* elf64-ppc.c (ppc64_elf_branch_reloc): Check .opd is in a regular
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra <amodra@bigpond.net.au>
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "bfd.h"
29 #include "sysdep.h"
30 #include "bfdlink.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/ppc64.h"
34 #include "elf64-ppc.h"
35
36 static bfd_reloc_status_type ppc64_elf_ha_reloc
37 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
38 static bfd_reloc_status_type ppc64_elf_branch_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_toc_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc64_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_vma opd_entry_value
55 (asection *, bfd_vma, asection **, bfd_vma *);
56
57 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
58 #define TARGET_LITTLE_NAME "elf64-powerpcle"
59 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
60 #define TARGET_BIG_NAME "elf64-powerpc"
61 #define ELF_ARCH bfd_arch_powerpc
62 #define ELF_MACHINE_CODE EM_PPC64
63 #define ELF_MAXPAGESIZE 0x10000
64 #define elf_info_to_howto ppc64_elf_info_to_howto
65
66 #define elf_backend_want_got_sym 0
67 #define elf_backend_want_plt_sym 0
68 #define elf_backend_plt_alignment 3
69 #define elf_backend_plt_not_loaded 1
70 #define elf_backend_got_symbol_offset 0
71 #define elf_backend_got_header_size 8
72 #define elf_backend_can_gc_sections 1
73 #define elf_backend_can_refcount 1
74 #define elf_backend_rela_normal 1
75
76 #define bfd_elf64_mkobject ppc64_elf_mkobject
77 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
78 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
79 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
80 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
81 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
82 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
83
84 #define elf_backend_object_p ppc64_elf_object_p
85 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
86 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
87 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
88 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
89 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
90 #define elf_backend_check_directives ppc64_elf_check_directives
91 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
92 #define elf_backend_check_relocs ppc64_elf_check_relocs
93 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
94 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
95 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
96 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
97 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
98 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
99 #define elf_backend_relocate_section ppc64_elf_relocate_section
100 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
101 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
102 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
103 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
104 #define elf_backend_special_sections ppc64_elf_special_sections
105
106 /* The name of the dynamic interpreter. This is put in the .interp
107 section. */
108 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
109
110 /* The size in bytes of an entry in the procedure linkage table. */
111 #define PLT_ENTRY_SIZE 24
112
113 /* The initial size of the plt reserved for the dynamic linker. */
114 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
115
116 /* TOC base pointers offset from start of TOC. */
117 #define TOC_BASE_OFF 0x8000
118
119 /* Offset of tp and dtp pointers from start of TLS block. */
120 #define TP_OFFSET 0x7000
121 #define DTP_OFFSET 0x8000
122
123 /* .plt call stub instructions. The normal stub is like this, but
124 sometimes the .plt entry crosses a 64k boundary and we need to
125 insert an addis to adjust r12. */
126 #define PLT_CALL_STUB_SIZE (7*4)
127 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
128 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
129 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
130 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
131 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
132 /* ld %r11,xxx+16@l(%r12) */
133 #define BCTR 0x4e800420 /* bctr */
134
135
136 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
137 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
138
139 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
140
141 /* glink call stub instructions. We enter with the index in R0, and the
142 address of glink entry in CTR. From that, we can calculate PLT0. */
143 #define GLINK_CALL_STUB_SIZE (16*4)
144 #define MFCTR_R12 0x7d8902a6 /* mfctr %r12 */
145 #define SLDI_R11_R0_3 0x780b1f24 /* sldi %r11,%r0,3 */
146 #define ADDIC_R2_R0_32K 0x34408000 /* addic. %r2,%r0,-32768 */
147 #define SUB_R12_R12_R11 0x7d8b6050 /* sub %r12,%r12,%r11 */
148 #define SRADI_R2_R2_63 0x7c42fe76 /* sradi %r2,%r2,63 */
149 #define SLDI_R11_R0_2 0x780b1764 /* sldi %r11,%r0,2 */
150 #define AND_R2_R2_R11 0x7c425838 /* and %r2,%r2,%r11 */
151 /* sub %r12,%r12,%r11 */
152 #define ADD_R12_R12_R2 0x7d8c1214 /* add %r12,%r12,%r2 */
153 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
154 /* ld %r11,xxx@l(%r12) */
155 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,xxx@l */
156 /* ld %r2,8(%r12) */
157 /* mtctr %r11 */
158 /* ld %r11,16(%r12) */
159 /* bctr */
160
161 /* Pad with this. */
162 #define NOP 0x60000000
163
164 /* Some other nops. */
165 #define CROR_151515 0x4def7b82
166 #define CROR_313131 0x4ffffb82
167
168 /* .glink entries for the first 32k functions are two instructions. */
169 #define LI_R0_0 0x38000000 /* li %r0,0 */
170 #define B_DOT 0x48000000 /* b . */
171
172 /* After that, we need two instructions to load the index, followed by
173 a branch. */
174 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
175 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
176
177 /* Instructions used by the save and restore reg functions. */
178 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
179 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
180 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
181 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
182 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
183 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
184 #define LI_R12_0 0x39800000 /* li %r12,0 */
185 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
186 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
187 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
188 #define BLR 0x4e800020 /* blr */
189
190 /* Since .opd is an array of descriptors and each entry will end up
191 with identical R_PPC64_RELATIVE relocs, there is really no need to
192 propagate .opd relocs; The dynamic linker should be taught to
193 relocate .opd without reloc entries. */
194 #ifndef NO_OPD_RELOCS
195 #define NO_OPD_RELOCS 0
196 #endif
197 \f
198 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
199
200 /* Relocation HOWTO's. */
201 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
202
203 static reloc_howto_type ppc64_elf_howto_raw[] = {
204 /* This reloc does nothing. */
205 HOWTO (R_PPC64_NONE, /* type */
206 0, /* rightshift */
207 2, /* size (0 = byte, 1 = short, 2 = long) */
208 32, /* bitsize */
209 FALSE, /* pc_relative */
210 0, /* bitpos */
211 complain_overflow_dont, /* complain_on_overflow */
212 bfd_elf_generic_reloc, /* special_function */
213 "R_PPC64_NONE", /* name */
214 FALSE, /* partial_inplace */
215 0, /* src_mask */
216 0, /* dst_mask */
217 FALSE), /* pcrel_offset */
218
219 /* A standard 32 bit relocation. */
220 HOWTO (R_PPC64_ADDR32, /* type */
221 0, /* rightshift */
222 2, /* size (0 = byte, 1 = short, 2 = long) */
223 32, /* bitsize */
224 FALSE, /* pc_relative */
225 0, /* bitpos */
226 complain_overflow_bitfield, /* complain_on_overflow */
227 bfd_elf_generic_reloc, /* special_function */
228 "R_PPC64_ADDR32", /* name */
229 FALSE, /* partial_inplace */
230 0, /* src_mask */
231 0xffffffff, /* dst_mask */
232 FALSE), /* pcrel_offset */
233
234 /* An absolute 26 bit branch; the lower two bits must be zero.
235 FIXME: we don't check that, we just clear them. */
236 HOWTO (R_PPC64_ADDR24, /* type */
237 0, /* rightshift */
238 2, /* size (0 = byte, 1 = short, 2 = long) */
239 26, /* bitsize */
240 FALSE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_bitfield, /* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_PPC64_ADDR24", /* name */
245 FALSE, /* partial_inplace */
246 0, /* src_mask */
247 0x03fffffc, /* dst_mask */
248 FALSE), /* pcrel_offset */
249
250 /* A standard 16 bit relocation. */
251 HOWTO (R_PPC64_ADDR16, /* type */
252 0, /* rightshift */
253 1, /* size (0 = byte, 1 = short, 2 = long) */
254 16, /* bitsize */
255 FALSE, /* pc_relative */
256 0, /* bitpos */
257 complain_overflow_bitfield, /* complain_on_overflow */
258 bfd_elf_generic_reloc, /* special_function */
259 "R_PPC64_ADDR16", /* name */
260 FALSE, /* partial_inplace */
261 0, /* src_mask */
262 0xffff, /* dst_mask */
263 FALSE), /* pcrel_offset */
264
265 /* A 16 bit relocation without overflow. */
266 HOWTO (R_PPC64_ADDR16_LO, /* type */
267 0, /* rightshift */
268 1, /* size (0 = byte, 1 = short, 2 = long) */
269 16, /* bitsize */
270 FALSE, /* pc_relative */
271 0, /* bitpos */
272 complain_overflow_dont,/* complain_on_overflow */
273 bfd_elf_generic_reloc, /* special_function */
274 "R_PPC64_ADDR16_LO", /* name */
275 FALSE, /* partial_inplace */
276 0, /* src_mask */
277 0xffff, /* dst_mask */
278 FALSE), /* pcrel_offset */
279
280 /* Bits 16-31 of an address. */
281 HOWTO (R_PPC64_ADDR16_HI, /* type */
282 16, /* rightshift */
283 1, /* size (0 = byte, 1 = short, 2 = long) */
284 16, /* bitsize */
285 FALSE, /* pc_relative */
286 0, /* bitpos */
287 complain_overflow_dont, /* complain_on_overflow */
288 bfd_elf_generic_reloc, /* special_function */
289 "R_PPC64_ADDR16_HI", /* name */
290 FALSE, /* partial_inplace */
291 0, /* src_mask */
292 0xffff, /* dst_mask */
293 FALSE), /* pcrel_offset */
294
295 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
296 bits, treated as a signed number, is negative. */
297 HOWTO (R_PPC64_ADDR16_HA, /* type */
298 16, /* rightshift */
299 1, /* size (0 = byte, 1 = short, 2 = long) */
300 16, /* bitsize */
301 FALSE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_dont, /* complain_on_overflow */
304 ppc64_elf_ha_reloc, /* special_function */
305 "R_PPC64_ADDR16_HA", /* name */
306 FALSE, /* partial_inplace */
307 0, /* src_mask */
308 0xffff, /* dst_mask */
309 FALSE), /* pcrel_offset */
310
311 /* An absolute 16 bit branch; the lower two bits must be zero.
312 FIXME: we don't check that, we just clear them. */
313 HOWTO (R_PPC64_ADDR14, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 16, /* bitsize */
317 FALSE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 ppc64_elf_branch_reloc, /* special_function */
321 "R_PPC64_ADDR14", /* name */
322 FALSE, /* partial_inplace */
323 0, /* src_mask */
324 0x0000fffc, /* dst_mask */
325 FALSE), /* pcrel_offset */
326
327 /* An absolute 16 bit branch, for which bit 10 should be set to
328 indicate that the branch is expected to be taken. The lower two
329 bits must be zero. */
330 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
331 0, /* rightshift */
332 2, /* size (0 = byte, 1 = short, 2 = long) */
333 16, /* bitsize */
334 FALSE, /* pc_relative */
335 0, /* bitpos */
336 complain_overflow_bitfield, /* complain_on_overflow */
337 ppc64_elf_brtaken_reloc, /* special_function */
338 "R_PPC64_ADDR14_BRTAKEN",/* name */
339 FALSE, /* partial_inplace */
340 0, /* src_mask */
341 0x0000fffc, /* dst_mask */
342 FALSE), /* pcrel_offset */
343
344 /* An absolute 16 bit branch, for which bit 10 should be set to
345 indicate that the branch is not expected to be taken. The lower
346 two bits must be zero. */
347 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 16, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield, /* complain_on_overflow */
354 ppc64_elf_brtaken_reloc, /* special_function */
355 "R_PPC64_ADDR14_BRNTAKEN",/* name */
356 FALSE, /* partial_inplace */
357 0, /* src_mask */
358 0x0000fffc, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* A relative 26 bit branch; the lower two bits must be zero. */
362 HOWTO (R_PPC64_REL24, /* type */
363 0, /* rightshift */
364 2, /* size (0 = byte, 1 = short, 2 = long) */
365 26, /* bitsize */
366 TRUE, /* pc_relative */
367 0, /* bitpos */
368 complain_overflow_signed, /* complain_on_overflow */
369 ppc64_elf_branch_reloc, /* special_function */
370 "R_PPC64_REL24", /* name */
371 FALSE, /* partial_inplace */
372 0, /* src_mask */
373 0x03fffffc, /* dst_mask */
374 TRUE), /* pcrel_offset */
375
376 /* A relative 16 bit branch; the lower two bits must be zero. */
377 HOWTO (R_PPC64_REL14, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 16, /* bitsize */
381 TRUE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_signed, /* complain_on_overflow */
384 ppc64_elf_branch_reloc, /* special_function */
385 "R_PPC64_REL14", /* name */
386 FALSE, /* partial_inplace */
387 0, /* src_mask */
388 0x0000fffc, /* dst_mask */
389 TRUE), /* pcrel_offset */
390
391 /* A relative 16 bit branch. Bit 10 should be set to indicate that
392 the branch is expected to be taken. The lower two bits must be
393 zero. */
394 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
395 0, /* rightshift */
396 2, /* size (0 = byte, 1 = short, 2 = long) */
397 16, /* bitsize */
398 TRUE, /* pc_relative */
399 0, /* bitpos */
400 complain_overflow_signed, /* complain_on_overflow */
401 ppc64_elf_brtaken_reloc, /* special_function */
402 "R_PPC64_REL14_BRTAKEN", /* name */
403 FALSE, /* partial_inplace */
404 0, /* src_mask */
405 0x0000fffc, /* dst_mask */
406 TRUE), /* pcrel_offset */
407
408 /* A relative 16 bit branch. Bit 10 should be set to indicate that
409 the branch is not expected to be taken. The lower two bits must
410 be zero. */
411 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
412 0, /* rightshift */
413 2, /* size (0 = byte, 1 = short, 2 = long) */
414 16, /* bitsize */
415 TRUE, /* pc_relative */
416 0, /* bitpos */
417 complain_overflow_signed, /* complain_on_overflow */
418 ppc64_elf_brtaken_reloc, /* special_function */
419 "R_PPC64_REL14_BRNTAKEN",/* name */
420 FALSE, /* partial_inplace */
421 0, /* src_mask */
422 0x0000fffc, /* dst_mask */
423 TRUE), /* pcrel_offset */
424
425 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
426 symbol. */
427 HOWTO (R_PPC64_GOT16, /* type */
428 0, /* rightshift */
429 1, /* size (0 = byte, 1 = short, 2 = long) */
430 16, /* bitsize */
431 FALSE, /* pc_relative */
432 0, /* bitpos */
433 complain_overflow_signed, /* complain_on_overflow */
434 ppc64_elf_unhandled_reloc, /* special_function */
435 "R_PPC64_GOT16", /* name */
436 FALSE, /* partial_inplace */
437 0, /* src_mask */
438 0xffff, /* dst_mask */
439 FALSE), /* pcrel_offset */
440
441 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
442 the symbol. */
443 HOWTO (R_PPC64_GOT16_LO, /* type */
444 0, /* rightshift */
445 1, /* size (0 = byte, 1 = short, 2 = long) */
446 16, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 ppc64_elf_unhandled_reloc, /* special_function */
451 "R_PPC64_GOT16_LO", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0xffff, /* dst_mask */
455 FALSE), /* pcrel_offset */
456
457 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
458 the symbol. */
459 HOWTO (R_PPC64_GOT16_HI, /* type */
460 16, /* rightshift */
461 1, /* size (0 = byte, 1 = short, 2 = long) */
462 16, /* bitsize */
463 FALSE, /* pc_relative */
464 0, /* bitpos */
465 complain_overflow_dont,/* complain_on_overflow */
466 ppc64_elf_unhandled_reloc, /* special_function */
467 "R_PPC64_GOT16_HI", /* name */
468 FALSE, /* partial_inplace */
469 0, /* src_mask */
470 0xffff, /* dst_mask */
471 FALSE), /* pcrel_offset */
472
473 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
474 the symbol. */
475 HOWTO (R_PPC64_GOT16_HA, /* type */
476 16, /* rightshift */
477 1, /* size (0 = byte, 1 = short, 2 = long) */
478 16, /* bitsize */
479 FALSE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_dont,/* complain_on_overflow */
482 ppc64_elf_unhandled_reloc, /* special_function */
483 "R_PPC64_GOT16_HA", /* name */
484 FALSE, /* partial_inplace */
485 0, /* src_mask */
486 0xffff, /* dst_mask */
487 FALSE), /* pcrel_offset */
488
489 /* This is used only by the dynamic linker. The symbol should exist
490 both in the object being run and in some shared library. The
491 dynamic linker copies the data addressed by the symbol from the
492 shared library into the object, because the object being
493 run has to have the data at some particular address. */
494 HOWTO (R_PPC64_COPY, /* type */
495 0, /* rightshift */
496 0, /* this one is variable size */
497 0, /* bitsize */
498 FALSE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_dont, /* complain_on_overflow */
501 ppc64_elf_unhandled_reloc, /* special_function */
502 "R_PPC64_COPY", /* name */
503 FALSE, /* partial_inplace */
504 0, /* src_mask */
505 0, /* dst_mask */
506 FALSE), /* pcrel_offset */
507
508 /* Like R_PPC64_ADDR64, but used when setting global offset table
509 entries. */
510 HOWTO (R_PPC64_GLOB_DAT, /* type */
511 0, /* rightshift */
512 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
513 64, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_dont, /* complain_on_overflow */
517 ppc64_elf_unhandled_reloc, /* special_function */
518 "R_PPC64_GLOB_DAT", /* name */
519 FALSE, /* partial_inplace */
520 0, /* src_mask */
521 ONES (64), /* dst_mask */
522 FALSE), /* pcrel_offset */
523
524 /* Created by the link editor. Marks a procedure linkage table
525 entry for a symbol. */
526 HOWTO (R_PPC64_JMP_SLOT, /* type */
527 0, /* rightshift */
528 0, /* size (0 = byte, 1 = short, 2 = long) */
529 0, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont, /* complain_on_overflow */
533 ppc64_elf_unhandled_reloc, /* special_function */
534 "R_PPC64_JMP_SLOT", /* name */
535 FALSE, /* partial_inplace */
536 0, /* src_mask */
537 0, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 /* Used only by the dynamic linker. When the object is run, this
541 doubleword64 is set to the load address of the object, plus the
542 addend. */
543 HOWTO (R_PPC64_RELATIVE, /* type */
544 0, /* rightshift */
545 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
546 64, /* bitsize */
547 FALSE, /* pc_relative */
548 0, /* bitpos */
549 complain_overflow_dont, /* complain_on_overflow */
550 bfd_elf_generic_reloc, /* special_function */
551 "R_PPC64_RELATIVE", /* name */
552 FALSE, /* partial_inplace */
553 0, /* src_mask */
554 ONES (64), /* dst_mask */
555 FALSE), /* pcrel_offset */
556
557 /* Like R_PPC64_ADDR32, but may be unaligned. */
558 HOWTO (R_PPC64_UADDR32, /* type */
559 0, /* rightshift */
560 2, /* size (0 = byte, 1 = short, 2 = long) */
561 32, /* bitsize */
562 FALSE, /* pc_relative */
563 0, /* bitpos */
564 complain_overflow_bitfield, /* complain_on_overflow */
565 bfd_elf_generic_reloc, /* special_function */
566 "R_PPC64_UADDR32", /* name */
567 FALSE, /* partial_inplace */
568 0, /* src_mask */
569 0xffffffff, /* dst_mask */
570 FALSE), /* pcrel_offset */
571
572 /* Like R_PPC64_ADDR16, but may be unaligned. */
573 HOWTO (R_PPC64_UADDR16, /* type */
574 0, /* rightshift */
575 1, /* size (0 = byte, 1 = short, 2 = long) */
576 16, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_bitfield, /* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_PPC64_UADDR16", /* name */
582 FALSE, /* partial_inplace */
583 0, /* src_mask */
584 0xffff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 /* 32-bit PC relative. */
588 HOWTO (R_PPC64_REL32, /* type */
589 0, /* rightshift */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
591 32, /* bitsize */
592 TRUE, /* pc_relative */
593 0, /* bitpos */
594 /* FIXME: Verify. Was complain_overflow_bitfield. */
595 complain_overflow_signed, /* complain_on_overflow */
596 bfd_elf_generic_reloc, /* special_function */
597 "R_PPC64_REL32", /* name */
598 FALSE, /* partial_inplace */
599 0, /* src_mask */
600 0xffffffff, /* dst_mask */
601 TRUE), /* pcrel_offset */
602
603 /* 32-bit relocation to the symbol's procedure linkage table. */
604 HOWTO (R_PPC64_PLT32, /* type */
605 0, /* rightshift */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
607 32, /* bitsize */
608 FALSE, /* pc_relative */
609 0, /* bitpos */
610 complain_overflow_bitfield, /* complain_on_overflow */
611 ppc64_elf_unhandled_reloc, /* special_function */
612 "R_PPC64_PLT32", /* name */
613 FALSE, /* partial_inplace */
614 0, /* src_mask */
615 0xffffffff, /* dst_mask */
616 FALSE), /* pcrel_offset */
617
618 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
619 FIXME: R_PPC64_PLTREL32 not supported. */
620 HOWTO (R_PPC64_PLTREL32, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 TRUE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_signed, /* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_PPC64_PLTREL32", /* name */
629 FALSE, /* partial_inplace */
630 0, /* src_mask */
631 0xffffffff, /* dst_mask */
632 TRUE), /* pcrel_offset */
633
634 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
635 the symbol. */
636 HOWTO (R_PPC64_PLT16_LO, /* type */
637 0, /* rightshift */
638 1, /* size (0 = byte, 1 = short, 2 = long) */
639 16, /* bitsize */
640 FALSE, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_dont, /* complain_on_overflow */
643 ppc64_elf_unhandled_reloc, /* special_function */
644 "R_PPC64_PLT16_LO", /* name */
645 FALSE, /* partial_inplace */
646 0, /* src_mask */
647 0xffff, /* dst_mask */
648 FALSE), /* pcrel_offset */
649
650 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
651 the symbol. */
652 HOWTO (R_PPC64_PLT16_HI, /* type */
653 16, /* rightshift */
654 1, /* size (0 = byte, 1 = short, 2 = long) */
655 16, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont, /* complain_on_overflow */
659 ppc64_elf_unhandled_reloc, /* special_function */
660 "R_PPC64_PLT16_HI", /* name */
661 FALSE, /* partial_inplace */
662 0, /* src_mask */
663 0xffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
667 the symbol. */
668 HOWTO (R_PPC64_PLT16_HA, /* type */
669 16, /* rightshift */
670 1, /* size (0 = byte, 1 = short, 2 = long) */
671 16, /* bitsize */
672 FALSE, /* pc_relative */
673 0, /* bitpos */
674 complain_overflow_dont, /* complain_on_overflow */
675 ppc64_elf_unhandled_reloc, /* special_function */
676 "R_PPC64_PLT16_HA", /* name */
677 FALSE, /* partial_inplace */
678 0, /* src_mask */
679 0xffff, /* dst_mask */
680 FALSE), /* pcrel_offset */
681
682 /* 16-bit section relative relocation. */
683 HOWTO (R_PPC64_SECTOFF, /* type */
684 0, /* rightshift */
685 1, /* size (0 = byte, 1 = short, 2 = long) */
686 16, /* bitsize */
687 FALSE, /* pc_relative */
688 0, /* bitpos */
689 complain_overflow_bitfield, /* complain_on_overflow */
690 ppc64_elf_sectoff_reloc, /* special_function */
691 "R_PPC64_SECTOFF", /* name */
692 FALSE, /* partial_inplace */
693 0, /* src_mask */
694 0xffff, /* dst_mask */
695 FALSE), /* pcrel_offset */
696
697 /* Like R_PPC64_SECTOFF, but no overflow warning. */
698 HOWTO (R_PPC64_SECTOFF_LO, /* type */
699 0, /* rightshift */
700 1, /* size (0 = byte, 1 = short, 2 = long) */
701 16, /* bitsize */
702 FALSE, /* pc_relative */
703 0, /* bitpos */
704 complain_overflow_dont, /* complain_on_overflow */
705 ppc64_elf_sectoff_reloc, /* special_function */
706 "R_PPC64_SECTOFF_LO", /* name */
707 FALSE, /* partial_inplace */
708 0, /* src_mask */
709 0xffff, /* dst_mask */
710 FALSE), /* pcrel_offset */
711
712 /* 16-bit upper half section relative relocation. */
713 HOWTO (R_PPC64_SECTOFF_HI, /* type */
714 16, /* rightshift */
715 1, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 FALSE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont, /* complain_on_overflow */
720 ppc64_elf_sectoff_reloc, /* special_function */
721 "R_PPC64_SECTOFF_HI", /* name */
722 FALSE, /* partial_inplace */
723 0, /* src_mask */
724 0xffff, /* dst_mask */
725 FALSE), /* pcrel_offset */
726
727 /* 16-bit upper half adjusted section relative relocation. */
728 HOWTO (R_PPC64_SECTOFF_HA, /* type */
729 16, /* rightshift */
730 1, /* size (0 = byte, 1 = short, 2 = long) */
731 16, /* bitsize */
732 FALSE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 ppc64_elf_sectoff_ha_reloc, /* special_function */
736 "R_PPC64_SECTOFF_HA", /* name */
737 FALSE, /* partial_inplace */
738 0, /* src_mask */
739 0xffff, /* dst_mask */
740 FALSE), /* pcrel_offset */
741
742 /* Like R_PPC64_REL24 without touching the two least significant bits. */
743 HOWTO (R_PPC64_REL30, /* type */
744 2, /* rightshift */
745 2, /* size (0 = byte, 1 = short, 2 = long) */
746 30, /* bitsize */
747 TRUE, /* pc_relative */
748 0, /* bitpos */
749 complain_overflow_dont, /* complain_on_overflow */
750 bfd_elf_generic_reloc, /* special_function */
751 "R_PPC64_REL30", /* name */
752 FALSE, /* partial_inplace */
753 0, /* src_mask */
754 0xfffffffc, /* dst_mask */
755 TRUE), /* pcrel_offset */
756
757 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
758
759 /* A standard 64-bit relocation. */
760 HOWTO (R_PPC64_ADDR64, /* type */
761 0, /* rightshift */
762 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
763 64, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_dont, /* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_PPC64_ADDR64", /* name */
769 FALSE, /* partial_inplace */
770 0, /* src_mask */
771 ONES (64), /* dst_mask */
772 FALSE), /* pcrel_offset */
773
774 /* The bits 32-47 of an address. */
775 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
776 32, /* rightshift */
777 1, /* size (0 = byte, 1 = short, 2 = long) */
778 16, /* bitsize */
779 FALSE, /* pc_relative */
780 0, /* bitpos */
781 complain_overflow_dont, /* complain_on_overflow */
782 bfd_elf_generic_reloc, /* special_function */
783 "R_PPC64_ADDR16_HIGHER", /* name */
784 FALSE, /* partial_inplace */
785 0, /* src_mask */
786 0xffff, /* dst_mask */
787 FALSE), /* pcrel_offset */
788
789 /* The bits 32-47 of an address, plus 1 if the contents of the low
790 16 bits, treated as a signed number, is negative. */
791 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
792 32, /* rightshift */
793 1, /* size (0 = byte, 1 = short, 2 = long) */
794 16, /* bitsize */
795 FALSE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_dont, /* complain_on_overflow */
798 ppc64_elf_ha_reloc, /* special_function */
799 "R_PPC64_ADDR16_HIGHERA", /* name */
800 FALSE, /* partial_inplace */
801 0, /* src_mask */
802 0xffff, /* dst_mask */
803 FALSE), /* pcrel_offset */
804
805 /* The bits 48-63 of an address. */
806 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
807 48, /* rightshift */
808 1, /* size (0 = byte, 1 = short, 2 = long) */
809 16, /* bitsize */
810 FALSE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_PPC64_ADDR16_HIGHEST", /* name */
815 FALSE, /* partial_inplace */
816 0, /* src_mask */
817 0xffff, /* dst_mask */
818 FALSE), /* pcrel_offset */
819
820 /* The bits 48-63 of an address, plus 1 if the contents of the low
821 16 bits, treated as a signed number, is negative. */
822 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
823 48, /* rightshift */
824 1, /* size (0 = byte, 1 = short, 2 = long) */
825 16, /* bitsize */
826 FALSE, /* pc_relative */
827 0, /* bitpos */
828 complain_overflow_dont, /* complain_on_overflow */
829 ppc64_elf_ha_reloc, /* special_function */
830 "R_PPC64_ADDR16_HIGHESTA", /* name */
831 FALSE, /* partial_inplace */
832 0, /* src_mask */
833 0xffff, /* dst_mask */
834 FALSE), /* pcrel_offset */
835
836 /* Like ADDR64, but may be unaligned. */
837 HOWTO (R_PPC64_UADDR64, /* type */
838 0, /* rightshift */
839 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
840 64, /* bitsize */
841 FALSE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont, /* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_PPC64_UADDR64", /* name */
846 FALSE, /* partial_inplace */
847 0, /* src_mask */
848 ONES (64), /* dst_mask */
849 FALSE), /* pcrel_offset */
850
851 /* 64-bit relative relocation. */
852 HOWTO (R_PPC64_REL64, /* type */
853 0, /* rightshift */
854 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
855 64, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
860 "R_PPC64_REL64", /* name */
861 FALSE, /* partial_inplace */
862 0, /* src_mask */
863 ONES (64), /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 /* 64-bit relocation to the symbol's procedure linkage table. */
867 HOWTO (R_PPC64_PLT64, /* type */
868 0, /* rightshift */
869 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
870 64, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 ppc64_elf_unhandled_reloc, /* special_function */
875 "R_PPC64_PLT64", /* name */
876 FALSE, /* partial_inplace */
877 0, /* src_mask */
878 ONES (64), /* dst_mask */
879 FALSE), /* pcrel_offset */
880
881 /* 64-bit PC relative relocation to the symbol's procedure linkage
882 table. */
883 /* FIXME: R_PPC64_PLTREL64 not supported. */
884 HOWTO (R_PPC64_PLTREL64, /* type */
885 0, /* rightshift */
886 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
887 64, /* bitsize */
888 TRUE, /* pc_relative */
889 0, /* bitpos */
890 complain_overflow_dont, /* complain_on_overflow */
891 ppc64_elf_unhandled_reloc, /* special_function */
892 "R_PPC64_PLTREL64", /* name */
893 FALSE, /* partial_inplace */
894 0, /* src_mask */
895 ONES (64), /* dst_mask */
896 TRUE), /* pcrel_offset */
897
898 /* 16 bit TOC-relative relocation. */
899
900 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
901 HOWTO (R_PPC64_TOC16, /* type */
902 0, /* rightshift */
903 1, /* size (0 = byte, 1 = short, 2 = long) */
904 16, /* bitsize */
905 FALSE, /* pc_relative */
906 0, /* bitpos */
907 complain_overflow_signed, /* complain_on_overflow */
908 ppc64_elf_toc_reloc, /* special_function */
909 "R_PPC64_TOC16", /* name */
910 FALSE, /* partial_inplace */
911 0, /* src_mask */
912 0xffff, /* dst_mask */
913 FALSE), /* pcrel_offset */
914
915 /* 16 bit TOC-relative relocation without overflow. */
916
917 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
918 HOWTO (R_PPC64_TOC16_LO, /* type */
919 0, /* rightshift */
920 1, /* size (0 = byte, 1 = short, 2 = long) */
921 16, /* bitsize */
922 FALSE, /* pc_relative */
923 0, /* bitpos */
924 complain_overflow_dont, /* complain_on_overflow */
925 ppc64_elf_toc_reloc, /* special_function */
926 "R_PPC64_TOC16_LO", /* name */
927 FALSE, /* partial_inplace */
928 0, /* src_mask */
929 0xffff, /* dst_mask */
930 FALSE), /* pcrel_offset */
931
932 /* 16 bit TOC-relative relocation, high 16 bits. */
933
934 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
935 HOWTO (R_PPC64_TOC16_HI, /* type */
936 16, /* rightshift */
937 1, /* size (0 = byte, 1 = short, 2 = long) */
938 16, /* bitsize */
939 FALSE, /* pc_relative */
940 0, /* bitpos */
941 complain_overflow_dont, /* complain_on_overflow */
942 ppc64_elf_toc_reloc, /* special_function */
943 "R_PPC64_TOC16_HI", /* name */
944 FALSE, /* partial_inplace */
945 0, /* src_mask */
946 0xffff, /* dst_mask */
947 FALSE), /* pcrel_offset */
948
949 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
950 contents of the low 16 bits, treated as a signed number, is
951 negative. */
952
953 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
954 HOWTO (R_PPC64_TOC16_HA, /* type */
955 16, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_dont, /* complain_on_overflow */
961 ppc64_elf_toc_ha_reloc, /* special_function */
962 "R_PPC64_TOC16_HA", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 64-bit relocation; insert value of TOC base (.TOC.). */
969
970 /* R_PPC64_TOC 51 doubleword64 .TOC. */
971 HOWTO (R_PPC64_TOC, /* type */
972 0, /* rightshift */
973 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
974 64, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_bitfield, /* complain_on_overflow */
978 ppc64_elf_toc64_reloc, /* special_function */
979 "R_PPC64_TOC", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 ONES (64), /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* Like R_PPC64_GOT16, but also informs the link editor that the
986 value to relocate may (!) refer to a PLT entry which the link
987 editor (a) may replace with the symbol value. If the link editor
988 is unable to fully resolve the symbol, it may (b) create a PLT
989 entry and store the address to the new PLT entry in the GOT.
