542ed1ca31f5eee7bff5ae1c2ed6ce9052502e57
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_vma opd_entry_value
57 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
58
59 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
60 #define TARGET_LITTLE_NAME "elf64-powerpcle"
61 #define TARGET_BIG_SYM powerpc_elf64_vec
62 #define TARGET_BIG_NAME "elf64-powerpc"
63 #define ELF_ARCH bfd_arch_powerpc
64 #define ELF_TARGET_ID PPC64_ELF_DATA
65 #define ELF_MACHINE_CODE EM_PPC64
66 #define ELF_MAXPAGESIZE 0x10000
67 #define ELF_COMMONPAGESIZE 0x10000
68 #define elf_info_to_howto ppc64_elf_info_to_howto
69
70 #define elf_backend_want_got_sym 0
71 #define elf_backend_want_plt_sym 0
72 #define elf_backend_plt_alignment 3
73 #define elf_backend_plt_not_loaded 1
74 #define elf_backend_got_header_size 8
75 #define elf_backend_can_gc_sections 1
76 #define elf_backend_can_refcount 1
77 #define elf_backend_rela_normal 1
78 #define elf_backend_default_execstack 0
79
80 #define bfd_elf64_mkobject ppc64_elf_mkobject
81 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
82 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
83 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
84 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
88 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
89
90 #define elf_backend_object_p ppc64_elf_object_p
91 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
92 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
93 #define elf_backend_write_core_note ppc64_elf_write_core_note
94 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
95 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
96 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
97 #define elf_backend_check_directives ppc64_elf_before_check_relocs
98 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
99 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
100 #define elf_backend_check_relocs ppc64_elf_check_relocs
101 #define elf_backend_gc_keep ppc64_elf_gc_keep
102 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
103 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
104 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
105 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
106 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
107 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
108 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
109 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
110 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
130
131 /* Offsets to some stack save slots. */
132 #define STK_LR 16
133 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
134 /* This one is dodgy. ELFv2 does not have a linker word, so use the
135 CR save slot. Used only by optimised __tls_get_addr call stub,
136 relying on __tls_get_addr_opt not saving CR.. */
137 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
138
139 /* TOC base pointers offset from start of TOC. */
140 #define TOC_BASE_OFF 0x8000
141
142 /* Offset of tp and dtp pointers from start of TLS block. */
143 #define TP_OFFSET 0x7000
144 #define DTP_OFFSET 0x8000
145
146 /* .plt call stub instructions. The normal stub is like this, but
147 sometimes the .plt entry crosses a 64k boundary and we need to
148 insert an addi to adjust r11. */
149 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
150 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
151 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
152 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
153 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
154 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
155 #define BCTR 0x4e800420 /* bctr */
156
157 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
158 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
159 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
160
161 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
162 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
163 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
164 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
165 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
166 #define BNECTR 0x4ca20420 /* bnectr+ */
167 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
168
169 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
170 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
171 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
172
173 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
174
175 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
176 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
177 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
178
179 /* glink call stub instructions. We enter with the index in R0. */
180 #define GLINK_CALL_STUB_SIZE (16*4)
181 /* 0: */
182 /* .quad plt0-1f */
183 /* __glink: */
184 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
185 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
186 /* 1: */
187 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
188 /* ld %2,(0b-1b)(%11) */
189 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
190 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
191 /* ld %12,0(%11) */
192 /* ld %2,8(%11) */
193 /* mtctr %12 */
194 /* ld %11,16(%11) */
195 /* bctr */
196 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
197 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
198 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
199 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
200 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
201
202 /* Pad with this. */
203 #define NOP 0x60000000
204
205 /* Some other nops. */
206 #define CROR_151515 0x4def7b82
207 #define CROR_313131 0x4ffffb82
208
209 /* .glink entries for the first 32k functions are two instructions. */
210 #define LI_R0_0 0x38000000 /* li %r0,0 */
211 #define B_DOT 0x48000000 /* b . */
212
213 /* After that, we need two instructions to load the index, followed by
214 a branch. */
215 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
216 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
217
218 /* Instructions used by the save and restore reg functions. */
219 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
220 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
221 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
222 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
223 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
224 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
225 #define LI_R12_0 0x39800000 /* li %r12,0 */
226 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
227 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
228 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
229 #define BLR 0x4e800020 /* blr */
230
231 /* Since .opd is an array of descriptors and each entry will end up
232 with identical R_PPC64_RELATIVE relocs, there is really no need to
233 propagate .opd relocs; The dynamic linker should be taught to
234 relocate .opd without reloc entries. */
235 #ifndef NO_OPD_RELOCS
236 #define NO_OPD_RELOCS 0
237 #endif
238
239 static inline int
240 abiversion (bfd *abfd)
241 {
242 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
243 }
244
245 static inline void
246 set_abiversion (bfd *abfd, int ver)
247 {
248 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
249 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
250 }
251 \f
252 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
253
254 /* Relocation HOWTO's. */
255 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
256
257 static reloc_howto_type ppc64_elf_howto_raw[] = {
258 /* This reloc does nothing. */
259 HOWTO (R_PPC64_NONE, /* type */
260 0, /* rightshift */
261 3, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_dont, /* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_PPC64_NONE", /* name */
268 FALSE, /* partial_inplace */
269 0, /* src_mask */
270 0, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 /* A standard 32 bit relocation. */
274 HOWTO (R_PPC64_ADDR32, /* type */
275 0, /* rightshift */
276 2, /* size (0 = byte, 1 = short, 2 = long) */
277 32, /* bitsize */
278 FALSE, /* pc_relative */
279 0, /* bitpos */
280 complain_overflow_bitfield, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_PPC64_ADDR32", /* name */
283 FALSE, /* partial_inplace */
284 0, /* src_mask */
285 0xffffffff, /* dst_mask */
286 FALSE), /* pcrel_offset */
287
288 /* An absolute 26 bit branch; the lower two bits must be zero.
289 FIXME: we don't check that, we just clear them. */
290 HOWTO (R_PPC64_ADDR24, /* type */
291 0, /* rightshift */
292 2, /* size (0 = byte, 1 = short, 2 = long) */
293 26, /* bitsize */
294 FALSE, /* pc_relative */
295 0, /* bitpos */
296 complain_overflow_bitfield, /* complain_on_overflow */
297 bfd_elf_generic_reloc, /* special_function */
298 "R_PPC64_ADDR24", /* name */
299 FALSE, /* partial_inplace */
300 0, /* src_mask */
301 0x03fffffc, /* dst_mask */
302 FALSE), /* pcrel_offset */
303
304 /* A standard 16 bit relocation. */
305 HOWTO (R_PPC64_ADDR16, /* type */
306 0, /* rightshift */
307 1, /* size (0 = byte, 1 = short, 2 = long) */
308 16, /* bitsize */
309 FALSE, /* pc_relative */
310 0, /* bitpos */
311 complain_overflow_bitfield, /* complain_on_overflow */
312 bfd_elf_generic_reloc, /* special_function */
313 "R_PPC64_ADDR16", /* name */
314 FALSE, /* partial_inplace */
315 0, /* src_mask */
316 0xffff, /* dst_mask */
317 FALSE), /* pcrel_offset */
318
319 /* A 16 bit relocation without overflow. */
320 HOWTO (R_PPC64_ADDR16_LO, /* type */
321 0, /* rightshift */
322 1, /* size (0 = byte, 1 = short, 2 = long) */
323 16, /* bitsize */
324 FALSE, /* pc_relative */
325 0, /* bitpos */
326 complain_overflow_dont,/* complain_on_overflow */
327 bfd_elf_generic_reloc, /* special_function */
328 "R_PPC64_ADDR16_LO", /* name */
329 FALSE, /* partial_inplace */
330 0, /* src_mask */
331 0xffff, /* dst_mask */
332 FALSE), /* pcrel_offset */
333
334 /* Bits 16-31 of an address. */
335 HOWTO (R_PPC64_ADDR16_HI, /* type */
336 16, /* rightshift */
337 1, /* size (0 = byte, 1 = short, 2 = long) */
338 16, /* bitsize */
339 FALSE, /* pc_relative */
340 0, /* bitpos */
341 complain_overflow_signed, /* complain_on_overflow */
342 bfd_elf_generic_reloc, /* special_function */
343 "R_PPC64_ADDR16_HI", /* name */
344 FALSE, /* partial_inplace */
345 0, /* src_mask */
346 0xffff, /* dst_mask */
347 FALSE), /* pcrel_offset */
348
349 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
350 bits, treated as a signed number, is negative. */
351 HOWTO (R_PPC64_ADDR16_HA, /* type */
352 16, /* rightshift */
353 1, /* size (0 = byte, 1 = short, 2 = long) */
354 16, /* bitsize */
355 FALSE, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_signed, /* complain_on_overflow */
358 ppc64_elf_ha_reloc, /* special_function */
359 "R_PPC64_ADDR16_HA", /* name */
360 FALSE, /* partial_inplace */
361 0, /* src_mask */
362 0xffff, /* dst_mask */
363 FALSE), /* pcrel_offset */
364
365 /* An absolute 16 bit branch; the lower two bits must be zero.
366 FIXME: we don't check that, we just clear them. */
367 HOWTO (R_PPC64_ADDR14, /* type */
368 0, /* rightshift */
369 2, /* size (0 = byte, 1 = short, 2 = long) */
370 16, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_signed, /* complain_on_overflow */
374 ppc64_elf_branch_reloc, /* special_function */
375 "R_PPC64_ADDR14", /* name */
376 FALSE, /* partial_inplace */
377 0, /* src_mask */
378 0x0000fffc, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 /* An absolute 16 bit branch, for which bit 10 should be set to
382 indicate that the branch is expected to be taken. The lower two
383 bits must be zero. */
384 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
385 0, /* rightshift */
386 2, /* size (0 = byte, 1 = short, 2 = long) */
387 16, /* bitsize */
388 FALSE, /* pc_relative */
389 0, /* bitpos */
390 complain_overflow_signed, /* complain_on_overflow */
391 ppc64_elf_brtaken_reloc, /* special_function */
392 "R_PPC64_ADDR14_BRTAKEN",/* name */
393 FALSE, /* partial_inplace */
394 0, /* src_mask */
395 0x0000fffc, /* dst_mask */
396 FALSE), /* pcrel_offset */
397
398 /* An absolute 16 bit branch, for which bit 10 should be set to
399 indicate that the branch is not expected to be taken. The lower
400 two bits must be zero. */
401 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 16, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_signed, /* complain_on_overflow */
408 ppc64_elf_brtaken_reloc, /* special_function */
409 "R_PPC64_ADDR14_BRNTAKEN",/* name */
410 FALSE, /* partial_inplace */
411 0, /* src_mask */
412 0x0000fffc, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 /* A relative 26 bit branch; the lower two bits must be zero. */
416 HOWTO (R_PPC64_REL24, /* type */
417 0, /* rightshift */
418 2, /* size (0 = byte, 1 = short, 2 = long) */
419 26, /* bitsize */
420 TRUE, /* pc_relative */
421 0, /* bitpos */
422 complain_overflow_signed, /* complain_on_overflow */
423 ppc64_elf_branch_reloc, /* special_function */
424 "R_PPC64_REL24", /* name */
425 FALSE, /* partial_inplace */
426 0, /* src_mask */
427 0x03fffffc, /* dst_mask */
428 TRUE), /* pcrel_offset */
429
430 /* A relative 16 bit branch; the lower two bits must be zero. */
431 HOWTO (R_PPC64_REL14, /* type */
432 0, /* rightshift */
433 2, /* size (0 = byte, 1 = short, 2 = long) */
434 16, /* bitsize */
435 TRUE, /* pc_relative */
436 0, /* bitpos */
437 complain_overflow_signed, /* complain_on_overflow */
438 ppc64_elf_branch_reloc, /* special_function */
439 "R_PPC64_REL14", /* name */
440 FALSE, /* partial_inplace */
441 0, /* src_mask */
442 0x0000fffc, /* dst_mask */
443 TRUE), /* pcrel_offset */
444
445 /* A relative 16 bit branch. Bit 10 should be set to indicate that
446 the branch is expected to be taken. The lower two bits must be
447 zero. */
448 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
449 0, /* rightshift */
450 2, /* size (0 = byte, 1 = short, 2 = long) */
451 16, /* bitsize */
452 TRUE, /* pc_relative */
453 0, /* bitpos */
454 complain_overflow_signed, /* complain_on_overflow */
455 ppc64_elf_brtaken_reloc, /* special_function */
456 "R_PPC64_REL14_BRTAKEN", /* name */
457 FALSE, /* partial_inplace */
458 0, /* src_mask */
459 0x0000fffc, /* dst_mask */
460 TRUE), /* pcrel_offset */
461
462 /* A relative 16 bit branch. Bit 10 should be set to indicate that
463 the branch is not expected to be taken. The lower two bits must
464 be zero. */
465 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
466 0, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 16, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 ppc64_elf_brtaken_reloc, /* special_function */
473 "R_PPC64_REL14_BRNTAKEN",/* name */
474 FALSE, /* partial_inplace */
475 0, /* src_mask */
476 0x0000fffc, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
480 symbol. */
481 HOWTO (R_PPC64_GOT16, /* type */
482 0, /* rightshift */
483 1, /* size (0 = byte, 1 = short, 2 = long) */
484 16, /* bitsize */
485 FALSE, /* pc_relative */
486 0, /* bitpos */
487 complain_overflow_signed, /* complain_on_overflow */
488 ppc64_elf_unhandled_reloc, /* special_function */
489 "R_PPC64_GOT16", /* name */
490 FALSE, /* partial_inplace */
491 0, /* src_mask */
492 0xffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494
495 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
496 the symbol. */
497 HOWTO (R_PPC64_GOT16_LO, /* type */
498 0, /* rightshift */
499 1, /* size (0 = byte, 1 = short, 2 = long) */
500 16, /* bitsize */
501 FALSE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_dont, /* complain_on_overflow */
504 ppc64_elf_unhandled_reloc, /* special_function */
505 "R_PPC64_GOT16_LO", /* name */
506 FALSE, /* partial_inplace */
507 0, /* src_mask */
508 0xffff, /* dst_mask */
509 FALSE), /* pcrel_offset */
510
511 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
512 the symbol. */
513 HOWTO (R_PPC64_GOT16_HI, /* type */
514 16, /* rightshift */
515 1, /* size (0 = byte, 1 = short, 2 = long) */
516 16, /* bitsize */
517 FALSE, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_signed,/* complain_on_overflow */
520 ppc64_elf_unhandled_reloc, /* special_function */
521 "R_PPC64_GOT16_HI", /* name */
522 FALSE, /* partial_inplace */
523 0, /* src_mask */
524 0xffff, /* dst_mask */
525 FALSE), /* pcrel_offset */
526
527 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
528 the symbol. */
529 HOWTO (R_PPC64_GOT16_HA, /* type */
530 16, /* rightshift */
531 1, /* size (0 = byte, 1 = short, 2 = long) */
532 16, /* bitsize */
533 FALSE, /* pc_relative */
534 0, /* bitpos */
535 complain_overflow_signed,/* complain_on_overflow */
536 ppc64_elf_unhandled_reloc, /* special_function */
537 "R_PPC64_GOT16_HA", /* name */
538 FALSE, /* partial_inplace */
539 0, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE), /* pcrel_offset */
542
543 /* This is used only by the dynamic linker. The symbol should exist
544 both in the object being run and in some shared library. The
545 dynamic linker copies the data addressed by the symbol from the
546 shared library into the object, because the object being
547 run has to have the data at some particular address. */
548 HOWTO (R_PPC64_COPY, /* type */
549 0, /* rightshift */
550 0, /* this one is variable size */
551 0, /* bitsize */
552 FALSE, /* pc_relative */
553 0, /* bitpos */
554 complain_overflow_dont, /* complain_on_overflow */
555 ppc64_elf_unhandled_reloc, /* special_function */
556 "R_PPC64_COPY", /* name */
557 FALSE, /* partial_inplace */
558 0, /* src_mask */
559 0, /* dst_mask */
560 FALSE), /* pcrel_offset */
561
562 /* Like R_PPC64_ADDR64, but used when setting global offset table
563 entries. */
564 HOWTO (R_PPC64_GLOB_DAT, /* type */
565 0, /* rightshift */
566 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
567 64, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_dont, /* complain_on_overflow */
571 ppc64_elf_unhandled_reloc, /* special_function */
572 "R_PPC64_GLOB_DAT", /* name */
573 FALSE, /* partial_inplace */
574 0, /* src_mask */
575 ONES (64), /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* Created by the link editor. Marks a procedure linkage table
579 entry for a symbol. */
580 HOWTO (R_PPC64_JMP_SLOT, /* type */
581 0, /* rightshift */
582 0, /* size (0 = byte, 1 = short, 2 = long) */
583 0, /* bitsize */
584 FALSE, /* pc_relative */
585 0, /* bitpos */
586 complain_overflow_dont, /* complain_on_overflow */
587 ppc64_elf_unhandled_reloc, /* special_function */
588 "R_PPC64_JMP_SLOT", /* name */
589 FALSE, /* partial_inplace */
590 0, /* src_mask */
591 0, /* dst_mask */
592 FALSE), /* pcrel_offset */
593
594 /* Used only by the dynamic linker. When the object is run, this
595 doubleword64 is set to the load address of the object, plus the
596 addend. */
597 HOWTO (R_PPC64_RELATIVE, /* type */
598 0, /* rightshift */
599 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
600 64, /* bitsize */
601 FALSE, /* pc_relative */
602 0, /* bitpos */
603 complain_overflow_dont, /* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_PPC64_RELATIVE", /* name */
606 FALSE, /* partial_inplace */
607 0, /* src_mask */
608 ONES (64), /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 /* Like R_PPC64_ADDR32, but may be unaligned. */
612 HOWTO (R_PPC64_UADDR32, /* type */
613 0, /* rightshift */
614 2, /* size (0 = byte, 1 = short, 2 = long) */
615 32, /* bitsize */
616 FALSE, /* pc_relative */
617 0, /* bitpos */
618 complain_overflow_bitfield, /* complain_on_overflow */
619 bfd_elf_generic_reloc, /* special_function */
620 "R_PPC64_UADDR32", /* name */
621 FALSE, /* partial_inplace */
622 0, /* src_mask */
623 0xffffffff, /* dst_mask */
624 FALSE), /* pcrel_offset */
625
626 /* Like R_PPC64_ADDR16, but may be unaligned. */
627 HOWTO (R_PPC64_UADDR16, /* type */
628 0, /* rightshift */
629 1, /* size (0 = byte, 1 = short, 2 = long) */
630 16, /* bitsize */
631 FALSE, /* pc_relative */
632 0, /* bitpos */
633 complain_overflow_bitfield, /* complain_on_overflow */
634 bfd_elf_generic_reloc, /* special_function */
635 "R_PPC64_UADDR16", /* name */
636 FALSE, /* partial_inplace */
637 0, /* src_mask */
638 0xffff, /* dst_mask */
639 FALSE), /* pcrel_offset */
640
641 /* 32-bit PC relative. */
642 HOWTO (R_PPC64_REL32, /* type */
643 0, /* rightshift */
644 2, /* size (0 = byte, 1 = short, 2 = long) */
645 32, /* bitsize */
646 TRUE, /* pc_relative */
647 0, /* bitpos */
648 complain_overflow_signed, /* complain_on_overflow */
649 bfd_elf_generic_reloc, /* special_function */
650 "R_PPC64_REL32", /* name */
651 FALSE, /* partial_inplace */
652 0, /* src_mask */
653 0xffffffff, /* dst_mask */
654 TRUE), /* pcrel_offset */
655
656 /* 32-bit relocation to the symbol's procedure linkage table. */
657 HOWTO (R_PPC64_PLT32, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_bitfield, /* complain_on_overflow */
664 ppc64_elf_unhandled_reloc, /* special_function */
665 "R_PPC64_PLT32", /* name */
666 FALSE, /* partial_inplace */
667 0, /* src_mask */
668 0xffffffff, /* dst_mask */
669 FALSE), /* pcrel_offset */
670
671 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
672 FIXME: R_PPC64_PLTREL32 not supported. */
673 HOWTO (R_PPC64_PLTREL32, /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 32, /* bitsize */
677 TRUE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 "R_PPC64_PLTREL32", /* name */
682 FALSE, /* partial_inplace */
683 0, /* src_mask */
684 0xffffffff, /* dst_mask */
685 TRUE), /* pcrel_offset */
686
687 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
688 the symbol. */
689 HOWTO (R_PPC64_PLT16_LO, /* type */
690 0, /* rightshift */
691 1, /* size (0 = byte, 1 = short, 2 = long) */
692 16, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont, /* complain_on_overflow */
696 ppc64_elf_unhandled_reloc, /* special_function */
697 "R_PPC64_PLT16_LO", /* name */
698 FALSE, /* partial_inplace */
699 0, /* src_mask */
700 0xffff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
704 the symbol. */
705 HOWTO (R_PPC64_PLT16_HI, /* type */
706 16, /* rightshift */
707 1, /* size (0 = byte, 1 = short, 2 = long) */
708 16, /* bitsize */
709 FALSE, /* pc_relative */
710 0, /* bitpos */
711 complain_overflow_signed, /* complain_on_overflow */
712 ppc64_elf_unhandled_reloc, /* special_function */
713 "R_PPC64_PLT16_HI", /* name */
714 FALSE, /* partial_inplace */
715 0, /* src_mask */
716 0xffff, /* dst_mask */
717 FALSE), /* pcrel_offset */
718
719 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
720 the symbol. */
721 HOWTO (R_PPC64_PLT16_HA, /* type */
722 16, /* rightshift */
723 1, /* size (0 = byte, 1 = short, 2 = long) */
724 16, /* bitsize */
725 FALSE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 ppc64_elf_unhandled_reloc, /* special_function */
729 "R_PPC64_PLT16_HA", /* name */
730 FALSE, /* partial_inplace */
731 0, /* src_mask */
732 0xffff, /* dst_mask */
733 FALSE), /* pcrel_offset */
734
735 /* 16-bit section relative relocation. */
736 HOWTO (R_PPC64_SECTOFF, /* type */
737 0, /* rightshift */
738 1, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 FALSE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_signed, /* complain_on_overflow */
743 ppc64_elf_sectoff_reloc, /* special_function */
744 "R_PPC64_SECTOFF", /* name */
745 FALSE, /* partial_inplace */
746 0, /* src_mask */
747 0xffff, /* dst_mask */
748 FALSE), /* pcrel_offset */
749
750 /* Like R_PPC64_SECTOFF, but no overflow warning. */
751 HOWTO (R_PPC64_SECTOFF_LO, /* type */
752 0, /* rightshift */
753 1, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont, /* complain_on_overflow */
758 ppc64_elf_sectoff_reloc, /* special_function */
759 "R_PPC64_SECTOFF_LO", /* name */
760 FALSE, /* partial_inplace */
761 0, /* src_mask */
762 0xffff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 /* 16-bit upper half section relative relocation. */
766 HOWTO (R_PPC64_SECTOFF_HI, /* type */
767 16, /* rightshift */
768 1, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 FALSE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_signed, /* complain_on_overflow */
773 ppc64_elf_sectoff_reloc, /* special_function */
774 "R_PPC64_SECTOFF_HI", /* name */
775 FALSE, /* partial_inplace */
776 0, /* src_mask */
777 0xffff, /* dst_mask */
778 FALSE), /* pcrel_offset */
779
780 /* 16-bit upper half adjusted section relative relocation. */
781 HOWTO (R_PPC64_SECTOFF_HA, /* type */
782 16, /* rightshift */
783 1, /* size (0 = byte, 1 = short, 2 = long) */
784 16, /* bitsize */
785 FALSE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 ppc64_elf_sectoff_ha_reloc, /* special_function */
789 "R_PPC64_SECTOFF_HA", /* name */
790 FALSE, /* partial_inplace */
791 0, /* src_mask */
792 0xffff, /* dst_mask */
793 FALSE), /* pcrel_offset */
794
795 /* Like R_PPC64_REL24 without touching the two least significant bits. */
796 HOWTO (R_PPC64_REL30, /* type */
797 2, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 30, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 "R_PPC64_REL30", /* name */
805 FALSE, /* partial_inplace */
806 0, /* src_mask */
807 0xfffffffc, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
811
812 /* A standard 64-bit relocation. */
813 HOWTO (R_PPC64_ADDR64, /* type */
814 0, /* rightshift */
815 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
816 64, /* bitsize */
817 FALSE, /* pc_relative */
818 0, /* bitpos */
819 complain_overflow_dont, /* complain_on_overflow */
820 bfd_elf_generic_reloc, /* special_function */
821 "R_PPC64_ADDR64", /* name */
822 FALSE, /* partial_inplace */
823 0, /* src_mask */
824 ONES (64), /* dst_mask */
825 FALSE), /* pcrel_offset */
826
827 /* The bits 32-47 of an address. */
828 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
829 32, /* rightshift */
830 1, /* size (0 = byte, 1 = short, 2 = long) */
831 16, /* bitsize */
832 FALSE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont, /* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_PPC64_ADDR16_HIGHER", /* name */
837 FALSE, /* partial_inplace */
838 0, /* src_mask */
839 0xffff, /* dst_mask */
840 FALSE), /* pcrel_offset */
841
842 /* The bits 32-47 of an address, plus 1 if the contents of the low
843 16 bits, treated as a signed number, is negative. */
844 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
845 32, /* rightshift */
846 1, /* size (0 = byte, 1 = short, 2 = long) */
847 16, /* bitsize */
848 FALSE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_dont, /* complain_on_overflow */
851 ppc64_elf_ha_reloc, /* special_function */
852 "R_PPC64_ADDR16_HIGHERA", /* name */
853 FALSE, /* partial_inplace */
854 0, /* src_mask */
855 0xffff, /* dst_mask */
856 FALSE), /* pcrel_offset */
857
858 /* The bits 48-63 of an address. */
859 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
860 48, /* rightshift */
861 1, /* size (0 = byte, 1 = short, 2 = long) */
862 16, /* bitsize */
863 FALSE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_dont, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_PPC64_ADDR16_HIGHEST", /* name */
868 FALSE, /* partial_inplace */
869 0, /* src_mask */
870 0xffff, /* dst_mask */
871 FALSE), /* pcrel_offset */
872
873 /* The bits 48-63 of an address, plus 1 if the contents of the low
874 16 bits, treated as a signed number, is negative. */
875 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
876 48, /* rightshift */
877 1, /* size (0 = byte, 1 = short, 2 = long) */
878 16, /* bitsize */
879 FALSE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont, /* complain_on_overflow */
882 ppc64_elf_ha_reloc, /* special_function */
883 "R_PPC64_ADDR16_HIGHESTA", /* name */
884 FALSE, /* partial_inplace */
885 0, /* src_mask */
886 0xffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
888
889 /* Like ADDR64, but may be unaligned. */
890 HOWTO (R_PPC64_UADDR64, /* type */
891 0, /* rightshift */
892 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
893 64, /* bitsize */
894 FALSE, /* pc_relative */
895 0, /* bitpos */
896 complain_overflow_dont, /* complain_on_overflow */
897 bfd_elf_generic_reloc, /* special_function */
898 "R_PPC64_UADDR64", /* name */
899 FALSE, /* partial_inplace */
900 0, /* src_mask */
901 ONES (64), /* dst_mask */
902 FALSE), /* pcrel_offset */
903
904 /* 64-bit relative relocation. */
905 HOWTO (R_PPC64_REL64, /* type */
906 0, /* rightshift */
907 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
908 64, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont, /* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_PPC64_REL64", /* name */
914 FALSE, /* partial_inplace */
915 0, /* src_mask */
916 ONES (64), /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 /* 64-bit relocation to the symbol's procedure linkage table. */
920 HOWTO (R_PPC64_PLT64, /* type */
921 0, /* rightshift */
922 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
923 64, /* bitsize */
924 FALSE, /* pc_relative */
925 0, /* bitpos */
926 complain_overflow_dont, /* complain_on_overflow */
927 ppc64_elf_unhandled_reloc, /* special_function */
928 "R_PPC64_PLT64", /* name */
929 FALSE, /* partial_inplace */
930 0, /* src_mask */
931 ONES (64), /* dst_mask */
932 FALSE), /* pcrel_offset */
933
934 /* 64-bit PC relative relocation to the symbol's procedure linkage
935 table. */
936 /* FIXME: R_PPC64_PLTREL64 not supported. */
937 HOWTO (R_PPC64_PLTREL64, /* type */
938 0, /* rightshift */
939 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
940 64, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 ppc64_elf_unhandled_reloc, /* special_function */
945 "R_PPC64_PLTREL64", /* name */
946 FALSE, /* partial_inplace */
947 0, /* src_mask */
948 ONES (64), /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 /* 16 bit TOC-relative relocation. */
952
953 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
954 HOWTO (R_PPC64_TOC16, /* type */
955 0, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_signed, /* complain_on_overflow */
961 ppc64_elf_toc_reloc, /* special_function */
962 "R_PPC64_TOC16", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 16 bit TOC-relative relocation without overflow. */
969
970 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
971 HOWTO (R_PPC64_TOC16_LO, /* type */
972 0, /* rightshift */
973 1, /* size (0 = byte, 1 = short, 2 = long) */
974 16, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_dont, /* complain_on_overflow */
978 ppc64_elf_toc_reloc, /* special_function */
979 "R_PPC64_TOC16_LO", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 0xffff, /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* 16 bit TOC-relative relocation, high 16 bits. */
986
987 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
988 HOWTO (R_PPC64_TOC16_HI, /* type */
989 16, /* rightshift */
990 1, /* size (0 = byte, 1 = short, 2 = long) */
991 16, /* bitsize */
992 FALSE, /* pc_relative */
993 0, /* bitpos */
994 complain_overflow_signed, /* complain_on_overflow */
995 ppc64_elf_toc_reloc, /* special_function */
996 "R_PPC64_TOC16_HI", /* name */
997 FALSE, /* partial_inplace */
998 0, /* src_mask */
999 0xffff, /* dst_mask */
1000 FALSE), /* pcrel_offset */
1001
1002 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
1003 contents of the low 16 bits, treated as a signed number, is
1004 negative. */
1005
1006 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
1007 HOWTO (R_PPC64_TOC16_HA, /* type */
1008 16, /* rightshift */
1009 1, /* size (0 = byte, 1 = short, 2 = long) */
1010 16, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_signed, /* complain_on_overflow */
1014 ppc64_elf_toc_ha_reloc, /* special_function */
1015 "R_PPC64_TOC16_HA", /* name */
1016 FALSE, /* partial_inplace */
1017 0, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 /* 64-bit relocation; insert value of TOC base (.TOC.). */
1022
1023 /* R_PPC64_TOC 51 doubleword64 .TOC. */
1024 HOWTO (R_PPC64_TOC, /* type */
1025 0, /* rightshift */
1026 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1027 64, /* bitsize */
1028 FALSE, /* pc_relative */
1029 0, /* bitpos */
1030 complain_overflow_dont, /* complain_on_overflow */
1031 ppc64_elf_toc64_reloc, /* special_function */
1032 "R_PPC64_TOC", /* name */
1033 FALSE, /* partial_inplace */
1034 0, /* src_mask */
1035 ONES (64), /* dst_mask */
1036 FALSE), /* pcrel_offset */
1037
1038 /* Like R_PPC64_GOT16, but also informs the link editor that the
1039 value to relocate may (!) refer to a PLT entry which the link
1040 editor (a) may replace with the symbol value. If the link editor
1041 is unable to fully resolve the symbol, it may (b) create a PLT
1042 entry and store the address to the new PLT entry in the GOT.
1043 This permits lazy resolution of function symbols at run time.
1044 The link editor may also skip all of this and just (c) emit a
1045 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1046 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1047 HOWTO (R_PPC64_PLTGOT16, /* type */
1048 0, /* rightshift */
1049 1, /* size (0 = byte, 1 = short, 2 = long) */
1050 16, /* bitsize */
1051 FALSE, /* pc_relative */
1052 0, /* bitpos */
1053 complain_overflow_signed, /* complain_on_overflow */
1054 ppc64_elf_unhandled_reloc, /* special_function */
1055 "R_PPC64_PLTGOT16", /* name */
1056 FALSE, /* partial_inplace */
1057 0, /* src_mask */
1058 0xffff, /* dst_mask */
1059 FALSE), /* pcrel_offset */
1060
1061 /* Like R_PPC64_PLTGOT16, but without overflow. */
1062 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1063 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1064 0, /* rightshift */
1065 1, /* size (0 = byte, 1 = short, 2 = long) */
1066 16, /* bitsize */
1067 FALSE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 ppc64_elf_unhandled_reloc, /* special_function */
1071 "R_PPC64_PLTGOT16_LO", /* name */
1072 FALSE, /* partial_inplace */
1073 0, /* src_mask */
1074 0xffff, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1076
1077 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1078 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1079 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1080 16, /* rightshift */
1081 1, /* size (0 = byte, 1 = short, 2 = long) */
1082 16, /* bitsize */
1083 FALSE, /* pc_relative */
1084 0, /* bitpos */
1085 complain_overflow_signed, /* complain_on_overflow */
1086 ppc64_elf_unhandled_reloc, /* special_function */
1087 "R_PPC64_PLTGOT16_HI", /* name */
1088 FALSE, /* partial_inplace */
1089 0, /* src_mask */
1090 0xffff, /* dst_mask */
1091 FALSE), /* pcrel_offset */
1092
1093 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1094 1 if the contents of the low 16 bits, treated as a signed number,
1095 is negative. */
1096 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1097 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1098 16, /* rightshift */
1099 1, /* size (0 = byte, 1 = short, 2 = long) */
1100 16, /* bitsize */
1101 FALSE, /* pc_relative */
1102 0, /* bitpos */
1103 complain_overflow_signed, /* complain_on_overflow */
1104 ppc64_elf_unhandled_reloc, /* special_function */
1105 "R_PPC64_PLTGOT16_HA", /* name */
1106 FALSE, /* partial_inplace */
1107 0, /* src_mask */
1108 0xffff, /* dst_mask */
1109 FALSE), /* pcrel_offset */
1110
1111 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1112 HOWTO (R_PPC64_ADDR16_DS, /* type */
1113 0, /* rightshift */
1114 1, /* size (0 = byte, 1 = short, 2 = long) */
1115 16, /* bitsize */
1116 FALSE, /* pc_relative */
1117 0, /* bitpos */
1118 complain_overflow_signed, /* complain_on_overflow */
1119 bfd_elf_generic_reloc, /* special_function */
1120 "R_PPC64_ADDR16_DS", /* name */
1121 FALSE, /* partial_inplace */
1122 0, /* src_mask */
1123 0xfffc, /* dst_mask */
1124 FALSE), /* pcrel_offset */
1125
1126 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1127 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1128 0, /* rightshift */
1129 1, /* size (0 = byte, 1 = short, 2 = long) */
1130 16, /* bitsize */
1131 FALSE, /* pc_relative */
1132 0, /* bitpos */
1133 complain_overflow_dont,/* complain_on_overflow */
1134 bfd_elf_generic_reloc, /* special_function */
1135 "R_PPC64_ADDR16_LO_DS",/* name */
1136 FALSE, /* partial_inplace */
1137 0, /* src_mask */
1138 0xfffc, /* dst_mask */
1139 FALSE), /* pcrel_offset */
1140
1141 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1142 HOWTO (R_PPC64_GOT16_DS, /* type */
1143 0, /* rightshift */
1144 1, /* size (0 = byte, 1 = short, 2 = long) */
1145 16, /* bitsize */
1146 FALSE, /* pc_relative */
1147 0, /* bitpos */
1148 complain_overflow_signed, /* complain_on_overflow */
1149 ppc64_elf_unhandled_reloc, /* special_function */
1150 "R_PPC64_GOT16_DS", /* name */
1151 FALSE, /* partial_inplace */
1152 0, /* src_mask */
1153 0xfffc, /* dst_mask */
1154 FALSE), /* pcrel_offset */
1155
1156 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1157 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1158 0, /* rightshift */
1159 1, /* size (0 = byte, 1 = short, 2 = long) */
1160 16, /* bitsize */
1161 FALSE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont, /* complain_on_overflow */
1164 ppc64_elf_unhandled_reloc, /* special_function */
1165 "R_PPC64_GOT16_LO_DS", /* name */
1166 FALSE, /* partial_inplace */
1167 0, /* src_mask */
1168 0xfffc, /* dst_mask */
1169 FALSE), /* pcrel_offset */
1170
1171 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1172 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1173 0, /* rightshift */
1174 1, /* size (0 = byte, 1 = short, 2 = long) */
1175 16, /* bitsize */
1176 FALSE, /* pc_relative */
1177 0, /* bitpos */
1178 complain_overflow_dont, /* complain_on_overflow */
1179 ppc64_elf_unhandled_reloc, /* special_function */
1180 "R_PPC64_PLT16_LO_DS", /* name */
1181 FALSE, /* partial_inplace */
1182 0, /* src_mask */
1183 0xfffc, /* dst_mask */
1184 FALSE), /* pcrel_offset */
1185
1186 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1187 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1188 0, /* rightshift */
1189 1, /* size (0 = byte, 1 = short, 2 = long) */
1190 16, /* bitsize */
1191 FALSE, /* pc_relative */
1192 0, /* bitpos */
1193 complain_overflow_signed, /* complain_on_overflow */
1194 ppc64_elf_sectoff_reloc, /* special_function */
1195 "R_PPC64_SECTOFF_DS", /* name */
1196 FALSE, /* partial_inplace */
1197 0, /* src_mask */
1198 0xfffc, /* dst_mask */
1199 FALSE), /* pcrel_offset */
1200
1201 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1202 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1203 0, /* rightshift */
1204 1, /* size (0 = byte, 1 = short, 2 = long) */
1205 16, /* bitsize */
1206 FALSE, /* pc_relative */
1207 0, /* bitpos */
1208 complain_overflow_dont, /* complain_on_overflow */
1209 ppc64_elf_sectoff_reloc, /* special_function */
1210 "R_PPC64_SECTOFF_LO_DS",/* name */
1211 FALSE, /* partial_inplace */
1212 0, /* src_mask */
1213 0xfffc, /* dst_mask */
1214 FALSE), /* pcrel_offset */
1215
1216 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1217 HOWTO (R_PPC64_TOC16_DS, /* type */
1218 0, /* rightshift */
1219 1, /* size (0 = byte, 1 = short, 2 = long) */
1220 16, /* bitsize */
1221 FALSE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_signed, /* complain_on_overflow */
1224 ppc64_elf_toc_reloc, /* special_function */
1225 "R_PPC64_TOC16_DS", /* name */
1226 FALSE, /* partial_inplace */
1227 0, /* src_mask */
1228 0xfffc, /* dst_mask */
1229 FALSE), /* pcrel_offset */
1230
1231 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1232 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1233 0, /* rightshift */
1234 1, /* size (0 = byte, 1 = short, 2 = long) */
1235 16, /* bitsize */
1236 FALSE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont, /* complain_on_overflow */
1239 ppc64_elf_toc_reloc, /* special_function */
1240 "R_PPC64_TOC16_LO_DS", /* name */
1241 FALSE, /* partial_inplace */
1242 0, /* src_mask */
1243 0xfffc, /* dst_mask */
1244 FALSE), /* pcrel_offset */
1245
1246 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1247 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1248 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1249 0, /* rightshift */
1250 1, /* size (0 = byte, 1 = short, 2 = long) */
1251 16, /* bitsize */
1252 FALSE, /* pc_relative */
1253 0, /* bitpos */
1254 complain_overflow_signed, /* complain_on_overflow */
1255 ppc64_elf_unhandled_reloc, /* special_function */
1256 "R_PPC64_PLTGOT16_DS", /* name */
1257 FALSE, /* partial_inplace */
1258 0, /* src_mask */
1259 0xfffc, /* dst_mask */
1260 FALSE), /* pcrel_offset */
1261
1262 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1263 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1264 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1265 0, /* rightshift */
1266 1, /* size (0 = byte, 1 = short, 2 = long) */
1267 16, /* bitsize */
1268 FALSE, /* pc_relative */
1269 0, /* bitpos */
1270 complain_overflow_dont, /* complain_on_overflow */
1271 ppc64_elf_unhandled_reloc, /* special_function */
1272 "R_PPC64_PLTGOT16_LO_DS",/* name */
1273 FALSE, /* partial_inplace */
1274 0, /* src_mask */
1275 0xfffc, /* dst_mask */
1276 FALSE), /* pcrel_offset */
1277
1278 /* Marker relocs for TLS. */
1279 HOWTO (R_PPC64_TLS,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLS", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TLSGD,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TLSGD", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 HOWTO (R_PPC64_TLSLD,
1308 0, /* rightshift */
1309 2, /* size (0 = byte, 1 = short, 2 = long) */
1310 32, /* bitsize */
1311 FALSE, /* pc_relative */
1312 0, /* bitpos */
1313 complain_overflow_dont, /* complain_on_overflow */
1314 bfd_elf_generic_reloc, /* special_function */
1315 "R_PPC64_TLSLD", /* name */
1316 FALSE, /* partial_inplace */
1317 0, /* src_mask */
1318 0, /* dst_mask */
1319 FALSE), /* pcrel_offset */
1320
1321 HOWTO (R_PPC64_TOCSAVE,
1322 0, /* rightshift */
1323 2, /* size (0 = byte, 1 = short, 2 = long) */
1324 32, /* bitsize */
1325 FALSE, /* pc_relative */
1326 0, /* bitpos */
1327 complain_overflow_dont, /* complain_on_overflow */
1328 bfd_elf_generic_reloc, /* special_function */
1329 "R_PPC64_TOCSAVE", /* name */
1330 FALSE, /* partial_inplace */
1331 0, /* src_mask */
1332 0, /* dst_mask */
1333 FALSE), /* pcrel_offset */
1334
1335 /* Computes the load module index of the load module that contains the
1336 definition of its TLS sym. */
1337 HOWTO (R_PPC64_DTPMOD64,
1338 0, /* rightshift */
1339 4, /* size (0 = byte, 1 = short, 2 = long) */
1340 64, /* bitsize */
1341 FALSE, /* pc_relative */
1342 0, /* bitpos */
1343 complain_overflow_dont, /* complain_on_overflow */
1344 ppc64_elf_unhandled_reloc, /* special_function */
1345 "R_PPC64_DTPMOD64", /* name */
1346 FALSE, /* partial_inplace */
1347 0, /* src_mask */
1348 ONES (64), /* dst_mask */
1349 FALSE), /* pcrel_offset */
1350
1351 /* Computes a dtv-relative displacement, the difference between the value
1352 of sym+add and the base address of the thread-local storage block that
1353 contains the definition of sym, minus 0x8000. */
1354 HOWTO (R_PPC64_DTPREL64,
1355 0, /* rightshift */
1356 4, /* size (0 = byte, 1 = short, 2 = long) */
1357 64, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_dont, /* complain_on_overflow */
1361 ppc64_elf_unhandled_reloc, /* special_function */
1362 "R_PPC64_DTPREL64", /* name */
1363 FALSE, /* partial_inplace */
1364 0, /* src_mask */
1365 ONES (64), /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* A 16 bit dtprel reloc. */
1369 HOWTO (R_PPC64_DTPREL16,
1370 0, /* rightshift */
1371 1, /* size (0 = byte, 1 = short, 2 = long) */
1372 16, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_signed, /* complain_on_overflow */
1376 ppc64_elf_unhandled_reloc, /* special_function */
1377 "R_PPC64_DTPREL16", /* name */
1378 FALSE, /* partial_inplace */
1379 0, /* src_mask */
1380 0xffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* Like DTPREL16, but no overflow. */
1384 HOWTO (R_PPC64_DTPREL16_LO,
1385 0, /* rightshift */
1386 1, /* size (0 = byte, 1 = short, 2 = long) */
1387 16, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 ppc64_elf_unhandled_reloc, /* special_function */
1392 "R_PPC64_DTPREL16_LO", /* name */
1393 FALSE, /* partial_inplace */
1394 0, /* src_mask */
1395 0xffff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1399 HOWTO (R_PPC64_DTPREL16_HI,
1400 16, /* rightshift */
1401 1, /* size (0 = byte, 1 = short, 2 = long) */
1402 16, /* bitsize */
1403 FALSE, /* pc_relative */
1404 0, /* bitpos */
1405 complain_overflow_signed, /* complain_on_overflow */
1406 ppc64_elf_unhandled_reloc, /* special_function */
1407 "R_PPC64_DTPREL16_HI", /* name */
1408 FALSE, /* partial_inplace */
1409 0, /* src_mask */
1410 0xffff, /* dst_mask */
1411 FALSE), /* pcrel_offset */
1412
1413 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1414 HOWTO (R_PPC64_DTPREL16_HA,
1415 16, /* rightshift */
1416 1, /* size (0 = byte, 1 = short, 2 = long) */
1417 16, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 ppc64_elf_unhandled_reloc, /* special_function */
1422 "R_PPC64_DTPREL16_HA", /* name */
1423 FALSE, /* partial_inplace */
1424 0, /* src_mask */
1425 0xffff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1429 HOWTO (R_PPC64_DTPREL16_HIGHER,
1430 32, /* rightshift */
1431 1, /* size (0 = byte, 1 = short, 2 = long) */
1432 16, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont, /* complain_on_overflow */
1436 ppc64_elf_unhandled_reloc, /* special_function */
1437 "R_PPC64_DTPREL16_HIGHER", /* name */
1438 FALSE, /* partial_inplace */
1439 0, /* src_mask */
1440 0xffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1444 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1445 32, /* rightshift */
1446 1, /* size (0 = byte, 1 = short, 2 = long) */
1447 16, /* bitsize */
1448 FALSE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 ppc64_elf_unhandled_reloc, /* special_function */
1452 "R_PPC64_DTPREL16_HIGHERA", /* name */
1453 FALSE, /* partial_inplace */
1454 0, /* src_mask */
1455 0xffff, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1459 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1460 48, /* rightshift */
1461 1, /* size (0 = byte, 1 = short, 2 = long) */
1462 16, /* bitsize */
1463 FALSE, /* pc_relative */
1464 0, /* bitpos */
1465 complain_overflow_dont, /* complain_on_overflow */
1466 ppc64_elf_unhandled_reloc, /* special_function */
1467 "R_PPC64_DTPREL16_HIGHEST", /* name */
1468 FALSE, /* partial_inplace */
1469 0, /* src_mask */
1470 0xffff, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1474 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1475 48, /* rightshift */
1476 1, /* size (0 = byte, 1 = short, 2 = long) */
1477 16, /* bitsize */
1478 FALSE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 ppc64_elf_unhandled_reloc, /* special_function */
1482 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1483 FALSE, /* partial_inplace */
1484 0, /* src_mask */
1485 0xffff, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* Like DTPREL16, but for insns with a DS field. */
1489 HOWTO (R_PPC64_DTPREL16_DS,
1490 0, /* rightshift */
1491 1, /* size (0 = byte, 1 = short, 2 = long) */
1492 16, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_signed, /* complain_on_overflow */
1496 ppc64_elf_unhandled_reloc, /* special_function */
1497 "R_PPC64_DTPREL16_DS", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0xfffc, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Like DTPREL16_DS, but no overflow. */
1504 HOWTO (R_PPC64_DTPREL16_LO_DS,
1505 0, /* rightshift */
1506 1, /* size (0 = byte, 1 = short, 2 = long) */
1507 16, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 ppc64_elf_unhandled_reloc, /* special_function */
1512 "R_PPC64_DTPREL16_LO_DS", /* name */
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0xfffc, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* Computes a tp-relative displacement, the difference between the value of
1519 sym+add and the value of the thread pointer (r13). */
1520 HOWTO (R_PPC64_TPREL64,
1521 0, /* rightshift */
1522 4, /* size (0 = byte, 1 = short, 2 = long) */
1523 64, /* bitsize */
1524 FALSE, /* pc_relative */
1525 0, /* bitpos */
1526 complain_overflow_dont, /* complain_on_overflow */
1527 ppc64_elf_unhandled_reloc, /* special_function */
1528 "R_PPC64_TPREL64", /* name */
1529 FALSE, /* partial_inplace */
1530 0, /* src_mask */
1531 ONES (64), /* dst_mask */
1532 FALSE), /* pcrel_offset */
1533
1534 /* A 16 bit tprel reloc. */
1535 HOWTO (R_PPC64_TPREL16,
1536 0, /* rightshift */
1537 1, /* size (0 = byte, 1 = short, 2 = long) */
1538 16, /* bitsize */
1539 FALSE, /* pc_relative */
1540 0, /* bitpos */
1541 complain_overflow_signed, /* complain_on_overflow */
1542 ppc64_elf_unhandled_reloc, /* special_function */
1543 "R_PPC64_TPREL16", /* name */
1544 FALSE, /* partial_inplace */
1545 0, /* src_mask */
1546 0xffff, /* dst_mask */
1547 FALSE), /* pcrel_offset */
1548
1549 /* Like TPREL16, but no overflow. */
1550 HOWTO (R_PPC64_TPREL16_LO,
1551 0, /* rightshift */
1552 1, /* size (0 = byte, 1 = short, 2 = long) */
1553 16, /* bitsize */
1554 FALSE, /* pc_relative */
1555 0, /* bitpos */
1556 complain_overflow_dont, /* complain_on_overflow */
1557 ppc64_elf_unhandled_reloc, /* special_function */
1558 "R_PPC64_TPREL16_LO", /* name */
1559 FALSE, /* partial_inplace */
1560 0, /* src_mask */
1561 0xffff, /* dst_mask */
1562 FALSE), /* pcrel_offset */
1563
1564 /* Like TPREL16_LO, but next higher group of 16 bits. */
1565 HOWTO (R_PPC64_TPREL16_HI,
1566 16, /* rightshift */
1567 1, /* size (0 = byte, 1 = short, 2 = long) */
1568 16, /* bitsize */
1569 FALSE, /* pc_relative */
1570 0, /* bitpos */
1571 complain_overflow_signed, /* complain_on_overflow */
1572 ppc64_elf_unhandled_reloc, /* special_function */
1573 "R_PPC64_TPREL16_HI", /* name */
1574 FALSE, /* partial_inplace */
1575 0, /* src_mask */
1576 0xffff, /* dst_mask */
1577 FALSE), /* pcrel_offset */
1578
1579 /* Like TPREL16_HI, but adjust for low 16 bits. */
1580 HOWTO (R_PPC64_TPREL16_HA,
1581 16, /* rightshift */
1582 1, /* size (0 = byte, 1 = short, 2 = long) */
1583 16, /* bitsize */
1584 FALSE, /* pc_relative */
1585 0, /* bitpos */
1586 complain_overflow_signed, /* complain_on_overflow */
1587 ppc64_elf_unhandled_reloc, /* special_function */
1588 "R_PPC64_TPREL16_HA", /* name */
1589 FALSE, /* partial_inplace */
1590 0, /* src_mask */
1591 0xffff, /* dst_mask */
1592 FALSE), /* pcrel_offset */
1593
1594 /* Like TPREL16_HI, but next higher group of 16 bits. */
1595 HOWTO (R_PPC64_TPREL16_HIGHER,
1596 32, /* rightshift */
1597 1, /* size (0 = byte, 1 = short, 2 = long) */
1598 16, /* bitsize */
1599 FALSE, /* pc_relative */
1600 0, /* bitpos */
1601 complain_overflow_dont, /* complain_on_overflow */
1602 ppc64_elf_unhandled_reloc, /* special_function */
1603 "R_PPC64_TPREL16_HIGHER", /* name */
1604 FALSE, /* partial_inplace */
1605 0, /* src_mask */
1606 0xffff, /* dst_mask */
1607 FALSE), /* pcrel_offset */
1608
1609 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1610 HOWTO (R_PPC64_TPREL16_HIGHERA,
1611 32, /* rightshift */
1612 1, /* size (0 = byte, 1 = short, 2 = long) */
1613 16, /* bitsize */
1614 FALSE, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_dont, /* complain_on_overflow */
1617 ppc64_elf_unhandled_reloc, /* special_function */
1618 "R_PPC64_TPREL16_HIGHERA", /* name */
1619 FALSE, /* partial_inplace */
1620 0, /* src_mask */
1621 0xffff, /* dst_mask */
1622 FALSE), /* pcrel_offset */
1623
1624 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1625 HOWTO (R_PPC64_TPREL16_HIGHEST,
1626 48, /* rightshift */
1627 1, /* size (0 = byte, 1 = short, 2 = long) */
1628 16, /* bitsize */
1629 FALSE, /* pc_relative */
1630 0, /* bitpos */
1631 complain_overflow_dont, /* complain_on_overflow */
1632 ppc64_elf_unhandled_reloc, /* special_function */
1633 "R_PPC64_TPREL16_HIGHEST", /* name */
1634 FALSE, /* partial_inplace */
1635 0, /* src_mask */
1636 0xffff, /* dst_mask */
1637 FALSE), /* pcrel_offset */
1638
1639 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1640 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1641 48, /* rightshift */
1642 1, /* size (0 = byte, 1 = short, 2 = long) */
1643 16, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_dont, /* complain_on_overflow */
1647 ppc64_elf_unhandled_reloc, /* special_function */
1648 "R_PPC64_TPREL16_HIGHESTA", /* name */
1649 FALSE, /* partial_inplace */
1650 0, /* src_mask */
1651 0xffff, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1653
1654 /* Like TPREL16, but for insns with a DS field. */
1655 HOWTO (R_PPC64_TPREL16_DS,
1656 0, /* rightshift */
1657 1, /* size (0 = byte, 1 = short, 2 = long) */
1658 16, /* bitsize */
1659 FALSE, /* pc_relative */
1660 0, /* bitpos */
1661 complain_overflow_signed, /* complain_on_overflow */
1662 ppc64_elf_unhandled_reloc, /* special_function */
1663 "R_PPC64_TPREL16_DS", /* name */
1664 FALSE, /* partial_inplace */
1665 0, /* src_mask */
1666 0xfffc, /* dst_mask */
1667 FALSE), /* pcrel_offset */
1668
1669 /* Like TPREL16_DS, but no overflow. */
1670 HOWTO (R_PPC64_TPREL16_LO_DS,
1671 0, /* rightshift */
1672 1, /* size (0 = byte, 1 = short, 2 = long) */
1673 16, /* bitsize */
1674 FALSE, /* pc_relative */
1675 0, /* bitpos */
1676 complain_overflow_dont, /* complain_on_overflow */
1677 ppc64_elf_unhandled_reloc, /* special_function */
1678 "R_PPC64_TPREL16_LO_DS", /* name */
1679 FALSE, /* partial_inplace */
1680 0, /* src_mask */
1681 0xfffc, /* dst_mask */
1682 FALSE), /* pcrel_offset */
1683
1684 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1685 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1686 to the first entry relative to the TOC base (r2). */
1687 HOWTO (R_PPC64_GOT_TLSGD16,
1688 0, /* rightshift */
1689 1, /* size (0 = byte, 1 = short, 2 = long) */
1690 16, /* bitsize */
1691 FALSE, /* pc_relative */
1692 0, /* bitpos */
1693 complain_overflow_signed, /* complain_on_overflow */
1694 ppc64_elf_unhandled_reloc, /* special_function */
1695 "R_PPC64_GOT_TLSGD16", /* name */
1696 FALSE, /* partial_inplace */
1697 0, /* src_mask */
1698 0xffff, /* dst_mask */
1699 FALSE), /* pcrel_offset */
1700
1701 /* Like GOT_TLSGD16, but no overflow. */
1702 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1703 0, /* rightshift */
1704 1, /* size (0 = byte, 1 = short, 2 = long) */
1705 16, /* bitsize */
1706 FALSE, /* pc_relative */
1707 0, /* bitpos */
1708 complain_overflow_dont, /* complain_on_overflow */
1709 ppc64_elf_unhandled_reloc, /* special_function */
1710 "R_PPC64_GOT_TLSGD16_LO", /* name */
1711 FALSE, /* partial_inplace */
1712 0, /* src_mask */
1713 0xffff, /* dst_mask */
1714 FALSE), /* pcrel_offset */
1715
1716 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1717 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1718 16, /* rightshift */
1719 1, /* size (0 = byte, 1 = short, 2 = long) */
1720 16, /* bitsize */
1721 FALSE, /* pc_relative */
1722 0, /* bitpos */
1723 complain_overflow_signed, /* complain_on_overflow */
1724 ppc64_elf_unhandled_reloc, /* special_function */
1725 "R_PPC64_GOT_TLSGD16_HI", /* name */
1726 FALSE, /* partial_inplace */
1727 0, /* src_mask */
1728 0xffff, /* dst_mask */
1729 FALSE), /* pcrel_offset */
1730
1731 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1732 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1733 16, /* rightshift */
1734 1, /* size (0 = byte, 1 = short, 2 = long) */
1735 16, /* bitsize */
1736 FALSE, /* pc_relative */
1737 0, /* bitpos */
1738 complain_overflow_signed, /* complain_on_overflow */
1739 ppc64_elf_unhandled_reloc, /* special_function */
1740 "R_PPC64_GOT_TLSGD16_HA", /* name */
1741 FALSE, /* partial_inplace */
1742 0, /* src_mask */
1743 0xffff, /* dst_mask */
1744 FALSE), /* pcrel_offset */
1745
1746 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1747 with values (sym+add)@dtpmod and zero, and computes the offset to the
1748 first entry relative to the TOC base (r2). */
1749 HOWTO (R_PPC64_GOT_TLSLD16,
1750 0, /* rightshift */
1751 1, /* size (0 = byte, 1 = short, 2 = long) */
1752 16, /* bitsize */
1753 FALSE, /* pc_relative */
1754 0, /* bitpos */
1755 complain_overflow_signed, /* complain_on_overflow */
1756 ppc64_elf_unhandled_reloc, /* special_function */
1757 "R_PPC64_GOT_TLSLD16", /* name */
1758 FALSE, /* partial_inplace */
1759 0, /* src_mask */
1760 0xffff, /* dst_mask */
1761 FALSE), /* pcrel_offset */
1762
1763 /* Like GOT_TLSLD16, but no overflow. */
1764 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1765 0, /* rightshift */
1766 1, /* size (0 = byte, 1 = short, 2 = long) */
1767 16, /* bitsize */
1768 FALSE, /* pc_relative */
1769 0, /* bitpos */
1770 complain_overflow_dont, /* complain_on_overflow */
1771 ppc64_elf_unhandled_reloc, /* special_function */
1772 "R_PPC64_GOT_TLSLD16_LO", /* name */
1773 FALSE, /* partial_inplace */
1774 0, /* src_mask */
1775 0xffff, /* dst_mask */
1776 FALSE), /* pcrel_offset */
1777
1778 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1779 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1780 16, /* rightshift */
1781 1, /* size (0 = byte, 1 = short, 2 = long) */
1782 16, /* bitsize */
1783 FALSE, /* pc_relative */
1784 0, /* bitpos */
1785 complain_overflow_signed, /* complain_on_overflow */
1786 ppc64_elf_unhandled_reloc, /* special_function */
1787 "R_PPC64_GOT_TLSLD16_HI", /* name */
1788 FALSE, /* partial_inplace */
1789 0, /* src_mask */
1790 0xffff, /* dst_mask */
1791 FALSE), /* pcrel_offset */
1792
1793 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1794 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1795 16, /* rightshift */
1796 1, /* size (0 = byte, 1 = short, 2 = long) */
1797 16, /* bitsize */
1798 FALSE, /* pc_relative */
1799 0, /* bitpos */
1800 complain_overflow_signed, /* complain_on_overflow */
1801 ppc64_elf_unhandled_reloc, /* special_function */
1802 "R_PPC64_GOT_TLSLD16_HA", /* name */
1803 FALSE, /* partial_inplace */
1804 0, /* src_mask */
1805 0xffff, /* dst_mask */
1806 FALSE), /* pcrel_offset */
1807
1808 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1809 the offset to the entry relative to the TOC base (r2). */
1810 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1811 0, /* rightshift */
1812 1, /* size (0 = byte, 1 = short, 2 = long) */
1813 16, /* bitsize */
1814 FALSE, /* pc_relative */
1815 0, /* bitpos */
1816 complain_overflow_signed, /* complain_on_overflow */
1817 ppc64_elf_unhandled_reloc, /* special_function */
1818 "R_PPC64_GOT_DTPREL16_DS", /* name */
1819 FALSE, /* partial_inplace */
1820 0, /* src_mask */
1821 0xfffc, /* dst_mask */
1822 FALSE), /* pcrel_offset */
1823
1824 /* Like GOT_DTPREL16_DS, but no overflow. */
1825 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1826 0, /* rightshift */
1827 1, /* size (0 = byte, 1 = short, 2 = long) */
1828 16, /* bitsize */
1829 FALSE, /* pc_relative */
1830 0, /* bitpos */
1831 complain_overflow_dont, /* complain_on_overflow */
1832 ppc64_elf_unhandled_reloc, /* special_function */
1833 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1834 FALSE, /* partial_inplace */
1835 0, /* src_mask */
1836 0xfffc, /* dst_mask */
1837 FALSE), /* pcrel_offset */
1838
1839 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1840 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1841 16, /* rightshift */
1842 1, /* size (0 = byte, 1 = short, 2 = long) */
1843 16, /* bitsize */
1844 FALSE, /* pc_relative */
1845 0, /* bitpos */
1846 complain_overflow_signed, /* complain_on_overflow */
1847 ppc64_elf_unhandled_reloc, /* special_function */
1848 "R_PPC64_GOT_DTPREL16_HI", /* name */
1849 FALSE, /* partial_inplace */
1850 0, /* src_mask */
1851 0xffff, /* dst_mask */
1852 FALSE), /* pcrel_offset */
1853
1854 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1855 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1856 16, /* rightshift */
1857 1, /* size (0 = byte, 1 = short, 2 = long) */
1858 16, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_signed, /* complain_on_overflow */
1862 ppc64_elf_unhandled_reloc, /* special_function */
1863 "R_PPC64_GOT_DTPREL16_HA", /* name */
1864 FALSE, /* partial_inplace */
1865 0, /* src_mask */
1866 0xffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868
1869 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1870 offset to the entry relative to the TOC base (r2). */
1871 HOWTO (R_PPC64_GOT_TPREL16_DS,
1872 0, /* rightshift */
1873 1, /* size (0 = byte, 1 = short, 2 = long) */
1874 16, /* bitsize */
1875 FALSE, /* pc_relative */
1876 0, /* bitpos */
1877 complain_overflow_signed, /* complain_on_overflow */
1878 ppc64_elf_unhandled_reloc, /* special_function */
1879 "R_PPC64_GOT_TPREL16_DS", /* name */
