daily update
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24
25 /* The 64-bit PowerPC ELF ABI may be found at
26 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
27 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
28
29 #include "sysdep.h"
30 #include <stdarg.h>
31 #include "bfd.h"
32 #include "bfdlink.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/ppc64.h"
36 #include "elf64-ppc.h"
37 #include "dwarf2.h"
38
39 static bfd_reloc_status_type ppc64_elf_ha_reloc
40 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
41 static bfd_reloc_status_type ppc64_elf_branch_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
44 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
45 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
46 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
47 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
48 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
49 static bfd_reloc_status_type ppc64_elf_toc_reloc
50 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
51 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
52 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
53 static bfd_reloc_status_type ppc64_elf_toc64_reloc
54 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
55 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
56 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
57 static bfd_vma opd_entry_value
58 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
59
60 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
61 #define TARGET_LITTLE_NAME "elf64-powerpcle"
62 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
63 #define TARGET_BIG_NAME "elf64-powerpc"
64 #define ELF_ARCH bfd_arch_powerpc
65 #define ELF_TARGET_ID PPC64_ELF_DATA
66 #define ELF_MACHINE_CODE EM_PPC64
67 #define ELF_MAXPAGESIZE 0x10000
68 #define ELF_COMMONPAGESIZE 0x1000
69 #define elf_info_to_howto ppc64_elf_info_to_howto
70
71 #define elf_backend_want_got_sym 0
72 #define elf_backend_want_plt_sym 0
73 #define elf_backend_plt_alignment 3
74 #define elf_backend_plt_not_loaded 1
75 #define elf_backend_got_header_size 8
76 #define elf_backend_can_gc_sections 1
77 #define elf_backend_can_refcount 1
78 #define elf_backend_rela_normal 1
79 #define elf_backend_default_execstack 0
80
81 #define bfd_elf64_mkobject ppc64_elf_mkobject
82 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
83 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
84 #define bfd_elf64_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
88 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
89 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
90
91 #define elf_backend_object_p ppc64_elf_object_p
92 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
93 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
94 #define elf_backend_write_core_note ppc64_elf_write_core_note
95 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
96 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
97 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
98 #define elf_backend_check_directives ppc64_elf_process_dot_syms
99 #define elf_backend_as_needed_cleanup ppc64_elf_as_needed_cleanup
100 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
101 #define elf_backend_check_relocs ppc64_elf_check_relocs
102 #define elf_backend_gc_keep ppc64_elf_gc_keep
103 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
104 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
105 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
106 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
107 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
108 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
109 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
110 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_post_process_headers _bfd_elf_set_osabi
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE 24
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
130
131 /* TOC base pointers offset from start of TOC. */
132 #define TOC_BASE_OFF 0x8000
133
134 /* Offset of tp and dtp pointers from start of TLS block. */
135 #define TP_OFFSET 0x7000
136 #define DTP_OFFSET 0x8000
137
138 /* .plt call stub instructions. The normal stub is like this, but
139 sometimes the .plt entry crosses a 64k boundary and we need to
140 insert an addi to adjust r12. */
141 #define PLT_CALL_STUB_SIZE (7*4)
142 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
143 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
144 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
145 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
146 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
147 /* ld %r11,xxx+16@l(%r12) */
148 #define BCTR 0x4e800420 /* bctr */
149
150
151 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,off@ha */
152 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
153 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
154 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
155
156 #define XOR_R11_R11_R11 0x7d6b5a78 /* xor %r11,%r11,%r11 */
157 #define ADD_R12_R12_R11 0x7d8c5a14 /* add %r12,%r12,%r11 */
158 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
159 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
160 #define BNECTR 0x4ca20420 /* bnectr+ */
161 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
162
163 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
164 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
165
166 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
167
168 /* glink call stub instructions. We enter with the index in R0. */
169 #define GLINK_CALL_STUB_SIZE (16*4)
170 /* 0: */
171 /* .quad plt0-1f */
172 /* __glink: */
173 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
174 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
175 /* 1: */
176 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
177 #define LD_R2_M16R11 0xe84bfff0 /* ld %2,(0b-1b)(%11) */
178 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
179 #define ADD_R12_R2_R11 0x7d825a14 /* add %12,%2,%11 */
180 /* ld %11,0(%12) */
181 /* ld %2,8(%12) */
182 /* mtctr %11 */
183 /* ld %11,16(%12) */
184 /* bctr */
185
186 /* Pad with this. */
187 #define NOP 0x60000000
188
189 /* Some other nops. */
190 #define CROR_151515 0x4def7b82
191 #define CROR_313131 0x4ffffb82
192
193 /* .glink entries for the first 32k functions are two instructions. */
194 #define LI_R0_0 0x38000000 /* li %r0,0 */
195 #define B_DOT 0x48000000 /* b . */
196
197 /* After that, we need two instructions to load the index, followed by
198 a branch. */
199 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
200 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
201
202 /* Instructions used by the save and restore reg functions. */
203 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
204 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
205 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
206 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
207 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
208 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
209 #define LI_R12_0 0x39800000 /* li %r12,0 */
210 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
211 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
212 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
213 #define BLR 0x4e800020 /* blr */
214
215 /* Since .opd is an array of descriptors and each entry will end up
216 with identical R_PPC64_RELATIVE relocs, there is really no need to
217 propagate .opd relocs; The dynamic linker should be taught to
218 relocate .opd without reloc entries. */
219 #ifndef NO_OPD_RELOCS
220 #define NO_OPD_RELOCS 0
221 #endif
222 \f
223 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
224
225 /* Relocation HOWTO's. */
226 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
227
228 static reloc_howto_type ppc64_elf_howto_raw[] = {
229 /* This reloc does nothing. */
230 HOWTO (R_PPC64_NONE, /* type */
231 0, /* rightshift */
232 2, /* size (0 = byte, 1 = short, 2 = long) */
233 32, /* bitsize */
234 FALSE, /* pc_relative */
235 0, /* bitpos */
236 complain_overflow_dont, /* complain_on_overflow */
237 bfd_elf_generic_reloc, /* special_function */
238 "R_PPC64_NONE", /* name */
239 FALSE, /* partial_inplace */
240 0, /* src_mask */
241 0, /* dst_mask */
242 FALSE), /* pcrel_offset */
243
244 /* A standard 32 bit relocation. */
245 HOWTO (R_PPC64_ADDR32, /* type */
246 0, /* rightshift */
247 2, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_bitfield, /* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_PPC64_ADDR32", /* name */
254 FALSE, /* partial_inplace */
255 0, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 /* An absolute 26 bit branch; the lower two bits must be zero.
260 FIXME: we don't check that, we just clear them. */
261 HOWTO (R_PPC64_ADDR24, /* type */
262 0, /* rightshift */
263 2, /* size (0 = byte, 1 = short, 2 = long) */
264 26, /* bitsize */
265 FALSE, /* pc_relative */
266 0, /* bitpos */
267 complain_overflow_bitfield, /* complain_on_overflow */
268 bfd_elf_generic_reloc, /* special_function */
269 "R_PPC64_ADDR24", /* name */
270 FALSE, /* partial_inplace */
271 0, /* src_mask */
272 0x03fffffc, /* dst_mask */
273 FALSE), /* pcrel_offset */
274
275 /* A standard 16 bit relocation. */
276 HOWTO (R_PPC64_ADDR16, /* type */
277 0, /* rightshift */
278 1, /* size (0 = byte, 1 = short, 2 = long) */
279 16, /* bitsize */
280 FALSE, /* pc_relative */
281 0, /* bitpos */
282 complain_overflow_bitfield, /* complain_on_overflow */
283 bfd_elf_generic_reloc, /* special_function */
284 "R_PPC64_ADDR16", /* name */
285 FALSE, /* partial_inplace */
286 0, /* src_mask */
287 0xffff, /* dst_mask */
288 FALSE), /* pcrel_offset */
289
290 /* A 16 bit relocation without overflow. */
291 HOWTO (R_PPC64_ADDR16_LO, /* type */
292 0, /* rightshift */
293 1, /* size (0 = byte, 1 = short, 2 = long) */
294 16, /* bitsize */
295 FALSE, /* pc_relative */
296 0, /* bitpos */
297 complain_overflow_dont,/* complain_on_overflow */
298 bfd_elf_generic_reloc, /* special_function */
299 "R_PPC64_ADDR16_LO", /* name */
300 FALSE, /* partial_inplace */
301 0, /* src_mask */
302 0xffff, /* dst_mask */
303 FALSE), /* pcrel_offset */
304
305 /* Bits 16-31 of an address. */
306 HOWTO (R_PPC64_ADDR16_HI, /* type */
307 16, /* rightshift */
308 1, /* size (0 = byte, 1 = short, 2 = long) */
309 16, /* bitsize */
310 FALSE, /* pc_relative */
311 0, /* bitpos */
312 complain_overflow_dont, /* complain_on_overflow */
313 bfd_elf_generic_reloc, /* special_function */
314 "R_PPC64_ADDR16_HI", /* name */
315 FALSE, /* partial_inplace */
316 0, /* src_mask */
317 0xffff, /* dst_mask */
318 FALSE), /* pcrel_offset */
319
320 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
321 bits, treated as a signed number, is negative. */
322 HOWTO (R_PPC64_ADDR16_HA, /* type */
323 16, /* rightshift */
324 1, /* size (0 = byte, 1 = short, 2 = long) */
325 16, /* bitsize */
326 FALSE, /* pc_relative */
327 0, /* bitpos */
328 complain_overflow_dont, /* complain_on_overflow */
329 ppc64_elf_ha_reloc, /* special_function */
330 "R_PPC64_ADDR16_HA", /* name */
331 FALSE, /* partial_inplace */
332 0, /* src_mask */
333 0xffff, /* dst_mask */
334 FALSE), /* pcrel_offset */
335
336 /* An absolute 16 bit branch; the lower two bits must be zero.
337 FIXME: we don't check that, we just clear them. */
338 HOWTO (R_PPC64_ADDR14, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 16, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield, /* complain_on_overflow */
345 ppc64_elf_branch_reloc, /* special_function */
346 "R_PPC64_ADDR14", /* name */
347 FALSE, /* partial_inplace */
348 0, /* src_mask */
349 0x0000fffc, /* dst_mask */
350 FALSE), /* pcrel_offset */
351
352 /* An absolute 16 bit branch, for which bit 10 should be set to
353 indicate that the branch is expected to be taken. The lower two
354 bits must be zero. */
355 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
356 0, /* rightshift */
357 2, /* size (0 = byte, 1 = short, 2 = long) */
358 16, /* bitsize */
359 FALSE, /* pc_relative */
360 0, /* bitpos */
361 complain_overflow_bitfield, /* complain_on_overflow */
362 ppc64_elf_brtaken_reloc, /* special_function */
363 "R_PPC64_ADDR14_BRTAKEN",/* name */
364 FALSE, /* partial_inplace */
365 0, /* src_mask */
366 0x0000fffc, /* dst_mask */
367 FALSE), /* pcrel_offset */
368
369 /* An absolute 16 bit branch, for which bit 10 should be set to
370 indicate that the branch is not expected to be taken. The lower
371 two bits must be zero. */
372 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 16, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield, /* complain_on_overflow */
379 ppc64_elf_brtaken_reloc, /* special_function */
380 "R_PPC64_ADDR14_BRNTAKEN",/* name */
381 FALSE, /* partial_inplace */
382 0, /* src_mask */
383 0x0000fffc, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 /* A relative 26 bit branch; the lower two bits must be zero. */
387 HOWTO (R_PPC64_REL24, /* type */
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 26, /* bitsize */
391 TRUE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_signed, /* complain_on_overflow */
394 ppc64_elf_branch_reloc, /* special_function */
395 "R_PPC64_REL24", /* name */
396 FALSE, /* partial_inplace */
397 0, /* src_mask */
398 0x03fffffc, /* dst_mask */
399 TRUE), /* pcrel_offset */
400
401 /* A relative 16 bit branch; the lower two bits must be zero. */
402 HOWTO (R_PPC64_REL14, /* type */
403 0, /* rightshift */
404 2, /* size (0 = byte, 1 = short, 2 = long) */
405 16, /* bitsize */
406 TRUE, /* pc_relative */
407 0, /* bitpos */
408 complain_overflow_signed, /* complain_on_overflow */
409 ppc64_elf_branch_reloc, /* special_function */
410 "R_PPC64_REL14", /* name */
411 FALSE, /* partial_inplace */
412 0, /* src_mask */
413 0x0000fffc, /* dst_mask */
414 TRUE), /* pcrel_offset */
415
416 /* A relative 16 bit branch. Bit 10 should be set to indicate that
417 the branch is expected to be taken. The lower two bits must be
418 zero. */
419 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 16, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 ppc64_elf_brtaken_reloc, /* special_function */
427 "R_PPC64_REL14_BRTAKEN", /* name */
428 FALSE, /* partial_inplace */
429 0, /* src_mask */
430 0x0000fffc, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 /* A relative 16 bit branch. Bit 10 should be set to indicate that
434 the branch is not expected to be taken. The lower two bits must
435 be zero. */
436 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
437 0, /* rightshift */
438 2, /* size (0 = byte, 1 = short, 2 = long) */
439 16, /* bitsize */
440 TRUE, /* pc_relative */
441 0, /* bitpos */
442 complain_overflow_signed, /* complain_on_overflow */
443 ppc64_elf_brtaken_reloc, /* special_function */
444 "R_PPC64_REL14_BRNTAKEN",/* name */
445 FALSE, /* partial_inplace */
446 0, /* src_mask */
447 0x0000fffc, /* dst_mask */
448 TRUE), /* pcrel_offset */
449
450 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
451 symbol. */
452 HOWTO (R_PPC64_GOT16, /* type */
453 0, /* rightshift */
454 1, /* size (0 = byte, 1 = short, 2 = long) */
455 16, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_signed, /* complain_on_overflow */
459 ppc64_elf_unhandled_reloc, /* special_function */
460 "R_PPC64_GOT16", /* name */
461 FALSE, /* partial_inplace */
462 0, /* src_mask */
463 0xffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465
466 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
467 the symbol. */
468 HOWTO (R_PPC64_GOT16_LO, /* type */
469 0, /* rightshift */
470 1, /* size (0 = byte, 1 = short, 2 = long) */
471 16, /* bitsize */
472 FALSE, /* pc_relative */
473 0, /* bitpos */
474 complain_overflow_dont, /* complain_on_overflow */
475 ppc64_elf_unhandled_reloc, /* special_function */
476 "R_PPC64_GOT16_LO", /* name */
477 FALSE, /* partial_inplace */
478 0, /* src_mask */
479 0xffff, /* dst_mask */
480 FALSE), /* pcrel_offset */
481
482 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
483 the symbol. */
484 HOWTO (R_PPC64_GOT16_HI, /* type */
485 16, /* rightshift */
486 1, /* size (0 = byte, 1 = short, 2 = long) */
487 16, /* bitsize */
488 FALSE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_dont,/* complain_on_overflow */
491 ppc64_elf_unhandled_reloc, /* special_function */
492 "R_PPC64_GOT16_HI", /* name */
493 FALSE, /* partial_inplace */
494 0, /* src_mask */
495 0xffff, /* dst_mask */
496 FALSE), /* pcrel_offset */
497
498 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
499 the symbol. */
500 HOWTO (R_PPC64_GOT16_HA, /* type */
501 16, /* rightshift */
502 1, /* size (0 = byte, 1 = short, 2 = long) */
503 16, /* bitsize */
504 FALSE, /* pc_relative */
505 0, /* bitpos */
506 complain_overflow_dont,/* complain_on_overflow */
507 ppc64_elf_unhandled_reloc, /* special_function */
508 "R_PPC64_GOT16_HA", /* name */
509 FALSE, /* partial_inplace */
510 0, /* src_mask */
511 0xffff, /* dst_mask */
512 FALSE), /* pcrel_offset */
513
514 /* This is used only by the dynamic linker. The symbol should exist
515 both in the object being run and in some shared library. The
516 dynamic linker copies the data addressed by the symbol from the
517 shared library into the object, because the object being
518 run has to have the data at some particular address. */
519 HOWTO (R_PPC64_COPY, /* type */
520 0, /* rightshift */
521 0, /* this one is variable size */
522 0, /* bitsize */
523 FALSE, /* pc_relative */
524 0, /* bitpos */
525 complain_overflow_dont, /* complain_on_overflow */
526 ppc64_elf_unhandled_reloc, /* special_function */
527 "R_PPC64_COPY", /* name */
528 FALSE, /* partial_inplace */
529 0, /* src_mask */
530 0, /* dst_mask */
531 FALSE), /* pcrel_offset */
532
533 /* Like R_PPC64_ADDR64, but used when setting global offset table
534 entries. */
535 HOWTO (R_PPC64_GLOB_DAT, /* type */
536 0, /* rightshift */
537 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
538 64, /* bitsize */
539 FALSE, /* pc_relative */
540 0, /* bitpos */
541 complain_overflow_dont, /* complain_on_overflow */
542 ppc64_elf_unhandled_reloc, /* special_function */
543 "R_PPC64_GLOB_DAT", /* name */
544 FALSE, /* partial_inplace */
545 0, /* src_mask */
546 ONES (64), /* dst_mask */
547 FALSE), /* pcrel_offset */
548
549 /* Created by the link editor. Marks a procedure linkage table
550 entry for a symbol. */
551 HOWTO (R_PPC64_JMP_SLOT, /* type */
552 0, /* rightshift */
553 0, /* size (0 = byte, 1 = short, 2 = long) */
554 0, /* bitsize */
555 FALSE, /* pc_relative */
556 0, /* bitpos */
557 complain_overflow_dont, /* complain_on_overflow */
558 ppc64_elf_unhandled_reloc, /* special_function */
559 "R_PPC64_JMP_SLOT", /* name */
560 FALSE, /* partial_inplace */
561 0, /* src_mask */
562 0, /* dst_mask */
563 FALSE), /* pcrel_offset */
564
565 /* Used only by the dynamic linker. When the object is run, this
566 doubleword64 is set to the load address of the object, plus the
567 addend. */
568 HOWTO (R_PPC64_RELATIVE, /* type */
569 0, /* rightshift */
570 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
571 64, /* bitsize */
572 FALSE, /* pc_relative */
573 0, /* bitpos */
574 complain_overflow_dont, /* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_PPC64_RELATIVE", /* name */
577 FALSE, /* partial_inplace */
578 0, /* src_mask */
579 ONES (64), /* dst_mask */
580 FALSE), /* pcrel_offset */
581
582 /* Like R_PPC64_ADDR32, but may be unaligned. */
583 HOWTO (R_PPC64_UADDR32, /* type */
584 0, /* rightshift */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
586 32, /* bitsize */
587 FALSE, /* pc_relative */
588 0, /* bitpos */
589 complain_overflow_bitfield, /* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_PPC64_UADDR32", /* name */
592 FALSE, /* partial_inplace */
593 0, /* src_mask */
594 0xffffffff, /* dst_mask */
595 FALSE), /* pcrel_offset */
596
597 /* Like R_PPC64_ADDR16, but may be unaligned. */
598 HOWTO (R_PPC64_UADDR16, /* type */
599 0, /* rightshift */
600 1, /* size (0 = byte, 1 = short, 2 = long) */
601 16, /* bitsize */
602 FALSE, /* pc_relative */
603 0, /* bitpos */
604 complain_overflow_bitfield, /* complain_on_overflow */
605 bfd_elf_generic_reloc, /* special_function */
606 "R_PPC64_UADDR16", /* name */
607 FALSE, /* partial_inplace */
608 0, /* src_mask */
609 0xffff, /* dst_mask */
610 FALSE), /* pcrel_offset */
611
612 /* 32-bit PC relative. */
613 HOWTO (R_PPC64_REL32, /* type */
614 0, /* rightshift */
615 2, /* size (0 = byte, 1 = short, 2 = long) */
616 32, /* bitsize */
617 TRUE, /* pc_relative */
618 0, /* bitpos */
619 /* FIXME: Verify. Was complain_overflow_bitfield. */
620 complain_overflow_signed, /* complain_on_overflow */
621 bfd_elf_generic_reloc, /* special_function */
622 "R_PPC64_REL32", /* name */
623 FALSE, /* partial_inplace */
624 0, /* src_mask */
625 0xffffffff, /* dst_mask */
626 TRUE), /* pcrel_offset */
627
628 /* 32-bit relocation to the symbol's procedure linkage table. */
629 HOWTO (R_PPC64_PLT32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_bitfield, /* complain_on_overflow */
636 ppc64_elf_unhandled_reloc, /* special_function */
637 "R_PPC64_PLT32", /* name */
638 FALSE, /* partial_inplace */
639 0, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
644 FIXME: R_PPC64_PLTREL32 not supported. */
645 HOWTO (R_PPC64_PLTREL32, /* type */
646 0, /* rightshift */
647 2, /* size (0 = byte, 1 = short, 2 = long) */
648 32, /* bitsize */
649 TRUE, /* pc_relative */
650 0, /* bitpos */
651 complain_overflow_signed, /* complain_on_overflow */
652 bfd_elf_generic_reloc, /* special_function */
653 "R_PPC64_PLTREL32", /* name */
654 FALSE, /* partial_inplace */
655 0, /* src_mask */
656 0xffffffff, /* dst_mask */
657 TRUE), /* pcrel_offset */
658
659 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
660 the symbol. */
661 HOWTO (R_PPC64_PLT16_LO, /* type */
662 0, /* rightshift */
663 1, /* size (0 = byte, 1 = short, 2 = long) */
664 16, /* bitsize */
665 FALSE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_dont, /* complain_on_overflow */
668 ppc64_elf_unhandled_reloc, /* special_function */
669 "R_PPC64_PLT16_LO", /* name */
670 FALSE, /* partial_inplace */
671 0, /* src_mask */
672 0xffff, /* dst_mask */
673 FALSE), /* pcrel_offset */
674
675 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
676 the symbol. */
677 HOWTO (R_PPC64_PLT16_HI, /* type */
678 16, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 16, /* bitsize */
681 FALSE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_dont, /* complain_on_overflow */
684 ppc64_elf_unhandled_reloc, /* special_function */
685 "R_PPC64_PLT16_HI", /* name */
686 FALSE, /* partial_inplace */
687 0, /* src_mask */
688 0xffff, /* dst_mask */
689 FALSE), /* pcrel_offset */
690
691 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
692 the symbol. */
693 HOWTO (R_PPC64_PLT16_HA, /* type */
694 16, /* rightshift */
695 1, /* size (0 = byte, 1 = short, 2 = long) */
696 16, /* bitsize */
697 FALSE, /* pc_relative */
698 0, /* bitpos */
699 complain_overflow_dont, /* complain_on_overflow */
700 ppc64_elf_unhandled_reloc, /* special_function */
701 "R_PPC64_PLT16_HA", /* name */
702 FALSE, /* partial_inplace */
703 0, /* src_mask */
704 0xffff, /* dst_mask */
705 FALSE), /* pcrel_offset */
706
707 /* 16-bit section relative relocation. */
708 HOWTO (R_PPC64_SECTOFF, /* type */
709 0, /* rightshift */
710 1, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield, /* complain_on_overflow */
715 ppc64_elf_sectoff_reloc, /* special_function */
716 "R_PPC64_SECTOFF", /* name */
717 FALSE, /* partial_inplace */
718 0, /* src_mask */
719 0xffff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 /* Like R_PPC64_SECTOFF, but no overflow warning. */
723 HOWTO (R_PPC64_SECTOFF_LO, /* type */
724 0, /* rightshift */
725 1, /* size (0 = byte, 1 = short, 2 = long) */
726 16, /* bitsize */
727 FALSE, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_dont, /* complain_on_overflow */
730 ppc64_elf_sectoff_reloc, /* special_function */
731 "R_PPC64_SECTOFF_LO", /* name */
732 FALSE, /* partial_inplace */
733 0, /* src_mask */
734 0xffff, /* dst_mask */
735 FALSE), /* pcrel_offset */
736
737 /* 16-bit upper half section relative relocation. */
738 HOWTO (R_PPC64_SECTOFF_HI, /* type */
739 16, /* rightshift */
740 1, /* size (0 = byte, 1 = short, 2 = long) */
741 16, /* bitsize */
742 FALSE, /* pc_relative */
743 0, /* bitpos */
744 complain_overflow_dont, /* complain_on_overflow */
745 ppc64_elf_sectoff_reloc, /* special_function */
746 "R_PPC64_SECTOFF_HI", /* name */
747 FALSE, /* partial_inplace */
748 0, /* src_mask */
749 0xffff, /* dst_mask */
750 FALSE), /* pcrel_offset */
751
752 /* 16-bit upper half adjusted section relative relocation. */
753 HOWTO (R_PPC64_SECTOFF_HA, /* type */
754 16, /* rightshift */
755 1, /* size (0 = byte, 1 = short, 2 = long) */
756 16, /* bitsize */
757 FALSE, /* pc_relative */
758 0, /* bitpos */
759 complain_overflow_dont, /* complain_on_overflow */
760 ppc64_elf_sectoff_ha_reloc, /* special_function */
761 "R_PPC64_SECTOFF_HA", /* name */
762 FALSE, /* partial_inplace */
763 0, /* src_mask */
764 0xffff, /* dst_mask */
765 FALSE), /* pcrel_offset */
766
767 /* Like R_PPC64_REL24 without touching the two least significant bits. */
768 HOWTO (R_PPC64_REL30, /* type */
769 2, /* rightshift */
770 2, /* size (0 = byte, 1 = short, 2 = long) */
771 30, /* bitsize */
772 TRUE, /* pc_relative */
773 0, /* bitpos */
774 complain_overflow_dont, /* complain_on_overflow */
775 bfd_elf_generic_reloc, /* special_function */
776 "R_PPC64_REL30", /* name */
777 FALSE, /* partial_inplace */
778 0, /* src_mask */
779 0xfffffffc, /* dst_mask */
780 TRUE), /* pcrel_offset */
781
782 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
783
784 /* A standard 64-bit relocation. */
785 HOWTO (R_PPC64_ADDR64, /* type */
786 0, /* rightshift */
787 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
788 64, /* bitsize */
789 FALSE, /* pc_relative */
790 0, /* bitpos */
791 complain_overflow_dont, /* complain_on_overflow */
792 bfd_elf_generic_reloc, /* special_function */
793 "R_PPC64_ADDR64", /* name */
794 FALSE, /* partial_inplace */
795 0, /* src_mask */
796 ONES (64), /* dst_mask */
797 FALSE), /* pcrel_offset */
798
799 /* The bits 32-47 of an address. */
800 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
801 32, /* rightshift */
802 1, /* size (0 = byte, 1 = short, 2 = long) */
803 16, /* bitsize */
804 FALSE, /* pc_relative */
805 0, /* bitpos */
806 complain_overflow_dont, /* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 "R_PPC64_ADDR16_HIGHER", /* name */
809 FALSE, /* partial_inplace */
810 0, /* src_mask */
811 0xffff, /* dst_mask */
812 FALSE), /* pcrel_offset */
813
814 /* The bits 32-47 of an address, plus 1 if the contents of the low
815 16 bits, treated as a signed number, is negative. */
816 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
817 32, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 16, /* bitsize */
820 FALSE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_dont, /* complain_on_overflow */
823 ppc64_elf_ha_reloc, /* special_function */
824 "R_PPC64_ADDR16_HIGHERA", /* name */
825 FALSE, /* partial_inplace */
826 0, /* src_mask */
827 0xffff, /* dst_mask */
828 FALSE), /* pcrel_offset */
829
830 /* The bits 48-63 of an address. */
831 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
832 48, /* rightshift */
833 1, /* size (0 = byte, 1 = short, 2 = long) */
834 16, /* bitsize */
835 FALSE, /* pc_relative */
836 0, /* bitpos */
837 complain_overflow_dont, /* complain_on_overflow */
838 bfd_elf_generic_reloc, /* special_function */
839 "R_PPC64_ADDR16_HIGHEST", /* name */
840 FALSE, /* partial_inplace */
841 0, /* src_mask */
842 0xffff, /* dst_mask */
843 FALSE), /* pcrel_offset */
844
845 /* The bits 48-63 of an address, plus 1 if the contents of the low
846 16 bits, treated as a signed number, is negative. */
847 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
848 48, /* rightshift */
849 1, /* size (0 = byte, 1 = short, 2 = long) */
850 16, /* bitsize */
851 FALSE, /* pc_relative */
852 0, /* bitpos */
853 complain_overflow_dont, /* complain_on_overflow */
854 ppc64_elf_ha_reloc, /* special_function */
855 "R_PPC64_ADDR16_HIGHESTA", /* name */
856 FALSE, /* partial_inplace */
857 0, /* src_mask */
858 0xffff, /* dst_mask */
859 FALSE), /* pcrel_offset */
860
861 /* Like ADDR64, but may be unaligned. */
862 HOWTO (R_PPC64_UADDR64, /* type */
863 0, /* rightshift */
864 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
865 64, /* bitsize */
866 FALSE, /* pc_relative */
867 0, /* bitpos */
868 complain_overflow_dont, /* complain_on_overflow */
869 bfd_elf_generic_reloc, /* special_function */
870 "R_PPC64_UADDR64", /* name */
871 FALSE, /* partial_inplace */
872 0, /* src_mask */
873 ONES (64), /* dst_mask */
874 FALSE), /* pcrel_offset */
875
876 /* 64-bit relative relocation. */
877 HOWTO (R_PPC64_REL64, /* type */
878 0, /* rightshift */
879 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
880 64, /* bitsize */
881 TRUE, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_dont, /* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 "R_PPC64_REL64", /* name */
886 FALSE, /* partial_inplace */
887 0, /* src_mask */
888 ONES (64), /* dst_mask */
889 TRUE), /* pcrel_offset */
890
891 /* 64-bit relocation to the symbol's procedure linkage table. */
892 HOWTO (R_PPC64_PLT64, /* type */
893 0, /* rightshift */
894 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
895 64, /* bitsize */
896 FALSE, /* pc_relative */
897 0, /* bitpos */
898 complain_overflow_dont, /* complain_on_overflow */
899 ppc64_elf_unhandled_reloc, /* special_function */
900 "R_PPC64_PLT64", /* name */
901 FALSE, /* partial_inplace */
902 0, /* src_mask */
903 ONES (64), /* dst_mask */
904 FALSE), /* pcrel_offset */
905
906 /* 64-bit PC relative relocation to the symbol's procedure linkage
907 table. */
908 /* FIXME: R_PPC64_PLTREL64 not supported. */
909 HOWTO (R_PPC64_PLTREL64, /* type */
910 0, /* rightshift */
911 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
912 64, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont, /* complain_on_overflow */
916 ppc64_elf_unhandled_reloc, /* special_function */
917 "R_PPC64_PLTREL64", /* name */
918 FALSE, /* partial_inplace */
919 0, /* src_mask */
920 ONES (64), /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 /* 16 bit TOC-relative relocation. */
924
925 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
926 HOWTO (R_PPC64_TOC16, /* type */
927 0, /* rightshift */
928 1, /* size (0 = byte, 1 = short, 2 = long) */
929 16, /* bitsize */
930 FALSE, /* pc_relative */
931 0, /* bitpos */
932 complain_overflow_signed, /* complain_on_overflow */
933 ppc64_elf_toc_reloc, /* special_function */
934 "R_PPC64_TOC16", /* name */
935 FALSE, /* partial_inplace */
936 0, /* src_mask */
937 0xffff, /* dst_mask */
938 FALSE), /* pcrel_offset */
939
940 /* 16 bit TOC-relative relocation without overflow. */
941
942 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
943 HOWTO (R_PPC64_TOC16_LO, /* type */
944 0, /* rightshift */
945 1, /* size (0 = byte, 1 = short, 2 = long) */
946 16, /* bitsize */
947 FALSE, /* pc_relative */
948 0, /* bitpos */
949 complain_overflow_dont, /* complain_on_overflow */
950 ppc64_elf_toc_reloc, /* special_function */
951 "R_PPC64_TOC16_LO", /* name */
952 FALSE, /* partial_inplace */
953 0, /* src_mask */
954 0xffff, /* dst_mask */
955 FALSE), /* pcrel_offset */
956
957 /* 16 bit TOC-relative relocation, high 16 bits. */
958
959 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
960 HOWTO (R_PPC64_TOC16_HI, /* type */
961 16, /* rightshift */
962 1, /* size (0 = byte, 1 = short, 2 = long) */
963 16, /* bitsize */
964 FALSE, /* pc_relative */
965 0, /* bitpos */
966 complain_overflow_dont, /* complain_on_overflow */
967 ppc64_elf_toc_reloc, /* special_function */
968 "R_PPC64_TOC16_HI", /* name */
969 FALSE, /* partial_inplace */
970 0, /* src_mask */
971 0xffff, /* dst_mask */
972 FALSE), /* pcrel_offset */
973
974 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
975 contents of the low 16 bits, treated as a signed number, is
976 negative. */
977
978 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
979 HOWTO (R_PPC64_TOC16_HA, /* type */
980 16, /* rightshift */
981 1, /* size (0 = byte, 1 = short, 2 = long) */
982 16, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 ppc64_elf_toc_ha_reloc, /* special_function */
987 "R_PPC64_TOC16_HA", /* name */
988 FALSE, /* partial_inplace */
989 0, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
993 /* 64-bit relocation; insert value of TOC base (.TOC.). */
994
995 /* R_PPC64_TOC 51 doubleword64 .TOC. */
996 HOWTO (R_PPC64_TOC, /* type */
997 0, /* rightshift */
998 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
999 64, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_bitfield, /* complain_on_overflow */
1003 ppc64_elf_toc64_reloc, /* special_function */
1004 "R_PPC64_TOC", /* name */
1005 FALSE, /* partial_inplace */
1006 0, /* src_mask */
1007 ONES (64), /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* Like R_PPC64_GOT16, but also informs the link editor that the
1011 value to relocate may (!) refer to a PLT entry which the link
1012 editor (a) may replace with the symbol value. If the link editor
1013 is unable to fully resolve the symbol, it may (b) create a PLT
1014 entry and store the address to the new PLT entry in the GOT.
1015 This permits lazy resolution of function symbols at run time.
1016 The link editor may also skip all of this and just (c) emit a
1017 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1018 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1019 HOWTO (R_PPC64_PLTGOT16, /* type */
1020 0, /* rightshift */
1021 1, /* size (0 = byte, 1 = short, 2 = long) */
1022 16, /* bitsize */
1023 FALSE, /* pc_relative */
1024 0, /* bitpos */
1025 complain_overflow_signed, /* complain_on_overflow */
1026 ppc64_elf_unhandled_reloc, /* special_function */
1027 "R_PPC64_PLTGOT16", /* name */
1028 FALSE, /* partial_inplace */
1029 0, /* src_mask */
1030 0xffff, /* dst_mask */
1031 FALSE), /* pcrel_offset */
1032
1033 /* Like R_PPC64_PLTGOT16, but without overflow. */
1034 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1035 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1036 0, /* rightshift */
1037 1, /* size (0 = byte, 1 = short, 2 = long) */
1038 16, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 ppc64_elf_unhandled_reloc, /* special_function */
1043 "R_PPC64_PLTGOT16_LO", /* name */
1044 FALSE, /* partial_inplace */
1045 0, /* src_mask */
1046 0xffff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
1049 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1050 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1051 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1052 16, /* rightshift */
1053 1, /* size (0 = byte, 1 = short, 2 = long) */
1054 16, /* bitsize */
1055 FALSE, /* pc_relative */
1056 0, /* bitpos */
1057 complain_overflow_dont, /* complain_on_overflow */
1058 ppc64_elf_unhandled_reloc, /* special_function */
1059 "R_PPC64_PLTGOT16_HI", /* name */
1060 FALSE, /* partial_inplace */
1061 0, /* src_mask */
1062 0xffff, /* dst_mask */
1063 FALSE), /* pcrel_offset */
1064
1065 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1066 1 if the contents of the low 16 bits, treated as a signed number,
1067 is negative. */
1068 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1069 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1070 16, /* rightshift */
1071 1, /* size (0 = byte, 1 = short, 2 = long) */
1072 16, /* bitsize */
1073 FALSE, /* pc_relative */
1074 0, /* bitpos */
1075 complain_overflow_dont,/* complain_on_overflow */
1076 ppc64_elf_unhandled_reloc, /* special_function */
1077 "R_PPC64_PLTGOT16_HA", /* name */
1078 FALSE, /* partial_inplace */
1079 0, /* src_mask */
1080 0xffff, /* dst_mask */
1081 FALSE), /* pcrel_offset */
1082
1083 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1084 HOWTO (R_PPC64_ADDR16_DS, /* type */
1085 0, /* rightshift */
1086 1, /* size (0 = byte, 1 = short, 2 = long) */
1087 16, /* bitsize */
1088 FALSE, /* pc_relative */
1089 0, /* bitpos */
1090 complain_overflow_bitfield, /* complain_on_overflow */
1091 bfd_elf_generic_reloc, /* special_function */
1092 "R_PPC64_ADDR16_DS", /* name */
1093 FALSE, /* partial_inplace */
1094 0, /* src_mask */
1095 0xfffc, /* dst_mask */
1096 FALSE), /* pcrel_offset */
1097
1098 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1099 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1100 0, /* rightshift */
1101 1, /* size (0 = byte, 1 = short, 2 = long) */
1102 16, /* bitsize */
1103 FALSE, /* pc_relative */
1104 0, /* bitpos */
1105 complain_overflow_dont,/* complain_on_overflow */
1106 bfd_elf_generic_reloc, /* special_function */
1107 "R_PPC64_ADDR16_LO_DS",/* name */
1108 FALSE, /* partial_inplace */
1109 0, /* src_mask */
1110 0xfffc, /* dst_mask */
1111 FALSE), /* pcrel_offset */
1112
1113 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1114 HOWTO (R_PPC64_GOT16_DS, /* type */
1115 0, /* rightshift */
1116 1, /* size (0 = byte, 1 = short, 2 = long) */
1117 16, /* bitsize */
1118 FALSE, /* pc_relative */
1119 0, /* bitpos */
1120 complain_overflow_signed, /* complain_on_overflow */
1121 ppc64_elf_unhandled_reloc, /* special_function */
1122 "R_PPC64_GOT16_DS", /* name */
1123 FALSE, /* partial_inplace */
1124 0, /* src_mask */
1125 0xfffc, /* dst_mask */
1126 FALSE), /* pcrel_offset */
1127
1128 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1129 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1130 0, /* rightshift */
1131 1, /* size (0 = byte, 1 = short, 2 = long) */
1132 16, /* bitsize */
1133 FALSE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont, /* complain_on_overflow */
1136 ppc64_elf_unhandled_reloc, /* special_function */
1137 "R_PPC64_GOT16_LO_DS", /* name */
1138 FALSE, /* partial_inplace */
1139 0, /* src_mask */
1140 0xfffc, /* dst_mask */
1141 FALSE), /* pcrel_offset */
1142
1143 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1144 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1145 0, /* rightshift */
1146 1, /* size (0 = byte, 1 = short, 2 = long) */
1147 16, /* bitsize */
1148 FALSE, /* pc_relative */
1149 0, /* bitpos */
1150 complain_overflow_dont, /* complain_on_overflow */
1151 ppc64_elf_unhandled_reloc, /* special_function */
1152 "R_PPC64_PLT16_LO_DS", /* name */
1153 FALSE, /* partial_inplace */
1154 0, /* src_mask */
1155 0xfffc, /* dst_mask */
1156 FALSE), /* pcrel_offset */
1157
1158 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1159 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1160 0, /* rightshift */
1161 1, /* size (0 = byte, 1 = short, 2 = long) */
1162 16, /* bitsize */
1163 FALSE, /* pc_relative */
1164 0, /* bitpos */
1165 complain_overflow_bitfield, /* complain_on_overflow */
1166 ppc64_elf_sectoff_reloc, /* special_function */
1167 "R_PPC64_SECTOFF_DS", /* name */
1168 FALSE, /* partial_inplace */
1169 0, /* src_mask */
1170 0xfffc, /* dst_mask */
1171 FALSE), /* pcrel_offset */
1172
1173 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1174 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1175 0, /* rightshift */
1176 1, /* size (0 = byte, 1 = short, 2 = long) */
1177 16, /* bitsize */
1178 FALSE, /* pc_relative */
1179 0, /* bitpos */
1180 complain_overflow_dont, /* complain_on_overflow */
1181 ppc64_elf_sectoff_reloc, /* special_function */
1182 "R_PPC64_SECTOFF_LO_DS",/* name */
1183 FALSE, /* partial_inplace */
1184 0, /* src_mask */
1185 0xfffc, /* dst_mask */
1186 FALSE), /* pcrel_offset */
1187
1188 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1189 HOWTO (R_PPC64_TOC16_DS, /* type */
1190 0, /* rightshift */
1191 1, /* size (0 = byte, 1 = short, 2 = long) */
1192 16, /* bitsize */
1193 FALSE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_signed, /* complain_on_overflow */
1196 ppc64_elf_toc_reloc, /* special_function */
1197 "R_PPC64_TOC16_DS", /* name */
1198 FALSE, /* partial_inplace */
1199 0, /* src_mask */
1200 0xfffc, /* dst_mask */
1201 FALSE), /* pcrel_offset */
1202
1203 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1204 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1205 0, /* rightshift */
1206 1, /* size (0 = byte, 1 = short, 2 = long) */
1207 16, /* bitsize */
1208 FALSE, /* pc_relative */
1209 0, /* bitpos */
1210 complain_overflow_dont, /* complain_on_overflow */
1211 ppc64_elf_toc_reloc, /* special_function */
1212 "R_PPC64_TOC16_LO_DS", /* name */
1213 FALSE, /* partial_inplace */
1214 0, /* src_mask */
1215 0xfffc, /* dst_mask */
1216 FALSE), /* pcrel_offset */
1217
1218 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1219 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1220 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1221 0, /* rightshift */
1222 1, /* size (0 = byte, 1 = short, 2 = long) */
1223 16, /* bitsize */
1224 FALSE, /* pc_relative */
1225 0, /* bitpos */
1226 complain_overflow_signed, /* complain_on_overflow */
1227 ppc64_elf_unhandled_reloc, /* special_function */
1228 "R_PPC64_PLTGOT16_DS", /* name */
1229 FALSE, /* partial_inplace */
1230 0, /* src_mask */
1231 0xfffc, /* dst_mask */
1232 FALSE), /* pcrel_offset */
1233
1234 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1235 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1236 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1237 0, /* rightshift */
1238 1, /* size (0 = byte, 1 = short, 2 = long) */
1239 16, /* bitsize */
1240 FALSE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont, /* complain_on_overflow */
1243 ppc64_elf_unhandled_reloc, /* special_function */
1244 "R_PPC64_PLTGOT16_LO_DS",/* name */
1245 FALSE, /* partial_inplace */
1246 0, /* src_mask */
1247 0xfffc, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 /* Marker relocs for TLS. */
1251 HOWTO (R_PPC64_TLS,
1252 0, /* rightshift */
1253 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 32, /* bitsize */
1255 FALSE, /* pc_relative */
1256 0, /* bitpos */
1257 complain_overflow_dont, /* complain_on_overflow */
1258 bfd_elf_generic_reloc, /* special_function */
1259 "R_PPC64_TLS", /* name */
1260 FALSE, /* partial_inplace */
1261 0, /* src_mask */
1262 0, /* dst_mask */
1263 FALSE), /* pcrel_offset */
1264
1265 HOWTO (R_PPC64_TLSGD,
1266 0, /* rightshift */
1267 2, /* size (0 = byte, 1 = short, 2 = long) */
1268 32, /* bitsize */
1269 FALSE, /* pc_relative */
1270 0, /* bitpos */
1271 complain_overflow_dont, /* complain_on_overflow */
1272 bfd_elf_generic_reloc, /* special_function */
1273 "R_PPC64_TLSGD", /* name */
1274 FALSE, /* partial_inplace */
1275 0, /* src_mask */
1276 0, /* dst_mask */
1277 FALSE), /* pcrel_offset */
1278
1279 HOWTO (R_PPC64_TLSLD,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLSLD", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TOCSAVE,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TOCSAVE", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 /* Computes the load module index of the load module that contains the
1308 definition of its TLS sym. */
1309 HOWTO (R_PPC64_DTPMOD64,
1310 0, /* rightshift */
1311 4, /* size (0 = byte, 1 = short, 2 = long) */
1312 64, /* bitsize */
1313 FALSE, /* pc_relative */
1314 0, /* bitpos */
1315 complain_overflow_dont, /* complain_on_overflow */
1316 ppc64_elf_unhandled_reloc, /* special_function */
1317 "R_PPC64_DTPMOD64", /* name */
1318 FALSE, /* partial_inplace */
1319 0, /* src_mask */
1320 ONES (64), /* dst_mask */
1321 FALSE), /* pcrel_offset */
1322
1323 /* Computes a dtv-relative displacement, the difference between the value
1324 of sym+add and the base address of the thread-local storage block that
1325 contains the definition of sym, minus 0x8000. */
1326 HOWTO (R_PPC64_DTPREL64,
1327 0, /* rightshift */
1328 4, /* size (0 = byte, 1 = short, 2 = long) */
1329 64, /* bitsize */
1330 FALSE, /* pc_relative */
1331 0, /* bitpos */
1332 complain_overflow_dont, /* complain_on_overflow */
1333 ppc64_elf_unhandled_reloc, /* special_function */
1334 "R_PPC64_DTPREL64", /* name */
1335 FALSE, /* partial_inplace */
1336 0, /* src_mask */
1337 ONES (64), /* dst_mask */
1338 FALSE), /* pcrel_offset */
1339
1340 /* A 16 bit dtprel reloc. */
1341 HOWTO (R_PPC64_DTPREL16,
1342 0, /* rightshift */
1343 1, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_signed, /* complain_on_overflow */
1348 ppc64_elf_unhandled_reloc, /* special_function */
1349 "R_PPC64_DTPREL16", /* name */
1350 FALSE, /* partial_inplace */
1351 0, /* src_mask */
1352 0xffff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
1355 /* Like DTPREL16, but no overflow. */
1356 HOWTO (R_PPC64_DTPREL16_LO,
1357 0, /* rightshift */
1358 1, /* size (0 = byte, 1 = short, 2 = long) */
1359 16, /* bitsize */
1360 FALSE, /* pc_relative */
1361 0, /* bitpos */
1362 complain_overflow_dont, /* complain_on_overflow */
1363 ppc64_elf_unhandled_reloc, /* special_function */
1364 "R_PPC64_DTPREL16_LO", /* name */
1365 FALSE, /* partial_inplace */
1366 0, /* src_mask */
1367 0xffff, /* dst_mask */
1368 FALSE), /* pcrel_offset */
1369
1370 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1371 HOWTO (R_PPC64_DTPREL16_HI,
1372 16, /* rightshift */
1373 1, /* size (0 = byte, 1 = short, 2 = long) */
1374 16, /* bitsize */
1375 FALSE, /* pc_relative */
1376 0, /* bitpos */
1377 complain_overflow_dont, /* complain_on_overflow */
1378 ppc64_elf_unhandled_reloc, /* special_function */
1379 "R_PPC64_DTPREL16_HI", /* name */
1380 FALSE, /* partial_inplace */
1381 0, /* src_mask */
1382 0xffff, /* dst_mask */
1383 FALSE), /* pcrel_offset */
1384
1385 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1386 HOWTO (R_PPC64_DTPREL16_HA,
1387 16, /* rightshift */
1388 1, /* size (0 = byte, 1 = short, 2 = long) */
1389 16, /* bitsize */
1390 FALSE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_dont, /* complain_on_overflow */
1393 ppc64_elf_unhandled_reloc, /* special_function */
1394 "R_PPC64_DTPREL16_HA", /* name */
1395 FALSE, /* partial_inplace */
1396 0, /* src_mask */
1397 0xffff, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1399
1400 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1401 HOWTO (R_PPC64_DTPREL16_HIGHER,
1402 32, /* rightshift */
1403 1, /* size (0 = byte, 1 = short, 2 = long) */
1404 16, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont, /* complain_on_overflow */
1408 ppc64_elf_unhandled_reloc, /* special_function */
1409 "R_PPC64_DTPREL16_HIGHER", /* name */
1410 FALSE, /* partial_inplace */
1411 0, /* src_mask */
1412 0xffff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1416 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1417 32, /* rightshift */
1418 1, /* size (0 = byte, 1 = short, 2 = long) */
1419 16, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_dont, /* complain_on_overflow */
1423 ppc64_elf_unhandled_reloc, /* special_function */
1424 "R_PPC64_DTPREL16_HIGHERA", /* name */
1425 FALSE, /* partial_inplace */
1426 0, /* src_mask */
1427 0xffff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1431 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1432 48, /* rightshift */
1433 1, /* size (0 = byte, 1 = short, 2 = long) */
1434 16, /* bitsize */
1435 FALSE, /* pc_relative */
1436 0, /* bitpos */
1437 complain_overflow_dont, /* complain_on_overflow */
1438 ppc64_elf_unhandled_reloc, /* special_function */
1439 "R_PPC64_DTPREL16_HIGHEST", /* name */
1440 FALSE, /* partial_inplace */
1441 0, /* src_mask */
1442 0xffff, /* dst_mask */
1443 FALSE), /* pcrel_offset */
1444
1445 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1446 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1447 48, /* rightshift */
1448 1, /* size (0 = byte, 1 = short, 2 = long) */
1449 16, /* bitsize */
1450 FALSE, /* pc_relative */
1451 0, /* bitpos */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 ppc64_elf_unhandled_reloc, /* special_function */
1454 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1455 FALSE, /* partial_inplace */
1456 0, /* src_mask */
1457 0xffff, /* dst_mask */
1458 FALSE), /* pcrel_offset */
1459
1460 /* Like DTPREL16, but for insns with a DS field. */
1461 HOWTO (R_PPC64_DTPREL16_DS,
1462 0, /* rightshift */
1463 1, /* size (0 = byte, 1 = short, 2 = long) */
1464 16, /* bitsize */
1465 FALSE, /* pc_relative */
1466 0, /* bitpos */
1467 complain_overflow_signed, /* complain_on_overflow */
1468 ppc64_elf_unhandled_reloc, /* special_function */
1469 "R_PPC64_DTPREL16_DS", /* name */
1470 FALSE, /* partial_inplace */
1471 0, /* src_mask */
1472 0xfffc, /* dst_mask */
1473 FALSE), /* pcrel_offset */
1474
1475 /* Like DTPREL16_DS, but no overflow. */
1476 HOWTO (R_PPC64_DTPREL16_LO_DS,
1477 0, /* rightshift */
1478 1, /* size (0 = byte, 1 = short, 2 = long) */
1479 16, /* bitsize */
1480 FALSE, /* pc_relative */
1481 0, /* bitpos */
1482 complain_overflow_dont, /* complain_on_overflow */
1483 ppc64_elf_unhandled_reloc, /* special_function */
1484 "R_PPC64_DTPREL16_LO_DS", /* name */
1485 FALSE, /* partial_inplace */
1486 0, /* src_mask */
1487 0xfffc, /* dst_mask */
1488 FALSE), /* pcrel_offset */
1489
1490 /* Computes a tp-relative displacement, the difference between the value of
1491 sym+add and the value of the thread pointer (r13). */
1492 HOWTO (R_PPC64_TPREL64,
1493 0, /* rightshift */
1494 4, /* size (0 = byte, 1 = short, 2 = long) */
1495 64, /* bitsize */
1496 FALSE, /* pc_relative */
1497 0, /* bitpos */
1498 complain_overflow_dont, /* complain_on_overflow */
1499 ppc64_elf_unhandled_reloc, /* special_function */
1500 "R_PPC64_TPREL64", /* name */
1501 FALSE, /* partial_inplace */
1502 0, /* src_mask */
1503 ONES (64), /* dst_mask */
1504 FALSE), /* pcrel_offset */
1505
1506 /* A 16 bit tprel reloc. */
1507 HOWTO (R_PPC64_TPREL16,
1508 0, /* rightshift */
1509 1, /* size (0 = byte, 1 = short, 2 = long) */
1510 16, /* bitsize */
1511 FALSE, /* pc_relative */
1512 0, /* bitpos */
1513 complain_overflow_signed, /* complain_on_overflow */
1514 ppc64_elf_unhandled_reloc, /* special_function */
1515 "R_PPC64_TPREL16", /* name */
1516 FALSE, /* partial_inplace */
1517 0, /* src_mask */
1518 0xffff, /* dst_mask */
1519 FALSE), /* pcrel_offset */
1520
1521 /* Like TPREL16, but no overflow. */
1522 HOWTO (R_PPC64_TPREL16_LO,
1523 0, /* rightshift */
1524 1, /* size (0 = byte, 1 = short, 2 = long) */
1525 16, /* bitsize */
1526 FALSE, /* pc_relative */
1527 0, /* bitpos */
1528 complain_overflow_dont, /* complain_on_overflow */
1529 ppc64_elf_unhandled_reloc, /* special_function */
1530 "R_PPC64_TPREL16_LO", /* name */
1531 FALSE, /* partial_inplace */
1532 0, /* src_mask */
1533 0xffff, /* dst_mask */
1534 FALSE), /* pcrel_offset */
1535
1536 /* Like TPREL16_LO, but next higher group of 16 bits. */
1537 HOWTO (R_PPC64_TPREL16_HI,
1538 16, /* rightshift */
1539 1, /* size (0 = byte, 1 = short, 2 = long) */
1540 16, /* bitsize */
1541 FALSE, /* pc_relative */
1542 0, /* bitpos */
1543 complain_overflow_dont, /* complain_on_overflow */
1544 ppc64_elf_unhandled_reloc, /* special_function */
1545 "R_PPC64_TPREL16_HI", /* name */
1546 FALSE, /* partial_inplace */
1547 0, /* src_mask */
1548 0xffff, /* dst_mask */
1549 FALSE), /* pcrel_offset */
1550
1551 /* Like TPREL16_HI, but adjust for low 16 bits. */
1552 HOWTO (R_PPC64_TPREL16_HA,
1553 16, /* rightshift */
1554 1, /* size (0 = byte, 1 = short, 2 = long) */
1555 16, /* bitsize */
1556 FALSE, /* pc_relative */
1557 0, /* bitpos */
1558 complain_overflow_dont, /* complain_on_overflow */
1559 ppc64_elf_unhandled_reloc, /* special_function */
1560 "R_PPC64_TPREL16_HA", /* name */
1561 FALSE, /* partial_inplace */
1562 0, /* src_mask */
1563 0xffff, /* dst_mask */
1564 FALSE), /* pcrel_offset */
1565
1566 /* Like TPREL16_HI, but next higher group of 16 bits. */
1567 HOWTO (R_PPC64_TPREL16_HIGHER,
1568 32, /* rightshift */
1569 1, /* size (0 = byte, 1 = short, 2 = long) */
1570 16, /* bitsize */
1571 FALSE, /* pc_relative */
1572 0, /* bitpos */
1573 complain_overflow_dont, /* complain_on_overflow */
1574 ppc64_elf_unhandled_reloc, /* special_function */
1575 "R_PPC64_TPREL16_HIGHER", /* name */
1576 FALSE, /* partial_inplace */
1577 0, /* src_mask */
1578 0xffff, /* dst_mask */
1579 FALSE), /* pcrel_offset */
1580
1581 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1582 HOWTO (R_PPC64_TPREL16_HIGHERA,
1583 32, /* rightshift */
1584 1, /* size (0 = byte, 1 = short, 2 = long) */
1585 16, /* bitsize */
1586 FALSE, /* pc_relative */
1587 0, /* bitpos */
1588 complain_overflow_dont, /* complain_on_overflow */
1589 ppc64_elf_unhandled_reloc, /* special_function */
1590 "R_PPC64_TPREL16_HIGHERA", /* name */
1591 FALSE, /* partial_inplace */
1592 0, /* src_mask */
1593 0xffff, /* dst_mask */
1594 FALSE), /* pcrel_offset */
1595
1596 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1597 HOWTO (R_PPC64_TPREL16_HIGHEST,
1598 48, /* rightshift */
1599 1, /* size (0 = byte, 1 = short, 2 = long) */
1600 16, /* bitsize */
1601 FALSE, /* pc_relative */
1602 0, /* bitpos */
1603 complain_overflow_dont, /* complain_on_overflow */
1604 ppc64_elf_unhandled_reloc, /* special_function */
1605 "R_PPC64_TPREL16_HIGHEST", /* name */
1606 FALSE, /* partial_inplace */
1607 0, /* src_mask */
1608 0xffff, /* dst_mask */
1609 FALSE), /* pcrel_offset */
1610
1611 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1612 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1613 48, /* rightshift */
1614 1, /* size (0 = byte, 1 = short, 2 = long) */
1615 16, /* bitsize */
1616 FALSE, /* pc_relative */
1617 0, /* bitpos */
1618 complain_overflow_dont, /* complain_on_overflow */
1619 ppc64_elf_unhandled_reloc, /* special_function */
1620 "R_PPC64_TPREL16_HIGHESTA", /* name */
1621 FALSE, /* partial_inplace */
1622 0, /* src_mask */
1623 0xffff, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1625
1626 /* Like TPREL16, but for insns with a DS field. */
1627 HOWTO (R_PPC64_TPREL16_DS,
1628 0, /* rightshift */
1629 1, /* size (0 = byte, 1 = short, 2 = long) */
1630 16, /* bitsize */
1631 FALSE, /* pc_relative */
1632 0, /* bitpos */
1633 complain_overflow_signed, /* complain_on_overflow */
1634 ppc64_elf_unhandled_reloc, /* special_function */
1635 "R_PPC64_TPREL16_DS", /* name */
1636 FALSE, /* partial_inplace */
1637 0, /* src_mask */
1638 0xfffc, /* dst_mask */
1639 FALSE), /* pcrel_offset */
1640
1641 /* Like TPREL16_DS, but no overflow. */
1642 HOWTO (R_PPC64_TPREL16_LO_DS,
1643 0, /* rightshift */
1644 1, /* size (0 = byte, 1 = short, 2 = long) */
1645 16, /* bitsize */
1646 FALSE, /* pc_relative */
1647 0, /* bitpos */
1648 complain_overflow_dont, /* complain_on_overflow */
1649 ppc64_elf_unhandled_reloc, /* special_function */
1650 "R_PPC64_TPREL16_LO_DS", /* name */
1651 FALSE, /* partial_inplace */
1652 0, /* src_mask */
1653 0xfffc, /* dst_mask */
1654 FALSE), /* pcrel_offset */
1655
1656 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1657 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1658 to the first entry relative to the TOC base (r2). */
1659 HOWTO (R_PPC64_GOT_TLSGD16,
1660 0, /* rightshift */
1661 1, /* size (0 = byte, 1 = short, 2 = long) */
1662 16, /* bitsize */
1663 FALSE, /* pc_relative */
1664 0, /* bitpos */
1665 complain_overflow_signed, /* complain_on_overflow */
1666 ppc64_elf_unhandled_reloc, /* special_function */
1667 "R_PPC64_GOT_TLSGD16", /* name */
1668 FALSE, /* partial_inplace */
1669 0, /* src_mask */
1670 0xffff, /* dst_mask */
1671 FALSE), /* pcrel_offset */
1672
1673 /* Like GOT_TLSGD16, but no overflow. */
1674 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1675 0, /* rightshift */
1676 1, /* size (0 = byte, 1 = short, 2 = long) */
1677 16, /* bitsize */
1678 FALSE, /* pc_relative */
1679 0, /* bitpos */
1680 complain_overflow_dont, /* complain_on_overflow */
1681 ppc64_elf_unhandled_reloc, /* special_function */
1682 "R_PPC64_GOT_TLSGD16_LO", /* name */
1683 FALSE, /* partial_inplace */
1684 0, /* src_mask */
1685 0xffff, /* dst_mask */
1686 FALSE), /* pcrel_offset */
1687
1688 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1689 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1690 16, /* rightshift */
1691 1, /* size (0 = byte, 1 = short, 2 = long) */
1692 16, /* bitsize */
1693 FALSE, /* pc_relative */
1694 0, /* bitpos */
1695 complain_overflow_dont, /* complain_on_overflow */
1696 ppc64_elf_unhandled_reloc, /* special_function */
1697 "R_PPC64_GOT_TLSGD16_HI", /* name */
1698 FALSE, /* partial_inplace */
1699 0, /* src_mask */
1700 0xffff, /* dst_mask */
1701 FALSE), /* pcrel_offset */
1702
1703 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1704 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1705 16, /* rightshift */
1706 1, /* size (0 = byte, 1 = short, 2 = long) */
1707 16, /* bitsize */
1708 FALSE, /* pc_relative */
1709 0, /* bitpos */
1710 complain_overflow_dont, /* complain_on_overflow */
1711 ppc64_elf_unhandled_reloc, /* special_function */
1712 "R_PPC64_GOT_TLSGD16_HA", /* name */
