gdb/testsuite/
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24
25 /* The 64-bit PowerPC ELF ABI may be found at
26 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
27 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
28
29 #include "sysdep.h"
30 #include <stdarg.h>
31 #include "bfd.h"
32 #include "bfdlink.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/ppc64.h"
36 #include "elf64-ppc.h"
37 #include "dwarf2.h"
38
39 static bfd_reloc_status_type ppc64_elf_ha_reloc
40 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
41 static bfd_reloc_status_type ppc64_elf_branch_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
44 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
45 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
46 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
47 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
48 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
49 static bfd_reloc_status_type ppc64_elf_toc_reloc
50 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
51 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
52 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
53 static bfd_reloc_status_type ppc64_elf_toc64_reloc
54 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
55 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
56 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
57 static bfd_vma opd_entry_value
58 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
59
60 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
61 #define TARGET_LITTLE_NAME "elf64-powerpcle"
62 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
63 #define TARGET_BIG_NAME "elf64-powerpc"
64 #define ELF_ARCH bfd_arch_powerpc
65 #define ELF_TARGET_ID PPC64_ELF_DATA
66 #define ELF_MACHINE_CODE EM_PPC64
67 #define ELF_MAXPAGESIZE 0x10000
68 #define ELF_COMMONPAGESIZE 0x1000
69 #define elf_info_to_howto ppc64_elf_info_to_howto
70
71 #define elf_backend_want_got_sym 0
72 #define elf_backend_want_plt_sym 0
73 #define elf_backend_plt_alignment 3
74 #define elf_backend_plt_not_loaded 1
75 #define elf_backend_got_header_size 8
76 #define elf_backend_can_gc_sections 1
77 #define elf_backend_can_refcount 1
78 #define elf_backend_rela_normal 1
79 #define elf_backend_default_execstack 0
80
81 #define bfd_elf64_mkobject ppc64_elf_mkobject
82 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
83 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
84 #define bfd_elf64_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
88 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
89 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
90
91 #define elf_backend_object_p ppc64_elf_object_p
92 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
93 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
94 #define elf_backend_write_core_note ppc64_elf_write_core_note
95 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
96 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
97 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
98 #define elf_backend_check_directives ppc64_elf_process_dot_syms
99 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
100 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
101 #define elf_backend_check_relocs ppc64_elf_check_relocs
102 #define elf_backend_gc_keep ppc64_elf_gc_keep
103 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
104 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
105 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
106 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
107 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
108 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
109 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
110 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_post_process_headers _bfd_elf_set_osabi
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE 24
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
130
131 /* TOC base pointers offset from start of TOC. */
132 #define TOC_BASE_OFF 0x8000
133
134 /* Offset of tp and dtp pointers from start of TLS block. */
135 #define TP_OFFSET 0x7000
136 #define DTP_OFFSET 0x8000
137
138 /* .plt call stub instructions. The normal stub is like this, but
139 sometimes the .plt entry crosses a 64k boundary and we need to
140 insert an addi to adjust r12. */
141 #define PLT_CALL_STUB_SIZE (7*4)
142 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
143 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
144 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
145 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
146 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
147 /* ld %r11,xxx+16@l(%r12) */
148 #define BCTR 0x4e800420 /* bctr */
149
150
151 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,off@ha */
152 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
153 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
154 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
155
156 #define XOR_R11_R11_R11 0x7d6b5a78 /* xor %r11,%r11,%r11 */
157 #define ADD_R12_R12_R11 0x7d8c5a14 /* add %r12,%r12,%r11 */
158 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
159 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
160 #define BNECTR 0x4ca20420 /* bnectr+ */
161 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
162
163 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
164 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
165
166 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
167
168 /* glink call stub instructions. We enter with the index in R0. */
169 #define GLINK_CALL_STUB_SIZE (16*4)
170 /* 0: */
171 /* .quad plt0-1f */
172 /* __glink: */
173 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
174 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
175 /* 1: */
176 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
177 #define LD_R2_M16R11 0xe84bfff0 /* ld %2,(0b-1b)(%11) */
178 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
179 #define ADD_R12_R2_R11 0x7d825a14 /* add %12,%2,%11 */
180 /* ld %11,0(%12) */
181 /* ld %2,8(%12) */
182 /* mtctr %11 */
183 /* ld %11,16(%12) */
184 /* bctr */
185
186 /* Pad with this. */
187 #define NOP 0x60000000
188
189 /* Some other nops. */
190 #define CROR_151515 0x4def7b82
191 #define CROR_313131 0x4ffffb82
192
193 /* .glink entries for the first 32k functions are two instructions. */
194 #define LI_R0_0 0x38000000 /* li %r0,0 */
195 #define B_DOT 0x48000000 /* b . */
196
197 /* After that, we need two instructions to load the index, followed by
198 a branch. */
199 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
200 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
201
202 /* Instructions used by the save and restore reg functions. */
203 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
204 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
205 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
206 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
207 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
208 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
209 #define LI_R12_0 0x39800000 /* li %r12,0 */
210 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
211 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
212 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
213 #define BLR 0x4e800020 /* blr */
214
215 /* Since .opd is an array of descriptors and each entry will end up
216 with identical R_PPC64_RELATIVE relocs, there is really no need to
217 propagate .opd relocs; The dynamic linker should be taught to
218 relocate .opd without reloc entries. */
219 #ifndef NO_OPD_RELOCS
220 #define NO_OPD_RELOCS 0
221 #endif
222 \f
223 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
224
225 /* Relocation HOWTO's. */
226 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
227
228 static reloc_howto_type ppc64_elf_howto_raw[] = {
229 /* This reloc does nothing. */
230 HOWTO (R_PPC64_NONE, /* type */
231 0, /* rightshift */
232 2, /* size (0 = byte, 1 = short, 2 = long) */
233 32, /* bitsize */
234 FALSE, /* pc_relative */
235 0, /* bitpos */
236 complain_overflow_dont, /* complain_on_overflow */
237 bfd_elf_generic_reloc, /* special_function */
238 "R_PPC64_NONE", /* name */
239 FALSE, /* partial_inplace */
240 0, /* src_mask */
241 0, /* dst_mask */
242 FALSE), /* pcrel_offset */
243
244 /* A standard 32 bit relocation. */
245 HOWTO (R_PPC64_ADDR32, /* type */
246 0, /* rightshift */
247 2, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_bitfield, /* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_PPC64_ADDR32", /* name */
254 FALSE, /* partial_inplace */
255 0, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 /* An absolute 26 bit branch; the lower two bits must be zero.
260 FIXME: we don't check that, we just clear them. */
261 HOWTO (R_PPC64_ADDR24, /* type */
262 0, /* rightshift */
263 2, /* size (0 = byte, 1 = short, 2 = long) */
264 26, /* bitsize */
265 FALSE, /* pc_relative */
266 0, /* bitpos */
267 complain_overflow_bitfield, /* complain_on_overflow */
268 bfd_elf_generic_reloc, /* special_function */
269 "R_PPC64_ADDR24", /* name */
270 FALSE, /* partial_inplace */
271 0, /* src_mask */
272 0x03fffffc, /* dst_mask */
273 FALSE), /* pcrel_offset */
274
275 /* A standard 16 bit relocation. */
276 HOWTO (R_PPC64_ADDR16, /* type */
277 0, /* rightshift */
278 1, /* size (0 = byte, 1 = short, 2 = long) */
279 16, /* bitsize */
280 FALSE, /* pc_relative */
281 0, /* bitpos */
282 complain_overflow_bitfield, /* complain_on_overflow */
283 bfd_elf_generic_reloc, /* special_function */
284 "R_PPC64_ADDR16", /* name */
285 FALSE, /* partial_inplace */
286 0, /* src_mask */
287 0xffff, /* dst_mask */
288 FALSE), /* pcrel_offset */
289
290 /* A 16 bit relocation without overflow. */
291 HOWTO (R_PPC64_ADDR16_LO, /* type */
292 0, /* rightshift */
293 1, /* size (0 = byte, 1 = short, 2 = long) */
294 16, /* bitsize */
295 FALSE, /* pc_relative */
296 0, /* bitpos */
297 complain_overflow_dont,/* complain_on_overflow */
298 bfd_elf_generic_reloc, /* special_function */
299 "R_PPC64_ADDR16_LO", /* name */
300 FALSE, /* partial_inplace */
301 0, /* src_mask */
302 0xffff, /* dst_mask */
303 FALSE), /* pcrel_offset */
304
305 /* Bits 16-31 of an address. */
306 HOWTO (R_PPC64_ADDR16_HI, /* type */
307 16, /* rightshift */
308 1, /* size (0 = byte, 1 = short, 2 = long) */
309 16, /* bitsize */
310 FALSE, /* pc_relative */
311 0, /* bitpos */
312 complain_overflow_dont, /* complain_on_overflow */
313 bfd_elf_generic_reloc, /* special_function */
314 "R_PPC64_ADDR16_HI", /* name */
315 FALSE, /* partial_inplace */
316 0, /* src_mask */
317 0xffff, /* dst_mask */
318 FALSE), /* pcrel_offset */
319
320 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
321 bits, treated as a signed number, is negative. */
322 HOWTO (R_PPC64_ADDR16_HA, /* type */
323 16, /* rightshift */
324 1, /* size (0 = byte, 1 = short, 2 = long) */
325 16, /* bitsize */
326 FALSE, /* pc_relative */
327 0, /* bitpos */
328 complain_overflow_dont, /* complain_on_overflow */
329 ppc64_elf_ha_reloc, /* special_function */
330 "R_PPC64_ADDR16_HA", /* name */
331 FALSE, /* partial_inplace */
332 0, /* src_mask */
333 0xffff, /* dst_mask */
334 FALSE), /* pcrel_offset */
335
336 /* An absolute 16 bit branch; the lower two bits must be zero.
337 FIXME: we don't check that, we just clear them. */
338 HOWTO (R_PPC64_ADDR14, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 16, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield, /* complain_on_overflow */
345 ppc64_elf_branch_reloc, /* special_function */
346 "R_PPC64_ADDR14", /* name */
347 FALSE, /* partial_inplace */
348 0, /* src_mask */
349 0x0000fffc, /* dst_mask */
350 FALSE), /* pcrel_offset */
351
352 /* An absolute 16 bit branch, for which bit 10 should be set to
353 indicate that the branch is expected to be taken. The lower two
354 bits must be zero. */
355 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
356 0, /* rightshift */
357 2, /* size (0 = byte, 1 = short, 2 = long) */
358 16, /* bitsize */
359 FALSE, /* pc_relative */
360 0, /* bitpos */
361 complain_overflow_bitfield, /* complain_on_overflow */
362 ppc64_elf_brtaken_reloc, /* special_function */
363 "R_PPC64_ADDR14_BRTAKEN",/* name */
364 FALSE, /* partial_inplace */
365 0, /* src_mask */
366 0x0000fffc, /* dst_mask */
367 FALSE), /* pcrel_offset */
368
369 /* An absolute 16 bit branch, for which bit 10 should be set to
370 indicate that the branch is not expected to be taken. The lower
371 two bits must be zero. */
372 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 16, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield, /* complain_on_overflow */
379 ppc64_elf_brtaken_reloc, /* special_function */
380 "R_PPC64_ADDR14_BRNTAKEN",/* name */
381 FALSE, /* partial_inplace */
382 0, /* src_mask */
383 0x0000fffc, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 /* A relative 26 bit branch; the lower two bits must be zero. */
387 HOWTO (R_PPC64_REL24, /* type */
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 26, /* bitsize */
391 TRUE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_signed, /* complain_on_overflow */
394 ppc64_elf_branch_reloc, /* special_function */
395 "R_PPC64_REL24", /* name */
396 FALSE, /* partial_inplace */
397 0, /* src_mask */
398 0x03fffffc, /* dst_mask */
399 TRUE), /* pcrel_offset */
400
401 /* A relative 16 bit branch; the lower two bits must be zero. */
402 HOWTO (R_PPC64_REL14, /* type */
403 0, /* rightshift */
404 2, /* size (0 = byte, 1 = short, 2 = long) */
405 16, /* bitsize */
406 TRUE, /* pc_relative */
407 0, /* bitpos */
408 complain_overflow_signed, /* complain_on_overflow */
409 ppc64_elf_branch_reloc, /* special_function */
410 "R_PPC64_REL14", /* name */
411 FALSE, /* partial_inplace */
412 0, /* src_mask */
413 0x0000fffc, /* dst_mask */
414 TRUE), /* pcrel_offset */
415
416 /* A relative 16 bit branch. Bit 10 should be set to indicate that
417 the branch is expected to be taken. The lower two bits must be
418 zero. */
419 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 16, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 ppc64_elf_brtaken_reloc, /* special_function */
427 "R_PPC64_REL14_BRTAKEN", /* name */
428 FALSE, /* partial_inplace */
429 0, /* src_mask */
430 0x0000fffc, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 /* A relative 16 bit branch. Bit 10 should be set to indicate that
434 the branch is not expected to be taken. The lower two bits must
435 be zero. */
436 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
437 0, /* rightshift */
438 2, /* size (0 = byte, 1 = short, 2 = long) */
439 16, /* bitsize */
440 TRUE, /* pc_relative */
441 0, /* bitpos */
442 complain_overflow_signed, /* complain_on_overflow */
443 ppc64_elf_brtaken_reloc, /* special_function */
444 "R_PPC64_REL14_BRNTAKEN",/* name */
445 FALSE, /* partial_inplace */
446 0, /* src_mask */
447 0x0000fffc, /* dst_mask */
448 TRUE), /* pcrel_offset */
449
450 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
451 symbol. */
452 HOWTO (R_PPC64_GOT16, /* type */
453 0, /* rightshift */
454 1, /* size (0 = byte, 1 = short, 2 = long) */
455 16, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_signed, /* complain_on_overflow */
459 ppc64_elf_unhandled_reloc, /* special_function */
460 "R_PPC64_GOT16", /* name */
461 FALSE, /* partial_inplace */
462 0, /* src_mask */
463 0xffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465
466 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
467 the symbol. */
468 HOWTO (R_PPC64_GOT16_LO, /* type */
469 0, /* rightshift */
470 1, /* size (0 = byte, 1 = short, 2 = long) */
471 16, /* bitsize */
472 FALSE, /* pc_relative */
473 0, /* bitpos */
474 complain_overflow_dont, /* complain_on_overflow */
475 ppc64_elf_unhandled_reloc, /* special_function */
476 "R_PPC64_GOT16_LO", /* name */
477 FALSE, /* partial_inplace */
478 0, /* src_mask */
479 0xffff, /* dst_mask */
480 FALSE), /* pcrel_offset */
481
482 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
483 the symbol. */
484 HOWTO (R_PPC64_GOT16_HI, /* type */
485 16, /* rightshift */
486 1, /* size (0 = byte, 1 = short, 2 = long) */
487 16, /* bitsize */
488 FALSE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_dont,/* complain_on_overflow */
491 ppc64_elf_unhandled_reloc, /* special_function */
492 "R_PPC64_GOT16_HI", /* name */
493 FALSE, /* partial_inplace */
494 0, /* src_mask */
495 0xffff, /* dst_mask */
496 FALSE), /* pcrel_offset */
497
498 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
499 the symbol. */
500 HOWTO (R_PPC64_GOT16_HA, /* type */
501 16, /* rightshift */
502 1, /* size (0 = byte, 1 = short, 2 = long) */
503 16, /* bitsize */
504 FALSE, /* pc_relative */
505 0, /* bitpos */
506 complain_overflow_dont,/* complain_on_overflow */
507 ppc64_elf_unhandled_reloc, /* special_function */
508 "R_PPC64_GOT16_HA", /* name */
509 FALSE, /* partial_inplace */
510 0, /* src_mask */
511 0xffff, /* dst_mask */
512 FALSE), /* pcrel_offset */
513
514 /* This is used only by the dynamic linker. The symbol should exist
515 both in the object being run and in some shared library. The
516 dynamic linker copies the data addressed by the symbol from the
517 shared library into the object, because the object being
518 run has to have the data at some particular address. */
519 HOWTO (R_PPC64_COPY, /* type */
520 0, /* rightshift */
521 0, /* this one is variable size */
522 0, /* bitsize */
523 FALSE, /* pc_relative */
524 0, /* bitpos */
525 complain_overflow_dont, /* complain_on_overflow */
526 ppc64_elf_unhandled_reloc, /* special_function */
527 "R_PPC64_COPY", /* name */
528 FALSE, /* partial_inplace */
529 0, /* src_mask */
530 0, /* dst_mask */
531 FALSE), /* pcrel_offset */
532
533 /* Like R_PPC64_ADDR64, but used when setting global offset table
534 entries. */
535 HOWTO (R_PPC64_GLOB_DAT, /* type */
536 0, /* rightshift */
537 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
538 64, /* bitsize */
539 FALSE, /* pc_relative */
540 0, /* bitpos */
541 complain_overflow_dont, /* complain_on_overflow */
542 ppc64_elf_unhandled_reloc, /* special_function */
543 "R_PPC64_GLOB_DAT", /* name */
544 FALSE, /* partial_inplace */
545 0, /* src_mask */
546 ONES (64), /* dst_mask */
547 FALSE), /* pcrel_offset */
548
549 /* Created by the link editor. Marks a procedure linkage table
550 entry for a symbol. */
551 HOWTO (R_PPC64_JMP_SLOT, /* type */
552 0, /* rightshift */
553 0, /* size (0 = byte, 1 = short, 2 = long) */
554 0, /* bitsize */
555 FALSE, /* pc_relative */
556 0, /* bitpos */
557 complain_overflow_dont, /* complain_on_overflow */
558 ppc64_elf_unhandled_reloc, /* special_function */
559 "R_PPC64_JMP_SLOT", /* name */
560 FALSE, /* partial_inplace */
561 0, /* src_mask */
562 0, /* dst_mask */
563 FALSE), /* pcrel_offset */
564
565 /* Used only by the dynamic linker. When the object is run, this
566 doubleword64 is set to the load address of the object, plus the
567 addend. */
568 HOWTO (R_PPC64_RELATIVE, /* type */
569 0, /* rightshift */
570 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
571 64, /* bitsize */
572 FALSE, /* pc_relative */
573 0, /* bitpos */
574 complain_overflow_dont, /* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_PPC64_RELATIVE", /* name */
577 FALSE, /* partial_inplace */
578 0, /* src_mask */
579 ONES (64), /* dst_mask */
580 FALSE), /* pcrel_offset */
581
582 /* Like R_PPC64_ADDR32, but may be unaligned. */
583 HOWTO (R_PPC64_UADDR32, /* type */
584 0, /* rightshift */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
586 32, /* bitsize */
587 FALSE, /* pc_relative */
588 0, /* bitpos */
589 complain_overflow_bitfield, /* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_PPC64_UADDR32", /* name */
592 FALSE, /* partial_inplace */
593 0, /* src_mask */
594 0xffffffff, /* dst_mask */
595 FALSE), /* pcrel_offset */
596
597 /* Like R_PPC64_ADDR16, but may be unaligned. */
598 HOWTO (R_PPC64_UADDR16, /* type */
599 0, /* rightshift */
600 1, /* size (0 = byte, 1 = short, 2 = long) */
601 16, /* bitsize */
602 FALSE, /* pc_relative */
603 0, /* bitpos */
604 complain_overflow_bitfield, /* complain_on_overflow */
605 bfd_elf_generic_reloc, /* special_function */
606 "R_PPC64_UADDR16", /* name */
607 FALSE, /* partial_inplace */
608 0, /* src_mask */
609 0xffff, /* dst_mask */
610 FALSE), /* pcrel_offset */
611
612 /* 32-bit PC relative. */
613 HOWTO (R_PPC64_REL32, /* type */
614 0, /* rightshift */
615 2, /* size (0 = byte, 1 = short, 2 = long) */
616 32, /* bitsize */
617 TRUE, /* pc_relative */
618 0, /* bitpos */
619 /* FIXME: Verify. Was complain_overflow_bitfield. */
620 complain_overflow_signed, /* complain_on_overflow */
621 bfd_elf_generic_reloc, /* special_function */
622 "R_PPC64_REL32", /* name */
623 FALSE, /* partial_inplace */
624 0, /* src_mask */
625 0xffffffff, /* dst_mask */
626 TRUE), /* pcrel_offset */
627
628 /* 32-bit relocation to the symbol's procedure linkage table. */
629 HOWTO (R_PPC64_PLT32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_bitfield, /* complain_on_overflow */
636 ppc64_elf_unhandled_reloc, /* special_function */
637 "R_PPC64_PLT32", /* name */
638 FALSE, /* partial_inplace */
639 0, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
644 FIXME: R_PPC64_PLTREL32 not supported. */
645 HOWTO (R_PPC64_PLTREL32, /* type */
646 0, /* rightshift */
647 2, /* size (0 = byte, 1 = short, 2 = long) */
648 32, /* bitsize */
649 TRUE, /* pc_relative */
650 0, /* bitpos */
651 complain_overflow_signed, /* complain_on_overflow */
652 bfd_elf_generic_reloc, /* special_function */
653 "R_PPC64_PLTREL32", /* name */
654 FALSE, /* partial_inplace */
655 0, /* src_mask */
656 0xffffffff, /* dst_mask */
657 TRUE), /* pcrel_offset */
658
659 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
660 the symbol. */
661 HOWTO (R_PPC64_PLT16_LO, /* type */
662 0, /* rightshift */
663 1, /* size (0 = byte, 1 = short, 2 = long) */
664 16, /* bitsize */
665 FALSE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_dont, /* complain_on_overflow */
668 ppc64_elf_unhandled_reloc, /* special_function */
669 "R_PPC64_PLT16_LO", /* name */
670 FALSE, /* partial_inplace */
671 0, /* src_mask */
672 0xffff, /* dst_mask */
673 FALSE), /* pcrel_offset */
674
675 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
676 the symbol. */
677 HOWTO (R_PPC64_PLT16_HI, /* type */
678 16, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 16, /* bitsize */
681 FALSE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_dont, /* complain_on_overflow */
684 ppc64_elf_unhandled_reloc, /* special_function */
685 "R_PPC64_PLT16_HI", /* name */
686 FALSE, /* partial_inplace */
687 0, /* src_mask */
688 0xffff, /* dst_mask */
689 FALSE), /* pcrel_offset */
690
691 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
692 the symbol. */
693 HOWTO (R_PPC64_PLT16_HA, /* type */
694 16, /* rightshift */
695 1, /* size (0 = byte, 1 = short, 2 = long) */
696 16, /* bitsize */
697 FALSE, /* pc_relative */
698 0, /* bitpos */
699 complain_overflow_dont, /* complain_on_overflow */
700 ppc64_elf_unhandled_reloc, /* special_function */
701 "R_PPC64_PLT16_HA", /* name */
702 FALSE, /* partial_inplace */
703 0, /* src_mask */
704 0xffff, /* dst_mask */
705 FALSE), /* pcrel_offset */
706
707 /* 16-bit section relative relocation. */
708 HOWTO (R_PPC64_SECTOFF, /* type */
709 0, /* rightshift */
710 1, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield, /* complain_on_overflow */
715 ppc64_elf_sectoff_reloc, /* special_function */
716 "R_PPC64_SECTOFF", /* name */
717 FALSE, /* partial_inplace */
718 0, /* src_mask */
719 0xffff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 /* Like R_PPC64_SECTOFF, but no overflow warning. */
723 HOWTO (R_PPC64_SECTOFF_LO, /* type */
724 0, /* rightshift */
725 1, /* size (0 = byte, 1 = short, 2 = long) */
726 16, /* bitsize */
727 FALSE, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_dont, /* complain_on_overflow */
730 ppc64_elf_sectoff_reloc, /* special_function */
731 "R_PPC64_SECTOFF_LO", /* name */
732 FALSE, /* partial_inplace */
733 0, /* src_mask */
734 0xffff, /* dst_mask */
735 FALSE), /* pcrel_offset */
736
737 /* 16-bit upper half section relative relocation. */
738 HOWTO (R_PPC64_SECTOFF_HI, /* type */
739 16, /* rightshift */
740 1, /* size (0 = byte, 1 = short, 2 = long) */
741 16, /* bitsize */
742 FALSE, /* pc_relative */
743 0, /* bitpos */
744 complain_overflow_dont, /* complain_on_overflow */
745 ppc64_elf_sectoff_reloc, /* special_function */
746 "R_PPC64_SECTOFF_HI", /* name */
747 FALSE, /* partial_inplace */
748 0, /* src_mask */
749 0xffff, /* dst_mask */
750 FALSE), /* pcrel_offset */
751
752 /* 16-bit upper half adjusted section relative relocation. */
753 HOWTO (R_PPC64_SECTOFF_HA, /* type */
754 16, /* rightshift */
755 1, /* size (0 = byte, 1 = short, 2 = long) */
756 16, /* bitsize */
757 FALSE, /* pc_relative */
758 0, /* bitpos */
759 complain_overflow_dont, /* complain_on_overflow */
760 ppc64_elf_sectoff_ha_reloc, /* special_function */
761 "R_PPC64_SECTOFF_HA", /* name */
762 FALSE, /* partial_inplace */
763 0, /* src_mask */
764 0xffff, /* dst_mask */
765 FALSE), /* pcrel_offset */
766
767 /* Like R_PPC64_REL24 without touching the two least significant bits. */
768 HOWTO (R_PPC64_REL30, /* type */
769 2, /* rightshift */
770 2, /* size (0 = byte, 1 = short, 2 = long) */
771 30, /* bitsize */
772 TRUE, /* pc_relative */
773 0, /* bitpos */
774 complain_overflow_dont, /* complain_on_overflow */
775 bfd_elf_generic_reloc, /* special_function */
776 "R_PPC64_REL30", /* name */
777 FALSE, /* partial_inplace */
778 0, /* src_mask */
779 0xfffffffc, /* dst_mask */
780 TRUE), /* pcrel_offset */
781
782 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
783
784 /* A standard 64-bit relocation. */
785 HOWTO (R_PPC64_ADDR64, /* type */
786 0, /* rightshift */
787 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
788 64, /* bitsize */
789 FALSE, /* pc_relative */
790 0, /* bitpos */
791 complain_overflow_dont, /* complain_on_overflow */
792 bfd_elf_generic_reloc, /* special_function */
793 "R_PPC64_ADDR64", /* name */
794 FALSE, /* partial_inplace */
795 0, /* src_mask */
796 ONES (64), /* dst_mask */
797 FALSE), /* pcrel_offset */
798
799 /* The bits 32-47 of an address. */
800 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
801 32, /* rightshift */
802 1, /* size (0 = byte, 1 = short, 2 = long) */
803 16, /* bitsize */
804 FALSE, /* pc_relative */
805 0, /* bitpos */
806 complain_overflow_dont, /* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 "R_PPC64_ADDR16_HIGHER", /* name */
809 FALSE, /* partial_inplace */
810 0, /* src_mask */
811 0xffff, /* dst_mask */
812 FALSE), /* pcrel_offset */
813
814 /* The bits 32-47 of an address, plus 1 if the contents of the low
815 16 bits, treated as a signed number, is negative. */
816 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
817 32, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 16, /* bitsize */
820 FALSE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_dont, /* complain_on_overflow */
823 ppc64_elf_ha_reloc, /* special_function */
824 "R_PPC64_ADDR16_HIGHERA", /* name */
825 FALSE, /* partial_inplace */
826 0, /* src_mask */
827 0xffff, /* dst_mask */
828 FALSE), /* pcrel_offset */
829
830 /* The bits 48-63 of an address. */
831 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
832 48, /* rightshift */
833 1, /* size (0 = byte, 1 = short, 2 = long) */
834 16, /* bitsize */
835 FALSE, /* pc_relative */
836 0, /* bitpos */
837 complain_overflow_dont, /* complain_on_overflow */
838 bfd_elf_generic_reloc, /* special_function */
839 "R_PPC64_ADDR16_HIGHEST", /* name */
840 FALSE, /* partial_inplace */
841 0, /* src_mask */
842 0xffff, /* dst_mask */
843 FALSE), /* pcrel_offset */
844
845 /* The bits 48-63 of an address, plus 1 if the contents of the low
846 16 bits, treated as a signed number, is negative. */
847 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
848 48, /* rightshift */
849 1, /* size (0 = byte, 1 = short, 2 = long) */
850 16, /* bitsize */
851 FALSE, /* pc_relative */
852 0, /* bitpos */
853 complain_overflow_dont, /* complain_on_overflow */
854 ppc64_elf_ha_reloc, /* special_function */
855 "R_PPC64_ADDR16_HIGHESTA", /* name */
856 FALSE, /* partial_inplace */
857 0, /* src_mask */
858 0xffff, /* dst_mask */
859 FALSE), /* pcrel_offset */
860
861 /* Like ADDR64, but may be unaligned. */
862 HOWTO (R_PPC64_UADDR64, /* type */
863 0, /* rightshift */
864 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
865 64, /* bitsize */
866 FALSE, /* pc_relative */
867 0, /* bitpos */
868 complain_overflow_dont, /* complain_on_overflow */
869 bfd_elf_generic_reloc, /* special_function */
870 "R_PPC64_UADDR64", /* name */
871 FALSE, /* partial_inplace */
872 0, /* src_mask */
873 ONES (64), /* dst_mask */
874 FALSE), /* pcrel_offset */
875
876 /* 64-bit relative relocation. */
877 HOWTO (R_PPC64_REL64, /* type */
878 0, /* rightshift */
879 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
880 64, /* bitsize */
881 TRUE, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_dont, /* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 "R_PPC64_REL64", /* name */
886 FALSE, /* partial_inplace */
887 0, /* src_mask */
888 ONES (64), /* dst_mask */
889 TRUE), /* pcrel_offset */
890
891 /* 64-bit relocation to the symbol's procedure linkage table. */
892 HOWTO (R_PPC64_PLT64, /* type */
893 0, /* rightshift */
894 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
895 64, /* bitsize */
896 FALSE, /* pc_relative */
897 0, /* bitpos */
898 complain_overflow_dont, /* complain_on_overflow */
899 ppc64_elf_unhandled_reloc, /* special_function */
900 "R_PPC64_PLT64", /* name */
901 FALSE, /* partial_inplace */
902 0, /* src_mask */
903 ONES (64), /* dst_mask */
904 FALSE), /* pcrel_offset */
905
906 /* 64-bit PC relative relocation to the symbol's procedure linkage
907 table. */
908 /* FIXME: R_PPC64_PLTREL64 not supported. */
909 HOWTO (R_PPC64_PLTREL64, /* type */
910 0, /* rightshift */
911 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
912 64, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont, /* complain_on_overflow */
916 ppc64_elf_unhandled_reloc, /* special_function */
917 "R_PPC64_PLTREL64", /* name */
918 FALSE, /* partial_inplace */
919 0, /* src_mask */
920 ONES (64), /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 /* 16 bit TOC-relative relocation. */
924
925 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
926 HOWTO (R_PPC64_TOC16, /* type */
927 0, /* rightshift */
928 1, /* size (0 = byte, 1 = short, 2 = long) */
929 16, /* bitsize */
930 FALSE, /* pc_relative */
931 0, /* bitpos */
932 complain_overflow_signed, /* complain_on_overflow */
933 ppc64_elf_toc_reloc, /* special_function */
934 "R_PPC64_TOC16", /* name */
935 FALSE, /* partial_inplace */
936 0, /* src_mask */
937 0xffff, /* dst_mask */
938 FALSE), /* pcrel_offset */
939
940 /* 16 bit TOC-relative relocation without overflow. */
941
942 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
943 HOWTO (R_PPC64_TOC16_LO, /* type */
944 0, /* rightshift */
945 1, /* size (0 = byte, 1 = short, 2 = long) */
946 16, /* bitsize */
947 FALSE, /* pc_relative */
948 0, /* bitpos */
949 complain_overflow_dont, /* complain_on_overflow */
950 ppc64_elf_toc_reloc, /* special_function */
951 "R_PPC64_TOC16_LO", /* name */
952 FALSE, /* partial_inplace */
953 0, /* src_mask */
954 0xffff, /* dst_mask */
955 FALSE), /* pcrel_offset */
956
957 /* 16 bit TOC-relative relocation, high 16 bits. */
958
959 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
960 HOWTO (R_PPC64_TOC16_HI, /* type */
961 16, /* rightshift */
962 1, /* size (0 = byte, 1 = short, 2 = long) */
963 16, /* bitsize */
964 FALSE, /* pc_relative */
965 0, /* bitpos */
966 complain_overflow_dont, /* complain_on_overflow */
967 ppc64_elf_toc_reloc, /* special_function */
968 "R_PPC64_TOC16_HI", /* name */
969 FALSE, /* partial_inplace */
970 0, /* src_mask */
971 0xffff, /* dst_mask */
972 FALSE), /* pcrel_offset */
973
974 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
975 contents of the low 16 bits, treated as a signed number, is
976 negative. */
977
978 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
979 HOWTO (R_PPC64_TOC16_HA, /* type */
980 16, /* rightshift */
981 1, /* size (0 = byte, 1 = short, 2 = long) */
982 16, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 ppc64_elf_toc_ha_reloc, /* special_function */
987 "R_PPC64_TOC16_HA", /* name */
988 FALSE, /* partial_inplace */
989 0, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
993 /* 64-bit relocation; insert value of TOC base (.TOC.). */
994
995 /* R_PPC64_TOC 51 doubleword64 .TOC. */
996 HOWTO (R_PPC64_TOC, /* type */
997 0, /* rightshift */
998 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
999 64, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_bitfield, /* complain_on_overflow */
1003 ppc64_elf_toc64_reloc, /* special_function */
1004 "R_PPC64_TOC", /* name */
1005 FALSE, /* partial_inplace */
1006 0, /* src_mask */
1007 ONES (64), /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* Like R_PPC64_GOT16, but also informs the link editor that the
1011 value to relocate may (!) refer to a PLT entry which the link
1012 editor (a) may replace with the symbol value. If the link editor
1013 is unable to fully resolve the symbol, it may (b) create a PLT
1014 entry and store the address to the new PLT entry in the GOT.
1015 This permits lazy resolution of function symbols at run time.
1016 The link editor may also skip all of this and just (c) emit a
1017 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1018 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1019 HOWTO (R_PPC64_PLTGOT16, /* type */
1020 0, /* rightshift */
1021 1, /* size (0 = byte, 1 = short, 2 = long) */
1022 16, /* bitsize */
1023 FALSE, /* pc_relative */
1024 0, /* bitpos */
1025 complain_overflow_signed, /* complain_on_overflow */
1026 ppc64_elf_unhandled_reloc, /* special_function */
1027 "R_PPC64_PLTGOT16", /* name */
1028 FALSE, /* partial_inplace */
1029 0, /* src_mask */
1030 0xffff, /* dst_mask */
1031 FALSE), /* pcrel_offset */
1032
1033 /* Like R_PPC64_PLTGOT16, but without overflow. */
1034 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1035 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1036 0, /* rightshift */
1037 1, /* size (0 = byte, 1 = short, 2 = long) */
1038 16, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 ppc64_elf_unhandled_reloc, /* special_function */
1043 "R_PPC64_PLTGOT16_LO", /* name */
1044 FALSE, /* partial_inplace */
1045 0, /* src_mask */
1046 0xffff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
1049 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1050 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1051 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1052 16, /* rightshift */
1053 1, /* size (0 = byte, 1 = short, 2 = long) */
1054 16, /* bitsize */
1055 FALSE, /* pc_relative */
1056 0, /* bitpos */
1057 complain_overflow_dont, /* complain_on_overflow */
1058 ppc64_elf_unhandled_reloc, /* special_function */
1059 "R_PPC64_PLTGOT16_HI", /* name */
1060 FALSE, /* partial_inplace */
1061 0, /* src_mask */
1062 0xffff, /* dst_mask */
1063 FALSE), /* pcrel_offset */
1064
1065 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1066 1 if the contents of the low 16 bits, treated as a signed number,
1067 is negative. */
1068 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1069 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1070 16, /* rightshift */
1071 1, /* size (0 = byte, 1 = short, 2 = long) */
1072 16, /* bitsize */
1073 FALSE, /* pc_relative */
1074 0, /* bitpos */
1075 complain_overflow_dont,/* complain_on_overflow */
1076 ppc64_elf_unhandled_reloc, /* special_function */
1077 "R_PPC64_PLTGOT16_HA", /* name */
1078 FALSE, /* partial_inplace */
1079 0, /* src_mask */
1080 0xffff, /* dst_mask */
1081 FALSE), /* pcrel_offset */
1082
1083 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1084 HOWTO (R_PPC64_ADDR16_DS, /* type */
1085 0, /* rightshift */
1086 1, /* size (0 = byte, 1 = short, 2 = long) */
1087 16, /* bitsize */
1088 FALSE, /* pc_relative */
1089 0, /* bitpos */
1090 complain_overflow_bitfield, /* complain_on_overflow */
1091 bfd_elf_generic_reloc, /* special_function */
1092 "R_PPC64_ADDR16_DS", /* name */
1093 FALSE, /* partial_inplace */
1094 0, /* src_mask */
1095 0xfffc, /* dst_mask */
1096 FALSE), /* pcrel_offset */
1097
1098 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1099 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1100 0, /* rightshift */
1101 1, /* size (0 = byte, 1 = short, 2 = long) */
1102 16, /* bitsize */
1103 FALSE, /* pc_relative */
1104 0, /* bitpos */
1105 complain_overflow_dont,/* complain_on_overflow */
1106 bfd_elf_generic_reloc, /* special_function */
1107 "R_PPC64_ADDR16_LO_DS",/* name */
1108 FALSE, /* partial_inplace */
1109 0, /* src_mask */
1110 0xfffc, /* dst_mask */
1111 FALSE), /* pcrel_offset */
1112
1113 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1114 HOWTO (R_PPC64_GOT16_DS, /* type */
1115 0, /* rightshift */
1116 1, /* size (0 = byte, 1 = short, 2 = long) */
1117 16, /* bitsize */
1118 FALSE, /* pc_relative */
1119 0, /* bitpos */
1120 complain_overflow_signed, /* complain_on_overflow */
1121 ppc64_elf_unhandled_reloc, /* special_function */
1122 "R_PPC64_GOT16_DS", /* name */
1123 FALSE, /* partial_inplace */
1124 0, /* src_mask */
1125 0xfffc, /* dst_mask */
1126 FALSE), /* pcrel_offset */
1127
1128 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1129 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1130 0, /* rightshift */
1131 1, /* size (0 = byte, 1 = short, 2 = long) */
1132 16, /* bitsize */
1133 FALSE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont, /* complain_on_overflow */
1136 ppc64_elf_unhandled_reloc, /* special_function */
1137 "R_PPC64_GOT16_LO_DS", /* name */
1138 FALSE, /* partial_inplace */
1139 0, /* src_mask */
1140 0xfffc, /* dst_mask */
1141 FALSE), /* pcrel_offset */
1142
1143 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1144 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1145 0, /* rightshift */
1146 1, /* size (0 = byte, 1 = short, 2 = long) */
1147 16, /* bitsize */
1148 FALSE, /* pc_relative */
1149 0, /* bitpos */
1150 complain_overflow_dont, /* complain_on_overflow */
1151 ppc64_elf_unhandled_reloc, /* special_function */
1152 "R_PPC64_PLT16_LO_DS", /* name */
1153 FALSE, /* partial_inplace */
1154 0, /* src_mask */
1155 0xfffc, /* dst_mask */
1156 FALSE), /* pcrel_offset */
1157
1158 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1159 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1160 0, /* rightshift */
1161 1, /* size (0 = byte, 1 = short, 2 = long) */
1162 16, /* bitsize */
1163 FALSE, /* pc_relative */
1164 0, /* bitpos */
1165 complain_overflow_bitfield, /* complain_on_overflow */
1166 ppc64_elf_sectoff_reloc, /* special_function */
1167 "R_PPC64_SECTOFF_DS", /* name */
1168 FALSE, /* partial_inplace */
1169 0, /* src_mask */
1170 0xfffc, /* dst_mask */
1171 FALSE), /* pcrel_offset */
1172
1173 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1174 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1175 0, /* rightshift */
1176 1, /* size (0 = byte, 1 = short, 2 = long) */
1177 16, /* bitsize */
1178 FALSE, /* pc_relative */
1179 0, /* bitpos */
1180 complain_overflow_dont, /* complain_on_overflow */
1181 ppc64_elf_sectoff_reloc, /* special_function */
1182 "R_PPC64_SECTOFF_LO_DS",/* name */
1183 FALSE, /* partial_inplace */
1184 0, /* src_mask */
1185 0xfffc, /* dst_mask */
1186 FALSE), /* pcrel_offset */
1187
1188 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1189 HOWTO (R_PPC64_TOC16_DS, /* type */
1190 0, /* rightshift */
1191 1, /* size (0 = byte, 1 = short, 2 = long) */
1192 16, /* bitsize */
1193 FALSE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_signed, /* complain_on_overflow */
1196 ppc64_elf_toc_reloc, /* special_function */
1197 "R_PPC64_TOC16_DS", /* name */
1198 FALSE, /* partial_inplace */
1199 0, /* src_mask */
1200 0xfffc, /* dst_mask */
1201 FALSE), /* pcrel_offset */
1202
1203 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1204 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1205 0, /* rightshift */
1206 1, /* size (0 = byte, 1 = short, 2 = long) */
1207 16, /* bitsize */
1208 FALSE, /* pc_relative */
1209 0, /* bitpos */
1210 complain_overflow_dont, /* complain_on_overflow */
1211 ppc64_elf_toc_reloc, /* special_function */
1212 "R_PPC64_TOC16_LO_DS", /* name */
1213 FALSE, /* partial_inplace */
1214 0, /* src_mask */
1215 0xfffc, /* dst_mask */
1216 FALSE), /* pcrel_offset */
1217
1218 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1219 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1220 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1221 0, /* rightshift */
1222 1, /* size (0 = byte, 1 = short, 2 = long) */
1223 16, /* bitsize */
1224 FALSE, /* pc_relative */
1225 0, /* bitpos */
1226 complain_overflow_signed, /* complain_on_overflow */
1227 ppc64_elf_unhandled_reloc, /* special_function */
1228 "R_PPC64_PLTGOT16_DS", /* name */
1229 FALSE, /* partial_inplace */
1230 0, /* src_mask */
1231 0xfffc, /* dst_mask */
1232 FALSE), /* pcrel_offset */
1233
1234 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1235 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1236 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1237 0, /* rightshift */
1238 1, /* size (0 = byte, 1 = short, 2 = long) */
1239 16, /* bitsize */
1240 FALSE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont, /* complain_on_overflow */
1243 ppc64_elf_unhandled_reloc, /* special_function */
1244 "R_PPC64_PLTGOT16_LO_DS",/* name */
1245 FALSE, /* partial_inplace */
1246 0, /* src_mask */
1247 0xfffc, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 /* Marker relocs for TLS. */
1251 HOWTO (R_PPC64_TLS,
1252 0, /* rightshift */
1253 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 32, /* bitsize */
1255 FALSE, /* pc_relative */
1256 0, /* bitpos */
1257 complain_overflow_dont, /* complain_on_overflow */
1258 bfd_elf_generic_reloc, /* special_function */
1259 "R_PPC64_TLS", /* name */
1260 FALSE, /* partial_inplace */
1261 0, /* src_mask */
1262 0, /* dst_mask */
1263 FALSE), /* pcrel_offset */
1264
1265 HOWTO (R_PPC64_TLSGD,
1266 0, /* rightshift */
1267 2, /* size (0 = byte, 1 = short, 2 = long) */
1268 32, /* bitsize */
1269 FALSE, /* pc_relative */
1270 0, /* bitpos */
1271 complain_overflow_dont, /* complain_on_overflow */
1272 bfd_elf_generic_reloc, /* special_function */
1273 "R_PPC64_TLSGD", /* name */
1274 FALSE, /* partial_inplace */
1275 0, /* src_mask */
1276 0, /* dst_mask */
1277 FALSE), /* pcrel_offset */
1278
1279 HOWTO (R_PPC64_TLSLD,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLSLD", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TOCSAVE,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TOCSAVE", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 /* Computes the load module index of the load module that contains the
1308 definition of its TLS sym. */
1309 HOWTO (R_PPC64_DTPMOD64,
1310 0, /* rightshift */
1311 4, /* size (0 = byte, 1 = short, 2 = long) */
1312 64, /* bitsize */
1313 FALSE, /* pc_relative */
1314 0, /* bitpos */
1315 complain_overflow_dont, /* complain_on_overflow */
1316 ppc64_elf_unhandled_reloc, /* special_function */
1317 "R_PPC64_DTPMOD64", /* name */
1318 FALSE, /* partial_inplace */
1319 0, /* src_mask */
1320 ONES (64), /* dst_mask */
1321 FALSE), /* pcrel_offset */
1322
1323 /* Computes a dtv-relative displacement, the difference between the value
1324 of sym+add and the base address of the thread-local storage block that
1325 contains the definition of sym, minus 0x8000. */
1326 HOWTO (R_PPC64_DTPREL64,
1327 0, /* rightshift */
1328 4, /* size (0 = byte, 1 = short, 2 = long) */
1329 64, /* bitsize */
1330 FALSE, /* pc_relative */
1331 0, /* bitpos */
1332 complain_overflow_dont, /* complain_on_overflow */
1333 ppc64_elf_unhandled_reloc, /* special_function */
1334 "R_PPC64_DTPREL64", /* name */
1335 FALSE, /* partial_inplace */
1336 0, /* src_mask */
1337 ONES (64), /* dst_mask */
1338 FALSE), /* pcrel_offset */
1339
1340 /* A 16 bit dtprel reloc. */
1341 HOWTO (R_PPC64_DTPREL16,
1342 0, /* rightshift */
1343 1, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_signed, /* complain_on_overflow */
1348 ppc64_elf_unhandled_reloc, /* special_function */
1349 "R_PPC64_DTPREL16", /* name */
1350 FALSE, /* partial_inplace */
1351 0, /* src_mask */
1352 0xffff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
1355 /* Like DTPREL16, but no overflow. */
1356 HOWTO (R_PPC64_DTPREL16_LO,
1357 0, /* rightshift */
1358 1, /* size (0 = byte, 1 = short, 2 = long) */
1359 16, /* bitsize */
1360 FALSE, /* pc_relative */
1361 0, /* bitpos */
1362 complain_overflow_dont, /* complain_on_overflow */
1363 ppc64_elf_unhandled_reloc, /* special_function */
1364 "R_PPC64_DTPREL16_LO", /* name */
1365 FALSE, /* partial_inplace */
1366 0, /* src_mask */
1367 0xffff, /* dst_mask */
1368 FALSE), /* pcrel_offset */
1369
1370 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1371 HOWTO (R_PPC64_DTPREL16_HI,
1372 16, /* rightshift */
1373 1, /* size (0 = byte, 1 = short, 2 = long) */
1374 16, /* bitsize */
1375 FALSE, /* pc_relative */
1376 0, /* bitpos */
1377 complain_overflow_dont, /* complain_on_overflow */
1378 ppc64_elf_unhandled_reloc, /* special_function */
1379 "R_PPC64_DTPREL16_HI", /* name */
1380 FALSE, /* partial_inplace */
1381 0, /* src_mask */
1382 0xffff, /* dst_mask */
1383 FALSE), /* pcrel_offset */
1384
1385 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1386 HOWTO (R_PPC64_DTPREL16_HA,
1387 16, /* rightshift */
1388 1, /* size (0 = byte, 1 = short, 2 = long) */
1389 16, /* bitsize */
1390 FALSE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_dont, /* complain_on_overflow */
1393 ppc64_elf_unhandled_reloc, /* special_function */
1394 "R_PPC64_DTPREL16_HA", /* name */
1395 FALSE, /* partial_inplace */
1396 0, /* src_mask */
1397 0xffff, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1399
1400 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1401 HOWTO (R_PPC64_DTPREL16_HIGHER,
1402 32, /* rightshift */
1403 1, /* size (0 = byte, 1 = short, 2 = long) */
1404 16, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont, /* complain_on_overflow */
1408 ppc64_elf_unhandled_reloc, /* special_function */
1409 "R_PPC64_DTPREL16_HIGHER", /* name */
1410 FALSE, /* partial_inplace */
1411 0, /* src_mask */
1412 0xffff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1416 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1417 32, /* rightshift */
1418 1, /* size (0 = byte, 1 = short, 2 = long) */
1419 16, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_dont, /* complain_on_overflow */
1423 ppc64_elf_unhandled_reloc, /* special_function */
1424 "R_PPC64_DTPREL16_HIGHERA", /* name */
1425 FALSE, /* partial_inplace */
1426 0, /* src_mask */
1427 0xffff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1431 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1432 48, /* rightshift */
1433 1, /* size (0 = byte, 1 = short, 2 = long) */
1434 16, /* bitsize */
1435 FALSE, /* pc_relative */
1436 0, /* bitpos */
1437 complain_overflow_dont, /* complain_on_overflow */
1438 ppc64_elf_unhandled_reloc, /* special_function */
1439 "R_PPC64_DTPREL16_HIGHEST", /* name */
1440 FALSE, /* partial_inplace */
1441 0, /* src_mask */
1442 0xffff, /* dst_mask */
1443 FALSE), /* pcrel_offset */
1444
1445 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1446 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1447 48, /* rightshift */
1448 1, /* size (0 = byte, 1 = short, 2 = long) */
1449 16, /* bitsize */
1450 FALSE, /* pc_relative */
1451 0, /* bitpos */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 ppc64_elf_unhandled_reloc, /* special_function */
1454 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1455 FALSE, /* partial_inplace */
1456 0, /* src_mask */
1457 0xffff, /* dst_mask */
1458 FALSE), /* pcrel_offset */
1459
1460 /* Like DTPREL16, but for insns with a DS field. */
1461 HOWTO (R_PPC64_DTPREL16_DS,
1462 0, /* rightshift */
1463 1, /* size (0 = byte, 1 = short, 2 = long) */
1464 16, /* bitsize */
1465 FALSE, /* pc_relative */
1466 0, /* bitpos */
1467 complain_overflow_signed, /* complain_on_overflow */
1468 ppc64_elf_unhandled_reloc, /* special_function */
1469 "R_PPC64_DTPREL16_DS", /* name */
1470 FALSE, /* partial_inplace */
1471 0, /* src_mask */
1472 0xfffc, /* dst_mask */
1473 FALSE), /* pcrel_offset */
1474
1475 /* Like DTPREL16_DS, but no overflow. */
1476 HOWTO (R_PPC64_DTPREL16_LO_DS,
1477 0, /* rightshift */
1478 1, /* size (0 = byte, 1 = short, 2 = long) */
1479 16, /* bitsize */
1480 FALSE, /* pc_relative */
1481 0, /* bitpos */
1482 complain_overflow_dont, /* complain_on_overflow */
1483 ppc64_elf_unhandled_reloc, /* special_function */
1484 "R_PPC64_DTPREL16_LO_DS", /* name */
1485 FALSE, /* partial_inplace */
1486 0, /* src_mask */
1487 0xfffc, /* dst_mask */
1488 FALSE), /* pcrel_offset */
1489
1490 /* Computes a tp-relative displacement, the difference between the value of
1491 sym+add and the value of the thread pointer (r13). */
1492 HOWTO (R_PPC64_TPREL64,
1493 0, /* rightshift */
1494 4, /* size (0 = byte, 1 = short, 2 = long) */
1495 64, /* bitsize */
1496 FALSE, /* pc_relative */
1497 0, /* bitpos */
1498 complain_overflow_dont, /* complain_on_overflow */
1499 ppc64_elf_unhandled_reloc, /* special_function */
1500 "R_PPC64_TPREL64", /* name */
1501 FALSE, /* partial_inplace */
1502 0, /* src_mask */
1503 ONES (64), /* dst_mask */
1504 FALSE), /* pcrel_offset */
1505
1506 /* A 16 bit tprel reloc. */
1507 HOWTO (R_PPC64_TPREL16,
1508 0, /* rightshift */
1509 1, /* size (0 = byte, 1 = short, 2 = long) */
1510 16, /* bitsize */
1511 FALSE, /* pc_relative */
1512 0, /* bitpos */
1513 complain_overflow_signed, /* complain_on_overflow */
1514 ppc64_elf_unhandled_reloc, /* special_function */
1515 "R_PPC64_TPREL16", /* name */
1516 FALSE, /* partial_inplace */
1517 0, /* src_mask */
1518 0xffff, /* dst_mask */
1519 FALSE), /* pcrel_offset */
1520
1521 /* Like TPREL16, but no overflow. */
1522 HOWTO (R_PPC64_TPREL16_LO,
1523 0, /* rightshift */
1524 1, /* size (0 = byte, 1 = short, 2 = long) */
1525 16, /* bitsize */
1526 FALSE, /* pc_relative */
1527 0, /* bitpos */
1528 complain_overflow_dont, /* complain_on_overflow */
1529 ppc64_elf_unhandled_reloc, /* special_function */
1530 "R_PPC64_TPREL16_LO", /* name */
1531 FALSE, /* partial_inplace */
1532 0, /* src_mask */
1533 0xffff, /* dst_mask */
1534 FALSE), /* pcrel_offset */
1535
1536 /* Like TPREL16_LO, but next higher group of 16 bits. */
1537 HOWTO (R_PPC64_TPREL16_HI,
1538 16, /* rightshift */
1539 1, /* size (0 = byte, 1 = short, 2 = long) */
1540 16, /* bitsize */
1541 FALSE, /* pc_relative */
1542 0, /* bitpos */
1543 complain_overflow_dont, /* complain_on_overflow */
1544 ppc64_elf_unhandled_reloc, /* special_function */
1545 "R_PPC64_TPREL16_HI", /* name */
1546 FALSE, /* partial_inplace */
1547 0, /* src_mask */
1548 0xffff, /* dst_mask */
1549 FALSE), /* pcrel_offset */
1550
1551 /* Like TPREL16_HI, but adjust for low 16 bits. */
1552 HOWTO (R_PPC64_TPREL16_HA,
1553 16, /* rightshift */
1554 1, /* size (0 = byte, 1 = short, 2 = long) */
1555 16, /* bitsize */
1556 FALSE, /* pc_relative */
1557 0, /* bitpos */
1558 complain_overflow_dont, /* complain_on_overflow */
1559 ppc64_elf_unhandled_reloc, /* special_function */
1560 "R_PPC64_TPREL16_HA", /* name */
1561 FALSE, /* partial_inplace */
1562 0, /* src_mask */
1563 0xffff, /* dst_mask */
1564 FALSE), /* pcrel_offset */
1565
1566 /* Like TPREL16_HI, but next higher group of 16 bits. */
1567 HOWTO (R_PPC64_TPREL16_HIGHER,
1568 32, /* rightshift */
1569 1, /* size (0 = byte, 1 = short, 2 = long) */
1570 16, /* bitsize */
1571 FALSE, /* pc_relative */
1572 0, /* bitpos */
1573 complain_overflow_dont, /* complain_on_overflow */
1574 ppc64_elf_unhandled_reloc, /* special_function */
1575 "R_PPC64_TPREL16_HIGHER", /* name */
1576 FALSE, /* partial_inplace */
1577 0, /* src_mask */
1578 0xffff, /* dst_mask */
1579 FALSE), /* pcrel_offset */
1580
1581 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1582 HOWTO (R_PPC64_TPREL16_HIGHERA,
1583 32, /* rightshift */
1584 1, /* size (0 = byte, 1 = short, 2 = long) */
1585 16, /* bitsize */
1586 FALSE, /* pc_relative */
1587 0, /* bitpos */
1588 complain_overflow_dont, /* complain_on_overflow */
1589 ppc64_elf_unhandled_reloc, /* special_function */
1590 "R_PPC64_TPREL16_HIGHERA", /* name */
1591 FALSE, /* partial_inplace */
1592 0, /* src_mask */
1593 0xffff, /* dst_mask */
1594 FALSE), /* pcrel_offset */
1595
1596 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1597 HOWTO (R_PPC64_TPREL16_HIGHEST,
1598 48, /* rightshift */
1599 1, /* size (0 = byte, 1 = short, 2 = long) */
1600 16, /* bitsize */
1601 FALSE, /* pc_relative */
1602 0, /* bitpos */
1603 complain_overflow_dont, /* complain_on_overflow */
1604 ppc64_elf_unhandled_reloc, /* special_function */
1605 "R_PPC64_TPREL16_HIGHEST", /* name */
1606 FALSE, /* partial_inplace */
1607 0, /* src_mask */
1608 0xffff, /* dst_mask */
1609 FALSE), /* pcrel_offset */
1610
1611 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1612 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1613 48, /* rightshift */
1614 1, /* size (0 = byte, 1 = short, 2 = long) */
1615 16, /* bitsize */
1616 FALSE, /* pc_relative */
1617 0, /* bitpos */
1618 complain_overflow_dont, /* complain_on_overflow */
1619 ppc64_elf_unhandled_reloc, /* special_function */
1620 "R_PPC64_TPREL16_HIGHESTA", /* name */
1621 FALSE, /* partial_inplace */
1622 0, /* src_mask */
1623 0xffff, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1625
1626 /* Like TPREL16, but for insns with a DS field. */
1627 HOWTO (R_PPC64_TPREL16_DS,
1628 0, /* rightshift */
1629 1, /* size (0 = byte, 1 = short, 2 = long) */
1630 16, /* bitsize */
1631 FALSE, /* pc_relative */
1632 0, /* bitpos */
1633 complain_overflow_signed, /* complain_on_overflow */
1634 ppc64_elf_unhandled_reloc, /* special_function */
1635 "R_PPC64_TPREL16_DS", /* name */
1636 FALSE, /* partial_inplace */
1637 0, /* src_mask */
1638 0xfffc, /* dst_mask */
1639 FALSE), /* pcrel_offset */
1640
1641 /* Like TPREL16_DS, but no overflow. */
1642 HOWTO (R_PPC64_TPREL16_LO_DS,
1643 0, /* rightshift */
1644 1, /* size (0 = byte, 1 = short, 2 = long) */
1645 16, /* bitsize */
1646 FALSE, /* pc_relative */
1647 0, /* bitpos */
1648 complain_overflow_dont, /* complain_on_overflow */
1649 ppc64_elf_unhandled_reloc, /* special_function */
1650 "R_PPC64_TPREL16_LO_DS", /* name */
1651 FALSE, /* partial_inplace */
1652 0, /* src_mask */
1653 0xfffc, /* dst_mask */
1654 FALSE), /* pcrel_offset */
1655
1656 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1657 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1658 to the first entry relative to the TOC base (r2). */
1659 HOWTO (R_PPC64_GOT_TLSGD16,
1660 0, /* rightshift */
1661 1, /* size (0 = byte, 1 = short, 2 = long) */
1662 16, /* bitsize */
1663 FALSE, /* pc_relative */
1664 0, /* bitpos */
1665 complain_overflow_signed, /* complain_on_overflow */
1666 ppc64_elf_unhandled_reloc, /* special_function */
1667 "R_PPC64_GOT_TLSGD16", /* name */
1668 FALSE, /* partial_inplace */
1669 0, /* src_mask */
1670 0xffff, /* dst_mask */
1671 FALSE), /* pcrel_offset */
1672
1673 /* Like GOT_TLSGD16, but no overflow. */
1674 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1675 0, /* rightshift */
1676 1, /* size (0 = byte, 1 = short, 2 = long) */
1677 16, /* bitsize */
1678 FALSE, /* pc_relative */
1679 0, /* bitpos */
1680 complain_overflow_dont, /* complain_on_overflow */
1681 ppc64_elf_unhandled_reloc, /* special_function */
1682 "R_PPC64_GOT_TLSGD16_LO", /* name */
1683 FALSE, /* partial_inplace */
1684 0, /* src_mask */
1685 0xffff, /* dst_mask */
1686 FALSE), /* pcrel_offset */
1687
1688 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1689 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1690 16, /* rightshift */
1691 1, /* size (0 = byte, 1 = short, 2 = long) */
1692 16, /* bitsize */
1693 FALSE, /* pc_relative */
1694 0, /* bitpos */
1695 complain_overflow_dont, /* complain_on_overflow */
1696 ppc64_elf_unhandled_reloc, /* special_function */
1697 "R_PPC64_GOT_TLSGD16_HI", /* name */
1698 FALSE, /* partial_inplace */
1699 0, /* src_mask */
1700 0xffff, /* dst_mask */
1701 FALSE), /* pcrel_offset */
1702
1703 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1704 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1705 16, /* rightshift */
1706 1, /* size (0 = byte, 1 = short, 2 = long) */
1707 16, /* bitsize */
1708 FALSE, /* pc_relative */
1709 0, /* bitpos */
1710 complain_overflow_dont, /* complain_on_overflow */
1711 ppc64_elf_unhandled_reloc, /* special_function */
1712 "R_PPC64_GOT_TLSGD16_HA", /* name */
1713 FALSE, /* partial_inplace */
1714 0, /* src_mask */