990 This permits lazy resolution of function symbols at run time.
991 The link editor may also skip all of this and just (c) emit a
992 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
993 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
994 HOWTO (R_PPC64_PLTGOT16, /* type */
995 0, /* rightshift */
996 1, /* size (0 = byte, 1 = short, 2 = long) */
997 16, /* bitsize */
998 FALSE, /* pc_relative */
999 0, /* bitpos */
1000 complain_overflow_signed, /* complain_on_overflow */
1001 ppc64_elf_unhandled_reloc, /* special_function */
1002 "R_PPC64_PLTGOT16", /* name */
1003 FALSE, /* partial_inplace */
1004 0, /* src_mask */
1005 0xffff, /* dst_mask */
1006 FALSE), /* pcrel_offset */
1007
1008 /* Like R_PPC64_PLTGOT16, but without overflow. */
1009 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1010 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1011 0, /* rightshift */
1012 1, /* size (0 = byte, 1 = short, 2 = long) */
1013 16, /* bitsize */
1014 FALSE, /* pc_relative */
1015 0, /* bitpos */
1016 complain_overflow_dont, /* complain_on_overflow */
1017 ppc64_elf_unhandled_reloc, /* special_function */
1018 "R_PPC64_PLTGOT16_LO", /* name */
1019 FALSE, /* partial_inplace */
1020 0, /* src_mask */
1021 0xffff, /* dst_mask */
1022 FALSE), /* pcrel_offset */
1023
1024 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1025 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1026 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1027 16, /* rightshift */
1028 1, /* size (0 = byte, 1 = short, 2 = long) */
1029 16, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 ppc64_elf_unhandled_reloc, /* special_function */
1034 "R_PPC64_PLTGOT16_HI", /* name */
1035 FALSE, /* partial_inplace */
1036 0, /* src_mask */
1037 0xffff, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1041 1 if the contents of the low 16 bits, treated as a signed number,
1042 is negative. */
1043 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1044 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1045 16, /* rightshift */
1046 1, /* size (0 = byte, 1 = short, 2 = long) */
1047 16, /* bitsize */
1048 FALSE, /* pc_relative */
1049 0, /* bitpos */
1050 complain_overflow_dont,/* complain_on_overflow */
1051 ppc64_elf_unhandled_reloc, /* special_function */
1052 "R_PPC64_PLTGOT16_HA", /* name */
1053 FALSE, /* partial_inplace */
1054 0, /* src_mask */
1055 0xffff, /* dst_mask */
1056 FALSE), /* pcrel_offset */
1057
1058 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1059 HOWTO (R_PPC64_ADDR16_DS, /* type */
1060 0, /* rightshift */
1061 1, /* size (0 = byte, 1 = short, 2 = long) */
1062 16, /* bitsize */
1063 FALSE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_bitfield, /* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_PPC64_ADDR16_DS", /* name */
1068 FALSE, /* partial_inplace */
1069 0, /* src_mask */
1070 0xfffc, /* dst_mask */
1071 FALSE), /* pcrel_offset */
1072
1073 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1074 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1075 0, /* rightshift */
1076 1, /* size (0 = byte, 1 = short, 2 = long) */
1077 16, /* bitsize */
1078 FALSE, /* pc_relative */
1079 0, /* bitpos */
1080 complain_overflow_dont,/* complain_on_overflow */
1081 bfd_elf_generic_reloc, /* special_function */
1082 "R_PPC64_ADDR16_LO_DS",/* name */
1083 FALSE, /* partial_inplace */
1084 0, /* src_mask */
1085 0xfffc, /* dst_mask */
1086 FALSE), /* pcrel_offset */
1087
1088 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1089 HOWTO (R_PPC64_GOT16_DS, /* type */
1090 0, /* rightshift */
1091 1, /* size (0 = byte, 1 = short, 2 = long) */
1092 16, /* bitsize */
1093 FALSE, /* pc_relative */
1094 0, /* bitpos */
1095 complain_overflow_signed, /* complain_on_overflow */
1096 ppc64_elf_unhandled_reloc, /* special_function */
1097 "R_PPC64_GOT16_DS", /* name */
1098 FALSE, /* partial_inplace */
1099 0, /* src_mask */
1100 0xfffc, /* dst_mask */
1101 FALSE), /* pcrel_offset */
1102
1103 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1104 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1105 0, /* rightshift */
1106 1, /* size (0 = byte, 1 = short, 2 = long) */
1107 16, /* bitsize */
1108 FALSE, /* pc_relative */
1109 0, /* bitpos */
1110 complain_overflow_dont, /* complain_on_overflow */
1111 ppc64_elf_unhandled_reloc, /* special_function */
1112 "R_PPC64_GOT16_LO_DS", /* name */
1113 FALSE, /* partial_inplace */
1114 0, /* src_mask */
1115 0xfffc, /* dst_mask */
1116 FALSE), /* pcrel_offset */
1117
1118 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1119 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1120 0, /* rightshift */
1121 1, /* size (0 = byte, 1 = short, 2 = long) */
1122 16, /* bitsize */
1123 FALSE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont, /* complain_on_overflow */
1126 ppc64_elf_unhandled_reloc, /* special_function */
1127 "R_PPC64_PLT16_LO_DS", /* name */
1128 FALSE, /* partial_inplace */
1129 0, /* src_mask */
1130 0xfffc, /* dst_mask */
1131 FALSE), /* pcrel_offset */
1132
1133 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1134 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1135 0, /* rightshift */
1136 1, /* size (0 = byte, 1 = short, 2 = long) */
1137 16, /* bitsize */
1138 FALSE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_bitfield, /* complain_on_overflow */
1141 ppc64_elf_sectoff_reloc, /* special_function */
1142 "R_PPC64_SECTOFF_DS", /* name */
1143 FALSE, /* partial_inplace */
1144 0, /* src_mask */
1145 0xfffc, /* dst_mask */
1146 FALSE), /* pcrel_offset */
1147
1148 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1149 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1150 0, /* rightshift */
1151 1, /* size (0 = byte, 1 = short, 2 = long) */
1152 16, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_dont, /* complain_on_overflow */
1156 ppc64_elf_sectoff_reloc, /* special_function */
1157 "R_PPC64_SECTOFF_LO_DS",/* name */
1158 FALSE, /* partial_inplace */
1159 0, /* src_mask */
1160 0xfffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1164 HOWTO (R_PPC64_TOC16_DS, /* type */
1165 0, /* rightshift */
1166 1, /* size (0 = byte, 1 = short, 2 = long) */
1167 16, /* bitsize */
1168 FALSE, /* pc_relative */
1169 0, /* bitpos */
1170 complain_overflow_signed, /* complain_on_overflow */
1171 ppc64_elf_toc_reloc, /* special_function */
1172 "R_PPC64_TOC16_DS", /* name */
1173 FALSE, /* partial_inplace */
1174 0, /* src_mask */
1175 0xfffc, /* dst_mask */
1176 FALSE), /* pcrel_offset */
1177
1178 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1179 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1180 0, /* rightshift */
1181 1, /* size (0 = byte, 1 = short, 2 = long) */
1182 16, /* bitsize */
1183 FALSE, /* pc_relative */
1184 0, /* bitpos */
1185 complain_overflow_dont, /* complain_on_overflow */
1186 ppc64_elf_toc_reloc, /* special_function */
1187 "R_PPC64_TOC16_LO_DS", /* name */
1188 FALSE, /* partial_inplace */
1189 0, /* src_mask */
1190 0xfffc, /* dst_mask */
1191 FALSE), /* pcrel_offset */
1192
1193 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1194 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1195 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1196 0, /* rightshift */
1197 1, /* size (0 = byte, 1 = short, 2 = long) */
1198 16, /* bitsize */
1199 FALSE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_signed, /* complain_on_overflow */
1202 ppc64_elf_unhandled_reloc, /* special_function */
1203 "R_PPC64_PLTGOT16_DS", /* name */
1204 FALSE, /* partial_inplace */
1205 0, /* src_mask */
1206 0xfffc, /* dst_mask */
1207 FALSE), /* pcrel_offset */
1208
1209 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1210 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1211 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1212 0, /* rightshift */
1213 1, /* size (0 = byte, 1 = short, 2 = long) */
1214 16, /* bitsize */
1215 FALSE, /* pc_relative */
1216 0, /* bitpos */
1217 complain_overflow_dont, /* complain_on_overflow */
1218 ppc64_elf_unhandled_reloc, /* special_function */
1219 "R_PPC64_PLTGOT16_LO_DS",/* name */
1220 FALSE, /* partial_inplace */
1221 0, /* src_mask */
1222 0xfffc, /* dst_mask */
1223 FALSE), /* pcrel_offset */
1224
1225 /* Marker reloc for TLS. */
1226 HOWTO (R_PPC64_TLS,
1227 0, /* rightshift */
1228 2, /* size (0 = byte, 1 = short, 2 = long) */
1229 32, /* bitsize */
1230 FALSE, /* pc_relative */
1231 0, /* bitpos */
1232 complain_overflow_dont, /* complain_on_overflow */
1233 bfd_elf_generic_reloc, /* special_function */
1234 "R_PPC64_TLS", /* name */
1235 FALSE, /* partial_inplace */
1236 0, /* src_mask */
1237 0, /* dst_mask */
1238 FALSE), /* pcrel_offset */
1239
1240 /* Computes the load module index of the load module that contains the
1241 definition of its TLS sym. */
1242 HOWTO (R_PPC64_DTPMOD64,
1243 0, /* rightshift */
1244 4, /* size (0 = byte, 1 = short, 2 = long) */
1245 64, /* bitsize */
1246 FALSE, /* pc_relative */
1247 0, /* bitpos */
1248 complain_overflow_dont, /* complain_on_overflow */
1249 ppc64_elf_unhandled_reloc, /* special_function */
1250 "R_PPC64_DTPMOD64", /* name */
1251 FALSE, /* partial_inplace */
1252 0, /* src_mask */
1253 ONES (64), /* dst_mask */
1254 FALSE), /* pcrel_offset */
1255
1256 /* Computes a dtv-relative displacement, the difference between the value
1257 of sym+add and the base address of the thread-local storage block that
1258 contains the definition of sym, minus 0x8000. */
1259 HOWTO (R_PPC64_DTPREL64,
1260 0, /* rightshift */
1261 4, /* size (0 = byte, 1 = short, 2 = long) */
1262 64, /* bitsize */
1263 FALSE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont, /* complain_on_overflow */
1266 ppc64_elf_unhandled_reloc, /* special_function */
1267 "R_PPC64_DTPREL64", /* name */
1268 FALSE, /* partial_inplace */
1269 0, /* src_mask */
1270 ONES (64), /* dst_mask */
1271 FALSE), /* pcrel_offset */
1272
1273 /* A 16 bit dtprel reloc. */
1274 HOWTO (R_PPC64_DTPREL16,
1275 0, /* rightshift */
1276 1, /* size (0 = byte, 1 = short, 2 = long) */
1277 16, /* bitsize */
1278 FALSE, /* pc_relative */
1279 0, /* bitpos */
1280 complain_overflow_signed, /* complain_on_overflow */
1281 ppc64_elf_unhandled_reloc, /* special_function */
1282 "R_PPC64_DTPREL16", /* name */
1283 FALSE, /* partial_inplace */
1284 0, /* src_mask */
1285 0xffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1287
1288 /* Like DTPREL16, but no overflow. */
1289 HOWTO (R_PPC64_DTPREL16_LO,
1290 0, /* rightshift */
1291 1, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_dont, /* complain_on_overflow */
1296 ppc64_elf_unhandled_reloc, /* special_function */
1297 "R_PPC64_DTPREL16_LO", /* name */
1298 FALSE, /* partial_inplace */
1299 0, /* src_mask */
1300 0xffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1304 HOWTO (R_PPC64_DTPREL16_HI,
1305 16, /* rightshift */
1306 1, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_dont, /* complain_on_overflow */
1311 ppc64_elf_unhandled_reloc, /* special_function */
1312 "R_PPC64_DTPREL16_HI", /* name */
1313 FALSE, /* partial_inplace */
1314 0, /* src_mask */
1315 0xffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1319 HOWTO (R_PPC64_DTPREL16_HA,
1320 16, /* rightshift */
1321 1, /* size (0 = byte, 1 = short, 2 = long) */
1322 16, /* bitsize */
1323 FALSE, /* pc_relative */
1324 0, /* bitpos */
1325 complain_overflow_dont, /* complain_on_overflow */
1326 ppc64_elf_unhandled_reloc, /* special_function */
1327 "R_PPC64_DTPREL16_HA", /* name */
1328 FALSE, /* partial_inplace */
1329 0, /* src_mask */
1330 0xffff, /* dst_mask */
1331 FALSE), /* pcrel_offset */
1332
1333 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1334 HOWTO (R_PPC64_DTPREL16_HIGHER,
1335 32, /* rightshift */
1336 1, /* size (0 = byte, 1 = short, 2 = long) */
1337 16, /* bitsize */
1338 FALSE, /* pc_relative */
1339 0, /* bitpos */
1340 complain_overflow_dont, /* complain_on_overflow */
1341 ppc64_elf_unhandled_reloc, /* special_function */
1342 "R_PPC64_DTPREL16_HIGHER", /* name */
1343 FALSE, /* partial_inplace */
1344 0, /* src_mask */
1345 0xffff, /* dst_mask */
1346 FALSE), /* pcrel_offset */
1347
1348 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1349 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1350 32, /* rightshift */
1351 1, /* size (0 = byte, 1 = short, 2 = long) */
1352 16, /* bitsize */
1353 FALSE, /* pc_relative */
1354 0, /* bitpos */
1355 complain_overflow_dont, /* complain_on_overflow */
1356 ppc64_elf_unhandled_reloc, /* special_function */
1357 "R_PPC64_DTPREL16_HIGHERA", /* name */
1358 FALSE, /* partial_inplace */
1359 0, /* src_mask */
1360 0xffff, /* dst_mask */
1361 FALSE), /* pcrel_offset */
1362
1363 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1364 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1365 48, /* rightshift */
1366 1, /* size (0 = byte, 1 = short, 2 = long) */
1367 16, /* bitsize */
1368 FALSE, /* pc_relative */
1369 0, /* bitpos */
1370 complain_overflow_dont, /* complain_on_overflow */
1371 ppc64_elf_unhandled_reloc, /* special_function */
1372 "R_PPC64_DTPREL16_HIGHEST", /* name */
1373 FALSE, /* partial_inplace */
1374 0, /* src_mask */
1375 0xffff, /* dst_mask */
1376 FALSE), /* pcrel_offset */
1377
1378 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1379 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1380 48, /* rightshift */
1381 1, /* size (0 = byte, 1 = short, 2 = long) */
1382 16, /* bitsize */
1383 FALSE, /* pc_relative */
1384 0, /* bitpos */
1385 complain_overflow_dont, /* complain_on_overflow */
1386 ppc64_elf_unhandled_reloc, /* special_function */
1387 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1388 FALSE, /* partial_inplace */
1389 0, /* src_mask */
1390 0xffff, /* dst_mask */
1391 FALSE), /* pcrel_offset */
1392
1393 /* Like DTPREL16, but for insns with a DS field. */
1394 HOWTO (R_PPC64_DTPREL16_DS,
1395 0, /* rightshift */
1396 1, /* size (0 = byte, 1 = short, 2 = long) */
1397 16, /* bitsize */
1398 FALSE, /* pc_relative */
1399 0, /* bitpos */
1400 complain_overflow_signed, /* complain_on_overflow */
1401 ppc64_elf_unhandled_reloc, /* special_function */
1402 "R_PPC64_DTPREL16_DS", /* name */
1403 FALSE, /* partial_inplace */
1404 0, /* src_mask */
1405 0xfffc, /* dst_mask */
1406 FALSE), /* pcrel_offset */
1407
1408 /* Like DTPREL16_DS, but no overflow. */
1409 HOWTO (R_PPC64_DTPREL16_LO_DS,
1410 0, /* rightshift */
1411 1, /* size (0 = byte, 1 = short, 2 = long) */
1412 16, /* bitsize */
1413 FALSE, /* pc_relative */
1414 0, /* bitpos */
1415 complain_overflow_dont, /* complain_on_overflow */
1416 ppc64_elf_unhandled_reloc, /* special_function */
1417 "R_PPC64_DTPREL16_LO_DS", /* name */
1418 FALSE, /* partial_inplace */
1419 0, /* src_mask */
1420 0xfffc, /* dst_mask */
1421 FALSE), /* pcrel_offset */
1422
1423 /* Computes a tp-relative displacement, the difference between the value of
1424 sym+add and the value of the thread pointer (r13). */
1425 HOWTO (R_PPC64_TPREL64,
1426 0, /* rightshift */
1427 4, /* size (0 = byte, 1 = short, 2 = long) */
1428 64, /* bitsize */
1429 FALSE, /* pc_relative */
1430 0, /* bitpos */
1431 complain_overflow_dont, /* complain_on_overflow */
1432 ppc64_elf_unhandled_reloc, /* special_function */
1433 "R_PPC64_TPREL64", /* name */
1434 FALSE, /* partial_inplace */
1435 0, /* src_mask */
1436 ONES (64), /* dst_mask */
1437 FALSE), /* pcrel_offset */
1438
1439 /* A 16 bit tprel reloc. */
1440 HOWTO (R_PPC64_TPREL16,
1441 0, /* rightshift */
1442 1, /* size (0 = byte, 1 = short, 2 = long) */
1443 16, /* bitsize */
1444 FALSE, /* pc_relative */
1445 0, /* bitpos */
1446 complain_overflow_signed, /* complain_on_overflow */
1447 ppc64_elf_unhandled_reloc, /* special_function */
1448 "R_PPC64_TPREL16", /* name */
1449 FALSE, /* partial_inplace */
1450 0, /* src_mask */
1451 0xffff, /* dst_mask */
1452 FALSE), /* pcrel_offset */
1453
1454 /* Like TPREL16, but no overflow. */
1455 HOWTO (R_PPC64_TPREL16_LO,
1456 0, /* rightshift */
1457 1, /* size (0 = byte, 1 = short, 2 = long) */
1458 16, /* bitsize */
1459 FALSE, /* pc_relative */
1460 0, /* bitpos */
1461 complain_overflow_dont, /* complain_on_overflow */
1462 ppc64_elf_unhandled_reloc, /* special_function */
1463 "R_PPC64_TPREL16_LO", /* name */
1464 FALSE, /* partial_inplace */
1465 0, /* src_mask */
1466 0xffff, /* dst_mask */
1467 FALSE), /* pcrel_offset */
1468
1469 /* Like TPREL16_LO, but next higher group of 16 bits. */
1470 HOWTO (R_PPC64_TPREL16_HI,
1471 16, /* rightshift */
1472 1, /* size (0 = byte, 1 = short, 2 = long) */
1473 16, /* bitsize */
1474 FALSE, /* pc_relative */
1475 0, /* bitpos */
1476 complain_overflow_dont, /* complain_on_overflow */
1477 ppc64_elf_unhandled_reloc, /* special_function */
1478 "R_PPC64_TPREL16_HI", /* name */
1479 FALSE, /* partial_inplace */
1480 0, /* src_mask */
1481 0xffff, /* dst_mask */
1482 FALSE), /* pcrel_offset */
1483
1484 /* Like TPREL16_HI, but adjust for low 16 bits. */
1485 HOWTO (R_PPC64_TPREL16_HA,
1486 16, /* rightshift */
1487 1, /* size (0 = byte, 1 = short, 2 = long) */
1488 16, /* bitsize */
1489 FALSE, /* pc_relative */
1490 0, /* bitpos */
1491 complain_overflow_dont, /* complain_on_overflow */
1492 ppc64_elf_unhandled_reloc, /* special_function */
1493 "R_PPC64_TPREL16_HA", /* name */
1494 FALSE, /* partial_inplace */
1495 0, /* src_mask */
1496 0xffff, /* dst_mask */
1497 FALSE), /* pcrel_offset */
1498
1499 /* Like TPREL16_HI, but next higher group of 16 bits. */
1500 HOWTO (R_PPC64_TPREL16_HIGHER,
1501 32, /* rightshift */
1502 1, /* size (0 = byte, 1 = short, 2 = long) */
1503 16, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_dont, /* complain_on_overflow */
1507 ppc64_elf_unhandled_reloc, /* special_function */
1508 "R_PPC64_TPREL16_HIGHER", /* name */
1509 FALSE, /* partial_inplace */
1510 0, /* src_mask */
1511 0xffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1515 HOWTO (R_PPC64_TPREL16_HIGHERA,
1516 32, /* rightshift */
1517 1, /* size (0 = byte, 1 = short, 2 = long) */
1518 16, /* bitsize */
1519 FALSE, /* pc_relative */
1520 0, /* bitpos */
1521 complain_overflow_dont, /* complain_on_overflow */
1522 ppc64_elf_unhandled_reloc, /* special_function */
1523 "R_PPC64_TPREL16_HIGHERA", /* name */
1524 FALSE, /* partial_inplace */
1525 0, /* src_mask */
1526 0xffff, /* dst_mask */
1527 FALSE), /* pcrel_offset */
1528
1529 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1530 HOWTO (R_PPC64_TPREL16_HIGHEST,
1531 48, /* rightshift */
1532 1, /* size (0 = byte, 1 = short, 2 = long) */
1533 16, /* bitsize */
1534 FALSE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 ppc64_elf_unhandled_reloc, /* special_function */
1538 "R_PPC64_TPREL16_HIGHEST", /* name */
1539 FALSE, /* partial_inplace */
1540 0, /* src_mask */
1541 0xffff, /* dst_mask */
1542 FALSE), /* pcrel_offset */
1543
1544 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1545 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1546 48, /* rightshift */
1547 1, /* size (0 = byte, 1 = short, 2 = long) */
1548 16, /* bitsize */
1549 FALSE, /* pc_relative */
1550 0, /* bitpos */
1551 complain_overflow_dont, /* complain_on_overflow */
1552 ppc64_elf_unhandled_reloc, /* special_function */
1553 "R_PPC64_TPREL16_HIGHESTA", /* name */
1554 FALSE, /* partial_inplace */
1555 0, /* src_mask */
1556 0xffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1558
1559 /* Like TPREL16, but for insns with a DS field. */
1560 HOWTO (R_PPC64_TPREL16_DS,
1561 0, /* rightshift */
1562 1, /* size (0 = byte, 1 = short, 2 = long) */
1563 16, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_signed, /* complain_on_overflow */
1567 ppc64_elf_unhandled_reloc, /* special_function */
1568 "R_PPC64_TPREL16_DS", /* name */
1569 FALSE, /* partial_inplace */
1570 0, /* src_mask */
1571 0xfffc, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 /* Like TPREL16_DS, but no overflow. */
1575 HOWTO (R_PPC64_TPREL16_LO_DS,
1576 0, /* rightshift */
1577 1, /* size (0 = byte, 1 = short, 2 = long) */
1578 16, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_dont, /* complain_on_overflow */
1582 ppc64_elf_unhandled_reloc, /* special_function */
1583 "R_PPC64_TPREL16_LO_DS", /* name */
1584 FALSE, /* partial_inplace */
1585 0, /* src_mask */
1586 0xfffc, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1590 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1591 to the first entry relative to the TOC base (r2). */
1592 HOWTO (R_PPC64_GOT_TLSGD16,
1593 0, /* rightshift */
1594 1, /* size (0 = byte, 1 = short, 2 = long) */
1595 16, /* bitsize */
1596 FALSE, /* pc_relative */
1597 0, /* bitpos */
1598 complain_overflow_signed, /* complain_on_overflow */
1599 ppc64_elf_unhandled_reloc, /* special_function */
1600 "R_PPC64_GOT_TLSGD16", /* name */
1601 FALSE, /* partial_inplace */
1602 0, /* src_mask */
1603 0xffff, /* dst_mask */
1604 FALSE), /* pcrel_offset */
1605
1606 /* Like GOT_TLSGD16, but no overflow. */
1607 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1608 0, /* rightshift */
1609 1, /* size (0 = byte, 1 = short, 2 = long) */
1610 16, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont, /* complain_on_overflow */
1614 ppc64_elf_unhandled_reloc, /* special_function */
1615 "R_PPC64_GOT_TLSGD16_LO", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0xffff, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1622 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1623 16, /* rightshift */
1624 1, /* size (0 = byte, 1 = short, 2 = long) */
1625 16, /* bitsize */
1626 FALSE, /* pc_relative */
1627 0, /* bitpos */
1628 complain_overflow_dont, /* complain_on_overflow */
1629 ppc64_elf_unhandled_reloc, /* special_function */
1630 "R_PPC64_GOT_TLSGD16_HI", /* name */
1631 FALSE, /* partial_inplace */
1632 0, /* src_mask */
1633 0xffff, /* dst_mask */
1634 FALSE), /* pcrel_offset */
1635
1636 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1637 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1638 16, /* rightshift */
1639 1, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 ppc64_elf_unhandled_reloc, /* special_function */
1645 "R_PPC64_GOT_TLSGD16_HA", /* name */
1646 FALSE, /* partial_inplace */
1647 0, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1652 with values (sym+add)@dtpmod and zero, and computes the offset to the
1653 first entry relative to the TOC base (r2). */
1654 HOWTO (R_PPC64_GOT_TLSLD16,
1655 0, /* rightshift */
1656 1, /* size (0 = byte, 1 = short, 2 = long) */
1657 16, /* bitsize */
1658 FALSE, /* pc_relative */
1659 0, /* bitpos */
1660 complain_overflow_signed, /* complain_on_overflow */
1661 ppc64_elf_unhandled_reloc, /* special_function */
1662 "R_PPC64_GOT_TLSLD16", /* name */
1663 FALSE, /* partial_inplace */
1664 0, /* src_mask */
1665 0xffff, /* dst_mask */
1666 FALSE), /* pcrel_offset */
1667
1668 /* Like GOT_TLSLD16, but no overflow. */
1669 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1670 0, /* rightshift */
1671 1, /* size (0 = byte, 1 = short, 2 = long) */
1672 16, /* bitsize */
1673 FALSE, /* pc_relative */
1674 0, /* bitpos */
1675 complain_overflow_dont, /* complain_on_overflow */
1676 ppc64_elf_unhandled_reloc, /* special_function */
1677 "R_PPC64_GOT_TLSLD16_LO", /* name */
1678 FALSE, /* partial_inplace */
1679 0, /* src_mask */
1680 0xffff, /* dst_mask */
1681 FALSE), /* pcrel_offset */
1682
1683 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1684 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1685 16, /* rightshift */
1686 1, /* size (0 = byte, 1 = short, 2 = long) */
1687 16, /* bitsize */
1688 FALSE, /* pc_relative */
1689 0, /* bitpos */
1690 complain_overflow_dont, /* complain_on_overflow */
1691 ppc64_elf_unhandled_reloc, /* special_function */
1692 "R_PPC64_GOT_TLSLD16_HI", /* name */
1693 FALSE, /* partial_inplace */
1694 0, /* src_mask */
1695 0xffff, /* dst_mask */
1696 FALSE), /* pcrel_offset */
1697
1698 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1699 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1700 16, /* rightshift */
1701 1, /* size (0 = byte, 1 = short, 2 = long) */
1702 16, /* bitsize */
1703 FALSE, /* pc_relative */
1704 0, /* bitpos */
1705 complain_overflow_dont, /* complain_on_overflow */
1706 ppc64_elf_unhandled_reloc, /* special_function */
1707 "R_PPC64_GOT_TLSLD16_HA", /* name */
1708 FALSE, /* partial_inplace */
1709 0, /* src_mask */
1710 0xffff, /* dst_mask */
1711 FALSE), /* pcrel_offset */
1712
1713 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1714 the offset to the entry relative to the TOC base (r2). */
1715 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1716 0, /* rightshift */
1717 1, /* size (0 = byte, 1 = short, 2 = long) */
1718 16, /* bitsize */
1719 FALSE, /* pc_relative */
1720 0, /* bitpos */
1721 complain_overflow_signed, /* complain_on_overflow */
1722 ppc64_elf_unhandled_reloc, /* special_function */
1723 "R_PPC64_GOT_DTPREL16_DS", /* name */
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 0xfffc, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 /* Like GOT_DTPREL16_DS, but no overflow. */
1730 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1731 0, /* rightshift */
1732 1, /* size (0 = byte, 1 = short, 2 = long) */
1733 16, /* bitsize */
1734 FALSE, /* pc_relative */
1735 0, /* bitpos */
1736 complain_overflow_dont, /* complain_on_overflow */
1737 ppc64_elf_unhandled_reloc, /* special_function */
1738 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1739 FALSE, /* partial_inplace */
1740 0, /* src_mask */
1741 0xfffc, /* dst_mask */
1742 FALSE), /* pcrel_offset */
1743
1744 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1745 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1746 16, /* rightshift */
1747 1, /* size (0 = byte, 1 = short, 2 = long) */
1748 16, /* bitsize */
1749 FALSE, /* pc_relative */
1750 0, /* bitpos */
1751 complain_overflow_dont, /* complain_on_overflow */
1752 ppc64_elf_unhandled_reloc, /* special_function */
1753 "R_PPC64_GOT_DTPREL16_HI", /* name */
1754 FALSE, /* partial_inplace */
1755 0, /* src_mask */
1756 0xffff, /* dst_mask */
1757 FALSE), /* pcrel_offset */
1758
1759 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1760 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1761 16, /* rightshift */
1762 1, /* size (0 = byte, 1 = short, 2 = long) */
1763 16, /* bitsize */
1764 FALSE, /* pc_relative */
1765 0, /* bitpos */
1766 complain_overflow_dont, /* complain_on_overflow */
1767 ppc64_elf_unhandled_reloc, /* special_function */
1768 "R_PPC64_GOT_DTPREL16_HA", /* name */
1769 FALSE, /* partial_inplace */
1770 0, /* src_mask */
1771 0xffff, /* dst_mask */
1772 FALSE), /* pcrel_offset */
1773
1774 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1775 offset to the entry relative to the TOC base (r2). */
1776 HOWTO (R_PPC64_GOT_TPREL16_DS,
1777 0, /* rightshift */
1778 1, /* size (0 = byte, 1 = short, 2 = long) */
1779 16, /* bitsize */
1780 FALSE, /* pc_relative */
1781 0, /* bitpos */
1782 complain_overflow_signed, /* complain_on_overflow */
1783 ppc64_elf_unhandled_reloc, /* special_function */
1784 "R_PPC64_GOT_TPREL16_DS", /* name */
1785 FALSE, /* partial_inplace */
1786 0, /* src_mask */
1787 0xfffc, /* dst_mask */
1788 FALSE), /* pcrel_offset */
1789
1790 /* Like GOT_TPREL16_DS, but no overflow. */
1791 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1792 0, /* rightshift */
1793 1, /* size (0 = byte, 1 = short, 2 = long) */
1794 16, /* bitsize */
1795 FALSE, /* pc_relative */
1796 0, /* bitpos */
1797 complain_overflow_dont, /* complain_on_overflow */
1798 ppc64_elf_unhandled_reloc, /* special_function */
1799 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1800 FALSE, /* partial_inplace */
1801 0, /* src_mask */
1802 0xfffc, /* dst_mask */
1803 FALSE), /* pcrel_offset */
1804
1805 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1806 HOWTO (R_PPC64_GOT_TPREL16_HI,
1807 16, /* rightshift */
1808 1, /* size (0 = byte, 1 = short, 2 = long) */
1809 16, /* bitsize */
1810 FALSE, /* pc_relative */
1811 0, /* bitpos */
1812 complain_overflow_dont, /* complain_on_overflow */
1813 ppc64_elf_unhandled_reloc, /* special_function */
1814 "R_PPC64_GOT_TPREL16_HI", /* name */
1815 FALSE, /* partial_inplace */
1816 0, /* src_mask */
1817 0xffff, /* dst_mask */
1818 FALSE), /* pcrel_offset */
1819
1820 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1821 HOWTO (R_PPC64_GOT_TPREL16_HA,
1822 16, /* rightshift */
1823 1, /* size (0 = byte, 1 = short, 2 = long) */
1824 16, /* bitsize */
1825 FALSE, /* pc_relative */
1826 0, /* bitpos */
1827 complain_overflow_dont, /* complain_on_overflow */
1828 ppc64_elf_unhandled_reloc, /* special_function */
1829 "R_PPC64_GOT_TPREL16_HA", /* name */
1830 FALSE, /* partial_inplace */
1831 0, /* src_mask */
1832 0xffff, /* dst_mask */
1833 FALSE), /* pcrel_offset */
1834
1835 /* GNU extension to record C++ vtable hierarchy. */
1836 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1837 0, /* rightshift */
1838 0, /* size (0 = byte, 1 = short, 2 = long) */
1839 0, /* bitsize */
1840 FALSE, /* pc_relative */
1841 0, /* bitpos */
1842 complain_overflow_dont, /* complain_on_overflow */
1843 NULL, /* special_function */
1844 "R_PPC64_GNU_VTINHERIT", /* name */
1845 FALSE, /* partial_inplace */
1846 0, /* src_mask */
1847 0, /* dst_mask */
1848 FALSE), /* pcrel_offset */
1849
1850 /* GNU extension to record C++ vtable member usage. */
1851 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
1852 0, /* rightshift */
1853 0, /* size (0 = byte, 1 = short, 2 = long) */
1854 0, /* bitsize */
1855 FALSE, /* pc_relative */
1856 0, /* bitpos */
1857 complain_overflow_dont, /* complain_on_overflow */
1858 NULL, /* special_function */
1859 "R_PPC64_GNU_VTENTRY", /* name */
1860 FALSE, /* partial_inplace */
1861 0, /* src_mask */
1862 0, /* dst_mask */
1863 FALSE), /* pcrel_offset */
1864 };
1865
1866 \f
1867 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
1868 be done. */
1869
1870 static void
1871 ppc_howto_init (void)
1872 {
1873 unsigned int i, type;
1874
1875 for (i = 0;
1876 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
1877 i++)
1878 {
1879 type = ppc64_elf_howto_raw[i].type;
1880 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
1881 / sizeof (ppc64_elf_howto_table[0])));
1882 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1883 }
1884 }
1885
1886 static reloc_howto_type *
1887 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1888 bfd_reloc_code_real_type code)
1889 {
1890 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1891
1892 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1893 /* Initialize howto table if needed. */
1894 ppc_howto_init ();
1895
1896 switch (code)
1897 {
1898 default:
1899 return NULL;
1900
1901 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1902 break;
1903 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1904 break;
1905 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1906 break;
1907 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1908 break;
1909 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1910 break;
1911 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1912 break;
1913 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1914 break;
1915 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1916 break;
1917 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1918 break;
1919 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1920 break;
1921 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1922 break;
1923 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1924 break;
1925 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1926 break;
1927 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1928 break;
1929 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1930 break;
1931 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1932 break;
1933 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1934 break;
1935 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1936 break;
1937 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1938 break;
1939 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1940 break;
1941 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1942 break;
1943 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1944 break;
1945 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1946 break;
1947 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1948 break;
1949 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1950 break;
1951 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1952 break;
1953 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1954 break;
1955 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1956 break;
1957 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1958 break;
1959 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1960 break;
1961 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1962 break;
1963 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1964 break;
1965 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1966 break;
1967 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1968 break;
1969 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1970 break;
1971 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1972 break;
1973 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1974 break;
1975 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1976 break;
1977 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1978 break;
1979 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1980 break;
1981 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1982 break;
1983 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1984 break;
1985 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1986 break;
1987 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1988 break;
1989 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1990 break;
1991 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1992 break;
1993 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1994 break;
1995 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1996 break;
1997 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1998 break;
1999 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2000 break;
2001 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2002 break;
2003 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2004 break;
2005 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2006 break;
2007 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2008 break;
2009 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2010 break;
2011 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2012 break;
2013 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2014 break;
2015 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2016 break;
2017 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2018 break;
2019 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2020 break;
2021 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2022 break;
2023 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2024 break;
2025 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2026 break;
2027 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2028 break;
2029 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2030 break;
2031 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2032 break;
2033 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2034 break;
2035 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2036 break;
2037 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2038 break;
2039 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2040 break;
2041 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2042 break;
2043 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2044 break;
2045 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2046 break;
2047 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2048 break;
2049 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2050 break;
2051 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2052 break;
2053 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2054 break;
2055 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2056 break;
2057 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2058 break;
2059 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2060 break;
2061 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2062 break;
2063 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2064 break;
2065 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2066 break;
2067 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2068 break;
2069 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2070 break;
2071 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2072 break;
2073 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2074 break;
2075 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2076 break;
2077 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2078 break;
2079 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2080 break;
2081 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2082 break;
2083 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2084 break;
2085 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2086 break;
2087 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2088 break;
2089 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2090 break;
2091 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2092 break;
2093 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2094 break;
2095 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2096 break;
2097 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2098 break;
2099 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2100 break;
2101 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2102 break;
2103 }
2104
2105 return ppc64_elf_howto_table[r];
2106 };
2107
2108 /* Set the howto pointer for a PowerPC ELF reloc. */
2109
2110 static void
2111 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2112 Elf_Internal_Rela *dst)
2113 {
2114 unsigned int type;
2115
2116 /* Initialize howto table if needed. */
2117 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2118 ppc_howto_init ();
2119
2120 type = ELF64_R_TYPE (dst->r_info);
2121 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2122 / sizeof (ppc64_elf_howto_table[0])));
2123 cache_ptr->howto = ppc64_elf_howto_table[type];
2124 }
2125
2126 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2127
2128 static bfd_reloc_status_type
2129 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2130 void *data, asection *input_section,
2131 bfd *output_bfd, char **error_message)
2132 {
2133 /* If this is a relocatable link (output_bfd test tells us), just
2134 call the generic function. Any adjustment will be done at final
2135 link time. */
2136 if (output_bfd != NULL)
2137 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2138 input_section, output_bfd, error_message);
2139
2140 /* Adjust the addend for sign extension of the low 16 bits.
2141 We won't actually be using the low 16 bits, so trashing them
2142 doesn't matter. */
2143 reloc_entry->addend += 0x8000;
2144 return bfd_reloc_continue;
2145 }
2146
2147 static bfd_reloc_status_type
2148 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2149 void *data, asection *input_section,
2150 bfd *output_bfd, char **error_message)
2151 {
2152 if (output_bfd != NULL)
2153 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2154 input_section, output_bfd, error_message);
2155
2156 if (strcmp (symbol->section->name, ".opd") == 0
2157 && (symbol->section->owner->flags & DYNAMIC) == 0)
2158 {
2159 bfd_vma dest = opd_entry_value (symbol->section,
2160 symbol->value + reloc_entry->addend,
2161 NULL, NULL);
2162 if (dest != (bfd_vma) -1)
2163 reloc_entry->addend = dest - (symbol->value
2164 + symbol->section->output_section->vma
2165 + symbol->section->output_offset);
2166 }
2167 return bfd_reloc_continue;
2168 }
2169
2170 static bfd_reloc_status_type
2171 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2172 void *data, asection *input_section,
2173 bfd *output_bfd, char **error_message)
2174 {
2175 long insn;
2176 enum elf_ppc64_reloc_type r_type;
2177 bfd_size_type octets;
2178 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
2179 bfd_boolean is_power4 = FALSE;
2180
2181 /* If this is a relocatable link (output_bfd test tells us), just
2182 call the generic function. Any adjustment will be done at final
2183 link time. */
2184 if (output_bfd != NULL)
2185 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2186 input_section, output_bfd, error_message);
2187
2188 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2189 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2190 insn &= ~(0x01 << 21);
2191 r_type = reloc_entry->howto->type;
2192 if (r_type == R_PPC64_ADDR14_BRTAKEN
2193 || r_type == R_PPC64_REL14_BRTAKEN)
2194 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2195
2196 if (is_power4)
2197 {
2198 /* Set 'a' bit. This is 0b00010 in BO field for branch
2199 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2200 for branch on CTR insns (BO == 1a00t or 1a01t). */
2201 if ((insn & (0x14 << 21)) == (0x04 << 21))
2202 insn |= 0x02 << 21;
2203 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2204 insn |= 0x08 << 21;
2205 else
2206 goto out;
2207 }
2208 else
2209 {
2210 bfd_vma target = 0;
2211 bfd_vma from;
2212
2213 if (!bfd_is_com_section (symbol->section))
2214 target = symbol->value;
2215 target += symbol->section->output_section->vma;
2216 target += symbol->section->output_offset;
2217 target += reloc_entry->addend;
2218
2219 from = (reloc_entry->address
2220 + input_section->output_offset
2221 + input_section->output_section->vma);
2222
2223 /* Invert 'y' bit if not the default. */
2224 if ((bfd_signed_vma) (target - from) < 0)
2225 insn ^= 0x01 << 21;
2226 }
2227 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2228 out:
2229 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2230 input_section, output_bfd, error_message);
2231 }
2232
2233 static bfd_reloc_status_type
2234 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2235 void *data, asection *input_section,
2236 bfd *output_bfd, char **error_message)
2237 {
2238 /* If this is a relocatable link (output_bfd test tells us), just
2239 call the generic function. Any adjustment will be done at final
2240 link time. */
2241 if (output_bfd != NULL)
2242 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2243 input_section, output_bfd, error_message);
2244
2245 /* Subtract the symbol section base address. */
2246 reloc_entry->addend -= symbol->section->output_section->vma;
2247 return bfd_reloc_continue;
2248 }
2249
2250 static bfd_reloc_status_type
2251 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2252 void *data, asection *input_section,
2253 bfd *output_bfd, char **error_message)
2254 {
2255 /* If this is a relocatable link (output_bfd test tells us), just
2256 call the generic function. Any adjustment will be done at final
2257 link time. */
2258 if (output_bfd != NULL)
2259 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2260 input_section, output_bfd, error_message);
2261
2262 /* Subtract the symbol section base address. */
2263 reloc_entry->addend -= symbol->section->output_section->vma;
2264
2265 /* Adjust the addend for sign extension of the low 16 bits. */
2266 reloc_entry->addend += 0x8000;
2267 return bfd_reloc_continue;
2268 }
2269
2270 static bfd_reloc_status_type
2271 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2272 void *data, asection *input_section,
2273 bfd *output_bfd, char **error_message)
2274 {
2275 bfd_vma TOCstart;
2276
2277 /* If this is a relocatable link (output_bfd test tells us), just
2278 call the generic function. Any adjustment will be done at final
2279 link time. */
2280 if (output_bfd != NULL)
2281 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2282 input_section, output_bfd, error_message);
2283
2284 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2285 if (TOCstart == 0)
2286 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2287
2288 /* Subtract the TOC base address. */
2289 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2290 return bfd_reloc_continue;
2291 }
2292
2293 static bfd_reloc_status_type
2294 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2295 void *data, asection *input_section,
2296 bfd *output_bfd, char **error_message)
2297 {
2298 bfd_vma TOCstart;
2299
2300 /* If this is a relocatable link (output_bfd test tells us), just
2301 call the generic function. Any adjustment will be done at final
2302 link time. */
2303 if (output_bfd != NULL)
2304 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2305 input_section, output_bfd, error_message);
2306
2307 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2308 if (TOCstart == 0)
2309 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2310
2311 /* Subtract the TOC base address. */
2312 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2313
2314 /* Adjust the addend for sign extension of the low 16 bits. */
2315 reloc_entry->addend += 0x8000;
2316 return bfd_reloc_continue;
2317 }
2318
2319 static bfd_reloc_status_type
2320 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2321 void *data, asection *input_section,
2322 bfd *output_bfd, char **error_message)
2323 {
2324 bfd_vma TOCstart;
2325 bfd_size_type octets;
2326
2327 /* If this is a relocatable link (output_bfd test tells us), just
2328 call the generic function. Any adjustment will be done at final
2329 link time. */
2330 if (output_bfd != NULL)
2331 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2332 input_section, output_bfd, error_message);
2333
2334 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2335 if (TOCstart == 0)
2336 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2337
2338 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2339 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2340 return bfd_reloc_ok;
2341 }
2342
2343 static bfd_reloc_status_type
2344 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2345 void *data, asection *input_section,
2346 bfd *output_bfd, char **error_message)
2347 {
2348 /* If this is a relocatable link (output_bfd test tells us), just
2349 call the generic function. Any adjustment will be done at final
2350 link time. */
2351 if (output_bfd != NULL)
2352 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2353 input_section, output_bfd, error_message);
2354
2355 if (error_message != NULL)
2356 {
2357 static char buf[60];
2358 sprintf (buf, "generic linker can't handle %s",
2359 reloc_entry->howto->name);
2360 *error_message = buf;
2361 }
2362 return bfd_reloc_dangerous;
2363 }
2364
2365 struct ppc64_elf_obj_tdata
2366 {
2367 struct elf_obj_tdata elf;
2368
2369 /* Shortcuts to dynamic linker sections. */
2370 asection *got;
2371 asection *relgot;
2372
2373 /* Used during garbage collection. We attach global symbols defined
2374 on removed .opd entries to this section so that the sym is removed. */
2375 asection *deleted_section;
2376
2377 /* TLS local dynamic got entry handling. Suppose for multiple GOT
2378 sections means we potentially need one of these for each input bfd. */
2379 union {
2380 bfd_signed_vma refcount;
2381 bfd_vma offset;
2382 } tlsld_got;
2383 };
2384
2385 #define ppc64_elf_tdata(bfd) \
2386 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2387
2388 #define ppc64_tlsld_got(bfd) \
2389 (&ppc64_elf_tdata (bfd)->tlsld_got)
2390
2391 /* Override the generic function because we store some extras. */
2392
2393 static bfd_boolean
2394 ppc64_elf_mkobject (bfd *abfd)
2395 {
2396 bfd_size_type amt = sizeof (struct ppc64_elf_obj_tdata);
2397 abfd->tdata.any = bfd_zalloc (abfd, amt);
2398 if (abfd->tdata.any == NULL)
2399 return FALSE;
2400 return TRUE;
2401 }
2402
2403 /* Fix bad default arch selected for a 64 bit input bfd when the
2404 default is 32 bit. */
2405
2406 static bfd_boolean
2407 ppc64_elf_object_p (bfd *abfd)
2408 {
2409 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2410 {
2411 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2412
2413 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2414 {
2415 /* Relies on arch after 32 bit default being 64 bit default. */
2416 abfd->arch_info = abfd->arch_info->next;
2417 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2418 }
2419 }
2420 return TRUE;
2421 }
2422
2423 /* Support for core dump NOTE sections. */
2424
2425 static bfd_boolean
2426 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2427 {
2428 size_t offset, size;
2429
2430 if (note->descsz != 504)
2431 return FALSE;
2432
2433 /* pr_cursig */
2434 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2435
2436 /* pr_pid */
2437 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2438
2439 /* pr_reg */
2440 offset = 112;
2441 size = 384;
2442
2443 /* Make a ".reg/999" section. */
2444 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2445 size, note->descpos + offset);
2446 }
2447
2448 static bfd_boolean
2449 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2450 {
2451 if (note->descsz != 136)
2452 return FALSE;
2453
2454 elf_tdata (abfd)->core_program
2455 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2456 elf_tdata (abfd)->core_command
2457 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2458
2459 return TRUE;
2460 }
2461
2462 /* Merge backend specific data from an object file to the output
2463 object file when linking. */
2464
2465 static bfd_boolean
2466 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2467 {
2468 /* Check if we have the same endianess. */
2469 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2470 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
2471 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2472 {
2473 const char *msg;
2474
2475 if (bfd_big_endian (ibfd))
2476 msg = _("%B: compiled for a big endian system "
2477 "and target is little endian");
2478 else
2479 msg = _("%B: compiled for a little endian system "
2480 "and target is big endian");
2481
2482 (*_bfd_error_handler) (msg, ibfd);
2483
2484 bfd_set_error (bfd_error_wrong_format);
2485 return FALSE;
2486 }
2487
2488 return TRUE;
2489 }
2490
2491 /* Add extra PPC sections. */
2492
2493 static struct bfd_elf_special_section const ppc64_elf_special_sections[]=
2494 {
2495 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2496 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2497 { ".plt", 4, 0, SHT_NOBITS, 0 },
2498 { ".toc", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2499 { ".toc1", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2500 { ".tocbss", 7, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2501 { NULL, 0, 0, 0, 0 }
2502 };
2503
2504 struct _ppc64_elf_section_data
2505 {
2506 struct bfd_elf_section_data elf;
2507
2508 /* An array with one entry for each opd function descriptor. */
2509 union
2510 {
2511 /* Points to the function code section for local opd entries. */
2512 asection **func_sec;
2513 /* After editing .opd, adjust references to opd local syms. */
2514 long *adjust;
2515 } opd;
2516
2517 /* An array for toc sections, indexed by offset/8.
