daily update
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra <amodra@bigpond.net.au>
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "bfd.h"
29 #include "sysdep.h"
30 #include "bfdlink.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/ppc64.h"
34 #include "elf64-ppc.h"
35
36 static bfd_reloc_status_type ppc64_elf_ha_reloc
37 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
38 static bfd_reloc_status_type ppc64_elf_branch_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_toc_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc64_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_vma opd_entry_value
55 (asection *, bfd_vma, asection **, bfd_vma *);
56
57 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
58 #define TARGET_LITTLE_NAME "elf64-powerpcle"
59 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
60 #define TARGET_BIG_NAME "elf64-powerpc"
61 #define ELF_ARCH bfd_arch_powerpc
62 #define ELF_MACHINE_CODE EM_PPC64
63 #define ELF_MAXPAGESIZE 0x10000
64 #define elf_info_to_howto ppc64_elf_info_to_howto
65
66 #define elf_backend_want_got_sym 0
67 #define elf_backend_want_plt_sym 0
68 #define elf_backend_plt_alignment 3
69 #define elf_backend_plt_not_loaded 1
70 #define elf_backend_got_symbol_offset 0
71 #define elf_backend_got_header_size 8
72 #define elf_backend_can_gc_sections 1
73 #define elf_backend_can_refcount 1
74 #define elf_backend_rela_normal 1
75
76 #define bfd_elf64_mkobject ppc64_elf_mkobject
77 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
78 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
79 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
80 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
81 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
82 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
83
84 #define elf_backend_object_p ppc64_elf_object_p
85 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
86 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
87 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
88 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
89 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
90 #define elf_backend_check_directives ppc64_elf_check_directives
91 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
92 #define elf_backend_check_relocs ppc64_elf_check_relocs
93 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
94 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
95 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
96 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
97 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
98 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
99 #define elf_backend_relocate_section ppc64_elf_relocate_section
100 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
101 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
102 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
103 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
104 #define elf_backend_special_sections ppc64_elf_special_sections
105
106 /* The name of the dynamic interpreter. This is put in the .interp
107 section. */
108 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
109
110 /* The size in bytes of an entry in the procedure linkage table. */
111 #define PLT_ENTRY_SIZE 24
112
113 /* The initial size of the plt reserved for the dynamic linker. */
114 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
115
116 /* TOC base pointers offset from start of TOC. */
117 #define TOC_BASE_OFF 0x8000
118
119 /* Offset of tp and dtp pointers from start of TLS block. */
120 #define TP_OFFSET 0x7000
121 #define DTP_OFFSET 0x8000
122
123 /* .plt call stub instructions. The normal stub is like this, but
124 sometimes the .plt entry crosses a 64k boundary and we need to
125 insert an addis to adjust r12. */
126 #define PLT_CALL_STUB_SIZE (7*4)
127 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
128 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
129 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
130 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
131 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
132 /* ld %r11,xxx+16@l(%r12) */
133 #define BCTR 0x4e800420 /* bctr */
134
135
136 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
137 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
138
139 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
140
141 /* glink call stub instructions. We enter with the index in R0, and the
142 address of glink entry in CTR. From that, we can calculate PLT0. */
143 #define GLINK_CALL_STUB_SIZE (16*4)
144 #define MFCTR_R12 0x7d8902a6 /* mfctr %r12 */
145 #define SLDI_R11_R0_3 0x780b1f24 /* sldi %r11,%r0,3 */
146 #define ADDIC_R2_R0_32K 0x34408000 /* addic. %r2,%r0,-32768 */
147 #define SUB_R12_R12_R11 0x7d8b6050 /* sub %r12,%r12,%r11 */
148 #define SRADI_R2_R2_63 0x7c42fe76 /* sradi %r2,%r2,63 */
149 #define SLDI_R11_R0_2 0x780b1764 /* sldi %r11,%r0,2 */
150 #define AND_R2_R2_R11 0x7c425838 /* and %r2,%r2,%r11 */
151 /* sub %r12,%r12,%r11 */
152 #define ADD_R12_R12_R2 0x7d8c1214 /* add %r12,%r12,%r2 */
153 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
154 /* ld %r11,xxx@l(%r12) */
155 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,xxx@l */
156 /* ld %r2,8(%r12) */
157 /* mtctr %r11 */
158 /* ld %r11,16(%r12) */
159 /* bctr */
160
161 /* Pad with this. */
162 #define NOP 0x60000000
163
164 /* Some other nops. */
165 #define CROR_151515 0x4def7b82
166 #define CROR_313131 0x4ffffb82
167
168 /* .glink entries for the first 32k functions are two instructions. */
169 #define LI_R0_0 0x38000000 /* li %r0,0 */
170 #define B_DOT 0x48000000 /* b . */
171
172 /* After that, we need two instructions to load the index, followed by
173 a branch. */
174 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
175 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
176
177 /* Instructions used by the save and restore reg functions. */
178 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
179 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
180 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
181 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
182 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
183 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
184 #define LI_R12_0 0x39800000 /* li %r12,0 */
185 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
186 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
187 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
188 #define BLR 0x4e800020 /* blr */
189
190 /* Since .opd is an array of descriptors and each entry will end up
191 with identical R_PPC64_RELATIVE relocs, there is really no need to
192 propagate .opd relocs; The dynamic linker should be taught to
193 relocate .opd without reloc entries. */
194 #ifndef NO_OPD_RELOCS
195 #define NO_OPD_RELOCS 0
196 #endif
197 \f
198 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
199
200 /* Relocation HOWTO's. */
201 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
202
203 static reloc_howto_type ppc64_elf_howto_raw[] = {
204 /* This reloc does nothing. */
205 HOWTO (R_PPC64_NONE, /* type */
206 0, /* rightshift */
207 2, /* size (0 = byte, 1 = short, 2 = long) */
208 32, /* bitsize */
209 FALSE, /* pc_relative */
210 0, /* bitpos */
211 complain_overflow_dont, /* complain_on_overflow */
212 bfd_elf_generic_reloc, /* special_function */
213 "R_PPC64_NONE", /* name */
214 FALSE, /* partial_inplace */
215 0, /* src_mask */
216 0, /* dst_mask */
217 FALSE), /* pcrel_offset */
218
219 /* A standard 32 bit relocation. */
220 HOWTO (R_PPC64_ADDR32, /* type */
221 0, /* rightshift */
222 2, /* size (0 = byte, 1 = short, 2 = long) */
223 32, /* bitsize */
224 FALSE, /* pc_relative */
225 0, /* bitpos */
226 complain_overflow_bitfield, /* complain_on_overflow */
227 bfd_elf_generic_reloc, /* special_function */
228 "R_PPC64_ADDR32", /* name */
229 FALSE, /* partial_inplace */
230 0, /* src_mask */
231 0xffffffff, /* dst_mask */
232 FALSE), /* pcrel_offset */
233
234 /* An absolute 26 bit branch; the lower two bits must be zero.
235 FIXME: we don't check that, we just clear them. */
236 HOWTO (R_PPC64_ADDR24, /* type */
237 0, /* rightshift */
238 2, /* size (0 = byte, 1 = short, 2 = long) */
239 26, /* bitsize */
240 FALSE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_bitfield, /* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_PPC64_ADDR24", /* name */
245 FALSE, /* partial_inplace */
246 0, /* src_mask */
247 0x03fffffc, /* dst_mask */
248 FALSE), /* pcrel_offset */
249
250 /* A standard 16 bit relocation. */
251 HOWTO (R_PPC64_ADDR16, /* type */
252 0, /* rightshift */
253 1, /* size (0 = byte, 1 = short, 2 = long) */
254 16, /* bitsize */
255 FALSE, /* pc_relative */
256 0, /* bitpos */
257 complain_overflow_bitfield, /* complain_on_overflow */
258 bfd_elf_generic_reloc, /* special_function */
259 "R_PPC64_ADDR16", /* name */
260 FALSE, /* partial_inplace */
261 0, /* src_mask */
262 0xffff, /* dst_mask */
263 FALSE), /* pcrel_offset */
264
265 /* A 16 bit relocation without overflow. */
266 HOWTO (R_PPC64_ADDR16_LO, /* type */
267 0, /* rightshift */
268 1, /* size (0 = byte, 1 = short, 2 = long) */
269 16, /* bitsize */
270 FALSE, /* pc_relative */
271 0, /* bitpos */
272 complain_overflow_dont,/* complain_on_overflow */
273 bfd_elf_generic_reloc, /* special_function */
274 "R_PPC64_ADDR16_LO", /* name */
275 FALSE, /* partial_inplace */
276 0, /* src_mask */
277 0xffff, /* dst_mask */
278 FALSE), /* pcrel_offset */
279
280 /* Bits 16-31 of an address. */
281 HOWTO (R_PPC64_ADDR16_HI, /* type */
282 16, /* rightshift */
283 1, /* size (0 = byte, 1 = short, 2 = long) */
284 16, /* bitsize */
285 FALSE, /* pc_relative */
286 0, /* bitpos */
287 complain_overflow_dont, /* complain_on_overflow */
288 bfd_elf_generic_reloc, /* special_function */
289 "R_PPC64_ADDR16_HI", /* name */
290 FALSE, /* partial_inplace */
291 0, /* src_mask */
292 0xffff, /* dst_mask */
293 FALSE), /* pcrel_offset */
294
295 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
296 bits, treated as a signed number, is negative. */
297 HOWTO (R_PPC64_ADDR16_HA, /* type */
298 16, /* rightshift */
299 1, /* size (0 = byte, 1 = short, 2 = long) */
300 16, /* bitsize */
301 FALSE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_dont, /* complain_on_overflow */
304 ppc64_elf_ha_reloc, /* special_function */
305 "R_PPC64_ADDR16_HA", /* name */
306 FALSE, /* partial_inplace */
307 0, /* src_mask */
308 0xffff, /* dst_mask */
309 FALSE), /* pcrel_offset */
310
311 /* An absolute 16 bit branch; the lower two bits must be zero.
312 FIXME: we don't check that, we just clear them. */
313 HOWTO (R_PPC64_ADDR14, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 16, /* bitsize */
317 FALSE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 ppc64_elf_branch_reloc, /* special_function */
321 "R_PPC64_ADDR14", /* name */
322 FALSE, /* partial_inplace */
323 0, /* src_mask */
324 0x0000fffc, /* dst_mask */
325 FALSE), /* pcrel_offset */
326
327 /* An absolute 16 bit branch, for which bit 10 should be set to
328 indicate that the branch is expected to be taken. The lower two
329 bits must be zero. */
330 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
331 0, /* rightshift */
332 2, /* size (0 = byte, 1 = short, 2 = long) */
333 16, /* bitsize */
334 FALSE, /* pc_relative */
335 0, /* bitpos */
336 complain_overflow_bitfield, /* complain_on_overflow */
337 ppc64_elf_brtaken_reloc, /* special_function */
338 "R_PPC64_ADDR14_BRTAKEN",/* name */
339 FALSE, /* partial_inplace */
340 0, /* src_mask */
341 0x0000fffc, /* dst_mask */
342 FALSE), /* pcrel_offset */
343
344 /* An absolute 16 bit branch, for which bit 10 should be set to
345 indicate that the branch is not expected to be taken. The lower
346 two bits must be zero. */
347 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 16, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield, /* complain_on_overflow */
354 ppc64_elf_brtaken_reloc, /* special_function */
355 "R_PPC64_ADDR14_BRNTAKEN",/* name */
356 FALSE, /* partial_inplace */
357 0, /* src_mask */
358 0x0000fffc, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* A relative 26 bit branch; the lower two bits must be zero. */
362 HOWTO (R_PPC64_REL24, /* type */
363 0, /* rightshift */
364 2, /* size (0 = byte, 1 = short, 2 = long) */
365 26, /* bitsize */
366 TRUE, /* pc_relative */
367 0, /* bitpos */
368 complain_overflow_signed, /* complain_on_overflow */
369 ppc64_elf_branch_reloc, /* special_function */
370 "R_PPC64_REL24", /* name */
371 FALSE, /* partial_inplace */
372 0, /* src_mask */
373 0x03fffffc, /* dst_mask */
374 TRUE), /* pcrel_offset */
375
376 /* A relative 16 bit branch; the lower two bits must be zero. */
377 HOWTO (R_PPC64_REL14, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 16, /* bitsize */
381 TRUE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_signed, /* complain_on_overflow */
384 ppc64_elf_branch_reloc, /* special_function */
385 "R_PPC64_REL14", /* name */
386 FALSE, /* partial_inplace */
387 0, /* src_mask */
388 0x0000fffc, /* dst_mask */
389 TRUE), /* pcrel_offset */
390
391 /* A relative 16 bit branch. Bit 10 should be set to indicate that
392 the branch is expected to be taken. The lower two bits must be
393 zero. */
394 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
395 0, /* rightshift */
396 2, /* size (0 = byte, 1 = short, 2 = long) */
397 16, /* bitsize */
398 TRUE, /* pc_relative */
399 0, /* bitpos */
400 complain_overflow_signed, /* complain_on_overflow */
401 ppc64_elf_brtaken_reloc, /* special_function */
402 "R_PPC64_REL14_BRTAKEN", /* name */
403 FALSE, /* partial_inplace */
404 0, /* src_mask */
405 0x0000fffc, /* dst_mask */
406 TRUE), /* pcrel_offset */
407
408 /* A relative 16 bit branch. Bit 10 should be set to indicate that
409 the branch is not expected to be taken. The lower two bits must
410 be zero. */
411 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
412 0, /* rightshift */
413 2, /* size (0 = byte, 1 = short, 2 = long) */
414 16, /* bitsize */
415 TRUE, /* pc_relative */
416 0, /* bitpos */
417 complain_overflow_signed, /* complain_on_overflow */
418 ppc64_elf_brtaken_reloc, /* special_function */
419 "R_PPC64_REL14_BRNTAKEN",/* name */
420 FALSE, /* partial_inplace */
421 0, /* src_mask */
422 0x0000fffc, /* dst_mask */
423 TRUE), /* pcrel_offset */
424
425 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
426 symbol. */
427 HOWTO (R_PPC64_GOT16, /* type */
428 0, /* rightshift */
429 1, /* size (0 = byte, 1 = short, 2 = long) */
430 16, /* bitsize */
431 FALSE, /* pc_relative */
432 0, /* bitpos */
433 complain_overflow_signed, /* complain_on_overflow */
434 ppc64_elf_unhandled_reloc, /* special_function */
435 "R_PPC64_GOT16", /* name */
436 FALSE, /* partial_inplace */
437 0, /* src_mask */
438 0xffff, /* dst_mask */
439 FALSE), /* pcrel_offset */
440
441 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
442 the symbol. */
443 HOWTO (R_PPC64_GOT16_LO, /* type */
444 0, /* rightshift */
445 1, /* size (0 = byte, 1 = short, 2 = long) */
446 16, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 ppc64_elf_unhandled_reloc, /* special_function */
451 "R_PPC64_GOT16_LO", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0xffff, /* dst_mask */
455 FALSE), /* pcrel_offset */
456
457 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
458 the symbol. */
459 HOWTO (R_PPC64_GOT16_HI, /* type */
460 16, /* rightshift */
461 1, /* size (0 = byte, 1 = short, 2 = long) */
462 16, /* bitsize */
463 FALSE, /* pc_relative */
464 0, /* bitpos */
465 complain_overflow_dont,/* complain_on_overflow */
466 ppc64_elf_unhandled_reloc, /* special_function */
467 "R_PPC64_GOT16_HI", /* name */
468 FALSE, /* partial_inplace */
469 0, /* src_mask */
470 0xffff, /* dst_mask */
471 FALSE), /* pcrel_offset */
472
473 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
474 the symbol. */
475 HOWTO (R_PPC64_GOT16_HA, /* type */
476 16, /* rightshift */
477 1, /* size (0 = byte, 1 = short, 2 = long) */
478 16, /* bitsize */
479 FALSE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_dont,/* complain_on_overflow */
482 ppc64_elf_unhandled_reloc, /* special_function */
483 "R_PPC64_GOT16_HA", /* name */
484 FALSE, /* partial_inplace */
485 0, /* src_mask */
486 0xffff, /* dst_mask */
487 FALSE), /* pcrel_offset */
488
489 /* This is used only by the dynamic linker. The symbol should exist