1715 0xffff, /* dst_mask */
1716 FALSE), /* pcrel_offset */
1717
1718 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1719 with values (sym+add)@dtpmod and zero, and computes the offset to the
1720 first entry relative to the TOC base (r2). */
1721 HOWTO (R_PPC64_GOT_TLSLD16,
1722 0, /* rightshift */
1723 1, /* size (0 = byte, 1 = short, 2 = long) */
1724 16, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_signed, /* complain_on_overflow */
1728 ppc64_elf_unhandled_reloc, /* special_function */
1729 "R_PPC64_GOT_TLSLD16", /* name */
1730 FALSE, /* partial_inplace */
1731 0, /* src_mask */
1732 0xffff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* Like GOT_TLSLD16, but no overflow. */
1736 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1737 0, /* rightshift */
1738 1, /* size (0 = byte, 1 = short, 2 = long) */
1739 16, /* bitsize */
1740 FALSE, /* pc_relative */
1741 0, /* bitpos */
1742 complain_overflow_dont, /* complain_on_overflow */
1743 ppc64_elf_unhandled_reloc, /* special_function */
1744 "R_PPC64_GOT_TLSLD16_LO", /* name */
1745 FALSE, /* partial_inplace */
1746 0, /* src_mask */
1747 0xffff, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1751 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1752 16, /* rightshift */
1753 1, /* size (0 = byte, 1 = short, 2 = long) */
1754 16, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 ppc64_elf_unhandled_reloc, /* special_function */
1759 "R_PPC64_GOT_TLSLD16_HI", /* name */
1760 FALSE, /* partial_inplace */
1761 0, /* src_mask */
1762 0xffff, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1766 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1767 16, /* rightshift */
1768 1, /* size (0 = byte, 1 = short, 2 = long) */
1769 16, /* bitsize */
1770 FALSE, /* pc_relative */
1771 0, /* bitpos */
1772 complain_overflow_dont, /* complain_on_overflow */
1773 ppc64_elf_unhandled_reloc, /* special_function */
1774 "R_PPC64_GOT_TLSLD16_HA", /* name */
1775 FALSE, /* partial_inplace */
1776 0, /* src_mask */
1777 0xffff, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1781 the offset to the entry relative to the TOC base (r2). */
1782 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1783 0, /* rightshift */
1784 1, /* size (0 = byte, 1 = short, 2 = long) */
1785 16, /* bitsize */
1786 FALSE, /* pc_relative */
1787 0, /* bitpos */
1788 complain_overflow_signed, /* complain_on_overflow */
1789 ppc64_elf_unhandled_reloc, /* special_function */
1790 "R_PPC64_GOT_DTPREL16_DS", /* name */
1791 FALSE, /* partial_inplace */
1792 0, /* src_mask */
1793 0xfffc, /* dst_mask */
1794 FALSE), /* pcrel_offset */
1795
1796 /* Like GOT_DTPREL16_DS, but no overflow. */
1797 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1798 0, /* rightshift */
1799 1, /* size (0 = byte, 1 = short, 2 = long) */
1800 16, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont, /* complain_on_overflow */
1804 ppc64_elf_unhandled_reloc, /* special_function */
1805 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0xfffc, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1812 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1813 16, /* rightshift */
1814 1, /* size (0 = byte, 1 = short, 2 = long) */
1815 16, /* bitsize */
1816 FALSE, /* pc_relative */
1817 0, /* bitpos */
1818 complain_overflow_dont, /* complain_on_overflow */
1819 ppc64_elf_unhandled_reloc, /* special_function */
1820 "R_PPC64_GOT_DTPREL16_HI", /* name */
1821 FALSE, /* partial_inplace */
1822 0, /* src_mask */
1823 0xffff, /* dst_mask */
1824 FALSE), /* pcrel_offset */
1825
1826 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1827 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1828 16, /* rightshift */
1829 1, /* size (0 = byte, 1 = short, 2 = long) */
1830 16, /* bitsize */
1831 FALSE, /* pc_relative */
1832 0, /* bitpos */
1833 complain_overflow_dont, /* complain_on_overflow */
1834 ppc64_elf_unhandled_reloc, /* special_function */
1835 "R_PPC64_GOT_DTPREL16_HA", /* name */
1836 FALSE, /* partial_inplace */
1837 0, /* src_mask */
1838 0xffff, /* dst_mask */
1839 FALSE), /* pcrel_offset */
1840
1841 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1842 offset to the entry relative to the TOC base (r2). */
1843 HOWTO (R_PPC64_GOT_TPREL16_DS,
1844 0, /* rightshift */
1845 1, /* size (0 = byte, 1 = short, 2 = long) */
1846 16, /* bitsize */
1847 FALSE, /* pc_relative */
1848 0, /* bitpos */
1849 complain_overflow_signed, /* complain_on_overflow */
1850 ppc64_elf_unhandled_reloc, /* special_function */
1851 "R_PPC64_GOT_TPREL16_DS", /* name */
1852 FALSE, /* partial_inplace */
1853 0, /* src_mask */
1854 0xfffc, /* dst_mask */
1855 FALSE), /* pcrel_offset */
1856
1857 /* Like GOT_TPREL16_DS, but no overflow. */
1858 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1859 0, /* rightshift */
1860 1, /* size (0 = byte, 1 = short, 2 = long) */
1861 16, /* bitsize */
1862 FALSE, /* pc_relative */
1863 0, /* bitpos */
1864 complain_overflow_dont, /* complain_on_overflow */
1865 ppc64_elf_unhandled_reloc, /* special_function */
1866 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1867 FALSE, /* partial_inplace */
1868 0, /* src_mask */
1869 0xfffc, /* dst_mask */
1870 FALSE), /* pcrel_offset */
1871
1872 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1873 HOWTO (R_PPC64_GOT_TPREL16_HI,
1874 16, /* rightshift */
1875 1, /* size (0 = byte, 1 = short, 2 = long) */
1876 16, /* bitsize */
1877 FALSE, /* pc_relative */
1878 0, /* bitpos */
1879 complain_overflow_dont, /* complain_on_overflow */
1880 ppc64_elf_unhandled_reloc, /* special_function */
1881 "R_PPC64_GOT_TPREL16_HI", /* name */
1882 FALSE, /* partial_inplace */
1883 0, /* src_mask */
1884 0xffff, /* dst_mask */
1885 FALSE), /* pcrel_offset */
1886
1887 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1888 HOWTO (R_PPC64_GOT_TPREL16_HA,
1889 16, /* rightshift */
1890 1, /* size (0 = byte, 1 = short, 2 = long) */
1891 16, /* bitsize */
1892 FALSE, /* pc_relative */
1893 0, /* bitpos */
1894 complain_overflow_dont, /* complain_on_overflow */
1895 ppc64_elf_unhandled_reloc, /* special_function */
1896 "R_PPC64_GOT_TPREL16_HA", /* name */
1897 FALSE, /* partial_inplace */
1898 0, /* src_mask */
1899 0xffff, /* dst_mask */
1900 FALSE), /* pcrel_offset */
1901
1902 HOWTO (R_PPC64_JMP_IREL, /* type */
1903 0, /* rightshift */
1904 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1905 0, /* bitsize */
1906 FALSE, /* pc_relative */
1907 0, /* bitpos */
1908 complain_overflow_dont, /* complain_on_overflow */
1909 ppc64_elf_unhandled_reloc, /* special_function */
1910 "R_PPC64_JMP_IREL", /* name */
1911 FALSE, /* partial_inplace */
1912 0, /* src_mask */
1913 0, /* dst_mask */
1914 FALSE), /* pcrel_offset */
1915
1916 HOWTO (R_PPC64_IRELATIVE, /* type */
1917 0, /* rightshift */
1918 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1919 64, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_dont, /* complain_on_overflow */
1923 bfd_elf_generic_reloc, /* special_function */
1924 "R_PPC64_IRELATIVE", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 ONES (64), /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 /* A 16 bit relative relocation. */
1931 HOWTO (R_PPC64_REL16, /* type */
1932 0, /* rightshift */
1933 1, /* size (0 = byte, 1 = short, 2 = long) */
1934 16, /* bitsize */
1935 TRUE, /* pc_relative */
1936 0, /* bitpos */
1937 complain_overflow_bitfield, /* complain_on_overflow */
1938 bfd_elf_generic_reloc, /* special_function */
1939 "R_PPC64_REL16", /* name */
1940 FALSE, /* partial_inplace */
1941 0, /* src_mask */
1942 0xffff, /* dst_mask */
1943 TRUE), /* pcrel_offset */
1944
1945 /* A 16 bit relative relocation without overflow. */
1946 HOWTO (R_PPC64_REL16_LO, /* type */
1947 0, /* rightshift */
1948 1, /* size (0 = byte, 1 = short, 2 = long) */
1949 16, /* bitsize */
1950 TRUE, /* pc_relative */
1951 0, /* bitpos */
1952 complain_overflow_dont,/* complain_on_overflow */
1953 bfd_elf_generic_reloc, /* special_function */
1954 "R_PPC64_REL16_LO", /* name */
1955 FALSE, /* partial_inplace */
1956 0, /* src_mask */
1957 0xffff, /* dst_mask */
1958 TRUE), /* pcrel_offset */
1959
1960 /* The high order 16 bits of a relative address. */
1961 HOWTO (R_PPC64_REL16_HI, /* type */
1962 16, /* rightshift */
1963 1, /* size (0 = byte, 1 = short, 2 = long) */
1964 16, /* bitsize */
1965 TRUE, /* pc_relative */
1966 0, /* bitpos */
1967 complain_overflow_dont, /* complain_on_overflow */
1968 bfd_elf_generic_reloc, /* special_function */
1969 "R_PPC64_REL16_HI", /* name */
1970 FALSE, /* partial_inplace */
1971 0, /* src_mask */
1972 0xffff, /* dst_mask */
1973 TRUE), /* pcrel_offset */
1974
1975 /* The high order 16 bits of a relative address, plus 1 if the contents of
1976 the low 16 bits, treated as a signed number, is negative. */
1977 HOWTO (R_PPC64_REL16_HA, /* type */
1978 16, /* rightshift */
1979 1, /* size (0 = byte, 1 = short, 2 = long) */
1980 16, /* bitsize */
1981 TRUE, /* pc_relative */
1982 0, /* bitpos */
1983 complain_overflow_dont, /* complain_on_overflow */
1984 ppc64_elf_ha_reloc, /* special_function */
1985 "R_PPC64_REL16_HA", /* name */
1986 FALSE, /* partial_inplace */
1987 0, /* src_mask */
1988 0xffff, /* dst_mask */
1989 TRUE), /* pcrel_offset */
1990
1991 /* GNU extension to record C++ vtable hierarchy. */
1992 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1993 0, /* rightshift */
1994 0, /* size (0 = byte, 1 = short, 2 = long) */
1995 0, /* bitsize */
1996 FALSE, /* pc_relative */
1997 0, /* bitpos */
1998 complain_overflow_dont, /* complain_on_overflow */
1999 NULL, /* special_function */
2000 "R_PPC64_GNU_VTINHERIT", /* name */
2001 FALSE, /* partial_inplace */
2002 0, /* src_mask */
2003 0, /* dst_mask */
2004 FALSE), /* pcrel_offset */
2005
2006 /* GNU extension to record C++ vtable member usage. */
2007 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2008 0, /* rightshift */
2009 0, /* size (0 = byte, 1 = short, 2 = long) */
2010 0, /* bitsize */
2011 FALSE, /* pc_relative */
2012 0, /* bitpos */
2013 complain_overflow_dont, /* complain_on_overflow */
2014 NULL, /* special_function */
2015 "R_PPC64_GNU_VTENTRY", /* name */
2016 FALSE, /* partial_inplace */
2017 0, /* src_mask */
2018 0, /* dst_mask */
2019 FALSE), /* pcrel_offset */
2020 };
2021
2022 \f
2023 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2024 be done. */
2025
2026 static void
2027 ppc_howto_init (void)
2028 {
2029 unsigned int i, type;
2030
2031 for (i = 0;
2032 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2033 i++)
2034 {
2035 type = ppc64_elf_howto_raw[i].type;
2036 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2037 / sizeof (ppc64_elf_howto_table[0])));
2038 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2039 }
2040 }
2041
2042 static reloc_howto_type *
2043 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2044 bfd_reloc_code_real_type code)
2045 {
2046 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2047
2048 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2049 /* Initialize howto table if needed. */
2050 ppc_howto_init ();
2051
2052 switch (code)
2053 {
2054 default:
2055 return NULL;
2056
2057 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2058 break;
2059 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2060 break;
2061 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2062 break;
2063 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2064 break;
2065 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2066 break;
2067 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2068 break;
2069 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2070 break;
2071 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2072 break;
2073 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2074 break;
2075 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2076 break;
2077 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2078 break;
2079 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2080 break;
2081 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2082 break;
2083 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2084 break;
2085 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2086 break;
2087 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2088 break;
2089 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2090 break;
2091 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2092 break;
2093 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2094 break;
2095 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2096 break;
2097 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2098 break;
2099 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2100 break;
2101 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2102 break;
2103 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2104 break;
2105 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2106 break;
2107 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2108 break;
2109 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2110 break;
2111 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2112 break;
2113 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2114 break;
2115 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2116 break;
2117 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2118 break;
2119 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2120 break;
2121 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2122 break;
2123 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2124 break;
2125 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2126 break;
2127 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2128 break;
2129 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2130 break;
2131 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2132 break;
2133 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2134 break;
2135 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2136 break;
2137 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2138 break;
2139 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2140 break;
2141 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2142 break;
2143 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2144 break;
2145 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2146 break;
2147 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2148 break;
2149 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2150 break;
2151 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2152 break;
2153 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2154 break;
2155 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2156 break;
2157 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2158 break;
2159 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2160 break;
2161 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2162 break;
2163 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2164 break;
2165 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2166 break;
2167 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2168 break;
2169 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2170 break;
2171 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2172 break;
2173 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2174 break;
2175 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2176 break;
2177 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2178 break;
2179 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2180 break;
2181 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2182 break;
2183 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2184 break;
2185 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2186 break;
2187 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2188 break;
2189 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2190 break;
2191 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2192 break;
2193 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2194 break;
2195 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2196 break;
2197 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2198 break;
2199 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2200 break;
2201 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2202 break;
2203 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2204 break;
2205 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2206 break;
2207 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2208 break;
2209 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2210 break;
2211 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2212 break;
2213 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2214 break;
2215 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2216 break;
2217 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2218 break;
2219 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2220 break;
2221 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2222 break;
2223 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2224 break;
2225 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2226 break;
2227 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2228 break;
2229 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2230 break;
2231 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2232 break;
2233 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2234 break;
2235 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2236 break;
2237 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2238 break;
2239 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2240 break;
2241 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2242 break;
2243 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2244 break;
2245 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2246 break;
2247 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2248 break;
2249 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2250 break;
2251 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2252 break;
2253 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2254 break;
2255 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2256 break;
2257 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2258 break;
2259 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2260 break;
2261 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2262 break;
2263 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2264 break;
2265 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2266 break;
2267 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2268 break;
2269 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2270 break;
2271 }
2272
2273 return ppc64_elf_howto_table[r];
2274 };
2275
2276 static reloc_howto_type *
2277 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2278 const char *r_name)
2279 {
2280 unsigned int i;
2281
2282 for (i = 0;
2283 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2284 i++)
2285 if (ppc64_elf_howto_raw[i].name != NULL
2286 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2287 return &ppc64_elf_howto_raw[i];
2288
2289 return NULL;
2290 }
2291
2292 /* Set the howto pointer for a PowerPC ELF reloc. */
2293
2294 static void
2295 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2296 Elf_Internal_Rela *dst)
2297 {
2298 unsigned int type;
2299
2300 /* Initialize howto table if needed. */
2301 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2302 ppc_howto_init ();
2303
2304 type = ELF64_R_TYPE (dst->r_info);
2305 if (type >= (sizeof (ppc64_elf_howto_table)
2306 / sizeof (ppc64_elf_howto_table[0])))
2307 {
2308 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2309 abfd, (int) type);
2310 type = R_PPC64_NONE;
2311 }
2312 cache_ptr->howto = ppc64_elf_howto_table[type];
2313 }
2314
2315 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2316
2317 static bfd_reloc_status_type
2318 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2319 void *data, asection *input_section,
2320 bfd *output_bfd, char **error_message)
2321 {
2322 /* If this is a relocatable link (output_bfd test tells us), just
2323 call the generic function. Any adjustment will be done at final
2324 link time. */
2325 if (output_bfd != NULL)
2326 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2327 input_section, output_bfd, error_message);
2328
2329 /* Adjust the addend for sign extension of the low 16 bits.
2330 We won't actually be using the low 16 bits, so trashing them
2331 doesn't matter. */
2332 reloc_entry->addend += 0x8000;
2333 return bfd_reloc_continue;
2334 }
2335
2336 static bfd_reloc_status_type
2337 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2338 void *data, asection *input_section,
2339 bfd *output_bfd, char **error_message)
2340 {
2341 if (output_bfd != NULL)
2342 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2343 input_section, output_bfd, error_message);
2344
2345 if (strcmp (symbol->section->name, ".opd") == 0
2346 && (symbol->section->owner->flags & DYNAMIC) == 0)
2347 {
2348 bfd_vma dest = opd_entry_value (symbol->section,
2349 symbol->value + reloc_entry->addend,
2350 NULL, NULL, FALSE);
2351 if (dest != (bfd_vma) -1)
2352 reloc_entry->addend = dest - (symbol->value
2353 + symbol->section->output_section->vma
2354 + symbol->section->output_offset);
2355 }
2356 return bfd_reloc_continue;
2357 }
2358
2359 static bfd_reloc_status_type
2360 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2361 void *data, asection *input_section,
2362 bfd *output_bfd, char **error_message)
2363 {
2364 long insn;
2365 enum elf_ppc64_reloc_type r_type;
2366 bfd_size_type octets;
2367 /* Assume 'at' branch hints. */
2368 bfd_boolean is_isa_v2 = TRUE;
2369
2370 /* If this is a relocatable link (output_bfd test tells us), just
2371 call the generic function. Any adjustment will be done at final
2372 link time. */
2373 if (output_bfd != NULL)
2374 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2375 input_section, output_bfd, error_message);
2376
2377 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2378 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2379 insn &= ~(0x01 << 21);
2380 r_type = reloc_entry->howto->type;
2381 if (r_type == R_PPC64_ADDR14_BRTAKEN
2382 || r_type == R_PPC64_REL14_BRTAKEN)
2383 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2384
2385 if (is_isa_v2)
2386 {
2387 /* Set 'a' bit. This is 0b00010 in BO field for branch
2388 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2389 for branch on CTR insns (BO == 1a00t or 1a01t). */
2390 if ((insn & (0x14 << 21)) == (0x04 << 21))
2391 insn |= 0x02 << 21;
2392 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2393 insn |= 0x08 << 21;
2394 else
2395 goto out;
2396 }
2397 else
2398 {
2399 bfd_vma target = 0;
2400 bfd_vma from;
2401
2402 if (!bfd_is_com_section (symbol->section))
2403 target = symbol->value;
2404 target += symbol->section->output_section->vma;
2405 target += symbol->section->output_offset;
2406 target += reloc_entry->addend;
2407
2408 from = (reloc_entry->address
2409 + input_section->output_offset
2410 + input_section->output_section->vma);
2411
2412 /* Invert 'y' bit if not the default. */
2413 if ((bfd_signed_vma) (target - from) < 0)
2414 insn ^= 0x01 << 21;
2415 }
2416 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2417 out:
2418 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2419 input_section, output_bfd, error_message);
2420 }
2421
2422 static bfd_reloc_status_type
2423 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2424 void *data, asection *input_section,
2425 bfd *output_bfd, char **error_message)
2426 {
2427 /* If this is a relocatable link (output_bfd test tells us), just
2428 call the generic function. Any adjustment will be done at final
2429 link time. */
2430 if (output_bfd != NULL)
2431 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2432 input_section, output_bfd, error_message);
2433
2434 /* Subtract the symbol section base address. */
2435 reloc_entry->addend -= symbol->section->output_section->vma;
2436 return bfd_reloc_continue;
2437 }
2438
2439 static bfd_reloc_status_type
2440 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2441 void *data, asection *input_section,
2442 bfd *output_bfd, char **error_message)
2443 {
2444 /* If this is a relocatable link (output_bfd test tells us), just
2445 call the generic function. Any adjustment will be done at final
2446 link time. */
2447 if (output_bfd != NULL)
2448 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2449 input_section, output_bfd, error_message);
2450
2451 /* Subtract the symbol section base address. */
2452 reloc_entry->addend -= symbol->section->output_section->vma;
2453
2454 /* Adjust the addend for sign extension of the low 16 bits. */
2455 reloc_entry->addend += 0x8000;
2456 return bfd_reloc_continue;
2457 }
2458
2459 static bfd_reloc_status_type
2460 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2461 void *data, asection *input_section,
2462 bfd *output_bfd, char **error_message)
2463 {
2464 bfd_vma TOCstart;
2465
2466 /* If this is a relocatable link (output_bfd test tells us), just
2467 call the generic function. Any adjustment will be done at final
2468 link time. */
2469 if (output_bfd != NULL)
2470 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2471 input_section, output_bfd, error_message);
2472
2473 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2474 if (TOCstart == 0)
2475 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2476
2477 /* Subtract the TOC base address. */
2478 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2479 return bfd_reloc_continue;
2480 }
2481
2482 static bfd_reloc_status_type
2483 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2484 void *data, asection *input_section,
2485 bfd *output_bfd, char **error_message)
2486 {
2487 bfd_vma TOCstart;
2488
2489 /* If this is a relocatable link (output_bfd test tells us), just
2490 call the generic function. Any adjustment will be done at final
2491 link time. */
2492 if (output_bfd != NULL)
2493 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2494 input_section, output_bfd, error_message);
2495
2496 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2497 if (TOCstart == 0)
2498 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2499
2500 /* Subtract the TOC base address. */
2501 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2502
2503 /* Adjust the addend for sign extension of the low 16 bits. */
2504 reloc_entry->addend += 0x8000;
2505 return bfd_reloc_continue;
2506 }
2507
2508 static bfd_reloc_status_type
2509 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 void *data, asection *input_section,
2511 bfd *output_bfd, char **error_message)
2512 {
2513 bfd_vma TOCstart;
2514 bfd_size_type octets;
2515
2516 /* If this is a relocatable link (output_bfd test tells us), just
2517 call the generic function. Any adjustment will be done at final
2518 link time. */
2519 if (output_bfd != NULL)
2520 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2521 input_section, output_bfd, error_message);
2522
2523 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2524 if (TOCstart == 0)
2525 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2526
2527 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2528 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2529 return bfd_reloc_ok;
2530 }
2531
2532 static bfd_reloc_status_type
2533 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2534 void *data, asection *input_section,
2535 bfd *output_bfd, char **error_message)
2536 {
2537 /* If this is a relocatable link (output_bfd test tells us), just
2538 call the generic function. Any adjustment will be done at final
2539 link time. */
2540 if (output_bfd != NULL)
2541 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2542 input_section, output_bfd, error_message);
2543
2544 if (error_message != NULL)
2545 {
2546 static char buf[60];
2547 sprintf (buf, "generic linker can't handle %s",
2548 reloc_entry->howto->name);
2549 *error_message = buf;
2550 }
2551 return bfd_reloc_dangerous;
2552 }
2553
2554 /* Track GOT entries needed for a given symbol. We might need more
2555 than one got entry per symbol. */
2556 struct got_entry
2557 {
2558 struct got_entry *next;
2559
2560 /* The symbol addend that we'll be placing in the GOT. */
2561 bfd_vma addend;
2562
2563 /* Unlike other ELF targets, we use separate GOT entries for the same
2564 symbol referenced from different input files. This is to support
2565 automatic multiple TOC/GOT sections, where the TOC base can vary
2566 from one input file to another. After partitioning into TOC groups
2567 we merge entries within the group.
2568
2569 Point to the BFD owning this GOT entry. */
2570 bfd *owner;
2571
2572 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2573 TLS_TPREL or TLS_DTPREL for tls entries. */
2574 unsigned char tls_type;
2575
2576 /* Non-zero if got.ent points to real entry. */
2577 unsigned char is_indirect;
2578
2579 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2580 union
2581 {
2582 bfd_signed_vma refcount;
2583 bfd_vma offset;
2584 struct got_entry *ent;
2585 } got;
2586 };
2587
2588 /* The same for PLT. */
2589 struct plt_entry
2590 {
2591 struct plt_entry *next;
2592
2593 bfd_vma addend;
2594
2595 union
2596 {
2597 bfd_signed_vma refcount;
2598 bfd_vma offset;
2599 } plt;
2600 };
2601
2602 struct ppc64_elf_obj_tdata
2603 {
2604 struct elf_obj_tdata elf;
2605
2606 /* Shortcuts to dynamic linker sections. */
2607 asection *got;
2608 asection *relgot;
2609
2610 /* Used during garbage collection. We attach global symbols defined
2611 on removed .opd entries to this section so that the sym is removed. */
2612 asection *deleted_section;
2613
2614 /* TLS local dynamic got entry handling. Support for multiple GOT
2615 sections means we potentially need one of these for each input bfd. */
2616 struct got_entry tlsld_got;
2617
2618 union {
2619 /* A copy of relocs before they are modified for --emit-relocs. */
2620 Elf_Internal_Rela *relocs;
2621
2622 /* Section contents. */
2623 bfd_byte *contents;
2624 } opd;
2625
2626 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2627 the reloc to be in the range -32768 to 32767. */
2628 unsigned int has_small_toc_reloc : 1;
2629
2630 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2631 instruction not one we handle. */
2632 unsigned int unexpected_toc_insn : 1;
2633 };
2634
2635 #define ppc64_elf_tdata(bfd) \
2636 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2637
2638 #define ppc64_tlsld_got(bfd) \
2639 (&ppc64_elf_tdata (bfd)->tlsld_got)
2640
2641 #define is_ppc64_elf(bfd) \
2642 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2643 && elf_object_id (bfd) == PPC64_ELF_DATA)
2644
2645 /* Override the generic function because we store some extras. */
2646
2647 static bfd_boolean
2648 ppc64_elf_mkobject (bfd *abfd)
2649 {
2650 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2651 PPC64_ELF_DATA);
2652 }
2653
2654 /* Fix bad default arch selected for a 64 bit input bfd when the
2655 default is 32 bit. */
2656
2657 static bfd_boolean
2658 ppc64_elf_object_p (bfd *abfd)
2659 {
2660 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2661 {
2662 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2663
2664 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2665 {
2666 /* Relies on arch after 32 bit default being 64 bit default. */
2667 abfd->arch_info = abfd->arch_info->next;
2668 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2669 }
2670 }
2671 return TRUE;
2672 }
2673
2674 /* Support for core dump NOTE sections. */
2675
2676 static bfd_boolean
2677 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2678 {
2679 size_t offset, size;
2680
2681 if (note->descsz != 504)
2682 return FALSE;
2683
2684 /* pr_cursig */
2685 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2686
2687 /* pr_pid */
2688 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2689
2690 /* pr_reg */
2691 offset = 112;
2692 size = 384;
2693
2694 /* Make a ".reg/999" section. */
2695 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2696 size, note->descpos + offset);
2697 }
2698
2699 static bfd_boolean
2700 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2701 {
2702 if (note->descsz != 136)
2703 return FALSE;
2704
2705 elf_tdata (abfd)->core->pid
2706 = bfd_get_32 (abfd, note->descdata + 24);
2707 elf_tdata (abfd)->core->program
2708 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2709 elf_tdata (abfd)->core->command
2710 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2711
2712 return TRUE;
2713 }
2714
2715 static char *
2716 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2717 ...)
2718 {
2719 switch (note_type)
2720 {
2721 default:
2722 return NULL;
2723
2724 case NT_PRPSINFO:
2725 {
2726 char data[136];
2727 va_list ap;
2728
2729 va_start (ap, note_type);
2730 memset (data, 0, sizeof (data));
2731 strncpy (data + 40, va_arg (ap, const char *), 16);
2732 strncpy (data + 56, va_arg (ap, const char *), 80);
2733 va_end (ap);
2734 return elfcore_write_note (abfd, buf, bufsiz,
2735 "CORE", note_type, data, sizeof (data));
2736 }
2737
2738 case NT_PRSTATUS:
2739 {
2740 char data[504];
2741 va_list ap;
2742 long pid;
2743 int cursig;
2744 const void *greg;
2745
2746 va_start (ap, note_type);
2747 memset (data, 0, 112);
2748 pid = va_arg (ap, long);
2749 bfd_put_32 (abfd, pid, data + 32);
2750 cursig = va_arg (ap, int);
2751 bfd_put_16 (abfd, cursig, data + 12);
2752 greg = va_arg (ap, const void *);
2753 memcpy (data + 112, greg, 384);
2754 memset (data + 496, 0, 8);
2755 va_end (ap);
2756 return elfcore_write_note (abfd, buf, bufsiz,
2757 "CORE", note_type, data, sizeof (data));
2758 }
2759 }
2760 }
2761
2762 /* Add extra PPC sections. */
2763
2764 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2765 {
2766 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2767 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2768 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2769 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2770 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2771 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2772 { NULL, 0, 0, 0, 0 }
2773 };
2774
2775 enum _ppc64_sec_type {
2776 sec_normal = 0,
2777 sec_opd = 1,
2778 sec_toc = 2
2779 };
2780
2781 struct _ppc64_elf_section_data
2782 {
2783 struct bfd_elf_section_data elf;
2784
2785 union
2786 {
2787 /* An array with one entry for each opd function descriptor. */
2788 struct _opd_sec_data
2789 {
2790 /* Points to the function code section for local opd entries. */
2791 asection **func_sec;
2792
2793 /* After editing .opd, adjust references to opd local syms. */
2794 long *adjust;
2795 } opd;
2796
2797 /* An array for toc sections, indexed by offset/8. */
2798 struct _toc_sec_data
2799 {
2800 /* Specifies the relocation symbol index used at a given toc offset. */
2801 unsigned *symndx;
2802
2803 /* And the relocation addend. */
2804 bfd_vma *add;
2805 } toc;
2806 } u;
2807
2808 enum _ppc64_sec_type sec_type:2;
2809
2810 /* Flag set when small branches are detected. Used to
2811 select suitable defaults for the stub group size. */
2812 unsigned int has_14bit_branch:1;
2813 };
2814
2815 #define ppc64_elf_section_data(sec) \
2816 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2817
2818 static bfd_boolean
2819 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2820 {
2821 if (!sec->used_by_bfd)
2822 {
2823 struct _ppc64_elf_section_data *sdata;
2824 bfd_size_type amt = sizeof (*sdata);
2825
2826 sdata = bfd_zalloc (abfd, amt);
2827 if (sdata == NULL)
2828 return FALSE;
2829 sec->used_by_bfd = sdata;
2830 }
2831
2832 return _bfd_elf_new_section_hook (abfd, sec);
2833 }
2834
2835 static struct _opd_sec_data *
2836 get_opd_info (asection * sec)
2837 {
2838 if (sec != NULL
2839 && ppc64_elf_section_data (sec) != NULL
2840 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2841 return &ppc64_elf_section_data (sec)->u.opd;
2842 return NULL;
2843 }
2844 \f
2845 /* Parameters for the qsort hook. */
2846 static bfd_boolean synthetic_relocatable;
2847
2848 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2849
2850 static int
2851 compare_symbols (const void *ap, const void *bp)
2852 {
2853 const asymbol *a = * (const asymbol **) ap;
2854 const asymbol *b = * (const asymbol **) bp;
2855
2856 /* Section symbols first. */
2857 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2858 return -1;
2859 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2860 return 1;
2861
2862 /* then .opd symbols. */
2863 if (strcmp (a->section->name, ".opd") == 0
2864 && strcmp (b->section->name, ".opd") != 0)
2865 return -1;
2866 if (strcmp (a->section->name, ".opd") != 0
2867 && strcmp (b->section->name, ".opd") == 0)
2868 return 1;
2869
2870 /* then other code symbols. */
2871 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2872 == (SEC_CODE | SEC_ALLOC)
2873 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2874 != (SEC_CODE | SEC_ALLOC))
2875 return -1;
2876
2877 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2878 != (SEC_CODE | SEC_ALLOC)
2879 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2880 == (SEC_CODE | SEC_ALLOC))
2881 return 1;
2882
2883 if (synthetic_relocatable)
2884 {
2885 if (a->section->id < b->section->id)
2886 return -1;
2887
2888 if (a->section->id > b->section->id)
2889 return 1;
2890 }
2891
2892 if (a->value + a->section->vma < b->value + b->section->vma)
2893 return -1;
2894
2895 if (a->value + a->section->vma > b->value + b->section->vma)
2896 return 1;
2897
2898 /* For syms with the same value, prefer strong dynamic global function
2899 syms over other syms. */
2900 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2901 return -1;
2902
2903 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2904 return 1;
2905
2906 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2907 return -1;
2908
2909 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2910 return 1;
2911
2912 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2913 return -1;
2914
2915 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2916 return 1;
2917
2918 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2919 return -1;
2920
2921 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2922 return 1;
2923
2924 return 0;
2925 }
2926
2927 /* Search SYMS for a symbol of the given VALUE. */
2928
2929 static asymbol *
2930 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2931 {
2932 long mid;
2933
2934 if (id == -1)
2935 {
2936 while (lo < hi)
2937 {
2938 mid = (lo + hi) >> 1;
2939 if (syms[mid]->value + syms[mid]->section->vma < value)
2940 lo = mid + 1;
2941 else if (syms[mid]->value + syms[mid]->section->vma > value)
2942 hi = mid;
2943 else
2944 return syms[mid];
2945 }
2946 }
2947 else
2948 {
2949 while (lo < hi)
2950 {
2951 mid = (lo + hi) >> 1;
2952 if (syms[mid]->section->id < id)
2953 lo = mid + 1;
2954 else if (syms[mid]->section->id > id)
2955 hi = mid;
2956 else if (syms[mid]->value < value)
2957 lo = mid + 1;
2958 else if (syms[mid]->value > value)
2959 hi = mid;
2960 else
2961 return syms[mid];
2962 }
2963 }
2964 return NULL;
2965 }
2966
2967 static bfd_boolean
2968 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2969 {
2970 bfd_vma vma = *(bfd_vma *) ptr;
2971 return ((section->flags & SEC_ALLOC) != 0
2972 && section->vma <= vma
2973 && vma < section->vma + section->size);
2974 }
2975
2976 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2977 entry syms. Also generate @plt symbols for the glink branch table. */
2978
2979 static long
2980 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2981 long static_count, asymbol **static_syms,
2982 long dyn_count, asymbol **dyn_syms,
2983 asymbol **ret)
2984 {
2985 asymbol *s;
2986 long i;
2987 long count;
2988 char *names;
2989 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2990 asection *opd;
2991 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2992 asymbol **syms;
2993
2994 *ret = NULL;
2995
2996 opd = bfd_get_section_by_name (abfd, ".opd");
2997 if (opd == NULL)
2998 return 0;
2999
3000 symcount = static_count;
3001 if (!relocatable)
3002 symcount += dyn_count;
3003 if (symcount == 0)
3004 return 0;
3005
3006 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3007 if (syms == NULL)
3008 return -1;
3009
3010 if (!relocatable && static_count != 0 && dyn_count != 0)
3011 {
3012 /* Use both symbol tables. */
3013 memcpy (syms, static_syms, static_count * sizeof (*syms));
3014 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3015 }
3016 else if (!relocatable && static_count == 0)
3017 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3018 else
3019 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3020
3021 synthetic_relocatable = relocatable;
3022 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3023
3024 if (!relocatable && symcount > 1)
3025 {
3026 long j;
3027 /* Trim duplicate syms, since we may have merged the normal and
3028 dynamic symbols. Actually, we only care about syms that have
3029 different values, so trim any with the same value. */
3030 for (i = 1, j = 1; i < symcount; ++i)
3031 if (syms[i - 1]->value + syms[i - 1]->section->vma
3032 != syms[i]->value + syms[i]->section->vma)
3033 syms[j++] = syms[i];
3034 symcount = j;
3035 }
3036
3037 i = 0;
3038 if (strcmp (syms[i]->section->name, ".opd") == 0)
3039 ++i;
3040 codesecsym = i;
3041
3042 for (; i < symcount; ++i)
3043 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3044 != (SEC_CODE | SEC_ALLOC))
3045 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3046 break;
3047 codesecsymend = i;
3048
3049 for (; i < symcount; ++i)
3050 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3051 break;
3052 secsymend = i;
3053
3054 for (; i < symcount; ++i)
3055 if (strcmp (syms[i]->section->name, ".opd") != 0)
3056 break;
3057 opdsymend = i;
3058
3059 for (; i < symcount; ++i)
3060 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3061 != (SEC_CODE | SEC_ALLOC))
3062 break;
3063 symcount = i;
3064
3065 count = 0;
3066
3067 if (relocatable)
3068 {
3069 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3070 arelent *r;
3071 size_t size;
3072 long relcount;
3073
3074 if (opdsymend == secsymend)
3075 goto done;
3076
3077 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3078 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3079 if (relcount == 0)
3080 goto done;
3081
3082 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3083 {
3084 count = -1;
3085 goto done;
3086 }
3087
3088 size = 0;
3089 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3090 {
3091 asymbol *sym;
3092
3093 while (r < opd->relocation + relcount
3094 && r->address < syms[i]->value + opd->vma)
3095 ++r;
3096
3097 if (r == opd->relocation + relcount)
3098 break;
3099
3100 if (r->address != syms[i]->value + opd->vma)
3101 continue;
3102
3103 if (r->howto->type != R_PPC64_ADDR64)
3104 continue;
3105
3106 sym = *r->sym_ptr_ptr;
3107 if (!sym_exists_at (syms, opdsymend, symcount,
3108 sym->section->id, sym->value + r->addend))
3109 {
3110 ++count;
3111 size += sizeof (asymbol);
3112 size += strlen (syms[i]->name) + 2;
3113 }
3114 }
3115
3116 s = *ret = bfd_malloc (size);
3117 if (s == NULL)
3118 {
3119 count = -1;
3120 goto done;
3121 }
3122
3123 names = (char *) (s + count);
3124
3125 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3126 {
3127 asymbol *sym;
3128
3129 while (r < opd->relocation + relcount
3130 && r->address < syms[i]->value + opd->vma)
3131 ++r;
3132
3133 if (r == opd->relocation + relcount)
3134 break;
3135
3136 if (r->address != syms[i]->value + opd->vma)
3137 continue;
3138
3139 if (r->howto->type != R_PPC64_ADDR64)
3140 continue;
3141
3142 sym = *r->sym_ptr_ptr;
3143 if (!sym_exists_at (syms, opdsymend, symcount,
3144 sym->section->id, sym->value + r->addend))
3145 {
3146 size_t len;
3147
3148 *s = *syms[i];
3149 s->flags |= BSF_SYNTHETIC;
3150 s->section = sym->section;
3151 s->value = sym->value + r->addend;
3152 s->name = names;
3153 *names++ = '.';
3154 len = strlen (syms[i]->name);
3155 memcpy (names, syms[i]->name, len + 1);
3156 names += len + 1;
3157 /* Have udata.p point back to the original symbol this
3158 synthetic symbol was derived from. */
3159 s->udata.p = syms[i];
3160 s++;
3161 }
3162 }
3163 }
3164 else
3165 {
3166 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3167 bfd_byte *contents;
3168 size_t size;
3169 long plt_count = 0;
3170 bfd_vma glink_vma = 0, resolv_vma = 0;
3171 asection *dynamic, *glink = NULL, *relplt = NULL;
3172 arelent *p;
3173
3174 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
3175 {
3176 if (contents)
3177 {
3178 free_contents_and_exit:
3179 free (contents);
3180 }
3181 count = -1;
3182 goto done;
3183 }
3184
3185 size = 0;
3186 for (i = secsymend; i < opdsymend; ++i)
3187 {
3188 bfd_vma ent;
3189
3190 /* Ignore bogus symbols. */
3191 if (syms[i]->value > opd->size - 8)
3192 continue;
3193
3194 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3195 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3196 {
3197 ++count;
3198 size += sizeof (asymbol);
3199 size += strlen (syms[i]->name) + 2;
3200 }
3201 }
3202
3203 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3204 if (dyn_count != 0
3205 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3206 {
3207 bfd_byte *dynbuf, *extdyn, *extdynend;
3208 size_t extdynsize;
3209 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3210
3211 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3212 goto free_contents_and_exit;
3213
3214 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3215 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3216
3217 extdyn = dynbuf;
3218 extdynend = extdyn + dynamic->size;
3219 for (; extdyn < extdynend; extdyn += extdynsize)
3220 {
3221 Elf_Internal_Dyn dyn;
3222 (*swap_dyn_in) (abfd, extdyn, &dyn);
3223
3224 if (dyn.d_tag == DT_NULL)
3225 break;
3226
3227 if (dyn.d_tag == DT_PPC64_GLINK)
3228 {
3229 /* The first glink stub starts at offset 32; see comment in
3230 ppc64_elf_finish_dynamic_sections. */
3231 glink_vma = dyn.d_un.d_val + 32;
3232 /* The .glink section usually does not survive the final
3233 link; search for the section (usually .text) where the
3234 glink stubs now reside. */
3235 glink = bfd_sections_find_if (abfd, section_covers_vma,
3236 &glink_vma);
3237 break;
3238 }
3239 }
3240
3241 free (dynbuf);
3242 }
3243
3244 if (glink != NULL)
3245 {
3246 /* Determine __glink trampoline by reading the relative branch
3247 from the first glink stub. */
3248 bfd_byte buf[4];
3249 if (bfd_get_section_contents (abfd, glink, buf,
3250 glink_vma + 4 - glink->vma, 4))
3251 {
3252 unsigned int insn = bfd_get_32 (abfd, buf);
3253 insn ^= B_DOT;
3254 if ((insn & ~0x3fffffc) == 0)
3255 resolv_vma = glink_vma + 4 + (insn ^ 0x2000000) - 0x2000000;
3256 }
3257
3258 if (resolv_vma)
3259 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3260
3261 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3262 if (relplt != NULL)
3263 {
3264 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3265 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3266 goto free_contents_and_exit;
3267
3268 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3269 size += plt_count * sizeof (asymbol);
3270
3271 p = relplt->relocation;
3272 for (i = 0; i < plt_count; i++, p++)
3273 {
3274 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3275 if (p->addend != 0)
3276 size += sizeof ("+0x") - 1 + 16;
3277 }
3278 }
3279 }
3280
3281 s = *ret = bfd_malloc (size);
3282 if (s == NULL)
3283 goto free_contents_and_exit;
3284
3285 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3286
3287 for (i = secsymend; i < opdsymend; ++i)
3288 {
3289 bfd_vma ent;
3290
3291 if (syms[i]->value > opd->size - 8)
3292 continue;
3293
3294 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3295 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3296 {
3297 long lo, hi;
3298 size_t len;
3299 asection *sec = abfd->sections;
3300
3301 *s = *syms[i];
3302 lo = codesecsym;
3303 hi = codesecsymend;
3304 while (lo < hi)
3305 {
3306 long mid = (lo + hi) >> 1;
3307 if (syms[mid]->section->vma < ent)
3308 lo = mid + 1;
3309 else if (syms[mid]->section->vma > ent)
3310 hi = mid;
3311 else
3312 {
3313 sec = syms[mid]->section;
3314 break;
3315 }
3316 }
3317
3318 if (lo >= hi && lo > codesecsym)
3319 sec = syms[lo - 1]->section;
3320
3321 for (; sec != NULL; sec = sec->next)
3322 {
3323 if (sec->vma > ent)
3324 break;
3325 /* SEC_LOAD may not be set if SEC is from a separate debug
3326 info file. */
3327 if ((sec->flags & SEC_ALLOC) == 0)
3328 break;
3329 if ((sec->flags & SEC_CODE) != 0)
3330 s->section = sec;
3331 }
3332 s->flags |= BSF_SYNTHETIC;
3333 s->value = ent - s->section->vma;
3334 s->name = names;
3335 *names++ = '.';
3336 len = strlen (syms[i]->name);
3337 memcpy (names, syms[i]->name, len + 1);
3338 names += len + 1;
3339 /* Have udata.p point back to the original symbol this
3340 synthetic symbol was derived from. */
3341 s->udata.p = syms[i];
3342 s++;
3343 }
3344 }
3345 free (contents);
3346
3347 if (glink != NULL && relplt != NULL)
3348 {
3349 if (resolv_vma)
3350 {
3351 /* Add a symbol for the main glink trampoline. */
3352 memset (s, 0, sizeof *s);
3353 s->the_bfd = abfd;
3354 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3355 s->section = glink;
3356 s->value = resolv_vma - glink->vma;
3357 s->name = names;
3358 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3359 names += sizeof ("__glink_PLTresolve");
3360 s++;
3361 count++;
3362 }
3363
3364 /* FIXME: It would be very much nicer to put sym@plt on the
3365 stub rather than on the glink branch table entry. The
3366 objdump disassembler would then use a sensible symbol
3367 name on plt calls. The difficulty in doing so is
3368 a) finding the stubs, and,
3369 b) matching stubs against plt entries, and,
3370 c) there can be multiple stubs for a given plt entry.
3371
3372 Solving (a) could be done by code scanning, but older
3373 ppc64 binaries used different stubs to current code.
3374 (b) is the tricky one since you need to known the toc
3375 pointer for at least one function that uses a pic stub to
3376 be able to calculate the plt address referenced.
3377 (c) means gdb would need to set multiple breakpoints (or
3378 find the glink branch itself) when setting breakpoints
3379 for pending shared library loads. */
3380 p = relplt->relocation;
3381 for (i = 0; i < plt_count; i++, p++)
3382 {
3383 size_t len;
3384
3385 *s = **p->sym_ptr_ptr;
3386 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3387 we are defining a symbol, ensure one of them is set. */
3388 if ((s->flags & BSF_LOCAL) == 0)
3389 s->flags |= BSF_GLOBAL;
3390 s->flags |= BSF_SYNTHETIC;
3391 s->section = glink;
3392 s->value = glink_vma - glink->vma;
3393 s->name = names;
3394 s->udata.p = NULL;
3395 len = strlen ((*p->sym_ptr_ptr)->name);
3396 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3397 names += len;
3398 if (p->addend != 0)
3399 {
3400 memcpy (names, "+0x", sizeof ("+0x") - 1);
3401 names += sizeof ("+0x") - 1;
3402 bfd_sprintf_vma (abfd, names, p->addend);
3403 names += strlen (names);
3404 }
3405 memcpy (names, "@plt", sizeof ("@plt"));
3406 names += sizeof ("@plt");
3407 s++;
3408 glink_vma += 8;
3409 if (i >= 0x8000)
3410 glink_vma += 4;
3411 }
3412 count += plt_count;
3413 }
3414 }
3415
3416 done:
3417 free (syms);
3418 return count;
3419 }
3420 \f
3421 /* The following functions are specific to the ELF linker, while
3422 functions above are used generally. Those named ppc64_elf_* are
3423 called by the main ELF linker code. They appear in this file more
3424 or less in the order in which they are called. eg.
3425 ppc64_elf_check_relocs is called early in the link process,
3426 ppc64_elf_finish_dynamic_sections is one of the last functions
3427 called.
3428
3429 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3430 functions have both a function code symbol and a function descriptor
3431 symbol. A call to foo in a relocatable object file looks like:
3432
3433 . .text
3434 . x:
3435 . bl .foo
3436 . nop
3437
3438 The function definition in another object file might be:
3439
3440 . .section .opd
3441 . foo: .quad .foo
3442 . .quad .TOC.@tocbase
3443 . .quad 0
3444 .
3445 . .text
3446 . .foo: blr
3447
3448 When the linker resolves the call during a static link, the branch
3449 unsurprisingly just goes to .foo and the .opd information is unused.
3450 If the function definition is in a shared library, things are a little
3451 different: The call goes via a plt call stub, the opd information gets
3452 copied to the plt, and the linker patches the nop.
3453
3454 . x:
3455 . bl .foo_stub
3456 . ld 2,40(1)
3457 .
3458 .
3459 . .foo_stub:
3460 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
3461 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
3462 . std 2,40(1) # this is the general idea
3463 . ld 11,0(12)
3464 . ld 2,8(12)
3465 . mtctr 11
3466 . ld 11,16(12)
3467 . bctr
3468 .
3469 . .section .plt
3470 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3471
3472 The "reloc ()" notation is supposed to indicate that the linker emits
3473 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3474 copying.
3475
3476 What are the difficulties here? Well, firstly, the relocations
3477 examined by the linker in check_relocs are against the function code
3478 sym .foo, while the dynamic relocation in the plt is emitted against
3479 the function descriptor symbol, foo. Somewhere along the line, we need
3480 to carefully copy dynamic link information from one symbol to the other.
3481 Secondly, the generic part of the elf linker will make .foo a dynamic
3482 symbol as is normal for most other backends. We need foo dynamic
3483 instead, at least for an application final link. However, when
3484 creating a shared library containing foo, we need to have both symbols
3485 dynamic so that references to .foo are satisfied during the early
3486 stages of linking. Otherwise the linker might decide to pull in a
3487 definition from some other object, eg. a static library.
3488
3489 Update: As of August 2004, we support a new convention. Function
3490 calls may use the function descriptor symbol, ie. "bl foo". This
3491 behaves exactly as "bl .foo". */
3492
3493 /* Of those relocs that might be copied as dynamic relocs, this function
3494 selects those that must be copied when linking a shared library,
3495 even when the symbol is local. */
3496
3497 static int
3498 must_be_dyn_reloc (struct bfd_link_info *info,
3499 enum elf_ppc64_reloc_type r_type)
3500 {
3501 switch (r_type)
3502 {
3503 default:
3504 return 1;
3505
3506 case R_PPC64_REL32:
3507 case R_PPC64_REL64:
3508 case R_PPC64_REL30:
3509 return 0;
3510
3511 case R_PPC64_TPREL16:
3512 case R_PPC64_TPREL16_LO:
3513 case R_PPC64_TPREL16_HI:
3514 case R_PPC64_TPREL16_HA:
3515 case R_PPC64_TPREL16_DS:
3516 case R_PPC64_TPREL16_LO_DS:
3517 case R_PPC64_TPREL16_HIGHER:
3518 case R_PPC64_TPREL16_HIGHERA:
3519 case R_PPC64_TPREL16_HIGHEST:
3520 case R_PPC64_TPREL16_HIGHESTA:
3521 case R_PPC64_TPREL64:
3522 return !info->executable;
3523 }
3524 }
3525
3526 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3527 copying dynamic variables from a shared lib into an app's dynbss
3528 section, and instead use a dynamic relocation to point into the
3529 shared lib. With code that gcc generates, it's vital that this be
3530 enabled; In the PowerPC64 ABI, the address of a function is actually
3531 the address of a function descriptor, which resides in the .opd
3532 section. gcc uses the descriptor directly rather than going via the
3533 GOT as some other ABI's do, which means that initialized function
3534 pointers must reference the descriptor. Thus, a function pointer
3535 initialized to the address of a function in a shared library will
3536 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3537 redefines the function descriptor symbol to point to the copy. This
3538 presents a problem as a plt entry for that function is also
3539 initialized from the function descriptor symbol and the copy reloc
3540 may not be initialized first. */
3541 #define ELIMINATE_COPY_RELOCS 1
3542
3543 /* Section name for stubs is the associated section name plus this
3544 string. */
3545 #define STUB_SUFFIX ".stub"
3546
3547 /* Linker stubs.
3548 ppc_stub_long_branch:
3549 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3550 destination, but a 24 bit branch in a stub section will reach.
3551 . b dest
3552
3553 ppc_stub_plt_branch:
3554 Similar to the above, but a 24 bit branch in the stub section won't
3555 reach its destination.
3556 . addis %r12,%r2,xxx@toc@ha
3557 . ld %r11,xxx@toc@l(%r12)
3558 . mtctr %r11
3559 . bctr
3560
3561 ppc_stub_plt_call:
3562 Used to call a function in a shared library. If it so happens that
3563 the plt entry referenced crosses a 64k boundary, then an extra
3564 "addi %r12,%r12,xxx@toc@l" will be inserted before the "mtctr".
3565 . addis %r12,%r2,xxx@toc@ha
3566 . std %r2,40(%r1)
3567 . ld %r11,xxx+0@toc@l(%r12)
3568 . mtctr %r11
3569 . ld %r2,xxx+8@toc@l(%r12)
3570 . ld %r11,xxx+16@toc@l(%r12)
3571 . bctr
3572
3573 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3574 code to adjust the value and save r2 to support multiple toc sections.