1713 FALSE, /* partial_inplace */
1714 0, /* src_mask */
1715 0xffff, /* dst_mask */
1716 FALSE), /* pcrel_offset */
1717
1718 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1719 with values (sym+add)@dtpmod and zero, and computes the offset to the
1720 first entry relative to the TOC base (r2). */
1721 HOWTO (R_PPC64_GOT_TLSLD16,
1722 0, /* rightshift */
1723 1, /* size (0 = byte, 1 = short, 2 = long) */
1724 16, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_signed, /* complain_on_overflow */
1728 ppc64_elf_unhandled_reloc, /* special_function */
1729 "R_PPC64_GOT_TLSLD16", /* name */
1730 FALSE, /* partial_inplace */
1731 0, /* src_mask */
1732 0xffff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* Like GOT_TLSLD16, but no overflow. */
1736 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1737 0, /* rightshift */
1738 1, /* size (0 = byte, 1 = short, 2 = long) */
1739 16, /* bitsize */
1740 FALSE, /* pc_relative */
1741 0, /* bitpos */
1742 complain_overflow_dont, /* complain_on_overflow */
1743 ppc64_elf_unhandled_reloc, /* special_function */
1744 "R_PPC64_GOT_TLSLD16_LO", /* name */
1745 FALSE, /* partial_inplace */
1746 0, /* src_mask */
1747 0xffff, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1751 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1752 16, /* rightshift */
1753 1, /* size (0 = byte, 1 = short, 2 = long) */
1754 16, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 ppc64_elf_unhandled_reloc, /* special_function */
1759 "R_PPC64_GOT_TLSLD16_HI", /* name */
1760 FALSE, /* partial_inplace */
1761 0, /* src_mask */
1762 0xffff, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1766 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1767 16, /* rightshift */
1768 1, /* size (0 = byte, 1 = short, 2 = long) */
1769 16, /* bitsize */
1770 FALSE, /* pc_relative */
1771 0, /* bitpos */
1772 complain_overflow_dont, /* complain_on_overflow */
1773 ppc64_elf_unhandled_reloc, /* special_function */
1774 "R_PPC64_GOT_TLSLD16_HA", /* name */
1775 FALSE, /* partial_inplace */
1776 0, /* src_mask */
1777 0xffff, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1781 the offset to the entry relative to the TOC base (r2). */
1782 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1783 0, /* rightshift */
1784 1, /* size (0 = byte, 1 = short, 2 = long) */
1785 16, /* bitsize */
1786 FALSE, /* pc_relative */
1787 0, /* bitpos */
1788 complain_overflow_signed, /* complain_on_overflow */
1789 ppc64_elf_unhandled_reloc, /* special_function */
1790 "R_PPC64_GOT_DTPREL16_DS", /* name */
1791 FALSE, /* partial_inplace */
1792 0, /* src_mask */
1793 0xfffc, /* dst_mask */
1794 FALSE), /* pcrel_offset */
1795
1796 /* Like GOT_DTPREL16_DS, but no overflow. */
1797 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1798 0, /* rightshift */
1799 1, /* size (0 = byte, 1 = short, 2 = long) */
1800 16, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont, /* complain_on_overflow */
1804 ppc64_elf_unhandled_reloc, /* special_function */
1805 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0xfffc, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1812 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1813 16, /* rightshift */
1814 1, /* size (0 = byte, 1 = short, 2 = long) */
1815 16, /* bitsize */
1816 FALSE, /* pc_relative */
1817 0, /* bitpos */
1818 complain_overflow_dont, /* complain_on_overflow */
1819 ppc64_elf_unhandled_reloc, /* special_function */
1820 "R_PPC64_GOT_DTPREL16_HI", /* name */
1821 FALSE, /* partial_inplace */
1822 0, /* src_mask */
1823 0xffff, /* dst_mask */
1824 FALSE), /* pcrel_offset */
1825
1826 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1827 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1828 16, /* rightshift */
1829 1, /* size (0 = byte, 1 = short, 2 = long) */
1830 16, /* bitsize */
1831 FALSE, /* pc_relative */
1832 0, /* bitpos */
1833 complain_overflow_dont, /* complain_on_overflow */
1834 ppc64_elf_unhandled_reloc, /* special_function */
1835 "R_PPC64_GOT_DTPREL16_HA", /* name */
1836 FALSE, /* partial_inplace */
1837 0, /* src_mask */
1838 0xffff, /* dst_mask */
1839 FALSE), /* pcrel_offset */
1840
1841 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1842 offset to the entry relative to the TOC base (r2). */
1843 HOWTO (R_PPC64_GOT_TPREL16_DS,
1844 0, /* rightshift */
1845 1, /* size (0 = byte, 1 = short, 2 = long) */
1846 16, /* bitsize */
1847 FALSE, /* pc_relative */
1848 0, /* bitpos */
1849 complain_overflow_signed, /* complain_on_overflow */
1850 ppc64_elf_unhandled_reloc, /* special_function */
1851 "R_PPC64_GOT_TPREL16_DS", /* name */
1852 FALSE, /* partial_inplace */
1853 0, /* src_mask */
1854 0xfffc, /* dst_mask */
1855 FALSE), /* pcrel_offset */
1856
1857 /* Like GOT_TPREL16_DS, but no overflow. */
1858 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1859 0, /* rightshift */
1860 1, /* size (0 = byte, 1 = short, 2 = long) */
1861 16, /* bitsize */
1862 FALSE, /* pc_relative */
1863 0, /* bitpos */
1864 complain_overflow_dont, /* complain_on_overflow */
1865 ppc64_elf_unhandled_reloc, /* special_function */
1866 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1867 FALSE, /* partial_inplace */
1868 0, /* src_mask */
1869 0xfffc, /* dst_mask */
1870 FALSE), /* pcrel_offset */
1871
1872 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1873 HOWTO (R_PPC64_GOT_TPREL16_HI,
1874 16, /* rightshift */
1875 1, /* size (0 = byte, 1 = short, 2 = long) */
1876 16, /* bitsize */
1877 FALSE, /* pc_relative */
1878 0, /* bitpos */
1879 complain_overflow_dont, /* complain_on_overflow */
1880 ppc64_elf_unhandled_reloc, /* special_function */
1881 "R_PPC64_GOT_TPREL16_HI", /* name */
1882 FALSE, /* partial_inplace */
1883 0, /* src_mask */
1884 0xffff, /* dst_mask */
1885 FALSE), /* pcrel_offset */
1886
1887 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1888 HOWTO (R_PPC64_GOT_TPREL16_HA,
1889 16, /* rightshift */
1890 1, /* size (0 = byte, 1 = short, 2 = long) */
1891 16, /* bitsize */
1892 FALSE, /* pc_relative */
1893 0, /* bitpos */
1894 complain_overflow_dont, /* complain_on_overflow */
1895 ppc64_elf_unhandled_reloc, /* special_function */
1896 "R_PPC64_GOT_TPREL16_HA", /* name */
1897 FALSE, /* partial_inplace */
1898 0, /* src_mask */
1899 0xffff, /* dst_mask */
1900 FALSE), /* pcrel_offset */
1901
1902 HOWTO (R_PPC64_JMP_IREL, /* type */
1903 0, /* rightshift */
1904 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1905 0, /* bitsize */
1906 FALSE, /* pc_relative */
1907 0, /* bitpos */
1908 complain_overflow_dont, /* complain_on_overflow */
1909 ppc64_elf_unhandled_reloc, /* special_function */
1910 "R_PPC64_JMP_IREL", /* name */
1911 FALSE, /* partial_inplace */
1912 0, /* src_mask */
1913 0, /* dst_mask */
1914 FALSE), /* pcrel_offset */
1915
1916 HOWTO (R_PPC64_IRELATIVE, /* type */
1917 0, /* rightshift */
1918 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1919 64, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_dont, /* complain_on_overflow */
1923 bfd_elf_generic_reloc, /* special_function */
1924 "R_PPC64_IRELATIVE", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 ONES (64), /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 /* A 16 bit relative relocation. */
1931 HOWTO (R_PPC64_REL16, /* type */
1932 0, /* rightshift */
1933 1, /* size (0 = byte, 1 = short, 2 = long) */
1934 16, /* bitsize */
1935 TRUE, /* pc_relative */
1936 0, /* bitpos */
1937 complain_overflow_bitfield, /* complain_on_overflow */
1938 bfd_elf_generic_reloc, /* special_function */
1939 "R_PPC64_REL16", /* name */
1940 FALSE, /* partial_inplace */
1941 0, /* src_mask */
1942 0xffff, /* dst_mask */
1943 TRUE), /* pcrel_offset */
1944
1945 /* A 16 bit relative relocation without overflow. */
1946 HOWTO (R_PPC64_REL16_LO, /* type */
1947 0, /* rightshift */
1948 1, /* size (0 = byte, 1 = short, 2 = long) */
1949 16, /* bitsize */
1950 TRUE, /* pc_relative */
1951 0, /* bitpos */
1952 complain_overflow_dont,/* complain_on_overflow */
1953 bfd_elf_generic_reloc, /* special_function */
1954 "R_PPC64_REL16_LO", /* name */
1955 FALSE, /* partial_inplace */
1956 0, /* src_mask */
1957 0xffff, /* dst_mask */
1958 TRUE), /* pcrel_offset */
1959
1960 /* The high order 16 bits of a relative address. */
1961 HOWTO (R_PPC64_REL16_HI, /* type */
1962 16, /* rightshift */
1963 1, /* size (0 = byte, 1 = short, 2 = long) */
1964 16, /* bitsize */
1965 TRUE, /* pc_relative */
1966 0, /* bitpos */
1967 complain_overflow_dont, /* complain_on_overflow */
1968 bfd_elf_generic_reloc, /* special_function */
1969 "R_PPC64_REL16_HI", /* name */
1970 FALSE, /* partial_inplace */
1971 0, /* src_mask */
1972 0xffff, /* dst_mask */
1973 TRUE), /* pcrel_offset */
1974
1975 /* The high order 16 bits of a relative address, plus 1 if the contents of
1976 the low 16 bits, treated as a signed number, is negative. */
1977 HOWTO (R_PPC64_REL16_HA, /* type */
1978 16, /* rightshift */
1979 1, /* size (0 = byte, 1 = short, 2 = long) */
1980 16, /* bitsize */
1981 TRUE, /* pc_relative */
1982 0, /* bitpos */
1983 complain_overflow_dont, /* complain_on_overflow */
1984 ppc64_elf_ha_reloc, /* special_function */
1985 "R_PPC64_REL16_HA", /* name */
1986 FALSE, /* partial_inplace */
1987 0, /* src_mask */
1988 0xffff, /* dst_mask */
1989 TRUE), /* pcrel_offset */
1990
1991 /* GNU extension to record C++ vtable hierarchy. */
1992 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1993 0, /* rightshift */
1994 0, /* size (0 = byte, 1 = short, 2 = long) */
1995 0, /* bitsize */
1996 FALSE, /* pc_relative */
1997 0, /* bitpos */
1998 complain_overflow_dont, /* complain_on_overflow */
1999 NULL, /* special_function */
2000 "R_PPC64_GNU_VTINHERIT", /* name */
2001 FALSE, /* partial_inplace */
2002 0, /* src_mask */
2003 0, /* dst_mask */
2004 FALSE), /* pcrel_offset */
2005
2006 /* GNU extension to record C++ vtable member usage. */
2007 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2008 0, /* rightshift */
2009 0, /* size (0 = byte, 1 = short, 2 = long) */
2010 0, /* bitsize */
2011 FALSE, /* pc_relative */
2012 0, /* bitpos */
2013 complain_overflow_dont, /* complain_on_overflow */
2014 NULL, /* special_function */
2015 "R_PPC64_GNU_VTENTRY", /* name */
2016 FALSE, /* partial_inplace */
2017 0, /* src_mask */
2018 0, /* dst_mask */
2019 FALSE), /* pcrel_offset */
2020 };
2021
2022 \f
2023 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2024 be done. */
2025
2026 static void
2027 ppc_howto_init (void)
2028 {
2029 unsigned int i, type;
2030
2031 for (i = 0;
2032 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2033 i++)
2034 {
2035 type = ppc64_elf_howto_raw[i].type;
2036 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2037 / sizeof (ppc64_elf_howto_table[0])));
2038 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2039 }
2040 }
2041
2042 static reloc_howto_type *
2043 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2044 bfd_reloc_code_real_type code)
2045 {
2046 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2047
2048 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2049 /* Initialize howto table if needed. */
2050 ppc_howto_init ();
2051
2052 switch (code)
2053 {
2054 default:
2055 return NULL;
2056
2057 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2058 break;
2059 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2060 break;
2061 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2062 break;
2063 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2064 break;
2065 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2066 break;
2067 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2068 break;
2069 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2070 break;
2071 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2072 break;
2073 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2074 break;
2075 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2076 break;
2077 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2078 break;
2079 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2080 break;
2081 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2082 break;
2083 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2084 break;
2085 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2086 break;
2087 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2088 break;
2089 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2090 break;
2091 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2092 break;
2093 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2094 break;
2095 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2096 break;
2097 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2098 break;
2099 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2100 break;
2101 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2102 break;
2103 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2104 break;
2105 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2106 break;
2107 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2108 break;
2109 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2110 break;
2111 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2112 break;
2113 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2114 break;
2115 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2116 break;
2117 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2118 break;
2119 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2120 break;
2121 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2122 break;
2123 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2124 break;
2125 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2126 break;
2127 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2128 break;
2129 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2130 break;
2131 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2132 break;
2133 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2134 break;
2135 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2136 break;
2137 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2138 break;
2139 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2140 break;
2141 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2142 break;
2143 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2144 break;
2145 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2146 break;
2147 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2148 break;
2149 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2150 break;
2151 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2152 break;
2153 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2154 break;
2155 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2156 break;
2157 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2158 break;
2159 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2160 break;
2161 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2162 break;
2163 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2164 break;
2165 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2166 break;
2167 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2168 break;
2169 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2170 break;
2171 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2172 break;
2173 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2174 break;
2175 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2176 break;
2177 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2178 break;
2179 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2180 break;
2181 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2182 break;
2183 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2184 break;
2185 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2186 break;
2187 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2188 break;
2189 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2190 break;
2191 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2192 break;
2193 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2194 break;
2195 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2196 break;
2197 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2198 break;
2199 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2200 break;
2201 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2202 break;
2203 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2204 break;
2205 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2206 break;
2207 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2208 break;
2209 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2210 break;
2211 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2212 break;
2213 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2214 break;
2215 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2216 break;
2217 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2218 break;
2219 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2220 break;
2221 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2222 break;
2223 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2224 break;
2225 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2226 break;
2227 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2228 break;
2229 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2230 break;
2231 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2232 break;
2233 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2234 break;
2235 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2236 break;
2237 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2238 break;
2239 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2240 break;
2241 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2242 break;
2243 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2244 break;
2245 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2246 break;
2247 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2248 break;
2249 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2250 break;
2251 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2252 break;
2253 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2254 break;
2255 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2256 break;
2257 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2258 break;
2259 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2260 break;
2261 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2262 break;
2263 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2264 break;
2265 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2266 break;
2267 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2268 break;
2269 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2270 break;
2271 }
2272
2273 return ppc64_elf_howto_table[r];
2274 };
2275
2276 static reloc_howto_type *
2277 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2278 const char *r_name)
2279 {
2280 unsigned int i;
2281
2282 for (i = 0;
2283 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2284 i++)
2285 if (ppc64_elf_howto_raw[i].name != NULL
2286 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2287 return &ppc64_elf_howto_raw[i];
2288
2289 return NULL;
2290 }
2291
2292 /* Set the howto pointer for a PowerPC ELF reloc. */
2293
2294 static void
2295 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2296 Elf_Internal_Rela *dst)
2297 {
2298 unsigned int type;
2299
2300 /* Initialize howto table if needed. */
2301 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2302 ppc_howto_init ();
2303
2304 type = ELF64_R_TYPE (dst->r_info);
2305 if (type >= (sizeof (ppc64_elf_howto_table)
2306 / sizeof (ppc64_elf_howto_table[0])))
2307 {
2308 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2309 abfd, (int) type);
2310 type = R_PPC64_NONE;
2311 }
2312 cache_ptr->howto = ppc64_elf_howto_table[type];
2313 }
2314
2315 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2316
2317 static bfd_reloc_status_type
2318 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2319 void *data, asection *input_section,
2320 bfd *output_bfd, char **error_message)
2321 {
2322 /* If this is a relocatable link (output_bfd test tells us), just
2323 call the generic function. Any adjustment will be done at final
2324 link time. */
2325 if (output_bfd != NULL)
2326 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2327 input_section, output_bfd, error_message);
2328
2329 /* Adjust the addend for sign extension of the low 16 bits.
2330 We won't actually be using the low 16 bits, so trashing them
2331 doesn't matter. */
2332 reloc_entry->addend += 0x8000;
2333 return bfd_reloc_continue;
2334 }
2335
2336 static bfd_reloc_status_type
2337 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2338 void *data, asection *input_section,
2339 bfd *output_bfd, char **error_message)
2340 {
2341 if (output_bfd != NULL)
2342 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2343 input_section, output_bfd, error_message);
2344
2345 if (strcmp (symbol->section->name, ".opd") == 0
2346 && (symbol->section->owner->flags & DYNAMIC) == 0)
2347 {
2348 bfd_vma dest = opd_entry_value (symbol->section,
2349 symbol->value + reloc_entry->addend,
2350 NULL, NULL, FALSE);
2351 if (dest != (bfd_vma) -1)
2352 reloc_entry->addend = dest - (symbol->value
2353 + symbol->section->output_section->vma
2354 + symbol->section->output_offset);
2355 }
2356 return bfd_reloc_continue;
2357 }
2358
2359 static bfd_reloc_status_type
2360 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2361 void *data, asection *input_section,
2362 bfd *output_bfd, char **error_message)
2363 {
2364 long insn;
2365 enum elf_ppc64_reloc_type r_type;
2366 bfd_size_type octets;
2367 /* Assume 'at' branch hints. */
2368 bfd_boolean is_isa_v2 = TRUE;
2369
2370 /* If this is a relocatable link (output_bfd test tells us), just
2371 call the generic function. Any adjustment will be done at final
2372 link time. */
2373 if (output_bfd != NULL)
2374 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2375 input_section, output_bfd, error_message);
2376
2377 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2378 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2379 insn &= ~(0x01 << 21);
2380 r_type = reloc_entry->howto->type;
2381 if (r_type == R_PPC64_ADDR14_BRTAKEN
2382 || r_type == R_PPC64_REL14_BRTAKEN)
2383 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2384
2385 if (is_isa_v2)
2386 {
2387 /* Set 'a' bit. This is 0b00010 in BO field for branch
2388 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2389 for branch on CTR insns (BO == 1a00t or 1a01t). */
2390 if ((insn & (0x14 << 21)) == (0x04 << 21))
2391 insn |= 0x02 << 21;
2392 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2393 insn |= 0x08 << 21;
2394 else
2395 goto out;
2396 }
2397 else
2398 {
2399 bfd_vma target = 0;
2400 bfd_vma from;
2401
2402 if (!bfd_is_com_section (symbol->section))
2403 target = symbol->value;
2404 target += symbol->section->output_section->vma;
2405 target += symbol->section->output_offset;
2406 target += reloc_entry->addend;
2407
2408 from = (reloc_entry->address
2409 + input_section->output_offset
2410 + input_section->output_section->vma);
2411
2412 /* Invert 'y' bit if not the default. */
2413 if ((bfd_signed_vma) (target - from) < 0)
2414 insn ^= 0x01 << 21;
2415 }
2416 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2417 out:
2418 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2419 input_section, output_bfd, error_message);
2420 }
2421
2422 static bfd_reloc_status_type
2423 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2424 void *data, asection *input_section,
2425 bfd *output_bfd, char **error_message)
2426 {
2427 /* If this is a relocatable link (output_bfd test tells us), just
2428 call the generic function. Any adjustment will be done at final
2429 link time. */
2430 if (output_bfd != NULL)
2431 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2432 input_section, output_bfd, error_message);
2433
2434 /* Subtract the symbol section base address. */
2435 reloc_entry->addend -= symbol->section->output_section->vma;
2436 return bfd_reloc_continue;
2437 }
2438
2439 static bfd_reloc_status_type
2440 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2441 void *data, asection *input_section,
2442 bfd *output_bfd, char **error_message)
2443 {
2444 /* If this is a relocatable link (output_bfd test tells us), just
2445 call the generic function. Any adjustment will be done at final
2446 link time. */
2447 if (output_bfd != NULL)
2448 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2449 input_section, output_bfd, error_message);
2450
2451 /* Subtract the symbol section base address. */
2452 reloc_entry->addend -= symbol->section->output_section->vma;
2453
2454 /* Adjust the addend for sign extension of the low 16 bits. */
2455 reloc_entry->addend += 0x8000;
2456 return bfd_reloc_continue;
2457 }
2458
2459 static bfd_reloc_status_type
2460 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2461 void *data, asection *input_section,
2462 bfd *output_bfd, char **error_message)
2463 {
2464 bfd_vma TOCstart;
2465
2466 /* If this is a relocatable link (output_bfd test tells us), just
2467 call the generic function. Any adjustment will be done at final
2468 link time. */
2469 if (output_bfd != NULL)
2470 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2471 input_section, output_bfd, error_message);
2472
2473 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2474 if (TOCstart == 0)
2475 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2476
2477 /* Subtract the TOC base address. */
2478 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2479 return bfd_reloc_continue;
2480 }
2481
2482 static bfd_reloc_status_type
2483 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2484 void *data, asection *input_section,
2485 bfd *output_bfd, char **error_message)
2486 {
2487 bfd_vma TOCstart;
2488
2489 /* If this is a relocatable link (output_bfd test tells us), just
2490 call the generic function. Any adjustment will be done at final
2491 link time. */
2492 if (output_bfd != NULL)
2493 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2494 input_section, output_bfd, error_message);
2495
2496 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2497 if (TOCstart == 0)
2498 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2499
2500 /* Subtract the TOC base address. */
2501 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2502
2503 /* Adjust the addend for sign extension of the low 16 bits. */
2504 reloc_entry->addend += 0x8000;
2505 return bfd_reloc_continue;
2506 }
2507
2508 static bfd_reloc_status_type
2509 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 void *data, asection *input_section,
2511 bfd *output_bfd, char **error_message)
2512 {
2513 bfd_vma TOCstart;
2514 bfd_size_type octets;
2515
2516 /* If this is a relocatable link (output_bfd test tells us), just
2517 call the generic function. Any adjustment will be done at final
2518 link time. */
2519 if (output_bfd != NULL)
2520 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2521 input_section, output_bfd, error_message);
2522
2523 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2524 if (TOCstart == 0)
2525 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2526
2527 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2528 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2529 return bfd_reloc_ok;
2530 }
2531
2532 static bfd_reloc_status_type
2533 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2534 void *data, asection *input_section,
2535 bfd *output_bfd, char **error_message)
2536 {
2537 /* If this is a relocatable link (output_bfd test tells us), just
2538 call the generic function. Any adjustment will be done at final
2539 link time. */
2540 if (output_bfd != NULL)
2541 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2542 input_section, output_bfd, error_message);
2543
2544 if (error_message != NULL)
2545 {
2546 static char buf[60];
2547 sprintf (buf, "generic linker can't handle %s",
2548 reloc_entry->howto->name);
2549 *error_message = buf;
2550 }
2551 return bfd_reloc_dangerous;
2552 }
2553
2554 /* Track GOT entries needed for a given symbol. We might need more
2555 than one got entry per symbol. */
2556 struct got_entry
2557 {
2558 struct got_entry *next;
2559
2560 /* The symbol addend that we'll be placing in the GOT. */
2561 bfd_vma addend;
2562
2563 /* Unlike other ELF targets, we use separate GOT entries for the same
2564 symbol referenced from different input files. This is to support
2565 automatic multiple TOC/GOT sections, where the TOC base can vary
2566 from one input file to another. After partitioning into TOC groups
2567 we merge entries within the group.
2568
2569 Point to the BFD owning this GOT entry. */
2570 bfd *owner;
2571
2572 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2573 TLS_TPREL or TLS_DTPREL for tls entries. */
2574 unsigned char tls_type;
2575
2576 /* Non-zero if got.ent points to real entry. */
2577 unsigned char is_indirect;
2578
2579 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2580 union
2581 {
2582 bfd_signed_vma refcount;
2583 bfd_vma offset;
2584 struct got_entry *ent;
2585 } got;
2586 };
2587
2588 /* The same for PLT. */
2589 struct plt_entry
2590 {
2591 struct plt_entry *next;
2592
2593 bfd_vma addend;
2594
2595 union
2596 {
2597 bfd_signed_vma refcount;
2598 bfd_vma offset;
2599 } plt;
2600 };
2601
2602 struct ppc64_elf_obj_tdata
2603 {
2604 struct elf_obj_tdata elf;
2605
2606 /* Shortcuts to dynamic linker sections. */
2607 asection *got;
2608 asection *relgot;
2609
2610 /* Used during garbage collection. We attach global symbols defined
2611 on removed .opd entries to this section so that the sym is removed. */
2612 asection *deleted_section;
2613
2614 /* TLS local dynamic got entry handling. Support for multiple GOT
2615 sections means we potentially need one of these for each input bfd. */
2616 struct got_entry tlsld_got;
2617
2618 /* A copy of relocs before they are modified for --emit-relocs. */
2619 Elf_Internal_Rela *opd_relocs;
2620
2621 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2622 the reloc to be in the range -32768 to 32767. */
2623 unsigned int has_small_toc_reloc : 1;
2624
2625 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2626 instruction not one we handle. */
2627 unsigned int unexpected_toc_insn : 1;
2628 };
2629
2630 #define ppc64_elf_tdata(bfd) \
2631 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2632
2633 #define ppc64_tlsld_got(bfd) \
2634 (&ppc64_elf_tdata (bfd)->tlsld_got)
2635
2636 #define is_ppc64_elf(bfd) \
2637 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2638 && elf_object_id (bfd) == PPC64_ELF_DATA)
2639
2640 /* Override the generic function because we store some extras. */
2641
2642 static bfd_boolean
2643 ppc64_elf_mkobject (bfd *abfd)
2644 {
2645 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2646 PPC64_ELF_DATA);
2647 }
2648
2649 /* Fix bad default arch selected for a 64 bit input bfd when the
2650 default is 32 bit. */
2651
2652 static bfd_boolean
2653 ppc64_elf_object_p (bfd *abfd)
2654 {
2655 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2656 {
2657 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2658
2659 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2660 {
2661 /* Relies on arch after 32 bit default being 64 bit default. */
2662 abfd->arch_info = abfd->arch_info->next;
2663 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2664 }
2665 }
2666 return TRUE;
2667 }
2668
2669 /* Support for core dump NOTE sections. */
2670
2671 static bfd_boolean
2672 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2673 {
2674 size_t offset, size;
2675
2676 if (note->descsz != 504)
2677 return FALSE;
2678
2679 /* pr_cursig */
2680 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2681
2682 /* pr_pid */
2683 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2684
2685 /* pr_reg */
2686 offset = 112;
2687 size = 384;
2688
2689 /* Make a ".reg/999" section. */
2690 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2691 size, note->descpos + offset);
2692 }
2693
2694 static bfd_boolean
2695 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2696 {
2697 if (note->descsz != 136)
2698 return FALSE;
2699
2700 elf_tdata (abfd)->core->pid
2701 = bfd_get_32 (abfd, note->descdata + 24);
2702 elf_tdata (abfd)->core->program
2703 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2704 elf_tdata (abfd)->core->command
2705 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2706
2707 return TRUE;
2708 }
2709
2710 static char *
2711 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2712 ...)
2713 {
2714 switch (note_type)
2715 {
2716 default:
2717 return NULL;
2718
2719 case NT_PRPSINFO:
2720 {
2721 char data[136];
2722 va_list ap;
2723
2724 va_start (ap, note_type);
2725 memset (data, 0, sizeof (data));
2726 strncpy (data + 40, va_arg (ap, const char *), 16);
2727 strncpy (data + 56, va_arg (ap, const char *), 80);
2728 va_end (ap);
2729 return elfcore_write_note (abfd, buf, bufsiz,
2730 "CORE", note_type, data, sizeof (data));
2731 }
2732
2733 case NT_PRSTATUS:
2734 {
2735 char data[504];
2736 va_list ap;
2737 long pid;
2738 int cursig;
2739 const void *greg;
2740
2741 va_start (ap, note_type);
2742 memset (data, 0, 112);
2743 pid = va_arg (ap, long);
2744 bfd_put_32 (abfd, pid, data + 32);
2745 cursig = va_arg (ap, int);
2746 bfd_put_16 (abfd, cursig, data + 12);
2747 greg = va_arg (ap, const void *);
2748 memcpy (data + 112, greg, 384);
2749 memset (data + 496, 0, 8);
2750 va_end (ap);
2751 return elfcore_write_note (abfd, buf, bufsiz,
2752 "CORE", note_type, data, sizeof (data));
2753 }
2754 }
2755 }
2756
2757 /* Add extra PPC sections. */
2758
2759 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2760 {
2761 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2762 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2763 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2764 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2765 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2766 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2767 { NULL, 0, 0, 0, 0 }
2768 };
2769
2770 enum _ppc64_sec_type {
2771 sec_normal = 0,
2772 sec_opd = 1,
2773 sec_toc = 2
2774 };
2775
2776 struct _ppc64_elf_section_data
2777 {
2778 struct bfd_elf_section_data elf;
2779
2780 union
2781 {
2782 /* An array with one entry for each opd function descriptor. */
2783 struct _opd_sec_data
2784 {
2785 /* Points to the function code section for local opd entries. */
2786 asection **func_sec;
2787
2788 /* After editing .opd, adjust references to opd local syms. */
2789 long *adjust;
2790 } opd;
2791
2792 /* An array for toc sections, indexed by offset/8. */
2793 struct _toc_sec_data
2794 {
2795 /* Specifies the relocation symbol index used at a given toc offset. */
2796 unsigned *symndx;
2797
2798 /* And the relocation addend. */
2799 bfd_vma *add;
2800 } toc;
2801 } u;
2802
2803 enum _ppc64_sec_type sec_type:2;
2804
2805 /* Flag set when small branches are detected. Used to
2806 select suitable defaults for the stub group size. */
2807 unsigned int has_14bit_branch:1;
2808 };
2809
2810 #define ppc64_elf_section_data(sec) \
2811 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2812
2813 static bfd_boolean
2814 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2815 {
2816 if (!sec->used_by_bfd)
2817 {
2818 struct _ppc64_elf_section_data *sdata;
2819 bfd_size_type amt = sizeof (*sdata);
2820
2821 sdata = bfd_zalloc (abfd, amt);
2822 if (sdata == NULL)
2823 return FALSE;
2824 sec->used_by_bfd = sdata;
2825 }
2826
2827 return _bfd_elf_new_section_hook (abfd, sec);
2828 }
2829
2830 static struct _opd_sec_data *
2831 get_opd_info (asection * sec)
2832 {
2833 if (sec != NULL
2834 && ppc64_elf_section_data (sec) != NULL
2835 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2836 return &ppc64_elf_section_data (sec)->u.opd;
2837 return NULL;
2838 }
2839 \f
2840 /* Parameters for the qsort hook. */
2841 static bfd_boolean synthetic_relocatable;
2842
2843 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2844
2845 static int
2846 compare_symbols (const void *ap, const void *bp)
2847 {
2848 const asymbol *a = * (const asymbol **) ap;
2849 const asymbol *b = * (const asymbol **) bp;
2850
2851 /* Section symbols first. */
2852 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2853 return -1;
2854 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2855 return 1;
2856
2857 /* then .opd symbols. */
2858 if (strcmp (a->section->name, ".opd") == 0
2859 && strcmp (b->section->name, ".opd") != 0)
2860 return -1;
2861 if (strcmp (a->section->name, ".opd") != 0
2862 && strcmp (b->section->name, ".opd") == 0)
2863 return 1;
2864
2865 /* then other code symbols. */
2866 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2867 == (SEC_CODE | SEC_ALLOC)
2868 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2869 != (SEC_CODE | SEC_ALLOC))
2870 return -1;
2871
2872 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2873 != (SEC_CODE | SEC_ALLOC)
2874 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2875 == (SEC_CODE | SEC_ALLOC))
2876 return 1;
2877
2878 if (synthetic_relocatable)
2879 {
2880 if (a->section->id < b->section->id)
2881 return -1;
2882
2883 if (a->section->id > b->section->id)
2884 return 1;
2885 }
2886
2887 if (a->value + a->section->vma < b->value + b->section->vma)
2888 return -1;
2889
2890 if (a->value + a->section->vma > b->value + b->section->vma)
2891 return 1;
2892
2893 /* For syms with the same value, prefer strong dynamic global function
2894 syms over other syms. */
2895 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2896 return -1;
2897
2898 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2899 return 1;
2900
2901 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2902 return -1;
2903
2904 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2905 return 1;
2906
2907 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2908 return -1;
2909
2910 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2911 return 1;
2912
2913 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2914 return -1;
2915
2916 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2917 return 1;
2918
2919 return 0;
2920 }
2921
2922 /* Search SYMS for a symbol of the given VALUE. */
2923
2924 static asymbol *
2925 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2926 {
2927 long mid;
2928
2929 if (id == -1)
2930 {
2931 while (lo < hi)
2932 {
2933 mid = (lo + hi) >> 1;
2934 if (syms[mid]->value + syms[mid]->section->vma < value)
2935 lo = mid + 1;
2936 else if (syms[mid]->value + syms[mid]->section->vma > value)
2937 hi = mid;
2938 else
2939 return syms[mid];
2940 }
2941 }
2942 else
2943 {
2944 while (lo < hi)
2945 {
2946 mid = (lo + hi) >> 1;
2947 if (syms[mid]->section->id < id)
2948 lo = mid + 1;
2949 else if (syms[mid]->section->id > id)
2950 hi = mid;
2951 else if (syms[mid]->value < value)
2952 lo = mid + 1;
2953 else if (syms[mid]->value > value)
2954 hi = mid;
2955 else
2956 return syms[mid];
2957 }
2958 }
2959 return NULL;
2960 }
2961
2962 static bfd_boolean
2963 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2964 {
2965 bfd_vma vma = *(bfd_vma *) ptr;
2966 return ((section->flags & SEC_ALLOC) != 0
2967 && section->vma <= vma
2968 && vma < section->vma + section->size);
2969 }
2970
2971 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2972 entry syms. Also generate @plt symbols for the glink branch table. */
2973
2974 static long
2975 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2976 long static_count, asymbol **static_syms,
2977 long dyn_count, asymbol **dyn_syms,
2978 asymbol **ret)
2979 {
2980 asymbol *s;
2981 long i;
2982 long count;
2983 char *names;
2984 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2985 asection *opd;
2986 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2987 asymbol **syms;
2988
2989 *ret = NULL;
2990
2991 opd = bfd_get_section_by_name (abfd, ".opd");
2992 if (opd == NULL)
2993 return 0;
2994
2995 symcount = static_count;
2996 if (!relocatable)
2997 symcount += dyn_count;
2998 if (symcount == 0)
2999 return 0;
3000
3001 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3002 if (syms == NULL)
3003 return -1;
3004
3005 if (!relocatable && static_count != 0 && dyn_count != 0)
3006 {
3007 /* Use both symbol tables. */
3008 memcpy (syms, static_syms, static_count * sizeof (*syms));
3009 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3010 }
3011 else if (!relocatable && static_count == 0)
3012 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3013 else
3014 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3015
3016 synthetic_relocatable = relocatable;
3017 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3018
3019 if (!relocatable && symcount > 1)
3020 {
3021 long j;
3022 /* Trim duplicate syms, since we may have merged the normal and
3023 dynamic symbols. Actually, we only care about syms that have
3024 different values, so trim any with the same value. */
3025 for (i = 1, j = 1; i < symcount; ++i)
3026 if (syms[i - 1]->value + syms[i - 1]->section->vma
3027 != syms[i]->value + syms[i]->section->vma)
3028 syms[j++] = syms[i];
3029 symcount = j;
3030 }
3031
3032 i = 0;
3033 if (strcmp (syms[i]->section->name, ".opd") == 0)
3034 ++i;
3035 codesecsym = i;
3036
3037 for (; i < symcount; ++i)
3038 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3039 != (SEC_CODE | SEC_ALLOC))
3040 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3041 break;
3042 codesecsymend = i;
3043
3044 for (; i < symcount; ++i)
3045 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3046 break;
3047 secsymend = i;
3048
3049 for (; i < symcount; ++i)
3050 if (strcmp (syms[i]->section->name, ".opd") != 0)
3051 break;
3052 opdsymend = i;
3053
3054 for (; i < symcount; ++i)
3055 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3056 != (SEC_CODE | SEC_ALLOC))
3057 break;
3058 symcount = i;
3059
3060 count = 0;
3061
3062 if (relocatable)
3063 {
3064 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3065 arelent *r;
3066 size_t size;
3067 long relcount;
3068
3069 if (opdsymend == secsymend)
3070 goto done;
3071
3072 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3073 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3074 if (relcount == 0)
3075 goto done;
3076
3077 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3078 {
3079 count = -1;
3080 goto done;
3081 }
3082
3083 size = 0;
3084 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3085 {
3086 asymbol *sym;
3087
3088 while (r < opd->relocation + relcount
3089 && r->address < syms[i]->value + opd->vma)
3090 ++r;
3091
3092 if (r == opd->relocation + relcount)
3093 break;
3094
3095 if (r->address != syms[i]->value + opd->vma)
3096 continue;
3097
3098 if (r->howto->type != R_PPC64_ADDR64)
3099 continue;
3100
3101 sym = *r->sym_ptr_ptr;
3102 if (!sym_exists_at (syms, opdsymend, symcount,
3103 sym->section->id, sym->value + r->addend))
3104 {
3105 ++count;
3106 size += sizeof (asymbol);
3107 size += strlen (syms[i]->name) + 2;
3108 }
3109 }
3110
3111 s = *ret = bfd_malloc (size);
3112 if (s == NULL)
3113 {
3114 count = -1;
3115 goto done;
3116 }
3117
3118 names = (char *) (s + count);
3119
3120 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3121 {
3122 asymbol *sym;
3123
3124 while (r < opd->relocation + relcount
3125 && r->address < syms[i]->value + opd->vma)
3126 ++r;
3127
3128 if (r == opd->relocation + relcount)
3129 break;
3130
3131 if (r->address != syms[i]->value + opd->vma)
3132 continue;
3133
3134 if (r->howto->type != R_PPC64_ADDR64)
3135 continue;
3136
3137 sym = *r->sym_ptr_ptr;
3138 if (!sym_exists_at (syms, opdsymend, symcount,
3139 sym->section->id, sym->value + r->addend))
3140 {
3141 size_t len;
3142
3143 *s = *syms[i];
3144 s->flags |= BSF_SYNTHETIC;
3145 s->section = sym->section;
3146 s->value = sym->value + r->addend;
3147 s->name = names;
3148 *names++ = '.';
3149 len = strlen (syms[i]->name);
3150 memcpy (names, syms[i]->name, len + 1);
3151 names += len + 1;
3152 /* Have udata.p point back to the original symbol this
3153 synthetic symbol was derived from. */
3154 s->udata.p = syms[i];
3155 s++;
3156 }
3157 }
3158 }
3159 else
3160 {
3161 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3162 bfd_byte *contents;
3163 size_t size;
3164 long plt_count = 0;
3165 bfd_vma glink_vma = 0, resolv_vma = 0;
3166 asection *dynamic, *glink = NULL, *relplt = NULL;
3167 arelent *p;
3168
3169 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
3170 {
3171 if (contents)
3172 {
3173 free_contents_and_exit:
3174 free (contents);
3175 }
3176 count = -1;
3177 goto done;
3178 }
3179
3180 size = 0;
3181 for (i = secsymend; i < opdsymend; ++i)
3182 {
3183 bfd_vma ent;
3184
3185 /* Ignore bogus symbols. */
3186 if (syms[i]->value > opd->size - 8)
3187 continue;
3188
3189 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3190 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3191 {
3192 ++count;
3193 size += sizeof (asymbol);
3194 size += strlen (syms[i]->name) + 2;
3195 }
3196 }
3197
3198 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3199 if (dyn_count != 0
3200 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3201 {
3202 bfd_byte *dynbuf, *extdyn, *extdynend;
3203 size_t extdynsize;
3204 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3205
3206 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3207 goto free_contents_and_exit;
3208
3209 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3210 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3211
3212 extdyn = dynbuf;
3213 extdynend = extdyn + dynamic->size;
3214 for (; extdyn < extdynend; extdyn += extdynsize)
3215 {
3216 Elf_Internal_Dyn dyn;
3217 (*swap_dyn_in) (abfd, extdyn, &dyn);
3218
3219 if (dyn.d_tag == DT_NULL)
3220 break;
3221
3222 if (dyn.d_tag == DT_PPC64_GLINK)
3223 {
3224 /* The first glink stub starts at offset 32; see comment in
3225 ppc64_elf_finish_dynamic_sections. */
3226 glink_vma = dyn.d_un.d_val + 32;
3227 /* The .glink section usually does not survive the final
3228 link; search for the section (usually .text) where the
3229 glink stubs now reside. */
3230 glink = bfd_sections_find_if (abfd, section_covers_vma,
3231 &glink_vma);
3232 break;
3233 }
3234 }
3235
3236 free (dynbuf);
3237 }
3238
3239 if (glink != NULL)
3240 {
3241 /* Determine __glink trampoline by reading the relative branch
3242 from the first glink stub. */
3243 bfd_byte buf[4];
3244 if (bfd_get_section_contents (abfd, glink, buf,
3245 glink_vma + 4 - glink->vma, 4))
3246 {
3247 unsigned int insn = bfd_get_32 (abfd, buf);
3248 insn ^= B_DOT;
3249 if ((insn & ~0x3fffffc) == 0)
3250 resolv_vma = glink_vma + 4 + (insn ^ 0x2000000) - 0x2000000;
3251 }
3252
3253 if (resolv_vma)
3254 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3255
3256 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3257 if (relplt != NULL)
3258 {
3259 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3260 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3261 goto free_contents_and_exit;
3262
3263 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3264 size += plt_count * sizeof (asymbol);
3265
3266 p = relplt->relocation;
3267 for (i = 0; i < plt_count; i++, p++)
3268 {
3269 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3270 if (p->addend != 0)
3271 size += sizeof ("+0x") - 1 + 16;
3272 }
3273 }
3274 }
3275
3276 s = *ret = bfd_malloc (size);
3277 if (s == NULL)
3278 goto free_contents_and_exit;
3279
3280 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3281
3282 for (i = secsymend; i < opdsymend; ++i)
3283 {
3284 bfd_vma ent;
3285
3286 if (syms[i]->value > opd->size - 8)
3287 continue;
3288
3289 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3290 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3291 {
3292 long lo, hi;
3293 size_t len;
3294 asection *sec = abfd->sections;
3295
3296 *s = *syms[i];
3297 lo = codesecsym;
3298 hi = codesecsymend;
3299 while (lo < hi)
3300 {
3301 long mid = (lo + hi) >> 1;
3302 if (syms[mid]->section->vma < ent)
3303 lo = mid + 1;
3304 else if (syms[mid]->section->vma > ent)
3305 hi = mid;
3306 else
3307 {
3308 sec = syms[mid]->section;
3309 break;
3310 }
3311 }
3312
3313 if (lo >= hi && lo > codesecsym)
3314 sec = syms[lo - 1]->section;
3315
3316 for (; sec != NULL; sec = sec->next)
3317 {
3318 if (sec->vma > ent)
3319 break;
3320 /* SEC_LOAD may not be set if SEC is from a separate debug
3321 info file. */
3322 if ((sec->flags & SEC_ALLOC) == 0)
3323 break;
3324 if ((sec->flags & SEC_CODE) != 0)
3325 s->section = sec;
3326 }
3327 s->flags |= BSF_SYNTHETIC;
3328 s->value = ent - s->section->vma;
3329 s->name = names;
3330 *names++ = '.';
3331 len = strlen (syms[i]->name);
3332 memcpy (names, syms[i]->name, len + 1);
3333 names += len + 1;
3334 /* Have udata.p point back to the original symbol this
3335 synthetic symbol was derived from. */
3336 s->udata.p = syms[i];
3337 s++;
3338 }
3339 }
3340 free (contents);
3341
3342 if (glink != NULL && relplt != NULL)
3343 {
3344 if (resolv_vma)
3345 {
3346 /* Add a symbol for the main glink trampoline. */
3347 memset (s, 0, sizeof *s);
3348 s->the_bfd = abfd;
3349 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3350 s->section = glink;
3351 s->value = resolv_vma - glink->vma;
3352 s->name = names;
3353 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3354 names += sizeof ("__glink_PLTresolve");
3355 s++;
3356 count++;
3357 }
3358
3359 /* FIXME: It would be very much nicer to put sym@plt on the
3360 stub rather than on the glink branch table entry. The
3361 objdump disassembler would then use a sensible symbol
3362 name on plt calls. The difficulty in doing so is
3363 a) finding the stubs, and,
3364 b) matching stubs against plt entries, and,
3365 c) there can be multiple stubs for a given plt entry.
3366
3367 Solving (a) could be done by code scanning, but older
3368 ppc64 binaries used different stubs to current code.
3369 (b) is the tricky one since you need to known the toc
3370 pointer for at least one function that uses a pic stub to
3371 be able to calculate the plt address referenced.
3372 (c) means gdb would need to set multiple breakpoints (or
3373 find the glink branch itself) when setting breakpoints
3374 for pending shared library loads. */
3375 p = relplt->relocation;
3376 for (i = 0; i < plt_count; i++, p++)
3377 {
3378 size_t len;
3379
3380 *s = **p->sym_ptr_ptr;
3381 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3382 we are defining a symbol, ensure one of them is set. */
3383 if ((s->flags & BSF_LOCAL) == 0)
3384 s->flags |= BSF_GLOBAL;
3385 s->flags |= BSF_SYNTHETIC;
3386 s->section = glink;
3387 s->value = glink_vma - glink->vma;
3388 s->name = names;
3389 s->udata.p = NULL;
3390 len = strlen ((*p->sym_ptr_ptr)->name);
3391 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3392 names += len;
3393 if (p->addend != 0)
3394 {
3395 memcpy (names, "+0x", sizeof ("+0x") - 1);
3396 names += sizeof ("+0x") - 1;
3397 bfd_sprintf_vma (abfd, names, p->addend);
3398 names += strlen (names);
3399 }
3400 memcpy (names, "@plt", sizeof ("@plt"));
3401 names += sizeof ("@plt");
3402 s++;
3403 glink_vma += 8;
3404 if (i >= 0x8000)
3405 glink_vma += 4;
3406 }
3407 count += plt_count;
3408 }
3409 }
3410
3411 done:
3412 free (syms);
3413 return count;
3414 }
3415 \f
3416 /* The following functions are specific to the ELF linker, while
3417 functions above are used generally. Those named ppc64_elf_* are
3418 called by the main ELF linker code. They appear in this file more
3419 or less in the order in which they are called. eg.
3420 ppc64_elf_check_relocs is called early in the link process,
3421 ppc64_elf_finish_dynamic_sections is one of the last functions
3422 called.
3423
3424 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3425 functions have both a function code symbol and a function descriptor
3426 symbol. A call to foo in a relocatable object file looks like:
3427
3428 . .text
3429 . x:
3430 . bl .foo
3431 . nop
3432
3433 The function definition in another object file might be:
3434
3435 . .section .opd
3436 . foo: .quad .foo
3437 . .quad .TOC.@tocbase
3438 . .quad 0
3439 .
3440 . .text
3441 . .foo: blr
3442
3443 When the linker resolves the call during a static link, the branch
3444 unsurprisingly just goes to .foo and the .opd information is unused.
3445 If the function definition is in a shared library, things are a little
3446 different: The call goes via a plt call stub, the opd information gets
3447 copied to the plt, and the linker patches the nop.
3448
3449 . x:
3450 . bl .foo_stub
3451 . ld 2,40(1)
3452 .
3453 .
3454 . .foo_stub:
3455 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
3456 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
3457 . std 2,40(1) # this is the general idea
3458 . ld 11,0(12)
3459 . ld 2,8(12)
3460 . mtctr 11
3461 . ld 11,16(12)
3462 . bctr
3463 .
3464 . .section .plt
3465 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3466
3467 The "reloc ()" notation is supposed to indicate that the linker emits
3468 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3469 copying.
3470
3471 What are the difficulties here? Well, firstly, the relocations
3472 examined by the linker in check_relocs are against the function code
3473 sym .foo, while the dynamic relocation in the plt is emitted against
3474 the function descriptor symbol, foo. Somewhere along the line, we need
3475 to carefully copy dynamic link information from one symbol to the other.
3476 Secondly, the generic part of the elf linker will make .foo a dynamic
3477 symbol as is normal for most other backends. We need foo dynamic
3478 instead, at least for an application final link. However, when
3479 creating a shared library containing foo, we need to have both symbols
3480 dynamic so that references to .foo are satisfied during the early
3481 stages of linking. Otherwise the linker might decide to pull in a
3482 definition from some other object, eg. a static library.
3483
3484 Update: As of August 2004, we support a new convention. Function
3485 calls may use the function descriptor symbol, ie. "bl foo". This
3486 behaves exactly as "bl .foo". */
3487
3488 /* Of those relocs that might be copied as dynamic relocs, this function
3489 selects those that must be copied when linking a shared library,
3490 even when the symbol is local. */
3491
3492 static int
3493 must_be_dyn_reloc (struct bfd_link_info *info,
3494 enum elf_ppc64_reloc_type r_type)
3495 {
3496 switch (r_type)
3497 {
3498 default:
3499 return 1;
3500
3501 case R_PPC64_REL32:
3502 case R_PPC64_REL64:
3503 case R_PPC64_REL30:
3504 return 0;
3505
3506 case R_PPC64_TPREL16:
3507 case R_PPC64_TPREL16_LO:
3508 case R_PPC64_TPREL16_HI:
3509 case R_PPC64_TPREL16_HA:
3510 case R_PPC64_TPREL16_DS:
3511 case R_PPC64_TPREL16_LO_DS:
3512 case R_PPC64_TPREL16_HIGHER:
3513 case R_PPC64_TPREL16_HIGHERA:
3514 case R_PPC64_TPREL16_HIGHEST:
3515 case R_PPC64_TPREL16_HIGHESTA:
3516 case R_PPC64_TPREL64:
3517 return !info->executable;
3518 }
3519 }
3520
3521 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3522 copying dynamic variables from a shared lib into an app's dynbss
3523 section, and instead use a dynamic relocation to point into the
3524 shared lib. With code that gcc generates, it's vital that this be
3525 enabled; In the PowerPC64 ABI, the address of a function is actually
3526 the address of a function descriptor, which resides in the .opd
3527 section. gcc uses the descriptor directly rather than going via the
3528 GOT as some other ABI's do, which means that initialized function
3529 pointers must reference the descriptor. Thus, a function pointer
3530 initialized to the address of a function in a shared library will
3531 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3532 redefines the function descriptor symbol to point to the copy. This
3533 presents a problem as a plt entry for that function is also
3534 initialized from the function descriptor symbol and the copy reloc
3535 may not be initialized first. */
3536 #define ELIMINATE_COPY_RELOCS 1
3537
3538 /* Section name for stubs is the associated section name plus this
3539 string. */
3540 #define STUB_SUFFIX ".stub"
3541
3542 /* Linker stubs.
3543 ppc_stub_long_branch:
3544 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3545 destination, but a 24 bit branch in a stub section will reach.
3546 . b dest
3547
3548 ppc_stub_plt_branch:
3549 Similar to the above, but a 24 bit branch in the stub section won't
3550 reach its destination.
3551 . addis %r12,%r2,xxx@toc@ha
3552 . ld %r11,xxx@toc@l(%r12)
3553 . mtctr %r11
3554 . bctr
3555
3556 ppc_stub_plt_call:
3557 Used to call a function in a shared library. If it so happens that
3558 the plt entry referenced crosses a 64k boundary, then an extra
3559 "addi %r12,%r12,xxx@toc@l" will be inserted before the "mtctr".
3560 . addis %r12,%r2,xxx@toc@ha
3561 . std %r2,40(%r1)
3562 . ld %r11,xxx+0@toc@l(%r12)
3563 . mtctr %r11
3564 . ld %r2,xxx+8@toc@l(%r12)
3565 . ld %r11,xxx+16@toc@l(%r12)
3566 . bctr
3567
3568 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3569 code to adjust the value and save r2 to support multiple toc sections.