1880 FALSE, /* partial_inplace */
1881 0, /* src_mask */
1882 0xfffc, /* dst_mask */
1883 FALSE), /* pcrel_offset */
1884
1885 /* Like GOT_TPREL16_DS, but no overflow. */
1886 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1887 0, /* rightshift */
1888 1, /* size (0 = byte, 1 = short, 2 = long) */
1889 16, /* bitsize */
1890 FALSE, /* pc_relative */
1891 0, /* bitpos */
1892 complain_overflow_dont, /* complain_on_overflow */
1893 ppc64_elf_unhandled_reloc, /* special_function */
1894 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1895 FALSE, /* partial_inplace */
1896 0, /* src_mask */
1897 0xfffc, /* dst_mask */
1898 FALSE), /* pcrel_offset */
1899
1900 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1901 HOWTO (R_PPC64_GOT_TPREL16_HI,
1902 16, /* rightshift */
1903 1, /* size (0 = byte, 1 = short, 2 = long) */
1904 16, /* bitsize */
1905 FALSE, /* pc_relative */
1906 0, /* bitpos */
1907 complain_overflow_signed, /* complain_on_overflow */
1908 ppc64_elf_unhandled_reloc, /* special_function */
1909 "R_PPC64_GOT_TPREL16_HI", /* name */
1910 FALSE, /* partial_inplace */
1911 0, /* src_mask */
1912 0xffff, /* dst_mask */
1913 FALSE), /* pcrel_offset */
1914
1915 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1916 HOWTO (R_PPC64_GOT_TPREL16_HA,
1917 16, /* rightshift */
1918 1, /* size (0 = byte, 1 = short, 2 = long) */
1919 16, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_signed, /* complain_on_overflow */
1923 ppc64_elf_unhandled_reloc, /* special_function */
1924 "R_PPC64_GOT_TPREL16_HA", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 0xffff, /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 HOWTO (R_PPC64_JMP_IREL, /* type */
1931 0, /* rightshift */
1932 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1933 0, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont, /* complain_on_overflow */
1937 ppc64_elf_unhandled_reloc, /* special_function */
1938 "R_PPC64_JMP_IREL", /* name */
1939 FALSE, /* partial_inplace */
1940 0, /* src_mask */
1941 0, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO (R_PPC64_IRELATIVE, /* type */
1945 0, /* rightshift */
1946 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1947 64, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_dont, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 "R_PPC64_IRELATIVE", /* name */
1953 FALSE, /* partial_inplace */
1954 0, /* src_mask */
1955 ONES (64), /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 /* A 16 bit relative relocation. */
1959 HOWTO (R_PPC64_REL16, /* type */
1960 0, /* rightshift */
1961 1, /* size (0 = byte, 1 = short, 2 = long) */
1962 16, /* bitsize */
1963 TRUE, /* pc_relative */
1964 0, /* bitpos */
1965 complain_overflow_signed, /* complain_on_overflow */
1966 bfd_elf_generic_reloc, /* special_function */
1967 "R_PPC64_REL16", /* name */
1968 FALSE, /* partial_inplace */
1969 0, /* src_mask */
1970 0xffff, /* dst_mask */
1971 TRUE), /* pcrel_offset */
1972
1973 /* A 16 bit relative relocation without overflow. */
1974 HOWTO (R_PPC64_REL16_LO, /* type */
1975 0, /* rightshift */
1976 1, /* size (0 = byte, 1 = short, 2 = long) */
1977 16, /* bitsize */
1978 TRUE, /* pc_relative */
1979 0, /* bitpos */
1980 complain_overflow_dont,/* complain_on_overflow */
1981 bfd_elf_generic_reloc, /* special_function */
1982 "R_PPC64_REL16_LO", /* name */
1983 FALSE, /* partial_inplace */
1984 0, /* src_mask */
1985 0xffff, /* dst_mask */
1986 TRUE), /* pcrel_offset */
1987
1988 /* The high order 16 bits of a relative address. */
1989 HOWTO (R_PPC64_REL16_HI, /* type */
1990 16, /* rightshift */
1991 1, /* size (0 = byte, 1 = short, 2 = long) */
1992 16, /* bitsize */
1993 TRUE, /* pc_relative */
1994 0, /* bitpos */
1995 complain_overflow_signed, /* complain_on_overflow */
1996 bfd_elf_generic_reloc, /* special_function */
1997 "R_PPC64_REL16_HI", /* name */
1998 FALSE, /* partial_inplace */
1999 0, /* src_mask */
2000 0xffff, /* dst_mask */
2001 TRUE), /* pcrel_offset */
2002
2003 /* The high order 16 bits of a relative address, plus 1 if the contents of
2004 the low 16 bits, treated as a signed number, is negative. */
2005 HOWTO (R_PPC64_REL16_HA, /* type */
2006 16, /* rightshift */
2007 1, /* size (0 = byte, 1 = short, 2 = long) */
2008 16, /* bitsize */
2009 TRUE, /* pc_relative */
2010 0, /* bitpos */
2011 complain_overflow_signed, /* complain_on_overflow */
2012 ppc64_elf_ha_reloc, /* special_function */
2013 "R_PPC64_REL16_HA", /* name */
2014 FALSE, /* partial_inplace */
2015 0, /* src_mask */
2016 0xffff, /* dst_mask */
2017 TRUE), /* pcrel_offset */
2018
2019 /* Like R_PPC64_ADDR16_HI, but no overflow. */
2020 HOWTO (R_PPC64_ADDR16_HIGH, /* type */
2021 16, /* rightshift */
2022 1, /* size (0 = byte, 1 = short, 2 = long) */
2023 16, /* bitsize */
2024 FALSE, /* pc_relative */
2025 0, /* bitpos */
2026 complain_overflow_dont, /* complain_on_overflow */
2027 bfd_elf_generic_reloc, /* special_function */
2028 "R_PPC64_ADDR16_HIGH", /* name */
2029 FALSE, /* partial_inplace */
2030 0, /* src_mask */
2031 0xffff, /* dst_mask */
2032 FALSE), /* pcrel_offset */
2033
2034 /* Like R_PPC64_ADDR16_HA, but no overflow. */
2035 HOWTO (R_PPC64_ADDR16_HIGHA, /* type */
2036 16, /* rightshift */
2037 1, /* size (0 = byte, 1 = short, 2 = long) */
2038 16, /* bitsize */
2039 FALSE, /* pc_relative */
2040 0, /* bitpos */
2041 complain_overflow_dont, /* complain_on_overflow */
2042 ppc64_elf_ha_reloc, /* special_function */
2043 "R_PPC64_ADDR16_HIGHA", /* name */
2044 FALSE, /* partial_inplace */
2045 0, /* src_mask */
2046 0xffff, /* dst_mask */
2047 FALSE), /* pcrel_offset */
2048
2049 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
2050 HOWTO (R_PPC64_DTPREL16_HIGH,
2051 16, /* rightshift */
2052 1, /* size (0 = byte, 1 = short, 2 = long) */
2053 16, /* bitsize */
2054 FALSE, /* pc_relative */
2055 0, /* bitpos */
2056 complain_overflow_dont, /* complain_on_overflow */
2057 ppc64_elf_unhandled_reloc, /* special_function */
2058 "R_PPC64_DTPREL16_HIGH", /* name */
2059 FALSE, /* partial_inplace */
2060 0, /* src_mask */
2061 0xffff, /* dst_mask */
2062 FALSE), /* pcrel_offset */
2063
2064 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
2065 HOWTO (R_PPC64_DTPREL16_HIGHA,
2066 16, /* rightshift */
2067 1, /* size (0 = byte, 1 = short, 2 = long) */
2068 16, /* bitsize */
2069 FALSE, /* pc_relative */
2070 0, /* bitpos */
2071 complain_overflow_dont, /* complain_on_overflow */
2072 ppc64_elf_unhandled_reloc, /* special_function */
2073 "R_PPC64_DTPREL16_HIGHA", /* name */
2074 FALSE, /* partial_inplace */
2075 0, /* src_mask */
2076 0xffff, /* dst_mask */
2077 FALSE), /* pcrel_offset */
2078
2079 /* Like R_PPC64_TPREL16_HI, but no overflow. */
2080 HOWTO (R_PPC64_TPREL16_HIGH,
2081 16, /* rightshift */
2082 1, /* size (0 = byte, 1 = short, 2 = long) */
2083 16, /* bitsize */
2084 FALSE, /* pc_relative */
2085 0, /* bitpos */
2086 complain_overflow_dont, /* complain_on_overflow */
2087 ppc64_elf_unhandled_reloc, /* special_function */
2088 "R_PPC64_TPREL16_HIGH", /* name */
2089 FALSE, /* partial_inplace */
2090 0, /* src_mask */
2091 0xffff, /* dst_mask */
2092 FALSE), /* pcrel_offset */
2093
2094 /* Like R_PPC64_TPREL16_HA, but no overflow. */
2095 HOWTO (R_PPC64_TPREL16_HIGHA,
2096 16, /* rightshift */
2097 1, /* size (0 = byte, 1 = short, 2 = long) */
2098 16, /* bitsize */
2099 FALSE, /* pc_relative */
2100 0, /* bitpos */
2101 complain_overflow_dont, /* complain_on_overflow */
2102 ppc64_elf_unhandled_reloc, /* special_function */
2103 "R_PPC64_TPREL16_HIGHA", /* name */
2104 FALSE, /* partial_inplace */
2105 0, /* src_mask */
2106 0xffff, /* dst_mask */
2107 FALSE), /* pcrel_offset */
2108
2109 /* Like ADDR64, but use local entry point of function. */
2110 HOWTO (R_PPC64_ADDR64_LOCAL, /* type */
2111 0, /* rightshift */
2112 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
2113 64, /* bitsize */
2114 FALSE, /* pc_relative */
2115 0, /* bitpos */
2116 complain_overflow_dont, /* complain_on_overflow */
2117 bfd_elf_generic_reloc, /* special_function */
2118 "R_PPC64_ADDR64_LOCAL", /* name */
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ONES (64), /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 /* GNU extension to record C++ vtable hierarchy. */
2125 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
2126 0, /* rightshift */
2127 0, /* size (0 = byte, 1 = short, 2 = long) */
2128 0, /* bitsize */
2129 FALSE, /* pc_relative */
2130 0, /* bitpos */
2131 complain_overflow_dont, /* complain_on_overflow */
2132 NULL, /* special_function */
2133 "R_PPC64_GNU_VTINHERIT", /* name */
2134 FALSE, /* partial_inplace */
2135 0, /* src_mask */
2136 0, /* dst_mask */
2137 FALSE), /* pcrel_offset */
2138
2139 /* GNU extension to record C++ vtable member usage. */
2140 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2141 0, /* rightshift */
2142 0, /* size (0 = byte, 1 = short, 2 = long) */
2143 0, /* bitsize */
2144 FALSE, /* pc_relative */
2145 0, /* bitpos */
2146 complain_overflow_dont, /* complain_on_overflow */
2147 NULL, /* special_function */
2148 "R_PPC64_GNU_VTENTRY", /* name */
2149 FALSE, /* partial_inplace */
2150 0, /* src_mask */
2151 0, /* dst_mask */
2152 FALSE), /* pcrel_offset */
2153 };
2154
2155 \f
2156 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2157 be done. */
2158
2159 static void
2160 ppc_howto_init (void)
2161 {
2162 unsigned int i, type;
2163
2164 for (i = 0;
2165 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2166 i++)
2167 {
2168 type = ppc64_elf_howto_raw[i].type;
2169 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2170 / sizeof (ppc64_elf_howto_table[0])));
2171 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2172 }
2173 }
2174
2175 static reloc_howto_type *
2176 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2177 bfd_reloc_code_real_type code)
2178 {
2179 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2180
2181 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2182 /* Initialize howto table if needed. */
2183 ppc_howto_init ();
2184
2185 switch (code)
2186 {
2187 default:
2188 return NULL;
2189
2190 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2191 break;
2192 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2193 break;
2194 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2195 break;
2196 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2197 break;
2198 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2199 break;
2200 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2201 break;
2202 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
2203 break;
2204 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2205 break;
2206 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
2207 break;
2208 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2209 break;
2210 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2211 break;
2212 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2213 break;
2214 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2215 break;
2216 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2217 break;
2218 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2219 break;
2220 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2221 break;
2222 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2223 break;
2224 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2225 break;
2226 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2227 break;
2228 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2229 break;
2230 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2231 break;
2232 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2233 break;
2234 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2235 break;
2236 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2237 break;
2238 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2239 break;
2240 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2241 break;
2242 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2243 break;
2244 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2245 break;
2246 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2247 break;
2248 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2249 break;
2250 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2251 break;
2252 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2253 break;
2254 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2255 break;
2256 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2257 break;
2258 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2259 break;
2260 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2261 break;
2262 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2263 break;
2264 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2265 break;
2266 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2267 break;
2268 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2269 break;
2270 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2271 break;
2272 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2273 break;
2274 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2275 break;
2276 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2277 break;
2278 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2279 break;
2280 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2281 break;
2282 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2283 break;
2284 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2285 break;
2286 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2287 break;
2288 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2289 break;
2290 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2291 break;
2292 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2293 break;
2294 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2295 break;
2296 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2297 break;
2298 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2299 break;
2300 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2301 break;
2302 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2303 break;
2304 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2305 break;
2306 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2307 break;
2308 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2309 break;
2310 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2311 break;
2312 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2313 break;
2314 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2315 break;
2316 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2317 break;
2318 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2319 break;
2320 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2321 break;
2322 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2323 break;
2324 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2325 break;
2326 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
2327 break;
2328 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2329 break;
2330 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
2331 break;
2332 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2333 break;
2334 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2335 break;
2336 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2337 break;
2338 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2339 break;
2340 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
2341 break;
2342 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2343 break;
2344 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
2345 break;
2346 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2347 break;
2348 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2349 break;
2350 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2351 break;
2352 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2353 break;
2354 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2355 break;
2356 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2357 break;
2358 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2359 break;
2360 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2361 break;
2362 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2363 break;
2364 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2365 break;
2366 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2367 break;
2368 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2369 break;
2370 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2371 break;
2372 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2373 break;
2374 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2375 break;
2376 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2377 break;
2378 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2379 break;
2380 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2381 break;
2382 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2383 break;
2384 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2385 break;
2386 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2387 break;
2388 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2389 break;
2390 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2391 break;
2392 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2393 break;
2394 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2395 break;
2396 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2397 break;
2398 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2399 break;
2400 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2401 break;
2402 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2403 break;
2404 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2405 break;
2406 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2407 break;
2408 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2409 break;
2410 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2411 break;
2412 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
2413 break;
2414 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2415 break;
2416 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2417 break;
2418 }
2419
2420 return ppc64_elf_howto_table[r];
2421 };
2422
2423 static reloc_howto_type *
2424 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2425 const char *r_name)
2426 {
2427 unsigned int i;
2428
2429 for (i = 0;
2430 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2431 i++)
2432 if (ppc64_elf_howto_raw[i].name != NULL
2433 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2434 return &ppc64_elf_howto_raw[i];
2435
2436 return NULL;
2437 }
2438
2439 /* Set the howto pointer for a PowerPC ELF reloc. */
2440
2441 static void
2442 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2443 Elf_Internal_Rela *dst)
2444 {
2445 unsigned int type;
2446
2447 /* Initialize howto table if needed. */
2448 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2449 ppc_howto_init ();
2450
2451 type = ELF64_R_TYPE (dst->r_info);
2452 if (type >= (sizeof (ppc64_elf_howto_table)
2453 / sizeof (ppc64_elf_howto_table[0])))
2454 {
2455 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2456 abfd, (int) type);
2457 type = R_PPC64_NONE;
2458 }
2459 cache_ptr->howto = ppc64_elf_howto_table[type];
2460 }
2461
2462 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2463
2464 static bfd_reloc_status_type
2465 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2466 void *data, asection *input_section,
2467 bfd *output_bfd, char **error_message)
2468 {
2469 /* If this is a relocatable link (output_bfd test tells us), just
2470 call the generic function. Any adjustment will be done at final
2471 link time. */
2472 if (output_bfd != NULL)
2473 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2474 input_section, output_bfd, error_message);
2475
2476 /* Adjust the addend for sign extension of the low 16 bits.
2477 We won't actually be using the low 16 bits, so trashing them
2478 doesn't matter. */
2479 reloc_entry->addend += 0x8000;
2480 return bfd_reloc_continue;
2481 }
2482
2483 static bfd_reloc_status_type
2484 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2485 void *data, asection *input_section,
2486 bfd *output_bfd, char **error_message)
2487 {
2488 if (output_bfd != NULL)
2489 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2490 input_section, output_bfd, error_message);
2491
2492 if (strcmp (symbol->section->name, ".opd") == 0
2493 && (symbol->section->owner->flags & DYNAMIC) == 0)
2494 {
2495 bfd_vma dest = opd_entry_value (symbol->section,
2496 symbol->value + reloc_entry->addend,
2497 NULL, NULL, FALSE);
2498 if (dest != (bfd_vma) -1)
2499 reloc_entry->addend = dest - (symbol->value
2500 + symbol->section->output_section->vma
2501 + symbol->section->output_offset);
2502 }
2503 else
2504 {
2505 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
2506
2507 if (symbol->section->owner != abfd
2508 && abiversion (symbol->section->owner) >= 2)
2509 {
2510 unsigned int i;
2511
2512 for (i = 0; i < symbol->section->owner->symcount; ++i)
2513 {
2514 asymbol *symdef = symbol->section->owner->outsymbols[i];
2515
2516 if (strcmp (symdef->name, symbol->name) == 0)
2517 {
2518 elfsym = (elf_symbol_type *) symdef;
2519 break;
2520 }
2521 }
2522 }
2523 reloc_entry->addend
2524 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
2525 }
2526 return bfd_reloc_continue;
2527 }
2528
2529 static bfd_reloc_status_type
2530 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533 {
2534 long insn;
2535 enum elf_ppc64_reloc_type r_type;
2536 bfd_size_type octets;
2537 /* Assume 'at' branch hints. */
2538 bfd_boolean is_isa_v2 = TRUE;
2539
2540 /* If this is a relocatable link (output_bfd test tells us), just
2541 call the generic function. Any adjustment will be done at final
2542 link time. */
2543 if (output_bfd != NULL)
2544 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2545 input_section, output_bfd, error_message);
2546
2547 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2548 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2549 insn &= ~(0x01 << 21);
2550 r_type = reloc_entry->howto->type;
2551 if (r_type == R_PPC64_ADDR14_BRTAKEN
2552 || r_type == R_PPC64_REL14_BRTAKEN)
2553 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2554
2555 if (is_isa_v2)
2556 {
2557 /* Set 'a' bit. This is 0b00010 in BO field for branch
2558 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2559 for branch on CTR insns (BO == 1a00t or 1a01t). */
2560 if ((insn & (0x14 << 21)) == (0x04 << 21))
2561 insn |= 0x02 << 21;
2562 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2563 insn |= 0x08 << 21;
2564 else
2565 goto out;
2566 }
2567 else
2568 {
2569 bfd_vma target = 0;
2570 bfd_vma from;
2571
2572 if (!bfd_is_com_section (symbol->section))
2573 target = symbol->value;
2574 target += symbol->section->output_section->vma;
2575 target += symbol->section->output_offset;
2576 target += reloc_entry->addend;
2577
2578 from = (reloc_entry->address
2579 + input_section->output_offset
2580 + input_section->output_section->vma);
2581
2582 /* Invert 'y' bit if not the default. */
2583 if ((bfd_signed_vma) (target - from) < 0)
2584 insn ^= 0x01 << 21;
2585 }
2586 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2587 out:
2588 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2589 input_section, output_bfd, error_message);
2590 }
2591
2592 static bfd_reloc_status_type
2593 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2594 void *data, asection *input_section,
2595 bfd *output_bfd, char **error_message)
2596 {
2597 /* If this is a relocatable link (output_bfd test tells us), just
2598 call the generic function. Any adjustment will be done at final
2599 link time. */
2600 if (output_bfd != NULL)
2601 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2602 input_section, output_bfd, error_message);
2603
2604 /* Subtract the symbol section base address. */
2605 reloc_entry->addend -= symbol->section->output_section->vma;
2606 return bfd_reloc_continue;
2607 }
2608
2609 static bfd_reloc_status_type
2610 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2611 void *data, asection *input_section,
2612 bfd *output_bfd, char **error_message)
2613 {
2614 /* If this is a relocatable link (output_bfd test tells us), just
2615 call the generic function. Any adjustment will be done at final
2616 link time. */
2617 if (output_bfd != NULL)
2618 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2619 input_section, output_bfd, error_message);
2620
2621 /* Subtract the symbol section base address. */
2622 reloc_entry->addend -= symbol->section->output_section->vma;
2623
2624 /* Adjust the addend for sign extension of the low 16 bits. */
2625 reloc_entry->addend += 0x8000;
2626 return bfd_reloc_continue;
2627 }
2628
2629 static bfd_reloc_status_type
2630 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2631 void *data, asection *input_section,
2632 bfd *output_bfd, char **error_message)
2633 {
2634 bfd_vma TOCstart;
2635
2636 /* If this is a relocatable link (output_bfd test tells us), just
2637 call the generic function. Any adjustment will be done at final
2638 link time. */
2639 if (output_bfd != NULL)
2640 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2641 input_section, output_bfd, error_message);
2642
2643 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2644 if (TOCstart == 0)
2645 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2646
2647 /* Subtract the TOC base address. */
2648 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2649 return bfd_reloc_continue;
2650 }
2651
2652 static bfd_reloc_status_type
2653 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2654 void *data, asection *input_section,
2655 bfd *output_bfd, char **error_message)
2656 {
2657 bfd_vma TOCstart;
2658
2659 /* If this is a relocatable link (output_bfd test tells us), just
2660 call the generic function. Any adjustment will be done at final
2661 link time. */
2662 if (output_bfd != NULL)
2663 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2664 input_section, output_bfd, error_message);
2665
2666 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2667 if (TOCstart == 0)
2668 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2669
2670 /* Subtract the TOC base address. */
2671 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2672
2673 /* Adjust the addend for sign extension of the low 16 bits. */
2674 reloc_entry->addend += 0x8000;
2675 return bfd_reloc_continue;
2676 }
2677
2678 static bfd_reloc_status_type
2679 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2680 void *data, asection *input_section,
2681 bfd *output_bfd, char **error_message)
2682 {
2683 bfd_vma TOCstart;
2684 bfd_size_type octets;
2685
2686 /* If this is a relocatable link (output_bfd test tells us), just
2687 call the generic function. Any adjustment will be done at final
2688 link time. */
2689 if (output_bfd != NULL)
2690 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2691 input_section, output_bfd, error_message);
2692
2693 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2694 if (TOCstart == 0)
2695 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2696
2697 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2698 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2699 return bfd_reloc_ok;
2700 }
2701
2702 static bfd_reloc_status_type
2703 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2704 void *data, asection *input_section,
2705 bfd *output_bfd, char **error_message)
2706 {
2707 /* If this is a relocatable link (output_bfd test tells us), just
2708 call the generic function. Any adjustment will be done at final
2709 link time. */
2710 if (output_bfd != NULL)
2711 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2712 input_section, output_bfd, error_message);
2713
2714 if (error_message != NULL)
2715 {
2716 static char buf[60];
2717 sprintf (buf, "generic linker can't handle %s",
2718 reloc_entry->howto->name);
2719 *error_message = buf;
2720 }
2721 return bfd_reloc_dangerous;
2722 }
2723
2724 /* Track GOT entries needed for a given symbol. We might need more
2725 than one got entry per symbol. */
2726 struct got_entry
2727 {
2728 struct got_entry *next;
2729
2730 /* The symbol addend that we'll be placing in the GOT. */
2731 bfd_vma addend;
2732
2733 /* Unlike other ELF targets, we use separate GOT entries for the same
2734 symbol referenced from different input files. This is to support
2735 automatic multiple TOC/GOT sections, where the TOC base can vary
2736 from one input file to another. After partitioning into TOC groups
2737 we merge entries within the group.
2738
2739 Point to the BFD owning this GOT entry. */
2740 bfd *owner;
2741
2742 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2743 TLS_TPREL or TLS_DTPREL for tls entries. */
2744 unsigned char tls_type;
2745
2746 /* Non-zero if got.ent points to real entry. */
2747 unsigned char is_indirect;
2748
2749 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2750 union
2751 {
2752 bfd_signed_vma refcount;
2753 bfd_vma offset;
2754 struct got_entry *ent;
2755 } got;
2756 };
2757
2758 /* The same for PLT. */
2759 struct plt_entry
2760 {
2761 struct plt_entry *next;
2762
2763 bfd_vma addend;
2764
2765 union
2766 {
2767 bfd_signed_vma refcount;
2768 bfd_vma offset;
2769 } plt;
2770 };
2771
2772 struct ppc64_elf_obj_tdata
2773 {
2774 struct elf_obj_tdata elf;
2775
2776 /* Shortcuts to dynamic linker sections. */
2777 asection *got;
2778 asection *relgot;
2779
2780 /* Used during garbage collection. We attach global symbols defined
2781 on removed .opd entries to this section so that the sym is removed. */
2782 asection *deleted_section;
2783
2784 /* TLS local dynamic got entry handling. Support for multiple GOT
2785 sections means we potentially need one of these for each input bfd. */
2786 struct got_entry tlsld_got;
2787
2788 union {
2789 /* A copy of relocs before they are modified for --emit-relocs. */
2790 Elf_Internal_Rela *relocs;
2791
2792 /* Section contents. */
2793 bfd_byte *contents;
2794 } opd;
2795
2796 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2797 the reloc to be in the range -32768 to 32767. */
2798 unsigned int has_small_toc_reloc : 1;
2799
2800 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2801 instruction not one we handle. */
2802 unsigned int unexpected_toc_insn : 1;
2803 };
2804
2805 #define ppc64_elf_tdata(bfd) \
2806 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2807
2808 #define ppc64_tlsld_got(bfd) \
2809 (&ppc64_elf_tdata (bfd)->tlsld_got)
2810
2811 #define is_ppc64_elf(bfd) \
2812 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2813 && elf_object_id (bfd) == PPC64_ELF_DATA)
2814
2815 /* Override the generic function because we store some extras. */
2816
2817 static bfd_boolean
2818 ppc64_elf_mkobject (bfd *abfd)
2819 {
2820 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2821 PPC64_ELF_DATA);
2822 }
2823
2824 /* Fix bad default arch selected for a 64 bit input bfd when the
2825 default is 32 bit. */
2826
2827 static bfd_boolean
2828 ppc64_elf_object_p (bfd *abfd)
2829 {
2830 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2831 {
2832 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2833
2834 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2835 {
2836 /* Relies on arch after 32 bit default being 64 bit default. */
2837 abfd->arch_info = abfd->arch_info->next;
2838 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2839 }
2840 }
2841 return TRUE;
2842 }
2843
2844 /* Support for core dump NOTE sections. */
2845
2846 static bfd_boolean
2847 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2848 {
2849 size_t offset, size;
2850
2851 if (note->descsz != 504)
2852 return FALSE;
2853
2854 /* pr_cursig */
2855 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2856
2857 /* pr_pid */
2858 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2859
2860 /* pr_reg */
2861 offset = 112;
2862 size = 384;
2863
2864 /* Make a ".reg/999" section. */
2865 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2866 size, note->descpos + offset);
2867 }
2868
2869 static bfd_boolean
2870 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2871 {
2872 if (note->descsz != 136)
2873 return FALSE;
2874
2875 elf_tdata (abfd)->core->pid
2876 = bfd_get_32 (abfd, note->descdata + 24);
2877 elf_tdata (abfd)->core->program
2878 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2879 elf_tdata (abfd)->core->command
2880 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2881
2882 return TRUE;
2883 }
2884
2885 static char *
2886 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2887 ...)
2888 {
2889 switch (note_type)
2890 {
2891 default:
2892 return NULL;
2893
2894 case NT_PRPSINFO:
2895 {
2896 char data[136];
2897 va_list ap;
2898
2899 va_start (ap, note_type);
2900 memset (data, 0, sizeof (data));
2901 strncpy (data + 40, va_arg (ap, const char *), 16);
2902 strncpy (data + 56, va_arg (ap, const char *), 80);
2903 va_end (ap);
2904 return elfcore_write_note (abfd, buf, bufsiz,
2905 "CORE", note_type, data, sizeof (data));
2906 }
2907
2908 case NT_PRSTATUS:
2909 {
2910 char data[504];
2911 va_list ap;
2912 long pid;
2913 int cursig;
2914 const void *greg;
2915
2916 va_start (ap, note_type);
2917 memset (data, 0, 112);
2918 pid = va_arg (ap, long);
2919 bfd_put_32 (abfd, pid, data + 32);
2920 cursig = va_arg (ap, int);
2921 bfd_put_16 (abfd, cursig, data + 12);
2922 greg = va_arg (ap, const void *);
2923 memcpy (data + 112, greg, 384);
2924 memset (data + 496, 0, 8);
2925 va_end (ap);
2926 return elfcore_write_note (abfd, buf, bufsiz,
2927 "CORE", note_type, data, sizeof (data));
2928 }
2929 }
2930 }
2931
2932 /* Add extra PPC sections. */
2933
2934 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2935 {
2936 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2937 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2938 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2939 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2940 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2941 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2942 { NULL, 0, 0, 0, 0 }
2943 };
2944
2945 enum _ppc64_sec_type {
2946 sec_normal = 0,
2947 sec_opd = 1,
2948 sec_toc = 2
2949 };
2950
2951 struct _ppc64_elf_section_data
2952 {
2953 struct bfd_elf_section_data elf;
2954
2955 union
2956 {
2957 /* An array with one entry for each opd function descriptor,
2958 and some spares since opd entries may be either 16 or 24 bytes. */
2959 #define OPD_NDX(OFF) ((OFF) >> 4)
2960 struct _opd_sec_data
2961 {
2962 /* Points to the function code section for local opd entries. */
2963 asection **func_sec;
2964
2965 /* After editing .opd, adjust references to opd local syms. */
2966 long *adjust;
2967 } opd;
2968
2969 /* An array for toc sections, indexed by offset/8. */
2970 struct _toc_sec_data
2971 {
2972 /* Specifies the relocation symbol index used at a given toc offset. */
2973 unsigned *symndx;
2974
2975 /* And the relocation addend. */
2976 bfd_vma *add;
2977 } toc;
2978 } u;
2979
2980 enum _ppc64_sec_type sec_type:2;
2981
2982 /* Flag set when small branches are detected. Used to
2983 select suitable defaults for the stub group size. */
2984 unsigned int has_14bit_branch:1;
2985 };
2986
2987 #define ppc64_elf_section_data(sec) \
2988 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2989
2990 static bfd_boolean
2991 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2992 {
2993 if (!sec->used_by_bfd)
2994 {
2995 struct _ppc64_elf_section_data *sdata;
2996 bfd_size_type amt = sizeof (*sdata);
2997
2998 sdata = bfd_zalloc (abfd, amt);
2999 if (sdata == NULL)
3000 return FALSE;
3001 sec->used_by_bfd = sdata;
3002 }
3003
3004 return _bfd_elf_new_section_hook (abfd, sec);
3005 }
3006
3007 static struct _opd_sec_data *
3008 get_opd_info (asection * sec)
3009 {
3010 if (sec != NULL
3011 && ppc64_elf_section_data (sec) != NULL
3012 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
3013 return &ppc64_elf_section_data (sec)->u.opd;
3014 return NULL;
3015 }
3016 \f
3017 /* Parameters for the qsort hook. */
3018 static bfd_boolean synthetic_relocatable;
3019
3020 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
3021
3022 static int
3023 compare_symbols (const void *ap, const void *bp)
3024 {
3025 const asymbol *a = * (const asymbol **) ap;
3026 const asymbol *b = * (const asymbol **) bp;
3027
3028 /* Section symbols first. */
3029 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
3030 return -1;
3031 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
3032 return 1;
3033
3034 /* then .opd symbols. */
3035 if (strcmp (a->section->name, ".opd") == 0
3036 && strcmp (b->section->name, ".opd") != 0)
3037 return -1;
3038 if (strcmp (a->section->name, ".opd") != 0
3039 && strcmp (b->section->name, ".opd") == 0)
3040 return 1;
3041
3042 /* then other code symbols. */
3043 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3044 == (SEC_CODE | SEC_ALLOC)
3045 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3046 != (SEC_CODE | SEC_ALLOC))
3047 return -1;
3048
3049 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3050 != (SEC_CODE | SEC_ALLOC)
3051 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3052 == (SEC_CODE | SEC_ALLOC))
3053 return 1;
3054
3055 if (synthetic_relocatable)
3056 {
3057 if (a->section->id < b->section->id)
3058 return -1;
3059
3060 if (a->section->id > b->section->id)
3061 return 1;
3062 }
3063
3064 if (a->value + a->section->vma < b->value + b->section->vma)
3065 return -1;
3066
3067 if (a->value + a->section->vma > b->value + b->section->vma)
3068 return 1;
3069
3070 /* For syms with the same value, prefer strong dynamic global function
3071 syms over other syms. */
3072 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
3073 return -1;
3074
3075 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
3076 return 1;
3077
3078 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
3079 return -1;
3080
3081 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
3082 return 1;
3083
3084 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
3085 return -1;
3086
3087 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
3088 return 1;
3089
3090 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
3091 return -1;
3092
3093 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
3094 return 1;
3095
3096 return 0;
3097 }
3098
3099 /* Search SYMS for a symbol of the given VALUE. */
3100
3101 static asymbol *
3102 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
3103 {
3104 long mid;
3105
3106 if (id == -1)
3107 {
3108 while (lo < hi)
3109 {
3110 mid = (lo + hi) >> 1;
3111 if (syms[mid]->value + syms[mid]->section->vma < value)
3112 lo = mid + 1;
3113 else if (syms[mid]->value + syms[mid]->section->vma > value)
3114 hi = mid;
3115 else
3116 return syms[mid];
3117 }
3118 }
3119 else
3120 {
3121 while (lo < hi)
3122 {
3123 mid = (lo + hi) >> 1;
3124 if (syms[mid]->section->id < id)
3125 lo = mid + 1;
3126 else if (syms[mid]->section->id > id)
3127 hi = mid;
3128 else if (syms[mid]->value < value)
3129 lo = mid + 1;
3130 else if (syms[mid]->value > value)
3131 hi = mid;
3132 else
3133 return syms[mid];
3134 }
3135 }
3136 return NULL;
3137 }
3138
3139 static bfd_boolean
3140 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
3141 {
3142 bfd_vma vma = *(bfd_vma *) ptr;
3143 return ((section->flags & SEC_ALLOC) != 0
3144 && section->vma <= vma
3145 && vma < section->vma + section->size);
3146 }
3147
3148 /* Create synthetic symbols, effectively restoring "dot-symbol" function
3149 entry syms. Also generate @plt symbols for the glink branch table. */
3150
3151 static long
3152 ppc64_elf_get_synthetic_symtab (bfd *abfd,
3153 long static_count, asymbol **static_syms,
3154 long dyn_count, asymbol **dyn_syms,
3155 asymbol **ret)
3156 {
3157 asymbol *s;
3158 long i;
3159 long count;
3160 char *names;
3161 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
3162 asection *opd = NULL;
3163 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
3164 asymbol **syms;
3165 int abi = abiversion (abfd);
3166
3167 *ret = NULL;
3168
3169 if (abi < 2)
3170 {
3171 opd = bfd_get_section_by_name (abfd, ".opd");
3172 if (opd == NULL && abi == 1)
3173 return 0;
3174 }
3175
3176 symcount = static_count;
3177 if (!relocatable)
3178 symcount += dyn_count;
3179 if (symcount == 0)
3180 return 0;
3181
3182 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3183 if (syms == NULL)
3184 return -1;
3185
3186 if (!relocatable && static_count != 0 && dyn_count != 0)
3187 {
3188 /* Use both symbol tables. */
3189 memcpy (syms, static_syms, static_count * sizeof (*syms));
3190 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3191 }
3192 else if (!relocatable && static_count == 0)
3193 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3194 else
3195 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3196
3197 synthetic_relocatable = relocatable;
3198 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3199
3200 if (!relocatable && symcount > 1)
3201 {
3202 long j;
3203 /* Trim duplicate syms, since we may have merged the normal and
3204 dynamic symbols. Actually, we only care about syms that have
3205 different values, so trim any with the same value. */
3206 for (i = 1, j = 1; i < symcount; ++i)
3207 if (syms[i - 1]->value + syms[i - 1]->section->vma
3208 != syms[i]->value + syms[i]->section->vma)
3209 syms[j++] = syms[i];
3210 symcount = j;
3211 }
3212
3213 i = 0;
3214 if (strcmp (syms[i]->section->name, ".opd") == 0)
3215 ++i;
3216 codesecsym = i;
3217
3218 for (; i < symcount; ++i)
3219 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3220 != (SEC_CODE | SEC_ALLOC))
3221 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3222 break;
3223 codesecsymend = i;
3224
3225 for (; i < symcount; ++i)
3226 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3227 break;
3228 secsymend = i;
3229
3230 for (; i < symcount; ++i)
3231 if (strcmp (syms[i]->section->name, ".opd") != 0)
3232 break;
3233 opdsymend = i;
3234
3235 for (; i < symcount; ++i)
3236 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3237 != (SEC_CODE | SEC_ALLOC))
3238 break;
3239 symcount = i;
3240
3241 count = 0;
3242
3243 if (relocatable)
3244 {
3245 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3246 arelent *r;
3247 size_t size;
3248 long relcount;
3249
3250 if (opdsymend == secsymend)
3251 goto done;
3252
3253 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3254 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3255 if (relcount == 0)
3256 goto done;
3257
3258 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3259 {
3260 count = -1;
3261 goto done;
3262 }
3263
3264 size = 0;
3265 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3266 {
3267 asymbol *sym;
3268
3269 while (r < opd->relocation + relcount
3270 && r->address < syms[i]->value + opd->vma)
3271 ++r;
3272
3273 if (r == opd->relocation + relcount)
3274 break;
3275
3276 if (r->address != syms[i]->value + opd->vma)
3277 continue;
3278
3279 if (r->howto->type != R_PPC64_ADDR64)
3280 continue;
3281
3282 sym = *r->sym_ptr_ptr;
3283 if (!sym_exists_at (syms, opdsymend, symcount,
3284 sym->section->id, sym->value + r->addend))
3285 {
3286 ++count;
3287 size += sizeof (asymbol);
3288 size += strlen (syms[i]->name) + 2;
3289 }
3290 }
3291
3292 s = *ret = bfd_malloc (size);
3293 if (s == NULL)
3294 {
3295 count = -1;
3296 goto done;
3297 }
3298
3299 names = (char *) (s + count);
3300
3301 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3302 {
3303 asymbol *sym;
3304
3305 while (r < opd->relocation + relcount
3306 && r->address < syms[i]->value + opd->vma)
3307 ++r;
3308
3309 if (r == opd->relocation + relcount)
3310 break;
3311
3312 if (r->address != syms[i]->value + opd->vma)
3313 continue;
3314
3315 if (r->howto->type != R_PPC64_ADDR64)
3316 continue;
3317
3318 sym = *r->sym_ptr_ptr;
3319 if (!sym_exists_at (syms, opdsymend, symcount,
3320 sym->section->id, sym->value + r->addend))
3321 {
3322 size_t len;
3323
3324 *s = *syms[i];
3325 s->flags |= BSF_SYNTHETIC;
3326 s->section = sym->section;
3327 s->value = sym->value + r->addend;
3328 s->name = names;
3329 *names++ = '.';
3330 len = strlen (syms[i]->name);
3331 memcpy (names, syms[i]->name, len + 1);
3332 names += len + 1;
3333 /* Have udata.p point back to the original symbol this
3334 synthetic symbol was derived from. */
3335 s->udata.p = syms[i];
3336 s++;
3337 }
3338 }
3339 }
3340 else
3341 {
3342 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3343 bfd_byte *contents = NULL;
3344 size_t size;
3345 long plt_count = 0;
3346 bfd_vma glink_vma = 0, resolv_vma = 0;
3347 asection *dynamic, *glink = NULL, *relplt = NULL;
3348 arelent *p;
3349
3350 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
3351 {
3352 free_contents_and_exit:
3353 if (contents)
3354 free (contents);
3355 count = -1;
3356 goto done;
3357 }
3358
3359 size = 0;
3360 for (i = secsymend; i < opdsymend; ++i)
3361 {
3362 bfd_vma ent;
3363
3364 /* Ignore bogus symbols. */
3365 if (syms[i]->value > opd->size - 8)
3366 continue;
3367
3368 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3369 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3370 {
3371 ++count;
3372 size += sizeof (asymbol);
3373 size += strlen (syms[i]->name) + 2;
3374 }
3375 }
3376
3377 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3378 if (dyn_count != 0
3379 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3380 {
3381 bfd_byte *dynbuf, *extdyn, *extdynend;
3382 size_t extdynsize;
3383 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3384
3385 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3386 goto free_contents_and_exit;
3387
3388 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3389 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3390
3391 extdyn = dynbuf;
3392 extdynend = extdyn + dynamic->size;
3393 for (; extdyn < extdynend; extdyn += extdynsize)
3394 {
3395 Elf_Internal_Dyn dyn;
3396 (*swap_dyn_in) (abfd, extdyn, &dyn);
3397
3398 if (dyn.d_tag == DT_NULL)
3399 break;
3400
3401 if (dyn.d_tag == DT_PPC64_GLINK)
3402 {
3403 /* The first glink stub starts at offset 32; see
3404 comment in ppc64_elf_finish_dynamic_sections. */
3405 glink_vma = dyn.d_un.d_val + GLINK_CALL_STUB_SIZE - 8 * 4;
3406 /* The .glink section usually does not survive the final
3407 link; search for the section (usually .text) where the
3408 glink stubs now reside. */
3409 glink = bfd_sections_find_if (abfd, section_covers_vma,
3410 &glink_vma);
3411 break;
3412 }
3413 }
3414
3415 free (dynbuf);
3416 }
3417
3418 if (glink != NULL)
3419 {
3420 /* Determine __glink trampoline by reading the relative branch
3421 from the first glink stub. */
3422 bfd_byte buf[4];
3423 unsigned int off = 0;
3424
3425 while (bfd_get_section_contents (abfd, glink, buf,
3426 glink_vma + off - glink->vma, 4))
3427 {
3428 unsigned int insn = bfd_get_32 (abfd, buf);
3429 insn ^= B_DOT;
3430 if ((insn & ~0x3fffffc) == 0)
3431 {
3432 resolv_vma = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
3433 break;
3434 }
3435 off += 4;
3436 if (off > 4)
3437 break;
3438 }
3439
3440 if (resolv_vma)
3441 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3442
3443 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3444 if (relplt != NULL)
3445 {
3446 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3447 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3448 goto free_contents_and_exit;
3449
3450 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3451 size += plt_count * sizeof (asymbol);
3452
3453 p = relplt->relocation;
3454 for (i = 0; i < plt_count; i++, p++)
3455 {
3456 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3457 if (p->addend != 0)
3458 size += sizeof ("+0x") - 1 + 16;
3459 }
3460 }
3461 }
3462
3463 s = *ret = bfd_malloc (size);
3464 if (s == NULL)
3465 goto free_contents_and_exit;
3466
3467 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3468
3469 for (i = secsymend; i < opdsymend; ++i)
3470 {
3471 bfd_vma ent;
3472
3473 if (syms[i]->value > opd->size - 8)
3474 continue;
3475
3476 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3477 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3478 {
3479 long lo, hi;
3480 size_t len;
3481 asection *sec = abfd->sections;
3482
3483 *s = *syms[i];
3484 lo = codesecsym;
3485 hi = codesecsymend;
3486 while (lo < hi)
3487 {
3488 long mid = (lo + hi) >> 1;
3489 if (syms[mid]->section->vma < ent)
3490 lo = mid + 1;
3491 else if (syms[mid]->section->vma > ent)
3492 hi = mid;
3493 else
3494 {
3495 sec = syms[mid]->section;
3496 break;
3497 }
3498 }
3499
3500 if (lo >= hi && lo > codesecsym)
3501 sec = syms[lo - 1]->section;
3502
3503 for (; sec != NULL; sec = sec->next)
3504 {
3505 if (sec->vma > ent)
3506 break;
3507 /* SEC_LOAD may not be set if SEC is from a separate debug
3508 info file. */
3509 if ((sec->flags & SEC_ALLOC) == 0)
3510 break;
3511 if ((sec->flags & SEC_CODE) != 0)
3512 s->section = sec;
3513 }
3514 s->flags |= BSF_SYNTHETIC;
3515 s->value = ent - s->section->vma;
3516 s->name = names;
3517 *names++ = '.';
3518 len = strlen (syms[i]->name);
3519 memcpy (names, syms[i]->name, len + 1);
3520 names += len + 1;
3521 /* Have udata.p point back to the original symbol this
3522 synthetic symbol was derived from. */
3523 s->udata.p = syms[i];
3524 s++;
3525 }
3526 }
3527 free (contents);
3528
3529 if (glink != NULL && relplt != NULL)
3530 {
3531 if (resolv_vma)
3532 {
3533 /* Add a symbol for the main glink trampoline. */
3534 memset (s, 0, sizeof *s);
3535 s->the_bfd = abfd;
3536 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3537 s->section = glink;
3538 s->value = resolv_vma - glink->vma;
3539 s->name = names;
3540 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3541 names += sizeof ("__glink_PLTresolve");
3542 s++;
3543 count++;
3544 }
3545
3546 /* FIXME: It would be very much nicer to put sym@plt on the
3547 stub rather than on the glink branch table entry. The
3548 objdump disassembler would then use a sensible symbol
3549 name on plt calls. The difficulty in doing so is
3550 a) finding the stubs, and,
3551 b) matching stubs against plt entries, and,
3552 c) there can be multiple stubs for a given plt entry.
3553
3554 Solving (a) could be done by code scanning, but older
3555 ppc64 binaries used different stubs to current code.
3556 (b) is the tricky one since you need to known the toc
3557 pointer for at least one function that uses a pic stub to
3558 be able to calculate the plt address referenced.
3559 (c) means gdb would need to set multiple breakpoints (or
3560 find the glink branch itself) when setting breakpoints
3561 for pending shared library loads. */
3562 p = relplt->relocation;
3563 for (i = 0; i < plt_count; i++, p++)
3564 {
3565 size_t len;
3566
3567 *s = **p->sym_ptr_ptr;
3568 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3569 we are defining a symbol, ensure one of them is set. */
3570 if ((s->flags & BSF_LOCAL) == 0)
3571 s->flags |= BSF_GLOBAL;
3572 s->flags |= BSF_SYNTHETIC;
3573 s->section = glink;
3574 s->value = glink_vma - glink->vma;
3575 s->name = names;
3576 s->udata.p = NULL;
3577 len = strlen ((*p->sym_ptr_ptr)->name);
3578 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3579 names += len;
3580 if (p->addend != 0)
3581 {
3582 memcpy (names, "+0x", sizeof ("+0x") - 1);
3583 names += sizeof ("+0x") - 1;
3584 bfd_sprintf_vma (abfd, names, p->addend);
3585 names += strlen (names);
3586 }
3587 memcpy (names, "@plt", sizeof ("@plt"));
3588 names += sizeof ("@plt");
3589 s++;
3590 if (abi < 2)
3591 {
3592 glink_vma += 8;
3593 if (i >= 0x8000)
3594 glink_vma += 4;
3595 }
3596 else
3597 glink_vma += 4;
3598 }
3599 count += plt_count;
3600 }
3601 }
3602
3603 done:
3604 free (syms);
3605 return count;
3606 }
3607 \f
3608 /* The following functions are specific to the ELF linker, while
3609 functions above are used generally. Those named ppc64_elf_* are
3610 called by the main ELF linker code. They appear in this file more
3611 or less in the order in which they are called. eg.
3612 ppc64_elf_check_relocs is called early in the link process,
3613 ppc64_elf_finish_dynamic_sections is one of the last functions
3614 called.
3615
3616 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3617 functions have both a function code symbol and a function descriptor
3618 symbol. A call to foo in a relocatable object file looks like:
3619
3620 . .text
3621 . x:
3622 . bl .foo
3623 . nop
3624
3625 The function definition in another object file might be:
3626
3627 . .section .opd
3628 . foo: .quad .foo
3629 . .quad .TOC.@tocbase
3630 . .quad 0
3631 .
3632 . .text
3633 . .foo: blr
3634
3635 When the linker resolves the call during a static link, the branch
3636 unsurprisingly just goes to .foo and the .opd information is unused.
3637 If the function definition is in a shared library, things are a little
3638 different: The call goes via a plt call stub, the opd information gets
3639 copied to the plt, and the linker patches the nop.
3640
3641 . x:
3642 . bl .foo_stub
3643 . ld 2,40(1)
3644 .
3645 .
3646 . .foo_stub:
3647 . std 2,40(1) # in practice, the call stub
3648 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
3649 . addi 11,11,Lfoo@toc@l # this is the general idea
3650 . ld 12,0(11)
3651 . ld 2,8(11)
3652 . mtctr 12
3653 . ld 11,16(11)
3654 . bctr
3655 .
3656 . .section .plt
3657 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3658
3659 The "reloc ()" notation is supposed to indicate that the linker emits
3660 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3661 copying.
3662
3663 What are the difficulties here? Well, firstly, the relocations
3664 examined by the linker in check_relocs are against the function code
3665 sym .foo, while the dynamic relocation in the plt is emitted against
3666 the function descriptor symbol, foo. Somewhere along the line, we need
3667 to carefully copy dynamic link information from one symbol to the other.
3668 Secondly, the generic part of the elf linker will make .foo a dynamic
3669 symbol as is normal for most other backends. We need foo dynamic
3670 instead, at least for an application final link. However, when
3671 creating a shared library containing foo, we need to have both symbols
3672 dynamic so that references to .foo are satisfied during the early
3673 stages of linking. Otherwise the linker might decide to pull in a
3674 definition from some other object, eg. a static library.
3675
3676 Update: As of August 2004, we support a new convention. Function
3677 calls may use the function descriptor symbol, ie. "bl foo". This
3678 behaves exactly as "bl .foo". */
3679
3680 /* Of those relocs that might be copied as dynamic relocs, this function
3681 selects those that must be copied when linking a shared library,
3682 even when the symbol is local. */
3683
3684 static int
3685 must_be_dyn_reloc (struct bfd_link_info *info,
3686 enum elf_ppc64_reloc_type r_type)
3687 {
3688 switch (r_type)
3689 {
3690 default:
3691 return 1;
3692
3693 case R_PPC64_REL32:
3694 case R_PPC64_REL64:
3695 case R_PPC64_REL30:
3696 return 0;
3697
3698 case R_PPC64_TPREL16:
3699 case R_PPC64_TPREL16_LO:
3700 case R_PPC64_TPREL16_HI:
3701 case R_PPC64_TPREL16_HA:
3702 case R_PPC64_TPREL16_DS:
3703 case R_PPC64_TPREL16_LO_DS:
3704 case R_PPC64_TPREL16_HIGH:
3705 case R_PPC64_TPREL16_HIGHA:
3706 case R_PPC64_TPREL16_HIGHER:
3707 case R_PPC64_TPREL16_HIGHERA:
3708 case R_PPC64_TPREL16_HIGHEST:
3709 case R_PPC64_TPREL16_HIGHESTA:
3710 case R_PPC64_TPREL64:
3711 return !info->executable;
3712 }
3713 }
3714
3715 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3716 copying dynamic variables from a shared lib into an app's dynbss
3717 section, and instead use a dynamic relocation to point into the
3718 shared lib. With code that gcc generates, it's vital that this be
3719 enabled; In the PowerPC64 ABI, the address of a function is actually
3720 the address of a function descriptor, which resides in the .opd
3721 section. gcc uses the descriptor directly rather than going via the
3722 GOT as some other ABI's do, which means that initialized function
3723 pointers must reference the descriptor. Thus, a function pointer
3724 initialized to the address of a function in a shared library will
3725 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3726 redefines the function descriptor symbol to point to the copy. This
3727 presents a problem as a plt entry for that function is also
3728 initialized from the function descriptor symbol and the copy reloc
3729 may not be initialized first. */
3730 #define ELIMINATE_COPY_RELOCS 1
3731
3732 /* Section name for stubs is the associated section name plus this
3733 string. */
3734 #define STUB_SUFFIX ".stub"
3735
3736 /* Linker stubs.
3737 ppc_stub_long_branch:
3738 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3739 destination, but a 24 bit branch in a stub section will reach.
3740 . b dest
3741
3742 ppc_stub_plt_branch:
3743 Similar to the above, but a 24 bit branch in the stub section won't
3744 reach its destination.
3745 . addis %r11,%r2,xxx@toc@ha
3746 . ld %r12,xxx@toc@l(%r11)
3747 . mtctr %r12
3748 . bctr
3749
3750 ppc_stub_plt_call:
3751 Used to call a function in a shared library. If it so happens that
3752 the plt entry referenced crosses a 64k boundary, then an extra
3753 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
3754 . std %r2,40(%r1)
3755 . addis %r11,%r2,xxx@toc@ha
3756 . ld %r12,xxx+0@toc@l(%r11)
3757 . mtctr %r12
3758 . ld %r2,xxx+8@toc@l(%r11)
3759 . ld %r11,xxx+16@toc@l(%r11)
3760 . bctr
3761
3762 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3763 code to adjust the value and save r2 to support multiple toc sections.
3764 A ppc_stub_long_branch with an r2 offset looks like:
3765 . std %r2,40(%r1)
3766 . addis %r2,%r2,off@ha
3767 . addi %r2,%r2,off@l
3768 . b dest
3769
3770 A ppc_stub_plt_branch with an r2 offset looks like:
3771 . std %r2,40(%r1)
3772 . addis %r11,%r2,xxx@toc@ha
3773 . ld %r12,xxx@toc@l(%r11)
3774 . addis %r2,%r2,off@ha
3775 . addi %r2,%r2,off@l
3776 . mtctr %r12
3777 . bctr
3778
3779 In cases where the "addis" instruction would add zero, the "addis" is
3780 omitted and following instructions modified slightly in some cases.
3781 */
3782
3783 enum ppc_stub_type {
3784 ppc_stub_none,
3785 ppc_stub_long_branch,
3786 ppc_stub_long_branch_r2off,
3787 ppc_stub_plt_branch,
3788 ppc_stub_plt_branch_r2off,
3789 ppc_stub_plt_call,
3790 ppc_stub_plt_call_r2save,
3791 ppc_stub_global_entry
3792 };
3793
3794 struct ppc_stub_hash_entry {
3795
3796 /* Base hash table entry structure. */
3797 struct bfd_hash_entry root;
3798
3799 enum ppc_stub_type stub_type;
3800
3801 /* The stub section. */
3802 asection *stub_sec;
3803
3804 /* Offset within stub_sec of the beginning of this stub. */
3805 bfd_vma stub_offset;
3806
3807 /* Given the symbol's value and its section we can determine its final
3808 value when building the stubs (so the stub knows where to jump. */
3809 bfd_vma target_value;
3810 asection *target_section;
3811
3812 /* The symbol table entry, if any, that this was derived from. */
3813 struct ppc_link_hash_entry *h;
3814 struct plt_entry *plt_ent;
3815
3816 /* Where this stub is being called from, or, in the case of combined
3817 stub sections, the first input section in the group. */
3818 asection *id_sec;
3819
3820 /* Symbol st_other. */
3821 unsigned char other;
3822 };
3823
3824 struct ppc_branch_hash_entry {
3825
3826 /* Base hash table entry structure. */
3827 struct bfd_hash_entry root;
3828
3829 /* Offset within branch lookup table. */
3830 unsigned int offset;
3831
3832 /* Generation marker. */
3833 unsigned int iter;
3834 };
3835
3836 /* Used to track dynamic relocations for local symbols. */
3837 struct ppc_dyn_relocs
3838 {
3839 struct ppc_dyn_relocs *next;
3840
3841 /* The input section of the reloc. */
3842 asection *sec;
3843
3844 /* Total number of relocs copied for the input section. */
3845 unsigned int count : 31;
3846
3847 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3848 unsigned int ifunc : 1;
3849 };
3850
3851 struct ppc_link_hash_entry
3852 {
3853 struct elf_link_hash_entry elf;
3854
3855 union {
3856 /* A pointer to the most recently used stub hash entry against this
3857 symbol. */
3858 struct ppc_stub_hash_entry *stub_cache;
3859
3860 /* A pointer to the next symbol starting with a '.' */
3861 struct ppc_link_hash_entry *next_dot_sym;
3862 } u;
3863
3864 /* Track dynamic relocs copied for this symbol. */
3865 struct elf_dyn_relocs *dyn_relocs;
3866
3867 /* Link between function code and descriptor symbols. */
3868 struct ppc_link_hash_entry *oh;
3869
3870 /* Flag function code and descriptor symbols. */
3871 unsigned int is_func:1;
3872 unsigned int is_func_descriptor:1;
3873 unsigned int fake:1;
3874
3875 /* Whether global opd/toc sym has been adjusted or not.