3575 A ppc_stub_long_branch with an r2 offset looks like:
3576 . std %r2,40(%r1)
3577 . addis %r2,%r2,off@ha
3578 . addi %r2,%r2,off@l
3579 . b dest
3580
3581 A ppc_stub_plt_branch with an r2 offset looks like:
3582 . std %r2,40(%r1)
3583 . addis %r12,%r2,xxx@toc@ha
3584 . ld %r11,xxx@toc@l(%r12)
3585 . addis %r2,%r2,off@ha
3586 . addi %r2,%r2,off@l
3587 . mtctr %r11
3588 . bctr
3589
3590 In cases where the "addis" instruction would add zero, the "addis" is
3591 omitted and following instructions modified slightly in some cases.
3592 */
3593
3594 enum ppc_stub_type {
3595 ppc_stub_none,
3596 ppc_stub_long_branch,
3597 ppc_stub_long_branch_r2off,
3598 ppc_stub_plt_branch,
3599 ppc_stub_plt_branch_r2off,
3600 ppc_stub_plt_call,
3601 ppc_stub_plt_call_r2save
3602 };
3603
3604 struct ppc_stub_hash_entry {
3605
3606 /* Base hash table entry structure. */
3607 struct bfd_hash_entry root;
3608
3609 enum ppc_stub_type stub_type;
3610
3611 /* The stub section. */
3612 asection *stub_sec;
3613
3614 /* Offset within stub_sec of the beginning of this stub. */
3615 bfd_vma stub_offset;
3616
3617 /* Given the symbol's value and its section we can determine its final
3618 value when building the stubs (so the stub knows where to jump. */
3619 bfd_vma target_value;
3620 asection *target_section;
3621
3622 /* The symbol table entry, if any, that this was derived from. */
3623 struct ppc_link_hash_entry *h;
3624 struct plt_entry *plt_ent;
3625
3626 /* Where this stub is being called from, or, in the case of combined
3627 stub sections, the first input section in the group. */
3628 asection *id_sec;
3629 };
3630
3631 struct ppc_branch_hash_entry {
3632
3633 /* Base hash table entry structure. */
3634 struct bfd_hash_entry root;
3635
3636 /* Offset within branch lookup table. */
3637 unsigned int offset;
3638
3639 /* Generation marker. */
3640 unsigned int iter;
3641 };
3642
3643 /* Used to track dynamic relocations for local symbols. */
3644 struct ppc_dyn_relocs
3645 {
3646 struct ppc_dyn_relocs *next;
3647
3648 /* The input section of the reloc. */
3649 asection *sec;
3650
3651 /* Total number of relocs copied for the input section. */
3652 unsigned int count : 31;
3653
3654 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3655 unsigned int ifunc : 1;
3656 };
3657
3658 struct ppc_link_hash_entry
3659 {
3660 struct elf_link_hash_entry elf;
3661
3662 union {
3663 /* A pointer to the most recently used stub hash entry against this
3664 symbol. */
3665 struct ppc_stub_hash_entry *stub_cache;
3666
3667 /* A pointer to the next symbol starting with a '.' */
3668 struct ppc_link_hash_entry *next_dot_sym;
3669 } u;
3670
3671 /* Track dynamic relocs copied for this symbol. */
3672 struct elf_dyn_relocs *dyn_relocs;
3673
3674 /* Link between function code and descriptor symbols. */
3675 struct ppc_link_hash_entry *oh;
3676
3677 /* Flag function code and descriptor symbols. */
3678 unsigned int is_func:1;
3679 unsigned int is_func_descriptor:1;
3680 unsigned int fake:1;
3681
3682 /* Whether global opd/toc sym has been adjusted or not.
3683 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3684 should be set for all globals defined in any opd/toc section. */
3685 unsigned int adjust_done:1;
3686
3687 /* Set if we twiddled this symbol to weak at some stage. */
3688 unsigned int was_undefined:1;
3689
3690 /* Contexts in which symbol is used in the GOT (or TOC).
3691 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3692 corresponding relocs are encountered during check_relocs.
3693 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3694 indicate the corresponding GOT entry type is not needed.
3695 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3696 a TPREL one. We use a separate flag rather than setting TPREL
3697 just for convenience in distinguishing the two cases. */
3698 #define TLS_GD 1 /* GD reloc. */
3699 #define TLS_LD 2 /* LD reloc. */
3700 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3701 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3702 #define TLS_TLS 16 /* Any TLS reloc. */
3703 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3704 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3705 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3706 unsigned char tls_mask;
3707 };
3708
3709 /* ppc64 ELF linker hash table. */
3710
3711 struct ppc_link_hash_table
3712 {
3713 struct elf_link_hash_table elf;
3714
3715 /* The stub hash table. */
3716 struct bfd_hash_table stub_hash_table;
3717
3718 /* Another hash table for plt_branch stubs. */
3719 struct bfd_hash_table branch_hash_table;
3720
3721 /* Hash table for function prologue tocsave. */
3722 htab_t tocsave_htab;
3723
3724 /* Linker stub bfd. */
3725 bfd *stub_bfd;
3726
3727 /* Linker call-backs. */
3728 asection * (*add_stub_section) (const char *, asection *);
3729 void (*layout_sections_again) (void);
3730
3731 /* Array to keep track of which stub sections have been created, and
3732 information on stub grouping. */
3733 struct map_stub {
3734 /* This is the section to which stubs in the group will be attached. */
3735 asection *link_sec;
3736 /* The stub section. */
3737 asection *stub_sec;
3738 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3739 bfd_vma toc_off;
3740 } *stub_group;
3741
3742 /* Temp used when calculating TOC pointers. */
3743 bfd_vma toc_curr;
3744 bfd *toc_bfd;
3745 asection *toc_first_sec;
3746
3747 /* Highest input section id. */
3748 int top_id;
3749
3750 /* Highest output section index. */
3751 int top_index;
3752
3753 /* Used when adding symbols. */
3754 struct ppc_link_hash_entry *dot_syms;
3755
3756 /* List of input sections for each output section. */
3757 asection **input_list;
3758
3759 /* Short-cuts to get to dynamic linker sections. */
3760 asection *got;
3761 asection *plt;
3762 asection *relplt;
3763 asection *iplt;
3764 asection *reliplt;
3765 asection *dynbss;
3766 asection *relbss;
3767 asection *glink;
3768 asection *sfpr;
3769 asection *brlt;
3770 asection *relbrlt;
3771 asection *glink_eh_frame;
3772
3773 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3774 struct ppc_link_hash_entry *tls_get_addr;
3775 struct ppc_link_hash_entry *tls_get_addr_fd;
3776
3777 /* The size of reliplt used by got entry relocs. */
3778 bfd_size_type got_reli_size;
3779
3780 /* Statistics. */
3781 unsigned long stub_count[ppc_stub_plt_call_r2save];
3782
3783 /* Number of stubs against global syms. */
3784 unsigned long stub_globals;
3785
3786 /* Alignment of PLT call stubs. */
3787 unsigned int plt_stub_align:4;
3788
3789 /* Set if PLT call stubs should load r11. */
3790 unsigned int plt_static_chain:1;
3791
3792 /* Set if PLT call stubs need a read-read barrier. */
3793 unsigned int plt_thread_safe:1;
3794
3795 /* Set if we should emit symbols for stubs. */
3796 unsigned int emit_stub_syms:1;
3797
3798 /* Set if __tls_get_addr optimization should not be done. */
3799 unsigned int no_tls_get_addr_opt:1;
3800
3801 /* Support for multiple toc sections. */
3802 unsigned int do_multi_toc:1;
3803 unsigned int multi_toc_needed:1;
3804 unsigned int second_toc_pass:1;
3805 unsigned int do_toc_opt:1;
3806
3807 /* Set on error. */
3808 unsigned int stub_error:1;
3809
3810 /* Temp used by ppc64_elf_process_dot_syms. */
3811 unsigned int twiddled_syms:1;
3812
3813 /* Incremented every time we size stubs. */
3814 unsigned int stub_iteration;
3815
3816 /* Small local sym cache. */
3817 struct sym_cache sym_cache;
3818 };
3819
3820 /* Rename some of the generic section flags to better document how they
3821 are used here. */
3822
3823 /* Nonzero if this section has TLS related relocations. */
3824 #define has_tls_reloc sec_flg0
3825
3826 /* Nonzero if this section has a call to __tls_get_addr. */
3827 #define has_tls_get_addr_call sec_flg1
3828
3829 /* Nonzero if this section has any toc or got relocs. */
3830 #define has_toc_reloc sec_flg2
3831
3832 /* Nonzero if this section has a call to another section that uses
3833 the toc or got. */
3834 #define makes_toc_func_call sec_flg3
3835
3836 /* Recursion protection when determining above flag. */
3837 #define call_check_in_progress sec_flg4
3838 #define call_check_done sec_flg5
3839
3840 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3841
3842 #define ppc_hash_table(p) \
3843 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
3844 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
3845
3846 #define ppc_stub_hash_lookup(table, string, create, copy) \
3847 ((struct ppc_stub_hash_entry *) \
3848 bfd_hash_lookup ((table), (string), (create), (copy)))
3849
3850 #define ppc_branch_hash_lookup(table, string, create, copy) \
3851 ((struct ppc_branch_hash_entry *) \
3852 bfd_hash_lookup ((table), (string), (create), (copy)))
3853
3854 /* Create an entry in the stub hash table. */
3855
3856 static struct bfd_hash_entry *
3857 stub_hash_newfunc (struct bfd_hash_entry *entry,
3858 struct bfd_hash_table *table,
3859 const char *string)
3860 {
3861 /* Allocate the structure if it has not already been allocated by a
3862 subclass. */
3863 if (entry == NULL)
3864 {
3865 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3866 if (entry == NULL)
3867 return entry;
3868 }
3869
3870 /* Call the allocation method of the superclass. */
3871 entry = bfd_hash_newfunc (entry, table, string);
3872 if (entry != NULL)
3873 {
3874 struct ppc_stub_hash_entry *eh;
3875
3876 /* Initialize the local fields. */
3877 eh = (struct ppc_stub_hash_entry *) entry;
3878 eh->stub_type = ppc_stub_none;
3879 eh->stub_sec = NULL;
3880 eh->stub_offset = 0;
3881 eh->target_value = 0;
3882 eh->target_section = NULL;
3883 eh->h = NULL;
3884 eh->id_sec = NULL;
3885 }
3886
3887 return entry;
3888 }
3889
3890 /* Create an entry in the branch hash table. */
3891
3892 static struct bfd_hash_entry *
3893 branch_hash_newfunc (struct bfd_hash_entry *entry,
3894 struct bfd_hash_table *table,
3895 const char *string)
3896 {
3897 /* Allocate the structure if it has not already been allocated by a
3898 subclass. */
3899 if (entry == NULL)
3900 {
3901 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3902 if (entry == NULL)
3903 return entry;
3904 }
3905
3906 /* Call the allocation method of the superclass. */
3907 entry = bfd_hash_newfunc (entry, table, string);
3908 if (entry != NULL)
3909 {
3910 struct ppc_branch_hash_entry *eh;
3911
3912 /* Initialize the local fields. */
3913 eh = (struct ppc_branch_hash_entry *) entry;
3914 eh->offset = 0;
3915 eh->iter = 0;
3916 }
3917
3918 return entry;
3919 }
3920
3921 /* Create an entry in a ppc64 ELF linker hash table. */
3922
3923 static struct bfd_hash_entry *
3924 link_hash_newfunc (struct bfd_hash_entry *entry,
3925 struct bfd_hash_table *table,
3926 const char *string)
3927 {
3928 /* Allocate the structure if it has not already been allocated by a
3929 subclass. */
3930 if (entry == NULL)
3931 {
3932 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3933 if (entry == NULL)
3934 return entry;
3935 }
3936
3937 /* Call the allocation method of the superclass. */
3938 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3939 if (entry != NULL)
3940 {
3941 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3942
3943 memset (&eh->u.stub_cache, 0,
3944 (sizeof (struct ppc_link_hash_entry)
3945 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3946
3947 /* When making function calls, old ABI code references function entry
3948 points (dot symbols), while new ABI code references the function
3949 descriptor symbol. We need to make any combination of reference and
3950 definition work together, without breaking archive linking.
3951
3952 For a defined function "foo" and an undefined call to "bar":
3953 An old object defines "foo" and ".foo", references ".bar" (possibly
3954 "bar" too).
3955 A new object defines "foo" and references "bar".
3956
3957 A new object thus has no problem with its undefined symbols being
3958 satisfied by definitions in an old object. On the other hand, the
3959 old object won't have ".bar" satisfied by a new object.
3960
3961 Keep a list of newly added dot-symbols. */
3962
3963 if (string[0] == '.')
3964 {
3965 struct ppc_link_hash_table *htab;
3966
3967 htab = (struct ppc_link_hash_table *) table;
3968 eh->u.next_dot_sym = htab->dot_syms;
3969 htab->dot_syms = eh;
3970 }
3971 }
3972
3973 return entry;
3974 }
3975
3976 struct tocsave_entry {
3977 asection *sec;
3978 bfd_vma offset;
3979 };
3980
3981 static hashval_t
3982 tocsave_htab_hash (const void *p)
3983 {
3984 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3985 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
3986 }
3987
3988 static int
3989 tocsave_htab_eq (const void *p1, const void *p2)
3990 {
3991 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3992 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3993 return e1->sec == e2->sec && e1->offset == e2->offset;
3994 }
3995
3996 /* Create a ppc64 ELF linker hash table. */
3997
3998 static struct bfd_link_hash_table *
3999 ppc64_elf_link_hash_table_create (bfd *abfd)
4000 {
4001 struct ppc_link_hash_table *htab;
4002 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
4003
4004 htab = bfd_zmalloc (amt);
4005 if (htab == NULL)
4006 return NULL;
4007
4008 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
4009 sizeof (struct ppc_link_hash_entry),
4010 PPC64_ELF_DATA))
4011 {
4012 free (htab);
4013 return NULL;
4014 }
4015
4016 /* Init the stub hash table too. */
4017 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4018 sizeof (struct ppc_stub_hash_entry)))
4019 return NULL;
4020
4021 /* And the branch hash table. */
4022 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4023 sizeof (struct ppc_branch_hash_entry)))
4024 return NULL;
4025
4026 htab->tocsave_htab = htab_try_create (1024,
4027 tocsave_htab_hash,
4028 tocsave_htab_eq,
4029 NULL);
4030 if (htab->tocsave_htab == NULL)
4031 return NULL;
4032
4033 /* Initializing two fields of the union is just cosmetic. We really
4034 only care about glist, but when compiled on a 32-bit host the
4035 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4036 debugger inspection of these fields look nicer. */
4037 htab->elf.init_got_refcount.refcount = 0;
4038 htab->elf.init_got_refcount.glist = NULL;
4039 htab->elf.init_plt_refcount.refcount = 0;
4040 htab->elf.init_plt_refcount.glist = NULL;
4041 htab->elf.init_got_offset.offset = 0;
4042 htab->elf.init_got_offset.glist = NULL;
4043 htab->elf.init_plt_offset.offset = 0;
4044 htab->elf.init_plt_offset.glist = NULL;
4045
4046 return &htab->elf.root;
4047 }
4048
4049 /* Free the derived linker hash table. */
4050
4051 static void
4052 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
4053 {
4054 struct ppc_link_hash_table *htab = (struct ppc_link_hash_table *) hash;
4055
4056 bfd_hash_table_free (&htab->stub_hash_table);
4057 bfd_hash_table_free (&htab->branch_hash_table);
4058 if (htab->tocsave_htab)
4059 htab_delete (htab->tocsave_htab);
4060 _bfd_elf_link_hash_table_free (hash);
4061 }
4062
4063 /* Create sections for linker generated code. */
4064
4065 static bfd_boolean
4066 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4067 {
4068 struct ppc_link_hash_table *htab;
4069 flagword flags;
4070
4071 htab = ppc_hash_table (info);
4072
4073 /* Create .sfpr for code to save and restore fp regs. */
4074 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4075 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4076 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4077 flags);
4078 if (htab->sfpr == NULL
4079 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4080 return FALSE;
4081
4082 /* Create .glink for lazy dynamic linking support. */
4083 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4084 flags);
4085 if (htab->glink == NULL
4086 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4087 return FALSE;
4088
4089 if (!info->no_ld_generated_unwind_info)
4090 {
4091 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4092 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4093 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4094 ".eh_frame",
4095 flags);
4096 if (htab->glink_eh_frame == NULL
4097 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4098 return FALSE;
4099 }
4100
4101 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4102 htab->iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4103 if (htab->iplt == NULL
4104 || ! bfd_set_section_alignment (dynobj, htab->iplt, 3))
4105 return FALSE;
4106
4107 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4108 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4109 htab->reliplt = bfd_make_section_anyway_with_flags (dynobj,
4110 ".rela.iplt",
4111 flags);
4112 if (htab->reliplt == NULL
4113 || ! bfd_set_section_alignment (dynobj, htab->reliplt, 3))
4114 return FALSE;
4115
4116 /* Create branch lookup table for plt_branch stubs. */
4117 flags = (SEC_ALLOC | SEC_LOAD
4118 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4119 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4120 flags);
4121 if (htab->brlt == NULL
4122 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4123 return FALSE;
4124
4125 if (!info->shared)
4126 return TRUE;
4127
4128 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4129 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4130 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4131 ".rela.branch_lt",
4132 flags);
4133 if (htab->relbrlt == NULL
4134 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4135 return FALSE;
4136
4137 return TRUE;
4138 }
4139
4140 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4141
4142 bfd_boolean
4143 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
4144 {
4145 struct ppc_link_hash_table *htab;
4146
4147 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
4148
4149 /* Always hook our dynamic sections into the first bfd, which is the
4150 linker created stub bfd. This ensures that the GOT header is at
4151 the start of the output TOC section. */
4152 htab = ppc_hash_table (info);
4153 if (htab == NULL)
4154 return FALSE;
4155 htab->stub_bfd = abfd;
4156 htab->elf.dynobj = abfd;
4157
4158 if (info->relocatable)
4159 return TRUE;
4160
4161 return create_linkage_sections (htab->elf.dynobj, info);
4162 }
4163
4164 /* Build a name for an entry in the stub hash table. */
4165
4166 static char *
4167 ppc_stub_name (const asection *input_section,
4168 const asection *sym_sec,
4169 const struct ppc_link_hash_entry *h,
4170 const Elf_Internal_Rela *rel)
4171 {
4172 char *stub_name;
4173 ssize_t len;
4174
4175 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4176 offsets from a sym as a branch target? In fact, we could
4177 probably assume the addend is always zero. */
4178 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4179
4180 if (h)
4181 {
4182 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4183 stub_name = bfd_malloc (len);
4184 if (stub_name == NULL)
4185 return stub_name;
4186
4187 len = sprintf (stub_name, "%08x.%s+%x",
4188 input_section->id & 0xffffffff,
4189 h->elf.root.root.string,
4190 (int) rel->r_addend & 0xffffffff);
4191 }
4192 else
4193 {
4194 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4195 stub_name = bfd_malloc (len);
4196 if (stub_name == NULL)
4197 return stub_name;
4198
4199 len = sprintf (stub_name, "%08x.%x:%x+%x",
4200 input_section->id & 0xffffffff,
4201 sym_sec->id & 0xffffffff,
4202 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4203 (int) rel->r_addend & 0xffffffff);
4204 }
4205 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4206 stub_name[len - 2] = 0;
4207 return stub_name;
4208 }
4209
4210 /* Look up an entry in the stub hash. Stub entries are cached because
4211 creating the stub name takes a bit of time. */
4212
4213 static struct ppc_stub_hash_entry *
4214 ppc_get_stub_entry (const asection *input_section,
4215 const asection *sym_sec,
4216 struct ppc_link_hash_entry *h,
4217 const Elf_Internal_Rela *rel,
4218 struct ppc_link_hash_table *htab)
4219 {
4220 struct ppc_stub_hash_entry *stub_entry;
4221 const asection *id_sec;
4222
4223 /* If this input section is part of a group of sections sharing one
4224 stub section, then use the id of the first section in the group.
4225 Stub names need to include a section id, as there may well be
4226 more than one stub used to reach say, printf, and we need to
4227 distinguish between them. */
4228 id_sec = htab->stub_group[input_section->id].link_sec;
4229
4230 if (h != NULL && h->u.stub_cache != NULL
4231 && h->u.stub_cache->h == h
4232 && h->u.stub_cache->id_sec == id_sec)
4233 {
4234 stub_entry = h->u.stub_cache;
4235 }
4236 else
4237 {
4238 char *stub_name;
4239
4240 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4241 if (stub_name == NULL)
4242 return NULL;
4243
4244 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4245 stub_name, FALSE, FALSE);
4246 if (h != NULL)
4247 h->u.stub_cache = stub_entry;
4248
4249 free (stub_name);
4250 }
4251
4252 return stub_entry;
4253 }
4254
4255 /* Add a new stub entry to the stub hash. Not all fields of the new
4256 stub entry are initialised. */
4257
4258 static struct ppc_stub_hash_entry *
4259 ppc_add_stub (const char *stub_name,
4260 asection *section,
4261 struct bfd_link_info *info)
4262 {
4263 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4264 asection *link_sec;
4265 asection *stub_sec;
4266 struct ppc_stub_hash_entry *stub_entry;
4267
4268 link_sec = htab->stub_group[section->id].link_sec;
4269 stub_sec = htab->stub_group[section->id].stub_sec;
4270 if (stub_sec == NULL)
4271 {
4272 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4273 if (stub_sec == NULL)
4274 {
4275 size_t namelen;
4276 bfd_size_type len;
4277 char *s_name;
4278
4279 namelen = strlen (link_sec->name);
4280 len = namelen + sizeof (STUB_SUFFIX);
4281 s_name = bfd_alloc (htab->stub_bfd, len);
4282 if (s_name == NULL)
4283 return NULL;
4284
4285 memcpy (s_name, link_sec->name, namelen);
4286 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4287 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
4288 if (stub_sec == NULL)
4289 return NULL;
4290 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4291 }
4292 htab->stub_group[section->id].stub_sec = stub_sec;
4293 }
4294
4295 /* Enter this entry into the linker stub hash table. */
4296 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4297 TRUE, FALSE);
4298 if (stub_entry == NULL)
4299 {
4300 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4301 section->owner, stub_name);
4302 return NULL;
4303 }
4304
4305 stub_entry->stub_sec = stub_sec;
4306 stub_entry->stub_offset = 0;
4307 stub_entry->id_sec = link_sec;
4308 return stub_entry;
4309 }
4310
4311 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4312 not already done. */
4313
4314 static bfd_boolean
4315 create_got_section (bfd *abfd, struct bfd_link_info *info)
4316 {
4317 asection *got, *relgot;
4318 flagword flags;
4319 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4320
4321 if (!is_ppc64_elf (abfd))
4322 return FALSE;
4323 if (htab == NULL)
4324 return FALSE;
4325
4326 if (!htab->got)
4327 {
4328 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
4329 return FALSE;
4330
4331 htab->got = bfd_get_linker_section (htab->elf.dynobj, ".got");
4332 if (!htab->got)
4333 abort ();
4334 }
4335
4336 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4337 | SEC_LINKER_CREATED);
4338
4339 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4340 if (!got
4341 || !bfd_set_section_alignment (abfd, got, 3))
4342 return FALSE;
4343
4344 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4345 flags | SEC_READONLY);
4346 if (!relgot
4347 || ! bfd_set_section_alignment (abfd, relgot, 3))
4348 return FALSE;
4349
4350 ppc64_elf_tdata (abfd)->got = got;
4351 ppc64_elf_tdata (abfd)->relgot = relgot;
4352 return TRUE;
4353 }
4354
4355 /* Create the dynamic sections, and set up shortcuts. */
4356
4357 static bfd_boolean
4358 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4359 {
4360 struct ppc_link_hash_table *htab;
4361
4362 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4363 return FALSE;
4364
4365 htab = ppc_hash_table (info);
4366 if (htab == NULL)
4367 return FALSE;
4368
4369 if (!htab->got)
4370 htab->got = bfd_get_linker_section (dynobj, ".got");
4371 htab->plt = bfd_get_linker_section (dynobj, ".plt");
4372 htab->relplt = bfd_get_linker_section (dynobj, ".rela.plt");
4373 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4374 if (!info->shared)
4375 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4376
4377 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
4378 || (!info->shared && !htab->relbss))
4379 abort ();
4380
4381 return TRUE;
4382 }
4383
4384 /* Follow indirect and warning symbol links. */
4385
4386 static inline struct bfd_link_hash_entry *
4387 follow_link (struct bfd_link_hash_entry *h)
4388 {
4389 while (h->type == bfd_link_hash_indirect
4390 || h->type == bfd_link_hash_warning)
4391 h = h->u.i.link;
4392 return h;
4393 }
4394
4395 static inline struct elf_link_hash_entry *
4396 elf_follow_link (struct elf_link_hash_entry *h)
4397 {
4398 return (struct elf_link_hash_entry *) follow_link (&h->root);
4399 }
4400
4401 static inline struct ppc_link_hash_entry *
4402 ppc_follow_link (struct ppc_link_hash_entry *h)
4403 {
4404 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4405 }
4406
4407 /* Merge PLT info on FROM with that on TO. */
4408
4409 static void
4410 move_plt_plist (struct ppc_link_hash_entry *from,
4411 struct ppc_link_hash_entry *to)
4412 {
4413 if (from->elf.plt.plist != NULL)
4414 {
4415 if (to->elf.plt.plist != NULL)
4416 {
4417 struct plt_entry **entp;
4418 struct plt_entry *ent;
4419
4420 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4421 {
4422 struct plt_entry *dent;
4423
4424 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4425 if (dent->addend == ent->addend)
4426 {
4427 dent->plt.refcount += ent->plt.refcount;
4428 *entp = ent->next;
4429 break;
4430 }
4431 if (dent == NULL)
4432 entp = &ent->next;
4433 }
4434 *entp = to->elf.plt.plist;
4435 }
4436
4437 to->elf.plt.plist = from->elf.plt.plist;
4438 from->elf.plt.plist = NULL;
4439 }
4440 }
4441
4442 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4443
4444 static void
4445 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4446 struct elf_link_hash_entry *dir,
4447 struct elf_link_hash_entry *ind)
4448 {
4449 struct ppc_link_hash_entry *edir, *eind;
4450
4451 edir = (struct ppc_link_hash_entry *) dir;
4452 eind = (struct ppc_link_hash_entry *) ind;
4453
4454 edir->is_func |= eind->is_func;
4455 edir->is_func_descriptor |= eind->is_func_descriptor;
4456 edir->tls_mask |= eind->tls_mask;
4457 if (eind->oh != NULL)
4458 edir->oh = ppc_follow_link (eind->oh);
4459
4460 /* If called to transfer flags for a weakdef during processing
4461 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4462 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4463 if (!(ELIMINATE_COPY_RELOCS
4464 && eind->elf.root.type != bfd_link_hash_indirect
4465 && edir->elf.dynamic_adjusted))
4466 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4467
4468 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4469 edir->elf.ref_regular |= eind->elf.ref_regular;
4470 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4471 edir->elf.needs_plt |= eind->elf.needs_plt;
4472
4473 /* Copy over any dynamic relocs we may have on the indirect sym. */
4474 if (eind->dyn_relocs != NULL)
4475 {
4476 if (edir->dyn_relocs != NULL)
4477 {
4478 struct elf_dyn_relocs **pp;
4479 struct elf_dyn_relocs *p;
4480
4481 /* Add reloc counts against the indirect sym to the direct sym
4482 list. Merge any entries against the same section. */
4483 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4484 {
4485 struct elf_dyn_relocs *q;
4486
4487 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4488 if (q->sec == p->sec)
4489 {
4490 q->pc_count += p->pc_count;
4491 q->count += p->count;
4492 *pp = p->next;
4493 break;
4494 }
4495 if (q == NULL)
4496 pp = &p->next;
4497 }
4498 *pp = edir->dyn_relocs;
4499 }
4500
4501 edir->dyn_relocs = eind->dyn_relocs;
4502 eind->dyn_relocs = NULL;
4503 }
4504
4505 /* If we were called to copy over info for a weak sym, that's all.
4506 You might think dyn_relocs need not be copied over; After all,
4507 both syms will be dynamic or both non-dynamic so we're just
4508 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4509 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4510 dyn_relocs in read-only sections, and it does so on what is the
4511 DIR sym here. */
4512 if (eind->elf.root.type != bfd_link_hash_indirect)
4513 return;
4514
4515 /* Copy over got entries that we may have already seen to the
4516 symbol which just became indirect. */
4517 if (eind->elf.got.glist != NULL)
4518 {
4519 if (edir->elf.got.glist != NULL)
4520 {
4521 struct got_entry **entp;
4522 struct got_entry *ent;
4523
4524 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4525 {
4526 struct got_entry *dent;
4527
4528 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4529 if (dent->addend == ent->addend
4530 && dent->owner == ent->owner
4531 && dent->tls_type == ent->tls_type)
4532 {
4533 dent->got.refcount += ent->got.refcount;
4534 *entp = ent->next;
4535 break;
4536 }
4537 if (dent == NULL)
4538 entp = &ent->next;
4539 }
4540 *entp = edir->elf.got.glist;
4541 }
4542
4543 edir->elf.got.glist = eind->elf.got.glist;
4544 eind->elf.got.glist = NULL;
4545 }
4546
4547 /* And plt entries. */
4548 move_plt_plist (eind, edir);
4549
4550 if (eind->elf.dynindx != -1)
4551 {
4552 if (edir->elf.dynindx != -1)
4553 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4554 edir->elf.dynstr_index);
4555 edir->elf.dynindx = eind->elf.dynindx;
4556 edir->elf.dynstr_index = eind->elf.dynstr_index;
4557 eind->elf.dynindx = -1;
4558 eind->elf.dynstr_index = 0;
4559 }
4560 }
4561
4562 /* Find the function descriptor hash entry from the given function code
4563 hash entry FH. Link the entries via their OH fields. */
4564
4565 static struct ppc_link_hash_entry *
4566 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4567 {
4568 struct ppc_link_hash_entry *fdh = fh->oh;
4569
4570 if (fdh == NULL)
4571 {
4572 const char *fd_name = fh->elf.root.root.string + 1;
4573
4574 fdh = (struct ppc_link_hash_entry *)
4575 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4576 if (fdh == NULL)
4577 return fdh;
4578
4579 fdh->is_func_descriptor = 1;
4580 fdh->oh = fh;
4581 fh->is_func = 1;
4582 fh->oh = fdh;
4583 }
4584
4585 return ppc_follow_link (fdh);
4586 }
4587
4588 /* Make a fake function descriptor sym for the code sym FH. */
4589
4590 static struct ppc_link_hash_entry *
4591 make_fdh (struct bfd_link_info *info,
4592 struct ppc_link_hash_entry *fh)
4593 {
4594 bfd *abfd;
4595 asymbol *newsym;
4596 struct bfd_link_hash_entry *bh;
4597 struct ppc_link_hash_entry *fdh;
4598
4599 abfd = fh->elf.root.u.undef.abfd;
4600 newsym = bfd_make_empty_symbol (abfd);
4601 newsym->name = fh->elf.root.root.string + 1;
4602 newsym->section = bfd_und_section_ptr;
4603 newsym->value = 0;
4604 newsym->flags = BSF_WEAK;
4605
4606 bh = NULL;
4607 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4608 newsym->flags, newsym->section,
4609 newsym->value, NULL, FALSE, FALSE,
4610 &bh))
4611 return NULL;
4612
4613 fdh = (struct ppc_link_hash_entry *) bh;
4614 fdh->elf.non_elf = 0;
4615 fdh->fake = 1;
4616 fdh->is_func_descriptor = 1;
4617 fdh->oh = fh;
4618 fh->is_func = 1;
4619 fh->oh = fdh;
4620 return fdh;
4621 }
4622
4623 /* Fix function descriptor symbols defined in .opd sections to be
4624 function type. */
4625
4626 static bfd_boolean
4627 ppc64_elf_add_symbol_hook (bfd *ibfd,
4628 struct bfd_link_info *info,
4629 Elf_Internal_Sym *isym,
4630 const char **name ATTRIBUTE_UNUSED,
4631 flagword *flags ATTRIBUTE_UNUSED,
4632 asection **sec,
4633 bfd_vma *value ATTRIBUTE_UNUSED)
4634 {
4635 if ((ibfd->flags & DYNAMIC) == 0
4636 && ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4637 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4638
4639 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4640 {
4641 if ((ibfd->flags & DYNAMIC) == 0)
4642 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4643 }
4644 else if (ELF_ST_TYPE (isym->st_info) == STT_FUNC)
4645 ;
4646 else if (*sec != NULL
4647 && strcmp ((*sec)->name, ".opd") == 0)
4648 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4649
4650 return TRUE;
4651 }
4652
4653 /* This function makes an old ABI object reference to ".bar" cause the
4654 inclusion of a new ABI object archive that defines "bar".
4655 NAME is a symbol defined in an archive. Return a symbol in the hash
4656 table that might be satisfied by the archive symbols. */
4657
4658 static struct elf_link_hash_entry *
4659 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4660 struct bfd_link_info *info,
4661 const char *name)
4662 {
4663 struct elf_link_hash_entry *h;
4664 char *dot_name;
4665 size_t len;
4666
4667 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4668 if (h != NULL
4669 /* Don't return this sym if it is a fake function descriptor
4670 created by add_symbol_adjust. */
4671 && !(h->root.type == bfd_link_hash_undefweak
4672 && ((struct ppc_link_hash_entry *) h)->fake))
4673 return h;
4674
4675 if (name[0] == '.')
4676 return h;
4677
4678 len = strlen (name);
4679 dot_name = bfd_alloc (abfd, len + 2);
4680 if (dot_name == NULL)
4681 return (struct elf_link_hash_entry *) 0 - 1;
4682 dot_name[0] = '.';
4683 memcpy (dot_name + 1, name, len + 1);
4684 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4685 bfd_release (abfd, dot_name);
4686 return h;
4687 }
4688
4689 /* This function satisfies all old ABI object references to ".bar" if a
4690 new ABI object defines "bar". Well, at least, undefined dot symbols
4691 are made weak. This stops later archive searches from including an
4692 object if we already have a function descriptor definition. It also
4693 prevents the linker complaining about undefined symbols.
4694 We also check and correct mismatched symbol visibility here. The
4695 most restrictive visibility of the function descriptor and the
4696 function entry symbol is used. */
4697
4698 static bfd_boolean
4699 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4700 {
4701 struct ppc_link_hash_table *htab;
4702 struct ppc_link_hash_entry *fdh;
4703
4704 if (eh->elf.root.type == bfd_link_hash_indirect)
4705 return TRUE;
4706
4707 if (eh->elf.root.type == bfd_link_hash_warning)
4708 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4709
4710 if (eh->elf.root.root.string[0] != '.')
4711 abort ();
4712
4713 htab = ppc_hash_table (info);
4714 if (htab == NULL)
4715 return FALSE;
4716
4717 fdh = lookup_fdh (eh, htab);
4718 if (fdh == NULL)
4719 {
4720 if (!info->relocatable
4721 && (eh->elf.root.type == bfd_link_hash_undefined
4722 || eh->elf.root.type == bfd_link_hash_undefweak)
4723 && eh->elf.ref_regular)
4724 {
4725 /* Make an undefweak function descriptor sym, which is enough to
4726 pull in an --as-needed shared lib, but won't cause link
4727 errors. Archives are handled elsewhere. */
4728 fdh = make_fdh (info, eh);
4729 if (fdh == NULL)
4730 return FALSE;
4731 fdh->elf.ref_regular = 1;
4732 }
4733 }
4734 else
4735 {
4736 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4737 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4738 if (entry_vis < descr_vis)
4739 fdh->elf.other += entry_vis - descr_vis;
4740 else if (entry_vis > descr_vis)
4741 eh->elf.other += descr_vis - entry_vis;
4742
4743 if ((fdh->elf.root.type == bfd_link_hash_defined
4744 || fdh->elf.root.type == bfd_link_hash_defweak)
4745 && eh->elf.root.type == bfd_link_hash_undefined)
4746 {
4747 eh->elf.root.type = bfd_link_hash_undefweak;
4748 eh->was_undefined = 1;
4749 htab->twiddled_syms = 1;
4750 }
4751 }
4752
4753 return TRUE;
4754 }
4755
4756 /* Process list of dot-symbols we made in link_hash_newfunc. */
4757
4758 static bfd_boolean
4759 ppc64_elf_process_dot_syms (bfd *ibfd, struct bfd_link_info *info)
4760 {
4761 struct ppc_link_hash_table *htab;
4762 struct ppc_link_hash_entry **p, *eh;
4763
4764 if (!is_ppc64_elf (info->output_bfd))
4765 return TRUE;
4766 htab = ppc_hash_table (info);
4767 if (htab == NULL)
4768 return FALSE;
4769
4770 if (is_ppc64_elf (ibfd))
4771 {
4772 p = &htab->dot_syms;
4773 while ((eh = *p) != NULL)
4774 {
4775 *p = NULL;
4776 if (&eh->elf == htab->elf.hgot)
4777 ;
4778 else if (htab->elf.hgot == NULL
4779 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
4780 htab->elf.hgot = &eh->elf;
4781 else if (!add_symbol_adjust (eh, info))
4782 return FALSE;
4783 p = &eh->u.next_dot_sym;
4784 }
4785 }
4786
4787 /* Clear the list for non-ppc64 input files. */
4788 p = &htab->dot_syms;
4789 while ((eh = *p) != NULL)
4790 {
4791 *p = NULL;
4792 p = &eh->u.next_dot_sym;
4793 }
4794
4795 /* We need to fix the undefs list for any syms we have twiddled to
4796 undef_weak. */
4797 if (htab->twiddled_syms)
4798 {
4799 bfd_link_repair_undef_list (&htab->elf.root);
4800 htab->twiddled_syms = 0;
4801 }
4802 return TRUE;
4803 }
4804
4805 /* Undo hash table changes when an --as-needed input file is determined
4806 not to be needed. */
4807
4808 static bfd_boolean
4809 ppc64_elf_notice_as_needed (bfd *ibfd,
4810 struct bfd_link_info *info,
4811 enum notice_asneeded_action act)
4812 {
4813 if (act == notice_not_needed)
4814 {
4815 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4816
4817 if (htab == NULL)
4818 return FALSE;
4819
4820 htab->dot_syms = NULL;
4821 }
4822 return _bfd_elf_notice_as_needed (ibfd, info, act);
4823 }
4824
4825 /* If --just-symbols against a final linked binary, then assume we need
4826 toc adjusting stubs when calling functions defined there. */
4827
4828 static void
4829 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4830 {
4831 if ((sec->flags & SEC_CODE) != 0
4832 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4833 && is_ppc64_elf (sec->owner))
4834 {
4835 asection *got = bfd_get_section_by_name (sec->owner, ".got");
4836 if (got != NULL
4837 && got->size >= elf_backend_got_header_size
4838 && bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4839 sec->has_toc_reloc = 1;
4840 }
4841 _bfd_elf_link_just_syms (sec, info);
4842 }
4843
4844 static struct plt_entry **
4845 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4846 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4847 {
4848 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4849 struct plt_entry **local_plt;
4850 unsigned char *local_got_tls_masks;
4851
4852 if (local_got_ents == NULL)
4853 {
4854 bfd_size_type size = symtab_hdr->sh_info;
4855
4856 size *= (sizeof (*local_got_ents)
4857 + sizeof (*local_plt)
4858 + sizeof (*local_got_tls_masks));
4859 local_got_ents = bfd_zalloc (abfd, size);
4860 if (local_got_ents == NULL)
4861 return NULL;
4862 elf_local_got_ents (abfd) = local_got_ents;
4863 }
4864
4865 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
4866 {
4867 struct got_entry *ent;
4868
4869 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4870 if (ent->addend == r_addend
4871 && ent->owner == abfd
4872 && ent->tls_type == tls_type)
4873 break;
4874 if (ent == NULL)
4875 {
4876 bfd_size_type amt = sizeof (*ent);
4877 ent = bfd_alloc (abfd, amt);
4878 if (ent == NULL)
4879 return FALSE;
4880 ent->next = local_got_ents[r_symndx];
4881 ent->addend = r_addend;
4882 ent->owner = abfd;
4883 ent->tls_type = tls_type;
4884 ent->is_indirect = FALSE;
4885 ent->got.refcount = 0;
4886 local_got_ents[r_symndx] = ent;
4887 }
4888 ent->got.refcount += 1;
4889 }
4890
4891 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4892 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4893 local_got_tls_masks[r_symndx] |= tls_type;
4894
4895 return local_plt + r_symndx;
4896 }
4897
4898 static bfd_boolean
4899 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4900 {
4901 struct plt_entry *ent;
4902
4903 for (ent = *plist; ent != NULL; ent = ent->next)
4904 if (ent->addend == addend)
4905 break;
4906 if (ent == NULL)
4907 {
4908 bfd_size_type amt = sizeof (*ent);
4909 ent = bfd_alloc (abfd, amt);
4910 if (ent == NULL)
4911 return FALSE;
4912 ent->next = *plist;
4913 ent->addend = addend;
4914 ent->plt.refcount = 0;
4915 *plist = ent;
4916 }
4917 ent->plt.refcount += 1;
4918 return TRUE;
4919 }
4920
4921 static bfd_boolean
4922 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4923 {
4924 return (r_type == R_PPC64_REL24
4925 || r_type == R_PPC64_REL14
4926 || r_type == R_PPC64_REL14_BRTAKEN
4927 || r_type == R_PPC64_REL14_BRNTAKEN
4928 || r_type == R_PPC64_ADDR24
4929 || r_type == R_PPC64_ADDR14
4930 || r_type == R_PPC64_ADDR14_BRTAKEN
4931 || r_type == R_PPC64_ADDR14_BRNTAKEN);
4932 }
4933
4934 /* Look through the relocs for a section during the first phase, and
4935 calculate needed space in the global offset table, procedure
4936 linkage table, and dynamic reloc sections. */
4937
4938 static bfd_boolean
4939 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4940 asection *sec, const Elf_Internal_Rela *relocs)
4941 {
4942 struct ppc_link_hash_table *htab;
4943 Elf_Internal_Shdr *symtab_hdr;
4944 struct elf_link_hash_entry **sym_hashes;
4945 const Elf_Internal_Rela *rel;
4946 const Elf_Internal_Rela *rel_end;
4947 asection *sreloc;
4948 asection **opd_sym_map;
4949 struct elf_link_hash_entry *tga, *dottga;
4950
4951 if (info->relocatable)
4952 return TRUE;
4953
4954 /* Don't do anything special with non-loaded, non-alloced sections.
4955 In particular, any relocs in such sections should not affect GOT
4956 and PLT reference counting (ie. we don't allow them to create GOT
4957 or PLT entries), there's no possibility or desire to optimize TLS
4958 relocs, and there's not much point in propagating relocs to shared
4959 libs that the dynamic linker won't relocate. */
4960 if ((sec->flags & SEC_ALLOC) == 0)
4961 return TRUE;
4962
4963 BFD_ASSERT (is_ppc64_elf (abfd));
4964
4965 htab = ppc_hash_table (info);
4966 if (htab == NULL)
4967 return FALSE;
4968
4969 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4970 FALSE, FALSE, TRUE);
4971 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4972 FALSE, FALSE, TRUE);
4973 symtab_hdr = &elf_symtab_hdr (abfd);
4974 sym_hashes = elf_sym_hashes (abfd);
4975 sreloc = NULL;
4976 opd_sym_map = NULL;
4977 if (strcmp (sec->name, ".opd") == 0)
4978 {
4979 /* Garbage collection needs some extra help with .opd sections.
4980 We don't want to necessarily keep everything referenced by
4981 relocs in .opd, as that would keep all functions. Instead,
4982 if we reference an .opd symbol (a function descriptor), we
4983 want to keep the function code symbol's section. This is
4984 easy for global symbols, but for local syms we need to keep
4985 information about the associated function section. */
4986 bfd_size_type amt;
4987
4988 amt = sec->size * sizeof (*opd_sym_map) / 8;
4989 opd_sym_map = bfd_zalloc (abfd, amt);
4990 if (opd_sym_map == NULL)
4991 return FALSE;
4992 ppc64_elf_section_data (sec)->u.opd.func_sec = opd_sym_map;
4993 BFD_ASSERT (ppc64_elf_section_data (sec)->sec_type == sec_normal);
4994 ppc64_elf_section_data (sec)->sec_type = sec_opd;
4995 }
4996
4997 rel_end = relocs + sec->reloc_count;
4998 for (rel = relocs; rel < rel_end; rel++)
4999 {
5000 unsigned long r_symndx;
5001 struct elf_link_hash_entry *h;
5002 enum elf_ppc64_reloc_type r_type;
5003 int tls_type;
5004 struct _ppc64_elf_section_data *ppc64_sec;
5005 struct plt_entry **ifunc;
5006
5007 r_symndx = ELF64_R_SYM (rel->r_info);
5008 if (r_symndx < symtab_hdr->sh_info)
5009 h = NULL;
5010 else
5011 {
5012 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5013 h = elf_follow_link (h);
5014
5015 /* PR15323, ref flags aren't set for references in the same
5016 object. */
5017 h->root.non_ir_ref = 1;
5018
5019 if (h == htab->elf.hgot)
5020 sec->has_toc_reloc = 1;
5021 }
5022
5023 tls_type = 0;
5024 ifunc = NULL;
5025 if (h != NULL)
5026 {
5027 if (h->type == STT_GNU_IFUNC)
5028 {
5029 h->needs_plt = 1;
5030 ifunc = &h->plt.plist;
5031 }
5032 }
5033 else
5034 {
5035 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5036 abfd, r_symndx);
5037 if (isym == NULL)
5038 return FALSE;
5039
5040 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5041 {
5042 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5043 rel->r_addend, PLT_IFUNC);
5044 if (ifunc == NULL)
5045 return FALSE;
5046 }
5047 }
5048 r_type = ELF64_R_TYPE (rel->r_info);
5049 if (is_branch_reloc (r_type))
5050 {
5051 if (h != NULL && (h == tga || h == dottga))
5052 {
5053 if (rel != relocs
5054 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5055 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5056 /* We have a new-style __tls_get_addr call with a marker
5057 reloc. */
5058 ;
5059 else
5060 /* Mark this section as having an old-style call. */
5061 sec->has_tls_get_addr_call = 1;
5062 }
5063
5064 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5065 if (ifunc != NULL
5066 && !update_plt_info (abfd, ifunc, rel->r_addend))
5067 return FALSE;
5068 }
5069
5070 switch (r_type)
5071 {
5072 case R_PPC64_TLSGD:
5073 case R_PPC64_TLSLD:
5074 /* These special tls relocs tie a call to __tls_get_addr with
5075 its parameter symbol. */
5076 break;
5077
5078 case R_PPC64_GOT_TLSLD16:
5079 case R_PPC64_GOT_TLSLD16_LO:
5080 case R_PPC64_GOT_TLSLD16_HI:
5081 case R_PPC64_GOT_TLSLD16_HA:
5082 tls_type = TLS_TLS | TLS_LD;
5083 goto dogottls;
5084
5085 case R_PPC64_GOT_TLSGD16:
5086 case R_PPC64_GOT_TLSGD16_LO:
5087 case R_PPC64_GOT_TLSGD16_HI:
5088 case R_PPC64_GOT_TLSGD16_HA:
5089 tls_type = TLS_TLS | TLS_GD;
5090 goto dogottls;
5091
5092 case R_PPC64_GOT_TPREL16_DS:
5093 case R_PPC64_GOT_TPREL16_LO_DS:
5094 case R_PPC64_GOT_TPREL16_HI:
5095 case R_PPC64_GOT_TPREL16_HA:
5096 if (!info->executable)
5097 info->flags |= DF_STATIC_TLS;
5098 tls_type = TLS_TLS | TLS_TPREL;
5099 goto dogottls;
5100
5101 case R_PPC64_GOT_DTPREL16_DS:
5102 case R_PPC64_GOT_DTPREL16_LO_DS:
5103 case R_PPC64_GOT_DTPREL16_HI:
5104 case R_PPC64_GOT_DTPREL16_HA:
5105 tls_type = TLS_TLS | TLS_DTPREL;
5106 dogottls:
5107 sec->has_tls_reloc = 1;
5108 /* Fall thru */
5109
5110 case R_PPC64_GOT16:
5111 case R_PPC64_GOT16_DS:
5112 case R_PPC64_GOT16_HA:
5113 case R_PPC64_GOT16_HI:
5114 case R_PPC64_GOT16_LO:
5115 case R_PPC64_GOT16_LO_DS:
5116 /* This symbol requires a global offset table entry. */
5117 sec->has_toc_reloc = 1;
5118 if (r_type == R_PPC64_GOT_TLSLD16
5119 || r_type == R_PPC64_GOT_TLSGD16
5120 || r_type == R_PPC64_GOT_TPREL16_DS
5121 || r_type == R_PPC64_GOT_DTPREL16_DS
5122 || r_type == R_PPC64_GOT16
5123 || r_type == R_PPC64_GOT16_DS)
5124 {
5125 htab->do_multi_toc = 1;
5126 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5127 }
5128
5129 if (ppc64_elf_tdata (abfd)->got == NULL
5130 && !create_got_section (abfd, info))
5131 return FALSE;
5132
5133 if (h != NULL)
5134 {
5135 struct ppc_link_hash_entry *eh;
5136 struct got_entry *ent;
5137
5138 eh = (struct ppc_link_hash_entry *) h;
5139 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5140 if (ent->addend == rel->r_addend
5141 && ent->owner == abfd
5142 && ent->tls_type == tls_type)
5143 break;
5144 if (ent == NULL)
5145 {
5146 bfd_size_type amt = sizeof (*ent);
5147 ent = bfd_alloc (abfd, amt);
5148 if (ent == NULL)
5149 return FALSE;
5150 ent->next = eh->elf.got.glist;
5151 ent->addend = rel->r_addend;
5152 ent->owner = abfd;
5153 ent->tls_type = tls_type;
5154 ent->is_indirect = FALSE;
5155 ent->got.refcount = 0;
5156 eh->elf.got.glist = ent;
5157 }
5158 ent->got.refcount += 1;
5159 eh->tls_mask |= tls_type;
5160 }
5161 else
5162 /* This is a global offset table entry for a local symbol. */
5163 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5164 rel->r_addend, tls_type))
5165 return FALSE;
5166 break;
5167
5168 case R_PPC64_PLT16_HA:
5169 case R_PPC64_PLT16_HI:
5170 case R_PPC64_PLT16_LO:
5171 case R_PPC64_PLT32:
5172 case R_PPC64_PLT64:
5173 /* This symbol requires a procedure linkage table entry. We
5174 actually build the entry in adjust_dynamic_symbol,
5175 because this might be a case of linking PIC code without
5176 linking in any dynamic objects, in which case we don't
5177 need to generate a procedure linkage table after all. */
5178 if (h == NULL)
5179 {
5180 /* It does not make sense to have a procedure linkage
5181 table entry for a local symbol. */
5182 bfd_set_error (bfd_error_bad_value);
5183 return FALSE;
5184 }
5185 else
5186 {
5187 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5188 return FALSE;
5189 h->needs_plt = 1;
5190 if (h->root.root.string[0] == '.'
5191 && h->root.root.string[1] != '\0')
5192 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5193 }
5194 break;
5195
5196 /* The following relocations don't need to propagate the
5197 relocation if linking a shared object since they are
5198 section relative. */
5199 case R_PPC64_SECTOFF:
5200 case R_PPC64_SECTOFF_LO:
5201 case R_PPC64_SECTOFF_HI:
5202 case R_PPC64_SECTOFF_HA:
5203 case R_PPC64_SECTOFF_DS:
5204 case R_PPC64_SECTOFF_LO_DS:
5205 case R_PPC64_DTPREL16:
5206 case R_PPC64_DTPREL16_LO:
5207 case R_PPC64_DTPREL16_HI:
5208 case R_PPC64_DTPREL16_HA:
5209 case R_PPC64_DTPREL16_DS:
5210 case R_PPC64_DTPREL16_LO_DS:
5211 case R_PPC64_DTPREL16_HIGHER:
5212 case R_PPC64_DTPREL16_HIGHERA:
5213 case R_PPC64_DTPREL16_HIGHEST:
5214 case R_PPC64_DTPREL16_HIGHESTA:
5215 break;
5216
5217 /* Nor do these. */
5218 case R_PPC64_REL16:
5219 case R_PPC64_REL16_LO:
5220 case R_PPC64_REL16_HI:
5221 case R_PPC64_REL16_HA:
5222 break;
5223
5224 case R_PPC64_TOC16:
5225 case R_PPC64_TOC16_DS:
5226 htab->do_multi_toc = 1;
5227 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5228 case R_PPC64_TOC16_LO:
5229 case R_PPC64_TOC16_HI:
5230 case R_PPC64_TOC16_HA:
5231 case R_PPC64_TOC16_LO_DS:
5232 sec->has_toc_reloc = 1;
5233 break;
5234
5235 /* This relocation describes the C++ object vtable hierarchy.
5236 Reconstruct it for later use during GC. */
5237 case R_PPC64_GNU_VTINHERIT:
5238 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5239 return FALSE;
5240 break;
5241
5242 /* This relocation describes which C++ vtable entries are actually
5243 used. Record for later use during GC. */
5244 case R_PPC64_GNU_VTENTRY:
5245 BFD_ASSERT (h != NULL);
5246 if (h != NULL
5247 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5248 return FALSE;
5249 break;
5250
5251 case R_PPC64_REL14:
5252 case R_PPC64_REL14_BRTAKEN:
5253 case R_PPC64_REL14_BRNTAKEN:
5254 {
5255 asection *dest = NULL;
5256
5257 /* Heuristic: If jumping outside our section, chances are
5258 we are going to need a stub. */
5259 if (h != NULL)
5260 {
5261 /* If the sym is weak it may be overridden later, so
5262 don't assume we know where a weak sym lives. */
5263 if (h->root.type == bfd_link_hash_defined)
5264 dest = h->root.u.def.section;
5265 }
5266 else
5267 {
5268 Elf_Internal_Sym *isym;
5269
5270 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5271 abfd, r_symndx);
5272 if (isym == NULL)
5273 return FALSE;
5274
5275 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5276 }
5277
5278 if (dest != sec)
5279 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5280 }
5281 /* Fall through. */
5282
5283 case R_PPC64_REL24:
5284 if (h != NULL && ifunc == NULL)
5285 {
5286 /* We may need a .plt entry if the function this reloc
5287 refers to is in a shared lib. */
5288 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5289 return FALSE;
5290 h->needs_plt = 1;
5291 if (h->root.root.string[0] == '.'
5292 && h->root.root.string[1] != '\0')
5293 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5294 if (h == tga || h == dottga)
5295 sec->has_tls_reloc = 1;
5296 }
5297 break;
5298
5299 case R_PPC64_TPREL64:
5300 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5301 if (!info->executable)
5302 info->flags |= DF_STATIC_TLS;
5303 goto dotlstoc;
5304
5305 case R_PPC64_DTPMOD64:
5306 if (rel + 1 < rel_end
5307 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5308 && rel[1].r_offset == rel->r_offset + 8)
5309 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5310 else
5311 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5312 goto dotlstoc;
5313
5314 case R_PPC64_DTPREL64:
5315 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5316 if (rel != relocs
5317 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5318 && rel[-1].r_offset == rel->r_offset - 8)
5319 /* This is the second reloc of a dtpmod, dtprel pair.
5320 Don't mark with TLS_DTPREL. */
5321 goto dodyn;
5322
5323 dotlstoc:
5324 sec->has_tls_reloc = 1;
5325 if (h != NULL)
5326 {
5327 struct ppc_link_hash_entry *eh;
5328 eh = (struct ppc_link_hash_entry *) h;
5329 eh->tls_mask |= tls_type;
5330 }
5331 else
5332 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5333 rel->r_addend, tls_type))
5334 return FALSE;
5335
5336 ppc64_sec = ppc64_elf_section_data (sec);
5337 if (ppc64_sec->sec_type != sec_toc)
5338 {
5339 bfd_size_type amt;
5340
5341 /* One extra to simplify get_tls_mask. */
5342 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5343 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5344 if (ppc64_sec->u.toc.symndx == NULL)
5345 return FALSE;
5346 amt = sec->size * sizeof (bfd_vma) / 8;
5347 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5348 if (ppc64_sec->u.toc.add == NULL)
5349 return FALSE;
5350 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5351 ppc64_sec->sec_type = sec_toc;
5352 }
5353 BFD_ASSERT (rel->r_offset % 8 == 0);
5354 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5355 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5356
5357 /* Mark the second slot of a GD or LD entry.
