daily update
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra <amodra@bigpond.net.au>
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24
25 /* The 64-bit PowerPC ELF ABI may be found at
26 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
27 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
28
29 #include "sysdep.h"
30 #include <stdarg.h>
31 #include "bfd.h"
32 #include "bfdlink.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/ppc64.h"
36 #include "elf64-ppc.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_vma opd_entry_value
57 (asection *, bfd_vma, asection **, bfd_vma *);
58
59 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
60 #define TARGET_LITTLE_NAME "elf64-powerpcle"
61 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
62 #define TARGET_BIG_NAME "elf64-powerpc"
63 #define ELF_ARCH bfd_arch_powerpc
64 #define ELF_MACHINE_CODE EM_PPC64
65 #define ELF_MAXPAGESIZE 0x10000
66 #define ELF_COMMONPAGESIZE 0x1000
67 #define elf_info_to_howto ppc64_elf_info_to_howto
68
69 #define elf_backend_want_got_sym 0
70 #define elf_backend_want_plt_sym 0
71 #define elf_backend_plt_alignment 3
72 #define elf_backend_plt_not_loaded 1
73 #define elf_backend_got_header_size 8
74 #define elf_backend_can_gc_sections 1
75 #define elf_backend_can_refcount 1
76 #define elf_backend_rela_normal 1
77 #define elf_backend_default_execstack 0
78
79 #define bfd_elf64_mkobject ppc64_elf_mkobject
80 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
81 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
82 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
83 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
84 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
85 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
86 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
87
88 #define elf_backend_object_p ppc64_elf_object_p
89 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
90 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
91 #define elf_backend_write_core_note ppc64_elf_write_core_note
92 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
93 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
94 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
95 #define elf_backend_check_directives ppc64_elf_check_directives
96 #define elf_backend_as_needed_cleanup ppc64_elf_as_needed_cleanup
97 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
98 #define elf_backend_check_relocs ppc64_elf_check_relocs
99 #define elf_backend_gc_keep ppc64_elf_gc_keep
100 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
101 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
102 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
103 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
104 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
105 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
106 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
107 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
108 #define elf_backend_action_discarded ppc64_elf_action_discarded
109 #define elf_backend_relocate_section ppc64_elf_relocate_section
110 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
111 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
112 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
113 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
114 #define elf_backend_special_sections ppc64_elf_special_sections
115
116 /* The name of the dynamic interpreter. This is put in the .interp
117 section. */
118 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
119
120 /* The size in bytes of an entry in the procedure linkage table. */
121 #define PLT_ENTRY_SIZE 24
122
123 /* The initial size of the plt reserved for the dynamic linker. */
124 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
125
126 /* TOC base pointers offset from start of TOC. */
127 #define TOC_BASE_OFF 0x8000
128
129 /* Offset of tp and dtp pointers from start of TLS block. */
130 #define TP_OFFSET 0x7000
131 #define DTP_OFFSET 0x8000
132
133 /* .plt call stub instructions. The normal stub is like this, but
134 sometimes the .plt entry crosses a 64k boundary and we need to
135 insert an addi to adjust r12. */
136 #define PLT_CALL_STUB_SIZE (7*4)
137 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
138 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
139 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
140 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
141 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
142 /* ld %r11,xxx+16@l(%r12) */
143 #define BCTR 0x4e800420 /* bctr */
144
145
146 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,off@ha */
147 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
148 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
149 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
150
151 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
152 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
153
154 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
155
156 /* glink call stub instructions. We enter with the index in R0. */
157 #define GLINK_CALL_STUB_SIZE (16*4)
158 /* 0: */
159 /* .quad plt0-1f */
160 /* __glink: */
161 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
162 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
163 /* 1: */
164 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
165 #define LD_R2_M16R11 0xe84bfff0 /* ld %2,(0b-1b)(%11) */
166 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
167 #define ADD_R12_R2_R11 0x7d825a14 /* add %12,%2,%11 */
168 /* ld %11,0(%12) */
169 /* ld %2,8(%12) */
170 /* mtctr %11 */
171 /* ld %11,16(%12) */
172 /* bctr */
173
174 /* Pad with this. */
175 #define NOP 0x60000000
176
177 /* Some other nops. */
178 #define CROR_151515 0x4def7b82
179 #define CROR_313131 0x4ffffb82
180
181 /* .glink entries for the first 32k functions are two instructions. */
182 #define LI_R0_0 0x38000000 /* li %r0,0 */
183 #define B_DOT 0x48000000 /* b . */
184
185 /* After that, we need two instructions to load the index, followed by
186 a branch. */
187 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
188 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
189
190 /* Instructions used by the save and restore reg functions. */
191 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
192 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
193 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
194 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
195 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
196 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
197 #define LI_R12_0 0x39800000 /* li %r12,0 */
198 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
199 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
200 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
201 #define BLR 0x4e800020 /* blr */
202
203 /* Since .opd is an array of descriptors and each entry will end up
204 with identical R_PPC64_RELATIVE relocs, there is really no need to
205 propagate .opd relocs; The dynamic linker should be taught to
206 relocate .opd without reloc entries. */
207 #ifndef NO_OPD_RELOCS
208 #define NO_OPD_RELOCS 0
209 #endif
210 \f
211 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
212
213 /* Relocation HOWTO's. */
214 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
215
216 static reloc_howto_type ppc64_elf_howto_raw[] = {
217 /* This reloc does nothing. */
218 HOWTO (R_PPC64_NONE, /* type */
219 0, /* rightshift */
220 2, /* size (0 = byte, 1 = short, 2 = long) */
221 32, /* bitsize */
222 FALSE, /* pc_relative */
223 0, /* bitpos */
224 complain_overflow_dont, /* complain_on_overflow */
225 bfd_elf_generic_reloc, /* special_function */
226 "R_PPC64_NONE", /* name */
227 FALSE, /* partial_inplace */
228 0, /* src_mask */
229 0, /* dst_mask */
230 FALSE), /* pcrel_offset */
231
232 /* A standard 32 bit relocation. */
233 HOWTO (R_PPC64_ADDR32, /* type */
234 0, /* rightshift */
235 2, /* size (0 = byte, 1 = short, 2 = long) */
236 32, /* bitsize */
237 FALSE, /* pc_relative */
238 0, /* bitpos */
239 complain_overflow_bitfield, /* complain_on_overflow */
240 bfd_elf_generic_reloc, /* special_function */
241 "R_PPC64_ADDR32", /* name */
242 FALSE, /* partial_inplace */
243 0, /* src_mask */
244 0xffffffff, /* dst_mask */
245 FALSE), /* pcrel_offset */
246
247 /* An absolute 26 bit branch; the lower two bits must be zero.
248 FIXME: we don't check that, we just clear them. */
249 HOWTO (R_PPC64_ADDR24, /* type */
250 0, /* rightshift */
251 2, /* size (0 = byte, 1 = short, 2 = long) */
252 26, /* bitsize */
253 FALSE, /* pc_relative */
254 0, /* bitpos */
255 complain_overflow_bitfield, /* complain_on_overflow */
256 bfd_elf_generic_reloc, /* special_function */
257 "R_PPC64_ADDR24", /* name */
258 FALSE, /* partial_inplace */
259 0, /* src_mask */
260 0x03fffffc, /* dst_mask */
261 FALSE), /* pcrel_offset */
262
263 /* A standard 16 bit relocation. */
264 HOWTO (R_PPC64_ADDR16, /* type */
265 0, /* rightshift */
266 1, /* size (0 = byte, 1 = short, 2 = long) */
267 16, /* bitsize */
268 FALSE, /* pc_relative */
269 0, /* bitpos */
270 complain_overflow_bitfield, /* complain_on_overflow */
271 bfd_elf_generic_reloc, /* special_function */
272 "R_PPC64_ADDR16", /* name */
273 FALSE, /* partial_inplace */
274 0, /* src_mask */
275 0xffff, /* dst_mask */
276 FALSE), /* pcrel_offset */
277
278 /* A 16 bit relocation without overflow. */
279 HOWTO (R_PPC64_ADDR16_LO, /* type */
280 0, /* rightshift */
281 1, /* size (0 = byte, 1 = short, 2 = long) */
282 16, /* bitsize */
283 FALSE, /* pc_relative */
284 0, /* bitpos */
285 complain_overflow_dont,/* complain_on_overflow */
286 bfd_elf_generic_reloc, /* special_function */
287 "R_PPC64_ADDR16_LO", /* name */
288 FALSE, /* partial_inplace */
289 0, /* src_mask */
290 0xffff, /* dst_mask */
291 FALSE), /* pcrel_offset */
292
293 /* Bits 16-31 of an address. */
294 HOWTO (R_PPC64_ADDR16_HI, /* type */
295 16, /* rightshift */
296 1, /* size (0 = byte, 1 = short, 2 = long) */
297 16, /* bitsize */
298 FALSE, /* pc_relative */
299 0, /* bitpos */
300 complain_overflow_dont, /* complain_on_overflow */
301 bfd_elf_generic_reloc, /* special_function */
302 "R_PPC64_ADDR16_HI", /* name */
303 FALSE, /* partial_inplace */
304 0, /* src_mask */
305 0xffff, /* dst_mask */
306 FALSE), /* pcrel_offset */
307
308 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
309 bits, treated as a signed number, is negative. */
310 HOWTO (R_PPC64_ADDR16_HA, /* type */
311 16, /* rightshift */
312 1, /* size (0 = byte, 1 = short, 2 = long) */
313 16, /* bitsize */
314 FALSE, /* pc_relative */
315 0, /* bitpos */
316 complain_overflow_dont, /* complain_on_overflow */
317 ppc64_elf_ha_reloc, /* special_function */
318 "R_PPC64_ADDR16_HA", /* name */
319 FALSE, /* partial_inplace */
320 0, /* src_mask */
321 0xffff, /* dst_mask */
322 FALSE), /* pcrel_offset */
323
324 /* An absolute 16 bit branch; the lower two bits must be zero.
325 FIXME: we don't check that, we just clear them. */
326 HOWTO (R_PPC64_ADDR14, /* type */
327 0, /* rightshift */
328 2, /* size (0 = byte, 1 = short, 2 = long) */
329 16, /* bitsize */
330 FALSE, /* pc_relative */
331 0, /* bitpos */
332 complain_overflow_bitfield, /* complain_on_overflow */
333 ppc64_elf_branch_reloc, /* special_function */
334 "R_PPC64_ADDR14", /* name */
335 FALSE, /* partial_inplace */
336 0, /* src_mask */
337 0x0000fffc, /* dst_mask */
338 FALSE), /* pcrel_offset */
339
340 /* An absolute 16 bit branch, for which bit 10 should be set to
341 indicate that the branch is expected to be taken. The lower two
342 bits must be zero. */
343 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
344 0, /* rightshift */
345 2, /* size (0 = byte, 1 = short, 2 = long) */
346 16, /* bitsize */
347 FALSE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 ppc64_elf_brtaken_reloc, /* special_function */
351 "R_PPC64_ADDR14_BRTAKEN",/* name */
352 FALSE, /* partial_inplace */
353 0, /* src_mask */
354 0x0000fffc, /* dst_mask */
355 FALSE), /* pcrel_offset */
356
357 /* An absolute 16 bit branch, for which bit 10 should be set to
358 indicate that the branch is not expected to be taken. The lower
359 two bits must be zero. */
360 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
361 0, /* rightshift */
362 2, /* size (0 = byte, 1 = short, 2 = long) */
363 16, /* bitsize */
364 FALSE, /* pc_relative */
365 0, /* bitpos */
366 complain_overflow_bitfield, /* complain_on_overflow */
367 ppc64_elf_brtaken_reloc, /* special_function */
368 "R_PPC64_ADDR14_BRNTAKEN",/* name */
369 FALSE, /* partial_inplace */
370 0, /* src_mask */
371 0x0000fffc, /* dst_mask */
372 FALSE), /* pcrel_offset */
373
374 /* A relative 26 bit branch; the lower two bits must be zero. */
375 HOWTO (R_PPC64_REL24, /* type */
376 0, /* rightshift */
377 2, /* size (0 = byte, 1 = short, 2 = long) */
378 26, /* bitsize */
379 TRUE, /* pc_relative */
380 0, /* bitpos */
381 complain_overflow_signed, /* complain_on_overflow */
382 ppc64_elf_branch_reloc, /* special_function */
383 "R_PPC64_REL24", /* name */
384 FALSE, /* partial_inplace */
385 0, /* src_mask */
386 0x03fffffc, /* dst_mask */
387 TRUE), /* pcrel_offset */
388
389 /* A relative 16 bit branch; the lower two bits must be zero. */
390 HOWTO (R_PPC64_REL14, /* type */
391 0, /* rightshift */
392 2, /* size (0 = byte, 1 = short, 2 = long) */
393 16, /* bitsize */
394 TRUE, /* pc_relative */
395 0, /* bitpos */
396 complain_overflow_signed, /* complain_on_overflow */
397 ppc64_elf_branch_reloc, /* special_function */
398 "R_PPC64_REL14", /* name */
399 FALSE, /* partial_inplace */
400 0, /* src_mask */
401 0x0000fffc, /* dst_mask */
402 TRUE), /* pcrel_offset */
403
404 /* A relative 16 bit branch. Bit 10 should be set to indicate that
405 the branch is expected to be taken. The lower two bits must be
406 zero. */
407 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
408 0, /* rightshift */
409 2, /* size (0 = byte, 1 = short, 2 = long) */
410 16, /* bitsize */
411 TRUE, /* pc_relative */
412 0, /* bitpos */
413 complain_overflow_signed, /* complain_on_overflow */
414 ppc64_elf_brtaken_reloc, /* special_function */
415 "R_PPC64_REL14_BRTAKEN", /* name */
416 FALSE, /* partial_inplace */
417 0, /* src_mask */
418 0x0000fffc, /* dst_mask */
419 TRUE), /* pcrel_offset */
420
421 /* A relative 16 bit branch. Bit 10 should be set to indicate that
422 the branch is not expected to be taken. The lower two bits must
423 be zero. */
424 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
425 0, /* rightshift */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
427 16, /* bitsize */
428 TRUE, /* pc_relative */
429 0, /* bitpos */
430 complain_overflow_signed, /* complain_on_overflow */
431 ppc64_elf_brtaken_reloc, /* special_function */
432 "R_PPC64_REL14_BRNTAKEN",/* name */
433 FALSE, /* partial_inplace */
434 0, /* src_mask */
435 0x0000fffc, /* dst_mask */
436 TRUE), /* pcrel_offset */
437
438 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
439 symbol. */
440 HOWTO (R_PPC64_GOT16, /* type */
441 0, /* rightshift */
442 1, /* size (0 = byte, 1 = short, 2 = long) */
443 16, /* bitsize */
444 FALSE, /* pc_relative */
445 0, /* bitpos */
446 complain_overflow_signed, /* complain_on_overflow */
447 ppc64_elf_unhandled_reloc, /* special_function */
448 "R_PPC64_GOT16", /* name */
449 FALSE, /* partial_inplace */
450 0, /* src_mask */
451 0xffff, /* dst_mask */
452 FALSE), /* pcrel_offset */
453
454 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
455 the symbol. */
456 HOWTO (R_PPC64_GOT16_LO, /* type */
457 0, /* rightshift */
458 1, /* size (0 = byte, 1 = short, 2 = long) */
459 16, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_dont, /* complain_on_overflow */
463 ppc64_elf_unhandled_reloc, /* special_function */
464 "R_PPC64_GOT16_LO", /* name */
465 FALSE, /* partial_inplace */
466 0, /* src_mask */
467 0xffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
471 the symbol. */
472 HOWTO (R_PPC64_GOT16_HI, /* type */
473 16, /* rightshift */
474 1, /* size (0 = byte, 1 = short, 2 = long) */
475 16, /* bitsize */
476 FALSE, /* pc_relative */
477 0, /* bitpos */
478 complain_overflow_dont,/* complain_on_overflow */
479 ppc64_elf_unhandled_reloc, /* special_function */
480 "R_PPC64_GOT16_HI", /* name */
481 FALSE, /* partial_inplace */
482 0, /* src_mask */
483 0xffff, /* dst_mask */
484 FALSE), /* pcrel_offset */
485
486 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
487 the symbol. */
488 HOWTO (R_PPC64_GOT16_HA, /* type */
489 16, /* rightshift */
490 1, /* size (0 = byte, 1 = short, 2 = long) */
491 16, /* bitsize */
492 FALSE, /* pc_relative */
493 0, /* bitpos */
494 complain_overflow_dont,/* complain_on_overflow */
495 ppc64_elf_unhandled_reloc, /* special_function */
496 "R_PPC64_GOT16_HA", /* name */
497 FALSE, /* partial_inplace */
498 0, /* src_mask */
499 0xffff, /* dst_mask */
500 FALSE), /* pcrel_offset */
501
502 /* This is used only by the dynamic linker. The symbol should exist
503 both in the object being run and in some shared library. The
504 dynamic linker copies the data addressed by the symbol from the
505 shared library into the object, because the object being
506 run has to have the data at some particular address. */
507 HOWTO (R_PPC64_COPY, /* type */
508 0, /* rightshift */
509 0, /* this one is variable size */
510 0, /* bitsize */
511 FALSE, /* pc_relative */
512 0, /* bitpos */
513 complain_overflow_dont, /* complain_on_overflow */
514 ppc64_elf_unhandled_reloc, /* special_function */
515 "R_PPC64_COPY", /* name */
516 FALSE, /* partial_inplace */
517 0, /* src_mask */
518 0, /* dst_mask */
519 FALSE), /* pcrel_offset */
520
521 /* Like R_PPC64_ADDR64, but used when setting global offset table
522 entries. */
523 HOWTO (R_PPC64_GLOB_DAT, /* type */
524 0, /* rightshift */
525 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
526 64, /* bitsize */
527 FALSE, /* pc_relative */
528 0, /* bitpos */
529 complain_overflow_dont, /* complain_on_overflow */
530 ppc64_elf_unhandled_reloc, /* special_function */
531 "R_PPC64_GLOB_DAT", /* name */
532 FALSE, /* partial_inplace */
533 0, /* src_mask */
534 ONES (64), /* dst_mask */
535 FALSE), /* pcrel_offset */
536
537 /* Created by the link editor. Marks a procedure linkage table
538 entry for a symbol. */
539 HOWTO (R_PPC64_JMP_SLOT, /* type */
540 0, /* rightshift */
541 0, /* size (0 = byte, 1 = short, 2 = long) */
542 0, /* bitsize */
543 FALSE, /* pc_relative */
544 0, /* bitpos */
545 complain_overflow_dont, /* complain_on_overflow */
546 ppc64_elf_unhandled_reloc, /* special_function */
547 "R_PPC64_JMP_SLOT", /* name */
548 FALSE, /* partial_inplace */
549 0, /* src_mask */
550 0, /* dst_mask */
551 FALSE), /* pcrel_offset */
552
553 /* Used only by the dynamic linker. When the object is run, this
554 doubleword64 is set to the load address of the object, plus the
555 addend. */
556 HOWTO (R_PPC64_RELATIVE, /* type */
557 0, /* rightshift */
558 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
559 64, /* bitsize */
560 FALSE, /* pc_relative */
561 0, /* bitpos */
562 complain_overflow_dont, /* complain_on_overflow */
563 bfd_elf_generic_reloc, /* special_function */
564 "R_PPC64_RELATIVE", /* name */
565 FALSE, /* partial_inplace */
566 0, /* src_mask */
567 ONES (64), /* dst_mask */
568 FALSE), /* pcrel_offset */
569
570 /* Like R_PPC64_ADDR32, but may be unaligned. */
571 HOWTO (R_PPC64_UADDR32, /* type */
572 0, /* rightshift */
573 2, /* size (0 = byte, 1 = short, 2 = long) */
574 32, /* bitsize */
575 FALSE, /* pc_relative */
576 0, /* bitpos */
577 complain_overflow_bitfield, /* complain_on_overflow */
578 bfd_elf_generic_reloc, /* special_function */
579 "R_PPC64_UADDR32", /* name */
580 FALSE, /* partial_inplace */
581 0, /* src_mask */
582 0xffffffff, /* dst_mask */
583 FALSE), /* pcrel_offset */
584
585 /* Like R_PPC64_ADDR16, but may be unaligned. */
586 HOWTO (R_PPC64_UADDR16, /* type */
587 0, /* rightshift */
588 1, /* size (0 = byte, 1 = short, 2 = long) */
589 16, /* bitsize */
590 FALSE, /* pc_relative */
591 0, /* bitpos */
592 complain_overflow_bitfield, /* complain_on_overflow */
593 bfd_elf_generic_reloc, /* special_function */
594 "R_PPC64_UADDR16", /* name */
595 FALSE, /* partial_inplace */
596 0, /* src_mask */
597 0xffff, /* dst_mask */
598 FALSE), /* pcrel_offset */
599
600 /* 32-bit PC relative. */
601 HOWTO (R_PPC64_REL32, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 32, /* bitsize */
605 TRUE, /* pc_relative */
606 0, /* bitpos */
607 /* FIXME: Verify. Was complain_overflow_bitfield. */
608 complain_overflow_signed, /* complain_on_overflow */
609 bfd_elf_generic_reloc, /* special_function */
610 "R_PPC64_REL32", /* name */
611 FALSE, /* partial_inplace */
612 0, /* src_mask */
613 0xffffffff, /* dst_mask */
614 TRUE), /* pcrel_offset */
615
616 /* 32-bit relocation to the symbol's procedure linkage table. */
617 HOWTO (R_PPC64_PLT32, /* type */
618 0, /* rightshift */
619 2, /* size (0 = byte, 1 = short, 2 = long) */
620 32, /* bitsize */
621 FALSE, /* pc_relative */
622 0, /* bitpos */
623 complain_overflow_bitfield, /* complain_on_overflow */
624 ppc64_elf_unhandled_reloc, /* special_function */
625 "R_PPC64_PLT32", /* name */
626 FALSE, /* partial_inplace */
627 0, /* src_mask */
628 0xffffffff, /* dst_mask */
629 FALSE), /* pcrel_offset */
630
631 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
632 FIXME: R_PPC64_PLTREL32 not supported. */
633 HOWTO (R_PPC64_PLTREL32, /* type */
634 0, /* rightshift */
635 2, /* size (0 = byte, 1 = short, 2 = long) */
636 32, /* bitsize */
637 TRUE, /* pc_relative */
638 0, /* bitpos */
639 complain_overflow_signed, /* complain_on_overflow */
640 bfd_elf_generic_reloc, /* special_function */
641 "R_PPC64_PLTREL32", /* name */
642 FALSE, /* partial_inplace */
643 0, /* src_mask */
644 0xffffffff, /* dst_mask */
645 TRUE), /* pcrel_offset */
646
647 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
648 the symbol. */
649 HOWTO (R_PPC64_PLT16_LO, /* type */
650 0, /* rightshift */
651 1, /* size (0 = byte, 1 = short, 2 = long) */
652 16, /* bitsize */
653 FALSE, /* pc_relative */
654 0, /* bitpos */
655 complain_overflow_dont, /* complain_on_overflow */
656 ppc64_elf_unhandled_reloc, /* special_function */
657 "R_PPC64_PLT16_LO", /* name */
658 FALSE, /* partial_inplace */
659 0, /* src_mask */
660 0xffff, /* dst_mask */
661 FALSE), /* pcrel_offset */
662
663 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
664 the symbol. */
665 HOWTO (R_PPC64_PLT16_HI, /* type */
666 16, /* rightshift */
667 1, /* size (0 = byte, 1 = short, 2 = long) */
668 16, /* bitsize */
669 FALSE, /* pc_relative */
670 0, /* bitpos */
671 complain_overflow_dont, /* complain_on_overflow */
672 ppc64_elf_unhandled_reloc, /* special_function */
673 "R_PPC64_PLT16_HI", /* name */
674 FALSE, /* partial_inplace */
675 0, /* src_mask */
676 0xffff, /* dst_mask */
677 FALSE), /* pcrel_offset */
678
679 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
680 the symbol. */
681 HOWTO (R_PPC64_PLT16_HA, /* type */
682 16, /* rightshift */
683 1, /* size (0 = byte, 1 = short, 2 = long) */
684 16, /* bitsize */
685 FALSE, /* pc_relative */
686 0, /* bitpos */
687 complain_overflow_dont, /* complain_on_overflow */
688 ppc64_elf_unhandled_reloc, /* special_function */
689 "R_PPC64_PLT16_HA", /* name */
690 FALSE, /* partial_inplace */
691 0, /* src_mask */
692 0xffff, /* dst_mask */
693 FALSE), /* pcrel_offset */
694
695 /* 16-bit section relative relocation. */
696 HOWTO (R_PPC64_SECTOFF, /* type */
697 0, /* rightshift */
698 1, /* size (0 = byte, 1 = short, 2 = long) */
699 16, /* bitsize */
700 FALSE, /* pc_relative */
701 0, /* bitpos */
702 complain_overflow_bitfield, /* complain_on_overflow */
703 ppc64_elf_sectoff_reloc, /* special_function */
704 "R_PPC64_SECTOFF", /* name */
705 FALSE, /* partial_inplace */
706 0, /* src_mask */
707 0xffff, /* dst_mask */
708 FALSE), /* pcrel_offset */
709
710 /* Like R_PPC64_SECTOFF, but no overflow warning. */
711 HOWTO (R_PPC64_SECTOFF_LO, /* type */
712 0, /* rightshift */
713 1, /* size (0 = byte, 1 = short, 2 = long) */
714 16, /* bitsize */
715 FALSE, /* pc_relative */
716 0, /* bitpos */
717 complain_overflow_dont, /* complain_on_overflow */
718 ppc64_elf_sectoff_reloc, /* special_function */
719 "R_PPC64_SECTOFF_LO", /* name */
720 FALSE, /* partial_inplace */
721 0, /* src_mask */
722 0xffff, /* dst_mask */
723 FALSE), /* pcrel_offset */
724
725 /* 16-bit upper half section relative relocation. */
726 HOWTO (R_PPC64_SECTOFF_HI, /* type */
727 16, /* rightshift */
728 1, /* size (0 = byte, 1 = short, 2 = long) */
729 16, /* bitsize */
730 FALSE, /* pc_relative */
731 0, /* bitpos */
732 complain_overflow_dont, /* complain_on_overflow */
733 ppc64_elf_sectoff_reloc, /* special_function */
734 "R_PPC64_SECTOFF_HI", /* name */
735 FALSE, /* partial_inplace */
736 0, /* src_mask */
737 0xffff, /* dst_mask */
738 FALSE), /* pcrel_offset */
739
740 /* 16-bit upper half adjusted section relative relocation. */
741 HOWTO (R_PPC64_SECTOFF_HA, /* type */
742 16, /* rightshift */
743 1, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont, /* complain_on_overflow */
748 ppc64_elf_sectoff_ha_reloc, /* special_function */
749 "R_PPC64_SECTOFF_HA", /* name */
750 FALSE, /* partial_inplace */
751 0, /* src_mask */
752 0xffff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 /* Like R_PPC64_REL24 without touching the two least significant bits. */
756 HOWTO (R_PPC64_REL30, /* type */
757 2, /* rightshift */
758 2, /* size (0 = byte, 1 = short, 2 = long) */
759 30, /* bitsize */
760 TRUE, /* pc_relative */
761 0, /* bitpos */
762 complain_overflow_dont, /* complain_on_overflow */
763 bfd_elf_generic_reloc, /* special_function */
764 "R_PPC64_REL30", /* name */
765 FALSE, /* partial_inplace */
766 0, /* src_mask */
767 0xfffffffc, /* dst_mask */
768 TRUE), /* pcrel_offset */
769
770 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
771
772 /* A standard 64-bit relocation. */
773 HOWTO (R_PPC64_ADDR64, /* type */
774 0, /* rightshift */
775 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
776 64, /* bitsize */
777 FALSE, /* pc_relative */
778 0, /* bitpos */
779 complain_overflow_dont, /* complain_on_overflow */
780 bfd_elf_generic_reloc, /* special_function */
781 "R_PPC64_ADDR64", /* name */
782 FALSE, /* partial_inplace */
783 0, /* src_mask */
784 ONES (64), /* dst_mask */
785 FALSE), /* pcrel_offset */
786
787 /* The bits 32-47 of an address. */
788 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
789 32, /* rightshift */
790 1, /* size (0 = byte, 1 = short, 2 = long) */
791 16, /* bitsize */
792 FALSE, /* pc_relative */
793 0, /* bitpos */
794 complain_overflow_dont, /* complain_on_overflow */
795 bfd_elf_generic_reloc, /* special_function */
796 "R_PPC64_ADDR16_HIGHER", /* name */
797 FALSE, /* partial_inplace */
798 0, /* src_mask */
799 0xffff, /* dst_mask */
800 FALSE), /* pcrel_offset */
801
802 /* The bits 32-47 of an address, plus 1 if the contents of the low
803 16 bits, treated as a signed number, is negative. */
804 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
805 32, /* rightshift */
806 1, /* size (0 = byte, 1 = short, 2 = long) */
807 16, /* bitsize */
808 FALSE, /* pc_relative */
809 0, /* bitpos */
810 complain_overflow_dont, /* complain_on_overflow */
811 ppc64_elf_ha_reloc, /* special_function */
812 "R_PPC64_ADDR16_HIGHERA", /* name */
813 FALSE, /* partial_inplace */
814 0, /* src_mask */
815 0xffff, /* dst_mask */
816 FALSE), /* pcrel_offset */
817
818 /* The bits 48-63 of an address. */
819 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
820 48, /* rightshift */
821 1, /* size (0 = byte, 1 = short, 2 = long) */
822 16, /* bitsize */
823 FALSE, /* pc_relative */
824 0, /* bitpos */
825 complain_overflow_dont, /* complain_on_overflow */
826 bfd_elf_generic_reloc, /* special_function */
827 "R_PPC64_ADDR16_HIGHEST", /* name */
828 FALSE, /* partial_inplace */
829 0, /* src_mask */
830 0xffff, /* dst_mask */
831 FALSE), /* pcrel_offset */
832
833 /* The bits 48-63 of an address, plus 1 if the contents of the low
834 16 bits, treated as a signed number, is negative. */
835 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
836 48, /* rightshift */
837 1, /* size (0 = byte, 1 = short, 2 = long) */
838 16, /* bitsize */
839 FALSE, /* pc_relative */
840 0, /* bitpos */
841 complain_overflow_dont, /* complain_on_overflow */
842 ppc64_elf_ha_reloc, /* special_function */
843 "R_PPC64_ADDR16_HIGHESTA", /* name */
844 FALSE, /* partial_inplace */
845 0, /* src_mask */
846 0xffff, /* dst_mask */
847 FALSE), /* pcrel_offset */
848
849 /* Like ADDR64, but may be unaligned. */
850 HOWTO (R_PPC64_UADDR64, /* type */
851 0, /* rightshift */
852 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
853 64, /* bitsize */
854 FALSE, /* pc_relative */
855 0, /* bitpos */
856 complain_overflow_dont, /* complain_on_overflow */
857 bfd_elf_generic_reloc, /* special_function */
858 "R_PPC64_UADDR64", /* name */
859 FALSE, /* partial_inplace */
860 0, /* src_mask */
861 ONES (64), /* dst_mask */
862 FALSE), /* pcrel_offset */
863
864 /* 64-bit relative relocation. */
865 HOWTO (R_PPC64_REL64, /* type */
866 0, /* rightshift */
867 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
868 64, /* bitsize */
869 TRUE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont, /* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_PPC64_REL64", /* name */
874 FALSE, /* partial_inplace */
875 0, /* src_mask */
876 ONES (64), /* dst_mask */
877 TRUE), /* pcrel_offset */
878
879 /* 64-bit relocation to the symbol's procedure linkage table. */
880 HOWTO (R_PPC64_PLT64, /* type */
881 0, /* rightshift */
882 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
883 64, /* bitsize */
884 FALSE, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont, /* complain_on_overflow */
887 ppc64_elf_unhandled_reloc, /* special_function */
888 "R_PPC64_PLT64", /* name */
889 FALSE, /* partial_inplace */
890 0, /* src_mask */
891 ONES (64), /* dst_mask */
892 FALSE), /* pcrel_offset */
893
894 /* 64-bit PC relative relocation to the symbol's procedure linkage
895 table. */
896 /* FIXME: R_PPC64_PLTREL64 not supported. */
897 HOWTO (R_PPC64_PLTREL64, /* type */
898 0, /* rightshift */
899 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
900 64, /* bitsize */
901 TRUE, /* pc_relative */
902 0, /* bitpos */
903 complain_overflow_dont, /* complain_on_overflow */
904 ppc64_elf_unhandled_reloc, /* special_function */
905 "R_PPC64_PLTREL64", /* name */
906 FALSE, /* partial_inplace */
907 0, /* src_mask */
908 ONES (64), /* dst_mask */
909 TRUE), /* pcrel_offset */
910
911 /* 16 bit TOC-relative relocation. */
912
913 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
914 HOWTO (R_PPC64_TOC16, /* type */
915 0, /* rightshift */
916 1, /* size (0 = byte, 1 = short, 2 = long) */
917 16, /* bitsize */
918 FALSE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_signed, /* complain_on_overflow */
921 ppc64_elf_toc_reloc, /* special_function */
922 "R_PPC64_TOC16", /* name */
923 FALSE, /* partial_inplace */
924 0, /* src_mask */
925 0xffff, /* dst_mask */
926 FALSE), /* pcrel_offset */
927
928 /* 16 bit TOC-relative relocation without overflow. */
929
930 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
931 HOWTO (R_PPC64_TOC16_LO, /* type */
932 0, /* rightshift */
933 1, /* size (0 = byte, 1 = short, 2 = long) */
934 16, /* bitsize */
935 FALSE, /* pc_relative */
936 0, /* bitpos */
937 complain_overflow_dont, /* complain_on_overflow */
938 ppc64_elf_toc_reloc, /* special_function */
939 "R_PPC64_TOC16_LO", /* name */
940 FALSE, /* partial_inplace */
941 0, /* src_mask */
942 0xffff, /* dst_mask */
943 FALSE), /* pcrel_offset */
944
945 /* 16 bit TOC-relative relocation, high 16 bits. */
946
947 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
948 HOWTO (R_PPC64_TOC16_HI, /* type */
949 16, /* rightshift */
950 1, /* size (0 = byte, 1 = short, 2 = long) */
951 16, /* bitsize */
952 FALSE, /* pc_relative */
953 0, /* bitpos */
954 complain_overflow_dont, /* complain_on_overflow */
955 ppc64_elf_toc_reloc, /* special_function */
956 "R_PPC64_TOC16_HI", /* name */
957 FALSE, /* partial_inplace */
958 0, /* src_mask */
959 0xffff, /* dst_mask */
960 FALSE), /* pcrel_offset */
961
962 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
963 contents of the low 16 bits, treated as a signed number, is
964 negative. */
965
966 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
967 HOWTO (R_PPC64_TOC16_HA, /* type */
968 16, /* rightshift */
969 1, /* size (0 = byte, 1 = short, 2 = long) */
970 16, /* bitsize */
971 FALSE, /* pc_relative */
972 0, /* bitpos */
973 complain_overflow_dont, /* complain_on_overflow */
974 ppc64_elf_toc_ha_reloc, /* special_function */
975 "R_PPC64_TOC16_HA", /* name */
976 FALSE, /* partial_inplace */
977 0, /* src_mask */
978 0xffff, /* dst_mask */
979 FALSE), /* pcrel_offset */
980
981 /* 64-bit relocation; insert value of TOC base (.TOC.). */
982
983 /* R_PPC64_TOC 51 doubleword64 .TOC. */
984 HOWTO (R_PPC64_TOC, /* type */
985 0, /* rightshift */
986 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
987 64, /* bitsize */
988 FALSE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_bitfield, /* complain_on_overflow */
991 ppc64_elf_toc64_reloc, /* special_function */
992 "R_PPC64_TOC", /* name */
993 FALSE, /* partial_inplace */
994 0, /* src_mask */
995 ONES (64), /* dst_mask */
996 FALSE), /* pcrel_offset */
997
998 /* Like R_PPC64_GOT16, but also informs the link editor that the
999 value to relocate may (!) refer to a PLT entry which the link
1000 editor (a) may replace with the symbol value. If the link editor
1001 is unable to fully resolve the symbol, it may (b) create a PLT
1002 entry and store the address to the new PLT entry in the GOT.