3570 A ppc_stub_long_branch with an r2 offset looks like:
3571 . std %r2,40(%r1)
3572 . addis %r2,%r2,off@ha
3573 . addi %r2,%r2,off@l
3574 . b dest
3575
3576 A ppc_stub_plt_branch with an r2 offset looks like:
3577 . std %r2,40(%r1)
3578 . addis %r12,%r2,xxx@toc@ha
3579 . ld %r11,xxx@toc@l(%r12)
3580 . addis %r2,%r2,off@ha
3581 . addi %r2,%r2,off@l
3582 . mtctr %r11
3583 . bctr
3584
3585 In cases where the "addis" instruction would add zero, the "addis" is
3586 omitted and following instructions modified slightly in some cases.
3587 */
3588
3589 enum ppc_stub_type {
3590 ppc_stub_none,
3591 ppc_stub_long_branch,
3592 ppc_stub_long_branch_r2off,
3593 ppc_stub_plt_branch,
3594 ppc_stub_plt_branch_r2off,
3595 ppc_stub_plt_call,
3596 ppc_stub_plt_call_r2save
3597 };
3598
3599 struct ppc_stub_hash_entry {
3600
3601 /* Base hash table entry structure. */
3602 struct bfd_hash_entry root;
3603
3604 enum ppc_stub_type stub_type;
3605
3606 /* The stub section. */
3607 asection *stub_sec;
3608
3609 /* Offset within stub_sec of the beginning of this stub. */
3610 bfd_vma stub_offset;
3611
3612 /* Given the symbol's value and its section we can determine its final
3613 value when building the stubs (so the stub knows where to jump. */
3614 bfd_vma target_value;
3615 asection *target_section;
3616
3617 /* The symbol table entry, if any, that this was derived from. */
3618 struct ppc_link_hash_entry *h;
3619 struct plt_entry *plt_ent;
3620
3621 /* And the reloc addend that this was derived from. */
3622 bfd_vma addend;
3623
3624 /* Where this stub is being called from, or, in the case of combined
3625 stub sections, the first input section in the group. */
3626 asection *id_sec;
3627 };
3628
3629 struct ppc_branch_hash_entry {
3630
3631 /* Base hash table entry structure. */
3632 struct bfd_hash_entry root;
3633
3634 /* Offset within branch lookup table. */
3635 unsigned int offset;
3636
3637 /* Generation marker. */
3638 unsigned int iter;
3639 };
3640
3641 /* Used to track dynamic relocations for local symbols. */
3642 struct ppc_dyn_relocs
3643 {
3644 struct ppc_dyn_relocs *next;
3645
3646 /* The input section of the reloc. */
3647 asection *sec;
3648
3649 /* Total number of relocs copied for the input section. */
3650 unsigned int count : 31;
3651
3652 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3653 unsigned int ifunc : 1;
3654 };
3655
3656 struct ppc_link_hash_entry
3657 {
3658 struct elf_link_hash_entry elf;
3659
3660 union {
3661 /* A pointer to the most recently used stub hash entry against this
3662 symbol. */
3663 struct ppc_stub_hash_entry *stub_cache;
3664
3665 /* A pointer to the next symbol starting with a '.' */
3666 struct ppc_link_hash_entry *next_dot_sym;
3667 } u;
3668
3669 /* Track dynamic relocs copied for this symbol. */
3670 struct elf_dyn_relocs *dyn_relocs;
3671
3672 /* Link between function code and descriptor symbols. */
3673 struct ppc_link_hash_entry *oh;
3674
3675 /* Flag function code and descriptor symbols. */
3676 unsigned int is_func:1;
3677 unsigned int is_func_descriptor:1;
3678 unsigned int fake:1;
3679
3680 /* Whether global opd/toc sym has been adjusted or not.
3681 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3682 should be set for all globals defined in any opd/toc section. */
3683 unsigned int adjust_done:1;
3684
3685 /* Set if we twiddled this symbol to weak at some stage. */
3686 unsigned int was_undefined:1;
3687
3688 /* Contexts in which symbol is used in the GOT (or TOC).
3689 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3690 corresponding relocs are encountered during check_relocs.
3691 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3692 indicate the corresponding GOT entry type is not needed.
3693 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3694 a TPREL one. We use a separate flag rather than setting TPREL
3695 just for convenience in distinguishing the two cases. */
3696 #define TLS_GD 1 /* GD reloc. */
3697 #define TLS_LD 2 /* LD reloc. */
3698 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3699 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3700 #define TLS_TLS 16 /* Any TLS reloc. */
3701 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3702 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3703 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3704 unsigned char tls_mask;
3705 };
3706
3707 /* ppc64 ELF linker hash table. */
3708
3709 struct ppc_link_hash_table
3710 {
3711 struct elf_link_hash_table elf;
3712
3713 /* The stub hash table. */
3714 struct bfd_hash_table stub_hash_table;
3715
3716 /* Another hash table for plt_branch stubs. */
3717 struct bfd_hash_table branch_hash_table;
3718
3719 /* Hash table for function prologue tocsave. */
3720 htab_t tocsave_htab;
3721
3722 /* Linker stub bfd. */
3723 bfd *stub_bfd;
3724
3725 /* Linker call-backs. */
3726 asection * (*add_stub_section) (const char *, asection *);
3727 void (*layout_sections_again) (void);
3728
3729 /* Array to keep track of which stub sections have been created, and
3730 information on stub grouping. */
3731 struct map_stub {
3732 /* This is the section to which stubs in the group will be attached. */
3733 asection *link_sec;
3734 /* The stub section. */
3735 asection *stub_sec;
3736 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3737 bfd_vma toc_off;
3738 } *stub_group;
3739
3740 /* Temp used when calculating TOC pointers. */
3741 bfd_vma toc_curr;
3742 bfd *toc_bfd;
3743 asection *toc_first_sec;
3744
3745 /* Highest input section id. */
3746 int top_id;
3747
3748 /* Highest output section index. */
3749 int top_index;
3750
3751 /* Used when adding symbols. */
3752 struct ppc_link_hash_entry *dot_syms;
3753
3754 /* List of input sections for each output section. */
3755 asection **input_list;
3756
3757 /* Short-cuts to get to dynamic linker sections. */
3758 asection *got;
3759 asection *plt;
3760 asection *relplt;
3761 asection *iplt;
3762 asection *reliplt;
3763 asection *dynbss;
3764 asection *relbss;
3765 asection *glink;
3766 asection *sfpr;
3767 asection *brlt;
3768 asection *relbrlt;
3769 asection *glink_eh_frame;
3770
3771 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3772 struct ppc_link_hash_entry *tls_get_addr;
3773 struct ppc_link_hash_entry *tls_get_addr_fd;
3774
3775 /* The special .TOC. symbol. */
3776 struct ppc_link_hash_entry *dot_toc_dot;
3777
3778 /* The size of reliplt used by got entry relocs. */
3779 bfd_size_type got_reli_size;
3780
3781 /* Statistics. */
3782 unsigned long stub_count[ppc_stub_plt_call_r2save];
3783
3784 /* Number of stubs against global syms. */
3785 unsigned long stub_globals;
3786
3787 /* Alignment of PLT call stubs. */
3788 unsigned int plt_stub_align:4;
3789
3790 /* Set if PLT call stubs should load r11. */
3791 unsigned int plt_static_chain:1;
3792
3793 /* Set if PLT call stubs need a read-read barrier. */
3794 unsigned int plt_thread_safe:1;
3795
3796 /* Set if we should emit symbols for stubs. */
3797 unsigned int emit_stub_syms:1;
3798
3799 /* Set if __tls_get_addr optimization should not be done. */
3800 unsigned int no_tls_get_addr_opt:1;
3801
3802 /* Support for multiple toc sections. */
3803 unsigned int do_multi_toc:1;
3804 unsigned int multi_toc_needed:1;
3805 unsigned int second_toc_pass:1;
3806 unsigned int do_toc_opt:1;
3807
3808 /* Set on error. */
3809 unsigned int stub_error:1;
3810
3811 /* Temp used by ppc64_elf_process_dot_syms. */
3812 unsigned int twiddled_syms:1;
3813
3814 /* Incremented every time we size stubs. */
3815 unsigned int stub_iteration;
3816
3817 /* Small local sym cache. */
3818 struct sym_cache sym_cache;
3819 };
3820
3821 /* Rename some of the generic section flags to better document how they
3822 are used here. */
3823
3824 /* Nonzero if this section has TLS related relocations. */
3825 #define has_tls_reloc sec_flg0
3826
3827 /* Nonzero if this section has a call to __tls_get_addr. */
3828 #define has_tls_get_addr_call sec_flg1
3829
3830 /* Nonzero if this section has any toc or got relocs. */
3831 #define has_toc_reloc sec_flg2
3832
3833 /* Nonzero if this section has a call to another section that uses
3834 the toc or got. */
3835 #define makes_toc_func_call sec_flg3
3836
3837 /* Recursion protection when determining above flag. */
3838 #define call_check_in_progress sec_flg4
3839 #define call_check_done sec_flg5
3840
3841 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3842
3843 #define ppc_hash_table(p) \
3844 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
3845 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
3846
3847 #define ppc_stub_hash_lookup(table, string, create, copy) \
3848 ((struct ppc_stub_hash_entry *) \
3849 bfd_hash_lookup ((table), (string), (create), (copy)))
3850
3851 #define ppc_branch_hash_lookup(table, string, create, copy) \
3852 ((struct ppc_branch_hash_entry *) \
3853 bfd_hash_lookup ((table), (string), (create), (copy)))
3854
3855 /* Create an entry in the stub hash table. */
3856
3857 static struct bfd_hash_entry *
3858 stub_hash_newfunc (struct bfd_hash_entry *entry,
3859 struct bfd_hash_table *table,
3860 const char *string)
3861 {
3862 /* Allocate the structure if it has not already been allocated by a
3863 subclass. */
3864 if (entry == NULL)
3865 {
3866 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3867 if (entry == NULL)
3868 return entry;
3869 }
3870
3871 /* Call the allocation method of the superclass. */
3872 entry = bfd_hash_newfunc (entry, table, string);
3873 if (entry != NULL)
3874 {
3875 struct ppc_stub_hash_entry *eh;
3876
3877 /* Initialize the local fields. */
3878 eh = (struct ppc_stub_hash_entry *) entry;
3879 eh->stub_type = ppc_stub_none;
3880 eh->stub_sec = NULL;
3881 eh->stub_offset = 0;
3882 eh->target_value = 0;
3883 eh->target_section = NULL;
3884 eh->h = NULL;
3885 eh->id_sec = NULL;
3886 }
3887
3888 return entry;
3889 }
3890
3891 /* Create an entry in the branch hash table. */
3892
3893 static struct bfd_hash_entry *
3894 branch_hash_newfunc (struct bfd_hash_entry *entry,
3895 struct bfd_hash_table *table,
3896 const char *string)
3897 {
3898 /* Allocate the structure if it has not already been allocated by a
3899 subclass. */
3900 if (entry == NULL)
3901 {
3902 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3903 if (entry == NULL)
3904 return entry;
3905 }
3906
3907 /* Call the allocation method of the superclass. */
3908 entry = bfd_hash_newfunc (entry, table, string);
3909 if (entry != NULL)
3910 {
3911 struct ppc_branch_hash_entry *eh;
3912
3913 /* Initialize the local fields. */
3914 eh = (struct ppc_branch_hash_entry *) entry;
3915 eh->offset = 0;
3916 eh->iter = 0;
3917 }
3918
3919 return entry;
3920 }
3921
3922 /* Create an entry in a ppc64 ELF linker hash table. */
3923
3924 static struct bfd_hash_entry *
3925 link_hash_newfunc (struct bfd_hash_entry *entry,
3926 struct bfd_hash_table *table,
3927 const char *string)
3928 {
3929 /* Allocate the structure if it has not already been allocated by a
3930 subclass. */
3931 if (entry == NULL)
3932 {
3933 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3934 if (entry == NULL)
3935 return entry;
3936 }
3937
3938 /* Call the allocation method of the superclass. */
3939 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3940 if (entry != NULL)
3941 {
3942 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3943
3944 memset (&eh->u.stub_cache, 0,
3945 (sizeof (struct ppc_link_hash_entry)
3946 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3947
3948 /* When making function calls, old ABI code references function entry
3949 points (dot symbols), while new ABI code references the function
3950 descriptor symbol. We need to make any combination of reference and
3951 definition work together, without breaking archive linking.
3952
3953 For a defined function "foo" and an undefined call to "bar":
3954 An old object defines "foo" and ".foo", references ".bar" (possibly
3955 "bar" too).
3956 A new object defines "foo" and references "bar".
3957
3958 A new object thus has no problem with its undefined symbols being
3959 satisfied by definitions in an old object. On the other hand, the
3960 old object won't have ".bar" satisfied by a new object.
3961
3962 Keep a list of newly added dot-symbols. */
3963
3964 if (string[0] == '.')
3965 {
3966 struct ppc_link_hash_table *htab;
3967
3968 htab = (struct ppc_link_hash_table *) table;
3969 eh->u.next_dot_sym = htab->dot_syms;
3970 htab->dot_syms = eh;
3971 }
3972 }
3973
3974 return entry;
3975 }
3976
3977 struct tocsave_entry {
3978 asection *sec;
3979 bfd_vma offset;
3980 };
3981
3982 static hashval_t
3983 tocsave_htab_hash (const void *p)
3984 {
3985 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3986 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
3987 }
3988
3989 static int
3990 tocsave_htab_eq (const void *p1, const void *p2)
3991 {
3992 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3993 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3994 return e1->sec == e2->sec && e1->offset == e2->offset;
3995 }
3996
3997 /* Create a ppc64 ELF linker hash table. */
3998
3999 static struct bfd_link_hash_table *
4000 ppc64_elf_link_hash_table_create (bfd *abfd)
4001 {
4002 struct ppc_link_hash_table *htab;
4003 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
4004
4005 htab = bfd_zmalloc (amt);
4006 if (htab == NULL)
4007 return NULL;
4008
4009 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
4010 sizeof (struct ppc_link_hash_entry),
4011 PPC64_ELF_DATA))
4012 {
4013 free (htab);
4014 return NULL;
4015 }
4016
4017 /* Init the stub hash table too. */
4018 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4019 sizeof (struct ppc_stub_hash_entry)))
4020 return NULL;
4021
4022 /* And the branch hash table. */
4023 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4024 sizeof (struct ppc_branch_hash_entry)))
4025 return NULL;
4026
4027 htab->tocsave_htab = htab_try_create (1024,
4028 tocsave_htab_hash,
4029 tocsave_htab_eq,
4030 NULL);
4031 if (htab->tocsave_htab == NULL)
4032 return NULL;
4033
4034 /* Initializing two fields of the union is just cosmetic. We really
4035 only care about glist, but when compiled on a 32-bit host the
4036 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4037 debugger inspection of these fields look nicer. */
4038 htab->elf.init_got_refcount.refcount = 0;
4039 htab->elf.init_got_refcount.glist = NULL;
4040 htab->elf.init_plt_refcount.refcount = 0;
4041 htab->elf.init_plt_refcount.glist = NULL;
4042 htab->elf.init_got_offset.offset = 0;
4043 htab->elf.init_got_offset.glist = NULL;
4044 htab->elf.init_plt_offset.offset = 0;
4045 htab->elf.init_plt_offset.glist = NULL;
4046
4047 return &htab->elf.root;
4048 }
4049
4050 /* Free the derived linker hash table. */
4051
4052 static void
4053 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
4054 {
4055 struct ppc_link_hash_table *htab = (struct ppc_link_hash_table *) hash;
4056
4057 bfd_hash_table_free (&htab->stub_hash_table);
4058 bfd_hash_table_free (&htab->branch_hash_table);
4059 if (htab->tocsave_htab)
4060 htab_delete (htab->tocsave_htab);
4061 _bfd_elf_link_hash_table_free (hash);
4062 }
4063
4064 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4065
4066 void
4067 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
4068 {
4069 struct ppc_link_hash_table *htab;
4070
4071 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
4072
4073 /* Always hook our dynamic sections into the first bfd, which is the
4074 linker created stub bfd. This ensures that the GOT header is at
4075 the start of the output TOC section. */
4076 htab = ppc_hash_table (info);
4077 if (htab == NULL)
4078 return;
4079 htab->stub_bfd = abfd;
4080 htab->elf.dynobj = abfd;
4081 }
4082
4083 /* Build a name for an entry in the stub hash table. */
4084
4085 static char *
4086 ppc_stub_name (const asection *input_section,
4087 const asection *sym_sec,
4088 const struct ppc_link_hash_entry *h,
4089 const Elf_Internal_Rela *rel)
4090 {
4091 char *stub_name;
4092 ssize_t len;
4093
4094 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4095 offsets from a sym as a branch target? In fact, we could
4096 probably assume the addend is always zero. */
4097 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4098
4099 if (h)
4100 {
4101 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4102 stub_name = bfd_malloc (len);
4103 if (stub_name == NULL)
4104 return stub_name;
4105
4106 len = sprintf (stub_name, "%08x.%s+%x",
4107 input_section->id & 0xffffffff,
4108 h->elf.root.root.string,
4109 (int) rel->r_addend & 0xffffffff);
4110 }
4111 else
4112 {
4113 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4114 stub_name = bfd_malloc (len);
4115 if (stub_name == NULL)
4116 return stub_name;
4117
4118 len = sprintf (stub_name, "%08x.%x:%x+%x",
4119 input_section->id & 0xffffffff,
4120 sym_sec->id & 0xffffffff,
4121 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4122 (int) rel->r_addend & 0xffffffff);
4123 }
4124 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4125 stub_name[len - 2] = 0;
4126 return stub_name;
4127 }
4128
4129 /* Look up an entry in the stub hash. Stub entries are cached because
4130 creating the stub name takes a bit of time. */
4131
4132 static struct ppc_stub_hash_entry *
4133 ppc_get_stub_entry (const asection *input_section,
4134 const asection *sym_sec,
4135 struct ppc_link_hash_entry *h,
4136 const Elf_Internal_Rela *rel,
4137 struct ppc_link_hash_table *htab)
4138 {
4139 struct ppc_stub_hash_entry *stub_entry;
4140 const asection *id_sec;
4141
4142 /* If this input section is part of a group of sections sharing one
4143 stub section, then use the id of the first section in the group.
4144 Stub names need to include a section id, as there may well be
4145 more than one stub used to reach say, printf, and we need to
4146 distinguish between them. */
4147 id_sec = htab->stub_group[input_section->id].link_sec;
4148
4149 if (h != NULL && h->u.stub_cache != NULL
4150 && h->u.stub_cache->h == h
4151 && h->u.stub_cache->id_sec == id_sec)
4152 {
4153 stub_entry = h->u.stub_cache;
4154 }
4155 else
4156 {
4157 char *stub_name;
4158
4159 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4160 if (stub_name == NULL)
4161 return NULL;
4162
4163 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4164 stub_name, FALSE, FALSE);
4165 if (h != NULL)
4166 h->u.stub_cache = stub_entry;
4167
4168 free (stub_name);
4169 }
4170
4171 return stub_entry;
4172 }
4173
4174 /* Add a new stub entry to the stub hash. Not all fields of the new
4175 stub entry are initialised. */
4176
4177 static struct ppc_stub_hash_entry *
4178 ppc_add_stub (const char *stub_name,
4179 asection *section,
4180 struct bfd_link_info *info)
4181 {
4182 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4183 asection *link_sec;
4184 asection *stub_sec;
4185 struct ppc_stub_hash_entry *stub_entry;
4186
4187 link_sec = htab->stub_group[section->id].link_sec;
4188 stub_sec = htab->stub_group[section->id].stub_sec;
4189 if (stub_sec == NULL)
4190 {
4191 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4192 if (stub_sec == NULL)
4193 {
4194 size_t namelen;
4195 bfd_size_type len;
4196 char *s_name;
4197
4198 namelen = strlen (link_sec->name);
4199 len = namelen + sizeof (STUB_SUFFIX);
4200 s_name = bfd_alloc (htab->stub_bfd, len);
4201 if (s_name == NULL)
4202 return NULL;
4203
4204 memcpy (s_name, link_sec->name, namelen);
4205 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4206 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
4207 if (stub_sec == NULL)
4208 return NULL;
4209 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4210 }
4211 htab->stub_group[section->id].stub_sec = stub_sec;
4212 }
4213
4214 /* Enter this entry into the linker stub hash table. */
4215 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4216 TRUE, FALSE);
4217 if (stub_entry == NULL)
4218 {
4219 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4220 section->owner, stub_name);
4221 return NULL;
4222 }
4223
4224 stub_entry->stub_sec = stub_sec;
4225 stub_entry->stub_offset = 0;
4226 stub_entry->id_sec = link_sec;
4227 return stub_entry;
4228 }
4229
4230 /* Create sections for linker generated code. */
4231
4232 static bfd_boolean
4233 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4234 {
4235 struct ppc_link_hash_table *htab;
4236 flagword flags;
4237
4238 htab = ppc_hash_table (info);
4239 if (htab == NULL)
4240 return FALSE;
4241
4242 /* Create .sfpr for code to save and restore fp regs. */
4243 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4244 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4245 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4246 flags);
4247 if (htab->sfpr == NULL
4248 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4249 return FALSE;
4250
4251 /* Create .glink for lazy dynamic linking support. */
4252 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4253 flags);
4254 if (htab->glink == NULL
4255 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4256 return FALSE;
4257
4258 if (!info->no_ld_generated_unwind_info)
4259 {
4260 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4261 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4262 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4263 ".eh_frame",
4264 flags);
4265 if (htab->glink_eh_frame == NULL
4266 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4267 return FALSE;
4268 }
4269
4270 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4271 htab->iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4272 if (htab->iplt == NULL
4273 || ! bfd_set_section_alignment (dynobj, htab->iplt, 3))
4274 return FALSE;
4275
4276 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4277 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4278 htab->reliplt = bfd_make_section_anyway_with_flags (dynobj,
4279 ".rela.iplt",
4280 flags);
4281 if (htab->reliplt == NULL
4282 || ! bfd_set_section_alignment (dynobj, htab->reliplt, 3))
4283 return FALSE;
4284
4285 /* Create branch lookup table for plt_branch stubs. */
4286 flags = (SEC_ALLOC | SEC_LOAD
4287 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4288 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4289 flags);
4290 if (htab->brlt == NULL
4291 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4292 return FALSE;
4293
4294 if (!info->shared)
4295 return TRUE;
4296
4297 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4298 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4299 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4300 ".rela.branch_lt",
4301 flags);
4302 if (htab->relbrlt == NULL
4303 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4304 return FALSE;
4305
4306 return TRUE;
4307 }
4308
4309 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4310 not already done. */
4311
4312 static bfd_boolean
4313 create_got_section (bfd *abfd, struct bfd_link_info *info)
4314 {
4315 asection *got, *relgot;
4316 flagword flags;
4317 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4318
4319 if (!is_ppc64_elf (abfd))
4320 return FALSE;
4321 if (htab == NULL)
4322 return FALSE;
4323
4324 if (!htab->got)
4325 {
4326 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
4327 return FALSE;
4328
4329 htab->got = bfd_get_linker_section (htab->elf.dynobj, ".got");
4330 if (!htab->got)
4331 abort ();
4332 }
4333
4334 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4335 | SEC_LINKER_CREATED);
4336
4337 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4338 if (!got
4339 || !bfd_set_section_alignment (abfd, got, 3))
4340 return FALSE;
4341
4342 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4343 flags | SEC_READONLY);
4344 if (!relgot
4345 || ! bfd_set_section_alignment (abfd, relgot, 3))
4346 return FALSE;
4347
4348 ppc64_elf_tdata (abfd)->got = got;
4349 ppc64_elf_tdata (abfd)->relgot = relgot;
4350 return TRUE;
4351 }
4352
4353 /* Create the dynamic sections, and set up shortcuts. */
4354
4355 static bfd_boolean
4356 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4357 {
4358 struct ppc_link_hash_table *htab;
4359
4360 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4361 return FALSE;
4362
4363 htab = ppc_hash_table (info);
4364 if (htab == NULL)
4365 return FALSE;
4366
4367 if (!htab->got)
4368 htab->got = bfd_get_linker_section (dynobj, ".got");
4369 htab->plt = bfd_get_linker_section (dynobj, ".plt");
4370 htab->relplt = bfd_get_linker_section (dynobj, ".rela.plt");
4371 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4372 if (!info->shared)
4373 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4374
4375 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
4376 || (!info->shared && !htab->relbss))
4377 abort ();
4378
4379 return TRUE;
4380 }
4381
4382 /* Follow indirect and warning symbol links. */
4383
4384 static inline struct bfd_link_hash_entry *
4385 follow_link (struct bfd_link_hash_entry *h)
4386 {
4387 while (h->type == bfd_link_hash_indirect
4388 || h->type == bfd_link_hash_warning)
4389 h = h->u.i.link;
4390 return h;
4391 }
4392
4393 static inline struct elf_link_hash_entry *
4394 elf_follow_link (struct elf_link_hash_entry *h)
4395 {
4396 return (struct elf_link_hash_entry *) follow_link (&h->root);
4397 }
4398
4399 static inline struct ppc_link_hash_entry *
4400 ppc_follow_link (struct ppc_link_hash_entry *h)
4401 {
4402 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4403 }
4404
4405 /* Merge PLT info on FROM with that on TO. */
4406
4407 static void
4408 move_plt_plist (struct ppc_link_hash_entry *from,
4409 struct ppc_link_hash_entry *to)
4410 {
4411 if (from->elf.plt.plist != NULL)
4412 {
4413 if (to->elf.plt.plist != NULL)
4414 {
4415 struct plt_entry **entp;
4416 struct plt_entry *ent;
4417
4418 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4419 {
4420 struct plt_entry *dent;
4421
4422 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4423 if (dent->addend == ent->addend)
4424 {
4425 dent->plt.refcount += ent->plt.refcount;
4426 *entp = ent->next;
4427 break;
4428 }
4429 if (dent == NULL)
4430 entp = &ent->next;
4431 }
4432 *entp = to->elf.plt.plist;
4433 }
4434
4435 to->elf.plt.plist = from->elf.plt.plist;
4436 from->elf.plt.plist = NULL;
4437 }
4438 }
4439
4440 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4441
4442 static void
4443 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4444 struct elf_link_hash_entry *dir,
4445 struct elf_link_hash_entry *ind)
4446 {
4447 struct ppc_link_hash_entry *edir, *eind;
4448
4449 edir = (struct ppc_link_hash_entry *) dir;
4450 eind = (struct ppc_link_hash_entry *) ind;
4451
4452 edir->is_func |= eind->is_func;
4453 edir->is_func_descriptor |= eind->is_func_descriptor;
4454 edir->tls_mask |= eind->tls_mask;
4455 if (eind->oh != NULL)
4456 edir->oh = ppc_follow_link (eind->oh);
4457
4458 /* If called to transfer flags for a weakdef during processing
4459 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4460 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4461 if (!(ELIMINATE_COPY_RELOCS
4462 && eind->elf.root.type != bfd_link_hash_indirect
4463 && edir->elf.dynamic_adjusted))
4464 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4465
4466 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4467 edir->elf.ref_regular |= eind->elf.ref_regular;
4468 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4469 edir->elf.needs_plt |= eind->elf.needs_plt;
4470
4471 /* Copy over any dynamic relocs we may have on the indirect sym. */
4472 if (eind->dyn_relocs != NULL)
4473 {
4474 if (edir->dyn_relocs != NULL)
4475 {
4476 struct elf_dyn_relocs **pp;
4477 struct elf_dyn_relocs *p;
4478
4479 /* Add reloc counts against the indirect sym to the direct sym
4480 list. Merge any entries against the same section. */
4481 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4482 {
4483 struct elf_dyn_relocs *q;
4484
4485 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4486 if (q->sec == p->sec)
4487 {
4488 q->pc_count += p->pc_count;
4489 q->count += p->count;
4490 *pp = p->next;
4491 break;
4492 }
4493 if (q == NULL)
4494 pp = &p->next;
4495 }
4496 *pp = edir->dyn_relocs;
4497 }
4498
4499 edir->dyn_relocs = eind->dyn_relocs;
4500 eind->dyn_relocs = NULL;
4501 }
4502
4503 /* If we were called to copy over info for a weak sym, that's all.
4504 You might think dyn_relocs need not be copied over; After all,
4505 both syms will be dynamic or both non-dynamic so we're just
4506 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4507 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4508 dyn_relocs in read-only sections, and it does so on what is the
4509 DIR sym here. */
4510 if (eind->elf.root.type != bfd_link_hash_indirect)
4511 return;
4512
4513 /* Copy over got entries that we may have already seen to the
4514 symbol which just became indirect. */
4515 if (eind->elf.got.glist != NULL)
4516 {
4517 if (edir->elf.got.glist != NULL)
4518 {
4519 struct got_entry **entp;
4520 struct got_entry *ent;
4521
4522 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4523 {
4524 struct got_entry *dent;
4525
4526 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4527 if (dent->addend == ent->addend
4528 && dent->owner == ent->owner
4529 && dent->tls_type == ent->tls_type)
4530 {
4531 dent->got.refcount += ent->got.refcount;
4532 *entp = ent->next;
4533 break;
4534 }
4535 if (dent == NULL)
4536 entp = &ent->next;
4537 }
4538 *entp = edir->elf.got.glist;
4539 }
4540
4541 edir->elf.got.glist = eind->elf.got.glist;
4542 eind->elf.got.glist = NULL;
4543 }
4544
4545 /* And plt entries. */
4546 move_plt_plist (eind, edir);
4547
4548 if (eind->elf.dynindx != -1)
4549 {
4550 if (edir->elf.dynindx != -1)
4551 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4552 edir->elf.dynstr_index);
4553 edir->elf.dynindx = eind->elf.dynindx;
4554 edir->elf.dynstr_index = eind->elf.dynstr_index;
4555 eind->elf.dynindx = -1;
4556 eind->elf.dynstr_index = 0;
4557 }
4558 }
4559
4560 /* Find the function descriptor hash entry from the given function code
4561 hash entry FH. Link the entries via their OH fields. */
4562
4563 static struct ppc_link_hash_entry *
4564 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4565 {
4566 struct ppc_link_hash_entry *fdh = fh->oh;
4567
4568 if (fdh == NULL)
4569 {
4570 const char *fd_name = fh->elf.root.root.string + 1;
4571
4572 fdh = (struct ppc_link_hash_entry *)
4573 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4574 if (fdh == NULL)
4575 return fdh;
4576
4577 fdh->is_func_descriptor = 1;
4578 fdh->oh = fh;
4579 fh->is_func = 1;
4580 fh->oh = fdh;
4581 }
4582
4583 return ppc_follow_link (fdh);
4584 }
4585
4586 /* Make a fake function descriptor sym for the code sym FH. */
4587
4588 static struct ppc_link_hash_entry *
4589 make_fdh (struct bfd_link_info *info,
4590 struct ppc_link_hash_entry *fh)
4591 {
4592 bfd *abfd;
4593 asymbol *newsym;
4594 struct bfd_link_hash_entry *bh;
4595 struct ppc_link_hash_entry *fdh;
4596
4597 abfd = fh->elf.root.u.undef.abfd;
4598 newsym = bfd_make_empty_symbol (abfd);
4599 newsym->name = fh->elf.root.root.string + 1;
4600 newsym->section = bfd_und_section_ptr;
4601 newsym->value = 0;
4602 newsym->flags = BSF_WEAK;
4603
4604 bh = NULL;
4605 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4606 newsym->flags, newsym->section,
4607 newsym->value, NULL, FALSE, FALSE,
4608 &bh))
4609 return NULL;
4610
4611 fdh = (struct ppc_link_hash_entry *) bh;
4612 fdh->elf.non_elf = 0;
4613 fdh->fake = 1;
4614 fdh->is_func_descriptor = 1;
4615 fdh->oh = fh;
4616 fh->is_func = 1;
4617 fh->oh = fdh;
4618 return fdh;
4619 }
4620
4621 /* Fix function descriptor symbols defined in .opd sections to be
4622 function type. */
4623
4624 static bfd_boolean
4625 ppc64_elf_add_symbol_hook (bfd *ibfd,
4626 struct bfd_link_info *info,
4627 Elf_Internal_Sym *isym,
4628 const char **name ATTRIBUTE_UNUSED,
4629 flagword *flags ATTRIBUTE_UNUSED,
4630 asection **sec,
4631 bfd_vma *value ATTRIBUTE_UNUSED)
4632 {
4633 if ((ibfd->flags & DYNAMIC) == 0
4634 && ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4635 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4636
4637 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4638 {
4639 if ((ibfd->flags & DYNAMIC) == 0)
4640 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4641 }
4642 else if (ELF_ST_TYPE (isym->st_info) == STT_FUNC)
4643 ;
4644 else if (*sec != NULL
4645 && strcmp ((*sec)->name, ".opd") == 0)
4646 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4647
4648 return TRUE;
4649 }
4650
4651 /* This function makes an old ABI object reference to ".bar" cause the
4652 inclusion of a new ABI object archive that defines "bar".
4653 NAME is a symbol defined in an archive. Return a symbol in the hash
4654 table that might be satisfied by the archive symbols. */
4655
4656 static struct elf_link_hash_entry *
4657 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4658 struct bfd_link_info *info,
4659 const char *name)
4660 {
4661 struct elf_link_hash_entry *h;
4662 char *dot_name;
4663 size_t len;
4664
4665 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4666 if (h != NULL
4667 /* Don't return this sym if it is a fake function descriptor
4668 created by add_symbol_adjust. */
4669 && !(h->root.type == bfd_link_hash_undefweak
4670 && ((struct ppc_link_hash_entry *) h)->fake))
4671 return h;
4672
4673 if (name[0] == '.')
4674 return h;
4675
4676 len = strlen (name);
4677 dot_name = bfd_alloc (abfd, len + 2);
4678 if (dot_name == NULL)
4679 return (struct elf_link_hash_entry *) 0 - 1;
4680 dot_name[0] = '.';
4681 memcpy (dot_name + 1, name, len + 1);
4682 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4683 bfd_release (abfd, dot_name);
4684 return h;
4685 }
4686
4687 /* This function satisfies all old ABI object references to ".bar" if a
4688 new ABI object defines "bar". Well, at least, undefined dot symbols
4689 are made weak. This stops later archive searches from including an
4690 object if we already have a function descriptor definition. It also
4691 prevents the linker complaining about undefined symbols.
4692 We also check and correct mismatched symbol visibility here. The
4693 most restrictive visibility of the function descriptor and the
4694 function entry symbol is used. */
4695
4696 static bfd_boolean
4697 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4698 {
4699 struct ppc_link_hash_table *htab;
4700 struct ppc_link_hash_entry *fdh;
4701
4702 if (eh->elf.root.type == bfd_link_hash_indirect)
4703 return TRUE;
4704
4705 if (eh->elf.root.type == bfd_link_hash_warning)
4706 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4707
4708 if (eh->elf.root.root.string[0] != '.')
4709 abort ();
4710
4711 htab = ppc_hash_table (info);
4712 if (htab == NULL)
4713 return FALSE;
4714
4715 fdh = lookup_fdh (eh, htab);
4716 if (fdh == NULL)
4717 {
4718 if (!info->relocatable
4719 && (eh->elf.root.type == bfd_link_hash_undefined
4720 || eh->elf.root.type == bfd_link_hash_undefweak)
4721 && eh->elf.ref_regular)
4722 {
4723 /* Make an undefweak function descriptor sym, which is enough to
4724 pull in an --as-needed shared lib, but won't cause link
4725 errors. Archives are handled elsewhere. */
4726 fdh = make_fdh (info, eh);
4727 if (fdh == NULL)
4728 return FALSE;
4729 fdh->elf.ref_regular = 1;
4730 }
4731 }
4732 else
4733 {
4734 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4735 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4736 if (entry_vis < descr_vis)
4737 fdh->elf.other += entry_vis - descr_vis;
4738 else if (entry_vis > descr_vis)
4739 eh->elf.other += descr_vis - entry_vis;
4740
4741 if ((fdh->elf.root.type == bfd_link_hash_defined
4742 || fdh->elf.root.type == bfd_link_hash_defweak)
4743 && eh->elf.root.type == bfd_link_hash_undefined)
4744 {
4745 eh->elf.root.type = bfd_link_hash_undefweak;
4746 eh->was_undefined = 1;
4747 htab->twiddled_syms = 1;
4748 }
4749 }
4750
4751 return TRUE;
4752 }
4753
4754 /* Process list of dot-symbols we made in link_hash_newfunc. */
4755
4756 static bfd_boolean
4757 ppc64_elf_process_dot_syms (bfd *ibfd, struct bfd_link_info *info)
4758 {
4759 struct ppc_link_hash_table *htab;
4760 struct ppc_link_hash_entry **p, *eh;
4761
4762 if (!is_ppc64_elf (info->output_bfd))
4763 return TRUE;
4764 htab = ppc_hash_table (info);
4765 if (htab == NULL)
4766 return FALSE;
4767
4768 if (is_ppc64_elf (ibfd))
4769 {
4770 p = &htab->dot_syms;
4771 while ((eh = *p) != NULL)
4772 {
4773 *p = NULL;
4774 if (!add_symbol_adjust (eh, info))
4775 return FALSE;
4776 p = &eh->u.next_dot_sym;
4777 }
4778 }
4779
4780 /* Clear the list for non-ppc64 input files. */
4781 p = &htab->dot_syms;
4782 while ((eh = *p) != NULL)
4783 {
4784 *p = NULL;
4785 p = &eh->u.next_dot_sym;
4786 }
4787
4788 /* We need to fix the undefs list for any syms we have twiddled to
4789 undef_weak. */
4790 if (htab->twiddled_syms)
4791 {
4792 bfd_link_repair_undef_list (&htab->elf.root);
4793 htab->twiddled_syms = 0;
4794 }
4795 return TRUE;
4796 }
4797
4798 /* Undo hash table changes when an --as-needed input file is determined
4799 not to be needed. */
4800
4801 static bfd_boolean
4802 ppc64_elf_as_needed_cleanup (bfd *ibfd ATTRIBUTE_UNUSED,
4803 struct bfd_link_info *info)
4804 {
4805 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4806
4807 if (htab == NULL)
4808 return FALSE;
4809
4810 htab->dot_syms = NULL;
4811 return TRUE;
4812 }
4813
4814 /* If --just-symbols against a final linked binary, then assume we need
4815 toc adjusting stubs when calling functions defined there. */
4816
4817 static void
4818 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4819 {
4820 if ((sec->flags & SEC_CODE) != 0
4821 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4822 && is_ppc64_elf (sec->owner))
4823 {
4824 asection *got = bfd_get_section_by_name (sec->owner, ".got");
4825 if (got != NULL
4826 && got->size >= elf_backend_got_header_size
4827 && bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4828 sec->has_toc_reloc = 1;
4829 }
4830 _bfd_elf_link_just_syms (sec, info);
4831 }
4832
4833 static struct plt_entry **
4834 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4835 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4836 {
4837 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4838 struct plt_entry **local_plt;
4839 unsigned char *local_got_tls_masks;
4840
4841 if (local_got_ents == NULL)
4842 {
4843 bfd_size_type size = symtab_hdr->sh_info;
4844
4845 size *= (sizeof (*local_got_ents)
4846 + sizeof (*local_plt)
4847 + sizeof (*local_got_tls_masks));
4848 local_got_ents = bfd_zalloc (abfd, size);
4849 if (local_got_ents == NULL)
4850 return NULL;
4851 elf_local_got_ents (abfd) = local_got_ents;
4852 }
4853
4854 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
4855 {
4856 struct got_entry *ent;
4857
4858 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4859 if (ent->addend == r_addend
4860 && ent->owner == abfd
4861 && ent->tls_type == tls_type)
4862 break;
4863 if (ent == NULL)
4864 {
4865 bfd_size_type amt = sizeof (*ent);
4866 ent = bfd_alloc (abfd, amt);
4867 if (ent == NULL)
4868 return FALSE;
4869 ent->next = local_got_ents[r_symndx];
4870 ent->addend = r_addend;
4871 ent->owner = abfd;
4872 ent->tls_type = tls_type;
4873 ent->is_indirect = FALSE;
4874 ent->got.refcount = 0;
4875 local_got_ents[r_symndx] = ent;
4876 }
4877 ent->got.refcount += 1;
4878 }
4879
4880 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4881 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4882 local_got_tls_masks[r_symndx] |= tls_type;
4883
4884 return local_plt + r_symndx;
4885 }
4886
4887 static bfd_boolean
4888 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4889 {
4890 struct plt_entry *ent;
4891
4892 for (ent = *plist; ent != NULL; ent = ent->next)
4893 if (ent->addend == addend)
4894 break;
4895 if (ent == NULL)
4896 {
4897 bfd_size_type amt = sizeof (*ent);
4898 ent = bfd_alloc (abfd, amt);
4899 if (ent == NULL)
4900 return FALSE;
4901 ent->next = *plist;
4902 ent->addend = addend;
4903 ent->plt.refcount = 0;
4904 *plist = ent;
4905 }
4906 ent->plt.refcount += 1;
4907 return TRUE;
4908 }
4909
4910 static bfd_boolean
4911 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4912 {
4913 return (r_type == R_PPC64_REL24
4914 || r_type == R_PPC64_REL14
4915 || r_type == R_PPC64_REL14_BRTAKEN
4916 || r_type == R_PPC64_REL14_BRNTAKEN
4917 || r_type == R_PPC64_ADDR24
4918 || r_type == R_PPC64_ADDR14
4919 || r_type == R_PPC64_ADDR14_BRTAKEN
4920 || r_type == R_PPC64_ADDR14_BRNTAKEN);
4921 }
4922
4923 /* Look through the relocs for a section during the first phase, and
4924 calculate needed space in the global offset table, procedure
4925 linkage table, and dynamic reloc sections. */
4926
4927 static bfd_boolean
4928 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4929 asection *sec, const Elf_Internal_Rela *relocs)
4930 {
4931 struct ppc_link_hash_table *htab;
4932 Elf_Internal_Shdr *symtab_hdr;
4933 struct elf_link_hash_entry **sym_hashes;
4934 const Elf_Internal_Rela *rel;
4935 const Elf_Internal_Rela *rel_end;
4936 asection *sreloc;
4937 asection **opd_sym_map;
4938 struct elf_link_hash_entry *tga, *dottga;
4939
4940 if (info->relocatable)
4941 return TRUE;
4942
4943 /* Don't do anything special with non-loaded, non-alloced sections.
4944 In particular, any relocs in such sections should not affect GOT
4945 and PLT reference counting (ie. we don't allow them to create GOT
4946 or PLT entries), there's no possibility or desire to optimize TLS
4947 relocs, and there's not much point in propagating relocs to shared
4948 libs that the dynamic linker won't relocate. */
4949 if ((sec->flags & SEC_ALLOC) == 0)
4950 return TRUE;
4951
4952 BFD_ASSERT (is_ppc64_elf (abfd));
4953
4954 htab = ppc_hash_table (info);
4955 if (htab == NULL)
4956 return FALSE;
4957
4958 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4959 FALSE, FALSE, TRUE);
4960 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4961 FALSE, FALSE, TRUE);
4962 symtab_hdr = &elf_symtab_hdr (abfd);
4963 sym_hashes = elf_sym_hashes (abfd);
4964 sreloc = NULL;
4965 opd_sym_map = NULL;
4966 if (strcmp (sec->name, ".opd") == 0)
4967 {
4968 /* Garbage collection needs some extra help with .opd sections.
4969 We don't want to necessarily keep everything referenced by
4970 relocs in .opd, as that would keep all functions. Instead,
4971 if we reference an .opd symbol (a function descriptor), we
4972 want to keep the function code symbol's section. This is
4973 easy for global symbols, but for local syms we need to keep
4974 information about the associated function section. */
4975 bfd_size_type amt;
4976
4977 amt = sec->size * sizeof (*opd_sym_map) / 8;
4978 opd_sym_map = bfd_zalloc (abfd, amt);
4979 if (opd_sym_map == NULL)
4980 return FALSE;
4981 ppc64_elf_section_data (sec)->u.opd.func_sec = opd_sym_map;
4982 BFD_ASSERT (ppc64_elf_section_data (sec)->sec_type == sec_normal);
4983 ppc64_elf_section_data (sec)->sec_type = sec_opd;
4984 }
4985
4986 if (htab->sfpr == NULL
4987 && !create_linkage_sections (htab->elf.dynobj, info))
4988 return FALSE;
4989
4990 rel_end = relocs + sec->reloc_count;
4991 for (rel = relocs; rel < rel_end; rel++)
4992 {
4993 unsigned long r_symndx;
4994 struct elf_link_hash_entry *h;
4995 enum elf_ppc64_reloc_type r_type;
4996 int tls_type;
4997 struct _ppc64_elf_section_data *ppc64_sec;
4998 struct plt_entry **ifunc;
4999
5000 r_symndx = ELF64_R_SYM (rel->r_info);
5001 if (r_symndx < symtab_hdr->sh_info)
5002 h = NULL;
5003 else
5004 {
5005 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5006 h = elf_follow_link (h);
5007 }
5008
5009 tls_type = 0;
5010 ifunc = NULL;
5011 if (h != NULL)
5012 {
5013 if (h->type == STT_GNU_IFUNC)
5014 {
5015 h->needs_plt = 1;
5016 ifunc = &h->plt.plist;
5017 }
5018 }
5019 else
5020 {
5021 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5022 abfd, r_symndx);
5023 if (isym == NULL)
5024 return FALSE;
5025
5026 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5027 {
5028 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5029 rel->r_addend, PLT_IFUNC);
5030 if (ifunc == NULL)
5031 return FALSE;
5032 }
5033 }
5034 r_type = ELF64_R_TYPE (rel->r_info);
5035 if (is_branch_reloc (r_type))
5036 {
5037 if (h != NULL && (h == tga || h == dottga))
5038 {
5039 if (rel != relocs
5040 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5041 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5042 /* We have a new-style __tls_get_addr call with a marker
5043 reloc. */
5044 ;
5045 else
5046 /* Mark this section as having an old-style call. */
5047 sec->has_tls_get_addr_call = 1;
5048 }
5049
5050 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5051 if (ifunc != NULL
5052 && !update_plt_info (abfd, ifunc, rel->r_addend))
5053 return FALSE;
5054 }
5055
5056 switch (r_type)
5057 {
5058 case R_PPC64_TLSGD:
5059 case R_PPC64_TLSLD:
5060 /* These special tls relocs tie a call to __tls_get_addr with
5061 its parameter symbol. */
5062 break;
5063
5064 case R_PPC64_GOT_TLSLD16:
5065 case R_PPC64_GOT_TLSLD16_LO:
5066 case R_PPC64_GOT_TLSLD16_HI:
5067 case R_PPC64_GOT_TLSLD16_HA:
5068 tls_type = TLS_TLS | TLS_LD;
5069 goto dogottls;
5070
5071 case R_PPC64_GOT_TLSGD16:
5072 case R_PPC64_GOT_TLSGD16_LO:
5073 case R_PPC64_GOT_TLSGD16_HI:
5074 case R_PPC64_GOT_TLSGD16_HA:
5075 tls_type = TLS_TLS | TLS_GD;
5076 goto dogottls;
5077
5078 case R_PPC64_GOT_TPREL16_DS:
5079 case R_PPC64_GOT_TPREL16_LO_DS:
5080 case R_PPC64_GOT_TPREL16_HI:
5081 case R_PPC64_GOT_TPREL16_HA:
5082 if (!info->executable)
5083 info->flags |= DF_STATIC_TLS;
5084 tls_type = TLS_TLS | TLS_TPREL;
5085 goto dogottls;
5086
5087 case R_PPC64_GOT_DTPREL16_DS:
5088 case R_PPC64_GOT_DTPREL16_LO_DS:
5089 case R_PPC64_GOT_DTPREL16_HI:
5090 case R_PPC64_GOT_DTPREL16_HA:
5091 tls_type = TLS_TLS | TLS_DTPREL;
5092 dogottls:
5093 sec->has_tls_reloc = 1;
5094 /* Fall thru */
5095
5096 case R_PPC64_GOT16:
5097 case R_PPC64_GOT16_DS:
5098 case R_PPC64_GOT16_HA:
5099 case R_PPC64_GOT16_HI:
5100 case R_PPC64_GOT16_LO:
5101 case R_PPC64_GOT16_LO_DS:
5102 /* This symbol requires a global offset table entry. */
5103 sec->has_toc_reloc = 1;
5104 if (r_type == R_PPC64_GOT_TLSLD16
5105 || r_type == R_PPC64_GOT_TLSGD16
5106 || r_type == R_PPC64_GOT_TPREL16_DS
5107 || r_type == R_PPC64_GOT_DTPREL16_DS
5108 || r_type == R_PPC64_GOT16
5109 || r_type == R_PPC64_GOT16_DS)
5110 {
5111 htab->do_multi_toc = 1;
5112 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5113 }
5114
5115 if (ppc64_elf_tdata (abfd)->got == NULL
5116 && !create_got_section (abfd, info))
5117 return FALSE;
5118
5119 if (h != NULL)
5120 {
5121 struct ppc_link_hash_entry *eh;
5122 struct got_entry *ent;
5123
5124 eh = (struct ppc_link_hash_entry *) h;
5125 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5126 if (ent->addend == rel->r_addend
5127 && ent->owner == abfd
5128 && ent->tls_type == tls_type)
5129 break;
5130 if (ent == NULL)
5131 {
5132 bfd_size_type amt = sizeof (*ent);
5133 ent = bfd_alloc (abfd, amt);
5134 if (ent == NULL)
5135 return FALSE;
5136 ent->next = eh->elf.got.glist;
5137 ent->addend = rel->r_addend;
5138 ent->owner = abfd;
5139 ent->tls_type = tls_type;
5140 ent->is_indirect = FALSE;
5141 ent->got.refcount = 0;
5142 eh->elf.got.glist = ent;
5143 }
5144 ent->got.refcount += 1;
5145 eh->tls_mask |= tls_type;
5146 }
5147 else
5148 /* This is a global offset table entry for a local symbol. */
5149 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5150 rel->r_addend, tls_type))
5151 return FALSE;
5152 break;
5153
5154 case R_PPC64_PLT16_HA:
5155 case R_PPC64_PLT16_HI:
5156 case R_PPC64_PLT16_LO:
5157 case R_PPC64_PLT32:
5158 case R_PPC64_PLT64:
5159 /* This symbol requires a procedure linkage table entry. We
5160 actually build the entry in adjust_dynamic_symbol,
5161 because this might be a case of linking PIC code without
5162 linking in any dynamic objects, in which case we don't
5163 need to generate a procedure linkage table after all. */
5164 if (h == NULL)
5165 {
5166 /* It does not make sense to have a procedure linkage
5167 table entry for a local symbol. */
5168 bfd_set_error (bfd_error_bad_value);
5169 return FALSE;
5170 }
5171 else
5172 {
5173 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5174 return FALSE;
5175 h->needs_plt = 1;
5176 if (h->root.root.string[0] == '.'
5177 && h->root.root.string[1] != '\0')
5178 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5179 }
5180 break;
5181
5182 /* The following relocations don't need to propagate the
5183 relocation if linking a shared object since they are
5184 section relative. */
5185 case R_PPC64_SECTOFF:
5186 case R_PPC64_SECTOFF_LO:
5187 case R_PPC64_SECTOFF_HI:
5188 case R_PPC64_SECTOFF_HA:
5189 case R_PPC64_SECTOFF_DS:
5190 case R_PPC64_SECTOFF_LO_DS:
5191 case R_PPC64_DTPREL16:
5192 case R_PPC64_DTPREL16_LO:
5193 case R_PPC64_DTPREL16_HI:
5194 case R_PPC64_DTPREL16_HA:
5195 case R_PPC64_DTPREL16_DS:
5196 case R_PPC64_DTPREL16_LO_DS:
5197 case R_PPC64_DTPREL16_HIGHER:
5198 case R_PPC64_DTPREL16_HIGHERA:
5199 case R_PPC64_DTPREL16_HIGHEST:
5200 case R_PPC64_DTPREL16_HIGHESTA:
5201 break;
5202
5203 /* Nor do these. */
5204 case R_PPC64_REL16:
5205 case R_PPC64_REL16_LO:
5206 case R_PPC64_REL16_HI:
5207 case R_PPC64_REL16_HA:
5208 break;
5209
5210 case R_PPC64_TOC16:
5211 case R_PPC64_TOC16_DS:
5212 htab->do_multi_toc = 1;
5213 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5214 case R_PPC64_TOC16_LO:
5215 case R_PPC64_TOC16_HI:
5216 case R_PPC64_TOC16_HA:
5217 case R_PPC64_TOC16_LO_DS:
5218 sec->has_toc_reloc = 1;
5219 break;
5220
5221 /* This relocation describes the C++ object vtable hierarchy.
5222 Reconstruct it for later use during GC. */
5223 case R_PPC64_GNU_VTINHERIT:
5224 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5225 return FALSE;
5226 break;
5227
5228 /* This relocation describes which C++ vtable entries are actually
5229 used. Record for later use during GC. */
5230 case R_PPC64_GNU_VTENTRY:
5231 BFD_ASSERT (h != NULL);
5232 if (h != NULL
5233 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5234 return FALSE;
5235 break;
5236
5237 case R_PPC64_REL14:
5238 case R_PPC64_REL14_BRTAKEN:
5239 case R_PPC64_REL14_BRNTAKEN:
5240 {
5241 asection *dest = NULL;
5242
5243 /* Heuristic: If jumping outside our section, chances are
5244 we are going to need a stub. */
5245 if (h != NULL)
5246 {
5247 /* If the sym is weak it may be overridden later, so
5248 don't assume we know where a weak sym lives. */
5249 if (h->root.type == bfd_link_hash_defined)
5250 dest = h->root.u.def.section;
5251 }
5252 else
5253 {
5254 Elf_Internal_Sym *isym;
5255
5256 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5257 abfd, r_symndx);
5258 if (isym == NULL)
5259 return FALSE;
5260
5261 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5262 }
5263
5264 if (dest != sec)
5265 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5266 }
5267 /* Fall through. */
5268
5269 case R_PPC64_REL24:
5270 if (h != NULL && ifunc == NULL)
5271 {
5272 /* We may need a .plt entry if the function this reloc
5273 refers to is in a shared lib. */
5274 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5275 return FALSE;
5276 h->needs_plt = 1;
5277 if (h->root.root.string[0] == '.'
5278 && h->root.root.string[1] != '\0')
5279 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5280 if (h == tga || h == dottga)
5281 sec->has_tls_reloc = 1;
5282 }
5283 break;
5284
5285 case R_PPC64_TPREL64:
5286 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5287 if (!info->executable)
5288 info->flags |= DF_STATIC_TLS;
5289 goto dotlstoc;
5290
5291 case R_PPC64_DTPMOD64:
5292 if (rel + 1 < rel_end
5293 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5294 && rel[1].r_offset == rel->r_offset + 8)
5295 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5296 else
5297 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5298 goto dotlstoc;
5299
5300 case R_PPC64_DTPREL64:
5301 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5302 if (rel != relocs
5303 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5304 && rel[-1].r_offset == rel->r_offset - 8)
5305 /* This is the second reloc of a dtpmod, dtprel pair.
5306 Don't mark with TLS_DTPREL. */
5307 goto dodyn;
5308
5309 dotlstoc:
5310 sec->has_tls_reloc = 1;
5311 if (h != NULL)
5312 {
5313 struct ppc_link_hash_entry *eh;
5314 eh = (struct ppc_link_hash_entry *) h;
5315 eh->tls_mask |= tls_type;
5316 }
5317 else
5318 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5319 rel->r_addend, tls_type))
5320 return FALSE;
5321
5322 ppc64_sec = ppc64_elf_section_data (sec);
5323 if (ppc64_sec->sec_type != sec_toc)
5324 {
5325 bfd_size_type amt;
5326
5327 /* One extra to simplify get_tls_mask. */
5328 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5329 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5330 if (ppc64_sec->u.toc.symndx == NULL)
5331 return FALSE;
5332 amt = sec->size * sizeof (bfd_vma) / 8;
5333 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5334 if (ppc64_sec->u.toc.add == NULL)
5335 return FALSE;
5336 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5337 ppc64_sec->sec_type = sec_toc;
5338 }
5339 BFD_ASSERT (rel->r_offset % 8 == 0);
5340 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5341 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5342
5343 /* Mark the second slot of a GD or LD entry.