5358 -1 to indicate GD and -2 to indicate LD. */
5359 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5360 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5361 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5362 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5363 goto dodyn;
5364
5365 case R_PPC64_TPREL16:
5366 case R_PPC64_TPREL16_LO:
5367 case R_PPC64_TPREL16_HI:
5368 case R_PPC64_TPREL16_HA:
5369 case R_PPC64_TPREL16_DS:
5370 case R_PPC64_TPREL16_LO_DS:
5371 case R_PPC64_TPREL16_HIGHER:
5372 case R_PPC64_TPREL16_HIGHERA:
5373 case R_PPC64_TPREL16_HIGHEST:
5374 case R_PPC64_TPREL16_HIGHESTA:
5375 if (info->shared)
5376 {
5377 if (!info->executable)
5378 info->flags |= DF_STATIC_TLS;
5379 goto dodyn;
5380 }
5381 break;
5382
5383 case R_PPC64_ADDR64:
5384 if (opd_sym_map != NULL
5385 && rel + 1 < rel_end
5386 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5387 {
5388 if (h != NULL)
5389 {
5390 if (h->root.root.string[0] == '.'
5391 && h->root.root.string[1] != 0
5392 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5393 ;
5394 else
5395 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5396 }
5397 else
5398 {
5399 asection *s;
5400 Elf_Internal_Sym *isym;
5401
5402 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5403 abfd, r_symndx);
5404 if (isym == NULL)
5405 return FALSE;
5406
5407 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5408 if (s != NULL && s != sec)
5409 opd_sym_map[rel->r_offset / 8] = s;
5410 }
5411 }
5412 /* Fall through. */
5413
5414 case R_PPC64_REL30:
5415 case R_PPC64_REL32:
5416 case R_PPC64_REL64:
5417 case R_PPC64_ADDR14:
5418 case R_PPC64_ADDR14_BRNTAKEN:
5419 case R_PPC64_ADDR14_BRTAKEN:
5420 case R_PPC64_ADDR16:
5421 case R_PPC64_ADDR16_DS:
5422 case R_PPC64_ADDR16_HA:
5423 case R_PPC64_ADDR16_HI:
5424 case R_PPC64_ADDR16_HIGHER:
5425 case R_PPC64_ADDR16_HIGHERA:
5426 case R_PPC64_ADDR16_HIGHEST:
5427 case R_PPC64_ADDR16_HIGHESTA:
5428 case R_PPC64_ADDR16_LO:
5429 case R_PPC64_ADDR16_LO_DS:
5430 case R_PPC64_ADDR24:
5431 case R_PPC64_ADDR32:
5432 case R_PPC64_UADDR16:
5433 case R_PPC64_UADDR32:
5434 case R_PPC64_UADDR64:
5435 case R_PPC64_TOC:
5436 if (h != NULL && !info->shared)
5437 /* We may need a copy reloc. */
5438 h->non_got_ref = 1;
5439
5440 /* Don't propagate .opd relocs. */
5441 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5442 break;
5443
5444 /* If we are creating a shared library, and this is a reloc
5445 against a global symbol, or a non PC relative reloc
5446 against a local symbol, then we need to copy the reloc
5447 into the shared library. However, if we are linking with
5448 -Bsymbolic, we do not need to copy a reloc against a
5449 global symbol which is defined in an object we are
5450 including in the link (i.e., DEF_REGULAR is set). At
5451 this point we have not seen all the input files, so it is
5452 possible that DEF_REGULAR is not set now but will be set
5453 later (it is never cleared). In case of a weak definition,
5454 DEF_REGULAR may be cleared later by a strong definition in
5455 a shared library. We account for that possibility below by
5456 storing information in the dyn_relocs field of the hash
5457 table entry. A similar situation occurs when creating
5458 shared libraries and symbol visibility changes render the
5459 symbol local.
5460
5461 If on the other hand, we are creating an executable, we
5462 may need to keep relocations for symbols satisfied by a
5463 dynamic library if we manage to avoid copy relocs for the
5464 symbol. */
5465 dodyn:
5466 if ((info->shared
5467 && (must_be_dyn_reloc (info, r_type)
5468 || (h != NULL
5469 && (!SYMBOLIC_BIND (info, h)
5470 || h->root.type == bfd_link_hash_defweak
5471 || !h->def_regular))))
5472 || (ELIMINATE_COPY_RELOCS
5473 && !info->shared
5474 && h != NULL
5475 && (h->root.type == bfd_link_hash_defweak
5476 || !h->def_regular))
5477 || (!info->shared
5478 && ifunc != NULL))
5479 {
5480 /* We must copy these reloc types into the output file.
5481 Create a reloc section in dynobj and make room for
5482 this reloc. */
5483 if (sreloc == NULL)
5484 {
5485 sreloc = _bfd_elf_make_dynamic_reloc_section
5486 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5487
5488 if (sreloc == NULL)
5489 return FALSE;
5490 }
5491
5492 /* If this is a global symbol, we count the number of
5493 relocations we need for this symbol. */
5494 if (h != NULL)
5495 {
5496 struct elf_dyn_relocs *p;
5497 struct elf_dyn_relocs **head;
5498
5499 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5500 p = *head;
5501 if (p == NULL || p->sec != sec)
5502 {
5503 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5504 if (p == NULL)
5505 return FALSE;
5506 p->next = *head;
5507 *head = p;
5508 p->sec = sec;
5509 p->count = 0;
5510 p->pc_count = 0;
5511 }
5512 p->count += 1;
5513 if (!must_be_dyn_reloc (info, r_type))
5514 p->pc_count += 1;
5515 }
5516 else
5517 {
5518 /* Track dynamic relocs needed for local syms too.
5519 We really need local syms available to do this
5520 easily. Oh well. */
5521 struct ppc_dyn_relocs *p;
5522 struct ppc_dyn_relocs **head;
5523 bfd_boolean is_ifunc;
5524 asection *s;
5525 void *vpp;
5526 Elf_Internal_Sym *isym;
5527
5528 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5529 abfd, r_symndx);
5530 if (isym == NULL)
5531 return FALSE;
5532
5533 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5534 if (s == NULL)
5535 s = sec;
5536
5537 vpp = &elf_section_data (s)->local_dynrel;
5538 head = (struct ppc_dyn_relocs **) vpp;
5539 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5540 p = *head;
5541 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5542 p = p->next;
5543 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5544 {
5545 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5546 if (p == NULL)
5547 return FALSE;
5548 p->next = *head;
5549 *head = p;
5550 p->sec = sec;
5551 p->ifunc = is_ifunc;
5552 p->count = 0;
5553 }
5554 p->count += 1;
5555 }
5556 }
5557 break;
5558
5559 default:
5560 break;
5561 }
5562 }
5563
5564 return TRUE;
5565 }
5566
5567 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5568 of the code entry point, and its section. */
5569
5570 static bfd_vma
5571 opd_entry_value (asection *opd_sec,
5572 bfd_vma offset,
5573 asection **code_sec,
5574 bfd_vma *code_off,
5575 bfd_boolean in_code_sec)
5576 {
5577 bfd *opd_bfd = opd_sec->owner;
5578 Elf_Internal_Rela *relocs;
5579 Elf_Internal_Rela *lo, *hi, *look;
5580 bfd_vma val;
5581
5582 /* No relocs implies we are linking a --just-symbols object, or looking
5583 at a final linked executable with addr2line or somesuch. */
5584 if (opd_sec->reloc_count == 0)
5585 {
5586 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5587
5588 if (contents == NULL)
5589 {
5590 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5591 return (bfd_vma) -1;
5592 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5593 }
5594
5595 val = bfd_get_64 (opd_bfd, contents + offset);
5596 if (code_sec != NULL)
5597 {
5598 asection *sec, *likely = NULL;
5599
5600 if (in_code_sec)
5601 {
5602 sec = *code_sec;
5603 if (sec->vma <= val
5604 && val < sec->vma + sec->size)
5605 likely = sec;
5606 else
5607 val = -1;
5608 }
5609 else
5610 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5611 if (sec->vma <= val
5612 && (sec->flags & SEC_LOAD) != 0
5613 && (sec->flags & SEC_ALLOC) != 0)
5614 likely = sec;
5615 if (likely != NULL)
5616 {
5617 *code_sec = likely;
5618 if (code_off != NULL)
5619 *code_off = val - likely->vma;
5620 }
5621 }
5622 return val;
5623 }
5624
5625 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5626
5627 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5628 if (relocs == NULL)
5629 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5630
5631 /* Go find the opd reloc at the sym address. */
5632 lo = relocs;
5633 BFD_ASSERT (lo != NULL);
5634 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5635 val = (bfd_vma) -1;
5636 while (lo < hi)
5637 {
5638 look = lo + (hi - lo) / 2;
5639 if (look->r_offset < offset)
5640 lo = look + 1;
5641 else if (look->r_offset > offset)
5642 hi = look;
5643 else
5644 {
5645 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5646
5647 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5648 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5649 {
5650 unsigned long symndx = ELF64_R_SYM (look->r_info);
5651 asection *sec;
5652
5653 if (symndx < symtab_hdr->sh_info
5654 || elf_sym_hashes (opd_bfd) == NULL)
5655 {
5656 Elf_Internal_Sym *sym;
5657
5658 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5659 if (sym == NULL)
5660 {
5661 size_t symcnt = symtab_hdr->sh_info;
5662 if (elf_sym_hashes (opd_bfd) == NULL)
5663 symcnt = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
5664 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, symcnt,
5665 0, NULL, NULL, NULL);
5666 if (sym == NULL)
5667 break;
5668 symtab_hdr->contents = (bfd_byte *) sym;
5669 }
5670
5671 sym += symndx;
5672 val = sym->st_value;
5673 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5674 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5675 }
5676 else
5677 {
5678 struct elf_link_hash_entry **sym_hashes;
5679 struct elf_link_hash_entry *rh;
5680
5681 sym_hashes = elf_sym_hashes (opd_bfd);
5682 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5683 if (rh != NULL)
5684 {
5685 rh = elf_follow_link (rh);
5686 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
5687 || rh->root.type == bfd_link_hash_defweak);
5688 val = rh->root.u.def.value;
5689 sec = rh->root.u.def.section;
5690 }
5691 else
5692 {
5693 /* Handle the odd case where we can be called
5694 during bfd_elf_link_add_symbols before the
5695 symbol hashes have been fully populated. */
5696 Elf_Internal_Sym *sym;
5697
5698 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, 1,
5699 symndx, NULL, NULL, NULL);
5700 if (sym == NULL)
5701 break;
5702
5703 val = sym->st_value;
5704 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5705 free (sym);
5706 }
5707 }
5708 val += look->r_addend;
5709 if (code_off != NULL)
5710 *code_off = val;
5711 if (code_sec != NULL)
5712 {
5713 if (in_code_sec && *code_sec != sec)
5714 return -1;
5715 else
5716 *code_sec = sec;
5717 }
5718 if (sec != NULL && sec->output_section != NULL)
5719 val += sec->output_section->vma + sec->output_offset;
5720 }
5721 break;
5722 }
5723 }
5724
5725 return val;
5726 }
5727
5728 /* If the ELF symbol SYM might be a function in SEC, return the
5729 function size and set *CODE_OFF to the function's entry point,
5730 otherwise return zero. */
5731
5732 static bfd_size_type
5733 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
5734 bfd_vma *code_off)
5735 {
5736 bfd_size_type size;
5737
5738 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
5739 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
5740 return 0;
5741
5742 size = 0;
5743 if (!(sym->flags & BSF_SYNTHETIC))
5744 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
5745
5746 if (strcmp (sym->section->name, ".opd") == 0)
5747 {
5748 if (opd_entry_value (sym->section, sym->value,
5749 &sec, code_off, TRUE) == (bfd_vma) -1)
5750 return 0;
5751 /* An old ABI binary with dot-syms has a size of 24 on the .opd
5752 symbol. This size has nothing to do with the code size of the
5753 function, which is what we're supposed to return, but the
5754 code size isn't available without looking up the dot-sym.
5755 However, doing that would be a waste of time particularly
5756 since elf_find_function will look at the dot-sym anyway.
5757 Now, elf_find_function will keep the largest size of any
5758 function sym found at the code address of interest, so return
5759 1 here to avoid it incorrectly caching a larger function size
5760 for a small function. This does mean we return the wrong
5761 size for a new-ABI function of size 24, but all that does is
5762 disable caching for such functions. */
5763 if (size == 24)
5764 size = 1;
5765 }
5766 else
5767 {
5768 if (sym->section != sec)
5769 return 0;
5770 *code_off = sym->value;
5771 }
5772 if (size == 0)
5773 size = 1;
5774 return size;
5775 }
5776
5777 /* Return true if symbol is defined in a regular object file. */
5778
5779 static bfd_boolean
5780 is_static_defined (struct elf_link_hash_entry *h)
5781 {
5782 return ((h->root.type == bfd_link_hash_defined
5783 || h->root.type == bfd_link_hash_defweak)
5784 && h->root.u.def.section != NULL
5785 && h->root.u.def.section->output_section != NULL);
5786 }
5787
5788 /* If FDH is a function descriptor symbol, return the associated code
5789 entry symbol if it is defined. Return NULL otherwise. */
5790
5791 static struct ppc_link_hash_entry *
5792 defined_code_entry (struct ppc_link_hash_entry *fdh)
5793 {
5794 if (fdh->is_func_descriptor)
5795 {
5796 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5797 if (fh->elf.root.type == bfd_link_hash_defined
5798 || fh->elf.root.type == bfd_link_hash_defweak)
5799 return fh;
5800 }
5801 return NULL;
5802 }
5803
5804 /* If FH is a function code entry symbol, return the associated
5805 function descriptor symbol if it is defined. Return NULL otherwise. */
5806
5807 static struct ppc_link_hash_entry *
5808 defined_func_desc (struct ppc_link_hash_entry *fh)
5809 {
5810 if (fh->oh != NULL
5811 && fh->oh->is_func_descriptor)
5812 {
5813 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5814 if (fdh->elf.root.type == bfd_link_hash_defined
5815 || fdh->elf.root.type == bfd_link_hash_defweak)
5816 return fdh;
5817 }
5818 return NULL;
5819 }
5820
5821 /* Mark all our entry sym sections, both opd and code section. */
5822
5823 static void
5824 ppc64_elf_gc_keep (struct bfd_link_info *info)
5825 {
5826 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5827 struct bfd_sym_chain *sym;
5828
5829 if (htab == NULL)
5830 return;
5831
5832 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5833 {
5834 struct ppc_link_hash_entry *eh, *fh;
5835 asection *sec;
5836
5837 eh = (struct ppc_link_hash_entry *)
5838 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
5839 if (eh == NULL)
5840 continue;
5841 if (eh->elf.root.type != bfd_link_hash_defined
5842 && eh->elf.root.type != bfd_link_hash_defweak)
5843 continue;
5844
5845 fh = defined_code_entry (eh);
5846 if (fh != NULL)
5847 {
5848 sec = fh->elf.root.u.def.section;
5849 sec->flags |= SEC_KEEP;
5850 }
5851 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5852 && opd_entry_value (eh->elf.root.u.def.section,
5853 eh->elf.root.u.def.value,
5854 &sec, NULL, FALSE) != (bfd_vma) -1)
5855 sec->flags |= SEC_KEEP;
5856
5857 sec = eh->elf.root.u.def.section;
5858 sec->flags |= SEC_KEEP;
5859 }
5860 }
5861
5862 /* Mark sections containing dynamically referenced symbols. When
5863 building shared libraries, we must assume that any visible symbol is
5864 referenced. */
5865
5866 static bfd_boolean
5867 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5868 {
5869 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5870 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
5871 struct ppc_link_hash_entry *fdh;
5872
5873 /* Dynamic linking info is on the func descriptor sym. */
5874 fdh = defined_func_desc (eh);
5875 if (fdh != NULL)
5876 eh = fdh;
5877
5878 if ((eh->elf.root.type == bfd_link_hash_defined
5879 || eh->elf.root.type == bfd_link_hash_defweak)
5880 && (eh->elf.ref_dynamic
5881 || (!info->executable
5882 && eh->elf.def_regular
5883 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5884 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5885 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
5886 || !bfd_hide_sym_by_version (info->version_info,
5887 eh->elf.root.root.string)))))
5888 {
5889 asection *code_sec;
5890 struct ppc_link_hash_entry *fh;
5891
5892 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5893
5894 /* Function descriptor syms cause the associated
5895 function code sym section to be marked. */
5896 fh = defined_code_entry (eh);
5897 if (fh != NULL)
5898 {
5899 code_sec = fh->elf.root.u.def.section;
5900 code_sec->flags |= SEC_KEEP;
5901 }
5902 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5903 && opd_entry_value (eh->elf.root.u.def.section,
5904 eh->elf.root.u.def.value,
5905 &code_sec, NULL, FALSE) != (bfd_vma) -1)
5906 code_sec->flags |= SEC_KEEP;
5907 }
5908
5909 return TRUE;
5910 }
5911
5912 /* Return the section that should be marked against GC for a given
5913 relocation. */
5914
5915 static asection *
5916 ppc64_elf_gc_mark_hook (asection *sec,
5917 struct bfd_link_info *info,
5918 Elf_Internal_Rela *rel,
5919 struct elf_link_hash_entry *h,
5920 Elf_Internal_Sym *sym)
5921 {
5922 asection *rsec;
5923
5924 /* Syms return NULL if we're marking .opd, so we avoid marking all
5925 function sections, as all functions are referenced in .opd. */
5926 rsec = NULL;
5927 if (get_opd_info (sec) != NULL)
5928 return rsec;
5929
5930 if (h != NULL)
5931 {
5932 enum elf_ppc64_reloc_type r_type;
5933 struct ppc_link_hash_entry *eh, *fh, *fdh;
5934
5935 r_type = ELF64_R_TYPE (rel->r_info);
5936 switch (r_type)
5937 {
5938 case R_PPC64_GNU_VTINHERIT:
5939 case R_PPC64_GNU_VTENTRY:
5940 break;
5941
5942 default:
5943 switch (h->root.type)
5944 {
5945 case bfd_link_hash_defined:
5946 case bfd_link_hash_defweak:
5947 eh = (struct ppc_link_hash_entry *) h;
5948 fdh = defined_func_desc (eh);
5949 if (fdh != NULL)
5950 eh = fdh;
5951
5952 /* Function descriptor syms cause the associated
5953 function code sym section to be marked. */
5954 fh = defined_code_entry (eh);
5955 if (fh != NULL)
5956 {
5957 /* They also mark their opd section. */
5958 eh->elf.root.u.def.section->gc_mark = 1;
5959
5960 rsec = fh->elf.root.u.def.section;
5961 }
5962 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5963 && opd_entry_value (eh->elf.root.u.def.section,
5964 eh->elf.root.u.def.value,
5965 &rsec, NULL, FALSE) != (bfd_vma) -1)
5966 eh->elf.root.u.def.section->gc_mark = 1;
5967 else
5968 rsec = h->root.u.def.section;
5969 break;
5970
5971 case bfd_link_hash_common:
5972 rsec = h->root.u.c.p->section;
5973 break;
5974
5975 default:
5976 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5977 }
5978 }
5979 }
5980 else
5981 {
5982 struct _opd_sec_data *opd;
5983
5984 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5985 opd = get_opd_info (rsec);
5986 if (opd != NULL && opd->func_sec != NULL)
5987 {
5988 rsec->gc_mark = 1;
5989
5990 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
5991 }
5992 }
5993
5994 return rsec;
5995 }
5996
5997 /* Update the .got, .plt. and dynamic reloc reference counts for the
5998 section being removed. */
5999
6000 static bfd_boolean
6001 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
6002 asection *sec, const Elf_Internal_Rela *relocs)
6003 {
6004 struct ppc_link_hash_table *htab;
6005 Elf_Internal_Shdr *symtab_hdr;
6006 struct elf_link_hash_entry **sym_hashes;
6007 struct got_entry **local_got_ents;
6008 const Elf_Internal_Rela *rel, *relend;
6009
6010 if (info->relocatable)
6011 return TRUE;
6012
6013 if ((sec->flags & SEC_ALLOC) == 0)
6014 return TRUE;
6015
6016 elf_section_data (sec)->local_dynrel = NULL;
6017
6018 htab = ppc_hash_table (info);
6019 if (htab == NULL)
6020 return FALSE;
6021
6022 symtab_hdr = &elf_symtab_hdr (abfd);
6023 sym_hashes = elf_sym_hashes (abfd);
6024 local_got_ents = elf_local_got_ents (abfd);
6025
6026 relend = relocs + sec->reloc_count;
6027 for (rel = relocs; rel < relend; rel++)
6028 {
6029 unsigned long r_symndx;
6030 enum elf_ppc64_reloc_type r_type;
6031 struct elf_link_hash_entry *h = NULL;
6032 unsigned char tls_type = 0;
6033
6034 r_symndx = ELF64_R_SYM (rel->r_info);
6035 r_type = ELF64_R_TYPE (rel->r_info);
6036 if (r_symndx >= symtab_hdr->sh_info)
6037 {
6038 struct ppc_link_hash_entry *eh;
6039 struct elf_dyn_relocs **pp;
6040 struct elf_dyn_relocs *p;
6041
6042 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6043 h = elf_follow_link (h);
6044 eh = (struct ppc_link_hash_entry *) h;
6045
6046 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6047 if (p->sec == sec)
6048 {
6049 /* Everything must go for SEC. */
6050 *pp = p->next;
6051 break;
6052 }
6053 }
6054
6055 if (is_branch_reloc (r_type))
6056 {
6057 struct plt_entry **ifunc = NULL;
6058 if (h != NULL)
6059 {
6060 if (h->type == STT_GNU_IFUNC)
6061 ifunc = &h->plt.plist;
6062 }
6063 else if (local_got_ents != NULL)
6064 {
6065 struct plt_entry **local_plt = (struct plt_entry **)
6066 (local_got_ents + symtab_hdr->sh_info);
6067 unsigned char *local_got_tls_masks = (unsigned char *)
6068 (local_plt + symtab_hdr->sh_info);
6069 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6070 ifunc = local_plt + r_symndx;
6071 }
6072 if (ifunc != NULL)
6073 {
6074 struct plt_entry *ent;
6075
6076 for (ent = *ifunc; ent != NULL; ent = ent->next)
6077 if (ent->addend == rel->r_addend)
6078 break;
6079 if (ent == NULL)
6080 abort ();
6081 if (ent->plt.refcount > 0)
6082 ent->plt.refcount -= 1;
6083 continue;
6084 }
6085 }
6086
6087 switch (r_type)
6088 {
6089 case R_PPC64_GOT_TLSLD16:
6090 case R_PPC64_GOT_TLSLD16_LO:
6091 case R_PPC64_GOT_TLSLD16_HI:
6092 case R_PPC64_GOT_TLSLD16_HA:
6093 tls_type = TLS_TLS | TLS_LD;
6094 goto dogot;
6095
6096 case R_PPC64_GOT_TLSGD16:
6097 case R_PPC64_GOT_TLSGD16_LO:
6098 case R_PPC64_GOT_TLSGD16_HI:
6099 case R_PPC64_GOT_TLSGD16_HA:
6100 tls_type = TLS_TLS | TLS_GD;
6101 goto dogot;
6102
6103 case R_PPC64_GOT_TPREL16_DS:
6104 case R_PPC64_GOT_TPREL16_LO_DS:
6105 case R_PPC64_GOT_TPREL16_HI:
6106 case R_PPC64_GOT_TPREL16_HA:
6107 tls_type = TLS_TLS | TLS_TPREL;
6108 goto dogot;
6109
6110 case R_PPC64_GOT_DTPREL16_DS:
6111 case R_PPC64_GOT_DTPREL16_LO_DS:
6112 case R_PPC64_GOT_DTPREL16_HI:
6113 case R_PPC64_GOT_DTPREL16_HA:
6114 tls_type = TLS_TLS | TLS_DTPREL;
6115 goto dogot;
6116
6117 case R_PPC64_GOT16:
6118 case R_PPC64_GOT16_DS:
6119 case R_PPC64_GOT16_HA:
6120 case R_PPC64_GOT16_HI:
6121 case R_PPC64_GOT16_LO:
6122 case R_PPC64_GOT16_LO_DS:
6123 dogot:
6124 {
6125 struct got_entry *ent;
6126
6127 if (h != NULL)
6128 ent = h->got.glist;
6129 else
6130 ent = local_got_ents[r_symndx];
6131
6132 for (; ent != NULL; ent = ent->next)
6133 if (ent->addend == rel->r_addend
6134 && ent->owner == abfd
6135 && ent->tls_type == tls_type)
6136 break;
6137 if (ent == NULL)
6138 abort ();
6139 if (ent->got.refcount > 0)
6140 ent->got.refcount -= 1;
6141 }
6142 break;
6143
6144 case R_PPC64_PLT16_HA:
6145 case R_PPC64_PLT16_HI:
6146 case R_PPC64_PLT16_LO:
6147 case R_PPC64_PLT32:
6148 case R_PPC64_PLT64:
6149 case R_PPC64_REL14:
6150 case R_PPC64_REL14_BRNTAKEN:
6151 case R_PPC64_REL14_BRTAKEN:
6152 case R_PPC64_REL24:
6153 if (h != NULL)
6154 {
6155 struct plt_entry *ent;
6156
6157 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6158 if (ent->addend == rel->r_addend)
6159 break;
6160 if (ent != NULL && ent->plt.refcount > 0)
6161 ent->plt.refcount -= 1;
6162 }
6163 break;
6164
6165 default:
6166 break;
6167 }
6168 }
6169 return TRUE;
6170 }
6171
6172 /* The maximum size of .sfpr. */
6173 #define SFPR_MAX (218*4)
6174
6175 struct sfpr_def_parms
6176 {
6177 const char name[12];
6178 unsigned char lo, hi;
6179 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6180 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6181 };
6182
6183 /* Auto-generate _save*, _rest* functions in .sfpr. */
6184
6185 static bfd_boolean
6186 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6187 {
6188 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6189 unsigned int i;
6190 size_t len = strlen (parm->name);
6191 bfd_boolean writing = FALSE;
6192 char sym[16];
6193
6194 if (htab == NULL)
6195 return FALSE;
6196
6197 memcpy (sym, parm->name, len);
6198 sym[len + 2] = 0;
6199
6200 for (i = parm->lo; i <= parm->hi; i++)
6201 {
6202 struct elf_link_hash_entry *h;
6203
6204 sym[len + 0] = i / 10 + '0';
6205 sym[len + 1] = i % 10 + '0';
6206 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6207 if (h != NULL
6208 && !h->def_regular)
6209 {
6210 h->root.type = bfd_link_hash_defined;
6211 h->root.u.def.section = htab->sfpr;
6212 h->root.u.def.value = htab->sfpr->size;
6213 h->type = STT_FUNC;
6214 h->def_regular = 1;
6215 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6216 writing = TRUE;
6217 if (htab->sfpr->contents == NULL)
6218 {
6219 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6220 if (htab->sfpr->contents == NULL)
6221 return FALSE;
6222 }
6223 }
6224 if (writing)
6225 {
6226 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6227 if (i != parm->hi)
6228 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6229 else
6230 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6231 htab->sfpr->size = p - htab->sfpr->contents;
6232 }
6233 }
6234
6235 return TRUE;
6236 }
6237
6238 static bfd_byte *
6239 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6240 {
6241 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6242 return p + 4;
6243 }
6244
6245 static bfd_byte *
6246 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6247 {
6248 p = savegpr0 (abfd, p, r);
6249 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
6250 p = p + 4;
6251 bfd_put_32 (abfd, BLR, p);
6252 return p + 4;
6253 }
6254
6255 static bfd_byte *
6256 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6257 {
6258 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6259 return p + 4;
6260 }
6261
6262 static bfd_byte *
6263 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6264 {
6265 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
6266 p = p + 4;
6267 p = restgpr0 (abfd, p, r);
6268 bfd_put_32 (abfd, MTLR_R0, p);
6269 p = p + 4;
6270 if (r == 29)
6271 {
6272 p = restgpr0 (abfd, p, 30);
6273 p = restgpr0 (abfd, p, 31);
6274 }
6275 bfd_put_32 (abfd, BLR, p);
6276 return p + 4;
6277 }
6278
6279 static bfd_byte *
6280 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6281 {
6282 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6283 return p + 4;
6284 }
6285
6286 static bfd_byte *
6287 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6288 {
6289 p = savegpr1 (abfd, p, r);
6290 bfd_put_32 (abfd, BLR, p);
6291 return p + 4;
6292 }
6293
6294 static bfd_byte *
6295 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6296 {
6297 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6298 return p + 4;
6299 }
6300
6301 static bfd_byte *
6302 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6303 {
6304 p = restgpr1 (abfd, p, r);
6305 bfd_put_32 (abfd, BLR, p);
6306 return p + 4;
6307 }
6308
6309 static bfd_byte *
6310 savefpr (bfd *abfd, bfd_byte *p, int r)
6311 {
6312 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6313 return p + 4;
6314 }
6315
6316 static bfd_byte *
6317 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6318 {
6319 p = savefpr (abfd, p, r);
6320 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
6321 p = p + 4;
6322 bfd_put_32 (abfd, BLR, p);
6323 return p + 4;
6324 }
6325
6326 static bfd_byte *
6327 restfpr (bfd *abfd, bfd_byte *p, int r)
6328 {
6329 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6330 return p + 4;
6331 }
6332
6333 static bfd_byte *
6334 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6335 {
6336 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
6337 p = p + 4;
6338 p = restfpr (abfd, p, r);
6339 bfd_put_32 (abfd, MTLR_R0, p);
6340 p = p + 4;
6341 if (r == 29)
6342 {
6343 p = restfpr (abfd, p, 30);
6344 p = restfpr (abfd, p, 31);
6345 }
6346 bfd_put_32 (abfd, BLR, p);
6347 return p + 4;
6348 }
6349
6350 static bfd_byte *
6351 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6352 {
6353 p = savefpr (abfd, p, r);
6354 bfd_put_32 (abfd, BLR, p);
6355 return p + 4;
6356 }
6357
6358 static bfd_byte *
6359 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6360 {
6361 p = restfpr (abfd, p, r);
6362 bfd_put_32 (abfd, BLR, p);
6363 return p + 4;
6364 }
6365
6366 static bfd_byte *
6367 savevr (bfd *abfd, bfd_byte *p, int r)
6368 {
6369 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6370 p = p + 4;
6371 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6372 return p + 4;
6373 }
6374
6375 static bfd_byte *
6376 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6377 {
6378 p = savevr (abfd, p, r);
6379 bfd_put_32 (abfd, BLR, p);
6380 return p + 4;
6381 }
6382
6383 static bfd_byte *
6384 restvr (bfd *abfd, bfd_byte *p, int r)
6385 {
6386 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6387 p = p + 4;
6388 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6389 return p + 4;
6390 }
6391
6392 static bfd_byte *
6393 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6394 {
6395 p = restvr (abfd, p, r);
6396 bfd_put_32 (abfd, BLR, p);
6397 return p + 4;
6398 }
6399
6400 /* Called via elf_link_hash_traverse to transfer dynamic linking
6401 information on function code symbol entries to their corresponding
6402 function descriptor symbol entries. */
6403
6404 static bfd_boolean
6405 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6406 {
6407 struct bfd_link_info *info;
6408 struct ppc_link_hash_table *htab;
6409 struct plt_entry *ent;
6410 struct ppc_link_hash_entry *fh;
6411 struct ppc_link_hash_entry *fdh;
6412 bfd_boolean force_local;
6413
6414 fh = (struct ppc_link_hash_entry *) h;
6415 if (fh->elf.root.type == bfd_link_hash_indirect)
6416 return TRUE;
6417
6418 info = inf;
6419 htab = ppc_hash_table (info);
6420 if (htab == NULL)
6421 return FALSE;
6422
6423 /* Resolve undefined references to dot-symbols as the value
6424 in the function descriptor, if we have one in a regular object.
6425 This is to satisfy cases like ".quad .foo". Calls to functions
6426 in dynamic objects are handled elsewhere. */
6427 if (fh->elf.root.type == bfd_link_hash_undefweak
6428 && fh->was_undefined
6429 && (fdh = defined_func_desc (fh)) != NULL
6430 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6431 && opd_entry_value (fdh->elf.root.u.def.section,
6432 fdh->elf.root.u.def.value,
6433 &fh->elf.root.u.def.section,
6434 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6435 {
6436 fh->elf.root.type = fdh->elf.root.type;
6437 fh->elf.forced_local = 1;
6438 fh->elf.def_regular = fdh->elf.def_regular;
6439 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6440 }
6441
6442 /* If this is a function code symbol, transfer dynamic linking
6443 information to the function descriptor symbol. */
6444 if (!fh->is_func)
6445 return TRUE;
6446
6447 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6448 if (ent->plt.refcount > 0)
6449 break;
6450 if (ent == NULL
6451 || fh->elf.root.root.string[0] != '.'
6452 || fh->elf.root.root.string[1] == '\0')
6453 return TRUE;
6454
6455 /* Find the corresponding function descriptor symbol. Create it
6456 as undefined if necessary. */
6457
6458 fdh = lookup_fdh (fh, htab);
6459 if (fdh == NULL
6460 && !info->executable
6461 && (fh->elf.root.type == bfd_link_hash_undefined
6462 || fh->elf.root.type == bfd_link_hash_undefweak))
6463 {
6464 fdh = make_fdh (info, fh);
6465 if (fdh == NULL)
6466 return FALSE;
6467 }
6468
6469 /* Fake function descriptors are made undefweak. If the function
6470 code symbol is strong undefined, make the fake sym the same.
6471 If the function code symbol is defined, then force the fake
6472 descriptor local; We can't support overriding of symbols in a
6473 shared library on a fake descriptor. */
6474
6475 if (fdh != NULL
6476 && fdh->fake
6477 && fdh->elf.root.type == bfd_link_hash_undefweak)
6478 {
6479 if (fh->elf.root.type == bfd_link_hash_undefined)
6480 {
6481 fdh->elf.root.type = bfd_link_hash_undefined;
6482 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6483 }
6484 else if (fh->elf.root.type == bfd_link_hash_defined
6485 || fh->elf.root.type == bfd_link_hash_defweak)
6486 {
6487 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6488 }
6489 }
6490
6491 if (fdh != NULL
6492 && !fdh->elf.forced_local
6493 && (!info->executable
6494 || fdh->elf.def_dynamic
6495 || fdh->elf.ref_dynamic
6496 || (fdh->elf.root.type == bfd_link_hash_undefweak
6497 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6498 {
6499 if (fdh->elf.dynindx == -1)
6500 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6501 return FALSE;
6502 fdh->elf.ref_regular |= fh->elf.ref_regular;
6503 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6504 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6505 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6506 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6507 {
6508 move_plt_plist (fh, fdh);
6509 fdh->elf.needs_plt = 1;
6510 }
6511 fdh->is_func_descriptor = 1;
6512 fdh->oh = fh;
6513 fh->oh = fdh;
6514 }
6515
6516 /* Now that the info is on the function descriptor, clear the
6517 function code sym info. Any function code syms for which we
6518 don't have a definition in a regular file, we force local.
6519 This prevents a shared library from exporting syms that have
6520 been imported from another library. Function code syms that
6521 are really in the library we must leave global to prevent the
6522 linker dragging in a definition from a static library. */
6523 force_local = (!fh->elf.def_regular
6524 || fdh == NULL
6525 || !fdh->elf.def_regular
6526 || fdh->elf.forced_local);
6527 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6528
6529 return TRUE;
6530 }
6531
6532 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6533 this hook to a) provide some gcc support functions, and b) transfer
6534 dynamic linking information gathered so far on function code symbol
6535 entries, to their corresponding function descriptor symbol entries. */
6536
6537 static bfd_boolean
6538 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6539 struct bfd_link_info *info)
6540 {
6541 struct ppc_link_hash_table *htab;
6542 unsigned int i;
6543 static const struct sfpr_def_parms funcs[] =
6544 {
6545 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6546 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6547 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6548 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6549 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6550 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6551 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6552 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6553 { "._savef", 14, 31, savefpr, savefpr1_tail },
6554 { "._restf", 14, 31, restfpr, restfpr1_tail },
6555 { "_savevr_", 20, 31, savevr, savevr_tail },
6556 { "_restvr_", 20, 31, restvr, restvr_tail }
6557 };
6558
6559 htab = ppc_hash_table (info);
6560 if (htab == NULL)
6561 return FALSE;
6562
6563 if (!info->relocatable
6564 && htab->elf.hgot != NULL)
6565 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6566
6567 if (htab->sfpr == NULL)
6568 /* We don't have any relocs. */
6569 return TRUE;
6570
6571 /* Provide any missing _save* and _rest* functions. */
6572 htab->sfpr->size = 0;
6573 if (!info->relocatable)
6574 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6575 if (!sfpr_define (info, &funcs[i]))
6576 return FALSE;
6577
6578 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6579
6580 if (htab->sfpr->size == 0)
6581 htab->sfpr->flags |= SEC_EXCLUDE;
6582
6583 return TRUE;
6584 }
6585
6586 /* Adjust a symbol defined by a dynamic object and referenced by a
6587 regular object. The current definition is in some section of the
6588 dynamic object, but we're not including those sections. We have to
6589 change the definition to something the rest of the link can
6590 understand. */
6591
6592 static bfd_boolean
6593 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6594 struct elf_link_hash_entry *h)
6595 {
6596 struct ppc_link_hash_table *htab;
6597 asection *s;
6598
6599 htab = ppc_hash_table (info);
6600 if (htab == NULL)
6601 return FALSE;
6602
6603 /* Deal with function syms. */
6604 if (h->type == STT_FUNC
6605 || h->type == STT_GNU_IFUNC
6606 || h->needs_plt)
6607 {
6608 /* Clear procedure linkage table information for any symbol that
6609 won't need a .plt entry. */
6610 struct plt_entry *ent;
6611 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6612 if (ent->plt.refcount > 0)
6613 break;
6614 if (ent == NULL
6615 || (h->type != STT_GNU_IFUNC
6616 && (SYMBOL_CALLS_LOCAL (info, h)
6617 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6618 && h->root.type == bfd_link_hash_undefweak))))
6619 {
6620 h->plt.plist = NULL;
6621 h->needs_plt = 0;
6622 }
6623 }
6624 else
6625 h->plt.plist = NULL;
6626
6627 /* If this is a weak symbol, and there is a real definition, the
6628 processor independent code will have arranged for us to see the
6629 real definition first, and we can just use the same value. */
6630 if (h->u.weakdef != NULL)
6631 {
6632 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6633 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6634 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6635 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6636 if (ELIMINATE_COPY_RELOCS)
6637 h->non_got_ref = h->u.weakdef->non_got_ref;
6638 return TRUE;
6639 }
6640
6641 /* If we are creating a shared library, we must presume that the
6642 only references to the symbol are via the global offset table.
6643 For such cases we need not do anything here; the relocations will
6644 be handled correctly by relocate_section. */
6645 if (info->shared)
6646 return TRUE;
6647
6648 /* If there are no references to this symbol that do not use the
6649 GOT, we don't need to generate a copy reloc. */
6650 if (!h->non_got_ref)
6651 return TRUE;
6652
6653 /* Don't generate a copy reloc for symbols defined in the executable. */
6654 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
6655 return TRUE;
6656
6657 if (ELIMINATE_COPY_RELOCS)
6658 {
6659 struct ppc_link_hash_entry * eh;
6660 struct elf_dyn_relocs *p;
6661
6662 eh = (struct ppc_link_hash_entry *) h;
6663 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6664 {
6665 s = p->sec->output_section;
6666 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6667 break;
6668 }
6669
6670 /* If we didn't find any dynamic relocs in read-only sections, then
6671 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6672 if (p == NULL)
6673 {
6674 h->non_got_ref = 0;
6675 return TRUE;
6676 }
6677 }
6678
6679 if (h->plt.plist != NULL)
6680 {
6681 /* We should never get here, but unfortunately there are versions
6682 of gcc out there that improperly (for this ABI) put initialized
6683 function pointers, vtable refs and suchlike in read-only
6684 sections. Allow them to proceed, but warn that this might
6685 break at runtime. */
6686 info->callbacks->einfo
6687 (_("%P: copy reloc against `%T' requires lazy plt linking; "
6688 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6689 h->root.root.string);
6690 }
6691
6692 /* This is a reference to a symbol defined by a dynamic object which
6693 is not a function. */
6694
6695 /* We must allocate the symbol in our .dynbss section, which will
6696 become part of the .bss section of the executable. There will be
6697 an entry for this symbol in the .dynsym section. The dynamic
6698 object will contain position independent code, so all references
6699 from the dynamic object to this symbol will go through the global
6700 offset table. The dynamic linker will use the .dynsym entry to
6701 determine the address it must put in the global offset table, so
6702 both the dynamic object and the regular object will refer to the
6703 same memory location for the variable. */
6704
6705 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
6706 to copy the initial value out of the dynamic object and into the
6707 runtime process image. We need to remember the offset into the
6708 .rela.bss section we are going to use. */
6709 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6710 {
6711 htab->relbss->size += sizeof (Elf64_External_Rela);
6712 h->needs_copy = 1;
6713 }
6714
6715 s = htab->dynbss;
6716
6717 return _bfd_elf_adjust_dynamic_copy (h, s);
6718 }
6719
6720 /* If given a function descriptor symbol, hide both the function code
6721 sym and the descriptor. */
6722 static void
6723 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6724 struct elf_link_hash_entry *h,
6725 bfd_boolean force_local)
6726 {
6727 struct ppc_link_hash_entry *eh;
6728 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6729
6730 eh = (struct ppc_link_hash_entry *) h;
6731 if (eh->is_func_descriptor)
6732 {
6733 struct ppc_link_hash_entry *fh = eh->oh;
6734
6735 if (fh == NULL)
6736 {
6737 const char *p, *q;
6738 struct ppc_link_hash_table *htab;
6739 char save;
6740
6741 /* We aren't supposed to use alloca in BFD because on
6742 systems which do not have alloca the version in libiberty
6743 calls xmalloc, which might cause the program to crash
6744 when it runs out of memory. This function doesn't have a
6745 return status, so there's no way to gracefully return an
6746 error. So cheat. We know that string[-1] can be safely
6747 accessed; It's either a string in an ELF string table,
6748 or allocated in an objalloc structure. */
6749
6750 p = eh->elf.root.root.string - 1;
6751 save = *p;
6752 *(char *) p = '.';
6753 htab = ppc_hash_table (info);
6754 if (htab == NULL)
6755 return;
6756
6757 fh = (struct ppc_link_hash_entry *)
6758 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6759 *(char *) p = save;
6760
6761 /* Unfortunately, if it so happens that the string we were
6762 looking for was allocated immediately before this string,
6763 then we overwrote the string terminator. That's the only
6764 reason the lookup should fail. */
6765 if (fh == NULL)
6766 {
6767 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6768 while (q >= eh->elf.root.root.string && *q == *p)
6769 --q, --p;
6770 if (q < eh->elf.root.root.string && *p == '.')
6771 fh = (struct ppc_link_hash_entry *)
6772 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6773 }
6774 if (fh != NULL)
6775 {
6776 eh->oh = fh;
6777 fh->oh = eh;
6778 }
6779 }
6780 if (fh != NULL)
6781 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6782 }
6783 }
6784
6785 static bfd_boolean
6786 get_sym_h (struct elf_link_hash_entry **hp,
6787 Elf_Internal_Sym **symp,
6788 asection **symsecp,
6789 unsigned char **tls_maskp,
6790 Elf_Internal_Sym **locsymsp,
6791 unsigned long r_symndx,
6792 bfd *ibfd)
6793 {
6794 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6795
6796 if (r_symndx >= symtab_hdr->sh_info)
6797 {
6798 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6799 struct elf_link_hash_entry *h;
6800
6801 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6802 h = elf_follow_link (h);
6803
6804 if (hp != NULL)
6805 *hp = h;
6806
6807 if (symp != NULL)
6808 *symp = NULL;
6809
6810 if (symsecp != NULL)
6811 {
6812 asection *symsec = NULL;
6813 if (h->root.type == bfd_link_hash_defined
6814 || h->root.type == bfd_link_hash_defweak)
6815 symsec = h->root.u.def.section;
6816 *symsecp = symsec;
6817 }
6818
6819 if (tls_maskp != NULL)
6820 {
6821 struct ppc_link_hash_entry *eh;
6822
6823 eh = (struct ppc_link_hash_entry *) h;
6824 *tls_maskp = &eh->tls_mask;
6825 }
6826 }
6827 else
6828 {
6829 Elf_Internal_Sym *sym;
6830 Elf_Internal_Sym *locsyms = *locsymsp;
6831
6832 if (locsyms == NULL)
6833 {
6834 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6835 if (locsyms == NULL)
6836 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6837 symtab_hdr->sh_info,
6838 0, NULL, NULL, NULL);
6839 if (locsyms == NULL)
6840 return FALSE;
6841 *locsymsp = locsyms;
6842 }
6843 sym = locsyms + r_symndx;
6844
6845 if (hp != NULL)
6846 *hp = NULL;
6847
6848 if (symp != NULL)
6849 *symp = sym;
6850
6851 if (symsecp != NULL)
6852 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6853
6854 if (tls_maskp != NULL)
6855 {
6856 struct got_entry **lgot_ents;
6857 unsigned char *tls_mask;
6858
6859 tls_mask = NULL;
6860 lgot_ents = elf_local_got_ents (ibfd);
6861 if (lgot_ents != NULL)
6862 {
6863 struct plt_entry **local_plt = (struct plt_entry **)
6864 (lgot_ents + symtab_hdr->sh_info);
6865 unsigned char *lgot_masks = (unsigned char *)
6866 (local_plt + symtab_hdr->sh_info);
6867 tls_mask = &lgot_masks[r_symndx];
6868 }
6869 *tls_maskp = tls_mask;
6870 }
6871 }
6872 return TRUE;
6873 }
6874
6875 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6876 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6877 type suitable for optimization, and 1 otherwise. */
6878
6879 static int
6880 get_tls_mask (unsigned char **tls_maskp,
6881 unsigned long *toc_symndx,
6882 bfd_vma *toc_addend,
6883 Elf_Internal_Sym **locsymsp,
6884 const Elf_Internal_Rela *rel,
6885 bfd *ibfd)
6886 {
6887 unsigned long r_symndx;
6888 int next_r;
6889 struct elf_link_hash_entry *h;
6890 Elf_Internal_Sym *sym;
6891 asection *sec;
6892 bfd_vma off;
6893
6894 r_symndx = ELF64_R_SYM (rel->r_info);
6895 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6896 return 0;
6897
6898 if ((*tls_maskp != NULL && **tls_maskp != 0)
6899 || sec == NULL
6900 || ppc64_elf_section_data (sec) == NULL
6901 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6902 return 1;
6903
6904 /* Look inside a TOC section too. */
6905 if (h != NULL)
6906 {
6907 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6908 off = h->root.u.def.value;
6909 }
6910 else
6911 off = sym->st_value;
6912 off += rel->r_addend;
6913 BFD_ASSERT (off % 8 == 0);
6914 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6915 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6916 if (toc_symndx != NULL)
6917 *toc_symndx = r_symndx;
6918 if (toc_addend != NULL)
6919 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6920 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6921 return 0;
6922 if ((h == NULL || is_static_defined (h))
6923 && (next_r == -1 || next_r == -2))
6924 return 1 - next_r;
6925 return 1;
6926 }
6927
6928 /* Find (or create) an entry in the tocsave hash table. */
6929
6930 static struct tocsave_entry *
6931 tocsave_find (struct ppc_link_hash_table *htab,
6932 enum insert_option insert,
6933 Elf_Internal_Sym **local_syms,
6934 const Elf_Internal_Rela *irela,
6935 bfd *ibfd)
6936 {
6937 unsigned long r_indx;
6938 struct elf_link_hash_entry *h;
6939 Elf_Internal_Sym *sym;
6940 struct tocsave_entry ent, *p;
6941 hashval_t hash;
6942 struct tocsave_entry **slot;
6943
6944 r_indx = ELF64_R_SYM (irela->r_info);
6945 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6946 return NULL;
6947 if (ent.sec == NULL || ent.sec->output_section == NULL)
6948 {
6949 (*_bfd_error_handler)
6950 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
6951 return NULL;
6952 }
6953
6954 if (h != NULL)
6955 ent.offset = h->root.u.def.value;
6956 else
6957 ent.offset = sym->st_value;
6958 ent.offset += irela->r_addend;
6959
6960 hash = tocsave_htab_hash (&ent);
6961 slot = ((struct tocsave_entry **)
6962 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6963 if (slot == NULL)
6964 return NULL;
6965
6966 if (*slot == NULL)
6967 {
6968 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6969 if (p == NULL)
6970 return NULL;
6971 *p = ent;
6972 *slot = p;
6973 }
6974 return *slot;
6975 }
6976
6977 /* Adjust all global syms defined in opd sections. In gcc generated
6978 code for the old ABI, these will already have been done. */
6979
6980 static bfd_boolean
6981 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6982 {
6983 struct ppc_link_hash_entry *eh;
6984 asection *sym_sec;
6985 struct _opd_sec_data *opd;
6986
6987 if (h->root.type == bfd_link_hash_indirect)
6988 return TRUE;
6989
6990 if (h->root.type != bfd_link_hash_defined
6991 && h->root.type != bfd_link_hash_defweak)
6992 return TRUE;
6993
6994 eh = (struct ppc_link_hash_entry *) h;
6995 if (eh->adjust_done)
6996 return TRUE;
6997
6998 sym_sec = eh->elf.root.u.def.section;
6999 opd = get_opd_info (sym_sec);
7000 if (opd != NULL && opd->adjust != NULL)
7001 {
7002 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
7003 if (adjust == -1)
7004 {
7005 /* This entry has been deleted. */
7006 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
7007 if (dsec == NULL)
7008 {
7009 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
7010 if (discarded_section (dsec))
7011 {
7012 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
7013 break;
7014 }
7015 }
7016 eh->elf.root.u.def.value = 0;
7017 eh->elf.root.u.def.section = dsec;
7018 }
7019 else
7020 eh->elf.root.u.def.value += adjust;
7021 eh->adjust_done = 1;
7022 }
7023 return TRUE;
7024 }
7025
7026 /* Handles decrementing dynamic reloc counts for the reloc specified by
7027 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
7028 have already been determined. */
7029
7030 static bfd_boolean
7031 dec_dynrel_count (bfd_vma r_info,
7032 asection *sec,
7033 struct bfd_link_info *info,
7034 Elf_Internal_Sym **local_syms,
7035 struct elf_link_hash_entry *h,
7036 Elf_Internal_Sym *sym)
7037 {
7038 enum elf_ppc64_reloc_type r_type;
7039 asection *sym_sec = NULL;
7040
7041 /* Can this reloc be dynamic? This switch, and later tests here
7042 should be kept in sync with the code in check_relocs. */
7043 r_type = ELF64_R_TYPE (r_info);
7044 switch (r_type)
7045 {
7046 default:
7047 return TRUE;
7048
7049 case R_PPC64_TPREL16:
7050 case R_PPC64_TPREL16_LO:
7051 case R_PPC64_TPREL16_HI:
7052 case R_PPC64_TPREL16_HA:
7053 case R_PPC64_TPREL16_DS:
7054 case R_PPC64_TPREL16_LO_DS:
7055 case R_PPC64_TPREL16_HIGHER:
7056 case R_PPC64_TPREL16_HIGHERA:
7057 case R_PPC64_TPREL16_HIGHEST:
7058 case R_PPC64_TPREL16_HIGHESTA:
7059 if (!info->shared)
7060 return TRUE;
7061
7062 case R_PPC64_TPREL64:
7063 case R_PPC64_DTPMOD64:
7064 case R_PPC64_DTPREL64:
7065 case R_PPC64_ADDR64:
7066 case R_PPC64_REL30:
7067 case R_PPC64_REL32:
7068 case R_PPC64_REL64:
7069 case R_PPC64_ADDR14:
7070 case R_PPC64_ADDR14_BRNTAKEN:
7071 case R_PPC64_ADDR14_BRTAKEN:
7072 case R_PPC64_ADDR16:
7073 case R_PPC64_ADDR16_DS:
7074 case R_PPC64_ADDR16_HA:
7075 case R_PPC64_ADDR16_HI:
7076 case R_PPC64_ADDR16_HIGHER:
7077 case R_PPC64_ADDR16_HIGHERA:
7078 case R_PPC64_ADDR16_HIGHEST:
7079 case R_PPC64_ADDR16_HIGHESTA:
7080 case R_PPC64_ADDR16_LO:
7081 case R_PPC64_ADDR16_LO_DS:
7082 case R_PPC64_ADDR24:
7083 case R_PPC64_ADDR32:
7084 case R_PPC64_UADDR16:
7085 case R_PPC64_UADDR32:
7086 case R_PPC64_UADDR64:
7087 case R_PPC64_TOC:
7088 break;
7089 }
7090
7091 if (local_syms != NULL)
7092 {
7093 unsigned long r_symndx;
7094 bfd *ibfd = sec->owner;
7095
7096 r_symndx = ELF64_R_SYM (r_info);
7097 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7098 return FALSE;
7099 }
7100
7101 if ((info->shared
7102 && (must_be_dyn_reloc (info, r_type)
7103 || (h != NULL
7104 && (!SYMBOLIC_BIND (info, h)
7105 || h->root.type == bfd_link_hash_defweak
7106 || !h->def_regular))))
7107 || (ELIMINATE_COPY_RELOCS
7108 && !info->shared
7109 && h != NULL
7110 && (h->root.type == bfd_link_hash_defweak
7111 || !h->def_regular)))
7112 ;
7113 else
7114 return TRUE;
7115
7116 if (h != NULL)
7117 {
7118 struct elf_dyn_relocs *p;
7119 struct elf_dyn_relocs **pp;
7120 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7121
7122 /* elf_gc_sweep may have already removed all dyn relocs associated
7123 with local syms for a given section. Also, symbol flags are
7124 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7125 report a dynreloc miscount. */
7126 if (*pp == NULL && info->gc_sections)
7127 return TRUE;
7128
7129 while ((p = *pp) != NULL)
7130 {
7131 if (p->sec == sec)
7132 {
7133 if (!must_be_dyn_reloc (info, r_type))
7134 p->pc_count -= 1;
7135 p->count -= 1;
7136 if (p->count == 0)
7137 *pp = p->next;
7138 return TRUE;
7139 }
7140 pp = &p->next;
7141 }
7142 }
7143 else
7144 {
7145 struct ppc_dyn_relocs *p;
7146 struct ppc_dyn_relocs **pp;
7147 void *vpp;
7148 bfd_boolean is_ifunc;
7149
7150 if (local_syms == NULL)
7151 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7152 if (sym_sec == NULL)
7153 sym_sec = sec;
7154
7155 vpp = &elf_section_data (sym_sec)->local_dynrel;
7156 pp = (struct ppc_dyn_relocs **) vpp;
7157
7158 if (*pp == NULL && info->gc_sections)
7159 return TRUE;
7160
7161 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7162 while ((p = *pp) != NULL)
7163 {
7164 if (p->sec == sec && p->ifunc == is_ifunc)
7165 {
7166 p->count -= 1;
7167 if (p->count == 0)
7168 *pp = p->next;
7169 return TRUE;
7170 }
7171 pp = &p->next;
7172 }
7173 }
7174
7175 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7176 sec->owner, sec);
7177 bfd_set_error (bfd_error_bad_value);
7178 return FALSE;
7179 }
7180
7181 /* Remove unused Official Procedure Descriptor entries. Currently we
7182 only remove those associated with functions in discarded link-once
7183 sections, or weakly defined functions that have been overridden. It
7184 would be possible to remove many more entries for statically linked
7185 applications. */
7186
7187 bfd_boolean
7188 ppc64_elf_edit_opd (struct bfd_link_info *info, bfd_boolean non_overlapping)
7189 {
7190 bfd *ibfd;
7191 bfd_boolean some_edited = FALSE;
7192 asection *need_pad = NULL;
7193
7194 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7195 {
7196 asection *sec;
7197 Elf_Internal_Rela *relstart, *rel, *relend;
7198 Elf_Internal_Shdr *symtab_hdr;
7199 Elf_Internal_Sym *local_syms;
7200 bfd_vma offset;
7201 struct _opd_sec_data *opd;
7202 bfd_boolean need_edit, add_aux_fields;
7203 bfd_size_type cnt_16b = 0;
7204
7205 if (!is_ppc64_elf (ibfd))
7206 continue;
7207
7208 sec = bfd_get_section_by_name (ibfd, ".opd");
7209 if (sec == NULL || sec->size == 0)
7210 continue;
7211
7212 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7213 continue;
7214
7215 if (sec->output_section == bfd_abs_section_ptr)
7216 continue;
7217
7218 /* Look through the section relocs. */
7219 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7220 continue;
7221
7222 local_syms = NULL;
7223 symtab_hdr = &elf_symtab_hdr (ibfd);
7224
7225 /* Read the relocations. */
7226 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7227 info->keep_memory);
7228 if (relstart == NULL)
7229 return FALSE;
7230
7231 /* First run through the relocs to check they are sane, and to
7232 determine whether we need to edit this opd section. */
7233 need_edit = FALSE;
7234 need_pad = sec;
7235 offset = 0;
7236 relend = relstart + sec->reloc_count;
7237 for (rel = relstart; rel < relend; )
7238 {
7239 enum elf_ppc64_reloc_type r_type;
7240 unsigned long r_symndx;
7241 asection *sym_sec;
7242 struct elf_link_hash_entry *h;
7243 Elf_Internal_Sym *sym;
7244
7245 /* .opd contains a regular array of 16 or 24 byte entries. We're
7246 only interested in the reloc pointing to a function entry
7247 point. */
7248 if (rel->r_offset != offset
7249 || rel + 1 >= relend
7250 || (rel + 1)->r_offset != offset + 8)
7251 {
7252 /* If someone messes with .opd alignment then after a
7253 "ld -r" we might have padding in the middle of .opd.