1003 This permits lazy resolution of function symbols at run time.
1004 The link editor may also skip all of this and just (c) emit a
1005 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1006 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1007 HOWTO (R_PPC64_PLTGOT16, /* type */
1008 0, /* rightshift */
1009 1, /* size (0 = byte, 1 = short, 2 = long) */
1010 16, /* bitsize */
1011 FALSE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_signed, /* complain_on_overflow */
1014 ppc64_elf_unhandled_reloc, /* special_function */
1015 "R_PPC64_PLTGOT16", /* name */
1016 FALSE, /* partial_inplace */
1017 0, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE), /* pcrel_offset */
1020
1021 /* Like R_PPC64_PLTGOT16, but without overflow. */
1022 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1023 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1024 0, /* rightshift */
1025 1, /* size (0 = byte, 1 = short, 2 = long) */
1026 16, /* bitsize */
1027 FALSE, /* pc_relative */
1028 0, /* bitpos */
1029 complain_overflow_dont, /* complain_on_overflow */
1030 ppc64_elf_unhandled_reloc, /* special_function */
1031 "R_PPC64_PLTGOT16_LO", /* name */
1032 FALSE, /* partial_inplace */
1033 0, /* src_mask */
1034 0xffff, /* dst_mask */
1035 FALSE), /* pcrel_offset */
1036
1037 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1038 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1039 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1040 16, /* rightshift */
1041 1, /* size (0 = byte, 1 = short, 2 = long) */
1042 16, /* bitsize */
1043 FALSE, /* pc_relative */
1044 0, /* bitpos */
1045 complain_overflow_dont, /* complain_on_overflow */
1046 ppc64_elf_unhandled_reloc, /* special_function */
1047 "R_PPC64_PLTGOT16_HI", /* name */
1048 FALSE, /* partial_inplace */
1049 0, /* src_mask */
1050 0xffff, /* dst_mask */
1051 FALSE), /* pcrel_offset */
1052
1053 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1054 1 if the contents of the low 16 bits, treated as a signed number,
1055 is negative. */
1056 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1057 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1058 16, /* rightshift */
1059 1, /* size (0 = byte, 1 = short, 2 = long) */
1060 16, /* bitsize */
1061 FALSE, /* pc_relative */
1062 0, /* bitpos */
1063 complain_overflow_dont,/* complain_on_overflow */
1064 ppc64_elf_unhandled_reloc, /* special_function */
1065 "R_PPC64_PLTGOT16_HA", /* name */
1066 FALSE, /* partial_inplace */
1067 0, /* src_mask */
1068 0xffff, /* dst_mask */
1069 FALSE), /* pcrel_offset */
1070
1071 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1072 HOWTO (R_PPC64_ADDR16_DS, /* type */
1073 0, /* rightshift */
1074 1, /* size (0 = byte, 1 = short, 2 = long) */
1075 16, /* bitsize */
1076 FALSE, /* pc_relative */
1077 0, /* bitpos */
1078 complain_overflow_bitfield, /* complain_on_overflow */
1079 bfd_elf_generic_reloc, /* special_function */
1080 "R_PPC64_ADDR16_DS", /* name */
1081 FALSE, /* partial_inplace */
1082 0, /* src_mask */
1083 0xfffc, /* dst_mask */
1084 FALSE), /* pcrel_offset */
1085
1086 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1087 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1088 0, /* rightshift */
1089 1, /* size (0 = byte, 1 = short, 2 = long) */
1090 16, /* bitsize */
1091 FALSE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_dont,/* complain_on_overflow */
1094 bfd_elf_generic_reloc, /* special_function */
1095 "R_PPC64_ADDR16_LO_DS",/* name */
1096 FALSE, /* partial_inplace */
1097 0, /* src_mask */
1098 0xfffc, /* dst_mask */
1099 FALSE), /* pcrel_offset */
1100
1101 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1102 HOWTO (R_PPC64_GOT16_DS, /* type */
1103 0, /* rightshift */
1104 1, /* size (0 = byte, 1 = short, 2 = long) */
1105 16, /* bitsize */
1106 FALSE, /* pc_relative */
1107 0, /* bitpos */
1108 complain_overflow_signed, /* complain_on_overflow */
1109 ppc64_elf_unhandled_reloc, /* special_function */
1110 "R_PPC64_GOT16_DS", /* name */
1111 FALSE, /* partial_inplace */
1112 0, /* src_mask */
1113 0xfffc, /* dst_mask */
1114 FALSE), /* pcrel_offset */
1115
1116 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1117 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1118 0, /* rightshift */
1119 1, /* size (0 = byte, 1 = short, 2 = long) */
1120 16, /* bitsize */
1121 FALSE, /* pc_relative */
1122 0, /* bitpos */
1123 complain_overflow_dont, /* complain_on_overflow */
1124 ppc64_elf_unhandled_reloc, /* special_function */
1125 "R_PPC64_GOT16_LO_DS", /* name */
1126 FALSE, /* partial_inplace */
1127 0, /* src_mask */
1128 0xfffc, /* dst_mask */
1129 FALSE), /* pcrel_offset */
1130
1131 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1132 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1133 0, /* rightshift */
1134 1, /* size (0 = byte, 1 = short, 2 = long) */
1135 16, /* bitsize */
1136 FALSE, /* pc_relative */
1137 0, /* bitpos */
1138 complain_overflow_dont, /* complain_on_overflow */
1139 ppc64_elf_unhandled_reloc, /* special_function */
1140 "R_PPC64_PLT16_LO_DS", /* name */
1141 FALSE, /* partial_inplace */
1142 0, /* src_mask */
1143 0xfffc, /* dst_mask */
1144 FALSE), /* pcrel_offset */
1145
1146 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1147 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1148 0, /* rightshift */
1149 1, /* size (0 = byte, 1 = short, 2 = long) */
1150 16, /* bitsize */
1151 FALSE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_bitfield, /* complain_on_overflow */
1154 ppc64_elf_sectoff_reloc, /* special_function */
1155 "R_PPC64_SECTOFF_DS", /* name */
1156 FALSE, /* partial_inplace */
1157 0, /* src_mask */
1158 0xfffc, /* dst_mask */
1159 FALSE), /* pcrel_offset */
1160
1161 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1162 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1163 0, /* rightshift */
1164 1, /* size (0 = byte, 1 = short, 2 = long) */
1165 16, /* bitsize */
1166 FALSE, /* pc_relative */
1167 0, /* bitpos */
1168 complain_overflow_dont, /* complain_on_overflow */
1169 ppc64_elf_sectoff_reloc, /* special_function */
1170 "R_PPC64_SECTOFF_LO_DS",/* name */
1171 FALSE, /* partial_inplace */
1172 0, /* src_mask */
1173 0xfffc, /* dst_mask */
1174 FALSE), /* pcrel_offset */
1175
1176 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1177 HOWTO (R_PPC64_TOC16_DS, /* type */
1178 0, /* rightshift */
1179 1, /* size (0 = byte, 1 = short, 2 = long) */
1180 16, /* bitsize */
1181 FALSE, /* pc_relative */
1182 0, /* bitpos */
1183 complain_overflow_signed, /* complain_on_overflow */
1184 ppc64_elf_toc_reloc, /* special_function */
1185 "R_PPC64_TOC16_DS", /* name */
1186 FALSE, /* partial_inplace */
1187 0, /* src_mask */
1188 0xfffc, /* dst_mask */
1189 FALSE), /* pcrel_offset */
1190
1191 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1192 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1193 0, /* rightshift */
1194 1, /* size (0 = byte, 1 = short, 2 = long) */
1195 16, /* bitsize */
1196 FALSE, /* pc_relative */
1197 0, /* bitpos */
1198 complain_overflow_dont, /* complain_on_overflow */
1199 ppc64_elf_toc_reloc, /* special_function */
1200 "R_PPC64_TOC16_LO_DS", /* name */
1201 FALSE, /* partial_inplace */
1202 0, /* src_mask */
1203 0xfffc, /* dst_mask */
1204 FALSE), /* pcrel_offset */
1205
1206 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1207 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1208 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1209 0, /* rightshift */
1210 1, /* size (0 = byte, 1 = short, 2 = long) */
1211 16, /* bitsize */
1212 FALSE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_signed, /* complain_on_overflow */
1215 ppc64_elf_unhandled_reloc, /* special_function */
1216 "R_PPC64_PLTGOT16_DS", /* name */
1217 FALSE, /* partial_inplace */
1218 0, /* src_mask */
1219 0xfffc, /* dst_mask */
1220 FALSE), /* pcrel_offset */
1221
1222 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1223 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1224 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1225 0, /* rightshift */
1226 1, /* size (0 = byte, 1 = short, 2 = long) */
1227 16, /* bitsize */
1228 FALSE, /* pc_relative */
1229 0, /* bitpos */
1230 complain_overflow_dont, /* complain_on_overflow */
1231 ppc64_elf_unhandled_reloc, /* special_function */
1232 "R_PPC64_PLTGOT16_LO_DS",/* name */
1233 FALSE, /* partial_inplace */
1234 0, /* src_mask */
1235 0xfffc, /* dst_mask */
1236 FALSE), /* pcrel_offset */
1237
1238 /* Marker reloc for TLS. */
1239 HOWTO (R_PPC64_TLS,
1240 0, /* rightshift */
1241 2, /* size (0 = byte, 1 = short, 2 = long) */
1242 32, /* bitsize */
1243 FALSE, /* pc_relative */
1244 0, /* bitpos */
1245 complain_overflow_dont, /* complain_on_overflow */
1246 bfd_elf_generic_reloc, /* special_function */
1247 "R_PPC64_TLS", /* name */
1248 FALSE, /* partial_inplace */
1249 0, /* src_mask */
1250 0, /* dst_mask */
1251 FALSE), /* pcrel_offset */
1252
1253 /* Computes the load module index of the load module that contains the
1254 definition of its TLS sym. */
1255 HOWTO (R_PPC64_DTPMOD64,
1256 0, /* rightshift */
1257 4, /* size (0 = byte, 1 = short, 2 = long) */
1258 64, /* bitsize */
1259 FALSE, /* pc_relative */
1260 0, /* bitpos */
1261 complain_overflow_dont, /* complain_on_overflow */
1262 ppc64_elf_unhandled_reloc, /* special_function */
1263 "R_PPC64_DTPMOD64", /* name */
1264 FALSE, /* partial_inplace */
1265 0, /* src_mask */
1266 ONES (64), /* dst_mask */
1267 FALSE), /* pcrel_offset */
1268
1269 /* Computes a dtv-relative displacement, the difference between the value
1270 of sym+add and the base address of the thread-local storage block that
1271 contains the definition of sym, minus 0x8000. */
1272 HOWTO (R_PPC64_DTPREL64,
1273 0, /* rightshift */
1274 4, /* size (0 = byte, 1 = short, 2 = long) */
1275 64, /* bitsize */
1276 FALSE, /* pc_relative */
1277 0, /* bitpos */
1278 complain_overflow_dont, /* complain_on_overflow */
1279 ppc64_elf_unhandled_reloc, /* special_function */
1280 "R_PPC64_DTPREL64", /* name */
1281 FALSE, /* partial_inplace */
1282 0, /* src_mask */
1283 ONES (64), /* dst_mask */
1284 FALSE), /* pcrel_offset */
1285
1286 /* A 16 bit dtprel reloc. */
1287 HOWTO (R_PPC64_DTPREL16,
1288 0, /* rightshift */
1289 1, /* size (0 = byte, 1 = short, 2 = long) */
1290 16, /* bitsize */
1291 FALSE, /* pc_relative */
1292 0, /* bitpos */
1293 complain_overflow_signed, /* complain_on_overflow */
1294 ppc64_elf_unhandled_reloc, /* special_function */
1295 "R_PPC64_DTPREL16", /* name */
1296 FALSE, /* partial_inplace */
1297 0, /* src_mask */
1298 0xffff, /* dst_mask */
1299 FALSE), /* pcrel_offset */
1300
1301 /* Like DTPREL16, but no overflow. */
1302 HOWTO (R_PPC64_DTPREL16_LO,
1303 0, /* rightshift */
1304 1, /* size (0 = byte, 1 = short, 2 = long) */
1305 16, /* bitsize */
1306 FALSE, /* pc_relative */
1307 0, /* bitpos */
1308 complain_overflow_dont, /* complain_on_overflow */
1309 ppc64_elf_unhandled_reloc, /* special_function */
1310 "R_PPC64_DTPREL16_LO", /* name */
1311 FALSE, /* partial_inplace */
1312 0, /* src_mask */
1313 0xffff, /* dst_mask */
1314 FALSE), /* pcrel_offset */
1315
1316 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1317 HOWTO (R_PPC64_DTPREL16_HI,
1318 16, /* rightshift */
1319 1, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont, /* complain_on_overflow */
1324 ppc64_elf_unhandled_reloc, /* special_function */
1325 "R_PPC64_DTPREL16_HI", /* name */
1326 FALSE, /* partial_inplace */
1327 0, /* src_mask */
1328 0xffff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1332 HOWTO (R_PPC64_DTPREL16_HA,
1333 16, /* rightshift */
1334 1, /* size (0 = byte, 1 = short, 2 = long) */
1335 16, /* bitsize */
1336 FALSE, /* pc_relative */
1337 0, /* bitpos */
1338 complain_overflow_dont, /* complain_on_overflow */
1339 ppc64_elf_unhandled_reloc, /* special_function */
1340 "R_PPC64_DTPREL16_HA", /* name */
1341 FALSE, /* partial_inplace */
1342 0, /* src_mask */
1343 0xffff, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1347 HOWTO (R_PPC64_DTPREL16_HIGHER,
1348 32, /* rightshift */
1349 1, /* size (0 = byte, 1 = short, 2 = long) */
1350 16, /* bitsize */
1351 FALSE, /* pc_relative */
1352 0, /* bitpos */
1353 complain_overflow_dont, /* complain_on_overflow */
1354 ppc64_elf_unhandled_reloc, /* special_function */
1355 "R_PPC64_DTPREL16_HIGHER", /* name */
1356 FALSE, /* partial_inplace */
1357 0, /* src_mask */
1358 0xffff, /* dst_mask */
1359 FALSE), /* pcrel_offset */
1360
1361 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1362 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1363 32, /* rightshift */
1364 1, /* size (0 = byte, 1 = short, 2 = long) */
1365 16, /* bitsize */
1366 FALSE, /* pc_relative */
1367 0, /* bitpos */
1368 complain_overflow_dont, /* complain_on_overflow */
1369 ppc64_elf_unhandled_reloc, /* special_function */
1370 "R_PPC64_DTPREL16_HIGHERA", /* name */
1371 FALSE, /* partial_inplace */
1372 0, /* src_mask */
1373 0xffff, /* dst_mask */
1374 FALSE), /* pcrel_offset */
1375
1376 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1377 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1378 48, /* rightshift */
1379 1, /* size (0 = byte, 1 = short, 2 = long) */
1380 16, /* bitsize */
1381 FALSE, /* pc_relative */
1382 0, /* bitpos */
1383 complain_overflow_dont, /* complain_on_overflow */
1384 ppc64_elf_unhandled_reloc, /* special_function */
1385 "R_PPC64_DTPREL16_HIGHEST", /* name */
1386 FALSE, /* partial_inplace */
1387 0, /* src_mask */
1388 0xffff, /* dst_mask */
1389 FALSE), /* pcrel_offset */
1390
1391 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1392 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1393 48, /* rightshift */
1394 1, /* size (0 = byte, 1 = short, 2 = long) */
1395 16, /* bitsize */
1396 FALSE, /* pc_relative */
1397 0, /* bitpos */
1398 complain_overflow_dont, /* complain_on_overflow */
1399 ppc64_elf_unhandled_reloc, /* special_function */
1400 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1401 FALSE, /* partial_inplace */
1402 0, /* src_mask */
1403 0xffff, /* dst_mask */
1404 FALSE), /* pcrel_offset */
1405
1406 /* Like DTPREL16, but for insns with a DS field. */
1407 HOWTO (R_PPC64_DTPREL16_DS,
1408 0, /* rightshift */
1409 1, /* size (0 = byte, 1 = short, 2 = long) */
1410 16, /* bitsize */
1411 FALSE, /* pc_relative */
1412 0, /* bitpos */
1413 complain_overflow_signed, /* complain_on_overflow */
1414 ppc64_elf_unhandled_reloc, /* special_function */
1415 "R_PPC64_DTPREL16_DS", /* name */
1416 FALSE, /* partial_inplace */
1417 0, /* src_mask */
1418 0xfffc, /* dst_mask */
1419 FALSE), /* pcrel_offset */
1420
1421 /* Like DTPREL16_DS, but no overflow. */
1422 HOWTO (R_PPC64_DTPREL16_LO_DS,
1423 0, /* rightshift */
1424 1, /* size (0 = byte, 1 = short, 2 = long) */
1425 16, /* bitsize */
1426 FALSE, /* pc_relative */
1427 0, /* bitpos */
1428 complain_overflow_dont, /* complain_on_overflow */
1429 ppc64_elf_unhandled_reloc, /* special_function */
1430 "R_PPC64_DTPREL16_LO_DS", /* name */
1431 FALSE, /* partial_inplace */
1432 0, /* src_mask */
1433 0xfffc, /* dst_mask */
1434 FALSE), /* pcrel_offset */
1435
1436 /* Computes a tp-relative displacement, the difference between the value of
1437 sym+add and the value of the thread pointer (r13). */
1438 HOWTO (R_PPC64_TPREL64,
1439 0, /* rightshift */
1440 4, /* size (0 = byte, 1 = short, 2 = long) */
1441 64, /* bitsize */
1442 FALSE, /* pc_relative */
1443 0, /* bitpos */
1444 complain_overflow_dont, /* complain_on_overflow */
1445 ppc64_elf_unhandled_reloc, /* special_function */
1446 "R_PPC64_TPREL64", /* name */
1447 FALSE, /* partial_inplace */
1448 0, /* src_mask */
1449 ONES (64), /* dst_mask */
1450 FALSE), /* pcrel_offset */
1451
1452 /* A 16 bit tprel reloc. */
1453 HOWTO (R_PPC64_TPREL16,
1454 0, /* rightshift */
1455 1, /* size (0 = byte, 1 = short, 2 = long) */
1456 16, /* bitsize */
1457 FALSE, /* pc_relative */
1458 0, /* bitpos */
1459 complain_overflow_signed, /* complain_on_overflow */
1460 ppc64_elf_unhandled_reloc, /* special_function */
1461 "R_PPC64_TPREL16", /* name */
1462 FALSE, /* partial_inplace */
1463 0, /* src_mask */
1464 0xffff, /* dst_mask */
1465 FALSE), /* pcrel_offset */
1466
1467 /* Like TPREL16, but no overflow. */
1468 HOWTO (R_PPC64_TPREL16_LO,
1469 0, /* rightshift */
1470 1, /* size (0 = byte, 1 = short, 2 = long) */
1471 16, /* bitsize */
1472 FALSE, /* pc_relative */
1473 0, /* bitpos */
1474 complain_overflow_dont, /* complain_on_overflow */
1475 ppc64_elf_unhandled_reloc, /* special_function */
1476 "R_PPC64_TPREL16_LO", /* name */
1477 FALSE, /* partial_inplace */
1478 0, /* src_mask */
1479 0xffff, /* dst_mask */
1480 FALSE), /* pcrel_offset */
1481
1482 /* Like TPREL16_LO, but next higher group of 16 bits. */
1483 HOWTO (R_PPC64_TPREL16_HI,
1484 16, /* rightshift */
1485 1, /* size (0 = byte, 1 = short, 2 = long) */
1486 16, /* bitsize */
1487 FALSE, /* pc_relative */
1488 0, /* bitpos */
1489 complain_overflow_dont, /* complain_on_overflow */
1490 ppc64_elf_unhandled_reloc, /* special_function */
1491 "R_PPC64_TPREL16_HI", /* name */
1492 FALSE, /* partial_inplace */
1493 0, /* src_mask */
1494 0xffff, /* dst_mask */
1495 FALSE), /* pcrel_offset */
1496
1497 /* Like TPREL16_HI, but adjust for low 16 bits. */
1498 HOWTO (R_PPC64_TPREL16_HA,
1499 16, /* rightshift */
1500 1, /* size (0 = byte, 1 = short, 2 = long) */
1501 16, /* bitsize */
1502 FALSE, /* pc_relative */
1503 0, /* bitpos */
1504 complain_overflow_dont, /* complain_on_overflow */
1505 ppc64_elf_unhandled_reloc, /* special_function */
1506 "R_PPC64_TPREL16_HA", /* name */
1507 FALSE, /* partial_inplace */
1508 0, /* src_mask */
1509 0xffff, /* dst_mask */
1510 FALSE), /* pcrel_offset */
1511
1512 /* Like TPREL16_HI, but next higher group of 16 bits. */
1513 HOWTO (R_PPC64_TPREL16_HIGHER,
1514 32, /* rightshift */
1515 1, /* size (0 = byte, 1 = short, 2 = long) */
1516 16, /* bitsize */
1517 FALSE, /* pc_relative */
1518 0, /* bitpos */
1519 complain_overflow_dont, /* complain_on_overflow */
1520 ppc64_elf_unhandled_reloc, /* special_function */
1521 "R_PPC64_TPREL16_HIGHER", /* name */
1522 FALSE, /* partial_inplace */
1523 0, /* src_mask */
1524 0xffff, /* dst_mask */
1525 FALSE), /* pcrel_offset */
1526
1527 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1528 HOWTO (R_PPC64_TPREL16_HIGHERA,
1529 32, /* rightshift */
1530 1, /* size (0 = byte, 1 = short, 2 = long) */
1531 16, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_dont, /* complain_on_overflow */
1535 ppc64_elf_unhandled_reloc, /* special_function */
1536 "R_PPC64_TPREL16_HIGHERA", /* name */
1537 FALSE, /* partial_inplace */
1538 0, /* src_mask */
1539 0xffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1543 HOWTO (R_PPC64_TPREL16_HIGHEST,
1544 48, /* rightshift */
1545 1, /* size (0 = byte, 1 = short, 2 = long) */
1546 16, /* bitsize */
1547 FALSE, /* pc_relative */
1548 0, /* bitpos */
1549 complain_overflow_dont, /* complain_on_overflow */
1550 ppc64_elf_unhandled_reloc, /* special_function */
1551 "R_PPC64_TPREL16_HIGHEST", /* name */
1552 FALSE, /* partial_inplace */
1553 0, /* src_mask */
1554 0xffff, /* dst_mask */
1555 FALSE), /* pcrel_offset */
1556
1557 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1558 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1559 48, /* rightshift */
1560 1, /* size (0 = byte, 1 = short, 2 = long) */
1561 16, /* bitsize */
1562 FALSE, /* pc_relative */
1563 0, /* bitpos */
1564 complain_overflow_dont, /* complain_on_overflow */
1565 ppc64_elf_unhandled_reloc, /* special_function */
1566 "R_PPC64_TPREL16_HIGHESTA", /* name */
1567 FALSE, /* partial_inplace */
1568 0, /* src_mask */
1569 0xffff, /* dst_mask */
1570 FALSE), /* pcrel_offset */
1571
1572 /* Like TPREL16, but for insns with a DS field. */
1573 HOWTO (R_PPC64_TPREL16_DS,
1574 0, /* rightshift */
1575 1, /* size (0 = byte, 1 = short, 2 = long) */
1576 16, /* bitsize */
1577 FALSE, /* pc_relative */
1578 0, /* bitpos */
1579 complain_overflow_signed, /* complain_on_overflow */
1580 ppc64_elf_unhandled_reloc, /* special_function */
1581 "R_PPC64_TPREL16_DS", /* name */
1582 FALSE, /* partial_inplace */
1583 0, /* src_mask */
1584 0xfffc, /* dst_mask */
1585 FALSE), /* pcrel_offset */
1586
1587 /* Like TPREL16_DS, but no overflow. */
1588 HOWTO (R_PPC64_TPREL16_LO_DS,
1589 0, /* rightshift */
1590 1, /* size (0 = byte, 1 = short, 2 = long) */
1591 16, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_dont, /* complain_on_overflow */
1595 ppc64_elf_unhandled_reloc, /* special_function */
1596 "R_PPC64_TPREL16_LO_DS", /* name */
1597 FALSE, /* partial_inplace */
1598 0, /* src_mask */
1599 0xfffc, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1603 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1604 to the first entry relative to the TOC base (r2). */
1605 HOWTO (R_PPC64_GOT_TLSGD16,
1606 0, /* rightshift */
1607 1, /* size (0 = byte, 1 = short, 2 = long) */
1608 16, /* bitsize */
1609 FALSE, /* pc_relative */
1610 0, /* bitpos */
1611 complain_overflow_signed, /* complain_on_overflow */
1612 ppc64_elf_unhandled_reloc, /* special_function */
1613 "R_PPC64_GOT_TLSGD16", /* name */
1614 FALSE, /* partial_inplace */
1615 0, /* src_mask */
1616 0xffff, /* dst_mask */
1617 FALSE), /* pcrel_offset */
1618
1619 /* Like GOT_TLSGD16, but no overflow. */
1620 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1621 0, /* rightshift */
1622 1, /* size (0 = byte, 1 = short, 2 = long) */
1623 16, /* bitsize */
1624 FALSE, /* pc_relative */
1625 0, /* bitpos */
1626 complain_overflow_dont, /* complain_on_overflow */
1627 ppc64_elf_unhandled_reloc, /* special_function */
1628 "R_PPC64_GOT_TLSGD16_LO", /* name */
1629 FALSE, /* partial_inplace */
1630 0, /* src_mask */
1631 0xffff, /* dst_mask */
1632 FALSE), /* pcrel_offset */
1633
1634 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1635 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1636 16, /* rightshift */
1637 1, /* size (0 = byte, 1 = short, 2 = long) */
1638 16, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont, /* complain_on_overflow */
1642 ppc64_elf_unhandled_reloc, /* special_function */
1643 "R_PPC64_GOT_TLSGD16_HI", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0xffff, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1650 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1651 16, /* rightshift */
1652 1, /* size (0 = byte, 1 = short, 2 = long) */
1653 16, /* bitsize */
1654 FALSE, /* pc_relative */
1655 0, /* bitpos */
1656 complain_overflow_dont, /* complain_on_overflow */
1657 ppc64_elf_unhandled_reloc, /* special_function */
1658 "R_PPC64_GOT_TLSGD16_HA", /* name */
1659 FALSE, /* partial_inplace */
1660 0, /* src_mask */
1661 0xffff, /* dst_mask */
1662 FALSE), /* pcrel_offset */
1663
1664 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1665 with values (sym+add)@dtpmod and zero, and computes the offset to the
1666 first entry relative to the TOC base (r2). */
1667 HOWTO (R_PPC64_GOT_TLSLD16,
1668 0, /* rightshift */
1669 1, /* size (0 = byte, 1 = short, 2 = long) */
1670 16, /* bitsize */
1671 FALSE, /* pc_relative */
1672 0, /* bitpos */
1673 complain_overflow_signed, /* complain_on_overflow */
1674 ppc64_elf_unhandled_reloc, /* special_function */
1675 "R_PPC64_GOT_TLSLD16", /* name */
1676 FALSE, /* partial_inplace */
1677 0, /* src_mask */
1678 0xffff, /* dst_mask */
1679 FALSE), /* pcrel_offset */
1680
1681 /* Like GOT_TLSLD16, but no overflow. */
1682 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1683 0, /* rightshift */
1684 1, /* size (0 = byte, 1 = short, 2 = long) */
1685 16, /* bitsize */
1686 FALSE, /* pc_relative */
1687 0, /* bitpos */
1688 complain_overflow_dont, /* complain_on_overflow */
1689 ppc64_elf_unhandled_reloc, /* special_function */
1690 "R_PPC64_GOT_TLSLD16_LO", /* name */
1691 FALSE, /* partial_inplace */
1692 0, /* src_mask */
1693 0xffff, /* dst_mask */
1694 FALSE), /* pcrel_offset */
1695
1696 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1697 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1698 16, /* rightshift */
1699 1, /* size (0 = byte, 1 = short, 2 = long) */
1700 16, /* bitsize */
1701 FALSE, /* pc_relative */
1702 0, /* bitpos */
1703 complain_overflow_dont, /* complain_on_overflow */
1704 ppc64_elf_unhandled_reloc, /* special_function */
1705 "R_PPC64_GOT_TLSLD16_HI", /* name */
1706 FALSE, /* partial_inplace */
1707 0, /* src_mask */
1708 0xffff, /* dst_mask */
1709 FALSE), /* pcrel_offset */
1710
1711 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1712 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1713 16, /* rightshift */
1714 1, /* size (0 = byte, 1 = short, 2 = long) */
1715 16, /* bitsize */
1716 FALSE, /* pc_relative */
1717 0, /* bitpos */
1718 complain_overflow_dont, /* complain_on_overflow */
1719 ppc64_elf_unhandled_reloc, /* special_function */
1720 "R_PPC64_GOT_TLSLD16_HA", /* name */
1721 FALSE, /* partial_inplace */
1722 0, /* src_mask */
1723 0xffff, /* dst_mask */
1724 FALSE), /* pcrel_offset */
1725
1726 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1727 the offset to the entry relative to the TOC base (r2). */
1728 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1729 0, /* rightshift */
1730 1, /* size (0 = byte, 1 = short, 2 = long) */
1731 16, /* bitsize */
1732 FALSE, /* pc_relative */
1733 0, /* bitpos */
1734 complain_overflow_signed, /* complain_on_overflow */
1735 ppc64_elf_unhandled_reloc, /* special_function */
1736 "R_PPC64_GOT_DTPREL16_DS", /* name */
1737 FALSE, /* partial_inplace */
1738 0, /* src_mask */
1739 0xfffc, /* dst_mask */
1740 FALSE), /* pcrel_offset */
1741
1742 /* Like GOT_DTPREL16_DS, but no overflow. */
1743 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1744 0, /* rightshift */
1745 1, /* size (0 = byte, 1 = short, 2 = long) */
1746 16, /* bitsize */
1747 FALSE, /* pc_relative */
1748 0, /* bitpos */
1749 complain_overflow_dont, /* complain_on_overflow */
1750 ppc64_elf_unhandled_reloc, /* special_function */
1751 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1752 FALSE, /* partial_inplace */
1753 0, /* src_mask */
1754 0xfffc, /* dst_mask */
1755 FALSE), /* pcrel_offset */
1756
1757 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1758 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1759 16, /* rightshift */
1760 1, /* size (0 = byte, 1 = short, 2 = long) */
1761 16, /* bitsize */
1762 FALSE, /* pc_relative */
1763 0, /* bitpos */
1764 complain_overflow_dont, /* complain_on_overflow */
1765 ppc64_elf_unhandled_reloc, /* special_function */
1766 "R_PPC64_GOT_DTPREL16_HI", /* name */
1767 FALSE, /* partial_inplace */
1768 0, /* src_mask */
1769 0xffff, /* dst_mask */
1770 FALSE), /* pcrel_offset */
1771
1772 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1773 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1774 16, /* rightshift */
1775 1, /* size (0 = byte, 1 = short, 2 = long) */
1776 16, /* bitsize */
1777 FALSE, /* pc_relative */
1778 0, /* bitpos */
1779 complain_overflow_dont, /* complain_on_overflow */
1780 ppc64_elf_unhandled_reloc, /* special_function */
1781 "R_PPC64_GOT_DTPREL16_HA", /* name */
1782 FALSE, /* partial_inplace */
1783 0, /* src_mask */
1784 0xffff, /* dst_mask */
1785 FALSE), /* pcrel_offset */
1786
1787 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1788 offset to the entry relative to the TOC base (r2). */
1789 HOWTO (R_PPC64_GOT_TPREL16_DS,
1790 0, /* rightshift */
1791 1, /* size (0 = byte, 1 = short, 2 = long) */
1792 16, /* bitsize */
1793 FALSE, /* pc_relative */
1794 0, /* bitpos */
1795 complain_overflow_signed, /* complain_on_overflow */
1796 ppc64_elf_unhandled_reloc, /* special_function */
1797 "R_PPC64_GOT_TPREL16_DS", /* name */
1798 FALSE, /* partial_inplace */
1799 0, /* src_mask */
1800 0xfffc, /* dst_mask */
1801 FALSE), /* pcrel_offset */
1802
1803 /* Like GOT_TPREL16_DS, but no overflow. */
1804 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1805 0, /* rightshift */
1806 1, /* size (0 = byte, 1 = short, 2 = long) */
1807 16, /* bitsize */
1808 FALSE, /* pc_relative */
1809 0, /* bitpos */
1810 complain_overflow_dont, /* complain_on_overflow */
1811 ppc64_elf_unhandled_reloc, /* special_function */
1812 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1813 FALSE, /* partial_inplace */
1814 0, /* src_mask */
1815 0xfffc, /* dst_mask */
1816 FALSE), /* pcrel_offset */
1817
1818 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1819 HOWTO (R_PPC64_GOT_TPREL16_HI,
1820 16, /* rightshift */
1821 1, /* size (0 = byte, 1 = short, 2 = long) */
1822 16, /* bitsize */
1823 FALSE, /* pc_relative */
1824 0, /* bitpos */
1825 complain_overflow_dont, /* complain_on_overflow */
1826 ppc64_elf_unhandled_reloc, /* special_function */
1827 "R_PPC64_GOT_TPREL16_HI", /* name */
1828 FALSE, /* partial_inplace */
1829 0, /* src_mask */
1830 0xffff, /* dst_mask */
1831 FALSE), /* pcrel_offset */
1832
1833 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1834 HOWTO (R_PPC64_GOT_TPREL16_HA,
1835 16, /* rightshift */
1836 1, /* size (0 = byte, 1 = short, 2 = long) */
1837 16, /* bitsize */
1838 FALSE, /* pc_relative */
1839 0, /* bitpos */
1840 complain_overflow_dont, /* complain_on_overflow */
1841 ppc64_elf_unhandled_reloc, /* special_function */
1842 "R_PPC64_GOT_TPREL16_HA", /* name */
1843 FALSE, /* partial_inplace */
1844 0, /* src_mask */
1845 0xffff, /* dst_mask */
1846 FALSE), /* pcrel_offset */
1847
1848 /* GNU extension to record C++ vtable hierarchy. */
1849 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1850 0, /* rightshift */
1851 0, /* size (0 = byte, 1 = short, 2 = long) */
1852 0, /* bitsize */
1853 FALSE, /* pc_relative */
1854 0, /* bitpos */
1855 complain_overflow_dont, /* complain_on_overflow */
1856 NULL, /* special_function */
1857 "R_PPC64_GNU_VTINHERIT", /* name */
1858 FALSE, /* partial_inplace */
1859 0, /* src_mask */
1860 0, /* dst_mask */
1861 FALSE), /* pcrel_offset */
1862
1863 /* GNU extension to record C++ vtable member usage. */
1864 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
1865 0, /* rightshift */
1866 0, /* size (0 = byte, 1 = short, 2 = long) */
1867 0, /* bitsize */
1868 FALSE, /* pc_relative */
1869 0, /* bitpos */
1870 complain_overflow_dont, /* complain_on_overflow */
1871 NULL, /* special_function */
1872 "R_PPC64_GNU_VTENTRY", /* name */
1873 FALSE, /* partial_inplace */
1874 0, /* src_mask */
1875 0, /* dst_mask */
1876 FALSE), /* pcrel_offset */
1877 };
1878
1879 \f
1880 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
1881 be done. */
1882
1883 static void
1884 ppc_howto_init (void)
1885 {
1886 unsigned int i, type;
1887
1888 for (i = 0;
1889 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
1890 i++)
1891 {
1892 type = ppc64_elf_howto_raw[i].type;
1893 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
1894 / sizeof (ppc64_elf_howto_table[0])));
1895 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1896 }
1897 }
1898
1899 static reloc_howto_type *
1900 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1901 bfd_reloc_code_real_type code)
1902 {
1903 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1904
1905 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1906 /* Initialize howto table if needed. */
1907 ppc_howto_init ();
1908
1909 switch (code)
1910 {
1911 default:
1912 return NULL;
1913
1914 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1915 break;
1916 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1917 break;
1918 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1919 break;
1920 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1921 break;
1922 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1923 break;
1924 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1925 break;
1926 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1927 break;
1928 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1929 break;
1930 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1931 break;
1932 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1933 break;
1934 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1935 break;
1936 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1937 break;
1938 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1939 break;
1940 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1941 break;
1942 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1943 break;
1944 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1945 break;
1946 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1947 break;
1948 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1949 break;
1950 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1951 break;
1952 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1953 break;
1954 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1955 break;
1956 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1957 break;
1958 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1959 break;
1960 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1961 break;
1962 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1963 break;
1964 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1965 break;
1966 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1967 break;
1968 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1969 break;
1970 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1971 break;
1972 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1973 break;
1974 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1975 break;
1976 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1977 break;
1978 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1979 break;
1980 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1981 break;
1982 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1983 break;
1984 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1985 break;
1986 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1987 break;
1988 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1989 break;
1990 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1991 break;
1992 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1993 break;
1994 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1995 break;
1996 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1997 break;
1998 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1999 break;
2000 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2001 break;
2002 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2003 break;
2004 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2005 break;
2006 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2007 break;
2008 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2009 break;
2010 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2011 break;
2012 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2013 break;
2014 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2015 break;
2016 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2017 break;
2018 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2019 break;
2020 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2021 break;
2022 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2023 break;
2024 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2025 break;
2026 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2027 break;
2028 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2029 break;
2030 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2031 break;
2032 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2033 break;
2034 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2035 break;
2036 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2037 break;
2038 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2039 break;
2040 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2041 break;
2042 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2043 break;
2044 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2045 break;
2046 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2047 break;
2048 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2049 break;
2050 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2051 break;
2052 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2053 break;
2054 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2055 break;
2056 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2057 break;
2058 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2059 break;
2060 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2061 break;
2062 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2063 break;
2064 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2065 break;
2066 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2067 break;
2068 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2069 break;
2070 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2071 break;
2072 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2073 break;
2074 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2075 break;
2076 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2077 break;
2078 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2079 break;
2080 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2081 break;
2082 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2083 break;
2084 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2085 break;
2086 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2087 break;
2088 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2089 break;
2090 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2091 break;
2092 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2093 break;
2094 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2095 break;
2096 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2097 break;
2098 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2099 break;
2100 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2101 break;
2102 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2103 break;
2104 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2105 break;
2106 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2107 break;
2108 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2109 break;
2110 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2111 break;
2112 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2113 break;
2114 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2115 break;
2116 }
2117
2118 return ppc64_elf_howto_table[r];
2119 };
2120
2121 static reloc_howto_type *
2122 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2123 const char *r_name)
2124 {
2125 unsigned int i;
2126
2127 for (i = 0;
2128 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2129 i++)
2130 if (ppc64_elf_howto_raw[i].name != NULL
2131 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2132 return &ppc64_elf_howto_raw[i];
2133
2134 return NULL;
2135 }
2136
2137 /* Set the howto pointer for a PowerPC ELF reloc. */
2138
2139 static void
2140 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2141 Elf_Internal_Rela *dst)
2142 {
2143 unsigned int type;
2144
2145 /* Initialize howto table if needed. */
2146 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2147 ppc_howto_init ();
2148
2149 type = ELF64_R_TYPE (dst->r_info);
2150 if (type >= (sizeof (ppc64_elf_howto_table)
2151 / sizeof (ppc64_elf_howto_table[0])))
2152 {
2153 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2154 abfd, (int) type);
2155 type = R_PPC64_NONE;
2156 }
2157 cache_ptr->howto = ppc64_elf_howto_table[type];
2158 }
2159
2160 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2161
2162 static bfd_reloc_status_type
2163 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2164 void *data, asection *input_section,
2165 bfd *output_bfd, char **error_message)
2166 {
2167 /* If this is a relocatable link (output_bfd test tells us), just
2168 call the generic function. Any adjustment will be done at final
2169 link time. */
2170 if (output_bfd != NULL)
2171 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2172 input_section, output_bfd, error_message);
2173
2174 /* Adjust the addend for sign extension of the low 16 bits.
2175 We won't actually be using the low 16 bits, so trashing them
2176 doesn't matter. */
2177 reloc_entry->addend += 0x8000;
2178 return bfd_reloc_continue;
2179 }
2180
2181 static bfd_reloc_status_type
2182 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2183 void *data, asection *input_section,
2184 bfd *output_bfd, char **error_message)
2185 {
2186 if (output_bfd != NULL)
2187 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2188 input_section, output_bfd, error_message);
2189
2190 if (strcmp (symbol->section->name, ".opd") == 0
2191 && (symbol->section->owner->flags & DYNAMIC) == 0)
2192 {
2193 bfd_vma dest = opd_entry_value (symbol->section,
2194 symbol->value + reloc_entry->addend,
2195 NULL, NULL);
2196 if (dest != (bfd_vma) -1)
2197 reloc_entry->addend = dest - (symbol->value
2198 + symbol->section->output_section->vma
2199 + symbol->section->output_offset);
2200 }
2201 return bfd_reloc_continue;
2202 }
2203
2204 static bfd_reloc_status_type
2205 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2206 void *data, asection *input_section,
2207 bfd *output_bfd, char **error_message)
2208 {
2209 long insn;
2210 enum elf_ppc64_reloc_type r_type;
2211 bfd_size_type octets;
2212 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
2213 bfd_boolean is_power4 = FALSE;
2214
2215 /* If this is a relocatable link (output_bfd test tells us), just
2216 call the generic function. Any adjustment will be done at final
2217 link time. */
2218 if (output_bfd != NULL)
2219 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2220 input_section, output_bfd, error_message);
2221
2222 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2223 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2224 insn &= ~(0x01 << 21);
2225 r_type = reloc_entry->howto->type;
2226 if (r_type == R_PPC64_ADDR14_BRTAKEN
2227 || r_type == R_PPC64_REL14_BRTAKEN)
2228 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2229
2230 if (is_power4)
2231 {
2232 /* Set 'a' bit. This is 0b00010 in BO field for branch
2233 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2234 for branch on CTR insns (BO == 1a00t or 1a01t). */
2235 if ((insn & (0x14 << 21)) == (0x04 << 21))
2236 insn |= 0x02 << 21;
2237 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2238 insn |= 0x08 << 21;
2239 else
2240 goto out;
2241 }
2242 else
2243 {
2244 bfd_vma target = 0;
2245 bfd_vma from;
2246
2247 if (!bfd_is_com_section (symbol->section))
2248 target = symbol->value;
2249 target += symbol->section->output_section->vma;
2250 target += symbol->section->output_offset;
2251 target += reloc_entry->addend;
2252
2253 from = (reloc_entry->address
2254 + input_section->output_offset
2255 + input_section->output_section->vma);
2256
2257 /* Invert 'y' bit if not the default. */
2258 if ((bfd_signed_vma) (target - from) < 0)
2259 insn ^= 0x01 << 21;
2260 }
2261 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2262 out:
2263 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2264 input_section, output_bfd, error_message);
2265 }
2266
2267 static bfd_reloc_status_type
2268 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2269 void *data, asection *input_section,
2270 bfd *output_bfd, char **error_message)
2271 {
2272 /* If this is a relocatable link (output_bfd test tells us), just
2273 call the generic function. Any adjustment will be done at final
2274 link time. */
2275 if (output_bfd != NULL)
2276 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2277 input_section, output_bfd, error_message);
2278
2279 /* Subtract the symbol section base address. */
2280 reloc_entry->addend -= symbol->section->output_section->vma;
2281 return bfd_reloc_continue;
2282 }
2283
2284 static bfd_reloc_status_type
2285 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2286 void *data, asection *input_section,
2287 bfd *output_bfd, char **error_message)
2288 {
2289 /* If this is a relocatable link (output_bfd test tells us), just
2290 call the generic function. Any adjustment will be done at final
2291 link time. */
2292 if (output_bfd != NULL)
2293 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2294 input_section, output_bfd, error_message);
2295
2296 /* Subtract the symbol section base address. */
2297 reloc_entry->addend -= symbol->section->output_section->vma;
2298
2299 /* Adjust the addend for sign extension of the low 16 bits. */
2300 reloc_entry->addend += 0x8000;
2301 return bfd_reloc_continue;
2302 }
2303
2304 static bfd_reloc_status_type
2305 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2306 void *data, asection *input_section,
2307 bfd *output_bfd, char **error_message)
2308 {
2309 bfd_vma TOCstart;
2310
2311 /* If this is a relocatable link (output_bfd test tells us), just
2312 call the generic function. Any adjustment will be done at final
2313 link time. */
2314 if (output_bfd != NULL)
2315 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2316 input_section, output_bfd, error_message);
2317
2318 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2319 if (TOCstart == 0)
2320 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2321
2322 /* Subtract the TOC base address. */
2323 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2324 return bfd_reloc_continue;
2325 }
2326
2327 static bfd_reloc_status_type
2328 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2329 void *data, asection *input_section,
2330 bfd *output_bfd, char **error_message)
2331 {
2332 bfd_vma TOCstart;
2333
2334 /* If this is a relocatable link (output_bfd test tells us), just
2335 call the generic function. Any adjustment will be done at final
2336 link time. */
2337 if (output_bfd != NULL)
2338 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2339 input_section, output_bfd, error_message);
2340
2341 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2342 if (TOCstart == 0)
2343 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2344
2345 /* Subtract the TOC base address. */
2346 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2347
2348 /* Adjust the addend for sign extension of the low 16 bits. */
2349 reloc_entry->addend += 0x8000;
2350 return bfd_reloc_continue;
2351 }
2352
2353 static bfd_reloc_status_type
2354 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2355 void *data, asection *input_section,
2356 bfd *output_bfd, char **error_message)
2357 {
2358 bfd_vma TOCstart;
2359 bfd_size_type octets;
2360
2361 /* If this is a relocatable link (output_bfd test tells us), just
2362 call the generic function. Any adjustment will be done at final
2363 link time. */
2364 if (output_bfd != NULL)
2365 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2366 input_section, output_bfd, error_message);
2367
2368 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2369 if (TOCstart == 0)
2370 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2371
2372 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2373 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2374 return bfd_reloc_ok;
2375 }
2376
2377 static bfd_reloc_status_type
2378 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2379 void *data, asection *input_section,
2380 bfd *output_bfd, char **error_message)
2381 {
2382 /* If this is a relocatable link (output_bfd test tells us), just
2383 call the generic function. Any adjustment will be done at final
2384 link time. */
2385 if (output_bfd != NULL)
2386 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2387 input_section, output_bfd, error_message);
2388
2389 if (error_message != NULL)
2390 {
2391 static char buf[60];
2392 sprintf (buf, "generic linker can't handle %s",
2393 reloc_entry->howto->name);
2394 *error_message = buf;
2395 }
2396 return bfd_reloc_dangerous;
2397 }
2398
2399 struct ppc64_elf_obj_tdata
2400 {
2401 struct elf_obj_tdata elf;
2402
2403 /* Shortcuts to dynamic linker sections. */
2404 asection *got;
2405 asection *relgot;
2406
2407 /* Used during garbage collection. We attach global symbols defined
2408 on removed .opd entries to this section so that the sym is removed. */
2409 asection *deleted_section;
2410
2411 /* TLS local dynamic got entry handling. Suppose for multiple GOT
2412 sections means we potentially need one of these for each input bfd. */
2413 union {
2414 bfd_signed_vma refcount;
2415 bfd_vma offset;
2416 } tlsld_got;
2417
2418 /* A copy of relocs before they are modified for --emit-relocs. */
2419 Elf_Internal_Rela *opd_relocs;
2420 };
2421
2422 #define ppc64_elf_tdata(bfd) \
2423 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2424
2425 #define ppc64_tlsld_got(bfd) \
2426 (&ppc64_elf_tdata (bfd)->tlsld_got)
2427
2428 #define is_ppc64_elf(bfd) \
2429 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2430 && elf_object_id (bfd) == PPC64_ELF_TDATA)
2431
2432 /* Override the generic function because we store some extras. */
2433
2434 static bfd_boolean
2435 ppc64_elf_mkobject (bfd *abfd)
2436 {
2437 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2438 PPC64_ELF_TDATA);
2439 }
2440
2441 /* Fix bad default arch selected for a 64 bit input bfd when the
2442 default is 32 bit. */
2443
2444 static bfd_boolean
2445 ppc64_elf_object_p (bfd *abfd)
2446 {
2447 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2448 {
2449 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2450
2451 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2452 {
2453 /* Relies on arch after 32 bit default being 64 bit default. */
2454 abfd->arch_info = abfd->arch_info->next;
2455 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2456 }
2457 }
2458 return TRUE;
2459 }
2460
2461 /* Support for core dump NOTE sections. */
2462
2463 static bfd_boolean
2464 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2465 {
2466 size_t offset, size;
2467
2468 if (note->descsz != 504)
2469 return FALSE;
2470
2471 /* pr_cursig */
2472 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2473
2474 /* pr_pid */
2475 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2476
2477 /* pr_reg */
2478 offset = 112;
2479 size = 384;
2480
2481 /* Make a ".reg/999" section. */
2482 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2483 size, note->descpos + offset);
2484 }
2485
2486 static bfd_boolean
2487 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2488 {
2489 if (note->descsz != 136)
2490 return FALSE;
2491
2492 elf_tdata (abfd)->core_program
2493 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2494 elf_tdata (abfd)->core_command
2495 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2496
2497 return TRUE;
2498 }
2499
2500 static char *
2501 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2502 ...)
2503 {
2504 switch (note_type)
2505 {
2506 default:
2507 return NULL;
2508
2509 case NT_PRPSINFO:
2510 {
2511 char data[136];
2512 va_list ap;
2513
2514 va_start (ap, note_type);
2515 memset (data, 0, 40);
2516 strncpy (data + 40, va_arg (ap, const char *), 16);
2517 strncpy (data + 56, va_arg (ap, const char *), 80);
2518 va_end (ap);
2519 return elfcore_write_note (abfd, buf, bufsiz,
2520 "CORE", note_type, data, sizeof (data));
2521 }
2522
2523 case NT_PRSTATUS:
2524 {
2525 char data[504];
2526 va_list ap;
2527 long pid;
2528 int cursig;
2529 const void *greg;
2530
2531 va_start (ap, note_type);
2532 memset (data, 0, 112);
2533 pid = va_arg (ap, long);
2534 bfd_put_32 (abfd, pid, data + 32);
2535 cursig = va_arg (ap, int);
2536 bfd_put_16 (abfd, cursig, data + 12);
2537 greg = va_arg (ap, const void *);
2538 memcpy (data + 112, greg, 384);
2539 memset (data + 496, 0, 8);
2540 va_end (ap);
2541 return elfcore_write_note (abfd, buf, bufsiz,
2542 "CORE", note_type, data, sizeof (data));
2543 }
2544 }
2545 }
2546
2547 /* Merge backend specific data from an object file to the output
2548 object file when linking. */
2549
2550 static bfd_boolean
2551 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2552 {
2553 /* Check if we have the same endianess. */
2554 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2555 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
2556 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2557 {
2558 const char *msg;
2559
2560 if (bfd_big_endian (ibfd))
2561 msg = _("%B: compiled for a big endian system "
2562 "and target is little endian");
2563 else
2564 msg = _("%B: compiled for a little endian system "
2565 "and target is big endian");
2566
2567 (*_bfd_error_handler) (msg, ibfd);
2568
2569 bfd_set_error (bfd_error_wrong_format);
2570 return FALSE;
2571 }
2572
2573 return TRUE;
2574 }
2575
2576 /* Add extra PPC sections. */
2577
2578 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2579 {
2580 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2581 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2582 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2583 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2584 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2585 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2586 { NULL, 0, 0, 0, 0 }
2587 };
2588
2589 enum _ppc64_sec_type {
2590 sec_normal = 0,
2591 sec_opd = 1,
2592 sec_toc = 2
2593 };
2594
2595 struct _ppc64_elf_section_data
2596 {
2597 struct bfd_elf_section_data elf;
2598
2599 union
2600 {
2601 /* An array with one entry for each opd function descriptor. */
2602 struct _opd_sec_data
2603 {
2604 /* Points to the function code section for local opd entries. */
2605 asection **func_sec;
2606
2607 /* After editing .opd, adjust references to opd local syms. */
2608 long *adjust;
2609 } opd;
2610
2611 /* An array for toc sections, indexed by offset/8.
2612 Specifies the relocation symbol index used at a given toc offset. */
2613 unsigned *t_symndx;
2614 } u;
2615
2616 enum _ppc64_sec_type sec_type:2;
2617
2618 /* Flag set when small branches are detected. Used to
2619 select suitable defaults for the stub group size. */
2620 unsigned int has_14bit_branch:1;
2621 };
2622
2623 #define ppc64_elf_section_data(sec) \
2624 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2625
2626 static bfd_boolean
2627 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2628 {
2629 if (!sec->used_by_bfd)
2630 {
2631 struct _ppc64_elf_section_data *sdata;
2632 bfd_size_type amt = sizeof (*sdata);
2633
2634 sdata = bfd_zalloc (abfd, amt);
2635 if (sdata == NULL)
2636 return FALSE;
2637 sec->used_by_bfd = sdata;
2638 }
2639
2640 return _bfd_elf_new_section_hook (abfd, sec);
2641 }
2642
2643 static struct _opd_sec_data *
2644 get_opd_info (asection * sec)
2645 {
2646 if (sec != NULL
2647 && ppc64_elf_section_data (sec) != NULL
2648 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2649 return &ppc64_elf_section_data (sec)->u.opd;
2650 return NULL;
2651 }
2652 \f
2653 /* Parameters for the qsort hook. */
2654 static asection *synthetic_opd;
2655 static bfd_boolean synthetic_relocatable;
2656
2657 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2658
2659 static int
2660 compare_symbols (const void *ap, const void *bp)
2661 {
2662 const asymbol *a = * (const asymbol **) ap;
2663 const asymbol *b = * (const asymbol **) bp;
2664
2665 /* Section symbols first. */
2666 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2667 return -1;
2668 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2669 return 1;
2670
2671 /* then .opd symbols. */
2672 if (a->section == synthetic_opd && b->section != synthetic_opd)
2673 return -1;
2674 if (a->section != synthetic_opd && b->section == synthetic_opd)
2675 return 1;
2676
2677 /* then other code symbols. */
2678 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2679 == (SEC_CODE | SEC_ALLOC)
2680 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2681 != (SEC_CODE | SEC_ALLOC))
2682 return -1;
2683
2684 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2685 != (SEC_CODE | SEC_ALLOC)
2686 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2687 == (SEC_CODE | SEC_ALLOC))
2688 return 1;
2689
2690 if (synthetic_relocatable)
2691 {
2692 if (a->section->id < b->section->id)
2693 return -1;
2694
2695 if (a->section->id > b->section->id)
2696 return 1;
2697 }
2698
2699 if (a->value + a->section->vma < b->value + b->section->vma)
2700 return -1;
2701
2702 if (a->value + a->section->vma > b->value + b->section->vma)
2703 return 1;
2704
2705 /* For syms with the same value, prefer strong dynamic global function
2706 syms over other syms. */
2707 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2708 return -1;
2709
2710 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2711 return 1;
2712
2713 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2714 return -1;
2715
2716 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2717 return 1;
2718
2719 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2720 return -1;
2721
2722 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2723 return 1;
2724
2725 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2726 return -1;
2727
2728 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2729 return 1;
2730
2731 return 0;
2732 }
2733
2734 /* Search SYMS for a symbol of the given VALUE. */
2735
2736 static asymbol *
2737 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2738 {
2739 long mid;
2740
2741 if (id == -1)
2742 {
2743 while (lo < hi)
2744 {
2745 mid = (lo + hi) >> 1;
2746 if (syms[mid]->value + syms[mid]->section->vma < value)
2747 lo = mid + 1;
2748 else if (syms[mid]->value + syms[mid]->section->vma > value)
2749 hi = mid;
2750 else
2751 return syms[mid];
2752 }
2753 }
2754 else
2755 {
2756 while (lo < hi)
2757 {
2758 mid = (lo + hi) >> 1;
2759 if (syms[mid]->section->id < id)
2760 lo = mid + 1;
2761 else if (syms[mid]->section->id > id)
2762 hi = mid;
2763 else if (syms[mid]->value < value)
2764 lo = mid + 1;
2765 else if (syms[mid]->value > value)
2766 hi = mid;
2767 else
2768 return syms[mid];
2769 }
2770 }
2771 return NULL;
2772 }
2773
2774 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2775 entry syms. */
2776
2777 static long
2778 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2779 long static_count, asymbol **static_syms,
2780 long dyn_count, asymbol **dyn_syms,
2781 asymbol **ret)
2782 {
2783 asymbol *s;
2784 long i;
2785 long count;
2786 char *names;
2787 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2788 asection *opd;
2789 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2790 asymbol **syms;
2791
2792 *ret = NULL;
2793
2794 opd = bfd_get_section_by_name (abfd, ".opd");
2795 if (opd == NULL)
2796 return 0;
2797
2798 symcount = static_count;
2799 if (!relocatable)
2800 symcount += dyn_count;
2801 if (symcount == 0)
2802 return 0;
2803
2804 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2805 if (syms == NULL)
2806 return -1;
2807
2808 if (!relocatable && static_count != 0 && dyn_count != 0)
2809 {
2810 /* Use both symbol tables. */
2811 memcpy (syms, static_syms, static_count * sizeof (*syms));
2812 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
2813 }
2814 else if (!relocatable && static_count == 0)
2815 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2816 else
2817 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2818
2819 synthetic_opd = opd;
2820 synthetic_relocatable = relocatable;
2821 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2822
2823 if (!relocatable && symcount > 1)
2824 {
2825 long j;
2826 /* Trim duplicate syms, since we may have merged the normal and
2827 dynamic symbols. Actually, we only care about syms that have
2828 different values, so trim any with the same value. */
2829 for (i = 1, j = 1; i < symcount; ++i)
2830 if (syms[i - 1]->value + syms[i - 1]->section->vma
2831 != syms[i]->value + syms[i]->section->vma)
2832 syms[j++] = syms[i];
2833 symcount = j;
2834 }
2835
2836 i = 0;
2837 if (syms[i]->section == opd)
2838 ++i;
2839 codesecsym = i;
2840
2841 for (; i < symcount; ++i)
2842 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2843 != (SEC_CODE | SEC_ALLOC))
2844 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2845 break;
2846 codesecsymend = i;
2847
2848 for (; i < symcount; ++i)
2849 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2850 break;
2851 secsymend = i;
2852
2853 for (; i < symcount; ++i)
2854 if (syms[i]->section != opd)
2855 break;
2856 opdsymend = i;
2857
2858 for (; i < symcount; ++i)
2859 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2860 != (SEC_CODE | SEC_ALLOC))
2861 break;
2862 symcount = i;
2863
2864 count = 0;
2865 if (opdsymend == secsymend)
2866 goto done;
2867
2868 if (relocatable)
2869 {
2870 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2871 arelent *r;
2872 size_t size;
2873 long relcount;
2874
2875 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2876 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2877 if (relcount == 0)
2878 goto done;
2879
2880 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2881 {
2882 count = -1;
2883 goto done;
2884 }
2885
2886 size = 0;
2887 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2888 {
2889 asymbol *sym;
2890
2891 while (r < opd->relocation + relcount
2892 && r->address < syms[i]->value + opd->vma)
2893 ++r;
2894
2895 if (r == opd->relocation + relcount)
2896 break;
2897
2898 if (r->address != syms[i]->value + opd->vma)
2899 continue;
2900
2901 if (r->howto->type != R_PPC64_ADDR64)
2902 continue;
2903
2904 sym = *r->sym_ptr_ptr;
2905 if (!sym_exists_at (syms, opdsymend, symcount,
2906 sym->section->id, sym->value + r->addend))
2907 {
2908 ++count;
2909 size += sizeof (asymbol);
2910 size += strlen (syms[i]->name) + 2;
2911 }
2912 }
2913
2914 s = *ret = bfd_malloc (size);
2915 if (s == NULL)
2916 {
2917 count = -1;
2918 goto done;
2919 }
2920
2921 names = (char *) (s + count);
2922
2923 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2924 {
2925 asymbol *sym;
2926
2927 while (r < opd->relocation + relcount
2928 && r->address < syms[i]->value + opd->vma)
2929 ++r;
2930
2931 if (r == opd->relocation + relcount)
2932 break;
2933
2934 if (r->address != syms[i]->value + opd->vma)
2935 continue;
2936
2937 if (r->howto->type != R_PPC64_ADDR64)
2938 continue;
2939
2940 sym = *r->sym_ptr_ptr;
2941 if (!sym_exists_at (syms, opdsymend, symcount,
2942 sym->section->id, sym->value + r->addend))
2943 {
2944 size_t len;
2945
2946 *s = *syms[i];
2947 s->section = sym->section;
2948 s->value = sym->value + r->addend;
2949 s->name = names;
2950 *names++ = '.';
2951 len = strlen (syms[i]->name);
2952 memcpy (names, syms[i]->name, len + 1);
2953 names += len + 1;
2954 /* Have udata.p point back to the original symbol this
2955 synthetic symbol was derived from. */
2956 s->udata.p = syms[i];
2957 s++;
2958 }
2959 }
2960 }
2961 else
2962 {
2963 bfd_byte *contents;
2964 size_t size;
2965
2966 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
2967 {
2968 if (contents)
2969 {
2970 free_contents_and_exit:
2971 free (contents);
2972 }
2973 count = -1;
2974 goto done;
2975 }
2976
2977 size = 0;
2978 for (i = secsymend; i < opdsymend; ++i)
2979 {
2980 bfd_vma ent;
2981
2982 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2983 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2984 {
2985 ++count;
2986 size += sizeof (asymbol);
2987 size += strlen (syms[i]->name) + 2;
2988 }
2989 }
2990
2991 s = *ret = bfd_malloc (size);
2992 if (s == NULL)
2993 goto free_contents_and_exit;
2994
2995 names = (char *) (s + count);
2996
2997 for (i = secsymend; i < opdsymend; ++i)
2998 {
2999 bfd_vma ent;
3000
3001 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3002 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3003 {
3004 long lo, hi;
3005 size_t len;
3006 asection *sec = abfd->sections;
3007
3008 *s = *syms[i];
3009 lo = codesecsym;
3010 hi = codesecsymend;
3011 while (lo < hi)
3012 {
3013 long mid = (lo + hi) >> 1;
3014 if (syms[mid]->section->vma < ent)
3015 lo = mid + 1;
3016 else if (syms[mid]->section->vma > ent)
3017 hi = mid;
3018 else
3019 {
3020 sec = syms[mid]->section;
3021 break;
3022 }
3023 }
3024
3025 if (lo >= hi && lo > codesecsym)
3026 sec = syms[lo - 1]->section;
3027
3028 for (; sec != NULL; sec = sec->next)
3029 {
3030 if (sec->vma > ent)
3031 break;
3032 if ((sec->flags & SEC_ALLOC) == 0
3033 || (sec->flags & SEC_LOAD) == 0)
3034 break;
3035 if ((sec->flags & SEC_CODE) != 0)
3036 s->section = sec;
3037 }
3038 s->value = ent - s->section->vma;
3039 s->name = names;
3040 *names++ = '.';
3041 len = strlen (syms[i]->name);
3042 memcpy (names, syms[i]->name, len + 1);
3043 names += len + 1;
3044 /* Have udata.p point back to the original symbol this
3045 synthetic symbol was derived from. */
3046 s->udata.p = syms[i];
3047 s++;
3048 }
3049 }
3050 free (contents);
3051 }
3052
3053 done:
3054 free (syms);
3055 return count;
3056 }
3057 \f
3058 /* The following functions are specific to the ELF linker, while
3059 functions above are used generally. Those named ppc64_elf_* are
3060 called by the main ELF linker code. They appear in this file more
3061 or less in the order in which they are called. eg.
