2014-12-05 Steve Ellcey <sellcey@mips.com>
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_vma opd_entry_value
57 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
58
59 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
60 #define TARGET_LITTLE_NAME "elf64-powerpcle"
61 #define TARGET_BIG_SYM powerpc_elf64_vec
62 #define TARGET_BIG_NAME "elf64-powerpc"
63 #define ELF_ARCH bfd_arch_powerpc
64 #define ELF_TARGET_ID PPC64_ELF_DATA
65 #define ELF_MACHINE_CODE EM_PPC64
66 #define ELF_MAXPAGESIZE 0x10000
67 #define ELF_COMMONPAGESIZE 0x1000
68 #define elf_info_to_howto ppc64_elf_info_to_howto
69
70 #define elf_backend_want_got_sym 0
71 #define elf_backend_want_plt_sym 0
72 #define elf_backend_plt_alignment 3
73 #define elf_backend_plt_not_loaded 1
74 #define elf_backend_got_header_size 8
75 #define elf_backend_can_gc_sections 1
76 #define elf_backend_can_refcount 1
77 #define elf_backend_rela_normal 1
78 #define elf_backend_default_execstack 0
79
80 #define bfd_elf64_mkobject ppc64_elf_mkobject
81 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
82 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
83 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
84 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
88 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
89
90 #define elf_backend_object_p ppc64_elf_object_p
91 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
92 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
93 #define elf_backend_write_core_note ppc64_elf_write_core_note
94 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
95 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
96 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
97 #define elf_backend_check_directives ppc64_elf_before_check_relocs
98 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
99 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
100 #define elf_backend_check_relocs ppc64_elf_check_relocs
101 #define elf_backend_gc_keep ppc64_elf_gc_keep
102 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
103 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
104 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
105 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
106 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
107 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
108 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
109 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
110 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
130
131 /* Offsets to some stack save slots. */
132 #define STK_LR 16
133 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
134 /* This one is dodgy. ELFv2 does not have a linker word, so use the
135 CR save slot. Used only by optimised __tls_get_addr call stub,
136 relying on __tls_get_addr_opt not saving CR.. */
137 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
138
139 /* TOC base pointers offset from start of TOC. */
140 #define TOC_BASE_OFF 0x8000
141
142 /* Offset of tp and dtp pointers from start of TLS block. */
143 #define TP_OFFSET 0x7000
144 #define DTP_OFFSET 0x8000
145
146 /* .plt call stub instructions. The normal stub is like this, but
147 sometimes the .plt entry crosses a 64k boundary and we need to
148 insert an addi to adjust r11. */
149 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
150 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
151 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
152 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
153 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
154 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
155 #define BCTR 0x4e800420 /* bctr */
156
157 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
158 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
159 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
160
161 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
162 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
163 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
164 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
165 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
166 #define BNECTR 0x4ca20420 /* bnectr+ */
167 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
168
169 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
170 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
171 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
172
173 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
174
175 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
176 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
177 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
178
179 /* glink call stub instructions. We enter with the index in R0. */
180 #define GLINK_CALL_STUB_SIZE (16*4)
181 /* 0: */
182 /* .quad plt0-1f */
183 /* __glink: */
184 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
185 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
186 /* 1: */
187 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
188 /* ld %2,(0b-1b)(%11) */
189 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
190 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
191 /* ld %12,0(%11) */
192 /* ld %2,8(%11) */
193 /* mtctr %12 */
194 /* ld %11,16(%11) */
195 /* bctr */
196 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
197 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
198 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
199 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
200 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
201
202 /* Pad with this. */
203 #define NOP 0x60000000
204
205 /* Some other nops. */
206 #define CROR_151515 0x4def7b82
207 #define CROR_313131 0x4ffffb82
208
209 /* .glink entries for the first 32k functions are two instructions. */
210 #define LI_R0_0 0x38000000 /* li %r0,0 */
211 #define B_DOT 0x48000000 /* b . */
212
213 /* After that, we need two instructions to load the index, followed by
214 a branch. */
215 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
216 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
217
218 /* Instructions used by the save and restore reg functions. */
219 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
220 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
221 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
222 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
223 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
224 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
225 #define LI_R12_0 0x39800000 /* li %r12,0 */
226 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
227 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
228 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
229 #define BLR 0x4e800020 /* blr */
230
231 /* Since .opd is an array of descriptors and each entry will end up
232 with identical R_PPC64_RELATIVE relocs, there is really no need to
233 propagate .opd relocs; The dynamic linker should be taught to
234 relocate .opd without reloc entries. */
235 #ifndef NO_OPD_RELOCS
236 #define NO_OPD_RELOCS 0
237 #endif
238
239 static inline int
240 abiversion (bfd *abfd)
241 {
242 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
243 }
244
245 static inline void
246 set_abiversion (bfd *abfd, int ver)
247 {
248 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
249 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
250 }
251 \f
252 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
253
254 /* Relocation HOWTO's. */
255 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
256
257 static reloc_howto_type ppc64_elf_howto_raw[] = {
258 /* This reloc does nothing. */
259 HOWTO (R_PPC64_NONE, /* type */
260 0, /* rightshift */
261 2, /* size (0 = byte, 1 = short, 2 = long) */
262 32, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_dont, /* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_PPC64_NONE", /* name */
268 FALSE, /* partial_inplace */
269 0, /* src_mask */
270 0, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 /* A standard 32 bit relocation. */
274 HOWTO (R_PPC64_ADDR32, /* type */
275 0, /* rightshift */
276 2, /* size (0 = byte, 1 = short, 2 = long) */
277 32, /* bitsize */
278 FALSE, /* pc_relative */
279 0, /* bitpos */
280 complain_overflow_bitfield, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_PPC64_ADDR32", /* name */
283 FALSE, /* partial_inplace */
284 0, /* src_mask */
285 0xffffffff, /* dst_mask */
286 FALSE), /* pcrel_offset */
287
288 /* An absolute 26 bit branch; the lower two bits must be zero.
289 FIXME: we don't check that, we just clear them. */
290 HOWTO (R_PPC64_ADDR24, /* type */
291 0, /* rightshift */
292 2, /* size (0 = byte, 1 = short, 2 = long) */
293 26, /* bitsize */
294 FALSE, /* pc_relative */
295 0, /* bitpos */
296 complain_overflow_bitfield, /* complain_on_overflow */
297 bfd_elf_generic_reloc, /* special_function */
298 "R_PPC64_ADDR24", /* name */
299 FALSE, /* partial_inplace */
300 0, /* src_mask */
301 0x03fffffc, /* dst_mask */
302 FALSE), /* pcrel_offset */
303
304 /* A standard 16 bit relocation. */
305 HOWTO (R_PPC64_ADDR16, /* type */
306 0, /* rightshift */
307 1, /* size (0 = byte, 1 = short, 2 = long) */
308 16, /* bitsize */
309 FALSE, /* pc_relative */
310 0, /* bitpos */
311 complain_overflow_bitfield, /* complain_on_overflow */
312 bfd_elf_generic_reloc, /* special_function */
313 "R_PPC64_ADDR16", /* name */
314 FALSE, /* partial_inplace */
315 0, /* src_mask */
316 0xffff, /* dst_mask */
317 FALSE), /* pcrel_offset */
318
319 /* A 16 bit relocation without overflow. */
320 HOWTO (R_PPC64_ADDR16_LO, /* type */
321 0, /* rightshift */
322 1, /* size (0 = byte, 1 = short, 2 = long) */
323 16, /* bitsize */
324 FALSE, /* pc_relative */
325 0, /* bitpos */
326 complain_overflow_dont,/* complain_on_overflow */
327 bfd_elf_generic_reloc, /* special_function */
328 "R_PPC64_ADDR16_LO", /* name */
329 FALSE, /* partial_inplace */
330 0, /* src_mask */
331 0xffff, /* dst_mask */
332 FALSE), /* pcrel_offset */
333
334 /* Bits 16-31 of an address. */
335 HOWTO (R_PPC64_ADDR16_HI, /* type */
336 16, /* rightshift */
337 1, /* size (0 = byte, 1 = short, 2 = long) */
338 16, /* bitsize */
339 FALSE, /* pc_relative */
340 0, /* bitpos */
341 complain_overflow_signed, /* complain_on_overflow */
342 bfd_elf_generic_reloc, /* special_function */
343 "R_PPC64_ADDR16_HI", /* name */
344 FALSE, /* partial_inplace */
345 0, /* src_mask */
346 0xffff, /* dst_mask */
347 FALSE), /* pcrel_offset */
348
349 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
350 bits, treated as a signed number, is negative. */
351 HOWTO (R_PPC64_ADDR16_HA, /* type */
352 16, /* rightshift */
353 1, /* size (0 = byte, 1 = short, 2 = long) */
354 16, /* bitsize */
355 FALSE, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_signed, /* complain_on_overflow */
358 ppc64_elf_ha_reloc, /* special_function */
359 "R_PPC64_ADDR16_HA", /* name */
360 FALSE, /* partial_inplace */
361 0, /* src_mask */
362 0xffff, /* dst_mask */
363 FALSE), /* pcrel_offset */
364
365 /* An absolute 16 bit branch; the lower two bits must be zero.
366 FIXME: we don't check that, we just clear them. */
367 HOWTO (R_PPC64_ADDR14, /* type */
368 0, /* rightshift */
369 2, /* size (0 = byte, 1 = short, 2 = long) */
370 16, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_signed, /* complain_on_overflow */
374 ppc64_elf_branch_reloc, /* special_function */
375 "R_PPC64_ADDR14", /* name */
376 FALSE, /* partial_inplace */
377 0, /* src_mask */
378 0x0000fffc, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 /* An absolute 16 bit branch, for which bit 10 should be set to
382 indicate that the branch is expected to be taken. The lower two
383 bits must be zero. */
384 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
385 0, /* rightshift */
386 2, /* size (0 = byte, 1 = short, 2 = long) */
387 16, /* bitsize */
388 FALSE, /* pc_relative */
389 0, /* bitpos */
390 complain_overflow_signed, /* complain_on_overflow */
391 ppc64_elf_brtaken_reloc, /* special_function */
392 "R_PPC64_ADDR14_BRTAKEN",/* name */
393 FALSE, /* partial_inplace */
394 0, /* src_mask */
395 0x0000fffc, /* dst_mask */
396 FALSE), /* pcrel_offset */
397
398 /* An absolute 16 bit branch, for which bit 10 should be set to
399 indicate that the branch is not expected to be taken. The lower
400 two bits must be zero. */
401 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 16, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_signed, /* complain_on_overflow */
408 ppc64_elf_brtaken_reloc, /* special_function */
409 "R_PPC64_ADDR14_BRNTAKEN",/* name */
410 FALSE, /* partial_inplace */
411 0, /* src_mask */
412 0x0000fffc, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 /* A relative 26 bit branch; the lower two bits must be zero. */
416 HOWTO (R_PPC64_REL24, /* type */
417 0, /* rightshift */
418 2, /* size (0 = byte, 1 = short, 2 = long) */
419 26, /* bitsize */
420 TRUE, /* pc_relative */
421 0, /* bitpos */
422 complain_overflow_signed, /* complain_on_overflow */
423 ppc64_elf_branch_reloc, /* special_function */
424 "R_PPC64_REL24", /* name */
425 FALSE, /* partial_inplace */
426 0, /* src_mask */
427 0x03fffffc, /* dst_mask */
428 TRUE), /* pcrel_offset */
429
430 /* A relative 16 bit branch; the lower two bits must be zero. */
431 HOWTO (R_PPC64_REL14, /* type */
432 0, /* rightshift */
433 2, /* size (0 = byte, 1 = short, 2 = long) */
434 16, /* bitsize */
435 TRUE, /* pc_relative */
436 0, /* bitpos */
437 complain_overflow_signed, /* complain_on_overflow */
438 ppc64_elf_branch_reloc, /* special_function */
439 "R_PPC64_REL14", /* name */
440 FALSE, /* partial_inplace */
441 0, /* src_mask */
442 0x0000fffc, /* dst_mask */
443 TRUE), /* pcrel_offset */
444
445 /* A relative 16 bit branch. Bit 10 should be set to indicate that
446 the branch is expected to be taken. The lower two bits must be
447 zero. */
448 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
449 0, /* rightshift */
450 2, /* size (0 = byte, 1 = short, 2 = long) */
451 16, /* bitsize */
452 TRUE, /* pc_relative */
453 0, /* bitpos */
454 complain_overflow_signed, /* complain_on_overflow */
455 ppc64_elf_brtaken_reloc, /* special_function */
456 "R_PPC64_REL14_BRTAKEN", /* name */
457 FALSE, /* partial_inplace */
458 0, /* src_mask */
459 0x0000fffc, /* dst_mask */
460 TRUE), /* pcrel_offset */
461
462 /* A relative 16 bit branch. Bit 10 should be set to indicate that
463 the branch is not expected to be taken. The lower two bits must
464 be zero. */
465 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
466 0, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 ppc64_elf_brtaken_reloc, /* special_function */
473 "R_PPC64_REL14_BRNTAKEN",/* name */
474 FALSE, /* partial_inplace */
475 0, /* src_mask */
476 0x0000fffc, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
480 symbol. */
481 HOWTO (R_PPC64_GOT16, /* type */
482 0, /* rightshift */
483 1, /* size (0 = byte, 1 = short, 2 = long) */
484 16, /* bitsize */
485 FALSE, /* pc_relative */
486 0, /* bitpos */
487 complain_overflow_signed, /* complain_on_overflow */
488 ppc64_elf_unhandled_reloc, /* special_function */
489 "R_PPC64_GOT16", /* name */
490 FALSE, /* partial_inplace */
491 0, /* src_mask */
492 0xffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494
495 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
496 the symbol. */
497 HOWTO (R_PPC64_GOT16_LO, /* type */
498 0, /* rightshift */
499 1, /* size (0 = byte, 1 = short, 2 = long) */
500 16, /* bitsize */
501 FALSE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_dont, /* complain_on_overflow */
504 ppc64_elf_unhandled_reloc, /* special_function */
505 "R_PPC64_GOT16_LO", /* name */
506 FALSE, /* partial_inplace */
507 0, /* src_mask */
508 0xffff, /* dst_mask */
509 FALSE), /* pcrel_offset */
510
511 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
512 the symbol. */
513 HOWTO (R_PPC64_GOT16_HI, /* type */
514 16, /* rightshift */
515 1, /* size (0 = byte, 1 = short, 2 = long) */
516 16, /* bitsize */
517 FALSE, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_signed,/* complain_on_overflow */
520 ppc64_elf_unhandled_reloc, /* special_function */
521 "R_PPC64_GOT16_HI", /* name */
522 FALSE, /* partial_inplace */
523 0, /* src_mask */
524 0xffff, /* dst_mask */
525 FALSE), /* pcrel_offset */
526
527 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
528 the symbol. */
529 HOWTO (R_PPC64_GOT16_HA, /* type */
530 16, /* rightshift */
531 1, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed,/* complain_on_overflow */
536 ppc64_elf_unhandled_reloc, /* special_function */
537 "R_PPC64_GOT16_HA", /* name */
538 FALSE, /* partial_inplace */
539 0, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* This is used only by the dynamic linker. The symbol should exist
544 both in the object being run and in some shared library. The
545 dynamic linker copies the data addressed by the symbol from the
546 shared library into the object, because the object being
547 run has to have the data at some particular address. */
548 HOWTO (R_PPC64_COPY, /* type */
549 0, /* rightshift */
550 0, /* this one is variable size */
551 0, /* bitsize */
552 FALSE, /* pc_relative */
553 0, /* bitpos */
554 complain_overflow_dont, /* complain_on_overflow */
555 ppc64_elf_unhandled_reloc, /* special_function */
556 "R_PPC64_COPY", /* name */
557 FALSE, /* partial_inplace */
558 0, /* src_mask */
559 0, /* dst_mask */
560 FALSE), /* pcrel_offset */
561
562 /* Like R_PPC64_ADDR64, but used when setting global offset table
563 entries. */
564 HOWTO (R_PPC64_GLOB_DAT, /* type */
565 0, /* rightshift */
566 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
567 64, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_dont, /* complain_on_overflow */
571 ppc64_elf_unhandled_reloc, /* special_function */
572 "R_PPC64_GLOB_DAT", /* name */
573 FALSE, /* partial_inplace */
574 0, /* src_mask */
575 ONES (64), /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* Created by the link editor. Marks a procedure linkage table
579 entry for a symbol. */
580 HOWTO (R_PPC64_JMP_SLOT, /* type */
581 0, /* rightshift */
582 0, /* size (0 = byte, 1 = short, 2 = long) */
583 0, /* bitsize */
584 FALSE, /* pc_relative */
585 0, /* bitpos */
586 complain_overflow_dont, /* complain_on_overflow */
587 ppc64_elf_unhandled_reloc, /* special_function */
588 "R_PPC64_JMP_SLOT", /* name */
589 FALSE, /* partial_inplace */
590 0, /* src_mask */
591 0, /* dst_mask */
592 FALSE), /* pcrel_offset */
593
594 /* Used only by the dynamic linker. When the object is run, this
595 doubleword64 is set to the load address of the object, plus the
596 addend. */
597 HOWTO (R_PPC64_RELATIVE, /* type */
598 0, /* rightshift */
599 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
600 64, /* bitsize */
601 FALSE, /* pc_relative */
602 0, /* bitpos */
603 complain_overflow_dont, /* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_PPC64_RELATIVE", /* name */
606 FALSE, /* partial_inplace */
607 0, /* src_mask */
608 ONES (64), /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 /* Like R_PPC64_ADDR32, but may be unaligned. */
612 HOWTO (R_PPC64_UADDR32, /* type */
613 0, /* rightshift */
614 2, /* size (0 = byte, 1 = short, 2 = long) */
615 32, /* bitsize */
616 FALSE, /* pc_relative */
617 0, /* bitpos */
618 complain_overflow_bitfield, /* complain_on_overflow */
619 bfd_elf_generic_reloc, /* special_function */
620 "R_PPC64_UADDR32", /* name */
621 FALSE, /* partial_inplace */
622 0, /* src_mask */
623 0xffffffff, /* dst_mask */
624 FALSE), /* pcrel_offset */
625
626 /* Like R_PPC64_ADDR16, but may be unaligned. */
627 HOWTO (R_PPC64_UADDR16, /* type */
628 0, /* rightshift */
629 1, /* size (0 = byte, 1 = short, 2 = long) */
630 16, /* bitsize */
631 FALSE, /* pc_relative */
632 0, /* bitpos */
633 complain_overflow_bitfield, /* complain_on_overflow */
634 bfd_elf_generic_reloc, /* special_function */
635 "R_PPC64_UADDR16", /* name */
636 FALSE, /* partial_inplace */
637 0, /* src_mask */
638 0xffff, /* dst_mask */
639 FALSE), /* pcrel_offset */
640
641 /* 32-bit PC relative. */
642 HOWTO (R_PPC64_REL32, /* type */
643 0, /* rightshift */
644 2, /* size (0 = byte, 1 = short, 2 = long) */
645 32, /* bitsize */
646 TRUE, /* pc_relative */
647 0, /* bitpos */
648 complain_overflow_signed, /* complain_on_overflow */
649 bfd_elf_generic_reloc, /* special_function */
650 "R_PPC64_REL32", /* name */
651 FALSE, /* partial_inplace */
652 0, /* src_mask */
653 0xffffffff, /* dst_mask */
654 TRUE), /* pcrel_offset */
655
656 /* 32-bit relocation to the symbol's procedure linkage table. */
657 HOWTO (R_PPC64_PLT32, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_bitfield, /* complain_on_overflow */
664 ppc64_elf_unhandled_reloc, /* special_function */
665 "R_PPC64_PLT32", /* name */
666 FALSE, /* partial_inplace */
667 0, /* src_mask */
668 0xffffffff, /* dst_mask */
669 FALSE), /* pcrel_offset */
670
671 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
672 FIXME: R_PPC64_PLTREL32 not supported. */
673 HOWTO (R_PPC64_PLTREL32, /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 32, /* bitsize */
677 TRUE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 "R_PPC64_PLTREL32", /* name */
682 FALSE, /* partial_inplace */
683 0, /* src_mask */
684 0xffffffff, /* dst_mask */
685 TRUE), /* pcrel_offset */
686
687 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
688 the symbol. */
689 HOWTO (R_PPC64_PLT16_LO, /* type */
690 0, /* rightshift */
691 1, /* size (0 = byte, 1 = short, 2 = long) */
692 16, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont, /* complain_on_overflow */
696 ppc64_elf_unhandled_reloc, /* special_function */
697 "R_PPC64_PLT16_LO", /* name */
698 FALSE, /* partial_inplace */
699 0, /* src_mask */
700 0xffff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
704 the symbol. */
705 HOWTO (R_PPC64_PLT16_HI, /* type */
706 16, /* rightshift */
707 1, /* size (0 = byte, 1 = short, 2 = long) */
708 16, /* bitsize */
709 FALSE, /* pc_relative */
710 0, /* bitpos */
711 complain_overflow_signed, /* complain_on_overflow */
712 ppc64_elf_unhandled_reloc, /* special_function */
713 "R_PPC64_PLT16_HI", /* name */
714 FALSE, /* partial_inplace */
715 0, /* src_mask */
716 0xffff, /* dst_mask */
717 FALSE), /* pcrel_offset */
718
719 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
720 the symbol. */
721 HOWTO (R_PPC64_PLT16_HA, /* type */
722 16, /* rightshift */
723 1, /* size (0 = byte, 1 = short, 2 = long) */
724 16, /* bitsize */
725 FALSE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 ppc64_elf_unhandled_reloc, /* special_function */
729 "R_PPC64_PLT16_HA", /* name */
730 FALSE, /* partial_inplace */
731 0, /* src_mask */
732 0xffff, /* dst_mask */
733 FALSE), /* pcrel_offset */
734
735 /* 16-bit section relative relocation. */
736 HOWTO (R_PPC64_SECTOFF, /* type */
737 0, /* rightshift */
738 1, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 FALSE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_signed, /* complain_on_overflow */
743 ppc64_elf_sectoff_reloc, /* special_function */
744 "R_PPC64_SECTOFF", /* name */
745 FALSE, /* partial_inplace */
746 0, /* src_mask */
747 0xffff, /* dst_mask */
748 FALSE), /* pcrel_offset */
749
750 /* Like R_PPC64_SECTOFF, but no overflow warning. */
751 HOWTO (R_PPC64_SECTOFF_LO, /* type */
752 0, /* rightshift */
753 1, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont, /* complain_on_overflow */
758 ppc64_elf_sectoff_reloc, /* special_function */
759 "R_PPC64_SECTOFF_LO", /* name */
760 FALSE, /* partial_inplace */
761 0, /* src_mask */
762 0xffff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 /* 16-bit upper half section relative relocation. */
766 HOWTO (R_PPC64_SECTOFF_HI, /* type */
767 16, /* rightshift */
768 1, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 FALSE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_signed, /* complain_on_overflow */
773 ppc64_elf_sectoff_reloc, /* special_function */
774 "R_PPC64_SECTOFF_HI", /* name */
775 FALSE, /* partial_inplace */
776 0, /* src_mask */
777 0xffff, /* dst_mask */
778 FALSE), /* pcrel_offset */
779
780 /* 16-bit upper half adjusted section relative relocation. */
781 HOWTO (R_PPC64_SECTOFF_HA, /* type */
782 16, /* rightshift */
783 1, /* size (0 = byte, 1 = short, 2 = long) */
784 16, /* bitsize */
785 FALSE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 ppc64_elf_sectoff_ha_reloc, /* special_function */
789 "R_PPC64_SECTOFF_HA", /* name */
790 FALSE, /* partial_inplace */
791 0, /* src_mask */
792 0xffff, /* dst_mask */
793 FALSE), /* pcrel_offset */
794
795 /* Like R_PPC64_REL24 without touching the two least significant bits. */
796 HOWTO (R_PPC64_REL30, /* type */
797 2, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 30, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 "R_PPC64_REL30", /* name */
805 FALSE, /* partial_inplace */
806 0, /* src_mask */
807 0xfffffffc, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
811
812 /* A standard 64-bit relocation. */
813 HOWTO (R_PPC64_ADDR64, /* type */
814 0, /* rightshift */
815 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
816 64, /* bitsize */
817 FALSE, /* pc_relative */
818 0, /* bitpos */
819 complain_overflow_dont, /* complain_on_overflow */
820 bfd_elf_generic_reloc, /* special_function */
821 "R_PPC64_ADDR64", /* name */
822 FALSE, /* partial_inplace */
823 0, /* src_mask */
824 ONES (64), /* dst_mask */
825 FALSE), /* pcrel_offset */
826
827 /* The bits 32-47 of an address. */
828 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
829 32, /* rightshift */
830 1, /* size (0 = byte, 1 = short, 2 = long) */
831 16, /* bitsize */
832 FALSE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont, /* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_PPC64_ADDR16_HIGHER", /* name */
837 FALSE, /* partial_inplace */
838 0, /* src_mask */
839 0xffff, /* dst_mask */
840 FALSE), /* pcrel_offset */
841
842 /* The bits 32-47 of an address, plus 1 if the contents of the low
843 16 bits, treated as a signed number, is negative. */
844 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
845 32, /* rightshift */
846 1, /* size (0 = byte, 1 = short, 2 = long) */
847 16, /* bitsize */
848 FALSE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_dont, /* complain_on_overflow */
851 ppc64_elf_ha_reloc, /* special_function */
852 "R_PPC64_ADDR16_HIGHERA", /* name */
853 FALSE, /* partial_inplace */
854 0, /* src_mask */
855 0xffff, /* dst_mask */
856 FALSE), /* pcrel_offset */
857
858 /* The bits 48-63 of an address. */
859 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
860 48, /* rightshift */
861 1, /* size (0 = byte, 1 = short, 2 = long) */
862 16, /* bitsize */
863 FALSE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_dont, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_PPC64_ADDR16_HIGHEST", /* name */
868 FALSE, /* partial_inplace */
869 0, /* src_mask */
870 0xffff, /* dst_mask */
871 FALSE), /* pcrel_offset */
872
873 /* The bits 48-63 of an address, plus 1 if the contents of the low
874 16 bits, treated as a signed number, is negative. */
875 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
876 48, /* rightshift */
877 1, /* size (0 = byte, 1 = short, 2 = long) */
878 16, /* bitsize */
879 FALSE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont, /* complain_on_overflow */
882 ppc64_elf_ha_reloc, /* special_function */
883 "R_PPC64_ADDR16_HIGHESTA", /* name */
884 FALSE, /* partial_inplace */
885 0, /* src_mask */
886 0xffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
888
889 /* Like ADDR64, but may be unaligned. */
890 HOWTO (R_PPC64_UADDR64, /* type */
891 0, /* rightshift */
892 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
893 64, /* bitsize */
894 FALSE, /* pc_relative */
895 0, /* bitpos */
896 complain_overflow_dont, /* complain_on_overflow */
897 bfd_elf_generic_reloc, /* special_function */
898 "R_PPC64_UADDR64", /* name */
899 FALSE, /* partial_inplace */
900 0, /* src_mask */
901 ONES (64), /* dst_mask */
902 FALSE), /* pcrel_offset */
903
904 /* 64-bit relative relocation. */
905 HOWTO (R_PPC64_REL64, /* type */
906 0, /* rightshift */
907 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
908 64, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont, /* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_PPC64_REL64", /* name */
914 FALSE, /* partial_inplace */
915 0, /* src_mask */
916 ONES (64), /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 /* 64-bit relocation to the symbol's procedure linkage table. */
920 HOWTO (R_PPC64_PLT64, /* type */
921 0, /* rightshift */
922 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
923 64, /* bitsize */
924 FALSE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_dont, /* complain_on_overflow */
927 ppc64_elf_unhandled_reloc, /* special_function */
928 "R_PPC64_PLT64", /* name */
929 FALSE, /* partial_inplace */
930 0, /* src_mask */
931 ONES (64), /* dst_mask */
932 FALSE), /* pcrel_offset */
933
934 /* 64-bit PC relative relocation to the symbol's procedure linkage
935 table. */
936 /* FIXME: R_PPC64_PLTREL64 not supported. */
937 HOWTO (R_PPC64_PLTREL64, /* type */
938 0, /* rightshift */
939 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
940 64, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 ppc64_elf_unhandled_reloc, /* special_function */
945 "R_PPC64_PLTREL64", /* name */
946 FALSE, /* partial_inplace */
947 0, /* src_mask */
948 ONES (64), /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 /* 16 bit TOC-relative relocation. */
952
953 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
954 HOWTO (R_PPC64_TOC16, /* type */
955 0, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_signed, /* complain_on_overflow */
961 ppc64_elf_toc_reloc, /* special_function */
962 "R_PPC64_TOC16", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 16 bit TOC-relative relocation without overflow. */
969
970 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
971 HOWTO (R_PPC64_TOC16_LO, /* type */
972 0, /* rightshift */
973 1, /* size (0 = byte, 1 = short, 2 = long) */
974 16, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_dont, /* complain_on_overflow */
978 ppc64_elf_toc_reloc, /* special_function */
979 "R_PPC64_TOC16_LO", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 0xffff, /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* 16 bit TOC-relative relocation, high 16 bits. */
986
987 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
988 HOWTO (R_PPC64_TOC16_HI, /* type */
989 16, /* rightshift */
990 1, /* size (0 = byte, 1 = short, 2 = long) */
991 16, /* bitsize */
992 FALSE, /* pc_relative */
993 0, /* bitpos */
994 complain_overflow_signed, /* complain_on_overflow */
995 ppc64_elf_toc_reloc, /* special_function */
996 "R_PPC64_TOC16_HI", /* name */
997 FALSE, /* partial_inplace */
998 0, /* src_mask */
999 0xffff, /* dst_mask */
1000 FALSE), /* pcrel_offset */
1001
1002 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
1003 contents of the low 16 bits, treated as a signed number, is
1004 negative. */
1005
1006 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
1007 HOWTO (R_PPC64_TOC16_HA, /* type */
1008 16, /* rightshift */
1009 1, /* size (0 = byte, 1 = short, 2 = long) */
1010 16, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_signed, /* complain_on_overflow */
1014 ppc64_elf_toc_ha_reloc, /* special_function */
1015 "R_PPC64_TOC16_HA", /* name */
1016 FALSE, /* partial_inplace */
1017 0, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 /* 64-bit relocation; insert value of TOC base (.TOC.). */
1022
1023 /* R_PPC64_TOC 51 doubleword64 .TOC. */
1024 HOWTO (R_PPC64_TOC, /* type */
1025 0, /* rightshift */
1026 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1027 64, /* bitsize */
1028 FALSE, /* pc_relative */
1029 0, /* bitpos */
1030 complain_overflow_dont, /* complain_on_overflow */
1031 ppc64_elf_toc64_reloc, /* special_function */
1032 "R_PPC64_TOC", /* name */
1033 FALSE, /* partial_inplace */
1034 0, /* src_mask */
1035 ONES (64), /* dst_mask */
1036 FALSE), /* pcrel_offset */
1037
1038 /* Like R_PPC64_GOT16, but also informs the link editor that the
1039 value to relocate may (!) refer to a PLT entry which the link
1040 editor (a) may replace with the symbol value. If the link editor
1041 is unable to fully resolve the symbol, it may (b) create a PLT
1042 entry and store the address to the new PLT entry in the GOT.
1043 This permits lazy resolution of function symbols at run time.
1044 The link editor may also skip all of this and just (c) emit a
1045 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1046 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1047 HOWTO (R_PPC64_PLTGOT16, /* type */
1048 0, /* rightshift */
1049 1, /* size (0 = byte, 1 = short, 2 = long) */
1050 16, /* bitsize */
1051 FALSE, /* pc_relative */
1052 0, /* bitpos */
1053 complain_overflow_signed, /* complain_on_overflow */
1054 ppc64_elf_unhandled_reloc, /* special_function */
1055 "R_PPC64_PLTGOT16", /* name */
1056 FALSE, /* partial_inplace */
1057 0, /* src_mask */
1058 0xffff, /* dst_mask */
1059 FALSE), /* pcrel_offset */
1060
1061 /* Like R_PPC64_PLTGOT16, but without overflow. */
1062 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1063 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1064 0, /* rightshift */
1065 1, /* size (0 = byte, 1 = short, 2 = long) */
1066 16, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 ppc64_elf_unhandled_reloc, /* special_function */
1071 "R_PPC64_PLTGOT16_LO", /* name */
1072 FALSE, /* partial_inplace */
1073 0, /* src_mask */
1074 0xffff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1076
1077 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1078 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1079 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1080 16, /* rightshift */
1081 1, /* size (0 = byte, 1 = short, 2 = long) */
1082 16, /* bitsize */
1083 FALSE, /* pc_relative */
1084 0, /* bitpos */
1085 complain_overflow_signed, /* complain_on_overflow */
1086 ppc64_elf_unhandled_reloc, /* special_function */
1087 "R_PPC64_PLTGOT16_HI", /* name */
1088 FALSE, /* partial_inplace */
1089 0, /* src_mask */
1090 0xffff, /* dst_mask */
1091 FALSE), /* pcrel_offset */
1092
1093 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1094 1 if the contents of the low 16 bits, treated as a signed number,
1095 is negative. */
1096 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1097 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1098 16, /* rightshift */
1099 1, /* size (0 = byte, 1 = short, 2 = long) */
1100 16, /* bitsize */
1101 FALSE, /* pc_relative */
1102 0, /* bitpos */
1103 complain_overflow_signed, /* complain_on_overflow */
1104 ppc64_elf_unhandled_reloc, /* special_function */
1105 "R_PPC64_PLTGOT16_HA", /* name */
1106 FALSE, /* partial_inplace */
1107 0, /* src_mask */
1108 0xffff, /* dst_mask */
1109 FALSE), /* pcrel_offset */
1110
1111 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1112 HOWTO (R_PPC64_ADDR16_DS, /* type */
1113 0, /* rightshift */
1114 1, /* size (0 = byte, 1 = short, 2 = long) */
1115 16, /* bitsize */
1116 FALSE, /* pc_relative */
1117 0, /* bitpos */
1118 complain_overflow_signed, /* complain_on_overflow */
1119 bfd_elf_generic_reloc, /* special_function */
1120 "R_PPC64_ADDR16_DS", /* name */
1121 FALSE, /* partial_inplace */
1122 0, /* src_mask */
1123 0xfffc, /* dst_mask */
1124 FALSE), /* pcrel_offset */
1125
1126 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1127 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1128 0, /* rightshift */
1129 1, /* size (0 = byte, 1 = short, 2 = long) */
1130 16, /* bitsize */
1131 FALSE, /* pc_relative */
1132 0, /* bitpos */
1133 complain_overflow_dont,/* complain_on_overflow */
1134 bfd_elf_generic_reloc, /* special_function */
1135 "R_PPC64_ADDR16_LO_DS",/* name */
1136 FALSE, /* partial_inplace */
1137 0, /* src_mask */
1138 0xfffc, /* dst_mask */
1139 FALSE), /* pcrel_offset */
1140
1141 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1142 HOWTO (R_PPC64_GOT16_DS, /* type */
1143 0, /* rightshift */
1144 1, /* size (0 = byte, 1 = short, 2 = long) */
1145 16, /* bitsize */
1146 FALSE, /* pc_relative */
1147 0, /* bitpos */
1148 complain_overflow_signed, /* complain_on_overflow */
1149 ppc64_elf_unhandled_reloc, /* special_function */
1150 "R_PPC64_GOT16_DS", /* name */
1151 FALSE, /* partial_inplace */
1152 0, /* src_mask */
1153 0xfffc, /* dst_mask */
1154 FALSE), /* pcrel_offset */
1155
1156 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1157 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1158 0, /* rightshift */
1159 1, /* size (0 = byte, 1 = short, 2 = long) */
1160 16, /* bitsize */
1161 FALSE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont, /* complain_on_overflow */
1164 ppc64_elf_unhandled_reloc, /* special_function */
1165 "R_PPC64_GOT16_LO_DS", /* name */
1166 FALSE, /* partial_inplace */
1167 0, /* src_mask */
1168 0xfffc, /* dst_mask */
1169 FALSE), /* pcrel_offset */
1170
1171 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1172 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1173 0, /* rightshift */
1174 1, /* size (0 = byte, 1 = short, 2 = long) */
1175 16, /* bitsize */
1176 FALSE, /* pc_relative */
1177 0, /* bitpos */
1178 complain_overflow_dont, /* complain_on_overflow */
1179 ppc64_elf_unhandled_reloc, /* special_function */
1180 "R_PPC64_PLT16_LO_DS", /* name */
1181 FALSE, /* partial_inplace */
1182 0, /* src_mask */
1183 0xfffc, /* dst_mask */
1184 FALSE), /* pcrel_offset */
1185
1186 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1187 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1188 0, /* rightshift */
1189 1, /* size (0 = byte, 1 = short, 2 = long) */
1190 16, /* bitsize */
1191 FALSE, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_signed, /* complain_on_overflow */
1194 ppc64_elf_sectoff_reloc, /* special_function */
1195 "R_PPC64_SECTOFF_DS", /* name */
1196 FALSE, /* partial_inplace */
1197 0, /* src_mask */
1198 0xfffc, /* dst_mask */
1199 FALSE), /* pcrel_offset */
1200
1201 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1202 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1203 0, /* rightshift */
1204 1, /* size (0 = byte, 1 = short, 2 = long) */
1205 16, /* bitsize */
1206 FALSE, /* pc_relative */
1207 0, /* bitpos */
1208 complain_overflow_dont, /* complain_on_overflow */
1209 ppc64_elf_sectoff_reloc, /* special_function */
1210 "R_PPC64_SECTOFF_LO_DS",/* name */
1211 FALSE, /* partial_inplace */
1212 0, /* src_mask */
1213 0xfffc, /* dst_mask */
1214 FALSE), /* pcrel_offset */
1215
1216 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1217 HOWTO (R_PPC64_TOC16_DS, /* type */
1218 0, /* rightshift */
1219 1, /* size (0 = byte, 1 = short, 2 = long) */
1220 16, /* bitsize */
1221 FALSE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_signed, /* complain_on_overflow */
1224 ppc64_elf_toc_reloc, /* special_function */
1225 "R_PPC64_TOC16_DS", /* name */
1226 FALSE, /* partial_inplace */
1227 0, /* src_mask */
1228 0xfffc, /* dst_mask */
1229 FALSE), /* pcrel_offset */
1230
1231 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1232 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1233 0, /* rightshift */
1234 1, /* size (0 = byte, 1 = short, 2 = long) */
1235 16, /* bitsize */
1236 FALSE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont, /* complain_on_overflow */
1239 ppc64_elf_toc_reloc, /* special_function */
1240 "R_PPC64_TOC16_LO_DS", /* name */
1241 FALSE, /* partial_inplace */
1242 0, /* src_mask */
1243 0xfffc, /* dst_mask */
1244 FALSE), /* pcrel_offset */
1245
1246 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1247 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1248 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1249 0, /* rightshift */
1250 1, /* size (0 = byte, 1 = short, 2 = long) */
1251 16, /* bitsize */
1252 FALSE, /* pc_relative */
1253 0, /* bitpos */
1254 complain_overflow_signed, /* complain_on_overflow */
1255 ppc64_elf_unhandled_reloc, /* special_function */
1256 "R_PPC64_PLTGOT16_DS", /* name */
1257 FALSE, /* partial_inplace */
1258 0, /* src_mask */
1259 0xfffc, /* dst_mask */
1260 FALSE), /* pcrel_offset */
1261
1262 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1263 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1264 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1265 0, /* rightshift */
1266 1, /* size (0 = byte, 1 = short, 2 = long) */
1267 16, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_dont, /* complain_on_overflow */
1271 ppc64_elf_unhandled_reloc, /* special_function */
1272 "R_PPC64_PLTGOT16_LO_DS",/* name */
1273 FALSE, /* partial_inplace */
1274 0, /* src_mask */
1275 0xfffc, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 /* Marker relocs for TLS. */
1279 HOWTO (R_PPC64_TLS,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLS", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TLSGD,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TLSGD", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 HOWTO (R_PPC64_TLSLD,
1308 0, /* rightshift */
1309 2, /* size (0 = byte, 1 = short, 2 = long) */
1310 32, /* bitsize */
1311 FALSE, /* pc_relative */
1312 0, /* bitpos */
1313 complain_overflow_dont, /* complain_on_overflow */
1314 bfd_elf_generic_reloc, /* special_function */
1315 "R_PPC64_TLSLD", /* name */
1316 FALSE, /* partial_inplace */
1317 0, /* src_mask */
1318 0, /* dst_mask */
1319 FALSE), /* pcrel_offset */
1320
1321 HOWTO (R_PPC64_TOCSAVE,
1322 0, /* rightshift */
1323 2, /* size (0 = byte, 1 = short, 2 = long) */
1324 32, /* bitsize */
1325 FALSE, /* pc_relative */
1326 0, /* bitpos */
1327 complain_overflow_dont, /* complain_on_overflow */
1328 bfd_elf_generic_reloc, /* special_function */
1329 "R_PPC64_TOCSAVE", /* name */
1330 FALSE, /* partial_inplace */
1331 0, /* src_mask */
1332 0, /* dst_mask */
1333 FALSE), /* pcrel_offset */
1334
1335 /* Computes the load module index of the load module that contains the
1336 definition of its TLS sym. */
1337 HOWTO (R_PPC64_DTPMOD64,
1338 0, /* rightshift */
1339 4, /* size (0 = byte, 1 = short, 2 = long) */
1340 64, /* bitsize */
1341 FALSE, /* pc_relative */
1342 0, /* bitpos */
1343 complain_overflow_dont, /* complain_on_overflow */
1344 ppc64_elf_unhandled_reloc, /* special_function */
1345 "R_PPC64_DTPMOD64", /* name */
1346 FALSE, /* partial_inplace */
1347 0, /* src_mask */
1348 ONES (64), /* dst_mask */
1349 FALSE), /* pcrel_offset */
1350
1351 /* Computes a dtv-relative displacement, the difference between the value
1352 of sym+add and the base address of the thread-local storage block that
1353 contains the definition of sym, minus 0x8000. */
1354 HOWTO (R_PPC64_DTPREL64,
1355 0, /* rightshift */
1356 4, /* size (0 = byte, 1 = short, 2 = long) */
1357 64, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_dont, /* complain_on_overflow */
1361 ppc64_elf_unhandled_reloc, /* special_function */
1362 "R_PPC64_DTPREL64", /* name */
1363 FALSE, /* partial_inplace */
1364 0, /* src_mask */
1365 ONES (64), /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* A 16 bit dtprel reloc. */
1369 HOWTO (R_PPC64_DTPREL16,
1370 0, /* rightshift */
1371 1, /* size (0 = byte, 1 = short, 2 = long) */
1372 16, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_signed, /* complain_on_overflow */
1376 ppc64_elf_unhandled_reloc, /* special_function */
1377 "R_PPC64_DTPREL16", /* name */
1378 FALSE, /* partial_inplace */
1379 0, /* src_mask */
1380 0xffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* Like DTPREL16, but no overflow. */
1384 HOWTO (R_PPC64_DTPREL16_LO,
1385 0, /* rightshift */
1386 1, /* size (0 = byte, 1 = short, 2 = long) */
1387 16, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 ppc64_elf_unhandled_reloc, /* special_function */
1392 "R_PPC64_DTPREL16_LO", /* name */
1393 FALSE, /* partial_inplace */
1394 0, /* src_mask */
1395 0xffff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1399 HOWTO (R_PPC64_DTPREL16_HI,
1400 16, /* rightshift */
1401 1, /* size (0 = byte, 1 = short, 2 = long) */
1402 16, /* bitsize */
1403 FALSE, /* pc_relative */
1404 0, /* bitpos */
1405 complain_overflow_signed, /* complain_on_overflow */
1406 ppc64_elf_unhandled_reloc, /* special_function */
1407 "R_PPC64_DTPREL16_HI", /* name */
1408 FALSE, /* partial_inplace */
1409 0, /* src_mask */
1410 0xffff, /* dst_mask */
1411 FALSE), /* pcrel_offset */
1412
1413 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1414 HOWTO (R_PPC64_DTPREL16_HA,
1415 16, /* rightshift */
1416 1, /* size (0 = byte, 1 = short, 2 = long) */
1417 16, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 ppc64_elf_unhandled_reloc, /* special_function */
1422 "R_PPC64_DTPREL16_HA", /* name */
1423 FALSE, /* partial_inplace */
1424 0, /* src_mask */
1425 0xffff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1429 HOWTO (R_PPC64_DTPREL16_HIGHER,
1430 32, /* rightshift */
1431 1, /* size (0 = byte, 1 = short, 2 = long) */
1432 16, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont, /* complain_on_overflow */
1436 ppc64_elf_unhandled_reloc, /* special_function */
1437 "R_PPC64_DTPREL16_HIGHER", /* name */
1438 FALSE, /* partial_inplace */
1439 0, /* src_mask */
1440 0xffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1444 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1445 32, /* rightshift */
1446 1, /* size (0 = byte, 1 = short, 2 = long) */
1447 16, /* bitsize */
1448 FALSE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 ppc64_elf_unhandled_reloc, /* special_function */
1452 "R_PPC64_DTPREL16_HIGHERA", /* name */
1453 FALSE, /* partial_inplace */
1454 0, /* src_mask */
1455 0xffff, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1459 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1460 48, /* rightshift */
1461 1, /* size (0 = byte, 1 = short, 2 = long) */
1462 16, /* bitsize */
1463 FALSE, /* pc_relative */
1464 0, /* bitpos */
1465 complain_overflow_dont, /* complain_on_overflow */
1466 ppc64_elf_unhandled_reloc, /* special_function */
1467 "R_PPC64_DTPREL16_HIGHEST", /* name */
1468 FALSE, /* partial_inplace */
1469 0, /* src_mask */
1470 0xffff, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1474 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1475 48, /* rightshift */
1476 1, /* size (0 = byte, 1 = short, 2 = long) */
1477 16, /* bitsize */
1478 FALSE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 ppc64_elf_unhandled_reloc, /* special_function */
1482 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1483 FALSE, /* partial_inplace */
1484 0, /* src_mask */
1485 0xffff, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* Like DTPREL16, but for insns with a DS field. */
1489 HOWTO (R_PPC64_DTPREL16_DS,
1490 0, /* rightshift */
1491 1, /* size (0 = byte, 1 = short, 2 = long) */
1492 16, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_signed, /* complain_on_overflow */
1496 ppc64_elf_unhandled_reloc, /* special_function */
1497 "R_PPC64_DTPREL16_DS", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0xfffc, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Like DTPREL16_DS, but no overflow. */
1504 HOWTO (R_PPC64_DTPREL16_LO_DS,
1505 0, /* rightshift */
1506 1, /* size (0 = byte, 1 = short, 2 = long) */
1507 16, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 ppc64_elf_unhandled_reloc, /* special_function */
1512 "R_PPC64_DTPREL16_LO_DS", /* name */
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0xfffc, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* Computes a tp-relative displacement, the difference between the value of
1519 sym+add and the value of the thread pointer (r13). */
1520 HOWTO (R_PPC64_TPREL64,
1521 0, /* rightshift */
1522 4, /* size (0 = byte, 1 = short, 2 = long) */
1523 64, /* bitsize */
1524 FALSE, /* pc_relative */
1525 0, /* bitpos */
1526 complain_overflow_dont, /* complain_on_overflow */
1527 ppc64_elf_unhandled_reloc, /* special_function */
1528 "R_PPC64_TPREL64", /* name */
1529 FALSE, /* partial_inplace */
1530 0, /* src_mask */
1531 ONES (64), /* dst_mask */
1532 FALSE), /* pcrel_offset */
1533
1534 /* A 16 bit tprel reloc. */
1535 HOWTO (R_PPC64_TPREL16,
1536 0, /* rightshift */
1537 1, /* size (0 = byte, 1 = short, 2 = long) */
1538 16, /* bitsize */
1539 FALSE, /* pc_relative */
1540 0, /* bitpos */
1541 complain_overflow_signed, /* complain_on_overflow */
1542 ppc64_elf_unhandled_reloc, /* special_function */
1543 "R_PPC64_TPREL16", /* name */
1544 FALSE, /* partial_inplace */
1545 0, /* src_mask */
1546 0xffff, /* dst_mask */
1547 FALSE), /* pcrel_offset */
1548
1549 /* Like TPREL16, but no overflow. */
1550 HOWTO (R_PPC64_TPREL16_LO,
1551 0, /* rightshift */
1552 1, /* size (0 = byte, 1 = short, 2 = long) */
1553 16, /* bitsize */
1554 FALSE, /* pc_relative */
1555 0, /* bitpos */
1556 complain_overflow_dont, /* complain_on_overflow */
1557 ppc64_elf_unhandled_reloc, /* special_function */
1558 "R_PPC64_TPREL16_LO", /* name */
1559 FALSE, /* partial_inplace */
1560 0, /* src_mask */
1561 0xffff, /* dst_mask */
1562 FALSE), /* pcrel_offset */
1563
1564 /* Like TPREL16_LO, but next higher group of 16 bits. */
1565 HOWTO (R_PPC64_TPREL16_HI,
1566 16, /* rightshift */
1567 1, /* size (0 = byte, 1 = short, 2 = long) */
1568 16, /* bitsize */
1569 FALSE, /* pc_relative */
1570 0, /* bitpos */
1571 complain_overflow_signed, /* complain_on_overflow */
1572 ppc64_elf_unhandled_reloc, /* special_function */
1573 "R_PPC64_TPREL16_HI", /* name */
1574 FALSE, /* partial_inplace */
1575 0, /* src_mask */
1576 0xffff, /* dst_mask */
1577 FALSE), /* pcrel_offset */
1578
1579 /* Like TPREL16_HI, but adjust for low 16 bits. */
1580 HOWTO (R_PPC64_TPREL16_HA,
1581 16, /* rightshift */
1582 1, /* size (0 = byte, 1 = short, 2 = long) */
1583 16, /* bitsize */
1584 FALSE, /* pc_relative */
1585 0, /* bitpos */
1586 complain_overflow_signed, /* complain_on_overflow */
1587 ppc64_elf_unhandled_reloc, /* special_function */
1588 "R_PPC64_TPREL16_HA", /* name */
1589 FALSE, /* partial_inplace */
1590 0, /* src_mask */
1591 0xffff, /* dst_mask */
1592 FALSE), /* pcrel_offset */
1593
1594 /* Like TPREL16_HI, but next higher group of 16 bits. */
1595 HOWTO (R_PPC64_TPREL16_HIGHER,
1596 32, /* rightshift */
1597 1, /* size (0 = byte, 1 = short, 2 = long) */
1598 16, /* bitsize */
1599 FALSE, /* pc_relative */
1600 0, /* bitpos */
1601 complain_overflow_dont, /* complain_on_overflow */
1602 ppc64_elf_unhandled_reloc, /* special_function */
1603 "R_PPC64_TPREL16_HIGHER", /* name */
1604 FALSE, /* partial_inplace */
1605 0, /* src_mask */
1606 0xffff, /* dst_mask */
1607 FALSE), /* pcrel_offset */
1608
1609 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1610 HOWTO (R_PPC64_TPREL16_HIGHERA,
1611 32, /* rightshift */
1612 1, /* size (0 = byte, 1 = short, 2 = long) */
1613 16, /* bitsize */
1614 FALSE, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_dont, /* complain_on_overflow */
1617 ppc64_elf_unhandled_reloc, /* special_function */
1618 "R_PPC64_TPREL16_HIGHERA", /* name */
1619 FALSE, /* partial_inplace */
1620 0, /* src_mask */
1621 0xffff, /* dst_mask */
1622 FALSE), /* pcrel_offset */
1623
1624 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1625 HOWTO (R_PPC64_TPREL16_HIGHEST,
1626 48, /* rightshift */
1627 1, /* size (0 = byte, 1 = short, 2 = long) */
1628 16, /* bitsize */
1629 FALSE, /* pc_relative */
1630 0, /* bitpos */
1631 complain_overflow_dont, /* complain_on_overflow */
1632 ppc64_elf_unhandled_reloc, /* special_function */
1633 "R_PPC64_TPREL16_HIGHEST", /* name */
1634 FALSE, /* partial_inplace */
1635 0, /* src_mask */
1636 0xffff, /* dst_mask */
1637 FALSE), /* pcrel_offset */
1638
1639 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1640 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1641 48, /* rightshift */
1642 1, /* size (0 = byte, 1 = short, 2 = long) */
1643 16, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_dont, /* complain_on_overflow */
1647 ppc64_elf_unhandled_reloc, /* special_function */
1648 "R_PPC64_TPREL16_HIGHESTA", /* name */
1649 FALSE, /* partial_inplace */
1650 0, /* src_mask */
1651 0xffff, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1653
1654 /* Like TPREL16, but for insns with a DS field. */
1655 HOWTO (R_PPC64_TPREL16_DS,
1656 0, /* rightshift */
1657 1, /* size (0 = byte, 1 = short, 2 = long) */
1658 16, /* bitsize */
1659 FALSE, /* pc_relative */
1660 0, /* bitpos */
1661 complain_overflow_signed, /* complain_on_overflow */
1662 ppc64_elf_unhandled_reloc, /* special_function */
1663 "R_PPC64_TPREL16_DS", /* name */
1664 FALSE, /* partial_inplace */
1665 0, /* src_mask */
1666 0xfffc, /* dst_mask */
1667 FALSE), /* pcrel_offset */
1668
1669 /* Like TPREL16_DS, but no overflow. */
1670 HOWTO (R_PPC64_TPREL16_LO_DS,
1671 0, /* rightshift */
1672 1, /* size (0 = byte, 1 = short, 2 = long) */
1673 16, /* bitsize */
1674 FALSE, /* pc_relative */
1675 0, /* bitpos */
1676 complain_overflow_dont, /* complain_on_overflow */
1677 ppc64_elf_unhandled_reloc, /* special_function */
1678 "R_PPC64_TPREL16_LO_DS", /* name */
1679 FALSE, /* partial_inplace */
1680 0, /* src_mask */
1681 0xfffc, /* dst_mask */
1682 FALSE), /* pcrel_offset */
1683
1684 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1685 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1686 to the first entry relative to the TOC base (r2). */
1687 HOWTO (R_PPC64_GOT_TLSGD16,
1688 0, /* rightshift */
1689 1, /* size (0 = byte, 1 = short, 2 = long) */
1690 16, /* bitsize */
1691 FALSE, /* pc_relative */
1692 0, /* bitpos */
1693 complain_overflow_signed, /* complain_on_overflow */
1694 ppc64_elf_unhandled_reloc, /* special_function */
1695 "R_PPC64_GOT_TLSGD16", /* name */
1696 FALSE, /* partial_inplace */
1697 0, /* src_mask */
1698 0xffff, /* dst_mask */
1699 FALSE), /* pcrel_offset */
1700
1701 /* Like GOT_TLSGD16, but no overflow. */
1702 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1703 0, /* rightshift */
1704 1, /* size (0 = byte, 1 = short, 2 = long) */
1705 16, /* bitsize */
1706 FALSE, /* pc_relative */
1707 0, /* bitpos */
1708 complain_overflow_dont, /* complain_on_overflow */
1709 ppc64_elf_unhandled_reloc, /* special_function */
1710 "R_PPC64_GOT_TLSGD16_LO", /* name */
1711 FALSE, /* partial_inplace */
1712 0, /* src_mask */
1713 0xffff, /* dst_mask */
1714 FALSE), /* pcrel_offset */
1715
1716 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1717 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1718 16, /* rightshift */
1719 1, /* size (0 = byte, 1 = short, 2 = long) */
1720 16, /* bitsize */
1721 FALSE, /* pc_relative */
1722 0, /* bitpos */
1723 complain_overflow_signed, /* complain_on_overflow */
1724 ppc64_elf_unhandled_reloc, /* special_function */
1725 "R_PPC64_GOT_TLSGD16_HI", /* name */
1726 FALSE, /* partial_inplace */
1727 0, /* src_mask */
1728 0xffff, /* dst_mask */
1729 FALSE), /* pcrel_offset */
1730
1731 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1732 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1733 16, /* rightshift */
1734 1, /* size (0 = byte, 1 = short, 2 = long) */
1735 16, /* bitsize */
1736 FALSE, /* pc_relative */
1737 0, /* bitpos */
1738 complain_overflow_signed, /* complain_on_overflow */
1739 ppc64_elf_unhandled_reloc, /* special_function */
1740 "R_PPC64_GOT_TLSGD16_HA", /* name */
1741 FALSE, /* partial_inplace */
1742 0, /* src_mask */
1743 0xffff, /* dst_mask */
1744 FALSE), /* pcrel_offset */
1745
1746 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1747 with values (sym+add)@dtpmod and zero, and computes the offset to the
1748 first entry relative to the TOC base (r2). */
1749 HOWTO (R_PPC64_GOT_TLSLD16,
1750 0, /* rightshift */
1751 1, /* size (0 = byte, 1 = short, 2 = long) */
1752 16, /* bitsize */
1753 FALSE, /* pc_relative */
1754 0, /* bitpos */
1755 complain_overflow_signed, /* complain_on_overflow */
1756 ppc64_elf_unhandled_reloc, /* special_function */
1757 "R_PPC64_GOT_TLSLD16", /* name */
1758 FALSE, /* partial_inplace */
1759 0, /* src_mask */
1760 0xffff, /* dst_mask */
1761 FALSE), /* pcrel_offset */
1762
1763 /* Like GOT_TLSLD16, but no overflow. */
1764 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1765 0, /* rightshift */
1766 1, /* size (0 = byte, 1 = short, 2 = long) */
1767 16, /* bitsize */
1768 FALSE, /* pc_relative */
1769 0, /* bitpos */
1770 complain_overflow_dont, /* complain_on_overflow */
1771 ppc64_elf_unhandled_reloc, /* special_function */
1772 "R_PPC64_GOT_TLSLD16_LO", /* name */
1773 FALSE, /* partial_inplace */
1774 0, /* src_mask */
1775 0xffff, /* dst_mask */
1776 FALSE), /* pcrel_offset */
1777
1778 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1779 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1780 16, /* rightshift */
1781 1, /* size (0 = byte, 1 = short, 2 = long) */
1782 16, /* bitsize */
1783 FALSE, /* pc_relative */
1784 0, /* bitpos */
1785 complain_overflow_signed, /* complain_on_overflow */
1786 ppc64_elf_unhandled_reloc, /* special_function */
1787 "R_PPC64_GOT_TLSLD16_HI", /* name */
1788 FALSE, /* partial_inplace */
1789 0, /* src_mask */
1790 0xffff, /* dst_mask */
1791 FALSE), /* pcrel_offset */
1792
1793 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1794 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1795 16, /* rightshift */
1796 1, /* size (0 = byte, 1 = short, 2 = long) */
1797 16, /* bitsize */
1798 FALSE, /* pc_relative */
1799 0, /* bitpos */
1800 complain_overflow_signed, /* complain_on_overflow */
1801 ppc64_elf_unhandled_reloc, /* special_function */
1802 "R_PPC64_GOT_TLSLD16_HA", /* name */
1803 FALSE, /* partial_inplace */
1804 0, /* src_mask */
1805 0xffff, /* dst_mask */
1806 FALSE), /* pcrel_offset */
1807
1808 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1809 the offset to the entry relative to the TOC base (r2). */
1810 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1811 0, /* rightshift */
1812 1, /* size (0 = byte, 1 = short, 2 = long) */
1813 16, /* bitsize */
1814 FALSE, /* pc_relative */
1815 0, /* bitpos */
1816 complain_overflow_signed, /* complain_on_overflow */
1817 ppc64_elf_unhandled_reloc, /* special_function */
1818 "R_PPC64_GOT_DTPREL16_DS", /* name */
1819 FALSE, /* partial_inplace */
1820 0, /* src_mask */
1821 0xfffc, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 /* Like GOT_DTPREL16_DS, but no overflow. */
1825 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1826 0, /* rightshift */
1827 1, /* size (0 = byte, 1 = short, 2 = long) */
1828 16, /* bitsize */
1829 FALSE, /* pc_relative */
1830 0, /* bitpos */
1831 complain_overflow_dont, /* complain_on_overflow */
1832 ppc64_elf_unhandled_reloc, /* special_function */
1833 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1834 FALSE, /* partial_inplace */
1835 0, /* src_mask */
1836 0xfffc, /* dst_mask */
1837 FALSE), /* pcrel_offset */
1838
1839 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1840 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1841 16, /* rightshift */
1842 1, /* size (0 = byte, 1 = short, 2 = long) */
1843 16, /* bitsize */
1844 FALSE, /* pc_relative */
1845 0, /* bitpos */
1846 complain_overflow_signed, /* complain_on_overflow */
1847 ppc64_elf_unhandled_reloc, /* special_function */
1848 "R_PPC64_GOT_DTPREL16_HI", /* name */
1849 FALSE, /* partial_inplace */
1850 0, /* src_mask */
1851 0xffff, /* dst_mask */
1852 FALSE), /* pcrel_offset */
1853
1854 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1855 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1856 16, /* rightshift */
1857 1, /* size (0 = byte, 1 = short, 2 = long) */
1858 16, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_signed, /* complain_on_overflow */
1862 ppc64_elf_unhandled_reloc, /* special_function */
1863 "R_PPC64_GOT_DTPREL16_HA", /* name */
1864 FALSE, /* partial_inplace */
1865 0, /* src_mask */
1866 0xffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868
1869 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1870 offset to the entry relative to the TOC base (r2). */
1871 HOWTO (R_PPC64_GOT_TPREL16_DS,
1872 0, /* rightshift */
1873 1, /* size (0 = byte, 1 = short, 2 = long) */
1874 16, /* bitsize */
1875 FALSE, /* pc_relative */
1876 0, /* bitpos */
1877 complain_overflow_signed, /* complain_on_overflow */
1878 ppc64_elf_unhandled_reloc, /* special_function */
1879 "R_PPC64_GOT_TPREL16_DS", /* name */
1880 FALSE, /* partial_inplace */
1881 0, /* src_mask */
1882 0xfffc, /* dst_mask */
1883 FALSE), /* pcrel_offset */
1884
1885 /* Like GOT_TPREL16_DS, but no overflow. */
1886 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1887 0, /* rightshift */