490 both in the object being run and in some shared library. The
491 dynamic linker copies the data addressed by the symbol from the
492 shared library into the object, because the object being
493 run has to have the data at some particular address. */
494 HOWTO (R_PPC64_COPY, /* type */
495 0, /* rightshift */
496 0, /* this one is variable size */
497 0, /* bitsize */
498 FALSE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_dont, /* complain_on_overflow */
501 ppc64_elf_unhandled_reloc, /* special_function */
502 "R_PPC64_COPY", /* name */
503 FALSE, /* partial_inplace */
504 0, /* src_mask */
505 0, /* dst_mask */
506 FALSE), /* pcrel_offset */
507
508 /* Like R_PPC64_ADDR64, but used when setting global offset table
509 entries. */
510 HOWTO (R_PPC64_GLOB_DAT, /* type */
511 0, /* rightshift */
512 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
513 64, /* bitsize */
514 FALSE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_dont, /* complain_on_overflow */
517 ppc64_elf_unhandled_reloc, /* special_function */
518 "R_PPC64_GLOB_DAT", /* name */
519 FALSE, /* partial_inplace */
520 0, /* src_mask */
521 ONES (64), /* dst_mask */
522 FALSE), /* pcrel_offset */
523
524 /* Created by the link editor. Marks a procedure linkage table
525 entry for a symbol. */
526 HOWTO (R_PPC64_JMP_SLOT, /* type */
527 0, /* rightshift */
528 0, /* size (0 = byte, 1 = short, 2 = long) */
529 0, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont, /* complain_on_overflow */
533 ppc64_elf_unhandled_reloc, /* special_function */
534 "R_PPC64_JMP_SLOT", /* name */
535 FALSE, /* partial_inplace */
536 0, /* src_mask */
537 0, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 /* Used only by the dynamic linker. When the object is run, this
541 doubleword64 is set to the load address of the object, plus the
542 addend. */
543 HOWTO (R_PPC64_RELATIVE, /* type */
544 0, /* rightshift */
545 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
546 64, /* bitsize */
547 FALSE, /* pc_relative */
548 0, /* bitpos */
549 complain_overflow_dont, /* complain_on_overflow */
550 bfd_elf_generic_reloc, /* special_function */
551 "R_PPC64_RELATIVE", /* name */
552 FALSE, /* partial_inplace */
553 0, /* src_mask */
554 ONES (64), /* dst_mask */
555 FALSE), /* pcrel_offset */
556
557 /* Like R_PPC64_ADDR32, but may be unaligned. */
558 HOWTO (R_PPC64_UADDR32, /* type */
559 0, /* rightshift */
560 2, /* size (0 = byte, 1 = short, 2 = long) */
561 32, /* bitsize */
562 FALSE, /* pc_relative */
563 0, /* bitpos */
564 complain_overflow_bitfield, /* complain_on_overflow */
565 bfd_elf_generic_reloc, /* special_function */
566 "R_PPC64_UADDR32", /* name */
567 FALSE, /* partial_inplace */
568 0, /* src_mask */
569 0xffffffff, /* dst_mask */
570 FALSE), /* pcrel_offset */
571
572 /* Like R_PPC64_ADDR16, but may be unaligned. */
573 HOWTO (R_PPC64_UADDR16, /* type */
574 0, /* rightshift */
575 1, /* size (0 = byte, 1 = short, 2 = long) */
576 16, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_bitfield, /* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_PPC64_UADDR16", /* name */
582 FALSE, /* partial_inplace */
583 0, /* src_mask */
584 0xffff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 /* 32-bit PC relative. */
588 HOWTO (R_PPC64_REL32, /* type */
589 0, /* rightshift */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
591 32, /* bitsize */
592 TRUE, /* pc_relative */
593 0, /* bitpos */
594 /* FIXME: Verify. Was complain_overflow_bitfield. */
595 complain_overflow_signed, /* complain_on_overflow */
596 bfd_elf_generic_reloc, /* special_function */
597 "R_PPC64_REL32", /* name */
598 FALSE, /* partial_inplace */
599 0, /* src_mask */
600 0xffffffff, /* dst_mask */
601 TRUE), /* pcrel_offset */
602
603 /* 32-bit relocation to the symbol's procedure linkage table. */
604 HOWTO (R_PPC64_PLT32, /* type */
605 0, /* rightshift */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
607 32, /* bitsize */
608 FALSE, /* pc_relative */
609 0, /* bitpos */
610 complain_overflow_bitfield, /* complain_on_overflow */
611 ppc64_elf_unhandled_reloc, /* special_function */
612 "R_PPC64_PLT32", /* name */
613 FALSE, /* partial_inplace */
614 0, /* src_mask */
615 0xffffffff, /* dst_mask */
616 FALSE), /* pcrel_offset */
617
618 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
619 FIXME: R_PPC64_PLTREL32 not supported. */
620 HOWTO (R_PPC64_PLTREL32, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 TRUE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_signed, /* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_PPC64_PLTREL32", /* name */
629 FALSE, /* partial_inplace */
630 0, /* src_mask */
631 0xffffffff, /* dst_mask */
632 TRUE), /* pcrel_offset */
633
634 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
635 the symbol. */
636 HOWTO (R_PPC64_PLT16_LO, /* type */
637 0, /* rightshift */
638 1, /* size (0 = byte, 1 = short, 2 = long) */
639 16, /* bitsize */
640 FALSE, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_dont, /* complain_on_overflow */
643 ppc64_elf_unhandled_reloc, /* special_function */
644 "R_PPC64_PLT16_LO", /* name */
645 FALSE, /* partial_inplace */
646 0, /* src_mask */
647 0xffff, /* dst_mask */
648 FALSE), /* pcrel_offset */
649
650 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
651 the symbol. */
652 HOWTO (R_PPC64_PLT16_HI, /* type */
653 16, /* rightshift */
654 1, /* size (0 = byte, 1 = short, 2 = long) */
655 16, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont, /* complain_on_overflow */
659 ppc64_elf_unhandled_reloc, /* special_function */
660 "R_PPC64_PLT16_HI", /* name */
661 FALSE, /* partial_inplace */
662 0, /* src_mask */
663 0xffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
667 the symbol. */
668 HOWTO (R_PPC64_PLT16_HA, /* type */
669 16, /* rightshift */
670 1, /* size (0 = byte, 1 = short, 2 = long) */
671 16, /* bitsize */
672 FALSE, /* pc_relative */
673 0, /* bitpos */
674 complain_overflow_dont, /* complain_on_overflow */
675 ppc64_elf_unhandled_reloc, /* special_function */
676 "R_PPC64_PLT16_HA", /* name */
677 FALSE, /* partial_inplace */
678 0, /* src_mask */
679 0xffff, /* dst_mask */
680 FALSE), /* pcrel_offset */
681
682 /* 16-bit section relative relocation. */
683 HOWTO (R_PPC64_SECTOFF, /* type */
684 0, /* rightshift */
685 1, /* size (0 = byte, 1 = short, 2 = long) */
686 16, /* bitsize */
687 FALSE, /* pc_relative */
688 0, /* bitpos */
689 complain_overflow_bitfield, /* complain_on_overflow */
690 ppc64_elf_sectoff_reloc, /* special_function */
691 "R_PPC64_SECTOFF", /* name */
692 FALSE, /* partial_inplace */
693 0, /* src_mask */
694 0xffff, /* dst_mask */
695 FALSE), /* pcrel_offset */
696
697 /* Like R_PPC64_SECTOFF, but no overflow warning. */
698 HOWTO (R_PPC64_SECTOFF_LO, /* type */
699 0, /* rightshift */
700 1, /* size (0 = byte, 1 = short, 2 = long) */
701 16, /* bitsize */
702 FALSE, /* pc_relative */
703 0, /* bitpos */
704 complain_overflow_dont, /* complain_on_overflow */
705 ppc64_elf_sectoff_reloc, /* special_function */
706 "R_PPC64_SECTOFF_LO", /* name */
707 FALSE, /* partial_inplace */
708 0, /* src_mask */
709 0xffff, /* dst_mask */
710 FALSE), /* pcrel_offset */
711
712 /* 16-bit upper half section relative relocation. */
713 HOWTO (R_PPC64_SECTOFF_HI, /* type */
714 16, /* rightshift */
715 1, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 FALSE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont, /* complain_on_overflow */
720 ppc64_elf_sectoff_reloc, /* special_function */
721 "R_PPC64_SECTOFF_HI", /* name */
722 FALSE, /* partial_inplace */
723 0, /* src_mask */
724 0xffff, /* dst_mask */
725 FALSE), /* pcrel_offset */
726
727 /* 16-bit upper half adjusted section relative relocation. */
728 HOWTO (R_PPC64_SECTOFF_HA, /* type */
729 16, /* rightshift */
730 1, /* size (0 = byte, 1 = short, 2 = long) */
731 16, /* bitsize */
732 FALSE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 ppc64_elf_sectoff_ha_reloc, /* special_function */
736 "R_PPC64_SECTOFF_HA", /* name */
737 FALSE, /* partial_inplace */
738 0, /* src_mask */
739 0xffff, /* dst_mask */
740 FALSE), /* pcrel_offset */
741
742 /* Like R_PPC64_REL24 without touching the two least significant bits. */
743 HOWTO (R_PPC64_REL30, /* type */
744 2, /* rightshift */
745 2, /* size (0 = byte, 1 = short, 2 = long) */
746 30, /* bitsize */
747 TRUE, /* pc_relative */
748 0, /* bitpos */
749 complain_overflow_dont, /* complain_on_overflow */
750 bfd_elf_generic_reloc, /* special_function */
751 "R_PPC64_REL30", /* name */
752 FALSE, /* partial_inplace */
753 0, /* src_mask */
754 0xfffffffc, /* dst_mask */
755 TRUE), /* pcrel_offset */
756
757 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
758
759 /* A standard 64-bit relocation. */
760 HOWTO (R_PPC64_ADDR64, /* type */
761 0, /* rightshift */
762 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
763 64, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_dont, /* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_PPC64_ADDR64", /* name */
769 FALSE, /* partial_inplace */
770 0, /* src_mask */
771 ONES (64), /* dst_mask */
772 FALSE), /* pcrel_offset */
773
774 /* The bits 32-47 of an address. */
775 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
776 32, /* rightshift */
777 1, /* size (0 = byte, 1 = short, 2 = long) */
778 16, /* bitsize */
779 FALSE, /* pc_relative */
780 0, /* bitpos */
781 complain_overflow_dont, /* complain_on_overflow */
782 bfd_elf_generic_reloc, /* special_function */
783 "R_PPC64_ADDR16_HIGHER", /* name */
784 FALSE, /* partial_inplace */
785 0, /* src_mask */
786 0xffff, /* dst_mask */
787 FALSE), /* pcrel_offset */
788
789 /* The bits 32-47 of an address, plus 1 if the contents of the low
790 16 bits, treated as a signed number, is negative. */
791 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
792 32, /* rightshift */
793 1, /* size (0 = byte, 1 = short, 2 = long) */
794 16, /* bitsize */
795 FALSE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_dont, /* complain_on_overflow */
798 ppc64_elf_ha_reloc, /* special_function */
799 "R_PPC64_ADDR16_HIGHERA", /* name */
800 FALSE, /* partial_inplace */
801 0, /* src_mask */
802 0xffff, /* dst_mask */
803 FALSE), /* pcrel_offset */
804
805 /* The bits 48-63 of an address. */
806 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
807 48, /* rightshift */
808 1, /* size (0 = byte, 1 = short, 2 = long) */
809 16, /* bitsize */
810 FALSE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_PPC64_ADDR16_HIGHEST", /* name */
815 FALSE, /* partial_inplace */
816 0, /* src_mask */
817 0xffff, /* dst_mask */
818 FALSE), /* pcrel_offset */
819
820 /* The bits 48-63 of an address, plus 1 if the contents of the low
821 16 bits, treated as a signed number, is negative. */
822 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
823 48, /* rightshift */
824 1, /* size (0 = byte, 1 = short, 2 = long) */
825 16, /* bitsize */
826 FALSE, /* pc_relative */
827 0, /* bitpos */
828 complain_overflow_dont, /* complain_on_overflow */
829 ppc64_elf_ha_reloc, /* special_function */
830 "R_PPC64_ADDR16_HIGHESTA", /* name */
831 FALSE, /* partial_inplace */
832 0, /* src_mask */
833 0xffff, /* dst_mask */
834 FALSE), /* pcrel_offset */
835
836 /* Like ADDR64, but may be unaligned. */
837 HOWTO (R_PPC64_UADDR64, /* type */
838 0, /* rightshift */
839 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
840 64, /* bitsize */
841 FALSE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont, /* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_PPC64_UADDR64", /* name */
846 FALSE, /* partial_inplace */
847 0, /* src_mask */
848 ONES (64), /* dst_mask */
849 FALSE), /* pcrel_offset */
850
851 /* 64-bit relative relocation. */
852 HOWTO (R_PPC64_REL64, /* type */
853 0, /* rightshift */
854 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
855 64, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont, /* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
860 "R_PPC64_REL64", /* name */
861 FALSE, /* partial_inplace */
862 0, /* src_mask */
863 ONES (64), /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 /* 64-bit relocation to the symbol's procedure linkage table. */
867 HOWTO (R_PPC64_PLT64, /* type */
868 0, /* rightshift */
869 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
870 64, /* bitsize */
871 FALSE, /* pc_relative */
872 0, /* bitpos */
873 complain_overflow_dont, /* complain_on_overflow */
874 ppc64_elf_unhandled_reloc, /* special_function */
875 "R_PPC64_PLT64", /* name */
876 FALSE, /* partial_inplace */
877 0, /* src_mask */
878 ONES (64), /* dst_mask */
879 FALSE), /* pcrel_offset */
880
881 /* 64-bit PC relative relocation to the symbol's procedure linkage
882 table. */
883 /* FIXME: R_PPC64_PLTREL64 not supported. */
884 HOWTO (R_PPC64_PLTREL64, /* type */
885 0, /* rightshift */
886 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
887 64, /* bitsize */
888 TRUE, /* pc_relative */
889 0, /* bitpos */
890 complain_overflow_dont, /* complain_on_overflow */
891 ppc64_elf_unhandled_reloc, /* special_function */
892 "R_PPC64_PLTREL64", /* name */
893 FALSE, /* partial_inplace */
894 0, /* src_mask */
895 ONES (64), /* dst_mask */
896 TRUE), /* pcrel_offset */
897
898 /* 16 bit TOC-relative relocation. */
899
900 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
901 HOWTO (R_PPC64_TOC16, /* type */
902 0, /* rightshift */
903 1, /* size (0 = byte, 1 = short, 2 = long) */
904 16, /* bitsize */
905 FALSE, /* pc_relative */
906 0, /* bitpos */
907 complain_overflow_signed, /* complain_on_overflow */
908 ppc64_elf_toc_reloc, /* special_function */
909 "R_PPC64_TOC16", /* name */
910 FALSE, /* partial_inplace */
911 0, /* src_mask */
912 0xffff, /* dst_mask */
913 FALSE), /* pcrel_offset */
914
915 /* 16 bit TOC-relative relocation without overflow. */
916
917 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
918 HOWTO (R_PPC64_TOC16_LO, /* type */
919 0, /* rightshift */
920 1, /* size (0 = byte, 1 = short, 2 = long) */
921 16, /* bitsize */
922 FALSE, /* pc_relative */
923 0, /* bitpos */
924 complain_overflow_dont, /* complain_on_overflow */
925 ppc64_elf_toc_reloc, /* special_function */
926 "R_PPC64_TOC16_LO", /* name */
927 FALSE, /* partial_inplace */
928 0, /* src_mask */
929 0xffff, /* dst_mask */
930 FALSE), /* pcrel_offset */
931
932 /* 16 bit TOC-relative relocation, high 16 bits. */
933
934 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
935 HOWTO (R_PPC64_TOC16_HI, /* type */
936 16, /* rightshift */
937 1, /* size (0 = byte, 1 = short, 2 = long) */
938 16, /* bitsize */
939 FALSE, /* pc_relative */
940 0, /* bitpos */
941 complain_overflow_dont, /* complain_on_overflow */
942 ppc64_elf_toc_reloc, /* special_function */
943 "R_PPC64_TOC16_HI", /* name */
944 FALSE, /* partial_inplace */
945 0, /* src_mask */
946 0xffff, /* dst_mask */
947 FALSE), /* pcrel_offset */
948
949 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
950 contents of the low 16 bits, treated as a signed number, is
951 negative. */
952
953 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
954 HOWTO (R_PPC64_TOC16_HA, /* type */
955 16, /* rightshift */
956 1, /* size (0 = byte, 1 = short, 2 = long) */
957 16, /* bitsize */
958 FALSE, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_dont, /* complain_on_overflow */
961 ppc64_elf_toc_ha_reloc, /* special_function */
962 "R_PPC64_TOC16_HA", /* name */
963 FALSE, /* partial_inplace */
964 0, /* src_mask */
965 0xffff, /* dst_mask */
966 FALSE), /* pcrel_offset */
967
968 /* 64-bit relocation; insert value of TOC base (.TOC.). */
969
970 /* R_PPC64_TOC 51 doubleword64 .TOC. */
971 HOWTO (R_PPC64_TOC, /* type */
972 0, /* rightshift */
973 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
974 64, /* bitsize */
975 FALSE, /* pc_relative */
976 0, /* bitpos */
977 complain_overflow_bitfield, /* complain_on_overflow */
978 ppc64_elf_toc64_reloc, /* special_function */
979 "R_PPC64_TOC", /* name */
980 FALSE, /* partial_inplace */
981 0, /* src_mask */
982 ONES (64), /* dst_mask */
983 FALSE), /* pcrel_offset */
984
985 /* Like R_PPC64_GOT16, but also informs the link editor that the
986 value to relocate may (!) refer to a PLT entry which the link
987 editor (a) may replace with the symbol value. If the link editor
988 is unable to fully resolve the symbol, it may (b) create a PLT
989 entry and store the address to the new PLT entry in the GOT.
