sym_exists_at (syms, opdsymend, symcount,
2916 sym->section->id, sym->value + r->addend))
2917 {
2918 ++count;
2919 size += sizeof (asymbol);
2920 size += strlen (syms[i]->name) + 2;
2921 }
2922 }
2923
2924 s = *ret = bfd_malloc (size);
2925 if (s == NULL)
2926 {
2927 count = -1;
2928 goto done;
2929 }
2930
2931 names = (char *) (s + count);
2932
2933 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2934 {
2935 asymbol *sym;
2936
2937 while (r < opd->relocation + relcount
2938 && r->address < syms[i]->value + opd->vma)
2939 ++r;
2940
2941 if (r == opd->relocation + relcount)
2942 break;
2943
2944 if (r->address != syms[i]->value + opd->vma)
2945 continue;
2946
2947 if (r->howto->type != R_PPC64_ADDR64)
2948 continue;
2949
2950 sym = *r->sym_ptr_ptr;
2951 if (!sym_exists_at (syms, opdsymend, symcount,
2952 sym->section->id, sym->value + r->addend))
2953 {
2954 size_t len;
2955
2956 *s = *syms[i];
2957 s->flags |= BSF_SYNTHETIC;
2958 s->section = sym->section;
2959 s->value = sym->value + r->addend;
2960 s->name = names;
2961 *names++ = '.';
2962 len = strlen (syms[i]->name);
2963 memcpy (names, syms[i]->name, len + 1);
2964 names += len + 1;
2965 /* Have udata.p point back to the original symbol this
2966 synthetic symbol was derived from. */
2967 s->udata.p = syms[i];
2968 s++;
2969 }
2970 }
2971 }
2972 else
2973 {
2974 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2975 bfd_byte *contents;
2976 size_t size;
2977 long plt_count = 0;
2978 bfd_vma glink_vma = 0, resolv_vma = 0;
2979 asection *dynamic, *glink = NULL, *relplt = NULL;
2980 arelent *p;
2981
2982 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
2983 {
2984 if (contents)
2985 {
2986 free_contents_and_exit:
2987 free (contents);
2988 }
2989 count = -1;
2990 goto done;
2991 }
2992
2993 size = 0;
2994 for (i = secsymend; i < opdsymend; ++i)
2995 {
2996 bfd_vma ent;
2997
2998 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2999 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3000 {
3001 ++count;
3002 size += sizeof (asymbol);
3003 size += strlen (syms[i]->name) + 2;
3004 }
3005 }
3006
3007 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3008 if (dyn_count != 0
3009 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3010 {
3011 bfd_byte *dynbuf, *extdyn, *extdynend;
3012 size_t extdynsize;
3013 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3014
3015 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3016 goto free_contents_and_exit;
3017
3018 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3019 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3020
3021 extdyn = dynbuf;
3022 extdynend = extdyn + dynamic->size;
3023 for (; extdyn < extdynend; extdyn += extdynsize)
3024 {
3025 Elf_Internal_Dyn dyn;
3026 (*swap_dyn_in) (abfd, extdyn, &dyn);
3027
3028 if (dyn.d_tag == DT_NULL)
3029 break;
3030
3031 if (dyn.d_tag == DT_PPC64_GLINK)
3032 {
3033 /* The first glink stub starts at offset 32; see comment in
3034 ppc64_elf_finish_dynamic_sections. */
3035 glink_vma = dyn.d_un.d_val + 32;
3036 /* The .glink section usually does not survive the final
3037 link; search for the section (usually .text) where the
3038 glink stubs now reside. */
3039 glink = bfd_sections_find_if (abfd, section_covers_vma,
3040 &glink_vma);
3041 break;
3042 }
3043 }
3044
3045 free (dynbuf);
3046 }
3047
3048 if (glink != NULL)
3049 {
3050 /* Determine __glink trampoline by reading the relative branch
3051 from the first glink stub. */
3052 bfd_byte buf[4];
3053 if (bfd_get_section_contents (abfd, glink, buf,
3054 glink_vma + 4 - glink->vma, 4))
3055 {
3056 unsigned int insn = bfd_get_32 (abfd, buf);
3057 insn ^= B_DOT;
3058 if ((insn & ~0x3fffffc) == 0)
3059 resolv_vma = glink_vma + 4 + (insn ^ 0x2000000) - 0x2000000;
3060 }
3061
3062 if (resolv_vma)
3063 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3064
3065 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3066 if (relplt != NULL)
3067 {
3068 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3069 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3070 goto free_contents_and_exit;
3071
3072 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3073 size += plt_count * sizeof (asymbol);
3074
3075 p = relplt->relocation;
3076 for (i = 0; i < plt_count; i++, p++)
3077 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3078 }
3079 }
3080
3081 s = *ret = bfd_malloc (size);
3082 if (s == NULL)
3083 goto free_contents_and_exit;
3084
3085 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3086
3087 for (i = secsymend; i < opdsymend; ++i)
3088 {
3089 bfd_vma ent;
3090
3091 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3092 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3093 {
3094 long lo, hi;
3095 size_t len;
3096 asection *sec = abfd->sections;
3097
3098 *s = *syms[i];
3099 lo = codesecsym;
3100 hi = codesecsymend;
3101 while (lo < hi)
3102 {
3103 long mid = (lo + hi) >> 1;
3104 if (syms[mid]->section->vma < ent)
3105 lo = mid + 1;
3106 else if (syms[mid]->section->vma > ent)
3107 hi = mid;
3108 else
3109 {
3110 sec = syms[mid]->section;
3111 break;
3112 }
3113 }
3114
3115 if (lo >= hi && lo > codesecsym)
3116 sec = syms[lo - 1]->section;
3117
3118 for (; sec != NULL; sec = sec->next)
3119 {
3120 if (sec->vma > ent)
3121 break;
3122 if ((sec->flags & SEC_ALLOC) == 0
3123 || (sec->flags & SEC_LOAD) == 0)
3124 break;
3125 if ((sec->flags & SEC_CODE) != 0)
3126 s->section = sec;
3127 }
3128 s->flags |= BSF_SYNTHETIC;
3129 s->value = ent - s->section->vma;
3130 s->name = names;
3131 *names++ = '.';
3132 len = strlen (syms[i]->name);
3133 memcpy (names, syms[i]->name, len + 1);
3134 names += len + 1;
3135 /* Have udata.p point back to the original symbol this
3136 synthetic symbol was derived from. */
3137 s->udata.p = syms[i];
3138 s++;
3139 }
3140 }
3141 free (contents);
3142
3143 if (glink != NULL && relplt != NULL)
3144 {
3145 if (resolv_vma)
3146 {
3147 /* Add a symbol for the main glink trampoline. */
3148 memset (s, 0, sizeof *s);
3149 s->the_bfd = abfd;
3150 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3151 s->section = glink;
3152 s->value = resolv_vma - glink->vma;
3153 s->name = names;
3154 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3155 names += sizeof ("__glink_PLTresolve");
3156 s++;
3157 count++;
3158 }
3159
3160 /* FIXME: It would be very much nicer to put sym@plt on the
3161 stub rather than on the glink branch table entry. The
3162 objdump disassembler would then use a sensible symbol
3163 name on plt calls. The difficulty in doing so is
3164 a) finding the stubs, and,
3165 b) matching stubs against plt entries, and,
3166 c) there can be multiple stubs for a given plt entry.
3167
3168 Solving (a) could be done by code scanning, but older
3169 ppc64 binaries used different stubs to current code.
3170 (b) is the tricky one since you need to known the toc
3171 pointer for at least one function that uses a pic stub to
3172 be able to calculate the plt address referenced.
3173 (c) means gdb would need to set multiple breakpoints (or
3174 find the glink branch itself) when setting breakpoints
3175 for pending shared library loads. */
3176 p = relplt->relocation;
3177 for (i = 0; i < plt_count; i++, p++)
3178 {
3179 size_t len;
3180
3181 *s = **p->sym_ptr_ptr;
3182 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3183 we are defining a symbol, ensure one of them is set. */
3184 if ((s->flags & BSF_LOCAL) == 0)
3185 s->flags |= BSF_GLOBAL;
3186 s->flags |= BSF_SYNTHETIC;
3187 s->section = glink;
3188 s->value = glink_vma - glink->vma;
3189 s->name = names;
3190 s->udata.p = NULL;
3191 len = strlen ((*p->sym_ptr_ptr)->name);
3192 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3193 names += len;
3194 memcpy (names, "@plt", sizeof ("@plt"));
3195 names += sizeof ("@plt");
3196 s++;
3197 glink_vma += 8;
3198 if (i >= 0x8000)
3199 glink_vma += 4;
3200 }
3201 count += plt_count;
3202 }
3203 }
3204
3205 done:
3206 free (syms);
3207 return count;
3208 }
3209 \f
3210 /* The following functions are specific to the ELF linker, while
3211 functions above are used generally. Those named ppc64_elf_* are
3212 called by the main ELF linker code. They appear in this file more
3213 or less in the order in which they are called. eg.
3214 ppc64_elf_check_relocs is called early in the link process,
3215 ppc64_elf_finish_dynamic_sections is one of the last functions
3216 called.
3217
3218 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3219 functions have both a function code symbol and a function descriptor
3220 symbol. A call to foo in a relocatable object file looks like:
3221
3222 . .text
3223 . x:
3224 . bl .foo
3225 . nop
3226
3227 The function definition in another object file might be:
3228
3229 . .section .opd
3230 . foo: .quad .foo
3231 . .quad .TOC.@tocbase
3232 . .quad 0
3233 .
3234 . .text
3235 . .foo: blr
3236
3237 When the linker resolves the call during a static link, the branch
3238 unsurprisingly just goes to .foo and the .opd information is unused.
3239 If the function definition is in a shared library, things are a little
3240 different: The call goes via a plt call stub, the opd information gets
3241 copied to the plt, and the linker patches the nop.
3242
3243 . x:
3244 . bl .foo_stub
3245 . ld 2,40(1)
3246 .
3247 .
3248 . .foo_stub:
3249 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
3250 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
3251 . std 2,40(1) # this is the general idea
3252 . ld 11,0(12)
3253 . ld 2,8(12)
3254 . mtctr 11
3255 . ld 11,16(12)
3256 . bctr
3257 .
3258 . .section .plt
3259 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3260
3261 The "reloc ()" notation is supposed to indicate that the linker emits
3262 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3263 copying.
3264
3265 What are the difficulties here? Well, firstly, the relocations
3266 examined by the linker in check_relocs are against the function code
3267 sym .foo, while the dynamic relocation in the plt is emitted against
3268 the function descriptor symbol, foo. Somewhere along the line, we need
3269 to carefully copy dynamic link information from one symbol to the other.
3270 Secondly, the generic part of the elf linker will make .foo a dynamic
3271 symbol as is normal for most other backends. We need foo dynamic
3272 instead, at least for an application final link. However, when
3273 creating a shared library containing foo, we need to have both symbols
3274 dynamic so that references to .foo are satisfied during the early
3275 stages of linking. Otherwise the linker might decide to pull in a
3276 definition from some other object, eg. a static library.
3277
3278 Update: As of August 2004, we support a new convention. Function
3279 calls may use the function descriptor symbol, ie. "bl foo". This
3280 behaves exactly as "bl .foo". */
3281
3282 /* The linker needs to keep track of the number of relocs that it
3283 decides to copy as dynamic relocs in check_relocs for each symbol.
3284 This is so that it can later discard them if they are found to be
3285 unnecessary. We store the information in a field extending the
3286 regular ELF linker hash table. */
3287
3288 struct ppc_dyn_relocs
3289 {
3290 struct ppc_dyn_relocs *next;
3291
3292 /* The input section of the reloc. */
3293 asection *sec;
3294
3295 /* Total number of relocs copied for the input section. */
3296 bfd_size_type count;
3297
3298 /* Number of pc-relative relocs copied for the input section. */
3299 bfd_size_type pc_count;
3300 };
3301
3302 /* Track GOT entries needed for a given symbol. We might need more
3303 than one got entry per symbol. */
3304 struct got_entry
3305 {
3306 struct got_entry *next;
3307
3308 /* The symbol addend that we'll be placing in the GOT. */
3309 bfd_vma addend;
3310
3311 /* Unlike other ELF targets, we use separate GOT entries for the same
3312 symbol referenced from different input files. This is to support
3313 automatic multiple TOC/GOT sections, where the TOC base can vary
3314 from one input file to another. FIXME: After group_sections we
3315 ought to merge entries within the group.
3316
3317 Point to the BFD owning this GOT entry. */
3318 bfd *owner;
3319
3320 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
3321 TLS_TPREL or TLS_DTPREL for tls entries. */
3322 char tls_type;
3323
3324 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
3325 union
3326 {
3327 bfd_signed_vma refcount;
3328 bfd_vma offset;
3329 } got;
3330 };
3331
3332 /* The same for PLT. */
3333 struct plt_entry
3334 {
3335 struct plt_entry *next;
3336
3337 bfd_vma addend;
3338
3339 union
3340 {
3341 bfd_signed_vma refcount;
3342 bfd_vma offset;
3343 } plt;
3344 };
3345
3346 /* Of those relocs that might be copied as dynamic relocs, this function
3347 selects those that must be copied when linking a shared library,
3348 even when the symbol is local. */
3349
3350 static int
3351 must_be_dyn_reloc (struct bfd_link_info *info,
3352 enum elf_ppc64_reloc_type r_type)
3353 {
3354 switch (r_type)
3355 {
3356 default:
3357 return 1;
3358
3359 case R_PPC64_REL32:
3360 case R_PPC64_REL64:
3361 case R_PPC64_REL30:
3362 return 0;
3363
3364 case R_PPC64_TPREL16:
3365 case R_PPC64_TPREL16_LO:
3366 case R_PPC64_TPREL16_HI:
3367 case R_PPC64_TPREL16_HA:
3368 case R_PPC64_TPREL16_DS:
3369 case R_PPC64_TPREL16_LO_DS:
3370 case R_PPC64_TPREL16_HIGHER:
3371 case R_PPC64_TPREL16_HIGHERA:
3372 case R_PPC64_TPREL16_HIGHEST:
3373 case R_PPC64_TPREL16_HIGHESTA:
3374 case R_PPC64_TPREL64:
3375 return !info->executable;
3376 }
3377 }
3378
3379 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3380 copying dynamic variables from a shared lib into an app's dynbss
3381 section, and instead use a dynamic relocation to point into the
3382 shared lib. With code that gcc generates, it's vital that this be
3383 enabled; In the PowerPC64 ABI, the address of a function is actually
3384 the address of a function descriptor, which resides in the .opd
3385 section. gcc uses the descriptor directly rather than going via the
3386 GOT as some other ABI's do, which means that initialized function
3387 pointers must reference the descriptor. Thus, a function pointer
3388 initialized to the address of a function in a shared library will
3389 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3390 redefines the function descriptor symbol to point to the copy. This
3391 presents a problem as a plt entry for that function is also
3392 initialized from the function descriptor symbol and the copy reloc
3393 may not be initialized first. */
3394 #define ELIMINATE_COPY_RELOCS 1
3395
3396 /* Section name for stubs is the associated section name plus this
3397 string. */
3398 #define STUB_SUFFIX ".stub"
3399
3400 /* Linker stubs.
3401 ppc_stub_long_branch:
3402 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3403 destination, but a 24 bit branch in a stub section will reach.
3404 . b dest
3405
3406 ppc_stub_plt_branch:
3407 Similar to the above, but a 24 bit branch in the stub section won't
3408 reach its destination.
3409 . addis %r12,%r2,xxx@toc@ha
3410 . ld %r11,xxx@toc@l(%r12)
3411 . mtctr %r11
3412 . bctr
3413
3414 ppc_stub_plt_call:
3415 Used to call a function in a shared library. If it so happens that
3416 the plt entry referenced crosses a 64k boundary, then an extra
3417 "addi %r12,%r12,xxx@toc@l" will be inserted before the "mtctr".
3418 . addis %r12,%r2,xxx@toc@ha
3419 . std %r2,40(%r1)
3420 . ld %r11,xxx+0@toc@l(%r12)
3421 . mtctr %r11
3422 . ld %r2,xxx+8@toc@l(%r12)
3423 . ld %r11,xxx+16@toc@l(%r12)
3424 . bctr
3425
3426 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3427 code to adjust the value and save r2 to support multiple toc sections.
3428 A ppc_stub_long_branch with an r2 offset looks like:
3429 . std %r2,40(%r1)
3430 . addis %r2,%r2,off@ha
3431 . addi %r2,%r2,off@l
3432 . b dest
3433
3434 A ppc_stub_plt_branch with an r2 offset looks like:
3435 . std %r2,40(%r1)
3436 . addis %r12,%r2,xxx@toc@ha
3437 . ld %r11,xxx@toc@l(%r12)
3438 . addis %r2,%r2,off@ha
3439 . addi %r2,%r2,off@l
3440 . mtctr %r11
3441 . bctr
3442
3443 In cases where the "addis" instruction would add zero, the "addis" is
3444 omitted and following instructions modified slightly in some cases.
3445 */
3446
3447 enum ppc_stub_type {
3448 ppc_stub_none,
3449 ppc_stub_long_branch,
3450 ppc_stub_long_branch_r2off,
3451 ppc_stub_plt_branch,
3452 ppc_stub_plt_branch_r2off,
3453 ppc_stub_plt_call
3454 };
3455
3456 struct ppc_stub_hash_entry {
3457
3458 /* Base hash table entry structure. */
3459 struct bfd_hash_entry root;
3460
3461 enum ppc_stub_type stub_type;
3462
3463 /* The stub section. */
3464 asection *stub_sec;
3465
3466 /* Offset within stub_sec of the beginning of this stub. */
3467 bfd_vma stub_offset;
3468
3469 /* Given the symbol's value and its section we can determine its final
3470 value when building the stubs (so the stub knows where to jump. */
3471 bfd_vma target_value;
3472 asection *target_section;
3473
3474 /* The symbol table entry, if any, that this was derived from. */
3475 struct ppc_link_hash_entry *h;
3476
3477 /* And the reloc addend that this was derived from. */
3478 bfd_vma addend;
3479
3480 /* Where this stub is being called from, or, in the case of combined
3481 stub sections, the first input section in the group. */
3482 asection *id_sec;
3483 };
3484
3485 struct ppc_branch_hash_entry {
3486
3487 /* Base hash table entry structure. */
3488 struct bfd_hash_entry root;
3489
3490 /* Offset within branch lookup table. */
3491 unsigned int offset;
3492
3493 /* Generation marker. */
3494 unsigned int iter;
3495 };
3496
3497 struct ppc_link_hash_entry
3498 {
3499 struct elf_link_hash_entry elf;
3500
3501 union {
3502 /* A pointer to the most recently used stub hash entry against this
3503 symbol. */
3504 struct ppc_stub_hash_entry *stub_cache;
3505
3506 /* A pointer to the next symbol starting with a '.' */
3507 struct ppc_link_hash_entry *next_dot_sym;
3508 } u;
3509
3510 /* Track dynamic relocs copied for this symbol. */
3511 struct ppc_dyn_relocs *dyn_relocs;
3512
3513 /* Link between function code and descriptor symbols. */
3514 struct ppc_link_hash_entry *oh;
3515
3516 /* Flag function code and descriptor symbols. */
3517 unsigned int is_func:1;
3518 unsigned int is_func_descriptor:1;
3519 unsigned int fake:1;
3520
3521 /* Whether global opd/toc sym has been adjusted or not.
3522 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3523 should be set for all globals defined in any opd/toc section. */
3524 unsigned int adjust_done:1;
3525
3526 /* Set if we twiddled this symbol to weak at some stage. */
3527 unsigned int was_undefined:1;
3528
3529 /* Contexts in which symbol is used in the GOT (or TOC).
3530 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3531 corresponding relocs are encountered during check_relocs.
3532 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3533 indicate the corresponding GOT entry type is not needed.
3534 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3535 a TPREL one. We use a separate flag rather than setting TPREL
3536 just for convenience in distinguishing the two cases. */
3537 #define TLS_GD 1 /* GD reloc. */
3538 #define TLS_LD 2 /* LD reloc. */
3539 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3540 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3541 #define TLS_TLS 16 /* Any TLS reloc. */
3542 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3543 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3544 char tls_mask;
3545 };
3546
3547 /* ppc64 ELF linker hash table. */
3548
3549 struct ppc_link_hash_table
3550 {
3551 struct elf_link_hash_table elf;
3552
3553 /* The stub hash table. */
3554 struct bfd_hash_table stub_hash_table;
3555
3556 /* Another hash table for plt_branch stubs. */
3557 struct bfd_hash_table branch_hash_table;
3558
3559 /* Linker stub bfd. */
3560 bfd *stub_bfd;
3561
3562 /* Linker call-backs. */
3563 asection * (*add_stub_section) (const char *, asection *);
3564 void (*layout_sections_again) (void);
3565
3566 /* Array to keep track of which stub sections have been created, and
3567 information on stub grouping. */
3568 struct map_stub {
3569 /* This is the section to which stubs in the group will be attached. */
3570 asection *link_sec;
3571 /* The stub section. */
3572 asection *stub_sec;
3573 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3574 bfd_vma toc_off;
3575 } *stub_group;
3576
3577 /* Temp used when calculating TOC pointers. */
3578 bfd_vma toc_curr;
3579
3580 /* Highest input section id. */
3581 int top_id;
3582
3583 /* Highest output section index. */
3584 int top_index;
3585
3586 /* Used when adding symbols. */
3587 struct ppc_link_hash_entry *dot_syms;
3588
3589 /* List of input sections for each output section. */
3590 asection **input_list;
3591
3592 /* Short-cuts to get to dynamic linker sections. */
3593 asection *got;
3594 asection *plt;
3595 asection *relplt;
3596 asection *dynbss;
3597 asection *relbss;
3598 asection *glink;
3599 asection *sfpr;
3600 asection *brlt;
3601 asection *relbrlt;
3602
3603 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3604 struct ppc_link_hash_entry *tls_get_addr;
3605 struct ppc_link_hash_entry *tls_get_addr_fd;
3606
3607 /* Statistics. */
3608 unsigned long stub_count[ppc_stub_plt_call];
3609
3610 /* Number of stubs against global syms. */
3611 unsigned long stub_globals;
3612
3613 /* Set if we should emit symbols for stubs. */
3614 unsigned int emit_stub_syms:1;
3615
3616 /* Support for multiple toc sections. */
3617 unsigned int no_multi_toc:1;
3618 unsigned int multi_toc_needed:1;
3619
3620 /* Set on error. */
3621 unsigned int stub_error:1;
3622
3623 /* Temp used by ppc64_elf_process_dot_syms. */
3624 unsigned int twiddled_syms:1;
3625
3626 /* Incremented every time we size stubs. */
3627 unsigned int stub_iteration;
3628
3629 /* Small local sym to section mapping cache. */
3630 struct sym_sec_cache sym_sec;
3631 };
3632
3633 /* Rename some of the generic section flags to better document how they
3634 are used here. */
3635 #define has_toc_reloc has_gp_reloc
3636 #define makes_toc_func_call need_finalize_relax
3637 #define call_check_in_progress reloc_done
3638
3639 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3640
3641 #define ppc_hash_table(p) \
3642 ((struct ppc_link_hash_table *) ((p)->hash))
3643
3644 #define ppc_stub_hash_lookup(table, string, create, copy) \
3645 ((struct ppc_stub_hash_entry *) \
3646 bfd_hash_lookup ((table), (string), (create), (copy)))
3647
3648 #define ppc_branch_hash_lookup(table, string, create, copy) \
3649 ((struct ppc_branch_hash_entry *) \
3650 bfd_hash_lookup ((table), (string), (create), (copy)))
3651
3652 /* Create an entry in the stub hash table. */
3653
3654 static struct bfd_hash_entry *
3655 stub_hash_newfunc (struct bfd_hash_entry *entry,
3656 struct bfd_hash_table *table,
3657 const char *string)
3658 {
3659 /* Allocate the structure if it has not already been allocated by a
3660 subclass. */
3661 if (entry == NULL)
3662 {
3663 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3664 if (entry == NULL)
3665 return entry;
3666 }
3667
3668 /* Call the allocation method of the superclass. */
3669 entry = bfd_hash_newfunc (entry, table, string);
3670 if (entry != NULL)
3671 {
3672 struct ppc_stub_hash_entry *eh;
3673
3674 /* Initialize the local fields. */
3675 eh = (struct ppc_stub_hash_entry *) entry;
3676 eh->stub_type = ppc_stub_none;
3677 eh->stub_sec = NULL;
3678 eh->stub_offset = 0;
3679 eh->target_value = 0;
3680 eh->target_section = NULL;
3681 eh->h = NULL;
3682 eh->id_sec = NULL;
3683 }
3684
3685 return entry;
3686 }
3687
3688 /* Create an entry in the branch hash table. */
3689
3690 static struct bfd_hash_entry *
3691 branch_hash_newfunc (struct bfd_hash_entry *entry,
3692 struct bfd_hash_table *table,
3693 const char *string)
3694 {
3695 /* Allocate the structure if it has not already been allocated by a
3696 subclass. */
3697 if (entry == NULL)
3698 {
3699 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3700 if (entry == NULL)
3701 return entry;
3702 }
3703
3704 /* Call the allocation method of the superclass. */
3705 entry = bfd_hash_newfunc (entry, table, string);
3706 if (entry != NULL)
3707 {
3708 struct ppc_branch_hash_entry *eh;
3709
3710 /* Initialize the local fields. */
3711 eh = (struct ppc_branch_hash_entry *) entry;
3712 eh->offset = 0;
3713 eh->iter = 0;
3714 }
3715
3716 return entry;
3717 }
3718
3719 /* Create an entry in a ppc64 ELF linker hash table. */
3720
3721 static struct bfd_hash_entry *
3722 link_hash_newfunc (struct bfd_hash_entry *entry,
3723 struct bfd_hash_table *table,
3724 const char *string)
3725 {
3726 /* Allocate the structure if it has not already been allocated by a
3727 subclass. */
3728 if (entry == NULL)
3729 {
3730 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3731 if (entry == NULL)
3732 return entry;
3733 }
3734
3735 /* Call the allocation method of the superclass. */
3736 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3737 if (entry != NULL)
3738 {
3739 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3740
3741 memset (&eh->u.stub_cache, 0,
3742 (sizeof (struct ppc_link_hash_entry)
3743 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3744
3745 /* When making function calls, old ABI code references function entry
3746 points (dot symbols), while new ABI code references the function
3747 descriptor symbol. We need to make any combination of reference and
3748 definition work together, without breaking archive linking.
3749
3750 For a defined function "foo" and an undefined call to "bar":
3751 An old object defines "foo" and ".foo", references ".bar" (possibly
3752 "bar" too).
3753 A new object defines "foo" and references "bar".
3754
3755 A new object thus has no problem with its undefined symbols being
3756 satisfied by definitions in an old object. On the other hand, the
3757 old object won't have ".bar" satisfied by a new object.
3758
3759 Keep a list of newly added dot-symbols. */
3760
3761 if (string[0] == '.')
3762 {
3763 struct ppc_link_hash_table *htab;
3764
3765 htab = (struct ppc_link_hash_table *) table;
3766 eh->u.next_dot_sym = htab->dot_syms;
3767 htab->dot_syms = eh;
3768 }
3769 }
3770
3771 return entry;
3772 }
3773
3774 /* Create a ppc64 ELF linker hash table. */
3775
3776 static struct bfd_link_hash_table *
3777 ppc64_elf_link_hash_table_create (bfd *abfd)
3778 {
3779 struct ppc_link_hash_table *htab;
3780 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3781
3782 htab = bfd_zmalloc (amt);
3783 if (htab == NULL)
3784 return NULL;
3785
3786 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3787 sizeof (struct ppc_link_hash_entry)))
3788 {
3789 free (htab);
3790 return NULL;
3791 }
3792
3793 /* Init the stub hash table too. */
3794 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
3795 sizeof (struct ppc_stub_hash_entry)))
3796 return NULL;
3797
3798 /* And the branch hash table. */
3799 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
3800 sizeof (struct ppc_branch_hash_entry)))
3801 return NULL;
3802
3803 /* Initializing two fields of the union is just cosmetic. We really
3804 only care about glist, but when compiled on a 32-bit host the
3805 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3806 debugger inspection of these fields look nicer. */
3807 htab->elf.init_got_refcount.refcount = 0;
3808 htab->elf.init_got_refcount.glist = NULL;
3809 htab->elf.init_plt_refcount.refcount = 0;
3810 htab->elf.init_plt_refcount.glist = NULL;
3811 htab->elf.init_got_offset.offset = 0;
3812 htab->elf.init_got_offset.glist = NULL;
3813 htab->elf.init_plt_offset.offset = 0;
3814 htab->elf.init_plt_offset.glist = NULL;
3815
3816 return &htab->elf.root;
3817 }
3818
3819 /* Free the derived linker hash table. */
3820
3821 static void
3822 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
3823 {
3824 struct ppc_link_hash_table *ret = (struct ppc_link_hash_table *) hash;
3825
3826 bfd_hash_table_free (&ret->stub_hash_table);
3827 bfd_hash_table_free (&ret->branch_hash_table);
3828 _bfd_generic_link_hash_table_free (hash);
3829 }
3830
3831 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3832
3833 void
3834 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
3835 {
3836 struct ppc_link_hash_table *htab;
3837
3838 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
3839
3840 /* Always hook our dynamic sections into the first bfd, which is the
3841 linker created stub bfd. This ensures that the GOT header is at
3842 the start of the output TOC section. */
3843 htab = ppc_hash_table (info);
3844 htab->stub_bfd = abfd;
3845 htab->elf.dynobj = abfd;
3846 }
3847
3848 /* Build a name for an entry in the stub hash table. */
3849
3850 static char *
3851 ppc_stub_name (const asection *input_section,
3852 const asection *sym_sec,
3853 const struct ppc_link_hash_entry *h,
3854 const Elf_Internal_Rela *rel)
3855 {
3856 char *stub_name;
3857 bfd_size_type len;
3858
3859 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3860 offsets from a sym as a branch target? In fact, we could
3861 probably assume the addend is always zero. */
3862 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3863
3864 if (h)
3865 {
3866 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3867 stub_name = bfd_malloc (len);
3868 if (stub_name == NULL)
3869 return stub_name;
3870
3871 sprintf (stub_name, "%08x.%s+%x",
3872 input_section->id & 0xffffffff,
3873 h->elf.root.root.string,
3874 (int) rel->r_addend & 0xffffffff);
3875 }
3876 else
3877 {
3878 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3879 stub_name = bfd_malloc (len);
3880 if (stub_name == NULL)
3881 return stub_name;
3882
3883 sprintf (stub_name, "%08x.%x:%x+%x",
3884 input_section->id & 0xffffffff,
3885 sym_sec->id & 0xffffffff,
3886 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3887 (int) rel->r_addend & 0xffffffff);
3888 }
3889 if (stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3890 stub_name[len - 2] = 0;
3891 return stub_name;
3892 }
3893
3894 /* Look up an entry in the stub hash. Stub entries are cached because
3895 creating the stub name takes a bit of time. */
3896
3897 static struct ppc_stub_hash_entry *
3898 ppc_get_stub_entry (const asection *input_section,
3899 const asection *sym_sec,
3900 struct ppc_link_hash_entry *h,
3901 const Elf_Internal_Rela *rel,
3902 struct ppc_link_hash_table *htab)
3903 {
3904 struct ppc_stub_hash_entry *stub_entry;
3905 const asection *id_sec;
3906
3907 /* If this input section is part of a group of sections sharing one
3908 stub section, then use the id of the first section in the group.