1888 1, /* size (0 = byte, 1 = short, 2 = long) */
1889 16, /* bitsize */
1890 FALSE, /* pc_relative */
1891 0, /* bitpos */
1892 complain_overflow_dont, /* complain_on_overflow */
1893 ppc64_elf_unhandled_reloc, /* special_function */
1894 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1895 FALSE, /* partial_inplace */
1896 0, /* src_mask */
1897 0xfffc, /* dst_mask */
1898 FALSE), /* pcrel_offset */
1899
1900 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1901 HOWTO (R_PPC64_GOT_TPREL16_HI,
1902 16, /* rightshift */
1903 1, /* size (0 = byte, 1 = short, 2 = long) */
1904 16, /* bitsize */
1905 FALSE, /* pc_relative */
1906 0, /* bitpos */
1907 complain_overflow_signed, /* complain_on_overflow */
1908 ppc64_elf_unhandled_reloc, /* special_function */
1909 "R_PPC64_GOT_TPREL16_HI", /* name */
1910 FALSE, /* partial_inplace */
1911 0, /* src_mask */
1912 0xffff, /* dst_mask */
1913 FALSE), /* pcrel_offset */
1914
1915 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1916 HOWTO (R_PPC64_GOT_TPREL16_HA,
1917 16, /* rightshift */
1918 1, /* size (0 = byte, 1 = short, 2 = long) */
1919 16, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_signed, /* complain_on_overflow */
1923 ppc64_elf_unhandled_reloc, /* special_function */
1924 "R_PPC64_GOT_TPREL16_HA", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 0xffff, /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 HOWTO (R_PPC64_JMP_IREL, /* type */
1931 0, /* rightshift */
1932 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1933 0, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont, /* complain_on_overflow */
1937 ppc64_elf_unhandled_reloc, /* special_function */
1938 "R_PPC64_JMP_IREL", /* name */
1939 FALSE, /* partial_inplace */
1940 0, /* src_mask */
1941 0, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO (R_PPC64_IRELATIVE, /* type */
1945 0, /* rightshift */
1946 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1947 64, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_dont, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 "R_PPC64_IRELATIVE", /* name */
1953 FALSE, /* partial_inplace */
1954 0, /* src_mask */
1955 ONES (64), /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 /* A 16 bit relative relocation. */
1959 HOWTO (R_PPC64_REL16, /* type */
1960 0, /* rightshift */
1961 1, /* size (0 = byte, 1 = short, 2 = long) */
1962 16, /* bitsize */
1963 TRUE, /* pc_relative */
1964 0, /* bitpos */
1965 complain_overflow_signed, /* complain_on_overflow */
1966 bfd_elf_generic_reloc, /* special_function */
1967 "R_PPC64_REL16", /* name */
1968 FALSE, /* partial_inplace */
1969 0, /* src_mask */
1970 0xffff, /* dst_mask */
1971 TRUE), /* pcrel_offset */
1972
1973 /* A 16 bit relative relocation without overflow. */
1974 HOWTO (R_PPC64_REL16_LO, /* type */
1975 0, /* rightshift */
1976 1, /* size (0 = byte, 1 = short, 2 = long) */
1977 16, /* bitsize */
1978 TRUE, /* pc_relative */
1979 0, /* bitpos */
1980 complain_overflow_dont,/* complain_on_overflow */
1981 bfd_elf_generic_reloc, /* special_function */
1982 "R_PPC64_REL16_LO", /* name */
1983 FALSE, /* partial_inplace */
1984 0, /* src_mask */
1985 0xffff, /* dst_mask */
1986 TRUE), /* pcrel_offset */
1987
1988 /* The high order 16 bits of a relative address. */
1989 HOWTO (R_PPC64_REL16_HI, /* type */
1990 16, /* rightshift */
1991 1, /* size (0 = byte, 1 = short, 2 = long) */
1992 16, /* bitsize */
1993 TRUE, /* pc_relative */
1994 0, /* bitpos */
1995 complain_overflow_signed, /* complain_on_overflow */
1996 bfd_elf_generic_reloc, /* special_function */
1997 "R_PPC64_REL16_HI", /* name */
1998 FALSE, /* partial_inplace */
1999 0, /* src_mask */
2000 0xffff, /* dst_mask */
2001 TRUE), /* pcrel_offset */
2002
2003 /* The high order 16 bits of a relative address, plus 1 if the contents of
2004 the low 16 bits, treated as a signed number, is negative. */
2005 HOWTO (R_PPC64_REL16_HA, /* type */
2006 16, /* rightshift */
2007 1, /* size (0 = byte, 1 = short, 2 = long) */
2008 16, /* bitsize */
2009 TRUE, /* pc_relative */
2010 0, /* bitpos */
2011 complain_overflow_signed, /* complain_on_overflow */
2012 ppc64_elf_ha_reloc, /* special_function */
2013 "R_PPC64_REL16_HA", /* name */
2014 FALSE, /* partial_inplace */
2015 0, /* src_mask */
2016 0xffff, /* dst_mask */
2017 TRUE), /* pcrel_offset */
2018
2019 /* Like R_PPC64_ADDR16_HI, but no overflow. */
2020 HOWTO (R_PPC64_ADDR16_HIGH, /* type */
2021 16, /* rightshift */
2022 1, /* size (0 = byte, 1 = short, 2 = long) */
2023 16, /* bitsize */
2024 FALSE, /* pc_relative */
2025 0, /* bitpos */
2026 complain_overflow_dont, /* complain_on_overflow */
2027 bfd_elf_generic_reloc, /* special_function */
2028 "R_PPC64_ADDR16_HIGH", /* name */
2029 FALSE, /* partial_inplace */
2030 0, /* src_mask */
2031 0xffff, /* dst_mask */
2032 FALSE), /* pcrel_offset */
2033
2034 /* Like R_PPC64_ADDR16_HA, but no overflow. */
2035 HOWTO (R_PPC64_ADDR16_HIGHA, /* type */
2036 16, /* rightshift */
2037 1, /* size (0 = byte, 1 = short, 2 = long) */
2038 16, /* bitsize */
2039 FALSE, /* pc_relative */
2040 0, /* bitpos */
2041 complain_overflow_dont, /* complain_on_overflow */
2042 ppc64_elf_ha_reloc, /* special_function */
2043 "R_PPC64_ADDR16_HIGHA", /* name */
2044 FALSE, /* partial_inplace */
2045 0, /* src_mask */
2046 0xffff, /* dst_mask */
2047 FALSE), /* pcrel_offset */
2048
2049 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
2050 HOWTO (R_PPC64_DTPREL16_HIGH,
2051 16, /* rightshift */
2052 1, /* size (0 = byte, 1 = short, 2 = long) */
2053 16, /* bitsize */
2054 FALSE, /* pc_relative */
2055 0, /* bitpos */
2056 complain_overflow_dont, /* complain_on_overflow */
2057 ppc64_elf_unhandled_reloc, /* special_function */
2058 "R_PPC64_DTPREL16_HIGH", /* name */
2059 FALSE, /* partial_inplace */
2060 0, /* src_mask */
2061 0xffff, /* dst_mask */
2062 FALSE), /* pcrel_offset */
2063
2064 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
2065 HOWTO (R_PPC64_DTPREL16_HIGHA,
2066 16, /* rightshift */
2067 1, /* size (0 = byte, 1 = short, 2 = long) */
2068 16, /* bitsize */
2069 FALSE, /* pc_relative */
2070 0, /* bitpos */
2071 complain_overflow_dont, /* complain_on_overflow */
2072 ppc64_elf_unhandled_reloc, /* special_function */
2073 "R_PPC64_DTPREL16_HIGHA", /* name */
2074 FALSE, /* partial_inplace */
2075 0, /* src_mask */
2076 0xffff, /* dst_mask */
2077 FALSE), /* pcrel_offset */
2078
2079 /* Like R_PPC64_TPREL16_HI, but no overflow. */
2080 HOWTO (R_PPC64_TPREL16_HIGH,
2081 16, /* rightshift */
2082 1, /* size (0 = byte, 1 = short, 2 = long) */
2083 16, /* bitsize */
2084 FALSE, /* pc_relative */
2085 0, /* bitpos */
2086 complain_overflow_dont, /* complain_on_overflow */
2087 ppc64_elf_unhandled_reloc, /* special_function */
2088 "R_PPC64_TPREL16_HIGH", /* name */
2089 FALSE, /* partial_inplace */
2090 0, /* src_mask */
2091 0xffff, /* dst_mask */
2092 FALSE), /* pcrel_offset */
2093
2094 /* Like R_PPC64_TPREL16_HA, but no overflow. */
2095 HOWTO (R_PPC64_TPREL16_HIGHA,
2096 16, /* rightshift */
2097 1, /* size (0 = byte, 1 = short, 2 = long) */
2098 16, /* bitsize */
2099 FALSE, /* pc_relative */
2100 0, /* bitpos */
2101 complain_overflow_dont, /* complain_on_overflow */
2102 ppc64_elf_unhandled_reloc, /* special_function */
2103 "R_PPC64_TPREL16_HIGHA", /* name */
2104 FALSE, /* partial_inplace */
2105 0, /* src_mask */
2106 0xffff, /* dst_mask */
2107 FALSE), /* pcrel_offset */
2108
2109 /* Like ADDR64, but use local entry point of function. */
2110 HOWTO (R_PPC64_ADDR64_LOCAL, /* type */
2111 0, /* rightshift */
2112 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
2113 64, /* bitsize */
2114 FALSE, /* pc_relative */
2115 0, /* bitpos */
2116 complain_overflow_dont, /* complain_on_overflow */
2117 bfd_elf_generic_reloc, /* special_function */
2118 "R_PPC64_ADDR64_LOCAL", /* name */
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ONES (64), /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 /* GNU extension to record C++ vtable hierarchy. */
2125 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
2126 0, /* rightshift */
2127 0, /* size (0 = byte, 1 = short, 2 = long) */
2128 0, /* bitsize */
2129 FALSE, /* pc_relative */
2130 0, /* bitpos */
2131 complain_overflow_dont, /* complain_on_overflow */
2132 NULL, /* special_function */
2133 "R_PPC64_GNU_VTINHERIT", /* name */
2134 FALSE, /* partial_inplace */
2135 0, /* src_mask */
2136 0, /* dst_mask */
2137 FALSE), /* pcrel_offset */
2138
2139 /* GNU extension to record C++ vtable member usage. */
2140 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2141 0, /* rightshift */
2142 0, /* size (0 = byte, 1 = short, 2 = long) */
2143 0, /* bitsize */
2144 FALSE, /* pc_relative */
2145 0, /* bitpos */
2146 complain_overflow_dont, /* complain_on_overflow */
2147 NULL, /* special_function */
2148 "R_PPC64_GNU_VTENTRY", /* name */
2149 FALSE, /* partial_inplace */
2150 0, /* src_mask */
2151 0, /* dst_mask */
2152 FALSE), /* pcrel_offset */
2153 };
2154
2155 \f
2156 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2157 be done. */
2158
2159 static void
2160 ppc_howto_init (void)
2161 {
2162 unsigned int i, type;
2163
2164 for (i = 0;
2165 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2166 i++)
2167 {
2168 type = ppc64_elf_howto_raw[i].type;
2169 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2170 / sizeof (ppc64_elf_howto_table[0])));
2171 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2172 }
2173 }
2174
2175 static reloc_howto_type *
2176 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2177 bfd_reloc_code_real_type code)
2178 {
2179 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2180
2181 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2182 /* Initialize howto table if needed. */
2183 ppc_howto_init ();
2184
2185 switch (code)
2186 {
2187 default:
2188 return NULL;
2189
2190 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2191 break;
2192 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2193 break;
2194 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2195 break;
2196 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2197 break;
2198 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2199 break;
2200 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2201 break;
2202 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
2203 break;
2204 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2205 break;
2206 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
2207 break;
2208 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2209 break;
2210 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2211 break;
2212 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2213 break;
2214 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2215 break;
2216 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2217 break;
2218 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2219 break;
2220 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2221 break;
2222 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2223 break;
2224 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2225 break;
2226 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2227 break;
2228 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2229 break;
2230 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2231 break;
2232 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2233 break;
2234 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2235 break;
2236 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2237 break;
2238 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2239 break;
2240 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2241 break;
2242 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2243 break;
2244 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2245 break;
2246 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2247 break;
2248 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2249 break;
2250 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2251 break;
2252 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2253 break;
2254 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2255 break;
2256 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2257 break;
2258 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2259 break;
2260 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2261 break;
2262 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2263 break;
2264 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2265 break;
2266 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2267 break;
2268 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2269 break;
2270 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2271 break;
2272 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2273 break;
2274 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2275 break;
2276 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2277 break;
2278 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2279 break;
2280 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2281 break;
2282 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2283 break;
2284 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2285 break;
2286 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2287 break;
2288 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2289 break;
2290 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2291 break;
2292 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2293 break;
2294 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2295 break;
2296 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2297 break;
2298 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2299 break;
2300 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2301 break;
2302 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2303 break;
2304 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2305 break;
2306 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2307 break;
2308 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2309 break;
2310 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2311 break;
2312 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2313 break;
2314 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2315 break;
2316 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2317 break;
2318 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2319 break;
2320 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2321 break;
2322 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2323 break;
2324 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2325 break;
2326 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
2327 break;
2328 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2329 break;
2330 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
2331 break;
2332 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2333 break;
2334 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2335 break;
2336 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2337 break;
2338 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2339 break;
2340 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
2341 break;
2342 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2343 break;
2344 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
2345 break;
2346 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2347 break;
2348 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2349 break;
2350 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2351 break;
2352 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2353 break;
2354 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2355 break;
2356 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2357 break;
2358 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2359 break;
2360 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2361 break;
2362 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2363 break;
2364 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2365 break;
2366 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2367 break;
2368 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2369 break;
2370 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2371 break;
2372 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2373 break;
2374 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2375 break;
2376 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2377 break;
2378 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2379 break;
2380 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2381 break;
2382 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2383 break;
2384 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2385 break;
2386 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2387 break;
2388 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2389 break;
2390 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2391 break;
2392 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2393 break;
2394 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2395 break;
2396 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2397 break;
2398 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2399 break;
2400 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2401 break;
2402 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2403 break;
2404 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2405 break;
2406 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2407 break;
2408 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2409 break;
2410 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2411 break;
2412 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
2413 break;
2414 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2415 break;
2416 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2417 break;
2418 }
2419
2420 return ppc64_elf_howto_table[r];
2421 };
2422
2423 static reloc_howto_type *
2424 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2425 const char *r_name)
2426 {
2427 unsigned int i;
2428
2429 for (i = 0;
2430 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2431 i++)
2432 if (ppc64_elf_howto_raw[i].name != NULL
2433 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2434 return &ppc64_elf_howto_raw[i];
2435
2436 return NULL;
2437 }
2438
2439 /* Set the howto pointer for a PowerPC ELF reloc. */
2440
2441 static void
2442 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2443 Elf_Internal_Rela *dst)
2444 {
2445 unsigned int type;
2446
2447 /* Initialize howto table if needed. */
2448 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2449 ppc_howto_init ();
2450
2451 type = ELF64_R_TYPE (dst->r_info);
2452 if (type >= (sizeof (ppc64_elf_howto_table)
2453 / sizeof (ppc64_elf_howto_table[0])))
2454 {
2455 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2456 abfd, (int) type);
2457 type = R_PPC64_NONE;
2458 }
2459 cache_ptr->howto = ppc64_elf_howto_table[type];
2460 }
2461
2462 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2463
2464 static bfd_reloc_status_type
2465 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2466 void *data, asection *input_section,
2467 bfd *output_bfd, char **error_message)
2468 {
2469 /* If this is a relocatable link (output_bfd test tells us), just
2470 call the generic function. Any adjustment will be done at final
2471 link time. */
2472 if (output_bfd != NULL)
2473 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2474 input_section, output_bfd, error_message);
2475
2476 /* Adjust the addend for sign extension of the low 16 bits.
2477 We won't actually be using the low 16 bits, so trashing them
2478 doesn't matter. */
2479 reloc_entry->addend += 0x8000;
2480 return bfd_reloc_continue;
2481 }
2482
2483 static bfd_reloc_status_type
2484 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2485 void *data, asection *input_section,
2486 bfd *output_bfd, char **error_message)
2487 {
2488 if (output_bfd != NULL)
2489 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2490 input_section, output_bfd, error_message);
2491
2492 if (strcmp (symbol->section->name, ".opd") == 0
2493 && (symbol->section->owner->flags & DYNAMIC) == 0)
2494 {
2495 bfd_vma dest = opd_entry_value (symbol->section,
2496 symbol->value + reloc_entry->addend,
2497 NULL, NULL, FALSE);
2498 if (dest != (bfd_vma) -1)
2499 reloc_entry->addend = dest - (symbol->value
2500 + symbol->section->output_section->vma
2501 + symbol->section->output_offset);
2502 }
2503 else
2504 {
2505 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
2506
2507 if (symbol->section->owner != abfd
2508 && abiversion (symbol->section->owner) >= 2)
2509 {
2510 unsigned int i;
2511
2512 for (i = 0; i < symbol->section->owner->symcount; ++i)
2513 {
2514 asymbol *symdef = symbol->section->owner->outsymbols[i];
2515
2516 if (strcmp (symdef->name, symbol->name) == 0)
2517 {
2518 elfsym = (elf_symbol_type *) symdef;
2519 break;
2520 }
2521 }
2522 }
2523 reloc_entry->addend
2524 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
2525 }
2526 return bfd_reloc_continue;
2527 }
2528
2529 static bfd_reloc_status_type
2530 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533 {
2534 long insn;
2535 enum elf_ppc64_reloc_type r_type;
2536 bfd_size_type octets;
2537 /* Assume 'at' branch hints. */
2538 bfd_boolean is_isa_v2 = TRUE;
2539
2540 /* If this is a relocatable link (output_bfd test tells us), just
2541 call the generic function. Any adjustment will be done at final
2542 link time. */
2543 if (output_bfd != NULL)
2544 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2545 input_section, output_bfd, error_message);
2546
2547 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2548 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2549 insn &= ~(0x01 << 21);
2550 r_type = reloc_entry->howto->type;
2551 if (r_type == R_PPC64_ADDR14_BRTAKEN
2552 || r_type == R_PPC64_REL14_BRTAKEN)
2553 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2554
2555 if (is_isa_v2)
2556 {
2557 /* Set 'a' bit. This is 0b00010 in BO field for branch
2558 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2559 for branch on CTR insns (BO == 1a00t or 1a01t). */
2560 if ((insn & (0x14 << 21)) == (0x04 << 21))
2561 insn |= 0x02 << 21;
2562 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2563 insn |= 0x08 << 21;
2564 else
2565 goto out;
2566 }
2567 else
2568 {
2569 bfd_vma target = 0;
2570 bfd_vma from;
2571
2572 if (!bfd_is_com_section (symbol->section))
2573 target = symbol->value;
2574 target += symbol->section->output_section->vma;
2575 target += symbol->section->output_offset;
2576 target += reloc_entry->addend;
2577
2578 from = (reloc_entry->address
2579 + input_section->output_offset
2580 + input_section->output_section->vma);
2581
2582 /* Invert 'y' bit if not the default. */
2583 if ((bfd_signed_vma) (target - from) < 0)
2584 insn ^= 0x01 << 21;
2585 }
2586 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2587 out:
2588 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2589 input_section, output_bfd, error_message);
2590 }
2591
2592 static bfd_reloc_status_type
2593 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2594 void *data, asection *input_section,
2595 bfd *output_bfd, char **error_message)
2596 {
2597 /* If this is a relocatable link (output_bfd test tells us), just
2598 call the generic function. Any adjustment will be done at final
2599 link time. */
2600 if (output_bfd != NULL)
2601 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2602 input_section, output_bfd, error_message);
2603
2604 /* Subtract the symbol section base address. */
2605 reloc_entry->addend -= symbol->section->output_section->vma;
2606 return bfd_reloc_continue;
2607 }
2608
2609 static bfd_reloc_status_type
2610 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2611 void *data, asection *input_section,
2612 bfd *output_bfd, char **error_message)
2613 {
2614 /* If this is a relocatable link (output_bfd test tells us), just
2615 call the generic function. Any adjustment will be done at final
2616 link time. */
2617 if (output_bfd != NULL)
2618 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2619 input_section, output_bfd, error_message);
2620
2621 /* Subtract the symbol section base address. */
2622 reloc_entry->addend -= symbol->section->output_section->vma;
2623
2624 /* Adjust the addend for sign extension of the low 16 bits. */
2625 reloc_entry->addend += 0x8000;
2626 return bfd_reloc_continue;
2627 }
2628
2629 static bfd_reloc_status_type
2630 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2631 void *data, asection *input_section,
2632 bfd *output_bfd, char **error_message)
2633 {
2634 bfd_vma TOCstart;
2635
2636 /* If this is a relocatable link (output_bfd test tells us), just
2637 call the generic function. Any adjustment will be done at final
2638 link time. */
2639 if (output_bfd != NULL)
2640 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2641 input_section, output_bfd, error_message);
2642
2643 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2644 if (TOCstart == 0)
2645 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2646
2647 /* Subtract the TOC base address. */
2648 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2649 return bfd_reloc_continue;
2650 }
2651
2652 static bfd_reloc_status_type
2653 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2654 void *data, asection *input_section,
2655 bfd *output_bfd, char **error_message)
2656 {
2657 bfd_vma TOCstart;
2658
2659 /* If this is a relocatable link (output_bfd test tells us), just
2660 call the generic function. Any adjustment will be done at final
2661 link time. */
2662 if (output_bfd != NULL)
2663 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2664 input_section, output_bfd, error_message);
2665
2666 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2667 if (TOCstart == 0)
2668 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2669
2670 /* Subtract the TOC base address. */
2671 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2672
2673 /* Adjust the addend for sign extension of the low 16 bits. */
2674 reloc_entry->addend += 0x8000;
2675 return bfd_reloc_continue;
2676 }
2677
2678 static bfd_reloc_status_type
2679 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2680 void *data, asection *input_section,
2681 bfd *output_bfd, char **error_message)
2682 {
2683 bfd_vma TOCstart;
2684 bfd_size_type octets;
2685
2686 /* If this is a relocatable link (output_bfd test tells us), just
2687 call the generic function. Any adjustment will be done at final
2688 link time. */
2689 if (output_bfd != NULL)
2690 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2691 input_section, output_bfd, error_message);
2692
2693 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2694 if (TOCstart == 0)
2695 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2696
2697 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2698 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2699 return bfd_reloc_ok;
2700 }
2701
2702 static bfd_reloc_status_type
2703 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2704 void *data, asection *input_section,
2705 bfd *output_bfd, char **error_message)
2706 {
2707 /* If this is a relocatable link (output_bfd test tells us), just
2708 call the generic function. Any adjustment will be done at final
2709 link time. */
2710 if (output_bfd != NULL)
2711 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2712 input_section, output_bfd, error_message);
2713
2714 if (error_message != NULL)
2715 {
2716 static char buf[60];
2717 sprintf (buf, "generic linker can't handle %s",
2718 reloc_entry->howto->name);
2719 *error_message = buf;
2720 }
2721 return bfd_reloc_dangerous;
2722 }
2723
2724 /* Track GOT entries needed for a given symbol. We might need more
2725 than one got entry per symbol. */
2726 struct got_entry
2727 {
2728 struct got_entry *next;
2729
2730 /* The symbol addend that we'll be placing in the GOT. */
2731 bfd_vma addend;
2732
2733 /* Unlike other ELF targets, we use separate GOT entries for the same
2734 symbol referenced from different input files. This is to support
2735 automatic multiple TOC/GOT sections, where the TOC base can vary
2736 from one input file to another. After partitioning into TOC groups
2737 we merge entries within the group.
2738
2739 Point to the BFD owning this GOT entry. */
2740 bfd *owner;
2741
2742 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2743 TLS_TPREL or TLS_DTPREL for tls entries. */
2744 unsigned char tls_type;
2745
2746 /* Non-zero if got.ent points to real entry. */
2747 unsigned char is_indirect;
2748
2749 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2750 union
2751 {
2752 bfd_signed_vma refcount;
2753 bfd_vma offset;
2754 struct got_entry *ent;
2755 } got;
2756 };
2757
2758 /* The same for PLT. */
2759 struct plt_entry
2760 {
2761 struct plt_entry *next;
2762
2763 bfd_vma addend;
2764
2765 union
2766 {
2767 bfd_signed_vma refcount;
2768 bfd_vma offset;
2769 } plt;
2770 };
2771
2772 struct ppc64_elf_obj_tdata
2773 {
2774 struct elf_obj_tdata elf;
2775
2776 /* Shortcuts to dynamic linker sections. */
2777 asection *got;
2778 asection *relgot;
2779
2780 /* Used during garbage collection. We attach global symbols defined
2781 on removed .opd entries to this section so that the sym is removed. */
2782 asection *deleted_section;
2783
2784 /* TLS local dynamic got entry handling. Support for multiple GOT
2785 sections means we potentially need one of these for each input bfd. */
2786 struct got_entry tlsld_got;
2787
2788 union {
2789 /* A copy of relocs before they are modified for --emit-relocs. */
2790 Elf_Internal_Rela *relocs;
2791
2792 /* Section contents. */
2793 bfd_byte *contents;
2794 } opd;
2795
2796 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2797 the reloc to be in the range -32768 to 32767. */
2798 unsigned int has_small_toc_reloc : 1;
2799
2800 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2801 instruction not one we handle. */
2802 unsigned int unexpected_toc_insn : 1;
2803 };
2804
2805 #define ppc64_elf_tdata(bfd) \
2806 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2807
2808 #define ppc64_tlsld_got(bfd) \
2809 (&ppc64_elf_tdata (bfd)->tlsld_got)
2810
2811 #define is_ppc64_elf(bfd) \
2812 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2813 && elf_object_id (bfd) == PPC64_ELF_DATA)
2814
2815 /* Override the generic function because we store some extras. */
2816
2817 static bfd_boolean
2818 ppc64_elf_mkobject (bfd *abfd)
2819 {
2820 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2821 PPC64_ELF_DATA);
2822 }
2823
2824 /* Fix bad default arch selected for a 64 bit input bfd when the
2825 default is 32 bit. */
2826
2827 static bfd_boolean
2828 ppc64_elf_object_p (bfd *abfd)
2829 {
2830 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2831 {
2832 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2833
2834 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2835 {
2836 /* Relies on arch after 32 bit default being 64 bit default. */
2837 abfd->arch_info = abfd->arch_info->next;
2838 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2839 }
2840 }
2841 return TRUE;
2842 }
2843
2844 /* Support for core dump NOTE sections. */
2845
2846 static bfd_boolean
2847 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2848 {
2849 size_t offset, size;
2850
2851 if (note->descsz != 504)
2852 return FALSE;
2853
2854 /* pr_cursig */
2855 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2856
2857 /* pr_pid */
2858 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2859
2860 /* pr_reg */
2861 offset = 112;
2862 size = 384;
2863
2864 /* Make a ".reg/999" section. */
2865 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2866 size, note->descpos + offset);
2867 }
2868
2869 static bfd_boolean
2870 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2871 {
2872 if (note->descsz != 136)
2873 return FALSE;
2874
2875 elf_tdata (abfd)->core->pid
2876 = bfd_get_32 (abfd, note->descdata + 24);
2877 elf_tdata (abfd)->core->program
2878 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2879 elf_tdata (abfd)->core->command
2880 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2881
2882 return TRUE;
2883 }
2884
2885 static char *
2886 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2887 ...)
2888 {
2889 switch (note_type)
2890 {
2891 default:
2892 return NULL;
2893
2894 case NT_PRPSINFO:
2895 {
2896 char data[136];
2897 va_list ap;
2898
2899 va_start (ap, note_type);
2900 memset (data, 0, sizeof (data));
2901 strncpy (data + 40, va_arg (ap, const char *), 16);
2902 strncpy (data + 56, va_arg (ap, const char *), 80);
2903 va_end (ap);
2904 return elfcore_write_note (abfd, buf, bufsiz,
2905 "CORE", note_type, data, sizeof (data));
2906 }
2907
2908 case NT_PRSTATUS:
2909 {
2910 char data[504];
2911 va_list ap;
2912 long pid;
2913 int cursig;
2914 const void *greg;
2915
2916 va_start (ap, note_type);
2917 memset (data, 0, 112);
2918 pid = va_arg (ap, long);
2919 bfd_put_32 (abfd, pid, data + 32);
2920 cursig = va_arg (ap, int);
2921 bfd_put_16 (abfd, cursig, data + 12);
2922 greg = va_arg (ap, const void *);
2923 memcpy (data + 112, greg, 384);
2924 memset (data + 496, 0, 8);
2925 va_end (ap);
2926 return elfcore_write_note (abfd, buf, bufsiz,
2927 "CORE", note_type, data, sizeof (data));
2928 }
2929 }
2930 }
2931
2932 /* Add extra PPC sections. */
2933
2934 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2935 {
2936 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2937 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2938 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2939 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2940 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2941 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2942 { NULL, 0, 0, 0, 0 }
2943 };
2944
2945 enum _ppc64_sec_type {
2946 sec_normal = 0,
2947 sec_opd = 1,
2948 sec_toc = 2
2949 };
2950
2951 struct _ppc64_elf_section_data
2952 {
2953 struct bfd_elf_section_data elf;
2954
2955 union
2956 {
2957 /* An array with one entry for each opd function descriptor,
2958 and some spares since opd entries may be either 16 or 24 bytes. */
2959 #define OPD_NDX(OFF) ((OFF) >> 4)
2960 struct _opd_sec_data
2961 {
2962 /* Points to the function code section for local opd entries. */
2963 asection **func_sec;
2964
2965 /* After editing .opd, adjust references to opd local syms. */
2966 long *adjust;
2967 } opd;
2968
2969 /* An array for toc sections, indexed by offset/8. */
2970 struct _toc_sec_data
2971 {
2972 /* Specifies the relocation symbol index used at a given toc offset. */
2973 unsigned *symndx;
2974
2975 /* And the relocation addend. */
2976 bfd_vma *add;
2977 } toc;
2978 } u;
2979
2980 enum _ppc64_sec_type sec_type:2;
2981
2982 /* Flag set when small branches are detected. Used to
2983 select suitable defaults for the stub group size. */
2984 unsigned int has_14bit_branch:1;
2985 };
2986
2987 #define ppc64_elf_section_data(sec) \
2988 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2989
2990 static bfd_boolean
2991 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2992 {
2993 if (!sec->used_by_bfd)
2994 {
2995 struct _ppc64_elf_section_data *sdata;
2996 bfd_size_type amt = sizeof (*sdata);
2997
2998 sdata = bfd_zalloc (abfd, amt);
2999 if (sdata == NULL)
3000 return FALSE;
3001 sec->used_by_bfd = sdata;
3002 }
3003
3004 return _bfd_elf_new_section_hook (abfd, sec);
3005 }
3006
3007 static struct _opd_sec_data *
3008 get_opd_info (asection * sec)
3009 {
3010 if (sec != NULL
3011 && ppc64_elf_section_data (sec) != NULL
3012 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
3013 return &ppc64_elf_section_data (sec)->u.opd;
3014 return NULL;
3015 }
3016 \f
3017 /* Parameters for the qsort hook. */
3018 static bfd_boolean synthetic_relocatable;
3019
3020 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
3021
3022 static int
3023 compare_symbols (const void *ap, const void *bp)
3024 {
3025 const asymbol *a = * (const asymbol **) ap;
3026 const asymbol *b = * (const asymbol **) bp;
3027
3028 /* Section symbols first. */
3029 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
3030 return -1;
3031 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
3032 return 1;
3033
3034 /* then .opd symbols. */
3035 if (strcmp (a->section->name, ".opd") == 0
3036 && strcmp (b->section->name, ".opd") != 0)
3037 return -1;
3038 if (strcmp (a->section->name, ".opd") != 0
3039 && strcmp (b->section->name, ".opd") == 0)
3040 return 1;
3041
3042 /* then other code symbols. */
3043 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3044 == (SEC_CODE | SEC_ALLOC)
3045 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3046 != (SEC_CODE | SEC_ALLOC))
3047 return -1;
3048
3049 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3050 != (SEC_CODE | SEC_ALLOC)
3051 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3052 == (SEC_CODE | SEC_ALLOC))
3053 return 1;
3054
3055 if (synthetic_relocatable)
3056 {
3057 if (a->section->id < b->section->id)
3058 return -1;
3059
3060 if (a->section->id > b->section->id)
3061 return 1;
3062 }
3063
3064 if (a->value + a->section->vma < b->value + b->section->vma)
3065 return -1;
3066
3067 if (a->value + a->section->vma > b->value + b->section->vma)
3068 return 1;
3069
3070 /* For syms with the same value, prefer strong dynamic global function
3071 syms over other syms. */
3072 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
3073 return -1;
3074
3075 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
3076 return 1;
3077
3078 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
3079 return -1;
3080
3081 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
3082 return 1;
3083
3084 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
3085 return -1;
3086
3087 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
3088 return 1;
3089
3090 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
3091 return -1;
3092
3093 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
3094 return 1;
3095
3096 return 0;
3097 }
3098
3099 /* Search SYMS for a symbol of the given VALUE. */
3100
3101 static asymbol *
3102 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
3103 {
3104 long mid;
3105
3106 if (id == -1)
3107 {
3108 while (lo < hi)
3109 {
3110 mid = (lo + hi) >> 1;
3111 if (syms[mid]->value + syms[mid]->section->vma < value)
3112 lo = mid + 1;
3113 else if (syms[mid]->value + syms[mid]->section->vma > value)
3114 hi = mid;
3115 else
3116 return syms[mid];
3117 }
3118 }
3119 else
3120 {
3121 while (lo < hi)
3122 {
3123 mid = (lo + hi) >> 1;
3124 if (syms[mid]->section->id < id)
3125 lo = mid + 1;
3126 else if (syms[mid]->section->id > id)
3127 hi = mid;
3128 else if (syms[mid]->value < value)
3129 lo = mid + 1;
3130 else if (syms[mid]->value > value)
3131 hi = mid;
3132 else
3133 return syms[mid];
3134 }
3135 }
3136 return NULL;
3137 }
3138
3139 static bfd_boolean
3140 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
3141 {
3142 bfd_vma vma = *(bfd_vma *) ptr;
3143 return ((section->flags & SEC_ALLOC) != 0
3144 && section->vma <= vma
3145 && vma < section->vma + section->size);
3146 }
3147
3148 /* Create synthetic symbols, effectively restoring "dot-symbol" function
3149 entry syms. Also generate @plt symbols for the glink branch table. */
3150
3151 static long
3152 ppc64_elf_get_synthetic_symtab (bfd *abfd,
3153 long static_count, asymbol **static_syms,
3154 long dyn_count, asymbol **dyn_syms,
3155 asymbol **ret)
3156 {
3157 asymbol *s;
3158 long i;
3159 long count;
3160 char *names;
3161 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
3162 asection *opd = NULL;
3163 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
3164 asymbol **syms;
3165 int abi = abiversion (abfd);
3166
3167 *ret = NULL;
3168
3169 if (abi < 2)
3170 {
3171 opd = bfd_get_section_by_name (abfd, ".opd");
3172 if (opd == NULL && abi == 1)
3173 return 0;
3174 }
3175
3176 symcount = static_count;
3177 if (!relocatable)
3178 symcount += dyn_count;
3179 if (symcount == 0)
3180 return 0;
3181
3182 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3183 if (syms == NULL)
3184 return -1;
3185
3186 if (!relocatable && static_count != 0 && dyn_count != 0)
3187 {
3188 /* Use both symbol tables. */
3189 memcpy (syms, static_syms, static_count * sizeof (*syms));
3190 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3191 }
3192 else if (!relocatable && static_count == 0)
3193 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3194 else
3195 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3196
3197 synthetic_relocatable = relocatable;
3198 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3199
3200 if (!relocatable && symcount > 1)
3201 {
3202 long j;
3203 /* Trim duplicate syms, since we may have merged the normal and
3204 dynamic symbols. Actually, we only care about syms that have
3205 different values, so trim any with the same value. */
3206 for (i = 1, j = 1; i < symcount; ++i)
3207 if (syms[i - 1]->value + syms[i - 1]->section->vma
3208 != syms[i]->value + syms[i]->section->vma)
3209 syms[j++] = syms[i];
3210 symcount = j;
3211 }
3212
3213 i = 0;
3214 if (strcmp (syms[i]->section->name, ".opd") == 0)
3215 ++i;
3216 codesecsym = i;
3217
3218 for (; i < symcount; ++i)
3219 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3220 != (SEC_CODE | SEC_ALLOC))
3221 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3222 break;
3223 codesecsymend = i;
3224
3225 for (; i < symcount; ++i)
3226 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3227 break;
3228 secsymend = i;
3229
3230 for (; i < symcount; ++i)
3231 if (strcmp (syms[i]->section->name, ".opd") != 0)
3232 break;
3233 opdsymend = i;
3234
3235 for (; i < symcount; ++i)
3236 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3237 != (SEC_CODE | SEC_ALLOC))
3238 break;
3239 symcount = i;
3240
3241 count = 0;
3242
3243 if (relocatable)
3244 {
3245 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3246 arelent *r;
3247 size_t size;
3248 long relcount;
3249
3250 if (opdsymend == secsymend)
3251 goto done;
3252
3253 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3254 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3255 if (relcount == 0)
3256 goto done;
3257
3258 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3259 {
3260 count = -1;
3261 goto done;
3262 }
3263
3264 size = 0;
3265 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3266 {
3267 asymbol *sym;
3268
3269 while (r < opd->relocation + relcount
3270 && r->address < syms[i]->value + opd->vma)
3271 ++r;
3272
3273 if (r == opd->relocation + relcount)
3274 break;
3275
3276 if (r->address != syms[i]->value + opd->vma)
3277 continue;
3278
3279 if (r->howto->type != R_PPC64_ADDR64)
3280 continue;
3281
3282 sym = *r->sym_ptr_ptr;
3283 if (!sym_exists_at (syms, opdsymend, symcount,
3284 sym->section->id, sym->value + r->addend))
3285 {
3286 ++count;
3287 size += sizeof (asymbol);
3288 size += strlen (syms[i]->name) + 2;
3289 }
3290 }
3291
3292 s = *ret = bfd_malloc (size);
3293 if (s == NULL)
3294 {
3295 count = -1;
3296 goto done;
3297 }
3298
3299 names = (char *) (s + count);
3300
3301 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3302 {
3303 asymbol *sym;
3304
3305 while (r < opd->relocation + relcount
3306 && r->address < syms[i]->value + opd->vma)
3307 ++r;
3308
3309 if (r == opd->relocation + relcount)
3310 break;
3311
3312 if (r->address != syms[i]->value + opd->vma)
3313 continue;
3314
3315 if (r->howto->type != R_PPC64_ADDR64)
3316 continue;
3317
3318 sym = *r->sym_ptr_ptr;
3319 if (!sym_exists_at (syms, opdsymend, symcount,
3320 sym->section->id, sym->value + r->addend))
3321 {
3322 size_t len;
3323
3324 *s = *syms[i];
3325 s->flags |= BSF_SYNTHETIC;
3326 s->section = sym->section;
3327 s->value = sym->value + r->addend;
3328 s->name = names;
3329 *names++ = '.';
3330 len = strlen (syms[i]->name);
3331 memcpy (names, syms[i]->name, len + 1);
3332 names += len + 1;
3333 /* Have udata.p point back to the original symbol this
3334 synthetic symbol was derived from. */
3335 s->udata.p = syms[i];
3336 s++;
3337 }
3338 }
3339 }
3340 else
3341 {
3342 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3343 bfd_byte *contents = NULL;
3344 size_t size;
3345 long plt_count = 0;
3346 bfd_vma glink_vma = 0, resolv_vma = 0;
3347 asection *dynamic, *glink = NULL, *relplt = NULL;
3348 arelent *p;
3349
3350 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
3351 {
3352 free_contents_and_exit:
3353 if (contents)
3354 free (contents);
3355 count = -1;
3356 goto done;
3357 }
3358
3359 size = 0;
3360 for (i = secsymend; i < opdsymend; ++i)
3361 {
3362 bfd_vma ent;
3363
3364 /* Ignore bogus symbols. */
3365 if (syms[i]->value > opd->size - 8)
3366 continue;
3367
3368 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3369 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3370 {
3371 ++count;
3372 size += sizeof (asymbol);
3373 size += strlen (syms[i]->name) + 2;
3374 }
3375 }
3376
3377 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3378 if (dyn_count != 0
3379 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3380 {
3381 bfd_byte *dynbuf, *extdyn, *extdynend;
3382 size_t extdynsize;
3383 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3384
3385 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3386 goto free_contents_and_exit;
3387
3388 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3389 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3390
3391 extdyn = dynbuf;
3392 extdynend = extdyn + dynamic->size;
3393 for (; extdyn < extdynend; extdyn += extdynsize)
3394 {
3395 Elf_Internal_Dyn dyn;
3396 (*swap_dyn_in) (abfd, extdyn, &dyn);
3397
3398 if (dyn.d_tag == DT_NULL)
3399 break;
3400
3401 if (dyn.d_tag == DT_PPC64_GLINK)
3402 {
3403 /* The first glink stub starts at offset 32; see
3404 comment in ppc64_elf_finish_dynamic_sections. */
3405 glink_vma = dyn.d_un.d_val + GLINK_CALL_STUB_SIZE - 8 * 4;
3406 /* The .glink section usually does not survive the final
3407 link; search for the section (usually .text) where the
3408 glink stubs now reside. */
3409 glink = bfd_sections_find_if (abfd, section_covers_vma,
3410 &glink_vma);
3411 break;
3412 }
3413 }
3414
3415 free (dynbuf);
3416 }
3417
3418 if (glink != NULL)
3419 {
3420 /* Determine __glink trampoline by reading the relative branch
3421 from the first glink stub. */
3422 bfd_byte buf[4];
3423 unsigned int off = 0;
3424
3425 while (bfd_get_section_contents (abfd, glink, buf,
3426 glink_vma + off - glink->vma, 4))
3427 {
3428 unsigned int insn = bfd_get_32 (abfd, buf);
3429 insn ^= B_DOT;
3430 if ((insn & ~0x3fffffc) == 0)
3431 {
3432 resolv_vma = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
3433 break;
3434 }
3435 off += 4;
3436 if (off > 4)
3437 break;
3438 }
3439
3440 if (resolv_vma)
3441 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3442
3443 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3444 if (relplt != NULL)
3445 {
3446 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3447 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3448 goto free_contents_and_exit;
3449
3450 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3451 size += plt_count * sizeof (asymbol);
3452
3453 p = relplt->relocation;
3454 for (i = 0; i < plt_count; i++, p++)
3455 {
3456 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3457 if (p->addend != 0)
3458 size += sizeof ("+0x") - 1 + 16;
3459 }
3460 }
3461 }
3462
3463 s = *ret = bfd_malloc (size);
3464 if (s == NULL)
3465 goto free_contents_and_exit;
3466
3467 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3468
3469 for (i = secsymend; i < opdsymend; ++i)
3470 {
3471 bfd_vma ent;
3472
3473 if (syms[i]->value > opd->size - 8)
3474 continue;
3475
3476 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3477 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3478 {
3479 long lo, hi;
3480 size_t len;
3481 asection *sec = abfd->sections;
3482
3483 *s = *syms[i];
3484 lo = codesecsym;
3485 hi = codesecsymend;
3486 while (lo < hi)
3487 {
3488 long mid = (lo + hi) >> 1;
3489 if (syms[mid]->section->vma < ent)
3490 lo = mid + 1;
3491 else if (syms[mid]->section->vma > ent)
3492 hi = mid;
3493 else
3494 {
3495 sec = syms[mid]->section;
3496 break;
3497 }
3498 }
3499
3500 if (lo >= hi && lo > codesecsym)
3501 sec = syms[lo - 1]->section;
3502
3503 for (; sec != NULL; sec = sec->next)
3504 {
3505 if (sec->vma > ent)
3506 break;
3507 /* SEC_LOAD may not be set if SEC is from a separate debug
3508 info file. */
3509 if ((sec->flags & SEC_ALLOC) == 0)
3510 break;
3511 if ((sec->flags & SEC_CODE) != 0)
3512 s->section = sec;
3513 }
3514 s->flags |= BSF_SYNTHETIC;
3515 s->value = ent - s->section->vma;
3516 s->name = names;
3517 *names++ = '.';
3518 len = strlen (syms[i]->name);
3519 memcpy (names, syms[i]->name, len + 1);
3520 names += len + 1;
3521 /* Have udata.p point back to the original symbol this
3522 synthetic symbol was derived from. */
3523 s->udata.p = syms[i];
3524 s++;
3525 }
3526 }
3527 free (contents);
3528
3529 if (glink != NULL && relplt != NULL)
3530 {
3531 if (resolv_vma)
3532 {
3533 /* Add a symbol for the main glink trampoline. */
3534 memset (s, 0, sizeof *s);
3535 s->the_bfd = abfd;
3536 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3537 s->section = glink;
3538 s->value = resolv_vma - glink->vma;
3539 s->name = names;
3540 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3541 names += sizeof ("__glink_PLTresolve");
3542 s++;
3543 count++;
3544 }
3545
3546 /* FIXME: It would be very much nicer to put sym@plt on the
3547 stub rather than on the glink branch table entry. The
3548 objdump disassembler would then use a sensible symbol
3549 name on plt calls. The difficulty in doing so is
3550 a) finding the stubs, and,
3551 b) matching stubs against plt entries, and,
3552 c) there can be multiple stubs for a given plt entry.
3553
3554 Solving (a) could be done by code scanning, but older
3555 ppc64 binaries used different stubs to current code.
3556 (b) is the tricky one since you need to known the toc
3557 pointer for at least one function that uses a pic stub to
3558 be able to calculate the plt address referenced.
3559 (c) means gdb would need to set multiple breakpoints (or
3560 find the glink branch itself) when setting breakpoints
3561 for pending shared library loads. */
3562 p = relplt->relocation;
3563 for (i = 0; i < plt_count; i++, p++)
3564 {
3565 size_t len;
3566
3567 *s = **p->sym_ptr_ptr;
3568 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3569 we are defining a symbol, ensure one of them is set. */
3570 if ((s->flags & BSF_LOCAL) == 0)
3571 s->flags |= BSF_GLOBAL;
3572 s->flags |= BSF_SYNTHETIC;
3573 s->section = glink;
3574 s->value = glink_vma - glink->vma;
3575 s->name = names;
3576 s->udata.p = NULL;
3577 len = strlen ((*p->sym_ptr_ptr)->name);
3578 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3579 names += len;
3580 if (p->addend != 0)
3581 {
3582 memcpy (names, "+0x", sizeof ("+0x") - 1);
3583 names += sizeof ("+0x") - 1;
3584 bfd_sprintf_vma (abfd, names, p->addend);
3585 names += strlen (names);
3586 }
3587 memcpy (names, "@plt", sizeof ("@plt"));
3588 names += sizeof ("@plt");
3589 s++;
3590 if (abi < 2)
3591 {
3592 glink_vma += 8;
3593 if (i >= 0x8000)
3594 glink_vma += 4;
3595 }
3596 else
3597 glink_vma += 4;
3598 }
3599 count += plt_count;
3600 }
3601 }
3602
3603 done:
3604 free (syms);
3605 return count;
3606 }
3607 \f
3608 /* The following functions are specific to the ELF linker, while
3609 functions above are used generally. Those named ppc64_elf_* are
3610 called by the main ELF linker code. They appear in this file more
3611 or less in the order in which they are called. eg.
3612 ppc64_elf_check_relocs is called early in the link process,
3613 ppc64_elf_finish_dynamic_sections is one of the last functions
3614 called.
3615
3616 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3617 functions have both a function code symbol and a function descriptor
3618 symbol. A call to foo in a relocatable object file looks like:
3619
3620 . .text
3621 . x:
3622 . bl .foo
3623 . nop
3624
3625 The function definition in another object file might be:
3626
3627 . .section .opd
3628 . foo: .quad .foo
3629 . .quad .TOC.@tocbase
3630 . .quad 0
3631 .
3632 . .text
3633 . .foo: blr
3634
3635 When the linker resolves the call during a static link, the branch
3636 unsurprisingly just goes to .foo and the .opd information is unused.
3637 If the function definition is in a shared library, things are a little
3638 different: The call goes via a plt call stub, the opd information gets
3639 copied to the plt, and the linker patches the nop.
3640
3641 . x:
3642 . bl .foo_stub
3643 . ld 2,40(1)
3644 .
3645 .
3646 . .foo_stub:
3647 . std 2,40(1) # in practice, the call stub
3648 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
3649 . addi 11,11,Lfoo@toc@l # this is the general idea
3650 . ld 12,0(11)
3651 . ld 2,8(11)
3652 . mtctr 12
3653 . ld 11,16(11)
3654 . bctr
3655 .
3656 . .section .plt
3657 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3658
3659 The "reloc ()" notation is supposed to indicate that the linker emits
3660 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3661 copying.
3662
3663 What are the difficulties here? Well, firstly, the relocations
3664 examined by the linker in check_relocs are against the function code
3665 sym .foo, while the dynamic relocation in the plt is emitted against
3666 the function descriptor symbol, foo. Somewhere along the line, we need
3667 to carefully copy dynamic link information from one symbol to the other.
3668 Secondly, the generic part of the elf linker will make .foo a dynamic
3669 symbol as is normal for most other backends. We need foo dynamic
3670 instead, at least for an application final link. However, when
3671 creating a shared library containing foo, we need to have both symbols
3672 dynamic so that references to .foo are satisfied during the early
3673 stages of linking. Otherwise the linker might decide to pull in a
3674 definition from some other object, eg. a static library.
3675
3676 Update: As of August 2004, we support a new convention. Function
3677 calls may use the function descriptor symbol, ie. "bl foo". This
3678 behaves exactly as "bl .foo". */
3679
3680 /* Of those relocs that might be copied as dynamic relocs, this function
3681 selects those that must be copied when linking a shared library,
3682 even when the symbol is local. */
3683
3684 static int
3685 must_be_dyn_reloc (struct bfd_link_info *info,
3686 enum elf_ppc64_reloc_type r_type)
3687 {
3688 switch (r_type)
3689 {
3690 default:
3691 return 1;
3692
3693 case R_PPC64_REL32:
3694 case R_PPC64_REL64:
3695 case R_PPC64_REL30:
3696 return 0;
3697
3698 case R_PPC64_TPREL16:
3699 case R_PPC64_TPREL16_LO:
3700 case R_PPC64_TPREL16_HI:
3701 case R_PPC64_TPREL16_HA:
3702 case R_PPC64_TPREL16_DS:
3703 case R_PPC64_TPREL16_LO_DS:
3704 case R_PPC64_TPREL16_HIGH:
3705 case R_PPC64_TPREL16_HIGHA:
3706 case R_PPC64_TPREL16_HIGHER:
3707 case R_PPC64_TPREL16_HIGHERA:
3708 case R_PPC64_TPREL16_HIGHEST:
3709 case R_PPC64_TPREL16_HIGHESTA:
3710 case R_PPC64_TPREL64:
3711 return !info->executable;
3712 }
3713 }
3714
3715 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3716 copying dynamic variables from a shared lib into an app's dynbss
3717 section, and instead use a dynamic relocation to point into the
3718 shared lib. With code that gcc generates, it's vital that this be
3719 enabled; In the PowerPC64 ABI, the address of a function is actually
3720 the address of a function descriptor, which resides in the .opd
3721 section. gcc uses the descriptor directly rather than going via the
3722 GOT as some other ABI's do, which means that initialized function
3723 pointers must reference the descriptor. Thus, a function pointer
3724 initialized to the address of a function in a shared library will
3725 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3726 redefines the function descriptor symbol to point to the copy. This
3727 presents a problem as a plt entry for that function is also
3728 initialized from the function descriptor symbol and the copy reloc
3729 may not be initialized first. */
3730 #define ELIMINATE_COPY_RELOCS 1
3731
3732 /* Section name for stubs is the associated section name plus this
3733 string. */
3734 #define STUB_SUFFIX ".stub"
3735
3736 /* Linker stubs.
3737 ppc_stub_long_branch:
3738 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3739 destination, but a 24 bit branch in a stub section will reach.
3740 . b dest
3741
3742 ppc_stub_plt_branch:
3743 Similar to the above, but a 24 bit branch in the stub section won't
3744 reach its destination.
3745 . addis %r11,%r2,xxx@toc@ha
3746 . ld %r12,xxx@toc@l(%r11)
3747 . mtctr %r12
3748 . bctr
3749
3750 ppc_stub_plt_call:
3751 Used to call a function in a shared library. If it so happens that
3752 the plt entry referenced crosses a 64k boundary, then an extra
3753 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
3754 . std %r2,40(%r1)
3755 . addis %r11,%r2,xxx@toc@ha
3756 . ld %r12,xxx+0@toc@l(%r11)
3757 . mtctr %r12
3758 . ld %r2,xxx+8@toc@l(%r11)
3759 . ld %r11,xxx+16@toc@l(%r11)
3760 . bctr
3761
3762 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3763 code to adjust the value and save r2 to support multiple toc sections.
3764 A ppc_stub_long_branch with an r2 offset looks like:
3765 . std %r2,40(%r1)
3766 . addis %r2,%r2,off@ha
3767 . addi %r2,%r2,off@l
3768 . b dest
3769
3770 A ppc_stub_plt_branch with an r2 offset looks like:
3771 . std %r2,40(%r1)
3772 . addis %r11,%r2,xxx@toc@ha
3773 . ld %r12,xxx@toc@l(%r11)
3774 . addis %r2,%r2,off@ha
3775 . addi %r2,%r2,off@l
3776 . mtctr %r12
3777 . bctr
3778
3779 In cases where the "addis" instruction would add zero, the "addis" is
3780 omitted and following instructions modified slightly in some cases.
3781 */
3782
3783 enum ppc_stub_type {
3784 ppc_stub_none,
3785 ppc_stub_long_branch,
3786 ppc_stub_long_branch_r2off,
3787 ppc_stub_plt_branch,
3788 ppc_stub_plt_branch_r2off,
3789 ppc_stub_plt_call,
3790 ppc_stub_plt_call_r2save,
3791 ppc_stub_global_entry
3792 };
3793
3794 struct ppc_stub_hash_entry {
3795
3796 /* Base hash table entry structure. */
3797 struct bfd_hash_entry root;
3798
3799 enum ppc_stub_type stub_type;
3800
3801 /* The stub section. */
3802 asection *stub_sec;
3803
3804 /* Offset within stub_sec of the beginning of this stub. */
3805 bfd_vma stub_offset;
3806
3807 /* Given the symbol's value and its section we can determine its final
3808 value when building the stubs (so the stub knows where to jump. */
3809 bfd_vma target_value;
3810 asection *target_section;
3811
3812 /* The symbol table entry, if any, that this was derived from. */
3813 struct ppc_link_hash_entry *h;
3814 struct plt_entry *plt_ent;
3815
3816 /* Where this stub is being called from, or, in the case of combined
3817 stub sections, the first input section in the group. */
3818 asection *id_sec;
3819
3820 /* Symbol st_other. */
3821 unsigned char other;
3822 };
3823
3824 struct ppc_branch_hash_entry {
3825
3826 /* Base hash table entry structure. */
3827 struct bfd_hash_entry root;
3828
3829 /* Offset within branch lookup table. */
3830 unsigned int offset;
3831
3832 /* Generation marker. */
3833 unsigned int iter;
3834 };
3835
3836 /* Used to track dynamic relocations for local symbols. */
3837 struct ppc_dyn_relocs
3838 {
3839 struct ppc_dyn_relocs *next;
3840
3841 /* The input section of the reloc. */
3842 asection *sec;
3843
3844 /* Total number of relocs copied for the input section. */
3845 unsigned int count : 31;
3846
3847 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3848 unsigned int ifunc : 1;
3849 };
3850
3851 struct ppc_link_hash_entry
3852 {
3853 struct elf_link_hash_entry elf;
3854
3855 union {
3856 /* A pointer to the most recently used stub hash entry against this
3857 symbol. */
3858 struct ppc_stub_hash_entry *stub_cache;
3859
3860 /* A pointer to the next symbol starting with a '.' */
3861 struct ppc_link_hash_entry *next_dot_sym;
3862 } u;
3863
3864 /* Track dynamic relocs copied for this symbol. */
3865 struct elf_dyn_relocs *dyn_relocs;
3866
3867 /* Link between function code and descriptor symbols. */
3868 struct ppc_link_hash_entry *oh;
3869
3870 /* Flag function code and descriptor symbols. */
3871 unsigned int is_func:1;
3872 unsigned int is_func_descriptor:1;
3873 unsigned int fake:1;
3874
3875 /* Whether global opd/toc sym has been adjusted or not.
3876 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3877 should be set for all globals defined in any opd/toc section. */
3878 unsigned int adjust_done:1;
3879
3880 /* Set if we twiddled this symbol to weak at some stage. */
3881 unsigned int was_undefined:1;
3882
3883 /* Contexts in which symbol is used in the GOT (or TOC).