5344 -1 to indicate GD and -2 to indicate LD. */
5345 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5346 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5347 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5348 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5349 goto dodyn;
5350
5351 case R_PPC64_TPREL16:
5352 case R_PPC64_TPREL16_LO:
5353 case R_PPC64_TPREL16_HI:
5354 case R_PPC64_TPREL16_HA:
5355 case R_PPC64_TPREL16_DS:
5356 case R_PPC64_TPREL16_LO_DS:
5357 case R_PPC64_TPREL16_HIGHER:
5358 case R_PPC64_TPREL16_HIGHERA:
5359 case R_PPC64_TPREL16_HIGHEST:
5360 case R_PPC64_TPREL16_HIGHESTA:
5361 if (info->shared)
5362 {
5363 if (!info->executable)
5364 info->flags |= DF_STATIC_TLS;
5365 goto dodyn;
5366 }
5367 break;
5368
5369 case R_PPC64_ADDR64:
5370 if (opd_sym_map != NULL
5371 && rel + 1 < rel_end
5372 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5373 {
5374 if (h != NULL)
5375 {
5376 if (h->root.root.string[0] == '.'
5377 && h->root.root.string[1] != 0
5378 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5379 ;
5380 else
5381 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5382 }
5383 else
5384 {
5385 asection *s;
5386 Elf_Internal_Sym *isym;
5387
5388 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5389 abfd, r_symndx);
5390 if (isym == NULL)
5391 return FALSE;
5392
5393 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5394 if (s != NULL && s != sec)
5395 opd_sym_map[rel->r_offset / 8] = s;
5396 }
5397 }
5398 /* Fall through. */
5399
5400 case R_PPC64_REL30:
5401 case R_PPC64_REL32:
5402 case R_PPC64_REL64:
5403 case R_PPC64_ADDR14:
5404 case R_PPC64_ADDR14_BRNTAKEN:
5405 case R_PPC64_ADDR14_BRTAKEN:
5406 case R_PPC64_ADDR16:
5407 case R_PPC64_ADDR16_DS:
5408 case R_PPC64_ADDR16_HA:
5409 case R_PPC64_ADDR16_HI:
5410 case R_PPC64_ADDR16_HIGHER:
5411 case R_PPC64_ADDR16_HIGHERA:
5412 case R_PPC64_ADDR16_HIGHEST:
5413 case R_PPC64_ADDR16_HIGHESTA:
5414 case R_PPC64_ADDR16_LO:
5415 case R_PPC64_ADDR16_LO_DS:
5416 case R_PPC64_ADDR24:
5417 case R_PPC64_ADDR32:
5418 case R_PPC64_UADDR16:
5419 case R_PPC64_UADDR32:
5420 case R_PPC64_UADDR64:
5421 case R_PPC64_TOC:
5422 if (h != NULL && !info->shared)
5423 /* We may need a copy reloc. */
5424 h->non_got_ref = 1;
5425
5426 /* Don't propagate .opd relocs. */
5427 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5428 break;
5429
5430 /* If we are creating a shared library, and this is a reloc
5431 against a global symbol, or a non PC relative reloc
5432 against a local symbol, then we need to copy the reloc
5433 into the shared library. However, if we are linking with
5434 -Bsymbolic, we do not need to copy a reloc against a
5435 global symbol which is defined in an object we are
5436 including in the link (i.e., DEF_REGULAR is set). At
5437 this point we have not seen all the input files, so it is
5438 possible that DEF_REGULAR is not set now but will be set
5439 later (it is never cleared). In case of a weak definition,
5440 DEF_REGULAR may be cleared later by a strong definition in
5441 a shared library. We account for that possibility below by
5442 storing information in the dyn_relocs field of the hash
5443 table entry. A similar situation occurs when creating
5444 shared libraries and symbol visibility changes render the
5445 symbol local.
5446
5447 If on the other hand, we are creating an executable, we
5448 may need to keep relocations for symbols satisfied by a
5449 dynamic library if we manage to avoid copy relocs for the
5450 symbol. */
5451 dodyn:
5452 if ((info->shared
5453 && (must_be_dyn_reloc (info, r_type)
5454 || (h != NULL
5455 && (! info->symbolic
5456 || h->root.type == bfd_link_hash_defweak
5457 || !h->def_regular))))
5458 || (ELIMINATE_COPY_RELOCS
5459 && !info->shared
5460 && h != NULL
5461 && (h->root.type == bfd_link_hash_defweak
5462 || !h->def_regular))
5463 || (!info->shared
5464 && ifunc != NULL))
5465 {
5466 /* We must copy these reloc types into the output file.
5467 Create a reloc section in dynobj and make room for
5468 this reloc. */
5469 if (sreloc == NULL)
5470 {
5471 sreloc = _bfd_elf_make_dynamic_reloc_section
5472 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5473
5474 if (sreloc == NULL)
5475 return FALSE;
5476 }
5477
5478 /* If this is a global symbol, we count the number of
5479 relocations we need for this symbol. */
5480 if (h != NULL)
5481 {
5482 struct elf_dyn_relocs *p;
5483 struct elf_dyn_relocs **head;
5484
5485 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5486 p = *head;
5487 if (p == NULL || p->sec != sec)
5488 {
5489 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5490 if (p == NULL)
5491 return FALSE;
5492 p->next = *head;
5493 *head = p;
5494 p->sec = sec;
5495 p->count = 0;
5496 p->pc_count = 0;
5497 }
5498 p->count += 1;
5499 if (!must_be_dyn_reloc (info, r_type))
5500 p->pc_count += 1;
5501 }
5502 else
5503 {
5504 /* Track dynamic relocs needed for local syms too.
5505 We really need local syms available to do this
5506 easily. Oh well. */
5507 struct ppc_dyn_relocs *p;
5508 struct ppc_dyn_relocs **head;
5509 bfd_boolean is_ifunc;
5510 asection *s;
5511 void *vpp;
5512 Elf_Internal_Sym *isym;
5513
5514 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5515 abfd, r_symndx);
5516 if (isym == NULL)
5517 return FALSE;
5518
5519 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5520 if (s == NULL)
5521 s = sec;
5522
5523 vpp = &elf_section_data (s)->local_dynrel;
5524 head = (struct ppc_dyn_relocs **) vpp;
5525 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5526 p = *head;
5527 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5528 p = p->next;
5529 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5530 {
5531 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5532 if (p == NULL)
5533 return FALSE;
5534 p->next = *head;
5535 *head = p;
5536 p->sec = sec;
5537 p->ifunc = is_ifunc;
5538 p->count = 0;
5539 }
5540 p->count += 1;
5541 }
5542 }
5543 break;
5544
5545 default:
5546 break;
5547 }
5548 }
5549
5550 return TRUE;
5551 }
5552
5553 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5554 of the code entry point, and its section. */
5555
5556 static bfd_vma
5557 opd_entry_value (asection *opd_sec,
5558 bfd_vma offset,
5559 asection **code_sec,
5560 bfd_vma *code_off,
5561 bfd_boolean in_code_sec)
5562 {
5563 bfd *opd_bfd = opd_sec->owner;
5564 Elf_Internal_Rela *relocs;
5565 Elf_Internal_Rela *lo, *hi, *look;
5566 bfd_vma val;
5567
5568 /* No relocs implies we are linking a --just-symbols object, or looking
5569 at a final linked executable with addr2line or somesuch. */
5570 if (opd_sec->reloc_count == 0)
5571 {
5572 char buf[8];
5573
5574 if (!bfd_get_section_contents (opd_bfd, opd_sec, buf, offset, 8))
5575 return (bfd_vma) -1;
5576
5577 val = bfd_get_64 (opd_bfd, buf);
5578 if (code_sec != NULL)
5579 {
5580 asection *sec, *likely = NULL;
5581
5582 if (in_code_sec)
5583 {
5584 sec = *code_sec;
5585 if (sec->vma <= val
5586 && val < sec->vma + sec->size)
5587 likely = sec;
5588 else
5589 val = -1;
5590 }
5591 else
5592 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5593 if (sec->vma <= val
5594 && (sec->flags & SEC_LOAD) != 0
5595 && (sec->flags & SEC_ALLOC) != 0)
5596 likely = sec;
5597 if (likely != NULL)
5598 {
5599 *code_sec = likely;
5600 if (code_off != NULL)
5601 *code_off = val - likely->vma;
5602 }
5603 }
5604 return val;
5605 }
5606
5607 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5608
5609 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs;
5610 if (relocs == NULL)
5611 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5612
5613 /* Go find the opd reloc at the sym address. */
5614 lo = relocs;
5615 BFD_ASSERT (lo != NULL);
5616 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5617 val = (bfd_vma) -1;
5618 while (lo < hi)
5619 {
5620 look = lo + (hi - lo) / 2;
5621 if (look->r_offset < offset)
5622 lo = look + 1;
5623 else if (look->r_offset > offset)
5624 hi = look;
5625 else
5626 {
5627 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5628
5629 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5630 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5631 {
5632 unsigned long symndx = ELF64_R_SYM (look->r_info);
5633 asection *sec;
5634
5635 if (symndx < symtab_hdr->sh_info
5636 || elf_sym_hashes (opd_bfd) == NULL)
5637 {
5638 Elf_Internal_Sym *sym;
5639
5640 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5641 if (sym == NULL)
5642 {
5643 size_t symcnt = symtab_hdr->sh_info;
5644 if (elf_sym_hashes (opd_bfd) == NULL)
5645 symcnt = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
5646 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, symcnt,
5647 0, NULL, NULL, NULL);
5648 if (sym == NULL)
5649 break;
5650 symtab_hdr->contents = (bfd_byte *) sym;
5651 }
5652
5653 sym += symndx;
5654 val = sym->st_value;
5655 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5656 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5657 }
5658 else
5659 {
5660 struct elf_link_hash_entry **sym_hashes;
5661 struct elf_link_hash_entry *rh;
5662
5663 sym_hashes = elf_sym_hashes (opd_bfd);
5664 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5665 rh = elf_follow_link (rh);
5666 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
5667 || rh->root.type == bfd_link_hash_defweak);
5668 val = rh->root.u.def.value;
5669 sec = rh->root.u.def.section;
5670 }
5671 val += look->r_addend;
5672 if (code_off != NULL)
5673 *code_off = val;
5674 if (code_sec != NULL)
5675 {
5676 if (in_code_sec && *code_sec != sec)
5677 return -1;
5678 else
5679 *code_sec = sec;
5680 }
5681 if (sec != NULL && sec->output_section != NULL)
5682 val += sec->output_section->vma + sec->output_offset;
5683 }
5684 break;
5685 }
5686 }
5687
5688 return val;
5689 }
5690
5691 /* If the ELF symbol SYM might be a function in SEC, return the
5692 function size and set *CODE_OFF to the function's entry point,
5693 otherwise return zero. */
5694
5695 static bfd_size_type
5696 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
5697 bfd_vma *code_off)
5698 {
5699 bfd_size_type size;
5700
5701 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
5702 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
5703 return 0;
5704
5705 size = 0;
5706 if (!(sym->flags & BSF_SYNTHETIC))
5707 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
5708
5709 if (strcmp (sym->section->name, ".opd") == 0)
5710 {
5711 if (opd_entry_value (sym->section, sym->value,
5712 &sec, code_off, TRUE) == (bfd_vma) -1)
5713 return 0;
5714 /* An old ABI binary with dot-syms has a size of 24 on the .opd
5715 symbol. This size has nothing to do with the code size of the
5716 function, which is what we're supposed to return, but the
5717 code size isn't available without looking up the dot-sym.
5718 However, doing that would be a waste of time particularly
5719 since elf_find_function will look at the dot-sym anyway.
5720 Now, elf_find_function will keep the largest size of any
5721 function sym found at the code address of interest, so return
5722 1 here to avoid it incorrectly caching a larger function size
5723 for a small function. This does mean we return the wrong
5724 size for a new-ABI function of size 24, but all that does is
5725 disable caching for such functions. */
5726 if (size == 24)
5727 size = 1;
5728 }
5729 else
5730 {
5731 if (sym->section != sec)
5732 return 0;
5733 *code_off = sym->value;
5734 }
5735 if (size == 0)
5736 size = 1;
5737 return size;
5738 }
5739
5740 /* Return true if symbol is defined in a regular object file. */
5741
5742 static bfd_boolean
5743 is_static_defined (struct elf_link_hash_entry *h)
5744 {
5745 return ((h->root.type == bfd_link_hash_defined
5746 || h->root.type == bfd_link_hash_defweak)
5747 && h->root.u.def.section != NULL
5748 && h->root.u.def.section->output_section != NULL);
5749 }
5750
5751 /* If FDH is a function descriptor symbol, return the associated code
5752 entry symbol if it is defined. Return NULL otherwise. */
5753
5754 static struct ppc_link_hash_entry *
5755 defined_code_entry (struct ppc_link_hash_entry *fdh)
5756 {
5757 if (fdh->is_func_descriptor)
5758 {
5759 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5760 if (fh->elf.root.type == bfd_link_hash_defined
5761 || fh->elf.root.type == bfd_link_hash_defweak)
5762 return fh;
5763 }
5764 return NULL;
5765 }
5766
5767 /* If FH is a function code entry symbol, return the associated
5768 function descriptor symbol if it is defined. Return NULL otherwise. */
5769
5770 static struct ppc_link_hash_entry *
5771 defined_func_desc (struct ppc_link_hash_entry *fh)
5772 {
5773 if (fh->oh != NULL
5774 && fh->oh->is_func_descriptor)
5775 {
5776 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5777 if (fdh->elf.root.type == bfd_link_hash_defined
5778 || fdh->elf.root.type == bfd_link_hash_defweak)
5779 return fdh;
5780 }
5781 return NULL;
5782 }
5783
5784 /* Mark all our entry sym sections, both opd and code section. */
5785
5786 static void
5787 ppc64_elf_gc_keep (struct bfd_link_info *info)
5788 {
5789 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5790 struct bfd_sym_chain *sym;
5791
5792 if (htab == NULL)
5793 return;
5794
5795 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5796 {
5797 struct ppc_link_hash_entry *eh, *fh;
5798 asection *sec;
5799
5800 eh = (struct ppc_link_hash_entry *)
5801 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
5802 if (eh == NULL)
5803 continue;
5804 if (eh->elf.root.type != bfd_link_hash_defined
5805 && eh->elf.root.type != bfd_link_hash_defweak)
5806 continue;
5807
5808 fh = defined_code_entry (eh);
5809 if (fh != NULL)
5810 {
5811 sec = fh->elf.root.u.def.section;
5812 sec->flags |= SEC_KEEP;
5813 }
5814 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5815 && opd_entry_value (eh->elf.root.u.def.section,
5816 eh->elf.root.u.def.value,
5817 &sec, NULL, FALSE) != (bfd_vma) -1)
5818 sec->flags |= SEC_KEEP;
5819
5820 sec = eh->elf.root.u.def.section;
5821 sec->flags |= SEC_KEEP;
5822 }
5823 }
5824
5825 /* Mark sections containing dynamically referenced symbols. When
5826 building shared libraries, we must assume that any visible symbol is
5827 referenced. */
5828
5829 static bfd_boolean
5830 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5831 {
5832 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5833 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
5834 struct ppc_link_hash_entry *fdh;
5835
5836 /* Dynamic linking info is on the func descriptor sym. */
5837 fdh = defined_func_desc (eh);
5838 if (fdh != NULL)
5839 eh = fdh;
5840
5841 if ((eh->elf.root.type == bfd_link_hash_defined
5842 || eh->elf.root.type == bfd_link_hash_defweak)
5843 && (eh->elf.ref_dynamic
5844 || (!info->executable
5845 && eh->elf.def_regular
5846 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5847 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5848 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
5849 || !bfd_hide_sym_by_version (info->version_info,
5850 eh->elf.root.root.string)))))
5851 {
5852 asection *code_sec;
5853 struct ppc_link_hash_entry *fh;
5854
5855 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5856
5857 /* Function descriptor syms cause the associated
5858 function code sym section to be marked. */
5859 fh = defined_code_entry (eh);
5860 if (fh != NULL)
5861 {
5862 code_sec = fh->elf.root.u.def.section;
5863 code_sec->flags |= SEC_KEEP;
5864 }
5865 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5866 && opd_entry_value (eh->elf.root.u.def.section,
5867 eh->elf.root.u.def.value,
5868 &code_sec, NULL, FALSE) != (bfd_vma) -1)
5869 code_sec->flags |= SEC_KEEP;
5870 }
5871
5872 return TRUE;
5873 }
5874
5875 /* Return the section that should be marked against GC for a given
5876 relocation. */
5877
5878 static asection *
5879 ppc64_elf_gc_mark_hook (asection *sec,
5880 struct bfd_link_info *info,
5881 Elf_Internal_Rela *rel,
5882 struct elf_link_hash_entry *h,
5883 Elf_Internal_Sym *sym)
5884 {
5885 asection *rsec;
5886
5887 /* Syms return NULL if we're marking .opd, so we avoid marking all
5888 function sections, as all functions are referenced in .opd. */
5889 rsec = NULL;
5890 if (get_opd_info (sec) != NULL)
5891 return rsec;
5892
5893 if (h != NULL)
5894 {
5895 enum elf_ppc64_reloc_type r_type;
5896 struct ppc_link_hash_entry *eh, *fh, *fdh;
5897
5898 r_type = ELF64_R_TYPE (rel->r_info);
5899 switch (r_type)
5900 {
5901 case R_PPC64_GNU_VTINHERIT:
5902 case R_PPC64_GNU_VTENTRY:
5903 break;
5904
5905 default:
5906 switch (h->root.type)
5907 {
5908 case bfd_link_hash_defined:
5909 case bfd_link_hash_defweak:
5910 eh = (struct ppc_link_hash_entry *) h;
5911 fdh = defined_func_desc (eh);
5912 if (fdh != NULL)
5913 eh = fdh;
5914
5915 /* Function descriptor syms cause the associated
5916 function code sym section to be marked. */
5917 fh = defined_code_entry (eh);
5918 if (fh != NULL)
5919 {
5920 /* They also mark their opd section. */
5921 eh->elf.root.u.def.section->gc_mark = 1;
5922
5923 rsec = fh->elf.root.u.def.section;
5924 }
5925 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5926 && opd_entry_value (eh->elf.root.u.def.section,
5927 eh->elf.root.u.def.value,
5928 &rsec, NULL, FALSE) != (bfd_vma) -1)
5929 eh->elf.root.u.def.section->gc_mark = 1;
5930 else
5931 rsec = h->root.u.def.section;
5932 break;
5933
5934 case bfd_link_hash_common:
5935 rsec = h->root.u.c.p->section;
5936 break;
5937
5938 default:
5939 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5940 }
5941 }
5942 }
5943 else
5944 {
5945 struct _opd_sec_data *opd;
5946
5947 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5948 opd = get_opd_info (rsec);
5949 if (opd != NULL && opd->func_sec != NULL)
5950 {
5951 rsec->gc_mark = 1;
5952
5953 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
5954 }
5955 }
5956
5957 return rsec;
5958 }
5959
5960 /* Update the .got, .plt. and dynamic reloc reference counts for the
5961 section being removed. */
5962
5963 static bfd_boolean
5964 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5965 asection *sec, const Elf_Internal_Rela *relocs)
5966 {
5967 struct ppc_link_hash_table *htab;
5968 Elf_Internal_Shdr *symtab_hdr;
5969 struct elf_link_hash_entry **sym_hashes;
5970 struct got_entry **local_got_ents;
5971 const Elf_Internal_Rela *rel, *relend;
5972
5973 if (info->relocatable)
5974 return TRUE;
5975
5976 if ((sec->flags & SEC_ALLOC) == 0)
5977 return TRUE;
5978
5979 elf_section_data (sec)->local_dynrel = NULL;
5980
5981 htab = ppc_hash_table (info);
5982 if (htab == NULL)
5983 return FALSE;
5984
5985 symtab_hdr = &elf_symtab_hdr (abfd);
5986 sym_hashes = elf_sym_hashes (abfd);
5987 local_got_ents = elf_local_got_ents (abfd);
5988
5989 relend = relocs + sec->reloc_count;
5990 for (rel = relocs; rel < relend; rel++)
5991 {
5992 unsigned long r_symndx;
5993 enum elf_ppc64_reloc_type r_type;
5994 struct elf_link_hash_entry *h = NULL;
5995 unsigned char tls_type = 0;
5996
5997 r_symndx = ELF64_R_SYM (rel->r_info);
5998 r_type = ELF64_R_TYPE (rel->r_info);
5999 if (r_symndx >= symtab_hdr->sh_info)
6000 {
6001 struct ppc_link_hash_entry *eh;
6002 struct elf_dyn_relocs **pp;
6003 struct elf_dyn_relocs *p;
6004
6005 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6006 h = elf_follow_link (h);
6007 eh = (struct ppc_link_hash_entry *) h;
6008
6009 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6010 if (p->sec == sec)
6011 {
6012 /* Everything must go for SEC. */
6013 *pp = p->next;
6014 break;
6015 }
6016 }
6017
6018 if (is_branch_reloc (r_type))
6019 {
6020 struct plt_entry **ifunc = NULL;
6021 if (h != NULL)
6022 {
6023 if (h->type == STT_GNU_IFUNC)
6024 ifunc = &h->plt.plist;
6025 }
6026 else if (local_got_ents != NULL)
6027 {
6028 struct plt_entry **local_plt = (struct plt_entry **)
6029 (local_got_ents + symtab_hdr->sh_info);
6030 unsigned char *local_got_tls_masks = (unsigned char *)
6031 (local_plt + symtab_hdr->sh_info);
6032 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6033 ifunc = local_plt + r_symndx;
6034 }
6035 if (ifunc != NULL)
6036 {
6037 struct plt_entry *ent;
6038
6039 for (ent = *ifunc; ent != NULL; ent = ent->next)
6040 if (ent->addend == rel->r_addend)
6041 break;
6042 if (ent == NULL)
6043 abort ();
6044 if (ent->plt.refcount > 0)
6045 ent->plt.refcount -= 1;
6046 continue;
6047 }
6048 }
6049
6050 switch (r_type)
6051 {
6052 case R_PPC64_GOT_TLSLD16:
6053 case R_PPC64_GOT_TLSLD16_LO:
6054 case R_PPC64_GOT_TLSLD16_HI:
6055 case R_PPC64_GOT_TLSLD16_HA:
6056 tls_type = TLS_TLS | TLS_LD;
6057 goto dogot;
6058
6059 case R_PPC64_GOT_TLSGD16:
6060 case R_PPC64_GOT_TLSGD16_LO:
6061 case R_PPC64_GOT_TLSGD16_HI:
6062 case R_PPC64_GOT_TLSGD16_HA:
6063 tls_type = TLS_TLS | TLS_GD;
6064 goto dogot;
6065
6066 case R_PPC64_GOT_TPREL16_DS:
6067 case R_PPC64_GOT_TPREL16_LO_DS:
6068 case R_PPC64_GOT_TPREL16_HI:
6069 case R_PPC64_GOT_TPREL16_HA:
6070 tls_type = TLS_TLS | TLS_TPREL;
6071 goto dogot;
6072
6073 case R_PPC64_GOT_DTPREL16_DS:
6074 case R_PPC64_GOT_DTPREL16_LO_DS:
6075 case R_PPC64_GOT_DTPREL16_HI:
6076 case R_PPC64_GOT_DTPREL16_HA:
6077 tls_type = TLS_TLS | TLS_DTPREL;
6078 goto dogot;
6079
6080 case R_PPC64_GOT16:
6081 case R_PPC64_GOT16_DS:
6082 case R_PPC64_GOT16_HA:
6083 case R_PPC64_GOT16_HI:
6084 case R_PPC64_GOT16_LO:
6085 case R_PPC64_GOT16_LO_DS:
6086 dogot:
6087 {
6088 struct got_entry *ent;
6089
6090 if (h != NULL)
6091 ent = h->got.glist;
6092 else
6093 ent = local_got_ents[r_symndx];
6094
6095 for (; ent != NULL; ent = ent->next)
6096 if (ent->addend == rel->r_addend
6097 && ent->owner == abfd
6098 && ent->tls_type == tls_type)
6099 break;
6100 if (ent == NULL)
6101 abort ();
6102 if (ent->got.refcount > 0)
6103 ent->got.refcount -= 1;
6104 }
6105 break;
6106
6107 case R_PPC64_PLT16_HA:
6108 case R_PPC64_PLT16_HI:
6109 case R_PPC64_PLT16_LO:
6110 case R_PPC64_PLT32:
6111 case R_PPC64_PLT64:
6112 case R_PPC64_REL14:
6113 case R_PPC64_REL14_BRNTAKEN:
6114 case R_PPC64_REL14_BRTAKEN:
6115 case R_PPC64_REL24:
6116 if (h != NULL)
6117 {
6118 struct plt_entry *ent;
6119
6120 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6121 if (ent->addend == rel->r_addend)
6122 break;
6123 if (ent != NULL && ent->plt.refcount > 0)
6124 ent->plt.refcount -= 1;
6125 }
6126 break;
6127
6128 default:
6129 break;
6130 }
6131 }
6132 return TRUE;
6133 }
6134
6135 /* The maximum size of .sfpr. */
6136 #define SFPR_MAX (218*4)
6137
6138 struct sfpr_def_parms
6139 {
6140 const char name[12];
6141 unsigned char lo, hi;
6142 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6143 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6144 };
6145
6146 /* Auto-generate _save*, _rest* functions in .sfpr. */
6147
6148 static bfd_boolean
6149 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6150 {
6151 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6152 unsigned int i;
6153 size_t len = strlen (parm->name);
6154 bfd_boolean writing = FALSE;
6155 char sym[16];
6156
6157 if (htab == NULL)
6158 return FALSE;
6159
6160 memcpy (sym, parm->name, len);
6161 sym[len + 2] = 0;
6162
6163 for (i = parm->lo; i <= parm->hi; i++)
6164 {
6165 struct elf_link_hash_entry *h;
6166
6167 sym[len + 0] = i / 10 + '0';
6168 sym[len + 1] = i % 10 + '0';
6169 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6170 if (h != NULL
6171 && !h->def_regular)
6172 {
6173 h->root.type = bfd_link_hash_defined;
6174 h->root.u.def.section = htab->sfpr;
6175 h->root.u.def.value = htab->sfpr->size;
6176 h->type = STT_FUNC;
6177 h->def_regular = 1;
6178 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6179 writing = TRUE;
6180 if (htab->sfpr->contents == NULL)
6181 {
6182 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6183 if (htab->sfpr->contents == NULL)
6184 return FALSE;
6185 }
6186 }
6187 if (writing)
6188 {
6189 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6190 if (i != parm->hi)
6191 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6192 else
6193 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6194 htab->sfpr->size = p - htab->sfpr->contents;
6195 }
6196 }
6197
6198 return TRUE;
6199 }
6200
6201 static bfd_byte *
6202 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6203 {
6204 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6205 return p + 4;
6206 }
6207
6208 static bfd_byte *
6209 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6210 {
6211 p = savegpr0 (abfd, p, r);
6212 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
6213 p = p + 4;
6214 bfd_put_32 (abfd, BLR, p);
6215 return p + 4;
6216 }
6217
6218 static bfd_byte *
6219 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6220 {
6221 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6222 return p + 4;
6223 }
6224
6225 static bfd_byte *
6226 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6227 {
6228 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
6229 p = p + 4;
6230 p = restgpr0 (abfd, p, r);
6231 bfd_put_32 (abfd, MTLR_R0, p);
6232 p = p + 4;
6233 if (r == 29)
6234 {
6235 p = restgpr0 (abfd, p, 30);
6236 p = restgpr0 (abfd, p, 31);
6237 }
6238 bfd_put_32 (abfd, BLR, p);
6239 return p + 4;
6240 }
6241
6242 static bfd_byte *
6243 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6244 {
6245 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6246 return p + 4;
6247 }
6248
6249 static bfd_byte *
6250 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6251 {
6252 p = savegpr1 (abfd, p, r);
6253 bfd_put_32 (abfd, BLR, p);
6254 return p + 4;
6255 }
6256
6257 static bfd_byte *
6258 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6259 {
6260 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6261 return p + 4;
6262 }
6263
6264 static bfd_byte *
6265 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6266 {
6267 p = restgpr1 (abfd, p, r);
6268 bfd_put_32 (abfd, BLR, p);
6269 return p + 4;
6270 }
6271
6272 static bfd_byte *
6273 savefpr (bfd *abfd, bfd_byte *p, int r)
6274 {
6275 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6276 return p + 4;
6277 }
6278
6279 static bfd_byte *
6280 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6281 {
6282 p = savefpr (abfd, p, r);
6283 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
6284 p = p + 4;
6285 bfd_put_32 (abfd, BLR, p);
6286 return p + 4;
6287 }
6288
6289 static bfd_byte *
6290 restfpr (bfd *abfd, bfd_byte *p, int r)
6291 {
6292 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6293 return p + 4;
6294 }
6295
6296 static bfd_byte *
6297 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6298 {
6299 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
6300 p = p + 4;
6301 p = restfpr (abfd, p, r);
6302 bfd_put_32 (abfd, MTLR_R0, p);
6303 p = p + 4;
6304 if (r == 29)
6305 {
6306 p = restfpr (abfd, p, 30);
6307 p = restfpr (abfd, p, 31);
6308 }
6309 bfd_put_32 (abfd, BLR, p);
6310 return p + 4;
6311 }
6312
6313 static bfd_byte *
6314 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6315 {
6316 p = savefpr (abfd, p, r);
6317 bfd_put_32 (abfd, BLR, p);
6318 return p + 4;
6319 }
6320
6321 static bfd_byte *
6322 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6323 {
6324 p = restfpr (abfd, p, r);
6325 bfd_put_32 (abfd, BLR, p);
6326 return p + 4;
6327 }
6328
6329 static bfd_byte *
6330 savevr (bfd *abfd, bfd_byte *p, int r)
6331 {
6332 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6333 p = p + 4;
6334 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6335 return p + 4;
6336 }
6337
6338 static bfd_byte *
6339 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6340 {
6341 p = savevr (abfd, p, r);
6342 bfd_put_32 (abfd, BLR, p);
6343 return p + 4;
6344 }
6345
6346 static bfd_byte *
6347 restvr (bfd *abfd, bfd_byte *p, int r)
6348 {
6349 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6350 p = p + 4;
6351 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6352 return p + 4;
6353 }
6354
6355 static bfd_byte *
6356 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6357 {
6358 p = restvr (abfd, p, r);
6359 bfd_put_32 (abfd, BLR, p);
6360 return p + 4;
6361 }
6362
6363 /* Called via elf_link_hash_traverse to transfer dynamic linking
6364 information on function code symbol entries to their corresponding
6365 function descriptor symbol entries. */
6366
6367 static bfd_boolean
6368 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6369 {
6370 struct bfd_link_info *info;
6371 struct ppc_link_hash_table *htab;
6372 struct plt_entry *ent;
6373 struct ppc_link_hash_entry *fh;
6374 struct ppc_link_hash_entry *fdh;
6375 bfd_boolean force_local;
6376
6377 fh = (struct ppc_link_hash_entry *) h;
6378 if (fh->elf.root.type == bfd_link_hash_indirect)
6379 return TRUE;
6380
6381 info = inf;
6382 htab = ppc_hash_table (info);
6383 if (htab == NULL)
6384 return FALSE;
6385
6386 /* Resolve undefined references to dot-symbols as the value
6387 in the function descriptor, if we have one in a regular object.
6388 This is to satisfy cases like ".quad .foo". Calls to functions
6389 in dynamic objects are handled elsewhere. */
6390 if (fh->elf.root.type == bfd_link_hash_undefweak
6391 && fh->was_undefined
6392 && (fdh = defined_func_desc (fh)) != NULL
6393 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6394 && opd_entry_value (fdh->elf.root.u.def.section,
6395 fdh->elf.root.u.def.value,
6396 &fh->elf.root.u.def.section,
6397 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6398 {
6399 fh->elf.root.type = fdh->elf.root.type;
6400 fh->elf.forced_local = 1;
6401 fh->elf.def_regular = fdh->elf.def_regular;
6402 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6403 }
6404
6405 /* If this is a function code symbol, transfer dynamic linking
6406 information to the function descriptor symbol. */
6407 if (!fh->is_func)
6408 return TRUE;
6409
6410 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6411 if (ent->plt.refcount > 0)
6412 break;
6413 if (ent == NULL
6414 || fh->elf.root.root.string[0] != '.'
6415 || fh->elf.root.root.string[1] == '\0')
6416 return TRUE;
6417
6418 /* Find the corresponding function descriptor symbol. Create it
6419 as undefined if necessary. */
6420
6421 fdh = lookup_fdh (fh, htab);
6422 if (fdh == NULL
6423 && !info->executable
6424 && (fh->elf.root.type == bfd_link_hash_undefined
6425 || fh->elf.root.type == bfd_link_hash_undefweak))
6426 {
6427 fdh = make_fdh (info, fh);
6428 if (fdh == NULL)
6429 return FALSE;
6430 }
6431
6432 /* Fake function descriptors are made undefweak. If the function
6433 code symbol is strong undefined, make the fake sym the same.
6434 If the function code symbol is defined, then force the fake
6435 descriptor local; We can't support overriding of symbols in a
6436 shared library on a fake descriptor. */
6437
6438 if (fdh != NULL
6439 && fdh->fake
6440 && fdh->elf.root.type == bfd_link_hash_undefweak)
6441 {
6442 if (fh->elf.root.type == bfd_link_hash_undefined)
6443 {
6444 fdh->elf.root.type = bfd_link_hash_undefined;
6445 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6446 }
6447 else if (fh->elf.root.type == bfd_link_hash_defined
6448 || fh->elf.root.type == bfd_link_hash_defweak)
6449 {
6450 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6451 }
6452 }
6453
6454 if (fdh != NULL
6455 && !fdh->elf.forced_local
6456 && (!info->executable
6457 || fdh->elf.def_dynamic
6458 || fdh->elf.ref_dynamic
6459 || (fdh->elf.root.type == bfd_link_hash_undefweak
6460 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6461 {
6462 if (fdh->elf.dynindx == -1)
6463 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6464 return FALSE;
6465 fdh->elf.ref_regular |= fh->elf.ref_regular;
6466 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6467 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6468 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6469 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6470 {
6471 move_plt_plist (fh, fdh);
6472 fdh->elf.needs_plt = 1;
6473 }
6474 fdh->is_func_descriptor = 1;
6475 fdh->oh = fh;
6476 fh->oh = fdh;
6477 }
6478
6479 /* Now that the info is on the function descriptor, clear the
6480 function code sym info. Any function code syms for which we
6481 don't have a definition in a regular file, we force local.
6482 This prevents a shared library from exporting syms that have
6483 been imported from another library. Function code syms that
6484 are really in the library we must leave global to prevent the
6485 linker dragging in a definition from a static library. */
6486 force_local = (!fh->elf.def_regular
6487 || fdh == NULL
6488 || !fdh->elf.def_regular
6489 || fdh->elf.forced_local);
6490 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6491
6492 return TRUE;
6493 }
6494
6495 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6496 this hook to a) provide some gcc support functions, and b) transfer
6497 dynamic linking information gathered so far on function code symbol
6498 entries, to their corresponding function descriptor symbol entries. */
6499
6500 static bfd_boolean
6501 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6502 struct bfd_link_info *info)
6503 {
6504 struct ppc_link_hash_table *htab;
6505 unsigned int i;
6506 static const struct sfpr_def_parms funcs[] =
6507 {
6508 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6509 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6510 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6511 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6512 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6513 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6514 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6515 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6516 { "._savef", 14, 31, savefpr, savefpr1_tail },
6517 { "._restf", 14, 31, restfpr, restfpr1_tail },
6518 { "_savevr_", 20, 31, savevr, savevr_tail },
6519 { "_restvr_", 20, 31, restvr, restvr_tail }
6520 };
6521
6522 htab = ppc_hash_table (info);
6523 if (htab == NULL)
6524 return FALSE;
6525
6526 if (htab->sfpr == NULL)
6527 /* We don't have any relocs. */
6528 return TRUE;
6529
6530 /* Provide any missing _save* and _rest* functions. */
6531 htab->sfpr->size = 0;
6532 if (!info->relocatable)
6533 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6534 if (!sfpr_define (info, &funcs[i]))
6535 return FALSE;
6536
6537 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6538
6539 if (htab->sfpr->size == 0)
6540 htab->sfpr->flags |= SEC_EXCLUDE;
6541
6542 return TRUE;
6543 }
6544
6545 /* Adjust a symbol defined by a dynamic object and referenced by a
6546 regular object. The current definition is in some section of the
6547 dynamic object, but we're not including those sections. We have to
6548 change the definition to something the rest of the link can
6549 understand. */
6550
6551 static bfd_boolean
6552 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6553 struct elf_link_hash_entry *h)
6554 {
6555 struct ppc_link_hash_table *htab;
6556 asection *s;
6557
6558 htab = ppc_hash_table (info);
6559 if (htab == NULL)
6560 return FALSE;
6561
6562 /* Deal with function syms. */
6563 if (h->type == STT_FUNC
6564 || h->type == STT_GNU_IFUNC
6565 || h->needs_plt)
6566 {
6567 /* Clear procedure linkage table information for any symbol that
6568 won't need a .plt entry. */
6569 struct plt_entry *ent;
6570 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6571 if (ent->plt.refcount > 0)
6572 break;
6573 if (ent == NULL
6574 || (h->type != STT_GNU_IFUNC
6575 && (SYMBOL_CALLS_LOCAL (info, h)
6576 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6577 && h->root.type == bfd_link_hash_undefweak))))
6578 {
6579 h->plt.plist = NULL;
6580 h->needs_plt = 0;
6581 }
6582 }
6583 else
6584 h->plt.plist = NULL;
6585
6586 /* If this is a weak symbol, and there is a real definition, the
6587 processor independent code will have arranged for us to see the
6588 real definition first, and we can just use the same value. */
6589 if (h->u.weakdef != NULL)
6590 {
6591 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6592 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6593 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6594 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6595 if (ELIMINATE_COPY_RELOCS)
6596 h->non_got_ref = h->u.weakdef->non_got_ref;
6597 return TRUE;
6598 }
6599
6600 /* If we are creating a shared library, we must presume that the
6601 only references to the symbol are via the global offset table.
6602 For such cases we need not do anything here; the relocations will
6603 be handled correctly by relocate_section. */
6604 if (info->shared)
6605 return TRUE;
6606
6607 /* If there are no references to this symbol that do not use the
6608 GOT, we don't need to generate a copy reloc. */
6609 if (!h->non_got_ref)
6610 return TRUE;
6611
6612 /* Don't generate a copy reloc for symbols defined in the executable. */
6613 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
6614 return TRUE;
6615
6616 if (ELIMINATE_COPY_RELOCS)
6617 {
6618 struct ppc_link_hash_entry * eh;
6619 struct elf_dyn_relocs *p;
6620
6621 eh = (struct ppc_link_hash_entry *) h;
6622 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6623 {
6624 s = p->sec->output_section;
6625 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6626 break;
6627 }
6628
6629 /* If we didn't find any dynamic relocs in read-only sections, then
6630 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6631 if (p == NULL)
6632 {
6633 h->non_got_ref = 0;
6634 return TRUE;
6635 }
6636 }
6637
6638 if (h->plt.plist != NULL)
6639 {
6640 /* We should never get here, but unfortunately there are versions
6641 of gcc out there that improperly (for this ABI) put initialized
6642 function pointers, vtable refs and suchlike in read-only
6643 sections. Allow them to proceed, but warn that this might
6644 break at runtime. */
6645 info->callbacks->einfo
6646 (_("%P: copy reloc against `%T' requires lazy plt linking; "
6647 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6648 h->root.root.string);
6649 }
6650
6651 /* This is a reference to a symbol defined by a dynamic object which
6652 is not a function. */
6653
6654 /* We must allocate the symbol in our .dynbss section, which will
6655 become part of the .bss section of the executable. There will be
6656 an entry for this symbol in the .dynsym section. The dynamic
6657 object will contain position independent code, so all references
6658 from the dynamic object to this symbol will go through the global
6659 offset table. The dynamic linker will use the .dynsym entry to
6660 determine the address it must put in the global offset table, so
6661 both the dynamic object and the regular object will refer to the
6662 same memory location for the variable. */
6663
6664 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
6665 to copy the initial value out of the dynamic object and into the
6666 runtime process image. We need to remember the offset into the
6667 .rela.bss section we are going to use. */
6668 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6669 {
6670 htab->relbss->size += sizeof (Elf64_External_Rela);
6671 h->needs_copy = 1;
6672 }
6673
6674 s = htab->dynbss;
6675
6676 return _bfd_elf_adjust_dynamic_copy (h, s);
6677 }
6678
6679 /* If given a function descriptor symbol, hide both the function code
6680 sym and the descriptor. */
6681 static void
6682 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6683 struct elf_link_hash_entry *h,
6684 bfd_boolean force_local)
6685 {
6686 struct ppc_link_hash_entry *eh;
6687 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6688
6689 eh = (struct ppc_link_hash_entry *) h;
6690 if (eh->is_func_descriptor)
6691 {
6692 struct ppc_link_hash_entry *fh = eh->oh;
6693
6694 if (fh == NULL)
6695 {
6696 const char *p, *q;
6697 struct ppc_link_hash_table *htab;
6698 char save;
6699
6700 /* We aren't supposed to use alloca in BFD because on
6701 systems which do not have alloca the version in libiberty
6702 calls xmalloc, which might cause the program to crash
6703 when it runs out of memory. This function doesn't have a
6704 return status, so there's no way to gracefully return an
6705 error. So cheat. We know that string[-1] can be safely
6706 accessed; It's either a string in an ELF string table,
6707 or allocated in an objalloc structure. */
6708
6709 p = eh->elf.root.root.string - 1;
6710 save = *p;
6711 *(char *) p = '.';
6712 htab = ppc_hash_table (info);
6713 if (htab == NULL)
6714 return;
6715
6716 fh = (struct ppc_link_hash_entry *)
6717 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6718 *(char *) p = save;
6719
6720 /* Unfortunately, if it so happens that the string we were
6721 looking for was allocated immediately before this string,
6722 then we overwrote the string terminator. That's the only
6723 reason the lookup should fail. */
6724 if (fh == NULL)
6725 {
6726 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6727 while (q >= eh->elf.root.root.string && *q == *p)
6728 --q, --p;
6729 if (q < eh->elf.root.root.string && *p == '.')
6730 fh = (struct ppc_link_hash_entry *)
6731 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6732 }
6733 if (fh != NULL)
6734 {
6735 eh->oh = fh;
6736 fh->oh = eh;
6737 }
6738 }
6739 if (fh != NULL)
6740 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6741 }
6742 }
6743
6744 static bfd_boolean
6745 get_sym_h (struct elf_link_hash_entry **hp,
6746 Elf_Internal_Sym **symp,
6747 asection **symsecp,
6748 unsigned char **tls_maskp,
6749 Elf_Internal_Sym **locsymsp,
6750 unsigned long r_symndx,
6751 bfd *ibfd)
6752 {
6753 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6754
6755 if (r_symndx >= symtab_hdr->sh_info)
6756 {
6757 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6758 struct elf_link_hash_entry *h;
6759
6760 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6761 h = elf_follow_link (h);
6762
6763 if (hp != NULL)
6764 *hp = h;
6765
6766 if (symp != NULL)
6767 *symp = NULL;
6768
6769 if (symsecp != NULL)
6770 {
6771 asection *symsec = NULL;
6772 if (h->root.type == bfd_link_hash_defined
6773 || h->root.type == bfd_link_hash_defweak)
6774 symsec = h->root.u.def.section;
6775 *symsecp = symsec;
6776 }
6777
6778 if (tls_maskp != NULL)
6779 {
6780 struct ppc_link_hash_entry *eh;
6781
6782 eh = (struct ppc_link_hash_entry *) h;
6783 *tls_maskp = &eh->tls_mask;
6784 }
6785 }
6786 else
6787 {
6788 Elf_Internal_Sym *sym;
6789 Elf_Internal_Sym *locsyms = *locsymsp;
6790
6791 if (locsyms == NULL)
6792 {
6793 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6794 if (locsyms == NULL)
6795 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6796 symtab_hdr->sh_info,
6797 0, NULL, NULL, NULL);
6798 if (locsyms == NULL)
6799 return FALSE;
6800 *locsymsp = locsyms;
6801 }
6802 sym = locsyms + r_symndx;
6803
6804 if (hp != NULL)
6805 *hp = NULL;
6806
6807 if (symp != NULL)
6808 *symp = sym;
6809
6810 if (symsecp != NULL)
6811 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6812
6813 if (tls_maskp != NULL)
6814 {
6815 struct got_entry **lgot_ents;
6816 unsigned char *tls_mask;
6817
6818 tls_mask = NULL;
6819 lgot_ents = elf_local_got_ents (ibfd);
6820 if (lgot_ents != NULL)
6821 {
6822 struct plt_entry **local_plt = (struct plt_entry **)
6823 (lgot_ents + symtab_hdr->sh_info);
6824 unsigned char *lgot_masks = (unsigned char *)
6825 (local_plt + symtab_hdr->sh_info);
6826 tls_mask = &lgot_masks[r_symndx];
6827 }
6828 *tls_maskp = tls_mask;
6829 }
6830 }
6831 return TRUE;
6832 }
6833
6834 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6835 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6836 type suitable for optimization, and 1 otherwise. */
6837
6838 static int
6839 get_tls_mask (unsigned char **tls_maskp,
6840 unsigned long *toc_symndx,
6841 bfd_vma *toc_addend,
6842 Elf_Internal_Sym **locsymsp,
6843 const Elf_Internal_Rela *rel,
6844 bfd *ibfd)
6845 {
6846 unsigned long r_symndx;
6847 int next_r;
6848 struct elf_link_hash_entry *h;
6849 Elf_Internal_Sym *sym;
6850 asection *sec;
6851 bfd_vma off;
6852
6853 r_symndx = ELF64_R_SYM (rel->r_info);
6854 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6855 return 0;
6856
6857 if ((*tls_maskp != NULL && **tls_maskp != 0)
6858 || sec == NULL
6859 || ppc64_elf_section_data (sec) == NULL
6860 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6861 return 1;
6862
6863 /* Look inside a TOC section too. */
6864 if (h != NULL)
6865 {
6866 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6867 off = h->root.u.def.value;
6868 }
6869 else
6870 off = sym->st_value;
6871 off += rel->r_addend;
6872 BFD_ASSERT (off % 8 == 0);
6873 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6874 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6875 if (toc_symndx != NULL)
6876 *toc_symndx = r_symndx;
6877 if (toc_addend != NULL)
6878 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6879 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6880 return 0;
6881 if ((h == NULL || is_static_defined (h))
6882 && (next_r == -1 || next_r == -2))
6883 return 1 - next_r;
6884 return 1;
6885 }
6886
6887 /* Find (or create) an entry in the tocsave hash table. */
6888
6889 static struct tocsave_entry *
6890 tocsave_find (struct ppc_link_hash_table *htab,
6891 enum insert_option insert,
6892 Elf_Internal_Sym **local_syms,
6893 const Elf_Internal_Rela *irela,
6894 bfd *ibfd)
6895 {
6896 unsigned long r_indx;
6897 struct elf_link_hash_entry *h;
6898 Elf_Internal_Sym *sym;
6899 struct tocsave_entry ent, *p;
6900 hashval_t hash;
6901 struct tocsave_entry **slot;
6902
6903 r_indx = ELF64_R_SYM (irela->r_info);
6904 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6905 return NULL;
6906 if (ent.sec == NULL || ent.sec->output_section == NULL)
6907 {
6908 (*_bfd_error_handler)
6909 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
6910 return NULL;
6911 }
6912
6913 if (h != NULL)
6914 ent.offset = h->root.u.def.value;
6915 else
6916 ent.offset = sym->st_value;
6917 ent.offset += irela->r_addend;
6918
6919 hash = tocsave_htab_hash (&ent);
6920 slot = ((struct tocsave_entry **)
6921 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6922 if (slot == NULL)
6923 return NULL;
6924
6925 if (*slot == NULL)
6926 {
6927 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6928 if (p == NULL)
6929 return NULL;
6930 *p = ent;
6931 *slot = p;
6932 }
6933 return *slot;
6934 }
6935
6936 /* Adjust all global syms defined in opd sections. In gcc generated
6937 code for the old ABI, these will already have been done. */
6938
6939 static bfd_boolean
6940 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6941 {
6942 struct ppc_link_hash_entry *eh;
6943 asection *sym_sec;
6944 struct _opd_sec_data *opd;
6945
6946 if (h->root.type == bfd_link_hash_indirect)
6947 return TRUE;
6948
6949 if (h->root.type != bfd_link_hash_defined
6950 && h->root.type != bfd_link_hash_defweak)
6951 return TRUE;
6952
6953 eh = (struct ppc_link_hash_entry *) h;
6954 if (eh->adjust_done)
6955 return TRUE;
6956
6957 sym_sec = eh->elf.root.u.def.section;
6958 opd = get_opd_info (sym_sec);
6959 if (opd != NULL && opd->adjust != NULL)
6960 {
6961 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
6962 if (adjust == -1)
6963 {
6964 /* This entry has been deleted. */
6965 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6966 if (dsec == NULL)
6967 {
6968 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6969 if (discarded_section (dsec))
6970 {
6971 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6972 break;
6973 }
6974 }
6975 eh->elf.root.u.def.value = 0;
6976 eh->elf.root.u.def.section = dsec;
6977 }
6978 else
6979 eh->elf.root.u.def.value += adjust;
6980 eh->adjust_done = 1;
6981 }
6982 return TRUE;
6983 }
6984
6985 /* Handles decrementing dynamic reloc counts for the reloc specified by
6986 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
6987 have already been determined. */
6988
6989 static bfd_boolean
6990 dec_dynrel_count (bfd_vma r_info,
6991 asection *sec,
6992 struct bfd_link_info *info,
6993 Elf_Internal_Sym **local_syms,
6994 struct elf_link_hash_entry *h,
6995 Elf_Internal_Sym *sym)
6996 {
6997 enum elf_ppc64_reloc_type r_type;
6998 asection *sym_sec = NULL;
6999
7000 /* Can this reloc be dynamic? This switch, and later tests here
7001 should be kept in sync with the code in check_relocs. */
7002 r_type = ELF64_R_TYPE (r_info);
7003 switch (r_type)
7004 {
7005 default:
7006 return TRUE;
7007
7008 case R_PPC64_TPREL16:
7009 case R_PPC64_TPREL16_LO:
7010 case R_PPC64_TPREL16_HI:
7011 case R_PPC64_TPREL16_HA:
7012 case R_PPC64_TPREL16_DS:
7013 case R_PPC64_TPREL16_LO_DS:
7014 case R_PPC64_TPREL16_HIGHER:
7015 case R_PPC64_TPREL16_HIGHERA:
7016 case R_PPC64_TPREL16_HIGHEST:
7017 case R_PPC64_TPREL16_HIGHESTA:
7018 if (!info->shared)
7019 return TRUE;
7020
7021 case R_PPC64_TPREL64:
7022 case R_PPC64_DTPMOD64:
7023 case R_PPC64_DTPREL64:
7024 case R_PPC64_ADDR64:
7025 case R_PPC64_REL30:
7026 case R_PPC64_REL32:
7027 case R_PPC64_REL64:
7028 case R_PPC64_ADDR14:
7029 case R_PPC64_ADDR14_BRNTAKEN:
7030 case R_PPC64_ADDR14_BRTAKEN:
7031 case R_PPC64_ADDR16:
7032 case R_PPC64_ADDR16_DS:
7033 case R_PPC64_ADDR16_HA:
7034 case R_PPC64_ADDR16_HI:
7035 case R_PPC64_ADDR16_HIGHER:
7036 case R_PPC64_ADDR16_HIGHERA:
7037 case R_PPC64_ADDR16_HIGHEST:
7038 case R_PPC64_ADDR16_HIGHESTA:
7039 case R_PPC64_ADDR16_LO:
7040 case R_PPC64_ADDR16_LO_DS:
7041 case R_PPC64_ADDR24:
7042 case R_PPC64_ADDR32:
7043 case R_PPC64_UADDR16:
7044 case R_PPC64_UADDR32:
7045 case R_PPC64_UADDR64:
7046 case R_PPC64_TOC:
7047 break;
7048 }
7049
7050 if (local_syms != NULL)
7051 {
7052 unsigned long r_symndx;
7053 bfd *ibfd = sec->owner;
7054
7055 r_symndx = ELF64_R_SYM (r_info);
7056 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7057 return FALSE;
7058 }
7059
7060 if ((info->shared
7061 && (must_be_dyn_reloc (info, r_type)
7062 || (h != NULL
7063 && (!info->symbolic
7064 || h->root.type == bfd_link_hash_defweak
7065 || !h->def_regular))))
7066 || (ELIMINATE_COPY_RELOCS
7067 && !info->shared
7068 && h != NULL
7069 && (h->root.type == bfd_link_hash_defweak
7070 || !h->def_regular)))
7071 ;
7072 else
7073 return TRUE;
7074
7075 if (h != NULL)
7076 {
7077 struct elf_dyn_relocs *p;
7078 struct elf_dyn_relocs **pp;
7079 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7080
7081 /* elf_gc_sweep may have already removed all dyn relocs associated
7082 with local syms for a given section. Also, symbol flags are
7083 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7084 report a dynreloc miscount. */
7085 if (*pp == NULL && info->gc_sections)
7086 return TRUE;
7087
7088 while ((p = *pp) != NULL)
7089 {
7090 if (p->sec == sec)
7091 {
7092 if (!must_be_dyn_reloc (info, r_type))
7093 p->pc_count -= 1;
7094 p->count -= 1;
7095 if (p->count == 0)
7096 *pp = p->next;
7097 return TRUE;
7098 }
7099 pp = &p->next;
7100 }
7101 }
7102 else
7103 {
7104 struct ppc_dyn_relocs *p;
7105 struct ppc_dyn_relocs **pp;
7106 void *vpp;
7107 bfd_boolean is_ifunc;
7108
7109 if (local_syms == NULL)
7110 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7111 if (sym_sec == NULL)
7112 sym_sec = sec;
7113
7114 vpp = &elf_section_data (sym_sec)->local_dynrel;
7115 pp = (struct ppc_dyn_relocs **) vpp;
7116
7117 if (*pp == NULL && info->gc_sections)
7118 return TRUE;
7119
7120 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7121 while ((p = *pp) != NULL)
7122 {
7123 if (p->sec == sec && p->ifunc == is_ifunc)
7124 {
7125 p->count -= 1;
7126 if (p->count == 0)
7127 *pp = p->next;
7128 return TRUE;
7129 }
7130 pp = &p->next;
7131 }
7132 }
7133
7134 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7135 sec->owner, sec);
7136 bfd_set_error (bfd_error_bad_value);
7137 return FALSE;
7138 }
7139
7140 /* Remove unused Official Procedure Descriptor entries. Currently we
7141 only remove those associated with functions in discarded link-once
7142 sections, or weakly defined functions that have been overridden. It
7143 would be possible to remove many more entries for statically linked
7144 applications. */
7145
7146 bfd_boolean
7147 ppc64_elf_edit_opd (struct bfd_link_info *info, bfd_boolean non_overlapping)
7148 {
7149 bfd *ibfd;
7150 bfd_boolean some_edited = FALSE;
7151 asection *need_pad = NULL;
7152
7153 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7154 {
7155 asection *sec;
7156 Elf_Internal_Rela *relstart, *rel, *relend;
7157 Elf_Internal_Shdr *symtab_hdr;
7158 Elf_Internal_Sym *local_syms;
7159 bfd_vma offset;
7160 struct _opd_sec_data *opd;
7161 bfd_boolean need_edit, add_aux_fields;
7162 bfd_size_type cnt_16b = 0;
7163
7164 if (!is_ppc64_elf (ibfd))
7165 continue;
7166
7167 sec = bfd_get_section_by_name (ibfd, ".opd");
7168 if (sec == NULL || sec->size == 0)
7169 continue;
7170
7171 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7172 continue;
7173
7174 if (sec->output_section == bfd_abs_section_ptr)
7175 continue;
7176
7177 /* Look through the section relocs. */
7178 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7179 continue;
7180
7181 local_syms = NULL;
7182 symtab_hdr = &elf_symtab_hdr (ibfd);
7183
7184 /* Read the relocations. */
7185 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7186 info->keep_memory);
7187 if (relstart == NULL)
7188 return FALSE;
7189
7190 /* First run through the relocs to check they are sane, and to
7191 determine whether we need to edit this opd section. */
7192 need_edit = FALSE;
7193 need_pad = sec;
7194 offset = 0;
7195 relend = relstart + sec->reloc_count;
7196 for (rel = relstart; rel < relend; )
7197 {
7198 enum elf_ppc64_reloc_type r_type;
7199 unsigned long r_symndx;
7200 asection *sym_sec;
7201 struct elf_link_hash_entry *h;
7202 Elf_Internal_Sym *sym;
7203
7204 /* .opd contains a regular array of 16 or 24 byte entries. We're
7205 only interested in the reloc pointing to a function entry
7206 point. */
7207 if (rel->r_offset != offset
7208 || rel + 1 >= relend
7209 || (rel + 1)->r_offset != offset + 8)
7210 {
7211 /* If someone messes with .opd alignment then after a
7212 "ld -r" we might have padding in the middle of .opd.