3062 ppc64_elf_check_relocs is called early in the link process,
3063 ppc64_elf_finish_dynamic_sections is one of the last functions
3064 called.
3065
3066 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3067 functions have both a function code symbol and a function descriptor
3068 symbol. A call to foo in a relocatable object file looks like:
3069
3070 . .text
3071 . x:
3072 . bl .foo
3073 . nop
3074
3075 The function definition in another object file might be:
3076
3077 . .section .opd
3078 . foo: .quad .foo
3079 . .quad .TOC.@tocbase
3080 . .quad 0
3081 .
3082 . .text
3083 . .foo: blr
3084
3085 When the linker resolves the call during a static link, the branch
3086 unsurprisingly just goes to .foo and the .opd information is unused.
3087 If the function definition is in a shared library, things are a little
3088 different: The call goes via a plt call stub, the opd information gets
3089 copied to the plt, and the linker patches the nop.
3090
3091 . x:
3092 . bl .foo_stub
3093 . ld 2,40(1)
3094 .
3095 .
3096 . .foo_stub:
3097 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
3098 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
3099 . std 2,40(1) # this is the general idea
3100 . ld 11,0(12)
3101 . ld 2,8(12)
3102 . mtctr 11
3103 . ld 11,16(12)
3104 . bctr
3105 .
3106 . .section .plt
3107 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3108
3109 The "reloc ()" notation is supposed to indicate that the linker emits
3110 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3111 copying.
3112
3113 What are the difficulties here? Well, firstly, the relocations
3114 examined by the linker in check_relocs are against the function code
3115 sym .foo, while the dynamic relocation in the plt is emitted against
3116 the function descriptor symbol, foo. Somewhere along the line, we need
3117 to carefully copy dynamic link information from one symbol to the other.
3118 Secondly, the generic part of the elf linker will make .foo a dynamic
3119 symbol as is normal for most other backends. We need foo dynamic
3120 instead, at least for an application final link. However, when
3121 creating a shared library containing foo, we need to have both symbols
3122 dynamic so that references to .foo are satisfied during the early
3123 stages of linking. Otherwise the linker might decide to pull in a
3124 definition from some other object, eg. a static library.
3125
3126 Update: As of August 2004, we support a new convention. Function
3127 calls may use the function descriptor symbol, ie. "bl foo". This
3128 behaves exactly as "bl .foo". */
3129
3130 /* The linker needs to keep track of the number of relocs that it
3131 decides to copy as dynamic relocs in check_relocs for each symbol.
3132 This is so that it can later discard them if they are found to be
3133 unnecessary. We store the information in a field extending the
3134 regular ELF linker hash table. */
3135
3136 struct ppc_dyn_relocs
3137 {
3138 struct ppc_dyn_relocs *next;
3139
3140 /* The input section of the reloc. */
3141 asection *sec;
3142
3143 /* Total number of relocs copied for the input section. */
3144 bfd_size_type count;
3145
3146 /* Number of pc-relative relocs copied for the input section. */
3147 bfd_size_type pc_count;
3148 };
3149
3150 /* Track GOT entries needed for a given symbol. We might need more
3151 than one got entry per symbol. */
3152 struct got_entry
3153 {
3154 struct got_entry *next;
3155
3156 /* The symbol addend that we'll be placing in the GOT. */
3157 bfd_vma addend;
3158
3159 /* Unlike other ELF targets, we use separate GOT entries for the same
3160 symbol referenced from different input files. This is to support
3161 automatic multiple TOC/GOT sections, where the TOC base can vary
3162 from one input file to another. FIXME: After group_sections we
3163 ought to merge entries within the group.
3164
3165 Point to the BFD owning this GOT entry. */
3166 bfd *owner;
3167
3168 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
3169 TLS_TPREL or TLS_DTPREL for tls entries. */
3170 char tls_type;
3171
3172 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
3173 union
3174 {
3175 bfd_signed_vma refcount;
3176 bfd_vma offset;
3177 } got;
3178 };
3179
3180 /* The same for PLT. */
3181 struct plt_entry
3182 {
3183 struct plt_entry *next;
3184
3185 bfd_vma addend;
3186
3187 union
3188 {
3189 bfd_signed_vma refcount;
3190 bfd_vma offset;
3191 } plt;
3192 };
3193
3194 /* Of those relocs that might be copied as dynamic relocs, this macro
3195 selects those that must be copied when linking a shared library,
3196 even when the symbol is local. */
3197
3198 #define MUST_BE_DYN_RELOC(RTYPE) \
3199 ((RTYPE) != R_PPC64_REL32 \
3200 && (RTYPE) != R_PPC64_REL64 \
3201 && (RTYPE) != R_PPC64_REL30)
3202
3203 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3204 copying dynamic variables from a shared lib into an app's dynbss
3205 section, and instead use a dynamic relocation to point into the
3206 shared lib. With code that gcc generates, it's vital that this be
3207 enabled; In the PowerPC64 ABI, the address of a function is actually
3208 the address of a function descriptor, which resides in the .opd
3209 section. gcc uses the descriptor directly rather than going via the
3210 GOT as some other ABI's do, which means that initialized function
3211 pointers must reference the descriptor. Thus, a function pointer
3212 initialized to the address of a function in a shared library will
3213 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3214 redefines the function descriptor symbol to point to the copy. This
3215 presents a problem as a plt entry for that function is also
3216 initialized from the function descriptor symbol and the copy reloc
3217 may not be initialized first. */
3218 #define ELIMINATE_COPY_RELOCS 1
3219
3220 /* Section name for stubs is the associated section name plus this
3221 string. */
3222 #define STUB_SUFFIX ".stub"
3223
3224 /* Linker stubs.
3225 ppc_stub_long_branch:
3226 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3227 destination, but a 24 bit branch in a stub section will reach.
3228 . b dest
3229
3230 ppc_stub_plt_branch:
3231 Similar to the above, but a 24 bit branch in the stub section won't
3232 reach its destination.
3233 . addis %r12,%r2,xxx@toc@ha
3234 . ld %r11,xxx@toc@l(%r12)
3235 . mtctr %r11
3236 . bctr
3237
3238 ppc_stub_plt_call:
3239 Used to call a function in a shared library. If it so happens that
3240 the plt entry referenced crosses a 64k boundary, then an extra
3241 "addi %r12,%r12,xxx@toc@l" will be inserted before the "mtctr".
3242 . addis %r12,%r2,xxx@toc@ha
3243 . std %r2,40(%r1)
3244 . ld %r11,xxx+0@toc@l(%r12)
3245 . mtctr %r11
3246 . ld %r2,xxx+8@toc@l(%r12)
3247 . ld %r11,xxx+16@toc@l(%r12)
3248 . bctr
3249
3250 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3251 code to adjust the value and save r2 to support multiple toc sections.
3252 A ppc_stub_long_branch with an r2 offset looks like:
3253 . std %r2,40(%r1)
3254 . addis %r2,%r2,off@ha
3255 . addi %r2,%r2,off@l
3256 . b dest
3257
3258 A ppc_stub_plt_branch with an r2 offset looks like:
3259 . std %r2,40(%r1)
3260 . addis %r12,%r2,xxx@toc@ha
3261 . ld %r11,xxx@toc@l(%r12)
3262 . addis %r2,%r2,off@ha
3263 . addi %r2,%r2,off@l
3264 . mtctr %r11
3265 . bctr
3266
3267 In cases where the "addis" instruction would add zero, the "addis" is
3268 omitted and following instructions modified slightly in some cases.
3269 */
3270
3271 enum ppc_stub_type {
3272 ppc_stub_none,
3273 ppc_stub_long_branch,
3274 ppc_stub_long_branch_r2off,
3275 ppc_stub_plt_branch,
3276 ppc_stub_plt_branch_r2off,
3277 ppc_stub_plt_call
3278 };
3279
3280 struct ppc_stub_hash_entry {
3281
3282 /* Base hash table entry structure. */
3283 struct bfd_hash_entry root;
3284
3285 enum ppc_stub_type stub_type;
3286
3287 /* The stub section. */
3288 asection *stub_sec;
3289
3290 /* Offset within stub_sec of the beginning of this stub. */
3291 bfd_vma stub_offset;
3292
3293 /* Given the symbol's value and its section we can determine its final
3294 value when building the stubs (so the stub knows where to jump. */
3295 bfd_vma target_value;
3296 asection *target_section;
3297
3298 /* The symbol table entry, if any, that this was derived from. */
3299 struct ppc_link_hash_entry *h;
3300
3301 /* And the reloc addend that this was derived from. */
3302 bfd_vma addend;
3303
3304 /* Where this stub is being called from, or, in the case of combined
3305 stub sections, the first input section in the group. */
3306 asection *id_sec;
3307 };
3308
3309 struct ppc_branch_hash_entry {
3310
3311 /* Base hash table entry structure. */
3312 struct bfd_hash_entry root;
3313
3314 /* Offset within branch lookup table. */
3315 unsigned int offset;
3316
3317 /* Generation marker. */
3318 unsigned int iter;
3319 };
3320
3321 struct ppc_link_hash_entry
3322 {
3323 struct elf_link_hash_entry elf;
3324
3325 union {
3326 /* A pointer to the most recently used stub hash entry against this
3327 symbol. */
3328 struct ppc_stub_hash_entry *stub_cache;
3329
3330 /* A pointer to the next symbol starting with a '.' */
3331 struct ppc_link_hash_entry *next_dot_sym;
3332 } u;
3333
3334 /* Track dynamic relocs copied for this symbol. */
3335 struct ppc_dyn_relocs *dyn_relocs;
3336
3337 /* Link between function code and descriptor symbols. */
3338 struct ppc_link_hash_entry *oh;
3339
3340 /* Flag function code and descriptor symbols. */
3341 unsigned int is_func:1;
3342 unsigned int is_func_descriptor:1;
3343 unsigned int fake:1;
3344
3345 /* Whether global opd/toc sym has been adjusted or not.
3346 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3347 should be set for all globals defined in any opd/toc section. */
3348 unsigned int adjust_done:1;
3349
3350 /* Set if we twiddled this symbol to weak at some stage. */
3351 unsigned int was_undefined:1;
3352
3353 /* Contexts in which symbol is used in the GOT (or TOC).
3354 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3355 corresponding relocs are encountered during check_relocs.
3356 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3357 indicate the corresponding GOT entry type is not needed.
3358 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3359 a TPREL one. We use a separate flag rather than setting TPREL
3360 just for convenience in distinguishing the two cases. */
3361 #define TLS_GD 1 /* GD reloc. */
3362 #define TLS_LD 2 /* LD reloc. */
3363 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3364 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3365 #define TLS_TLS 16 /* Any TLS reloc. */
3366 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3367 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3368 char tls_mask;
3369 };
3370
3371 /* ppc64 ELF linker hash table. */
3372
3373 struct ppc_link_hash_table
3374 {
3375 struct elf_link_hash_table elf;
3376
3377 /* The stub hash table. */
3378 struct bfd_hash_table stub_hash_table;
3379
3380 /* Another hash table for plt_branch stubs. */
3381 struct bfd_hash_table branch_hash_table;
3382
3383 /* Linker stub bfd. */
3384 bfd *stub_bfd;
3385
3386 /* Linker call-backs. */
3387 asection * (*add_stub_section) (const char *, asection *);
3388 void (*layout_sections_again) (void);
3389
3390 /* Array to keep track of which stub sections have been created, and
3391 information on stub grouping. */
3392 struct map_stub {
3393 /* This is the section to which stubs in the group will be attached. */
3394 asection *link_sec;
3395 /* The stub section. */
3396 asection *stub_sec;
3397 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3398 bfd_vma toc_off;
3399 } *stub_group;
3400
3401 /* Temp used when calculating TOC pointers. */
3402 bfd_vma toc_curr;
3403
3404 /* Highest input section id. */
3405 int top_id;
3406
3407 /* Highest output section index. */
3408 int top_index;
3409
3410 /* Used when adding symbols. */
3411 struct ppc_link_hash_entry *dot_syms;
3412
3413 /* List of input sections for each output section. */
3414 asection **input_list;
3415
3416 /* Short-cuts to get to dynamic linker sections. */
3417 asection *got;
3418 asection *plt;
3419 asection *relplt;
3420 asection *dynbss;
3421 asection *relbss;
3422 asection *glink;
3423 asection *sfpr;
3424 asection *brlt;
3425 asection *relbrlt;
3426
3427 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3428 struct ppc_link_hash_entry *tls_get_addr;
3429 struct ppc_link_hash_entry *tls_get_addr_fd;
3430
3431 /* Statistics. */
3432 unsigned long stub_count[ppc_stub_plt_call];
3433
3434 /* Number of stubs against global syms. */
3435 unsigned long stub_globals;
3436
3437 /* Set if we should emit symbols for stubs. */
3438 unsigned int emit_stub_syms:1;
3439
3440 /* Support for multiple toc sections. */
3441 unsigned int no_multi_toc:1;
3442 unsigned int multi_toc_needed:1;
3443
3444 /* Set on error. */
3445 unsigned int stub_error:1;
3446
3447 /* Temp used by ppc64_elf_check_directives. */
3448 unsigned int twiddled_syms:1;
3449
3450 /* Incremented every time we size stubs. */
3451 unsigned int stub_iteration;
3452
3453 /* Small local sym to section mapping cache. */
3454 struct sym_sec_cache sym_sec;
3455 };
3456
3457 /* Rename some of the generic section flags to better document how they
3458 are used here. */
3459 #define has_toc_reloc has_gp_reloc
3460 #define makes_toc_func_call need_finalize_relax
3461 #define call_check_in_progress reloc_done
3462
3463 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3464
3465 #define ppc_hash_table(p) \
3466 ((struct ppc_link_hash_table *) ((p)->hash))
3467
3468 #define ppc_stub_hash_lookup(table, string, create, copy) \
3469 ((struct ppc_stub_hash_entry *) \
3470 bfd_hash_lookup ((table), (string), (create), (copy)))
3471
3472 #define ppc_branch_hash_lookup(table, string, create, copy) \
3473 ((struct ppc_branch_hash_entry *) \
3474 bfd_hash_lookup ((table), (string), (create), (copy)))
3475
3476 /* Create an entry in the stub hash table. */
3477
3478 static struct bfd_hash_entry *
3479 stub_hash_newfunc (struct bfd_hash_entry *entry,
3480 struct bfd_hash_table *table,
3481 const char *string)
3482 {
3483 /* Allocate the structure if it has not already been allocated by a
3484 subclass. */
3485 if (entry == NULL)
3486 {
3487 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3488 if (entry == NULL)
3489 return entry;
3490 }
3491
3492 /* Call the allocation method of the superclass. */
3493 entry = bfd_hash_newfunc (entry, table, string);
3494 if (entry != NULL)
3495 {
3496 struct ppc_stub_hash_entry *eh;
3497
3498 /* Initialize the local fields. */
3499 eh = (struct ppc_stub_hash_entry *) entry;
3500 eh->stub_type = ppc_stub_none;
3501 eh->stub_sec = NULL;
3502 eh->stub_offset = 0;
3503 eh->target_value = 0;
3504 eh->target_section = NULL;
3505 eh->h = NULL;
3506 eh->id_sec = NULL;
3507 }
3508
3509 return entry;
3510 }
3511
3512 /* Create an entry in the branch hash table. */
3513
3514 static struct bfd_hash_entry *
3515 branch_hash_newfunc (struct bfd_hash_entry *entry,
3516 struct bfd_hash_table *table,
3517 const char *string)
3518 {
3519 /* Allocate the structure if it has not already been allocated by a
3520 subclass. */
3521 if (entry == NULL)
3522 {
3523 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3524 if (entry == NULL)
3525 return entry;
3526 }
3527
3528 /* Call the allocation method of the superclass. */
3529 entry = bfd_hash_newfunc (entry, table, string);
3530 if (entry != NULL)
3531 {
3532 struct ppc_branch_hash_entry *eh;
3533
3534 /* Initialize the local fields. */
3535 eh = (struct ppc_branch_hash_entry *) entry;
3536 eh->offset = 0;
3537 eh->iter = 0;
3538 }
3539
3540 return entry;
3541 }
3542
3543 /* Create an entry in a ppc64 ELF linker hash table. */
3544
3545 static struct bfd_hash_entry *
3546 link_hash_newfunc (struct bfd_hash_entry *entry,
3547 struct bfd_hash_table *table,
3548 const char *string)
3549 {
3550 /* Allocate the structure if it has not already been allocated by a
3551 subclass. */
3552 if (entry == NULL)
3553 {
3554 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3555 if (entry == NULL)
3556 return entry;
3557 }
3558
3559 /* Call the allocation method of the superclass. */
3560 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3561 if (entry != NULL)
3562 {
3563 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3564
3565 memset (&eh->u.stub_cache, 0,
3566 (sizeof (struct ppc_link_hash_entry)
3567 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3568
3569 /* When making function calls, old ABI code references function entry
3570 points (dot symbols), while new ABI code references the function
3571 descriptor symbol. We need to make any combination of reference and
3572 definition work together, without breaking archive linking.
3573
3574 For a defined function "foo" and an undefined call to "bar":
3575 An old object defines "foo" and ".foo", references ".bar" (possibly
3576 "bar" too).
3577 A new object defines "foo" and references "bar".
3578
3579 A new object thus has no problem with its undefined symbols being
3580 satisfied by definitions in an old object. On the other hand, the
3581 old object won't have ".bar" satisfied by a new object.
3582
3583 Keep a list of newly added dot-symbols. */
3584
3585 if (string[0] == '.')
3586 {
3587 struct ppc_link_hash_table *htab;
3588
3589 htab = (struct ppc_link_hash_table *) table;
3590 eh->u.next_dot_sym = htab->dot_syms;
3591 htab->dot_syms = eh;
3592 }
3593 }
3594
3595 return entry;
3596 }
3597
3598 /* Create a ppc64 ELF linker hash table. */
3599
3600 static struct bfd_link_hash_table *
3601 ppc64_elf_link_hash_table_create (bfd *abfd)
3602 {
3603 struct ppc_link_hash_table *htab;
3604 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3605
3606 htab = bfd_zmalloc (amt);
3607 if (htab == NULL)
3608 return NULL;
3609
3610 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3611 sizeof (struct ppc_link_hash_entry)))
3612 {
3613 free (htab);
3614 return NULL;
3615 }
3616
3617 /* Init the stub hash table too. */
3618 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
3619 sizeof (struct ppc_stub_hash_entry)))
3620 return NULL;
3621
3622 /* And the branch hash table. */
3623 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
3624 sizeof (struct ppc_branch_hash_entry)))
3625 return NULL;
3626
3627 /* Initializing two fields of the union is just cosmetic. We really
3628 only care about glist, but when compiled on a 32-bit host the
3629 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3630 debugger inspection of these fields look nicer. */
3631 htab->elf.init_got_refcount.refcount = 0;
3632 htab->elf.init_got_refcount.glist = NULL;
3633 htab->elf.init_plt_refcount.refcount = 0;
3634 htab->elf.init_plt_refcount.glist = NULL;
3635 htab->elf.init_got_offset.offset = 0;
3636 htab->elf.init_got_offset.glist = NULL;
3637 htab->elf.init_plt_offset.offset = 0;
3638 htab->elf.init_plt_offset.glist = NULL;
3639
3640 return &htab->elf.root;
3641 }
3642
3643 /* Free the derived linker hash table. */
3644
3645 static void
3646 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
3647 {
3648 struct ppc_link_hash_table *ret = (struct ppc_link_hash_table *) hash;
3649
3650 bfd_hash_table_free (&ret->stub_hash_table);
3651 bfd_hash_table_free (&ret->branch_hash_table);
3652 _bfd_generic_link_hash_table_free (hash);
3653 }
3654
3655 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3656
3657 void
3658 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
3659 {
3660 struct ppc_link_hash_table *htab;
3661
3662 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
3663
3664 /* Always hook our dynamic sections into the first bfd, which is the
3665 linker created stub bfd. This ensures that the GOT header is at
3666 the start of the output TOC section. */
3667 htab = ppc_hash_table (info);
3668 htab->stub_bfd = abfd;
3669 htab->elf.dynobj = abfd;
3670 }
3671
3672 /* Build a name for an entry in the stub hash table. */
3673
3674 static char *
3675 ppc_stub_name (const asection *input_section,
3676 const asection *sym_sec,
3677 const struct ppc_link_hash_entry *h,
3678 const Elf_Internal_Rela *rel)
3679 {
3680 char *stub_name;
3681 bfd_size_type len;
3682
3683 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3684 offsets from a sym as a branch target? In fact, we could
3685 probably assume the addend is always zero. */
3686 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3687
3688 if (h)
3689 {
3690 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3691 stub_name = bfd_malloc (len);
3692 if (stub_name == NULL)
3693 return stub_name;
3694
3695 sprintf (stub_name, "%08x.%s+%x",
3696 input_section->id & 0xffffffff,
3697 h->elf.root.root.string,
3698 (int) rel->r_addend & 0xffffffff);
3699 }
3700 else
3701 {
3702 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3703 stub_name = bfd_malloc (len);
3704 if (stub_name == NULL)
3705 return stub_name;
3706
3707 sprintf (stub_name, "%08x.%x:%x+%x",
3708 input_section->id & 0xffffffff,
3709 sym_sec->id & 0xffffffff,
3710 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3711 (int) rel->r_addend & 0xffffffff);
3712 }
3713 if (stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3714 stub_name[len - 2] = 0;
3715 return stub_name;
3716 }
3717
3718 /* Look up an entry in the stub hash. Stub entries are cached because
3719 creating the stub name takes a bit of time. */
3720
3721 static struct ppc_stub_hash_entry *
3722 ppc_get_stub_entry (const asection *input_section,
3723 const asection *sym_sec,
3724 struct ppc_link_hash_entry *h,
3725 const Elf_Internal_Rela *rel,
3726 struct ppc_link_hash_table *htab)
3727 {
3728 struct ppc_stub_hash_entry *stub_entry;
3729 const asection *id_sec;
3730
3731 /* If this input section is part of a group of sections sharing one
3732 stub section, then use the id of the first section in the group.
3733 Stub names need to include a section id, as there may well be
3734 more than one stub used to reach say, printf, and we need to
3735 distinguish between them. */
3736 id_sec = htab->stub_group[input_section->id].link_sec;
3737
3738 if (h != NULL && h->u.stub_cache != NULL
3739 && h->u.stub_cache->h == h
3740 && h->u.stub_cache->id_sec == id_sec)
3741 {
3742 stub_entry = h->u.stub_cache;
3743 }
3744 else
3745 {
3746 char *stub_name;
3747
3748 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
3749 if (stub_name == NULL)
3750 return NULL;
3751
3752 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3753 stub_name, FALSE, FALSE);
3754 if (h != NULL)
3755 h->u.stub_cache = stub_entry;
3756
3757 free (stub_name);
3758 }
3759
3760 return stub_entry;
3761 }
3762
3763 /* Add a new stub entry to the stub hash. Not all fields of the new
3764 stub entry are initialised. */
3765
3766 static struct ppc_stub_hash_entry *
3767 ppc_add_stub (const char *stub_name,
3768 asection *section,
3769 struct ppc_link_hash_table *htab)
3770 {
3771 asection *link_sec;
3772 asection *stub_sec;
3773 struct ppc_stub_hash_entry *stub_entry;
3774
3775 link_sec = htab->stub_group[section->id].link_sec;
3776 stub_sec = htab->stub_group[section->id].stub_sec;
3777 if (stub_sec == NULL)
3778 {
3779 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3780 if (stub_sec == NULL)
3781 {
3782 size_t namelen;
3783 bfd_size_type len;
3784 char *s_name;
3785
3786 namelen = strlen (link_sec->name);
3787 len = namelen + sizeof (STUB_SUFFIX);
3788 s_name = bfd_alloc (htab->stub_bfd, len);
3789 if (s_name == NULL)
3790 return NULL;
3791
3792 memcpy (s_name, link_sec->name, namelen);
3793 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3794 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3795 if (stub_sec == NULL)
3796 return NULL;
3797 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3798 }
3799 htab->stub_group[section->id].stub_sec = stub_sec;
3800 }
3801
3802 /* Enter this entry into the linker stub hash table. */
3803 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3804 TRUE, FALSE);
3805 if (stub_entry == NULL)
3806 {
3807 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3808 section->owner, stub_name);
3809 return NULL;
3810 }
3811
3812 stub_entry->stub_sec = stub_sec;
3813 stub_entry->stub_offset = 0;
3814 stub_entry->id_sec = link_sec;
3815 return stub_entry;
3816 }
3817
3818 /* Create sections for linker generated code. */
3819
3820 static bfd_boolean
3821 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3822 {
3823 struct ppc_link_hash_table *htab;
3824 flagword flags;
3825
3826 htab = ppc_hash_table (info);
3827
3828 /* Create .sfpr for code to save and restore fp regs. */
3829 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3830 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3831 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
3832 flags);
3833 if (htab->sfpr == NULL
3834 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
3835 return FALSE;
3836
3837 /* Create .glink for lazy dynamic linking support. */
3838 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3839 flags);
3840 if (htab->glink == NULL
3841 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
3842 return FALSE;
3843
3844 /* Create branch lookup table for plt_branch stubs. */
3845 flags = (SEC_ALLOC | SEC_LOAD
3846 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3847 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3848 flags);
3849 if (htab->brlt == NULL
3850 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
3851 return FALSE;
3852
3853 if (!info->shared)
3854 return TRUE;
3855
3856 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3857 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3858 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
3859 ".rela.branch_lt",
3860 flags);
3861 if (!htab->relbrlt
3862 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
3863 return FALSE;
3864
3865 return TRUE;
3866 }
3867
3868 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3869 not already done. */
3870
3871 static bfd_boolean
3872 create_got_section (bfd *abfd, struct bfd_link_info *info)
3873 {
3874 asection *got, *relgot;
3875 flagword flags;
3876 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3877
3878 if (!is_ppc64_elf (abfd))
3879 return FALSE;
3880
3881 if (!htab->got)
3882 {
3883 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
3884 return FALSE;
3885
3886 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
3887 if (!htab->got)
3888 abort ();
3889 }
3890
3891 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3892 | SEC_LINKER_CREATED);
3893
3894 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
3895 if (!got
3896 || !bfd_set_section_alignment (abfd, got, 3))
3897 return FALSE;
3898
3899 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
3900 flags | SEC_READONLY);
3901 if (!relgot
3902 || ! bfd_set_section_alignment (abfd, relgot, 3))
3903 return FALSE;
3904
3905 ppc64_elf_tdata (abfd)->got = got;
3906 ppc64_elf_tdata (abfd)->relgot = relgot;
3907 return TRUE;
3908 }
3909
3910 /* Create the dynamic sections, and set up shortcuts. */
3911
3912 static bfd_boolean
3913 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3914 {
3915 struct ppc_link_hash_table *htab;
3916
3917 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3918 return FALSE;
3919
3920 htab = ppc_hash_table (info);
3921 if (!htab->got)
3922 htab->got = bfd_get_section_by_name (dynobj, ".got");
3923 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
3924 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
3925 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3926 if (!info->shared)
3927 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
3928
3929 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
3930 || (!info->shared && !htab->relbss))
3931 abort ();
3932
3933 return TRUE;
3934 }
3935
3936 /* Merge PLT info on FROM with that on TO. */
3937
3938 static void
3939 move_plt_plist (struct ppc_link_hash_entry *from,
3940 struct ppc_link_hash_entry *to)
3941 {
3942 if (from->elf.plt.plist != NULL)
3943 {
3944 if (to->elf.plt.plist != NULL)
3945 {
3946 struct plt_entry **entp;
3947 struct plt_entry *ent;
3948
3949 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3950 {
3951 struct plt_entry *dent;
3952
3953 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3954 if (dent->addend == ent->addend)
3955 {
3956 dent->plt.refcount += ent->plt.refcount;
3957 *entp = ent->next;
3958 break;
3959 }
3960 if (dent == NULL)
3961 entp = &ent->next;
3962 }
3963 *entp = to->elf.plt.plist;
3964 }
3965
3966 to->elf.plt.plist = from->elf.plt.plist;
3967 from->elf.plt.plist = NULL;
3968 }
3969 }
3970
3971 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3972
3973 static void
3974 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
3975 struct elf_link_hash_entry *dir,
3976 struct elf_link_hash_entry *ind)
3977 {
3978 struct ppc_link_hash_entry *edir, *eind;
3979
3980 edir = (struct ppc_link_hash_entry *) dir;
3981 eind = (struct ppc_link_hash_entry *) ind;
3982
3983 /* Copy over any dynamic relocs we may have on the indirect sym. */
3984 if (eind->dyn_relocs != NULL)
3985 {
3986 if (edir->dyn_relocs != NULL)
3987 {
3988 struct ppc_dyn_relocs **pp;
3989 struct ppc_dyn_relocs *p;
3990
3991 /* Add reloc counts against the indirect sym to the direct sym
3992 list. Merge any entries against the same section. */
3993 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3994 {
3995 struct ppc_dyn_relocs *q;
3996
3997 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3998 if (q->sec == p->sec)
3999 {
4000 q->pc_count += p->pc_count;
4001 q->count += p->count;
4002 *pp = p->next;
4003 break;
4004 }
4005 if (q == NULL)
4006 pp = &p->next;
4007 }
4008 *pp = edir->dyn_relocs;
4009 }
4010
4011 edir->dyn_relocs = eind->dyn_relocs;
4012 eind->dyn_relocs = NULL;
4013 }
4014
4015 edir->is_func |= eind->is_func;
4016 edir->is_func_descriptor |= eind->is_func_descriptor;
4017 edir->tls_mask |= eind->tls_mask;
4018
4019 /* If called to transfer flags for a weakdef during processing
4020 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4021 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4022 if (!(ELIMINATE_COPY_RELOCS
4023 && eind->elf.root.type != bfd_link_hash_indirect
4024 && edir->elf.dynamic_adjusted))
4025 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4026
4027 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4028 edir->elf.ref_regular |= eind->elf.ref_regular;
4029 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4030 edir->elf.needs_plt |= eind->elf.needs_plt;
4031
4032 /* If we were called to copy over info for a weak sym, that's all. */
4033 if (eind->elf.root.type != bfd_link_hash_indirect)
4034 return;
4035
4036 /* Copy over got entries that we may have already seen to the
4037 symbol which just became indirect. */
4038 if (eind->elf.got.glist != NULL)
4039 {
4040 if (edir->elf.got.glist != NULL)
4041 {
4042 struct got_entry **entp;
4043 struct got_entry *ent;
4044
4045 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4046 {
4047 struct got_entry *dent;
4048
4049 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4050 if (dent->addend == ent->addend
4051 && dent->owner == ent->owner
4052 && dent->tls_type == ent->tls_type)
4053 {
4054 dent->got.refcount += ent->got.refcount;
4055 *entp = ent->next;
4056 break;
4057 }
4058 if (dent == NULL)
4059 entp = &ent->next;
4060 }
4061 *entp = edir->elf.got.glist;
4062 }
4063
4064 edir->elf.got.glist = eind->elf.got.glist;
4065 eind->elf.got.glist = NULL;
4066 }
4067
4068 /* And plt entries. */
4069 move_plt_plist (eind, edir);
4070
4071 if (eind->elf.dynindx != -1)
4072 {
4073 if (edir->elf.dynindx != -1)
4074 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4075 edir->elf.dynstr_index);
4076 edir->elf.dynindx = eind->elf.dynindx;
4077 edir->elf.dynstr_index = eind->elf.dynstr_index;
4078 eind->elf.dynindx = -1;
4079 eind->elf.dynstr_index = 0;
4080 }
4081 }
4082
4083 /* Find the function descriptor hash entry from the given function code
4084 hash entry FH. Link the entries via their OH fields. */
4085
4086 static struct ppc_link_hash_entry *
4087 get_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4088 {
4089 struct ppc_link_hash_entry *fdh = fh->oh;
4090
4091 if (fdh == NULL)
4092 {
4093 const char *fd_name = fh->elf.root.root.string + 1;
4094
4095 fdh = (struct ppc_link_hash_entry *)
4096 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4097 if (fdh != NULL)
4098 {
4099 fdh->is_func_descriptor = 1;
4100 fdh->oh = fh;
4101 fh->is_func = 1;
4102 fh->oh = fdh;
4103 }
4104 }
4105
4106 return fdh;
4107 }
4108
4109 /* Make a fake function descriptor sym for the code sym FH. */
4110
4111 static struct ppc_link_hash_entry *
4112 make_fdh (struct bfd_link_info *info,
4113 struct ppc_link_hash_entry *fh)
4114 {
4115 bfd *abfd;
4116 asymbol *newsym;
4117 struct bfd_link_hash_entry *bh;
4118 struct ppc_link_hash_entry *fdh;
4119
4120 abfd = fh->elf.root.u.undef.abfd;
4121 newsym = bfd_make_empty_symbol (abfd);
4122 newsym->name = fh->elf.root.root.string + 1;
4123 newsym->section = bfd_und_section_ptr;
4124 newsym->value = 0;
4125 newsym->flags = BSF_WEAK;
4126
4127 bh = NULL;
4128 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4129 newsym->flags, newsym->section,
4130 newsym->value, NULL, FALSE, FALSE,
4131 &bh))
4132 return NULL;
4133
4134 fdh = (struct ppc_link_hash_entry *) bh;
4135 fdh->elf.non_elf = 0;
4136 fdh->fake = 1;
4137 fdh->is_func_descriptor = 1;
4138 fdh->oh = fh;
4139 fh->is_func = 1;
4140 fh->oh = fdh;
4141 return fdh;
4142 }
4143
4144 /* Fix function descriptor symbols defined in .opd sections to be
4145 function type. */
4146
4147 static bfd_boolean
4148 ppc64_elf_add_symbol_hook (bfd *ibfd ATTRIBUTE_UNUSED,
4149 struct bfd_link_info *info ATTRIBUTE_UNUSED,
4150 Elf_Internal_Sym *isym,
4151 const char **name ATTRIBUTE_UNUSED,
4152 flagword *flags ATTRIBUTE_UNUSED,
4153 asection **sec,
4154 bfd_vma *value ATTRIBUTE_UNUSED)
4155 {
4156 if (*sec != NULL
4157 && strcmp (bfd_get_section_name (ibfd, *sec), ".opd") == 0)
4158 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4159
4160 return TRUE;
4161 }
4162
4163 /* This function makes an old ABI object reference to ".bar" cause the
4164 inclusion of a new ABI object archive that defines "bar".
4165 NAME is a symbol defined in an archive. Return a symbol in the hash
4166 table that might be satisfied by the archive symbols. */
4167
4168 static struct elf_link_hash_entry *
4169 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4170 struct bfd_link_info *info,
4171 const char *name)
4172 {
4173 struct elf_link_hash_entry *h;
4174 char *dot_name;
4175 size_t len;
4176
4177 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4178 if (h != NULL
4179 /* Don't return this sym if it is a fake function descriptor
4180 created by add_symbol_adjust. */
4181 && !(h->root.type == bfd_link_hash_undefweak
4182 && ((struct ppc_link_hash_entry *) h)->fake))
4183 return h;
4184
4185 if (name[0] == '.')
4186 return h;
4187
4188 len = strlen (name);
4189 dot_name = bfd_alloc (abfd, len + 2);
4190 if (dot_name == NULL)
4191 return (struct elf_link_hash_entry *) 0 - 1;
4192 dot_name[0] = '.';
4193 memcpy (dot_name + 1, name, len + 1);
4194 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4195 bfd_release (abfd, dot_name);
4196 return h;
4197 }
4198
4199 /* This function satisfies all old ABI object references to ".bar" if a
4200 new ABI object defines "bar". Well, at least, undefined dot symbols
4201 are made weak. This stops later archive searches from including an
4202 object if we already have a function descriptor definition. It also
4203 prevents the linker complaining about undefined symbols.
4204 We also check and correct mismatched symbol visibility here. The
4205 most restrictive visibility of the function descriptor and the
4206 function entry symbol is used. */
4207
4208 static bfd_boolean
4209 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4210 {
4211 struct ppc_link_hash_table *htab;
4212 struct ppc_link_hash_entry *fdh;
4213
4214 if (eh->elf.root.type == bfd_link_hash_indirect)
4215 return TRUE;
4216
4217 if (eh->elf.root.type == bfd_link_hash_warning)
4218 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4219
4220 if (eh->elf.root.root.string[0] != '.')
4221 abort ();
4222
4223 htab = ppc_hash_table (info);
4224 fdh = get_fdh (eh, htab);
4225 if (fdh == NULL
4226 && !info->relocatable
4227 && (eh->elf.root.type == bfd_link_hash_undefined
4228 || eh->elf.root.type == bfd_link_hash_undefweak)
4229 && eh->elf.ref_regular)
4230 {
4231 /* Make an undefweak function descriptor sym, which is enough to
4232 pull in an --as-needed shared lib, but won't cause link
4233 errors. Archives are handled elsewhere. */
4234 fdh = make_fdh (info, eh);
4235 if (fdh == NULL)
4236 return FALSE;
4237 else
4238 fdh->elf.ref_regular = 1;
4239 }
4240 else if (fdh != NULL)
4241 {
4242 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4243 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4244 if (entry_vis < descr_vis)
4245 fdh->elf.other += entry_vis - descr_vis;
4246 else if (entry_vis > descr_vis)
4247 eh->elf.other += descr_vis - entry_vis;
4248
4249 if ((fdh->elf.root.type == bfd_link_hash_defined
4250 || fdh->elf.root.type == bfd_link_hash_defweak)
4251 && eh->elf.root.type == bfd_link_hash_undefined)
4252 {
4253 eh->elf.root.type = bfd_link_hash_undefweak;
4254 eh->was_undefined = 1;
4255 htab->twiddled_syms = 1;
4256 }
4257 }
4258
4259 return TRUE;
4260 }
4261
4262 /* Process list of dot-symbols we made in link_hash_newfunc. */
4263
4264 static bfd_boolean
4265 ppc64_elf_check_directives (bfd *ibfd, struct bfd_link_info *info)
4266 {
4267 struct ppc_link_hash_table *htab;
4268 struct ppc_link_hash_entry **p, *eh;
4269
4270 htab = ppc_hash_table (info);
4271 if (!is_ppc64_elf (info->output_bfd))
4272 return TRUE;
4273
4274 if (is_ppc64_elf (ibfd))
4275 {
4276 p = &htab->dot_syms;
4277 while ((eh = *p) != NULL)
4278 {
4279 *p = NULL;
4280 if (!add_symbol_adjust (eh, info))
4281 return FALSE;
4282 p = &eh->u.next_dot_sym;
4283 }
4284 }
4285
4286 /* Clear the list for non-ppc64 input files. */
4287 p = &htab->dot_syms;
4288 while ((eh = *p) != NULL)
4289 {
4290 *p = NULL;
4291 p = &eh->u.next_dot_sym;
4292 }
4293
4294 /* We need to fix the undefs list for any syms we have twiddled to
4295 undef_weak. */
4296 if (htab->twiddled_syms)
4297 {
4298 bfd_link_repair_undef_list (&htab->elf.root);
4299 htab->twiddled_syms = 0;
4300 }
4301 return TRUE;
4302 }
4303
4304 /* Undo hash table changes when an --as-needed input file is determined
4305 not to be needed. */
4306
4307 static bfd_boolean
4308 ppc64_elf_as_needed_cleanup (bfd *ibfd ATTRIBUTE_UNUSED,
4309 struct bfd_link_info *info)
4310 {
4311 ppc_hash_table (info)->dot_syms = NULL;
4312 return TRUE;
4313 }
4314
4315 static bfd_boolean
4316 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4317 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4318 {
4319 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4320 char *local_got_tls_masks;
4321
4322 if (local_got_ents == NULL)
4323 {
4324 bfd_size_type size = symtab_hdr->sh_info;
4325
4326 size *= sizeof (*local_got_ents) + sizeof (*local_got_tls_masks);
4327 local_got_ents = bfd_zalloc (abfd, size);
4328 if (local_got_ents == NULL)
4329 return FALSE;
4330 elf_local_got_ents (abfd) = local_got_ents;
4331 }
4332
4333 if ((tls_type & TLS_EXPLICIT) == 0)
4334 {
4335 struct got_entry *ent;
4336
4337 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4338 if (ent->addend == r_addend
4339 && ent->owner == abfd
4340 && ent->tls_type == tls_type)
4341 break;
4342 if (ent == NULL)
4343 {
4344 bfd_size_type amt = sizeof (*ent);
4345 ent = bfd_alloc (abfd, amt);
4346 if (ent == NULL)
4347 return FALSE;
4348 ent->next = local_got_ents[r_symndx];
4349 ent->addend = r_addend;
4350 ent->owner = abfd;
4351 ent->tls_type = tls_type;
4352 ent->got.refcount = 0;
4353 local_got_ents[r_symndx] = ent;
4354 }
4355 ent->got.refcount += 1;
4356 }
4357
4358 local_got_tls_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
4359 local_got_tls_masks[r_symndx] |= tls_type;
4360 return TRUE;
4361 }
4362
4363 static bfd_boolean
4364 update_plt_info (bfd *abfd, struct ppc_link_hash_entry *eh, bfd_vma addend)
4365 {
4366 struct plt_entry *ent;
4367
4368 for (ent = eh->elf.plt.plist; ent != NULL; ent = ent->next)
4369 if (ent->addend == addend)
4370 break;
4371 if (ent == NULL)
4372 {
4373 bfd_size_type amt = sizeof (*ent);
4374 ent = bfd_alloc (abfd, amt);
4375 if (ent == NULL)
4376 return FALSE;
4377 ent->next = eh->elf.plt.plist;
4378 ent->addend = addend;
4379 ent->plt.refcount = 0;
4380 eh->elf.plt.plist = ent;
4381 }
4382 ent->plt.refcount += 1;
4383 eh->elf.needs_plt = 1;
4384 if (eh->elf.root.root.string[0] == '.'