3884 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3885 corresponding relocs are encountered during check_relocs.
3886 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3887 indicate the corresponding GOT entry type is not needed.
3888 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3889 a TPREL one. We use a separate flag rather than setting TPREL
3890 just for convenience in distinguishing the two cases. */
3891 #define TLS_GD 1 /* GD reloc. */
3892 #define TLS_LD 2 /* LD reloc. */
3893 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3894 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3895 #define TLS_TLS 16 /* Any TLS reloc. */
3896 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3897 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3898 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3899 unsigned char tls_mask;
3900 };
3901
3902 /* ppc64 ELF linker hash table. */
3903
3904 struct ppc_link_hash_table
3905 {
3906 struct elf_link_hash_table elf;
3907
3908 /* The stub hash table. */
3909 struct bfd_hash_table stub_hash_table;
3910
3911 /* Another hash table for plt_branch stubs. */
3912 struct bfd_hash_table branch_hash_table;
3913
3914 /* Hash table for function prologue tocsave. */
3915 htab_t tocsave_htab;
3916
3917 /* Various options and other info passed from the linker. */
3918 struct ppc64_elf_params *params;
3919
3920 /* Array to keep track of which stub sections have been created, and
3921 information on stub grouping. */
3922 struct map_stub {
3923 /* This is the section to which stubs in the group will be attached. */
3924 asection *link_sec;
3925 /* The stub section. */
3926 asection *stub_sec;
3927 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3928 bfd_vma toc_off;
3929 } *stub_group;
3930
3931 /* Temp used when calculating TOC pointers. */
3932 bfd_vma toc_curr;
3933 bfd *toc_bfd;
3934 asection *toc_first_sec;
3935
3936 /* Highest input section id. */
3937 int top_id;
3938
3939 /* Highest output section index. */
3940 int top_index;
3941
3942 /* Used when adding symbols. */
3943 struct ppc_link_hash_entry *dot_syms;
3944
3945 /* List of input sections for each output section. */
3946 asection **input_list;
3947
3948 /* Shortcuts to get to dynamic linker sections. */
3949 asection *dynbss;
3950 asection *relbss;
3951 asection *glink;
3952 asection *sfpr;
3953 asection *brlt;
3954 asection *relbrlt;
3955 asection *glink_eh_frame;
3956
3957 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3958 struct ppc_link_hash_entry *tls_get_addr;
3959 struct ppc_link_hash_entry *tls_get_addr_fd;
3960
3961 /* The size of reliplt used by got entry relocs. */
3962 bfd_size_type got_reli_size;
3963
3964 /* Statistics. */
3965 unsigned long stub_count[ppc_stub_global_entry];
3966
3967 /* Number of stubs against global syms. */
3968 unsigned long stub_globals;
3969
3970 /* Set if we're linking code with function descriptors. */
3971 unsigned int opd_abi:1;
3972
3973 /* Support for multiple toc sections. */
3974 unsigned int do_multi_toc:1;
3975 unsigned int multi_toc_needed:1;
3976 unsigned int second_toc_pass:1;
3977 unsigned int do_toc_opt:1;
3978
3979 /* Set on error. */
3980 unsigned int stub_error:1;
3981
3982 /* Temp used by ppc64_elf_before_check_relocs. */
3983 unsigned int twiddled_syms:1;
3984
3985 /* Incremented every time we size stubs. */
3986 unsigned int stub_iteration;
3987
3988 /* Small local sym cache. */
3989 struct sym_cache sym_cache;
3990 };
3991
3992 /* Rename some of the generic section flags to better document how they
3993 are used here. */
3994
3995 /* Nonzero if this section has TLS related relocations. */
3996 #define has_tls_reloc sec_flg0
3997
3998 /* Nonzero if this section has a call to __tls_get_addr. */
3999 #define has_tls_get_addr_call sec_flg1
4000
4001 /* Nonzero if this section has any toc or got relocs. */
4002 #define has_toc_reloc sec_flg2
4003
4004 /* Nonzero if this section has a call to another section that uses
4005 the toc or got. */
4006 #define makes_toc_func_call sec_flg3
4007
4008 /* Recursion protection when determining above flag. */
4009 #define call_check_in_progress sec_flg4
4010 #define call_check_done sec_flg5
4011
4012 /* Get the ppc64 ELF linker hash table from a link_info structure. */
4013
4014 #define ppc_hash_table(p) \
4015 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
4016 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
4017
4018 #define ppc_stub_hash_lookup(table, string, create, copy) \
4019 ((struct ppc_stub_hash_entry *) \
4020 bfd_hash_lookup ((table), (string), (create), (copy)))
4021
4022 #define ppc_branch_hash_lookup(table, string, create, copy) \
4023 ((struct ppc_branch_hash_entry *) \
4024 bfd_hash_lookup ((table), (string), (create), (copy)))
4025
4026 /* Create an entry in the stub hash table. */
4027
4028 static struct bfd_hash_entry *
4029 stub_hash_newfunc (struct bfd_hash_entry *entry,
4030 struct bfd_hash_table *table,
4031 const char *string)
4032 {
4033 /* Allocate the structure if it has not already been allocated by a
4034 subclass. */
4035 if (entry == NULL)
4036 {
4037 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
4038 if (entry == NULL)
4039 return entry;
4040 }
4041
4042 /* Call the allocation method of the superclass. */
4043 entry = bfd_hash_newfunc (entry, table, string);
4044 if (entry != NULL)
4045 {
4046 struct ppc_stub_hash_entry *eh;
4047
4048 /* Initialize the local fields. */
4049 eh = (struct ppc_stub_hash_entry *) entry;
4050 eh->stub_type = ppc_stub_none;
4051 eh->stub_sec = NULL;
4052 eh->stub_offset = 0;
4053 eh->target_value = 0;
4054 eh->target_section = NULL;
4055 eh->h = NULL;
4056 eh->plt_ent = NULL;
4057 eh->id_sec = NULL;
4058 eh->other = 0;
4059 }
4060
4061 return entry;
4062 }
4063
4064 /* Create an entry in the branch hash table. */
4065
4066 static struct bfd_hash_entry *
4067 branch_hash_newfunc (struct bfd_hash_entry *entry,
4068 struct bfd_hash_table *table,
4069 const char *string)
4070 {
4071 /* Allocate the structure if it has not already been allocated by a
4072 subclass. */
4073 if (entry == NULL)
4074 {
4075 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
4076 if (entry == NULL)
4077 return entry;
4078 }
4079
4080 /* Call the allocation method of the superclass. */
4081 entry = bfd_hash_newfunc (entry, table, string);
4082 if (entry != NULL)
4083 {
4084 struct ppc_branch_hash_entry *eh;
4085
4086 /* Initialize the local fields. */
4087 eh = (struct ppc_branch_hash_entry *) entry;
4088 eh->offset = 0;
4089 eh->iter = 0;
4090 }
4091
4092 return entry;
4093 }
4094
4095 /* Create an entry in a ppc64 ELF linker hash table. */
4096
4097 static struct bfd_hash_entry *
4098 link_hash_newfunc (struct bfd_hash_entry *entry,
4099 struct bfd_hash_table *table,
4100 const char *string)
4101 {
4102 /* Allocate the structure if it has not already been allocated by a
4103 subclass. */
4104 if (entry == NULL)
4105 {
4106 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
4107 if (entry == NULL)
4108 return entry;
4109 }
4110
4111 /* Call the allocation method of the superclass. */
4112 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
4113 if (entry != NULL)
4114 {
4115 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
4116
4117 memset (&eh->u.stub_cache, 0,
4118 (sizeof (struct ppc_link_hash_entry)
4119 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
4120
4121 /* When making function calls, old ABI code references function entry
4122 points (dot symbols), while new ABI code references the function
4123 descriptor symbol. We need to make any combination of reference and
4124 definition work together, without breaking archive linking.
4125
4126 For a defined function "foo" and an undefined call to "bar":
4127 An old object defines "foo" and ".foo", references ".bar" (possibly
4128 "bar" too).
4129 A new object defines "foo" and references "bar".
4130
4131 A new object thus has no problem with its undefined symbols being
4132 satisfied by definitions in an old object. On the other hand, the
4133 old object won't have ".bar" satisfied by a new object.
4134
4135 Keep a list of newly added dot-symbols. */
4136
4137 if (string[0] == '.')
4138 {
4139 struct ppc_link_hash_table *htab;
4140
4141 htab = (struct ppc_link_hash_table *) table;
4142 eh->u.next_dot_sym = htab->dot_syms;
4143 htab->dot_syms = eh;
4144 }
4145 }
4146
4147 return entry;
4148 }
4149
4150 struct tocsave_entry {
4151 asection *sec;
4152 bfd_vma offset;
4153 };
4154
4155 static hashval_t
4156 tocsave_htab_hash (const void *p)
4157 {
4158 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
4159 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
4160 }
4161
4162 static int
4163 tocsave_htab_eq (const void *p1, const void *p2)
4164 {
4165 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
4166 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
4167 return e1->sec == e2->sec && e1->offset == e2->offset;
4168 }
4169
4170 /* Destroy a ppc64 ELF linker hash table. */
4171
4172 static void
4173 ppc64_elf_link_hash_table_free (bfd *obfd)
4174 {
4175 struct ppc_link_hash_table *htab;
4176
4177 htab = (struct ppc_link_hash_table *) obfd->link.hash;
4178 if (htab->tocsave_htab)
4179 htab_delete (htab->tocsave_htab);
4180 bfd_hash_table_free (&htab->branch_hash_table);
4181 bfd_hash_table_free (&htab->stub_hash_table);
4182 _bfd_elf_link_hash_table_free (obfd);
4183 }
4184
4185 /* Create a ppc64 ELF linker hash table. */
4186
4187 static struct bfd_link_hash_table *
4188 ppc64_elf_link_hash_table_create (bfd *abfd)
4189 {
4190 struct ppc_link_hash_table *htab;
4191 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
4192
4193 htab = bfd_zmalloc (amt);
4194 if (htab == NULL)
4195 return NULL;
4196
4197 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
4198 sizeof (struct ppc_link_hash_entry),
4199 PPC64_ELF_DATA))
4200 {
4201 free (htab);
4202 return NULL;
4203 }
4204
4205 /* Init the stub hash table too. */
4206 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4207 sizeof (struct ppc_stub_hash_entry)))
4208 {
4209 _bfd_elf_link_hash_table_free (abfd);
4210 return NULL;
4211 }
4212
4213 /* And the branch hash table. */
4214 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4215 sizeof (struct ppc_branch_hash_entry)))
4216 {
4217 bfd_hash_table_free (&htab->stub_hash_table);
4218 _bfd_elf_link_hash_table_free (abfd);
4219 return NULL;
4220 }
4221
4222 htab->tocsave_htab = htab_try_create (1024,
4223 tocsave_htab_hash,
4224 tocsave_htab_eq,
4225 NULL);
4226 if (htab->tocsave_htab == NULL)
4227 {
4228 ppc64_elf_link_hash_table_free (abfd);
4229 return NULL;
4230 }
4231 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
4232
4233 /* Initializing two fields of the union is just cosmetic. We really
4234 only care about glist, but when compiled on a 32-bit host the
4235 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4236 debugger inspection of these fields look nicer. */
4237 htab->elf.init_got_refcount.refcount = 0;
4238 htab->elf.init_got_refcount.glist = NULL;
4239 htab->elf.init_plt_refcount.refcount = 0;
4240 htab->elf.init_plt_refcount.glist = NULL;
4241 htab->elf.init_got_offset.offset = 0;
4242 htab->elf.init_got_offset.glist = NULL;
4243 htab->elf.init_plt_offset.offset = 0;
4244 htab->elf.init_plt_offset.glist = NULL;
4245
4246 return &htab->elf.root;
4247 }
4248
4249 /* Create sections for linker generated code. */
4250
4251 static bfd_boolean
4252 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4253 {
4254 struct ppc_link_hash_table *htab;
4255 flagword flags;
4256
4257 htab = ppc_hash_table (info);
4258
4259 /* Create .sfpr for code to save and restore fp regs. */
4260 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4261 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4262 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4263 flags);
4264 if (htab->sfpr == NULL
4265 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4266 return FALSE;
4267
4268 /* Create .glink for lazy dynamic linking support. */
4269 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4270 flags);
4271 if (htab->glink == NULL
4272 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4273 return FALSE;
4274
4275 if (!info->no_ld_generated_unwind_info)
4276 {
4277 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4278 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4279 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4280 ".eh_frame",
4281 flags);
4282 if (htab->glink_eh_frame == NULL
4283 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4284 return FALSE;
4285 }
4286
4287 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4288 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4289 if (htab->elf.iplt == NULL
4290 || ! bfd_set_section_alignment (dynobj, htab->elf.iplt, 3))
4291 return FALSE;
4292
4293 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4294 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4295 htab->elf.irelplt
4296 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
4297 if (htab->elf.irelplt == NULL
4298 || ! bfd_set_section_alignment (dynobj, htab->elf.irelplt, 3))
4299 return FALSE;
4300
4301 /* Create branch lookup table for plt_branch stubs. */
4302 flags = (SEC_ALLOC | SEC_LOAD
4303 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4304 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4305 flags);
4306 if (htab->brlt == NULL
4307 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4308 return FALSE;
4309
4310 if (!info->shared)
4311 return TRUE;
4312
4313 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4314 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4315 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4316 ".rela.branch_lt",
4317 flags);
4318 if (htab->relbrlt == NULL
4319 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4320 return FALSE;
4321
4322 return TRUE;
4323 }
4324
4325 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4326
4327 bfd_boolean
4328 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
4329 struct ppc64_elf_params *params)
4330 {
4331 struct ppc_link_hash_table *htab;
4332
4333 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
4334
4335 /* Always hook our dynamic sections into the first bfd, which is the
4336 linker created stub bfd. This ensures that the GOT header is at
4337 the start of the output TOC section. */
4338 htab = ppc_hash_table (info);
4339 if (htab == NULL)
4340 return FALSE;
4341 htab->elf.dynobj = params->stub_bfd;
4342 htab->params = params;
4343
4344 if (info->relocatable)
4345 return TRUE;
4346
4347 return create_linkage_sections (htab->elf.dynobj, info);
4348 }
4349
4350 /* Build a name for an entry in the stub hash table. */
4351
4352 static char *
4353 ppc_stub_name (const asection *input_section,
4354 const asection *sym_sec,
4355 const struct ppc_link_hash_entry *h,
4356 const Elf_Internal_Rela *rel)
4357 {
4358 char *stub_name;
4359 ssize_t len;
4360
4361 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4362 offsets from a sym as a branch target? In fact, we could
4363 probably assume the addend is always zero. */
4364 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4365
4366 if (h)
4367 {
4368 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4369 stub_name = bfd_malloc (len);
4370 if (stub_name == NULL)
4371 return stub_name;
4372
4373 len = sprintf (stub_name, "%08x.%s+%x",
4374 input_section->id & 0xffffffff,
4375 h->elf.root.root.string,
4376 (int) rel->r_addend & 0xffffffff);
4377 }
4378 else
4379 {
4380 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4381 stub_name = bfd_malloc (len);
4382 if (stub_name == NULL)
4383 return stub_name;
4384
4385 len = sprintf (stub_name, "%08x.%x:%x+%x",
4386 input_section->id & 0xffffffff,
4387 sym_sec->id & 0xffffffff,
4388 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4389 (int) rel->r_addend & 0xffffffff);
4390 }
4391 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4392 stub_name[len - 2] = 0;
4393 return stub_name;
4394 }
4395
4396 /* Look up an entry in the stub hash. Stub entries are cached because
4397 creating the stub name takes a bit of time. */
4398
4399 static struct ppc_stub_hash_entry *
4400 ppc_get_stub_entry (const asection *input_section,
4401 const asection *sym_sec,
4402 struct ppc_link_hash_entry *h,
4403 const Elf_Internal_Rela *rel,
4404 struct ppc_link_hash_table *htab)
4405 {
4406 struct ppc_stub_hash_entry *stub_entry;
4407 const asection *id_sec;
4408
4409 /* If this input section is part of a group of sections sharing one
4410 stub section, then use the id of the first section in the group.
4411 Stub names need to include a section id, as there may well be
4412 more than one stub used to reach say, printf, and we need to
4413 distinguish between them. */
4414 id_sec = htab->stub_group[input_section->id].link_sec;
4415
4416 if (h != NULL && h->u.stub_cache != NULL
4417 && h->u.stub_cache->h == h
4418 && h->u.stub_cache->id_sec == id_sec)
4419 {
4420 stub_entry = h->u.stub_cache;
4421 }
4422 else
4423 {
4424 char *stub_name;
4425
4426 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4427 if (stub_name == NULL)
4428 return NULL;
4429
4430 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4431 stub_name, FALSE, FALSE);
4432 if (h != NULL)
4433 h->u.stub_cache = stub_entry;
4434
4435 free (stub_name);
4436 }
4437
4438 return stub_entry;
4439 }
4440
4441 /* Add a new stub entry to the stub hash. Not all fields of the new
4442 stub entry are initialised. */
4443
4444 static struct ppc_stub_hash_entry *
4445 ppc_add_stub (const char *stub_name,
4446 asection *section,
4447 struct bfd_link_info *info)
4448 {
4449 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4450 asection *link_sec;
4451 asection *stub_sec;
4452 struct ppc_stub_hash_entry *stub_entry;
4453
4454 link_sec = htab->stub_group[section->id].link_sec;
4455 stub_sec = htab->stub_group[section->id].stub_sec;
4456 if (stub_sec == NULL)
4457 {
4458 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4459 if (stub_sec == NULL)
4460 {
4461 size_t namelen;
4462 bfd_size_type len;
4463 char *s_name;
4464
4465 namelen = strlen (link_sec->name);
4466 len = namelen + sizeof (STUB_SUFFIX);
4467 s_name = bfd_alloc (htab->params->stub_bfd, len);
4468 if (s_name == NULL)
4469 return NULL;
4470
4471 memcpy (s_name, link_sec->name, namelen);
4472 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4473 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
4474 if (stub_sec == NULL)
4475 return NULL;
4476 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4477 }
4478 htab->stub_group[section->id].stub_sec = stub_sec;
4479 }
4480
4481 /* Enter this entry into the linker stub hash table. */
4482 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4483 TRUE, FALSE);
4484 if (stub_entry == NULL)
4485 {
4486 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4487 section->owner, stub_name);
4488 return NULL;
4489 }
4490
4491 stub_entry->stub_sec = stub_sec;
4492 stub_entry->stub_offset = 0;
4493 stub_entry->id_sec = link_sec;
4494 return stub_entry;
4495 }
4496
4497 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4498 not already done. */
4499
4500 static bfd_boolean
4501 create_got_section (bfd *abfd, struct bfd_link_info *info)
4502 {
4503 asection *got, *relgot;
4504 flagword flags;
4505 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4506
4507 if (!is_ppc64_elf (abfd))
4508 return FALSE;
4509 if (htab == NULL)
4510 return FALSE;
4511
4512 if (!htab->elf.sgot
4513 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
4514 return FALSE;
4515
4516 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4517 | SEC_LINKER_CREATED);
4518
4519 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4520 if (!got
4521 || !bfd_set_section_alignment (abfd, got, 3))
4522 return FALSE;
4523
4524 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4525 flags | SEC_READONLY);
4526 if (!relgot
4527 || ! bfd_set_section_alignment (abfd, relgot, 3))
4528 return FALSE;
4529
4530 ppc64_elf_tdata (abfd)->got = got;
4531 ppc64_elf_tdata (abfd)->relgot = relgot;
4532 return TRUE;
4533 }
4534
4535 /* Create the dynamic sections, and set up shortcuts. */
4536
4537 static bfd_boolean
4538 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4539 {
4540 struct ppc_link_hash_table *htab;
4541
4542 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4543 return FALSE;
4544
4545 htab = ppc_hash_table (info);
4546 if (htab == NULL)
4547 return FALSE;
4548
4549 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4550 if (!info->shared)
4551 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4552
4553 if (!htab->elf.sgot || !htab->elf.splt || !htab->elf.srelplt || !htab->dynbss
4554 || (!info->shared && !htab->relbss))
4555 abort ();
4556
4557 return TRUE;
4558 }
4559
4560 /* Follow indirect and warning symbol links. */
4561
4562 static inline struct bfd_link_hash_entry *
4563 follow_link (struct bfd_link_hash_entry *h)
4564 {
4565 while (h->type == bfd_link_hash_indirect
4566 || h->type == bfd_link_hash_warning)
4567 h = h->u.i.link;
4568 return h;
4569 }
4570
4571 static inline struct elf_link_hash_entry *
4572 elf_follow_link (struct elf_link_hash_entry *h)
4573 {
4574 return (struct elf_link_hash_entry *) follow_link (&h->root);
4575 }
4576
4577 static inline struct ppc_link_hash_entry *
4578 ppc_follow_link (struct ppc_link_hash_entry *h)
4579 {
4580 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4581 }
4582
4583 /* Merge PLT info on FROM with that on TO. */
4584
4585 static void
4586 move_plt_plist (struct ppc_link_hash_entry *from,
4587 struct ppc_link_hash_entry *to)
4588 {
4589 if (from->elf.plt.plist != NULL)
4590 {
4591 if (to->elf.plt.plist != NULL)
4592 {
4593 struct plt_entry **entp;
4594 struct plt_entry *ent;
4595
4596 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4597 {
4598 struct plt_entry *dent;
4599
4600 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4601 if (dent->addend == ent->addend)
4602 {
4603 dent->plt.refcount += ent->plt.refcount;
4604 *entp = ent->next;
4605 break;
4606 }
4607 if (dent == NULL)
4608 entp = &ent->next;
4609 }
4610 *entp = to->elf.plt.plist;
4611 }
4612
4613 to->elf.plt.plist = from->elf.plt.plist;
4614 from->elf.plt.plist = NULL;
4615 }
4616 }
4617
4618 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4619
4620 static void
4621 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4622 struct elf_link_hash_entry *dir,
4623 struct elf_link_hash_entry *ind)
4624 {
4625 struct ppc_link_hash_entry *edir, *eind;
4626
4627 edir = (struct ppc_link_hash_entry *) dir;
4628 eind = (struct ppc_link_hash_entry *) ind;
4629
4630 edir->is_func |= eind->is_func;
4631 edir->is_func_descriptor |= eind->is_func_descriptor;
4632 edir->tls_mask |= eind->tls_mask;
4633 if (eind->oh != NULL)
4634 edir->oh = ppc_follow_link (eind->oh);
4635
4636 /* If called to transfer flags for a weakdef during processing
4637 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4638 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4639 if (!(ELIMINATE_COPY_RELOCS
4640 && eind->elf.root.type != bfd_link_hash_indirect
4641 && edir->elf.dynamic_adjusted))
4642 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4643
4644 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4645 edir->elf.ref_regular |= eind->elf.ref_regular;
4646 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4647 edir->elf.needs_plt |= eind->elf.needs_plt;
4648 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
4649
4650 /* Copy over any dynamic relocs we may have on the indirect sym. */
4651 if (eind->dyn_relocs != NULL)
4652 {
4653 if (edir->dyn_relocs != NULL)
4654 {
4655 struct elf_dyn_relocs **pp;
4656 struct elf_dyn_relocs *p;
4657
4658 /* Add reloc counts against the indirect sym to the direct sym
4659 list. Merge any entries against the same section. */
4660 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4661 {
4662 struct elf_dyn_relocs *q;
4663
4664 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4665 if (q->sec == p->sec)
4666 {
4667 q->pc_count += p->pc_count;
4668 q->count += p->count;
4669 *pp = p->next;
4670 break;
4671 }
4672 if (q == NULL)
4673 pp = &p->next;
4674 }
4675 *pp = edir->dyn_relocs;
4676 }
4677
4678 edir->dyn_relocs = eind->dyn_relocs;
4679 eind->dyn_relocs = NULL;
4680 }
4681
4682 /* If we were called to copy over info for a weak sym, that's all.
4683 You might think dyn_relocs need not be copied over; After all,
4684 both syms will be dynamic or both non-dynamic so we're just
4685 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4686 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4687 dyn_relocs in read-only sections, and it does so on what is the
4688 DIR sym here. */
4689 if (eind->elf.root.type != bfd_link_hash_indirect)
4690 return;
4691
4692 /* Copy over got entries that we may have already seen to the
4693 symbol which just became indirect. */
4694 if (eind->elf.got.glist != NULL)
4695 {
4696 if (edir->elf.got.glist != NULL)
4697 {
4698 struct got_entry **entp;
4699 struct got_entry *ent;
4700
4701 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4702 {
4703 struct got_entry *dent;
4704
4705 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4706 if (dent->addend == ent->addend
4707 && dent->owner == ent->owner
4708 && dent->tls_type == ent->tls_type)
4709 {
4710 dent->got.refcount += ent->got.refcount;
4711 *entp = ent->next;
4712 break;
4713 }
4714 if (dent == NULL)
4715 entp = &ent->next;
4716 }
4717 *entp = edir->elf.got.glist;
4718 }
4719
4720 edir->elf.got.glist = eind->elf.got.glist;
4721 eind->elf.got.glist = NULL;
4722 }
4723
4724 /* And plt entries. */
4725 move_plt_plist (eind, edir);
4726
4727 if (eind->elf.dynindx != -1)
4728 {
4729 if (edir->elf.dynindx != -1)
4730 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4731 edir->elf.dynstr_index);
4732 edir->elf.dynindx = eind->elf.dynindx;
4733 edir->elf.dynstr_index = eind->elf.dynstr_index;
4734 eind->elf.dynindx = -1;
4735 eind->elf.dynstr_index = 0;
4736 }
4737 }
4738
4739 /* Find the function descriptor hash entry from the given function code
4740 hash entry FH. Link the entries via their OH fields. */
4741
4742 static struct ppc_link_hash_entry *
4743 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4744 {
4745 struct ppc_link_hash_entry *fdh = fh->oh;
4746
4747 if (fdh == NULL)
4748 {
4749 const char *fd_name = fh->elf.root.root.string + 1;
4750
4751 fdh = (struct ppc_link_hash_entry *)
4752 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4753 if (fdh == NULL)
4754 return fdh;
4755
4756 fdh->is_func_descriptor = 1;
4757 fdh->oh = fh;
4758 fh->is_func = 1;
4759 fh->oh = fdh;
4760 }
4761
4762 return ppc_follow_link (fdh);
4763 }
4764
4765 /* Make a fake function descriptor sym for the code sym FH. */
4766
4767 static struct ppc_link_hash_entry *
4768 make_fdh (struct bfd_link_info *info,
4769 struct ppc_link_hash_entry *fh)
4770 {
4771 bfd *abfd;
4772 asymbol *newsym;
4773 struct bfd_link_hash_entry *bh;
4774 struct ppc_link_hash_entry *fdh;
4775
4776 abfd = fh->elf.root.u.undef.abfd;
4777 newsym = bfd_make_empty_symbol (abfd);
4778 newsym->name = fh->elf.root.root.string + 1;
4779 newsym->section = bfd_und_section_ptr;
4780 newsym->value = 0;
4781 newsym->flags = BSF_WEAK;
4782
4783 bh = NULL;
4784 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4785 newsym->flags, newsym->section,
4786 newsym->value, NULL, FALSE, FALSE,
4787 &bh))
4788 return NULL;
4789
4790 fdh = (struct ppc_link_hash_entry *) bh;
4791 fdh->elf.non_elf = 0;
4792 fdh->fake = 1;
4793 fdh->is_func_descriptor = 1;
4794 fdh->oh = fh;
4795 fh->is_func = 1;
4796 fh->oh = fdh;
4797 return fdh;
4798 }
4799
4800 /* Fix function descriptor symbols defined in .opd sections to be
4801 function type. */
4802
4803 static bfd_boolean
4804 ppc64_elf_add_symbol_hook (bfd *ibfd,
4805 struct bfd_link_info *info,
4806 Elf_Internal_Sym *isym,
4807 const char **name,
4808 flagword *flags ATTRIBUTE_UNUSED,
4809 asection **sec,
4810 bfd_vma *value)
4811 {
4812 if ((ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4813 || ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4814 && (ibfd->flags & DYNAMIC) == 0
4815 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4816 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4817
4818 if (*sec != NULL
4819 && strcmp ((*sec)->name, ".opd") == 0)
4820 {
4821 asection *code_sec;
4822
4823 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4824 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4825 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4826
4827 /* If the symbol is a function defined in .opd, and the function
4828 code is in a discarded group, let it appear to be undefined. */
4829 if (!info->relocatable
4830 && (*sec)->reloc_count != 0
4831 && opd_entry_value (*sec, *value, &code_sec, NULL,
4832 FALSE) != (bfd_vma) -1
4833 && discarded_section (code_sec))
4834 {
4835 *sec = bfd_und_section_ptr;
4836 isym->st_shndx = SHN_UNDEF;
4837 }
4838 }
4839
4840 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4841 {
4842 if (abiversion (ibfd) == 0)
4843 set_abiversion (ibfd, 2);
4844 else if (abiversion (ibfd) == 1)
4845 {
4846 info->callbacks->einfo (_("%P: symbol '%s' has invalid st_other"
4847 " for ABI version 1\n"), name);
4848 bfd_set_error (bfd_error_bad_value);
4849 return FALSE;
4850 }
4851 }
4852
4853 return TRUE;
4854 }
4855
4856 /* Merge non-visibility st_other attributes: local entry point. */
4857
4858 static void
4859 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4860 const Elf_Internal_Sym *isym,
4861 bfd_boolean definition,
4862 bfd_boolean dynamic)
4863 {
4864 if (definition && !dynamic)
4865 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4866 | ELF_ST_VISIBILITY (h->other));
4867 }
4868
4869 /* This function makes an old ABI object reference to ".bar" cause the
4870 inclusion of a new ABI object archive that defines "bar".
4871 NAME is a symbol defined in an archive. Return a symbol in the hash
4872 table that might be satisfied by the archive symbols. */
4873
4874 static struct elf_link_hash_entry *
4875 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4876 struct bfd_link_info *info,
4877 const char *name)
4878 {
4879 struct elf_link_hash_entry *h;
4880 char *dot_name;
4881 size_t len;
4882
4883 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4884 if (h != NULL
4885 /* Don't return this sym if it is a fake function descriptor
4886 created by add_symbol_adjust. */
4887 && !(h->root.type == bfd_link_hash_undefweak
4888 && ((struct ppc_link_hash_entry *) h)->fake))
4889 return h;
4890
4891 if (name[0] == '.')
4892 return h;
4893
4894 len = strlen (name);
4895 dot_name = bfd_alloc (abfd, len + 2);
4896 if (dot_name == NULL)
4897 return (struct elf_link_hash_entry *) 0 - 1;
4898 dot_name[0] = '.';
4899 memcpy (dot_name + 1, name, len + 1);
4900 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4901 bfd_release (abfd, dot_name);
4902 return h;
4903 }
4904
4905 /* This function satisfies all old ABI object references to ".bar" if a
4906 new ABI object defines "bar". Well, at least, undefined dot symbols
4907 are made weak. This stops later archive searches from including an
4908 object if we already have a function descriptor definition. It also
4909 prevents the linker complaining about undefined symbols.
4910 We also check and correct mismatched symbol visibility here. The
4911 most restrictive visibility of the function descriptor and the
4912 function entry symbol is used. */
4913
4914 static bfd_boolean
4915 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4916 {
4917 struct ppc_link_hash_table *htab;
4918 struct ppc_link_hash_entry *fdh;
4919
4920 if (eh->elf.root.type == bfd_link_hash_indirect)
4921 return TRUE;
4922
4923 if (eh->elf.root.type == bfd_link_hash_warning)
4924 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4925
4926 if (eh->elf.root.root.string[0] != '.')
4927 abort ();
4928
4929 htab = ppc_hash_table (info);
4930 if (htab == NULL)
4931 return FALSE;
4932
4933 fdh = lookup_fdh (eh, htab);
4934 if (fdh == NULL)
4935 {
4936 if (!info->relocatable
4937 && (eh->elf.root.type == bfd_link_hash_undefined
4938 || eh->elf.root.type == bfd_link_hash_undefweak)
4939 && eh->elf.ref_regular)
4940 {
4941 /* Make an undefweak function descriptor sym, which is enough to
4942 pull in an --as-needed shared lib, but won't cause link
4943 errors. Archives are handled elsewhere. */
4944 fdh = make_fdh (info, eh);
4945 if (fdh == NULL)
4946 return FALSE;
4947 fdh->elf.ref_regular = 1;
4948 }
4949 }
4950 else
4951 {
4952 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4953 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4954 if (entry_vis < descr_vis)
4955 fdh->elf.other += entry_vis - descr_vis;
4956 else if (entry_vis > descr_vis)
4957 eh->elf.other += descr_vis - entry_vis;
4958
4959 if ((fdh->elf.root.type == bfd_link_hash_defined
4960 || fdh->elf.root.type == bfd_link_hash_defweak)
4961 && eh->elf.root.type == bfd_link_hash_undefined)
4962 {
4963 eh->elf.root.type = bfd_link_hash_undefweak;
4964 eh->was_undefined = 1;
4965 htab->twiddled_syms = 1;
4966 }
4967 }
4968
4969 return TRUE;
4970 }
4971
4972 /* Set up opd section info and abiversion for IBFD, and process list
4973 of dot-symbols we made in link_hash_newfunc. */
4974
4975 static bfd_boolean
4976 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4977 {
4978 struct ppc_link_hash_table *htab;
4979 struct ppc_link_hash_entry **p, *eh;
4980 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4981
4982 if (opd != NULL && opd->size != 0)
4983 {
4984 if (abiversion (ibfd) == 0)
4985 set_abiversion (ibfd, 1);
4986 else if (abiversion (ibfd) == 2)
4987 {
4988 info->callbacks->einfo (_("%P: %B .opd not allowed in ABI"
4989 " version %d\n"),
4990 ibfd, abiversion (ibfd));
4991 bfd_set_error (bfd_error_bad_value);
4992 return FALSE;
4993 }
4994
4995 if ((ibfd->flags & DYNAMIC) == 0
4996 && (opd->flags & SEC_RELOC) != 0
4997 && opd->reloc_count != 0
4998 && !bfd_is_abs_section (opd->output_section))
4999 {
5000 /* Garbage collection needs some extra help with .opd sections.
5001 We don't want to necessarily keep everything referenced by
5002 relocs in .opd, as that would keep all functions. Instead,
5003 if we reference an .opd symbol (a function descriptor), we
5004 want to keep the function code symbol's section. This is
5005 easy for global symbols, but for local syms we need to keep
5006 information about the associated function section. */
5007 bfd_size_type amt;
5008 asection **opd_sym_map;
5009
5010 amt = OPD_NDX (opd->size) * sizeof (*opd_sym_map);
5011 opd_sym_map = bfd_zalloc (ibfd, amt);
5012 if (opd_sym_map == NULL)
5013 return FALSE;
5014 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
5015 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
5016 ppc64_elf_section_data (opd)->sec_type = sec_opd;
5017 }
5018 }
5019
5020 if (!is_ppc64_elf (info->output_bfd))
5021 return TRUE;
5022 htab = ppc_hash_table (info);
5023 if (htab == NULL)
5024 return FALSE;
5025
5026 /* For input files without an explicit abiversion in e_flags
5027 we should have flagged any with symbol st_other bits set
5028 as ELFv1 and above flagged those with .opd as ELFv2.
5029 Set the output abiversion if not yet set, and for any input
5030 still ambiguous, take its abiversion from the output.
5031 Differences in ABI are reported later. */
5032 if (abiversion (info->output_bfd) == 0)
5033 set_abiversion (info->output_bfd, abiversion (ibfd));
5034 else if (abiversion (ibfd) == 0)
5035 set_abiversion (ibfd, abiversion (info->output_bfd));
5036
5037 p = &htab->dot_syms;
5038 while ((eh = *p) != NULL)
5039 {
5040 *p = NULL;
5041 if (&eh->elf == htab->elf.hgot)
5042 ;
5043 else if (htab->elf.hgot == NULL
5044 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
5045 htab->elf.hgot = &eh->elf;
5046 else if (!add_symbol_adjust (eh, info))
5047 return FALSE;
5048 p = &eh->u.next_dot_sym;
5049 }
5050
5051 /* Clear the list for non-ppc64 input files. */
5052 p = &htab->dot_syms;
5053 while ((eh = *p) != NULL)
5054 {
5055 *p = NULL;
5056 p = &eh->u.next_dot_sym;
5057 }
5058
5059 /* We need to fix the undefs list for any syms we have twiddled to
5060 undef_weak. */
5061 if (htab->twiddled_syms)
5062 {
5063 bfd_link_repair_undef_list (&htab->elf.root);
5064 htab->twiddled_syms = 0;
5065 }
5066 return TRUE;
5067 }
5068
5069 /* Undo hash table changes when an --as-needed input file is determined
5070 not to be needed. */
5071
5072 static bfd_boolean
5073 ppc64_elf_notice_as_needed (bfd *ibfd,
5074 struct bfd_link_info *info,
5075 enum notice_asneeded_action act)
5076 {
5077 if (act == notice_not_needed)
5078 {
5079 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5080
5081 if (htab == NULL)
5082 return FALSE;
5083
5084 htab->dot_syms = NULL;
5085 }
5086 return _bfd_elf_notice_as_needed (ibfd, info, act);
5087 }
5088
5089 /* If --just-symbols against a final linked binary, then assume we need
5090 toc adjusting stubs when calling functions defined there. */
5091
5092 static void
5093 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
5094 {
5095 if ((sec->flags & SEC_CODE) != 0
5096 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
5097 && is_ppc64_elf (sec->owner))
5098 {
5099 if (abiversion (sec->owner) >= 2
5100 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
5101 sec->has_toc_reloc = 1;
5102 }
5103 _bfd_elf_link_just_syms (sec, info);
5104 }
5105
5106 static struct plt_entry **
5107 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
5108 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
5109 {
5110 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
5111 struct plt_entry **local_plt;
5112 unsigned char *local_got_tls_masks;
5113
5114 if (local_got_ents == NULL)
5115 {
5116 bfd_size_type size = symtab_hdr->sh_info;
5117
5118 size *= (sizeof (*local_got_ents)
5119 + sizeof (*local_plt)
5120 + sizeof (*local_got_tls_masks));
5121 local_got_ents = bfd_zalloc (abfd, size);
5122 if (local_got_ents == NULL)
5123 return NULL;
5124 elf_local_got_ents (abfd) = local_got_ents;
5125 }
5126
5127 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
5128 {
5129 struct got_entry *ent;
5130
5131 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
5132 if (ent->addend == r_addend
5133 && ent->owner == abfd
5134 && ent->tls_type == tls_type)
5135 break;
5136 if (ent == NULL)
5137 {
5138 bfd_size_type amt = sizeof (*ent);
5139 ent = bfd_alloc (abfd, amt);
5140 if (ent == NULL)
5141 return FALSE;
5142 ent->next = local_got_ents[r_symndx];
5143 ent->addend = r_addend;
5144 ent->owner = abfd;
5145 ent->tls_type = tls_type;
5146 ent->is_indirect = FALSE;
5147 ent->got.refcount = 0;
5148 local_got_ents[r_symndx] = ent;
5149 }
5150 ent->got.refcount += 1;
5151 }
5152
5153 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
5154 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
5155 local_got_tls_masks[r_symndx] |= tls_type;
5156
5157 return local_plt + r_symndx;
5158 }
5159
5160 static bfd_boolean
5161 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
5162 {
5163 struct plt_entry *ent;
5164
5165 for (ent = *plist; ent != NULL; ent = ent->next)
5166 if (ent->addend == addend)
5167 break;
5168 if (ent == NULL)
5169 {
5170 bfd_size_type amt = sizeof (*ent);
5171 ent = bfd_alloc (abfd, amt);
5172 if (ent == NULL)
5173 return FALSE;
5174 ent->next = *plist;
5175 ent->addend = addend;
5176 ent->plt.refcount = 0;
5177 *plist = ent;
5178 }
5179 ent->plt.refcount += 1;
5180 return TRUE;
5181 }
5182
5183 static bfd_boolean
5184 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
5185 {
5186 return (r_type == R_PPC64_REL24
5187 || r_type == R_PPC64_REL14
5188 || r_type == R_PPC64_REL14_BRTAKEN
5189 || r_type == R_PPC64_REL14_BRNTAKEN
5190 || r_type == R_PPC64_ADDR24
5191 || r_type == R_PPC64_ADDR14
5192 || r_type == R_PPC64_ADDR14_BRTAKEN
5193 || r_type == R_PPC64_ADDR14_BRNTAKEN);
5194 }
5195
5196 /* Look through the relocs for a section during the first phase, and
5197 calculate needed space in the global offset table, procedure
5198 linkage table, and dynamic reloc sections. */
5199
5200 static bfd_boolean
5201 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5202 asection *sec, const Elf_Internal_Rela *relocs)
5203 {
5204 struct ppc_link_hash_table *htab;
5205 Elf_Internal_Shdr *symtab_hdr;
5206 struct elf_link_hash_entry **sym_hashes;
5207 const Elf_Internal_Rela *rel;
5208 const Elf_Internal_Rela *rel_end;
5209 asection *sreloc;
5210 asection **opd_sym_map;
5211 struct elf_link_hash_entry *tga, *dottga;
5212
5213 if (info->relocatable)
5214 return TRUE;
5215
5216 /* Don't do anything special with non-loaded, non-alloced sections.
5217 In particular, any relocs in such sections should not affect GOT
5218 and PLT reference counting (ie. we don't allow them to create GOT
5219 or PLT entries), there's no possibility or desire to optimize TLS
5220 relocs, and there's not much point in propagating relocs to shared
5221 libs that the dynamic linker won't relocate. */
5222 if ((sec->flags & SEC_ALLOC) == 0)
5223 return TRUE;
5224
5225 BFD_ASSERT (is_ppc64_elf (abfd));
5226
5227 htab = ppc_hash_table (info);
5228 if (htab == NULL)
5229 return FALSE;
5230
5231 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
5232 FALSE, FALSE, TRUE);
5233 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
5234 FALSE, FALSE, TRUE);
5235 symtab_hdr = &elf_symtab_hdr (abfd);
5236 sym_hashes = elf_sym_hashes (abfd);
5237 sreloc = NULL;
5238 opd_sym_map = NULL;
5239 if (ppc64_elf_section_data (sec) != NULL
5240 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
5241 opd_sym_map = ppc64_elf_section_data (sec)->u.opd.func_sec;
5242
5243 rel_end = relocs + sec->reloc_count;
5244 for (rel = relocs; rel < rel_end; rel++)
5245 {
5246 unsigned long r_symndx;
5247 struct elf_link_hash_entry *h;
5248 enum elf_ppc64_reloc_type r_type;
5249 int tls_type;
5250 struct _ppc64_elf_section_data *ppc64_sec;
5251 struct plt_entry **ifunc;
5252
5253 r_symndx = ELF64_R_SYM (rel->r_info);
5254 if (r_symndx < symtab_hdr->sh_info)
5255 h = NULL;
5256 else
5257 {
5258 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5259 h = elf_follow_link (h);
5260
5261 /* PR15323, ref flags aren't set for references in the same
5262 object. */
5263 h->root.non_ir_ref = 1;
5264
5265 if (h == htab->elf.hgot)
5266 sec->has_toc_reloc = 1;
5267 }
5268
5269 tls_type = 0;
5270 ifunc = NULL;
5271 if (h != NULL)
5272 {
5273 if (h->type == STT_GNU_IFUNC)
5274 {
5275 h->needs_plt = 1;
5276 ifunc = &h->plt.plist;
5277 }
5278 }
5279 else
5280 {
5281 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5282 abfd, r_symndx);
5283 if (isym == NULL)
5284 return FALSE;
5285
5286 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5287 {
5288 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5289 rel->r_addend, PLT_IFUNC);
5290 if (ifunc == NULL)
5291 return FALSE;
5292 }
5293 }
5294 r_type = ELF64_R_TYPE (rel->r_info);
5295 if (is_branch_reloc (r_type))
5296 {
5297 if (h != NULL && (h == tga || h == dottga))
5298 {
5299 if (rel != relocs
5300 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5301 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5302 /* We have a new-style __tls_get_addr call with a marker
5303 reloc. */
5304 ;
5305 else
5306 /* Mark this section as having an old-style call. */
5307 sec->has_tls_get_addr_call = 1;
5308 }
5309
5310 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5311 if (ifunc != NULL
5312 && !update_plt_info (abfd, ifunc, rel->r_addend))
5313 return FALSE;
5314 }
5315
5316 switch (r_type)
5317 {
5318 case R_PPC64_TLSGD:
5319 case R_PPC64_TLSLD:
5320 /* These special tls relocs tie a call to __tls_get_addr with
5321 its parameter symbol. */
5322 break;
5323
5324 case R_PPC64_GOT_TLSLD16:
5325 case R_PPC64_GOT_TLSLD16_LO:
5326 case R_PPC64_GOT_TLSLD16_HI:
5327 case R_PPC64_GOT_TLSLD16_HA:
5328 tls_type = TLS_TLS | TLS_LD;
5329 goto dogottls;
5330
5331 case R_PPC64_GOT_TLSGD16:
5332 case R_PPC64_GOT_TLSGD16_LO:
5333 case R_PPC64_GOT_TLSGD16_HI:
5334 case R_PPC64_GOT_TLSGD16_HA:
5335 tls_type = TLS_TLS | TLS_GD;
5336 goto dogottls;
5337
5338 case R_PPC64_GOT_TPREL16_DS:
5339 case R_PPC64_GOT_TPREL16_LO_DS:
5340 case R_PPC64_GOT_TPREL16_HI:
5341 case R_PPC64_GOT_TPREL16_HA:
5342 if (info->shared)
5343 info->flags |= DF_STATIC_TLS;
5344 tls_type = TLS_TLS | TLS_TPREL;
5345 goto dogottls;
5346
5347 case R_PPC64_GOT_DTPREL16_DS:
5348 case R_PPC64_GOT_DTPREL16_LO_DS:
5349 case R_PPC64_GOT_DTPREL16_HI:
5350 case R_PPC64_GOT_DTPREL16_HA:
5351 tls_type = TLS_TLS | TLS_DTPREL;
5352 dogottls:
5353 sec->has_tls_reloc = 1;
5354 /* Fall thru */
5355
5356 case R_PPC64_GOT16:
5357 case R_PPC64_GOT16_DS:
5358 case R_PPC64_GOT16_HA:
5359 case R_PPC64_GOT16_HI:
5360 case R_PPC64_GOT16_LO:
5361 case R_PPC64_GOT16_LO_DS:
5362 /* This symbol requires a global offset table entry. */
5363 sec->has_toc_reloc = 1;
5364 if (r_type == R_PPC64_GOT_TLSLD16
5365 || r_type == R_PPC64_GOT_TLSGD16
5366 || r_type == R_PPC64_GOT_TPREL16_DS
5367 || r_type == R_PPC64_GOT_DTPREL16_DS
5368 || r_type == R_PPC64_GOT16
5369 || r_type == R_PPC64_GOT16_DS)
5370 {
5371 htab->do_multi_toc = 1;
5372 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5373 }
5374
5375 if (ppc64_elf_tdata (abfd)->got == NULL
5376 && !create_got_section (abfd, info))
5377 return FALSE;
5378
5379 if (h != NULL)
5380 {
5381 struct ppc_link_hash_entry *eh;
5382 struct got_entry *ent;
5383
5384 eh = (struct ppc_link_hash_entry *) h;
5385 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5386 if (ent->addend == rel->r_addend
5387 && ent->owner == abfd
5388 && ent->tls_type == tls_type)
5389 break;
5390 if (ent == NULL)
5391 {
5392 bfd_size_type amt = sizeof (*ent);
5393 ent = bfd_alloc (abfd, amt);
5394 if (ent == NULL)
5395 return FALSE;
5396 ent->next = eh->elf.got.glist;
5397 ent->addend = rel->r_addend;
5398 ent->owner = abfd;
5399 ent->tls_type = tls_type;
5400 ent->is_indirect = FALSE;
5401 ent->got.refcount = 0;
5402 eh->elf.got.glist = ent;
5403 }
5404 ent->got.refcount += 1;
5405 eh->tls_mask |= tls_type;
5406 }
5407 else
5408 /* This is a global offset table entry for a local symbol. */
5409 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5410 rel->r_addend, tls_type))
5411 return FALSE;
5412
5413 /* We may also need a plt entry if the symbol turns out to be
5414 an ifunc. */
5415 if (h != NULL && !info->shared && abiversion (abfd) != 1)
5416 {
5417 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5418 return FALSE;
5419 }
5420 break;
5421
5422 case R_PPC64_PLT16_HA:
5423 case R_PPC64_PLT16_HI:
5424 case R_PPC64_PLT16_LO:
5425 case R_PPC64_PLT32:
5426 case R_PPC64_PLT64:
5427 /* This symbol requires a procedure linkage table entry. We
5428 actually build the entry in adjust_dynamic_symbol,
5429 because this might be a case of linking PIC code without
5430 linking in any dynamic objects, in which case we don't
5431 need to generate a procedure linkage table after all. */
5432 if (h == NULL)
5433 {
5434 /* It does not make sense to have a procedure linkage
5435 table entry for a local symbol. */
5436 bfd_set_error (bfd_error_bad_value);
5437 return FALSE;
5438 }
5439 else
5440 {
5441 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5442 return FALSE;
5443 h->needs_plt = 1;
5444 if (h->root.root.string[0] == '.'
5445 && h->root.root.string[1] != '\0')
5446 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5447 }
5448 break;
5449
5450 /* The following relocations don't need to propagate the
5451 relocation if linking a shared object since they are
5452 section relative. */
5453 case R_PPC64_SECTOFF:
5454 case R_PPC64_SECTOFF_LO:
5455 case R_PPC64_SECTOFF_HI:
5456 case R_PPC64_SECTOFF_HA:
5457 case R_PPC64_SECTOFF_DS:
5458 case R_PPC64_SECTOFF_LO_DS:
5459 case R_PPC64_DTPREL16:
5460 case R_PPC64_DTPREL16_LO:
5461 case R_PPC64_DTPREL16_HI:
5462 case R_PPC64_DTPREL16_HA:
5463 case R_PPC64_DTPREL16_DS:
5464 case R_PPC64_DTPREL16_LO_DS:
5465 case R_PPC64_DTPREL16_HIGH:
5466 case R_PPC64_DTPREL16_HIGHA:
5467 case R_PPC64_DTPREL16_HIGHER:
5468 case R_PPC64_DTPREL16_HIGHERA:
5469 case R_PPC64_DTPREL16_HIGHEST:
5470 case R_PPC64_DTPREL16_HIGHESTA:
5471 break;
5472
5473 /* Nor do these. */
5474 case R_PPC64_REL16:
5475 case R_PPC64_REL16_LO:
5476 case R_PPC64_REL16_HI:
5477 case R_PPC64_REL16_HA:
5478 break;
5479
5480 /* Not supported as a dynamic relocation. */
5481 case R_PPC64_ADDR64_LOCAL:
5482 if (info->shared)
5483 {
5484 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
5485 ppc_howto_init ();
5486 info->callbacks->einfo (_("%P: %H: %s reloc unsupported "
5487 "in shared libraries and PIEs.\n"),
5488 abfd, sec, rel->r_offset,
5489 ppc64_elf_howto_table[r_type]->name);
5490 bfd_set_error (bfd_error_bad_value);
5491 return FALSE;
5492 }
5493 break;
5494
5495 case R_PPC64_TOC16:
5496 case R_PPC64_TOC16_DS:
5497 htab->do_multi_toc = 1;
5498 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5499 case R_PPC64_TOC16_LO:
5500 case R_PPC64_TOC16_HI:
5501 case R_PPC64_TOC16_HA:
5502 case R_PPC64_TOC16_LO_DS:
5503 sec->has_toc_reloc = 1;
5504 break;
5505
5506 /* This relocation describes the C++ object vtable hierarchy.
5507 Reconstruct it for later use during GC. */
5508 case R_PPC64_GNU_VTINHERIT:
5509 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5510 return FALSE;
5511 break;
5512
5513 /* This relocation describes which C++ vtable entries are actually
5514 used. Record for later use during GC. */
5515 case R_PPC64_GNU_VTENTRY:
5516 BFD_ASSERT (h != NULL);
5517 if (h != NULL
5518 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5519 return FALSE;
5520 break;
5521
5522 case R_PPC64_REL14:
5523 case R_PPC64_REL14_BRTAKEN:
5524 case R_PPC64_REL14_BRNTAKEN:
5525 {
5526 asection *dest = NULL;
5527
5528 /* Heuristic: If jumping outside our section, chances are
5529 we are going to need a stub. */
5530 if (h != NULL)
5531 {
5532 /* If the sym is weak it may be overridden later, so
5533 don't assume we know where a weak sym lives. */
5534 if (h->root.type == bfd_link_hash_defined)
5535 dest = h->root.u.def.section;
5536 }
5537 else
5538 {
5539 Elf_Internal_Sym *isym;
5540
5541 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5542 abfd, r_symndx);
5543 if (isym == NULL)
5544 return FALSE;
5545
5546 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5547 }
5548
5549 if (dest != sec)
5550 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5551 }
5552 /* Fall through. */
5553
5554 case R_PPC64_REL24:
5555 if (h != NULL && ifunc == NULL)
5556 {
5557 /* We may need a .plt entry if the function this reloc
5558 refers to is in a shared lib. */
5559 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5560 return FALSE;
5561 h->needs_plt = 1;
5562 if (h->root.root.string[0] == '.'
5563 && h->root.root.string[1] != '\0')
5564 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5565 if (h == tga || h == dottga)
5566 sec->has_tls_reloc = 1;
5567 }
5568 break;
5569
5570 case R_PPC64_TPREL64:
5571 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5572 if (info->shared)
5573 info->flags |= DF_STATIC_TLS;
5574 goto dotlstoc;
5575
5576 case R_PPC64_DTPMOD64:
5577 if (rel + 1 < rel_end
5578 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5579 && rel[1].r_offset == rel->r_offset + 8)
5580 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5581 else
5582 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5583 goto dotlstoc;
5584
5585 case R_PPC64_DTPREL64:
5586 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5587 if (rel != relocs
5588 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5589 && rel[-1].r_offset == rel->r_offset - 8)
5590 /* This is the second reloc of a dtpmod, dtprel pair.
5591 Don't mark with TLS_DTPREL. */
5592 goto dodyn;
5593
5594 dotlstoc:
5595 sec->has_tls_reloc = 1;
5596 if (h != NULL)
5597 {
5598 struct ppc_link_hash_entry *eh;
5599 eh = (struct ppc_link_hash_entry *) h;
5600 eh->tls_mask |= tls_type;
5601 }
5602 else
5603 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5604 rel->r_addend, tls_type))
5605 return FALSE;
5606
5607 ppc64_sec = ppc64_elf_section_data (sec);
5608 if (ppc64_sec->sec_type != sec_toc)
5609 {
5610 bfd_size_type amt;
5611
5612 /* One extra to simplify get_tls_mask. */
5613 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5614 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5615 if (ppc64_sec->u.toc.symndx == NULL)
5616 return FALSE;
5617 amt = sec->size * sizeof (bfd_vma) / 8;
5618 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5619 if (ppc64_sec->u.toc.add == NULL)
5620 return FALSE;
5621 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5622 ppc64_sec->sec_type = sec_toc;
5623 }
5624 BFD_ASSERT (rel->r_offset % 8 == 0);
5625 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5626 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5627
5628 /* Mark the second slot of a GD or LD entry.
5629 -1 to indicate GD and -2 to indicate LD. */
5630 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5631 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5632 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5633 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5634 goto dodyn;
5635
5636 case R_PPC64_TPREL16:
5637 case R_PPC64_TPREL16_LO:
5638 case R_PPC64_TPREL16_HI:
5639 case R_PPC64_TPREL16_HA:
5640 case R_PPC64_TPREL16_DS:
5641 case R_PPC64_TPREL16_LO_DS:
5642 case R_PPC64_TPREL16_HIGH:
5643 case R_PPC64_TPREL16_HIGHA:
5644 case R_PPC64_TPREL16_HIGHER:
5645 case R_PPC64_TPREL16_HIGHERA:
5646 case R_PPC64_TPREL16_HIGHEST:
5647 case R_PPC64_TPREL16_HIGHESTA:
5648 if (info->shared)
5649 {
5650 info->flags |= DF_STATIC_TLS;
5651 goto dodyn;
5652 }
5653 break;
5654
5655 case R_PPC64_ADDR64:
5656 if (opd_sym_map != NULL
5657 && rel + 1 < rel_end
5658 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5659 {
5660 if (h != NULL)
5661 {
5662 if (h->root.root.string[0] == '.'
5663 && h->root.root.string[1] != 0
5664 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5665 ;
5666 else
5667 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5668 }
5669 else
5670 {
5671 asection *s;
5672 Elf_Internal_Sym *isym;
5673
5674 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5675 abfd, r_symndx);
5676 if (isym == NULL)
5677 return FALSE;
5678
5679 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5680 if (s != NULL && s != sec)
5681 opd_sym_map[OPD_NDX (rel->r_offset)] = s;
5682 }
5683 }
5684 /* Fall through. */
5685
5686 case R_PPC64_ADDR16:
5687 case R_PPC64_ADDR16_DS:
5688 case R_PPC64_ADDR16_HA:
5689 case R_PPC64_ADDR16_HI:
5690 case R_PPC64_ADDR16_HIGH:
5691 case R_PPC64_ADDR16_HIGHA:
5692 case R_PPC64_ADDR16_HIGHER:
5693 case R_PPC64_ADDR16_HIGHERA:
5694 case R_PPC64_ADDR16_HIGHEST:
5695 case R_PPC64_ADDR16_HIGHESTA:
5696 case R_PPC64_ADDR16_LO:
5697 case R_PPC64_ADDR16_LO_DS:
5698 if (h != NULL && !info->shared && abiversion (abfd) != 1
5699 && rel->r_addend == 0)
5700 {
5701 /* We may need a .plt entry if this reloc refers to a
5702 function in a shared lib. */
5703 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5704 return FALSE;
5705 h->pointer_equality_needed = 1;
5706 }
5707 /* Fall through. */
5708
5709 case R_PPC64_REL30:
5710 case R_PPC64_REL32:
5711 case R_PPC64_REL64:
5712 case R_PPC64_ADDR14:
5713 case R_PPC64_ADDR14_BRNTAKEN:
5714 case R_PPC64_ADDR14_BRTAKEN:
5715 case R_PPC64_ADDR24:
5716 case R_PPC64_ADDR32:
5717 case R_PPC64_UADDR16:
5718 case R_PPC64_UADDR32:
5719 case R_PPC64_UADDR64:
5720 case R_PPC64_TOC:
5721 if (h != NULL && !info->shared)
5722 /* We may need a copy reloc. */
5723 h->non_got_ref = 1;
5724
5725 /* Don't propagate .opd relocs. */
5726 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5727 break;
5728
5729 /* If we are creating a shared library, and this is a reloc
5730 against a global symbol, or a non PC relative reloc
5731 against a local symbol, then we need to copy the reloc
5732 into the shared library. However, if we are linking with
5733 -Bsymbolic, we do not need to copy a reloc against a
5734 global symbol which is defined in an object we are
5735 including in the link (i.e., DEF_REGULAR is set). At
5736 this point we have not seen all the input files, so it is
5737 possible that DEF_REGULAR is not set now but will be set
5738 later (it is never cleared). In case of a weak definition,
5739 DEF_REGULAR may be cleared later by a strong definition in
5740 a shared library. We account for that possibility below by
5741 storing information in the dyn_relocs field of the hash
5742 table entry. A similar situation occurs when creating
5743 shared libraries and symbol visibility changes render the
5744 symbol local.