990 This permits lazy resolution of function symbols at run time.
991 The link editor may also skip all of this and just (c) emit a
992 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
993 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
994 HOWTO (R_PPC64_PLTGOT16, /* type */
995 0, /* rightshift */
996 1, /* size (0 = byte, 1 = short, 2 = long) */
997 16, /* bitsize */
998 FALSE, /* pc_relative */
999 0, /* bitpos */
1000 complain_overflow_signed, /* complain_on_overflow */
1001 ppc64_elf_unhandled_reloc, /* special_function */
1002 "R_PPC64_PLTGOT16", /* name */
1003 FALSE, /* partial_inplace */
1004 0, /* src_mask */
1005 0xffff, /* dst_mask */
1006 FALSE), /* pcrel_offset */
1007
1008 /* Like R_PPC64_PLTGOT16, but without overflow. */
1009 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1010 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1011 0, /* rightshift */
1012 1, /* size (0 = byte, 1 = short, 2 = long) */
1013 16, /* bitsize */
1014 FALSE, /* pc_relative */
1015 0, /* bitpos */
1016 complain_overflow_dont, /* complain_on_overflow */
1017 ppc64_elf_unhandled_reloc, /* special_function */
1018 "R_PPC64_PLTGOT16_LO", /* name */
1019 FALSE, /* partial_inplace */
1020 0, /* src_mask */
1021 0xffff, /* dst_mask */
1022 FALSE), /* pcrel_offset */
1023
1024 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1025 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1026 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1027 16, /* rightshift */
1028 1, /* size (0 = byte, 1 = short, 2 = long) */
1029 16, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 ppc64_elf_unhandled_reloc, /* special_function */
1034 "R_PPC64_PLTGOT16_HI", /* name */
1035 FALSE, /* partial_inplace */
1036 0, /* src_mask */
1037 0xffff, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1041 1 if the contents of the low 16 bits, treated as a signed number,
1042 is negative. */
1043 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1044 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1045 16, /* rightshift */
1046 1, /* size (0 = byte, 1 = short, 2 = long) */
1047 16, /* bitsize */
1048 FALSE, /* pc_relative */
1049 0, /* bitpos */
1050 complain_overflow_dont,/* complain_on_overflow */
1051 ppc64_elf_unhandled_reloc, /* special_function */
1052 "R_PPC64_PLTGOT16_HA", /* name */
1053 FALSE, /* partial_inplace */
1054 0, /* src_mask */
1055 0xffff, /* dst_mask */
1056 FALSE), /* pcrel_offset */
1057
1058 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1059 HOWTO (R_PPC64_ADDR16_DS, /* type */
1060 0, /* rightshift */
1061 1, /* size (0 = byte, 1 = short, 2 = long) */
1062 16, /* bitsize */
1063 FALSE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_bitfield, /* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_PPC64_ADDR16_DS", /* name */
1068 FALSE, /* partial_inplace */
1069 0, /* src_mask */
1070 0xfffc, /* dst_mask */
1071 FALSE), /* pcrel_offset */
1072
1073 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1074 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1075 0, /* rightshift */
1076 1, /* size (0 = byte, 1 = short, 2 = long) */
1077 16, /* bitsize */
1078 FALSE, /* pc_relative */
1079 0, /* bitpos */
1080 complain_overflow_dont,/* complain_on_overflow */
1081 bfd_elf_generic_reloc, /* special_function */
1082 "R_PPC64_ADDR16_LO_DS",/* name */
1083 FALSE, /* partial_inplace */
1084 0, /* src_mask */
1085 0xfffc, /* dst_mask */
1086 FALSE), /* pcrel_offset */
1087
1088 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1089 HOWTO (R_PPC64_GOT16_DS, /* type */
1090 0, /* rightshift */
1091 1, /* size (0 = byte, 1 = short, 2 = long) */
1092 16, /* bitsize */
1093 FALSE, /* pc_relative */
1094 0, /* bitpos */
1095 complain_overflow_signed, /* complain_on_overflow */
1096 ppc64_elf_unhandled_reloc, /* special_function */
1097 "R_PPC64_GOT16_DS", /* name */
1098 FALSE, /* partial_inplace */
1099 0, /* src_mask */
1100 0xfffc, /* dst_mask */
1101 FALSE), /* pcrel_offset */
1102
1103 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1104 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1105 0, /* rightshift */
1106 1, /* size (0 = byte, 1 = short, 2 = long) */
1107 16, /* bitsize */
1108 FALSE, /* pc_relative */
1109 0, /* bitpos */
1110 complain_overflow_dont, /* complain_on_overflow */
1111 ppc64_elf_unhandled_reloc, /* special_function */
1112 "R_PPC64_GOT16_LO_DS", /* name */
1113 FALSE, /* partial_inplace */
1114 0, /* src_mask */
1115 0xfffc, /* dst_mask */
1116 FALSE), /* pcrel_offset */
1117
1118 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1119 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1120 0, /* rightshift */
1121 1, /* size (0 = byte, 1 = short, 2 = long) */
1122 16, /* bitsize */
1123 FALSE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont, /* complain_on_overflow */
1126 ppc64_elf_unhandled_reloc, /* special_function */
1127 "R_PPC64_PLT16_LO_DS", /* name */
1128 FALSE, /* partial_inplace */
1129 0, /* src_mask */
1130 0xfffc, /* dst_mask */
1131 FALSE), /* pcrel_offset */
1132
1133 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1134 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1135 0, /* rightshift */
1136 1, /* size (0 = byte, 1 = short, 2 = long) */
1137 16, /* bitsize */
1138 FALSE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_bitfield, /* complain_on_overflow */
1141 ppc64_elf_sectoff_reloc, /* special_function */
1142 "R_PPC64_SECTOFF_DS", /* name */
1143 FALSE, /* partial_inplace */
1144 0, /* src_mask */
1145 0xfffc, /* dst_mask */
1146 FALSE), /* pcrel_offset */
1147
1148 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1149 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1150 0, /* rightshift */
1151 1, /* size (0 = byte, 1 = short, 2 = long) */
1152 16, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_dont, /* complain_on_overflow */
1156 ppc64_elf_sectoff_reloc, /* special_function */
1157 "R_PPC64_SECTOFF_LO_DS",/* name */
1158 FALSE, /* partial_inplace */
1159 0, /* src_mask */
1160 0xfffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1164 HOWTO (R_PPC64_TOC16_DS, /* type */
1165 0, /* rightshift */
1166 1, /* size (0 = byte, 1 = short, 2 = long) */
1167 16, /* bitsize */
1168 FALSE, /* pc_relative */
1169 0, /* bitpos */
1170 complain_overflow_signed, /* complain_on_overflow */
1171 ppc64_elf_toc_reloc, /* special_function */
1172 "R_PPC64_TOC16_DS", /* name */
1173 FALSE, /* partial_inplace */
1174 0, /* src_mask */
1175 0xfffc, /* dst_mask */
1176 FALSE), /* pcrel_offset */
1177
1178 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1179 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1180 0, /* rightshift */
1181 1, /* size (0 = byte, 1 = short, 2 = long) */
1182 16, /* bitsize */
1183 FALSE, /* pc_relative */
1184 0, /* bitpos */
1185 complain_overflow_dont, /* complain_on_overflow */
1186 ppc64_elf_toc_reloc, /* special_function */
1187 "R_PPC64_TOC16_LO_DS", /* name */
1188 FALSE, /* partial_inplace */
1189 0, /* src_mask */
1190 0xfffc, /* dst_mask */
1191 FALSE), /* pcrel_offset */
1192
1193 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1194 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1195 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1196 0, /* rightshift */
1197 1, /* size (0 = byte, 1 = short, 2 = long) */
1198 16, /* bitsize */
1199 FALSE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_signed, /* complain_on_overflow */
1202 ppc64_elf_unhandled_reloc, /* special_function */
1203 "R_PPC64_PLTGOT16_DS", /* name */
1204 FALSE, /* partial_inplace */
1205 0, /* src_mask */
1206 0xfffc, /* dst_mask */
1207 FALSE), /* pcrel_offset */
1208
1209 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1210 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1211 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1212 0, /* rightshift */
1213 1, /* size (0 = byte, 1 = short, 2 = long) */
1214 16, /* bitsize */
1215 FALSE, /* pc_relative */
1216 0, /* bitpos */
1217 complain_overflow_dont, /* complain_on_overflow */
1218 ppc64_elf_unhandled_reloc, /* special_function */
1219 "R_PPC64_PLTGOT16_LO_DS",/* name */
1220 FALSE, /* partial_inplace */
1221 0, /* src_mask */
1222 0xfffc, /* dst_mask */
1223 FALSE), /* pcrel_offset */
1224
1225 /* Marker reloc for TLS. */
1226 HOWTO (R_PPC64_TLS,
1227 0, /* rightshift */
1228 2, /* size (0 = byte, 1 = short, 2 = long) */
1229 32, /* bitsize */
1230 FALSE, /* pc_relative */
1231 0, /* bitpos */
1232 complain_overflow_dont, /* complain_on_overflow */
1233 bfd_elf_generic_reloc, /* special_function */
1234 "R_PPC64_TLS", /* name */
1235 FALSE, /* partial_inplace */
1236 0, /* src_mask */
1237 0, /* dst_mask */
1238 FALSE), /* pcrel_offset */
1239
1240 /* Computes the load module index of the load module that contains the
1241 definition of its TLS sym. */
1242 HOWTO (R_PPC64_DTPMOD64,
1243 0, /* rightshift */
1244 4, /* size (0 = byte, 1 = short, 2 = long) */
1245 64, /* bitsize */
1246 FALSE, /* pc_relative */
1247 0, /* bitpos */
1248 complain_overflow_dont, /* complain_on_overflow */
1249 ppc64_elf_unhandled_reloc, /* special_function */
1250 "R_PPC64_DTPMOD64", /* name */
1251 FALSE, /* partial_inplace */
1252 0, /* src_mask */
1253 ONES (64), /* dst_mask */
1254 FALSE), /* pcrel_offset */
1255
1256 /* Computes a dtv-relative displacement, the difference between the value
1257 of sym+add and the base address of the thread-local storage block that
1258 contains the definition of sym, minus 0x8000. */
1259 HOWTO (R_PPC64_DTPREL64,
1260 0, /* rightshift */
1261 4, /* size (0 = byte, 1 = short, 2 = long) */
1262 64, /* bitsize */
1263 FALSE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont, /* complain_on_overflow */
1266 ppc64_elf_unhandled_reloc, /* special_function */
1267 "R_PPC64_DTPREL64", /* name */
1268 FALSE, /* partial_inplace */
1269 0, /* src_mask */
1270 ONES (64), /* dst_mask */
1271 FALSE), /* pcrel_offset */
1272
1273 /* A 16 bit dtprel reloc. */
1274 HOWTO (R_PPC64_DTPREL16,
1275 0, /* rightshift */
1276 1, /* size (0 = byte, 1 = short, 2 = long) */
1277 16, /* bitsize */
1278 FALSE, /* pc_relative */
1279 0, /* bitpos */
1280 complain_overflow_signed, /* complain_on_overflow */
1281 ppc64_elf_unhandled_reloc, /* special_function */
1282 "R_PPC64_DTPREL16", /* name */
1283 FALSE, /* partial_inplace */
1284 0, /* src_mask */
1285 0xffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1287
1288 /* Like DTPREL16, but no overflow. */
1289 HOWTO (R_PPC64_DTPREL16_LO,
1290 0, /* rightshift */
1291 1, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_dont, /* complain_on_overflow */
1296 ppc64_elf_unhandled_reloc, /* special_function */
1297 "R_PPC64_DTPREL16_LO", /* name */
1298 FALSE, /* partial_inplace */
1299 0, /* src_mask */
1300 0xffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1304 HOWTO (R_PPC64_DTPREL16_HI,
1305 16, /* rightshift */
1306 1, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_dont, /* complain_on_overflow */
1311 ppc64_elf_unhandled_reloc, /* special_function */
1312 "R_PPC64_DTPREL16_HI", /* name */
1313 FALSE, /* partial_inplace */
1314 0, /* src_mask */
1315 0xffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1319 HOWTO (R_PPC64_DTPREL16_HA,
1320 16, /* rightshift */
1321 1, /* size (0 = byte, 1 = short, 2 = long) */
1322 16, /* bitsize */
1323 FALSE, /* pc_relative */
1324 0, /* bitpos */
1325 complain_overflow_dont, /* complain_on_overflow */
1326 ppc64_elf_unhandled_reloc, /* special_function */
1327 "R_PPC64_DTPREL16_HA", /* name */
1328 FALSE, /* partial_inplace */
1329 0, /* src_mask */
1330 0xffff, /* dst_mask */
1331 FALSE), /* pcrel_offset */
1332
1333 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1334 HOWTO (R_PPC64_DTPREL16_HIGHER,
1335 32, /* rightshift */
1336 1, /* size (0 = byte, 1 = short, 2 = long) */
1337 16, /* bitsize */
1338 FALSE, /* pc_relative */
1339 0, /* bitpos */
1340 complain_overflow_dont, /* complain_on_overflow */
1341 ppc64_elf_unhandled_reloc, /* special_function */
1342 "R_PPC64_DTPREL16_HIGHER", /* name */
1343 FALSE, /* partial_inplace */
1344 0, /* src_mask */
1345 0xffff, /* dst_mask */
1346 FALSE), /* pcrel_offset */
1347
1348 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1349 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1350 32, /* rightshift */
1351 1, /* size (0 = byte, 1 = short, 2 = long) */
1352 16, /* bitsize */
1353 FALSE, /* pc_relative */
1354 0, /* bitpos */
1355 complain_overflow_dont, /* complain_on_overflow */
1356 ppc64_elf_unhandled_reloc, /* special_function */
1357 "R_PPC64_DTPREL16_HIGHERA", /* name */
1358 FALSE, /* partial_inplace */
1359 0, /* src_mask */
1360 0xffff, /* dst_mask */
1361 FALSE), /* pcrel_offset */
1362
1363 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1364 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1365 48, /* rightshift */
1366 1, /* size (0 = byte, 1 = short, 2 = long) */
1367 16, /* bitsize */
1368 FALSE, /* pc_relative */
1369 0, /* bitpos */
1370 complain_overflow_dont, /* complain_on_overflow */
1371 ppc64_elf_unhandled_reloc, /* special_function */
1372 "R_PPC64_DTPREL16_HIGHEST", /* name */
1373 FALSE, /* partial_inplace */
1374 0, /* src_mask */
1375 0xffff, /* dst_mask */
1376 FALSE), /* pcrel_offset */
1377
1378 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1379 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1380 48, /* rightshift */
1381 1, /* size (0 = byte, 1 = short, 2 = long) */
1382 16, /* bitsize */
1383 FALSE, /* pc_relative */
1384 0, /* bitpos */
1385 complain_overflow_dont, /* complain_on_overflow */
1386 ppc64_elf_unhandled_reloc, /* special_function */
1387 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1388 FALSE, /* partial_inplace */
1389 0, /* src_mask */
1390 0xffff, /* dst_mask */
1391 FALSE), /* pcrel_offset */
1392
1393 /* Like DTPREL16, but for insns with a DS field. */
1394 HOWTO (R_PPC64_DTPREL16_DS,
1395 0, /* rightshift */
1396 1, /* size (0 = byte, 1 = short, 2 = long) */
1397 16, /* bitsize */
1398 FALSE, /* pc_relative */
1399 0, /* bitpos */
1400 complain_overflow_signed, /* complain_on_overflow */
1401 ppc64_elf_unhandled_reloc, /* special_function */
1402 "R_PPC64_DTPREL16_DS", /* name */
1403 FALSE, /* partial_inplace */
1404 0, /* src_mask */
1405 0xfffc, /* dst_mask */
1406 FALSE), /* pcrel_offset */
1407
1408 /* Like DTPREL16_DS, but no overflow. */
1409 HOWTO (R_PPC64_DTPREL16_LO_DS,
1410 0, /* rightshift */
1411 1, /* size (0 = byte, 1 = short, 2 = long) */
1412 16, /* bitsize */
1413 FALSE, /* pc_relative */
1414 0, /* bitpos */
1415 complain_overflow_dont, /* complain_on_overflow */
1416 ppc64_elf_unhandled_reloc, /* special_function */
1417 "R_PPC64_DTPREL16_LO_DS", /* name */
1418 FALSE, /* partial_inplace */
1419 0, /* src_mask */
1420 0xfffc, /* dst_mask */
1421 FALSE), /* pcrel_offset */
1422
1423 /* Computes a tp-relative displacement, the difference between the value of
1424 sym+add and the value of the thread pointer (r13). */
1425 HOWTO (R_PPC64_TPREL64,
1426 0, /* rightshift */
1427 4, /* size (0 = byte, 1 = short, 2 = long) */
1428 64, /* bitsize */
1429 FALSE, /* pc_relative */
1430 0, /* bitpos */
1431 complain_overflow_dont, /* complain_on_overflow */
1432 ppc64_elf_unhandled_reloc, /* special_function */
1433 "R_PPC64_TPREL64", /* name */
1434 FALSE, /* partial_inplace */
1435 0, /* src_mask */
1436 ONES (64), /* dst_mask */
1437 FALSE), /* pcrel_offset */
1438
1439 /* A 16 bit tprel reloc. */
1440 HOWTO (R_PPC64_TPREL16,
1441 0, /* rightshift */
1442 1, /* size (0 = byte, 1 = short, 2 = long) */
1443 16, /* bitsize */
1444 FALSE, /* pc_relative */
1445 0, /* bitpos */
1446 complain_overflow_signed, /* complain_on_overflow */
1447 ppc64_elf_unhandled_reloc, /* special_function */
1448 "R_PPC64_TPREL16", /* name */
1449 FALSE, /* partial_inplace */
1450 0, /* src_mask */
1451 0xffff, /* dst_mask */
1452 FALSE), /* pcrel_offset */
1453
1454 /* Like TPREL16, but no overflow. */
1455 HOWTO (R_PPC64_TPREL16_LO,
1456 0, /* rightshift */
1457 1, /* size (0 = byte, 1 = short, 2 = long) */
1458 16, /* bitsize */
1459 FALSE, /* pc_relative */
1460 0, /* bitpos */
1461 complain_overflow_dont, /* complain_on_overflow */
1462 ppc64_elf_unhandled_reloc, /* special_function */
1463 "R_PPC64_TPREL16_LO", /* name */
1464 FALSE, /* partial_inplace */
1465 0, /* src_mask */
1466 0xffff, /* dst_mask */
1467 FALSE), /* pcrel_offset */
1468
1469 /* Like TPREL16_LO, but next higher group of 16 bits. */
1470 HOWTO (R_PPC64_TPREL16_HI,
1471 16, /* rightshift */
1472 1, /* size (0 = byte, 1 = short, 2 = long) */
1473 16, /* bitsize */
1474 FALSE, /* pc_relative */
1475 0, /* bitpos */
1476 complain_overflow_dont, /* complain_on_overflow */
1477 ppc64_elf_unhandled_reloc, /* special_function */
1478 "R_PPC64_TPREL16_HI", /* name */
1479 FALSE, /* partial_inplace */
1480 0, /* src_mask */
1481 0xffff, /* dst_mask */
1482 FALSE), /* pcrel_offset */
1483
1484 /* Like TPREL16_HI, but adjust for low 16 bits. */
1485 HOWTO (R_PPC64_TPREL16_HA,
1486 16, /* rightshift */
1487 1, /* size (0 = byte, 1 = short, 2 = long) */
1488 16, /* bitsize */
1489 FALSE, /* pc_relative */
1490 0, /* bitpos */
1491 complain_overflow_dont, /* complain_on_overflow */
1492 ppc64_elf_unhandled_reloc, /* special_function */
1493 "R_PPC64_TPREL16_HA", /* name */
1494 FALSE, /* partial_inplace */
1495 0, /* src_mask */
1496 0xffff, /* dst_mask */
1497 FALSE), /* pcrel_offset */
1498
1499 /* Like TPREL16_HI, but next higher group of 16 bits. */
1500 HOWTO (R_PPC64_TPREL16_HIGHER,
1501 32, /* rightshift */
1502 1, /* size (0 = byte, 1 = short, 2 = long) */
1503 16, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_dont, /* complain_on_overflow */
1507 ppc64_elf_unhandled_reloc, /* special_function */
1508 "R_PPC64_TPREL16_HIGHER", /* name */
1509 FALSE, /* partial_inplace */
1510 0, /* src_mask */
1511 0xffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1515 HOWTO (R_PPC64_TPREL16_HIGHERA,
1516 32, /* rightshift */
1517 1, /* size (0 = byte, 1 = short, 2 = long) */
1518 16, /* bitsize */
1519 FALSE, /* pc_relative */
1520 0, /* bitpos */
1521 complain_overflow_dont, /* complain_on_overflow */
1522 ppc64_elf_unhandled_reloc, /* special_function */
1523 "R_PPC64_TPREL16_HIGHERA", /* name */
1524 FALSE, /* partial_inplace */
1525 0, /* src_mask */
1526 0xffff, /* dst_mask */
1527 FALSE), /* pcrel_offset */
1528
1529 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1530 HOWTO (R_PPC64_TPREL16_HIGHEST,
1531 48, /* rightshift */
1532 1, /* size (0 = byte, 1 = short, 2 = long) */
1533 16, /* bitsize */
1534 FALSE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 ppc64_elf_unhandled_reloc, /* special_function */
1538 "R_PPC64_TPREL16_HIGHEST", /* name */
1539 FALSE, /* partial_inplace */
1540 0, /* src_mask */
1541 0xffff, /* dst_mask */
1542 FALSE), /* pcrel_offset */
1543
1544 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1545 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1546 48, /* rightshift */
1547 1, /* size (0 = byte, 1 = short, 2 = long) */
1548 16, /* bitsize */
1549 FALSE, /* pc_relative */
1550 0, /* bitpos */
1551 complain_overflow_dont, /* complain_on_overflow */
1552 ppc64_elf_unhandled_reloc, /* special_function */
1553 "R_PPC64_TPREL16_HIGHESTA", /* name */
1554 FALSE, /* partial_inplace */
1555 0, /* src_mask */
1556 0xffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1558
1559 /* Like TPREL16, but for insns with a DS field. */
1560 HOWTO (R_PPC64_TPREL16_DS,
1561 0, /* rightshift */