7213 Also, there's nothing to prevent someone putting
7214 something silly in .opd with the assembler. No .opd
7215 optimization for them! */
7216 broken_opd:
7217 (*_bfd_error_handler)
7218 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7219 need_edit = FALSE;
7220 break;
7221 }
7222
7223 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7224 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7225 {
7226 (*_bfd_error_handler)
7227 (_("%B: unexpected reloc type %u in .opd section"),
7228 ibfd, r_type);
7229 need_edit = FALSE;
7230 break;
7231 }
7232
7233 r_symndx = ELF64_R_SYM (rel->r_info);
7234 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7235 r_symndx, ibfd))
7236 goto error_ret;
7237
7238 if (sym_sec == NULL || sym_sec->owner == NULL)
7239 {
7240 const char *sym_name;
7241 if (h != NULL)
7242 sym_name = h->root.root.string;
7243 else
7244 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7245 sym_sec);
7246
7247 (*_bfd_error_handler)
7248 (_("%B: undefined sym `%s' in .opd section"),
7249 ibfd, sym_name);
7250 need_edit = FALSE;
7251 break;
7252 }
7253
7254 /* opd entries are always for functions defined in the
7255 current input bfd. If the symbol isn't defined in the
7256 input bfd, then we won't be using the function in this
7257 bfd; It must be defined in a linkonce section in another
7258 bfd, or is weak. It's also possible that we are
7259 discarding the function due to a linker script /DISCARD/,
7260 which we test for via the output_section. */
7261 if (sym_sec->owner != ibfd
7262 || sym_sec->output_section == bfd_abs_section_ptr)
7263 need_edit = TRUE;
7264
7265 rel += 2;
7266 if (rel == relend
7267 || (rel + 1 == relend && rel->r_offset == offset + 16))
7268 {
7269 if (sec->size == offset + 24)
7270 {
7271 need_pad = NULL;
7272 break;
7273 }
7274 if (rel == relend && sec->size == offset + 16)
7275 {
7276 cnt_16b++;
7277 break;
7278 }
7279 goto broken_opd;
7280 }
7281
7282 if (rel->r_offset == offset + 24)
7283 offset += 24;
7284 else if (rel->r_offset != offset + 16)
7285 goto broken_opd;
7286 else if (rel + 1 < relend
7287 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7288 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7289 {
7290 offset += 16;
7291 cnt_16b++;
7292 }
7293 else if (rel + 2 < relend
7294 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
7295 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
7296 {
7297 offset += 24;
7298 rel += 1;
7299 }
7300 else
7301 goto broken_opd;
7302 }
7303
7304 add_aux_fields = non_overlapping && cnt_16b > 0;
7305
7306 if (need_edit || add_aux_fields)
7307 {
7308 Elf_Internal_Rela *write_rel;
7309 Elf_Internal_Shdr *rel_hdr;
7310 bfd_byte *rptr, *wptr;
7311 bfd_byte *new_contents;
7312 bfd_boolean skip;
7313 long opd_ent_size;
7314 bfd_size_type amt;
7315
7316 new_contents = NULL;
7317 amt = sec->size * sizeof (long) / 8;
7318 opd = &ppc64_elf_section_data (sec)->u.opd;
7319 opd->adjust = bfd_zalloc (sec->owner, amt);
7320 if (opd->adjust == NULL)
7321 return FALSE;
7322 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7323
7324 /* This seems a waste of time as input .opd sections are all
7325 zeros as generated by gcc, but I suppose there's no reason
7326 this will always be so. We might start putting something in
7327 the third word of .opd entries. */
7328 if ((sec->flags & SEC_IN_MEMORY) == 0)
7329 {
7330 bfd_byte *loc;
7331 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7332 {
7333 if (loc != NULL)
7334 free (loc);
7335 error_ret:
7336 if (local_syms != NULL
7337 && symtab_hdr->contents != (unsigned char *) local_syms)
7338 free (local_syms);
7339 if (elf_section_data (sec)->relocs != relstart)
7340 free (relstart);
7341 return FALSE;
7342 }
7343 sec->contents = loc;
7344 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7345 }
7346
7347 elf_section_data (sec)->relocs = relstart;
7348
7349 new_contents = sec->contents;
7350 if (add_aux_fields)
7351 {
7352 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7353 if (new_contents == NULL)
7354 return FALSE;
7355 need_pad = FALSE;
7356 }
7357 wptr = new_contents;
7358 rptr = sec->contents;
7359
7360 write_rel = relstart;
7361 skip = FALSE;
7362 offset = 0;
7363 opd_ent_size = 0;
7364 for (rel = relstart; rel < relend; rel++)
7365 {
7366 unsigned long r_symndx;
7367 asection *sym_sec;
7368 struct elf_link_hash_entry *h;
7369 Elf_Internal_Sym *sym;
7370
7371 r_symndx = ELF64_R_SYM (rel->r_info);
7372 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7373 r_symndx, ibfd))
7374 goto error_ret;
7375
7376 if (rel->r_offset == offset)
7377 {
7378 struct ppc_link_hash_entry *fdh = NULL;
7379
7380 /* See if the .opd entry is full 24 byte or
7381 16 byte (with fd_aux entry overlapped with next
7382 fd_func). */
7383 opd_ent_size = 24;
7384 if ((rel + 2 == relend && sec->size == offset + 16)
7385 || (rel + 3 < relend
7386 && rel[2].r_offset == offset + 16
7387 && rel[3].r_offset == offset + 24
7388 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
7389 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
7390 opd_ent_size = 16;
7391
7392 if (h != NULL
7393 && h->root.root.string[0] == '.')
7394 {
7395 struct ppc_link_hash_table *htab;
7396
7397 htab = ppc_hash_table (info);
7398 if (htab != NULL)
7399 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h,
7400 htab);
7401 if (fdh != NULL
7402 && fdh->elf.root.type != bfd_link_hash_defined
7403 && fdh->elf.root.type != bfd_link_hash_defweak)
7404 fdh = NULL;
7405 }
7406
7407 skip = (sym_sec->owner != ibfd
7408 || sym_sec->output_section == bfd_abs_section_ptr);
7409 if (skip)
7410 {
7411 if (fdh != NULL && sym_sec->owner == ibfd)
7412 {
7413 /* Arrange for the function descriptor sym
7414 to be dropped. */
7415 fdh->elf.root.u.def.value = 0;
7416 fdh->elf.root.u.def.section = sym_sec;
7417 }
7418 opd->adjust[rel->r_offset / 8] = -1;
7419 }
7420 else
7421 {
7422 /* We'll be keeping this opd entry. */
7423
7424 if (fdh != NULL)
7425 {
7426 /* Redefine the function descriptor symbol to
7427 this location in the opd section. It is
7428 necessary to update the value here rather
7429 than using an array of adjustments as we do
7430 for local symbols, because various places
7431 in the generic ELF code use the value
7432 stored in u.def.value. */
7433 fdh->elf.root.u.def.value = wptr - new_contents;
7434 fdh->adjust_done = 1;
7435 }
7436
7437 /* Local syms are a bit tricky. We could
7438 tweak them as they can be cached, but
7439 we'd need to look through the local syms
7440 for the function descriptor sym which we
7441 don't have at the moment. So keep an
7442 array of adjustments. */
7443 opd->adjust[rel->r_offset / 8]
7444 = (wptr - new_contents) - (rptr - sec->contents);
7445
7446 if (wptr != rptr)
7447 memcpy (wptr, rptr, opd_ent_size);
7448 wptr += opd_ent_size;
7449 if (add_aux_fields && opd_ent_size == 16)
7450 {
7451 memset (wptr, '\0', 8);
7452 wptr += 8;
7453 }
7454 }
7455 rptr += opd_ent_size;
7456 offset += opd_ent_size;
7457 }
7458
7459 if (skip)
7460 {
7461 if (!NO_OPD_RELOCS
7462 && !info->relocatable
7463 && !dec_dynrel_count (rel->r_info, sec, info,
7464 NULL, h, sym))
7465 goto error_ret;
7466 }
7467 else
7468 {
7469 /* We need to adjust any reloc offsets to point to the
7470 new opd entries. While we're at it, we may as well
7471 remove redundant relocs. */
7472 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
7473 if (write_rel != rel)
7474 memcpy (write_rel, rel, sizeof (*rel));
7475 ++write_rel;
7476 }
7477 }
7478
7479 sec->size = wptr - new_contents;
7480 sec->reloc_count = write_rel - relstart;
7481 if (add_aux_fields)
7482 {
7483 free (sec->contents);
7484 sec->contents = new_contents;
7485 }
7486
7487 /* Fudge the header size too, as this is used later in
7488 elf_bfd_final_link if we are emitting relocs. */
7489 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7490 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7491 some_edited = TRUE;
7492 }
7493 else if (elf_section_data (sec)->relocs != relstart)
7494 free (relstart);
7495
7496 if (local_syms != NULL
7497 && symtab_hdr->contents != (unsigned char *) local_syms)
7498 {
7499 if (!info->keep_memory)
7500 free (local_syms);
7501 else
7502 symtab_hdr->contents = (unsigned char *) local_syms;
7503 }
7504 }
7505
7506 if (some_edited)
7507 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7508
7509 /* If we are doing a final link and the last .opd entry is just 16 byte
7510 long, add a 8 byte padding after it. */
7511 if (need_pad != NULL && !info->relocatable)
7512 {
7513 bfd_byte *p;
7514
7515 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7516 {
7517 BFD_ASSERT (need_pad->size > 0);
7518
7519 p = bfd_malloc (need_pad->size + 8);
7520 if (p == NULL)
7521 return FALSE;
7522
7523 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7524 p, 0, need_pad->size))
7525 return FALSE;
7526
7527 need_pad->contents = p;
7528 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7529 }
7530 else
7531 {
7532 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7533 if (p == NULL)
7534 return FALSE;
7535
7536 need_pad->contents = p;
7537 }
7538
7539 memset (need_pad->contents + need_pad->size, 0, 8);
7540 need_pad->size += 8;
7541 }
7542
7543 return TRUE;
7544 }
7545
7546 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7547
7548 asection *
7549 ppc64_elf_tls_setup (struct bfd_link_info *info,
7550 int no_tls_get_addr_opt,
7551 int *no_multi_toc)
7552 {
7553 struct ppc_link_hash_table *htab;
7554
7555 htab = ppc_hash_table (info);
7556 if (htab == NULL)
7557 return NULL;
7558
7559 if (*no_multi_toc)
7560 htab->do_multi_toc = 0;
7561 else if (!htab->do_multi_toc)
7562 *no_multi_toc = 1;
7563
7564 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
7565 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7566 FALSE, FALSE, TRUE));
7567 /* Move dynamic linking info to the function descriptor sym. */
7568 if (htab->tls_get_addr != NULL)
7569 func_desc_adjust (&htab->tls_get_addr->elf, info);
7570 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
7571 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7572 FALSE, FALSE, TRUE));
7573 if (!no_tls_get_addr_opt)
7574 {
7575 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
7576
7577 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7578 FALSE, FALSE, TRUE);
7579 if (opt != NULL)
7580 func_desc_adjust (opt, info);
7581 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7582 FALSE, FALSE, TRUE);
7583 if (opt_fd != NULL
7584 && (opt_fd->root.type == bfd_link_hash_defined
7585 || opt_fd->root.type == bfd_link_hash_defweak))
7586 {
7587 /* If glibc supports an optimized __tls_get_addr call stub,
7588 signalled by the presence of __tls_get_addr_opt, and we'll
7589 be calling __tls_get_addr via a plt call stub, then
7590 make __tls_get_addr point to __tls_get_addr_opt. */
7591 tga_fd = &htab->tls_get_addr_fd->elf;
7592 if (htab->elf.dynamic_sections_created
7593 && tga_fd != NULL
7594 && (tga_fd->type == STT_FUNC
7595 || tga_fd->needs_plt)
7596 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7597 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
7598 && tga_fd->root.type == bfd_link_hash_undefweak)))
7599 {
7600 struct plt_entry *ent;
7601
7602 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7603 if (ent->plt.refcount > 0)
7604 break;
7605 if (ent != NULL)
7606 {
7607 tga_fd->root.type = bfd_link_hash_indirect;
7608 tga_fd->root.u.i.link = &opt_fd->root;
7609 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7610 if (opt_fd->dynindx != -1)
7611 {
7612 /* Use __tls_get_addr_opt in dynamic relocations. */
7613 opt_fd->dynindx = -1;
7614 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7615 opt_fd->dynstr_index);
7616 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7617 return NULL;
7618 }
7619 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
7620 tga = &htab->tls_get_addr->elf;
7621 if (opt != NULL && tga != NULL)
7622 {
7623 tga->root.type = bfd_link_hash_indirect;
7624 tga->root.u.i.link = &opt->root;
7625 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7626 _bfd_elf_link_hash_hide_symbol (info, opt,
7627 tga->forced_local);
7628 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
7629 }
7630 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7631 htab->tls_get_addr_fd->is_func_descriptor = 1;
7632 if (htab->tls_get_addr != NULL)
7633 {
7634 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7635 htab->tls_get_addr->is_func = 1;
7636 }
7637 }
7638 }
7639 }
7640 else
7641 no_tls_get_addr_opt = TRUE;
7642 }
7643 htab->no_tls_get_addr_opt = no_tls_get_addr_opt;
7644 return _bfd_elf_tls_setup (info->output_bfd, info);
7645 }
7646
7647 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7648 HASH1 or HASH2. */
7649
7650 static bfd_boolean
7651 branch_reloc_hash_match (const bfd *ibfd,
7652 const Elf_Internal_Rela *rel,
7653 const struct ppc_link_hash_entry *hash1,
7654 const struct ppc_link_hash_entry *hash2)
7655 {
7656 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7657 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7658 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7659
7660 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7661 {
7662 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7663 struct elf_link_hash_entry *h;
7664
7665 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7666 h = elf_follow_link (h);
7667 if (h == &hash1->elf || h == &hash2->elf)
7668 return TRUE;
7669 }
7670 return FALSE;
7671 }
7672
7673 /* Run through all the TLS relocs looking for optimization
7674 opportunities. The linker has been hacked (see ppc64elf.em) to do
7675 a preliminary section layout so that we know the TLS segment
7676 offsets. We can't optimize earlier because some optimizations need
7677 to know the tp offset, and we need to optimize before allocating
7678 dynamic relocations. */
7679
7680 bfd_boolean
7681 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7682 {
7683 bfd *ibfd;
7684 asection *sec;
7685 struct ppc_link_hash_table *htab;
7686 unsigned char *toc_ref;
7687 int pass;
7688
7689 if (info->relocatable || !info->executable)
7690 return TRUE;
7691
7692 htab = ppc_hash_table (info);
7693 if (htab == NULL)
7694 return FALSE;
7695
7696 /* Make two passes over the relocs. On the first pass, mark toc
7697 entries involved with tls relocs, and check that tls relocs
7698 involved in setting up a tls_get_addr call are indeed followed by
7699 such a call. If they are not, we can't do any tls optimization.
7700 On the second pass twiddle tls_mask flags to notify
7701 relocate_section that optimization can be done, and adjust got
7702 and plt refcounts. */
7703 toc_ref = NULL;
7704 for (pass = 0; pass < 2; ++pass)
7705 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7706 {
7707 Elf_Internal_Sym *locsyms = NULL;
7708 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7709
7710 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7711 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7712 {
7713 Elf_Internal_Rela *relstart, *rel, *relend;
7714 bfd_boolean found_tls_get_addr_arg = 0;
7715
7716 /* Read the relocations. */
7717 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7718 info->keep_memory);
7719 if (relstart == NULL)
7720 return FALSE;
7721
7722 relend = relstart + sec->reloc_count;
7723 for (rel = relstart; rel < relend; rel++)
7724 {
7725 enum elf_ppc64_reloc_type r_type;
7726 unsigned long r_symndx;
7727 struct elf_link_hash_entry *h;
7728 Elf_Internal_Sym *sym;
7729 asection *sym_sec;
7730 unsigned char *tls_mask;
7731 unsigned char tls_set, tls_clear, tls_type = 0;
7732 bfd_vma value;
7733 bfd_boolean ok_tprel, is_local;
7734 long toc_ref_index = 0;
7735 int expecting_tls_get_addr = 0;
7736 bfd_boolean ret = FALSE;
7737
7738 r_symndx = ELF64_R_SYM (rel->r_info);
7739 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
7740 r_symndx, ibfd))
7741 {
7742 err_free_rel:
7743 if (elf_section_data (sec)->relocs != relstart)
7744 free (relstart);
7745 if (toc_ref != NULL)
7746 free (toc_ref);
7747 if (locsyms != NULL
7748 && (elf_symtab_hdr (ibfd).contents
7749 != (unsigned char *) locsyms))
7750 free (locsyms);
7751 return ret;
7752 }
7753
7754 if (h != NULL)
7755 {
7756 if (h->root.type == bfd_link_hash_defined
7757 || h->root.type == bfd_link_hash_defweak)
7758 value = h->root.u.def.value;
7759 else if (h->root.type == bfd_link_hash_undefweak)
7760 value = 0;
7761 else
7762 {
7763 found_tls_get_addr_arg = 0;
7764 continue;
7765 }
7766 }
7767 else
7768 /* Symbols referenced by TLS relocs must be of type
7769 STT_TLS. So no need for .opd local sym adjust. */
7770 value = sym->st_value;
7771
7772 ok_tprel = FALSE;
7773 is_local = FALSE;
7774 if (h == NULL
7775 || !h->def_dynamic)
7776 {
7777 is_local = TRUE;
7778 if (h != NULL
7779 && h->root.type == bfd_link_hash_undefweak)
7780 ok_tprel = TRUE;
7781 else
7782 {
7783 value += sym_sec->output_offset;
7784 value += sym_sec->output_section->vma;
7785 value -= htab->elf.tls_sec->vma;
7786 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
7787 < (bfd_vma) 1 << 32);
7788 }
7789 }
7790
7791 r_type = ELF64_R_TYPE (rel->r_info);
7792 /* If this section has old-style __tls_get_addr calls
7793 without marker relocs, then check that each
7794 __tls_get_addr call reloc is preceded by a reloc
7795 that conceivably belongs to the __tls_get_addr arg
7796 setup insn. If we don't find matching arg setup
7797 relocs, don't do any tls optimization. */
7798 if (pass == 0
7799 && sec->has_tls_get_addr_call
7800 && h != NULL
7801 && (h == &htab->tls_get_addr->elf
7802 || h == &htab->tls_get_addr_fd->elf)
7803 && !found_tls_get_addr_arg
7804 && is_branch_reloc (r_type))
7805 {
7806 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
7807 "TLS optimization disabled\n"),
7808 ibfd, sec, rel->r_offset);
7809 ret = TRUE;
7810 goto err_free_rel;
7811 }
7812
7813 found_tls_get_addr_arg = 0;
7814 switch (r_type)
7815 {
7816 case R_PPC64_GOT_TLSLD16:
7817 case R_PPC64_GOT_TLSLD16_LO:
7818 expecting_tls_get_addr = 1;
7819 found_tls_get_addr_arg = 1;
7820 /* Fall thru */
7821
7822 case R_PPC64_GOT_TLSLD16_HI:
7823 case R_PPC64_GOT_TLSLD16_HA:
7824 /* These relocs should never be against a symbol
7825 defined in a shared lib. Leave them alone if
7826 that turns out to be the case. */
7827 if (!is_local)
7828 continue;
7829
7830 /* LD -> LE */
7831 tls_set = 0;
7832 tls_clear = TLS_LD;
7833 tls_type = TLS_TLS | TLS_LD;
7834 break;
7835
7836 case R_PPC64_GOT_TLSGD16:
7837 case R_PPC64_GOT_TLSGD16_LO:
7838 expecting_tls_get_addr = 1;
7839 found_tls_get_addr_arg = 1;
7840 /* Fall thru */
7841
7842 case R_PPC64_GOT_TLSGD16_HI:
7843 case R_PPC64_GOT_TLSGD16_HA:
7844 if (ok_tprel)
7845 /* GD -> LE */
7846 tls_set = 0;
7847 else
7848 /* GD -> IE */
7849 tls_set = TLS_TLS | TLS_TPRELGD;
7850 tls_clear = TLS_GD;
7851 tls_type = TLS_TLS | TLS_GD;
7852 break;
7853
7854 case R_PPC64_GOT_TPREL16_DS:
7855 case R_PPC64_GOT_TPREL16_LO_DS:
7856 case R_PPC64_GOT_TPREL16_HI:
7857 case R_PPC64_GOT_TPREL16_HA:
7858 if (ok_tprel)
7859 {
7860 /* IE -> LE */
7861 tls_set = 0;
7862 tls_clear = TLS_TPREL;
7863 tls_type = TLS_TLS | TLS_TPREL;
7864 break;
7865 }
7866 continue;
7867
7868 case R_PPC64_TLSGD:
7869 case R_PPC64_TLSLD:
7870 found_tls_get_addr_arg = 1;
7871 /* Fall thru */
7872
7873 case R_PPC64_TLS:
7874 case R_PPC64_TOC16:
7875 case R_PPC64_TOC16_LO:
7876 if (sym_sec == NULL || sym_sec != toc)
7877 continue;
7878
7879 /* Mark this toc entry as referenced by a TLS
7880 code sequence. We can do that now in the
7881 case of R_PPC64_TLS, and after checking for
7882 tls_get_addr for the TOC16 relocs. */
7883 if (toc_ref == NULL)
7884 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
7885 if (toc_ref == NULL)
7886 goto err_free_rel;
7887
7888 if (h != NULL)
7889 value = h->root.u.def.value;
7890 else
7891 value = sym->st_value;
7892 value += rel->r_addend;
7893 BFD_ASSERT (value < toc->size && value % 8 == 0);
7894 toc_ref_index = (value + toc->output_offset) / 8;
7895 if (r_type == R_PPC64_TLS
7896 || r_type == R_PPC64_TLSGD
7897 || r_type == R_PPC64_TLSLD)
7898 {
7899 toc_ref[toc_ref_index] = 1;
7900 continue;
7901 }
7902
7903 if (pass != 0 && toc_ref[toc_ref_index] == 0)
7904 continue;
7905
7906 tls_set = 0;
7907 tls_clear = 0;
7908 expecting_tls_get_addr = 2;
7909 break;
7910
7911 case R_PPC64_TPREL64:
7912 if (pass == 0
7913 || sec != toc
7914 || toc_ref == NULL
7915 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7916 continue;
7917 if (ok_tprel)
7918 {
7919 /* IE -> LE */
7920 tls_set = TLS_EXPLICIT;
7921 tls_clear = TLS_TPREL;
7922 break;
7923 }
7924 continue;
7925
7926 case R_PPC64_DTPMOD64:
7927 if (pass == 0
7928 || sec != toc
7929 || toc_ref == NULL
7930 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7931 continue;
7932 if (rel + 1 < relend
7933 && (rel[1].r_info
7934 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
7935 && rel[1].r_offset == rel->r_offset + 8)
7936 {
7937 if (ok_tprel)
7938 /* GD -> LE */
7939 tls_set = TLS_EXPLICIT | TLS_GD;
7940 else
7941 /* GD -> IE */
7942 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
7943 tls_clear = TLS_GD;
7944 }
7945 else
7946 {
7947 if (!is_local)
7948 continue;
7949
7950 /* LD -> LE */
7951 tls_set = TLS_EXPLICIT;
7952 tls_clear = TLS_LD;
7953 }
7954 break;
7955
7956 default:
7957 continue;
7958 }
7959
7960 if (pass == 0)
7961 {
7962 if (!expecting_tls_get_addr
7963 || !sec->has_tls_get_addr_call)
7964 continue;
7965
7966 if (rel + 1 < relend
7967 && branch_reloc_hash_match (ibfd, rel + 1,
7968 htab->tls_get_addr,
7969 htab->tls_get_addr_fd))
7970 {
7971 if (expecting_tls_get_addr == 2)
7972 {
7973 /* Check for toc tls entries. */
7974 unsigned char *toc_tls;
7975 int retval;
7976
7977 retval = get_tls_mask (&toc_tls, NULL, NULL,
7978 &locsyms,
7979 rel, ibfd);
7980 if (retval == 0)
7981 goto err_free_rel;
7982 if (toc_tls != NULL)
7983 {
7984 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
7985 found_tls_get_addr_arg = 1;
7986 if (retval > 1)
7987 toc_ref[toc_ref_index] = 1;
7988 }
7989 }
7990 continue;
7991 }
7992
7993 if (expecting_tls_get_addr != 1)
7994 continue;
7995
7996 /* Uh oh, we didn't find the expected call. We
7997 could just mark this symbol to exclude it
7998 from tls optimization but it's safer to skip
7999 the entire optimization. */
8000 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8001 "TLS optimization disabled\n"),
8002 ibfd, sec, rel->r_offset);
8003 ret = TRUE;
8004 goto err_free_rel;
8005 }
8006
8007 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
8008 {
8009 struct plt_entry *ent;
8010 for (ent = htab->tls_get_addr->elf.plt.plist;
8011 ent != NULL;
8012 ent = ent->next)
8013 if (ent->addend == 0)
8014 {
8015 if (ent->plt.refcount > 0)
8016 {
8017 ent->plt.refcount -= 1;
8018 expecting_tls_get_addr = 0;
8019 }
8020 break;
8021 }
8022 }
8023
8024 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
8025 {
8026 struct plt_entry *ent;
8027 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8028 ent != NULL;
8029 ent = ent->next)
8030 if (ent->addend == 0)
8031 {
8032 if (ent->plt.refcount > 0)
8033 ent->plt.refcount -= 1;
8034 break;
8035 }
8036 }
8037
8038 if (tls_clear == 0)
8039 continue;
8040
8041 if ((tls_set & TLS_EXPLICIT) == 0)
8042 {
8043 struct got_entry *ent;
8044
8045 /* Adjust got entry for this reloc. */
8046 if (h != NULL)
8047 ent = h->got.glist;
8048 else
8049 ent = elf_local_got_ents (ibfd)[r_symndx];
8050
8051 for (; ent != NULL; ent = ent->next)
8052 if (ent->addend == rel->r_addend
8053 && ent->owner == ibfd
8054 && ent->tls_type == tls_type)
8055 break;
8056 if (ent == NULL)
8057 abort ();
8058
8059 if (tls_set == 0)
8060 {
8061 /* We managed to get rid of a got entry. */
8062 if (ent->got.refcount > 0)
8063 ent->got.refcount -= 1;
8064 }
8065 }
8066 else
8067 {
8068 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8069 we'll lose one or two dyn relocs. */
8070 if (!dec_dynrel_count (rel->r_info, sec, info,
8071 NULL, h, sym))
8072 return FALSE;
8073
8074 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8075 {
8076 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8077 NULL, h, sym))
8078 return FALSE;
8079 }
8080 }
8081
8082 *tls_mask |= tls_set;
8083 *tls_mask &= ~tls_clear;
8084 }
8085
8086 if (elf_section_data (sec)->relocs != relstart)
8087 free (relstart);
8088 }
8089
8090 if (locsyms != NULL
8091 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8092 {
8093 if (!info->keep_memory)
8094 free (locsyms);
8095 else
8096 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8097 }
8098 }
8099
8100 if (toc_ref != NULL)
8101 free (toc_ref);
8102 return TRUE;
8103 }
8104
8105 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8106 the values of any global symbols in a toc section that has been
8107 edited. Globals in toc sections should be a rarity, so this function
8108 sets a flag if any are found in toc sections other than the one just
8109 edited, so that futher hash table traversals can be avoided. */
8110
8111 struct adjust_toc_info
8112 {
8113 asection *toc;
8114 unsigned long *skip;
8115 bfd_boolean global_toc_syms;
8116 };
8117
8118 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8119
8120 static bfd_boolean
8121 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8122 {
8123 struct ppc_link_hash_entry *eh;
8124 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8125 unsigned long i;
8126
8127 if (h->root.type != bfd_link_hash_defined
8128 && h->root.type != bfd_link_hash_defweak)
8129 return TRUE;
8130
8131 eh = (struct ppc_link_hash_entry *) h;
8132 if (eh->adjust_done)
8133 return TRUE;
8134
8135 if (eh->elf.root.u.def.section == toc_inf->toc)
8136 {
8137 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8138 i = toc_inf->toc->rawsize >> 3;
8139 else
8140 i = eh->elf.root.u.def.value >> 3;
8141
8142 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8143 {
8144 (*_bfd_error_handler)
8145 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8146 do
8147 ++i;
8148 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8149 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8150 }
8151
8152 eh->elf.root.u.def.value -= toc_inf->skip[i];
8153 eh->adjust_done = 1;
8154 }
8155 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8156 toc_inf->global_toc_syms = TRUE;
8157
8158 return TRUE;
8159 }
8160
8161 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8162
8163 static bfd_boolean
8164 ok_lo_toc_insn (unsigned int insn)
8165 {
8166 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8167 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8168 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8169 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8170 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8171 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8172 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8173 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8174 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8175 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8176 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8177 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8178 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8179 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8180 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8181 && (insn & 3) != 1)
8182 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8183 && ((insn & 3) == 0 || (insn & 3) == 3))
8184 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8185 }
8186
8187 /* Examine all relocs referencing .toc sections in order to remove
8188 unused .toc entries. */
8189
8190 bfd_boolean
8191 ppc64_elf_edit_toc (struct bfd_link_info *info)
8192 {
8193 bfd *ibfd;
8194 struct adjust_toc_info toc_inf;
8195 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8196
8197 htab->do_toc_opt = 1;
8198 toc_inf.global_toc_syms = TRUE;
8199 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8200 {
8201 asection *toc, *sec;
8202 Elf_Internal_Shdr *symtab_hdr;
8203 Elf_Internal_Sym *local_syms;
8204 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8205 unsigned long *skip, *drop;
8206 unsigned char *used;
8207 unsigned char *keep, last, some_unused;
8208
8209 if (!is_ppc64_elf (ibfd))
8210 continue;
8211
8212 toc = bfd_get_section_by_name (ibfd, ".toc");
8213 if (toc == NULL
8214 || toc->size == 0
8215 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8216 || discarded_section (toc))
8217 continue;
8218
8219 toc_relocs = NULL;
8220 local_syms = NULL;
8221 symtab_hdr = &elf_symtab_hdr (ibfd);
8222
8223 /* Look at sections dropped from the final link. */
8224 skip = NULL;
8225 relstart = NULL;
8226 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8227 {
8228 if (sec->reloc_count == 0
8229 || !discarded_section (sec)
8230 || get_opd_info (sec)
8231 || (sec->flags & SEC_ALLOC) == 0
8232 || (sec->flags & SEC_DEBUGGING) != 0)
8233 continue;
8234
8235 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8236 if (relstart == NULL)
8237 goto error_ret;
8238
8239 /* Run through the relocs to see which toc entries might be
8240 unused. */
8241 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8242 {
8243 enum elf_ppc64_reloc_type r_type;
8244 unsigned long r_symndx;
8245 asection *sym_sec;
8246 struct elf_link_hash_entry *h;
8247 Elf_Internal_Sym *sym;
8248 bfd_vma val;
8249
8250 r_type = ELF64_R_TYPE (rel->r_info);
8251 switch (r_type)
8252 {
8253 default:
8254 continue;
8255
8256 case R_PPC64_TOC16:
8257 case R_PPC64_TOC16_LO:
8258 case R_PPC64_TOC16_HI:
8259 case R_PPC64_TOC16_HA:
8260 case R_PPC64_TOC16_DS:
8261 case R_PPC64_TOC16_LO_DS:
8262 break;
8263 }
8264
8265 r_symndx = ELF64_R_SYM (rel->r_info);
8266 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8267 r_symndx, ibfd))
8268 goto error_ret;
8269
8270 if (sym_sec != toc)
8271 continue;
8272
8273 if (h != NULL)
8274 val = h->root.u.def.value;
8275 else
8276 val = sym->st_value;
8277 val += rel->r_addend;
8278
8279 if (val >= toc->size)
8280 continue;
8281
8282 /* Anything in the toc ought to be aligned to 8 bytes.
8283 If not, don't mark as unused. */
8284 if (val & 7)
8285 continue;
8286
8287 if (skip == NULL)
8288 {
8289 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8290 if (skip == NULL)
8291 goto error_ret;
8292 }
8293
8294 skip[val >> 3] = ref_from_discarded;
8295 }
8296
8297 if (elf_section_data (sec)->relocs != relstart)
8298 free (relstart);
8299 }
8300
8301 /* For largetoc loads of address constants, we can convert
8302 . addis rx,2,addr@got@ha
8303 . ld ry,addr@got@l(rx)
8304 to
8305 . addis rx,2,addr@toc@ha
8306 . addi ry,rx,addr@toc@l
8307 when addr is within 2G of the toc pointer. This then means
8308 that the word storing "addr" in the toc is no longer needed. */
8309
8310 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8311 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8312 && toc->reloc_count != 0)
8313 {
8314 /* Read toc relocs. */
8315 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8316 info->keep_memory);
8317 if (toc_relocs == NULL)
8318 goto error_ret;
8319
8320 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8321 {
8322 enum elf_ppc64_reloc_type r_type;
8323 unsigned long r_symndx;
8324 asection *sym_sec;
8325 struct elf_link_hash_entry *h;
8326 Elf_Internal_Sym *sym;
8327 bfd_vma val, addr;
8328
8329 r_type = ELF64_R_TYPE (rel->r_info);
8330 if (r_type != R_PPC64_ADDR64)
8331 continue;
8332
8333 r_symndx = ELF64_R_SYM (rel->r_info);
8334 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8335 r_symndx, ibfd))
8336 goto error_ret;
8337
8338 if (sym_sec == NULL
8339 || discarded_section (sym_sec))
8340 continue;
8341
8342 if (!SYMBOL_CALLS_LOCAL (info, h))
8343 continue;
8344
8345 if (h != NULL)
8346 {
8347 if (h->type == STT_GNU_IFUNC)
8348 continue;
8349 val = h->root.u.def.value;
8350 }
8351 else
8352 {
8353 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8354 continue;
8355 val = sym->st_value;
8356 }
8357 val += rel->r_addend;
8358 val += sym_sec->output_section->vma + sym_sec->output_offset;
8359
8360 /* We don't yet know the exact toc pointer value, but we
8361 know it will be somewhere in the toc section. Don't
8362 optimize if the difference from any possible toc
8363 pointer is outside [ff..f80008000, 7fff7fff]. */
8364 addr = toc->output_section->vma + TOC_BASE_OFF;
8365 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8366 continue;
8367
8368 addr = toc->output_section->vma + toc->output_section->rawsize;
8369 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8370 continue;
8371
8372 if (skip == NULL)
8373 {
8374 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8375 if (skip == NULL)
8376 goto error_ret;
8377 }
8378
8379 skip[rel->r_offset >> 3]
8380 |= can_optimize | ((rel - toc_relocs) << 2);
8381 }
8382 }
8383
8384 if (skip == NULL)
8385 continue;
8386
8387 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8388 if (used == NULL)
8389 {
8390 error_ret:
8391 if (local_syms != NULL
8392 && symtab_hdr->contents != (unsigned char *) local_syms)
8393 free (local_syms);
8394 if (sec != NULL
8395 && relstart != NULL
8396 && elf_section_data (sec)->relocs != relstart)
8397 free (relstart);
8398 if (toc_relocs != NULL
8399 && elf_section_data (toc)->relocs != toc_relocs)
8400 free (toc_relocs);
8401 if (skip != NULL)
8402 free (skip);
8403 return FALSE;
8404 }
8405
8406 /* Now check all kept sections that might reference the toc.
8407 Check the toc itself last. */
8408 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8409 : ibfd->sections);
8410 sec != NULL;
8411 sec = (sec == toc ? NULL
8412 : sec->next == NULL ? toc
8413 : sec->next == toc && toc->next ? toc->next
8414 : sec->next))
8415 {
8416 int repeat;
8417
8418 if (sec->reloc_count == 0
8419 || discarded_section (sec)
8420 || get_opd_info (sec)
8421 || (sec->flags & SEC_ALLOC) == 0
8422 || (sec->flags & SEC_DEBUGGING) != 0)
8423 continue;
8424
8425 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8426 info->keep_memory);
8427 if (relstart == NULL)
8428 goto error_ret;
8429
8430 /* Mark toc entries referenced as used. */
8431 do
8432 {
8433 repeat = 0;
8434 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8435 {
8436 enum elf_ppc64_reloc_type r_type;
8437 unsigned long r_symndx;
8438 asection *sym_sec;
8439 struct elf_link_hash_entry *h;
8440 Elf_Internal_Sym *sym;
8441 bfd_vma val;
8442 enum {no_check, check_lo, check_ha} insn_check;
8443
8444 r_type = ELF64_R_TYPE (rel->r_info);
8445 switch (r_type)
8446 {
8447 default:
8448 insn_check = no_check;
8449 break;
8450
8451 case R_PPC64_GOT_TLSLD16_HA:
8452 case R_PPC64_GOT_TLSGD16_HA:
8453 case R_PPC64_GOT_TPREL16_HA:
8454 case R_PPC64_GOT_DTPREL16_HA:
8455 case R_PPC64_GOT16_HA:
8456 case R_PPC64_TOC16_HA:
8457 insn_check = check_ha;
8458 break;
8459
8460 case R_PPC64_GOT_TLSLD16_LO:
8461 case R_PPC64_GOT_TLSGD16_LO:
8462 case R_PPC64_GOT_TPREL16_LO_DS:
8463 case R_PPC64_GOT_DTPREL16_LO_DS:
8464 case R_PPC64_GOT16_LO:
8465 case R_PPC64_GOT16_LO_DS:
8466 case R_PPC64_TOC16_LO:
8467 case R_PPC64_TOC16_LO_DS:
8468 insn_check = check_lo;
8469 break;
8470 }
8471
8472 if (insn_check != no_check)
8473 {
8474 bfd_vma off = rel->r_offset & ~3;
8475 unsigned char buf[4];
8476 unsigned int insn;
8477
8478 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8479 {
8480 free (used);
8481 goto error_ret;
8482 }
8483 insn = bfd_get_32 (ibfd, buf);
8484 if (insn_check == check_lo
8485 ? !ok_lo_toc_insn (insn)
8486 : ((insn & ((0x3f << 26) | 0x1f << 16))
8487 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8488 {
8489 char str[12];
8490
8491 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8492 sprintf (str, "%#08x", insn);
8493 info->callbacks->einfo
8494 (_("%P: %H: toc optimization is not supported for"
8495 " %s instruction.\n"),
8496 ibfd, sec, rel->r_offset & ~3, str);
8497 }
8498 }
8499
8500 switch (r_type)
8501 {
8502 case R_PPC64_TOC16:
8503 case R_PPC64_TOC16_LO:
8504 case R_PPC64_TOC16_HI:
8505 case R_PPC64_TOC16_HA:
8506 case R_PPC64_TOC16_DS:
8507 case R_PPC64_TOC16_LO_DS:
8508 /* In case we're taking addresses of toc entries. */
8509 case R_PPC64_ADDR64:
8510 break;
8511
8512 default:
8513 continue;
8514 }
8515
8516 r_symndx = ELF64_R_SYM (rel->r_info);
8517 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8518 r_symndx, ibfd))
8519 {
8520 free (used);
8521 goto error_ret;
8522 }
8523
8524 if (sym_sec != toc)
8525 continue;
8526
8527 if (h != NULL)
8528 val = h->root.u.def.value;
8529 else
8530 val = sym->st_value;
8531 val += rel->r_addend;
8532
8533 if (val >= toc->size)
8534 continue;
8535
8536 if ((skip[val >> 3] & can_optimize) != 0)
8537 {
8538 bfd_vma off;
8539 unsigned char opc;
8540
8541 switch (r_type)
8542 {
8543 case R_PPC64_TOC16_HA:
8544 break;
8545
8546 case R_PPC64_TOC16_LO_DS:
8547 off = rel->r_offset;
8548 off += (bfd_big_endian (ibfd) ? -2 : 3);
8549 if (!bfd_get_section_contents (ibfd, sec, &opc,
8550 off, 1))
8551 {
8552 free (used);
8553 goto error_ret;
8554 }
8555 if ((opc & (0x3f << 2)) == (58u << 2))
8556 break;
8557 /* Fall thru */
8558
8559 default:
8560 /* Wrong sort of reloc, or not a ld. We may
8561 as well clear ref_from_discarded too. */
8562 skip[val >> 3] = 0;
8563 }
8564 }
8565
8566 if (sec != toc)
8567 used[val >> 3] = 1;
8568 /* For the toc section, we only mark as used if this
8569 entry itself isn't unused. */
8570 else if ((used[rel->r_offset >> 3]
8571 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
8572 && !used[val >> 3])
8573 {
8574 /* Do all the relocs again, to catch reference
8575 chains. */
8576 repeat = 1;
8577 used[val >> 3] = 1;
8578 }
8579 }
8580 }
8581 while (repeat);
8582
8583 if (elf_section_data (sec)->relocs != relstart)
8584 free (relstart);
8585 }
8586
8587 /* Merge the used and skip arrays. Assume that TOC
8588 doublewords not appearing as either used or unused belong
8589 to to an entry more than one doubleword in size. */
8590 for (drop = skip, keep = used, last = 0, some_unused = 0;
8591 drop < skip + (toc->size + 7) / 8;
8592 ++drop, ++keep)
8593 {
8594 if (*keep)
8595 {
8596 *drop &= ~ref_from_discarded;
8597 if ((*drop & can_optimize) != 0)
8598 some_unused = 1;
8599 last = 0;
8600 }
8601 else if ((*drop & ref_from_discarded) != 0)
8602 {
8603 some_unused = 1;
8604 last = ref_from_discarded;
8605 }
8606 else
8607 *drop = last;
8608 }
8609
8610 free (used);
8611
8612 if (some_unused)
8613 {
8614 bfd_byte *contents, *src;
8615 unsigned long off;
8616 Elf_Internal_Sym *sym;
8617 bfd_boolean local_toc_syms = FALSE;
8618
8619 /* Shuffle the toc contents, and at the same time convert the
8620 skip array from booleans into offsets. */
8621 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
8622 goto error_ret;
8623
8624 elf_section_data (toc)->this_hdr.contents = contents;
8625
8626 for (src = contents, off = 0, drop = skip;
8627 src < contents + toc->size;
8628 src += 8, ++drop)
8629 {
8630 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
8631 off += 8;
8632 else if (off != 0)
8633 {
8634 *drop = off;
8635 memcpy (src - off, src, 8);
8636 }
8637 }
8638 *drop = off;
8639 toc->rawsize = toc->size;
8640 toc->size = src - contents - off;
8641
8642 /* Adjust addends for relocs against the toc section sym,
8643 and optimize any accesses we can. */
8644 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8645 {
8646 if (sec->reloc_count == 0
8647 || discarded_section (sec))
8648 continue;
8649
8650 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8651 info->keep_memory);
8652 if (relstart == NULL)
8653 goto error_ret;
8654
8655 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8656 {
8657 enum elf_ppc64_reloc_type r_type;
8658 unsigned long r_symndx;
8659 asection *sym_sec;
8660 struct elf_link_hash_entry *h;
8661 bfd_vma val;
8662
8663 r_type = ELF64_R_TYPE (rel->r_info);
8664 switch (r_type)
8665 {
8666 default:
8667 continue;
8668
8669 case R_PPC64_TOC16:
8670 case R_PPC64_TOC16_LO:
8671 case R_PPC64_TOC16_HI:
8672 case R_PPC64_TOC16_HA:
8673 case R_PPC64_TOC16_DS:
8674 case R_PPC64_TOC16_LO_DS:
8675 case R_PPC64_ADDR64:
8676 break;
8677 }
8678
8679 r_symndx = ELF64_R_SYM (rel->r_info);
8680 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8681 r_symndx, ibfd))
8682 goto error_ret;
8683
8684 if (sym_sec != toc)
8685 continue;
8686
8687 if (h != NULL)
8688 val = h->root.u.def.value;
8689 else
8690 {
8691 val = sym->st_value;
8692 if (val != 0)
8693 local_toc_syms = TRUE;
8694 }
8695
8696 val += rel->r_addend;
8697
8698 if (val > toc->rawsize)
8699 val = toc->rawsize;
8700 else if ((skip[val >> 3] & ref_from_discarded) != 0)
8701 continue;
8702 else if ((skip[val >> 3] & can_optimize) != 0)
8703 {
8704 Elf_Internal_Rela *tocrel
8705 = toc_relocs + (skip[val >> 3] >> 2);
8706 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
8707
8708 switch (r_type)
8709 {
8710 case R_PPC64_TOC16_HA:
8711 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
8712 break;
8713
8714 case R_PPC64_TOC16_LO_DS:
8715 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
8716 break;
8717
8718 default:
8719 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
8720 ppc_howto_init ();
8721 info->callbacks->einfo
8722 (_("%P: %H: %s references "
8723 "optimized away TOC entry\n"),
8724 ibfd, sec, rel->r_offset,
8725 ppc64_elf_howto_table[r_type]->name);
8726 bfd_set_error (bfd_error_bad_value);
8727 goto error_ret;
8728 }
8729 rel->r_addend = tocrel->r_addend;
8730 elf_section_data (sec)->relocs = relstart;
8731 continue;
8732 }
8733
8734 if (h != NULL || sym->st_value != 0)
8735 continue;
8736
8737 rel->r_addend -= skip[val >> 3];
8738 elf_section_data (sec)->relocs = relstart;
8739 }
8740
8741 if (elf_section_data (sec)->relocs != relstart)
8742 free (relstart);
8743 }
8744
8745 /* We shouldn't have local or global symbols defined in the TOC,
8746 but handle them anyway. */
8747 if (local_syms != NULL)
8748 for (sym = local_syms;
8749 sym < local_syms + symtab_hdr->sh_info;
8750 ++sym)
8751 if (sym->st_value != 0
8752 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
8753 {
8754 unsigned long i;
8755
8756 if (sym->st_value > toc->rawsize)
8757 i = toc->rawsize >> 3;
8758 else
8759 i = sym->st_value >> 3;
8760
8761 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
8762 {
8763 if (local_toc_syms)
8764 (*_bfd_error_handler)
8765 (_("%s defined on removed toc entry"),
8766 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
8767 do
8768 ++i;
8769 while ((skip[i] & (ref_from_discarded | can_optimize)));
8770 sym->st_value = (bfd_vma) i << 3;
8771 }
8772
8773 sym->st_value -= skip[i];
8774 symtab_hdr->contents = (unsigned char *) local_syms;
8775 }
8776
8777 /* Adjust any global syms defined in this toc input section. */
8778 if (toc_inf.global_toc_syms)
8779 {
8780 toc_inf.toc = toc;
8781 toc_inf.skip = skip;
8782 toc_inf.global_toc_syms = FALSE;
8783 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
8784 &toc_inf);
8785 }
8786
8787 if (toc->reloc_count != 0)
8788 {
8789 Elf_Internal_Shdr *rel_hdr;
8790 Elf_Internal_Rela *wrel;
8791 bfd_size_type sz;
8792
8793 /* Remove unused toc relocs, and adjust those we keep. */
8794 if (toc_relocs == NULL)
8795 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8796 info->keep_memory);
8797 if (toc_relocs == NULL)
8798 goto error_ret;
8799
8800 wrel = toc_relocs;
8801 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8802 if ((skip[rel->r_offset >> 3]
8803 & (ref_from_discarded | can_optimize)) == 0)
8804 {
8805 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
8806 wrel->r_info = rel->r_info;
8807 wrel->r_addend = rel->r_addend;
8808 ++wrel;
8809 }
8810 else if (!dec_dynrel_count (rel->r_info, toc, info,
8811 &local_syms, NULL, NULL))
8812 goto error_ret;
8813
8814 elf_section_data (toc)->relocs = toc_relocs;
8815 toc->reloc_count = wrel - toc_relocs;
8816 rel_hdr = _bfd_elf_single_rel_hdr (toc);
8817 sz = rel_hdr->sh_entsize;
8818 rel_hdr->sh_size = toc->reloc_count * sz;
8819 }
8820 }
8821 else if (toc_relocs != NULL
8822 && elf_section_data (toc)->relocs != toc_relocs)
8823 free (toc_relocs);
8824
8825 if (local_syms != NULL
8826 && symtab_hdr->contents != (unsigned char *) local_syms)
8827 {
8828 if (!info->keep_memory)
8829 free (local_syms);
8830 else
8831 symtab_hdr->contents = (unsigned char *) local_syms;
8832 }
8833 free (skip);
8834 }
8835
8836 return TRUE;
8837 }
8838
8839 /* Return true iff input section I references the TOC using
8840 instructions limited to +/-32k offsets. */
8841
8842 bfd_boolean
8843 ppc64_elf_has_small_toc_reloc (asection *i)
8844 {
8845 return (is_ppc64_elf (i->owner)
8846 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
8847 }
8848
8849 /* Allocate space for one GOT entry. */
8850
8851 static void
8852 allocate_got (struct elf_link_hash_entry *h,
8853 struct bfd_link_info *info,
8854 struct got_entry *gent)
8855 {
8856 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8857 bfd_boolean dyn;
8858 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
8859 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
8860 ? 16 : 8);
8861 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
8862 ? 2 : 1) * sizeof (Elf64_External_Rela);
8863 asection *got = ppc64_elf_tdata (gent->owner)->got;
8864
8865 gent->got.offset = got->size;
8866 got->size += entsize;
8867
8868 dyn = htab->elf.dynamic_sections_created;
8869 if (h->type == STT_GNU_IFUNC)
8870 {
8871 htab->reliplt->size += rentsize;
8872 htab->got_reli_size += rentsize;
8873 }
8874 else if ((info->shared
8875 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8876 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8877 || h->root.type != bfd_link_hash_undefweak))
8878 {
8879 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
8880 relgot->size += rentsize;
8881 }
8882 }
8883
8884 /* This function merges got entries in the same toc group. */
8885
8886 static void
8887 merge_got_entries (struct got_entry **pent)
8888 {
8889 struct got_entry *ent, *ent2;
8890
8891 for (ent = *pent; ent != NULL; ent = ent->next)
8892 if (!ent->is_indirect)
8893 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
8894 if (!ent2->is_indirect
8895 && ent2->addend == ent->addend
8896 && ent2->tls_type == ent->tls_type
8897 && elf_gp (ent2->owner) == elf_gp (ent->owner))
8898 {
8899 ent2->is_indirect = TRUE;
8900 ent2->got.ent = ent;
8901 }
8902 }
8903
8904 /* Allocate space in .plt, .got and associated reloc sections for
8905 dynamic relocs. */
8906
8907 static bfd_boolean
8908 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8909 {
8910 struct bfd_link_info *info;
8911 struct ppc_link_hash_table *htab;
8912 asection *s;
8913 struct ppc_link_hash_entry *eh;
8914 struct elf_dyn_relocs *p;
8915 struct got_entry **pgent, *gent;
8916
8917 if (h->root.type == bfd_link_hash_indirect)
8918 return TRUE;
8919
8920 info = (struct bfd_link_info *) inf;
8921 htab = ppc_hash_table (info);
8922 if (htab == NULL)
8923 return FALSE;
8924
8925 if ((htab->elf.dynamic_sections_created
8926 && h->dynindx != -1
8927 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
8928 || h->type == STT_GNU_IFUNC)
8929 {
8930 struct plt_entry *pent;
8931 bfd_boolean doneone = FALSE;
8932 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
8933 if (pent->plt.refcount > 0)
8934 {
8935 if (!htab->elf.dynamic_sections_created
8936 || h->dynindx == -1)
8937 {
8938 s = htab->iplt;
8939 pent->plt.offset = s->size;
8940 s->size += PLT_ENTRY_SIZE;
8941 s = htab->reliplt;
8942 }
8943 else
8944 {
8945 /* If this is the first .plt entry, make room for the special
8946 first entry. */
8947 s = htab->plt;
8948 if (s->size == 0)
8949 s->size += PLT_INITIAL_ENTRY_SIZE;
8950
8951 pent->plt.offset = s->size;
8952
8953 /* Make room for this entry. */
8954 s->size += PLT_ENTRY_SIZE;
8955
8956 /* Make room for the .glink code. */
8957 s = htab->glink;
8958 if (s->size == 0)
8959 s->size += GLINK_CALL_STUB_SIZE;
8960 /* We need bigger stubs past index 32767. */
8961 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
8962 s->size += 4;
8963 s->size += 2*4;
8964
8965 /* We also need to make an entry in the .rela.plt section. */
8966 s = htab->relplt;
8967 }
8968 s->size += sizeof (Elf64_External_Rela);
8969 doneone = TRUE;
8970 }
8971 else
8972 pent->plt.offset = (bfd_vma) -1;
8973 if (!doneone)
8974 {
8975 h->plt.plist = NULL;
8976 h->needs_plt = 0;
8977 }
8978 }
8979 else
8980 {
8981 h->plt.plist = NULL;
8982 h->needs_plt = 0;
8983 }
8984
8985 eh = (struct ppc_link_hash_entry *) h;
8986 /* Run through the TLS GD got entries first if we're changing them
8987 to TPREL. */
8988 if ((eh->tls_mask & TLS_TPRELGD) != 0)
8989 for (gent = h->got.glist; gent != NULL; gent = gent->next)
8990 if (gent->got.refcount > 0
8991 && (gent->tls_type & TLS_GD) != 0)
8992 {
8993 /* This was a GD entry that has been converted to TPREL. If
8994 there happens to be a TPREL entry we can use that one. */
8995 struct got_entry *ent;
8996 for (ent = h->got.glist; ent != NULL; ent = ent->next)
8997 if (ent->got.refcount > 0
8998 && (ent->tls_type & TLS_TPREL) != 0
8999 && ent->addend == gent->addend
9000 && ent->owner == gent->owner)
9001 {
9002 gent->got.refcount = 0;
9003 break;
9004 }
9005
9006 /* If not, then we'll be using our own TPREL entry. */
9007 if (gent->got.refcount != 0)
9008 gent->tls_type = TLS_TLS | TLS_TPREL;
9009 }
9010
9011 /* Remove any list entry that won't generate a word in the GOT before
9012 we call merge_got_entries. Otherwise we risk merging to empty
9013 entries. */
9014 pgent = &h->got.glist;
9015 while ((gent = *pgent) != NULL)
9016 if (gent->got.refcount > 0)
9017 {
9018 if ((gent->tls_type & TLS_LD) != 0
9019 && !h->def_dynamic)
9020 {
9021 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9022 *pgent = gent->next;
9023 }
9024 else
9025 pgent = &gent->next;
9026 }
9027 else
9028 *pgent = gent->next;
9029
9030 if (!htab->do_multi_toc)
9031 merge_got_entries (&h->got.glist);
9032
9033 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9034 if (!gent->is_indirect)
9035 {
9036 /* Make sure this symbol is output as a dynamic symbol.
9037 Undefined weak syms won't yet be marked as dynamic,
9038 nor will all TLS symbols. */
9039 if (h->dynindx == -1
9040 && !h->forced_local
9041 && h->type != STT_GNU_IFUNC
9042 && htab->elf.dynamic_sections_created)
9043 {
9044 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9045 return FALSE;
9046 }
9047
9048 if (!is_ppc64_elf (gent->owner))
9049 abort ();
9050
9051 allocate_got (h, info, gent);
9052 }
9053
9054 if (eh->dyn_relocs == NULL
9055 || (!htab->elf.dynamic_sections_created
9056 && h->type != STT_GNU_IFUNC))
9057 return TRUE;
9058
9059 /* In the shared -Bsymbolic case, discard space allocated for
9060 dynamic pc-relative relocs against symbols which turn out to be
9061 defined in regular objects. For the normal shared case, discard
9062 space for relocs that have become local due to symbol visibility
9063 changes. */
9064
9065 if (info->shared)
9066 {
9067 /* Relocs that use pc_count are those that appear on a call insn,
9068 or certain REL relocs (see must_be_dyn_reloc) that can be
9069 generated via assembly. We want calls to protected symbols to
9070 resolve directly to the function rather than going via the plt.