2518 Specifies the relocation symbol index used at a given toc offset. */
2519 unsigned *t_symndx;
2520 };
2521
2522 #define ppc64_elf_section_data(sec) \
2523 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2524
2525 static bfd_boolean
2526 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2527 {
2528 struct _ppc64_elf_section_data *sdata;
2529 bfd_size_type amt = sizeof (*sdata);
2530
2531 sdata = bfd_zalloc (abfd, amt);
2532 if (sdata == NULL)
2533 return FALSE;
2534 sec->used_by_bfd = sdata;
2535
2536 return _bfd_elf_new_section_hook (abfd, sec);
2537 }
2538
2539 static void *
2540 get_opd_info (asection * sec)
2541 {
2542 if (sec != NULL
2543 && ppc64_elf_section_data (sec) != NULL
2544 && ppc64_elf_section_data (sec)->opd.adjust != NULL)
2545 return ppc64_elf_section_data (sec)->opd.adjust;
2546 return NULL;
2547 }
2548 \f
2549 /* Parameters for the qsort hook. */
2550 static asection *synthetic_opd;
2551 static bfd_boolean synthetic_relocatable;
2552
2553 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2554
2555 static int
2556 compare_symbols (const void *ap, const void *bp)
2557 {
2558 const asymbol *a = * (const asymbol **) ap;
2559 const asymbol *b = * (const asymbol **) bp;
2560
2561 /* Section symbols first. */
2562 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2563 return -1;
2564 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2565 return 1;
2566
2567 /* then .opd symbols. */
2568 if (a->section == synthetic_opd && b->section != synthetic_opd)
2569 return -1;
2570 if (a->section != synthetic_opd && b->section == synthetic_opd)
2571 return 1;
2572
2573 /* then other code symbols. */
2574 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2575 == (SEC_CODE | SEC_ALLOC)
2576 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2577 != (SEC_CODE | SEC_ALLOC))
2578 return -1;
2579
2580 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2581 != (SEC_CODE | SEC_ALLOC)
2582 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2583 == (SEC_CODE | SEC_ALLOC))
2584 return 1;
2585
2586 if (synthetic_relocatable)
2587 {
2588 if (a->section->id < b->section->id)
2589 return -1;
2590
2591 if (a->section->id > b->section->id)
2592 return 1;
2593 }
2594
2595 if (a->value + a->section->vma < b->value + b->section->vma)
2596 return -1;
2597
2598 if (a->value + a->section->vma > b->value + b->section->vma)
2599 return 1;
2600
2601 return 0;
2602 }
2603
2604 /* Search SYMS for a symbol of the given VALUE. */
2605
2606 static asymbol *
2607 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2608 {
2609 long mid;
2610
2611 if (id == -1)
2612 {
2613 while (lo < hi)
2614 {
2615 mid = (lo + hi) >> 1;
2616 if (syms[mid]->value + syms[mid]->section->vma < value)
2617 lo = mid + 1;
2618 else if (syms[mid]->value + syms[mid]->section->vma > value)
2619 hi = mid;
2620 else
2621 return syms[mid];
2622 }
2623 }
2624 else
2625 {
2626 while (lo < hi)
2627 {
2628 mid = (lo + hi) >> 1;
2629 if (syms[mid]->section->id < id)
2630 lo = mid + 1;
2631 else if (syms[mid]->section->id > id)
2632 hi = mid;
2633 else if (syms[mid]->value < value)
2634 lo = mid + 1;
2635 else if (syms[mid]->value > value)
2636 hi = mid;
2637 else
2638 return syms[mid];
2639 }
2640 }
2641 return NULL;
2642 }
2643
2644 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2645 entry syms. */
2646
2647 static long
2648 ppc64_elf_get_synthetic_symtab (bfd *abfd, asymbol **relsyms, asymbol **ret)
2649 {
2650 asymbol *s;
2651 long i;
2652 long count;
2653 char *names;
2654 asymbol **syms = NULL;
2655 long symcount = 0, codesecsym, codesecsymend, secsymend, opdsymend;
2656 asection *opd;
2657 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2658
2659 *ret = NULL;
2660
2661 opd = bfd_get_section_by_name (abfd, ".opd");
2662 if (opd == NULL)
2663 return 0;
2664
2665 if ((bfd_get_file_flags (abfd) & HAS_SYMS))
2666 {
2667 long storage;
2668 storage = bfd_get_symtab_upper_bound (abfd);
2669 if (storage < 0)
2670 return 0;
2671
2672 if (storage)
2673 {
2674 syms = bfd_malloc (storage);
2675 if (syms == NULL)
2676 return 0;
2677 }
2678
2679 symcount = bfd_canonicalize_symtab (abfd, syms);
2680 if (symcount < 0)
2681 {
2682 free (syms);
2683 return 0;
2684 }
2685
2686 if (symcount == 0)
2687 {
2688 free (syms);
2689 syms = NULL;
2690 }
2691 }
2692
2693 if (symcount == 0)
2694 {
2695 long storage;
2696
2697 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
2698 if (storage < 0)
2699 return 0;
2700
2701 if (storage)
2702 {
2703 syms = bfd_malloc (storage);
2704 if (syms == NULL)
2705 return 0;
2706 }
2707
2708 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
2709 if (symcount < 0)
2710 {
2711 free (syms);
2712 return 0;
2713 }
2714 }
2715
2716 synthetic_opd = opd;
2717 synthetic_relocatable = relocatable;
2718 qsort (syms, symcount, sizeof (asymbol *), compare_symbols);
2719
2720 i = 0;
2721 if (syms[i]->section == opd)
2722 ++i;
2723 codesecsym = i;
2724
2725 for (; i < symcount; ++i)
2726 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2727 != (SEC_CODE | SEC_ALLOC))
2728 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2729 break;
2730 codesecsymend = i;
2731
2732 for (; i < symcount; ++i)
2733 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2734 break;
2735 secsymend = i;
2736
2737 for (; i < symcount; ++i)
2738 if (syms[i]->section != opd)
2739 break;
2740 opdsymend = i;
2741
2742 for (; i < symcount; ++i)
2743 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2744 != (SEC_CODE | SEC_ALLOC))
2745 break;
2746 symcount = i;
2747
2748 if (opdsymend == secsymend)
2749 {
2750 free (syms);
2751 return 0;
2752 }
2753
2754 count = 0;
2755 if (relocatable)
2756 {
2757 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2758 arelent *r;
2759 size_t size;
2760 long relcount;
2761 asection *relopd;
2762
2763 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2764 relopd = opd;
2765 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2766
2767 if (! relcount
2768 || ! (*slurp_relocs) (abfd, relopd, relsyms, FALSE))
2769 {
2770 free (syms);
2771 return 0;
2772 }
2773
2774 size = 0;
2775 for (i = secsymend, r = relopd->relocation; i < opdsymend; ++i)
2776 {
2777 asymbol *sym;
2778
2779 while (r < relopd->relocation + relcount
2780 && r->address < syms[i]->value + opd->vma)
2781 ++r;
2782
2783 if (r == relopd->relocation + relcount)
2784 break;
2785
2786 if (r->address != syms[i]->value + opd->vma)
2787 continue;
2788
2789 if (r->howto->type != R_PPC64_ADDR64)
2790 continue;
2791
2792 sym = *r->sym_ptr_ptr;
2793 if (!sym_exists_at (syms, opdsymend, symcount,
2794 sym->section->id, sym->value + r->addend))
2795 {
2796 ++count;
2797 size += sizeof (asymbol);
2798 size += strlen (syms[i]->name) + 2;
2799 }
2800 }
2801
2802 s = *ret = bfd_malloc (size);
2803 if (s == NULL)
2804 {
2805 free (syms);
2806 return 0;
2807 }
2808
2809 names = (char *) (s + count);
2810
2811 for (i = secsymend, r = relopd->relocation; i < opdsymend; ++i)
2812 {
2813 asymbol *sym;
2814
2815 while (r < relopd->relocation + relcount
2816 && r->address < syms[i]->value + opd->vma)
2817 ++r;
2818
2819 if (r == relopd->relocation + relcount)
2820 break;
2821
2822 if (r->address != syms[i]->value + opd->vma)
2823 continue;
2824
2825 if (r->howto->type != R_PPC64_ADDR64)
2826 continue;
2827
2828 sym = *r->sym_ptr_ptr;
2829 if (!sym_exists_at (syms, opdsymend, symcount,
2830 sym->section->id, sym->value + r->addend))
2831 {
2832 size_t len;
2833
2834 *s = *syms[i];
2835 s->section = sym->section;
2836 s->value = sym->value + r->addend;
2837 s->name = names;
2838 *names++ = '.';
2839 len = strlen (syms[i]->name);
2840 memcpy (names, syms[i]->name, len + 1);
2841 names += len + 1;
2842 s++;
2843 }
2844 }
2845 }
2846 else
2847 {
2848 bfd_byte *contents;
2849 size_t size;
2850
2851 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
2852 {
2853 if (contents)
2854 free (contents);
2855 free (syms);
2856 return 0;
2857 }
2858
2859 size = 0;
2860 for (i = secsymend; i < opdsymend; ++i)
2861 {
2862 bfd_vma ent;
2863
2864 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2865 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2866 {
2867 ++count;
2868 size += sizeof (asymbol);
2869 size += strlen (syms[i]->name) + 2;
2870 }
2871 }
2872
2873 s = *ret = bfd_malloc (size);
2874 if (s == NULL)
2875 {
2876 free (contents);
2877 free (syms);
2878 return 0;
2879 }
2880
2881 names = (char *) (s + count);
2882
2883 for (i = secsymend; i < opdsymend; ++i)
2884 {
2885 bfd_vma ent;
2886
2887 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2888 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2889 {
2890 long lo, hi, mid;
2891 size_t len;
2892 asection *sec;
2893
2894 *s = *syms[i];
2895 lo = codesecsym;
2896 hi = codesecsymend;
2897 while (lo < hi)
2898 {
2899 mid = (lo + hi) >> 1;
2900 if (syms[mid]->section->vma < ent)
2901 lo = mid + 1;
2902 else if (syms[mid]->section->vma > ent)
2903 hi = mid;
2904 else
2905 break;
2906 }
2907
2908 if (lo < hi)
2909 sec = syms[mid]->section;
2910 else if (lo > codesecsym)
2911 sec = syms[lo - 1]->section;
2912 else
2913 sec = abfd->sections;
2914
2915 for (; sec != NULL; sec = sec->next)
2916 {
2917 if (sec->vma > ent)
2918 break;
2919 if ((sec->flags & SEC_ALLOC) == 0
2920 || (sec->flags & SEC_LOAD) == 0)
2921 break;
2922 if ((sec->flags & SEC_CODE) != 0)
2923 s->section = sec;
2924 }
2925 s->value = ent - s->section->vma;
2926 s->name = names;
2927 *names++ = '.';
2928 len = strlen (syms[i]->name);
2929 memcpy (names, syms[i]->name, len + 1);
2930 names += len + 1;
2931 s++;
2932 }
2933 }
2934 free (contents);
2935 }
2936
2937 free (syms);
2938 return count;
2939 }
2940 \f
2941 /* The following functions are specific to the ELF linker, while
2942 functions above are used generally. Those named ppc64_elf_* are
2943 called by the main ELF linker code. They appear in this file more
2944 or less in the order in which they are called. eg.
2945 ppc64_elf_check_relocs is called early in the link process,
2946 ppc64_elf_finish_dynamic_sections is one of the last functions
2947 called.
2948
2949 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2950 functions have both a function code symbol and a function descriptor
2951 symbol. A call to foo in a relocatable object file looks like:
2952
2953 . .text
2954 . x:
2955 . bl .foo
2956 . nop
2957
2958 The function definition in another object file might be:
2959
2960 . .section .opd
2961 . foo: .quad .foo
2962 . .quad .TOC.@tocbase
2963 . .quad 0
2964 .
2965 . .text
2966 . .foo: blr
2967
2968 When the linker resolves the call during a static link, the branch
2969 unsurprisingly just goes to .foo and the .opd information is unused.
2970 If the function definition is in a shared library, things are a little
2971 different: The call goes via a plt call stub, the opd information gets
2972 copied to the plt, and the linker patches the nop.
2973
2974 . x:
2975 . bl .foo_stub
2976 . ld 2,40(1)
2977 .
2978 .
2979 . .foo_stub:
2980 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
2981 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
2982 . std 2,40(1) # this is the general idea
2983 . ld 11,0(12)
2984 . ld 2,8(12)
2985 . mtctr 11
2986 . ld 11,16(12)
2987 . bctr
2988 .
2989 . .section .plt
2990 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2991
2992 The "reloc ()" notation is supposed to indicate that the linker emits
2993 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2994 copying.
2995
2996 What are the difficulties here? Well, firstly, the relocations
2997 examined by the linker in check_relocs are against the function code
2998 sym .foo, while the dynamic relocation in the plt is emitted against
2999 the function descriptor symbol, foo. Somewhere along the line, we need
3000 to carefully copy dynamic link information from one symbol to the other.
3001 Secondly, the generic part of the elf linker will make .foo a dynamic
3002 symbol as is normal for most other backends. We need foo dynamic
3003 instead, at least for an application final link. However, when
3004 creating a shared library containing foo, we need to have both symbols
3005 dynamic so that references to .foo are satisfied during the early
3006 stages of linking. Otherwise the linker might decide to pull in a
3007 definition from some other object, eg. a static library.
3008
3009 Update: As of August 2004, we support a new convention. Function
3010 calls may use the function descriptor symbol, ie. "bl foo". This
3011 behaves exactly as "bl .foo". */
3012
3013 /* The linker needs to keep track of the number of relocs that it
3014 decides to copy as dynamic relocs in check_relocs for each symbol.
3015 This is so that it can later discard them if they are found to be
3016 unnecessary. We store the information in a field extending the
3017 regular ELF linker hash table. */
3018
3019 struct ppc_dyn_relocs
3020 {
3021 struct ppc_dyn_relocs *next;
3022
3023 /* The input section of the reloc. */
3024 asection *sec;
3025
3026 /* Total number of relocs copied for the input section. */
3027 bfd_size_type count;
3028
3029 /* Number of pc-relative relocs copied for the input section. */
3030 bfd_size_type pc_count;
3031 };
3032
3033 /* Track GOT entries needed for a given symbol. We might need more
3034 than one got entry per symbol. */
3035 struct got_entry
3036 {
3037 struct got_entry *next;
3038
3039 /* The symbol addend that we'll be placing in the GOT. */
3040 bfd_vma addend;
3041
3042 /* Unlike other ELF targets, we use separate GOT entries for the same
3043 symbol referenced from different input files. This is to support
3044 automatic multiple TOC/GOT sections, where the TOC base can vary
3045 from one input file to another.
3046
3047 Point to the BFD owning this GOT entry. */
3048 bfd *owner;
3049
3050 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
3051 TLS_TPREL or TLS_DTPREL for tls entries. */
3052 char tls_type;
3053
3054 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
3055 union
3056 {
3057 bfd_signed_vma refcount;
3058 bfd_vma offset;
3059 } got;
3060 };
3061
3062 /* The same for PLT. */
3063 struct plt_entry
3064 {
3065 struct plt_entry *next;
3066
3067 bfd_vma addend;
3068
3069 union
3070 {
3071 bfd_signed_vma refcount;
3072 bfd_vma offset;
3073 } plt;
3074 };
3075
3076 /* Of those relocs that might be copied as dynamic relocs, this macro
3077 selects those that must be copied when linking a shared library,
3078 even when the symbol is local. */
3079
3080 #define MUST_BE_DYN_RELOC(RTYPE) \
3081 ((RTYPE) != R_PPC64_REL32 \
3082 && (RTYPE) != R_PPC64_REL64 \
3083 && (RTYPE) != R_PPC64_REL30)
3084
3085 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3086 copying dynamic variables from a shared lib into an app's dynbss
3087 section, and instead use a dynamic relocation to point into the
3088 shared lib. With code that gcc generates, it's vital that this be
3089 enabled; In the PowerPC64 ABI, the address of a function is actually
3090 the address of a function descriptor, which resides in the .opd
3091 section. gcc uses the descriptor directly rather than going via the
3092 GOT as some other ABI's do, which means that initialized function
3093 pointers must reference the descriptor. Thus, a function pointer
3094 initialized to the address of a function in a shared library will
3095 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3096 redefines the function descriptor symbol to point to the copy. This
3097 presents a problem as a plt entry for that function is also
3098 initialized from the function descriptor symbol and the copy reloc
3099 may not be initialized first. */
3100 #define ELIMINATE_COPY_RELOCS 1
3101
3102 /* Section name for stubs is the associated section name plus this
3103 string. */
3104 #define STUB_SUFFIX ".stub"
3105
3106 /* Linker stubs.
3107 ppc_stub_long_branch:
3108 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3109 destination, but a 24 bit branch in a stub section will reach.
3110 . b dest
3111
3112 ppc_stub_plt_branch:
3113 Similar to the above, but a 24 bit branch in the stub section won't
3114 reach its destination.
3115 . addis %r12,%r2,xxx@toc@ha
3116 . ld %r11,xxx@toc@l(%r12)
3117 . mtctr %r11
3118 . bctr
3119
3120 ppc_stub_plt_call:
3121 Used to call a function in a shared library. If it so happens that
3122 the plt entry referenced crosses a 64k boundary, then an extra
3123 "addis %r12,%r12,1" will be inserted before the load at xxx+8 or
3124 xxx+16 as appropriate.
3125 . addis %r12,%r2,xxx@toc@ha
3126 . std %r2,40(%r1)
3127 . ld %r11,xxx+0@toc@l(%r12)
3128 . ld %r2,xxx+8@toc@l(%r12)
3129 . mtctr %r11
3130 . ld %r11,xxx+16@toc@l(%r12)
3131 . bctr
3132
3133 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3134 code to adjust the value and save r2 to support multiple toc sections.
3135 A ppc_stub_long_branch with an r2 offset looks like:
3136 . std %r2,40(%r1)
3137 . addis %r2,%r2,off@ha
3138 . addi %r2,%r2,off@l
3139 . b dest
3140
3141 A ppc_stub_plt_branch with an r2 offset looks like:
3142 . std %r2,40(%r1)
3143 . addis %r12,%r2,xxx@toc@ha
3144 . ld %r11,xxx@toc@l(%r12)
3145 . addis %r2,%r2,off@ha
3146 . addi %r2,%r2,off@l
3147 . mtctr %r11
3148 . bctr
3149 */
3150
3151 enum ppc_stub_type {
3152 ppc_stub_none,
3153 ppc_stub_long_branch,
3154 ppc_stub_long_branch_r2off,
3155 ppc_stub_plt_branch,
3156 ppc_stub_plt_branch_r2off,
3157 ppc_stub_plt_call
3158 };
3159
3160 struct ppc_stub_hash_entry {
3161
3162 /* Base hash table entry structure. */
3163 struct bfd_hash_entry root;
3164
3165 enum ppc_stub_type stub_type;
3166
3167 /* The stub section. */
3168 asection *stub_sec;
3169
3170 /* Offset within stub_sec of the beginning of this stub. */
3171 bfd_vma stub_offset;
3172
3173 /* Given the symbol's value and its section we can determine its final
3174 value when building the stubs (so the stub knows where to jump. */
3175 bfd_vma target_value;
3176 asection *target_section;
3177
3178 /* The symbol table entry, if any, that this was derived from. */
3179 struct ppc_link_hash_entry *h;
3180
3181 /* And the reloc addend that this was derived from. */
3182 bfd_vma addend;
3183
3184 /* Where this stub is being called from, or, in the case of combined
3185 stub sections, the first input section in the group. */
3186 asection *id_sec;
3187 };
3188
3189 struct ppc_branch_hash_entry {
3190
3191 /* Base hash table entry structure. */
3192 struct bfd_hash_entry root;
3193
3194 /* Offset within .branch_lt. */
3195 unsigned int offset;
3196
3197 /* Generation marker. */
3198 unsigned int iter;
3199 };
3200
3201 struct ppc_link_hash_entry
3202 {
3203 struct elf_link_hash_entry elf;
3204
3205 /* A pointer to the most recently used stub hash entry against this
3206 symbol. */
3207 struct ppc_stub_hash_entry *stub_cache;
3208
3209 /* Track dynamic relocs copied for this symbol. */
3210 struct ppc_dyn_relocs *dyn_relocs;
3211
3212 /* Link between function code and descriptor symbols. */
3213 struct ppc_link_hash_entry *oh;
3214
3215 /* Flag function code and descriptor symbols. */
3216 unsigned int is_func:1;
3217 unsigned int is_func_descriptor:1;
3218
3219 /* Whether global opd sym has been adjusted or not.
3220 After ppc64_elf_edit_opd has run, this flag should be set for all
3221 globals defined in any opd section. */
3222 unsigned int adjust_done:1;
3223
3224 /* Set if we twiddled this symbol to weak at some stage. */
3225 unsigned int was_undefined:1;
3226
3227 /* Contexts in which symbol is used in the GOT (or TOC).
3228 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3229 corresponding relocs are encountered during check_relocs.
3230 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3231 indicate the corresponding GOT entry type is not needed.
3232 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3233 a TPREL one. We use a separate flag rather than setting TPREL
3234 just for convenience in distinguishing the two cases. */
3235 #define TLS_GD 1 /* GD reloc. */
3236 #define TLS_LD 2 /* LD reloc. */
3237 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3238 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3239 #define TLS_TLS 16 /* Any TLS reloc. */
3240 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3241 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3242 char tls_mask;
3243 };
3244
3245 /* ppc64 ELF linker hash table. */
3246
3247 struct ppc_link_hash_table
3248 {
3249 struct elf_link_hash_table elf;
3250
3251 /* The stub hash table. */
3252 struct bfd_hash_table stub_hash_table;
3253
3254 /* Another hash table for plt_branch stubs. */
3255 struct bfd_hash_table branch_hash_table;
3256
3257 /* Linker stub bfd. */
3258 bfd *stub_bfd;
3259
3260 /* Linker call-backs. */
3261 asection * (*add_stub_section) (const char *, asection *);
3262 void (*layout_sections_again) (void);
3263
3264 /* Array to keep track of which stub sections have been created, and
3265 information on stub grouping. */
3266 struct map_stub {
3267 /* This is the section to which stubs in the group will be attached. */
3268 asection *link_sec;
3269 /* The stub section. */
3270 asection *stub_sec;
3271 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3272 bfd_vma toc_off;
3273 } *stub_group;
3274
3275 /* Temp used when calculating TOC pointers. */
3276 bfd_vma toc_curr;
3277
3278 /* Highest input section id. */
3279 int top_id;
3280
3281 /* Highest output section index. */
3282 int top_index;
3283
3284 /* List of input sections for each output section. */
3285 asection **input_list;
3286
3287 /* Short-cuts to get to dynamic linker sections. */
3288 asection *got;
3289 asection *plt;
3290 asection *relplt;
3291 asection *dynbss;
3292 asection *relbss;
3293 asection *glink;
3294 asection *sfpr;
3295 asection *brlt;
3296 asection *relbrlt;
3297
3298 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3299 struct ppc_link_hash_entry *tls_get_addr;
3300 struct ppc_link_hash_entry *tls_get_addr_fd;
3301
3302 /* Statistics. */
3303 unsigned long stub_count[ppc_stub_plt_call];
3304
3305 /* Set if we should emit symbols for stubs. */
3306 unsigned int emit_stub_syms:1;
3307
3308 /* Set on error. */
3309 unsigned int stub_error:1;
3310
3311 /* Flag set when small branches are detected. Used to
3312 select suitable defaults for the stub group size. */
3313 unsigned int has_14bit_branch:1;
3314
3315 /* Temp used by ppc64_elf_check_directives. */
3316 unsigned int twiddled_syms:1;
3317
3318 /* Incremented every time we size stubs. */
3319 unsigned int stub_iteration;
3320
3321 /* Small local sym to section mapping cache. */
3322 struct sym_sec_cache sym_sec;
3323 };
3324
3325 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3326
3327 #define ppc_hash_table(p) \
3328 ((struct ppc_link_hash_table *) ((p)->hash))
3329
3330 #define ppc_stub_hash_lookup(table, string, create, copy) \
3331 ((struct ppc_stub_hash_entry *) \
3332 bfd_hash_lookup ((table), (string), (create), (copy)))
3333
3334 #define ppc_branch_hash_lookup(table, string, create, copy) \
3335 ((struct ppc_branch_hash_entry *) \
3336 bfd_hash_lookup ((table), (string), (create), (copy)))
3337
3338 /* Create an entry in the stub hash table. */
3339
3340 static struct bfd_hash_entry *
3341 stub_hash_newfunc (struct bfd_hash_entry *entry,
3342 struct bfd_hash_table *table,
3343 const char *string)
3344 {
3345 /* Allocate the structure if it has not already been allocated by a
3346 subclass. */
3347 if (entry == NULL)
3348 {
3349 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3350 if (entry == NULL)
3351 return entry;
3352 }
3353
3354 /* Call the allocation method of the superclass. */
3355 entry = bfd_hash_newfunc (entry, table, string);
3356 if (entry != NULL)
3357 {
3358 struct ppc_stub_hash_entry *eh;
3359
3360 /* Initialize the local fields. */
3361 eh = (struct ppc_stub_hash_entry *) entry;
3362 eh->stub_type = ppc_stub_none;
3363 eh->stub_sec = NULL;
3364 eh->stub_offset = 0;
3365 eh->target_value = 0;
3366 eh->target_section = NULL;
3367 eh->h = NULL;
3368 eh->id_sec = NULL;
3369 }
3370
3371 return entry;
3372 }
3373
3374 /* Create an entry in the branch hash table. */
3375
3376 static struct bfd_hash_entry *
3377 branch_hash_newfunc (struct bfd_hash_entry *entry,
3378 struct bfd_hash_table *table,
3379 const char *string)
3380 {
3381 /* Allocate the structure if it has not already been allocated by a
3382 subclass. */
3383 if (entry == NULL)
3384 {
3385 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3386 if (entry == NULL)
3387 return entry;
3388 }
3389
3390 /* Call the allocation method of the superclass. */
3391 entry = bfd_hash_newfunc (entry, table, string);
3392 if (entry != NULL)
3393 {
3394 struct ppc_branch_hash_entry *eh;
3395
3396 /* Initialize the local fields. */
3397 eh = (struct ppc_branch_hash_entry *) entry;
3398 eh->offset = 0;
3399 eh->iter = 0;
3400 }
3401
3402 return entry;
3403 }
3404
3405 /* Create an entry in a ppc64 ELF linker hash table. */
3406
3407 static struct bfd_hash_entry *
3408 link_hash_newfunc (struct bfd_hash_entry *entry,
3409 struct bfd_hash_table *table,
3410 const char *string)
3411 {
3412 /* Allocate the structure if it has not already been allocated by a
3413 subclass. */
3414 if (entry == NULL)
3415 {
3416 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3417 if (entry == NULL)
3418 return entry;
3419 }
3420
3421 /* Call the allocation method of the superclass. */
3422 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3423 if (entry != NULL)
3424 {
3425 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3426
3427 eh->stub_cache = NULL;
3428 eh->dyn_relocs = NULL;
3429 eh->oh = NULL;
3430 eh->is_func = 0;
3431 eh->is_func_descriptor = 0;
3432 eh->adjust_done = 0;
3433 eh->was_undefined = 0;
3434 eh->tls_mask = 0;
3435 }
3436
3437 return entry;
3438 }
3439
3440 /* Create a ppc64 ELF linker hash table. */
3441
3442 static struct bfd_link_hash_table *
3443 ppc64_elf_link_hash_table_create (bfd *abfd)
3444 {
3445 struct ppc_link_hash_table *htab;
3446 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3447
3448 htab = bfd_zmalloc (amt);
3449 if (htab == NULL)
3450 return NULL;
3451
3452 if (! _bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc))
3453 {
3454 free (htab);
3455 return NULL;
3456 }
3457
3458 /* Init the stub hash table too. */
3459 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc))
3460 return NULL;
3461
3462 /* And the branch hash table. */
3463 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc))
3464 return NULL;
3465
3466 /* Initializing two fields of the union is just cosmetic. We really
3467 only care about glist, but when compiled on a 32-bit host the
3468 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3469 debugger inspection of these fields look nicer. */
3470 htab->elf.init_refcount.refcount = 0;
3471 htab->elf.init_refcount.glist = NULL;
3472 htab->elf.init_offset.offset = 0;
3473 htab->elf.init_offset.glist = NULL;
3474
3475 return &htab->elf.root;
3476 }
3477
3478 /* Free the derived linker hash table. */
3479
3480 static void
3481 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
3482 {
3483 struct ppc_link_hash_table *ret = (struct ppc_link_hash_table *) hash;
3484
3485 bfd_hash_table_free (&ret->stub_hash_table);
3486 bfd_hash_table_free (&ret->branch_hash_table);
3487 _bfd_generic_link_hash_table_free (hash);
3488 }
3489
3490 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3491
3492 void
3493 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
3494 {
3495 struct ppc_link_hash_table *htab;
3496
3497 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
3498
3499 /* Always hook our dynamic sections into the first bfd, which is the
3500 linker created stub bfd. This ensures that the GOT header is at
3501 the start of the output TOC section. */
3502 htab = ppc_hash_table (info);
3503 htab->stub_bfd = abfd;
3504 htab->elf.dynobj = abfd;
3505 }
3506
3507 /* Build a name for an entry in the stub hash table. */
3508
3509 static char *
3510 ppc_stub_name (const asection *input_section,
3511 const asection *sym_sec,
3512 const struct ppc_link_hash_entry *h,
3513 const Elf_Internal_Rela *rel)
3514 {
3515 char *stub_name;
3516 bfd_size_type len;
3517
3518 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3519 offsets from a sym as a branch target? In fact, we could
3520 probably assume the addend is always zero. */
3521 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3522
3523 if (h)
3524 {
3525 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3526 stub_name = bfd_malloc (len);
3527 if (stub_name != NULL)
3528 {
3529 sprintf (stub_name, "%08x.%s+%x",
3530 input_section->id & 0xffffffff,
3531 h->elf.root.root.string,
3532 (int) rel->r_addend & 0xffffffff);
3533 }
3534 }
3535 else
3536 {
3537 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3538 stub_name = bfd_malloc (len);
3539 if (stub_name != NULL)
3540 {
3541 sprintf (stub_name, "%08x.%x:%x+%x",
3542 input_section->id & 0xffffffff,
3543 sym_sec->id & 0xffffffff,
3544 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3545 (int) rel->r_addend & 0xffffffff);
3546 }
3547 }
3548 return stub_name;
3549 }
3550
3551 /* Look up an entry in the stub hash. Stub entries are cached because
3552 creating the stub name takes a bit of time. */
3553
3554 static struct ppc_stub_hash_entry *
3555 ppc_get_stub_entry (const asection *input_section,
3556 const asection *sym_sec,
3557 struct ppc_link_hash_entry *h,
3558 const Elf_Internal_Rela *rel,
3559 struct ppc_link_hash_table *htab)
3560 {
3561 struct ppc_stub_hash_entry *stub_entry;
3562 const asection *id_sec;
3563
3564 /* If this input section is part of a group of sections sharing one
3565 stub section, then use the id of the first section in the group.
3566 Stub names need to include a section id, as there may well be
3567 more than one stub used to reach say, printf, and we need to
3568 distinguish between them. */
3569 id_sec = htab->stub_group[input_section->id].link_sec;
3570
3571 if (h != NULL && h->stub_cache != NULL
3572 && h->stub_cache->h == h
3573 && h->stub_cache->id_sec == id_sec)
3574 {
3575 stub_entry = h->stub_cache;
3576 }
3577 else
3578 {
3579 char *stub_name;
3580
3581 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
3582 if (stub_name == NULL)
3583 return NULL;
3584
3585 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3586 stub_name, FALSE, FALSE);
3587 if (h != NULL)
3588 h->stub_cache = stub_entry;
3589
3590 free (stub_name);
3591 }
3592
3593 return stub_entry;
3594 }
3595
3596 /* Add a new stub entry to the stub hash. Not all fields of the new
3597 stub entry are initialised. */
3598
3599 static struct ppc_stub_hash_entry *
3600 ppc_add_stub (const char *stub_name,
3601 asection *section,
3602 struct ppc_link_hash_table *htab)
3603 {
3604 asection *link_sec;
3605 asection *stub_sec;
3606 struct ppc_stub_hash_entry *stub_entry;
3607
3608 link_sec = htab->stub_group[section->id].link_sec;
3609 stub_sec = htab->stub_group[section->id].stub_sec;
3610 if (stub_sec == NULL)
3611 {
3612 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3613 if (stub_sec == NULL)
3614 {
3615 size_t namelen;
3616 bfd_size_type len;
3617 char *s_name;
3618
3619 namelen = strlen (link_sec->name);
3620 len = namelen + sizeof (STUB_SUFFIX);
3621 s_name = bfd_alloc (htab->stub_bfd, len);
3622 if (s_name == NULL)
3623 return NULL;
3624
3625 memcpy (s_name, link_sec->name, namelen);
3626 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3627 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3628 if (stub_sec == NULL)
3629 return NULL;
3630 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3631 }
3632 htab->stub_group[section->id].stub_sec = stub_sec;
3633 }
3634
3635 /* Enter this entry into the linker stub hash table. */
3636 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3637 TRUE, FALSE);
3638 if (stub_entry == NULL)
3639 {
3640 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3641 section->owner, stub_name);
3642 return NULL;
3643 }
3644
3645 stub_entry->stub_sec = stub_sec;
3646 stub_entry->stub_offset = 0;
3647 stub_entry->id_sec = link_sec;
3648 return stub_entry;
3649 }
3650
3651 /* Create sections for linker generated code. */
3652
3653 static bfd_boolean
3654 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3655 {
3656 struct ppc_link_hash_table *htab;
3657 flagword flags;
3658
3659 htab = ppc_hash_table (info);
3660
3661 /* Create .sfpr for code to save and restore fp regs. */
3662 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3663 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3664 htab->sfpr = bfd_make_section_anyway (dynobj, ".sfpr");
3665 if (htab->sfpr == NULL
3666 || ! bfd_set_section_flags (dynobj, htab->sfpr, flags)
3667 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
3668 return FALSE;
3669
3670 /* Create .glink for lazy dynamic linking support. */
3671 htab->glink = bfd_make_section_anyway (dynobj, ".glink");
3672 if (htab->glink == NULL
3673 || ! bfd_set_section_flags (dynobj, htab->glink, flags)
3674 || ! bfd_set_section_alignment (dynobj, htab->glink, 2))
3675 return FALSE;
3676
3677 /* Create .branch_lt for plt_branch stubs. */
3678 flags = (SEC_ALLOC | SEC_LOAD
3679 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3680 htab->brlt = bfd_make_section_anyway (dynobj, ".branch_lt");
3681 if (htab->brlt == NULL
3682 || ! bfd_set_section_flags (dynobj, htab->brlt, flags)
3683 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
3684 return FALSE;
3685
3686 if (info->shared)
3687 {
3688 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3689 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3690 htab->relbrlt = bfd_make_section_anyway (dynobj, ".rela.branch_lt");
3691 if (!htab->relbrlt
3692 || ! bfd_set_section_flags (dynobj, htab->relbrlt, flags)
3693 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
3694 return FALSE;
3695 }
3696 return TRUE;
3697 }
3698
3699 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3700 not already done. */
3701
3702 static bfd_boolean
3703 create_got_section (bfd *abfd, struct bfd_link_info *info)
3704 {
3705 asection *got, *relgot;
3706 flagword flags;
3707 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3708
3709 if (!htab->got)
3710 {
3711 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
3712 return FALSE;
3713
3714 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
3715 if (!htab->got)
3716 abort ();
3717 }
3718
3719 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3720 | SEC_LINKER_CREATED);
3721
3722 got = bfd_make_section (abfd, ".got");
3723 if (!got
3724 || !bfd_set_section_flags (abfd, got, flags)
3725 || !bfd_set_section_alignment (abfd, got, 3))
3726 return FALSE;
3727
3728 relgot = bfd_make_section (abfd, ".rela.got");
3729 if (!relgot
3730 || ! bfd_set_section_flags (abfd, relgot, flags | SEC_READONLY)
3731 || ! bfd_set_section_alignment (abfd, relgot, 3))
3732 return FALSE;
3733
3734 ppc64_elf_tdata (abfd)->got = got;
3735 ppc64_elf_tdata (abfd)->relgot = relgot;
3736 return TRUE;
3737 }
3738
3739 /* Create the dynamic sections, and set up shortcuts. */
3740
3741 static bfd_boolean
3742 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3743 {
3744 struct ppc_link_hash_table *htab;
3745
3746 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3747 return FALSE;
3748
3749 htab = ppc_hash_table (info);
3750 if (!htab->got)
3751 htab->got = bfd_get_section_by_name (dynobj, ".got");
3752 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
3753 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
3754 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3755 if (!info->shared)
3756 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
3757
3758 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
3759 || (!info->shared && !htab->relbss))
3760 abort ();
3761
3762 return TRUE;
3763 }
3764
3765 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3766
3767 static void
3768 ppc64_elf_copy_indirect_symbol
3769 (const struct elf_backend_data *bed ATTRIBUTE_UNUSED,
3770 struct elf_link_hash_entry *dir,
3771 struct elf_link_hash_entry *ind)
3772 {
3773 struct ppc_link_hash_entry *edir, *eind;
3774 flagword mask;
3775
3776 edir = (struct ppc_link_hash_entry *) dir;
3777 eind = (struct ppc_link_hash_entry *) ind;
3778
3779 /* Copy over any dynamic relocs we may have on the indirect sym. */
3780 if (eind->dyn_relocs != NULL)
3781 {
3782 if (edir->dyn_relocs != NULL)
3783 {
3784 struct ppc_dyn_relocs **pp;
3785 struct ppc_dyn_relocs *p;
3786
3787 if (eind->elf.root.type == bfd_link_hash_indirect)
3788 abort ();
3789
3790 /* Add reloc counts against the weak sym to the strong sym
3791 list. Merge any entries against the same section. */
3792 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3793 {
3794 struct ppc_dyn_relocs *q;
3795
3796 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3797 if (q->sec == p->sec)
3798 {
3799 q->pc_count += p->pc_count;
3800 q->count += p->count;
3801 *pp = p->next;
3802 break;
3803 }
3804 if (q == NULL)
3805 pp = &p->next;
3806 }
3807 *pp = edir->dyn_relocs;
3808 }
3809
3810 edir->dyn_relocs = eind->dyn_relocs;
3811 eind->dyn_relocs = NULL;
3812 }
3813
3814 edir->is_func |= eind->is_func;
3815 edir->is_func_descriptor |= eind->is_func_descriptor;
3816 edir->tls_mask |= eind->tls_mask;
3817
3818 mask = (ELF_LINK_HASH_REF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR
3819 | ELF_LINK_HASH_REF_REGULAR_NONWEAK | ELF_LINK_NON_GOT_REF
3820 | ELF_LINK_HASH_NEEDS_PLT);
3821 /* If called to transfer flags for a weakdef during processing
3822 of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
3823 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
3824 if (ELIMINATE_COPY_RELOCS
3825 && eind->elf.root.type != bfd_link_hash_indirect
3826 && (edir->elf.elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3827 mask &= ~ELF_LINK_NON_GOT_REF;
3828
3829 edir->elf.elf_link_hash_flags |= eind->elf.elf_link_hash_flags & mask;
3830
3831 /* If we were called to copy over info for a weak sym, that's all. */
3832 if (eind->elf.root.type != bfd_link_hash_indirect)
3833 return;
3834
3835 /* Copy over got entries that we may have already seen to the
3836 symbol which just became indirect. */
3837 if (eind->elf.got.glist != NULL)
3838 {
3839 if (edir->elf.got.glist != NULL)
3840 {
3841 struct got_entry **entp;
3842 struct got_entry *ent;
3843
3844 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3845 {
3846 struct got_entry *dent;
3847
3848 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3849 if (dent->addend == ent->addend
3850 && dent->owner == ent->owner
3851 && dent->tls_type == ent->tls_type)
3852 {
3853 dent->got.refcount += ent->got.refcount;
3854 *entp = ent->next;
3855 break;
3856 }
3857 if (dent == NULL)
3858 entp = &ent->next;
3859 }
3860 *entp = edir->elf.got.glist;
3861 }
3862
3863 edir->elf.got.glist = eind->elf.got.glist;
3864 eind->elf.got.glist = NULL;
3865 }
3866
3867 /* And plt entries. */
3868 if (eind->elf.plt.plist != NULL)
3869 {
3870 if (edir->elf.plt.plist != NULL)
3871 {
3872 struct plt_entry **entp;
3873 struct plt_entry *ent;
3874
3875 for (entp = &eind->elf.plt.plist; (ent = *entp) != NULL; )
3876 {
3877 struct plt_entry *dent;
3878
3879 for (dent = edir->elf.plt.plist; dent != NULL; dent = dent->next)
3880 if (dent->addend == ent->addend)
3881 {
3882 dent->plt.refcount += ent->plt.refcount;
3883 *entp = ent->next;
3884 break;
3885 }
3886 if (dent == NULL)
3887 entp = &ent->next;
3888 }
3889 *entp = edir->elf.plt.plist;
3890 }
3891
3892 edir->elf.plt.plist = eind->elf.plt.plist;
3893 eind->elf.plt.plist = NULL;
3894 }
3895
3896 if (edir->elf.dynindx == -1)
3897 {
3898 edir->elf.dynindx = eind->elf.dynindx;
3899 edir->elf.dynstr_index = eind->elf.dynstr_index;
3900 eind->elf.dynindx = -1;
3901 eind->elf.dynstr_index = 0;
3902 }
3903 else
3904 BFD_ASSERT (eind->elf.dynindx == -1);
3905 }
3906
3907 /* Find the function descriptor hash entry from the given function code
3908 hash entry FH. Link the entries via their OH fields. */
3909
3910 static struct ppc_link_hash_entry *
3911 get_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3912 {
3913 struct ppc_link_hash_entry *fdh = fh->oh;
3914
3915 if (fdh == NULL)
3916 {
3917 const char *fd_name = fh->elf.root.root.string + 1;
3918
3919 fdh = (struct ppc_link_hash_entry *)
3920 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
3921 if (fdh != NULL)
3922 {
3923 fdh->is_func_descriptor = 1;
3924 fdh->oh = fh;
3925 fh->is_func = 1;
3926 fh->oh = fdh;
3927 }
3928 }
3929
3930 return fdh;
3931 }
3932
3933 /* Hacks to support old ABI code.