5745
5746 If on the other hand, we are creating an executable, we
5747 may need to keep relocations for symbols satisfied by a
5748 dynamic library if we manage to avoid copy relocs for the
5749 symbol. */
5750 dodyn:
5751 if ((info->shared
5752 && (must_be_dyn_reloc (info, r_type)
5753 || (h != NULL
5754 && (!SYMBOLIC_BIND (info, h)
5755 || h->root.type == bfd_link_hash_defweak
5756 || !h->def_regular))))
5757 || (ELIMINATE_COPY_RELOCS
5758 && !info->shared
5759 && h != NULL
5760 && (h->root.type == bfd_link_hash_defweak
5761 || !h->def_regular))
5762 || (!info->shared
5763 && ifunc != NULL))
5764 {
5765 /* We must copy these reloc types into the output file.
5766 Create a reloc section in dynobj and make room for
5767 this reloc. */
5768 if (sreloc == NULL)
5769 {
5770 sreloc = _bfd_elf_make_dynamic_reloc_section
5771 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5772
5773 if (sreloc == NULL)
5774 return FALSE;
5775 }
5776
5777 /* If this is a global symbol, we count the number of
5778 relocations we need for this symbol. */
5779 if (h != NULL)
5780 {
5781 struct elf_dyn_relocs *p;
5782 struct elf_dyn_relocs **head;
5783
5784 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5785 p = *head;
5786 if (p == NULL || p->sec != sec)
5787 {
5788 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5789 if (p == NULL)
5790 return FALSE;
5791 p->next = *head;
5792 *head = p;
5793 p->sec = sec;
5794 p->count = 0;
5795 p->pc_count = 0;
5796 }
5797 p->count += 1;
5798 if (!must_be_dyn_reloc (info, r_type))
5799 p->pc_count += 1;
5800 }
5801 else
5802 {
5803 /* Track dynamic relocs needed for local syms too.
5804 We really need local syms available to do this
5805 easily. Oh well. */
5806 struct ppc_dyn_relocs *p;
5807 struct ppc_dyn_relocs **head;
5808 bfd_boolean is_ifunc;
5809 asection *s;
5810 void *vpp;
5811 Elf_Internal_Sym *isym;
5812
5813 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5814 abfd, r_symndx);
5815 if (isym == NULL)
5816 return FALSE;
5817
5818 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5819 if (s == NULL)
5820 s = sec;
5821
5822 vpp = &elf_section_data (s)->local_dynrel;
5823 head = (struct ppc_dyn_relocs **) vpp;
5824 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5825 p = *head;
5826 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5827 p = p->next;
5828 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5829 {
5830 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5831 if (p == NULL)
5832 return FALSE;
5833 p->next = *head;
5834 *head = p;
5835 p->sec = sec;
5836 p->ifunc = is_ifunc;
5837 p->count = 0;
5838 }
5839 p->count += 1;
5840 }
5841 }
5842 break;
5843
5844 default:
5845 break;
5846 }
5847 }
5848
5849 return TRUE;
5850 }
5851
5852 /* Merge backend specific data from an object file to the output
5853 object file when linking. */
5854
5855 static bfd_boolean
5856 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5857 {
5858 unsigned long iflags, oflags;
5859
5860 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5861 return TRUE;
5862
5863 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5864 return TRUE;
5865
5866 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
5867 return FALSE;
5868
5869 iflags = elf_elfheader (ibfd)->e_flags;
5870 oflags = elf_elfheader (obfd)->e_flags;
5871
5872 if (iflags & ~EF_PPC64_ABI)
5873 {
5874 (*_bfd_error_handler)
5875 (_("%B uses unknown e_flags 0x%lx"), ibfd, iflags);
5876 bfd_set_error (bfd_error_bad_value);
5877 return FALSE;
5878 }
5879 else if (iflags != oflags && iflags != 0)
5880 {
5881 (*_bfd_error_handler)
5882 (_("%B: ABI version %ld is not compatible with ABI version %ld output"),
5883 ibfd, iflags, oflags);
5884 bfd_set_error (bfd_error_bad_value);
5885 return FALSE;
5886 }
5887
5888 /* Merge Tag_compatibility attributes and any common GNU ones. */
5889 _bfd_elf_merge_object_attributes (ibfd, obfd);
5890
5891 return TRUE;
5892 }
5893
5894 static bfd_boolean
5895 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5896 {
5897 /* Print normal ELF private data. */
5898 _bfd_elf_print_private_bfd_data (abfd, ptr);
5899
5900 if (elf_elfheader (abfd)->e_flags != 0)
5901 {
5902 FILE *file = ptr;
5903
5904 /* xgettext:c-format */
5905 fprintf (file, _("private flags = 0x%lx:"),
5906 elf_elfheader (abfd)->e_flags);
5907
5908 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5909 fprintf (file, _(" [abiv%ld]"),
5910 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5911 fputc ('\n', file);
5912 }
5913
5914 return TRUE;
5915 }
5916
5917 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5918 of the code entry point, and its section, which must be in the same
5919 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5920
5921 static bfd_vma
5922 opd_entry_value (asection *opd_sec,
5923 bfd_vma offset,
5924 asection **code_sec,
5925 bfd_vma *code_off,
5926 bfd_boolean in_code_sec)
5927 {
5928 bfd *opd_bfd = opd_sec->owner;
5929 Elf_Internal_Rela *relocs;
5930 Elf_Internal_Rela *lo, *hi, *look;
5931 bfd_vma val;
5932
5933 /* No relocs implies we are linking a --just-symbols object, or looking
5934 at a final linked executable with addr2line or somesuch. */
5935 if (opd_sec->reloc_count == 0)
5936 {
5937 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5938
5939 if (contents == NULL)
5940 {
5941 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5942 return (bfd_vma) -1;
5943 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5944 }
5945
5946 val = bfd_get_64 (opd_bfd, contents + offset);
5947 if (code_sec != NULL)
5948 {
5949 asection *sec, *likely = NULL;
5950
5951 if (in_code_sec)
5952 {
5953 sec = *code_sec;
5954 if (sec->vma <= val
5955 && val < sec->vma + sec->size)
5956 likely = sec;
5957 else
5958 val = -1;
5959 }
5960 else
5961 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5962 if (sec->vma <= val
5963 && (sec->flags & SEC_LOAD) != 0
5964 && (sec->flags & SEC_ALLOC) != 0)
5965 likely = sec;
5966 if (likely != NULL)
5967 {
5968 *code_sec = likely;
5969 if (code_off != NULL)
5970 *code_off = val - likely->vma;
5971 }
5972 }
5973 return val;
5974 }
5975
5976 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5977
5978 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5979 if (relocs == NULL)
5980 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5981
5982 /* Go find the opd reloc at the sym address. */
5983 lo = relocs;
5984 BFD_ASSERT (lo != NULL);
5985 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5986 val = (bfd_vma) -1;
5987 while (lo < hi)
5988 {
5989 look = lo + (hi - lo) / 2;
5990 if (look->r_offset < offset)
5991 lo = look + 1;
5992 else if (look->r_offset > offset)
5993 hi = look;
5994 else
5995 {
5996 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5997
5998 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5999 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
6000 {
6001 unsigned long symndx = ELF64_R_SYM (look->r_info);
6002 asection *sec = NULL;
6003
6004 if (symndx >= symtab_hdr->sh_info
6005 && elf_sym_hashes (opd_bfd) != NULL)
6006 {
6007 struct elf_link_hash_entry **sym_hashes;
6008 struct elf_link_hash_entry *rh;
6009
6010 sym_hashes = elf_sym_hashes (opd_bfd);
6011 rh = sym_hashes[symndx - symtab_hdr->sh_info];
6012 if (rh != NULL)
6013 {
6014 rh = elf_follow_link (rh);
6015 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
6016 || rh->root.type == bfd_link_hash_defweak);
6017 val = rh->root.u.def.value;
6018 sec = rh->root.u.def.section;
6019 if (sec->owner != opd_bfd)
6020 {
6021 sec = NULL;
6022 val = (bfd_vma) -1;
6023 }
6024 }
6025 }
6026
6027 if (sec == NULL)
6028 {
6029 Elf_Internal_Sym *sym;
6030
6031 if (symndx < symtab_hdr->sh_info)
6032 {
6033 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
6034 if (sym == NULL)
6035 {
6036 size_t symcnt = symtab_hdr->sh_info;
6037 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6038 symcnt, 0,
6039 NULL, NULL, NULL);
6040 if (sym == NULL)
6041 break;
6042 symtab_hdr->contents = (bfd_byte *) sym;
6043 }
6044 sym += symndx;
6045 }
6046 else
6047 {
6048 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6049 1, symndx,
6050 NULL, NULL, NULL);
6051 if (sym == NULL)
6052 break;
6053 }
6054 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
6055 if (sec == NULL)
6056 break;
6057 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
6058 val = sym->st_value;
6059 }
6060
6061 val += look->r_addend;
6062 if (code_off != NULL)
6063 *code_off = val;
6064 if (code_sec != NULL)
6065 {
6066 if (in_code_sec && *code_sec != sec)
6067 return -1;
6068 else
6069 *code_sec = sec;
6070 }
6071 if (sec->output_section != NULL)
6072 val += sec->output_section->vma + sec->output_offset;
6073 }
6074 break;
6075 }
6076 }
6077
6078 return val;
6079 }
6080
6081 /* If the ELF symbol SYM might be a function in SEC, return the
6082 function size and set *CODE_OFF to the function's entry point,
6083 otherwise return zero. */
6084
6085 static bfd_size_type
6086 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
6087 bfd_vma *code_off)
6088 {
6089 bfd_size_type size;
6090
6091 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
6092 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
6093 return 0;
6094
6095 size = 0;
6096 if (!(sym->flags & BSF_SYNTHETIC))
6097 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
6098
6099 if (strcmp (sym->section->name, ".opd") == 0)
6100 {
6101 if (opd_entry_value (sym->section, sym->value,
6102 &sec, code_off, TRUE) == (bfd_vma) -1)
6103 return 0;
6104 /* An old ABI binary with dot-syms has a size of 24 on the .opd
6105 symbol. This size has nothing to do with the code size of the
6106 function, which is what we're supposed to return, but the
6107 code size isn't available without looking up the dot-sym.
6108 However, doing that would be a waste of time particularly
6109 since elf_find_function will look at the dot-sym anyway.
6110 Now, elf_find_function will keep the largest size of any
6111 function sym found at the code address of interest, so return
6112 1 here to avoid it incorrectly caching a larger function size
6113 for a small function. This does mean we return the wrong
6114 size for a new-ABI function of size 24, but all that does is
6115 disable caching for such functions. */
6116 if (size == 24)
6117 size = 1;
6118 }
6119 else
6120 {
6121 if (sym->section != sec)
6122 return 0;
6123 *code_off = sym->value;
6124 }
6125 if (size == 0)
6126 size = 1;
6127 return size;
6128 }
6129
6130 /* Return true if symbol is defined in a regular object file. */
6131
6132 static bfd_boolean
6133 is_static_defined (struct elf_link_hash_entry *h)
6134 {
6135 return ((h->root.type == bfd_link_hash_defined
6136 || h->root.type == bfd_link_hash_defweak)
6137 && h->root.u.def.section != NULL
6138 && h->root.u.def.section->output_section != NULL);
6139 }
6140
6141 /* If FDH is a function descriptor symbol, return the associated code
6142 entry symbol if it is defined. Return NULL otherwise. */
6143
6144 static struct ppc_link_hash_entry *
6145 defined_code_entry (struct ppc_link_hash_entry *fdh)
6146 {
6147 if (fdh->is_func_descriptor)
6148 {
6149 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
6150 if (fh->elf.root.type == bfd_link_hash_defined
6151 || fh->elf.root.type == bfd_link_hash_defweak)
6152 return fh;
6153 }
6154 return NULL;
6155 }
6156
6157 /* If FH is a function code entry symbol, return the associated
6158 function descriptor symbol if it is defined. Return NULL otherwise. */
6159
6160 static struct ppc_link_hash_entry *
6161 defined_func_desc (struct ppc_link_hash_entry *fh)
6162 {
6163 if (fh->oh != NULL
6164 && fh->oh->is_func_descriptor)
6165 {
6166 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
6167 if (fdh->elf.root.type == bfd_link_hash_defined
6168 || fdh->elf.root.type == bfd_link_hash_defweak)
6169 return fdh;
6170 }
6171 return NULL;
6172 }
6173
6174 /* Mark all our entry sym sections, both opd and code section. */
6175
6176 static void
6177 ppc64_elf_gc_keep (struct bfd_link_info *info)
6178 {
6179 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6180 struct bfd_sym_chain *sym;
6181
6182 if (htab == NULL)
6183 return;
6184
6185 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
6186 {
6187 struct ppc_link_hash_entry *eh, *fh;
6188 asection *sec;
6189
6190 eh = (struct ppc_link_hash_entry *)
6191 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
6192 if (eh == NULL)
6193 continue;
6194 if (eh->elf.root.type != bfd_link_hash_defined
6195 && eh->elf.root.type != bfd_link_hash_defweak)
6196 continue;
6197
6198 fh = defined_code_entry (eh);
6199 if (fh != NULL)
6200 {
6201 sec = fh->elf.root.u.def.section;
6202 sec->flags |= SEC_KEEP;
6203 }
6204 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6205 && opd_entry_value (eh->elf.root.u.def.section,
6206 eh->elf.root.u.def.value,
6207 &sec, NULL, FALSE) != (bfd_vma) -1)
6208 sec->flags |= SEC_KEEP;
6209
6210 sec = eh->elf.root.u.def.section;
6211 sec->flags |= SEC_KEEP;
6212 }
6213 }
6214
6215 /* Mark sections containing dynamically referenced symbols. When
6216 building shared libraries, we must assume that any visible symbol is
6217 referenced. */
6218
6219 static bfd_boolean
6220 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
6221 {
6222 struct bfd_link_info *info = (struct bfd_link_info *) inf;
6223 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
6224 struct ppc_link_hash_entry *fdh;
6225 struct bfd_elf_dynamic_list *d = info->dynamic_list;
6226
6227 /* Dynamic linking info is on the func descriptor sym. */
6228 fdh = defined_func_desc (eh);
6229 if (fdh != NULL)
6230 eh = fdh;
6231
6232 if ((eh->elf.root.type == bfd_link_hash_defined
6233 || eh->elf.root.type == bfd_link_hash_defweak)
6234 && (eh->elf.ref_dynamic
6235 || (eh->elf.def_regular
6236 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
6237 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
6238 && (!info->executable
6239 || info->export_dynamic
6240 || (eh->elf.dynamic
6241 && d != NULL
6242 && (*d->match) (&d->head, NULL, eh->elf.root.root.string)))
6243 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
6244 || !bfd_hide_sym_by_version (info->version_info,
6245 eh->elf.root.root.string)))))
6246 {
6247 asection *code_sec;
6248 struct ppc_link_hash_entry *fh;
6249
6250 eh->elf.root.u.def.section->flags |= SEC_KEEP;
6251
6252 /* Function descriptor syms cause the associated
6253 function code sym section to be marked. */
6254 fh = defined_code_entry (eh);
6255 if (fh != NULL)
6256 {
6257 code_sec = fh->elf.root.u.def.section;
6258 code_sec->flags |= SEC_KEEP;
6259 }
6260 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6261 && opd_entry_value (eh->elf.root.u.def.section,
6262 eh->elf.root.u.def.value,
6263 &code_sec, NULL, FALSE) != (bfd_vma) -1)
6264 code_sec->flags |= SEC_KEEP;
6265 }
6266
6267 return TRUE;
6268 }
6269
6270 /* Return the section that should be marked against GC for a given
6271 relocation. */
6272
6273 static asection *
6274 ppc64_elf_gc_mark_hook (asection *sec,
6275 struct bfd_link_info *info,
6276 Elf_Internal_Rela *rel,
6277 struct elf_link_hash_entry *h,
6278 Elf_Internal_Sym *sym)
6279 {
6280 asection *rsec;
6281
6282 /* Syms return NULL if we're marking .opd, so we avoid marking all
6283 function sections, as all functions are referenced in .opd. */
6284 rsec = NULL;
6285 if (get_opd_info (sec) != NULL)
6286 return rsec;
6287
6288 if (h != NULL)
6289 {
6290 enum elf_ppc64_reloc_type r_type;
6291 struct ppc_link_hash_entry *eh, *fh, *fdh;
6292
6293 r_type = ELF64_R_TYPE (rel->r_info);
6294 switch (r_type)
6295 {
6296 case R_PPC64_GNU_VTINHERIT:
6297 case R_PPC64_GNU_VTENTRY:
6298 break;
6299
6300 default:
6301 switch (h->root.type)
6302 {
6303 case bfd_link_hash_defined:
6304 case bfd_link_hash_defweak:
6305 eh = (struct ppc_link_hash_entry *) h;
6306 fdh = defined_func_desc (eh);
6307 if (fdh != NULL)
6308 eh = fdh;
6309
6310 /* Function descriptor syms cause the associated
6311 function code sym section to be marked. */
6312 fh = defined_code_entry (eh);
6313 if (fh != NULL)
6314 {
6315 /* They also mark their opd section. */
6316 eh->elf.root.u.def.section->gc_mark = 1;
6317
6318 rsec = fh->elf.root.u.def.section;
6319 }
6320 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6321 && opd_entry_value (eh->elf.root.u.def.section,
6322 eh->elf.root.u.def.value,
6323 &rsec, NULL, FALSE) != (bfd_vma) -1)
6324 eh->elf.root.u.def.section->gc_mark = 1;
6325 else
6326 rsec = h->root.u.def.section;
6327 break;
6328
6329 case bfd_link_hash_common:
6330 rsec = h->root.u.c.p->section;
6331 break;
6332
6333 default:
6334 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
6335 }
6336 }
6337 }
6338 else
6339 {
6340 struct _opd_sec_data *opd;
6341
6342 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6343 opd = get_opd_info (rsec);
6344 if (opd != NULL && opd->func_sec != NULL)
6345 {
6346 rsec->gc_mark = 1;
6347
6348 rsec = opd->func_sec[OPD_NDX (sym->st_value + rel->r_addend)];
6349 }
6350 }
6351
6352 return rsec;
6353 }
6354
6355 /* Update the .got, .plt. and dynamic reloc reference counts for the
6356 section being removed. */
6357
6358 static bfd_boolean
6359 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
6360 asection *sec, const Elf_Internal_Rela *relocs)
6361 {
6362 struct ppc_link_hash_table *htab;
6363 Elf_Internal_Shdr *symtab_hdr;
6364 struct elf_link_hash_entry **sym_hashes;
6365 struct got_entry **local_got_ents;
6366 const Elf_Internal_Rela *rel, *relend;
6367
6368 if (info->relocatable)
6369 return TRUE;
6370
6371 if ((sec->flags & SEC_ALLOC) == 0)
6372 return TRUE;
6373
6374 elf_section_data (sec)->local_dynrel = NULL;
6375
6376 htab = ppc_hash_table (info);
6377 if (htab == NULL)
6378 return FALSE;
6379
6380 symtab_hdr = &elf_symtab_hdr (abfd);
6381 sym_hashes = elf_sym_hashes (abfd);
6382 local_got_ents = elf_local_got_ents (abfd);
6383
6384 relend = relocs + sec->reloc_count;
6385 for (rel = relocs; rel < relend; rel++)
6386 {
6387 unsigned long r_symndx;
6388 enum elf_ppc64_reloc_type r_type;
6389 struct elf_link_hash_entry *h = NULL;
6390 unsigned char tls_type = 0;
6391
6392 r_symndx = ELF64_R_SYM (rel->r_info);
6393 r_type = ELF64_R_TYPE (rel->r_info);
6394 if (r_symndx >= symtab_hdr->sh_info)
6395 {
6396 struct ppc_link_hash_entry *eh;
6397 struct elf_dyn_relocs **pp;
6398 struct elf_dyn_relocs *p;
6399
6400 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6401 h = elf_follow_link (h);
6402 eh = (struct ppc_link_hash_entry *) h;
6403
6404 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6405 if (p->sec == sec)
6406 {
6407 /* Everything must go for SEC. */
6408 *pp = p->next;
6409 break;
6410 }
6411 }
6412
6413 if (is_branch_reloc (r_type))
6414 {
6415 struct plt_entry **ifunc = NULL;
6416 if (h != NULL)
6417 {
6418 if (h->type == STT_GNU_IFUNC)
6419 ifunc = &h->plt.plist;
6420 }
6421 else if (local_got_ents != NULL)
6422 {
6423 struct plt_entry **local_plt = (struct plt_entry **)
6424 (local_got_ents + symtab_hdr->sh_info);
6425 unsigned char *local_got_tls_masks = (unsigned char *)
6426 (local_plt + symtab_hdr->sh_info);
6427 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6428 ifunc = local_plt + r_symndx;
6429 }
6430 if (ifunc != NULL)
6431 {
6432 struct plt_entry *ent;
6433
6434 for (ent = *ifunc; ent != NULL; ent = ent->next)
6435 if (ent->addend == rel->r_addend)
6436 break;
6437 if (ent == NULL)
6438 abort ();
6439 if (ent->plt.refcount > 0)
6440 ent->plt.refcount -= 1;
6441 continue;
6442 }
6443 }
6444
6445 switch (r_type)
6446 {
6447 case R_PPC64_GOT_TLSLD16:
6448 case R_PPC64_GOT_TLSLD16_LO:
6449 case R_PPC64_GOT_TLSLD16_HI:
6450 case R_PPC64_GOT_TLSLD16_HA:
6451 tls_type = TLS_TLS | TLS_LD;
6452 goto dogot;
6453
6454 case R_PPC64_GOT_TLSGD16:
6455 case R_PPC64_GOT_TLSGD16_LO:
6456 case R_PPC64_GOT_TLSGD16_HI:
6457 case R_PPC64_GOT_TLSGD16_HA:
6458 tls_type = TLS_TLS | TLS_GD;
6459 goto dogot;
6460
6461 case R_PPC64_GOT_TPREL16_DS:
6462 case R_PPC64_GOT_TPREL16_LO_DS:
6463 case R_PPC64_GOT_TPREL16_HI:
6464 case R_PPC64_GOT_TPREL16_HA:
6465 tls_type = TLS_TLS | TLS_TPREL;
6466 goto dogot;
6467
6468 case R_PPC64_GOT_DTPREL16_DS:
6469 case R_PPC64_GOT_DTPREL16_LO_DS:
6470 case R_PPC64_GOT_DTPREL16_HI:
6471 case R_PPC64_GOT_DTPREL16_HA:
6472 tls_type = TLS_TLS | TLS_DTPREL;
6473 goto dogot;
6474
6475 case R_PPC64_GOT16:
6476 case R_PPC64_GOT16_DS:
6477 case R_PPC64_GOT16_HA:
6478 case R_PPC64_GOT16_HI:
6479 case R_PPC64_GOT16_LO:
6480 case R_PPC64_GOT16_LO_DS:
6481 dogot:
6482 {
6483 struct got_entry *ent;
6484
6485 if (h != NULL)
6486 ent = h->got.glist;
6487 else
6488 ent = local_got_ents[r_symndx];
6489
6490 for (; ent != NULL; ent = ent->next)
6491 if (ent->addend == rel->r_addend
6492 && ent->owner == abfd
6493 && ent->tls_type == tls_type)
6494 break;
6495 if (ent == NULL)
6496 abort ();
6497 if (ent->got.refcount > 0)
6498 ent->got.refcount -= 1;
6499 }
6500 break;
6501
6502 case R_PPC64_PLT16_HA:
6503 case R_PPC64_PLT16_HI:
6504 case R_PPC64_PLT16_LO:
6505 case R_PPC64_PLT32:
6506 case R_PPC64_PLT64:
6507 case R_PPC64_REL14:
6508 case R_PPC64_REL14_BRNTAKEN:
6509 case R_PPC64_REL14_BRTAKEN:
6510 case R_PPC64_REL24:
6511 if (h != NULL)
6512 {
6513 struct plt_entry *ent;
6514
6515 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6516 if (ent->addend == rel->r_addend)
6517 break;
6518 if (ent != NULL && ent->plt.refcount > 0)
6519 ent->plt.refcount -= 1;
6520 }
6521 break;
6522
6523 default:
6524 break;
6525 }
6526 }
6527 return TRUE;
6528 }
6529
6530 /* The maximum size of .sfpr. */
6531 #define SFPR_MAX (218*4)
6532
6533 struct sfpr_def_parms
6534 {
6535 const char name[12];
6536 unsigned char lo, hi;
6537 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6538 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6539 };
6540
6541 /* Auto-generate _save*, _rest* functions in .sfpr. */
6542
6543 static bfd_boolean
6544 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6545 {
6546 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6547 unsigned int i;
6548 size_t len = strlen (parm->name);
6549 bfd_boolean writing = FALSE;
6550 char sym[16];
6551
6552 if (htab == NULL)
6553 return FALSE;
6554
6555 memcpy (sym, parm->name, len);
6556 sym[len + 2] = 0;
6557
6558 for (i = parm->lo; i <= parm->hi; i++)
6559 {
6560 struct elf_link_hash_entry *h;
6561
6562 sym[len + 0] = i / 10 + '0';
6563 sym[len + 1] = i % 10 + '0';
6564 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6565 if (h != NULL
6566 && !h->def_regular)
6567 {
6568 h->root.type = bfd_link_hash_defined;
6569 h->root.u.def.section = htab->sfpr;
6570 h->root.u.def.value = htab->sfpr->size;
6571 h->type = STT_FUNC;
6572 h->def_regular = 1;
6573 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6574 writing = TRUE;
6575 if (htab->sfpr->contents == NULL)
6576 {
6577 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6578 if (htab->sfpr->contents == NULL)
6579 return FALSE;
6580 }
6581 }
6582 if (writing)
6583 {
6584 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6585 if (i != parm->hi)
6586 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6587 else
6588 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6589 htab->sfpr->size = p - htab->sfpr->contents;
6590 }
6591 }
6592
6593 return TRUE;
6594 }
6595
6596 static bfd_byte *
6597 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6598 {
6599 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6600 return p + 4;
6601 }
6602
6603 static bfd_byte *
6604 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6605 {
6606 p = savegpr0 (abfd, p, r);
6607 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6608 p = p + 4;
6609 bfd_put_32 (abfd, BLR, p);
6610 return p + 4;
6611 }
6612
6613 static bfd_byte *
6614 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6615 {
6616 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6617 return p + 4;
6618 }
6619
6620 static bfd_byte *
6621 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6622 {
6623 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6624 p = p + 4;
6625 p = restgpr0 (abfd, p, r);
6626 bfd_put_32 (abfd, MTLR_R0, p);
6627 p = p + 4;
6628 if (r == 29)
6629 {
6630 p = restgpr0 (abfd, p, 30);
6631 p = restgpr0 (abfd, p, 31);
6632 }
6633 bfd_put_32 (abfd, BLR, p);
6634 return p + 4;
6635 }
6636
6637 static bfd_byte *
6638 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6639 {
6640 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6641 return p + 4;
6642 }
6643
6644 static bfd_byte *
6645 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6646 {
6647 p = savegpr1 (abfd, p, r);
6648 bfd_put_32 (abfd, BLR, p);
6649 return p + 4;
6650 }
6651
6652 static bfd_byte *
6653 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6654 {
6655 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6656 return p + 4;
6657 }
6658
6659 static bfd_byte *
6660 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6661 {
6662 p = restgpr1 (abfd, p, r);
6663 bfd_put_32 (abfd, BLR, p);
6664 return p + 4;
6665 }
6666
6667 static bfd_byte *
6668 savefpr (bfd *abfd, bfd_byte *p, int r)
6669 {
6670 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6671 return p + 4;
6672 }
6673
6674 static bfd_byte *
6675 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6676 {
6677 p = savefpr (abfd, p, r);
6678 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6679 p = p + 4;
6680 bfd_put_32 (abfd, BLR, p);
6681 return p + 4;
6682 }
6683
6684 static bfd_byte *
6685 restfpr (bfd *abfd, bfd_byte *p, int r)
6686 {
6687 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6688 return p + 4;
6689 }
6690
6691 static bfd_byte *
6692 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6693 {
6694 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6695 p = p + 4;
6696 p = restfpr (abfd, p, r);
6697 bfd_put_32 (abfd, MTLR_R0, p);
6698 p = p + 4;
6699 if (r == 29)
6700 {
6701 p = restfpr (abfd, p, 30);
6702 p = restfpr (abfd, p, 31);
6703 }
6704 bfd_put_32 (abfd, BLR, p);
6705 return p + 4;
6706 }
6707
6708 static bfd_byte *
6709 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6710 {
6711 p = savefpr (abfd, p, r);
6712 bfd_put_32 (abfd, BLR, p);
6713 return p + 4;
6714 }
6715
6716 static bfd_byte *
6717 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6718 {
6719 p = restfpr (abfd, p, r);
6720 bfd_put_32 (abfd, BLR, p);
6721 return p + 4;
6722 }
6723
6724 static bfd_byte *
6725 savevr (bfd *abfd, bfd_byte *p, int r)
6726 {
6727 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6728 p = p + 4;
6729 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6730 return p + 4;
6731 }
6732
6733 static bfd_byte *
6734 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6735 {
6736 p = savevr (abfd, p, r);
6737 bfd_put_32 (abfd, BLR, p);
6738 return p + 4;
6739 }
6740
6741 static bfd_byte *
6742 restvr (bfd *abfd, bfd_byte *p, int r)
6743 {
6744 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6745 p = p + 4;
6746 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6747 return p + 4;
6748 }
6749
6750 static bfd_byte *
6751 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6752 {
6753 p = restvr (abfd, p, r);
6754 bfd_put_32 (abfd, BLR, p);
6755 return p + 4;
6756 }
6757
6758 /* Called via elf_link_hash_traverse to transfer dynamic linking
6759 information on function code symbol entries to their corresponding
6760 function descriptor symbol entries. */
6761
6762 static bfd_boolean
6763 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6764 {
6765 struct bfd_link_info *info;
6766 struct ppc_link_hash_table *htab;
6767 struct plt_entry *ent;
6768 struct ppc_link_hash_entry *fh;
6769 struct ppc_link_hash_entry *fdh;
6770 bfd_boolean force_local;
6771
6772 fh = (struct ppc_link_hash_entry *) h;
6773 if (fh->elf.root.type == bfd_link_hash_indirect)
6774 return TRUE;
6775
6776 info = inf;
6777 htab = ppc_hash_table (info);
6778 if (htab == NULL)
6779 return FALSE;
6780
6781 /* Resolve undefined references to dot-symbols as the value
6782 in the function descriptor, if we have one in a regular object.
6783 This is to satisfy cases like ".quad .foo". Calls to functions
6784 in dynamic objects are handled elsewhere. */
6785 if (fh->elf.root.type == bfd_link_hash_undefweak
6786 && fh->was_undefined
6787 && (fdh = defined_func_desc (fh)) != NULL
6788 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6789 && opd_entry_value (fdh->elf.root.u.def.section,
6790 fdh->elf.root.u.def.value,
6791 &fh->elf.root.u.def.section,
6792 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6793 {
6794 fh->elf.root.type = fdh->elf.root.type;
6795 fh->elf.forced_local = 1;
6796 fh->elf.def_regular = fdh->elf.def_regular;
6797 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6798 }
6799
6800 /* If this is a function code symbol, transfer dynamic linking
6801 information to the function descriptor symbol. */
6802 if (!fh->is_func)
6803 return TRUE;
6804
6805 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6806 if (ent->plt.refcount > 0)
6807 break;
6808 if (ent == NULL
6809 || fh->elf.root.root.string[0] != '.'
6810 || fh->elf.root.root.string[1] == '\0')
6811 return TRUE;
6812
6813 /* Find the corresponding function descriptor symbol. Create it
6814 as undefined if necessary. */
6815
6816 fdh = lookup_fdh (fh, htab);
6817 if (fdh == NULL
6818 && !info->executable
6819 && (fh->elf.root.type == bfd_link_hash_undefined
6820 || fh->elf.root.type == bfd_link_hash_undefweak))
6821 {
6822 fdh = make_fdh (info, fh);
6823 if (fdh == NULL)
6824 return FALSE;
6825 }
6826
6827 /* Fake function descriptors are made undefweak. If the function
6828 code symbol is strong undefined, make the fake sym the same.
6829 If the function code symbol is defined, then force the fake
6830 descriptor local; We can't support overriding of symbols in a
6831 shared library on a fake descriptor. */
6832
6833 if (fdh != NULL
6834 && fdh->fake
6835 && fdh->elf.root.type == bfd_link_hash_undefweak)
6836 {
6837 if (fh->elf.root.type == bfd_link_hash_undefined)
6838 {
6839 fdh->elf.root.type = bfd_link_hash_undefined;
6840 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6841 }
6842 else if (fh->elf.root.type == bfd_link_hash_defined
6843 || fh->elf.root.type == bfd_link_hash_defweak)
6844 {
6845 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6846 }
6847 }
6848
6849 if (fdh != NULL
6850 && !fdh->elf.forced_local
6851 && (!info->executable
6852 || fdh->elf.def_dynamic
6853 || fdh->elf.ref_dynamic
6854 || (fdh->elf.root.type == bfd_link_hash_undefweak
6855 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6856 {
6857 if (fdh->elf.dynindx == -1)
6858 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6859 return FALSE;
6860 fdh->elf.ref_regular |= fh->elf.ref_regular;
6861 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6862 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6863 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6864 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6865 {
6866 move_plt_plist (fh, fdh);
6867 fdh->elf.needs_plt = 1;
6868 }
6869 fdh->is_func_descriptor = 1;
6870 fdh->oh = fh;
6871 fh->oh = fdh;
6872 }
6873
6874 /* Now that the info is on the function descriptor, clear the
6875 function code sym info. Any function code syms for which we
6876 don't have a definition in a regular file, we force local.
6877 This prevents a shared library from exporting syms that have
6878 been imported from another library. Function code syms that
6879 are really in the library we must leave global to prevent the
6880 linker dragging in a definition from a static library. */
6881 force_local = (!fh->elf.def_regular
6882 || fdh == NULL
6883 || !fdh->elf.def_regular
6884 || fdh->elf.forced_local);
6885 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6886
6887 return TRUE;
6888 }
6889
6890 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6891 this hook to a) provide some gcc support functions, and b) transfer
6892 dynamic linking information gathered so far on function code symbol
6893 entries, to their corresponding function descriptor symbol entries. */
6894
6895 static bfd_boolean
6896 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6897 struct bfd_link_info *info)
6898 {
6899 struct ppc_link_hash_table *htab;
6900 unsigned int i;
6901 static const struct sfpr_def_parms funcs[] =
6902 {
6903 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6904 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6905 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6906 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6907 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6908 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6909 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6910 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6911 { "._savef", 14, 31, savefpr, savefpr1_tail },
6912 { "._restf", 14, 31, restfpr, restfpr1_tail },
6913 { "_savevr_", 20, 31, savevr, savevr_tail },
6914 { "_restvr_", 20, 31, restvr, restvr_tail }
6915 };
6916
6917 htab = ppc_hash_table (info);
6918 if (htab == NULL)
6919 return FALSE;
6920
6921 if (!info->relocatable
6922 && htab->elf.hgot != NULL)
6923 {
6924 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6925 /* Make .TOC. defined so as to prevent it being made dynamic.
6926 The wrong value here is fixed later in ppc64_elf_set_toc. */
6927 htab->elf.hgot->type = STT_OBJECT;
6928 htab->elf.hgot->root.type = bfd_link_hash_defined;
6929 htab->elf.hgot->root.u.def.value = 0;
6930 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6931 htab->elf.hgot->def_regular = 1;
6932 htab->elf.hgot->other = ((htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1))
6933 | STV_HIDDEN);
6934 }
6935
6936 if (htab->sfpr == NULL)
6937 /* We don't have any relocs. */
6938 return TRUE;
6939
6940 /* Provide any missing _save* and _rest* functions. */
6941 htab->sfpr->size = 0;
6942 if (htab->params->save_restore_funcs)
6943 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6944 if (!sfpr_define (info, &funcs[i]))
6945 return FALSE;
6946
6947 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6948
6949 if (htab->sfpr->size == 0)
6950 htab->sfpr->flags |= SEC_EXCLUDE;
6951
6952 return TRUE;
6953 }
6954
6955 /* Return true if we have dynamic relocs that apply to read-only sections. */
6956
6957 static bfd_boolean
6958 readonly_dynrelocs (struct elf_link_hash_entry *h)
6959 {
6960 struct ppc_link_hash_entry *eh;
6961 struct elf_dyn_relocs *p;
6962
6963 eh = (struct ppc_link_hash_entry *) h;
6964 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6965 {
6966 asection *s = p->sec->output_section;
6967
6968 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6969 return TRUE;
6970 }
6971 return FALSE;
6972 }
6973
6974 /* Adjust a symbol defined by a dynamic object and referenced by a
6975 regular object. The current definition is in some section of the
6976 dynamic object, but we're not including those sections. We have to
6977 change the definition to something the rest of the link can
6978 understand. */
6979
6980 static bfd_boolean
6981 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6982 struct elf_link_hash_entry *h)
6983 {
6984 struct ppc_link_hash_table *htab;
6985 asection *s;
6986
6987 htab = ppc_hash_table (info);
6988 if (htab == NULL)
6989 return FALSE;
6990
6991 /* Deal with function syms. */
6992 if (h->type == STT_FUNC
6993 || h->type == STT_GNU_IFUNC
6994 || h->needs_plt)
6995 {
6996 /* Clear procedure linkage table information for any symbol that
6997 won't need a .plt entry. */
6998 struct plt_entry *ent;
6999 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
7000 if (ent->plt.refcount > 0)
7001 break;
7002 if (ent == NULL
7003 || (h->type != STT_GNU_IFUNC
7004 && (SYMBOL_CALLS_LOCAL (info, h)
7005 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7006 && h->root.type == bfd_link_hash_undefweak))))
7007 {
7008 h->plt.plist = NULL;
7009 h->needs_plt = 0;
7010 h->pointer_equality_needed = 0;
7011 }
7012 else if (abiversion (info->output_bfd) == 2)
7013 {
7014 /* Taking a function's address in a read/write section
7015 doesn't require us to define the function symbol in the
7016 executable on a global entry stub. A dynamic reloc can
7017 be used instead. */
7018 if (h->pointer_equality_needed
7019 && h->type != STT_GNU_IFUNC
7020 && !readonly_dynrelocs (h))
7021 {
7022 h->pointer_equality_needed = 0;
7023 h->non_got_ref = 0;
7024 }
7025
7026 /* After adjust_dynamic_symbol, non_got_ref set in the
7027 non-shared case means that we have allocated space in
7028 .dynbss for the symbol and thus dyn_relocs for this
7029 symbol should be discarded.
7030 If we get here we know we are making a PLT entry for this
7031 symbol, and in an executable we'd normally resolve
7032 relocations against this symbol to the PLT entry. Allow
7033 dynamic relocs if the reference is weak, and the dynamic
7034 relocs will not cause text relocation. */
7035 else if (!h->ref_regular_nonweak
7036 && h->non_got_ref
7037 && h->type != STT_GNU_IFUNC
7038 && !readonly_dynrelocs (h))
7039 h->non_got_ref = 0;
7040
7041 /* If making a plt entry, then we don't need copy relocs. */
7042 return TRUE;
7043 }
7044 }
7045 else
7046 h->plt.plist = NULL;
7047
7048 /* If this is a weak symbol, and there is a real definition, the
7049 processor independent code will have arranged for us to see the
7050 real definition first, and we can just use the same value. */
7051 if (h->u.weakdef != NULL)
7052 {
7053 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7054 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7055 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7056 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7057 if (ELIMINATE_COPY_RELOCS)
7058 h->non_got_ref = h->u.weakdef->non_got_ref;
7059 return TRUE;
7060 }
7061
7062 /* If we are creating a shared library, we must presume that the
7063 only references to the symbol are via the global offset table.
7064 For such cases we need not do anything here; the relocations will
7065 be handled correctly by relocate_section. */
7066 if (info->shared)
7067 return TRUE;
7068
7069 /* If there are no references to this symbol that do not use the
7070 GOT, we don't need to generate a copy reloc. */
7071 if (!h->non_got_ref)
7072 return TRUE;
7073
7074 /* Don't generate a copy reloc for symbols defined in the executable. */
7075 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
7076 return TRUE;
7077
7078 /* If we didn't find any dynamic relocs in read-only sections, then
7079 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7080 if (ELIMINATE_COPY_RELOCS && !readonly_dynrelocs (h))
7081 {
7082 h->non_got_ref = 0;
7083 return TRUE;
7084 }
7085
7086 if (h->plt.plist != NULL)
7087 {
7088 /* We should never get here, but unfortunately there are versions
7089 of gcc out there that improperly (for this ABI) put initialized
7090 function pointers, vtable refs and suchlike in read-only
7091 sections. Allow them to proceed, but warn that this might
7092 break at runtime. */
7093 info->callbacks->einfo
7094 (_("%P: copy reloc against `%T' requires lazy plt linking; "
7095 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
7096 h->root.root.string);
7097 }
7098
7099 /* This is a reference to a symbol defined by a dynamic object which
7100 is not a function. */
7101
7102 /* We must allocate the symbol in our .dynbss section, which will
7103 become part of the .bss section of the executable. There will be
7104 an entry for this symbol in the .dynsym section. The dynamic
7105 object will contain position independent code, so all references
7106 from the dynamic object to this symbol will go through the global
7107 offset table. The dynamic linker will use the .dynsym entry to
7108 determine the address it must put in the global offset table, so
7109 both the dynamic object and the regular object will refer to the
7110 same memory location for the variable. */
7111
7112 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
7113 to copy the initial value out of the dynamic object and into the
7114 runtime process image. We need to remember the offset into the
7115 .rela.bss section we are going to use. */
7116 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7117 {
7118 htab->relbss->size += sizeof (Elf64_External_Rela);
7119 h->needs_copy = 1;
7120 }
7121
7122 s = htab->dynbss;
7123
7124 return _bfd_elf_adjust_dynamic_copy (h, s);
7125 }
7126
7127 /* If given a function descriptor symbol, hide both the function code
7128 sym and the descriptor. */
7129 static void
7130 ppc64_elf_hide_symbol (struct bfd_link_info *info,
7131 struct elf_link_hash_entry *h,
7132 bfd_boolean force_local)
7133 {
7134 struct ppc_link_hash_entry *eh;
7135 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
7136
7137 eh = (struct ppc_link_hash_entry *) h;
7138 if (eh->is_func_descriptor)
7139 {
7140 struct ppc_link_hash_entry *fh = eh->oh;
7141
7142 if (fh == NULL)
7143 {
7144 const char *p, *q;
7145 struct ppc_link_hash_table *htab;
7146 char save;
7147
7148 /* We aren't supposed to use alloca in BFD because on
7149 systems which do not have alloca the version in libiberty
7150 calls xmalloc, which might cause the program to crash
7151 when it runs out of memory. This function doesn't have a
7152 return status, so there's no way to gracefully return an
7153 error. So cheat. We know that string[-1] can be safely
7154 accessed; It's either a string in an ELF string table,
7155 or allocated in an objalloc structure. */
7156
7157 p = eh->elf.root.root.string - 1;
7158 save = *p;
7159 *(char *) p = '.';
7160 htab = ppc_hash_table (info);
7161 if (htab == NULL)
7162 return;
7163
7164 fh = (struct ppc_link_hash_entry *)
7165 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7166 *(char *) p = save;
7167
7168 /* Unfortunately, if it so happens that the string we were
7169 looking for was allocated immediately before this string,
7170 then we overwrote the string terminator. That's the only
7171 reason the lookup should fail. */
7172 if (fh == NULL)
7173 {
7174 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
7175 while (q >= eh->elf.root.root.string && *q == *p)
7176 --q, --p;
7177 if (q < eh->elf.root.root.string && *p == '.')
7178 fh = (struct ppc_link_hash_entry *)
7179 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7180 }
7181 if (fh != NULL)
7182 {
7183 eh->oh = fh;
7184 fh->oh = eh;
7185 }
7186 }
7187 if (fh != NULL)
7188 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
7189 }
7190 }
7191
7192 static bfd_boolean
7193 get_sym_h (struct elf_link_hash_entry **hp,
7194 Elf_Internal_Sym **symp,
7195 asection **symsecp,
7196 unsigned char **tls_maskp,
7197 Elf_Internal_Sym **locsymsp,
7198 unsigned long r_symndx,
7199 bfd *ibfd)
7200 {
7201 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7202
7203 if (r_symndx >= symtab_hdr->sh_info)
7204 {
7205 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7206 struct elf_link_hash_entry *h;
7207
7208 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7209 h = elf_follow_link (h);
7210
7211 if (hp != NULL)
7212 *hp = h;
7213
7214 if (symp != NULL)
7215 *symp = NULL;
7216
7217 if (symsecp != NULL)
7218 {
7219 asection *symsec = NULL;
7220 if (h->root.type == bfd_link_hash_defined
7221 || h->root.type == bfd_link_hash_defweak)
7222 symsec = h->root.u.def.section;
7223 *symsecp = symsec;
7224 }
7225
7226 if (tls_maskp != NULL)
7227 {
7228 struct ppc_link_hash_entry *eh;
7229
7230 eh = (struct ppc_link_hash_entry *) h;
7231 *tls_maskp = &eh->tls_mask;
7232 }
7233 }
7234 else
7235 {
7236 Elf_Internal_Sym *sym;
7237 Elf_Internal_Sym *locsyms = *locsymsp;
7238
7239 if (locsyms == NULL)
7240 {
7241 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
7242 if (locsyms == NULL)
7243 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
7244 symtab_hdr->sh_info,
7245 0, NULL, NULL, NULL);
7246 if (locsyms == NULL)
7247 return FALSE;
7248 *locsymsp = locsyms;
7249 }
7250 sym = locsyms + r_symndx;
7251
7252 if (hp != NULL)
7253 *hp = NULL;
7254
7255 if (symp != NULL)
7256 *symp = sym;
7257
7258 if (symsecp != NULL)
7259 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
7260
7261 if (tls_maskp != NULL)
7262 {
7263 struct got_entry **lgot_ents;
7264 unsigned char *tls_mask;
7265
7266 tls_mask = NULL;
7267 lgot_ents = elf_local_got_ents (ibfd);
7268 if (lgot_ents != NULL)
7269 {
7270 struct plt_entry **local_plt = (struct plt_entry **)
7271 (lgot_ents + symtab_hdr->sh_info);
7272 unsigned char *lgot_masks = (unsigned char *)
7273 (local_plt + symtab_hdr->sh_info);
7274 tls_mask = &lgot_masks[r_symndx];
7275 }
7276 *tls_maskp = tls_mask;
7277 }
7278 }
7279 return TRUE;
7280 }
7281
7282 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
7283 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
7284 type suitable for optimization, and 1 otherwise. */
7285
7286 static int
7287 get_tls_mask (unsigned char **tls_maskp,
7288 unsigned long *toc_symndx,
7289 bfd_vma *toc_addend,
7290 Elf_Internal_Sym **locsymsp,
7291 const Elf_Internal_Rela *rel,
7292 bfd *ibfd)
7293 {
7294 unsigned long r_symndx;
7295 int next_r;
7296 struct elf_link_hash_entry *h;
7297 Elf_Internal_Sym *sym;
7298 asection *sec;
7299 bfd_vma off;
7300
7301 r_symndx = ELF64_R_SYM (rel->r_info);
7302 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7303 return 0;
7304
7305 if ((*tls_maskp != NULL && **tls_maskp != 0)
7306 || sec == NULL
7307 || ppc64_elf_section_data (sec) == NULL
7308 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
7309 return 1;
7310
7311 /* Look inside a TOC section too. */
7312 if (h != NULL)
7313 {
7314 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
7315 off = h->root.u.def.value;
7316 }
7317 else
7318 off = sym->st_value;
7319 off += rel->r_addend;
7320 BFD_ASSERT (off % 8 == 0);
7321 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
7322 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
7323 if (toc_symndx != NULL)
7324 *toc_symndx = r_symndx;
7325 if (toc_addend != NULL)
7326 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
7327 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7328 return 0;
7329 if ((h == NULL || is_static_defined (h))
7330 && (next_r == -1 || next_r == -2))
7331 return 1 - next_r;
7332 return 1;
7333 }
7334
7335 /* Find (or create) an entry in the tocsave hash table. */
7336
7337 static struct tocsave_entry *
7338 tocsave_find (struct ppc_link_hash_table *htab,
7339 enum insert_option insert,
7340 Elf_Internal_Sym **local_syms,
7341 const Elf_Internal_Rela *irela,
7342 bfd *ibfd)
7343 {
7344 unsigned long r_indx;
7345 struct elf_link_hash_entry *h;
7346 Elf_Internal_Sym *sym;
7347 struct tocsave_entry ent, *p;
7348 hashval_t hash;
7349 struct tocsave_entry **slot;
7350
7351 r_indx = ELF64_R_SYM (irela->r_info);
7352 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
7353 return NULL;
7354 if (ent.sec == NULL || ent.sec->output_section == NULL)
7355 {
7356 (*_bfd_error_handler)
7357 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
7358 return NULL;
7359 }
7360
7361 if (h != NULL)
7362 ent.offset = h->root.u.def.value;
7363 else
7364 ent.offset = sym->st_value;
7365 ent.offset += irela->r_addend;
7366
7367 hash = tocsave_htab_hash (&ent);
7368 slot = ((struct tocsave_entry **)
7369 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
7370 if (slot == NULL)
7371 return NULL;
7372
7373 if (*slot == NULL)
7374 {
7375 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
7376 if (p == NULL)
7377 return NULL;
7378 *p = ent;
7379 *slot = p;
7380 }
7381 return *slot;
7382 }
7383
7384 /* Adjust all global syms defined in opd sections. In gcc generated
7385 code for the old ABI, these will already have been done. */
7386
7387 static bfd_boolean
7388 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
7389 {
7390 struct ppc_link_hash_entry *eh;
7391 asection *sym_sec;
7392 struct _opd_sec_data *opd;
7393
7394 if (h->root.type == bfd_link_hash_indirect)
7395 return TRUE;
7396
7397 if (h->root.type != bfd_link_hash_defined
7398 && h->root.type != bfd_link_hash_defweak)
7399 return TRUE;
7400
7401 eh = (struct ppc_link_hash_entry *) h;
7402 if (eh->adjust_done)
7403 return TRUE;
7404
7405 sym_sec = eh->elf.root.u.def.section;
7406 opd = get_opd_info (sym_sec);
7407 if (opd != NULL && opd->adjust != NULL)
7408 {
7409 long adjust = opd->adjust[OPD_NDX (eh->elf.root.u.def.value)];
7410 if (adjust == -1)
7411 {
7412 /* This entry has been deleted. */
7413 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
7414 if (dsec == NULL)
7415 {
7416 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
7417 if (discarded_section (dsec))
7418 {
7419 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
7420 break;
7421 }
7422 }
7423 eh->elf.root.u.def.value = 0;
7424 eh->elf.root.u.def.section = dsec;
7425 }
7426 else
7427 eh->elf.root.u.def.value += adjust;
7428 eh->adjust_done = 1;
7429 }
7430 return TRUE;
7431 }
7432
7433 /* Handles decrementing dynamic reloc counts for the reloc specified by
7434 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
7435 have already been determined. */
7436
7437 static bfd_boolean
7438 dec_dynrel_count (bfd_vma r_info,
7439 asection *sec,
7440 struct bfd_link_info *info,
7441 Elf_Internal_Sym **local_syms,
7442 struct elf_link_hash_entry *h,
7443 Elf_Internal_Sym *sym)
7444 {
7445 enum elf_ppc64_reloc_type r_type;
7446 asection *sym_sec = NULL;
7447
7448 /* Can this reloc be dynamic? This switch, and later tests here
7449 should be kept in sync with the code in check_relocs. */
7450 r_type = ELF64_R_TYPE (r_info);
7451 switch (r_type)
7452 {
7453 default:
7454 return TRUE;
7455
7456 case R_PPC64_TPREL16:
7457 case R_PPC64_TPREL16_LO:
7458 case R_PPC64_TPREL16_HI:
7459 case R_PPC64_TPREL16_HA:
7460 case R_PPC64_TPREL16_DS:
7461 case R_PPC64_TPREL16_LO_DS:
7462 case R_PPC64_TPREL16_HIGH:
7463 case R_PPC64_TPREL16_HIGHA:
7464 case R_PPC64_TPREL16_HIGHER:
7465 case R_PPC64_TPREL16_HIGHERA:
7466 case R_PPC64_TPREL16_HIGHEST:
7467 case R_PPC64_TPREL16_HIGHESTA:
7468 if (!info->shared)
7469 return TRUE;
7470
7471 case R_PPC64_TPREL64:
7472 case R_PPC64_DTPMOD64:
7473 case R_PPC64_DTPREL64:
7474 case R_PPC64_ADDR64:
7475 case R_PPC64_REL30:
7476 case R_PPC64_REL32:
7477 case R_PPC64_REL64:
7478 case R_PPC64_ADDR14:
7479 case R_PPC64_ADDR14_BRNTAKEN:
7480 case R_PPC64_ADDR14_BRTAKEN:
7481 case R_PPC64_ADDR16:
7482 case R_PPC64_ADDR16_DS:
7483 case R_PPC64_ADDR16_HA:
7484 case R_PPC64_ADDR16_HI:
7485 case R_PPC64_ADDR16_HIGH:
7486 case R_PPC64_ADDR16_HIGHA:
7487 case R_PPC64_ADDR16_HIGHER:
7488 case R_PPC64_ADDR16_HIGHERA:
7489 case R_PPC64_ADDR16_HIGHEST:
7490 case R_PPC64_ADDR16_HIGHESTA:
7491 case R_PPC64_ADDR16_LO:
7492 case R_PPC64_ADDR16_LO_DS:
7493 case R_PPC64_ADDR24:
7494 case R_PPC64_ADDR32:
7495 case R_PPC64_UADDR16:
7496 case R_PPC64_UADDR32:
7497 case R_PPC64_UADDR64:
7498 case R_PPC64_TOC:
7499 break;
7500 }
7501
7502 if (local_syms != NULL)
7503 {
7504 unsigned long r_symndx;
7505 bfd *ibfd = sec->owner;
7506
7507 r_symndx = ELF64_R_SYM (r_info);
7508 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7509 return FALSE;
7510 }
7511
7512 if ((info->shared
7513 && (must_be_dyn_reloc (info, r_type)
7514 || (h != NULL
7515 && (!SYMBOLIC_BIND (info, h)
7516 || h->root.type == bfd_link_hash_defweak
7517 || !h->def_regular))))
7518 || (ELIMINATE_COPY_RELOCS
7519 && !info->shared
7520 && h != NULL
7521 && (h->root.type == bfd_link_hash_defweak
7522 || !h->def_regular)))
7523 ;
7524 else
7525 return TRUE;
7526
7527 if (h != NULL)
7528 {
7529 struct elf_dyn_relocs *p;
7530 struct elf_dyn_relocs **pp;
7531 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7532
7533 /* elf_gc_sweep may have already removed all dyn relocs associated
7534 with local syms for a given section. Also, symbol flags are
7535 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7536 report a dynreloc miscount. */
7537 if (*pp == NULL && info->gc_sections)
7538 return TRUE;
7539
7540 while ((p = *pp) != NULL)
7541 {
7542 if (p->sec == sec)
7543 {
7544 if (!must_be_dyn_reloc (info, r_type))
7545 p->pc_count -= 1;
7546 p->count -= 1;
7547 if (p->count == 0)
7548 *pp = p->next;
7549 return TRUE;
7550 }
7551 pp = &p->next;
7552 }
7553 }
7554 else
7555 {
7556 struct ppc_dyn_relocs *p;
7557 struct ppc_dyn_relocs **pp;
7558 void *vpp;
7559 bfd_boolean is_ifunc;
7560
7561 if (local_syms == NULL)
7562 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7563 if (sym_sec == NULL)
7564 sym_sec = sec;
7565
7566 vpp = &elf_section_data (sym_sec)->local_dynrel;
7567 pp = (struct ppc_dyn_relocs **) vpp;
7568
7569 if (*pp == NULL && info->gc_sections)
7570 return TRUE;
7571
7572 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7573 while ((p = *pp) != NULL)
7574 {
7575 if (p->sec == sec && p->ifunc == is_ifunc)
7576 {
7577 p->count -= 1;
7578 if (p->count == 0)
7579 *pp = p->next;
7580 return TRUE;
7581 }
7582 pp = &p->next;
7583 }
7584 }
7585
7586 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7587 sec->owner, sec);
7588 bfd_set_error (bfd_error_bad_value);
7589 return FALSE;
7590 }
7591
7592 /* qsort comparison function sorting relocs by r_offset. */
7593
7594 static int
7595 sort_r_offset (const void *p, const void *q)
7596 {
7597 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) p;
7598 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) q;
7599
7600 if (a->r_offset < b->r_offset)
7601 return -1;
7602 else if (a->r_offset > b->r_offset)
7603 return 1;
7604 return 0;
7605 }
7606
7607 /* Remove unused Official Procedure Descriptor entries. Currently we
7608 only remove those associated with functions in discarded link-once
7609 sections, or weakly defined functions that have been overridden. It
7610 would be possible to remove many more entries for statically linked
7611 applications. */
7612
7613 bfd_boolean
7614 ppc64_elf_edit_opd (struct bfd_link_info *info)
7615 {
7616 bfd *ibfd;
7617 bfd_boolean some_edited = FALSE;
7618 asection *need_pad = NULL;
7619 struct ppc_link_hash_table *htab;
7620
7621 htab = ppc_hash_table (info);
7622 if (htab == NULL)
7623 return FALSE;
7624
7625 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7626 {
7627 asection *sec;
7628 Elf_Internal_Rela *relstart, *rel, *relend;
7629 Elf_Internal_Shdr *symtab_hdr;
7630 Elf_Internal_Sym *local_syms;
7631 struct _opd_sec_data *opd;
7632 bfd_boolean need_edit, add_aux_fields, broken;
7633 bfd_size_type cnt_16b = 0;
7634
7635 if (!is_ppc64_elf (ibfd))
7636 continue;
7637
7638 sec = bfd_get_section_by_name (ibfd, ".opd");
7639 if (sec == NULL || sec->size == 0)
7640 continue;
7641
7642 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7643 continue;
7644
7645 if (sec->output_section == bfd_abs_section_ptr)
7646 continue;
7647
7648 /* Look through the section relocs. */
7649 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7650 continue;
7651
7652 local_syms = NULL;
7653 symtab_hdr = &elf_symtab_hdr (ibfd);
7654
7655 /* Read the relocations. */
7656 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7657 info->keep_memory);
7658 if (relstart == NULL)
7659 return FALSE;
7660 qsort (relstart, sec->reloc_count, sizeof (*relstart), sort_r_offset);
7661
7662 /* First run through the relocs to check they are sane, and to
7663 determine whether we need to edit this opd section. */
7664 need_edit = FALSE;
7665 broken = FALSE;
7666 need_pad = sec;
7667 relend = relstart + sec->reloc_count;
7668 for (rel = relstart; rel < relend; )
7669 {
7670 enum elf_ppc64_reloc_type r_type;
7671 unsigned long r_symndx;
7672 asection *sym_sec;
7673 struct elf_link_hash_entry *h;
7674 Elf_Internal_Sym *sym;
7675 bfd_vma offset;
7676
7677 /* .opd contains an array of 16 or 24 byte entries. We're
7678 only interested in the reloc pointing to a function entry
7679 point. */
7680 offset = rel->r_offset;
7681 if (rel + 1 == relend
7682 || rel[1].r_offset != offset + 8)
7683 {
7684 /* If someone messes with .opd alignment then after a
7685 "ld -r" we might have padding in the middle of .opd.