1562 1, /* size (0 = byte, 1 = short, 2 = long) */
1563 16, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_signed, /* complain_on_overflow */
1567 ppc64_elf_unhandled_reloc, /* special_function */
1568 "R_PPC64_TPREL16_DS", /* name */
1569 FALSE, /* partial_inplace */
1570 0, /* src_mask */
1571 0xfffc, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 /* Like TPREL16_DS, but no overflow. */
1575 HOWTO (R_PPC64_TPREL16_LO_DS,
1576 0, /* rightshift */
1577 1, /* size (0 = byte, 1 = short, 2 = long) */
1578 16, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_dont, /* complain_on_overflow */
1582 ppc64_elf_unhandled_reloc, /* special_function */
1583 "R_PPC64_TPREL16_LO_DS", /* name */
1584 FALSE, /* partial_inplace */
1585 0, /* src_mask */
1586 0xfffc, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1590 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1591 to the first entry relative to the TOC base (r2). */
1592 HOWTO (R_PPC64_GOT_TLSGD16,
1593 0, /* rightshift */
1594 1, /* size (0 = byte, 1 = short, 2 = long) */
1595 16, /* bitsize */
1596 FALSE, /* pc_relative */
1597 0, /* bitpos */
1598 complain_overflow_signed, /* complain_on_overflow */
1599 ppc64_elf_unhandled_reloc, /* special_function */
1600 "R_PPC64_GOT_TLSGD16", /* name */
1601 FALSE, /* partial_inplace */
1602 0, /* src_mask */
1603 0xffff, /* dst_mask */
1604 FALSE), /* pcrel_offset */
1605
1606 /* Like GOT_TLSGD16, but no overflow. */
1607 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1608 0, /* rightshift */
1609 1, /* size (0 = byte, 1 = short, 2 = long) */
1610 16, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont, /* complain_on_overflow */
1614 ppc64_elf_unhandled_reloc, /* special_function */
1615 "R_PPC64_GOT_TLSGD16_LO", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0xffff, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1622 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1623 16, /* rightshift */
1624 1, /* size (0 = byte, 1 = short, 2 = long) */
1625 16, /* bitsize */
1626 FALSE, /* pc_relative */
1627 0, /* bitpos */
1628 complain_overflow_dont, /* complain_on_overflow */
1629 ppc64_elf_unhandled_reloc, /* special_function */
1630 "R_PPC64_GOT_TLSGD16_HI", /* name */
1631 FALSE, /* partial_inplace */
1632 0, /* src_mask */
1633 0xffff, /* dst_mask */
1634 FALSE), /* pcrel_offset */
1635
1636 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1637 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1638 16, /* rightshift */
1639 1, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 ppc64_elf_unhandled_reloc, /* special_function */
1645 "R_PPC64_GOT_TLSGD16_HA", /* name */
1646 FALSE, /* partial_inplace */
1647 0, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1652 with values (sym+add)@dtpmod and zero, and computes the offset to the
1653 first entry relative to the TOC base (r2). */
1654 HOWTO (R_PPC64_GOT_TLSLD16,
1655 0, /* rightshift */
1656 1, /* size (0 = byte, 1 = short, 2 = long) */
1657 16, /* bitsize */
1658 FALSE, /* pc_relative */
1659 0, /* bitpos */
1660 complain_overflow_signed, /* complain_on_overflow */
1661 ppc64_elf_unhandled_reloc, /* special_function */
1662 "R_PPC64_GOT_TLSLD16", /* name */
1663 FALSE, /* partial_inplace */
1664 0, /* src_mask */
1665 0xffff, /* dst_mask */
1666 FALSE), /* pcrel_offset */
1667
1668 /* Like GOT_TLSLD16, but no overflow. */
1669 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1670 0, /* rightshift */
1671 1, /* size (0 = byte, 1 = short, 2 = long) */
1672 16, /* bitsize */
1673 FALSE, /* pc_relative */
1674 0, /* bitpos */
1675 complain_overflow_dont, /* complain_on_overflow */
1676 ppc64_elf_unhandled_reloc, /* special_function */
1677 "R_PPC64_GOT_TLSLD16_LO", /* name */
1678 FALSE, /* partial_inplace */
1679 0, /* src_mask */
1680 0xffff, /* dst_mask */
1681 FALSE), /* pcrel_offset */
1682
1683 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1684 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1685 16, /* rightshift */
1686 1, /* size (0 = byte, 1 = short, 2 = long) */
1687 16, /* bitsize */
1688 FALSE, /* pc_relative */
1689 0, /* bitpos */
1690 complain_overflow_dont, /* complain_on_overflow */
1691 ppc64_elf_unhandled_reloc, /* special_function */
1692 "R_PPC64_GOT_TLSLD16_HI", /* name */
1693 FALSE, /* partial_inplace */
1694 0, /* src_mask */
1695 0xffff, /* dst_mask */
1696 FALSE), /* pcrel_offset */
1697
1698 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1699 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1700 16, /* rightshift */
1701 1, /* size (0 = byte, 1 = short, 2 = long) */
1702 16, /* bitsize */
1703 FALSE, /* pc_relative */
1704 0, /* bitpos */
1705 complain_overflow_dont, /* complain_on_overflow */
1706 ppc64_elf_unhandled_reloc, /* special_function */
1707 "R_PPC64_GOT_TLSLD16_HA", /* name */
1708 FALSE, /* partial_inplace */
1709 0, /* src_mask */
1710 0xffff, /* dst_mask */
1711 FALSE), /* pcrel_offset */
1712
1713 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1714 the offset to the entry relative to the TOC base (r2). */
1715 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1716 0, /* rightshift */
1717 1, /* size (0 = byte, 1 = short, 2 = long) */
1718 16, /* bitsize */
1719 FALSE, /* pc_relative */
1720 0, /* bitpos */
1721 complain_overflow_signed, /* complain_on_overflow */
1722 ppc64_elf_unhandled_reloc, /* special_function */
1723 "R_PPC64_GOT_DTPREL16_DS", /* name */
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 0xfffc, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 /* Like GOT_DTPREL16_DS, but no overflow. */
1730 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1731 0, /* rightshift */
1732 1, /* size (0 = byte, 1 = short, 2 = long) */
1733 16, /* bitsize */
1734 FALSE, /* pc_relative */
1735 0, /* bitpos */
1736 complain_overflow_dont, /* complain_on_overflow */
1737 ppc64_elf_unhandled_reloc, /* special_function */
1738 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1739 FALSE, /* partial_inplace */
1740 0, /* src_mask */
1741 0xfffc, /* dst_mask */
1742 FALSE), /* pcrel_offset */
1743
1744 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1745 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1746 16, /* rightshift */
1747 1, /* size (0 = byte, 1 = short, 2 = long) */
1748 16, /* bitsize */
1749 FALSE, /* pc_relative */
1750 0, /* bitpos */
1751 complain_overflow_dont, /* complain_on_overflow */
1752 ppc64_elf_unhandled_reloc, /* special_function */
1753 "R_PPC64_GOT_DTPREL16_HI", /* name */
1754 FALSE, /* partial_inplace */
1755 0, /* src_mask */
1756 0xffff, /* dst_mask */
1757 FALSE), /* pcrel_offset */
1758
1759 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1760 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1761 16, /* rightshift */
1762 1, /* size (0 = byte, 1 = short, 2 = long) */
1763 16, /* bitsize */
1764 FALSE, /* pc_relative */
1765 0, /* bitpos */
1766 complain_overflow_dont, /* complain_on_overflow */
1767 ppc64_elf_unhandled_reloc, /* special_function */
1768 "R_PPC64_GOT_DTPREL16_HA", /* name */
1769 FALSE, /* partial_inplace */
1770 0, /* src_mask */
1771 0xffff, /* dst_mask */
1772 FALSE), /* pcrel_offset */
1773
1774 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1775 offset to the entry relative to the TOC base (r2). */
1776 HOWTO (R_PPC64_GOT_TPREL16_DS,
1777 0, /* rightshift */
1778 1, /* size (0 = byte, 1 = short, 2 = long) */
1779 16, /* bitsize */
1780 FALSE, /* pc_relative */
1781 0, /* bitpos */
1782 complain_overflow_signed, /* complain_on_overflow */
1783 ppc64_elf_unhandled_reloc, /* special_function */
1784 "R_PPC64_GOT_TPREL16_DS", /* name */
1785 FALSE, /* partial_inplace */
1786 0, /* src_mask */
1787 0xfffc, /* dst_mask */
1788 FALSE), /* pcrel_offset */
1789
1790 /* Like GOT_TPREL16_DS, but no overflow. */
1791 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1792 0, /* rightshift */
1793 1, /* size (0 = byte, 1 = short, 2 = long) */
1794 16, /* bitsize */
1795 FALSE, /* pc_relative */
1796 0, /* bitpos */
1797 complain_overflow_dont, /* complain_on_overflow */
1798 ppc64_elf_unhandled_reloc, /* special_function */
1799 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1800 FALSE, /* partial_inplace */
1801 0, /* src_mask */
1802 0xfffc, /* dst_mask */
1803 FALSE), /* pcrel_offset */
1804
1805 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1806 HOWTO (R_PPC64_GOT_TPREL16_HI,
1807 16, /* rightshift */
1808 1, /* size (0 = byte, 1 = short, 2 = long) */
1809 16, /* bitsize */
1810 FALSE, /* pc_relative */
1811 0, /* bitpos */
1812 complain_overflow_dont, /* complain_on_overflow */
1813 ppc64_elf_unhandled_reloc, /* special_function */
1814 "R_PPC64_GOT_TPREL16_HI", /* name */
1815 FALSE, /* partial_inplace */
1816 0, /* src_mask */
1817 0xffff, /* dst_mask */
1818 FALSE), /* pcrel_offset */
1819
1820 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1821 HOWTO (R_PPC64_GOT_TPREL16_HA,
1822 16, /* rightshift */
1823 1, /* size (0 = byte, 1 = short, 2 = long) */
1824 16, /* bitsize */
1825 FALSE, /* pc_relative */
1826 0, /* bitpos */
1827 complain_overflow_dont, /* complain_on_overflow */
1828 ppc64_elf_unhandled_reloc, /* special_function */
1829 "R_PPC64_GOT_TPREL16_HA", /* name */
1830 FALSE, /* partial_inplace */
1831 0, /* src_mask */
1832 0xffff, /* dst_mask */
1833 FALSE), /* pcrel_offset */
1834
1835 /* GNU extension to record C++ vtable hierarchy. */
1836 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1837 0, /* rightshift */
1838 0, /* size (0 = byte, 1 = short, 2 = long) */
1839 0, /* bitsize */
1840 FALSE, /* pc_relative */
1841 0, /* bitpos */
1842 complain_overflow_dont, /* complain_on_overflow */
1843 NULL, /* special_function */
1844 "R_PPC64_GNU_VTINHERIT", /* name */
1845 FALSE, /* partial_inplace */
1846 0, /* src_mask */
1847 0, /* dst_mask */
1848 FALSE), /* pcrel_offset */
1849
1850 /* GNU extension to record C++ vtable member usage. */
1851 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
1852 0, /* rightshift */
1853 0, /* size (0 = byte, 1 = short, 2 = long) */
1854 0, /* bitsize */
1855 FALSE, /* pc_relative */
1856 0, /* bitpos */
1857 complain_overflow_dont, /* complain_on_overflow */
1858 NULL, /* special_function */
1859 "R_PPC64_GNU_VTENTRY", /* name */
1860 FALSE, /* partial_inplace */
1861 0, /* src_mask */
1862 0, /* dst_mask */
1863 FALSE), /* pcrel_offset */
1864 };
1865
1866 \f
1867 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
1868 be done. */
1869
1870 static void
1871 ppc_howto_init (void)
1872 {
1873 unsigned int i, type;
1874
1875 for (i = 0;
1876 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
1877 i++)
1878 {
1879 type = ppc64_elf_howto_raw[i].type;
1880 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
1881 / sizeof (ppc64_elf_howto_table[0])));
1882 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1883 }
1884 }
1885
1886 static reloc_howto_type *
1887 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1888 bfd_reloc_code_real_type code)
1889 {
1890 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1891
1892 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1893 /* Initialize howto table if needed. */
1894 ppc_howto_init ();
1895
1896 switch (code)
1897 {
1898 default:
1899 return NULL;
1900
1901 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1902 break;
1903 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1904 break;
1905 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1906 break;
1907 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1908 break;
1909 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1910 break;
1911 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1912 break;
1913 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1914 break;
1915 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1916 break;
1917 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1918 break;
1919 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1920 break;
1921 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1922 break;
1923 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1924 break;
1925 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1926 break;
1927 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1928 break;
1929 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1930 break;
1931 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1932 break;
1933 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1934 break;
1935 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1936 break;
1937 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1938 break;
1939 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1940 break;
1941 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1942 break;
1943 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1944 break;
1945 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1946 break;
1947 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1948 break;
1949 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1950 break;
1951 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1952 break;
1953 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1954 break;
1955 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1956 break;
1957 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1958 break;
1959 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1960 break;
1961 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1962 break;
1963 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1964 break;
1965 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1966 break;
1967 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1968 break;
1969 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1970 break;
1971 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1972 break;
1973 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1974 break;
1975 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1976 break;
1977 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1978 break;
1979 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1980 break;
1981 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1982 break;
1983 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1984 break;
1985 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1986 break;
1987 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1988 break;
1989 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1990 break;
1991 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1992 break;
1993 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1994 break;
1995 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1996 break;
1997 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1998 break;
1999 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2000 break;
2001 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2002 break;
2003 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2004 break;
2005 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2006 break;
2007 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2008 break;
2009 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2010 break;
2011 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2012 break;
2013 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2014 break;
2015 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2016 break;
2017 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2018 break;
2019 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2020 break;
2021 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2022 break;
2023 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2024 break;
2025 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2026 break;
2027 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2028 break;
2029 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2030 break;
2031 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2032 break;
2033 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2034 break;
2035 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2036 break;
2037 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2038 break;
2039 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2040 break;
2041 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2042 break;
2043 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2044 break;
2045 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2046 break;
2047 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2048 break;
2049 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2050 break;
2051 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2052 break;
2053 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2054 break;
2055 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2056 break;
2057 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2058 break;
2059 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2060 break;
2061 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2062 break;
2063 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2064 break;
2065 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2066 break;
2067 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2068 break;
2069 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2070 break;
2071 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2072 break;
2073 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2074 break;
2075 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2076 break;
2077 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2078 break;
2079 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2080 break;
2081 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2082 break;
2083 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2084 break;
2085 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2086 break;
2087 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2088 break;
2089 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2090 break;
2091 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2092 break;
2093 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2094 break;
2095 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2096 break;
2097 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2098 break;
2099 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2100 break;
2101 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2102 break;
2103 }
2104
2105 return ppc64_elf_howto_table[r];
2106 };
2107
2108 /* Set the howto pointer for a PowerPC ELF reloc. */
2109
2110 static void
2111 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2112 Elf_Internal_Rela *dst)
2113 {
2114 unsigned int type;
2115
2116 /* Initialize howto table if needed. */
2117 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2118 ppc_howto_init ();
2119
2120 type = ELF64_R_TYPE (dst->r_info);
2121 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2122 / sizeof (ppc64_elf_howto_table[0])));
2123 cache_ptr->howto = ppc64_elf_howto_table[type];
2124 }
2125
2126 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2127
2128 static bfd_reloc_status_type
2129 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2130 void *data, asection *input_section,
2131 bfd *output_bfd, char **error_message)
2132 {
2133 /* If this is a relocatable link (output_bfd test tells us), just
2134 call the generic function. Any adjustment will be done at final
2135 link time. */
2136 if (output_bfd != NULL)
2137 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2138 input_section, output_bfd, error_message);
2139
2140 /* Adjust the addend for sign extension of the low 16 bits.