3934 When making function calls, old ABI code references function entry
3935 points (dot symbols), while new ABI code references the function
3936 descriptor symbol. We need to make any combination of reference and
3937 definition work together, without breaking archive linking.
3938
3939 For a defined function "foo" and an undefined call to "bar":
3940 An old object defines "foo" and ".foo", references ".bar" (possibly
3941 "bar" too).
3942 A new object defines "foo" and references "bar".
3943
3944 A new object thus has no problem with its undefined symbols being
3945 satisfied by definitions in an old object. On the other hand, the
3946 old object won't have ".bar" satisfied by a new object. */
3947
3948 /* Fix function descriptor symbols defined in .opd sections to be
3949 function type. */
3950
3951 static bfd_boolean
3952 ppc64_elf_add_symbol_hook (bfd *ibfd ATTRIBUTE_UNUSED,
3953 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3954 Elf_Internal_Sym *isym,
3955 const char **name ATTRIBUTE_UNUSED,
3956 flagword *flags ATTRIBUTE_UNUSED,
3957 asection **sec,
3958 bfd_vma *value ATTRIBUTE_UNUSED)
3959 {
3960 if (*sec != NULL
3961 && strcmp (bfd_get_section_name (ibfd, *sec), ".opd") == 0)
3962 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
3963 return TRUE;
3964 }
3965
3966 /* This function makes an old ABI object reference to ".bar" cause the
3967 inclusion of a new ABI object archive that defines "bar". */
3968
3969 static struct elf_link_hash_entry *
3970 ppc64_elf_archive_symbol_lookup (bfd *abfd,
3971 struct bfd_link_info *info,
3972 const char *name)
3973 {
3974 struct elf_link_hash_entry *h;
3975 char *dot_name;
3976 size_t len;
3977
3978 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
3979 if (h != NULL)
3980 return h;
3981
3982 if (name[0] == '.')
3983 return h;
3984
3985 len = strlen (name);
3986 dot_name = bfd_alloc (abfd, len + 2);
3987 if (dot_name == NULL)
3988 return (struct elf_link_hash_entry *) 0 - 1;
3989 dot_name[0] = '.';
3990 memcpy (dot_name + 1, name, len + 1);
3991 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
3992 bfd_release (abfd, dot_name);
3993 return h;
3994 }
3995
3996 /* This function satisfies all old ABI object references to ".bar" if a
3997 new ABI object defines "bar". Well, at least, undefined dot symbols
3998 are made weak. This stops later archive searches from including an
3999 object if we already have a function descriptor definition. It also
4000 prevents the linker complaining about undefined symbols.
4001 We also check and correct mismatched symbol visibility here. The
4002 most restrictive visibility of the function descriptor and the
4003 function entry symbol is used. */
4004
4005 static bfd_boolean
4006 add_symbol_adjust (struct elf_link_hash_entry *h, void *inf)
4007 {
4008 struct bfd_link_info *info;
4009 struct ppc_link_hash_table *htab;
4010 struct ppc_link_hash_entry *eh;
4011 struct ppc_link_hash_entry *fdh;
4012
4013 if (h->root.type == bfd_link_hash_indirect)
4014 return TRUE;
4015
4016 if (h->root.type == bfd_link_hash_warning)
4017 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4018
4019 if (h->root.root.string[0] != '.')
4020 return TRUE;
4021
4022 info = inf;
4023 htab = ppc_hash_table (info);
4024 eh = (struct ppc_link_hash_entry *) h;
4025 fdh = get_fdh (eh, htab);
4026 if (fdh != NULL)
4027 {
4028 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4029 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4030 if (entry_vis < descr_vis)
4031 fdh->elf.other += entry_vis - descr_vis;
4032 else if (entry_vis > descr_vis)
4033 eh->elf.other += descr_vis - entry_vis;
4034
4035 if (eh->elf.root.type == bfd_link_hash_undefined)
4036 {
4037 eh->elf.root.type = bfd_link_hash_undefweak;
4038 eh->was_undefined = 1;
4039 htab->twiddled_syms = 1;
4040 }
4041 }
4042
4043 return TRUE;
4044 }
4045
4046 static bfd_boolean
4047 ppc64_elf_check_directives (bfd *abfd ATTRIBUTE_UNUSED,
4048 struct bfd_link_info *info)
4049 {
4050 struct ppc_link_hash_table *htab;
4051 extern const bfd_target bfd_elf64_powerpc_vec;
4052 extern const bfd_target bfd_elf64_powerpcle_vec;
4053
4054 htab = ppc_hash_table (info);
4055 if (htab->elf.root.creator != &bfd_elf64_powerpc_vec
4056 && htab->elf.root.creator != &bfd_elf64_powerpcle_vec)
4057 return TRUE;
4058
4059 elf_link_hash_traverse (&htab->elf, add_symbol_adjust, info);
4060
4061 /* We need to fix the undefs list for any syms we have twiddled to
4062 undef_weak. */
4063 if (htab->twiddled_syms)
4064 {
4065 struct bfd_link_hash_entry **pun;
4066
4067 pun = &htab->elf.root.undefs;
4068 while (*pun != NULL)
4069 {
4070 struct bfd_link_hash_entry *h = *pun;
4071
4072 if (h->type != bfd_link_hash_undefined
4073 && h->type != bfd_link_hash_common)
4074 {
4075 *pun = h->und_next;
4076 h->und_next = NULL;
4077 if (h == htab->elf.root.undefs_tail)
4078 {
4079 if (pun == &htab->elf.root.undefs)
4080 htab->elf.root.undefs_tail = NULL;
4081 else
4082 /* pun points at an und_next field. Go back to
4083 the start of the link_hash_entry. */
4084 htab->elf.root.undefs_tail = (struct bfd_link_hash_entry *)
4085 ((char *) pun - ((char *) &h->und_next - (char *) h));
4086 break;
4087 }
4088 }
4089 else
4090 pun = &h->und_next;
4091 }
4092
4093 htab->twiddled_syms = 0;
4094 }
4095 return TRUE;
4096 }
4097
4098 static bfd_boolean
4099 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4100 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4101 {
4102 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4103 char *local_got_tls_masks;
4104
4105 if (local_got_ents == NULL)
4106 {
4107 bfd_size_type size = symtab_hdr->sh_info;
4108
4109 size *= sizeof (*local_got_ents) + sizeof (*local_got_tls_masks);
4110 local_got_ents = bfd_zalloc (abfd, size);
4111 if (local_got_ents == NULL)
4112 return FALSE;
4113 elf_local_got_ents (abfd) = local_got_ents;
4114 }
4115
4116 if ((tls_type & TLS_EXPLICIT) == 0)
4117 {
4118 struct got_entry *ent;
4119
4120 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4121 if (ent->addend == r_addend
4122 && ent->owner == abfd
4123 && ent->tls_type == tls_type)
4124 break;
4125 if (ent == NULL)
4126 {
4127 bfd_size_type amt = sizeof (*ent);
4128 ent = bfd_alloc (abfd, amt);
4129 if (ent == NULL)
4130 return FALSE;
4131 ent->next = local_got_ents[r_symndx];
4132 ent->addend = r_addend;
4133 ent->owner = abfd;
4134 ent->tls_type = tls_type;
4135 ent->got.refcount = 0;
4136 local_got_ents[r_symndx] = ent;
4137 }
4138 ent->got.refcount += 1;
4139 }
4140
4141 local_got_tls_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
4142 local_got_tls_masks[r_symndx] |= tls_type;
4143 return TRUE;
4144 }
4145
4146 static bfd_boolean
4147 update_plt_info (bfd *abfd, struct ppc_link_hash_entry *eh, bfd_vma addend)
4148 {
4149 struct plt_entry *ent;
4150
4151 for (ent = eh->elf.plt.plist; ent != NULL; ent = ent->next)
4152 if (ent->addend == addend)
4153 break;
4154 if (ent == NULL)
4155 {
4156 bfd_size_type amt = sizeof (*ent);
4157 ent = bfd_alloc (abfd, amt);
4158 if (ent == NULL)
4159 return FALSE;
4160 ent->next = eh->elf.plt.plist;
4161 ent->addend = addend;
4162 ent->plt.refcount = 0;
4163 eh->elf.plt.plist = ent;
4164 }
4165 ent->plt.refcount += 1;
4166 eh->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
4167 eh->is_func = 1;
4168 return TRUE;
4169 }
4170
4171 /* Look through the relocs for a section during the first phase, and
4172 calculate needed space in the global offset table, procedure
4173 linkage table, and dynamic reloc sections. */
4174
4175 static bfd_boolean
4176 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4177 asection *sec, const Elf_Internal_Rela *relocs)
4178 {
4179 struct ppc_link_hash_table *htab;
4180 Elf_Internal_Shdr *symtab_hdr;
4181 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4182 const Elf_Internal_Rela *rel;
4183 const Elf_Internal_Rela *rel_end;
4184 asection *sreloc;
4185 asection **opd_sym_map;
4186
4187 if (info->relocatable)
4188 return TRUE;
4189
4190 /* Don't do anything special with non-loaded, non-alloced sections.
4191 In particular, any relocs in such sections should not affect GOT
4192 and PLT reference counting (ie. we don't allow them to create GOT
4193 or PLT entries), there's no possibility or desire to optimize TLS
4194 relocs, and there's not much point in propagating relocs to shared
4195 libs that the dynamic linker won't relocate. */
4196 if ((sec->flags & SEC_ALLOC) == 0)
4197 return TRUE;
4198
4199 htab = ppc_hash_table (info);
4200 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4201
4202 sym_hashes = elf_sym_hashes (abfd);
4203 sym_hashes_end = (sym_hashes
4204 + symtab_hdr->sh_size / sizeof (Elf64_External_Sym)
4205 - symtab_hdr->sh_info);
4206
4207 sreloc = NULL;
4208 opd_sym_map = NULL;
4209 if (strcmp (bfd_get_section_name (abfd, sec), ".opd") == 0)
4210 {
4211 /* Garbage collection needs some extra help with .opd sections.
4212 We don't want to necessarily keep everything referenced by
4213 relocs in .opd, as that would keep all functions. Instead,
4214 if we reference an .opd symbol (a function descriptor), we
4215 want to keep the function code symbol's section. This is
4216 easy for global symbols, but for local syms we need to keep
4217 information about the associated function section. Later, if
4218 edit_opd deletes entries, we'll use this array to adjust
4219 local syms in .opd. */
4220 union opd_info {
4221 asection *func_section;
4222 long entry_adjust;
4223 };
4224 bfd_size_type amt;
4225
4226 amt = sec->size * sizeof (union opd_info) / 8;
4227 opd_sym_map = bfd_zalloc (abfd, amt);
4228 if (opd_sym_map == NULL)
4229 return FALSE;
4230 ppc64_elf_section_data (sec)->opd.func_sec = opd_sym_map;
4231 }
4232
4233 if (htab->sfpr == NULL
4234 && !create_linkage_sections (htab->elf.dynobj, info))
4235 return FALSE;
4236
4237 rel_end = relocs + sec->reloc_count;
4238 for (rel = relocs; rel < rel_end; rel++)
4239 {
4240 unsigned long r_symndx;
4241 struct elf_link_hash_entry *h;
4242 enum elf_ppc64_reloc_type r_type;
4243 int tls_type = 0;
4244
4245 r_symndx = ELF64_R_SYM (rel->r_info);
4246 if (r_symndx < symtab_hdr->sh_info)
4247 h = NULL;
4248 else
4249 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4250
4251 r_type = ELF64_R_TYPE (rel->r_info);
4252 switch (r_type)
4253 {
4254 case R_PPC64_GOT_TLSLD16:
4255 case R_PPC64_GOT_TLSLD16_LO:
4256 case R_PPC64_GOT_TLSLD16_HI:
4257 case R_PPC64_GOT_TLSLD16_HA:
4258 ppc64_tlsld_got (abfd)->refcount += 1;
4259 tls_type = TLS_TLS | TLS_LD;
4260 goto dogottls;
4261
4262 case R_PPC64_GOT_TLSGD16:
4263 case R_PPC64_GOT_TLSGD16_LO:
4264 case R_PPC64_GOT_TLSGD16_HI:
4265 case R_PPC64_GOT_TLSGD16_HA:
4266 tls_type = TLS_TLS | TLS_GD;
4267 goto dogottls;
4268
4269 case R_PPC64_GOT_TPREL16_DS:
4270 case R_PPC64_GOT_TPREL16_LO_DS:
4271 case R_PPC64_GOT_TPREL16_HI:
4272 case R_PPC64_GOT_TPREL16_HA:
4273 if (info->shared)
4274 info->flags |= DF_STATIC_TLS;
4275 tls_type = TLS_TLS | TLS_TPREL;
4276 goto dogottls;
4277
4278 case R_PPC64_GOT_DTPREL16_DS:
4279 case R_PPC64_GOT_DTPREL16_LO_DS:
4280 case R_PPC64_GOT_DTPREL16_HI:
4281 case R_PPC64_GOT_DTPREL16_HA:
4282 tls_type = TLS_TLS | TLS_DTPREL;
4283 dogottls:
4284 sec->has_tls_reloc = 1;
4285 /* Fall thru */
4286
4287 case R_PPC64_GOT16:
4288 case R_PPC64_GOT16_DS:
4289 case R_PPC64_GOT16_HA:
4290 case R_PPC64_GOT16_HI:
4291 case R_PPC64_GOT16_LO:
4292 case R_PPC64_GOT16_LO_DS:
4293 /* This symbol requires a global offset table entry. */
4294 sec->has_gp_reloc = 1;
4295 if (ppc64_elf_tdata (abfd)->got == NULL
4296 && !create_got_section (abfd, info))
4297 return FALSE;
4298
4299 if (h != NULL)
4300 {
4301 struct ppc_link_hash_entry *eh;
4302 struct got_entry *ent;
4303
4304 eh = (struct ppc_link_hash_entry *) h;
4305 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4306 if (ent->addend == rel->r_addend
4307 && ent->owner == abfd
4308 && ent->tls_type == tls_type)
4309 break;
4310 if (ent == NULL)
4311 {
4312 bfd_size_type amt = sizeof (*ent);
4313 ent = bfd_alloc (abfd, amt);
4314 if (ent == NULL)
4315 return FALSE;
4316 ent->next = eh->elf.got.glist;
4317 ent->addend = rel->r_addend;
4318 ent->owner = abfd;
4319 ent->tls_type = tls_type;
4320 ent->got.refcount = 0;
4321 eh->elf.got.glist = ent;
4322 }
4323 ent->got.refcount += 1;
4324 eh->tls_mask |= tls_type;
4325 }
4326 else
4327 /* This is a global offset table entry for a local symbol. */
4328 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4329 rel->r_addend, tls_type))
4330 return FALSE;
4331 break;
4332
4333 case R_PPC64_PLT16_HA:
4334 case R_PPC64_PLT16_HI:
4335 case R_PPC64_PLT16_LO:
4336 case R_PPC64_PLT32:
4337 case R_PPC64_PLT64:
4338 /* This symbol requires a procedure linkage table entry. We
4339 actually build the entry in adjust_dynamic_symbol,
4340 because this might be a case of linking PIC code without
4341 linking in any dynamic objects, in which case we don't
4342 need to generate a procedure linkage table after all. */
4343 if (h == NULL)
4344 {
4345 /* It does not make sense to have a procedure linkage
4346 table entry for a local symbol. */
4347 bfd_set_error (bfd_error_bad_value);
4348 return FALSE;
4349 }
4350 else
4351 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4352 rel->r_addend))
4353 return FALSE;
4354 break;
4355
4356 /* The following relocations don't need to propagate the
4357 relocation if linking a shared object since they are
4358 section relative. */
4359 case R_PPC64_SECTOFF:
4360 case R_PPC64_SECTOFF_LO:
4361 case R_PPC64_SECTOFF_HI:
4362 case R_PPC64_SECTOFF_HA:
4363 case R_PPC64_SECTOFF_DS:
4364 case R_PPC64_SECTOFF_LO_DS:
4365 case R_PPC64_DTPREL16:
4366 case R_PPC64_DTPREL16_LO:
4367 case R_PPC64_DTPREL16_HI:
4368 case R_PPC64_DTPREL16_HA:
4369 case R_PPC64_DTPREL16_DS:
4370 case R_PPC64_DTPREL16_LO_DS:
4371 case R_PPC64_DTPREL16_HIGHER:
4372 case R_PPC64_DTPREL16_HIGHERA:
4373 case R_PPC64_DTPREL16_HIGHEST:
4374 case R_PPC64_DTPREL16_HIGHESTA:
4375 break;
4376
4377 /* Nor do these. */
4378 case R_PPC64_TOC16:
4379 case R_PPC64_TOC16_LO:
4380 case R_PPC64_TOC16_HI:
4381 case R_PPC64_TOC16_HA:
4382 case R_PPC64_TOC16_DS:
4383 case R_PPC64_TOC16_LO_DS:
4384 sec->has_gp_reloc = 1;
4385 break;
4386
4387 /* This relocation describes the C++ object vtable hierarchy.
4388 Reconstruct it for later use during GC. */
4389 case R_PPC64_GNU_VTINHERIT:
4390 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4391 return FALSE;
4392 break;
4393
4394 /* This relocation describes which C++ vtable entries are actually
4395 used. Record for later use during GC. */
4396 case R_PPC64_GNU_VTENTRY:
4397 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4398 return FALSE;
4399 break;
4400
4401 case R_PPC64_REL14:
4402 case R_PPC64_REL14_BRTAKEN:
4403 case R_PPC64_REL14_BRNTAKEN:
4404 htab->has_14bit_branch = 1;
4405 /* Fall through. */
4406
4407 case R_PPC64_REL24:
4408 if (h != NULL)
4409 {
4410 /* We may need a .plt entry if the function this reloc
4411 refers to is in a shared lib. */
4412 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4413 rel->r_addend))
4414 return FALSE;
4415 if (h == &htab->tls_get_addr->elf
4416 || h == &htab->tls_get_addr_fd->elf)
4417 sec->has_tls_reloc = 1;
4418 else if (htab->tls_get_addr == NULL
4419 && !strncmp (h->root.root.string, ".__tls_get_addr", 15)
4420 && (h->root.root.string[15] == 0
4421 || h->root.root.string[15] == '@'))
4422 {
4423 htab->tls_get_addr = (struct ppc_link_hash_entry *) h;
4424 sec->has_tls_reloc = 1;
4425 }
4426 else if (htab->tls_get_addr_fd == NULL
4427 && !strncmp (h->root.root.string, "__tls_get_addr", 14)
4428 && (h->root.root.string[14] == 0
4429 || h->root.root.string[14] == '@'))
4430 {
4431 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) h;
4432 sec->has_tls_reloc = 1;
4433 }
4434 }
4435 break;
4436
4437 case R_PPC64_TPREL64:
4438 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4439 if (info->shared)
4440 info->flags |= DF_STATIC_TLS;
4441 goto dotlstoc;
4442
4443 case R_PPC64_DTPMOD64:
4444 if (rel + 1 < rel_end
4445 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4446 && rel[1].r_offset == rel->r_offset + 8)
4447 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4448 else
4449 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4450 goto dotlstoc;
4451
4452 case R_PPC64_DTPREL64:
4453 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4454 if (rel != relocs
4455 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4456 && rel[-1].r_offset == rel->r_offset - 8)
4457 /* This is the second reloc of a dtpmod, dtprel pair.
4458 Don't mark with TLS_DTPREL. */
4459 goto dodyn;
4460
4461 dotlstoc:
4462 sec->has_tls_reloc = 1;
4463 if (h != NULL)
4464 {
4465 struct ppc_link_hash_entry *eh;
4466 eh = (struct ppc_link_hash_entry *) h;
4467 eh->tls_mask |= tls_type;
4468 }
4469 else
4470 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4471 rel->r_addend, tls_type))
4472 return FALSE;
4473
4474 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4475 {
4476 /* One extra to simplify get_tls_mask. */
4477 bfd_size_type amt = sec->size * sizeof (unsigned) / 8 + 1;
4478 ppc64_elf_section_data (sec)->t_symndx = bfd_zalloc (abfd, amt);
4479 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4480 return FALSE;
4481 }
4482 BFD_ASSERT (rel->r_offset % 8 == 0);
4483 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8] = r_symndx;
4484
4485 /* Mark the second slot of a GD or LD entry.
4486 -1 to indicate GD and -2 to indicate LD. */
4487 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
4488 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -1;
4489 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
4490 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -2;
4491 goto dodyn;
4492
4493 case R_PPC64_TPREL16:
4494 case R_PPC64_TPREL16_LO:
4495 case R_PPC64_TPREL16_HI:
4496 case R_PPC64_TPREL16_HA:
4497 case R_PPC64_TPREL16_DS:
4498 case R_PPC64_TPREL16_LO_DS:
4499 case R_PPC64_TPREL16_HIGHER:
4500 case R_PPC64_TPREL16_HIGHERA:
4501 case R_PPC64_TPREL16_HIGHEST:
4502 case R_PPC64_TPREL16_HIGHESTA:
4503 if (info->shared)
4504 {
4505 info->flags |= DF_STATIC_TLS;
4506 goto dodyn;
4507 }
4508 break;
4509
4510 case R_PPC64_ADDR64:
4511 if (opd_sym_map != NULL
4512 && rel + 1 < rel_end
4513 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
4514 {
4515 if (h != NULL)
4516 {
4517 if (h->root.root.string[0] == '.'
4518 && h->root.root.string[1] != 0
4519 && get_fdh ((struct ppc_link_hash_entry *) h, htab))
4520 ;
4521 else
4522 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4523 }
4524 else
4525 {
4526 asection *s;
4527
4528 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec,
4529 r_symndx);
4530 if (s == NULL)
4531 return FALSE;
4532 else if (s != sec)
4533 opd_sym_map[rel->r_offset / 8] = s;
4534 }
4535 }
4536 /* Fall through. */
4537
4538 case R_PPC64_REL30:
4539 case R_PPC64_REL32:
4540 case R_PPC64_REL64:
4541 case R_PPC64_ADDR14:
4542 case R_PPC64_ADDR14_BRNTAKEN:
4543 case R_PPC64_ADDR14_BRTAKEN:
4544 case R_PPC64_ADDR16:
4545 case R_PPC64_ADDR16_DS:
4546 case R_PPC64_ADDR16_HA:
4547 case R_PPC64_ADDR16_HI:
4548 case R_PPC64_ADDR16_HIGHER:
4549 case R_PPC64_ADDR16_HIGHERA:
4550 case R_PPC64_ADDR16_HIGHEST:
4551 case R_PPC64_ADDR16_HIGHESTA:
4552 case R_PPC64_ADDR16_LO:
4553 case R_PPC64_ADDR16_LO_DS:
4554 case R_PPC64_ADDR24:
4555 case R_PPC64_ADDR32:
4556 case R_PPC64_UADDR16:
4557 case R_PPC64_UADDR32:
4558 case R_PPC64_UADDR64:
4559 case R_PPC64_TOC:
4560 if (h != NULL && !info->shared)
4561 /* We may need a copy reloc. */
4562 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
4563
4564 /* Don't propagate .opd relocs. */
4565 if (NO_OPD_RELOCS && opd_sym_map != NULL)
4566 break;
4567
4568 /* If we are creating a shared library, and this is a reloc
4569 against a global symbol, or a non PC relative reloc
4570 against a local symbol, then we need to copy the reloc
4571 into the shared library. However, if we are linking with
4572 -Bsymbolic, we do not need to copy a reloc against a
4573 global symbol which is defined in an object we are
4574 including in the link (i.e., DEF_REGULAR is set). At
4575 this point we have not seen all the input files, so it is
4576 possible that DEF_REGULAR is not set now but will be set
4577 later (it is never cleared). In case of a weak definition,
4578 DEF_REGULAR may be cleared later by a strong definition in
4579 a shared library. We account for that possibility below by
4580 storing information in the dyn_relocs field of the hash
4581 table entry. A similar situation occurs when creating
4582 shared libraries and symbol visibility changes render the
4583 symbol local.
4584
4585 If on the other hand, we are creating an executable, we
4586 may need to keep relocations for symbols satisfied by a
4587 dynamic library if we manage to avoid copy relocs for the
4588 symbol. */
4589 dodyn:
4590 if ((info->shared
4591 && (MUST_BE_DYN_RELOC (r_type)
4592 || (h != NULL
4593 && (! info->symbolic
4594 || h->root.type == bfd_link_hash_defweak
4595 || (h->elf_link_hash_flags
4596 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
4597 || (ELIMINATE_COPY_RELOCS
4598 && !info->shared
4599 && h != NULL
4600 && (h->root.type == bfd_link_hash_defweak
4601 || (h->elf_link_hash_flags
4602 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
4603 {
4604 struct ppc_dyn_relocs *p;
4605 struct ppc_dyn_relocs **head;
4606
4607 /* We must copy these reloc types into the output file.
4608 Create a reloc section in dynobj and make room for
4609 this reloc. */
4610 if (sreloc == NULL)
4611 {
4612 const char *name;
4613 bfd *dynobj;
4614
4615 name = (bfd_elf_string_from_elf_section
4616 (abfd,
4617 elf_elfheader (abfd)->e_shstrndx,
4618 elf_section_data (sec)->rel_hdr.sh_name));
4619 if (name == NULL)
4620 return FALSE;
4621
4622 if (strncmp (name, ".rela", 5) != 0
4623 || strcmp (bfd_get_section_name (abfd, sec),
4624 name + 5) != 0)
4625 {
4626 (*_bfd_error_handler)
4627 (_("%B: bad relocation section name `%s\'"),
4628 abfd, name);
4629 bfd_set_error (bfd_error_bad_value);
4630 }
4631
4632 dynobj = htab->elf.dynobj;
4633 sreloc = bfd_get_section_by_name (dynobj, name);
4634 if (sreloc == NULL)
4635 {
4636 flagword flags;
4637
4638 sreloc = bfd_make_section (dynobj, name);
4639 flags = (SEC_HAS_CONTENTS | SEC_READONLY
4640 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4641 if ((sec->flags & SEC_ALLOC) != 0)
4642 flags |= SEC_ALLOC | SEC_LOAD;
4643 if (sreloc == NULL
4644 || ! bfd_set_section_flags (dynobj, sreloc, flags)
4645 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
4646 return FALSE;
4647 }
4648 elf_section_data (sec)->sreloc = sreloc;
4649 }
4650
4651 /* If this is a global symbol, we count the number of
4652 relocations we need for this symbol. */
4653 if (h != NULL)
4654 {
4655 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
4656 }
4657 else
4658 {
4659 /* Track dynamic relocs needed for local syms too.
4660 We really need local syms available to do this
4661 easily. Oh well. */
4662
4663 asection *s;
4664 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
4665 sec, r_symndx);
4666 if (s == NULL)
4667 return FALSE;
4668
4669 head = ((struct ppc_dyn_relocs **)
4670 &elf_section_data (s)->local_dynrel);
4671 }
4672
4673 p = *head;
4674 if (p == NULL || p->sec != sec)
4675 {
4676 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
4677 if (p == NULL)
4678 return FALSE;
4679 p->next = *head;
4680 *head = p;
4681 p->sec = sec;
4682 p->count = 0;
4683 p->pc_count = 0;
4684 }
4685
4686 p->count += 1;
4687 if (!MUST_BE_DYN_RELOC (r_type))
4688 p->pc_count += 1;
4689 }
4690 break;
4691
4692 default:
4693 break;
4694 }
4695 }
4696
4697 return TRUE;
4698 }
4699
4700 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
4701 of the code entry point, and its section. */
4702
4703 static bfd_vma
4704 opd_entry_value (asection *opd_sec,
4705 bfd_vma offset,
4706 asection **code_sec,
4707 bfd_vma *code_off)
4708 {
4709 bfd *opd_bfd = opd_sec->owner;
4710 Elf_Internal_Rela *lo, *hi, *look;
4711
4712 /* Go find the opd reloc at the sym address. */
4713 lo = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
4714 BFD_ASSERT (lo != NULL);
4715 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
4716
4717 while (lo < hi)
4718 {
4719 look = lo + (hi - lo) / 2;
4720 if (look->r_offset < offset)
4721 lo = look + 1;
4722 else if (look->r_offset > offset)
4723 hi = look;
4724 else
4725 {
4726 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (opd_bfd)->symtab_hdr;
4727 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
4728 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
4729 {
4730 unsigned long symndx = ELF64_R_SYM (look->r_info);
4731 bfd_vma val;
4732 asection *sec;
4733
4734 if (symndx < symtab_hdr->sh_info)
4735 {
4736 Elf_Internal_Sym *sym;
4737
4738 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
4739 if (sym == NULL)
4740 {
4741 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
4742 symtab_hdr->sh_info,
4743 0, NULL, NULL, NULL);
4744 if (sym == NULL)
4745 return (bfd_vma) -1;
4746 symtab_hdr->contents = (bfd_byte *) sym;
4747 }
4748
4749 sym += symndx;
4750 val = sym->st_value;
4751 sec = NULL;
4752 if ((sym->st_shndx != SHN_UNDEF
4753 && sym->st_shndx < SHN_LORESERVE)
4754 || sym->st_shndx > SHN_HIRESERVE)
4755 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
4756 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
4757 }
4758 else
4759 {
4760 struct elf_link_hash_entry **sym_hashes;
4761 struct elf_link_hash_entry *rh;
4762
4763 sym_hashes = elf_sym_hashes (opd_bfd);
4764 rh = sym_hashes[symndx - symtab_hdr->sh_info];
4765 while (rh->root.type == bfd_link_hash_indirect
4766 || rh->root.type == bfd_link_hash_warning)
4767 rh = ((struct elf_link_hash_entry *) rh->root.u.i.link);
4768 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
4769 || rh->root.type == bfd_link_hash_defweak);
4770 val = rh->root.u.def.value;
4771 sec = rh->root.u.def.section;
4772 }
4773 val += look->r_addend;
4774 if (code_off != NULL)
4775 *code_off = val;
4776 if (code_sec != NULL)
4777 *code_sec = sec;
4778 if (sec != NULL && sec->output_section != NULL)
4779 val += sec->output_section->vma + sec->output_offset;
4780 return val;
4781 }
4782 break;
4783 }
4784 }
4785 return (bfd_vma) -1;
4786 }
4787
4788 /* Return the section that should be marked against GC for a given
4789 relocation. */
4790
4791 static asection *
4792 ppc64_elf_gc_mark_hook (asection *sec,
4793 struct bfd_link_info *info,
4794 Elf_Internal_Rela *rel,
4795 struct elf_link_hash_entry *h,
4796 Elf_Internal_Sym *sym)
4797 {
4798 asection *rsec;
4799
4800 /* First mark all our entry sym sections. */
4801 if (info->gc_sym_list != NULL)
4802 {
4803 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4804 struct bfd_sym_chain *sym = info->gc_sym_list;
4805
4806 info->gc_sym_list = NULL;
4807 do
4808 {
4809 struct ppc_link_hash_entry *eh;
4810
4811 eh = (struct ppc_link_hash_entry *)
4812 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, FALSE);
4813 if (eh == NULL)
4814 continue;
4815 if (eh->elf.root.type != bfd_link_hash_defined
4816 && eh->elf.root.type != bfd_link_hash_defweak)
4817 continue;
4818
4819 if (eh->is_func_descriptor)
4820 rsec = eh->oh->elf.root.u.def.section;
4821 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4822 && opd_entry_value (eh->elf.root.u.def.section,
4823 eh->elf.root.u.def.value,
4824 &rsec, NULL) != (bfd_vma) -1)
4825 ;
4826 else
4827 continue;
4828
4829 if (!rsec->gc_mark)
4830 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4831
4832 rsec = eh->elf.root.u.def.section;
4833 if (!rsec->gc_mark)
4834 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4835
4836 sym = sym->next;
4837 }
4838 while (sym != NULL);
4839 }
4840
4841 /* Syms return NULL if we're marking .opd, so we avoid marking all
4842 function sections, as all functions are referenced in .opd. */
4843 rsec = NULL;
4844 if (get_opd_info (sec) != NULL)
4845 return rsec;
4846
4847 if (h != NULL)
4848 {
4849 enum elf_ppc64_reloc_type r_type;
4850 struct ppc_link_hash_entry *eh;
4851
4852 r_type = ELF64_R_TYPE (rel->r_info);
4853 switch (r_type)
4854 {
4855 case R_PPC64_GNU_VTINHERIT:
4856 case R_PPC64_GNU_VTENTRY:
4857 break;
4858
4859 default:
4860 switch (h->root.type)
4861 {
4862 case bfd_link_hash_defined:
4863 case bfd_link_hash_defweak:
4864 eh = (struct ppc_link_hash_entry *) h;
4865 if (eh->oh != NULL && eh->oh->is_func_descriptor)
4866 eh = eh->oh;
4867
4868 /* Function descriptor syms cause the associated
4869 function code sym section to be marked. */
4870 if (eh->is_func_descriptor)
4871 {
4872 /* They also mark their opd section. */
4873 if (!eh->elf.root.u.def.section->gc_mark)
4874 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
4875 ppc64_elf_gc_mark_hook);
4876
4877 rsec = eh->oh->elf.root.u.def.section;
4878 }
4879 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4880 && opd_entry_value (eh->elf.root.u.def.section,
4881 eh->elf.root.u.def.value,
4882 &rsec, NULL) != (bfd_vma) -1)
4883 {
4884 if (!eh->elf.root.u.def.section->gc_mark)
4885 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
4886 ppc64_elf_gc_mark_hook);
4887 }
4888 else
4889 rsec = h->root.u.def.section;
4890 break;
4891
4892 case bfd_link_hash_common:
4893 rsec = h->root.u.c.p->section;
4894 break;
4895
4896 default:
4897 break;
4898 }
4899 }
4900 }
4901 else
4902 {
4903 asection **opd_sym_section;
4904
4905 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
4906 opd_sym_section = get_opd_info (rsec);
4907 if (opd_sym_section != NULL)
4908 {
4909 if (!rsec->gc_mark)
4910 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4911
4912 rsec = opd_sym_section[sym->st_value / 8];
4913 }
4914 }
4915
4916 return rsec;
4917 }
4918
4919 /* Update the .got, .plt. and dynamic reloc reference counts for the
4920 section being removed. */
4921
4922 static bfd_boolean
4923 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
4924 asection *sec, const Elf_Internal_Rela *relocs)
4925 {
4926 struct ppc_link_hash_table *htab;
4927 Elf_Internal_Shdr *symtab_hdr;
4928 struct elf_link_hash_entry **sym_hashes;
4929 struct got_entry **local_got_ents;
4930 const Elf_Internal_Rela *rel, *relend;
4931
4932 if ((sec->flags & SEC_ALLOC) == 0)
4933 return TRUE;
4934
4935 elf_section_data (sec)->local_dynrel = NULL;
4936
4937 htab = ppc_hash_table (info);
4938 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4939 sym_hashes = elf_sym_hashes (abfd);
4940 local_got_ents = elf_local_got_ents (abfd);
4941
4942 relend = relocs + sec->reloc_count;
4943 for (rel = relocs; rel < relend; rel++)
4944 {
4945 unsigned long r_symndx;
4946 enum elf_ppc64_reloc_type r_type;
4947 struct elf_link_hash_entry *h = NULL;
4948 char tls_type = 0;
4949
4950 r_symndx = ELF64_R_SYM (rel->r_info);
4951 r_type = ELF64_R_TYPE (rel->r_info);
4952 if (r_symndx >= symtab_hdr->sh_info)
4953 {
4954 struct ppc_link_hash_entry *eh;
4955 struct ppc_dyn_relocs **pp;
4956 struct ppc_dyn_relocs *p;
4957
4958 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4959 eh = (struct ppc_link_hash_entry *) h;
4960
4961 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
4962 if (p->sec == sec)
4963 {
4964 /* Everything must go for SEC. */
4965 *pp = p->next;
4966 break;
4967 }
4968 }
4969
4970 switch (r_type)
4971 {
4972 case R_PPC64_GOT_TLSLD16:
4973 case R_PPC64_GOT_TLSLD16_LO:
4974 case R_PPC64_GOT_TLSLD16_HI:
4975 case R_PPC64_GOT_TLSLD16_HA:
4976 ppc64_tlsld_got (abfd)->refcount -= 1;
4977 tls_type = TLS_TLS | TLS_LD;
4978 goto dogot;
4979
4980 case R_PPC64_GOT_TLSGD16:
4981 case R_PPC64_GOT_TLSGD16_LO:
4982 case R_PPC64_GOT_TLSGD16_HI:
4983 case R_PPC64_GOT_TLSGD16_HA:
4984 tls_type = TLS_TLS | TLS_GD;
4985 goto dogot;
4986
4987 case R_PPC64_GOT_TPREL16_DS:
4988 case R_PPC64_GOT_TPREL16_LO_DS:
4989 case R_PPC64_GOT_TPREL16_HI:
4990 case R_PPC64_GOT_TPREL16_HA:
4991 tls_type = TLS_TLS | TLS_TPREL;
4992 goto dogot;
4993
4994 case R_PPC64_GOT_DTPREL16_DS:
4995 case R_PPC64_GOT_DTPREL16_LO_DS:
4996 case R_PPC64_GOT_DTPREL16_HI:
4997 case R_PPC64_GOT_DTPREL16_HA:
4998 tls_type = TLS_TLS | TLS_DTPREL;
4999 goto dogot;
5000
5001 case R_PPC64_GOT16:
5002 case R_PPC64_GOT16_DS:
5003 case R_PPC64_GOT16_HA:
5004 case R_PPC64_GOT16_HI:
5005 case R_PPC64_GOT16_LO:
5006 case R_PPC64_GOT16_LO_DS:
5007 dogot:
5008 {
5009 struct got_entry *ent;
5010
5011 if (h != NULL)
5012 ent = h->got.glist;
5013 else
5014 ent = local_got_ents[r_symndx];
5015
5016 for (; ent != NULL; ent = ent->next)
5017 if (ent->addend == rel->r_addend
5018 && ent->owner == abfd
5019 && ent->tls_type == tls_type)
5020 break;
5021 if (ent == NULL)
5022 abort ();
5023 if (ent->got.refcount > 0)
5024 ent->got.refcount -= 1;
5025 }
5026 break;
5027
5028 case R_PPC64_PLT16_HA:
5029 case R_PPC64_PLT16_HI:
5030 case R_PPC64_PLT16_LO:
5031 case R_PPC64_PLT32:
5032 case R_PPC64_PLT64:
5033 case R_PPC64_REL14:
5034 case R_PPC64_REL14_BRNTAKEN:
5035 case R_PPC64_REL14_BRTAKEN:
5036 case R_PPC64_REL24:
5037 if (h != NULL)
5038 {
5039 struct plt_entry *ent;
5040
5041 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5042 if (ent->addend == rel->r_addend)
5043 break;
5044 if (ent == NULL)
5045 abort ();
5046 if (ent->plt.refcount > 0)
5047 ent->plt.refcount -= 1;
5048 }
5049 break;
5050
5051 default:
5052 break;
5053 }
5054 }
5055 return TRUE;
5056 }
5057
5058 /* The maximum size of .sfpr. */
5059 #define SFPR_MAX (218*4)
5060
5061 struct sfpr_def_parms
5062 {
5063 const char name[12];
5064 unsigned char lo, hi;
5065 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
5066 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
5067 };
5068
5069 /* Auto-generate _save*, _rest* functions in .sfpr. */
5070
5071 static unsigned int
5072 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
5073 {
5074 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5075 unsigned int i;
5076 size_t len = strlen (parm->name);
5077 bfd_boolean writing = FALSE;
5078 char sym[16];
5079
5080 memcpy (sym, parm->name, len);
5081 sym[len + 2] = 0;
5082
5083 for (i = parm->lo; i <= parm->hi; i++)
5084 {
5085 struct elf_link_hash_entry *h;
5086
5087 sym[len + 0] = i / 10 + '0';
5088 sym[len + 1] = i % 10 + '0';
5089 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
5090 if (h != NULL
5091 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5092 {
5093 h->root.type = bfd_link_hash_defined;
5094 h->root.u.def.section = htab->sfpr;
5095 h->root.u.def.value = htab->sfpr->size;
5096 h->type = STT_FUNC;
5097 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5098 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
5099 writing = TRUE;
5100 if (htab->sfpr->contents == NULL)
5101 {
5102 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5103 if (htab->sfpr->contents == NULL)
5104 return FALSE;
5105 }
5106 }
5107 if (writing)
5108 {
5109 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5110 if (i != parm->hi)
5111 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5112 else
5113 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5114 htab->sfpr->size = p - htab->sfpr->contents;
5115 }
5116 }
5117
5118 return TRUE;
5119 }
5120
5121 static bfd_byte *
5122 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5123 {
5124 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5125 return p + 4;
5126 }
5127
5128 static bfd_byte *
5129 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5130 {
5131 p = savegpr0 (abfd, p, r);
5132 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5133 p = p + 4;
5134 bfd_put_32 (abfd, BLR, p);
5135 return p + 4;
5136 }
5137
5138 static bfd_byte *
5139 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5140 {
5141 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5142 return p + 4;
5143 }
5144
5145 static bfd_byte *
5146 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5147 {
5148 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5149 p = p + 4;
5150 p = restgpr0 (abfd, p, r);
5151 bfd_put_32 (abfd, MTLR_R0, p);
5152 p = p + 4;
5153 if (r == 29)
5154 {
5155 p = restgpr0 (abfd, p, 30);
5156 p = restgpr0 (abfd, p, 31);
5157 }
5158 bfd_put_32 (abfd, BLR, p);
5159 return p + 4;
5160 }
5161
5162 static bfd_byte *
5163 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5164 {
5165 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5166 return p + 4;
5167 }
5168
5169 static bfd_byte *
5170 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5171 {
5172 p = savegpr1 (abfd, p, r);
5173 bfd_put_32 (abfd, BLR, p);
5174 return p + 4;
5175 }
5176
5177 static bfd_byte *
5178 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5179 {
5180 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5181 return p + 4;
5182 }
5183
5184 static bfd_byte *
5185 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5186 {
5187 p = restgpr1 (abfd, p, r);
5188 bfd_put_32 (abfd, BLR, p);
5189 return p + 4;
5190 }
5191
5192 static bfd_byte *
5193 savefpr (bfd *abfd, bfd_byte *p, int r)
5194 {
5195 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5196 return p + 4;
5197 }
5198
5199 static bfd_byte *
5200 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5201 {
5202 p = savefpr (abfd, p, r);
5203 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5204 p = p + 4;
5205 bfd_put_32 (abfd, BLR, p);
5206 return p + 4;
5207 }
5208
5209 static bfd_byte *
5210 restfpr (bfd *abfd, bfd_byte *p, int r)
5211 {
5212 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5213 return p + 4;
5214 }
5215
5216 static bfd_byte *
5217 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5218 {
5219 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5220 p = p + 4;
5221 p = restfpr (abfd, p, r);
5222 bfd_put_32 (abfd, MTLR_R0, p);
5223 p = p + 4;
5224 if (r == 29)
5225 {
5226 p = restfpr (abfd, p, 30);
5227 p = restfpr (abfd, p, 31);
5228 }
5229 bfd_put_32 (abfd, BLR, p);
5230 return p + 4;
5231 }
5232
5233 static bfd_byte *
5234 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5235 {
5236 p = savefpr (abfd, p, r);
5237 bfd_put_32 (abfd, BLR, p);
5238 return p + 4;
5239 }
5240
5241 static bfd_byte *
5242 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
5243 {
5244 p = restfpr (abfd, p, r);
5245 bfd_put_32 (abfd, BLR, p);
5246 return p + 4;
5247 }
5248
5249 static bfd_byte *
5250 savevr (bfd *abfd, bfd_byte *p, int r)
5251 {
5252 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5253 p = p + 4;
5254 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
5255 return p + 4;
5256 }
5257
5258 static bfd_byte *
5259 savevr_tail (bfd *abfd, bfd_byte *p, int r)
5260 {
5261 p = savevr (abfd, p, r);
5262 bfd_put_32 (abfd, BLR, p);
5263 return p + 4;
5264 }
5265
5266 static bfd_byte *
5267 restvr (bfd *abfd, bfd_byte *p, int r)
5268 {
5269 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5270 p = p + 4;
5271 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
5272 return p + 4;
5273 }
5274
5275 static bfd_byte *
5276 restvr_tail (bfd *abfd, bfd_byte *p, int r)
5277 {
5278 p = restvr (abfd, p, r);
5279 bfd_put_32 (abfd, BLR, p);
5280 return p + 4;
5281 }
5282
5283 /* Called via elf_link_hash_traverse to transfer dynamic linking
5284 information on function code symbol entries to their corresponding
5285 function descriptor symbol entries. */
5286
5287 static bfd_boolean
5288 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
5289 {
5290 struct bfd_link_info *info;
5291 struct ppc_link_hash_table *htab;
5292 struct plt_entry *ent;
5293 struct ppc_link_hash_entry *fh;
5294 struct ppc_link_hash_entry *fdh;
5295 bfd_boolean force_local;
5296
5297 fh = (struct ppc_link_hash_entry *) h;
5298 if (fh->elf.root.type == bfd_link_hash_indirect)
5299 return TRUE;
5300
5301 if (fh->elf.root.type == bfd_link_hash_warning)
5302 fh = (struct ppc_link_hash_entry *) fh->elf.root.u.i.link;
5303
5304 info = inf;
5305 htab = ppc_hash_table (info);
5306
5307 /* Resolve undefined references to dot-symbols as the value
5308 in the function descriptor, if we have one in a regular object.