7686 Also, there's nothing to prevent someone putting
7687 something silly in .opd with the assembler. No .opd
7688 optimization for them! */
7689 broken_opd:
7690 (*_bfd_error_handler)
7691 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7692 broken = TRUE;
7693 break;
7694 }
7695
7696 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7697 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7698 {
7699 (*_bfd_error_handler)
7700 (_("%B: unexpected reloc type %u in .opd section"),
7701 ibfd, r_type);
7702 broken = TRUE;
7703 break;
7704 }
7705
7706 r_symndx = ELF64_R_SYM (rel->r_info);
7707 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7708 r_symndx, ibfd))
7709 goto error_ret;
7710
7711 if (sym_sec == NULL || sym_sec->owner == NULL)
7712 {
7713 const char *sym_name;
7714 if (h != NULL)
7715 sym_name = h->root.root.string;
7716 else
7717 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7718 sym_sec);
7719
7720 (*_bfd_error_handler)
7721 (_("%B: undefined sym `%s' in .opd section"),
7722 ibfd, sym_name);
7723 broken = TRUE;
7724 break;
7725 }
7726
7727 /* opd entries are always for functions defined in the
7728 current input bfd. If the symbol isn't defined in the
7729 input bfd, then we won't be using the function in this
7730 bfd; It must be defined in a linkonce section in another
7731 bfd, or is weak. It's also possible that we are
7732 discarding the function due to a linker script /DISCARD/,
7733 which we test for via the output_section. */
7734 if (sym_sec->owner != ibfd
7735 || sym_sec->output_section == bfd_abs_section_ptr)
7736 need_edit = TRUE;
7737
7738 rel += 2;
7739 if (rel + 1 == relend
7740 || (rel + 2 < relend
7741 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC))
7742 ++rel;
7743
7744 if (rel == relend)
7745 {
7746 if (sec->size == offset + 24)
7747 {
7748 need_pad = NULL;
7749 break;
7750 }
7751 if (sec->size == offset + 16)
7752 {
7753 cnt_16b++;
7754 break;
7755 }
7756 goto broken_opd;
7757 }
7758 else if (rel + 1 < relend
7759 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7760 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7761 {
7762 if (rel[0].r_offset == offset + 16)
7763 cnt_16b++;
7764 else if (rel[0].r_offset != offset + 24)
7765 goto broken_opd;
7766 }
7767 else
7768 goto broken_opd;
7769 }
7770
7771 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7772
7773 if (!broken && (need_edit || add_aux_fields))
7774 {
7775 Elf_Internal_Rela *write_rel;
7776 Elf_Internal_Shdr *rel_hdr;
7777 bfd_byte *rptr, *wptr;
7778 bfd_byte *new_contents;
7779 bfd_size_type amt;
7780
7781 new_contents = NULL;
7782 amt = OPD_NDX (sec->size) * sizeof (long);
7783 opd = &ppc64_elf_section_data (sec)->u.opd;
7784 opd->adjust = bfd_zalloc (sec->owner, amt);
7785 if (opd->adjust == NULL)
7786 return FALSE;
7787 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7788
7789 /* This seems a waste of time as input .opd sections are all
7790 zeros as generated by gcc, but I suppose there's no reason
7791 this will always be so. We might start putting something in
7792 the third word of .opd entries. */
7793 if ((sec->flags & SEC_IN_MEMORY) == 0)
7794 {
7795 bfd_byte *loc;
7796 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7797 {
7798 if (loc != NULL)
7799 free (loc);
7800 error_ret:
7801 if (local_syms != NULL
7802 && symtab_hdr->contents != (unsigned char *) local_syms)
7803 free (local_syms);
7804 if (elf_section_data (sec)->relocs != relstart)
7805 free (relstart);
7806 return FALSE;
7807 }
7808 sec->contents = loc;
7809 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7810 }
7811
7812 elf_section_data (sec)->relocs = relstart;
7813
7814 new_contents = sec->contents;
7815 if (add_aux_fields)
7816 {
7817 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7818 if (new_contents == NULL)
7819 return FALSE;
7820 need_pad = NULL;
7821 }
7822 wptr = new_contents;
7823 rptr = sec->contents;
7824 write_rel = relstart;
7825 for (rel = relstart; rel < relend; )
7826 {
7827 unsigned long r_symndx;
7828 asection *sym_sec;
7829 struct elf_link_hash_entry *h;
7830 struct ppc_link_hash_entry *fdh = NULL;
7831 Elf_Internal_Sym *sym;
7832 long opd_ent_size;
7833 Elf_Internal_Rela *next_rel;
7834 bfd_boolean skip;
7835
7836 r_symndx = ELF64_R_SYM (rel->r_info);
7837 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7838 r_symndx, ibfd))
7839 goto error_ret;
7840
7841 next_rel = rel + 2;
7842 if (next_rel + 1 == relend
7843 || (next_rel + 2 < relend
7844 && ELF64_R_TYPE (next_rel[2].r_info) == R_PPC64_TOC))
7845 ++next_rel;
7846
7847 /* See if the .opd entry is full 24 byte or
7848 16 byte (with fd_aux entry overlapped with next
7849 fd_func). */
7850 opd_ent_size = 24;
7851 if (next_rel == relend)
7852 {
7853 if (sec->size == rel->r_offset + 16)
7854 opd_ent_size = 16;
7855 }
7856 else if (next_rel->r_offset == rel->r_offset + 16)
7857 opd_ent_size = 16;
7858
7859 if (h != NULL
7860 && h->root.root.string[0] == '.')
7861 {
7862 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h, htab);
7863 if (fdh != NULL
7864 && fdh->elf.root.type != bfd_link_hash_defined
7865 && fdh->elf.root.type != bfd_link_hash_defweak)
7866 fdh = NULL;
7867 }
7868
7869 skip = (sym_sec->owner != ibfd
7870 || sym_sec->output_section == bfd_abs_section_ptr);
7871 if (skip)
7872 {
7873 if (fdh != NULL && sym_sec->owner == ibfd)
7874 {
7875 /* Arrange for the function descriptor sym
7876 to be dropped. */
7877 fdh->elf.root.u.def.value = 0;
7878 fdh->elf.root.u.def.section = sym_sec;
7879 }
7880 opd->adjust[OPD_NDX (rel->r_offset)] = -1;
7881
7882 if (NO_OPD_RELOCS || info->relocatable)
7883 rel = next_rel;
7884 else
7885 while (1)
7886 {
7887 if (!dec_dynrel_count (rel->r_info, sec, info,
7888 NULL, h, sym))
7889 goto error_ret;
7890
7891 if (++rel == next_rel)
7892 break;
7893
7894 r_symndx = ELF64_R_SYM (rel->r_info);
7895 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7896 r_symndx, ibfd))
7897 goto error_ret;
7898 }
7899 }
7900 else
7901 {
7902 /* We'll be keeping this opd entry. */
7903 long adjust;
7904
7905 if (fdh != NULL)
7906 {
7907 /* Redefine the function descriptor symbol to
7908 this location in the opd section. It is
7909 necessary to update the value here rather
7910 than using an array of adjustments as we do
7911 for local symbols, because various places
7912 in the generic ELF code use the value
7913 stored in u.def.value. */
7914 fdh->elf.root.u.def.value = wptr - new_contents;
7915 fdh->adjust_done = 1;
7916 }
7917
7918 /* Local syms are a bit tricky. We could
7919 tweak them as they can be cached, but
7920 we'd need to look through the local syms
7921 for the function descriptor sym which we
7922 don't have at the moment. So keep an
7923 array of adjustments. */
7924 adjust = (wptr - new_contents) - (rptr - sec->contents);
7925 opd->adjust[OPD_NDX (rel->r_offset)] = adjust;
7926
7927 if (wptr != rptr)
7928 memcpy (wptr, rptr, opd_ent_size);
7929 wptr += opd_ent_size;
7930 if (add_aux_fields && opd_ent_size == 16)
7931 {
7932 memset (wptr, '\0', 8);
7933 wptr += 8;
7934 }
7935
7936 /* We need to adjust any reloc offsets to point to the
7937 new opd entries. */
7938 for ( ; rel != next_rel; ++rel)
7939 {
7940 rel->r_offset += adjust;
7941 if (write_rel != rel)
7942 memcpy (write_rel, rel, sizeof (*rel));
7943 ++write_rel;
7944 }
7945 }
7946
7947 rptr += opd_ent_size;
7948 }
7949
7950 sec->size = wptr - new_contents;
7951 sec->reloc_count = write_rel - relstart;
7952 if (add_aux_fields)
7953 {
7954 free (sec->contents);
7955 sec->contents = new_contents;
7956 }
7957
7958 /* Fudge the header size too, as this is used later in
7959 elf_bfd_final_link if we are emitting relocs. */
7960 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7961 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7962 some_edited = TRUE;
7963 }
7964 else if (elf_section_data (sec)->relocs != relstart)
7965 free (relstart);
7966
7967 if (local_syms != NULL
7968 && symtab_hdr->contents != (unsigned char *) local_syms)
7969 {
7970 if (!info->keep_memory)
7971 free (local_syms);
7972 else
7973 symtab_hdr->contents = (unsigned char *) local_syms;
7974 }
7975 }
7976
7977 if (some_edited)
7978 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7979
7980 /* If we are doing a final link and the last .opd entry is just 16 byte
7981 long, add a 8 byte padding after it. */
7982 if (need_pad != NULL && !info->relocatable)
7983 {
7984 bfd_byte *p;
7985
7986 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7987 {
7988 BFD_ASSERT (need_pad->size > 0);
7989
7990 p = bfd_malloc (need_pad->size + 8);
7991 if (p == NULL)
7992 return FALSE;
7993
7994 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7995 p, 0, need_pad->size))
7996 return FALSE;
7997
7998 need_pad->contents = p;
7999 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
8000 }
8001 else
8002 {
8003 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
8004 if (p == NULL)
8005 return FALSE;
8006
8007 need_pad->contents = p;
8008 }
8009
8010 memset (need_pad->contents + need_pad->size, 0, 8);
8011 need_pad->size += 8;
8012 }
8013
8014 return TRUE;
8015 }
8016
8017 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
8018
8019 asection *
8020 ppc64_elf_tls_setup (struct bfd_link_info *info)
8021 {
8022 struct ppc_link_hash_table *htab;
8023
8024 htab = ppc_hash_table (info);
8025 if (htab == NULL)
8026 return NULL;
8027
8028 if (abiversion (info->output_bfd) == 1)
8029 htab->opd_abi = 1;
8030
8031 if (htab->params->no_multi_toc)
8032 htab->do_multi_toc = 0;
8033 else if (!htab->do_multi_toc)
8034 htab->params->no_multi_toc = 1;
8035
8036 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
8037 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
8038 FALSE, FALSE, TRUE));
8039 /* Move dynamic linking info to the function descriptor sym. */
8040 if (htab->tls_get_addr != NULL)
8041 func_desc_adjust (&htab->tls_get_addr->elf, info);
8042 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
8043 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
8044 FALSE, FALSE, TRUE));
8045 if (!htab->params->no_tls_get_addr_opt)
8046 {
8047 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
8048
8049 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
8050 FALSE, FALSE, TRUE);
8051 if (opt != NULL)
8052 func_desc_adjust (opt, info);
8053 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
8054 FALSE, FALSE, TRUE);
8055 if (opt_fd != NULL
8056 && (opt_fd->root.type == bfd_link_hash_defined
8057 || opt_fd->root.type == bfd_link_hash_defweak))
8058 {
8059 /* If glibc supports an optimized __tls_get_addr call stub,
8060 signalled by the presence of __tls_get_addr_opt, and we'll
8061 be calling __tls_get_addr via a plt call stub, then
8062 make __tls_get_addr point to __tls_get_addr_opt. */
8063 tga_fd = &htab->tls_get_addr_fd->elf;
8064 if (htab->elf.dynamic_sections_created
8065 && tga_fd != NULL
8066 && (tga_fd->type == STT_FUNC
8067 || tga_fd->needs_plt)
8068 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
8069 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
8070 && tga_fd->root.type == bfd_link_hash_undefweak)))
8071 {
8072 struct plt_entry *ent;
8073
8074 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
8075 if (ent->plt.refcount > 0)
8076 break;
8077 if (ent != NULL)
8078 {
8079 tga_fd->root.type = bfd_link_hash_indirect;
8080 tga_fd->root.u.i.link = &opt_fd->root;
8081 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
8082 if (opt_fd->dynindx != -1)
8083 {
8084 /* Use __tls_get_addr_opt in dynamic relocations. */
8085 opt_fd->dynindx = -1;
8086 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
8087 opt_fd->dynstr_index);
8088 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
8089 return NULL;
8090 }
8091 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
8092 tga = &htab->tls_get_addr->elf;
8093 if (opt != NULL && tga != NULL)
8094 {
8095 tga->root.type = bfd_link_hash_indirect;
8096 tga->root.u.i.link = &opt->root;
8097 ppc64_elf_copy_indirect_symbol (info, opt, tga);
8098 _bfd_elf_link_hash_hide_symbol (info, opt,
8099 tga->forced_local);
8100 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
8101 }
8102 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
8103 htab->tls_get_addr_fd->is_func_descriptor = 1;
8104 if (htab->tls_get_addr != NULL)
8105 {
8106 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
8107 htab->tls_get_addr->is_func = 1;
8108 }
8109 }
8110 }
8111 }
8112 else
8113 htab->params->no_tls_get_addr_opt = TRUE;
8114 }
8115 return _bfd_elf_tls_setup (info->output_bfd, info);
8116 }
8117
8118 /* Return TRUE iff REL is a branch reloc with a global symbol matching
8119 HASH1 or HASH2. */
8120
8121 static bfd_boolean
8122 branch_reloc_hash_match (const bfd *ibfd,
8123 const Elf_Internal_Rela *rel,
8124 const struct ppc_link_hash_entry *hash1,
8125 const struct ppc_link_hash_entry *hash2)
8126 {
8127 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
8128 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
8129 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
8130
8131 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
8132 {
8133 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
8134 struct elf_link_hash_entry *h;
8135
8136 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8137 h = elf_follow_link (h);
8138 if (h == &hash1->elf || h == &hash2->elf)
8139 return TRUE;
8140 }
8141 return FALSE;
8142 }
8143
8144 /* Run through all the TLS relocs looking for optimization
8145 opportunities. The linker has been hacked (see ppc64elf.em) to do
8146 a preliminary section layout so that we know the TLS segment
8147 offsets. We can't optimize earlier because some optimizations need
8148 to know the tp offset, and we need to optimize before allocating
8149 dynamic relocations. */
8150
8151 bfd_boolean
8152 ppc64_elf_tls_optimize (struct bfd_link_info *info)
8153 {
8154 bfd *ibfd;
8155 asection *sec;
8156 struct ppc_link_hash_table *htab;
8157 unsigned char *toc_ref;
8158 int pass;
8159
8160 if (info->relocatable || !info->executable)
8161 return TRUE;
8162
8163 htab = ppc_hash_table (info);
8164 if (htab == NULL)
8165 return FALSE;
8166
8167 /* Make two passes over the relocs. On the first pass, mark toc
8168 entries involved with tls relocs, and check that tls relocs
8169 involved in setting up a tls_get_addr call are indeed followed by
8170 such a call. If they are not, we can't do any tls optimization.
8171 On the second pass twiddle tls_mask flags to notify
8172 relocate_section that optimization can be done, and adjust got
8173 and plt refcounts. */
8174 toc_ref = NULL;
8175 for (pass = 0; pass < 2; ++pass)
8176 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8177 {
8178 Elf_Internal_Sym *locsyms = NULL;
8179 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
8180
8181 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8182 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
8183 {
8184 Elf_Internal_Rela *relstart, *rel, *relend;
8185 bfd_boolean found_tls_get_addr_arg = 0;
8186
8187 /* Read the relocations. */
8188 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8189 info->keep_memory);
8190 if (relstart == NULL)
8191 {
8192 free (toc_ref);
8193 return FALSE;
8194 }
8195
8196 relend = relstart + sec->reloc_count;
8197 for (rel = relstart; rel < relend; rel++)
8198 {
8199 enum elf_ppc64_reloc_type r_type;
8200 unsigned long r_symndx;
8201 struct elf_link_hash_entry *h;
8202 Elf_Internal_Sym *sym;
8203 asection *sym_sec;
8204 unsigned char *tls_mask;
8205 unsigned char tls_set, tls_clear, tls_type = 0;
8206 bfd_vma value;
8207 bfd_boolean ok_tprel, is_local;
8208 long toc_ref_index = 0;
8209 int expecting_tls_get_addr = 0;
8210 bfd_boolean ret = FALSE;
8211
8212 r_symndx = ELF64_R_SYM (rel->r_info);
8213 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
8214 r_symndx, ibfd))
8215 {
8216 err_free_rel:
8217 if (elf_section_data (sec)->relocs != relstart)
8218 free (relstart);
8219 if (toc_ref != NULL)
8220 free (toc_ref);
8221 if (locsyms != NULL
8222 && (elf_symtab_hdr (ibfd).contents
8223 != (unsigned char *) locsyms))
8224 free (locsyms);
8225 return ret;
8226 }
8227
8228 if (h != NULL)
8229 {
8230 if (h->root.type == bfd_link_hash_defined
8231 || h->root.type == bfd_link_hash_defweak)
8232 value = h->root.u.def.value;
8233 else if (h->root.type == bfd_link_hash_undefweak)
8234 value = 0;
8235 else
8236 {
8237 found_tls_get_addr_arg = 0;
8238 continue;
8239 }
8240 }
8241 else
8242 /* Symbols referenced by TLS relocs must be of type
8243 STT_TLS. So no need for .opd local sym adjust. */
8244 value = sym->st_value;
8245
8246 ok_tprel = FALSE;
8247 is_local = FALSE;
8248 if (h == NULL
8249 || !h->def_dynamic)
8250 {
8251 is_local = TRUE;
8252 if (h != NULL
8253 && h->root.type == bfd_link_hash_undefweak)
8254 ok_tprel = TRUE;
8255 else
8256 {
8257 value += sym_sec->output_offset;
8258 value += sym_sec->output_section->vma;
8259 value -= htab->elf.tls_sec->vma;
8260 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
8261 < (bfd_vma) 1 << 32);
8262 }
8263 }
8264
8265 r_type = ELF64_R_TYPE (rel->r_info);
8266 /* If this section has old-style __tls_get_addr calls
8267 without marker relocs, then check that each
8268 __tls_get_addr call reloc is preceded by a reloc
8269 that conceivably belongs to the __tls_get_addr arg
8270 setup insn. If we don't find matching arg setup
8271 relocs, don't do any tls optimization. */
8272 if (pass == 0
8273 && sec->has_tls_get_addr_call
8274 && h != NULL
8275 && (h == &htab->tls_get_addr->elf
8276 || h == &htab->tls_get_addr_fd->elf)
8277 && !found_tls_get_addr_arg
8278 && is_branch_reloc (r_type))
8279 {
8280 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8281 "TLS optimization disabled\n"),
8282 ibfd, sec, rel->r_offset);
8283 ret = TRUE;
8284 goto err_free_rel;
8285 }
8286
8287 found_tls_get_addr_arg = 0;
8288 switch (r_type)
8289 {
8290 case R_PPC64_GOT_TLSLD16:
8291 case R_PPC64_GOT_TLSLD16_LO:
8292 expecting_tls_get_addr = 1;
8293 found_tls_get_addr_arg = 1;
8294 /* Fall thru */
8295
8296 case R_PPC64_GOT_TLSLD16_HI:
8297 case R_PPC64_GOT_TLSLD16_HA:
8298 /* These relocs should never be against a symbol
8299 defined in a shared lib. Leave them alone if
8300 that turns out to be the case. */
8301 if (!is_local)
8302 continue;
8303
8304 /* LD -> LE */
8305 tls_set = 0;
8306 tls_clear = TLS_LD;
8307 tls_type = TLS_TLS | TLS_LD;
8308 break;
8309
8310 case R_PPC64_GOT_TLSGD16:
8311 case R_PPC64_GOT_TLSGD16_LO:
8312 expecting_tls_get_addr = 1;
8313 found_tls_get_addr_arg = 1;
8314 /* Fall thru */
8315
8316 case R_PPC64_GOT_TLSGD16_HI:
8317 case R_PPC64_GOT_TLSGD16_HA:
8318 if (ok_tprel)
8319 /* GD -> LE */
8320 tls_set = 0;
8321 else
8322 /* GD -> IE */
8323 tls_set = TLS_TLS | TLS_TPRELGD;
8324 tls_clear = TLS_GD;
8325 tls_type = TLS_TLS | TLS_GD;
8326 break;
8327
8328 case R_PPC64_GOT_TPREL16_DS:
8329 case R_PPC64_GOT_TPREL16_LO_DS:
8330 case R_PPC64_GOT_TPREL16_HI:
8331 case R_PPC64_GOT_TPREL16_HA:
8332 if (ok_tprel)
8333 {
8334 /* IE -> LE */
8335 tls_set = 0;
8336 tls_clear = TLS_TPREL;
8337 tls_type = TLS_TLS | TLS_TPREL;
8338 break;
8339 }
8340 continue;
8341
8342 case R_PPC64_TLSGD:
8343 case R_PPC64_TLSLD:
8344 found_tls_get_addr_arg = 1;
8345 /* Fall thru */
8346
8347 case R_PPC64_TLS:
8348 case R_PPC64_TOC16:
8349 case R_PPC64_TOC16_LO:
8350 if (sym_sec == NULL || sym_sec != toc)
8351 continue;
8352
8353 /* Mark this toc entry as referenced by a TLS
8354 code sequence. We can do that now in the
8355 case of R_PPC64_TLS, and after checking for
8356 tls_get_addr for the TOC16 relocs. */
8357 if (toc_ref == NULL)
8358 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
8359 if (toc_ref == NULL)
8360 goto err_free_rel;
8361
8362 if (h != NULL)
8363 value = h->root.u.def.value;
8364 else
8365 value = sym->st_value;
8366 value += rel->r_addend;
8367 if (value % 8 != 0)
8368 continue;
8369 BFD_ASSERT (value < toc->size
8370 && toc->output_offset % 8 == 0);
8371 toc_ref_index = (value + toc->output_offset) / 8;
8372 if (r_type == R_PPC64_TLS
8373 || r_type == R_PPC64_TLSGD
8374 || r_type == R_PPC64_TLSLD)
8375 {
8376 toc_ref[toc_ref_index] = 1;
8377 continue;
8378 }
8379
8380 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8381 continue;
8382
8383 tls_set = 0;
8384 tls_clear = 0;
8385 expecting_tls_get_addr = 2;
8386 break;
8387
8388 case R_PPC64_TPREL64:
8389 if (pass == 0
8390 || sec != toc
8391 || toc_ref == NULL
8392 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8393 continue;
8394 if (ok_tprel)
8395 {
8396 /* IE -> LE */
8397 tls_set = TLS_EXPLICIT;
8398 tls_clear = TLS_TPREL;
8399 break;
8400 }
8401 continue;
8402
8403 case R_PPC64_DTPMOD64:
8404 if (pass == 0
8405 || sec != toc
8406 || toc_ref == NULL
8407 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8408 continue;
8409 if (rel + 1 < relend
8410 && (rel[1].r_info
8411 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8412 && rel[1].r_offset == rel->r_offset + 8)
8413 {
8414 if (ok_tprel)
8415 /* GD -> LE */
8416 tls_set = TLS_EXPLICIT | TLS_GD;
8417 else
8418 /* GD -> IE */
8419 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
8420 tls_clear = TLS_GD;
8421 }
8422 else
8423 {
8424 if (!is_local)
8425 continue;
8426
8427 /* LD -> LE */
8428 tls_set = TLS_EXPLICIT;
8429 tls_clear = TLS_LD;
8430 }
8431 break;
8432
8433 default:
8434 continue;
8435 }
8436
8437 if (pass == 0)
8438 {
8439 if (!expecting_tls_get_addr
8440 || !sec->has_tls_get_addr_call)
8441 continue;
8442
8443 if (rel + 1 < relend
8444 && branch_reloc_hash_match (ibfd, rel + 1,
8445 htab->tls_get_addr,
8446 htab->tls_get_addr_fd))
8447 {
8448 if (expecting_tls_get_addr == 2)
8449 {
8450 /* Check for toc tls entries. */
8451 unsigned char *toc_tls;
8452 int retval;
8453
8454 retval = get_tls_mask (&toc_tls, NULL, NULL,
8455 &locsyms,
8456 rel, ibfd);
8457 if (retval == 0)
8458 goto err_free_rel;
8459 if (toc_tls != NULL)
8460 {
8461 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
8462 found_tls_get_addr_arg = 1;
8463 if (retval > 1)
8464 toc_ref[toc_ref_index] = 1;
8465 }
8466 }
8467 continue;
8468 }
8469
8470 if (expecting_tls_get_addr != 1)
8471 continue;
8472
8473 /* Uh oh, we didn't find the expected call. We
8474 could just mark this symbol to exclude it
8475 from tls optimization but it's safer to skip
8476 the entire optimization. */
8477 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8478 "TLS optimization disabled\n"),
8479 ibfd, sec, rel->r_offset);
8480 ret = TRUE;
8481 goto err_free_rel;
8482 }
8483
8484 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
8485 {
8486 struct plt_entry *ent;
8487 for (ent = htab->tls_get_addr->elf.plt.plist;
8488 ent != NULL;
8489 ent = ent->next)
8490 if (ent->addend == 0)
8491 {
8492 if (ent->plt.refcount > 0)
8493 {
8494 ent->plt.refcount -= 1;
8495 expecting_tls_get_addr = 0;
8496 }
8497 break;
8498 }
8499 }
8500
8501 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
8502 {
8503 struct plt_entry *ent;
8504 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8505 ent != NULL;
8506 ent = ent->next)
8507 if (ent->addend == 0)
8508 {
8509 if (ent->plt.refcount > 0)
8510 ent->plt.refcount -= 1;
8511 break;
8512 }
8513 }
8514
8515 if (tls_clear == 0)
8516 continue;
8517
8518 if ((tls_set & TLS_EXPLICIT) == 0)
8519 {
8520 struct got_entry *ent;
8521
8522 /* Adjust got entry for this reloc. */
8523 if (h != NULL)
8524 ent = h->got.glist;
8525 else
8526 ent = elf_local_got_ents (ibfd)[r_symndx];
8527
8528 for (; ent != NULL; ent = ent->next)
8529 if (ent->addend == rel->r_addend
8530 && ent->owner == ibfd
8531 && ent->tls_type == tls_type)
8532 break;
8533 if (ent == NULL)
8534 abort ();
8535
8536 if (tls_set == 0)
8537 {
8538 /* We managed to get rid of a got entry. */
8539 if (ent->got.refcount > 0)
8540 ent->got.refcount -= 1;
8541 }
8542 }
8543 else
8544 {
8545 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8546 we'll lose one or two dyn relocs. */
8547 if (!dec_dynrel_count (rel->r_info, sec, info,
8548 NULL, h, sym))
8549 return FALSE;
8550
8551 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8552 {
8553 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8554 NULL, h, sym))
8555 return FALSE;
8556 }
8557 }
8558
8559 *tls_mask |= tls_set;
8560 *tls_mask &= ~tls_clear;
8561 }
8562
8563 if (elf_section_data (sec)->relocs != relstart)
8564 free (relstart);
8565 }
8566
8567 if (locsyms != NULL
8568 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8569 {
8570 if (!info->keep_memory)
8571 free (locsyms);
8572 else
8573 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8574 }
8575 }
8576
8577 if (toc_ref != NULL)
8578 free (toc_ref);
8579 return TRUE;
8580 }
8581
8582 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8583 the values of any global symbols in a toc section that has been
8584 edited. Globals in toc sections should be a rarity, so this function
8585 sets a flag if any are found in toc sections other than the one just
8586 edited, so that futher hash table traversals can be avoided. */
8587
8588 struct adjust_toc_info
8589 {
8590 asection *toc;
8591 unsigned long *skip;
8592 bfd_boolean global_toc_syms;
8593 };
8594
8595 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8596
8597 static bfd_boolean
8598 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8599 {
8600 struct ppc_link_hash_entry *eh;
8601 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8602 unsigned long i;
8603
8604 if (h->root.type != bfd_link_hash_defined
8605 && h->root.type != bfd_link_hash_defweak)
8606 return TRUE;
8607
8608 eh = (struct ppc_link_hash_entry *) h;
8609 if (eh->adjust_done)
8610 return TRUE;
8611
8612 if (eh->elf.root.u.def.section == toc_inf->toc)
8613 {
8614 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8615 i = toc_inf->toc->rawsize >> 3;
8616 else
8617 i = eh->elf.root.u.def.value >> 3;
8618
8619 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8620 {
8621 (*_bfd_error_handler)
8622 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8623 do
8624 ++i;
8625 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8626 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8627 }
8628
8629 eh->elf.root.u.def.value -= toc_inf->skip[i];
8630 eh->adjust_done = 1;
8631 }
8632 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8633 toc_inf->global_toc_syms = TRUE;
8634
8635 return TRUE;
8636 }
8637
8638 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8639
8640 static bfd_boolean
8641 ok_lo_toc_insn (unsigned int insn)
8642 {
8643 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8644 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8645 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8646 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8647 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8648 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8649 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8650 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8651 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8652 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8653 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8654 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8655 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8656 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8657 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8658 && (insn & 3) != 1)
8659 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8660 && ((insn & 3) == 0 || (insn & 3) == 3))
8661 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8662 }
8663
8664 /* Examine all relocs referencing .toc sections in order to remove
8665 unused .toc entries. */
8666
8667 bfd_boolean
8668 ppc64_elf_edit_toc (struct bfd_link_info *info)
8669 {
8670 bfd *ibfd;
8671 struct adjust_toc_info toc_inf;
8672 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8673
8674 htab->do_toc_opt = 1;
8675 toc_inf.global_toc_syms = TRUE;
8676 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8677 {
8678 asection *toc, *sec;
8679 Elf_Internal_Shdr *symtab_hdr;
8680 Elf_Internal_Sym *local_syms;
8681 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8682 unsigned long *skip, *drop;
8683 unsigned char *used;
8684 unsigned char *keep, last, some_unused;
8685
8686 if (!is_ppc64_elf (ibfd))
8687 continue;
8688
8689 toc = bfd_get_section_by_name (ibfd, ".toc");
8690 if (toc == NULL
8691 || toc->size == 0
8692 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8693 || discarded_section (toc))
8694 continue;
8695
8696 toc_relocs = NULL;
8697 local_syms = NULL;
8698 symtab_hdr = &elf_symtab_hdr (ibfd);
8699
8700 /* Look at sections dropped from the final link. */
8701 skip = NULL;
8702 relstart = NULL;
8703 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8704 {
8705 if (sec->reloc_count == 0
8706 || !discarded_section (sec)
8707 || get_opd_info (sec)
8708 || (sec->flags & SEC_ALLOC) == 0
8709 || (sec->flags & SEC_DEBUGGING) != 0)
8710 continue;
8711
8712 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8713 if (relstart == NULL)
8714 goto error_ret;
8715
8716 /* Run through the relocs to see which toc entries might be
8717 unused. */
8718 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8719 {
8720 enum elf_ppc64_reloc_type r_type;
8721 unsigned long r_symndx;
8722 asection *sym_sec;
8723 struct elf_link_hash_entry *h;
8724 Elf_Internal_Sym *sym;
8725 bfd_vma val;
8726
8727 r_type = ELF64_R_TYPE (rel->r_info);
8728 switch (r_type)
8729 {
8730 default:
8731 continue;
8732
8733 case R_PPC64_TOC16:
8734 case R_PPC64_TOC16_LO:
8735 case R_PPC64_TOC16_HI:
8736 case R_PPC64_TOC16_HA:
8737 case R_PPC64_TOC16_DS:
8738 case R_PPC64_TOC16_LO_DS:
8739 break;
8740 }
8741
8742 r_symndx = ELF64_R_SYM (rel->r_info);
8743 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8744 r_symndx, ibfd))
8745 goto error_ret;
8746
8747 if (sym_sec != toc)
8748 continue;
8749
8750 if (h != NULL)
8751 val = h->root.u.def.value;
8752 else
8753 val = sym->st_value;
8754 val += rel->r_addend;
8755
8756 if (val >= toc->size)
8757 continue;
8758
8759 /* Anything in the toc ought to be aligned to 8 bytes.
8760 If not, don't mark as unused. */
8761 if (val & 7)
8762 continue;
8763
8764 if (skip == NULL)
8765 {
8766 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8767 if (skip == NULL)
8768 goto error_ret;
8769 }
8770
8771 skip[val >> 3] = ref_from_discarded;
8772 }
8773
8774 if (elf_section_data (sec)->relocs != relstart)
8775 free (relstart);
8776 }
8777
8778 /* For largetoc loads of address constants, we can convert
8779 . addis rx,2,addr@got@ha
8780 . ld ry,addr@got@l(rx)
8781 to
8782 . addis rx,2,addr@toc@ha
8783 . addi ry,rx,addr@toc@l
8784 when addr is within 2G of the toc pointer. This then means
8785 that the word storing "addr" in the toc is no longer needed. */
8786
8787 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8788 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8789 && toc->reloc_count != 0)
8790 {
8791 /* Read toc relocs. */
8792 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8793 info->keep_memory);
8794 if (toc_relocs == NULL)
8795 goto error_ret;
8796
8797 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8798 {
8799 enum elf_ppc64_reloc_type r_type;
8800 unsigned long r_symndx;
8801 asection *sym_sec;
8802 struct elf_link_hash_entry *h;
8803 Elf_Internal_Sym *sym;
8804 bfd_vma val, addr;
8805
8806 r_type = ELF64_R_TYPE (rel->r_info);
8807 if (r_type != R_PPC64_ADDR64)
8808 continue;
8809
8810 r_symndx = ELF64_R_SYM (rel->r_info);
8811 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8812 r_symndx, ibfd))
8813 goto error_ret;
8814
8815 if (sym_sec == NULL
8816 || discarded_section (sym_sec))
8817 continue;
8818
8819 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8820 continue;
8821
8822 if (h != NULL)
8823 {
8824 if (h->type == STT_GNU_IFUNC)
8825 continue;
8826 val = h->root.u.def.value;
8827 }
8828 else
8829 {
8830 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8831 continue;
8832 val = sym->st_value;
8833 }
8834 val += rel->r_addend;
8835 val += sym_sec->output_section->vma + sym_sec->output_offset;
8836
8837 /* We don't yet know the exact toc pointer value, but we
8838 know it will be somewhere in the toc section. Don't
8839 optimize if the difference from any possible toc
8840 pointer is outside [ff..f80008000, 7fff7fff]. */
8841 addr = toc->output_section->vma + TOC_BASE_OFF;
8842 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8843 continue;
8844
8845 addr = toc->output_section->vma + toc->output_section->rawsize;
8846 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8847 continue;
8848
8849 if (skip == NULL)
8850 {
8851 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8852 if (skip == NULL)
8853 goto error_ret;
8854 }
8855
8856 skip[rel->r_offset >> 3]
8857 |= can_optimize | ((rel - toc_relocs) << 2);
8858 }
8859 }
8860
8861 if (skip == NULL)
8862 continue;
8863
8864 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8865 if (used == NULL)
8866 {
8867 error_ret:
8868 if (local_syms != NULL
8869 && symtab_hdr->contents != (unsigned char *) local_syms)
8870 free (local_syms);
8871 if (sec != NULL
8872 && relstart != NULL
8873 && elf_section_data (sec)->relocs != relstart)
8874 free (relstart);
8875 if (toc_relocs != NULL
8876 && elf_section_data (toc)->relocs != toc_relocs)
8877 free (toc_relocs);
8878 if (skip != NULL)
8879 free (skip);
8880 return FALSE;
8881 }
8882
8883 /* Now check all kept sections that might reference the toc.
8884 Check the toc itself last. */
8885 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8886 : ibfd->sections);
8887 sec != NULL;
8888 sec = (sec == toc ? NULL
8889 : sec->next == NULL ? toc
8890 : sec->next == toc && toc->next ? toc->next
8891 : sec->next))
8892 {
8893 int repeat;
8894
8895 if (sec->reloc_count == 0
8896 || discarded_section (sec)
8897 || get_opd_info (sec)
8898 || (sec->flags & SEC_ALLOC) == 0
8899 || (sec->flags & SEC_DEBUGGING) != 0)
8900 continue;
8901
8902 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8903 info->keep_memory);
8904 if (relstart == NULL)
8905 {
8906 free (used);
8907 goto error_ret;
8908 }
8909
8910 /* Mark toc entries referenced as used. */
8911 do
8912 {
8913 repeat = 0;
8914 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8915 {
8916 enum elf_ppc64_reloc_type r_type;
8917 unsigned long r_symndx;
8918 asection *sym_sec;
8919 struct elf_link_hash_entry *h;
8920 Elf_Internal_Sym *sym;
8921 bfd_vma val;
8922 enum {no_check, check_lo, check_ha} insn_check;
8923
8924 r_type = ELF64_R_TYPE (rel->r_info);
8925 switch (r_type)
8926 {
8927 default:
8928 insn_check = no_check;
8929 break;
8930
8931 case R_PPC64_GOT_TLSLD16_HA:
8932 case R_PPC64_GOT_TLSGD16_HA:
8933 case R_PPC64_GOT_TPREL16_HA:
8934 case R_PPC64_GOT_DTPREL16_HA:
8935 case R_PPC64_GOT16_HA:
8936 case R_PPC64_TOC16_HA:
8937 insn_check = check_ha;
8938 break;
8939
8940 case R_PPC64_GOT_TLSLD16_LO:
8941 case R_PPC64_GOT_TLSGD16_LO:
8942 case R_PPC64_GOT_TPREL16_LO_DS:
8943 case R_PPC64_GOT_DTPREL16_LO_DS:
8944 case R_PPC64_GOT16_LO:
8945 case R_PPC64_GOT16_LO_DS:
8946 case R_PPC64_TOC16_LO:
8947 case R_PPC64_TOC16_LO_DS:
8948 insn_check = check_lo;
8949 break;
8950 }
8951
8952 if (insn_check != no_check)
8953 {
8954 bfd_vma off = rel->r_offset & ~3;
8955 unsigned char buf[4];
8956 unsigned int insn;
8957
8958 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8959 {
8960 free (used);
8961 goto error_ret;
8962 }
8963 insn = bfd_get_32 (ibfd, buf);
8964 if (insn_check == check_lo
8965 ? !ok_lo_toc_insn (insn)
8966 : ((insn & ((0x3f << 26) | 0x1f << 16))
8967 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8968 {
8969 char str[12];
8970
8971 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8972 sprintf (str, "%#08x", insn);
8973 info->callbacks->einfo
8974 (_("%P: %H: toc optimization is not supported for"
8975 " %s instruction.\n"),
8976 ibfd, sec, rel->r_offset & ~3, str);
8977 }
8978 }
8979
8980 switch (r_type)
8981 {
8982 case R_PPC64_TOC16:
8983 case R_PPC64_TOC16_LO:
8984 case R_PPC64_TOC16_HI:
8985 case R_PPC64_TOC16_HA:
8986 case R_PPC64_TOC16_DS:
8987 case R_PPC64_TOC16_LO_DS:
8988 /* In case we're taking addresses of toc entries. */
8989 case R_PPC64_ADDR64:
8990 break;
8991
8992 default:
8993 continue;
8994 }
8995
8996 r_symndx = ELF64_R_SYM (rel->r_info);
8997 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8998 r_symndx, ibfd))
8999 {
9000 free (used);
9001 goto error_ret;
9002 }
9003
9004 if (sym_sec != toc)
9005 continue;
9006
9007 if (h != NULL)
9008 val = h->root.u.def.value;
9009 else
9010 val = sym->st_value;
9011 val += rel->r_addend;
9012
9013 if (val >= toc->size)
9014 continue;
9015
9016 if ((skip[val >> 3] & can_optimize) != 0)
9017 {
9018 bfd_vma off;
9019 unsigned char opc;
9020
9021 switch (r_type)
9022 {
9023 case R_PPC64_TOC16_HA:
9024 break;
9025
9026 case R_PPC64_TOC16_LO_DS:
9027 off = rel->r_offset;
9028 off += (bfd_big_endian (ibfd) ? -2 : 3);
9029 if (!bfd_get_section_contents (ibfd, sec, &opc,
9030 off, 1))
9031 {
9032 free (used);
9033 goto error_ret;
9034 }
9035 if ((opc & (0x3f << 2)) == (58u << 2))
9036 break;
9037 /* Fall thru */
9038
9039 default:
9040 /* Wrong sort of reloc, or not a ld. We may
9041 as well clear ref_from_discarded too. */
9042 skip[val >> 3] = 0;
9043 }
9044 }
9045
9046 if (sec != toc)
9047 used[val >> 3] = 1;
9048 /* For the toc section, we only mark as used if this
9049 entry itself isn't unused. */
9050 else if ((used[rel->r_offset >> 3]
9051 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
9052 && !used[val >> 3])
9053 {
9054 /* Do all the relocs again, to catch reference
9055 chains. */
9056 repeat = 1;
9057 used[val >> 3] = 1;
9058 }
9059 }
9060 }
9061 while (repeat);
9062
9063 if (elf_section_data (sec)->relocs != relstart)
9064 free (relstart);
9065 }
9066
9067 /* Merge the used and skip arrays. Assume that TOC
9068 doublewords not appearing as either used or unused belong
9069 to to an entry more than one doubleword in size. */
9070 for (drop = skip, keep = used, last = 0, some_unused = 0;
9071 drop < skip + (toc->size + 7) / 8;
9072 ++drop, ++keep)
9073 {
9074 if (*keep)
9075 {
9076 *drop &= ~ref_from_discarded;
9077 if ((*drop & can_optimize) != 0)
9078 some_unused = 1;
9079 last = 0;
9080 }
9081 else if ((*drop & ref_from_discarded) != 0)
9082 {
9083 some_unused = 1;
9084 last = ref_from_discarded;
9085 }
9086 else
9087 *drop = last;
9088 }
9089
9090 free (used);
9091
9092 if (some_unused)
9093 {
9094 bfd_byte *contents, *src;
9095 unsigned long off;
9096 Elf_Internal_Sym *sym;
9097 bfd_boolean local_toc_syms = FALSE;
9098
9099 /* Shuffle the toc contents, and at the same time convert the
9100 skip array from booleans into offsets. */
9101 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9102 goto error_ret;
9103
9104 elf_section_data (toc)->this_hdr.contents = contents;
9105
9106 for (src = contents, off = 0, drop = skip;
9107 src < contents + toc->size;
9108 src += 8, ++drop)
9109 {
9110 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9111 off += 8;
9112 else if (off != 0)
9113 {
9114 *drop = off;
9115 memcpy (src - off, src, 8);
9116 }
9117 }
9118 *drop = off;
9119 toc->rawsize = toc->size;
9120 toc->size = src - contents - off;
9121
9122 /* Adjust addends for relocs against the toc section sym,
9123 and optimize any accesses we can. */
9124 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9125 {
9126 if (sec->reloc_count == 0
9127 || discarded_section (sec))
9128 continue;
9129
9130 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9131 info->keep_memory);
9132 if (relstart == NULL)
9133 goto error_ret;
9134
9135 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9136 {
9137 enum elf_ppc64_reloc_type r_type;
9138 unsigned long r_symndx;
9139 asection *sym_sec;
9140 struct elf_link_hash_entry *h;
9141 bfd_vma val;
9142
9143 r_type = ELF64_R_TYPE (rel->r_info);
9144 switch (r_type)
9145 {
9146 default:
9147 continue;
9148
9149 case R_PPC64_TOC16:
9150 case R_PPC64_TOC16_LO:
9151 case R_PPC64_TOC16_HI:
9152 case R_PPC64_TOC16_HA:
9153 case R_PPC64_TOC16_DS:
9154 case R_PPC64_TOC16_LO_DS:
9155 case R_PPC64_ADDR64:
9156 break;
9157 }
9158
9159 r_symndx = ELF64_R_SYM (rel->r_info);
9160 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9161 r_symndx, ibfd))
9162 goto error_ret;
9163
9164 if (sym_sec != toc)
9165 continue;
9166
9167 if (h != NULL)
9168 val = h->root.u.def.value;
9169 else
9170 {
9171 val = sym->st_value;
9172 if (val != 0)
9173 local_toc_syms = TRUE;
9174 }
9175
9176 val += rel->r_addend;
9177
9178 if (val > toc->rawsize)
9179 val = toc->rawsize;
9180 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9181 continue;
9182 else if ((skip[val >> 3] & can_optimize) != 0)
9183 {
9184 Elf_Internal_Rela *tocrel
9185 = toc_relocs + (skip[val >> 3] >> 2);
9186 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9187
9188 switch (r_type)
9189 {
9190 case R_PPC64_TOC16_HA:
9191 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9192 break;
9193
9194 case R_PPC64_TOC16_LO_DS:
9195 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9196 break;
9197
9198 default:
9199 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9200 ppc_howto_init ();
9201 info->callbacks->einfo
9202 (_("%P: %H: %s references "
9203 "optimized away TOC entry\n"),
9204 ibfd, sec, rel->r_offset,
9205 ppc64_elf_howto_table[r_type]->name);
9206 bfd_set_error (bfd_error_bad_value);
9207 goto error_ret;
9208 }
9209 rel->r_addend = tocrel->r_addend;
9210 elf_section_data (sec)->relocs = relstart;
9211 continue;
9212 }
9213
9214 if (h != NULL || sym->st_value != 0)
9215 continue;
9216
9217 rel->r_addend -= skip[val >> 3];
9218 elf_section_data (sec)->relocs = relstart;
9219 }
9220
9221 if (elf_section_data (sec)->relocs != relstart)
9222 free (relstart);
9223 }
9224
9225 /* We shouldn't have local or global symbols defined in the TOC,
9226 but handle them anyway. */
9227 if (local_syms != NULL)
9228 for (sym = local_syms;
9229 sym < local_syms + symtab_hdr->sh_info;
9230 ++sym)
9231 if (sym->st_value != 0
9232 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9233 {
9234 unsigned long i;
9235
9236 if (sym->st_value > toc->rawsize)
9237 i = toc->rawsize >> 3;
9238 else
9239 i = sym->st_value >> 3;
9240
9241 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9242 {
9243 if (local_toc_syms)
9244 (*_bfd_error_handler)
9245 (_("%s defined on removed toc entry"),
9246 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9247 do
9248 ++i;
9249 while ((skip[i] & (ref_from_discarded | can_optimize)));
9250 sym->st_value = (bfd_vma) i << 3;
9251 }
9252
9253 sym->st_value -= skip[i];
9254 symtab_hdr->contents = (unsigned char *) local_syms;
9255 }
9256
9257 /* Adjust any global syms defined in this toc input section. */
9258 if (toc_inf.global_toc_syms)
9259 {
9260 toc_inf.toc = toc;
9261 toc_inf.skip = skip;
9262 toc_inf.global_toc_syms = FALSE;
9263 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9264 &toc_inf);
9265 }
9266
9267 if (toc->reloc_count != 0)
9268 {
9269 Elf_Internal_Shdr *rel_hdr;
9270 Elf_Internal_Rela *wrel;
9271 bfd_size_type sz;
9272
9273 /* Remove unused toc relocs, and adjust those we keep. */
9274 if (toc_relocs == NULL)
9275 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9276 info->keep_memory);
9277 if (toc_relocs == NULL)
9278 goto error_ret;
9279
9280 wrel = toc_relocs;
9281 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9282 if ((skip[rel->r_offset >> 3]
9283 & (ref_from_discarded | can_optimize)) == 0)
9284 {
9285 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9286 wrel->r_info = rel->r_info;
9287 wrel->r_addend = rel->r_addend;
9288 ++wrel;
9289 }
9290 else if (!dec_dynrel_count (rel->r_info, toc, info,
9291 &local_syms, NULL, NULL))
9292 goto error_ret;
9293
9294 elf_section_data (toc)->relocs = toc_relocs;
9295 toc->reloc_count = wrel - toc_relocs;
9296 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9297 sz = rel_hdr->sh_entsize;
9298 rel_hdr->sh_size = toc->reloc_count * sz;
9299 }
9300 }
9301 else if (toc_relocs != NULL
9302 && elf_section_data (toc)->relocs != toc_relocs)
9303 free (toc_relocs);
9304
9305 if (local_syms != NULL
9306 && symtab_hdr->contents != (unsigned char *) local_syms)
9307 {
9308 if (!info->keep_memory)
9309 free (local_syms);
9310 else
9311 symtab_hdr->contents = (unsigned char *) local_syms;
9312 }
9313 free (skip);
9314 }
9315
9316 return TRUE;
9317 }
9318
9319 /* Return true iff input section I references the TOC using
9320 instructions limited to +/-32k offsets. */
9321
9322 bfd_boolean
9323 ppc64_elf_has_small_toc_reloc (asection *i)
9324 {
9325 return (is_ppc64_elf (i->owner)
9326 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9327 }
9328
9329 /* Allocate space for one GOT entry. */
9330
9331 static void
9332 allocate_got (struct elf_link_hash_entry *h,
9333 struct bfd_link_info *info,
9334 struct got_entry *gent)
9335 {
9336 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9337 bfd_boolean dyn;
9338 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9339 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9340 ? 16 : 8);
9341 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9342 ? 2 : 1) * sizeof (Elf64_External_Rela);
9343 asection *got = ppc64_elf_tdata (gent->owner)->got;
9344
9345 gent->got.offset = got->size;
9346 got->size += entsize;
9347
9348 dyn = htab->elf.dynamic_sections_created;
9349 if (h->type == STT_GNU_IFUNC)
9350 {
9351 htab->elf.irelplt->size += rentsize;
9352 htab->got_reli_size += rentsize;
9353 }
9354 else if ((info->shared
9355 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
9356 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9357 || h->root.type != bfd_link_hash_undefweak))
9358 {
9359 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9360 relgot->size += rentsize;
9361 }
9362 }
9363
9364 /* This function merges got entries in the same toc group. */
9365
9366 static void
9367 merge_got_entries (struct got_entry **pent)
9368 {
9369 struct got_entry *ent, *ent2;
9370
9371 for (ent = *pent; ent != NULL; ent = ent->next)
9372 if (!ent->is_indirect)
9373 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9374 if (!ent2->is_indirect
9375 && ent2->addend == ent->addend
9376 && ent2->tls_type == ent->tls_type
9377 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9378 {
9379 ent2->is_indirect = TRUE;
9380 ent2->got.ent = ent;
9381 }
9382 }
9383
9384 /* Allocate space in .plt, .got and associated reloc sections for
9385 dynamic relocs. */
9386
9387 static bfd_boolean
9388 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9389 {
9390 struct bfd_link_info *info;
9391 struct ppc_link_hash_table *htab;
9392 asection *s;
9393 struct ppc_link_hash_entry *eh;
9394 struct elf_dyn_relocs *p;
9395 struct got_entry **pgent, *gent;
9396
9397 if (h->root.type == bfd_link_hash_indirect)
9398 return TRUE;
9399
9400 info = (struct bfd_link_info *) inf;
9401 htab = ppc_hash_table (info);
9402 if (htab == NULL)
9403 return FALSE;
9404
9405 if ((htab->elf.dynamic_sections_created
9406 && h->dynindx != -1
9407 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
9408 || h->type == STT_GNU_IFUNC)
9409 {
9410 struct plt_entry *pent;
9411 bfd_boolean doneone = FALSE;
9412 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9413 if (pent->plt.refcount > 0)
9414 {
9415 if (!htab->elf.dynamic_sections_created
9416 || h->dynindx == -1)
9417 {
9418 s = htab->elf.iplt;
9419 pent->plt.offset = s->size;
9420 s->size += PLT_ENTRY_SIZE (htab);
9421 s = htab->elf.irelplt;
9422 }
9423 else
9424 {
9425 /* If this is the first .plt entry, make room for the special
9426 first entry. */
9427 s = htab->elf.splt;
9428 if (s->size == 0)
9429 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9430
9431 pent->plt.offset = s->size;
9432
9433 /* Make room for this entry. */
9434 s->size += PLT_ENTRY_SIZE (htab);
9435
9436 /* Make room for the .glink code. */
9437 s = htab->glink;
9438 if (s->size == 0)
9439 s->size += GLINK_CALL_STUB_SIZE;
9440 if (htab->opd_abi)
9441 {
9442 /* We need bigger stubs past index 32767. */
9443 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
9444 s->size += 4;
9445 s->size += 2*4;
9446 }
9447 else
9448 s->size += 4;
9449
9450 /* We also need to make an entry in the .rela.plt section. */
9451 s = htab->elf.srelplt;
9452 }
9453 s->size += sizeof (Elf64_External_Rela);
9454 doneone = TRUE;
9455 }
9456 else
9457 pent->plt.offset = (bfd_vma) -1;
9458 if (!doneone)
9459 {
9460 h->plt.plist = NULL;
9461 h->needs_plt = 0;
9462 }
9463 }
9464 else
9465 {
9466 h->plt.plist = NULL;
9467 h->needs_plt = 0;
9468 }
9469
9470 eh = (struct ppc_link_hash_entry *) h;
9471 /* Run through the TLS GD got entries first if we're changing them
9472 to TPREL. */
9473 if ((eh->tls_mask & TLS_TPRELGD) != 0)
9474 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9475 if (gent->got.refcount > 0
9476 && (gent->tls_type & TLS_GD) != 0)
9477 {
9478 /* This was a GD entry that has been converted to TPREL. If
9479 there happens to be a TPREL entry we can use that one. */
9480 struct got_entry *ent;
9481 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9482 if (ent->got.refcount > 0
9483 && (ent->tls_type & TLS_TPREL) != 0
9484 && ent->addend == gent->addend
9485 && ent->owner == gent->owner)
9486 {
9487 gent->got.refcount = 0;
9488 break;
9489 }
9490
9491 /* If not, then we'll be using our own TPREL entry. */
9492 if (gent->got.refcount != 0)
9493 gent->tls_type = TLS_TLS | TLS_TPREL;
9494 }
9495
9496 /* Remove any list entry that won't generate a word in the GOT before
9497 we call merge_got_entries. Otherwise we risk merging to empty
9498 entries. */
9499 pgent = &h->got.glist;
9500 while ((gent = *pgent) != NULL)
9501 if (gent->got.refcount > 0)
9502 {
9503 if ((gent->tls_type & TLS_LD) != 0
9504 && !h->def_dynamic)
9505 {
9506 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9507 *pgent = gent->next;
9508 }
9509 else
9510 pgent = &gent->next;
9511 }
9512 else
9513 *pgent = gent->next;
9514
9515 if (!htab->do_multi_toc)
9516 merge_got_entries (&h->got.glist);
9517
9518 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9519 if (!gent->is_indirect)
9520 {
9521 /* Make sure this symbol is output as a dynamic symbol.
9522 Undefined weak syms won't yet be marked as dynamic,
9523 nor will all TLS symbols. */
9524 if (h->dynindx == -1
9525 && !h->forced_local
9526 && h->type != STT_GNU_IFUNC
9527 && htab->elf.dynamic_sections_created)
9528 {
9529 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9530 return FALSE;
9531 }
9532
9533 if (!is_ppc64_elf (gent->owner))
9534 abort ();
9535
9536 allocate_got (h, info, gent);
9537 }
9538
9539 if (eh->dyn_relocs == NULL
9540 || (!htab->elf.dynamic_sections_created
9541 && h->type != STT_GNU_IFUNC))
9542 return TRUE;
9543
9544 /* In the shared -Bsymbolic case, discard space allocated for
9545 dynamic pc-relative relocs against symbols which turn out to be
9546 defined in regular objects. For the normal shared case, discard
9547 space for relocs that have become local due to symbol visibility
9548 changes. */
9549
9550 if (info->shared)
9551 {
9552 /* Relocs that use pc_count are those that appear on a call insn,
9553 or certain REL relocs (see must_be_dyn_reloc) that can be
9554 generated via assembly. We want calls to protected symbols to
9555 resolve directly to the function rather than going via the plt.
9556 If people want function pointer comparisons to work as expected
9557 then they should avoid writing weird assembly. */
9558 if (SYMBOL_CALLS_LOCAL (info, h))
9559 {
9560 struct elf_dyn_relocs **pp;
9561
9562 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9563 {
9564 p->count -= p->pc_count;
9565 p->pc_count = 0;
9566 if (p->count == 0)
9567 *pp = p->next;
9568 else
9569 pp = &p->next;
9570 }
9571 }
9572
9573 /* Also discard relocs on undefined weak syms with non-default
9574 visibility. */
9575 if (eh->dyn_relocs != NULL
9576 && h->root.type == bfd_link_hash_undefweak)
9577 {
9578 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9579 eh->dyn_relocs = NULL;
9580
9581 /* Make sure this symbol is output as a dynamic symbol.
9582 Undefined weak syms won't yet be marked as dynamic. */
9583 else if (h->dynindx == -1
9584 && !h->forced_local)
9585 {
9586 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9587 return FALSE;
9588 }
9589 }
9590 }
9591 else if (h->type == STT_GNU_IFUNC)
9592 {
9593 if (!h->non_got_ref)
9594 eh->dyn_relocs = NULL;
9595 }
9596 else if (ELIMINATE_COPY_RELOCS)
9597 {
9598 /* For the non-shared case, discard space for relocs against
9599 symbols which turn out to need copy relocs or are not
9600 dynamic. */
9601
9602 if (!h->non_got_ref
9603 && !h->def_regular)
9604 {
9605 /* Make sure this symbol is output as a dynamic symbol.
9606 Undefined weak syms won't yet be marked as dynamic. */
9607 if (h->dynindx == -1
9608 && !h->forced_local)
9609 {
9610 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9611 return FALSE;
9612 }
9613
9614 /* If that succeeded, we know we'll be keeping all the
9615 relocs. */
9616 if (h->dynindx != -1)
9617 goto keep;
9618 }
9619
9620 eh->dyn_relocs = NULL;
9621
9622 keep: ;
9623 }
9624
9625 /* Finally, allocate space. */
9626 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9627 {
9628 asection *sreloc = elf_section_data (p->sec)->sreloc;
9629 if (eh->elf.type == STT_GNU_IFUNC)
9630 sreloc = htab->elf.irelplt;
9631 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9632 }
9633
9634 return TRUE;
9635 }
9636
9637 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9638 to set up space for global entry stubs. These are put in glink,
9639 after the branch table. */
9640
9641 static bfd_boolean
9642 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9643 {
9644 struct bfd_link_info *info;
9645 struct ppc_link_hash_table *htab;
9646 struct plt_entry *pent;
9647 asection *s;
9648
9649 if (h->root.type == bfd_link_hash_indirect)
9650 return TRUE;
9651
9652 if (!h->pointer_equality_needed)
9653 return TRUE;
9654
9655 if (h->def_regular)
9656 return TRUE;
9657
9658 info = inf;
9659 htab = ppc_hash_table (info);
9660 if (htab == NULL)
9661 return FALSE;
9662
9663 s = htab->glink;
9664 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9665 if (pent->plt.offset != (bfd_vma) -1
9666 && pent->addend == 0)
9667 {
9668 /* For ELFv2, if this symbol is not defined in a regular file
9669 and we are not generating a shared library or pie, then we
9670 need to define the symbol in the executable on a call stub.