7254 Also, there's nothing to prevent someone putting
7255 something silly in .opd with the assembler. No .opd
7256 optimization for them! */
7257 broken_opd:
7258 (*_bfd_error_handler)
7259 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7260 need_edit = FALSE;
7261 break;
7262 }
7263
7264 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7265 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7266 {
7267 (*_bfd_error_handler)
7268 (_("%B: unexpected reloc type %u in .opd section"),
7269 ibfd, r_type);
7270 need_edit = FALSE;
7271 break;
7272 }
7273
7274 r_symndx = ELF64_R_SYM (rel->r_info);
7275 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7276 r_symndx, ibfd))
7277 goto error_ret;
7278
7279 if (sym_sec == NULL || sym_sec->owner == NULL)
7280 {
7281 const char *sym_name;
7282 if (h != NULL)
7283 sym_name = h->root.root.string;
7284 else
7285 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7286 sym_sec);
7287
7288 (*_bfd_error_handler)
7289 (_("%B: undefined sym `%s' in .opd section"),
7290 ibfd, sym_name);
7291 need_edit = FALSE;
7292 break;
7293 }
7294
7295 /* opd entries are always for functions defined in the
7296 current input bfd. If the symbol isn't defined in the
7297 input bfd, then we won't be using the function in this
7298 bfd; It must be defined in a linkonce section in another
7299 bfd, or is weak. It's also possible that we are
7300 discarding the function due to a linker script /DISCARD/,
7301 which we test for via the output_section. */
7302 if (sym_sec->owner != ibfd
7303 || sym_sec->output_section == bfd_abs_section_ptr)
7304 need_edit = TRUE;
7305
7306 rel += 2;
7307 if (rel == relend
7308 || (rel + 1 == relend && rel->r_offset == offset + 16))
7309 {
7310 if (sec->size == offset + 24)
7311 {
7312 need_pad = NULL;
7313 break;
7314 }
7315 if (rel == relend && sec->size == offset + 16)
7316 {
7317 cnt_16b++;
7318 break;
7319 }
7320 goto broken_opd;
7321 }
7322
7323 if (rel->r_offset == offset + 24)
7324 offset += 24;
7325 else if (rel->r_offset != offset + 16)
7326 goto broken_opd;
7327 else if (rel + 1 < relend
7328 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7329 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7330 {
7331 offset += 16;
7332 cnt_16b++;
7333 }
7334 else if (rel + 2 < relend
7335 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
7336 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
7337 {
7338 offset += 24;
7339 rel += 1;
7340 }
7341 else
7342 goto broken_opd;
7343 }
7344
7345 add_aux_fields = non_overlapping && cnt_16b > 0;
7346
7347 if (need_edit || add_aux_fields)
7348 {
7349 Elf_Internal_Rela *write_rel;
7350 Elf_Internal_Shdr *rel_hdr;
7351 bfd_byte *rptr, *wptr;
7352 bfd_byte *new_contents;
7353 bfd_boolean skip;
7354 long opd_ent_size;
7355 bfd_size_type amt;
7356
7357 new_contents = NULL;
7358 amt = sec->size * sizeof (long) / 8;
7359 opd = &ppc64_elf_section_data (sec)->u.opd;
7360 opd->adjust = bfd_zalloc (sec->owner, amt);
7361 if (opd->adjust == NULL)
7362 return FALSE;
7363 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7364
7365 /* This seems a waste of time as input .opd sections are all
7366 zeros as generated by gcc, but I suppose there's no reason
7367 this will always be so. We might start putting something in
7368 the third word of .opd entries. */
7369 if ((sec->flags & SEC_IN_MEMORY) == 0)
7370 {
7371 bfd_byte *loc;
7372 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7373 {
7374 if (loc != NULL)
7375 free (loc);
7376 error_ret:
7377 if (local_syms != NULL
7378 && symtab_hdr->contents != (unsigned char *) local_syms)
7379 free (local_syms);
7380 if (elf_section_data (sec)->relocs != relstart)
7381 free (relstart);
7382 return FALSE;
7383 }
7384 sec->contents = loc;
7385 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7386 }
7387
7388 elf_section_data (sec)->relocs = relstart;
7389
7390 new_contents = sec->contents;
7391 if (add_aux_fields)
7392 {
7393 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7394 if (new_contents == NULL)
7395 return FALSE;
7396 need_pad = FALSE;
7397 }
7398 wptr = new_contents;
7399 rptr = sec->contents;
7400
7401 write_rel = relstart;
7402 skip = FALSE;
7403 offset = 0;
7404 opd_ent_size = 0;
7405 for (rel = relstart; rel < relend; rel++)
7406 {
7407 unsigned long r_symndx;
7408 asection *sym_sec;
7409 struct elf_link_hash_entry *h;
7410 Elf_Internal_Sym *sym;
7411
7412 r_symndx = ELF64_R_SYM (rel->r_info);
7413 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7414 r_symndx, ibfd))
7415 goto error_ret;
7416
7417 if (rel->r_offset == offset)
7418 {
7419 struct ppc_link_hash_entry *fdh = NULL;
7420
7421 /* See if the .opd entry is full 24 byte or
7422 16 byte (with fd_aux entry overlapped with next
7423 fd_func). */
7424 opd_ent_size = 24;
7425 if ((rel + 2 == relend && sec->size == offset + 16)
7426 || (rel + 3 < relend
7427 && rel[2].r_offset == offset + 16
7428 && rel[3].r_offset == offset + 24
7429 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
7430 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
7431 opd_ent_size = 16;
7432
7433 if (h != NULL
7434 && h->root.root.string[0] == '.')
7435 {
7436 struct ppc_link_hash_table *htab;
7437
7438 htab = ppc_hash_table (info);
7439 if (htab != NULL)
7440 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h,
7441 htab);
7442 if (fdh != NULL
7443 && fdh->elf.root.type != bfd_link_hash_defined
7444 && fdh->elf.root.type != bfd_link_hash_defweak)
7445 fdh = NULL;
7446 }
7447
7448 skip = (sym_sec->owner != ibfd
7449 || sym_sec->output_section == bfd_abs_section_ptr);
7450 if (skip)
7451 {
7452 if (fdh != NULL && sym_sec->owner == ibfd)
7453 {
7454 /* Arrange for the function descriptor sym
7455 to be dropped. */
7456 fdh->elf.root.u.def.value = 0;
7457 fdh->elf.root.u.def.section = sym_sec;
7458 }
7459 opd->adjust[rel->r_offset / 8] = -1;
7460 }
7461 else
7462 {
7463 /* We'll be keeping this opd entry. */
7464
7465 if (fdh != NULL)
7466 {
7467 /* Redefine the function descriptor symbol to
7468 this location in the opd section. It is
7469 necessary to update the value here rather
7470 than using an array of adjustments as we do
7471 for local symbols, because various places
7472 in the generic ELF code use the value
7473 stored in u.def.value. */
7474 fdh->elf.root.u.def.value = wptr - new_contents;
7475 fdh->adjust_done = 1;
7476 }
7477
7478 /* Local syms are a bit tricky. We could
7479 tweak them as they can be cached, but
7480 we'd need to look through the local syms
7481 for the function descriptor sym which we
7482 don't have at the moment. So keep an
7483 array of adjustments. */
7484 opd->adjust[rel->r_offset / 8]
7485 = (wptr - new_contents) - (rptr - sec->contents);
7486
7487 if (wptr != rptr)
7488 memcpy (wptr, rptr, opd_ent_size);
7489 wptr += opd_ent_size;
7490 if (add_aux_fields && opd_ent_size == 16)
7491 {
7492 memset (wptr, '\0', 8);
7493 wptr += 8;
7494 }
7495 }
7496 rptr += opd_ent_size;
7497 offset += opd_ent_size;
7498 }
7499
7500 if (skip)
7501 {
7502 if (!NO_OPD_RELOCS
7503 && !info->relocatable
7504 && !dec_dynrel_count (rel->r_info, sec, info,
7505 NULL, h, sym))
7506 goto error_ret;
7507 }
7508 else
7509 {
7510 /* We need to adjust any reloc offsets to point to the
7511 new opd entries. While we're at it, we may as well
7512 remove redundant relocs. */
7513 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
7514 if (write_rel != rel)
7515 memcpy (write_rel, rel, sizeof (*rel));
7516 ++write_rel;
7517 }
7518 }
7519
7520 sec->size = wptr - new_contents;
7521 sec->reloc_count = write_rel - relstart;
7522 if (add_aux_fields)
7523 {
7524 free (sec->contents);
7525 sec->contents = new_contents;
7526 }
7527
7528 /* Fudge the header size too, as this is used later in
7529 elf_bfd_final_link if we are emitting relocs. */
7530 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7531 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7532 some_edited = TRUE;
7533 }
7534 else if (elf_section_data (sec)->relocs != relstart)
7535 free (relstart);
7536
7537 if (local_syms != NULL
7538 && symtab_hdr->contents != (unsigned char *) local_syms)
7539 {
7540 if (!info->keep_memory)
7541 free (local_syms);
7542 else
7543 symtab_hdr->contents = (unsigned char *) local_syms;
7544 }
7545 }
7546
7547 if (some_edited)
7548 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7549
7550 /* If we are doing a final link and the last .opd entry is just 16 byte
7551 long, add a 8 byte padding after it. */
7552 if (need_pad != NULL && !info->relocatable)
7553 {
7554 bfd_byte *p;
7555
7556 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7557 {
7558 BFD_ASSERT (need_pad->size > 0);
7559
7560 p = bfd_malloc (need_pad->size + 8);
7561 if (p == NULL)
7562 return FALSE;
7563
7564 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7565 p, 0, need_pad->size))
7566 return FALSE;
7567
7568 need_pad->contents = p;
7569 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7570 }
7571 else
7572 {
7573 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7574 if (p == NULL)
7575 return FALSE;
7576
7577 need_pad->contents = p;
7578 }
7579
7580 memset (need_pad->contents + need_pad->size, 0, 8);
7581 need_pad->size += 8;
7582 }
7583
7584 return TRUE;
7585 }
7586
7587 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7588
7589 asection *
7590 ppc64_elf_tls_setup (struct bfd_link_info *info,
7591 int no_tls_get_addr_opt,
7592 int *no_multi_toc)
7593 {
7594 struct ppc_link_hash_table *htab;
7595
7596 htab = ppc_hash_table (info);
7597 if (htab == NULL)
7598 return NULL;
7599
7600 if (*no_multi_toc)
7601 htab->do_multi_toc = 0;
7602 else if (!htab->do_multi_toc)
7603 *no_multi_toc = 1;
7604
7605 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
7606 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7607 FALSE, FALSE, TRUE));
7608 /* Move dynamic linking info to the function descriptor sym. */
7609 if (htab->tls_get_addr != NULL)
7610 func_desc_adjust (&htab->tls_get_addr->elf, info);
7611 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
7612 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7613 FALSE, FALSE, TRUE));
7614 if (!no_tls_get_addr_opt)
7615 {
7616 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
7617
7618 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7619 FALSE, FALSE, TRUE);
7620 if (opt != NULL)
7621 func_desc_adjust (opt, info);
7622 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7623 FALSE, FALSE, TRUE);
7624 if (opt_fd != NULL
7625 && (opt_fd->root.type == bfd_link_hash_defined
7626 || opt_fd->root.type == bfd_link_hash_defweak))
7627 {
7628 /* If glibc supports an optimized __tls_get_addr call stub,
7629 signalled by the presence of __tls_get_addr_opt, and we'll
7630 be calling __tls_get_addr via a plt call stub, then
7631 make __tls_get_addr point to __tls_get_addr_opt. */
7632 tga_fd = &htab->tls_get_addr_fd->elf;
7633 if (htab->elf.dynamic_sections_created
7634 && tga_fd != NULL
7635 && (tga_fd->type == STT_FUNC
7636 || tga_fd->needs_plt)
7637 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7638 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
7639 && tga_fd->root.type == bfd_link_hash_undefweak)))
7640 {
7641 struct plt_entry *ent;
7642
7643 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7644 if (ent->plt.refcount > 0)
7645 break;
7646 if (ent != NULL)
7647 {
7648 tga_fd->root.type = bfd_link_hash_indirect;
7649 tga_fd->root.u.i.link = &opt_fd->root;
7650 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7651 if (opt_fd->dynindx != -1)
7652 {
7653 /* Use __tls_get_addr_opt in dynamic relocations. */
7654 opt_fd->dynindx = -1;
7655 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7656 opt_fd->dynstr_index);
7657 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7658 return NULL;
7659 }
7660 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
7661 tga = &htab->tls_get_addr->elf;
7662 if (opt != NULL && tga != NULL)
7663 {
7664 tga->root.type = bfd_link_hash_indirect;
7665 tga->root.u.i.link = &opt->root;
7666 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7667 _bfd_elf_link_hash_hide_symbol (info, opt,
7668 tga->forced_local);
7669 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
7670 }
7671 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7672 htab->tls_get_addr_fd->is_func_descriptor = 1;
7673 if (htab->tls_get_addr != NULL)
7674 {
7675 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7676 htab->tls_get_addr->is_func = 1;
7677 }
7678 }
7679 }
7680 }
7681 else
7682 no_tls_get_addr_opt = TRUE;
7683 }
7684 htab->no_tls_get_addr_opt = no_tls_get_addr_opt;
7685 return _bfd_elf_tls_setup (info->output_bfd, info);
7686 }
7687
7688 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7689 HASH1 or HASH2. */
7690
7691 static bfd_boolean
7692 branch_reloc_hash_match (const bfd *ibfd,
7693 const Elf_Internal_Rela *rel,
7694 const struct ppc_link_hash_entry *hash1,
7695 const struct ppc_link_hash_entry *hash2)
7696 {
7697 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7698 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7699 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7700
7701 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7702 {
7703 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7704 struct elf_link_hash_entry *h;
7705
7706 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7707 h = elf_follow_link (h);
7708 if (h == &hash1->elf || h == &hash2->elf)
7709 return TRUE;
7710 }
7711 return FALSE;
7712 }
7713
7714 /* Run through all the TLS relocs looking for optimization
7715 opportunities. The linker has been hacked (see ppc64elf.em) to do
7716 a preliminary section layout so that we know the TLS segment
7717 offsets. We can't optimize earlier because some optimizations need
7718 to know the tp offset, and we need to optimize before allocating
7719 dynamic relocations. */
7720
7721 bfd_boolean
7722 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7723 {
7724 bfd *ibfd;
7725 asection *sec;
7726 struct ppc_link_hash_table *htab;
7727 unsigned char *toc_ref;
7728 int pass;
7729
7730 if (info->relocatable || !info->executable)
7731 return TRUE;
7732
7733 htab = ppc_hash_table (info);
7734 if (htab == NULL)
7735 return FALSE;
7736
7737 /* Make two passes over the relocs. On the first pass, mark toc
7738 entries involved with tls relocs, and check that tls relocs
7739 involved in setting up a tls_get_addr call are indeed followed by
7740 such a call. If they are not, we can't do any tls optimization.
7741 On the second pass twiddle tls_mask flags to notify
7742 relocate_section that optimization can be done, and adjust got
7743 and plt refcounts. */
7744 toc_ref = NULL;
7745 for (pass = 0; pass < 2; ++pass)
7746 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7747 {
7748 Elf_Internal_Sym *locsyms = NULL;
7749 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7750
7751 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7752 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7753 {
7754 Elf_Internal_Rela *relstart, *rel, *relend;
7755 bfd_boolean found_tls_get_addr_arg = 0;
7756
7757 /* Read the relocations. */
7758 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7759 info->keep_memory);
7760 if (relstart == NULL)
7761 return FALSE;
7762
7763 relend = relstart + sec->reloc_count;
7764 for (rel = relstart; rel < relend; rel++)
7765 {
7766 enum elf_ppc64_reloc_type r_type;
7767 unsigned long r_symndx;
7768 struct elf_link_hash_entry *h;
7769 Elf_Internal_Sym *sym;
7770 asection *sym_sec;
7771 unsigned char *tls_mask;
7772 unsigned char tls_set, tls_clear, tls_type = 0;
7773 bfd_vma value;
7774 bfd_boolean ok_tprel, is_local;
7775 long toc_ref_index = 0;
7776 int expecting_tls_get_addr = 0;
7777 bfd_boolean ret = FALSE;
7778
7779 r_symndx = ELF64_R_SYM (rel->r_info);
7780 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
7781 r_symndx, ibfd))
7782 {
7783 err_free_rel:
7784 if (elf_section_data (sec)->relocs != relstart)
7785 free (relstart);
7786 if (toc_ref != NULL)
7787 free (toc_ref);
7788 if (locsyms != NULL
7789 && (elf_symtab_hdr (ibfd).contents
7790 != (unsigned char *) locsyms))
7791 free (locsyms);
7792 return ret;
7793 }
7794
7795 if (h != NULL)
7796 {
7797 if (h->root.type == bfd_link_hash_defined
7798 || h->root.type == bfd_link_hash_defweak)
7799 value = h->root.u.def.value;
7800 else if (h->root.type == bfd_link_hash_undefweak)
7801 value = 0;
7802 else
7803 {
7804 found_tls_get_addr_arg = 0;
7805 continue;
7806 }
7807 }
7808 else
7809 /* Symbols referenced by TLS relocs must be of type
7810 STT_TLS. So no need for .opd local sym adjust. */
7811 value = sym->st_value;
7812
7813 ok_tprel = FALSE;
7814 is_local = FALSE;
7815 if (h == NULL
7816 || !h->def_dynamic)
7817 {
7818 is_local = TRUE;
7819 if (h != NULL
7820 && h->root.type == bfd_link_hash_undefweak)
7821 ok_tprel = TRUE;
7822 else
7823 {
7824 value += sym_sec->output_offset;
7825 value += sym_sec->output_section->vma;
7826 value -= htab->elf.tls_sec->vma;
7827 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
7828 < (bfd_vma) 1 << 32);
7829 }
7830 }
7831
7832 r_type = ELF64_R_TYPE (rel->r_info);
7833 /* If this section has old-style __tls_get_addr calls
7834 without marker relocs, then check that each
7835 __tls_get_addr call reloc is preceded by a reloc
7836 that conceivably belongs to the __tls_get_addr arg
7837 setup insn. If we don't find matching arg setup
7838 relocs, don't do any tls optimization. */
7839 if (pass == 0
7840 && sec->has_tls_get_addr_call
7841 && h != NULL
7842 && (h == &htab->tls_get_addr->elf
7843 || h == &htab->tls_get_addr_fd->elf)
7844 && !found_tls_get_addr_arg
7845 && is_branch_reloc (r_type))
7846 {
7847 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
7848 "TLS optimization disabled\n"),
7849 ibfd, sec, rel->r_offset);
7850 ret = TRUE;
7851 goto err_free_rel;
7852 }
7853
7854 found_tls_get_addr_arg = 0;
7855 switch (r_type)
7856 {
7857 case R_PPC64_GOT_TLSLD16:
7858 case R_PPC64_GOT_TLSLD16_LO:
7859 expecting_tls_get_addr = 1;
7860 found_tls_get_addr_arg = 1;
7861 /* Fall thru */
7862
7863 case R_PPC64_GOT_TLSLD16_HI:
7864 case R_PPC64_GOT_TLSLD16_HA:
7865 /* These relocs should never be against a symbol
7866 defined in a shared lib. Leave them alone if
7867 that turns out to be the case. */
7868 if (!is_local)
7869 continue;
7870
7871 /* LD -> LE */
7872 tls_set = 0;
7873 tls_clear = TLS_LD;
7874 tls_type = TLS_TLS | TLS_LD;
7875 break;
7876
7877 case R_PPC64_GOT_TLSGD16:
7878 case R_PPC64_GOT_TLSGD16_LO:
7879 expecting_tls_get_addr = 1;
7880 found_tls_get_addr_arg = 1;
7881 /* Fall thru */
7882
7883 case R_PPC64_GOT_TLSGD16_HI:
7884 case R_PPC64_GOT_TLSGD16_HA:
7885 if (ok_tprel)
7886 /* GD -> LE */
7887 tls_set = 0;
7888 else
7889 /* GD -> IE */
7890 tls_set = TLS_TLS | TLS_TPRELGD;
7891 tls_clear = TLS_GD;
7892 tls_type = TLS_TLS | TLS_GD;
7893 break;
7894
7895 case R_PPC64_GOT_TPREL16_DS:
7896 case R_PPC64_GOT_TPREL16_LO_DS:
7897 case R_PPC64_GOT_TPREL16_HI:
7898 case R_PPC64_GOT_TPREL16_HA:
7899 if (ok_tprel)
7900 {
7901 /* IE -> LE */
7902 tls_set = 0;
7903 tls_clear = TLS_TPREL;
7904 tls_type = TLS_TLS | TLS_TPREL;
7905 break;
7906 }
7907 continue;
7908
7909 case R_PPC64_TLSGD:
7910 case R_PPC64_TLSLD:
7911 found_tls_get_addr_arg = 1;
7912 /* Fall thru */
7913
7914 case R_PPC64_TLS:
7915 case R_PPC64_TOC16:
7916 case R_PPC64_TOC16_LO:
7917 if (sym_sec == NULL || sym_sec != toc)
7918 continue;
7919
7920 /* Mark this toc entry as referenced by a TLS
7921 code sequence. We can do that now in the
7922 case of R_PPC64_TLS, and after checking for
7923 tls_get_addr for the TOC16 relocs. */
7924 if (toc_ref == NULL)
7925 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
7926 if (toc_ref == NULL)
7927 goto err_free_rel;
7928
7929 if (h != NULL)
7930 value = h->root.u.def.value;
7931 else
7932 value = sym->st_value;
7933 value += rel->r_addend;
7934 BFD_ASSERT (value < toc->size && value % 8 == 0);
7935 toc_ref_index = (value + toc->output_offset) / 8;
7936 if (r_type == R_PPC64_TLS
7937 || r_type == R_PPC64_TLSGD
7938 || r_type == R_PPC64_TLSLD)
7939 {
7940 toc_ref[toc_ref_index] = 1;
7941 continue;
7942 }
7943
7944 if (pass != 0 && toc_ref[toc_ref_index] == 0)
7945 continue;
7946
7947 tls_set = 0;
7948 tls_clear = 0;
7949 expecting_tls_get_addr = 2;
7950 break;
7951
7952 case R_PPC64_TPREL64:
7953 if (pass == 0
7954 || sec != toc
7955 || toc_ref == NULL
7956 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7957 continue;
7958 if (ok_tprel)
7959 {
7960 /* IE -> LE */
7961 tls_set = TLS_EXPLICIT;
7962 tls_clear = TLS_TPREL;
7963 break;
7964 }
7965 continue;
7966
7967 case R_PPC64_DTPMOD64:
7968 if (pass == 0
7969 || sec != toc
7970 || toc_ref == NULL
7971 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7972 continue;
7973 if (rel + 1 < relend
7974 && (rel[1].r_info
7975 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
7976 && rel[1].r_offset == rel->r_offset + 8)
7977 {
7978 if (ok_tprel)
7979 /* GD -> LE */
7980 tls_set = TLS_EXPLICIT | TLS_GD;
7981 else
7982 /* GD -> IE */
7983 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
7984 tls_clear = TLS_GD;
7985 }
7986 else
7987 {
7988 if (!is_local)
7989 continue;
7990
7991 /* LD -> LE */
7992 tls_set = TLS_EXPLICIT;
7993 tls_clear = TLS_LD;
7994 }
7995 break;
7996
7997 default:
7998 continue;
7999 }
8000
8001 if (pass == 0)
8002 {
8003 if (!expecting_tls_get_addr
8004 || !sec->has_tls_get_addr_call)
8005 continue;
8006
8007 if (rel + 1 < relend
8008 && branch_reloc_hash_match (ibfd, rel + 1,
8009 htab->tls_get_addr,
8010 htab->tls_get_addr_fd))
8011 {
8012 if (expecting_tls_get_addr == 2)
8013 {
8014 /* Check for toc tls entries. */
8015 unsigned char *toc_tls;
8016 int retval;
8017
8018 retval = get_tls_mask (&toc_tls, NULL, NULL,
8019 &locsyms,
8020 rel, ibfd);
8021 if (retval == 0)
8022 goto err_free_rel;
8023 if (toc_tls != NULL)
8024 {
8025 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
8026 found_tls_get_addr_arg = 1;
8027 if (retval > 1)
8028 toc_ref[toc_ref_index] = 1;
8029 }
8030 }
8031 continue;
8032 }
8033
8034 if (expecting_tls_get_addr != 1)
8035 continue;
8036
8037 /* Uh oh, we didn't find the expected call. We
8038 could just mark this symbol to exclude it
8039 from tls optimization but it's safer to skip
8040 the entire optimization. */
8041 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8042 "TLS optimization disabled\n"),
8043 ibfd, sec, rel->r_offset);
8044 ret = TRUE;
8045 goto err_free_rel;
8046 }
8047
8048 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
8049 {
8050 struct plt_entry *ent;
8051 for (ent = htab->tls_get_addr->elf.plt.plist;
8052 ent != NULL;
8053 ent = ent->next)
8054 if (ent->addend == 0)
8055 {
8056 if (ent->plt.refcount > 0)
8057 {
8058 ent->plt.refcount -= 1;
8059 expecting_tls_get_addr = 0;
8060 }
8061 break;
8062 }
8063 }
8064
8065 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
8066 {
8067 struct plt_entry *ent;
8068 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8069 ent != NULL;
8070 ent = ent->next)
8071 if (ent->addend == 0)
8072 {
8073 if (ent->plt.refcount > 0)
8074 ent->plt.refcount -= 1;
8075 break;
8076 }
8077 }
8078
8079 if (tls_clear == 0)
8080 continue;
8081
8082 if ((tls_set & TLS_EXPLICIT) == 0)
8083 {
8084 struct got_entry *ent;
8085
8086 /* Adjust got entry for this reloc. */
8087 if (h != NULL)
8088 ent = h->got.glist;
8089 else
8090 ent = elf_local_got_ents (ibfd)[r_symndx];
8091
8092 for (; ent != NULL; ent = ent->next)
8093 if (ent->addend == rel->r_addend
8094 && ent->owner == ibfd
8095 && ent->tls_type == tls_type)
8096 break;
8097 if (ent == NULL)
8098 abort ();
8099
8100 if (tls_set == 0)
8101 {
8102 /* We managed to get rid of a got entry. */
8103 if (ent->got.refcount > 0)
8104 ent->got.refcount -= 1;
8105 }
8106 }
8107 else
8108 {
8109 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8110 we'll lose one or two dyn relocs. */
8111 if (!dec_dynrel_count (rel->r_info, sec, info,
8112 NULL, h, sym))
8113 return FALSE;
8114
8115 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8116 {
8117 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8118 NULL, h, sym))
8119 return FALSE;
8120 }
8121 }
8122
8123 *tls_mask |= tls_set;
8124 *tls_mask &= ~tls_clear;
8125 }
8126
8127 if (elf_section_data (sec)->relocs != relstart)
8128 free (relstart);
8129 }
8130
8131 if (locsyms != NULL
8132 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8133 {
8134 if (!info->keep_memory)
8135 free (locsyms);
8136 else
8137 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8138 }
8139 }
8140
8141 if (toc_ref != NULL)
8142 free (toc_ref);
8143 return TRUE;
8144 }
8145
8146 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8147 the values of any global symbols in a toc section that has been
8148 edited. Globals in toc sections should be a rarity, so this function
8149 sets a flag if any are found in toc sections other than the one just
8150 edited, so that futher hash table traversals can be avoided. */
8151
8152 struct adjust_toc_info
8153 {
8154 asection *toc;
8155 unsigned long *skip;
8156 bfd_boolean global_toc_syms;
8157 };
8158
8159 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8160
8161 static bfd_boolean
8162 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8163 {
8164 struct ppc_link_hash_entry *eh;
8165 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8166 unsigned long i;
8167
8168 if (h->root.type != bfd_link_hash_defined
8169 && h->root.type != bfd_link_hash_defweak)
8170 return TRUE;
8171
8172 eh = (struct ppc_link_hash_entry *) h;
8173 if (eh->adjust_done)
8174 return TRUE;
8175
8176 if (eh->elf.root.u.def.section == toc_inf->toc)
8177 {
8178 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8179 i = toc_inf->toc->rawsize >> 3;
8180 else
8181 i = eh->elf.root.u.def.value >> 3;
8182
8183 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8184 {
8185 (*_bfd_error_handler)
8186 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8187 do
8188 ++i;
8189 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8190 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8191 }
8192
8193 eh->elf.root.u.def.value -= toc_inf->skip[i];
8194 eh->adjust_done = 1;
8195 }
8196 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8197 toc_inf->global_toc_syms = TRUE;
8198
8199 return TRUE;
8200 }
8201
8202 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8203
8204 static bfd_boolean
8205 ok_lo_toc_insn (unsigned int insn)
8206 {
8207 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8208 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8209 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8210 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8211 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8212 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8213 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8214 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8215 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8216 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8217 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8218 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8219 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8220 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8221 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8222 && (insn & 3) != 1)
8223 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8224 && ((insn & 3) == 0 || (insn & 3) == 3))
8225 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8226 }
8227
8228 /* Examine all relocs referencing .toc sections in order to remove
8229 unused .toc entries. */
8230
8231 bfd_boolean
8232 ppc64_elf_edit_toc (struct bfd_link_info *info)
8233 {
8234 bfd *ibfd;
8235 struct adjust_toc_info toc_inf;
8236 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8237
8238 htab->do_toc_opt = 1;
8239 toc_inf.global_toc_syms = TRUE;
8240 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8241 {
8242 asection *toc, *sec;
8243 Elf_Internal_Shdr *symtab_hdr;
8244 Elf_Internal_Sym *local_syms;
8245 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8246 unsigned long *skip, *drop;
8247 unsigned char *used;
8248 unsigned char *keep, last, some_unused;
8249
8250 if (!is_ppc64_elf (ibfd))
8251 continue;
8252
8253 toc = bfd_get_section_by_name (ibfd, ".toc");
8254 if (toc == NULL
8255 || toc->size == 0
8256 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8257 || discarded_section (toc))
8258 continue;
8259
8260 toc_relocs = NULL;
8261 local_syms = NULL;
8262 symtab_hdr = &elf_symtab_hdr (ibfd);
8263
8264 /* Look at sections dropped from the final link. */
8265 skip = NULL;
8266 relstart = NULL;
8267 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8268 {
8269 if (sec->reloc_count == 0
8270 || !discarded_section (sec)
8271 || get_opd_info (sec)
8272 || (sec->flags & SEC_ALLOC) == 0
8273 || (sec->flags & SEC_DEBUGGING) != 0)
8274 continue;
8275
8276 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8277 if (relstart == NULL)
8278 goto error_ret;
8279
8280 /* Run through the relocs to see which toc entries might be
8281 unused. */
8282 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8283 {
8284 enum elf_ppc64_reloc_type r_type;
8285 unsigned long r_symndx;
8286 asection *sym_sec;
8287 struct elf_link_hash_entry *h;
8288 Elf_Internal_Sym *sym;
8289 bfd_vma val;
8290
8291 r_type = ELF64_R_TYPE (rel->r_info);
8292 switch (r_type)
8293 {
8294 default:
8295 continue;
8296
8297 case R_PPC64_TOC16:
8298 case R_PPC64_TOC16_LO:
8299 case R_PPC64_TOC16_HI:
8300 case R_PPC64_TOC16_HA:
8301 case R_PPC64_TOC16_DS:
8302 case R_PPC64_TOC16_LO_DS:
8303 break;
8304 }
8305
8306 r_symndx = ELF64_R_SYM (rel->r_info);
8307 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8308 r_symndx, ibfd))
8309 goto error_ret;
8310
8311 if (sym_sec != toc)
8312 continue;
8313
8314 if (h != NULL)
8315 val = h->root.u.def.value;
8316 else
8317 val = sym->st_value;
8318 val += rel->r_addend;
8319
8320 if (val >= toc->size)
8321 continue;
8322
8323 /* Anything in the toc ought to be aligned to 8 bytes.
8324 If not, don't mark as unused. */
8325 if (val & 7)
8326 continue;
8327
8328 if (skip == NULL)
8329 {
8330 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8331 if (skip == NULL)
8332 goto error_ret;
8333 }
8334
8335 skip[val >> 3] = ref_from_discarded;
8336 }
8337
8338 if (elf_section_data (sec)->relocs != relstart)
8339 free (relstart);
8340 }
8341
8342 /* For largetoc loads of address constants, we can convert
8343 . addis rx,2,addr@got@ha
8344 . ld ry,addr@got@l(rx)
8345 to
8346 . addis rx,2,addr@toc@ha
8347 . addi ry,rx,addr@toc@l
8348 when addr is within 2G of the toc pointer. This then means
8349 that the word storing "addr" in the toc is no longer needed. */
8350
8351 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8352 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8353 && toc->reloc_count != 0)
8354 {
8355 /* Read toc relocs. */
8356 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8357 info->keep_memory);
8358 if (toc_relocs == NULL)
8359 goto error_ret;
8360
8361 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8362 {
8363 enum elf_ppc64_reloc_type r_type;
8364 unsigned long r_symndx;
8365 asection *sym_sec;
8366 struct elf_link_hash_entry *h;
8367 Elf_Internal_Sym *sym;
8368 bfd_vma val, addr;
8369
8370 r_type = ELF64_R_TYPE (rel->r_info);
8371 if (r_type != R_PPC64_ADDR64)
8372 continue;
8373
8374 r_symndx = ELF64_R_SYM (rel->r_info);
8375 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8376 r_symndx, ibfd))
8377 goto error_ret;
8378
8379 if (sym_sec == NULL
8380 || discarded_section (sym_sec))
8381 continue;
8382
8383 if (!SYMBOL_CALLS_LOCAL (info, h))
8384 continue;
8385
8386 if (h != NULL)
8387 {
8388 if (h->type == STT_GNU_IFUNC)
8389 continue;
8390 val = h->root.u.def.value;
8391 }
8392 else
8393 {
8394 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8395 continue;
8396 val = sym->st_value;
8397 }
8398 val += rel->r_addend;
8399 val += sym_sec->output_section->vma + sym_sec->output_offset;
8400
8401 /* We don't yet know the exact toc pointer value, but we
8402 know it will be somewhere in the toc section. Don't
8403 optimize if the difference from any possible toc
8404 pointer is outside [ff..f80008000, 7fff7fff]. */
8405 addr = toc->output_section->vma + TOC_BASE_OFF;
8406 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8407 continue;
8408
8409 addr = toc->output_section->vma + toc->output_section->rawsize;
8410 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8411 continue;
8412
8413 if (skip == NULL)
8414 {
8415 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8416 if (skip == NULL)
8417 goto error_ret;
8418 }
8419
8420 skip[rel->r_offset >> 3]
8421 |= can_optimize | ((rel - toc_relocs) << 2);
8422 }
8423 }
8424
8425 if (skip == NULL)
8426 continue;
8427
8428 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8429 if (used == NULL)
8430 {
8431 error_ret:
8432 if (local_syms != NULL
8433 && symtab_hdr->contents != (unsigned char *) local_syms)
8434 free (local_syms);
8435 if (sec != NULL
8436 && relstart != NULL
8437 && elf_section_data (sec)->relocs != relstart)
8438 free (relstart);
8439 if (toc_relocs != NULL
8440 && elf_section_data (toc)->relocs != toc_relocs)
8441 free (toc_relocs);
8442 if (skip != NULL)
8443 free (skip);
8444 return FALSE;
8445 }
8446
8447 /* Now check all kept sections that might reference the toc.
8448 Check the toc itself last. */
8449 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8450 : ibfd->sections);
8451 sec != NULL;
8452 sec = (sec == toc ? NULL
8453 : sec->next == NULL ? toc
8454 : sec->next == toc && toc->next ? toc->next
8455 : sec->next))
8456 {
8457 int repeat;
8458
8459 if (sec->reloc_count == 0
8460 || discarded_section (sec)
8461 || get_opd_info (sec)
8462 || (sec->flags & SEC_ALLOC) == 0
8463 || (sec->flags & SEC_DEBUGGING) != 0)
8464 continue;
8465
8466 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8467 info->keep_memory);
8468 if (relstart == NULL)
8469 goto error_ret;
8470
8471 /* Mark toc entries referenced as used. */
8472 do
8473 {
8474 repeat = 0;
8475 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8476 {
8477 enum elf_ppc64_reloc_type r_type;
8478 unsigned long r_symndx;
8479 asection *sym_sec;
8480 struct elf_link_hash_entry *h;
8481 Elf_Internal_Sym *sym;
8482 bfd_vma val;
8483 enum {no_check, check_lo, check_ha} insn_check;
8484
8485 r_type = ELF64_R_TYPE (rel->r_info);
8486 switch (r_type)
8487 {
8488 default:
8489 insn_check = no_check;
8490 break;
8491
8492 case R_PPC64_GOT_TLSLD16_HA:
8493 case R_PPC64_GOT_TLSGD16_HA:
8494 case R_PPC64_GOT_TPREL16_HA:
8495 case R_PPC64_GOT_DTPREL16_HA:
8496 case R_PPC64_GOT16_HA:
8497 case R_PPC64_TOC16_HA:
8498 insn_check = check_ha;
8499 break;
8500
8501 case R_PPC64_GOT_TLSLD16_LO:
8502 case R_PPC64_GOT_TLSGD16_LO:
8503 case R_PPC64_GOT_TPREL16_LO_DS:
8504 case R_PPC64_GOT_DTPREL16_LO_DS:
8505 case R_PPC64_GOT16_LO:
8506 case R_PPC64_GOT16_LO_DS:
8507 case R_PPC64_TOC16_LO:
8508 case R_PPC64_TOC16_LO_DS:
8509 insn_check = check_lo;
8510 break;
8511 }
8512
8513 if (insn_check != no_check)
8514 {
8515 bfd_vma off = rel->r_offset & ~3;
8516 unsigned char buf[4];
8517 unsigned int insn;
8518
8519 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8520 {
8521 free (used);
8522 goto error_ret;
8523 }
8524 insn = bfd_get_32 (ibfd, buf);
8525 if (insn_check == check_lo
8526 ? !ok_lo_toc_insn (insn)
8527 : ((insn & ((0x3f << 26) | 0x1f << 16))
8528 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8529 {
8530 char str[12];
8531
8532 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8533 sprintf (str, "%#08x", insn);
8534 info->callbacks->einfo
8535 (_("%P: %H: toc optimization is not supported for"
8536 " %s instruction.\n"),
8537 ibfd, sec, rel->r_offset & ~3, str);
8538 }
8539 }
8540
8541 switch (r_type)
8542 {
8543 case R_PPC64_TOC16:
8544 case R_PPC64_TOC16_LO:
8545 case R_PPC64_TOC16_HI:
8546 case R_PPC64_TOC16_HA:
8547 case R_PPC64_TOC16_DS:
8548 case R_PPC64_TOC16_LO_DS:
8549 /* In case we're taking addresses of toc entries. */
8550 case R_PPC64_ADDR64:
8551 break;
8552
8553 default:
8554 continue;
8555 }
8556
8557 r_symndx = ELF64_R_SYM (rel->r_info);
8558 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8559 r_symndx, ibfd))
8560 {
8561 free (used);
8562 goto error_ret;
8563 }
8564
8565 if (sym_sec != toc)
8566 continue;
8567
8568 if (h != NULL)
8569 val = h->root.u.def.value;
8570 else
8571 val = sym->st_value;
8572 val += rel->r_addend;
8573
8574 if (val >= toc->size)
8575 continue;
8576
8577 if ((skip[val >> 3] & can_optimize) != 0)
8578 {
8579 bfd_vma off;
8580 unsigned char opc;
8581
8582 switch (r_type)
8583 {
8584 case R_PPC64_TOC16_HA:
8585 break;
8586
8587 case R_PPC64_TOC16_LO_DS:
8588 off = rel->r_offset;
8589 off += (bfd_big_endian (ibfd) ? -2 : 3);
8590 if (!bfd_get_section_contents (ibfd, sec, &opc,
8591 off, 1))
8592 {
8593 free (used);
8594 goto error_ret;
8595 }
8596 if ((opc & (0x3f << 2)) == (58u << 2))
8597 break;
8598 /* Fall thru */
8599
8600 default:
8601 /* Wrong sort of reloc, or not a ld. We may
8602 as well clear ref_from_discarded too. */
8603 skip[val >> 3] = 0;
8604 }
8605 }
8606
8607 if (sec != toc)
8608 used[val >> 3] = 1;
8609 /* For the toc section, we only mark as used if this
8610 entry itself isn't unused. */
8611 else if ((used[rel->r_offset >> 3]
8612 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
8613 && !used[val >> 3])
8614 {
8615 /* Do all the relocs again, to catch reference
8616 chains. */
8617 repeat = 1;
8618 used[val >> 3] = 1;
8619 }
8620 }
8621 }
8622 while (repeat);
8623
8624 if (elf_section_data (sec)->relocs != relstart)
8625 free (relstart);
8626 }
8627
8628 /* Merge the used and skip arrays. Assume that TOC
8629 doublewords not appearing as either used or unused belong
8630 to to an entry more than one doubleword in size. */
8631 for (drop = skip, keep = used, last = 0, some_unused = 0;
8632 drop < skip + (toc->size + 7) / 8;
8633 ++drop, ++keep)
8634 {
8635 if (*keep)
8636 {
8637 *drop &= ~ref_from_discarded;
8638 if ((*drop & can_optimize) != 0)
8639 some_unused = 1;
8640 last = 0;
8641 }
8642 else if ((*drop & ref_from_discarded) != 0)
8643 {
8644 some_unused = 1;
8645 last = ref_from_discarded;
8646 }
8647 else
8648 *drop = last;
8649 }
8650
8651 free (used);
8652
8653 if (some_unused)
8654 {
8655 bfd_byte *contents, *src;
8656 unsigned long off;
8657 Elf_Internal_Sym *sym;
8658 bfd_boolean local_toc_syms = FALSE;
8659
8660 /* Shuffle the toc contents, and at the same time convert the
8661 skip array from booleans into offsets. */
8662 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
8663 goto error_ret;
8664
8665 elf_section_data (toc)->this_hdr.contents = contents;
8666
8667 for (src = contents, off = 0, drop = skip;
8668 src < contents + toc->size;
8669 src += 8, ++drop)
8670 {
8671 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
8672 off += 8;
8673 else if (off != 0)
8674 {
8675 *drop = off;
8676 memcpy (src - off, src, 8);
8677 }
8678 }
8679 *drop = off;
8680 toc->rawsize = toc->size;
8681 toc->size = src - contents - off;
8682
8683 /* Adjust addends for relocs against the toc section sym,
8684 and optimize any accesses we can. */
8685 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8686 {
8687 if (sec->reloc_count == 0
8688 || discarded_section (sec))
8689 continue;
8690
8691 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8692 info->keep_memory);
8693 if (relstart == NULL)
8694 goto error_ret;
8695
8696 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8697 {
8698 enum elf_ppc64_reloc_type r_type;
8699 unsigned long r_symndx;
8700 asection *sym_sec;
8701 struct elf_link_hash_entry *h;
8702 bfd_vma val;
8703
8704 r_type = ELF64_R_TYPE (rel->r_info);
8705 switch (r_type)
8706 {
8707 default:
8708 continue;
8709
8710 case R_PPC64_TOC16:
8711 case R_PPC64_TOC16_LO:
8712 case R_PPC64_TOC16_HI:
8713 case R_PPC64_TOC16_HA:
8714 case R_PPC64_TOC16_DS:
8715 case R_PPC64_TOC16_LO_DS:
8716 case R_PPC64_ADDR64:
8717 break;
8718 }
8719
8720 r_symndx = ELF64_R_SYM (rel->r_info);
8721 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8722 r_symndx, ibfd))
8723 goto error_ret;
8724
8725 if (sym_sec != toc)
8726 continue;
8727
8728 if (h != NULL)
8729 val = h->root.u.def.value;
8730 else
8731 {
8732 val = sym->st_value;
8733 if (val != 0)
8734 local_toc_syms = TRUE;
8735 }
8736
8737 val += rel->r_addend;
8738
8739 if (val > toc->rawsize)
8740 val = toc->rawsize;
8741 else if ((skip[val >> 3] & ref_from_discarded) != 0)
8742 continue;
8743 else if ((skip[val >> 3] & can_optimize) != 0)
8744 {
8745 Elf_Internal_Rela *tocrel
8746 = toc_relocs + (skip[val >> 3] >> 2);
8747 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
8748
8749 switch (r_type)
8750 {
8751 case R_PPC64_TOC16_HA:
8752 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
8753 break;
8754
8755 case R_PPC64_TOC16_LO_DS:
8756 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
8757 break;
8758
8759 default:
8760 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
8761 ppc_howto_init ();
8762 info->callbacks->einfo
8763 (_("%P: %H: %s references "
8764 "optimized away TOC entry\n"),
8765 ibfd, sec, rel->r_offset,
8766 ppc64_elf_howto_table[r_type]->name);
8767 bfd_set_error (bfd_error_bad_value);
8768 goto error_ret;
8769 }
8770 rel->r_addend = tocrel->r_addend;
8771 elf_section_data (sec)->relocs = relstart;
8772 continue;
8773 }
8774
8775 if (h != NULL || sym->st_value != 0)
8776 continue;
8777
8778 rel->r_addend -= skip[val >> 3];
8779 elf_section_data (sec)->relocs = relstart;
8780 }
8781
8782 if (elf_section_data (sec)->relocs != relstart)
8783 free (relstart);
8784 }
8785
8786 /* We shouldn't have local or global symbols defined in the TOC,
8787 but handle them anyway. */
8788 if (local_syms != NULL)
8789 for (sym = local_syms;
8790 sym < local_syms + symtab_hdr->sh_info;
8791 ++sym)
8792 if (sym->st_value != 0
8793 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
8794 {
8795 unsigned long i;
8796
8797 if (sym->st_value > toc->rawsize)
8798 i = toc->rawsize >> 3;
8799 else
8800 i = sym->st_value >> 3;
8801
8802 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
8803 {
8804 if (local_toc_syms)
8805 (*_bfd_error_handler)
8806 (_("%s defined on removed toc entry"),
8807 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
8808 do
8809 ++i;
8810 while ((skip[i] & (ref_from_discarded | can_optimize)));
8811 sym->st_value = (bfd_vma) i << 3;
8812 }
8813
8814 sym->st_value -= skip[i];
8815 symtab_hdr->contents = (unsigned char *) local_syms;
8816 }
8817
8818 /* Adjust any global syms defined in this toc input section. */
8819 if (toc_inf.global_toc_syms)
8820 {
8821 toc_inf.toc = toc;
8822 toc_inf.skip = skip;
8823 toc_inf.global_toc_syms = FALSE;
8824 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
8825 &toc_inf);
8826 }
8827
8828 if (toc->reloc_count != 0)
8829 {
8830 Elf_Internal_Shdr *rel_hdr;
8831 Elf_Internal_Rela *wrel;
8832 bfd_size_type sz;
8833
8834 /* Remove unused toc relocs, and adjust those we keep. */
8835 if (toc_relocs == NULL)
8836 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8837 info->keep_memory);
8838 if (toc_relocs == NULL)
8839 goto error_ret;
8840
8841 wrel = toc_relocs;
8842 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8843 if ((skip[rel->r_offset >> 3]
8844 & (ref_from_discarded | can_optimize)) == 0)
8845 {
8846 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
8847 wrel->r_info = rel->r_info;
8848 wrel->r_addend = rel->r_addend;
8849 ++wrel;
8850 }
8851 else if (!dec_dynrel_count (rel->r_info, toc, info,
8852 &local_syms, NULL, NULL))
8853 goto error_ret;
8854
8855 elf_section_data (toc)->relocs = toc_relocs;
8856 toc->reloc_count = wrel - toc_relocs;
8857 rel_hdr = _bfd_elf_single_rel_hdr (toc);
8858 sz = rel_hdr->sh_entsize;
8859 rel_hdr->sh_size = toc->reloc_count * sz;
8860 }
8861 }
8862 else if (toc_relocs != NULL
8863 && elf_section_data (toc)->relocs != toc_relocs)
8864 free (toc_relocs);
8865
8866 if (local_syms != NULL
8867 && symtab_hdr->contents != (unsigned char *) local_syms)
8868 {
8869 if (!info->keep_memory)
8870 free (local_syms);
8871 else
8872 symtab_hdr->contents = (unsigned char *) local_syms;
8873 }
8874 free (skip);
8875 }
8876
8877 return TRUE;
8878 }
8879
8880 /* Return true iff input section I references the TOC using
8881 instructions limited to +/-32k offsets. */
8882
8883 bfd_boolean
8884 ppc64_elf_has_small_toc_reloc (asection *i)
8885 {
8886 return (is_ppc64_elf (i->owner)
8887 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
8888 }
8889
8890 /* Allocate space for one GOT entry. */
8891
8892 static void
8893 allocate_got (struct elf_link_hash_entry *h,
8894 struct bfd_link_info *info,
8895 struct got_entry *gent)
8896 {
8897 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8898 bfd_boolean dyn;
8899 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
8900 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
8901 ? 16 : 8);
8902 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
8903 ? 2 : 1) * sizeof (Elf64_External_Rela);
8904 asection *got = ppc64_elf_tdata (gent->owner)->got;
8905
8906 gent->got.offset = got->size;
8907 got->size += entsize;
8908
8909 dyn = htab->elf.dynamic_sections_created;
8910 if (h->type == STT_GNU_IFUNC)
8911 {
8912 htab->reliplt->size += rentsize;
8913 htab->got_reli_size += rentsize;
8914 }
8915 else if ((info->shared
8916 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8917 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8918 || h->root.type != bfd_link_hash_undefweak))
8919 {
8920 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
8921 relgot->size += rentsize;
8922 }
8923 }
8924
8925 /* This function merges got entries in the same toc group. */
8926
8927 static void
8928 merge_got_entries (struct got_entry **pent)
8929 {
8930 struct got_entry *ent, *ent2;
8931
8932 for (ent = *pent; ent != NULL; ent = ent->next)
8933 if (!ent->is_indirect)
8934 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
8935 if (!ent2->is_indirect
8936 && ent2->addend == ent->addend
8937 && ent2->tls_type == ent->tls_type
8938 && elf_gp (ent2->owner) == elf_gp (ent->owner))
8939 {
8940 ent2->is_indirect = TRUE;
8941 ent2->got.ent = ent;
8942 }
8943 }
8944
8945 /* Allocate space in .plt, .got and associated reloc sections for
8946 dynamic relocs. */
8947
8948 static bfd_boolean
8949 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8950 {
8951 struct bfd_link_info *info;
8952 struct ppc_link_hash_table *htab;
8953 asection *s;
8954 struct ppc_link_hash_entry *eh;
8955 struct elf_dyn_relocs *p;
8956 struct got_entry **pgent, *gent;
8957
8958 if (h->root.type == bfd_link_hash_indirect)
8959 return TRUE;
8960
8961 info = (struct bfd_link_info *) inf;
8962 htab = ppc_hash_table (info);
8963 if (htab == NULL)
8964 return FALSE;
8965
8966 if ((htab->elf.dynamic_sections_created
8967 && h->dynindx != -1
8968 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
8969 || h->type == STT_GNU_IFUNC)
8970 {
8971 struct plt_entry *pent;
8972 bfd_boolean doneone = FALSE;
8973 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
8974 if (pent->plt.refcount > 0)
8975 {
8976 if (!htab->elf.dynamic_sections_created
8977 || h->dynindx == -1)
8978 {
8979 s = htab->iplt;
8980 pent->plt.offset = s->size;
8981 s->size += PLT_ENTRY_SIZE;
8982 s = htab->reliplt;
8983 }
8984 else
8985 {
8986 /* If this is the first .plt entry, make room for the special
8987 first entry. */
8988 s = htab->plt;
8989 if (s->size == 0)
8990 s->size += PLT_INITIAL_ENTRY_SIZE;
8991
8992 pent->plt.offset = s->size;
8993
8994 /* Make room for this entry. */
8995 s->size += PLT_ENTRY_SIZE;
8996
8997 /* Make room for the .glink code. */
8998 s = htab->glink;
8999 if (s->size == 0)
9000 s->size += GLINK_CALL_STUB_SIZE;
9001 /* We need bigger stubs past index 32767. */
9002 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
9003 s->size += 4;
9004 s->size += 2*4;
9005
9006 /* We also need to make an entry in the .rela.plt section. */
9007 s = htab->relplt;
9008 }
9009 s->size += sizeof (Elf64_External_Rela);
9010 doneone = TRUE;
9011 }
9012 else
9013 pent->plt.offset = (bfd_vma) -1;
9014 if (!doneone)
9015 {
9016 h->plt.plist = NULL;
9017 h->needs_plt = 0;
9018 }
9019 }
9020 else
9021 {
9022 h->plt.plist = NULL;
9023 h->needs_plt = 0;
9024 }
9025
9026 eh = (struct ppc_link_hash_entry *) h;
9027 /* Run through the TLS GD got entries first if we're changing them
9028 to TPREL. */
9029 if ((eh->tls_mask & TLS_TPRELGD) != 0)
9030 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9031 if (gent->got.refcount > 0
9032 && (gent->tls_type & TLS_GD) != 0)
9033 {
9034 /* This was a GD entry that has been converted to TPREL. If
9035 there happens to be a TPREL entry we can use that one. */
9036 struct got_entry *ent;
9037 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9038 if (ent->got.refcount > 0
9039 && (ent->tls_type & TLS_TPREL) != 0
9040 && ent->addend == gent->addend
9041 && ent->owner == gent->owner)
9042 {
9043 gent->got.refcount = 0;
9044 break;
9045 }
9046
9047 /* If not, then we'll be using our own TPREL entry. */
9048 if (gent->got.refcount != 0)
9049 gent->tls_type = TLS_TLS | TLS_TPREL;
9050 }
9051
9052 /* Remove any list entry that won't generate a word in the GOT before
9053 we call merge_got_entries. Otherwise we risk merging to empty
9054 entries. */
9055 pgent = &h->got.glist;
9056 while ((gent = *pgent) != NULL)
9057 if (gent->got.refcount > 0)
9058 {
9059 if ((gent->tls_type & TLS_LD) != 0
9060 && !h->def_dynamic)
9061 {
9062 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9063 *pgent = gent->next;
9064 }
9065 else
9066 pgent = &gent->next;
9067 }
9068 else
9069 *pgent = gent->next;
9070
9071 if (!htab->do_multi_toc)
9072 merge_got_entries (&h->got.glist);
9073
9074 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9075 if (!gent->is_indirect)
9076 {
9077 /* Make sure this symbol is output as a dynamic symbol.
9078 Undefined weak syms won't yet be marked as dynamic,
9079 nor will all TLS symbols. */
9080 if (h->dynindx == -1
9081 && !h->forced_local
9082 && h->type != STT_GNU_IFUNC
9083 && htab->elf.dynamic_sections_created)
9084 {
9085 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9086 return FALSE;
9087 }
9088
9089 if (!is_ppc64_elf (gent->owner))
9090 abort ();
9091
9092 allocate_got (h, info, gent);
9093 }
9094
9095 if (eh->dyn_relocs == NULL
9096 || (!htab->elf.dynamic_sections_created
9097 && h->type != STT_GNU_IFUNC))
9098 return TRUE;
9099
9100 /* In the shared -Bsymbolic case, discard space allocated for
9101 dynamic pc-relative relocs against symbols which turn out to be
9102 defined in regular objects. For the normal shared case, discard
9103 space for relocs that have become local due to symbol visibility
9104 changes. */
9105
9106 if (info->shared)
9107 {
9108 /* Relocs that use pc_count are those that appear on a call insn,
9109 or certain REL relocs (see must_be_dyn_reloc) that can be
9110 generated via assembly. We want calls to protected symbols to
9111 resolve directly to the function rather than going via the plt.
9112 If people want function pointer comparisons to work as expected
9113 then they should avoid writing weird assembly. */
9114 if (SYMBOL_CALLS_LOCAL (info, h))
9115 {
9116 struct elf_dyn_relocs **pp;
9117
9118 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9119 {
9120 p->count -= p->pc_count;
9121 p->pc_count = 0;
9122 if (p->count == 0)
9123 *pp = p->next;
9124 else
9125 pp = &p->next;
9126 }
9127 }
9128
9129 /* Also discard relocs on undefined weak syms with non-default
9130 visibility. */
9131 if (eh->dyn_relocs != NULL
9132 && h->root.type == bfd_link_hash_undefweak)
9133 {
9134 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9135 eh->dyn_relocs = NULL;
9136
9137 /* Make sure this symbol is output as a dynamic symbol.