3876 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3877 should be set for all globals defined in any opd/toc section. */
3878 unsigned int adjust_done:1;
3879
3880 /* Set if we twiddled this symbol to weak at some stage. */
3881 unsigned int was_undefined:1;
3882
3883 /* Contexts in which symbol is used in the GOT (or TOC).
3884 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3885 corresponding relocs are encountered during check_relocs.
3886 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3887 indicate the corresponding GOT entry type is not needed.
3888 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3889 a TPREL one. We use a separate flag rather than setting TPREL
3890 just for convenience in distinguishing the two cases. */
3891 #define TLS_GD 1 /* GD reloc. */
3892 #define TLS_LD 2 /* LD reloc. */
3893 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3894 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3895 #define TLS_TLS 16 /* Any TLS reloc. */
3896 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3897 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3898 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3899 unsigned char tls_mask;
3900 };
3901
3902 /* ppc64 ELF linker hash table. */
3903
3904 struct ppc_link_hash_table
3905 {
3906 struct elf_link_hash_table elf;
3907
3908 /* The stub hash table. */
3909 struct bfd_hash_table stub_hash_table;
3910
3911 /* Another hash table for plt_branch stubs. */
3912 struct bfd_hash_table branch_hash_table;
3913
3914 /* Hash table for function prologue tocsave. */
3915 htab_t tocsave_htab;
3916
3917 /* Various options and other info passed from the linker. */
3918 struct ppc64_elf_params *params;
3919
3920 /* Array to keep track of which stub sections have been created, and
3921 information on stub grouping. */
3922 struct map_stub {
3923 /* This is the section to which stubs in the group will be attached. */
3924 asection *link_sec;
3925 /* The stub section. */
3926 asection *stub_sec;
3927 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3928 bfd_vma toc_off;
3929 } *stub_group;
3930
3931 /* Temp used when calculating TOC pointers. */
3932 bfd_vma toc_curr;
3933 bfd *toc_bfd;
3934 asection *toc_first_sec;
3935
3936 /* Highest input section id. */
3937 int top_id;
3938
3939 /* Highest output section index. */
3940 int top_index;
3941
3942 /* Used when adding symbols. */
3943 struct ppc_link_hash_entry *dot_syms;
3944
3945 /* List of input sections for each output section. */
3946 asection **input_list;
3947
3948 /* Shortcuts to get to dynamic linker sections. */
3949 asection *dynbss;
3950 asection *relbss;
3951 asection *glink;
3952 asection *sfpr;
3953 asection *brlt;
3954 asection *relbrlt;
3955 asection *glink_eh_frame;
3956
3957 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3958 struct ppc_link_hash_entry *tls_get_addr;
3959 struct ppc_link_hash_entry *tls_get_addr_fd;
3960
3961 /* The size of reliplt used by got entry relocs. */
3962 bfd_size_type got_reli_size;
3963
3964 /* Statistics. */
3965 unsigned long stub_count[ppc_stub_global_entry];
3966
3967 /* Number of stubs against global syms. */
3968 unsigned long stub_globals;
3969
3970 /* Set if we're linking code with function descriptors. */
3971 unsigned int opd_abi:1;
3972
3973 /* Support for multiple toc sections. */
3974 unsigned int do_multi_toc:1;
3975 unsigned int multi_toc_needed:1;
3976 unsigned int second_toc_pass:1;
3977 unsigned int do_toc_opt:1;
3978
3979 /* Set on error. */
3980 unsigned int stub_error:1;
3981
3982 /* Temp used by ppc64_elf_before_check_relocs. */
3983 unsigned int twiddled_syms:1;
3984
3985 /* Incremented every time we size stubs. */
3986 unsigned int stub_iteration;
3987
3988 /* Small local sym cache. */
3989 struct sym_cache sym_cache;
3990 };
3991
3992 /* Rename some of the generic section flags to better document how they
3993 are used here. */
3994
3995 /* Nonzero if this section has TLS related relocations. */
3996 #define has_tls_reloc sec_flg0
3997
3998 /* Nonzero if this section has a call to __tls_get_addr. */
3999 #define has_tls_get_addr_call sec_flg1
4000
4001 /* Nonzero if this section has any toc or got relocs. */
4002 #define has_toc_reloc sec_flg2
4003
4004 /* Nonzero if this section has a call to another section that uses
4005 the toc or got. */
4006 #define makes_toc_func_call sec_flg3
4007
4008 /* Recursion protection when determining above flag. */
4009 #define call_check_in_progress sec_flg4
4010 #define call_check_done sec_flg5
4011
4012 /* Get the ppc64 ELF linker hash table from a link_info structure. */
4013
4014 #define ppc_hash_table(p) \
4015 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
4016 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
4017
4018 #define ppc_stub_hash_lookup(table, string, create, copy) \
4019 ((struct ppc_stub_hash_entry *) \
4020 bfd_hash_lookup ((table), (string), (create), (copy)))
4021
4022 #define ppc_branch_hash_lookup(table, string, create, copy) \
4023 ((struct ppc_branch_hash_entry *) \
4024 bfd_hash_lookup ((table), (string), (create), (copy)))
4025
4026 /* Create an entry in the stub hash table. */
4027
4028 static struct bfd_hash_entry *
4029 stub_hash_newfunc (struct bfd_hash_entry *entry,
4030 struct bfd_hash_table *table,
4031 const char *string)
4032 {
4033 /* Allocate the structure if it has not already been allocated by a
4034 subclass. */
4035 if (entry == NULL)
4036 {
4037 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
4038 if (entry == NULL)
4039 return entry;
4040 }
4041
4042 /* Call the allocation method of the superclass. */
4043 entry = bfd_hash_newfunc (entry, table, string);
4044 if (entry != NULL)
4045 {
4046 struct ppc_stub_hash_entry *eh;
4047
4048 /* Initialize the local fields. */
4049 eh = (struct ppc_stub_hash_entry *) entry;
4050 eh->stub_type = ppc_stub_none;
4051 eh->stub_sec = NULL;
4052 eh->stub_offset = 0;
4053 eh->target_value = 0;
4054 eh->target_section = NULL;
4055 eh->h = NULL;
4056 eh->plt_ent = NULL;
4057 eh->id_sec = NULL;
4058 eh->other = 0;
4059 }
4060
4061 return entry;
4062 }
4063
4064 /* Create an entry in the branch hash table. */
4065
4066 static struct bfd_hash_entry *
4067 branch_hash_newfunc (struct bfd_hash_entry *entry,
4068 struct bfd_hash_table *table,
4069 const char *string)
4070 {
4071 /* Allocate the structure if it has not already been allocated by a
4072 subclass. */
4073 if (entry == NULL)
4074 {
4075 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
4076 if (entry == NULL)
4077 return entry;
4078 }
4079
4080 /* Call the allocation method of the superclass. */
4081 entry = bfd_hash_newfunc (entry, table, string);
4082 if (entry != NULL)
4083 {
4084 struct ppc_branch_hash_entry *eh;
4085
4086 /* Initialize the local fields. */
4087 eh = (struct ppc_branch_hash_entry *) entry;
4088 eh->offset = 0;
4089 eh->iter = 0;
4090 }
4091
4092 return entry;
4093 }
4094
4095 /* Create an entry in a ppc64 ELF linker hash table. */
4096
4097 static struct bfd_hash_entry *
4098 link_hash_newfunc (struct bfd_hash_entry *entry,
4099 struct bfd_hash_table *table,
4100 const char *string)
4101 {
4102 /* Allocate the structure if it has not already been allocated by a
4103 subclass. */
4104 if (entry == NULL)
4105 {
4106 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
4107 if (entry == NULL)
4108 return entry;
4109 }
4110
4111 /* Call the allocation method of the superclass. */
4112 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
4113 if (entry != NULL)
4114 {
4115 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
4116
4117 memset (&eh->u.stub_cache, 0,
4118 (sizeof (struct ppc_link_hash_entry)
4119 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
4120
4121 /* When making function calls, old ABI code references function entry
4122 points (dot symbols), while new ABI code references the function
4123 descriptor symbol. We need to make any combination of reference and
4124 definition work together, without breaking archive linking.
4125
4126 For a defined function "foo" and an undefined call to "bar":
4127 An old object defines "foo" and ".foo", references ".bar" (possibly
4128 "bar" too).
4129 A new object defines "foo" and references "bar".
4130
4131 A new object thus has no problem with its undefined symbols being
4132 satisfied by definitions in an old object. On the other hand, the
4133 old object won't have ".bar" satisfied by a new object.
4134
4135 Keep a list of newly added dot-symbols. */
4136
4137 if (string[0] == '.')
4138 {
4139 struct ppc_link_hash_table *htab;
4140
4141 htab = (struct ppc_link_hash_table *) table;
4142 eh->u.next_dot_sym = htab->dot_syms;
4143 htab->dot_syms = eh;
4144 }
4145 }
4146
4147 return entry;
4148 }
4149
4150 struct tocsave_entry {
4151 asection *sec;
4152 bfd_vma offset;
4153 };
4154
4155 static hashval_t
4156 tocsave_htab_hash (const void *p)
4157 {
4158 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
4159 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
4160 }
4161
4162 static int
4163 tocsave_htab_eq (const void *p1, const void *p2)
4164 {
4165 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
4166 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
4167 return e1->sec == e2->sec && e1->offset == e2->offset;
4168 }
4169
4170 /* Destroy a ppc64 ELF linker hash table. */
4171
4172 static void
4173 ppc64_elf_link_hash_table_free (bfd *obfd)
4174 {
4175 struct ppc_link_hash_table *htab;
4176
4177 htab = (struct ppc_link_hash_table *) obfd->link.hash;
4178 if (htab->tocsave_htab)
4179 htab_delete (htab->tocsave_htab);
4180 bfd_hash_table_free (&htab->branch_hash_table);
4181 bfd_hash_table_free (&htab->stub_hash_table);
4182 _bfd_elf_link_hash_table_free (obfd);
4183 }
4184
4185 /* Create a ppc64 ELF linker hash table. */
4186
4187 static struct bfd_link_hash_table *
4188 ppc64_elf_link_hash_table_create (bfd *abfd)
4189 {
4190 struct ppc_link_hash_table *htab;
4191 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
4192
4193 htab = bfd_zmalloc (amt);
4194 if (htab == NULL)
4195 return NULL;
4196
4197 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
4198 sizeof (struct ppc_link_hash_entry),
4199 PPC64_ELF_DATA))
4200 {
4201 free (htab);
4202 return NULL;
4203 }
4204
4205 /* Init the stub hash table too. */
4206 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4207 sizeof (struct ppc_stub_hash_entry)))
4208 {
4209 _bfd_elf_link_hash_table_free (abfd);
4210 return NULL;
4211 }
4212
4213 /* And the branch hash table. */
4214 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4215 sizeof (struct ppc_branch_hash_entry)))
4216 {
4217 bfd_hash_table_free (&htab->stub_hash_table);
4218 _bfd_elf_link_hash_table_free (abfd);
4219 return NULL;
4220 }
4221
4222 htab->tocsave_htab = htab_try_create (1024,
4223 tocsave_htab_hash,
4224 tocsave_htab_eq,
4225 NULL);
4226 if (htab->tocsave_htab == NULL)
4227 {
4228 ppc64_elf_link_hash_table_free (abfd);
4229 return NULL;
4230 }
4231 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
4232
4233 /* Initializing two fields of the union is just cosmetic. We really
4234 only care about glist, but when compiled on a 32-bit host the
4235 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4236 debugger inspection of these fields look nicer. */
4237 htab->elf.init_got_refcount.refcount = 0;
4238 htab->elf.init_got_refcount.glist = NULL;
4239 htab->elf.init_plt_refcount.refcount = 0;
4240 htab->elf.init_plt_refcount.glist = NULL;
4241 htab->elf.init_got_offset.offset = 0;
4242 htab->elf.init_got_offset.glist = NULL;
4243 htab->elf.init_plt_offset.offset = 0;
4244 htab->elf.init_plt_offset.glist = NULL;
4245
4246 return &htab->elf.root;
4247 }
4248
4249 /* Create sections for linker generated code. */
4250
4251 static bfd_boolean
4252 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4253 {
4254 struct ppc_link_hash_table *htab;
4255 flagword flags;
4256
4257 htab = ppc_hash_table (info);
4258
4259 /* Create .sfpr for code to save and restore fp regs. */
4260 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4261 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4262 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4263 flags);
4264 if (htab->sfpr == NULL
4265 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4266 return FALSE;
4267
4268 /* Create .glink for lazy dynamic linking support. */
4269 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4270 flags);
4271 if (htab->glink == NULL
4272 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4273 return FALSE;
4274
4275 if (!info->no_ld_generated_unwind_info)
4276 {
4277 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4278 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4279 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4280 ".eh_frame",
4281 flags);
4282 if (htab->glink_eh_frame == NULL
4283 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4284 return FALSE;
4285 }
4286
4287 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4288 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4289 if (htab->elf.iplt == NULL
4290 || ! bfd_set_section_alignment (dynobj, htab->elf.iplt, 3))
4291 return FALSE;
4292
4293 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4294 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4295 htab->elf.irelplt
4296 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
4297 if (htab->elf.irelplt == NULL
4298 || ! bfd_set_section_alignment (dynobj, htab->elf.irelplt, 3))
4299 return FALSE;
4300
4301 /* Create branch lookup table for plt_branch stubs. */
4302 flags = (SEC_ALLOC | SEC_LOAD
4303 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4304 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4305 flags);
4306 if (htab->brlt == NULL
4307 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4308 return FALSE;
4309
4310 if (!info->shared)
4311 return TRUE;
4312
4313 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4314 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4315 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4316 ".rela.branch_lt",
4317 flags);
4318 if (htab->relbrlt == NULL
4319 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4320 return FALSE;
4321
4322 return TRUE;
4323 }
4324
4325 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4326
4327 bfd_boolean
4328 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
4329 struct ppc64_elf_params *params)
4330 {
4331 struct ppc_link_hash_table *htab;
4332
4333 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
4334
4335 /* Always hook our dynamic sections into the first bfd, which is the
4336 linker created stub bfd. This ensures that the GOT header is at
4337 the start of the output TOC section. */
4338 htab = ppc_hash_table (info);
4339 if (htab == NULL)
4340 return FALSE;
4341 htab->elf.dynobj = params->stub_bfd;
4342 htab->params = params;
4343
4344 if (info->relocatable)
4345 return TRUE;
4346
4347 return create_linkage_sections (htab->elf.dynobj, info);
4348 }
4349
4350 /* Build a name for an entry in the stub hash table. */
4351
4352 static char *
4353 ppc_stub_name (const asection *input_section,
4354 const asection *sym_sec,
4355 const struct ppc_link_hash_entry *h,
4356 const Elf_Internal_Rela *rel)
4357 {
4358 char *stub_name;
4359 ssize_t len;
4360
4361 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4362 offsets from a sym as a branch target? In fact, we could
4363 probably assume the addend is always zero. */
4364 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4365
4366 if (h)
4367 {
4368 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4369 stub_name = bfd_malloc (len);
4370 if (stub_name == NULL)
4371 return stub_name;
4372
4373 len = sprintf (stub_name, "%08x.%s+%x",
4374 input_section->id & 0xffffffff,
4375 h->elf.root.root.string,
4376 (int) rel->r_addend & 0xffffffff);
4377 }
4378 else
4379 {
4380 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4381 stub_name = bfd_malloc (len);
4382 if (stub_name == NULL)
4383 return stub_name;
4384
4385 len = sprintf (stub_name, "%08x.%x:%x+%x",
4386 input_section->id & 0xffffffff,
4387 sym_sec->id & 0xffffffff,
4388 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4389 (int) rel->r_addend & 0xffffffff);
4390 }
4391 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4392 stub_name[len - 2] = 0;
4393 return stub_name;
4394 }
4395
4396 /* Look up an entry in the stub hash. Stub entries are cached because
4397 creating the stub name takes a bit of time. */
4398
4399 static struct ppc_stub_hash_entry *
4400 ppc_get_stub_entry (const asection *input_section,
4401 const asection *sym_sec,
4402 struct ppc_link_hash_entry *h,
4403 const Elf_Internal_Rela *rel,
4404 struct ppc_link_hash_table *htab)
4405 {
4406 struct ppc_stub_hash_entry *stub_entry;
4407 const asection *id_sec;
4408
4409 /* If this input section is part of a group of sections sharing one
4410 stub section, then use the id of the first section in the group.
4411 Stub names need to include a section id, as there may well be
4412 more than one stub used to reach say, printf, and we need to
4413 distinguish between them. */
4414 id_sec = htab->stub_group[input_section->id].link_sec;
4415
4416 if (h != NULL && h->u.stub_cache != NULL
4417 && h->u.stub_cache->h == h
4418 && h->u.stub_cache->id_sec == id_sec)
4419 {
4420 stub_entry = h->u.stub_cache;
4421 }
4422 else
4423 {
4424 char *stub_name;
4425
4426 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4427 if (stub_name == NULL)
4428 return NULL;
4429
4430 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4431 stub_name, FALSE, FALSE);
4432 if (h != NULL)
4433 h->u.stub_cache = stub_entry;
4434
4435 free (stub_name);
4436 }
4437
4438 return stub_entry;
4439 }
4440
4441 /* Add a new stub entry to the stub hash. Not all fields of the new
4442 stub entry are initialised. */
4443
4444 static struct ppc_stub_hash_entry *
4445 ppc_add_stub (const char *stub_name,
4446 asection *section,
4447 struct bfd_link_info *info)
4448 {
4449 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4450 asection *link_sec;
4451 asection *stub_sec;
4452 struct ppc_stub_hash_entry *stub_entry;
4453
4454 link_sec = htab->stub_group[section->id].link_sec;
4455 stub_sec = htab->stub_group[section->id].stub_sec;
4456 if (stub_sec == NULL)
4457 {
4458 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4459 if (stub_sec == NULL)
4460 {
4461 size_t namelen;
4462 bfd_size_type len;
4463 char *s_name;
4464
4465 namelen = strlen (link_sec->name);
4466 len = namelen + sizeof (STUB_SUFFIX);
4467 s_name = bfd_alloc (htab->params->stub_bfd, len);
4468 if (s_name == NULL)
4469 return NULL;
4470
4471 memcpy (s_name, link_sec->name, namelen);
4472 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4473 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
4474 if (stub_sec == NULL)
4475 return NULL;
4476 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4477 }
4478 htab->stub_group[section->id].stub_sec = stub_sec;
4479 }
4480
4481 /* Enter this entry into the linker stub hash table. */
4482 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4483 TRUE, FALSE);
4484 if (stub_entry == NULL)
4485 {
4486 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4487 section->owner, stub_name);
4488 return NULL;
4489 }
4490
4491 stub_entry->stub_sec = stub_sec;
4492 stub_entry->stub_offset = 0;
4493 stub_entry->id_sec = link_sec;
4494 return stub_entry;
4495 }
4496
4497 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4498 not already done. */
4499
4500 static bfd_boolean
4501 create_got_section (bfd *abfd, struct bfd_link_info *info)
4502 {
4503 asection *got, *relgot;
4504 flagword flags;
4505 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4506
4507 if (!is_ppc64_elf (abfd))
4508 return FALSE;
4509 if (htab == NULL)
4510 return FALSE;
4511
4512 if (!htab->elf.sgot
4513 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
4514 return FALSE;
4515
4516 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4517 | SEC_LINKER_CREATED);
4518
4519 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4520 if (!got
4521 || !bfd_set_section_alignment (abfd, got, 3))
4522 return FALSE;
4523
4524 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4525 flags | SEC_READONLY);
4526 if (!relgot
4527 || ! bfd_set_section_alignment (abfd, relgot, 3))
4528 return FALSE;
4529
4530 ppc64_elf_tdata (abfd)->got = got;
4531 ppc64_elf_tdata (abfd)->relgot = relgot;
4532 return TRUE;
4533 }
4534
4535 /* Create the dynamic sections, and set up shortcuts. */
4536
4537 static bfd_boolean
4538 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4539 {
4540 struct ppc_link_hash_table *htab;
4541
4542 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4543 return FALSE;
4544
4545 htab = ppc_hash_table (info);
4546 if (htab == NULL)
4547 return FALSE;
4548
4549 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4550 if (!info->shared)
4551 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4552
4553 if (!htab->elf.sgot || !htab->elf.splt || !htab->elf.srelplt || !htab->dynbss
4554 || (!info->shared && !htab->relbss))
4555 abort ();
4556
4557 return TRUE;
4558 }
4559
4560 /* Follow indirect and warning symbol links. */
4561
4562 static inline struct bfd_link_hash_entry *
4563 follow_link (struct bfd_link_hash_entry *h)
4564 {
4565 while (h->type == bfd_link_hash_indirect
4566 || h->type == bfd_link_hash_warning)
4567 h = h->u.i.link;
4568 return h;
4569 }
4570
4571 static inline struct elf_link_hash_entry *
4572 elf_follow_link (struct elf_link_hash_entry *h)
4573 {
4574 return (struct elf_link_hash_entry *) follow_link (&h->root);
4575 }
4576
4577 static inline struct ppc_link_hash_entry *
4578 ppc_follow_link (struct ppc_link_hash_entry *h)
4579 {
4580 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4581 }
4582
4583 /* Merge PLT info on FROM with that on TO. */
4584
4585 static void
4586 move_plt_plist (struct ppc_link_hash_entry *from,
4587 struct ppc_link_hash_entry *to)
4588 {
4589 if (from->elf.plt.plist != NULL)
4590 {
4591 if (to->elf.plt.plist != NULL)
4592 {
4593 struct plt_entry **entp;
4594 struct plt_entry *ent;
4595
4596 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4597 {
4598 struct plt_entry *dent;
4599
4600 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4601 if (dent->addend == ent->addend)
4602 {
4603 dent->plt.refcount += ent->plt.refcount;
4604 *entp = ent->next;
4605 break;
4606 }
4607 if (dent == NULL)
4608 entp = &ent->next;
4609 }
4610 *entp = to->elf.plt.plist;
4611 }
4612
4613 to->elf.plt.plist = from->elf.plt.plist;
4614 from->elf.plt.plist = NULL;
4615 }
4616 }
4617
4618 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4619
4620 static void
4621 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4622 struct elf_link_hash_entry *dir,
4623 struct elf_link_hash_entry *ind)
4624 {
4625 struct ppc_link_hash_entry *edir, *eind;
4626
4627 edir = (struct ppc_link_hash_entry *) dir;
4628 eind = (struct ppc_link_hash_entry *) ind;
4629
4630 edir->is_func |= eind->is_func;
4631 edir->is_func_descriptor |= eind->is_func_descriptor;
4632 edir->tls_mask |= eind->tls_mask;
4633 if (eind->oh != NULL)
4634 edir->oh = ppc_follow_link (eind->oh);
4635
4636 /* If called to transfer flags for a weakdef during processing
4637 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4638 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4639 if (!(ELIMINATE_COPY_RELOCS
4640 && eind->elf.root.type != bfd_link_hash_indirect
4641 && edir->elf.dynamic_adjusted))
4642 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4643
4644 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4645 edir->elf.ref_regular |= eind->elf.ref_regular;
4646 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4647 edir->elf.needs_plt |= eind->elf.needs_plt;
4648 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
4649
4650 /* Copy over any dynamic relocs we may have on the indirect sym. */
4651 if (eind->dyn_relocs != NULL)
4652 {
4653 if (edir->dyn_relocs != NULL)
4654 {
4655 struct elf_dyn_relocs **pp;
4656 struct elf_dyn_relocs *p;
4657
4658 /* Add reloc counts against the indirect sym to the direct sym
4659 list. Merge any entries against the same section. */
4660 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4661 {
4662 struct elf_dyn_relocs *q;
4663
4664 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4665 if (q->sec == p->sec)
4666 {
4667 q->pc_count += p->pc_count;
4668 q->count += p->count;
4669 *pp = p->next;
4670 break;
4671 }
4672 if (q == NULL)
4673 pp = &p->next;
4674 }
4675 *pp = edir->dyn_relocs;
4676 }
4677
4678 edir->dyn_relocs = eind->dyn_relocs;
4679 eind->dyn_relocs = NULL;
4680 }
4681
4682 /* If we were called to copy over info for a weak sym, that's all.
4683 You might think dyn_relocs need not be copied over; After all,
4684 both syms will be dynamic or both non-dynamic so we're just
4685 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4686 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4687 dyn_relocs in read-only sections, and it does so on what is the
4688 DIR sym here. */
4689 if (eind->elf.root.type != bfd_link_hash_indirect)
4690 return;
4691
4692 /* Copy over got entries that we may have already seen to the
4693 symbol which just became indirect. */
4694 if (eind->elf.got.glist != NULL)
4695 {
4696 if (edir->elf.got.glist != NULL)
4697 {
4698 struct got_entry **entp;
4699 struct got_entry *ent;
4700
4701 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4702 {
4703 struct got_entry *dent;
4704
4705 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4706 if (dent->addend == ent->addend
4707 && dent->owner == ent->owner
4708 && dent->tls_type == ent->tls_type)
4709 {
4710 dent->got.refcount += ent->got.refcount;
4711 *entp = ent->next;
4712 break;
4713 }
4714 if (dent == NULL)
4715 entp = &ent->next;
4716 }
4717 *entp = edir->elf.got.glist;
4718 }
4719
4720 edir->elf.got.glist = eind->elf.got.glist;
4721 eind->elf.got.glist = NULL;
4722 }
4723
4724 /* And plt entries. */
4725 move_plt_plist (eind, edir);
4726
4727 if (eind->elf.dynindx != -1)
4728 {
4729 if (edir->elf.dynindx != -1)
4730 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4731 edir->elf.dynstr_index);
4732 edir->elf.dynindx = eind->elf.dynindx;
4733 edir->elf.dynstr_index = eind->elf.dynstr_index;
4734 eind->elf.dynindx = -1;
4735 eind->elf.dynstr_index = 0;
4736 }
4737 }
4738
4739 /* Find the function descriptor hash entry from the given function code
4740 hash entry FH. Link the entries via their OH fields. */
4741
4742 static struct ppc_link_hash_entry *
4743 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4744 {
4745 struct ppc_link_hash_entry *fdh = fh->oh;
4746
4747 if (fdh == NULL)
4748 {
4749 const char *fd_name = fh->elf.root.root.string + 1;
4750
4751 fdh = (struct ppc_link_hash_entry *)
4752 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4753 if (fdh == NULL)
4754 return fdh;
4755
4756 fdh->is_func_descriptor = 1;
4757 fdh->oh = fh;
4758 fh->is_func = 1;
4759 fh->oh = fdh;
4760 }
4761
4762 return ppc_follow_link (fdh);
4763 }
4764
4765 /* Make a fake function descriptor sym for the code sym FH. */
4766
4767 static struct ppc_link_hash_entry *
4768 make_fdh (struct bfd_link_info *info,
4769 struct ppc_link_hash_entry *fh)
4770 {
4771 bfd *abfd;
4772 asymbol *newsym;
4773 struct bfd_link_hash_entry *bh;
4774 struct ppc_link_hash_entry *fdh;
4775
4776 abfd = fh->elf.root.u.undef.abfd;
4777 newsym = bfd_make_empty_symbol (abfd);
4778 newsym->name = fh->elf.root.root.string + 1;
4779 newsym->section = bfd_und_section_ptr;
4780 newsym->value = 0;
4781 newsym->flags = BSF_WEAK;
4782
4783 bh = NULL;
4784 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4785 newsym->flags, newsym->section,
4786 newsym->value, NULL, FALSE, FALSE,
4787 &bh))
4788 return NULL;
4789
4790 fdh = (struct ppc_link_hash_entry *) bh;
4791 fdh->elf.non_elf = 0;
4792 fdh->fake = 1;
4793 fdh->is_func_descriptor = 1;
4794 fdh->oh = fh;
4795 fh->is_func = 1;
4796 fh->oh = fdh;
4797 return fdh;
4798 }
4799
4800 /* Fix function descriptor symbols defined in .opd sections to be
4801 function type. */
4802
4803 static bfd_boolean
4804 ppc64_elf_add_symbol_hook (bfd *ibfd,
4805 struct bfd_link_info *info,
4806 Elf_Internal_Sym *isym,
4807 const char **name,
4808 flagword *flags ATTRIBUTE_UNUSED,
4809 asection **sec,
4810 bfd_vma *value)
4811 {
4812 if ((ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4813 || ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4814 && (ibfd->flags & DYNAMIC) == 0
4815 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4816 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4817
4818 if (*sec != NULL
4819 && strcmp ((*sec)->name, ".opd") == 0)
4820 {
4821 asection *code_sec;
4822
4823 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4824 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4825 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4826
4827 /* If the symbol is a function defined in .opd, and the function
4828 code is in a discarded group, let it appear to be undefined. */
4829 if (!info->relocatable
4830 && (*sec)->reloc_count != 0
4831 && opd_entry_value (*sec, *value, &code_sec, NULL,
4832 FALSE) != (bfd_vma) -1
4833 && discarded_section (code_sec))
4834 {
4835 *sec = bfd_und_section_ptr;
4836 isym->st_shndx = SHN_UNDEF;
4837 }
4838 }
4839 else if (*sec != NULL
4840 && strcmp ((*sec)->name, ".toc") == 0
4841 && ELF_ST_TYPE (isym->st_info) == STT_OBJECT)
4842 {
4843 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4844 if (htab != NULL)
4845 htab->params->object_in_toc = 1;
4846 }
4847
4848 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4849 {
4850 if (abiversion (ibfd) == 0)
4851 set_abiversion (ibfd, 2);
4852 else if (abiversion (ibfd) == 1)
4853 {
4854 info->callbacks->einfo (_("%P: symbol '%s' has invalid st_other"
4855 " for ABI version 1\n"), name);
4856 bfd_set_error (bfd_error_bad_value);
4857 return FALSE;
4858 }
4859 }
4860
4861 return TRUE;
4862 }
4863
4864 /* Merge non-visibility st_other attributes: local entry point. */
4865
4866 static void
4867 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4868 const Elf_Internal_Sym *isym,
4869 bfd_boolean definition,
4870 bfd_boolean dynamic)
4871 {
4872 if (definition && !dynamic)
4873 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4874 | ELF_ST_VISIBILITY (h->other));
4875 }
4876
4877 /* This function makes an old ABI object reference to ".bar" cause the
4878 inclusion of a new ABI object archive that defines "bar".
4879 NAME is a symbol defined in an archive. Return a symbol in the hash
4880 table that might be satisfied by the archive symbols. */
4881
4882 static struct elf_link_hash_entry *
4883 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4884 struct bfd_link_info *info,
4885 const char *name)
4886 {
4887 struct elf_link_hash_entry *h;
4888 char *dot_name;
4889 size_t len;
4890
4891 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4892 if (h != NULL
4893 /* Don't return this sym if it is a fake function descriptor
4894 created by add_symbol_adjust. */
4895 && !(h->root.type == bfd_link_hash_undefweak
4896 && ((struct ppc_link_hash_entry *) h)->fake))
4897 return h;
4898
4899 if (name[0] == '.')
4900 return h;
4901
4902 len = strlen (name);
4903 dot_name = bfd_alloc (abfd, len + 2);
4904 if (dot_name == NULL)
4905 return (struct elf_link_hash_entry *) 0 - 1;
4906 dot_name[0] = '.';
4907 memcpy (dot_name + 1, name, len + 1);
4908 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4909 bfd_release (abfd, dot_name);
4910 return h;
4911 }
4912
4913 /* This function satisfies all old ABI object references to ".bar" if a
4914 new ABI object defines "bar". Well, at least, undefined dot symbols
4915 are made weak. This stops later archive searches from including an
4916 object if we already have a function descriptor definition. It also
4917 prevents the linker complaining about undefined symbols.
4918 We also check and correct mismatched symbol visibility here. The
4919 most restrictive visibility of the function descriptor and the
4920 function entry symbol is used. */
4921
4922 static bfd_boolean
4923 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4924 {
4925 struct ppc_link_hash_table *htab;
4926 struct ppc_link_hash_entry *fdh;
4927
4928 if (eh->elf.root.type == bfd_link_hash_indirect)
4929 return TRUE;
4930
4931 if (eh->elf.root.type == bfd_link_hash_warning)
4932 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4933
4934 if (eh->elf.root.root.string[0] != '.')
4935 abort ();
4936
4937 htab = ppc_hash_table (info);
4938 if (htab == NULL)
4939 return FALSE;
4940
4941 fdh = lookup_fdh (eh, htab);
4942 if (fdh == NULL)
4943 {
4944 if (!info->relocatable
4945 && (eh->elf.root.type == bfd_link_hash_undefined
4946 || eh->elf.root.type == bfd_link_hash_undefweak)
4947 && eh->elf.ref_regular)
4948 {
4949 /* Make an undefweak function descriptor sym, which is enough to
4950 pull in an --as-needed shared lib, but won't cause link
4951 errors. Archives are handled elsewhere. */
4952 fdh = make_fdh (info, eh);
4953 if (fdh == NULL)
4954 return FALSE;
4955 fdh->elf.ref_regular = 1;
4956 }
4957 }
4958 else
4959 {
4960 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4961 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4962 if (entry_vis < descr_vis)
4963 fdh->elf.other += entry_vis - descr_vis;
4964 else if (entry_vis > descr_vis)
4965 eh->elf.other += descr_vis - entry_vis;
4966
4967 if ((fdh->elf.root.type == bfd_link_hash_defined
4968 || fdh->elf.root.type == bfd_link_hash_defweak)
4969 && eh->elf.root.type == bfd_link_hash_undefined)
4970 {
4971 eh->elf.root.type = bfd_link_hash_undefweak;
4972 eh->was_undefined = 1;
4973 htab->twiddled_syms = 1;
4974 }
4975 }
4976
4977 return TRUE;
4978 }
4979
4980 /* Set up opd section info and abiversion for IBFD, and process list
4981 of dot-symbols we made in link_hash_newfunc. */
4982
4983 static bfd_boolean
4984 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4985 {
4986 struct ppc_link_hash_table *htab;
4987 struct ppc_link_hash_entry **p, *eh;
4988 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4989
4990 if (opd != NULL && opd->size != 0)
4991 {
4992 if (abiversion (ibfd) == 0)
4993 set_abiversion (ibfd, 1);
4994 else if (abiversion (ibfd) == 2)
4995 {
4996 info->callbacks->einfo (_("%P: %B .opd not allowed in ABI"
4997 " version %d\n"),
4998 ibfd, abiversion (ibfd));
4999 bfd_set_error (bfd_error_bad_value);
5000 return FALSE;
5001 }
5002
5003 if ((ibfd->flags & DYNAMIC) == 0
5004 && (opd->flags & SEC_RELOC) != 0
5005 && opd->reloc_count != 0
5006 && !bfd_is_abs_section (opd->output_section))
5007 {
5008 /* Garbage collection needs some extra help with .opd sections.
5009 We don't want to necessarily keep everything referenced by
5010 relocs in .opd, as that would keep all functions. Instead,
5011 if we reference an .opd symbol (a function descriptor), we
5012 want to keep the function code symbol's section. This is
5013 easy for global symbols, but for local syms we need to keep
5014 information about the associated function section. */
5015 bfd_size_type amt;
5016 asection **opd_sym_map;
5017
5018 amt = OPD_NDX (opd->size) * sizeof (*opd_sym_map);
5019 opd_sym_map = bfd_zalloc (ibfd, amt);
5020 if (opd_sym_map == NULL)
5021 return FALSE;
5022 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
5023 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
5024 ppc64_elf_section_data (opd)->sec_type = sec_opd;
5025 }
5026 }
5027
5028 if (!is_ppc64_elf (info->output_bfd))
5029 return TRUE;
5030 htab = ppc_hash_table (info);
5031 if (htab == NULL)
5032 return FALSE;
5033
5034 /* For input files without an explicit abiversion in e_flags
5035 we should have flagged any with symbol st_other bits set
5036 as ELFv1 and above flagged those with .opd as ELFv2.
5037 Set the output abiversion if not yet set, and for any input
5038 still ambiguous, take its abiversion from the output.
5039 Differences in ABI are reported later. */
5040 if (abiversion (info->output_bfd) == 0)
5041 set_abiversion (info->output_bfd, abiversion (ibfd));
5042 else if (abiversion (ibfd) == 0)
5043 set_abiversion (ibfd, abiversion (info->output_bfd));
5044
5045 p = &htab->dot_syms;
5046 while ((eh = *p) != NULL)
5047 {
5048 *p = NULL;
5049 if (&eh->elf == htab->elf.hgot)
5050 ;
5051 else if (htab->elf.hgot == NULL
5052 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
5053 htab->elf.hgot = &eh->elf;
5054 else if (!add_symbol_adjust (eh, info))
5055 return FALSE;
5056 p = &eh->u.next_dot_sym;
5057 }
5058
5059 /* Clear the list for non-ppc64 input files. */
5060 p = &htab->dot_syms;
5061 while ((eh = *p) != NULL)
5062 {
5063 *p = NULL;
5064 p = &eh->u.next_dot_sym;
5065 }
5066
5067 /* We need to fix the undefs list for any syms we have twiddled to
5068 undef_weak. */
5069 if (htab->twiddled_syms)
5070 {
5071 bfd_link_repair_undef_list (&htab->elf.root);
5072 htab->twiddled_syms = 0;
5073 }
5074 return TRUE;
5075 }
5076
5077 /* Undo hash table changes when an --as-needed input file is determined
5078 not to be needed. */
5079
5080 static bfd_boolean
5081 ppc64_elf_notice_as_needed (bfd *ibfd,
5082 struct bfd_link_info *info,
5083 enum notice_asneeded_action act)
5084 {
5085 if (act == notice_not_needed)
5086 {
5087 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5088
5089 if (htab == NULL)
5090 return FALSE;
5091
5092 htab->dot_syms = NULL;
5093 }
5094 return _bfd_elf_notice_as_needed (ibfd, info, act);
5095 }
5096
5097 /* If --just-symbols against a final linked binary, then assume we need
5098 toc adjusting stubs when calling functions defined there. */
5099
5100 static void
5101 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
5102 {
5103 if ((sec->flags & SEC_CODE) != 0
5104 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
5105 && is_ppc64_elf (sec->owner))
5106 {
5107 if (abiversion (sec->owner) >= 2
5108 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
5109 sec->has_toc_reloc = 1;
5110 }
5111 _bfd_elf_link_just_syms (sec, info);
5112 }
5113
5114 static struct plt_entry **
5115 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
5116 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
5117 {
5118 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
5119 struct plt_entry **local_plt;
5120 unsigned char *local_got_tls_masks;
5121
5122 if (local_got_ents == NULL)
5123 {
5124 bfd_size_type size = symtab_hdr->sh_info;
5125
5126 size *= (sizeof (*local_got_ents)
5127 + sizeof (*local_plt)
5128 + sizeof (*local_got_tls_masks));
5129 local_got_ents = bfd_zalloc (abfd, size);
5130 if (local_got_ents == NULL)
5131 return NULL;
5132 elf_local_got_ents (abfd) = local_got_ents;
5133 }
5134
5135 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
5136 {
5137 struct got_entry *ent;
5138
5139 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
5140 if (ent->addend == r_addend
5141 && ent->owner == abfd
5142 && ent->tls_type == tls_type)
5143 break;
5144 if (ent == NULL)
5145 {
5146 bfd_size_type amt = sizeof (*ent);
5147 ent = bfd_alloc (abfd, amt);
5148 if (ent == NULL)
5149 return FALSE;
5150 ent->next = local_got_ents[r_symndx];
5151 ent->addend = r_addend;
5152 ent->owner = abfd;
5153 ent->tls_type = tls_type;
5154 ent->is_indirect = FALSE;
5155 ent->got.refcount = 0;
5156 local_got_ents[r_symndx] = ent;
5157 }
5158 ent->got.refcount += 1;
5159 }
5160
5161 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
5162 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
5163 local_got_tls_masks[r_symndx] |= tls_type;
5164
5165 return local_plt + r_symndx;
5166 }
5167
5168 static bfd_boolean
5169 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
5170 {
5171 struct plt_entry *ent;
5172
5173 for (ent = *plist; ent != NULL; ent = ent->next)
5174 if (ent->addend == addend)
5175 break;
5176 if (ent == NULL)
5177 {
5178 bfd_size_type amt = sizeof (*ent);
5179 ent = bfd_alloc (abfd, amt);
5180 if (ent == NULL)
5181 return FALSE;
5182 ent->next = *plist;
5183 ent->addend = addend;
5184 ent->plt.refcount = 0;
5185 *plist = ent;
5186 }
5187 ent->plt.refcount += 1;
5188 return TRUE;
5189 }
5190
5191 static bfd_boolean
5192 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
5193 {
5194 return (r_type == R_PPC64_REL24
5195 || r_type == R_PPC64_REL14
5196 || r_type == R_PPC64_REL14_BRTAKEN
5197 || r_type == R_PPC64_REL14_BRNTAKEN
5198 || r_type == R_PPC64_ADDR24
5199 || r_type == R_PPC64_ADDR14
5200 || r_type == R_PPC64_ADDR14_BRTAKEN
5201 || r_type == R_PPC64_ADDR14_BRNTAKEN);
5202 }
5203
5204 /* Look through the relocs for a section during the first phase, and
5205 calculate needed space in the global offset table, procedure
5206 linkage table, and dynamic reloc sections. */
5207
5208 static bfd_boolean
5209 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5210 asection *sec, const Elf_Internal_Rela *relocs)
5211 {
5212 struct ppc_link_hash_table *htab;
5213 Elf_Internal_Shdr *symtab_hdr;
5214 struct elf_link_hash_entry **sym_hashes;
5215 const Elf_Internal_Rela *rel;
5216 const Elf_Internal_Rela *rel_end;
5217 asection *sreloc;
5218 asection **opd_sym_map;
5219 struct elf_link_hash_entry *tga, *dottga;
5220
5221 if (info->relocatable)
5222 return TRUE;
5223
5224 /* Don't do anything special with non-loaded, non-alloced sections.
5225 In particular, any relocs in such sections should not affect GOT
5226 and PLT reference counting (ie. we don't allow them to create GOT
5227 or PLT entries), there's no possibility or desire to optimize TLS
5228 relocs, and there's not much point in propagating relocs to shared
5229 libs that the dynamic linker won't relocate. */
5230 if ((sec->flags & SEC_ALLOC) == 0)
5231 return TRUE;
5232
5233 BFD_ASSERT (is_ppc64_elf (abfd));
5234
5235 htab = ppc_hash_table (info);
5236 if (htab == NULL)
5237 return FALSE;
5238
5239 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
5240 FALSE, FALSE, TRUE);
5241 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
5242 FALSE, FALSE, TRUE);
5243 symtab_hdr = &elf_symtab_hdr (abfd);
5244 sym_hashes = elf_sym_hashes (abfd);
5245 sreloc = NULL;
5246 opd_sym_map = NULL;
5247 if (ppc64_elf_section_data (sec) != NULL
5248 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
5249 opd_sym_map = ppc64_elf_section_data (sec)->u.opd.func_sec;
5250
5251 rel_end = relocs + sec->reloc_count;
5252 for (rel = relocs; rel < rel_end; rel++)
5253 {
5254 unsigned long r_symndx;
5255 struct elf_link_hash_entry *h;
5256 enum elf_ppc64_reloc_type r_type;
5257 int tls_type;
5258 struct _ppc64_elf_section_data *ppc64_sec;
5259 struct plt_entry **ifunc;
5260
5261 r_symndx = ELF64_R_SYM (rel->r_info);
5262 if (r_symndx < symtab_hdr->sh_info)
5263 h = NULL;
5264 else
5265 {
5266 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5267 h = elf_follow_link (h);
5268
5269 /* PR15323, ref flags aren't set for references in the same
5270 object. */
5271 h->root.non_ir_ref = 1;
5272
5273 if (h == htab->elf.hgot)
5274 sec->has_toc_reloc = 1;
5275 }
5276
5277 tls_type = 0;
5278 ifunc = NULL;
5279 if (h != NULL)
5280 {
5281 if (h->type == STT_GNU_IFUNC)
5282 {
5283 h->needs_plt = 1;
5284 ifunc = &h->plt.plist;
5285 }
5286 }
5287 else
5288 {
5289 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5290 abfd, r_symndx);
5291 if (isym == NULL)
5292 return FALSE;
5293
5294 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5295 {
5296 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5297 rel->r_addend, PLT_IFUNC);
5298 if (ifunc == NULL)
5299 return FALSE;
5300 }
5301 }
5302 r_type = ELF64_R_TYPE (rel->r_info);
5303 if (is_branch_reloc (r_type))
5304 {
5305 if (h != NULL && (h == tga || h == dottga))
5306 {
5307 if (rel != relocs
5308 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5309 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5310 /* We have a new-style __tls_get_addr call with a marker
5311 reloc. */
5312 ;
5313 else
5314 /* Mark this section as having an old-style call. */
5315 sec->has_tls_get_addr_call = 1;
5316 }
5317
5318 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5319 if (ifunc != NULL
5320 && !update_plt_info (abfd, ifunc, rel->r_addend))
5321 return FALSE;
5322 }
5323
5324 switch (r_type)
5325 {
5326 case R_PPC64_TLSGD:
5327 case R_PPC64_TLSLD:
5328 /* These special tls relocs tie a call to __tls_get_addr with
5329 its parameter symbol. */
5330 break;
5331
5332 case R_PPC64_GOT_TLSLD16:
5333 case R_PPC64_GOT_TLSLD16_LO:
5334 case R_PPC64_GOT_TLSLD16_HI:
5335 case R_PPC64_GOT_TLSLD16_HA:
5336 tls_type = TLS_TLS | TLS_LD;
5337 goto dogottls;
5338
5339 case R_PPC64_GOT_TLSGD16:
5340 case R_PPC64_GOT_TLSGD16_LO:
5341 case R_PPC64_GOT_TLSGD16_HI:
5342 case R_PPC64_GOT_TLSGD16_HA:
5343 tls_type = TLS_TLS | TLS_GD;
5344 goto dogottls;
5345
5346 case R_PPC64_GOT_TPREL16_DS:
5347 case R_PPC64_GOT_TPREL16_LO_DS:
5348 case R_PPC64_GOT_TPREL16_HI:
5349 case R_PPC64_GOT_TPREL16_HA:
5350 if (info->shared)
5351 info->flags |= DF_STATIC_TLS;
5352 tls_type = TLS_TLS | TLS_TPREL;
5353 goto dogottls;
5354
5355 case R_PPC64_GOT_DTPREL16_DS:
5356 case R_PPC64_GOT_DTPREL16_LO_DS:
5357 case R_PPC64_GOT_DTPREL16_HI:
5358 case R_PPC64_GOT_DTPREL16_HA:
5359 tls_type = TLS_TLS | TLS_DTPREL;
5360 dogottls:
5361 sec->has_tls_reloc = 1;
5362 /* Fall thru */
5363
5364 case R_PPC64_GOT16:
5365 case R_PPC64_GOT16_DS:
5366 case R_PPC64_GOT16_HA:
5367 case R_PPC64_GOT16_HI:
5368 case R_PPC64_GOT16_LO:
5369 case R_PPC64_GOT16_LO_DS:
5370 /* This symbol requires a global offset table entry. */
5371 sec->has_toc_reloc = 1;
5372 if (r_type == R_PPC64_GOT_TLSLD16
5373 || r_type == R_PPC64_GOT_TLSGD16
5374 || r_type == R_PPC64_GOT_TPREL16_DS
5375 || r_type == R_PPC64_GOT_DTPREL16_DS
5376 || r_type == R_PPC64_GOT16
5377 || r_type == R_PPC64_GOT16_DS)
5378 {
5379 htab->do_multi_toc = 1;
5380 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5381 }
5382
5383 if (ppc64_elf_tdata (abfd)->got == NULL
5384 && !create_got_section (abfd, info))
5385 return FALSE;
5386
5387 if (h != NULL)
5388 {
5389 struct ppc_link_hash_entry *eh;
5390 struct got_entry *ent;
5391
5392 eh = (struct ppc_link_hash_entry *) h;
5393 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5394 if (ent->addend == rel->r_addend
5395 && ent->owner == abfd
5396 && ent->tls_type == tls_type)
5397 break;
5398 if (ent == NULL)
5399 {
5400 bfd_size_type amt = sizeof (*ent);
5401 ent = bfd_alloc (abfd, amt);
5402 if (ent == NULL)
5403 return FALSE;
5404 ent->next = eh->elf.got.glist;
5405 ent->addend = rel->r_addend;
5406 ent->owner = abfd;
5407 ent->tls_type = tls_type;
5408 ent->is_indirect = FALSE;
5409 ent->got.refcount = 0;
5410 eh->elf.got.glist = ent;
5411 }
5412 ent->got.refcount += 1;
5413 eh->tls_mask |= tls_type;
5414 }
5415 else
5416 /* This is a global offset table entry for a local symbol. */
5417 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5418 rel->r_addend, tls_type))
5419 return FALSE;
5420
5421 /* We may also need a plt entry if the symbol turns out to be
5422 an ifunc. */
5423 if (h != NULL && !info->shared && abiversion (abfd) != 1)
5424 {
5425 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5426 return FALSE;
5427 }
5428 break;
5429
5430 case R_PPC64_PLT16_HA:
5431 case R_PPC64_PLT16_HI:
5432 case R_PPC64_PLT16_LO:
5433 case R_PPC64_PLT32:
5434 case R_PPC64_PLT64:
5435 /* This symbol requires a procedure linkage table entry. We
5436 actually build the entry in adjust_dynamic_symbol,
5437 because this might be a case of linking PIC code without
5438 linking in any dynamic objects, in which case we don't
5439 need to generate a procedure linkage table after all. */
5440 if (h == NULL)
5441 {
5442 /* It does not make sense to have a procedure linkage
5443 table entry for a local symbol. */
5444 bfd_set_error (bfd_error_bad_value);
5445 return FALSE;
5446 }
5447 else
5448 {
5449 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5450 return FALSE;
5451 h->needs_plt = 1;
5452 if (h->root.root.string[0] == '.'
5453 && h->root.root.string[1] != '\0')
5454 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5455 }
5456 break;
5457
5458 /* The following relocations don't need to propagate the
5459 relocation if linking a shared object since they are
5460 section relative. */
5461 case R_PPC64_SECTOFF:
5462 case R_PPC64_SECTOFF_LO:
5463 case R_PPC64_SECTOFF_HI:
5464 case R_PPC64_SECTOFF_HA:
5465 case R_PPC64_SECTOFF_DS:
5466 case R_PPC64_SECTOFF_LO_DS:
5467 case R_PPC64_DTPREL16:
5468 case R_PPC64_DTPREL16_LO:
5469 case R_PPC64_DTPREL16_HI:
5470 case R_PPC64_DTPREL16_HA:
5471 case R_PPC64_DTPREL16_DS:
5472 case R_PPC64_DTPREL16_LO_DS:
5473 case R_PPC64_DTPREL16_HIGH:
5474 case R_PPC64_DTPREL16_HIGHA:
5475 case R_PPC64_DTPREL16_HIGHER:
5476 case R_PPC64_DTPREL16_HIGHERA:
5477 case R_PPC64_DTPREL16_HIGHEST:
5478 case R_PPC64_DTPREL16_HIGHESTA:
5479 break;
5480
5481 /* Nor do these. */
5482 case R_PPC64_REL16:
5483 case R_PPC64_REL16_LO:
5484 case R_PPC64_REL16_HI:
5485 case R_PPC64_REL16_HA:
5486 break;
5487
5488 /* Not supported as a dynamic relocation. */
5489 case R_PPC64_ADDR64_LOCAL:
5490 if (info->shared)
5491 {
5492 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
5493 ppc_howto_init ();
5494 info->callbacks->einfo (_("%P: %H: %s reloc unsupported "
5495 "in shared libraries and PIEs.\n"),
5496 abfd, sec, rel->r_offset,
5497 ppc64_elf_howto_table[r_type]->name);
5498 bfd_set_error (bfd_error_bad_value);
5499 return FALSE;
5500 }
5501 break;
5502
5503 case R_PPC64_TOC16:
5504 case R_PPC64_TOC16_DS:
5505 htab->do_multi_toc = 1;
5506 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5507 case R_PPC64_TOC16_LO:
5508 case R_PPC64_TOC16_HI:
5509 case R_PPC64_TOC16_HA:
5510 case R_PPC64_TOC16_LO_DS:
5511 sec->has_toc_reloc = 1;
5512 break;
5513
5514 /* This relocation describes the C++ object vtable hierarchy.
5515 Reconstruct it for later use during GC. */
5516 case R_PPC64_GNU_VTINHERIT:
5517 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5518 return FALSE;
5519 break;
5520
5521 /* This relocation describes which C++ vtable entries are actually
5522 used. Record for later use during GC. */
5523 case R_PPC64_GNU_VTENTRY:
5524 BFD_ASSERT (h != NULL);
5525 if (h != NULL
5526 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5527 return FALSE;
5528 break;
5529
5530 case R_PPC64_REL14:
5531 case R_PPC64_REL14_BRTAKEN:
5532 case R_PPC64_REL14_BRNTAKEN:
5533 {
5534 asection *dest = NULL;
5535
5536 /* Heuristic: If jumping outside our section, chances are
5537 we are going to need a stub. */
5538 if (h != NULL)
5539 {
5540 /* If the sym is weak it may be overridden later, so
5541 don't assume we know where a weak sym lives. */
5542 if (h->root.type == bfd_link_hash_defined)
5543 dest = h->root.u.def.section;
5544 }
5545 else
5546 {
5547 Elf_Internal_Sym *isym;
5548
5549 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5550 abfd, r_symndx);
5551 if (isym == NULL)
5552 return FALSE;
5553
5554 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5555 }
5556
5557 if (dest != sec)
5558 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5559 }
5560 /* Fall through. */
5561
5562 case R_PPC64_REL24:
5563 if (h != NULL && ifunc == NULL)
5564 {
5565 /* We may need a .plt entry if the function this reloc
5566 refers to is in a shared lib. */
5567 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5568 return FALSE;
5569 h->needs_plt = 1;
5570 if (h->root.root.string[0] == '.'
5571 && h->root.root.string[1] != '\0')
5572 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5573 if (h == tga || h == dottga)
5574 sec->has_tls_reloc = 1;
5575 }
5576 break;
5577
5578 case R_PPC64_TPREL64:
5579 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5580 if (info->shared)
5581 info->flags |= DF_STATIC_TLS;
5582 goto dotlstoc;
5583
5584 case R_PPC64_DTPMOD64:
5585 if (rel + 1 < rel_end
5586 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5587 && rel[1].r_offset == rel->r_offset + 8)
5588 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5589 else
5590 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5591 goto dotlstoc;
5592
5593 case R_PPC64_DTPREL64:
5594 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5595 if (rel != relocs
5596 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5597 && rel[-1].r_offset == rel->r_offset - 8)
5598 /* This is the second reloc of a dtpmod, dtprel pair.
5599 Don't mark with TLS_DTPREL. */
5600 goto dodyn;
5601
5602 dotlstoc:
5603 sec->has_tls_reloc = 1;
5604 if (h != NULL)
5605 {
5606 struct ppc_link_hash_entry *eh;
5607 eh = (struct ppc_link_hash_entry *) h;
5608 eh->tls_mask |= tls_type;
5609 }
5610 else
5611 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5612 rel->r_addend, tls_type))
5613 return FALSE;
5614
5615 ppc64_sec = ppc64_elf_section_data (sec);
5616 if (ppc64_sec->sec_type != sec_toc)
5617 {
5618 bfd_size_type amt;
5619
5620 /* One extra to simplify get_tls_mask. */
5621 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5622 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5623 if (ppc64_sec->u.toc.symndx == NULL)
5624 return FALSE;
5625 amt = sec->size * sizeof (bfd_vma) / 8;
5626 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5627 if (ppc64_sec->u.toc.add == NULL)
5628 return FALSE;
5629 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5630 ppc64_sec->sec_type = sec_toc;
5631 }
5632 BFD_ASSERT (rel->r_offset % 8 == 0);
5633 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5634 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5635
5636 /* Mark the second slot of a GD or LD entry.
5637 -1 to indicate GD and -2 to indicate LD. */
5638 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5639 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5640 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5641 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5642 goto dodyn;
5643
5644 case R_PPC64_TPREL16:
5645 case R_PPC64_TPREL16_LO:
5646 case R_PPC64_TPREL16_HI:
5647 case R_PPC64_TPREL16_HA:
5648 case R_PPC64_TPREL16_DS:
5649 case R_PPC64_TPREL16_LO_DS:
5650 case R_PPC64_TPREL16_HIGH:
5651 case R_PPC64_TPREL16_HIGHA:
5652 case R_PPC64_TPREL16_HIGHER:
5653 case R_PPC64_TPREL16_HIGHERA:
5654 case R_PPC64_TPREL16_HIGHEST:
5655 case R_PPC64_TPREL16_HIGHESTA:
5656 if (info->shared)
5657 {
5658 info->flags |= DF_STATIC_TLS;
5659 goto dodyn;
5660 }
5661 break;
5662
5663 case R_PPC64_ADDR64:
5664 if (opd_sym_map != NULL
5665 && rel + 1 < rel_end
5666 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5667 {
5668 if (h != NULL)
5669 {
5670 if (h->root.root.string[0] == '.'
5671 && h->root.root.string[1] != 0
5672 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5673 ;
5674 else
5675 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5676 }
5677 else
5678 {
5679 asection *s;
5680 Elf_Internal_Sym *isym;
5681
5682 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5683 abfd, r_symndx);
5684 if (isym == NULL)
5685 return FALSE;
5686
5687 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5688 if (s != NULL && s != sec)
5689 opd_sym_map[OPD_NDX (rel->r_offset)] = s;
5690 }
5691 }
5692 /* Fall through. */
5693
5694 case R_PPC64_ADDR16:
5695 case R_PPC64_ADDR16_DS:
5696 case R_PPC64_ADDR16_HA:
5697 case R_PPC64_ADDR16_HI:
5698 case R_PPC64_ADDR16_HIGH:
5699 case R_PPC64_ADDR16_HIGHA:
5700 case R_PPC64_ADDR16_HIGHER:
5701 case R_PPC64_ADDR16_HIGHERA:
5702 case R_PPC64_ADDR16_HIGHEST:
5703 case R_PPC64_ADDR16_HIGHESTA:
5704 case R_PPC64_ADDR16_LO:
5705 case R_PPC64_ADDR16_LO_DS:
5706 if (h != NULL && !info->shared && abiversion (abfd) != 1
5707 && rel->r_addend == 0)
5708 {
5709 /* We may need a .plt entry if this reloc refers to a
5710 function in a shared lib. */
5711 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5712 return FALSE;
5713 h->pointer_equality_needed = 1;
5714 }
5715 /* Fall through. */
5716
5717 case R_PPC64_REL30:
5718 case R_PPC64_REL32:
5719 case R_PPC64_REL64:
5720 case R_PPC64_ADDR14:
5721 case R_PPC64_ADDR14_BRNTAKEN:
5722 case R_PPC64_ADDR14_BRTAKEN:
5723 case R_PPC64_ADDR24:
5724 case R_PPC64_ADDR32:
5725 case R_PPC64_UADDR16:
5726 case R_PPC64_UADDR32:
5727 case R_PPC64_UADDR64:
5728 case R_PPC64_TOC:
5729 if (h != NULL && !info->shared)
5730 /* We may need a copy reloc. */
5731 h->non_got_ref = 1;
5732
5733 /* Don't propagate .opd relocs. */
5734 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5735 break;
5736
5737 /* If we are creating a shared library, and this is a reloc
5738 against a global symbol, or a non PC relative reloc
5739 against a local symbol, then we need to copy the reloc
5740 into the shared library. However, if we are linking with
5741 -Bsymbolic, we do not need to copy a reloc against a
5742 global symbol which is defined in an object we are
5743 including in the link (i.e., DEF_REGULAR is set). At
5744 this point we have not seen all the input files, so it is
5745 possible that DEF_REGULAR is not set now but will be set
5746 later (it is never cleared). In case of a weak definition,
5747 DEF_REGULAR may be cleared later by a strong definition in
5748 a shared library. We account for that possibility below by
5749 storing information in the dyn_relocs field of the hash
5750 table entry. A similar situation occurs when creating
5751 shared libraries and symbol visibility changes render the
5752 symbol local.