9071 If people want function pointer comparisons to work as expected
9072 then they should avoid writing weird assembly. */
9073 if (SYMBOL_CALLS_LOCAL (info, h))
9074 {
9075 struct elf_dyn_relocs **pp;
9076
9077 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9078 {
9079 p->count -= p->pc_count;
9080 p->pc_count = 0;
9081 if (p->count == 0)
9082 *pp = p->next;
9083 else
9084 pp = &p->next;
9085 }
9086 }
9087
9088 /* Also discard relocs on undefined weak syms with non-default
9089 visibility. */
9090 if (eh->dyn_relocs != NULL
9091 && h->root.type == bfd_link_hash_undefweak)
9092 {
9093 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9094 eh->dyn_relocs = NULL;
9095
9096 /* Make sure this symbol is output as a dynamic symbol.
9097 Undefined weak syms won't yet be marked as dynamic. */
9098 else if (h->dynindx == -1
9099 && !h->forced_local)
9100 {
9101 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9102 return FALSE;
9103 }
9104 }
9105 }
9106 else if (h->type == STT_GNU_IFUNC)
9107 {
9108 if (!h->non_got_ref)
9109 eh->dyn_relocs = NULL;
9110 }
9111 else if (ELIMINATE_COPY_RELOCS)
9112 {
9113 /* For the non-shared case, discard space for relocs against
9114 symbols which turn out to need copy relocs or are not
9115 dynamic. */
9116
9117 if (!h->non_got_ref
9118 && !h->def_regular)
9119 {
9120 /* Make sure this symbol is output as a dynamic symbol.
9121 Undefined weak syms won't yet be marked as dynamic. */
9122 if (h->dynindx == -1
9123 && !h->forced_local)
9124 {
9125 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9126 return FALSE;
9127 }
9128
9129 /* If that succeeded, we know we'll be keeping all the
9130 relocs. */
9131 if (h->dynindx != -1)
9132 goto keep;
9133 }
9134
9135 eh->dyn_relocs = NULL;
9136
9137 keep: ;
9138 }
9139
9140 /* Finally, allocate space. */
9141 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9142 {
9143 asection *sreloc = elf_section_data (p->sec)->sreloc;
9144 if (eh->elf.type == STT_GNU_IFUNC)
9145 sreloc = htab->reliplt;
9146 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9147 }
9148
9149 return TRUE;
9150 }
9151
9152 /* Find any dynamic relocs that apply to read-only sections. */
9153
9154 static bfd_boolean
9155 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9156 {
9157 struct ppc_link_hash_entry *eh;
9158 struct elf_dyn_relocs *p;
9159
9160 eh = (struct ppc_link_hash_entry *) h;
9161 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9162 {
9163 asection *s = p->sec->output_section;
9164
9165 if (s != NULL && (s->flags & SEC_READONLY) != 0)
9166 {
9167 struct bfd_link_info *info = inf;
9168
9169 info->flags |= DF_TEXTREL;
9170
9171 /* Not an error, just cut short the traversal. */
9172 return FALSE;
9173 }
9174 }
9175 return TRUE;
9176 }
9177
9178 /* Set the sizes of the dynamic sections. */
9179
9180 static bfd_boolean
9181 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
9182 struct bfd_link_info *info)
9183 {
9184 struct ppc_link_hash_table *htab;
9185 bfd *dynobj;
9186 asection *s;
9187 bfd_boolean relocs;
9188 bfd *ibfd;
9189 struct got_entry *first_tlsld;
9190
9191 htab = ppc_hash_table (info);
9192 if (htab == NULL)
9193 return FALSE;
9194
9195 dynobj = htab->elf.dynobj;
9196 if (dynobj == NULL)
9197 abort ();
9198
9199 if (htab->elf.dynamic_sections_created)
9200 {
9201 /* Set the contents of the .interp section to the interpreter. */
9202 if (info->executable)
9203 {
9204 s = bfd_get_linker_section (dynobj, ".interp");
9205 if (s == NULL)
9206 abort ();
9207 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9208 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9209 }
9210 }
9211
9212 /* Set up .got offsets for local syms, and space for local dynamic
9213 relocs. */
9214 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9215 {
9216 struct got_entry **lgot_ents;
9217 struct got_entry **end_lgot_ents;
9218 struct plt_entry **local_plt;
9219 struct plt_entry **end_local_plt;
9220 unsigned char *lgot_masks;
9221 bfd_size_type locsymcount;
9222 Elf_Internal_Shdr *symtab_hdr;
9223
9224 if (!is_ppc64_elf (ibfd))
9225 continue;
9226
9227 for (s = ibfd->sections; s != NULL; s = s->next)
9228 {
9229 struct ppc_dyn_relocs *p;
9230
9231 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9232 {
9233 if (!bfd_is_abs_section (p->sec)
9234 && bfd_is_abs_section (p->sec->output_section))
9235 {
9236 /* Input section has been discarded, either because
9237 it is a copy of a linkonce section or due to
9238 linker script /DISCARD/, so we'll be discarding
9239 the relocs too. */
9240 }
9241 else if (p->count != 0)
9242 {
9243 asection *srel = elf_section_data (p->sec)->sreloc;
9244 if (p->ifunc)
9245 srel = htab->reliplt;
9246 srel->size += p->count * sizeof (Elf64_External_Rela);
9247 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9248 info->flags |= DF_TEXTREL;
9249 }
9250 }
9251 }
9252
9253 lgot_ents = elf_local_got_ents (ibfd);
9254 if (!lgot_ents)
9255 continue;
9256
9257 symtab_hdr = &elf_symtab_hdr (ibfd);
9258 locsymcount = symtab_hdr->sh_info;
9259 end_lgot_ents = lgot_ents + locsymcount;
9260 local_plt = (struct plt_entry **) end_lgot_ents;
9261 end_local_plt = local_plt + locsymcount;
9262 lgot_masks = (unsigned char *) end_local_plt;
9263 s = ppc64_elf_tdata (ibfd)->got;
9264 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9265 {
9266 struct got_entry **pent, *ent;
9267
9268 pent = lgot_ents;
9269 while ((ent = *pent) != NULL)
9270 if (ent->got.refcount > 0)
9271 {
9272 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9273 {
9274 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9275 *pent = ent->next;
9276 }
9277 else
9278 {
9279 unsigned int ent_size = 8;
9280 unsigned int rel_size = sizeof (Elf64_External_Rela);
9281
9282 ent->got.offset = s->size;
9283 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9284 {
9285 ent_size *= 2;
9286 rel_size *= 2;
9287 }
9288 s->size += ent_size;
9289 if ((*lgot_masks & PLT_IFUNC) != 0)
9290 {
9291 htab->reliplt->size += rel_size;
9292 htab->got_reli_size += rel_size;
9293 }
9294 else if (info->shared)
9295 {
9296 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9297 srel->size += rel_size;
9298 }
9299 pent = &ent->next;
9300 }
9301 }
9302 else
9303 *pent = ent->next;
9304 }
9305
9306 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9307 for (; local_plt < end_local_plt; ++local_plt)
9308 {
9309 struct plt_entry *ent;
9310
9311 for (ent = *local_plt; ent != NULL; ent = ent->next)
9312 if (ent->plt.refcount > 0)
9313 {
9314 s = htab->iplt;
9315 ent->plt.offset = s->size;
9316 s->size += PLT_ENTRY_SIZE;
9317
9318 htab->reliplt->size += sizeof (Elf64_External_Rela);
9319 }
9320 else
9321 ent->plt.offset = (bfd_vma) -1;
9322 }
9323 }
9324
9325 /* Allocate global sym .plt and .got entries, and space for global
9326 sym dynamic relocs. */
9327 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9328
9329 first_tlsld = NULL;
9330 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9331 {
9332 struct got_entry *ent;
9333
9334 if (!is_ppc64_elf (ibfd))
9335 continue;
9336
9337 ent = ppc64_tlsld_got (ibfd);
9338 if (ent->got.refcount > 0)
9339 {
9340 if (!htab->do_multi_toc && first_tlsld != NULL)
9341 {
9342 ent->is_indirect = TRUE;
9343 ent->got.ent = first_tlsld;
9344 }
9345 else
9346 {
9347 if (first_tlsld == NULL)
9348 first_tlsld = ent;
9349 s = ppc64_elf_tdata (ibfd)->got;
9350 ent->got.offset = s->size;
9351 ent->owner = ibfd;
9352 s->size += 16;
9353 if (info->shared)
9354 {
9355 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9356 srel->size += sizeof (Elf64_External_Rela);
9357 }
9358 }
9359 }
9360 else
9361 ent->got.offset = (bfd_vma) -1;
9362 }
9363
9364 /* We now have determined the sizes of the various dynamic sections.
9365 Allocate memory for them. */
9366 relocs = FALSE;
9367 for (s = dynobj->sections; s != NULL; s = s->next)
9368 {
9369 if ((s->flags & SEC_LINKER_CREATED) == 0)
9370 continue;
9371
9372 if (s == htab->brlt || s == htab->relbrlt)
9373 /* These haven't been allocated yet; don't strip. */
9374 continue;
9375 else if (s == htab->got
9376 || s == htab->plt
9377 || s == htab->iplt
9378 || s == htab->glink
9379 || s == htab->dynbss)
9380 {
9381 /* Strip this section if we don't need it; see the
9382 comment below. */
9383 }
9384 else if (s == htab->glink_eh_frame)
9385 {
9386 if (!bfd_is_abs_section (s->output_section))
9387 /* Not sized yet. */
9388 continue;
9389 }
9390 else if (CONST_STRNEQ (s->name, ".rela"))
9391 {
9392 if (s->size != 0)
9393 {
9394 if (s != htab->relplt)
9395 relocs = TRUE;
9396
9397 /* We use the reloc_count field as a counter if we need
9398 to copy relocs into the output file. */
9399 s->reloc_count = 0;
9400 }
9401 }
9402 else
9403 {
9404 /* It's not one of our sections, so don't allocate space. */
9405 continue;
9406 }
9407
9408 if (s->size == 0)
9409 {
9410 /* If we don't need this section, strip it from the
9411 output file. This is mostly to handle .rela.bss and
9412 .rela.plt. We must create both sections in
9413 create_dynamic_sections, because they must be created
9414 before the linker maps input sections to output
9415 sections. The linker does that before
9416 adjust_dynamic_symbol is called, and it is that
9417 function which decides whether anything needs to go
9418 into these sections. */
9419 s->flags |= SEC_EXCLUDE;
9420 continue;
9421 }
9422
9423 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9424 continue;
9425
9426 /* Allocate memory for the section contents. We use bfd_zalloc
9427 here in case unused entries are not reclaimed before the
9428 section's contents are written out. This should not happen,
9429 but this way if it does we get a R_PPC64_NONE reloc in .rela
9430 sections instead of garbage.
9431 We also rely on the section contents being zero when writing
9432 the GOT. */
9433 s->contents = bfd_zalloc (dynobj, s->size);
9434 if (s->contents == NULL)
9435 return FALSE;
9436 }
9437
9438 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9439 {
9440 if (!is_ppc64_elf (ibfd))
9441 continue;
9442
9443 s = ppc64_elf_tdata (ibfd)->got;
9444 if (s != NULL && s != htab->got)
9445 {
9446 if (s->size == 0)
9447 s->flags |= SEC_EXCLUDE;
9448 else
9449 {
9450 s->contents = bfd_zalloc (ibfd, s->size);
9451 if (s->contents == NULL)
9452 return FALSE;
9453 }
9454 }
9455 s = ppc64_elf_tdata (ibfd)->relgot;
9456 if (s != NULL)
9457 {
9458 if (s->size == 0)
9459 s->flags |= SEC_EXCLUDE;
9460 else
9461 {
9462 s->contents = bfd_zalloc (ibfd, s->size);
9463 if (s->contents == NULL)
9464 return FALSE;
9465 relocs = TRUE;
9466 s->reloc_count = 0;
9467 }
9468 }
9469 }
9470
9471 if (htab->elf.dynamic_sections_created)
9472 {
9473 /* Add some entries to the .dynamic section. We fill in the
9474 values later, in ppc64_elf_finish_dynamic_sections, but we
9475 must add the entries now so that we get the correct size for
9476 the .dynamic section. The DT_DEBUG entry is filled in by the
9477 dynamic linker and used by the debugger. */
9478 #define add_dynamic_entry(TAG, VAL) \
9479 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9480
9481 if (info->executable)
9482 {
9483 if (!add_dynamic_entry (DT_DEBUG, 0))
9484 return FALSE;
9485 }
9486
9487 if (htab->plt != NULL && htab->plt->size != 0)
9488 {
9489 if (!add_dynamic_entry (DT_PLTGOT, 0)
9490 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9491 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9492 || !add_dynamic_entry (DT_JMPREL, 0)
9493 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
9494 return FALSE;
9495 }
9496
9497 if (NO_OPD_RELOCS)
9498 {
9499 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
9500 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
9501 return FALSE;
9502 }
9503
9504 if (!htab->no_tls_get_addr_opt
9505 && htab->tls_get_addr_fd != NULL
9506 && htab->tls_get_addr_fd->elf.plt.plist != NULL
9507 && !add_dynamic_entry (DT_PPC64_TLSOPT, 0))
9508 return FALSE;
9509
9510 if (relocs)
9511 {
9512 if (!add_dynamic_entry (DT_RELA, 0)
9513 || !add_dynamic_entry (DT_RELASZ, 0)
9514 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
9515 return FALSE;
9516
9517 /* If any dynamic relocs apply to a read-only section,
9518 then we need a DT_TEXTREL entry. */
9519 if ((info->flags & DF_TEXTREL) == 0)
9520 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
9521
9522 if ((info->flags & DF_TEXTREL) != 0)
9523 {
9524 if (!add_dynamic_entry (DT_TEXTREL, 0))
9525 return FALSE;
9526 }
9527 }
9528 }
9529 #undef add_dynamic_entry
9530
9531 return TRUE;
9532 }
9533
9534 /* Determine the type of stub needed, if any, for a call. */
9535
9536 static inline enum ppc_stub_type
9537 ppc_type_of_stub (asection *input_sec,
9538 const Elf_Internal_Rela *rel,
9539 struct ppc_link_hash_entry **hash,
9540 struct plt_entry **plt_ent,
9541 bfd_vma destination)
9542 {
9543 struct ppc_link_hash_entry *h = *hash;
9544 bfd_vma location;
9545 bfd_vma branch_offset;
9546 bfd_vma max_branch_offset;
9547 enum elf_ppc64_reloc_type r_type;
9548
9549 if (h != NULL)
9550 {
9551 struct plt_entry *ent;
9552 struct ppc_link_hash_entry *fdh = h;
9553 if (h->oh != NULL
9554 && h->oh->is_func_descriptor)
9555 {
9556 fdh = ppc_follow_link (h->oh);
9557 *hash = fdh;
9558 }
9559
9560 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
9561 if (ent->addend == rel->r_addend
9562 && ent->plt.offset != (bfd_vma) -1)
9563 {
9564 *plt_ent = ent;
9565 return ppc_stub_plt_call;
9566 }
9567
9568 /* Here, we know we don't have a plt entry. If we don't have a
9569 either a defined function descriptor or a defined entry symbol
9570 in a regular object file, then it is pointless trying to make
9571 any other type of stub. */
9572 if (!is_static_defined (&fdh->elf)
9573 && !is_static_defined (&h->elf))
9574 return ppc_stub_none;
9575 }
9576 else if (elf_local_got_ents (input_sec->owner) != NULL)
9577 {
9578 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
9579 struct plt_entry **local_plt = (struct plt_entry **)
9580 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
9581 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
9582
9583 if (local_plt[r_symndx] != NULL)
9584 {
9585 struct plt_entry *ent;
9586
9587 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
9588 if (ent->addend == rel->r_addend
9589 && ent->plt.offset != (bfd_vma) -1)
9590 {
9591 *plt_ent = ent;
9592 return ppc_stub_plt_call;
9593 }
9594 }
9595 }
9596
9597 /* Determine where the call point is. */
9598 location = (input_sec->output_offset
9599 + input_sec->output_section->vma
9600 + rel->r_offset);
9601
9602 branch_offset = destination - location;
9603 r_type = ELF64_R_TYPE (rel->r_info);
9604
9605 /* Determine if a long branch stub is needed. */
9606 max_branch_offset = 1 << 25;
9607 if (r_type != R_PPC64_REL24)
9608 max_branch_offset = 1 << 15;
9609
9610 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
9611 /* We need a stub. Figure out whether a long_branch or plt_branch
9612 is needed later. */
9613 return ppc_stub_long_branch;
9614
9615 return ppc_stub_none;
9616 }
9617
9618 /* With power7 weakly ordered memory model, it is possible for ld.so
9619 to update a plt entry in one thread and have another thread see a
9620 stale zero toc entry. To avoid this we need some sort of acquire
9621 barrier in the call stub. One solution is to make the load of the
9622 toc word seem to appear to depend on the load of the function entry
9623 word. Another solution is to test for r2 being zero, and branch to
9624 the appropriate glink entry if so.
9625
9626 . fake dep barrier compare
9627 . ld 11,xxx(2) ld 11,xxx(2)
9628 . mtctr 11 mtctr 11
9629 . xor 11,11,11 ld 2,xxx+8(2)
9630 . add 2,2,11 cmpldi 2,0
9631 . ld 2,xxx+8(2) bnectr+
9632 . bctr b <glink_entry>
9633
9634 The solution involving the compare turns out to be faster, so
9635 that's what we use unless the branch won't reach. */
9636
9637 #define ALWAYS_USE_FAKE_DEP 0
9638 #define ALWAYS_EMIT_R2SAVE 0
9639
9640 #define PPC_LO(v) ((v) & 0xffff)
9641 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9642 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9643
9644 static inline unsigned int
9645 plt_stub_size (struct ppc_link_hash_table *htab,
9646 struct ppc_stub_hash_entry *stub_entry,
9647 bfd_vma off)
9648 {
9649 unsigned size = PLT_CALL_STUB_SIZE;
9650
9651 if (!(ALWAYS_EMIT_R2SAVE
9652 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
9653 size -= 4;
9654 if (!htab->plt_static_chain)
9655 size -= 4;
9656 if (htab->plt_thread_safe)
9657 size += 8;
9658 if (PPC_HA (off) == 0)
9659 size -= 4;
9660 if (PPC_HA (off + 8 + 8 * htab->plt_static_chain) != PPC_HA (off))
9661 size += 4;
9662 if (stub_entry->h != NULL
9663 && (stub_entry->h == htab->tls_get_addr_fd
9664 || stub_entry->h == htab->tls_get_addr)
9665 && !htab->no_tls_get_addr_opt)
9666 size += 13 * 4;
9667 return size;
9668 }
9669
9670 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
9671 then return the padding needed to do so. */
9672 static inline unsigned int
9673 plt_stub_pad (struct ppc_link_hash_table *htab,
9674 struct ppc_stub_hash_entry *stub_entry,
9675 bfd_vma plt_off)
9676 {
9677 int stub_align = 1 << htab->plt_stub_align;
9678 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
9679 bfd_vma stub_off = stub_entry->stub_sec->size;
9680
9681 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
9682 > (stub_size & -stub_align))
9683 return stub_align - (stub_off & (stub_align - 1));
9684 return 0;
9685 }
9686
9687 /* Build a .plt call stub. */
9688
9689 static inline bfd_byte *
9690 build_plt_stub (struct ppc_link_hash_table *htab,
9691 struct ppc_stub_hash_entry *stub_entry,
9692 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
9693 {
9694 bfd *obfd = htab->stub_bfd;
9695 bfd_boolean plt_static_chain = htab->plt_static_chain;
9696 bfd_boolean plt_thread_safe = htab->plt_thread_safe;
9697 bfd_boolean use_fake_dep = plt_thread_safe;
9698 bfd_vma cmp_branch_off = 0;
9699
9700 if (!ALWAYS_USE_FAKE_DEP
9701 && plt_thread_safe
9702 && !(stub_entry->h != NULL
9703 && (stub_entry->h == htab->tls_get_addr_fd
9704 || stub_entry->h == htab->tls_get_addr)
9705 && !htab->no_tls_get_addr_opt))
9706 {
9707 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
9708 bfd_vma pltindex = (pltoff - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE;
9709 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
9710 bfd_vma to, from;
9711
9712 if (pltindex > 32768)
9713 glinkoff += (pltindex - 32768) * 4;
9714 to = (glinkoff
9715 + htab->glink->output_offset
9716 + htab->glink->output_section->vma);
9717 from = (p - stub_entry->stub_sec->contents
9718 + 4 * (ALWAYS_EMIT_R2SAVE
9719 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9720 + 4 * (PPC_HA (offset) != 0)
9721 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
9722 != PPC_HA (offset))
9723 + 4 * (plt_static_chain != 0)
9724 + 20
9725 + stub_entry->stub_sec->output_offset
9726 + stub_entry->stub_sec->output_section->vma);
9727 cmp_branch_off = to - from;
9728 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
9729 }
9730
9731 if (PPC_HA (offset) != 0)
9732 {
9733 if (r != NULL)
9734 {
9735 if (ALWAYS_EMIT_R2SAVE
9736 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9737 r[0].r_offset += 4;
9738 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
9739 r[1].r_offset = r[0].r_offset + 4;
9740 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9741 r[1].r_addend = r[0].r_addend;
9742 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9743 {
9744 r[2].r_offset = r[1].r_offset + 4;
9745 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
9746 r[2].r_addend = r[0].r_addend;
9747 }
9748 else
9749 {
9750 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
9751 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9752 r[2].r_addend = r[0].r_addend + 8;
9753 if (plt_static_chain)
9754 {
9755 r[3].r_offset = r[2].r_offset + 4;
9756 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9757 r[3].r_addend = r[0].r_addend + 16;
9758 }
9759 }
9760 }
9761 if (ALWAYS_EMIT_R2SAVE
9762 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9763 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
9764 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
9765 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
9766 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9767 {
9768 bfd_put_32 (obfd, ADDI_R12_R12 | PPC_LO (offset), p), p += 4;
9769 offset = 0;
9770 }
9771 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
9772 if (use_fake_dep)
9773 {
9774 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4;
9775 bfd_put_32 (obfd, ADD_R12_R12_R11, p), p += 4;
9776 }
9777 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset + 8), p), p += 4;
9778 if (plt_static_chain)
9779 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset + 16), p), p += 4;
9780 }
9781 else
9782 {
9783 if (r != NULL)
9784 {
9785 if (ALWAYS_EMIT_R2SAVE
9786 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9787 r[0].r_offset += 4;
9788 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9789 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9790 {
9791 r[1].r_offset = r[0].r_offset + 4;
9792 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
9793 r[1].r_addend = r[0].r_addend;
9794 }
9795 else
9796 {
9797 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
9798 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9799 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
9800 if (plt_static_chain)
9801 {
9802 r[2].r_offset = r[1].r_offset + 4;
9803 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9804 r[2].r_addend = r[0].r_addend + 8;
9805 }
9806 }
9807 }
9808 if (ALWAYS_EMIT_R2SAVE
9809 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9810 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
9811 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset), p), p += 4;
9812 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9813 {
9814 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
9815 offset = 0;
9816 }
9817 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
9818 if (use_fake_dep)
9819 {
9820 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4;
9821 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
9822 }
9823 if (plt_static_chain)
9824 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
9825 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
9826 }
9827 if (plt_thread_safe && !use_fake_dep)
9828 {
9829 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
9830 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
9831 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
9832 }
9833 else
9834 bfd_put_32 (obfd, BCTR, p), p += 4;
9835 return p;
9836 }
9837
9838 /* Build a special .plt call stub for __tls_get_addr. */
9839
9840 #define LD_R11_0R3 0xe9630000
9841 #define LD_R12_0R3 0xe9830000
9842 #define MR_R0_R3 0x7c601b78
9843 #define CMPDI_R11_0 0x2c2b0000
9844 #define ADD_R3_R12_R13 0x7c6c6a14
9845 #define BEQLR 0x4d820020
9846 #define MR_R3_R0 0x7c030378
9847 #define MFLR_R11 0x7d6802a6
9848 #define STD_R11_0R1 0xf9610000
9849 #define BCTRL 0x4e800421
9850 #define LD_R11_0R1 0xe9610000
9851 #define LD_R2_0R1 0xe8410000
9852 #define MTLR_R11 0x7d6803a6
9853
9854 static inline bfd_byte *
9855 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
9856 struct ppc_stub_hash_entry *stub_entry,
9857 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
9858 {
9859 bfd *obfd = htab->stub_bfd;
9860
9861 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
9862 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
9863 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
9864 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
9865 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
9866 bfd_put_32 (obfd, BEQLR, p), p += 4;
9867 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
9868 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
9869 bfd_put_32 (obfd, STD_R11_0R1 + 32, p), p += 4;
9870
9871 if (r != NULL)
9872 r[0].r_offset += 9 * 4;
9873 p = build_plt_stub (htab, stub_entry, p, offset, r);
9874 bfd_put_32 (obfd, BCTRL, p - 4);
9875
9876 bfd_put_32 (obfd, LD_R11_0R1 + 32, p), p += 4;
9877 bfd_put_32 (obfd, LD_R2_0R1 + 40, p), p += 4;
9878 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
9879 bfd_put_32 (obfd, BLR, p), p += 4;
9880
9881 return p;
9882 }
9883
9884 static Elf_Internal_Rela *
9885 get_relocs (asection *sec, int count)
9886 {
9887 Elf_Internal_Rela *relocs;
9888 struct bfd_elf_section_data *elfsec_data;
9889
9890 elfsec_data = elf_section_data (sec);
9891 relocs = elfsec_data->relocs;
9892 if (relocs == NULL)
9893 {
9894 bfd_size_type relsize;
9895 relsize = sec->reloc_count * sizeof (*relocs);
9896 relocs = bfd_alloc (sec->owner, relsize);
9897 if (relocs == NULL)
9898 return NULL;
9899 elfsec_data->relocs = relocs;
9900 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
9901 sizeof (Elf_Internal_Shdr));
9902 if (elfsec_data->rela.hdr == NULL)
9903 return NULL;
9904 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
9905 * sizeof (Elf64_External_Rela));
9906 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
9907 sec->reloc_count = 0;
9908 }
9909 relocs += sec->reloc_count;
9910 sec->reloc_count += count;
9911 return relocs;
9912 }
9913
9914 static bfd_vma
9915 get_r2off (struct bfd_link_info *info,
9916 struct ppc_stub_hash_entry *stub_entry)
9917 {
9918 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9919 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
9920
9921 if (r2off == 0)
9922 {
9923 /* Support linking -R objects. Get the toc pointer from the
9924 opd entry. */
9925 char buf[8];
9926 asection *opd = stub_entry->h->elf.root.u.def.section;
9927 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
9928
9929 if (strcmp (opd->name, ".opd") != 0
9930 || opd->reloc_count != 0)
9931 {
9932 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
9933 stub_entry->h->elf.root.root.string);
9934 bfd_set_error (bfd_error_bad_value);
9935 return 0;
9936 }
9937 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
9938 return 0;
9939 r2off = bfd_get_64 (opd->owner, buf);
9940 r2off -= elf_gp (info->output_bfd);
9941 }
9942 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
9943 return r2off;
9944 }
9945
9946 static bfd_boolean
9947 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
9948 {
9949 struct ppc_stub_hash_entry *stub_entry;
9950 struct ppc_branch_hash_entry *br_entry;
9951 struct bfd_link_info *info;
9952 struct ppc_link_hash_table *htab;
9953 bfd_byte *loc;
9954 bfd_byte *p;
9955 bfd_vma dest, off;
9956 int size;
9957 Elf_Internal_Rela *r;
9958 asection *plt;
9959
9960 /* Massage our args to the form they really have. */
9961 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
9962 info = in_arg;
9963
9964 htab = ppc_hash_table (info);
9965 if (htab == NULL)
9966 return FALSE;
9967
9968 /* Make a note of the offset within the stubs for this entry. */
9969 stub_entry->stub_offset = stub_entry->stub_sec->size;
9970 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
9971
9972 htab->stub_count[stub_entry->stub_type - 1] += 1;
9973 switch (stub_entry->stub_type)
9974 {
9975 case ppc_stub_long_branch:
9976 case ppc_stub_long_branch_r2off:
9977 /* Branches are relative. This is where we are going to. */
9978 off = dest = (stub_entry->target_value
9979 + stub_entry->target_section->output_offset
9980 + stub_entry->target_section->output_section->vma);
9981
9982 /* And this is where we are coming from. */
9983 off -= (stub_entry->stub_offset
9984 + stub_entry->stub_sec->output_offset
9985 + stub_entry->stub_sec->output_section->vma);
9986
9987 size = 4;
9988 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
9989 {
9990 bfd_vma r2off = get_r2off (info, stub_entry);
9991
9992 if (r2off == 0)
9993 {
9994 htab->stub_error = TRUE;
9995 return FALSE;
9996 }
9997 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
9998 loc += 4;
9999 size = 12;
10000 if (PPC_HA (r2off) != 0)
10001 {
10002 size = 16;
10003 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
10004 loc += 4;
10005 }
10006 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10007 loc += 4;
10008 off -= size - 4;
10009 }
10010 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
10011
10012 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10013 {
10014 info->callbacks->einfo
10015 (_("%P: long branch stub `%s' offset overflow\n"),
10016 stub_entry->root.string);
10017 htab->stub_error = TRUE;
10018 return FALSE;
10019 }
10020
10021 if (info->emitrelocations)
10022 {
10023 r = get_relocs (stub_entry->stub_sec, 1);
10024 if (r == NULL)
10025 return FALSE;
10026 r->r_offset = loc - stub_entry->stub_sec->contents;
10027 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
10028 r->r_addend = dest;
10029 if (stub_entry->h != NULL)
10030 {
10031 struct elf_link_hash_entry **hashes;
10032 unsigned long symndx;
10033 struct ppc_link_hash_entry *h;
10034
10035 hashes = elf_sym_hashes (htab->stub_bfd);
10036 if (hashes == NULL)
10037 {
10038 bfd_size_type hsize;
10039
10040 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10041 hashes = bfd_zalloc (htab->stub_bfd, hsize);
10042 if (hashes == NULL)
10043 return FALSE;
10044 elf_sym_hashes (htab->stub_bfd) = hashes;
10045 htab->stub_globals = 1;
10046 }
10047 symndx = htab->stub_globals++;
10048 h = stub_entry->h;
10049 hashes[symndx] = &h->elf;
10050 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
10051 if (h->oh != NULL && h->oh->is_func)
10052 h = ppc_follow_link (h->oh);
10053 if (h->elf.root.u.def.section != stub_entry->target_section)
10054 /* H is an opd symbol. The addend must be zero. */
10055 r->r_addend = 0;
10056 else
10057 {
10058 off = (h->elf.root.u.def.value
10059 + h->elf.root.u.def.section->output_offset
10060 + h->elf.root.u.def.section->output_section->vma);
10061 r->r_addend -= off;
10062 }
10063 }
10064 }
10065 break;
10066
10067 case ppc_stub_plt_branch:
10068 case ppc_stub_plt_branch_r2off:
10069 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10070 stub_entry->root.string + 9,
10071 FALSE, FALSE);
10072 if (br_entry == NULL)
10073 {
10074 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10075 stub_entry->root.string);
10076 htab->stub_error = TRUE;
10077 return FALSE;
10078 }
10079
10080 dest = (stub_entry->target_value
10081 + stub_entry->target_section->output_offset
10082 + stub_entry->target_section->output_section->vma);
10083
10084 bfd_put_64 (htab->brlt->owner, dest,
10085 htab->brlt->contents + br_entry->offset);
10086
10087 if (br_entry->iter == htab->stub_iteration)
10088 {
10089 br_entry->iter = 0;
10090
10091 if (htab->relbrlt != NULL)
10092 {
10093 /* Create a reloc for the branch lookup table entry. */
10094 Elf_Internal_Rela rela;
10095 bfd_byte *rl;
10096
10097 rela.r_offset = (br_entry->offset
10098 + htab->brlt->output_offset
10099 + htab->brlt->output_section->vma);
10100 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10101 rela.r_addend = dest;
10102
10103 rl = htab->relbrlt->contents;
10104 rl += (htab->relbrlt->reloc_count++
10105 * sizeof (Elf64_External_Rela));
10106 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10107 }
10108 else if (info->emitrelocations)
10109 {
10110 r = get_relocs (htab->brlt, 1);
10111 if (r == NULL)
10112 return FALSE;
10113 /* brlt, being SEC_LINKER_CREATED does not go through the
10114 normal reloc processing. Symbols and offsets are not
10115 translated from input file to output file form, so
10116 set up the offset per the output file. */
10117 r->r_offset = (br_entry->offset
10118 + htab->brlt->output_offset
10119 + htab->brlt->output_section->vma);
10120 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10121 r->r_addend = dest;
10122 }
10123 }
10124
10125 dest = (br_entry->offset
10126 + htab->brlt->output_offset
10127 + htab->brlt->output_section->vma);
10128
10129 off = (dest
10130 - elf_gp (htab->brlt->output_section->owner)
10131 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10132
10133 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10134 {
10135 info->callbacks->einfo
10136 (_("%P: linkage table error against `%T'\n"),
10137 stub_entry->root.string);
10138 bfd_set_error (bfd_error_bad_value);
10139 htab->stub_error = TRUE;
10140 return FALSE;
10141 }
10142
10143 if (info->emitrelocations)
10144 {
10145 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10146 if (r == NULL)
10147 return FALSE;
10148 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10149 if (bfd_big_endian (info->output_bfd))
10150 r[0].r_offset += 2;
10151 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10152 r[0].r_offset += 4;
10153 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10154 r[0].r_addend = dest;
10155 if (PPC_HA (off) != 0)
10156 {
10157 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10158 r[1].r_offset = r[0].r_offset + 4;
10159 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10160 r[1].r_addend = r[0].r_addend;
10161 }
10162 }
10163
10164 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10165 {
10166 if (PPC_HA (off) != 0)
10167 {
10168 size = 16;
10169 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
10170 loc += 4;
10171 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
10172 }
10173 else
10174 {
10175 size = 12;
10176 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
10177 }
10178 }
10179 else
10180 {
10181 bfd_vma r2off = get_r2off (info, stub_entry);
10182
10183 if (r2off == 0)
10184 {
10185 htab->stub_error = TRUE;
10186 return FALSE;
10187 }
10188
10189 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
10190 loc += 4;
10191 size = 20;
10192 if (PPC_HA (off) != 0)
10193 {
10194 size += 4;
10195 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
10196 loc += 4;
10197 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
10198 loc += 4;
10199 }
10200 else
10201 {
10202 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
10203 loc += 4;
10204 }
10205
10206 if (PPC_HA (r2off) != 0)
10207 {
10208 size += 4;
10209 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
10210 loc += 4;
10211 }
10212 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10213 }
10214 loc += 4;
10215 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
10216 loc += 4;
10217 bfd_put_32 (htab->stub_bfd, BCTR, loc);
10218 break;
10219
10220 case ppc_stub_plt_call:
10221 case ppc_stub_plt_call_r2save:
10222 if (stub_entry->h != NULL
10223 && stub_entry->h->is_func_descriptor
10224 && stub_entry->h->oh != NULL)
10225 {
10226 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10227
10228 /* If the old-ABI "dot-symbol" is undefined make it weak so
10229 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10230 FIXME: We used to define the symbol on one of the call
10231 stubs instead, which is why we test symbol section id
10232 against htab->top_id in various places. Likely all
10233 these checks could now disappear. */
10234 if (fh->elf.root.type == bfd_link_hash_undefined)
10235 fh->elf.root.type = bfd_link_hash_undefweak;
10236 /* Stop undo_symbol_twiddle changing it back to undefined. */
10237 fh->was_undefined = 0;
10238 }
10239
10240 /* Now build the stub. */
10241 dest = stub_entry->plt_ent->plt.offset & ~1;
10242 if (dest >= (bfd_vma) -2)
10243 abort ();
10244
10245 plt = htab->plt;
10246 if (!htab->elf.dynamic_sections_created
10247 || stub_entry->h == NULL
10248 || stub_entry->h->elf.dynindx == -1)
10249 plt = htab->iplt;
10250
10251 dest += plt->output_offset + plt->output_section->vma;
10252
10253 if (stub_entry->h == NULL
10254 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10255 {
10256 Elf_Internal_Rela rela;
10257 bfd_byte *rl;
10258
10259 rela.r_offset = dest;
10260 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10261 rela.r_addend = (stub_entry->target_value
10262 + stub_entry->target_section->output_offset
10263 + stub_entry->target_section->output_section->vma);
10264
10265 rl = (htab->reliplt->contents
10266 + (htab->reliplt->reloc_count++
10267 * sizeof (Elf64_External_Rela)));
10268 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10269 stub_entry->plt_ent->plt.offset |= 1;
10270 }
10271
10272 off = (dest
10273 - elf_gp (plt->output_section->owner)
10274 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10275
10276 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10277 {
10278 info->callbacks->einfo
10279 (_("%P: linkage table error against `%T'\n"),
10280 stub_entry->h != NULL
10281 ? stub_entry->h->elf.root.root.string
10282 : "<local sym>");
10283 bfd_set_error (bfd_error_bad_value);
10284 htab->stub_error = TRUE;
10285 return FALSE;
10286 }
10287
10288 if (htab->plt_stub_align != 0)
10289 {
10290 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10291
10292 stub_entry->stub_sec->size += pad;
10293 stub_entry->stub_offset = stub_entry->stub_sec->size;
10294 loc += pad;
10295 }
10296
10297 r = NULL;
10298 if (info->emitrelocations)
10299 {
10300 r = get_relocs (stub_entry->stub_sec,
10301 (2
10302 + (PPC_HA (off) != 0)
10303 + (htab->plt_static_chain
10304 && PPC_HA (off + 16) == PPC_HA (off))));
10305 if (r == NULL)
10306 return FALSE;
10307 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10308 if (bfd_big_endian (info->output_bfd))
10309 r[0].r_offset += 2;
10310 r[0].r_addend = dest;
10311 }
10312 if (stub_entry->h != NULL
10313 && (stub_entry->h == htab->tls_get_addr_fd
10314 || stub_entry->h == htab->tls_get_addr)
10315 && !htab->no_tls_get_addr_opt)
10316 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10317 else
10318 p = build_plt_stub (htab, stub_entry, loc, off, r);
10319 size = p - loc;
10320 break;
10321
10322 default:
10323 BFD_FAIL ();
10324 return FALSE;
10325 }
10326
10327 stub_entry->stub_sec->size += size;
10328
10329 if (htab->emit_stub_syms)
10330 {
10331 struct elf_link_hash_entry *h;
10332 size_t len1, len2;
10333 char *name;
10334 const char *const stub_str[] = { "long_branch",
10335 "long_branch_r2off",
10336 "plt_branch",
10337 "plt_branch_r2off",
10338 "plt_call",
10339 "plt_call" };
10340
10341 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10342 len2 = strlen (stub_entry->root.string);
10343 name = bfd_malloc (len1 + len2 + 2);
10344 if (name == NULL)
10345 return FALSE;
10346 memcpy (name, stub_entry->root.string, 9);
10347 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10348 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10349 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10350 if (h == NULL)
10351 return FALSE;
10352 if (h->root.type == bfd_link_hash_new)
10353 {
10354 h->root.type = bfd_link_hash_defined;
10355 h->root.u.def.section = stub_entry->stub_sec;
10356 h->root.u.def.value = stub_entry->stub_offset;
10357 h->ref_regular = 1;
10358 h->def_regular = 1;
10359 h->ref_regular_nonweak = 1;
10360 h->forced_local = 1;
10361 h->non_elf = 0;
10362 }
10363 }
10364
10365 return TRUE;
10366 }
10367
10368 /* As above, but don't actually build the stub. Just bump offset so
10369 we know stub section sizes, and select plt_branch stubs where
10370 long_branch stubs won't do. */
10371
10372 static bfd_boolean
10373 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10374 {
10375 struct ppc_stub_hash_entry *stub_entry;
10376 struct bfd_link_info *info;
10377 struct ppc_link_hash_table *htab;
10378 bfd_vma off;
10379 int size;
10380
10381 /* Massage our args to the form they really have. */
10382 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10383 info = in_arg;
10384
10385 htab = ppc_hash_table (info);
10386 if (htab == NULL)
10387 return FALSE;
10388
10389 if (stub_entry->stub_type == ppc_stub_plt_call
10390 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10391 {
10392 asection *plt;
10393 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10394 if (off >= (bfd_vma) -2)
10395 abort ();
10396 plt = htab->plt;
10397 if (!htab->elf.dynamic_sections_created
10398 || stub_entry->h == NULL
10399 || stub_entry->h->elf.dynindx == -1)
10400 plt = htab->iplt;
10401 off += (plt->output_offset
10402 + plt->output_section->vma
10403 - elf_gp (plt->output_section->owner)
10404 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10405
10406 size = plt_stub_size (htab, stub_entry, off);
10407 if (htab->plt_stub_align)
10408 size += plt_stub_pad (htab, stub_entry, off);
10409 if (info->emitrelocations)
10410 {
10411 stub_entry->stub_sec->reloc_count
10412 += (2
10413 + (PPC_HA (off) != 0)
10414 + (htab->plt_static_chain
10415 && PPC_HA (off + 16) == PPC_HA (off)));
10416 stub_entry->stub_sec->flags |= SEC_RELOC;
10417 }
10418 }
10419 else
10420 {
10421 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
10422 variants. */
10423 bfd_vma r2off = 0;
10424
10425 off = (stub_entry->target_value
10426 + stub_entry->target_section->output_offset
10427 + stub_entry->target_section->output_section->vma);
10428 off -= (stub_entry->stub_sec->size
10429 + stub_entry->stub_sec->output_offset
10430 + stub_entry->stub_sec->output_section->vma);
10431
10432 /* Reset the stub type from the plt variant in case we now
10433 can reach with a shorter stub. */
10434 if (stub_entry->stub_type >= ppc_stub_plt_branch)
10435 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
10436
10437 size = 4;
10438 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10439 {
10440 r2off = get_r2off (info, stub_entry);
10441 if (r2off == 0)
10442 {
10443 htab->stub_error = TRUE;
10444 return FALSE;
10445 }
10446 size = 12;
10447 if (PPC_HA (r2off) != 0)
10448 size = 16;
10449 off -= size - 4;
10450 }
10451
10452 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
10453 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10454 {
10455 struct ppc_branch_hash_entry *br_entry;
10456
10457 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10458 stub_entry->root.string + 9,
10459 TRUE, FALSE);
10460 if (br_entry == NULL)
10461 {
10462 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
10463 stub_entry->root.string);
10464 htab->stub_error = TRUE;
10465 return FALSE;
10466 }
10467
10468 if (br_entry->iter != htab->stub_iteration)
10469 {
10470 br_entry->iter = htab->stub_iteration;
10471 br_entry->offset = htab->brlt->size;
10472 htab->brlt->size += 8;
10473
10474 if (htab->relbrlt != NULL)
10475 htab->relbrlt->size += sizeof (Elf64_External_Rela);
10476 else if (info->emitrelocations)
10477 {
10478 htab->brlt->reloc_count += 1;
10479 htab->brlt->flags |= SEC_RELOC;
10480 }
10481 }
10482
10483 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
10484 off = (br_entry->offset
10485 + htab->brlt->output_offset
10486 + htab->brlt->output_section->vma
10487 - elf_gp (htab->brlt->output_section->owner)
10488 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10489
10490 if (info->emitrelocations)
10491 {
10492 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
10493 stub_entry->stub_sec->flags |= SEC_RELOC;
10494 }
10495
10496 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10497 {
10498 size = 12;
10499 if (PPC_HA (off) != 0)
10500 size = 16;
10501 }
10502 else
10503 {
10504 size = 20;
10505 if (PPC_HA (off) != 0)
10506 size += 4;
10507
10508 if (PPC_HA (r2off) != 0)
10509 size += 4;
10510 }
10511 }
10512 else if (info->emitrelocations)
10513 {
10514 stub_entry->stub_sec->reloc_count += 1;
10515 stub_entry->stub_sec->flags |= SEC_RELOC;
10516 }
10517 }
10518
10519 stub_entry->stub_sec->size += size;
10520 return TRUE;
10521 }
10522
10523 /* Set up various things so that we can make a list of input sections
10524 for each output section included in the link. Returns -1 on error,
10525 0 when no stubs will be needed, and 1 on success. */
10526
10527 int
10528 ppc64_elf_setup_section_lists
10529 (struct bfd_link_info *info,
10530 asection *(*add_stub_section) (const char *, asection *),
10531 void (*layout_sections_again) (void))
10532 {
10533 bfd *input_bfd;
10534 int top_id, top_index, id;
10535 asection *section;
10536 asection **input_list;
10537 bfd_size_type amt;
10538 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10539
10540 if (htab == NULL)
10541 return -1;
10542 /* Stash our params away. */
10543 htab->add_stub_section = add_stub_section;
10544 htab->layout_sections_again = layout_sections_again;
10545
10546 if (htab->brlt == NULL)
10547 return 0;
10548
10549 /* Find the top input section id. */
10550 for (input_bfd = info->input_bfds, top_id = 3;
10551 input_bfd != NULL;
10552 input_bfd = input_bfd->link_next)
10553 {
10554 for (section = input_bfd->sections;
10555 section != NULL;
10556 section = section->next)
10557 {
10558 if (top_id < section->id)
10559 top_id = section->id;
10560 }
10561 }
10562
10563 htab->top_id = top_id;
10564 amt = sizeof (struct map_stub) * (top_id + 1);
10565 htab->stub_group = bfd_zmalloc (amt);
10566 if (htab->stub_group == NULL)
10567 return -1;
10568
10569 /* Set toc_off for com, und, abs and ind sections. */
10570 for (id = 0; id < 3; id++)
10571 htab->stub_group[id].toc_off = TOC_BASE_OFF;
10572
10573 /* We can't use output_bfd->section_count here to find the top output
10574 section index as some sections may have been removed, and
10575 strip_excluded_output_sections doesn't renumber the indices. */
10576 for (section = info->output_bfd->sections, top_index = 0;
10577 section != NULL;
10578 section = section->next)
10579 {
10580 if (top_index < section->index)
10581 top_index = section->index;
10582 }
10583
10584 htab->top_index = top_index;
10585 amt = sizeof (asection *) * (top_index + 1);
10586 input_list = bfd_zmalloc (amt);
10587 htab->input_list = input_list;
10588 if (input_list == NULL)
10589 return -1;
10590
10591 return 1;
10592 }
10593
10594 /* Set up for first pass at multitoc partitioning. */
10595
10596 void
10597 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
10598 {
10599 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10600
10601 elf_gp (info->output_bfd) = ppc64_elf_toc (info->output_bfd);
10602 htab->toc_curr = elf_gp (info->output_bfd);
10603 htab->toc_bfd = NULL;
10604 htab->toc_first_sec = NULL;
10605 }
10606
10607 /* The linker repeatedly calls this function for each TOC input section
10608 and linker generated GOT section. Group input bfds such that the toc
10609 within a group is less than 64k in size. */
10610
10611 bfd_boolean
10612 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
10613 {
10614 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10615 bfd_vma addr, off, limit;
10616
10617 if (htab == NULL)
10618 return FALSE;
10619
10620 if (!htab->second_toc_pass)
10621 {
10622 /* Keep track of the first .toc or .got section for this input bfd. */
10623 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
10624
10625 if (new_bfd)
10626 {
10627 htab->toc_bfd = isec->owner;
10628 htab->toc_first_sec = isec;
10629 }
10630
10631 addr = isec->output_offset + isec->output_section->vma;
10632 off = addr - htab->toc_curr;
10633 limit = 0x80008000;
10634 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
10635 limit = 0x10000;
10636 if (off + isec->size > limit)
10637 {
10638 addr = (htab->toc_first_sec->output_offset
10639 + htab->toc_first_sec->output_section->vma);
10640 htab->toc_curr = addr;
10641 }
10642
10643 /* toc_curr is the base address of this toc group. Set elf_gp
10644 for the input section to be the offset relative to the
10645 output toc base plus 0x8000. Making the input elf_gp an
10646 offset allows us to move the toc as a whole without
10647 recalculating input elf_gp. */
10648 off = htab->toc_curr - elf_gp (isec->output_section->owner);
10649 off += TOC_BASE_OFF;
10650
10651 /* Die if someone uses a linker script that doesn't keep input
10652 file .toc and .got together. */
10653 if (new_bfd
10654 && elf_gp (isec->owner) != 0
10655 && elf_gp (isec->owner) != off)
10656 return FALSE;
10657
10658 elf_gp (isec->owner) = off;
10659 return TRUE;
10660 }
10661
10662 /* During the second pass toc_first_sec points to the start of
10663 a toc group, and toc_curr is used to track the old elf_gp.
10664 We use toc_bfd to ensure we only look at each bfd once. */
10665 if (htab->toc_bfd == isec->owner)
10666 return TRUE;
10667 htab->toc_bfd = isec->owner;
10668
10669 if (htab->toc_first_sec == NULL
10670 || htab->toc_curr != elf_gp (isec->owner))
10671 {
10672 htab->toc_curr = elf_gp (isec->owner);
10673 htab->toc_first_sec = isec;
10674 }
10675 addr = (htab->toc_first_sec->output_offset
10676 + htab->toc_first_sec->output_section->vma);
10677 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
10678 elf_gp (isec->owner) = off;
10679
10680 return TRUE;
10681 }
10682
10683 /* Called via elf_link_hash_traverse to merge GOT entries for global
10684 symbol H. */
10685
10686 static bfd_boolean
10687 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
10688 {
10689 if (h->root.type == bfd_link_hash_indirect)
10690 return TRUE;
10691
10692 merge_got_entries (&h->got.glist);
10693
10694 return TRUE;
10695 }
10696
10697 /* Called via elf_link_hash_traverse to allocate GOT entries for global
10698 symbol H. */
10699
10700 static bfd_boolean
10701 reallocate_got (struct elf_link_hash_entry *h, void *inf)
10702 {
10703 struct got_entry *gent;
10704
10705 if (h->root.type == bfd_link_hash_indirect)
10706 return TRUE;
10707
10708 for (gent = h->got.glist; gent != NULL; gent = gent->next)
10709 if (!gent->is_indirect)
10710 allocate_got (h, (struct bfd_link_info *) inf, gent);
10711 return TRUE;
10712 }
10713
10714 /* Called on the first multitoc pass after the last call to
10715 ppc64_elf_next_toc_section. This function removes duplicate GOT
10716 entries. */
10717
10718 bfd_boolean
10719 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
10720 {
10721 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10722 struct bfd *ibfd, *ibfd2;
10723 bfd_boolean done_something;
10724
10725 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
10726
10727 if (!htab->do_multi_toc)
10728 return FALSE;
10729
10730 /* Merge global sym got entries within a toc group. */
10731 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
10732
10733 /* And tlsld_got. */
10734 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10735 {
10736 struct got_entry *ent, *ent2;
10737
10738 if (!is_ppc64_elf (ibfd))
10739 continue;
10740
10741 ent = ppc64_tlsld_got (ibfd);
10742 if (!ent->is_indirect
10743 && ent->got.offset != (bfd_vma) -1)
10744 {
10745 for (ibfd2 = ibfd->link_next; ibfd2 != NULL; ibfd2 = ibfd2->link_next)
10746 {
10747 if (!is_ppc64_elf (ibfd2))
10748 continue;
10749
10750 ent2 = ppc64_tlsld_got (ibfd2);
10751 if (!ent2->is_indirect
10752 && ent2->got.offset != (bfd_vma) -1
10753 && elf_gp (ibfd2) == elf_gp (ibfd))
10754 {
10755 ent2->is_indirect = TRUE;
10756 ent2->got.ent = ent;
10757 }
10758 }
10759 }
10760 }
10761
10762 /* Zap sizes of got sections. */
10763 htab->reliplt->rawsize = htab->reliplt->size;
10764 htab->reliplt->size -= htab->got_reli_size;
10765 htab->got_reli_size = 0;
10766
10767 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10768 {
10769 asection *got, *relgot;
10770
10771 if (!is_ppc64_elf (ibfd))
10772 continue;
10773
10774 got = ppc64_elf_tdata (ibfd)->got;
10775 if (got != NULL)
10776 {
10777 got->rawsize = got->size;
10778 got->size = 0;
10779 relgot = ppc64_elf_tdata (ibfd)->relgot;
10780 relgot->rawsize = relgot->size;
10781 relgot->size = 0;
10782 }
10783 }
10784
10785 /* Now reallocate the got, local syms first. We don't need to
10786 allocate section contents again since we never increase size. */
10787 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10788 {
10789 struct got_entry **lgot_ents;
10790 struct got_entry **end_lgot_ents;
10791 struct plt_entry **local_plt;
10792 struct plt_entry **end_local_plt;
10793 unsigned char *lgot_masks;
10794 bfd_size_type locsymcount;
10795 Elf_Internal_Shdr *symtab_hdr;
10796 asection *s;
10797
10798 if (!is_ppc64_elf (ibfd))
10799 continue;
10800
10801 lgot_ents = elf_local_got_ents (ibfd);
10802 if (!lgot_ents)
10803 continue;
10804
10805 symtab_hdr = &elf_symtab_hdr (ibfd);
10806 locsymcount = symtab_hdr->sh_info;
10807 end_lgot_ents = lgot_ents + locsymcount;
10808 local_plt = (struct plt_entry **) end_lgot_ents;
10809 end_local_plt = local_plt + locsymcount;
10810 lgot_masks = (unsigned char *) end_local_plt;
10811 s = ppc64_elf_tdata (ibfd)->got;
10812 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
10813 {
10814 struct got_entry *ent;
10815
10816 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
10817 {
10818 unsigned int ent_size = 8;
10819 unsigned int rel_size = sizeof (Elf64_External_Rela);
10820
10821 ent->got.offset = s->size;
10822 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
10823 {
10824 ent_size *= 2;
10825 rel_size *= 2;
10826 }
10827 s->size += ent_size;
10828 if ((*lgot_masks & PLT_IFUNC) != 0)
10829 {
10830 htab->reliplt->size += rel_size;
10831 htab->got_reli_size += rel_size;
10832 }
10833 else if (info->shared)
10834 {
10835 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10836 srel->size += rel_size;
10837 }
10838 }
10839 }
10840 }
10841
10842 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
10843
10844 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10845 {
10846 struct got_entry *ent;
10847
10848 if (!is_ppc64_elf (ibfd))
10849 continue;
10850
10851 ent = ppc64_tlsld_got (ibfd);
10852 if (!ent->is_indirect
10853 && ent->got.offset != (bfd_vma) -1)
10854 {
10855 asection *s = ppc64_elf_tdata (ibfd)->got;
10856 ent->got.offset = s->size;
10857 s->size += 16;
10858 if (info->shared)
10859 {
10860 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10861 srel->size += sizeof (Elf64_External_Rela);
10862 }
10863 }
10864 }
10865
10866 done_something = htab->reliplt->rawsize != htab->reliplt->size;
10867 if (!done_something)
10868 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10869 {
10870 asection *got;
10871
10872 if (!is_ppc64_elf (ibfd))
10873 continue;
10874
10875 got = ppc64_elf_tdata (ibfd)->got;
10876 if (got != NULL)
10877 {
10878 done_something = got->rawsize != got->size;
10879 if (done_something)
10880 break;
10881 }
10882 }
10883
10884 if (done_something)
10885 (*htab->layout_sections_again) ();
10886
10887 /* Set up for second pass over toc sections to recalculate elf_gp
10888 on input sections. */
10889 htab->toc_bfd = NULL;
10890 htab->toc_first_sec = NULL;
10891 htab->second_toc_pass = TRUE;
10892 return done_something;
10893 }
10894
10895 /* Called after second pass of multitoc partitioning. */
10896
10897 void
10898 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
10899 {
10900 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10901
10902 /* After the second pass, toc_curr tracks the TOC offset used
10903 for code sections below in ppc64_elf_next_input_section. */
10904 htab->toc_curr = TOC_BASE_OFF;
10905 }
10906
10907 /* No toc references were found in ISEC. If the code in ISEC makes no
10908 calls, then there's no need to use toc adjusting stubs when branching
10909 into ISEC. Actually, indirect calls from ISEC are OK as they will
10910 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
10911 needed, and 2 if a cyclical call-graph was found but no other reason
10912 for a stub was detected. If called from the top level, a return of
10913 2 means the same as a return of 0. */
10914
10915 static int
10916 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
10917 {
10918 int ret;
10919
10920 /* Mark this section as checked. */
10921 isec->call_check_done = 1;
10922
10923 /* We know none of our code bearing sections will need toc stubs. */
10924 if ((isec->flags & SEC_LINKER_CREATED) != 0)
10925 return 0;
10926
10927 if (isec->size == 0)
10928 return 0;
10929
10930 if (isec->output_section == NULL)
10931 return 0;
10932
10933 ret = 0;
10934 if (isec->reloc_count != 0)
10935 {
10936 Elf_Internal_Rela *relstart, *rel;
10937 Elf_Internal_Sym *local_syms;
10938 struct ppc_link_hash_table *htab;
10939
10940 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
10941 info->keep_memory);
10942 if (relstart == NULL)
10943 return -1;
10944
10945 /* Look for branches to outside of this section. */
10946 local_syms = NULL;
10947 htab = ppc_hash_table (info);
10948 if (htab == NULL)
10949 return -1;
10950
10951 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
10952 {
10953 enum elf_ppc64_reloc_type r_type;
10954 unsigned long r_symndx;
10955 struct elf_link_hash_entry *h;
10956 struct ppc_link_hash_entry *eh;
10957 Elf_Internal_Sym *sym;
10958 asection *sym_sec;
10959 struct _opd_sec_data *opd;
10960 bfd_vma sym_value;
10961 bfd_vma dest;
10962
10963 r_type = ELF64_R_TYPE (rel->r_info);
10964 if (r_type != R_PPC64_REL24
10965 && r_type != R_PPC64_REL14
10966 && r_type != R_PPC64_REL14_BRTAKEN
10967 && r_type != R_PPC64_REL14_BRNTAKEN)
10968 continue;
10969
10970 r_symndx = ELF64_R_SYM (rel->r_info);
10971 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
10972 isec->owner))
10973 {
10974 ret = -1;
10975 break;
10976 }
10977
10978 /* Calls to dynamic lib functions go through a plt call stub
10979 that uses r2. */
10980 eh = (struct ppc_link_hash_entry *) h;
10981 if (eh != NULL
10982 && (eh->elf.plt.plist != NULL
10983 || (eh->oh != NULL
10984 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
10985 {
10986 ret = 1;
10987 break;
10988 }
10989
10990 if (sym_sec == NULL)
10991 /* Ignore other undefined symbols. */
10992 continue;
10993
10994 /* Assume branches to other sections not included in the
10995 link need stubs too, to cover -R and absolute syms. */
10996 if (sym_sec->output_section == NULL)
10997 {
10998 ret = 1;
10999 break;
11000 }
11001
11002 if (h == NULL)
11003 sym_value = sym->st_value;
11004 else
11005 {
11006 if (h->root.type != bfd_link_hash_defined
11007 && h->root.type != bfd_link_hash_defweak)
11008 abort ();
11009 sym_value = h->root.u.def.value;
11010 }
11011 sym_value += rel->r_addend;
11012
11013 /* If this branch reloc uses an opd sym, find the code section. */
11014 opd = get_opd_info (sym_sec);
11015 if (opd != NULL)
11016 {
11017 if (h == NULL && opd->adjust != NULL)
11018 {
11019 long adjust;
11020
11021 adjust = opd->adjust[sym->st_value / 8];
11022 if (adjust == -1)
11023 /* Assume deleted functions won't ever be called. */
11024 continue;
11025 sym_value += adjust;
11026 }
11027
11028 dest = opd_entry_value (sym_sec, sym_value,
11029 &sym_sec, NULL, FALSE);
11030 if (dest == (bfd_vma) -1)
11031 continue;
11032 }
11033 else
11034 dest = (sym_value
11035 + sym_sec->output_offset
11036 + sym_sec->output_section->vma);
11037
11038 /* Ignore branch to self. */
11039 if (sym_sec == isec)
11040 continue;
11041
11042 /* If the called function uses the toc, we need a stub. */
11043 if (sym_sec->has_toc_reloc
11044 || sym_sec->makes_toc_func_call)
11045 {
11046 ret = 1;
11047 break;
11048 }
11049
11050 /* Assume any branch that needs a long branch stub might in fact
11051 need a plt_branch stub. A plt_branch stub uses r2. */
11052 else if (dest - (isec->output_offset
11053 + isec->output_section->vma
11054 + rel->r_offset) + (1 << 25) >= (2 << 25))
11055 {
11056 ret = 1;
11057 break;
11058 }
11059
11060 /* If calling back to a section in the process of being
11061 tested, we can't say for sure that no toc adjusting stubs
11062 are needed, so don't return zero. */
11063 else if (sym_sec->call_check_in_progress)
11064 ret = 2;
11065
11066 /* Branches to another section that itself doesn't have any TOC
11067 references are OK. Recursively call ourselves to check. */
11068 else if (!sym_sec->call_check_done)
11069 {
11070 int recur;
11071
11072 /* Mark current section as indeterminate, so that other
11073 sections that call back to current won't be marked as
11074 known. */
11075 isec->call_check_in_progress = 1;
11076 recur = toc_adjusting_stub_needed (info, sym_sec);
11077 isec->call_check_in_progress = 0;
11078
11079 if (recur != 0)
11080 {
11081 ret = recur;
11082 if (recur != 2)
11083 break;
11084 }
11085 }
11086 }
11087
11088 if (local_syms != NULL
11089 && (elf_symtab_hdr (isec->owner).contents
11090 != (unsigned char *) local_syms))
11091 free (local_syms);
11092 if (elf_section_data (isec)->relocs != relstart)
11093 free (relstart);
11094 }
11095
11096 if ((ret & 1) == 0
11097 && isec->map_head.s != NULL
11098 && (strcmp (isec->output_section->name, ".init") == 0
11099 || strcmp (isec->output_section->name, ".fini") == 0))
11100 {
11101 if (isec->map_head.s->has_toc_reloc
11102 || isec->map_head.s->makes_toc_func_call)
11103 ret = 1;
11104 else if (!isec->map_head.s->call_check_done)
11105 {
11106 int recur;
11107 isec->call_check_in_progress = 1;
11108 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11109 isec->call_check_in_progress = 0;
11110 if (recur != 0)
11111 ret = recur;
11112 }
11113 }
11114
11115 if (ret == 1)
11116 isec->makes_toc_func_call = 1;
11117
11118 return ret;
11119 }
11120
11121 /* The linker repeatedly calls this function for each input section,
11122 in the order that input sections are linked into output sections.