5309 This is to satisfy cases like ".quad .foo". Calls to functions
5310 in dynamic objects are handled elsewhere. */
5311 if (fh->elf.root.type == bfd_link_hash_undefweak
5312 && fh->was_undefined
5313 && (fh->oh->elf.root.type == bfd_link_hash_defined
5314 || fh->oh->elf.root.type == bfd_link_hash_defweak)
5315 && get_opd_info (fh->oh->elf.root.u.def.section) != NULL
5316 && opd_entry_value (fh->oh->elf.root.u.def.section,
5317 fh->oh->elf.root.u.def.value,
5318 &fh->elf.root.u.def.section,
5319 &fh->elf.root.u.def.value) != (bfd_vma) -1)
5320 {
5321 fh->elf.root.type = fh->oh->elf.root.type;
5322 fh->elf.elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
5323 }
5324
5325 /* If this is a function code symbol, transfer dynamic linking
5326 information to the function descriptor symbol. */
5327 if (!fh->is_func)
5328 return TRUE;
5329
5330 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
5331 if (ent->plt.refcount > 0)
5332 break;
5333 if (ent == NULL
5334 || fh->elf.root.root.string[0] != '.'
5335 || fh->elf.root.root.string[1] == '\0')
5336 return TRUE;
5337
5338 /* Find the corresponding function descriptor symbol. Create it
5339 as undefined if necessary. */
5340
5341 fdh = get_fdh (fh, htab);
5342 if (fdh != NULL)
5343 while (fdh->elf.root.type == bfd_link_hash_indirect
5344 || fdh->elf.root.type == bfd_link_hash_warning)
5345 fdh = (struct ppc_link_hash_entry *) fdh->elf.root.u.i.link;
5346
5347 if (fdh == NULL
5348 && info->shared
5349 && (fh->elf.root.type == bfd_link_hash_undefined
5350 || fh->elf.root.type == bfd_link_hash_undefweak))
5351 {
5352 bfd *abfd;
5353 asymbol *newsym;
5354 struct bfd_link_hash_entry *bh;
5355
5356 abfd = fh->elf.root.u.undef.abfd;
5357 newsym = bfd_make_empty_symbol (abfd);
5358 newsym->name = fh->elf.root.root.string + 1;
5359 newsym->section = bfd_und_section_ptr;
5360 newsym->value = 0;
5361 newsym->flags = BSF_OBJECT;
5362 if (fh->elf.root.type == bfd_link_hash_undefweak)
5363 newsym->flags |= BSF_WEAK;
5364
5365 bh = &fdh->elf.root;
5366 if ( !(_bfd_generic_link_add_one_symbol
5367 (info, abfd, newsym->name, newsym->flags,
5368 newsym->section, newsym->value, NULL, FALSE, FALSE, &bh)))
5369 {
5370 return FALSE;
5371 }
5372 fdh = (struct ppc_link_hash_entry *) bh;
5373 fdh->elf.elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5374 fdh->elf.size = 24;
5375 fdh->elf.type = STT_OBJECT;
5376 }
5377
5378 if (fdh != NULL
5379 && (fdh->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
5380 && (info->shared
5381 || (fdh->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5382 || (fdh->elf.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5383 || (fdh->elf.root.type == bfd_link_hash_undefweak
5384 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
5385 {
5386 if (fdh->elf.dynindx == -1)
5387 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
5388 return FALSE;
5389 fdh->elf.elf_link_hash_flags
5390 |= (fh->elf.elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
5391 | ELF_LINK_HASH_REF_DYNAMIC
5392 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
5393 | ELF_LINK_NON_GOT_REF));
5394 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
5395 {
5396 struct plt_entry **ep = &fdh->elf.plt.plist;
5397 while (*ep != NULL)
5398 ep = &(*ep)->next;
5399 *ep = fh->elf.plt.plist;
5400 fh->elf.plt.plist = NULL;
5401 fdh->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5402 }
5403 fdh->is_func_descriptor = 1;
5404 fdh->oh = fh;
5405 fh->oh = fdh;
5406 }
5407
5408 /* Now that the info is on the function descriptor, clear the
5409 function code sym info. Any function code syms for which we
5410 don't have a definition in a regular file, we force local.
5411 This prevents a shared library from exporting syms that have
5412 been imported from another library. Function code syms that
5413 are really in the library we must leave global to prevent the
5414 linker dragging in a definition from a static library. */
5415 force_local
5416 = (info->shared
5417 && ((fh->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5418 || fdh == NULL
5419 || (fdh->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5420 || (fdh->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0));
5421 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5422
5423 return TRUE;
5424 }
5425
5426 /* Called near the start of bfd_elf_size_dynamic_sections. We use
5427 this hook to a) provide some gcc support functions, and b) transfer
5428 dynamic linking information gathered so far on function code symbol
5429 entries, to their corresponding function descriptor symbol entries. */
5430
5431 static bfd_boolean
5432 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
5433 struct bfd_link_info *info)
5434 {
5435 struct ppc_link_hash_table *htab;
5436 unsigned int i;
5437 const struct sfpr_def_parms funcs[] =
5438 {
5439 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
5440 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
5441 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
5442 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
5443 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
5444 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
5445 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
5446 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
5447 { "._savef", 14, 31, savefpr, savefpr1_tail },
5448 { "._restf", 14, 31, restfpr, restfpr1_tail },
5449 { "_savevr_", 20, 31, savevr, savevr_tail },
5450 { "_restvr_", 20, 31, restvr, restvr_tail }
5451 };
5452
5453 htab = ppc_hash_table (info);
5454 if (htab->sfpr == NULL)
5455 /* We don't have any relocs. */
5456 return TRUE;
5457
5458 /* Provide any missing _save* and _rest* functions. */
5459 htab->sfpr->size = 0;
5460 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
5461 if (!sfpr_define (info, &funcs[i]))
5462 return FALSE;
5463
5464 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5465
5466 if (htab->sfpr->size == 0)
5467 _bfd_strip_section_from_output (info, htab->sfpr);
5468
5469 return TRUE;
5470 }
5471
5472 /* Adjust a symbol defined by a dynamic object and referenced by a
5473 regular object. The current definition is in some section of the
5474 dynamic object, but we're not including those sections. We have to
5475 change the definition to something the rest of the link can
5476 understand. */
5477
5478 static bfd_boolean
5479 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5480 struct elf_link_hash_entry *h)
5481 {
5482 struct ppc_link_hash_table *htab;
5483 asection *s;
5484 unsigned int power_of_two;
5485
5486 htab = ppc_hash_table (info);
5487
5488 /* Deal with function syms. */
5489 if (h->type == STT_FUNC
5490 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5491 {
5492 /* Clear procedure linkage table information for any symbol that
5493 won't need a .plt entry. */
5494 struct plt_entry *ent;
5495 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5496 if (ent->plt.refcount > 0)
5497 break;
5498 if (ent == NULL
5499 || SYMBOL_CALLS_LOCAL (info, h)
5500 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5501 && h->root.type == bfd_link_hash_undefweak))
5502 {
5503 h->plt.plist = NULL;
5504 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
5505 }
5506 }
5507 else
5508 h->plt.plist = NULL;
5509
5510 /* If this is a weak symbol, and there is a real definition, the
5511 processor independent code will have arranged for us to see the
5512 real definition first, and we can just use the same value. */
5513 if (h->weakdef != NULL)
5514 {
5515 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5516 || h->weakdef->root.type == bfd_link_hash_defweak);
5517 h->root.u.def.section = h->weakdef->root.u.def.section;
5518 h->root.u.def.value = h->weakdef->root.u.def.value;
5519 if (ELIMINATE_COPY_RELOCS)
5520 h->elf_link_hash_flags
5521 = ((h->elf_link_hash_flags & ~ELF_LINK_NON_GOT_REF)
5522 | (h->weakdef->elf_link_hash_flags & ELF_LINK_NON_GOT_REF));
5523 return TRUE;
5524 }
5525
5526 /* If we are creating a shared library, we must presume that the
5527 only references to the symbol are via the global offset table.
5528 For such cases we need not do anything here; the relocations will
5529 be handled correctly by relocate_section. */
5530 if (info->shared)
5531 return TRUE;
5532
5533 /* If there are no references to this symbol that do not use the
5534 GOT, we don't need to generate a copy reloc. */
5535 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
5536 return TRUE;
5537
5538 if (ELIMINATE_COPY_RELOCS)
5539 {
5540 struct ppc_link_hash_entry * eh;
5541 struct ppc_dyn_relocs *p;
5542
5543 eh = (struct ppc_link_hash_entry *) h;
5544 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5545 {
5546 s = p->sec->output_section;
5547 if (s != NULL && (s->flags & SEC_READONLY) != 0)
5548 break;
5549 }
5550
5551 /* If we didn't find any dynamic relocs in read-only sections, then
5552 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
5553 if (p == NULL)
5554 {
5555 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
5556 return TRUE;
5557 }
5558 }
5559
5560 if (h->plt.plist != NULL)
5561 {
5562 /* We should never get here, but unfortunately there are versions
5563 of gcc out there that improperly (for this ABI) put initialized
5564 function pointers, vtable refs and suchlike in read-only
5565 sections. Allow them to proceed, but warn that this might
5566 break at runtime. */
5567 (*_bfd_error_handler)
5568 (_("copy reloc against `%s' requires lazy plt linking; "
5569 "avoid setting LD_BIND_NOW=1 or upgrade gcc"),
5570 h->root.root.string);
5571 }
5572
5573 /* This is a reference to a symbol defined by a dynamic object which
5574 is not a function. */
5575
5576 /* We must allocate the symbol in our .dynbss section, which will
5577 become part of the .bss section of the executable. There will be
5578 an entry for this symbol in the .dynsym section. The dynamic
5579 object will contain position independent code, so all references
5580 from the dynamic object to this symbol will go through the global
5581 offset table. The dynamic linker will use the .dynsym entry to
5582 determine the address it must put in the global offset table, so
5583 both the dynamic object and the regular object will refer to the
5584 same memory location for the variable. */
5585
5586 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
5587 to copy the initial value out of the dynamic object and into the
5588 runtime process image. We need to remember the offset into the
5589 .rela.bss section we are going to use. */
5590 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
5591 {
5592 htab->relbss->size += sizeof (Elf64_External_Rela);
5593 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
5594 }
5595
5596 /* We need to figure out the alignment required for this symbol. I
5597 have no idea how ELF linkers handle this. */
5598 power_of_two = bfd_log2 (h->size);
5599 if (power_of_two > 4)
5600 power_of_two = 4;
5601
5602 /* Apply the required alignment. */
5603 s = htab->dynbss;
5604 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
5605 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
5606 {
5607 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
5608 return FALSE;
5609 }
5610
5611 /* Define the symbol as being at this point in the section. */
5612 h->root.u.def.section = s;
5613 h->root.u.def.value = s->size;
5614
5615 /* Increment the section size to make room for the symbol. */
5616 s->size += h->size;
5617
5618 return TRUE;
5619 }
5620
5621 /* If given a function descriptor symbol, hide both the function code
5622 sym and the descriptor. */
5623 static void
5624 ppc64_elf_hide_symbol (struct bfd_link_info *info,
5625 struct elf_link_hash_entry *h,
5626 bfd_boolean force_local)
5627 {
5628 struct ppc_link_hash_entry *eh;
5629 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
5630
5631 eh = (struct ppc_link_hash_entry *) h;
5632 if (eh->is_func_descriptor)
5633 {
5634 struct ppc_link_hash_entry *fh = eh->oh;
5635
5636 if (fh == NULL)
5637 {
5638 const char *p, *q;
5639 struct ppc_link_hash_table *htab;
5640 char save;
5641
5642 /* We aren't supposed to use alloca in BFD because on
5643 systems which do not have alloca the version in libiberty
5644 calls xmalloc, which might cause the program to crash
5645 when it runs out of memory. This function doesn't have a
5646 return status, so there's no way to gracefully return an
5647 error. So cheat. We know that string[-1] can be safely
5648 accessed; It's either a string in an ELF string table,
5649 or allocated in an objalloc structure. */
5650
5651 p = eh->elf.root.root.string - 1;
5652 save = *p;
5653 *(char *) p = '.';
5654 htab = ppc_hash_table (info);
5655 fh = (struct ppc_link_hash_entry *)
5656 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5657 *(char *) p = save;
5658
5659 /* Unfortunately, if it so happens that the string we were
5660 looking for was allocated immediately before this string,
5661 then we overwrote the string terminator. That's the only
5662 reason the lookup should fail. */
5663 if (fh == NULL)
5664 {
5665 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
5666 while (q >= eh->elf.root.root.string && *q == *p)
5667 --q, --p;
5668 if (q < eh->elf.root.root.string && *p == '.')
5669 fh = (struct ppc_link_hash_entry *)
5670 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5671 }
5672 if (fh != NULL)
5673 {
5674 eh->oh = fh;
5675 fh->oh = eh;
5676 }
5677 }
5678 if (fh != NULL)
5679 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5680 }
5681 }
5682
5683 static bfd_boolean
5684 get_sym_h (struct elf_link_hash_entry **hp,
5685 Elf_Internal_Sym **symp,
5686 asection **symsecp,
5687 char **tls_maskp,
5688 Elf_Internal_Sym **locsymsp,
5689 unsigned long r_symndx,
5690 bfd *ibfd)
5691 {
5692 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5693
5694 if (r_symndx >= symtab_hdr->sh_info)
5695 {
5696 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
5697 struct elf_link_hash_entry *h;
5698
5699 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5700 while (h->root.type == bfd_link_hash_indirect
5701 || h->root.type == bfd_link_hash_warning)
5702 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5703
5704 if (hp != NULL)
5705 *hp = h;
5706
5707 if (symp != NULL)
5708 *symp = NULL;
5709
5710 if (symsecp != NULL)
5711 {
5712 asection *symsec = NULL;
5713 if (h->root.type == bfd_link_hash_defined
5714 || h->root.type == bfd_link_hash_defweak)
5715 symsec = h->root.u.def.section;
5716 *symsecp = symsec;
5717 }
5718
5719 if (tls_maskp != NULL)
5720 {
5721 struct ppc_link_hash_entry *eh;
5722
5723 eh = (struct ppc_link_hash_entry *) h;
5724 *tls_maskp = &eh->tls_mask;
5725 }
5726 }
5727 else
5728 {
5729 Elf_Internal_Sym *sym;
5730 Elf_Internal_Sym *locsyms = *locsymsp;
5731
5732 if (locsyms == NULL)
5733 {
5734 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
5735 if (locsyms == NULL)
5736 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
5737 symtab_hdr->sh_info,
5738 0, NULL, NULL, NULL);
5739 if (locsyms == NULL)
5740 return FALSE;
5741 *locsymsp = locsyms;
5742 }
5743 sym = locsyms + r_symndx;
5744
5745 if (hp != NULL)
5746 *hp = NULL;
5747
5748 if (symp != NULL)
5749 *symp = sym;
5750
5751 if (symsecp != NULL)
5752 {
5753 asection *symsec = NULL;
5754 if ((sym->st_shndx != SHN_UNDEF
5755 && sym->st_shndx < SHN_LORESERVE)
5756 || sym->st_shndx > SHN_HIRESERVE)
5757 symsec = bfd_section_from_elf_index (ibfd, sym->st_shndx);
5758 *symsecp = symsec;
5759 }
5760
5761 if (tls_maskp != NULL)
5762 {
5763 struct got_entry **lgot_ents;
5764 char *tls_mask;
5765
5766 tls_mask = NULL;
5767 lgot_ents = elf_local_got_ents (ibfd);
5768 if (lgot_ents != NULL)
5769 {
5770 char *lgot_masks = (char *) (lgot_ents + symtab_hdr->sh_info);
5771 tls_mask = &lgot_masks[r_symndx];
5772 }
5773 *tls_maskp = tls_mask;
5774 }
5775 }
5776 return TRUE;
5777 }
5778
5779 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
5780 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
5781 type suitable for optimization, and 1 otherwise. */
5782
5783 static int
5784 get_tls_mask (char **tls_maskp, unsigned long *toc_symndx,
5785 Elf_Internal_Sym **locsymsp,
5786 const Elf_Internal_Rela *rel, bfd *ibfd)
5787 {
5788 unsigned long r_symndx;
5789 int next_r;
5790 struct elf_link_hash_entry *h;
5791 Elf_Internal_Sym *sym;
5792 asection *sec;
5793 bfd_vma off;
5794
5795 r_symndx = ELF64_R_SYM (rel->r_info);
5796 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5797 return 0;
5798
5799 if ((*tls_maskp != NULL && **tls_maskp != 0)
5800 || sec == NULL
5801 || ppc64_elf_section_data (sec)->t_symndx == NULL)
5802 return 1;
5803
5804 /* Look inside a TOC section too. */
5805 if (h != NULL)
5806 {
5807 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
5808 off = h->root.u.def.value;
5809 }
5810 else
5811 off = sym->st_value;
5812 off += rel->r_addend;
5813 BFD_ASSERT (off % 8 == 0);
5814 r_symndx = ppc64_elf_section_data (sec)->t_symndx[off / 8];
5815 next_r = ppc64_elf_section_data (sec)->t_symndx[off / 8 + 1];
5816 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5817 return 0;
5818 if (toc_symndx != NULL)
5819 *toc_symndx = r_symndx;
5820 if ((h == NULL
5821 || ((h->root.type == bfd_link_hash_defined
5822 || h->root.type == bfd_link_hash_defweak)
5823 && !(h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)))
5824 && (next_r == -1 || next_r == -2))
5825 return 1 - next_r;
5826 return 1;
5827 }
5828
5829 /* Adjust all global syms defined in opd sections. In gcc generated
5830 code for the old ABI, these will already have been done. */
5831
5832 static bfd_boolean
5833 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
5834 {
5835 struct ppc_link_hash_entry *eh;
5836 asection *sym_sec;
5837 long *opd_adjust;
5838
5839 if (h->root.type == bfd_link_hash_indirect)
5840 return TRUE;
5841
5842 if (h->root.type == bfd_link_hash_warning)
5843 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5844
5845 if (h->root.type != bfd_link_hash_defined
5846 && h->root.type != bfd_link_hash_defweak)
5847 return TRUE;
5848
5849 eh = (struct ppc_link_hash_entry *) h;
5850 if (eh->adjust_done)
5851 return TRUE;
5852
5853 sym_sec = eh->elf.root.u.def.section;
5854 opd_adjust = get_opd_info (sym_sec);
5855 if (opd_adjust != NULL)
5856 {
5857 long adjust = opd_adjust[eh->elf.root.u.def.value / 8];
5858 if (adjust == -1)
5859 {
5860 /* This entry has been deleted. */
5861 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
5862 if (dsec == NULL)
5863 {
5864 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
5865 if (elf_discarded_section (dsec))
5866 {
5867 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
5868 break;
5869 }
5870 }
5871 eh->elf.root.u.def.value = 0;
5872 eh->elf.root.u.def.section = dsec;
5873 }
5874 else
5875 eh->elf.root.u.def.value += adjust;
5876 eh->adjust_done = 1;
5877 }
5878 return TRUE;
5879 }
5880
5881 /* Remove unused Official Procedure Descriptor entries. Currently we
5882 only remove those associated with functions in discarded link-once
5883 sections, or weakly defined functions that have been overridden. It
5884 would be possible to remove many more entries for statically linked
5885 applications. */
5886
5887 bfd_boolean
5888 ppc64_elf_edit_opd (bfd *obfd, struct bfd_link_info *info,
5889 bfd_boolean non_overlapping)
5890 {
5891 bfd *ibfd;
5892 bfd_boolean some_edited = FALSE;
5893 asection *need_pad = NULL;
5894
5895 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5896 {
5897 asection *sec;
5898 Elf_Internal_Rela *relstart, *rel, *relend;
5899 Elf_Internal_Shdr *symtab_hdr;
5900 Elf_Internal_Sym *local_syms;
5901 struct elf_link_hash_entry **sym_hashes;
5902 bfd_vma offset;
5903 bfd_size_type amt;
5904 long *opd_adjust;
5905 bfd_boolean need_edit, add_aux_fields;
5906 bfd_size_type cnt_16b = 0;
5907
5908 sec = bfd_get_section_by_name (ibfd, ".opd");
5909 if (sec == NULL)
5910 continue;
5911
5912 amt = sec->size * sizeof (long) / 8;
5913 opd_adjust = get_opd_info (sec);
5914 if (opd_adjust == NULL)
5915 {
5916 /* Must be a ld -r link. ie. check_relocs hasn't been
5917 called. */
5918 opd_adjust = bfd_zalloc (obfd, amt);
5919 ppc64_elf_section_data (sec)->opd.adjust = opd_adjust;
5920 }
5921 memset (opd_adjust, 0, amt);
5922
5923 if (sec->output_section == bfd_abs_section_ptr)
5924 continue;
5925
5926 /* Look through the section relocs. */
5927 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
5928 continue;
5929
5930 local_syms = NULL;
5931 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5932 sym_hashes = elf_sym_hashes (ibfd);
5933
5934 /* Read the relocations. */
5935 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
5936 info->keep_memory);
5937 if (relstart == NULL)
5938 return FALSE;
5939
5940 /* First run through the relocs to check they are sane, and to
5941 determine whether we need to edit this opd section. */
5942 need_edit = FALSE;
5943 need_pad = sec;
5944 offset = 0;
5945 relend = relstart + sec->reloc_count;
5946 for (rel = relstart; rel < relend; )
5947 {
5948 enum elf_ppc64_reloc_type r_type;
5949 unsigned long r_symndx;
5950 asection *sym_sec;
5951 struct elf_link_hash_entry *h;
5952 Elf_Internal_Sym *sym;
5953
5954 /* .opd contains a regular array of 16 or 24 byte entries. We're
5955 only interested in the reloc pointing to a function entry
5956 point. */
5957 if (rel->r_offset != offset
5958 || rel + 1 >= relend
5959 || (rel + 1)->r_offset != offset + 8)
5960 {
5961 /* If someone messes with .opd alignment then after a
5962 "ld -r" we might have padding in the middle of .opd.
5963 Also, there's nothing to prevent someone putting
5964 something silly in .opd with the assembler. No .opd
5965 optimization for them! */
5966 broken_opd:
5967 (*_bfd_error_handler)
5968 (_("%B: .opd is not a regular array of opd entries"), ibfd);
5969 need_edit = FALSE;
5970 break;
5971 }
5972
5973 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
5974 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
5975 {
5976 (*_bfd_error_handler)
5977 (_("%B: unexpected reloc type %u in .opd section"),
5978 ibfd, r_type);
5979 need_edit = FALSE;
5980 break;
5981 }
5982
5983 r_symndx = ELF64_R_SYM (rel->r_info);
5984 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
5985 r_symndx, ibfd))
5986 goto error_ret;
5987
5988 if (sym_sec == NULL || sym_sec->owner == NULL)
5989 {
5990 const char *sym_name;
5991 if (h != NULL)
5992 sym_name = h->root.root.string;
5993 else
5994 sym_name = bfd_elf_local_sym_name (ibfd, sym);
5995
5996 (*_bfd_error_handler)
5997 (_("%B: undefined sym `%s' in .opd section"),
5998 ibfd, sym_name);
5999 need_edit = FALSE;
6000 break;
6001 }
6002
6003 /* opd entries are always for functions defined in the
6004 current input bfd. If the symbol isn't defined in the
6005 input bfd, then we won't be using the function in this
6006 bfd; It must be defined in a linkonce section in another
6007 bfd, or is weak. It's also possible that we are
6008 discarding the function due to a linker script /DISCARD/,
6009 which we test for via the output_section. */
6010 if (sym_sec->owner != ibfd
6011 || sym_sec->output_section == bfd_abs_section_ptr)
6012 need_edit = TRUE;
6013
6014 rel += 2;
6015 if (rel == relend
6016 || (rel + 1 == relend && rel->r_offset == offset + 16))
6017 {
6018 if (sec->size == offset + 24)
6019 {
6020 need_pad = NULL;
6021 break;
6022 }
6023 if (rel == relend && sec->size == offset + 16)
6024 {
6025 cnt_16b++;
6026 break;
6027 }
6028 goto broken_opd;
6029 }
6030
6031 if (rel->r_offset == offset + 24)
6032 offset += 24;
6033 else if (rel->r_offset != offset + 16)
6034 goto broken_opd;
6035 else if (rel + 1 < relend
6036 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
6037 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
6038 {
6039 offset += 16;
6040 cnt_16b++;
6041 }
6042 else if (rel + 2 < relend
6043 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
6044 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
6045 {
6046 offset += 24;
6047 rel += 1;
6048 }
6049 else
6050 goto broken_opd;
6051 }
6052
6053 add_aux_fields = non_overlapping && cnt_16b > 0;
6054
6055 if (need_edit || add_aux_fields)
6056 {
6057 Elf_Internal_Rela *write_rel;
6058 bfd_byte *rptr, *wptr;
6059 bfd_byte *new_contents = NULL;
6060 bfd_boolean skip;
6061 long opd_ent_size;
6062
6063 /* This seems a waste of time as input .opd sections are all
6064 zeros as generated by gcc, but I suppose there's no reason
6065 this will always be so. We might start putting something in
6066 the third word of .opd entries. */
6067 if ((sec->flags & SEC_IN_MEMORY) == 0)
6068 {
6069 bfd_byte *loc;
6070 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
6071 {
6072 if (loc != NULL)
6073 free (loc);
6074 error_ret:
6075 if (local_syms != NULL
6076 && symtab_hdr->contents != (unsigned char *) local_syms)
6077 free (local_syms);
6078 if (elf_section_data (sec)->relocs != relstart)
6079 free (relstart);
6080 return FALSE;
6081 }
6082 sec->contents = loc;
6083 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6084 }
6085
6086 elf_section_data (sec)->relocs = relstart;
6087
6088 wptr = sec->contents;
6089 rptr = sec->contents;
6090 new_contents = sec->contents;
6091
6092 if (add_aux_fields)
6093 {
6094 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
6095 if (new_contents == NULL)
6096 return FALSE;
6097 need_pad = FALSE;
6098 wptr = new_contents;
6099 }
6100
6101 write_rel = relstart;
6102 skip = FALSE;
6103 offset = 0;
6104 opd_ent_size = 0;
6105 for (rel = relstart; rel < relend; rel++)
6106 {
6107 unsigned long r_symndx;
6108 asection *sym_sec;
6109 struct elf_link_hash_entry *h;
6110 Elf_Internal_Sym *sym;
6111
6112 r_symndx = ELF64_R_SYM (rel->r_info);
6113 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6114 r_symndx, ibfd))
6115 goto error_ret;
6116
6117 if (rel->r_offset == offset)
6118 {
6119 struct ppc_link_hash_entry *fdh = NULL;
6120
6121 /* See if the .opd entry is full 24 byte or
6122 16 byte (with fd_aux entry overlapped with next
6123 fd_func). */
6124 opd_ent_size = 24;
6125 if ((rel + 2 == relend && sec->size == offset + 16)
6126 || (rel + 3 < relend
6127 && rel[2].r_offset == offset + 16
6128 && rel[3].r_offset == offset + 24
6129 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
6130 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
6131 opd_ent_size = 16;
6132
6133 if (h != NULL
6134 && h->root.root.string[0] == '.')