2141 We won't actually be using the low 16 bits, so trashing them
2142 doesn't matter. */
2143 reloc_entry->addend += 0x8000;
2144 return bfd_reloc_continue;
2145 }
2146
2147 static bfd_reloc_status_type
2148 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2149 void *data, asection *input_section,
2150 bfd *output_bfd, char **error_message)
2151 {
2152 if (output_bfd != NULL)
2153 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2154 input_section, output_bfd, error_message);
2155
2156 if (strcmp (symbol->section->name, ".opd") == 0
2157 && (symbol->section->owner->flags & DYNAMIC) == 0)
2158 {
2159 bfd_vma dest = opd_entry_value (symbol->section,
2160 symbol->value + reloc_entry->addend,
2161 NULL, NULL);
2162 if (dest != (bfd_vma) -1)
2163 reloc_entry->addend = dest - (symbol->value
2164 + symbol->section->output_section->vma
2165 + symbol->section->output_offset);
2166 }
2167 return bfd_reloc_continue;
2168 }
2169
2170 static bfd_reloc_status_type
2171 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2172 void *data, asection *input_section,
2173 bfd *output_bfd, char **error_message)
2174 {
2175 long insn;
2176 enum elf_ppc64_reloc_type r_type;
2177 bfd_size_type octets;
2178 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
2179 bfd_boolean is_power4 = FALSE;
2180
2181 /* If this is a relocatable link (output_bfd test tells us), just
2182 call the generic function. Any adjustment will be done at final
2183 link time. */
2184 if (output_bfd != NULL)
2185 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2186 input_section, output_bfd, error_message);
2187
2188 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2189 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2190 insn &= ~(0x01 << 21);
2191 r_type = reloc_entry->howto->type;
2192 if (r_type == R_PPC64_ADDR14_BRTAKEN
2193 || r_type == R_PPC64_REL14_BRTAKEN)
2194 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2195
2196 if (is_power4)
2197 {
2198 /* Set 'a' bit. This is 0b00010 in BO field for branch
2199 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2200 for branch on CTR insns (BO == 1a00t or 1a01t). */
2201 if ((insn & (0x14 << 21)) == (0x04 << 21))
2202 insn |= 0x02 << 21;
2203 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2204 insn |= 0x08 << 21;
2205 else
2206 goto out;
2207 }
2208 else
2209 {
2210 bfd_vma target = 0;
2211 bfd_vma from;
2212
2213 if (!bfd_is_com_section (symbol->section))
2214 target = symbol->value;
2215 target += symbol->section->output_section->vma;
2216 target += symbol->section->output_offset;
2217 target += reloc_entry->addend;
2218
2219 from = (reloc_entry->address
2220 + input_section->output_offset
2221 + input_section->output_section->vma);
2222
2223 /* Invert 'y' bit if not the default. */
2224 if ((bfd_signed_vma) (target - from) < 0)
2225 insn ^= 0x01 << 21;
2226 }
2227 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2228 out:
2229 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2230 input_section, output_bfd, error_message);
2231 }
2232
2233 static bfd_reloc_status_type
2234 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2235 void *data, asection *input_section,
2236 bfd *output_bfd, char **error_message)
2237 {
2238 /* If this is a relocatable link (output_bfd test tells us), just
2239 call the generic function. Any adjustment will be done at final
2240 link time. */
2241 if (output_bfd != NULL)
2242 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2243 input_section, output_bfd, error_message);
2244
2245 /* Subtract the symbol section base address. */
2246 reloc_entry->addend -= symbol->section->output_section->vma;
2247 return bfd_reloc_continue;
2248 }
2249
2250 static bfd_reloc_status_type
2251 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2252 void *data, asection *input_section,
2253 bfd *output_bfd, char **error_message)
2254 {
2255 /* If this is a relocatable link (output_bfd test tells us), just
2256 call the generic function. Any adjustment will be done at final
2257 link time. */
2258 if (output_bfd != NULL)
2259 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2260 input_section, output_bfd, error_message);
2261
2262 /* Subtract the symbol section base address. */
2263 reloc_entry->addend -= symbol->section->output_section->vma;
2264
2265 /* Adjust the addend for sign extension of the low 16 bits. */
2266 reloc_entry->addend += 0x8000;
2267 return bfd_reloc_continue;
2268 }
2269
2270 static bfd_reloc_status_type
2271 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2272 void *data, asection *input_section,
2273 bfd *output_bfd, char **error_message)
2274 {
2275 bfd_vma TOCstart;
2276
2277 /* If this is a relocatable link (output_bfd test tells us), just
2278 call the generic function. Any adjustment will be done at final
2279 link time. */
2280 if (output_bfd != NULL)
2281 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2282 input_section, output_bfd, error_message);
2283
2284 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2285 if (TOCstart == 0)
2286 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2287
2288 /* Subtract the TOC base address. */
2289 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2290 return bfd_reloc_continue;
2291 }
2292
2293 static bfd_reloc_status_type
2294 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2295 void *data, asection *input_section,
2296 bfd *output_bfd, char **error_message)
2297 {
2298 bfd_vma TOCstart;
2299
2300 /* If this is a relocatable link (output_bfd test tells us), just
2301 call the generic function. Any adjustment will be done at final
2302 link time. */
2303 if (output_bfd != NULL)
2304 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2305 input_section, output_bfd, error_message);
2306
2307 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2308 if (TOCstart == 0)
2309 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2310
2311 /* Subtract the TOC base address. */
2312 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2313
2314 /* Adjust the addend for sign extension of the low 16 bits. */
2315 reloc_entry->addend += 0x8000;
2316 return bfd_reloc_continue;
2317 }
2318
2319 static bfd_reloc_status_type
2320 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2321 void *data, asection *input_section,
2322 bfd *output_bfd, char **error_message)
2323 {
2324 bfd_vma TOCstart;
2325 bfd_size_type octets;
2326
2327 /* If this is a relocatable link (output_bfd test tells us), just
2328 call the generic function. Any adjustment will be done at final
2329 link time. */
2330 if (output_bfd != NULL)
2331 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2332 input_section, output_bfd, error_message);
2333
2334 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2335 if (TOCstart == 0)
2336 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2337
2338 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2339 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2340 return bfd_reloc_ok;
2341 }
2342
2343 static bfd_reloc_status_type
2344 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2345 void *data, asection *input_section,
2346 bfd *output_bfd, char **error_message)
2347 {
2348 /* If this is a relocatable link (output_bfd test tells us), just
2349 call the generic function. Any adjustment will be done at final
2350 link time. */
2351 if (output_bfd != NULL)
2352 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2353 input_section, output_bfd, error_message);
2354
2355 if (error_message != NULL)
2356 {
2357 static char buf[60];
2358 sprintf (buf, "generic linker can't handle %s",
2359 reloc_entry->howto->name);
2360 *error_message = buf;
2361 }
2362 return bfd_reloc_dangerous;
2363 }
2364
2365 struct ppc64_elf_obj_tdata
2366 {
2367 struct elf_obj_tdata elf;
2368
2369 /* Shortcuts to dynamic linker sections. */
2370 asection *got;
2371 asection *relgot;
2372
2373 /* Used during garbage collection. We attach global symbols defined
2374 on removed .opd entries to this section so that the sym is removed. */
2375 asection *deleted_section;
2376
2377 /* TLS local dynamic got entry handling. Suppose for multiple GOT
2378 sections means we potentially need one of these for each input bfd. */
2379 union {
2380 bfd_signed_vma refcount;
2381 bfd_vma offset;
2382 } tlsld_got;
2383 };
2384
2385 #define ppc64_elf_tdata(bfd) \
2386 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2387
2388 #define ppc64_tlsld_got(bfd) \
2389 (&ppc64_elf_tdata (bfd)->tlsld_got)
2390
2391 /* Override the generic function because we store some extras. */
2392
2393 static bfd_boolean
2394 ppc64_elf_mkobject (bfd *abfd)
2395 {
2396 bfd_size_type amt = sizeof (struct ppc64_elf_obj_tdata);
2397 abfd->tdata.any = bfd_zalloc (abfd, amt);
2398 if (abfd->tdata.any == NULL)
2399 return FALSE;
2400 return TRUE;
2401 }
2402
2403 /* Return 1 if target is one of ours. */
2404
2405 static bfd_boolean
2406 is_ppc64_elf_target (const struct bfd_target *targ)
2407 {
2408 extern const bfd_target bfd_elf64_powerpc_vec;
2409 extern const bfd_target bfd_elf64_powerpcle_vec;
2410
2411 return targ == &bfd_elf64_powerpc_vec || targ == &bfd_elf64_powerpcle_vec;
2412 }
2413
2414 /* Fix bad default arch selected for a 64 bit input bfd when the
2415 default is 32 bit. */
2416
2417 static bfd_boolean
2418 ppc64_elf_object_p (bfd *abfd)
2419 {
2420 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2421 {
2422 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2423
2424 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2425 {
2426 /* Relies on arch after 32 bit default being 64 bit default. */
2427 abfd->arch_info = abfd->arch_info->next;
2428 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2429 }
2430 }
2431 return TRUE;
2432 }
2433
2434 /* Support for core dump NOTE sections. */
2435
2436 static bfd_boolean
2437 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2438 {
2439 size_t offset, size;
2440
2441 if (note->descsz != 504)
2442 return FALSE;
2443
2444 /* pr_cursig */
2445 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2446
2447 /* pr_pid */
2448 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2449
2450 /* pr_reg */
2451 offset = 112;
2452 size = 384;
2453
2454 /* Make a ".reg/999" section. */
2455 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2456 size, note->descpos + offset);
2457 }
2458
2459 static bfd_boolean
2460 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2461 {
2462 if (note->descsz != 136)
2463 return FALSE;
2464
2465 elf_tdata (abfd)->core_program
2466 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2467 elf_tdata (abfd)->core_command
2468 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2469
2470 return TRUE;
2471 }
2472
2473 /* Merge backend specific data from an object file to the output
2474 object file when linking. */
2475
2476 static bfd_boolean
2477 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2478 {
2479 /* Check if we have the same endianess. */
2480 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2481 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
2482 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2483 {
2484 const char *msg;
2485
2486 if (bfd_big_endian (ibfd))
2487 msg = _("%B: compiled for a big endian system "
2488 "and target is little endian");
2489 else
2490 msg = _("%B: compiled for a little endian system "
2491 "and target is big endian");
2492
2493 (*_bfd_error_handler) (msg, ibfd);
2494
2495 bfd_set_error (bfd_error_wrong_format);
2496 return FALSE;
2497 }
2498
2499 return TRUE;
2500 }
2501
2502 /* Add extra PPC sections. */
2503
2504 static struct bfd_elf_special_section const ppc64_elf_special_sections[]=
2505 {
2506 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2507 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2508 { ".plt", 4, 0, SHT_NOBITS, 0 },
2509 { ".toc", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2510 { ".toc1", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2511 { ".tocbss", 7, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2512 { NULL, 0, 0, 0, 0 }
2513 };
2514
2515 struct _ppc64_elf_section_data
2516 {
2517 struct bfd_elf_section_data elf;
2518
2519 /* An array with one entry for each opd function descriptor. */
2520 union
2521 {
2522 /* Points to the function code section for local opd entries. */
2523 asection **func_sec;
2524 /* After editing .opd, adjust references to opd local syms. */
2525 long *adjust;
2526 } opd;
2527
2528 /* An array for toc sections, indexed by offset/8.
2529 Specifies the relocation symbol index used at a given toc offset. */
2530 unsigned *t_symndx;
2531 };
2532
2533 #define ppc64_elf_section_data(sec) \
2534 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2535
2536 static bfd_boolean
2537 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2538 {
2539 struct _ppc64_elf_section_data *sdata;
2540 bfd_size_type amt = sizeof (*sdata);
2541
2542 sdata = bfd_zalloc (abfd, amt);
2543 if (sdata == NULL)
2544 return FALSE;
2545 sec->used_by_bfd = sdata;
2546
2547 return _bfd_elf_new_section_hook (abfd, sec);
2548 }
2549
2550 static void *
2551 get_opd_info (asection * sec)
2552 {
2553 if (sec != NULL
2554 && ppc64_elf_section_data (sec) != NULL
2555 && ppc64_elf_section_data (sec)->opd.adjust != NULL)
2556 return ppc64_elf_section_data (sec)->opd.adjust;
2557 return NULL;
2558 }
2559 \f
2560 /* Parameters for the qsort hook. */
2561 static asection *synthetic_opd;
2562 static bfd_boolean synthetic_relocatable;
2563
2564 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2565
2566 static int
2567 compare_symbols (const void *ap, const void *bp)
2568 {
2569 const asymbol *a = * (const asymbol **) ap;
2570 const asymbol *b = * (const asymbol **) bp;
2571
2572 /* Section symbols first. */
2573 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2574 return -1;
2575 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2576 return 1;
2577
2578 /* then .opd symbols. */
2579 if (a->section == synthetic_opd && b->section != synthetic_opd)
2580 return -1;
2581 if (a->section != synthetic_opd && b->section == synthetic_opd)
2582 return 1;
2583
2584 /* then other code symbols. */
2585 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2586 == (SEC_CODE | SEC_ALLOC)
2587 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2588 != (SEC_CODE | SEC_ALLOC))
2589 return -1;
2590
2591 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2592 != (SEC_CODE | SEC_ALLOC)
2593 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2594 == (SEC_CODE | SEC_ALLOC))
2595 return 1;
2596
2597 if (synthetic_relocatable)
2598 {
2599 if (a->section->id < b->section->id)
2600 return -1;
2601
2602 if (a->section->id > b->section->id)
2603 return 1;
2604 }
2605
2606 if (a->value + a->section->vma < b->value + b->section->vma)
2607 return -1;
2608
2609 if (a->value + a->section->vma > b->value + b->section->vma)
2610 return 1;
2611
2612 return 0;
2613 }
2614
2615 /* Search SYMS for a symbol of the given VALUE. */
2616
2617 static asymbol *
2618 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2619 {
2620 long mid;
2621
2622 if (id == -1)
2623 {
2624 while (lo < hi)
2625 {
2626 mid = (lo + hi) >> 1;
2627 if (syms[mid]->value + syms[mid]->section->vma < value)
2628 lo = mid + 1;
2629 else if (syms[mid]->value + syms[mid]->section->vma > value)
2630 hi = mid;
2631 else
2632 return syms[mid];
2633 }
2634 }
2635 else
2636 {
2637 while (lo < hi)
2638 {
2639 mid = (lo + hi) >> 1;
2640 if (syms[mid]->section->id < id)
2641 lo = mid + 1;
2642 else if (syms[mid]->section->id > id)
2643 hi = mid;
2644 else if (syms[mid]->value < value)
2645 lo = mid + 1;
2646 else if (syms[mid]->value > value)
2647 hi = mid;
2648 else
2649 return syms[mid];
2650 }
2651 }
2652 return NULL;
2653 }
2654
2655 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2656 entry syms. */
2657
2658 static long
2659 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2660 long static_count, asymbol **static_syms,
2661 long dyn_count, asymbol **dyn_syms,
2662 asymbol **ret)
2663 {
2664 asymbol *s;
2665 long i;
2666 long count;
2667 char *names;
2668 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2669 asection *opd;
2670 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2671 asymbol **syms;
2672
2673 *ret = NULL;
2674
2675 opd = bfd_get_section_by_name (abfd, ".opd");
2676 if (opd == NULL)
2677 return 0;
2678
2679 symcount = static_count;
2680 if (!relocatable)
2681 symcount += dyn_count;
2682 if (symcount == 0)
2683 return 0;
2684
2685 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2686 if (syms == NULL)
2687 return 0;
2688
2689 if (!relocatable && static_count != 0 && dyn_count != 0)
2690 {
2691 /* Use both symbol tables. */
2692 memcpy (syms, static_syms, static_count * sizeof (*syms));
2693 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
2694 }
2695 else if (!relocatable && static_count == 0)
2696 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2697 else
2698 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2699
2700 synthetic_opd = opd;
2701 synthetic_relocatable = relocatable;
2702 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2703
2704 if (!relocatable && symcount > 1)
2705 {
2706 long j;
2707 /* Trim duplicate syms, since we may have merged the normal and
2708 dynamic symbols. Actually, we only care about syms that have
2709 different values, so trim any with the same value. */
2710 for (i = 1, j = 1; i < symcount; ++i)
2711 if (syms[i - 1]->value + syms[i - 1]->section->vma
2712 != syms[i]->value + syms[i]->section->vma)
2713 syms[j++] = syms[i];
2714 symcount = j;
2715 }
2716
2717 i = 0;
2718 if (syms[i]->section == opd)
2719 ++i;
2720 codesecsym = i;
2721
2722 for (; i < symcount; ++i)
2723 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2724 != (SEC_CODE | SEC_ALLOC))
2725 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2726 break;
2727 codesecsymend = i;
2728
2729 for (; i < symcount; ++i)
2730 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2731 break;
2732 secsymend = i;
2733
2734 for (; i < symcount; ++i)
2735 if (syms[i]->section != opd)
2736 break;
2737 opdsymend = i;
2738
2739 for (; i < symcount; ++i)
2740 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2741 != (SEC_CODE | SEC_ALLOC))
2742 break;
2743 symcount = i;
2744
2745 count = 0;
2746 if (opdsymend == secsymend)
2747 goto done;
2748
2749 if (relocatable)
2750 {
2751 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2752 arelent *r;
2753 size_t size;
2754 long relcount;
2755
2756 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2757 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2758
2759 if (! relcount
2760 || ! (*slurp_relocs) (abfd, opd, static_syms, FALSE))
2761 goto done;
2762
2763 size = 0;
2764 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2765 {
2766 asymbol *sym;
2767
2768 while (r < opd->relocation + relcount
2769 && r->address < syms[i]->value + opd->vma)
2770 ++r;
2771
2772 if (r == opd->relocation + relcount)
2773 break;
2774
2775 if (r->address != syms[i]->value + opd->vma)
2776 continue;
2777
2778 if (r->howto->type != R_PPC64_ADDR64)
2779 continue;
2780
2781 sym = *r->sym_ptr_ptr;
2782 if (!sym_exists_at (syms, opdsymend, symcount,
2783 sym->section->id, sym->value + r->addend))
2784 {
2785 ++count;
2786 size += sizeof (asymbol);
2787 size += strlen (syms[i]->name) + 2;
2788 }
2789 }
2790
2791 s = *ret = bfd_malloc (size);
2792 if (s == NULL)
2793 {
2794 count = 0;
2795 goto done;
2796 }
2797
2798 names = (char *) (s + count);
2799
2800 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2801 {
2802 asymbol *sym;
2803
2804 while (r < opd->relocation + relcount
2805 && r->address < syms[i]->value + opd->vma)
2806 ++r;
2807
2808 if (r == opd->relocation + relcount)
2809 break;
2810
2811 if (r->address != syms[i]->value + opd->vma)
2812 continue;
2813
2814 if (r->howto->type != R_PPC64_ADDR64)
2815 continue;
2816
2817 sym = *r->sym_ptr_ptr;
2818 if (!sym_exists_at (syms, opdsymend, symcount,
2819 sym->section->id, sym->value + r->addend))
2820 {
2821 size_t len;
2822
2823 *s = *syms[i];
2824 s->section = sym->section;
2825 s->value = sym->value + r->addend;
2826 s->name = names;
2827 *names++ = '.';
2828 len = strlen (syms[i]->name);
2829 memcpy (names, syms[i]->name, len + 1);
2830 names += len + 1;
2831 s++;
2832 }
2833 }
2834 }
2835 else
2836 {
2837 bfd_byte *contents;
2838 size_t size;
2839
2840 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
2841 {
2842 if (contents)
2843 {
2844 free_contents_and_exit:
2845 free (contents);
2846 }
2847 goto done;
2848 }
2849
2850 size = 0;
2851 for (i = secsymend; i < opdsymend; ++i)
2852 {
2853 bfd_vma ent;
2854
2855 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2856 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2857 {
2858 ++count;
2859 size += sizeof (asymbol);
2860 size += strlen (syms[i]->name) + 2;
2861 }
2862 }
2863
2864 s = *ret = bfd_malloc (size);
2865 if (s == NULL)
2866 {
2867 count = 0;
2868 goto free_contents_and_exit;
2869 }
2870
2871 names = (char *) (s + count);
2872
2873 for (i = secsymend; i < opdsymend; ++i)
2874 {
2875 bfd_vma ent;
2876
2877 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2878 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2879 {
2880 long lo, hi;
2881 size_t len;
2882 asection *sec = abfd->sections;
2883
2884 *s = *syms[i];
2885 lo = codesecsym;
2886 hi = codesecsymend;
2887 while (lo < hi)
2888 {
2889 long mid = (lo + hi) >> 1;
2890 if (syms[mid]->section->vma < ent)
2891 lo = mid + 1;
2892 else if (syms[mid]->section->vma > ent)
2893 hi = mid;
2894 else
2895 {
2896 sec = syms[mid]->section;
2897 break;
2898 }
2899 }
2900
2901 if (lo >= hi && lo > codesecsym)
2902 sec = syms[lo - 1]->section;
2903
2904 for (; sec != NULL; sec = sec->next)
2905 {
2906 if (sec->vma > ent)
2907 break;
2908 if ((sec->flags & SEC_ALLOC) == 0
2909 || (sec->flags & SEC_LOAD) == 0)
2910 break;
2911 if ((sec->flags & SEC_CODE) != 0)
2912 s->section = sec;
2913 }
2914 s->value = ent - s->section->vma;
2915 s->name = names;
2916 *names++ = '.';
2917 len = strlen (syms[i]->name);
2918 memcpy (names, syms[i]->name, len + 1);
2919 names += len + 1;
2920 s++;
2921 }
2922 }
2923 free (contents);
2924 }
2925
2926 done:
2927 free (syms);
2928 return count;
2929 }
2930 \f
2931 /* The following functions are specific to the ELF linker, while
2932 functions above are used generally. Those named ppc64_elf_* are
2933 called by the main ELF linker code. They appear in this file more
2934 or less in the order in which they are called. eg.
2935 ppc64_elf_check_relocs is called early in the link process,
2936 ppc64_elf_finish_dynamic_sections is one of the last functions
2937 called.
2938
2939 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2940 functions have both a function code symbol and a function descriptor
2941 symbol. A call to foo in a relocatable object file looks like:
2942
2943 . .text
2944 . x:
2945 . bl .foo
2946 . nop
2947
2948 The function definition in another object file might be:
2949
2950 . .section .opd
2951 . foo: .quad .foo
2952 . .quad .TOC.@tocbase
2953 . .quad 0
2954 .
2955 . .text
2956 . .foo: blr
2957
2958 When the linker resolves the call during a static link, the branch
2959 unsurprisingly just goes to .foo and the .opd information is unused.
2960 If the function definition is in a shared library, things are a little
2961 different: The call goes via a plt call stub, the opd information gets
2962 copied to the plt, and the linker patches the nop.
2963
2964 . x:
2965 . bl .foo_stub
2966 . ld 2,40(1)
2967 .
2968 .
2969 . .foo_stub:
2970 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
2971 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
2972 . std 2,40(1) # this is the general idea
2973 . ld 11,0(12)
2974 . ld 2,8(12)
2975 . mtctr 11
2976 . ld 11,16(12)
2977 . bctr
2978 .
2979 . .section .plt
2980 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2981
2982 The "reloc ()" notation is supposed to indicate that the linker emits
2983 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2984 copying.
2985
2986 What are the difficulties here? Well, firstly, the relocations
2987 examined by the linker in check_relocs are against the function code
2988 sym .foo, while the dynamic relocation in the plt is emitted against
2989 the function descriptor symbol, foo. Somewhere along the line, we need
2990 to carefully copy dynamic link information from one symbol to the other.
2991 Secondly, the generic part of the elf linker will make .foo a dynamic
2992 symbol as is normal for most other backends. We need foo dynamic
2993 instead, at least for an application final link. However, when
2994 creating a shared library containing foo, we need to have both symbols
2995 dynamic so that references to .foo are satisfied during the early
2996 stages of linking. Otherwise the linker might decide to pull in a
2997 definition from some other object, eg. a static library.