3909 Stub names need to include a section id, as there may well be
3910 more than one stub used to reach say, printf, and we need to
3911 distinguish between them. */
3912 id_sec = htab->stub_group[input_section->id].link_sec;
3913
3914 if (h != NULL && h->u.stub_cache != NULL
3915 && h->u.stub_cache->h == h
3916 && h->u.stub_cache->id_sec == id_sec)
3917 {
3918 stub_entry = h->u.stub_cache;
3919 }
3920 else
3921 {
3922 char *stub_name;
3923
3924 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
3925 if (stub_name == NULL)
3926 return NULL;
3927
3928 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3929 stub_name, FALSE, FALSE);
3930 if (h != NULL)
3931 h->u.stub_cache = stub_entry;
3932
3933 free (stub_name);
3934 }
3935
3936 return stub_entry;
3937 }
3938
3939 /* Add a new stub entry to the stub hash. Not all fields of the new
3940 stub entry are initialised. */
3941
3942 static struct ppc_stub_hash_entry *
3943 ppc_add_stub (const char *stub_name,
3944 asection *section,
3945 struct ppc_link_hash_table *htab)
3946 {
3947 asection *link_sec;
3948 asection *stub_sec;
3949 struct ppc_stub_hash_entry *stub_entry;
3950
3951 link_sec = htab->stub_group[section->id].link_sec;
3952 stub_sec = htab->stub_group[section->id].stub_sec;
3953 if (stub_sec == NULL)
3954 {
3955 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3956 if (stub_sec == NULL)
3957 {
3958 size_t namelen;
3959 bfd_size_type len;
3960 char *s_name;
3961
3962 namelen = strlen (link_sec->name);
3963 len = namelen + sizeof (STUB_SUFFIX);
3964 s_name = bfd_alloc (htab->stub_bfd, len);
3965 if (s_name == NULL)
3966 return NULL;
3967
3968 memcpy (s_name, link_sec->name, namelen);
3969 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3970 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3971 if (stub_sec == NULL)
3972 return NULL;
3973 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3974 }
3975 htab->stub_group[section->id].stub_sec = stub_sec;
3976 }
3977
3978 /* Enter this entry into the linker stub hash table. */
3979 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3980 TRUE, FALSE);
3981 if (stub_entry == NULL)
3982 {
3983 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3984 section->owner, stub_name);
3985 return NULL;
3986 }
3987
3988 stub_entry->stub_sec = stub_sec;
3989 stub_entry->stub_offset = 0;
3990 stub_entry->id_sec = link_sec;
3991 return stub_entry;
3992 }
3993
3994 /* Create sections for linker generated code. */
3995
3996 static bfd_boolean
3997 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3998 {
3999 struct ppc_link_hash_table *htab;
4000 flagword flags;
4001
4002 htab = ppc_hash_table (info);
4003
4004 /* Create .sfpr for code to save and restore fp regs. */
4005 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4006 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4007 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4008 flags);
4009 if (htab->sfpr == NULL
4010 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4011 return FALSE;
4012
4013 /* Create .glink for lazy dynamic linking support. */
4014 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4015 flags);
4016 if (htab->glink == NULL
4017 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4018 return FALSE;
4019
4020 /* Create branch lookup table for plt_branch stubs. */
4021 flags = (SEC_ALLOC | SEC_LOAD
4022 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4023 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4024 flags);
4025 if (htab->brlt == NULL
4026 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4027 return FALSE;
4028
4029 if (!info->shared)
4030 return TRUE;
4031
4032 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4033 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4034 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4035 ".rela.branch_lt",
4036 flags);
4037 if (!htab->relbrlt
4038 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4039 return FALSE;
4040
4041 return TRUE;
4042 }
4043
4044 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4045 not already done. */
4046
4047 static bfd_boolean
4048 create_got_section (bfd *abfd, struct bfd_link_info *info)
4049 {
4050 asection *got, *relgot;
4051 flagword flags;
4052 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4053
4054 if (!is_ppc64_elf (abfd))
4055 return FALSE;
4056
4057 if (!htab->got)
4058 {
4059 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
4060 return FALSE;
4061
4062 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
4063 if (!htab->got)
4064 abort ();
4065 }
4066
4067 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4068 | SEC_LINKER_CREATED);
4069
4070 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4071 if (!got
4072 || !bfd_set_section_alignment (abfd, got, 3))
4073 return FALSE;
4074
4075 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4076 flags | SEC_READONLY);
4077 if (!relgot
4078 || ! bfd_set_section_alignment (abfd, relgot, 3))
4079 return FALSE;
4080
4081 ppc64_elf_tdata (abfd)->got = got;
4082 ppc64_elf_tdata (abfd)->relgot = relgot;
4083 return TRUE;
4084 }
4085
4086 /* Create the dynamic sections, and set up shortcuts. */
4087
4088 static bfd_boolean
4089 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4090 {
4091 struct ppc_link_hash_table *htab;
4092
4093 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4094 return FALSE;
4095
4096 htab = ppc_hash_table (info);
4097 if (!htab->got)
4098 htab->got = bfd_get_section_by_name (dynobj, ".got");
4099 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
4100 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
4101 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
4102 if (!info->shared)
4103 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
4104
4105 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
4106 || (!info->shared && !htab->relbss))
4107 abort ();
4108
4109 return TRUE;
4110 }
4111
4112 /* Merge PLT info on FROM with that on TO. */
4113
4114 static void
4115 move_plt_plist (struct ppc_link_hash_entry *from,
4116 struct ppc_link_hash_entry *to)
4117 {
4118 if (from->elf.plt.plist != NULL)
4119 {
4120 if (to->elf.plt.plist != NULL)
4121 {
4122 struct plt_entry **entp;
4123 struct plt_entry *ent;
4124
4125 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4126 {
4127 struct plt_entry *dent;
4128
4129 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4130 if (dent->addend == ent->addend)
4131 {
4132 dent->plt.refcount += ent->plt.refcount;
4133 *entp = ent->next;
4134 break;
4135 }
4136 if (dent == NULL)
4137 entp = &ent->next;
4138 }
4139 *entp = to->elf.plt.plist;
4140 }
4141
4142 to->elf.plt.plist = from->elf.plt.plist;
4143 from->elf.plt.plist = NULL;
4144 }
4145 }
4146
4147 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4148
4149 static void
4150 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4151 struct elf_link_hash_entry *dir,
4152 struct elf_link_hash_entry *ind)
4153 {
4154 struct ppc_link_hash_entry *edir, *eind;
4155
4156 edir = (struct ppc_link_hash_entry *) dir;
4157 eind = (struct ppc_link_hash_entry *) ind;
4158
4159 /* Copy over any dynamic relocs we may have on the indirect sym. */
4160 if (eind->dyn_relocs != NULL)
4161 {
4162 if (edir->dyn_relocs != NULL)
4163 {
4164 struct ppc_dyn_relocs **pp;
4165 struct ppc_dyn_relocs *p;
4166
4167 /* Add reloc counts against the indirect sym to the direct sym
4168 list. Merge any entries against the same section. */
4169 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4170 {
4171 struct ppc_dyn_relocs *q;
4172
4173 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4174 if (q->sec == p->sec)
4175 {
4176 q->pc_count += p->pc_count;
4177 q->count += p->count;
4178 *pp = p->next;
4179 break;
4180 }
4181 if (q == NULL)
4182 pp = &p->next;
4183 }
4184 *pp = edir->dyn_relocs;
4185 }
4186
4187 edir->dyn_relocs = eind->dyn_relocs;
4188 eind->dyn_relocs = NULL;
4189 }
4190
4191 edir->is_func |= eind->is_func;
4192 edir->is_func_descriptor |= eind->is_func_descriptor;
4193 edir->tls_mask |= eind->tls_mask;
4194
4195 /* If called to transfer flags for a weakdef during processing
4196 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4197 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4198 if (!(ELIMINATE_COPY_RELOCS
4199 && eind->elf.root.type != bfd_link_hash_indirect
4200 && edir->elf.dynamic_adjusted))
4201 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4202
4203 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4204 edir->elf.ref_regular |= eind->elf.ref_regular;
4205 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4206 edir->elf.needs_plt |= eind->elf.needs_plt;
4207
4208 /* If we were called to copy over info for a weak sym, that's all. */
4209 if (eind->elf.root.type != bfd_link_hash_indirect)
4210 return;
4211
4212 /* Copy over got entries that we may have already seen to the
4213 symbol which just became indirect. */
4214 if (eind->elf.got.glist != NULL)
4215 {
4216 if (edir->elf.got.glist != NULL)
4217 {
4218 struct got_entry **entp;
4219 struct got_entry *ent;
4220
4221 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4222 {
4223 struct got_entry *dent;
4224
4225 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4226 if (dent->addend == ent->addend
4227 && dent->owner == ent->owner
4228 && dent->tls_type == ent->tls_type)
4229 {
4230 dent->got.refcount += ent->got.refcount;
4231 *entp = ent->next;
4232 break;
4233 }
4234 if (dent == NULL)
4235 entp = &ent->next;
4236 }
4237 *entp = edir->elf.got.glist;
4238 }
4239
4240 edir->elf.got.glist = eind->elf.got.glist;
4241 eind->elf.got.glist = NULL;
4242 }
4243
4244 /* And plt entries. */
4245 move_plt_plist (eind, edir);
4246
4247 if (eind->elf.dynindx != -1)
4248 {
4249 if (edir->elf.dynindx != -1)
4250 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4251 edir->elf.dynstr_index);
4252 edir->elf.dynindx = eind->elf.dynindx;
4253 edir->elf.dynstr_index = eind->elf.dynstr_index;
4254 eind->elf.dynindx = -1;
4255 eind->elf.dynstr_index = 0;
4256 }
4257 }
4258
4259 /* Find the function descriptor hash entry from the given function code
4260 hash entry FH. Link the entries via their OH fields. */
4261
4262 static struct ppc_link_hash_entry *
4263 get_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4264 {
4265 struct ppc_link_hash_entry *fdh = fh->oh;
4266
4267 if (fdh == NULL)
4268 {
4269 const char *fd_name = fh->elf.root.root.string + 1;
4270
4271 fdh = (struct ppc_link_hash_entry *)
4272 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4273 if (fdh != NULL)
4274 {
4275 fdh->is_func_descriptor = 1;
4276 fdh->oh = fh;
4277 fh->is_func = 1;
4278 fh->oh = fdh;
4279 }
4280 }
4281
4282 return fdh;
4283 }
4284
4285 /* Make a fake function descriptor sym for the code sym FH. */
4286
4287 static struct ppc_link_hash_entry *
4288 make_fdh (struct bfd_link_info *info,
4289 struct ppc_link_hash_entry *fh)
4290 {
4291 bfd *abfd;
4292 asymbol *newsym;
4293 struct bfd_link_hash_entry *bh;
4294 struct ppc_link_hash_entry *fdh;
4295
4296 abfd = fh->elf.root.u.undef.abfd;
4297 newsym = bfd_make_empty_symbol (abfd);
4298 newsym->name = fh->elf.root.root.string + 1;
4299 newsym->section = bfd_und_section_ptr;
4300 newsym->value = 0;
4301 newsym->flags = BSF_WEAK;
4302
4303 bh = NULL;
4304 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4305 newsym->flags, newsym->section,
4306 newsym->value, NULL, FALSE, FALSE,
4307 &bh))
4308 return NULL;
4309
4310 fdh = (struct ppc_link_hash_entry *) bh;
4311 fdh->elf.non_elf = 0;
4312 fdh->fake = 1;
4313 fdh->is_func_descriptor = 1;
4314 fdh->oh = fh;
4315 fh->is_func = 1;
4316 fh->oh = fdh;
4317 return fdh;
4318 }
4319
4320 /* Fix function descriptor symbols defined in .opd sections to be
4321 function type. */
4322
4323 static bfd_boolean
4324 ppc64_elf_add_symbol_hook (bfd *ibfd ATTRIBUTE_UNUSED,
4325 struct bfd_link_info *info ATTRIBUTE_UNUSED,
4326 Elf_Internal_Sym *isym,
4327 const char **name ATTRIBUTE_UNUSED,
4328 flagword *flags ATTRIBUTE_UNUSED,
4329 asection **sec,
4330 bfd_vma *value ATTRIBUTE_UNUSED)
4331 {
4332 if (*sec != NULL
4333 && strcmp (bfd_get_section_name (ibfd, *sec), ".opd") == 0)
4334 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4335
4336 return TRUE;
4337 }
4338
4339 /* This function makes an old ABI object reference to ".bar" cause the
4340 inclusion of a new ABI object archive that defines "bar".
4341 NAME is a symbol defined in an archive. Return a symbol in the hash
4342 table that might be satisfied by the archive symbols. */
4343
4344 static struct elf_link_hash_entry *
4345 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4346 struct bfd_link_info *info,
4347 const char *name)
4348 {
4349 struct elf_link_hash_entry *h;
4350 char *dot_name;
4351 size_t len;
4352
4353 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4354 if (h != NULL
4355 /* Don't return this sym if it is a fake function descriptor
4356 created by add_symbol_adjust. */
4357 && !(h->root.type == bfd_link_hash_undefweak
4358 && ((struct ppc_link_hash_entry *) h)->fake))
4359 return h;
4360
4361 if (name[0] == '.')
4362 return h;
4363
4364 len = strlen (name);
4365 dot_name = bfd_alloc (abfd, len + 2);
4366 if (dot_name == NULL)
4367 return (struct elf_link_hash_entry *) 0 - 1;
4368 dot_name[0] = '.';
4369 memcpy (dot_name + 1, name, len + 1);
4370 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4371 bfd_release (abfd, dot_name);
4372 return h;
4373 }
4374
4375 /* This function satisfies all old ABI object references to ".bar" if a
4376 new ABI object defines "bar". Well, at least, undefined dot symbols
4377 are made weak. This stops later archive searches from including an
4378 object if we already have a function descriptor definition. It also
4379 prevents the linker complaining about undefined symbols.
4380 We also check and correct mismatched symbol visibility here. The
4381 most restrictive visibility of the function descriptor and the
4382 function entry symbol is used. */
4383
4384 static bfd_boolean
4385 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4386 {
4387 struct ppc_link_hash_table *htab;
4388 struct ppc_link_hash_entry *fdh;
4389
4390 if (eh->elf.root.type == bfd_link_hash_indirect)
4391 return TRUE;
4392
4393 if (eh->elf.root.type == bfd_link_hash_warning)
4394 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4395
4396 if (eh->elf.root.root.string[0] != '.')
4397 abort ();
4398
4399 htab = ppc_hash_table (info);
4400 fdh = get_fdh (eh, htab);
4401 if (fdh == NULL
4402 && !info->relocatable
4403 && (eh->elf.root.type == bfd_link_hash_undefined
4404 || eh->elf.root.type == bfd_link_hash_undefweak)
4405 && eh->elf.ref_regular)
4406 {
4407 /* Make an undefweak function descriptor sym, which is enough to
4408 pull in an --as-needed shared lib, but won't cause link
4409 errors. Archives are handled elsewhere. */
4410 fdh = make_fdh (info, eh);
4411 if (fdh == NULL)
4412 return FALSE;
4413 else
4414 fdh->elf.ref_regular = 1;
4415 }
4416 else if (fdh != NULL)
4417 {
4418 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4419 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4420 if (entry_vis < descr_vis)
4421 fdh->elf.other += entry_vis - descr_vis;
4422 else if (entry_vis > descr_vis)
4423 eh->elf.other += descr_vis - entry_vis;
4424
4425 if ((fdh->elf.root.type == bfd_link_hash_defined
4426 || fdh->elf.root.type == bfd_link_hash_defweak)
4427 && eh->elf.root.type == bfd_link_hash_undefined)
4428 {
4429 eh->elf.root.type = bfd_link_hash_undefweak;
4430 eh->was_undefined = 1;
4431 htab->twiddled_syms = 1;
4432 }
4433 }
4434
4435 return TRUE;
4436 }
4437
4438 /* Process list of dot-symbols we made in link_hash_newfunc. */
4439
4440 static bfd_boolean
4441 ppc64_elf_process_dot_syms (bfd *ibfd, struct bfd_link_info *info)
4442 {
4443 struct ppc_link_hash_table *htab;
4444 struct ppc_link_hash_entry **p, *eh;
4445
4446 htab = ppc_hash_table (info);
4447 if (!is_ppc64_elf (info->output_bfd))
4448 return TRUE;
4449
4450 if (is_ppc64_elf (ibfd))
4451 {
4452 p = &htab->dot_syms;
4453 while ((eh = *p) != NULL)
4454 {
4455 *p = NULL;
4456 if (!add_symbol_adjust (eh, info))
4457 return FALSE;
4458 p = &eh->u.next_dot_sym;
4459 }
4460 }
4461
4462 /* Clear the list for non-ppc64 input files. */
4463 p = &htab->dot_syms;
4464 while ((eh = *p) != NULL)
4465 {
4466 *p = NULL;
4467 p = &eh->u.next_dot_sym;
4468 }
4469
4470 /* We need to fix the undefs list for any syms we have twiddled to
4471 undef_weak. */
4472 if (htab->twiddled_syms)
4473 {
4474 bfd_link_repair_undef_list (&htab->elf.root);
4475 htab->twiddled_syms = 0;
4476 }
4477 return TRUE;
4478 }
4479
4480 /* Undo hash table changes when an --as-needed input file is determined
4481 not to be needed. */
4482
4483 static bfd_boolean
4484 ppc64_elf_as_needed_cleanup (bfd *ibfd ATTRIBUTE_UNUSED,
4485 struct bfd_link_info *info)
4486 {
4487 ppc_hash_table (info)->dot_syms = NULL;
4488 return TRUE;
4489 }
4490
4491 static bfd_boolean
4492 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4493 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4494 {
4495 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4496 char *local_got_tls_masks;
4497
4498 if (local_got_ents == NULL)
4499 {
4500 bfd_size_type size = symtab_hdr->sh_info;
4501
4502 size *= sizeof (*local_got_ents) + sizeof (*local_got_tls_masks);
4503 local_got_ents = bfd_zalloc (abfd, size);
4504 if (local_got_ents == NULL)
4505 return FALSE;
4506 elf_local_got_ents (abfd) = local_got_ents;
4507 }
4508
4509 if ((tls_type & TLS_EXPLICIT) == 0)
4510 {
4511 struct got_entry *ent;
4512
4513 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4514 if (ent->addend == r_addend
4515 && ent->owner == abfd
4516 && ent->tls_type == tls_type)
4517 break;
4518 if (ent == NULL)
4519 {
4520 bfd_size_type amt = sizeof (*ent);
4521 ent = bfd_alloc (abfd, amt);
4522 if (ent == NULL)
4523 return FALSE;
4524 ent->next = local_got_ents[r_symndx];
4525 ent->addend = r_addend;
4526 ent->owner = abfd;
4527 ent->tls_type = tls_type;
4528 ent->got.refcount = 0;
4529 local_got_ents[r_symndx] = ent;
4530 }
4531 ent->got.refcount += 1;
4532 }
4533
4534 local_got_tls_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
4535 local_got_tls_masks[r_symndx] |= tls_type;
4536 return TRUE;
4537 }
4538
4539 static bfd_boolean
4540 update_plt_info (bfd *abfd, struct ppc_link_hash_entry *eh, bfd_vma addend)
4541 {
4542 struct plt_entry *ent;
4543
4544 for (ent = eh->elf.plt.plist; ent != NULL; ent = ent->next)
4545 if (ent->addend == addend)
4546 break;
4547 if (ent == NULL)
4548 {
4549 bfd_size_type amt = sizeof (*ent);
4550 ent = bfd_alloc (abfd, amt);
4551 if (ent == NULL)
4552 return FALSE;
4553 ent->next = eh->elf.plt.plist;
4554 ent->addend = addend;
4555 ent->plt.refcount = 0;
4556 eh->elf.plt.plist = ent;
4557 }
4558 ent->plt.refcount += 1;
4559 eh->elf.needs_plt = 1;
4560 if (eh->elf.root.root.string[0] == '.'
4561 && eh->elf.root.root.string[1] != '\0')
4562 eh->is_func = 1;
4563 return TRUE;
4564 }
4565
4566 /* Look through the relocs for a section during the first phase, and
4567 calculate needed space in the global offset table, procedure
4568 linkage table, and dynamic reloc sections. */
4569
4570 static bfd_boolean
4571 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4572 asection *sec, const Elf_Internal_Rela *relocs)
4573 {
4574 struct ppc_link_hash_table *htab;
4575 Elf_Internal_Shdr *symtab_hdr;
4576 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4577 const Elf_Internal_Rela *rel;
4578 const Elf_Internal_Rela *rel_end;
4579 asection *sreloc;
4580 asection **opd_sym_map;
4581
4582 if (info->relocatable)
4583 return TRUE;
4584
4585 /* Don't do anything special with non-loaded, non-alloced sections.
4586 In particular, any relocs in such sections should not affect GOT
4587 and PLT reference counting (ie. we don't allow them to create GOT
4588 or PLT entries), there's no possibility or desire to optimize TLS
4589 relocs, and there's not much point in propagating relocs to shared
4590 libs that the dynamic linker won't relocate. */
4591 if ((sec->flags & SEC_ALLOC) == 0)
4592 return TRUE;
4593
4594 BFD_ASSERT (is_ppc64_elf (abfd));
4595
4596 htab = ppc_hash_table (info);
4597 symtab_hdr = &elf_symtab_hdr (abfd);
4598
4599 sym_hashes = elf_sym_hashes (abfd);
4600 sym_hashes_end = (sym_hashes
4601 + symtab_hdr->sh_size / sizeof (Elf64_External_Sym)
4602 - symtab_hdr->sh_info);
4603
4604 sreloc = NULL;
4605 opd_sym_map = NULL;
4606 if (strcmp (bfd_get_section_name (abfd, sec), ".opd") == 0)
4607 {
4608 /* Garbage collection needs some extra help with .opd sections.
4609 We don't want to necessarily keep everything referenced by
4610 relocs in .opd, as that would keep all functions. Instead,
4611 if we reference an .opd symbol (a function descriptor), we
4612 want to keep the function code symbol's section. This is
4613 easy for global symbols, but for local syms we need to keep
4614 information about the associated function section. */
4615 bfd_size_type amt;
4616
4617 amt = sec->size * sizeof (*opd_sym_map) / 8;
4618 opd_sym_map = bfd_zalloc (abfd, amt);
4619 if (opd_sym_map == NULL)
4620 return FALSE;
4621 ppc64_elf_section_data (sec)->u.opd.func_sec = opd_sym_map;
4622 BFD_ASSERT (ppc64_elf_section_data (sec)->sec_type == sec_normal);
4623 ppc64_elf_section_data (sec)->sec_type = sec_opd;
4624 }
4625
4626 if (htab->sfpr == NULL
4627 && !create_linkage_sections (htab->elf.dynobj, info))
4628 return FALSE;
4629
4630 rel_end = relocs + sec->reloc_count;
4631 for (rel = relocs; rel < rel_end; rel++)
4632 {
4633 unsigned long r_symndx;
4634 struct elf_link_hash_entry *h;
4635 enum elf_ppc64_reloc_type r_type;
4636 int tls_type = 0;
4637 struct _ppc64_elf_section_data *ppc64_sec;
4638
4639 r_symndx = ELF64_R_SYM (rel->r_info);
4640 if (r_symndx < symtab_hdr->sh_info)
4641 h = NULL;
4642 else
4643 {
4644 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4645 while (h->root.type == bfd_link_hash_indirect
4646 || h->root.type == bfd_link_hash_warning)
4647 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4648 }
4649
4650 r_type = ELF64_R_TYPE (rel->r_info);
4651 switch (r_type)
4652 {
4653 case R_PPC64_GOT_TLSLD16:
4654 case R_PPC64_GOT_TLSLD16_LO:
4655 case R_PPC64_GOT_TLSLD16_HI:
4656 case R_PPC64_GOT_TLSLD16_HA:
4657 tls_type = TLS_TLS | TLS_LD;
4658 goto dogottls;
4659
4660 case R_PPC64_GOT_TLSGD16:
4661 case R_PPC64_GOT_TLSGD16_LO:
4662 case R_PPC64_GOT_TLSGD16_HI:
4663 case R_PPC64_GOT_TLSGD16_HA:
4664 tls_type = TLS_TLS | TLS_GD;
4665 goto dogottls;
4666
4667 case R_PPC64_GOT_TPREL16_DS:
4668 case R_PPC64_GOT_TPREL16_LO_DS:
4669 case R_PPC64_GOT_TPREL16_HI:
4670 case R_PPC64_GOT_TPREL16_HA:
4671 if (!info->executable)
4672 info->flags |= DF_STATIC_TLS;
4673 tls_type = TLS_TLS | TLS_TPREL;
4674 goto dogottls;
4675
4676 case R_PPC64_GOT_DTPREL16_DS:
4677 case R_PPC64_GOT_DTPREL16_LO_DS:
4678 case R_PPC64_GOT_DTPREL16_HI:
4679 case R_PPC64_GOT_DTPREL16_HA:
4680 tls_type = TLS_TLS | TLS_DTPREL;
4681 dogottls:
4682 sec->has_tls_reloc = 1;
4683 /* Fall thru */
4684
4685 case R_PPC64_GOT16:
4686 case R_PPC64_GOT16_DS:
4687 case R_PPC64_GOT16_HA:
4688 case R_PPC64_GOT16_HI:
4689 case R_PPC64_GOT16_LO:
4690 case R_PPC64_GOT16_LO_DS:
4691 /* This symbol requires a global offset table entry. */
4692 sec->has_toc_reloc = 1;
4693 if (ppc64_elf_tdata (abfd)->got == NULL
4694 && !create_got_section (abfd, info))
4695 return FALSE;
4696
4697 if (h != NULL)
4698 {
4699 struct ppc_link_hash_entry *eh;
4700 struct got_entry *ent;
4701
4702 eh = (struct ppc_link_hash_entry *) h;
4703 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4704 if (ent->addend == rel->r_addend
4705 && ent->owner == abfd
4706 && ent->tls_type == tls_type)
4707 break;
4708 if (ent == NULL)
4709 {
4710 bfd_size_type amt = sizeof (*ent);
4711 ent = bfd_alloc (abfd, amt);
4712 if (ent == NULL)
4713 return FALSE;
4714 ent->next = eh->elf.got.glist;
4715 ent->addend = rel->r_addend;
4716 ent->owner = abfd;
4717 ent->tls_type = tls_type;
4718 ent->got.refcount = 0;
4719 eh->elf.got.glist = ent;
4720 }
4721 ent->got.refcount += 1;
4722 eh->tls_mask |= tls_type;
4723 }
4724 else
4725 /* This is a global offset table entry for a local symbol. */
4726 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4727 rel->r_addend, tls_type))
4728 return FALSE;
4729 break;
4730
4731 case R_PPC64_PLT16_HA:
4732 case R_PPC64_PLT16_HI:
4733 case R_PPC64_PLT16_LO:
4734 case R_PPC64_PLT32:
4735 case R_PPC64_PLT64:
4736 /* This symbol requires a procedure linkage table entry. We
4737 actually build the entry in adjust_dynamic_symbol,
4738 because this might be a case of linking PIC code without
4739 linking in any dynamic objects, in which case we don't
4740 need to generate a procedure linkage table after all. */
4741 if (h == NULL)
4742 {
4743 /* It does not make sense to have a procedure linkage
4744 table entry for a local symbol. */
4745 bfd_set_error (bfd_error_bad_value);
4746 return FALSE;
4747 }
4748 else
4749 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4750 rel->r_addend))
4751 return FALSE;
4752 break;
4753
4754 /* The following relocations don't need to propagate the
4755 relocation if linking a shared object since they are
4756 section relative. */
4757 case R_PPC64_SECTOFF:
4758 case R_PPC64_SECTOFF_LO:
4759 case R_PPC64_SECTOFF_HI:
4760 case R_PPC64_SECTOFF_HA:
4761 case R_PPC64_SECTOFF_DS:
4762 case R_PPC64_SECTOFF_LO_DS:
4763 case R_PPC64_DTPREL16:
4764 case R_PPC64_DTPREL16_LO:
4765 case R_PPC64_DTPREL16_HI:
4766 case R_PPC64_DTPREL16_HA:
4767 case R_PPC64_DTPREL16_DS:
4768 case R_PPC64_DTPREL16_LO_DS:
4769 case R_PPC64_DTPREL16_HIGHER:
4770 case R_PPC64_DTPREL16_HIGHERA:
4771 case R_PPC64_DTPREL16_HIGHEST:
4772 case R_PPC64_DTPREL16_HIGHESTA:
4773 break;
4774
4775 /* Nor do these. */
4776 case R_PPC64_TOC16:
4777 case R_PPC64_TOC16_LO:
4778 case R_PPC64_TOC16_HI:
4779 case R_PPC64_TOC16_HA:
4780 case R_PPC64_TOC16_DS:
4781 case R_PPC64_TOC16_LO_DS:
4782 sec->has_toc_reloc = 1;
4783 break;
4784
4785 /* This relocation describes the C++ object vtable hierarchy.
4786 Reconstruct it for later use during GC. */
4787 case R_PPC64_GNU_VTINHERIT:
4788 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4789 return FALSE;
4790 break;
4791
4792 /* This relocation describes which C++ vtable entries are actually
4793 used. Record for later use during GC. */
4794 case R_PPC64_GNU_VTENTRY:
4795 BFD_ASSERT (h != NULL);
4796 if (h != NULL
4797 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4798 return FALSE;
4799 break;
4800
4801 case R_PPC64_REL14:
4802 case R_PPC64_REL14_BRTAKEN:
4803 case R_PPC64_REL14_BRNTAKEN:
4804 {
4805 asection *dest = NULL;
4806
4807 /* Heuristic: If jumping outside our section, chances are
4808 we are going to need a stub. */
4809 if (h != NULL)
4810 {
4811 /* If the sym is weak it may be overridden later, so
4812 don't assume we know where a weak sym lives. */
4813 if (h->root.type == bfd_link_hash_defined)
4814 dest = h->root.u.def.section;
4815 }
4816 else
4817 dest = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
4818 sec, r_symndx);
4819 if (dest != sec)
4820 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
4821 }
4822 /* Fall through. */
4823
4824 case R_PPC64_REL24:
4825 if (h != NULL)
4826 {
4827 /* We may need a .plt entry if the function this reloc
4828 refers to is in a shared lib. */
4829 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4830 rel->r_addend))
4831 return FALSE;
4832 if (h == &htab->tls_get_addr->elf
4833 || h == &htab->tls_get_addr_fd->elf)
4834 sec->has_tls_reloc = 1;
4835 else if (htab->tls_get_addr == NULL
4836 && CONST_STRNEQ (h->root.root.string, ".__tls_get_addr")
4837 && (h->root.root.string[15] == 0
4838 || h->root.root.string[15] == '@'))
4839 {
4840 htab->tls_get_addr = (struct ppc_link_hash_entry *) h;
4841 sec->has_tls_reloc = 1;
4842 }
4843 else if (htab->tls_get_addr_fd == NULL
4844 && CONST_STRNEQ (h->root.root.string, "__tls_get_addr")
4845 && (h->root.root.string[14] == 0
4846 || h->root.root.string[14] == '@'))
4847 {
4848 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) h;
4849 sec->has_tls_reloc = 1;
4850 }
4851 }
4852 break;
4853
4854 case R_PPC64_TPREL64:
4855 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4856 if (!info->executable)
4857 info->flags |= DF_STATIC_TLS;
4858 goto dotlstoc;
4859
4860 case R_PPC64_DTPMOD64:
4861 if (rel + 1 < rel_end
4862 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4863 && rel[1].r_offset == rel->r_offset + 8)
4864 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4865 else
4866 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4867 goto dotlstoc;
4868
4869 case R_PPC64_DTPREL64:
4870 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4871 if (rel != relocs
4872 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4873 && rel[-1].r_offset == rel->r_offset - 8)
4874 /* This is the second reloc of a dtpmod, dtprel pair.
4875 Don't mark with TLS_DTPREL. */
4876 goto dodyn;
4877
4878 dotlstoc:
4879 sec->has_tls_reloc = 1;
4880 if (h != NULL)
4881 {
4882 struct ppc_link_hash_entry *eh;
4883 eh = (struct ppc_link_hash_entry *) h;
4884 eh->tls_mask |= tls_type;
4885 }
4886 else
4887 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4888 rel->r_addend, tls_type))
4889 return FALSE;
4890
4891 ppc64_sec = ppc64_elf_section_data (sec);
4892 if (ppc64_sec->sec_type != sec_toc)
4893 {
4894 /* One extra to simplify get_tls_mask. */
4895 bfd_size_type amt = sec->size * sizeof (unsigned) / 8 + 1;
4896 ppc64_sec->u.t_symndx = bfd_zalloc (abfd, amt);
4897 if (ppc64_sec->u.t_symndx == NULL)
4898 return FALSE;
4899 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
4900 ppc64_sec->sec_type = sec_toc;
4901 }
4902 BFD_ASSERT (rel->r_offset % 8 == 0);
4903 ppc64_sec->u.t_symndx[rel->r_offset / 8] = r_symndx;
4904
4905 /* Mark the second slot of a GD or LD entry.
4906 -1 to indicate GD and -2 to indicate LD. */
4907 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
4908 ppc64_sec->u.t_symndx[rel->r_offset / 8 + 1] = -1;
4909 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
4910 ppc64_sec->u.t_symndx[rel->r_offset / 8 + 1] = -2;
4911 goto dodyn;
4912
4913 case R_PPC64_TPREL16:
4914 case R_PPC64_TPREL16_LO:
4915 case R_PPC64_TPREL16_HI:
4916 case R_PPC64_TPREL16_HA:
4917 case R_PPC64_TPREL16_DS:
4918 case R_PPC64_TPREL16_LO_DS:
4919 case R_PPC64_TPREL16_HIGHER:
4920 case R_PPC64_TPREL16_HIGHERA:
4921 case R_PPC64_TPREL16_HIGHEST:
4922 case R_PPC64_TPREL16_HIGHESTA:
4923 if (info->shared)
4924 {
4925 if (!info->executable)
4926 info->flags |= DF_STATIC_TLS;
4927 goto dodyn;
4928 }
4929 break;
4930
4931 case R_PPC64_ADDR64:
4932 if (opd_sym_map != NULL
4933 && rel + 1 < rel_end
4934 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
4935 {
4936 if (h != NULL)
4937 {
4938 if (h->root.root.string[0] == '.'
4939 && h->root.root.string[1] != 0
4940 && get_fdh ((struct ppc_link_hash_entry *) h, htab))
4941 ;
4942 else
4943 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4944 }
4945 else
4946 {
4947 asection *s;
4948
4949 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec,
4950 r_symndx);
4951 if (s == NULL)
4952 return FALSE;
4953 else if (s != sec)
4954 opd_sym_map[rel->r_offset / 8] = s;
4955 }
4956 }
4957 /* Fall through. */
4958
4959 case R_PPC64_REL30:
4960 case R_PPC64_REL32:
4961 case R_PPC64_REL64:
4962 case R_PPC64_ADDR14:
4963 case R_PPC64_ADDR14_BRNTAKEN:
4964 case R_PPC64_ADDR14_BRTAKEN:
4965 case R_PPC64_ADDR16:
4966 case R_PPC64_ADDR16_DS:
4967 case R_PPC64_ADDR16_HA:
4968 case R_PPC64_ADDR16_HI:
4969 case R_PPC64_ADDR16_HIGHER:
4970 case R_PPC64_ADDR16_HIGHERA:
4971 case R_PPC64_ADDR16_HIGHEST:
4972 case R_PPC64_ADDR16_HIGHESTA:
4973 case R_PPC64_ADDR16_LO:
4974 case R_PPC64_ADDR16_LO_DS:
4975 case R_PPC64_ADDR24:
4976 case R_PPC64_ADDR32:
4977 case R_PPC64_UADDR16:
4978 case R_PPC64_UADDR32:
4979 case R_PPC64_UADDR64:
4980 case R_PPC64_TOC:
4981 if (h != NULL && !info->shared)
4982 /* We may need a copy reloc. */
4983 h->non_got_ref = 1;
4984
4985 /* Don't propagate .opd relocs. */
4986 if (NO_OPD_RELOCS && opd_sym_map != NULL)
4987 break;
4988
4989 /* If we are creating a shared library, and this is a reloc
4990 against a global symbol, or a non PC relative reloc
4991 against a local symbol, then we need to copy the reloc
4992 into the shared library. However, if we are linking with
4993 -Bsymbolic, we do not need to copy a reloc against a
4994 global symbol which is defined in an object we are
4995 including in the link (i.e., DEF_REGULAR is set). At
4996 this point we have not seen all the input files, so it is
4997 possible that DEF_REGULAR is not set now but will be set
4998 later (it is never cleared). In case of a weak definition,
4999 DEF_REGULAR may be cleared later by a strong definition in
5000 a shared library. We account for that possibility below by
5001 storing information in the dyn_relocs field of the hash
5002 table entry. A similar situation occurs when creating
5003 shared libraries and symbol visibility changes render the
5004 symbol local.
5005
5006 If on the other hand, we are creating an executable, we
5007 may need to keep relocations for symbols satisfied by a
5008 dynamic library if we manage to avoid copy relocs for the
5009 symbol. */
5010 dodyn:
5011 if ((info->shared
5012 && (must_be_dyn_reloc (info, r_type)
5013 || (h != NULL
5014 && (! info->symbolic
5015 || h->root.type == bfd_link_hash_defweak
5016 || !h->def_regular))))
5017 || (ELIMINATE_COPY_RELOCS
5018 && !info->shared
5019 && h != NULL
5020 && (h->root.type == bfd_link_hash_defweak
5021 || !h->def_regular)))
5022 {
5023 struct ppc_dyn_relocs *p;
5024 struct ppc_dyn_relocs **head;
5025
5026 /* We must copy these reloc types into the output file.
5027 Create a reloc section in dynobj and make room for
5028 this reloc. */
5029 if (sreloc == NULL)
5030 {
5031 sreloc = _bfd_elf_make_dynamic_reloc_section
5032 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5033
5034 if (sreloc == NULL)
5035 return FALSE;
5036 }
5037
5038 /* If this is a global symbol, we count the number of
5039 relocations we need for this symbol. */
5040 if (h != NULL)
5041 {
5042 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5043 }
5044 else
5045 {
5046 /* Track dynamic relocs needed for local syms too.