5753
5754 If on the other hand, we are creating an executable, we
5755 may need to keep relocations for symbols satisfied by a
5756 dynamic library if we manage to avoid copy relocs for the
5757 symbol. */
5758 dodyn:
5759 if ((info->shared
5760 && (must_be_dyn_reloc (info, r_type)
5761 || (h != NULL
5762 && (!SYMBOLIC_BIND (info, h)
5763 || h->root.type == bfd_link_hash_defweak
5764 || !h->def_regular))))
5765 || (ELIMINATE_COPY_RELOCS
5766 && !info->shared
5767 && h != NULL
5768 && (h->root.type == bfd_link_hash_defweak
5769 || !h->def_regular))
5770 || (!info->shared
5771 && ifunc != NULL))
5772 {
5773 /* We must copy these reloc types into the output file.
5774 Create a reloc section in dynobj and make room for
5775 this reloc. */
5776 if (sreloc == NULL)
5777 {
5778 sreloc = _bfd_elf_make_dynamic_reloc_section
5779 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5780
5781 if (sreloc == NULL)
5782 return FALSE;
5783 }
5784
5785 /* If this is a global symbol, we count the number of
5786 relocations we need for this symbol. */
5787 if (h != NULL)
5788 {
5789 struct elf_dyn_relocs *p;
5790 struct elf_dyn_relocs **head;
5791
5792 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5793 p = *head;
5794 if (p == NULL || p->sec != sec)
5795 {
5796 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5797 if (p == NULL)
5798 return FALSE;
5799 p->next = *head;
5800 *head = p;
5801 p->sec = sec;
5802 p->count = 0;
5803 p->pc_count = 0;
5804 }
5805 p->count += 1;
5806 if (!must_be_dyn_reloc (info, r_type))
5807 p->pc_count += 1;
5808 }
5809 else
5810 {
5811 /* Track dynamic relocs needed for local syms too.
5812 We really need local syms available to do this
5813 easily. Oh well. */
5814 struct ppc_dyn_relocs *p;
5815 struct ppc_dyn_relocs **head;
5816 bfd_boolean is_ifunc;
5817 asection *s;
5818 void *vpp;
5819 Elf_Internal_Sym *isym;
5820
5821 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5822 abfd, r_symndx);
5823 if (isym == NULL)
5824 return FALSE;
5825
5826 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5827 if (s == NULL)
5828 s = sec;
5829
5830 vpp = &elf_section_data (s)->local_dynrel;
5831 head = (struct ppc_dyn_relocs **) vpp;
5832 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5833 p = *head;
5834 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5835 p = p->next;
5836 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5837 {
5838 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5839 if (p == NULL)
5840 return FALSE;
5841 p->next = *head;
5842 *head = p;
5843 p->sec = sec;
5844 p->ifunc = is_ifunc;
5845 p->count = 0;
5846 }
5847 p->count += 1;
5848 }
5849 }
5850 break;
5851
5852 default:
5853 break;
5854 }
5855 }
5856
5857 return TRUE;
5858 }
5859
5860 /* Merge backend specific data from an object file to the output
5861 object file when linking. */
5862
5863 static bfd_boolean
5864 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5865 {
5866 unsigned long iflags, oflags;
5867
5868 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5869 return TRUE;
5870
5871 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5872 return TRUE;
5873
5874 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
5875 return FALSE;
5876
5877 iflags = elf_elfheader (ibfd)->e_flags;
5878 oflags = elf_elfheader (obfd)->e_flags;
5879
5880 if (iflags & ~EF_PPC64_ABI)
5881 {
5882 (*_bfd_error_handler)
5883 (_("%B uses unknown e_flags 0x%lx"), ibfd, iflags);
5884 bfd_set_error (bfd_error_bad_value);
5885 return FALSE;
5886 }
5887 else if (iflags != oflags && iflags != 0)
5888 {
5889 (*_bfd_error_handler)
5890 (_("%B: ABI version %ld is not compatible with ABI version %ld output"),
5891 ibfd, iflags, oflags);
5892 bfd_set_error (bfd_error_bad_value);
5893 return FALSE;
5894 }
5895
5896 /* Merge Tag_compatibility attributes and any common GNU ones. */
5897 _bfd_elf_merge_object_attributes (ibfd, obfd);
5898
5899 return TRUE;
5900 }
5901
5902 static bfd_boolean
5903 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5904 {
5905 /* Print normal ELF private data. */
5906 _bfd_elf_print_private_bfd_data (abfd, ptr);
5907
5908 if (elf_elfheader (abfd)->e_flags != 0)
5909 {
5910 FILE *file = ptr;
5911
5912 /* xgettext:c-format */
5913 fprintf (file, _("private flags = 0x%lx:"),
5914 elf_elfheader (abfd)->e_flags);
5915
5916 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5917 fprintf (file, _(" [abiv%ld]"),
5918 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5919 fputc ('\n', file);
5920 }
5921
5922 return TRUE;
5923 }
5924
5925 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5926 of the code entry point, and its section, which must be in the same
5927 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5928
5929 static bfd_vma
5930 opd_entry_value (asection *opd_sec,
5931 bfd_vma offset,
5932 asection **code_sec,
5933 bfd_vma *code_off,
5934 bfd_boolean in_code_sec)
5935 {
5936 bfd *opd_bfd = opd_sec->owner;
5937 Elf_Internal_Rela *relocs;
5938 Elf_Internal_Rela *lo, *hi, *look;
5939 bfd_vma val;
5940
5941 /* No relocs implies we are linking a --just-symbols object, or looking
5942 at a final linked executable with addr2line or somesuch. */
5943 if (opd_sec->reloc_count == 0)
5944 {
5945 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5946
5947 if (contents == NULL)
5948 {
5949 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5950 return (bfd_vma) -1;
5951 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5952 }
5953
5954 /* PR 17512: file: 64b9dfbb. */
5955 if (offset > bfd_section_size (opd_bfd, opd_sec))
5956 return (bfd_vma) -1;
5957
5958 val = bfd_get_64 (opd_bfd, contents + offset);
5959 if (code_sec != NULL)
5960 {
5961 asection *sec, *likely = NULL;
5962
5963 if (in_code_sec)
5964 {
5965 sec = *code_sec;
5966 if (sec->vma <= val
5967 && val < sec->vma + sec->size)
5968 likely = sec;
5969 else
5970 val = -1;
5971 }
5972 else
5973 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5974 if (sec->vma <= val
5975 && (sec->flags & SEC_LOAD) != 0
5976 && (sec->flags & SEC_ALLOC) != 0)
5977 likely = sec;
5978 if (likely != NULL)
5979 {
5980 *code_sec = likely;
5981 if (code_off != NULL)
5982 *code_off = val - likely->vma;
5983 }
5984 }
5985 return val;
5986 }
5987
5988 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5989
5990 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5991 if (relocs == NULL)
5992 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5993 /* PR 17512: file: df8e1fd6. */
5994 if (relocs == NULL)
5995 return (bfd_vma) -1;
5996
5997 /* Go find the opd reloc at the sym address. */
5998 lo = relocs;
5999 BFD_ASSERT (lo != NULL);
6000 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
6001 val = (bfd_vma) -1;
6002 while (lo < hi)
6003 {
6004 look = lo + (hi - lo) / 2;
6005 if (look->r_offset < offset)
6006 lo = look + 1;
6007 else if (look->r_offset > offset)
6008 hi = look;
6009 else
6010 {
6011 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
6012
6013 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
6014 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
6015 {
6016 unsigned long symndx = ELF64_R_SYM (look->r_info);
6017 asection *sec = NULL;
6018
6019 if (symndx >= symtab_hdr->sh_info
6020 && elf_sym_hashes (opd_bfd) != NULL)
6021 {
6022 struct elf_link_hash_entry **sym_hashes;
6023 struct elf_link_hash_entry *rh;
6024
6025 sym_hashes = elf_sym_hashes (opd_bfd);
6026 rh = sym_hashes[symndx - symtab_hdr->sh_info];
6027 if (rh != NULL)
6028 {
6029 rh = elf_follow_link (rh);
6030 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
6031 || rh->root.type == bfd_link_hash_defweak);
6032 val = rh->root.u.def.value;
6033 sec = rh->root.u.def.section;
6034 if (sec->owner != opd_bfd)
6035 {
6036 sec = NULL;
6037 val = (bfd_vma) -1;
6038 }
6039 }
6040 }
6041
6042 if (sec == NULL)
6043 {
6044 Elf_Internal_Sym *sym;
6045
6046 if (symndx < symtab_hdr->sh_info)
6047 {
6048 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
6049 if (sym == NULL)
6050 {
6051 size_t symcnt = symtab_hdr->sh_info;
6052 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6053 symcnt, 0,
6054 NULL, NULL, NULL);
6055 if (sym == NULL)
6056 break;
6057 symtab_hdr->contents = (bfd_byte *) sym;
6058 }
6059 sym += symndx;
6060 }
6061 else
6062 {
6063 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6064 1, symndx,
6065 NULL, NULL, NULL);
6066 if (sym == NULL)
6067 break;
6068 }
6069 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
6070 if (sec == NULL)
6071 break;
6072 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
6073 val = sym->st_value;
6074 }
6075
6076 val += look->r_addend;
6077 if (code_off != NULL)
6078 *code_off = val;
6079 if (code_sec != NULL)
6080 {
6081 if (in_code_sec && *code_sec != sec)
6082 return -1;
6083 else
6084 *code_sec = sec;
6085 }
6086 if (sec->output_section != NULL)
6087 val += sec->output_section->vma + sec->output_offset;
6088 }
6089 break;
6090 }
6091 }
6092
6093 return val;
6094 }
6095
6096 /* If the ELF symbol SYM might be a function in SEC, return the
6097 function size and set *CODE_OFF to the function's entry point,
6098 otherwise return zero. */
6099
6100 static bfd_size_type
6101 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
6102 bfd_vma *code_off)
6103 {
6104 bfd_size_type size;
6105
6106 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
6107 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
6108 return 0;
6109
6110 size = 0;
6111 if (!(sym->flags & BSF_SYNTHETIC))
6112 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
6113
6114 if (strcmp (sym->section->name, ".opd") == 0)
6115 {
6116 if (opd_entry_value (sym->section, sym->value,
6117 &sec, code_off, TRUE) == (bfd_vma) -1)
6118 return 0;
6119 /* An old ABI binary with dot-syms has a size of 24 on the .opd
6120 symbol. This size has nothing to do with the code size of the
6121 function, which is what we're supposed to return, but the
6122 code size isn't available without looking up the dot-sym.
6123 However, doing that would be a waste of time particularly
6124 since elf_find_function will look at the dot-sym anyway.
6125 Now, elf_find_function will keep the largest size of any
6126 function sym found at the code address of interest, so return
6127 1 here to avoid it incorrectly caching a larger function size
6128 for a small function. This does mean we return the wrong
6129 size for a new-ABI function of size 24, but all that does is
6130 disable caching for such functions. */
6131 if (size == 24)
6132 size = 1;
6133 }
6134 else
6135 {
6136 if (sym->section != sec)
6137 return 0;
6138 *code_off = sym->value;
6139 }
6140 if (size == 0)
6141 size = 1;
6142 return size;
6143 }
6144
6145 /* Return true if symbol is defined in a regular object file. */
6146
6147 static bfd_boolean
6148 is_static_defined (struct elf_link_hash_entry *h)
6149 {
6150 return ((h->root.type == bfd_link_hash_defined
6151 || h->root.type == bfd_link_hash_defweak)
6152 && h->root.u.def.section != NULL
6153 && h->root.u.def.section->output_section != NULL);
6154 }
6155
6156 /* If FDH is a function descriptor symbol, return the associated code
6157 entry symbol if it is defined. Return NULL otherwise. */
6158
6159 static struct ppc_link_hash_entry *
6160 defined_code_entry (struct ppc_link_hash_entry *fdh)
6161 {
6162 if (fdh->is_func_descriptor)
6163 {
6164 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
6165 if (fh->elf.root.type == bfd_link_hash_defined
6166 || fh->elf.root.type == bfd_link_hash_defweak)
6167 return fh;
6168 }
6169 return NULL;
6170 }
6171
6172 /* If FH is a function code entry symbol, return the associated
6173 function descriptor symbol if it is defined. Return NULL otherwise. */
6174
6175 static struct ppc_link_hash_entry *
6176 defined_func_desc (struct ppc_link_hash_entry *fh)
6177 {
6178 if (fh->oh != NULL
6179 && fh->oh->is_func_descriptor)
6180 {
6181 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
6182 if (fdh->elf.root.type == bfd_link_hash_defined
6183 || fdh->elf.root.type == bfd_link_hash_defweak)
6184 return fdh;
6185 }
6186 return NULL;
6187 }
6188
6189 /* Mark all our entry sym sections, both opd and code section. */
6190
6191 static void
6192 ppc64_elf_gc_keep (struct bfd_link_info *info)
6193 {
6194 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6195 struct bfd_sym_chain *sym;
6196
6197 if (htab == NULL)
6198 return;
6199
6200 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
6201 {
6202 struct ppc_link_hash_entry *eh, *fh;
6203 asection *sec;
6204
6205 eh = (struct ppc_link_hash_entry *)
6206 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
6207 if (eh == NULL)
6208 continue;
6209 if (eh->elf.root.type != bfd_link_hash_defined
6210 && eh->elf.root.type != bfd_link_hash_defweak)
6211 continue;
6212
6213 fh = defined_code_entry (eh);
6214 if (fh != NULL)
6215 {
6216 sec = fh->elf.root.u.def.section;
6217 sec->flags |= SEC_KEEP;
6218 }
6219 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6220 && opd_entry_value (eh->elf.root.u.def.section,
6221 eh->elf.root.u.def.value,
6222 &sec, NULL, FALSE) != (bfd_vma) -1)
6223 sec->flags |= SEC_KEEP;
6224
6225 sec = eh->elf.root.u.def.section;
6226 sec->flags |= SEC_KEEP;
6227 }
6228 }
6229
6230 /* Mark sections containing dynamically referenced symbols. When
6231 building shared libraries, we must assume that any visible symbol is
6232 referenced. */
6233
6234 static bfd_boolean
6235 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
6236 {
6237 struct bfd_link_info *info = (struct bfd_link_info *) inf;
6238 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
6239 struct ppc_link_hash_entry *fdh;
6240 struct bfd_elf_dynamic_list *d = info->dynamic_list;
6241
6242 /* Dynamic linking info is on the func descriptor sym. */
6243 fdh = defined_func_desc (eh);
6244 if (fdh != NULL)
6245 eh = fdh;
6246
6247 if ((eh->elf.root.type == bfd_link_hash_defined
6248 || eh->elf.root.type == bfd_link_hash_defweak)
6249 && (eh->elf.ref_dynamic
6250 || ((eh->elf.def_regular || ELF_COMMON_DEF_P (&eh->elf))
6251 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
6252 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
6253 && (!info->executable
6254 || info->export_dynamic
6255 || (eh->elf.dynamic
6256 && d != NULL
6257 && (*d->match) (&d->head, NULL, eh->elf.root.root.string)))
6258 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
6259 || !bfd_hide_sym_by_version (info->version_info,
6260 eh->elf.root.root.string)))))
6261 {
6262 asection *code_sec;
6263 struct ppc_link_hash_entry *fh;
6264
6265 eh->elf.root.u.def.section->flags |= SEC_KEEP;
6266
6267 /* Function descriptor syms cause the associated
6268 function code sym section to be marked. */
6269 fh = defined_code_entry (eh);
6270 if (fh != NULL)
6271 {
6272 code_sec = fh->elf.root.u.def.section;
6273 code_sec->flags |= SEC_KEEP;
6274 }
6275 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6276 && opd_entry_value (eh->elf.root.u.def.section,
6277 eh->elf.root.u.def.value,
6278 &code_sec, NULL, FALSE) != (bfd_vma) -1)
6279 code_sec->flags |= SEC_KEEP;
6280 }
6281
6282 return TRUE;
6283 }
6284
6285 /* Return the section that should be marked against GC for a given
6286 relocation. */
6287
6288 static asection *
6289 ppc64_elf_gc_mark_hook (asection *sec,
6290 struct bfd_link_info *info,
6291 Elf_Internal_Rela *rel,
6292 struct elf_link_hash_entry *h,
6293 Elf_Internal_Sym *sym)
6294 {
6295 asection *rsec;
6296
6297 /* Syms return NULL if we're marking .opd, so we avoid marking all
6298 function sections, as all functions are referenced in .opd. */
6299 rsec = NULL;
6300 if (get_opd_info (sec) != NULL)
6301 return rsec;
6302
6303 if (h != NULL)
6304 {
6305 enum elf_ppc64_reloc_type r_type;
6306 struct ppc_link_hash_entry *eh, *fh, *fdh;
6307
6308 r_type = ELF64_R_TYPE (rel->r_info);
6309 switch (r_type)
6310 {
6311 case R_PPC64_GNU_VTINHERIT:
6312 case R_PPC64_GNU_VTENTRY:
6313 break;
6314
6315 default:
6316 switch (h->root.type)
6317 {
6318 case bfd_link_hash_defined:
6319 case bfd_link_hash_defweak:
6320 eh = (struct ppc_link_hash_entry *) h;
6321 fdh = defined_func_desc (eh);
6322 if (fdh != NULL)
6323 eh = fdh;
6324
6325 /* Function descriptor syms cause the associated
6326 function code sym section to be marked. */
6327 fh = defined_code_entry (eh);
6328 if (fh != NULL)
6329 {
6330 /* They also mark their opd section. */
6331 eh->elf.root.u.def.section->gc_mark = 1;
6332
6333 rsec = fh->elf.root.u.def.section;
6334 }
6335 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6336 && opd_entry_value (eh->elf.root.u.def.section,
6337 eh->elf.root.u.def.value,
6338 &rsec, NULL, FALSE) != (bfd_vma) -1)
6339 eh->elf.root.u.def.section->gc_mark = 1;
6340 else
6341 rsec = h->root.u.def.section;
6342 break;
6343
6344 case bfd_link_hash_common:
6345 rsec = h->root.u.c.p->section;
6346 break;
6347
6348 default:
6349 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
6350 }
6351 }
6352 }
6353 else
6354 {
6355 struct _opd_sec_data *opd;
6356
6357 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6358 opd = get_opd_info (rsec);
6359 if (opd != NULL && opd->func_sec != NULL)
6360 {
6361 rsec->gc_mark = 1;
6362
6363 rsec = opd->func_sec[OPD_NDX (sym->st_value + rel->r_addend)];
6364 }
6365 }
6366
6367 return rsec;
6368 }
6369
6370 /* Update the .got, .plt. and dynamic reloc reference counts for the
6371 section being removed. */
6372
6373 static bfd_boolean
6374 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
6375 asection *sec, const Elf_Internal_Rela *relocs)
6376 {
6377 struct ppc_link_hash_table *htab;
6378 Elf_Internal_Shdr *symtab_hdr;
6379 struct elf_link_hash_entry **sym_hashes;
6380 struct got_entry **local_got_ents;
6381 const Elf_Internal_Rela *rel, *relend;
6382
6383 if (info->relocatable)
6384 return TRUE;
6385
6386 if ((sec->flags & SEC_ALLOC) == 0)
6387 return TRUE;
6388
6389 elf_section_data (sec)->local_dynrel = NULL;
6390
6391 htab = ppc_hash_table (info);
6392 if (htab == NULL)
6393 return FALSE;
6394
6395 symtab_hdr = &elf_symtab_hdr (abfd);
6396 sym_hashes = elf_sym_hashes (abfd);
6397 local_got_ents = elf_local_got_ents (abfd);
6398
6399 relend = relocs + sec->reloc_count;
6400 for (rel = relocs; rel < relend; rel++)
6401 {
6402 unsigned long r_symndx;
6403 enum elf_ppc64_reloc_type r_type;
6404 struct elf_link_hash_entry *h = NULL;
6405 unsigned char tls_type = 0;
6406
6407 r_symndx = ELF64_R_SYM (rel->r_info);
6408 r_type = ELF64_R_TYPE (rel->r_info);
6409 if (r_symndx >= symtab_hdr->sh_info)
6410 {
6411 struct ppc_link_hash_entry *eh;
6412 struct elf_dyn_relocs **pp;
6413 struct elf_dyn_relocs *p;
6414
6415 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6416 h = elf_follow_link (h);
6417 eh = (struct ppc_link_hash_entry *) h;
6418
6419 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6420 if (p->sec == sec)
6421 {
6422 /* Everything must go for SEC. */
6423 *pp = p->next;
6424 break;
6425 }
6426 }
6427
6428 if (is_branch_reloc (r_type))
6429 {
6430 struct plt_entry **ifunc = NULL;
6431 if (h != NULL)
6432 {
6433 if (h->type == STT_GNU_IFUNC)
6434 ifunc = &h->plt.plist;
6435 }
6436 else if (local_got_ents != NULL)
6437 {
6438 struct plt_entry **local_plt = (struct plt_entry **)
6439 (local_got_ents + symtab_hdr->sh_info);
6440 unsigned char *local_got_tls_masks = (unsigned char *)
6441 (local_plt + symtab_hdr->sh_info);
6442 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6443 ifunc = local_plt + r_symndx;
6444 }
6445 if (ifunc != NULL)
6446 {
6447 struct plt_entry *ent;
6448
6449 for (ent = *ifunc; ent != NULL; ent = ent->next)
6450 if (ent->addend == rel->r_addend)
6451 break;
6452 if (ent == NULL)
6453 abort ();
6454 if (ent->plt.refcount > 0)
6455 ent->plt.refcount -= 1;
6456 continue;
6457 }
6458 }
6459
6460 switch (r_type)
6461 {
6462 case R_PPC64_GOT_TLSLD16:
6463 case R_PPC64_GOT_TLSLD16_LO:
6464 case R_PPC64_GOT_TLSLD16_HI:
6465 case R_PPC64_GOT_TLSLD16_HA:
6466 tls_type = TLS_TLS | TLS_LD;
6467 goto dogot;
6468
6469 case R_PPC64_GOT_TLSGD16:
6470 case R_PPC64_GOT_TLSGD16_LO:
6471 case R_PPC64_GOT_TLSGD16_HI:
6472 case R_PPC64_GOT_TLSGD16_HA:
6473 tls_type = TLS_TLS | TLS_GD;
6474 goto dogot;
6475
6476 case R_PPC64_GOT_TPREL16_DS:
6477 case R_PPC64_GOT_TPREL16_LO_DS:
6478 case R_PPC64_GOT_TPREL16_HI:
6479 case R_PPC64_GOT_TPREL16_HA:
6480 tls_type = TLS_TLS | TLS_TPREL;
6481 goto dogot;
6482
6483 case R_PPC64_GOT_DTPREL16_DS:
6484 case R_PPC64_GOT_DTPREL16_LO_DS:
6485 case R_PPC64_GOT_DTPREL16_HI:
6486 case R_PPC64_GOT_DTPREL16_HA:
6487 tls_type = TLS_TLS | TLS_DTPREL;
6488 goto dogot;
6489
6490 case R_PPC64_GOT16:
6491 case R_PPC64_GOT16_DS:
6492 case R_PPC64_GOT16_HA:
6493 case R_PPC64_GOT16_HI:
6494 case R_PPC64_GOT16_LO:
6495 case R_PPC64_GOT16_LO_DS:
6496 dogot:
6497 {
6498 struct got_entry *ent;
6499
6500 if (h != NULL)
6501 ent = h->got.glist;
6502 else
6503 ent = local_got_ents[r_symndx];
6504
6505 for (; ent != NULL; ent = ent->next)
6506 if (ent->addend == rel->r_addend
6507 && ent->owner == abfd
6508 && ent->tls_type == tls_type)
6509 break;
6510 if (ent == NULL)
6511 abort ();
6512 if (ent->got.refcount > 0)
6513 ent->got.refcount -= 1;
6514 }
6515 break;
6516
6517 case R_PPC64_PLT16_HA:
6518 case R_PPC64_PLT16_HI:
6519 case R_PPC64_PLT16_LO:
6520 case R_PPC64_PLT32:
6521 case R_PPC64_PLT64:
6522 case R_PPC64_REL14:
6523 case R_PPC64_REL14_BRNTAKEN:
6524 case R_PPC64_REL14_BRTAKEN:
6525 case R_PPC64_REL24:
6526 if (h != NULL)
6527 {
6528 struct plt_entry *ent;
6529
6530 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6531 if (ent->addend == rel->r_addend)
6532 break;
6533 if (ent != NULL && ent->plt.refcount > 0)
6534 ent->plt.refcount -= 1;
6535 }
6536 break;
6537
6538 default:
6539 break;
6540 }
6541 }
6542 return TRUE;
6543 }
6544
6545 /* The maximum size of .sfpr. */
6546 #define SFPR_MAX (218*4)
6547
6548 struct sfpr_def_parms
6549 {
6550 const char name[12];
6551 unsigned char lo, hi;
6552 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6553 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6554 };
6555
6556 /* Auto-generate _save*, _rest* functions in .sfpr. */
6557
6558 static bfd_boolean
6559 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6560 {
6561 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6562 unsigned int i;
6563 size_t len = strlen (parm->name);
6564 bfd_boolean writing = FALSE;
6565 char sym[16];
6566
6567 if (htab == NULL)
6568 return FALSE;
6569
6570 memcpy (sym, parm->name, len);
6571 sym[len + 2] = 0;
6572
6573 for (i = parm->lo; i <= parm->hi; i++)
6574 {
6575 struct elf_link_hash_entry *h;
6576
6577 sym[len + 0] = i / 10 + '0';
6578 sym[len + 1] = i % 10 + '0';
6579 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6580 if (h != NULL
6581 && !h->def_regular)
6582 {
6583 h->root.type = bfd_link_hash_defined;
6584 h->root.u.def.section = htab->sfpr;
6585 h->root.u.def.value = htab->sfpr->size;
6586 h->type = STT_FUNC;
6587 h->def_regular = 1;
6588 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6589 writing = TRUE;
6590 if (htab->sfpr->contents == NULL)
6591 {
6592 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6593 if (htab->sfpr->contents == NULL)
6594 return FALSE;
6595 }
6596 }
6597 if (writing)
6598 {
6599 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6600 if (i != parm->hi)
6601 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6602 else
6603 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6604 htab->sfpr->size = p - htab->sfpr->contents;
6605 }
6606 }
6607
6608 return TRUE;
6609 }
6610
6611 static bfd_byte *
6612 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6613 {
6614 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6615 return p + 4;
6616 }
6617
6618 static bfd_byte *
6619 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6620 {
6621 p = savegpr0 (abfd, p, r);
6622 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6623 p = p + 4;
6624 bfd_put_32 (abfd, BLR, p);
6625 return p + 4;
6626 }
6627
6628 static bfd_byte *
6629 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6630 {
6631 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6632 return p + 4;
6633 }
6634
6635 static bfd_byte *
6636 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6637 {
6638 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6639 p = p + 4;
6640 p = restgpr0 (abfd, p, r);
6641 bfd_put_32 (abfd, MTLR_R0, p);
6642 p = p + 4;
6643 if (r == 29)
6644 {
6645 p = restgpr0 (abfd, p, 30);
6646 p = restgpr0 (abfd, p, 31);
6647 }
6648 bfd_put_32 (abfd, BLR, p);
6649 return p + 4;
6650 }
6651
6652 static bfd_byte *
6653 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6654 {
6655 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6656 return p + 4;
6657 }
6658
6659 static bfd_byte *
6660 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6661 {
6662 p = savegpr1 (abfd, p, r);
6663 bfd_put_32 (abfd, BLR, p);
6664 return p + 4;
6665 }
6666
6667 static bfd_byte *
6668 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6669 {
6670 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6671 return p + 4;
6672 }
6673
6674 static bfd_byte *
6675 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6676 {
6677 p = restgpr1 (abfd, p, r);
6678 bfd_put_32 (abfd, BLR, p);
6679 return p + 4;
6680 }
6681
6682 static bfd_byte *
6683 savefpr (bfd *abfd, bfd_byte *p, int r)
6684 {
6685 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6686 return p + 4;
6687 }
6688
6689 static bfd_byte *
6690 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6691 {
6692 p = savefpr (abfd, p, r);
6693 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6694 p = p + 4;
6695 bfd_put_32 (abfd, BLR, p);
6696 return p + 4;
6697 }
6698
6699 static bfd_byte *
6700 restfpr (bfd *abfd, bfd_byte *p, int r)
6701 {
6702 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6703 return p + 4;
6704 }
6705
6706 static bfd_byte *
6707 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6708 {
6709 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6710 p = p + 4;
6711 p = restfpr (abfd, p, r);
6712 bfd_put_32 (abfd, MTLR_R0, p);
6713 p = p + 4;
6714 if (r == 29)
6715 {
6716 p = restfpr (abfd, p, 30);
6717 p = restfpr (abfd, p, 31);
6718 }
6719 bfd_put_32 (abfd, BLR, p);
6720 return p + 4;
6721 }
6722
6723 static bfd_byte *
6724 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6725 {
6726 p = savefpr (abfd, p, r);
6727 bfd_put_32 (abfd, BLR, p);
6728 return p + 4;
6729 }
6730
6731 static bfd_byte *
6732 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6733 {
6734 p = restfpr (abfd, p, r);
6735 bfd_put_32 (abfd, BLR, p);
6736 return p + 4;
6737 }
6738
6739 static bfd_byte *
6740 savevr (bfd *abfd, bfd_byte *p, int r)
6741 {
6742 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6743 p = p + 4;
6744 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6745 return p + 4;
6746 }
6747
6748 static bfd_byte *
6749 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6750 {
6751 p = savevr (abfd, p, r);
6752 bfd_put_32 (abfd, BLR, p);
6753 return p + 4;
6754 }
6755
6756 static bfd_byte *
6757 restvr (bfd *abfd, bfd_byte *p, int r)
6758 {
6759 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6760 p = p + 4;
6761 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6762 return p + 4;
6763 }
6764
6765 static bfd_byte *
6766 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6767 {
6768 p = restvr (abfd, p, r);
6769 bfd_put_32 (abfd, BLR, p);
6770 return p + 4;
6771 }
6772
6773 /* Called via elf_link_hash_traverse to transfer dynamic linking
6774 information on function code symbol entries to their corresponding
6775 function descriptor symbol entries. */
6776
6777 static bfd_boolean
6778 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6779 {
6780 struct bfd_link_info *info;
6781 struct ppc_link_hash_table *htab;
6782 struct plt_entry *ent;
6783 struct ppc_link_hash_entry *fh;
6784 struct ppc_link_hash_entry *fdh;
6785 bfd_boolean force_local;
6786
6787 fh = (struct ppc_link_hash_entry *) h;
6788 if (fh->elf.root.type == bfd_link_hash_indirect)
6789 return TRUE;
6790
6791 info = inf;
6792 htab = ppc_hash_table (info);
6793 if (htab == NULL)
6794 return FALSE;
6795
6796 /* Resolve undefined references to dot-symbols as the value
6797 in the function descriptor, if we have one in a regular object.
6798 This is to satisfy cases like ".quad .foo". Calls to functions
6799 in dynamic objects are handled elsewhere. */
6800 if (fh->elf.root.type == bfd_link_hash_undefweak
6801 && fh->was_undefined
6802 && (fdh = defined_func_desc (fh)) != NULL
6803 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6804 && opd_entry_value (fdh->elf.root.u.def.section,
6805 fdh->elf.root.u.def.value,
6806 &fh->elf.root.u.def.section,
6807 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6808 {
6809 fh->elf.root.type = fdh->elf.root.type;
6810 fh->elf.forced_local = 1;
6811 fh->elf.def_regular = fdh->elf.def_regular;
6812 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6813 }
6814
6815 /* If this is a function code symbol, transfer dynamic linking
6816 information to the function descriptor symbol. */
6817 if (!fh->is_func)
6818 return TRUE;
6819
6820 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6821 if (ent->plt.refcount > 0)
6822 break;
6823 if (ent == NULL
6824 || fh->elf.root.root.string[0] != '.'
6825 || fh->elf.root.root.string[1] == '\0')
6826 return TRUE;
6827
6828 /* Find the corresponding function descriptor symbol. Create it
6829 as undefined if necessary. */
6830
6831 fdh = lookup_fdh (fh, htab);
6832 if (fdh == NULL
6833 && !info->executable
6834 && (fh->elf.root.type == bfd_link_hash_undefined
6835 || fh->elf.root.type == bfd_link_hash_undefweak))
6836 {
6837 fdh = make_fdh (info, fh);
6838 if (fdh == NULL)
6839 return FALSE;
6840 }
6841
6842 /* Fake function descriptors are made undefweak. If the function
6843 code symbol is strong undefined, make the fake sym the same.
6844 If the function code symbol is defined, then force the fake
6845 descriptor local; We can't support overriding of symbols in a
6846 shared library on a fake descriptor. */
6847
6848 if (fdh != NULL
6849 && fdh->fake
6850 && fdh->elf.root.type == bfd_link_hash_undefweak)
6851 {
6852 if (fh->elf.root.type == bfd_link_hash_undefined)
6853 {
6854 fdh->elf.root.type = bfd_link_hash_undefined;
6855 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6856 }
6857 else if (fh->elf.root.type == bfd_link_hash_defined
6858 || fh->elf.root.type == bfd_link_hash_defweak)
6859 {
6860 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6861 }
6862 }
6863
6864 if (fdh != NULL
6865 && !fdh->elf.forced_local
6866 && (!info->executable
6867 || fdh->elf.def_dynamic
6868 || fdh->elf.ref_dynamic
6869 || (fdh->elf.root.type == bfd_link_hash_undefweak
6870 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6871 {
6872 if (fdh->elf.dynindx == -1)
6873 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6874 return FALSE;
6875 fdh->elf.ref_regular |= fh->elf.ref_regular;
6876 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6877 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6878 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6879 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6880 {
6881 move_plt_plist (fh, fdh);
6882 fdh->elf.needs_plt = 1;
6883 }
6884 fdh->is_func_descriptor = 1;
6885 fdh->oh = fh;
6886 fh->oh = fdh;
6887 }
6888
6889 /* Now that the info is on the function descriptor, clear the
6890 function code sym info. Any function code syms for which we
6891 don't have a definition in a regular file, we force local.
6892 This prevents a shared library from exporting syms that have
6893 been imported from another library. Function code syms that
6894 are really in the library we must leave global to prevent the
6895 linker dragging in a definition from a static library. */
6896 force_local = (!fh->elf.def_regular
6897 || fdh == NULL
6898 || !fdh->elf.def_regular
6899 || fdh->elf.forced_local);
6900 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6901
6902 return TRUE;
6903 }
6904
6905 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6906 this hook to a) provide some gcc support functions, and b) transfer
6907 dynamic linking information gathered so far on function code symbol
6908 entries, to their corresponding function descriptor symbol entries. */
6909
6910 static bfd_boolean
6911 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6912 struct bfd_link_info *info)
6913 {
6914 struct ppc_link_hash_table *htab;
6915 unsigned int i;
6916 static const struct sfpr_def_parms funcs[] =
6917 {
6918 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6919 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6920 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6921 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6922 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6923 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6924 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6925 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6926 { "._savef", 14, 31, savefpr, savefpr1_tail },
6927 { "._restf", 14, 31, restfpr, restfpr1_tail },
6928 { "_savevr_", 20, 31, savevr, savevr_tail },
6929 { "_restvr_", 20, 31, restvr, restvr_tail }
6930 };
6931
6932 htab = ppc_hash_table (info);
6933 if (htab == NULL)
6934 return FALSE;
6935
6936 if (!info->relocatable
6937 && htab->elf.hgot != NULL)
6938 {
6939 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6940 /* Make .TOC. defined so as to prevent it being made dynamic.
6941 The wrong value here is fixed later in ppc64_elf_set_toc. */
6942 htab->elf.hgot->type = STT_OBJECT;
6943 htab->elf.hgot->root.type = bfd_link_hash_defined;
6944 htab->elf.hgot->root.u.def.value = 0;
6945 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6946 htab->elf.hgot->def_regular = 1;
6947 htab->elf.hgot->other = ((htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1))
6948 | STV_HIDDEN);
6949 }
6950
6951 if (htab->sfpr == NULL)
6952 /* We don't have any relocs. */
6953 return TRUE;
6954
6955 /* Provide any missing _save* and _rest* functions. */
6956 htab->sfpr->size = 0;
6957 if (htab->params->save_restore_funcs)
6958 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6959 if (!sfpr_define (info, &funcs[i]))
6960 return FALSE;
6961
6962 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6963
6964 if (htab->sfpr->size == 0)
6965 htab->sfpr->flags |= SEC_EXCLUDE;
6966
6967 return TRUE;
6968 }
6969
6970 /* Return true if we have dynamic relocs that apply to read-only sections. */
6971
6972 static bfd_boolean
6973 readonly_dynrelocs (struct elf_link_hash_entry *h)
6974 {
6975 struct ppc_link_hash_entry *eh;
6976 struct elf_dyn_relocs *p;
6977
6978 eh = (struct ppc_link_hash_entry *) h;
6979 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6980 {
6981 asection *s = p->sec->output_section;
6982
6983 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6984 return TRUE;
6985 }
6986 return FALSE;
6987 }
6988
6989 /* Adjust a symbol defined by a dynamic object and referenced by a
6990 regular object. The current definition is in some section of the
6991 dynamic object, but we're not including those sections. We have to
6992 change the definition to something the rest of the link can
6993 understand. */
6994
6995 static bfd_boolean
6996 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6997 struct elf_link_hash_entry *h)
6998 {
6999 struct ppc_link_hash_table *htab;
7000 asection *s;
7001
7002 htab = ppc_hash_table (info);
7003 if (htab == NULL)
7004 return FALSE;
7005
7006 /* Deal with function syms. */
7007 if (h->type == STT_FUNC
7008 || h->type == STT_GNU_IFUNC
7009 || h->needs_plt)
7010 {
7011 /* Clear procedure linkage table information for any symbol that
7012 won't need a .plt entry. */
7013 struct plt_entry *ent;
7014 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
7015 if (ent->plt.refcount > 0)
7016 break;
7017 if (ent == NULL
7018 || (h->type != STT_GNU_IFUNC
7019 && (SYMBOL_CALLS_LOCAL (info, h)
7020 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7021 && h->root.type == bfd_link_hash_undefweak))))
7022 {
7023 h->plt.plist = NULL;
7024 h->needs_plt = 0;
7025 h->pointer_equality_needed = 0;
7026 }
7027 else if (abiversion (info->output_bfd) == 2)
7028 {
7029 /* Taking a function's address in a read/write section
7030 doesn't require us to define the function symbol in the
7031 executable on a global entry stub. A dynamic reloc can
7032 be used instead. */
7033 if (h->pointer_equality_needed
7034 && h->type != STT_GNU_IFUNC
7035 && !readonly_dynrelocs (h))
7036 {
7037 h->pointer_equality_needed = 0;
7038 h->non_got_ref = 0;
7039 }
7040
7041 /* After adjust_dynamic_symbol, non_got_ref set in the
7042 non-shared case means that we have allocated space in
7043 .dynbss for the symbol and thus dyn_relocs for this
7044 symbol should be discarded.
7045 If we get here we know we are making a PLT entry for this
7046 symbol, and in an executable we'd normally resolve
7047 relocations against this symbol to the PLT entry. Allow
7048 dynamic relocs if the reference is weak, and the dynamic
7049 relocs will not cause text relocation. */
7050 else if (!h->ref_regular_nonweak
7051 && h->non_got_ref
7052 && h->type != STT_GNU_IFUNC
7053 && !readonly_dynrelocs (h))
7054 h->non_got_ref = 0;
7055
7056 /* If making a plt entry, then we don't need copy relocs. */
7057 return TRUE;
7058 }
7059 }
7060 else
7061 h->plt.plist = NULL;
7062
7063 /* If this is a weak symbol, and there is a real definition, the
7064 processor independent code will have arranged for us to see the
7065 real definition first, and we can just use the same value. */
7066 if (h->u.weakdef != NULL)
7067 {
7068 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7069 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7070 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7071 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7072 if (ELIMINATE_COPY_RELOCS)
7073 h->non_got_ref = h->u.weakdef->non_got_ref;
7074 return TRUE;
7075 }
7076
7077 /* If we are creating a shared library, we must presume that the
7078 only references to the symbol are via the global offset table.
7079 For such cases we need not do anything here; the relocations will
7080 be handled correctly by relocate_section. */
7081 if (info->shared)
7082 return TRUE;
7083
7084 /* If there are no references to this symbol that do not use the
7085 GOT, we don't need to generate a copy reloc. */
7086 if (!h->non_got_ref)
7087 return TRUE;
7088
7089 /* Don't generate a copy reloc for symbols defined in the executable. */
7090 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
7091 return TRUE;
7092
7093 /* If we didn't find any dynamic relocs in read-only sections, then
7094 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7095 if (ELIMINATE_COPY_RELOCS && !readonly_dynrelocs (h))
7096 {
7097 h->non_got_ref = 0;
7098 return TRUE;
7099 }
7100
7101 if (h->plt.plist != NULL)
7102 {
7103 /* We should never get here, but unfortunately there are versions
7104 of gcc out there that improperly (for this ABI) put initialized
7105 function pointers, vtable refs and suchlike in read-only
7106 sections. Allow them to proceed, but warn that this might
7107 break at runtime. */
7108 info->callbacks->einfo
7109 (_("%P: copy reloc against `%T' requires lazy plt linking; "
7110 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
7111 h->root.root.string);
7112 }
7113
7114 /* This is a reference to a symbol defined by a dynamic object which
7115 is not a function. */
7116
7117 /* We must allocate the symbol in our .dynbss section, which will
7118 become part of the .bss section of the executable. There will be
7119 an entry for this symbol in the .dynsym section. The dynamic
7120 object will contain position independent code, so all references
7121 from the dynamic object to this symbol will go through the global
7122 offset table. The dynamic linker will use the .dynsym entry to
7123 determine the address it must put in the global offset table, so
7124 both the dynamic object and the regular object will refer to the
7125 same memory location for the variable. */
7126
7127 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
7128 to copy the initial value out of the dynamic object and into the
7129 runtime process image. We need to remember the offset into the
7130 .rela.bss section we are going to use. */
7131 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7132 {
7133 htab->relbss->size += sizeof (Elf64_External_Rela);
7134 h->needs_copy = 1;
7135 }
7136
7137 s = htab->dynbss;
7138
7139 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7140 }
7141
7142 /* If given a function descriptor symbol, hide both the function code
7143 sym and the descriptor. */
7144 static void
7145 ppc64_elf_hide_symbol (struct bfd_link_info *info,
7146 struct elf_link_hash_entry *h,
7147 bfd_boolean force_local)
7148 {
7149 struct ppc_link_hash_entry *eh;
7150 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
7151
7152 eh = (struct ppc_link_hash_entry *) h;
7153 if (eh->is_func_descriptor)
7154 {
7155 struct ppc_link_hash_entry *fh = eh->oh;
7156
7157 if (fh == NULL)
7158 {
7159 const char *p, *q;
7160 struct ppc_link_hash_table *htab;
7161 char save;
7162
7163 /* We aren't supposed to use alloca in BFD because on
7164 systems which do not have alloca the version in libiberty
7165 calls xmalloc, which might cause the program to crash
7166 when it runs out of memory. This function doesn't have a
7167 return status, so there's no way to gracefully return an
7168 error. So cheat. We know that string[-1] can be safely
7169 accessed; It's either a string in an ELF string table,
7170 or allocated in an objalloc structure. */
7171
7172 p = eh->elf.root.root.string - 1;
7173 save = *p;
7174 *(char *) p = '.';
7175 htab = ppc_hash_table (info);
7176 if (htab == NULL)
7177 return;
7178
7179 fh = (struct ppc_link_hash_entry *)
7180 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7181 *(char *) p = save;
7182
7183 /* Unfortunately, if it so happens that the string we were
7184 looking for was allocated immediately before this string,
7185 then we overwrote the string terminator. That's the only
7186 reason the lookup should fail. */
7187 if (fh == NULL)
7188 {
7189 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
7190 while (q >= eh->elf.root.root.string && *q == *p)
7191 --q, --p;
7192 if (q < eh->elf.root.root.string && *p == '.')
7193 fh = (struct ppc_link_hash_entry *)
7194 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7195 }
7196 if (fh != NULL)
7197 {
7198 eh->oh = fh;
7199 fh->oh = eh;
7200 }
7201 }
7202 if (fh != NULL)
7203 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
7204 }
7205 }
7206
7207 static bfd_boolean
7208 get_sym_h (struct elf_link_hash_entry **hp,
7209 Elf_Internal_Sym **symp,
7210 asection **symsecp,
7211 unsigned char **tls_maskp,
7212 Elf_Internal_Sym **locsymsp,
7213 unsigned long r_symndx,
7214 bfd *ibfd)
7215 {
7216 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7217
7218 if (r_symndx >= symtab_hdr->sh_info)
7219 {
7220 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7221 struct elf_link_hash_entry *h;
7222
7223 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7224 h = elf_follow_link (h);
7225
7226 if (hp != NULL)
7227 *hp = h;
7228
7229 if (symp != NULL)
7230 *symp = NULL;
7231
7232 if (symsecp != NULL)
7233 {
7234 asection *symsec = NULL;
7235 if (h->root.type == bfd_link_hash_defined
7236 || h->root.type == bfd_link_hash_defweak)
7237 symsec = h->root.u.def.section;
7238 *symsecp = symsec;
7239 }
7240
7241 if (tls_maskp != NULL)
7242 {
7243 struct ppc_link_hash_entry *eh;
7244
7245 eh = (struct ppc_link_hash_entry *) h;
7246 *tls_maskp = &eh->tls_mask;
7247 }
7248 }
7249 else
7250 {
7251 Elf_Internal_Sym *sym;
7252 Elf_Internal_Sym *locsyms = *locsymsp;
7253
7254 if (locsyms == NULL)
7255 {
7256 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
7257 if (locsyms == NULL)
7258 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
7259 symtab_hdr->sh_info,
7260 0, NULL, NULL, NULL);
7261 if (locsyms == NULL)
7262 return FALSE;
7263 *locsymsp = locsyms;
7264 }
7265 sym = locsyms + r_symndx;
7266
7267 if (hp != NULL)
7268 *hp = NULL;
7269
7270 if (symp != NULL)
7271 *symp = sym;
7272
7273 if (symsecp != NULL)
7274 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
7275
7276 if (tls_maskp != NULL)
7277 {
7278 struct got_entry **lgot_ents;
7279 unsigned char *tls_mask;
7280
7281 tls_mask = NULL;
7282 lgot_ents = elf_local_got_ents (ibfd);
7283 if (lgot_ents != NULL)
7284 {
7285 struct plt_entry **local_plt = (struct plt_entry **)
7286 (lgot_ents + symtab_hdr->sh_info);
7287 unsigned char *lgot_masks = (unsigned char *)
7288 (local_plt + symtab_hdr->sh_info);
7289 tls_mask = &lgot_masks[r_symndx];
7290 }
7291 *tls_maskp = tls_mask;
7292 }
7293 }
7294 return TRUE;
7295 }
7296
7297 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
7298 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
7299 type suitable for optimization, and 1 otherwise. */
7300
7301 static int
7302 get_tls_mask (unsigned char **tls_maskp,
7303 unsigned long *toc_symndx,
7304 bfd_vma *toc_addend,
7305 Elf_Internal_Sym **locsymsp,
7306 const Elf_Internal_Rela *rel,
7307 bfd *ibfd)
7308 {
7309 unsigned long r_symndx;
7310 int next_r;
7311 struct elf_link_hash_entry *h;
7312 Elf_Internal_Sym *sym;
7313 asection *sec;
7314 bfd_vma off;
7315
7316 r_symndx = ELF64_R_SYM (rel->r_info);
7317 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7318 return 0;
7319
7320 if ((*tls_maskp != NULL && **tls_maskp != 0)
7321 || sec == NULL
7322 || ppc64_elf_section_data (sec) == NULL
7323 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
7324 return 1;
7325
7326 /* Look inside a TOC section too. */
7327 if (h != NULL)
7328 {
7329 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
7330 off = h->root.u.def.value;
7331 }
7332 else
7333 off = sym->st_value;
7334 off += rel->r_addend;
7335 BFD_ASSERT (off % 8 == 0);
7336 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
7337 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
7338 if (toc_symndx != NULL)
7339 *toc_symndx = r_symndx;
7340 if (toc_addend != NULL)
7341 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
7342 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7343 return 0;
7344 if ((h == NULL || is_static_defined (h))
7345 && (next_r == -1 || next_r == -2))
7346 return 1 - next_r;
7347 return 1;
7348 }
7349
7350 /* Find (or create) an entry in the tocsave hash table. */
7351
7352 static struct tocsave_entry *
7353 tocsave_find (struct ppc_link_hash_table *htab,
7354 enum insert_option insert,
7355 Elf_Internal_Sym **local_syms,
7356 const Elf_Internal_Rela *irela,
7357 bfd *ibfd)
7358 {
7359 unsigned long r_indx;
7360 struct elf_link_hash_entry *h;
7361 Elf_Internal_Sym *sym;
7362 struct tocsave_entry ent, *p;
7363 hashval_t hash;
7364 struct tocsave_entry **slot;
7365
7366 r_indx = ELF64_R_SYM (irela->r_info);
7367 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
7368 return NULL;
7369 if (ent.sec == NULL || ent.sec->output_section == NULL)
7370 {
7371 (*_bfd_error_handler)
7372 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
7373 return NULL;
7374 }
7375
7376 if (h != NULL)
7377 ent.offset = h->root.u.def.value;
7378 else
7379 ent.offset = sym->st_value;
7380 ent.offset += irela->r_addend;
7381
7382 hash = tocsave_htab_hash (&ent);
7383 slot = ((struct tocsave_entry **)
7384 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
7385 if (slot == NULL)
7386 return NULL;
7387
7388 if (*slot == NULL)
7389 {
7390 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
7391 if (p == NULL)
7392 return NULL;
7393 *p = ent;
7394 *slot = p;
7395 }
7396 return *slot;
7397 }
7398
7399 /* Adjust all global syms defined in opd sections. In gcc generated
7400 code for the old ABI, these will already have been done. */
7401
7402 static bfd_boolean
7403 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
7404 {
7405 struct ppc_link_hash_entry *eh;
7406 asection *sym_sec;
7407 struct _opd_sec_data *opd;
7408
7409 if (h->root.type == bfd_link_hash_indirect)
7410 return TRUE;
7411
7412 if (h->root.type != bfd_link_hash_defined
7413 && h->root.type != bfd_link_hash_defweak)
7414 return TRUE;
7415
7416 eh = (struct ppc_link_hash_entry *) h;
7417 if (eh->adjust_done)
7418 return TRUE;
7419
7420 sym_sec = eh->elf.root.u.def.section;
7421 opd = get_opd_info (sym_sec);
7422 if (opd != NULL && opd->adjust != NULL)
7423 {
7424 long adjust = opd->adjust[OPD_NDX (eh->elf.root.u.def.value)];
7425 if (adjust == -1)
7426 {
7427 /* This entry has been deleted. */
7428 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
7429 if (dsec == NULL)
7430 {
7431 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
7432 if (discarded_section (dsec))
7433 {
7434 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
7435 break;
7436 }
7437 }
7438 eh->elf.root.u.def.value = 0;
7439 eh->elf.root.u.def.section = dsec;
7440 }
7441 else
7442 eh->elf.root.u.def.value += adjust;
7443 eh->adjust_done = 1;
7444 }
7445 return TRUE;
7446 }
7447
7448 /* Handles decrementing dynamic reloc counts for the reloc specified by
7449 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
7450 have already been determined. */
7451
7452 static bfd_boolean
7453 dec_dynrel_count (bfd_vma r_info,
7454 asection *sec,
7455 struct bfd_link_info *info,
7456 Elf_Internal_Sym **local_syms,
7457 struct elf_link_hash_entry *h,
7458 Elf_Internal_Sym *sym)
7459 {
7460 enum elf_ppc64_reloc_type r_type;
7461 asection *sym_sec = NULL;
7462
7463 /* Can this reloc be dynamic? This switch, and later tests here
7464 should be kept in sync with the code in check_relocs. */
7465 r_type = ELF64_R_TYPE (r_info);
7466 switch (r_type)
7467 {
7468 default:
7469 return TRUE;
7470
7471 case R_PPC64_TPREL16:
7472 case R_PPC64_TPREL16_LO:
7473 case R_PPC64_TPREL16_HI:
7474 case R_PPC64_TPREL16_HA:
7475 case R_PPC64_TPREL16_DS:
7476 case R_PPC64_TPREL16_LO_DS:
7477 case R_PPC64_TPREL16_HIGH:
7478 case R_PPC64_TPREL16_HIGHA:
7479 case R_PPC64_TPREL16_HIGHER:
7480 case R_PPC64_TPREL16_HIGHERA:
7481 case R_PPC64_TPREL16_HIGHEST:
7482 case R_PPC64_TPREL16_HIGHESTA:
7483 if (!info->shared)
7484 return TRUE;
7485
7486 case R_PPC64_TPREL64:
7487 case R_PPC64_DTPMOD64:
7488 case R_PPC64_DTPREL64:
7489 case R_PPC64_ADDR64:
7490 case R_PPC64_REL30:
7491 case R_PPC64_REL32:
7492 case R_PPC64_REL64:
7493 case R_PPC64_ADDR14:
7494 case R_PPC64_ADDR14_BRNTAKEN:
7495 case R_PPC64_ADDR14_BRTAKEN:
7496 case R_PPC64_ADDR16:
7497 case R_PPC64_ADDR16_DS:
7498 case R_PPC64_ADDR16_HA:
7499 case R_PPC64_ADDR16_HI:
7500 case R_PPC64_ADDR16_HIGH:
7501 case R_PPC64_ADDR16_HIGHA:
7502 case R_PPC64_ADDR16_HIGHER:
7503 case R_PPC64_ADDR16_HIGHERA:
7504 case R_PPC64_ADDR16_HIGHEST:
7505 case R_PPC64_ADDR16_HIGHESTA:
7506 case R_PPC64_ADDR16_LO:
7507 case R_PPC64_ADDR16_LO_DS:
7508 case R_PPC64_ADDR24:
7509 case R_PPC64_ADDR32:
7510 case R_PPC64_UADDR16:
7511 case R_PPC64_UADDR32:
7512 case R_PPC64_UADDR64:
7513 case R_PPC64_TOC:
7514 break;
7515 }
7516
7517 if (local_syms != NULL)
7518 {
7519 unsigned long r_symndx;
7520 bfd *ibfd = sec->owner;
7521
7522 r_symndx = ELF64_R_SYM (r_info);
7523 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7524 return FALSE;
7525 }
7526
7527 if ((info->shared
7528 && (must_be_dyn_reloc (info, r_type)
7529 || (h != NULL
7530 && (!SYMBOLIC_BIND (info, h)
7531 || h->root.type == bfd_link_hash_defweak
7532 || !h->def_regular))))
7533 || (ELIMINATE_COPY_RELOCS
7534 && !info->shared
7535 && h != NULL
7536 && (h->root.type == bfd_link_hash_defweak
7537 || !h->def_regular)))
7538 ;
7539 else
7540 return TRUE;
7541
7542 if (h != NULL)
7543 {
7544 struct elf_dyn_relocs *p;
7545 struct elf_dyn_relocs **pp;
7546 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7547
7548 /* elf_gc_sweep may have already removed all dyn relocs associated
7549 with local syms for a given section. Also, symbol flags are
7550 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7551 report a dynreloc miscount. */
7552 if (*pp == NULL && info->gc_sections)
7553 return TRUE;
7554
7555 while ((p = *pp) != NULL)
7556 {
7557 if (p->sec == sec)
7558 {
7559 if (!must_be_dyn_reloc (info, r_type))
7560 p->pc_count -= 1;
7561 p->count -= 1;
7562 if (p->count == 0)
7563 *pp = p->next;
7564 return TRUE;
7565 }
7566 pp = &p->next;
7567 }
7568 }
7569 else
7570 {
7571 struct ppc_dyn_relocs *p;
7572 struct ppc_dyn_relocs **pp;
7573 void *vpp;
7574 bfd_boolean is_ifunc;
7575
7576 if (local_syms == NULL)
7577 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7578 if (sym_sec == NULL)
7579 sym_sec = sec;
7580
7581 vpp = &elf_section_data (sym_sec)->local_dynrel;
7582 pp = (struct ppc_dyn_relocs **) vpp;
7583
7584 if (*pp == NULL && info->gc_sections)
7585 return TRUE;
7586
7587 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7588 while ((p = *pp) != NULL)
7589 {
7590 if (p->sec == sec && p->ifunc == is_ifunc)
7591 {
7592 p->count -= 1;
7593 if (p->count == 0)
7594 *pp = p->next;
7595 return TRUE;
7596 }
7597 pp = &p->next;
7598 }
7599 }
7600
7601 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7602 sec->owner, sec);
7603 bfd_set_error (bfd_error_bad_value);
7604 return FALSE;
7605 }
7606
7607 /* Remove unused Official Procedure Descriptor entries. Currently we
7608 only remove those associated with functions in discarded link-once
7609 sections, or weakly defined functions that have been overridden. It
7610 would be possible to remove many more entries for statically linked
7611 applications. */
7612
7613 bfd_boolean
7614 ppc64_elf_edit_opd (struct bfd_link_info *info)
7615 {
7616 bfd *ibfd;
7617 bfd_boolean some_edited = FALSE;
7618 asection *need_pad = NULL;
7619 struct ppc_link_hash_table *htab;
7620
7621 htab = ppc_hash_table (info);
7622 if (htab == NULL)
7623 return FALSE;
7624
7625 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7626 {
7627 asection *sec;
7628 Elf_Internal_Rela *relstart, *rel, *relend;
7629 Elf_Internal_Shdr *symtab_hdr;
7630 Elf_Internal_Sym *local_syms;
7631 struct _opd_sec_data *opd;
7632 bfd_boolean need_edit, add_aux_fields, broken;
7633 bfd_size_type cnt_16b = 0;
7634
7635 if (!is_ppc64_elf (ibfd))
7636 continue;
7637
7638 sec = bfd_get_section_by_name (ibfd, ".opd");
7639 if (sec == NULL || sec->size == 0)
7640 continue;
7641
7642 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7643 continue;
7644
7645 if (sec->output_section == bfd_abs_section_ptr)
7646 continue;
7647
7648 /* Look through the section relocs. */
7649 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7650 continue;
7651
7652 local_syms = NULL;
7653 symtab_hdr = &elf_symtab_hdr (ibfd);
7654
7655 /* Read the relocations. */
7656 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7657 info->keep_memory);
7658 if (relstart == NULL)
7659 return FALSE;
7660
7661 /* First run through the relocs to check they are sane, and to
7662 determine whether we need to edit this opd section. */
7663 need_edit = FALSE;
7664 broken = FALSE;
7665 need_pad = sec;
7666 relend = relstart + sec->reloc_count;
7667 for (rel = relstart; rel < relend; )
7668 {
7669 enum elf_ppc64_reloc_type r_type;
7670 unsigned long r_symndx;
7671 asection *sym_sec;
7672 struct elf_link_hash_entry *h;
7673 Elf_Internal_Sym *sym;
7674 bfd_vma offset;
7675
7676 /* .opd contains an array of 16 or 24 byte entries. We're
7677 only interested in the reloc pointing to a function entry
7678 point. */
7679 offset = rel->r_offset;
7680 if (rel + 1 == relend
7681 || rel[1].r_offset != offset + 8)
7682 {
7683 /* If someone messes with .opd alignment then after a
7684 "ld -r" we might have padding in the middle of .opd.