11123 Build lists of input sections to determine groupings between which
11124 we may insert linker stubs. */
11125
11126 bfd_boolean
11127 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11128 {
11129 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11130
11131 if (htab == NULL)
11132 return FALSE;
11133
11134 if ((isec->output_section->flags & SEC_CODE) != 0
11135 && isec->output_section->index <= htab->top_index)
11136 {
11137 asection **list = htab->input_list + isec->output_section->index;
11138 /* Steal the link_sec pointer for our list. */
11139 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11140 /* This happens to make the list in reverse order,
11141 which is what we want. */
11142 PREV_SEC (isec) = *list;
11143 *list = isec;
11144 }
11145
11146 if (htab->multi_toc_needed)
11147 {
11148 /* If a code section has a function that uses the TOC then we need
11149 to use the right TOC (obviously). Also, make sure that .opd gets
11150 the correct TOC value for R_PPC64_TOC relocs that don't have or
11151 can't find their function symbol (shouldn't ever happen now).
11152 Also specially treat .fixup for the linux kernel. .fixup
11153 contains branches, but only back to the function that hit an
11154 exception. */
11155 if (isec->has_toc_reloc
11156 || (isec->flags & SEC_CODE) == 0
11157 || strcmp (isec->name, ".fixup") == 0)
11158 {
11159 if (elf_gp (isec->owner) != 0)
11160 htab->toc_curr = elf_gp (isec->owner);
11161 }
11162 else
11163 {
11164 if (!isec->call_check_done
11165 && toc_adjusting_stub_needed (info, isec) < 0)
11166 return FALSE;
11167 /* If we make a local call from this section, ie. a branch
11168 without a following nop, then we have no place to put a
11169 toc restoring insn. We must use the same toc group as
11170 the callee.
11171 Testing makes_toc_func_call actually tests for *any*
11172 calls to functions that need a good toc pointer. A more
11173 precise test would be better, as this one will set
11174 incorrect values for pasted .init/.fini fragments.
11175 (Fixed later in check_pasted_section.) */
11176 if (isec->makes_toc_func_call
11177 && elf_gp (isec->owner) != 0)
11178 htab->toc_curr = elf_gp (isec->owner);
11179 }
11180 }
11181
11182 /* Functions that don't use the TOC can belong in any TOC group.
11183 Use the last TOC base. */
11184 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11185 return TRUE;
11186 }
11187
11188 /* Check that all .init and .fini sections use the same toc, if they
11189 have toc relocs. */
11190
11191 static bfd_boolean
11192 check_pasted_section (struct bfd_link_info *info, const char *name)
11193 {
11194 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11195
11196 if (o != NULL)
11197 {
11198 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11199 bfd_vma toc_off = 0;
11200 asection *i;
11201
11202 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11203 if (i->has_toc_reloc)
11204 {
11205 if (toc_off == 0)
11206 toc_off = htab->stub_group[i->id].toc_off;
11207 else if (toc_off != htab->stub_group[i->id].toc_off)
11208 return FALSE;
11209 }
11210
11211 if (toc_off == 0)
11212 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11213 if (i->makes_toc_func_call)
11214 {
11215 toc_off = htab->stub_group[i->id].toc_off;
11216 break;
11217 }
11218
11219 /* Make sure the whole pasted function uses the same toc offset. */
11220 if (toc_off != 0)
11221 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11222 htab->stub_group[i->id].toc_off = toc_off;
11223 }
11224 return TRUE;
11225 }
11226
11227 bfd_boolean
11228 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11229 {
11230 return (check_pasted_section (info, ".init")
11231 & check_pasted_section (info, ".fini"));
11232 }
11233
11234 /* See whether we can group stub sections together. Grouping stub
11235 sections may result in fewer stubs. More importantly, we need to
11236 put all .init* and .fini* stubs at the beginning of the .init or
11237 .fini output sections respectively, because glibc splits the
11238 _init and _fini functions into multiple parts. Putting a stub in
11239 the middle of a function is not a good idea. */
11240
11241 static void
11242 group_sections (struct ppc_link_hash_table *htab,
11243 bfd_size_type stub_group_size,
11244 bfd_boolean stubs_always_before_branch)
11245 {
11246 asection **list;
11247 bfd_size_type stub14_group_size;
11248 bfd_boolean suppress_size_errors;
11249
11250 suppress_size_errors = FALSE;
11251 stub14_group_size = stub_group_size;
11252 if (stub_group_size == 1)
11253 {
11254 /* Default values. */
11255 if (stubs_always_before_branch)
11256 {
11257 stub_group_size = 0x1e00000;
11258 stub14_group_size = 0x7800;
11259 }
11260 else
11261 {
11262 stub_group_size = 0x1c00000;
11263 stub14_group_size = 0x7000;
11264 }
11265 suppress_size_errors = TRUE;
11266 }
11267
11268 list = htab->input_list + htab->top_index;
11269 do
11270 {
11271 asection *tail = *list;
11272 while (tail != NULL)
11273 {
11274 asection *curr;
11275 asection *prev;
11276 bfd_size_type total;
11277 bfd_boolean big_sec;
11278 bfd_vma curr_toc;
11279
11280 curr = tail;
11281 total = tail->size;
11282 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11283 && ppc64_elf_section_data (tail)->has_14bit_branch
11284 ? stub14_group_size : stub_group_size);
11285 if (big_sec && !suppress_size_errors)
11286 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11287 tail->owner, tail);
11288 curr_toc = htab->stub_group[tail->id].toc_off;
11289
11290 while ((prev = PREV_SEC (curr)) != NULL
11291 && ((total += curr->output_offset - prev->output_offset)
11292 < (ppc64_elf_section_data (prev) != NULL
11293 && ppc64_elf_section_data (prev)->has_14bit_branch
11294 ? stub14_group_size : stub_group_size))
11295 && htab->stub_group[prev->id].toc_off == curr_toc)
11296 curr = prev;
11297
11298 /* OK, the size from the start of CURR to the end is less
11299 than stub_group_size and thus can be handled by one stub
11300 section. (or the tail section is itself larger than
11301 stub_group_size, in which case we may be toast.) We
11302 should really be keeping track of the total size of stubs
11303 added here, as stubs contribute to the final output
11304 section size. That's a little tricky, and this way will
11305 only break if stubs added make the total size more than
11306 2^25, ie. for the default stub_group_size, if stubs total
11307 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11308 do
11309 {
11310 prev = PREV_SEC (tail);
11311 /* Set up this stub group. */
11312 htab->stub_group[tail->id].link_sec = curr;
11313 }
11314 while (tail != curr && (tail = prev) != NULL);
11315
11316 /* But wait, there's more! Input sections up to stub_group_size
11317 bytes before the stub section can be handled by it too.
11318 Don't do this if we have a really large section after the
11319 stubs, as adding more stubs increases the chance that
11320 branches may not reach into the stub section. */
11321 if (!stubs_always_before_branch && !big_sec)
11322 {
11323 total = 0;
11324 while (prev != NULL
11325 && ((total += tail->output_offset - prev->output_offset)
11326 < (ppc64_elf_section_data (prev) != NULL
11327 && ppc64_elf_section_data (prev)->has_14bit_branch
11328 ? stub14_group_size : stub_group_size))
11329 && htab->stub_group[prev->id].toc_off == curr_toc)
11330 {
11331 tail = prev;
11332 prev = PREV_SEC (tail);
11333 htab->stub_group[tail->id].link_sec = curr;
11334 }
11335 }
11336 tail = prev;
11337 }
11338 }
11339 while (list-- != htab->input_list);
11340 free (htab->input_list);
11341 #undef PREV_SEC
11342 }
11343
11344 static const unsigned char glink_eh_frame_cie[] =
11345 {
11346 0, 0, 0, 16, /* length. */
11347 0, 0, 0, 0, /* id. */
11348 1, /* CIE version. */
11349 'z', 'R', 0, /* Augmentation string. */
11350 4, /* Code alignment. */
11351 0x78, /* Data alignment. */
11352 65, /* RA reg. */
11353 1, /* Augmentation size. */
11354 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11355 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
11356 };
11357
11358 /* Stripping output sections is normally done before dynamic section
11359 symbols have been allocated. This function is called later, and
11360 handles cases like htab->brlt which is mapped to its own output
11361 section. */
11362
11363 static void
11364 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11365 {
11366 if (isec->size == 0
11367 && isec->output_section->size == 0
11368 && !(isec->output_section->flags & SEC_KEEP)
11369 && !bfd_section_removed_from_list (info->output_bfd,
11370 isec->output_section)
11371 && elf_section_data (isec->output_section)->dynindx == 0)
11372 {
11373 isec->output_section->flags |= SEC_EXCLUDE;
11374 bfd_section_list_remove (info->output_bfd, isec->output_section);
11375 info->output_bfd->section_count--;
11376 }
11377 }
11378
11379 /* Determine and set the size of the stub section for a final link.
11380
11381 The basic idea here is to examine all the relocations looking for
11382 PC-relative calls to a target that is unreachable with a "bl"
11383 instruction. */
11384
11385 bfd_boolean
11386 ppc64_elf_size_stubs (struct bfd_link_info *info, bfd_signed_vma group_size,
11387 bfd_boolean plt_static_chain, int plt_thread_safe,
11388 int plt_stub_align)
11389 {
11390 bfd_size_type stub_group_size;
11391 bfd_boolean stubs_always_before_branch;
11392 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11393
11394 if (htab == NULL)
11395 return FALSE;
11396
11397 htab->plt_static_chain = plt_static_chain;
11398 htab->plt_stub_align = plt_stub_align;
11399 if (plt_thread_safe == -1 && !info->executable)
11400 plt_thread_safe = 1;
11401 if (plt_thread_safe == -1)
11402 {
11403 static const char *const thread_starter[] =
11404 {
11405 "pthread_create",
11406 /* libstdc++ */
11407 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11408 /* librt */
11409 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11410 "mq_notify", "create_timer",
11411 /* libanl */
11412 "getaddrinfo_a",
11413 /* libgomp */
11414 "GOMP_parallel_start",
11415 "GOMP_parallel_loop_static_start",
11416 "GOMP_parallel_loop_dynamic_start",
11417 "GOMP_parallel_loop_guided_start",
11418 "GOMP_parallel_loop_runtime_start",
11419 "GOMP_parallel_sections_start",
11420 };
11421 unsigned i;
11422
11423 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
11424 {
11425 struct elf_link_hash_entry *h;
11426 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
11427 FALSE, FALSE, TRUE);
11428 plt_thread_safe = h != NULL && h->ref_regular;
11429 if (plt_thread_safe)
11430 break;
11431 }
11432 }
11433 htab->plt_thread_safe = plt_thread_safe;
11434 htab->dot_toc_dot = ((struct ppc_link_hash_entry *)
11435 elf_link_hash_lookup (&htab->elf, ".TOC.",
11436 FALSE, FALSE, TRUE));
11437 stubs_always_before_branch = group_size < 0;
11438 if (group_size < 0)
11439 stub_group_size = -group_size;
11440 else
11441 stub_group_size = group_size;
11442
11443 group_sections (htab, stub_group_size, stubs_always_before_branch);
11444
11445 while (1)
11446 {
11447 bfd *input_bfd;
11448 unsigned int bfd_indx;
11449 asection *stub_sec;
11450
11451 htab->stub_iteration += 1;
11452
11453 for (input_bfd = info->input_bfds, bfd_indx = 0;
11454 input_bfd != NULL;
11455 input_bfd = input_bfd->link_next, bfd_indx++)
11456 {
11457 Elf_Internal_Shdr *symtab_hdr;
11458 asection *section;
11459 Elf_Internal_Sym *local_syms = NULL;
11460
11461 if (!is_ppc64_elf (input_bfd))
11462 continue;
11463
11464 /* We'll need the symbol table in a second. */
11465 symtab_hdr = &elf_symtab_hdr (input_bfd);
11466 if (symtab_hdr->sh_info == 0)
11467 continue;
11468
11469 /* Walk over each section attached to the input bfd. */
11470 for (section = input_bfd->sections;
11471 section != NULL;
11472 section = section->next)
11473 {
11474 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
11475
11476 /* If there aren't any relocs, then there's nothing more
11477 to do. */
11478 if ((section->flags & SEC_RELOC) == 0
11479 || (section->flags & SEC_ALLOC) == 0
11480 || (section->flags & SEC_LOAD) == 0
11481 || (section->flags & SEC_CODE) == 0
11482 || section->reloc_count == 0)
11483 continue;
11484
11485 /* If this section is a link-once section that will be
11486 discarded, then don't create any stubs. */
11487 if (section->output_section == NULL
11488 || section->output_section->owner != info->output_bfd)
11489 continue;
11490
11491 /* Get the relocs. */
11492 internal_relocs
11493 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
11494 info->keep_memory);
11495 if (internal_relocs == NULL)
11496 goto error_ret_free_local;
11497
11498 /* Now examine each relocation. */
11499 irela = internal_relocs;
11500 irelaend = irela + section->reloc_count;
11501 for (; irela < irelaend; irela++)
11502 {
11503 enum elf_ppc64_reloc_type r_type;
11504 unsigned int r_indx;
11505 enum ppc_stub_type stub_type;
11506 struct ppc_stub_hash_entry *stub_entry;
11507 asection *sym_sec, *code_sec;
11508 bfd_vma sym_value, code_value;
11509 bfd_vma destination;
11510 bfd_boolean ok_dest;
11511 struct ppc_link_hash_entry *hash;
11512 struct ppc_link_hash_entry *fdh;
11513 struct elf_link_hash_entry *h;
11514 Elf_Internal_Sym *sym;
11515 char *stub_name;
11516 const asection *id_sec;
11517 struct _opd_sec_data *opd;
11518 struct plt_entry *plt_ent;
11519
11520 r_type = ELF64_R_TYPE (irela->r_info);
11521 r_indx = ELF64_R_SYM (irela->r_info);
11522
11523 if (r_type >= R_PPC64_max)
11524 {
11525 bfd_set_error (bfd_error_bad_value);
11526 goto error_ret_free_internal;
11527 }
11528
11529 /* Only look for stubs on branch instructions. */
11530 if (r_type != R_PPC64_REL24
11531 && r_type != R_PPC64_REL14
11532 && r_type != R_PPC64_REL14_BRTAKEN
11533 && r_type != R_PPC64_REL14_BRNTAKEN)
11534 continue;
11535
11536 /* Now determine the call target, its name, value,
11537 section. */
11538 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
11539 r_indx, input_bfd))
11540 goto error_ret_free_internal;
11541 hash = (struct ppc_link_hash_entry *) h;
11542
11543 ok_dest = FALSE;
11544 fdh = NULL;
11545 sym_value = 0;
11546 if (hash == NULL)
11547 {
11548 sym_value = sym->st_value;
11549 ok_dest = TRUE;
11550 }
11551 else if (hash->elf.root.type == bfd_link_hash_defined
11552 || hash->elf.root.type == bfd_link_hash_defweak)
11553 {
11554 sym_value = hash->elf.root.u.def.value;
11555 if (sym_sec->output_section != NULL)
11556 ok_dest = TRUE;
11557 }
11558 else if (hash->elf.root.type == bfd_link_hash_undefweak
11559 || hash->elf.root.type == bfd_link_hash_undefined)
11560 {
11561 /* Recognise an old ABI func code entry sym, and
11562 use the func descriptor sym instead if it is
11563 defined. */
11564 if (hash->elf.root.root.string[0] == '.'
11565 && (fdh = lookup_fdh (hash, htab)) != NULL)
11566 {
11567 if (fdh->elf.root.type == bfd_link_hash_defined
11568 || fdh->elf.root.type == bfd_link_hash_defweak)
11569 {
11570 sym_sec = fdh->elf.root.u.def.section;
11571 sym_value = fdh->elf.root.u.def.value;
11572 if (sym_sec->output_section != NULL)
11573 ok_dest = TRUE;
11574 }
11575 else
11576 fdh = NULL;
11577 }
11578 }
11579 else
11580 {
11581 bfd_set_error (bfd_error_bad_value);
11582 goto error_ret_free_internal;
11583 }
11584
11585 destination = 0;
11586 if (ok_dest)
11587 {
11588 sym_value += irela->r_addend;
11589 destination = (sym_value
11590 + sym_sec->output_offset
11591 + sym_sec->output_section->vma);
11592 }
11593
11594 code_sec = sym_sec;
11595 code_value = sym_value;
11596 opd = get_opd_info (sym_sec);
11597 if (opd != NULL)
11598 {
11599 bfd_vma dest;
11600
11601 if (hash == NULL && opd->adjust != NULL)
11602 {
11603 long adjust = opd->adjust[sym_value / 8];
11604 if (adjust == -1)
11605 continue;
11606 code_value += adjust;
11607 sym_value += adjust;
11608 }
11609 dest = opd_entry_value (sym_sec, sym_value,
11610 &code_sec, &code_value, FALSE);
11611 if (dest != (bfd_vma) -1)
11612 {
11613 destination = dest;
11614 if (fdh != NULL)
11615 {
11616 /* Fixup old ABI sym to point at code
11617 entry. */
11618 hash->elf.root.type = bfd_link_hash_defweak;
11619 hash->elf.root.u.def.section = code_sec;
11620 hash->elf.root.u.def.value = code_value;
11621 }
11622 }
11623 }
11624
11625 /* Determine what (if any) linker stub is needed. */
11626 plt_ent = NULL;
11627 stub_type = ppc_type_of_stub (section, irela, &hash,
11628 &plt_ent, destination);
11629
11630 if (stub_type != ppc_stub_plt_call)
11631 {
11632 /* Check whether we need a TOC adjusting stub.
11633 Since the linker pastes together pieces from
11634 different object files when creating the
11635 _init and _fini functions, it may be that a
11636 call to what looks like a local sym is in
11637 fact a call needing a TOC adjustment. */
11638 if (code_sec != NULL
11639 && code_sec->output_section != NULL
11640 && (htab->stub_group[code_sec->id].toc_off
11641 != htab->stub_group[section->id].toc_off)
11642 && (code_sec->has_toc_reloc
11643 || code_sec->makes_toc_func_call))
11644 stub_type = ppc_stub_long_branch_r2off;
11645 }
11646
11647 if (stub_type == ppc_stub_none)
11648 continue;
11649
11650 /* __tls_get_addr calls might be eliminated. */
11651 if (stub_type != ppc_stub_plt_call
11652 && hash != NULL
11653 && (hash == htab->tls_get_addr
11654 || hash == htab->tls_get_addr_fd)
11655 && section->has_tls_reloc
11656 && irela != internal_relocs)
11657 {
11658 /* Get tls info. */
11659 unsigned char *tls_mask;
11660
11661 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
11662 irela - 1, input_bfd))
11663 goto error_ret_free_internal;
11664 if (*tls_mask != 0)
11665 continue;
11666 }
11667
11668 if (stub_type == ppc_stub_plt_call
11669 && irela + 1 < irelaend
11670 && irela[1].r_offset == irela->r_offset + 4
11671 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
11672 {
11673 if (!tocsave_find (htab, INSERT,
11674 &local_syms, irela + 1, input_bfd))
11675 goto error_ret_free_internal;
11676 }
11677 else if (stub_type == ppc_stub_plt_call)
11678 stub_type = ppc_stub_plt_call_r2save;
11679
11680 /* Support for grouping stub sections. */
11681 id_sec = htab->stub_group[section->id].link_sec;
11682
11683 /* Get the name of this stub. */
11684 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
11685 if (!stub_name)
11686 goto error_ret_free_internal;
11687
11688 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
11689 stub_name, FALSE, FALSE);
11690 if (stub_entry != NULL)
11691 {
11692 /* The proper stub has already been created. */
11693 free (stub_name);
11694 if (stub_type == ppc_stub_plt_call_r2save)
11695 stub_entry->stub_type = stub_type;
11696 continue;
11697 }
11698
11699 stub_entry = ppc_add_stub (stub_name, section, info);
11700 if (stub_entry == NULL)
11701 {
11702 free (stub_name);
11703 error_ret_free_internal:
11704 if (elf_section_data (section)->relocs == NULL)
11705 free (internal_relocs);
11706 error_ret_free_local:
11707 if (local_syms != NULL
11708 && (symtab_hdr->contents
11709 != (unsigned char *) local_syms))
11710 free (local_syms);
11711 return FALSE;
11712 }
11713
11714 stub_entry->stub_type = stub_type;
11715 if (stub_type != ppc_stub_plt_call
11716 && stub_type != ppc_stub_plt_call_r2save)
11717 {
11718 stub_entry->target_value = code_value;
11719 stub_entry->target_section = code_sec;
11720 }
11721 else
11722 {
11723 stub_entry->target_value = sym_value;
11724 stub_entry->target_section = sym_sec;
11725 }
11726 stub_entry->h = hash;
11727 stub_entry->plt_ent = plt_ent;
11728 stub_entry->addend = irela->r_addend;
11729
11730 if (stub_entry->h != NULL)
11731 htab->stub_globals += 1;
11732 }
11733
11734 /* We're done with the internal relocs, free them. */
11735 if (elf_section_data (section)->relocs != internal_relocs)
11736 free (internal_relocs);
11737 }
11738
11739 if (local_syms != NULL
11740 && symtab_hdr->contents != (unsigned char *) local_syms)
11741 {
11742 if (!info->keep_memory)
11743 free (local_syms);
11744 else
11745 symtab_hdr->contents = (unsigned char *) local_syms;
11746 }
11747 }
11748
11749 /* We may have added some stubs. Find out the new size of the
11750 stub sections. */
11751 for (stub_sec = htab->stub_bfd->sections;
11752 stub_sec != NULL;
11753 stub_sec = stub_sec->next)
11754 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11755 {
11756 stub_sec->rawsize = stub_sec->size;
11757 stub_sec->size = 0;
11758 stub_sec->reloc_count = 0;
11759 stub_sec->flags &= ~SEC_RELOC;
11760 }
11761
11762 htab->brlt->size = 0;
11763 htab->brlt->reloc_count = 0;
11764 htab->brlt->flags &= ~SEC_RELOC;
11765 if (htab->relbrlt != NULL)
11766 htab->relbrlt->size = 0;
11767
11768 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
11769
11770 if (info->emitrelocations
11771 && htab->glink != NULL && htab->glink->size != 0)
11772 {
11773 htab->glink->reloc_count = 1;
11774 htab->glink->flags |= SEC_RELOC;
11775 }
11776
11777 if (htab->glink_eh_frame != NULL
11778 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
11779 && htab->glink_eh_frame->output_section->size != 0)
11780 {
11781 size_t size = 0, align;
11782
11783 for (stub_sec = htab->stub_bfd->sections;
11784 stub_sec != NULL;
11785 stub_sec = stub_sec->next)
11786 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11787 size += 20;
11788 if (htab->glink != NULL && htab->glink->size != 0)
11789 size += 24;
11790 if (size != 0)
11791 size += sizeof (glink_eh_frame_cie);
11792 align = 1;
11793 align <<= htab->glink_eh_frame->output_section->alignment_power;
11794 align -= 1;
11795 size = (size + align) & ~align;
11796 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
11797 htab->glink_eh_frame->size = size;
11798 }
11799
11800 if (htab->plt_stub_align != 0)
11801 for (stub_sec = htab->stub_bfd->sections;
11802 stub_sec != NULL;
11803 stub_sec = stub_sec->next)
11804 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11805 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
11806 & (-1 << htab->plt_stub_align));
11807
11808 for (stub_sec = htab->stub_bfd->sections;
11809 stub_sec != NULL;
11810 stub_sec = stub_sec->next)
11811 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
11812 && stub_sec->rawsize != stub_sec->size)
11813 break;
11814
11815 /* Exit from this loop when no stubs have been added, and no stubs
11816 have changed size. */
11817 if (stub_sec == NULL
11818 && (htab->glink_eh_frame == NULL
11819 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
11820 break;
11821
11822 /* Ask the linker to do its stuff. */
11823 (*htab->layout_sections_again) ();
11824 }
11825
11826 maybe_strip_output (info, htab->brlt);
11827 if (htab->glink_eh_frame != NULL)
11828 maybe_strip_output (info, htab->glink_eh_frame);
11829
11830 return TRUE;
11831 }
11832
11833 /* Called after we have determined section placement. If sections
11834 move, we'll be called again. Provide a value for TOCstart. */
11835
11836 bfd_vma
11837 ppc64_elf_toc (bfd *obfd)
11838 {
11839 asection *s;
11840 bfd_vma TOCstart;
11841
11842 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
11843 order. The TOC starts where the first of these sections starts. */
11844 s = bfd_get_section_by_name (obfd, ".got");
11845 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11846 s = bfd_get_section_by_name (obfd, ".toc");
11847 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11848 s = bfd_get_section_by_name (obfd, ".tocbss");
11849 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11850 s = bfd_get_section_by_name (obfd, ".plt");
11851 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11852 {
11853 /* This may happen for
11854 o references to TOC base (SYM@toc / TOC[tc0]) without a
11855 .toc directive
11856 o bad linker script
11857 o --gc-sections and empty TOC sections
11858
11859 FIXME: Warn user? */
11860
11861 /* Look for a likely section. We probably won't even be
11862 using TOCstart. */
11863 for (s = obfd->sections; s != NULL; s = s->next)
11864 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
11865 | SEC_EXCLUDE))
11866 == (SEC_ALLOC | SEC_SMALL_DATA))
11867 break;
11868 if (s == NULL)
11869 for (s = obfd->sections; s != NULL; s = s->next)
11870 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
11871 == (SEC_ALLOC | SEC_SMALL_DATA))
11872 break;
11873 if (s == NULL)
11874 for (s = obfd->sections; s != NULL; s = s->next)
11875 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
11876 == SEC_ALLOC)
11877 break;
11878 if (s == NULL)
11879 for (s = obfd->sections; s != NULL; s = s->next)
11880 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
11881 break;
11882 }
11883
11884 TOCstart = 0;
11885 if (s != NULL)
11886 TOCstart = s->output_section->vma + s->output_offset;
11887
11888 return TOCstart;
11889 }
11890
11891 /* Build all the stubs associated with the current output file.
11892 The stubs are kept in a hash table attached to the main linker
11893 hash table. This function is called via gldelf64ppc_finish. */
11894
11895 bfd_boolean
11896 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
11897 struct bfd_link_info *info,
11898 char **stats)
11899 {
11900 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11901 asection *stub_sec;
11902 bfd_byte *p;
11903 int stub_sec_count = 0;
11904
11905 if (htab == NULL)
11906 return FALSE;
11907
11908 htab->emit_stub_syms = emit_stub_syms;
11909
11910 /* Allocate memory to hold the linker stubs. */
11911 for (stub_sec = htab->stub_bfd->sections;
11912 stub_sec != NULL;
11913 stub_sec = stub_sec->next)
11914 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
11915 && stub_sec->size != 0)
11916 {
11917 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
11918 if (stub_sec->contents == NULL)
11919 return FALSE;
11920 /* We want to check that built size is the same as calculated
11921 size. rawsize is a convenient location to use. */
11922 stub_sec->rawsize = stub_sec->size;
11923 stub_sec->size = 0;
11924 }
11925
11926 if (htab->glink != NULL && htab->glink->size != 0)
11927 {
11928 unsigned int indx;
11929 bfd_vma plt0;
11930
11931 /* Build the .glink plt call stub. */
11932 if (htab->emit_stub_syms)
11933 {
11934 struct elf_link_hash_entry *h;
11935 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
11936 TRUE, FALSE, FALSE);
11937 if (h == NULL)
11938 return FALSE;
11939 if (h->root.type == bfd_link_hash_new)
11940 {
11941 h->root.type = bfd_link_hash_defined;
11942 h->root.u.def.section = htab->glink;
11943 h->root.u.def.value = 8;
11944 h->ref_regular = 1;
11945 h->def_regular = 1;
11946 h->ref_regular_nonweak = 1;
11947 h->forced_local = 1;
11948 h->non_elf = 0;
11949 }
11950 }
11951 plt0 = htab->plt->output_section->vma + htab->plt->output_offset - 16;
11952 if (info->emitrelocations)
11953 {
11954 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
11955 if (r == NULL)
11956 return FALSE;
11957 r->r_offset = (htab->glink->output_offset
11958 + htab->glink->output_section->vma);
11959 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
11960 r->r_addend = plt0;
11961 }
11962 p = htab->glink->contents;
11963 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
11964 bfd_put_64 (htab->glink->owner, plt0, p);
11965 p += 8;
11966 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
11967 p += 4;
11968 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
11969 p += 4;
11970 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
11971 p += 4;
11972 bfd_put_32 (htab->glink->owner, LD_R2_M16R11, p);
11973 p += 4;
11974 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
11975 p += 4;
11976 bfd_put_32 (htab->glink->owner, ADD_R12_R2_R11, p);
11977 p += 4;
11978 bfd_put_32 (htab->glink->owner, LD_R11_0R12, p);
11979 p += 4;
11980 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
11981 p += 4;
11982 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
11983 p += 4;
11984 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
11985 p += 4;
11986 bfd_put_32 (htab->glink->owner, BCTR, p);
11987 p += 4;
11988 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
11989 {
11990 bfd_put_32 (htab->glink->owner, NOP, p);
11991 p += 4;
11992 }
11993
11994 /* Build the .glink lazy link call stubs. */
11995 indx = 0;
11996 while (p < htab->glink->contents + htab->glink->size)
11997 {
11998 if (indx < 0x8000)
11999 {
12000 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
12001 p += 4;
12002 }
12003 else
12004 {
12005 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
12006 p += 4;
12007 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
12008 p += 4;
12009 }
12010 bfd_put_32 (htab->glink->owner,
12011 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
12012 indx++;
12013 p += 4;
12014 }
12015 htab->glink->rawsize = p - htab->glink->contents;
12016 }
12017
12018 if (htab->brlt->size != 0)
12019 {
12020 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
12021 htab->brlt->size);
12022 if (htab->brlt->contents == NULL)
12023 return FALSE;
12024 }
12025 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
12026 {
12027 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
12028 htab->relbrlt->size);
12029 if (htab->relbrlt->contents == NULL)
12030 return FALSE;
12031 }
12032
12033 if (htab->glink_eh_frame != NULL
12034 && htab->glink_eh_frame->size != 0)
12035 {
12036 bfd_vma val;
12037 bfd_byte *last_fde;
12038 size_t last_fde_len, size, align, pad;
12039
12040 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
12041 if (p == NULL)
12042 return FALSE;
12043 htab->glink_eh_frame->contents = p;
12044 last_fde = p;
12045
12046 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12047
12048 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
12049 /* CIE length (rewrite in case little-endian). */
12050 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
12051 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
12052 p += sizeof (glink_eh_frame_cie);
12053
12054 for (stub_sec = htab->stub_bfd->sections;
12055 stub_sec != NULL;
12056 stub_sec = stub_sec->next)
12057 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12058 {
12059 last_fde = p;
12060 last_fde_len = 16;
12061 /* FDE length. */
12062 bfd_put_32 (htab->elf.dynobj, 16, p);
12063 p += 4;
12064 /* CIE pointer. */
12065 val = p - htab->glink_eh_frame->contents;
12066 bfd_put_32 (htab->elf.dynobj, val, p);
12067 p += 4;
12068 /* Offset to stub section. */
12069 val = (stub_sec->output_section->vma
12070 + stub_sec->output_offset);
12071 val -= (htab->glink_eh_frame->output_section->vma
12072 + htab->glink_eh_frame->output_offset);
12073 val -= p - htab->glink_eh_frame->contents;
12074 if (val + 0x80000000 > 0xffffffff)
12075 {
12076 info->callbacks->einfo
12077 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12078 stub_sec->name);
12079 return FALSE;
12080 }
12081 bfd_put_32 (htab->elf.dynobj, val, p);
12082 p += 4;
12083 /* stub section size. */
12084 bfd_put_32 (htab->elf.dynobj, stub_sec->rawsize, p);
12085 p += 4;
12086 /* Augmentation. */
12087 p += 1;
12088 /* Pad. */
12089 p += 3;
12090 }
12091 if (htab->glink != NULL && htab->glink->size != 0)
12092 {
12093 last_fde = p;
12094 last_fde_len = 20;
12095 /* FDE length. */
12096 bfd_put_32 (htab->elf.dynobj, 20, p);
12097 p += 4;
12098 /* CIE pointer. */
12099 val = p - htab->glink_eh_frame->contents;
12100 bfd_put_32 (htab->elf.dynobj, val, p);
12101 p += 4;
12102 /* Offset to .glink. */
12103 val = (htab->glink->output_section->vma
12104 + htab->glink->output_offset
12105 + 8);
12106 val -= (htab->glink_eh_frame->output_section->vma
12107 + htab->glink_eh_frame->output_offset);
12108 val -= p - htab->glink_eh_frame->contents;
12109 if (val + 0x80000000 > 0xffffffff)
12110 {
12111 info->callbacks->einfo
12112 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12113 htab->glink->name);
12114 return FALSE;
12115 }
12116 bfd_put_32 (htab->elf.dynobj, val, p);
12117 p += 4;
12118 /* .glink size. */
12119 bfd_put_32 (htab->elf.dynobj, htab->glink->rawsize - 8, p);
12120 p += 4;
12121 /* Augmentation. */
12122 p += 1;
12123
12124 *p++ = DW_CFA_advance_loc + 1;
12125 *p++ = DW_CFA_register;
12126 *p++ = 65;
12127 *p++ = 12;
12128 *p++ = DW_CFA_advance_loc + 4;
12129 *p++ = DW_CFA_restore_extended;
12130 *p++ = 65;
12131 }
12132 /* Subsume any padding into the last FDE if user .eh_frame
12133 sections are aligned more than glink_eh_frame. Otherwise any
12134 zero padding will be seen as a terminator. */
12135 size = p - htab->glink_eh_frame->contents;
12136 align = 1;
12137 align <<= htab->glink_eh_frame->output_section->alignment_power;
12138 align -= 1;
12139 pad = ((size + align) & ~align) - size;
12140 htab->glink_eh_frame->size = size + pad;
12141 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12142 }
12143
12144 /* Build the stubs as directed by the stub hash table. */
12145 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12146
12147 if (htab->relbrlt != NULL)
12148 htab->relbrlt->reloc_count = 0;
12149
12150 if (htab->plt_stub_align != 0)
12151 for (stub_sec = htab->stub_bfd->sections;
12152 stub_sec != NULL;
12153 stub_sec = stub_sec->next)
12154 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12155 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
12156 & (-1 << htab->plt_stub_align));
12157
12158 for (stub_sec = htab->stub_bfd->sections;
12159 stub_sec != NULL;
12160 stub_sec = stub_sec->next)
12161 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12162 {
12163 stub_sec_count += 1;
12164 if (stub_sec->rawsize != stub_sec->size)
12165 break;
12166 }
12167
12168 if (stub_sec != NULL
12169 || htab->glink->rawsize != htab->glink->size
12170 || (htab->glink_eh_frame != NULL
12171 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12172 {
12173 htab->stub_error = TRUE;
12174 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12175 }
12176
12177 if (htab->stub_error)
12178 return FALSE;
12179
12180 if (stats != NULL)
12181 {
12182 *stats = bfd_malloc (500);
12183 if (*stats == NULL)
12184 return FALSE;
12185
12186 sprintf (*stats, _("linker stubs in %u group%s\n"
12187 " branch %lu\n"
12188 " toc adjust %lu\n"
12189 " long branch %lu\n"
12190 " long toc adj %lu\n"
12191 " plt call %lu\n"
12192 " plt call toc %lu"),
12193 stub_sec_count,
12194 stub_sec_count == 1 ? "" : "s",
12195 htab->stub_count[ppc_stub_long_branch - 1],
12196 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12197 htab->stub_count[ppc_stub_plt_branch - 1],
12198 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12199 htab->stub_count[ppc_stub_plt_call - 1],
12200 htab->stub_count[ppc_stub_plt_call_r2save - 1]);
12201 }
12202 return TRUE;
12203 }
12204
12205 /* This function undoes the changes made by add_symbol_adjust. */
12206
12207 static bfd_boolean
12208 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12209 {
12210 struct ppc_link_hash_entry *eh;
12211
12212 if (h->root.type == bfd_link_hash_indirect)
12213 return TRUE;
12214
12215 eh = (struct ppc_link_hash_entry *) h;
12216 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12217 return TRUE;
12218
12219 eh->elf.root.type = bfd_link_hash_undefined;
12220 return TRUE;
12221 }
12222
12223 void
12224 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12225 {
12226 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12227
12228 if (htab != NULL)
12229 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12230 }
12231
12232 /* What to do when ld finds relocations against symbols defined in
12233 discarded sections. */
12234
12235 static unsigned int
12236 ppc64_elf_action_discarded (asection *sec)
12237 {
12238 if (strcmp (".opd", sec->name) == 0)
12239 return 0;
12240
12241 if (strcmp (".toc", sec->name) == 0)
12242 return 0;
12243
12244 if (strcmp (".toc1", sec->name) == 0)
12245 return 0;
12246
12247 return _bfd_elf_default_action_discarded (sec);
12248 }
12249
12250 /* The RELOCATE_SECTION function is called by the ELF backend linker
12251 to handle the relocations for a section.
12252
12253 The relocs are always passed as Rela structures; if the section
12254 actually uses Rel structures, the r_addend field will always be
12255 zero.
12256
12257 This function is responsible for adjust the section contents as
12258 necessary, and (if using Rela relocs and generating a
12259 relocatable output file) adjusting the reloc addend as
12260 necessary.
12261
12262 This function does not have to worry about setting the reloc
12263 address or the reloc symbol index.
12264
12265 LOCAL_SYMS is a pointer to the swapped in local symbols.
12266
12267 LOCAL_SECTIONS is an array giving the section in the input file
12268 corresponding to the st_shndx field of each local symbol.
12269
12270 The global hash table entry for the global symbols can be found
12271 via elf_sym_hashes (input_bfd).
12272
12273 When generating relocatable output, this function must handle
12274 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12275 going to be the section symbol corresponding to the output
12276 section, which means that the addend must be adjusted
12277 accordingly. */
12278
12279 static bfd_boolean
12280 ppc64_elf_relocate_section (bfd *output_bfd,
12281 struct bfd_link_info *info,
12282 bfd *input_bfd,
12283 asection *input_section,
12284 bfd_byte *contents,
12285 Elf_Internal_Rela *relocs,
12286 Elf_Internal_Sym *local_syms,
12287 asection **local_sections)
12288 {
12289 struct ppc_link_hash_table *htab;
12290 Elf_Internal_Shdr *symtab_hdr;
12291 struct elf_link_hash_entry **sym_hashes;
12292 Elf_Internal_Rela *rel;
12293 Elf_Internal_Rela *relend;
12294 Elf_Internal_Rela outrel;
12295 bfd_byte *loc;
12296 struct got_entry **local_got_ents;
12297 bfd_vma TOCstart;
12298 bfd_boolean ret = TRUE;
12299 bfd_boolean is_opd;
12300 /* Assume 'at' branch hints. */
12301 bfd_boolean is_isa_v2 = TRUE;
12302 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
12303
12304 /* Initialize howto table if needed. */
12305 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
12306 ppc_howto_init ();
12307
12308 htab = ppc_hash_table (info);
12309 if (htab == NULL)
12310 return FALSE;
12311
12312 /* Don't relocate stub sections. */
12313 if (input_section->owner == htab->stub_bfd)
12314 return TRUE;
12315
12316 BFD_ASSERT (is_ppc64_elf (input_bfd));
12317
12318 local_got_ents = elf_local_got_ents (input_bfd);
12319 TOCstart = elf_gp (output_bfd);
12320 symtab_hdr = &elf_symtab_hdr (input_bfd);
12321 sym_hashes = elf_sym_hashes (input_bfd);
12322 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
12323
12324 rel = relocs;
12325 relend = relocs + input_section->reloc_count;
12326 for (; rel < relend; rel++)
12327 {
12328 enum elf_ppc64_reloc_type r_type;
12329 bfd_vma addend;
12330 bfd_reloc_status_type r;
12331 Elf_Internal_Sym *sym;
12332 asection *sec;
12333 struct elf_link_hash_entry *h_elf;
12334 struct ppc_link_hash_entry *h;
12335 struct ppc_link_hash_entry *fdh;
12336 const char *sym_name;
12337 unsigned long r_symndx, toc_symndx;
12338 bfd_vma toc_addend;
12339 unsigned char tls_mask, tls_gd, tls_type;
12340 unsigned char sym_type;
12341 bfd_vma relocation;
12342 bfd_boolean unresolved_reloc;
12343 bfd_boolean warned;
12344 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
12345 unsigned int insn;
12346 unsigned int mask;
12347 struct ppc_stub_hash_entry *stub_entry;
12348 bfd_vma max_br_offset;
12349 bfd_vma from;
12350 const Elf_Internal_Rela orig_rel = *rel;
12351
12352 r_type = ELF64_R_TYPE (rel->r_info);
12353 r_symndx = ELF64_R_SYM (rel->r_info);
12354
12355 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
12356 symbol of the previous ADDR64 reloc. The symbol gives us the
12357 proper TOC base to use. */
12358 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
12359 && rel != relocs
12360 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
12361 && is_opd)
12362 r_symndx = ELF64_R_SYM (rel[-1].r_info);
12363
12364 sym = NULL;
12365 sec = NULL;
12366 h_elf = NULL;
12367 sym_name = NULL;
12368 unresolved_reloc = FALSE;
12369 warned = FALSE;
12370
12371 if (r_symndx < symtab_hdr->sh_info)
12372 {
12373 /* It's a local symbol. */
12374 struct _opd_sec_data *opd;
12375
12376 sym = local_syms + r_symndx;
12377 sec = local_sections[r_symndx];
12378 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
12379 sym_type = ELF64_ST_TYPE (sym->st_info);
12380 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12381 opd = get_opd_info (sec);
12382 if (opd != NULL && opd->adjust != NULL)
12383 {
12384 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
12385 if (adjust == -1)
12386 relocation = 0;
12387 else
12388 {
12389 /* If this is a relocation against the opd section sym
12390 and we have edited .opd, adjust the reloc addend so
12391 that ld -r and ld --emit-relocs output is correct.