5047 We really need local syms available to do this
5048 easily. Oh well. */
5049
5050 asection *s;
5051 void *vpp;
5052
5053 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
5054 sec, r_symndx);
5055 if (s == NULL)
5056 return FALSE;
5057
5058 vpp = &elf_section_data (s)->local_dynrel;
5059 head = (struct ppc_dyn_relocs **) vpp;
5060 }
5061
5062 p = *head;
5063 if (p == NULL || p->sec != sec)
5064 {
5065 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5066 if (p == NULL)
5067 return FALSE;
5068 p->next = *head;
5069 *head = p;
5070 p->sec = sec;
5071 p->count = 0;
5072 p->pc_count = 0;
5073 }
5074
5075 p->count += 1;
5076 if (!must_be_dyn_reloc (info, r_type))
5077 p->pc_count += 1;
5078 }
5079 break;
5080
5081 default:
5082 break;
5083 }
5084 }
5085
5086 return TRUE;
5087 }
5088
5089 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5090 of the code entry point, and its section. */
5091
5092 static bfd_vma
5093 opd_entry_value (asection *opd_sec,
5094 bfd_vma offset,
5095 asection **code_sec,
5096 bfd_vma *code_off)
5097 {
5098 bfd *opd_bfd = opd_sec->owner;
5099 Elf_Internal_Rela *relocs;
5100 Elf_Internal_Rela *lo, *hi, *look;
5101 bfd_vma val;
5102
5103 /* No relocs implies we are linking a --just-symbols object. */
5104 if (opd_sec->reloc_count == 0)
5105 {
5106 bfd_vma val;
5107
5108 if (!bfd_get_section_contents (opd_bfd, opd_sec, &val, offset, 8))
5109 return (bfd_vma) -1;
5110
5111 if (code_sec != NULL)
5112 {
5113 asection *sec, *likely = NULL;
5114 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5115 if (sec->vma <= val
5116 && (sec->flags & SEC_LOAD) != 0
5117 && (sec->flags & SEC_ALLOC) != 0)
5118 likely = sec;
5119 if (likely != NULL)
5120 {
5121 *code_sec = likely;
5122 if (code_off != NULL)
5123 *code_off = val - likely->vma;
5124 }
5125 }
5126 return val;
5127 }
5128
5129 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5130
5131 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs;
5132 if (relocs == NULL)
5133 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5134
5135 /* Go find the opd reloc at the sym address. */
5136 lo = relocs;
5137 BFD_ASSERT (lo != NULL);
5138 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5139 val = (bfd_vma) -1;
5140 while (lo < hi)
5141 {
5142 look = lo + (hi - lo) / 2;
5143 if (look->r_offset < offset)
5144 lo = look + 1;
5145 else if (look->r_offset > offset)
5146 hi = look;
5147 else
5148 {
5149 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5150
5151 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5152 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5153 {
5154 unsigned long symndx = ELF64_R_SYM (look->r_info);
5155 asection *sec;
5156
5157 if (symndx < symtab_hdr->sh_info)
5158 {
5159 Elf_Internal_Sym *sym;
5160
5161 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5162 if (sym == NULL)
5163 {
5164 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5165 symtab_hdr->sh_info,
5166 0, NULL, NULL, NULL);
5167 if (sym == NULL)
5168 break;
5169 symtab_hdr->contents = (bfd_byte *) sym;
5170 }
5171
5172 sym += symndx;
5173 val = sym->st_value;
5174 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5175 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5176 }
5177 else
5178 {
5179 struct elf_link_hash_entry **sym_hashes;
5180 struct elf_link_hash_entry *rh;
5181
5182 sym_hashes = elf_sym_hashes (opd_bfd);
5183 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5184 while (rh->root.type == bfd_link_hash_indirect
5185 || rh->root.type == bfd_link_hash_warning)
5186 rh = ((struct elf_link_hash_entry *) rh->root.u.i.link);
5187 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
5188 || rh->root.type == bfd_link_hash_defweak);
5189 val = rh->root.u.def.value;
5190 sec = rh->root.u.def.section;
5191 }
5192 val += look->r_addend;
5193 if (code_off != NULL)
5194 *code_off = val;
5195 if (code_sec != NULL)
5196 *code_sec = sec;
5197 if (sec != NULL && sec->output_section != NULL)
5198 val += sec->output_section->vma + sec->output_offset;
5199 }
5200 break;
5201 }
5202 }
5203
5204 return val;
5205 }
5206
5207 /* Mark all our entry sym sections, both opd and code section. */
5208
5209 static void
5210 ppc64_elf_gc_keep (struct bfd_link_info *info)
5211 {
5212 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5213 struct bfd_sym_chain *sym;
5214
5215 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5216 {
5217 struct ppc_link_hash_entry *eh;
5218 asection *sec;
5219
5220 eh = (struct ppc_link_hash_entry *)
5221 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, FALSE);
5222 if (eh == NULL)
5223 continue;
5224 if (eh->elf.root.type != bfd_link_hash_defined
5225 && eh->elf.root.type != bfd_link_hash_defweak)
5226 continue;
5227
5228 if (eh->is_func_descriptor
5229 && (eh->oh->elf.root.type == bfd_link_hash_defined
5230 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5231 {
5232 sec = eh->oh->elf.root.u.def.section;
5233 sec->flags |= SEC_KEEP;
5234 }
5235 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5236 && opd_entry_value (eh->elf.root.u.def.section,
5237 eh->elf.root.u.def.value,
5238 &sec, NULL) != (bfd_vma) -1)
5239 sec->flags |= SEC_KEEP;
5240
5241 sec = eh->elf.root.u.def.section;
5242 sec->flags |= SEC_KEEP;
5243 }
5244 }
5245
5246 /* Mark sections containing dynamically referenced symbols. When
5247 building shared libraries, we must assume that any visible symbol is
5248 referenced. */
5249
5250 static bfd_boolean
5251 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5252 {
5253 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5254 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
5255
5256 if (eh->elf.root.type == bfd_link_hash_warning)
5257 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
5258
5259 /* Dynamic linking info is on the func descriptor sym. */
5260 if (eh->oh != NULL
5261 && eh->oh->is_func_descriptor
5262 && (eh->oh->elf.root.type == bfd_link_hash_defined
5263 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5264 eh = eh->oh;
5265
5266 if ((eh->elf.root.type == bfd_link_hash_defined
5267 || eh->elf.root.type == bfd_link_hash_defweak)
5268 && (eh->elf.ref_dynamic
5269 || (!info->executable
5270 && eh->elf.def_regular
5271 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5272 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN)))
5273 {
5274 asection *code_sec;
5275
5276 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5277
5278 /* Function descriptor syms cause the associated
5279 function code sym section to be marked. */
5280 if (eh->is_func_descriptor
5281 && (eh->oh->elf.root.type == bfd_link_hash_defined
5282 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5283 eh->oh->elf.root.u.def.section->flags |= SEC_KEEP;
5284 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5285 && opd_entry_value (eh->elf.root.u.def.section,
5286 eh->elf.root.u.def.value,
5287 &code_sec, NULL) != (bfd_vma) -1)
5288 code_sec->flags |= SEC_KEEP;
5289 }
5290
5291 return TRUE;
5292 }
5293
5294 /* Return the section that should be marked against GC for a given
5295 relocation. */
5296
5297 static asection *
5298 ppc64_elf_gc_mark_hook (asection *sec,
5299 struct bfd_link_info *info ATTRIBUTE_UNUSED,
5300 Elf_Internal_Rela *rel,
5301 struct elf_link_hash_entry *h,
5302 Elf_Internal_Sym *sym)
5303 {
5304 asection *rsec;
5305
5306 /* Syms return NULL if we're marking .opd, so we avoid marking all
5307 function sections, as all functions are referenced in .opd. */
5308 rsec = NULL;
5309 if (get_opd_info (sec) != NULL)
5310 return rsec;
5311
5312 if (h != NULL)
5313 {
5314 enum elf_ppc64_reloc_type r_type;
5315 struct ppc_link_hash_entry *eh;
5316
5317 r_type = ELF64_R_TYPE (rel->r_info);
5318 switch (r_type)
5319 {
5320 case R_PPC64_GNU_VTINHERIT:
5321 case R_PPC64_GNU_VTENTRY:
5322 break;
5323
5324 default:
5325 switch (h->root.type)
5326 {
5327 case bfd_link_hash_defined:
5328 case bfd_link_hash_defweak:
5329 eh = (struct ppc_link_hash_entry *) h;
5330 if (eh->oh != NULL
5331 && eh->oh->is_func_descriptor
5332 && (eh->oh->elf.root.type == bfd_link_hash_defined
5333 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5334 eh = eh->oh;
5335
5336 /* Function descriptor syms cause the associated
5337 function code sym section to be marked. */
5338 if (eh->is_func_descriptor
5339 && (eh->oh->elf.root.type == bfd_link_hash_defined
5340 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5341 {
5342 /* They also mark their opd section. */
5343 eh->elf.root.u.def.section->gc_mark = 1;
5344
5345 rsec = eh->oh->elf.root.u.def.section;
5346 }
5347 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5348 && opd_entry_value (eh->elf.root.u.def.section,
5349 eh->elf.root.u.def.value,
5350 &rsec, NULL) != (bfd_vma) -1)
5351 eh->elf.root.u.def.section->gc_mark = 1;
5352 else
5353 rsec = h->root.u.def.section;
5354 break;
5355
5356 case bfd_link_hash_common:
5357 rsec = h->root.u.c.p->section;
5358 break;
5359
5360 default:
5361 break;
5362 }
5363 }
5364 }
5365 else
5366 {
5367 struct _opd_sec_data *opd;
5368
5369 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5370 opd = get_opd_info (rsec);
5371 if (opd != NULL && opd->func_sec != NULL)
5372 {
5373 rsec->gc_mark = 1;
5374
5375 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
5376 }
5377 }
5378
5379 return rsec;
5380 }
5381
5382 /* Update the .got, .plt. and dynamic reloc reference counts for the
5383 section being removed. */
5384
5385 static bfd_boolean
5386 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5387 asection *sec, const Elf_Internal_Rela *relocs)
5388 {
5389 struct ppc_link_hash_table *htab;
5390 Elf_Internal_Shdr *symtab_hdr;
5391 struct elf_link_hash_entry **sym_hashes;
5392 struct got_entry **local_got_ents;
5393 const Elf_Internal_Rela *rel, *relend;
5394
5395 if (info->relocatable)
5396 return TRUE;
5397
5398 if ((sec->flags & SEC_ALLOC) == 0)
5399 return TRUE;
5400
5401 elf_section_data (sec)->local_dynrel = NULL;
5402
5403 htab = ppc_hash_table (info);
5404 symtab_hdr = &elf_symtab_hdr (abfd);
5405 sym_hashes = elf_sym_hashes (abfd);
5406 local_got_ents = elf_local_got_ents (abfd);
5407
5408 relend = relocs + sec->reloc_count;
5409 for (rel = relocs; rel < relend; rel++)
5410 {
5411 unsigned long r_symndx;
5412 enum elf_ppc64_reloc_type r_type;
5413 struct elf_link_hash_entry *h = NULL;
5414 char tls_type = 0;
5415
5416 r_symndx = ELF64_R_SYM (rel->r_info);
5417 r_type = ELF64_R_TYPE (rel->r_info);
5418 if (r_symndx >= symtab_hdr->sh_info)
5419 {
5420 struct ppc_link_hash_entry *eh;
5421 struct ppc_dyn_relocs **pp;
5422 struct ppc_dyn_relocs *p;
5423
5424 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5425 while (h->root.type == bfd_link_hash_indirect
5426 || h->root.type == bfd_link_hash_warning)
5427 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5428 eh = (struct ppc_link_hash_entry *) h;
5429
5430 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
5431 if (p->sec == sec)
5432 {
5433 /* Everything must go for SEC. */
5434 *pp = p->next;
5435 break;
5436 }
5437 }
5438
5439 switch (r_type)
5440 {
5441 case R_PPC64_GOT_TLSLD16:
5442 case R_PPC64_GOT_TLSLD16_LO:
5443 case R_PPC64_GOT_TLSLD16_HI:
5444 case R_PPC64_GOT_TLSLD16_HA:
5445 tls_type = TLS_TLS | TLS_LD;
5446 goto dogot;
5447
5448 case R_PPC64_GOT_TLSGD16:
5449 case R_PPC64_GOT_TLSGD16_LO:
5450 case R_PPC64_GOT_TLSGD16_HI:
5451 case R_PPC64_GOT_TLSGD16_HA:
5452 tls_type = TLS_TLS | TLS_GD;
5453 goto dogot;
5454
5455 case R_PPC64_GOT_TPREL16_DS:
5456 case R_PPC64_GOT_TPREL16_LO_DS:
5457 case R_PPC64_GOT_TPREL16_HI:
5458 case R_PPC64_GOT_TPREL16_HA:
5459 tls_type = TLS_TLS | TLS_TPREL;
5460 goto dogot;
5461
5462 case R_PPC64_GOT_DTPREL16_DS:
5463 case R_PPC64_GOT_DTPREL16_LO_DS:
5464 case R_PPC64_GOT_DTPREL16_HI:
5465 case R_PPC64_GOT_DTPREL16_HA:
5466 tls_type = TLS_TLS | TLS_DTPREL;
5467 goto dogot;
5468
5469 case R_PPC64_GOT16:
5470 case R_PPC64_GOT16_DS:
5471 case R_PPC64_GOT16_HA:
5472 case R_PPC64_GOT16_HI:
5473 case R_PPC64_GOT16_LO:
5474 case R_PPC64_GOT16_LO_DS:
5475 dogot:
5476 {
5477 struct got_entry *ent;
5478
5479 if (h != NULL)
5480 ent = h->got.glist;
5481 else
5482 ent = local_got_ents[r_symndx];
5483
5484 for (; ent != NULL; ent = ent->next)
5485 if (ent->addend == rel->r_addend
5486 && ent->owner == abfd
5487 && ent->tls_type == tls_type)
5488 break;
5489 if (ent == NULL)
5490 abort ();
5491 if (ent->got.refcount > 0)
5492 ent->got.refcount -= 1;
5493 }
5494 break;
5495
5496 case R_PPC64_PLT16_HA:
5497 case R_PPC64_PLT16_HI:
5498 case R_PPC64_PLT16_LO:
5499 case R_PPC64_PLT32:
5500 case R_PPC64_PLT64:
5501 case R_PPC64_REL14:
5502 case R_PPC64_REL14_BRNTAKEN:
5503 case R_PPC64_REL14_BRTAKEN:
5504 case R_PPC64_REL24:
5505 if (h != NULL)
5506 {
5507 struct plt_entry *ent;
5508
5509 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5510 if (ent->addend == rel->r_addend)
5511 break;
5512 if (ent == NULL)
5513 abort ();
5514 if (ent->plt.refcount > 0)
5515 ent->plt.refcount -= 1;
5516 }
5517 break;
5518
5519 default:
5520 break;
5521 }
5522 }
5523 return TRUE;
5524 }
5525
5526 /* The maximum size of .sfpr. */
5527 #define SFPR_MAX (218*4)
5528
5529 struct sfpr_def_parms
5530 {
5531 const char name[12];
5532 unsigned char lo, hi;
5533 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
5534 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
5535 };
5536
5537 /* Auto-generate _save*, _rest* functions in .sfpr. */
5538
5539 static unsigned int
5540 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
5541 {
5542 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5543 unsigned int i;
5544 size_t len = strlen (parm->name);
5545 bfd_boolean writing = FALSE;
5546 char sym[16];
5547
5548 memcpy (sym, parm->name, len);
5549 sym[len + 2] = 0;
5550
5551 for (i = parm->lo; i <= parm->hi; i++)
5552 {
5553 struct elf_link_hash_entry *h;
5554
5555 sym[len + 0] = i / 10 + '0';
5556 sym[len + 1] = i % 10 + '0';
5557 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
5558 if (h != NULL
5559 && !h->def_regular)
5560 {
5561 h->root.type = bfd_link_hash_defined;
5562 h->root.u.def.section = htab->sfpr;
5563 h->root.u.def.value = htab->sfpr->size;
5564 h->type = STT_FUNC;
5565 h->def_regular = 1;
5566 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
5567 writing = TRUE;
5568 if (htab->sfpr->contents == NULL)
5569 {
5570 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5571 if (htab->sfpr->contents == NULL)
5572 return FALSE;
5573 }
5574 }
5575 if (writing)
5576 {
5577 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5578 if (i != parm->hi)
5579 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5580 else
5581 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5582 htab->sfpr->size = p - htab->sfpr->contents;
5583 }
5584 }
5585
5586 return TRUE;
5587 }
5588
5589 static bfd_byte *
5590 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5591 {
5592 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5593 return p + 4;
5594 }
5595
5596 static bfd_byte *
5597 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5598 {
5599 p = savegpr0 (abfd, p, r);
5600 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5601 p = p + 4;
5602 bfd_put_32 (abfd, BLR, p);
5603 return p + 4;
5604 }
5605
5606 static bfd_byte *
5607 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5608 {
5609 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5610 return p + 4;
5611 }
5612
5613 static bfd_byte *
5614 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5615 {
5616 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5617 p = p + 4;
5618 p = restgpr0 (abfd, p, r);
5619 bfd_put_32 (abfd, MTLR_R0, p);
5620 p = p + 4;
5621 if (r == 29)
5622 {
5623 p = restgpr0 (abfd, p, 30);
5624 p = restgpr0 (abfd, p, 31);
5625 }
5626 bfd_put_32 (abfd, BLR, p);
5627 return p + 4;
5628 }
5629
5630 static bfd_byte *
5631 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5632 {
5633 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5634 return p + 4;
5635 }
5636
5637 static bfd_byte *
5638 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5639 {
5640 p = savegpr1 (abfd, p, r);
5641 bfd_put_32 (abfd, BLR, p);
5642 return p + 4;
5643 }
5644
5645 static bfd_byte *
5646 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5647 {
5648 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5649 return p + 4;
5650 }
5651
5652 static bfd_byte *
5653 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5654 {
5655 p = restgpr1 (abfd, p, r);
5656 bfd_put_32 (abfd, BLR, p);
5657 return p + 4;
5658 }
5659
5660 static bfd_byte *
5661 savefpr (bfd *abfd, bfd_byte *p, int r)
5662 {
5663 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5664 return p + 4;
5665 }
5666
5667 static bfd_byte *
5668 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5669 {
5670 p = savefpr (abfd, p, r);
5671 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5672 p = p + 4;
5673 bfd_put_32 (abfd, BLR, p);
5674 return p + 4;
5675 }
5676
5677 static bfd_byte *
5678 restfpr (bfd *abfd, bfd_byte *p, int r)
5679 {
5680 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5681 return p + 4;
5682 }
5683
5684 static bfd_byte *
5685 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5686 {
5687 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5688 p = p + 4;
5689 p = restfpr (abfd, p, r);
5690 bfd_put_32 (abfd, MTLR_R0, p);
5691 p = p + 4;
5692 if (r == 29)
5693 {
5694 p = restfpr (abfd, p, 30);
5695 p = restfpr (abfd, p, 31);
5696 }
5697 bfd_put_32 (abfd, BLR, p);
5698 return p + 4;
5699 }
5700
5701 static bfd_byte *
5702 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5703 {
5704 p = savefpr (abfd, p, r);
5705 bfd_put_32 (abfd, BLR, p);
5706 return p + 4;
5707 }
5708
5709 static bfd_byte *
5710 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
5711 {
5712 p = restfpr (abfd, p, r);
5713 bfd_put_32 (abfd, BLR, p);
5714 return p + 4;
5715 }
5716
5717 static bfd_byte *
5718 savevr (bfd *abfd, bfd_byte *p, int r)
5719 {
5720 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5721 p = p + 4;
5722 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
5723 return p + 4;
5724 }
5725
5726 static bfd_byte *
5727 savevr_tail (bfd *abfd, bfd_byte *p, int r)
5728 {
5729 p = savevr (abfd, p, r);
5730 bfd_put_32 (abfd, BLR, p);
5731 return p + 4;
5732 }
5733
5734 static bfd_byte *
5735 restvr (bfd *abfd, bfd_byte *p, int r)
5736 {
5737 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5738 p = p + 4;
5739 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
5740 return p + 4;
5741 }
5742
5743 static bfd_byte *
5744 restvr_tail (bfd *abfd, bfd_byte *p, int r)
5745 {
5746 p = restvr (abfd, p, r);
5747 bfd_put_32 (abfd, BLR, p);
5748 return p + 4;
5749 }
5750
5751 /* Called via elf_link_hash_traverse to transfer dynamic linking
5752 information on function code symbol entries to their corresponding
5753 function descriptor symbol entries. */
5754
5755 static bfd_boolean
5756 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
5757 {
5758 struct bfd_link_info *info;
5759 struct ppc_link_hash_table *htab;
5760 struct plt_entry *ent;
5761 struct ppc_link_hash_entry *fh;
5762 struct ppc_link_hash_entry *fdh;
5763 bfd_boolean force_local;
5764
5765 fh = (struct ppc_link_hash_entry *) h;
5766 if (fh->elf.root.type == bfd_link_hash_indirect)
5767 return TRUE;
5768
5769 if (fh->elf.root.type == bfd_link_hash_warning)
5770 fh = (struct ppc_link_hash_entry *) fh->elf.root.u.i.link;
5771
5772 info = inf;
5773 htab = ppc_hash_table (info);
5774
5775 /* Resolve undefined references to dot-symbols as the value
5776 in the function descriptor, if we have one in a regular object.
5777 This is to satisfy cases like ".quad .foo". Calls to functions
5778 in dynamic objects are handled elsewhere. */
5779 if (fh->elf.root.type == bfd_link_hash_undefweak
5780 && fh->was_undefined
5781 && (fh->oh->elf.root.type == bfd_link_hash_defined
5782 || fh->oh->elf.root.type == bfd_link_hash_defweak)
5783 && get_opd_info (fh->oh->elf.root.u.def.section) != NULL
5784 && opd_entry_value (fh->oh->elf.root.u.def.section,
5785 fh->oh->elf.root.u.def.value,
5786 &fh->elf.root.u.def.section,
5787 &fh->elf.root.u.def.value) != (bfd_vma) -1)
5788 {
5789 fh->elf.root.type = fh->oh->elf.root.type;
5790 fh->elf.forced_local = 1;
5791 fh->elf.def_regular = fh->oh->elf.def_regular;
5792 fh->elf.def_dynamic = fh->oh->elf.def_dynamic;
5793 }
5794
5795 /* If this is a function code symbol, transfer dynamic linking
5796 information to the function descriptor symbol. */
5797 if (!fh->is_func)
5798 return TRUE;
5799
5800 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
5801 if (ent->plt.refcount > 0)
5802 break;
5803 if (ent == NULL
5804 || fh->elf.root.root.string[0] != '.'
5805 || fh->elf.root.root.string[1] == '\0')
5806 return TRUE;
5807
5808 /* Find the corresponding function descriptor symbol. Create it
5809 as undefined if necessary. */
5810
5811 fdh = get_fdh (fh, htab);
5812 if (fdh != NULL)
5813 while (fdh->elf.root.type == bfd_link_hash_indirect
5814 || fdh->elf.root.type == bfd_link_hash_warning)
5815 fdh = (struct ppc_link_hash_entry *) fdh->elf.root.u.i.link;
5816
5817 if (fdh == NULL
5818 && !info->executable
5819 && (fh->elf.root.type == bfd_link_hash_undefined
5820 || fh->elf.root.type == bfd_link_hash_undefweak))
5821 {
5822 fdh = make_fdh (info, fh);
5823 if (fdh == NULL)
5824 return FALSE;
5825 }
5826
5827 /* Fake function descriptors are made undefweak. If the function
5828 code symbol is strong undefined, make the fake sym the same.
5829 If the function code symbol is defined, then force the fake
5830 descriptor local; We can't support overriding of symbols in a
5831 shared library on a fake descriptor. */
5832
5833 if (fdh != NULL
5834 && fdh->fake
5835 && fdh->elf.root.type == bfd_link_hash_undefweak)
5836 {
5837 if (fh->elf.root.type == bfd_link_hash_undefined)
5838 {
5839 fdh->elf.root.type = bfd_link_hash_undefined;
5840 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
5841 }
5842 else if (fh->elf.root.type == bfd_link_hash_defined
5843 || fh->elf.root.type == bfd_link_hash_defweak)
5844 {
5845 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
5846 }
5847 }
5848
5849 if (fdh != NULL
5850 && !fdh->elf.forced_local
5851 && (!info->executable
5852 || fdh->elf.def_dynamic
5853 || fdh->elf.ref_dynamic
5854 || (fdh->elf.root.type == bfd_link_hash_undefweak
5855 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
5856 {
5857 if (fdh->elf.dynindx == -1)
5858 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
5859 return FALSE;
5860 fdh->elf.ref_regular |= fh->elf.ref_regular;
5861 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
5862 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
5863 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
5864 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
5865 {
5866 move_plt_plist (fh, fdh);
5867 fdh->elf.needs_plt = 1;
5868 }
5869 fdh->is_func_descriptor = 1;
5870 fdh->oh = fh;
5871 fh->oh = fdh;
5872 }
5873
5874 /* Now that the info is on the function descriptor, clear the
5875 function code sym info. Any function code syms for which we
5876 don't have a definition in a regular file, we force local.
5877 This prevents a shared library from exporting syms that have
5878 been imported from another library. Function code syms that
5879 are really in the library we must leave global to prevent the
5880 linker dragging in a definition from a static library. */
5881 force_local = (!fh->elf.def_regular
5882 || fdh == NULL
5883 || !fdh->elf.def_regular
5884 || fdh->elf.forced_local);
5885 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5886
5887 return TRUE;
5888 }
5889
5890 /* Called near the start of bfd_elf_size_dynamic_sections. We use
5891 this hook to a) provide some gcc support functions, and b) transfer
5892 dynamic linking information gathered so far on function code symbol
5893 entries, to their corresponding function descriptor symbol entries. */
5894
5895 static bfd_boolean
5896 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
5897 struct bfd_link_info *info)
5898 {
5899 struct ppc_link_hash_table *htab;
5900 unsigned int i;
5901 const struct sfpr_def_parms funcs[] =
5902 {
5903 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
5904 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
5905 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
5906 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
5907 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
5908 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
5909 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
5910 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
5911 { "._savef", 14, 31, savefpr, savefpr1_tail },
5912 { "._restf", 14, 31, restfpr, restfpr1_tail },
5913 { "_savevr_", 20, 31, savevr, savevr_tail },
5914 { "_restvr_", 20, 31, restvr, restvr_tail }
5915 };
5916
5917 htab = ppc_hash_table (info);
5918 if (htab->sfpr == NULL)
5919 /* We don't have any relocs. */
5920 return TRUE;
5921
5922 /* Provide any missing _save* and _rest* functions. */
5923 htab->sfpr->size = 0;
5924 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
5925 if (!sfpr_define (info, &funcs[i]))
5926 return FALSE;
5927
5928 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5929
5930 if (htab->sfpr->size == 0)
5931 htab->sfpr->flags |= SEC_EXCLUDE;
5932
5933 return TRUE;
5934 }
5935
5936 /* Adjust a symbol defined by a dynamic object and referenced by a
5937 regular object. The current definition is in some section of the
5938 dynamic object, but we're not including those sections. We have to
5939 change the definition to something the rest of the link can
5940 understand. */
5941
5942 static bfd_boolean
5943 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5944 struct elf_link_hash_entry *h)
5945 {
5946 struct ppc_link_hash_table *htab;
5947 asection *s;
5948
5949 htab = ppc_hash_table (info);
5950
5951 /* Deal with function syms. */
5952 if (h->type == STT_FUNC
5953 || h->needs_plt)
5954 {
5955 /* Clear procedure linkage table information for any symbol that
5956 won't need a .plt entry. */
5957 struct plt_entry *ent;
5958 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5959 if (ent->plt.refcount > 0)
5960 break;
5961 if (ent == NULL
5962 || SYMBOL_CALLS_LOCAL (info, h)
5963 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5964 && h->root.type == bfd_link_hash_undefweak))
5965 {
5966 h->plt.plist = NULL;
5967 h->needs_plt = 0;
5968 }
5969 }
5970 else
5971 h->plt.plist = NULL;
5972
5973 /* If this is a weak symbol, and there is a real definition, the
5974 processor independent code will have arranged for us to see the
5975 real definition first, and we can just use the same value. */
5976 if (h->u.weakdef != NULL)
5977 {
5978 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5979 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5980 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5981 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5982 if (ELIMINATE_COPY_RELOCS)
5983 h->non_got_ref = h->u.weakdef->non_got_ref;
5984 return TRUE;
5985 }
5986
5987 /* If we are creating a shared library, we must presume that the
5988 only references to the symbol are via the global offset table.
5989 For such cases we need not do anything here; the relocations will
5990 be handled correctly by relocate_section. */
5991 if (info->shared)
5992 return TRUE;
5993
5994 /* If there are no references to this symbol that do not use the
5995 GOT, we don't need to generate a copy reloc. */
5996 if (!h->non_got_ref)
5997 return TRUE;
5998
5999 /* Don't generate a copy reloc for symbols defined in the executable. */
6000 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
6001 return TRUE;
6002
6003 if (ELIMINATE_COPY_RELOCS)
6004 {
6005 struct ppc_link_hash_entry * eh;
6006 struct ppc_dyn_relocs *p;
6007
6008 eh = (struct ppc_link_hash_entry *) h;
6009 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6010 {
6011 s = p->sec->output_section;
6012 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6013 break;
6014 }
6015
6016 /* If we didn't find any dynamic relocs in read-only sections, then
6017 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6018 if (p == NULL)
6019 {
6020 h->non_got_ref = 0;
6021 return TRUE;
6022 }
6023 }
6024
6025 if (h->plt.plist != NULL)
6026 {
6027 /* We should never get here, but unfortunately there are versions
6028 of gcc out there that improperly (for this ABI) put initialized
6029 function pointers, vtable refs and suchlike in read-only
6030 sections. Allow them to proceed, but warn that this might
6031 break at runtime. */
6032 (*_bfd_error_handler)
6033 (_("copy reloc against `%s' requires lazy plt linking; "
6034 "avoid setting LD_BIND_NOW=1 or upgrade gcc"),
6035 h->root.root.string);
6036 }
6037
6038 /* This is a reference to a symbol defined by a dynamic object which
6039 is not a function. */
6040
6041 if (h->size == 0)
6042 {
6043 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
6044 h->root.root.string);
6045 return TRUE;
6046 }
6047
6048 /* We must allocate the symbol in our .dynbss section, which will
6049 become part of the .bss section of the executable. There will be
6050 an entry for this symbol in the .dynsym section. The dynamic
6051 object will contain position independent code, so all references
6052 from the dynamic object to this symbol will go through the global
6053 offset table. The dynamic linker will use the .dynsym entry to
6054 determine the address it must put in the global offset table, so
6055 both the dynamic object and the regular object will refer to the
6056 same memory location for the variable. */
6057
6058 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
6059 to copy the initial value out of the dynamic object and into the
6060 runtime process image. We need to remember the offset into the
6061 .rela.bss section we are going to use. */
6062 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
6063 {
6064 htab->relbss->size += sizeof (Elf64_External_Rela);
6065 h->needs_copy = 1;
6066 }
6067
6068 s = htab->dynbss;
6069
6070 return _bfd_elf_adjust_dynamic_copy (h, s);
6071 }
6072
6073 /* If given a function descriptor symbol, hide both the function code
6074 sym and the descriptor. */
6075 static void
6076 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6077 struct elf_link_hash_entry *h,
6078 bfd_boolean force_local)
6079 {
6080 struct ppc_link_hash_entry *eh;
6081 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6082
6083 eh = (struct ppc_link_hash_entry *) h;
6084 if (eh->is_func_descriptor)
6085 {
6086 struct ppc_link_hash_entry *fh = eh->oh;
6087
6088 if (fh == NULL)
6089 {
6090 const char *p, *q;
6091 struct ppc_link_hash_table *htab;
6092 char save;
6093
6094 /* We aren't supposed to use alloca in BFD because on
6095 systems which do not have alloca the version in libiberty
6096 calls xmalloc, which might cause the program to crash
6097 when it runs out of memory. This function doesn't have a
6098 return status, so there's no way to gracefully return an
6099 error. So cheat. We know that string[-1] can be safely
6100 accessed; It's either a string in an ELF string table,
6101 or allocated in an objalloc structure. */
6102
6103 p = eh->elf.root.root.string - 1;
6104 save = *p;
6105 *(char *) p = '.';
6106 htab = ppc_hash_table (info);
6107 fh = (struct ppc_link_hash_entry *)
6108 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6109 *(char *) p = save;
6110
6111 /* Unfortunately, if it so happens that the string we were
6112 looking for was allocated immediately before this string,
6113 then we overwrote the string terminator. That's the only
6114 reason the lookup should fail. */
6115 if (fh == NULL)
6116 {
6117 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6118 while (q >= eh->elf.root.root.string && *q == *p)
6119 --q, --p;
6120 if (q < eh->elf.root.root.string && *p == '.')