7685 Also, there's nothing to prevent someone putting
7686 something silly in .opd with the assembler. No .opd
7687 optimization for them! */
7688 broken_opd:
7689 (*_bfd_error_handler)
7690 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7691 broken = TRUE;
7692 break;
7693 }
7694
7695 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7696 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7697 {
7698 (*_bfd_error_handler)
7699 (_("%B: unexpected reloc type %u in .opd section"),
7700 ibfd, r_type);
7701 broken = TRUE;
7702 break;
7703 }
7704
7705 r_symndx = ELF64_R_SYM (rel->r_info);
7706 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7707 r_symndx, ibfd))
7708 goto error_ret;
7709
7710 if (sym_sec == NULL || sym_sec->owner == NULL)
7711 {
7712 const char *sym_name;
7713 if (h != NULL)
7714 sym_name = h->root.root.string;
7715 else
7716 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7717 sym_sec);
7718
7719 (*_bfd_error_handler)
7720 (_("%B: undefined sym `%s' in .opd section"),
7721 ibfd, sym_name);
7722 broken = TRUE;
7723 break;
7724 }
7725
7726 /* opd entries are always for functions defined in the
7727 current input bfd. If the symbol isn't defined in the
7728 input bfd, then we won't be using the function in this
7729 bfd; It must be defined in a linkonce section in another
7730 bfd, or is weak. It's also possible that we are
7731 discarding the function due to a linker script /DISCARD/,
7732 which we test for via the output_section. */
7733 if (sym_sec->owner != ibfd
7734 || sym_sec->output_section == bfd_abs_section_ptr)
7735 need_edit = TRUE;
7736
7737 rel += 2;
7738 if (rel + 1 == relend
7739 || (rel + 2 < relend
7740 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC))
7741 ++rel;
7742
7743 if (rel == relend)
7744 {
7745 if (sec->size == offset + 24)
7746 {
7747 need_pad = NULL;
7748 break;
7749 }
7750 if (sec->size == offset + 16)
7751 {
7752 cnt_16b++;
7753 break;
7754 }
7755 goto broken_opd;
7756 }
7757 else if (rel + 1 < relend
7758 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7759 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7760 {
7761 if (rel[0].r_offset == offset + 16)
7762 cnt_16b++;
7763 else if (rel[0].r_offset != offset + 24)
7764 goto broken_opd;
7765 }
7766 else
7767 goto broken_opd;
7768 }
7769
7770 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7771
7772 if (!broken && (need_edit || add_aux_fields))
7773 {
7774 Elf_Internal_Rela *write_rel;
7775 Elf_Internal_Shdr *rel_hdr;
7776 bfd_byte *rptr, *wptr;
7777 bfd_byte *new_contents;
7778 bfd_size_type amt;
7779
7780 new_contents = NULL;
7781 amt = OPD_NDX (sec->size) * sizeof (long);
7782 opd = &ppc64_elf_section_data (sec)->u.opd;
7783 opd->adjust = bfd_zalloc (sec->owner, amt);
7784 if (opd->adjust == NULL)
7785 return FALSE;
7786 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7787
7788 /* This seems a waste of time as input .opd sections are all
7789 zeros as generated by gcc, but I suppose there's no reason
7790 this will always be so. We might start putting something in
7791 the third word of .opd entries. */
7792 if ((sec->flags & SEC_IN_MEMORY) == 0)
7793 {
7794 bfd_byte *loc;
7795 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7796 {
7797 if (loc != NULL)
7798 free (loc);
7799 error_ret:
7800 if (local_syms != NULL
7801 && symtab_hdr->contents != (unsigned char *) local_syms)
7802 free (local_syms);
7803 if (elf_section_data (sec)->relocs != relstart)
7804 free (relstart);
7805 return FALSE;
7806 }
7807 sec->contents = loc;
7808 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7809 }
7810
7811 elf_section_data (sec)->relocs = relstart;
7812
7813 new_contents = sec->contents;
7814 if (add_aux_fields)
7815 {
7816 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7817 if (new_contents == NULL)
7818 return FALSE;
7819 need_pad = NULL;
7820 }
7821 wptr = new_contents;
7822 rptr = sec->contents;
7823 write_rel = relstart;
7824 for (rel = relstart; rel < relend; )
7825 {
7826 unsigned long r_symndx;
7827 asection *sym_sec;
7828 struct elf_link_hash_entry *h;
7829 struct ppc_link_hash_entry *fdh = NULL;
7830 Elf_Internal_Sym *sym;
7831 long opd_ent_size;
7832 Elf_Internal_Rela *next_rel;
7833 bfd_boolean skip;
7834
7835 r_symndx = ELF64_R_SYM (rel->r_info);
7836 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7837 r_symndx, ibfd))
7838 goto error_ret;
7839
7840 next_rel = rel + 2;
7841 if (next_rel + 1 == relend
7842 || (next_rel + 2 < relend
7843 && ELF64_R_TYPE (next_rel[2].r_info) == R_PPC64_TOC))
7844 ++next_rel;
7845
7846 /* See if the .opd entry is full 24 byte or
7847 16 byte (with fd_aux entry overlapped with next
7848 fd_func). */
7849 opd_ent_size = 24;
7850 if (next_rel == relend)
7851 {
7852 if (sec->size == rel->r_offset + 16)
7853 opd_ent_size = 16;
7854 }
7855 else if (next_rel->r_offset == rel->r_offset + 16)
7856 opd_ent_size = 16;
7857
7858 if (h != NULL
7859 && h->root.root.string[0] == '.')
7860 {
7861 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h, htab);
7862 if (fdh != NULL
7863 && fdh->elf.root.type != bfd_link_hash_defined
7864 && fdh->elf.root.type != bfd_link_hash_defweak)
7865 fdh = NULL;
7866 }
7867
7868 skip = (sym_sec->owner != ibfd
7869 || sym_sec->output_section == bfd_abs_section_ptr);
7870 if (skip)
7871 {
7872 if (fdh != NULL && sym_sec->owner == ibfd)
7873 {
7874 /* Arrange for the function descriptor sym
7875 to be dropped. */
7876 fdh->elf.root.u.def.value = 0;
7877 fdh->elf.root.u.def.section = sym_sec;
7878 }
7879 opd->adjust[OPD_NDX (rel->r_offset)] = -1;
7880
7881 if (NO_OPD_RELOCS || info->relocatable)
7882 rel = next_rel;
7883 else
7884 while (1)
7885 {
7886 if (!dec_dynrel_count (rel->r_info, sec, info,
7887 NULL, h, sym))
7888 goto error_ret;
7889
7890 if (++rel == next_rel)
7891 break;
7892
7893 r_symndx = ELF64_R_SYM (rel->r_info);
7894 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7895 r_symndx, ibfd))
7896 goto error_ret;
7897 }
7898 }
7899 else
7900 {
7901 /* We'll be keeping this opd entry. */
7902 long adjust;
7903
7904 if (fdh != NULL)
7905 {
7906 /* Redefine the function descriptor symbol to
7907 this location in the opd section. It is
7908 necessary to update the value here rather
7909 than using an array of adjustments as we do
7910 for local symbols, because various places
7911 in the generic ELF code use the value
7912 stored in u.def.value. */
7913 fdh->elf.root.u.def.value = wptr - new_contents;
7914 fdh->adjust_done = 1;
7915 }
7916
7917 /* Local syms are a bit tricky. We could
7918 tweak them as they can be cached, but
7919 we'd need to look through the local syms
7920 for the function descriptor sym which we
7921 don't have at the moment. So keep an
7922 array of adjustments. */
7923 adjust = (wptr - new_contents) - (rptr - sec->contents);
7924 opd->adjust[OPD_NDX (rel->r_offset)] = adjust;
7925
7926 if (wptr != rptr)
7927 memcpy (wptr, rptr, opd_ent_size);
7928 wptr += opd_ent_size;
7929 if (add_aux_fields && opd_ent_size == 16)
7930 {
7931 memset (wptr, '\0', 8);
7932 wptr += 8;
7933 }
7934
7935 /* We need to adjust any reloc offsets to point to the
7936 new opd entries. */
7937 for ( ; rel != next_rel; ++rel)
7938 {
7939 rel->r_offset += adjust;
7940 if (write_rel != rel)
7941 memcpy (write_rel, rel, sizeof (*rel));
7942 ++write_rel;
7943 }
7944 }
7945
7946 rptr += opd_ent_size;
7947 }
7948
7949 sec->size = wptr - new_contents;
7950 sec->reloc_count = write_rel - relstart;
7951 if (add_aux_fields)
7952 {
7953 free (sec->contents);
7954 sec->contents = new_contents;
7955 }
7956
7957 /* Fudge the header size too, as this is used later in
7958 elf_bfd_final_link if we are emitting relocs. */
7959 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7960 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7961 some_edited = TRUE;
7962 }
7963 else if (elf_section_data (sec)->relocs != relstart)
7964 free (relstart);
7965
7966 if (local_syms != NULL
7967 && symtab_hdr->contents != (unsigned char *) local_syms)
7968 {
7969 if (!info->keep_memory)
7970 free (local_syms);
7971 else
7972 symtab_hdr->contents = (unsigned char *) local_syms;
7973 }
7974 }
7975
7976 if (some_edited)
7977 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7978
7979 /* If we are doing a final link and the last .opd entry is just 16 byte
7980 long, add a 8 byte padding after it. */
7981 if (need_pad != NULL && !info->relocatable)
7982 {
7983 bfd_byte *p;
7984
7985 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7986 {
7987 BFD_ASSERT (need_pad->size > 0);
7988
7989 p = bfd_malloc (need_pad->size + 8);
7990 if (p == NULL)
7991 return FALSE;
7992
7993 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7994 p, 0, need_pad->size))
7995 return FALSE;
7996
7997 need_pad->contents = p;
7998 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7999 }
8000 else
8001 {
8002 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
8003 if (p == NULL)
8004 return FALSE;
8005
8006 need_pad->contents = p;
8007 }
8008
8009 memset (need_pad->contents + need_pad->size, 0, 8);
8010 need_pad->size += 8;
8011 }
8012
8013 return TRUE;
8014 }
8015
8016 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
8017
8018 asection *
8019 ppc64_elf_tls_setup (struct bfd_link_info *info)
8020 {
8021 struct ppc_link_hash_table *htab;
8022
8023 htab = ppc_hash_table (info);
8024 if (htab == NULL)
8025 return NULL;
8026
8027 if (abiversion (info->output_bfd) == 1)
8028 htab->opd_abi = 1;
8029
8030 if (htab->params->no_multi_toc)
8031 htab->do_multi_toc = 0;
8032 else if (!htab->do_multi_toc)
8033 htab->params->no_multi_toc = 1;
8034
8035 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
8036 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
8037 FALSE, FALSE, TRUE));
8038 /* Move dynamic linking info to the function descriptor sym. */
8039 if (htab->tls_get_addr != NULL)
8040 func_desc_adjust (&htab->tls_get_addr->elf, info);
8041 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
8042 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
8043 FALSE, FALSE, TRUE));
8044 if (!htab->params->no_tls_get_addr_opt)
8045 {
8046 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
8047
8048 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
8049 FALSE, FALSE, TRUE);
8050 if (opt != NULL)
8051 func_desc_adjust (opt, info);
8052 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
8053 FALSE, FALSE, TRUE);
8054 if (opt_fd != NULL
8055 && (opt_fd->root.type == bfd_link_hash_defined
8056 || opt_fd->root.type == bfd_link_hash_defweak))
8057 {
8058 /* If glibc supports an optimized __tls_get_addr call stub,
8059 signalled by the presence of __tls_get_addr_opt, and we'll
8060 be calling __tls_get_addr via a plt call stub, then
8061 make __tls_get_addr point to __tls_get_addr_opt. */
8062 tga_fd = &htab->tls_get_addr_fd->elf;
8063 if (htab->elf.dynamic_sections_created
8064 && tga_fd != NULL
8065 && (tga_fd->type == STT_FUNC
8066 || tga_fd->needs_plt)
8067 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
8068 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
8069 && tga_fd->root.type == bfd_link_hash_undefweak)))
8070 {
8071 struct plt_entry *ent;
8072
8073 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
8074 if (ent->plt.refcount > 0)
8075 break;
8076 if (ent != NULL)
8077 {
8078 tga_fd->root.type = bfd_link_hash_indirect;
8079 tga_fd->root.u.i.link = &opt_fd->root;
8080 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
8081 if (opt_fd->dynindx != -1)
8082 {
8083 /* Use __tls_get_addr_opt in dynamic relocations. */
8084 opt_fd->dynindx = -1;
8085 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
8086 opt_fd->dynstr_index);
8087 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
8088 return NULL;
8089 }
8090 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
8091 tga = &htab->tls_get_addr->elf;
8092 if (opt != NULL && tga != NULL)
8093 {
8094 tga->root.type = bfd_link_hash_indirect;
8095 tga->root.u.i.link = &opt->root;
8096 ppc64_elf_copy_indirect_symbol (info, opt, tga);
8097 _bfd_elf_link_hash_hide_symbol (info, opt,
8098 tga->forced_local);
8099 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
8100 }
8101 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
8102 htab->tls_get_addr_fd->is_func_descriptor = 1;
8103 if (htab->tls_get_addr != NULL)
8104 {
8105 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
8106 htab->tls_get_addr->is_func = 1;
8107 }
8108 }
8109 }
8110 }
8111 else
8112 htab->params->no_tls_get_addr_opt = TRUE;
8113 }
8114 return _bfd_elf_tls_setup (info->output_bfd, info);
8115 }
8116
8117 /* Return TRUE iff REL is a branch reloc with a global symbol matching
8118 HASH1 or HASH2. */
8119
8120 static bfd_boolean
8121 branch_reloc_hash_match (const bfd *ibfd,
8122 const Elf_Internal_Rela *rel,
8123 const struct ppc_link_hash_entry *hash1,
8124 const struct ppc_link_hash_entry *hash2)
8125 {
8126 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
8127 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
8128 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
8129
8130 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
8131 {
8132 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
8133 struct elf_link_hash_entry *h;
8134
8135 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8136 h = elf_follow_link (h);
8137 if (h == &hash1->elf || h == &hash2->elf)
8138 return TRUE;
8139 }
8140 return FALSE;
8141 }
8142
8143 /* Run through all the TLS relocs looking for optimization
8144 opportunities. The linker has been hacked (see ppc64elf.em) to do
8145 a preliminary section layout so that we know the TLS segment
8146 offsets. We can't optimize earlier because some optimizations need
8147 to know the tp offset, and we need to optimize before allocating
8148 dynamic relocations. */
8149
8150 bfd_boolean
8151 ppc64_elf_tls_optimize (struct bfd_link_info *info)
8152 {
8153 bfd *ibfd;
8154 asection *sec;
8155 struct ppc_link_hash_table *htab;
8156 unsigned char *toc_ref;
8157 int pass;
8158
8159 if (info->relocatable || !info->executable)
8160 return TRUE;
8161
8162 htab = ppc_hash_table (info);
8163 if (htab == NULL)
8164 return FALSE;
8165
8166 /* Make two passes over the relocs. On the first pass, mark toc
8167 entries involved with tls relocs, and check that tls relocs
8168 involved in setting up a tls_get_addr call are indeed followed by
8169 such a call. If they are not, we can't do any tls optimization.
8170 On the second pass twiddle tls_mask flags to notify
8171 relocate_section that optimization can be done, and adjust got
8172 and plt refcounts. */
8173 toc_ref = NULL;
8174 for (pass = 0; pass < 2; ++pass)
8175 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8176 {
8177 Elf_Internal_Sym *locsyms = NULL;
8178 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
8179
8180 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8181 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
8182 {
8183 Elf_Internal_Rela *relstart, *rel, *relend;
8184 bfd_boolean found_tls_get_addr_arg = 0;
8185
8186 /* Read the relocations. */
8187 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8188 info->keep_memory);
8189 if (relstart == NULL)
8190 {
8191 free (toc_ref);
8192 return FALSE;
8193 }
8194
8195 relend = relstart + sec->reloc_count;
8196 for (rel = relstart; rel < relend; rel++)
8197 {
8198 enum elf_ppc64_reloc_type r_type;
8199 unsigned long r_symndx;
8200 struct elf_link_hash_entry *h;
8201 Elf_Internal_Sym *sym;
8202 asection *sym_sec;
8203 unsigned char *tls_mask;
8204 unsigned char tls_set, tls_clear, tls_type = 0;
8205 bfd_vma value;
8206 bfd_boolean ok_tprel, is_local;
8207 long toc_ref_index = 0;
8208 int expecting_tls_get_addr = 0;
8209 bfd_boolean ret = FALSE;
8210
8211 r_symndx = ELF64_R_SYM (rel->r_info);
8212 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
8213 r_symndx, ibfd))
8214 {
8215 err_free_rel:
8216 if (elf_section_data (sec)->relocs != relstart)
8217 free (relstart);
8218 if (toc_ref != NULL)
8219 free (toc_ref);
8220 if (locsyms != NULL
8221 && (elf_symtab_hdr (ibfd).contents
8222 != (unsigned char *) locsyms))
8223 free (locsyms);
8224 return ret;
8225 }
8226
8227 if (h != NULL)
8228 {
8229 if (h->root.type == bfd_link_hash_defined
8230 || h->root.type == bfd_link_hash_defweak)
8231 value = h->root.u.def.value;
8232 else if (h->root.type == bfd_link_hash_undefweak)
8233 value = 0;
8234 else
8235 {
8236 found_tls_get_addr_arg = 0;
8237 continue;
8238 }
8239 }
8240 else
8241 /* Symbols referenced by TLS relocs must be of type
8242 STT_TLS. So no need for .opd local sym adjust. */
8243 value = sym->st_value;
8244
8245 ok_tprel = FALSE;
8246 is_local = FALSE;
8247 if (h == NULL
8248 || !h->def_dynamic)
8249 {
8250 is_local = TRUE;
8251 if (h != NULL
8252 && h->root.type == bfd_link_hash_undefweak)
8253 ok_tprel = TRUE;
8254 else
8255 {
8256 value += sym_sec->output_offset;
8257 value += sym_sec->output_section->vma;
8258 value -= htab->elf.tls_sec->vma;
8259 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
8260 < (bfd_vma) 1 << 32);
8261 }
8262 }
8263
8264 r_type = ELF64_R_TYPE (rel->r_info);
8265 /* If this section has old-style __tls_get_addr calls
8266 without marker relocs, then check that each
8267 __tls_get_addr call reloc is preceded by a reloc
8268 that conceivably belongs to the __tls_get_addr arg
8269 setup insn. If we don't find matching arg setup
8270 relocs, don't do any tls optimization. */
8271 if (pass == 0
8272 && sec->has_tls_get_addr_call
8273 && h != NULL
8274 && (h == &htab->tls_get_addr->elf
8275 || h == &htab->tls_get_addr_fd->elf)
8276 && !found_tls_get_addr_arg
8277 && is_branch_reloc (r_type))
8278 {
8279 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8280 "TLS optimization disabled\n"),
8281 ibfd, sec, rel->r_offset);
8282 ret = TRUE;
8283 goto err_free_rel;
8284 }
8285
8286 found_tls_get_addr_arg = 0;
8287 switch (r_type)
8288 {
8289 case R_PPC64_GOT_TLSLD16:
8290 case R_PPC64_GOT_TLSLD16_LO:
8291 expecting_tls_get_addr = 1;
8292 found_tls_get_addr_arg = 1;
8293 /* Fall thru */
8294
8295 case R_PPC64_GOT_TLSLD16_HI:
8296 case R_PPC64_GOT_TLSLD16_HA:
8297 /* These relocs should never be against a symbol
8298 defined in a shared lib. Leave them alone if
8299 that turns out to be the case. */
8300 if (!is_local)
8301 continue;
8302
8303 /* LD -> LE */
8304 tls_set = 0;
8305 tls_clear = TLS_LD;
8306 tls_type = TLS_TLS | TLS_LD;
8307 break;
8308
8309 case R_PPC64_GOT_TLSGD16:
8310 case R_PPC64_GOT_TLSGD16_LO:
8311 expecting_tls_get_addr = 1;
8312 found_tls_get_addr_arg = 1;
8313 /* Fall thru */
8314
8315 case R_PPC64_GOT_TLSGD16_HI:
8316 case R_PPC64_GOT_TLSGD16_HA:
8317 if (ok_tprel)
8318 /* GD -> LE */
8319 tls_set = 0;
8320 else
8321 /* GD -> IE */
8322 tls_set = TLS_TLS | TLS_TPRELGD;
8323 tls_clear = TLS_GD;
8324 tls_type = TLS_TLS | TLS_GD;
8325 break;
8326
8327 case R_PPC64_GOT_TPREL16_DS:
8328 case R_PPC64_GOT_TPREL16_LO_DS:
8329 case R_PPC64_GOT_TPREL16_HI:
8330 case R_PPC64_GOT_TPREL16_HA:
8331 if (ok_tprel)
8332 {
8333 /* IE -> LE */
8334 tls_set = 0;
8335 tls_clear = TLS_TPREL;
8336 tls_type = TLS_TLS | TLS_TPREL;
8337 break;
8338 }
8339 continue;
8340
8341 case R_PPC64_TLSGD:
8342 case R_PPC64_TLSLD:
8343 found_tls_get_addr_arg = 1;
8344 /* Fall thru */
8345
8346 case R_PPC64_TLS:
8347 case R_PPC64_TOC16:
8348 case R_PPC64_TOC16_LO:
8349 if (sym_sec == NULL || sym_sec != toc)
8350 continue;
8351
8352 /* Mark this toc entry as referenced by a TLS
8353 code sequence. We can do that now in the
8354 case of R_PPC64_TLS, and after checking for
8355 tls_get_addr for the TOC16 relocs. */
8356 if (toc_ref == NULL)
8357 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
8358 if (toc_ref == NULL)
8359 goto err_free_rel;
8360
8361 if (h != NULL)
8362 value = h->root.u.def.value;
8363 else
8364 value = sym->st_value;
8365 value += rel->r_addend;
8366 if (value % 8 != 0)
8367 continue;
8368 BFD_ASSERT (value < toc->size
8369 && toc->output_offset % 8 == 0);
8370 toc_ref_index = (value + toc->output_offset) / 8;
8371 if (r_type == R_PPC64_TLS
8372 || r_type == R_PPC64_TLSGD
8373 || r_type == R_PPC64_TLSLD)
8374 {
8375 toc_ref[toc_ref_index] = 1;
8376 continue;
8377 }
8378
8379 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8380 continue;
8381
8382 tls_set = 0;
8383 tls_clear = 0;
8384 expecting_tls_get_addr = 2;
8385 break;
8386
8387 case R_PPC64_TPREL64:
8388 if (pass == 0
8389 || sec != toc
8390 || toc_ref == NULL
8391 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8392 continue;
8393 if (ok_tprel)
8394 {
8395 /* IE -> LE */
8396 tls_set = TLS_EXPLICIT;
8397 tls_clear = TLS_TPREL;
8398 break;
8399 }
8400 continue;
8401
8402 case R_PPC64_DTPMOD64:
8403 if (pass == 0
8404 || sec != toc
8405 || toc_ref == NULL
8406 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8407 continue;
8408 if (rel + 1 < relend
8409 && (rel[1].r_info
8410 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8411 && rel[1].r_offset == rel->r_offset + 8)
8412 {
8413 if (ok_tprel)
8414 /* GD -> LE */
8415 tls_set = TLS_EXPLICIT | TLS_GD;
8416 else
8417 /* GD -> IE */
8418 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
8419 tls_clear = TLS_GD;
8420 }
8421 else
8422 {
8423 if (!is_local)
8424 continue;
8425
8426 /* LD -> LE */
8427 tls_set = TLS_EXPLICIT;
8428 tls_clear = TLS_LD;
8429 }
8430 break;
8431
8432 default:
8433 continue;
8434 }
8435
8436 if (pass == 0)
8437 {
8438 if (!expecting_tls_get_addr
8439 || !sec->has_tls_get_addr_call)
8440 continue;
8441
8442 if (rel + 1 < relend
8443 && branch_reloc_hash_match (ibfd, rel + 1,
8444 htab->tls_get_addr,
8445 htab->tls_get_addr_fd))
8446 {
8447 if (expecting_tls_get_addr == 2)
8448 {
8449 /* Check for toc tls entries. */
8450 unsigned char *toc_tls;
8451 int retval;
8452
8453 retval = get_tls_mask (&toc_tls, NULL, NULL,
8454 &locsyms,
8455 rel, ibfd);
8456 if (retval == 0)
8457 goto err_free_rel;
8458 if (toc_tls != NULL)
8459 {
8460 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
8461 found_tls_get_addr_arg = 1;
8462 if (retval > 1)
8463 toc_ref[toc_ref_index] = 1;
8464 }
8465 }
8466 continue;
8467 }
8468
8469 if (expecting_tls_get_addr != 1)
8470 continue;
8471
8472 /* Uh oh, we didn't find the expected call. We
8473 could just mark this symbol to exclude it
8474 from tls optimization but it's safer to skip
8475 the entire optimization. */
8476 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8477 "TLS optimization disabled\n"),
8478 ibfd, sec, rel->r_offset);
8479 ret = TRUE;
8480 goto err_free_rel;
8481 }
8482
8483 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
8484 {
8485 struct plt_entry *ent;
8486 for (ent = htab->tls_get_addr->elf.plt.plist;
8487 ent != NULL;
8488 ent = ent->next)
8489 if (ent->addend == 0)
8490 {
8491 if (ent->plt.refcount > 0)
8492 {
8493 ent->plt.refcount -= 1;
8494 expecting_tls_get_addr = 0;
8495 }
8496 break;
8497 }
8498 }
8499
8500 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
8501 {
8502 struct plt_entry *ent;
8503 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8504 ent != NULL;
8505 ent = ent->next)
8506 if (ent->addend == 0)
8507 {
8508 if (ent->plt.refcount > 0)
8509 ent->plt.refcount -= 1;
8510 break;
8511 }
8512 }
8513
8514 if (tls_clear == 0)
8515 continue;
8516
8517 if ((tls_set & TLS_EXPLICIT) == 0)
8518 {
8519 struct got_entry *ent;
8520
8521 /* Adjust got entry for this reloc. */
8522 if (h != NULL)
8523 ent = h->got.glist;
8524 else
8525 ent = elf_local_got_ents (ibfd)[r_symndx];
8526
8527 for (; ent != NULL; ent = ent->next)
8528 if (ent->addend == rel->r_addend
8529 && ent->owner == ibfd
8530 && ent->tls_type == tls_type)
8531 break;
8532 if (ent == NULL)
8533 abort ();
8534
8535 if (tls_set == 0)
8536 {
8537 /* We managed to get rid of a got entry. */
8538 if (ent->got.refcount > 0)
8539 ent->got.refcount -= 1;
8540 }
8541 }
8542 else
8543 {
8544 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8545 we'll lose one or two dyn relocs. */
8546 if (!dec_dynrel_count (rel->r_info, sec, info,
8547 NULL, h, sym))
8548 return FALSE;
8549
8550 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8551 {
8552 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8553 NULL, h, sym))
8554 return FALSE;
8555 }
8556 }
8557
8558 *tls_mask |= tls_set;
8559 *tls_mask &= ~tls_clear;
8560 }
8561
8562 if (elf_section_data (sec)->relocs != relstart)
8563 free (relstart);
8564 }
8565
8566 if (locsyms != NULL
8567 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8568 {
8569 if (!info->keep_memory)
8570 free (locsyms);
8571 else
8572 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8573 }
8574 }
8575
8576 if (toc_ref != NULL)
8577 free (toc_ref);
8578 return TRUE;
8579 }
8580
8581 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8582 the values of any global symbols in a toc section that has been
8583 edited. Globals in toc sections should be a rarity, so this function
8584 sets a flag if any are found in toc sections other than the one just
8585 edited, so that futher hash table traversals can be avoided. */
8586
8587 struct adjust_toc_info
8588 {
8589 asection *toc;
8590 unsigned long *skip;
8591 bfd_boolean global_toc_syms;
8592 };
8593
8594 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8595
8596 static bfd_boolean
8597 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8598 {
8599 struct ppc_link_hash_entry *eh;
8600 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8601 unsigned long i;
8602
8603 if (h->root.type != bfd_link_hash_defined
8604 && h->root.type != bfd_link_hash_defweak)
8605 return TRUE;
8606
8607 eh = (struct ppc_link_hash_entry *) h;
8608 if (eh->adjust_done)
8609 return TRUE;
8610
8611 if (eh->elf.root.u.def.section == toc_inf->toc)
8612 {
8613 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8614 i = toc_inf->toc->rawsize >> 3;
8615 else
8616 i = eh->elf.root.u.def.value >> 3;
8617
8618 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8619 {
8620 (*_bfd_error_handler)
8621 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8622 do
8623 ++i;
8624 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8625 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8626 }
8627
8628 eh->elf.root.u.def.value -= toc_inf->skip[i];
8629 eh->adjust_done = 1;
8630 }
8631 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8632 toc_inf->global_toc_syms = TRUE;
8633
8634 return TRUE;
8635 }
8636
8637 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8638
8639 static bfd_boolean
8640 ok_lo_toc_insn (unsigned int insn)
8641 {
8642 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8643 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8644 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8645 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8646 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8647 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8648 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8649 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8650 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8651 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8652 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8653 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8654 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8655 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8656 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8657 && (insn & 3) != 1)
8658 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8659 && ((insn & 3) == 0 || (insn & 3) == 3))
8660 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8661 }
8662
8663 /* Examine all relocs referencing .toc sections in order to remove
8664 unused .toc entries. */
8665
8666 bfd_boolean
8667 ppc64_elf_edit_toc (struct bfd_link_info *info)
8668 {
8669 bfd *ibfd;
8670 struct adjust_toc_info toc_inf;
8671 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8672
8673 htab->do_toc_opt = 1;
8674 toc_inf.global_toc_syms = TRUE;
8675 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8676 {
8677 asection *toc, *sec;
8678 Elf_Internal_Shdr *symtab_hdr;
8679 Elf_Internal_Sym *local_syms;
8680 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8681 unsigned long *skip, *drop;
8682 unsigned char *used;
8683 unsigned char *keep, last, some_unused;
8684
8685 if (!is_ppc64_elf (ibfd))
8686 continue;
8687
8688 toc = bfd_get_section_by_name (ibfd, ".toc");
8689 if (toc == NULL
8690 || toc->size == 0
8691 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8692 || discarded_section (toc))
8693 continue;
8694
8695 toc_relocs = NULL;
8696 local_syms = NULL;
8697 symtab_hdr = &elf_symtab_hdr (ibfd);
8698
8699 /* Look at sections dropped from the final link. */
8700 skip = NULL;
8701 relstart = NULL;
8702 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8703 {
8704 if (sec->reloc_count == 0
8705 || !discarded_section (sec)
8706 || get_opd_info (sec)
8707 || (sec->flags & SEC_ALLOC) == 0
8708 || (sec->flags & SEC_DEBUGGING) != 0)
8709 continue;
8710
8711 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8712 if (relstart == NULL)
8713 goto error_ret;
8714
8715 /* Run through the relocs to see which toc entries might be
8716 unused. */
8717 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8718 {
8719 enum elf_ppc64_reloc_type r_type;
8720 unsigned long r_symndx;
8721 asection *sym_sec;
8722 struct elf_link_hash_entry *h;
8723 Elf_Internal_Sym *sym;
8724 bfd_vma val;
8725
8726 r_type = ELF64_R_TYPE (rel->r_info);
8727 switch (r_type)
8728 {
8729 default:
8730 continue;
8731
8732 case R_PPC64_TOC16:
8733 case R_PPC64_TOC16_LO:
8734 case R_PPC64_TOC16_HI:
8735 case R_PPC64_TOC16_HA:
8736 case R_PPC64_TOC16_DS:
8737 case R_PPC64_TOC16_LO_DS:
8738 break;
8739 }
8740
8741 r_symndx = ELF64_R_SYM (rel->r_info);
8742 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8743 r_symndx, ibfd))
8744 goto error_ret;
8745
8746 if (sym_sec != toc)
8747 continue;
8748
8749 if (h != NULL)
8750 val = h->root.u.def.value;
8751 else
8752 val = sym->st_value;
8753 val += rel->r_addend;
8754
8755 if (val >= toc->size)
8756 continue;
8757
8758 /* Anything in the toc ought to be aligned to 8 bytes.
8759 If not, don't mark as unused. */
8760 if (val & 7)
8761 continue;
8762
8763 if (skip == NULL)
8764 {
8765 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8766 if (skip == NULL)
8767 goto error_ret;
8768 }
8769
8770 skip[val >> 3] = ref_from_discarded;
8771 }
8772
8773 if (elf_section_data (sec)->relocs != relstart)
8774 free (relstart);
8775 }
8776
8777 /* For largetoc loads of address constants, we can convert
8778 . addis rx,2,addr@got@ha
8779 . ld ry,addr@got@l(rx)
8780 to
8781 . addis rx,2,addr@toc@ha
8782 . addi ry,rx,addr@toc@l
8783 when addr is within 2G of the toc pointer. This then means
8784 that the word storing "addr" in the toc is no longer needed. */
8785
8786 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8787 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8788 && toc->reloc_count != 0)
8789 {
8790 /* Read toc relocs. */
8791 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8792 info->keep_memory);
8793 if (toc_relocs == NULL)
8794 goto error_ret;
8795
8796 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8797 {
8798 enum elf_ppc64_reloc_type r_type;
8799 unsigned long r_symndx;
8800 asection *sym_sec;
8801 struct elf_link_hash_entry *h;
8802 Elf_Internal_Sym *sym;
8803 bfd_vma val, addr;
8804
8805 r_type = ELF64_R_TYPE (rel->r_info);
8806 if (r_type != R_PPC64_ADDR64)
8807 continue;
8808
8809 r_symndx = ELF64_R_SYM (rel->r_info);
8810 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8811 r_symndx, ibfd))
8812 goto error_ret;
8813
8814 if (sym_sec == NULL
8815 || discarded_section (sym_sec))
8816 continue;
8817
8818 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8819 continue;
8820
8821 if (h != NULL)
8822 {
8823 if (h->type == STT_GNU_IFUNC)
8824 continue;
8825 val = h->root.u.def.value;
8826 }
8827 else
8828 {
8829 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8830 continue;
8831 val = sym->st_value;
8832 }
8833 val += rel->r_addend;
8834 val += sym_sec->output_section->vma + sym_sec->output_offset;
8835
8836 /* We don't yet know the exact toc pointer value, but we
8837 know it will be somewhere in the toc section. Don't
8838 optimize if the difference from any possible toc
8839 pointer is outside [ff..f80008000, 7fff7fff]. */
8840 addr = toc->output_section->vma + TOC_BASE_OFF;
8841 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8842 continue;
8843
8844 addr = toc->output_section->vma + toc->output_section->rawsize;
8845 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8846 continue;
8847
8848 if (skip == NULL)
8849 {
8850 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8851 if (skip == NULL)
8852 goto error_ret;
8853 }
8854
8855 skip[rel->r_offset >> 3]
8856 |= can_optimize | ((rel - toc_relocs) << 2);
8857 }
8858 }
8859
8860 if (skip == NULL)
8861 continue;
8862
8863 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8864 if (used == NULL)
8865 {
8866 error_ret:
8867 if (local_syms != NULL
8868 && symtab_hdr->contents != (unsigned char *) local_syms)
8869 free (local_syms);
8870 if (sec != NULL
8871 && relstart != NULL
8872 && elf_section_data (sec)->relocs != relstart)
8873 free (relstart);
8874 if (toc_relocs != NULL
8875 && elf_section_data (toc)->relocs != toc_relocs)
8876 free (toc_relocs);
8877 if (skip != NULL)
8878 free (skip);
8879 return FALSE;
8880 }
8881
8882 /* Now check all kept sections that might reference the toc.
8883 Check the toc itself last. */
8884 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8885 : ibfd->sections);
8886 sec != NULL;
8887 sec = (sec == toc ? NULL
8888 : sec->next == NULL ? toc
8889 : sec->next == toc && toc->next ? toc->next
8890 : sec->next))
8891 {
8892 int repeat;
8893
8894 if (sec->reloc_count == 0
8895 || discarded_section (sec)
8896 || get_opd_info (sec)
8897 || (sec->flags & SEC_ALLOC) == 0
8898 || (sec->flags & SEC_DEBUGGING) != 0)
8899 continue;
8900
8901 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8902 info->keep_memory);
8903 if (relstart == NULL)
8904 {
8905 free (used);
8906 goto error_ret;
8907 }
8908
8909 /* Mark toc entries referenced as used. */
8910 do
8911 {
8912 repeat = 0;
8913 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8914 {
8915 enum elf_ppc64_reloc_type r_type;
8916 unsigned long r_symndx;
8917 asection *sym_sec;
8918 struct elf_link_hash_entry *h;
8919 Elf_Internal_Sym *sym;
8920 bfd_vma val;
8921 enum {no_check, check_lo, check_ha} insn_check;
8922
8923 r_type = ELF64_R_TYPE (rel->r_info);
8924 switch (r_type)
8925 {
8926 default:
8927 insn_check = no_check;
8928 break;
8929
8930 case R_PPC64_GOT_TLSLD16_HA:
8931 case R_PPC64_GOT_TLSGD16_HA:
8932 case R_PPC64_GOT_TPREL16_HA:
8933 case R_PPC64_GOT_DTPREL16_HA:
8934 case R_PPC64_GOT16_HA:
8935 case R_PPC64_TOC16_HA:
8936 insn_check = check_ha;
8937 break;
8938
8939 case R_PPC64_GOT_TLSLD16_LO:
8940 case R_PPC64_GOT_TLSGD16_LO:
8941 case R_PPC64_GOT_TPREL16_LO_DS:
8942 case R_PPC64_GOT_DTPREL16_LO_DS:
8943 case R_PPC64_GOT16_LO:
8944 case R_PPC64_GOT16_LO_DS:
8945 case R_PPC64_TOC16_LO:
8946 case R_PPC64_TOC16_LO_DS:
8947 insn_check = check_lo;
8948 break;
8949 }
8950
8951 if (insn_check != no_check)
8952 {
8953 bfd_vma off = rel->r_offset & ~3;
8954 unsigned char buf[4];
8955 unsigned int insn;
8956
8957 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8958 {
8959 free (used);
8960 goto error_ret;
8961 }
8962 insn = bfd_get_32 (ibfd, buf);
8963 if (insn_check == check_lo
8964 ? !ok_lo_toc_insn (insn)
8965 : ((insn & ((0x3f << 26) | 0x1f << 16))
8966 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8967 {
8968 char str[12];
8969
8970 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8971 sprintf (str, "%#08x", insn);
8972 info->callbacks->einfo
8973 (_("%P: %H: toc optimization is not supported for"
8974 " %s instruction.\n"),
8975 ibfd, sec, rel->r_offset & ~3, str);
8976 }
8977 }
8978
8979 switch (r_type)
8980 {
8981 case R_PPC64_TOC16:
8982 case R_PPC64_TOC16_LO:
8983 case R_PPC64_TOC16_HI:
8984 case R_PPC64_TOC16_HA:
8985 case R_PPC64_TOC16_DS:
8986 case R_PPC64_TOC16_LO_DS:
8987 /* In case we're taking addresses of toc entries. */
8988 case R_PPC64_ADDR64:
8989 break;
8990
8991 default:
8992 continue;
8993 }
8994
8995 r_symndx = ELF64_R_SYM (rel->r_info);
8996 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8997 r_symndx, ibfd))
8998 {
8999 free (used);
9000 goto error_ret;
9001 }
9002
9003 if (sym_sec != toc)
9004 continue;
9005
9006 if (h != NULL)
9007 val = h->root.u.def.value;
9008 else
9009 val = sym->st_value;
9010 val += rel->r_addend;
9011
9012 if (val >= toc->size)
9013 continue;
9014
9015 if ((skip[val >> 3] & can_optimize) != 0)
9016 {
9017 bfd_vma off;
9018 unsigned char opc;
9019
9020 switch (r_type)
9021 {
9022 case R_PPC64_TOC16_HA:
9023 break;
9024
9025 case R_PPC64_TOC16_LO_DS:
9026 off = rel->r_offset;
9027 off += (bfd_big_endian (ibfd) ? -2 : 3);
9028 if (!bfd_get_section_contents (ibfd, sec, &opc,
9029 off, 1))
9030 {
9031 free (used);
9032 goto error_ret;
9033 }
9034 if ((opc & (0x3f << 2)) == (58u << 2))
9035 break;
9036 /* Fall thru */
9037
9038 default:
9039 /* Wrong sort of reloc, or not a ld. We may
9040 as well clear ref_from_discarded too. */
9041 skip[val >> 3] = 0;
9042 }
9043 }
9044
9045 if (sec != toc)
9046 used[val >> 3] = 1;
9047 /* For the toc section, we only mark as used if this
9048 entry itself isn't unused. */
9049 else if ((used[rel->r_offset >> 3]
9050 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
9051 && !used[val >> 3])
9052 {
9053 /* Do all the relocs again, to catch reference
9054 chains. */
9055 repeat = 1;
9056 used[val >> 3] = 1;
9057 }
9058 }
9059 }
9060 while (repeat);
9061
9062 if (elf_section_data (sec)->relocs != relstart)
9063 free (relstart);
9064 }
9065
9066 /* Merge the used and skip arrays. Assume that TOC
9067 doublewords not appearing as either used or unused belong
9068 to to an entry more than one doubleword in size. */
9069 for (drop = skip, keep = used, last = 0, some_unused = 0;
9070 drop < skip + (toc->size + 7) / 8;
9071 ++drop, ++keep)
9072 {
9073 if (*keep)
9074 {
9075 *drop &= ~ref_from_discarded;
9076 if ((*drop & can_optimize) != 0)
9077 some_unused = 1;
9078 last = 0;
9079 }
9080 else if ((*drop & ref_from_discarded) != 0)
9081 {
9082 some_unused = 1;
9083 last = ref_from_discarded;
9084 }
9085 else
9086 *drop = last;
9087 }
9088
9089 free (used);
9090
9091 if (some_unused)
9092 {
9093 bfd_byte *contents, *src;
9094 unsigned long off;
9095 Elf_Internal_Sym *sym;
9096 bfd_boolean local_toc_syms = FALSE;
9097
9098 /* Shuffle the toc contents, and at the same time convert the
9099 skip array from booleans into offsets. */
9100 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9101 goto error_ret;
9102
9103 elf_section_data (toc)->this_hdr.contents = contents;
9104
9105 for (src = contents, off = 0, drop = skip;
9106 src < contents + toc->size;
9107 src += 8, ++drop)
9108 {
9109 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9110 off += 8;
9111 else if (off != 0)
9112 {
9113 *drop = off;
9114 memcpy (src - off, src, 8);
9115 }
9116 }
9117 *drop = off;
9118 toc->rawsize = toc->size;
9119 toc->size = src - contents - off;
9120
9121 /* Adjust addends for relocs against the toc section sym,
9122 and optimize any accesses we can. */
9123 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9124 {
9125 if (sec->reloc_count == 0
9126 || discarded_section (sec))
9127 continue;
9128
9129 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9130 info->keep_memory);
9131 if (relstart == NULL)
9132 goto error_ret;
9133
9134 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9135 {
9136 enum elf_ppc64_reloc_type r_type;
9137 unsigned long r_symndx;
9138 asection *sym_sec;
9139 struct elf_link_hash_entry *h;
9140 bfd_vma val;
9141
9142 r_type = ELF64_R_TYPE (rel->r_info);
9143 switch (r_type)
9144 {
9145 default:
9146 continue;
9147
9148 case R_PPC64_TOC16:
9149 case R_PPC64_TOC16_LO:
9150 case R_PPC64_TOC16_HI:
9151 case R_PPC64_TOC16_HA:
9152 case R_PPC64_TOC16_DS:
9153 case R_PPC64_TOC16_LO_DS:
9154 case R_PPC64_ADDR64:
9155 break;
9156 }
9157
9158 r_symndx = ELF64_R_SYM (rel->r_info);
9159 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9160 r_symndx, ibfd))
9161 goto error_ret;
9162
9163 if (sym_sec != toc)
9164 continue;
9165
9166 if (h != NULL)
9167 val = h->root.u.def.value;
9168 else
9169 {
9170 val = sym->st_value;
9171 if (val != 0)
9172 local_toc_syms = TRUE;
9173 }
9174
9175 val += rel->r_addend;
9176
9177 if (val > toc->rawsize)
9178 val = toc->rawsize;
9179 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9180 continue;
9181 else if ((skip[val >> 3] & can_optimize) != 0)
9182 {
9183 Elf_Internal_Rela *tocrel
9184 = toc_relocs + (skip[val >> 3] >> 2);
9185 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9186
9187 switch (r_type)
9188 {
9189 case R_PPC64_TOC16_HA:
9190 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9191 break;
9192
9193 case R_PPC64_TOC16_LO_DS:
9194 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9195 break;
9196
9197 default:
9198 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9199 ppc_howto_init ();
9200 info->callbacks->einfo
9201 (_("%P: %H: %s references "
9202 "optimized away TOC entry\n"),
9203 ibfd, sec, rel->r_offset,
9204 ppc64_elf_howto_table[r_type]->name);
9205 bfd_set_error (bfd_error_bad_value);
9206 goto error_ret;
9207 }
9208 rel->r_addend = tocrel->r_addend;
9209 elf_section_data (sec)->relocs = relstart;
9210 continue;
9211 }
9212
9213 if (h != NULL || sym->st_value != 0)
9214 continue;
9215
9216 rel->r_addend -= skip[val >> 3];
9217 elf_section_data (sec)->relocs = relstart;
9218 }
9219
9220 if (elf_section_data (sec)->relocs != relstart)
9221 free (relstart);
9222 }
9223
9224 /* We shouldn't have local or global symbols defined in the TOC,
9225 but handle them anyway. */
9226 if (local_syms != NULL)
9227 for (sym = local_syms;
9228 sym < local_syms + symtab_hdr->sh_info;
9229 ++sym)
9230 if (sym->st_value != 0
9231 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9232 {
9233 unsigned long i;
9234
9235 if (sym->st_value > toc->rawsize)
9236 i = toc->rawsize >> 3;
9237 else
9238 i = sym->st_value >> 3;
9239
9240 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9241 {
9242 if (local_toc_syms)
9243 (*_bfd_error_handler)
9244 (_("%s defined on removed toc entry"),
9245 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9246 do
9247 ++i;
9248 while ((skip[i] & (ref_from_discarded | can_optimize)));
9249 sym->st_value = (bfd_vma) i << 3;
9250 }
9251
9252 sym->st_value -= skip[i];
9253 symtab_hdr->contents = (unsigned char *) local_syms;
9254 }
9255
9256 /* Adjust any global syms defined in this toc input section. */
9257 if (toc_inf.global_toc_syms)
9258 {
9259 toc_inf.toc = toc;
9260 toc_inf.skip = skip;
9261 toc_inf.global_toc_syms = FALSE;
9262 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9263 &toc_inf);
9264 }
9265
9266 if (toc->reloc_count != 0)
9267 {
9268 Elf_Internal_Shdr *rel_hdr;
9269 Elf_Internal_Rela *wrel;
9270 bfd_size_type sz;
9271
9272 /* Remove unused toc relocs, and adjust those we keep. */
9273 if (toc_relocs == NULL)
9274 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9275 info->keep_memory);
9276 if (toc_relocs == NULL)
9277 goto error_ret;
9278
9279 wrel = toc_relocs;
9280 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9281 if ((skip[rel->r_offset >> 3]
9282 & (ref_from_discarded | can_optimize)) == 0)
9283 {
9284 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9285 wrel->r_info = rel->r_info;
9286 wrel->r_addend = rel->r_addend;
9287 ++wrel;
9288 }
9289 else if (!dec_dynrel_count (rel->r_info, toc, info,
9290 &local_syms, NULL, NULL))
9291 goto error_ret;
9292
9293 elf_section_data (toc)->relocs = toc_relocs;
9294 toc->reloc_count = wrel - toc_relocs;
9295 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9296 sz = rel_hdr->sh_entsize;
9297 rel_hdr->sh_size = toc->reloc_count * sz;
9298 }
9299 }
9300 else if (toc_relocs != NULL
9301 && elf_section_data (toc)->relocs != toc_relocs)
9302 free (toc_relocs);
9303
9304 if (local_syms != NULL
9305 && symtab_hdr->contents != (unsigned char *) local_syms)
9306 {
9307 if (!info->keep_memory)
9308 free (local_syms);
9309 else
9310 symtab_hdr->contents = (unsigned char *) local_syms;
9311 }
9312 free (skip);
9313 }
9314
9315 return TRUE;
9316 }
9317
9318 /* Return true iff input section I references the TOC using
9319 instructions limited to +/-32k offsets. */
9320
9321 bfd_boolean
9322 ppc64_elf_has_small_toc_reloc (asection *i)
9323 {
9324 return (is_ppc64_elf (i->owner)
9325 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9326 }
9327
9328 /* Allocate space for one GOT entry. */
9329
9330 static void
9331 allocate_got (struct elf_link_hash_entry *h,
9332 struct bfd_link_info *info,
9333 struct got_entry *gent)
9334 {
9335 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9336 bfd_boolean dyn;
9337 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9338 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9339 ? 16 : 8);
9340 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9341 ? 2 : 1) * sizeof (Elf64_External_Rela);
9342 asection *got = ppc64_elf_tdata (gent->owner)->got;
9343
9344 gent->got.offset = got->size;
9345 got->size += entsize;
9346
9347 dyn = htab->elf.dynamic_sections_created;
9348 if (h->type == STT_GNU_IFUNC)
9349 {
9350 htab->elf.irelplt->size += rentsize;
9351 htab->got_reli_size += rentsize;
9352 }
9353 else if ((info->shared
9354 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
9355 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9356 || h->root.type != bfd_link_hash_undefweak))
9357 {
9358 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9359 relgot->size += rentsize;
9360 }
9361 }
9362
9363 /* This function merges got entries in the same toc group. */
9364
9365 static void
9366 merge_got_entries (struct got_entry **pent)
9367 {
9368 struct got_entry *ent, *ent2;
9369
9370 for (ent = *pent; ent != NULL; ent = ent->next)
9371 if (!ent->is_indirect)
9372 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9373 if (!ent2->is_indirect
9374 && ent2->addend == ent->addend
9375 && ent2->tls_type == ent->tls_type
9376 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9377 {
9378 ent2->is_indirect = TRUE;
9379 ent2->got.ent = ent;
9380 }
9381 }
9382
9383 /* Allocate space in .plt, .got and associated reloc sections for
9384 dynamic relocs. */
9385
9386 static bfd_boolean
9387 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9388 {
9389 struct bfd_link_info *info;
9390 struct ppc_link_hash_table *htab;
9391 asection *s;
9392 struct ppc_link_hash_entry *eh;
9393 struct elf_dyn_relocs *p;
9394 struct got_entry **pgent, *gent;
9395
9396 if (h->root.type == bfd_link_hash_indirect)
9397 return TRUE;
9398
9399 info = (struct bfd_link_info *) inf;
9400 htab = ppc_hash_table (info);
9401 if (htab == NULL)
9402 return FALSE;
9403
9404 if ((htab->elf.dynamic_sections_created
9405 && h->dynindx != -1
9406 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
9407 || h->type == STT_GNU_IFUNC)
9408 {
9409 struct plt_entry *pent;
9410 bfd_boolean doneone = FALSE;
9411 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9412 if (pent->plt.refcount > 0)
9413 {
9414 if (!htab->elf.dynamic_sections_created
9415 || h->dynindx == -1)
9416 {
9417 s = htab->elf.iplt;
9418 pent->plt.offset = s->size;
9419 s->size += PLT_ENTRY_SIZE (htab);
9420 s = htab->elf.irelplt;
9421 }
9422 else
9423 {
9424 /* If this is the first .plt entry, make room for the special
9425 first entry. */
9426 s = htab->elf.splt;
9427 if (s->size == 0)
9428 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9429
9430 pent->plt.offset = s->size;
9431
9432 /* Make room for this entry. */
9433 s->size += PLT_ENTRY_SIZE (htab);
9434
9435 /* Make room for the .glink code. */
9436 s = htab->glink;
9437 if (s->size == 0)
9438 s->size += GLINK_CALL_STUB_SIZE;
9439 if (htab->opd_abi)
9440 {
9441 /* We need bigger stubs past index 32767. */
9442 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
9443 s->size += 4;
9444 s->size += 2*4;
9445 }
9446 else
9447 s->size += 4;
9448
9449 /* We also need to make an entry in the .rela.plt section. */
9450 s = htab->elf.srelplt;
9451 }
9452 s->size += sizeof (Elf64_External_Rela);
9453 doneone = TRUE;
9454 }
9455 else
9456 pent->plt.offset = (bfd_vma) -1;
9457 if (!doneone)
9458 {
9459 h->plt.plist = NULL;
9460 h->needs_plt = 0;
9461 }
9462 }
9463 else
9464 {
9465 h->plt.plist = NULL;
9466 h->needs_plt = 0;
9467 }
9468
9469 eh = (struct ppc_link_hash_entry *) h;
9470 /* Run through the TLS GD got entries first if we're changing them
9471 to TPREL. */
9472 if ((eh->tls_mask & TLS_TPRELGD) != 0)
9473 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9474 if (gent->got.refcount > 0
9475 && (gent->tls_type & TLS_GD) != 0)
9476 {
9477 /* This was a GD entry that has been converted to TPREL. If
9478 there happens to be a TPREL entry we can use that one. */
9479 struct got_entry *ent;
9480 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9481 if (ent->got.refcount > 0
9482 && (ent->tls_type & TLS_TPREL) != 0
9483 && ent->addend == gent->addend
9484 && ent->owner == gent->owner)
9485 {
9486 gent->got.refcount = 0;
9487 break;
9488 }
9489
9490 /* If not, then we'll be using our own TPREL entry. */
9491 if (gent->got.refcount != 0)
9492 gent->tls_type = TLS_TLS | TLS_TPREL;
9493 }
9494
9495 /* Remove any list entry that won't generate a word in the GOT before
9496 we call merge_got_entries. Otherwise we risk merging to empty
9497 entries. */
9498 pgent = &h->got.glist;
9499 while ((gent = *pgent) != NULL)
9500 if (gent->got.refcount > 0)
9501 {
9502 if ((gent->tls_type & TLS_LD) != 0
9503 && !h->def_dynamic)
9504 {
9505 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9506 *pgent = gent->next;
9507 }
9508 else
9509 pgent = &gent->next;
9510 }
9511 else
9512 *pgent = gent->next;
9513
9514 if (!htab->do_multi_toc)
9515 merge_got_entries (&h->got.glist);
9516
9517 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9518 if (!gent->is_indirect)
9519 {
9520 /* Make sure this symbol is output as a dynamic symbol.
9521 Undefined weak syms won't yet be marked as dynamic,
9522 nor will all TLS symbols. */
9523 if (h->dynindx == -1
9524 && !h->forced_local
9525 && h->type != STT_GNU_IFUNC
9526 && htab->elf.dynamic_sections_created)
9527 {
9528 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9529 return FALSE;
9530 }
9531
9532 if (!is_ppc64_elf (gent->owner))
9533 abort ();
9534
9535 allocate_got (h, info, gent);
9536 }
9537
9538 if (eh->dyn_relocs == NULL
9539 || (!htab->elf.dynamic_sections_created
9540 && h->type != STT_GNU_IFUNC))
9541 return TRUE;
9542
9543 /* In the shared -Bsymbolic case, discard space allocated for
9544 dynamic pc-relative relocs against symbols which turn out to be
9545 defined in regular objects. For the normal shared case, discard
9546 space for relocs that have become local due to symbol visibility
9547 changes. */
9548
9549 if (info->shared)
9550 {
9551 /* Relocs that use pc_count are those that appear on a call insn,
9552 or certain REL relocs (see must_be_dyn_reloc) that can be
9553 generated via assembly. We want calls to protected symbols to
9554 resolve directly to the function rather than going via the plt.
9555 If people want function pointer comparisons to work as expected
9556 then they should avoid writing weird assembly. */
9557 if (SYMBOL_CALLS_LOCAL (info, h))
9558 {
9559 struct elf_dyn_relocs **pp;
9560
9561 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9562 {
9563 p->count -= p->pc_count;
9564 p->pc_count = 0;
9565 if (p->count == 0)
9566 *pp = p->next;
9567 else
9568 pp = &p->next;
9569 }
9570 }
9571
9572 /* Also discard relocs on undefined weak syms with non-default
9573 visibility. */
9574 if (eh->dyn_relocs != NULL
9575 && h->root.type == bfd_link_hash_undefweak)
9576 {
9577 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9578 eh->dyn_relocs = NULL;
9579
9580 /* Make sure this symbol is output as a dynamic symbol.
9581 Undefined weak syms won't yet be marked as dynamic. */
9582 else if (h->dynindx == -1
9583 && !h->forced_local)
9584 {
9585 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9586 return FALSE;
9587 }
9588 }
9589 }
9590 else if (h->type == STT_GNU_IFUNC)
9591 {
9592 if (!h->non_got_ref)
9593 eh->dyn_relocs = NULL;
9594 }
9595 else if (ELIMINATE_COPY_RELOCS)
9596 {
9597 /* For the non-shared case, discard space for relocs against
9598 symbols which turn out to need copy relocs or are not
9599 dynamic. */
9600
9601 if (!h->non_got_ref
9602 && !h->def_regular)
9603 {
9604 /* Make sure this symbol is output as a dynamic symbol.
9605 Undefined weak syms won't yet be marked as dynamic. */
9606 if (h->dynindx == -1
9607 && !h->forced_local)
9608 {
9609 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9610 return FALSE;
9611 }
9612
9613 /* If that succeeded, we know we'll be keeping all the
9614 relocs. */
9615 if (h->dynindx != -1)
9616 goto keep;
9617 }
9618
9619 eh->dyn_relocs = NULL;
9620
9621 keep: ;
9622 }
9623
9624 /* Finally, allocate space. */
9625 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9626 {
9627 asection *sreloc = elf_section_data (p->sec)->sreloc;
9628 if (eh->elf.type == STT_GNU_IFUNC)
9629 sreloc = htab->elf.irelplt;
9630 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9631 }
9632
9633 return TRUE;
9634 }
9635
9636 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9637 to set up space for global entry stubs. These are put in glink,
9638 after the branch table. */
9639
9640 static bfd_boolean
9641 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9642 {
9643 struct bfd_link_info *info;
9644 struct ppc_link_hash_table *htab;
9645 struct plt_entry *pent;
9646 asection *s;
9647
9648 if (h->root.type == bfd_link_hash_indirect)
9649 return TRUE;
9650
9651 if (!h->pointer_equality_needed)
9652 return TRUE;
9653
9654 if (h->def_regular)
9655 return TRUE;
9656
9657 info = inf;
9658 htab = ppc_hash_table (info);
9659 if (htab == NULL)
9660 return FALSE;
9661
9662 s = htab->glink;
9663 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9664 if (pent->plt.offset != (bfd_vma) -1
9665 && pent->addend == 0)
9666 {
9667 /* For ELFv2, if this symbol is not defined in a regular file
9668 and we are not generating a shared library or pie, then we
9669 need to define the symbol in the executable on a call stub.