4385 && eh->elf.root.root.string[1] != '\0')
4386 eh->is_func = 1;
4387 return TRUE;
4388 }
4389
4390 /* Look through the relocs for a section during the first phase, and
4391 calculate needed space in the global offset table, procedure
4392 linkage table, and dynamic reloc sections. */
4393
4394 static bfd_boolean
4395 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4396 asection *sec, const Elf_Internal_Rela *relocs)
4397 {
4398 struct ppc_link_hash_table *htab;
4399 Elf_Internal_Shdr *symtab_hdr;
4400 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4401 const Elf_Internal_Rela *rel;
4402 const Elf_Internal_Rela *rel_end;
4403 asection *sreloc;
4404 asection **opd_sym_map;
4405
4406 if (info->relocatable)
4407 return TRUE;
4408
4409 /* Don't do anything special with non-loaded, non-alloced sections.
4410 In particular, any relocs in such sections should not affect GOT
4411 and PLT reference counting (ie. we don't allow them to create GOT
4412 or PLT entries), there's no possibility or desire to optimize TLS
4413 relocs, and there's not much point in propagating relocs to shared
4414 libs that the dynamic linker won't relocate. */
4415 if ((sec->flags & SEC_ALLOC) == 0)
4416 return TRUE;
4417
4418 BFD_ASSERT (is_ppc64_elf (abfd));
4419
4420 htab = ppc_hash_table (info);
4421 symtab_hdr = &elf_symtab_hdr (abfd);
4422
4423 sym_hashes = elf_sym_hashes (abfd);
4424 sym_hashes_end = (sym_hashes
4425 + symtab_hdr->sh_size / sizeof (Elf64_External_Sym)
4426 - symtab_hdr->sh_info);
4427
4428 sreloc = NULL;
4429 opd_sym_map = NULL;
4430 if (strcmp (bfd_get_section_name (abfd, sec), ".opd") == 0)
4431 {
4432 /* Garbage collection needs some extra help with .opd sections.
4433 We don't want to necessarily keep everything referenced by
4434 relocs in .opd, as that would keep all functions. Instead,
4435 if we reference an .opd symbol (a function descriptor), we
4436 want to keep the function code symbol's section. This is
4437 easy for global symbols, but for local syms we need to keep
4438 information about the associated function section. */
4439 bfd_size_type amt;
4440
4441 amt = sec->size * sizeof (*opd_sym_map) / 8;
4442 opd_sym_map = bfd_zalloc (abfd, amt);
4443 if (opd_sym_map == NULL)
4444 return FALSE;
4445 ppc64_elf_section_data (sec)->u.opd.func_sec = opd_sym_map;
4446 BFD_ASSERT (ppc64_elf_section_data (sec)->sec_type == sec_normal);
4447 ppc64_elf_section_data (sec)->sec_type = sec_opd;
4448 }
4449
4450 if (htab->sfpr == NULL
4451 && !create_linkage_sections (htab->elf.dynobj, info))
4452 return FALSE;
4453
4454 rel_end = relocs + sec->reloc_count;
4455 for (rel = relocs; rel < rel_end; rel++)
4456 {
4457 unsigned long r_symndx;
4458 struct elf_link_hash_entry *h;
4459 enum elf_ppc64_reloc_type r_type;
4460 int tls_type = 0;
4461 struct _ppc64_elf_section_data *ppc64_sec;
4462
4463 r_symndx = ELF64_R_SYM (rel->r_info);
4464 if (r_symndx < symtab_hdr->sh_info)
4465 h = NULL;
4466 else
4467 {
4468 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4469 while (h->root.type == bfd_link_hash_indirect
4470 || h->root.type == bfd_link_hash_warning)
4471 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4472 }
4473
4474 r_type = ELF64_R_TYPE (rel->r_info);
4475 switch (r_type)
4476 {
4477 case R_PPC64_GOT_TLSLD16:
4478 case R_PPC64_GOT_TLSLD16_LO:
4479 case R_PPC64_GOT_TLSLD16_HI:
4480 case R_PPC64_GOT_TLSLD16_HA:
4481 tls_type = TLS_TLS | TLS_LD;
4482 goto dogottls;
4483
4484 case R_PPC64_GOT_TLSGD16:
4485 case R_PPC64_GOT_TLSGD16_LO:
4486 case R_PPC64_GOT_TLSGD16_HI:
4487 case R_PPC64_GOT_TLSGD16_HA:
4488 tls_type = TLS_TLS | TLS_GD;
4489 goto dogottls;
4490
4491 case R_PPC64_GOT_TPREL16_DS:
4492 case R_PPC64_GOT_TPREL16_LO_DS:
4493 case R_PPC64_GOT_TPREL16_HI:
4494 case R_PPC64_GOT_TPREL16_HA:
4495 if (info->shared)
4496 info->flags |= DF_STATIC_TLS;
4497 tls_type = TLS_TLS | TLS_TPREL;
4498 goto dogottls;
4499
4500 case R_PPC64_GOT_DTPREL16_DS:
4501 case R_PPC64_GOT_DTPREL16_LO_DS:
4502 case R_PPC64_GOT_DTPREL16_HI:
4503 case R_PPC64_GOT_DTPREL16_HA:
4504 tls_type = TLS_TLS | TLS_DTPREL;
4505 dogottls:
4506 sec->has_tls_reloc = 1;
4507 /* Fall thru */
4508
4509 case R_PPC64_GOT16:
4510 case R_PPC64_GOT16_DS:
4511 case R_PPC64_GOT16_HA:
4512 case R_PPC64_GOT16_HI:
4513 case R_PPC64_GOT16_LO:
4514 case R_PPC64_GOT16_LO_DS:
4515 /* This symbol requires a global offset table entry. */
4516 sec->has_toc_reloc = 1;
4517 if (ppc64_elf_tdata (abfd)->got == NULL
4518 && !create_got_section (abfd, info))
4519 return FALSE;
4520
4521 if (h != NULL)
4522 {
4523 struct ppc_link_hash_entry *eh;
4524 struct got_entry *ent;
4525
4526 eh = (struct ppc_link_hash_entry *) h;
4527 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4528 if (ent->addend == rel->r_addend
4529 && ent->owner == abfd
4530 && ent->tls_type == tls_type)
4531 break;
4532 if (ent == NULL)
4533 {
4534 bfd_size_type amt = sizeof (*ent);
4535 ent = bfd_alloc (abfd, amt);
4536 if (ent == NULL)
4537 return FALSE;
4538 ent->next = eh->elf.got.glist;
4539 ent->addend = rel->r_addend;
4540 ent->owner = abfd;
4541 ent->tls_type = tls_type;
4542 ent->got.refcount = 0;
4543 eh->elf.got.glist = ent;
4544 }
4545 ent->got.refcount += 1;
4546 eh->tls_mask |= tls_type;
4547 }
4548 else
4549 /* This is a global offset table entry for a local symbol. */
4550 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4551 rel->r_addend, tls_type))
4552 return FALSE;
4553 break;
4554
4555 case R_PPC64_PLT16_HA:
4556 case R_PPC64_PLT16_HI:
4557 case R_PPC64_PLT16_LO:
4558 case R_PPC64_PLT32:
4559 case R_PPC64_PLT64:
4560 /* This symbol requires a procedure linkage table entry. We
4561 actually build the entry in adjust_dynamic_symbol,
4562 because this might be a case of linking PIC code without
4563 linking in any dynamic objects, in which case we don't
4564 need to generate a procedure linkage table after all. */
4565 if (h == NULL)
4566 {
4567 /* It does not make sense to have a procedure linkage
4568 table entry for a local symbol. */
4569 bfd_set_error (bfd_error_bad_value);
4570 return FALSE;
4571 }
4572 else
4573 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4574 rel->r_addend))
4575 return FALSE;
4576 break;
4577
4578 /* The following relocations don't need to propagate the
4579 relocation if linking a shared object since they are
4580 section relative. */
4581 case R_PPC64_SECTOFF:
4582 case R_PPC64_SECTOFF_LO:
4583 case R_PPC64_SECTOFF_HI:
4584 case R_PPC64_SECTOFF_HA:
4585 case R_PPC64_SECTOFF_DS:
4586 case R_PPC64_SECTOFF_LO_DS:
4587 case R_PPC64_DTPREL16:
4588 case R_PPC64_DTPREL16_LO:
4589 case R_PPC64_DTPREL16_HI:
4590 case R_PPC64_DTPREL16_HA:
4591 case R_PPC64_DTPREL16_DS:
4592 case R_PPC64_DTPREL16_LO_DS:
4593 case R_PPC64_DTPREL16_HIGHER:
4594 case R_PPC64_DTPREL16_HIGHERA:
4595 case R_PPC64_DTPREL16_HIGHEST:
4596 case R_PPC64_DTPREL16_HIGHESTA:
4597 break;
4598
4599 /* Nor do these. */
4600 case R_PPC64_TOC16:
4601 case R_PPC64_TOC16_LO:
4602 case R_PPC64_TOC16_HI:
4603 case R_PPC64_TOC16_HA:
4604 case R_PPC64_TOC16_DS:
4605 case R_PPC64_TOC16_LO_DS:
4606 sec->has_toc_reloc = 1;
4607 break;
4608
4609 /* This relocation describes the C++ object vtable hierarchy.
4610 Reconstruct it for later use during GC. */
4611 case R_PPC64_GNU_VTINHERIT:
4612 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4613 return FALSE;
4614 break;
4615
4616 /* This relocation describes which C++ vtable entries are actually
4617 used. Record for later use during GC. */
4618 case R_PPC64_GNU_VTENTRY:
4619 BFD_ASSERT (h != NULL);
4620 if (h != NULL
4621 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4622 return FALSE;
4623 break;
4624
4625 case R_PPC64_REL14:
4626 case R_PPC64_REL14_BRTAKEN:
4627 case R_PPC64_REL14_BRNTAKEN:
4628 {
4629 asection *dest = NULL;
4630
4631 /* Heuristic: If jumping outside our section, chances are
4632 we are going to need a stub. */
4633 if (h != NULL)
4634 {
4635 /* If the sym is weak it may be overridden later, so
4636 don't assume we know where a weak sym lives. */
4637 if (h->root.type == bfd_link_hash_defined)
4638 dest = h->root.u.def.section;
4639 }
4640 else
4641 dest = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
4642 sec, r_symndx);
4643 if (dest != sec)
4644 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
4645 }
4646 /* Fall through. */
4647
4648 case R_PPC64_REL24:
4649 if (h != NULL)
4650 {
4651 /* We may need a .plt entry if the function this reloc
4652 refers to is in a shared lib. */
4653 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4654 rel->r_addend))
4655 return FALSE;
4656 if (h == &htab->tls_get_addr->elf
4657 || h == &htab->tls_get_addr_fd->elf)
4658 sec->has_tls_reloc = 1;
4659 else if (htab->tls_get_addr == NULL
4660 && CONST_STRNEQ (h->root.root.string, ".__tls_get_addr")
4661 && (h->root.root.string[15] == 0
4662 || h->root.root.string[15] == '@'))
4663 {
4664 htab->tls_get_addr = (struct ppc_link_hash_entry *) h;
4665 sec->has_tls_reloc = 1;
4666 }
4667 else if (htab->tls_get_addr_fd == NULL
4668 && CONST_STRNEQ (h->root.root.string, "__tls_get_addr")
4669 && (h->root.root.string[14] == 0
4670 || h->root.root.string[14] == '@'))
4671 {
4672 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) h;
4673 sec->has_tls_reloc = 1;
4674 }
4675 }
4676 break;
4677
4678 case R_PPC64_TPREL64:
4679 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4680 if (info->shared)
4681 info->flags |= DF_STATIC_TLS;
4682 goto dotlstoc;
4683
4684 case R_PPC64_DTPMOD64:
4685 if (rel + 1 < rel_end
4686 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4687 && rel[1].r_offset == rel->r_offset + 8)
4688 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4689 else
4690 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4691 goto dotlstoc;
4692
4693 case R_PPC64_DTPREL64:
4694 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4695 if (rel != relocs
4696 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4697 && rel[-1].r_offset == rel->r_offset - 8)
4698 /* This is the second reloc of a dtpmod, dtprel pair.
4699 Don't mark with TLS_DTPREL. */
4700 goto dodyn;
4701
4702 dotlstoc:
4703 sec->has_tls_reloc = 1;
4704 if (h != NULL)
4705 {
4706 struct ppc_link_hash_entry *eh;
4707 eh = (struct ppc_link_hash_entry *) h;
4708 eh->tls_mask |= tls_type;
4709 }
4710 else
4711 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4712 rel->r_addend, tls_type))
4713 return FALSE;
4714
4715 ppc64_sec = ppc64_elf_section_data (sec);
4716 if (ppc64_sec->sec_type != sec_toc)
4717 {
4718 /* One extra to simplify get_tls_mask. */
4719 bfd_size_type amt = sec->size * sizeof (unsigned) / 8 + 1;
4720 ppc64_sec->u.t_symndx = bfd_zalloc (abfd, amt);
4721 if (ppc64_sec->u.t_symndx == NULL)
4722 return FALSE;
4723 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
4724 ppc64_sec->sec_type = sec_toc;
4725 }
4726 BFD_ASSERT (rel->r_offset % 8 == 0);
4727 ppc64_sec->u.t_symndx[rel->r_offset / 8] = r_symndx;
4728
4729 /* Mark the second slot of a GD or LD entry.
4730 -1 to indicate GD and -2 to indicate LD. */
4731 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
4732 ppc64_sec->u.t_symndx[rel->r_offset / 8 + 1] = -1;
4733 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
4734 ppc64_sec->u.t_symndx[rel->r_offset / 8 + 1] = -2;
4735 goto dodyn;
4736
4737 case R_PPC64_TPREL16:
4738 case R_PPC64_TPREL16_LO:
4739 case R_PPC64_TPREL16_HI:
4740 case R_PPC64_TPREL16_HA:
4741 case R_PPC64_TPREL16_DS:
4742 case R_PPC64_TPREL16_LO_DS:
4743 case R_PPC64_TPREL16_HIGHER:
4744 case R_PPC64_TPREL16_HIGHERA:
4745 case R_PPC64_TPREL16_HIGHEST:
4746 case R_PPC64_TPREL16_HIGHESTA:
4747 if (info->shared)
4748 {
4749 info->flags |= DF_STATIC_TLS;
4750 goto dodyn;
4751 }
4752 break;
4753
4754 case R_PPC64_ADDR64:
4755 if (opd_sym_map != NULL
4756 && rel + 1 < rel_end
4757 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
4758 {
4759 if (h != NULL)
4760 {
4761 if (h->root.root.string[0] == '.'
4762 && h->root.root.string[1] != 0
4763 && get_fdh ((struct ppc_link_hash_entry *) h, htab))
4764 ;
4765 else
4766 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4767 }
4768 else
4769 {
4770 asection *s;
4771
4772 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec,
4773 r_symndx);
4774 if (s == NULL)
4775 return FALSE;
4776 else if (s != sec)
4777 opd_sym_map[rel->r_offset / 8] = s;
4778 }
4779 }
4780 /* Fall through. */
4781
4782 case R_PPC64_REL30:
4783 case R_PPC64_REL32:
4784 case R_PPC64_REL64:
4785 case R_PPC64_ADDR14:
4786 case R_PPC64_ADDR14_BRNTAKEN:
4787 case R_PPC64_ADDR14_BRTAKEN:
4788 case R_PPC64_ADDR16:
4789 case R_PPC64_ADDR16_DS:
4790 case R_PPC64_ADDR16_HA:
4791 case R_PPC64_ADDR16_HI:
4792 case R_PPC64_ADDR16_HIGHER:
4793 case R_PPC64_ADDR16_HIGHERA:
4794 case R_PPC64_ADDR16_HIGHEST:
4795 case R_PPC64_ADDR16_HIGHESTA:
4796 case R_PPC64_ADDR16_LO:
4797 case R_PPC64_ADDR16_LO_DS:
4798 case R_PPC64_ADDR24:
4799 case R_PPC64_ADDR32:
4800 case R_PPC64_UADDR16:
4801 case R_PPC64_UADDR32:
4802 case R_PPC64_UADDR64:
4803 case R_PPC64_TOC:
4804 if (h != NULL && !info->shared)
4805 /* We may need a copy reloc. */
4806 h->non_got_ref = 1;
4807
4808 /* Don't propagate .opd relocs. */
4809 if (NO_OPD_RELOCS && opd_sym_map != NULL)
4810 break;
4811
4812 /* If we are creating a shared library, and this is a reloc
4813 against a global symbol, or a non PC relative reloc
4814 against a local symbol, then we need to copy the reloc
4815 into the shared library. However, if we are linking with
4816 -Bsymbolic, we do not need to copy a reloc against a
4817 global symbol which is defined in an object we are
4818 including in the link (i.e., DEF_REGULAR is set). At
4819 this point we have not seen all the input files, so it is
4820 possible that DEF_REGULAR is not set now but will be set
4821 later (it is never cleared). In case of a weak definition,
4822 DEF_REGULAR may be cleared later by a strong definition in
4823 a shared library. We account for that possibility below by
4824 storing information in the dyn_relocs field of the hash
4825 table entry. A similar situation occurs when creating
4826 shared libraries and symbol visibility changes render the
4827 symbol local.
4828
4829 If on the other hand, we are creating an executable, we
4830 may need to keep relocations for symbols satisfied by a
4831 dynamic library if we manage to avoid copy relocs for the
4832 symbol. */
4833 dodyn:
4834 if ((info->shared
4835 && (MUST_BE_DYN_RELOC (r_type)
4836 || (h != NULL
4837 && (! info->symbolic
4838 || h->root.type == bfd_link_hash_defweak
4839 || !h->def_regular))))
4840 || (ELIMINATE_COPY_RELOCS
4841 && !info->shared
4842 && h != NULL
4843 && (h->root.type == bfd_link_hash_defweak
4844 || !h->def_regular)))
4845 {
4846 struct ppc_dyn_relocs *p;
4847 struct ppc_dyn_relocs **head;
4848
4849 /* We must copy these reloc types into the output file.
4850 Create a reloc section in dynobj and make room for
4851 this reloc. */
4852 if (sreloc == NULL)
4853 {
4854 const char *name;
4855 bfd *dynobj;
4856
4857 name = (bfd_elf_string_from_elf_section
4858 (abfd,
4859 elf_elfheader (abfd)->e_shstrndx,
4860 elf_section_data (sec)->rel_hdr.sh_name));
4861 if (name == NULL)
4862 return FALSE;
4863
4864 if (! CONST_STRNEQ (name, ".rela")
4865 || strcmp (bfd_get_section_name (abfd, sec),
4866 name + 5) != 0)
4867 {
4868 (*_bfd_error_handler)
4869 (_("%B: bad relocation section name `%s\'"),
4870 abfd, name);
4871 bfd_set_error (bfd_error_bad_value);
4872 }
4873
4874 dynobj = htab->elf.dynobj;
4875 sreloc = bfd_get_section_by_name (dynobj, name);
4876 if (sreloc == NULL)
4877 {
4878 flagword flags;
4879
4880 flags = (SEC_HAS_CONTENTS | SEC_READONLY
4881 | SEC_IN_MEMORY | SEC_LINKER_CREATED
4882 | SEC_ALLOC | SEC_LOAD);
4883 sreloc = bfd_make_section_with_flags (dynobj,
4884 name,
4885 flags);
4886 if (sreloc == NULL
4887 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
4888 return FALSE;
4889 }
4890 elf_section_data (sec)->sreloc = sreloc;
4891 }
4892
4893 /* If this is a global symbol, we count the number of
4894 relocations we need for this symbol. */
4895 if (h != NULL)
4896 {
4897 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
4898 }
4899 else
4900 {
4901 /* Track dynamic relocs needed for local syms too.
4902 We really need local syms available to do this
4903 easily. Oh well. */
4904
4905 asection *s;
4906 void *vpp;
4907
4908 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
4909 sec, r_symndx);
4910 if (s == NULL)
4911 return FALSE;
4912
4913 vpp = &elf_section_data (s)->local_dynrel;
4914 head = (struct ppc_dyn_relocs **) vpp;
4915 }
4916
4917 p = *head;
4918 if (p == NULL || p->sec != sec)
4919 {
4920 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
4921 if (p == NULL)
4922 return FALSE;
4923 p->next = *head;
4924 *head = p;
4925 p->sec = sec;
4926 p->count = 0;
4927 p->pc_count = 0;
4928 }
4929
4930 p->count += 1;
4931 if (!MUST_BE_DYN_RELOC (r_type))
4932 p->pc_count += 1;
4933 }
4934 break;
4935
4936 default:
4937 break;
4938 }
4939 }
4940
4941 return TRUE;
4942 }
4943
4944 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
4945 of the code entry point, and its section. */
4946
4947 static bfd_vma
4948 opd_entry_value (asection *opd_sec,
4949 bfd_vma offset,
4950 asection **code_sec,
4951 bfd_vma *code_off)
4952 {
4953 bfd *opd_bfd = opd_sec->owner;
4954 Elf_Internal_Rela *relocs;
4955 Elf_Internal_Rela *lo, *hi, *look;
4956 bfd_vma val;
4957
4958 /* No relocs implies we are linking a --just-symbols object. */
4959 if (opd_sec->reloc_count == 0)
4960 {
4961 bfd_vma val;
4962
4963 if (!bfd_get_section_contents (opd_bfd, opd_sec, &val, offset, 8))
4964 return (bfd_vma) -1;
4965
4966 if (code_sec != NULL)
4967 {
4968 asection *sec, *likely = NULL;
4969 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
4970 if (sec->vma <= val
4971 && (sec->flags & SEC_LOAD) != 0
4972 && (sec->flags & SEC_ALLOC) != 0)
4973 likely = sec;
4974 if (likely != NULL)
4975 {
4976 *code_sec = likely;
4977 if (code_off != NULL)
4978 *code_off = val - likely->vma;
4979 }
4980 }
4981 return val;
4982 }
4983
4984 BFD_ASSERT (is_ppc64_elf (opd_bfd));
4985
4986 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs;
4987 if (relocs == NULL)
4988 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
4989
4990 /* Go find the opd reloc at the sym address. */
4991 lo = relocs;
4992 BFD_ASSERT (lo != NULL);
4993 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
4994 val = (bfd_vma) -1;
4995 while (lo < hi)
4996 {
4997 look = lo + (hi - lo) / 2;
4998 if (look->r_offset < offset)
4999 lo = look + 1;
5000 else if (look->r_offset > offset)
5001 hi = look;
5002 else
5003 {
5004 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5005
5006 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5007 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5008 {
5009 unsigned long symndx = ELF64_R_SYM (look->r_info);
5010 asection *sec;
5011
5012 if (symndx < symtab_hdr->sh_info)
5013 {
5014 Elf_Internal_Sym *sym;
5015
5016 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5017 if (sym == NULL)
5018 {
5019 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5020 symtab_hdr->sh_info,
5021 0, NULL, NULL, NULL);
5022 if (sym == NULL)
5023 break;
5024 symtab_hdr->contents = (bfd_byte *) sym;
5025 }
5026
5027 sym += symndx;
5028 val = sym->st_value;
5029 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5030 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5031 }
5032 else
5033 {
5034 struct elf_link_hash_entry **sym_hashes;
5035 struct elf_link_hash_entry *rh;
5036
5037 sym_hashes = elf_sym_hashes (opd_bfd);
5038 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5039 while (rh->root.type == bfd_link_hash_indirect
5040 || rh->root.type == bfd_link_hash_warning)
5041 rh = ((struct elf_link_hash_entry *) rh->root.u.i.link);
5042 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
5043 || rh->root.type == bfd_link_hash_defweak);
5044 val = rh->root.u.def.value;
5045 sec = rh->root.u.def.section;
5046 }
5047 val += look->r_addend;
5048 if (code_off != NULL)
5049 *code_off = val;
5050 if (code_sec != NULL)
5051 *code_sec = sec;
5052 if (sec != NULL && sec->output_section != NULL)
5053 val += sec->output_section->vma + sec->output_offset;
5054 }
5055 break;
5056 }
5057 }
5058
5059 return val;
5060 }
5061
5062 /* Mark all our entry sym sections, both opd and code section. */
5063
5064 static void
5065 ppc64_elf_gc_keep (struct bfd_link_info *info)
5066 {
5067 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5068 struct bfd_sym_chain *sym;
5069
5070 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5071 {
5072 struct ppc_link_hash_entry *eh;
5073 asection *sec;
5074
5075 eh = (struct ppc_link_hash_entry *)
5076 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, FALSE);
5077 if (eh == NULL)
5078 continue;
5079 if (eh->elf.root.type != bfd_link_hash_defined
5080 && eh->elf.root.type != bfd_link_hash_defweak)
5081 continue;
5082
5083 if (eh->is_func_descriptor
5084 && (eh->oh->elf.root.type == bfd_link_hash_defined
5085 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5086 {
5087 sec = eh->oh->elf.root.u.def.section;
5088 sec->flags |= SEC_KEEP;
5089 }
5090 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5091 && opd_entry_value (eh->elf.root.u.def.section,
5092 eh->elf.root.u.def.value,
5093 &sec, NULL) != (bfd_vma) -1)
5094 sec->flags |= SEC_KEEP;
5095
5096 sec = eh->elf.root.u.def.section;
5097 sec->flags |= SEC_KEEP;
5098 }
5099 }
5100
5101 /* Mark sections containing dynamically referenced symbols. When
5102 building shared libraries, we must assume that any visible symbol is
5103 referenced. */
5104
5105 static bfd_boolean
5106 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5107 {
5108 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5109 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
5110
5111 if (eh->elf.root.type == bfd_link_hash_warning)
5112 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
5113
5114 /* Dynamic linking info is on the func descriptor sym. */
5115 if (eh->oh != NULL
5116 && eh->oh->is_func_descriptor
5117 && (eh->oh->elf.root.type == bfd_link_hash_defined
5118 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5119 eh = eh->oh;
5120
5121 if ((eh->elf.root.type == bfd_link_hash_defined
5122 || eh->elf.root.type == bfd_link_hash_defweak)
5123 && (eh->elf.ref_dynamic
5124 || (!info->executable
5125 && eh->elf.def_regular
5126 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5127 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN)))
5128 {
5129 asection *code_sec;
5130
5131 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5132
5133 /* Function descriptor syms cause the associated
5134 function code sym section to be marked. */
5135 if (eh->is_func_descriptor
5136 && (eh->oh->elf.root.type == bfd_link_hash_defined
5137 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5138 eh->oh->elf.root.u.def.section->flags |= SEC_KEEP;
5139 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5140 && opd_entry_value (eh->elf.root.u.def.section,
5141 eh->elf.root.u.def.value,
5142 &code_sec, NULL) != (bfd_vma) -1)
5143 code_sec->flags |= SEC_KEEP;
5144 }
5145
5146 return TRUE;
5147 }
5148
5149 /* Return the section that should be marked against GC for a given
5150 relocation. */
5151
5152 static asection *
5153 ppc64_elf_gc_mark_hook (asection *sec,
5154 struct bfd_link_info *info ATTRIBUTE_UNUSED,
5155 Elf_Internal_Rela *rel,
5156 struct elf_link_hash_entry *h,
5157 Elf_Internal_Sym *sym)
5158 {
5159 asection *rsec;
5160
5161 /* Syms return NULL if we're marking .opd, so we avoid marking all
5162 function sections, as all functions are referenced in .opd. */
5163 rsec = NULL;
5164 if (get_opd_info (sec) != NULL)
5165 return rsec;
5166
5167 if (h != NULL)
5168 {
5169 enum elf_ppc64_reloc_type r_type;
5170 struct ppc_link_hash_entry *eh;
5171
5172 r_type = ELF64_R_TYPE (rel->r_info);
5173 switch (r_type)
5174 {
5175 case R_PPC64_GNU_VTINHERIT:
5176 case R_PPC64_GNU_VTENTRY:
5177 break;
5178
5179 default:
5180 switch (h->root.type)
5181 {
5182 case bfd_link_hash_defined:
5183 case bfd_link_hash_defweak:
5184 eh = (struct ppc_link_hash_entry *) h;
5185 if (eh->oh != NULL
5186 && eh->oh->is_func_descriptor
5187 && (eh->oh->elf.root.type == bfd_link_hash_defined
5188 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5189 eh = eh->oh;
5190
5191 /* Function descriptor syms cause the associated
5192 function code sym section to be marked. */
5193 if (eh->is_func_descriptor
5194 && (eh->oh->elf.root.type == bfd_link_hash_defined
5195 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5196 {
5197 /* They also mark their opd section. */
5198 eh->elf.root.u.def.section->gc_mark = 1;
5199
5200 rsec = eh->oh->elf.root.u.def.section;
5201 }
5202 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5203 && opd_entry_value (eh->elf.root.u.def.section,
5204 eh->elf.root.u.def.value,
5205 &rsec, NULL) != (bfd_vma) -1)
5206 eh->elf.root.u.def.section->gc_mark = 1;
5207 else
5208 rsec = h->root.u.def.section;
5209 break;
5210
5211 case bfd_link_hash_common:
5212 rsec = h->root.u.c.p->section;
5213 break;
5214
5215 default:
5216 break;
5217 }
5218 }
5219 }
5220 else
5221 {
5222 struct _opd_sec_data *opd;
5223
5224 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5225 opd = get_opd_info (rsec);
5226 if (opd != NULL && opd->func_sec != NULL)
5227 {
5228 rsec->gc_mark = 1;
5229
5230 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
5231 }
5232 }
5233
5234 return rsec;
5235 }
5236
5237 /* Update the .got, .plt. and dynamic reloc reference counts for the
5238 section being removed. */
5239
5240 static bfd_boolean
5241 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5242 asection *sec, const Elf_Internal_Rela *relocs)
5243 {
5244 struct ppc_link_hash_table *htab;
5245 Elf_Internal_Shdr *symtab_hdr;
5246 struct elf_link_hash_entry **sym_hashes;
5247 struct got_entry **local_got_ents;
5248 const Elf_Internal_Rela *rel, *relend;
5249
5250 if (info->relocatable)
5251 return TRUE;
5252
5253 if ((sec->flags & SEC_ALLOC) == 0)
5254 return TRUE;
5255
5256 elf_section_data (sec)->local_dynrel = NULL;
5257
5258 htab = ppc_hash_table (info);
5259 symtab_hdr = &elf_symtab_hdr (abfd);
5260 sym_hashes = elf_sym_hashes (abfd);
5261 local_got_ents = elf_local_got_ents (abfd);
5262
5263 relend = relocs + sec->reloc_count;
5264 for (rel = relocs; rel < relend; rel++)
5265 {
5266 unsigned long r_symndx;
5267 enum elf_ppc64_reloc_type r_type;
5268 struct elf_link_hash_entry *h = NULL;
5269 char tls_type = 0;
5270
5271 r_symndx = ELF64_R_SYM (rel->r_info);
5272 r_type = ELF64_R_TYPE (rel->r_info);
5273 if (r_symndx >= symtab_hdr->sh_info)
5274 {
5275 struct ppc_link_hash_entry *eh;
5276 struct ppc_dyn_relocs **pp;
5277 struct ppc_dyn_relocs *p;
5278
5279 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5280 while (h->root.type == bfd_link_hash_indirect
5281 || h->root.type == bfd_link_hash_warning)
5282 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5283 eh = (struct ppc_link_hash_entry *) h;
5284
5285 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
5286 if (p->sec == sec)
5287 {
5288 /* Everything must go for SEC. */
5289 *pp = p->next;
5290 break;
5291 }
5292 }
5293
5294 switch (r_type)
5295 {
5296 case R_PPC64_GOT_TLSLD16:
5297 case R_PPC64_GOT_TLSLD16_LO:
5298 case R_PPC64_GOT_TLSLD16_HI:
5299 case R_PPC64_GOT_TLSLD16_HA:
5300 tls_type = TLS_TLS | TLS_LD;
5301 goto dogot;
5302
5303 case R_PPC64_GOT_TLSGD16:
5304 case R_PPC64_GOT_TLSGD16_LO:
5305 case R_PPC64_GOT_TLSGD16_HI:
5306 case R_PPC64_GOT_TLSGD16_HA:
5307 tls_type = TLS_TLS | TLS_GD;
5308 goto dogot;
5309
5310 case R_PPC64_GOT_TPREL16_DS:
5311 case R_PPC64_GOT_TPREL16_LO_DS:
5312 case R_PPC64_GOT_TPREL16_HI:
5313 case R_PPC64_GOT_TPREL16_HA:
5314 tls_type = TLS_TLS | TLS_TPREL;
5315 goto dogot;
5316
5317 case R_PPC64_GOT_DTPREL16_DS:
5318 case R_PPC64_GOT_DTPREL16_LO_DS:
5319 case R_PPC64_GOT_DTPREL16_HI:
5320 case R_PPC64_GOT_DTPREL16_HA:
5321 tls_type = TLS_TLS | TLS_DTPREL;
5322 goto dogot;
5323
5324 case R_PPC64_GOT16:
5325 case R_PPC64_GOT16_DS:
5326 case R_PPC64_GOT16_HA:
5327 case R_PPC64_GOT16_HI:
5328 case R_PPC64_GOT16_LO:
5329 case R_PPC64_GOT16_LO_DS:
5330 dogot:
5331 {
5332 struct got_entry *ent;
5333
5334 if (h != NULL)
5335 ent = h->got.glist;
5336 else
5337 ent = local_got_ents[r_symndx];
5338
5339 for (; ent != NULL; ent = ent->next)
5340 if (ent->addend == rel->r_addend
5341 && ent->owner == abfd
5342 && ent->tls_type == tls_type)
5343 break;
5344 if (ent == NULL)
5345 abort ();
5346 if (ent->got.refcount > 0)
5347 ent->got.refcount -= 1;
5348 }
5349 break;
5350
5351 case R_PPC64_PLT16_HA:
5352 case R_PPC64_PLT16_HI:
5353 case R_PPC64_PLT16_LO:
5354 case R_PPC64_PLT32:
5355 case R_PPC64_PLT64:
5356 case R_PPC64_REL14:
5357 case R_PPC64_REL14_BRNTAKEN:
5358 case R_PPC64_REL14_BRTAKEN:
5359 case R_PPC64_REL24:
5360 if (h != NULL)
5361 {
5362 struct plt_entry *ent;
5363
5364 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5365 if (ent->addend == rel->r_addend)
5366 break;
5367 if (ent == NULL)
5368 abort ();
5369 if (ent->plt.refcount > 0)
5370 ent->plt.refcount -= 1;
5371 }
5372 break;
5373
5374 default:
5375 break;
5376 }
5377 }
5378 return TRUE;
5379 }
5380
5381 /* The maximum size of .sfpr. */
5382 #define SFPR_MAX (218*4)
5383
5384 struct sfpr_def_parms
5385 {
5386 const char name[12];
5387 unsigned char lo, hi;
5388 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
5389 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
5390 };
5391
5392 /* Auto-generate _save*, _rest* functions in .sfpr. */
5393
5394 static unsigned int
5395 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
5396 {
5397 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5398 unsigned int i;
5399 size_t len = strlen (parm->name);
5400 bfd_boolean writing = FALSE;
5401 char sym[16];
5402
5403 memcpy (sym, parm->name, len);
5404 sym[len + 2] = 0;
5405
5406 for (i = parm->lo; i <= parm->hi; i++)
5407 {
5408 struct elf_link_hash_entry *h;
5409
5410 sym[len + 0] = i / 10 + '0';
5411 sym[len + 1] = i % 10 + '0';
5412 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
5413 if (h != NULL
5414 && !h->def_regular)
5415 {
5416 h->root.type = bfd_link_hash_defined;
5417 h->root.u.def.section = htab->sfpr;
5418 h->root.u.def.value = htab->sfpr->size;
5419 h->type = STT_FUNC;
5420 h->def_regular = 1;
5421 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
5422 writing = TRUE;
5423 if (htab->sfpr->contents == NULL)
5424 {
5425 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5426 if (htab->sfpr->contents == NULL)
5427 return FALSE;
5428 }
5429 }
5430 if (writing)
5431 {
5432 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5433 if (i != parm->hi)
5434 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5435 else
5436 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5437 htab->sfpr->size = p - htab->sfpr->contents;
5438 }
5439 }
5440
5441 return TRUE;
5442 }
5443
5444 static bfd_byte *
5445 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5446 {
5447 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5448 return p + 4;
5449 }
5450
5451 static bfd_byte *
5452 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5453 {
5454 p = savegpr0 (abfd, p, r);
5455 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5456 p = p + 4;
5457 bfd_put_32 (abfd, BLR, p);
5458 return p + 4;
5459 }
5460
5461 static bfd_byte *
5462 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5463 {
5464 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5465 return p + 4;
5466 }
5467
5468 static bfd_byte *
5469 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5470 {
5471 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5472 p = p + 4;
5473 p = restgpr0 (abfd, p, r);
5474 bfd_put_32 (abfd, MTLR_R0, p);
5475 p = p + 4;
5476 if (r == 29)
5477 {
5478 p = restgpr0 (abfd, p, 30);
5479 p = restgpr0 (abfd, p, 31);
5480 }
5481 bfd_put_32 (abfd, BLR, p);
5482 return p + 4;
5483 }
5484
5485 static bfd_byte *
5486 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5487 {
5488 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5489 return p + 4;
5490 }
5491
5492 static bfd_byte *
5493 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5494 {
5495 p = savegpr1 (abfd, p, r);
5496 bfd_put_32 (abfd, BLR, p);
5497 return p + 4;
5498 }
5499
5500 static bfd_byte *
5501 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5502 {
5503 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5504 return p + 4;
5505 }
5506
5507 static bfd_byte *
5508 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5509 {
5510 p = restgpr1 (abfd, p, r);
5511 bfd_put_32 (abfd, BLR, p);
5512 return p + 4;
5513 }
5514
5515 static bfd_byte *
5516 savefpr (bfd *abfd, bfd_byte *p, int r)
5517 {
5518 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5519 return p + 4;
5520 }
5521
5522 static bfd_byte *
5523 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5524 {
5525 p = savefpr (abfd, p, r);
5526 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5527 p = p + 4;
5528 bfd_put_32 (abfd, BLR, p);
5529 return p + 4;
5530 }
5531
5532 static bfd_byte *
5533 restfpr (bfd *abfd, bfd_byte *p, int r)
5534 {
5535 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5536 return p + 4;
5537 }
5538
5539 static bfd_byte *
5540 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5541 {
5542 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5543 p = p + 4;
5544 p = restfpr (abfd, p, r);
5545 bfd_put_32 (abfd, MTLR_R0, p);
5546 p = p + 4;
5547 if (r == 29)
5548 {
5549 p = restfpr (abfd, p, 30);
5550 p = restfpr (abfd, p, 31);
5551 }
5552 bfd_put_32 (abfd, BLR, p);
5553 return p + 4;
5554 }
5555
5556 static bfd_byte *
5557 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5558 {
5559 p = savefpr (abfd, p, r);
5560 bfd_put_32 (abfd, BLR, p);
5561 return p + 4;
5562 }
5563
5564 static bfd_byte *
5565 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
5566 {
5567 p = restfpr (abfd, p, r);
5568 bfd_put_32 (abfd, BLR, p);
5569 return p + 4;
5570 }
5571
5572 static bfd_byte *
5573 savevr (bfd *abfd, bfd_byte *p, int r)
5574 {
5575 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5576 p = p + 4;
5577 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
5578 return p + 4;
5579 }
5580
5581 static bfd_byte *
5582 savevr_tail (bfd *abfd, bfd_byte *p, int r)
5583 {
5584 p = savevr (abfd, p, r);
5585 bfd_put_32 (abfd, BLR, p);
5586 return p + 4;
5587 }
5588
5589 static bfd_byte *
5590 restvr (bfd *abfd, bfd_byte *p, int r)
5591 {
5592 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5593 p = p + 4;
5594 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
5595 return p + 4;
5596 }
5597
5598 static bfd_byte *
5599 restvr_tail (bfd *abfd, bfd_byte *p, int r)
5600 {
5601 p = restvr (abfd, p, r);
5602 bfd_put_32 (abfd, BLR, p);
5603 return p + 4;
5604 }
5605
5606 /* Called via elf_link_hash_traverse to transfer dynamic linking
5607 information on function code symbol entries to their corresponding
5608 function descriptor symbol entries. */
5609
5610 static bfd_boolean
5611 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
5612 {
5613 struct bfd_link_info *info;
5614 struct ppc_link_hash_table *htab;
5615 struct plt_entry *ent;
5616 struct ppc_link_hash_entry *fh;
5617 struct ppc_link_hash_entry *fdh;
5618 bfd_boolean force_local;
5619
5620 fh = (struct ppc_link_hash_entry *) h;
5621 if (fh->elf.root.type == bfd_link_hash_indirect)
5622 return TRUE;
5623
5624 if (fh->elf.root.type == bfd_link_hash_warning)
5625 fh = (struct ppc_link_hash_entry *) fh->elf.root.u.i.link;
5626
5627 info = inf;
5628 htab = ppc_hash_table (info);
5629
5630 /* Resolve undefined references to dot-symbols as the value
5631 in the function descriptor, if we have one in a regular object.
5632 This is to satisfy cases like ".quad .foo". Calls to functions
5633 in dynamic objects are handled elsewhere. */
5634 if (fh->elf.root.type == bfd_link_hash_undefweak
5635 && fh->was_undefined
5636 && (fh->oh->elf.root.type == bfd_link_hash_defined
5637 || fh->oh->elf.root.type == bfd_link_hash_defweak)
5638 && get_opd_info (fh->oh->elf.root.u.def.section) != NULL
5639 && opd_entry_value (fh->oh->elf.root.u.def.section,
5640 fh->oh->elf.root.u.def.value,
5641 &fh->elf.root.u.def.section,
5642 &fh->elf.root.u.def.value) != (bfd_vma) -1)
5643 {
5644 fh->elf.root.type = fh->oh->elf.root.type;
5645 fh->elf.forced_local = 1;
5646 fh->elf.def_regular = fh->oh->elf.def_regular;
5647 fh->elf.def_dynamic = fh->oh->elf.def_dynamic;
5648 }
5649
5650 /* If this is a function code symbol, transfer dynamic linking
5651 information to the function descriptor symbol. */
5652 if (!fh->is_func)
5653 return TRUE;
5654
5655 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
5656 if (ent->plt.refcount > 0)
5657 break;
5658 if (ent == NULL
5659 || fh->elf.root.root.string[0] != '.'
5660 || fh->elf.root.root.string[1] == '\0')
5661 return TRUE;
5662
5663 /* Find the corresponding function descriptor symbol. Create it
5664 as undefined if necessary. */
5665
5666 fdh = get_fdh (fh, htab);
5667 if (fdh != NULL)
5668 while (fdh->elf.root.type == bfd_link_hash_indirect
5669 || fdh->elf.root.type == bfd_link_hash_warning)
5670 fdh = (struct ppc_link_hash_entry *) fdh->elf.root.u.i.link;
5671
5672 if (fdh == NULL
5673 && info->shared
5674 && (fh->elf.root.type == bfd_link_hash_undefined
5675 || fh->elf.root.type == bfd_link_hash_undefweak))
5676 {
5677 fdh = make_fdh (info, fh);
5678 if (fdh == NULL)
5679 return FALSE;
5680 }
5681
5682 /* Fake function descriptors are made undefweak. If the function
5683 code symbol is strong undefined, make the fake sym the same.
5684 If the function code symbol is defined, then force the fake
5685 descriptor local; We can't support overriding of symbols in a
5686 shared library on a fake descriptor. */
5687
5688 if (fdh != NULL
5689 && fdh->fake
5690 && fdh->elf.root.type == bfd_link_hash_undefweak)
5691 {
5692 if (fh->elf.root.type == bfd_link_hash_undefined)
5693 {
5694 fdh->elf.root.type = bfd_link_hash_undefined;
5695 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
5696 }
5697 else if (fh->elf.root.type == bfd_link_hash_defined
5698 || fh->elf.root.type == bfd_link_hash_defweak)
5699 {
5700 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
5701 }
5702 }
5703
5704 if (fdh != NULL
5705 && !fdh->elf.forced_local
5706 && (info->shared
5707 || fdh->elf.def_dynamic
5708 || fdh->elf.ref_dynamic
5709 || (fdh->elf.root.type == bfd_link_hash_undefweak
5710 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
5711 {
5712 if (fdh->elf.dynindx == -1)
5713 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
5714 return FALSE;
5715 fdh->elf.ref_regular |= fh->elf.ref_regular;
5716 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
5717 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
5718 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
5719 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
5720 {
5721 move_plt_plist (fh, fdh);
5722 fdh->elf.needs_plt = 1;
5723 }
5724 fdh->is_func_descriptor = 1;
5725 fdh->oh = fh;
5726 fh->oh = fdh;
5727 }
5728
5729 /* Now that the info is on the function descriptor, clear the
5730 function code sym info. Any function code syms for which we
5731 don't have a definition in a regular file, we force local.
5732 This prevents a shared library from exporting syms that have
5733 been imported from another library. Function code syms that
5734 are really in the library we must leave global to prevent the
5735 linker dragging in a definition from a static library. */
5736 force_local = (!fh->elf.def_regular
5737 || fdh == NULL
5738 || !fdh->elf.def_regular
5739 || fdh->elf.forced_local);
5740 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5741
5742 return TRUE;
5743 }
5744
5745 /* Called near the start of bfd_elf_size_dynamic_sections. We use
5746 this hook to a) provide some gcc support functions, and b) transfer
5747 dynamic linking information gathered so far on function code symbol
5748 entries, to their corresponding function descriptor symbol entries. */
5749
5750 static bfd_boolean
5751 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
5752 struct bfd_link_info *info)
5753 {
5754 struct ppc_link_hash_table *htab;
5755 unsigned int i;
5756 const struct sfpr_def_parms funcs[] =
5757 {
5758 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
5759 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
5760 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
5761 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
5762 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
5763 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
5764 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
5765 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
5766 { "._savef", 14, 31, savefpr, savefpr1_tail },
5767 { "._restf", 14, 31, restfpr, restfpr1_tail },
5768 { "_savevr_", 20, 31, savevr, savevr_tail },
5769 { "_restvr_", 20, 31, restvr, restvr_tail }
5770 };
5771
5772 htab = ppc_hash_table (info);
5773 if (htab->sfpr == NULL)
5774 /* We don't have any relocs. */
5775 return TRUE;
5776
5777 /* Provide any missing _save* and _rest* functions. */
5778 htab->sfpr->size = 0;
5779 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
5780 if (!sfpr_define (info, &funcs[i]))
5781 return FALSE;
5782
5783 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5784
5785 if (htab->sfpr->size == 0)
5786 htab->sfpr->flags |= SEC_EXCLUDE;
5787
5788 return TRUE;
5789 }
5790
5791 /* Adjust a symbol defined by a dynamic object and referenced by a
5792 regular object. The current definition is in some section of the
5793 dynamic object, but we're not including those sections. We have to
5794 change the definition to something the rest of the link can
5795 understand. */
5796
5797 static bfd_boolean
5798 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5799 struct elf_link_hash_entry *h)
5800 {
5801 struct ppc_link_hash_table *htab;
5802 asection *s;
5803
5804 htab = ppc_hash_table (info);
5805
5806 /* Deal with function syms. */
5807 if (h->type == STT_FUNC
5808 || h->needs_plt)
5809 {
5810 /* Clear procedure linkage table information for any symbol that
5811 won't need a .plt entry. */
5812 struct plt_entry *ent;
5813 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5814 if (ent->plt.refcount > 0)
5815 break;
5816 if (ent == NULL
5817 || SYMBOL_CALLS_LOCAL (info, h)
5818 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5819 && h->root.type == bfd_link_hash_undefweak))
5820 {
5821 h->plt.plist = NULL;
5822 h->needs_plt = 0;
5823 }
5824 }
5825 else
5826 h->plt.plist = NULL;
5827
5828 /* If this is a weak symbol, and there is a real definition, the
5829 processor independent code will have arranged for us to see the
5830 real definition first, and we can just use the same value. */
5831 if (h->u.weakdef != NULL)
5832 {
5833 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5834 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5835 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5836 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5837 if (ELIMINATE_COPY_RELOCS)
5838 h->non_got_ref = h->u.weakdef->non_got_ref;
5839 return TRUE;
5840 }
5841
5842 /* If we are creating a shared library, we must presume that the
5843 only references to the symbol are via the global offset table.