6135 fdh = get_fdh ((struct ppc_link_hash_entry *) h,
6136 ppc_hash_table (info));
6137
6138 skip = (sym_sec->owner != ibfd
6139 || sym_sec->output_section == bfd_abs_section_ptr);
6140 if (skip)
6141 {
6142 if (fdh != NULL && sym_sec->owner == ibfd)
6143 {
6144 /* Arrange for the function descriptor sym
6145 to be dropped. */
6146 fdh->elf.root.u.def.value = 0;
6147 fdh->elf.root.u.def.section = sym_sec;
6148 }
6149 opd_adjust[rel->r_offset / 8] = -1;
6150 }
6151 else
6152 {
6153 /* We'll be keeping this opd entry. */
6154
6155 if (fdh != NULL)
6156 {
6157 /* Redefine the function descriptor symbol to
6158 this location in the opd section. It is
6159 necessary to update the value here rather
6160 than using an array of adjustments as we do
6161 for local symbols, because various places
6162 in the generic ELF code use the value
6163 stored in u.def.value. */
6164 fdh->elf.root.u.def.value = wptr - new_contents;
6165 fdh->adjust_done = 1;
6166 }
6167
6168 /* Local syms are a bit tricky. We could
6169 tweak them as they can be cached, but
6170 we'd need to look through the local syms
6171 for the function descriptor sym which we
6172 don't have at the moment. So keep an
6173 array of adjustments. */
6174 opd_adjust[rel->r_offset / 8]
6175 = (wptr - new_contents) - (rptr - sec->contents);
6176
6177 if (wptr != rptr)
6178 memcpy (wptr, rptr, opd_ent_size);
6179 wptr += opd_ent_size;
6180 if (add_aux_fields && opd_ent_size == 16)
6181 {
6182 memset (wptr, '\0', 8);
6183 wptr += 8;
6184 }
6185 }
6186 rptr += opd_ent_size;
6187 offset += opd_ent_size;
6188 }
6189
6190 if (skip)
6191 {
6192 BFD_ASSERT (MUST_BE_DYN_RELOC (ELF64_R_TYPE (rel->r_info)));
6193 if (info->shared)
6194 {
6195 /* We won't be needing dynamic relocs here. */
6196 struct ppc_dyn_relocs **pp;
6197 struct ppc_dyn_relocs *p;
6198
6199 if (h != NULL)
6200 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6201 else if (sym_sec != NULL)
6202 pp = ((struct ppc_dyn_relocs **)
6203 &elf_section_data (sym_sec)->local_dynrel);
6204 else
6205 pp = ((struct ppc_dyn_relocs **)
6206 &elf_section_data (sec)->local_dynrel);
6207 while ((p = *pp) != NULL)
6208 {
6209 if (p->sec == sec)
6210 {
6211 p->count -= 1;
6212 if (p->count == 0)
6213 *pp = p->next;
6214 break;
6215 }
6216 pp = &p->next;
6217 }
6218 }
6219 }
6220 else
6221 {
6222 /* We need to adjust any reloc offsets to point to the
6223 new opd entries. While we're at it, we may as well
6224 remove redundant relocs. */
6225 rel->r_offset += opd_adjust[(offset - opd_ent_size) / 8];
6226 if (write_rel != rel)
6227 memcpy (write_rel, rel, sizeof (*rel));
6228 ++write_rel;
6229 }
6230 }
6231
6232 sec->size = wptr - new_contents;
6233 sec->reloc_count = write_rel - relstart;
6234 if (add_aux_fields)
6235 {
6236 free (sec->contents);
6237 sec->contents = new_contents;
6238 }
6239
6240 /* Fudge the size too, as this is used later in
6241 elf_bfd_final_link if we are emitting relocs. */
6242 elf_section_data (sec)->rel_hdr.sh_size
6243 = sec->reloc_count * elf_section_data (sec)->rel_hdr.sh_entsize;
6244 BFD_ASSERT (elf_section_data (sec)->rel_hdr2 == NULL);
6245 some_edited = TRUE;
6246 }
6247 else if (elf_section_data (sec)->relocs != relstart)
6248 free (relstart);
6249
6250 if (local_syms != NULL
6251 && symtab_hdr->contents != (unsigned char *) local_syms)
6252 {
6253 if (!info->keep_memory)
6254 free (local_syms);
6255 else
6256 symtab_hdr->contents = (unsigned char *) local_syms;
6257 }
6258 }
6259
6260 if (some_edited)
6261 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
6262
6263 /* If we are doing a final link and the last .opd entry is just 16 byte
6264 long, add a 8 byte padding after it. */
6265 if (need_pad != NULL && !info->relocatable)
6266 {
6267 bfd_byte *p;
6268
6269 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
6270 {
6271 BFD_ASSERT (need_pad->size > 0);
6272
6273 p = bfd_malloc (need_pad->size + 8);
6274 if (p == NULL)
6275 return FALSE;
6276
6277 if (! bfd_get_section_contents (need_pad->owner, need_pad,
6278 p, 0, need_pad->size))
6279 return FALSE;
6280
6281 need_pad->contents = p;
6282 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6283 }
6284 else
6285 {
6286 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
6287 if (p == NULL)
6288 return FALSE;
6289
6290 need_pad->contents = p;
6291 }
6292
6293 memset (need_pad->contents + need_pad->size, 0, 8);
6294 need_pad->size += 8;
6295 }
6296
6297 return TRUE;
6298 }
6299
6300 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
6301
6302 asection *
6303 ppc64_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
6304 {
6305 struct ppc_link_hash_table *htab;
6306
6307 htab = ppc_hash_table (info);
6308 if (htab->tls_get_addr != NULL)
6309 {
6310 struct ppc_link_hash_entry *h = htab->tls_get_addr;
6311
6312 while (h->elf.root.type == bfd_link_hash_indirect
6313 || h->elf.root.type == bfd_link_hash_warning)
6314 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6315
6316 htab->tls_get_addr = h;
6317
6318 if (htab->tls_get_addr_fd == NULL
6319 && h->oh != NULL
6320 && h->oh->is_func_descriptor)
6321 htab->tls_get_addr_fd = h->oh;
6322 }
6323
6324 if (htab->tls_get_addr_fd != NULL)
6325 {
6326 struct ppc_link_hash_entry *h = htab->tls_get_addr_fd;
6327
6328 while (h->elf.root.type == bfd_link_hash_indirect
6329 || h->elf.root.type == bfd_link_hash_warning)
6330 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6331
6332 htab->tls_get_addr_fd = h;
6333 }
6334
6335 return _bfd_elf_tls_setup (obfd, info);
6336 }
6337
6338 /* Run through all the TLS relocs looking for optimization
6339 opportunities. The linker has been hacked (see ppc64elf.em) to do
6340 a preliminary section layout so that we know the TLS segment
6341 offsets. We can't optimize earlier because some optimizations need
6342 to know the tp offset, and we need to optimize before allocating
6343 dynamic relocations. */
6344
6345 bfd_boolean
6346 ppc64_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6347 {
6348 bfd *ibfd;
6349 asection *sec;
6350 struct ppc_link_hash_table *htab;
6351
6352 if (info->relocatable || info->shared)
6353 return TRUE;
6354
6355 htab = ppc_hash_table (info);
6356 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6357 {
6358 Elf_Internal_Sym *locsyms = NULL;
6359
6360 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6361 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
6362 {
6363 Elf_Internal_Rela *relstart, *rel, *relend;
6364 int expecting_tls_get_addr;
6365
6366 /* Read the relocations. */
6367 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6368 info->keep_memory);
6369 if (relstart == NULL)
6370 return FALSE;
6371
6372 expecting_tls_get_addr = 0;
6373 relend = relstart + sec->reloc_count;
6374 for (rel = relstart; rel < relend; rel++)
6375 {
6376 enum elf_ppc64_reloc_type r_type;
6377 unsigned long r_symndx;
6378 struct elf_link_hash_entry *h;
6379 Elf_Internal_Sym *sym;
6380 asection *sym_sec;
6381 char *tls_mask;
6382 char tls_set, tls_clear, tls_type = 0;
6383 bfd_vma value;
6384 bfd_boolean ok_tprel, is_local;
6385
6386 r_symndx = ELF64_R_SYM (rel->r_info);
6387 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
6388 r_symndx, ibfd))
6389 {
6390 err_free_rel:
6391 if (elf_section_data (sec)->relocs != relstart)
6392 free (relstart);
6393 if (locsyms != NULL
6394 && (elf_tdata (ibfd)->symtab_hdr.contents
6395 != (unsigned char *) locsyms))
6396 free (locsyms);
6397 return FALSE;
6398 }
6399
6400 if (h != NULL)
6401 {
6402 if (h->root.type != bfd_link_hash_defined
6403 && h->root.type != bfd_link_hash_defweak)
6404 continue;
6405 value = h->root.u.def.value;
6406 }
6407 else
6408 /* Symbols referenced by TLS relocs must be of type
6409 STT_TLS. So no need for .opd local sym adjust. */
6410 value = sym->st_value;
6411
6412 ok_tprel = FALSE;
6413 is_local = FALSE;
6414 if (h == NULL
6415 || !(h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC))
6416 {
6417 is_local = TRUE;
6418 value += sym_sec->output_offset;
6419 value += sym_sec->output_section->vma;
6420 value -= htab->elf.tls_sec->vma;
6421 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
6422 < (bfd_vma) 1 << 32);
6423 }
6424
6425 r_type = ELF64_R_TYPE (rel->r_info);
6426 switch (r_type)
6427 {
6428 case R_PPC64_GOT_TLSLD16:
6429 case R_PPC64_GOT_TLSLD16_LO:
6430 case R_PPC64_GOT_TLSLD16_HI:
6431 case R_PPC64_GOT_TLSLD16_HA:
6432 /* These relocs should never be against a symbol
6433 defined in a shared lib. Leave them alone if
6434 that turns out to be the case. */
6435 ppc64_tlsld_got (ibfd)->refcount -= 1;
6436 if (!is_local)
6437 continue;
6438
6439 /* LD -> LE */
6440 tls_set = 0;
6441 tls_clear = TLS_LD;
6442 tls_type = TLS_TLS | TLS_LD;
6443 expecting_tls_get_addr = 1;
6444 break;
6445
6446 case R_PPC64_GOT_TLSGD16:
6447 case R_PPC64_GOT_TLSGD16_LO:
6448 case R_PPC64_GOT_TLSGD16_HI:
6449 case R_PPC64_GOT_TLSGD16_HA:
6450 if (ok_tprel)
6451 /* GD -> LE */
6452 tls_set = 0;
6453 else
6454 /* GD -> IE */
6455 tls_set = TLS_TLS | TLS_TPRELGD;
6456 tls_clear = TLS_GD;
6457 tls_type = TLS_TLS | TLS_GD;
6458 expecting_tls_get_addr = 1;
6459 break;
6460
6461 case R_PPC64_GOT_TPREL16_DS:
6462 case R_PPC64_GOT_TPREL16_LO_DS:
6463 case R_PPC64_GOT_TPREL16_HI:
6464 case R_PPC64_GOT_TPREL16_HA:
6465 expecting_tls_get_addr = 0;
6466 if (ok_tprel)
6467 {
6468 /* IE -> LE */
6469 tls_set = 0;
6470 tls_clear = TLS_TPREL;
6471 tls_type = TLS_TLS | TLS_TPREL;
6472 break;
6473 }
6474 else
6475 continue;
6476
6477 case R_PPC64_REL14:
6478 case R_PPC64_REL14_BRTAKEN:
6479 case R_PPC64_REL14_BRNTAKEN:
6480 case R_PPC64_REL24:
6481 if (h != NULL
6482 && (h == &htab->tls_get_addr->elf
6483 || h == &htab->tls_get_addr_fd->elf))
6484 {
6485 if (!expecting_tls_get_addr
6486 && rel != relstart
6487 && ((ELF64_R_TYPE (rel[-1].r_info)
6488 == R_PPC64_TOC16)
6489 || (ELF64_R_TYPE (rel[-1].r_info)
6490 == R_PPC64_TOC16_LO)))
6491 {
6492 /* Check for toc tls entries. */
6493 char *toc_tls;
6494 int retval;
6495
6496 retval = get_tls_mask (&toc_tls, NULL, &locsyms,
6497 rel - 1, ibfd);
6498 if (retval == 0)
6499 goto err_free_rel;
6500 if (toc_tls != NULL)
6501 expecting_tls_get_addr = retval > 1;
6502 }
6503
6504 if (expecting_tls_get_addr)
6505 {
6506 struct plt_entry *ent;
6507 for (ent = h->plt.plist; ent; ent = ent->next)
6508 if (ent->addend == 0)
6509 {
6510 if (ent->plt.refcount > 0)
6511 ent->plt.refcount -= 1;
6512 break;
6513 }
6514 }
6515 }
6516 expecting_tls_get_addr = 0;
6517 continue;
6518
6519 case R_PPC64_TPREL64:
6520 expecting_tls_get_addr = 0;
6521 if (ok_tprel)
6522 {
6523 /* IE -> LE */
6524 tls_set = TLS_EXPLICIT;
6525 tls_clear = TLS_TPREL;
6526 break;
6527 }
6528 else
6529 continue;
6530
6531 case R_PPC64_DTPMOD64:
6532 expecting_tls_get_addr = 0;
6533 if (rel + 1 < relend
6534 && (rel[1].r_info
6535 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
6536 && rel[1].r_offset == rel->r_offset + 8)
6537 {
6538 if (ok_tprel)
6539 /* GD -> LE */
6540 tls_set = TLS_EXPLICIT | TLS_GD;
6541 else
6542 /* GD -> IE */
6543 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
6544 tls_clear = TLS_GD;
6545 }
6546 else
6547 {
6548 if (!is_local)
6549 continue;
6550
6551 /* LD -> LE */
6552 tls_set = TLS_EXPLICIT;
6553 tls_clear = TLS_LD;
6554 }
6555 break;
6556
6557 default:
6558 expecting_tls_get_addr = 0;
6559 continue;
6560 }
6561
6562 if ((tls_set & TLS_EXPLICIT) == 0)
6563 {
6564 struct got_entry *ent;
6565
6566 /* Adjust got entry for this reloc. */
6567 if (h != NULL)
6568 ent = h->got.glist;
6569 else
6570 ent = elf_local_got_ents (ibfd)[r_symndx];
6571
6572 for (; ent != NULL; ent = ent->next)
6573 if (ent->addend == rel->r_addend
6574 && ent->owner == ibfd
6575 && ent->tls_type == tls_type)
6576 break;
6577 if (ent == NULL)
6578 abort ();
6579
6580 if (tls_set == 0)
6581 {
6582 /* We managed to get rid of a got entry. */
6583 if (ent->got.refcount > 0)
6584 ent->got.refcount -= 1;
6585 }
6586 }
6587 else if (h != NULL)
6588 {
6589 struct ppc_link_hash_entry * eh;
6590 struct ppc_dyn_relocs **pp;
6591 struct ppc_dyn_relocs *p;
6592
6593 /* Adjust dynamic relocs. */
6594 eh = (struct ppc_link_hash_entry *) h;
6595 for (pp = &eh->dyn_relocs;
6596 (p = *pp) != NULL;
6597 pp = &p->next)
6598 if (p->sec == sec)
6599 {
6600 /* If we got rid of a DTPMOD/DTPREL reloc
6601 pair then we'll lose one or two dyn
6602 relocs. */
6603 if (tls_set == (TLS_EXPLICIT | TLS_GD))
6604 p->count -= 1;
6605 p->count -= 1;
6606 if (p->count == 0)
6607 *pp = p->next;
6608 break;
6609 }
6610 }
6611
6612 *tls_mask |= tls_set;
6613 *tls_mask &= ~tls_clear;
6614 }
6615
6616 if (elf_section_data (sec)->relocs != relstart)
6617 free (relstart);
6618 }
6619
6620 if (locsyms != NULL
6621 && (elf_tdata (ibfd)->symtab_hdr.contents
6622 != (unsigned char *) locsyms))
6623 {
6624 if (!info->keep_memory)
6625 free (locsyms);
6626 else
6627 elf_tdata (ibfd)->symtab_hdr.contents = (unsigned char *) locsyms;
6628 }
6629 }
6630 return TRUE;
6631 }
6632
6633 /* Allocate space in .plt, .got and associated reloc sections for
6634 dynamic relocs. */
6635
6636 static bfd_boolean
6637 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
6638 {
6639 struct bfd_link_info *info;
6640 struct ppc_link_hash_table *htab;
6641 asection *s;
6642 struct ppc_link_hash_entry *eh;
6643 struct ppc_dyn_relocs *p;
6644 struct got_entry *gent;
6645
6646 if (h->root.type == bfd_link_hash_indirect)
6647 return TRUE;
6648
6649 if (h->root.type == bfd_link_hash_warning)
6650 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6651
6652 info = (struct bfd_link_info *) inf;
6653 htab = ppc_hash_table (info);
6654
6655 if (htab->elf.dynamic_sections_created
6656 && h->dynindx != -1
6657 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
6658 {
6659 struct plt_entry *pent;
6660 bfd_boolean doneone = FALSE;
6661 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
6662 if (pent->plt.refcount > 0)
6663 {
6664 /* If this is the first .plt entry, make room for the special
6665 first entry. */
6666 s = htab->plt;
6667 if (s->size == 0)
6668 s->size += PLT_INITIAL_ENTRY_SIZE;
6669
6670 pent->plt.offset = s->size;
6671
6672 /* Make room for this entry. */
6673 s->size += PLT_ENTRY_SIZE;
6674
6675 /* Make room for the .glink code. */
6676 s = htab->glink;
6677 if (s->size == 0)
6678 s->size += GLINK_CALL_STUB_SIZE;
6679 /* We need bigger stubs past index 32767. */
6680 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
6681 s->size += 4;
6682 s->size += 2*4;
6683
6684 /* We also need to make an entry in the .rela.plt section. */
6685 s = htab->relplt;
6686 s->size += sizeof (Elf64_External_Rela);
6687 doneone = TRUE;
6688 }
6689 else
6690 pent->plt.offset = (bfd_vma) -1;
6691 if (!doneone)
6692 {
6693 h->plt.plist = NULL;
6694 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
6695 }
6696 }
6697 else
6698 {
6699 h->plt.plist = NULL;
6700 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
6701 }
6702
6703 eh = (struct ppc_link_hash_entry *) h;
6704 /* Run through the TLS GD got entries first if we're changing them
6705 to TPREL. */
6706 if ((eh->tls_mask & TLS_TPRELGD) != 0)
6707 for (gent = h->got.glist; gent != NULL; gent = gent->next)
6708 if (gent->got.refcount > 0
6709 && (gent->tls_type & TLS_GD) != 0)
6710 {
6711 /* This was a GD entry that has been converted to TPREL. If
6712 there happens to be a TPREL entry we can use that one. */
6713 struct got_entry *ent;
6714 for (ent = h->got.glist; ent != NULL; ent = ent->next)
6715 if (ent->got.refcount > 0
6716 && (ent->tls_type & TLS_TPREL) != 0
6717 && ent->addend == gent->addend
6718 && ent->owner == gent->owner)
6719 {
6720 gent->got.refcount = 0;
6721 break;
6722 }
6723
6724 /* If not, then we'll be using our own TPREL entry. */
6725 if (gent->got.refcount != 0)
6726 gent->tls_type = TLS_TLS | TLS_TPREL;
6727 }
6728
6729 for (gent = h->got.glist; gent != NULL; gent = gent->next)
6730 if (gent->got.refcount > 0)
6731 {
6732 bfd_boolean dyn;
6733
6734 /* Make sure this symbol is output as a dynamic symbol.
6735 Undefined weak syms won't yet be marked as dynamic,
6736 nor will all TLS symbols. */
6737 if (h->dynindx == -1
6738 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6739 {
6740 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6741 return FALSE;
6742 }
6743
6744 if ((gent->tls_type & TLS_LD) != 0
6745 && !(h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC))
6746 {
6747 gent->got.offset = ppc64_tlsld_got (gent->owner)->offset;
6748 continue;
6749 }
6750
6751 s = ppc64_elf_tdata (gent->owner)->got;
6752 gent->got.offset = s->size;
6753 s->size
6754 += (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)) ? 16 : 8;
6755 dyn = htab->elf.dynamic_sections_created;
6756 if ((info->shared
6757 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
6758 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6759 || h->root.type != bfd_link_hash_undefweak))
6760 ppc64_elf_tdata (gent->owner)->relgot->size
6761 += (gent->tls_type & eh->tls_mask & TLS_GD
6762 ? 2 * sizeof (Elf64_External_Rela)
6763 : sizeof (Elf64_External_Rela));
6764 }
6765 else
6766 gent->got.offset = (bfd_vma) -1;
6767
6768 if (eh->dyn_relocs == NULL)
6769 return TRUE;
6770
6771 /* In the shared -Bsymbolic case, discard space allocated for
6772 dynamic pc-relative relocs against symbols which turn out to be
6773 defined in regular objects. For the normal shared case, discard
6774 space for relocs that have become local due to symbol visibility
6775 changes. */
6776
6777 if (info->shared)
6778 {
6779 /* Relocs that use pc_count are those that appear on a call insn,
6780 or certain REL relocs (see MUST_BE_DYN_RELOC) that can be
6781 generated via assembly. We want calls to protected symbols to
6782 resolve directly to the function rather than going via the plt.
6783 If people want function pointer comparisons to work as expected
6784 then they should avoid writing weird assembly. */
6785 if (SYMBOL_CALLS_LOCAL (info, h))
6786 {
6787 struct ppc_dyn_relocs **pp;
6788
6789 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
6790 {
6791 p->count -= p->pc_count;
6792 p->pc_count = 0;
6793 if (p->count == 0)
6794 *pp = p->next;
6795 else
6796 pp = &p->next;
6797 }
6798 }
6799
6800 /* Also discard relocs on undefined weak syms with non-default
6801 visibility. */
6802 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6803 && h->root.type == bfd_link_hash_undefweak)
6804 eh->dyn_relocs = NULL;
6805 }
6806 else if (ELIMINATE_COPY_RELOCS)
6807 {
6808 /* For the non-shared case, discard space for relocs against
6809 symbols which turn out to need copy relocs or are not
6810 dynamic. */
6811
6812 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
6813 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6814 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6815 {
6816 /* Make sure this symbol is output as a dynamic symbol.
6817 Undefined weak syms won't yet be marked as dynamic. */
6818 if (h->dynindx == -1
6819 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6820 {
6821 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6822 return FALSE;
6823 }
6824
6825 /* If that succeeded, we know we'll be keeping all the
6826 relocs. */
6827 if (h->dynindx != -1)
6828 goto keep;
6829 }
6830
6831 eh->dyn_relocs = NULL;
6832
6833 keep: ;
6834 }
6835
6836 /* Finally, allocate space. */
6837 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6838 {
6839 asection *sreloc = elf_section_data (p->sec)->sreloc;
6840 sreloc->size += p->count * sizeof (Elf64_External_Rela);
6841 }
6842
6843 return TRUE;
6844 }
6845
6846 /* Find any dynamic relocs that apply to read-only sections. */
6847
6848 static bfd_boolean
6849 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
6850 {
6851 struct ppc_link_hash_entry *eh;
6852 struct ppc_dyn_relocs *p;
6853
6854 if (h->root.type == bfd_link_hash_warning)
6855 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6856
6857 eh = (struct ppc_link_hash_entry *) h;
6858 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6859 {
6860 asection *s = p->sec->output_section;
6861
6862 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6863 {
6864 struct bfd_link_info *info = inf;
6865
6866 info->flags |= DF_TEXTREL;
6867
6868 /* Not an error, just cut short the traversal. */
6869 return FALSE;
6870 }
6871 }
6872 return TRUE;
6873 }
6874
6875 /* Set the sizes of the dynamic sections. */
6876
6877 static bfd_boolean
6878 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
6879 struct bfd_link_info *info)
6880 {
6881 struct ppc_link_hash_table *htab;
6882 bfd *dynobj;
6883 asection *s;
6884 bfd_boolean relocs;
6885 bfd *ibfd;
6886
6887 htab = ppc_hash_table (info);
6888 dynobj = htab->elf.dynobj;
6889 if (dynobj == NULL)
6890 abort ();
6891
6892 if (htab->elf.dynamic_sections_created)
6893 {
6894 /* Set the contents of the .interp section to the interpreter. */
6895 if (info->executable)
6896 {
6897 s = bfd_get_section_by_name (dynobj, ".interp");
6898 if (s == NULL)
6899 abort ();
6900 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
6901 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
6902 }
6903 }
6904
6905 /* Set up .got offsets for local syms, and space for local dynamic
6906 relocs. */
6907 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6908 {
6909 struct got_entry **lgot_ents;
6910 struct got_entry **end_lgot_ents;
6911 char *lgot_masks;
6912 bfd_size_type locsymcount;
6913 Elf_Internal_Shdr *symtab_hdr;
6914 asection *srel;
6915
6916 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
6917 continue;
6918
6919 if (ppc64_tlsld_got (ibfd)->refcount > 0)
6920 {
6921 s = ppc64_elf_tdata (ibfd)->got;
6922 ppc64_tlsld_got (ibfd)->offset = s->size;
6923 s->size += 16;
6924 if (info->shared)
6925 {
6926 srel = ppc64_elf_tdata (ibfd)->relgot;
6927 srel->size += sizeof (Elf64_External_Rela);
6928 }
6929 }
6930 else
6931 ppc64_tlsld_got (ibfd)->offset = (bfd_vma) -1;
6932
6933 for (s = ibfd->sections; s != NULL; s = s->next)
6934 {
6935 struct ppc_dyn_relocs *p;
6936
6937 for (p = *((struct ppc_dyn_relocs **)
6938 &elf_section_data (s)->local_dynrel);
6939 p != NULL;
6940 p = p->next)
6941 {
6942 if (!bfd_is_abs_section (p->sec)
6943 && bfd_is_abs_section (p->sec->output_section))
6944 {
6945 /* Input section has been discarded, either because
6946 it is a copy of a linkonce section or due to
6947 linker script /DISCARD/, so we'll be discarding
6948 the relocs too. */
6949 }
6950 else if (p->count != 0)
6951 {
6952 srel = elf_section_data (p->sec)->sreloc;
6953 srel->size += p->count * sizeof (Elf64_External_Rela);
6954 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
6955 info->flags |= DF_TEXTREL;
6956 }
6957 }
6958 }
6959
6960 lgot_ents = elf_local_got_ents (ibfd);
6961 if (!lgot_ents)
6962 continue;
6963
6964 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6965 locsymcount = symtab_hdr->sh_info;
6966 end_lgot_ents = lgot_ents + locsymcount;
6967 lgot_masks = (char *) end_lgot_ents;
6968 s = ppc64_elf_tdata (ibfd)->got;
6969 srel = ppc64_elf_tdata (ibfd)->relgot;
6970 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
6971 {
6972 struct got_entry *ent;
6973
6974 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
6975 if (ent->got.refcount > 0)
6976 {
6977 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
6978 {
6979 if (ppc64_tlsld_got (ibfd)->offset == (bfd_vma) -1)
6980 {
6981 ppc64_tlsld_got (ibfd)->offset = s->size;
6982 s->size += 16;
6983 if (info->shared)
6984 srel->size += sizeof (Elf64_External_Rela);
6985 }
6986 ent->got.offset = ppc64_tlsld_got (ibfd)->offset;
6987 }
6988 else
6989 {
6990 ent->got.offset = s->size;
6991 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
6992 {
6993 s->size += 16;
6994 if (info->shared)
6995 srel->size += 2 * sizeof (Elf64_External_Rela);
6996 }
6997 else
6998 {
6999 s->size += 8;
7000 if (info->shared)
7001 srel->size += sizeof (Elf64_External_Rela);
7002 }
7003 }
7004 }
7005 else
7006 ent->got.offset = (bfd_vma) -1;
7007 }
7008 }
7009
7010 /* Allocate global sym .plt and .got entries, and space for global
7011 sym dynamic relocs. */
7012 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
7013
7014 /* We now have determined the sizes of the various dynamic sections.
7015 Allocate memory for them. */
7016 relocs = FALSE;
7017 for (s = dynobj->sections; s != NULL; s = s->next)
7018 {
7019 if ((s->flags & SEC_LINKER_CREATED) == 0)
7020 continue;
7021
7022 if (s == htab->brlt || s == htab->relbrlt)
7023 /* These haven't been allocated yet; don't strip. */
7024 continue;
7025 else if (s == htab->got
7026 || s == htab->plt
7027 || s == htab->glink)
7028 {
7029 /* Strip this section if we don't need it; see the
7030 comment below. */
7031 }
7032 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
7033 {
7034 if (s->size == 0)
7035 {
7036 /* If we don't need this section, strip it from the
7037 output file. This is mostly to handle .rela.bss and
7038 .rela.plt. We must create both sections in
7039 create_dynamic_sections, because they must be created
7040 before the linker maps input sections to output
7041 sections. The linker does that before
7042 adjust_dynamic_symbol is called, and it is that
7043 function which decides whether anything needs to go
7044 into these sections. */
7045 }
7046 else
7047 {
7048 if (s != htab->relplt)
7049 relocs = TRUE;
7050
7051 /* We use the reloc_count field as a counter if we need
7052 to copy relocs into the output file. */
7053 s->reloc_count = 0;
7054 }
7055 }
7056 else
7057 {
7058 /* It's not one of our sections, so don't allocate space. */
7059 continue;
7060 }
7061
7062 if (s->size == 0)
7063 {
7064 _bfd_strip_section_from_output (info, s);
7065 continue;
7066 }
7067
7068 /* .plt is in the bss section. We don't initialise it. */
7069 if (s == htab->plt)
7070 continue;
7071
7072 /* Allocate memory for the section contents. We use bfd_zalloc
7073 here in case unused entries are not reclaimed before the
7074 section's contents are written out. This should not happen,
7075 but this way if it does we get a R_PPC64_NONE reloc in .rela
7076 sections instead of garbage.
7077 We also rely on the section contents being zero when writing
7078 the GOT. */
7079 s->contents = bfd_zalloc (dynobj, s->size);
7080 if (s->contents == NULL)
7081 return FALSE;
7082 }
7083
7084 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7085 {
7086 s = ppc64_elf_tdata (ibfd)->got;
7087 if (s != NULL && s != htab->got)
7088 {
7089 if (s->size == 0)
7090 _bfd_strip_section_from_output (info, s);
7091 else
7092 {
7093 s->contents = bfd_zalloc (ibfd, s->size);
7094 if (s->contents == NULL)
7095 return FALSE;
7096 }
7097 }
7098 s = ppc64_elf_tdata (ibfd)->relgot;
7099 if (s != NULL)
7100 {
7101 if (s->size == 0)
7102 _bfd_strip_section_from_output (info, s);
7103 else
7104 {
7105 s->contents = bfd_zalloc (ibfd, s->size);
7106 if (s->contents == NULL)
7107 return FALSE;
7108 relocs = TRUE;
7109 s->reloc_count = 0;
7110 }
7111 }
7112 }
7113
7114 if (htab->elf.dynamic_sections_created)
7115 {
7116 /* Add some entries to the .dynamic section. We fill in the
7117 values later, in ppc64_elf_finish_dynamic_sections, but we
7118 must add the entries now so that we get the correct size for
7119 the .dynamic section. The DT_DEBUG entry is filled in by the
7120 dynamic linker and used by the debugger. */
7121 #define add_dynamic_entry(TAG, VAL) \
7122 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
7123
7124 if (info->executable)
7125 {
7126 if (!add_dynamic_entry (DT_DEBUG, 0))
7127 return FALSE;
7128 }
7129
7130 if (htab->plt != NULL && htab->plt->size != 0)
7131 {
7132 if (!add_dynamic_entry (DT_PLTGOT, 0)
7133 || !add_dynamic_entry (DT_PLTRELSZ, 0)
7134 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
7135 || !add_dynamic_entry (DT_JMPREL, 0)
7136 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
7137 return FALSE;
7138 }
7139
7140 if (NO_OPD_RELOCS)
7141 {
7142 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
7143 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
7144 return FALSE;
7145 }
7146
7147 if (relocs)
7148 {
7149 if (!add_dynamic_entry (DT_RELA, 0)
7150 || !add_dynamic_entry (DT_RELASZ, 0)
7151 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
7152 return FALSE;
7153
7154 /* If any dynamic relocs apply to a read-only section,
7155 then we need a DT_TEXTREL entry. */
7156 if ((info->flags & DF_TEXTREL) == 0)
7157 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
7158
7159 if ((info->flags & DF_TEXTREL) != 0)
7160 {
7161 if (!add_dynamic_entry (DT_TEXTREL, 0))
7162 return FALSE;
7163 }
7164 }
7165 }
7166 #undef add_dynamic_entry
7167
7168 return TRUE;
7169 }
7170
7171 /* Determine the type of stub needed, if any, for a call. */
7172
7173 static inline enum ppc_stub_type
7174 ppc_type_of_stub (asection *input_sec,
7175 const Elf_Internal_Rela *rel,
7176 struct ppc_link_hash_entry **hash,
7177 bfd_vma destination)
7178 {
7179 struct ppc_link_hash_entry *h = *hash;
7180 bfd_vma location;
7181 bfd_vma branch_offset;
7182 bfd_vma max_branch_offset;
7183 enum elf_ppc64_reloc_type r_type;
7184
7185 if (h != NULL)
7186 {
7187 if (h->oh != NULL
7188 && h->oh->is_func_descriptor)
7189 h = h->oh;
7190
7191 if (h->elf.dynindx != -1)
7192 {
7193 struct plt_entry *ent;
7194
7195 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
7196 if (ent->addend == rel->r_addend
7197 && ent->plt.offset != (bfd_vma) -1)
7198 {
7199 *hash = h;
7200 return ppc_stub_plt_call;
7201 }
7202 }
7203
7204 if (!(h->elf.root.type == bfd_link_hash_defined
7205 || h->elf.root.type == bfd_link_hash_defweak)
7206 || h->elf.root.u.def.section->output_section == NULL)
7207 return ppc_stub_none;
7208 }
7209
7210 /* Determine where the call point is. */
7211 location = (input_sec->output_offset
7212 + input_sec->output_section->vma
7213 + rel->r_offset);
7214
7215 branch_offset = destination - location;
7216 r_type = ELF64_R_TYPE (rel->r_info);
7217
7218 /* Determine if a long branch stub is needed. */
7219 max_branch_offset = 1 << 25;
7220 if (r_type != R_PPC64_REL24)
7221 max_branch_offset = 1 << 15;
7222
7223 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
7224 /* We need a stub. Figure out whether a long_branch or plt_branch
7225 is needed later. */
7226 return ppc_stub_long_branch;
7227
7228 return ppc_stub_none;
7229 }
7230
7231 /* Build a .plt call stub. */
7232
7233 static inline bfd_byte *
7234 build_plt_stub (bfd *obfd, bfd_byte *p, int offset)
7235 {
7236 #define PPC_LO(v) ((v) & 0xffff)
7237 #define PPC_HI(v) (((v) >> 16) & 0xffff)
7238 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
7239
7240 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
7241 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
7242 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7243 if (PPC_HA (offset + 8) != PPC_HA (offset))
7244 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7245 offset += 8;
7246 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset), p), p += 4;
7247 if (PPC_HA (offset + 8) != PPC_HA (offset))
7248 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7249 offset += 8;
7250 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
7251 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7252 bfd_put_32 (obfd, BCTR, p), p += 4;
7253 return p;
7254 }
7255
7256 static bfd_boolean
7257 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7258 {
7259 struct ppc_stub_hash_entry *stub_entry;
7260 struct ppc_branch_hash_entry *br_entry;
7261 struct bfd_link_info *info;
7262 struct ppc_link_hash_table *htab;
7263 bfd_byte *loc;
7264 bfd_byte *p;
7265 unsigned int indx;
7266 struct plt_entry *ent;
7267 bfd_vma off;
7268 int size;
7269
7270 /* Massage our args to the form they really have. */
7271 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
7272 info = in_arg;
7273
7274 htab = ppc_hash_table (info);
7275
7276 /* Make a note of the offset within the stubs for this entry. */
7277 stub_entry->stub_offset = stub_entry->stub_sec->size;
7278 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
7279
7280 htab->stub_count[stub_entry->stub_type - 1] += 1;
7281 switch (stub_entry->stub_type)
7282 {
7283 case ppc_stub_long_branch:
7284 case ppc_stub_long_branch_r2off:
7285 /* Branches are relative. This is where we are going to. */
7286 off = (stub_entry->target_value
7287 + stub_entry->target_section->output_offset
7288 + stub_entry->target_section->output_section->vma);
7289
7290 /* And this is where we are coming from. */
7291 off -= (stub_entry->stub_offset
7292 + stub_entry->stub_sec->output_offset
7293 + stub_entry->stub_sec->output_section->vma);
7294
7295 if (stub_entry->stub_type != ppc_stub_long_branch_r2off)
7296 size = 4;
7297 else
7298 {
7299 bfd_vma r2off;
7300
7301 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
7302 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7303 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
7304 loc += 4;
7305 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
7306 loc += 4;
7307 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
7308 loc += 4;
7309 off -= 12;
7310 size = 16;
7311 }
7312 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
7313
7314 BFD_ASSERT (off + (1 << 25) < (bfd_vma) (1 << 26));
7315 break;
7316
7317 case ppc_stub_plt_branch:
7318 case ppc_stub_plt_branch_r2off:
7319 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
7320 stub_entry->root.string + 9,
7321 FALSE, FALSE);
7322 if (br_entry == NULL)
7323 {
7324 (*_bfd_error_handler) (_("can't find branch stub `%s'"),
7325 stub_entry->root.string + 9);
7326 htab->stub_error = TRUE;
7327 return FALSE;
7328 }
7329
7330 off = (stub_entry->target_value
7331 + stub_entry->target_section->output_offset
7332 + stub_entry->target_section->output_section->vma);
7333
7334 bfd_put_64 (htab->brlt->owner, off,
7335 htab->brlt->contents + br_entry->offset);
7336
7337 if (info->shared)
7338 {
7339 /* Create a reloc for the branch lookup table entry. */
7340 Elf_Internal_Rela rela;
7341 bfd_byte *rl;
7342
7343 rela.r_offset = (br_entry->offset
7344 + htab->brlt->output_offset
7345 + htab->brlt->output_section->vma);
7346 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
7347 rela.r_addend = off;
7348
7349 rl = htab->relbrlt->contents;
7350 rl += htab->relbrlt->reloc_count++ * sizeof (Elf64_External_Rela);
7351 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
7352 }
7353
7354 off = (br_entry->offset
7355 + htab->brlt->output_offset
7356 + htab->brlt->output_section->vma
7357 - elf_gp (htab->brlt->output_section->owner)
7358 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7359
7360 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
7361 {
7362 (*_bfd_error_handler)
7363 (_("linkage table error against `%s'"),
7364 stub_entry->root.string);
7365 bfd_set_error (bfd_error_bad_value);
7366 htab->stub_error = TRUE;
7367 return FALSE;
7368 }
7369
7370 indx = off;
7371 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
7372 {
7373 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
7374 loc += 4;
7375 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
7376 size = 16;
7377 }
7378 else
7379 {
7380 bfd_vma r2off;
7381
7382 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
7383 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7384 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
7385 loc += 4;
7386 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
7387 loc += 4;
7388 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
7389 loc += 4;
7390 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
7391 loc += 4;
7392 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
7393 size = 28;
7394 }
7395 loc += 4;
7396 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
7397 loc += 4;
7398 bfd_put_32 (htab->stub_bfd, BCTR, loc);
7399 break;
7400
7401 case ppc_stub_plt_call:
7402 /* Do the best we can for shared libraries built without
7403 exporting ".foo" for each "foo". This can happen when symbol
7404 versioning scripts strip all bar a subset of symbols. */
7405 if (stub_entry->h->oh != NULL
7406 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defined
7407 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defweak)
7408 {
7409 /* Point the symbol at the stub. There may be multiple stubs,
7410 we don't really care; The main thing is to make this sym
7411 defined somewhere. Maybe defining the symbol in the stub
7412 section is a silly idea. If we didn't do this, htab->top_id
7413 could disappear. */
7414 stub_entry->h->oh->elf.root.type = bfd_link_hash_defined;
7415 stub_entry->h->oh->elf.root.u.def.section = stub_entry->stub_sec;
7416 stub_entry->h->oh->elf.root.u.def.value = stub_entry->stub_offset;
7417 }
7418
7419 /* Now build the stub. */
7420 off = (bfd_vma) -1;
7421 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
7422 if (ent->addend == stub_entry->addend)
7423 {
7424 off = ent->plt.offset;
7425 break;
7426 }
7427 if (off >= (bfd_vma) -2)
7428 abort ();
7429
7430 off &= ~ (bfd_vma) 1;
7431 off += (htab->plt->output_offset
7432 + htab->plt->output_section->vma
7433 - elf_gp (htab->plt->output_section->owner)
7434 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7435
7436 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
7437 {
7438 (*_bfd_error_handler)
7439 (_("linkage table error against `%s'"),
7440 stub_entry->h->elf.root.root.string);
7441 bfd_set_error (bfd_error_bad_value);
7442 htab->stub_error = TRUE;
7443 return FALSE;
7444 }
7445
7446 p = build_plt_stub (htab->stub_bfd, loc, off);
7447 size = p - loc;
7448 break;
7449
7450 default:
7451 BFD_FAIL ();
7452 return FALSE;
7453 }
7454
7455 stub_entry->stub_sec->size += size;
7456
7457 if (htab->emit_stub_syms
7458 && !(stub_entry->stub_type == ppc_stub_plt_call
7459 && stub_entry->h->oh != NULL
7460 && stub_entry->h->oh->elf.root.type == bfd_link_hash_defined
7461 && stub_entry->h->oh->elf.root.u.def.section == stub_entry->stub_sec
7462 && stub_entry->h->oh->elf.root.u.def.value == stub_entry->stub_offset))
7463 {
7464 struct elf_link_hash_entry *h;
7465 h = elf_link_hash_lookup (&htab->elf, stub_entry->root.string,
7466 TRUE, FALSE, FALSE);
7467 if (h == NULL)
7468 return FALSE;
7469 if (h->root.type == bfd_link_hash_new)
7470 {
7471 h->root.type = bfd_link_hash_defined;
7472 h->root.u.def.section = stub_entry->stub_sec;
7473 h->root.u.def.value = stub_entry->stub_offset;
7474 h->elf_link_hash_flags = (ELF_LINK_HASH_REF_REGULAR
7475 | ELF_LINK_HASH_DEF_REGULAR
7476 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
7477 | ELF_LINK_FORCED_LOCAL);
7478 }
7479 }
7480
7481 return TRUE;
7482 }
7483
7484 /* As above, but don't actually build the stub. Just bump offset so
7485 we know stub section sizes, and select plt_branch stubs where
7486 long_branch stubs won't do. */
7487
7488 static bfd_boolean
7489 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7490 {
7491 struct ppc_stub_hash_entry *stub_entry;
7492 struct bfd_link_info *info;
7493 struct ppc_link_hash_table *htab;
7494 bfd_vma off;
7495 int size;
7496
7497 /* Massage our args to the form they really have. */
7498 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
7499 info = in_arg;
7500
7501 htab = ppc_hash_table (info);
7502
7503 if (stub_entry->stub_type == ppc_stub_plt_call)
7504 {
7505 struct plt_entry *ent;
7506 off = (bfd_vma) -1;
7507 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
7508 if (ent->addend == stub_entry->addend)
7509 {
7510 off = ent->plt.offset & ~(bfd_vma) 1;
7511 break;
7512 }
7513 if (off >= (bfd_vma) -2)
7514 abort ();
7515 off += (htab->plt->output_offset
7516 + htab->plt->output_section->vma
7517 - elf_gp (htab->plt->output_section->owner)
7518 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7519
7520 size = PLT_CALL_STUB_SIZE;
7521 if (PPC_HA (off + 16) != PPC_HA (off))
7522 size += 4;
7523 }
7524 else
7525 {
7526 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
7527 variants. */
7528 off = (stub_entry->target_value
7529 + stub_entry->target_section->output_offset
7530 + stub_entry->target_section->output_section->vma);
7531 off -= (stub_entry->stub_sec->size
7532 + stub_entry->stub_sec->output_offset
7533 + stub_entry->stub_sec->output_section->vma);
7534
7535 /* Reset the stub type from the plt variant in case we now
7536 can reach with a shorter stub. */
7537 if (stub_entry->stub_type >= ppc_stub_plt_branch)
7538 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
7539
7540 size = 4;
7541 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
7542 {
7543 off -= 12;
7544 size = 16;
7545 }
7546
7547 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
7548 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
7549 {
7550 struct ppc_branch_hash_entry *br_entry;
7551
7552 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
7553 stub_entry->root.string + 9,
7554 TRUE, FALSE);
7555 if (br_entry == NULL)
7556 {
7557 (*_bfd_error_handler) (_("can't build branch stub `%s'"),
7558 stub_entry->root.string + 9);
7559 htab->stub_error = TRUE;
7560 return FALSE;
7561 }
7562
7563 if (br_entry->iter != htab->stub_iteration)
7564 {
7565 br_entry->iter = htab->stub_iteration;
7566 br_entry->offset = htab->brlt->size;
7567 htab->brlt->size += 8;
7568
7569 if (info->shared)
7570 htab->relbrlt->size += sizeof (Elf64_External_Rela);
7571 }
7572
7573 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
7574 size = 16;
7575 if (stub_entry->stub_type != ppc_stub_plt_branch)
7576 size = 28;
7577 }
7578 }
7579
7580 stub_entry->stub_sec->size += size;
7581 return TRUE;
7582 }
7583
7584 /* Set up various things so that we can make a list of input sections
7585 for each output section included in the link. Returns -1 on error,
7586 0 when no stubs will be needed, and 1 on success. */
7587
7588 int
7589 ppc64_elf_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
7590 {
7591 bfd *input_bfd;
7592 int top_id, top_index, id;
7593 asection *section;
7594 asection **input_list;
7595 bfd_size_type amt;
7596 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7597
7598 if (htab->brlt == NULL)
7599 return 0;
7600
7601 /* Find the top input section id. */
7602 for (input_bfd = info->input_bfds, top_id = 3;
7603 input_bfd != NULL;
7604 input_bfd = input_bfd->link_next)
7605 {
7606 for (section = input_bfd->sections;
7607 section != NULL;
7608 section = section->next)
7609 {
7610 if (top_id < section->id)
7611 top_id = section->id;
7612 }
7613 }
7614
7615 htab->top_id = top_id;
7616 amt = sizeof (struct map_stub) * (top_id + 1);
7617 htab->stub_group = bfd_zmalloc (amt);
7618 if (htab->stub_group == NULL)
7619 return -1;
7620
7621 /* Set toc_off for com, und, abs and ind sections. */
7622 for (id = 0; id < 3; id++)
7623 htab->stub_group[id].toc_off = TOC_BASE_OFF;
7624
7625 elf_gp (output_bfd) = htab->toc_curr = ppc64_elf_toc (output_bfd);
7626
7627 /* We can't use output_bfd->section_count here to find the top output
7628 section index as some sections may have been removed, and
7629 _bfd_strip_section_from_output doesn't renumber the indices. */
7630 for (section = output_bfd->sections, top_index = 0;
7631 section != NULL;
7632 section = section->next)
7633 {
7634 if (top_index < section->index)
7635 top_index = section->index;
7636 }
7637
7638 htab->top_index = top_index;
7639 amt = sizeof (asection *) * (top_index + 1);
7640 input_list = bfd_zmalloc (amt);
7641 htab->input_list = input_list;
7642 if (input_list == NULL)
7643 return -1;
7644
7645 return 1;
7646 }
7647
7648 /* The linker repeatedly calls this function for each TOC input section
7649 and linker generated GOT section. Group input bfds such that the toc
7650 within a group is less than 64k in size. Will break with cute linker
7651 scripts that play games with dot in the output toc section. */
7652
7653 void
7654 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
7655 {
7656 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7657 bfd_vma addr = isec->output_offset + isec->output_section->vma;
7658 bfd_vma off = addr - htab->toc_curr;
7659
7660 if (off + isec->size > 0x10000)
7661 htab->toc_curr = addr;
7662
7663 elf_gp (isec->owner) = (htab->toc_curr
7664 - elf_gp (isec->output_section->owner)
7665 + TOC_BASE_OFF);
7666 }
7667
7668 /* Called after the last call to the above function. */
7669
7670 void
7671 ppc64_elf_reinit_toc (bfd *output_bfd ATTRIBUTE_UNUSED,
7672 struct bfd_link_info *info)
7673 {
7674 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7675
7676 /* toc_curr tracks the TOC offset used for code sections below in
7677 ppc64_elf_next_input_section. Start off at 0x8000. */
7678 htab->toc_curr = TOC_BASE_OFF;
7679 }
7680
7681 /* No toc references were found in ISEC. If the code in ISEC makes no
7682 calls, then there's no need to use toc adjusting stubs when branching
7683 into ISEC. Actually, indirect calls from ISEC are OK as they will
7684 load r2. */
7685
7686 static int
7687 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
7688 {
7689 bfd_byte *contents;
7690 bfd_size_type i;
7691 int ret;
7692 int branch_ok;
7693
7694 /* We know none of our code bearing sections will need toc stubs. */
7695 if ((isec->flags & SEC_LINKER_CREATED) != 0)
7696 return 0;
7697
7698 if (isec->size == 0)
7699 return 0;
7700
7701 /* Hack for linux kernel. .fixup contains branches, but only back to
7702 the function that hit an exception. */
7703 branch_ok = strcmp (isec->name, ".fixup") == 0;
7704
7705 contents = elf_section_data (isec)->this_hdr.contents;
7706 if (contents == NULL)
7707 {
7708 if (!bfd_malloc_and_get_section (isec->owner, isec, &contents))
7709 {
7710 if (contents != NULL)
7711 free (contents);
7712 return -1;
7713 }
7714 if (info->keep_memory)
7715 elf_section_data (isec)->this_hdr.contents = contents;
7716 }
7717
7718 /* Code scan, because we don't necessarily have relocs on calls to
7719 static functions. */
7720 ret = 0;
7721 for (i = 0; i < isec->size; i += 4)
7722 {
7723 unsigned long insn = bfd_get_32 (isec->owner, contents + i);
7724 /* Is this a branch? */
7725 if ((insn & (0x3f << 26)) == (18 << 26)
7726 /* If branch and link, it's a function call. */
7727 && ((insn & 1) != 0
7728 /* Sibling calls use a plain branch. I don't know a way
7729 of deciding whether a branch is really a sibling call. */
7730 || !branch_ok))
7731 {
7732 ret = 1;
7733 break;
7734 }
7735 }
7736
7737 if (elf_section_data (isec)->this_hdr.contents != contents)
7738 free (contents);
7739 return ret;
7740 }
7741
7742 /* The linker repeatedly calls this function for each input section,
7743 in the order that input sections are linked into output sections.