9670 This is to avoid text relocations. */
9671 s->size = (s->size + 15) & -16;
9672 h->root.u.def.section = s;
9673 h->root.u.def.value = s->size;
9674 s->size += 16;
9675 break;
9676 }
9677 return TRUE;
9678 }
9679
9680 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9681 read-only sections. */
9682
9683 static bfd_boolean
9684 maybe_set_textrel (struct elf_link_hash_entry *h, void *info)
9685 {
9686 if (h->root.type == bfd_link_hash_indirect)
9687 return TRUE;
9688
9689 if (readonly_dynrelocs (h))
9690 {
9691 ((struct bfd_link_info *) info)->flags |= DF_TEXTREL;
9692
9693 /* Not an error, just cut short the traversal. */
9694 return FALSE;
9695 }
9696 return TRUE;
9697 }
9698
9699 /* Set the sizes of the dynamic sections. */
9700
9701 static bfd_boolean
9702 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9703 struct bfd_link_info *info)
9704 {
9705 struct ppc_link_hash_table *htab;
9706 bfd *dynobj;
9707 asection *s;
9708 bfd_boolean relocs;
9709 bfd *ibfd;
9710 struct got_entry *first_tlsld;
9711
9712 htab = ppc_hash_table (info);
9713 if (htab == NULL)
9714 return FALSE;
9715
9716 dynobj = htab->elf.dynobj;
9717 if (dynobj == NULL)
9718 abort ();
9719
9720 if (htab->elf.dynamic_sections_created)
9721 {
9722 /* Set the contents of the .interp section to the interpreter. */
9723 if (info->executable)
9724 {
9725 s = bfd_get_linker_section (dynobj, ".interp");
9726 if (s == NULL)
9727 abort ();
9728 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9729 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9730 }
9731 }
9732
9733 /* Set up .got offsets for local syms, and space for local dynamic
9734 relocs. */
9735 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9736 {
9737 struct got_entry **lgot_ents;
9738 struct got_entry **end_lgot_ents;
9739 struct plt_entry **local_plt;
9740 struct plt_entry **end_local_plt;
9741 unsigned char *lgot_masks;
9742 bfd_size_type locsymcount;
9743 Elf_Internal_Shdr *symtab_hdr;
9744
9745 if (!is_ppc64_elf (ibfd))
9746 continue;
9747
9748 for (s = ibfd->sections; s != NULL; s = s->next)
9749 {
9750 struct ppc_dyn_relocs *p;
9751
9752 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9753 {
9754 if (!bfd_is_abs_section (p->sec)
9755 && bfd_is_abs_section (p->sec->output_section))
9756 {
9757 /* Input section has been discarded, either because
9758 it is a copy of a linkonce section or due to
9759 linker script /DISCARD/, so we'll be discarding
9760 the relocs too. */
9761 }
9762 else if (p->count != 0)
9763 {
9764 asection *srel = elf_section_data (p->sec)->sreloc;
9765 if (p->ifunc)
9766 srel = htab->elf.irelplt;
9767 srel->size += p->count * sizeof (Elf64_External_Rela);
9768 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9769 info->flags |= DF_TEXTREL;
9770 }
9771 }
9772 }
9773
9774 lgot_ents = elf_local_got_ents (ibfd);
9775 if (!lgot_ents)
9776 continue;
9777
9778 symtab_hdr = &elf_symtab_hdr (ibfd);
9779 locsymcount = symtab_hdr->sh_info;
9780 end_lgot_ents = lgot_ents + locsymcount;
9781 local_plt = (struct plt_entry **) end_lgot_ents;
9782 end_local_plt = local_plt + locsymcount;
9783 lgot_masks = (unsigned char *) end_local_plt;
9784 s = ppc64_elf_tdata (ibfd)->got;
9785 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9786 {
9787 struct got_entry **pent, *ent;
9788
9789 pent = lgot_ents;
9790 while ((ent = *pent) != NULL)
9791 if (ent->got.refcount > 0)
9792 {
9793 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9794 {
9795 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9796 *pent = ent->next;
9797 }
9798 else
9799 {
9800 unsigned int ent_size = 8;
9801 unsigned int rel_size = sizeof (Elf64_External_Rela);
9802
9803 ent->got.offset = s->size;
9804 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9805 {
9806 ent_size *= 2;
9807 rel_size *= 2;
9808 }
9809 s->size += ent_size;
9810 if ((*lgot_masks & PLT_IFUNC) != 0)
9811 {
9812 htab->elf.irelplt->size += rel_size;
9813 htab->got_reli_size += rel_size;
9814 }
9815 else if (info->shared)
9816 {
9817 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9818 srel->size += rel_size;
9819 }
9820 pent = &ent->next;
9821 }
9822 }
9823 else
9824 *pent = ent->next;
9825 }
9826
9827 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9828 for (; local_plt < end_local_plt; ++local_plt)
9829 {
9830 struct plt_entry *ent;
9831
9832 for (ent = *local_plt; ent != NULL; ent = ent->next)
9833 if (ent->plt.refcount > 0)
9834 {
9835 s = htab->elf.iplt;
9836 ent->plt.offset = s->size;
9837 s->size += PLT_ENTRY_SIZE (htab);
9838
9839 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9840 }
9841 else
9842 ent->plt.offset = (bfd_vma) -1;
9843 }
9844 }
9845
9846 /* Allocate global sym .plt and .got entries, and space for global
9847 sym dynamic relocs. */
9848 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9849 /* Stash the end of glink branch table. */
9850 if (htab->glink != NULL)
9851 htab->glink->rawsize = htab->glink->size;
9852
9853 if (!htab->opd_abi && !info->shared)
9854 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9855
9856 first_tlsld = NULL;
9857 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9858 {
9859 struct got_entry *ent;
9860
9861 if (!is_ppc64_elf (ibfd))
9862 continue;
9863
9864 ent = ppc64_tlsld_got (ibfd);
9865 if (ent->got.refcount > 0)
9866 {
9867 if (!htab->do_multi_toc && first_tlsld != NULL)
9868 {
9869 ent->is_indirect = TRUE;
9870 ent->got.ent = first_tlsld;
9871 }
9872 else
9873 {
9874 if (first_tlsld == NULL)
9875 first_tlsld = ent;
9876 s = ppc64_elf_tdata (ibfd)->got;
9877 ent->got.offset = s->size;
9878 ent->owner = ibfd;
9879 s->size += 16;
9880 if (info->shared)
9881 {
9882 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9883 srel->size += sizeof (Elf64_External_Rela);
9884 }
9885 }
9886 }
9887 else
9888 ent->got.offset = (bfd_vma) -1;
9889 }
9890
9891 /* We now have determined the sizes of the various dynamic sections.
9892 Allocate memory for them. */
9893 relocs = FALSE;
9894 for (s = dynobj->sections; s != NULL; s = s->next)
9895 {
9896 if ((s->flags & SEC_LINKER_CREATED) == 0)
9897 continue;
9898
9899 if (s == htab->brlt || s == htab->relbrlt)
9900 /* These haven't been allocated yet; don't strip. */
9901 continue;
9902 else if (s == htab->elf.sgot
9903 || s == htab->elf.splt
9904 || s == htab->elf.iplt
9905 || s == htab->glink
9906 || s == htab->dynbss)
9907 {
9908 /* Strip this section if we don't need it; see the
9909 comment below. */
9910 }
9911 else if (s == htab->glink_eh_frame)
9912 {
9913 if (!bfd_is_abs_section (s->output_section))
9914 /* Not sized yet. */
9915 continue;
9916 }
9917 else if (CONST_STRNEQ (s->name, ".rela"))
9918 {
9919 if (s->size != 0)
9920 {
9921 if (s != htab->elf.srelplt)
9922 relocs = TRUE;
9923
9924 /* We use the reloc_count field as a counter if we need
9925 to copy relocs into the output file. */
9926 s->reloc_count = 0;
9927 }
9928 }
9929 else
9930 {
9931 /* It's not one of our sections, so don't allocate space. */
9932 continue;
9933 }
9934
9935 if (s->size == 0)
9936 {
9937 /* If we don't need this section, strip it from the
9938 output file. This is mostly to handle .rela.bss and
9939 .rela.plt. We must create both sections in
9940 create_dynamic_sections, because they must be created
9941 before the linker maps input sections to output
9942 sections. The linker does that before
9943 adjust_dynamic_symbol is called, and it is that
9944 function which decides whether anything needs to go
9945 into these sections. */
9946 s->flags |= SEC_EXCLUDE;
9947 continue;
9948 }
9949
9950 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9951 continue;
9952
9953 /* Allocate memory for the section contents. We use bfd_zalloc
9954 here in case unused entries are not reclaimed before the
9955 section's contents are written out. This should not happen,
9956 but this way if it does we get a R_PPC64_NONE reloc in .rela
9957 sections instead of garbage.
9958 We also rely on the section contents being zero when writing
9959 the GOT. */
9960 s->contents = bfd_zalloc (dynobj, s->size);
9961 if (s->contents == NULL)
9962 return FALSE;
9963 }
9964
9965 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9966 {
9967 if (!is_ppc64_elf (ibfd))
9968 continue;
9969
9970 s = ppc64_elf_tdata (ibfd)->got;
9971 if (s != NULL && s != htab->elf.sgot)
9972 {
9973 if (s->size == 0)
9974 s->flags |= SEC_EXCLUDE;
9975 else
9976 {
9977 s->contents = bfd_zalloc (ibfd, s->size);
9978 if (s->contents == NULL)
9979 return FALSE;
9980 }
9981 }
9982 s = ppc64_elf_tdata (ibfd)->relgot;
9983 if (s != NULL)
9984 {
9985 if (s->size == 0)
9986 s->flags |= SEC_EXCLUDE;
9987 else
9988 {
9989 s->contents = bfd_zalloc (ibfd, s->size);
9990 if (s->contents == NULL)
9991 return FALSE;
9992 relocs = TRUE;
9993 s->reloc_count = 0;
9994 }
9995 }
9996 }
9997
9998 if (htab->elf.dynamic_sections_created)
9999 {
10000 bfd_boolean tls_opt;
10001
10002 /* Add some entries to the .dynamic section. We fill in the
10003 values later, in ppc64_elf_finish_dynamic_sections, but we
10004 must add the entries now so that we get the correct size for
10005 the .dynamic section. The DT_DEBUG entry is filled in by the
10006 dynamic linker and used by the debugger. */
10007 #define add_dynamic_entry(TAG, VAL) \
10008 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10009
10010 if (info->executable)
10011 {
10012 if (!add_dynamic_entry (DT_DEBUG, 0))
10013 return FALSE;
10014 }
10015
10016 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
10017 {
10018 if (!add_dynamic_entry (DT_PLTGOT, 0)
10019 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10020 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
10021 || !add_dynamic_entry (DT_JMPREL, 0)
10022 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10023 return FALSE;
10024 }
10025
10026 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10027 {
10028 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10029 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10030 return FALSE;
10031 }
10032
10033 tls_opt = (!htab->params->no_tls_get_addr_opt
10034 && htab->tls_get_addr_fd != NULL
10035 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
10036 if (tls_opt || !htab->opd_abi)
10037 {
10038 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10039 return FALSE;
10040 }
10041
10042 if (relocs)
10043 {
10044 if (!add_dynamic_entry (DT_RELA, 0)
10045 || !add_dynamic_entry (DT_RELASZ, 0)
10046 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10047 return FALSE;
10048
10049 /* If any dynamic relocs apply to a read-only section,
10050 then we need a DT_TEXTREL entry. */
10051 if ((info->flags & DF_TEXTREL) == 0)
10052 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
10053
10054 if ((info->flags & DF_TEXTREL) != 0)
10055 {
10056 if (!add_dynamic_entry (DT_TEXTREL, 0))
10057 return FALSE;
10058 }
10059 }
10060 }
10061 #undef add_dynamic_entry
10062
10063 return TRUE;
10064 }
10065
10066 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10067
10068 static bfd_boolean
10069 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10070 {
10071 if (h->plt.plist != NULL
10072 && !h->def_regular
10073 && !h->pointer_equality_needed)
10074 return FALSE;
10075
10076 return _bfd_elf_hash_symbol (h);
10077 }
10078
10079 /* Determine the type of stub needed, if any, for a call. */
10080
10081 static inline enum ppc_stub_type
10082 ppc_type_of_stub (asection *input_sec,
10083 const Elf_Internal_Rela *rel,
10084 struct ppc_link_hash_entry **hash,
10085 struct plt_entry **plt_ent,
10086 bfd_vma destination,
10087 unsigned long local_off)
10088 {
10089 struct ppc_link_hash_entry *h = *hash;
10090 bfd_vma location;
10091 bfd_vma branch_offset;
10092 bfd_vma max_branch_offset;
10093 enum elf_ppc64_reloc_type r_type;
10094
10095 if (h != NULL)
10096 {
10097 struct plt_entry *ent;
10098 struct ppc_link_hash_entry *fdh = h;
10099 if (h->oh != NULL
10100 && h->oh->is_func_descriptor)
10101 {
10102 fdh = ppc_follow_link (h->oh);
10103 *hash = fdh;
10104 }
10105
10106 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10107 if (ent->addend == rel->r_addend
10108 && ent->plt.offset != (bfd_vma) -1)
10109 {
10110 *plt_ent = ent;
10111 return ppc_stub_plt_call;
10112 }
10113
10114 /* Here, we know we don't have a plt entry. If we don't have a
10115 either a defined function descriptor or a defined entry symbol
10116 in a regular object file, then it is pointless trying to make
10117 any other type of stub. */
10118 if (!is_static_defined (&fdh->elf)
10119 && !is_static_defined (&h->elf))
10120 return ppc_stub_none;
10121 }
10122 else if (elf_local_got_ents (input_sec->owner) != NULL)
10123 {
10124 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10125 struct plt_entry **local_plt = (struct plt_entry **)
10126 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10127 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10128
10129 if (local_plt[r_symndx] != NULL)
10130 {
10131 struct plt_entry *ent;
10132
10133 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10134 if (ent->addend == rel->r_addend
10135 && ent->plt.offset != (bfd_vma) -1)
10136 {
10137 *plt_ent = ent;
10138 return ppc_stub_plt_call;
10139 }
10140 }
10141 }
10142
10143 /* Determine where the call point is. */
10144 location = (input_sec->output_offset
10145 + input_sec->output_section->vma
10146 + rel->r_offset);
10147
10148 branch_offset = destination - location;
10149 r_type = ELF64_R_TYPE (rel->r_info);
10150
10151 /* Determine if a long branch stub is needed. */
10152 max_branch_offset = 1 << 25;
10153 if (r_type != R_PPC64_REL24)
10154 max_branch_offset = 1 << 15;
10155
10156 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10157 /* We need a stub. Figure out whether a long_branch or plt_branch
10158 is needed later. */
10159 return ppc_stub_long_branch;
10160
10161 return ppc_stub_none;
10162 }
10163
10164 /* With power7 weakly ordered memory model, it is possible for ld.so
10165 to update a plt entry in one thread and have another thread see a
10166 stale zero toc entry. To avoid this we need some sort of acquire
10167 barrier in the call stub. One solution is to make the load of the
10168 toc word seem to appear to depend on the load of the function entry
10169 word. Another solution is to test for r2 being zero, and branch to
10170 the appropriate glink entry if so.
10171
10172 . fake dep barrier compare
10173 . ld 12,xxx(2) ld 12,xxx(2)
10174 . mtctr 12 mtctr 12
10175 . xor 11,12,12 ld 2,xxx+8(2)
10176 . add 2,2,11 cmpldi 2,0
10177 . ld 2,xxx+8(2) bnectr+
10178 . bctr b <glink_entry>
10179
10180 The solution involving the compare turns out to be faster, so
10181 that's what we use unless the branch won't reach. */
10182
10183 #define ALWAYS_USE_FAKE_DEP 0
10184 #define ALWAYS_EMIT_R2SAVE 0
10185
10186 #define PPC_LO(v) ((v) & 0xffff)
10187 #define PPC_HI(v) (((v) >> 16) & 0xffff)
10188 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
10189
10190 static inline unsigned int
10191 plt_stub_size (struct ppc_link_hash_table *htab,
10192 struct ppc_stub_hash_entry *stub_entry,
10193 bfd_vma off)
10194 {
10195 unsigned size = 12;
10196
10197 if (ALWAYS_EMIT_R2SAVE
10198 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10199 size += 4;
10200 if (PPC_HA (off) != 0)
10201 size += 4;
10202 if (htab->opd_abi)
10203 {
10204 size += 4;
10205 if (htab->params->plt_static_chain)
10206 size += 4;
10207 if (htab->params->plt_thread_safe)
10208 size += 8;
10209 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10210 size += 4;
10211 }
10212 if (stub_entry->h != NULL
10213 && (stub_entry->h == htab->tls_get_addr_fd
10214 || stub_entry->h == htab->tls_get_addr)
10215 && !htab->params->no_tls_get_addr_opt)
10216 size += 13 * 4;
10217 return size;
10218 }
10219
10220 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
10221 then return the padding needed to do so. */
10222 static inline unsigned int
10223 plt_stub_pad (struct ppc_link_hash_table *htab,
10224 struct ppc_stub_hash_entry *stub_entry,
10225 bfd_vma plt_off)
10226 {
10227 int stub_align = 1 << htab->params->plt_stub_align;
10228 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
10229 bfd_vma stub_off = stub_entry->stub_sec->size;
10230
10231 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10232 > ((stub_size - 1) & -stub_align))
10233 return stub_align - (stub_off & (stub_align - 1));
10234 return 0;
10235 }
10236
10237 /* Build a .plt call stub. */
10238
10239 static inline bfd_byte *
10240 build_plt_stub (struct ppc_link_hash_table *htab,
10241 struct ppc_stub_hash_entry *stub_entry,
10242 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10243 {
10244 bfd *obfd = htab->params->stub_bfd;
10245 bfd_boolean plt_load_toc = htab->opd_abi;
10246 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10247 bfd_boolean plt_thread_safe = htab->params->plt_thread_safe;
10248 bfd_boolean use_fake_dep = plt_thread_safe;
10249 bfd_vma cmp_branch_off = 0;
10250
10251 if (!ALWAYS_USE_FAKE_DEP
10252 && plt_load_toc
10253 && plt_thread_safe
10254 && !(stub_entry->h != NULL
10255 && (stub_entry->h == htab->tls_get_addr_fd
10256 || stub_entry->h == htab->tls_get_addr)
10257 && !htab->params->no_tls_get_addr_opt))
10258 {
10259 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10260 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10261 / PLT_ENTRY_SIZE (htab));
10262 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
10263 bfd_vma to, from;
10264
10265 if (pltindex > 32768)
10266 glinkoff += (pltindex - 32768) * 4;
10267 to = (glinkoff
10268 + htab->glink->output_offset
10269 + htab->glink->output_section->vma);
10270 from = (p - stub_entry->stub_sec->contents
10271 + 4 * (ALWAYS_EMIT_R2SAVE
10272 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10273 + 4 * (PPC_HA (offset) != 0)
10274 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10275 != PPC_HA (offset))
10276 + 4 * (plt_static_chain != 0)
10277 + 20
10278 + stub_entry->stub_sec->output_offset
10279 + stub_entry->stub_sec->output_section->vma);
10280 cmp_branch_off = to - from;
10281 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10282 }
10283
10284 if (PPC_HA (offset) != 0)
10285 {
10286 if (r != NULL)
10287 {
10288 if (ALWAYS_EMIT_R2SAVE
10289 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10290 r[0].r_offset += 4;
10291 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10292 r[1].r_offset = r[0].r_offset + 4;
10293 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10294 r[1].r_addend = r[0].r_addend;
10295 if (plt_load_toc)
10296 {
10297 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10298 {
10299 r[2].r_offset = r[1].r_offset + 4;
10300 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10301 r[2].r_addend = r[0].r_addend;
10302 }
10303 else
10304 {
10305 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10306 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10307 r[2].r_addend = r[0].r_addend + 8;
10308 if (plt_static_chain)
10309 {
10310 r[3].r_offset = r[2].r_offset + 4;
10311 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10312 r[3].r_addend = r[0].r_addend + 16;
10313 }
10314 }
10315 }
10316 }
10317 if (ALWAYS_EMIT_R2SAVE
10318 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10319 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10320 if (plt_load_toc)
10321 {
10322 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10323 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10324 }
10325 else
10326 {
10327 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
10328 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
10329 }
10330 if (plt_load_toc
10331 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10332 {
10333 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10334 offset = 0;
10335 }
10336 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10337 if (plt_load_toc)
10338 {
10339 if (use_fake_dep)
10340 {
10341 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10342 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10343 }
10344 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10345 if (plt_static_chain)
10346 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10347 }
10348 }
10349 else
10350 {
10351 if (r != NULL)
10352 {
10353 if (ALWAYS_EMIT_R2SAVE
10354 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10355 r[0].r_offset += 4;
10356 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10357 if (plt_load_toc)
10358 {
10359 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10360 {
10361 r[1].r_offset = r[0].r_offset + 4;
10362 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10363 r[1].r_addend = r[0].r_addend;
10364 }
10365 else
10366 {
10367 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10368 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10369 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10370 if (plt_static_chain)
10371 {
10372 r[2].r_offset = r[1].r_offset + 4;
10373 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10374 r[2].r_addend = r[0].r_addend + 8;
10375 }
10376 }
10377 }
10378 }
10379 if (ALWAYS_EMIT_R2SAVE
10380 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10381 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10382 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10383 if (plt_load_toc
10384 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10385 {
10386 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10387 offset = 0;
10388 }
10389 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10390 if (plt_load_toc)
10391 {
10392 if (use_fake_dep)
10393 {
10394 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10395 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10396 }
10397 if (plt_static_chain)
10398 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10399 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10400 }
10401 }
10402 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10403 {
10404 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10405 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10406 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10407 }
10408 else
10409 bfd_put_32 (obfd, BCTR, p), p += 4;
10410 return p;
10411 }
10412
10413 /* Build a special .plt call stub for __tls_get_addr. */
10414
10415 #define LD_R11_0R3 0xe9630000
10416 #define LD_R12_0R3 0xe9830000
10417 #define MR_R0_R3 0x7c601b78
10418 #define CMPDI_R11_0 0x2c2b0000
10419 #define ADD_R3_R12_R13 0x7c6c6a14
10420 #define BEQLR 0x4d820020
10421 #define MR_R3_R0 0x7c030378
10422 #define STD_R11_0R1 0xf9610000
10423 #define BCTRL 0x4e800421
10424 #define LD_R11_0R1 0xe9610000
10425 #define MTLR_R11 0x7d6803a6
10426
10427 static inline bfd_byte *
10428 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10429 struct ppc_stub_hash_entry *stub_entry,
10430 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10431 {
10432 bfd *obfd = htab->params->stub_bfd;
10433
10434 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10435 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10436 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10437 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10438 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10439 bfd_put_32 (obfd, BEQLR, p), p += 4;
10440 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10441 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10442 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10443
10444 if (r != NULL)
10445 r[0].r_offset += 9 * 4;
10446 p = build_plt_stub (htab, stub_entry, p, offset, r);
10447 bfd_put_32 (obfd, BCTRL, p - 4);
10448
10449 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10450 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10451 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10452 bfd_put_32 (obfd, BLR, p), p += 4;
10453
10454 return p;
10455 }
10456
10457 static Elf_Internal_Rela *
10458 get_relocs (asection *sec, int count)
10459 {
10460 Elf_Internal_Rela *relocs;
10461 struct bfd_elf_section_data *elfsec_data;
10462
10463 elfsec_data = elf_section_data (sec);
10464 relocs = elfsec_data->relocs;
10465 if (relocs == NULL)
10466 {
10467 bfd_size_type relsize;
10468 relsize = sec->reloc_count * sizeof (*relocs);
10469 relocs = bfd_alloc (sec->owner, relsize);
10470 if (relocs == NULL)
10471 return NULL;
10472 elfsec_data->relocs = relocs;
10473 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10474 sizeof (Elf_Internal_Shdr));
10475 if (elfsec_data->rela.hdr == NULL)
10476 return NULL;
10477 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10478 * sizeof (Elf64_External_Rela));
10479 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10480 sec->reloc_count = 0;
10481 }
10482 relocs += sec->reloc_count;
10483 sec->reloc_count += count;
10484 return relocs;
10485 }
10486
10487 static bfd_vma
10488 get_r2off (struct bfd_link_info *info,
10489 struct ppc_stub_hash_entry *stub_entry)
10490 {
10491 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10492 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
10493
10494 if (r2off == 0)
10495 {
10496 /* Support linking -R objects. Get the toc pointer from the
10497 opd entry. */
10498 char buf[8];
10499 if (!htab->opd_abi)
10500 return r2off;
10501 asection *opd = stub_entry->h->elf.root.u.def.section;
10502 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
10503
10504 if (strcmp (opd->name, ".opd") != 0
10505 || opd->reloc_count != 0)
10506 {
10507 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
10508 stub_entry->h->elf.root.root.string);
10509 bfd_set_error (bfd_error_bad_value);
10510 return 0;
10511 }
10512 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
10513 return 0;
10514 r2off = bfd_get_64 (opd->owner, buf);
10515 r2off -= elf_gp (info->output_bfd);
10516 }
10517 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
10518 return r2off;
10519 }
10520
10521 static bfd_boolean
10522 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10523 {
10524 struct ppc_stub_hash_entry *stub_entry;
10525 struct ppc_branch_hash_entry *br_entry;
10526 struct bfd_link_info *info;
10527 struct ppc_link_hash_table *htab;
10528 bfd_byte *loc;
10529 bfd_byte *p;
10530 bfd_vma dest, off;
10531 int size;
10532 Elf_Internal_Rela *r;
10533 asection *plt;
10534
10535 /* Massage our args to the form they really have. */
10536 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10537 info = in_arg;
10538
10539 htab = ppc_hash_table (info);
10540 if (htab == NULL)
10541 return FALSE;
10542
10543 /* Make a note of the offset within the stubs for this entry. */
10544 stub_entry->stub_offset = stub_entry->stub_sec->size;
10545 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
10546
10547 htab->stub_count[stub_entry->stub_type - 1] += 1;
10548 switch (stub_entry->stub_type)
10549 {
10550 case ppc_stub_long_branch:
10551 case ppc_stub_long_branch_r2off:
10552 /* Branches are relative. This is where we are going to. */
10553 dest = (stub_entry->target_value
10554 + stub_entry->target_section->output_offset
10555 + stub_entry->target_section->output_section->vma);
10556 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10557 off = dest;
10558
10559 /* And this is where we are coming from. */
10560 off -= (stub_entry->stub_offset
10561 + stub_entry->stub_sec->output_offset
10562 + stub_entry->stub_sec->output_section->vma);
10563
10564 size = 4;
10565 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10566 {
10567 bfd_vma r2off = get_r2off (info, stub_entry);
10568
10569 if (r2off == 0)
10570 {
10571 htab->stub_error = TRUE;
10572 return FALSE;
10573 }
10574 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10575 loc += 4;
10576 size = 12;
10577 if (PPC_HA (r2off) != 0)
10578 {
10579 size = 16;
10580 bfd_put_32 (htab->params->stub_bfd,
10581 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10582 loc += 4;
10583 }
10584 bfd_put_32 (htab->params->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10585 loc += 4;
10586 off -= size - 4;
10587 }
10588 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
10589
10590 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10591 {
10592 info->callbacks->einfo
10593 (_("%P: long branch stub `%s' offset overflow\n"),
10594 stub_entry->root.string);
10595 htab->stub_error = TRUE;
10596 return FALSE;
10597 }
10598
10599 if (info->emitrelocations)
10600 {
10601 r = get_relocs (stub_entry->stub_sec, 1);
10602 if (r == NULL)
10603 return FALSE;
10604 r->r_offset = loc - stub_entry->stub_sec->contents;
10605 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
10606 r->r_addend = dest;
10607 if (stub_entry->h != NULL)
10608 {
10609 struct elf_link_hash_entry **hashes;
10610 unsigned long symndx;
10611 struct ppc_link_hash_entry *h;
10612
10613 hashes = elf_sym_hashes (htab->params->stub_bfd);
10614 if (hashes == NULL)
10615 {
10616 bfd_size_type hsize;
10617
10618 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10619 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
10620 if (hashes == NULL)
10621 return FALSE;
10622 elf_sym_hashes (htab->params->stub_bfd) = hashes;
10623 htab->stub_globals = 1;
10624 }
10625 symndx = htab->stub_globals++;
10626 h = stub_entry->h;
10627 hashes[symndx] = &h->elf;
10628 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
10629 if (h->oh != NULL && h->oh->is_func)
10630 h = ppc_follow_link (h->oh);
10631 if (h->elf.root.u.def.section != stub_entry->target_section)
10632 /* H is an opd symbol. The addend must be zero. */
10633 r->r_addend = 0;
10634 else
10635 {
10636 off = (h->elf.root.u.def.value
10637 + h->elf.root.u.def.section->output_offset
10638 + h->elf.root.u.def.section->output_section->vma);
10639 r->r_addend -= off;
10640 }
10641 }
10642 }
10643 break;
10644
10645 case ppc_stub_plt_branch:
10646 case ppc_stub_plt_branch_r2off:
10647 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10648 stub_entry->root.string + 9,
10649 FALSE, FALSE);
10650 if (br_entry == NULL)
10651 {
10652 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10653 stub_entry->root.string);
10654 htab->stub_error = TRUE;
10655 return FALSE;
10656 }
10657
10658 dest = (stub_entry->target_value
10659 + stub_entry->target_section->output_offset
10660 + stub_entry->target_section->output_section->vma);
10661 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10662 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10663
10664 bfd_put_64 (htab->brlt->owner, dest,
10665 htab->brlt->contents + br_entry->offset);
10666
10667 if (br_entry->iter == htab->stub_iteration)
10668 {
10669 br_entry->iter = 0;
10670
10671 if (htab->relbrlt != NULL)
10672 {
10673 /* Create a reloc for the branch lookup table entry. */
10674 Elf_Internal_Rela rela;
10675 bfd_byte *rl;
10676
10677 rela.r_offset = (br_entry->offset
10678 + htab->brlt->output_offset
10679 + htab->brlt->output_section->vma);
10680 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10681 rela.r_addend = dest;
10682
10683 rl = htab->relbrlt->contents;
10684 rl += (htab->relbrlt->reloc_count++
10685 * sizeof (Elf64_External_Rela));
10686 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10687 }
10688 else if (info->emitrelocations)
10689 {
10690 r = get_relocs (htab->brlt, 1);
10691 if (r == NULL)
10692 return FALSE;
10693 /* brlt, being SEC_LINKER_CREATED does not go through the
10694 normal reloc processing. Symbols and offsets are not
10695 translated from input file to output file form, so
10696 set up the offset per the output file. */
10697 r->r_offset = (br_entry->offset
10698 + htab->brlt->output_offset
10699 + htab->brlt->output_section->vma);
10700 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10701 r->r_addend = dest;
10702 }
10703 }
10704
10705 dest = (br_entry->offset
10706 + htab->brlt->output_offset
10707 + htab->brlt->output_section->vma);
10708
10709 off = (dest
10710 - elf_gp (htab->brlt->output_section->owner)
10711 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10712
10713 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10714 {
10715 info->callbacks->einfo
10716 (_("%P: linkage table error against `%T'\n"),
10717 stub_entry->root.string);
10718 bfd_set_error (bfd_error_bad_value);
10719 htab->stub_error = TRUE;
10720 return FALSE;
10721 }
10722
10723 if (info->emitrelocations)
10724 {
10725 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10726 if (r == NULL)
10727 return FALSE;
10728 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10729 if (bfd_big_endian (info->output_bfd))
10730 r[0].r_offset += 2;
10731 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10732 r[0].r_offset += 4;
10733 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10734 r[0].r_addend = dest;
10735 if (PPC_HA (off) != 0)
10736 {
10737 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10738 r[1].r_offset = r[0].r_offset + 4;
10739 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10740 r[1].r_addend = r[0].r_addend;
10741 }
10742 }
10743
10744 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10745 {
10746 if (PPC_HA (off) != 0)
10747 {
10748 size = 16;
10749 bfd_put_32 (htab->params->stub_bfd,
10750 ADDIS_R12_R2 | PPC_HA (off), loc);
10751 loc += 4;
10752 bfd_put_32 (htab->params->stub_bfd,
10753 LD_R12_0R12 | PPC_LO (off), loc);
10754 }
10755 else
10756 {
10757 size = 12;
10758 bfd_put_32 (htab->params->stub_bfd,
10759 LD_R12_0R2 | PPC_LO (off), loc);
10760 }
10761 }
10762 else
10763 {
10764 bfd_vma r2off = get_r2off (info, stub_entry);
10765
10766 if (r2off == 0 && htab->opd_abi)
10767 {
10768 htab->stub_error = TRUE;
10769 return FALSE;
10770 }
10771
10772 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10773 loc += 4;
10774 size = 16;
10775 if (PPC_HA (off) != 0)
10776 {
10777 size += 4;
10778 bfd_put_32 (htab->params->stub_bfd,
10779 ADDIS_R12_R2 | PPC_HA (off), loc);
10780 loc += 4;
10781 bfd_put_32 (htab->params->stub_bfd,
10782 LD_R12_0R12 | PPC_LO (off), loc);
10783 }
10784 else
10785 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), loc);
10786
10787 if (PPC_HA (r2off) != 0)
10788 {
10789 size += 4;
10790 loc += 4;
10791 bfd_put_32 (htab->params->stub_bfd,
10792 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10793 }
10794 if (PPC_LO (r2off) != 0)
10795 {
10796 size += 4;
10797 loc += 4;
10798 bfd_put_32 (htab->params->stub_bfd,
10799 ADDI_R2_R2 | PPC_LO (r2off), loc);
10800 }
10801 }
10802 loc += 4;
10803 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, loc);
10804 loc += 4;
10805 bfd_put_32 (htab->params->stub_bfd, BCTR, loc);
10806 break;
10807
10808 case ppc_stub_plt_call:
10809 case ppc_stub_plt_call_r2save:
10810 if (stub_entry->h != NULL
10811 && stub_entry->h->is_func_descriptor
10812 && stub_entry->h->oh != NULL)
10813 {
10814 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10815
10816 /* If the old-ABI "dot-symbol" is undefined make it weak so
10817 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10818 FIXME: We used to define the symbol on one of the call
10819 stubs instead, which is why we test symbol section id
10820 against htab->top_id in various places. Likely all
10821 these checks could now disappear. */
10822 if (fh->elf.root.type == bfd_link_hash_undefined)
10823 fh->elf.root.type = bfd_link_hash_undefweak;
10824 /* Stop undo_symbol_twiddle changing it back to undefined. */
10825 fh->was_undefined = 0;
10826 }
10827
10828 /* Now build the stub. */
10829 dest = stub_entry->plt_ent->plt.offset & ~1;
10830 if (dest >= (bfd_vma) -2)
10831 abort ();
10832
10833 plt = htab->elf.splt;
10834 if (!htab->elf.dynamic_sections_created
10835 || stub_entry->h == NULL
10836 || stub_entry->h->elf.dynindx == -1)
10837 plt = htab->elf.iplt;
10838
10839 dest += plt->output_offset + plt->output_section->vma;
10840
10841 if (stub_entry->h == NULL
10842 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10843 {
10844 Elf_Internal_Rela rela;
10845 bfd_byte *rl;
10846
10847 rela.r_offset = dest;
10848 if (htab->opd_abi)
10849 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10850 else
10851 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
10852 rela.r_addend = (stub_entry->target_value
10853 + stub_entry->target_section->output_offset
10854 + stub_entry->target_section->output_section->vma);
10855
10856 rl = (htab->elf.irelplt->contents
10857 + (htab->elf.irelplt->reloc_count++
10858 * sizeof (Elf64_External_Rela)));
10859 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10860 stub_entry->plt_ent->plt.offset |= 1;
10861 }
10862
10863 off = (dest
10864 - elf_gp (plt->output_section->owner)
10865 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10866
10867 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10868 {
10869 info->callbacks->einfo
10870 (_("%P: linkage table error against `%T'\n"),
10871 stub_entry->h != NULL
10872 ? stub_entry->h->elf.root.root.string
10873 : "<local sym>");
10874 bfd_set_error (bfd_error_bad_value);
10875 htab->stub_error = TRUE;
10876 return FALSE;
10877 }
10878
10879 if (htab->params->plt_stub_align != 0)
10880 {
10881 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10882
10883 stub_entry->stub_sec->size += pad;
10884 stub_entry->stub_offset = stub_entry->stub_sec->size;
10885 loc += pad;
10886 }
10887
10888 r = NULL;
10889 if (info->emitrelocations)
10890 {
10891 r = get_relocs (stub_entry->stub_sec,
10892 ((PPC_HA (off) != 0)
10893 + (htab->opd_abi
10894 ? 2 + (htab->params->plt_static_chain
10895 && PPC_HA (off + 16) == PPC_HA (off))
10896 : 1)));
10897 if (r == NULL)
10898 return FALSE;
10899 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10900 if (bfd_big_endian (info->output_bfd))
10901 r[0].r_offset += 2;
10902 r[0].r_addend = dest;
10903 }
10904 if (stub_entry->h != NULL
10905 && (stub_entry->h == htab->tls_get_addr_fd
10906 || stub_entry->h == htab->tls_get_addr)
10907 && !htab->params->no_tls_get_addr_opt)
10908 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10909 else
10910 p = build_plt_stub (htab, stub_entry, loc, off, r);
10911 size = p - loc;
10912 break;
10913
10914 default:
10915 BFD_FAIL ();
10916 return FALSE;
10917 }
10918
10919 stub_entry->stub_sec->size += size;
10920
10921 if (htab->params->emit_stub_syms)
10922 {
10923 struct elf_link_hash_entry *h;
10924 size_t len1, len2;
10925 char *name;
10926 const char *const stub_str[] = { "long_branch",
10927 "long_branch_r2off",
10928 "plt_branch",
10929 "plt_branch_r2off",
10930 "plt_call",
10931 "plt_call" };
10932
10933 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10934 len2 = strlen (stub_entry->root.string);
10935 name = bfd_malloc (len1 + len2 + 2);
10936 if (name == NULL)
10937 return FALSE;
10938 memcpy (name, stub_entry->root.string, 9);
10939 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10940 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10941 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10942 if (h == NULL)
10943 return FALSE;
10944 if (h->root.type == bfd_link_hash_new)
10945 {
10946 h->root.type = bfd_link_hash_defined;
10947 h->root.u.def.section = stub_entry->stub_sec;
10948 h->root.u.def.value = stub_entry->stub_offset;
10949 h->ref_regular = 1;
10950 h->def_regular = 1;
10951 h->ref_regular_nonweak = 1;
10952 h->forced_local = 1;
10953 h->non_elf = 0;
10954 }
10955 }
10956
10957 return TRUE;
10958 }
10959
10960 /* As above, but don't actually build the stub. Just bump offset so
10961 we know stub section sizes, and select plt_branch stubs where
10962 long_branch stubs won't do. */
10963
10964 static bfd_boolean
10965 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10966 {
10967 struct ppc_stub_hash_entry *stub_entry;
10968 struct bfd_link_info *info;
10969 struct ppc_link_hash_table *htab;
10970 bfd_vma off;
10971 int size;
10972
10973 /* Massage our args to the form they really have. */
10974 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10975 info = in_arg;
10976
10977 htab = ppc_hash_table (info);
10978 if (htab == NULL)
10979 return FALSE;
10980
10981 if (stub_entry->stub_type == ppc_stub_plt_call
10982 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10983 {
10984 asection *plt;
10985 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10986 if (off >= (bfd_vma) -2)
10987 abort ();
10988 plt = htab->elf.splt;
10989 if (!htab->elf.dynamic_sections_created
10990 || stub_entry->h == NULL
10991 || stub_entry->h->elf.dynindx == -1)
10992 plt = htab->elf.iplt;
10993 off += (plt->output_offset
10994 + plt->output_section->vma
10995 - elf_gp (plt->output_section->owner)
10996 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10997
10998 size = plt_stub_size (htab, stub_entry, off);
10999 if (htab->params->plt_stub_align)
11000 size += plt_stub_pad (htab, stub_entry, off);
11001 if (info->emitrelocations)
11002 {
11003 stub_entry->stub_sec->reloc_count
11004 += ((PPC_HA (off) != 0)
11005 + (htab->opd_abi
11006 ? 2 + (htab->params->plt_static_chain
11007 && PPC_HA (off + 16) == PPC_HA (off))
11008 : 1));
11009 stub_entry->stub_sec->flags |= SEC_RELOC;
11010 }
11011 }
11012 else
11013 {
11014 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
11015 variants. */
11016 bfd_vma r2off = 0;
11017 bfd_vma local_off = 0;
11018
11019 off = (stub_entry->target_value
11020 + stub_entry->target_section->output_offset
11021 + stub_entry->target_section->output_section->vma);
11022 off -= (stub_entry->stub_sec->size
11023 + stub_entry->stub_sec->output_offset
11024 + stub_entry->stub_sec->output_section->vma);
11025
11026 /* Reset the stub type from the plt variant in case we now
11027 can reach with a shorter stub. */
11028 if (stub_entry->stub_type >= ppc_stub_plt_branch)
11029 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11030
11031 size = 4;
11032 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11033 {
11034 r2off = get_r2off (info, stub_entry);
11035 if (r2off == 0 && htab->opd_abi)
11036 {
11037 htab->stub_error = TRUE;
11038 return FALSE;
11039 }
11040 size = 12;
11041 if (PPC_HA (r2off) != 0)
11042 size = 16;
11043 off -= size - 4;
11044 }
11045
11046 local_off = PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11047
11048 /* If the branch offset if too big, use a ppc_stub_plt_branch.
11049 Do the same for -R objects without function descriptors. */
11050 if (off + (1 << 25) >= (bfd_vma) (1 << 26) - local_off
11051 || (stub_entry->stub_type == ppc_stub_long_branch_r2off
11052 && r2off == 0))
11053 {
11054 struct ppc_branch_hash_entry *br_entry;
11055
11056 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11057 stub_entry->root.string + 9,
11058 TRUE, FALSE);
11059 if (br_entry == NULL)
11060 {
11061 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
11062 stub_entry->root.string);
11063 htab->stub_error = TRUE;
11064 return FALSE;
11065 }
11066
11067 if (br_entry->iter != htab->stub_iteration)
11068 {
11069 br_entry->iter = htab->stub_iteration;
11070 br_entry->offset = htab->brlt->size;
11071 htab->brlt->size += 8;
11072
11073 if (htab->relbrlt != NULL)
11074 htab->relbrlt->size += sizeof (Elf64_External_Rela);
11075 else if (info->emitrelocations)
11076 {
11077 htab->brlt->reloc_count += 1;
11078 htab->brlt->flags |= SEC_RELOC;
11079 }
11080 }
11081
11082 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
11083 off = (br_entry->offset
11084 + htab->brlt->output_offset
11085 + htab->brlt->output_section->vma
11086 - elf_gp (htab->brlt->output_section->owner)
11087 - htab->stub_group[stub_entry->id_sec->id].toc_off);
11088
11089 if (info->emitrelocations)
11090 {
11091 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
11092 stub_entry->stub_sec->flags |= SEC_RELOC;
11093 }
11094
11095 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11096 {
11097 size = 12;
11098 if (PPC_HA (off) != 0)
11099 size = 16;
11100 }
11101 else
11102 {
11103 size = 16;
11104 if (PPC_HA (off) != 0)
11105 size += 4;
11106
11107 if (PPC_HA (r2off) != 0)
11108 size += 4;
11109 if (PPC_LO (r2off) != 0)
11110 size += 4;
11111 }
11112 }
11113 else if (info->emitrelocations)
11114 {
11115 stub_entry->stub_sec->reloc_count += 1;
11116 stub_entry->stub_sec->flags |= SEC_RELOC;
11117 }
11118 }
11119
11120 stub_entry->stub_sec->size += size;
11121 return TRUE;
11122 }
11123
11124 /* Set up various things so that we can make a list of input sections
11125 for each output section included in the link. Returns -1 on error,
11126 0 when no stubs will be needed, and 1 on success. */
11127
11128 int
11129 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
11130 {
11131 bfd *input_bfd;
11132 int top_id, top_index, id;
11133 asection *section;
11134 asection **input_list;
11135 bfd_size_type amt;
11136 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11137
11138 if (htab == NULL)
11139 return -1;
11140
11141 /* Find the top input section id. */
11142 for (input_bfd = info->input_bfds, top_id = 3;
11143 input_bfd != NULL;
11144 input_bfd = input_bfd->link.next)
11145 {
11146 for (section = input_bfd->sections;
11147 section != NULL;
11148 section = section->next)
11149 {
11150 if (top_id < section->id)
11151 top_id = section->id;
11152 }
11153 }
11154
11155 htab->top_id = top_id;
11156 amt = sizeof (struct map_stub) * (top_id + 1);
11157 htab->stub_group = bfd_zmalloc (amt);
11158 if (htab->stub_group == NULL)
11159 return -1;
11160
11161 /* Set toc_off for com, und, abs and ind sections. */
11162 for (id = 0; id < 3; id++)
11163 htab->stub_group[id].toc_off = TOC_BASE_OFF;
11164
11165 /* We can't use output_bfd->section_count here to find the top output
11166 section index as some sections may have been removed, and
11167 strip_excluded_output_sections doesn't renumber the indices. */
11168 for (section = info->output_bfd->sections, top_index = 0;
11169 section != NULL;
11170 section = section->next)
11171 {
11172 if (top_index < section->index)
11173 top_index = section->index;
11174 }
11175
11176 htab->top_index = top_index;
11177 amt = sizeof (asection *) * (top_index + 1);
11178 input_list = bfd_zmalloc (amt);
11179 htab->input_list = input_list;
11180 if (input_list == NULL)
11181 return -1;
11182
11183 return 1;
11184 }
11185
11186 /* Set up for first pass at multitoc partitioning. */
11187
11188 void
11189 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11190 {
11191 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11192
11193 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11194 htab->toc_bfd = NULL;
11195 htab->toc_first_sec = NULL;
11196 }
11197
11198 /* The linker repeatedly calls this function for each TOC input section
11199 and linker generated GOT section. Group input bfds such that the toc
11200 within a group is less than 64k in size. */
11201
11202 bfd_boolean
11203 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11204 {
11205 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11206 bfd_vma addr, off, limit;
11207
11208 if (htab == NULL)
11209 return FALSE;
11210
11211 if (!htab->second_toc_pass)
11212 {
11213 /* Keep track of the first .toc or .got section for this input bfd. */
11214 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11215
11216 if (new_bfd)
11217 {
11218 htab->toc_bfd = isec->owner;
11219 htab->toc_first_sec = isec;
11220 }
11221
11222 addr = isec->output_offset + isec->output_section->vma;
11223 off = addr - htab->toc_curr;
11224 limit = 0x80008000;
11225 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11226 limit = 0x10000;
11227 if (off + isec->size > limit)
11228 {
11229 addr = (htab->toc_first_sec->output_offset
11230 + htab->toc_first_sec->output_section->vma);
11231 htab->toc_curr = addr;
11232 }
11233
11234 /* toc_curr is the base address of this toc group. Set elf_gp
11235 for the input section to be the offset relative to the
11236 output toc base plus 0x8000. Making the input elf_gp an
11237 offset allows us to move the toc as a whole without
11238 recalculating input elf_gp. */
11239 off = htab->toc_curr - elf_gp (isec->output_section->owner);
11240 off += TOC_BASE_OFF;
11241
11242 /* Die if someone uses a linker script that doesn't keep input
11243 file .toc and .got together. */
11244 if (new_bfd
11245 && elf_gp (isec->owner) != 0
11246 && elf_gp (isec->owner) != off)
11247 return FALSE;
11248
11249 elf_gp (isec->owner) = off;
11250 return TRUE;
11251 }
11252
11253 /* During the second pass toc_first_sec points to the start of
11254 a toc group, and toc_curr is used to track the old elf_gp.
11255 We use toc_bfd to ensure we only look at each bfd once. */
11256 if (htab->toc_bfd == isec->owner)
11257 return TRUE;
11258 htab->toc_bfd = isec->owner;
11259
11260 if (htab->toc_first_sec == NULL
11261 || htab->toc_curr != elf_gp (isec->owner))
11262 {
11263 htab->toc_curr = elf_gp (isec->owner);
11264 htab->toc_first_sec = isec;
11265 }
11266 addr = (htab->toc_first_sec->output_offset
11267 + htab->toc_first_sec->output_section->vma);
11268 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
11269 elf_gp (isec->owner) = off;
11270
11271 return TRUE;
11272 }
11273
11274 /* Called via elf_link_hash_traverse to merge GOT entries for global
11275 symbol H. */
11276
11277 static bfd_boolean
11278 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
11279 {
11280 if (h->root.type == bfd_link_hash_indirect)
11281 return TRUE;
11282
11283 merge_got_entries (&h->got.glist);
11284
11285 return TRUE;
11286 }
11287
11288 /* Called via elf_link_hash_traverse to allocate GOT entries for global
11289 symbol H. */
11290
11291 static bfd_boolean
11292 reallocate_got (struct elf_link_hash_entry *h, void *inf)
11293 {
11294 struct got_entry *gent;
11295
11296 if (h->root.type == bfd_link_hash_indirect)
11297 return TRUE;
11298
11299 for (gent = h->got.glist; gent != NULL; gent = gent->next)
11300 if (!gent->is_indirect)
11301 allocate_got (h, (struct bfd_link_info *) inf, gent);
11302 return TRUE;
11303 }
11304
11305 /* Called on the first multitoc pass after the last call to
11306 ppc64_elf_next_toc_section. This function removes duplicate GOT
11307 entries. */
11308
11309 bfd_boolean
11310 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
11311 {
11312 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11313 struct bfd *ibfd, *ibfd2;
11314 bfd_boolean done_something;
11315
11316 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
11317
11318 if (!htab->do_multi_toc)
11319 return FALSE;
11320
11321 /* Merge global sym got entries within a toc group. */
11322 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
11323
11324 /* And tlsld_got. */
11325 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11326 {
11327 struct got_entry *ent, *ent2;
11328
11329 if (!is_ppc64_elf (ibfd))
11330 continue;
11331
11332 ent = ppc64_tlsld_got (ibfd);
11333 if (!ent->is_indirect
11334 && ent->got.offset != (bfd_vma) -1)
11335 {
11336 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
11337 {
11338 if (!is_ppc64_elf (ibfd2))
11339 continue;
11340
11341 ent2 = ppc64_tlsld_got (ibfd2);
11342 if (!ent2->is_indirect
11343 && ent2->got.offset != (bfd_vma) -1
11344 && elf_gp (ibfd2) == elf_gp (ibfd))
11345 {
11346 ent2->is_indirect = TRUE;
11347 ent2->got.ent = ent;
11348 }
11349 }
11350 }
11351 }
11352
11353 /* Zap sizes of got sections. */
11354 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
11355 htab->elf.irelplt->size -= htab->got_reli_size;
11356 htab->got_reli_size = 0;
11357
11358 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11359 {
11360 asection *got, *relgot;
11361
11362 if (!is_ppc64_elf (ibfd))
11363 continue;
11364
11365 got = ppc64_elf_tdata (ibfd)->got;
11366 if (got != NULL)
11367 {
11368 got->rawsize = got->size;
11369 got->size = 0;
11370 relgot = ppc64_elf_tdata (ibfd)->relgot;
11371 relgot->rawsize = relgot->size;
11372 relgot->size = 0;
11373 }
11374 }
11375
11376 /* Now reallocate the got, local syms first. We don't need to
11377 allocate section contents again since we never increase size. */
11378 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11379 {
11380 struct got_entry **lgot_ents;
11381 struct got_entry **end_lgot_ents;
11382 struct plt_entry **local_plt;
11383 struct plt_entry **end_local_plt;
11384 unsigned char *lgot_masks;
11385 bfd_size_type locsymcount;
11386 Elf_Internal_Shdr *symtab_hdr;
11387 asection *s;
11388
11389 if (!is_ppc64_elf (ibfd))
11390 continue;
11391
11392 lgot_ents = elf_local_got_ents (ibfd);
11393 if (!lgot_ents)
11394 continue;
11395
11396 symtab_hdr = &elf_symtab_hdr (ibfd);
11397 locsymcount = symtab_hdr->sh_info;
11398 end_lgot_ents = lgot_ents + locsymcount;
11399 local_plt = (struct plt_entry **) end_lgot_ents;
11400 end_local_plt = local_plt + locsymcount;
11401 lgot_masks = (unsigned char *) end_local_plt;
11402 s = ppc64_elf_tdata (ibfd)->got;
11403 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
11404 {
11405 struct got_entry *ent;
11406
11407 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
11408 {
11409 unsigned int ent_size = 8;
11410 unsigned int rel_size = sizeof (Elf64_External_Rela);
11411
11412 ent->got.offset = s->size;
11413 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
11414 {
11415 ent_size *= 2;
11416 rel_size *= 2;
11417 }
11418 s->size += ent_size;
11419 if ((*lgot_masks & PLT_IFUNC) != 0)
11420 {
11421 htab->elf.irelplt->size += rel_size;
11422 htab->got_reli_size += rel_size;
11423 }
11424 else if (info->shared)
11425 {
11426 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11427 srel->size += rel_size;
11428 }
11429 }
11430 }
11431 }
11432
11433 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
11434
11435 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11436 {
11437 struct got_entry *ent;
11438
11439 if (!is_ppc64_elf (ibfd))
11440 continue;
11441
11442 ent = ppc64_tlsld_got (ibfd);
11443 if (!ent->is_indirect
11444 && ent->got.offset != (bfd_vma) -1)
11445 {
11446 asection *s = ppc64_elf_tdata (ibfd)->got;
11447 ent->got.offset = s->size;
11448 s->size += 16;
11449 if (info->shared)
11450 {
11451 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11452 srel->size += sizeof (Elf64_External_Rela);
11453 }
11454 }
11455 }
11456
11457 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
11458 if (!done_something)
11459 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11460 {
11461 asection *got;
11462
11463 if (!is_ppc64_elf (ibfd))
11464 continue;
11465
11466 got = ppc64_elf_tdata (ibfd)->got;
11467 if (got != NULL)
11468 {
11469 done_something = got->rawsize != got->size;
11470 if (done_something)
11471 break;
11472 }
11473 }
11474
11475 if (done_something)
11476 (*htab->params->layout_sections_again) ();
11477
11478 /* Set up for second pass over toc sections to recalculate elf_gp
11479 on input sections. */
11480 htab->toc_bfd = NULL;
11481 htab->toc_first_sec = NULL;
11482 htab->second_toc_pass = TRUE;
11483 return done_something;
11484 }
11485
11486 /* Called after second pass of multitoc partitioning. */
11487
11488 void
11489 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
11490 {
11491 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11492
11493 /* After the second pass, toc_curr tracks the TOC offset used
11494 for code sections below in ppc64_elf_next_input_section. */
11495 htab->toc_curr = TOC_BASE_OFF;
11496 }
11497
11498 /* No toc references were found in ISEC. If the code in ISEC makes no
11499 calls, then there's no need to use toc adjusting stubs when branching
11500 into ISEC. Actually, indirect calls from ISEC are OK as they will
11501 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
11502 needed, and 2 if a cyclical call-graph was found but no other reason
11503 for a stub was detected. If called from the top level, a return of
11504 2 means the same as a return of 0. */
11505
11506 static int
11507 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
11508 {
11509 int ret;
11510
11511 /* Mark this section as checked. */
11512 isec->call_check_done = 1;
11513
11514 /* We know none of our code bearing sections will need toc stubs. */
11515 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11516 return 0;
11517
11518 if (isec->size == 0)
11519 return 0;
11520
11521 if (isec->output_section == NULL)
11522 return 0;
11523
11524 ret = 0;
11525 if (isec->reloc_count != 0)
11526 {
11527 Elf_Internal_Rela *relstart, *rel;
11528 Elf_Internal_Sym *local_syms;
11529 struct ppc_link_hash_table *htab;
11530
11531 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
11532 info->keep_memory);
11533 if (relstart == NULL)
11534 return -1;
11535
11536 /* Look for branches to outside of this section. */
11537 local_syms = NULL;
11538 htab = ppc_hash_table (info);
11539 if (htab == NULL)
11540 return -1;
11541
11542 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
11543 {
11544 enum elf_ppc64_reloc_type r_type;
11545 unsigned long r_symndx;
11546 struct elf_link_hash_entry *h;
11547 struct ppc_link_hash_entry *eh;
11548 Elf_Internal_Sym *sym;
11549 asection *sym_sec;
11550 struct _opd_sec_data *opd;
11551 bfd_vma sym_value;
11552 bfd_vma dest;
11553
11554 r_type = ELF64_R_TYPE (rel->r_info);
11555 if (r_type != R_PPC64_REL24
11556 && r_type != R_PPC64_REL14
11557 && r_type != R_PPC64_REL14_BRTAKEN
11558 && r_type != R_PPC64_REL14_BRNTAKEN)
11559 continue;
11560
11561 r_symndx = ELF64_R_SYM (rel->r_info);
11562 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
11563 isec->owner))
11564 {
11565 ret = -1;
11566 break;
11567 }
11568
11569 /* Calls to dynamic lib functions go through a plt call stub
11570 that uses r2. */
11571 eh = (struct ppc_link_hash_entry *) h;
11572 if (eh != NULL
11573 && (eh->elf.plt.plist != NULL
11574 || (eh->oh != NULL
11575 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
11576 {
11577 ret = 1;
11578 break;
11579 }
11580
11581 if (sym_sec == NULL)
11582 /* Ignore other undefined symbols. */
11583 continue;
11584
11585 /* Assume branches to other sections not included in the
11586 link need stubs too, to cover -R and absolute syms. */
11587 if (sym_sec->output_section == NULL)
11588 {
11589 ret = 1;
11590 break;
11591 }
11592
11593 if (h == NULL)
11594 sym_value = sym->st_value;
11595 else
11596 {
11597 if (h->root.type != bfd_link_hash_defined
11598 && h->root.type != bfd_link_hash_defweak)
11599 abort ();
11600 sym_value = h->root.u.def.value;
11601 }
11602 sym_value += rel->r_addend;
11603
11604 /* If this branch reloc uses an opd sym, find the code section. */
11605 opd = get_opd_info (sym_sec);
11606 if (opd != NULL)
11607 {
11608 if (h == NULL && opd->adjust != NULL)
11609 {
11610 long adjust;
11611
11612 adjust = opd->adjust[OPD_NDX (sym->st_value)];
11613 if (adjust == -1)
11614 /* Assume deleted functions won't ever be called. */
11615 continue;
11616 sym_value += adjust;
11617 }
11618
11619 dest = opd_entry_value (sym_sec, sym_value,
11620 &sym_sec, NULL, FALSE);
11621 if (dest == (bfd_vma) -1)
11622 continue;
11623 }
11624 else
11625 dest = (sym_value
11626 + sym_sec->output_offset
11627 + sym_sec->output_section->vma);
11628
11629 /* Ignore branch to self. */
11630 if (sym_sec == isec)
11631 continue;
11632
11633 /* If the called function uses the toc, we need a stub. */
11634 if (sym_sec->has_toc_reloc
11635 || sym_sec->makes_toc_func_call)
11636 {
11637 ret = 1;
11638 break;
11639 }
11640
11641 /* Assume any branch that needs a long branch stub might in fact
11642 need a plt_branch stub. A plt_branch stub uses r2. */
11643 else if (dest - (isec->output_offset
11644 + isec->output_section->vma
11645 + rel->r_offset) + (1 << 25)
11646 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
11647 ? h->other
11648 : sym->st_other))
11649 {
11650 ret = 1;
11651 break;
11652 }
11653
11654 /* If calling back to a section in the process of being
11655 tested, we can't say for sure that no toc adjusting stubs
11656 are needed, so don't return zero. */
11657 else if (sym_sec->call_check_in_progress)
11658 ret = 2;
11659
11660 /* Branches to another section that itself doesn't have any TOC
11661 references are OK. Recursively call ourselves to check. */
11662 else if (!sym_sec->call_check_done)
11663 {
11664 int recur;
11665
11666 /* Mark current section as indeterminate, so that other
11667 sections that call back to current won't be marked as
11668 known. */
11669 isec->call_check_in_progress = 1;
11670 recur = toc_adjusting_stub_needed (info, sym_sec);
11671 isec->call_check_in_progress = 0;
11672
11673 if (recur != 0)
11674 {
11675 ret = recur;
11676 if (recur != 2)
11677 break;
11678 }
11679 }
11680 }
11681
11682 if (local_syms != NULL
11683 && (elf_symtab_hdr (isec->owner).contents
11684 != (unsigned char *) local_syms))
11685 free (local_syms);
11686 if (elf_section_data (isec)->relocs != relstart)
11687 free (relstart);
11688 }
11689
11690 if ((ret & 1) == 0
11691 && isec->map_head.s != NULL
11692 && (strcmp (isec->output_section->name, ".init") == 0
11693 || strcmp (isec->output_section->name, ".fini") == 0))
11694 {
11695 if (isec->map_head.s->has_toc_reloc
11696 || isec->map_head.s->makes_toc_func_call)
11697 ret = 1;
11698 else if (!isec->map_head.s->call_check_done)
11699 {
11700 int recur;
11701 isec->call_check_in_progress = 1;
11702 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11703 isec->call_check_in_progress = 0;
11704 if (recur != 0)
11705 ret = recur;
11706 }
11707 }
11708
11709 if (ret == 1)
11710 isec->makes_toc_func_call = 1;
11711
11712 return ret;
11713 }
11714
11715 /* The linker repeatedly calls this function for each input section,
11716 in the order that input sections are linked into output sections.