6121 fh = (struct ppc_link_hash_entry *)
6122 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6123 }
6124 if (fh != NULL)
6125 {
6126 eh->oh = fh;
6127 fh->oh = eh;
6128 }
6129 }
6130 if (fh != NULL)
6131 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6132 }
6133 }
6134
6135 static bfd_boolean
6136 get_sym_h (struct elf_link_hash_entry **hp,
6137 Elf_Internal_Sym **symp,
6138 asection **symsecp,
6139 char **tls_maskp,
6140 Elf_Internal_Sym **locsymsp,
6141 unsigned long r_symndx,
6142 bfd *ibfd)
6143 {
6144 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6145
6146 if (r_symndx >= symtab_hdr->sh_info)
6147 {
6148 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6149 struct elf_link_hash_entry *h;
6150
6151 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6152 while (h->root.type == bfd_link_hash_indirect
6153 || h->root.type == bfd_link_hash_warning)
6154 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6155
6156 if (hp != NULL)
6157 *hp = h;
6158
6159 if (symp != NULL)
6160 *symp = NULL;
6161
6162 if (symsecp != NULL)
6163 {
6164 asection *symsec = NULL;
6165 if (h->root.type == bfd_link_hash_defined
6166 || h->root.type == bfd_link_hash_defweak)
6167 symsec = h->root.u.def.section;
6168 *symsecp = symsec;
6169 }
6170
6171 if (tls_maskp != NULL)
6172 {
6173 struct ppc_link_hash_entry *eh;
6174
6175 eh = (struct ppc_link_hash_entry *) h;
6176 *tls_maskp = &eh->tls_mask;
6177 }
6178 }
6179 else
6180 {
6181 Elf_Internal_Sym *sym;
6182 Elf_Internal_Sym *locsyms = *locsymsp;
6183
6184 if (locsyms == NULL)
6185 {
6186 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6187 if (locsyms == NULL)
6188 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6189 symtab_hdr->sh_info,
6190 0, NULL, NULL, NULL);
6191 if (locsyms == NULL)
6192 return FALSE;
6193 *locsymsp = locsyms;
6194 }
6195 sym = locsyms + r_symndx;
6196
6197 if (hp != NULL)
6198 *hp = NULL;
6199
6200 if (symp != NULL)
6201 *symp = sym;
6202
6203 if (symsecp != NULL)
6204 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6205
6206 if (tls_maskp != NULL)
6207 {
6208 struct got_entry **lgot_ents;
6209 char *tls_mask;
6210
6211 tls_mask = NULL;
6212 lgot_ents = elf_local_got_ents (ibfd);
6213 if (lgot_ents != NULL)
6214 {
6215 char *lgot_masks = (char *) (lgot_ents + symtab_hdr->sh_info);
6216 tls_mask = &lgot_masks[r_symndx];
6217 }
6218 *tls_maskp = tls_mask;
6219 }
6220 }
6221 return TRUE;
6222 }
6223
6224 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6225 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6226 type suitable for optimization, and 1 otherwise. */
6227
6228 static int
6229 get_tls_mask (char **tls_maskp, unsigned long *toc_symndx,
6230 Elf_Internal_Sym **locsymsp,
6231 const Elf_Internal_Rela *rel, bfd *ibfd)
6232 {
6233 unsigned long r_symndx;
6234 int next_r;
6235 struct elf_link_hash_entry *h;
6236 Elf_Internal_Sym *sym;
6237 asection *sec;
6238 bfd_vma off;
6239
6240 r_symndx = ELF64_R_SYM (rel->r_info);
6241 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6242 return 0;
6243
6244 if ((*tls_maskp != NULL && **tls_maskp != 0)
6245 || sec == NULL
6246 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6247 return 1;
6248
6249 /* Look inside a TOC section too. */
6250 if (h != NULL)
6251 {
6252 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6253 off = h->root.u.def.value;
6254 }
6255 else
6256 off = sym->st_value;
6257 off += rel->r_addend;
6258 BFD_ASSERT (off % 8 == 0);
6259 r_symndx = ppc64_elf_section_data (sec)->u.t_symndx[off / 8];
6260 next_r = ppc64_elf_section_data (sec)->u.t_symndx[off / 8 + 1];
6261 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6262 return 0;
6263 if (toc_symndx != NULL)
6264 *toc_symndx = r_symndx;
6265 if ((h == NULL
6266 || ((h->root.type == bfd_link_hash_defined
6267 || h->root.type == bfd_link_hash_defweak)
6268 && !h->def_dynamic))
6269 && (next_r == -1 || next_r == -2))
6270 return 1 - next_r;
6271 return 1;
6272 }
6273
6274 /* Adjust all global syms defined in opd sections. In gcc generated
6275 code for the old ABI, these will already have been done. */
6276
6277 static bfd_boolean
6278 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6279 {
6280 struct ppc_link_hash_entry *eh;
6281 asection *sym_sec;
6282 struct _opd_sec_data *opd;
6283
6284 if (h->root.type == bfd_link_hash_indirect)
6285 return TRUE;
6286
6287 if (h->root.type == bfd_link_hash_warning)
6288 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6289
6290 if (h->root.type != bfd_link_hash_defined
6291 && h->root.type != bfd_link_hash_defweak)
6292 return TRUE;
6293
6294 eh = (struct ppc_link_hash_entry *) h;
6295 if (eh->adjust_done)
6296 return TRUE;
6297
6298 sym_sec = eh->elf.root.u.def.section;
6299 opd = get_opd_info (sym_sec);
6300 if (opd != NULL && opd->adjust != NULL)
6301 {
6302 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
6303 if (adjust == -1)
6304 {
6305 /* This entry has been deleted. */
6306 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6307 if (dsec == NULL)
6308 {
6309 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6310 if (elf_discarded_section (dsec))
6311 {
6312 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6313 break;
6314 }
6315 }
6316 eh->elf.root.u.def.value = 0;
6317 eh->elf.root.u.def.section = dsec;
6318 }
6319 else
6320 eh->elf.root.u.def.value += adjust;
6321 eh->adjust_done = 1;
6322 }
6323 return TRUE;
6324 }
6325
6326 /* Handles decrementing dynamic reloc counts for the reloc specified by
6327 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM_SEC
6328 have already been determined. */
6329
6330 static bfd_boolean
6331 dec_dynrel_count (bfd_vma r_info,
6332 asection *sec,
6333 struct bfd_link_info *info,
6334 Elf_Internal_Sym **local_syms,
6335 struct elf_link_hash_entry *h,
6336 asection *sym_sec)
6337 {
6338 enum elf_ppc64_reloc_type r_type;
6339 struct ppc_dyn_relocs *p;
6340 struct ppc_dyn_relocs **pp;
6341
6342 /* Can this reloc be dynamic? This switch, and later tests here
6343 should be kept in sync with the code in check_relocs. */
6344 r_type = ELF64_R_TYPE (r_info);
6345 switch (r_type)
6346 {
6347 default:
6348 return TRUE;
6349
6350 case R_PPC64_TPREL16:
6351 case R_PPC64_TPREL16_LO:
6352 case R_PPC64_TPREL16_HI:
6353 case R_PPC64_TPREL16_HA:
6354 case R_PPC64_TPREL16_DS:
6355 case R_PPC64_TPREL16_LO_DS:
6356 case R_PPC64_TPREL16_HIGHER:
6357 case R_PPC64_TPREL16_HIGHERA:
6358 case R_PPC64_TPREL16_HIGHEST:
6359 case R_PPC64_TPREL16_HIGHESTA:
6360 if (!info->shared)
6361 return TRUE;
6362
6363 case R_PPC64_TPREL64:
6364 case R_PPC64_DTPMOD64:
6365 case R_PPC64_DTPREL64:
6366 case R_PPC64_ADDR64:
6367 case R_PPC64_REL30:
6368 case R_PPC64_REL32:
6369 case R_PPC64_REL64:
6370 case R_PPC64_ADDR14:
6371 case R_PPC64_ADDR14_BRNTAKEN:
6372 case R_PPC64_ADDR14_BRTAKEN:
6373 case R_PPC64_ADDR16:
6374 case R_PPC64_ADDR16_DS:
6375 case R_PPC64_ADDR16_HA:
6376 case R_PPC64_ADDR16_HI:
6377 case R_PPC64_ADDR16_HIGHER:
6378 case R_PPC64_ADDR16_HIGHERA:
6379 case R_PPC64_ADDR16_HIGHEST:
6380 case R_PPC64_ADDR16_HIGHESTA:
6381 case R_PPC64_ADDR16_LO:
6382 case R_PPC64_ADDR16_LO_DS:
6383 case R_PPC64_ADDR24:
6384 case R_PPC64_ADDR32:
6385 case R_PPC64_UADDR16:
6386 case R_PPC64_UADDR32:
6387 case R_PPC64_UADDR64:
6388 case R_PPC64_TOC:
6389 break;
6390 }
6391
6392 if (local_syms != NULL)
6393 {
6394 unsigned long r_symndx;
6395 Elf_Internal_Sym *sym;
6396 bfd *ibfd = sec->owner;
6397
6398 r_symndx = ELF64_R_SYM (r_info);
6399 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
6400 return FALSE;
6401 }
6402
6403 if ((info->shared
6404 && (must_be_dyn_reloc (info, r_type)
6405 || (h != NULL
6406 && (!info->symbolic
6407 || h->root.type == bfd_link_hash_defweak
6408 || !h->def_regular))))
6409 || (ELIMINATE_COPY_RELOCS
6410 && !info->shared
6411 && h != NULL
6412 && (h->root.type == bfd_link_hash_defweak
6413 || !h->def_regular)))
6414 ;
6415 else
6416 return TRUE;
6417
6418 if (h != NULL)
6419 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6420 else
6421 {
6422 if (sym_sec != NULL)
6423 {
6424 void *vpp = &elf_section_data (sym_sec)->local_dynrel;
6425 pp = (struct ppc_dyn_relocs **) vpp;
6426 }
6427 else
6428 {
6429 void *vpp = &elf_section_data (sec)->local_dynrel;
6430 pp = (struct ppc_dyn_relocs **) vpp;
6431 }
6432
6433 /* elf_gc_sweep may have already removed all dyn relocs associated
6434 with local syms for a given section. Don't report a dynreloc
6435 miscount. */
6436 if (*pp == NULL)
6437 return TRUE;
6438 }
6439
6440 while ((p = *pp) != NULL)
6441 {
6442 if (p->sec == sec)
6443 {
6444 if (!must_be_dyn_reloc (info, r_type))
6445 p->pc_count -= 1;
6446 p->count -= 1;
6447 if (p->count == 0)
6448 *pp = p->next;
6449 return TRUE;
6450 }
6451 pp = &p->next;
6452 }
6453
6454 (*_bfd_error_handler) (_("dynreloc miscount for %B, section %A"),
6455 sec->owner, sec);
6456 bfd_set_error (bfd_error_bad_value);
6457 return FALSE;
6458 }
6459
6460 /* Remove unused Official Procedure Descriptor entries. Currently we
6461 only remove those associated with functions in discarded link-once
6462 sections, or weakly defined functions that have been overridden. It
6463 would be possible to remove many more entries for statically linked
6464 applications. */
6465
6466 bfd_boolean
6467 ppc64_elf_edit_opd (bfd *obfd, struct bfd_link_info *info,
6468 bfd_boolean non_overlapping)
6469 {
6470 bfd *ibfd;
6471 bfd_boolean some_edited = FALSE;
6472 asection *need_pad = NULL;
6473
6474 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6475 {
6476 asection *sec;
6477 Elf_Internal_Rela *relstart, *rel, *relend;
6478 Elf_Internal_Shdr *symtab_hdr;
6479 Elf_Internal_Sym *local_syms;
6480 struct elf_link_hash_entry **sym_hashes;
6481 bfd_vma offset;
6482 struct _opd_sec_data *opd;
6483 bfd_boolean need_edit, add_aux_fields;
6484 bfd_size_type cnt_16b = 0;
6485
6486 sec = bfd_get_section_by_name (ibfd, ".opd");
6487 if (sec == NULL || sec->size == 0)
6488 continue;
6489
6490 if (sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
6491 continue;
6492
6493 if (sec->output_section == bfd_abs_section_ptr)
6494 continue;
6495
6496 /* Look through the section relocs. */
6497 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
6498 continue;
6499
6500 local_syms = NULL;
6501 symtab_hdr = &elf_symtab_hdr (ibfd);
6502 sym_hashes = elf_sym_hashes (ibfd);
6503
6504 /* Read the relocations. */
6505 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6506 info->keep_memory);
6507 if (relstart == NULL)
6508 return FALSE;
6509
6510 /* First run through the relocs to check they are sane, and to
6511 determine whether we need to edit this opd section. */
6512 need_edit = FALSE;
6513 need_pad = sec;
6514 offset = 0;
6515 relend = relstart + sec->reloc_count;
6516 for (rel = relstart; rel < relend; )
6517 {
6518 enum elf_ppc64_reloc_type r_type;
6519 unsigned long r_symndx;
6520 asection *sym_sec;
6521 struct elf_link_hash_entry *h;
6522 Elf_Internal_Sym *sym;
6523
6524 /* .opd contains a regular array of 16 or 24 byte entries. We're
6525 only interested in the reloc pointing to a function entry
6526 point. */
6527 if (rel->r_offset != offset
6528 || rel + 1 >= relend
6529 || (rel + 1)->r_offset != offset + 8)
6530 {
6531 /* If someone messes with .opd alignment then after a
6532 "ld -r" we might have padding in the middle of .opd.
6533 Also, there's nothing to prevent someone putting
6534 something silly in .opd with the assembler. No .opd
6535 optimization for them! */
6536 broken_opd:
6537 (*_bfd_error_handler)
6538 (_("%B: .opd is not a regular array of opd entries"), ibfd);
6539 need_edit = FALSE;
6540 break;
6541 }
6542
6543 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
6544 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
6545 {
6546 (*_bfd_error_handler)
6547 (_("%B: unexpected reloc type %u in .opd section"),
6548 ibfd, r_type);
6549 need_edit = FALSE;
6550 break;
6551 }
6552
6553 r_symndx = ELF64_R_SYM (rel->r_info);
6554 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6555 r_symndx, ibfd))
6556 goto error_ret;
6557
6558 if (sym_sec == NULL || sym_sec->owner == NULL)
6559 {
6560 const char *sym_name;
6561 if (h != NULL)
6562 sym_name = h->root.root.string;
6563 else
6564 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
6565 sym_sec);
6566
6567 (*_bfd_error_handler)
6568 (_("%B: undefined sym `%s' in .opd section"),
6569 ibfd, sym_name);
6570 need_edit = FALSE;
6571 break;
6572 }
6573
6574 /* opd entries are always for functions defined in the
6575 current input bfd. If the symbol isn't defined in the
6576 input bfd, then we won't be using the function in this
6577 bfd; It must be defined in a linkonce section in another
6578 bfd, or is weak. It's also possible that we are
6579 discarding the function due to a linker script /DISCARD/,
6580 which we test for via the output_section. */
6581 if (sym_sec->owner != ibfd
6582 || sym_sec->output_section == bfd_abs_section_ptr)
6583 need_edit = TRUE;
6584
6585 rel += 2;
6586 if (rel == relend
6587 || (rel + 1 == relend && rel->r_offset == offset + 16))
6588 {
6589 if (sec->size == offset + 24)
6590 {
6591 need_pad = NULL;
6592 break;
6593 }
6594 if (rel == relend && sec->size == offset + 16)
6595 {
6596 cnt_16b++;
6597 break;
6598 }
6599 goto broken_opd;
6600 }
6601
6602 if (rel->r_offset == offset + 24)
6603 offset += 24;
6604 else if (rel->r_offset != offset + 16)
6605 goto broken_opd;
6606 else if (rel + 1 < relend
6607 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
6608 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
6609 {
6610 offset += 16;
6611 cnt_16b++;
6612 }
6613 else if (rel + 2 < relend
6614 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
6615 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
6616 {
6617 offset += 24;
6618 rel += 1;
6619 }
6620 else
6621 goto broken_opd;
6622 }
6623
6624 add_aux_fields = non_overlapping && cnt_16b > 0;
6625
6626 if (need_edit || add_aux_fields)
6627 {
6628 Elf_Internal_Rela *write_rel;
6629 bfd_byte *rptr, *wptr;
6630 bfd_byte *new_contents = NULL;
6631 bfd_boolean skip;
6632 long opd_ent_size;
6633 bfd_size_type amt;
6634
6635 amt = sec->size * sizeof (long) / 8;
6636 opd = &ppc64_elf_section_data (sec)->u.opd;
6637 opd->adjust = bfd_zalloc (obfd, amt);
6638 if (opd->adjust == NULL)
6639 return FALSE;
6640 ppc64_elf_section_data (sec)->sec_type = sec_opd;
6641
6642 /* This seems a waste of time as input .opd sections are all
6643 zeros as generated by gcc, but I suppose there's no reason
6644 this will always be so. We might start putting something in
6645 the third word of .opd entries. */
6646 if ((sec->flags & SEC_IN_MEMORY) == 0)
6647 {
6648 bfd_byte *loc;
6649 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
6650 {
6651 if (loc != NULL)
6652 free (loc);
6653 error_ret:
6654 if (local_syms != NULL
6655 && symtab_hdr->contents != (unsigned char *) local_syms)
6656 free (local_syms);
6657 if (elf_section_data (sec)->relocs != relstart)
6658 free (relstart);
6659 return FALSE;
6660 }
6661 sec->contents = loc;
6662 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6663 }
6664
6665 elf_section_data (sec)->relocs = relstart;
6666
6667 new_contents = sec->contents;
6668 if (add_aux_fields)
6669 {
6670 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
6671 if (new_contents == NULL)
6672 return FALSE;
6673 need_pad = FALSE;
6674 }
6675 wptr = new_contents;
6676 rptr = sec->contents;
6677
6678 write_rel = relstart;
6679 skip = FALSE;
6680 offset = 0;
6681 opd_ent_size = 0;
6682 for (rel = relstart; rel < relend; rel++)
6683 {
6684 unsigned long r_symndx;
6685 asection *sym_sec;
6686 struct elf_link_hash_entry *h;
6687 Elf_Internal_Sym *sym;
6688
6689 r_symndx = ELF64_R_SYM (rel->r_info);
6690 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6691 r_symndx, ibfd))
6692 goto error_ret;
6693
6694 if (rel->r_offset == offset)
6695 {
6696 struct ppc_link_hash_entry *fdh = NULL;
6697
6698 /* See if the .opd entry is full 24 byte or
6699 16 byte (with fd_aux entry overlapped with next
6700 fd_func). */
6701 opd_ent_size = 24;
6702 if ((rel + 2 == relend && sec->size == offset + 16)
6703 || (rel + 3 < relend
6704 && rel[2].r_offset == offset + 16
6705 && rel[3].r_offset == offset + 24
6706 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
6707 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
6708 opd_ent_size = 16;
6709
6710 if (h != NULL
6711 && h->root.root.string[0] == '.')
6712 {
6713 fdh = get_fdh ((struct ppc_link_hash_entry *) h,
6714 ppc_hash_table (info));
6715 if (fdh != NULL
6716 && fdh->elf.root.type != bfd_link_hash_defined
6717 && fdh->elf.root.type != bfd_link_hash_defweak)
6718 fdh = NULL;
6719 }
6720
6721 skip = (sym_sec->owner != ibfd
6722 || sym_sec->output_section == bfd_abs_section_ptr);
6723 if (skip)
6724 {
6725 if (fdh != NULL && sym_sec->owner == ibfd)
6726 {
6727 /* Arrange for the function descriptor sym
6728 to be dropped. */
6729 fdh->elf.root.u.def.value = 0;
6730 fdh->elf.root.u.def.section = sym_sec;
6731 }
6732 opd->adjust[rel->r_offset / 8] = -1;
6733 }
6734 else
6735 {
6736 /* We'll be keeping this opd entry. */
6737
6738 if (fdh != NULL)
6739 {
6740 /* Redefine the function descriptor symbol to
6741 this location in the opd section. It is
6742 necessary to update the value here rather
6743 than using an array of adjustments as we do
6744 for local symbols, because various places
6745 in the generic ELF code use the value
6746 stored in u.def.value. */
6747 fdh->elf.root.u.def.value = wptr - new_contents;
6748 fdh->adjust_done = 1;
6749 }
6750
6751 /* Local syms are a bit tricky. We could
6752 tweak them as they can be cached, but
6753 we'd need to look through the local syms
6754 for the function descriptor sym which we
6755 don't have at the moment. So keep an
6756 array of adjustments. */
6757 opd->adjust[rel->r_offset / 8]
6758 = (wptr - new_contents) - (rptr - sec->contents);
6759
6760 if (wptr != rptr)
6761 memcpy (wptr, rptr, opd_ent_size);
6762 wptr += opd_ent_size;
6763 if (add_aux_fields && opd_ent_size == 16)
6764 {
6765 memset (wptr, '\0', 8);
6766 wptr += 8;
6767 }
6768 }
6769 rptr += opd_ent_size;
6770 offset += opd_ent_size;
6771 }
6772
6773 if (skip)
6774 {
6775 if (!NO_OPD_RELOCS
6776 && !info->relocatable
6777 && !dec_dynrel_count (rel->r_info, sec, info,
6778 NULL, h, sym_sec))
6779 goto error_ret;
6780 }
6781 else
6782 {
6783 /* We need to adjust any reloc offsets to point to the
6784 new opd entries. While we're at it, we may as well
6785 remove redundant relocs. */
6786 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
6787 if (write_rel != rel)
6788 memcpy (write_rel, rel, sizeof (*rel));
6789 ++write_rel;
6790 }
6791 }
6792
6793 sec->size = wptr - new_contents;
6794 sec->reloc_count = write_rel - relstart;
6795 if (add_aux_fields)
6796 {
6797 free (sec->contents);
6798 sec->contents = new_contents;
6799 }
6800
6801 /* Fudge the header size too, as this is used later in
6802 elf_bfd_final_link if we are emitting relocs. */
6803 elf_section_data (sec)->rel_hdr.sh_size
6804 = sec->reloc_count * elf_section_data (sec)->rel_hdr.sh_entsize;
6805 BFD_ASSERT (elf_section_data (sec)->rel_hdr2 == NULL);
6806 some_edited = TRUE;
6807 }
6808 else if (elf_section_data (sec)->relocs != relstart)
6809 free (relstart);
6810
6811 if (local_syms != NULL
6812 && symtab_hdr->contents != (unsigned char *) local_syms)
6813 {
6814 if (!info->keep_memory)
6815 free (local_syms);
6816 else
6817 symtab_hdr->contents = (unsigned char *) local_syms;
6818 }
6819 }
6820
6821 if (some_edited)
6822 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
6823
6824 /* If we are doing a final link and the last .opd entry is just 16 byte
6825 long, add a 8 byte padding after it. */
6826 if (need_pad != NULL && !info->relocatable)
6827 {
6828 bfd_byte *p;
6829
6830 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
6831 {
6832 BFD_ASSERT (need_pad->size > 0);
6833
6834 p = bfd_malloc (need_pad->size + 8);
6835 if (p == NULL)
6836 return FALSE;
6837
6838 if (! bfd_get_section_contents (need_pad->owner, need_pad,
6839 p, 0, need_pad->size))
6840 return FALSE;
6841
6842 need_pad->contents = p;
6843 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6844 }
6845 else
6846 {
6847 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
6848 if (p == NULL)
6849 return FALSE;
6850
6851 need_pad->contents = p;
6852 }
6853
6854 memset (need_pad->contents + need_pad->size, 0, 8);
6855 need_pad->size += 8;
6856 }
6857
6858 return TRUE;
6859 }
6860
6861 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
6862
6863 asection *
6864 ppc64_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
6865 {
6866 struct ppc_link_hash_table *htab;
6867
6868 htab = ppc_hash_table (info);
6869 if (htab->tls_get_addr != NULL)
6870 {
6871 struct ppc_link_hash_entry *h = htab->tls_get_addr;
6872
6873 while (h->elf.root.type == bfd_link_hash_indirect
6874 || h->elf.root.type == bfd_link_hash_warning)
6875 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6876
6877 htab->tls_get_addr = h;
6878
6879 if (htab->tls_get_addr_fd == NULL
6880 && h->oh != NULL
6881 && h->oh->is_func_descriptor
6882 && (h->oh->elf.root.type == bfd_link_hash_defined
6883 || h->oh->elf.root.type == bfd_link_hash_defweak))
6884 htab->tls_get_addr_fd = h->oh;
6885 }
6886
6887 if (htab->tls_get_addr_fd != NULL)
6888 {
6889 struct ppc_link_hash_entry *h = htab->tls_get_addr_fd;
6890
6891 while (h->elf.root.type == bfd_link_hash_indirect
6892 || h->elf.root.type == bfd_link_hash_warning)
6893 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6894
6895 htab->tls_get_addr_fd = h;
6896 }
6897
6898 return _bfd_elf_tls_setup (obfd, info);
6899 }
6900
6901 /* Run through all the TLS relocs looking for optimization
6902 opportunities. The linker has been hacked (see ppc64elf.em) to do
6903 a preliminary section layout so that we know the TLS segment
6904 offsets. We can't optimize earlier because some optimizations need
6905 to know the tp offset, and we need to optimize before allocating
6906 dynamic relocations. */
6907
6908 bfd_boolean
6909 ppc64_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6910 {
6911 bfd *ibfd;
6912 asection *sec;
6913 struct ppc_link_hash_table *htab;
6914 int pass;
6915
6916 if (info->relocatable || !info->executable)
6917 return TRUE;
6918
6919 htab = ppc_hash_table (info);
6920 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6921 {
6922 Elf_Internal_Sym *locsyms = NULL;
6923 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
6924 unsigned char *toc_ref = NULL;
6925
6926 /* Look at all the sections for this file. Make two passes over
6927 the relocs. On the first pass, mark toc entries involved
6928 with tls relocs, and check that tls relocs involved in
6929 setting up a tls_get_addr call are indeed followed by such a
6930 call. If they are not, exclude them from the optimizations
6931 done on the second pass. */
6932 for (pass = 0; pass < 2; ++pass)
6933 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6934 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
6935 {
6936 Elf_Internal_Rela *relstart, *rel, *relend;
6937
6938 /* Read the relocations. */
6939 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6940 info->keep_memory);
6941 if (relstart == NULL)
6942 return FALSE;
6943
6944 relend = relstart + sec->reloc_count;
6945 for (rel = relstart; rel < relend; rel++)
6946 {
6947 enum elf_ppc64_reloc_type r_type;
6948 unsigned long r_symndx;
6949 struct elf_link_hash_entry *h;
6950 Elf_Internal_Sym *sym;
6951 asection *sym_sec;
6952 char *tls_mask;
6953 char tls_set, tls_clear, tls_type = 0;
6954 bfd_vma value;
6955 bfd_boolean ok_tprel, is_local;
6956 long toc_ref_index = 0;
6957 int expecting_tls_get_addr = 0;
6958
6959 r_symndx = ELF64_R_SYM (rel->r_info);
6960 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
6961 r_symndx, ibfd))
6962 {
6963 err_free_rel:
6964 if (elf_section_data (sec)->relocs != relstart)
6965 free (relstart);
6966 if (toc_ref != NULL)
6967 free (toc_ref);
6968 if (locsyms != NULL
6969 && (elf_symtab_hdr (ibfd).contents
6970 != (unsigned char *) locsyms))
6971 free (locsyms);
6972 return FALSE;
6973 }
6974
6975 if (h != NULL)
6976 {
6977 if (h->root.type != bfd_link_hash_defined
6978 && h->root.type != bfd_link_hash_defweak)
6979 continue;
6980 value = h->root.u.def.value;
6981 }
6982 else
6983 /* Symbols referenced by TLS relocs must be of type
6984 STT_TLS. So no need for .opd local sym adjust. */
6985 value = sym->st_value;
6986
6987 ok_tprel = FALSE;
6988 is_local = FALSE;
6989 if (h == NULL
6990 || !h->def_dynamic)
6991 {
6992 is_local = TRUE;
6993 value += sym_sec->output_offset;
6994 value += sym_sec->output_section->vma;
6995 value -= htab->elf.tls_sec->vma;
6996 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
6997 < (bfd_vma) 1 << 32);
6998 }
6999
7000 r_type = ELF64_R_TYPE (rel->r_info);
7001 switch (r_type)
7002 {
7003 case R_PPC64_GOT_TLSLD16:
7004 case R_PPC64_GOT_TLSLD16_LO:
7005 expecting_tls_get_addr = 1;
7006 /* Fall thru */
7007
7008 case R_PPC64_GOT_TLSLD16_HI:
7009 case R_PPC64_GOT_TLSLD16_HA:
7010 /* These relocs should never be against a symbol
7011 defined in a shared lib. Leave them alone if
7012 that turns out to be the case. */
7013 if (!is_local)
7014 continue;
7015
7016 /* LD -> LE */
7017 tls_set = 0;
7018 tls_clear = TLS_LD;
7019 tls_type = TLS_TLS | TLS_LD;
7020 break;
7021
7022 case R_PPC64_GOT_TLSGD16:
7023 case R_PPC64_GOT_TLSGD16_LO:
7024 expecting_tls_get_addr = 1;
7025 /* Fall thru */
7026
7027 case R_PPC64_GOT_TLSGD16_HI:
7028 case R_PPC64_GOT_TLSGD16_HA:
7029 if (ok_tprel)
7030 /* GD -> LE */
7031 tls_set = 0;
7032 else
7033 /* GD -> IE */
7034 tls_set = TLS_TLS | TLS_TPRELGD;
7035 tls_clear = TLS_GD;
7036 tls_type = TLS_TLS | TLS_GD;
7037 break;
7038
7039 case R_PPC64_GOT_TPREL16_DS:
7040 case R_PPC64_GOT_TPREL16_LO_DS:
7041 case R_PPC64_GOT_TPREL16_HI:
7042 case R_PPC64_GOT_TPREL16_HA:
7043 if (ok_tprel)
7044 {
7045 /* IE -> LE */
7046 tls_set = 0;
7047 tls_clear = TLS_TPREL;
7048 tls_type = TLS_TLS | TLS_TPREL;
7049 break;
7050 }
7051 continue;
7052
7053 case R_PPC64_TOC16:
7054 case R_PPC64_TOC16_LO:
7055 case R_PPC64_TLS:
7056 if (sym_sec == NULL || sym_sec != toc)
7057 continue;
7058
7059 /* Mark this toc entry as referenced by a TLS
7060 code sequence. We can do that now in the
7061 case of R_PPC64_TLS, and after checking for
7062 tls_get_addr for the TOC16 relocs. */
7063 if (toc_ref == NULL)
7064 {
7065 toc_ref = bfd_zmalloc (toc->size / 8);
7066 if (toc_ref == NULL)
7067 goto err_free_rel;
7068 }
7069 if (h != NULL)
7070 value = h->root.u.def.value;
7071 else
7072 value = sym->st_value;
7073 value += rel->r_addend;
7074 BFD_ASSERT (value < toc->size && value % 8 == 0);
7075 toc_ref_index = value / 8;
7076 if (r_type == R_PPC64_TLS)
7077 {
7078 toc_ref[toc_ref_index] = 1;
7079 continue;
7080 }
7081
7082 if (pass != 0 && toc_ref[toc_ref_index] == 0)
7083 continue;
7084
7085 tls_set = 0;
7086 tls_clear = 0;
7087 expecting_tls_get_addr = 2;
7088 break;
7089
7090 case R_PPC64_TPREL64:
7091 if (pass == 0
7092 || sec != toc
7093 || toc_ref == NULL
7094 || !toc_ref[rel->r_offset / 8])
7095 continue;
7096 if (ok_tprel)
7097 {
7098 /* IE -> LE */
7099 tls_set = TLS_EXPLICIT;
7100 tls_clear = TLS_TPREL;
7101 break;
7102 }
7103 continue;
7104
7105 case R_PPC64_DTPMOD64:
7106 if (pass == 0
7107 || sec != toc
7108 || toc_ref == NULL
7109 || !toc_ref[rel->r_offset / 8])
7110 continue;
7111 if (rel + 1 < relend
7112 && (rel[1].r_info
7113 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
7114 && rel[1].r_offset == rel->r_offset + 8)
7115 {
7116 if (ok_tprel)
7117 /* GD -> LE */
7118 tls_set = TLS_EXPLICIT | TLS_GD;
7119 else
7120 /* GD -> IE */
7121 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
7122 tls_clear = TLS_GD;
7123 }
7124 else
7125 {
7126 if (!is_local)
7127 continue;
7128
7129 /* LD -> LE */
7130 tls_set = TLS_EXPLICIT;
7131 tls_clear = TLS_LD;
7132 }
7133 break;
7134
7135 default:
7136 continue;
7137 }
7138
7139 if (pass == 0)
7140 {
7141 if (!expecting_tls_get_addr)
7142 continue;
7143
7144 if (rel + 1 < relend)
7145 {
7146 Elf_Internal_Shdr *symtab_hdr;
7147 enum elf_ppc64_reloc_type r_type2;
7148 unsigned long r_symndx2;
7149 struct elf_link_hash_entry *h2;
7150
7151 symtab_hdr = &elf_symtab_hdr (ibfd);
7152
7153 /* The next instruction should be a call to
7154 __tls_get_addr. Peek at the reloc to be sure. */
7155 r_type2 = ELF64_R_TYPE (rel[1].r_info);
7156 r_symndx2 = ELF64_R_SYM (rel[1].r_info);
7157 if (r_symndx2 >= symtab_hdr->sh_info
7158 && (r_type2 == R_PPC64_REL14
7159 || r_type2 == R_PPC64_REL14_BRTAKEN
7160 || r_type2 == R_PPC64_REL14_BRNTAKEN
7161 || r_type2 == R_PPC64_REL24))
7162 {
7163 struct elf_link_hash_entry **sym_hashes;
7164
7165 sym_hashes = elf_sym_hashes (ibfd);
7166
7167 h2 = sym_hashes[r_symndx2 - symtab_hdr->sh_info];
7168 while (h2->root.type == bfd_link_hash_indirect
7169 || h2->root.type == bfd_link_hash_warning)
7170 h2 = ((struct elf_link_hash_entry *)
7171 h2->root.u.i.link);
7172 if (h2 != NULL
7173 && (h2 == &htab->tls_get_addr->elf
7174 || h2 == &htab->tls_get_addr_fd->elf))
7175 {
7176 if (expecting_tls_get_addr == 2)
7177 {
7178 /* Check for toc tls entries. */
7179 char *toc_tls;
7180 int retval;
7181
7182 retval = get_tls_mask (&toc_tls, NULL,
7183 &locsyms,
7184 rel, ibfd);
7185 if (retval == 0)
7186 goto err_free_rel;
7187 if (retval > 1 && toc_tls != NULL)
7188 toc_ref[toc_ref_index] = 1;
7189 }
7190 continue;
7191 }
7192 }
7193 }
7194
7195 if (expecting_tls_get_addr != 1)
7196 continue;
7197
7198 /* Uh oh, we didn't find the expected call. We
7199 could just mark this symbol to exclude it
7200 from tls optimization but it's safer to skip
7201 the entire section. */
7202 sec->has_tls_reloc = 0;
7203 break;
7204 }
7205
7206 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
7207 {
7208 struct plt_entry *ent;
7209 for (ent = htab->tls_get_addr->elf.plt.plist;
7210 ent != NULL;
7211 ent = ent->next)
7212 if (ent->addend == 0)
7213 {
7214 if (ent->plt.refcount > 0)
7215 {
7216 ent->plt.refcount -= 1;
7217 expecting_tls_get_addr = 0;
7218 }
7219 break;
7220 }
7221 }
7222
7223 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
7224 {
7225 struct plt_entry *ent;
7226 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
7227 ent != NULL;
7228 ent = ent->next)
7229 if (ent->addend == 0)
7230 {
7231 if (ent->plt.refcount > 0)
7232 ent->plt.refcount -= 1;
7233 break;
7234 }
7235 }
7236
7237 if (tls_clear == 0)
7238 continue;
7239
7240 if ((tls_set & TLS_EXPLICIT) == 0)
7241 {
7242 struct got_entry *ent;
7243
7244 /* Adjust got entry for this reloc. */
7245 if (h != NULL)
7246 ent = h->got.glist;
7247 else
7248 ent = elf_local_got_ents (ibfd)[r_symndx];
7249
7250 for (; ent != NULL; ent = ent->next)
7251 if (ent->addend == rel->r_addend
7252 && ent->owner == ibfd
7253 && ent->tls_type == tls_type)
7254 break;
7255 if (ent == NULL)
7256 abort ();
7257
7258 if (tls_set == 0)
7259 {
7260 /* We managed to get rid of a got entry. */
7261 if (ent->got.refcount > 0)
7262 ent->got.refcount -= 1;
7263 }
7264 }
7265 else
7266 {
7267 /* If we got rid of a DTPMOD/DTPREL reloc pair then
7268 we'll lose one or two dyn relocs. */
7269 if (!dec_dynrel_count (rel->r_info, sec, info,
7270 NULL, h, sym_sec))
7271 return FALSE;
7272
7273 if (tls_set == (TLS_EXPLICIT | TLS_GD))
7274 {
7275 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
7276 NULL, h, sym_sec))
7277 return FALSE;
7278 }
7279 }
7280
7281 *tls_mask |= tls_set;
7282 *tls_mask &= ~tls_clear;
7283 }
7284
7285 if (elf_section_data (sec)->relocs != relstart)
7286 free (relstart);
7287 }
7288
7289 if (toc_ref != NULL)
7290 free (toc_ref);
7291
7292 if (locsyms != NULL
7293 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
7294 {
7295 if (!info->keep_memory)
7296 free (locsyms);
7297 else
7298 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
7299 }
7300 }
7301 return TRUE;
7302 }
7303
7304 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
7305 the values of any global symbols in a toc section that has been
7306 edited. Globals in toc sections should be a rarity, so this function
7307 sets a flag if any are found in toc sections other than the one just
7308 edited, so that futher hash table traversals can be avoided. */
7309
7310 struct adjust_toc_info
7311 {
7312 asection *toc;
7313 unsigned long *skip;
7314 bfd_boolean global_toc_syms;
7315 };
7316
7317 static bfd_boolean
7318 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
7319 {
7320 struct ppc_link_hash_entry *eh;
7321 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
7322
7323 if (h->root.type == bfd_link_hash_indirect)
7324 return TRUE;
7325
7326 if (h->root.type == bfd_link_hash_warning)
7327 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7328
7329 if (h->root.type != bfd_link_hash_defined
7330 && h->root.type != bfd_link_hash_defweak)
7331 return TRUE;
7332
7333 eh = (struct ppc_link_hash_entry *) h;
7334 if (eh->adjust_done)
7335 return TRUE;
7336
7337 if (eh->elf.root.u.def.section == toc_inf->toc)
7338 {
7339 unsigned long skip = toc_inf->skip[eh->elf.root.u.def.value >> 3];
7340 if (skip != (unsigned long) -1)
7341 eh->elf.root.u.def.value -= skip;
7342 else
7343 {
7344 (*_bfd_error_handler)
7345 (_("%s defined in removed toc entry"), eh->elf.root.root.string);
7346 eh->elf.root.u.def.section = &bfd_abs_section;
7347 eh->elf.root.u.def.value = 0;
7348 }
7349 eh->adjust_done = 1;
7350 }
7351 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
7352 toc_inf->global_toc_syms = TRUE;
7353
7354 return TRUE;
7355 }
7356
7357 /* Examine all relocs referencing .toc sections in order to remove
7358 unused .toc entries. */
7359
7360 bfd_boolean
7361 ppc64_elf_edit_toc (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
7362 {
7363 bfd *ibfd;
7364 struct adjust_toc_info toc_inf;
7365
7366 toc_inf.global_toc_syms = TRUE;
7367 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7368 {
7369 asection *toc, *sec;
7370 Elf_Internal_Shdr *symtab_hdr;
7371 Elf_Internal_Sym *local_syms;
7372 struct elf_link_hash_entry **sym_hashes;
7373 Elf_Internal_Rela *relstart, *rel;
7374 unsigned long *skip, *drop;
7375 unsigned char *used;
7376 unsigned char *keep, last, some_unused;
7377
7378 toc = bfd_get_section_by_name (ibfd, ".toc");
7379 if (toc == NULL
7380 || toc->size == 0
7381 || toc->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
7382 || elf_discarded_section (toc))
7383 continue;
7384
7385 local_syms = NULL;
7386 symtab_hdr = &elf_symtab_hdr (ibfd);
7387 sym_hashes = elf_sym_hashes (ibfd);
7388
7389 /* Look at sections dropped from the final link. */
7390 skip = NULL;
7391 relstart = NULL;
7392 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7393 {
7394 if (sec->reloc_count == 0
7395 || !elf_discarded_section (sec)
7396 || get_opd_info (sec)
7397 || (sec->flags & SEC_ALLOC) == 0
7398 || (sec->flags & SEC_DEBUGGING) != 0)
7399 continue;
7400
7401 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
7402 if (relstart == NULL)
7403 goto error_ret;
7404
7405 /* Run through the relocs to see which toc entries might be
7406 unused. */
7407 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7408 {
7409 enum elf_ppc64_reloc_type r_type;
7410 unsigned long r_symndx;
7411 asection *sym_sec;
7412 struct elf_link_hash_entry *h;
7413 Elf_Internal_Sym *sym;
7414 bfd_vma val;
7415
7416 r_type = ELF64_R_TYPE (rel->r_info);
7417 switch (r_type)
7418 {
7419 default:
7420 continue;
7421
7422 case R_PPC64_TOC16:
7423 case R_PPC64_TOC16_LO:
7424 case R_PPC64_TOC16_HI:
7425 case R_PPC64_TOC16_HA:
7426 case R_PPC64_TOC16_DS:
7427 case R_PPC64_TOC16_LO_DS:
7428 break;
7429 }
7430
7431 r_symndx = ELF64_R_SYM (rel->r_info);
7432 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7433 r_symndx, ibfd))
7434 goto error_ret;
7435
7436 if (sym_sec != toc)
7437 continue;
7438
7439 if (h != NULL)
7440 val = h->root.u.def.value;
7441 else
7442 val = sym->st_value;
7443 val += rel->r_addend;
7444
7445 if (val >= toc->size)
7446 continue;
7447
7448 /* Anything in the toc ought to be aligned to 8 bytes.