9138 Undefined weak syms won't yet be marked as dynamic. */
9139 else if (h->dynindx == -1
9140 && !h->forced_local)
9141 {
9142 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9143 return FALSE;
9144 }
9145 }
9146 }
9147 else if (h->type == STT_GNU_IFUNC)
9148 {
9149 if (!h->non_got_ref)
9150 eh->dyn_relocs = NULL;
9151 }
9152 else if (ELIMINATE_COPY_RELOCS)
9153 {
9154 /* For the non-shared case, discard space for relocs against
9155 symbols which turn out to need copy relocs or are not
9156 dynamic. */
9157
9158 if (!h->non_got_ref
9159 && !h->def_regular)
9160 {
9161 /* Make sure this symbol is output as a dynamic symbol.
9162 Undefined weak syms won't yet be marked as dynamic. */
9163 if (h->dynindx == -1
9164 && !h->forced_local)
9165 {
9166 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9167 return FALSE;
9168 }
9169
9170 /* If that succeeded, we know we'll be keeping all the
9171 relocs. */
9172 if (h->dynindx != -1)
9173 goto keep;
9174 }
9175
9176 eh->dyn_relocs = NULL;
9177
9178 keep: ;
9179 }
9180
9181 /* Finally, allocate space. */
9182 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9183 {
9184 asection *sreloc = elf_section_data (p->sec)->sreloc;
9185 if (eh->elf.type == STT_GNU_IFUNC)
9186 sreloc = htab->reliplt;
9187 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9188 }
9189
9190 return TRUE;
9191 }
9192
9193 /* Find any dynamic relocs that apply to read-only sections. */
9194
9195 static bfd_boolean
9196 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9197 {
9198 struct ppc_link_hash_entry *eh;
9199 struct elf_dyn_relocs *p;
9200
9201 eh = (struct ppc_link_hash_entry *) h;
9202 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9203 {
9204 asection *s = p->sec->output_section;
9205
9206 if (s != NULL && (s->flags & SEC_READONLY) != 0)
9207 {
9208 struct bfd_link_info *info = inf;
9209
9210 info->flags |= DF_TEXTREL;
9211
9212 /* Not an error, just cut short the traversal. */
9213 return FALSE;
9214 }
9215 }
9216 return TRUE;
9217 }
9218
9219 /* Set the sizes of the dynamic sections. */
9220
9221 static bfd_boolean
9222 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
9223 struct bfd_link_info *info)
9224 {
9225 struct ppc_link_hash_table *htab;
9226 bfd *dynobj;
9227 asection *s;
9228 bfd_boolean relocs;
9229 bfd *ibfd;
9230 struct got_entry *first_tlsld;
9231
9232 htab = ppc_hash_table (info);
9233 if (htab == NULL)
9234 return FALSE;
9235
9236 dynobj = htab->elf.dynobj;
9237 if (dynobj == NULL)
9238 abort ();
9239
9240 if (htab->elf.dynamic_sections_created)
9241 {
9242 /* Set the contents of the .interp section to the interpreter. */
9243 if (info->executable)
9244 {
9245 s = bfd_get_linker_section (dynobj, ".interp");
9246 if (s == NULL)
9247 abort ();
9248 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9249 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9250 }
9251 }
9252
9253 /* Set up .got offsets for local syms, and space for local dynamic
9254 relocs. */
9255 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9256 {
9257 struct got_entry **lgot_ents;
9258 struct got_entry **end_lgot_ents;
9259 struct plt_entry **local_plt;
9260 struct plt_entry **end_local_plt;
9261 unsigned char *lgot_masks;
9262 bfd_size_type locsymcount;
9263 Elf_Internal_Shdr *symtab_hdr;
9264
9265 if (!is_ppc64_elf (ibfd))
9266 continue;
9267
9268 for (s = ibfd->sections; s != NULL; s = s->next)
9269 {
9270 struct ppc_dyn_relocs *p;
9271
9272 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9273 {
9274 if (!bfd_is_abs_section (p->sec)
9275 && bfd_is_abs_section (p->sec->output_section))
9276 {
9277 /* Input section has been discarded, either because
9278 it is a copy of a linkonce section or due to
9279 linker script /DISCARD/, so we'll be discarding
9280 the relocs too. */
9281 }
9282 else if (p->count != 0)
9283 {
9284 asection *srel = elf_section_data (p->sec)->sreloc;
9285 if (p->ifunc)
9286 srel = htab->reliplt;
9287 srel->size += p->count * sizeof (Elf64_External_Rela);
9288 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9289 info->flags |= DF_TEXTREL;
9290 }
9291 }
9292 }
9293
9294 lgot_ents = elf_local_got_ents (ibfd);
9295 if (!lgot_ents)
9296 continue;
9297
9298 symtab_hdr = &elf_symtab_hdr (ibfd);
9299 locsymcount = symtab_hdr->sh_info;
9300 end_lgot_ents = lgot_ents + locsymcount;
9301 local_plt = (struct plt_entry **) end_lgot_ents;
9302 end_local_plt = local_plt + locsymcount;
9303 lgot_masks = (unsigned char *) end_local_plt;
9304 s = ppc64_elf_tdata (ibfd)->got;
9305 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9306 {
9307 struct got_entry **pent, *ent;
9308
9309 pent = lgot_ents;
9310 while ((ent = *pent) != NULL)
9311 if (ent->got.refcount > 0)
9312 {
9313 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9314 {
9315 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9316 *pent = ent->next;
9317 }
9318 else
9319 {
9320 unsigned int ent_size = 8;
9321 unsigned int rel_size = sizeof (Elf64_External_Rela);
9322
9323 ent->got.offset = s->size;
9324 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9325 {
9326 ent_size *= 2;
9327 rel_size *= 2;
9328 }
9329 s->size += ent_size;
9330 if ((*lgot_masks & PLT_IFUNC) != 0)
9331 {
9332 htab->reliplt->size += rel_size;
9333 htab->got_reli_size += rel_size;
9334 }
9335 else if (info->shared)
9336 {
9337 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9338 srel->size += rel_size;
9339 }
9340 pent = &ent->next;
9341 }
9342 }
9343 else
9344 *pent = ent->next;
9345 }
9346
9347 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9348 for (; local_plt < end_local_plt; ++local_plt)
9349 {
9350 struct plt_entry *ent;
9351
9352 for (ent = *local_plt; ent != NULL; ent = ent->next)
9353 if (ent->plt.refcount > 0)
9354 {
9355 s = htab->iplt;
9356 ent->plt.offset = s->size;
9357 s->size += PLT_ENTRY_SIZE;
9358
9359 htab->reliplt->size += sizeof (Elf64_External_Rela);
9360 }
9361 else
9362 ent->plt.offset = (bfd_vma) -1;
9363 }
9364 }
9365
9366 /* Allocate global sym .plt and .got entries, and space for global
9367 sym dynamic relocs. */
9368 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9369
9370 first_tlsld = NULL;
9371 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9372 {
9373 struct got_entry *ent;
9374
9375 if (!is_ppc64_elf (ibfd))
9376 continue;
9377
9378 ent = ppc64_tlsld_got (ibfd);
9379 if (ent->got.refcount > 0)
9380 {
9381 if (!htab->do_multi_toc && first_tlsld != NULL)
9382 {
9383 ent->is_indirect = TRUE;
9384 ent->got.ent = first_tlsld;
9385 }
9386 else
9387 {
9388 if (first_tlsld == NULL)
9389 first_tlsld = ent;
9390 s = ppc64_elf_tdata (ibfd)->got;
9391 ent->got.offset = s->size;
9392 ent->owner = ibfd;
9393 s->size += 16;
9394 if (info->shared)
9395 {
9396 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9397 srel->size += sizeof (Elf64_External_Rela);
9398 }
9399 }
9400 }
9401 else
9402 ent->got.offset = (bfd_vma) -1;
9403 }
9404
9405 /* We now have determined the sizes of the various dynamic sections.
9406 Allocate memory for them. */
9407 relocs = FALSE;
9408 for (s = dynobj->sections; s != NULL; s = s->next)
9409 {
9410 if ((s->flags & SEC_LINKER_CREATED) == 0)
9411 continue;
9412
9413 if (s == htab->brlt || s == htab->relbrlt)
9414 /* These haven't been allocated yet; don't strip. */
9415 continue;
9416 else if (s == htab->got
9417 || s == htab->plt
9418 || s == htab->iplt
9419 || s == htab->glink
9420 || s == htab->dynbss)
9421 {
9422 /* Strip this section if we don't need it; see the
9423 comment below. */
9424 }
9425 else if (s == htab->glink_eh_frame)
9426 {
9427 if (!bfd_is_abs_section (s->output_section))
9428 /* Not sized yet. */
9429 continue;
9430 }
9431 else if (CONST_STRNEQ (s->name, ".rela"))
9432 {
9433 if (s->size != 0)
9434 {
9435 if (s != htab->relplt)
9436 relocs = TRUE;
9437
9438 /* We use the reloc_count field as a counter if we need
9439 to copy relocs into the output file. */
9440 s->reloc_count = 0;
9441 }
9442 }
9443 else
9444 {
9445 /* It's not one of our sections, so don't allocate space. */
9446 continue;
9447 }
9448
9449 if (s->size == 0)
9450 {
9451 /* If we don't need this section, strip it from the
9452 output file. This is mostly to handle .rela.bss and
9453 .rela.plt. We must create both sections in
9454 create_dynamic_sections, because they must be created
9455 before the linker maps input sections to output
9456 sections. The linker does that before
9457 adjust_dynamic_symbol is called, and it is that
9458 function which decides whether anything needs to go
9459 into these sections. */
9460 s->flags |= SEC_EXCLUDE;
9461 continue;
9462 }
9463
9464 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9465 continue;
9466
9467 /* Allocate memory for the section contents. We use bfd_zalloc
9468 here in case unused entries are not reclaimed before the
9469 section's contents are written out. This should not happen,
9470 but this way if it does we get a R_PPC64_NONE reloc in .rela
9471 sections instead of garbage.
9472 We also rely on the section contents being zero when writing
9473 the GOT. */
9474 s->contents = bfd_zalloc (dynobj, s->size);
9475 if (s->contents == NULL)
9476 return FALSE;
9477 }
9478
9479 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9480 {
9481 if (!is_ppc64_elf (ibfd))
9482 continue;
9483
9484 s = ppc64_elf_tdata (ibfd)->got;
9485 if (s != NULL && s != htab->got)
9486 {
9487 if (s->size == 0)
9488 s->flags |= SEC_EXCLUDE;
9489 else
9490 {
9491 s->contents = bfd_zalloc (ibfd, s->size);
9492 if (s->contents == NULL)
9493 return FALSE;
9494 }
9495 }
9496 s = ppc64_elf_tdata (ibfd)->relgot;
9497 if (s != NULL)
9498 {
9499 if (s->size == 0)
9500 s->flags |= SEC_EXCLUDE;
9501 else
9502 {
9503 s->contents = bfd_zalloc (ibfd, s->size);
9504 if (s->contents == NULL)
9505 return FALSE;
9506 relocs = TRUE;
9507 s->reloc_count = 0;
9508 }
9509 }
9510 }
9511
9512 if (htab->elf.dynamic_sections_created)
9513 {
9514 /* Add some entries to the .dynamic section. We fill in the
9515 values later, in ppc64_elf_finish_dynamic_sections, but we
9516 must add the entries now so that we get the correct size for
9517 the .dynamic section. The DT_DEBUG entry is filled in by the
9518 dynamic linker and used by the debugger. */
9519 #define add_dynamic_entry(TAG, VAL) \
9520 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9521
9522 if (info->executable)
9523 {
9524 if (!add_dynamic_entry (DT_DEBUG, 0))
9525 return FALSE;
9526 }
9527
9528 if (htab->plt != NULL && htab->plt->size != 0)
9529 {
9530 if (!add_dynamic_entry (DT_PLTGOT, 0)
9531 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9532 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9533 || !add_dynamic_entry (DT_JMPREL, 0)
9534 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
9535 return FALSE;
9536 }
9537
9538 if (NO_OPD_RELOCS)
9539 {
9540 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
9541 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
9542 return FALSE;
9543 }
9544
9545 if (!htab->no_tls_get_addr_opt
9546 && htab->tls_get_addr_fd != NULL
9547 && htab->tls_get_addr_fd->elf.plt.plist != NULL
9548 && !add_dynamic_entry (DT_PPC64_TLSOPT, 0))
9549 return FALSE;
9550
9551 if (relocs)
9552 {
9553 if (!add_dynamic_entry (DT_RELA, 0)
9554 || !add_dynamic_entry (DT_RELASZ, 0)
9555 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
9556 return FALSE;
9557
9558 /* If any dynamic relocs apply to a read-only section,
9559 then we need a DT_TEXTREL entry. */
9560 if ((info->flags & DF_TEXTREL) == 0)
9561 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
9562
9563 if ((info->flags & DF_TEXTREL) != 0)
9564 {
9565 if (!add_dynamic_entry (DT_TEXTREL, 0))
9566 return FALSE;
9567 }
9568 }
9569 }
9570 #undef add_dynamic_entry
9571
9572 return TRUE;
9573 }
9574
9575 /* Determine the type of stub needed, if any, for a call. */
9576
9577 static inline enum ppc_stub_type
9578 ppc_type_of_stub (asection *input_sec,
9579 const Elf_Internal_Rela *rel,
9580 struct ppc_link_hash_entry **hash,
9581 struct plt_entry **plt_ent,
9582 bfd_vma destination)
9583 {
9584 struct ppc_link_hash_entry *h = *hash;
9585 bfd_vma location;
9586 bfd_vma branch_offset;
9587 bfd_vma max_branch_offset;
9588 enum elf_ppc64_reloc_type r_type;
9589
9590 if (h != NULL)
9591 {
9592 struct plt_entry *ent;
9593 struct ppc_link_hash_entry *fdh = h;
9594 if (h->oh != NULL
9595 && h->oh->is_func_descriptor)
9596 {
9597 fdh = ppc_follow_link (h->oh);
9598 *hash = fdh;
9599 }
9600
9601 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
9602 if (ent->addend == rel->r_addend
9603 && ent->plt.offset != (bfd_vma) -1)
9604 {
9605 *plt_ent = ent;
9606 return ppc_stub_plt_call;
9607 }
9608
9609 /* Here, we know we don't have a plt entry. If we don't have a
9610 either a defined function descriptor or a defined entry symbol
9611 in a regular object file, then it is pointless trying to make
9612 any other type of stub. */
9613 if (!is_static_defined (&fdh->elf)
9614 && !is_static_defined (&h->elf))
9615 return ppc_stub_none;
9616 }
9617 else if (elf_local_got_ents (input_sec->owner) != NULL)
9618 {
9619 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
9620 struct plt_entry **local_plt = (struct plt_entry **)
9621 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
9622 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
9623
9624 if (local_plt[r_symndx] != NULL)
9625 {
9626 struct plt_entry *ent;
9627
9628 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
9629 if (ent->addend == rel->r_addend
9630 && ent->plt.offset != (bfd_vma) -1)
9631 {
9632 *plt_ent = ent;
9633 return ppc_stub_plt_call;
9634 }
9635 }
9636 }
9637
9638 /* Determine where the call point is. */
9639 location = (input_sec->output_offset
9640 + input_sec->output_section->vma
9641 + rel->r_offset);
9642
9643 branch_offset = destination - location;
9644 r_type = ELF64_R_TYPE (rel->r_info);
9645
9646 /* Determine if a long branch stub is needed. */
9647 max_branch_offset = 1 << 25;
9648 if (r_type != R_PPC64_REL24)
9649 max_branch_offset = 1 << 15;
9650
9651 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
9652 /* We need a stub. Figure out whether a long_branch or plt_branch
9653 is needed later. */
9654 return ppc_stub_long_branch;
9655
9656 return ppc_stub_none;
9657 }
9658
9659 /* With power7 weakly ordered memory model, it is possible for ld.so
9660 to update a plt entry in one thread and have another thread see a
9661 stale zero toc entry. To avoid this we need some sort of acquire
9662 barrier in the call stub. One solution is to make the load of the
9663 toc word seem to appear to depend on the load of the function entry
9664 word. Another solution is to test for r2 being zero, and branch to
9665 the appropriate glink entry if so.
9666
9667 . fake dep barrier compare
9668 . ld 11,xxx(2) ld 11,xxx(2)
9669 . mtctr 11 mtctr 11
9670 . xor 11,11,11 ld 2,xxx+8(2)
9671 . add 2,2,11 cmpldi 2,0
9672 . ld 2,xxx+8(2) bnectr+
9673 . bctr b <glink_entry>
9674
9675 The solution involving the compare turns out to be faster, so
9676 that's what we use unless the branch won't reach. */
9677
9678 #define ALWAYS_USE_FAKE_DEP 0
9679 #define ALWAYS_EMIT_R2SAVE 0
9680
9681 #define PPC_LO(v) ((v) & 0xffff)
9682 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9683 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9684
9685 static inline unsigned int
9686 plt_stub_size (struct ppc_link_hash_table *htab,
9687 struct ppc_stub_hash_entry *stub_entry,
9688 bfd_vma off)
9689 {
9690 unsigned size = PLT_CALL_STUB_SIZE;
9691
9692 if (!(ALWAYS_EMIT_R2SAVE
9693 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
9694 size -= 4;
9695 if (!htab->plt_static_chain)
9696 size -= 4;
9697 if (htab->plt_thread_safe)
9698 size += 8;
9699 if (PPC_HA (off) == 0)
9700 size -= 4;
9701 if (PPC_HA (off + 8 + 8 * htab->plt_static_chain) != PPC_HA (off))
9702 size += 4;
9703 if (stub_entry->h != NULL
9704 && (stub_entry->h == htab->tls_get_addr_fd
9705 || stub_entry->h == htab->tls_get_addr)
9706 && !htab->no_tls_get_addr_opt)
9707 size += 13 * 4;
9708 return size;
9709 }
9710
9711 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
9712 then return the padding needed to do so. */
9713 static inline unsigned int
9714 plt_stub_pad (struct ppc_link_hash_table *htab,
9715 struct ppc_stub_hash_entry *stub_entry,
9716 bfd_vma plt_off)
9717 {
9718 int stub_align = 1 << htab->plt_stub_align;
9719 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
9720 bfd_vma stub_off = stub_entry->stub_sec->size;
9721
9722 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
9723 > (stub_size & -stub_align))
9724 return stub_align - (stub_off & (stub_align - 1));
9725 return 0;
9726 }
9727
9728 /* Build a .plt call stub. */
9729
9730 static inline bfd_byte *
9731 build_plt_stub (struct ppc_link_hash_table *htab,
9732 struct ppc_stub_hash_entry *stub_entry,
9733 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
9734 {
9735 bfd *obfd = htab->stub_bfd;
9736 bfd_boolean plt_static_chain = htab->plt_static_chain;
9737 bfd_boolean plt_thread_safe = htab->plt_thread_safe;
9738 bfd_boolean use_fake_dep = plt_thread_safe;
9739 bfd_vma cmp_branch_off = 0;
9740
9741 if (!ALWAYS_USE_FAKE_DEP
9742 && plt_thread_safe
9743 && !(stub_entry->h != NULL
9744 && (stub_entry->h == htab->tls_get_addr_fd
9745 || stub_entry->h == htab->tls_get_addr)
9746 && !htab->no_tls_get_addr_opt))
9747 {
9748 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
9749 bfd_vma pltindex = (pltoff - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE;
9750 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
9751 bfd_vma to, from;
9752
9753 if (pltindex > 32768)
9754 glinkoff += (pltindex - 32768) * 4;
9755 to = (glinkoff
9756 + htab->glink->output_offset
9757 + htab->glink->output_section->vma);
9758 from = (p - stub_entry->stub_sec->contents
9759 + 4 * (ALWAYS_EMIT_R2SAVE
9760 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9761 + 4 * (PPC_HA (offset) != 0)
9762 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
9763 != PPC_HA (offset))
9764 + 4 * (plt_static_chain != 0)
9765 + 20
9766 + stub_entry->stub_sec->output_offset
9767 + stub_entry->stub_sec->output_section->vma);
9768 cmp_branch_off = to - from;
9769 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
9770 }
9771
9772 if (PPC_HA (offset) != 0)
9773 {
9774 if (r != NULL)
9775 {
9776 if (ALWAYS_EMIT_R2SAVE
9777 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9778 r[0].r_offset += 4;
9779 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
9780 r[1].r_offset = r[0].r_offset + 4;
9781 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9782 r[1].r_addend = r[0].r_addend;
9783 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9784 {
9785 r[2].r_offset = r[1].r_offset + 4;
9786 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
9787 r[2].r_addend = r[0].r_addend;
9788 }
9789 else
9790 {
9791 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
9792 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9793 r[2].r_addend = r[0].r_addend + 8;
9794 if (plt_static_chain)
9795 {
9796 r[3].r_offset = r[2].r_offset + 4;
9797 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9798 r[3].r_addend = r[0].r_addend + 16;
9799 }
9800 }
9801 }
9802 if (ALWAYS_EMIT_R2SAVE
9803 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9804 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
9805 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
9806 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
9807 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9808 {
9809 bfd_put_32 (obfd, ADDI_R12_R12 | PPC_LO (offset), p), p += 4;
9810 offset = 0;
9811 }
9812 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
9813 if (use_fake_dep)
9814 {
9815 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4;
9816 bfd_put_32 (obfd, ADD_R12_R12_R11, p), p += 4;
9817 }
9818 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset + 8), p), p += 4;
9819 if (plt_static_chain)
9820 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset + 16), p), p += 4;
9821 }
9822 else
9823 {
9824 if (r != NULL)
9825 {
9826 if (ALWAYS_EMIT_R2SAVE
9827 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9828 r[0].r_offset += 4;
9829 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9830 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9831 {
9832 r[1].r_offset = r[0].r_offset + 4;
9833 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
9834 r[1].r_addend = r[0].r_addend;
9835 }
9836 else
9837 {
9838 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
9839 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9840 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
9841 if (plt_static_chain)
9842 {
9843 r[2].r_offset = r[1].r_offset + 4;
9844 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9845 r[2].r_addend = r[0].r_addend + 8;
9846 }
9847 }
9848 }
9849 if (ALWAYS_EMIT_R2SAVE
9850 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9851 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
9852 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset), p), p += 4;
9853 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9854 {
9855 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
9856 offset = 0;
9857 }
9858 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
9859 if (use_fake_dep)
9860 {
9861 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4;
9862 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
9863 }
9864 if (plt_static_chain)
9865 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
9866 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
9867 }
9868 if (plt_thread_safe && !use_fake_dep)
9869 {
9870 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
9871 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
9872 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
9873 }
9874 else
9875 bfd_put_32 (obfd, BCTR, p), p += 4;
9876 return p;
9877 }
9878
9879 /* Build a special .plt call stub for __tls_get_addr. */
9880
9881 #define LD_R11_0R3 0xe9630000
9882 #define LD_R12_0R3 0xe9830000
9883 #define MR_R0_R3 0x7c601b78
9884 #define CMPDI_R11_0 0x2c2b0000
9885 #define ADD_R3_R12_R13 0x7c6c6a14
9886 #define BEQLR 0x4d820020
9887 #define MR_R3_R0 0x7c030378
9888 #define MFLR_R11 0x7d6802a6
9889 #define STD_R11_0R1 0xf9610000
9890 #define BCTRL 0x4e800421
9891 #define LD_R11_0R1 0xe9610000
9892 #define LD_R2_0R1 0xe8410000
9893 #define MTLR_R11 0x7d6803a6
9894
9895 static inline bfd_byte *
9896 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
9897 struct ppc_stub_hash_entry *stub_entry,
9898 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
9899 {
9900 bfd *obfd = htab->stub_bfd;
9901
9902 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
9903 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
9904 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
9905 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
9906 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
9907 bfd_put_32 (obfd, BEQLR, p), p += 4;
9908 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
9909 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
9910 bfd_put_32 (obfd, STD_R11_0R1 + 32, p), p += 4;
9911
9912 if (r != NULL)
9913 r[0].r_offset += 9 * 4;
9914 p = build_plt_stub (htab, stub_entry, p, offset, r);
9915 bfd_put_32 (obfd, BCTRL, p - 4);
9916
9917 bfd_put_32 (obfd, LD_R11_0R1 + 32, p), p += 4;
9918 bfd_put_32 (obfd, LD_R2_0R1 + 40, p), p += 4;
9919 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
9920 bfd_put_32 (obfd, BLR, p), p += 4;
9921
9922 return p;
9923 }
9924
9925 static Elf_Internal_Rela *
9926 get_relocs (asection *sec, int count)
9927 {
9928 Elf_Internal_Rela *relocs;
9929 struct bfd_elf_section_data *elfsec_data;
9930
9931 elfsec_data = elf_section_data (sec);
9932 relocs = elfsec_data->relocs;
9933 if (relocs == NULL)
9934 {
9935 bfd_size_type relsize;
9936 relsize = sec->reloc_count * sizeof (*relocs);
9937 relocs = bfd_alloc (sec->owner, relsize);
9938 if (relocs == NULL)
9939 return NULL;
9940 elfsec_data->relocs = relocs;
9941 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
9942 sizeof (Elf_Internal_Shdr));
9943 if (elfsec_data->rela.hdr == NULL)
9944 return NULL;
9945 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
9946 * sizeof (Elf64_External_Rela));
9947 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
9948 sec->reloc_count = 0;
9949 }
9950 relocs += sec->reloc_count;
9951 sec->reloc_count += count;
9952 return relocs;
9953 }
9954
9955 static bfd_vma
9956 get_r2off (struct bfd_link_info *info,
9957 struct ppc_stub_hash_entry *stub_entry)
9958 {
9959 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9960 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
9961
9962 if (r2off == 0)
9963 {
9964 /* Support linking -R objects. Get the toc pointer from the
9965 opd entry. */
9966 char buf[8];
9967 asection *opd = stub_entry->h->elf.root.u.def.section;
9968 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
9969
9970 if (strcmp (opd->name, ".opd") != 0
9971 || opd->reloc_count != 0)
9972 {
9973 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
9974 stub_entry->h->elf.root.root.string);
9975 bfd_set_error (bfd_error_bad_value);
9976 return 0;
9977 }
9978 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
9979 return 0;
9980 r2off = bfd_get_64 (opd->owner, buf);
9981 r2off -= elf_gp (info->output_bfd);
9982 }
9983 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
9984 return r2off;
9985 }
9986
9987 static bfd_boolean
9988 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
9989 {
9990 struct ppc_stub_hash_entry *stub_entry;
9991 struct ppc_branch_hash_entry *br_entry;
9992 struct bfd_link_info *info;
9993 struct ppc_link_hash_table *htab;
9994 bfd_byte *loc;
9995 bfd_byte *p;
9996 bfd_vma dest, off;
9997 int size;
9998 Elf_Internal_Rela *r;
9999 asection *plt;
10000
10001 /* Massage our args to the form they really have. */
10002 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10003 info = in_arg;
10004
10005 htab = ppc_hash_table (info);
10006 if (htab == NULL)
10007 return FALSE;
10008
10009 /* Make a note of the offset within the stubs for this entry. */
10010 stub_entry->stub_offset = stub_entry->stub_sec->size;
10011 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
10012
10013 htab->stub_count[stub_entry->stub_type - 1] += 1;
10014 switch (stub_entry->stub_type)
10015 {
10016 case ppc_stub_long_branch:
10017 case ppc_stub_long_branch_r2off:
10018 /* Branches are relative. This is where we are going to. */
10019 off = dest = (stub_entry->target_value
10020 + stub_entry->target_section->output_offset
10021 + stub_entry->target_section->output_section->vma);
10022
10023 /* And this is where we are coming from. */
10024 off -= (stub_entry->stub_offset
10025 + stub_entry->stub_sec->output_offset
10026 + stub_entry->stub_sec->output_section->vma);
10027
10028 size = 4;
10029 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10030 {
10031 bfd_vma r2off = get_r2off (info, stub_entry);
10032
10033 if (r2off == 0)
10034 {
10035 htab->stub_error = TRUE;
10036 return FALSE;
10037 }
10038 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
10039 loc += 4;
10040 size = 12;
10041 if (PPC_HA (r2off) != 0)
10042 {
10043 size = 16;
10044 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
10045 loc += 4;
10046 }
10047 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10048 loc += 4;
10049 off -= size - 4;
10050 }
10051 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
10052
10053 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10054 {
10055 info->callbacks->einfo
10056 (_("%P: long branch stub `%s' offset overflow\n"),
10057 stub_entry->root.string);
10058 htab->stub_error = TRUE;
10059 return FALSE;
10060 }
10061
10062 if (info->emitrelocations)
10063 {
10064 r = get_relocs (stub_entry->stub_sec, 1);
10065 if (r == NULL)
10066 return FALSE;
10067 r->r_offset = loc - stub_entry->stub_sec->contents;
10068 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
10069 r->r_addend = dest;
10070 if (stub_entry->h != NULL)
10071 {
10072 struct elf_link_hash_entry **hashes;
10073 unsigned long symndx;
10074 struct ppc_link_hash_entry *h;
10075
10076 hashes = elf_sym_hashes (htab->stub_bfd);
10077 if (hashes == NULL)
10078 {
10079 bfd_size_type hsize;
10080
10081 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10082 hashes = bfd_zalloc (htab->stub_bfd, hsize);
10083 if (hashes == NULL)
10084 return FALSE;
10085 elf_sym_hashes (htab->stub_bfd) = hashes;
10086 htab->stub_globals = 1;
10087 }
10088 symndx = htab->stub_globals++;
10089 h = stub_entry->h;
10090 hashes[symndx] = &h->elf;
10091 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
10092 if (h->oh != NULL && h->oh->is_func)
10093 h = ppc_follow_link (h->oh);
10094 if (h->elf.root.u.def.section != stub_entry->target_section)
10095 /* H is an opd symbol. The addend must be zero. */
10096 r->r_addend = 0;
10097 else
10098 {
10099 off = (h->elf.root.u.def.value
10100 + h->elf.root.u.def.section->output_offset
10101 + h->elf.root.u.def.section->output_section->vma);
10102 r->r_addend -= off;
10103 }
10104 }
10105 }
10106 break;
10107
10108 case ppc_stub_plt_branch:
10109 case ppc_stub_plt_branch_r2off:
10110 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10111 stub_entry->root.string + 9,
10112 FALSE, FALSE);
10113 if (br_entry == NULL)
10114 {
10115 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10116 stub_entry->root.string);
10117 htab->stub_error = TRUE;
10118 return FALSE;
10119 }
10120
10121 dest = (stub_entry->target_value
10122 + stub_entry->target_section->output_offset
10123 + stub_entry->target_section->output_section->vma);
10124
10125 bfd_put_64 (htab->brlt->owner, dest,
10126 htab->brlt->contents + br_entry->offset);
10127
10128 if (br_entry->iter == htab->stub_iteration)
10129 {
10130 br_entry->iter = 0;
10131
10132 if (htab->relbrlt != NULL)
10133 {
10134 /* Create a reloc for the branch lookup table entry. */
10135 Elf_Internal_Rela rela;
10136 bfd_byte *rl;
10137
10138 rela.r_offset = (br_entry->offset
10139 + htab->brlt->output_offset
10140 + htab->brlt->output_section->vma);
10141 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10142 rela.r_addend = dest;
10143
10144 rl = htab->relbrlt->contents;
10145 rl += (htab->relbrlt->reloc_count++
10146 * sizeof (Elf64_External_Rela));
10147 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10148 }
10149 else if (info->emitrelocations)
10150 {
10151 r = get_relocs (htab->brlt, 1);
10152 if (r == NULL)
10153 return FALSE;
10154 /* brlt, being SEC_LINKER_CREATED does not go through the
10155 normal reloc processing. Symbols and offsets are not
10156 translated from input file to output file form, so
10157 set up the offset per the output file. */
10158 r->r_offset = (br_entry->offset
10159 + htab->brlt->output_offset
10160 + htab->brlt->output_section->vma);
10161 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10162 r->r_addend = dest;
10163 }
10164 }
10165
10166 dest = (br_entry->offset
10167 + htab->brlt->output_offset
10168 + htab->brlt->output_section->vma);
10169
10170 off = (dest
10171 - elf_gp (htab->brlt->output_section->owner)
10172 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10173
10174 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10175 {
10176 info->callbacks->einfo
10177 (_("%P: linkage table error against `%T'\n"),
10178 stub_entry->root.string);
10179 bfd_set_error (bfd_error_bad_value);
10180 htab->stub_error = TRUE;
10181 return FALSE;
10182 }
10183
10184 if (info->emitrelocations)
10185 {
10186 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10187 if (r == NULL)
10188 return FALSE;
10189 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10190 if (bfd_big_endian (info->output_bfd))
10191 r[0].r_offset += 2;
10192 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10193 r[0].r_offset += 4;
10194 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10195 r[0].r_addend = dest;
10196 if (PPC_HA (off) != 0)
10197 {
10198 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10199 r[1].r_offset = r[0].r_offset + 4;
10200 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10201 r[1].r_addend = r[0].r_addend;
10202 }
10203 }
10204
10205 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10206 {
10207 if (PPC_HA (off) != 0)
10208 {
10209 size = 16;
10210 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
10211 loc += 4;
10212 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
10213 }
10214 else
10215 {
10216 size = 12;
10217 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
10218 }
10219 }
10220 else
10221 {
10222 bfd_vma r2off = get_r2off (info, stub_entry);
10223
10224 if (r2off == 0)
10225 {
10226 htab->stub_error = TRUE;
10227 return FALSE;
10228 }
10229
10230 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
10231 loc += 4;
10232 size = 20;
10233 if (PPC_HA (off) != 0)
10234 {
10235 size += 4;
10236 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
10237 loc += 4;
10238 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
10239 loc += 4;
10240 }
10241 else
10242 {
10243 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
10244 loc += 4;
10245 }
10246
10247 if (PPC_HA (r2off) != 0)
10248 {
10249 size += 4;
10250 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
10251 loc += 4;
10252 }
10253 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10254 }
10255 loc += 4;
10256 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
10257 loc += 4;
10258 bfd_put_32 (htab->stub_bfd, BCTR, loc);
10259 break;
10260
10261 case ppc_stub_plt_call:
10262 case ppc_stub_plt_call_r2save:
10263 if (stub_entry->h != NULL
10264 && stub_entry->h->is_func_descriptor
10265 && stub_entry->h->oh != NULL)
10266 {
10267 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10268
10269 /* If the old-ABI "dot-symbol" is undefined make it weak so
10270 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10271 FIXME: We used to define the symbol on one of the call
10272 stubs instead, which is why we test symbol section id
10273 against htab->top_id in various places. Likely all
10274 these checks could now disappear. */
10275 if (fh->elf.root.type == bfd_link_hash_undefined)
10276 fh->elf.root.type = bfd_link_hash_undefweak;
10277 /* Stop undo_symbol_twiddle changing it back to undefined. */
10278 fh->was_undefined = 0;
10279 }
10280
10281 /* Now build the stub. */
10282 dest = stub_entry->plt_ent->plt.offset & ~1;
10283 if (dest >= (bfd_vma) -2)
10284 abort ();
10285
10286 plt = htab->plt;
10287 if (!htab->elf.dynamic_sections_created
10288 || stub_entry->h == NULL
10289 || stub_entry->h->elf.dynindx == -1)
10290 plt = htab->iplt;
10291
10292 dest += plt->output_offset + plt->output_section->vma;
10293
10294 if (stub_entry->h == NULL
10295 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10296 {
10297 Elf_Internal_Rela rela;
10298 bfd_byte *rl;
10299
10300 rela.r_offset = dest;
10301 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10302 rela.r_addend = (stub_entry->target_value
10303 + stub_entry->target_section->output_offset
10304 + stub_entry->target_section->output_section->vma);
10305
10306 rl = (htab->reliplt->contents
10307 + (htab->reliplt->reloc_count++
10308 * sizeof (Elf64_External_Rela)));
10309 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10310 stub_entry->plt_ent->plt.offset |= 1;
10311 }
10312
10313 off = (dest
10314 - elf_gp (plt->output_section->owner)
10315 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10316
10317 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10318 {
10319 info->callbacks->einfo
10320 (_("%P: linkage table error against `%T'\n"),
10321 stub_entry->h != NULL
10322 ? stub_entry->h->elf.root.root.string
10323 : "<local sym>");
10324 bfd_set_error (bfd_error_bad_value);
10325 htab->stub_error = TRUE;
10326 return FALSE;
10327 }
10328
10329 if (htab->plt_stub_align != 0)
10330 {
10331 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10332
10333 stub_entry->stub_sec->size += pad;
10334 stub_entry->stub_offset = stub_entry->stub_sec->size;
10335 loc += pad;
10336 }
10337
10338 r = NULL;
10339 if (info->emitrelocations)
10340 {
10341 r = get_relocs (stub_entry->stub_sec,
10342 (2
10343 + (PPC_HA (off) != 0)
10344 + (htab->plt_static_chain
10345 && PPC_HA (off + 16) == PPC_HA (off))));
10346 if (r == NULL)
10347 return FALSE;
10348 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10349 if (bfd_big_endian (info->output_bfd))
10350 r[0].r_offset += 2;
10351 r[0].r_addend = dest;
10352 }
10353 if (stub_entry->h != NULL
10354 && (stub_entry->h == htab->tls_get_addr_fd
10355 || stub_entry->h == htab->tls_get_addr)
10356 && !htab->no_tls_get_addr_opt)
10357 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10358 else
10359 p = build_plt_stub (htab, stub_entry, loc, off, r);
10360 size = p - loc;
10361 break;
10362
10363 default:
10364 BFD_FAIL ();
10365 return FALSE;
10366 }
10367
10368 stub_entry->stub_sec->size += size;
10369
10370 if (htab->emit_stub_syms)
10371 {
10372 struct elf_link_hash_entry *h;
10373 size_t len1, len2;
10374 char *name;
10375 const char *const stub_str[] = { "long_branch",
10376 "long_branch_r2off",
10377 "plt_branch",
10378 "plt_branch_r2off",
10379 "plt_call",
10380 "plt_call" };
10381
10382 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10383 len2 = strlen (stub_entry->root.string);
10384 name = bfd_malloc (len1 + len2 + 2);
10385 if (name == NULL)
10386 return FALSE;
10387 memcpy (name, stub_entry->root.string, 9);
10388 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10389 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10390 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10391 if (h == NULL)
10392 return FALSE;
10393 if (h->root.type == bfd_link_hash_new)
10394 {
10395 h->root.type = bfd_link_hash_defined;
10396 h->root.u.def.section = stub_entry->stub_sec;
10397 h->root.u.def.value = stub_entry->stub_offset;
10398 h->ref_regular = 1;
10399 h->def_regular = 1;
10400 h->ref_regular_nonweak = 1;
10401 h->forced_local = 1;
10402 h->non_elf = 0;
10403 }
10404 }
10405
10406 return TRUE;
10407 }
10408
10409 /* As above, but don't actually build the stub. Just bump offset so
10410 we know stub section sizes, and select plt_branch stubs where
10411 long_branch stubs won't do. */
10412
10413 static bfd_boolean
10414 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10415 {
10416 struct ppc_stub_hash_entry *stub_entry;
10417 struct bfd_link_info *info;
10418 struct ppc_link_hash_table *htab;
10419 bfd_vma off;
10420 int size;
10421
10422 /* Massage our args to the form they really have. */
10423 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10424 info = in_arg;
10425
10426 htab = ppc_hash_table (info);
10427 if (htab == NULL)
10428 return FALSE;
10429
10430 if (stub_entry->stub_type == ppc_stub_plt_call
10431 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10432 {
10433 asection *plt;
10434 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10435 if (off >= (bfd_vma) -2)
10436 abort ();
10437 plt = htab->plt;
10438 if (!htab->elf.dynamic_sections_created
10439 || stub_entry->h == NULL
10440 || stub_entry->h->elf.dynindx == -1)
10441 plt = htab->iplt;
10442 off += (plt->output_offset
10443 + plt->output_section->vma
10444 - elf_gp (plt->output_section->owner)
10445 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10446
10447 size = plt_stub_size (htab, stub_entry, off);
10448 if (htab->plt_stub_align)
10449 size += plt_stub_pad (htab, stub_entry, off);
10450 if (info->emitrelocations)
10451 {
10452 stub_entry->stub_sec->reloc_count
10453 += (2
10454 + (PPC_HA (off) != 0)
10455 + (htab->plt_static_chain
10456 && PPC_HA (off + 16) == PPC_HA (off)));
10457 stub_entry->stub_sec->flags |= SEC_RELOC;
10458 }
10459 }
10460 else
10461 {
10462 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
10463 variants. */
10464 bfd_vma r2off = 0;
10465
10466 off = (stub_entry->target_value
10467 + stub_entry->target_section->output_offset
10468 + stub_entry->target_section->output_section->vma);
10469 off -= (stub_entry->stub_sec->size
10470 + stub_entry->stub_sec->output_offset
10471 + stub_entry->stub_sec->output_section->vma);
10472
10473 /* Reset the stub type from the plt variant in case we now
10474 can reach with a shorter stub. */
10475 if (stub_entry->stub_type >= ppc_stub_plt_branch)
10476 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
10477
10478 size = 4;
10479 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10480 {
10481 r2off = get_r2off (info, stub_entry);
10482 if (r2off == 0)
10483 {
10484 htab->stub_error = TRUE;
10485 return FALSE;
10486 }
10487 size = 12;
10488 if (PPC_HA (r2off) != 0)
10489 size = 16;
10490 off -= size - 4;
10491 }
10492
10493 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
10494 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10495 {
10496 struct ppc_branch_hash_entry *br_entry;
10497
10498 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10499 stub_entry->root.string + 9,
10500 TRUE, FALSE);
10501 if (br_entry == NULL)
10502 {
10503 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
10504 stub_entry->root.string);
10505 htab->stub_error = TRUE;
10506 return FALSE;
10507 }
10508
10509 if (br_entry->iter != htab->stub_iteration)
10510 {
10511 br_entry->iter = htab->stub_iteration;
10512 br_entry->offset = htab->brlt->size;
10513 htab->brlt->size += 8;
10514
10515 if (htab->relbrlt != NULL)
10516 htab->relbrlt->size += sizeof (Elf64_External_Rela);
10517 else if (info->emitrelocations)
10518 {
10519 htab->brlt->reloc_count += 1;
10520 htab->brlt->flags |= SEC_RELOC;
10521 }
10522 }
10523
10524 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
10525 off = (br_entry->offset
10526 + htab->brlt->output_offset
10527 + htab->brlt->output_section->vma
10528 - elf_gp (htab->brlt->output_section->owner)
10529 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10530
10531 if (info->emitrelocations)
10532 {
10533 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
10534 stub_entry->stub_sec->flags |= SEC_RELOC;
10535 }
10536
10537 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10538 {
10539 size = 12;
10540 if (PPC_HA (off) != 0)
10541 size = 16;
10542 }
10543 else
10544 {
10545 size = 20;
10546 if (PPC_HA (off) != 0)
10547 size += 4;
10548
10549 if (PPC_HA (r2off) != 0)
10550 size += 4;
10551 }
10552 }
10553 else if (info->emitrelocations)
10554 {
10555 stub_entry->stub_sec->reloc_count += 1;
10556 stub_entry->stub_sec->flags |= SEC_RELOC;
10557 }
10558 }
10559
10560 stub_entry->stub_sec->size += size;
10561 return TRUE;
10562 }
10563
10564 /* Set up various things so that we can make a list of input sections
10565 for each output section included in the link. Returns -1 on error,
10566 0 when no stubs will be needed, and 1 on success. */
10567
10568 int
10569 ppc64_elf_setup_section_lists
10570 (struct bfd_link_info *info,
10571 asection *(*add_stub_section) (const char *, asection *),
10572 void (*layout_sections_again) (void))
10573 {
10574 bfd *input_bfd;
10575 int top_id, top_index, id;
10576 asection *section;
10577 asection **input_list;
10578 bfd_size_type amt;
10579 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10580
10581 if (htab == NULL)
10582 return -1;
10583 /* Stash our params away. */
10584 htab->add_stub_section = add_stub_section;
10585 htab->layout_sections_again = layout_sections_again;
10586
10587 /* Find the top input section id. */
10588 for (input_bfd = info->input_bfds, top_id = 3;
10589 input_bfd != NULL;
10590 input_bfd = input_bfd->link_next)
10591 {
10592 for (section = input_bfd->sections;
10593 section != NULL;
10594 section = section->next)
10595 {
10596 if (top_id < section->id)
10597 top_id = section->id;
10598 }
10599 }
10600
10601 htab->top_id = top_id;
10602 amt = sizeof (struct map_stub) * (top_id + 1);
10603 htab->stub_group = bfd_zmalloc (amt);
10604 if (htab->stub_group == NULL)
10605 return -1;
10606
10607 /* Set toc_off for com, und, abs and ind sections. */
10608 for (id = 0; id < 3; id++)
10609 htab->stub_group[id].toc_off = TOC_BASE_OFF;
10610
10611 /* We can't use output_bfd->section_count here to find the top output
10612 section index as some sections may have been removed, and
10613 strip_excluded_output_sections doesn't renumber the indices. */
10614 for (section = info->output_bfd->sections, top_index = 0;
10615 section != NULL;
10616 section = section->next)
10617 {
10618 if (top_index < section->index)
10619 top_index = section->index;
10620 }
10621
10622 htab->top_index = top_index;
10623 amt = sizeof (asection *) * (top_index + 1);
10624 input_list = bfd_zmalloc (amt);
10625 htab->input_list = input_list;
10626 if (input_list == NULL)
10627 return -1;
10628
10629 return 1;
10630 }
10631
10632 /* Set up for first pass at multitoc partitioning. */
10633
10634 void
10635 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
10636 {
10637 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10638
10639 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
10640 htab->toc_bfd = NULL;
10641 htab->toc_first_sec = NULL;
10642 }
10643
10644 /* The linker repeatedly calls this function for each TOC input section
10645 and linker generated GOT section. Group input bfds such that the toc
10646 within a group is less than 64k in size. */
10647
10648 bfd_boolean
10649 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
10650 {
10651 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10652 bfd_vma addr, off, limit;
10653
10654 if (htab == NULL)
10655 return FALSE;
10656
10657 if (!htab->second_toc_pass)
10658 {
10659 /* Keep track of the first .toc or .got section for this input bfd. */
10660 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
10661
10662 if (new_bfd)
10663 {
10664 htab->toc_bfd = isec->owner;
10665 htab->toc_first_sec = isec;
10666 }
10667
10668 addr = isec->output_offset + isec->output_section->vma;
10669 off = addr - htab->toc_curr;
10670 limit = 0x80008000;
10671 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
10672 limit = 0x10000;
10673 if (off + isec->size > limit)
10674 {
10675 addr = (htab->toc_first_sec->output_offset
10676 + htab->toc_first_sec->output_section->vma);
10677 htab->toc_curr = addr;
10678 }
10679
10680 /* toc_curr is the base address of this toc group. Set elf_gp
10681 for the input section to be the offset relative to the
10682 output toc base plus 0x8000. Making the input elf_gp an
10683 offset allows us to move the toc as a whole without
10684 recalculating input elf_gp. */
10685 off = htab->toc_curr - elf_gp (isec->output_section->owner);
10686 off += TOC_BASE_OFF;
10687
10688 /* Die if someone uses a linker script that doesn't keep input
10689 file .toc and .got together. */
10690 if (new_bfd
10691 && elf_gp (isec->owner) != 0
10692 && elf_gp (isec->owner) != off)
10693 return FALSE;
10694
10695 elf_gp (isec->owner) = off;
10696 return TRUE;
10697 }
10698
10699 /* During the second pass toc_first_sec points to the start of
10700 a toc group, and toc_curr is used to track the old elf_gp.
10701 We use toc_bfd to ensure we only look at each bfd once. */
10702 if (htab->toc_bfd == isec->owner)
10703 return TRUE;
10704 htab->toc_bfd = isec->owner;
10705
10706 if (htab->toc_first_sec == NULL
10707 || htab->toc_curr != elf_gp (isec->owner))
10708 {
10709 htab->toc_curr = elf_gp (isec->owner);
10710 htab->toc_first_sec = isec;
10711 }
10712 addr = (htab->toc_first_sec->output_offset
10713 + htab->toc_first_sec->output_section->vma);
10714 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
10715 elf_gp (isec->owner) = off;
10716
10717 return TRUE;
10718 }
10719
10720 /* Called via elf_link_hash_traverse to merge GOT entries for global
10721 symbol H. */
10722
10723 static bfd_boolean
10724 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
10725 {
10726 if (h->root.type == bfd_link_hash_indirect)
10727 return TRUE;
10728
10729 merge_got_entries (&h->got.glist);
10730
10731 return TRUE;
10732 }
10733
10734 /* Called via elf_link_hash_traverse to allocate GOT entries for global
10735 symbol H. */
10736
10737 static bfd_boolean
10738 reallocate_got (struct elf_link_hash_entry *h, void *inf)
10739 {
10740 struct got_entry *gent;
10741
10742 if (h->root.type == bfd_link_hash_indirect)
10743 return TRUE;
10744
10745 for (gent = h->got.glist; gent != NULL; gent = gent->next)
10746 if (!gent->is_indirect)
10747 allocate_got (h, (struct bfd_link_info *) inf, gent);
10748 return TRUE;
10749 }
10750
10751 /* Called on the first multitoc pass after the last call to
10752 ppc64_elf_next_toc_section. This function removes duplicate GOT
10753 entries. */
10754
10755 bfd_boolean
10756 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
10757 {
10758 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10759 struct bfd *ibfd, *ibfd2;
10760 bfd_boolean done_something;
10761
10762 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
10763
10764 if (!htab->do_multi_toc)
10765 return FALSE;
10766
10767 /* Merge global sym got entries within a toc group. */
10768 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
10769
10770 /* And tlsld_got. */
10771 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10772 {
10773 struct got_entry *ent, *ent2;
10774
10775 if (!is_ppc64_elf (ibfd))
10776 continue;
10777
10778 ent = ppc64_tlsld_got (ibfd);
10779 if (!ent->is_indirect
10780 && ent->got.offset != (bfd_vma) -1)
10781 {
10782 for (ibfd2 = ibfd->link_next; ibfd2 != NULL; ibfd2 = ibfd2->link_next)
10783 {
10784 if (!is_ppc64_elf (ibfd2))
10785 continue;
10786
10787 ent2 = ppc64_tlsld_got (ibfd2);
10788 if (!ent2->is_indirect
10789 && ent2->got.offset != (bfd_vma) -1
10790 && elf_gp (ibfd2) == elf_gp (ibfd))
10791 {
10792 ent2->is_indirect = TRUE;
10793 ent2->got.ent = ent;
10794 }
10795 }
10796 }
10797 }
10798
10799 /* Zap sizes of got sections. */
10800 htab->reliplt->rawsize = htab->reliplt->size;
10801 htab->reliplt->size -= htab->got_reli_size;
10802 htab->got_reli_size = 0;
10803
10804 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10805 {
10806 asection *got, *relgot;
10807
10808 if (!is_ppc64_elf (ibfd))
10809 continue;
10810
10811 got = ppc64_elf_tdata (ibfd)->got;
10812 if (got != NULL)
10813 {
10814 got->rawsize = got->size;
10815 got->size = 0;
10816 relgot = ppc64_elf_tdata (ibfd)->relgot;
10817 relgot->rawsize = relgot->size;
10818 relgot->size = 0;
10819 }
10820 }
10821
10822 /* Now reallocate the got, local syms first. We don't need to
10823 allocate section contents again since we never increase size. */
10824 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10825 {
10826 struct got_entry **lgot_ents;
10827 struct got_entry **end_lgot_ents;
10828 struct plt_entry **local_plt;
10829 struct plt_entry **end_local_plt;
10830 unsigned char *lgot_masks;
10831 bfd_size_type locsymcount;
10832 Elf_Internal_Shdr *symtab_hdr;
10833 asection *s;
10834
10835 if (!is_ppc64_elf (ibfd))
10836 continue;
10837
10838 lgot_ents = elf_local_got_ents (ibfd);
10839 if (!lgot_ents)
10840 continue;
10841
10842 symtab_hdr = &elf_symtab_hdr (ibfd);
10843 locsymcount = symtab_hdr->sh_info;
10844 end_lgot_ents = lgot_ents + locsymcount;
10845 local_plt = (struct plt_entry **) end_lgot_ents;
10846 end_local_plt = local_plt + locsymcount;
10847 lgot_masks = (unsigned char *) end_local_plt;
10848 s = ppc64_elf_tdata (ibfd)->got;
10849 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
10850 {
10851 struct got_entry *ent;
10852
10853 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
10854 {
10855 unsigned int ent_size = 8;
10856 unsigned int rel_size = sizeof (Elf64_External_Rela);
10857
10858 ent->got.offset = s->size;
10859 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
10860 {
10861 ent_size *= 2;
10862 rel_size *= 2;
10863 }
10864 s->size += ent_size;
10865 if ((*lgot_masks & PLT_IFUNC) != 0)
10866 {
10867 htab->reliplt->size += rel_size;
10868 htab->got_reli_size += rel_size;
10869 }
10870 else if (info->shared)
10871 {
10872 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10873 srel->size += rel_size;
10874 }
10875 }
10876 }
10877 }
10878
10879 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
10880
10881 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10882 {
10883 struct got_entry *ent;
10884
10885 if (!is_ppc64_elf (ibfd))
10886 continue;
10887
10888 ent = ppc64_tlsld_got (ibfd);
10889 if (!ent->is_indirect
10890 && ent->got.offset != (bfd_vma) -1)
10891 {
10892 asection *s = ppc64_elf_tdata (ibfd)->got;
10893 ent->got.offset = s->size;
10894 s->size += 16;
10895 if (info->shared)
10896 {
10897 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10898 srel->size += sizeof (Elf64_External_Rela);
10899 }
10900 }
10901 }
10902
10903 done_something = htab->reliplt->rawsize != htab->reliplt->size;
10904 if (!done_something)
10905 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10906 {
10907 asection *got;
10908
10909 if (!is_ppc64_elf (ibfd))
10910 continue;
10911
10912 got = ppc64_elf_tdata (ibfd)->got;
10913 if (got != NULL)
10914 {
10915 done_something = got->rawsize != got->size;
10916 if (done_something)
10917 break;
10918 }
10919 }
10920
10921 if (done_something)
10922 (*htab->layout_sections_again) ();
10923
10924 /* Set up for second pass over toc sections to recalculate elf_gp
10925 on input sections. */
10926 htab->toc_bfd = NULL;
10927 htab->toc_first_sec = NULL;
10928 htab->second_toc_pass = TRUE;
10929 return done_something;
10930 }
10931
10932 /* Called after second pass of multitoc partitioning. */
10933
10934 void
10935 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
10936 {
10937 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10938
10939 /* After the second pass, toc_curr tracks the TOC offset used
10940 for code sections below in ppc64_elf_next_input_section. */
10941 htab->toc_curr = TOC_BASE_OFF;
10942 }
10943
10944 /* No toc references were found in ISEC. If the code in ISEC makes no
10945 calls, then there's no need to use toc adjusting stubs when branching
10946 into ISEC. Actually, indirect calls from ISEC are OK as they will
10947 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
10948 needed, and 2 if a cyclical call-graph was found but no other reason
10949 for a stub was detected. If called from the top level, a return of
10950 2 means the same as a return of 0. */
10951
10952 static int
10953 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
10954 {
10955 int ret;
10956
10957 /* Mark this section as checked. */
10958 isec->call_check_done = 1;
10959
10960 /* We know none of our code bearing sections will need toc stubs. */
10961 if ((isec->flags & SEC_LINKER_CREATED) != 0)
10962 return 0;
10963
10964 if (isec->size == 0)
10965 return 0;
10966
10967 if (isec->output_section == NULL)
10968 return 0;
10969
10970 ret = 0;
10971 if (isec->reloc_count != 0)
10972 {
10973 Elf_Internal_Rela *relstart, *rel;
10974 Elf_Internal_Sym *local_syms;
10975 struct ppc_link_hash_table *htab;
10976
10977 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
10978 info->keep_memory);
10979 if (relstart == NULL)
10980 return -1;
10981
10982 /* Look for branches to outside of this section. */
10983 local_syms = NULL;
10984 htab = ppc_hash_table (info);
10985 if (htab == NULL)
10986 return -1;
10987
10988 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
10989 {
10990 enum elf_ppc64_reloc_type r_type;
10991 unsigned long r_symndx;
10992 struct elf_link_hash_entry *h;
10993 struct ppc_link_hash_entry *eh;
10994 Elf_Internal_Sym *sym;
10995 asection *sym_sec;
10996 struct _opd_sec_data *opd;
10997 bfd_vma sym_value;
10998 bfd_vma dest;
10999
11000 r_type = ELF64_R_TYPE (rel->r_info);
11001 if (r_type != R_PPC64_REL24
11002 && r_type != R_PPC64_REL14
11003 && r_type != R_PPC64_REL14_BRTAKEN
11004 && r_type != R_PPC64_REL14_BRNTAKEN)
11005 continue;
11006
11007 r_symndx = ELF64_R_SYM (rel->r_info);
11008 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
11009 isec->owner))
11010 {
11011 ret = -1;
11012 break;
11013 }
11014
11015 /* Calls to dynamic lib functions go through a plt call stub
11016 that uses r2. */
11017 eh = (struct ppc_link_hash_entry *) h;
11018 if (eh != NULL
11019 && (eh->elf.plt.plist != NULL
11020 || (eh->oh != NULL
11021 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
11022 {
11023 ret = 1;
11024 break;
11025 }
11026
11027 if (sym_sec == NULL)
11028 /* Ignore other undefined symbols. */
11029 continue;
11030
11031 /* Assume branches to other sections not included in the
11032 link need stubs too, to cover -R and absolute syms. */
11033 if (sym_sec->output_section == NULL)
11034 {
11035 ret = 1;
11036 break;
11037 }
11038
11039 if (h == NULL)
11040 sym_value = sym->st_value;
11041 else
11042 {
11043 if (h->root.type != bfd_link_hash_defined
11044 && h->root.type != bfd_link_hash_defweak)
11045 abort ();
11046 sym_value = h->root.u.def.value;
11047 }
11048 sym_value += rel->r_addend;
11049
11050 /* If this branch reloc uses an opd sym, find the code section. */
11051 opd = get_opd_info (sym_sec);
11052 if (opd != NULL)
11053 {
11054 if (h == NULL && opd->adjust != NULL)
11055 {
11056 long adjust;
11057
11058 adjust = opd->adjust[sym->st_value / 8];
11059 if (adjust == -1)
11060 /* Assume deleted functions won't ever be called. */
11061 continue;
11062 sym_value += adjust;
11063 }
11064
11065 dest = opd_entry_value (sym_sec, sym_value,
11066 &sym_sec, NULL, FALSE);
11067 if (dest == (bfd_vma) -1)
11068 continue;
11069 }
11070 else
11071 dest = (sym_value
11072 + sym_sec->output_offset
11073 + sym_sec->output_section->vma);
11074
11075 /* Ignore branch to self. */
11076 if (sym_sec == isec)
11077 continue;
11078
11079 /* If the called function uses the toc, we need a stub. */
11080 if (sym_sec->has_toc_reloc
11081 || sym_sec->makes_toc_func_call)
11082 {
11083 ret = 1;
11084 break;
11085 }
11086
11087 /* Assume any branch that needs a long branch stub might in fact
11088 need a plt_branch stub. A plt_branch stub uses r2. */
11089 else if (dest - (isec->output_offset
11090 + isec->output_section->vma
11091 + rel->r_offset) + (1 << 25) >= (2 << 25))
11092 {
11093 ret = 1;
11094 break;
11095 }
11096
11097 /* If calling back to a section in the process of being
11098 tested, we can't say for sure that no toc adjusting stubs
11099 are needed, so don't return zero. */
11100 else if (sym_sec->call_check_in_progress)
11101 ret = 2;
11102
11103 /* Branches to another section that itself doesn't have any TOC
11104 references are OK. Recursively call ourselves to check. */
11105 else if (!sym_sec->call_check_done)
11106 {
11107 int recur;
11108
11109 /* Mark current section as indeterminate, so that other
11110 sections that call back to current won't be marked as
11111 known. */
11112 isec->call_check_in_progress = 1;
11113 recur = toc_adjusting_stub_needed (info, sym_sec);
11114 isec->call_check_in_progress = 0;
11115
11116 if (recur != 0)
11117 {
11118 ret = recur;
11119 if (recur != 2)
11120 break;
11121 }
11122 }
11123 }
11124
11125 if (local_syms != NULL
11126 && (elf_symtab_hdr (isec->owner).contents
11127 != (unsigned char *) local_syms))
11128 free (local_syms);
11129 if (elf_section_data (isec)->relocs != relstart)
11130 free (relstart);
11131 }
11132
11133 if ((ret & 1) == 0
11134 && isec->map_head.s != NULL
11135 && (strcmp (isec->output_section->name, ".init") == 0
11136 || strcmp (isec->output_section->name, ".fini") == 0))
11137 {
11138 if (isec->map_head.s->has_toc_reloc
11139 || isec->map_head.s->makes_toc_func_call)
11140 ret = 1;
11141 else if (!isec->map_head.s->call_check_done)
11142 {
11143 int recur;
11144 isec->call_check_in_progress = 1;
11145 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11146 isec->call_check_in_progress = 0;
11147 if (recur != 0)
11148 ret = recur;
11149 }
11150 }
11151
11152 if (ret == 1)
11153 isec->makes_toc_func_call = 1;
11154
11155 return ret;
11156 }
11157
11158 /* The linker repeatedly calls this function for each input section,
11159 in the order that input sections are linked into output sections.