2998
2999 Update: As of August 2004, we support a new convention. Function
3000 calls may use the function descriptor symbol, ie. "bl foo". This
3001 behaves exactly as "bl .foo". */
3002
3003 /* The linker needs to keep track of the number of relocs that it
3004 decides to copy as dynamic relocs in check_relocs for each symbol.
3005 This is so that it can later discard them if they are found to be
3006 unnecessary. We store the information in a field extending the
3007 regular ELF linker hash table. */
3008
3009 struct ppc_dyn_relocs
3010 {
3011 struct ppc_dyn_relocs *next;
3012
3013 /* The input section of the reloc. */
3014 asection *sec;
3015
3016 /* Total number of relocs copied for the input section. */
3017 bfd_size_type count;
3018
3019 /* Number of pc-relative relocs copied for the input section. */
3020 bfd_size_type pc_count;
3021 };
3022
3023 /* Track GOT entries needed for a given symbol. We might need more
3024 than one got entry per symbol. */
3025 struct got_entry
3026 {
3027 struct got_entry *next;
3028
3029 /* The symbol addend that we'll be placing in the GOT. */
3030 bfd_vma addend;
3031
3032 /* Unlike other ELF targets, we use separate GOT entries for the same
3033 symbol referenced from different input files. This is to support
3034 automatic multiple TOC/GOT sections, where the TOC base can vary
3035 from one input file to another.
3036
3037 Point to the BFD owning this GOT entry. */
3038 bfd *owner;
3039
3040 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
3041 TLS_TPREL or TLS_DTPREL for tls entries. */
3042 char tls_type;
3043
3044 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
3045 union
3046 {
3047 bfd_signed_vma refcount;
3048 bfd_vma offset;
3049 } got;
3050 };
3051
3052 /* The same for PLT. */
3053 struct plt_entry
3054 {
3055 struct plt_entry *next;
3056
3057 bfd_vma addend;
3058
3059 union
3060 {
3061 bfd_signed_vma refcount;
3062 bfd_vma offset;
3063 } plt;
3064 };
3065
3066 /* Of those relocs that might be copied as dynamic relocs, this macro
3067 selects those that must be copied when linking a shared library,
3068 even when the symbol is local. */
3069
3070 #define MUST_BE_DYN_RELOC(RTYPE) \
3071 ((RTYPE) != R_PPC64_REL32 \
3072 && (RTYPE) != R_PPC64_REL64 \
3073 && (RTYPE) != R_PPC64_REL30)
3074
3075 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3076 copying dynamic variables from a shared lib into an app's dynbss
3077 section, and instead use a dynamic relocation to point into the
3078 shared lib. With code that gcc generates, it's vital that this be
3079 enabled; In the PowerPC64 ABI, the address of a function is actually
3080 the address of a function descriptor, which resides in the .opd
3081 section. gcc uses the descriptor directly rather than going via the
3082 GOT as some other ABI's do, which means that initialized function
3083 pointers must reference the descriptor. Thus, a function pointer
3084 initialized to the address of a function in a shared library will
3085 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3086 redefines the function descriptor symbol to point to the copy. This
3087 presents a problem as a plt entry for that function is also
3088 initialized from the function descriptor symbol and the copy reloc
3089 may not be initialized first. */
3090 #define ELIMINATE_COPY_RELOCS 1
3091
3092 /* Section name for stubs is the associated section name plus this
3093 string. */
3094 #define STUB_SUFFIX ".stub"
3095
3096 /* Linker stubs.
3097 ppc_stub_long_branch:
3098 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3099 destination, but a 24 bit branch in a stub section will reach.
3100 . b dest
3101
3102 ppc_stub_plt_branch:
3103 Similar to the above, but a 24 bit branch in the stub section won't
3104 reach its destination.
3105 . addis %r12,%r2,xxx@toc@ha
3106 . ld %r11,xxx@toc@l(%r12)
3107 . mtctr %r11
3108 . bctr
3109
3110 ppc_stub_plt_call:
3111 Used to call a function in a shared library. If it so happens that
3112 the plt entry referenced crosses a 64k boundary, then an extra
3113 "addis %r12,%r12,1" will be inserted before the load at xxx+8 or
3114 xxx+16 as appropriate.
3115 . addis %r12,%r2,xxx@toc@ha
3116 . std %r2,40(%r1)
3117 . ld %r11,xxx+0@toc@l(%r12)
3118 . ld %r2,xxx+8@toc@l(%r12)
3119 . mtctr %r11
3120 . ld %r11,xxx+16@toc@l(%r12)
3121 . bctr
3122
3123 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3124 code to adjust the value and save r2 to support multiple toc sections.
3125 A ppc_stub_long_branch with an r2 offset looks like:
3126 . std %r2,40(%r1)
3127 . addis %r2,%r2,off@ha
3128 . addi %r2,%r2,off@l
3129 . b dest
3130
3131 A ppc_stub_plt_branch with an r2 offset looks like:
3132 . std %r2,40(%r1)
3133 . addis %r12,%r2,xxx@toc@ha
3134 . ld %r11,xxx@toc@l(%r12)
3135 . addis %r2,%r2,off@ha
3136 . addi %r2,%r2,off@l
3137 . mtctr %r11
3138 . bctr
3139 */
3140
3141 enum ppc_stub_type {
3142 ppc_stub_none,
3143 ppc_stub_long_branch,
3144 ppc_stub_long_branch_r2off,
3145 ppc_stub_plt_branch,
3146 ppc_stub_plt_branch_r2off,
3147 ppc_stub_plt_call
3148 };
3149
3150 struct ppc_stub_hash_entry {
3151
3152 /* Base hash table entry structure. */
3153 struct bfd_hash_entry root;
3154
3155 enum ppc_stub_type stub_type;
3156
3157 /* The stub section. */
3158 asection *stub_sec;
3159
3160 /* Offset within stub_sec of the beginning of this stub. */
3161 bfd_vma stub_offset;
3162
3163 /* Given the symbol's value and its section we can determine its final
3164 value when building the stubs (so the stub knows where to jump. */
3165 bfd_vma target_value;
3166 asection *target_section;
3167
3168 /* The symbol table entry, if any, that this was derived from. */
3169 struct ppc_link_hash_entry *h;
3170
3171 /* And the reloc addend that this was derived from. */
3172 bfd_vma addend;
3173
3174 /* Where this stub is being called from, or, in the case of combined
3175 stub sections, the first input section in the group. */
3176 asection *id_sec;
3177 };
3178
3179 struct ppc_branch_hash_entry {
3180
3181 /* Base hash table entry structure. */
3182 struct bfd_hash_entry root;
3183
3184 /* Offset within .branch_lt. */
3185 unsigned int offset;
3186
3187 /* Generation marker. */
3188 unsigned int iter;
3189 };
3190
3191 struct ppc_link_hash_entry
3192 {
3193 struct elf_link_hash_entry elf;
3194
3195 /* A pointer to the most recently used stub hash entry against this
3196 symbol. */
3197 struct ppc_stub_hash_entry *stub_cache;
3198
3199 /* Track dynamic relocs copied for this symbol. */
3200 struct ppc_dyn_relocs *dyn_relocs;
3201
3202 /* Link between function code and descriptor symbols. */
3203 struct ppc_link_hash_entry *oh;
3204
3205 /* Flag function code and descriptor symbols. */
3206 unsigned int is_func:1;
3207 unsigned int is_func_descriptor:1;
3208
3209 /* Whether global opd/toc sym has been adjusted or not.
3210 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3211 should be set for all globals defined in any opd/toc section. */
3212 unsigned int adjust_done:1;
3213
3214 /* Set if we twiddled this symbol to weak at some stage. */
3215 unsigned int was_undefined:1;
3216
3217 /* Contexts in which symbol is used in the GOT (or TOC).
3218 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3219 corresponding relocs are encountered during check_relocs.
3220 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3221 indicate the corresponding GOT entry type is not needed.
3222 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3223 a TPREL one. We use a separate flag rather than setting TPREL
3224 just for convenience in distinguishing the two cases. */
3225 #define TLS_GD 1 /* GD reloc. */
3226 #define TLS_LD 2 /* LD reloc. */
3227 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3228 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3229 #define TLS_TLS 16 /* Any TLS reloc. */
3230 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3231 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3232 char tls_mask;
3233 };
3234
3235 /* ppc64 ELF linker hash table. */
3236
3237 struct ppc_link_hash_table
3238 {
3239 struct elf_link_hash_table elf;
3240
3241 /* The stub hash table. */
3242 struct bfd_hash_table stub_hash_table;
3243
3244 /* Another hash table for plt_branch stubs. */
3245 struct bfd_hash_table branch_hash_table;
3246
3247 /* Linker stub bfd. */
3248 bfd *stub_bfd;
3249
3250 /* Linker call-backs. */
3251 asection * (*add_stub_section) (const char *, asection *);
3252 void (*layout_sections_again) (void);
3253
3254 /* Array to keep track of which stub sections have been created, and
3255 information on stub grouping. */
3256 struct map_stub {
3257 /* This is the section to which stubs in the group will be attached. */
3258 asection *link_sec;
3259 /* The stub section. */
3260 asection *stub_sec;
3261 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3262 bfd_vma toc_off;
3263 } *stub_group;
3264
3265 /* Temp used when calculating TOC pointers. */
3266 bfd_vma toc_curr;
3267
3268 /* Highest input section id. */
3269 int top_id;
3270
3271 /* Highest output section index. */
3272 int top_index;
3273
3274 /* List of input sections for each output section. */
3275 asection **input_list;
3276
3277 /* Short-cuts to get to dynamic linker sections. */
3278 asection *got;
3279 asection *plt;
3280 asection *relplt;
3281 asection *dynbss;
3282 asection *relbss;
3283 asection *glink;
3284 asection *sfpr;
3285 asection *brlt;
3286 asection *relbrlt;
3287
3288 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3289 struct ppc_link_hash_entry *tls_get_addr;
3290 struct ppc_link_hash_entry *tls_get_addr_fd;
3291
3292 /* Statistics. */
3293 unsigned long stub_count[ppc_stub_plt_call];
3294
3295 /* Number of stubs against global syms. */
3296 unsigned long stub_globals;
3297
3298 /* Set if we should emit symbols for stubs. */
3299 unsigned int emit_stub_syms:1;
3300
3301 /* Set on error. */
3302 unsigned int stub_error:1;
3303
3304 /* Flag set when small branches are detected. Used to
3305 select suitable defaults for the stub group size. */
3306 unsigned int has_14bit_branch:1;
3307
3308 /* Temp used by ppc64_elf_check_directives. */
3309 unsigned int twiddled_syms:1;
3310
3311 /* Incremented every time we size stubs. */
3312 unsigned int stub_iteration;
3313
3314 /* Small local sym to section mapping cache. */
3315 struct sym_sec_cache sym_sec;
3316 };
3317
3318 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3319
3320 #define ppc_hash_table(p) \
3321 ((struct ppc_link_hash_table *) ((p)->hash))
3322
3323 #define ppc_stub_hash_lookup(table, string, create, copy) \
3324 ((struct ppc_stub_hash_entry *) \
3325 bfd_hash_lookup ((table), (string), (create), (copy)))
3326
3327 #define ppc_branch_hash_lookup(table, string, create, copy) \
3328 ((struct ppc_branch_hash_entry *) \
3329 bfd_hash_lookup ((table), (string), (create), (copy)))
3330
3331 /* Create an entry in the stub hash table. */
3332
3333 static struct bfd_hash_entry *
3334 stub_hash_newfunc (struct bfd_hash_entry *entry,
3335 struct bfd_hash_table *table,
3336 const char *string)
3337 {
3338 /* Allocate the structure if it has not already been allocated by a
3339 subclass. */
3340 if (entry == NULL)
3341 {
3342 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3343 if (entry == NULL)
3344 return entry;
3345 }
3346
3347 /* Call the allocation method of the superclass. */
3348 entry = bfd_hash_newfunc (entry, table, string);
3349 if (entry != NULL)
3350 {
3351 struct ppc_stub_hash_entry *eh;
3352
3353 /* Initialize the local fields. */
3354 eh = (struct ppc_stub_hash_entry *) entry;
3355 eh->stub_type = ppc_stub_none;
3356 eh->stub_sec = NULL;
3357 eh->stub_offset = 0;
3358 eh->target_value = 0;
3359 eh->target_section = NULL;
3360 eh->h = NULL;
3361 eh->id_sec = NULL;
3362 }
3363
3364 return entry;
3365 }
3366
3367 /* Create an entry in the branch hash table. */
3368
3369 static struct bfd_hash_entry *
3370 branch_hash_newfunc (struct bfd_hash_entry *entry,
3371 struct bfd_hash_table *table,
3372 const char *string)
3373 {
3374 /* Allocate the structure if it has not already been allocated by a
3375 subclass. */
3376 if (entry == NULL)
3377 {
3378 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3379 if (entry == NULL)
3380 return entry;
3381 }
3382
3383 /* Call the allocation method of the superclass. */
3384 entry = bfd_hash_newfunc (entry, table, string);
3385 if (entry != NULL)
3386 {
3387 struct ppc_branch_hash_entry *eh;
3388
3389 /* Initialize the local fields. */
3390 eh = (struct ppc_branch_hash_entry *) entry;
3391 eh->offset = 0;
3392 eh->iter = 0;
3393 }
3394
3395 return entry;
3396 }
3397
3398 /* Create an entry in a ppc64 ELF linker hash table. */
3399
3400 static struct bfd_hash_entry *
3401 link_hash_newfunc (struct bfd_hash_entry *entry,
3402 struct bfd_hash_table *table,
3403 const char *string)
3404 {
3405 /* Allocate the structure if it has not already been allocated by a
3406 subclass. */
3407 if (entry == NULL)
3408 {
3409 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3410 if (entry == NULL)
3411 return entry;
3412 }
3413
3414 /* Call the allocation method of the superclass. */
3415 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3416 if (entry != NULL)
3417 {
3418 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3419
3420 eh->stub_cache = NULL;
3421 eh->dyn_relocs = NULL;
3422 eh->oh = NULL;
3423 eh->is_func = 0;
3424 eh->is_func_descriptor = 0;
3425 eh->adjust_done = 0;
3426 eh->was_undefined = 0;
3427 eh->tls_mask = 0;
3428 }
3429
3430 return entry;
3431 }
3432
3433 /* Create a ppc64 ELF linker hash table. */
3434
3435 static struct bfd_link_hash_table *
3436 ppc64_elf_link_hash_table_create (bfd *abfd)
3437 {
3438 struct ppc_link_hash_table *htab;
3439 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3440
3441 htab = bfd_zmalloc (amt);
3442 if (htab == NULL)
3443 return NULL;
3444
3445 if (! _bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc))
3446 {
3447 free (htab);
3448 return NULL;
3449 }
3450
3451 /* Init the stub hash table too. */
3452 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc))
3453 return NULL;
3454
3455 /* And the branch hash table. */
3456 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc))
3457 return NULL;
3458
3459 /* Initializing two fields of the union is just cosmetic. We really
3460 only care about glist, but when compiled on a 32-bit host the
3461 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3462 debugger inspection of these fields look nicer. */
3463 htab->elf.init_refcount.refcount = 0;
3464 htab->elf.init_refcount.glist = NULL;
3465 htab->elf.init_offset.offset = 0;
3466 htab->elf.init_offset.glist = NULL;
3467
3468 return &htab->elf.root;
3469 }
3470
3471 /* Free the derived linker hash table. */
3472
3473 static void
3474 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
3475 {
3476 struct ppc_link_hash_table *ret = (struct ppc_link_hash_table *) hash;
3477
3478 bfd_hash_table_free (&ret->stub_hash_table);
3479 bfd_hash_table_free (&ret->branch_hash_table);
3480 _bfd_generic_link_hash_table_free (hash);
3481 }
3482
3483 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3484
3485 void
3486 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
3487 {
3488 struct ppc_link_hash_table *htab;
3489
3490 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
3491
3492 /* Always hook our dynamic sections into the first bfd, which is the
3493 linker created stub bfd. This ensures that the GOT header is at
3494 the start of the output TOC section. */
3495 htab = ppc_hash_table (info);
3496 htab->stub_bfd = abfd;
3497 htab->elf.dynobj = abfd;
3498 }
3499
3500 /* Build a name for an entry in the stub hash table. */
3501
3502 static char *
3503 ppc_stub_name (const asection *input_section,
3504 const asection *sym_sec,
3505 const struct ppc_link_hash_entry *h,
3506 const Elf_Internal_Rela *rel)
3507 {
3508 char *stub_name;
3509 bfd_size_type len;
3510
3511 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3512 offsets from a sym as a branch target? In fact, we could
3513 probably assume the addend is always zero. */
3514 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3515
3516 if (h)
3517 {
3518 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3519 stub_name = bfd_malloc (len);
3520 if (stub_name != NULL)
3521 {
3522 sprintf (stub_name, "%08x.%s+%x",
3523 input_section->id & 0xffffffff,
3524 h->elf.root.root.string,
3525 (int) rel->r_addend & 0xffffffff);
3526 }
3527 }
3528 else
3529 {
3530 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3531 stub_name = bfd_malloc (len);
3532 if (stub_name != NULL)
3533 {
3534 sprintf (stub_name, "%08x.%x:%x+%x",
3535 input_section->id & 0xffffffff,
3536 sym_sec->id & 0xffffffff,
3537 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3538 (int) rel->r_addend & 0xffffffff);
3539 }
3540 }
3541 if (stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3542 stub_name[len - 2] = 0;
3543 return stub_name;
3544 }
3545
3546 /* Look up an entry in the stub hash. Stub entries are cached because
3547 creating the stub name takes a bit of time. */
3548
3549 static struct ppc_stub_hash_entry *
3550 ppc_get_stub_entry (const asection *input_section,
3551 const asection *sym_sec,
3552 struct ppc_link_hash_entry *h,
3553 const Elf_Internal_Rela *rel,
3554 struct ppc_link_hash_table *htab)
3555 {
3556 struct ppc_stub_hash_entry *stub_entry;
3557 const asection *id_sec;
3558
3559 /* If this input section is part of a group of sections sharing one
3560 stub section, then use the id of the first section in the group.