11717 Build lists of input sections to determine groupings between which
11718 we may insert linker stubs. */
11719
11720 bfd_boolean
11721 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11722 {
11723 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11724
11725 if (htab == NULL)
11726 return FALSE;
11727
11728 if ((isec->output_section->flags & SEC_CODE) != 0
11729 && isec->output_section->index <= htab->top_index)
11730 {
11731 asection **list = htab->input_list + isec->output_section->index;
11732 /* Steal the link_sec pointer for our list. */
11733 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11734 /* This happens to make the list in reverse order,
11735 which is what we want. */
11736 PREV_SEC (isec) = *list;
11737 *list = isec;
11738 }
11739
11740 if (htab->multi_toc_needed)
11741 {
11742 /* Analyse sections that aren't already flagged as needing a
11743 valid toc pointer. Exclude .fixup for the linux kernel.
11744 .fixup contains branches, but only back to the function that
11745 hit an exception. */
11746 if (!(isec->has_toc_reloc
11747 || (isec->flags & SEC_CODE) == 0
11748 || strcmp (isec->name, ".fixup") == 0
11749 || isec->call_check_done))
11750 {
11751 if (toc_adjusting_stub_needed (info, isec) < 0)
11752 return FALSE;
11753 }
11754 /* Make all sections use the TOC assigned for this object file.
11755 This will be wrong for pasted sections; We fix that in
11756 check_pasted_section(). */
11757 if (elf_gp (isec->owner) != 0)
11758 htab->toc_curr = elf_gp (isec->owner);
11759 }
11760
11761 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11762 return TRUE;
11763 }
11764
11765 /* Check that all .init and .fini sections use the same toc, if they
11766 have toc relocs. */
11767
11768 static bfd_boolean
11769 check_pasted_section (struct bfd_link_info *info, const char *name)
11770 {
11771 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11772
11773 if (o != NULL)
11774 {
11775 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11776 bfd_vma toc_off = 0;
11777 asection *i;
11778
11779 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11780 if (i->has_toc_reloc)
11781 {
11782 if (toc_off == 0)
11783 toc_off = htab->stub_group[i->id].toc_off;
11784 else if (toc_off != htab->stub_group[i->id].toc_off)
11785 return FALSE;
11786 }
11787
11788 if (toc_off == 0)
11789 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11790 if (i->makes_toc_func_call)
11791 {
11792 toc_off = htab->stub_group[i->id].toc_off;
11793 break;
11794 }
11795
11796 /* Make sure the whole pasted function uses the same toc offset. */
11797 if (toc_off != 0)
11798 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11799 htab->stub_group[i->id].toc_off = toc_off;
11800 }
11801 return TRUE;
11802 }
11803
11804 bfd_boolean
11805 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11806 {
11807 return (check_pasted_section (info, ".init")
11808 & check_pasted_section (info, ".fini"));
11809 }
11810
11811 /* See whether we can group stub sections together. Grouping stub
11812 sections may result in fewer stubs. More importantly, we need to
11813 put all .init* and .fini* stubs at the beginning of the .init or
11814 .fini output sections respectively, because glibc splits the
11815 _init and _fini functions into multiple parts. Putting a stub in
11816 the middle of a function is not a good idea. */
11817
11818 static void
11819 group_sections (struct ppc_link_hash_table *htab,
11820 bfd_size_type stub_group_size,
11821 bfd_boolean stubs_always_before_branch)
11822 {
11823 asection **list;
11824 bfd_size_type stub14_group_size;
11825 bfd_boolean suppress_size_errors;
11826
11827 suppress_size_errors = FALSE;
11828 stub14_group_size = stub_group_size >> 10;
11829 if (stub_group_size == 1)
11830 {
11831 /* Default values. */
11832 if (stubs_always_before_branch)
11833 {
11834 stub_group_size = 0x1e00000;
11835 stub14_group_size = 0x7800;
11836 }
11837 else
11838 {
11839 stub_group_size = 0x1c00000;
11840 stub14_group_size = 0x7000;
11841 }
11842 suppress_size_errors = TRUE;
11843 }
11844
11845 list = htab->input_list + htab->top_index;
11846 do
11847 {
11848 asection *tail = *list;
11849 while (tail != NULL)
11850 {
11851 asection *curr;
11852 asection *prev;
11853 bfd_size_type total;
11854 bfd_boolean big_sec;
11855 bfd_vma curr_toc;
11856
11857 curr = tail;
11858 total = tail->size;
11859 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11860 && ppc64_elf_section_data (tail)->has_14bit_branch
11861 ? stub14_group_size : stub_group_size);
11862 if (big_sec && !suppress_size_errors)
11863 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11864 tail->owner, tail);
11865 curr_toc = htab->stub_group[tail->id].toc_off;
11866
11867 while ((prev = PREV_SEC (curr)) != NULL
11868 && ((total += curr->output_offset - prev->output_offset)
11869 < (ppc64_elf_section_data (prev) != NULL
11870 && ppc64_elf_section_data (prev)->has_14bit_branch
11871 ? stub14_group_size : stub_group_size))
11872 && htab->stub_group[prev->id].toc_off == curr_toc)
11873 curr = prev;
11874
11875 /* OK, the size from the start of CURR to the end is less
11876 than stub_group_size and thus can be handled by one stub
11877 section. (or the tail section is itself larger than
11878 stub_group_size, in which case we may be toast.) We
11879 should really be keeping track of the total size of stubs
11880 added here, as stubs contribute to the final output
11881 section size. That's a little tricky, and this way will
11882 only break if stubs added make the total size more than
11883 2^25, ie. for the default stub_group_size, if stubs total
11884 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11885 do
11886 {
11887 prev = PREV_SEC (tail);
11888 /* Set up this stub group. */
11889 htab->stub_group[tail->id].link_sec = curr;
11890 }
11891 while (tail != curr && (tail = prev) != NULL);
11892
11893 /* But wait, there's more! Input sections up to stub_group_size
11894 bytes before the stub section can be handled by it too.
11895 Don't do this if we have a really large section after the
11896 stubs, as adding more stubs increases the chance that
11897 branches may not reach into the stub section. */
11898 if (!stubs_always_before_branch && !big_sec)
11899 {
11900 total = 0;
11901 while (prev != NULL
11902 && ((total += tail->output_offset - prev->output_offset)
11903 < (ppc64_elf_section_data (prev) != NULL
11904 && ppc64_elf_section_data (prev)->has_14bit_branch
11905 ? stub14_group_size : stub_group_size))
11906 && htab->stub_group[prev->id].toc_off == curr_toc)
11907 {
11908 tail = prev;
11909 prev = PREV_SEC (tail);
11910 htab->stub_group[tail->id].link_sec = curr;
11911 }
11912 }
11913 tail = prev;
11914 }
11915 }
11916 while (list-- != htab->input_list);
11917 free (htab->input_list);
11918 #undef PREV_SEC
11919 }
11920
11921 static const unsigned char glink_eh_frame_cie[] =
11922 {
11923 0, 0, 0, 16, /* length. */
11924 0, 0, 0, 0, /* id. */
11925 1, /* CIE version. */
11926 'z', 'R', 0, /* Augmentation string. */
11927 4, /* Code alignment. */
11928 0x78, /* Data alignment. */
11929 65, /* RA reg. */
11930 1, /* Augmentation size. */
11931 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11932 DW_CFA_def_cfa, 1, 0, /* def_cfa: r1 offset 0. */
11933 0, 0, 0, 0
11934 };
11935
11936 /* Stripping output sections is normally done before dynamic section
11937 symbols have been allocated. This function is called later, and
11938 handles cases like htab->brlt which is mapped to its own output
11939 section. */
11940
11941 static void
11942 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11943 {
11944 if (isec->size == 0
11945 && isec->output_section->size == 0
11946 && !(isec->output_section->flags & SEC_KEEP)
11947 && !bfd_section_removed_from_list (info->output_bfd,
11948 isec->output_section)
11949 && elf_section_data (isec->output_section)->dynindx == 0)
11950 {
11951 isec->output_section->flags |= SEC_EXCLUDE;
11952 bfd_section_list_remove (info->output_bfd, isec->output_section);
11953 info->output_bfd->section_count--;
11954 }
11955 }
11956
11957 /* Determine and set the size of the stub section for a final link.
11958
11959 The basic idea here is to examine all the relocations looking for
11960 PC-relative calls to a target that is unreachable with a "bl"
11961 instruction. */
11962
11963 bfd_boolean
11964 ppc64_elf_size_stubs (struct bfd_link_info *info)
11965 {
11966 bfd_size_type stub_group_size;
11967 bfd_boolean stubs_always_before_branch;
11968 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11969
11970 if (htab == NULL)
11971 return FALSE;
11972
11973 if (htab->params->plt_thread_safe == -1 && !info->executable)
11974 htab->params->plt_thread_safe = 1;
11975 if (!htab->opd_abi)
11976 htab->params->plt_thread_safe = 0;
11977 else if (htab->params->plt_thread_safe == -1)
11978 {
11979 static const char *const thread_starter[] =
11980 {
11981 "pthread_create",
11982 /* libstdc++ */
11983 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11984 /* librt */
11985 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11986 "mq_notify", "create_timer",
11987 /* libanl */
11988 "getaddrinfo_a",
11989 /* libgomp */
11990 "GOMP_parallel",
11991 "GOMP_parallel_start",
11992 "GOMP_parallel_loop_static",
11993 "GOMP_parallel_loop_static_start",
11994 "GOMP_parallel_loop_dynamic",
11995 "GOMP_parallel_loop_dynamic_start",
11996 "GOMP_parallel_loop_guided",
11997 "GOMP_parallel_loop_guided_start",
11998 "GOMP_parallel_loop_runtime",
11999 "GOMP_parallel_loop_runtime_start",
12000 "GOMP_parallel_sections",
12001 "GOMP_parallel_sections_start",
12002 /* libgo */
12003 "__go_go",
12004 };
12005 unsigned i;
12006
12007 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
12008 {
12009 struct elf_link_hash_entry *h;
12010 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
12011 FALSE, FALSE, TRUE);
12012 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
12013 if (htab->params->plt_thread_safe)
12014 break;
12015 }
12016 }
12017 stubs_always_before_branch = htab->params->group_size < 0;
12018 if (htab->params->group_size < 0)
12019 stub_group_size = -htab->params->group_size;
12020 else
12021 stub_group_size = htab->params->group_size;
12022
12023 group_sections (htab, stub_group_size, stubs_always_before_branch);
12024
12025 while (1)
12026 {
12027 bfd *input_bfd;
12028 unsigned int bfd_indx;
12029 asection *stub_sec;
12030
12031 htab->stub_iteration += 1;
12032
12033 for (input_bfd = info->input_bfds, bfd_indx = 0;
12034 input_bfd != NULL;
12035 input_bfd = input_bfd->link.next, bfd_indx++)
12036 {
12037 Elf_Internal_Shdr *symtab_hdr;
12038 asection *section;
12039 Elf_Internal_Sym *local_syms = NULL;
12040
12041 if (!is_ppc64_elf (input_bfd))
12042 continue;
12043
12044 /* We'll need the symbol table in a second. */
12045 symtab_hdr = &elf_symtab_hdr (input_bfd);
12046 if (symtab_hdr->sh_info == 0)
12047 continue;
12048
12049 /* Walk over each section attached to the input bfd. */
12050 for (section = input_bfd->sections;
12051 section != NULL;
12052 section = section->next)
12053 {
12054 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
12055
12056 /* If there aren't any relocs, then there's nothing more
12057 to do. */
12058 if ((section->flags & SEC_RELOC) == 0
12059 || (section->flags & SEC_ALLOC) == 0
12060 || (section->flags & SEC_LOAD) == 0
12061 || (section->flags & SEC_CODE) == 0
12062 || section->reloc_count == 0)
12063 continue;
12064
12065 /* If this section is a link-once section that will be
12066 discarded, then don't create any stubs. */
12067 if (section->output_section == NULL
12068 || section->output_section->owner != info->output_bfd)
12069 continue;
12070
12071 /* Get the relocs. */
12072 internal_relocs
12073 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
12074 info->keep_memory);
12075 if (internal_relocs == NULL)
12076 goto error_ret_free_local;
12077
12078 /* Now examine each relocation. */
12079 irela = internal_relocs;
12080 irelaend = irela + section->reloc_count;
12081 for (; irela < irelaend; irela++)
12082 {
12083 enum elf_ppc64_reloc_type r_type;
12084 unsigned int r_indx;
12085 enum ppc_stub_type stub_type;
12086 struct ppc_stub_hash_entry *stub_entry;
12087 asection *sym_sec, *code_sec;
12088 bfd_vma sym_value, code_value;
12089 bfd_vma destination;
12090 unsigned long local_off;
12091 bfd_boolean ok_dest;
12092 struct ppc_link_hash_entry *hash;
12093 struct ppc_link_hash_entry *fdh;
12094 struct elf_link_hash_entry *h;
12095 Elf_Internal_Sym *sym;
12096 char *stub_name;
12097 const asection *id_sec;
12098 struct _opd_sec_data *opd;
12099 struct plt_entry *plt_ent;
12100
12101 r_type = ELF64_R_TYPE (irela->r_info);
12102 r_indx = ELF64_R_SYM (irela->r_info);
12103
12104 if (r_type >= R_PPC64_max)
12105 {
12106 bfd_set_error (bfd_error_bad_value);
12107 goto error_ret_free_internal;
12108 }
12109
12110 /* Only look for stubs on branch instructions. */
12111 if (r_type != R_PPC64_REL24
12112 && r_type != R_PPC64_REL14
12113 && r_type != R_PPC64_REL14_BRTAKEN
12114 && r_type != R_PPC64_REL14_BRNTAKEN)
12115 continue;
12116
12117 /* Now determine the call target, its name, value,
12118 section. */
12119 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
12120 r_indx, input_bfd))
12121 goto error_ret_free_internal;
12122 hash = (struct ppc_link_hash_entry *) h;
12123
12124 ok_dest = FALSE;
12125 fdh = NULL;
12126 sym_value = 0;
12127 if (hash == NULL)
12128 {
12129 sym_value = sym->st_value;
12130 ok_dest = TRUE;
12131 }
12132 else if (hash->elf.root.type == bfd_link_hash_defined
12133 || hash->elf.root.type == bfd_link_hash_defweak)
12134 {
12135 sym_value = hash->elf.root.u.def.value;
12136 if (sym_sec->output_section != NULL)
12137 ok_dest = TRUE;
12138 }
12139 else if (hash->elf.root.type == bfd_link_hash_undefweak
12140 || hash->elf.root.type == bfd_link_hash_undefined)
12141 {
12142 /* Recognise an old ABI func code entry sym, and
12143 use the func descriptor sym instead if it is
12144 defined. */
12145 if (hash->elf.root.root.string[0] == '.'
12146 && (fdh = lookup_fdh (hash, htab)) != NULL)
12147 {
12148 if (fdh->elf.root.type == bfd_link_hash_defined
12149 || fdh->elf.root.type == bfd_link_hash_defweak)
12150 {
12151 sym_sec = fdh->elf.root.u.def.section;
12152 sym_value = fdh->elf.root.u.def.value;
12153 if (sym_sec->output_section != NULL)
12154 ok_dest = TRUE;
12155 }
12156 else
12157 fdh = NULL;
12158 }
12159 }
12160 else
12161 {
12162 bfd_set_error (bfd_error_bad_value);
12163 goto error_ret_free_internal;
12164 }
12165
12166 destination = 0;
12167 local_off = 0;
12168 if (ok_dest)
12169 {
12170 sym_value += irela->r_addend;
12171 destination = (sym_value
12172 + sym_sec->output_offset
12173 + sym_sec->output_section->vma);
12174 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12175 ? hash->elf.other
12176 : sym->st_other);
12177 }
12178
12179 code_sec = sym_sec;
12180 code_value = sym_value;
12181 opd = get_opd_info (sym_sec);
12182 if (opd != NULL)
12183 {
12184 bfd_vma dest;
12185
12186 if (hash == NULL && opd->adjust != NULL)
12187 {
12188 long adjust = opd->adjust[OPD_NDX (sym_value)];
12189 if (adjust == -1)
12190 continue;
12191 code_value += adjust;
12192 sym_value += adjust;
12193 }
12194 dest = opd_entry_value (sym_sec, sym_value,
12195 &code_sec, &code_value, FALSE);
12196 if (dest != (bfd_vma) -1)
12197 {
12198 destination = dest;
12199 if (fdh != NULL)
12200 {
12201 /* Fixup old ABI sym to point at code
12202 entry. */
12203 hash->elf.root.type = bfd_link_hash_defweak;
12204 hash->elf.root.u.def.section = code_sec;
12205 hash->elf.root.u.def.value = code_value;
12206 }
12207 }
12208 }
12209
12210 /* Determine what (if any) linker stub is needed. */
12211 plt_ent = NULL;
12212 stub_type = ppc_type_of_stub (section, irela, &hash,
12213 &plt_ent, destination,
12214 local_off);
12215
12216 if (stub_type != ppc_stub_plt_call)
12217 {
12218 /* Check whether we need a TOC adjusting stub.
12219 Since the linker pastes together pieces from
12220 different object files when creating the
12221 _init and _fini functions, it may be that a
12222 call to what looks like a local sym is in
12223 fact a call needing a TOC adjustment. */
12224 if (code_sec != NULL
12225 && code_sec->output_section != NULL
12226 && (htab->stub_group[code_sec->id].toc_off
12227 != htab->stub_group[section->id].toc_off)
12228 && (code_sec->has_toc_reloc
12229 || code_sec->makes_toc_func_call))
12230 stub_type = ppc_stub_long_branch_r2off;
12231 }
12232
12233 if (stub_type == ppc_stub_none)
12234 continue;
12235
12236 /* __tls_get_addr calls might be eliminated. */
12237 if (stub_type != ppc_stub_plt_call
12238 && hash != NULL
12239 && (hash == htab->tls_get_addr
12240 || hash == htab->tls_get_addr_fd)
12241 && section->has_tls_reloc
12242 && irela != internal_relocs)
12243 {
12244 /* Get tls info. */
12245 unsigned char *tls_mask;
12246
12247 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
12248 irela - 1, input_bfd))
12249 goto error_ret_free_internal;
12250 if (*tls_mask != 0)
12251 continue;
12252 }
12253
12254 if (stub_type == ppc_stub_plt_call
12255 && irela + 1 < irelaend
12256 && irela[1].r_offset == irela->r_offset + 4
12257 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
12258 {
12259 if (!tocsave_find (htab, INSERT,
12260 &local_syms, irela + 1, input_bfd))
12261 goto error_ret_free_internal;
12262 }
12263 else if (stub_type == ppc_stub_plt_call)
12264 stub_type = ppc_stub_plt_call_r2save;
12265
12266 /* Support for grouping stub sections. */
12267 id_sec = htab->stub_group[section->id].link_sec;
12268
12269 /* Get the name of this stub. */
12270 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
12271 if (!stub_name)
12272 goto error_ret_free_internal;
12273
12274 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
12275 stub_name, FALSE, FALSE);
12276 if (stub_entry != NULL)
12277 {
12278 /* The proper stub has already been created. */
12279 free (stub_name);
12280 if (stub_type == ppc_stub_plt_call_r2save)
12281 stub_entry->stub_type = stub_type;
12282 continue;
12283 }
12284
12285 stub_entry = ppc_add_stub (stub_name, section, info);
12286 if (stub_entry == NULL)
12287 {
12288 free (stub_name);
12289 error_ret_free_internal:
12290 if (elf_section_data (section)->relocs == NULL)
12291 free (internal_relocs);
12292 error_ret_free_local:
12293 if (local_syms != NULL
12294 && (symtab_hdr->contents
12295 != (unsigned char *) local_syms))
12296 free (local_syms);
12297 return FALSE;
12298 }
12299
12300 stub_entry->stub_type = stub_type;
12301 if (stub_type != ppc_stub_plt_call
12302 && stub_type != ppc_stub_plt_call_r2save)
12303 {
12304 stub_entry->target_value = code_value;
12305 stub_entry->target_section = code_sec;
12306 }
12307 else
12308 {
12309 stub_entry->target_value = sym_value;
12310 stub_entry->target_section = sym_sec;
12311 }
12312 stub_entry->h = hash;
12313 stub_entry->plt_ent = plt_ent;
12314 stub_entry->other = hash ? hash->elf.other : sym->st_other;
12315
12316 if (stub_entry->h != NULL)
12317 htab->stub_globals += 1;
12318 }
12319
12320 /* We're done with the internal relocs, free them. */
12321 if (elf_section_data (section)->relocs != internal_relocs)
12322 free (internal_relocs);
12323 }
12324
12325 if (local_syms != NULL
12326 && symtab_hdr->contents != (unsigned char *) local_syms)
12327 {
12328 if (!info->keep_memory)
12329 free (local_syms);
12330 else
12331 symtab_hdr->contents = (unsigned char *) local_syms;
12332 }
12333 }
12334
12335 /* We may have added some stubs. Find out the new size of the
12336 stub sections. */
12337 for (stub_sec = htab->params->stub_bfd->sections;
12338 stub_sec != NULL;
12339 stub_sec = stub_sec->next)
12340 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12341 {
12342 stub_sec->rawsize = stub_sec->size;
12343 stub_sec->size = 0;
12344 stub_sec->reloc_count = 0;
12345 stub_sec->flags &= ~SEC_RELOC;
12346 }
12347
12348 htab->brlt->size = 0;
12349 htab->brlt->reloc_count = 0;
12350 htab->brlt->flags &= ~SEC_RELOC;
12351 if (htab->relbrlt != NULL)
12352 htab->relbrlt->size = 0;
12353
12354 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
12355
12356 if (info->emitrelocations
12357 && htab->glink != NULL && htab->glink->size != 0)
12358 {
12359 htab->glink->reloc_count = 1;
12360 htab->glink->flags |= SEC_RELOC;
12361 }
12362
12363 if (htab->glink_eh_frame != NULL
12364 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
12365 && htab->glink_eh_frame->output_section->size != 0)
12366 {
12367 size_t size = 0, align;
12368
12369 for (stub_sec = htab->params->stub_bfd->sections;
12370 stub_sec != NULL;
12371 stub_sec = stub_sec->next)
12372 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12373 size += 24;
12374 if (htab->glink != NULL && htab->glink->size != 0)
12375 size += 24;
12376 if (size != 0)
12377 size += sizeof (glink_eh_frame_cie);
12378 align = 1;
12379 align <<= htab->glink_eh_frame->output_section->alignment_power;
12380 align -= 1;
12381 size = (size + align) & ~align;
12382 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12383 htab->glink_eh_frame->size = size;
12384 }
12385
12386 if (htab->params->plt_stub_align != 0)
12387 for (stub_sec = htab->params->stub_bfd->sections;
12388 stub_sec != NULL;
12389 stub_sec = stub_sec->next)
12390 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12391 stub_sec->size = ((stub_sec->size
12392 + (1 << htab->params->plt_stub_align) - 1)
12393 & (-1 << htab->params->plt_stub_align));
12394
12395 for (stub_sec = htab->params->stub_bfd->sections;
12396 stub_sec != NULL;
12397 stub_sec = stub_sec->next)
12398 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12399 && stub_sec->rawsize != stub_sec->size)
12400 break;
12401
12402 /* Exit from this loop when no stubs have been added, and no stubs
12403 have changed size. */
12404 if (stub_sec == NULL
12405 && (htab->glink_eh_frame == NULL
12406 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
12407 break;
12408
12409 /* Ask the linker to do its stuff. */
12410 (*htab->params->layout_sections_again) ();
12411 }
12412
12413 if (htab->glink_eh_frame != NULL
12414 && htab->glink_eh_frame->size != 0)
12415 {
12416 bfd_vma val;
12417 bfd_byte *p, *last_fde;
12418 size_t last_fde_len, size, align, pad;
12419 asection *stub_sec;
12420
12421 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
12422 if (p == NULL)
12423 return FALSE;
12424 htab->glink_eh_frame->contents = p;
12425 last_fde = p;
12426
12427 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
12428 /* CIE length (rewrite in case little-endian). */
12429 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
12430 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
12431 p += sizeof (glink_eh_frame_cie);
12432
12433 for (stub_sec = htab->params->stub_bfd->sections;
12434 stub_sec != NULL;
12435 stub_sec = stub_sec->next)
12436 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12437 {
12438 last_fde = p;
12439 last_fde_len = 20;
12440 /* FDE length. */
12441 bfd_put_32 (htab->elf.dynobj, 20, p);
12442 p += 4;
12443 /* CIE pointer. */
12444 val = p - htab->glink_eh_frame->contents;
12445 bfd_put_32 (htab->elf.dynobj, val, p);
12446 p += 4;
12447 /* Offset to stub section, written later. */
12448 p += 4;
12449 /* stub section size. */
12450 bfd_put_32 (htab->elf.dynobj, stub_sec->size, p);
12451 p += 4;
12452 /* Augmentation. */
12453 p += 1;
12454 /* Pad. */
12455 p += 7;
12456 }
12457 if (htab->glink != NULL && htab->glink->size != 0)
12458 {
12459 last_fde = p;
12460 last_fde_len = 20;
12461 /* FDE length. */
12462 bfd_put_32 (htab->elf.dynobj, 20, p);
12463 p += 4;
12464 /* CIE pointer. */
12465 val = p - htab->glink_eh_frame->contents;
12466 bfd_put_32 (htab->elf.dynobj, val, p);
12467 p += 4;
12468 /* Offset to .glink, written later. */
12469 p += 4;
12470 /* .glink size. */
12471 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
12472 p += 4;
12473 /* Augmentation. */
12474 p += 1;
12475
12476 *p++ = DW_CFA_advance_loc + 1;
12477 *p++ = DW_CFA_register;
12478 *p++ = 65;
12479 *p++ = 12;
12480 *p++ = DW_CFA_advance_loc + 4;
12481 *p++ = DW_CFA_restore_extended;
12482 *p++ = 65;
12483 }
12484 /* Subsume any padding into the last FDE if user .eh_frame
12485 sections are aligned more than glink_eh_frame. Otherwise any
12486 zero padding will be seen as a terminator. */
12487 size = p - htab->glink_eh_frame->contents;
12488 align = 1;
12489 align <<= htab->glink_eh_frame->output_section->alignment_power;
12490 align -= 1;
12491 pad = ((size + align) & ~align) - size;
12492 htab->glink_eh_frame->size = size + pad;
12493 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12494 }
12495
12496 maybe_strip_output (info, htab->brlt);
12497 if (htab->glink_eh_frame != NULL)
12498 maybe_strip_output (info, htab->glink_eh_frame);
12499
12500 return TRUE;
12501 }
12502
12503 /* Called after we have determined section placement. If sections
12504 move, we'll be called again. Provide a value for TOCstart. */
12505
12506 bfd_vma
12507 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
12508 {
12509 asection *s;
12510 bfd_vma TOCstart;
12511
12512 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
12513 order. The TOC starts where the first of these sections starts. */
12514 s = bfd_get_section_by_name (obfd, ".got");
12515 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12516 s = bfd_get_section_by_name (obfd, ".toc");
12517 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12518 s = bfd_get_section_by_name (obfd, ".tocbss");
12519 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12520 s = bfd_get_section_by_name (obfd, ".plt");
12521 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12522 {
12523 /* This may happen for
12524 o references to TOC base (SYM@toc / TOC[tc0]) without a
12525 .toc directive
12526 o bad linker script
12527 o --gc-sections and empty TOC sections
12528
12529 FIXME: Warn user? */
12530
12531 /* Look for a likely section. We probably won't even be
12532 using TOCstart. */
12533 for (s = obfd->sections; s != NULL; s = s->next)
12534 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
12535 | SEC_EXCLUDE))
12536 == (SEC_ALLOC | SEC_SMALL_DATA))
12537 break;
12538 if (s == NULL)
12539 for (s = obfd->sections; s != NULL; s = s->next)
12540 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
12541 == (SEC_ALLOC | SEC_SMALL_DATA))
12542 break;
12543 if (s == NULL)
12544 for (s = obfd->sections; s != NULL; s = s->next)
12545 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
12546 == SEC_ALLOC)
12547 break;
12548 if (s == NULL)
12549 for (s = obfd->sections; s != NULL; s = s->next)
12550 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
12551 break;
12552 }
12553
12554 TOCstart = 0;
12555 if (s != NULL)
12556 TOCstart = s->output_section->vma + s->output_offset;
12557
12558 _bfd_set_gp_value (obfd, TOCstart);
12559
12560 if (info != NULL && s != NULL)
12561 {
12562 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12563
12564 if (htab != NULL)
12565 {
12566 if (htab->elf.hgot != NULL)
12567 {
12568 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF;
12569 htab->elf.hgot->root.u.def.section = s;
12570 }
12571 }
12572 else
12573 {
12574 struct bfd_link_hash_entry *bh = NULL;
12575 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
12576 s, TOC_BASE_OFF, NULL, FALSE,
12577 FALSE, &bh);
12578 }
12579 }
12580 return TOCstart;
12581 }
12582
12583 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
12584 write out any global entry stubs. */
12585
12586 static bfd_boolean
12587 build_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
12588 {
12589 struct bfd_link_info *info;
12590 struct ppc_link_hash_table *htab;
12591 struct plt_entry *pent;
12592 asection *s;
12593
12594 if (h->root.type == bfd_link_hash_indirect)
12595 return TRUE;
12596
12597 if (!h->pointer_equality_needed)
12598 return TRUE;
12599
12600 if (h->def_regular)
12601 return TRUE;
12602
12603 info = inf;
12604 htab = ppc_hash_table (info);
12605 if (htab == NULL)
12606 return FALSE;
12607
12608 s = htab->glink;
12609 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
12610 if (pent->plt.offset != (bfd_vma) -1
12611 && pent->addend == 0)
12612 {
12613 bfd_byte *p;
12614 asection *plt;
12615 bfd_vma off;
12616
12617 p = s->contents + h->root.u.def.value;
12618 plt = htab->elf.splt;
12619 if (!htab->elf.dynamic_sections_created
12620 || h->dynindx == -1)
12621 plt = htab->elf.iplt;
12622 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
12623 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
12624
12625 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
12626 {
12627 info->callbacks->einfo
12628 (_("%P: linkage table error against `%T'\n"),
12629 h->root.root.string);
12630 bfd_set_error (bfd_error_bad_value);
12631 htab->stub_error = TRUE;
12632 }
12633
12634 htab->stub_count[ppc_stub_global_entry - 1] += 1;
12635 if (htab->params->emit_stub_syms)
12636 {
12637 size_t len = strlen (h->root.root.string);
12638 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
12639
12640 if (name == NULL)
12641 return FALSE;
12642
12643 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
12644 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
12645 if (h == NULL)
12646 return FALSE;
12647 if (h->root.type == bfd_link_hash_new)
12648 {
12649 h->root.type = bfd_link_hash_defined;
12650 h->root.u.def.section = s;
12651 h->root.u.def.value = p - s->contents;
12652 h->ref_regular = 1;
12653 h->def_regular = 1;
12654 h->ref_regular_nonweak = 1;
12655 h->forced_local = 1;
12656 h->non_elf = 0;
12657 }
12658 }
12659
12660 if (PPC_HA (off) != 0)
12661 {
12662 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
12663 p += 4;
12664 }
12665 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
12666 p += 4;
12667 bfd_put_32 (s->owner, MTCTR_R12, p);
12668 p += 4;
12669 bfd_put_32 (s->owner, BCTR, p);
12670 break;
12671 }
12672 return TRUE;
12673 }
12674
12675 /* Build all the stubs associated with the current output file.
12676 The stubs are kept in a hash table attached to the main linker
12677 hash table. This function is called via gldelf64ppc_finish. */
12678
12679 bfd_boolean
12680 ppc64_elf_build_stubs (struct bfd_link_info *info,
12681 char **stats)
12682 {
12683 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12684 asection *stub_sec;
12685 bfd_byte *p;
12686 int stub_sec_count = 0;
12687
12688 if (htab == NULL)
12689 return FALSE;
12690
12691 /* Allocate memory to hold the linker stubs. */
12692 for (stub_sec = htab->params->stub_bfd->sections;
12693 stub_sec != NULL;
12694 stub_sec = stub_sec->next)
12695 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12696 && stub_sec->size != 0)
12697 {
12698 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd, stub_sec->size);
12699 if (stub_sec->contents == NULL)
12700 return FALSE;
12701 /* We want to check that built size is the same as calculated
12702 size. rawsize is a convenient location to use. */
12703 stub_sec->rawsize = stub_sec->size;
12704 stub_sec->size = 0;
12705 }
12706
12707 if (htab->glink != NULL && htab->glink->size != 0)
12708 {
12709 unsigned int indx;
12710 bfd_vma plt0;
12711
12712 /* Build the .glink plt call stub. */
12713 if (htab->params->emit_stub_syms)
12714 {
12715 struct elf_link_hash_entry *h;
12716 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
12717 TRUE, FALSE, FALSE);
12718 if (h == NULL)
12719 return FALSE;
12720 if (h->root.type == bfd_link_hash_new)
12721 {
12722 h->root.type = bfd_link_hash_defined;
12723 h->root.u.def.section = htab->glink;
12724 h->root.u.def.value = 8;
12725 h->ref_regular = 1;
12726 h->def_regular = 1;
12727 h->ref_regular_nonweak = 1;
12728 h->forced_local = 1;
12729 h->non_elf = 0;
12730 }
12731 }
12732 plt0 = (htab->elf.splt->output_section->vma
12733 + htab->elf.splt->output_offset
12734 - 16);
12735 if (info->emitrelocations)
12736 {
12737 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
12738 if (r == NULL)
12739 return FALSE;
12740 r->r_offset = (htab->glink->output_offset
12741 + htab->glink->output_section->vma);
12742 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
12743 r->r_addend = plt0;
12744 }
12745 p = htab->glink->contents;
12746 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
12747 bfd_put_64 (htab->glink->owner, plt0, p);
12748 p += 8;
12749 if (htab->opd_abi)
12750 {
12751 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
12752 p += 4;
12753 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12754 p += 4;
12755 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12756 p += 4;
12757 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12758 p += 4;
12759 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
12760 p += 4;
12761 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12762 p += 4;
12763 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12764 p += 4;
12765 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
12766 p += 4;
12767 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12768 p += 4;
12769 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
12770 p += 4;
12771 }
12772 else
12773 {
12774 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
12775 p += 4;
12776 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12777 p += 4;
12778 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12779 p += 4;
12780 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12781 p += 4;
12782 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
12783 p += 4;
12784 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
12785 p += 4;
12786 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12787 p += 4;
12788 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
12789 p += 4;
12790 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12791 p += 4;
12792 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
12793 p += 4;
12794 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12795 p += 4;
12796 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
12797 p += 4;
12798 }
12799 bfd_put_32 (htab->glink->owner, BCTR, p);
12800 p += 4;
12801 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
12802 {
12803 bfd_put_32 (htab->glink->owner, NOP, p);
12804 p += 4;
12805 }
12806
12807 /* Build the .glink lazy link call stubs. */
12808 indx = 0;
12809 while (p < htab->glink->contents + htab->glink->rawsize)
12810 {
12811 if (htab->opd_abi)
12812 {
12813 if (indx < 0x8000)
12814 {
12815 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
12816 p += 4;
12817 }
12818 else
12819 {
12820 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
12821 p += 4;
12822 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
12823 p);
12824 p += 4;
12825 }
12826 }
12827 bfd_put_32 (htab->glink->owner,
12828 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
12829 indx++;
12830 p += 4;
12831 }
12832
12833 /* Build .glink global entry stubs. */
12834 if (htab->glink->size > htab->glink->rawsize)
12835 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs, info);
12836 }
12837
12838 if (htab->brlt != NULL && htab->brlt->size != 0)
12839 {
12840 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
12841 htab->brlt->size);
12842 if (htab->brlt->contents == NULL)
12843 return FALSE;
12844 }
12845 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
12846 {
12847 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
12848 htab->relbrlt->size);
12849 if (htab->relbrlt->contents == NULL)
12850 return FALSE;
12851 }
12852
12853 /* Build the stubs as directed by the stub hash table. */
12854 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12855
12856 if (htab->relbrlt != NULL)
12857 htab->relbrlt->reloc_count = 0;
12858
12859 if (htab->params->plt_stub_align != 0)
12860 for (stub_sec = htab->params->stub_bfd->sections;
12861 stub_sec != NULL;
12862 stub_sec = stub_sec->next)
12863 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12864 stub_sec->size = ((stub_sec->size
12865 + (1 << htab->params->plt_stub_align) - 1)
12866 & (-1 << htab->params->plt_stub_align));
12867
12868 for (stub_sec = htab->params->stub_bfd->sections;
12869 stub_sec != NULL;
12870 stub_sec = stub_sec->next)
12871 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12872 {
12873 stub_sec_count += 1;
12874 if (stub_sec->rawsize != stub_sec->size)
12875 break;
12876 }
12877
12878 /* Note that the glink_eh_frame check here is not only testing that
12879 the generated size matched the calculated size but also that
12880 bfd_elf_discard_info didn't make any changes to the section. */
12881 if (stub_sec != NULL
12882 || (htab->glink_eh_frame != NULL
12883 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12884 {
12885 htab->stub_error = TRUE;
12886 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12887 }
12888
12889 if (htab->stub_error)
12890 return FALSE;
12891
12892 if (stats != NULL)
12893 {
12894 *stats = bfd_malloc (500);
12895 if (*stats == NULL)
12896 return FALSE;
12897
12898 sprintf (*stats, _("linker stubs in %u group%s\n"
12899 " branch %lu\n"
12900 " toc adjust %lu\n"
12901 " long branch %lu\n"
12902 " long toc adj %lu\n"
12903 " plt call %lu\n"
12904 " plt call toc %lu\n"
12905 " global entry %lu"),
12906 stub_sec_count,
12907 stub_sec_count == 1 ? "" : "s",
12908 htab->stub_count[ppc_stub_long_branch - 1],
12909 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12910 htab->stub_count[ppc_stub_plt_branch - 1],
12911 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12912 htab->stub_count[ppc_stub_plt_call - 1],
12913 htab->stub_count[ppc_stub_plt_call_r2save - 1],
12914 htab->stub_count[ppc_stub_global_entry - 1]);
12915 }
12916 return TRUE;
12917 }
12918
12919 /* This function undoes the changes made by add_symbol_adjust. */
12920
12921 static bfd_boolean
12922 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12923 {
12924 struct ppc_link_hash_entry *eh;
12925
12926 if (h->root.type == bfd_link_hash_indirect)
12927 return TRUE;
12928
12929 eh = (struct ppc_link_hash_entry *) h;
12930 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12931 return TRUE;
12932
12933 eh->elf.root.type = bfd_link_hash_undefined;
12934 return TRUE;
12935 }
12936
12937 void
12938 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12939 {
12940 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12941
12942 if (htab != NULL)
12943 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12944 }
12945
12946 /* What to do when ld finds relocations against symbols defined in
12947 discarded sections. */
12948
12949 static unsigned int
12950 ppc64_elf_action_discarded (asection *sec)
12951 {
12952 if (strcmp (".opd", sec->name) == 0)
12953 return 0;
12954
12955 if (strcmp (".toc", sec->name) == 0)
12956 return 0;
12957
12958 if (strcmp (".toc1", sec->name) == 0)
12959 return 0;
12960
12961 return _bfd_elf_default_action_discarded (sec);
12962 }
12963
12964 /* The RELOCATE_SECTION function is called by the ELF backend linker
12965 to handle the relocations for a section.
12966
12967 The relocs are always passed as Rela structures; if the section
12968 actually uses Rel structures, the r_addend field will always be
12969 zero.
12970
12971 This function is responsible for adjust the section contents as
12972 necessary, and (if using Rela relocs and generating a
12973 relocatable output file) adjusting the reloc addend as
12974 necessary.
12975
12976 This function does not have to worry about setting the reloc
12977 address or the reloc symbol index.
12978
12979 LOCAL_SYMS is a pointer to the swapped in local symbols.
12980
12981 LOCAL_SECTIONS is an array giving the section in the input file
12982 corresponding to the st_shndx field of each local symbol.
12983
12984 The global hash table entry for the global symbols can be found
12985 via elf_sym_hashes (input_bfd).
12986
12987 When generating relocatable output, this function must handle
12988 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12989 going to be the section symbol corresponding to the output
12990 section, which means that the addend must be adjusted
12991 accordingly. */
12992
12993 static bfd_boolean
12994 ppc64_elf_relocate_section (bfd *output_bfd,
12995 struct bfd_link_info *info,
12996 bfd *input_bfd,
12997 asection *input_section,
12998 bfd_byte *contents,
12999 Elf_Internal_Rela *relocs,
13000 Elf_Internal_Sym *local_syms,
13001 asection **local_sections)
13002 {
13003 struct ppc_link_hash_table *htab;
13004 Elf_Internal_Shdr *symtab_hdr;
13005 struct elf_link_hash_entry **sym_hashes;
13006 Elf_Internal_Rela *rel;
13007 Elf_Internal_Rela *relend;
13008 Elf_Internal_Rela outrel;
13009 bfd_byte *loc;
13010 struct got_entry **local_got_ents;
13011 bfd_vma TOCstart;
13012 bfd_boolean ret = TRUE;
13013 bfd_boolean is_opd;
13014 /* Assume 'at' branch hints. */
13015 bfd_boolean is_isa_v2 = TRUE;
13016 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
13017
13018 /* Initialize howto table if needed. */
13019 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
13020 ppc_howto_init ();
13021
13022 htab = ppc_hash_table (info);
13023 if (htab == NULL)
13024 return FALSE;
13025
13026 /* Don't relocate stub sections. */
13027 if (input_section->owner == htab->params->stub_bfd)
13028 return TRUE;
13029
13030 BFD_ASSERT (is_ppc64_elf (input_bfd));
13031
13032 local_got_ents = elf_local_got_ents (input_bfd);
13033 TOCstart = elf_gp (output_bfd);
13034 symtab_hdr = &elf_symtab_hdr (input_bfd);
13035 sym_hashes = elf_sym_hashes (input_bfd);
13036 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
13037
13038 rel = relocs;
13039 relend = relocs + input_section->reloc_count;
13040 for (; rel < relend; rel++)
13041 {
13042 enum elf_ppc64_reloc_type r_type;
13043 bfd_vma addend;
13044 bfd_reloc_status_type r;
13045 Elf_Internal_Sym *sym;
13046 asection *sec;
13047 struct elf_link_hash_entry *h_elf;
13048 struct ppc_link_hash_entry *h;
13049 struct ppc_link_hash_entry *fdh;
13050 const char *sym_name;
13051 unsigned long r_symndx, toc_symndx;
13052 bfd_vma toc_addend;
13053 unsigned char tls_mask, tls_gd, tls_type;
13054 unsigned char sym_type;
13055 bfd_vma relocation;
13056 bfd_boolean unresolved_reloc;
13057 bfd_boolean warned;
13058 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
13059 unsigned int insn;
13060 unsigned int mask;
13061 struct ppc_stub_hash_entry *stub_entry;
13062 bfd_vma max_br_offset;
13063 bfd_vma from;
13064 const Elf_Internal_Rela orig_rel = *rel;
13065 reloc_howto_type *howto;
13066 struct reloc_howto_struct alt_howto;
13067
13068 r_type = ELF64_R_TYPE (rel->r_info);
13069 r_symndx = ELF64_R_SYM (rel->r_info);
13070
13071 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
13072 symbol of the previous ADDR64 reloc. The symbol gives us the
13073 proper TOC base to use. */
13074 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
13075 && rel != relocs
13076 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
13077 && is_opd)
13078 r_symndx = ELF64_R_SYM (rel[-1].r_info);
13079
13080 sym = NULL;
13081 sec = NULL;
13082 h_elf = NULL;
13083 sym_name = NULL;
13084 unresolved_reloc = FALSE;
13085 warned = FALSE;
13086
13087 if (r_symndx < symtab_hdr->sh_info)
13088 {
13089 /* It's a local symbol. */
13090 struct _opd_sec_data *opd;
13091
13092 sym = local_syms + r_symndx;
13093 sec = local_sections[r_symndx];
13094 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
13095 sym_type = ELF64_ST_TYPE (sym->st_info);
13096 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13097 opd = get_opd_info (sec);
13098 if (opd != NULL && opd->adjust != NULL)
13099 {
13100 long adjust = opd->adjust[OPD_NDX (sym->st_value
13101 + rel->r_addend)];
13102 if (adjust == -1)
13103 relocation = 0;
13104 else
13105 {
13106 /* If this is a relocation against the opd section sym
13107 and we have edited .opd, adjust the reloc addend so
13108 that ld -r and ld --emit-relocs output is correct.
13109 If it is a reloc against some other .opd symbol,
13110 then the symbol value will be adjusted later. */
13111 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13112 rel->r_addend += adjust;
13113 else
13114 relocation += adjust;
13115 }
13116 }
13117 }
13118 else
13119 {
13120 bfd_boolean ignored;
13121
13122 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13123 r_symndx, symtab_hdr, sym_hashes,
13124 h_elf, sec, relocation,
13125 unresolved_reloc, warned, ignored);
13126 sym_name = h_elf->root.root.string;
13127 sym_type = h_elf->type;
13128 if (sec != NULL
13129 && sec->owner == output_bfd
13130 && strcmp (sec->name, ".opd") == 0)
13131 {
13132 /* This is a symbol defined in a linker script. All
13133 such are defined in output sections, even those
13134 defined by simple assignment from a symbol defined in
13135 an input section. Transfer the symbol to an
13136 appropriate input .opd section, so that a branch to
13137 this symbol will be mapped to the location specified
13138 by the opd entry. */
13139 struct bfd_link_order *lo;
13140 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
13141 if (lo->type == bfd_indirect_link_order)
13142 {
13143 asection *isec = lo->u.indirect.section;
13144 if (h_elf->root.u.def.value >= isec->output_offset
13145 && h_elf->root.u.def.value < (isec->output_offset
13146 + isec->size))
13147 {
13148 h_elf->root.u.def.value -= isec->output_offset;
13149 h_elf->root.u.def.section = isec;
13150 sec = isec;
13151 break;
13152 }
13153 }
13154 }
13155 }
13156 h = (struct ppc_link_hash_entry *) h_elf;
13157
13158 if (sec != NULL && discarded_section (sec))
13159 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13160 rel, 1, relend,
13161 ppc64_elf_howto_table[r_type], 0,
13162 contents);
13163
13164 if (info->relocatable)
13165 continue;
13166
13167 if (h != NULL && &h->elf == htab->elf.hgot)
13168 {
13169 relocation = (TOCstart
13170 + htab->stub_group[input_section->id].toc_off);
13171 sec = bfd_abs_section_ptr;
13172 unresolved_reloc = FALSE;
13173 }
13174
13175 /* TLS optimizations. Replace instruction sequences and relocs
13176 based on information we collected in tls_optimize. We edit
13177 RELOCS so that --emit-relocs will output something sensible
13178 for the final instruction stream. */
13179 tls_mask = 0;
13180 tls_gd = 0;
13181 toc_symndx = 0;
13182 if (h != NULL)
13183 tls_mask = h->tls_mask;
13184 else if (local_got_ents != NULL)
13185 {
13186 struct plt_entry **local_plt = (struct plt_entry **)
13187 (local_got_ents + symtab_hdr->sh_info);
13188 unsigned char *lgot_masks = (unsigned char *)
13189 (local_plt + symtab_hdr->sh_info);
13190 tls_mask = lgot_masks[r_symndx];
13191 }
13192 if (tls_mask == 0
13193 && (r_type == R_PPC64_TLS
13194 || r_type == R_PPC64_TLSGD
13195 || r_type == R_PPC64_TLSLD))
13196 {
13197 /* Check for toc tls entries. */
13198 unsigned char *toc_tls;
13199
13200 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13201 &local_syms, rel, input_bfd))
13202 return FALSE;
13203
13204 if (toc_tls)
13205 tls_mask = *toc_tls;
13206 }
13207
13208 /* Check that tls relocs are used with tls syms, and non-tls
13209 relocs are used with non-tls syms. */
13210 if (r_symndx != STN_UNDEF
13211 && r_type != R_PPC64_NONE
13212 && (h == NULL
13213 || h->elf.root.type == bfd_link_hash_defined
13214 || h->elf.root.type == bfd_link_hash_defweak)
13215 && (IS_PPC64_TLS_RELOC (r_type)
13216 != (sym_type == STT_TLS
13217 || (sym_type == STT_SECTION
13218 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
13219 {
13220 if (tls_mask != 0
13221 && (r_type == R_PPC64_TLS
13222 || r_type == R_PPC64_TLSGD
13223 || r_type == R_PPC64_TLSLD))
13224 /* R_PPC64_TLS is OK against a symbol in the TOC. */
13225 ;
13226 else
13227 info->callbacks->einfo
13228 (!IS_PPC64_TLS_RELOC (r_type)
13229 ? _("%P: %H: %s used with TLS symbol `%T'\n")
13230 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
13231 input_bfd, input_section, rel->r_offset,
13232 ppc64_elf_howto_table[r_type]->name,
13233 sym_name);
13234 }
13235
13236 /* Ensure reloc mapping code below stays sane. */
13237 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
13238 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
13239 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
13240 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
13241 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
13242 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
13243 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
13244 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
13245 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
13246 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
13247 abort ();
13248
13249 switch (r_type)
13250 {
13251 default:
13252 break;
13253
13254 case R_PPC64_LO_DS_OPT:
13255 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13256 if ((insn & (0x3f << 26)) != 58u << 26)
13257 abort ();
13258 insn += (14u << 26) - (58u << 26);
13259 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13260 r_type = R_PPC64_TOC16_LO;
13261 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13262 break;
13263
13264 case R_PPC64_TOC16:
13265 case R_PPC64_TOC16_LO:
13266 case R_PPC64_TOC16_DS:
13267 case R_PPC64_TOC16_LO_DS:
13268 {
13269 /* Check for toc tls entries. */
13270 unsigned char *toc_tls;
13271 int retval;
13272
13273 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13274 &local_syms, rel, input_bfd);
13275 if (retval == 0)
13276 return FALSE;
13277
13278 if (toc_tls)
13279 {
13280 tls_mask = *toc_tls;
13281 if (r_type == R_PPC64_TOC16_DS
13282 || r_type == R_PPC64_TOC16_LO_DS)
13283 {
13284 if (tls_mask != 0
13285 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
13286 goto toctprel;
13287 }
13288 else
13289 {
13290 /* If we found a GD reloc pair, then we might be
13291 doing a GD->IE transition. */
13292 if (retval == 2)
13293 {
13294 tls_gd = TLS_TPRELGD;
13295 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13296 goto tls_ldgd_opt;
13297 }
13298 else if (retval == 3)
13299 {
13300 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13301 goto tls_ldgd_opt;
13302 }
13303 }
13304 }
13305 }
13306 break;
13307
13308 case R_PPC64_GOT_TPREL16_HI:
13309 case R_PPC64_GOT_TPREL16_HA:
13310 if (tls_mask != 0
13311 && (tls_mask & TLS_TPREL) == 0)
13312 {
13313 rel->r_offset -= d_offset;
13314 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13315 r_type = R_PPC64_NONE;
13316 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13317 }
13318 break;
13319
13320 case R_PPC64_GOT_TPREL16_DS:
13321 case R_PPC64_GOT_TPREL16_LO_DS:
13322 if (tls_mask != 0
13323 && (tls_mask & TLS_TPREL) == 0)
13324 {
13325 toctprel:
13326 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13327 insn &= 31 << 21;
13328 insn |= 0x3c0d0000; /* addis 0,13,0 */
13329 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13330 r_type = R_PPC64_TPREL16_HA;
13331 if (toc_symndx != 0)
13332 {
13333 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13334 rel->r_addend = toc_addend;
13335 /* We changed the symbol. Start over in order to
13336 get h, sym, sec etc. right. */
13337 rel--;
13338 continue;
13339 }
13340 else
13341 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13342 }
13343 break;
13344
13345 case R_PPC64_TLS:
13346 if (tls_mask != 0
13347 && (tls_mask & TLS_TPREL) == 0)
13348 {
13349 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
13350 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
13351 if (insn == 0)
13352 abort ();
13353 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13354 /* Was PPC64_TLS which sits on insn boundary, now
13355 PPC64_TPREL16_LO which is at low-order half-word. */
13356 rel->r_offset += d_offset;
13357 r_type = R_PPC64_TPREL16_LO;
13358 if (toc_symndx != 0)
13359 {
13360 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13361 rel->r_addend = toc_addend;
13362 /* We changed the symbol. Start over in order to
13363 get h, sym, sec etc. right. */
13364 rel--;
13365 continue;
13366 }
13367 else
13368 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13369 }
13370 break;
13371
13372 case R_PPC64_GOT_TLSGD16_HI:
13373 case R_PPC64_GOT_TLSGD16_HA:
13374 tls_gd = TLS_TPRELGD;
13375 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13376 goto tls_gdld_hi;
13377 break;
13378
13379 case R_PPC64_GOT_TLSLD16_HI:
13380 case R_PPC64_GOT_TLSLD16_HA:
13381 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13382 {
13383 tls_gdld_hi:
13384 if ((tls_mask & tls_gd) != 0)
13385 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13386 + R_PPC64_GOT_TPREL16_DS);
13387 else
13388 {
13389 rel->r_offset -= d_offset;
13390 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13391 r_type = R_PPC64_NONE;
13392 }
13393 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13394 }
13395 break;
13396
13397 case R_PPC64_GOT_TLSGD16:
13398 case R_PPC64_GOT_TLSGD16_LO:
13399 tls_gd = TLS_TPRELGD;
13400 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13401 goto tls_ldgd_opt;
13402 break;
13403
13404 case R_PPC64_GOT_TLSLD16:
13405 case R_PPC64_GOT_TLSLD16_LO:
13406 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13407 {
13408 unsigned int insn1, insn2, insn3;
13409 bfd_vma offset;
13410
13411 tls_ldgd_opt:
13412 offset = (bfd_vma) -1;
13413 /* If not using the newer R_PPC64_TLSGD/LD to mark
13414 __tls_get_addr calls, we must trust that the call
13415 stays with its arg setup insns, ie. that the next
13416 reloc is the __tls_get_addr call associated with
13417 the current reloc. Edit both insns. */
13418 if (input_section->has_tls_get_addr_call
13419 && rel + 1 < relend
13420 && branch_reloc_hash_match (input_bfd, rel + 1,
13421 htab->tls_get_addr,
13422 htab->tls_get_addr_fd))
13423 offset = rel[1].r_offset;
13424 /* We read the low GOT_TLS (or TOC16) insn because we
13425 need to keep the destination reg. It may be
13426 something other than the usual r3, and moved to r3
13427 before the call by intervening code. */
13428 insn1 = bfd_get_32 (output_bfd,
13429 contents + rel->r_offset - d_offset);
13430 if ((tls_mask & tls_gd) != 0)
13431 {
13432 /* IE */
13433 insn1 &= (0x1f << 21) | (0x1f << 16);
13434 insn1 |= 58 << 26; /* ld */
13435 insn2 = 0x7c636a14; /* add 3,3,13 */
13436 if (offset != (bfd_vma) -1)
13437 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13438 if ((tls_mask & TLS_EXPLICIT) == 0)
13439 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13440 + R_PPC64_GOT_TPREL16_DS);
13441 else
13442 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
13443 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13444 }
13445 else
13446 {
13447 /* LE */
13448 insn1 &= 0x1f << 21;
13449 insn1 |= 0x3c0d0000; /* addis r,13,0 */
13450 insn2 = 0x38630000; /* addi 3,3,0 */
13451 if (tls_gd == 0)
13452 {
13453 /* Was an LD reloc. */
13454 if (toc_symndx)
13455 sec = local_sections[toc_symndx];
13456 for (r_symndx = 0;
13457 r_symndx < symtab_hdr->sh_info;
13458 r_symndx++)
13459 if (local_sections[r_symndx] == sec)
13460 break;
13461 if (r_symndx >= symtab_hdr->sh_info)
13462 r_symndx = STN_UNDEF;
13463 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13464 if (r_symndx != STN_UNDEF)
13465 rel->r_addend -= (local_syms[r_symndx].st_value
13466 + sec->output_offset
13467 + sec->output_section->vma);
13468 }
13469 else if (toc_symndx != 0)
13470 {
13471 r_symndx = toc_symndx;
13472 rel->r_addend = toc_addend;
13473 }
13474 r_type = R_PPC64_TPREL16_HA;
13475 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13476 if (offset != (bfd_vma) -1)
13477 {
13478 rel[1].r_info = ELF64_R_INFO (r_symndx,
13479 R_PPC64_TPREL16_LO);
13480 rel[1].r_offset = offset + d_offset;
13481 rel[1].r_addend = rel->r_addend;
13482 }
13483 }
13484 bfd_put_32 (output_bfd, insn1,
13485 contents + rel->r_offset - d_offset);
13486 if (offset != (bfd_vma) -1)
13487 {
13488 insn3 = bfd_get_32 (output_bfd,
13489 contents + offset + 4);
13490 if (insn3 == NOP
13491 || insn3 == CROR_151515 || insn3 == CROR_313131)
13492 {
13493 rel[1].r_offset += 4;
13494 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13495 insn2 = NOP;
13496 }
13497 bfd_put_32 (output_bfd, insn2, contents + offset);
13498 }
13499 if ((tls_mask & tls_gd) == 0
13500 && (tls_gd == 0 || toc_symndx != 0))
13501 {
13502 /* We changed the symbol. Start over in order
13503 to get h, sym, sec etc. right. */
13504 rel--;
13505 continue;
13506 }
13507 }
13508 break;
13509
13510 case R_PPC64_TLSGD:
13511 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13512 {
13513 unsigned int insn2, insn3;
13514 bfd_vma offset = rel->r_offset;
13515
13516 if ((tls_mask & TLS_TPRELGD) != 0)
13517 {
13518 /* IE */
13519 r_type = R_PPC64_NONE;
13520 insn2 = 0x7c636a14; /* add 3,3,13 */
13521 }
13522 else
13523 {
13524 /* LE */
13525 if (toc_symndx != 0)
13526 {
13527 r_symndx = toc_symndx;
13528 rel->r_addend = toc_addend;
13529 }
13530 r_type = R_PPC64_TPREL16_LO;
13531 rel->r_offset = offset + d_offset;
13532 insn2 = 0x38630000; /* addi 3,3,0 */
13533 }
13534 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13535 /* Zap the reloc on the _tls_get_addr call too. */
13536 BFD_ASSERT (offset == rel[1].r_offset);
13537 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13538 insn3 = bfd_get_32 (output_bfd,
13539 contents + offset + 4);
13540 if (insn3 == NOP
13541 || insn3 == CROR_151515 || insn3 == CROR_313131)
13542 {
13543 rel->r_offset += 4;
13544 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13545 insn2 = NOP;
13546 }
13547 bfd_put_32 (output_bfd, insn2, contents + offset);
13548 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
13549 {
13550 rel--;
13551 continue;
13552 }
13553 }
13554 break;
13555
13556 case R_PPC64_TLSLD:
13557 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13558 {
13559 unsigned int insn2, insn3;
13560 bfd_vma offset = rel->r_offset;
13561
13562 if (toc_symndx)
13563 sec = local_sections[toc_symndx];
13564 for (r_symndx = 0;
13565 r_symndx < symtab_hdr->sh_info;
13566 r_symndx++)
13567 if (local_sections[r_symndx] == sec)
13568 break;
13569 if (r_symndx >= symtab_hdr->sh_info)
13570 r_symndx = STN_UNDEF;
13571 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13572 if (r_symndx != STN_UNDEF)
13573 rel->r_addend -= (local_syms[r_symndx].st_value
13574 + sec->output_offset
13575 + sec->output_section->vma);
13576
13577 r_type = R_PPC64_TPREL16_LO;
13578 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13579 rel->r_offset = offset + d_offset;
13580 /* Zap the reloc on the _tls_get_addr call too. */
13581 BFD_ASSERT (offset == rel[1].r_offset);
13582 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13583 insn2 = 0x38630000; /* addi 3,3,0 */
13584 insn3 = bfd_get_32 (output_bfd,
13585 contents + offset + 4);
13586 if (insn3 == NOP
13587 || insn3 == CROR_151515 || insn3 == CROR_313131)
13588 {
13589 rel->r_offset += 4;
13590 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13591 insn2 = NOP;
13592 }
13593 bfd_put_32 (output_bfd, insn2, contents + offset);
13594 rel--;
13595 continue;
13596 }
13597 break;
13598
13599 case R_PPC64_DTPMOD64:
13600 if (rel + 1 < relend
13601 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
13602 && rel[1].r_offset == rel->r_offset + 8)
13603 {
13604 if ((tls_mask & TLS_GD) == 0)
13605 {
13606 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
13607 if ((tls_mask & TLS_TPRELGD) != 0)
13608 r_type = R_PPC64_TPREL64;
13609 else
13610 {
13611 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13612 r_type = R_PPC64_NONE;
13613 }
13614 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13615 }
13616 }
13617 else
13618 {
13619 if ((tls_mask & TLS_LD) == 0)
13620 {
13621 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13622 r_type = R_PPC64_NONE;
13623 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13624 }
13625 }
13626 break;
13627
13628 case R_PPC64_TPREL64:
13629 if ((tls_mask & TLS_TPREL) == 0)
13630 {
13631 r_type = R_PPC64_NONE;
13632 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13633 }
13634 break;
13635
13636 case R_PPC64_REL16_HA:
13637 /* If we are generating a non-PIC executable, edit
13638 . 0: addis 2,12,.TOC.-0b@ha
13639 . addi 2,2,.TOC.-0b@l
13640 used by ELFv2 global entry points to set up r2, to
13641 . lis 2,.TOC.@ha
13642 . addi 2,2,.TOC.@l
13643 if .TOC. is in range. */
13644 if (!info->shared
13645 && !info->traditional_format
13646 && h != NULL && &h->elf == htab->elf.hgot
13647 && rel + 1 < relend
13648 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
13649 && rel[1].r_offset == rel->r_offset + 4
13650 && rel[1].r_addend == rel->r_addend + 4
13651 && relocation + 0x80008000 <= 0xffffffff)
13652 {
13653 unsigned int insn1, insn2;
13654 bfd_vma offset = rel->r_offset - d_offset;
13655 insn1 = bfd_get_32 (output_bfd, contents + offset);
13656 insn2 = bfd_get_32 (output_bfd, contents + offset + 4);
13657 if ((insn1 & 0xffff0000) == 0x3c4c0000 /* addis 2,12 */
13658 && (insn2 & 0xffff0000) == 0x38420000 /* addi 2,2 */)
13659 {
13660 r_type = R_PPC64_ADDR16_HA;
13661 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13662 rel->r_addend -= d_offset;
13663 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
13664 rel[1].r_addend -= d_offset + 4;
13665 bfd_put_32 (output_bfd, 0x3c400000, contents + offset);
13666 }
13667 }
13668 break;
13669 }
13670
13671 /* Handle other relocations that tweak non-addend part of insn. */
13672 insn = 0;
13673 max_br_offset = 1 << 25;
13674 addend = rel->r_addend;
13675 reloc_dest = DEST_NORMAL;
13676 switch (r_type)
13677 {
13678 default:
13679 break;
13680
13681 case R_PPC64_TOCSAVE:
13682 if (relocation + addend == (rel->r_offset
13683 + input_section->output_offset
13684 + input_section->output_section->vma)
13685 && tocsave_find (htab, NO_INSERT,
13686 &local_syms, rel, input_bfd))
13687 {
13688 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
13689 if (insn == NOP
13690 || insn == CROR_151515 || insn == CROR_313131)
13691 bfd_put_32 (input_bfd,
13692 STD_R2_0R1 + STK_TOC (htab),
13693 contents + rel->r_offset);
13694 }
13695 break;
13696
13697 /* Branch taken prediction relocations. */
13698 case R_PPC64_ADDR14_BRTAKEN:
13699 case R_PPC64_REL14_BRTAKEN:
13700 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
13701 /* Fall thru. */
13702
13703 /* Branch not taken prediction relocations. */
13704 case R_PPC64_ADDR14_BRNTAKEN:
13705 case R_PPC64_REL14_BRNTAKEN:
13706 insn |= bfd_get_32 (output_bfd,
13707 contents + rel->r_offset) & ~(0x01 << 21);
13708 /* Fall thru. */
13709
13710 case R_PPC64_REL14:
13711 max_br_offset = 1 << 15;
13712 /* Fall thru. */
13713
13714 case R_PPC64_REL24:
13715 /* Calls to functions with a different TOC, such as calls to
13716 shared objects, need to alter the TOC pointer. This is
13717 done using a linkage stub. A REL24 branching to these
13718 linkage stubs needs to be followed by a nop, as the nop
13719 will be replaced with an instruction to restore the TOC
13720 base pointer. */
13721 fdh = h;
13722 if (h != NULL
13723 && h->oh != NULL
13724 && h->oh->is_func_descriptor)
13725 fdh = ppc_follow_link (h->oh);
13726 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
13727 htab);
13728 if (stub_entry != NULL
13729 && (stub_entry->stub_type == ppc_stub_plt_call
13730 || stub_entry->stub_type == ppc_stub_plt_call_r2save
13731 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
13732 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
13733 {
13734 bfd_boolean can_plt_call = FALSE;
13735
13736 /* All of these stubs will modify r2, so there must be a
13737 branch and link followed by a nop. The nop is
13738 replaced by an insn to restore r2. */
13739 if (rel->r_offset + 8 <= input_section->size)
13740 {
13741 unsigned long br;
13742
13743 br = bfd_get_32 (input_bfd,
13744 contents + rel->r_offset);
13745 if ((br & 1) != 0)
13746 {
13747 unsigned long nop;
13748
13749 nop = bfd_get_32 (input_bfd,
13750 contents + rel->r_offset + 4);
13751 if (nop == NOP
13752 || nop == CROR_151515 || nop == CROR_313131)
13753 {
13754 if (h != NULL
13755 && (h == htab->tls_get_addr_fd
13756 || h == htab->tls_get_addr)
13757 && !htab->params->no_tls_get_addr_opt)
13758 {
13759 /* Special stub used, leave nop alone. */
13760 }
13761 else
13762 bfd_put_32 (input_bfd,
13763 LD_R2_0R1 + STK_TOC (htab),
13764 contents + rel->r_offset + 4);
13765 can_plt_call = TRUE;
13766 }
13767 }
13768 }
13769
13770 if (!can_plt_call && h != NULL)
13771 {
13772 const char *name = h->elf.root.root.string;
13773
13774 if (*name == '.')