7449 If not, don't mark as unused. */
7450 if (val & 7)
7451 continue;
7452
7453 if (skip == NULL)
7454 {
7455 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 7) / 8);
7456 if (skip == NULL)
7457 goto error_ret;
7458 }
7459
7460 skip[val >> 3] = 1;
7461 }
7462
7463 if (elf_section_data (sec)->relocs != relstart)
7464 free (relstart);
7465 }
7466
7467 if (skip == NULL)
7468 continue;
7469
7470 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
7471 if (used == NULL)
7472 {
7473 error_ret:
7474 if (local_syms != NULL
7475 && symtab_hdr->contents != (unsigned char *) local_syms)
7476 free (local_syms);
7477 if (sec != NULL
7478 && relstart != NULL
7479 && elf_section_data (sec)->relocs != relstart)
7480 free (relstart);
7481 if (skip != NULL)
7482 free (skip);
7483 return FALSE;
7484 }
7485
7486 /* Now check all kept sections that might reference the toc.
7487 Check the toc itself last. */
7488 for (sec = (ibfd->sections == toc && toc->next ? toc->next
7489 : ibfd->sections);
7490 sec != NULL;
7491 sec = (sec == toc ? NULL
7492 : sec->next == NULL ? toc
7493 : sec->next == toc && toc->next ? toc->next
7494 : sec->next))
7495 {
7496 int repeat;
7497
7498 if (sec->reloc_count == 0
7499 || elf_discarded_section (sec)
7500 || get_opd_info (sec)
7501 || (sec->flags & SEC_ALLOC) == 0
7502 || (sec->flags & SEC_DEBUGGING) != 0)
7503 continue;
7504
7505 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, TRUE);
7506 if (relstart == NULL)
7507 goto error_ret;
7508
7509 /* Mark toc entries referenced as used. */
7510 repeat = 0;
7511 do
7512 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7513 {
7514 enum elf_ppc64_reloc_type r_type;
7515 unsigned long r_symndx;
7516 asection *sym_sec;
7517 struct elf_link_hash_entry *h;
7518 Elf_Internal_Sym *sym;
7519 bfd_vma val;
7520
7521 r_type = ELF64_R_TYPE (rel->r_info);
7522 switch (r_type)
7523 {
7524 case R_PPC64_TOC16:
7525 case R_PPC64_TOC16_LO:
7526 case R_PPC64_TOC16_HI:
7527 case R_PPC64_TOC16_HA:
7528 case R_PPC64_TOC16_DS:
7529 case R_PPC64_TOC16_LO_DS:
7530 /* In case we're taking addresses of toc entries. */
7531 case R_PPC64_ADDR64:
7532 break;
7533
7534 default:
7535 continue;
7536 }
7537
7538 r_symndx = ELF64_R_SYM (rel->r_info);
7539 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7540 r_symndx, ibfd))
7541 {
7542 free (used);
7543 goto error_ret;
7544 }
7545
7546 if (sym_sec != toc)
7547 continue;
7548
7549 if (h != NULL)
7550 val = h->root.u.def.value;
7551 else
7552 val = sym->st_value;
7553 val += rel->r_addend;
7554
7555 if (val >= toc->size)
7556 continue;
7557
7558 /* For the toc section, we only mark as used if
7559 this entry itself isn't unused. */
7560 if (sec == toc
7561 && !used[val >> 3]
7562 && (used[rel->r_offset >> 3]
7563 || !skip[rel->r_offset >> 3]))
7564 /* Do all the relocs again, to catch reference
7565 chains. */
7566 repeat = 1;
7567
7568 used[val >> 3] = 1;
7569 }
7570 while (repeat);
7571 }
7572
7573 /* Merge the used and skip arrays. Assume that TOC
7574 doublewords not appearing as either used or unused belong
7575 to to an entry more than one doubleword in size. */
7576 for (drop = skip, keep = used, last = 0, some_unused = 0;
7577 drop < skip + (toc->size + 7) / 8;
7578 ++drop, ++keep)
7579 {
7580 if (*keep)
7581 {
7582 *drop = 0;
7583 last = 0;
7584 }
7585 else if (*drop)
7586 {
7587 some_unused = 1;
7588 last = 1;
7589 }
7590 else
7591 *drop = last;
7592 }
7593
7594 free (used);
7595
7596 if (some_unused)
7597 {
7598 bfd_byte *contents, *src;
7599 unsigned long off;
7600
7601 /* Shuffle the toc contents, and at the same time convert the
7602 skip array from booleans into offsets. */
7603 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
7604 goto error_ret;
7605
7606 elf_section_data (toc)->this_hdr.contents = contents;
7607
7608 for (src = contents, off = 0, drop = skip;
7609 src < contents + toc->size;
7610 src += 8, ++drop)
7611 {
7612 if (*drop)
7613 {
7614 *drop = (unsigned long) -1;
7615 off += 8;
7616 }
7617 else if (off != 0)
7618 {
7619 *drop = off;
7620 memcpy (src - off, src, 8);
7621 }
7622 }
7623 toc->rawsize = toc->size;
7624 toc->size = src - contents - off;
7625
7626 if (toc->reloc_count != 0)
7627 {
7628 Elf_Internal_Rela *wrel;
7629 bfd_size_type sz;
7630
7631 /* Read toc relocs. */
7632 relstart = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
7633 TRUE);
7634 if (relstart == NULL)
7635 goto error_ret;
7636
7637 /* Remove unused toc relocs, and adjust those we keep. */
7638 wrel = relstart;
7639 for (rel = relstart; rel < relstart + toc->reloc_count; ++rel)
7640 if (skip[rel->r_offset >> 3] != (unsigned long) -1)
7641 {
7642 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
7643 wrel->r_info = rel->r_info;
7644 wrel->r_addend = rel->r_addend;
7645 ++wrel;
7646 }
7647 else if (!dec_dynrel_count (rel->r_info, toc, info,
7648 &local_syms, NULL, NULL))
7649 goto error_ret;
7650
7651 toc->reloc_count = wrel - relstart;
7652 sz = elf_section_data (toc)->rel_hdr.sh_entsize;
7653 elf_section_data (toc)->rel_hdr.sh_size = toc->reloc_count * sz;
7654 BFD_ASSERT (elf_section_data (toc)->rel_hdr2 == NULL);
7655 }
7656
7657 /* Adjust addends for relocs against the toc section sym. */
7658 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7659 {
7660 if (sec->reloc_count == 0
7661 || elf_discarded_section (sec))
7662 continue;
7663
7664 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7665 TRUE);
7666 if (relstart == NULL)
7667 goto error_ret;
7668
7669 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7670 {
7671 enum elf_ppc64_reloc_type r_type;
7672 unsigned long r_symndx;
7673 asection *sym_sec;
7674 struct elf_link_hash_entry *h;
7675 Elf_Internal_Sym *sym;
7676
7677 r_type = ELF64_R_TYPE (rel->r_info);
7678 switch (r_type)
7679 {
7680 default:
7681 continue;
7682
7683 case R_PPC64_TOC16:
7684 case R_PPC64_TOC16_LO:
7685 case R_PPC64_TOC16_HI:
7686 case R_PPC64_TOC16_HA:
7687 case R_PPC64_TOC16_DS:
7688 case R_PPC64_TOC16_LO_DS:
7689 case R_PPC64_ADDR64:
7690 break;
7691 }
7692
7693 r_symndx = ELF64_R_SYM (rel->r_info);
7694 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7695 r_symndx, ibfd))
7696 goto error_ret;
7697
7698 if (sym_sec != toc || h != NULL || sym->st_value != 0)
7699 continue;
7700
7701 rel->r_addend -= skip[rel->r_addend >> 3];
7702 }
7703 }
7704
7705 /* We shouldn't have local or global symbols defined in the TOC,
7706 but handle them anyway. */
7707 if (local_syms != NULL)
7708 {
7709 Elf_Internal_Sym *sym;
7710
7711 for (sym = local_syms;
7712 sym < local_syms + symtab_hdr->sh_info;
7713 ++sym)
7714 if (sym->st_value != 0
7715 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
7716 {
7717 if (skip[sym->st_value >> 3] != (unsigned long) -1)
7718 sym->st_value -= skip[sym->st_value >> 3];
7719 else
7720 {
7721 (*_bfd_error_handler)
7722 (_("%s defined in removed toc entry"),
7723 bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7724 NULL));
7725 sym->st_value = 0;
7726 sym->st_shndx = SHN_ABS;
7727 }
7728 symtab_hdr->contents = (unsigned char *) local_syms;
7729 }
7730 }
7731
7732 /* Finally, adjust any global syms defined in the toc. */
7733 if (toc_inf.global_toc_syms)
7734 {
7735 toc_inf.toc = toc;
7736 toc_inf.skip = skip;
7737 toc_inf.global_toc_syms = FALSE;
7738 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
7739 &toc_inf);
7740 }
7741 }
7742
7743 if (local_syms != NULL
7744 && symtab_hdr->contents != (unsigned char *) local_syms)
7745 {
7746 if (!info->keep_memory)
7747 free (local_syms);
7748 else
7749 symtab_hdr->contents = (unsigned char *) local_syms;
7750 }
7751 free (skip);
7752 }
7753
7754 return TRUE;
7755 }
7756
7757 /* Allocate space in .plt, .got and associated reloc sections for
7758 dynamic relocs. */
7759
7760 static bfd_boolean
7761 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7762 {
7763 struct bfd_link_info *info;
7764 struct ppc_link_hash_table *htab;
7765 asection *s;
7766 struct ppc_link_hash_entry *eh;
7767 struct ppc_dyn_relocs *p;
7768 struct got_entry *gent;
7769
7770 if (h->root.type == bfd_link_hash_indirect)
7771 return TRUE;
7772
7773 if (h->root.type == bfd_link_hash_warning)
7774 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7775
7776 info = (struct bfd_link_info *) inf;
7777 htab = ppc_hash_table (info);
7778
7779 if (htab->elf.dynamic_sections_created
7780 && h->dynindx != -1
7781 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
7782 {
7783 struct plt_entry *pent;
7784 bfd_boolean doneone = FALSE;
7785 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
7786 if (pent->plt.refcount > 0)
7787 {
7788 /* If this is the first .plt entry, make room for the special
7789 first entry. */
7790 s = htab->plt;
7791 if (s->size == 0)
7792 s->size += PLT_INITIAL_ENTRY_SIZE;
7793
7794 pent->plt.offset = s->size;
7795
7796 /* Make room for this entry. */
7797 s->size += PLT_ENTRY_SIZE;
7798
7799 /* Make room for the .glink code. */
7800 s = htab->glink;
7801 if (s->size == 0)
7802 s->size += GLINK_CALL_STUB_SIZE;
7803 /* We need bigger stubs past index 32767. */
7804 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
7805 s->size += 4;
7806 s->size += 2*4;
7807
7808 /* We also need to make an entry in the .rela.plt section. */
7809 s = htab->relplt;
7810 s->size += sizeof (Elf64_External_Rela);
7811 doneone = TRUE;
7812 }
7813 else
7814 pent->plt.offset = (bfd_vma) -1;
7815 if (!doneone)
7816 {
7817 h->plt.plist = NULL;
7818 h->needs_plt = 0;
7819 }
7820 }
7821 else
7822 {
7823 h->plt.plist = NULL;
7824 h->needs_plt = 0;
7825 }
7826
7827 eh = (struct ppc_link_hash_entry *) h;
7828 /* Run through the TLS GD got entries first if we're changing them
7829 to TPREL. */
7830 if ((eh->tls_mask & TLS_TPRELGD) != 0)
7831 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7832 if (gent->got.refcount > 0
7833 && (gent->tls_type & TLS_GD) != 0)
7834 {
7835 /* This was a GD entry that has been converted to TPREL. If
7836 there happens to be a TPREL entry we can use that one. */
7837 struct got_entry *ent;
7838 for (ent = h->got.glist; ent != NULL; ent = ent->next)
7839 if (ent->got.refcount > 0
7840 && (ent->tls_type & TLS_TPREL) != 0
7841 && ent->addend == gent->addend
7842 && ent->owner == gent->owner)
7843 {
7844 gent->got.refcount = 0;
7845 break;
7846 }
7847
7848 /* If not, then we'll be using our own TPREL entry. */
7849 if (gent->got.refcount != 0)
7850 gent->tls_type = TLS_TLS | TLS_TPREL;
7851 }
7852
7853 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7854 if (gent->got.refcount > 0)
7855 {
7856 bfd_boolean dyn;
7857
7858 /* Make sure this symbol is output as a dynamic symbol.
7859 Undefined weak syms won't yet be marked as dynamic,
7860 nor will all TLS symbols. */
7861 if (h->dynindx == -1
7862 && !h->forced_local
7863 && htab->elf.dynamic_sections_created)
7864 {
7865 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7866 return FALSE;
7867 }
7868
7869 if ((gent->tls_type & TLS_LD) != 0
7870 && !h->def_dynamic)
7871 {
7872 ppc64_tlsld_got (gent->owner)->refcount += 1;
7873 gent->got.offset = (bfd_vma) -1;
7874 continue;
7875 }
7876
7877 if (!is_ppc64_elf (gent->owner))
7878 continue;
7879
7880 s = ppc64_elf_tdata (gent->owner)->got;
7881 gent->got.offset = s->size;
7882 s->size
7883 += (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)) ? 16 : 8;
7884 dyn = htab->elf.dynamic_sections_created;
7885 if ((info->shared
7886 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
7887 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7888 || h->root.type != bfd_link_hash_undefweak))
7889 ppc64_elf_tdata (gent->owner)->relgot->size
7890 += (gent->tls_type & eh->tls_mask & TLS_GD
7891 ? 2 * sizeof (Elf64_External_Rela)
7892 : sizeof (Elf64_External_Rela));
7893 }
7894 else
7895 gent->got.offset = (bfd_vma) -1;
7896
7897 if (eh->dyn_relocs == NULL
7898 || !htab->elf.dynamic_sections_created)
7899 return TRUE;
7900
7901 /* In the shared -Bsymbolic case, discard space allocated for
7902 dynamic pc-relative relocs against symbols which turn out to be
7903 defined in regular objects. For the normal shared case, discard
7904 space for relocs that have become local due to symbol visibility
7905 changes. */
7906
7907 if (info->shared)
7908 {
7909 /* Relocs that use pc_count are those that appear on a call insn,
7910 or certain REL relocs (see must_be_dyn_reloc) that can be
7911 generated via assembly. We want calls to protected symbols to
7912 resolve directly to the function rather than going via the plt.
7913 If people want function pointer comparisons to work as expected
7914 then they should avoid writing weird assembly. */
7915 if (SYMBOL_CALLS_LOCAL (info, h))
7916 {
7917 struct ppc_dyn_relocs **pp;
7918
7919 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
7920 {
7921 p->count -= p->pc_count;
7922 p->pc_count = 0;
7923 if (p->count == 0)
7924 *pp = p->next;
7925 else
7926 pp = &p->next;
7927 }
7928 }
7929
7930 /* Also discard relocs on undefined weak syms with non-default
7931 visibility. */
7932 if (eh->dyn_relocs != NULL
7933 && h->root.type == bfd_link_hash_undefweak)
7934 {
7935 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
7936 eh->dyn_relocs = NULL;
7937
7938 /* Make sure this symbol is output as a dynamic symbol.
7939 Undefined weak syms won't yet be marked as dynamic. */
7940 else if (h->dynindx == -1
7941 && !h->forced_local)
7942 {
7943 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7944 return FALSE;
7945 }
7946 }
7947 }
7948 else if (ELIMINATE_COPY_RELOCS)
7949 {
7950 /* For the non-shared case, discard space for relocs against
7951 symbols which turn out to need copy relocs or are not
7952 dynamic. */
7953
7954 if (!h->non_got_ref
7955 && !h->def_regular)
7956 {
7957 /* Make sure this symbol is output as a dynamic symbol.
7958 Undefined weak syms won't yet be marked as dynamic. */
7959 if (h->dynindx == -1
7960 && !h->forced_local)
7961 {
7962 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7963 return FALSE;
7964 }
7965
7966 /* If that succeeded, we know we'll be keeping all the
7967 relocs. */
7968 if (h->dynindx != -1)
7969 goto keep;
7970 }
7971
7972 eh->dyn_relocs = NULL;
7973
7974 keep: ;
7975 }
7976
7977 /* Finally, allocate space. */
7978 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7979 {
7980 asection *sreloc = elf_section_data (p->sec)->sreloc;
7981 sreloc->size += p->count * sizeof (Elf64_External_Rela);
7982 }
7983
7984 return TRUE;
7985 }
7986
7987 /* Find any dynamic relocs that apply to read-only sections. */
7988
7989 static bfd_boolean
7990 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7991 {
7992 struct ppc_link_hash_entry *eh;
7993 struct ppc_dyn_relocs *p;
7994
7995 if (h->root.type == bfd_link_hash_warning)
7996 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7997
7998 eh = (struct ppc_link_hash_entry *) h;
7999 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8000 {
8001 asection *s = p->sec->output_section;
8002
8003 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8004 {
8005 struct bfd_link_info *info = inf;
8006
8007 info->flags |= DF_TEXTREL;
8008
8009 /* Not an error, just cut short the traversal. */
8010 return FALSE;
8011 }
8012 }
8013 return TRUE;
8014 }
8015
8016 /* Set the sizes of the dynamic sections. */
8017
8018 static bfd_boolean
8019 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8020 struct bfd_link_info *info)
8021 {
8022 struct ppc_link_hash_table *htab;
8023 bfd *dynobj;
8024 asection *s;
8025 bfd_boolean relocs;
8026 bfd *ibfd;
8027
8028 htab = ppc_hash_table (info);
8029 dynobj = htab->elf.dynobj;
8030 if (dynobj == NULL)
8031 abort ();
8032
8033 if (htab->elf.dynamic_sections_created)
8034 {
8035 /* Set the contents of the .interp section to the interpreter. */
8036 if (info->executable)
8037 {
8038 s = bfd_get_section_by_name (dynobj, ".interp");
8039 if (s == NULL)
8040 abort ();
8041 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8042 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8043 }
8044 }
8045
8046 /* Set up .got offsets for local syms, and space for local dynamic
8047 relocs. */
8048 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8049 {
8050 struct got_entry **lgot_ents;
8051 struct got_entry **end_lgot_ents;
8052 char *lgot_masks;
8053 bfd_size_type locsymcount;
8054 Elf_Internal_Shdr *symtab_hdr;
8055 asection *srel;
8056
8057 if (!is_ppc64_elf (ibfd))
8058 continue;
8059
8060 for (s = ibfd->sections; s != NULL; s = s->next)
8061 {
8062 struct ppc_dyn_relocs *p;
8063
8064 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
8065 {
8066 if (!bfd_is_abs_section (p->sec)
8067 && bfd_is_abs_section (p->sec->output_section))
8068 {
8069 /* Input section has been discarded, either because
8070 it is a copy of a linkonce section or due to
8071 linker script /DISCARD/, so we'll be discarding
8072 the relocs too. */
8073 }
8074 else if (p->count != 0)
8075 {
8076 srel = elf_section_data (p->sec)->sreloc;
8077 srel->size += p->count * sizeof (Elf64_External_Rela);
8078 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8079 info->flags |= DF_TEXTREL;
8080 }
8081 }
8082 }
8083
8084 lgot_ents = elf_local_got_ents (ibfd);
8085 if (!lgot_ents)
8086 continue;
8087
8088 symtab_hdr = &elf_symtab_hdr (ibfd);
8089 locsymcount = symtab_hdr->sh_info;
8090 end_lgot_ents = lgot_ents + locsymcount;
8091 lgot_masks = (char *) end_lgot_ents;
8092 s = ppc64_elf_tdata (ibfd)->got;
8093 srel = ppc64_elf_tdata (ibfd)->relgot;
8094 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
8095 {
8096 struct got_entry *ent;
8097
8098 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
8099 if (ent->got.refcount > 0)
8100 {
8101 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
8102 {
8103 ppc64_tlsld_got (ibfd)->refcount += 1;
8104 ent->got.offset = (bfd_vma) -1;
8105 }
8106 else
8107 {
8108 ent->got.offset = s->size;
8109 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
8110 {
8111 s->size += 16;
8112 if (info->shared)
8113 srel->size += 2 * sizeof (Elf64_External_Rela);
8114 }
8115 else
8116 {
8117 s->size += 8;
8118 if (info->shared)
8119 srel->size += sizeof (Elf64_External_Rela);
8120 }
8121 }
8122 }
8123 else
8124 ent->got.offset = (bfd_vma) -1;
8125 }
8126 }
8127
8128 /* Allocate global sym .plt and .got entries, and space for global
8129 sym dynamic relocs. */
8130 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
8131
8132 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8133 {
8134 if (!is_ppc64_elf (ibfd))
8135 continue;
8136
8137 if (ppc64_tlsld_got (ibfd)->refcount > 0)
8138 {
8139 s = ppc64_elf_tdata (ibfd)->got;
8140 ppc64_tlsld_got (ibfd)->offset = s->size;
8141 s->size += 16;
8142 if (info->shared)
8143 {
8144 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
8145 srel->size += sizeof (Elf64_External_Rela);
8146 }
8147 }
8148 else
8149 ppc64_tlsld_got (ibfd)->offset = (bfd_vma) -1;
8150 }
8151
8152 /* We now have determined the sizes of the various dynamic sections.
8153 Allocate memory for them. */
8154 relocs = FALSE;
8155 for (s = dynobj->sections; s != NULL; s = s->next)
8156 {
8157 if ((s->flags & SEC_LINKER_CREATED) == 0)
8158 continue;
8159
8160 if (s == htab->brlt || s == htab->relbrlt)
8161 /* These haven't been allocated yet; don't strip. */
8162 continue;
8163 else if (s == htab->got
8164 || s == htab->plt
8165 || s == htab->glink
8166 || s == htab->dynbss)
8167 {
8168 /* Strip this section if we don't need it; see the
8169 comment below. */
8170 }
8171 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8172 {
8173 if (s->size != 0)
8174 {
8175 if (s != htab->relplt)
8176 relocs = TRUE;
8177
8178 /* We use the reloc_count field as a counter if we need
8179 to copy relocs into the output file. */
8180 s->reloc_count = 0;
8181 }
8182 }
8183 else
8184 {
8185 /* It's not one of our sections, so don't allocate space. */
8186 continue;
8187 }
8188
8189 if (s->size == 0)
8190 {
8191 /* If we don't need this section, strip it from the
8192 output file. This is mostly to handle .rela.bss and
8193 .rela.plt. We must create both sections in
8194 create_dynamic_sections, because they must be created
8195 before the linker maps input sections to output
8196 sections. The linker does that before
8197 adjust_dynamic_symbol is called, and it is that
8198 function which decides whether anything needs to go
8199 into these sections. */
8200 s->flags |= SEC_EXCLUDE;
8201 continue;
8202 }
8203
8204 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8205 continue;
8206
8207 /* Allocate memory for the section contents. We use bfd_zalloc
8208 here in case unused entries are not reclaimed before the
8209 section's contents are written out. This should not happen,
8210 but this way if it does we get a R_PPC64_NONE reloc in .rela
8211 sections instead of garbage.
8212 We also rely on the section contents being zero when writing
8213 the GOT. */
8214 s->contents = bfd_zalloc (dynobj, s->size);
8215 if (s->contents == NULL)
8216 return FALSE;
8217 }
8218
8219 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8220 {
8221 if (!is_ppc64_elf (ibfd))
8222 continue;
8223
8224 s = ppc64_elf_tdata (ibfd)->got;
8225 if (s != NULL && s != htab->got)
8226 {
8227 if (s->size == 0)
8228 s->flags |= SEC_EXCLUDE;
8229 else
8230 {
8231 s->contents = bfd_zalloc (ibfd, s->size);
8232 if (s->contents == NULL)
8233 return FALSE;
8234 }
8235 }
8236 s = ppc64_elf_tdata (ibfd)->relgot;
8237 if (s != NULL)
8238 {
8239 if (s->size == 0)
8240 s->flags |= SEC_EXCLUDE;
8241 else
8242 {
8243 s->contents = bfd_zalloc (ibfd, s->size);
8244 if (s->contents == NULL)
8245 return FALSE;
8246 relocs = TRUE;
8247 s->reloc_count = 0;
8248 }
8249 }
8250 }
8251
8252 if (htab->elf.dynamic_sections_created)
8253 {
8254 /* Add some entries to the .dynamic section. We fill in the
8255 values later, in ppc64_elf_finish_dynamic_sections, but we
8256 must add the entries now so that we get the correct size for
8257 the .dynamic section. The DT_DEBUG entry is filled in by the
8258 dynamic linker and used by the debugger. */
8259 #define add_dynamic_entry(TAG, VAL) \
8260 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8261
8262 if (info->executable)
8263 {
8264 if (!add_dynamic_entry (DT_DEBUG, 0))
8265 return FALSE;
8266 }
8267
8268 if (htab->plt != NULL && htab->plt->size != 0)
8269 {
8270 if (!add_dynamic_entry (DT_PLTGOT, 0)
8271 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8272 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8273 || !add_dynamic_entry (DT_JMPREL, 0)
8274 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
8275 return FALSE;
8276 }
8277
8278 if (NO_OPD_RELOCS)
8279 {
8280 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
8281 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
8282 return FALSE;
8283 }
8284
8285 if (relocs)
8286 {
8287 if (!add_dynamic_entry (DT_RELA, 0)
8288 || !add_dynamic_entry (DT_RELASZ, 0)
8289 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
8290 return FALSE;
8291
8292 /* If any dynamic relocs apply to a read-only section,
8293 then we need a DT_TEXTREL entry. */
8294 if ((info->flags & DF_TEXTREL) == 0)
8295 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
8296
8297 if ((info->flags & DF_TEXTREL) != 0)
8298 {
8299 if (!add_dynamic_entry (DT_TEXTREL, 0))
8300 return FALSE;
8301 }
8302 }
8303 }
8304 #undef add_dynamic_entry
8305
8306 return TRUE;
8307 }
8308
8309 /* Determine the type of stub needed, if any, for a call. */
8310
8311 static inline enum ppc_stub_type
8312 ppc_type_of_stub (asection *input_sec,
8313 const Elf_Internal_Rela *rel,
8314 struct ppc_link_hash_entry **hash,
8315 bfd_vma destination)
8316 {
8317 struct ppc_link_hash_entry *h = *hash;
8318 bfd_vma location;
8319 bfd_vma branch_offset;
8320 bfd_vma max_branch_offset;
8321 enum elf_ppc64_reloc_type r_type;
8322
8323 if (h != NULL)
8324 {
8325 struct ppc_link_hash_entry *fdh = h;
8326 if (fdh->oh != NULL
8327 && fdh->oh->is_func_descriptor)
8328 fdh = fdh->oh;
8329
8330 if (fdh->elf.dynindx != -1)
8331 {
8332 struct plt_entry *ent;
8333
8334 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
8335 if (ent->addend == rel->r_addend
8336 && ent->plt.offset != (bfd_vma) -1)
8337 {
8338 *hash = fdh;
8339 return ppc_stub_plt_call;
8340 }
8341 }
8342
8343 /* Here, we know we don't have a plt entry. If we don't have a
8344 either a defined function descriptor or a defined entry symbol
8345 in a regular object file, then it is pointless trying to make
8346 any other type of stub. */
8347 if (!((fdh->elf.root.type == bfd_link_hash_defined
8348 || fdh->elf.root.type == bfd_link_hash_defweak)
8349 && fdh->elf.root.u.def.section->output_section != NULL)
8350 && !((h->elf.root.type == bfd_link_hash_defined
8351 || h->elf.root.type == bfd_link_hash_defweak)
8352 && h->elf.root.u.def.section->output_section != NULL))
8353 return ppc_stub_none;
8354 }
8355
8356 /* Determine where the call point is. */
8357 location = (input_sec->output_offset
8358 + input_sec->output_section->vma
8359 + rel->r_offset);
8360
8361 branch_offset = destination - location;
8362 r_type = ELF64_R_TYPE (rel->r_info);
8363
8364 /* Determine if a long branch stub is needed. */
8365 max_branch_offset = 1 << 25;
8366 if (r_type != R_PPC64_REL24)
8367 max_branch_offset = 1 << 15;
8368
8369 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
8370 /* We need a stub. Figure out whether a long_branch or plt_branch
8371 is needed later. */
8372 return ppc_stub_long_branch;
8373
8374 return ppc_stub_none;
8375 }
8376
8377 /* Build a .plt call stub. */
8378
8379 static inline bfd_byte *
8380 build_plt_stub (bfd *obfd, bfd_byte *p, int offset, Elf_Internal_Rela *r)
8381 {
8382 #define PPC_LO(v) ((v) & 0xffff)
8383 #define PPC_HI(v) (((v) >> 16) & 0xffff)
8384 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
8385
8386 if (PPC_HA (offset) != 0)
8387 {
8388 if (r != NULL)
8389 {
8390 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
8391 r[1].r_offset = r[0].r_offset + 8;
8392 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
8393 r[1].r_addend = r[0].r_addend;
8394 if (PPC_HA (offset + 16) != PPC_HA (offset))
8395 {
8396 r[2].r_offset = r[1].r_offset + 4;
8397 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
8398 r[2].r_addend = r[0].r_addend;
8399 }
8400 else
8401 {
8402 r[2].r_offset = r[1].r_offset + 8;
8403 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
8404 r[2].r_addend = r[0].r_addend + 8;
8405 r[3].r_offset = r[2].r_offset + 4;
8406 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
8407 r[3].r_addend = r[0].r_addend + 16;
8408 }
8409 }
8410 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
8411 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
8412 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
8413 if (PPC_HA (offset + 16) != PPC_HA (offset))
8414 {
8415 bfd_put_32 (obfd, ADDI_R12_R12 | PPC_LO (offset), p), p += 4;
8416 offset = 0;
8417 }
8418 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
8419 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset + 8), p), p += 4;
8420 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset + 16), p), p += 4;
8421 bfd_put_32 (obfd, BCTR, p), p += 4;
8422 }
8423 else
8424 {
8425 if (r != NULL)
8426 {
8427 r[0].r_offset += 4;
8428 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
8429 if (PPC_HA (offset + 16) != PPC_HA (offset))
8430 {
8431 r[1].r_offset = r[0].r_offset + 4;
8432 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
8433 r[1].r_addend = r[0].r_addend;
8434 }
8435 else
8436 {
8437 r[1].r_offset = r[0].r_offset + 8;
8438 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
8439 r[1].r_addend = r[0].r_addend + 16;
8440 r[2].r_offset = r[1].r_offset + 4;
8441 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
8442 r[2].r_addend = r[0].r_addend + 8;
8443 }
8444 }
8445 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
8446 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset), p), p += 4;
8447 if (PPC_HA (offset + 16) != PPC_HA (offset))
8448 {
8449 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
8450 offset = 0;
8451 }
8452 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
8453 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
8454 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
8455 bfd_put_32 (obfd, BCTR, p), p += 4;
8456 }
8457 return p;
8458 }
8459
8460 static Elf_Internal_Rela *
8461 get_relocs (asection *sec, int count)
8462 {
8463 Elf_Internal_Rela *relocs;
8464 struct bfd_elf_section_data *elfsec_data;
8465
8466 elfsec_data = elf_section_data (sec);
8467 relocs = elfsec_data->relocs;
8468 if (relocs == NULL)
8469 {
8470 bfd_size_type relsize;
8471 relsize = sec->reloc_count * sizeof (*relocs);
8472 relocs = bfd_alloc (sec->owner, relsize);
8473 if (relocs == NULL)
8474 return NULL;
8475 elfsec_data->relocs = relocs;
8476 elfsec_data->rel_hdr.sh_size = (sec->reloc_count
8477 * sizeof (Elf64_External_Rela));
8478 elfsec_data->rel_hdr.sh_entsize = sizeof (Elf64_External_Rela);
8479 sec->reloc_count = 0;
8480 }
8481 relocs += sec->reloc_count;
8482 sec->reloc_count += count;
8483 return relocs;
8484 }
8485
8486 static bfd_boolean
8487 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8488 {
8489 struct ppc_stub_hash_entry *stub_entry;
8490 struct ppc_branch_hash_entry *br_entry;
8491 struct bfd_link_info *info;
8492 struct ppc_link_hash_table *htab;
8493 bfd_byte *loc;
8494 bfd_byte *p;
8495 struct plt_entry *ent;
8496 bfd_vma dest, off;
8497 int size;
8498 Elf_Internal_Rela *r;
8499
8500 /* Massage our args to the form they really have. */
8501 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
8502 info = in_arg;
8503
8504 htab = ppc_hash_table (info);
8505
8506 /* Make a note of the offset within the stubs for this entry. */
8507 stub_entry->stub_offset = stub_entry->stub_sec->size;
8508 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
8509
8510 htab->stub_count[stub_entry->stub_type - 1] += 1;
8511 switch (stub_entry->stub_type)
8512 {
8513 case ppc_stub_long_branch:
8514 case ppc_stub_long_branch_r2off:
8515 /* Branches are relative. This is where we are going to. */
8516 off = dest = (stub_entry->target_value
8517 + stub_entry->target_section->output_offset
8518 + stub_entry->target_section->output_section->vma);
8519
8520 /* And this is where we are coming from. */
8521 off -= (stub_entry->stub_offset
8522 + stub_entry->stub_sec->output_offset
8523 + stub_entry->stub_sec->output_section->vma);
8524
8525 size = 4;
8526 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
8527 {
8528 bfd_vma r2off;
8529
8530 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8531 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8532 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
8533 loc += 4;
8534 size = 12;
8535 if (PPC_HA (r2off) != 0)
8536 {
8537 size = 16;
8538 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
8539 loc += 4;
8540 }
8541 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
8542 loc += 4;
8543 off -= size - 4;
8544 }
8545 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
8546
8547 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
8548 {
8549 (*_bfd_error_handler) (_("long branch stub `%s' offset overflow"),
8550 stub_entry->root.string);
8551 htab->stub_error = TRUE;
8552 return FALSE;
8553 }
8554
8555 if (info->emitrelocations)
8556 {
8557 r = get_relocs (stub_entry->stub_sec, 1);
8558 if (r == NULL)
8559 return FALSE;
8560 r->r_offset = loc - stub_entry->stub_sec->contents;
8561 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
8562 r->r_addend = dest;
8563 if (stub_entry->h != NULL)
8564 {
8565 struct elf_link_hash_entry **hashes;
8566 unsigned long symndx;
8567 struct ppc_link_hash_entry *h;
8568
8569 hashes = elf_sym_hashes (htab->stub_bfd);
8570 if (hashes == NULL)
8571 {
8572 bfd_size_type hsize;
8573
8574 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
8575 hashes = bfd_zalloc (htab->stub_bfd, hsize);
8576 if (hashes == NULL)
8577 return FALSE;
8578 elf_sym_hashes (htab->stub_bfd) = hashes;
8579 htab->stub_globals = 1;
8580 }
8581 symndx = htab->stub_globals++;
8582 h = stub_entry->h;
8583 hashes[symndx] = &h->elf;
8584 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
8585 if (h->oh != NULL && h->oh->is_func)
8586 h = h->oh;
8587 if (h->elf.root.u.def.section != stub_entry->target_section)
8588 /* H is an opd symbol. The addend must be zero. */
8589 r->r_addend = 0;
8590 else
8591 {
8592 off = (h->elf.root.u.def.value