11160 Build lists of input sections to determine groupings between which
11161 we may insert linker stubs. */
11162
11163 bfd_boolean
11164 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11165 {
11166 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11167
11168 if (htab == NULL)
11169 return FALSE;
11170
11171 if ((isec->output_section->flags & SEC_CODE) != 0
11172 && isec->output_section->index <= htab->top_index)
11173 {
11174 asection **list = htab->input_list + isec->output_section->index;
11175 /* Steal the link_sec pointer for our list. */
11176 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11177 /* This happens to make the list in reverse order,
11178 which is what we want. */
11179 PREV_SEC (isec) = *list;
11180 *list = isec;
11181 }
11182
11183 if (htab->multi_toc_needed)
11184 {
11185 /* If a code section has a function that uses the TOC then we need
11186 to use the right TOC (obviously). Also, make sure that .opd gets
11187 the correct TOC value for R_PPC64_TOC relocs that don't have or
11188 can't find their function symbol (shouldn't ever happen now).
11189 Also specially treat .fixup for the linux kernel. .fixup
11190 contains branches, but only back to the function that hit an
11191 exception. */
11192 if (isec->has_toc_reloc
11193 || (isec->flags & SEC_CODE) == 0
11194 || strcmp (isec->name, ".fixup") == 0)
11195 {
11196 if (elf_gp (isec->owner) != 0)
11197 htab->toc_curr = elf_gp (isec->owner);
11198 }
11199 else
11200 {
11201 if (!isec->call_check_done
11202 && toc_adjusting_stub_needed (info, isec) < 0)
11203 return FALSE;
11204 /* If we make a local call from this section, ie. a branch
11205 without a following nop, then we have no place to put a
11206 toc restoring insn. We must use the same toc group as
11207 the callee.
11208 Testing makes_toc_func_call actually tests for *any*
11209 calls to functions that need a good toc pointer. A more
11210 precise test would be better, as this one will set
11211 incorrect values for pasted .init/.fini fragments.
11212 (Fixed later in check_pasted_section.) */
11213 if (isec->makes_toc_func_call
11214 && elf_gp (isec->owner) != 0)
11215 htab->toc_curr = elf_gp (isec->owner);
11216 }
11217 }
11218
11219 /* Functions that don't use the TOC can belong in any TOC group.
11220 Use the last TOC base. */
11221 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11222 return TRUE;
11223 }
11224
11225 /* Check that all .init and .fini sections use the same toc, if they
11226 have toc relocs. */
11227
11228 static bfd_boolean
11229 check_pasted_section (struct bfd_link_info *info, const char *name)
11230 {
11231 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11232
11233 if (o != NULL)
11234 {
11235 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11236 bfd_vma toc_off = 0;
11237 asection *i;
11238
11239 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11240 if (i->has_toc_reloc)
11241 {
11242 if (toc_off == 0)
11243 toc_off = htab->stub_group[i->id].toc_off;
11244 else if (toc_off != htab->stub_group[i->id].toc_off)
11245 return FALSE;
11246 }
11247
11248 if (toc_off == 0)
11249 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11250 if (i->makes_toc_func_call)
11251 {
11252 toc_off = htab->stub_group[i->id].toc_off;
11253 break;
11254 }
11255
11256 /* Make sure the whole pasted function uses the same toc offset. */
11257 if (toc_off != 0)
11258 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11259 htab->stub_group[i->id].toc_off = toc_off;
11260 }
11261 return TRUE;
11262 }
11263
11264 bfd_boolean
11265 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11266 {
11267 return (check_pasted_section (info, ".init")
11268 & check_pasted_section (info, ".fini"));
11269 }
11270
11271 /* See whether we can group stub sections together. Grouping stub
11272 sections may result in fewer stubs. More importantly, we need to
11273 put all .init* and .fini* stubs at the beginning of the .init or
11274 .fini output sections respectively, because glibc splits the
11275 _init and _fini functions into multiple parts. Putting a stub in
11276 the middle of a function is not a good idea. */
11277
11278 static void
11279 group_sections (struct ppc_link_hash_table *htab,
11280 bfd_size_type stub_group_size,
11281 bfd_boolean stubs_always_before_branch)
11282 {
11283 asection **list;
11284 bfd_size_type stub14_group_size;
11285 bfd_boolean suppress_size_errors;
11286
11287 suppress_size_errors = FALSE;
11288 stub14_group_size = stub_group_size;
11289 if (stub_group_size == 1)
11290 {
11291 /* Default values. */
11292 if (stubs_always_before_branch)
11293 {
11294 stub_group_size = 0x1e00000;
11295 stub14_group_size = 0x7800;
11296 }
11297 else
11298 {
11299 stub_group_size = 0x1c00000;
11300 stub14_group_size = 0x7000;
11301 }
11302 suppress_size_errors = TRUE;
11303 }
11304
11305 list = htab->input_list + htab->top_index;
11306 do
11307 {
11308 asection *tail = *list;
11309 while (tail != NULL)
11310 {
11311 asection *curr;
11312 asection *prev;
11313 bfd_size_type total;
11314 bfd_boolean big_sec;
11315 bfd_vma curr_toc;
11316
11317 curr = tail;
11318 total = tail->size;
11319 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11320 && ppc64_elf_section_data (tail)->has_14bit_branch
11321 ? stub14_group_size : stub_group_size);
11322 if (big_sec && !suppress_size_errors)
11323 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11324 tail->owner, tail);
11325 curr_toc = htab->stub_group[tail->id].toc_off;
11326
11327 while ((prev = PREV_SEC (curr)) != NULL
11328 && ((total += curr->output_offset - prev->output_offset)
11329 < (ppc64_elf_section_data (prev) != NULL
11330 && ppc64_elf_section_data (prev)->has_14bit_branch
11331 ? stub14_group_size : stub_group_size))
11332 && htab->stub_group[prev->id].toc_off == curr_toc)
11333 curr = prev;
11334
11335 /* OK, the size from the start of CURR to the end is less
11336 than stub_group_size and thus can be handled by one stub
11337 section. (or the tail section is itself larger than
11338 stub_group_size, in which case we may be toast.) We
11339 should really be keeping track of the total size of stubs
11340 added here, as stubs contribute to the final output
11341 section size. That's a little tricky, and this way will
11342 only break if stubs added make the total size more than
11343 2^25, ie. for the default stub_group_size, if stubs total
11344 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11345 do
11346 {
11347 prev = PREV_SEC (tail);
11348 /* Set up this stub group. */
11349 htab->stub_group[tail->id].link_sec = curr;
11350 }
11351 while (tail != curr && (tail = prev) != NULL);
11352
11353 /* But wait, there's more! Input sections up to stub_group_size
11354 bytes before the stub section can be handled by it too.
11355 Don't do this if we have a really large section after the
11356 stubs, as adding more stubs increases the chance that
11357 branches may not reach into the stub section. */
11358 if (!stubs_always_before_branch && !big_sec)
11359 {
11360 total = 0;
11361 while (prev != NULL
11362 && ((total += tail->output_offset - prev->output_offset)
11363 < (ppc64_elf_section_data (prev) != NULL
11364 && ppc64_elf_section_data (prev)->has_14bit_branch
11365 ? stub14_group_size : stub_group_size))
11366 && htab->stub_group[prev->id].toc_off == curr_toc)
11367 {
11368 tail = prev;
11369 prev = PREV_SEC (tail);
11370 htab->stub_group[tail->id].link_sec = curr;
11371 }
11372 }
11373 tail = prev;
11374 }
11375 }
11376 while (list-- != htab->input_list);
11377 free (htab->input_list);
11378 #undef PREV_SEC
11379 }
11380
11381 static const unsigned char glink_eh_frame_cie[] =
11382 {
11383 0, 0, 0, 16, /* length. */
11384 0, 0, 0, 0, /* id. */
11385 1, /* CIE version. */
11386 'z', 'R', 0, /* Augmentation string. */
11387 4, /* Code alignment. */
11388 0x78, /* Data alignment. */
11389 65, /* RA reg. */
11390 1, /* Augmentation size. */
11391 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11392 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
11393 };
11394
11395 /* Stripping output sections is normally done before dynamic section
11396 symbols have been allocated. This function is called later, and
11397 handles cases like htab->brlt which is mapped to its own output
11398 section. */
11399
11400 static void
11401 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11402 {
11403 if (isec->size == 0
11404 && isec->output_section->size == 0
11405 && !(isec->output_section->flags & SEC_KEEP)
11406 && !bfd_section_removed_from_list (info->output_bfd,
11407 isec->output_section)
11408 && elf_section_data (isec->output_section)->dynindx == 0)
11409 {
11410 isec->output_section->flags |= SEC_EXCLUDE;
11411 bfd_section_list_remove (info->output_bfd, isec->output_section);
11412 info->output_bfd->section_count--;
11413 }
11414 }
11415
11416 /* Determine and set the size of the stub section for a final link.
11417
11418 The basic idea here is to examine all the relocations looking for
11419 PC-relative calls to a target that is unreachable with a "bl"
11420 instruction. */
11421
11422 bfd_boolean
11423 ppc64_elf_size_stubs (struct bfd_link_info *info, bfd_signed_vma group_size,
11424 bfd_boolean plt_static_chain, int plt_thread_safe,
11425 int plt_stub_align)
11426 {
11427 bfd_size_type stub_group_size;
11428 bfd_boolean stubs_always_before_branch;
11429 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11430
11431 if (htab == NULL)
11432 return FALSE;
11433
11434 htab->plt_static_chain = plt_static_chain;
11435 htab->plt_stub_align = plt_stub_align;
11436 if (plt_thread_safe == -1 && !info->executable)
11437 plt_thread_safe = 1;
11438 if (plt_thread_safe == -1)
11439 {
11440 static const char *const thread_starter[] =
11441 {
11442 "pthread_create",
11443 /* libstdc++ */
11444 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11445 /* librt */
11446 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11447 "mq_notify", "create_timer",
11448 /* libanl */
11449 "getaddrinfo_a",
11450 /* libgomp */
11451 "GOMP_parallel_start",
11452 "GOMP_parallel_loop_static_start",
11453 "GOMP_parallel_loop_dynamic_start",
11454 "GOMP_parallel_loop_guided_start",
11455 "GOMP_parallel_loop_runtime_start",
11456 "GOMP_parallel_sections_start",
11457 };
11458 unsigned i;
11459
11460 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
11461 {
11462 struct elf_link_hash_entry *h;
11463 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
11464 FALSE, FALSE, TRUE);
11465 plt_thread_safe = h != NULL && h->ref_regular;
11466 if (plt_thread_safe)
11467 break;
11468 }
11469 }
11470 htab->plt_thread_safe = plt_thread_safe;
11471 stubs_always_before_branch = group_size < 0;
11472 if (group_size < 0)
11473 stub_group_size = -group_size;
11474 else
11475 stub_group_size = group_size;
11476
11477 group_sections (htab, stub_group_size, stubs_always_before_branch);
11478
11479 while (1)
11480 {
11481 bfd *input_bfd;
11482 unsigned int bfd_indx;
11483 asection *stub_sec;
11484
11485 htab->stub_iteration += 1;
11486
11487 for (input_bfd = info->input_bfds, bfd_indx = 0;
11488 input_bfd != NULL;
11489 input_bfd = input_bfd->link_next, bfd_indx++)
11490 {
11491 Elf_Internal_Shdr *symtab_hdr;
11492 asection *section;
11493 Elf_Internal_Sym *local_syms = NULL;
11494
11495 if (!is_ppc64_elf (input_bfd))
11496 continue;
11497
11498 /* We'll need the symbol table in a second. */
11499 symtab_hdr = &elf_symtab_hdr (input_bfd);
11500 if (symtab_hdr->sh_info == 0)
11501 continue;
11502
11503 /* Walk over each section attached to the input bfd. */
11504 for (section = input_bfd->sections;
11505 section != NULL;
11506 section = section->next)
11507 {
11508 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
11509
11510 /* If there aren't any relocs, then there's nothing more
11511 to do. */
11512 if ((section->flags & SEC_RELOC) == 0
11513 || (section->flags & SEC_ALLOC) == 0
11514 || (section->flags & SEC_LOAD) == 0
11515 || (section->flags & SEC_CODE) == 0
11516 || section->reloc_count == 0)
11517 continue;
11518
11519 /* If this section is a link-once section that will be
11520 discarded, then don't create any stubs. */
11521 if (section->output_section == NULL
11522 || section->output_section->owner != info->output_bfd)
11523 continue;
11524
11525 /* Get the relocs. */
11526 internal_relocs
11527 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
11528 info->keep_memory);
11529 if (internal_relocs == NULL)
11530 goto error_ret_free_local;
11531
11532 /* Now examine each relocation. */
11533 irela = internal_relocs;
11534 irelaend = irela + section->reloc_count;
11535 for (; irela < irelaend; irela++)
11536 {
11537 enum elf_ppc64_reloc_type r_type;
11538 unsigned int r_indx;
11539 enum ppc_stub_type stub_type;
11540 struct ppc_stub_hash_entry *stub_entry;
11541 asection *sym_sec, *code_sec;
11542 bfd_vma sym_value, code_value;
11543 bfd_vma destination;
11544 bfd_boolean ok_dest;
11545 struct ppc_link_hash_entry *hash;
11546 struct ppc_link_hash_entry *fdh;
11547 struct elf_link_hash_entry *h;
11548 Elf_Internal_Sym *sym;
11549 char *stub_name;
11550 const asection *id_sec;
11551 struct _opd_sec_data *opd;
11552 struct plt_entry *plt_ent;
11553
11554 r_type = ELF64_R_TYPE (irela->r_info);
11555 r_indx = ELF64_R_SYM (irela->r_info);
11556
11557 if (r_type >= R_PPC64_max)
11558 {
11559 bfd_set_error (bfd_error_bad_value);
11560 goto error_ret_free_internal;
11561 }
11562
11563 /* Only look for stubs on branch instructions. */
11564 if (r_type != R_PPC64_REL24
11565 && r_type != R_PPC64_REL14
11566 && r_type != R_PPC64_REL14_BRTAKEN
11567 && r_type != R_PPC64_REL14_BRNTAKEN)
11568 continue;
11569
11570 /* Now determine the call target, its name, value,
11571 section. */
11572 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
11573 r_indx, input_bfd))
11574 goto error_ret_free_internal;
11575 hash = (struct ppc_link_hash_entry *) h;
11576
11577 ok_dest = FALSE;
11578 fdh = NULL;
11579 sym_value = 0;
11580 if (hash == NULL)
11581 {
11582 sym_value = sym->st_value;
11583 ok_dest = TRUE;
11584 }
11585 else if (hash->elf.root.type == bfd_link_hash_defined
11586 || hash->elf.root.type == bfd_link_hash_defweak)
11587 {
11588 sym_value = hash->elf.root.u.def.value;
11589 if (sym_sec->output_section != NULL)
11590 ok_dest = TRUE;
11591 }
11592 else if (hash->elf.root.type == bfd_link_hash_undefweak
11593 || hash->elf.root.type == bfd_link_hash_undefined)
11594 {
11595 /* Recognise an old ABI func code entry sym, and
11596 use the func descriptor sym instead if it is
11597 defined. */
11598 if (hash->elf.root.root.string[0] == '.'
11599 && (fdh = lookup_fdh (hash, htab)) != NULL)
11600 {
11601 if (fdh->elf.root.type == bfd_link_hash_defined
11602 || fdh->elf.root.type == bfd_link_hash_defweak)
11603 {
11604 sym_sec = fdh->elf.root.u.def.section;
11605 sym_value = fdh->elf.root.u.def.value;
11606 if (sym_sec->output_section != NULL)
11607 ok_dest = TRUE;
11608 }
11609 else
11610 fdh = NULL;
11611 }
11612 }
11613 else
11614 {
11615 bfd_set_error (bfd_error_bad_value);
11616 goto error_ret_free_internal;
11617 }
11618
11619 destination = 0;
11620 if (ok_dest)
11621 {
11622 sym_value += irela->r_addend;
11623 destination = (sym_value
11624 + sym_sec->output_offset
11625 + sym_sec->output_section->vma);
11626 }
11627
11628 code_sec = sym_sec;
11629 code_value = sym_value;
11630 opd = get_opd_info (sym_sec);
11631 if (opd != NULL)
11632 {
11633 bfd_vma dest;
11634
11635 if (hash == NULL && opd->adjust != NULL)
11636 {
11637 long adjust = opd->adjust[sym_value / 8];
11638 if (adjust == -1)
11639 continue;
11640 code_value += adjust;
11641 sym_value += adjust;
11642 }
11643 dest = opd_entry_value (sym_sec, sym_value,
11644 &code_sec, &code_value, FALSE);
11645 if (dest != (bfd_vma) -1)
11646 {
11647 destination = dest;
11648 if (fdh != NULL)
11649 {
11650 /* Fixup old ABI sym to point at code
11651 entry. */
11652 hash->elf.root.type = bfd_link_hash_defweak;
11653 hash->elf.root.u.def.section = code_sec;
11654 hash->elf.root.u.def.value = code_value;
11655 }
11656 }
11657 }
11658
11659 /* Determine what (if any) linker stub is needed. */
11660 plt_ent = NULL;
11661 stub_type = ppc_type_of_stub (section, irela, &hash,
11662 &plt_ent, destination);
11663
11664 if (stub_type != ppc_stub_plt_call)
11665 {
11666 /* Check whether we need a TOC adjusting stub.
11667 Since the linker pastes together pieces from
11668 different object files when creating the
11669 _init and _fini functions, it may be that a
11670 call to what looks like a local sym is in
11671 fact a call needing a TOC adjustment. */
11672 if (code_sec != NULL
11673 && code_sec->output_section != NULL
11674 && (htab->stub_group[code_sec->id].toc_off
11675 != htab->stub_group[section->id].toc_off)
11676 && (code_sec->has_toc_reloc
11677 || code_sec->makes_toc_func_call))
11678 stub_type = ppc_stub_long_branch_r2off;
11679 }
11680
11681 if (stub_type == ppc_stub_none)
11682 continue;
11683
11684 /* __tls_get_addr calls might be eliminated. */
11685 if (stub_type != ppc_stub_plt_call
11686 && hash != NULL
11687 && (hash == htab->tls_get_addr
11688 || hash == htab->tls_get_addr_fd)
11689 && section->has_tls_reloc
11690 && irela != internal_relocs)
11691 {
11692 /* Get tls info. */
11693 unsigned char *tls_mask;
11694
11695 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
11696 irela - 1, input_bfd))
11697 goto error_ret_free_internal;
11698 if (*tls_mask != 0)
11699 continue;
11700 }
11701
11702 if (stub_type == ppc_stub_plt_call
11703 && irela + 1 < irelaend
11704 && irela[1].r_offset == irela->r_offset + 4
11705 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
11706 {
11707 if (!tocsave_find (htab, INSERT,
11708 &local_syms, irela + 1, input_bfd))
11709 goto error_ret_free_internal;
11710 }
11711 else if (stub_type == ppc_stub_plt_call)
11712 stub_type = ppc_stub_plt_call_r2save;
11713
11714 /* Support for grouping stub sections. */
11715 id_sec = htab->stub_group[section->id].link_sec;
11716
11717 /* Get the name of this stub. */
11718 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
11719 if (!stub_name)
11720 goto error_ret_free_internal;
11721
11722 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
11723 stub_name, FALSE, FALSE);
11724 if (stub_entry != NULL)
11725 {
11726 /* The proper stub has already been created. */
11727 free (stub_name);
11728 if (stub_type == ppc_stub_plt_call_r2save)
11729 stub_entry->stub_type = stub_type;
11730 continue;
11731 }
11732
11733 stub_entry = ppc_add_stub (stub_name, section, info);
11734 if (stub_entry == NULL)
11735 {
11736 free (stub_name);
11737 error_ret_free_internal:
11738 if (elf_section_data (section)->relocs == NULL)
11739 free (internal_relocs);
11740 error_ret_free_local:
11741 if (local_syms != NULL
11742 && (symtab_hdr->contents
11743 != (unsigned char *) local_syms))
11744 free (local_syms);
11745 return FALSE;
11746 }
11747
11748 stub_entry->stub_type = stub_type;
11749 if (stub_type != ppc_stub_plt_call
11750 && stub_type != ppc_stub_plt_call_r2save)
11751 {
11752 stub_entry->target_value = code_value;
11753 stub_entry->target_section = code_sec;
11754 }
11755 else
11756 {
11757 stub_entry->target_value = sym_value;
11758 stub_entry->target_section = sym_sec;
11759 }
11760 stub_entry->h = hash;
11761 stub_entry->plt_ent = plt_ent;
11762
11763 if (stub_entry->h != NULL)
11764 htab->stub_globals += 1;
11765 }
11766
11767 /* We're done with the internal relocs, free them. */
11768 if (elf_section_data (section)->relocs != internal_relocs)
11769 free (internal_relocs);
11770 }
11771
11772 if (local_syms != NULL
11773 && symtab_hdr->contents != (unsigned char *) local_syms)
11774 {
11775 if (!info->keep_memory)
11776 free (local_syms);
11777 else
11778 symtab_hdr->contents = (unsigned char *) local_syms;
11779 }
11780 }
11781
11782 /* We may have added some stubs. Find out the new size of the
11783 stub sections. */
11784 for (stub_sec = htab->stub_bfd->sections;
11785 stub_sec != NULL;
11786 stub_sec = stub_sec->next)
11787 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11788 {
11789 stub_sec->rawsize = stub_sec->size;
11790 stub_sec->size = 0;
11791 stub_sec->reloc_count = 0;
11792 stub_sec->flags &= ~SEC_RELOC;
11793 }
11794
11795 htab->brlt->size = 0;
11796 htab->brlt->reloc_count = 0;
11797 htab->brlt->flags &= ~SEC_RELOC;
11798 if (htab->relbrlt != NULL)
11799 htab->relbrlt->size = 0;
11800
11801 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
11802
11803 if (info->emitrelocations
11804 && htab->glink != NULL && htab->glink->size != 0)
11805 {
11806 htab->glink->reloc_count = 1;
11807 htab->glink->flags |= SEC_RELOC;
11808 }
11809
11810 if (htab->glink_eh_frame != NULL
11811 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
11812 && htab->glink_eh_frame->output_section->size != 0)
11813 {
11814 size_t size = 0, align;
11815
11816 for (stub_sec = htab->stub_bfd->sections;
11817 stub_sec != NULL;
11818 stub_sec = stub_sec->next)
11819 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11820 size += 20;
11821 if (htab->glink != NULL && htab->glink->size != 0)
11822 size += 24;
11823 if (size != 0)
11824 size += sizeof (glink_eh_frame_cie);
11825 align = 1;
11826 align <<= htab->glink_eh_frame->output_section->alignment_power;
11827 align -= 1;
11828 size = (size + align) & ~align;
11829 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
11830 htab->glink_eh_frame->size = size;
11831 }
11832
11833 if (htab->plt_stub_align != 0)
11834 for (stub_sec = htab->stub_bfd->sections;
11835 stub_sec != NULL;
11836 stub_sec = stub_sec->next)
11837 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11838 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
11839 & (-1 << htab->plt_stub_align));
11840
11841 for (stub_sec = htab->stub_bfd->sections;
11842 stub_sec != NULL;
11843 stub_sec = stub_sec->next)
11844 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
11845 && stub_sec->rawsize != stub_sec->size)
11846 break;
11847
11848 /* Exit from this loop when no stubs have been added, and no stubs
11849 have changed size. */
11850 if (stub_sec == NULL
11851 && (htab->glink_eh_frame == NULL
11852 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
11853 break;
11854
11855 /* Ask the linker to do its stuff. */
11856 (*htab->layout_sections_again) ();
11857 }
11858
11859 maybe_strip_output (info, htab->brlt);
11860 if (htab->glink_eh_frame != NULL)
11861 maybe_strip_output (info, htab->glink_eh_frame);
11862
11863 return TRUE;
11864 }
11865
11866 /* Called after we have determined section placement. If sections
11867 move, we'll be called again. Provide a value for TOCstart. */
11868
11869 bfd_vma
11870 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
11871 {
11872 asection *s;
11873 bfd_vma TOCstart;
11874
11875 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
11876 order. The TOC starts where the first of these sections starts. */
11877 s = bfd_get_section_by_name (obfd, ".got");
11878 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11879 s = bfd_get_section_by_name (obfd, ".toc");
11880 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11881 s = bfd_get_section_by_name (obfd, ".tocbss");
11882 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11883 s = bfd_get_section_by_name (obfd, ".plt");
11884 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11885 {
11886 /* This may happen for
11887 o references to TOC base (SYM@toc / TOC[tc0]) without a
11888 .toc directive
11889 o bad linker script
11890 o --gc-sections and empty TOC sections
11891
11892 FIXME: Warn user? */
11893
11894 /* Look for a likely section. We probably won't even be
11895 using TOCstart. */
11896 for (s = obfd->sections; s != NULL; s = s->next)
11897 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
11898 | SEC_EXCLUDE))
11899 == (SEC_ALLOC | SEC_SMALL_DATA))
11900 break;
11901 if (s == NULL)
11902 for (s = obfd->sections; s != NULL; s = s->next)
11903 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
11904 == (SEC_ALLOC | SEC_SMALL_DATA))
11905 break;
11906 if (s == NULL)
11907 for (s = obfd->sections; s != NULL; s = s->next)
11908 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
11909 == SEC_ALLOC)
11910 break;
11911 if (s == NULL)
11912 for (s = obfd->sections; s != NULL; s = s->next)
11913 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
11914 break;
11915 }
11916
11917 TOCstart = 0;
11918 if (s != NULL)
11919 TOCstart = s->output_section->vma + s->output_offset;
11920
11921 _bfd_set_gp_value (obfd, TOCstart);
11922
11923 if (info != NULL && s != NULL && is_ppc64_elf (obfd))
11924 {
11925 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11926
11927 if (htab != NULL
11928 && htab->elf.hgot != NULL)
11929 {
11930 htab->elf.hgot->type = STT_OBJECT;
11931 htab->elf.hgot->root.type = bfd_link_hash_defined;
11932 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF;
11933 htab->elf.hgot->root.u.def.section = s;
11934 }
11935 }
11936 return TOCstart;
11937 }
11938
11939 /* Build all the stubs associated with the current output file.
11940 The stubs are kept in a hash table attached to the main linker
11941 hash table. This function is called via gldelf64ppc_finish. */
11942
11943 bfd_boolean
11944 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
11945 struct bfd_link_info *info,
11946 char **stats)
11947 {
11948 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11949 asection *stub_sec;
11950 bfd_byte *p;
11951 int stub_sec_count = 0;
11952
11953 if (htab == NULL)
11954 return FALSE;
11955
11956 htab->emit_stub_syms = emit_stub_syms;
11957
11958 /* Allocate memory to hold the linker stubs. */
11959 for (stub_sec = htab->stub_bfd->sections;
11960 stub_sec != NULL;
11961 stub_sec = stub_sec->next)
11962 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
11963 && stub_sec->size != 0)
11964 {
11965 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
11966 if (stub_sec->contents == NULL)
11967 return FALSE;
11968 /* We want to check that built size is the same as calculated
11969 size. rawsize is a convenient location to use. */
11970 stub_sec->rawsize = stub_sec->size;
11971 stub_sec->size = 0;
11972 }
11973
11974 if (htab->glink != NULL && htab->glink->size != 0)
11975 {
11976 unsigned int indx;
11977 bfd_vma plt0;
11978
11979 /* Build the .glink plt call stub. */
11980 if (htab->emit_stub_syms)
11981 {
11982 struct elf_link_hash_entry *h;
11983 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
11984 TRUE, FALSE, FALSE);
11985 if (h == NULL)
11986 return FALSE;
11987 if (h->root.type == bfd_link_hash_new)
11988 {
11989 h->root.type = bfd_link_hash_defined;
11990 h->root.u.def.section = htab->glink;
11991 h->root.u.def.value = 8;
11992 h->ref_regular = 1;
11993 h->def_regular = 1;
11994 h->ref_regular_nonweak = 1;
11995 h->forced_local = 1;
11996 h->non_elf = 0;
11997 }
11998 }
11999 plt0 = htab->plt->output_section->vma + htab->plt->output_offset - 16;
12000 if (info->emitrelocations)
12001 {
12002 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
12003 if (r == NULL)
12004 return FALSE;
12005 r->r_offset = (htab->glink->output_offset
12006 + htab->glink->output_section->vma);
12007 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
12008 r->r_addend = plt0;
12009 }
12010 p = htab->glink->contents;
12011 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
12012 bfd_put_64 (htab->glink->owner, plt0, p);
12013 p += 8;
12014 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
12015 p += 4;
12016 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12017 p += 4;
12018 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12019 p += 4;
12020 bfd_put_32 (htab->glink->owner, LD_R2_M16R11, p);
12021 p += 4;
12022 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
12023 p += 4;
12024 bfd_put_32 (htab->glink->owner, ADD_R12_R2_R11, p);
12025 p += 4;
12026 bfd_put_32 (htab->glink->owner, LD_R11_0R12, p);
12027 p += 4;
12028 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
12029 p += 4;
12030 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
12031 p += 4;
12032 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
12033 p += 4;
12034 bfd_put_32 (htab->glink->owner, BCTR, p);
12035 p += 4;
12036 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
12037 {
12038 bfd_put_32 (htab->glink->owner, NOP, p);
12039 p += 4;
12040 }
12041
12042 /* Build the .glink lazy link call stubs. */
12043 indx = 0;
12044 while (p < htab->glink->contents + htab->glink->size)
12045 {
12046 if (indx < 0x8000)
12047 {
12048 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
12049 p += 4;
12050 }
12051 else
12052 {
12053 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
12054 p += 4;
12055 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
12056 p += 4;
12057 }
12058 bfd_put_32 (htab->glink->owner,
12059 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
12060 indx++;
12061 p += 4;
12062 }
12063 htab->glink->rawsize = p - htab->glink->contents;
12064 }
12065
12066 if (htab->brlt->size != 0)
12067 {
12068 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
12069 htab->brlt->size);
12070 if (htab->brlt->contents == NULL)
12071 return FALSE;
12072 }
12073 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
12074 {
12075 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
12076 htab->relbrlt->size);
12077 if (htab->relbrlt->contents == NULL)
12078 return FALSE;
12079 }
12080
12081 if (htab->glink_eh_frame != NULL
12082 && htab->glink_eh_frame->size != 0)
12083 {
12084 bfd_vma val;
12085 bfd_byte *last_fde;
12086 size_t last_fde_len, size, align, pad;
12087
12088 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
12089 if (p == NULL)
12090 return FALSE;
12091 htab->glink_eh_frame->contents = p;
12092 last_fde = p;
12093
12094 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12095
12096 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
12097 /* CIE length (rewrite in case little-endian). */
12098 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
12099 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
12100 p += sizeof (glink_eh_frame_cie);
12101
12102 for (stub_sec = htab->stub_bfd->sections;
12103 stub_sec != NULL;
12104 stub_sec = stub_sec->next)
12105 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12106 {
12107 last_fde = p;
12108 last_fde_len = 16;
12109 /* FDE length. */
12110 bfd_put_32 (htab->elf.dynobj, 16, p);
12111 p += 4;
12112 /* CIE pointer. */
12113 val = p - htab->glink_eh_frame->contents;
12114 bfd_put_32 (htab->elf.dynobj, val, p);
12115 p += 4;
12116 /* Offset to stub section. */
12117 val = (stub_sec->output_section->vma
12118 + stub_sec->output_offset);
12119 val -= (htab->glink_eh_frame->output_section->vma
12120 + htab->glink_eh_frame->output_offset);
12121 val -= p - htab->glink_eh_frame->contents;
12122 if (val + 0x80000000 > 0xffffffff)
12123 {
12124 info->callbacks->einfo
12125 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12126 stub_sec->name);
12127 return FALSE;
12128 }
12129 bfd_put_32 (htab->elf.dynobj, val, p);
12130 p += 4;
12131 /* stub section size. */
12132 bfd_put_32 (htab->elf.dynobj, stub_sec->rawsize, p);
12133 p += 4;
12134 /* Augmentation. */
12135 p += 1;
12136 /* Pad. */
12137 p += 3;
12138 }
12139 if (htab->glink != NULL && htab->glink->size != 0)
12140 {
12141 last_fde = p;
12142 last_fde_len = 20;
12143 /* FDE length. */
12144 bfd_put_32 (htab->elf.dynobj, 20, p);
12145 p += 4;
12146 /* CIE pointer. */
12147 val = p - htab->glink_eh_frame->contents;
12148 bfd_put_32 (htab->elf.dynobj, val, p);
12149 p += 4;
12150 /* Offset to .glink. */
12151 val = (htab->glink->output_section->vma
12152 + htab->glink->output_offset
12153 + 8);
12154 val -= (htab->glink_eh_frame->output_section->vma
12155 + htab->glink_eh_frame->output_offset);
12156 val -= p - htab->glink_eh_frame->contents;
12157 if (val + 0x80000000 > 0xffffffff)
12158 {
12159 info->callbacks->einfo
12160 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12161 htab->glink->name);
12162 return FALSE;
12163 }
12164 bfd_put_32 (htab->elf.dynobj, val, p);
12165 p += 4;
12166 /* .glink size. */
12167 bfd_put_32 (htab->elf.dynobj, htab->glink->rawsize - 8, p);
12168 p += 4;
12169 /* Augmentation. */
12170 p += 1;
12171
12172 *p++ = DW_CFA_advance_loc + 1;
12173 *p++ = DW_CFA_register;
12174 *p++ = 65;
12175 *p++ = 12;
12176 *p++ = DW_CFA_advance_loc + 4;
12177 *p++ = DW_CFA_restore_extended;
12178 *p++ = 65;
12179 }
12180 /* Subsume any padding into the last FDE if user .eh_frame
12181 sections are aligned more than glink_eh_frame. Otherwise any
12182 zero padding will be seen as a terminator. */
12183 size = p - htab->glink_eh_frame->contents;
12184 align = 1;
12185 align <<= htab->glink_eh_frame->output_section->alignment_power;
12186 align -= 1;
12187 pad = ((size + align) & ~align) - size;
12188 htab->glink_eh_frame->size = size + pad;
12189 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12190 }
12191
12192 /* Build the stubs as directed by the stub hash table. */
12193 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12194
12195 if (htab->relbrlt != NULL)
12196 htab->relbrlt->reloc_count = 0;
12197
12198 if (htab->plt_stub_align != 0)
12199 for (stub_sec = htab->stub_bfd->sections;
12200 stub_sec != NULL;
12201 stub_sec = stub_sec->next)
12202 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12203 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
12204 & (-1 << htab->plt_stub_align));
12205
12206 for (stub_sec = htab->stub_bfd->sections;
12207 stub_sec != NULL;
12208 stub_sec = stub_sec->next)
12209 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12210 {
12211 stub_sec_count += 1;
12212 if (stub_sec->rawsize != stub_sec->size)
12213 break;
12214 }
12215
12216 if (stub_sec != NULL
12217 || htab->glink->rawsize != htab->glink->size
12218 || (htab->glink_eh_frame != NULL
12219 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12220 {
12221 htab->stub_error = TRUE;
12222 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12223 }
12224
12225 if (htab->stub_error)
12226 return FALSE;
12227
12228 if (stats != NULL)
12229 {
12230 *stats = bfd_malloc (500);
12231 if (*stats == NULL)
12232 return FALSE;
12233
12234 sprintf (*stats, _("linker stubs in %u group%s\n"
12235 " branch %lu\n"
12236 " toc adjust %lu\n"
12237 " long branch %lu\n"
12238 " long toc adj %lu\n"
12239 " plt call %lu\n"
12240 " plt call toc %lu"),
12241 stub_sec_count,
12242 stub_sec_count == 1 ? "" : "s",
12243 htab->stub_count[ppc_stub_long_branch - 1],
12244 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12245 htab->stub_count[ppc_stub_plt_branch - 1],
12246 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12247 htab->stub_count[ppc_stub_plt_call - 1],
12248 htab->stub_count[ppc_stub_plt_call_r2save - 1]);
12249 }
12250 return TRUE;
12251 }
12252
12253 /* This function undoes the changes made by add_symbol_adjust. */
12254
12255 static bfd_boolean
12256 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12257 {
12258 struct ppc_link_hash_entry *eh;
12259
12260 if (h->root.type == bfd_link_hash_indirect)
12261 return TRUE;
12262
12263 eh = (struct ppc_link_hash_entry *) h;
12264 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12265 return TRUE;
12266
12267 eh->elf.root.type = bfd_link_hash_undefined;
12268 return TRUE;
12269 }
12270
12271 void
12272 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12273 {
12274 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12275
12276 if (htab != NULL)
12277 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12278 }
12279
12280 /* What to do when ld finds relocations against symbols defined in
12281 discarded sections. */
12282
12283 static unsigned int
12284 ppc64_elf_action_discarded (asection *sec)
12285 {
12286 if (strcmp (".opd", sec->name) == 0)
12287 return 0;
12288
12289 if (strcmp (".toc", sec->name) == 0)
12290 return 0;
12291
12292 if (strcmp (".toc1", sec->name) == 0)
12293 return 0;
12294
12295 return _bfd_elf_default_action_discarded (sec);
12296 }
12297
12298 /* The RELOCATE_SECTION function is called by the ELF backend linker
12299 to handle the relocations for a section.
12300
12301 The relocs are always passed as Rela structures; if the section
12302 actually uses Rel structures, the r_addend field will always be
12303 zero.
12304
12305 This function is responsible for adjust the section contents as
12306 necessary, and (if using Rela relocs and generating a
12307 relocatable output file) adjusting the reloc addend as
12308 necessary.
12309
12310 This function does not have to worry about setting the reloc
12311 address or the reloc symbol index.
12312
12313 LOCAL_SYMS is a pointer to the swapped in local symbols.
12314
12315 LOCAL_SECTIONS is an array giving the section in the input file
12316 corresponding to the st_shndx field of each local symbol.
12317
12318 The global hash table entry for the global symbols can be found
12319 via elf_sym_hashes (input_bfd).
12320
12321 When generating relocatable output, this function must handle
12322 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12323 going to be the section symbol corresponding to the output
12324 section, which means that the addend must be adjusted
12325 accordingly. */
12326
12327 static bfd_boolean
12328 ppc64_elf_relocate_section (bfd *output_bfd,
12329 struct bfd_link_info *info,
12330 bfd *input_bfd,
12331 asection *input_section,
12332 bfd_byte *contents,
12333 Elf_Internal_Rela *relocs,
12334 Elf_Internal_Sym *local_syms,
12335 asection **local_sections)
12336 {
12337 struct ppc_link_hash_table *htab;
12338 Elf_Internal_Shdr *symtab_hdr;
12339 struct elf_link_hash_entry **sym_hashes;
12340 Elf_Internal_Rela *rel;
12341 Elf_Internal_Rela *relend;
12342 Elf_Internal_Rela outrel;
12343 bfd_byte *loc;
12344 struct got_entry **local_got_ents;
12345 bfd_vma TOCstart;
12346 bfd_boolean ret = TRUE;
12347 bfd_boolean is_opd;
12348 /* Assume 'at' branch hints. */
12349 bfd_boolean is_isa_v2 = TRUE;
12350 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
12351
12352 /* Initialize howto table if needed. */
12353 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
12354 ppc_howto_init ();
12355
12356 htab = ppc_hash_table (info);
12357 if (htab == NULL)
12358 return FALSE;
12359
12360 /* Don't relocate stub sections. */
12361 if (input_section->owner == htab->stub_bfd)
12362 return TRUE;
12363
12364 BFD_ASSERT (is_ppc64_elf (input_bfd));
12365
12366 local_got_ents = elf_local_got_ents (input_bfd);
12367 TOCstart = elf_gp (output_bfd);
12368 symtab_hdr = &elf_symtab_hdr (input_bfd);
12369 sym_hashes = elf_sym_hashes (input_bfd);
12370 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
12371
12372 rel = relocs;
12373 relend = relocs + input_section->reloc_count;
12374 for (; rel < relend; rel++)
12375 {
12376 enum elf_ppc64_reloc_type r_type;
12377 bfd_vma addend;
12378 bfd_reloc_status_type r;
12379 Elf_Internal_Sym *sym;
12380 asection *sec;
12381 struct elf_link_hash_entry *h_elf;
12382 struct ppc_link_hash_entry *h;
12383 struct ppc_link_hash_entry *fdh;
12384 const char *sym_name;
12385 unsigned long r_symndx, toc_symndx;
12386 bfd_vma toc_addend;
12387 unsigned char tls_mask, tls_gd, tls_type;
12388 unsigned char sym_type;
12389 bfd_vma relocation;
12390 bfd_boolean unresolved_reloc;
12391 bfd_boolean warned;
12392 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
12393 unsigned int insn;
12394 unsigned int mask;
12395 struct ppc_stub_hash_entry *stub_entry;
12396 bfd_vma max_br_offset;
12397 bfd_vma from;
12398 const Elf_Internal_Rela orig_rel = *rel;
12399
12400 r_type = ELF64_R_TYPE (rel->r_info);
12401 r_symndx = ELF64_R_SYM (rel->r_info);
12402
12403 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
12404 symbol of the previous ADDR64 reloc. The symbol gives us the
12405 proper TOC base to use. */
12406 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
12407 && rel != relocs
12408 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
12409 && is_opd)
12410 r_symndx = ELF64_R_SYM (rel[-1].r_info);
12411
12412 sym = NULL;
12413 sec = NULL;
12414 h_elf = NULL;
12415 sym_name = NULL;
12416 unresolved_reloc = FALSE;
12417 warned = FALSE;
12418
12419 if (r_symndx < symtab_hdr->sh_info)
12420 {
12421 /* It's a local symbol. */
12422 struct _opd_sec_data *opd;
12423
12424 sym = local_syms + r_symndx;
12425 sec = local_sections[r_symndx];
12426 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
12427 sym_type = ELF64_ST_TYPE (sym->st_info);
12428 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12429 opd = get_opd_info (sec);
12430 if (opd != NULL && opd->adjust != NULL)
12431 {
12432 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
12433 if (adjust == -1)
12434 relocation = 0;
12435 else
12436 {
12437 /* If this is a relocation against the opd section sym
12438 and we have edited .opd, adjust the reloc addend so
12439 that ld -r and ld --emit-relocs output is correct.