5844 For such cases we need not do anything here; the relocations will
5845 be handled correctly by relocate_section. */
5846 if (info->shared)
5847 return TRUE;
5848
5849 /* If there are no references to this symbol that do not use the
5850 GOT, we don't need to generate a copy reloc. */
5851 if (!h->non_got_ref)
5852 return TRUE;
5853
5854 /* Don't generate a copy reloc for symbols defined in the executable. */
5855 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
5856 return TRUE;
5857
5858 if (ELIMINATE_COPY_RELOCS)
5859 {
5860 struct ppc_link_hash_entry * eh;
5861 struct ppc_dyn_relocs *p;
5862
5863 eh = (struct ppc_link_hash_entry *) h;
5864 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5865 {
5866 s = p->sec->output_section;
5867 if (s != NULL && (s->flags & SEC_READONLY) != 0)
5868 break;
5869 }
5870
5871 /* If we didn't find any dynamic relocs in read-only sections, then
5872 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
5873 if (p == NULL)
5874 {
5875 h->non_got_ref = 0;
5876 return TRUE;
5877 }
5878 }
5879
5880 if (h->plt.plist != NULL)
5881 {
5882 /* We should never get here, but unfortunately there are versions
5883 of gcc out there that improperly (for this ABI) put initialized
5884 function pointers, vtable refs and suchlike in read-only
5885 sections. Allow them to proceed, but warn that this might
5886 break at runtime. */
5887 (*_bfd_error_handler)
5888 (_("copy reloc against `%s' requires lazy plt linking; "
5889 "avoid setting LD_BIND_NOW=1 or upgrade gcc"),
5890 h->root.root.string);
5891 }
5892
5893 /* This is a reference to a symbol defined by a dynamic object which
5894 is not a function. */
5895
5896 if (h->size == 0)
5897 {
5898 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
5899 h->root.root.string);
5900 return TRUE;
5901 }
5902
5903 /* We must allocate the symbol in our .dynbss section, which will
5904 become part of the .bss section of the executable. There will be
5905 an entry for this symbol in the .dynsym section. The dynamic
5906 object will contain position independent code, so all references
5907 from the dynamic object to this symbol will go through the global
5908 offset table. The dynamic linker will use the .dynsym entry to
5909 determine the address it must put in the global offset table, so
5910 both the dynamic object and the regular object will refer to the
5911 same memory location for the variable. */
5912
5913 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
5914 to copy the initial value out of the dynamic object and into the
5915 runtime process image. We need to remember the offset into the
5916 .rela.bss section we are going to use. */
5917 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
5918 {
5919 htab->relbss->size += sizeof (Elf64_External_Rela);
5920 h->needs_copy = 1;
5921 }
5922
5923 s = htab->dynbss;
5924
5925 return _bfd_elf_adjust_dynamic_copy (h, s);
5926 }
5927
5928 /* If given a function descriptor symbol, hide both the function code
5929 sym and the descriptor. */
5930 static void
5931 ppc64_elf_hide_symbol (struct bfd_link_info *info,
5932 struct elf_link_hash_entry *h,
5933 bfd_boolean force_local)
5934 {
5935 struct ppc_link_hash_entry *eh;
5936 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
5937
5938 eh = (struct ppc_link_hash_entry *) h;
5939 if (eh->is_func_descriptor)
5940 {
5941 struct ppc_link_hash_entry *fh = eh->oh;
5942
5943 if (fh == NULL)
5944 {
5945 const char *p, *q;
5946 struct ppc_link_hash_table *htab;
5947 char save;
5948
5949 /* We aren't supposed to use alloca in BFD because on
5950 systems which do not have alloca the version in libiberty
5951 calls xmalloc, which might cause the program to crash
5952 when it runs out of memory. This function doesn't have a
5953 return status, so there's no way to gracefully return an
5954 error. So cheat. We know that string[-1] can be safely
5955 accessed; It's either a string in an ELF string table,
5956 or allocated in an objalloc structure. */
5957
5958 p = eh->elf.root.root.string - 1;
5959 save = *p;
5960 *(char *) p = '.';
5961 htab = ppc_hash_table (info);
5962 fh = (struct ppc_link_hash_entry *)
5963 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5964 *(char *) p = save;
5965
5966 /* Unfortunately, if it so happens that the string we were
5967 looking for was allocated immediately before this string,
5968 then we overwrote the string terminator. That's the only
5969 reason the lookup should fail. */
5970 if (fh == NULL)
5971 {
5972 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
5973 while (q >= eh->elf.root.root.string && *q == *p)
5974 --q, --p;
5975 if (q < eh->elf.root.root.string && *p == '.')
5976 fh = (struct ppc_link_hash_entry *)
5977 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5978 }
5979 if (fh != NULL)
5980 {
5981 eh->oh = fh;
5982 fh->oh = eh;
5983 }
5984 }
5985 if (fh != NULL)
5986 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5987 }
5988 }
5989
5990 static bfd_boolean
5991 get_sym_h (struct elf_link_hash_entry **hp,
5992 Elf_Internal_Sym **symp,
5993 asection **symsecp,
5994 char **tls_maskp,
5995 Elf_Internal_Sym **locsymsp,
5996 unsigned long r_symndx,
5997 bfd *ibfd)
5998 {
5999 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6000
6001 if (r_symndx >= symtab_hdr->sh_info)
6002 {
6003 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6004 struct elf_link_hash_entry *h;
6005
6006 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6007 while (h->root.type == bfd_link_hash_indirect
6008 || h->root.type == bfd_link_hash_warning)
6009 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6010
6011 if (hp != NULL)
6012 *hp = h;
6013
6014 if (symp != NULL)
6015 *symp = NULL;
6016
6017 if (symsecp != NULL)
6018 {
6019 asection *symsec = NULL;
6020 if (h->root.type == bfd_link_hash_defined
6021 || h->root.type == bfd_link_hash_defweak)
6022 symsec = h->root.u.def.section;
6023 *symsecp = symsec;
6024 }
6025
6026 if (tls_maskp != NULL)
6027 {
6028 struct ppc_link_hash_entry *eh;
6029
6030 eh = (struct ppc_link_hash_entry *) h;
6031 *tls_maskp = &eh->tls_mask;
6032 }
6033 }
6034 else
6035 {
6036 Elf_Internal_Sym *sym;
6037 Elf_Internal_Sym *locsyms = *locsymsp;
6038
6039 if (locsyms == NULL)
6040 {
6041 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6042 if (locsyms == NULL)
6043 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6044 symtab_hdr->sh_info,
6045 0, NULL, NULL, NULL);
6046 if (locsyms == NULL)
6047 return FALSE;
6048 *locsymsp = locsyms;
6049 }
6050 sym = locsyms + r_symndx;
6051
6052 if (hp != NULL)
6053 *hp = NULL;
6054
6055 if (symp != NULL)
6056 *symp = sym;
6057
6058 if (symsecp != NULL)
6059 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6060
6061 if (tls_maskp != NULL)
6062 {
6063 struct got_entry **lgot_ents;
6064 char *tls_mask;
6065
6066 tls_mask = NULL;
6067 lgot_ents = elf_local_got_ents (ibfd);
6068 if (lgot_ents != NULL)
6069 {
6070 char *lgot_masks = (char *) (lgot_ents + symtab_hdr->sh_info);
6071 tls_mask = &lgot_masks[r_symndx];
6072 }
6073 *tls_maskp = tls_mask;
6074 }
6075 }
6076 return TRUE;
6077 }
6078
6079 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6080 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6081 type suitable for optimization, and 1 otherwise. */
6082
6083 static int
6084 get_tls_mask (char **tls_maskp, unsigned long *toc_symndx,
6085 Elf_Internal_Sym **locsymsp,
6086 const Elf_Internal_Rela *rel, bfd *ibfd)
6087 {
6088 unsigned long r_symndx;
6089 int next_r;
6090 struct elf_link_hash_entry *h;
6091 Elf_Internal_Sym *sym;
6092 asection *sec;
6093 bfd_vma off;
6094
6095 r_symndx = ELF64_R_SYM (rel->r_info);
6096 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6097 return 0;
6098
6099 if ((*tls_maskp != NULL && **tls_maskp != 0)
6100 || sec == NULL
6101 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6102 return 1;
6103
6104 /* Look inside a TOC section too. */
6105 if (h != NULL)
6106 {
6107 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6108 off = h->root.u.def.value;
6109 }
6110 else
6111 off = sym->st_value;
6112 off += rel->r_addend;
6113 BFD_ASSERT (off % 8 == 0);
6114 r_symndx = ppc64_elf_section_data (sec)->u.t_symndx[off / 8];
6115 next_r = ppc64_elf_section_data (sec)->u.t_symndx[off / 8 + 1];
6116 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6117 return 0;
6118 if (toc_symndx != NULL)
6119 *toc_symndx = r_symndx;
6120 if ((h == NULL
6121 || ((h->root.type == bfd_link_hash_defined
6122 || h->root.type == bfd_link_hash_defweak)
6123 && !h->def_dynamic))
6124 && (next_r == -1 || next_r == -2))
6125 return 1 - next_r;
6126 return 1;
6127 }
6128
6129 /* Adjust all global syms defined in opd sections. In gcc generated
6130 code for the old ABI, these will already have been done. */
6131
6132 static bfd_boolean
6133 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6134 {
6135 struct ppc_link_hash_entry *eh;
6136 asection *sym_sec;
6137 struct _opd_sec_data *opd;
6138
6139 if (h->root.type == bfd_link_hash_indirect)
6140 return TRUE;
6141
6142 if (h->root.type == bfd_link_hash_warning)
6143 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6144
6145 if (h->root.type != bfd_link_hash_defined
6146 && h->root.type != bfd_link_hash_defweak)
6147 return TRUE;
6148
6149 eh = (struct ppc_link_hash_entry *) h;
6150 if (eh->adjust_done)
6151 return TRUE;
6152
6153 sym_sec = eh->elf.root.u.def.section;
6154 opd = get_opd_info (sym_sec);
6155 if (opd != NULL && opd->adjust != NULL)
6156 {
6157 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
6158 if (adjust == -1)
6159 {
6160 /* This entry has been deleted. */
6161 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6162 if (dsec == NULL)
6163 {
6164 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6165 if (elf_discarded_section (dsec))
6166 {
6167 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6168 break;
6169 }
6170 }
6171 eh->elf.root.u.def.value = 0;
6172 eh->elf.root.u.def.section = dsec;
6173 }
6174 else
6175 eh->elf.root.u.def.value += adjust;
6176 eh->adjust_done = 1;
6177 }
6178 return TRUE;
6179 }
6180
6181 /* Handles decrementing dynamic reloc counts for the reloc specified by
6182 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM_SEC
6183 have already been determined. */
6184
6185 static bfd_boolean
6186 dec_dynrel_count (bfd_vma r_info,
6187 asection *sec,
6188 struct bfd_link_info *info,
6189 Elf_Internal_Sym **local_syms,
6190 struct elf_link_hash_entry *h,
6191 asection *sym_sec)
6192 {
6193 enum elf_ppc64_reloc_type r_type;
6194 struct ppc_dyn_relocs *p;
6195 struct ppc_dyn_relocs **pp;
6196
6197 /* Can this reloc be dynamic? This switch, and later tests here
6198 should be kept in sync with the code in check_relocs. */
6199 r_type = ELF64_R_TYPE (r_info);
6200 switch (r_type)
6201 {
6202 default:
6203 return TRUE;
6204
6205 case R_PPC64_TPREL16:
6206 case R_PPC64_TPREL16_LO:
6207 case R_PPC64_TPREL16_HI:
6208 case R_PPC64_TPREL16_HA:
6209 case R_PPC64_TPREL16_DS:
6210 case R_PPC64_TPREL16_LO_DS:
6211 case R_PPC64_TPREL16_HIGHER:
6212 case R_PPC64_TPREL16_HIGHERA:
6213 case R_PPC64_TPREL16_HIGHEST:
6214 case R_PPC64_TPREL16_HIGHESTA:
6215 if (!info->shared)
6216 return TRUE;
6217
6218 case R_PPC64_TPREL64:
6219 case R_PPC64_DTPMOD64:
6220 case R_PPC64_DTPREL64:
6221 case R_PPC64_ADDR64:
6222 case R_PPC64_REL30:
6223 case R_PPC64_REL32:
6224 case R_PPC64_REL64:
6225 case R_PPC64_ADDR14:
6226 case R_PPC64_ADDR14_BRNTAKEN:
6227 case R_PPC64_ADDR14_BRTAKEN:
6228 case R_PPC64_ADDR16:
6229 case R_PPC64_ADDR16_DS:
6230 case R_PPC64_ADDR16_HA:
6231 case R_PPC64_ADDR16_HI:
6232 case R_PPC64_ADDR16_HIGHER:
6233 case R_PPC64_ADDR16_HIGHERA:
6234 case R_PPC64_ADDR16_HIGHEST:
6235 case R_PPC64_ADDR16_HIGHESTA:
6236 case R_PPC64_ADDR16_LO:
6237 case R_PPC64_ADDR16_LO_DS:
6238 case R_PPC64_ADDR24:
6239 case R_PPC64_ADDR32:
6240 case R_PPC64_UADDR16:
6241 case R_PPC64_UADDR32:
6242 case R_PPC64_UADDR64:
6243 case R_PPC64_TOC:
6244 break;
6245 }
6246
6247 if (local_syms != NULL)
6248 {
6249 unsigned long r_symndx;
6250 Elf_Internal_Sym *sym;
6251 bfd *ibfd = sec->owner;
6252
6253 r_symndx = ELF64_R_SYM (r_info);
6254 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
6255 return FALSE;
6256 }
6257
6258 if ((info->shared
6259 && (MUST_BE_DYN_RELOC (r_type)
6260 || (h != NULL
6261 && (!info->symbolic
6262 || h->root.type == bfd_link_hash_defweak
6263 || !h->def_regular))))
6264 || (ELIMINATE_COPY_RELOCS
6265 && !info->shared
6266 && h != NULL
6267 && (h->root.type == bfd_link_hash_defweak
6268 || !h->def_regular)))
6269 ;
6270 else
6271 return TRUE;
6272
6273 if (h != NULL)
6274 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6275 else
6276 {
6277 if (sym_sec != NULL)
6278 {
6279 void *vpp = &elf_section_data (sym_sec)->local_dynrel;
6280 pp = (struct ppc_dyn_relocs **) vpp;
6281 }
6282 else
6283 {
6284 void *vpp = &elf_section_data (sec)->local_dynrel;
6285 pp = (struct ppc_dyn_relocs **) vpp;
6286 }
6287
6288 /* elf_gc_sweep may have already removed all dyn relocs associated
6289 with local syms for a given section. Don't report a dynreloc
6290 miscount. */
6291 if (*pp == NULL)
6292 return TRUE;
6293 }
6294
6295 while ((p = *pp) != NULL)
6296 {
6297 if (p->sec == sec)
6298 {
6299 if (!MUST_BE_DYN_RELOC (r_type))
6300 p->pc_count -= 1;
6301 p->count -= 1;
6302 if (p->count == 0)
6303 *pp = p->next;
6304 return TRUE;
6305 }
6306 pp = &p->next;
6307 }
6308
6309 (*_bfd_error_handler) (_("dynreloc miscount for %B, section %A"),
6310 sec->owner, sec);
6311 bfd_set_error (bfd_error_bad_value);
6312 return FALSE;
6313 }
6314
6315 /* Remove unused Official Procedure Descriptor entries. Currently we
6316 only remove those associated with functions in discarded link-once
6317 sections, or weakly defined functions that have been overridden. It
6318 would be possible to remove many more entries for statically linked
6319 applications. */
6320
6321 bfd_boolean
6322 ppc64_elf_edit_opd (bfd *obfd, struct bfd_link_info *info,
6323 bfd_boolean non_overlapping)
6324 {
6325 bfd *ibfd;
6326 bfd_boolean some_edited = FALSE;
6327 asection *need_pad = NULL;
6328
6329 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6330 {
6331 asection *sec;
6332 Elf_Internal_Rela *relstart, *rel, *relend;
6333 Elf_Internal_Shdr *symtab_hdr;
6334 Elf_Internal_Sym *local_syms;
6335 struct elf_link_hash_entry **sym_hashes;
6336 bfd_vma offset;
6337 struct _opd_sec_data *opd;
6338 bfd_boolean need_edit, add_aux_fields;
6339 bfd_size_type cnt_16b = 0;
6340
6341 sec = bfd_get_section_by_name (ibfd, ".opd");
6342 if (sec == NULL || sec->size == 0)
6343 continue;
6344
6345 if (sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
6346 continue;
6347
6348 if (sec->output_section == bfd_abs_section_ptr)
6349 continue;
6350
6351 /* Look through the section relocs. */
6352 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
6353 continue;
6354
6355 local_syms = NULL;
6356 symtab_hdr = &elf_symtab_hdr (ibfd);
6357 sym_hashes = elf_sym_hashes (ibfd);
6358
6359 /* Read the relocations. */
6360 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6361 info->keep_memory);
6362 if (relstart == NULL)
6363 return FALSE;
6364
6365 /* First run through the relocs to check they are sane, and to
6366 determine whether we need to edit this opd section. */
6367 need_edit = FALSE;
6368 need_pad = sec;
6369 offset = 0;
6370 relend = relstart + sec->reloc_count;
6371 for (rel = relstart; rel < relend; )
6372 {
6373 enum elf_ppc64_reloc_type r_type;
6374 unsigned long r_symndx;
6375 asection *sym_sec;
6376 struct elf_link_hash_entry *h;
6377 Elf_Internal_Sym *sym;
6378
6379 /* .opd contains a regular array of 16 or 24 byte entries. We're
6380 only interested in the reloc pointing to a function entry
6381 point. */
6382 if (rel->r_offset != offset
6383 || rel + 1 >= relend
6384 || (rel + 1)->r_offset != offset + 8)
6385 {
6386 /* If someone messes with .opd alignment then after a
6387 "ld -r" we might have padding in the middle of .opd.
6388 Also, there's nothing to prevent someone putting
6389 something silly in .opd with the assembler. No .opd
6390 optimization for them! */
6391 broken_opd:
6392 (*_bfd_error_handler)
6393 (_("%B: .opd is not a regular array of opd entries"), ibfd);
6394 need_edit = FALSE;
6395 break;
6396 }
6397
6398 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
6399 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
6400 {
6401 (*_bfd_error_handler)
6402 (_("%B: unexpected reloc type %u in .opd section"),
6403 ibfd, r_type);
6404 need_edit = FALSE;
6405 break;
6406 }
6407
6408 r_symndx = ELF64_R_SYM (rel->r_info);
6409 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6410 r_symndx, ibfd))
6411 goto error_ret;
6412
6413 if (sym_sec == NULL || sym_sec->owner == NULL)
6414 {
6415 const char *sym_name;
6416 if (h != NULL)
6417 sym_name = h->root.root.string;
6418 else
6419 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
6420 sym_sec);
6421
6422 (*_bfd_error_handler)
6423 (_("%B: undefined sym `%s' in .opd section"),
6424 ibfd, sym_name);
6425 need_edit = FALSE;
6426 break;
6427 }
6428
6429 /* opd entries are always for functions defined in the
6430 current input bfd. If the symbol isn't defined in the
6431 input bfd, then we won't be using the function in this
6432 bfd; It must be defined in a linkonce section in another
6433 bfd, or is weak. It's also possible that we are
6434 discarding the function due to a linker script /DISCARD/,
6435 which we test for via the output_section. */
6436 if (sym_sec->owner != ibfd
6437 || sym_sec->output_section == bfd_abs_section_ptr)
6438 need_edit = TRUE;
6439
6440 rel += 2;
6441 if (rel == relend
6442 || (rel + 1 == relend && rel->r_offset == offset + 16))
6443 {
6444 if (sec->size == offset + 24)
6445 {
6446 need_pad = NULL;
6447 break;
6448 }
6449 if (rel == relend && sec->size == offset + 16)
6450 {
6451 cnt_16b++;
6452 break;
6453 }
6454 goto broken_opd;
6455 }
6456
6457 if (rel->r_offset == offset + 24)
6458 offset += 24;
6459 else if (rel->r_offset != offset + 16)
6460 goto broken_opd;
6461 else if (rel + 1 < relend
6462 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
6463 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
6464 {
6465 offset += 16;
6466 cnt_16b++;
6467 }
6468 else if (rel + 2 < relend
6469 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
6470 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
6471 {
6472 offset += 24;
6473 rel += 1;
6474 }
6475 else
6476 goto broken_opd;
6477 }
6478
6479 add_aux_fields = non_overlapping && cnt_16b > 0;
6480
6481 if (need_edit || add_aux_fields)
6482 {
6483 Elf_Internal_Rela *write_rel;
6484 bfd_byte *rptr, *wptr;
6485 bfd_byte *new_contents = NULL;
6486 bfd_boolean skip;
6487 long opd_ent_size;
6488 bfd_size_type amt;
6489
6490 amt = sec->size * sizeof (long) / 8;
6491 opd = &ppc64_elf_section_data (sec)->u.opd;
6492 opd->adjust = bfd_zalloc (obfd, amt);
6493 if (opd->adjust == NULL)
6494 return FALSE;
6495 ppc64_elf_section_data (sec)->sec_type = sec_opd;
6496
6497 /* This seems a waste of time as input .opd sections are all
6498 zeros as generated by gcc, but I suppose there's no reason
6499 this will always be so. We might start putting something in
6500 the third word of .opd entries. */
6501 if ((sec->flags & SEC_IN_MEMORY) == 0)
6502 {
6503 bfd_byte *loc;
6504 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
6505 {
6506 if (loc != NULL)
6507 free (loc);
6508 error_ret:
6509 if (local_syms != NULL
6510 && symtab_hdr->contents != (unsigned char *) local_syms)
6511 free (local_syms);
6512 if (elf_section_data (sec)->relocs != relstart)
6513 free (relstart);
6514 return FALSE;
6515 }
6516 sec->contents = loc;
6517 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6518 }
6519
6520 elf_section_data (sec)->relocs = relstart;
6521
6522 new_contents = sec->contents;
6523 if (add_aux_fields)
6524 {
6525 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
6526 if (new_contents == NULL)
6527 return FALSE;
6528 need_pad = FALSE;
6529 }
6530 wptr = new_contents;
6531 rptr = sec->contents;
6532
6533 write_rel = relstart;
6534 skip = FALSE;
6535 offset = 0;
6536 opd_ent_size = 0;
6537 for (rel = relstart; rel < relend; rel++)
6538 {
6539 unsigned long r_symndx;
6540 asection *sym_sec;
6541 struct elf_link_hash_entry *h;
6542 Elf_Internal_Sym *sym;
6543
6544 r_symndx = ELF64_R_SYM (rel->r_info);
6545 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6546 r_symndx, ibfd))
6547 goto error_ret;
6548
6549 if (rel->r_offset == offset)
6550 {
6551 struct ppc_link_hash_entry *fdh = NULL;
6552
6553 /* See if the .opd entry is full 24 byte or
6554 16 byte (with fd_aux entry overlapped with next
6555 fd_func). */
6556 opd_ent_size = 24;
6557 if ((rel + 2 == relend && sec->size == offset + 16)
6558 || (rel + 3 < relend
6559 && rel[2].r_offset == offset + 16
6560 && rel[3].r_offset == offset + 24
6561 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
6562 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
6563 opd_ent_size = 16;
6564
6565 if (h != NULL
6566 && h->root.root.string[0] == '.')
6567 {
6568 fdh = get_fdh ((struct ppc_link_hash_entry *) h,
6569 ppc_hash_table (info));
6570 if (fdh != NULL
6571 && fdh->elf.root.type != bfd_link_hash_defined
6572 && fdh->elf.root.type != bfd_link_hash_defweak)
6573 fdh = NULL;
6574 }
6575
6576 skip = (sym_sec->owner != ibfd
6577 || sym_sec->output_section == bfd_abs_section_ptr);
6578 if (skip)
6579 {
6580 if (fdh != NULL && sym_sec->owner == ibfd)
6581 {
6582 /* Arrange for the function descriptor sym
6583 to be dropped. */
6584 fdh->elf.root.u.def.value = 0;
6585 fdh->elf.root.u.def.section = sym_sec;
6586 }
6587 opd->adjust[rel->r_offset / 8] = -1;
6588 }
6589 else
6590 {
6591 /* We'll be keeping this opd entry. */
6592
6593 if (fdh != NULL)
6594 {
6595 /* Redefine the function descriptor symbol to
6596 this location in the opd section. It is
6597 necessary to update the value here rather
6598 than using an array of adjustments as we do
6599 for local symbols, because various places
6600 in the generic ELF code use the value
6601 stored in u.def.value. */
6602 fdh->elf.root.u.def.value = wptr - new_contents;
6603 fdh->adjust_done = 1;
6604 }
6605
6606 /* Local syms are a bit tricky. We could
6607 tweak them as they can be cached, but
6608 we'd need to look through the local syms
6609 for the function descriptor sym which we
6610 don't have at the moment. So keep an
6611 array of adjustments. */
6612 opd->adjust[rel->r_offset / 8]
6613 = (wptr - new_contents) - (rptr - sec->contents);
6614
6615 if (wptr != rptr)
6616 memcpy (wptr, rptr, opd_ent_size);
6617 wptr += opd_ent_size;
6618 if (add_aux_fields && opd_ent_size == 16)
6619 {
6620 memset (wptr, '\0', 8);
6621 wptr += 8;
6622 }
6623 }
6624 rptr += opd_ent_size;
6625 offset += opd_ent_size;
6626 }
6627
6628 if (skip)
6629 {
6630 if (!NO_OPD_RELOCS
6631 && !info->relocatable
6632 && !dec_dynrel_count (rel->r_info, sec, info,
6633 NULL, h, sym_sec))
6634 goto error_ret;
6635 }
6636 else
6637 {
6638 /* We need to adjust any reloc offsets to point to the
6639 new opd entries. While we're at it, we may as well
6640 remove redundant relocs. */
6641 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
6642 if (write_rel != rel)
6643 memcpy (write_rel, rel, sizeof (*rel));
6644 ++write_rel;
6645 }
6646 }
6647
6648 sec->size = wptr - new_contents;
6649 sec->reloc_count = write_rel - relstart;
6650 if (add_aux_fields)
6651 {
6652 free (sec->contents);
6653 sec->contents = new_contents;
6654 }
6655
6656 /* Fudge the header size too, as this is used later in
6657 elf_bfd_final_link if we are emitting relocs. */
6658 elf_section_data (sec)->rel_hdr.sh_size
6659 = sec->reloc_count * elf_section_data (sec)->rel_hdr.sh_entsize;
6660 BFD_ASSERT (elf_section_data (sec)->rel_hdr2 == NULL);
6661 some_edited = TRUE;
6662 }
6663 else if (elf_section_data (sec)->relocs != relstart)
6664 free (relstart);
6665
6666 if (local_syms != NULL
6667 && symtab_hdr->contents != (unsigned char *) local_syms)
6668 {
6669 if (!info->keep_memory)
6670 free (local_syms);
6671 else
6672 symtab_hdr->contents = (unsigned char *) local_syms;
6673 }
6674 }
6675
6676 if (some_edited)
6677 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
6678
6679 /* If we are doing a final link and the last .opd entry is just 16 byte
6680 long, add a 8 byte padding after it. */
6681 if (need_pad != NULL && !info->relocatable)
6682 {
6683 bfd_byte *p;
6684
6685 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
6686 {
6687 BFD_ASSERT (need_pad->size > 0);
6688
6689 p = bfd_malloc (need_pad->size + 8);
6690 if (p == NULL)
6691 return FALSE;
6692
6693 if (! bfd_get_section_contents (need_pad->owner, need_pad,
6694 p, 0, need_pad->size))
6695 return FALSE;
6696
6697 need_pad->contents = p;
6698 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6699 }
6700 else
6701 {
6702 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
6703 if (p == NULL)
6704 return FALSE;
6705
6706 need_pad->contents = p;
6707 }
6708
6709 memset (need_pad->contents + need_pad->size, 0, 8);
6710 need_pad->size += 8;
6711 }
6712
6713 return TRUE;
6714 }
6715
6716 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
6717
6718 asection *
6719 ppc64_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
6720 {
6721 struct ppc_link_hash_table *htab;
6722
6723 htab = ppc_hash_table (info);
6724 if (htab->tls_get_addr != NULL)
6725 {
6726 struct ppc_link_hash_entry *h = htab->tls_get_addr;
6727
6728 while (h->elf.root.type == bfd_link_hash_indirect
6729 || h->elf.root.type == bfd_link_hash_warning)
6730 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6731
6732 htab->tls_get_addr = h;
6733
6734 if (htab->tls_get_addr_fd == NULL
6735 && h->oh != NULL
6736 && h->oh->is_func_descriptor
6737 && (h->oh->elf.root.type == bfd_link_hash_defined
6738 || h->oh->elf.root.type == bfd_link_hash_defweak))
6739 htab->tls_get_addr_fd = h->oh;
6740 }
6741
6742 if (htab->tls_get_addr_fd != NULL)
6743 {
6744 struct ppc_link_hash_entry *h = htab->tls_get_addr_fd;
6745
6746 while (h->elf.root.type == bfd_link_hash_indirect
6747 || h->elf.root.type == bfd_link_hash_warning)
6748 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6749
6750 htab->tls_get_addr_fd = h;
6751 }
6752
6753 return _bfd_elf_tls_setup (obfd, info);
6754 }
6755
6756 /* Run through all the TLS relocs looking for optimization
6757 opportunities. The linker has been hacked (see ppc64elf.em) to do
6758 a preliminary section layout so that we know the TLS segment
6759 offsets. We can't optimize earlier because some optimizations need
6760 to know the tp offset, and we need to optimize before allocating
6761 dynamic relocations. */
6762
6763 bfd_boolean
6764 ppc64_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6765 {
6766 bfd *ibfd;
6767 asection *sec;
6768 struct ppc_link_hash_table *htab;
6769 int pass;
6770
6771 if (info->relocatable || info->shared)
6772 return TRUE;
6773
6774 htab = ppc_hash_table (info);
6775 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6776 {
6777 Elf_Internal_Sym *locsyms = NULL;
6778 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
6779 unsigned char *toc_ref = NULL;
6780
6781 /* Look at all the sections for this file. Make two passes over
6782 the relocs. On the first pass, mark toc entries involved
6783 with tls relocs, and check that tls relocs involved in
6784 setting up a tls_get_addr call are indeed followed by such a
6785 call. If they are not, exclude them from the optimizations
6786 done on the second pass. */
6787 for (pass = 0; pass < 2; ++pass)
6788 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6789 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
6790 {
6791 Elf_Internal_Rela *relstart, *rel, *relend;
6792
6793 /* Read the relocations. */
6794 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6795 info->keep_memory);
6796 if (relstart == NULL)
6797 return FALSE;
6798
6799 relend = relstart + sec->reloc_count;
6800 for (rel = relstart; rel < relend; rel++)
6801 {
6802 enum elf_ppc64_reloc_type r_type;
6803 unsigned long r_symndx;
6804 struct elf_link_hash_entry *h;
6805 Elf_Internal_Sym *sym;
6806 asection *sym_sec;
6807 char *tls_mask;
6808 char tls_set, tls_clear, tls_type = 0;
6809 bfd_vma value;
6810 bfd_boolean ok_tprel, is_local;
6811 long toc_ref_index = 0;
6812 int expecting_tls_get_addr = 0;
6813
6814 r_symndx = ELF64_R_SYM (rel->r_info);
6815 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
6816 r_symndx, ibfd))
6817 {
6818 err_free_rel:
6819 if (elf_section_data (sec)->relocs != relstart)
6820 free (relstart);
6821 if (toc_ref != NULL)
6822 free (toc_ref);
6823 if (locsyms != NULL
6824 && (elf_symtab_hdr (ibfd).contents
6825 != (unsigned char *) locsyms))
6826 free (locsyms);
6827 return FALSE;
6828 }
6829
6830 if (h != NULL)
6831 {
6832 if (h->root.type != bfd_link_hash_defined
6833 && h->root.type != bfd_link_hash_defweak)
6834 continue;
6835 value = h->root.u.def.value;
6836 }
6837 else
6838 /* Symbols referenced by TLS relocs must be of type
6839 STT_TLS. So no need for .opd local sym adjust. */
6840 value = sym->st_value;
6841
6842 ok_tprel = FALSE;
6843 is_local = FALSE;
6844 if (h == NULL
6845 || !h->def_dynamic)
6846 {
6847 is_local = TRUE;
6848 value += sym_sec->output_offset;
6849 value += sym_sec->output_section->vma;
6850 value -= htab->elf.tls_sec->vma;
6851 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
6852 < (bfd_vma) 1 << 32);
6853 }
6854
6855 r_type = ELF64_R_TYPE (rel->r_info);
6856 switch (r_type)
6857 {
6858 case R_PPC64_GOT_TLSLD16:
6859 case R_PPC64_GOT_TLSLD16_LO:
6860 expecting_tls_get_addr = 1;
6861 /* Fall thru */
6862
6863 case R_PPC64_GOT_TLSLD16_HI:
6864 case R_PPC64_GOT_TLSLD16_HA:
6865 /* These relocs should never be against a symbol
6866 defined in a shared lib. Leave them alone if
6867 that turns out to be the case. */
6868 if (!is_local)
6869 continue;
6870
6871 /* LD -> LE */
6872 tls_set = 0;
6873 tls_clear = TLS_LD;
6874 tls_type = TLS_TLS | TLS_LD;
6875 break;
6876
6877 case R_PPC64_GOT_TLSGD16:
6878 case R_PPC64_GOT_TLSGD16_LO:
6879 expecting_tls_get_addr = 1;
6880 /* Fall thru */
6881
6882 case R_PPC64_GOT_TLSGD16_HI:
6883 case R_PPC64_GOT_TLSGD16_HA:
6884 if (ok_tprel)
6885 /* GD -> LE */
6886 tls_set = 0;
6887 else
6888 /* GD -> IE */
6889 tls_set = TLS_TLS | TLS_TPRELGD;
6890 tls_clear = TLS_GD;
6891 tls_type = TLS_TLS | TLS_GD;
6892 break;
6893
6894 case R_PPC64_GOT_TPREL16_DS:
6895 case R_PPC64_GOT_TPREL16_LO_DS:
6896 case R_PPC64_GOT_TPREL16_HI:
6897 case R_PPC64_GOT_TPREL16_HA:
6898 if (ok_tprel)
6899 {
6900 /* IE -> LE */
6901 tls_set = 0;
6902 tls_clear = TLS_TPREL;
6903 tls_type = TLS_TLS | TLS_TPREL;
6904 break;
6905 }
6906 continue;
6907
6908 case R_PPC64_TOC16:
6909 case R_PPC64_TOC16_LO:
6910 case R_PPC64_TLS:
6911 if (sym_sec == NULL || sym_sec != toc)
6912 continue;
6913
6914 /* Mark this toc entry as referenced by a TLS
6915 code sequence. We can do that now in the
6916 case of R_PPC64_TLS, and after checking for
6917 tls_get_addr for the TOC16 relocs. */
6918 if (toc_ref == NULL)
6919 {
6920 toc_ref = bfd_zmalloc (toc->size / 8);
6921 if (toc_ref == NULL)
6922 goto err_free_rel;
6923 }
6924 if (h != NULL)
6925 value = h->root.u.def.value;
6926 else
6927 value = sym->st_value;
6928 value += rel->r_addend;
6929 BFD_ASSERT (value < toc->size && value % 8 == 0);
6930 toc_ref_index = value / 8;
6931 if (r_type == R_PPC64_TLS)
6932 {
6933 toc_ref[toc_ref_index] = 1;
6934 continue;
6935 }
6936
6937 if (pass != 0 && toc_ref[toc_ref_index] == 0)
6938 continue;
6939
6940 tls_set = 0;
6941 tls_clear = 0;
6942 expecting_tls_get_addr = 2;
6943 break;
6944
6945 case R_PPC64_TPREL64:
6946 if (pass == 0
6947 || sec != toc
6948 || toc_ref == NULL
6949 || !toc_ref[rel->r_offset / 8])
6950 continue;
6951 if (ok_tprel)
6952 {
6953 /* IE -> LE */
6954 tls_set = TLS_EXPLICIT;
6955 tls_clear = TLS_TPREL;
6956 break;
6957 }
6958 continue;
6959
6960 case R_PPC64_DTPMOD64:
6961 if (pass == 0
6962 || sec != toc
6963 || toc_ref == NULL
6964 || !toc_ref[rel->r_offset / 8])
6965 continue;
6966 if (rel + 1 < relend
6967 && (rel[1].r_info
6968 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
6969 && rel[1].r_offset == rel->r_offset + 8)
6970 {
6971 if (ok_tprel)
6972 /* GD -> LE */
6973 tls_set = TLS_EXPLICIT | TLS_GD;
6974 else
6975 /* GD -> IE */
6976 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
6977 tls_clear = TLS_GD;
6978 }
6979 else
6980 {
6981 if (!is_local)
6982 continue;
6983
6984 /* LD -> LE */
6985 tls_set = TLS_EXPLICIT;
6986 tls_clear = TLS_LD;
6987 }
6988 break;
6989
6990 default:
6991 continue;
6992 }
6993
6994 if (pass == 0)
6995 {
6996 if (!expecting_tls_get_addr)
6997 continue;
6998
6999 if (rel + 1 < relend)
7000 {
7001 Elf_Internal_Shdr *symtab_hdr;
7002 enum elf_ppc64_reloc_type r_type2;
7003 unsigned long r_symndx2;
7004 struct elf_link_hash_entry *h2;
7005
7006 symtab_hdr = &elf_symtab_hdr (ibfd);
7007
7008 /* The next instruction should be a call to
7009 __tls_get_addr. Peek at the reloc to be sure. */
7010 r_type2 = ELF64_R_TYPE (rel[1].r_info);
7011 r_symndx2 = ELF64_R_SYM (rel[1].r_info);
7012 if (r_symndx2 >= symtab_hdr->sh_info
7013 && (r_type2 == R_PPC64_REL14
7014 || r_type2 == R_PPC64_REL14_BRTAKEN
7015 || r_type2 == R_PPC64_REL14_BRNTAKEN
7016 || r_type2 == R_PPC64_REL24))
7017 {
7018 struct elf_link_hash_entry **sym_hashes;
7019
7020 sym_hashes = elf_sym_hashes (ibfd);
7021
7022 h2 = sym_hashes[r_symndx2 - symtab_hdr->sh_info];
7023 while (h2->root.type == bfd_link_hash_indirect
7024 || h2->root.type == bfd_link_hash_warning)
7025 h2 = ((struct elf_link_hash_entry *)
7026 h2->root.u.i.link);
7027 if (h2 != NULL
7028 && (h2 == &htab->tls_get_addr->elf
7029 || h2 == &htab->tls_get_addr_fd->elf))
7030 {
7031 if (expecting_tls_get_addr == 2)
7032 {
7033 /* Check for toc tls entries. */
7034 char *toc_tls;
7035 int retval;
7036
7037 retval = get_tls_mask (&toc_tls, NULL,
7038 &locsyms,
7039 rel, ibfd);
7040 if (retval == 0)
7041 goto err_free_rel;
7042 if (retval > 1 && toc_tls != NULL)
7043 toc_ref[toc_ref_index] = 1;
7044 }
7045 continue;
7046 }
7047 }
7048 }
7049
7050 if (expecting_tls_get_addr != 1)
7051 continue;
7052
7053 /* Uh oh, we didn't find the expected call. We
7054 could just mark this symbol to exclude it
7055 from tls optimization but it's safer to skip
7056 the entire section. */
7057 sec->has_tls_reloc = 0;
7058 break;
7059 }
7060
7061 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
7062 {
7063 struct plt_entry *ent;
7064 for (ent = htab->tls_get_addr->elf.plt.plist;
7065 ent != NULL;
7066 ent = ent->next)
7067 if (ent->addend == 0)
7068 {
7069 if (ent->plt.refcount > 0)
7070 {
7071 ent->plt.refcount -= 1;
7072 expecting_tls_get_addr = 0;
7073 }
7074 break;
7075 }
7076 }
7077
7078 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
7079 {
7080 struct plt_entry *ent;
7081 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
7082 ent != NULL;
7083 ent = ent->next)
7084 if (ent->addend == 0)
7085 {
7086 if (ent->plt.refcount > 0)
7087 ent->plt.refcount -= 1;
7088 break;
7089 }
7090 }
7091
7092 if (tls_clear == 0)
7093 continue;
7094
7095 if ((tls_set & TLS_EXPLICIT) == 0)
7096 {
7097 struct got_entry *ent;
7098
7099 /* Adjust got entry for this reloc. */
7100 if (h != NULL)
7101 ent = h->got.glist;
7102 else
7103 ent = elf_local_got_ents (ibfd)[r_symndx];
7104
7105 for (; ent != NULL; ent = ent->next)
7106 if (ent->addend == rel->r_addend
7107 && ent->owner == ibfd
7108 && ent->tls_type == tls_type)
7109 break;
7110 if (ent == NULL)
7111 abort ();
7112
7113 if (tls_set == 0)
7114 {
7115 /* We managed to get rid of a got entry. */
7116 if (ent->got.refcount > 0)
7117 ent->got.refcount -= 1;
7118 }
7119 }
7120 else
7121 {
7122 /* If we got rid of a DTPMOD/DTPREL reloc pair then
7123 we'll lose one or two dyn relocs. */
7124 if (!dec_dynrel_count (rel->r_info, sec, info,
7125 NULL, h, sym_sec))
7126 return FALSE;
7127
7128 if (tls_set == (TLS_EXPLICIT | TLS_GD))
7129 {
7130 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
7131 NULL, h, sym_sec))
7132 return FALSE;
7133 }
7134 }
7135
7136 *tls_mask |= tls_set;
7137 *tls_mask &= ~tls_clear;
7138 }
7139
7140 if (elf_section_data (sec)->relocs != relstart)
7141 free (relstart);
7142 }
7143
7144 if (toc_ref != NULL)
7145 free (toc_ref);
7146
7147 if (locsyms != NULL
7148 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
7149 {
7150 if (!info->keep_memory)
7151 free (locsyms);
7152 else
7153 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
7154 }
7155 }
7156 return TRUE;
7157 }
7158
7159 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
7160 the values of any global symbols in a toc section that has been
7161 edited. Globals in toc sections should be a rarity, so this function
7162 sets a flag if any are found in toc sections other than the one just
7163 edited, so that futher hash table traversals can be avoided. */
7164
7165 struct adjust_toc_info
7166 {
7167 asection *toc;
7168 unsigned long *skip;
7169 bfd_boolean global_toc_syms;
7170 };
7171
7172 static bfd_boolean
7173 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
7174 {
7175 struct ppc_link_hash_entry *eh;
7176 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
7177
7178 if (h->root.type == bfd_link_hash_indirect)
7179 return TRUE;
7180
7181 if (h->root.type == bfd_link_hash_warning)
7182 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7183
7184 if (h->root.type != bfd_link_hash_defined
7185 && h->root.type != bfd_link_hash_defweak)
7186 return TRUE;
7187
7188 eh = (struct ppc_link_hash_entry *) h;
7189 if (eh->adjust_done)
7190 return TRUE;
7191
7192 if (eh->elf.root.u.def.section == toc_inf->toc)
7193 {
7194 unsigned long skip = toc_inf->skip[eh->elf.root.u.def.value >> 3];
7195 if (skip != (unsigned long) -1)
7196 eh->elf.root.u.def.value -= skip;
7197 else
7198 {
7199 (*_bfd_error_handler)
7200 (_("%s defined in removed toc entry"), eh->elf.root.root.string);
7201 eh->elf.root.u.def.section = &bfd_abs_section;
7202 eh->elf.root.u.def.value = 0;
7203 }
7204 eh->adjust_done = 1;
7205 }
7206 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
7207 toc_inf->global_toc_syms = TRUE;
7208
7209 return TRUE;
7210 }
7211
7212 /* Examine all relocs referencing .toc sections in order to remove
7213 unused .toc entries. */
7214
7215 bfd_boolean
7216 ppc64_elf_edit_toc (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
7217 {
7218 bfd *ibfd;
7219 struct adjust_toc_info toc_inf;
7220
7221 toc_inf.global_toc_syms = TRUE;
7222 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7223 {
7224 asection *toc, *sec;
7225 Elf_Internal_Shdr *symtab_hdr;
7226 Elf_Internal_Sym *local_syms;
7227 struct elf_link_hash_entry **sym_hashes;
7228 Elf_Internal_Rela *relstart, *rel;
7229 unsigned long *skip, *drop;
7230 unsigned char *used;
7231 unsigned char *keep, last, some_unused;
7232
7233 toc = bfd_get_section_by_name (ibfd, ".toc");
7234 if (toc == NULL
7235 || toc->size == 0
7236 || toc->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
7237 || elf_discarded_section (toc))
7238 continue;
7239
7240 local_syms = NULL;
7241 symtab_hdr = &elf_symtab_hdr (ibfd);
7242 sym_hashes = elf_sym_hashes (ibfd);
7243
7244 /* Look at sections dropped from the final link. */
7245 skip = NULL;
7246 relstart = NULL;
7247 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7248 {
7249 if (sec->reloc_count == 0
7250 || !elf_discarded_section (sec)
7251 || get_opd_info (sec)
7252 || (sec->flags & SEC_ALLOC) == 0
7253 || (sec->flags & SEC_DEBUGGING) != 0)
7254 continue;
7255
7256 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
7257 if (relstart == NULL)
7258 goto error_ret;
7259
7260 /* Run through the relocs to see which toc entries might be
7261 unused. */
7262 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7263 {
7264 enum elf_ppc64_reloc_type r_type;
7265 unsigned long r_symndx;
7266 asection *sym_sec;
7267 struct elf_link_hash_entry *h;
7268 Elf_Internal_Sym *sym;
7269 bfd_vma val;
7270
7271 r_type = ELF64_R_TYPE (rel->r_info);
7272 switch (r_type)
7273 {
7274 default:
7275 continue;
7276
7277 case R_PPC64_TOC16:
7278 case R_PPC64_TOC16_LO:
7279 case R_PPC64_TOC16_HI:
7280 case R_PPC64_TOC16_HA:
7281 case R_PPC64_TOC16_DS:
7282 case R_PPC64_TOC16_LO_DS:
7283 break;
7284 }
7285
7286 r_symndx = ELF64_R_SYM (rel->r_info);
7287 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7288 r_symndx, ibfd))
7289 goto error_ret;
7290
7291 if (sym_sec != toc)
7292 continue;
7293
7294 if (h != NULL)
7295 val = h->root.u.def.value;
7296 else
7297 val = sym->st_value;
7298 val += rel->r_addend;
7299
7300 if (val >= toc->size)
7301 continue;
7302
7303 /* Anything in the toc ought to be aligned to 8 bytes.