8593 + h->elf.root.u.def.section->output_offset
8594 + h->elf.root.u.def.section->output_section->vma);
8595 r->r_addend -= off;
8596 }
8597 }
8598 }
8599 break;
8600
8601 case ppc_stub_plt_branch:
8602 case ppc_stub_plt_branch_r2off:
8603 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8604 stub_entry->root.string + 9,
8605 FALSE, FALSE);
8606 if (br_entry == NULL)
8607 {
8608 (*_bfd_error_handler) (_("can't find branch stub `%s'"),
8609 stub_entry->root.string);
8610 htab->stub_error = TRUE;
8611 return FALSE;
8612 }
8613
8614 dest = (stub_entry->target_value
8615 + stub_entry->target_section->output_offset
8616 + stub_entry->target_section->output_section->vma);
8617
8618 bfd_put_64 (htab->brlt->owner, dest,
8619 htab->brlt->contents + br_entry->offset);
8620
8621 if (br_entry->iter == htab->stub_iteration)
8622 {
8623 br_entry->iter = 0;
8624
8625 if (htab->relbrlt != NULL)
8626 {
8627 /* Create a reloc for the branch lookup table entry. */
8628 Elf_Internal_Rela rela;
8629 bfd_byte *rl;
8630
8631 rela.r_offset = (br_entry->offset
8632 + htab->brlt->output_offset
8633 + htab->brlt->output_section->vma);
8634 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
8635 rela.r_addend = dest;
8636
8637 rl = htab->relbrlt->contents;
8638 rl += (htab->relbrlt->reloc_count++
8639 * sizeof (Elf64_External_Rela));
8640 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
8641 }
8642 else if (info->emitrelocations)
8643 {
8644 r = get_relocs (htab->brlt, 1);
8645 if (r == NULL)
8646 return FALSE;
8647 /* brlt, being SEC_LINKER_CREATED does not go through the
8648 normal reloc processing. Symbols and offsets are not
8649 translated from input file to output file form, so
8650 set up the offset per the output file. */
8651 r->r_offset = (br_entry->offset
8652 + htab->brlt->output_offset
8653 + htab->brlt->output_section->vma);
8654 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
8655 r->r_addend = dest;
8656 }
8657 }
8658
8659 dest = (br_entry->offset
8660 + htab->brlt->output_offset
8661 + htab->brlt->output_section->vma);
8662
8663 off = (dest
8664 - elf_gp (htab->brlt->output_section->owner)
8665 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8666
8667 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8668 {
8669 (*_bfd_error_handler)
8670 (_("linkage table error against `%s'"),
8671 stub_entry->root.string);
8672 bfd_set_error (bfd_error_bad_value);
8673 htab->stub_error = TRUE;
8674 return FALSE;
8675 }
8676
8677 if (info->emitrelocations)
8678 {
8679 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
8680 if (r == NULL)
8681 return FALSE;
8682 r[0].r_offset = loc - stub_entry->stub_sec->contents;
8683 if (bfd_big_endian (info->output_bfd))
8684 r[0].r_offset += 2;
8685 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
8686 r[0].r_offset += 4;
8687 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
8688 r[0].r_addend = dest;
8689 if (PPC_HA (off) != 0)
8690 {
8691 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
8692 r[1].r_offset = r[0].r_offset + 4;
8693 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
8694 r[1].r_addend = r[0].r_addend;
8695 }
8696 }
8697
8698 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
8699 {
8700 if (PPC_HA (off) != 0)
8701 {
8702 size = 16;
8703 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
8704 loc += 4;
8705 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
8706 }
8707 else
8708 {
8709 size = 12;
8710 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
8711 }
8712 }
8713 else
8714 {
8715 bfd_vma r2off;
8716
8717 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8718 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8719 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
8720 loc += 4;
8721 size = 20;
8722 if (PPC_HA (off) != 0)
8723 {
8724 size += 4;
8725 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
8726 loc += 4;
8727 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
8728 loc += 4;
8729 }
8730 else
8731 {
8732 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
8733 loc += 4;
8734 }
8735
8736 if (PPC_HA (r2off) != 0)
8737 {
8738 size += 4;
8739 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
8740 loc += 4;
8741 }
8742 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
8743 }
8744 loc += 4;
8745 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
8746 loc += 4;
8747 bfd_put_32 (htab->stub_bfd, BCTR, loc);
8748 break;
8749
8750 case ppc_stub_plt_call:
8751 /* Do the best we can for shared libraries built without
8752 exporting ".foo" for each "foo". This can happen when symbol
8753 versioning scripts strip all bar a subset of symbols. */
8754 if (stub_entry->h->oh != NULL
8755 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defined
8756 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defweak)
8757 {
8758 /* Point the symbol at the stub. There may be multiple stubs,
8759 we don't really care; The main thing is to make this sym
8760 defined somewhere. Maybe defining the symbol in the stub
8761 section is a silly idea. If we didn't do this, htab->top_id
8762 could disappear. */
8763 stub_entry->h->oh->elf.root.type = bfd_link_hash_defined;
8764 stub_entry->h->oh->elf.root.u.def.section = stub_entry->stub_sec;
8765 stub_entry->h->oh->elf.root.u.def.value = stub_entry->stub_offset;
8766 }
8767
8768 /* Now build the stub. */
8769 dest = (bfd_vma) -1;
8770 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8771 if (ent->addend == stub_entry->addend)
8772 {
8773 dest = ent->plt.offset;
8774 break;
8775 }
8776 if (dest >= (bfd_vma) -2)
8777 abort ();
8778
8779 dest &= ~ (bfd_vma) 1;
8780 dest += (htab->plt->output_offset
8781 + htab->plt->output_section->vma);
8782
8783 off = (dest
8784 - elf_gp (htab->plt->output_section->owner)
8785 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8786
8787 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8788 {
8789 (*_bfd_error_handler)
8790 (_("linkage table error against `%s'"),
8791 stub_entry->h->elf.root.root.string);
8792 bfd_set_error (bfd_error_bad_value);
8793 htab->stub_error = TRUE;
8794 return FALSE;
8795 }
8796
8797 r = NULL;
8798 if (info->emitrelocations)
8799 {
8800 r = get_relocs (stub_entry->stub_sec,
8801 (2 + (PPC_HA (off) != 0)
8802 + (PPC_HA (off + 16) == PPC_HA (off))));
8803 if (r == NULL)
8804 return FALSE;
8805 r[0].r_offset = loc - stub_entry->stub_sec->contents;
8806 if (bfd_big_endian (info->output_bfd))
8807 r[0].r_offset += 2;
8808 r[0].r_addend = dest;
8809 }
8810 p = build_plt_stub (htab->stub_bfd, loc, off, r);
8811 size = p - loc;
8812 break;
8813
8814 default:
8815 BFD_FAIL ();
8816 return FALSE;
8817 }
8818
8819 stub_entry->stub_sec->size += size;
8820
8821 if (htab->emit_stub_syms)
8822 {
8823 struct elf_link_hash_entry *h;
8824 size_t len1, len2;
8825 char *name;
8826 const char *const stub_str[] = { "long_branch",
8827 "long_branch_r2off",
8828 "plt_branch",
8829 "plt_branch_r2off",
8830 "plt_call" };
8831
8832 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
8833 len2 = strlen (stub_entry->root.string);
8834 name = bfd_malloc (len1 + len2 + 2);
8835 if (name == NULL)
8836 return FALSE;
8837 memcpy (name, stub_entry->root.string, 9);
8838 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
8839 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
8840 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
8841 if (h == NULL)
8842 return FALSE;
8843 if (h->root.type == bfd_link_hash_new)
8844 {
8845 h->root.type = bfd_link_hash_defined;
8846 h->root.u.def.section = stub_entry->stub_sec;
8847 h->root.u.def.value = stub_entry->stub_offset;
8848 h->ref_regular = 1;
8849 h->def_regular = 1;
8850 h->ref_regular_nonweak = 1;
8851 h->forced_local = 1;
8852 h->non_elf = 0;
8853 }
8854 }
8855
8856 return TRUE;
8857 }
8858
8859 /* As above, but don't actually build the stub. Just bump offset so
8860 we know stub section sizes, and select plt_branch stubs where
8861 long_branch stubs won't do. */
8862
8863 static bfd_boolean
8864 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8865 {
8866 struct ppc_stub_hash_entry *stub_entry;
8867 struct bfd_link_info *info;
8868 struct ppc_link_hash_table *htab;
8869 bfd_vma off;
8870 int size;
8871
8872 /* Massage our args to the form they really have. */
8873 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
8874 info = in_arg;
8875
8876 htab = ppc_hash_table (info);
8877
8878 if (stub_entry->stub_type == ppc_stub_plt_call)
8879 {
8880 struct plt_entry *ent;
8881 off = (bfd_vma) -1;
8882 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8883 if (ent->addend == stub_entry->addend)
8884 {
8885 off = ent->plt.offset & ~(bfd_vma) 1;
8886 break;
8887 }
8888 if (off >= (bfd_vma) -2)
8889 abort ();
8890 off += (htab->plt->output_offset
8891 + htab->plt->output_section->vma
8892 - elf_gp (htab->plt->output_section->owner)
8893 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8894
8895 size = PLT_CALL_STUB_SIZE;
8896 if (PPC_HA (off) == 0)
8897 size -= 4;
8898 if (PPC_HA (off + 16) != PPC_HA (off))
8899 size += 4;
8900 if (info->emitrelocations)
8901 {
8902 stub_entry->stub_sec->reloc_count
8903 += 2 + (PPC_HA (off) != 0) + (PPC_HA (off + 16) == PPC_HA (off));
8904 stub_entry->stub_sec->flags |= SEC_RELOC;
8905 }
8906 }
8907 else
8908 {
8909 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
8910 variants. */
8911 bfd_vma r2off = 0;
8912
8913 off = (stub_entry->target_value
8914 + stub_entry->target_section->output_offset
8915 + stub_entry->target_section->output_section->vma);
8916 off -= (stub_entry->stub_sec->size
8917 + stub_entry->stub_sec->output_offset
8918 + stub_entry->stub_sec->output_section->vma);
8919
8920 /* Reset the stub type from the plt variant in case we now
8921 can reach with a shorter stub. */
8922 if (stub_entry->stub_type >= ppc_stub_plt_branch)
8923 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
8924
8925 size = 4;
8926 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
8927 {
8928 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8929 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8930 size = 12;
8931 if (PPC_HA (r2off) != 0)
8932 size = 16;
8933 off -= size - 4;
8934 }
8935
8936 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
8937 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
8938 {
8939 struct ppc_branch_hash_entry *br_entry;
8940
8941 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8942 stub_entry->root.string + 9,
8943 TRUE, FALSE);
8944 if (br_entry == NULL)
8945 {
8946 (*_bfd_error_handler) (_("can't build branch stub `%s'"),
8947 stub_entry->root.string);
8948 htab->stub_error = TRUE;
8949 return FALSE;
8950 }
8951
8952 if (br_entry->iter != htab->stub_iteration)
8953 {
8954 br_entry->iter = htab->stub_iteration;
8955 br_entry->offset = htab->brlt->size;
8956 htab->brlt->size += 8;
8957
8958 if (htab->relbrlt != NULL)
8959 htab->relbrlt->size += sizeof (Elf64_External_Rela);
8960 else if (info->emitrelocations)
8961 {
8962 htab->brlt->reloc_count += 1;
8963 htab->brlt->flags |= SEC_RELOC;
8964 }
8965 }
8966
8967 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
8968 off = (br_entry->offset
8969 + htab->brlt->output_offset
8970 + htab->brlt->output_section->vma
8971 - elf_gp (htab->brlt->output_section->owner)
8972 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8973
8974 if (info->emitrelocations)
8975 {
8976 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
8977 stub_entry->stub_sec->flags |= SEC_RELOC;
8978 }
8979
8980 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
8981 {
8982 size = 12;
8983 if (PPC_HA (off) != 0)
8984 size = 16;
8985 }
8986 else
8987 {
8988 size = 20;
8989 if (PPC_HA (off) != 0)
8990 size += 4;
8991
8992 if (PPC_HA (r2off) != 0)
8993 size += 4;
8994 }
8995 }
8996 else if (info->emitrelocations)
8997 {
8998 stub_entry->stub_sec->reloc_count += 1;
8999 stub_entry->stub_sec->flags |= SEC_RELOC;
9000 }
9001 }
9002
9003 stub_entry->stub_sec->size += size;
9004 return TRUE;
9005 }
9006
9007 /* Set up various things so that we can make a list of input sections
9008 for each output section included in the link. Returns -1 on error,
9009 0 when no stubs will be needed, and 1 on success. */
9010
9011 int
9012 ppc64_elf_setup_section_lists (bfd *output_bfd,
9013 struct bfd_link_info *info,
9014 int no_multi_toc)
9015 {
9016 bfd *input_bfd;
9017 int top_id, top_index, id;
9018 asection *section;
9019 asection **input_list;
9020 bfd_size_type amt;
9021 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9022
9023 htab->no_multi_toc = no_multi_toc;
9024
9025 if (htab->brlt == NULL)
9026 return 0;
9027
9028 /* Find the top input section id. */
9029 for (input_bfd = info->input_bfds, top_id = 3;
9030 input_bfd != NULL;
9031 input_bfd = input_bfd->link_next)
9032 {
9033 for (section = input_bfd->sections;
9034 section != NULL;
9035 section = section->next)
9036 {
9037 if (top_id < section->id)
9038 top_id = section->id;
9039 }
9040 }
9041
9042 htab->top_id = top_id;
9043 amt = sizeof (struct map_stub) * (top_id + 1);
9044 htab->stub_group = bfd_zmalloc (amt);
9045 if (htab->stub_group == NULL)
9046 return -1;
9047
9048 /* Set toc_off for com, und, abs and ind sections. */
9049 for (id = 0; id < 3; id++)
9050 htab->stub_group[id].toc_off = TOC_BASE_OFF;
9051
9052 elf_gp (output_bfd) = htab->toc_curr = ppc64_elf_toc (output_bfd);
9053
9054 /* We can't use output_bfd->section_count here to find the top output
9055 section index as some sections may have been removed, and
9056 strip_excluded_output_sections doesn't renumber the indices. */
9057 for (section = output_bfd->sections, top_index = 0;
9058 section != NULL;
9059 section = section->next)
9060 {
9061 if (top_index < section->index)
9062 top_index = section->index;
9063 }
9064
9065 htab->top_index = top_index;
9066 amt = sizeof (asection *) * (top_index + 1);
9067 input_list = bfd_zmalloc (amt);
9068 htab->input_list = input_list;
9069 if (input_list == NULL)
9070 return -1;
9071
9072 return 1;
9073 }
9074
9075 /* The linker repeatedly calls this function for each TOC input section
9076 and linker generated GOT section. Group input bfds such that the toc
9077 within a group is less than 64k in size. Will break with cute linker
9078 scripts that play games with dot in the output toc section. */
9079
9080 void
9081 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
9082 {
9083 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9084
9085 if (!htab->no_multi_toc)
9086 {
9087 bfd_vma addr = isec->output_offset + isec->output_section->vma;
9088 bfd_vma off = addr - htab->toc_curr;
9089
9090 if (off + isec->size > 0x10000)
9091 htab->toc_curr = addr;
9092
9093 elf_gp (isec->owner) = (htab->toc_curr
9094 - elf_gp (isec->output_section->owner)
9095 + TOC_BASE_OFF);
9096 }
9097 }
9098
9099 /* Called after the last call to the above function. */
9100
9101 void
9102 ppc64_elf_reinit_toc (bfd *output_bfd, struct bfd_link_info *info)
9103 {
9104 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9105
9106 htab->multi_toc_needed = htab->toc_curr != elf_gp (output_bfd);
9107
9108 /* toc_curr tracks the TOC offset used for code sections below in
9109 ppc64_elf_next_input_section. Start off at 0x8000. */
9110 htab->toc_curr = TOC_BASE_OFF;
9111 }
9112
9113 /* No toc references were found in ISEC. If the code in ISEC makes no
9114 calls, then there's no need to use toc adjusting stubs when branching
9115 into ISEC. Actually, indirect calls from ISEC are OK as they will
9116 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
9117 needed, and 2 if a cyclical call-graph was found but no other reason
9118 for a stub was detected. If called from the top level, a return of
9119 2 means the same as a return of 0. */
9120
9121 static int
9122 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
9123 {
9124 Elf_Internal_Rela *relstart, *rel;
9125 Elf_Internal_Sym *local_syms;
9126 int ret;
9127 struct ppc_link_hash_table *htab;
9128
9129 /* We know none of our code bearing sections will need toc stubs. */
9130 if ((isec->flags & SEC_LINKER_CREATED) != 0)
9131 return 0;
9132
9133 if (isec->size == 0)
9134 return 0;
9135
9136 if (isec->output_section == NULL)
9137 return 0;
9138
9139 if (isec->reloc_count == 0)
9140 return 0;
9141
9142 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
9143 info->keep_memory);
9144 if (relstart == NULL)
9145 return -1;
9146
9147 /* Look for branches to outside of this section. */
9148 local_syms = NULL;
9149 ret = 0;
9150 htab = ppc_hash_table (info);
9151 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
9152 {
9153 enum elf_ppc64_reloc_type r_type;
9154 unsigned long r_symndx;
9155 struct elf_link_hash_entry *h;
9156 struct ppc_link_hash_entry *eh;
9157 Elf_Internal_Sym *sym;
9158 asection *sym_sec;
9159 struct _opd_sec_data *opd;
9160 bfd_vma sym_value;
9161 bfd_vma dest;
9162
9163 r_type = ELF64_R_TYPE (rel->r_info);
9164 if (r_type != R_PPC64_REL24
9165 && r_type != R_PPC64_REL14
9166 && r_type != R_PPC64_REL14_BRTAKEN
9167 && r_type != R_PPC64_REL14_BRNTAKEN)
9168 continue;
9169
9170 r_symndx = ELF64_R_SYM (rel->r_info);
9171 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
9172 isec->owner))
9173 {
9174 ret = -1;
9175 break;
9176 }
9177
9178 /* Calls to dynamic lib functions go through a plt call stub
9179 that uses r2. */
9180 eh = (struct ppc_link_hash_entry *) h;
9181 if (eh != NULL
9182 && (eh->elf.plt.plist != NULL
9183 || (eh->oh != NULL
9184 && eh->oh->elf.plt.plist != NULL)))
9185 {
9186 ret = 1;
9187 break;
9188 }
9189
9190 if (sym_sec == NULL)
9191 /* Ignore other undefined symbols. */
9192 continue;
9193
9194 /* Assume branches to other sections not included in the link need
9195 stubs too, to cover -R and absolute syms. */
9196 if (sym_sec->output_section == NULL)
9197 {
9198 ret = 1;
9199 break;
9200 }
9201
9202 if (h == NULL)
9203 sym_value = sym->st_value;
9204 else
9205 {
9206 if (h->root.type != bfd_link_hash_defined
9207 && h->root.type != bfd_link_hash_defweak)
9208 abort ();
9209 sym_value = h->root.u.def.value;
9210 }
9211 sym_value += rel->r_addend;
9212
9213 /* If this branch reloc uses an opd sym, find the code section. */
9214 opd = get_opd_info (sym_sec);
9215 if (opd != NULL)
9216 {
9217 if (h == NULL && opd->adjust != NULL)
9218 {
9219 long adjust;
9220
9221 adjust = opd->adjust[sym->st_value / 8];
9222 if (adjust == -1)
9223 /* Assume deleted functions won't ever be called. */
9224 continue;
9225 sym_value += adjust;
9226 }
9227
9228 dest = opd_entry_value (sym_sec, sym_value, &sym_sec, NULL);
9229 if (dest == (bfd_vma) -1)
9230 continue;
9231 }
9232 else
9233 dest = (sym_value
9234 + sym_sec->output_offset
9235 + sym_sec->output_section->vma);
9236
9237 /* Ignore branch to self. */
9238 if (sym_sec == isec)
9239 continue;
9240
9241 /* If the called function uses the toc, we need a stub. */
9242 if (sym_sec->has_toc_reloc
9243 || sym_sec->makes_toc_func_call)
9244 {
9245 ret = 1;
9246 break;
9247 }
9248
9249 /* Assume any branch that needs a long branch stub might in fact
9250 need a plt_branch stub. A plt_branch stub uses r2. */
9251 else if (dest - (isec->output_offset
9252 + isec->output_section->vma
9253 + rel->r_offset) + (1 << 25) >= (2 << 25))
9254 {
9255 ret = 1;
9256 break;
9257 }
9258
9259 /* If calling back to a section in the process of being tested, we
9260 can't say for sure that no toc adjusting stubs are needed, so
9261 don't return zero. */
9262 else if (sym_sec->call_check_in_progress)
9263 ret = 2;
9264
9265 /* Branches to another section that itself doesn't have any TOC
9266 references are OK. Recursively call ourselves to check. */
9267 else if (sym_sec->id <= htab->top_id
9268 && htab->stub_group[sym_sec->id].toc_off == 0)
9269 {
9270 int recur;
9271
9272 /* Mark current section as indeterminate, so that other
9273 sections that call back to current won't be marked as
9274 known. */
9275 isec->call_check_in_progress = 1;
9276 recur = toc_adjusting_stub_needed (info, sym_sec);
9277 isec->call_check_in_progress = 0;
9278
9279 if (recur < 0)
9280 {
9281 /* An error. Exit. */
9282 ret = -1;
9283 break;
9284 }
9285 else if (recur <= 1)
9286 {
9287 /* Known result. Mark as checked and set section flag. */
9288 htab->stub_group[sym_sec->id].toc_off = 1;
9289 if (recur != 0)
9290 {
9291 sym_sec->makes_toc_func_call = 1;
9292 ret = 1;
9293 break;
9294 }
9295 }
9296 else
9297 {
9298 /* Unknown result. Continue checking. */
9299 ret = 2;
9300 }
9301 }
9302 }
9303
9304 if (local_syms != NULL
9305 && (elf_symtab_hdr (isec->owner).contents != (unsigned char *) local_syms))
9306 free (local_syms);
9307 if (elf_section_data (isec)->relocs != relstart)
9308 free (relstart);
9309
9310 return ret;
9311 }
9312
9313 /* The linker repeatedly calls this function for each input section,
9314 in the order that input sections are linked into output sections.
9315 Build lists of input sections to determine groupings between which
9316 we may insert linker stubs. */
9317
9318 bfd_boolean
9319 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
9320 {
9321 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9322
9323 if ((isec->output_section->flags & SEC_CODE) != 0
9324 && isec->output_section->index <= htab->top_index)
9325 {
9326 asection **list = htab->input_list + isec->output_section->index;
9327 /* Steal the link_sec pointer for our list. */
9328 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
9329 /* This happens to make the list in reverse order,
9330 which is what we want. */
9331 PREV_SEC (isec) = *list;
9332 *list = isec;
9333 }
9334
9335 if (htab->multi_toc_needed)
9336 {
9337 /* If a code section has a function that uses the TOC then we need
9338 to use the right TOC (obviously). Also, make sure that .opd gets
9339 the correct TOC value for R_PPC64_TOC relocs that don't have or
9340 can't find their function symbol (shouldn't ever happen now).
9341 Also specially treat .fixup for the linux kernel. .fixup
9342 contains branches, but only back to the function that hit an
9343 exception. */
9344 if (isec->has_toc_reloc
9345 || (isec->flags & SEC_CODE) == 0
9346 || strcmp (isec->name, ".fixup") == 0)
9347 {
9348 if (elf_gp (isec->owner) != 0)
9349 htab->toc_curr = elf_gp (isec->owner);
9350 }
9351 else if (htab->stub_group[isec->id].toc_off == 0)
9352 {
9353 int ret = toc_adjusting_stub_needed (info, isec);
9354 if (ret < 0)
9355 return FALSE;
9356 else
9357 isec->makes_toc_func_call = ret & 1;
9358 }
9359 }
9360
9361 /* Functions that don't use the TOC can belong in any TOC group.
9362 Use the last TOC base. This happens to make _init and _fini
9363 pasting work. */
9364 htab->stub_group[isec->id].toc_off = htab->toc_curr;
9365 return TRUE;
9366 }
9367
9368 /* See whether we can group stub sections together. Grouping stub
9369 sections may result in fewer stubs. More importantly, we need to
9370 put all .init* and .fini* stubs at the beginning of the .init or
9371 .fini output sections respectively, because glibc splits the
9372 _init and _fini functions into multiple parts. Putting a stub in
9373 the middle of a function is not a good idea. */
9374
9375 static void
9376 group_sections (struct ppc_link_hash_table *htab,
9377 bfd_size_type stub_group_size,
9378 bfd_boolean stubs_always_before_branch)
9379 {
9380 asection **list;
9381 bfd_size_type stub14_group_size;
9382 bfd_boolean suppress_size_errors;
9383
9384 suppress_size_errors = FALSE;
9385 stub14_group_size = stub_group_size;
9386 if (stub_group_size == 1)
9387 {
9388 /* Default values. */
9389 if (stubs_always_before_branch)
9390 {
9391 stub_group_size = 0x1e00000;
9392 stub14_group_size = 0x7800;
9393 }
9394 else
9395 {
9396 stub_group_size = 0x1c00000;
9397 stub14_group_size = 0x7000;
9398 }
9399 suppress_size_errors = TRUE;
9400 }
9401
9402 list = htab->input_list + htab->top_index;
9403 do
9404 {
9405 asection *tail = *list;
9406 while (tail != NULL)
9407 {
9408 asection *curr;
9409 asection *prev;
9410 bfd_size_type total;
9411 bfd_boolean big_sec;
9412 bfd_vma curr_toc;
9413
9414 curr = tail;
9415 total = tail->size;
9416 big_sec = total > (ppc64_elf_section_data (tail)->has_14bit_branch
9417 ? stub14_group_size : stub_group_size);
9418 if (big_sec && !suppress_size_errors)
9419 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
9420 tail->owner, tail);
9421 curr_toc = htab->stub_group[tail->id].toc_off;
9422
9423 while ((prev = PREV_SEC (curr)) != NULL
9424 && ((total += curr->output_offset - prev->output_offset)
9425 < (ppc64_elf_section_data (prev)->has_14bit_branch
9426 ? stub14_group_size : stub_group_size))
9427 && htab->stub_group[prev->id].toc_off == curr_toc)
9428 curr = prev;
9429
9430 /* OK, the size from the start of CURR to the end is less
9431 than stub_group_size and thus can be handled by one stub
9432 section. (or the tail section is itself larger than
9433 stub_group_size, in which case we may be toast.) We
9434 should really be keeping track of the total size of stubs
9435 added here, as stubs contribute to the final output
9436 section size. That's a little tricky, and this way will
9437 only break if stubs added make the total size more than
9438 2^25, ie. for the default stub_group_size, if stubs total
9439 more than 2097152 bytes, or nearly 75000 plt call stubs. */
9440 do
9441 {
9442 prev = PREV_SEC (tail);
9443 /* Set up this stub group. */
9444 htab->stub_group[tail->id].link_sec = curr;
9445 }
9446 while (tail != curr && (tail = prev) != NULL);
9447
9448 /* But wait, there's more! Input sections up to stub_group_size
9449 bytes before the stub section can be handled by it too.
9450 Don't do this if we have a really large section after the
9451 stubs, as adding more stubs increases the chance that
9452 branches may not reach into the stub section. */
9453 if (!stubs_always_before_branch && !big_sec)
9454 {
9455 total = 0;
9456 while (prev != NULL
9457 && ((total += tail->output_offset - prev->output_offset)
9458 < (ppc64_elf_section_data (prev)->has_14bit_branch
9459 ? stub14_group_size : stub_group_size))
9460 && htab->stub_group[prev->id].toc_off == curr_toc)
9461 {
9462 tail = prev;
9463 prev = PREV_SEC (tail);
9464 htab->stub_group[tail->id].link_sec = curr;
9465 }
9466 }
9467 tail = prev;
9468 }
9469 }
9470 while (list-- != htab->input_list);
9471 free (htab->input_list);
9472 #undef PREV_SEC
9473 }
9474
9475 /* Determine and set the size of the stub section for a final link.
9476
9477 The basic idea here is to examine all the relocations looking for
9478 PC-relative calls to a target that is unreachable with a "bl"
9479 instruction. */
9480
9481 bfd_boolean
9482 ppc64_elf_size_stubs (bfd *output_bfd,
9483 struct bfd_link_info *info,
9484 bfd_signed_vma group_size,
9485 asection *(*add_stub_section) (const char *, asection *),
9486 void (*layout_sections_again) (void))
9487 {
9488 bfd_size_type stub_group_size;
9489 bfd_boolean stubs_always_before_branch;
9490 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9491
9492 /* Stash our params away. */
9493 htab->add_stub_section = add_stub_section;
9494 htab->layout_sections_again = layout_sections_again;
9495 stubs_always_before_branch = group_size < 0;
9496 if (group_size < 0)
9497 stub_group_size = -group_size;
9498 else
9499 stub_group_size = group_size;
9500
9501 group_sections (htab, stub_group_size, stubs_always_before_branch);
9502
9503 while (1)
9504 {
9505 bfd *input_bfd;
9506 unsigned int bfd_indx;
9507 asection *stub_sec;
9508
9509 htab->stub_iteration += 1;
9510
9511 for (input_bfd = info->input_bfds, bfd_indx = 0;
9512 input_bfd != NULL;
9513 input_bfd = input_bfd->link_next, bfd_indx++)
9514 {
9515 Elf_Internal_Shdr *symtab_hdr;
9516 asection *section;
9517 Elf_Internal_Sym *local_syms = NULL;
9518
9519 if (!is_ppc64_elf (input_bfd))
9520 continue;
9521
9522 /* We'll need the symbol table in a second. */
9523 symtab_hdr = &elf_symtab_hdr (input_bfd);
9524 if (symtab_hdr->sh_info == 0)
9525 continue;
9526
9527 /* Walk over each section attached to the input bfd. */
9528 for (section = input_bfd->sections;
9529 section != NULL;
9530 section = section->next)
9531 {
9532 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
9533
9534 /* If there aren't any relocs, then there's nothing more
9535 to do. */
9536 if ((section->flags & SEC_RELOC) == 0
9537 || (section->flags & SEC_ALLOC) == 0
9538 || (section->flags & SEC_LOAD) == 0
9539 || (section->flags & SEC_CODE) == 0
9540 || section->reloc_count == 0)
9541 continue;
9542
9543 /* If this section is a link-once section that will be
9544 discarded, then don't create any stubs. */
9545 if (section->output_section == NULL
9546 || section->output_section->owner != output_bfd)
9547 continue;
9548
9549 /* Get the relocs. */
9550 internal_relocs
9551 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
9552 info->keep_memory);
9553 if (internal_relocs == NULL)
9554 goto error_ret_free_local;
9555
9556 /* Now examine each relocation. */
9557 irela = internal_relocs;
9558 irelaend = irela + section->reloc_count;
9559 for (; irela < irelaend; irela++)
9560 {
9561 enum elf_ppc64_reloc_type r_type;
9562 unsigned int r_indx;
9563 enum ppc_stub_type stub_type;
9564 struct ppc_stub_hash_entry *stub_entry;
9565 asection *sym_sec, *code_sec;
9566 bfd_vma sym_value;
9567 bfd_vma destination;
9568 bfd_boolean ok_dest;
9569 struct ppc_link_hash_entry *hash;
9570 struct ppc_link_hash_entry *fdh;
9571 struct elf_link_hash_entry *h;
9572 Elf_Internal_Sym *sym;
9573 char *stub_name;
9574 const asection *id_sec;
9575 struct _opd_sec_data *opd;
9576
9577 r_type = ELF64_R_TYPE (irela->r_info);
9578 r_indx = ELF64_R_SYM (irela->r_info);
9579
9580 if (r_type >= R_PPC64_max)
9581 {
9582 bfd_set_error (bfd_error_bad_value);
9583 goto error_ret_free_internal;
9584 }
9585
9586 /* Only look for stubs on branch instructions. */
9587 if (r_type != R_PPC64_REL24
9588 && r_type != R_PPC64_REL14
9589 && r_type != R_PPC64_REL14_BRTAKEN
9590 && r_type != R_PPC64_REL14_BRNTAKEN)
9591 continue;
9592
9593 /* Now determine the call target, its name, value,
9594 section. */
9595 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9596 r_indx, input_bfd))
9597 goto error_ret_free_internal;
9598 hash = (struct ppc_link_hash_entry *) h;
9599
9600 ok_dest = FALSE;
9601 fdh = NULL;
9602 sym_value = 0;
9603 if (hash == NULL)
9604 {
9605 sym_value = sym->st_value;
9606 ok_dest = TRUE;
9607 }
9608 else if (hash->elf.root.type == bfd_link_hash_defined
9609 || hash->elf.root.type == bfd_link_hash_defweak)
9610 {
9611 sym_value = hash->elf.root.u.def.value;
9612 if (sym_sec->output_section != NULL)
9613 ok_dest = TRUE;
9614 }
9615 else if (hash->elf.root.type == bfd_link_hash_undefweak
9616 || hash->elf.root.type == bfd_link_hash_undefined)
9617 {
9618 /* Recognise an old ABI func code entry sym, and
9619 use the func descriptor sym instead if it is
9620 defined. */
9621 if (hash->elf.root.root.string[0] == '.'
9622 && (fdh = get_fdh (hash, htab)) != NULL)
9623 {
9624 if (fdh->elf.root.type == bfd_link_hash_defined
9625 || fdh->elf.root.type == bfd_link_hash_defweak)
9626 {
9627 sym_sec = fdh->elf.root.u.def.section;
9628 sym_value = fdh->elf.root.u.def.value;
9629 if (sym_sec->output_section != NULL)
9630 ok_dest = TRUE;
9631 }
9632 else
9633 fdh = NULL;
9634 }
9635 }
9636 else
9637 {
9638 bfd_set_error (bfd_error_bad_value);
9639 goto error_ret_free_internal;
9640 }
9641
9642 destination = 0;
9643 if (ok_dest)
9644 {
9645 sym_value += irela->r_addend;
9646 destination = (sym_value
9647 + sym_sec->output_offset
9648 + sym_sec->output_section->vma);
9649 }
9650
9651 code_sec = sym_sec;
9652 opd = get_opd_info (sym_sec);
9653 if (opd != NULL)
9654 {
9655 bfd_vma dest;
9656
9657 if (hash == NULL && opd->adjust != NULL)
9658 {
9659 long adjust = opd->adjust[sym_value / 8];
9660 if (adjust == -1)
9661 continue;
9662 sym_value += adjust;
9663 }
9664 dest = opd_entry_value (sym_sec, sym_value,
9665 &code_sec, &sym_value);
9666 if (dest != (bfd_vma) -1)
9667 {
9668 destination = dest;
9669 if (fdh != NULL)
9670 {
9671 /* Fixup old ABI sym to point at code
9672 entry. */
9673 hash->elf.root.type = bfd_link_hash_defweak;
9674 hash->elf.root.u.def.section = code_sec;
9675 hash->elf.root.u.def.value = sym_value;
9676 }
9677 }
9678 }
9679
9680 /* Determine what (if any) linker stub is needed. */
9681 stub_type = ppc_type_of_stub (section, irela, &hash,
9682 destination);
9683
9684 if (stub_type != ppc_stub_plt_call)
9685 {
9686 /* Check whether we need a TOC adjusting stub.