3561 Stub names need to include a section id, as there may well be
3562 more than one stub used to reach say, printf, and we need to
3563 distinguish between them. */
3564 id_sec = htab->stub_group[input_section->id].link_sec;
3565
3566 if (h != NULL && h->stub_cache != NULL
3567 && h->stub_cache->h == h
3568 && h->stub_cache->id_sec == id_sec)
3569 {
3570 stub_entry = h->stub_cache;
3571 }
3572 else
3573 {
3574 char *stub_name;
3575
3576 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
3577 if (stub_name == NULL)
3578 return NULL;
3579
3580 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3581 stub_name, FALSE, FALSE);
3582 if (h != NULL)
3583 h->stub_cache = stub_entry;
3584
3585 free (stub_name);
3586 }
3587
3588 return stub_entry;
3589 }
3590
3591 /* Add a new stub entry to the stub hash. Not all fields of the new
3592 stub entry are initialised. */
3593
3594 static struct ppc_stub_hash_entry *
3595 ppc_add_stub (const char *stub_name,
3596 asection *section,
3597 struct ppc_link_hash_table *htab)
3598 {
3599 asection *link_sec;
3600 asection *stub_sec;
3601 struct ppc_stub_hash_entry *stub_entry;
3602
3603 link_sec = htab->stub_group[section->id].link_sec;
3604 stub_sec = htab->stub_group[section->id].stub_sec;
3605 if (stub_sec == NULL)
3606 {
3607 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3608 if (stub_sec == NULL)
3609 {
3610 size_t namelen;
3611 bfd_size_type len;
3612 char *s_name;
3613
3614 namelen = strlen (link_sec->name);
3615 len = namelen + sizeof (STUB_SUFFIX);
3616 s_name = bfd_alloc (htab->stub_bfd, len);
3617 if (s_name == NULL)
3618 return NULL;
3619
3620 memcpy (s_name, link_sec->name, namelen);
3621 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3622 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3623 if (stub_sec == NULL)
3624 return NULL;
3625 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3626 }
3627 htab->stub_group[section->id].stub_sec = stub_sec;
3628 }
3629
3630 /* Enter this entry into the linker stub hash table. */
3631 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3632 TRUE, FALSE);
3633 if (stub_entry == NULL)
3634 {
3635 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3636 section->owner, stub_name);
3637 return NULL;
3638 }
3639
3640 stub_entry->stub_sec = stub_sec;
3641 stub_entry->stub_offset = 0;
3642 stub_entry->id_sec = link_sec;
3643 return stub_entry;
3644 }
3645
3646 /* Create sections for linker generated code. */
3647
3648 static bfd_boolean
3649 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3650 {
3651 struct ppc_link_hash_table *htab;
3652 flagword flags;
3653
3654 htab = ppc_hash_table (info);
3655
3656 /* Create .sfpr for code to save and restore fp regs. */
3657 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3658 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3659 htab->sfpr = bfd_make_section_anyway (dynobj, ".sfpr");
3660 if (htab->sfpr == NULL
3661 || ! bfd_set_section_flags (dynobj, htab->sfpr, flags)
3662 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
3663 return FALSE;
3664
3665 /* Create .glink for lazy dynamic linking support. */
3666 htab->glink = bfd_make_section_anyway (dynobj, ".glink");
3667 if (htab->glink == NULL
3668 || ! bfd_set_section_flags (dynobj, htab->glink, flags)
3669 || ! bfd_set_section_alignment (dynobj, htab->glink, 2))
3670 return FALSE;
3671
3672 /* Create .branch_lt for plt_branch stubs. */
3673 flags = (SEC_ALLOC | SEC_LOAD
3674 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3675 htab->brlt = bfd_make_section_anyway (dynobj, ".branch_lt");
3676 if (htab->brlt == NULL
3677 || ! bfd_set_section_flags (dynobj, htab->brlt, flags)
3678 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
3679 return FALSE;
3680
3681 if (info->shared || info->emitrelocations)
3682 {
3683 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3684 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3685 htab->relbrlt = bfd_make_section_anyway (dynobj, ".rela.branch_lt");
3686 if (!htab->relbrlt
3687 || ! bfd_set_section_flags (dynobj, htab->relbrlt, flags)
3688 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
3689 return FALSE;
3690 }
3691 return TRUE;
3692 }
3693
3694 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3695 not already done. */
3696
3697 static bfd_boolean
3698 create_got_section (bfd *abfd, struct bfd_link_info *info)
3699 {
3700 asection *got, *relgot;
3701 flagword flags;
3702 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3703
3704 if (!htab->got)
3705 {
3706 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
3707 return FALSE;
3708
3709 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
3710 if (!htab->got)
3711 abort ();
3712 }
3713
3714 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3715 | SEC_LINKER_CREATED);
3716
3717 got = bfd_make_section (abfd, ".got");
3718 if (!got
3719 || !bfd_set_section_flags (abfd, got, flags)
3720 || !bfd_set_section_alignment (abfd, got, 3))
3721 return FALSE;
3722
3723 relgot = bfd_make_section (abfd, ".rela.got");
3724 if (!relgot
3725 || ! bfd_set_section_flags (abfd, relgot, flags | SEC_READONLY)
3726 || ! bfd_set_section_alignment (abfd, relgot, 3))
3727 return FALSE;
3728
3729 ppc64_elf_tdata (abfd)->got = got;
3730 ppc64_elf_tdata (abfd)->relgot = relgot;
3731 return TRUE;
3732 }
3733
3734 /* Create the dynamic sections, and set up shortcuts. */
3735
3736 static bfd_boolean
3737 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3738 {
3739 struct ppc_link_hash_table *htab;
3740
3741 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3742 return FALSE;
3743
3744 htab = ppc_hash_table (info);
3745 if (!htab->got)
3746 htab->got = bfd_get_section_by_name (dynobj, ".got");
3747 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
3748 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
3749 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3750 if (!info->shared)
3751 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
3752
3753 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
3754 || (!info->shared && !htab->relbss))
3755 abort ();
3756
3757 return TRUE;
3758 }
3759
3760 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3761
3762 static void
3763 ppc64_elf_copy_indirect_symbol
3764 (const struct elf_backend_data *bed ATTRIBUTE_UNUSED,
3765 struct elf_link_hash_entry *dir,
3766 struct elf_link_hash_entry *ind)
3767 {
3768 struct ppc_link_hash_entry *edir, *eind;
3769
3770 edir = (struct ppc_link_hash_entry *) dir;
3771 eind = (struct ppc_link_hash_entry *) ind;
3772
3773 /* Copy over any dynamic relocs we may have on the indirect sym. */
3774 if (eind->dyn_relocs != NULL)
3775 {
3776 if (edir->dyn_relocs != NULL)
3777 {
3778 struct ppc_dyn_relocs **pp;
3779 struct ppc_dyn_relocs *p;
3780
3781 if (eind->elf.root.type == bfd_link_hash_indirect)
3782 abort ();
3783
3784 /* Add reloc counts against the weak sym to the strong sym
3785 list. Merge any entries against the same section. */
3786 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3787 {
3788 struct ppc_dyn_relocs *q;
3789
3790 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3791 if (q->sec == p->sec)
3792 {
3793 q->pc_count += p->pc_count;
3794 q->count += p->count;
3795 *pp = p->next;
3796 break;
3797 }
3798 if (q == NULL)
3799 pp = &p->next;
3800 }
3801 *pp = edir->dyn_relocs;
3802 }
3803
3804 edir->dyn_relocs = eind->dyn_relocs;
3805 eind->dyn_relocs = NULL;
3806 }
3807
3808 edir->is_func |= eind->is_func;
3809 edir->is_func_descriptor |= eind->is_func_descriptor;
3810 edir->tls_mask |= eind->tls_mask;
3811
3812 /* If called to transfer flags for a weakdef during processing
3813 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
3814 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
3815 if (!(ELIMINATE_COPY_RELOCS
3816 && eind->elf.root.type != bfd_link_hash_indirect
3817 && edir->elf.dynamic_adjusted))
3818 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3819
3820 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3821 edir->elf.ref_regular |= eind->elf.ref_regular;
3822 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3823 edir->elf.needs_plt |= eind->elf.needs_plt;
3824
3825 /* If we were called to copy over info for a weak sym, that's all. */
3826 if (eind->elf.root.type != bfd_link_hash_indirect)
3827 return;
3828
3829 /* Copy over got entries that we may have already seen to the
3830 symbol which just became indirect. */
3831 if (eind->elf.got.glist != NULL)
3832 {
3833 if (edir->elf.got.glist != NULL)
3834 {
3835 struct got_entry **entp;
3836 struct got_entry *ent;
3837
3838 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3839 {
3840 struct got_entry *dent;
3841
3842 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3843 if (dent->addend == ent->addend
3844 && dent->owner == ent->owner
3845 && dent->tls_type == ent->tls_type)
3846 {
3847 dent->got.refcount += ent->got.refcount;
3848 *entp = ent->next;
3849 break;
3850 }
3851 if (dent == NULL)
3852 entp = &ent->next;
3853 }
3854 *entp = edir->elf.got.glist;
3855 }
3856
3857 edir->elf.got.glist = eind->elf.got.glist;
3858 eind->elf.got.glist = NULL;
3859 }
3860
3861 /* And plt entries. */
3862 if (eind->elf.plt.plist != NULL)
3863 {
3864 if (edir->elf.plt.plist != NULL)
3865 {
3866 struct plt_entry **entp;
3867 struct plt_entry *ent;
3868
3869 for (entp = &eind->elf.plt.plist; (ent = *entp) != NULL; )
3870 {
3871 struct plt_entry *dent;
3872
3873 for (dent = edir->elf.plt.plist; dent != NULL; dent = dent->next)
3874 if (dent->addend == ent->addend)
3875 {
3876 dent->plt.refcount += ent->plt.refcount;
3877 *entp = ent->next;
3878 break;
3879 }
3880 if (dent == NULL)
3881 entp = &ent->next;
3882 }
3883 *entp = edir->elf.plt.plist;
3884 }
3885
3886 edir->elf.plt.plist = eind->elf.plt.plist;
3887 eind->elf.plt.plist = NULL;
3888 }
3889
3890 if (edir->elf.dynindx == -1)
3891 {
3892 edir->elf.dynindx = eind->elf.dynindx;
3893 edir->elf.dynstr_index = eind->elf.dynstr_index;
3894 eind->elf.dynindx = -1;
3895 eind->elf.dynstr_index = 0;
3896 }
3897 else
3898 BFD_ASSERT (eind->elf.dynindx == -1);
3899 }
3900
3901 /* Find the function descriptor hash entry from the given function code
3902 hash entry FH. Link the entries via their OH fields. */
3903
3904 static struct ppc_link_hash_entry *
3905 get_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3906 {
3907 struct ppc_link_hash_entry *fdh = fh->oh;
3908
3909 if (fdh == NULL)
3910 {
3911 const char *fd_name = fh->elf.root.root.string + 1;
3912
3913 fdh = (struct ppc_link_hash_entry *)
3914 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
3915 if (fdh != NULL)
3916 {
3917 fdh->is_func_descriptor = 1;
3918 fdh->oh = fh;
3919 fh->is_func = 1;
3920 fh->oh = fdh;
3921 }
3922 }
3923
3924 return fdh;
3925 }
3926
3927 /* Hacks to support old ABI code.
3928 When making function calls, old ABI code references function entry
3929 points (dot symbols), while new ABI code references the function
3930 descriptor symbol. We need to make any combination of reference and
3931 definition work together, without breaking archive linking.
3932
3933 For a defined function "foo" and an undefined call to "bar":
3934 An old object defines "foo" and ".foo", references ".bar" (possibly
3935 "bar" too).
3936 A new object defines "foo" and references "bar".
3937
3938 A new object thus has no problem with its undefined symbols being
3939 satisfied by definitions in an old object. On the other hand, the
3940 old object won't have ".bar" satisfied by a new object. */
3941
3942 /* Fix function descriptor symbols defined in .opd sections to be
3943 function type. */
3944
3945 static bfd_boolean
3946 ppc64_elf_add_symbol_hook (bfd *ibfd ATTRIBUTE_UNUSED,
3947 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3948 Elf_Internal_Sym *isym,
3949 const char **name ATTRIBUTE_UNUSED,
3950 flagword *flags ATTRIBUTE_UNUSED,
3951 asection **sec,
3952 bfd_vma *value ATTRIBUTE_UNUSED)
3953 {
3954 if (*sec != NULL
3955 && strcmp (bfd_get_section_name (ibfd, *sec), ".opd") == 0)
3956 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
3957 return TRUE;
3958 }
3959
3960 /* This function makes an old ABI object reference to ".bar" cause the
3961 inclusion of a new ABI object archive that defines "bar". */
3962
3963 static struct elf_link_hash_entry *
3964 ppc64_elf_archive_symbol_lookup (bfd *abfd,
3965 struct bfd_link_info *info,
3966 const char *name)
3967 {
3968 struct elf_link_hash_entry *h;
3969 char *dot_name;
3970 size_t len;
3971
3972 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
3973 if (h != NULL)
3974 return h;
3975
3976 if (name[0] == '.')
3977 return h;
3978
3979 len = strlen (name);
3980 dot_name = bfd_alloc (abfd, len + 2);
3981 if (dot_name == NULL)
3982 return (struct elf_link_hash_entry *) 0 - 1;
3983 dot_name[0] = '.';
3984 memcpy (dot_name + 1, name, len + 1);
3985 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
3986 bfd_release (abfd, dot_name);
3987 return h;
3988 }
3989
3990 /* This function satisfies all old ABI object references to ".bar" if a
3991 new ABI object defines "bar". Well, at least, undefined dot symbols
3992 are made weak. This stops later archive searches from including an
3993 object if we already have a function descriptor definition. It also
3994 prevents the linker complaining about undefined symbols.
3995 We also check and correct mismatched symbol visibility here. The
3996 most restrictive visibility of the function descriptor and the
3997 function entry symbol is used. */
3998
3999 static bfd_boolean
4000 add_symbol_adjust (struct elf_link_hash_entry *h, void *inf)
4001 {
4002 struct bfd_link_info *info;
4003 struct ppc_link_hash_table *htab;
4004 struct ppc_link_hash_entry *eh;
4005 struct ppc_link_hash_entry *fdh;
4006
4007 if (h->root.type == bfd_link_hash_indirect)
4008 return TRUE;
4009
4010 if (h->root.type == bfd_link_hash_warning)
4011 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4012
4013 if (h->root.root.string[0] != '.')
4014 return TRUE;
4015
4016 info = inf;
4017 htab = ppc_hash_table (info);
4018 eh = (struct ppc_link_hash_entry *) h;
4019 fdh = get_fdh (eh, htab);
4020 if (fdh != NULL)
4021 {
4022 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4023 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4024 if (entry_vis < descr_vis)
4025 fdh->elf.other += entry_vis - descr_vis;
4026 else if (entry_vis > descr_vis)
4027 eh->elf.other += descr_vis - entry_vis;
4028
4029 if (eh->elf.root.type == bfd_link_hash_undefined)
4030 {
4031 eh->elf.root.type = bfd_link_hash_undefweak;
4032 eh->was_undefined = 1;
4033 htab->twiddled_syms = 1;
4034 }
4035 }
4036
4037 return TRUE;
4038 }
4039
4040 static bfd_boolean
4041 ppc64_elf_check_directives (bfd *abfd ATTRIBUTE_UNUSED,
4042 struct bfd_link_info *info)
4043 {
4044 struct ppc_link_hash_table *htab;
4045
4046 htab = ppc_hash_table (info);
4047 if (!is_ppc64_elf_target (htab->elf.root.creator))
4048 return TRUE;
4049
4050 elf_link_hash_traverse (&htab->elf, add_symbol_adjust, info);
4051
4052 /* We need to fix the undefs list for any syms we have twiddled to
4053 undef_weak. */
4054 if (htab->twiddled_syms)
4055 {
4056 struct bfd_link_hash_entry **pun;
4057
4058 pun = &htab->elf.root.undefs;
4059 while (*pun != NULL)
4060 {
4061 struct bfd_link_hash_entry *h = *pun;
4062
4063 if (h->type != bfd_link_hash_undefined
4064 && h->type != bfd_link_hash_common)
4065 {
4066 *pun = h->u.undef.next;
4067 h->u.undef.next = NULL;
4068 if (h == htab->elf.root.undefs_tail)
4069 {
4070 if (pun == &htab->elf.root.undefs)
4071 htab->elf.root.undefs_tail = NULL;
4072 else
4073 /* pun points at an u.undef.next field. Go back to
4074 the start of the link_hash_entry. */
4075 htab->elf.root.undefs_tail = (struct bfd_link_hash_entry *)
4076 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
4077 break;
4078 }
4079 }
4080 else
4081 pun = &h->u.undef.next;
4082 }
4083
4084 htab->twiddled_syms = 0;
4085 }
4086 return TRUE;
4087 }
4088
4089 static bfd_boolean
4090 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4091 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4092 {
4093 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4094 char *local_got_tls_masks;
4095
4096 if (local_got_ents == NULL)
4097 {
4098 bfd_size_type size = symtab_hdr->sh_info;
4099
4100 size *= sizeof (*local_got_ents) + sizeof (*local_got_tls_masks);
4101 local_got_ents = bfd_zalloc (abfd, size);
4102 if (local_got_ents == NULL)
4103 return FALSE;
4104 elf_local_got_ents (abfd) = local_got_ents;
4105 }
4106
4107 if ((tls_type & TLS_EXPLICIT) == 0)
4108 {
4109 struct got_entry *ent;
4110
4111 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4112 if (ent->addend == r_addend
4113 && ent->owner == abfd
4114 && ent->tls_type == tls_type)
4115 break;
4116 if (ent == NULL)
4117 {
4118 bfd_size_type amt = sizeof (*ent);
4119 ent = bfd_alloc (abfd, amt);
4120 if (ent == NULL)
4121 return FALSE;
4122 ent->next = local_got_ents[r_symndx];
4123 ent->addend = r_addend;
4124 ent->owner = abfd;
4125 ent->tls_type = tls_type;
4126 ent->got.refcount = 0;
4127 local_got_ents[r_symndx] = ent;
4128 }
4129 ent->got.refcount += 1;
4130 }
4131
4132 local_got_tls_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
4133 local_got_tls_masks[r_symndx] |= tls_type;
4134 return TRUE;
4135 }
4136
4137 static bfd_boolean
4138 update_plt_info (bfd *abfd, struct ppc_link_hash_entry *eh, bfd_vma addend)
4139 {
4140 struct plt_entry *ent;
4141
4142 for (ent = eh->elf.plt.plist; ent != NULL; ent = ent->next)
4143 if (ent->addend == addend)
4144 break;
4145 if (ent == NULL)
4146 {
4147 bfd_size_type amt = sizeof (*ent);
4148 ent = bfd_alloc (abfd, amt);
4149 if (ent == NULL)
4150 return FALSE;
4151 ent->next = eh->elf.plt.plist;
4152 ent->addend = addend;
4153 ent->plt.refcount = 0;
4154 eh->elf.plt.plist = ent;
4155 }
4156 ent->plt.refcount += 1;
4157 eh->elf.needs_plt = 1;
4158 eh->is_func = 1;
4159 return TRUE;
4160 }
4161
4162 /* Look through the relocs for a section during the first phase, and
4163 calculate needed space in the global offset table, procedure
4164 linkage table, and dynamic reloc sections. */
4165
4166 static bfd_boolean
4167 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4168 asection *sec, const Elf_Internal_Rela *relocs)
4169 {
4170 struct ppc_link_hash_table *htab;
4171 Elf_Internal_Shdr *symtab_hdr;
4172 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4173 const Elf_Internal_Rela *rel;
4174 const Elf_Internal_Rela *rel_end;
4175 asection *sreloc;
4176 asection **opd_sym_map;
4177
4178 if (info->relocatable)
4179 return TRUE;
4180
4181 /* Don't do anything special with non-loaded, non-alloced sections.