13775 ++name;
13776
13777 if (strncmp (name, "__libc_start_main", 17) == 0
13778 && (name[17] == 0 || name[17] == '@'))
13779 {
13780 /* Allow crt1 branch to go via a toc adjusting
13781 stub. Other calls that never return could do
13782 the same, if we could detect such. */
13783 can_plt_call = TRUE;
13784 }
13785 }
13786
13787 if (!can_plt_call)
13788 {
13789 /* g++ as of 20130507 emits self-calls without a
13790 following nop. This is arguably wrong since we
13791 have conflicting information. On the one hand a
13792 global symbol and on the other a local call
13793 sequence, but don't error for this special case.
13794 It isn't possible to cheaply verify we have
13795 exactly such a call. Allow all calls to the same
13796 section. */
13797 asection *code_sec = sec;
13798
13799 if (get_opd_info (sec) != NULL)
13800 {
13801 bfd_vma off = (relocation + addend
13802 - sec->output_section->vma
13803 - sec->output_offset);
13804
13805 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
13806 }
13807 if (code_sec == input_section)
13808 can_plt_call = TRUE;
13809 }
13810
13811 if (!can_plt_call)
13812 {
13813 if (stub_entry->stub_type == ppc_stub_plt_call
13814 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13815 info->callbacks->einfo
13816 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13817 "recompile with -fPIC\n"),
13818 input_bfd, input_section, rel->r_offset, sym_name);
13819 else
13820 info->callbacks->einfo
13821 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13822 "(-mcmodel=small toc adjust stub)\n"),
13823 input_bfd, input_section, rel->r_offset, sym_name);
13824
13825 bfd_set_error (bfd_error_bad_value);
13826 ret = FALSE;
13827 }
13828
13829 if (can_plt_call
13830 && (stub_entry->stub_type == ppc_stub_plt_call
13831 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
13832 unresolved_reloc = FALSE;
13833 }
13834
13835 if ((stub_entry == NULL
13836 || stub_entry->stub_type == ppc_stub_long_branch
13837 || stub_entry->stub_type == ppc_stub_plt_branch)
13838 && get_opd_info (sec) != NULL)
13839 {
13840 /* The branch destination is the value of the opd entry. */
13841 bfd_vma off = (relocation + addend
13842 - sec->output_section->vma
13843 - sec->output_offset);
13844 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
13845 if (dest != (bfd_vma) -1)
13846 {
13847 relocation = dest;
13848 addend = 0;
13849 reloc_dest = DEST_OPD;
13850 }
13851 }
13852
13853 /* If the branch is out of reach we ought to have a long
13854 branch stub. */
13855 from = (rel->r_offset
13856 + input_section->output_offset
13857 + input_section->output_section->vma);
13858
13859 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
13860 ? fdh->elf.other
13861 : sym->st_other);
13862
13863 if (stub_entry != NULL
13864 && (stub_entry->stub_type == ppc_stub_long_branch
13865 || stub_entry->stub_type == ppc_stub_plt_branch)
13866 && (r_type == R_PPC64_ADDR14_BRTAKEN
13867 || r_type == R_PPC64_ADDR14_BRNTAKEN
13868 || (relocation + addend - from + max_br_offset
13869 < 2 * max_br_offset)))
13870 /* Don't use the stub if this branch is in range. */
13871 stub_entry = NULL;
13872
13873 if (stub_entry != NULL)
13874 {
13875 /* Munge up the value and addend so that we call the stub
13876 rather than the procedure directly. */
13877 relocation = (stub_entry->stub_offset
13878 + stub_entry->stub_sec->output_offset
13879 + stub_entry->stub_sec->output_section->vma);
13880 addend = 0;
13881 reloc_dest = DEST_STUB;
13882
13883 if ((stub_entry->stub_type == ppc_stub_plt_call
13884 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13885 && (ALWAYS_EMIT_R2SAVE
13886 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13887 && rel + 1 < relend
13888 && rel[1].r_offset == rel->r_offset + 4
13889 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13890 relocation += 4;
13891 }
13892
13893 if (insn != 0)
13894 {
13895 if (is_isa_v2)
13896 {
13897 /* Set 'a' bit. This is 0b00010 in BO field for branch
13898 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13899 for branch on CTR insns (BO == 1a00t or 1a01t). */
13900 if ((insn & (0x14 << 21)) == (0x04 << 21))
13901 insn |= 0x02 << 21;
13902 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13903 insn |= 0x08 << 21;
13904 else
13905 break;
13906 }
13907 else
13908 {
13909 /* Invert 'y' bit if not the default. */
13910 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13911 insn ^= 0x01 << 21;
13912 }
13913
13914 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13915 }
13916
13917 /* NOP out calls to undefined weak functions.
13918 We can thus call a weak function without first
13919 checking whether the function is defined. */
13920 else if (h != NULL
13921 && h->elf.root.type == bfd_link_hash_undefweak
13922 && h->elf.dynindx == -1
13923 && r_type == R_PPC64_REL24
13924 && relocation == 0
13925 && addend == 0)
13926 {
13927 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13928 continue;
13929 }
13930 break;
13931 }
13932
13933 /* Set `addend'. */
13934 tls_type = 0;
13935 switch (r_type)
13936 {
13937 default:
13938 info->callbacks->einfo
13939 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13940 input_bfd, (int) r_type, sym_name);
13941
13942 bfd_set_error (bfd_error_bad_value);
13943 ret = FALSE;
13944 continue;
13945
13946 case R_PPC64_NONE:
13947 case R_PPC64_TLS:
13948 case R_PPC64_TLSGD:
13949 case R_PPC64_TLSLD:
13950 case R_PPC64_TOCSAVE:
13951 case R_PPC64_GNU_VTINHERIT:
13952 case R_PPC64_GNU_VTENTRY:
13953 continue;
13954
13955 /* GOT16 relocations. Like an ADDR16 using the symbol's
13956 address in the GOT as relocation value instead of the
13957 symbol's value itself. Also, create a GOT entry for the
13958 symbol and put the symbol value there. */
13959 case R_PPC64_GOT_TLSGD16:
13960 case R_PPC64_GOT_TLSGD16_LO:
13961 case R_PPC64_GOT_TLSGD16_HI:
13962 case R_PPC64_GOT_TLSGD16_HA:
13963 tls_type = TLS_TLS | TLS_GD;
13964 goto dogot;
13965
13966 case R_PPC64_GOT_TLSLD16:
13967 case R_PPC64_GOT_TLSLD16_LO:
13968 case R_PPC64_GOT_TLSLD16_HI:
13969 case R_PPC64_GOT_TLSLD16_HA:
13970 tls_type = TLS_TLS | TLS_LD;
13971 goto dogot;
13972
13973 case R_PPC64_GOT_TPREL16_DS:
13974 case R_PPC64_GOT_TPREL16_LO_DS:
13975 case R_PPC64_GOT_TPREL16_HI:
13976 case R_PPC64_GOT_TPREL16_HA:
13977 tls_type = TLS_TLS | TLS_TPREL;
13978 goto dogot;
13979
13980 case R_PPC64_GOT_DTPREL16_DS:
13981 case R_PPC64_GOT_DTPREL16_LO_DS:
13982 case R_PPC64_GOT_DTPREL16_HI:
13983 case R_PPC64_GOT_DTPREL16_HA:
13984 tls_type = TLS_TLS | TLS_DTPREL;
13985 goto dogot;
13986
13987 case R_PPC64_GOT16:
13988 case R_PPC64_GOT16_LO:
13989 case R_PPC64_GOT16_HI:
13990 case R_PPC64_GOT16_HA:
13991 case R_PPC64_GOT16_DS:
13992 case R_PPC64_GOT16_LO_DS:
13993 dogot:
13994 {
13995 /* Relocation is to the entry for this symbol in the global
13996 offset table. */
13997 asection *got;
13998 bfd_vma *offp;
13999 bfd_vma off;
14000 unsigned long indx = 0;
14001 struct got_entry *ent;
14002
14003 if (tls_type == (TLS_TLS | TLS_LD)
14004 && (h == NULL
14005 || !h->elf.def_dynamic))
14006 ent = ppc64_tlsld_got (input_bfd);
14007 else
14008 {
14009
14010 if (h != NULL)
14011 {
14012 bfd_boolean dyn = htab->elf.dynamic_sections_created;
14013 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
14014 &h->elf)
14015 || (info->shared
14016 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
14017 /* This is actually a static link, or it is a
14018 -Bsymbolic link and the symbol is defined
14019 locally, or the symbol was forced to be local
14020 because of a version file. */
14021 ;
14022 else
14023 {
14024 BFD_ASSERT (h->elf.dynindx != -1);
14025 indx = h->elf.dynindx;
14026 unresolved_reloc = FALSE;
14027 }
14028 ent = h->elf.got.glist;
14029 }
14030 else
14031 {
14032 if (local_got_ents == NULL)
14033 abort ();
14034 ent = local_got_ents[r_symndx];
14035 }
14036
14037 for (; ent != NULL; ent = ent->next)
14038 if (ent->addend == orig_rel.r_addend
14039 && ent->owner == input_bfd
14040 && ent->tls_type == tls_type)
14041 break;
14042 }
14043
14044 if (ent == NULL)
14045 abort ();
14046 if (ent->is_indirect)
14047 ent = ent->got.ent;
14048 offp = &ent->got.offset;
14049 got = ppc64_elf_tdata (ent->owner)->got;
14050 if (got == NULL)
14051 abort ();
14052
14053 /* The offset must always be a multiple of 8. We use the
14054 least significant bit to record whether we have already
14055 processed this entry. */
14056 off = *offp;
14057 if ((off & 1) != 0)
14058 off &= ~1;
14059 else
14060 {
14061 /* Generate relocs for the dynamic linker, except in
14062 the case of TLSLD where we'll use one entry per
14063 module. */
14064 asection *relgot;
14065 bfd_boolean ifunc;
14066
14067 *offp = off | 1;
14068 relgot = NULL;
14069 ifunc = (h != NULL
14070 ? h->elf.type == STT_GNU_IFUNC
14071 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
14072 if (ifunc)
14073 relgot = htab->elf.irelplt;
14074 else if ((info->shared || indx != 0)
14075 && (h == NULL
14076 || (tls_type == (TLS_TLS | TLS_LD)
14077 && !h->elf.def_dynamic)
14078 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14079 || h->elf.root.type != bfd_link_hash_undefweak))
14080 relgot = ppc64_elf_tdata (ent->owner)->relgot;
14081 if (relgot != NULL)
14082 {
14083 outrel.r_offset = (got->output_section->vma
14084 + got->output_offset
14085 + off);
14086 outrel.r_addend = addend;
14087 if (tls_type & (TLS_LD | TLS_GD))
14088 {
14089 outrel.r_addend = 0;
14090 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
14091 if (tls_type == (TLS_TLS | TLS_GD))
14092 {
14093 loc = relgot->contents;
14094 loc += (relgot->reloc_count++
14095 * sizeof (Elf64_External_Rela));
14096 bfd_elf64_swap_reloca_out (output_bfd,
14097 &outrel, loc);
14098 outrel.r_offset += 8;
14099 outrel.r_addend = addend;
14100 outrel.r_info
14101 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14102 }
14103 }
14104 else if (tls_type == (TLS_TLS | TLS_DTPREL))
14105 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14106 else if (tls_type == (TLS_TLS | TLS_TPREL))
14107 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
14108 else if (indx != 0)
14109 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
14110 else
14111 {
14112 if (ifunc)
14113 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14114 else
14115 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14116
14117 /* Write the .got section contents for the sake
14118 of prelink. */
14119 loc = got->contents + off;
14120 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
14121 loc);
14122 }
14123
14124 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
14125 {
14126 outrel.r_addend += relocation;
14127 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
14128 {
14129 if (htab->elf.tls_sec == NULL)
14130 outrel.r_addend = 0;
14131 else
14132 outrel.r_addend -= htab->elf.tls_sec->vma;
14133 }
14134 }
14135 loc = relgot->contents;
14136 loc += (relgot->reloc_count++
14137 * sizeof (Elf64_External_Rela));
14138 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14139 }
14140
14141 /* Init the .got section contents here if we're not
14142 emitting a reloc. */
14143 else
14144 {
14145 relocation += addend;
14146 if (tls_type == (TLS_TLS | TLS_LD))
14147 relocation = 1;
14148 else if (tls_type != 0)
14149 {
14150 if (htab->elf.tls_sec == NULL)
14151 relocation = 0;
14152 else
14153 {
14154 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
14155 if (tls_type == (TLS_TLS | TLS_TPREL))
14156 relocation += DTP_OFFSET - TP_OFFSET;
14157 }
14158
14159 if (tls_type == (TLS_TLS | TLS_GD))
14160 {
14161 bfd_put_64 (output_bfd, relocation,
14162 got->contents + off + 8);
14163 relocation = 1;
14164 }
14165 }
14166
14167 bfd_put_64 (output_bfd, relocation,
14168 got->contents + off);
14169 }
14170 }
14171
14172 if (off >= (bfd_vma) -2)
14173 abort ();
14174
14175 relocation = got->output_section->vma + got->output_offset + off;
14176 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
14177 }
14178 break;
14179
14180 case R_PPC64_PLT16_HA:
14181 case R_PPC64_PLT16_HI:
14182 case R_PPC64_PLT16_LO:
14183 case R_PPC64_PLT32:
14184 case R_PPC64_PLT64:
14185 /* Relocation is to the entry for this symbol in the
14186 procedure linkage table. */
14187
14188 /* Resolve a PLT reloc against a local symbol directly,
14189 without using the procedure linkage table. */
14190 if (h == NULL)
14191 break;
14192
14193 /* It's possible that we didn't make a PLT entry for this
14194 symbol. This happens when statically linking PIC code,
14195 or when using -Bsymbolic. Go find a match if there is a
14196 PLT entry. */
14197 if (htab->elf.splt != NULL)
14198 {
14199 struct plt_entry *ent;
14200 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
14201 if (ent->plt.offset != (bfd_vma) -1
14202 && ent->addend == orig_rel.r_addend)
14203 {
14204 relocation = (htab->elf.splt->output_section->vma
14205 + htab->elf.splt->output_offset
14206 + ent->plt.offset);
14207 unresolved_reloc = FALSE;
14208 break;
14209 }
14210 }
14211 break;
14212
14213 case R_PPC64_TOC:
14214 /* Relocation value is TOC base. */
14215 relocation = TOCstart;
14216 if (r_symndx == STN_UNDEF)
14217 relocation += htab->stub_group[input_section->id].toc_off;
14218 else if (unresolved_reloc)
14219 ;
14220 else if (sec != NULL && sec->id <= htab->top_id)
14221 relocation += htab->stub_group[sec->id].toc_off;
14222 else
14223 unresolved_reloc = TRUE;
14224 goto dodyn;
14225
14226 /* TOC16 relocs. We want the offset relative to the TOC base,
14227 which is the address of the start of the TOC plus 0x8000.
14228 The TOC consists of sections .got, .toc, .tocbss, and .plt,
14229 in this order. */
14230 case R_PPC64_TOC16:
14231 case R_PPC64_TOC16_LO:
14232 case R_PPC64_TOC16_HI:
14233 case R_PPC64_TOC16_DS:
14234 case R_PPC64_TOC16_LO_DS:
14235 case R_PPC64_TOC16_HA:
14236 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
14237 break;
14238
14239 /* Relocate against the beginning of the section. */
14240 case R_PPC64_SECTOFF:
14241 case R_PPC64_SECTOFF_LO:
14242 case R_PPC64_SECTOFF_HI:
14243 case R_PPC64_SECTOFF_DS:
14244 case R_PPC64_SECTOFF_LO_DS:
14245 case R_PPC64_SECTOFF_HA:
14246 if (sec != NULL)
14247 addend -= sec->output_section->vma;
14248 break;
14249
14250 case R_PPC64_REL16:
14251 case R_PPC64_REL16_LO:
14252 case R_PPC64_REL16_HI:
14253 case R_PPC64_REL16_HA:
14254 break;
14255
14256 case R_PPC64_REL14:
14257 case R_PPC64_REL14_BRNTAKEN:
14258 case R_PPC64_REL14_BRTAKEN:
14259 case R_PPC64_REL24:
14260 break;
14261
14262 case R_PPC64_TPREL16:
14263 case R_PPC64_TPREL16_LO:
14264 case R_PPC64_TPREL16_HI:
14265 case R_PPC64_TPREL16_HA:
14266 case R_PPC64_TPREL16_DS:
14267 case R_PPC64_TPREL16_LO_DS:
14268 case R_PPC64_TPREL16_HIGH:
14269 case R_PPC64_TPREL16_HIGHA:
14270 case R_PPC64_TPREL16_HIGHER:
14271 case R_PPC64_TPREL16_HIGHERA:
14272 case R_PPC64_TPREL16_HIGHEST:
14273 case R_PPC64_TPREL16_HIGHESTA:
14274 if (h != NULL
14275 && h->elf.root.type == bfd_link_hash_undefweak
14276 && h->elf.dynindx == -1)
14277 {
14278 /* Make this relocation against an undefined weak symbol
14279 resolve to zero. This is really just a tweak, since
14280 code using weak externs ought to check that they are
14281 defined before using them. */
14282 bfd_byte *p = contents + rel->r_offset - d_offset;
14283
14284 insn = bfd_get_32 (output_bfd, p);
14285 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
14286 if (insn != 0)
14287 bfd_put_32 (output_bfd, insn, p);
14288 break;
14289 }
14290 if (htab->elf.tls_sec != NULL)
14291 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14292 if (info->shared)
14293 /* The TPREL16 relocs shouldn't really be used in shared
14294 libs as they will result in DT_TEXTREL being set, but
14295 support them anyway. */
14296 goto dodyn;
14297 break;
14298
14299 case R_PPC64_DTPREL16:
14300 case R_PPC64_DTPREL16_LO:
14301 case R_PPC64_DTPREL16_HI:
14302 case R_PPC64_DTPREL16_HA:
14303 case R_PPC64_DTPREL16_DS:
14304 case R_PPC64_DTPREL16_LO_DS:
14305 case R_PPC64_DTPREL16_HIGH:
14306 case R_PPC64_DTPREL16_HIGHA:
14307 case R_PPC64_DTPREL16_HIGHER:
14308 case R_PPC64_DTPREL16_HIGHERA:
14309 case R_PPC64_DTPREL16_HIGHEST:
14310 case R_PPC64_DTPREL16_HIGHESTA:
14311 if (htab->elf.tls_sec != NULL)
14312 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14313 break;
14314
14315 case R_PPC64_ADDR64_LOCAL:
14316 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
14317 ? h->elf.other
14318 : sym->st_other);
14319 break;
14320
14321 case R_PPC64_DTPMOD64:
14322 relocation = 1;
14323 addend = 0;
14324 goto dodyn;
14325
14326 case R_PPC64_TPREL64:
14327 if (htab->elf.tls_sec != NULL)
14328 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14329 goto dodyn;
14330
14331 case R_PPC64_DTPREL64:
14332 if (htab->elf.tls_sec != NULL)
14333 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14334 /* Fall thru */
14335
14336 /* Relocations that may need to be propagated if this is a
14337 dynamic object. */
14338 case R_PPC64_REL30:
14339 case R_PPC64_REL32:
14340 case R_PPC64_REL64:
14341 case R_PPC64_ADDR14:
14342 case R_PPC64_ADDR14_BRNTAKEN:
14343 case R_PPC64_ADDR14_BRTAKEN:
14344 case R_PPC64_ADDR16:
14345 case R_PPC64_ADDR16_DS:
14346 case R_PPC64_ADDR16_HA:
14347 case R_PPC64_ADDR16_HI:
14348 case R_PPC64_ADDR16_HIGH:
14349 case R_PPC64_ADDR16_HIGHA:
14350 case R_PPC64_ADDR16_HIGHER:
14351 case R_PPC64_ADDR16_HIGHERA:
14352 case R_PPC64_ADDR16_HIGHEST:
14353 case R_PPC64_ADDR16_HIGHESTA:
14354 case R_PPC64_ADDR16_LO:
14355 case R_PPC64_ADDR16_LO_DS:
14356 case R_PPC64_ADDR24:
14357 case R_PPC64_ADDR32:
14358 case R_PPC64_ADDR64:
14359 case R_PPC64_UADDR16:
14360 case R_PPC64_UADDR32:
14361 case R_PPC64_UADDR64:
14362 dodyn:
14363 if ((input_section->flags & SEC_ALLOC) == 0)
14364 break;
14365
14366 if (NO_OPD_RELOCS && is_opd)
14367 break;
14368
14369 if ((info->shared
14370 && (h == NULL
14371 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14372 || h->elf.root.type != bfd_link_hash_undefweak)
14373 && (must_be_dyn_reloc (info, r_type)
14374 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
14375 || (ELIMINATE_COPY_RELOCS
14376 && !info->shared
14377 && h != NULL
14378 && h->elf.dynindx != -1
14379 && !h->elf.non_got_ref
14380 && !h->elf.def_regular)
14381 || (!info->shared
14382 && (h != NULL
14383 ? h->elf.type == STT_GNU_IFUNC
14384 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
14385 {
14386 bfd_boolean skip, relocate;
14387 asection *sreloc;
14388 bfd_vma out_off;
14389
14390 /* When generating a dynamic object, these relocations
14391 are copied into the output file to be resolved at run
14392 time. */
14393
14394 skip = FALSE;
14395 relocate = FALSE;
14396
14397 out_off = _bfd_elf_section_offset (output_bfd, info,
14398 input_section, rel->r_offset);
14399 if (out_off == (bfd_vma) -1)
14400 skip = TRUE;
14401 else if (out_off == (bfd_vma) -2)
14402 skip = TRUE, relocate = TRUE;
14403 out_off += (input_section->output_section->vma
14404 + input_section->output_offset);
14405 outrel.r_offset = out_off;
14406 outrel.r_addend = rel->r_addend;
14407
14408 /* Optimize unaligned reloc use. */
14409 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
14410 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
14411 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
14412 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
14413 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
14414 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
14415 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
14416 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
14417 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
14418
14419 if (skip)
14420 memset (&outrel, 0, sizeof outrel);
14421 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
14422 && !is_opd
14423 && r_type != R_PPC64_TOC)
14424 {
14425 BFD_ASSERT (h->elf.dynindx != -1);
14426 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
14427 }
14428 else
14429 {
14430 /* This symbol is local, or marked to become local,
14431 or this is an opd section reloc which must point
14432 at a local function. */
14433 outrel.r_addend += relocation;
14434 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
14435 {
14436 if (is_opd && h != NULL)
14437 {
14438 /* Lie about opd entries. This case occurs
14439 when building shared libraries and we
14440 reference a function in another shared
14441 lib. The same thing happens for a weak
14442 definition in an application that's
14443 overridden by a strong definition in a
14444 shared lib. (I believe this is a generic
14445 bug in binutils handling of weak syms.)
14446 In these cases we won't use the opd
14447 entry in this lib. */
14448 unresolved_reloc = FALSE;
14449 }
14450 if (!is_opd
14451 && r_type == R_PPC64_ADDR64
14452 && (h != NULL
14453 ? h->elf.type == STT_GNU_IFUNC
14454 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
14455 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14456 else
14457 {
14458 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14459
14460 /* We need to relocate .opd contents for ld.so.
14461 Prelink also wants simple and consistent rules
14462 for relocs. This make all RELATIVE relocs have
14463 *r_offset equal to r_addend. */
14464 relocate = TRUE;
14465 }
14466 }
14467 else
14468 {
14469 long indx = 0;
14470
14471 if (h != NULL
14472 ? h->elf.type == STT_GNU_IFUNC
14473 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14474 {
14475 info->callbacks->einfo
14476 (_("%P: %H: %s for indirect "
14477 "function `%T' unsupported\n"),
14478 input_bfd, input_section, rel->r_offset,
14479 ppc64_elf_howto_table[r_type]->name,
14480 sym_name);
14481 ret = FALSE;
14482 }
14483 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
14484 ;
14485 else if (sec == NULL || sec->owner == NULL)
14486 {
14487 bfd_set_error (bfd_error_bad_value);
14488 return FALSE;
14489 }
14490 else
14491 {
14492 asection *osec;
14493
14494 osec = sec->output_section;
14495 indx = elf_section_data (osec)->dynindx;
14496
14497 if (indx == 0)
14498 {
14499 if ((osec->flags & SEC_READONLY) == 0
14500 && htab->elf.data_index_section != NULL)
14501 osec = htab->elf.data_index_section;
14502 else
14503 osec = htab->elf.text_index_section;
14504 indx = elf_section_data (osec)->dynindx;
14505 }
14506 BFD_ASSERT (indx != 0);
14507
14508 /* We are turning this relocation into one
14509 against a section symbol, so subtract out
14510 the output section's address but not the
14511 offset of the input section in the output
14512 section. */
14513 outrel.r_addend -= osec->vma;
14514 }
14515
14516 outrel.r_info = ELF64_R_INFO (indx, r_type);
14517 }
14518 }
14519
14520 sreloc = elf_section_data (input_section)->sreloc;
14521 if (h != NULL
14522 ? h->elf.type == STT_GNU_IFUNC
14523 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14524 sreloc = htab->elf.irelplt;
14525 if (sreloc == NULL)
14526 abort ();
14527
14528 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
14529 >= sreloc->size)
14530 abort ();
14531 loc = sreloc->contents;
14532 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
14533 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14534
14535 /* If this reloc is against an external symbol, it will
14536 be computed at runtime, so there's no need to do
14537 anything now. However, for the sake of prelink ensure
14538 that the section contents are a known value. */
14539 if (! relocate)
14540 {
14541 unresolved_reloc = FALSE;
14542 /* The value chosen here is quite arbitrary as ld.so
14543 ignores section contents except for the special
14544 case of .opd where the contents might be accessed
14545 before relocation. Choose zero, as that won't
14546 cause reloc overflow. */
14547 relocation = 0;
14548 addend = 0;
14549 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
14550 to improve backward compatibility with older
14551 versions of ld. */
14552 if (r_type == R_PPC64_ADDR64)
14553 addend = outrel.r_addend;
14554 /* Adjust pc_relative relocs to have zero in *r_offset. */
14555 else if (ppc64_elf_howto_table[r_type]->pc_relative)
14556 addend = (input_section->output_section->vma
14557 + input_section->output_offset
14558 + rel->r_offset);
14559 }
14560 }
14561 break;
14562
14563 case R_PPC64_COPY:
14564 case R_PPC64_GLOB_DAT:
14565 case R_PPC64_JMP_SLOT:
14566 case R_PPC64_JMP_IREL:
14567 case R_PPC64_RELATIVE:
14568 /* We shouldn't ever see these dynamic relocs in relocatable
14569 files. */
14570 /* Fall through. */
14571
14572 case R_PPC64_PLTGOT16:
14573 case R_PPC64_PLTGOT16_DS:
14574 case R_PPC64_PLTGOT16_HA:
14575 case R_PPC64_PLTGOT16_HI:
14576 case R_PPC64_PLTGOT16_LO:
14577 case R_PPC64_PLTGOT16_LO_DS:
14578 case R_PPC64_PLTREL32:
14579 case R_PPC64_PLTREL64:
14580 /* These ones haven't been implemented yet. */
14581
14582 info->callbacks->einfo
14583 (_("%P: %B: %s is not supported for `%T'\n"),
14584 input_bfd,
14585 ppc64_elf_howto_table[r_type]->name, sym_name);
14586
14587 bfd_set_error (bfd_error_invalid_operation);
14588 ret = FALSE;
14589 continue;
14590 }
14591
14592 /* Multi-instruction sequences that access the TOC can be
14593 optimized, eg. addis ra,r2,0; addi rb,ra,x;
14594 to nop; addi rb,r2,x; */
14595 switch (r_type)
14596 {
14597 default:
14598 break;
14599
14600 case R_PPC64_GOT_TLSLD16_HI:
14601 case R_PPC64_GOT_TLSGD16_HI:
14602 case R_PPC64_GOT_TPREL16_HI:
14603 case R_PPC64_GOT_DTPREL16_HI:
14604 case R_PPC64_GOT16_HI:
14605 case R_PPC64_TOC16_HI:
14606 /* These relocs would only be useful if building up an
14607 offset to later add to r2, perhaps in an indexed
14608 addressing mode instruction. Don't try to optimize.
14609 Unfortunately, the possibility of someone building up an
14610 offset like this or even with the HA relocs, means that
14611 we need to check the high insn when optimizing the low
14612 insn. */
14613 break;
14614
14615 case R_PPC64_GOT_TLSLD16_HA:
14616 case R_PPC64_GOT_TLSGD16_HA:
14617 case R_PPC64_GOT_TPREL16_HA:
14618 case R_PPC64_GOT_DTPREL16_HA:
14619 case R_PPC64_GOT16_HA:
14620 case R_PPC64_TOC16_HA:
14621 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14622 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14623 {
14624 bfd_byte *p = contents + (rel->r_offset & ~3);
14625 bfd_put_32 (input_bfd, NOP, p);
14626 }
14627 break;
14628
14629 case R_PPC64_GOT_TLSLD16_LO:
14630 case R_PPC64_GOT_TLSGD16_LO:
14631 case R_PPC64_GOT_TPREL16_LO_DS:
14632 case R_PPC64_GOT_DTPREL16_LO_DS:
14633 case R_PPC64_GOT16_LO:
14634 case R_PPC64_GOT16_LO_DS:
14635 case R_PPC64_TOC16_LO:
14636 case R_PPC64_TOC16_LO_DS:
14637 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14638 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14639 {
14640 bfd_byte *p = contents + (rel->r_offset & ~3);
14641 insn = bfd_get_32 (input_bfd, p);
14642 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
14643 {
14644 /* Transform addic to addi when we change reg. */
14645 insn &= ~((0x3f << 26) | (0x1f << 16));
14646 insn |= (14u << 26) | (2 << 16);
14647 }
14648 else
14649 {
14650 insn &= ~(0x1f << 16);
14651 insn |= 2 << 16;
14652 }
14653 bfd_put_32 (input_bfd, insn, p);
14654 }
14655 break;
14656 }
14657
14658 /* Do any further special processing. */
14659 howto = ppc64_elf_howto_table[(int) r_type];
14660 switch (r_type)
14661 {
14662 default:
14663 break;
14664
14665 case R_PPC64_REL16_HA:
14666 case R_PPC64_ADDR16_HA:
14667 case R_PPC64_ADDR16_HIGHA:
14668 case R_PPC64_ADDR16_HIGHERA:
14669 case R_PPC64_ADDR16_HIGHESTA:
14670 case R_PPC64_TOC16_HA:
14671 case R_PPC64_SECTOFF_HA:
14672 case R_PPC64_TPREL16_HA:
14673 case R_PPC64_TPREL16_HIGHA:
14674 case R_PPC64_TPREL16_HIGHERA:
14675 case R_PPC64_TPREL16_HIGHESTA:
14676 case R_PPC64_DTPREL16_HA:
14677 case R_PPC64_DTPREL16_HIGHA:
14678 case R_PPC64_DTPREL16_HIGHERA:
14679 case R_PPC64_DTPREL16_HIGHESTA:
14680 /* It's just possible that this symbol is a weak symbol
14681 that's not actually defined anywhere. In that case,
14682 'sec' would be NULL, and we should leave the symbol
14683 alone (it will be set to zero elsewhere in the link). */
14684 if (sec == NULL)
14685 break;
14686 /* Fall thru */
14687
14688 case R_PPC64_GOT16_HA:
14689 case R_PPC64_PLTGOT16_HA:
14690 case R_PPC64_PLT16_HA:
14691 case R_PPC64_GOT_TLSGD16_HA:
14692 case R_PPC64_GOT_TLSLD16_HA:
14693 case R_PPC64_GOT_TPREL16_HA:
14694 case R_PPC64_GOT_DTPREL16_HA:
14695 /* Add 0x10000 if sign bit in 0:15 is set.
14696 Bits 0:15 are not used. */
14697 addend += 0x8000;
14698 break;
14699
14700 case R_PPC64_ADDR16_DS:
14701 case R_PPC64_ADDR16_LO_DS:
14702 case R_PPC64_GOT16_DS:
14703 case R_PPC64_GOT16_LO_DS:
14704 case R_PPC64_PLT16_LO_DS:
14705 case R_PPC64_SECTOFF_DS:
14706 case R_PPC64_SECTOFF_LO_DS:
14707 case R_PPC64_TOC16_DS:
14708 case R_PPC64_TOC16_LO_DS:
14709 case R_PPC64_PLTGOT16_DS:
14710 case R_PPC64_PLTGOT16_LO_DS:
14711 case R_PPC64_GOT_TPREL16_DS:
14712 case R_PPC64_GOT_TPREL16_LO_DS:
14713 case R_PPC64_GOT_DTPREL16_DS:
14714 case R_PPC64_GOT_DTPREL16_LO_DS:
14715 case R_PPC64_TPREL16_DS:
14716 case R_PPC64_TPREL16_LO_DS:
14717 case R_PPC64_DTPREL16_DS:
14718 case R_PPC64_DTPREL16_LO_DS:
14719 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14720 mask = 3;
14721 /* If this reloc is against an lq insn, then the value must be
14722 a multiple of 16. This is somewhat of a hack, but the
14723 "correct" way to do this by defining _DQ forms of all the
14724 _DS relocs bloats all reloc switches in this file. It
14725 doesn't seem to make much sense to use any of these relocs
14726 in data, so testing the insn should be safe. */
14727 if ((insn & (0x3f << 26)) == (56u << 26))
14728 mask = 15;
14729 if (((relocation + addend) & mask) != 0)
14730 {
14731 info->callbacks->einfo
14732 (_("%P: %H: error: %s not a multiple of %u\n"),
14733 input_bfd, input_section, rel->r_offset,
14734 howto->name,
14735 mask + 1);
14736 bfd_set_error (bfd_error_bad_value);
14737 ret = FALSE;
14738 continue;
14739 }
14740 break;
14741 }
14742
14743 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
14744 because such sections are not SEC_ALLOC and thus ld.so will
14745 not process them. */
14746 if (unresolved_reloc
14747 && !((input_section->flags & SEC_DEBUGGING) != 0
14748 && h->elf.def_dynamic)
14749 && _bfd_elf_section_offset (output_bfd, info, input_section,
14750 rel->r_offset) != (bfd_vma) -1)
14751 {
14752 info->callbacks->einfo
14753 (_("%P: %H: unresolvable %s against `%T'\n"),
14754 input_bfd, input_section, rel->r_offset,
14755 howto->name,
14756 h->elf.root.root.string);
14757 ret = FALSE;
14758 }
14759
14760 /* 16-bit fields in insns mostly have signed values, but a
14761 few insns have 16-bit unsigned values. Really, we should
14762 have different reloc types. */
14763 if (howto->complain_on_overflow != complain_overflow_dont
14764 && howto->dst_mask == 0xffff
14765 && (input_section->flags & SEC_CODE) != 0)
14766 {
14767 enum complain_overflow complain = complain_overflow_signed;
14768
14769 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14770 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
14771 complain = complain_overflow_bitfield;
14772 else if (howto->rightshift == 0
14773 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
14774 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
14775 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
14776 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
14777 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
14778 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
14779 complain = complain_overflow_unsigned;
14780 if (howto->complain_on_overflow != complain)
14781 {
14782 alt_howto = *howto;
14783 alt_howto.complain_on_overflow = complain;
14784 howto = &alt_howto;
14785 }
14786 }
14787
14788 r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents,
14789 rel->r_offset, relocation, addend);
14790
14791 if (r != bfd_reloc_ok)
14792 {
14793 char *more_info = NULL;
14794 const char *reloc_name = howto->name;
14795
14796 if (reloc_dest != DEST_NORMAL)
14797 {
14798 more_info = bfd_malloc (strlen (reloc_name) + 8);
14799 if (more_info != NULL)
14800 {
14801 strcpy (more_info, reloc_name);
14802 strcat (more_info, (reloc_dest == DEST_OPD
14803 ? " (OPD)" : " (stub)"));
14804 reloc_name = more_info;
14805 }
14806 }
14807
14808 if (r == bfd_reloc_overflow)
14809 {
14810 if (warned)
14811 continue;
14812 if (h != NULL
14813 && h->elf.root.type == bfd_link_hash_undefweak
14814 && howto->pc_relative)
14815 {
14816 /* Assume this is a call protected by other code that
14817 detects the symbol is undefined. If this is the case,
14818 we can safely ignore the overflow. If not, the
14819 program is hosed anyway, and a little warning isn't
14820 going to help. */
14821
14822 continue;
14823 }
14824
14825 if (!((*info->callbacks->reloc_overflow)
14826 (info, &h->elf.root, sym_name,
14827 reloc_name, orig_rel.r_addend,
14828 input_bfd, input_section, rel->r_offset)))
14829 return FALSE;
14830 }
14831 else
14832 {
14833 info->callbacks->einfo
14834 (_("%P: %H: %s against `%T': error %d\n"),
14835 input_bfd, input_section, rel->r_offset,
14836 reloc_name, sym_name, (int) r);
14837 ret = FALSE;
14838 }
14839 if (more_info != NULL)
14840 free (more_info);
14841 }
14842 }
14843
14844 /* If we're emitting relocations, then shortly after this function
14845 returns, reloc offsets and addends for this section will be
14846 adjusted. Worse, reloc symbol indices will be for the output
14847 file rather than the input. Save a copy of the relocs for
14848 opd_entry_value. */
14849 if (is_opd && (info->emitrelocations || info->relocatable))
14850 {
14851 bfd_size_type amt;
14852 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
14853 rel = bfd_alloc (input_bfd, amt);
14854 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
14855 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
14856 if (rel == NULL)
14857 return FALSE;
14858 memcpy (rel, relocs, amt);
14859 }
14860 return ret;
14861 }
14862
14863 /* Adjust the value of any local symbols in opd sections. */
14864
14865 static int
14866 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
14867 const char *name ATTRIBUTE_UNUSED,
14868 Elf_Internal_Sym *elfsym,
14869 asection *input_sec,
14870 struct elf_link_hash_entry *h)
14871 {
14872 struct _opd_sec_data *opd;
14873 long adjust;
14874 bfd_vma value;
14875
14876 if (h != NULL)
14877 return 1;
14878
14879 opd = get_opd_info (input_sec);
14880 if (opd == NULL || opd->adjust == NULL)
14881 return 1;
14882
14883 value = elfsym->st_value - input_sec->output_offset;
14884 if (!info->relocatable)
14885 value -= input_sec->output_section->vma;
14886
14887 adjust = opd->adjust[OPD_NDX (value)];
14888 if (adjust == -1)
14889 return 2;
14890
14891 elfsym->st_value += adjust;
14892 return 1;
14893 }
14894
14895 /* Finish up dynamic symbol handling. We set the contents of various
14896 dynamic sections here. */
14897
14898 static bfd_boolean
14899 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
14900 struct bfd_link_info *info,
14901 struct elf_link_hash_entry *h,
14902 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
14903 {
14904 struct ppc_link_hash_table *htab;
14905 struct plt_entry *ent;
14906 Elf_Internal_Rela rela;
14907 bfd_byte *loc;
14908
14909 htab = ppc_hash_table (info);
14910 if (htab == NULL)
14911 return FALSE;
14912
14913 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14914 if (ent->plt.offset != (bfd_vma) -1)
14915 {
14916 /* This symbol has an entry in the procedure linkage
14917 table. Set it up. */
14918 if (!htab->elf.dynamic_sections_created
14919 || h->dynindx == -1)
14920 {
14921 BFD_ASSERT (h->type == STT_GNU_IFUNC
14922 && h->def_regular
14923 && (h->root.type == bfd_link_hash_defined
14924 || h->root.type == bfd_link_hash_defweak));
14925 rela.r_offset = (htab->elf.iplt->output_section->vma
14926 + htab->elf.iplt->output_offset
14927 + ent->plt.offset);
14928 if (htab->opd_abi)
14929 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14930 else
14931 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14932 rela.r_addend = (h->root.u.def.value
14933 + h->root.u.def.section->output_offset
14934 + h->root.u.def.section->output_section->vma
14935 + ent->addend);
14936 loc = (htab->elf.irelplt->contents
14937 + (htab->elf.irelplt->reloc_count++
14938 * sizeof (Elf64_External_Rela)));
14939 }
14940 else
14941 {
14942 rela.r_offset = (htab->elf.splt->output_section->vma
14943 + htab->elf.splt->output_offset
14944 + ent->plt.offset);
14945 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14946 rela.r_addend = ent->addend;
14947 loc = (htab->elf.srelplt->contents
14948 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14949 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14950 }
14951 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14952
14953 if (!htab->opd_abi)
14954 {
14955 if (!h->def_regular)
14956 {
14957 /* Mark the symbol as undefined, rather than as
14958 defined in glink. Leave the value if there were
14959 any relocations where pointer equality matters
14960 (this is a clue for the dynamic linker, to make
14961 function pointer comparisons work between an
14962 application and shared library), otherwise set it
14963 to zero. */
14964 sym->st_shndx = SHN_UNDEF;
14965 if (!h->pointer_equality_needed)
14966 sym->st_value = 0;
14967 else if (!h->ref_regular_nonweak)
14968 {
14969 /* This breaks function pointer comparisons, but
14970 that is better than breaking tests for a NULL
14971 function pointer. */
14972 sym->st_value = 0;
14973 }
14974 }
14975 }
14976 }
14977
14978 if (h->needs_copy)
14979 {
14980 /* This symbol needs a copy reloc. Set it up. */
14981
14982 if (h->dynindx == -1
14983 || (h->root.type != bfd_link_hash_defined
14984 && h->root.type != bfd_link_hash_defweak)
14985 || htab->relbss == NULL)
14986 abort ();
14987
14988 rela.r_offset = (h->root.u.def.value
14989 + h->root.u.def.section->output_section->vma
14990 + h->root.u.def.section->output_offset);
14991 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14992 rela.r_addend = 0;
14993 loc = htab->relbss->contents;
14994 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14995 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14996 }
14997
14998 return TRUE;
14999 }
15000
15001 /* Used to decide how to sort relocs in an optimal manner for the
15002 dynamic linker, before writing them out. */
15003
15004 static enum elf_reloc_type_class
15005 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
15006 const asection *rel_sec,
15007 const Elf_Internal_Rela *rela)
15008 {
15009 enum elf_ppc64_reloc_type r_type;
15010 struct ppc_link_hash_table *htab = ppc_hash_table (info);
15011
15012 if (rel_sec == htab->elf.irelplt)
15013 return reloc_class_ifunc;
15014
15015 r_type = ELF64_R_TYPE (rela->r_info);
15016 switch (r_type)
15017 {
15018 case R_PPC64_RELATIVE:
15019 return reloc_class_relative;
15020 case R_PPC64_JMP_SLOT:
15021 return reloc_class_plt;
15022 case R_PPC64_COPY:
15023 return reloc_class_copy;
15024 default:
15025 return reloc_class_normal;
15026 }
15027 }
15028
15029 /* Finish up the dynamic sections. */
15030
15031 static bfd_boolean
15032 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
15033 struct bfd_link_info *info)
15034 {
15035 struct ppc_link_hash_table *htab;
15036 bfd *dynobj;
15037 asection *sdyn;
15038
15039 htab = ppc_hash_table (info);
15040 if (htab == NULL)
15041 return FALSE;
15042
15043 dynobj = htab->elf.dynobj;
15044 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
15045
15046 if (htab->elf.dynamic_sections_created)
15047 {
15048 Elf64_External_Dyn *dyncon, *dynconend;
15049
15050 if (sdyn == NULL || htab->elf.sgot == NULL)
15051 abort ();
15052
15053 dyncon = (Elf64_External_Dyn *) sdyn->contents;
15054 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
15055 for (; dyncon < dynconend; dyncon++)
15056 {
15057 Elf_Internal_Dyn dyn;
15058 asection *s;
15059
15060 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
15061
15062 switch (dyn.d_tag)
15063 {
15064 default:
15065 continue;
15066
15067 case DT_PPC64_GLINK:
15068 s = htab->glink;
15069 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15070 /* We stupidly defined DT_PPC64_GLINK to be the start
15071 of glink rather than the first entry point, which is
15072 what ld.so needs, and now have a bigger stub to
15073 support automatic multiple TOCs. */
15074 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 8 * 4;
15075 break;
15076
15077 case DT_PPC64_OPD:
15078 s = bfd_get_section_by_name (output_bfd, ".opd");
15079 if (s == NULL)
15080 continue;
15081 dyn.d_un.d_ptr = s->vma;
15082 break;
15083
15084 case DT_PPC64_OPT:
15085 if (htab->do_multi_toc && htab->multi_toc_needed)
15086 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
15087 break;
15088
15089 case DT_PPC64_OPDSZ:
15090 s = bfd_get_section_by_name (output_bfd, ".opd");
15091 if (s == NULL)
15092 continue;
15093 dyn.d_un.d_val = s->size;
15094 break;
15095
15096 case DT_PLTGOT:
15097 s = htab->elf.splt;
15098 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15099 break;
15100
15101 case DT_JMPREL:
15102 s = htab->elf.srelplt;
15103 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15104 break;
15105
15106 case DT_PLTRELSZ:
15107 dyn.d_un.d_val = htab->elf.srelplt->size;
15108 break;
15109
15110 case DT_RELASZ:
15111 /* Don't count procedure linkage table relocs in the
15112 overall reloc count. */
15113 s = htab->elf.srelplt;
15114 if (s == NULL)
15115 continue;
15116 dyn.d_un.d_val -= s->size;
15117 break;
15118
15119 case DT_RELA:
15120 /* We may not be using the standard ELF linker script.
15121 If .rela.plt is the first .rela section, we adjust
15122 DT_RELA to not include it. */
15123 s = htab->elf.srelplt;
15124 if (s == NULL)
15125 continue;
15126 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
15127 continue;
15128 dyn.d_un.d_ptr += s->size;
15129 break;
15130 }
15131
15132 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
15133 }
15134 }
15135
15136 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0)
15137 {
15138 /* Fill in the first entry in the global offset table.
15139 We use it to hold the link-time TOCbase. */
15140 bfd_put_64 (output_bfd,
15141 elf_gp (output_bfd) + TOC_BASE_OFF,
15142 htab->elf.sgot->contents);
15143
15144 /* Set .got entry size. */
15145 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize = 8;
15146 }
15147
15148 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
15149 {
15150 /* Set .plt entry size. */
15151 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
15152 = PLT_ENTRY_SIZE (htab);
15153 }
15154
15155 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
15156 brlt ourselves if emitrelocations. */
15157 if (htab->brlt != NULL
15158 && htab->brlt->reloc_count != 0
15159 && !_bfd_elf_link_output_relocs (output_bfd,
15160 htab->brlt,
15161 elf_section_data (htab->brlt)->rela.hdr,
15162 elf_section_data (htab->brlt)->relocs,
15163 NULL))
15164 return FALSE;
15165
15166 if (htab->glink != NULL
15167 && htab->glink->reloc_count != 0
15168 && !_bfd_elf_link_output_relocs (output_bfd,
15169 htab->glink,
15170 elf_section_data (htab->glink)->rela.hdr,
15171 elf_section_data (htab->glink)->relocs,
15172 NULL))
15173 return FALSE;
15174
15175 if (htab->glink_eh_frame != NULL
15176 && htab->glink_eh_frame->size != 0)
15177 {
15178 bfd_vma val;
15179 bfd_byte *p;
15180 asection *stub_sec;
15181
15182 p = htab->glink_eh_frame->contents + sizeof (glink_eh_frame_cie);
15183 for (stub_sec = htab->params->stub_bfd->sections;
15184 stub_sec != NULL;
15185 stub_sec = stub_sec->next)
15186 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
15187 {
15188 /* FDE length. */
15189 p += 4;
15190 /* CIE pointer. */
15191 p += 4;
15192 /* Offset to stub section. */
15193 val = (stub_sec->output_section->vma
15194 + stub_sec->output_offset);
15195 val -= (htab->glink_eh_frame->output_section->vma
15196 + htab->glink_eh_frame->output_offset
15197 + (p - htab->glink_eh_frame->contents));
15198 if (val + 0x80000000 > 0xffffffff)
15199 {
15200 info->callbacks->einfo
15201 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15202 stub_sec->name);
15203 return FALSE;
15204 }
15205 bfd_put_32 (dynobj, val, p);
15206 p += 4;
15207 /* stub section size. */
15208 p += 4;
15209 /* Augmentation. */
15210 p += 1;
15211 /* Pad. */
15212 p += 7;
15213 }
15214 if (htab->glink != NULL && htab->glink->size != 0)
15215 {
15216 /* FDE length. */
15217 p += 4;
15218 /* CIE pointer. */
15219 p += 4;
15220 /* Offset to .glink. */
15221 val = (htab->glink->output_section->vma
15222 + htab->glink->output_offset
15223 + 8);
15224 val -= (htab->glink_eh_frame->output_section->vma
15225 + htab->glink_eh_frame->output_offset
15226 + (p - htab->glink_eh_frame->contents));
15227 if (val + 0x80000000 > 0xffffffff)
15228 {
15229 info->callbacks->einfo
15230 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15231 htab->glink->name);
15232 return FALSE;
15233 }
15234 bfd_put_32 (dynobj, val, p);
15235 p += 4;
15236 /* .glink size. */
15237 p += 4;
15238 /* Augmentation. */
15239 p += 1;
15240 /* Ops. */
15241 p += 7;
15242 }
15243
15244 if (htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
15245 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
15246 htab->glink_eh_frame,
15247 htab->glink_eh_frame->contents))
15248 return FALSE;
15249 }
15250
15251 /* We need to handle writing out multiple GOT sections ourselves,
15252 since we didn't add them to DYNOBJ. We know dynobj is the first
15253 bfd. */
15254 while ((dynobj = dynobj->link.next) != NULL)
15255 {
15256 asection *s;
15257
15258 if (!is_ppc64_elf (dynobj))
15259 continue;
15260
15261 s = ppc64_elf_tdata (dynobj)->got;
15262 if (s != NULL
15263 && s->size != 0
15264 && s->output_section != bfd_abs_section_ptr
15265 && !bfd_set_section_contents (output_bfd, s->output_section,
15266 s->contents, s->output_offset,
15267 s->size))
15268 return FALSE;
15269 s = ppc64_elf_tdata (dynobj)->relgot;
15270 if (s != NULL
15271 && s->size != 0
15272 && s->output_section != bfd_abs_section_ptr
15273 && !bfd_set_section_contents (output_bfd, s->output_section,
15274 s->contents, s->output_offset,
15275 s->size))
15276 return FALSE;
15277 }
15278
15279 return TRUE;
15280 }
15281
15282 #include "elf64-target.h"
15283
15284 /* FreeBSD support */
15285
15286 #undef TARGET_LITTLE_SYM
15287 #undef TARGET_LITTLE_NAME
15288
15289 #undef TARGET_BIG_SYM
15290 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
15291 #undef TARGET_BIG_NAME
15292 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
15293
15294 #undef ELF_OSABI
15295 #define ELF_OSABI ELFOSABI_FREEBSD
15296
15297 #undef elf64_bed
15298 #define elf64_bed elf64_powerpc_fbsd_bed
15299
15300 #include "elf64-target.h"
15301
This page took 0.417898 seconds and 4 git commands to generate.