9671 This is to avoid text relocations. */
9672 s->size = (s->size + 15) & -16;
9673 h->root.u.def.section = s;
9674 h->root.u.def.value = s->size;
9675 s->size += 16;
9676 break;
9677 }
9678 return TRUE;
9679 }
9680
9681 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9682 read-only sections. */
9683
9684 static bfd_boolean
9685 maybe_set_textrel (struct elf_link_hash_entry *h, void *info)
9686 {
9687 if (h->root.type == bfd_link_hash_indirect)
9688 return TRUE;
9689
9690 if (readonly_dynrelocs (h))
9691 {
9692 ((struct bfd_link_info *) info)->flags |= DF_TEXTREL;
9693
9694 /* Not an error, just cut short the traversal. */
9695 return FALSE;
9696 }
9697 return TRUE;
9698 }
9699
9700 /* Set the sizes of the dynamic sections. */
9701
9702 static bfd_boolean
9703 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9704 struct bfd_link_info *info)
9705 {
9706 struct ppc_link_hash_table *htab;
9707 bfd *dynobj;
9708 asection *s;
9709 bfd_boolean relocs;
9710 bfd *ibfd;
9711 struct got_entry *first_tlsld;
9712
9713 htab = ppc_hash_table (info);
9714 if (htab == NULL)
9715 return FALSE;
9716
9717 dynobj = htab->elf.dynobj;
9718 if (dynobj == NULL)
9719 abort ();
9720
9721 if (htab->elf.dynamic_sections_created)
9722 {
9723 /* Set the contents of the .interp section to the interpreter. */
9724 if (info->executable)
9725 {
9726 s = bfd_get_linker_section (dynobj, ".interp");
9727 if (s == NULL)
9728 abort ();
9729 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9730 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9731 }
9732 }
9733
9734 /* Set up .got offsets for local syms, and space for local dynamic
9735 relocs. */
9736 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9737 {
9738 struct got_entry **lgot_ents;
9739 struct got_entry **end_lgot_ents;
9740 struct plt_entry **local_plt;
9741 struct plt_entry **end_local_plt;
9742 unsigned char *lgot_masks;
9743 bfd_size_type locsymcount;
9744 Elf_Internal_Shdr *symtab_hdr;
9745
9746 if (!is_ppc64_elf (ibfd))
9747 continue;
9748
9749 for (s = ibfd->sections; s != NULL; s = s->next)
9750 {
9751 struct ppc_dyn_relocs *p;
9752
9753 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9754 {
9755 if (!bfd_is_abs_section (p->sec)
9756 && bfd_is_abs_section (p->sec->output_section))
9757 {
9758 /* Input section has been discarded, either because
9759 it is a copy of a linkonce section or due to
9760 linker script /DISCARD/, so we'll be discarding
9761 the relocs too. */
9762 }
9763 else if (p->count != 0)
9764 {
9765 asection *srel = elf_section_data (p->sec)->sreloc;
9766 if (p->ifunc)
9767 srel = htab->elf.irelplt;
9768 srel->size += p->count * sizeof (Elf64_External_Rela);
9769 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9770 info->flags |= DF_TEXTREL;
9771 }
9772 }
9773 }
9774
9775 lgot_ents = elf_local_got_ents (ibfd);
9776 if (!lgot_ents)
9777 continue;
9778
9779 symtab_hdr = &elf_symtab_hdr (ibfd);
9780 locsymcount = symtab_hdr->sh_info;
9781 end_lgot_ents = lgot_ents + locsymcount;
9782 local_plt = (struct plt_entry **) end_lgot_ents;
9783 end_local_plt = local_plt + locsymcount;
9784 lgot_masks = (unsigned char *) end_local_plt;
9785 s = ppc64_elf_tdata (ibfd)->got;
9786 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9787 {
9788 struct got_entry **pent, *ent;
9789
9790 pent = lgot_ents;
9791 while ((ent = *pent) != NULL)
9792 if (ent->got.refcount > 0)
9793 {
9794 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9795 {
9796 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9797 *pent = ent->next;
9798 }
9799 else
9800 {
9801 unsigned int ent_size = 8;
9802 unsigned int rel_size = sizeof (Elf64_External_Rela);
9803
9804 ent->got.offset = s->size;
9805 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9806 {
9807 ent_size *= 2;
9808 rel_size *= 2;
9809 }
9810 s->size += ent_size;
9811 if ((*lgot_masks & PLT_IFUNC) != 0)
9812 {
9813 htab->elf.irelplt->size += rel_size;
9814 htab->got_reli_size += rel_size;
9815 }
9816 else if (info->shared)
9817 {
9818 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9819 srel->size += rel_size;
9820 }
9821 pent = &ent->next;
9822 }
9823 }
9824 else
9825 *pent = ent->next;
9826 }
9827
9828 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9829 for (; local_plt < end_local_plt; ++local_plt)
9830 {
9831 struct plt_entry *ent;
9832
9833 for (ent = *local_plt; ent != NULL; ent = ent->next)
9834 if (ent->plt.refcount > 0)
9835 {
9836 s = htab->elf.iplt;
9837 ent->plt.offset = s->size;
9838 s->size += PLT_ENTRY_SIZE (htab);
9839
9840 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9841 }
9842 else
9843 ent->plt.offset = (bfd_vma) -1;
9844 }
9845 }
9846
9847 /* Allocate global sym .plt and .got entries, and space for global
9848 sym dynamic relocs. */
9849 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9850 /* Stash the end of glink branch table. */
9851 if (htab->glink != NULL)
9852 htab->glink->rawsize = htab->glink->size;
9853
9854 if (!htab->opd_abi && !info->shared)
9855 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9856
9857 first_tlsld = NULL;
9858 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9859 {
9860 struct got_entry *ent;
9861
9862 if (!is_ppc64_elf (ibfd))
9863 continue;
9864
9865 ent = ppc64_tlsld_got (ibfd);
9866 if (ent->got.refcount > 0)
9867 {
9868 if (!htab->do_multi_toc && first_tlsld != NULL)
9869 {
9870 ent->is_indirect = TRUE;
9871 ent->got.ent = first_tlsld;
9872 }
9873 else
9874 {
9875 if (first_tlsld == NULL)
9876 first_tlsld = ent;
9877 s = ppc64_elf_tdata (ibfd)->got;
9878 ent->got.offset = s->size;
9879 ent->owner = ibfd;
9880 s->size += 16;
9881 if (info->shared)
9882 {
9883 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9884 srel->size += sizeof (Elf64_External_Rela);
9885 }
9886 }
9887 }
9888 else
9889 ent->got.offset = (bfd_vma) -1;
9890 }
9891
9892 /* We now have determined the sizes of the various dynamic sections.
9893 Allocate memory for them. */
9894 relocs = FALSE;
9895 for (s = dynobj->sections; s != NULL; s = s->next)
9896 {
9897 if ((s->flags & SEC_LINKER_CREATED) == 0)
9898 continue;
9899
9900 if (s == htab->brlt || s == htab->relbrlt)
9901 /* These haven't been allocated yet; don't strip. */
9902 continue;
9903 else if (s == htab->elf.sgot
9904 || s == htab->elf.splt
9905 || s == htab->elf.iplt
9906 || s == htab->glink
9907 || s == htab->dynbss)
9908 {
9909 /* Strip this section if we don't need it; see the
9910 comment below. */
9911 }
9912 else if (s == htab->glink_eh_frame)
9913 {
9914 if (!bfd_is_abs_section (s->output_section))
9915 /* Not sized yet. */
9916 continue;
9917 }
9918 else if (CONST_STRNEQ (s->name, ".rela"))
9919 {
9920 if (s->size != 0)
9921 {
9922 if (s != htab->elf.srelplt)
9923 relocs = TRUE;
9924
9925 /* We use the reloc_count field as a counter if we need
9926 to copy relocs into the output file. */
9927 s->reloc_count = 0;
9928 }
9929 }
9930 else
9931 {
9932 /* It's not one of our sections, so don't allocate space. */
9933 continue;
9934 }
9935
9936 if (s->size == 0)
9937 {
9938 /* If we don't need this section, strip it from the
9939 output file. This is mostly to handle .rela.bss and
9940 .rela.plt. We must create both sections in
9941 create_dynamic_sections, because they must be created
9942 before the linker maps input sections to output
9943 sections. The linker does that before
9944 adjust_dynamic_symbol is called, and it is that
9945 function which decides whether anything needs to go
9946 into these sections. */
9947 s->flags |= SEC_EXCLUDE;
9948 continue;
9949 }
9950
9951 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9952 continue;
9953
9954 /* Allocate memory for the section contents. We use bfd_zalloc
9955 here in case unused entries are not reclaimed before the
9956 section's contents are written out. This should not happen,
9957 but this way if it does we get a R_PPC64_NONE reloc in .rela
9958 sections instead of garbage.
9959 We also rely on the section contents being zero when writing
9960 the GOT. */
9961 s->contents = bfd_zalloc (dynobj, s->size);
9962 if (s->contents == NULL)
9963 return FALSE;
9964 }
9965
9966 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9967 {
9968 if (!is_ppc64_elf (ibfd))
9969 continue;
9970
9971 s = ppc64_elf_tdata (ibfd)->got;
9972 if (s != NULL && s != htab->elf.sgot)
9973 {
9974 if (s->size == 0)
9975 s->flags |= SEC_EXCLUDE;
9976 else
9977 {
9978 s->contents = bfd_zalloc (ibfd, s->size);
9979 if (s->contents == NULL)
9980 return FALSE;
9981 }
9982 }
9983 s = ppc64_elf_tdata (ibfd)->relgot;
9984 if (s != NULL)
9985 {
9986 if (s->size == 0)
9987 s->flags |= SEC_EXCLUDE;
9988 else
9989 {
9990 s->contents = bfd_zalloc (ibfd, s->size);
9991 if (s->contents == NULL)
9992 return FALSE;
9993 relocs = TRUE;
9994 s->reloc_count = 0;
9995 }
9996 }
9997 }
9998
9999 if (htab->elf.dynamic_sections_created)
10000 {
10001 bfd_boolean tls_opt;
10002
10003 /* Add some entries to the .dynamic section. We fill in the
10004 values later, in ppc64_elf_finish_dynamic_sections, but we
10005 must add the entries now so that we get the correct size for
10006 the .dynamic section. The DT_DEBUG entry is filled in by the
10007 dynamic linker and used by the debugger. */
10008 #define add_dynamic_entry(TAG, VAL) \
10009 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10010
10011 if (info->executable)
10012 {
10013 if (!add_dynamic_entry (DT_DEBUG, 0))
10014 return FALSE;
10015 }
10016
10017 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
10018 {
10019 if (!add_dynamic_entry (DT_PLTGOT, 0)
10020 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10021 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
10022 || !add_dynamic_entry (DT_JMPREL, 0)
10023 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10024 return FALSE;
10025 }
10026
10027 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10028 {
10029 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10030 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10031 return FALSE;
10032 }
10033
10034 tls_opt = (!htab->params->no_tls_get_addr_opt
10035 && htab->tls_get_addr_fd != NULL
10036 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
10037 if (tls_opt || !htab->opd_abi)
10038 {
10039 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10040 return FALSE;
10041 }
10042
10043 if (relocs)
10044 {
10045 if (!add_dynamic_entry (DT_RELA, 0)
10046 || !add_dynamic_entry (DT_RELASZ, 0)
10047 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10048 return FALSE;
10049
10050 /* If any dynamic relocs apply to a read-only section,
10051 then we need a DT_TEXTREL entry. */
10052 if ((info->flags & DF_TEXTREL) == 0)
10053 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
10054
10055 if ((info->flags & DF_TEXTREL) != 0)
10056 {
10057 if (!add_dynamic_entry (DT_TEXTREL, 0))
10058 return FALSE;
10059 }
10060 }
10061 }
10062 #undef add_dynamic_entry
10063
10064 return TRUE;
10065 }
10066
10067 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10068
10069 static bfd_boolean
10070 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10071 {
10072 if (h->plt.plist != NULL
10073 && !h->def_regular
10074 && !h->pointer_equality_needed)
10075 return FALSE;
10076
10077 return _bfd_elf_hash_symbol (h);
10078 }
10079
10080 /* Determine the type of stub needed, if any, for a call. */
10081
10082 static inline enum ppc_stub_type
10083 ppc_type_of_stub (asection *input_sec,
10084 const Elf_Internal_Rela *rel,
10085 struct ppc_link_hash_entry **hash,
10086 struct plt_entry **plt_ent,
10087 bfd_vma destination,
10088 unsigned long local_off)
10089 {
10090 struct ppc_link_hash_entry *h = *hash;
10091 bfd_vma location;
10092 bfd_vma branch_offset;
10093 bfd_vma max_branch_offset;
10094 enum elf_ppc64_reloc_type r_type;
10095
10096 if (h != NULL)
10097 {
10098 struct plt_entry *ent;
10099 struct ppc_link_hash_entry *fdh = h;
10100 if (h->oh != NULL
10101 && h->oh->is_func_descriptor)
10102 {
10103 fdh = ppc_follow_link (h->oh);
10104 *hash = fdh;
10105 }
10106
10107 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10108 if (ent->addend == rel->r_addend
10109 && ent->plt.offset != (bfd_vma) -1)
10110 {
10111 *plt_ent = ent;
10112 return ppc_stub_plt_call;
10113 }
10114
10115 /* Here, we know we don't have a plt entry. If we don't have a
10116 either a defined function descriptor or a defined entry symbol
10117 in a regular object file, then it is pointless trying to make
10118 any other type of stub. */
10119 if (!is_static_defined (&fdh->elf)
10120 && !is_static_defined (&h->elf))
10121 return ppc_stub_none;
10122 }
10123 else if (elf_local_got_ents (input_sec->owner) != NULL)
10124 {
10125 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10126 struct plt_entry **local_plt = (struct plt_entry **)
10127 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10128 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10129
10130 if (local_plt[r_symndx] != NULL)
10131 {
10132 struct plt_entry *ent;
10133
10134 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10135 if (ent->addend == rel->r_addend
10136 && ent->plt.offset != (bfd_vma) -1)
10137 {
10138 *plt_ent = ent;
10139 return ppc_stub_plt_call;
10140 }
10141 }
10142 }
10143
10144 /* Determine where the call point is. */
10145 location = (input_sec->output_offset
10146 + input_sec->output_section->vma
10147 + rel->r_offset);
10148
10149 branch_offset = destination - location;
10150 r_type = ELF64_R_TYPE (rel->r_info);
10151
10152 /* Determine if a long branch stub is needed. */
10153 max_branch_offset = 1 << 25;
10154 if (r_type != R_PPC64_REL24)
10155 max_branch_offset = 1 << 15;
10156
10157 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10158 /* We need a stub. Figure out whether a long_branch or plt_branch
10159 is needed later. */
10160 return ppc_stub_long_branch;
10161
10162 return ppc_stub_none;
10163 }
10164
10165 /* With power7 weakly ordered memory model, it is possible for ld.so
10166 to update a plt entry in one thread and have another thread see a
10167 stale zero toc entry. To avoid this we need some sort of acquire
10168 barrier in the call stub. One solution is to make the load of the
10169 toc word seem to appear to depend on the load of the function entry
10170 word. Another solution is to test for r2 being zero, and branch to
10171 the appropriate glink entry if so.
10172
10173 . fake dep barrier compare
10174 . ld 12,xxx(2) ld 12,xxx(2)
10175 . mtctr 12 mtctr 12
10176 . xor 11,12,12 ld 2,xxx+8(2)
10177 . add 2,2,11 cmpldi 2,0
10178 . ld 2,xxx+8(2) bnectr+
10179 . bctr b <glink_entry>
10180
10181 The solution involving the compare turns out to be faster, so
10182 that's what we use unless the branch won't reach. */
10183
10184 #define ALWAYS_USE_FAKE_DEP 0
10185 #define ALWAYS_EMIT_R2SAVE 0
10186
10187 #define PPC_LO(v) ((v) & 0xffff)
10188 #define PPC_HI(v) (((v) >> 16) & 0xffff)
10189 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
10190
10191 static inline unsigned int
10192 plt_stub_size (struct ppc_link_hash_table *htab,
10193 struct ppc_stub_hash_entry *stub_entry,
10194 bfd_vma off)
10195 {
10196 unsigned size = 12;
10197
10198 if (ALWAYS_EMIT_R2SAVE
10199 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10200 size += 4;
10201 if (PPC_HA (off) != 0)
10202 size += 4;
10203 if (htab->opd_abi)
10204 {
10205 size += 4;
10206 if (htab->params->plt_static_chain)
10207 size += 4;
10208 if (htab->params->plt_thread_safe)
10209 size += 8;
10210 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10211 size += 4;
10212 }
10213 if (stub_entry->h != NULL
10214 && (stub_entry->h == htab->tls_get_addr_fd
10215 || stub_entry->h == htab->tls_get_addr)
10216 && !htab->params->no_tls_get_addr_opt)
10217 size += 13 * 4;
10218 return size;
10219 }
10220
10221 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
10222 then return the padding needed to do so. */
10223 static inline unsigned int
10224 plt_stub_pad (struct ppc_link_hash_table *htab,
10225 struct ppc_stub_hash_entry *stub_entry,
10226 bfd_vma plt_off)
10227 {
10228 int stub_align = 1 << htab->params->plt_stub_align;
10229 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
10230 bfd_vma stub_off = stub_entry->stub_sec->size;
10231
10232 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10233 > ((stub_size - 1) & -stub_align))
10234 return stub_align - (stub_off & (stub_align - 1));
10235 return 0;
10236 }
10237
10238 /* Build a .plt call stub. */
10239
10240 static inline bfd_byte *
10241 build_plt_stub (struct ppc_link_hash_table *htab,
10242 struct ppc_stub_hash_entry *stub_entry,
10243 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10244 {
10245 bfd *obfd = htab->params->stub_bfd;
10246 bfd_boolean plt_load_toc = htab->opd_abi;
10247 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10248 bfd_boolean plt_thread_safe = htab->params->plt_thread_safe;
10249 bfd_boolean use_fake_dep = plt_thread_safe;
10250 bfd_vma cmp_branch_off = 0;
10251
10252 if (!ALWAYS_USE_FAKE_DEP
10253 && plt_load_toc
10254 && plt_thread_safe
10255 && !(stub_entry->h != NULL
10256 && (stub_entry->h == htab->tls_get_addr_fd
10257 || stub_entry->h == htab->tls_get_addr)
10258 && !htab->params->no_tls_get_addr_opt))
10259 {
10260 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10261 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10262 / PLT_ENTRY_SIZE (htab));
10263 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
10264 bfd_vma to, from;
10265
10266 if (pltindex > 32768)
10267 glinkoff += (pltindex - 32768) * 4;
10268 to = (glinkoff
10269 + htab->glink->output_offset
10270 + htab->glink->output_section->vma);
10271 from = (p - stub_entry->stub_sec->contents
10272 + 4 * (ALWAYS_EMIT_R2SAVE
10273 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10274 + 4 * (PPC_HA (offset) != 0)
10275 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10276 != PPC_HA (offset))
10277 + 4 * (plt_static_chain != 0)
10278 + 20
10279 + stub_entry->stub_sec->output_offset
10280 + stub_entry->stub_sec->output_section->vma);
10281 cmp_branch_off = to - from;
10282 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10283 }
10284
10285 if (PPC_HA (offset) != 0)
10286 {
10287 if (r != NULL)
10288 {
10289 if (ALWAYS_EMIT_R2SAVE
10290 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10291 r[0].r_offset += 4;
10292 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10293 r[1].r_offset = r[0].r_offset + 4;
10294 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10295 r[1].r_addend = r[0].r_addend;
10296 if (plt_load_toc)
10297 {
10298 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10299 {
10300 r[2].r_offset = r[1].r_offset + 4;
10301 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10302 r[2].r_addend = r[0].r_addend;
10303 }
10304 else
10305 {
10306 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10307 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10308 r[2].r_addend = r[0].r_addend + 8;
10309 if (plt_static_chain)
10310 {
10311 r[3].r_offset = r[2].r_offset + 4;
10312 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10313 r[3].r_addend = r[0].r_addend + 16;
10314 }
10315 }
10316 }
10317 }
10318 if (ALWAYS_EMIT_R2SAVE
10319 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10320 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10321 if (plt_load_toc)
10322 {
10323 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10324 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10325 }
10326 else
10327 {
10328 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
10329 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
10330 }
10331 if (plt_load_toc
10332 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10333 {
10334 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10335 offset = 0;
10336 }
10337 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10338 if (plt_load_toc)
10339 {
10340 if (use_fake_dep)
10341 {
10342 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10343 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10344 }
10345 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10346 if (plt_static_chain)
10347 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10348 }
10349 }
10350 else
10351 {
10352 if (r != NULL)
10353 {
10354 if (ALWAYS_EMIT_R2SAVE
10355 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10356 r[0].r_offset += 4;
10357 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10358 if (plt_load_toc)
10359 {
10360 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10361 {
10362 r[1].r_offset = r[0].r_offset + 4;
10363 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10364 r[1].r_addend = r[0].r_addend;
10365 }
10366 else
10367 {
10368 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10369 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10370 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10371 if (plt_static_chain)
10372 {
10373 r[2].r_offset = r[1].r_offset + 4;
10374 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10375 r[2].r_addend = r[0].r_addend + 8;
10376 }
10377 }
10378 }
10379 }
10380 if (ALWAYS_EMIT_R2SAVE
10381 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10382 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10383 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10384 if (plt_load_toc
10385 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10386 {
10387 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10388 offset = 0;
10389 }
10390 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10391 if (plt_load_toc)
10392 {
10393 if (use_fake_dep)
10394 {
10395 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10396 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10397 }
10398 if (plt_static_chain)
10399 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10400 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10401 }
10402 }
10403 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10404 {
10405 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10406 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10407 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10408 }
10409 else
10410 bfd_put_32 (obfd, BCTR, p), p += 4;
10411 return p;
10412 }
10413
10414 /* Build a special .plt call stub for __tls_get_addr. */
10415
10416 #define LD_R11_0R3 0xe9630000
10417 #define LD_R12_0R3 0xe9830000
10418 #define MR_R0_R3 0x7c601b78
10419 #define CMPDI_R11_0 0x2c2b0000
10420 #define ADD_R3_R12_R13 0x7c6c6a14
10421 #define BEQLR 0x4d820020
10422 #define MR_R3_R0 0x7c030378
10423 #define STD_R11_0R1 0xf9610000
10424 #define BCTRL 0x4e800421
10425 #define LD_R11_0R1 0xe9610000
10426 #define MTLR_R11 0x7d6803a6
10427
10428 static inline bfd_byte *
10429 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10430 struct ppc_stub_hash_entry *stub_entry,
10431 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10432 {
10433 bfd *obfd = htab->params->stub_bfd;
10434
10435 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10436 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10437 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10438 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10439 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10440 bfd_put_32 (obfd, BEQLR, p), p += 4;
10441 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10442 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10443 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10444
10445 if (r != NULL)
10446 r[0].r_offset += 9 * 4;
10447 p = build_plt_stub (htab, stub_entry, p, offset, r);
10448 bfd_put_32 (obfd, BCTRL, p - 4);
10449
10450 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10451 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10452 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10453 bfd_put_32 (obfd, BLR, p), p += 4;
10454
10455 return p;
10456 }
10457
10458 static Elf_Internal_Rela *
10459 get_relocs (asection *sec, int count)
10460 {
10461 Elf_Internal_Rela *relocs;
10462 struct bfd_elf_section_data *elfsec_data;
10463
10464 elfsec_data = elf_section_data (sec);
10465 relocs = elfsec_data->relocs;
10466 if (relocs == NULL)
10467 {
10468 bfd_size_type relsize;
10469 relsize = sec->reloc_count * sizeof (*relocs);
10470 relocs = bfd_alloc (sec->owner, relsize);
10471 if (relocs == NULL)
10472 return NULL;
10473 elfsec_data->relocs = relocs;
10474 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10475 sizeof (Elf_Internal_Shdr));
10476 if (elfsec_data->rela.hdr == NULL)
10477 return NULL;
10478 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10479 * sizeof (Elf64_External_Rela));
10480 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10481 sec->reloc_count = 0;
10482 }
10483 relocs += sec->reloc_count;
10484 sec->reloc_count += count;
10485 return relocs;
10486 }
10487
10488 static bfd_vma
10489 get_r2off (struct bfd_link_info *info,
10490 struct ppc_stub_hash_entry *stub_entry)
10491 {
10492 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10493 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
10494
10495 if (r2off == 0)
10496 {
10497 /* Support linking -R objects. Get the toc pointer from the
10498 opd entry. */
10499 char buf[8];
10500 if (!htab->opd_abi)
10501 return r2off;
10502 asection *opd = stub_entry->h->elf.root.u.def.section;
10503 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
10504
10505 if (strcmp (opd->name, ".opd") != 0
10506 || opd->reloc_count != 0)
10507 {
10508 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
10509 stub_entry->h->elf.root.root.string);
10510 bfd_set_error (bfd_error_bad_value);
10511 return 0;
10512 }
10513 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
10514 return 0;
10515 r2off = bfd_get_64 (opd->owner, buf);
10516 r2off -= elf_gp (info->output_bfd);
10517 }
10518 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
10519 return r2off;
10520 }
10521
10522 static bfd_boolean
10523 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10524 {
10525 struct ppc_stub_hash_entry *stub_entry;
10526 struct ppc_branch_hash_entry *br_entry;
10527 struct bfd_link_info *info;
10528 struct ppc_link_hash_table *htab;
10529 bfd_byte *loc;
10530 bfd_byte *p;
10531 bfd_vma dest, off;
10532 int size;
10533 Elf_Internal_Rela *r;
10534 asection *plt;
10535
10536 /* Massage our args to the form they really have. */
10537 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10538 info = in_arg;
10539
10540 htab = ppc_hash_table (info);
10541 if (htab == NULL)
10542 return FALSE;
10543
10544 /* Make a note of the offset within the stubs for this entry. */
10545 stub_entry->stub_offset = stub_entry->stub_sec->size;
10546 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
10547
10548 htab->stub_count[stub_entry->stub_type - 1] += 1;
10549 switch (stub_entry->stub_type)
10550 {
10551 case ppc_stub_long_branch:
10552 case ppc_stub_long_branch_r2off:
10553 /* Branches are relative. This is where we are going to. */
10554 dest = (stub_entry->target_value
10555 + stub_entry->target_section->output_offset
10556 + stub_entry->target_section->output_section->vma);
10557 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10558 off = dest;
10559
10560 /* And this is where we are coming from. */
10561 off -= (stub_entry->stub_offset
10562 + stub_entry->stub_sec->output_offset
10563 + stub_entry->stub_sec->output_section->vma);
10564
10565 size = 4;
10566 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10567 {
10568 bfd_vma r2off = get_r2off (info, stub_entry);
10569
10570 if (r2off == 0)
10571 {
10572 htab->stub_error = TRUE;
10573 return FALSE;
10574 }
10575 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10576 loc += 4;
10577 size = 12;
10578 if (PPC_HA (r2off) != 0)
10579 {
10580 size = 16;
10581 bfd_put_32 (htab->params->stub_bfd,
10582 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10583 loc += 4;
10584 }
10585 bfd_put_32 (htab->params->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10586 loc += 4;
10587 off -= size - 4;
10588 }
10589 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
10590
10591 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10592 {
10593 info->callbacks->einfo
10594 (_("%P: long branch stub `%s' offset overflow\n"),
10595 stub_entry->root.string);
10596 htab->stub_error = TRUE;
10597 return FALSE;
10598 }
10599
10600 if (info->emitrelocations)
10601 {
10602 r = get_relocs (stub_entry->stub_sec, 1);
10603 if (r == NULL)
10604 return FALSE;
10605 r->r_offset = loc - stub_entry->stub_sec->contents;
10606 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
10607 r->r_addend = dest;
10608 if (stub_entry->h != NULL)
10609 {
10610 struct elf_link_hash_entry **hashes;
10611 unsigned long symndx;
10612 struct ppc_link_hash_entry *h;
10613
10614 hashes = elf_sym_hashes (htab->params->stub_bfd);
10615 if (hashes == NULL)
10616 {
10617 bfd_size_type hsize;
10618
10619 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10620 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
10621 if (hashes == NULL)
10622 return FALSE;
10623 elf_sym_hashes (htab->params->stub_bfd) = hashes;
10624 htab->stub_globals = 1;
10625 }
10626 symndx = htab->stub_globals++;
10627 h = stub_entry->h;
10628 hashes[symndx] = &h->elf;
10629 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
10630 if (h->oh != NULL && h->oh->is_func)
10631 h = ppc_follow_link (h->oh);
10632 if (h->elf.root.u.def.section != stub_entry->target_section)
10633 /* H is an opd symbol. The addend must be zero. */
10634 r->r_addend = 0;
10635 else
10636 {
10637 off = (h->elf.root.u.def.value
10638 + h->elf.root.u.def.section->output_offset
10639 + h->elf.root.u.def.section->output_section->vma);
10640 r->r_addend -= off;
10641 }
10642 }
10643 }
10644 break;
10645
10646 case ppc_stub_plt_branch:
10647 case ppc_stub_plt_branch_r2off:
10648 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10649 stub_entry->root.string + 9,
10650 FALSE, FALSE);
10651 if (br_entry == NULL)
10652 {
10653 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10654 stub_entry->root.string);
10655 htab->stub_error = TRUE;
10656 return FALSE;
10657 }
10658
10659 dest = (stub_entry->target_value
10660 + stub_entry->target_section->output_offset
10661 + stub_entry->target_section->output_section->vma);
10662 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10663 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10664
10665 bfd_put_64 (htab->brlt->owner, dest,
10666 htab->brlt->contents + br_entry->offset);
10667
10668 if (br_entry->iter == htab->stub_iteration)
10669 {
10670 br_entry->iter = 0;
10671
10672 if (htab->relbrlt != NULL)
10673 {
10674 /* Create a reloc for the branch lookup table entry. */
10675 Elf_Internal_Rela rela;
10676 bfd_byte *rl;
10677
10678 rela.r_offset = (br_entry->offset
10679 + htab->brlt->output_offset
10680 + htab->brlt->output_section->vma);
10681 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10682 rela.r_addend = dest;
10683
10684 rl = htab->relbrlt->contents;
10685 rl += (htab->relbrlt->reloc_count++
10686 * sizeof (Elf64_External_Rela));
10687 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10688 }
10689 else if (info->emitrelocations)
10690 {
10691 r = get_relocs (htab->brlt, 1);
10692 if (r == NULL)
10693 return FALSE;
10694 /* brlt, being SEC_LINKER_CREATED does not go through the
10695 normal reloc processing. Symbols and offsets are not
10696 translated from input file to output file form, so
10697 set up the offset per the output file. */
10698 r->r_offset = (br_entry->offset
10699 + htab->brlt->output_offset
10700 + htab->brlt->output_section->vma);
10701 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10702 r->r_addend = dest;
10703 }
10704 }
10705
10706 dest = (br_entry->offset
10707 + htab->brlt->output_offset
10708 + htab->brlt->output_section->vma);
10709
10710 off = (dest
10711 - elf_gp (htab->brlt->output_section->owner)
10712 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10713
10714 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10715 {
10716 info->callbacks->einfo
10717 (_("%P: linkage table error against `%T'\n"),
10718 stub_entry->root.string);
10719 bfd_set_error (bfd_error_bad_value);
10720 htab->stub_error = TRUE;
10721 return FALSE;
10722 }
10723
10724 if (info->emitrelocations)
10725 {
10726 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10727 if (r == NULL)
10728 return FALSE;
10729 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10730 if (bfd_big_endian (info->output_bfd))
10731 r[0].r_offset += 2;
10732 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10733 r[0].r_offset += 4;
10734 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10735 r[0].r_addend = dest;
10736 if (PPC_HA (off) != 0)
10737 {
10738 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10739 r[1].r_offset = r[0].r_offset + 4;
10740 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10741 r[1].r_addend = r[0].r_addend;
10742 }
10743 }
10744
10745 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10746 {
10747 if (PPC_HA (off) != 0)
10748 {
10749 size = 16;
10750 bfd_put_32 (htab->params->stub_bfd,
10751 ADDIS_R12_R2 | PPC_HA (off), loc);
10752 loc += 4;
10753 bfd_put_32 (htab->params->stub_bfd,
10754 LD_R12_0R12 | PPC_LO (off), loc);
10755 }
10756 else
10757 {
10758 size = 12;
10759 bfd_put_32 (htab->params->stub_bfd,
10760 LD_R12_0R2 | PPC_LO (off), loc);
10761 }
10762 }
10763 else
10764 {
10765 bfd_vma r2off = get_r2off (info, stub_entry);
10766
10767 if (r2off == 0 && htab->opd_abi)
10768 {
10769 htab->stub_error = TRUE;
10770 return FALSE;
10771 }
10772
10773 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10774 loc += 4;
10775 size = 16;
10776 if (PPC_HA (off) != 0)
10777 {
10778 size += 4;
10779 bfd_put_32 (htab->params->stub_bfd,
10780 ADDIS_R12_R2 | PPC_HA (off), loc);
10781 loc += 4;
10782 bfd_put_32 (htab->params->stub_bfd,
10783 LD_R12_0R12 | PPC_LO (off), loc);
10784 }
10785 else
10786 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), loc);
10787
10788 if (PPC_HA (r2off) != 0)
10789 {
10790 size += 4;
10791 loc += 4;
10792 bfd_put_32 (htab->params->stub_bfd,
10793 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10794 }
10795 if (PPC_LO (r2off) != 0)
10796 {
10797 size += 4;
10798 loc += 4;
10799 bfd_put_32 (htab->params->stub_bfd,
10800 ADDI_R2_R2 | PPC_LO (r2off), loc);
10801 }
10802 }
10803 loc += 4;
10804 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, loc);
10805 loc += 4;
10806 bfd_put_32 (htab->params->stub_bfd, BCTR, loc);
10807 break;
10808
10809 case ppc_stub_plt_call:
10810 case ppc_stub_plt_call_r2save:
10811 if (stub_entry->h != NULL
10812 && stub_entry->h->is_func_descriptor
10813 && stub_entry->h->oh != NULL)
10814 {
10815 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10816
10817 /* If the old-ABI "dot-symbol" is undefined make it weak so
10818 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10819 FIXME: We used to define the symbol on one of the call
10820 stubs instead, which is why we test symbol section id
10821 against htab->top_id in various places. Likely all
10822 these checks could now disappear. */
10823 if (fh->elf.root.type == bfd_link_hash_undefined)
10824 fh->elf.root.type = bfd_link_hash_undefweak;
10825 /* Stop undo_symbol_twiddle changing it back to undefined. */
10826 fh->was_undefined = 0;
10827 }
10828
10829 /* Now build the stub. */
10830 dest = stub_entry->plt_ent->plt.offset & ~1;
10831 if (dest >= (bfd_vma) -2)
10832 abort ();
10833
10834 plt = htab->elf.splt;
10835 if (!htab->elf.dynamic_sections_created
10836 || stub_entry->h == NULL
10837 || stub_entry->h->elf.dynindx == -1)
10838 plt = htab->elf.iplt;
10839
10840 dest += plt->output_offset + plt->output_section->vma;
10841
10842 if (stub_entry->h == NULL
10843 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10844 {
10845 Elf_Internal_Rela rela;
10846 bfd_byte *rl;
10847
10848 rela.r_offset = dest;
10849 if (htab->opd_abi)
10850 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10851 else
10852 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
10853 rela.r_addend = (stub_entry->target_value
10854 + stub_entry->target_section->output_offset
10855 + stub_entry->target_section->output_section->vma);
10856
10857 rl = (htab->elf.irelplt->contents
10858 + (htab->elf.irelplt->reloc_count++
10859 * sizeof (Elf64_External_Rela)));
10860 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10861 stub_entry->plt_ent->plt.offset |= 1;
10862 }
10863
10864 off = (dest
10865 - elf_gp (plt->output_section->owner)
10866 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10867
10868 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10869 {
10870 info->callbacks->einfo
10871 (_("%P: linkage table error against `%T'\n"),
10872 stub_entry->h != NULL
10873 ? stub_entry->h->elf.root.root.string
10874 : "<local sym>");
10875 bfd_set_error (bfd_error_bad_value);
10876 htab->stub_error = TRUE;
10877 return FALSE;
10878 }
10879
10880 if (htab->params->plt_stub_align != 0)
10881 {
10882 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10883
10884 stub_entry->stub_sec->size += pad;
10885 stub_entry->stub_offset = stub_entry->stub_sec->size;
10886 loc += pad;
10887 }
10888
10889 r = NULL;
10890 if (info->emitrelocations)
10891 {
10892 r = get_relocs (stub_entry->stub_sec,
10893 ((PPC_HA (off) != 0)
10894 + (htab->opd_abi
10895 ? 2 + (htab->params->plt_static_chain
10896 && PPC_HA (off + 16) == PPC_HA (off))
10897 : 1)));
10898 if (r == NULL)
10899 return FALSE;
10900 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10901 if (bfd_big_endian (info->output_bfd))
10902 r[0].r_offset += 2;
10903 r[0].r_addend = dest;
10904 }
10905 if (stub_entry->h != NULL
10906 && (stub_entry->h == htab->tls_get_addr_fd
10907 || stub_entry->h == htab->tls_get_addr)
10908 && !htab->params->no_tls_get_addr_opt)
10909 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10910 else
10911 p = build_plt_stub (htab, stub_entry, loc, off, r);
10912 size = p - loc;
10913 break;
10914
10915 default:
10916 BFD_FAIL ();
10917 return FALSE;
10918 }
10919
10920 stub_entry->stub_sec->size += size;
10921
10922 if (htab->params->emit_stub_syms)
10923 {
10924 struct elf_link_hash_entry *h;
10925 size_t len1, len2;
10926 char *name;
10927 const char *const stub_str[] = { "long_branch",
10928 "long_branch_r2off",
10929 "plt_branch",
10930 "plt_branch_r2off",
10931 "plt_call",
10932 "plt_call" };
10933
10934 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10935 len2 = strlen (stub_entry->root.string);
10936 name = bfd_malloc (len1 + len2 + 2);
10937 if (name == NULL)
10938 return FALSE;
10939 memcpy (name, stub_entry->root.string, 9);
10940 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10941 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10942 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10943 if (h == NULL)
10944 return FALSE;
10945 if (h->root.type == bfd_link_hash_new)
10946 {
10947 h->root.type = bfd_link_hash_defined;
10948 h->root.u.def.section = stub_entry->stub_sec;
10949 h->root.u.def.value = stub_entry->stub_offset;
10950 h->ref_regular = 1;
10951 h->def_regular = 1;
10952 h->ref_regular_nonweak = 1;
10953 h->forced_local = 1;
10954 h->non_elf = 0;
10955 }
10956 }
10957
10958 return TRUE;
10959 }
10960
10961 /* As above, but don't actually build the stub. Just bump offset so
10962 we know stub section sizes, and select plt_branch stubs where
10963 long_branch stubs won't do. */
10964
10965 static bfd_boolean
10966 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10967 {
10968 struct ppc_stub_hash_entry *stub_entry;
10969 struct bfd_link_info *info;
10970 struct ppc_link_hash_table *htab;
10971 bfd_vma off;
10972 int size;
10973
10974 /* Massage our args to the form they really have. */
10975 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10976 info = in_arg;
10977
10978 htab = ppc_hash_table (info);
10979 if (htab == NULL)
10980 return FALSE;
10981
10982 if (stub_entry->stub_type == ppc_stub_plt_call
10983 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10984 {
10985 asection *plt;
10986 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10987 if (off >= (bfd_vma) -2)
10988 abort ();
10989 plt = htab->elf.splt;
10990 if (!htab->elf.dynamic_sections_created
10991 || stub_entry->h == NULL
10992 || stub_entry->h->elf.dynindx == -1)
10993 plt = htab->elf.iplt;
10994 off += (plt->output_offset
10995 + plt->output_section->vma
10996 - elf_gp (plt->output_section->owner)
10997 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10998
10999 size = plt_stub_size (htab, stub_entry, off);
11000 if (htab->params->plt_stub_align)
11001 size += plt_stub_pad (htab, stub_entry, off);
11002 if (info->emitrelocations)
11003 {
11004 stub_entry->stub_sec->reloc_count
11005 += ((PPC_HA (off) != 0)
11006 + (htab->opd_abi
11007 ? 2 + (htab->params->plt_static_chain
11008 && PPC_HA (off + 16) == PPC_HA (off))
11009 : 1));
11010 stub_entry->stub_sec->flags |= SEC_RELOC;
11011 }
11012 }
11013 else
11014 {
11015 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
11016 variants. */
11017 bfd_vma r2off = 0;
11018 bfd_vma local_off = 0;
11019
11020 off = (stub_entry->target_value
11021 + stub_entry->target_section->output_offset
11022 + stub_entry->target_section->output_section->vma);
11023 off -= (stub_entry->stub_sec->size
11024 + stub_entry->stub_sec->output_offset
11025 + stub_entry->stub_sec->output_section->vma);
11026
11027 /* Reset the stub type from the plt variant in case we now
11028 can reach with a shorter stub. */
11029 if (stub_entry->stub_type >= ppc_stub_plt_branch)
11030 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11031
11032 size = 4;
11033 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11034 {
11035 r2off = get_r2off (info, stub_entry);
11036 if (r2off == 0 && htab->opd_abi)
11037 {
11038 htab->stub_error = TRUE;
11039 return FALSE;
11040 }
11041 size = 12;
11042 if (PPC_HA (r2off) != 0)
11043 size = 16;
11044 off -= size - 4;
11045 }
11046
11047 local_off = PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11048
11049 /* If the branch offset if too big, use a ppc_stub_plt_branch.
11050 Do the same for -R objects without function descriptors. */
11051 if (off + (1 << 25) >= (bfd_vma) (1 << 26) - local_off
11052 || (stub_entry->stub_type == ppc_stub_long_branch_r2off
11053 && r2off == 0))
11054 {
11055 struct ppc_branch_hash_entry *br_entry;
11056
11057 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11058 stub_entry->root.string + 9,
11059 TRUE, FALSE);
11060 if (br_entry == NULL)
11061 {
11062 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
11063 stub_entry->root.string);
11064 htab->stub_error = TRUE;
11065 return FALSE;
11066 }
11067
11068 if (br_entry->iter != htab->stub_iteration)
11069 {
11070 br_entry->iter = htab->stub_iteration;
11071 br_entry->offset = htab->brlt->size;
11072 htab->brlt->size += 8;
11073
11074 if (htab->relbrlt != NULL)
11075 htab->relbrlt->size += sizeof (Elf64_External_Rela);
11076 else if (info->emitrelocations)
11077 {
11078 htab->brlt->reloc_count += 1;
11079 htab->brlt->flags |= SEC_RELOC;
11080 }
11081 }
11082
11083 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
11084 off = (br_entry->offset
11085 + htab->brlt->output_offset
11086 + htab->brlt->output_section->vma
11087 - elf_gp (htab->brlt->output_section->owner)
11088 - htab->stub_group[stub_entry->id_sec->id].toc_off);
11089
11090 if (info->emitrelocations)
11091 {
11092 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
11093 stub_entry->stub_sec->flags |= SEC_RELOC;
11094 }
11095
11096 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11097 {
11098 size = 12;
11099 if (PPC_HA (off) != 0)
11100 size = 16;
11101 }
11102 else
11103 {
11104 size = 16;
11105 if (PPC_HA (off) != 0)
11106 size += 4;
11107
11108 if (PPC_HA (r2off) != 0)
11109 size += 4;
11110 if (PPC_LO (r2off) != 0)
11111 size += 4;
11112 }
11113 }
11114 else if (info->emitrelocations)
11115 {
11116 stub_entry->stub_sec->reloc_count += 1;
11117 stub_entry->stub_sec->flags |= SEC_RELOC;
11118 }
11119 }
11120
11121 stub_entry->stub_sec->size += size;
11122 return TRUE;
11123 }
11124
11125 /* Set up various things so that we can make a list of input sections
11126 for each output section included in the link. Returns -1 on error,
11127 0 when no stubs will be needed, and 1 on success. */
11128
11129 int
11130 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
11131 {
11132 bfd *input_bfd;
11133 int top_id, top_index, id;
11134 asection *section;
11135 asection **input_list;
11136 bfd_size_type amt;
11137 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11138
11139 if (htab == NULL)
11140 return -1;
11141
11142 /* Find the top input section id. */
11143 for (input_bfd = info->input_bfds, top_id = 3;
11144 input_bfd != NULL;
11145 input_bfd = input_bfd->link.next)
11146 {
11147 for (section = input_bfd->sections;
11148 section != NULL;
11149 section = section->next)
11150 {
11151 if (top_id < section->id)
11152 top_id = section->id;
11153 }
11154 }
11155
11156 htab->top_id = top_id;
11157 amt = sizeof (struct map_stub) * (top_id + 1);
11158 htab->stub_group = bfd_zmalloc (amt);
11159 if (htab->stub_group == NULL)
11160 return -1;
11161
11162 /* Set toc_off for com, und, abs and ind sections. */
11163 for (id = 0; id < 3; id++)
11164 htab->stub_group[id].toc_off = TOC_BASE_OFF;
11165
11166 /* We can't use output_bfd->section_count here to find the top output
11167 section index as some sections may have been removed, and
11168 strip_excluded_output_sections doesn't renumber the indices. */
11169 for (section = info->output_bfd->sections, top_index = 0;
11170 section != NULL;
11171 section = section->next)
11172 {
11173 if (top_index < section->index)
11174 top_index = section->index;
11175 }
11176
11177 htab->top_index = top_index;
11178 amt = sizeof (asection *) * (top_index + 1);
11179 input_list = bfd_zmalloc (amt);
11180 htab->input_list = input_list;
11181 if (input_list == NULL)
11182 return -1;
11183
11184 return 1;
11185 }
11186
11187 /* Set up for first pass at multitoc partitioning. */
11188
11189 void
11190 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11191 {
11192 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11193
11194 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11195 htab->toc_bfd = NULL;
11196 htab->toc_first_sec = NULL;
11197 }
11198
11199 /* The linker repeatedly calls this function for each TOC input section
11200 and linker generated GOT section. Group input bfds such that the toc
11201 within a group is less than 64k in size. */
11202
11203 bfd_boolean
11204 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11205 {
11206 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11207 bfd_vma addr, off, limit;
11208
11209 if (htab == NULL)
11210 return FALSE;
11211
11212 if (!htab->second_toc_pass)
11213 {
11214 /* Keep track of the first .toc or .got section for this input bfd. */
11215 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11216
11217 if (new_bfd)
11218 {
11219 htab->toc_bfd = isec->owner;
11220 htab->toc_first_sec = isec;
11221 }
11222
11223 addr = isec->output_offset + isec->output_section->vma;
11224 off = addr - htab->toc_curr;
11225 limit = 0x80008000;
11226 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11227 limit = 0x10000;
11228 if (off + isec->size > limit)
11229 {
11230 addr = (htab->toc_first_sec->output_offset
11231 + htab->toc_first_sec->output_section->vma);
11232 htab->toc_curr = addr;
11233 }
11234
11235 /* toc_curr is the base address of this toc group. Set elf_gp
11236 for the input section to be the offset relative to the
11237 output toc base plus 0x8000. Making the input elf_gp an
11238 offset allows us to move the toc as a whole without
11239 recalculating input elf_gp. */
11240 off = htab->toc_curr - elf_gp (isec->output_section->owner);
11241 off += TOC_BASE_OFF;
11242
11243 /* Die if someone uses a linker script that doesn't keep input
11244 file .toc and .got together. */
11245 if (new_bfd
11246 && elf_gp (isec->owner) != 0
11247 && elf_gp (isec->owner) != off)
11248 return FALSE;
11249
11250 elf_gp (isec->owner) = off;
11251 return TRUE;
11252 }
11253
11254 /* During the second pass toc_first_sec points to the start of
11255 a toc group, and toc_curr is used to track the old elf_gp.
11256 We use toc_bfd to ensure we only look at each bfd once. */
11257 if (htab->toc_bfd == isec->owner)
11258 return TRUE;
11259 htab->toc_bfd = isec->owner;
11260
11261 if (htab->toc_first_sec == NULL
11262 || htab->toc_curr != elf_gp (isec->owner))
11263 {
11264 htab->toc_curr = elf_gp (isec->owner);
11265 htab->toc_first_sec = isec;
11266 }
11267 addr = (htab->toc_first_sec->output_offset
11268 + htab->toc_first_sec->output_section->vma);
11269 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
11270 elf_gp (isec->owner) = off;
11271
11272 return TRUE;
11273 }
11274
11275 /* Called via elf_link_hash_traverse to merge GOT entries for global
11276 symbol H. */
11277
11278 static bfd_boolean
11279 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
11280 {
11281 if (h->root.type == bfd_link_hash_indirect)
11282 return TRUE;
11283
11284 merge_got_entries (&h->got.glist);
11285
11286 return TRUE;
11287 }
11288
11289 /* Called via elf_link_hash_traverse to allocate GOT entries for global
11290 symbol H. */
11291
11292 static bfd_boolean
11293 reallocate_got (struct elf_link_hash_entry *h, void *inf)
11294 {
11295 struct got_entry *gent;
11296
11297 if (h->root.type == bfd_link_hash_indirect)
11298 return TRUE;
11299
11300 for (gent = h->got.glist; gent != NULL; gent = gent->next)
11301 if (!gent->is_indirect)
11302 allocate_got (h, (struct bfd_link_info *) inf, gent);
11303 return TRUE;
11304 }
11305
11306 /* Called on the first multitoc pass after the last call to
11307 ppc64_elf_next_toc_section. This function removes duplicate GOT
11308 entries. */
11309
11310 bfd_boolean
11311 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
11312 {
11313 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11314 struct bfd *ibfd, *ibfd2;
11315 bfd_boolean done_something;
11316
11317 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
11318
11319 if (!htab->do_multi_toc)
11320 return FALSE;
11321
11322 /* Merge global sym got entries within a toc group. */
11323 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
11324
11325 /* And tlsld_got. */
11326 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11327 {
11328 struct got_entry *ent, *ent2;
11329
11330 if (!is_ppc64_elf (ibfd))
11331 continue;
11332
11333 ent = ppc64_tlsld_got (ibfd);
11334 if (!ent->is_indirect
11335 && ent->got.offset != (bfd_vma) -1)
11336 {
11337 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
11338 {
11339 if (!is_ppc64_elf (ibfd2))
11340 continue;
11341
11342 ent2 = ppc64_tlsld_got (ibfd2);
11343 if (!ent2->is_indirect
11344 && ent2->got.offset != (bfd_vma) -1
11345 && elf_gp (ibfd2) == elf_gp (ibfd))
11346 {
11347 ent2->is_indirect = TRUE;
11348 ent2->got.ent = ent;
11349 }
11350 }
11351 }
11352 }
11353
11354 /* Zap sizes of got sections. */
11355 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
11356 htab->elf.irelplt->size -= htab->got_reli_size;
11357 htab->got_reli_size = 0;
11358
11359 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11360 {
11361 asection *got, *relgot;
11362
11363 if (!is_ppc64_elf (ibfd))
11364 continue;
11365
11366 got = ppc64_elf_tdata (ibfd)->got;
11367 if (got != NULL)
11368 {
11369 got->rawsize = got->size;
11370 got->size = 0;
11371 relgot = ppc64_elf_tdata (ibfd)->relgot;
11372 relgot->rawsize = relgot->size;
11373 relgot->size = 0;
11374 }
11375 }
11376
11377 /* Now reallocate the got, local syms first. We don't need to
11378 allocate section contents again since we never increase size. */
11379 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11380 {
11381 struct got_entry **lgot_ents;
11382 struct got_entry **end_lgot_ents;
11383 struct plt_entry **local_plt;
11384 struct plt_entry **end_local_plt;
11385 unsigned char *lgot_masks;
11386 bfd_size_type locsymcount;
11387 Elf_Internal_Shdr *symtab_hdr;
11388 asection *s;
11389
11390 if (!is_ppc64_elf (ibfd))
11391 continue;
11392
11393 lgot_ents = elf_local_got_ents (ibfd);
11394 if (!lgot_ents)
11395 continue;
11396
11397 symtab_hdr = &elf_symtab_hdr (ibfd);
11398 locsymcount = symtab_hdr->sh_info;
11399 end_lgot_ents = lgot_ents + locsymcount;
11400 local_plt = (struct plt_entry **) end_lgot_ents;
11401 end_local_plt = local_plt + locsymcount;
11402 lgot_masks = (unsigned char *) end_local_plt;
11403 s = ppc64_elf_tdata (ibfd)->got;
11404 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
11405 {
11406 struct got_entry *ent;
11407
11408 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
11409 {
11410 unsigned int ent_size = 8;
11411 unsigned int rel_size = sizeof (Elf64_External_Rela);
11412
11413 ent->got.offset = s->size;
11414 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
11415 {
11416 ent_size *= 2;
11417 rel_size *= 2;
11418 }
11419 s->size += ent_size;
11420 if ((*lgot_masks & PLT_IFUNC) != 0)
11421 {
11422 htab->elf.irelplt->size += rel_size;
11423 htab->got_reli_size += rel_size;
11424 }
11425 else if (info->shared)
11426 {
11427 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11428 srel->size += rel_size;
11429 }
11430 }
11431 }
11432 }
11433
11434 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
11435
11436 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11437 {
11438 struct got_entry *ent;
11439
11440 if (!is_ppc64_elf (ibfd))
11441 continue;
11442
11443 ent = ppc64_tlsld_got (ibfd);
11444 if (!ent->is_indirect
11445 && ent->got.offset != (bfd_vma) -1)
11446 {
11447 asection *s = ppc64_elf_tdata (ibfd)->got;
11448 ent->got.offset = s->size;
11449 s->size += 16;
11450 if (info->shared)
11451 {
11452 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11453 srel->size += sizeof (Elf64_External_Rela);
11454 }
11455 }
11456 }
11457
11458 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
11459 if (!done_something)
11460 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11461 {
11462 asection *got;
11463
11464 if (!is_ppc64_elf (ibfd))
11465 continue;
11466
11467 got = ppc64_elf_tdata (ibfd)->got;
11468 if (got != NULL)
11469 {
11470 done_something = got->rawsize != got->size;
11471 if (done_something)
11472 break;
11473 }
11474 }
11475
11476 if (done_something)
11477 (*htab->params->layout_sections_again) ();
11478
11479 /* Set up for second pass over toc sections to recalculate elf_gp
11480 on input sections. */
11481 htab->toc_bfd = NULL;
11482 htab->toc_first_sec = NULL;
11483 htab->second_toc_pass = TRUE;
11484 return done_something;
11485 }
11486
11487 /* Called after second pass of multitoc partitioning. */
11488
11489 void
11490 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
11491 {
11492 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11493
11494 /* After the second pass, toc_curr tracks the TOC offset used
11495 for code sections below in ppc64_elf_next_input_section. */
11496 htab->toc_curr = TOC_BASE_OFF;
11497 }
11498
11499 /* No toc references were found in ISEC. If the code in ISEC makes no
11500 calls, then there's no need to use toc adjusting stubs when branching
11501 into ISEC. Actually, indirect calls from ISEC are OK as they will
11502 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
11503 needed, and 2 if a cyclical call-graph was found but no other reason
11504 for a stub was detected. If called from the top level, a return of
11505 2 means the same as a return of 0. */
11506
11507 static int
11508 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
11509 {
11510 int ret;
11511
11512 /* Mark this section as checked. */
11513 isec->call_check_done = 1;
11514
11515 /* We know none of our code bearing sections will need toc stubs. */
11516 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11517 return 0;
11518
11519 if (isec->size == 0)
11520 return 0;
11521
11522 if (isec->output_section == NULL)
11523 return 0;
11524
11525 ret = 0;
11526 if (isec->reloc_count != 0)
11527 {
11528 Elf_Internal_Rela *relstart, *rel;
11529 Elf_Internal_Sym *local_syms;
11530 struct ppc_link_hash_table *htab;
11531
11532 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
11533 info->keep_memory);
11534 if (relstart == NULL)
11535 return -1;
11536
11537 /* Look for branches to outside of this section. */
11538 local_syms = NULL;
11539 htab = ppc_hash_table (info);
11540 if (htab == NULL)
11541 return -1;
11542
11543 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
11544 {
11545 enum elf_ppc64_reloc_type r_type;
11546 unsigned long r_symndx;
11547 struct elf_link_hash_entry *h;
11548 struct ppc_link_hash_entry *eh;
11549 Elf_Internal_Sym *sym;
11550 asection *sym_sec;
11551 struct _opd_sec_data *opd;
11552 bfd_vma sym_value;
11553 bfd_vma dest;
11554
11555 r_type = ELF64_R_TYPE (rel->r_info);
11556 if (r_type != R_PPC64_REL24
11557 && r_type != R_PPC64_REL14
11558 && r_type != R_PPC64_REL14_BRTAKEN
11559 && r_type != R_PPC64_REL14_BRNTAKEN)
11560 continue;
11561
11562 r_symndx = ELF64_R_SYM (rel->r_info);
11563 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
11564 isec->owner))
11565 {
11566 ret = -1;
11567 break;
11568 }
11569
11570 /* Calls to dynamic lib functions go through a plt call stub
11571 that uses r2. */
11572 eh = (struct ppc_link_hash_entry *) h;
11573 if (eh != NULL
11574 && (eh->elf.plt.plist != NULL
11575 || (eh->oh != NULL
11576 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
11577 {
11578 ret = 1;
11579 break;
11580 }
11581
11582 if (sym_sec == NULL)
11583 /* Ignore other undefined symbols. */
11584 continue;
11585
11586 /* Assume branches to other sections not included in the
11587 link need stubs too, to cover -R and absolute syms. */
11588 if (sym_sec->output_section == NULL)
11589 {
11590 ret = 1;
11591 break;
11592 }
11593
11594 if (h == NULL)
11595 sym_value = sym->st_value;
11596 else
11597 {
11598 if (h->root.type != bfd_link_hash_defined
11599 && h->root.type != bfd_link_hash_defweak)
11600 abort ();
11601 sym_value = h->root.u.def.value;
11602 }
11603 sym_value += rel->r_addend;
11604
11605 /* If this branch reloc uses an opd sym, find the code section. */
11606 opd = get_opd_info (sym_sec);
11607 if (opd != NULL)
11608 {
11609 if (h == NULL && opd->adjust != NULL)
11610 {
11611 long adjust;
11612
11613 adjust = opd->adjust[OPD_NDX (sym->st_value)];
11614 if (adjust == -1)
11615 /* Assume deleted functions won't ever be called. */
11616 continue;
11617 sym_value += adjust;
11618 }
11619
11620 dest = opd_entry_value (sym_sec, sym_value,
11621 &sym_sec, NULL, FALSE);
11622 if (dest == (bfd_vma) -1)
11623 continue;
11624 }
11625 else
11626 dest = (sym_value
11627 + sym_sec->output_offset
11628 + sym_sec->output_section->vma);
11629
11630 /* Ignore branch to self. */
11631 if (sym_sec == isec)
11632 continue;
11633
11634 /* If the called function uses the toc, we need a stub. */
11635 if (sym_sec->has_toc_reloc
11636 || sym_sec->makes_toc_func_call)
11637 {
11638 ret = 1;
11639 break;
11640 }
11641
11642 /* Assume any branch that needs a long branch stub might in fact
11643 need a plt_branch stub. A plt_branch stub uses r2. */
11644 else if (dest - (isec->output_offset
11645 + isec->output_section->vma
11646 + rel->r_offset) + (1 << 25)
11647 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
11648 ? h->other
11649 : sym->st_other))
11650 {
11651 ret = 1;
11652 break;
11653 }
11654
11655 /* If calling back to a section in the process of being
11656 tested, we can't say for sure that no toc adjusting stubs
11657 are needed, so don't return zero. */
11658 else if (sym_sec->call_check_in_progress)
11659 ret = 2;
11660
11661 /* Branches to another section that itself doesn't have any TOC
11662 references are OK. Recursively call ourselves to check. */
11663 else if (!sym_sec->call_check_done)
11664 {
11665 int recur;
11666
11667 /* Mark current section as indeterminate, so that other
11668 sections that call back to current won't be marked as
11669 known. */
11670 isec->call_check_in_progress = 1;
11671 recur = toc_adjusting_stub_needed (info, sym_sec);
11672 isec->call_check_in_progress = 0;
11673
11674 if (recur != 0)
11675 {
11676 ret = recur;
11677 if (recur != 2)
11678 break;
11679 }
11680 }
11681 }
11682
11683 if (local_syms != NULL
11684 && (elf_symtab_hdr (isec->owner).contents
11685 != (unsigned char *) local_syms))
11686 free (local_syms);
11687 if (elf_section_data (isec)->relocs != relstart)
11688 free (relstart);
11689 }
11690
11691 if ((ret & 1) == 0
11692 && isec->map_head.s != NULL
11693 && (strcmp (isec->output_section->name, ".init") == 0
11694 || strcmp (isec->output_section->name, ".fini") == 0))
11695 {
11696 if (isec->map_head.s->has_toc_reloc
11697 || isec->map_head.s->makes_toc_func_call)
11698 ret = 1;
11699 else if (!isec->map_head.s->call_check_done)
11700 {
11701 int recur;
11702 isec->call_check_in_progress = 1;
11703 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11704 isec->call_check_in_progress = 0;
11705 if (recur != 0)
11706 ret = recur;
11707 }
11708 }
11709
11710 if (ret == 1)
11711 isec->makes_toc_func_call = 1;
11712
11713 return ret;
11714 }
11715
11716 /* The linker repeatedly calls this function for each input section,
11717 in the order that input sections are linked into output sections.