12440 If it is a reloc against some other .opd symbol,
12441 then the symbol value will be adjusted later. */
12442 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12443 rel->r_addend += adjust;
12444 else
12445 relocation += adjust;
12446 }
12447 }
12448 }
12449 else
12450 {
12451 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12452 r_symndx, symtab_hdr, sym_hashes,
12453 h_elf, sec, relocation,
12454 unresolved_reloc, warned);
12455 sym_name = h_elf->root.root.string;
12456 sym_type = h_elf->type;
12457 if (sec != NULL
12458 && sec->owner == output_bfd
12459 && strcmp (sec->name, ".opd") == 0)
12460 {
12461 /* This is a symbol defined in a linker script. All
12462 such are defined in output sections, even those
12463 defined by simple assignment from a symbol defined in
12464 an input section. Transfer the symbol to an
12465 appropriate input .opd section, so that a branch to
12466 this symbol will be mapped to the location specified
12467 by the opd entry. */
12468 struct bfd_link_order *lo;
12469 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
12470 if (lo->type == bfd_indirect_link_order)
12471 {
12472 asection *isec = lo->u.indirect.section;
12473 if (h_elf->root.u.def.value >= isec->output_offset
12474 && h_elf->root.u.def.value < (isec->output_offset
12475 + isec->size))
12476 {
12477 h_elf->root.u.def.value -= isec->output_offset;
12478 h_elf->root.u.def.section = isec;
12479 sec = isec;
12480 break;
12481 }
12482 }
12483 }
12484 }
12485 h = (struct ppc_link_hash_entry *) h_elf;
12486
12487 if (sec != NULL && discarded_section (sec))
12488 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12489 rel, 1, relend,
12490 ppc64_elf_howto_table[r_type], 0,
12491 contents);
12492
12493 if (info->relocatable)
12494 continue;
12495
12496 if (h != NULL && &h->elf == htab->elf.hgot)
12497 {
12498 relocation = (TOCstart
12499 + htab->stub_group[input_section->id].toc_off);
12500 sec = bfd_abs_section_ptr;
12501 unresolved_reloc = FALSE;
12502 }
12503
12504 /* TLS optimizations. Replace instruction sequences and relocs
12505 based on information we collected in tls_optimize. We edit
12506 RELOCS so that --emit-relocs will output something sensible
12507 for the final instruction stream. */
12508 tls_mask = 0;
12509 tls_gd = 0;
12510 toc_symndx = 0;
12511 if (h != NULL)
12512 tls_mask = h->tls_mask;
12513 else if (local_got_ents != NULL)
12514 {
12515 struct plt_entry **local_plt = (struct plt_entry **)
12516 (local_got_ents + symtab_hdr->sh_info);
12517 unsigned char *lgot_masks = (unsigned char *)
12518 (local_plt + symtab_hdr->sh_info);
12519 tls_mask = lgot_masks[r_symndx];
12520 }
12521 if (tls_mask == 0
12522 && (r_type == R_PPC64_TLS
12523 || r_type == R_PPC64_TLSGD
12524 || r_type == R_PPC64_TLSLD))
12525 {
12526 /* Check for toc tls entries. */
12527 unsigned char *toc_tls;
12528
12529 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
12530 &local_syms, rel, input_bfd))
12531 return FALSE;
12532
12533 if (toc_tls)
12534 tls_mask = *toc_tls;
12535 }
12536
12537 /* Check that tls relocs are used with tls syms, and non-tls
12538 relocs are used with non-tls syms. */
12539 if (r_symndx != STN_UNDEF
12540 && r_type != R_PPC64_NONE
12541 && (h == NULL
12542 || h->elf.root.type == bfd_link_hash_defined
12543 || h->elf.root.type == bfd_link_hash_defweak)
12544 && (IS_PPC64_TLS_RELOC (r_type)
12545 != (sym_type == STT_TLS
12546 || (sym_type == STT_SECTION
12547 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
12548 {
12549 if (tls_mask != 0
12550 && (r_type == R_PPC64_TLS
12551 || r_type == R_PPC64_TLSGD
12552 || r_type == R_PPC64_TLSLD))
12553 /* R_PPC64_TLS is OK against a symbol in the TOC. */
12554 ;
12555 else
12556 info->callbacks->einfo
12557 (!IS_PPC64_TLS_RELOC (r_type)
12558 ? _("%P: %H: %s used with TLS symbol `%T'\n")
12559 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
12560 input_bfd, input_section, rel->r_offset,
12561 ppc64_elf_howto_table[r_type]->name,
12562 sym_name);
12563 }
12564
12565 /* Ensure reloc mapping code below stays sane. */
12566 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
12567 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
12568 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
12569 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
12570 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
12571 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
12572 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
12573 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
12574 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
12575 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
12576 abort ();
12577
12578 switch (r_type)
12579 {
12580 default:
12581 break;
12582
12583 case R_PPC64_LO_DS_OPT:
12584 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
12585 if ((insn & (0x3f << 26)) != 58u << 26)
12586 abort ();
12587 insn += (14u << 26) - (58u << 26);
12588 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
12589 r_type = R_PPC64_TOC16_LO;
12590 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12591 break;
12592
12593 case R_PPC64_TOC16:
12594 case R_PPC64_TOC16_LO:
12595 case R_PPC64_TOC16_DS:
12596 case R_PPC64_TOC16_LO_DS:
12597 {
12598 /* Check for toc tls entries. */
12599 unsigned char *toc_tls;
12600 int retval;
12601
12602 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
12603 &local_syms, rel, input_bfd);
12604 if (retval == 0)
12605 return FALSE;
12606
12607 if (toc_tls)
12608 {
12609 tls_mask = *toc_tls;
12610 if (r_type == R_PPC64_TOC16_DS
12611 || r_type == R_PPC64_TOC16_LO_DS)
12612 {
12613 if (tls_mask != 0
12614 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
12615 goto toctprel;
12616 }
12617 else
12618 {
12619 /* If we found a GD reloc pair, then we might be
12620 doing a GD->IE transition. */
12621 if (retval == 2)
12622 {
12623 tls_gd = TLS_TPRELGD;
12624 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12625 goto tls_ldgd_opt;
12626 }
12627 else if (retval == 3)
12628 {
12629 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12630 goto tls_ldgd_opt;
12631 }
12632 }
12633 }
12634 }
12635 break;
12636
12637 case R_PPC64_GOT_TPREL16_HI:
12638 case R_PPC64_GOT_TPREL16_HA:
12639 if (tls_mask != 0
12640 && (tls_mask & TLS_TPREL) == 0)
12641 {
12642 rel->r_offset -= d_offset;
12643 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12644 r_type = R_PPC64_NONE;
12645 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12646 }
12647 break;
12648
12649 case R_PPC64_GOT_TPREL16_DS:
12650 case R_PPC64_GOT_TPREL16_LO_DS:
12651 if (tls_mask != 0
12652 && (tls_mask & TLS_TPREL) == 0)
12653 {
12654 toctprel:
12655 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
12656 insn &= 31 << 21;
12657 insn |= 0x3c0d0000; /* addis 0,13,0 */
12658 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
12659 r_type = R_PPC64_TPREL16_HA;
12660 if (toc_symndx != 0)
12661 {
12662 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
12663 rel->r_addend = toc_addend;
12664 /* We changed the symbol. Start over in order to
12665 get h, sym, sec etc. right. */
12666 rel--;
12667 continue;
12668 }
12669 else
12670 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12671 }
12672 break;
12673
12674 case R_PPC64_TLS:
12675 if (tls_mask != 0
12676 && (tls_mask & TLS_TPREL) == 0)
12677 {
12678 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
12679 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
12680 if (insn == 0)
12681 abort ();
12682 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
12683 /* Was PPC64_TLS which sits on insn boundary, now
12684 PPC64_TPREL16_LO which is at low-order half-word. */
12685 rel->r_offset += d_offset;
12686 r_type = R_PPC64_TPREL16_LO;
12687 if (toc_symndx != 0)
12688 {
12689 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
12690 rel->r_addend = toc_addend;
12691 /* We changed the symbol. Start over in order to
12692 get h, sym, sec etc. right. */
12693 rel--;
12694 continue;
12695 }
12696 else
12697 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12698 }
12699 break;
12700
12701 case R_PPC64_GOT_TLSGD16_HI:
12702 case R_PPC64_GOT_TLSGD16_HA:
12703 tls_gd = TLS_TPRELGD;
12704 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12705 goto tls_gdld_hi;
12706 break;
12707
12708 case R_PPC64_GOT_TLSLD16_HI:
12709 case R_PPC64_GOT_TLSLD16_HA:
12710 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12711 {
12712 tls_gdld_hi:
12713 if ((tls_mask & tls_gd) != 0)
12714 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
12715 + R_PPC64_GOT_TPREL16_DS);
12716 else
12717 {
12718 rel->r_offset -= d_offset;
12719 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12720 r_type = R_PPC64_NONE;
12721 }
12722 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12723 }
12724 break;
12725
12726 case R_PPC64_GOT_TLSGD16:
12727 case R_PPC64_GOT_TLSGD16_LO:
12728 tls_gd = TLS_TPRELGD;
12729 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12730 goto tls_ldgd_opt;
12731 break;
12732
12733 case R_PPC64_GOT_TLSLD16:
12734 case R_PPC64_GOT_TLSLD16_LO:
12735 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12736 {
12737 unsigned int insn1, insn2, insn3;
12738 bfd_vma offset;
12739
12740 tls_ldgd_opt:
12741 offset = (bfd_vma) -1;
12742 /* If not using the newer R_PPC64_TLSGD/LD to mark
12743 __tls_get_addr calls, we must trust that the call
12744 stays with its arg setup insns, ie. that the next
12745 reloc is the __tls_get_addr call associated with
12746 the current reloc. Edit both insns. */
12747 if (input_section->has_tls_get_addr_call
12748 && rel + 1 < relend
12749 && branch_reloc_hash_match (input_bfd, rel + 1,
12750 htab->tls_get_addr,
12751 htab->tls_get_addr_fd))
12752 offset = rel[1].r_offset;
12753 if ((tls_mask & tls_gd) != 0)
12754 {
12755 /* IE */
12756 insn1 = bfd_get_32 (output_bfd,
12757 contents + rel->r_offset - d_offset);
12758 insn1 &= (1 << 26) - (1 << 2);
12759 insn1 |= 58 << 26; /* ld */
12760 insn2 = 0x7c636a14; /* add 3,3,13 */
12761 if (offset != (bfd_vma) -1)
12762 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12763 if ((tls_mask & TLS_EXPLICIT) == 0)
12764 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
12765 + R_PPC64_GOT_TPREL16_DS);
12766 else
12767 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
12768 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12769 }
12770 else
12771 {
12772 /* LE */
12773 insn1 = 0x3c6d0000; /* addis 3,13,0 */
12774 insn2 = 0x38630000; /* addi 3,3,0 */
12775 if (tls_gd == 0)
12776 {
12777 /* Was an LD reloc. */
12778 if (toc_symndx)
12779 sec = local_sections[toc_symndx];
12780 for (r_symndx = 0;
12781 r_symndx < symtab_hdr->sh_info;
12782 r_symndx++)
12783 if (local_sections[r_symndx] == sec)
12784 break;
12785 if (r_symndx >= symtab_hdr->sh_info)
12786 r_symndx = STN_UNDEF;
12787 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
12788 if (r_symndx != STN_UNDEF)
12789 rel->r_addend -= (local_syms[r_symndx].st_value
12790 + sec->output_offset
12791 + sec->output_section->vma);
12792 }
12793 else if (toc_symndx != 0)
12794 {
12795 r_symndx = toc_symndx;
12796 rel->r_addend = toc_addend;
12797 }
12798 r_type = R_PPC64_TPREL16_HA;
12799 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12800 if (offset != (bfd_vma) -1)
12801 {
12802 rel[1].r_info = ELF64_R_INFO (r_symndx,
12803 R_PPC64_TPREL16_LO);
12804 rel[1].r_offset = offset + d_offset;
12805 rel[1].r_addend = rel->r_addend;
12806 }
12807 }
12808 bfd_put_32 (output_bfd, insn1,
12809 contents + rel->r_offset - d_offset);
12810 if (offset != (bfd_vma) -1)
12811 {
12812 insn3 = bfd_get_32 (output_bfd,
12813 contents + offset + 4);
12814 if (insn3 == NOP
12815 || insn3 == CROR_151515 || insn3 == CROR_313131)
12816 {
12817 rel[1].r_offset += 4;
12818 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12819 insn2 = NOP;
12820 }
12821 bfd_put_32 (output_bfd, insn2, contents + offset);
12822 }
12823 if ((tls_mask & tls_gd) == 0
12824 && (tls_gd == 0 || toc_symndx != 0))
12825 {
12826 /* We changed the symbol. Start over in order
12827 to get h, sym, sec etc. right. */
12828 rel--;
12829 continue;
12830 }
12831 }
12832 break;
12833
12834 case R_PPC64_TLSGD:
12835 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12836 {
12837 unsigned int insn2, insn3;
12838 bfd_vma offset = rel->r_offset;
12839
12840 if ((tls_mask & TLS_TPRELGD) != 0)
12841 {
12842 /* IE */
12843 r_type = R_PPC64_NONE;
12844 insn2 = 0x7c636a14; /* add 3,3,13 */
12845 }
12846 else
12847 {
12848 /* LE */
12849 if (toc_symndx != 0)
12850 {
12851 r_symndx = toc_symndx;
12852 rel->r_addend = toc_addend;
12853 }
12854 r_type = R_PPC64_TPREL16_LO;
12855 rel->r_offset = offset + d_offset;
12856 insn2 = 0x38630000; /* addi 3,3,0 */
12857 }
12858 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12859 /* Zap the reloc on the _tls_get_addr call too. */
12860 BFD_ASSERT (offset == rel[1].r_offset);
12861 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12862 insn3 = bfd_get_32 (output_bfd,
12863 contents + offset + 4);
12864 if (insn3 == NOP
12865 || insn3 == CROR_151515 || insn3 == CROR_313131)
12866 {
12867 rel->r_offset += 4;
12868 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12869 insn2 = NOP;
12870 }
12871 bfd_put_32 (output_bfd, insn2, contents + offset);
12872 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
12873 {
12874 rel--;
12875 continue;
12876 }
12877 }
12878 break;
12879
12880 case R_PPC64_TLSLD:
12881 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12882 {
12883 unsigned int insn2, insn3;
12884 bfd_vma offset = rel->r_offset;
12885
12886 if (toc_symndx)
12887 sec = local_sections[toc_symndx];
12888 for (r_symndx = 0;
12889 r_symndx < symtab_hdr->sh_info;
12890 r_symndx++)
12891 if (local_sections[r_symndx] == sec)
12892 break;
12893 if (r_symndx >= symtab_hdr->sh_info)
12894 r_symndx = STN_UNDEF;
12895 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
12896 if (r_symndx != STN_UNDEF)
12897 rel->r_addend -= (local_syms[r_symndx].st_value
12898 + sec->output_offset
12899 + sec->output_section->vma);
12900
12901 r_type = R_PPC64_TPREL16_LO;
12902 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12903 rel->r_offset = offset + d_offset;
12904 /* Zap the reloc on the _tls_get_addr call too. */
12905 BFD_ASSERT (offset == rel[1].r_offset);
12906 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12907 insn2 = 0x38630000; /* addi 3,3,0 */
12908 insn3 = bfd_get_32 (output_bfd,
12909 contents + offset + 4);
12910 if (insn3 == NOP
12911 || insn3 == CROR_151515 || insn3 == CROR_313131)
12912 {
12913 rel->r_offset += 4;
12914 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12915 insn2 = NOP;
12916 }
12917 bfd_put_32 (output_bfd, insn2, contents + offset);
12918 rel--;
12919 continue;
12920 }
12921 break;
12922
12923 case R_PPC64_DTPMOD64:
12924 if (rel + 1 < relend
12925 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
12926 && rel[1].r_offset == rel->r_offset + 8)
12927 {
12928 if ((tls_mask & TLS_GD) == 0)
12929 {
12930 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
12931 if ((tls_mask & TLS_TPRELGD) != 0)
12932 r_type = R_PPC64_TPREL64;
12933 else
12934 {
12935 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
12936 r_type = R_PPC64_NONE;
12937 }
12938 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12939 }
12940 }
12941 else
12942 {
12943 if ((tls_mask & TLS_LD) == 0)
12944 {
12945 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
12946 r_type = R_PPC64_NONE;
12947 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12948 }
12949 }
12950 break;
12951
12952 case R_PPC64_TPREL64:
12953 if ((tls_mask & TLS_TPREL) == 0)
12954 {
12955 r_type = R_PPC64_NONE;
12956 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12957 }
12958 break;
12959 }
12960
12961 /* Handle other relocations that tweak non-addend part of insn. */
12962 insn = 0;
12963 max_br_offset = 1 << 25;
12964 addend = rel->r_addend;
12965 reloc_dest = DEST_NORMAL;
12966 switch (r_type)
12967 {
12968 default:
12969 break;
12970
12971 case R_PPC64_TOCSAVE:
12972 if (relocation + addend == (rel->r_offset
12973 + input_section->output_offset
12974 + input_section->output_section->vma)
12975 && tocsave_find (htab, NO_INSERT,
12976 &local_syms, rel, input_bfd))
12977 {
12978 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
12979 if (insn == NOP
12980 || insn == CROR_151515 || insn == CROR_313131)
12981 bfd_put_32 (input_bfd, STD_R2_40R1,
12982 contents + rel->r_offset);
12983 }
12984 break;
12985
12986 /* Branch taken prediction relocations. */
12987 case R_PPC64_ADDR14_BRTAKEN:
12988 case R_PPC64_REL14_BRTAKEN:
12989 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
12990 /* Fall thru. */
12991
12992 /* Branch not taken prediction relocations. */
12993 case R_PPC64_ADDR14_BRNTAKEN:
12994 case R_PPC64_REL14_BRNTAKEN:
12995 insn |= bfd_get_32 (output_bfd,
12996 contents + rel->r_offset) & ~(0x01 << 21);
12997 /* Fall thru. */
12998
12999 case R_PPC64_REL14:
13000 max_br_offset = 1 << 15;
13001 /* Fall thru. */
13002
13003 case R_PPC64_REL24:
13004 /* Calls to functions with a different TOC, such as calls to
13005 shared objects, need to alter the TOC pointer. This is
13006 done using a linkage stub. A REL24 branching to these
13007 linkage stubs needs to be followed by a nop, as the nop
13008 will be replaced with an instruction to restore the TOC
13009 base pointer. */
13010 fdh = h;
13011 if (h != NULL
13012 && h->oh != NULL
13013 && h->oh->is_func_descriptor)
13014 fdh = ppc_follow_link (h->oh);
13015 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
13016 htab);
13017 if (stub_entry != NULL
13018 && (stub_entry->stub_type == ppc_stub_plt_call
13019 || stub_entry->stub_type == ppc_stub_plt_call_r2save
13020 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
13021 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
13022 {
13023 bfd_boolean can_plt_call = FALSE;
13024
13025 /* All of these stubs will modify r2, so there must be a
13026 branch and link followed by a nop. The nop is
13027 replaced by an insn to restore r2. */
13028 if (rel->r_offset + 8 <= input_section->size)
13029 {
13030 unsigned long br;
13031
13032 br = bfd_get_32 (input_bfd,
13033 contents + rel->r_offset);
13034 if ((br & 1) != 0)
13035 {
13036 unsigned long nop;
13037
13038 nop = bfd_get_32 (input_bfd,
13039 contents + rel->r_offset + 4);
13040 if (nop == NOP
13041 || nop == CROR_151515 || nop == CROR_313131)
13042 {
13043 if (h != NULL
13044 && (h == htab->tls_get_addr_fd
13045 || h == htab->tls_get_addr)
13046 && !htab->no_tls_get_addr_opt)
13047 {
13048 /* Special stub used, leave nop alone. */
13049 }
13050 else
13051 bfd_put_32 (input_bfd, LD_R2_40R1,
13052 contents + rel->r_offset + 4);
13053 can_plt_call = TRUE;
13054 }
13055 }
13056 }
13057
13058 if (!can_plt_call && h != NULL)
13059 {
13060 const char *name = h->elf.root.root.string;
13061
13062 if (*name == '.')
13063 ++name;
13064
13065 if (strncmp (name, "__libc_start_main", 17) == 0
13066 && (name[17] == 0 || name[17] == '@'))
13067 {
13068 /* Allow crt1 branch to go via a toc adjusting
13069 stub. Other calls that never return could do
13070 the same, if we could detect such. */
13071 can_plt_call = TRUE;
13072 }
13073 }
13074
13075 if (!can_plt_call)
13076 {
13077 /* g++ as of 20130507 emits self-calls without a
13078 following nop. This is arguably wrong since we
13079 have conflicting information. On the one hand a
13080 global symbol and on the other a local call
13081 sequence, but don't error for this special case.
13082 It isn't possible to cheaply verify we have
13083 exactly such a call. Allow all calls to the same
13084 section. */
13085 asection *code_sec = sec;
13086
13087 if (get_opd_info (sec) != NULL)
13088 {
13089 bfd_vma off = (relocation + addend
13090 - sec->output_section->vma
13091 - sec->output_offset);
13092
13093 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
13094 }
13095 if (code_sec == input_section)
13096 can_plt_call = TRUE;
13097 }
13098
13099 if (!can_plt_call)
13100 {
13101 info->callbacks->einfo
13102 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13103 "recompile with -fPIC"),
13104 input_bfd, input_section, rel->r_offset, sym_name);
13105
13106 bfd_set_error (bfd_error_bad_value);
13107 ret = FALSE;
13108 }
13109
13110 if (can_plt_call
13111 && (stub_entry->stub_type == ppc_stub_plt_call
13112 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
13113 unresolved_reloc = FALSE;
13114 }
13115
13116 if ((stub_entry == NULL
13117 || stub_entry->stub_type == ppc_stub_long_branch
13118 || stub_entry->stub_type == ppc_stub_plt_branch)
13119 && get_opd_info (sec) != NULL)
13120 {
13121 /* The branch destination is the value of the opd entry. */
13122 bfd_vma off = (relocation + addend
13123 - sec->output_section->vma
13124 - sec->output_offset);
13125 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
13126 if (dest != (bfd_vma) -1)
13127 {
13128 relocation = dest;
13129 addend = 0;
13130 reloc_dest = DEST_OPD;
13131 }
13132 }
13133
13134 /* If the branch is out of reach we ought to have a long
13135 branch stub. */
13136 from = (rel->r_offset
13137 + input_section->output_offset
13138 + input_section->output_section->vma);
13139
13140 if (stub_entry != NULL
13141 && (stub_entry->stub_type == ppc_stub_long_branch
13142 || stub_entry->stub_type == ppc_stub_plt_branch)
13143 && (r_type == R_PPC64_ADDR14_BRTAKEN
13144 || r_type == R_PPC64_ADDR14_BRNTAKEN
13145 || (relocation + addend - from + max_br_offset
13146 < 2 * max_br_offset)))
13147 /* Don't use the stub if this branch is in range. */
13148 stub_entry = NULL;
13149
13150 if (stub_entry != NULL)
13151 {
13152 /* Munge up the value and addend so that we call the stub
13153 rather than the procedure directly. */
13154 relocation = (stub_entry->stub_offset
13155 + stub_entry->stub_sec->output_offset
13156 + stub_entry->stub_sec->output_section->vma);
13157 addend = 0;
13158 reloc_dest = DEST_STUB;
13159
13160 if ((stub_entry->stub_type == ppc_stub_plt_call
13161 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13162 && (ALWAYS_EMIT_R2SAVE
13163 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13164 && rel + 1 < relend
13165 && rel[1].r_offset == rel->r_offset + 4
13166 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13167 relocation += 4;
13168 }
13169
13170 if (insn != 0)
13171 {
13172 if (is_isa_v2)
13173 {
13174 /* Set 'a' bit. This is 0b00010 in BO field for branch
13175 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13176 for branch on CTR insns (BO == 1a00t or 1a01t). */
13177 if ((insn & (0x14 << 21)) == (0x04 << 21))
13178 insn |= 0x02 << 21;
13179 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13180 insn |= 0x08 << 21;
13181 else
13182 break;
13183 }
13184 else
13185 {
13186 /* Invert 'y' bit if not the default. */
13187 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13188 insn ^= 0x01 << 21;
13189 }
13190
13191 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13192 }
13193
13194 /* NOP out calls to undefined weak functions.
13195 We can thus call a weak function without first
13196 checking whether the function is defined. */
13197 else if (h != NULL
13198 && h->elf.root.type == bfd_link_hash_undefweak
13199 && h->elf.dynindx == -1
13200 && r_type == R_PPC64_REL24
13201 && relocation == 0
13202 && addend == 0)
13203 {
13204 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13205 continue;
13206 }
13207 break;
13208 }
13209
13210 /* Set `addend'. */
13211 tls_type = 0;
13212 switch (r_type)
13213 {
13214 default:
13215 info->callbacks->einfo
13216 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13217 input_bfd, (int) r_type, sym_name);
13218
13219 bfd_set_error (bfd_error_bad_value);
13220 ret = FALSE;
13221 continue;
13222
13223 case R_PPC64_NONE:
13224 case R_PPC64_TLS:
13225 case R_PPC64_TLSGD:
13226 case R_PPC64_TLSLD:
13227 case R_PPC64_TOCSAVE:
13228 case R_PPC64_GNU_VTINHERIT:
13229 case R_PPC64_GNU_VTENTRY:
13230 continue;
13231
13232 /* GOT16 relocations. Like an ADDR16 using the symbol's
13233 address in the GOT as relocation value instead of the
13234 symbol's value itself. Also, create a GOT entry for the
13235 symbol and put the symbol value there. */
13236 case R_PPC64_GOT_TLSGD16:
13237 case R_PPC64_GOT_TLSGD16_LO:
13238 case R_PPC64_GOT_TLSGD16_HI:
13239 case R_PPC64_GOT_TLSGD16_HA:
13240 tls_type = TLS_TLS | TLS_GD;
13241 goto dogot;
13242
13243 case R_PPC64_GOT_TLSLD16:
13244 case R_PPC64_GOT_TLSLD16_LO:
13245 case R_PPC64_GOT_TLSLD16_HI:
13246 case R_PPC64_GOT_TLSLD16_HA:
13247 tls_type = TLS_TLS | TLS_LD;
13248 goto dogot;
13249
13250 case R_PPC64_GOT_TPREL16_DS:
13251 case R_PPC64_GOT_TPREL16_LO_DS:
13252 case R_PPC64_GOT_TPREL16_HI:
13253 case R_PPC64_GOT_TPREL16_HA:
13254 tls_type = TLS_TLS | TLS_TPREL;
13255 goto dogot;
13256
13257 case R_PPC64_GOT_DTPREL16_DS:
13258 case R_PPC64_GOT_DTPREL16_LO_DS:
13259 case R_PPC64_GOT_DTPREL16_HI:
13260 case R_PPC64_GOT_DTPREL16_HA:
13261 tls_type = TLS_TLS | TLS_DTPREL;
13262 goto dogot;
13263
13264 case R_PPC64_GOT16:
13265 case R_PPC64_GOT16_LO:
13266 case R_PPC64_GOT16_HI:
13267 case R_PPC64_GOT16_HA:
13268 case R_PPC64_GOT16_DS:
13269 case R_PPC64_GOT16_LO_DS:
13270 dogot:
13271 {
13272 /* Relocation is to the entry for this symbol in the global
13273 offset table. */
13274 asection *got;
13275 bfd_vma *offp;
13276 bfd_vma off;
13277 unsigned long indx = 0;
13278 struct got_entry *ent;
13279
13280 if (tls_type == (TLS_TLS | TLS_LD)
13281 && (h == NULL
13282 || !h->elf.def_dynamic))
13283 ent = ppc64_tlsld_got (input_bfd);
13284 else
13285 {
13286
13287 if (h != NULL)
13288 {
13289 bfd_boolean dyn = htab->elf.dynamic_sections_created;
13290 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
13291 &h->elf)
13292 || (info->shared
13293 && SYMBOL_CALLS_LOCAL (info, &h->elf)))
13294 /* This is actually a static link, or it is a
13295 -Bsymbolic link and the symbol is defined
13296 locally, or the symbol was forced to be local
13297 because of a version file. */
13298 ;
13299 else
13300 {
13301 BFD_ASSERT (h->elf.dynindx != -1);
13302 indx = h->elf.dynindx;
13303 unresolved_reloc = FALSE;
13304 }
13305 ent = h->elf.got.glist;
13306 }
13307 else
13308 {
13309 if (local_got_ents == NULL)
13310 abort ();
13311 ent = local_got_ents[r_symndx];
13312 }
13313
13314 for (; ent != NULL; ent = ent->next)
13315 if (ent->addend == orig_rel.r_addend
13316 && ent->owner == input_bfd
13317 && ent->tls_type == tls_type)
13318 break;
13319 }
13320
13321 if (ent == NULL)
13322 abort ();
13323 if (ent->is_indirect)
13324 ent = ent->got.ent;
13325 offp = &ent->got.offset;
13326 got = ppc64_elf_tdata (ent->owner)->got;
13327 if (got == NULL)
13328 abort ();
13329
13330 /* The offset must always be a multiple of 8. We use the
13331 least significant bit to record whether we have already
13332 processed this entry. */
13333 off = *offp;
13334 if ((off & 1) != 0)
13335 off &= ~1;
13336 else
13337 {
13338 /* Generate relocs for the dynamic linker, except in
13339 the case of TLSLD where we'll use one entry per
13340 module. */
13341 asection *relgot;
13342 bfd_boolean ifunc;
13343
13344 *offp = off | 1;
13345 relgot = NULL;
13346 ifunc = (h != NULL
13347 ? h->elf.type == STT_GNU_IFUNC
13348 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
13349 if (ifunc)
13350 relgot = htab->reliplt;
13351 else if ((info->shared || indx != 0)
13352 && (h == NULL
13353 || (tls_type == (TLS_TLS | TLS_LD)
13354 && !h->elf.def_dynamic)
13355 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13356 || h->elf.root.type != bfd_link_hash_undefweak))
13357 relgot = ppc64_elf_tdata (ent->owner)->relgot;
13358 if (relgot != NULL)
13359 {
13360 outrel.r_offset = (got->output_section->vma
13361 + got->output_offset
13362 + off);
13363 outrel.r_addend = addend;
13364 if (tls_type & (TLS_LD | TLS_GD))
13365 {
13366 outrel.r_addend = 0;
13367 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
13368 if (tls_type == (TLS_TLS | TLS_GD))
13369 {
13370 loc = relgot->contents;
13371 loc += (relgot->reloc_count++
13372 * sizeof (Elf64_External_Rela));
13373 bfd_elf64_swap_reloca_out (output_bfd,
13374 &outrel, loc);
13375 outrel.r_offset += 8;
13376 outrel.r_addend = addend;
13377 outrel.r_info
13378 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13379 }
13380 }
13381 else if (tls_type == (TLS_TLS | TLS_DTPREL))
13382 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13383 else if (tls_type == (TLS_TLS | TLS_TPREL))
13384 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
13385 else if (indx != 0)
13386 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
13387 else
13388 {
13389 if (ifunc)
13390 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13391 else
13392 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13393
13394 /* Write the .got section contents for the sake
13395 of prelink. */
13396 loc = got->contents + off;
13397 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
13398 loc);
13399 }
13400
13401 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
13402 {
13403 outrel.r_addend += relocation;
13404 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
13405 outrel.r_addend -= htab->elf.tls_sec->vma;
13406 }
13407 loc = relgot->contents;
13408 loc += (relgot->reloc_count++
13409 * sizeof (Elf64_External_Rela));
13410 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13411 }
13412
13413 /* Init the .got section contents here if we're not
13414 emitting a reloc. */
13415 else
13416 {
13417 relocation += addend;
13418 if (tls_type == (TLS_TLS | TLS_LD))
13419 relocation = 1;
13420 else if (tls_type != 0)
13421 {
13422 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
13423 if (tls_type == (TLS_TLS | TLS_TPREL))
13424 relocation += DTP_OFFSET - TP_OFFSET;
13425
13426 if (tls_type == (TLS_TLS | TLS_GD))
13427 {
13428 bfd_put_64 (output_bfd, relocation,
13429 got->contents + off + 8);
13430 relocation = 1;
13431 }
13432 }
13433
13434 bfd_put_64 (output_bfd, relocation,
13435 got->contents + off);
13436 }
13437 }
13438
13439 if (off >= (bfd_vma) -2)
13440 abort ();
13441
13442 relocation = got->output_section->vma + got->output_offset + off;
13443 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
13444 }
13445 break;
13446
13447 case R_PPC64_PLT16_HA:
13448 case R_PPC64_PLT16_HI:
13449 case R_PPC64_PLT16_LO:
13450 case R_PPC64_PLT32:
13451 case R_PPC64_PLT64:
13452 /* Relocation is to the entry for this symbol in the
13453 procedure linkage table. */
13454
13455 /* Resolve a PLT reloc against a local symbol directly,
13456 without using the procedure linkage table. */
13457 if (h == NULL)
13458 break;
13459
13460 /* It's possible that we didn't make a PLT entry for this
13461 symbol. This happens when statically linking PIC code,
13462 or when using -Bsymbolic. Go find a match if there is a
13463 PLT entry. */
13464 if (htab->plt != NULL)
13465 {
13466 struct plt_entry *ent;
13467 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
13468 if (ent->addend == orig_rel.r_addend
13469 && ent->plt.offset != (bfd_vma) -1)
13470 {
13471 relocation = (htab->plt->output_section->vma
13472 + htab->plt->output_offset
13473 + ent->plt.offset);
13474 unresolved_reloc = FALSE;
13475 }
13476 }
13477 break;
13478
13479 case R_PPC64_TOC:
13480 /* Relocation value is TOC base. */
13481 relocation = TOCstart;
13482 if (r_symndx == STN_UNDEF)
13483 relocation += htab->stub_group[input_section->id].toc_off;
13484 else if (unresolved_reloc)
13485 ;
13486 else if (sec != NULL && sec->id <= htab->top_id)
13487 relocation += htab->stub_group[sec->id].toc_off;
13488 else
13489 unresolved_reloc = TRUE;
13490 goto dodyn;
13491
13492 /* TOC16 relocs. We want the offset relative to the TOC base,
13493 which is the address of the start of the TOC plus 0x8000.
13494 The TOC consists of sections .got, .toc, .tocbss, and .plt,
13495 in this order. */
13496 case R_PPC64_TOC16:
13497 case R_PPC64_TOC16_LO:
13498 case R_PPC64_TOC16_HI:
13499 case R_PPC64_TOC16_DS:
13500 case R_PPC64_TOC16_LO_DS:
13501 case R_PPC64_TOC16_HA:
13502 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
13503 break;
13504
13505 /* Relocate against the beginning of the section. */
13506 case R_PPC64_SECTOFF:
13507 case R_PPC64_SECTOFF_LO:
13508 case R_PPC64_SECTOFF_HI:
13509 case R_PPC64_SECTOFF_DS:
13510 case R_PPC64_SECTOFF_LO_DS:
13511 case R_PPC64_SECTOFF_HA:
13512 if (sec != NULL)
13513 addend -= sec->output_section->vma;
13514 break;
13515
13516 case R_PPC64_REL16:
13517 case R_PPC64_REL16_LO:
13518 case R_PPC64_REL16_HI:
13519 case R_PPC64_REL16_HA:
13520 break;
13521
13522 case R_PPC64_REL14:
13523 case R_PPC64_REL14_BRNTAKEN:
13524 case R_PPC64_REL14_BRTAKEN:
13525 case R_PPC64_REL24:
13526 break;
13527
13528 case R_PPC64_TPREL16:
13529 case R_PPC64_TPREL16_LO:
13530 case R_PPC64_TPREL16_HI:
13531 case R_PPC64_TPREL16_HA:
13532 case R_PPC64_TPREL16_DS:
13533 case R_PPC64_TPREL16_LO_DS:
13534 case R_PPC64_TPREL16_HIGHER:
13535 case R_PPC64_TPREL16_HIGHERA:
13536 case R_PPC64_TPREL16_HIGHEST:
13537 case R_PPC64_TPREL16_HIGHESTA:
13538 if (h != NULL
13539 && h->elf.root.type == bfd_link_hash_undefweak
13540 && h->elf.dynindx == -1)
13541 {
13542 /* Make this relocation against an undefined weak symbol
13543 resolve to zero. This is really just a tweak, since
13544 code using weak externs ought to check that they are
13545 defined before using them. */
13546 bfd_byte *p = contents + rel->r_offset - d_offset;
13547
13548 insn = bfd_get_32 (output_bfd, p);
13549 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
13550 if (insn != 0)
13551 bfd_put_32 (output_bfd, insn, p);
13552 break;
13553 }
13554 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
13555 if (info->shared)
13556 /* The TPREL16 relocs shouldn't really be used in shared
13557 libs as they will result in DT_TEXTREL being set, but
13558 support them anyway. */
13559 goto dodyn;
13560 break;
13561
13562 case R_PPC64_DTPREL16:
13563 case R_PPC64_DTPREL16_LO:
13564 case R_PPC64_DTPREL16_HI:
13565 case R_PPC64_DTPREL16_HA:
13566 case R_PPC64_DTPREL16_DS:
13567 case R_PPC64_DTPREL16_LO_DS:
13568 case R_PPC64_DTPREL16_HIGHER:
13569 case R_PPC64_DTPREL16_HIGHERA:
13570 case R_PPC64_DTPREL16_HIGHEST:
13571 case R_PPC64_DTPREL16_HIGHESTA:
13572 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
13573 break;
13574
13575 case R_PPC64_DTPMOD64:
13576 relocation = 1;
13577 addend = 0;
13578 goto dodyn;
13579
13580 case R_PPC64_TPREL64:
13581 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
13582 goto dodyn;
13583
13584 case R_PPC64_DTPREL64:
13585 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
13586 /* Fall thru */
13587
13588 /* Relocations that may need to be propagated if this is a
13589 dynamic object. */
13590 case R_PPC64_REL30:
13591 case R_PPC64_REL32:
13592 case R_PPC64_REL64:
13593 case R_PPC64_ADDR14:
13594 case R_PPC64_ADDR14_BRNTAKEN:
13595 case R_PPC64_ADDR14_BRTAKEN:
13596 case R_PPC64_ADDR16:
13597 case R_PPC64_ADDR16_DS:
13598 case R_PPC64_ADDR16_HA:
13599 case R_PPC64_ADDR16_HI:
13600 case R_PPC64_ADDR16_HIGHER:
13601 case R_PPC64_ADDR16_HIGHERA:
13602 case R_PPC64_ADDR16_HIGHEST:
13603 case R_PPC64_ADDR16_HIGHESTA:
13604 case R_PPC64_ADDR16_LO:
13605 case R_PPC64_ADDR16_LO_DS:
13606 case R_PPC64_ADDR24:
13607 case R_PPC64_ADDR32:
13608 case R_PPC64_ADDR64:
13609 case R_PPC64_UADDR16:
13610 case R_PPC64_UADDR32:
13611 case R_PPC64_UADDR64:
13612 dodyn:
13613 if ((input_section->flags & SEC_ALLOC) == 0)
13614 break;
13615
13616 if (NO_OPD_RELOCS && is_opd)
13617 break;
13618
13619 if ((info->shared
13620 && (h == NULL
13621 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13622 || h->elf.root.type != bfd_link_hash_undefweak)
13623 && (must_be_dyn_reloc (info, r_type)
13624 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
13625 || (ELIMINATE_COPY_RELOCS
13626 && !info->shared
13627 && h != NULL
13628 && h->elf.dynindx != -1
13629 && !h->elf.non_got_ref
13630 && !h->elf.def_regular)
13631 || (!info->shared
13632 && (h != NULL
13633 ? h->elf.type == STT_GNU_IFUNC
13634 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
13635 {
13636 bfd_boolean skip, relocate;
13637 asection *sreloc;
13638 bfd_vma out_off;
13639
13640 /* When generating a dynamic object, these relocations
13641 are copied into the output file to be resolved at run
13642 time. */
13643
13644 skip = FALSE;
13645 relocate = FALSE;
13646
13647 out_off = _bfd_elf_section_offset (output_bfd, info,
13648 input_section, rel->r_offset);
13649 if (out_off == (bfd_vma) -1)
13650 skip = TRUE;
13651 else if (out_off == (bfd_vma) -2)
13652 skip = TRUE, relocate = TRUE;
13653 out_off += (input_section->output_section->vma
13654 + input_section->output_offset);
13655 outrel.r_offset = out_off;
13656 outrel.r_addend = rel->r_addend;
13657
13658 /* Optimize unaligned reloc use. */
13659 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
13660 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
13661 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
13662 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
13663 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
13664 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
13665 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
13666 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
13667 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
13668
13669 if (skip)
13670 memset (&outrel, 0, sizeof outrel);
13671 else if (!SYMBOL_CALLS_LOCAL (info, &h->elf)
13672 && !is_opd
13673 && r_type != R_PPC64_TOC)
13674 {
13675 BFD_ASSERT (h->elf.dynindx != -1);
13676 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
13677 }
13678 else
13679 {
13680 /* This symbol is local, or marked to become local,
13681 or this is an opd section reloc which must point
13682 at a local function. */
13683 outrel.r_addend += relocation;
13684 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
13685 {
13686 if (is_opd && h != NULL)
13687 {
13688 /* Lie about opd entries. This case occurs
13689 when building shared libraries and we
13690 reference a function in another shared
13691 lib. The same thing happens for a weak
13692 definition in an application that's
13693 overridden by a strong definition in a
13694 shared lib. (I believe this is a generic
13695 bug in binutils handling of weak syms.)
13696 In these cases we won't use the opd
13697 entry in this lib. */
13698 unresolved_reloc = FALSE;
13699 }
13700 if (!is_opd
13701 && r_type == R_PPC64_ADDR64
13702 && (h != NULL
13703 ? h->elf.type == STT_GNU_IFUNC
13704 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
13705 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13706 else
13707 {
13708 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13709
13710 /* We need to relocate .opd contents for ld.so.
13711 Prelink also wants simple and consistent rules
13712 for relocs. This make all RELATIVE relocs have
13713 *r_offset equal to r_addend. */
13714 relocate = TRUE;
13715 }
13716 }
13717 else
13718 {
13719 long indx = 0;
13720
13721 if (h != NULL
13722 ? h->elf.type == STT_GNU_IFUNC
13723 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13724 {
13725 info->callbacks->einfo
13726 (_("%P: %H: %s for indirect "
13727 "function `%T' unsupported\n"),
13728 input_bfd, input_section, rel->r_offset,
13729 ppc64_elf_howto_table[r_type]->name,
13730 sym_name);
13731 ret = FALSE;
13732 }
13733 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
13734 ;
13735 else if (sec == NULL || sec->owner == NULL)
13736 {
13737 bfd_set_error (bfd_error_bad_value);
13738 return FALSE;
13739 }
13740 else
13741 {
13742 asection *osec;
13743
13744 osec = sec->output_section;
13745 indx = elf_section_data (osec)->dynindx;
13746
13747 if (indx == 0)
13748 {
13749 if ((osec->flags & SEC_READONLY) == 0
13750 && htab->elf.data_index_section != NULL)
13751 osec = htab->elf.data_index_section;
13752 else
13753 osec = htab->elf.text_index_section;
13754 indx = elf_section_data (osec)->dynindx;
13755 }
13756 BFD_ASSERT (indx != 0);
13757
13758 /* We are turning this relocation into one
13759 against a section symbol, so subtract out
13760 the output section's address but not the
13761 offset of the input section in the output
13762 section. */
13763 outrel.r_addend -= osec->vma;
13764 }
13765
13766 outrel.r_info = ELF64_R_INFO (indx, r_type);
13767 }
13768 }
13769
13770 sreloc = elf_section_data (input_section)->sreloc;
13771 if (h != NULL
13772 ? h->elf.type == STT_GNU_IFUNC
13773 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13774 sreloc = htab->reliplt;
13775 if (sreloc == NULL)
13776 abort ();
13777
13778 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
13779 >= sreloc->size)
13780 abort ();
13781 loc = sreloc->contents;
13782 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
13783 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13784
13785 /* If this reloc is against an external symbol, it will
13786 be computed at runtime, so there's no need to do
13787 anything now. However, for the sake of prelink ensure
13788 that the section contents are a known value. */
13789 if (! relocate)
13790 {
13791 unresolved_reloc = FALSE;
13792 /* The value chosen here is quite arbitrary as ld.so
13793 ignores section contents except for the special
13794 case of .opd where the contents might be accessed
13795 before relocation. Choose zero, as that won't
13796 cause reloc overflow. */
13797 relocation = 0;
13798 addend = 0;
13799 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
13800 to improve backward compatibility with older
13801 versions of ld. */
13802 if (r_type == R_PPC64_ADDR64)
13803 addend = outrel.r_addend;
13804 /* Adjust pc_relative relocs to have zero in *r_offset. */
13805 else if (ppc64_elf_howto_table[r_type]->pc_relative)
13806 addend = (input_section->output_section->vma
13807 + input_section->output_offset
13808 + rel->r_offset);
13809 }
13810 }
13811 break;
13812
13813 case R_PPC64_COPY:
13814 case R_PPC64_GLOB_DAT:
13815 case R_PPC64_JMP_SLOT:
13816 case R_PPC64_JMP_IREL:
13817 case R_PPC64_RELATIVE:
13818 /* We shouldn't ever see these dynamic relocs in relocatable
13819 files. */
13820 /* Fall through. */
13821
13822 case R_PPC64_PLTGOT16:
13823 case R_PPC64_PLTGOT16_DS:
13824 case R_PPC64_PLTGOT16_HA:
13825 case R_PPC64_PLTGOT16_HI:
13826 case R_PPC64_PLTGOT16_LO:
13827 case R_PPC64_PLTGOT16_LO_DS:
13828 case R_PPC64_PLTREL32:
13829 case R_PPC64_PLTREL64:
13830 /* These ones haven't been implemented yet. */
13831
13832 info->callbacks->einfo
13833 (_("%P: %B: %s is not supported for `%T'\n"),
13834 input_bfd,
13835 ppc64_elf_howto_table[r_type]->name, sym_name);
13836
13837 bfd_set_error (bfd_error_invalid_operation);
13838 ret = FALSE;
13839 continue;
13840 }
13841
13842 /* Multi-instruction sequences that access the TOC can be
13843 optimized, eg. addis ra,r2,0; addi rb,ra,x;
13844 to nop; addi rb,r2,x; */
13845 switch (r_type)
13846 {
13847 default:
13848 break;
13849
13850 case R_PPC64_GOT_TLSLD16_HI:
13851 case R_PPC64_GOT_TLSGD16_HI:
13852 case R_PPC64_GOT_TPREL16_HI:
13853 case R_PPC64_GOT_DTPREL16_HI:
13854 case R_PPC64_GOT16_HI:
13855 case R_PPC64_TOC16_HI:
13856 /* These relocs would only be useful if building up an
13857 offset to later add to r2, perhaps in an indexed
13858 addressing mode instruction. Don't try to optimize.
13859 Unfortunately, the possibility of someone building up an
13860 offset like this or even with the HA relocs, means that
13861 we need to check the high insn when optimizing the low
13862 insn. */
13863 break;
13864
13865 case R_PPC64_GOT_TLSLD16_HA:
13866 case R_PPC64_GOT_TLSGD16_HA:
13867 case R_PPC64_GOT_TPREL16_HA:
13868 case R_PPC64_GOT_DTPREL16_HA:
13869 case R_PPC64_GOT16_HA:
13870 case R_PPC64_TOC16_HA:
13871 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
13872 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
13873 {
13874 bfd_byte *p = contents + (rel->r_offset & ~3);
13875 bfd_put_32 (input_bfd, NOP, p);
13876 }
13877 break;
13878
13879 case R_PPC64_GOT_TLSLD16_LO:
13880 case R_PPC64_GOT_TLSGD16_LO:
13881 case R_PPC64_GOT_TPREL16_LO_DS:
13882 case R_PPC64_GOT_DTPREL16_LO_DS:
13883 case R_PPC64_GOT16_LO:
13884 case R_PPC64_GOT16_LO_DS:
13885 case R_PPC64_TOC16_LO:
13886 case R_PPC64_TOC16_LO_DS:
13887 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
13888 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
13889 {
13890 bfd_byte *p = contents + (rel->r_offset & ~3);
13891 insn = bfd_get_32 (input_bfd, p);
13892 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
13893 {
13894 /* Transform addic to addi when we change reg. */
13895 insn &= ~((0x3f << 26) | (0x1f << 16));
13896 insn |= (14u << 26) | (2 << 16);
13897 }
13898 else
13899 {
13900 insn &= ~(0x1f << 16);
13901 insn |= 2 << 16;
13902 }
13903 bfd_put_32 (input_bfd, insn, p);
13904 }
13905 break;
13906 }
13907
13908 /* Do any further special processing. */
13909 switch (r_type)
13910 {
13911 default:
13912 break;
13913
13914 case R_PPC64_ADDR16_HA:
13915 case R_PPC64_REL16_HA:
13916 case R_PPC64_ADDR16_HIGHERA:
13917 case R_PPC64_ADDR16_HIGHESTA:
13918 case R_PPC64_TOC16_HA:
13919 case R_PPC64_SECTOFF_HA:
13920 case R_PPC64_TPREL16_HA:
13921 case R_PPC64_DTPREL16_HA:
13922 case R_PPC64_TPREL16_HIGHER:
13923 case R_PPC64_TPREL16_HIGHERA:
13924 case R_PPC64_TPREL16_HIGHEST:
13925 case R_PPC64_TPREL16_HIGHESTA:
13926 case R_PPC64_DTPREL16_HIGHER:
13927 case R_PPC64_DTPREL16_HIGHERA:
13928 case R_PPC64_DTPREL16_HIGHEST:
13929 case R_PPC64_DTPREL16_HIGHESTA:
13930 /* It's just possible that this symbol is a weak symbol
13931 that's not actually defined anywhere. In that case,
13932 'sec' would be NULL, and we should leave the symbol
13933 alone (it will be set to zero elsewhere in the link). */
13934 if (sec == NULL)
13935 break;
13936 /* Fall thru */
13937
13938 case R_PPC64_GOT16_HA:
13939 case R_PPC64_PLTGOT16_HA:
13940 case R_PPC64_PLT16_HA:
13941 case R_PPC64_GOT_TLSGD16_HA:
13942 case R_PPC64_GOT_TLSLD16_HA:
13943 case R_PPC64_GOT_TPREL16_HA:
13944 case R_PPC64_GOT_DTPREL16_HA:
13945 /* Add 0x10000 if sign bit in 0:15 is set.
13946 Bits 0:15 are not used. */
13947 addend += 0x8000;
13948 break;
13949
13950 case R_PPC64_ADDR16_DS:
13951 case R_PPC64_ADDR16_LO_DS:
13952 case R_PPC64_GOT16_DS:
13953 case R_PPC64_GOT16_LO_DS:
13954 case R_PPC64_PLT16_LO_DS:
13955 case R_PPC64_SECTOFF_DS:
13956 case R_PPC64_SECTOFF_LO_DS:
13957 case R_PPC64_TOC16_DS:
13958 case R_PPC64_TOC16_LO_DS:
13959 case R_PPC64_PLTGOT16_DS:
13960 case R_PPC64_PLTGOT16_LO_DS:
13961 case R_PPC64_GOT_TPREL16_DS:
13962 case R_PPC64_GOT_TPREL16_LO_DS:
13963 case R_PPC64_GOT_DTPREL16_DS:
13964 case R_PPC64_GOT_DTPREL16_LO_DS:
13965 case R_PPC64_TPREL16_DS:
13966 case R_PPC64_TPREL16_LO_DS:
13967 case R_PPC64_DTPREL16_DS:
13968 case R_PPC64_DTPREL16_LO_DS:
13969 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
13970 mask = 3;
13971 /* If this reloc is against an lq insn, then the value must be
13972 a multiple of 16. This is somewhat of a hack, but the
13973 "correct" way to do this by defining _DQ forms of all the
13974 _DS relocs bloats all reloc switches in this file. It
13975 doesn't seem to make much sense to use any of these relocs
13976 in data, so testing the insn should be safe. */
13977 if ((insn & (0x3f << 26)) == (56u << 26))
13978 mask = 15;
13979 if (((relocation + addend) & mask) != 0)
13980 {
13981 info->callbacks->einfo
13982 (_("%P: %H: error: %s not a multiple of %u\n"),
13983 input_bfd, input_section, rel->r_offset,
13984 ppc64_elf_howto_table[r_type]->name,
13985 mask + 1);
13986 bfd_set_error (bfd_error_bad_value);
13987 ret = FALSE;
13988 continue;
13989 }
13990 break;
13991 }
13992
13993 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13994 because such sections are not SEC_ALLOC and thus ld.so will
13995 not process them. */
13996 if (unresolved_reloc
13997 && !((input_section->flags & SEC_DEBUGGING) != 0
13998 && h->elf.def_dynamic)
13999 && _bfd_elf_section_offset (output_bfd, info, input_section,
14000 rel->r_offset) != (bfd_vma) -1)
14001 {
14002 info->callbacks->einfo
14003 (_("%P: %H: unresolvable %s against `%T'\n"),
14004 input_bfd, input_section, rel->r_offset,
14005 ppc64_elf_howto_table[(int) r_type]->name,
14006 h->elf.root.root.string);
14007 ret = FALSE;
14008 }
14009
14010 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
14011 input_bfd,
14012 input_section,
14013 contents,
14014 rel->r_offset,
14015 relocation,
14016 addend);
14017
14018 if (r != bfd_reloc_ok)
14019 {
14020 char *more_info = NULL;
14021 const char *reloc_name = ppc64_elf_howto_table[r_type]->name;
14022
14023 if (reloc_dest != DEST_NORMAL)
14024 {
14025 more_info = bfd_malloc (strlen (reloc_name) + 8);
14026 if (more_info != NULL)
14027 {
14028 strcpy (more_info, reloc_name);
14029 strcat (more_info, (reloc_dest == DEST_OPD
14030 ? " (OPD)" : " (stub)"));
14031 reloc_name = more_info;
14032 }
14033 }
14034
14035 if (r == bfd_reloc_overflow)
14036 {
14037 if (warned)
14038 continue;
14039 if (h != NULL
14040 && h->elf.root.type == bfd_link_hash_undefweak
14041 && ppc64_elf_howto_table[r_type]->pc_relative)
14042 {
14043 /* Assume this is a call protected by other code that
14044 detects the symbol is undefined. If this is the case,
14045 we can safely ignore the overflow. If not, the
14046 program is hosed anyway, and a little warning isn't
14047 going to help. */
14048
14049 continue;
14050 }
14051
14052 if (!((*info->callbacks->reloc_overflow)
14053 (info, &h->elf.root, sym_name,
14054 reloc_name, orig_rel.r_addend,
14055 input_bfd, input_section, rel->r_offset)))
14056 return FALSE;
14057 }
14058 else
14059 {
14060 info->callbacks->einfo
14061 (_("%P: %H: %s against `%T': error %d\n"),
14062 input_bfd, input_section, rel->r_offset,
14063 reloc_name, sym_name, (int) r);
14064 ret = FALSE;
14065 }
14066 if (more_info != NULL)
14067 free (more_info);
14068 }
14069 }
14070
14071 /* If we're emitting relocations, then shortly after this function
14072 returns, reloc offsets and addends for this section will be
14073 adjusted. Worse, reloc symbol indices will be for the output
14074 file rather than the input. Save a copy of the relocs for
14075 opd_entry_value. */
14076 if (is_opd && (info->emitrelocations || info->relocatable))
14077 {
14078 bfd_size_type amt;
14079 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
14080 rel = bfd_alloc (input_bfd, amt);
14081 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
14082 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
14083 if (rel == NULL)
14084 return FALSE;
14085 memcpy (rel, relocs, amt);
14086 }
14087 return ret;
14088 }
14089
14090 /* Adjust the value of any local symbols in opd sections. */
14091
14092 static int
14093 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
14094 const char *name ATTRIBUTE_UNUSED,
14095 Elf_Internal_Sym *elfsym,
14096 asection *input_sec,
14097 struct elf_link_hash_entry *h)
14098 {
14099 struct _opd_sec_data *opd;
14100 long adjust;
14101 bfd_vma value;
14102
14103 if (h != NULL)
14104 return 1;
14105
14106 opd = get_opd_info (input_sec);
14107 if (opd == NULL || opd->adjust == NULL)
14108 return 1;
14109
14110 value = elfsym->st_value - input_sec->output_offset;
14111 if (!info->relocatable)
14112 value -= input_sec->output_section->vma;
14113
14114 adjust = opd->adjust[value / 8];
14115 if (adjust == -1)
14116 return 2;
14117
14118 elfsym->st_value += adjust;
14119 return 1;
14120 }
14121
14122 /* Finish up dynamic symbol handling. We set the contents of various
14123 dynamic sections here. */
14124
14125 static bfd_boolean
14126 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
14127 struct bfd_link_info *info,
14128 struct elf_link_hash_entry *h,
14129 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
14130 {
14131 struct ppc_link_hash_table *htab;
14132 struct plt_entry *ent;
14133 Elf_Internal_Rela rela;
14134 bfd_byte *loc;
14135
14136 htab = ppc_hash_table (info);
14137 if (htab == NULL)
14138 return FALSE;
14139
14140 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14141 if (ent->plt.offset != (bfd_vma) -1)
14142 {
14143 /* This symbol has an entry in the procedure linkage
14144 table. Set it up. */
14145 if (!htab->elf.dynamic_sections_created
14146 || h->dynindx == -1)
14147 {
14148 BFD_ASSERT (h->type == STT_GNU_IFUNC
14149 && h->def_regular
14150 && (h->root.type == bfd_link_hash_defined
14151 || h->root.type == bfd_link_hash_defweak));
14152 rela.r_offset = (htab->iplt->output_section->vma
14153 + htab->iplt->output_offset
14154 + ent->plt.offset);
14155 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14156 rela.r_addend = (h->root.u.def.value
14157 + h->root.u.def.section->output_offset
14158 + h->root.u.def.section->output_section->vma
14159 + ent->addend);
14160 loc = (htab->reliplt->contents
14161 + (htab->reliplt->reloc_count++
14162 * sizeof (Elf64_External_Rela)));
14163 }
14164 else
14165 {
14166 rela.r_offset = (htab->plt->output_section->vma
14167 + htab->plt->output_offset
14168 + ent->plt.offset);
14169 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14170 rela.r_addend = ent->addend;
14171 loc = (htab->relplt->contents
14172 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE)
14173 / (PLT_ENTRY_SIZE / sizeof (Elf64_External_Rela))));
14174 }
14175 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14176 }
14177
14178 if (h->needs_copy)
14179 {
14180 /* This symbol needs a copy reloc. Set it up. */
14181
14182 if (h->dynindx == -1
14183 || (h->root.type != bfd_link_hash_defined
14184 && h->root.type != bfd_link_hash_defweak)
14185 || htab->relbss == NULL)
14186 abort ();
14187
14188 rela.r_offset = (h->root.u.def.value
14189 + h->root.u.def.section->output_section->vma
14190 + h->root.u.def.section->output_offset);
14191 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14192 rela.r_addend = 0;
14193 loc = htab->relbss->contents;
14194 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14195 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14196 }
14197
14198 return TRUE;
14199 }
14200
14201 /* Used to decide how to sort relocs in an optimal manner for the
14202 dynamic linker, before writing them out. */
14203
14204 static enum elf_reloc_type_class
14205 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
14206 const asection *rel_sec,
14207 const Elf_Internal_Rela *rela)
14208 {
14209 enum elf_ppc64_reloc_type r_type;
14210 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14211
14212 if (rel_sec == htab->reliplt)
14213 return reloc_class_ifunc;
14214
14215 r_type = ELF64_R_TYPE (rela->r_info);
14216 switch (r_type)
14217 {
14218 case R_PPC64_RELATIVE:
14219 return reloc_class_relative;
14220 case R_PPC64_JMP_SLOT:
14221 return reloc_class_plt;
14222 case R_PPC64_COPY:
14223 return reloc_class_copy;
14224 default:
14225 return reloc_class_normal;
14226 }
14227 }
14228
14229 /* Finish up the dynamic sections. */
14230
14231 static bfd_boolean
14232 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
14233 struct bfd_link_info *info)
14234 {
14235 struct ppc_link_hash_table *htab;
14236 bfd *dynobj;
14237 asection *sdyn;
14238
14239 htab = ppc_hash_table (info);
14240 if (htab == NULL)
14241 return FALSE;
14242
14243 dynobj = htab->elf.dynobj;
14244 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14245
14246 if (htab->elf.dynamic_sections_created)
14247 {
14248 Elf64_External_Dyn *dyncon, *dynconend;
14249
14250 if (sdyn == NULL || htab->got == NULL)
14251 abort ();
14252
14253 dyncon = (Elf64_External_Dyn *) sdyn->contents;
14254 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
14255 for (; dyncon < dynconend; dyncon++)
14256 {
14257 Elf_Internal_Dyn dyn;
14258 asection *s;
14259
14260 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
14261
14262 switch (dyn.d_tag)
14263 {
14264 default:
14265 continue;
14266
14267 case DT_PPC64_GLINK:
14268 s = htab->glink;
14269 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14270 /* We stupidly defined DT_PPC64_GLINK to be the start
14271 of glink rather than the first entry point, which is
14272 what ld.so needs, and now have a bigger stub to
14273 support automatic multiple TOCs. */
14274 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
14275 break;
14276
14277 case DT_PPC64_OPD:
14278 s = bfd_get_section_by_name (output_bfd, ".opd");
14279 if (s == NULL)
14280 continue;
14281 dyn.d_un.d_ptr = s->vma;
14282 break;
14283
14284 case DT_PPC64_OPDSZ:
14285 s = bfd_get_section_by_name (output_bfd, ".opd");
14286 if (s == NULL)
14287 continue;
14288 dyn.d_un.d_val = s->size;
14289 break;
14290
14291 case DT_PLTGOT:
14292 s = htab->plt;
14293 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14294 break;
14295
14296 case DT_JMPREL:
14297 s = htab->relplt;
14298 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14299 break;
14300
14301 case DT_PLTRELSZ:
14302 dyn.d_un.d_val = htab->relplt->size;
14303 break;
14304
14305 case DT_RELASZ:
14306 /* Don't count procedure linkage table relocs in the
14307 overall reloc count. */
14308 s = htab->relplt;
14309 if (s == NULL)
14310 continue;
14311 dyn.d_un.d_val -= s->size;
14312 break;
14313
14314 case DT_RELA:
14315 /* We may not be using the standard ELF linker script.
14316 If .rela.plt is the first .rela section, we adjust
14317 DT_RELA to not include it. */
14318 s = htab->relplt;
14319 if (s == NULL)
14320 continue;
14321 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
14322 continue;
14323 dyn.d_un.d_ptr += s->size;
14324 break;
14325 }
14326
14327 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
14328 }
14329 }
14330
14331 if (htab->got != NULL && htab->got->size != 0)
14332 {
14333 /* Fill in the first entry in the global offset table.
14334 We use it to hold the link-time TOCbase. */
14335 bfd_put_64 (output_bfd,
14336 elf_gp (output_bfd) + TOC_BASE_OFF,
14337 htab->got->contents);
14338
14339 /* Set .got entry size. */
14340 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
14341 }
14342
14343 if (htab->plt != NULL && htab->plt->size != 0)
14344 {
14345 /* Set .plt entry size. */
14346 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
14347 = PLT_ENTRY_SIZE;
14348 }
14349
14350 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
14351 brlt ourselves if emitrelocations. */
14352 if (htab->brlt != NULL
14353 && htab->brlt->reloc_count != 0
14354 && !_bfd_elf_link_output_relocs (output_bfd,
14355 htab->brlt,
14356 elf_section_data (htab->brlt)->rela.hdr,
14357 elf_section_data (htab->brlt)->relocs,
14358 NULL))
14359 return FALSE;
14360
14361 if (htab->glink != NULL
14362 && htab->glink->reloc_count != 0
14363 && !_bfd_elf_link_output_relocs (output_bfd,
14364 htab->glink,
14365 elf_section_data (htab->glink)->rela.hdr,
14366 elf_section_data (htab->glink)->relocs,
14367 NULL))
14368 return FALSE;
14369
14370
14371 if (htab->glink_eh_frame != NULL
14372 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
14373 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
14374 htab->glink_eh_frame,
14375 htab->glink_eh_frame->contents))
14376 return FALSE;
14377
14378 /* We need to handle writing out multiple GOT sections ourselves,
14379 since we didn't add them to DYNOBJ. We know dynobj is the first
14380 bfd. */
14381 while ((dynobj = dynobj->link_next) != NULL)
14382 {
14383 asection *s;
14384
14385 if (!is_ppc64_elf (dynobj))
14386 continue;
14387
14388 s = ppc64_elf_tdata (dynobj)->got;
14389 if (s != NULL
14390 && s->size != 0
14391 && s->output_section != bfd_abs_section_ptr
14392 && !bfd_set_section_contents (output_bfd, s->output_section,
14393 s->contents, s->output_offset,
14394 s->size))
14395 return FALSE;
14396 s = ppc64_elf_tdata (dynobj)->relgot;
14397 if (s != NULL
14398 && s->size != 0
14399 && s->output_section != bfd_abs_section_ptr
14400 && !bfd_set_section_contents (output_bfd, s->output_section,
14401 s->contents, s->output_offset,
14402 s->size))
14403 return FALSE;
14404 }
14405
14406 return TRUE;
14407 }
14408
14409 #include "elf64-target.h"
14410
14411 /* FreeBSD support */
14412
14413 #undef TARGET_LITTLE_SYM
14414 #undef TARGET_LITTLE_NAME
14415
14416 #undef TARGET_BIG_SYM
14417 #define TARGET_BIG_SYM bfd_elf64_powerpc_freebsd_vec
14418 #undef TARGET_BIG_NAME
14419 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
14420
14421 #undef ELF_OSABI
14422 #define ELF_OSABI ELFOSABI_FREEBSD
14423
14424 #undef elf64_bed
14425 #define elf64_bed elf64_powerpc_fbsd_bed
14426
14427 #include "elf64-target.h"
14428
This page took 0.333344 seconds and 4 git commands to generate.