12392 If it is a reloc against some other .opd symbol,
12393 then the symbol value will be adjusted later. */
12394 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12395 rel->r_addend += adjust;
12396 else
12397 relocation += adjust;
12398 }
12399 }
12400 }
12401 else
12402 {
12403 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12404 r_symndx, symtab_hdr, sym_hashes,
12405 h_elf, sec, relocation,
12406 unresolved_reloc, warned);
12407 sym_name = h_elf->root.root.string;
12408 sym_type = h_elf->type;
12409 if (sec != NULL
12410 && sec->owner == output_bfd
12411 && strcmp (sec->name, ".opd") == 0)
12412 {
12413 /* This is a symbol defined in a linker script. All
12414 such are defined in output sections, even those
12415 defined by simple assignment from a symbol defined in
12416 an input section. Transfer the symbol to an
12417 appropriate input .opd section, so that a branch to
12418 this symbol will be mapped to the location specified
12419 by the opd entry. */
12420 struct bfd_link_order *lo;
12421 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
12422 if (lo->type == bfd_indirect_link_order)
12423 {
12424 asection *isec = lo->u.indirect.section;
12425 if (h_elf->root.u.def.value >= isec->output_offset
12426 && h_elf->root.u.def.value < (isec->output_offset
12427 + isec->size))
12428 {
12429 h_elf->root.u.def.value -= isec->output_offset;
12430 h_elf->root.u.def.section = isec;
12431 sec = isec;
12432 break;
12433 }
12434 }
12435 }
12436 if (h_elf == &htab->dot_toc_dot->elf)
12437 {
12438 relocation = (TOCstart
12439 + htab->stub_group[input_section->id].toc_off);
12440 sec = bfd_abs_section_ptr;
12441 unresolved_reloc = FALSE;
12442 }
12443 }
12444 h = (struct ppc_link_hash_entry *) h_elf;
12445
12446 if (sec != NULL && discarded_section (sec))
12447 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12448 rel, 1, relend,
12449 ppc64_elf_howto_table[r_type], 0,
12450 contents);
12451
12452 if (info->relocatable)
12453 continue;
12454
12455 /* TLS optimizations. Replace instruction sequences and relocs
12456 based on information we collected in tls_optimize. We edit
12457 RELOCS so that --emit-relocs will output something sensible
12458 for the final instruction stream. */
12459 tls_mask = 0;
12460 tls_gd = 0;
12461 toc_symndx = 0;
12462 if (h != NULL)
12463 tls_mask = h->tls_mask;
12464 else if (local_got_ents != NULL)
12465 {
12466 struct plt_entry **local_plt = (struct plt_entry **)
12467 (local_got_ents + symtab_hdr->sh_info);
12468 unsigned char *lgot_masks = (unsigned char *)
12469 (local_plt + symtab_hdr->sh_info);
12470 tls_mask = lgot_masks[r_symndx];
12471 }
12472 if (tls_mask == 0
12473 && (r_type == R_PPC64_TLS
12474 || r_type == R_PPC64_TLSGD
12475 || r_type == R_PPC64_TLSLD))
12476 {
12477 /* Check for toc tls entries. */
12478 unsigned char *toc_tls;
12479
12480 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
12481 &local_syms, rel, input_bfd))
12482 return FALSE;
12483
12484 if (toc_tls)
12485 tls_mask = *toc_tls;
12486 }
12487
12488 /* Check that tls relocs are used with tls syms, and non-tls
12489 relocs are used with non-tls syms. */
12490 if (r_symndx != STN_UNDEF
12491 && r_type != R_PPC64_NONE
12492 && (h == NULL
12493 || h->elf.root.type == bfd_link_hash_defined
12494 || h->elf.root.type == bfd_link_hash_defweak)
12495 && (IS_PPC64_TLS_RELOC (r_type)
12496 != (sym_type == STT_TLS
12497 || (sym_type == STT_SECTION
12498 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
12499 {
12500 if (tls_mask != 0
12501 && (r_type == R_PPC64_TLS
12502 || r_type == R_PPC64_TLSGD
12503 || r_type == R_PPC64_TLSLD))
12504 /* R_PPC64_TLS is OK against a symbol in the TOC. */
12505 ;
12506 else
12507 info->callbacks->einfo
12508 (!IS_PPC64_TLS_RELOC (r_type)
12509 ? _("%P: %H: %s used with TLS symbol `%T'\n")
12510 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
12511 input_bfd, input_section, rel->r_offset,
12512 ppc64_elf_howto_table[r_type]->name,
12513 sym_name);
12514 }
12515
12516 /* Ensure reloc mapping code below stays sane. */
12517 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
12518 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
12519 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
12520 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
12521 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
12522 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
12523 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
12524 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
12525 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
12526 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
12527 abort ();
12528
12529 switch (r_type)
12530 {
12531 default:
12532 break;
12533
12534 case R_PPC64_LO_DS_OPT:
12535 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
12536 if ((insn & (0x3f << 26)) != 58u << 26)
12537 abort ();
12538 insn += (14u << 26) - (58u << 26);
12539 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
12540 r_type = R_PPC64_TOC16_LO;
12541 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12542 break;
12543
12544 case R_PPC64_TOC16:
12545 case R_PPC64_TOC16_LO:
12546 case R_PPC64_TOC16_DS:
12547 case R_PPC64_TOC16_LO_DS:
12548 {
12549 /* Check for toc tls entries. */
12550 unsigned char *toc_tls;
12551 int retval;
12552
12553 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
12554 &local_syms, rel, input_bfd);
12555 if (retval == 0)
12556 return FALSE;
12557
12558 if (toc_tls)
12559 {
12560 tls_mask = *toc_tls;
12561 if (r_type == R_PPC64_TOC16_DS
12562 || r_type == R_PPC64_TOC16_LO_DS)
12563 {
12564 if (tls_mask != 0
12565 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
12566 goto toctprel;
12567 }
12568 else
12569 {
12570 /* If we found a GD reloc pair, then we might be
12571 doing a GD->IE transition. */
12572 if (retval == 2)
12573 {
12574 tls_gd = TLS_TPRELGD;
12575 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12576 goto tls_ldgd_opt;
12577 }
12578 else if (retval == 3)
12579 {
12580 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12581 goto tls_ldgd_opt;
12582 }
12583 }
12584 }
12585 }
12586 break;
12587
12588 case R_PPC64_GOT_TPREL16_HI:
12589 case R_PPC64_GOT_TPREL16_HA:
12590 if (tls_mask != 0
12591 && (tls_mask & TLS_TPREL) == 0)
12592 {
12593 rel->r_offset -= d_offset;
12594 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12595 r_type = R_PPC64_NONE;
12596 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12597 }
12598 break;
12599
12600 case R_PPC64_GOT_TPREL16_DS:
12601 case R_PPC64_GOT_TPREL16_LO_DS:
12602 if (tls_mask != 0
12603 && (tls_mask & TLS_TPREL) == 0)
12604 {
12605 toctprel:
12606 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
12607 insn &= 31 << 21;
12608 insn |= 0x3c0d0000; /* addis 0,13,0 */
12609 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
12610 r_type = R_PPC64_TPREL16_HA;
12611 if (toc_symndx != 0)
12612 {
12613 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
12614 rel->r_addend = toc_addend;
12615 /* We changed the symbol. Start over in order to
12616 get h, sym, sec etc. right. */
12617 rel--;
12618 continue;
12619 }
12620 else
12621 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12622 }
12623 break;
12624
12625 case R_PPC64_TLS:
12626 if (tls_mask != 0
12627 && (tls_mask & TLS_TPREL) == 0)
12628 {
12629 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
12630 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
12631 if (insn == 0)
12632 abort ();
12633 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
12634 /* Was PPC64_TLS which sits on insn boundary, now
12635 PPC64_TPREL16_LO which is at low-order half-word. */
12636 rel->r_offset += d_offset;
12637 r_type = R_PPC64_TPREL16_LO;
12638 if (toc_symndx != 0)
12639 {
12640 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
12641 rel->r_addend = toc_addend;
12642 /* We changed the symbol. Start over in order to
12643 get h, sym, sec etc. right. */
12644 rel--;
12645 continue;
12646 }
12647 else
12648 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12649 }
12650 break;
12651
12652 case R_PPC64_GOT_TLSGD16_HI:
12653 case R_PPC64_GOT_TLSGD16_HA:
12654 tls_gd = TLS_TPRELGD;
12655 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12656 goto tls_gdld_hi;
12657 break;
12658
12659 case R_PPC64_GOT_TLSLD16_HI:
12660 case R_PPC64_GOT_TLSLD16_HA:
12661 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12662 {
12663 tls_gdld_hi:
12664 if ((tls_mask & tls_gd) != 0)
12665 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
12666 + R_PPC64_GOT_TPREL16_DS);
12667 else
12668 {
12669 rel->r_offset -= d_offset;
12670 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12671 r_type = R_PPC64_NONE;
12672 }
12673 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12674 }
12675 break;
12676
12677 case R_PPC64_GOT_TLSGD16:
12678 case R_PPC64_GOT_TLSGD16_LO:
12679 tls_gd = TLS_TPRELGD;
12680 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12681 goto tls_ldgd_opt;
12682 break;
12683
12684 case R_PPC64_GOT_TLSLD16:
12685 case R_PPC64_GOT_TLSLD16_LO:
12686 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12687 {
12688 unsigned int insn1, insn2, insn3;
12689 bfd_vma offset;
12690
12691 tls_ldgd_opt:
12692 offset = (bfd_vma) -1;
12693 /* If not using the newer R_PPC64_TLSGD/LD to mark
12694 __tls_get_addr calls, we must trust that the call
12695 stays with its arg setup insns, ie. that the next
12696 reloc is the __tls_get_addr call associated with
12697 the current reloc. Edit both insns. */
12698 if (input_section->has_tls_get_addr_call
12699 && rel + 1 < relend
12700 && branch_reloc_hash_match (input_bfd, rel + 1,
12701 htab->tls_get_addr,
12702 htab->tls_get_addr_fd))
12703 offset = rel[1].r_offset;
12704 if ((tls_mask & tls_gd) != 0)
12705 {
12706 /* IE */
12707 insn1 = bfd_get_32 (output_bfd,
12708 contents + rel->r_offset - d_offset);
12709 insn1 &= (1 << 26) - (1 << 2);
12710 insn1 |= 58 << 26; /* ld */
12711 insn2 = 0x7c636a14; /* add 3,3,13 */
12712 if (offset != (bfd_vma) -1)
12713 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12714 if ((tls_mask & TLS_EXPLICIT) == 0)
12715 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
12716 + R_PPC64_GOT_TPREL16_DS);
12717 else
12718 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
12719 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12720 }
12721 else
12722 {
12723 /* LE */
12724 insn1 = 0x3c6d0000; /* addis 3,13,0 */
12725 insn2 = 0x38630000; /* addi 3,3,0 */
12726 if (tls_gd == 0)
12727 {
12728 /* Was an LD reloc. */
12729 if (toc_symndx)
12730 sec = local_sections[toc_symndx];
12731 for (r_symndx = 0;
12732 r_symndx < symtab_hdr->sh_info;
12733 r_symndx++)
12734 if (local_sections[r_symndx] == sec)
12735 break;
12736 if (r_symndx >= symtab_hdr->sh_info)
12737 r_symndx = STN_UNDEF;
12738 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
12739 if (r_symndx != STN_UNDEF)
12740 rel->r_addend -= (local_syms[r_symndx].st_value
12741 + sec->output_offset
12742 + sec->output_section->vma);
12743 }
12744 else if (toc_symndx != 0)
12745 {
12746 r_symndx = toc_symndx;
12747 rel->r_addend = toc_addend;
12748 }
12749 r_type = R_PPC64_TPREL16_HA;
12750 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12751 if (offset != (bfd_vma) -1)
12752 {
12753 rel[1].r_info = ELF64_R_INFO (r_symndx,
12754 R_PPC64_TPREL16_LO);
12755 rel[1].r_offset = offset + d_offset;
12756 rel[1].r_addend = rel->r_addend;
12757 }
12758 }
12759 bfd_put_32 (output_bfd, insn1,
12760 contents + rel->r_offset - d_offset);
12761 if (offset != (bfd_vma) -1)
12762 {
12763 insn3 = bfd_get_32 (output_bfd,
12764 contents + offset + 4);
12765 if (insn3 == NOP
12766 || insn3 == CROR_151515 || insn3 == CROR_313131)
12767 {
12768 rel[1].r_offset += 4;
12769 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12770 insn2 = NOP;
12771 }
12772 bfd_put_32 (output_bfd, insn2, contents + offset);
12773 }
12774 if ((tls_mask & tls_gd) == 0
12775 && (tls_gd == 0 || toc_symndx != 0))
12776 {
12777 /* We changed the symbol. Start over in order
12778 to get h, sym, sec etc. right. */
12779 rel--;
12780 continue;
12781 }
12782 }
12783 break;
12784
12785 case R_PPC64_TLSGD:
12786 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12787 {
12788 unsigned int insn2, insn3;
12789 bfd_vma offset = rel->r_offset;
12790
12791 if ((tls_mask & TLS_TPRELGD) != 0)
12792 {
12793 /* IE */
12794 r_type = R_PPC64_NONE;
12795 insn2 = 0x7c636a14; /* add 3,3,13 */
12796 }
12797 else
12798 {
12799 /* LE */
12800 if (toc_symndx != 0)
12801 {
12802 r_symndx = toc_symndx;
12803 rel->r_addend = toc_addend;
12804 }
12805 r_type = R_PPC64_TPREL16_LO;
12806 rel->r_offset = offset + d_offset;
12807 insn2 = 0x38630000; /* addi 3,3,0 */
12808 }
12809 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12810 /* Zap the reloc on the _tls_get_addr call too. */
12811 BFD_ASSERT (offset == rel[1].r_offset);
12812 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12813 insn3 = bfd_get_32 (output_bfd,
12814 contents + offset + 4);
12815 if (insn3 == NOP
12816 || insn3 == CROR_151515 || insn3 == CROR_313131)
12817 {
12818 rel->r_offset += 4;
12819 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12820 insn2 = NOP;
12821 }
12822 bfd_put_32 (output_bfd, insn2, contents + offset);
12823 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
12824 {
12825 rel--;
12826 continue;
12827 }
12828 }
12829 break;
12830
12831 case R_PPC64_TLSLD:
12832 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12833 {
12834 unsigned int insn2, insn3;
12835 bfd_vma offset = rel->r_offset;
12836
12837 if (toc_symndx)
12838 sec = local_sections[toc_symndx];
12839 for (r_symndx = 0;
12840 r_symndx < symtab_hdr->sh_info;
12841 r_symndx++)
12842 if (local_sections[r_symndx] == sec)
12843 break;
12844 if (r_symndx >= symtab_hdr->sh_info)
12845 r_symndx = STN_UNDEF;
12846 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
12847 if (r_symndx != STN_UNDEF)
12848 rel->r_addend -= (local_syms[r_symndx].st_value
12849 + sec->output_offset
12850 + sec->output_section->vma);
12851
12852 r_type = R_PPC64_TPREL16_LO;
12853 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12854 rel->r_offset = offset + d_offset;
12855 /* Zap the reloc on the _tls_get_addr call too. */
12856 BFD_ASSERT (offset == rel[1].r_offset);
12857 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12858 insn2 = 0x38630000; /* addi 3,3,0 */
12859 insn3 = bfd_get_32 (output_bfd,
12860 contents + offset + 4);
12861 if (insn3 == NOP
12862 || insn3 == CROR_151515 || insn3 == CROR_313131)
12863 {
12864 rel->r_offset += 4;
12865 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12866 insn2 = NOP;
12867 }
12868 bfd_put_32 (output_bfd, insn2, contents + offset);
12869 rel--;
12870 continue;
12871 }
12872 break;
12873
12874 case R_PPC64_DTPMOD64:
12875 if (rel + 1 < relend
12876 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
12877 && rel[1].r_offset == rel->r_offset + 8)
12878 {
12879 if ((tls_mask & TLS_GD) == 0)
12880 {
12881 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
12882 if ((tls_mask & TLS_TPRELGD) != 0)
12883 r_type = R_PPC64_TPREL64;
12884 else
12885 {
12886 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
12887 r_type = R_PPC64_NONE;
12888 }
12889 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12890 }
12891 }
12892 else
12893 {
12894 if ((tls_mask & TLS_LD) == 0)
12895 {
12896 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
12897 r_type = R_PPC64_NONE;
12898 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12899 }
12900 }
12901 break;
12902
12903 case R_PPC64_TPREL64:
12904 if ((tls_mask & TLS_TPREL) == 0)
12905 {
12906 r_type = R_PPC64_NONE;
12907 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12908 }
12909 break;
12910 }
12911
12912 /* Handle other relocations that tweak non-addend part of insn. */
12913 insn = 0;
12914 max_br_offset = 1 << 25;
12915 addend = rel->r_addend;
12916 reloc_dest = DEST_NORMAL;
12917 switch (r_type)
12918 {
12919 default:
12920 break;
12921
12922 case R_PPC64_TOCSAVE:
12923 if (relocation + addend == (rel->r_offset
12924 + input_section->output_offset
12925 + input_section->output_section->vma)
12926 && tocsave_find (htab, NO_INSERT,
12927 &local_syms, rel, input_bfd))
12928 {
12929 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
12930 if (insn == NOP
12931 || insn == CROR_151515 || insn == CROR_313131)
12932 bfd_put_32 (input_bfd, STD_R2_40R1,
12933 contents + rel->r_offset);
12934 }
12935 break;
12936
12937 /* Branch taken prediction relocations. */
12938 case R_PPC64_ADDR14_BRTAKEN:
12939 case R_PPC64_REL14_BRTAKEN:
12940 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
12941 /* Fall thru. */
12942
12943 /* Branch not taken prediction relocations. */
12944 case R_PPC64_ADDR14_BRNTAKEN:
12945 case R_PPC64_REL14_BRNTAKEN:
12946 insn |= bfd_get_32 (output_bfd,
12947 contents + rel->r_offset) & ~(0x01 << 21);
12948 /* Fall thru. */
12949
12950 case R_PPC64_REL14:
12951 max_br_offset = 1 << 15;
12952 /* Fall thru. */
12953
12954 case R_PPC64_REL24:
12955 /* Calls to functions with a different TOC, such as calls to
12956 shared objects, need to alter the TOC pointer. This is
12957 done using a linkage stub. A REL24 branching to these
12958 linkage stubs needs to be followed by a nop, as the nop
12959 will be replaced with an instruction to restore the TOC
12960 base pointer. */
12961 fdh = h;
12962 if (h != NULL
12963 && h->oh != NULL
12964 && h->oh->is_func_descriptor)
12965 fdh = ppc_follow_link (h->oh);
12966 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
12967 htab);
12968 if (stub_entry != NULL
12969 && (stub_entry->stub_type == ppc_stub_plt_call
12970 || stub_entry->stub_type == ppc_stub_plt_call_r2save
12971 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
12972 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
12973 {
12974 bfd_boolean can_plt_call = FALSE;
12975
12976 if (rel->r_offset + 8 <= input_section->size)
12977 {
12978 unsigned long nop;
12979 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
12980 if (nop == NOP
12981 || nop == CROR_151515 || nop == CROR_313131)
12982 {
12983 if (h != NULL
12984 && (h == htab->tls_get_addr_fd
12985 || h == htab->tls_get_addr)
12986 && !htab->no_tls_get_addr_opt)
12987 {
12988 /* Special stub used, leave nop alone. */
12989 }
12990 else
12991 bfd_put_32 (input_bfd, LD_R2_40R1,
12992 contents + rel->r_offset + 4);
12993 can_plt_call = TRUE;
12994 }
12995 }
12996
12997 if (!can_plt_call)
12998 {
12999 if (stub_entry->stub_type == ppc_stub_plt_call
13000 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13001 {
13002 /* If this is a plain branch rather than a branch
13003 and link, don't require a nop. However, don't
13004 allow tail calls in a shared library as they
13005 will result in r2 being corrupted. */
13006 unsigned long br;
13007 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
13008 if (info->executable && (br & 1) == 0)
13009 can_plt_call = TRUE;
13010 else
13011 stub_entry = NULL;
13012 }
13013 else if (h != NULL
13014 && strcmp (h->elf.root.root.string,
13015 ".__libc_start_main") == 0)
13016 {
13017 /* Allow crt1 branch to go via a toc adjusting stub. */
13018 can_plt_call = TRUE;
13019 }
13020 else
13021 {
13022 info->callbacks->einfo
13023 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13024 "recompile with -fPIC"),
13025 input_bfd, input_section, rel->r_offset, sym_name);
13026
13027 bfd_set_error (bfd_error_bad_value);
13028 ret = FALSE;
13029 }
13030 }
13031
13032 if (can_plt_call
13033 && (stub_entry->stub_type == ppc_stub_plt_call
13034 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
13035 unresolved_reloc = FALSE;
13036 }
13037
13038 if ((stub_entry == NULL
13039 || stub_entry->stub_type == ppc_stub_long_branch
13040 || stub_entry->stub_type == ppc_stub_plt_branch)
13041 && get_opd_info (sec) != NULL)
13042 {
13043 /* The branch destination is the value of the opd entry. */
13044 bfd_vma off = (relocation + addend
13045 - sec->output_section->vma
13046 - sec->output_offset);
13047 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
13048 if (dest != (bfd_vma) -1)
13049 {
13050 relocation = dest;
13051 addend = 0;
13052 reloc_dest = DEST_OPD;
13053 }
13054 }
13055
13056 /* If the branch is out of reach we ought to have a long
13057 branch stub. */
13058 from = (rel->r_offset
13059 + input_section->output_offset
13060 + input_section->output_section->vma);
13061
13062 if (stub_entry != NULL
13063 && (stub_entry->stub_type == ppc_stub_long_branch
13064 || stub_entry->stub_type == ppc_stub_plt_branch)
13065 && (r_type == R_PPC64_ADDR14_BRTAKEN
13066 || r_type == R_PPC64_ADDR14_BRNTAKEN
13067 || (relocation + addend - from + max_br_offset
13068 < 2 * max_br_offset)))
13069 /* Don't use the stub if this branch is in range. */
13070 stub_entry = NULL;
13071
13072 if (stub_entry != NULL)
13073 {
13074 /* Munge up the value and addend so that we call the stub
13075 rather than the procedure directly. */
13076 relocation = (stub_entry->stub_offset
13077 + stub_entry->stub_sec->output_offset
13078 + stub_entry->stub_sec->output_section->vma);
13079 addend = 0;
13080 reloc_dest = DEST_STUB;
13081
13082 if ((stub_entry->stub_type == ppc_stub_plt_call
13083 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13084 && (ALWAYS_EMIT_R2SAVE
13085 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13086 && rel + 1 < relend
13087 && rel[1].r_offset == rel->r_offset + 4
13088 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13089 relocation += 4;
13090 }
13091
13092 if (insn != 0)
13093 {
13094 if (is_isa_v2)
13095 {
13096 /* Set 'a' bit. This is 0b00010 in BO field for branch
13097 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13098 for branch on CTR insns (BO == 1a00t or 1a01t). */
13099 if ((insn & (0x14 << 21)) == (0x04 << 21))
13100 insn |= 0x02 << 21;
13101 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13102 insn |= 0x08 << 21;
13103 else
13104 break;
13105 }
13106 else
13107 {
13108 /* Invert 'y' bit if not the default. */
13109 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13110 insn ^= 0x01 << 21;
13111 }
13112
13113 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13114 }
13115
13116 /* NOP out calls to undefined weak functions.
13117 We can thus call a weak function without first
13118 checking whether the function is defined. */
13119 else if (h != NULL
13120 && h->elf.root.type == bfd_link_hash_undefweak
13121 && h->elf.dynindx == -1
13122 && r_type == R_PPC64_REL24
13123 && relocation == 0
13124 && addend == 0)
13125 {
13126 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13127 continue;
13128 }
13129 break;
13130 }
13131
13132 /* Set `addend'. */
13133 tls_type = 0;
13134 switch (r_type)
13135 {
13136 default:
13137 info->callbacks->einfo
13138 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13139 input_bfd, (int) r_type, sym_name);
13140
13141 bfd_set_error (bfd_error_bad_value);
13142 ret = FALSE;
13143 continue;
13144
13145 case R_PPC64_NONE:
13146 case R_PPC64_TLS:
13147 case R_PPC64_TLSGD:
13148 case R_PPC64_TLSLD:
13149 case R_PPC64_TOCSAVE:
13150 case R_PPC64_GNU_VTINHERIT:
13151 case R_PPC64_GNU_VTENTRY:
13152 continue;
13153
13154 /* GOT16 relocations. Like an ADDR16 using the symbol's
13155 address in the GOT as relocation value instead of the
13156 symbol's value itself. Also, create a GOT entry for the
13157 symbol and put the symbol value there. */
13158 case R_PPC64_GOT_TLSGD16:
13159 case R_PPC64_GOT_TLSGD16_LO:
13160 case R_PPC64_GOT_TLSGD16_HI:
13161 case R_PPC64_GOT_TLSGD16_HA:
13162 tls_type = TLS_TLS | TLS_GD;
13163 goto dogot;
13164
13165 case R_PPC64_GOT_TLSLD16:
13166 case R_PPC64_GOT_TLSLD16_LO:
13167 case R_PPC64_GOT_TLSLD16_HI:
13168 case R_PPC64_GOT_TLSLD16_HA:
13169 tls_type = TLS_TLS | TLS_LD;
13170 goto dogot;
13171
13172 case R_PPC64_GOT_TPREL16_DS:
13173 case R_PPC64_GOT_TPREL16_LO_DS:
13174 case R_PPC64_GOT_TPREL16_HI:
13175 case R_PPC64_GOT_TPREL16_HA:
13176 tls_type = TLS_TLS | TLS_TPREL;
13177 goto dogot;
13178
13179 case R_PPC64_GOT_DTPREL16_DS:
13180 case R_PPC64_GOT_DTPREL16_LO_DS:
13181 case R_PPC64_GOT_DTPREL16_HI:
13182 case R_PPC64_GOT_DTPREL16_HA:
13183 tls_type = TLS_TLS | TLS_DTPREL;
13184 goto dogot;
13185
13186 case R_PPC64_GOT16:
13187 case R_PPC64_GOT16_LO:
13188 case R_PPC64_GOT16_HI:
13189 case R_PPC64_GOT16_HA:
13190 case R_PPC64_GOT16_DS:
13191 case R_PPC64_GOT16_LO_DS:
13192 dogot:
13193 {
13194 /* Relocation is to the entry for this symbol in the global
13195 offset table. */
13196 asection *got;
13197 bfd_vma *offp;
13198 bfd_vma off;
13199 unsigned long indx = 0;
13200 struct got_entry *ent;
13201
13202 if (tls_type == (TLS_TLS | TLS_LD)
13203 && (h == NULL
13204 || !h->elf.def_dynamic))
13205 ent = ppc64_tlsld_got (input_bfd);
13206 else
13207 {
13208
13209 if (h != NULL)
13210 {
13211 bfd_boolean dyn = htab->elf.dynamic_sections_created;
13212 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
13213 &h->elf)
13214 || (info->shared
13215 && SYMBOL_CALLS_LOCAL (info, &h->elf)))
13216 /* This is actually a static link, or it is a
13217 -Bsymbolic link and the symbol is defined
13218 locally, or the symbol was forced to be local
13219 because of a version file. */
13220 ;
13221 else
13222 {
13223 BFD_ASSERT (h->elf.dynindx != -1);
13224 indx = h->elf.dynindx;
13225 unresolved_reloc = FALSE;
13226 }
13227 ent = h->elf.got.glist;
13228 }
13229 else
13230 {
13231 if (local_got_ents == NULL)
13232 abort ();
13233 ent = local_got_ents[r_symndx];
13234 }
13235
13236 for (; ent != NULL; ent = ent->next)
13237 if (ent->addend == orig_rel.r_addend
13238 && ent->owner == input_bfd
13239 && ent->tls_type == tls_type)
13240 break;
13241 }
13242
13243 if (ent == NULL)
13244 abort ();
13245 if (ent->is_indirect)
13246 ent = ent->got.ent;
13247 offp = &ent->got.offset;
13248 got = ppc64_elf_tdata (ent->owner)->got;
13249 if (got == NULL)
13250 abort ();
13251
13252 /* The offset must always be a multiple of 8. We use the
13253 least significant bit to record whether we have already
13254 processed this entry. */
13255 off = *offp;
13256 if ((off & 1) != 0)
13257 off &= ~1;
13258 else
13259 {
13260 /* Generate relocs for the dynamic linker, except in
13261 the case of TLSLD where we'll use one entry per
13262 module. */
13263 asection *relgot;
13264 bfd_boolean ifunc;
13265
13266 *offp = off | 1;
13267 relgot = NULL;
13268 ifunc = (h != NULL
13269 ? h->elf.type == STT_GNU_IFUNC
13270 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
13271 if (ifunc)
13272 relgot = htab->reliplt;
13273 else if ((info->shared || indx != 0)
13274 && (h == NULL
13275 || (tls_type == (TLS_TLS | TLS_LD)
13276 && !h->elf.def_dynamic)
13277 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13278 || h->elf.root.type != bfd_link_hash_undefweak))
13279 relgot = ppc64_elf_tdata (ent->owner)->relgot;
13280 if (relgot != NULL)
13281 {
13282 outrel.r_offset = (got->output_section->vma
13283 + got->output_offset
13284 + off);
13285 outrel.r_addend = addend;
13286 if (tls_type & (TLS_LD | TLS_GD))
13287 {
13288 outrel.r_addend = 0;
13289 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
13290 if (tls_type == (TLS_TLS | TLS_GD))
13291 {
13292 loc = relgot->contents;
13293 loc += (relgot->reloc_count++
13294 * sizeof (Elf64_External_Rela));
13295 bfd_elf64_swap_reloca_out (output_bfd,
13296 &outrel, loc);
13297 outrel.r_offset += 8;
13298 outrel.r_addend = addend;
13299 outrel.r_info
13300 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13301 }
13302 }
13303 else if (tls_type == (TLS_TLS | TLS_DTPREL))
13304 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13305 else if (tls_type == (TLS_TLS | TLS_TPREL))
13306 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
13307 else if (indx != 0)
13308 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
13309 else
13310 {
13311 if (ifunc)
13312 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13313 else
13314 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13315
13316 /* Write the .got section contents for the sake
13317 of prelink. */
13318 loc = got->contents + off;
13319 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
13320 loc);
13321 }
13322
13323 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
13324 {
13325 outrel.r_addend += relocation;
13326 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
13327 outrel.r_addend -= htab->elf.tls_sec->vma;
13328 }
13329 loc = relgot->contents;
13330 loc += (relgot->reloc_count++
13331 * sizeof (Elf64_External_Rela));
13332 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13333 }
13334
13335 /* Init the .got section contents here if we're not
13336 emitting a reloc. */
13337 else
13338 {
13339 relocation += addend;
13340 if (tls_type == (TLS_TLS | TLS_LD))
13341 relocation = 1;
13342 else if (tls_type != 0)
13343 {
13344 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
13345 if (tls_type == (TLS_TLS | TLS_TPREL))
13346 relocation += DTP_OFFSET - TP_OFFSET;
13347
13348 if (tls_type == (TLS_TLS | TLS_GD))
13349 {
13350 bfd_put_64 (output_bfd, relocation,
13351 got->contents + off + 8);
13352 relocation = 1;
13353 }
13354 }
13355
13356 bfd_put_64 (output_bfd, relocation,
13357 got->contents + off);
13358 }
13359 }
13360
13361 if (off >= (bfd_vma) -2)
13362 abort ();
13363
13364 relocation = got->output_section->vma + got->output_offset + off;
13365 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
13366 }
13367 break;
13368
13369 case R_PPC64_PLT16_HA:
13370 case R_PPC64_PLT16_HI:
13371 case R_PPC64_PLT16_LO:
13372 case R_PPC64_PLT32:
13373 case R_PPC64_PLT64:
13374 /* Relocation is to the entry for this symbol in the
13375 procedure linkage table. */
13376
13377 /* Resolve a PLT reloc against a local symbol directly,
13378 without using the procedure linkage table. */
13379 if (h == NULL)
13380 break;
13381
13382 /* It's possible that we didn't make a PLT entry for this
13383 symbol. This happens when statically linking PIC code,
13384 or when using -Bsymbolic. Go find a match if there is a
13385 PLT entry. */
13386 if (htab->plt != NULL)
13387 {
13388 struct plt_entry *ent;
13389 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
13390 if (ent->addend == orig_rel.r_addend
13391 && ent->plt.offset != (bfd_vma) -1)
13392 {
13393 relocation = (htab->plt->output_section->vma
13394 + htab->plt->output_offset
13395 + ent->plt.offset);
13396 unresolved_reloc = FALSE;
13397 }
13398 }
13399 break;
13400
13401 case R_PPC64_TOC:
13402 /* Relocation value is TOC base. */
13403 relocation = TOCstart;
13404 if (r_symndx == STN_UNDEF)
13405 relocation += htab->stub_group[input_section->id].toc_off;
13406 else if (unresolved_reloc)
13407 ;
13408 else if (sec != NULL && sec->id <= htab->top_id)
13409 relocation += htab->stub_group[sec->id].toc_off;
13410 else
13411 unresolved_reloc = TRUE;
13412 goto dodyn;
13413
13414 /* TOC16 relocs. We want the offset relative to the TOC base,
13415 which is the address of the start of the TOC plus 0x8000.
13416 The TOC consists of sections .got, .toc, .tocbss, and .plt,
13417 in this order. */
13418 case R_PPC64_TOC16:
13419 case R_PPC64_TOC16_LO:
13420 case R_PPC64_TOC16_HI:
13421 case R_PPC64_TOC16_DS:
13422 case R_PPC64_TOC16_LO_DS:
13423 case R_PPC64_TOC16_HA:
13424 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
13425 break;
13426
13427 /* Relocate against the beginning of the section. */
13428 case R_PPC64_SECTOFF:
13429 case R_PPC64_SECTOFF_LO:
13430 case R_PPC64_SECTOFF_HI:
13431 case R_PPC64_SECTOFF_DS:
13432 case R_PPC64_SECTOFF_LO_DS:
13433 case R_PPC64_SECTOFF_HA:
13434 if (sec != NULL)
13435 addend -= sec->output_section->vma;
13436 break;
13437
13438 case R_PPC64_REL16:
13439 case R_PPC64_REL16_LO:
13440 case R_PPC64_REL16_HI:
13441 case R_PPC64_REL16_HA:
13442 break;
13443
13444 case R_PPC64_REL14:
13445 case R_PPC64_REL14_BRNTAKEN:
13446 case R_PPC64_REL14_BRTAKEN:
13447 case R_PPC64_REL24:
13448 break;
13449
13450 case R_PPC64_TPREL16:
13451 case R_PPC64_TPREL16_LO:
13452 case R_PPC64_TPREL16_HI:
13453 case R_PPC64_TPREL16_HA:
13454 case R_PPC64_TPREL16_DS:
13455 case R_PPC64_TPREL16_LO_DS:
13456 case R_PPC64_TPREL16_HIGHER:
13457 case R_PPC64_TPREL16_HIGHERA:
13458 case R_PPC64_TPREL16_HIGHEST:
13459 case R_PPC64_TPREL16_HIGHESTA:
13460 if (h != NULL
13461 && h->elf.root.type == bfd_link_hash_undefweak
13462 && h->elf.dynindx == -1)
13463 {
13464 /* Make this relocation against an undefined weak symbol
13465 resolve to zero. This is really just a tweak, since
13466 code using weak externs ought to check that they are
13467 defined before using them. */
13468 bfd_byte *p = contents + rel->r_offset - d_offset;
13469
13470 insn = bfd_get_32 (output_bfd, p);
13471 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
13472 if (insn != 0)
13473 bfd_put_32 (output_bfd, insn, p);
13474 break;
13475 }
13476 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
13477 if (info->shared)
13478 /* The TPREL16 relocs shouldn't really be used in shared
13479 libs as they will result in DT_TEXTREL being set, but
13480 support them anyway. */
13481 goto dodyn;
13482 break;
13483
13484 case R_PPC64_DTPREL16:
13485 case R_PPC64_DTPREL16_LO:
13486 case R_PPC64_DTPREL16_HI:
13487 case R_PPC64_DTPREL16_HA:
13488 case R_PPC64_DTPREL16_DS:
13489 case R_PPC64_DTPREL16_LO_DS:
13490 case R_PPC64_DTPREL16_HIGHER:
13491 case R_PPC64_DTPREL16_HIGHERA:
13492 case R_PPC64_DTPREL16_HIGHEST:
13493 case R_PPC64_DTPREL16_HIGHESTA:
13494 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
13495 break;
13496
13497 case R_PPC64_DTPMOD64:
13498 relocation = 1;
13499 addend = 0;
13500 goto dodyn;
13501
13502 case R_PPC64_TPREL64:
13503 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
13504 goto dodyn;
13505
13506 case R_PPC64_DTPREL64:
13507 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
13508 /* Fall thru */
13509
13510 /* Relocations that may need to be propagated if this is a
13511 dynamic object. */
13512 case R_PPC64_REL30:
13513 case R_PPC64_REL32:
13514 case R_PPC64_REL64:
13515 case R_PPC64_ADDR14:
13516 case R_PPC64_ADDR14_BRNTAKEN:
13517 case R_PPC64_ADDR14_BRTAKEN:
13518 case R_PPC64_ADDR16:
13519 case R_PPC64_ADDR16_DS:
13520 case R_PPC64_ADDR16_HA:
13521 case R_PPC64_ADDR16_HI:
13522 case R_PPC64_ADDR16_HIGHER:
13523 case R_PPC64_ADDR16_HIGHERA:
13524 case R_PPC64_ADDR16_HIGHEST:
13525 case R_PPC64_ADDR16_HIGHESTA:
13526 case R_PPC64_ADDR16_LO:
13527 case R_PPC64_ADDR16_LO_DS:
13528 case R_PPC64_ADDR24:
13529 case R_PPC64_ADDR32:
13530 case R_PPC64_ADDR64:
13531 case R_PPC64_UADDR16:
13532 case R_PPC64_UADDR32:
13533 case R_PPC64_UADDR64:
13534 dodyn:
13535 if ((input_section->flags & SEC_ALLOC) == 0)
13536 break;
13537
13538 if (NO_OPD_RELOCS && is_opd)
13539 break;
13540
13541 if ((info->shared
13542 && (h == NULL
13543 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13544 || h->elf.root.type != bfd_link_hash_undefweak)
13545 && (must_be_dyn_reloc (info, r_type)
13546 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
13547 || (ELIMINATE_COPY_RELOCS
13548 && !info->shared
13549 && h != NULL
13550 && h->elf.dynindx != -1
13551 && !h->elf.non_got_ref
13552 && !h->elf.def_regular)
13553 || (!info->shared
13554 && (h != NULL
13555 ? h->elf.type == STT_GNU_IFUNC
13556 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
13557 {
13558 bfd_boolean skip, relocate;
13559 asection *sreloc;
13560 bfd_vma out_off;
13561
13562 /* When generating a dynamic object, these relocations
13563 are copied into the output file to be resolved at run
13564 time. */
13565
13566 skip = FALSE;
13567 relocate = FALSE;
13568
13569 out_off = _bfd_elf_section_offset (output_bfd, info,
13570 input_section, rel->r_offset);
13571 if (out_off == (bfd_vma) -1)
13572 skip = TRUE;
13573 else if (out_off == (bfd_vma) -2)
13574 skip = TRUE, relocate = TRUE;
13575 out_off += (input_section->output_section->vma
13576 + input_section->output_offset);
13577 outrel.r_offset = out_off;
13578 outrel.r_addend = rel->r_addend;
13579
13580 /* Optimize unaligned reloc use. */
13581 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
13582 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
13583 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
13584 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
13585 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
13586 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
13587 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
13588 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
13589 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
13590
13591 if (skip)
13592 memset (&outrel, 0, sizeof outrel);
13593 else if (!SYMBOL_CALLS_LOCAL (info, &h->elf)
13594 && !is_opd
13595 && r_type != R_PPC64_TOC)
13596 {
13597 BFD_ASSERT (h->elf.dynindx != -1);
13598 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
13599 }
13600 else
13601 {
13602 /* This symbol is local, or marked to become local,
13603 or this is an opd section reloc which must point
13604 at a local function. */
13605 outrel.r_addend += relocation;
13606 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
13607 {
13608 if (is_opd && h != NULL)
13609 {
13610 /* Lie about opd entries. This case occurs
13611 when building shared libraries and we
13612 reference a function in another shared
13613 lib. The same thing happens for a weak
13614 definition in an application that's
13615 overridden by a strong definition in a
13616 shared lib. (I believe this is a generic
13617 bug in binutils handling of weak syms.)
13618 In these cases we won't use the opd
13619 entry in this lib. */
13620 unresolved_reloc = FALSE;
13621 }
13622 if (!is_opd
13623 && r_type == R_PPC64_ADDR64
13624 && (h != NULL
13625 ? h->elf.type == STT_GNU_IFUNC
13626 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
13627 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13628 else
13629 {
13630 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13631
13632 /* We need to relocate .opd contents for ld.so.
13633 Prelink also wants simple and consistent rules
13634 for relocs. This make all RELATIVE relocs have
13635 *r_offset equal to r_addend. */
13636 relocate = TRUE;
13637 }
13638 }
13639 else
13640 {
13641 long indx = 0;
13642
13643 if (h != NULL
13644 ? h->elf.type == STT_GNU_IFUNC
13645 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13646 {
13647 info->callbacks->einfo
13648 (_("%P: %H: %s for indirect "
13649 "function `%T' unsupported\n"),
13650 input_bfd, input_section, rel->r_offset,
13651 ppc64_elf_howto_table[r_type]->name,
13652 sym_name);
13653 ret = FALSE;
13654 }
13655 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
13656 ;
13657 else if (sec == NULL || sec->owner == NULL)
13658 {
13659 bfd_set_error (bfd_error_bad_value);
13660 return FALSE;
13661 }
13662 else
13663 {
13664 asection *osec;
13665
13666 osec = sec->output_section;
13667 indx = elf_section_data (osec)->dynindx;
13668
13669 if (indx == 0)
13670 {
13671 if ((osec->flags & SEC_READONLY) == 0
13672 && htab->elf.data_index_section != NULL)
13673 osec = htab->elf.data_index_section;
13674 else
13675 osec = htab->elf.text_index_section;
13676 indx = elf_section_data (osec)->dynindx;
13677 }
13678 BFD_ASSERT (indx != 0);
13679
13680 /* We are turning this relocation into one
13681 against a section symbol, so subtract out
13682 the output section's address but not the
13683 offset of the input section in the output
13684 section. */
13685 outrel.r_addend -= osec->vma;
13686 }
13687
13688 outrel.r_info = ELF64_R_INFO (indx, r_type);
13689 }
13690 }
13691
13692 sreloc = elf_section_data (input_section)->sreloc;
13693 if (h != NULL
13694 ? h->elf.type == STT_GNU_IFUNC
13695 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13696 sreloc = htab->reliplt;
13697 if (sreloc == NULL)
13698 abort ();
13699
13700 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
13701 >= sreloc->size)
13702 abort ();
13703 loc = sreloc->contents;
13704 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
13705 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13706
13707 /* If this reloc is against an external symbol, it will
13708 be computed at runtime, so there's no need to do
13709 anything now. However, for the sake of prelink ensure
13710 that the section contents are a known value. */
13711 if (! relocate)
13712 {
13713 unresolved_reloc = FALSE;
13714 /* The value chosen here is quite arbitrary as ld.so
13715 ignores section contents except for the special
13716 case of .opd where the contents might be accessed
13717 before relocation. Choose zero, as that won't
13718 cause reloc overflow. */
13719 relocation = 0;
13720 addend = 0;
13721 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
13722 to improve backward compatibility with older
13723 versions of ld. */
13724 if (r_type == R_PPC64_ADDR64)
13725 addend = outrel.r_addend;
13726 /* Adjust pc_relative relocs to have zero in *r_offset. */
13727 else if (ppc64_elf_howto_table[r_type]->pc_relative)
13728 addend = (input_section->output_section->vma
13729 + input_section->output_offset
13730 + rel->r_offset);
13731 }
13732 }
13733 break;
13734
13735 case R_PPC64_COPY:
13736 case R_PPC64_GLOB_DAT:
13737 case R_PPC64_JMP_SLOT:
13738 case R_PPC64_JMP_IREL:
13739 case R_PPC64_RELATIVE:
13740 /* We shouldn't ever see these dynamic relocs in relocatable
13741 files. */
13742 /* Fall through. */
13743
13744 case R_PPC64_PLTGOT16:
13745 case R_PPC64_PLTGOT16_DS:
13746 case R_PPC64_PLTGOT16_HA:
13747 case R_PPC64_PLTGOT16_HI:
13748 case R_PPC64_PLTGOT16_LO:
13749 case R_PPC64_PLTGOT16_LO_DS:
13750 case R_PPC64_PLTREL32:
13751 case R_PPC64_PLTREL64:
13752 /* These ones haven't been implemented yet. */
13753
13754 info->callbacks->einfo
13755 (_("%P: %B: %s is not supported for `%T'\n"),
13756 input_bfd,
13757 ppc64_elf_howto_table[r_type]->name, sym_name);
13758
13759 bfd_set_error (bfd_error_invalid_operation);
13760 ret = FALSE;
13761 continue;
13762 }
13763
13764 /* Multi-instruction sequences that access the TOC can be
13765 optimized, eg. addis ra,r2,0; addi rb,ra,x;
13766 to nop; addi rb,r2,x; */
13767 switch (r_type)
13768 {
13769 default:
13770 break;
13771
13772 case R_PPC64_GOT_TLSLD16_HI:
13773 case R_PPC64_GOT_TLSGD16_HI:
13774 case R_PPC64_GOT_TPREL16_HI:
13775 case R_PPC64_GOT_DTPREL16_HI:
13776 case R_PPC64_GOT16_HI:
13777 case R_PPC64_TOC16_HI:
13778 /* These relocs would only be useful if building up an
13779 offset to later add to r2, perhaps in an indexed
13780 addressing mode instruction. Don't try to optimize.
13781 Unfortunately, the possibility of someone building up an
13782 offset like this or even with the HA relocs, means that
13783 we need to check the high insn when optimizing the low
13784 insn. */
13785 break;
13786
13787 case R_PPC64_GOT_TLSLD16_HA:
13788 case R_PPC64_GOT_TLSGD16_HA:
13789 case R_PPC64_GOT_TPREL16_HA:
13790 case R_PPC64_GOT_DTPREL16_HA:
13791 case R_PPC64_GOT16_HA:
13792 case R_PPC64_TOC16_HA:
13793 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
13794 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
13795 {
13796 bfd_byte *p = contents + (rel->r_offset & ~3);
13797 bfd_put_32 (input_bfd, NOP, p);
13798 }
13799 break;
13800
13801 case R_PPC64_GOT_TLSLD16_LO:
13802 case R_PPC64_GOT_TLSGD16_LO:
13803 case R_PPC64_GOT_TPREL16_LO_DS:
13804 case R_PPC64_GOT_DTPREL16_LO_DS:
13805 case R_PPC64_GOT16_LO:
13806 case R_PPC64_GOT16_LO_DS:
13807 case R_PPC64_TOC16_LO:
13808 case R_PPC64_TOC16_LO_DS:
13809 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
13810 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
13811 {
13812 bfd_byte *p = contents + (rel->r_offset & ~3);
13813 insn = bfd_get_32 (input_bfd, p);
13814 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
13815 {
13816 /* Transform addic to addi when we change reg. */
13817 insn &= ~((0x3f << 26) | (0x1f << 16));
13818 insn |= (14u << 26) | (2 << 16);
13819 }
13820 else
13821 {
13822 insn &= ~(0x1f << 16);
13823 insn |= 2 << 16;
13824 }
13825 bfd_put_32 (input_bfd, insn, p);
13826 }
13827 break;
13828 }
13829
13830 /* Do any further special processing. */
13831 switch (r_type)
13832 {
13833 default:
13834 break;
13835
13836 case R_PPC64_ADDR16_HA:
13837 case R_PPC64_REL16_HA:
13838 case R_PPC64_ADDR16_HIGHERA:
13839 case R_PPC64_ADDR16_HIGHESTA:
13840 case R_PPC64_TOC16_HA:
13841 case R_PPC64_SECTOFF_HA:
13842 case R_PPC64_TPREL16_HA:
13843 case R_PPC64_DTPREL16_HA:
13844 case R_PPC64_TPREL16_HIGHER:
13845 case R_PPC64_TPREL16_HIGHERA:
13846 case R_PPC64_TPREL16_HIGHEST:
13847 case R_PPC64_TPREL16_HIGHESTA:
13848 case R_PPC64_DTPREL16_HIGHER:
13849 case R_PPC64_DTPREL16_HIGHERA:
13850 case R_PPC64_DTPREL16_HIGHEST:
13851 case R_PPC64_DTPREL16_HIGHESTA:
13852 /* It's just possible that this symbol is a weak symbol
13853 that's not actually defined anywhere. In that case,
13854 'sec' would be NULL, and we should leave the symbol
13855 alone (it will be set to zero elsewhere in the link). */
13856 if (sec == NULL)
13857 break;
13858 /* Fall thru */
13859
13860 case R_PPC64_GOT16_HA:
13861 case R_PPC64_PLTGOT16_HA:
13862 case R_PPC64_PLT16_HA:
13863 case R_PPC64_GOT_TLSGD16_HA:
13864 case R_PPC64_GOT_TLSLD16_HA:
13865 case R_PPC64_GOT_TPREL16_HA:
13866 case R_PPC64_GOT_DTPREL16_HA:
13867 /* Add 0x10000 if sign bit in 0:15 is set.
13868 Bits 0:15 are not used. */
13869 addend += 0x8000;
13870 break;
13871
13872 case R_PPC64_ADDR16_DS:
13873 case R_PPC64_ADDR16_LO_DS:
13874 case R_PPC64_GOT16_DS:
13875 case R_PPC64_GOT16_LO_DS:
13876 case R_PPC64_PLT16_LO_DS:
13877 case R_PPC64_SECTOFF_DS:
13878 case R_PPC64_SECTOFF_LO_DS:
13879 case R_PPC64_TOC16_DS:
13880 case R_PPC64_TOC16_LO_DS:
13881 case R_PPC64_PLTGOT16_DS:
13882 case R_PPC64_PLTGOT16_LO_DS:
13883 case R_PPC64_GOT_TPREL16_DS:
13884 case R_PPC64_GOT_TPREL16_LO_DS:
13885 case R_PPC64_GOT_DTPREL16_DS:
13886 case R_PPC64_GOT_DTPREL16_LO_DS:
13887 case R_PPC64_TPREL16_DS:
13888 case R_PPC64_TPREL16_LO_DS:
13889 case R_PPC64_DTPREL16_DS:
13890 case R_PPC64_DTPREL16_LO_DS:
13891 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
13892 mask = 3;
13893 /* If this reloc is against an lq insn, then the value must be
13894 a multiple of 16. This is somewhat of a hack, but the
13895 "correct" way to do this by defining _DQ forms of all the
13896 _DS relocs bloats all reloc switches in this file. It
13897 doesn't seem to make much sense to use any of these relocs
13898 in data, so testing the insn should be safe. */
13899 if ((insn & (0x3f << 26)) == (56u << 26))
13900 mask = 15;
13901 if (((relocation + addend) & mask) != 0)
13902 {
13903 info->callbacks->einfo
13904 (_("%P: %H: error: %s not a multiple of %u\n"),
13905 input_bfd, input_section, rel->r_offset,
13906 ppc64_elf_howto_table[r_type]->name,
13907 mask + 1);
13908 bfd_set_error (bfd_error_bad_value);
13909 ret = FALSE;
13910 continue;
13911 }
13912 break;
13913 }
13914
13915 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13916 because such sections are not SEC_ALLOC and thus ld.so will
13917 not process them. */
13918 if (unresolved_reloc
13919 && !((input_section->flags & SEC_DEBUGGING) != 0
13920 && h->elf.def_dynamic)
13921 && _bfd_elf_section_offset (output_bfd, info, input_section,
13922 rel->r_offset) != (bfd_vma) -1)
13923 {
13924 info->callbacks->einfo
13925 (_("%P: %H: unresolvable %s against `%T'\n"),
13926 input_bfd, input_section, rel->r_offset,
13927 ppc64_elf_howto_table[(int) r_type]->name,
13928 h->elf.root.root.string);
13929 ret = FALSE;
13930 }
13931
13932 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
13933 input_bfd,
13934 input_section,
13935 contents,
13936 rel->r_offset,
13937 relocation,
13938 addend);
13939
13940 if (r != bfd_reloc_ok)
13941 {
13942 char *more_info = NULL;
13943 const char *reloc_name = ppc64_elf_howto_table[r_type]->name;
13944
13945 if (reloc_dest != DEST_NORMAL)
13946 {
13947 more_info = bfd_malloc (strlen (reloc_name) + 8);
13948 if (more_info != NULL)
13949 {
13950 strcpy (more_info, reloc_name);
13951 strcat (more_info, (reloc_dest == DEST_OPD
13952 ? " (OPD)" : " (stub)"));
13953 reloc_name = more_info;
13954 }
13955 }
13956
13957 if (r == bfd_reloc_overflow)
13958 {
13959 if (warned)
13960 continue;
13961 if (h != NULL
13962 && h->elf.root.type == bfd_link_hash_undefweak
13963 && ppc64_elf_howto_table[r_type]->pc_relative)
13964 {
13965 /* Assume this is a call protected by other code that
13966 detects the symbol is undefined. If this is the case,
13967 we can safely ignore the overflow. If not, the
13968 program is hosed anyway, and a little warning isn't
13969 going to help. */
13970
13971 continue;
13972 }
13973
13974 if (!((*info->callbacks->reloc_overflow)
13975 (info, &h->elf.root, sym_name,
13976 reloc_name, orig_rel.r_addend,
13977 input_bfd, input_section, rel->r_offset)))
13978 return FALSE;
13979 }
13980 else
13981 {
13982 info->callbacks->einfo
13983 (_("%P: %H: %s against `%T': error %d\n"),
13984 input_bfd, input_section, rel->r_offset,
13985 reloc_name, sym_name, (int) r);
13986 ret = FALSE;
13987 }
13988 if (more_info != NULL)
13989 free (more_info);
13990 }
13991 }
13992
13993 /* If we're emitting relocations, then shortly after this function
13994 returns, reloc offsets and addends for this section will be
13995 adjusted. Worse, reloc symbol indices will be for the output
13996 file rather than the input. Save a copy of the relocs for
13997 opd_entry_value. */
13998 if (is_opd && (info->emitrelocations || info->relocatable))
13999 {
14000 bfd_size_type amt;
14001 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
14002 rel = bfd_alloc (input_bfd, amt);
14003 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL);
14004 ppc64_elf_tdata (input_bfd)->opd_relocs = rel;
14005 if (rel == NULL)
14006 return FALSE;
14007 memcpy (rel, relocs, amt);
14008 }
14009 return ret;
14010 }
14011
14012 /* Adjust the value of any local symbols in opd sections. */
14013
14014 static int
14015 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
14016 const char *name ATTRIBUTE_UNUSED,
14017 Elf_Internal_Sym *elfsym,
14018 asection *input_sec,
14019 struct elf_link_hash_entry *h)
14020 {
14021 struct _opd_sec_data *opd;
14022 long adjust;
14023 bfd_vma value;
14024
14025 if (h != NULL)
14026 return 1;
14027
14028 opd = get_opd_info (input_sec);
14029 if (opd == NULL || opd->adjust == NULL)
14030 return 1;
14031
14032 value = elfsym->st_value - input_sec->output_offset;
14033 if (!info->relocatable)
14034 value -= input_sec->output_section->vma;
14035
14036 adjust = opd->adjust[value / 8];
14037 if (adjust == -1)
14038 return 2;
14039
14040 elfsym->st_value += adjust;
14041 return 1;
14042 }
14043
14044 /* Finish up dynamic symbol handling. We set the contents of various
14045 dynamic sections here. */
14046
14047 static bfd_boolean
14048 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
14049 struct bfd_link_info *info,
14050 struct elf_link_hash_entry *h,
14051 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
14052 {
14053 struct ppc_link_hash_table *htab;
14054 struct plt_entry *ent;
14055 Elf_Internal_Rela rela;
14056 bfd_byte *loc;
14057
14058 htab = ppc_hash_table (info);
14059 if (htab == NULL)
14060 return FALSE;
14061
14062 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14063 if (ent->plt.offset != (bfd_vma) -1)
14064 {
14065 /* This symbol has an entry in the procedure linkage
14066 table. Set it up. */
14067 if (!htab->elf.dynamic_sections_created
14068 || h->dynindx == -1)
14069 {
14070 BFD_ASSERT (h->type == STT_GNU_IFUNC
14071 && h->def_regular
14072 && (h->root.type == bfd_link_hash_defined
14073 || h->root.type == bfd_link_hash_defweak));
14074 rela.r_offset = (htab->iplt->output_section->vma
14075 + htab->iplt->output_offset
14076 + ent->plt.offset);
14077 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14078 rela.r_addend = (h->root.u.def.value
14079 + h->root.u.def.section->output_offset
14080 + h->root.u.def.section->output_section->vma
14081 + ent->addend);
14082 loc = (htab->reliplt->contents
14083 + (htab->reliplt->reloc_count++
14084 * sizeof (Elf64_External_Rela)));
14085 }
14086 else
14087 {
14088 rela.r_offset = (htab->plt->output_section->vma
14089 + htab->plt->output_offset
14090 + ent->plt.offset);
14091 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14092 rela.r_addend = ent->addend;
14093 loc = (htab->relplt->contents
14094 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE)
14095 / (PLT_ENTRY_SIZE / sizeof (Elf64_External_Rela))));
14096 }
14097 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14098 }
14099
14100 if (h->needs_copy)
14101 {
14102 /* This symbol needs a copy reloc. Set it up. */
14103
14104 if (h->dynindx == -1
14105 || (h->root.type != bfd_link_hash_defined
14106 && h->root.type != bfd_link_hash_defweak)
14107 || htab->relbss == NULL)
14108 abort ();
14109
14110 rela.r_offset = (h->root.u.def.value
14111 + h->root.u.def.section->output_section->vma
14112 + h->root.u.def.section->output_offset);
14113 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14114 rela.r_addend = 0;
14115 loc = htab->relbss->contents;
14116 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14117 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14118 }
14119
14120 return TRUE;
14121 }
14122
14123 /* Used to decide how to sort relocs in an optimal manner for the
14124 dynamic linker, before writing them out. */
14125
14126 static enum elf_reloc_type_class
14127 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
14128 const asection *rel_sec,
14129 const Elf_Internal_Rela *rela)
14130 {
14131 enum elf_ppc64_reloc_type r_type;
14132 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14133
14134 if (rel_sec == htab->reliplt)
14135 return reloc_class_ifunc;
14136
14137 r_type = ELF64_R_TYPE (rela->r_info);
14138 switch (r_type)
14139 {
14140 case R_PPC64_RELATIVE:
14141 return reloc_class_relative;
14142 case R_PPC64_JMP_SLOT:
14143 return reloc_class_plt;
14144 case R_PPC64_COPY:
14145 return reloc_class_copy;
14146 default:
14147 return reloc_class_normal;
14148 }
14149 }
14150
14151 /* Finish up the dynamic sections. */
14152
14153 static bfd_boolean
14154 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
14155 struct bfd_link_info *info)
14156 {
14157 struct ppc_link_hash_table *htab;
14158 bfd *dynobj;
14159 asection *sdyn;
14160
14161 htab = ppc_hash_table (info);
14162 if (htab == NULL)
14163 return FALSE;
14164
14165 dynobj = htab->elf.dynobj;
14166 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14167
14168 if (htab->elf.dynamic_sections_created)
14169 {
14170 Elf64_External_Dyn *dyncon, *dynconend;
14171
14172 if (sdyn == NULL || htab->got == NULL)
14173 abort ();
14174
14175 dyncon = (Elf64_External_Dyn *) sdyn->contents;
14176 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
14177 for (; dyncon < dynconend; dyncon++)
14178 {
14179 Elf_Internal_Dyn dyn;
14180 asection *s;
14181
14182 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
14183
14184 switch (dyn.d_tag)
14185 {
14186 default:
14187 continue;
14188
14189 case DT_PPC64_GLINK:
14190 s = htab->glink;
14191 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14192 /* We stupidly defined DT_PPC64_GLINK to be the start
14193 of glink rather than the first entry point, which is
14194 what ld.so needs, and now have a bigger stub to
14195 support automatic multiple TOCs. */
14196 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
14197 break;
14198
14199 case DT_PPC64_OPD:
14200 s = bfd_get_section_by_name (output_bfd, ".opd");
14201 if (s == NULL)
14202 continue;
14203 dyn.d_un.d_ptr = s->vma;
14204 break;
14205
14206 case DT_PPC64_OPDSZ:
14207 s = bfd_get_section_by_name (output_bfd, ".opd");
14208 if (s == NULL)
14209 continue;
14210 dyn.d_un.d_val = s->size;
14211 break;
14212
14213 case DT_PLTGOT:
14214 s = htab->plt;
14215 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14216 break;
14217
14218 case DT_JMPREL:
14219 s = htab->relplt;
14220 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14221 break;
14222
14223 case DT_PLTRELSZ:
14224 dyn.d_un.d_val = htab->relplt->size;
14225 break;
14226
14227 case DT_RELASZ:
14228 /* Don't count procedure linkage table relocs in the
14229 overall reloc count. */
14230 s = htab->relplt;
14231 if (s == NULL)
14232 continue;
14233 dyn.d_un.d_val -= s->size;
14234 break;
14235
14236 case DT_RELA:
14237 /* We may not be using the standard ELF linker script.
14238 If .rela.plt is the first .rela section, we adjust
14239 DT_RELA to not include it. */
14240 s = htab->relplt;
14241 if (s == NULL)
14242 continue;
14243 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
14244 continue;
14245 dyn.d_un.d_ptr += s->size;
14246 break;
14247 }
14248
14249 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
14250 }
14251 }
14252
14253 if (htab->got != NULL && htab->got->size != 0)
14254 {
14255 /* Fill in the first entry in the global offset table.
14256 We use it to hold the link-time TOCbase. */
14257 bfd_put_64 (output_bfd,
14258 elf_gp (output_bfd) + TOC_BASE_OFF,
14259 htab->got->contents);
14260
14261 /* Set .got entry size. */
14262 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
14263 }
14264
14265 if (htab->plt != NULL && htab->plt->size != 0)
14266 {
14267 /* Set .plt entry size. */
14268 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
14269 = PLT_ENTRY_SIZE;
14270 }
14271
14272 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
14273 brlt ourselves if emitrelocations. */
14274 if (htab->brlt != NULL
14275 && htab->brlt->reloc_count != 0
14276 && !_bfd_elf_link_output_relocs (output_bfd,
14277 htab->brlt,
14278 elf_section_data (htab->brlt)->rela.hdr,
14279 elf_section_data (htab->brlt)->relocs,
14280 NULL))
14281 return FALSE;
14282
14283 if (htab->glink != NULL
14284 && htab->glink->reloc_count != 0
14285 && !_bfd_elf_link_output_relocs (output_bfd,
14286 htab->glink,
14287 elf_section_data (htab->glink)->rela.hdr,
14288 elf_section_data (htab->glink)->relocs,
14289 NULL))
14290 return FALSE;
14291
14292
14293 if (htab->glink_eh_frame != NULL
14294 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
14295 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
14296 htab->glink_eh_frame,
14297 htab->glink_eh_frame->contents))
14298 return FALSE;
14299
14300 /* We need to handle writing out multiple GOT sections ourselves,
14301 since we didn't add them to DYNOBJ. We know dynobj is the first
14302 bfd. */
14303 while ((dynobj = dynobj->link_next) != NULL)
14304 {
14305 asection *s;
14306
14307 if (!is_ppc64_elf (dynobj))
14308 continue;
14309
14310 s = ppc64_elf_tdata (dynobj)->got;
14311 if (s != NULL
14312 && s->size != 0
14313 && s->output_section != bfd_abs_section_ptr
14314 && !bfd_set_section_contents (output_bfd, s->output_section,
14315 s->contents, s->output_offset,
14316 s->size))
14317 return FALSE;
14318 s = ppc64_elf_tdata (dynobj)->relgot;
14319 if (s != NULL
14320 && s->size != 0
14321 && s->output_section != bfd_abs_section_ptr
14322 && !bfd_set_section_contents (output_bfd, s->output_section,
14323 s->contents, s->output_offset,
14324 s->size))
14325 return FALSE;
14326 }
14327
14328 return TRUE;
14329 }
14330
14331 #include "elf64-target.h"
14332
14333 /* FreeBSD support */
14334
14335 #undef TARGET_LITTLE_SYM
14336 #undef TARGET_LITTLE_NAME
14337
14338 #undef TARGET_BIG_SYM
14339 #define TARGET_BIG_SYM bfd_elf64_powerpc_freebsd_vec
14340 #undef TARGET_BIG_NAME
14341 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
14342
14343 #undef ELF_OSABI
14344 #define ELF_OSABI ELFOSABI_FREEBSD
14345
14346 #undef elf64_bed
14347 #define elf64_bed elf64_powerpc_fbsd_bed
14348
14349 #include "elf64-target.h"
14350
This page took 0.585877 seconds and 4 git commands to generate.