7744 Build lists of input sections to determine groupings between which
7745 we may insert linker stubs. */
7746
7747 bfd_boolean
7748 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
7749 {
7750 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7751 int ret;
7752
7753 if ((isec->output_section->flags & SEC_CODE) != 0
7754 && isec->output_section->index <= htab->top_index)
7755 {
7756 asection **list = htab->input_list + isec->output_section->index;
7757 /* Steal the link_sec pointer for our list. */
7758 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
7759 /* This happens to make the list in reverse order,
7760 which is what we want. */
7761 PREV_SEC (isec) = *list;
7762 *list = isec;
7763 }
7764
7765 /* If a code section has a function that uses the TOC then we need
7766 to use the right TOC (obviously). Also, make sure that .opd gets
7767 the correct TOC value for R_PPC64_TOC relocs that don't have or
7768 can't find their function symbol (shouldn't ever happen now). */
7769 if (isec->has_gp_reloc || (isec->flags & SEC_CODE) == 0)
7770 {
7771 if (elf_gp (isec->owner) != 0)
7772 htab->toc_curr = elf_gp (isec->owner);
7773 }
7774 else if ((ret = toc_adjusting_stub_needed (info, isec)) < 0)
7775 return FALSE;
7776 else
7777 isec->has_gp_reloc = ret;
7778
7779 /* Functions that don't use the TOC can belong in any TOC group.
7780 Use the last TOC base. This happens to make _init and _fini
7781 pasting work. */
7782 htab->stub_group[isec->id].toc_off = htab->toc_curr;
7783 return TRUE;
7784 }
7785
7786 /* See whether we can group stub sections together. Grouping stub
7787 sections may result in fewer stubs. More importantly, we need to
7788 put all .init* and .fini* stubs at the beginning of the .init or
7789 .fini output sections respectively, because glibc splits the
7790 _init and _fini functions into multiple parts. Putting a stub in
7791 the middle of a function is not a good idea. */
7792
7793 static void
7794 group_sections (struct ppc_link_hash_table *htab,
7795 bfd_size_type stub_group_size,
7796 bfd_boolean stubs_always_before_branch)
7797 {
7798 asection **list = htab->input_list + htab->top_index;
7799 do
7800 {
7801 asection *tail = *list;
7802 while (tail != NULL)
7803 {
7804 asection *curr;
7805 asection *prev;
7806 bfd_size_type total;
7807 bfd_boolean big_sec;
7808 bfd_vma curr_toc;
7809
7810 curr = tail;
7811 total = tail->size;
7812 big_sec = total >= stub_group_size;
7813 curr_toc = htab->stub_group[tail->id].toc_off;
7814
7815 while ((prev = PREV_SEC (curr)) != NULL
7816 && ((total += curr->output_offset - prev->output_offset)
7817 < stub_group_size)
7818 && htab->stub_group[prev->id].toc_off == curr_toc)
7819 curr = prev;
7820
7821 /* OK, the size from the start of CURR to the end is less
7822 than stub_group_size and thus can be handled by one stub
7823 section. (or the tail section is itself larger than
7824 stub_group_size, in which case we may be toast.) We
7825 should really be keeping track of the total size of stubs
7826 added here, as stubs contribute to the final output
7827 section size. That's a little tricky, and this way will
7828 only break if stubs added make the total size more than
7829 2^25, ie. for the default stub_group_size, if stubs total
7830 more than 2097152 bytes, or nearly 75000 plt call stubs. */
7831 do
7832 {
7833 prev = PREV_SEC (tail);
7834 /* Set up this stub group. */
7835 htab->stub_group[tail->id].link_sec = curr;
7836 }
7837 while (tail != curr && (tail = prev) != NULL);
7838
7839 /* But wait, there's more! Input sections up to stub_group_size
7840 bytes before the stub section can be handled by it too.
7841 Don't do this if we have a really large section after the
7842 stubs, as adding more stubs increases the chance that
7843 branches may not reach into the stub section. */
7844 if (!stubs_always_before_branch && !big_sec)
7845 {
7846 total = 0;
7847 while (prev != NULL
7848 && ((total += tail->output_offset - prev->output_offset)
7849 < stub_group_size)
7850 && htab->stub_group[prev->id].toc_off == curr_toc)
7851 {
7852 tail = prev;
7853 prev = PREV_SEC (tail);
7854 htab->stub_group[tail->id].link_sec = curr;
7855 }
7856 }
7857 tail = prev;
7858 }
7859 }
7860 while (list-- != htab->input_list);
7861 free (htab->input_list);
7862 #undef PREV_SEC
7863 }
7864
7865 /* Determine and set the size of the stub section for a final link.
7866
7867 The basic idea here is to examine all the relocations looking for
7868 PC-relative calls to a target that is unreachable with a "bl"
7869 instruction. */
7870
7871 bfd_boolean
7872 ppc64_elf_size_stubs (bfd *output_bfd,
7873 struct bfd_link_info *info,
7874 bfd_signed_vma group_size,
7875 asection *(*add_stub_section) (const char *, asection *),
7876 void (*layout_sections_again) (void))
7877 {
7878 bfd_size_type stub_group_size;
7879 bfd_boolean stubs_always_before_branch;
7880 struct ppc_link_hash_table *htab = ppc_hash_table (info);
7881
7882 /* Stash our params away. */
7883 htab->add_stub_section = add_stub_section;
7884 htab->layout_sections_again = layout_sections_again;
7885 stubs_always_before_branch = group_size < 0;
7886 if (group_size < 0)
7887 stub_group_size = -group_size;
7888 else
7889 stub_group_size = group_size;
7890 if (stub_group_size == 1)
7891 {
7892 /* Default values. */
7893 if (stubs_always_before_branch)
7894 {
7895 stub_group_size = 0x1e00000;
7896 if (htab->has_14bit_branch)
7897 stub_group_size = 0x7800;
7898 }
7899 else
7900 {
7901 stub_group_size = 0x1c00000;
7902 if (htab->has_14bit_branch)
7903 stub_group_size = 0x7000;
7904 }
7905 }
7906
7907 group_sections (htab, stub_group_size, stubs_always_before_branch);
7908
7909 while (1)
7910 {
7911 bfd *input_bfd;
7912 unsigned int bfd_indx;
7913 asection *stub_sec;
7914 bfd_boolean stub_changed;
7915
7916 htab->stub_iteration += 1;
7917 stub_changed = FALSE;
7918
7919 for (input_bfd = info->input_bfds, bfd_indx = 0;
7920 input_bfd != NULL;
7921 input_bfd = input_bfd->link_next, bfd_indx++)
7922 {
7923 Elf_Internal_Shdr *symtab_hdr;
7924 asection *section;
7925 Elf_Internal_Sym *local_syms = NULL;
7926
7927 /* We'll need the symbol table in a second. */
7928 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7929 if (symtab_hdr->sh_info == 0)
7930 continue;
7931
7932 /* Walk over each section attached to the input bfd. */
7933 for (section = input_bfd->sections;
7934 section != NULL;
7935 section = section->next)
7936 {
7937 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
7938
7939 /* If there aren't any relocs, then there's nothing more
7940 to do. */
7941 if ((section->flags & SEC_RELOC) == 0
7942 || section->reloc_count == 0)
7943 continue;
7944
7945 /* If this section is a link-once section that will be
7946 discarded, then don't create any stubs. */
7947 if (section->output_section == NULL
7948 || section->output_section->owner != output_bfd)
7949 continue;
7950
7951 /* Get the relocs. */
7952 internal_relocs
7953 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
7954 info->keep_memory);
7955 if (internal_relocs == NULL)
7956 goto error_ret_free_local;
7957
7958 /* Now examine each relocation. */
7959 irela = internal_relocs;
7960 irelaend = irela + section->reloc_count;
7961 for (; irela < irelaend; irela++)
7962 {
7963 enum elf_ppc64_reloc_type r_type;
7964 unsigned int r_indx;
7965 enum ppc_stub_type stub_type;
7966 struct ppc_stub_hash_entry *stub_entry;
7967 asection *sym_sec, *code_sec;
7968 bfd_vma sym_value;
7969 bfd_vma destination;
7970 bfd_boolean ok_dest;
7971 struct ppc_link_hash_entry *hash;
7972 struct ppc_link_hash_entry *fdh;
7973 struct elf_link_hash_entry *h;
7974 Elf_Internal_Sym *sym;
7975 char *stub_name;
7976 const asection *id_sec;
7977 long *opd_adjust;
7978
7979 r_type = ELF64_R_TYPE (irela->r_info);
7980 r_indx = ELF64_R_SYM (irela->r_info);
7981
7982 if (r_type >= R_PPC64_max)
7983 {
7984 bfd_set_error (bfd_error_bad_value);
7985 goto error_ret_free_internal;
7986 }
7987
7988 /* Only look for stubs on branch instructions. */
7989 if (r_type != R_PPC64_REL24
7990 && r_type != R_PPC64_REL14
7991 && r_type != R_PPC64_REL14_BRTAKEN
7992 && r_type != R_PPC64_REL14_BRNTAKEN)
7993 continue;
7994
7995 /* Now determine the call target, its name, value,
7996 section. */
7997 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7998 r_indx, input_bfd))
7999 goto error_ret_free_internal;
8000 hash = (struct ppc_link_hash_entry *) h;
8001
8002 ok_dest = FALSE;
8003 fdh = NULL;
8004 if (hash == NULL)
8005 {
8006 sym_value = sym->st_value;
8007 ok_dest = TRUE;
8008 }
8009 else
8010 {
8011 sym_value = 0;
8012 /* Recognise an old ABI func code entry sym, and
8013 use the func descriptor sym instead. */
8014 if (hash->elf.root.type == bfd_link_hash_undefweak
8015 && hash->elf.root.root.string[0] == '.'
8016 && (fdh = get_fdh (hash, htab)) != NULL)
8017 {
8018 if (fdh->elf.root.type == bfd_link_hash_defined
8019 || fdh->elf.root.type == bfd_link_hash_defweak)
8020 {
8021 sym_sec = fdh->elf.root.u.def.section;
8022 sym_value = fdh->elf.root.u.def.value;
8023 if (sym_sec->output_section != NULL)
8024 ok_dest = TRUE;
8025 }
8026 else
8027 fdh = NULL;
8028 }
8029 else if (hash->elf.root.type == bfd_link_hash_defined
8030 || hash->elf.root.type == bfd_link_hash_defweak)
8031 {
8032 sym_value = hash->elf.root.u.def.value;
8033 if (sym_sec->output_section != NULL)
8034 ok_dest = TRUE;
8035 }
8036 else if (hash->elf.root.type == bfd_link_hash_undefweak)
8037 ;
8038 else if (hash->elf.root.type == bfd_link_hash_undefined)
8039 ;
8040 else
8041 {
8042 bfd_set_error (bfd_error_bad_value);
8043 goto error_ret_free_internal;
8044 }
8045 }
8046
8047 destination = 0;
8048 if (ok_dest)
8049 {
8050 sym_value += irela->r_addend;
8051 destination = (sym_value
8052 + sym_sec->output_offset
8053 + sym_sec->output_section->vma);
8054 }
8055
8056 code_sec = sym_sec;
8057 opd_adjust = get_opd_info (sym_sec);
8058 if (opd_adjust != NULL)
8059 {
8060 bfd_vma dest;
8061
8062 if (hash == NULL)
8063 {
8064 long adjust = opd_adjust[sym_value / 8];
8065 if (adjust == -1)
8066 continue;
8067 sym_value += adjust;
8068 }
8069 dest = opd_entry_value (sym_sec, sym_value,
8070 &code_sec, &sym_value);
8071 if (dest != (bfd_vma) -1)
8072 {
8073 destination = dest;
8074 if (fdh != NULL)
8075 {
8076 /* Fixup old ABI sym to point at code
8077 entry. */
8078 hash->elf.root.type = bfd_link_hash_defweak;
8079 hash->elf.root.u.def.section = code_sec;
8080 hash->elf.root.u.def.value = sym_value;
8081 }
8082 }
8083 }
8084
8085 /* Determine what (if any) linker stub is needed. */
8086 stub_type = ppc_type_of_stub (section, irela, &hash,
8087 destination);
8088
8089 if (stub_type != ppc_stub_plt_call)
8090 {
8091 /* Check whether we need a TOC adjusting stub.
8092 Since the linker pastes together pieces from
8093 different object files when creating the
8094 _init and _fini functions, it may be that a
8095 call to what looks like a local sym is in
8096 fact a call needing a TOC adjustment. */
8097 if (code_sec != NULL
8098 && code_sec->output_section != NULL
8099 && (htab->stub_group[code_sec->id].toc_off
8100 != htab->stub_group[section->id].toc_off)
8101 && code_sec->has_gp_reloc
8102 && section->has_gp_reloc)
8103 stub_type = ppc_stub_long_branch_r2off;
8104 }
8105
8106 if (stub_type == ppc_stub_none)
8107 continue;
8108
8109 /* __tls_get_addr calls might be eliminated. */
8110 if (stub_type != ppc_stub_plt_call
8111 && hash != NULL
8112 && (hash == htab->tls_get_addr
8113 || hash == htab->tls_get_addr_fd)
8114 && section->has_tls_reloc
8115 && irela != internal_relocs)
8116 {
8117 /* Get tls info. */
8118 char *tls_mask;
8119
8120 if (!get_tls_mask (&tls_mask, NULL, &local_syms,
8121 irela - 1, input_bfd))
8122 goto error_ret_free_internal;
8123 if (*tls_mask != 0)
8124 continue;
8125 }
8126
8127 /* Support for grouping stub sections. */
8128 id_sec = htab->stub_group[section->id].link_sec;
8129
8130 /* Get the name of this stub. */
8131 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
8132 if (!stub_name)
8133 goto error_ret_free_internal;
8134
8135 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
8136 stub_name, FALSE, FALSE);
8137 if (stub_entry != NULL)
8138 {
8139 /* The proper stub has already been created. */
8140 free (stub_name);
8141 continue;
8142 }
8143
8144 stub_entry = ppc_add_stub (stub_name, section, htab);
8145 if (stub_entry == NULL)
8146 {
8147 free (stub_name);
8148 error_ret_free_internal:
8149 if (elf_section_data (section)->relocs == NULL)
8150 free (internal_relocs);
8151 error_ret_free_local:
8152 if (local_syms != NULL
8153 && (symtab_hdr->contents
8154 != (unsigned char *) local_syms))
8155 free (local_syms);
8156 return FALSE;
8157 }
8158
8159 stub_entry->stub_type = stub_type;
8160 stub_entry->target_value = sym_value;
8161 stub_entry->target_section = code_sec;
8162 stub_entry->h = hash;
8163 stub_entry->addend = irela->r_addend;
8164 stub_changed = TRUE;
8165 }
8166
8167 /* We're done with the internal relocs, free them. */
8168 if (elf_section_data (section)->relocs != internal_relocs)
8169 free (internal_relocs);
8170 }
8171
8172 if (local_syms != NULL
8173 && symtab_hdr->contents != (unsigned char *) local_syms)
8174 {
8175 if (!info->keep_memory)
8176 free (local_syms);
8177 else
8178 symtab_hdr->contents = (unsigned char *) local_syms;
8179 }
8180 }
8181
8182 if (!stub_changed)
8183 break;
8184
8185 /* OK, we've added some stubs. Find out the new size of the
8186 stub sections. */
8187 for (stub_sec = htab->stub_bfd->sections;
8188 stub_sec != NULL;
8189 stub_sec = stub_sec->next)
8190 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
8191 stub_sec->size = 0;
8192
8193 htab->brlt->size = 0;
8194 if (info->shared)
8195 htab->relbrlt->size = 0;
8196
8197 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
8198
8199 /* Ask the linker to do its stuff. */
8200 (*htab->layout_sections_again) ();
8201 }
8202
8203 /* It would be nice to strip .branch_lt from the output if the
8204 section is empty, but it's too late. If we strip sections here,
8205 the dynamic symbol table is corrupted since the section symbol
8206 for the stripped section isn't written. */
8207
8208 return TRUE;
8209 }
8210
8211 /* Called after we have determined section placement. If sections
8212 move, we'll be called again. Provide a value for TOCstart. */
8213
8214 bfd_vma
8215 ppc64_elf_toc (bfd *obfd)
8216 {
8217 asection *s;
8218 bfd_vma TOCstart;
8219
8220 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
8221 order. The TOC starts where the first of these sections starts. */
8222 s = bfd_get_section_by_name (obfd, ".got");
8223 if (s == NULL)
8224 s = bfd_get_section_by_name (obfd, ".toc");
8225 if (s == NULL)
8226 s = bfd_get_section_by_name (obfd, ".tocbss");
8227 if (s == NULL)
8228 s = bfd_get_section_by_name (obfd, ".plt");
8229 if (s == NULL)
8230 {
8231 /* This may happen for
8232 o references to TOC base (SYM@toc / TOC[tc0]) without a
8233 .toc directive
8234 o bad linker script
8235 o --gc-sections and empty TOC sections
8236
8237 FIXME: Warn user? */
8238
8239 /* Look for a likely section. We probably won't even be
8240 using TOCstart. */
8241 for (s = obfd->sections; s != NULL; s = s->next)
8242 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY))
8243 == (SEC_ALLOC | SEC_SMALL_DATA))
8244 break;
8245 if (s == NULL)
8246 for (s = obfd->sections; s != NULL; s = s->next)
8247 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA))
8248 == (SEC_ALLOC | SEC_SMALL_DATA))
8249 break;
8250 if (s == NULL)
8251 for (s = obfd->sections; s != NULL; s = s->next)
8252 if ((s->flags & (SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
8253 break;
8254 if (s == NULL)
8255 for (s = obfd->sections; s != NULL; s = s->next)
8256 if ((s->flags & SEC_ALLOC) == SEC_ALLOC)
8257 break;
8258 }
8259
8260 TOCstart = 0;
8261 if (s != NULL)
8262 TOCstart = s->output_section->vma + s->output_offset;
8263
8264 return TOCstart;
8265 }
8266
8267 /* Build all the stubs associated with the current output file.
8268 The stubs are kept in a hash table attached to the main linker
8269 hash table. This function is called via gldelf64ppc_finish. */
8270
8271 bfd_boolean
8272 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
8273 struct bfd_link_info *info,
8274 char **stats)
8275 {
8276 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8277 asection *stub_sec;
8278 bfd_byte *p;
8279 int stub_sec_count = 0;
8280
8281 htab->emit_stub_syms = emit_stub_syms;
8282
8283 /* Allocate memory to hold the linker stubs. */
8284 for (stub_sec = htab->stub_bfd->sections;
8285 stub_sec != NULL;
8286 stub_sec = stub_sec->next)
8287 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
8288 && stub_sec->size != 0)
8289 {
8290 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
8291 if (stub_sec->contents == NULL)
8292 return FALSE;
8293 /* We want to check that built size is the same as calculated
8294 size. rawsize is a convenient location to use. */
8295 stub_sec->rawsize = stub_sec->size;
8296 stub_sec->size = 0;
8297 }
8298
8299 if (htab->plt != NULL)
8300 {
8301 unsigned int indx;
8302 bfd_vma plt0;
8303
8304 /* Build the .glink plt call stub. */
8305 plt0 = (htab->plt->output_section->vma
8306 + htab->plt->output_offset
8307 - (htab->glink->output_section->vma
8308 + htab->glink->output_offset
8309 + GLINK_CALL_STUB_SIZE));
8310 if (plt0 + 0x80008000 > 0xffffffff)
8311 {
8312 (*_bfd_error_handler) (_(".glink and .plt too far apart"));
8313 bfd_set_error (bfd_error_bad_value);
8314 return FALSE;
8315 }
8316
8317 if (htab->emit_stub_syms)
8318 {
8319 struct elf_link_hash_entry *h;
8320 h = elf_link_hash_lookup (&htab->elf, "__glink", TRUE, FALSE, FALSE);
8321 if (h == NULL)
8322 return FALSE;
8323 if (h->root.type == bfd_link_hash_new)
8324 {
8325 h->root.type = bfd_link_hash_defined;
8326 h->root.u.def.section = htab->glink;
8327 h->root.u.def.value = 0;
8328 h->elf_link_hash_flags = (ELF_LINK_HASH_REF_REGULAR
8329 | ELF_LINK_HASH_DEF_REGULAR
8330 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
8331 | ELF_LINK_FORCED_LOCAL);
8332 }
8333 }
8334 p = htab->glink->contents;
8335 bfd_put_32 (htab->glink->owner, MFCTR_R12, p);
8336 p += 4;
8337 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_3, p);
8338 p += 4;
8339 bfd_put_32 (htab->glink->owner, ADDIC_R2_R0_32K, p);
8340 p += 4;
8341 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
8342 p += 4;
8343 bfd_put_32 (htab->glink->owner, SRADI_R2_R2_63, p);
8344 p += 4;
8345 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_2, p);
8346 p += 4;
8347 bfd_put_32 (htab->glink->owner, AND_R2_R2_R11, p);
8348 p += 4;
8349 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
8350 p += 4;
8351 bfd_put_32 (htab->glink->owner, ADD_R12_R12_R2, p);
8352 p += 4;
8353 bfd_put_32 (htab->glink->owner, ADDIS_R12_R12 | PPC_HA (plt0), p);
8354 p += 4;
8355 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | PPC_LO (plt0), p);
8356 p += 4;
8357 bfd_put_32 (htab->glink->owner, ADDI_R12_R12 | PPC_LO (plt0), p);
8358 p += 4;
8359 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
8360 p += 4;
8361 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
8362 p += 4;
8363 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
8364 p += 4;
8365 bfd_put_32 (htab->glink->owner, BCTR, p);
8366 p += 4;
8367
8368 /* Build the .glink lazy link call stubs. */
8369 indx = 0;
8370 while (p < htab->glink->contents + htab->glink->size)
8371 {
8372 if (indx < 0x8000)
8373 {
8374 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
8375 p += 4;
8376 }
8377 else
8378 {
8379 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
8380 p += 4;
8381 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
8382 p += 4;
8383 }
8384 bfd_put_32 (htab->glink->owner,
8385 B_DOT | ((htab->glink->contents - p) & 0x3fffffc), p);
8386 indx++;
8387 p += 4;
8388 }
8389 htab->glink->rawsize = p - htab->glink->contents;
8390 }
8391
8392 if (htab->brlt->size != 0)
8393 {
8394 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
8395 htab->brlt->size);
8396 if (htab->brlt->contents == NULL)
8397 return FALSE;
8398 }
8399 if (info->shared && htab->relbrlt->size != 0)
8400 {
8401 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
8402 htab->relbrlt->size);
8403 if (htab->relbrlt->contents == NULL)
8404 return FALSE;
8405 }
8406
8407 /* Build the stubs as directed by the stub hash table. */
8408 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
8409
8410 for (stub_sec = htab->stub_bfd->sections;
8411 stub_sec != NULL;
8412 stub_sec = stub_sec->next)
8413 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
8414 {
8415 stub_sec_count += 1;
8416 if (stub_sec->rawsize != stub_sec->size)
8417 break;
8418 }
8419
8420 if (stub_sec != NULL
8421 || htab->glink->rawsize != htab->glink->size)
8422 {
8423 htab->stub_error = TRUE;
8424 (*_bfd_error_handler) (_("stubs don't match calculated size"));
8425 }
8426
8427 if (htab->stub_error)
8428 return FALSE;
8429
8430 if (stats != NULL)
8431 {
8432 *stats = bfd_malloc (500);
8433 if (*stats == NULL)
8434 return FALSE;
8435
8436 sprintf (*stats, _("linker stubs in %u groups\n"
8437 " branch %lu\n"
8438 " toc adjust %lu\n"
8439 " long branch %lu\n"
8440 " long toc adj %lu\n"
8441 " plt call %lu"),
8442 stub_sec_count,
8443 htab->stub_count[ppc_stub_long_branch - 1],
8444 htab->stub_count[ppc_stub_long_branch_r2off - 1],
8445 htab->stub_count[ppc_stub_plt_branch - 1],
8446 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
8447 htab->stub_count[ppc_stub_plt_call - 1]);
8448 }
8449 return TRUE;
8450 }
8451
8452 /* This function undoes the changes made by add_symbol_adjust. */
8453
8454 static bfd_boolean
8455 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
8456 {
8457 struct ppc_link_hash_entry *eh;
8458
8459 if (h->root.type == bfd_link_hash_indirect)
8460 return TRUE;
8461
8462 if (h->root.type == bfd_link_hash_warning)
8463 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8464
8465 eh = (struct ppc_link_hash_entry *) h;
8466 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
8467 return TRUE;
8468
8469 eh->elf.root.type = bfd_link_hash_undefined;
8470 return TRUE;
8471 }
8472
8473 void
8474 ppc64_elf_restore_symbols (struct bfd_link_info *info)
8475 {
8476 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8477 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
8478 }
8479
8480 /* The RELOCATE_SECTION function is called by the ELF backend linker
8481 to handle the relocations for a section.
8482
8483 The relocs are always passed as Rela structures; if the section
8484 actually uses Rel structures, the r_addend field will always be
8485 zero.
8486
8487 This function is responsible for adjust the section contents as
8488 necessary, and (if using Rela relocs and generating a
8489 relocatable output file) adjusting the reloc addend as
8490 necessary.
8491
8492 This function does not have to worry about setting the reloc
8493 address or the reloc symbol index.
8494
8495 LOCAL_SYMS is a pointer to the swapped in local symbols.
8496
8497 LOCAL_SECTIONS is an array giving the section in the input file
8498 corresponding to the st_shndx field of each local symbol.
8499
8500 The global hash table entry for the global symbols can be found
8501 via elf_sym_hashes (input_bfd).
8502
8503 When generating relocatable output, this function must handle
8504 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
8505 going to be the section symbol corresponding to the output
8506 section, which means that the addend must be adjusted
8507 accordingly. */
8508
8509 static bfd_boolean
8510 ppc64_elf_relocate_section (bfd *output_bfd,
8511 struct bfd_link_info *info,
8512 bfd *input_bfd,
8513 asection *input_section,
8514 bfd_byte *contents,
8515 Elf_Internal_Rela *relocs,
8516 Elf_Internal_Sym *local_syms,
8517 asection **local_sections)
8518 {
8519 struct ppc_link_hash_table *htab;
8520 Elf_Internal_Shdr *symtab_hdr;
8521 struct elf_link_hash_entry **sym_hashes;
8522 Elf_Internal_Rela *rel;
8523 Elf_Internal_Rela *relend;
8524 Elf_Internal_Rela outrel;
8525 bfd_byte *loc;
8526 struct got_entry **local_got_ents;
8527 bfd_vma TOCstart;
8528 bfd_boolean ret = TRUE;
8529 bfd_boolean is_opd;
8530 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
8531 bfd_boolean is_power4 = FALSE;
8532
8533 if (info->relocatable)
8534 return TRUE;
8535
8536 /* Initialize howto table if needed. */
8537 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
8538 ppc_howto_init ();
8539
8540 htab = ppc_hash_table (info);
8541 local_got_ents = elf_local_got_ents (input_bfd);
8542 TOCstart = elf_gp (output_bfd);
8543 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8544 sym_hashes = elf_sym_hashes (input_bfd);
8545 is_opd = ppc64_elf_section_data (input_section)->opd.adjust != NULL;
8546
8547 rel = relocs;
8548 relend = relocs + input_section->reloc_count;
8549 for (; rel < relend; rel++)
8550 {
8551 enum elf_ppc64_reloc_type r_type;
8552 bfd_vma addend;
8553 bfd_reloc_status_type r;
8554 Elf_Internal_Sym *sym;
8555 asection *sec;
8556 struct elf_link_hash_entry *h_elf;
8557 struct ppc_link_hash_entry *h;
8558 struct ppc_link_hash_entry *fdh;
8559 const char *sym_name;
8560 unsigned long r_symndx, toc_symndx;
8561 char tls_mask, tls_gd, tls_type;
8562 char sym_type;
8563 bfd_vma relocation;
8564 bfd_boolean unresolved_reloc;
8565 bfd_boolean warned;
8566 unsigned long insn, mask;
8567 struct ppc_stub_hash_entry *stub_entry;
8568 bfd_vma max_br_offset;
8569 bfd_vma from;
8570
8571 r_type = ELF64_R_TYPE (rel->r_info);
8572 r_symndx = ELF64_R_SYM (rel->r_info);
8573
8574 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
8575 symbol of the previous ADDR64 reloc. The symbol gives us the
8576 proper TOC base to use. */
8577 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
8578 && rel != relocs
8579 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
8580 && is_opd)
8581 r_symndx = ELF64_R_SYM (rel[-1].r_info);
8582
8583 sym = NULL;
8584 sec = NULL;
8585 h_elf = NULL;
8586 sym_name = NULL;
8587 unresolved_reloc = FALSE;
8588 warned = FALSE;
8589
8590 if (r_symndx < symtab_hdr->sh_info)
8591 {
8592 /* It's a local symbol. */
8593 long *opd_adjust;
8594
8595 sym = local_syms + r_symndx;
8596 sec = local_sections[r_symndx];
8597 sym_name = bfd_elf_local_sym_name (input_bfd, sym);
8598 sym_type = ELF64_ST_TYPE (sym->st_info);
8599 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8600 opd_adjust = get_opd_info (sec);
8601 if (opd_adjust != NULL)
8602 {
8603 long adjust = opd_adjust[(sym->st_value + rel->r_addend) / 8];
8604 if (adjust == -1)
8605 relocation = 0;
8606 else
8607 relocation += adjust;
8608 }
8609 }
8610 else
8611 {
8612 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8613 r_symndx, symtab_hdr, sym_hashes,
8614 h_elf, sec, relocation,
8615 unresolved_reloc, warned);
8616 sym_name = h_elf->root.root.string;
8617 sym_type = h_elf->type;
8618 }
8619 h = (struct ppc_link_hash_entry *) h_elf;
8620
8621 /* TLS optimizations. Replace instruction sequences and relocs
8622 based on information we collected in tls_optimize. We edit
8623 RELOCS so that --emit-relocs will output something sensible
8624 for the final instruction stream. */
8625 tls_mask = 0;
8626 tls_gd = 0;
8627 toc_symndx = 0;
8628 if (IS_PPC64_TLS_RELOC (r_type))
8629 {
8630 if (h != NULL)
8631 tls_mask = h->tls_mask;
8632 else if (local_got_ents != NULL)
8633 {
8634 char *lgot_masks;
8635 lgot_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
8636 tls_mask = lgot_masks[r_symndx];
8637 }
8638 if (tls_mask == 0 && r_type == R_PPC64_TLS)
8639 {
8640 /* Check for toc tls entries. */
8641 char *toc_tls;
8642
8643 if (!get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
8644 rel, input_bfd))
8645 return FALSE;
8646
8647 if (toc_tls)
8648 tls_mask = *toc_tls;
8649 }
8650 }
8651
8652 /* Check that tls relocs are used with tls syms, and non-tls
8653 relocs are used with non-tls syms. */
8654 if (r_symndx != 0
8655 && r_type != R_PPC64_NONE
8656 && (h == NULL
8657 || h->elf.root.type == bfd_link_hash_defined
8658 || h->elf.root.type == bfd_link_hash_defweak)
8659 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
8660 {
8661 if (r_type == R_PPC64_TLS && tls_mask != 0)
8662 /* R_PPC64_TLS is OK against a symbol in the TOC. */
8663 ;
8664 else
8665 (*_bfd_error_handler)
8666 (sym_type == STT_TLS
8667 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8668 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s"),
8669 input_bfd,
8670 input_section,
8671 (long) rel->r_offset,
8672 ppc64_elf_howto_table[r_type]->name,
8673 sym_name);
8674 }
8675
8676 /* Ensure reloc mapping code below stays sane. */
8677 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
8678 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
8679 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
8680 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
8681 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
8682 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
8683 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
8684 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
8685 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
8686 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
8687 abort ();
8688
8689 switch (r_type)
8690 {
8691 default:
8692 break;
8693
8694 case R_PPC64_TOC16:
8695 case R_PPC64_TOC16_LO:
8696 case R_PPC64_TOC16_DS:
8697 case R_PPC64_TOC16_LO_DS:
8698 {
8699 /* Check for toc tls entries. */
8700 char *toc_tls;
8701 int retval;
8702
8703 retval = get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
8704 rel, input_bfd);
8705 if (retval == 0)
8706 return FALSE;
8707
8708 if (toc_tls)
8709 {
8710 tls_mask = *toc_tls;
8711 if (r_type == R_PPC64_TOC16_DS
8712 || r_type == R_PPC64_TOC16_LO_DS)
8713 {
8714 if (tls_mask != 0
8715 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
8716 goto toctprel;
8717 }
8718 else
8719 {
8720 /* If we found a GD reloc pair, then we might be
8721 doing a GD->IE transition. */
8722 if (retval == 2)
8723 {
8724 tls_gd = TLS_TPRELGD;
8725 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
8726 goto tls_get_addr_check;
8727 }
8728 else if (retval == 3)
8729 {
8730 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
8731 goto tls_get_addr_check;
8732 }
8733 }
8734 }
8735 }
8736 break;
8737
8738 case R_PPC64_GOT_TPREL16_DS:
8739 case R_PPC64_GOT_TPREL16_LO_DS:
8740 if (tls_mask != 0
8741 && (tls_mask & TLS_TPREL) == 0)
8742 {
8743 toctprel:
8744 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - 2);
8745 insn &= 31 << 21;
8746 insn |= 0x3c0d0000; /* addis 0,13,0 */
8747 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - 2);
8748 r_type = R_PPC64_TPREL16_HA;
8749 if (toc_symndx != 0)
8750 {
8751 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
8752 /* We changed the symbol. Start over in order to
8753 get h, sym, sec etc. right. */
8754 rel--;
8755 continue;
8756 }
8757 else
8758 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8759 }
8760 break;
8761
8762 case R_PPC64_TLS:
8763 if (tls_mask != 0
8764 && (tls_mask & TLS_TPREL) == 0)
8765 {
8766 bfd_vma rtra;
8767 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
8768 if ((insn & ((0x3f << 26) | (31 << 11)))
8769 == ((31 << 26) | (13 << 11)))
8770 rtra = insn & ((1 << 26) - (1 << 16));
8771 else if ((insn & ((0x3f << 26) | (31 << 16)))
8772 == ((31 << 26) | (13 << 16)))
8773 rtra = (insn & (31 << 21)) | ((insn & (31 << 11)) << 5);
8774 else
8775 abort ();
8776 if ((insn & ((1 << 11) - (1 << 1))) == 266 << 1)
8777 /* add -> addi. */
8778 insn = 14 << 26;
8779 else if ((insn & (31 << 1)) == 23 << 1
8780 && ((insn & (31 << 6)) < 14 << 6
8781 || ((insn & (31 << 6)) >= 16 << 6
8782 && (insn & (31 << 6)) < 24 << 6)))
8783 /* load and store indexed -> dform. */
8784 insn = (32 | ((insn >> 6) & 31)) << 26;
8785 else if ((insn & (31 << 1)) == 21 << 1
8786 && (insn & (0x1a << 6)) == 0)
8787 /* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */
8788 insn = (((58 | ((insn >> 6) & 4)) << 26)
8789 | ((insn >> 6) & 1));
8790 else if ((insn & (31 << 1)) == 21 << 1
8791 && (insn & ((1 << 11) - (1 << 1))) == 341 << 1)
8792 /* lwax -> lwa. */
8793 insn = (58 << 26) | 2;
8794 else
8795 abort ();
8796 insn |= rtra;
8797 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
8798 /* Was PPC64_TLS which sits on insn boundary, now
8799 PPC64_TPREL16_LO which is at insn+2. */
8800 rel->r_offset += 2;
8801 r_type = R_PPC64_TPREL16_LO;
8802 if (toc_symndx != 0)
8803 {
8804 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
8805 /* We changed the symbol. Start over in order to
8806 get h, sym, sec etc. right. */
8807 rel--;
8808 continue;
8809 }
8810 else
8811 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8812 }
8813 break;
8814
8815 case R_PPC64_GOT_TLSGD16_HI:
8816 case R_PPC64_GOT_TLSGD16_HA:
8817 tls_gd = TLS_TPRELGD;
8818 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
8819 goto tls_gdld_hi;
8820 break;
8821
8822 case R_PPC64_GOT_TLSLD16_HI:
8823 case R_PPC64_GOT_TLSLD16_HA:
8824 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
8825 {
8826 tls_gdld_hi:
8827 if ((tls_mask & tls_gd) != 0)
8828 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
8829 + R_PPC64_GOT_TPREL16_DS);
8830 else
8831 {
8832 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
8833 rel->r_offset -= 2;
8834 r_type = R_PPC64_NONE;
8835 }
8836 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8837 }
8838 break;
8839
8840 case R_PPC64_GOT_TLSGD16:
8841 case R_PPC64_GOT_TLSGD16_LO:
8842 tls_gd = TLS_TPRELGD;
8843 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
8844 goto tls_get_addr_check;
8845 break;
8846
8847 case R_PPC64_GOT_TLSLD16:
8848 case R_PPC64_GOT_TLSLD16_LO:
8849 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
8850 {
8851 tls_get_addr_check:
8852 if (rel + 1 < relend)
8853 {
8854 enum elf_ppc64_reloc_type r_type2;
8855 unsigned long r_symndx2;
8856 struct elf_link_hash_entry *h2;
8857 bfd_vma insn1, insn2, insn3;
8858 bfd_vma offset;
8859
8860 /* The next instruction should be a call to
8861 __tls_get_addr. Peek at the reloc to be sure. */
8862 r_type2 = ELF64_R_TYPE (rel[1].r_info);
8863 r_symndx2 = ELF64_R_SYM (rel[1].r_info);
8864 if (r_symndx2 < symtab_hdr->sh_info
8865 || (r_type2 != R_PPC64_REL14
8866 && r_type2 != R_PPC64_REL14_BRTAKEN
8867 && r_type2 != R_PPC64_REL14_BRNTAKEN
8868 && r_type2 != R_PPC64_REL24))
8869 break;
8870
8871 h2 = sym_hashes[r_symndx2 - symtab_hdr->sh_info];
8872 while (h2->root.type == bfd_link_hash_indirect
8873 || h2->root.type == bfd_link_hash_warning)
8874 h2 = (struct elf_link_hash_entry *) h2->root.u.i.link;
8875 if (h2 == NULL || (h2 != &htab->tls_get_addr->elf
8876 && h2 != &htab->tls_get_addr_fd->elf))
8877 break;
8878
8879 /* OK, it checks out. Replace the call. */
8880 offset = rel[1].r_offset;
8881 insn1 = bfd_get_32 (output_bfd,
8882 contents + rel->r_offset - 2);
8883 insn3 = bfd_get_32 (output_bfd,
8884 contents + offset + 4);
8885 if ((tls_mask & tls_gd) != 0)
8886 {
8887 /* IE */
8888 insn1 &= (1 << 26) - (1 << 2);
8889 insn1 |= 58 << 26; /* ld */
8890 insn2 = 0x7c636a14; /* add 3,3,13 */
8891 rel[1].r_info = ELF64_R_INFO (r_symndx2, R_PPC64_NONE);
8892 if ((tls_mask & TLS_EXPLICIT) == 0)
8893 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
8894 + R_PPC64_GOT_TPREL16_DS);
8895 else
8896 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
8897 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8898 }
8899 else
8900 {
8901 /* LE */
8902 insn1 = 0x3c6d0000; /* addis 3,13,0 */
8903 insn2 = 0x38630000; /* addi 3,3,0 */
8904 if (tls_gd == 0)
8905 {
8906 /* Was an LD reloc. */
8907 r_symndx = 0;
8908 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
8909 rel[1].r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
8910 }
8911 else if (toc_symndx != 0)
8912 r_symndx = toc_symndx;
8913 r_type = R_PPC64_TPREL16_HA;
8914 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8915 rel[1].r_info = ELF64_R_INFO (r_symndx,
8916 R_PPC64_TPREL16_LO);
8917 rel[1].r_offset += 2;
8918 }
8919 if (insn3 == NOP
8920 || insn3 == CROR_151515 || insn3 == CROR_313131)
8921 {
8922 insn3 = insn2;
8923 insn2 = NOP;
8924 rel[1].r_offset += 4;
8925 }
8926 bfd_put_32 (output_bfd, insn1, contents + rel->r_offset - 2);
8927 bfd_put_32 (output_bfd, insn2, contents + offset);
8928 bfd_put_32 (output_bfd, insn3, contents + offset + 4);
8929 if (tls_gd == 0 || toc_symndx != 0)
8930 {
8931 /* We changed the symbol. Start over in order
8932 to get h, sym, sec etc. right. */
8933 rel--;
8934 continue;
8935 }
8936 }
8937 }
8938 break;
8939
8940 case R_PPC64_DTPMOD64:
8941 if (rel + 1 < relend
8942 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
8943 && rel[1].r_offset == rel->r_offset + 8)
8944 {
8945 if ((tls_mask & TLS_GD) == 0)
8946 {
8947 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
8948 if ((tls_mask & TLS_TPRELGD) != 0)
8949 r_type = R_PPC64_TPREL64;
8950 else
8951 {
8952 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
8953 r_type = R_PPC64_NONE;
8954 }
8955 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8956 }
8957 }
8958 else
8959 {
8960 if ((tls_mask & TLS_LD) == 0)
8961 {
8962 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
8963 r_type = R_PPC64_NONE;
8964 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8965 }
8966 }
8967 break;
8968
8969 case R_PPC64_TPREL64:
8970 if ((tls_mask & TLS_TPREL) == 0)
8971 {
8972 r_type = R_PPC64_NONE;
8973 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
8974 }
8975 break;
8976 }
8977
8978 /* Handle other relocations that tweak non-addend part of insn. */
8979 insn = 0;
8980 max_br_offset = 1 << 25;
8981 addend = rel->r_addend;
8982 switch (r_type)
8983 {
8984 default:
8985 break;
8986
8987 /* Branch taken prediction relocations. */
8988 case R_PPC64_ADDR14_BRTAKEN:
8989 case R_PPC64_REL14_BRTAKEN:
8990 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
8991 /* Fall thru. */
8992
8993 /* Branch not taken prediction relocations. */
8994 case R_PPC64_ADDR14_BRNTAKEN:
8995 case R_PPC64_REL14_BRNTAKEN:
8996 insn |= bfd_get_32 (output_bfd,
8997 contents + rel->r_offset) & ~(0x01 << 21);
8998 /* Fall thru. */
8999
9000 case R_PPC64_REL14:
9001 max_br_offset = 1 << 15;
9002 /* Fall thru. */
9003
9004 case R_PPC64_REL24:
9005 /* Calls to functions with a different TOC, such as calls to
9006 shared objects, need to alter the TOC pointer. This is
9007 done using a linkage stub. A REL24 branching to these
9008 linkage stubs needs to be followed by a nop, as the nop
9009 will be replaced with an instruction to restore the TOC
9010 base pointer. */
9011 stub_entry = NULL;
9012 fdh = h;
9013 if (((h != NULL
9014 && (((fdh = h->oh) != NULL
9015 && fdh->elf.plt.plist != NULL)
9016 || (fdh = h)->elf.plt.plist != NULL))
9017 || (sec != NULL
9018 && sec->output_section != NULL
9019 && sec->id <= htab->top_id
9020 && (htab->stub_group[sec->id].toc_off
9021 != htab->stub_group[input_section->id].toc_off)))
9022 && (stub_entry = ppc_get_stub_entry (input_section, sec, fdh,
9023 rel, htab)) != NULL
9024 && (stub_entry->stub_type == ppc_stub_plt_call
9025 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
9026 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
9027 {
9028 bfd_boolean can_plt_call = FALSE;
9029
9030 if (rel->r_offset + 8 <= input_section->size)
9031 {
9032 unsigned long nop;
9033 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
9034 if (nop == NOP
9035 || nop == CROR_151515 || nop == CROR_313131)
9036 {
9037 bfd_put_32 (input_bfd, LD_R2_40R1,
9038 contents + rel->r_offset + 4);
9039 can_plt_call = TRUE;
9040 }
9041 }
9042
9043 if (!can_plt_call)
9044 {
9045 if (stub_entry->stub_type == ppc_stub_plt_call)
9046 {
9047 /* If this is a plain branch rather than a branch
9048 and link, don't require a nop. */
9049 unsigned long br;
9050 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
9051 if ((br & 1) == 0)
9052 can_plt_call = TRUE;
9053 }
9054 else if (h != NULL
9055 && strcmp (h->elf.root.root.string,
9056 ".__libc_start_main") == 0)
9057 {
9058 /* Allow crt1 branch to go via a toc adjusting stub. */
9059 can_plt_call = TRUE;
9060 }
9061 else
9062 {
9063 if (strcmp (input_section->output_section->name,
9064 ".init") == 0
9065 || strcmp (input_section->output_section->name,
9066 ".fini") == 0)
9067 (*_bfd_error_handler)
9068 (_("%B(%A+0x%lx): automatic multiple TOCs "
9069 "not supported using your crt files; "
9070 "recompile with -mminimal-toc or upgrade gcc"),
9071 input_bfd,
9072 input_section,
9073 (long) rel->r_offset);
9074 else
9075 (*_bfd_error_handler)
9076 (_("%B(%A+0x%lx): sibling call optimization to `%s' "
9077 "does not allow automatic multiple TOCs; "
9078 "recompile with -mminimal-toc or "
9079 "-fno-optimize-sibling-calls, "
9080 "or make `%s' extern"),
9081 input_bfd,
9082 input_section,
9083 (long) rel->r_offset,
9084 sym_name,
9085 sym_name);
9086 bfd_set_error (bfd_error_bad_value);
9087 ret = FALSE;
9088 }
9089 }
9090
9091 if (can_plt_call
9092 && stub_entry->stub_type == ppc_stub_plt_call)
9093 unresolved_reloc = FALSE;
9094 }
9095
9096 if (stub_entry == NULL
9097 && get_opd_info (sec) != NULL)
9098 {
9099 /* The branch destination is the value of the opd entry. */
9100 bfd_vma off = (relocation - sec->output_section->vma
9101 - sec->output_offset + rel->r_addend);
9102 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
9103 if (dest != (bfd_vma) -1)
9104 {
9105 relocation = dest;
9106 addend = 0;
9107 }
9108 }
9109
9110 /* If the branch is out of reach we ought to have a long
9111 branch stub. */
9112 from = (rel->r_offset
9113 + input_section->output_offset
9114 + input_section->output_section->vma);
9115
9116 if (stub_entry == NULL
9117 && (relocation + rel->r_addend - from + max_br_offset
9118 >= 2 * max_br_offset)
9119 && r_type != R_PPC64_ADDR14_BRTAKEN
9120 && r_type != R_PPC64_ADDR14_BRNTAKEN)
9121 stub_entry = ppc_get_stub_entry (input_section, sec, h, rel,
9122 htab);
9123
9124 if (stub_entry != NULL)
9125 {
9126 /* Munge up the value and addend so that we call the stub
9127 rather than the procedure directly. */
9128 relocation = (stub_entry->stub_offset
9129 + stub_entry->stub_sec->output_offset
9130 + stub_entry->stub_sec->output_section->vma);
9131 addend = 0;
9132 }
9133
9134 if (insn != 0)
9135 {
9136 if (is_power4)
9137 {
9138 /* Set 'a' bit. This is 0b00010 in BO field for branch
9139 on CR(BI) insns (BO == 001at or 011at), and 0b01000
9140 for branch on CTR insns (BO == 1a00t or 1a01t). */
9141 if ((insn & (0x14 << 21)) == (0x04 << 21))
9142 insn |= 0x02 << 21;
9143 else if ((insn & (0x14 << 21)) == (0x10 << 21))
9144 insn |= 0x08 << 21;
9145 else
9146 break;
9147 }
9148 else
9149 {
9150 /* Invert 'y' bit if not the default. */
9151 if ((bfd_signed_vma) (relocation + rel->r_addend - from) < 0)
9152 insn ^= 0x01 << 21;
9153 }
9154
9155 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
9156 }
9157
9158 /* NOP out calls to undefined weak functions.