9687 Since the linker pastes together pieces from
9688 different object files when creating the
9689 _init and _fini functions, it may be that a
9690 call to what looks like a local sym is in
9691 fact a call needing a TOC adjustment. */
9692 if (code_sec != NULL
9693 && code_sec->output_section != NULL
9694 && (htab->stub_group[code_sec->id].toc_off
9695 != htab->stub_group[section->id].toc_off)
9696 && (code_sec->has_toc_reloc
9697 || code_sec->makes_toc_func_call))
9698 stub_type = ppc_stub_long_branch_r2off;
9699 }
9700
9701 if (stub_type == ppc_stub_none)
9702 continue;
9703
9704 /* __tls_get_addr calls might be eliminated. */
9705 if (stub_type != ppc_stub_plt_call
9706 && hash != NULL
9707 && (hash == htab->tls_get_addr
9708 || hash == htab->tls_get_addr_fd)
9709 && section->has_tls_reloc
9710 && irela != internal_relocs)
9711 {
9712 /* Get tls info. */
9713 char *tls_mask;
9714
9715 if (!get_tls_mask (&tls_mask, NULL, &local_syms,
9716 irela - 1, input_bfd))
9717 goto error_ret_free_internal;
9718 if (*tls_mask != 0)
9719 continue;
9720 }
9721
9722 /* Support for grouping stub sections. */
9723 id_sec = htab->stub_group[section->id].link_sec;
9724
9725 /* Get the name of this stub. */
9726 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
9727 if (!stub_name)
9728 goto error_ret_free_internal;
9729
9730 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
9731 stub_name, FALSE, FALSE);
9732 if (stub_entry != NULL)
9733 {
9734 /* The proper stub has already been created. */
9735 free (stub_name);
9736 continue;
9737 }
9738
9739 stub_entry = ppc_add_stub (stub_name, section, htab);
9740 if (stub_entry == NULL)
9741 {
9742 free (stub_name);
9743 error_ret_free_internal:
9744 if (elf_section_data (section)->relocs == NULL)
9745 free (internal_relocs);
9746 error_ret_free_local:
9747 if (local_syms != NULL
9748 && (symtab_hdr->contents
9749 != (unsigned char *) local_syms))
9750 free (local_syms);
9751 return FALSE;
9752 }
9753
9754 stub_entry->stub_type = stub_type;
9755 stub_entry->target_value = sym_value;
9756 stub_entry->target_section = code_sec;
9757 stub_entry->h = hash;
9758 stub_entry->addend = irela->r_addend;
9759
9760 if (stub_entry->h != NULL)
9761 htab->stub_globals += 1;
9762 }
9763
9764 /* We're done with the internal relocs, free them. */
9765 if (elf_section_data (section)->relocs != internal_relocs)
9766 free (internal_relocs);
9767 }
9768
9769 if (local_syms != NULL
9770 && symtab_hdr->contents != (unsigned char *) local_syms)
9771 {
9772 if (!info->keep_memory)
9773 free (local_syms);
9774 else
9775 symtab_hdr->contents = (unsigned char *) local_syms;
9776 }
9777 }
9778
9779 /* We may have added some stubs. Find out the new size of the
9780 stub sections. */
9781 for (stub_sec = htab->stub_bfd->sections;
9782 stub_sec != NULL;
9783 stub_sec = stub_sec->next)
9784 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9785 {
9786 stub_sec->rawsize = stub_sec->size;
9787 stub_sec->size = 0;
9788 stub_sec->reloc_count = 0;
9789 stub_sec->flags &= ~SEC_RELOC;
9790 }
9791
9792 htab->brlt->size = 0;
9793 htab->brlt->reloc_count = 0;
9794 htab->brlt->flags &= ~SEC_RELOC;
9795 if (htab->relbrlt != NULL)
9796 htab->relbrlt->size = 0;
9797
9798 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
9799
9800 if (info->emitrelocations
9801 && htab->glink != NULL && htab->glink->size != 0)
9802 {
9803 htab->glink->reloc_count = 1;
9804 htab->glink->flags |= SEC_RELOC;
9805 }
9806
9807 for (stub_sec = htab->stub_bfd->sections;
9808 stub_sec != NULL;
9809 stub_sec = stub_sec->next)
9810 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
9811 && stub_sec->rawsize != stub_sec->size)
9812 break;
9813
9814 /* Exit from this loop when no stubs have been added, and no stubs
9815 have changed size. */
9816 if (stub_sec == NULL)
9817 break;
9818
9819 /* Ask the linker to do its stuff. */
9820 (*htab->layout_sections_again) ();
9821 }
9822
9823 /* It would be nice to strip htab->brlt from the output if the
9824 section is empty, but it's too late. If we strip sections here,
9825 the dynamic symbol table is corrupted since the section symbol
9826 for the stripped section isn't written. */
9827
9828 return TRUE;
9829 }
9830
9831 /* Called after we have determined section placement. If sections
9832 move, we'll be called again. Provide a value for TOCstart. */
9833
9834 bfd_vma
9835 ppc64_elf_toc (bfd *obfd)
9836 {
9837 asection *s;
9838 bfd_vma TOCstart;
9839
9840 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
9841 order. The TOC starts where the first of these sections starts. */
9842 s = bfd_get_section_by_name (obfd, ".got");
9843 if (s == NULL)
9844 s = bfd_get_section_by_name (obfd, ".toc");
9845 if (s == NULL)
9846 s = bfd_get_section_by_name (obfd, ".tocbss");
9847 if (s == NULL)
9848 s = bfd_get_section_by_name (obfd, ".plt");
9849 if (s == NULL)
9850 {
9851 /* This may happen for
9852 o references to TOC base (SYM@toc / TOC[tc0]) without a
9853 .toc directive
9854 o bad linker script
9855 o --gc-sections and empty TOC sections
9856
9857 FIXME: Warn user? */
9858
9859 /* Look for a likely section. We probably won't even be
9860 using TOCstart. */
9861 for (s = obfd->sections; s != NULL; s = s->next)
9862 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY))
9863 == (SEC_ALLOC | SEC_SMALL_DATA))
9864 break;
9865 if (s == NULL)
9866 for (s = obfd->sections; s != NULL; s = s->next)
9867 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA))
9868 == (SEC_ALLOC | SEC_SMALL_DATA))
9869 break;
9870 if (s == NULL)
9871 for (s = obfd->sections; s != NULL; s = s->next)
9872 if ((s->flags & (SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
9873 break;
9874 if (s == NULL)
9875 for (s = obfd->sections; s != NULL; s = s->next)
9876 if ((s->flags & SEC_ALLOC) == SEC_ALLOC)
9877 break;
9878 }
9879
9880 TOCstart = 0;
9881 if (s != NULL)
9882 TOCstart = s->output_section->vma + s->output_offset;
9883
9884 return TOCstart;
9885 }
9886
9887 /* Build all the stubs associated with the current output file.
9888 The stubs are kept in a hash table attached to the main linker
9889 hash table. This function is called via gldelf64ppc_finish. */
9890
9891 bfd_boolean
9892 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
9893 struct bfd_link_info *info,
9894 char **stats)
9895 {
9896 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9897 asection *stub_sec;
9898 bfd_byte *p;
9899 int stub_sec_count = 0;
9900
9901 htab->emit_stub_syms = emit_stub_syms;
9902
9903 /* Allocate memory to hold the linker stubs. */
9904 for (stub_sec = htab->stub_bfd->sections;
9905 stub_sec != NULL;
9906 stub_sec = stub_sec->next)
9907 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
9908 && stub_sec->size != 0)
9909 {
9910 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
9911 if (stub_sec->contents == NULL)
9912 return FALSE;
9913 /* We want to check that built size is the same as calculated
9914 size. rawsize is a convenient location to use. */
9915 stub_sec->rawsize = stub_sec->size;
9916 stub_sec->size = 0;
9917 }
9918
9919 if (htab->glink != NULL && htab->glink->size != 0)
9920 {
9921 unsigned int indx;
9922 bfd_vma plt0;
9923
9924 /* Build the .glink plt call stub. */
9925 if (htab->emit_stub_syms)
9926 {
9927 struct elf_link_hash_entry *h;
9928 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
9929 TRUE, FALSE, FALSE);
9930 if (h == NULL)
9931 return FALSE;
9932 if (h->root.type == bfd_link_hash_new)
9933 {
9934 h->root.type = bfd_link_hash_defined;
9935 h->root.u.def.section = htab->glink;
9936 h->root.u.def.value = 8;
9937 h->ref_regular = 1;
9938 h->def_regular = 1;
9939 h->ref_regular_nonweak = 1;
9940 h->forced_local = 1;
9941 h->non_elf = 0;
9942 }
9943 }
9944 plt0 = htab->plt->output_section->vma + htab->plt->output_offset - 16;
9945 if (info->emitrelocations)
9946 {
9947 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
9948 if (r == NULL)
9949 return FALSE;
9950 r->r_offset = (htab->glink->output_offset
9951 + htab->glink->output_section->vma);
9952 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
9953 r->r_addend = plt0;
9954 }
9955 p = htab->glink->contents;
9956 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
9957 bfd_put_64 (htab->glink->owner, plt0, p);
9958 p += 8;
9959 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
9960 p += 4;
9961 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
9962 p += 4;
9963 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
9964 p += 4;
9965 bfd_put_32 (htab->glink->owner, LD_R2_M16R11, p);
9966 p += 4;
9967 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
9968 p += 4;
9969 bfd_put_32 (htab->glink->owner, ADD_R12_R2_R11, p);
9970 p += 4;
9971 bfd_put_32 (htab->glink->owner, LD_R11_0R12, p);
9972 p += 4;
9973 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
9974 p += 4;
9975 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
9976 p += 4;
9977 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
9978 p += 4;
9979 bfd_put_32 (htab->glink->owner, BCTR, p);
9980 p += 4;
9981 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
9982 {
9983 bfd_put_32 (htab->glink->owner, NOP, p);
9984 p += 4;
9985 }
9986
9987 /* Build the .glink lazy link call stubs. */
9988 indx = 0;
9989 while (p < htab->glink->contents + htab->glink->size)
9990 {
9991 if (indx < 0x8000)
9992 {
9993 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
9994 p += 4;
9995 }
9996 else
9997 {
9998 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
9999 p += 4;
10000 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
10001 p += 4;
10002 }
10003 bfd_put_32 (htab->glink->owner,
10004 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
10005 indx++;
10006 p += 4;
10007 }
10008 htab->glink->rawsize = p - htab->glink->contents;
10009 }
10010
10011 if (htab->brlt->size != 0)
10012 {
10013 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
10014 htab->brlt->size);
10015 if (htab->brlt->contents == NULL)
10016 return FALSE;
10017 }
10018 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
10019 {
10020 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
10021 htab->relbrlt->size);
10022 if (htab->relbrlt->contents == NULL)
10023 return FALSE;
10024 }
10025
10026 /* Build the stubs as directed by the stub hash table. */
10027 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
10028
10029 if (htab->relbrlt != NULL)
10030 htab->relbrlt->reloc_count = 0;
10031
10032 for (stub_sec = htab->stub_bfd->sections;
10033 stub_sec != NULL;
10034 stub_sec = stub_sec->next)
10035 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
10036 {
10037 stub_sec_count += 1;
10038 if (stub_sec->rawsize != stub_sec->size)
10039 break;
10040 }
10041
10042 if (stub_sec != NULL
10043 || htab->glink->rawsize != htab->glink->size)
10044 {
10045 htab->stub_error = TRUE;
10046 (*_bfd_error_handler) (_("stubs don't match calculated size"));
10047 }
10048
10049 if (htab->stub_error)
10050 return FALSE;
10051
10052 if (stats != NULL)
10053 {
10054 *stats = bfd_malloc (500);
10055 if (*stats == NULL)
10056 return FALSE;
10057
10058 sprintf (*stats, _("linker stubs in %u group%s\n"
10059 " branch %lu\n"
10060 " toc adjust %lu\n"
10061 " long branch %lu\n"
10062 " long toc adj %lu\n"
10063 " plt call %lu"),
10064 stub_sec_count,
10065 stub_sec_count == 1 ? "" : "s",
10066 htab->stub_count[ppc_stub_long_branch - 1],
10067 htab->stub_count[ppc_stub_long_branch_r2off - 1],
10068 htab->stub_count[ppc_stub_plt_branch - 1],
10069 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
10070 htab->stub_count[ppc_stub_plt_call - 1]);
10071 }
10072 return TRUE;
10073 }
10074
10075 /* This function undoes the changes made by add_symbol_adjust. */
10076
10077 static bfd_boolean
10078 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
10079 {
10080 struct ppc_link_hash_entry *eh;
10081
10082 if (h->root.type == bfd_link_hash_indirect)
10083 return TRUE;
10084
10085 if (h->root.type == bfd_link_hash_warning)
10086 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10087
10088 eh = (struct ppc_link_hash_entry *) h;
10089 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
10090 return TRUE;
10091
10092 eh->elf.root.type = bfd_link_hash_undefined;
10093 return TRUE;
10094 }
10095
10096 void
10097 ppc64_elf_restore_symbols (struct bfd_link_info *info)
10098 {
10099 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10100 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
10101 }
10102
10103 /* What to do when ld finds relocations against symbols defined in
10104 discarded sections. */
10105
10106 static unsigned int
10107 ppc64_elf_action_discarded (asection *sec)
10108 {
10109 if (strcmp (".opd", sec->name) == 0)
10110 return 0;
10111
10112 if (strcmp (".toc", sec->name) == 0)
10113 return 0;
10114
10115 if (strcmp (".toc1", sec->name) == 0)
10116 return 0;
10117
10118 return _bfd_elf_default_action_discarded (sec);
10119 }
10120
10121 /* The RELOCATE_SECTION function is called by the ELF backend linker
10122 to handle the relocations for a section.
10123
10124 The relocs are always passed as Rela structures; if the section
10125 actually uses Rel structures, the r_addend field will always be
10126 zero.
10127
10128 This function is responsible for adjust the section contents as
10129 necessary, and (if using Rela relocs and generating a
10130 relocatable output file) adjusting the reloc addend as
10131 necessary.
10132
10133 This function does not have to worry about setting the reloc
10134 address or the reloc symbol index.
10135
10136 LOCAL_SYMS is a pointer to the swapped in local symbols.
10137
10138 LOCAL_SECTIONS is an array giving the section in the input file
10139 corresponding to the st_shndx field of each local symbol.
10140
10141 The global hash table entry for the global symbols can be found
10142 via elf_sym_hashes (input_bfd).
10143
10144 When generating relocatable output, this function must handle
10145 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
10146 going to be the section symbol corresponding to the output
10147 section, which means that the addend must be adjusted
10148 accordingly. */
10149
10150 static bfd_boolean
10151 ppc64_elf_relocate_section (bfd *output_bfd,
10152 struct bfd_link_info *info,
10153 bfd *input_bfd,
10154 asection *input_section,
10155 bfd_byte *contents,
10156 Elf_Internal_Rela *relocs,
10157 Elf_Internal_Sym *local_syms,
10158 asection **local_sections)
10159 {
10160 struct ppc_link_hash_table *htab;
10161 Elf_Internal_Shdr *symtab_hdr;
10162 struct elf_link_hash_entry **sym_hashes;
10163 Elf_Internal_Rela *rel;
10164 Elf_Internal_Rela *relend;
10165 Elf_Internal_Rela outrel;
10166 bfd_byte *loc;
10167 struct got_entry **local_got_ents;
10168 bfd_vma TOCstart;
10169 bfd_boolean ret = TRUE;
10170 bfd_boolean is_opd;
10171 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
10172 bfd_boolean is_power4 = FALSE;
10173 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
10174
10175 /* Initialize howto table if needed. */
10176 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
10177 ppc_howto_init ();
10178
10179 htab = ppc_hash_table (info);
10180
10181 /* Don't relocate stub sections. */
10182 if (input_section->owner == htab->stub_bfd)
10183 return TRUE;
10184
10185 BFD_ASSERT (is_ppc64_elf (input_bfd));
10186
10187 local_got_ents = elf_local_got_ents (input_bfd);
10188 TOCstart = elf_gp (output_bfd);
10189 symtab_hdr = &elf_symtab_hdr (input_bfd);
10190 sym_hashes = elf_sym_hashes (input_bfd);
10191 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
10192
10193 rel = relocs;
10194 relend = relocs + input_section->reloc_count;
10195 for (; rel < relend; rel++)
10196 {
10197 enum elf_ppc64_reloc_type r_type;
10198 bfd_vma addend, orig_addend;
10199 bfd_reloc_status_type r;
10200 Elf_Internal_Sym *sym;
10201 asection *sec;
10202 struct elf_link_hash_entry *h_elf;
10203 struct ppc_link_hash_entry *h;
10204 struct ppc_link_hash_entry *fdh;
10205 const char *sym_name;
10206 unsigned long r_symndx, toc_symndx;
10207 char tls_mask, tls_gd, tls_type;
10208 char sym_type;
10209 bfd_vma relocation;
10210 bfd_boolean unresolved_reloc;
10211 bfd_boolean warned;
10212 unsigned long insn, mask;
10213 struct ppc_stub_hash_entry *stub_entry;
10214 bfd_vma max_br_offset;
10215 bfd_vma from;
10216
10217 r_type = ELF64_R_TYPE (rel->r_info);
10218 r_symndx = ELF64_R_SYM (rel->r_info);
10219
10220 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
10221 symbol of the previous ADDR64 reloc. The symbol gives us the
10222 proper TOC base to use. */
10223 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
10224 && rel != relocs
10225 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
10226 && is_opd)
10227 r_symndx = ELF64_R_SYM (rel[-1].r_info);
10228
10229 sym = NULL;
10230 sec = NULL;
10231 h_elf = NULL;
10232 sym_name = NULL;
10233 unresolved_reloc = FALSE;
10234 warned = FALSE;
10235 orig_addend = rel->r_addend;
10236
10237 if (r_symndx < symtab_hdr->sh_info)
10238 {
10239 /* It's a local symbol. */
10240 struct _opd_sec_data *opd;
10241
10242 sym = local_syms + r_symndx;
10243 sec = local_sections[r_symndx];
10244 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
10245 sym_type = ELF64_ST_TYPE (sym->st_info);
10246 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10247 opd = get_opd_info (sec);
10248 if (opd != NULL && opd->adjust != NULL)
10249 {
10250 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
10251 if (adjust == -1)
10252 relocation = 0;
10253 else
10254 {
10255 /* If this is a relocation against the opd section sym
10256 and we have edited .opd, adjust the reloc addend so
10257 that ld -r and ld --emit-relocs output is correct.
10258 If it is a reloc against some other .opd symbol,
10259 then the symbol value will be adjusted later. */
10260 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10261 rel->r_addend += adjust;
10262 else
10263 relocation += adjust;
10264 }
10265 }
10266 }
10267 else
10268 {
10269 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10270 r_symndx, symtab_hdr, sym_hashes,
10271 h_elf, sec, relocation,
10272 unresolved_reloc, warned);
10273 sym_name = h_elf->root.root.string;
10274 sym_type = h_elf->type;
10275 }
10276 h = (struct ppc_link_hash_entry *) h_elf;
10277
10278 if (sec != NULL && elf_discarded_section (sec))
10279 {
10280 /* For relocs against symbols from removed linkonce sections,
10281 or sections discarded by a linker script, we just want the
10282 section contents zeroed. Avoid any special processing. */
10283 _bfd_clear_contents (ppc64_elf_howto_table[r_type], input_bfd,
10284 contents + rel->r_offset);
10285 rel->r_info = 0;
10286 rel->r_addend = 0;
10287 continue;
10288 }
10289
10290 if (info->relocatable)
10291 continue;
10292
10293 /* TLS optimizations. Replace instruction sequences and relocs
10294 based on information we collected in tls_optimize. We edit
10295 RELOCS so that --emit-relocs will output something sensible
10296 for the final instruction stream. */
10297 tls_mask = 0;
10298 tls_gd = 0;
10299 toc_symndx = 0;
10300 if (IS_PPC64_TLS_RELOC (r_type))
10301 {
10302 if (h != NULL)
10303 tls_mask = h->tls_mask;
10304 else if (local_got_ents != NULL)
10305 {
10306 char *lgot_masks;
10307 lgot_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
10308 tls_mask = lgot_masks[r_symndx];
10309 }
10310 if (tls_mask == 0 && r_type == R_PPC64_TLS)
10311 {
10312 /* Check for toc tls entries. */
10313 char *toc_tls;
10314
10315 if (!get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
10316 rel, input_bfd))
10317 return FALSE;
10318
10319 if (toc_tls)
10320 tls_mask = *toc_tls;
10321 }
10322 }
10323
10324 /* Check that tls relocs are used with tls syms, and non-tls
10325 relocs are used with non-tls syms. */
10326 if (r_symndx != 0
10327 && r_type != R_PPC64_NONE
10328 && (h == NULL
10329 || h->elf.root.type == bfd_link_hash_defined
10330 || h->elf.root.type == bfd_link_hash_defweak)
10331 && (IS_PPC64_TLS_RELOC (r_type)
10332 != (sym_type == STT_TLS
10333 || (sym_type == STT_SECTION
10334 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
10335 {
10336 if (r_type == R_PPC64_TLS && tls_mask != 0)
10337 /* R_PPC64_TLS is OK against a symbol in the TOC. */
10338 ;
10339 else
10340 (*_bfd_error_handler)
10341 (!IS_PPC64_TLS_RELOC (r_type)
10342 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10343 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s"),
10344 input_bfd,
10345 input_section,
10346 (long) rel->r_offset,
10347 ppc64_elf_howto_table[r_type]->name,
10348 sym_name);
10349 }
10350
10351 /* Ensure reloc mapping code below stays sane. */
10352 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
10353 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
10354 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
10355 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
10356 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
10357 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
10358 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
10359 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
10360 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
10361 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
10362 abort ();
10363
10364 switch (r_type)
10365 {
10366 default:
10367 break;
10368
10369 case R_PPC64_TOC16:
10370 case R_PPC64_TOC16_LO:
10371 case R_PPC64_TOC16_DS:
10372 case R_PPC64_TOC16_LO_DS:
10373 {
10374 /* Check for toc tls entries. */
10375 char *toc_tls;
10376 int retval;
10377
10378 retval = get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
10379 rel, input_bfd);
10380 if (retval == 0)
10381 return FALSE;
10382
10383 if (toc_tls)
10384 {
10385 tls_mask = *toc_tls;
10386 if (r_type == R_PPC64_TOC16_DS
10387 || r_type == R_PPC64_TOC16_LO_DS)
10388 {
10389 if (tls_mask != 0
10390 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
10391 goto toctprel;
10392 }
10393 else
10394 {
10395 /* If we found a GD reloc pair, then we might be
10396 doing a GD->IE transition. */
10397 if (retval == 2)
10398 {
10399 tls_gd = TLS_TPRELGD;
10400 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
10401 goto tls_ldgd_opt;
10402 }
10403 else if (retval == 3)
10404 {
10405 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
10406 goto tls_ldgd_opt;
10407 }
10408 }
10409 }
10410 }
10411 break;
10412
10413 case R_PPC64_GOT_TPREL16_DS:
10414 case R_PPC64_GOT_TPREL16_LO_DS:
10415 if (tls_mask != 0
10416 && (tls_mask & TLS_TPREL) == 0)
10417 {
10418 toctprel:
10419 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
10420 insn &= 31 << 21;
10421 insn |= 0x3c0d0000; /* addis 0,13,0 */
10422 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
10423 r_type = R_PPC64_TPREL16_HA;
10424 if (toc_symndx != 0)
10425 {
10426 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
10427 /* We changed the symbol. Start over in order to
10428 get h, sym, sec etc. right. */
10429 rel--;
10430 continue;
10431 }
10432 else
10433 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10434 }
10435 break;
10436
10437 case R_PPC64_TLS:
10438 if (tls_mask != 0
10439 && (tls_mask & TLS_TPREL) == 0)
10440 {
10441 bfd_vma rtra;
10442 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
10443 if ((insn & ((0x3f << 26) | (31 << 11)))
10444 == ((31 << 26) | (13 << 11)))
10445 rtra = insn & ((1 << 26) - (1 << 16));
10446 else if ((insn & ((0x3f << 26) | (31 << 16)))
10447 == ((31 << 26) | (13 << 16)))
10448 rtra = (insn & (31 << 21)) | ((insn & (31 << 11)) << 5);
10449 else
10450 abort ();
10451 if ((insn & ((1 << 11) - (1 << 1))) == 266 << 1)
10452 /* add -> addi. */
10453 insn = 14 << 26;
10454 else if ((insn & (31 << 1)) == 23 << 1
10455 && ((insn & (31 << 6)) < 14 << 6
10456 || ((insn & (31 << 6)) >= 16 << 6
10457 && (insn & (31 << 6)) < 24 << 6)))
10458 /* load and store indexed -> dform. */
10459 insn = (32 | ((insn >> 6) & 31)) << 26;
10460 else if ((insn & (31 << 1)) == 21 << 1
10461 && (insn & (0x1a << 6)) == 0)
10462 /* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */
10463 insn = (((58 | ((insn >> 6) & 4)) << 26)
10464 | ((insn >> 6) & 1));
10465 else if ((insn & (31 << 1)) == 21 << 1
10466 && (insn & ((1 << 11) - (1 << 1))) == 341 << 1)
10467 /* lwax -> lwa. */
10468 insn = (58 << 26) | 2;
10469 else
10470 abort ();
10471 insn |= rtra;
10472 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
10473 /* Was PPC64_TLS which sits on insn boundary, now
10474 PPC64_TPREL16_LO which is at low-order half-word. */
10475 rel->r_offset += d_offset;
10476 r_type = R_PPC64_TPREL16_LO;
10477 if (toc_symndx != 0)
10478 {
10479 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
10480 /* We changed the symbol. Start over in order to
10481 get h, sym, sec etc. right. */
10482 rel--;
10483 continue;
10484 }
10485 else
10486 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10487 }
10488 break;
10489
10490 case R_PPC64_GOT_TLSGD16_HI:
10491 case R_PPC64_GOT_TLSGD16_HA:
10492 tls_gd = TLS_TPRELGD;
10493 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
10494 goto tls_gdld_hi;
10495 break;
10496
10497 case R_PPC64_GOT_TLSLD16_HI:
10498 case R_PPC64_GOT_TLSLD16_HA:
10499 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
10500 {
10501 tls_gdld_hi:
10502 if ((tls_mask & tls_gd) != 0)
10503 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
10504 + R_PPC64_GOT_TPREL16_DS);
10505 else
10506 {
10507 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
10508 rel->r_offset -= d_offset;
10509 r_type = R_PPC64_NONE;
10510 }
10511 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10512 }
10513 break;
10514
10515 case R_PPC64_GOT_TLSGD16:
10516 case R_PPC64_GOT_TLSGD16_LO:
10517 tls_gd = TLS_TPRELGD;
10518 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
10519 goto tls_ldgd_opt;
10520 break;
10521
10522 case R_PPC64_GOT_TLSLD16:
10523 case R_PPC64_GOT_TLSLD16_LO:
10524 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
10525 {
10526 bfd_vma insn1, insn2, insn3;
10527 bfd_vma offset;
10528
10529 tls_ldgd_opt:
10530 /* We know that the next reloc is on a tls_get_addr
10531 call, since ppc64_elf_tls_optimize checks this. */
10532 offset = rel[1].r_offset;
10533 insn1 = bfd_get_32 (output_bfd,
10534 contents + rel->r_offset - d_offset);
10535 insn3 = bfd_get_32 (output_bfd,
10536 contents + offset + 4);
10537 if ((tls_mask & tls_gd) != 0)
10538 {
10539 /* IE */
10540 insn1 &= (1 << 26) - (1 << 2);
10541 insn1 |= 58 << 26; /* ld */
10542 insn2 = 0x7c636a14; /* add 3,3,13 */
10543 rel[1].r_info = ELF64_R_INFO (ELF64_R_SYM (rel[1].r_info),
10544 R_PPC64_NONE);
10545 if ((tls_mask & TLS_EXPLICIT) == 0)
10546 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
10547 + R_PPC64_GOT_TPREL16_DS);
10548 else
10549 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
10550 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10551 }
10552 else
10553 {
10554 /* LE */
10555 insn1 = 0x3c6d0000; /* addis 3,13,0 */
10556 insn2 = 0x38630000; /* addi 3,3,0 */
10557 if (tls_gd == 0)
10558 {
10559 /* Was an LD reloc. */
10560 if (toc_symndx)
10561 sec = local_sections[toc_symndx];
10562 for (r_symndx = 0;
10563 r_symndx < symtab_hdr->sh_info;
10564 r_symndx++)
10565 if (local_sections[r_symndx] == sec)
10566 break;
10567 if (r_symndx >= symtab_hdr->sh_info)
10568 r_symndx = 0;
10569 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
10570 if (r_symndx != 0)
10571 rel->r_addend -= (local_syms[r_symndx].st_value
10572 + sec->output_offset
10573 + sec->output_section->vma);
10574 rel[1].r_addend = rel->r_addend;
10575 }
10576 else if (toc_symndx != 0)
10577 r_symndx = toc_symndx;
10578 r_type = R_PPC64_TPREL16_HA;
10579 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10580 rel[1].r_info = ELF64_R_INFO (r_symndx,
10581 R_PPC64_TPREL16_LO);
10582 rel[1].r_offset += d_offset;
10583 }
10584 if (insn3 == NOP
10585 || insn3 == CROR_151515 || insn3 == CROR_313131)
10586 {
10587 insn3 = insn2;
10588 insn2 = NOP;
10589 rel[1].r_offset += 4;
10590 }
10591 bfd_put_32 (output_bfd, insn1,
10592 contents + rel->r_offset - d_offset);
10593 bfd_put_32 (output_bfd, insn2, contents + offset);
10594 bfd_put_32 (output_bfd, insn3, contents + offset + 4);
10595 if (tls_gd == 0 || toc_symndx != 0)
10596 {
10597 /* We changed the symbol. Start over in order
10598 to get h, sym, sec etc. right. */
10599 rel--;
10600 continue;
10601 }
10602 }
10603 break;
10604
10605 case R_PPC64_DTPMOD64:
10606 if (rel + 1 < relend
10607 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
10608 && rel[1].r_offset == rel->r_offset + 8)
10609 {
10610 if ((tls_mask & TLS_GD) == 0)
10611 {
10612 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
10613 if ((tls_mask & TLS_TPRELGD) != 0)
10614 r_type = R_PPC64_TPREL64;
10615 else
10616 {
10617 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
10618 r_type = R_PPC64_NONE;
10619 }
10620 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10621 }
10622 }
10623 else
10624 {
10625 if ((tls_mask & TLS_LD) == 0)
10626 {
10627 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
10628 r_type = R_PPC64_NONE;
10629 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10630 }
10631 }
10632 break;
10633
10634 case R_PPC64_TPREL64:
10635 if ((tls_mask & TLS_TPREL) == 0)
10636 {
10637 r_type = R_PPC64_NONE;
10638 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10639 }
10640 break;
10641 }
10642
10643 /* Handle other relocations that tweak non-addend part of insn. */
10644 insn = 0;
10645 max_br_offset = 1 << 25;
10646 addend = rel->r_addend;
10647 switch (r_type)
10648 {
10649 default:
10650 break;
10651
10652 /* Branch taken prediction relocations. */
10653 case R_PPC64_ADDR14_BRTAKEN:
10654 case R_PPC64_REL14_BRTAKEN:
10655 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
10656 /* Fall thru. */
10657
10658 /* Branch not taken prediction relocations. */
10659 case R_PPC64_ADDR14_BRNTAKEN:
10660 case R_PPC64_REL14_BRNTAKEN:
10661 insn |= bfd_get_32 (output_bfd,
10662 contents + rel->r_offset) & ~(0x01 << 21);
10663 /* Fall thru. */
10664
10665 case R_PPC64_REL14:
10666 max_br_offset = 1 << 15;
10667 /* Fall thru. */
10668
10669 case R_PPC64_REL24:
10670 /* Calls to functions with a different TOC, such as calls to
10671 shared objects, need to alter the TOC pointer. This is
10672 done using a linkage stub. A REL24 branching to these
10673 linkage stubs needs to be followed by a nop, as the nop
10674 will be replaced with an instruction to restore the TOC
10675 base pointer. */
10676 stub_entry = NULL;
10677 fdh = h;
10678 if (((h != NULL
10679 && (((fdh = h->oh) != NULL
10680 && fdh->elf.plt.plist != NULL)
10681 || (fdh = h)->elf.plt.plist != NULL))
10682 || (sec != NULL
10683 && sec->output_section != NULL
10684 && sec->id <= htab->top_id
10685 && (htab->stub_group[sec->id].toc_off
10686 != htab->stub_group[input_section->id].toc_off)))
10687 && (stub_entry = ppc_get_stub_entry (input_section, sec, fdh,
10688 rel, htab)) != NULL
10689 && (stub_entry->stub_type == ppc_stub_plt_call
10690 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
10691 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
10692 {
10693 bfd_boolean can_plt_call = FALSE;
10694
10695 if (rel->r_offset + 8 <= input_section->size)
10696 {
10697 unsigned long nop;
10698 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
10699 if (nop == NOP
10700 || nop == CROR_151515 || nop == CROR_313131)
10701 {
10702 bfd_put_32 (input_bfd, LD_R2_40R1,
10703 contents + rel->r_offset + 4);
10704 can_plt_call = TRUE;
10705 }
10706 }
10707
10708 if (!can_plt_call)
10709 {
10710 if (stub_entry->stub_type == ppc_stub_plt_call)
10711 {
10712 /* If this is a plain branch rather than a branch
10713 and link, don't require a nop. However, don't
10714 allow tail calls in a shared library as they
10715 will result in r2 being corrupted. */
10716 unsigned long br;
10717 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
10718 if (info->executable && (br & 1) == 0)
10719 can_plt_call = TRUE;
10720 else
10721 stub_entry = NULL;
10722 }
10723 else if (h != NULL
10724 && strcmp (h->elf.root.root.string,
10725 ".__libc_start_main") == 0)
10726 {
10727 /* Allow crt1 branch to go via a toc adjusting stub. */
10728 can_plt_call = TRUE;
10729 }
10730 else
10731 {
10732 if (strcmp (input_section->output_section->name,
10733 ".init") == 0
10734 || strcmp (input_section->output_section->name,
10735 ".fini") == 0)
10736 (*_bfd_error_handler)
10737 (_("%B(%A+0x%lx): automatic multiple TOCs "
10738 "not supported using your crt files; "
10739 "recompile with -mminimal-toc or upgrade gcc"),
10740 input_bfd,
10741 input_section,
10742 (long) rel->r_offset);
10743 else
10744 (*_bfd_error_handler)
10745 (_("%B(%A+0x%lx): sibling call optimization to `%s' "
10746 "does not allow automatic multiple TOCs; "
10747 "recompile with -mminimal-toc or "
10748 "-fno-optimize-sibling-calls, "
10749 "or make `%s' extern"),
10750 input_bfd,
10751 input_section,
10752 (long) rel->r_offset,
10753 sym_name,
10754 sym_name);
10755 bfd_set_error (bfd_error_bad_value);
10756 ret = FALSE;
10757 }
10758 }
10759
10760 if (can_plt_call
10761 && stub_entry->stub_type == ppc_stub_plt_call)
10762 unresolved_reloc = FALSE;
10763 }
10764
10765 if (stub_entry == NULL
10766 && get_opd_info (sec) != NULL)
10767 {
10768 /* The branch destination is the value of the opd entry. */
10769 bfd_vma off = (relocation + addend
10770 - sec->output_section->vma
10771 - sec->output_offset);
10772 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
10773 if (dest != (bfd_vma) -1)
10774 {
10775 relocation = dest;
10776 addend = 0;
10777 }
10778 }
10779
10780 /* If the branch is out of reach we ought to have a long
10781 branch stub. */
10782 from = (rel->r_offset
10783 + input_section->output_offset
10784 + input_section->output_section->vma);
10785
10786 if (stub_entry == NULL
10787 && (relocation + addend - from + max_br_offset
10788 >= 2 * max_br_offset)
10789 && r_type != R_PPC64_ADDR14_BRTAKEN
10790 && r_type != R_PPC64_ADDR14_BRNTAKEN)
10791 stub_entry = ppc_get_stub_entry (input_section, sec, h, rel,
10792 htab);
10793
10794 if (stub_entry != NULL)
10795 {
10796 /* Munge up the value and addend so that we call the stub
10797 rather than the procedure directly. */
10798 relocation = (stub_entry->stub_offset
10799 + stub_entry->stub_sec->output_offset
10800 + stub_entry->stub_sec->output_section->vma);
10801 addend = 0;
10802 }
10803
10804 if (insn != 0)
10805 {
10806 if (is_power4)
10807 {
10808 /* Set 'a' bit. This is 0b00010 in BO field for branch
10809 on CR(BI) insns (BO == 001at or 011at), and 0b01000
10810 for branch on CTR insns (BO == 1a00t or 1a01t). */
10811 if ((insn & (0x14 << 21)) == (0x04 << 21))
10812 insn |= 0x02 << 21;
10813 else if ((insn & (0x14 << 21)) == (0x10 << 21))
10814 insn |= 0x08 << 21;
10815 else
10816 break;
10817 }
10818 else
10819 {
10820 /* Invert 'y' bit if not the default. */
10821 if ((bfd_signed_vma) (relocation + addend - from) < 0)
10822 insn ^= 0x01 << 21;
10823 }
10824
10825 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
10826 }
10827
10828 /* NOP out calls to undefined weak functions.