11718 Build lists of input sections to determine groupings between which
11719 we may insert linker stubs. */
11720
11721 bfd_boolean
11722 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11723 {
11724 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11725
11726 if (htab == NULL)
11727 return FALSE;
11728
11729 if ((isec->output_section->flags & SEC_CODE) != 0
11730 && isec->output_section->index <= htab->top_index)
11731 {
11732 asection **list = htab->input_list + isec->output_section->index;
11733 /* Steal the link_sec pointer for our list. */
11734 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11735 /* This happens to make the list in reverse order,
11736 which is what we want. */
11737 PREV_SEC (isec) = *list;
11738 *list = isec;
11739 }
11740
11741 if (htab->multi_toc_needed)
11742 {
11743 /* Analyse sections that aren't already flagged as needing a
11744 valid toc pointer. Exclude .fixup for the linux kernel.
11745 .fixup contains branches, but only back to the function that
11746 hit an exception. */
11747 if (!(isec->has_toc_reloc
11748 || (isec->flags & SEC_CODE) == 0
11749 || strcmp (isec->name, ".fixup") == 0
11750 || isec->call_check_done))
11751 {
11752 if (toc_adjusting_stub_needed (info, isec) < 0)
11753 return FALSE;
11754 }
11755 /* Make all sections use the TOC assigned for this object file.
11756 This will be wrong for pasted sections; We fix that in
11757 check_pasted_section(). */
11758 if (elf_gp (isec->owner) != 0)
11759 htab->toc_curr = elf_gp (isec->owner);
11760 }
11761
11762 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11763 return TRUE;
11764 }
11765
11766 /* Check that all .init and .fini sections use the same toc, if they
11767 have toc relocs. */
11768
11769 static bfd_boolean
11770 check_pasted_section (struct bfd_link_info *info, const char *name)
11771 {
11772 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11773
11774 if (o != NULL)
11775 {
11776 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11777 bfd_vma toc_off = 0;
11778 asection *i;
11779
11780 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11781 if (i->has_toc_reloc)
11782 {
11783 if (toc_off == 0)
11784 toc_off = htab->stub_group[i->id].toc_off;
11785 else if (toc_off != htab->stub_group[i->id].toc_off)
11786 return FALSE;
11787 }
11788
11789 if (toc_off == 0)
11790 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11791 if (i->makes_toc_func_call)
11792 {
11793 toc_off = htab->stub_group[i->id].toc_off;
11794 break;
11795 }
11796
11797 /* Make sure the whole pasted function uses the same toc offset. */
11798 if (toc_off != 0)
11799 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11800 htab->stub_group[i->id].toc_off = toc_off;
11801 }
11802 return TRUE;
11803 }
11804
11805 bfd_boolean
11806 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11807 {
11808 return (check_pasted_section (info, ".init")
11809 & check_pasted_section (info, ".fini"));
11810 }
11811
11812 /* See whether we can group stub sections together. Grouping stub
11813 sections may result in fewer stubs. More importantly, we need to
11814 put all .init* and .fini* stubs at the beginning of the .init or
11815 .fini output sections respectively, because glibc splits the
11816 _init and _fini functions into multiple parts. Putting a stub in
11817 the middle of a function is not a good idea. */
11818
11819 static void
11820 group_sections (struct ppc_link_hash_table *htab,
11821 bfd_size_type stub_group_size,
11822 bfd_boolean stubs_always_before_branch)
11823 {
11824 asection **list;
11825 bfd_size_type stub14_group_size;
11826 bfd_boolean suppress_size_errors;
11827
11828 suppress_size_errors = FALSE;
11829 stub14_group_size = stub_group_size >> 10;
11830 if (stub_group_size == 1)
11831 {
11832 /* Default values. */
11833 if (stubs_always_before_branch)
11834 {
11835 stub_group_size = 0x1e00000;
11836 stub14_group_size = 0x7800;
11837 }
11838 else
11839 {
11840 stub_group_size = 0x1c00000;
11841 stub14_group_size = 0x7000;
11842 }
11843 suppress_size_errors = TRUE;
11844 }
11845
11846 list = htab->input_list + htab->top_index;
11847 do
11848 {
11849 asection *tail = *list;
11850 while (tail != NULL)
11851 {
11852 asection *curr;
11853 asection *prev;
11854 bfd_size_type total;
11855 bfd_boolean big_sec;
11856 bfd_vma curr_toc;
11857
11858 curr = tail;
11859 total = tail->size;
11860 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11861 && ppc64_elf_section_data (tail)->has_14bit_branch
11862 ? stub14_group_size : stub_group_size);
11863 if (big_sec && !suppress_size_errors)
11864 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11865 tail->owner, tail);
11866 curr_toc = htab->stub_group[tail->id].toc_off;
11867
11868 while ((prev = PREV_SEC (curr)) != NULL
11869 && ((total += curr->output_offset - prev->output_offset)
11870 < (ppc64_elf_section_data (prev) != NULL
11871 && ppc64_elf_section_data (prev)->has_14bit_branch
11872 ? stub14_group_size : stub_group_size))
11873 && htab->stub_group[prev->id].toc_off == curr_toc)
11874 curr = prev;
11875
11876 /* OK, the size from the start of CURR to the end is less
11877 than stub_group_size and thus can be handled by one stub
11878 section. (or the tail section is itself larger than
11879 stub_group_size, in which case we may be toast.) We
11880 should really be keeping track of the total size of stubs
11881 added here, as stubs contribute to the final output
11882 section size. That's a little tricky, and this way will
11883 only break if stubs added make the total size more than
11884 2^25, ie. for the default stub_group_size, if stubs total
11885 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11886 do
11887 {
11888 prev = PREV_SEC (tail);
11889 /* Set up this stub group. */
11890 htab->stub_group[tail->id].link_sec = curr;
11891 }
11892 while (tail != curr && (tail = prev) != NULL);
11893
11894 /* But wait, there's more! Input sections up to stub_group_size
11895 bytes before the stub section can be handled by it too.
11896 Don't do this if we have a really large section after the
11897 stubs, as adding more stubs increases the chance that
11898 branches may not reach into the stub section. */
11899 if (!stubs_always_before_branch && !big_sec)
11900 {
11901 total = 0;
11902 while (prev != NULL
11903 && ((total += tail->output_offset - prev->output_offset)
11904 < (ppc64_elf_section_data (prev) != NULL
11905 && ppc64_elf_section_data (prev)->has_14bit_branch
11906 ? stub14_group_size : stub_group_size))
11907 && htab->stub_group[prev->id].toc_off == curr_toc)
11908 {
11909 tail = prev;
11910 prev = PREV_SEC (tail);
11911 htab->stub_group[tail->id].link_sec = curr;
11912 }
11913 }
11914 tail = prev;
11915 }
11916 }
11917 while (list-- != htab->input_list);
11918 free (htab->input_list);
11919 #undef PREV_SEC
11920 }
11921
11922 static const unsigned char glink_eh_frame_cie[] =
11923 {
11924 0, 0, 0, 16, /* length. */
11925 0, 0, 0, 0, /* id. */
11926 1, /* CIE version. */
11927 'z', 'R', 0, /* Augmentation string. */
11928 4, /* Code alignment. */
11929 0x78, /* Data alignment. */
11930 65, /* RA reg. */
11931 1, /* Augmentation size. */
11932 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11933 DW_CFA_def_cfa, 1, 0, /* def_cfa: r1 offset 0. */
11934 0, 0, 0, 0
11935 };
11936
11937 /* Stripping output sections is normally done before dynamic section
11938 symbols have been allocated. This function is called later, and
11939 handles cases like htab->brlt which is mapped to its own output
11940 section. */
11941
11942 static void
11943 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11944 {
11945 if (isec->size == 0
11946 && isec->output_section->size == 0
11947 && !(isec->output_section->flags & SEC_KEEP)
11948 && !bfd_section_removed_from_list (info->output_bfd,
11949 isec->output_section)
11950 && elf_section_data (isec->output_section)->dynindx == 0)
11951 {
11952 isec->output_section->flags |= SEC_EXCLUDE;
11953 bfd_section_list_remove (info->output_bfd, isec->output_section);
11954 info->output_bfd->section_count--;
11955 }
11956 }
11957
11958 /* Determine and set the size of the stub section for a final link.
11959
11960 The basic idea here is to examine all the relocations looking for
11961 PC-relative calls to a target that is unreachable with a "bl"
11962 instruction. */
11963
11964 bfd_boolean
11965 ppc64_elf_size_stubs (struct bfd_link_info *info)
11966 {
11967 bfd_size_type stub_group_size;
11968 bfd_boolean stubs_always_before_branch;
11969 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11970
11971 if (htab == NULL)
11972 return FALSE;
11973
11974 if (htab->params->plt_thread_safe == -1 && !info->executable)
11975 htab->params->plt_thread_safe = 1;
11976 if (!htab->opd_abi)
11977 htab->params->plt_thread_safe = 0;
11978 else if (htab->params->plt_thread_safe == -1)
11979 {
11980 static const char *const thread_starter[] =
11981 {
11982 "pthread_create",
11983 /* libstdc++ */
11984 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11985 /* librt */
11986 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11987 "mq_notify", "create_timer",
11988 /* libanl */
11989 "getaddrinfo_a",
11990 /* libgomp */
11991 "GOMP_parallel",
11992 "GOMP_parallel_start",
11993 "GOMP_parallel_loop_static",
11994 "GOMP_parallel_loop_static_start",
11995 "GOMP_parallel_loop_dynamic",
11996 "GOMP_parallel_loop_dynamic_start",
11997 "GOMP_parallel_loop_guided",
11998 "GOMP_parallel_loop_guided_start",
11999 "GOMP_parallel_loop_runtime",
12000 "GOMP_parallel_loop_runtime_start",
12001 "GOMP_parallel_sections",
12002 "GOMP_parallel_sections_start",
12003 /* libgo */
12004 "__go_go",
12005 };
12006 unsigned i;
12007
12008 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
12009 {
12010 struct elf_link_hash_entry *h;
12011 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
12012 FALSE, FALSE, TRUE);
12013 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
12014 if (htab->params->plt_thread_safe)
12015 break;
12016 }
12017 }
12018 stubs_always_before_branch = htab->params->group_size < 0;
12019 if (htab->params->group_size < 0)
12020 stub_group_size = -htab->params->group_size;
12021 else
12022 stub_group_size = htab->params->group_size;
12023
12024 group_sections (htab, stub_group_size, stubs_always_before_branch);
12025
12026 while (1)
12027 {
12028 bfd *input_bfd;
12029 unsigned int bfd_indx;
12030 asection *stub_sec;
12031
12032 htab->stub_iteration += 1;
12033
12034 for (input_bfd = info->input_bfds, bfd_indx = 0;
12035 input_bfd != NULL;
12036 input_bfd = input_bfd->link.next, bfd_indx++)
12037 {
12038 Elf_Internal_Shdr *symtab_hdr;
12039 asection *section;
12040 Elf_Internal_Sym *local_syms = NULL;
12041
12042 if (!is_ppc64_elf (input_bfd))
12043 continue;
12044
12045 /* We'll need the symbol table in a second. */
12046 symtab_hdr = &elf_symtab_hdr (input_bfd);
12047 if (symtab_hdr->sh_info == 0)
12048 continue;
12049
12050 /* Walk over each section attached to the input bfd. */
12051 for (section = input_bfd->sections;
12052 section != NULL;
12053 section = section->next)
12054 {
12055 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
12056
12057 /* If there aren't any relocs, then there's nothing more
12058 to do. */
12059 if ((section->flags & SEC_RELOC) == 0
12060 || (section->flags & SEC_ALLOC) == 0
12061 || (section->flags & SEC_LOAD) == 0
12062 || (section->flags & SEC_CODE) == 0
12063 || section->reloc_count == 0)
12064 continue;
12065
12066 /* If this section is a link-once section that will be
12067 discarded, then don't create any stubs. */
12068 if (section->output_section == NULL
12069 || section->output_section->owner != info->output_bfd)
12070 continue;
12071
12072 /* Get the relocs. */
12073 internal_relocs
12074 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
12075 info->keep_memory);
12076 if (internal_relocs == NULL)
12077 goto error_ret_free_local;
12078
12079 /* Now examine each relocation. */
12080 irela = internal_relocs;
12081 irelaend = irela + section->reloc_count;
12082 for (; irela < irelaend; irela++)
12083 {
12084 enum elf_ppc64_reloc_type r_type;
12085 unsigned int r_indx;
12086 enum ppc_stub_type stub_type;
12087 struct ppc_stub_hash_entry *stub_entry;
12088 asection *sym_sec, *code_sec;
12089 bfd_vma sym_value, code_value;
12090 bfd_vma destination;
12091 unsigned long local_off;
12092 bfd_boolean ok_dest;
12093 struct ppc_link_hash_entry *hash;
12094 struct ppc_link_hash_entry *fdh;
12095 struct elf_link_hash_entry *h;
12096 Elf_Internal_Sym *sym;
12097 char *stub_name;
12098 const asection *id_sec;
12099 struct _opd_sec_data *opd;
12100 struct plt_entry *plt_ent;
12101
12102 r_type = ELF64_R_TYPE (irela->r_info);
12103 r_indx = ELF64_R_SYM (irela->r_info);
12104
12105 if (r_type >= R_PPC64_max)
12106 {
12107 bfd_set_error (bfd_error_bad_value);
12108 goto error_ret_free_internal;
12109 }
12110
12111 /* Only look for stubs on branch instructions. */
12112 if (r_type != R_PPC64_REL24
12113 && r_type != R_PPC64_REL14
12114 && r_type != R_PPC64_REL14_BRTAKEN
12115 && r_type != R_PPC64_REL14_BRNTAKEN)
12116 continue;
12117
12118 /* Now determine the call target, its name, value,
12119 section. */
12120 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
12121 r_indx, input_bfd))
12122 goto error_ret_free_internal;
12123 hash = (struct ppc_link_hash_entry *) h;
12124
12125 ok_dest = FALSE;
12126 fdh = NULL;
12127 sym_value = 0;
12128 if (hash == NULL)
12129 {
12130 sym_value = sym->st_value;
12131 ok_dest = TRUE;
12132 }
12133 else if (hash->elf.root.type == bfd_link_hash_defined
12134 || hash->elf.root.type == bfd_link_hash_defweak)
12135 {
12136 sym_value = hash->elf.root.u.def.value;
12137 if (sym_sec->output_section != NULL)
12138 ok_dest = TRUE;
12139 }
12140 else if (hash->elf.root.type == bfd_link_hash_undefweak
12141 || hash->elf.root.type == bfd_link_hash_undefined)
12142 {
12143 /* Recognise an old ABI func code entry sym, and
12144 use the func descriptor sym instead if it is
12145 defined. */
12146 if (hash->elf.root.root.string[0] == '.'
12147 && (fdh = lookup_fdh (hash, htab)) != NULL)
12148 {
12149 if (fdh->elf.root.type == bfd_link_hash_defined
12150 || fdh->elf.root.type == bfd_link_hash_defweak)
12151 {
12152 sym_sec = fdh->elf.root.u.def.section;
12153 sym_value = fdh->elf.root.u.def.value;
12154 if (sym_sec->output_section != NULL)
12155 ok_dest = TRUE;
12156 }
12157 else
12158 fdh = NULL;
12159 }
12160 }
12161 else
12162 {
12163 bfd_set_error (bfd_error_bad_value);
12164 goto error_ret_free_internal;
12165 }
12166
12167 destination = 0;
12168 local_off = 0;
12169 if (ok_dest)
12170 {
12171 sym_value += irela->r_addend;
12172 destination = (sym_value
12173 + sym_sec->output_offset
12174 + sym_sec->output_section->vma);
12175 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12176 ? hash->elf.other
12177 : sym->st_other);
12178 }
12179
12180 code_sec = sym_sec;
12181 code_value = sym_value;
12182 opd = get_opd_info (sym_sec);
12183 if (opd != NULL)
12184 {
12185 bfd_vma dest;
12186
12187 if (hash == NULL && opd->adjust != NULL)
12188 {
12189 long adjust = opd->adjust[OPD_NDX (sym_value)];
12190 if (adjust == -1)
12191 continue;
12192 code_value += adjust;
12193 sym_value += adjust;
12194 }
12195 dest = opd_entry_value (sym_sec, sym_value,
12196 &code_sec, &code_value, FALSE);
12197 if (dest != (bfd_vma) -1)
12198 {
12199 destination = dest;
12200 if (fdh != NULL)
12201 {
12202 /* Fixup old ABI sym to point at code
12203 entry. */
12204 hash->elf.root.type = bfd_link_hash_defweak;
12205 hash->elf.root.u.def.section = code_sec;
12206 hash->elf.root.u.def.value = code_value;
12207 }
12208 }
12209 }
12210
12211 /* Determine what (if any) linker stub is needed. */
12212 plt_ent = NULL;
12213 stub_type = ppc_type_of_stub (section, irela, &hash,
12214 &plt_ent, destination,
12215 local_off);
12216
12217 if (stub_type != ppc_stub_plt_call)
12218 {
12219 /* Check whether we need a TOC adjusting stub.
12220 Since the linker pastes together pieces from
12221 different object files when creating the
12222 _init and _fini functions, it may be that a
12223 call to what looks like a local sym is in
12224 fact a call needing a TOC adjustment. */
12225 if (code_sec != NULL
12226 && code_sec->output_section != NULL
12227 && (htab->stub_group[code_sec->id].toc_off
12228 != htab->stub_group[section->id].toc_off)
12229 && (code_sec->has_toc_reloc
12230 || code_sec->makes_toc_func_call))
12231 stub_type = ppc_stub_long_branch_r2off;
12232 }
12233
12234 if (stub_type == ppc_stub_none)
12235 continue;
12236
12237 /* __tls_get_addr calls might be eliminated. */
12238 if (stub_type != ppc_stub_plt_call
12239 && hash != NULL
12240 && (hash == htab->tls_get_addr
12241 || hash == htab->tls_get_addr_fd)
12242 && section->has_tls_reloc
12243 && irela != internal_relocs)
12244 {
12245 /* Get tls info. */
12246 unsigned char *tls_mask;
12247
12248 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
12249 irela - 1, input_bfd))
12250 goto error_ret_free_internal;
12251 if (*tls_mask != 0)
12252 continue;
12253 }
12254
12255 if (stub_type == ppc_stub_plt_call
12256 && irela + 1 < irelaend
12257 && irela[1].r_offset == irela->r_offset + 4
12258 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
12259 {
12260 if (!tocsave_find (htab, INSERT,
12261 &local_syms, irela + 1, input_bfd))
12262 goto error_ret_free_internal;
12263 }
12264 else if (stub_type == ppc_stub_plt_call)
12265 stub_type = ppc_stub_plt_call_r2save;
12266
12267 /* Support for grouping stub sections. */
12268 id_sec = htab->stub_group[section->id].link_sec;
12269
12270 /* Get the name of this stub. */
12271 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
12272 if (!stub_name)
12273 goto error_ret_free_internal;
12274
12275 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
12276 stub_name, FALSE, FALSE);
12277 if (stub_entry != NULL)
12278 {
12279 /* The proper stub has already been created. */
12280 free (stub_name);
12281 if (stub_type == ppc_stub_plt_call_r2save)
12282 stub_entry->stub_type = stub_type;
12283 continue;
12284 }
12285
12286 stub_entry = ppc_add_stub (stub_name, section, info);
12287 if (stub_entry == NULL)
12288 {
12289 free (stub_name);
12290 error_ret_free_internal:
12291 if (elf_section_data (section)->relocs == NULL)
12292 free (internal_relocs);
12293 error_ret_free_local:
12294 if (local_syms != NULL
12295 && (symtab_hdr->contents
12296 != (unsigned char *) local_syms))
12297 free (local_syms);
12298 return FALSE;
12299 }
12300
12301 stub_entry->stub_type = stub_type;
12302 if (stub_type != ppc_stub_plt_call
12303 && stub_type != ppc_stub_plt_call_r2save)
12304 {
12305 stub_entry->target_value = code_value;
12306 stub_entry->target_section = code_sec;
12307 }
12308 else
12309 {
12310 stub_entry->target_value = sym_value;
12311 stub_entry->target_section = sym_sec;
12312 }
12313 stub_entry->h = hash;
12314 stub_entry->plt_ent = plt_ent;
12315 stub_entry->other = hash ? hash->elf.other : sym->st_other;
12316
12317 if (stub_entry->h != NULL)
12318 htab->stub_globals += 1;
12319 }
12320
12321 /* We're done with the internal relocs, free them. */
12322 if (elf_section_data (section)->relocs != internal_relocs)
12323 free (internal_relocs);
12324 }
12325
12326 if (local_syms != NULL
12327 && symtab_hdr->contents != (unsigned char *) local_syms)
12328 {
12329 if (!info->keep_memory)
12330 free (local_syms);
12331 else
12332 symtab_hdr->contents = (unsigned char *) local_syms;
12333 }
12334 }
12335
12336 /* We may have added some stubs. Find out the new size of the
12337 stub sections. */
12338 for (stub_sec = htab->params->stub_bfd->sections;
12339 stub_sec != NULL;
12340 stub_sec = stub_sec->next)
12341 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12342 {
12343 stub_sec->rawsize = stub_sec->size;
12344 stub_sec->size = 0;
12345 stub_sec->reloc_count = 0;
12346 stub_sec->flags &= ~SEC_RELOC;
12347 }
12348
12349 htab->brlt->size = 0;
12350 htab->brlt->reloc_count = 0;
12351 htab->brlt->flags &= ~SEC_RELOC;
12352 if (htab->relbrlt != NULL)
12353 htab->relbrlt->size = 0;
12354
12355 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
12356
12357 if (info->emitrelocations
12358 && htab->glink != NULL && htab->glink->size != 0)
12359 {
12360 htab->glink->reloc_count = 1;
12361 htab->glink->flags |= SEC_RELOC;
12362 }
12363
12364 if (htab->glink_eh_frame != NULL
12365 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
12366 && htab->glink_eh_frame->output_section->size != 0)
12367 {
12368 size_t size = 0, align;
12369
12370 for (stub_sec = htab->params->stub_bfd->sections;
12371 stub_sec != NULL;
12372 stub_sec = stub_sec->next)
12373 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12374 size += 24;
12375 if (htab->glink != NULL && htab->glink->size != 0)
12376 size += 24;
12377 if (size != 0)
12378 size += sizeof (glink_eh_frame_cie);
12379 align = 1;
12380 align <<= htab->glink_eh_frame->output_section->alignment_power;
12381 align -= 1;
12382 size = (size + align) & ~align;
12383 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12384 htab->glink_eh_frame->size = size;
12385 }
12386
12387 if (htab->params->plt_stub_align != 0)
12388 for (stub_sec = htab->params->stub_bfd->sections;
12389 stub_sec != NULL;
12390 stub_sec = stub_sec->next)
12391 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12392 stub_sec->size = ((stub_sec->size
12393 + (1 << htab->params->plt_stub_align) - 1)
12394 & (-1 << htab->params->plt_stub_align));
12395
12396 for (stub_sec = htab->params->stub_bfd->sections;
12397 stub_sec != NULL;
12398 stub_sec = stub_sec->next)
12399 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12400 && stub_sec->rawsize != stub_sec->size)
12401 break;
12402
12403 /* Exit from this loop when no stubs have been added, and no stubs
12404 have changed size. */
12405 if (stub_sec == NULL
12406 && (htab->glink_eh_frame == NULL
12407 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
12408 break;
12409
12410 /* Ask the linker to do its stuff. */
12411 (*htab->params->layout_sections_again) ();
12412 }
12413
12414 if (htab->glink_eh_frame != NULL
12415 && htab->glink_eh_frame->size != 0)
12416 {
12417 bfd_vma val;
12418 bfd_byte *p, *last_fde;
12419 size_t last_fde_len, size, align, pad;
12420 asection *stub_sec;
12421
12422 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
12423 if (p == NULL)
12424 return FALSE;
12425 htab->glink_eh_frame->contents = p;
12426 last_fde = p;
12427
12428 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
12429 /* CIE length (rewrite in case little-endian). */
12430 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
12431 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
12432 p += sizeof (glink_eh_frame_cie);
12433
12434 for (stub_sec = htab->params->stub_bfd->sections;
12435 stub_sec != NULL;
12436 stub_sec = stub_sec->next)
12437 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12438 {
12439 last_fde = p;
12440 last_fde_len = 20;
12441 /* FDE length. */
12442 bfd_put_32 (htab->elf.dynobj, 20, p);
12443 p += 4;
12444 /* CIE pointer. */
12445 val = p - htab->glink_eh_frame->contents;
12446 bfd_put_32 (htab->elf.dynobj, val, p);
12447 p += 4;
12448 /* Offset to stub section, written later. */
12449 p += 4;
12450 /* stub section size. */
12451 bfd_put_32 (htab->elf.dynobj, stub_sec->size, p);
12452 p += 4;
12453 /* Augmentation. */
12454 p += 1;
12455 /* Pad. */
12456 p += 7;
12457 }
12458 if (htab->glink != NULL && htab->glink->size != 0)
12459 {
12460 last_fde = p;
12461 last_fde_len = 20;
12462 /* FDE length. */
12463 bfd_put_32 (htab->elf.dynobj, 20, p);
12464 p += 4;
12465 /* CIE pointer. */
12466 val = p - htab->glink_eh_frame->contents;
12467 bfd_put_32 (htab->elf.dynobj, val, p);
12468 p += 4;
12469 /* Offset to .glink, written later. */
12470 p += 4;
12471 /* .glink size. */
12472 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
12473 p += 4;
12474 /* Augmentation. */
12475 p += 1;
12476
12477 *p++ = DW_CFA_advance_loc + 1;
12478 *p++ = DW_CFA_register;
12479 *p++ = 65;
12480 *p++ = 12;
12481 *p++ = DW_CFA_advance_loc + 4;
12482 *p++ = DW_CFA_restore_extended;
12483 *p++ = 65;
12484 }
12485 /* Subsume any padding into the last FDE if user .eh_frame
12486 sections are aligned more than glink_eh_frame. Otherwise any
12487 zero padding will be seen as a terminator. */
12488 size = p - htab->glink_eh_frame->contents;
12489 align = 1;
12490 align <<= htab->glink_eh_frame->output_section->alignment_power;
12491 align -= 1;
12492 pad = ((size + align) & ~align) - size;
12493 htab->glink_eh_frame->size = size + pad;
12494 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12495 }
12496
12497 maybe_strip_output (info, htab->brlt);
12498 if (htab->glink_eh_frame != NULL)
12499 maybe_strip_output (info, htab->glink_eh_frame);
12500
12501 return TRUE;
12502 }
12503
12504 /* Called after we have determined section placement. If sections
12505 move, we'll be called again. Provide a value for TOCstart. */
12506
12507 bfd_vma
12508 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
12509 {
12510 asection *s;
12511 bfd_vma TOCstart;
12512
12513 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
12514 order. The TOC starts where the first of these sections starts. */
12515 s = bfd_get_section_by_name (obfd, ".got");
12516 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12517 s = bfd_get_section_by_name (obfd, ".toc");
12518 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12519 s = bfd_get_section_by_name (obfd, ".tocbss");
12520 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12521 s = bfd_get_section_by_name (obfd, ".plt");
12522 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12523 {
12524 /* This may happen for
12525 o references to TOC base (SYM@toc / TOC[tc0]) without a
12526 .toc directive
12527 o bad linker script
12528 o --gc-sections and empty TOC sections
12529
12530 FIXME: Warn user? */
12531
12532 /* Look for a likely section. We probably won't even be
12533 using TOCstart. */
12534 for (s = obfd->sections; s != NULL; s = s->next)
12535 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
12536 | SEC_EXCLUDE))
12537 == (SEC_ALLOC | SEC_SMALL_DATA))
12538 break;
12539 if (s == NULL)
12540 for (s = obfd->sections; s != NULL; s = s->next)
12541 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
12542 == (SEC_ALLOC | SEC_SMALL_DATA))
12543 break;
12544 if (s == NULL)
12545 for (s = obfd->sections; s != NULL; s = s->next)
12546 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
12547 == SEC_ALLOC)
12548 break;
12549 if (s == NULL)
12550 for (s = obfd->sections; s != NULL; s = s->next)
12551 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
12552 break;
12553 }
12554
12555 TOCstart = 0;
12556 if (s != NULL)
12557 TOCstart = s->output_section->vma + s->output_offset;
12558
12559 _bfd_set_gp_value (obfd, TOCstart);
12560
12561 if (info != NULL && s != NULL)
12562 {
12563 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12564
12565 if (htab != NULL)
12566 {
12567 if (htab->elf.hgot != NULL)
12568 {
12569 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF;
12570 htab->elf.hgot->root.u.def.section = s;
12571 }
12572 }
12573 else
12574 {
12575 struct bfd_link_hash_entry *bh = NULL;
12576 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
12577 s, TOC_BASE_OFF, NULL, FALSE,
12578 FALSE, &bh);
12579 }
12580 }
12581 return TOCstart;
12582 }
12583
12584 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
12585 write out any global entry stubs. */
12586
12587 static bfd_boolean
12588 build_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
12589 {
12590 struct bfd_link_info *info;
12591 struct ppc_link_hash_table *htab;
12592 struct plt_entry *pent;
12593 asection *s;
12594
12595 if (h->root.type == bfd_link_hash_indirect)
12596 return TRUE;
12597
12598 if (!h->pointer_equality_needed)
12599 return TRUE;
12600
12601 if (h->def_regular)
12602 return TRUE;
12603
12604 info = inf;
12605 htab = ppc_hash_table (info);
12606 if (htab == NULL)
12607 return FALSE;
12608
12609 s = htab->glink;
12610 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
12611 if (pent->plt.offset != (bfd_vma) -1
12612 && pent->addend == 0)
12613 {
12614 bfd_byte *p;
12615 asection *plt;
12616 bfd_vma off;
12617
12618 p = s->contents + h->root.u.def.value;
12619 plt = htab->elf.splt;
12620 if (!htab->elf.dynamic_sections_created
12621 || h->dynindx == -1)
12622 plt = htab->elf.iplt;
12623 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
12624 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
12625
12626 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
12627 {
12628 info->callbacks->einfo
12629 (_("%P: linkage table error against `%T'\n"),
12630 h->root.root.string);
12631 bfd_set_error (bfd_error_bad_value);
12632 htab->stub_error = TRUE;
12633 }
12634
12635 htab->stub_count[ppc_stub_global_entry - 1] += 1;
12636 if (htab->params->emit_stub_syms)
12637 {
12638 size_t len = strlen (h->root.root.string);
12639 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
12640
12641 if (name == NULL)
12642 return FALSE;
12643
12644 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
12645 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
12646 if (h == NULL)
12647 return FALSE;
12648 if (h->root.type == bfd_link_hash_new)
12649 {
12650 h->root.type = bfd_link_hash_defined;
12651 h->root.u.def.section = s;
12652 h->root.u.def.value = p - s->contents;
12653 h->ref_regular = 1;
12654 h->def_regular = 1;
12655 h->ref_regular_nonweak = 1;
12656 h->forced_local = 1;
12657 h->non_elf = 0;
12658 }
12659 }
12660
12661 if (PPC_HA (off) != 0)
12662 {
12663 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
12664 p += 4;
12665 }
12666 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
12667 p += 4;
12668 bfd_put_32 (s->owner, MTCTR_R12, p);
12669 p += 4;
12670 bfd_put_32 (s->owner, BCTR, p);
12671 break;
12672 }
12673 return TRUE;
12674 }
12675
12676 /* Build all the stubs associated with the current output file.
12677 The stubs are kept in a hash table attached to the main linker
12678 hash table. This function is called via gldelf64ppc_finish. */
12679
12680 bfd_boolean
12681 ppc64_elf_build_stubs (struct bfd_link_info *info,
12682 char **stats)
12683 {
12684 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12685 asection *stub_sec;
12686 bfd_byte *p;
12687 int stub_sec_count = 0;
12688
12689 if (htab == NULL)
12690 return FALSE;
12691
12692 /* Allocate memory to hold the linker stubs. */
12693 for (stub_sec = htab->params->stub_bfd->sections;
12694 stub_sec != NULL;
12695 stub_sec = stub_sec->next)
12696 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12697 && stub_sec->size != 0)
12698 {
12699 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd, stub_sec->size);
12700 if (stub_sec->contents == NULL)
12701 return FALSE;
12702 /* We want to check that built size is the same as calculated
12703 size. rawsize is a convenient location to use. */
12704 stub_sec->rawsize = stub_sec->size;
12705 stub_sec->size = 0;
12706 }
12707
12708 if (htab->glink != NULL && htab->glink->size != 0)
12709 {
12710 unsigned int indx;
12711 bfd_vma plt0;
12712
12713 /* Build the .glink plt call stub. */
12714 if (htab->params->emit_stub_syms)
12715 {
12716 struct elf_link_hash_entry *h;
12717 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
12718 TRUE, FALSE, FALSE);
12719 if (h == NULL)
12720 return FALSE;
12721 if (h->root.type == bfd_link_hash_new)
12722 {
12723 h->root.type = bfd_link_hash_defined;
12724 h->root.u.def.section = htab->glink;
12725 h->root.u.def.value = 8;
12726 h->ref_regular = 1;
12727 h->def_regular = 1;
12728 h->ref_regular_nonweak = 1;
12729 h->forced_local = 1;
12730 h->non_elf = 0;
12731 }
12732 }
12733 plt0 = (htab->elf.splt->output_section->vma
12734 + htab->elf.splt->output_offset
12735 - 16);
12736 if (info->emitrelocations)
12737 {
12738 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
12739 if (r == NULL)
12740 return FALSE;
12741 r->r_offset = (htab->glink->output_offset
12742 + htab->glink->output_section->vma);
12743 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
12744 r->r_addend = plt0;
12745 }
12746 p = htab->glink->contents;
12747 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
12748 bfd_put_64 (htab->glink->owner, plt0, p);
12749 p += 8;
12750 if (htab->opd_abi)
12751 {
12752 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
12753 p += 4;
12754 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12755 p += 4;
12756 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12757 p += 4;
12758 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12759 p += 4;
12760 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
12761 p += 4;
12762 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12763 p += 4;
12764 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12765 p += 4;
12766 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
12767 p += 4;
12768 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12769 p += 4;
12770 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
12771 p += 4;
12772 }
12773 else
12774 {
12775 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
12776 p += 4;
12777 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12778 p += 4;
12779 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12780 p += 4;
12781 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12782 p += 4;
12783 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
12784 p += 4;
12785 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
12786 p += 4;
12787 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12788 p += 4;
12789 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
12790 p += 4;
12791 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12792 p += 4;
12793 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
12794 p += 4;
12795 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12796 p += 4;
12797 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
12798 p += 4;
12799 }
12800 bfd_put_32 (htab->glink->owner, BCTR, p);
12801 p += 4;
12802 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
12803 {
12804 bfd_put_32 (htab->glink->owner, NOP, p);
12805 p += 4;
12806 }
12807
12808 /* Build the .glink lazy link call stubs. */
12809 indx = 0;
12810 while (p < htab->glink->contents + htab->glink->rawsize)
12811 {
12812 if (htab->opd_abi)
12813 {
12814 if (indx < 0x8000)
12815 {
12816 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
12817 p += 4;
12818 }
12819 else
12820 {
12821 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
12822 p += 4;
12823 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
12824 p);
12825 p += 4;
12826 }
12827 }
12828 bfd_put_32 (htab->glink->owner,
12829 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
12830 indx++;
12831 p += 4;
12832 }
12833
12834 /* Build .glink global entry stubs. */
12835 if (htab->glink->size > htab->glink->rawsize)
12836 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs, info);
12837 }
12838
12839 if (htab->brlt != NULL && htab->brlt->size != 0)
12840 {
12841 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
12842 htab->brlt->size);
12843 if (htab->brlt->contents == NULL)
12844 return FALSE;
12845 }
12846 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
12847 {
12848 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
12849 htab->relbrlt->size);
12850 if (htab->relbrlt->contents == NULL)
12851 return FALSE;
12852 }
12853
12854 /* Build the stubs as directed by the stub hash table. */
12855 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12856
12857 if (htab->relbrlt != NULL)
12858 htab->relbrlt->reloc_count = 0;
12859
12860 if (htab->params->plt_stub_align != 0)
12861 for (stub_sec = htab->params->stub_bfd->sections;
12862 stub_sec != NULL;
12863 stub_sec = stub_sec->next)
12864 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12865 stub_sec->size = ((stub_sec->size
12866 + (1 << htab->params->plt_stub_align) - 1)
12867 & (-1 << htab->params->plt_stub_align));
12868
12869 for (stub_sec = htab->params->stub_bfd->sections;
12870 stub_sec != NULL;
12871 stub_sec = stub_sec->next)
12872 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12873 {
12874 stub_sec_count += 1;
12875 if (stub_sec->rawsize != stub_sec->size)
12876 break;
12877 }
12878
12879 /* Note that the glink_eh_frame check here is not only testing that
12880 the generated size matched the calculated size but also that
12881 bfd_elf_discard_info didn't make any changes to the section. */
12882 if (stub_sec != NULL
12883 || (htab->glink_eh_frame != NULL
12884 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12885 {
12886 htab->stub_error = TRUE;
12887 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12888 }
12889
12890 if (htab->stub_error)
12891 return FALSE;
12892
12893 if (stats != NULL)
12894 {
12895 *stats = bfd_malloc (500);
12896 if (*stats == NULL)
12897 return FALSE;
12898
12899 sprintf (*stats, _("linker stubs in %u group%s\n"
12900 " branch %lu\n"
12901 " toc adjust %lu\n"
12902 " long branch %lu\n"
12903 " long toc adj %lu\n"
12904 " plt call %lu\n"
12905 " plt call toc %lu\n"
12906 " global entry %lu"),
12907 stub_sec_count,
12908 stub_sec_count == 1 ? "" : "s",
12909 htab->stub_count[ppc_stub_long_branch - 1],
12910 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12911 htab->stub_count[ppc_stub_plt_branch - 1],
12912 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12913 htab->stub_count[ppc_stub_plt_call - 1],
12914 htab->stub_count[ppc_stub_plt_call_r2save - 1],
12915 htab->stub_count[ppc_stub_global_entry - 1]);
12916 }
12917 return TRUE;
12918 }
12919
12920 /* This function undoes the changes made by add_symbol_adjust. */
12921
12922 static bfd_boolean
12923 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12924 {
12925 struct ppc_link_hash_entry *eh;
12926
12927 if (h->root.type == bfd_link_hash_indirect)
12928 return TRUE;
12929
12930 eh = (struct ppc_link_hash_entry *) h;
12931 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12932 return TRUE;
12933
12934 eh->elf.root.type = bfd_link_hash_undefined;
12935 return TRUE;
12936 }
12937
12938 void
12939 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12940 {
12941 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12942
12943 if (htab != NULL)
12944 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12945 }
12946
12947 /* What to do when ld finds relocations against symbols defined in
12948 discarded sections. */
12949
12950 static unsigned int
12951 ppc64_elf_action_discarded (asection *sec)
12952 {
12953 if (strcmp (".opd", sec->name) == 0)
12954 return 0;
12955
12956 if (strcmp (".toc", sec->name) == 0)
12957 return 0;
12958
12959 if (strcmp (".toc1", sec->name) == 0)
12960 return 0;
12961
12962 return _bfd_elf_default_action_discarded (sec);
12963 }
12964
12965 /* The RELOCATE_SECTION function is called by the ELF backend linker
12966 to handle the relocations for a section.
12967
12968 The relocs are always passed as Rela structures; if the section
12969 actually uses Rel structures, the r_addend field will always be
12970 zero.
12971
12972 This function is responsible for adjust the section contents as
12973 necessary, and (if using Rela relocs and generating a
12974 relocatable output file) adjusting the reloc addend as
12975 necessary.
12976
12977 This function does not have to worry about setting the reloc
12978 address or the reloc symbol index.
12979
12980 LOCAL_SYMS is a pointer to the swapped in local symbols.
12981
12982 LOCAL_SECTIONS is an array giving the section in the input file
12983 corresponding to the st_shndx field of each local symbol.
12984
12985 The global hash table entry for the global symbols can be found
12986 via elf_sym_hashes (input_bfd).
12987
12988 When generating relocatable output, this function must handle
12989 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12990 going to be the section symbol corresponding to the output
12991 section, which means that the addend must be adjusted
12992 accordingly. */
12993
12994 static bfd_boolean
12995 ppc64_elf_relocate_section (bfd *output_bfd,
12996 struct bfd_link_info *info,
12997 bfd *input_bfd,
12998 asection *input_section,
12999 bfd_byte *contents,
13000 Elf_Internal_Rela *relocs,
13001 Elf_Internal_Sym *local_syms,
13002 asection **local_sections)
13003 {
13004 struct ppc_link_hash_table *htab;
13005 Elf_Internal_Shdr *symtab_hdr;
13006 struct elf_link_hash_entry **sym_hashes;
13007 Elf_Internal_Rela *rel;
13008 Elf_Internal_Rela *relend;
13009 Elf_Internal_Rela outrel;
13010 bfd_byte *loc;
13011 struct got_entry **local_got_ents;
13012 bfd_vma TOCstart;
13013 bfd_boolean ret = TRUE;
13014 bfd_boolean is_opd;
13015 /* Assume 'at' branch hints. */
13016 bfd_boolean is_isa_v2 = TRUE;
13017 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
13018
13019 /* Initialize howto table if needed. */
13020 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
13021 ppc_howto_init ();
13022
13023 htab = ppc_hash_table (info);
13024 if (htab == NULL)
13025 return FALSE;
13026
13027 /* Don't relocate stub sections. */
13028 if (input_section->owner == htab->params->stub_bfd)
13029 return TRUE;
13030
13031 BFD_ASSERT (is_ppc64_elf (input_bfd));
13032
13033 local_got_ents = elf_local_got_ents (input_bfd);
13034 TOCstart = elf_gp (output_bfd);
13035 symtab_hdr = &elf_symtab_hdr (input_bfd);
13036 sym_hashes = elf_sym_hashes (input_bfd);
13037 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
13038
13039 rel = relocs;
13040 relend = relocs + input_section->reloc_count;
13041 for (; rel < relend; rel++)
13042 {
13043 enum elf_ppc64_reloc_type r_type;
13044 bfd_vma addend;
13045 bfd_reloc_status_type r;
13046 Elf_Internal_Sym *sym;
13047 asection *sec;
13048 struct elf_link_hash_entry *h_elf;
13049 struct ppc_link_hash_entry *h;
13050 struct ppc_link_hash_entry *fdh;
13051 const char *sym_name;
13052 unsigned long r_symndx, toc_symndx;
13053 bfd_vma toc_addend;
13054 unsigned char tls_mask, tls_gd, tls_type;
13055 unsigned char sym_type;
13056 bfd_vma relocation;
13057 bfd_boolean unresolved_reloc;
13058 bfd_boolean warned;
13059 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
13060 unsigned int insn;
13061 unsigned int mask;
13062 struct ppc_stub_hash_entry *stub_entry;
13063 bfd_vma max_br_offset;
13064 bfd_vma from;
13065 const Elf_Internal_Rela orig_rel = *rel;
13066 reloc_howto_type *howto;
13067 struct reloc_howto_struct alt_howto;
13068
13069 r_type = ELF64_R_TYPE (rel->r_info);
13070 r_symndx = ELF64_R_SYM (rel->r_info);
13071
13072 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
13073 symbol of the previous ADDR64 reloc. The symbol gives us the
13074 proper TOC base to use. */
13075 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
13076 && rel != relocs
13077 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
13078 && is_opd)
13079 r_symndx = ELF64_R_SYM (rel[-1].r_info);
13080
13081 sym = NULL;
13082 sec = NULL;
13083 h_elf = NULL;
13084 sym_name = NULL;
13085 unresolved_reloc = FALSE;
13086 warned = FALSE;
13087
13088 if (r_symndx < symtab_hdr->sh_info)
13089 {
13090 /* It's a local symbol. */
13091 struct _opd_sec_data *opd;
13092
13093 sym = local_syms + r_symndx;
13094 sec = local_sections[r_symndx];
13095 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
13096 sym_type = ELF64_ST_TYPE (sym->st_info);
13097 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13098 opd = get_opd_info (sec);
13099 if (opd != NULL && opd->adjust != NULL)
13100 {
13101 long adjust = opd->adjust[OPD_NDX (sym->st_value
13102 + rel->r_addend)];
13103 if (adjust == -1)
13104 relocation = 0;
13105 else
13106 {
13107 /* If this is a relocation against the opd section sym
13108 and we have edited .opd, adjust the reloc addend so
13109 that ld -r and ld --emit-relocs output is correct.
13110 If it is a reloc against some other .opd symbol,
13111 then the symbol value will be adjusted later. */
13112 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13113 rel->r_addend += adjust;
13114 else
13115 relocation += adjust;
13116 }
13117 }
13118 }
13119 else
13120 {
13121 bfd_boolean ignored;
13122
13123 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13124 r_symndx, symtab_hdr, sym_hashes,
13125 h_elf, sec, relocation,
13126 unresolved_reloc, warned, ignored);
13127 sym_name = h_elf->root.root.string;
13128 sym_type = h_elf->type;
13129 if (sec != NULL
13130 && sec->owner == output_bfd
13131 && strcmp (sec->name, ".opd") == 0)
13132 {
13133 /* This is a symbol defined in a linker script. All
13134 such are defined in output sections, even those
13135 defined by simple assignment from a symbol defined in
13136 an input section. Transfer the symbol to an
13137 appropriate input .opd section, so that a branch to
13138 this symbol will be mapped to the location specified
13139 by the opd entry. */
13140 struct bfd_link_order *lo;
13141 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
13142 if (lo->type == bfd_indirect_link_order)
13143 {
13144 asection *isec = lo->u.indirect.section;
13145 if (h_elf->root.u.def.value >= isec->output_offset
13146 && h_elf->root.u.def.value < (isec->output_offset
13147 + isec->size))
13148 {
13149 h_elf->root.u.def.value -= isec->output_offset;
13150 h_elf->root.u.def.section = isec;
13151 sec = isec;
13152 break;
13153 }
13154 }
13155 }
13156 }
13157 h = (struct ppc_link_hash_entry *) h_elf;
13158
13159 if (sec != NULL && discarded_section (sec))
13160 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13161 rel, 1, relend,
13162 ppc64_elf_howto_table[r_type], 0,
13163 contents);
13164
13165 if (info->relocatable)
13166 continue;
13167
13168 if (h != NULL && &h->elf == htab->elf.hgot)
13169 {
13170 relocation = (TOCstart
13171 + htab->stub_group[input_section->id].toc_off);
13172 sec = bfd_abs_section_ptr;
13173 unresolved_reloc = FALSE;
13174 }
13175
13176 /* TLS optimizations. Replace instruction sequences and relocs
13177 based on information we collected in tls_optimize. We edit
13178 RELOCS so that --emit-relocs will output something sensible
13179 for the final instruction stream. */
13180 tls_mask = 0;
13181 tls_gd = 0;
13182 toc_symndx = 0;
13183 if (h != NULL)
13184 tls_mask = h->tls_mask;
13185 else if (local_got_ents != NULL)
13186 {
13187 struct plt_entry **local_plt = (struct plt_entry **)
13188 (local_got_ents + symtab_hdr->sh_info);
13189 unsigned char *lgot_masks = (unsigned char *)
13190 (local_plt + symtab_hdr->sh_info);
13191 tls_mask = lgot_masks[r_symndx];
13192 }
13193 if (tls_mask == 0
13194 && (r_type == R_PPC64_TLS
13195 || r_type == R_PPC64_TLSGD
13196 || r_type == R_PPC64_TLSLD))
13197 {
13198 /* Check for toc tls entries. */
13199 unsigned char *toc_tls;
13200
13201 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13202 &local_syms, rel, input_bfd))
13203 return FALSE;
13204
13205 if (toc_tls)
13206 tls_mask = *toc_tls;
13207 }
13208
13209 /* Check that tls relocs are used with tls syms, and non-tls
13210 relocs are used with non-tls syms. */
13211 if (r_symndx != STN_UNDEF
13212 && r_type != R_PPC64_NONE
13213 && (h == NULL
13214 || h->elf.root.type == bfd_link_hash_defined
13215 || h->elf.root.type == bfd_link_hash_defweak)
13216 && (IS_PPC64_TLS_RELOC (r_type)
13217 != (sym_type == STT_TLS
13218 || (sym_type == STT_SECTION
13219 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
13220 {
13221 if (tls_mask != 0
13222 && (r_type == R_PPC64_TLS
13223 || r_type == R_PPC64_TLSGD
13224 || r_type == R_PPC64_TLSLD))
13225 /* R_PPC64_TLS is OK against a symbol in the TOC. */
13226 ;
13227 else
13228 info->callbacks->einfo
13229 (!IS_PPC64_TLS_RELOC (r_type)
13230 ? _("%P: %H: %s used with TLS symbol `%T'\n")
13231 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
13232 input_bfd, input_section, rel->r_offset,
13233 ppc64_elf_howto_table[r_type]->name,
13234 sym_name);
13235 }
13236
13237 /* Ensure reloc mapping code below stays sane. */
13238 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
13239 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
13240 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
13241 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
13242 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
13243 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
13244 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
13245 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
13246 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
13247 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
13248 abort ();
13249
13250 switch (r_type)
13251 {
13252 default:
13253 break;
13254
13255 case R_PPC64_LO_DS_OPT:
13256 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13257 if ((insn & (0x3f << 26)) != 58u << 26)
13258 abort ();
13259 insn += (14u << 26) - (58u << 26);
13260 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13261 r_type = R_PPC64_TOC16_LO;
13262 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13263 break;
13264
13265 case R_PPC64_TOC16:
13266 case R_PPC64_TOC16_LO:
13267 case R_PPC64_TOC16_DS:
13268 case R_PPC64_TOC16_LO_DS:
13269 {
13270 /* Check for toc tls entries. */
13271 unsigned char *toc_tls;
13272 int retval;
13273
13274 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13275 &local_syms, rel, input_bfd);
13276 if (retval == 0)
13277 return FALSE;
13278
13279 if (toc_tls)
13280 {
13281 tls_mask = *toc_tls;
13282 if (r_type == R_PPC64_TOC16_DS
13283 || r_type == R_PPC64_TOC16_LO_DS)
13284 {
13285 if (tls_mask != 0
13286 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
13287 goto toctprel;
13288 }
13289 else
13290 {
13291 /* If we found a GD reloc pair, then we might be
13292 doing a GD->IE transition. */
13293 if (retval == 2)
13294 {
13295 tls_gd = TLS_TPRELGD;
13296 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13297 goto tls_ldgd_opt;
13298 }
13299 else if (retval == 3)
13300 {
13301 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13302 goto tls_ldgd_opt;
13303 }
13304 }
13305 }
13306 }
13307 break;
13308
13309 case R_PPC64_GOT_TPREL16_HI:
13310 case R_PPC64_GOT_TPREL16_HA:
13311 if (tls_mask != 0
13312 && (tls_mask & TLS_TPREL) == 0)
13313 {
13314 rel->r_offset -= d_offset;
13315 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13316 r_type = R_PPC64_NONE;
13317 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13318 }
13319 break;
13320
13321 case R_PPC64_GOT_TPREL16_DS:
13322 case R_PPC64_GOT_TPREL16_LO_DS:
13323 if (tls_mask != 0
13324 && (tls_mask & TLS_TPREL) == 0)
13325 {
13326 toctprel:
13327 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13328 insn &= 31 << 21;
13329 insn |= 0x3c0d0000; /* addis 0,13,0 */
13330 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13331 r_type = R_PPC64_TPREL16_HA;
13332 if (toc_symndx != 0)
13333 {
13334 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13335 rel->r_addend = toc_addend;
13336 /* We changed the symbol. Start over in order to
13337 get h, sym, sec etc. right. */
13338 rel--;
13339 continue;
13340 }
13341 else
13342 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13343 }
13344 break;
13345
13346 case R_PPC64_TLS:
13347 if (tls_mask != 0
13348 && (tls_mask & TLS_TPREL) == 0)
13349 {
13350 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
13351 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
13352 if (insn == 0)
13353 abort ();
13354 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13355 /* Was PPC64_TLS which sits on insn boundary, now
13356 PPC64_TPREL16_LO which is at low-order half-word. */
13357 rel->r_offset += d_offset;
13358 r_type = R_PPC64_TPREL16_LO;
13359 if (toc_symndx != 0)
13360 {
13361 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13362 rel->r_addend = toc_addend;
13363 /* We changed the symbol. Start over in order to
13364 get h, sym, sec etc. right. */
13365 rel--;
13366 continue;
13367 }
13368 else
13369 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13370 }
13371 break;
13372
13373 case R_PPC64_GOT_TLSGD16_HI:
13374 case R_PPC64_GOT_TLSGD16_HA:
13375 tls_gd = TLS_TPRELGD;
13376 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13377 goto tls_gdld_hi;
13378 break;
13379
13380 case R_PPC64_GOT_TLSLD16_HI:
13381 case R_PPC64_GOT_TLSLD16_HA:
13382 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13383 {
13384 tls_gdld_hi:
13385 if ((tls_mask & tls_gd) != 0)
13386 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13387 + R_PPC64_GOT_TPREL16_DS);
13388 else
13389 {
13390 rel->r_offset -= d_offset;
13391 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13392 r_type = R_PPC64_NONE;
13393 }
13394 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13395 }
13396 break;
13397
13398 case R_PPC64_GOT_TLSGD16:
13399 case R_PPC64_GOT_TLSGD16_LO:
13400 tls_gd = TLS_TPRELGD;
13401 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13402 goto tls_ldgd_opt;
13403 break;
13404
13405 case R_PPC64_GOT_TLSLD16:
13406 case R_PPC64_GOT_TLSLD16_LO:
13407 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13408 {
13409 unsigned int insn1, insn2, insn3;
13410 bfd_vma offset;
13411
13412 tls_ldgd_opt:
13413 offset = (bfd_vma) -1;
13414 /* If not using the newer R_PPC64_TLSGD/LD to mark
13415 __tls_get_addr calls, we must trust that the call
13416 stays with its arg setup insns, ie. that the next
13417 reloc is the __tls_get_addr call associated with
13418 the current reloc. Edit both insns. */
13419 if (input_section->has_tls_get_addr_call
13420 && rel + 1 < relend
13421 && branch_reloc_hash_match (input_bfd, rel + 1,
13422 htab->tls_get_addr,
13423 htab->tls_get_addr_fd))
13424 offset = rel[1].r_offset;
13425 if ((tls_mask & tls_gd) != 0)
13426 {
13427 /* IE */
13428 insn1 = bfd_get_32 (output_bfd,
13429 contents + rel->r_offset - d_offset);
13430 insn1 &= (1 << 26) - (1 << 2);
13431 insn1 |= 58 << 26; /* ld */
13432 insn2 = 0x7c636a14; /* add 3,3,13 */
13433 if (offset != (bfd_vma) -1)
13434 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13435 if ((tls_mask & TLS_EXPLICIT) == 0)
13436 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13437 + R_PPC64_GOT_TPREL16_DS);
13438 else
13439 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
13440 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13441 }
13442 else
13443 {
13444 /* LE */
13445 insn1 = 0x3c6d0000; /* addis 3,13,0 */
13446 insn2 = 0x38630000; /* addi 3,3,0 */
13447 if (tls_gd == 0)
13448 {
13449 /* Was an LD reloc. */
13450 if (toc_symndx)
13451 sec = local_sections[toc_symndx];
13452 for (r_symndx = 0;
13453 r_symndx < symtab_hdr->sh_info;
13454 r_symndx++)
13455 if (local_sections[r_symndx] == sec)
13456 break;
13457 if (r_symndx >= symtab_hdr->sh_info)
13458 r_symndx = STN_UNDEF;
13459 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13460 if (r_symndx != STN_UNDEF)
13461 rel->r_addend -= (local_syms[r_symndx].st_value
13462 + sec->output_offset
13463 + sec->output_section->vma);
13464 }
13465 else if (toc_symndx != 0)
13466 {
13467 r_symndx = toc_symndx;
13468 rel->r_addend = toc_addend;
13469 }
13470 r_type = R_PPC64_TPREL16_HA;
13471 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13472 if (offset != (bfd_vma) -1)
13473 {
13474 rel[1].r_info = ELF64_R_INFO (r_symndx,
13475 R_PPC64_TPREL16_LO);
13476 rel[1].r_offset = offset + d_offset;
13477 rel[1].r_addend = rel->r_addend;
13478 }
13479 }
13480 bfd_put_32 (output_bfd, insn1,
13481 contents + rel->r_offset - d_offset);
13482 if (offset != (bfd_vma) -1)
13483 {
13484 insn3 = bfd_get_32 (output_bfd,
13485 contents + offset + 4);
13486 if (insn3 == NOP
13487 || insn3 == CROR_151515 || insn3 == CROR_313131)
13488 {
13489 rel[1].r_offset += 4;
13490 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13491 insn2 = NOP;
13492 }
13493 bfd_put_32 (output_bfd, insn2, contents + offset);
13494 }
13495 if ((tls_mask & tls_gd) == 0
13496 && (tls_gd == 0 || toc_symndx != 0))
13497 {
13498 /* We changed the symbol. Start over in order
13499 to get h, sym, sec etc. right. */
13500 rel--;
13501 continue;
13502 }
13503 }
13504 break;
13505
13506 case R_PPC64_TLSGD:
13507 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13508 {
13509 unsigned int insn2, insn3;
13510 bfd_vma offset = rel->r_offset;
13511
13512 if ((tls_mask & TLS_TPRELGD) != 0)
13513 {
13514 /* IE */
13515 r_type = R_PPC64_NONE;
13516 insn2 = 0x7c636a14; /* add 3,3,13 */
13517 }
13518 else
13519 {
13520 /* LE */
13521 if (toc_symndx != 0)
13522 {
13523 r_symndx = toc_symndx;
13524 rel->r_addend = toc_addend;
13525 }
13526 r_type = R_PPC64_TPREL16_LO;
13527 rel->r_offset = offset + d_offset;
13528 insn2 = 0x38630000; /* addi 3,3,0 */
13529 }
13530 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13531 /* Zap the reloc on the _tls_get_addr call too. */
13532 BFD_ASSERT (offset == rel[1].r_offset);
13533 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13534 insn3 = bfd_get_32 (output_bfd,
13535 contents + offset + 4);
13536 if (insn3 == NOP
13537 || insn3 == CROR_151515 || insn3 == CROR_313131)
13538 {
13539 rel->r_offset += 4;
13540 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13541 insn2 = NOP;
13542 }
13543 bfd_put_32 (output_bfd, insn2, contents + offset);
13544 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
13545 {
13546 rel--;
13547 continue;
13548 }
13549 }
13550 break;
13551
13552 case R_PPC64_TLSLD:
13553 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13554 {
13555 unsigned int insn2, insn3;
13556 bfd_vma offset = rel->r_offset;
13557
13558 if (toc_symndx)
13559 sec = local_sections[toc_symndx];
13560 for (r_symndx = 0;
13561 r_symndx < symtab_hdr->sh_info;
13562 r_symndx++)
13563 if (local_sections[r_symndx] == sec)
13564 break;
13565 if (r_symndx >= symtab_hdr->sh_info)
13566 r_symndx = STN_UNDEF;
13567 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13568 if (r_symndx != STN_UNDEF)
13569 rel->r_addend -= (local_syms[r_symndx].st_value
13570 + sec->output_offset
13571 + sec->output_section->vma);
13572
13573 r_type = R_PPC64_TPREL16_LO;
13574 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13575 rel->r_offset = offset + d_offset;
13576 /* Zap the reloc on the _tls_get_addr call too. */
13577 BFD_ASSERT (offset == rel[1].r_offset);
13578 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13579 insn2 = 0x38630000; /* addi 3,3,0 */
13580 insn3 = bfd_get_32 (output_bfd,
13581 contents + offset + 4);
13582 if (insn3 == NOP
13583 || insn3 == CROR_151515 || insn3 == CROR_313131)
13584 {
13585 rel->r_offset += 4;
13586 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13587 insn2 = NOP;
13588 }
13589 bfd_put_32 (output_bfd, insn2, contents + offset);
13590 rel--;
13591 continue;
13592 }
13593 break;
13594
13595 case R_PPC64_DTPMOD64:
13596 if (rel + 1 < relend
13597 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
13598 && rel[1].r_offset == rel->r_offset + 8)
13599 {
13600 if ((tls_mask & TLS_GD) == 0)
13601 {
13602 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
13603 if ((tls_mask & TLS_TPRELGD) != 0)
13604 r_type = R_PPC64_TPREL64;
13605 else
13606 {
13607 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13608 r_type = R_PPC64_NONE;
13609 }
13610 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13611 }
13612 }
13613 else
13614 {
13615 if ((tls_mask & TLS_LD) == 0)
13616 {
13617 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13618 r_type = R_PPC64_NONE;
13619 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13620 }
13621 }
13622 break;
13623
13624 case R_PPC64_TPREL64:
13625 if ((tls_mask & TLS_TPREL) == 0)
13626 {
13627 r_type = R_PPC64_NONE;
13628 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13629 }
13630 break;
13631
13632 case R_PPC64_REL16_HA:
13633 /* If we are generating a non-PIC executable, edit
13634 . 0: addis 2,12,.TOC.-0b@ha
13635 . addi 2,2,.TOC.-0b@l
13636 used by ELFv2 global entry points to set up r2, to
13637 . lis 2,.TOC.@ha
13638 . addi 2,2,.TOC.@l
13639 if .TOC. is in range. */
13640 if (!info->shared
13641 && !info->traditional_format
13642 && h != NULL && &h->elf == htab->elf.hgot
13643 && rel + 1 < relend
13644 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
13645 && rel[1].r_offset == rel->r_offset + 4
13646 && rel[1].r_addend == rel->r_addend + 4
13647 && relocation + 0x80008000 <= 0xffffffff)
13648 {
13649 unsigned int insn1, insn2;
13650 bfd_vma offset = rel->r_offset - d_offset;
13651 insn1 = bfd_get_32 (output_bfd, contents + offset);
13652 insn2 = bfd_get_32 (output_bfd, contents + offset + 4);
13653 if ((insn1 & 0xffff0000) == 0x3c4c0000 /* addis 2,12 */
13654 && (insn2 & 0xffff0000) == 0x38420000 /* addi 2,2 */)
13655 {
13656 r_type = R_PPC64_ADDR16_HA;
13657 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13658 rel->r_addend -= d_offset;
13659 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
13660 rel[1].r_addend -= d_offset + 4;
13661 bfd_put_32 (output_bfd, 0x3c400000, contents + offset);
13662 }
13663 }
13664 break;
13665 }
13666
13667 /* Handle other relocations that tweak non-addend part of insn. */
13668 insn = 0;
13669 max_br_offset = 1 << 25;
13670 addend = rel->r_addend;
13671 reloc_dest = DEST_NORMAL;
13672 switch (r_type)
13673 {
13674 default:
13675 break;
13676
13677 case R_PPC64_TOCSAVE:
13678 if (relocation + addend == (rel->r_offset
13679 + input_section->output_offset
13680 + input_section->output_section->vma)
13681 && tocsave_find (htab, NO_INSERT,
13682 &local_syms, rel, input_bfd))
13683 {
13684 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
13685 if (insn == NOP
13686 || insn == CROR_151515 || insn == CROR_313131)
13687 bfd_put_32 (input_bfd,
13688 STD_R2_0R1 + STK_TOC (htab),
13689 contents + rel->r_offset);
13690 }
13691 break;
13692
13693 /* Branch taken prediction relocations. */
13694 case R_PPC64_ADDR14_BRTAKEN:
13695 case R_PPC64_REL14_BRTAKEN:
13696 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
13697 /* Fall thru. */
13698
13699 /* Branch not taken prediction relocations. */
13700 case R_PPC64_ADDR14_BRNTAKEN:
13701 case R_PPC64_REL14_BRNTAKEN:
13702 insn |= bfd_get_32 (output_bfd,
13703 contents + rel->r_offset) & ~(0x01 << 21);
13704 /* Fall thru. */
13705
13706 case R_PPC64_REL14:
13707 max_br_offset = 1 << 15;
13708 /* Fall thru. */
13709
13710 case R_PPC64_REL24:
13711 /* Calls to functions with a different TOC, such as calls to
13712 shared objects, need to alter the TOC pointer. This is
13713 done using a linkage stub. A REL24 branching to these
13714 linkage stubs needs to be followed by a nop, as the nop
13715 will be replaced with an instruction to restore the TOC
13716 base pointer. */
13717 fdh = h;
13718 if (h != NULL
13719 && h->oh != NULL
13720 && h->oh->is_func_descriptor)
13721 fdh = ppc_follow_link (h->oh);
13722 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
13723 htab);
13724 if (stub_entry != NULL
13725 && (stub_entry->stub_type == ppc_stub_plt_call
13726 || stub_entry->stub_type == ppc_stub_plt_call_r2save
13727 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
13728 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
13729 {
13730 bfd_boolean can_plt_call = FALSE;
13731
13732 /* All of these stubs will modify r2, so there must be a
13733 branch and link followed by a nop. The nop is
13734 replaced by an insn to restore r2. */
13735 if (rel->r_offset + 8 <= input_section->size)
13736 {
13737 unsigned long br;
13738
13739 br = bfd_get_32 (input_bfd,
13740 contents + rel->r_offset);
13741 if ((br & 1) != 0)
13742 {
13743 unsigned long nop;
13744
13745 nop = bfd_get_32 (input_bfd,
13746 contents + rel->r_offset + 4);
13747 if (nop == NOP
13748 || nop == CROR_151515 || nop == CROR_313131)
13749 {
13750 if (h != NULL
13751 && (h == htab->tls_get_addr_fd
13752 || h == htab->tls_get_addr)
13753 && !htab->params->no_tls_get_addr_opt)
13754 {
13755 /* Special stub used, leave nop alone. */
13756 }
13757 else
13758 bfd_put_32 (input_bfd,
13759 LD_R2_0R1 + STK_TOC (htab),
13760 contents + rel->r_offset + 4);
13761 can_plt_call = TRUE;
13762 }
13763 }
13764 }
13765
13766 if (!can_plt_call && h != NULL)
13767 {
13768 const char *name = h->elf.root.root.string;
13769
13770 if (*name == '.')