9159 We can thus call a weak function without first
9160 checking whether the function is defined. */
9161 else if (h != NULL
9162 && h->elf.root.type == bfd_link_hash_undefweak
9163 && r_type == R_PPC64_REL24
9164 && relocation == 0
9165 && rel->r_addend == 0)
9166 {
9167 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
9168 continue;
9169 }
9170 break;
9171 }
9172
9173 /* Set `addend'. */
9174 tls_type = 0;
9175 switch (r_type)
9176 {
9177 default:
9178 (*_bfd_error_handler)
9179 (_("%B: unknown relocation type %d for symbol %s"),
9180 input_bfd, (int) r_type, sym_name);
9181
9182 bfd_set_error (bfd_error_bad_value);
9183 ret = FALSE;
9184 continue;
9185
9186 case R_PPC64_NONE:
9187 case R_PPC64_TLS:
9188 case R_PPC64_GNU_VTINHERIT:
9189 case R_PPC64_GNU_VTENTRY:
9190 continue;
9191
9192 /* GOT16 relocations. Like an ADDR16 using the symbol's
9193 address in the GOT as relocation value instead of the
9194 symbol's value itself. Also, create a GOT entry for the
9195 symbol and put the symbol value there. */
9196 case R_PPC64_GOT_TLSGD16:
9197 case R_PPC64_GOT_TLSGD16_LO:
9198 case R_PPC64_GOT_TLSGD16_HI:
9199 case R_PPC64_GOT_TLSGD16_HA:
9200 tls_type = TLS_TLS | TLS_GD;
9201 goto dogot;
9202
9203 case R_PPC64_GOT_TLSLD16:
9204 case R_PPC64_GOT_TLSLD16_LO:
9205 case R_PPC64_GOT_TLSLD16_HI:
9206 case R_PPC64_GOT_TLSLD16_HA:
9207 tls_type = TLS_TLS | TLS_LD;
9208 goto dogot;
9209
9210 case R_PPC64_GOT_TPREL16_DS:
9211 case R_PPC64_GOT_TPREL16_LO_DS:
9212 case R_PPC64_GOT_TPREL16_HI:
9213 case R_PPC64_GOT_TPREL16_HA:
9214 tls_type = TLS_TLS | TLS_TPREL;
9215 goto dogot;
9216
9217 case R_PPC64_GOT_DTPREL16_DS:
9218 case R_PPC64_GOT_DTPREL16_LO_DS:
9219 case R_PPC64_GOT_DTPREL16_HI:
9220 case R_PPC64_GOT_DTPREL16_HA:
9221 tls_type = TLS_TLS | TLS_DTPREL;
9222 goto dogot;
9223
9224 case R_PPC64_GOT16:
9225 case R_PPC64_GOT16_LO:
9226 case R_PPC64_GOT16_HI:
9227 case R_PPC64_GOT16_HA:
9228 case R_PPC64_GOT16_DS:
9229 case R_PPC64_GOT16_LO_DS:
9230 dogot:
9231 {
9232 /* Relocation is to the entry for this symbol in the global
9233 offset table. */
9234 asection *got;
9235 bfd_vma *offp;
9236 bfd_vma off;
9237 unsigned long indx = 0;
9238
9239 if (tls_type == (TLS_TLS | TLS_LD)
9240 && (h == NULL
9241 || (h->elf.elf_link_hash_flags
9242 & ELF_LINK_HASH_DEF_DYNAMIC) == 0))
9243 offp = &ppc64_tlsld_got (input_bfd)->offset;
9244 else
9245 {
9246 struct got_entry *ent;
9247
9248 if (h != NULL)
9249 {
9250 bfd_boolean dyn = htab->elf.dynamic_sections_created;
9251 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
9252 &h->elf)
9253 || (info->shared
9254 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
9255 /* This is actually a static link, or it is a
9256 -Bsymbolic link and the symbol is defined
9257 locally, or the symbol was forced to be local
9258 because of a version file. */
9259 ;
9260 else
9261 {
9262 indx = h->elf.dynindx;
9263 unresolved_reloc = FALSE;
9264 }
9265 ent = h->elf.got.glist;
9266 }
9267 else
9268 {
9269 if (local_got_ents == NULL)
9270 abort ();
9271 ent = local_got_ents[r_symndx];
9272 }
9273
9274 for (; ent != NULL; ent = ent->next)
9275 if (ent->addend == rel->r_addend
9276 && ent->owner == input_bfd
9277 && ent->tls_type == tls_type)
9278 break;
9279 if (ent == NULL)
9280 abort ();
9281 offp = &ent->got.offset;
9282 }
9283
9284 got = ppc64_elf_tdata (input_bfd)->got;
9285 if (got == NULL)
9286 abort ();
9287
9288 /* The offset must always be a multiple of 8. We use the
9289 least significant bit to record whether we have already
9290 processed this entry. */
9291 off = *offp;
9292 if ((off & 1) != 0)
9293 off &= ~1;
9294 else
9295 {
9296 /* Generate relocs for the dynamic linker, except in
9297 the case of TLSLD where we'll use one entry per
9298 module. */
9299 asection *relgot = ppc64_elf_tdata (input_bfd)->relgot;
9300
9301 *offp = off | 1;
9302 if ((info->shared || indx != 0)
9303 && (h == NULL
9304 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
9305 || h->elf.root.type != bfd_link_hash_undefweak))
9306 {
9307 outrel.r_offset = (got->output_section->vma
9308 + got->output_offset
9309 + off);
9310 outrel.r_addend = rel->r_addend;
9311 if (tls_type & (TLS_LD | TLS_GD))
9312 {
9313 outrel.r_addend = 0;
9314 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
9315 if (tls_type == (TLS_TLS | TLS_GD))
9316 {
9317 loc = relgot->contents;
9318 loc += (relgot->reloc_count++
9319 * sizeof (Elf64_External_Rela));
9320 bfd_elf64_swap_reloca_out (output_bfd,
9321 &outrel, loc);
9322 outrel.r_offset += 8;
9323 outrel.r_addend = rel->r_addend;
9324 outrel.r_info
9325 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
9326 }
9327 }
9328 else if (tls_type == (TLS_TLS | TLS_DTPREL))
9329 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
9330 else if (tls_type == (TLS_TLS | TLS_TPREL))
9331 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
9332 else if (indx == 0)
9333 {
9334 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_RELATIVE);
9335
9336 /* Write the .got section contents for the sake
9337 of prelink. */
9338 loc = got->contents + off;
9339 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
9340 loc);
9341 }
9342 else
9343 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
9344
9345 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
9346 {
9347 outrel.r_addend += relocation;
9348 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
9349 outrel.r_addend -= htab->elf.tls_sec->vma;
9350 }
9351 loc = relgot->contents;
9352 loc += (relgot->reloc_count++
9353 * sizeof (Elf64_External_Rela));
9354 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
9355 }
9356
9357 /* Init the .got section contents here if we're not
9358 emitting a reloc. */
9359 else
9360 {
9361 relocation += rel->r_addend;
9362 if (tls_type == (TLS_TLS | TLS_LD))
9363 relocation = 1;
9364 else if (tls_type != 0)
9365 {
9366 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
9367 if (tls_type == (TLS_TLS | TLS_TPREL))
9368 relocation += DTP_OFFSET - TP_OFFSET;
9369
9370 if (tls_type == (TLS_TLS | TLS_GD))
9371 {
9372 bfd_put_64 (output_bfd, relocation,
9373 got->contents + off + 8);
9374 relocation = 1;
9375 }
9376 }
9377
9378 bfd_put_64 (output_bfd, relocation,
9379 got->contents + off);
9380 }
9381 }
9382
9383 if (off >= (bfd_vma) -2)
9384 abort ();
9385
9386 relocation = got->output_offset + off;
9387
9388 /* TOC base (r2) is TOC start plus 0x8000. */
9389 addend = -TOC_BASE_OFF;
9390 }
9391 break;
9392
9393 case R_PPC64_PLT16_HA:
9394 case R_PPC64_PLT16_HI:
9395 case R_PPC64_PLT16_LO:
9396 case R_PPC64_PLT32:
9397 case R_PPC64_PLT64:
9398 /* Relocation is to the entry for this symbol in the
9399 procedure linkage table. */
9400
9401 /* Resolve a PLT reloc against a local symbol directly,
9402 without using the procedure linkage table. */
9403 if (h == NULL)
9404 break;
9405
9406 /* It's possible that we didn't make a PLT entry for this
9407 symbol. This happens when statically linking PIC code,
9408 or when using -Bsymbolic. Go find a match if there is a
9409 PLT entry. */
9410 if (htab->plt != NULL)
9411 {
9412 struct plt_entry *ent;
9413 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
9414 if (ent->addend == rel->r_addend
9415 && ent->plt.offset != (bfd_vma) -1)
9416 {
9417 relocation = (htab->plt->output_section->vma
9418 + htab->plt->output_offset
9419 + ent->plt.offset);
9420 unresolved_reloc = FALSE;
9421 }
9422 }
9423 break;
9424
9425 case R_PPC64_TOC:
9426 /* Relocation value is TOC base. */
9427 relocation = TOCstart;
9428 if (r_symndx == 0)
9429 relocation += htab->stub_group[input_section->id].toc_off;
9430 else if (unresolved_reloc)
9431 ;
9432 else if (sec != NULL && sec->id <= htab->top_id)
9433 relocation += htab->stub_group[sec->id].toc_off;
9434 else
9435 unresolved_reloc = TRUE;
9436 goto dodyn2;
9437
9438 /* TOC16 relocs. We want the offset relative to the TOC base,
9439 which is the address of the start of the TOC plus 0x8000.
9440 The TOC consists of sections .got, .toc, .tocbss, and .plt,
9441 in this order. */
9442 case R_PPC64_TOC16:
9443 case R_PPC64_TOC16_LO:
9444 case R_PPC64_TOC16_HI:
9445 case R_PPC64_TOC16_DS:
9446 case R_PPC64_TOC16_LO_DS:
9447 case R_PPC64_TOC16_HA:
9448 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
9449 break;
9450
9451 /* Relocate against the beginning of the section. */
9452 case R_PPC64_SECTOFF:
9453 case R_PPC64_SECTOFF_LO:
9454 case R_PPC64_SECTOFF_HI:
9455 case R_PPC64_SECTOFF_DS:
9456 case R_PPC64_SECTOFF_LO_DS:
9457 case R_PPC64_SECTOFF_HA:
9458 if (sec != NULL)
9459 addend -= sec->output_section->vma;
9460 break;
9461
9462 case R_PPC64_REL14:
9463 case R_PPC64_REL14_BRNTAKEN:
9464 case R_PPC64_REL14_BRTAKEN:
9465 case R_PPC64_REL24:
9466 break;
9467
9468 case R_PPC64_TPREL16:
9469 case R_PPC64_TPREL16_LO:
9470 case R_PPC64_TPREL16_HI:
9471 case R_PPC64_TPREL16_HA:
9472 case R_PPC64_TPREL16_DS:
9473 case R_PPC64_TPREL16_LO_DS:
9474 case R_PPC64_TPREL16_HIGHER:
9475 case R_PPC64_TPREL16_HIGHERA:
9476 case R_PPC64_TPREL16_HIGHEST:
9477 case R_PPC64_TPREL16_HIGHESTA:
9478 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
9479 if (info->shared)
9480 /* The TPREL16 relocs shouldn't really be used in shared
9481 libs as they will result in DT_TEXTREL being set, but
9482 support them anyway. */
9483 goto dodyn;
9484 break;
9485
9486 case R_PPC64_DTPREL16:
9487 case R_PPC64_DTPREL16_LO:
9488 case R_PPC64_DTPREL16_HI:
9489 case R_PPC64_DTPREL16_HA:
9490 case R_PPC64_DTPREL16_DS:
9491 case R_PPC64_DTPREL16_LO_DS:
9492 case R_PPC64_DTPREL16_HIGHER:
9493 case R_PPC64_DTPREL16_HIGHERA:
9494 case R_PPC64_DTPREL16_HIGHEST:
9495 case R_PPC64_DTPREL16_HIGHESTA:
9496 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
9497 break;
9498
9499 case R_PPC64_DTPMOD64:
9500 relocation = 1;
9501 addend = 0;
9502 goto dodyn;
9503
9504 case R_PPC64_TPREL64:
9505 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
9506 goto dodyn;
9507
9508 case R_PPC64_DTPREL64:
9509 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
9510 /* Fall thru */
9511
9512 /* Relocations that may need to be propagated if this is a
9513 dynamic object. */
9514 case R_PPC64_REL30:
9515 case R_PPC64_REL32:
9516 case R_PPC64_REL64:
9517 case R_PPC64_ADDR14:
9518 case R_PPC64_ADDR14_BRNTAKEN:
9519 case R_PPC64_ADDR14_BRTAKEN:
9520 case R_PPC64_ADDR16:
9521 case R_PPC64_ADDR16_DS:
9522 case R_PPC64_ADDR16_HA:
9523 case R_PPC64_ADDR16_HI:
9524 case R_PPC64_ADDR16_HIGHER:
9525 case R_PPC64_ADDR16_HIGHERA:
9526 case R_PPC64_ADDR16_HIGHEST:
9527 case R_PPC64_ADDR16_HIGHESTA:
9528 case R_PPC64_ADDR16_LO:
9529 case R_PPC64_ADDR16_LO_DS:
9530 case R_PPC64_ADDR24:
9531 case R_PPC64_ADDR32:
9532 case R_PPC64_ADDR64:
9533 case R_PPC64_UADDR16:
9534 case R_PPC64_UADDR32:
9535 case R_PPC64_UADDR64:
9536 /* r_symndx will be zero only for relocs against symbols
9537 from removed linkonce sections, or sections discarded by
9538 a linker script. */
9539 dodyn:
9540 if (r_symndx == 0)
9541 break;
9542 /* Fall thru. */
9543
9544 dodyn2:
9545 if ((input_section->flags & SEC_ALLOC) == 0)
9546 break;
9547
9548 if (NO_OPD_RELOCS && is_opd)
9549 break;
9550
9551 if ((info->shared
9552 && (h == NULL
9553 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
9554 || h->elf.root.type != bfd_link_hash_undefweak)
9555 && (MUST_BE_DYN_RELOC (r_type)
9556 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
9557 || (ELIMINATE_COPY_RELOCS
9558 && !info->shared
9559 && h != NULL
9560 && h->elf.dynindx != -1
9561 && !(h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF)
9562 && (h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
9563 && !(h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
9564 {
9565 Elf_Internal_Rela outrel;
9566 bfd_boolean skip, relocate;
9567 asection *sreloc;
9568 bfd_byte *loc;
9569 bfd_vma out_off;
9570
9571 /* When generating a dynamic object, these relocations
9572 are copied into the output file to be resolved at run
9573 time. */
9574
9575 skip = FALSE;
9576 relocate = FALSE;
9577
9578 out_off = _bfd_elf_section_offset (output_bfd, info,
9579 input_section, rel->r_offset);
9580 if (out_off == (bfd_vma) -1)
9581 skip = TRUE;
9582 else if (out_off == (bfd_vma) -2)
9583 skip = TRUE, relocate = TRUE;
9584 out_off += (input_section->output_section->vma
9585 + input_section->output_offset);
9586 outrel.r_offset = out_off;
9587 outrel.r_addend = rel->r_addend;
9588
9589 /* Optimize unaligned reloc use. */
9590 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
9591 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
9592 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
9593 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
9594 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
9595 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
9596 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
9597 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
9598 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
9599
9600 if (skip)
9601 memset (&outrel, 0, sizeof outrel);
9602 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
9603 && !is_opd
9604 && r_type != R_PPC64_TOC)
9605 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
9606 else
9607 {
9608 /* This symbol is local, or marked to become local,
9609 or this is an opd section reloc which must point
9610 at a local function. */
9611 outrel.r_addend += relocation;
9612 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
9613 {
9614 if (is_opd && h != NULL)
9615 {
9616 /* Lie about opd entries. This case occurs
9617 when building shared libraries and we
9618 reference a function in another shared
9619 lib. The same thing happens for a weak
9620 definition in an application that's
9621 overridden by a strong definition in a
9622 shared lib. (I believe this is a generic
9623 bug in binutils handling of weak syms.)
9624 In these cases we won't use the opd
9625 entry in this lib. */
9626 unresolved_reloc = FALSE;
9627 }
9628 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
9629
9630 /* We need to relocate .opd contents for ld.so.
9631 Prelink also wants simple and consistent rules
9632 for relocs. This make all RELATIVE relocs have
9633 *r_offset equal to r_addend. */
9634 relocate = TRUE;
9635 }
9636 else
9637 {
9638 long indx = 0;
9639
9640 if (bfd_is_abs_section (sec))
9641 ;
9642 else if (sec == NULL || sec->owner == NULL)
9643 {
9644 bfd_set_error (bfd_error_bad_value);
9645 return FALSE;
9646 }
9647 else
9648 {
9649 asection *osec;
9650
9651 osec = sec->output_section;
9652 indx = elf_section_data (osec)->dynindx;
9653
9654 /* We are turning this relocation into one
9655 against a section symbol, so subtract out
9656 the output section's address but not the
9657 offset of the input section in the output
9658 section. */
9659 outrel.r_addend -= osec->vma;
9660 }
9661
9662 outrel.r_info = ELF64_R_INFO (indx, r_type);
9663 }
9664 }
9665
9666 sreloc = elf_section_data (input_section)->sreloc;
9667 if (sreloc == NULL)
9668 abort ();
9669
9670 loc = sreloc->contents;
9671 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
9672 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
9673
9674 /* If this reloc is against an external symbol, it will
9675 be computed at runtime, so there's no need to do
9676 anything now. However, for the sake of prelink ensure
9677 that the section contents are a known value. */
9678 if (! relocate)
9679 {
9680 unresolved_reloc = FALSE;
9681 /* The value chosen here is quite arbitrary as ld.so
9682 ignores section contents except for the special
9683 case of .opd where the contents might be accessed
9684 before relocation. Choose zero, as that won't
9685 cause reloc overflow. */
9686 relocation = 0;
9687 addend = 0;
9688 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
9689 to improve backward compatibility with older
9690 versions of ld. */
9691 if (r_type == R_PPC64_ADDR64)
9692 addend = outrel.r_addend;
9693 /* Adjust pc_relative relocs to have zero in *r_offset. */
9694 else if (ppc64_elf_howto_table[r_type]->pc_relative)
9695 addend = (input_section->output_section->vma
9696 + input_section->output_offset
9697 + rel->r_offset);
9698 }
9699 }
9700 break;
9701
9702 case R_PPC64_COPY:
9703 case R_PPC64_GLOB_DAT:
9704 case R_PPC64_JMP_SLOT:
9705 case R_PPC64_RELATIVE:
9706 /* We shouldn't ever see these dynamic relocs in relocatable
9707 files. */
9708 /* Fall through. */
9709
9710 case R_PPC64_PLTGOT16:
9711 case R_PPC64_PLTGOT16_DS:
9712 case R_PPC64_PLTGOT16_HA:
9713 case R_PPC64_PLTGOT16_HI:
9714 case R_PPC64_PLTGOT16_LO:
9715 case R_PPC64_PLTGOT16_LO_DS:
9716 case R_PPC64_PLTREL32:
9717 case R_PPC64_PLTREL64:
9718 /* These ones haven't been implemented yet. */
9719
9720 (*_bfd_error_handler)
9721 (_("%B: relocation %s is not supported for symbol %s."),
9722 input_bfd,
9723 ppc64_elf_howto_table[r_type]->name, sym_name);
9724
9725 bfd_set_error (bfd_error_invalid_operation);
9726 ret = FALSE;
9727 continue;
9728 }
9729
9730 /* Do any further special processing. */
9731 switch (r_type)
9732 {
9733 default:
9734 break;
9735
9736 case R_PPC64_ADDR16_HA:
9737 case R_PPC64_ADDR16_HIGHERA:
9738 case R_PPC64_ADDR16_HIGHESTA:
9739 case R_PPC64_GOT16_HA:
9740 case R_PPC64_PLTGOT16_HA:
9741 case R_PPC64_PLT16_HA:
9742 case R_PPC64_TOC16_HA:
9743 case R_PPC64_SECTOFF_HA:
9744 case R_PPC64_TPREL16_HA:
9745 case R_PPC64_DTPREL16_HA:
9746 case R_PPC64_GOT_TLSGD16_HA:
9747 case R_PPC64_GOT_TLSLD16_HA:
9748 case R_PPC64_GOT_TPREL16_HA:
9749 case R_PPC64_GOT_DTPREL16_HA:
9750 case R_PPC64_TPREL16_HIGHER:
9751 case R_PPC64_TPREL16_HIGHERA:
9752 case R_PPC64_TPREL16_HIGHEST:
9753 case R_PPC64_TPREL16_HIGHESTA:
9754 case R_PPC64_DTPREL16_HIGHER:
9755 case R_PPC64_DTPREL16_HIGHERA:
9756 case R_PPC64_DTPREL16_HIGHEST:
9757 case R_PPC64_DTPREL16_HIGHESTA:
9758 /* It's just possible that this symbol is a weak symbol
9759 that's not actually defined anywhere. In that case,
9760 'sec' would be NULL, and we should leave the symbol
9761 alone (it will be set to zero elsewhere in the link). */
9762 if (sec != NULL)
9763 /* Add 0x10000 if sign bit in 0:15 is set.
9764 Bits 0:15 are not used. */
9765 addend += 0x8000;
9766 break;
9767
9768 case R_PPC64_ADDR16_DS:
9769 case R_PPC64_ADDR16_LO_DS:
9770 case R_PPC64_GOT16_DS:
9771 case R_PPC64_GOT16_LO_DS:
9772 case R_PPC64_PLT16_LO_DS:
9773 case R_PPC64_SECTOFF_DS:
9774 case R_PPC64_SECTOFF_LO_DS:
9775 case R_PPC64_TOC16_DS:
9776 case R_PPC64_TOC16_LO_DS:
9777 case R_PPC64_PLTGOT16_DS:
9778 case R_PPC64_PLTGOT16_LO_DS:
9779 case R_PPC64_GOT_TPREL16_DS:
9780 case R_PPC64_GOT_TPREL16_LO_DS:
9781 case R_PPC64_GOT_DTPREL16_DS:
9782 case R_PPC64_GOT_DTPREL16_LO_DS:
9783 case R_PPC64_TPREL16_DS:
9784 case R_PPC64_TPREL16_LO_DS:
9785 case R_PPC64_DTPREL16_DS:
9786 case R_PPC64_DTPREL16_LO_DS:
9787 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
9788 mask = 3;
9789 /* If this reloc is against an lq insn, then the value must be
9790 a multiple of 16. This is somewhat of a hack, but the
9791 "correct" way to do this by defining _DQ forms of all the
9792 _DS relocs bloats all reloc switches in this file. It
9793 doesn't seem to make much sense to use any of these relocs
9794 in data, so testing the insn should be safe. */
9795 if ((insn & (0x3f << 26)) == (56u << 26))
9796 mask = 15;
9797 if (((relocation + addend) & mask) != 0)
9798 {
9799 (*_bfd_error_handler)
9800 (_("%B: error: relocation %s not a multiple of %d"),
9801 input_bfd,
9802 ppc64_elf_howto_table[r_type]->name,
9803 mask + 1);
9804 bfd_set_error (bfd_error_bad_value);
9805 ret = FALSE;
9806 continue;
9807 }
9808 break;
9809 }
9810
9811 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
9812 because such sections are not SEC_ALLOC and thus ld.so will
9813 not process them. */
9814 if (unresolved_reloc
9815 && !((input_section->flags & SEC_DEBUGGING) != 0
9816 && (h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)))
9817 {
9818 (*_bfd_error_handler)
9819 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
9820 input_bfd,
9821 input_section,
9822 (long) rel->r_offset,
9823 ppc64_elf_howto_table[(int) r_type]->name,
9824 h->elf.root.root.string);
9825 ret = FALSE;
9826 }
9827
9828 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
9829 input_bfd,
9830 input_section,
9831 contents,
9832 rel->r_offset,
9833 relocation,
9834 addend);
9835
9836 if (r != bfd_reloc_ok)
9837 {
9838 if (sym_name == NULL)
9839 sym_name = "(null)";
9840 if (r == bfd_reloc_overflow)
9841 {
9842 if (warned)
9843 continue;
9844 if (h != NULL
9845 && h->elf.root.type == bfd_link_hash_undefweak
9846 && ppc64_elf_howto_table[r_type]->pc_relative)
9847 {
9848 /* Assume this is a call protected by other code that
9849 detects the symbol is undefined. If this is the case,
9850 we can safely ignore the overflow. If not, the
9851 program is hosed anyway, and a little warning isn't
9852 going to help. */
9853
9854 continue;
9855 }
9856
9857 if (!((*info->callbacks->reloc_overflow)
9858 (info, sym_name, ppc64_elf_howto_table[r_type]->name,
9859 rel->r_addend, input_bfd, input_section, rel->r_offset)))
9860 return FALSE;
9861 }
9862 else
9863 {
9864 (*_bfd_error_handler)
9865 (_("%B(%A+0x%lx): %s reloc against `%s': error %d"),
9866 input_bfd,
9867 input_section,
9868 (long) rel->r_offset,
9869 ppc64_elf_howto_table[r_type]->name,
9870 sym_name,
9871 (int) r);
9872 ret = FALSE;
9873 }
9874 }
9875 }
9876
9877 return ret;
9878 }
9879
9880 /* Adjust the value of any local symbols in opd sections. */
9881
9882 static bfd_boolean
9883 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
9884 const char *name ATTRIBUTE_UNUSED,
9885 Elf_Internal_Sym *elfsym,
9886 asection *input_sec,
9887 struct elf_link_hash_entry *h)
9888 {
9889 long *opd_adjust, adjust;
9890 bfd_vma value;
9891
9892 if (h != NULL)
9893 return TRUE;
9894
9895 opd_adjust = get_opd_info (input_sec);
9896 if (opd_adjust == NULL)
9897 return TRUE;
9898
9899 value = elfsym->st_value - input_sec->output_offset;
9900 if (!info->relocatable)
9901 value -= input_sec->output_section->vma;
9902
9903 adjust = opd_adjust[value / 8];
9904 if (adjust == -1)
9905 elfsym->st_value = 0;
9906 else
9907 elfsym->st_value += adjust;
9908 return TRUE;
9909 }
9910
9911 /* Finish up dynamic symbol handling. We set the contents of various
9912 dynamic sections here. */
9913
9914 static bfd_boolean
9915 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
9916 struct bfd_link_info *info,
9917 struct elf_link_hash_entry *h,
9918 Elf_Internal_Sym *sym)
9919 {
9920 struct ppc_link_hash_table *htab;
9921 bfd *dynobj;
9922 struct plt_entry *ent;
9923 Elf_Internal_Rela rela;
9924 bfd_byte *loc;
9925
9926 htab = ppc_hash_table (info);
9927 dynobj = htab->elf.dynobj;
9928
9929 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
9930 if (ent->plt.offset != (bfd_vma) -1)
9931 {
9932 /* This symbol has an entry in the procedure linkage
9933 table. Set it up. */
9934
9935 if (htab->plt == NULL
9936 || htab->relplt == NULL
9937 || htab->glink == NULL)
9938 abort ();
9939
9940 /* Create a JMP_SLOT reloc to inform the dynamic linker to
9941 fill in the PLT entry. */
9942 rela.r_offset = (htab->plt->output_section->vma
9943 + htab->plt->output_offset
9944 + ent->plt.offset);
9945 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
9946 rela.r_addend = ent->addend;
9947
9948 loc = htab->relplt->contents;
9949 loc += ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE
9950 * sizeof (Elf64_External_Rela));
9951 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
9952 }
9953
9954 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
9955 {
9956 Elf_Internal_Rela rela;
9957 bfd_byte *loc;
9958
9959 /* This symbol needs a copy reloc. Set it up. */
9960
9961 if (h->dynindx == -1
9962 || (h->root.type != bfd_link_hash_defined
9963 && h->root.type != bfd_link_hash_defweak)
9964 || htab->relbss == NULL)
9965 abort ();
9966
9967 rela.r_offset = (h->root.u.def.value
9968 + h->root.u.def.section->output_section->vma
9969 + h->root.u.def.section->output_offset);
9970 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
9971 rela.r_addend = 0;
9972 loc = htab->relbss->contents;
9973 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
9974 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
9975 }
9976
9977 /* Mark some specially defined symbols as absolute. */
9978 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
9979 sym->st_shndx = SHN_ABS;
9980
9981 return TRUE;
9982 }
9983
9984 /* Used to decide how to sort relocs in an optimal manner for the
9985 dynamic linker, before writing them out. */
9986
9987 static enum elf_reloc_type_class
9988 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
9989 {
9990 enum elf_ppc64_reloc_type r_type;
9991
9992 r_type = ELF64_R_TYPE (rela->r_info);
9993 switch (r_type)
9994 {
9995 case R_PPC64_RELATIVE:
9996 return reloc_class_relative;
9997 case R_PPC64_JMP_SLOT:
9998 return reloc_class_plt;
9999 case R_PPC64_COPY:
10000 return reloc_class_copy;
10001 default:
10002 return reloc_class_normal;
10003 }
10004 }
10005
10006 /* Finish up the dynamic sections. */
10007
10008 static bfd_boolean
10009 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
10010 struct bfd_link_info *info)
10011 {
10012 struct ppc_link_hash_table *htab;
10013 bfd *dynobj;
10014 asection *sdyn;
10015
10016 htab = ppc_hash_table (info);
10017 dynobj = htab->elf.dynobj;
10018 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10019
10020 if (htab->elf.dynamic_sections_created)
10021 {
10022 Elf64_External_Dyn *dyncon, *dynconend;
10023
10024 if (sdyn == NULL || htab->got == NULL)
10025 abort ();
10026
10027 dyncon = (Elf64_External_Dyn *) sdyn->contents;
10028 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
10029 for (; dyncon < dynconend; dyncon++)
10030 {
10031 Elf_Internal_Dyn dyn;
10032 asection *s;
10033
10034 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
10035
10036 switch (dyn.d_tag)
10037 {
10038 default:
10039 continue;
10040
10041 case DT_PPC64_GLINK:
10042 s = htab->glink;
10043 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10044 /* We stupidly defined DT_PPC64_GLINK to be the start
10045 of glink rather than the first entry point, which is
10046 what ld.so needs, and now have a bigger stub to
10047 support automatic multiple TOCs. */
10048 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
10049 break;
10050
10051 case DT_PPC64_OPD:
10052 s = bfd_get_section_by_name (output_bfd, ".opd");
10053 if (s == NULL)
10054 continue;
10055 dyn.d_un.d_ptr = s->vma;
10056 break;
10057
10058 case DT_PPC64_OPDSZ:
10059 s = bfd_get_section_by_name (output_bfd, ".opd");
10060 if (s == NULL)
10061 continue;
10062 dyn.d_un.d_val = s->size;
10063 break;
10064
10065 case DT_PLTGOT:
10066 s = htab->plt;
10067 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10068 break;
10069
10070 case DT_JMPREL:
10071 s = htab->relplt;
10072 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10073 break;
10074
10075 case DT_PLTRELSZ:
10076 dyn.d_un.d_val = htab->relplt->size;
10077 break;
10078
10079 case DT_RELASZ:
10080 /* Don't count procedure linkage table relocs in the
10081 overall reloc count. */
10082 s = htab->relplt;
10083 if (s == NULL)
10084 continue;
10085 dyn.d_un.d_val -= s->size;
10086 break;
10087
10088 case DT_RELA:
10089 /* We may not be using the standard ELF linker script.
10090 If .rela.plt is the first .rela section, we adjust
10091 DT_RELA to not include it. */
10092 s = htab->relplt;
10093 if (s == NULL)
10094 continue;
10095 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
10096 continue;
10097 dyn.d_un.d_ptr += s->size;
10098 break;
10099 }
10100
10101 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
10102 }
10103 }
10104
10105 if (htab->got != NULL && htab->got->size != 0)
10106 {
10107 /* Fill in the first entry in the global offset table.
10108 We use it to hold the link-time TOCbase. */
10109 bfd_put_64 (output_bfd,
10110 elf_gp (output_bfd) + TOC_BASE_OFF,
10111 htab->got->contents);
10112
10113 /* Set .got entry size. */
10114 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
10115 }
10116
10117 if (htab->plt != NULL && htab->plt->size != 0)
10118 {
10119 /* Set .plt entry size. */
10120 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
10121 = PLT_ENTRY_SIZE;
10122 }
10123
10124 /* We need to handle writing out multiple GOT sections ourselves,
10125 since we didn't add them to DYNOBJ. */
10126 while ((dynobj = dynobj->link_next) != NULL)
10127 {
10128 asection *s;
10129 s = ppc64_elf_tdata (dynobj)->got;
10130 if (s != NULL
10131 && s->size != 0
10132 && s->output_section != bfd_abs_section_ptr
10133 && !bfd_set_section_contents (output_bfd, s->output_section,
10134 s->contents, s->output_offset,
10135 s->size))
10136 return FALSE;
10137 s = ppc64_elf_tdata (dynobj)->relgot;
10138 if (s != NULL
10139 && s->size != 0
10140 && s->output_section != bfd_abs_section_ptr
10141 && !bfd_set_section_contents (output_bfd, s->output_section,
10142 s->contents, s->output_offset,
10143 s->size))
10144 return FALSE;
10145 }
10146
10147 return TRUE;
10148 }
10149
10150 #include "elf64-target.h"
This page took 0.244749 seconds and 4 git commands to generate.