7304 If not, don't mark as unused. */
7305 if (val & 7)
7306 continue;
7307
7308 if (skip == NULL)
7309 {
7310 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 7) / 8);
7311 if (skip == NULL)
7312 goto error_ret;
7313 }
7314
7315 skip[val >> 3] = 1;
7316 }
7317
7318 if (elf_section_data (sec)->relocs != relstart)
7319 free (relstart);
7320 }
7321
7322 if (skip == NULL)
7323 continue;
7324
7325 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
7326 if (used == NULL)
7327 {
7328 error_ret:
7329 if (local_syms != NULL
7330 && symtab_hdr->contents != (unsigned char *) local_syms)
7331 free (local_syms);
7332 if (sec != NULL
7333 && relstart != NULL
7334 && elf_section_data (sec)->relocs != relstart)
7335 free (relstart);
7336 if (skip != NULL)
7337 free (skip);
7338 return FALSE;
7339 }
7340
7341 /* Now check all kept sections that might reference the toc.
7342 Check the toc itself last. */
7343 for (sec = (ibfd->sections == toc && toc->next ? toc->next
7344 : ibfd->sections);
7345 sec != NULL;
7346 sec = (sec == toc ? NULL
7347 : sec->next == NULL ? toc
7348 : sec->next == toc && toc->next ? toc->next
7349 : sec->next))
7350 {
7351 int repeat;
7352
7353 if (sec->reloc_count == 0
7354 || elf_discarded_section (sec)
7355 || get_opd_info (sec)
7356 || (sec->flags & SEC_ALLOC) == 0
7357 || (sec->flags & SEC_DEBUGGING) != 0)
7358 continue;
7359
7360 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, TRUE);
7361 if (relstart == NULL)
7362 goto error_ret;
7363
7364 /* Mark toc entries referenced as used. */
7365 repeat = 0;
7366 do
7367 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7368 {
7369 enum elf_ppc64_reloc_type r_type;
7370 unsigned long r_symndx;
7371 asection *sym_sec;
7372 struct elf_link_hash_entry *h;
7373 Elf_Internal_Sym *sym;
7374 bfd_vma val;
7375
7376 r_type = ELF64_R_TYPE (rel->r_info);
7377 switch (r_type)
7378 {
7379 case R_PPC64_TOC16:
7380 case R_PPC64_TOC16_LO:
7381 case R_PPC64_TOC16_HI:
7382 case R_PPC64_TOC16_HA:
7383 case R_PPC64_TOC16_DS:
7384 case R_PPC64_TOC16_LO_DS:
7385 /* In case we're taking addresses of toc entries. */
7386 case R_PPC64_ADDR64:
7387 break;
7388
7389 default:
7390 continue;
7391 }
7392
7393 r_symndx = ELF64_R_SYM (rel->r_info);
7394 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7395 r_symndx, ibfd))
7396 {
7397 free (used);
7398 goto error_ret;
7399 }
7400
7401 if (sym_sec != toc)
7402 continue;
7403
7404 if (h != NULL)
7405 val = h->root.u.def.value;
7406 else
7407 val = sym->st_value;
7408 val += rel->r_addend;
7409
7410 if (val >= toc->size)
7411 continue;
7412
7413 /* For the toc section, we only mark as used if
7414 this entry itself isn't unused. */
7415 if (sec == toc
7416 && !used[val >> 3]
7417 && (used[rel->r_offset >> 3]
7418 || !skip[rel->r_offset >> 3]))
7419 /* Do all the relocs again, to catch reference
7420 chains. */
7421 repeat = 1;
7422
7423 used[val >> 3] = 1;
7424 }
7425 while (repeat);
7426 }
7427
7428 /* Merge the used and skip arrays. Assume that TOC
7429 doublewords not appearing as either used or unused belong
7430 to to an entry more than one doubleword in size. */
7431 for (drop = skip, keep = used, last = 0, some_unused = 0;
7432 drop < skip + (toc->size + 7) / 8;
7433 ++drop, ++keep)
7434 {
7435 if (*keep)
7436 {
7437 *drop = 0;
7438 last = 0;
7439 }
7440 else if (*drop)
7441 {
7442 some_unused = 1;
7443 last = 1;
7444 }
7445 else
7446 *drop = last;
7447 }
7448
7449 free (used);
7450
7451 if (some_unused)
7452 {
7453 bfd_byte *contents, *src;
7454 unsigned long off;
7455
7456 /* Shuffle the toc contents, and at the same time convert the
7457 skip array from booleans into offsets. */
7458 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
7459 goto error_ret;
7460
7461 elf_section_data (toc)->this_hdr.contents = contents;
7462
7463 for (src = contents, off = 0, drop = skip;
7464 src < contents + toc->size;
7465 src += 8, ++drop)
7466 {
7467 if (*drop)
7468 {
7469 *drop = (unsigned long) -1;
7470 off += 8;
7471 }
7472 else if (off != 0)
7473 {
7474 *drop = off;
7475 memcpy (src - off, src, 8);
7476 }
7477 }
7478 toc->rawsize = toc->size;
7479 toc->size = src - contents - off;
7480
7481 if (toc->reloc_count != 0)
7482 {
7483 Elf_Internal_Rela *wrel;
7484 bfd_size_type sz;
7485
7486 /* Read toc relocs. */
7487 relstart = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
7488 TRUE);
7489 if (relstart == NULL)
7490 goto error_ret;
7491
7492 /* Remove unused toc relocs, and adjust those we keep. */
7493 wrel = relstart;
7494 for (rel = relstart; rel < relstart + toc->reloc_count; ++rel)
7495 if (skip[rel->r_offset >> 3] != (unsigned long) -1)
7496 {
7497 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
7498 wrel->r_info = rel->r_info;
7499 wrel->r_addend = rel->r_addend;
7500 ++wrel;
7501 }
7502 else if (!dec_dynrel_count (rel->r_info, toc, info,
7503 &local_syms, NULL, NULL))
7504 goto error_ret;
7505
7506 toc->reloc_count = wrel - relstart;
7507 sz = elf_section_data (toc)->rel_hdr.sh_entsize;
7508 elf_section_data (toc)->rel_hdr.sh_size = toc->reloc_count * sz;
7509 BFD_ASSERT (elf_section_data (toc)->rel_hdr2 == NULL);
7510 }
7511
7512 /* Adjust addends for relocs against the toc section sym. */
7513 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7514 {
7515 if (sec->reloc_count == 0
7516 || elf_discarded_section (sec))
7517 continue;
7518
7519 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7520 TRUE);
7521 if (relstart == NULL)
7522 goto error_ret;
7523
7524 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7525 {
7526 enum elf_ppc64_reloc_type r_type;
7527 unsigned long r_symndx;
7528 asection *sym_sec;
7529 struct elf_link_hash_entry *h;
7530 Elf_Internal_Sym *sym;
7531
7532 r_type = ELF64_R_TYPE (rel->r_info);
7533 switch (r_type)
7534 {
7535 default:
7536 continue;
7537
7538 case R_PPC64_TOC16:
7539 case R_PPC64_TOC16_LO:
7540 case R_PPC64_TOC16_HI:
7541 case R_PPC64_TOC16_HA:
7542 case R_PPC64_TOC16_DS:
7543 case R_PPC64_TOC16_LO_DS:
7544 case R_PPC64_ADDR64:
7545 break;
7546 }
7547
7548 r_symndx = ELF64_R_SYM (rel->r_info);
7549 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7550 r_symndx, ibfd))
7551 goto error_ret;
7552
7553 if (sym_sec != toc || h != NULL || sym->st_value != 0)
7554 continue;
7555
7556 rel->r_addend -= skip[rel->r_addend >> 3];
7557 }
7558 }
7559
7560 /* We shouldn't have local or global symbols defined in the TOC,
7561 but handle them anyway. */
7562 if (local_syms != NULL)
7563 {
7564 Elf_Internal_Sym *sym;
7565
7566 for (sym = local_syms;
7567 sym < local_syms + symtab_hdr->sh_info;
7568 ++sym)
7569 if (sym->st_value != 0
7570 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
7571 {
7572 if (skip[sym->st_value >> 3] != (unsigned long) -1)
7573 sym->st_value -= skip[sym->st_value >> 3];
7574 else
7575 {
7576 (*_bfd_error_handler)
7577 (_("%s defined in removed toc entry"),
7578 bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7579 NULL));
7580 sym->st_value = 0;
7581 sym->st_shndx = SHN_ABS;
7582 }
7583 symtab_hdr->contents = (unsigned char *) local_syms;
7584 }
7585 }
7586
7587 /* Finally, adjust any global syms defined in the toc. */
7588 if (toc_inf.global_toc_syms)
7589 {
7590 toc_inf.toc = toc;
7591 toc_inf.skip = skip;
7592 toc_inf.global_toc_syms = FALSE;
7593 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
7594 &toc_inf);
7595 }
7596 }
7597
7598 if (local_syms != NULL
7599 && symtab_hdr->contents != (unsigned char *) local_syms)
7600 {
7601 if (!info->keep_memory)
7602 free (local_syms);
7603 else
7604 symtab_hdr->contents = (unsigned char *) local_syms;
7605 }
7606 free (skip);
7607 }
7608
7609 return TRUE;
7610 }
7611
7612 /* Allocate space in .plt, .got and associated reloc sections for
7613 dynamic relocs. */
7614
7615 static bfd_boolean
7616 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7617 {
7618 struct bfd_link_info *info;
7619 struct ppc_link_hash_table *htab;
7620 asection *s;
7621 struct ppc_link_hash_entry *eh;
7622 struct ppc_dyn_relocs *p;
7623 struct got_entry *gent;
7624
7625 if (h->root.type == bfd_link_hash_indirect)
7626 return TRUE;
7627
7628 if (h->root.type == bfd_link_hash_warning)
7629 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7630
7631 info = (struct bfd_link_info *) inf;
7632 htab = ppc_hash_table (info);
7633
7634 if (htab->elf.dynamic_sections_created
7635 && h->dynindx != -1
7636 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
7637 {
7638 struct plt_entry *pent;
7639 bfd_boolean doneone = FALSE;
7640 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
7641 if (pent->plt.refcount > 0)
7642 {
7643 /* If this is the first .plt entry, make room for the special
7644 first entry. */
7645 s = htab->plt;
7646 if (s->size == 0)
7647 s->size += PLT_INITIAL_ENTRY_SIZE;
7648
7649 pent->plt.offset = s->size;
7650
7651 /* Make room for this entry. */
7652 s->size += PLT_ENTRY_SIZE;
7653
7654 /* Make room for the .glink code. */
7655 s = htab->glink;
7656 if (s->size == 0)
7657 s->size += GLINK_CALL_STUB_SIZE;
7658 /* We need bigger stubs past index 32767. */
7659 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
7660 s->size += 4;
7661 s->size += 2*4;
7662
7663 /* We also need to make an entry in the .rela.plt section. */
7664 s = htab->relplt;
7665 s->size += sizeof (Elf64_External_Rela);
7666 doneone = TRUE;
7667 }
7668 else
7669 pent->plt.offset = (bfd_vma) -1;
7670 if (!doneone)
7671 {
7672 h->plt.plist = NULL;
7673 h->needs_plt = 0;
7674 }
7675 }
7676 else
7677 {
7678 h->plt.plist = NULL;
7679 h->needs_plt = 0;
7680 }
7681
7682 eh = (struct ppc_link_hash_entry *) h;
7683 /* Run through the TLS GD got entries first if we're changing them
7684 to TPREL. */
7685 if ((eh->tls_mask & TLS_TPRELGD) != 0)
7686 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7687 if (gent->got.refcount > 0
7688 && (gent->tls_type & TLS_GD) != 0)
7689 {
7690 /* This was a GD entry that has been converted to TPREL. If
7691 there happens to be a TPREL entry we can use that one. */
7692 struct got_entry *ent;
7693 for (ent = h->got.glist; ent != NULL; ent = ent->next)
7694 if (ent->got.refcount > 0
7695 && (ent->tls_type & TLS_TPREL) != 0
7696 && ent->addend == gent->addend
7697 && ent->owner == gent->owner)
7698 {
7699 gent->got.refcount = 0;
7700 break;
7701 }
7702
7703 /* If not, then we'll be using our own TPREL entry. */
7704 if (gent->got.refcount != 0)
7705 gent->tls_type = TLS_TLS | TLS_TPREL;
7706 }
7707
7708 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7709 if (gent->got.refcount > 0)
7710 {
7711 bfd_boolean dyn;
7712
7713 /* Make sure this symbol is output as a dynamic symbol.
7714 Undefined weak syms won't yet be marked as dynamic,
7715 nor will all TLS symbols. */
7716 if (h->dynindx == -1
7717 && !h->forced_local)
7718 {
7719 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7720 return FALSE;
7721 }
7722
7723 if ((gent->tls_type & TLS_LD) != 0
7724 && !h->def_dynamic)
7725 {
7726 ppc64_tlsld_got (gent->owner)->refcount += 1;
7727 gent->got.offset = (bfd_vma) -1;
7728 continue;
7729 }
7730
7731 if (!is_ppc64_elf (gent->owner))
7732 continue;
7733
7734 s = ppc64_elf_tdata (gent->owner)->got;
7735 gent->got.offset = s->size;
7736 s->size
7737 += (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)) ? 16 : 8;
7738 dyn = htab->elf.dynamic_sections_created;
7739 if ((info->shared
7740 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
7741 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7742 || h->root.type != bfd_link_hash_undefweak))
7743 ppc64_elf_tdata (gent->owner)->relgot->size
7744 += (gent->tls_type & eh->tls_mask & TLS_GD
7745 ? 2 * sizeof (Elf64_External_Rela)
7746 : sizeof (Elf64_External_Rela));
7747 }
7748 else
7749 gent->got.offset = (bfd_vma) -1;
7750
7751 if (eh->dyn_relocs == NULL)
7752 return TRUE;
7753
7754 /* In the shared -Bsymbolic case, discard space allocated for
7755 dynamic pc-relative relocs against symbols which turn out to be
7756 defined in regular objects. For the normal shared case, discard
7757 space for relocs that have become local due to symbol visibility
7758 changes. */
7759
7760 if (info->shared)
7761 {
7762 /* Relocs that use pc_count are those that appear on a call insn,
7763 or certain REL relocs (see MUST_BE_DYN_RELOC) that can be
7764 generated via assembly. We want calls to protected symbols to
7765 resolve directly to the function rather than going via the plt.
7766 If people want function pointer comparisons to work as expected
7767 then they should avoid writing weird assembly. */
7768 if (SYMBOL_CALLS_LOCAL (info, h))
7769 {
7770 struct ppc_dyn_relocs **pp;
7771
7772 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
7773 {
7774 p->count -= p->pc_count;
7775 p->pc_count = 0;
7776 if (p->count == 0)
7777 *pp = p->next;
7778 else
7779 pp = &p->next;
7780 }
7781 }
7782
7783 /* Also discard relocs on undefined weak syms with non-default
7784 visibility. */
7785 if (eh->dyn_relocs != NULL
7786 && h->root.type == bfd_link_hash_undefweak)
7787 {
7788 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
7789 eh->dyn_relocs = NULL;
7790
7791 /* Make sure this symbol is output as a dynamic symbol.
7792 Undefined weak syms won't yet be marked as dynamic. */
7793 else if (h->dynindx == -1
7794 && !h->forced_local)
7795 {
7796 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7797 return FALSE;
7798 }
7799 }
7800 }
7801 else if (ELIMINATE_COPY_RELOCS)
7802 {
7803 /* For the non-shared case, discard space for relocs against
7804 symbols which turn out to need copy relocs or are not
7805 dynamic. */
7806
7807 if (!h->non_got_ref
7808 && h->def_dynamic
7809 && !h->def_regular)
7810 {
7811 /* Make sure this symbol is output as a dynamic symbol.
7812 Undefined weak syms won't yet be marked as dynamic. */
7813 if (h->dynindx == -1
7814 && !h->forced_local)
7815 {
7816 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7817 return FALSE;
7818 }
7819
7820 /* If that succeeded, we know we'll be keeping all the
7821 relocs. */
7822 if (h->dynindx != -1)
7823 goto keep;
7824 }
7825
7826 eh->dyn_relocs = NULL;
7827
7828 keep: ;
7829 }
7830
7831 /* Finally, allocate space. */
7832 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7833 {
7834 asection *sreloc = elf_section_data (p->sec)->sreloc;
7835 sreloc->size += p->count * sizeof (Elf64_External_Rela);
7836 }
7837
7838 return TRUE;
7839 }
7840
7841 /* Find any dynamic relocs that apply to read-only sections. */
7842
7843 static bfd_boolean
7844 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7845 {
7846 struct ppc_link_hash_entry *eh;
7847 struct ppc_dyn_relocs *p;
7848
7849 if (h->root.type == bfd_link_hash_warning)
7850 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7851
7852 eh = (struct ppc_link_hash_entry *) h;
7853 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7854 {
7855 asection *s = p->sec->output_section;
7856
7857 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7858 {
7859 struct bfd_link_info *info = inf;
7860
7861 info->flags |= DF_TEXTREL;
7862
7863 /* Not an error, just cut short the traversal. */
7864 return FALSE;
7865 }
7866 }
7867 return TRUE;
7868 }
7869
7870 /* Set the sizes of the dynamic sections. */
7871
7872 static bfd_boolean
7873 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
7874 struct bfd_link_info *info)
7875 {
7876 struct ppc_link_hash_table *htab;
7877 bfd *dynobj;
7878 asection *s;
7879 bfd_boolean relocs;
7880 bfd *ibfd;
7881
7882 htab = ppc_hash_table (info);
7883 dynobj = htab->elf.dynobj;
7884 if (dynobj == NULL)
7885 abort ();
7886
7887 if (htab->elf.dynamic_sections_created)
7888 {
7889 /* Set the contents of the .interp section to the interpreter. */
7890 if (info->executable)
7891 {
7892 s = bfd_get_section_by_name (dynobj, ".interp");
7893 if (s == NULL)
7894 abort ();
7895 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
7896 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
7897 }
7898 }
7899
7900 /* Set up .got offsets for local syms, and space for local dynamic
7901 relocs. */
7902 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7903 {
7904 struct got_entry **lgot_ents;
7905 struct got_entry **end_lgot_ents;
7906 char *lgot_masks;
7907 bfd_size_type locsymcount;
7908 Elf_Internal_Shdr *symtab_hdr;
7909 asection *srel;
7910
7911 if (!is_ppc64_elf (ibfd))
7912 continue;
7913
7914 for (s = ibfd->sections; s != NULL; s = s->next)
7915 {
7916 struct ppc_dyn_relocs *p;
7917
7918 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
7919 {
7920 if (!bfd_is_abs_section (p->sec)
7921 && bfd_is_abs_section (p->sec->output_section))
7922 {
7923 /* Input section has been discarded, either because
7924 it is a copy of a linkonce section or due to
7925 linker script /DISCARD/, so we'll be discarding
7926 the relocs too. */
7927 }
7928 else if (p->count != 0)
7929 {
7930 srel = elf_section_data (p->sec)->sreloc;
7931 srel->size += p->count * sizeof (Elf64_External_Rela);
7932 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
7933 info->flags |= DF_TEXTREL;
7934 }
7935 }
7936 }
7937
7938 lgot_ents = elf_local_got_ents (ibfd);
7939 if (!lgot_ents)
7940 continue;
7941
7942 symtab_hdr = &elf_symtab_hdr (ibfd);
7943 locsymcount = symtab_hdr->sh_info;
7944 end_lgot_ents = lgot_ents + locsymcount;
7945 lgot_masks = (char *) end_lgot_ents;
7946 s = ppc64_elf_tdata (ibfd)->got;
7947 srel = ppc64_elf_tdata (ibfd)->relgot;
7948 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
7949 {
7950 struct got_entry *ent;
7951
7952 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
7953 if (ent->got.refcount > 0)
7954 {
7955 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
7956 {
7957 ppc64_tlsld_got (ibfd)->refcount += 1;
7958 ent->got.offset = (bfd_vma) -1;
7959 }
7960 else
7961 {
7962 ent->got.offset = s->size;
7963 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
7964 {
7965 s->size += 16;
7966 if (info->shared)
7967 srel->size += 2 * sizeof (Elf64_External_Rela);
7968 }
7969 else
7970 {
7971 s->size += 8;
7972 if (info->shared)
7973 srel->size += sizeof (Elf64_External_Rela);
7974 }
7975 }
7976 }
7977 else
7978 ent->got.offset = (bfd_vma) -1;
7979 }
7980 }
7981
7982 /* Allocate global sym .plt and .got entries, and space for global
7983 sym dynamic relocs. */
7984 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
7985
7986 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7987 {
7988 if (!is_ppc64_elf (ibfd))
7989 continue;
7990
7991 if (ppc64_tlsld_got (ibfd)->refcount > 0)
7992 {
7993 s = ppc64_elf_tdata (ibfd)->got;
7994 ppc64_tlsld_got (ibfd)->offset = s->size;
7995 s->size += 16;
7996 if (info->shared)
7997 {
7998 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
7999 srel->size += sizeof (Elf64_External_Rela);
8000 }
8001 }
8002 else
8003 ppc64_tlsld_got (ibfd)->offset = (bfd_vma) -1;
8004 }
8005
8006 /* We now have determined the sizes of the various dynamic sections.
8007 Allocate memory for them. */
8008 relocs = FALSE;
8009 for (s = dynobj->sections; s != NULL; s = s->next)
8010 {
8011 if ((s->flags & SEC_LINKER_CREATED) == 0)
8012 continue;
8013
8014 if (s == htab->brlt || s == htab->relbrlt)
8015 /* These haven't been allocated yet; don't strip. */
8016 continue;
8017 else if (s == htab->got
8018 || s == htab->plt
8019 || s == htab->glink
8020 || s == htab->dynbss)
8021 {
8022 /* Strip this section if we don't need it; see the
8023 comment below. */
8024 }
8025 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8026 {
8027 if (s->size != 0)
8028 {
8029 if (s != htab->relplt)
8030 relocs = TRUE;
8031
8032 /* We use the reloc_count field as a counter if we need
8033 to copy relocs into the output file. */
8034 s->reloc_count = 0;
8035 }
8036 }
8037 else
8038 {
8039 /* It's not one of our sections, so don't allocate space. */
8040 continue;
8041 }
8042
8043 if (s->size == 0)
8044 {
8045 /* If we don't need this section, strip it from the
8046 output file. This is mostly to handle .rela.bss and
8047 .rela.plt. We must create both sections in
8048 create_dynamic_sections, because they must be created
8049 before the linker maps input sections to output
8050 sections. The linker does that before
8051 adjust_dynamic_symbol is called, and it is that
8052 function which decides whether anything needs to go
8053 into these sections. */
8054 s->flags |= SEC_EXCLUDE;
8055 continue;
8056 }
8057
8058 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8059 continue;
8060
8061 /* Allocate memory for the section contents. We use bfd_zalloc
8062 here in case unused entries are not reclaimed before the
8063 section's contents are written out. This should not happen,
8064 but this way if it does we get a R_PPC64_NONE reloc in .rela
8065 sections instead of garbage.
8066 We also rely on the section contents being zero when writing
8067 the GOT. */
8068 s->contents = bfd_zalloc (dynobj, s->size);
8069 if (s->contents == NULL)
8070 return FALSE;
8071 }
8072
8073 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8074 {
8075 if (!is_ppc64_elf (ibfd))
8076 continue;
8077
8078 s = ppc64_elf_tdata (ibfd)->got;
8079 if (s != NULL && s != htab->got)
8080 {
8081 if (s->size == 0)
8082 s->flags |= SEC_EXCLUDE;
8083 else
8084 {
8085 s->contents = bfd_zalloc (ibfd, s->size);
8086 if (s->contents == NULL)
8087 return FALSE;
8088 }
8089 }
8090 s = ppc64_elf_tdata (ibfd)->relgot;
8091 if (s != NULL)
8092 {
8093 if (s->size == 0)
8094 s->flags |= SEC_EXCLUDE;
8095 else
8096 {
8097 s->contents = bfd_zalloc (ibfd, s->size);
8098 if (s->contents == NULL)
8099 return FALSE;
8100 relocs = TRUE;
8101 s->reloc_count = 0;
8102 }
8103 }
8104 }
8105
8106 if (htab->elf.dynamic_sections_created)
8107 {
8108 /* Add some entries to the .dynamic section. We fill in the
8109 values later, in ppc64_elf_finish_dynamic_sections, but we
8110 must add the entries now so that we get the correct size for
8111 the .dynamic section. The DT_DEBUG entry is filled in by the
8112 dynamic linker and used by the debugger. */
8113 #define add_dynamic_entry(TAG, VAL) \
8114 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8115
8116 if (info->executable)
8117 {
8118 if (!add_dynamic_entry (DT_DEBUG, 0))
8119 return FALSE;
8120 }
8121
8122 if (htab->plt != NULL && htab->plt->size != 0)
8123 {
8124 if (!add_dynamic_entry (DT_PLTGOT, 0)
8125 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8126 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8127 || !add_dynamic_entry (DT_JMPREL, 0)
8128 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
8129 return FALSE;
8130 }
8131
8132 if (NO_OPD_RELOCS)
8133 {
8134 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
8135 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
8136 return FALSE;
8137 }
8138
8139 if (relocs)
8140 {
8141 if (!add_dynamic_entry (DT_RELA, 0)
8142 || !add_dynamic_entry (DT_RELASZ, 0)
8143 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
8144 return FALSE;
8145
8146 /* If any dynamic relocs apply to a read-only section,
8147 then we need a DT_TEXTREL entry. */
8148 if ((info->flags & DF_TEXTREL) == 0)
8149 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
8150
8151 if ((info->flags & DF_TEXTREL) != 0)
8152 {
8153 if (!add_dynamic_entry (DT_TEXTREL, 0))
8154 return FALSE;
8155 }
8156 }
8157 }
8158 #undef add_dynamic_entry
8159
8160 return TRUE;
8161 }
8162
8163 /* Determine the type of stub needed, if any, for a call. */
8164
8165 static inline enum ppc_stub_type
8166 ppc_type_of_stub (asection *input_sec,
8167 const Elf_Internal_Rela *rel,
8168 struct ppc_link_hash_entry **hash,
8169 bfd_vma destination)
8170 {
8171 struct ppc_link_hash_entry *h = *hash;
8172 bfd_vma location;
8173 bfd_vma branch_offset;
8174 bfd_vma max_branch_offset;
8175 enum elf_ppc64_reloc_type r_type;
8176
8177 if (h != NULL)
8178 {
8179 struct ppc_link_hash_entry *fdh = h;
8180 if (fdh->oh != NULL
8181 && fdh->oh->is_func_descriptor)
8182 fdh = fdh->oh;
8183
8184 if (fdh->elf.dynindx != -1)
8185 {
8186 struct plt_entry *ent;
8187
8188 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
8189 if (ent->addend == rel->r_addend
8190 && ent->plt.offset != (bfd_vma) -1)
8191 {
8192 *hash = fdh;
8193 return ppc_stub_plt_call;
8194 }
8195 }
8196
8197 /* Here, we know we don't have a plt entry. If we don't have a
8198 either a defined function descriptor or a defined entry symbol
8199 in a regular object file, then it is pointless trying to make
8200 any other type of stub. */
8201 if (!((fdh->elf.root.type == bfd_link_hash_defined
8202 || fdh->elf.root.type == bfd_link_hash_defweak)
8203 && fdh->elf.root.u.def.section->output_section != NULL)
8204 && !((h->elf.root.type == bfd_link_hash_defined
8205 || h->elf.root.type == bfd_link_hash_defweak)
8206 && h->elf.root.u.def.section->output_section != NULL))
8207 return ppc_stub_none;
8208 }
8209
8210 /* Determine where the call point is. */
8211 location = (input_sec->output_offset
8212 + input_sec->output_section->vma
8213 + rel->r_offset);
8214
8215 branch_offset = destination - location;
8216 r_type = ELF64_R_TYPE (rel->r_info);
8217
8218 /* Determine if a long branch stub is needed. */
8219 max_branch_offset = 1 << 25;
8220 if (r_type != R_PPC64_REL24)
8221 max_branch_offset = 1 << 15;
8222
8223 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
8224 /* We need a stub. Figure out whether a long_branch or plt_branch
8225 is needed later. */
8226 return ppc_stub_long_branch;
8227
8228 return ppc_stub_none;
8229 }
8230
8231 /* Build a .plt call stub. */
8232
8233 static inline bfd_byte *
8234 build_plt_stub (bfd *obfd, bfd_byte *p, int offset, Elf_Internal_Rela *r)
8235 {
8236 #define PPC_LO(v) ((v) & 0xffff)
8237 #define PPC_HI(v) (((v) >> 16) & 0xffff)
8238 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
8239
8240 if (PPC_HA (offset) != 0)
8241 {
8242 if (r != NULL)
8243 {
8244 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
8245 r[1].r_offset = r[0].r_offset + 8;
8246 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
8247 r[1].r_addend = r[0].r_addend;
8248 if (PPC_HA (offset + 16) != PPC_HA (offset))
8249 {
8250 r[2].r_offset = r[1].r_offset + 4;
8251 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
8252 r[2].r_addend = r[0].r_addend;
8253 }
8254 else
8255 {
8256 r[2].r_offset = r[1].r_offset + 8;
8257 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
8258 r[2].r_addend = r[0].r_addend + 8;
8259 r[3].r_offset = r[2].r_offset + 4;
8260 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
8261 r[3].r_addend = r[0].r_addend + 16;
8262 }
8263 }
8264 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
8265 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
8266 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
8267 if (PPC_HA (offset + 16) != PPC_HA (offset))
8268 {
8269 bfd_put_32 (obfd, ADDI_R12_R12 | PPC_LO (offset), p), p += 4;
8270 offset = 0;
8271 }
8272 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
8273 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset + 8), p), p += 4;
8274 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset + 16), p), p += 4;
8275 bfd_put_32 (obfd, BCTR, p), p += 4;
8276 }
8277 else
8278 {
8279 if (r != NULL)
8280 {
8281 r[0].r_offset += 4;
8282 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
8283 if (PPC_HA (offset + 16) != PPC_HA (offset))
8284 {
8285 r[1].r_offset = r[0].r_offset + 4;
8286 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
8287 r[1].r_addend = r[0].r_addend;
8288 }
8289 else
8290 {
8291 r[1].r_offset = r[0].r_offset + 8;
8292 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
8293 r[1].r_addend = r[0].r_addend + 16;
8294 r[2].r_offset = r[1].r_offset + 4;
8295 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
8296 r[2].r_addend = r[0].r_addend + 8;
8297 }
8298 }
8299 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
8300 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset), p), p += 4;
8301 if (PPC_HA (offset + 16) != PPC_HA (offset))
8302 {
8303 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
8304 offset = 0;
8305 }
8306 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
8307 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
8308 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
8309 bfd_put_32 (obfd, BCTR, p), p += 4;
8310 }
8311 return p;
8312 }
8313
8314 static Elf_Internal_Rela *
8315 get_relocs (asection *sec, int count)
8316 {
8317 Elf_Internal_Rela *relocs;
8318 struct bfd_elf_section_data *elfsec_data;
8319
8320 elfsec_data = elf_section_data (sec);
8321 relocs = elfsec_data->relocs;
8322 if (relocs == NULL)
8323 {
8324 bfd_size_type relsize;
8325 relsize = sec->reloc_count * sizeof (*relocs);
8326 relocs = bfd_alloc (sec->owner, relsize);
8327 if (relocs == NULL)
8328 return NULL;
8329 elfsec_data->relocs = relocs;
8330 elfsec_data->rel_hdr.sh_size = (sec->reloc_count
8331 * sizeof (Elf64_External_Rela));
8332 elfsec_data->rel_hdr.sh_entsize = sizeof (Elf64_External_Rela);
8333 sec->reloc_count = 0;
8334 }
8335 relocs += sec->reloc_count;
8336 sec->reloc_count += count;
8337 return relocs;
8338 }
8339
8340 static bfd_boolean
8341 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8342 {
8343 struct ppc_stub_hash_entry *stub_entry;
8344 struct ppc_branch_hash_entry *br_entry;
8345 struct bfd_link_info *info;
8346 struct ppc_link_hash_table *htab;
8347 bfd_byte *loc;
8348 bfd_byte *p;
8349 struct plt_entry *ent;
8350 bfd_vma dest, off;
8351 int size;
8352 Elf_Internal_Rela *r;
8353
8354 /* Massage our args to the form they really have. */
8355 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
8356 info = in_arg;
8357
8358 htab = ppc_hash_table (info);
8359
8360 /* Make a note of the offset within the stubs for this entry. */
8361 stub_entry->stub_offset = stub_entry->stub_sec->size;
8362 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
8363
8364 htab->stub_count[stub_entry->stub_type - 1] += 1;
8365 switch (stub_entry->stub_type)
8366 {
8367 case ppc_stub_long_branch:
8368 case ppc_stub_long_branch_r2off:
8369 /* Branches are relative. This is where we are going to. */
8370 off = dest = (stub_entry->target_value
8371 + stub_entry->target_section->output_offset
8372 + stub_entry->target_section->output_section->vma);
8373
8374 /* And this is where we are coming from. */
8375 off -= (stub_entry->stub_offset
8376 + stub_entry->stub_sec->output_offset
8377 + stub_entry->stub_sec->output_section->vma);
8378
8379 size = 4;
8380 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
8381 {
8382 bfd_vma r2off;
8383
8384 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8385 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8386 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
8387 loc += 4;
8388 size = 12;
8389 if (PPC_HA (r2off) != 0)
8390 {
8391 size = 16;
8392 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
8393 loc += 4;
8394 }
8395 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
8396 loc += 4;
8397 off -= size - 4;
8398 }
8399 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
8400
8401 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
8402 {
8403 (*_bfd_error_handler) (_("long branch stub `%s' offset overflow"),
8404 stub_entry->root.string);
8405 htab->stub_error = TRUE;
8406 return FALSE;
8407 }
8408
8409 if (info->emitrelocations)
8410 {
8411 r = get_relocs (stub_entry->stub_sec, 1);
8412 if (r == NULL)
8413 return FALSE;
8414 r->r_offset = loc - stub_entry->stub_sec->contents;
8415 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
8416 r->r_addend = dest;
8417 if (stub_entry->h != NULL)
8418 {
8419 struct elf_link_hash_entry **hashes;
8420 unsigned long symndx;
8421 struct ppc_link_hash_entry *h;
8422
8423 hashes = elf_sym_hashes (htab->stub_bfd);
8424 if (hashes == NULL)
8425 {
8426 bfd_size_type hsize;
8427
8428 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
8429 hashes = bfd_zalloc (htab->stub_bfd, hsize);
8430 if (hashes == NULL)
8431 return FALSE;
8432 elf_sym_hashes (htab->stub_bfd) = hashes;
8433 htab->stub_globals = 1;
8434 }
8435 symndx = htab->stub_globals++;
8436 h = stub_entry->h;
8437 hashes[symndx] = &h->elf;
8438 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
8439 if (h->oh != NULL && h->oh->is_func)
8440 h = h->oh;
8441 if (h->elf.root.u.def.section != stub_entry->target_section)
8442 /* H is an opd symbol. The addend must be zero. */
8443 r->r_addend = 0;
8444 else
8445 {
8446 off = (h->elf.root.u.def.value
8447 + h->elf.root.u.def.section->output_offset
8448 + h->elf.root.u.def.section->output_section->vma);
8449 r->r_addend -= off;
8450 }
8451 }
8452 }
8453 break;
8454
8455 case ppc_stub_plt_branch:
8456 case ppc_stub_plt_branch_r2off:
8457 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8458 stub_entry->root.string + 9,
8459 FALSE, FALSE);
8460 if (br_entry == NULL)
8461 {
8462 (*_bfd_error_handler) (_("can't find branch stub `%s'"),
8463 stub_entry->root.string);
8464 htab->stub_error = TRUE;
8465 return FALSE;
8466 }
8467
8468 dest = (stub_entry->target_value
8469 + stub_entry->target_section->output_offset
8470 + stub_entry->target_section->output_section->vma);
8471
8472 bfd_put_64 (htab->brlt->owner, dest,
8473 htab->brlt->contents + br_entry->offset);
8474
8475 if (br_entry->iter == htab->stub_iteration)
8476 {
8477 br_entry->iter = 0;
8478
8479 if (htab->relbrlt != NULL)
8480 {
8481 /* Create a reloc for the branch lookup table entry. */
8482 Elf_Internal_Rela rela;
8483 bfd_byte *rl;
8484
8485 rela.r_offset = (br_entry->offset
8486 + htab->brlt->output_offset
8487 + htab->brlt->output_section->vma);
8488 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
8489 rela.r_addend = dest;
8490
8491 rl = htab->relbrlt->contents;
8492 rl += (htab->relbrlt->reloc_count++
8493 * sizeof (Elf64_External_Rela));
8494 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
8495 }
8496 else if (info->emitrelocations)
8497 {
8498 r = get_relocs (htab->brlt, 1);
8499 if (r == NULL)
8500 return FALSE;
8501 /* brlt, being SEC_LINKER_CREATED does not go through the
8502 normal reloc processing. Symbols and offsets are not
8503 translated from input file to output file form, so
8504 set up the offset per the output file. */
8505 r->r_offset = (br_entry->offset
8506 + htab->brlt->output_offset
8507 + htab->brlt->output_section->vma);
8508 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
8509 r->r_addend = dest;
8510 }
8511 }
8512
8513 dest = (br_entry->offset
8514 + htab->brlt->output_offset
8515 + htab->brlt->output_section->vma);
8516
8517 off = (dest
8518 - elf_gp (htab->brlt->output_section->owner)
8519 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8520
8521 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8522 {
8523 (*_bfd_error_handler)
8524 (_("linkage table error against `%s'"),
8525 stub_entry->root.string);
8526 bfd_set_error (bfd_error_bad_value);
8527 htab->stub_error = TRUE;
8528 return FALSE;
8529 }
8530
8531 if (info->emitrelocations)
8532 {
8533 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
8534 if (r == NULL)
8535 return FALSE;
8536 r[0].r_offset = loc - stub_entry->stub_sec->contents;
8537 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
8538 r[0].r_offset += 4;
8539 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
8540 r[0].r_addend = dest;
8541 if (PPC_HA (off) != 0)
8542 {
8543 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
8544 r[1].r_offset = r[0].r_offset + 4;
8545 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
8546 r[1].r_addend = r[0].r_addend;
8547 }
8548 }
8549
8550 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
8551 {
8552 if (PPC_HA (off) != 0)
8553 {
8554 size = 16;
8555 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
8556 loc += 4;
8557 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
8558 }
8559 else
8560 {
8561 size = 12;
8562 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
8563 }
8564 }
8565 else
8566 {
8567 bfd_vma r2off;
8568
8569 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8570 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8571 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
8572 loc += 4;
8573 size = 20;
8574 if (PPC_HA (off) != 0)
8575 {
8576 size += 4;
8577 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
8578 loc += 4;
8579 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
8580 loc += 4;
8581 }
8582 else
8583 {
8584 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
8585 loc += 4;
8586 }
8587
8588 if (PPC_HA (r2off) != 0)
8589 {
8590 size += 4;
8591 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
8592 loc += 4;
8593 }
8594 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
8595 }
8596 loc += 4;
8597 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
8598 loc += 4;
8599 bfd_put_32 (htab->stub_bfd, BCTR, loc);
8600 break;
8601
8602 case ppc_stub_plt_call:
8603 /* Do the best we can for shared libraries built without
8604 exporting ".foo" for each "foo". This can happen when symbol
8605 versioning scripts strip all bar a subset of symbols. */
8606 if (stub_entry->h->oh != NULL
8607 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defined
8608 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defweak)
8609 {
8610 /* Point the symbol at the stub. There may be multiple stubs,
8611 we don't really care; The main thing is to make this sym
8612 defined somewhere. Maybe defining the symbol in the stub
8613 section is a silly idea. If we didn't do this, htab->top_id
8614 could disappear. */
8615 stub_entry->h->oh->elf.root.type = bfd_link_hash_defined;
8616 stub_entry->h->oh->elf.root.u.def.section = stub_entry->stub_sec;
8617 stub_entry->h->oh->elf.root.u.def.value = stub_entry->stub_offset;
8618 }
8619
8620 /* Now build the stub. */
8621 dest = (bfd_vma) -1;
8622 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8623 if (ent->addend == stub_entry->addend)
8624 {
8625 dest = ent->plt.offset;
8626 break;
8627 }
8628 if (dest >= (bfd_vma) -2)
8629 abort ();
8630
8631 dest &= ~ (bfd_vma) 1;
8632 dest += (htab->plt->output_offset
8633 + htab->plt->output_section->vma);
8634
8635 off = (dest
8636 - elf_gp (htab->plt->output_section->owner)
8637 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8638
8639 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8640 {
8641 (*_bfd_error_handler)
8642 (_("linkage table error against `%s'"),
8643 stub_entry->h->elf.root.root.string);
8644 bfd_set_error (bfd_error_bad_value);
8645 htab->stub_error = TRUE;
8646 return FALSE;
8647 }
8648
8649 r = NULL;
8650 if (info->emitrelocations)
8651 {
8652 r = get_relocs (stub_entry->stub_sec,
8653 (2 + (PPC_HA (off) != 0)
8654 + (PPC_HA (off + 16) == PPC_HA (off))));
8655 if (r == NULL)
8656 return FALSE;
8657 r[0].r_offset = loc - stub_entry->stub_sec->contents;
8658 r[0].r_addend = dest;
8659 }
8660 p = build_plt_stub (htab->stub_bfd, loc, off, r);
8661 size = p - loc;
8662 break;
8663
8664 default:
8665 BFD_FAIL ();
8666 return FALSE;
8667 }
8668
8669 stub_entry->stub_sec->size += size;
8670
8671 if (htab->emit_stub_syms)
8672 {
8673 struct elf_link_hash_entry *h;
8674 size_t len1, len2;
8675 char *name;
8676 const char *const stub_str[] = { "long_branch",
8677 "long_branch_r2off",
8678 "plt_branch",
8679 "plt_branch_r2off",
8680 "plt_call" };
8681
8682 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
8683 len2 = strlen (stub_entry->root.string);
8684 name = bfd_malloc (len1 + len2 + 2);
8685 if (name == NULL)
8686 return FALSE;
8687 memcpy (name, stub_entry->root.string, 9);
8688 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
8689 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
8690 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
8691 if (h == NULL)
8692 return FALSE;
8693 if (h->root.type == bfd_link_hash_new)
8694 {
8695 h->root.type = bfd_link_hash_defined;
8696 h->root.u.def.section = stub_entry->stub_sec;
8697 h->root.u.def.value = stub_entry->stub_offset;
8698 h->ref_regular = 1;
8699 h->def_regular = 1;
8700 h->ref_regular_nonweak = 1;
8701 h->forced_local = 1;
8702 h->non_elf = 0;
8703 }
8704 }
8705
8706 return TRUE;
8707 }
8708
8709 /* As above, but don't actually build the stub. Just bump offset so
8710 we know stub section sizes, and select plt_branch stubs where
8711 long_branch stubs won't do. */
8712
8713 static bfd_boolean
8714 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8715 {
8716 struct ppc_stub_hash_entry *stub_entry;
8717 struct bfd_link_info *info;
8718 struct ppc_link_hash_table *htab;
8719 bfd_vma off;
8720 int size;
8721
8722 /* Massage our args to the form they really have. */
8723 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
8724 info = in_arg;
8725
8726 htab = ppc_hash_table (info);
8727
8728 if (stub_entry->stub_type == ppc_stub_plt_call)
8729 {
8730 struct plt_entry *ent;
8731 off = (bfd_vma) -1;
8732 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8733 if (ent->addend == stub_entry->addend)
8734 {
8735 off = ent->plt.offset & ~(bfd_vma) 1;
8736 break;
8737 }
8738 if (off >= (bfd_vma) -2)
8739 abort ();
8740 off += (htab->plt->output_offset
8741 + htab->plt->output_section->vma
8742 - elf_gp (htab->plt->output_section->owner)
8743 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8744
8745 size = PLT_CALL_STUB_SIZE;
8746 if (PPC_HA (off) == 0)
8747 size -= 4;
8748 if (PPC_HA (off + 16) != PPC_HA (off))
8749 size += 4;
8750 if (info->emitrelocations)
8751 {
8752 stub_entry->stub_sec->reloc_count
8753 += 2 + (PPC_HA (off) != 0) + (PPC_HA (off + 16) == PPC_HA (off));
8754 stub_entry->stub_sec->flags |= SEC_RELOC;
8755 }
8756 }
8757 else
8758 {
8759 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
8760 variants. */
8761 bfd_vma r2off = 0;
8762
8763 off = (stub_entry->target_value
8764 + stub_entry->target_section->output_offset
8765 + stub_entry->target_section->output_section->vma);
8766 off -= (stub_entry->stub_sec->size
8767 + stub_entry->stub_sec->output_offset
8768 + stub_entry->stub_sec->output_section->vma);
8769
8770 /* Reset the stub type from the plt variant in case we now
8771 can reach with a shorter stub. */
8772 if (stub_entry->stub_type >= ppc_stub_plt_branch)
8773 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
8774
8775 size = 4;
8776 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
8777 {
8778 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8779 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8780 size = 12;
8781 if (PPC_HA (r2off) != 0)
8782 size = 16;
8783 off -= size - 4;
8784 }
8785
8786 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
8787 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
8788 {
8789 struct ppc_branch_hash_entry *br_entry;
8790
8791 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8792 stub_entry->root.string + 9,
8793 TRUE, FALSE);
8794 if (br_entry == NULL)
8795 {
8796 (*_bfd_error_handler) (_("can't build branch stub `%s'"),
8797 stub_entry->root.string);
8798 htab->stub_error = TRUE;
8799 return FALSE;
8800 }
8801
8802 if (br_entry->iter != htab->stub_iteration)
8803 {
8804 br_entry->iter = htab->stub_iteration;
8805 br_entry->offset = htab->brlt->size;
8806 htab->brlt->size += 8;
8807
8808 if (htab->relbrlt != NULL)
8809 htab->relbrlt->size += sizeof (Elf64_External_Rela);
8810 else if (info->emitrelocations)
8811 {
8812 htab->brlt->reloc_count += 1;
8813 htab->brlt->flags |= SEC_RELOC;
8814 }
8815 }
8816
8817 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
8818 off = (br_entry->offset
8819 + htab->brlt->output_offset
8820 + htab->brlt->output_section->vma
8821 - elf_gp (htab->brlt->output_section->owner)
8822 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8823
8824 if (info->emitrelocations)
8825 {
8826 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
8827 stub_entry->stub_sec->flags |= SEC_RELOC;
8828 }
8829
8830 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
8831 {
8832 size = 12;
8833 if (PPC_HA (off) != 0)
8834 size = 16;
8835 }
8836 else
8837 {
8838 size = 20;
8839 if (PPC_HA (off) != 0)
8840 size += 4;
8841
8842 if (PPC_HA (r2off) != 0)
8843 size += 4;
8844 }
8845 }
8846 else if (info->emitrelocations)
8847 {
8848 stub_entry->stub_sec->reloc_count += 1;
8849 stub_entry->stub_sec->flags |= SEC_RELOC;
8850 }
8851 }
8852
8853 stub_entry->stub_sec->size += size;
8854 return TRUE;
8855 }
8856
8857 /* Set up various things so that we can make a list of input sections
8858 for each output section included in the link. Returns -1 on error,
8859 0 when no stubs will be needed, and 1 on success. */
8860
8861 int
8862 ppc64_elf_setup_section_lists (bfd *output_bfd,
8863 struct bfd_link_info *info,
8864 int no_multi_toc)
8865 {
8866 bfd *input_bfd;
8867 int top_id, top_index, id;
8868 asection *section;
8869 asection **input_list;
8870 bfd_size_type amt;
8871 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8872
8873 htab->no_multi_toc = no_multi_toc;
8874
8875 if (htab->brlt == NULL)
8876 return 0;
8877
8878 /* Find the top input section id. */
8879 for (input_bfd = info->input_bfds, top_id = 3;
8880 input_bfd != NULL;
8881 input_bfd = input_bfd->link_next)
8882 {
8883 for (section = input_bfd->sections;
8884 section != NULL;
8885 section = section->next)
8886 {
8887 if (top_id < section->id)
8888 top_id = section->id;
8889 }
8890 }
8891
8892 htab->top_id = top_id;
8893 amt = sizeof (struct map_stub) * (top_id + 1);
8894 htab->stub_group = bfd_zmalloc (amt);
8895 if (htab->stub_group == NULL)
8896 return -1;
8897
8898 /* Set toc_off for com, und, abs and ind sections. */
8899 for (id = 0; id < 3; id++)
8900 htab->stub_group[id].toc_off = TOC_BASE_OFF;
8901
8902 elf_gp (output_bfd) = htab->toc_curr = ppc64_elf_toc (output_bfd);
8903
8904 /* We can't use output_bfd->section_count here to find the top output
8905 section index as some sections may have been removed, and
8906 strip_excluded_output_sections doesn't renumber the indices. */
8907 for (section = output_bfd->sections, top_index = 0;
8908 section != NULL;
8909 section = section->next)
8910 {
8911 if (top_index < section->index)
8912 top_index = section->index;
8913 }
8914
8915 htab->top_index = top_index;
8916 amt = sizeof (asection *) * (top_index + 1);
8917 input_list = bfd_zmalloc (amt);
8918 htab->input_list = input_list;
8919 if (input_list == NULL)
8920 return -1;
8921
8922 return 1;
8923 }
8924
8925 /* The linker repeatedly calls this function for each TOC input section
8926 and linker generated GOT section. Group input bfds such that the toc
8927 within a group is less than 64k in size. Will break with cute linker
8928 scripts that play games with dot in the output toc section. */
8929
8930 void
8931 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
8932 {
8933 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8934
8935 if (!htab->no_multi_toc)
8936 {
8937 bfd_vma addr = isec->output_offset + isec->output_section->vma;
8938 bfd_vma off = addr - htab->toc_curr;
8939
8940 if (off + isec->size > 0x10000)
8941 htab->toc_curr = addr;
8942
8943 elf_gp (isec->owner) = (htab->toc_curr
8944 - elf_gp (isec->output_section->owner)
8945 + TOC_BASE_OFF);
8946 }
8947 }
8948
8949 /* Called after the last call to the above function. */
8950
8951 void
8952 ppc64_elf_reinit_toc (bfd *output_bfd, struct bfd_link_info *info)
8953 {
8954 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8955
8956 htab->multi_toc_needed = htab->toc_curr != elf_gp (output_bfd);
8957
8958 /* toc_curr tracks the TOC offset used for code sections below in
8959 ppc64_elf_next_input_section. Start off at 0x8000. */
8960 htab->toc_curr = TOC_BASE_OFF;
8961 }
8962
8963 /* No toc references were found in ISEC. If the code in ISEC makes no
8964 calls, then there's no need to use toc adjusting stubs when branching
8965 into ISEC. Actually, indirect calls from ISEC are OK as they will
8966 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
8967 needed, and 2 if a cyclical call-graph was found but no other reason
8968 for a stub was detected. If called from the top level, a return of
8969 2 means the same as a return of 0. */
8970
8971 static int
8972 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
8973 {
8974 Elf_Internal_Rela *relstart, *rel;
8975 Elf_Internal_Sym *local_syms;
8976 int ret;
8977 struct ppc_link_hash_table *htab;
8978
8979 /* We know none of our code bearing sections will need toc stubs. */
8980 if ((isec->flags & SEC_LINKER_CREATED) != 0)
8981 return 0;
8982
8983 if (isec->size == 0)
8984 return 0;
8985
8986 if (isec->output_section == NULL)
8987 return 0;
8988
8989 if (isec->reloc_count == 0)
8990 return 0;
8991
8992 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
8993 info->keep_memory);
8994 if (relstart == NULL)
8995 return -1;
8996
8997 /* Look for branches to outside of this section. */
8998 local_syms = NULL;
8999 ret = 0;
9000 htab = ppc_hash_table (info);
9001 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
9002 {
9003 enum elf_ppc64_reloc_type r_type;
9004 unsigned long r_symndx;
9005 struct elf_link_hash_entry *h;
9006 Elf_Internal_Sym *sym;
9007 asection *sym_sec;
9008 struct _opd_sec_data *opd;
9009 bfd_vma sym_value;
9010 bfd_vma dest;
9011
9012 r_type = ELF64_R_TYPE (rel->r_info);
9013 if (r_type != R_PPC64_REL24
9014 && r_type != R_PPC64_REL14
9015 && r_type != R_PPC64_REL14_BRTAKEN
9016 && r_type != R_PPC64_REL14_BRNTAKEN)
9017 continue;
9018
9019 r_symndx = ELF64_R_SYM (rel->r_info);
9020 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
9021 isec->owner))
9022 {
9023 ret = -1;
9024 break;
9025 }
9026
9027 /* Calls to dynamic lib functions go through a plt call stub
9028 that uses r2. Branches to undefined symbols might be a call
9029 using old-style dot symbols that can be satisfied by a plt
9030 call into a new-style dynamic library. */
9031 if (sym_sec == NULL)
9032 {
9033 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9034 if (eh != NULL
9035 && eh->oh != NULL
9036 && eh->oh->elf.plt.plist != NULL)
9037 {
9038 ret = 1;
9039 break;
9040 }
9041
9042 /* Ignore other undefined symbols. */
9043 continue;
9044 }
9045
9046 /* Assume branches to other sections not included in the link need
9047 stubs too, to cover -R and absolute syms. */
9048 if (sym_sec->output_section == NULL)
9049 {
9050 ret = 1;
9051 break;
9052 }
9053
9054 if (h == NULL)
9055 sym_value = sym->st_value;
9056 else
9057 {
9058 if (h->root.type != bfd_link_hash_defined
9059 && h->root.type != bfd_link_hash_defweak)
9060 abort ();
9061 sym_value = h->root.u.def.value;
9062 }
9063 sym_value += rel->r_addend;
9064
9065 /* If this branch reloc uses an opd sym, find the code section. */
9066 opd = get_opd_info (sym_sec);
9067 if (opd != NULL)
9068 {
9069 if (h == NULL && opd->adjust != NULL)
9070 {
9071 long adjust;
9072
9073 adjust = opd->adjust[sym->st_value / 8];
9074 if (adjust == -1)
9075 /* Assume deleted functions won't ever be called. */
9076 continue;
9077 sym_value += adjust;
9078 }
9079
9080 dest = opd_entry_value (sym_sec, sym_value, &sym_sec, NULL);
9081 if (dest == (bfd_vma) -1)
9082 continue;
9083 }
9084 else
9085 dest = (sym_value
9086 + sym_sec->output_offset
9087 + sym_sec->output_section->vma);
9088
9089 /* Ignore branch to self. */
9090 if (sym_sec == isec)
9091 continue;
9092
9093 /* If the called function uses the toc, we need a stub. */
9094 if (sym_sec->has_toc_reloc
9095 || sym_sec->makes_toc_func_call)
9096 {
9097 ret = 1;
9098 break;
9099 }
9100
9101 /* Assume any branch that needs a long branch stub might in fact
9102 need a plt_branch stub. A plt_branch stub uses r2. */
9103 else if (dest - (isec->output_offset
9104 + isec->output_section->vma
9105 + rel->r_offset) + (1 << 25) >= (2 << 25))
9106 {
9107 ret = 1;
9108 break;
9109 }
9110
9111 /* If calling back to a section in the process of being tested, we
9112 can't say for sure that no toc adjusting stubs are needed, so
9113 don't return zero. */
9114 else if (sym_sec->call_check_in_progress)
9115 ret = 2;
9116
9117 /* Branches to another section that itself doesn't have any TOC
9118 references are OK. Recursively call ourselves to check. */
9119 else if (sym_sec->id <= htab->top_id
9120 && htab->stub_group[sym_sec->id].toc_off == 0)
9121 {
9122 int recur;
9123
9124 /* Mark current section as indeterminate, so that other
9125 sections that call back to current won't be marked as
9126 known. */
9127 isec->call_check_in_progress = 1;
9128 recur = toc_adjusting_stub_needed (info, sym_sec);
9129 isec->call_check_in_progress = 0;
9130
9131 if (recur < 0)
9132 {
9133 /* An error. Exit. */
9134 ret = -1;
9135 break;
9136 }
9137 else if (recur <= 1)
9138 {
9139 /* Known result. Mark as checked and set section flag. */
9140 htab->stub_group[sym_sec->id].toc_off = 1;
9141 if (recur != 0)
9142 {
9143 sym_sec->makes_toc_func_call = 1;
9144 ret = 1;
9145 break;
9146 }
9147 }
9148 else
9149 {
9150 /* Unknown result. Continue checking. */
9151 ret = 2;
9152 }
9153 }
9154 }
9155
9156 if (local_syms != NULL
9157 && (elf_symtab_hdr (isec->owner).contents != (unsigned char *) local_syms))
9158 free (local_syms);
9159 if (elf_section_data (isec)->relocs != relstart)
9160 free (relstart);
9161
9162 return ret;
9163 }
9164
9165 /* The linker repeatedly calls this function for each input section,
9166 in the order that input sections are linked into output sections.