10829 We can thus call a weak function without first
10830 checking whether the function is defined. */
10831 else if (h != NULL
10832 && h->elf.root.type == bfd_link_hash_undefweak
10833 && r_type == R_PPC64_REL24
10834 && relocation == 0
10835 && addend == 0)
10836 {
10837 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
10838 continue;
10839 }
10840 break;
10841 }
10842
10843 /* Set `addend'. */
10844 tls_type = 0;
10845 switch (r_type)
10846 {
10847 default:
10848 (*_bfd_error_handler)
10849 (_("%B: unknown relocation type %d for symbol %s"),
10850 input_bfd, (int) r_type, sym_name);
10851
10852 bfd_set_error (bfd_error_bad_value);
10853 ret = FALSE;
10854 continue;
10855
10856 case R_PPC64_NONE:
10857 case R_PPC64_TLS:
10858 case R_PPC64_GNU_VTINHERIT:
10859 case R_PPC64_GNU_VTENTRY:
10860 continue;
10861
10862 /* GOT16 relocations. Like an ADDR16 using the symbol's
10863 address in the GOT as relocation value instead of the
10864 symbol's value itself. Also, create a GOT entry for the
10865 symbol and put the symbol value there. */
10866 case R_PPC64_GOT_TLSGD16:
10867 case R_PPC64_GOT_TLSGD16_LO:
10868 case R_PPC64_GOT_TLSGD16_HI:
10869 case R_PPC64_GOT_TLSGD16_HA:
10870 tls_type = TLS_TLS | TLS_GD;
10871 goto dogot;
10872
10873 case R_PPC64_GOT_TLSLD16:
10874 case R_PPC64_GOT_TLSLD16_LO:
10875 case R_PPC64_GOT_TLSLD16_HI:
10876 case R_PPC64_GOT_TLSLD16_HA:
10877 tls_type = TLS_TLS | TLS_LD;
10878 goto dogot;
10879
10880 case R_PPC64_GOT_TPREL16_DS:
10881 case R_PPC64_GOT_TPREL16_LO_DS:
10882 case R_PPC64_GOT_TPREL16_HI:
10883 case R_PPC64_GOT_TPREL16_HA:
10884 tls_type = TLS_TLS | TLS_TPREL;
10885 goto dogot;
10886
10887 case R_PPC64_GOT_DTPREL16_DS:
10888 case R_PPC64_GOT_DTPREL16_LO_DS:
10889 case R_PPC64_GOT_DTPREL16_HI:
10890 case R_PPC64_GOT_DTPREL16_HA:
10891 tls_type = TLS_TLS | TLS_DTPREL;
10892 goto dogot;
10893
10894 case R_PPC64_GOT16:
10895 case R_PPC64_GOT16_LO:
10896 case R_PPC64_GOT16_HI:
10897 case R_PPC64_GOT16_HA:
10898 case R_PPC64_GOT16_DS:
10899 case R_PPC64_GOT16_LO_DS:
10900 dogot:
10901 {
10902 /* Relocation is to the entry for this symbol in the global
10903 offset table. */
10904 asection *got;
10905 bfd_vma *offp;
10906 bfd_vma off;
10907 unsigned long indx = 0;
10908
10909 if (tls_type == (TLS_TLS | TLS_LD)
10910 && (h == NULL
10911 || !h->elf.def_dynamic))
10912 offp = &ppc64_tlsld_got (input_bfd)->offset;
10913 else
10914 {
10915 struct got_entry *ent;
10916
10917 if (h != NULL)
10918 {
10919 bfd_boolean dyn = htab->elf.dynamic_sections_created;
10920 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
10921 &h->elf)
10922 || (info->shared
10923 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
10924 /* This is actually a static link, or it is a
10925 -Bsymbolic link and the symbol is defined
10926 locally, or the symbol was forced to be local
10927 because of a version file. */
10928 ;
10929 else
10930 {
10931 indx = h->elf.dynindx;
10932 unresolved_reloc = FALSE;
10933 }
10934 ent = h->elf.got.glist;
10935 }
10936 else
10937 {
10938 if (local_got_ents == NULL)
10939 abort ();
10940 ent = local_got_ents[r_symndx];
10941 }
10942
10943 for (; ent != NULL; ent = ent->next)
10944 if (ent->addend == orig_addend
10945 && ent->owner == input_bfd
10946 && ent->tls_type == tls_type)
10947 break;
10948 if (ent == NULL)
10949 abort ();
10950 offp = &ent->got.offset;
10951 }
10952
10953 got = ppc64_elf_tdata (input_bfd)->got;
10954 if (got == NULL)
10955 abort ();
10956
10957 /* The offset must always be a multiple of 8. We use the
10958 least significant bit to record whether we have already
10959 processed this entry. */
10960 off = *offp;
10961 if ((off & 1) != 0)
10962 off &= ~1;
10963 else
10964 {
10965 /* Generate relocs for the dynamic linker, except in
10966 the case of TLSLD where we'll use one entry per
10967 module. */
10968 asection *relgot = ppc64_elf_tdata (input_bfd)->relgot;
10969
10970 *offp = off | 1;
10971 if ((info->shared || indx != 0)
10972 && (h == NULL
10973 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10974 || h->elf.root.type != bfd_link_hash_undefweak))
10975 {
10976 outrel.r_offset = (got->output_section->vma
10977 + got->output_offset
10978 + off);
10979 outrel.r_addend = addend;
10980 if (tls_type & (TLS_LD | TLS_GD))
10981 {
10982 outrel.r_addend = 0;
10983 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
10984 if (tls_type == (TLS_TLS | TLS_GD))
10985 {
10986 loc = relgot->contents;
10987 loc += (relgot->reloc_count++
10988 * sizeof (Elf64_External_Rela));
10989 bfd_elf64_swap_reloca_out (output_bfd,
10990 &outrel, loc);
10991 outrel.r_offset += 8;
10992 outrel.r_addend = addend;
10993 outrel.r_info
10994 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10995 }
10996 }
10997 else if (tls_type == (TLS_TLS | TLS_DTPREL))
10998 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10999 else if (tls_type == (TLS_TLS | TLS_TPREL))
11000 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
11001 else if (indx == 0)
11002 {
11003 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_RELATIVE);
11004
11005 /* Write the .got section contents for the sake
11006 of prelink. */
11007 loc = got->contents + off;
11008 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
11009 loc);
11010 }
11011 else
11012 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
11013
11014 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
11015 {
11016 outrel.r_addend += relocation;
11017 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
11018 outrel.r_addend -= htab->elf.tls_sec->vma;
11019 }
11020 loc = relgot->contents;
11021 loc += (relgot->reloc_count++
11022 * sizeof (Elf64_External_Rela));
11023 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
11024 }
11025
11026 /* Init the .got section contents here if we're not
11027 emitting a reloc. */
11028 else
11029 {
11030 relocation += addend;
11031 if (tls_type == (TLS_TLS | TLS_LD))
11032 relocation = 1;
11033 else if (tls_type != 0)
11034 {
11035 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
11036 if (tls_type == (TLS_TLS | TLS_TPREL))
11037 relocation += DTP_OFFSET - TP_OFFSET;
11038
11039 if (tls_type == (TLS_TLS | TLS_GD))
11040 {
11041 bfd_put_64 (output_bfd, relocation,
11042 got->contents + off + 8);
11043 relocation = 1;
11044 }
11045 }
11046
11047 bfd_put_64 (output_bfd, relocation,
11048 got->contents + off);
11049 }
11050 }
11051
11052 if (off >= (bfd_vma) -2)
11053 abort ();
11054
11055 relocation = got->output_offset + off;
11056
11057 /* TOC base (r2) is TOC start plus 0x8000. */
11058 addend = -TOC_BASE_OFF;
11059 }
11060 break;
11061
11062 case R_PPC64_PLT16_HA:
11063 case R_PPC64_PLT16_HI:
11064 case R_PPC64_PLT16_LO:
11065 case R_PPC64_PLT32:
11066 case R_PPC64_PLT64:
11067 /* Relocation is to the entry for this symbol in the
11068 procedure linkage table. */
11069
11070 /* Resolve a PLT reloc against a local symbol directly,
11071 without using the procedure linkage table. */
11072 if (h == NULL)
11073 break;
11074
11075 /* It's possible that we didn't make a PLT entry for this
11076 symbol. This happens when statically linking PIC code,
11077 or when using -Bsymbolic. Go find a match if there is a
11078 PLT entry. */
11079 if (htab->plt != NULL)
11080 {
11081 struct plt_entry *ent;
11082 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
11083 if (ent->addend == orig_addend
11084 && ent->plt.offset != (bfd_vma) -1)
11085 {
11086 relocation = (htab->plt->output_section->vma
11087 + htab->plt->output_offset
11088 + ent->plt.offset);
11089 unresolved_reloc = FALSE;
11090 }
11091 }
11092 break;
11093
11094 case R_PPC64_TOC:
11095 /* Relocation value is TOC base. */
11096 relocation = TOCstart;
11097 if (r_symndx == 0)
11098 relocation += htab->stub_group[input_section->id].toc_off;
11099 else if (unresolved_reloc)
11100 ;
11101 else if (sec != NULL && sec->id <= htab->top_id)
11102 relocation += htab->stub_group[sec->id].toc_off;
11103 else
11104 unresolved_reloc = TRUE;
11105 goto dodyn;
11106
11107 /* TOC16 relocs. We want the offset relative to the TOC base,
11108 which is the address of the start of the TOC plus 0x8000.
11109 The TOC consists of sections .got, .toc, .tocbss, and .plt,
11110 in this order. */
11111 case R_PPC64_TOC16:
11112 case R_PPC64_TOC16_LO:
11113 case R_PPC64_TOC16_HI:
11114 case R_PPC64_TOC16_DS:
11115 case R_PPC64_TOC16_LO_DS:
11116 case R_PPC64_TOC16_HA:
11117 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
11118 break;
11119
11120 /* Relocate against the beginning of the section. */
11121 case R_PPC64_SECTOFF:
11122 case R_PPC64_SECTOFF_LO:
11123 case R_PPC64_SECTOFF_HI:
11124 case R_PPC64_SECTOFF_DS:
11125 case R_PPC64_SECTOFF_LO_DS:
11126 case R_PPC64_SECTOFF_HA:
11127 if (sec != NULL)
11128 addend -= sec->output_section->vma;
11129 break;
11130
11131 case R_PPC64_REL14:
11132 case R_PPC64_REL14_BRNTAKEN:
11133 case R_PPC64_REL14_BRTAKEN:
11134 case R_PPC64_REL24:
11135 break;
11136
11137 case R_PPC64_TPREL16:
11138 case R_PPC64_TPREL16_LO:
11139 case R_PPC64_TPREL16_HI:
11140 case R_PPC64_TPREL16_HA:
11141 case R_PPC64_TPREL16_DS:
11142 case R_PPC64_TPREL16_LO_DS:
11143 case R_PPC64_TPREL16_HIGHER:
11144 case R_PPC64_TPREL16_HIGHERA:
11145 case R_PPC64_TPREL16_HIGHEST:
11146 case R_PPC64_TPREL16_HIGHESTA:
11147 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
11148 if (info->shared)
11149 /* The TPREL16 relocs shouldn't really be used in shared
11150 libs as they will result in DT_TEXTREL being set, but
11151 support them anyway. */
11152 goto dodyn;
11153 break;
11154
11155 case R_PPC64_DTPREL16:
11156 case R_PPC64_DTPREL16_LO:
11157 case R_PPC64_DTPREL16_HI:
11158 case R_PPC64_DTPREL16_HA:
11159 case R_PPC64_DTPREL16_DS:
11160 case R_PPC64_DTPREL16_LO_DS:
11161 case R_PPC64_DTPREL16_HIGHER:
11162 case R_PPC64_DTPREL16_HIGHERA:
11163 case R_PPC64_DTPREL16_HIGHEST:
11164 case R_PPC64_DTPREL16_HIGHESTA:
11165 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
11166 break;
11167
11168 case R_PPC64_DTPMOD64:
11169 relocation = 1;
11170 addend = 0;
11171 goto dodyn;
11172
11173 case R_PPC64_TPREL64:
11174 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
11175 goto dodyn;
11176
11177 case R_PPC64_DTPREL64:
11178 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
11179 /* Fall thru */
11180
11181 /* Relocations that may need to be propagated if this is a
11182 dynamic object. */
11183 case R_PPC64_REL30:
11184 case R_PPC64_REL32:
11185 case R_PPC64_REL64:
11186 case R_PPC64_ADDR14:
11187 case R_PPC64_ADDR14_BRNTAKEN:
11188 case R_PPC64_ADDR14_BRTAKEN:
11189 case R_PPC64_ADDR16:
11190 case R_PPC64_ADDR16_DS:
11191 case R_PPC64_ADDR16_HA:
11192 case R_PPC64_ADDR16_HI:
11193 case R_PPC64_ADDR16_HIGHER:
11194 case R_PPC64_ADDR16_HIGHERA:
11195 case R_PPC64_ADDR16_HIGHEST:
11196 case R_PPC64_ADDR16_HIGHESTA:
11197 case R_PPC64_ADDR16_LO:
11198 case R_PPC64_ADDR16_LO_DS:
11199 case R_PPC64_ADDR24:
11200 case R_PPC64_ADDR32:
11201 case R_PPC64_ADDR64:
11202 case R_PPC64_UADDR16:
11203 case R_PPC64_UADDR32:
11204 case R_PPC64_UADDR64:
11205 dodyn:
11206 if ((input_section->flags & SEC_ALLOC) == 0)
11207 break;
11208
11209 if (NO_OPD_RELOCS && is_opd)
11210 break;
11211
11212 if ((info->shared
11213 && (h == NULL
11214 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
11215 || h->elf.root.type != bfd_link_hash_undefweak)
11216 && (must_be_dyn_reloc (info, r_type)
11217 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
11218 || (ELIMINATE_COPY_RELOCS
11219 && !info->shared
11220 && h != NULL
11221 && h->elf.dynindx != -1
11222 && !h->elf.non_got_ref
11223 && !h->elf.def_regular))
11224 {
11225 Elf_Internal_Rela outrel;
11226 bfd_boolean skip, relocate;
11227 asection *sreloc;
11228 bfd_byte *loc;
11229 bfd_vma out_off;
11230
11231 /* When generating a dynamic object, these relocations
11232 are copied into the output file to be resolved at run
11233 time. */
11234
11235 skip = FALSE;
11236 relocate = FALSE;
11237
11238 out_off = _bfd_elf_section_offset (output_bfd, info,
11239 input_section, rel->r_offset);
11240 if (out_off == (bfd_vma) -1)
11241 skip = TRUE;
11242 else if (out_off == (bfd_vma) -2)
11243 skip = TRUE, relocate = TRUE;
11244 out_off += (input_section->output_section->vma
11245 + input_section->output_offset);
11246 outrel.r_offset = out_off;
11247 outrel.r_addend = rel->r_addend;
11248
11249 /* Optimize unaligned reloc use. */
11250 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
11251 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
11252 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
11253 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
11254 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
11255 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
11256 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
11257 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
11258 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
11259
11260 if (skip)
11261 memset (&outrel, 0, sizeof outrel);
11262 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
11263 && !is_opd
11264 && r_type != R_PPC64_TOC)
11265 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
11266 else
11267 {
11268 /* This symbol is local, or marked to become local,
11269 or this is an opd section reloc which must point
11270 at a local function. */
11271 outrel.r_addend += relocation;
11272 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
11273 {
11274 if (is_opd && h != NULL)
11275 {
11276 /* Lie about opd entries. This case occurs
11277 when building shared libraries and we
11278 reference a function in another shared
11279 lib. The same thing happens for a weak
11280 definition in an application that's
11281 overridden by a strong definition in a
11282 shared lib. (I believe this is a generic
11283 bug in binutils handling of weak syms.)
11284 In these cases we won't use the opd
11285 entry in this lib. */
11286 unresolved_reloc = FALSE;
11287 }
11288 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11289
11290 /* We need to relocate .opd contents for ld.so.
11291 Prelink also wants simple and consistent rules
11292 for relocs. This make all RELATIVE relocs have
11293 *r_offset equal to r_addend. */
11294 relocate = TRUE;
11295 }
11296 else
11297 {
11298 long indx = 0;
11299
11300 if (r_symndx == 0 || bfd_is_abs_section (sec))
11301 ;
11302 else if (sec == NULL || sec->owner == NULL)
11303 {
11304 bfd_set_error (bfd_error_bad_value);
11305 return FALSE;
11306 }
11307 else
11308 {
11309 asection *osec;
11310
11311 osec = sec->output_section;
11312 indx = elf_section_data (osec)->dynindx;
11313
11314 if (indx == 0)
11315 {
11316 if ((osec->flags & SEC_READONLY) == 0
11317 && htab->elf.data_index_section != NULL)
11318 osec = htab->elf.data_index_section;
11319 else
11320 osec = htab->elf.text_index_section;
11321 indx = elf_section_data (osec)->dynindx;
11322 }
11323 BFD_ASSERT (indx != 0);
11324
11325 /* We are turning this relocation into one
11326 against a section symbol, so subtract out
11327 the output section's address but not the
11328 offset of the input section in the output
11329 section. */
11330 outrel.r_addend -= osec->vma;
11331 }
11332
11333 outrel.r_info = ELF64_R_INFO (indx, r_type);
11334 }
11335 }
11336
11337 sreloc = elf_section_data (input_section)->sreloc;
11338 if (sreloc == NULL)
11339 abort ();
11340
11341 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
11342 >= sreloc->size)
11343 abort ();
11344 loc = sreloc->contents;
11345 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
11346 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
11347
11348 /* If this reloc is against an external symbol, it will
11349 be computed at runtime, so there's no need to do
11350 anything now. However, for the sake of prelink ensure
11351 that the section contents are a known value. */
11352 if (! relocate)
11353 {
11354 unresolved_reloc = FALSE;
11355 /* The value chosen here is quite arbitrary as ld.so
11356 ignores section contents except for the special
11357 case of .opd where the contents might be accessed
11358 before relocation. Choose zero, as that won't
11359 cause reloc overflow. */
11360 relocation = 0;
11361 addend = 0;
11362 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
11363 to improve backward compatibility with older
11364 versions of ld. */
11365 if (r_type == R_PPC64_ADDR64)
11366 addend = outrel.r_addend;
11367 /* Adjust pc_relative relocs to have zero in *r_offset. */
11368 else if (ppc64_elf_howto_table[r_type]->pc_relative)
11369 addend = (input_section->output_section->vma
11370 + input_section->output_offset
11371 + rel->r_offset);
11372 }
11373 }
11374 break;
11375
11376 case R_PPC64_COPY:
11377 case R_PPC64_GLOB_DAT:
11378 case R_PPC64_JMP_SLOT:
11379 case R_PPC64_RELATIVE:
11380 /* We shouldn't ever see these dynamic relocs in relocatable
11381 files. */
11382 /* Fall through. */
11383
11384 case R_PPC64_PLTGOT16:
11385 case R_PPC64_PLTGOT16_DS:
11386 case R_PPC64_PLTGOT16_HA:
11387 case R_PPC64_PLTGOT16_HI:
11388 case R_PPC64_PLTGOT16_LO:
11389 case R_PPC64_PLTGOT16_LO_DS:
11390 case R_PPC64_PLTREL32:
11391 case R_PPC64_PLTREL64:
11392 /* These ones haven't been implemented yet. */
11393
11394 (*_bfd_error_handler)
11395 (_("%B: relocation %s is not supported for symbol %s."),
11396 input_bfd,
11397 ppc64_elf_howto_table[r_type]->name, sym_name);
11398
11399 bfd_set_error (bfd_error_invalid_operation);
11400 ret = FALSE;
11401 continue;
11402 }
11403
11404 /* Do any further special processing. */
11405 switch (r_type)
11406 {
11407 default:
11408 break;
11409
11410 case R_PPC64_ADDR16_HA:
11411 case R_PPC64_ADDR16_HIGHERA:
11412 case R_PPC64_ADDR16_HIGHESTA:
11413 case R_PPC64_TOC16_HA:
11414 case R_PPC64_SECTOFF_HA:
11415 case R_PPC64_TPREL16_HA:
11416 case R_PPC64_DTPREL16_HA:
11417 case R_PPC64_TPREL16_HIGHER:
11418 case R_PPC64_TPREL16_HIGHERA:
11419 case R_PPC64_TPREL16_HIGHEST:
11420 case R_PPC64_TPREL16_HIGHESTA:
11421 case R_PPC64_DTPREL16_HIGHER:
11422 case R_PPC64_DTPREL16_HIGHERA:
11423 case R_PPC64_DTPREL16_HIGHEST:
11424 case R_PPC64_DTPREL16_HIGHESTA:
11425 /* It's just possible that this symbol is a weak symbol
11426 that's not actually defined anywhere. In that case,
11427 'sec' would be NULL, and we should leave the symbol
11428 alone (it will be set to zero elsewhere in the link). */
11429 if (sec == NULL)
11430 break;
11431 /* Fall thru */
11432
11433 case R_PPC64_GOT16_HA:
11434 case R_PPC64_PLTGOT16_HA:
11435 case R_PPC64_PLT16_HA:
11436 case R_PPC64_GOT_TLSGD16_HA:
11437 case R_PPC64_GOT_TLSLD16_HA:
11438 case R_PPC64_GOT_TPREL16_HA:
11439 case R_PPC64_GOT_DTPREL16_HA:
11440 /* Add 0x10000 if sign bit in 0:15 is set.
11441 Bits 0:15 are not used. */
11442 addend += 0x8000;
11443 break;
11444
11445 case R_PPC64_ADDR16_DS:
11446 case R_PPC64_ADDR16_LO_DS:
11447 case R_PPC64_GOT16_DS:
11448 case R_PPC64_GOT16_LO_DS:
11449 case R_PPC64_PLT16_LO_DS:
11450 case R_PPC64_SECTOFF_DS:
11451 case R_PPC64_SECTOFF_LO_DS:
11452 case R_PPC64_TOC16_DS:
11453 case R_PPC64_TOC16_LO_DS:
11454 case R_PPC64_PLTGOT16_DS:
11455 case R_PPC64_PLTGOT16_LO_DS:
11456 case R_PPC64_GOT_TPREL16_DS:
11457 case R_PPC64_GOT_TPREL16_LO_DS:
11458 case R_PPC64_GOT_DTPREL16_DS:
11459 case R_PPC64_GOT_DTPREL16_LO_DS:
11460 case R_PPC64_TPREL16_DS:
11461 case R_PPC64_TPREL16_LO_DS:
11462 case R_PPC64_DTPREL16_DS:
11463 case R_PPC64_DTPREL16_LO_DS:
11464 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
11465 mask = 3;
11466 /* If this reloc is against an lq insn, then the value must be
11467 a multiple of 16. This is somewhat of a hack, but the
11468 "correct" way to do this by defining _DQ forms of all the
11469 _DS relocs bloats all reloc switches in this file. It
11470 doesn't seem to make much sense to use any of these relocs
11471 in data, so testing the insn should be safe. */
11472 if ((insn & (0x3f << 26)) == (56u << 26))
11473 mask = 15;
11474 if (((relocation + addend) & mask) != 0)
11475 {
11476 (*_bfd_error_handler)
11477 (_("%B: error: relocation %s not a multiple of %d"),
11478 input_bfd,
11479 ppc64_elf_howto_table[r_type]->name,
11480 mask + 1);
11481 bfd_set_error (bfd_error_bad_value);
11482 ret = FALSE;
11483 continue;
11484 }
11485 break;
11486 }
11487
11488 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
11489 because such sections are not SEC_ALLOC and thus ld.so will
11490 not process them. */
11491 if (unresolved_reloc
11492 && !((input_section->flags & SEC_DEBUGGING) != 0
11493 && h->elf.def_dynamic))
11494 {
11495 (*_bfd_error_handler)
11496 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
11497 input_bfd,
11498 input_section,
11499 (long) rel->r_offset,
11500 ppc64_elf_howto_table[(int) r_type]->name,
11501 h->elf.root.root.string);
11502 ret = FALSE;
11503 }
11504
11505 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
11506 input_bfd,
11507 input_section,
11508 contents,
11509 rel->r_offset,
11510 relocation,
11511 addend);
11512
11513 if (r != bfd_reloc_ok)
11514 {
11515 if (sym_name == NULL)
11516 sym_name = "(null)";
11517 if (r == bfd_reloc_overflow)
11518 {
11519 if (warned)
11520 continue;
11521 if (h != NULL
11522 && h->elf.root.type == bfd_link_hash_undefweak
11523 && ppc64_elf_howto_table[r_type]->pc_relative)
11524 {
11525 /* Assume this is a call protected by other code that
11526 detects the symbol is undefined. If this is the case,
11527 we can safely ignore the overflow. If not, the
11528 program is hosed anyway, and a little warning isn't
11529 going to help. */
11530
11531 continue;
11532 }
11533
11534 if (!((*info->callbacks->reloc_overflow)
11535 (info, (h ? &h->elf.root : NULL), sym_name,
11536 ppc64_elf_howto_table[r_type]->name,
11537 orig_addend, input_bfd, input_section, rel->r_offset)))
11538 return FALSE;
11539 }
11540 else
11541 {
11542 (*_bfd_error_handler)
11543 (_("%B(%A+0x%lx): %s reloc against `%s': error %d"),
11544 input_bfd,
11545 input_section,
11546 (long) rel->r_offset,
11547 ppc64_elf_howto_table[r_type]->name,
11548 sym_name,
11549 (int) r);
11550 ret = FALSE;
11551 }
11552 }
11553 }
11554
11555 /* If we're emitting relocations, then shortly after this function
11556 returns, reloc offsets and addends for this section will be
11557 adjusted. Worse, reloc symbol indices will be for the output
11558 file rather than the input. Save a copy of the relocs for
11559 opd_entry_value. */
11560 if (is_opd && (info->emitrelocations || info->relocatable))
11561 {
11562 bfd_size_type amt;
11563 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
11564 rel = bfd_alloc (input_bfd, amt);
11565 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL);
11566 ppc64_elf_tdata (input_bfd)->opd_relocs = rel;
11567 if (rel == NULL)
11568 return FALSE;
11569 memcpy (rel, relocs, amt);
11570 }
11571 return ret;
11572 }
11573
11574 /* Adjust the value of any local symbols in opd sections. */
11575
11576 static bfd_boolean
11577 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
11578 const char *name ATTRIBUTE_UNUSED,
11579 Elf_Internal_Sym *elfsym,
11580 asection *input_sec,
11581 struct elf_link_hash_entry *h)
11582 {
11583 struct _opd_sec_data *opd;
11584 long adjust;
11585 bfd_vma value;
11586
11587 if (h != NULL)
11588 return TRUE;
11589
11590 opd = get_opd_info (input_sec);
11591 if (opd == NULL || opd->adjust == NULL)
11592 return TRUE;
11593
11594 value = elfsym->st_value - input_sec->output_offset;
11595 if (!info->relocatable)
11596 value -= input_sec->output_section->vma;
11597
11598 adjust = opd->adjust[value / 8];
11599 if (adjust == -1)
11600 elfsym->st_value = 0;
11601 else
11602 elfsym->st_value += adjust;
11603 return TRUE;
11604 }
11605
11606 /* Finish up dynamic symbol handling. We set the contents of various
11607 dynamic sections here. */
11608
11609 static bfd_boolean
11610 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
11611 struct bfd_link_info *info,
11612 struct elf_link_hash_entry *h,
11613 Elf_Internal_Sym *sym)
11614 {
11615 struct ppc_link_hash_table *htab;
11616 struct plt_entry *ent;
11617 Elf_Internal_Rela rela;
11618 bfd_byte *loc;
11619
11620 htab = ppc_hash_table (info);
11621
11622 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
11623 if (ent->plt.offset != (bfd_vma) -1)
11624 {
11625 /* This symbol has an entry in the procedure linkage
11626 table. Set it up. */
11627
11628 if (htab->plt == NULL
11629 || htab->relplt == NULL
11630 || htab->glink == NULL)
11631 abort ();
11632
11633 /* Create a JMP_SLOT reloc to inform the dynamic linker to
11634 fill in the PLT entry. */
11635 rela.r_offset = (htab->plt->output_section->vma
11636 + htab->plt->output_offset
11637 + ent->plt.offset);
11638 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
11639 rela.r_addend = ent->addend;
11640
11641 loc = htab->relplt->contents;
11642 loc += ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE
11643 * sizeof (Elf64_External_Rela));
11644 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
11645 }
11646
11647 if (h->needs_copy)
11648 {
11649 Elf_Internal_Rela rela;
11650 bfd_byte *loc;
11651
11652 /* This symbol needs a copy reloc. Set it up. */
11653
11654 if (h->dynindx == -1
11655 || (h->root.type != bfd_link_hash_defined
11656 && h->root.type != bfd_link_hash_defweak)
11657 || htab->relbss == NULL)
11658 abort ();
11659
11660 rela.r_offset = (h->root.u.def.value
11661 + h->root.u.def.section->output_section->vma
11662 + h->root.u.def.section->output_offset);
11663 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
11664 rela.r_addend = 0;
11665 loc = htab->relbss->contents;
11666 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
11667 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
11668 }
11669
11670 /* Mark some specially defined symbols as absolute. */
11671 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
11672 sym->st_shndx = SHN_ABS;
11673
11674 return TRUE;
11675 }
11676
11677 /* Used to decide how to sort relocs in an optimal manner for the
11678 dynamic linker, before writing them out. */
11679
11680 static enum elf_reloc_type_class
11681 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
11682 {
11683 enum elf_ppc64_reloc_type r_type;
11684
11685 r_type = ELF64_R_TYPE (rela->r_info);
11686 switch (r_type)
11687 {
11688 case R_PPC64_RELATIVE:
11689 return reloc_class_relative;
11690 case R_PPC64_JMP_SLOT:
11691 return reloc_class_plt;
11692 case R_PPC64_COPY:
11693 return reloc_class_copy;
11694 default:
11695 return reloc_class_normal;
11696 }
11697 }
11698
11699 /* Finish up the dynamic sections. */
11700
11701 static bfd_boolean
11702 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
11703 struct bfd_link_info *info)
11704 {
11705 struct ppc_link_hash_table *htab;
11706 bfd *dynobj;
11707 asection *sdyn;
11708
11709 htab = ppc_hash_table (info);
11710 dynobj = htab->elf.dynobj;
11711 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
11712
11713 if (htab->elf.dynamic_sections_created)
11714 {
11715 Elf64_External_Dyn *dyncon, *dynconend;
11716
11717 if (sdyn == NULL || htab->got == NULL)
11718 abort ();
11719
11720 dyncon = (Elf64_External_Dyn *) sdyn->contents;
11721 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
11722 for (; dyncon < dynconend; dyncon++)
11723 {
11724 Elf_Internal_Dyn dyn;
11725 asection *s;
11726
11727 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
11728
11729 switch (dyn.d_tag)
11730 {
11731 default:
11732 continue;
11733
11734 case DT_PPC64_GLINK:
11735 s = htab->glink;
11736 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11737 /* We stupidly defined DT_PPC64_GLINK to be the start
11738 of glink rather than the first entry point, which is
11739 what ld.so needs, and now have a bigger stub to
11740 support automatic multiple TOCs. */
11741 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
11742 break;
11743
11744 case DT_PPC64_OPD:
11745 s = bfd_get_section_by_name (output_bfd, ".opd");
11746 if (s == NULL)
11747 continue;
11748 dyn.d_un.d_ptr = s->vma;
11749 break;
11750
11751 case DT_PPC64_OPDSZ:
11752 s = bfd_get_section_by_name (output_bfd, ".opd");
11753 if (s == NULL)
11754 continue;
11755 dyn.d_un.d_val = s->size;
11756 break;
11757
11758 case DT_PLTGOT:
11759 s = htab->plt;
11760 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11761 break;
11762
11763 case DT_JMPREL:
11764 s = htab->relplt;
11765 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11766 break;
11767
11768 case DT_PLTRELSZ:
11769 dyn.d_un.d_val = htab->relplt->size;
11770 break;
11771
11772 case DT_RELASZ:
11773 /* Don't count procedure linkage table relocs in the
11774 overall reloc count. */
11775 s = htab->relplt;
11776 if (s == NULL)
11777 continue;
11778 dyn.d_un.d_val -= s->size;
11779 break;
11780
11781 case DT_RELA:
11782 /* We may not be using the standard ELF linker script.
11783 If .rela.plt is the first .rela section, we adjust
11784 DT_RELA to not include it. */
11785 s = htab->relplt;
11786 if (s == NULL)
11787 continue;
11788 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
11789 continue;
11790 dyn.d_un.d_ptr += s->size;
11791 break;
11792 }
11793
11794 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
11795 }
11796 }
11797
11798 if (htab->got != NULL && htab->got->size != 0)
11799 {
11800 /* Fill in the first entry in the global offset table.
11801 We use it to hold the link-time TOCbase. */
11802 bfd_put_64 (output_bfd,
11803 elf_gp (output_bfd) + TOC_BASE_OFF,
11804 htab->got->contents);
11805
11806 /* Set .got entry size. */
11807 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
11808 }
11809
11810 if (htab->plt != NULL && htab->plt->size != 0)
11811 {
11812 /* Set .plt entry size. */
11813 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
11814 = PLT_ENTRY_SIZE;
11815 }
11816
11817 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
11818 brlt ourselves if emitrelocations. */
11819 if (htab->brlt != NULL
11820 && htab->brlt->reloc_count != 0
11821 && !_bfd_elf_link_output_relocs (output_bfd,
11822 htab->brlt,
11823 &elf_section_data (htab->brlt)->rel_hdr,
11824 elf_section_data (htab->brlt)->relocs,
11825 NULL))
11826 return FALSE;
11827
11828 if (htab->glink != NULL
11829 && htab->glink->reloc_count != 0
11830 && !_bfd_elf_link_output_relocs (output_bfd,
11831 htab->glink,
11832 &elf_section_data (htab->glink)->rel_hdr,
11833 elf_section_data (htab->glink)->relocs,
11834 NULL))
11835 return FALSE;
11836
11837 /* We need to handle writing out multiple GOT sections ourselves,
11838 since we didn't add them to DYNOBJ. We know dynobj is the first
11839 bfd. */
11840 while ((dynobj = dynobj->link_next) != NULL)
11841 {
11842 asection *s;
11843
11844 if (!is_ppc64_elf (dynobj))
11845 continue;
11846
11847 s = ppc64_elf_tdata (dynobj)->got;
11848 if (s != NULL
11849 && s->size != 0
11850 && s->output_section != bfd_abs_section_ptr
11851 && !bfd_set_section_contents (output_bfd, s->output_section,
11852 s->contents, s->output_offset,
11853 s->size))
11854 return FALSE;
11855 s = ppc64_elf_tdata (dynobj)->relgot;
11856 if (s != NULL
11857 && s->size != 0
11858 && s->output_section != bfd_abs_section_ptr
11859 && !bfd_set_section_contents (output_bfd, s->output_section,
11860 s->contents, s->output_offset,
11861 s->size))
11862 return FALSE;
11863 }
11864
11865 return TRUE;
11866 }
11867
11868 #include "elf64-target.h"
This page took 0.499168 seconds and 4 git commands to generate.