13771 ++name;
13772
13773 if (strncmp (name, "__libc_start_main", 17) == 0
13774 && (name[17] == 0 || name[17] == '@'))
13775 {
13776 /* Allow crt1 branch to go via a toc adjusting
13777 stub. Other calls that never return could do
13778 the same, if we could detect such. */
13779 can_plt_call = TRUE;
13780 }
13781 }
13782
13783 if (!can_plt_call)
13784 {
13785 /* g++ as of 20130507 emits self-calls without a
13786 following nop. This is arguably wrong since we
13787 have conflicting information. On the one hand a
13788 global symbol and on the other a local call
13789 sequence, but don't error for this special case.
13790 It isn't possible to cheaply verify we have
13791 exactly such a call. Allow all calls to the same
13792 section. */
13793 asection *code_sec = sec;
13794
13795 if (get_opd_info (sec) != NULL)
13796 {
13797 bfd_vma off = (relocation + addend
13798 - sec->output_section->vma
13799 - sec->output_offset);
13800
13801 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
13802 }
13803 if (code_sec == input_section)
13804 can_plt_call = TRUE;
13805 }
13806
13807 if (!can_plt_call)
13808 {
13809 if (stub_entry->stub_type == ppc_stub_plt_call
13810 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13811 info->callbacks->einfo
13812 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13813 "recompile with -fPIC\n"),
13814 input_bfd, input_section, rel->r_offset, sym_name);
13815 else
13816 info->callbacks->einfo
13817 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13818 "(-mcmodel=small toc adjust stub)\n"),
13819 input_bfd, input_section, rel->r_offset, sym_name);
13820
13821 bfd_set_error (bfd_error_bad_value);
13822 ret = FALSE;
13823 }
13824
13825 if (can_plt_call
13826 && (stub_entry->stub_type == ppc_stub_plt_call
13827 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
13828 unresolved_reloc = FALSE;
13829 }
13830
13831 if ((stub_entry == NULL
13832 || stub_entry->stub_type == ppc_stub_long_branch
13833 || stub_entry->stub_type == ppc_stub_plt_branch)
13834 && get_opd_info (sec) != NULL)
13835 {
13836 /* The branch destination is the value of the opd entry. */
13837 bfd_vma off = (relocation + addend
13838 - sec->output_section->vma
13839 - sec->output_offset);
13840 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
13841 if (dest != (bfd_vma) -1)
13842 {
13843 relocation = dest;
13844 addend = 0;
13845 reloc_dest = DEST_OPD;
13846 }
13847 }
13848
13849 /* If the branch is out of reach we ought to have a long
13850 branch stub. */
13851 from = (rel->r_offset
13852 + input_section->output_offset
13853 + input_section->output_section->vma);
13854
13855 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
13856 ? fdh->elf.other
13857 : sym->st_other);
13858
13859 if (stub_entry != NULL
13860 && (stub_entry->stub_type == ppc_stub_long_branch
13861 || stub_entry->stub_type == ppc_stub_plt_branch)
13862 && (r_type == R_PPC64_ADDR14_BRTAKEN
13863 || r_type == R_PPC64_ADDR14_BRNTAKEN
13864 || (relocation + addend - from + max_br_offset
13865 < 2 * max_br_offset)))
13866 /* Don't use the stub if this branch is in range. */
13867 stub_entry = NULL;
13868
13869 if (stub_entry != NULL)
13870 {
13871 /* Munge up the value and addend so that we call the stub
13872 rather than the procedure directly. */
13873 relocation = (stub_entry->stub_offset
13874 + stub_entry->stub_sec->output_offset
13875 + stub_entry->stub_sec->output_section->vma);
13876 addend = 0;
13877 reloc_dest = DEST_STUB;
13878
13879 if ((stub_entry->stub_type == ppc_stub_plt_call
13880 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13881 && (ALWAYS_EMIT_R2SAVE
13882 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13883 && rel + 1 < relend
13884 && rel[1].r_offset == rel->r_offset + 4
13885 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13886 relocation += 4;
13887 }
13888
13889 if (insn != 0)
13890 {
13891 if (is_isa_v2)
13892 {
13893 /* Set 'a' bit. This is 0b00010 in BO field for branch
13894 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13895 for branch on CTR insns (BO == 1a00t or 1a01t). */
13896 if ((insn & (0x14 << 21)) == (0x04 << 21))
13897 insn |= 0x02 << 21;
13898 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13899 insn |= 0x08 << 21;
13900 else
13901 break;
13902 }
13903 else
13904 {
13905 /* Invert 'y' bit if not the default. */
13906 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13907 insn ^= 0x01 << 21;
13908 }
13909
13910 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13911 }
13912
13913 /* NOP out calls to undefined weak functions.
13914 We can thus call a weak function without first
13915 checking whether the function is defined. */
13916 else if (h != NULL
13917 && h->elf.root.type == bfd_link_hash_undefweak
13918 && h->elf.dynindx == -1
13919 && r_type == R_PPC64_REL24
13920 && relocation == 0
13921 && addend == 0)
13922 {
13923 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13924 continue;
13925 }
13926 break;
13927 }
13928
13929 /* Set `addend'. */
13930 tls_type = 0;
13931 switch (r_type)
13932 {
13933 default:
13934 info->callbacks->einfo
13935 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13936 input_bfd, (int) r_type, sym_name);
13937
13938 bfd_set_error (bfd_error_bad_value);
13939 ret = FALSE;
13940 continue;
13941
13942 case R_PPC64_NONE:
13943 case R_PPC64_TLS:
13944 case R_PPC64_TLSGD:
13945 case R_PPC64_TLSLD:
13946 case R_PPC64_TOCSAVE:
13947 case R_PPC64_GNU_VTINHERIT:
13948 case R_PPC64_GNU_VTENTRY:
13949 continue;
13950
13951 /* GOT16 relocations. Like an ADDR16 using the symbol's
13952 address in the GOT as relocation value instead of the
13953 symbol's value itself. Also, create a GOT entry for the
13954 symbol and put the symbol value there. */
13955 case R_PPC64_GOT_TLSGD16:
13956 case R_PPC64_GOT_TLSGD16_LO:
13957 case R_PPC64_GOT_TLSGD16_HI:
13958 case R_PPC64_GOT_TLSGD16_HA:
13959 tls_type = TLS_TLS | TLS_GD;
13960 goto dogot;
13961
13962 case R_PPC64_GOT_TLSLD16:
13963 case R_PPC64_GOT_TLSLD16_LO:
13964 case R_PPC64_GOT_TLSLD16_HI:
13965 case R_PPC64_GOT_TLSLD16_HA:
13966 tls_type = TLS_TLS | TLS_LD;
13967 goto dogot;
13968
13969 case R_PPC64_GOT_TPREL16_DS:
13970 case R_PPC64_GOT_TPREL16_LO_DS:
13971 case R_PPC64_GOT_TPREL16_HI:
13972 case R_PPC64_GOT_TPREL16_HA:
13973 tls_type = TLS_TLS | TLS_TPREL;
13974 goto dogot;
13975
13976 case R_PPC64_GOT_DTPREL16_DS:
13977 case R_PPC64_GOT_DTPREL16_LO_DS:
13978 case R_PPC64_GOT_DTPREL16_HI:
13979 case R_PPC64_GOT_DTPREL16_HA:
13980 tls_type = TLS_TLS | TLS_DTPREL;
13981 goto dogot;
13982
13983 case R_PPC64_GOT16:
13984 case R_PPC64_GOT16_LO:
13985 case R_PPC64_GOT16_HI:
13986 case R_PPC64_GOT16_HA:
13987 case R_PPC64_GOT16_DS:
13988 case R_PPC64_GOT16_LO_DS:
13989 dogot:
13990 {
13991 /* Relocation is to the entry for this symbol in the global
13992 offset table. */
13993 asection *got;
13994 bfd_vma *offp;
13995 bfd_vma off;
13996 unsigned long indx = 0;
13997 struct got_entry *ent;
13998
13999 if (tls_type == (TLS_TLS | TLS_LD)
14000 && (h == NULL
14001 || !h->elf.def_dynamic))
14002 ent = ppc64_tlsld_got (input_bfd);
14003 else
14004 {
14005
14006 if (h != NULL)
14007 {
14008 bfd_boolean dyn = htab->elf.dynamic_sections_created;
14009 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
14010 &h->elf)
14011 || (info->shared
14012 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
14013 /* This is actually a static link, or it is a
14014 -Bsymbolic link and the symbol is defined
14015 locally, or the symbol was forced to be local
14016 because of a version file. */
14017 ;
14018 else
14019 {
14020 BFD_ASSERT (h->elf.dynindx != -1);
14021 indx = h->elf.dynindx;
14022 unresolved_reloc = FALSE;
14023 }
14024 ent = h->elf.got.glist;
14025 }
14026 else
14027 {
14028 if (local_got_ents == NULL)
14029 abort ();
14030 ent = local_got_ents[r_symndx];
14031 }
14032
14033 for (; ent != NULL; ent = ent->next)
14034 if (ent->addend == orig_rel.r_addend
14035 && ent->owner == input_bfd
14036 && ent->tls_type == tls_type)
14037 break;
14038 }
14039
14040 if (ent == NULL)
14041 abort ();
14042 if (ent->is_indirect)
14043 ent = ent->got.ent;
14044 offp = &ent->got.offset;
14045 got = ppc64_elf_tdata (ent->owner)->got;
14046 if (got == NULL)
14047 abort ();
14048
14049 /* The offset must always be a multiple of 8. We use the
14050 least significant bit to record whether we have already
14051 processed this entry. */
14052 off = *offp;
14053 if ((off & 1) != 0)
14054 off &= ~1;
14055 else
14056 {
14057 /* Generate relocs for the dynamic linker, except in
14058 the case of TLSLD where we'll use one entry per
14059 module. */
14060 asection *relgot;
14061 bfd_boolean ifunc;
14062
14063 *offp = off | 1;
14064 relgot = NULL;
14065 ifunc = (h != NULL
14066 ? h->elf.type == STT_GNU_IFUNC
14067 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
14068 if (ifunc)
14069 relgot = htab->elf.irelplt;
14070 else if ((info->shared || indx != 0)
14071 && (h == NULL
14072 || (tls_type == (TLS_TLS | TLS_LD)
14073 && !h->elf.def_dynamic)
14074 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14075 || h->elf.root.type != bfd_link_hash_undefweak))
14076 relgot = ppc64_elf_tdata (ent->owner)->relgot;
14077 if (relgot != NULL)
14078 {
14079 outrel.r_offset = (got->output_section->vma
14080 + got->output_offset
14081 + off);
14082 outrel.r_addend = addend;
14083 if (tls_type & (TLS_LD | TLS_GD))
14084 {
14085 outrel.r_addend = 0;
14086 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
14087 if (tls_type == (TLS_TLS | TLS_GD))
14088 {
14089 loc = relgot->contents;
14090 loc += (relgot->reloc_count++
14091 * sizeof (Elf64_External_Rela));
14092 bfd_elf64_swap_reloca_out (output_bfd,
14093 &outrel, loc);
14094 outrel.r_offset += 8;
14095 outrel.r_addend = addend;
14096 outrel.r_info
14097 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14098 }
14099 }
14100 else if (tls_type == (TLS_TLS | TLS_DTPREL))
14101 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14102 else if (tls_type == (TLS_TLS | TLS_TPREL))
14103 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
14104 else if (indx != 0)
14105 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
14106 else
14107 {
14108 if (ifunc)
14109 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14110 else
14111 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14112
14113 /* Write the .got section contents for the sake
14114 of prelink. */
14115 loc = got->contents + off;
14116 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
14117 loc);
14118 }
14119
14120 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
14121 {
14122 outrel.r_addend += relocation;
14123 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
14124 outrel.r_addend -= htab->elf.tls_sec->vma;
14125 }
14126 loc = relgot->contents;
14127 loc += (relgot->reloc_count++
14128 * sizeof (Elf64_External_Rela));
14129 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14130 }
14131
14132 /* Init the .got section contents here if we're not
14133 emitting a reloc. */
14134 else
14135 {
14136 relocation += addend;
14137 if (tls_type == (TLS_TLS | TLS_LD))
14138 relocation = 1;
14139 else if (tls_type != 0)
14140 {
14141 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
14142 if (tls_type == (TLS_TLS | TLS_TPREL))
14143 relocation += DTP_OFFSET - TP_OFFSET;
14144
14145 if (tls_type == (TLS_TLS | TLS_GD))
14146 {
14147 bfd_put_64 (output_bfd, relocation,
14148 got->contents + off + 8);
14149 relocation = 1;
14150 }
14151 }
14152
14153 bfd_put_64 (output_bfd, relocation,
14154 got->contents + off);
14155 }
14156 }
14157
14158 if (off >= (bfd_vma) -2)
14159 abort ();
14160
14161 relocation = got->output_section->vma + got->output_offset + off;
14162 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
14163 }
14164 break;
14165
14166 case R_PPC64_PLT16_HA:
14167 case R_PPC64_PLT16_HI:
14168 case R_PPC64_PLT16_LO:
14169 case R_PPC64_PLT32:
14170 case R_PPC64_PLT64:
14171 /* Relocation is to the entry for this symbol in the
14172 procedure linkage table. */
14173
14174 /* Resolve a PLT reloc against a local symbol directly,
14175 without using the procedure linkage table. */
14176 if (h == NULL)
14177 break;
14178
14179 /* It's possible that we didn't make a PLT entry for this
14180 symbol. This happens when statically linking PIC code,
14181 or when using -Bsymbolic. Go find a match if there is a
14182 PLT entry. */
14183 if (htab->elf.splt != NULL)
14184 {
14185 struct plt_entry *ent;
14186 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
14187 if (ent->plt.offset != (bfd_vma) -1
14188 && ent->addend == orig_rel.r_addend)
14189 {
14190 relocation = (htab->elf.splt->output_section->vma
14191 + htab->elf.splt->output_offset
14192 + ent->plt.offset);
14193 unresolved_reloc = FALSE;
14194 break;
14195 }
14196 }
14197 break;
14198
14199 case R_PPC64_TOC:
14200 /* Relocation value is TOC base. */
14201 relocation = TOCstart;
14202 if (r_symndx == STN_UNDEF)
14203 relocation += htab->stub_group[input_section->id].toc_off;
14204 else if (unresolved_reloc)
14205 ;
14206 else if (sec != NULL && sec->id <= htab->top_id)
14207 relocation += htab->stub_group[sec->id].toc_off;
14208 else
14209 unresolved_reloc = TRUE;
14210 goto dodyn;
14211
14212 /* TOC16 relocs. We want the offset relative to the TOC base,
14213 which is the address of the start of the TOC plus 0x8000.
14214 The TOC consists of sections .got, .toc, .tocbss, and .plt,
14215 in this order. */
14216 case R_PPC64_TOC16:
14217 case R_PPC64_TOC16_LO:
14218 case R_PPC64_TOC16_HI:
14219 case R_PPC64_TOC16_DS:
14220 case R_PPC64_TOC16_LO_DS:
14221 case R_PPC64_TOC16_HA:
14222 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
14223 break;
14224
14225 /* Relocate against the beginning of the section. */
14226 case R_PPC64_SECTOFF:
14227 case R_PPC64_SECTOFF_LO:
14228 case R_PPC64_SECTOFF_HI:
14229 case R_PPC64_SECTOFF_DS:
14230 case R_PPC64_SECTOFF_LO_DS:
14231 case R_PPC64_SECTOFF_HA:
14232 if (sec != NULL)
14233 addend -= sec->output_section->vma;
14234 break;
14235
14236 case R_PPC64_REL16:
14237 case R_PPC64_REL16_LO:
14238 case R_PPC64_REL16_HI:
14239 case R_PPC64_REL16_HA:
14240 break;
14241
14242 case R_PPC64_REL14:
14243 case R_PPC64_REL14_BRNTAKEN:
14244 case R_PPC64_REL14_BRTAKEN:
14245 case R_PPC64_REL24:
14246 break;
14247
14248 case R_PPC64_TPREL16:
14249 case R_PPC64_TPREL16_LO:
14250 case R_PPC64_TPREL16_HI:
14251 case R_PPC64_TPREL16_HA:
14252 case R_PPC64_TPREL16_DS:
14253 case R_PPC64_TPREL16_LO_DS:
14254 case R_PPC64_TPREL16_HIGH:
14255 case R_PPC64_TPREL16_HIGHA:
14256 case R_PPC64_TPREL16_HIGHER:
14257 case R_PPC64_TPREL16_HIGHERA:
14258 case R_PPC64_TPREL16_HIGHEST:
14259 case R_PPC64_TPREL16_HIGHESTA:
14260 if (h != NULL
14261 && h->elf.root.type == bfd_link_hash_undefweak
14262 && h->elf.dynindx == -1)
14263 {
14264 /* Make this relocation against an undefined weak symbol
14265 resolve to zero. This is really just a tweak, since
14266 code using weak externs ought to check that they are
14267 defined before using them. */
14268 bfd_byte *p = contents + rel->r_offset - d_offset;
14269
14270 insn = bfd_get_32 (output_bfd, p);
14271 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
14272 if (insn != 0)
14273 bfd_put_32 (output_bfd, insn, p);
14274 break;
14275 }
14276 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14277 if (info->shared)
14278 /* The TPREL16 relocs shouldn't really be used in shared
14279 libs as they will result in DT_TEXTREL being set, but
14280 support them anyway. */
14281 goto dodyn;
14282 break;
14283
14284 case R_PPC64_DTPREL16:
14285 case R_PPC64_DTPREL16_LO:
14286 case R_PPC64_DTPREL16_HI:
14287 case R_PPC64_DTPREL16_HA:
14288 case R_PPC64_DTPREL16_DS:
14289 case R_PPC64_DTPREL16_LO_DS:
14290 case R_PPC64_DTPREL16_HIGH:
14291 case R_PPC64_DTPREL16_HIGHA:
14292 case R_PPC64_DTPREL16_HIGHER:
14293 case R_PPC64_DTPREL16_HIGHERA:
14294 case R_PPC64_DTPREL16_HIGHEST:
14295 case R_PPC64_DTPREL16_HIGHESTA:
14296 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14297 break;
14298
14299 case R_PPC64_ADDR64_LOCAL:
14300 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
14301 ? h->elf.other
14302 : sym->st_other);
14303 break;
14304
14305 case R_PPC64_DTPMOD64:
14306 relocation = 1;
14307 addend = 0;
14308 goto dodyn;
14309
14310 case R_PPC64_TPREL64:
14311 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14312 goto dodyn;
14313
14314 case R_PPC64_DTPREL64:
14315 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14316 /* Fall thru */
14317
14318 /* Relocations that may need to be propagated if this is a
14319 dynamic object. */
14320 case R_PPC64_REL30:
14321 case R_PPC64_REL32:
14322 case R_PPC64_REL64:
14323 case R_PPC64_ADDR14:
14324 case R_PPC64_ADDR14_BRNTAKEN:
14325 case R_PPC64_ADDR14_BRTAKEN:
14326 case R_PPC64_ADDR16:
14327 case R_PPC64_ADDR16_DS:
14328 case R_PPC64_ADDR16_HA:
14329 case R_PPC64_ADDR16_HI:
14330 case R_PPC64_ADDR16_HIGH:
14331 case R_PPC64_ADDR16_HIGHA:
14332 case R_PPC64_ADDR16_HIGHER:
14333 case R_PPC64_ADDR16_HIGHERA:
14334 case R_PPC64_ADDR16_HIGHEST:
14335 case R_PPC64_ADDR16_HIGHESTA:
14336 case R_PPC64_ADDR16_LO:
14337 case R_PPC64_ADDR16_LO_DS:
14338 case R_PPC64_ADDR24:
14339 case R_PPC64_ADDR32:
14340 case R_PPC64_ADDR64:
14341 case R_PPC64_UADDR16:
14342 case R_PPC64_UADDR32:
14343 case R_PPC64_UADDR64:
14344 dodyn:
14345 if ((input_section->flags & SEC_ALLOC) == 0)
14346 break;
14347
14348 if (NO_OPD_RELOCS && is_opd)
14349 break;
14350
14351 if ((info->shared
14352 && (h == NULL
14353 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14354 || h->elf.root.type != bfd_link_hash_undefweak)
14355 && (must_be_dyn_reloc (info, r_type)
14356 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
14357 || (ELIMINATE_COPY_RELOCS
14358 && !info->shared
14359 && h != NULL
14360 && h->elf.dynindx != -1
14361 && !h->elf.non_got_ref
14362 && !h->elf.def_regular)
14363 || (!info->shared
14364 && (h != NULL
14365 ? h->elf.type == STT_GNU_IFUNC
14366 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
14367 {
14368 bfd_boolean skip, relocate;
14369 asection *sreloc;
14370 bfd_vma out_off;
14371
14372 /* When generating a dynamic object, these relocations
14373 are copied into the output file to be resolved at run
14374 time. */
14375
14376 skip = FALSE;
14377 relocate = FALSE;
14378
14379 out_off = _bfd_elf_section_offset (output_bfd, info,
14380 input_section, rel->r_offset);
14381 if (out_off == (bfd_vma) -1)
14382 skip = TRUE;
14383 else if (out_off == (bfd_vma) -2)
14384 skip = TRUE, relocate = TRUE;
14385 out_off += (input_section->output_section->vma
14386 + input_section->output_offset);
14387 outrel.r_offset = out_off;
14388 outrel.r_addend = rel->r_addend;
14389
14390 /* Optimize unaligned reloc use. */
14391 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
14392 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
14393 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
14394 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
14395 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
14396 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
14397 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
14398 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
14399 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
14400
14401 if (skip)
14402 memset (&outrel, 0, sizeof outrel);
14403 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
14404 && !is_opd
14405 && r_type != R_PPC64_TOC)
14406 {
14407 BFD_ASSERT (h->elf.dynindx != -1);
14408 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
14409 }
14410 else
14411 {
14412 /* This symbol is local, or marked to become local,
14413 or this is an opd section reloc which must point
14414 at a local function. */
14415 outrel.r_addend += relocation;
14416 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
14417 {
14418 if (is_opd && h != NULL)
14419 {
14420 /* Lie about opd entries. This case occurs
14421 when building shared libraries and we
14422 reference a function in another shared
14423 lib. The same thing happens for a weak
14424 definition in an application that's
14425 overridden by a strong definition in a
14426 shared lib. (I believe this is a generic
14427 bug in binutils handling of weak syms.)
14428 In these cases we won't use the opd
14429 entry in this lib. */
14430 unresolved_reloc = FALSE;
14431 }
14432 if (!is_opd
14433 && r_type == R_PPC64_ADDR64
14434 && (h != NULL
14435 ? h->elf.type == STT_GNU_IFUNC
14436 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
14437 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14438 else
14439 {
14440 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14441
14442 /* We need to relocate .opd contents for ld.so.
14443 Prelink also wants simple and consistent rules
14444 for relocs. This make all RELATIVE relocs have
14445 *r_offset equal to r_addend. */
14446 relocate = TRUE;
14447 }
14448 }
14449 else
14450 {
14451 long indx = 0;
14452
14453 if (h != NULL
14454 ? h->elf.type == STT_GNU_IFUNC
14455 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14456 {
14457 info->callbacks->einfo
14458 (_("%P: %H: %s for indirect "
14459 "function `%T' unsupported\n"),
14460 input_bfd, input_section, rel->r_offset,
14461 ppc64_elf_howto_table[r_type]->name,
14462 sym_name);
14463 ret = FALSE;
14464 }
14465 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
14466 ;
14467 else if (sec == NULL || sec->owner == NULL)
14468 {
14469 bfd_set_error (bfd_error_bad_value);
14470 return FALSE;
14471 }
14472 else
14473 {
14474 asection *osec;
14475
14476 osec = sec->output_section;
14477 indx = elf_section_data (osec)->dynindx;
14478
14479 if (indx == 0)
14480 {
14481 if ((osec->flags & SEC_READONLY) == 0
14482 && htab->elf.data_index_section != NULL)
14483 osec = htab->elf.data_index_section;
14484 else
14485 osec = htab->elf.text_index_section;
14486 indx = elf_section_data (osec)->dynindx;
14487 }
14488 BFD_ASSERT (indx != 0);
14489
14490 /* We are turning this relocation into one
14491 against a section symbol, so subtract out
14492 the output section's address but not the
14493 offset of the input section in the output
14494 section. */
14495 outrel.r_addend -= osec->vma;
14496 }
14497
14498 outrel.r_info = ELF64_R_INFO (indx, r_type);
14499 }
14500 }
14501
14502 sreloc = elf_section_data (input_section)->sreloc;
14503 if (h != NULL
14504 ? h->elf.type == STT_GNU_IFUNC
14505 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14506 sreloc = htab->elf.irelplt;
14507 if (sreloc == NULL)
14508 abort ();
14509
14510 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
14511 >= sreloc->size)
14512 abort ();
14513 loc = sreloc->contents;
14514 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
14515 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14516
14517 /* If this reloc is against an external symbol, it will
14518 be computed at runtime, so there's no need to do
14519 anything now. However, for the sake of prelink ensure
14520 that the section contents are a known value. */
14521 if (! relocate)
14522 {
14523 unresolved_reloc = FALSE;
14524 /* The value chosen here is quite arbitrary as ld.so
14525 ignores section contents except for the special
14526 case of .opd where the contents might be accessed
14527 before relocation. Choose zero, as that won't
14528 cause reloc overflow. */
14529 relocation = 0;
14530 addend = 0;
14531 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
14532 to improve backward compatibility with older
14533 versions of ld. */
14534 if (r_type == R_PPC64_ADDR64)
14535 addend = outrel.r_addend;
14536 /* Adjust pc_relative relocs to have zero in *r_offset. */
14537 else if (ppc64_elf_howto_table[r_type]->pc_relative)
14538 addend = (input_section->output_section->vma
14539 + input_section->output_offset
14540 + rel->r_offset);
14541 }
14542 }
14543 break;
14544
14545 case R_PPC64_COPY:
14546 case R_PPC64_GLOB_DAT:
14547 case R_PPC64_JMP_SLOT:
14548 case R_PPC64_JMP_IREL:
14549 case R_PPC64_RELATIVE:
14550 /* We shouldn't ever see these dynamic relocs in relocatable
14551 files. */
14552 /* Fall through. */
14553
14554 case R_PPC64_PLTGOT16:
14555 case R_PPC64_PLTGOT16_DS:
14556 case R_PPC64_PLTGOT16_HA:
14557 case R_PPC64_PLTGOT16_HI:
14558 case R_PPC64_PLTGOT16_LO:
14559 case R_PPC64_PLTGOT16_LO_DS:
14560 case R_PPC64_PLTREL32:
14561 case R_PPC64_PLTREL64:
14562 /* These ones haven't been implemented yet. */
14563
14564 info->callbacks->einfo
14565 (_("%P: %B: %s is not supported for `%T'\n"),
14566 input_bfd,
14567 ppc64_elf_howto_table[r_type]->name, sym_name);
14568
14569 bfd_set_error (bfd_error_invalid_operation);
14570 ret = FALSE;
14571 continue;
14572 }
14573
14574 /* Multi-instruction sequences that access the TOC can be
14575 optimized, eg. addis ra,r2,0; addi rb,ra,x;
14576 to nop; addi rb,r2,x; */
14577 switch (r_type)
14578 {
14579 default:
14580 break;
14581
14582 case R_PPC64_GOT_TLSLD16_HI:
14583 case R_PPC64_GOT_TLSGD16_HI:
14584 case R_PPC64_GOT_TPREL16_HI:
14585 case R_PPC64_GOT_DTPREL16_HI:
14586 case R_PPC64_GOT16_HI:
14587 case R_PPC64_TOC16_HI:
14588 /* These relocs would only be useful if building up an
14589 offset to later add to r2, perhaps in an indexed
14590 addressing mode instruction. Don't try to optimize.
14591 Unfortunately, the possibility of someone building up an
14592 offset like this or even with the HA relocs, means that
14593 we need to check the high insn when optimizing the low
14594 insn. */
14595 break;
14596
14597 case R_PPC64_GOT_TLSLD16_HA:
14598 case R_PPC64_GOT_TLSGD16_HA:
14599 case R_PPC64_GOT_TPREL16_HA:
14600 case R_PPC64_GOT_DTPREL16_HA:
14601 case R_PPC64_GOT16_HA:
14602 case R_PPC64_TOC16_HA:
14603 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14604 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14605 {
14606 bfd_byte *p = contents + (rel->r_offset & ~3);
14607 bfd_put_32 (input_bfd, NOP, p);
14608 }
14609 break;
14610
14611 case R_PPC64_GOT_TLSLD16_LO:
14612 case R_PPC64_GOT_TLSGD16_LO:
14613 case R_PPC64_GOT_TPREL16_LO_DS:
14614 case R_PPC64_GOT_DTPREL16_LO_DS:
14615 case R_PPC64_GOT16_LO:
14616 case R_PPC64_GOT16_LO_DS:
14617 case R_PPC64_TOC16_LO:
14618 case R_PPC64_TOC16_LO_DS:
14619 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14620 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14621 {
14622 bfd_byte *p = contents + (rel->r_offset & ~3);
14623 insn = bfd_get_32 (input_bfd, p);
14624 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
14625 {
14626 /* Transform addic to addi when we change reg. */
14627 insn &= ~((0x3f << 26) | (0x1f << 16));
14628 insn |= (14u << 26) | (2 << 16);
14629 }
14630 else
14631 {
14632 insn &= ~(0x1f << 16);
14633 insn |= 2 << 16;
14634 }
14635 bfd_put_32 (input_bfd, insn, p);
14636 }
14637 break;
14638 }
14639
14640 /* Do any further special processing. */
14641 howto = ppc64_elf_howto_table[(int) r_type];
14642 switch (r_type)
14643 {
14644 default:
14645 break;
14646
14647 case R_PPC64_REL16_HA:
14648 case R_PPC64_ADDR16_HA:
14649 case R_PPC64_ADDR16_HIGHA:
14650 case R_PPC64_ADDR16_HIGHERA:
14651 case R_PPC64_ADDR16_HIGHESTA:
14652 case R_PPC64_TOC16_HA:
14653 case R_PPC64_SECTOFF_HA:
14654 case R_PPC64_TPREL16_HA:
14655 case R_PPC64_TPREL16_HIGHA:
14656 case R_PPC64_TPREL16_HIGHERA:
14657 case R_PPC64_TPREL16_HIGHESTA:
14658 case R_PPC64_DTPREL16_HA:
14659 case R_PPC64_DTPREL16_HIGHA:
14660 case R_PPC64_DTPREL16_HIGHERA:
14661 case R_PPC64_DTPREL16_HIGHESTA:
14662 /* It's just possible that this symbol is a weak symbol
14663 that's not actually defined anywhere. In that case,
14664 'sec' would be NULL, and we should leave the symbol
14665 alone (it will be set to zero elsewhere in the link). */
14666 if (sec == NULL)
14667 break;
14668 /* Fall thru */
14669
14670 case R_PPC64_GOT16_HA:
14671 case R_PPC64_PLTGOT16_HA:
14672 case R_PPC64_PLT16_HA:
14673 case R_PPC64_GOT_TLSGD16_HA:
14674 case R_PPC64_GOT_TLSLD16_HA:
14675 case R_PPC64_GOT_TPREL16_HA:
14676 case R_PPC64_GOT_DTPREL16_HA:
14677 /* Add 0x10000 if sign bit in 0:15 is set.
14678 Bits 0:15 are not used. */
14679 addend += 0x8000;
14680 break;
14681
14682 case R_PPC64_ADDR16_DS:
14683 case R_PPC64_ADDR16_LO_DS:
14684 case R_PPC64_GOT16_DS:
14685 case R_PPC64_GOT16_LO_DS:
14686 case R_PPC64_PLT16_LO_DS:
14687 case R_PPC64_SECTOFF_DS:
14688 case R_PPC64_SECTOFF_LO_DS:
14689 case R_PPC64_TOC16_DS:
14690 case R_PPC64_TOC16_LO_DS:
14691 case R_PPC64_PLTGOT16_DS:
14692 case R_PPC64_PLTGOT16_LO_DS:
14693 case R_PPC64_GOT_TPREL16_DS:
14694 case R_PPC64_GOT_TPREL16_LO_DS:
14695 case R_PPC64_GOT_DTPREL16_DS:
14696 case R_PPC64_GOT_DTPREL16_LO_DS:
14697 case R_PPC64_TPREL16_DS:
14698 case R_PPC64_TPREL16_LO_DS:
14699 case R_PPC64_DTPREL16_DS:
14700 case R_PPC64_DTPREL16_LO_DS:
14701 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14702 mask = 3;
14703 /* If this reloc is against an lq insn, then the value must be
14704 a multiple of 16. This is somewhat of a hack, but the
14705 "correct" way to do this by defining _DQ forms of all the
14706 _DS relocs bloats all reloc switches in this file. It
14707 doesn't seem to make much sense to use any of these relocs
14708 in data, so testing the insn should be safe. */
14709 if ((insn & (0x3f << 26)) == (56u << 26))
14710 mask = 15;
14711 if (((relocation + addend) & mask) != 0)
14712 {
14713 info->callbacks->einfo
14714 (_("%P: %H: error: %s not a multiple of %u\n"),
14715 input_bfd, input_section, rel->r_offset,
14716 howto->name,
14717 mask + 1);
14718 bfd_set_error (bfd_error_bad_value);
14719 ret = FALSE;
14720 continue;
14721 }
14722 break;
14723 }
14724
14725 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
14726 because such sections are not SEC_ALLOC and thus ld.so will
14727 not process them. */
14728 if (unresolved_reloc
14729 && !((input_section->flags & SEC_DEBUGGING) != 0
14730 && h->elf.def_dynamic)
14731 && _bfd_elf_section_offset (output_bfd, info, input_section,
14732 rel->r_offset) != (bfd_vma) -1)
14733 {
14734 info->callbacks->einfo
14735 (_("%P: %H: unresolvable %s against `%T'\n"),
14736 input_bfd, input_section, rel->r_offset,
14737 howto->name,
14738 h->elf.root.root.string);
14739 ret = FALSE;
14740 }
14741
14742 /* 16-bit fields in insns mostly have signed values, but a
14743 few insns have 16-bit unsigned values. Really, we should
14744 have different reloc types. */
14745 if (howto->complain_on_overflow != complain_overflow_dont
14746 && howto->dst_mask == 0xffff
14747 && (input_section->flags & SEC_CODE) != 0)
14748 {
14749 enum complain_overflow complain = complain_overflow_signed;
14750
14751 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14752 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
14753 complain = complain_overflow_bitfield;
14754 else if (howto->rightshift == 0
14755 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
14756 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
14757 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
14758 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
14759 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
14760 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
14761 complain = complain_overflow_unsigned;
14762 if (howto->complain_on_overflow != complain)
14763 {
14764 alt_howto = *howto;
14765 alt_howto.complain_on_overflow = complain;
14766 howto = &alt_howto;
14767 }
14768 }
14769
14770 r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents,
14771 rel->r_offset, relocation, addend);
14772
14773 if (r != bfd_reloc_ok)
14774 {
14775 char *more_info = NULL;
14776 const char *reloc_name = howto->name;
14777
14778 if (reloc_dest != DEST_NORMAL)
14779 {
14780 more_info = bfd_malloc (strlen (reloc_name) + 8);
14781 if (more_info != NULL)
14782 {
14783 strcpy (more_info, reloc_name);
14784 strcat (more_info, (reloc_dest == DEST_OPD
14785 ? " (OPD)" : " (stub)"));
14786 reloc_name = more_info;
14787 }
14788 }
14789
14790 if (r == bfd_reloc_overflow)
14791 {
14792 if (warned)
14793 continue;
14794 if (h != NULL
14795 && h->elf.root.type == bfd_link_hash_undefweak
14796 && howto->pc_relative)
14797 {
14798 /* Assume this is a call protected by other code that
14799 detects the symbol is undefined. If this is the case,
14800 we can safely ignore the overflow. If not, the
14801 program is hosed anyway, and a little warning isn't
14802 going to help. */
14803
14804 continue;
14805 }
14806
14807 if (!((*info->callbacks->reloc_overflow)
14808 (info, &h->elf.root, sym_name,
14809 reloc_name, orig_rel.r_addend,
14810 input_bfd, input_section, rel->r_offset)))
14811 return FALSE;
14812 }
14813 else
14814 {
14815 info->callbacks->einfo
14816 (_("%P: %H: %s against `%T': error %d\n"),
14817 input_bfd, input_section, rel->r_offset,
14818 reloc_name, sym_name, (int) r);
14819 ret = FALSE;
14820 }
14821 if (more_info != NULL)
14822 free (more_info);
14823 }
14824 }
14825
14826 /* If we're emitting relocations, then shortly after this function
14827 returns, reloc offsets and addends for this section will be
14828 adjusted. Worse, reloc symbol indices will be for the output
14829 file rather than the input. Save a copy of the relocs for
14830 opd_entry_value. */
14831 if (is_opd && (info->emitrelocations || info->relocatable))
14832 {
14833 bfd_size_type amt;
14834 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
14835 rel = bfd_alloc (input_bfd, amt);
14836 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
14837 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
14838 if (rel == NULL)
14839 return FALSE;
14840 memcpy (rel, relocs, amt);
14841 }
14842 return ret;
14843 }
14844
14845 /* Adjust the value of any local symbols in opd sections. */
14846
14847 static int
14848 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
14849 const char *name ATTRIBUTE_UNUSED,
14850 Elf_Internal_Sym *elfsym,
14851 asection *input_sec,
14852 struct elf_link_hash_entry *h)
14853 {
14854 struct _opd_sec_data *opd;
14855 long adjust;
14856 bfd_vma value;
14857
14858 if (h != NULL)
14859 return 1;
14860
14861 opd = get_opd_info (input_sec);
14862 if (opd == NULL || opd->adjust == NULL)
14863 return 1;
14864
14865 value = elfsym->st_value - input_sec->output_offset;
14866 if (!info->relocatable)
14867 value -= input_sec->output_section->vma;
14868
14869 adjust = opd->adjust[OPD_NDX (value)];
14870 if (adjust == -1)
14871 return 2;
14872
14873 elfsym->st_value += adjust;
14874 return 1;
14875 }
14876
14877 /* Finish up dynamic symbol handling. We set the contents of various
14878 dynamic sections here. */
14879
14880 static bfd_boolean
14881 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
14882 struct bfd_link_info *info,
14883 struct elf_link_hash_entry *h,
14884 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
14885 {
14886 struct ppc_link_hash_table *htab;
14887 struct plt_entry *ent;
14888 Elf_Internal_Rela rela;
14889 bfd_byte *loc;
14890
14891 htab = ppc_hash_table (info);
14892 if (htab == NULL)
14893 return FALSE;
14894
14895 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14896 if (ent->plt.offset != (bfd_vma) -1)
14897 {
14898 /* This symbol has an entry in the procedure linkage
14899 table. Set it up. */
14900 if (!htab->elf.dynamic_sections_created
14901 || h->dynindx == -1)
14902 {
14903 BFD_ASSERT (h->type == STT_GNU_IFUNC
14904 && h->def_regular
14905 && (h->root.type == bfd_link_hash_defined
14906 || h->root.type == bfd_link_hash_defweak));
14907 rela.r_offset = (htab->elf.iplt->output_section->vma
14908 + htab->elf.iplt->output_offset
14909 + ent->plt.offset);
14910 if (htab->opd_abi)
14911 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14912 else
14913 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14914 rela.r_addend = (h->root.u.def.value
14915 + h->root.u.def.section->output_offset
14916 + h->root.u.def.section->output_section->vma
14917 + ent->addend);
14918 loc = (htab->elf.irelplt->contents
14919 + (htab->elf.irelplt->reloc_count++
14920 * sizeof (Elf64_External_Rela)));
14921 }
14922 else
14923 {
14924 rela.r_offset = (htab->elf.splt->output_section->vma
14925 + htab->elf.splt->output_offset
14926 + ent->plt.offset);
14927 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14928 rela.r_addend = ent->addend;
14929 loc = (htab->elf.srelplt->contents
14930 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14931 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14932 }
14933 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14934
14935 if (!htab->opd_abi)
14936 {
14937 if (!h->def_regular)
14938 {
14939 /* Mark the symbol as undefined, rather than as
14940 defined in glink. Leave the value if there were
14941 any relocations where pointer equality matters
14942 (this is a clue for the dynamic linker, to make
14943 function pointer comparisons work between an
14944 application and shared library), otherwise set it
14945 to zero. */
14946 sym->st_shndx = SHN_UNDEF;
14947 if (!h->pointer_equality_needed)
14948 sym->st_value = 0;
14949 else if (!h->ref_regular_nonweak)
14950 {
14951 /* This breaks function pointer comparisons, but
14952 that is better than breaking tests for a NULL
14953 function pointer. */
14954 sym->st_value = 0;
14955 }
14956 }
14957 }
14958 }
14959
14960 if (h->needs_copy)
14961 {
14962 /* This symbol needs a copy reloc. Set it up. */
14963
14964 if (h->dynindx == -1
14965 || (h->root.type != bfd_link_hash_defined
14966 && h->root.type != bfd_link_hash_defweak)
14967 || htab->relbss == NULL)
14968 abort ();
14969
14970 rela.r_offset = (h->root.u.def.value
14971 + h->root.u.def.section->output_section->vma
14972 + h->root.u.def.section->output_offset);
14973 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14974 rela.r_addend = 0;
14975 loc = htab->relbss->contents;
14976 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14977 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14978 }
14979
14980 return TRUE;
14981 }
14982
14983 /* Used to decide how to sort relocs in an optimal manner for the
14984 dynamic linker, before writing them out. */
14985
14986 static enum elf_reloc_type_class
14987 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
14988 const asection *rel_sec,
14989 const Elf_Internal_Rela *rela)
14990 {
14991 enum elf_ppc64_reloc_type r_type;
14992 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14993
14994 if (rel_sec == htab->elf.irelplt)
14995 return reloc_class_ifunc;
14996
14997 r_type = ELF64_R_TYPE (rela->r_info);
14998 switch (r_type)
14999 {
15000 case R_PPC64_RELATIVE:
15001 return reloc_class_relative;
15002 case R_PPC64_JMP_SLOT:
15003 return reloc_class_plt;
15004 case R_PPC64_COPY:
15005 return reloc_class_copy;
15006 default:
15007 return reloc_class_normal;
15008 }
15009 }
15010
15011 /* Finish up the dynamic sections. */
15012
15013 static bfd_boolean
15014 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
15015 struct bfd_link_info *info)
15016 {
15017 struct ppc_link_hash_table *htab;
15018 bfd *dynobj;
15019 asection *sdyn;
15020
15021 htab = ppc_hash_table (info);
15022 if (htab == NULL)
15023 return FALSE;
15024
15025 dynobj = htab->elf.dynobj;
15026 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
15027
15028 if (htab->elf.dynamic_sections_created)
15029 {
15030 Elf64_External_Dyn *dyncon, *dynconend;
15031
15032 if (sdyn == NULL || htab->elf.sgot == NULL)
15033 abort ();
15034
15035 dyncon = (Elf64_External_Dyn *) sdyn->contents;
15036 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
15037 for (; dyncon < dynconend; dyncon++)
15038 {
15039 Elf_Internal_Dyn dyn;
15040 asection *s;
15041
15042 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
15043
15044 switch (dyn.d_tag)
15045 {
15046 default:
15047 continue;
15048
15049 case DT_PPC64_GLINK:
15050 s = htab->glink;
15051 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15052 /* We stupidly defined DT_PPC64_GLINK to be the start
15053 of glink rather than the first entry point, which is
15054 what ld.so needs, and now have a bigger stub to
15055 support automatic multiple TOCs. */
15056 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 8 * 4;
15057 break;
15058
15059 case DT_PPC64_OPD:
15060 s = bfd_get_section_by_name (output_bfd, ".opd");
15061 if (s == NULL)
15062 continue;
15063 dyn.d_un.d_ptr = s->vma;
15064 break;
15065
15066 case DT_PPC64_OPT:
15067 if (htab->do_multi_toc && htab->multi_toc_needed)
15068 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
15069 break;
15070
15071 case DT_PPC64_OPDSZ:
15072 s = bfd_get_section_by_name (output_bfd, ".opd");
15073 if (s == NULL)
15074 continue;
15075 dyn.d_un.d_val = s->size;
15076 break;
15077
15078 case DT_PLTGOT:
15079 s = htab->elf.splt;
15080 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15081 break;
15082
15083 case DT_JMPREL:
15084 s = htab->elf.srelplt;
15085 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15086 break;
15087
15088 case DT_PLTRELSZ:
15089 dyn.d_un.d_val = htab->elf.srelplt->size;
15090 break;
15091
15092 case DT_RELASZ:
15093 /* Don't count procedure linkage table relocs in the
15094 overall reloc count. */
15095 s = htab->elf.srelplt;
15096 if (s == NULL)
15097 continue;
15098 dyn.d_un.d_val -= s->size;
15099 break;
15100
15101 case DT_RELA:
15102 /* We may not be using the standard ELF linker script.
15103 If .rela.plt is the first .rela section, we adjust
15104 DT_RELA to not include it. */
15105 s = htab->elf.srelplt;
15106 if (s == NULL)
15107 continue;
15108 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
15109 continue;
15110 dyn.d_un.d_ptr += s->size;
15111 break;
15112 }
15113
15114 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
15115 }
15116 }
15117
15118 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0)
15119 {
15120 /* Fill in the first entry in the global offset table.
15121 We use it to hold the link-time TOCbase. */
15122 bfd_put_64 (output_bfd,
15123 elf_gp (output_bfd) + TOC_BASE_OFF,
15124 htab->elf.sgot->contents);
15125
15126 /* Set .got entry size. */
15127 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize = 8;
15128 }
15129
15130 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
15131 {
15132 /* Set .plt entry size. */
15133 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
15134 = PLT_ENTRY_SIZE (htab);
15135 }
15136
15137 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
15138 brlt ourselves if emitrelocations. */
15139 if (htab->brlt != NULL
15140 && htab->brlt->reloc_count != 0
15141 && !_bfd_elf_link_output_relocs (output_bfd,
15142 htab->brlt,
15143 elf_section_data (htab->brlt)->rela.hdr,
15144 elf_section_data (htab->brlt)->relocs,
15145 NULL))
15146 return FALSE;
15147
15148 if (htab->glink != NULL
15149 && htab->glink->reloc_count != 0
15150 && !_bfd_elf_link_output_relocs (output_bfd,
15151 htab->glink,
15152 elf_section_data (htab->glink)->rela.hdr,
15153 elf_section_data (htab->glink)->relocs,
15154 NULL))
15155 return FALSE;
15156
15157 if (htab->glink_eh_frame != NULL
15158 && htab->glink_eh_frame->size != 0)
15159 {
15160 bfd_vma val;
15161 bfd_byte *p;
15162 asection *stub_sec;
15163
15164 p = htab->glink_eh_frame->contents + sizeof (glink_eh_frame_cie);
15165 for (stub_sec = htab->params->stub_bfd->sections;
15166 stub_sec != NULL;
15167 stub_sec = stub_sec->next)
15168 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
15169 {
15170 /* FDE length. */
15171 p += 4;
15172 /* CIE pointer. */
15173 p += 4;
15174 /* Offset to stub section. */
15175 val = (stub_sec->output_section->vma
15176 + stub_sec->output_offset);
15177 val -= (htab->glink_eh_frame->output_section->vma
15178 + htab->glink_eh_frame->output_offset
15179 + (p - htab->glink_eh_frame->contents));
15180 if (val + 0x80000000 > 0xffffffff)
15181 {
15182 info->callbacks->einfo
15183 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15184 stub_sec->name);
15185 return FALSE;
15186 }
15187 bfd_put_32 (dynobj, val, p);
15188 p += 4;
15189 /* stub section size. */
15190 p += 4;
15191 /* Augmentation. */
15192 p += 1;
15193 /* Pad. */
15194 p += 7;
15195 }
15196 if (htab->glink != NULL && htab->glink->size != 0)
15197 {
15198 /* FDE length. */
15199 p += 4;
15200 /* CIE pointer. */
15201 p += 4;
15202 /* Offset to .glink. */
15203 val = (htab->glink->output_section->vma
15204 + htab->glink->output_offset
15205 + 8);
15206 val -= (htab->glink_eh_frame->output_section->vma
15207 + htab->glink_eh_frame->output_offset
15208 + (p - htab->glink_eh_frame->contents));
15209 if (val + 0x80000000 > 0xffffffff)
15210 {
15211 info->callbacks->einfo
15212 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15213 htab->glink->name);
15214 return FALSE;
15215 }
15216 bfd_put_32 (dynobj, val, p);
15217 p += 4;
15218 /* .glink size. */
15219 p += 4;
15220 /* Augmentation. */
15221 p += 1;
15222 /* Ops. */
15223 p += 7;
15224 }
15225
15226 if (htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
15227 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
15228 htab->glink_eh_frame,
15229 htab->glink_eh_frame->contents))
15230 return FALSE;
15231 }
15232
15233 /* We need to handle writing out multiple GOT sections ourselves,
15234 since we didn't add them to DYNOBJ. We know dynobj is the first
15235 bfd. */
15236 while ((dynobj = dynobj->link.next) != NULL)
15237 {
15238 asection *s;
15239
15240 if (!is_ppc64_elf (dynobj))
15241 continue;
15242
15243 s = ppc64_elf_tdata (dynobj)->got;
15244 if (s != NULL
15245 && s->size != 0
15246 && s->output_section != bfd_abs_section_ptr
15247 && !bfd_set_section_contents (output_bfd, s->output_section,
15248 s->contents, s->output_offset,
15249 s->size))
15250 return FALSE;
15251 s = ppc64_elf_tdata (dynobj)->relgot;
15252 if (s != NULL
15253 && s->size != 0
15254 && s->output_section != bfd_abs_section_ptr
15255 && !bfd_set_section_contents (output_bfd, s->output_section,
15256 s->contents, s->output_offset,
15257 s->size))
15258 return FALSE;
15259 }
15260
15261 return TRUE;
15262 }
15263
15264 #include "elf64-target.h"
15265
15266 /* FreeBSD support */
15267
15268 #undef TARGET_LITTLE_SYM
15269 #undef TARGET_LITTLE_NAME
15270
15271 #undef TARGET_BIG_SYM
15272 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
15273 #undef TARGET_BIG_NAME
15274 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
15275
15276 #undef ELF_OSABI
15277 #define ELF_OSABI ELFOSABI_FREEBSD
15278
15279 #undef elf64_bed
15280 #define elf64_bed elf64_powerpc_fbsd_bed
15281
15282 #include "elf64-target.h"
15283
This page took 0.46222 seconds and 4 git commands to generate.