9167 Build lists of input sections to determine groupings between which
9168 we may insert linker stubs. */
9169
9170 bfd_boolean
9171 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
9172 {
9173 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9174
9175 if ((isec->output_section->flags & SEC_CODE) != 0
9176 && isec->output_section->index <= htab->top_index)
9177 {
9178 asection **list = htab->input_list + isec->output_section->index;
9179 /* Steal the link_sec pointer for our list. */
9180 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
9181 /* This happens to make the list in reverse order,
9182 which is what we want. */
9183 PREV_SEC (isec) = *list;
9184 *list = isec;
9185 }
9186
9187 if (htab->multi_toc_needed)
9188 {
9189 /* If a code section has a function that uses the TOC then we need
9190 to use the right TOC (obviously). Also, make sure that .opd gets
9191 the correct TOC value for R_PPC64_TOC relocs that don't have or
9192 can't find their function symbol (shouldn't ever happen now).
9193 Also specially treat .fixup for the linux kernel. .fixup
9194 contains branches, but only back to the function that hit an
9195 exception. */
9196 if (isec->has_toc_reloc
9197 || (isec->flags & SEC_CODE) == 0
9198 || strcmp (isec->name, ".fixup") == 0)
9199 {
9200 if (elf_gp (isec->owner) != 0)
9201 htab->toc_curr = elf_gp (isec->owner);
9202 }
9203 else if (htab->stub_group[isec->id].toc_off == 0)
9204 {
9205 int ret = toc_adjusting_stub_needed (info, isec);
9206 if (ret < 0)
9207 return FALSE;
9208 else
9209 isec->makes_toc_func_call = ret & 1;
9210 }
9211 }
9212
9213 /* Functions that don't use the TOC can belong in any TOC group.
9214 Use the last TOC base. This happens to make _init and _fini
9215 pasting work. */
9216 htab->stub_group[isec->id].toc_off = htab->toc_curr;
9217 return TRUE;
9218 }
9219
9220 /* See whether we can group stub sections together. Grouping stub
9221 sections may result in fewer stubs. More importantly, we need to
9222 put all .init* and .fini* stubs at the beginning of the .init or
9223 .fini output sections respectively, because glibc splits the
9224 _init and _fini functions into multiple parts. Putting a stub in
9225 the middle of a function is not a good idea. */
9226
9227 static void
9228 group_sections (struct ppc_link_hash_table *htab,
9229 bfd_size_type stub_group_size,
9230 bfd_boolean stubs_always_before_branch)
9231 {
9232 asection **list;
9233 bfd_size_type stub14_group_size;
9234 bfd_boolean suppress_size_errors;
9235
9236 suppress_size_errors = FALSE;
9237 stub14_group_size = stub_group_size;
9238 if (stub_group_size == 1)
9239 {
9240 /* Default values. */
9241 if (stubs_always_before_branch)
9242 {
9243 stub_group_size = 0x1e00000;
9244 stub14_group_size = 0x7800;
9245 }
9246 else
9247 {
9248 stub_group_size = 0x1c00000;
9249 stub14_group_size = 0x7000;
9250 }
9251 suppress_size_errors = TRUE;
9252 }
9253
9254 list = htab->input_list + htab->top_index;
9255 do
9256 {
9257 asection *tail = *list;
9258 while (tail != NULL)
9259 {
9260 asection *curr;
9261 asection *prev;
9262 bfd_size_type total;
9263 bfd_boolean big_sec;
9264 bfd_vma curr_toc;
9265
9266 curr = tail;
9267 total = tail->size;
9268 big_sec = total > (ppc64_elf_section_data (tail)->has_14bit_branch
9269 ? stub14_group_size : stub_group_size);
9270 if (big_sec && !suppress_size_errors)
9271 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
9272 tail->owner, tail);
9273 curr_toc = htab->stub_group[tail->id].toc_off;
9274
9275 while ((prev = PREV_SEC (curr)) != NULL
9276 && ((total += curr->output_offset - prev->output_offset)
9277 < (ppc64_elf_section_data (prev)->has_14bit_branch
9278 ? stub14_group_size : stub_group_size))
9279 && htab->stub_group[prev->id].toc_off == curr_toc)
9280 curr = prev;
9281
9282 /* OK, the size from the start of CURR to the end is less
9283 than stub_group_size and thus can be handled by one stub
9284 section. (or the tail section is itself larger than
9285 stub_group_size, in which case we may be toast.) We
9286 should really be keeping track of the total size of stubs
9287 added here, as stubs contribute to the final output
9288 section size. That's a little tricky, and this way will
9289 only break if stubs added make the total size more than
9290 2^25, ie. for the default stub_group_size, if stubs total
9291 more than 2097152 bytes, or nearly 75000 plt call stubs. */
9292 do
9293 {
9294 prev = PREV_SEC (tail);
9295 /* Set up this stub group. */
9296 htab->stub_group[tail->id].link_sec = curr;
9297 }
9298 while (tail != curr && (tail = prev) != NULL);
9299
9300 /* But wait, there's more! Input sections up to stub_group_size
9301 bytes before the stub section can be handled by it too.
9302 Don't do this if we have a really large section after the
9303 stubs, as adding more stubs increases the chance that
9304 branches may not reach into the stub section. */
9305 if (!stubs_always_before_branch && !big_sec)
9306 {
9307 total = 0;
9308 while (prev != NULL
9309 && ((total += tail->output_offset - prev->output_offset)
9310 < (ppc64_elf_section_data (prev)->has_14bit_branch
9311 ? stub14_group_size : stub_group_size))
9312 && htab->stub_group[prev->id].toc_off == curr_toc)
9313 {
9314 tail = prev;
9315 prev = PREV_SEC (tail);
9316 htab->stub_group[tail->id].link_sec = curr;
9317 }
9318 }
9319 tail = prev;
9320 }
9321 }
9322 while (list-- != htab->input_list);
9323 free (htab->input_list);
9324 #undef PREV_SEC
9325 }
9326
9327 /* Determine and set the size of the stub section for a final link.
9328
9329 The basic idea here is to examine all the relocations looking for
9330 PC-relative calls to a target that is unreachable with a "bl"
9331 instruction. */
9332
9333 bfd_boolean
9334 ppc64_elf_size_stubs (bfd *output_bfd,
9335 struct bfd_link_info *info,
9336 bfd_signed_vma group_size,
9337 asection *(*add_stub_section) (const char *, asection *),
9338 void (*layout_sections_again) (void))
9339 {
9340 bfd_size_type stub_group_size;
9341 bfd_boolean stubs_always_before_branch;
9342 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9343
9344 /* Stash our params away. */
9345 htab->add_stub_section = add_stub_section;
9346 htab->layout_sections_again = layout_sections_again;
9347 stubs_always_before_branch = group_size < 0;
9348 if (group_size < 0)
9349 stub_group_size = -group_size;
9350 else
9351 stub_group_size = group_size;
9352
9353 group_sections (htab, stub_group_size, stubs_always_before_branch);
9354
9355 while (1)
9356 {
9357 bfd *input_bfd;
9358 unsigned int bfd_indx;
9359 asection *stub_sec;
9360
9361 htab->stub_iteration += 1;
9362
9363 for (input_bfd = info->input_bfds, bfd_indx = 0;
9364 input_bfd != NULL;
9365 input_bfd = input_bfd->link_next, bfd_indx++)
9366 {
9367 Elf_Internal_Shdr *symtab_hdr;
9368 asection *section;
9369 Elf_Internal_Sym *local_syms = NULL;
9370
9371 if (!is_ppc64_elf (input_bfd))
9372 continue;
9373
9374 /* We'll need the symbol table in a second. */
9375 symtab_hdr = &elf_symtab_hdr (input_bfd);
9376 if (symtab_hdr->sh_info == 0)
9377 continue;
9378
9379 /* Walk over each section attached to the input bfd. */
9380 for (section = input_bfd->sections;
9381 section != NULL;
9382 section = section->next)
9383 {
9384 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
9385
9386 /* If there aren't any relocs, then there's nothing more
9387 to do. */
9388 if ((section->flags & SEC_RELOC) == 0
9389 || (section->flags & SEC_ALLOC) == 0
9390 || (section->flags & SEC_LOAD) == 0
9391 || (section->flags & SEC_CODE) == 0
9392 || section->reloc_count == 0)
9393 continue;
9394
9395 /* If this section is a link-once section that will be
9396 discarded, then don't create any stubs. */
9397 if (section->output_section == NULL
9398 || section->output_section->owner != output_bfd)
9399 continue;
9400
9401 /* Get the relocs. */
9402 internal_relocs
9403 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
9404 info->keep_memory);
9405 if (internal_relocs == NULL)
9406 goto error_ret_free_local;
9407
9408 /* Now examine each relocation. */
9409 irela = internal_relocs;
9410 irelaend = irela + section->reloc_count;
9411 for (; irela < irelaend; irela++)
9412 {
9413 enum elf_ppc64_reloc_type r_type;
9414 unsigned int r_indx;
9415 enum ppc_stub_type stub_type;
9416 struct ppc_stub_hash_entry *stub_entry;
9417 asection *sym_sec, *code_sec;
9418 bfd_vma sym_value;
9419 bfd_vma destination;
9420 bfd_boolean ok_dest;
9421 struct ppc_link_hash_entry *hash;
9422 struct ppc_link_hash_entry *fdh;
9423 struct elf_link_hash_entry *h;
9424 Elf_Internal_Sym *sym;
9425 char *stub_name;
9426 const asection *id_sec;
9427 struct _opd_sec_data *opd;
9428
9429 r_type = ELF64_R_TYPE (irela->r_info);
9430 r_indx = ELF64_R_SYM (irela->r_info);
9431
9432 if (r_type >= R_PPC64_max)
9433 {
9434 bfd_set_error (bfd_error_bad_value);
9435 goto error_ret_free_internal;
9436 }
9437
9438 /* Only look for stubs on branch instructions. */
9439 if (r_type != R_PPC64_REL24
9440 && r_type != R_PPC64_REL14
9441 && r_type != R_PPC64_REL14_BRTAKEN
9442 && r_type != R_PPC64_REL14_BRNTAKEN)
9443 continue;
9444
9445 /* Now determine the call target, its name, value,
9446 section. */
9447 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9448 r_indx, input_bfd))
9449 goto error_ret_free_internal;
9450 hash = (struct ppc_link_hash_entry *) h;
9451
9452 ok_dest = FALSE;
9453 fdh = NULL;
9454 sym_value = 0;
9455 if (hash == NULL)
9456 {
9457 sym_value = sym->st_value;
9458 ok_dest = TRUE;
9459 }
9460 else if (hash->elf.root.type == bfd_link_hash_defined
9461 || hash->elf.root.type == bfd_link_hash_defweak)
9462 {
9463 sym_value = hash->elf.root.u.def.value;
9464 if (sym_sec->output_section != NULL)
9465 ok_dest = TRUE;
9466 }
9467 else if (hash->elf.root.type == bfd_link_hash_undefweak
9468 || hash->elf.root.type == bfd_link_hash_undefined)
9469 {
9470 /* Recognise an old ABI func code entry sym, and
9471 use the func descriptor sym instead if it is
9472 defined. */
9473 if (hash->elf.root.root.string[0] == '.'
9474 && (fdh = get_fdh (hash, htab)) != NULL)
9475 {
9476 if (fdh->elf.root.type == bfd_link_hash_defined
9477 || fdh->elf.root.type == bfd_link_hash_defweak)
9478 {
9479 sym_sec = fdh->elf.root.u.def.section;
9480 sym_value = fdh->elf.root.u.def.value;
9481 if (sym_sec->output_section != NULL)
9482 ok_dest = TRUE;
9483 }
9484 else
9485 fdh = NULL;
9486 }
9487 }
9488 else
9489 {
9490 bfd_set_error (bfd_error_bad_value);
9491 goto error_ret_free_internal;
9492 }
9493
9494 destination = 0;
9495 if (ok_dest)
9496 {
9497 sym_value += irela->r_addend;
9498 destination = (sym_value
9499 + sym_sec->output_offset
9500 + sym_sec->output_section->vma);
9501 }
9502
9503 code_sec = sym_sec;
9504 opd = get_opd_info (sym_sec);
9505 if (opd != NULL)
9506 {
9507 bfd_vma dest;
9508
9509 if (hash == NULL && opd->adjust != NULL)
9510 {
9511 long adjust = opd->adjust[sym_value / 8];
9512 if (adjust == -1)
9513 continue;
9514 sym_value += adjust;
9515 }
9516 dest = opd_entry_value (sym_sec, sym_value,
9517 &code_sec, &sym_value);
9518 if (dest != (bfd_vma) -1)
9519 {
9520 destination = dest;
9521 if (fdh != NULL)
9522 {
9523 /* Fixup old ABI sym to point at code
9524 entry. */
9525 hash->elf.root.type = bfd_link_hash_defweak;
9526 hash->elf.root.u.def.section = code_sec;
9527 hash->elf.root.u.def.value = sym_value;
9528 }
9529 }
9530 }
9531
9532 /* Determine what (if any) linker stub is needed. */
9533 stub_type = ppc_type_of_stub (section, irela, &hash,
9534 destination);
9535
9536 if (stub_type != ppc_stub_plt_call)
9537 {
9538 /* Check whether we need a TOC adjusting stub.
9539 Since the linker pastes together pieces from
9540 different object files when creating the
9541 _init and _fini functions, it may be that a
9542 call to what looks like a local sym is in
9543 fact a call needing a TOC adjustment. */
9544 if (code_sec != NULL
9545 && code_sec->output_section != NULL
9546 && (htab->stub_group[code_sec->id].toc_off
9547 != htab->stub_group[section->id].toc_off)
9548 && (code_sec->has_toc_reloc
9549 || code_sec->makes_toc_func_call))
9550 stub_type = ppc_stub_long_branch_r2off;
9551 }
9552
9553 if (stub_type == ppc_stub_none)
9554 continue;
9555
9556 /* __tls_get_addr calls might be eliminated. */
9557 if (stub_type != ppc_stub_plt_call
9558 && hash != NULL
9559 && (hash == htab->tls_get_addr
9560 || hash == htab->tls_get_addr_fd)
9561 && section->has_tls_reloc
9562 && irela != internal_relocs)
9563 {
9564 /* Get tls info. */
9565 char *tls_mask;
9566
9567 if (!get_tls_mask (&tls_mask, NULL, &local_syms,
9568 irela - 1, input_bfd))
9569 goto error_ret_free_internal;
9570 if (*tls_mask != 0)
9571 continue;
9572 }
9573
9574 /* Support for grouping stub sections. */
9575 id_sec = htab->stub_group[section->id].link_sec;
9576
9577 /* Get the name of this stub. */
9578 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
9579 if (!stub_name)
9580 goto error_ret_free_internal;
9581
9582 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
9583 stub_name, FALSE, FALSE);
9584 if (stub_entry != NULL)
9585 {
9586 /* The proper stub has already been created. */
9587 free (stub_name);
9588 continue;
9589 }
9590
9591 stub_entry = ppc_add_stub (stub_name, section, htab);
9592 if (stub_entry == NULL)
9593 {
9594 free (stub_name);
9595 error_ret_free_internal:
9596 if (elf_section_data (section)->relocs == NULL)
9597 free (internal_relocs);
9598 error_ret_free_local:
9599 if (local_syms != NULL
9600 && (symtab_hdr->contents
9601 != (unsigned char *) local_syms))
9602 free (local_syms);
9603 return FALSE;
9604 }
9605
9606 stub_entry->stub_type = stub_type;
9607 stub_entry->target_value = sym_value;
9608 stub_entry->target_section = code_sec;
9609 stub_entry->h = hash;
9610 stub_entry->addend = irela->r_addend;
9611
9612 if (stub_entry->h != NULL)
9613 htab->stub_globals += 1;
9614 }
9615
9616 /* We're done with the internal relocs, free them. */
9617 if (elf_section_data (section)->relocs != internal_relocs)
9618 free (internal_relocs);
9619 }
9620
9621 if (local_syms != NULL
9622 && symtab_hdr->contents != (unsigned char *) local_syms)
9623 {
9624 if (!info->keep_memory)
9625 free (local_syms);
9626 else
9627 symtab_hdr->contents = (unsigned char *) local_syms;
9628 }
9629 }
9630
9631 /* We may have added some stubs. Find out the new size of the
9632 stub sections. */
9633 for (stub_sec = htab->stub_bfd->sections;
9634 stub_sec != NULL;
9635 stub_sec = stub_sec->next)
9636 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9637 {
9638 stub_sec->rawsize = stub_sec->size;
9639 stub_sec->size = 0;
9640 stub_sec->reloc_count = 0;
9641 stub_sec->flags &= ~SEC_RELOC;
9642 }
9643
9644 htab->brlt->size = 0;
9645 htab->brlt->reloc_count = 0;
9646 htab->brlt->flags &= ~SEC_RELOC;
9647 if (htab->relbrlt != NULL)
9648 htab->relbrlt->size = 0;
9649
9650 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
9651
9652 if (info->emitrelocations
9653 && htab->glink != NULL && htab->glink->size != 0)
9654 {
9655 htab->glink->reloc_count = 1;
9656 htab->glink->flags |= SEC_RELOC;
9657 }
9658
9659 for (stub_sec = htab->stub_bfd->sections;
9660 stub_sec != NULL;
9661 stub_sec = stub_sec->next)
9662 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
9663 && stub_sec->rawsize != stub_sec->size)
9664 break;
9665
9666 /* Exit from this loop when no stubs have been added, and no stubs
9667 have changed size. */
9668 if (stub_sec == NULL)
9669 break;
9670
9671 /* Ask the linker to do its stuff. */
9672 (*htab->layout_sections_again) ();
9673 }
9674
9675 /* It would be nice to strip htab->brlt from the output if the
9676 section is empty, but it's too late. If we strip sections here,
9677 the dynamic symbol table is corrupted since the section symbol
9678 for the stripped section isn't written. */
9679
9680 return TRUE;
9681 }
9682
9683 /* Called after we have determined section placement. If sections
9684 move, we'll be called again. Provide a value for TOCstart. */
9685
9686 bfd_vma
9687 ppc64_elf_toc (bfd *obfd)
9688 {
9689 asection *s;
9690 bfd_vma TOCstart;
9691
9692 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
9693 order. The TOC starts where the first of these sections starts. */
9694 s = bfd_get_section_by_name (obfd, ".got");
9695 if (s == NULL)
9696 s = bfd_get_section_by_name (obfd, ".toc");
9697 if (s == NULL)
9698 s = bfd_get_section_by_name (obfd, ".tocbss");
9699 if (s == NULL)
9700 s = bfd_get_section_by_name (obfd, ".plt");
9701 if (s == NULL)
9702 {
9703 /* This may happen for
9704 o references to TOC base (SYM@toc / TOC[tc0]) without a
9705 .toc directive
9706 o bad linker script
9707 o --gc-sections and empty TOC sections
9708
9709 FIXME: Warn user? */
9710
9711 /* Look for a likely section. We probably won't even be
9712 using TOCstart. */
9713 for (s = obfd->sections; s != NULL; s = s->next)
9714 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY))
9715 == (SEC_ALLOC | SEC_SMALL_DATA))
9716 break;
9717 if (s == NULL)
9718 for (s = obfd->sections; s != NULL; s = s->next)
9719 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA))
9720 == (SEC_ALLOC | SEC_SMALL_DATA))
9721 break;
9722 if (s == NULL)
9723 for (s = obfd->sections; s != NULL; s = s->next)
9724 if ((s->flags & (SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
9725 break;
9726 if (s == NULL)
9727 for (s = obfd->sections; s != NULL; s = s->next)
9728 if ((s->flags & SEC_ALLOC) == SEC_ALLOC)
9729 break;
9730 }
9731
9732 TOCstart = 0;
9733 if (s != NULL)
9734 TOCstart = s->output_section->vma + s->output_offset;
9735
9736 return TOCstart;
9737 }
9738
9739 /* Build all the stubs associated with the current output file.
9740 The stubs are kept in a hash table attached to the main linker
9741 hash table. This function is called via gldelf64ppc_finish. */
9742
9743 bfd_boolean
9744 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
9745 struct bfd_link_info *info,
9746 char **stats)
9747 {
9748 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9749 asection *stub_sec;
9750 bfd_byte *p;
9751 int stub_sec_count = 0;
9752
9753 htab->emit_stub_syms = emit_stub_syms;
9754
9755 /* Allocate memory to hold the linker stubs. */
9756 for (stub_sec = htab->stub_bfd->sections;
9757 stub_sec != NULL;
9758 stub_sec = stub_sec->next)
9759 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
9760 && stub_sec->size != 0)
9761 {
9762 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
9763 if (stub_sec->contents == NULL)
9764 return FALSE;
9765 /* We want to check that built size is the same as calculated
9766 size. rawsize is a convenient location to use. */
9767 stub_sec->rawsize = stub_sec->size;
9768 stub_sec->size = 0;
9769 }
9770
9771 if (htab->glink != NULL && htab->glink->size != 0)
9772 {
9773 unsigned int indx;
9774 bfd_vma plt0;
9775
9776 /* Build the .glink plt call stub. */
9777 if (htab->emit_stub_syms)
9778 {
9779 struct elf_link_hash_entry *h;
9780 h = elf_link_hash_lookup (&htab->elf, "__glink", TRUE, FALSE, FALSE);
9781 if (h == NULL)
9782 return FALSE;
9783 if (h->root.type == bfd_link_hash_new)
9784 {
9785 h->root.type = bfd_link_hash_defined;
9786 h->root.u.def.section = htab->glink;
9787 h->root.u.def.value = 8;
9788 h->ref_regular = 1;
9789 h->def_regular = 1;
9790 h->ref_regular_nonweak = 1;
9791 h->forced_local = 1;
9792 h->non_elf = 0;
9793 }
9794 }
9795 plt0 = htab->plt->output_section->vma + htab->plt->output_offset - 16;
9796 if (info->emitrelocations)
9797 {
9798 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
9799 if (r == NULL)
9800 return FALSE;
9801 r->r_offset = (htab->glink->output_offset
9802 + htab->glink->output_section->vma);
9803 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
9804 r->r_addend = plt0;
9805 }
9806 p = htab->glink->contents;
9807 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
9808 bfd_put_64 (htab->glink->owner, plt0, p);
9809 p += 8;
9810 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
9811 p += 4;
9812 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
9813 p += 4;
9814 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
9815 p += 4;
9816 bfd_put_32 (htab->glink->owner, LD_R2_M16R11, p);
9817 p += 4;
9818 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
9819 p += 4;
9820 bfd_put_32 (htab->glink->owner, ADD_R12_R2_R11, p);
9821 p += 4;
9822 bfd_put_32 (htab->glink->owner, LD_R11_0R12, p);
9823 p += 4;
9824 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
9825 p += 4;
9826 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
9827 p += 4;
9828 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
9829 p += 4;
9830 bfd_put_32 (htab->glink->owner, BCTR, p);
9831 p += 4;
9832 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
9833 {
9834 bfd_put_32 (htab->glink->owner, NOP, p);
9835 p += 4;
9836 }
9837
9838 /* Build the .glink lazy link call stubs. */
9839 indx = 0;
9840 while (p < htab->glink->contents + htab->glink->size)
9841 {
9842 if (indx < 0x8000)
9843 {
9844 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
9845 p += 4;
9846 }
9847 else
9848 {
9849 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
9850 p += 4;
9851 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
9852 p += 4;
9853 }
9854 bfd_put_32 (htab->glink->owner,
9855 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
9856 indx++;
9857 p += 4;
9858 }
9859 htab->glink->rawsize = p - htab->glink->contents;
9860 }
9861
9862 if (htab->brlt->size != 0)
9863 {
9864 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
9865 htab->brlt->size);
9866 if (htab->brlt->contents == NULL)
9867 return FALSE;
9868 }
9869 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
9870 {
9871 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
9872 htab->relbrlt->size);
9873 if (htab->relbrlt->contents == NULL)
9874 return FALSE;
9875 }
9876
9877 /* Build the stubs as directed by the stub hash table. */
9878 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
9879
9880 if (htab->relbrlt != NULL)
9881 htab->relbrlt->reloc_count = 0;
9882
9883 for (stub_sec = htab->stub_bfd->sections;
9884 stub_sec != NULL;
9885 stub_sec = stub_sec->next)
9886 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9887 {
9888 stub_sec_count += 1;
9889 if (stub_sec->rawsize != stub_sec->size)
9890 break;
9891 }
9892
9893 if (stub_sec != NULL
9894 || htab->glink->rawsize != htab->glink->size)
9895 {
9896 htab->stub_error = TRUE;
9897 (*_bfd_error_handler) (_("stubs don't match calculated size"));
9898 }
9899
9900 if (htab->stub_error)
9901 return FALSE;
9902
9903 if (stats != NULL)
9904 {
9905 *stats = bfd_malloc (500);
9906 if (*stats == NULL)
9907 return FALSE;
9908
9909 sprintf (*stats, _("linker stubs in %u group%s\n"
9910 " branch %lu\n"
9911 " toc adjust %lu\n"
9912 " long branch %lu\n"
9913 " long toc adj %lu\n"
9914 " plt call %lu"),
9915 stub_sec_count,
9916 stub_sec_count == 1 ? "" : "s",
9917 htab->stub_count[ppc_stub_long_branch - 1],
9918 htab->stub_count[ppc_stub_long_branch_r2off - 1],
9919 htab->stub_count[ppc_stub_plt_branch - 1],
9920 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
9921 htab->stub_count[ppc_stub_plt_call - 1]);
9922 }
9923 return TRUE;
9924 }
9925
9926 /* This function undoes the changes made by add_symbol_adjust. */
9927
9928 static bfd_boolean
9929 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
9930 {
9931 struct ppc_link_hash_entry *eh;
9932
9933 if (h->root.type == bfd_link_hash_indirect)
9934 return TRUE;
9935
9936 if (h->root.type == bfd_link_hash_warning)
9937 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9938
9939 eh = (struct ppc_link_hash_entry *) h;
9940 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
9941 return TRUE;
9942
9943 eh->elf.root.type = bfd_link_hash_undefined;
9944 return TRUE;
9945 }
9946
9947 void
9948 ppc64_elf_restore_symbols (struct bfd_link_info *info)
9949 {
9950 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9951 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
9952 }
9953
9954 /* What to do when ld finds relocations against symbols defined in
9955 discarded sections. */
9956
9957 static unsigned int
9958 ppc64_elf_action_discarded (asection *sec)
9959 {
9960 if (strcmp (".opd", sec->name) == 0)
9961 return 0;
9962
9963 if (strcmp (".toc", sec->name) == 0)
9964 return 0;
9965
9966 if (strcmp (".toc1", sec->name) == 0)
9967 return 0;
9968
9969 return _bfd_elf_default_action_discarded (sec);
9970 }
9971
9972 /* The RELOCATE_SECTION function is called by the ELF backend linker
9973 to handle the relocations for a section.
9974
9975 The relocs are always passed as Rela structures; if the section
9976 actually uses Rel structures, the r_addend field will always be
9977 zero.
9978
9979 This function is responsible for adjust the section contents as
9980 necessary, and (if using Rela relocs and generating a
9981 relocatable output file) adjusting the reloc addend as
9982 necessary.
9983
9984 This function does not have to worry about setting the reloc
9985 address or the reloc symbol index.
9986
9987 LOCAL_SYMS is a pointer to the swapped in local symbols.
9988
9989 LOCAL_SECTIONS is an array giving the section in the input file
9990 corresponding to the st_shndx field of each local symbol.
9991
9992 The global hash table entry for the global symbols can be found
9993 via elf_sym_hashes (input_bfd).
9994
9995 When generating relocatable output, this function must handle
9996 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
9997 going to be the section symbol corresponding to the output
9998 section, which means that the addend must be adjusted
9999 accordingly. */
10000
10001 static bfd_boolean
10002 ppc64_elf_relocate_section (bfd *output_bfd,
10003 struct bfd_link_info *info,
10004 bfd *input_bfd,
10005 asection *input_section,
10006 bfd_byte *contents,
10007 Elf_Internal_Rela *relocs,
10008 Elf_Internal_Sym *local_syms,
10009 asection **local_sections)
10010 {
10011 struct ppc_link_hash_table *htab;
10012 Elf_Internal_Shdr *symtab_hdr;
10013 struct elf_link_hash_entry **sym_hashes;
10014 Elf_Internal_Rela *rel;
10015 Elf_Internal_Rela *relend;
10016 Elf_Internal_Rela outrel;
10017 bfd_byte *loc;
10018 struct got_entry **local_got_ents;
10019 bfd_vma TOCstart;
10020 bfd_boolean ret = TRUE;
10021 bfd_boolean is_opd;
10022 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
10023 bfd_boolean is_power4 = FALSE;
10024 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
10025
10026 /* Initialize howto table if needed. */
10027 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
10028 ppc_howto_init ();
10029
10030 htab = ppc_hash_table (info);
10031
10032 /* Don't relocate stub sections. */
10033 if (input_section->owner == htab->stub_bfd)
10034 return TRUE;
10035
10036 BFD_ASSERT (is_ppc64_elf (input_bfd));
10037
10038 local_got_ents = elf_local_got_ents (input_bfd);
10039 TOCstart = elf_gp (output_bfd);
10040 symtab_hdr = &elf_symtab_hdr (input_bfd);
10041 sym_hashes = elf_sym_hashes (input_bfd);
10042 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
10043
10044 rel = relocs;
10045 relend = relocs + input_section->reloc_count;
10046 for (; rel < relend; rel++)
10047 {
10048 enum elf_ppc64_reloc_type r_type;
10049 bfd_vma addend, orig_addend;
10050 bfd_reloc_status_type r;
10051 Elf_Internal_Sym *sym;
10052 asection *sec;
10053 struct elf_link_hash_entry *h_elf;
10054 struct ppc_link_hash_entry *h;
10055 struct ppc_link_hash_entry *fdh;
10056 const char *sym_name;
10057 unsigned long r_symndx, toc_symndx;
10058 char tls_mask, tls_gd, tls_type;
10059 char sym_type;
10060 bfd_vma relocation;
10061 bfd_boolean unresolved_reloc;
10062 bfd_boolean warned;
10063 unsigned long insn, mask;
10064 struct ppc_stub_hash_entry *stub_entry;
10065 bfd_vma max_br_offset;
10066 bfd_vma from;
10067
10068 r_type = ELF64_R_TYPE (rel->r_info);
10069 r_symndx = ELF64_R_SYM (rel->r_info);
10070
10071 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
10072 symbol of the previous ADDR64 reloc. The symbol gives us the
10073 proper TOC base to use. */
10074 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
10075 && rel != relocs
10076 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
10077 && is_opd)
10078 r_symndx = ELF64_R_SYM (rel[-1].r_info);
10079
10080 sym = NULL;
10081 sec = NULL;
10082 h_elf = NULL;
10083 sym_name = NULL;
10084 unresolved_reloc = FALSE;
10085 warned = FALSE;
10086 orig_addend = rel->r_addend;
10087
10088 if (r_symndx < symtab_hdr->sh_info)
10089 {
10090 /* It's a local symbol. */
10091 struct _opd_sec_data *opd;
10092
10093 sym = local_syms + r_symndx;
10094 sec = local_sections[r_symndx];
10095 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
10096 sym_type = ELF64_ST_TYPE (sym->st_info);
10097 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10098 opd = get_opd_info (sec);
10099 if (opd != NULL && opd->adjust != NULL)
10100 {
10101 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
10102 if (adjust == -1)
10103 relocation = 0;
10104 else
10105 {
10106 /* If this is a relocation against the opd section sym
10107 and we have edited .opd, adjust the reloc addend so
10108 that ld -r and ld --emit-relocs output is correct.
10109 If it is a reloc against some other .opd symbol,
10110 then the symbol value will be adjusted later. */
10111 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10112 rel->r_addend += adjust;
10113 else
10114 relocation += adjust;
10115 }
10116 }
10117 }
10118 else
10119 {
10120 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10121 r_symndx, symtab_hdr, sym_hashes,
10122 h_elf, sec, relocation,
10123 unresolved_reloc, warned);
10124 sym_name = h_elf->root.root.string;
10125 sym_type = h_elf->type;
10126 }
10127 h = (struct ppc_link_hash_entry *) h_elf;
10128
10129 if (sec != NULL && elf_discarded_section (sec))
10130 {
10131 /* For relocs against symbols from removed linkonce sections,
10132 or sections discarded by a linker script, we just want the
10133 section contents zeroed. Avoid any special processing. */
10134 _bfd_clear_contents (ppc64_elf_howto_table[r_type], input_bfd,
10135 contents + rel->r_offset);
10136 rel->r_info = 0;
10137 rel->r_addend = 0;
10138 continue;
10139 }
10140
10141 if (info->relocatable)
10142 continue;
10143
10144 /* TLS optimizations. Replace instruction sequences and relocs
10145 based on information we collected in tls_optimize. We edit
10146 RELOCS so that --emit-relocs will output something sensible
10147 for the final instruction stream. */
10148 tls_mask = 0;
10149 tls_gd = 0;
10150 toc_symndx = 0;
10151 if (IS_PPC64_TLS_RELOC (r_type))
10152 {
10153 if (h != NULL)
10154 tls_mask = h->tls_mask;
10155 else if (local_got_ents != NULL)
10156 {
10157 char *lgot_masks;
10158 lgot_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
10159 tls_mask = lgot_masks[r_symndx];
10160 }
10161 if (tls_mask == 0 && r_type == R_PPC64_TLS)
10162 {
10163 /* Check for toc tls entries. */
10164 char *toc_tls;
10165
10166 if (!get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
10167 rel, input_bfd))
10168 return FALSE;
10169
10170 if (toc_tls)
10171 tls_mask = *toc_tls;
10172 }
10173 }
10174
10175 /* Check that tls relocs are used with tls syms, and non-tls
10176 relocs are used with non-tls syms. */
10177 if (r_symndx != 0
10178 && r_type != R_PPC64_NONE
10179 && (h == NULL
10180 || h->elf.root.type == bfd_link_hash_defined
10181 || h->elf.root.type == bfd_link_hash_defweak)
10182 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10183 {
10184 if (r_type == R_PPC64_TLS && tls_mask != 0)
10185 /* R_PPC64_TLS is OK against a symbol in the TOC. */
10186 ;
10187 else
10188 (*_bfd_error_handler)
10189 (sym_type == STT_TLS
10190 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10191 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s"),
10192 input_bfd,
10193 input_section,
10194 (long) rel->r_offset,
10195 ppc64_elf_howto_table[r_type]->name,
10196 sym_name);
10197 }
10198
10199 /* Ensure reloc mapping code below stays sane. */
10200 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
10201 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
10202 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
10203 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
10204 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
10205 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
10206 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
10207 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
10208 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
10209 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
10210 abort ();
10211
10212 switch (r_type)
10213 {
10214 default:
10215 break;
10216
10217 case R_PPC64_TOC16:
10218 case R_PPC64_TOC16_LO:
10219 case R_PPC64_TOC16_DS:
10220 case R_PPC64_TOC16_LO_DS:
10221 {
10222 /* Check for toc tls entries. */
10223 char *toc_tls;
10224 int retval;
10225
10226 retval = get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
10227 rel, input_bfd);
10228 if (retval == 0)
10229 return FALSE;
10230
10231 if (toc_tls)
10232 {
10233 tls_mask = *toc_tls;
10234 if (r_type == R_PPC64_TOC16_DS
10235 || r_type == R_PPC64_TOC16_LO_DS)
10236 {
10237 if (tls_mask != 0
10238 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
10239 goto toctprel;
10240 }
10241 else
10242 {
10243 /* If we found a GD reloc pair, then we might be
10244 doing a GD->IE transition. */
10245 if (retval == 2)
10246 {
10247 tls_gd = TLS_TPRELGD;
10248 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
10249 goto tls_ldgd_opt;
10250 }
10251 else if (retval == 3)
10252 {
10253 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
10254 goto tls_ldgd_opt;
10255 }
10256 }
10257 }
10258 }
10259 break;
10260
10261 case R_PPC64_GOT_TPREL16_DS:
10262 case R_PPC64_GOT_TPREL16_LO_DS:
10263 if (tls_mask != 0
10264 && (tls_mask & TLS_TPREL) == 0)
10265 {
10266 toctprel:
10267 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
10268 insn &= 31 << 21;
10269 insn |= 0x3c0d0000; /* addis 0,13,0 */
10270 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
10271 r_type = R_PPC64_TPREL16_HA;
10272 if (toc_symndx != 0)
10273 {
10274 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
10275 /* We changed the symbol. Start over in order to
10276 get h, sym, sec etc. right. */
10277 rel--;
10278 continue;
10279 }
10280 else
10281 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10282 }
10283 break;
10284
10285 case R_PPC64_TLS:
10286 if (tls_mask != 0
10287 && (tls_mask & TLS_TPREL) == 0)
10288 {
10289 bfd_vma rtra;
10290 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
10291 if ((insn & ((0x3f << 26) | (31 << 11)))
10292 == ((31 << 26) | (13 << 11)))
10293 rtra = insn & ((1 << 26) - (1 << 16));
10294 else if ((insn & ((0x3f << 26) | (31 << 16)))
10295 == ((31 << 26) | (13 << 16)))
10296 rtra = (insn & (31 << 21)) | ((insn & (31 << 11)) << 5);
10297 else
10298 abort ();
10299 if ((insn & ((1 << 11) - (1 << 1))) == 266 << 1)
10300 /* add -> addi. */
10301 insn = 14 << 26;
10302 else if ((insn & (31 << 1)) == 23 << 1
10303 && ((insn & (31 << 6)) < 14 << 6
10304 || ((insn & (31 << 6)) >= 16 << 6
10305 && (insn & (31 << 6)) < 24 << 6)))
10306 /* load and store indexed -> dform. */
10307 insn = (32 | ((insn >> 6) & 31)) << 26;
10308 else if ((insn & (31 << 1)) == 21 << 1
10309 && (insn & (0x1a << 6)) == 0)
10310 /* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */
10311 insn = (((58 | ((insn >> 6) & 4)) << 26)
10312 | ((insn >> 6) & 1));
10313 else if ((insn & (31 << 1)) == 21 << 1
10314 && (insn & ((1 << 11) - (1 << 1))) == 341 << 1)
10315 /* lwax -> lwa. */
10316 insn = (58 << 26) | 2;
10317 else
10318 abort ();
10319 insn |= rtra;
10320 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
10321 /* Was PPC64_TLS which sits on insn boundary, now
10322 PPC64_TPREL16_LO which is at low-order half-word. */
10323 rel->r_offset += d_offset;
10324 r_type = R_PPC64_TPREL16_LO;
10325 if (toc_symndx != 0)
10326 {
10327 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
10328 /* We changed the symbol. Start over in order to
10329 get h, sym, sec etc. right. */
10330 rel--;
10331 continue;
10332 }
10333 else
10334 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10335 }
10336 break;
10337
10338 case R_PPC64_GOT_TLSGD16_HI:
10339 case R_PPC64_GOT_TLSGD16_HA:
10340 tls_gd = TLS_TPRELGD;
10341 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
10342 goto tls_gdld_hi;
10343 break;
10344
10345 case R_PPC64_GOT_TLSLD16_HI:
10346 case R_PPC64_GOT_TLSLD16_HA:
10347 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
10348 {
10349 tls_gdld_hi:
10350 if ((tls_mask & tls_gd) != 0)
10351 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
10352 + R_PPC64_GOT_TPREL16_DS);
10353 else
10354 {
10355 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
10356 rel->r_offset -= d_offset;
10357 r_type = R_PPC64_NONE;
10358 }
10359 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10360 }
10361 break;
10362
10363 case R_PPC64_GOT_TLSGD16:
10364 case R_PPC64_GOT_TLSGD16_LO:
10365 tls_gd = TLS_TPRELGD;
10366 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
10367 goto tls_ldgd_opt;
10368 break;
10369
10370 case R_PPC64_GOT_TLSLD16:
10371 case R_PPC64_GOT_TLSLD16_LO:
10372 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
10373 {
10374 bfd_vma insn1, insn2, insn3;
10375 bfd_vma offset;
10376
10377 tls_ldgd_opt:
10378 /* We know that the next reloc is on a tls_get_addr
10379 call, since ppc64_elf_tls_optimize checks this. */
10380 offset = rel[1].r_offset;
10381 insn1 = bfd_get_32 (output_bfd,
10382 contents + rel->r_offset - d_offset);
10383 insn3 = bfd_get_32 (output_bfd,
10384 contents + offset + 4);
10385 if ((tls_mask & tls_gd) != 0)
10386 {
10387 /* IE */
10388 insn1 &= (1 << 26) - (1 << 2);
10389 insn1 |= 58 << 26; /* ld */
10390 insn2 = 0x7c636a14; /* add 3,3,13 */
10391 rel[1].r_info = ELF64_R_INFO (ELF64_R_SYM (rel[1].r_info),
10392 R_PPC64_NONE);
10393 if ((tls_mask & TLS_EXPLICIT) == 0)
10394 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
10395 + R_PPC64_GOT_TPREL16_DS);
10396 else
10397 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
10398 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10399 }
10400 else
10401 {
10402 /* LE */
10403 insn1 = 0x3c6d0000; /* addis 3,13,0 */
10404 insn2 = 0x38630000; /* addi 3,3,0 */
10405 if (tls_gd == 0)
10406 {
10407 /* Was an LD reloc. */
10408 r_symndx = 0;
10409 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
10410 rel[1].r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
10411 }
10412 else if (toc_symndx != 0)
10413 r_symndx = toc_symndx;
10414 r_type = R_PPC64_TPREL16_HA;
10415 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10416 rel[1].r_info = ELF64_R_INFO (r_symndx,
10417 R_PPC64_TPREL16_LO);
10418 rel[1].r_offset += d_offset;
10419 }
10420 if (insn3 == NOP
10421 || insn3 == CROR_151515 || insn3 == CROR_313131)
10422 {
10423 insn3 = insn2;
10424 insn2 = NOP;
10425 rel[1].r_offset += 4;
10426 }
10427 bfd_put_32 (output_bfd, insn1,
10428 contents + rel->r_offset - d_offset);
10429 bfd_put_32 (output_bfd, insn2, contents + offset);
10430 bfd_put_32 (output_bfd, insn3, contents + offset + 4);
10431 if (tls_gd == 0 || toc_symndx != 0)
10432 {
10433 /* We changed the symbol. Start over in order
10434 to get h, sym, sec etc. right. */
10435 rel--;
10436 continue;
10437 }
10438 }
10439 break;
10440
10441 case R_PPC64_DTPMOD64:
10442 if (rel + 1 < relend
10443 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
10444 && rel[1].r_offset == rel->r_offset + 8)
10445 {
10446 if ((tls_mask & TLS_GD) == 0)
10447 {
10448 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
10449 if ((tls_mask & TLS_TPRELGD) != 0)
10450 r_type = R_PPC64_TPREL64;
10451 else
10452 {
10453 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
10454 r_type = R_PPC64_NONE;
10455 }
10456 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10457 }
10458 }
10459 else
10460 {
10461 if ((tls_mask & TLS_LD) == 0)
10462 {
10463 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
10464 r_type = R_PPC64_NONE;
10465 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10466 }
10467 }
10468 break;
10469
10470 case R_PPC64_TPREL64:
10471 if ((tls_mask & TLS_TPREL) == 0)
10472 {
10473 r_type = R_PPC64_NONE;
10474 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
10475 }
10476 break;
10477 }
10478
10479 /* Handle other relocations that tweak non-addend part of insn. */
10480 insn = 0;
10481 max_br_offset = 1 << 25;
10482 addend = rel->r_addend;
10483 switch (r_type)
10484 {
10485 default:
10486 break;
10487
10488 /* Branch taken prediction relocations. */
10489 case R_PPC64_ADDR14_BRTAKEN:
10490 case R_PPC64_REL14_BRTAKEN:
10491 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
10492 /* Fall thru. */
10493
10494 /* Branch not taken prediction relocations. */
10495 case R_PPC64_ADDR14_BRNTAKEN:
10496 case R_PPC64_REL14_BRNTAKEN:
10497 insn |= bfd_get_32 (output_bfd,
10498 contents + rel->r_offset) & ~(0x01 << 21);
10499 /* Fall thru. */
10500
10501 case R_PPC64_REL14:
10502 max_br_offset = 1 << 15;
10503 /* Fall thru. */
10504
10505 case R_PPC64_REL24:
10506 /* Calls to functions with a different TOC, such as calls to
10507 shared objects, need to alter the TOC pointer. This is
10508 done using a linkage stub. A REL24 branching to these
10509 linkage stubs needs to be followed by a nop, as the nop
10510 will be replaced with an instruction to restore the TOC
10511 base pointer. */
10512 stub_entry = NULL;
10513 fdh = h;
10514 if (((h != NULL
10515 && (((fdh = h->oh) != NULL
10516 && fdh->elf.plt.plist != NULL)
10517 || (fdh = h)->elf.plt.plist != NULL))
10518 || (sec != NULL
10519 && sec->output_section != NULL
10520 && sec->id <= htab->top_id
10521 && (htab->stub_group[sec->id].toc_off
10522 != htab->stub_group[input_section->id].toc_off)))
10523 && (stub_entry = ppc_get_stub_entry (input_section, sec, fdh,
10524 rel, htab)) != NULL
10525 && (stub_entry->stub_type == ppc_stub_plt_call
10526 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
10527 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
10528 {
10529 bfd_boolean can_plt_call = FALSE;
10530
10531 if (rel->r_offset + 8 <= input_section->size)
10532 {
10533 unsigned long nop;
10534 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
10535 if (nop == NOP
10536 || nop == CROR_151515 || nop == CROR_313131)
10537 {
10538 bfd_put_32 (input_bfd, LD_R2_40R1,
10539 contents + rel->r_offset + 4);
10540 can_plt_call = TRUE;
10541 }
10542 }
10543
10544 if (!can_plt_call)
10545 {
10546 if (stub_entry->stub_type == ppc_stub_plt_call)
10547 {
10548 /* If this is a plain branch rather than a branch
10549 and link, don't require a nop. However, don't
10550 allow tail calls in a shared library as they
10551 will result in r2 being corrupted. */
10552 unsigned long br;
10553 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
10554 if (info->executable && (br & 1) == 0)
10555 can_plt_call = TRUE;
10556 else
10557 stub_entry = NULL;
10558 }
10559 else if (h != NULL
10560 && strcmp (h->elf.root.root.string,
10561 ".__libc_start_main") == 0)
10562 {
10563 /* Allow crt1 branch to go via a toc adjusting stub. */
10564 can_plt_call = TRUE;
10565 }
10566 else
10567 {
10568 if (strcmp (input_section->output_section->name,
10569 ".init") == 0
10570 || strcmp (input_section->output_section->name,
10571 ".fini") == 0)
10572 (*_bfd_error_handler)
10573 (_("%B(%A+0x%lx): automatic multiple TOCs "
10574 "not supported using your crt files; "
10575 "recompile with -mminimal-toc or upgrade gcc"),
10576 input_bfd,
10577 input_section,
10578 (long) rel->r_offset);
10579 else
10580 (*_bfd_error_handler)
10581 (_("%B(%A+0x%lx): sibling call optimization to `%s' "
10582 "does not allow automatic multiple TOCs; "
10583 "recompile with -mminimal-toc or "
10584 "-fno-optimize-sibling-calls, "
10585 "or make `%s' extern"),
10586 input_bfd,
10587 input_section,
10588 (long) rel->r_offset,
10589 sym_name,
10590 sym_name);
10591 bfd_set_error (bfd_error_bad_value);
10592 ret = FALSE;
10593 }
10594 }
10595
10596 if (can_plt_call
10597 && stub_entry->stub_type == ppc_stub_plt_call)
10598 unresolved_reloc = FALSE;
10599 }
10600
10601 if (stub_entry == NULL
10602 && get_opd_info (sec) != NULL)
10603 {
10604 /* The branch destination is the value of the opd entry. */
10605 bfd_vma off = (relocation + addend
10606 - sec->output_section->vma
10607 - sec->output_offset);
10608 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
10609 if (dest != (bfd_vma) -1)
10610 {
10611 relocation = dest;
10612 addend = 0;
10613 }
10614 }
10615
10616 /* If the branch is out of reach we ought to have a long
10617 branch stub. */
10618 from = (rel->r_offset
10619 + input_section->output_offset
10620 + input_section->output_section->vma);
10621
10622 if (stub_entry == NULL
10623 && (relocation + addend - from + max_br_offset
10624 >= 2 * max_br_offset)
10625 && r_type != R_PPC64_ADDR14_BRTAKEN
10626 && r_type != R_PPC64_ADDR14_BRNTAKEN)
10627 stub_entry = ppc_get_stub_entry (input_section, sec, h, rel,
10628 htab);
10629
10630 if (stub_entry != NULL)
10631 {
10632 /* Munge up the value and addend so that we call the stub
10633 rather than the procedure directly. */
10634 relocation = (stub_entry->stub_offset
10635 + stub_entry->stub_sec->output_offset
10636 + stub_entry->stub_sec->output_section->vma);
10637 addend = 0;
10638 }
10639
10640 if (insn != 0)
10641 {
10642 if (is_power4)
10643 {
10644 /* Set 'a' bit. This is 0b00010 in BO field for branch
10645 on CR(BI) insns (BO == 001at or 011at), and 0b01000
10646 for branch on CTR insns (BO == 1a00t or 1a01t). */
10647 if ((insn & (0x14 << 21)) == (0x04 << 21))
10648 insn |= 0x02 << 21;
10649 else if ((insn & (0x14 << 21)) == (0x10 << 21))
10650 insn |= 0x08 << 21;
10651 else
10652 break;
10653 }
10654 else
10655 {
10656 /* Invert 'y' bit if not the default. */
10657 if ((bfd_signed_vma) (relocation + addend - from) < 0)
10658 insn ^= 0x01 << 21;
10659 }
10660
10661 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
10662 }
10663
10664 /* NOP out calls to undefined weak functions.
10665 We can thus call a weak function without first
10666 checking whether the function is defined. */
10667 else if (h != NULL
10668 && h->elf.root.type == bfd_link_hash_undefweak
10669 && r_type == R_PPC64_REL24
10670 && relocation == 0
10671 && addend == 0)
10672 {
10673 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
10674 continue;
10675 }
10676 break;
10677 }
10678
10679 /* Set `addend'. */
10680 tls_type = 0;
10681 switch (r_type)
10682 {
10683 default:
10684 (*_bfd_error_handler)
10685 (_("%B: unknown relocation type %d for symbol %s"),
10686 input_bfd, (int) r_type, sym_name);
10687
10688 bfd_set_error (bfd_error_bad_value);
10689 ret = FALSE;
10690 continue;
10691
10692 case R_PPC64_NONE:
10693 case R_PPC64_TLS:
10694 case R_PPC64_GNU_VTINHERIT:
10695 case R_PPC64_GNU_VTENTRY:
10696 continue;
10697
10698 /* GOT16 relocations. Like an ADDR16 using the symbol's
10699 address in the GOT as relocation value instead of the
10700 symbol's value itself. Also, create a GOT entry for the
10701 symbol and put the symbol value there. */
10702 case R_PPC64_GOT_TLSGD16:
10703 case R_PPC64_GOT_TLSGD16_LO:
10704 case R_PPC64_GOT_TLSGD16_HI:
10705 case R_PPC64_GOT_TLSGD16_HA:
10706 tls_type = TLS_TLS | TLS_GD;
10707 goto dogot;
10708
10709 case R_PPC64_GOT_TLSLD16:
10710 case R_PPC64_GOT_TLSLD16_LO:
10711 case R_PPC64_GOT_TLSLD16_HI:
10712 case R_PPC64_GOT_TLSLD16_HA:
10713 tls_type = TLS_TLS | TLS_LD;
10714 goto dogot;
10715
10716 case R_PPC64_GOT_TPREL16_DS:
10717 case R_PPC64_GOT_TPREL16_LO_DS:
10718 case R_PPC64_GOT_TPREL16_HI:
10719 case R_PPC64_GOT_TPREL16_HA:
10720 tls_type = TLS_TLS | TLS_TPREL;
10721 goto dogot;
10722
10723 case R_PPC64_GOT_DTPREL16_DS:
10724 case R_PPC64_GOT_DTPREL16_LO_DS:
10725 case R_PPC64_GOT_DTPREL16_HI:
10726 case R_PPC64_GOT_DTPREL16_HA:
10727 tls_type = TLS_TLS | TLS_DTPREL;
10728 goto dogot;
10729
10730 case R_PPC64_GOT16:
10731 case R_PPC64_GOT16_LO:
10732 case R_PPC64_GOT16_HI:
10733 case R_PPC64_GOT16_HA:
10734 case R_PPC64_GOT16_DS:
10735 case R_PPC64_GOT16_LO_DS:
10736 dogot:
10737 {
10738 /* Relocation is to the entry for this symbol in the global
10739 offset table. */
10740 asection *got;
10741 bfd_vma *offp;
10742 bfd_vma off;
10743 unsigned long indx = 0;
10744
10745 if (tls_type == (TLS_TLS | TLS_LD)
10746 && (h == NULL
10747 || !h->elf.def_dynamic))
10748 offp = &ppc64_tlsld_got (input_bfd)->offset;
10749 else
10750 {
10751 struct got_entry *ent;
10752
10753 if (h != NULL)
10754 {
10755 bfd_boolean dyn = htab->elf.dynamic_sections_created;
10756 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
10757 &h->elf)
10758 || (info->shared
10759 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
10760 /* This is actually a static link, or it is a
10761 -Bsymbolic link and the symbol is defined
10762 locally, or the symbol was forced to be local
10763 because of a version file. */
10764 ;
10765 else
10766 {
10767 indx = h->elf.dynindx;
10768 unresolved_reloc = FALSE;
10769 }
10770 ent = h->elf.got.glist;
10771 }
10772 else
10773 {
10774 if (local_got_ents == NULL)
10775 abort ();
10776 ent = local_got_ents[r_symndx];
10777 }
10778
10779 for (; ent != NULL; ent = ent->next)
10780 if (ent->addend == orig_addend
10781 && ent->owner == input_bfd
10782 && ent->tls_type == tls_type)
10783 break;
10784 if (ent == NULL)
10785 abort ();
10786 offp = &ent->got.offset;
10787 }
10788
10789 got = ppc64_elf_tdata (input_bfd)->got;
10790 if (got == NULL)
10791 abort ();
10792
10793 /* The offset must always be a multiple of 8. We use the
10794 least significant bit to record whether we have already
10795 processed this entry. */
10796 off = *offp;
10797 if ((off & 1) != 0)
10798 off &= ~1;
10799 else
10800 {
10801 /* Generate relocs for the dynamic linker, except in
10802 the case of TLSLD where we'll use one entry per
10803 module. */
10804 asection *relgot = ppc64_elf_tdata (input_bfd)->relgot;
10805
10806 *offp = off | 1;
10807 if ((info->shared || indx != 0)
10808 && (h == NULL
10809 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10810 || h->elf.root.type != bfd_link_hash_undefweak))
10811 {
10812 outrel.r_offset = (got->output_section->vma
10813 + got->output_offset
10814 + off);
10815 outrel.r_addend = addend;
10816 if (tls_type & (TLS_LD | TLS_GD))
10817 {
10818 outrel.r_addend = 0;
10819 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
10820 if (tls_type == (TLS_TLS | TLS_GD))
10821 {
10822 loc = relgot->contents;
10823 loc += (relgot->reloc_count++
10824 * sizeof (Elf64_External_Rela));
10825 bfd_elf64_swap_reloca_out (output_bfd,
10826 &outrel, loc);
10827 outrel.r_offset += 8;
10828 outrel.r_addend = addend;
10829 outrel.r_info
10830 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10831 }
10832 }
10833 else if (tls_type == (TLS_TLS | TLS_DTPREL))
10834 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10835 else if (tls_type == (TLS_TLS | TLS_TPREL))
10836 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
10837 else if (indx == 0)
10838 {
10839 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_RELATIVE);
10840
10841 /* Write the .got section contents for the sake
10842 of prelink. */
10843 loc = got->contents + off;
10844 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
10845 loc);
10846 }
10847 else
10848 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
10849
10850 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
10851 {
10852 outrel.r_addend += relocation;
10853 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
10854 outrel.r_addend -= htab->elf.tls_sec->vma;
10855 }
10856 loc = relgot->contents;
10857 loc += (relgot->reloc_count++
10858 * sizeof (Elf64_External_Rela));
10859 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
10860 }
10861
10862 /* Init the .got section contents here if we're not
10863 emitting a reloc. */
10864 else
10865 {
10866 relocation += addend;
10867 if (tls_type == (TLS_TLS | TLS_LD))
10868 relocation = 1;
10869 else if (tls_type != 0)
10870 {
10871 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
10872 if (tls_type == (TLS_TLS | TLS_TPREL))
10873 relocation += DTP_OFFSET - TP_OFFSET;
10874
10875 if (tls_type == (TLS_TLS | TLS_GD))
10876 {
10877 bfd_put_64 (output_bfd, relocation,
10878 got->contents + off + 8);
10879 relocation = 1;
10880 }
10881 }
10882
10883 bfd_put_64 (output_bfd, relocation,
10884 got->contents + off);
10885 }
10886 }
10887
10888 if (off >= (bfd_vma) -2)
10889 abort ();
10890
10891 relocation = got->output_offset + off;
10892
10893 /* TOC base (r2) is TOC start plus 0x8000. */
10894 addend = -TOC_BASE_OFF;
10895 }
10896 break;
10897
10898 case R_PPC64_PLT16_HA:
10899 case R_PPC64_PLT16_HI:
10900 case R_PPC64_PLT16_LO:
10901 case R_PPC64_PLT32:
10902 case R_PPC64_PLT64:
10903 /* Relocation is to the entry for this symbol in the
10904 procedure linkage table. */
10905
10906 /* Resolve a PLT reloc against a local symbol directly,
10907 without using the procedure linkage table. */
10908 if (h == NULL)
10909 break;
10910
10911 /* It's possible that we didn't make a PLT entry for this
10912 symbol. This happens when statically linking PIC code,
10913 or when using -Bsymbolic. Go find a match if there is a
10914 PLT entry. */
10915 if (htab->plt != NULL)
10916 {
10917 struct plt_entry *ent;
10918 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
10919 if (ent->addend == orig_addend
10920 && ent->plt.offset != (bfd_vma) -1)
10921 {
10922 relocation = (htab->plt->output_section->vma
10923 + htab->plt->output_offset
10924 + ent->plt.offset);
10925 unresolved_reloc = FALSE;
10926 }
10927 }
10928 break;
10929
10930 case R_PPC64_TOC:
10931 /* Relocation value is TOC base. */
10932 relocation = TOCstart;
10933 if (r_symndx == 0)
10934 relocation += htab->stub_group[input_section->id].toc_off;
10935 else if (unresolved_reloc)
10936 ;
10937 else if (sec != NULL && sec->id <= htab->top_id)
10938 relocation += htab->stub_group[sec->id].toc_off;
10939 else
10940 unresolved_reloc = TRUE;
10941 goto dodyn;
10942
10943 /* TOC16 relocs. We want the offset relative to the TOC base,
10944 which is the address of the start of the TOC plus 0x8000.
10945 The TOC consists of sections .got, .toc, .tocbss, and .plt,
10946 in this order. */
10947 case R_PPC64_TOC16:
10948 case R_PPC64_TOC16_LO:
10949 case R_PPC64_TOC16_HI:
10950 case R_PPC64_TOC16_DS:
10951 case R_PPC64_TOC16_LO_DS:
10952 case R_PPC64_TOC16_HA:
10953 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
10954 break;
10955
10956 /* Relocate against the beginning of the section. */
10957 case R_PPC64_SECTOFF:
10958 case R_PPC64_SECTOFF_LO:
10959 case R_PPC64_SECTOFF_HI:
10960 case R_PPC64_SECTOFF_DS:
10961 case R_PPC64_SECTOFF_LO_DS:
10962 case R_PPC64_SECTOFF_HA:
10963 if (sec != NULL)
10964 addend -= sec->output_section->vma;
10965 break;
10966
10967 case R_PPC64_REL14:
10968 case R_PPC64_REL14_BRNTAKEN:
10969 case R_PPC64_REL14_BRTAKEN:
10970 case R_PPC64_REL24:
10971 break;
10972
10973 case R_PPC64_TPREL16:
10974 case R_PPC64_TPREL16_LO:
10975 case R_PPC64_TPREL16_HI:
10976 case R_PPC64_TPREL16_HA:
10977 case R_PPC64_TPREL16_DS:
10978 case R_PPC64_TPREL16_LO_DS:
10979 case R_PPC64_TPREL16_HIGHER:
10980 case R_PPC64_TPREL16_HIGHERA:
10981 case R_PPC64_TPREL16_HIGHEST:
10982 case R_PPC64_TPREL16_HIGHESTA:
10983 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10984 if (info->shared)
10985 /* The TPREL16 relocs shouldn't really be used in shared
10986 libs as they will result in DT_TEXTREL being set, but
10987 support them anyway. */
10988 goto dodyn;
10989 break;
10990
10991 case R_PPC64_DTPREL16:
10992 case R_PPC64_DTPREL16_LO:
10993 case R_PPC64_DTPREL16_HI:
10994 case R_PPC64_DTPREL16_HA:
10995 case R_PPC64_DTPREL16_DS:
10996 case R_PPC64_DTPREL16_LO_DS:
10997 case R_PPC64_DTPREL16_HIGHER:
10998 case R_PPC64_DTPREL16_HIGHERA:
10999 case R_PPC64_DTPREL16_HIGHEST:
11000 case R_PPC64_DTPREL16_HIGHESTA:
11001 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
11002 break;
11003
11004 case R_PPC64_DTPMOD64:
11005 relocation = 1;
11006 addend = 0;
11007 goto dodyn;
11008
11009 case R_PPC64_TPREL64:
11010 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
11011 goto dodyn;
11012
11013 case R_PPC64_DTPREL64:
11014 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
11015 /* Fall thru */
11016
11017 /* Relocations that may need to be propagated if this is a
11018 dynamic object. */
11019 case R_PPC64_REL30:
11020 case R_PPC64_REL32:
11021 case R_PPC64_REL64:
11022 case R_PPC64_ADDR14:
11023 case R_PPC64_ADDR14_BRNTAKEN:
11024 case R_PPC64_ADDR14_BRTAKEN:
11025 case R_PPC64_ADDR16:
11026 case R_PPC64_ADDR16_DS:
11027 case R_PPC64_ADDR16_HA:
11028 case R_PPC64_ADDR16_HI:
11029 case R_PPC64_ADDR16_HIGHER:
11030 case R_PPC64_ADDR16_HIGHERA:
11031 case R_PPC64_ADDR16_HIGHEST:
11032 case R_PPC64_ADDR16_HIGHESTA:
11033 case R_PPC64_ADDR16_LO:
11034 case R_PPC64_ADDR16_LO_DS:
11035 case R_PPC64_ADDR24:
11036 case R_PPC64_ADDR32:
11037 case R_PPC64_ADDR64:
11038 case R_PPC64_UADDR16:
11039 case R_PPC64_UADDR32:
11040 case R_PPC64_UADDR64:
11041 dodyn:
11042 if ((input_section->flags & SEC_ALLOC) == 0)
11043 break;
11044
11045 if (NO_OPD_RELOCS && is_opd)
11046 break;
11047
11048 if ((info->shared
11049 && (h == NULL
11050 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
11051 || h->elf.root.type != bfd_link_hash_undefweak)
11052 && (MUST_BE_DYN_RELOC (r_type)
11053 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
11054 || (ELIMINATE_COPY_RELOCS
11055 && !info->shared
11056 && h != NULL
11057 && h->elf.dynindx != -1
11058 && !h->elf.non_got_ref
11059 && h->elf.def_dynamic
11060 && !h->elf.def_regular))
11061 {
11062 Elf_Internal_Rela outrel;
11063 bfd_boolean skip, relocate;
11064 asection *sreloc;
11065 bfd_byte *loc;
11066 bfd_vma out_off;
11067
11068 /* When generating a dynamic object, these relocations
11069 are copied into the output file to be resolved at run
11070 time. */
11071
11072 skip = FALSE;
11073 relocate = FALSE;
11074
11075 out_off = _bfd_elf_section_offset (output_bfd, info,
11076 input_section, rel->r_offset);
11077 if (out_off == (bfd_vma) -1)
11078 skip = TRUE;
11079 else if (out_off == (bfd_vma) -2)
11080 skip = TRUE, relocate = TRUE;
11081 out_off += (input_section->output_section->vma
11082 + input_section->output_offset);
11083 outrel.r_offset = out_off;
11084 outrel.r_addend = rel->r_addend;
11085
11086 /* Optimize unaligned reloc use. */
11087 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
11088 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
11089 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
11090 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
11091 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
11092 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
11093 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
11094 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
11095 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
11096
11097 if (skip)
11098 memset (&outrel, 0, sizeof outrel);
11099 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
11100 && !is_opd
11101 && r_type != R_PPC64_TOC)
11102 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
11103 else
11104 {
11105 /* This symbol is local, or marked to become local,
11106 or this is an opd section reloc which must point
11107 at a local function. */
11108 outrel.r_addend += relocation;
11109 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
11110 {
11111 if (is_opd && h != NULL)
11112 {
11113 /* Lie about opd entries. This case occurs
11114 when building shared libraries and we
11115 reference a function in another shared
11116 lib. The same thing happens for a weak
11117 definition in an application that's
11118 overridden by a strong definition in a
11119 shared lib. (I believe this is a generic
11120 bug in binutils handling of weak syms.)
11121 In these cases we won't use the opd
11122 entry in this lib. */
11123 unresolved_reloc = FALSE;
11124 }
11125 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11126
11127 /* We need to relocate .opd contents for ld.so.
11128 Prelink also wants simple and consistent rules
11129 for relocs. This make all RELATIVE relocs have
11130 *r_offset equal to r_addend. */
11131 relocate = TRUE;
11132 }
11133 else
11134 {
11135 long indx = 0;
11136
11137 if (bfd_is_abs_section (sec))
11138 ;
11139 else if (sec == NULL || sec->owner == NULL)
11140 {
11141 bfd_set_error (bfd_error_bad_value);
11142 return FALSE;
11143 }
11144 else
11145 {
11146 asection *osec;
11147
11148 osec = sec->output_section;
11149 indx = elf_section_data (osec)->dynindx;
11150
11151 if (indx == 0)
11152 {
11153 if ((osec->flags & SEC_READONLY) == 0
11154 && htab->elf.data_index_section != NULL)
11155 osec = htab->elf.data_index_section;
11156 else
11157 osec = htab->elf.text_index_section;
11158 indx = elf_section_data (osec)->dynindx;
11159 }
11160 BFD_ASSERT (indx != 0);
11161
11162 /* We are turning this relocation into one
11163 against a section symbol, so subtract out
11164 the output section's address but not the
11165 offset of the input section in the output
11166 section. */
11167 outrel.r_addend -= osec->vma;
11168 }
11169
11170 outrel.r_info = ELF64_R_INFO (indx, r_type);
11171 }
11172 }
11173
11174 sreloc = elf_section_data (input_section)->sreloc;
11175 if (sreloc == NULL)
11176 abort ();
11177
11178 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
11179 >= sreloc->size)
11180 abort ();
11181 loc = sreloc->contents;
11182 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
11183 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
11184
11185 /* If this reloc is against an external symbol, it will
11186 be computed at runtime, so there's no need to do
11187 anything now. However, for the sake of prelink ensure
11188 that the section contents are a known value. */
11189 if (! relocate)
11190 {
11191 unresolved_reloc = FALSE;
11192 /* The value chosen here is quite arbitrary as ld.so
11193 ignores section contents except for the special
11194 case of .opd where the contents might be accessed
11195 before relocation. Choose zero, as that won't
11196 cause reloc overflow. */
11197 relocation = 0;
11198 addend = 0;
11199 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
11200 to improve backward compatibility with older
11201 versions of ld. */
11202 if (r_type == R_PPC64_ADDR64)
11203 addend = outrel.r_addend;
11204 /* Adjust pc_relative relocs to have zero in *r_offset. */
11205 else if (ppc64_elf_howto_table[r_type]->pc_relative)
11206 addend = (input_section->output_section->vma
11207 + input_section->output_offset
11208 + rel->r_offset);
11209 }
11210 }
11211 break;
11212
11213 case R_PPC64_COPY:
11214 case R_PPC64_GLOB_DAT:
11215 case R_PPC64_JMP_SLOT:
11216 case R_PPC64_RELATIVE:
11217 /* We shouldn't ever see these dynamic relocs in relocatable
11218 files. */
11219 /* Fall through. */
11220
11221 case R_PPC64_PLTGOT16:
11222 case R_PPC64_PLTGOT16_DS:
11223 case R_PPC64_PLTGOT16_HA:
11224 case R_PPC64_PLTGOT16_HI:
11225 case R_PPC64_PLTGOT16_LO:
11226 case R_PPC64_PLTGOT16_LO_DS:
11227 case R_PPC64_PLTREL32:
11228 case R_PPC64_PLTREL64:
11229 /* These ones haven't been implemented yet. */
11230
11231 (*_bfd_error_handler)
11232 (_("%B: relocation %s is not supported for symbol %s."),
11233 input_bfd,
11234 ppc64_elf_howto_table[r_type]->name, sym_name);
11235
11236 bfd_set_error (bfd_error_invalid_operation);
11237 ret = FALSE;
11238 continue;
11239 }
11240
11241 /* Do any further special processing. */
11242 switch (r_type)
11243 {
11244 default:
11245 break;
11246
11247 case R_PPC64_ADDR16_HA:
11248 case R_PPC64_ADDR16_HIGHERA:
11249 case R_PPC64_ADDR16_HIGHESTA:
11250 case R_PPC64_TOC16_HA:
11251 case R_PPC64_SECTOFF_HA:
11252 case R_PPC64_TPREL16_HA:
11253 case R_PPC64_DTPREL16_HA:
11254 case R_PPC64_TPREL16_HIGHER:
11255 case R_PPC64_TPREL16_HIGHERA:
11256 case R_PPC64_TPREL16_HIGHEST:
11257 case R_PPC64_TPREL16_HIGHESTA:
11258 case R_PPC64_DTPREL16_HIGHER:
11259 case R_PPC64_DTPREL16_HIGHERA:
11260 case R_PPC64_DTPREL16_HIGHEST:
11261 case R_PPC64_DTPREL16_HIGHESTA:
11262 /* It's just possible that this symbol is a weak symbol
11263 that's not actually defined anywhere. In that case,
11264 'sec' would be NULL, and we should leave the symbol
11265 alone (it will be set to zero elsewhere in the link). */
11266 if (sec == NULL)
11267 break;
11268 /* Fall thru */
11269
11270 case R_PPC64_GOT16_HA:
11271 case R_PPC64_PLTGOT16_HA:
11272 case R_PPC64_PLT16_HA:
11273 case R_PPC64_GOT_TLSGD16_HA:
11274 case R_PPC64_GOT_TLSLD16_HA:
11275 case R_PPC64_GOT_TPREL16_HA:
11276 case R_PPC64_GOT_DTPREL16_HA:
11277 /* Add 0x10000 if sign bit in 0:15 is set.
11278 Bits 0:15 are not used. */
11279 addend += 0x8000;
11280 break;
11281
11282 case R_PPC64_ADDR16_DS:
11283 case R_PPC64_ADDR16_LO_DS:
11284 case R_PPC64_GOT16_DS:
11285 case R_PPC64_GOT16_LO_DS:
11286 case R_PPC64_PLT16_LO_DS:
11287 case R_PPC64_SECTOFF_DS:
11288 case R_PPC64_SECTOFF_LO_DS:
11289 case R_PPC64_TOC16_DS:
11290 case R_PPC64_TOC16_LO_DS:
11291 case R_PPC64_PLTGOT16_DS:
11292 case R_PPC64_PLTGOT16_LO_DS:
11293 case R_PPC64_GOT_TPREL16_DS:
11294 case R_PPC64_GOT_TPREL16_LO_DS:
11295 case R_PPC64_GOT_DTPREL16_DS:
11296 case R_PPC64_GOT_DTPREL16_LO_DS:
11297 case R_PPC64_TPREL16_DS:
11298 case R_PPC64_TPREL16_LO_DS:
11299 case R_PPC64_DTPREL16_DS:
11300 case R_PPC64_DTPREL16_LO_DS:
11301 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
11302 mask = 3;
11303 /* If this reloc is against an lq insn, then the value must be
11304 a multiple of 16. This is somewhat of a hack, but the
11305 "correct" way to do this by defining _DQ forms of all the
11306 _DS relocs bloats all reloc switches in this file. It
11307 doesn't seem to make much sense to use any of these relocs
11308 in data, so testing the insn should be safe. */
11309 if ((insn & (0x3f << 26)) == (56u << 26))
11310 mask = 15;
11311 if (((relocation + addend) & mask) != 0)
11312 {
11313 (*_bfd_error_handler)
11314 (_("%B: error: relocation %s not a multiple of %d"),
11315 input_bfd,
11316 ppc64_elf_howto_table[r_type]->name,
11317 mask + 1);
11318 bfd_set_error (bfd_error_bad_value);
11319 ret = FALSE;
11320 continue;
11321 }
11322 break;
11323 }
11324
11325 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
11326 because such sections are not SEC_ALLOC and thus ld.so will
11327 not process them. */
11328 if (unresolved_reloc
11329 && !((input_section->flags & SEC_DEBUGGING) != 0
11330 && h->elf.def_dynamic))
11331 {
11332 (*_bfd_error_handler)
11333 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
11334 input_bfd,
11335 input_section,
11336 (long) rel->r_offset,
11337 ppc64_elf_howto_table[(int) r_type]->name,
11338 h->elf.root.root.string);
11339 ret = FALSE;
11340 }
11341
11342 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
11343 input_bfd,
11344 input_section,
11345 contents,
11346 rel->r_offset,
11347 relocation,
11348 addend);
11349
11350 if (r != bfd_reloc_ok)
11351 {
11352 if (sym_name == NULL)
11353 sym_name = "(null)";
11354 if (r == bfd_reloc_overflow)
11355 {
11356 if (warned)
11357 continue;
11358 if (h != NULL
11359 && h->elf.root.type == bfd_link_hash_undefweak
11360 && ppc64_elf_howto_table[r_type]->pc_relative)
11361 {
11362 /* Assume this is a call protected by other code that
11363 detects the symbol is undefined. If this is the case,
11364 we can safely ignore the overflow. If not, the
11365 program is hosed anyway, and a little warning isn't
11366 going to help. */
11367
11368 continue;
11369 }
11370
11371 if (!((*info->callbacks->reloc_overflow)
11372 (info, (h ? &h->elf.root : NULL), sym_name,
11373 ppc64_elf_howto_table[r_type]->name,
11374 orig_addend, input_bfd, input_section, rel->r_offset)))
11375 return FALSE;
11376 }
11377 else
11378 {
11379 (*_bfd_error_handler)
11380 (_("%B(%A+0x%lx): %s reloc against `%s': error %d"),
11381 input_bfd,
11382 input_section,
11383 (long) rel->r_offset,
11384 ppc64_elf_howto_table[r_type]->name,
11385 sym_name,
11386 (int) r);
11387 ret = FALSE;
11388 }
11389 }
11390 }
11391
11392 /* If we're emitting relocations, then shortly after this function
11393 returns, reloc offsets and addends for this section will be
11394 adjusted. Worse, reloc symbol indices will be for the output
11395 file rather than the input. Save a copy of the relocs for
11396 opd_entry_value. */
11397 if (is_opd && (info->emitrelocations || info->relocatable))
11398 {
11399 bfd_size_type amt;
11400 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
11401 rel = bfd_alloc (input_bfd, amt);
11402 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL);
11403 ppc64_elf_tdata (input_bfd)->opd_relocs = rel;
11404 if (rel == NULL)
11405 return FALSE;
11406 memcpy (rel, relocs, amt);
11407 }
11408 return ret;
11409 }
11410
11411 /* Adjust the value of any local symbols in opd sections. */
11412
11413 static bfd_boolean
11414 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
11415 const char *name ATTRIBUTE_UNUSED,
11416 Elf_Internal_Sym *elfsym,
11417 asection *input_sec,
11418 struct elf_link_hash_entry *h)
11419 {
11420 struct _opd_sec_data *opd;
11421 long adjust;
11422 bfd_vma value;
11423
11424 if (h != NULL)
11425 return TRUE;
11426
11427 opd = get_opd_info (input_sec);
11428 if (opd == NULL || opd->adjust == NULL)
11429 return TRUE;
11430
11431 value = elfsym->st_value - input_sec->output_offset;
11432 if (!info->relocatable)
11433 value -= input_sec->output_section->vma;
11434
11435 adjust = opd->adjust[value / 8];
11436 if (adjust == -1)
11437 elfsym->st_value = 0;
11438 else
11439 elfsym->st_value += adjust;
11440 return TRUE;
11441 }
11442
11443 /* Finish up dynamic symbol handling. We set the contents of various
11444 dynamic sections here. */
11445
11446 static bfd_boolean
11447 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
11448 struct bfd_link_info *info,
11449 struct elf_link_hash_entry *h,
11450 Elf_Internal_Sym *sym)
11451 {
11452 struct ppc_link_hash_table *htab;
11453 struct plt_entry *ent;
11454 Elf_Internal_Rela rela;
11455 bfd_byte *loc;
11456
11457 htab = ppc_hash_table (info);
11458
11459 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
11460 if (ent->plt.offset != (bfd_vma) -1)
11461 {
11462 /* This symbol has an entry in the procedure linkage
11463 table. Set it up. */
11464
11465 if (htab->plt == NULL
11466 || htab->relplt == NULL
11467 || htab->glink == NULL)
11468 abort ();
11469
11470 /* Create a JMP_SLOT reloc to inform the dynamic linker to
11471 fill in the PLT entry. */
11472 rela.r_offset = (htab->plt->output_section->vma
11473 + htab->plt->output_offset
11474 + ent->plt.offset);
11475 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
11476 rela.r_addend = ent->addend;
11477
11478 loc = htab->relplt->contents;
11479 loc += ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE
11480 * sizeof (Elf64_External_Rela));
11481 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
11482 }
11483
11484 if (h->needs_copy)
11485 {
11486 Elf_Internal_Rela rela;
11487 bfd_byte *loc;
11488
11489 /* This symbol needs a copy reloc. Set it up. */
11490
11491 if (h->dynindx == -1
11492 || (h->root.type != bfd_link_hash_defined
11493 && h->root.type != bfd_link_hash_defweak)
11494 || htab->relbss == NULL)
11495 abort ();
11496
11497 rela.r_offset = (h->root.u.def.value
11498 + h->root.u.def.section->output_section->vma
11499 + h->root.u.def.section->output_offset);
11500 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
11501 rela.r_addend = 0;
11502 loc = htab->relbss->contents;
11503 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
11504 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
11505 }
11506
11507 /* Mark some specially defined symbols as absolute. */
11508 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
11509 sym->st_shndx = SHN_ABS;
11510
11511 return TRUE;
11512 }
11513
11514 /* Used to decide how to sort relocs in an optimal manner for the
11515 dynamic linker, before writing them out. */
11516
11517 static enum elf_reloc_type_class
11518 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
11519 {
11520 enum elf_ppc64_reloc_type r_type;
11521
11522 r_type = ELF64_R_TYPE (rela->r_info);
11523 switch (r_type)
11524 {
11525 case R_PPC64_RELATIVE:
11526 return reloc_class_relative;
11527 case R_PPC64_JMP_SLOT:
11528 return reloc_class_plt;
11529 case R_PPC64_COPY:
11530 return reloc_class_copy;
11531 default:
11532 return reloc_class_normal;
11533 }
11534 }
11535
11536 /* Finish up the dynamic sections. */
11537
11538 static bfd_boolean
11539 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
11540 struct bfd_link_info *info)
11541 {
11542 struct ppc_link_hash_table *htab;
11543 bfd *dynobj;
11544 asection *sdyn;
11545
11546 htab = ppc_hash_table (info);
11547 dynobj = htab->elf.dynobj;
11548 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
11549
11550 if (htab->elf.dynamic_sections_created)
11551 {
11552 Elf64_External_Dyn *dyncon, *dynconend;
11553
11554 if (sdyn == NULL || htab->got == NULL)
11555 abort ();
11556
11557 dyncon = (Elf64_External_Dyn *) sdyn->contents;
11558 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
11559 for (; dyncon < dynconend; dyncon++)
11560 {
11561 Elf_Internal_Dyn dyn;
11562 asection *s;
11563
11564 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
11565
11566 switch (dyn.d_tag)
11567 {
11568 default:
11569 continue;
11570
11571 case DT_PPC64_GLINK:
11572 s = htab->glink;
11573 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11574 /* We stupidly defined DT_PPC64_GLINK to be the start
11575 of glink rather than the first entry point, which is
11576 what ld.so needs, and now have a bigger stub to
11577 support automatic multiple TOCs. */
11578 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
11579 break;
11580
11581 case DT_PPC64_OPD:
11582 s = bfd_get_section_by_name (output_bfd, ".opd");
11583 if (s == NULL)
11584 continue;
11585 dyn.d_un.d_ptr = s->vma;
11586 break;
11587
11588 case DT_PPC64_OPDSZ:
11589 s = bfd_get_section_by_name (output_bfd, ".opd");
11590 if (s == NULL)
11591 continue;
11592 dyn.d_un.d_val = s->size;
11593 break;
11594
11595 case DT_PLTGOT:
11596 s = htab->plt;
11597 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11598 break;
11599
11600 case DT_JMPREL:
11601 s = htab->relplt;
11602 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11603 break;
11604
11605 case DT_PLTRELSZ:
11606 dyn.d_un.d_val = htab->relplt->size;
11607 break;
11608
11609 case DT_RELASZ:
11610 /* Don't count procedure linkage table relocs in the
11611 overall reloc count. */
11612 s = htab->relplt;
11613 if (s == NULL)
11614 continue;
11615 dyn.d_un.d_val -= s->size;
11616 break;
11617
11618 case DT_RELA:
11619 /* We may not be using the standard ELF linker script.
11620 If .rela.plt is the first .rela section, we adjust
11621 DT_RELA to not include it. */
11622 s = htab->relplt;
11623 if (s == NULL)
11624 continue;
11625 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
11626 continue;
11627 dyn.d_un.d_ptr += s->size;
11628 break;
11629 }
11630
11631 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
11632 }
11633 }
11634
11635 if (htab->got != NULL && htab->got->size != 0)
11636 {
11637 /* Fill in the first entry in the global offset table.
11638 We use it to hold the link-time TOCbase. */
11639 bfd_put_64 (output_bfd,
11640 elf_gp (output_bfd) + TOC_BASE_OFF,
11641 htab->got->contents);
11642
11643 /* Set .got entry size. */
11644 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
11645 }
11646
11647 if (htab->plt != NULL && htab->plt->size != 0)
11648 {
11649 /* Set .plt entry size. */
11650 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
11651 = PLT_ENTRY_SIZE;
11652 }
11653
11654 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
11655 brlt ourselves if emitrelocations. */
11656 if (htab->brlt != NULL
11657 && htab->brlt->reloc_count != 0
11658 && !_bfd_elf_link_output_relocs (output_bfd,
11659 htab->brlt,
11660 &elf_section_data (htab->brlt)->rel_hdr,
11661 elf_section_data (htab->brlt)->relocs,
11662 NULL))
11663 return FALSE;
11664
11665 if (htab->glink != NULL
11666 && htab->glink->reloc_count != 0
11667 && !_bfd_elf_link_output_relocs (output_bfd,
11668 htab->glink,
11669 &elf_section_data (htab->glink)->rel_hdr,
11670 elf_section_data (htab->glink)->relocs,
11671 NULL))
11672 return FALSE;
11673
11674 /* We need to handle writing out multiple GOT sections ourselves,
11675 since we didn't add them to DYNOBJ. We know dynobj is the first
11676 bfd. */
11677 while ((dynobj = dynobj->link_next) != NULL)
11678 {
11679 asection *s;
11680
11681 if (!is_ppc64_elf (dynobj))
11682 continue;
11683
11684 s = ppc64_elf_tdata (dynobj)->got;
11685 if (s != NULL
11686 && s->size != 0
11687 && s->output_section != bfd_abs_section_ptr
11688 && !bfd_set_section_contents (output_bfd, s->output_section,
11689 s->contents, s->output_offset,
11690 s->size))
11691 return FALSE;
11692 s = ppc64_elf_tdata (dynobj)->relgot;
11693 if (s != NULL
11694 && s->size != 0
11695 && s->output_section != bfd_abs_section_ptr
11696 && !bfd_set_section_contents (output_bfd, s->output_section,
11697 s->contents, s->output_offset,
11698 s->size))
11699 return FALSE;
11700 }
11701
11702 return TRUE;
11703 }
11704
11705 #include "elf64-target.h"
This page took 0.565675 seconds and 4 git commands to generate.