4182 In particular, any relocs in such sections should not affect GOT
4183 and PLT reference counting (ie. we don't allow them to create GOT
4184 or PLT entries), there's no possibility or desire to optimize TLS
4185 relocs, and there's not much point in propagating relocs to shared
4186 libs that the dynamic linker won't relocate. */
4187 if ((sec->flags & SEC_ALLOC) == 0)
4188 return TRUE;
4189
4190 htab = ppc_hash_table (info);
4191 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4192
4193 sym_hashes = elf_sym_hashes (abfd);
4194 sym_hashes_end = (sym_hashes
4195 + symtab_hdr->sh_size / sizeof (Elf64_External_Sym)
4196 - symtab_hdr->sh_info);
4197
4198 sreloc = NULL;
4199 opd_sym_map = NULL;
4200 if (strcmp (bfd_get_section_name (abfd, sec), ".opd") == 0)
4201 {
4202 /* Garbage collection needs some extra help with .opd sections.
4203 We don't want to necessarily keep everything referenced by
4204 relocs in .opd, as that would keep all functions. Instead,
4205 if we reference an .opd symbol (a function descriptor), we
4206 want to keep the function code symbol's section. This is
4207 easy for global symbols, but for local syms we need to keep
4208 information about the associated function section. Later, if
4209 edit_opd deletes entries, we'll use this array to adjust
4210 local syms in .opd. */
4211 union opd_info {
4212 asection *func_section;
4213 long entry_adjust;
4214 };
4215 bfd_size_type amt;
4216
4217 amt = sec->size * sizeof (union opd_info) / 8;
4218 opd_sym_map = bfd_zalloc (abfd, amt);
4219 if (opd_sym_map == NULL)
4220 return FALSE;
4221 ppc64_elf_section_data (sec)->opd.func_sec = opd_sym_map;
4222 }
4223
4224 if (htab->sfpr == NULL
4225 && !create_linkage_sections (htab->elf.dynobj, info))
4226 return FALSE;
4227
4228 rel_end = relocs + sec->reloc_count;
4229 for (rel = relocs; rel < rel_end; rel++)
4230 {
4231 unsigned long r_symndx;
4232 struct elf_link_hash_entry *h;
4233 enum elf_ppc64_reloc_type r_type;
4234 int tls_type = 0;
4235
4236 r_symndx = ELF64_R_SYM (rel->r_info);
4237 if (r_symndx < symtab_hdr->sh_info)
4238 h = NULL;
4239 else
4240 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4241
4242 r_type = ELF64_R_TYPE (rel->r_info);
4243 switch (r_type)
4244 {
4245 case R_PPC64_GOT_TLSLD16:
4246 case R_PPC64_GOT_TLSLD16_LO:
4247 case R_PPC64_GOT_TLSLD16_HI:
4248 case R_PPC64_GOT_TLSLD16_HA:
4249 ppc64_tlsld_got (abfd)->refcount += 1;
4250 tls_type = TLS_TLS | TLS_LD;
4251 goto dogottls;
4252
4253 case R_PPC64_GOT_TLSGD16:
4254 case R_PPC64_GOT_TLSGD16_LO:
4255 case R_PPC64_GOT_TLSGD16_HI:
4256 case R_PPC64_GOT_TLSGD16_HA:
4257 tls_type = TLS_TLS | TLS_GD;
4258 goto dogottls;
4259
4260 case R_PPC64_GOT_TPREL16_DS:
4261 case R_PPC64_GOT_TPREL16_LO_DS:
4262 case R_PPC64_GOT_TPREL16_HI:
4263 case R_PPC64_GOT_TPREL16_HA:
4264 if (info->shared)
4265 info->flags |= DF_STATIC_TLS;
4266 tls_type = TLS_TLS | TLS_TPREL;
4267 goto dogottls;
4268
4269 case R_PPC64_GOT_DTPREL16_DS:
4270 case R_PPC64_GOT_DTPREL16_LO_DS:
4271 case R_PPC64_GOT_DTPREL16_HI:
4272 case R_PPC64_GOT_DTPREL16_HA:
4273 tls_type = TLS_TLS | TLS_DTPREL;
4274 dogottls:
4275 sec->has_tls_reloc = 1;
4276 /* Fall thru */
4277
4278 case R_PPC64_GOT16:
4279 case R_PPC64_GOT16_DS:
4280 case R_PPC64_GOT16_HA:
4281 case R_PPC64_GOT16_HI:
4282 case R_PPC64_GOT16_LO:
4283 case R_PPC64_GOT16_LO_DS:
4284 /* This symbol requires a global offset table entry. */
4285 sec->has_gp_reloc = 1;
4286 if (ppc64_elf_tdata (abfd)->got == NULL
4287 && !create_got_section (abfd, info))
4288 return FALSE;
4289
4290 if (h != NULL)
4291 {
4292 struct ppc_link_hash_entry *eh;
4293 struct got_entry *ent;
4294
4295 eh = (struct ppc_link_hash_entry *) h;
4296 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4297 if (ent->addend == rel->r_addend
4298 && ent->owner == abfd
4299 && ent->tls_type == tls_type)
4300 break;
4301 if (ent == NULL)
4302 {
4303 bfd_size_type amt = sizeof (*ent);
4304 ent = bfd_alloc (abfd, amt);
4305 if (ent == NULL)
4306 return FALSE;
4307 ent->next = eh->elf.got.glist;
4308 ent->addend = rel->r_addend;
4309 ent->owner = abfd;
4310 ent->tls_type = tls_type;
4311 ent->got.refcount = 0;
4312 eh->elf.got.glist = ent;
4313 }
4314 ent->got.refcount += 1;
4315 eh->tls_mask |= tls_type;
4316 }
4317 else
4318 /* This is a global offset table entry for a local symbol. */
4319 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4320 rel->r_addend, tls_type))
4321 return FALSE;
4322 break;
4323
4324 case R_PPC64_PLT16_HA:
4325 case R_PPC64_PLT16_HI:
4326 case R_PPC64_PLT16_LO:
4327 case R_PPC64_PLT32:
4328 case R_PPC64_PLT64:
4329 /* This symbol requires a procedure linkage table entry. We
4330 actually build the entry in adjust_dynamic_symbol,
4331 because this might be a case of linking PIC code without
4332 linking in any dynamic objects, in which case we don't
4333 need to generate a procedure linkage table after all. */
4334 if (h == NULL)
4335 {
4336 /* It does not make sense to have a procedure linkage
4337 table entry for a local symbol. */
4338 bfd_set_error (bfd_error_bad_value);
4339 return FALSE;
4340 }
4341 else
4342 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4343 rel->r_addend))
4344 return FALSE;
4345 break;
4346
4347 /* The following relocations don't need to propagate the
4348 relocation if linking a shared object since they are
4349 section relative. */
4350 case R_PPC64_SECTOFF:
4351 case R_PPC64_SECTOFF_LO:
4352 case R_PPC64_SECTOFF_HI:
4353 case R_PPC64_SECTOFF_HA:
4354 case R_PPC64_SECTOFF_DS:
4355 case R_PPC64_SECTOFF_LO_DS:
4356 case R_PPC64_DTPREL16:
4357 case R_PPC64_DTPREL16_LO:
4358 case R_PPC64_DTPREL16_HI:
4359 case R_PPC64_DTPREL16_HA:
4360 case R_PPC64_DTPREL16_DS:
4361 case R_PPC64_DTPREL16_LO_DS:
4362 case R_PPC64_DTPREL16_HIGHER:
4363 case R_PPC64_DTPREL16_HIGHERA:
4364 case R_PPC64_DTPREL16_HIGHEST:
4365 case R_PPC64_DTPREL16_HIGHESTA:
4366 break;
4367
4368 /* Nor do these. */
4369 case R_PPC64_TOC16:
4370 case R_PPC64_TOC16_LO:
4371 case R_PPC64_TOC16_HI:
4372 case R_PPC64_TOC16_HA:
4373 case R_PPC64_TOC16_DS:
4374 case R_PPC64_TOC16_LO_DS:
4375 sec->has_gp_reloc = 1;
4376 break;
4377
4378 /* This relocation describes the C++ object vtable hierarchy.
4379 Reconstruct it for later use during GC. */
4380 case R_PPC64_GNU_VTINHERIT:
4381 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4382 return FALSE;
4383 break;
4384
4385 /* This relocation describes which C++ vtable entries are actually
4386 used. Record for later use during GC. */
4387 case R_PPC64_GNU_VTENTRY:
4388 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4389 return FALSE;
4390 break;
4391
4392 case R_PPC64_REL14:
4393 case R_PPC64_REL14_BRTAKEN:
4394 case R_PPC64_REL14_BRNTAKEN:
4395 htab->has_14bit_branch = 1;
4396 /* Fall through. */
4397
4398 case R_PPC64_REL24:
4399 if (h != NULL)
4400 {
4401 /* We may need a .plt entry if the function this reloc
4402 refers to is in a shared lib. */
4403 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4404 rel->r_addend))
4405 return FALSE;
4406 if (h == &htab->tls_get_addr->elf
4407 || h == &htab->tls_get_addr_fd->elf)
4408 sec->has_tls_reloc = 1;
4409 else if (htab->tls_get_addr == NULL
4410 && !strncmp (h->root.root.string, ".__tls_get_addr", 15)
4411 && (h->root.root.string[15] == 0
4412 || h->root.root.string[15] == '@'))
4413 {
4414 htab->tls_get_addr = (struct ppc_link_hash_entry *) h;
4415 sec->has_tls_reloc = 1;
4416 }
4417 else if (htab->tls_get_addr_fd == NULL
4418 && !strncmp (h->root.root.string, "__tls_get_addr", 14)
4419 && (h->root.root.string[14] == 0
4420 || h->root.root.string[14] == '@'))
4421 {
4422 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) h;
4423 sec->has_tls_reloc = 1;
4424 }
4425 }
4426 break;
4427
4428 case R_PPC64_TPREL64:
4429 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4430 if (info->shared)
4431 info->flags |= DF_STATIC_TLS;
4432 goto dotlstoc;
4433
4434 case R_PPC64_DTPMOD64:
4435 if (rel + 1 < rel_end
4436 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4437 && rel[1].r_offset == rel->r_offset + 8)
4438 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4439 else
4440 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4441 goto dotlstoc;
4442
4443 case R_PPC64_DTPREL64:
4444 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4445 if (rel != relocs
4446 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4447 && rel[-1].r_offset == rel->r_offset - 8)
4448 /* This is the second reloc of a dtpmod, dtprel pair.
4449 Don't mark with TLS_DTPREL. */
4450 goto dodyn;
4451
4452 dotlstoc:
4453 sec->has_tls_reloc = 1;
4454 if (h != NULL)
4455 {
4456 struct ppc_link_hash_entry *eh;
4457 eh = (struct ppc_link_hash_entry *) h;
4458 eh->tls_mask |= tls_type;
4459 }
4460 else
4461 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4462 rel->r_addend, tls_type))
4463 return FALSE;
4464
4465 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4466 {
4467 /* One extra to simplify get_tls_mask. */
4468 bfd_size_type amt = sec->size * sizeof (unsigned) / 8 + 1;
4469 ppc64_elf_section_data (sec)->t_symndx = bfd_zalloc (abfd, amt);
4470 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4471 return FALSE;
4472 }
4473 BFD_ASSERT (rel->r_offset % 8 == 0);
4474 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8] = r_symndx;
4475
4476 /* Mark the second slot of a GD or LD entry.
4477 -1 to indicate GD and -2 to indicate LD. */
4478 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
4479 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -1;
4480 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
4481 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -2;
4482 goto dodyn;
4483
4484 case R_PPC64_TPREL16:
4485 case R_PPC64_TPREL16_LO:
4486 case R_PPC64_TPREL16_HI:
4487 case R_PPC64_TPREL16_HA:
4488 case R_PPC64_TPREL16_DS:
4489 case R_PPC64_TPREL16_LO_DS:
4490 case R_PPC64_TPREL16_HIGHER:
4491 case R_PPC64_TPREL16_HIGHERA:
4492 case R_PPC64_TPREL16_HIGHEST:
4493 case R_PPC64_TPREL16_HIGHESTA:
4494 if (info->shared)
4495 {
4496 info->flags |= DF_STATIC_TLS;
4497 goto dodyn;
4498 }
4499 break;
4500
4501 case R_PPC64_ADDR64:
4502 if (opd_sym_map != NULL
4503 && rel + 1 < rel_end
4504 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
4505 {
4506 if (h != NULL)
4507 {
4508 if (h->root.root.string[0] == '.'
4509 && h->root.root.string[1] != 0
4510 && get_fdh ((struct ppc_link_hash_entry *) h, htab))
4511 ;
4512 else
4513 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4514 }
4515 else
4516 {
4517 asection *s;
4518
4519 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec,
4520 r_symndx);
4521 if (s == NULL)
4522 return FALSE;
4523 else if (s != sec)
4524 opd_sym_map[rel->r_offset / 8] = s;
4525 }
4526 }
4527 /* Fall through. */
4528
4529 case R_PPC64_REL30:
4530 case R_PPC64_REL32:
4531 case R_PPC64_REL64:
4532 case R_PPC64_ADDR14:
4533 case R_PPC64_ADDR14_BRNTAKEN:
4534 case R_PPC64_ADDR14_BRTAKEN:
4535 case R_PPC64_ADDR16:
4536 case R_PPC64_ADDR16_DS:
4537 case R_PPC64_ADDR16_HA:
4538 case R_PPC64_ADDR16_HI:
4539 case R_PPC64_ADDR16_HIGHER:
4540 case R_PPC64_ADDR16_HIGHERA:
4541 case R_PPC64_ADDR16_HIGHEST:
4542 case R_PPC64_ADDR16_HIGHESTA:
4543 case R_PPC64_ADDR16_LO:
4544 case R_PPC64_ADDR16_LO_DS:
4545 case R_PPC64_ADDR24:
4546 case R_PPC64_ADDR32:
4547 case R_PPC64_UADDR16:
4548 case R_PPC64_UADDR32:
4549 case R_PPC64_UADDR64:
4550 case R_PPC64_TOC:
4551 if (h != NULL && !info->shared)
4552 /* We may need a copy reloc. */
4553 h->non_got_ref = 1;
4554
4555 /* Don't propagate .opd relocs. */
4556 if (NO_OPD_RELOCS && opd_sym_map != NULL)
4557 break;
4558
4559 /* If we are creating a shared library, and this is a reloc
4560 against a global symbol, or a non PC relative reloc
4561 against a local symbol, then we need to copy the reloc
4562 into the shared library. However, if we are linking with
4563 -Bsymbolic, we do not need to copy a reloc against a
4564 global symbol which is defined in an object we are
4565 including in the link (i.e., DEF_REGULAR is set). At
4566 this point we have not seen all the input files, so it is
4567 possible that DEF_REGULAR is not set now but will be set
4568 later (it is never cleared). In case of a weak definition,
4569 DEF_REGULAR may be cleared later by a strong definition in
4570 a shared library. We account for that possibility below by
4571 storing information in the dyn_relocs field of the hash
4572 table entry. A similar situation occurs when creating
4573 shared libraries and symbol visibility changes render the
4574 symbol local.
4575
4576 If on the other hand, we are creating an executable, we
4577 may need to keep relocations for symbols satisfied by a
4578 dynamic library if we manage to avoid copy relocs for the
4579 symbol. */
4580 dodyn:
4581 if ((info->shared
4582 && (MUST_BE_DYN_RELOC (r_type)
4583 || (h != NULL
4584 && (! info->symbolic
4585 || h->root.type == bfd_link_hash_defweak
4586 || !h->def_regular))))
4587 || (ELIMINATE_COPY_RELOCS
4588 && !info->shared
4589 && h != NULL
4590 && (h->root.type == bfd_link_hash_defweak
4591 || !h->def_regular)))
4592 {
4593 struct ppc_dyn_relocs *p;
4594 struct ppc_dyn_relocs **head;
4595
4596 /* We must copy these reloc types into the output file.
4597 Create a reloc section in dynobj and make room for
4598 this reloc. */
4599 if (sreloc == NULL)
4600 {
4601 const char *name;
4602 bfd *dynobj;
4603
4604 name = (bfd_elf_string_from_elf_section
4605 (abfd,
4606 elf_elfheader (abfd)->e_shstrndx,
4607 elf_section_data (sec)->rel_hdr.sh_name));
4608 if (name == NULL)
4609 return FALSE;
4610
4611 if (strncmp (name, ".rela", 5) != 0
4612 || strcmp (bfd_get_section_name (abfd, sec),
4613 name + 5) != 0)
4614 {
4615 (*_bfd_error_handler)
4616 (_("%B: bad relocation section name `%s\'"),
4617 abfd, name);
4618 bfd_set_error (bfd_error_bad_value);
4619 }
4620
4621 dynobj = htab->elf.dynobj;
4622 sreloc = bfd_get_section_by_name (dynobj, name);
4623 if (sreloc == NULL)
4624 {
4625 flagword flags;
4626
4627 sreloc = bfd_make_section (dynobj, name);
4628 flags = (SEC_HAS_CONTENTS | SEC_READONLY
4629 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4630 if ((sec->flags & SEC_ALLOC) != 0)
4631 flags |= SEC_ALLOC | SEC_LOAD;
4632 if (sreloc == NULL
4633 || ! bfd_set_section_flags (dynobj, sreloc, flags)
4634 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
4635 return FALSE;
4636 }
4637 elf_section_data (sec)->sreloc = sreloc;
4638 }
4639
4640 /* If this is a global symbol, we count the number of
4641 relocations we need for this symbol. */
4642 if (h != NULL)
4643 {
4644 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
4645 }
4646 else
4647 {
4648 /* Track dynamic relocs needed for local syms too.
4649 We really need local syms available to do this
4650 easily. Oh well. */
4651
4652 asection *s;
4653 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
4654 sec, r_symndx);
4655 if (s == NULL)
4656 return FALSE;
4657
4658 head = ((struct ppc_dyn_relocs **)
4659 &elf_section_data (s)->local_dynrel);
4660 }
4661
4662 p = *head;
4663 if (p == NULL || p->sec != sec)
4664 {
4665 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
4666 if (p == NULL)
4667 return FALSE;
4668 p->next = *head;
4669 *head = p;
4670 p->sec = sec;
4671 p->count = 0;
4672 p->pc_count = 0;
4673 }
4674
4675 p->count += 1;
4676 if (!MUST_BE_DYN_RELOC (r_type))
4677 p->pc_count += 1;
4678 }
4679 break;
4680
4681 default:
4682 break;
4683 }
4684 }
4685
4686 return TRUE;
4687 }
4688
4689 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
4690 of the code entry point, and its section. */
4691
4692 static bfd_vma
4693 opd_entry_value (asection *opd_sec,
4694 bfd_vma offset,
4695 asection **code_sec,
4696 bfd_vma *code_off)
4697 {
4698 bfd *opd_bfd = opd_sec->owner;
4699 Elf_Internal_Rela *lo, *hi, *look;
4700
4701 /* No relocs implies we are linking a --just-symbols object. */
4702 if (opd_sec->reloc_count == 0)
4703 {
4704 bfd_vma val;
4705
4706 if (!bfd_get_section_contents (opd_bfd, opd_sec, &val, offset, 8))
4707 return (bfd_vma) -1;
4708
4709 if (code_sec != NULL)
4710 {
4711 asection *sec, *likely = NULL;
4712 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
4713 if (sec->vma <= val
4714 && (sec->flags & SEC_LOAD) != 0
4715 && (sec->flags & SEC_ALLOC) != 0)
4716 likely = sec;
4717 if (likely != NULL)
4718 {
4719 *code_sec = likely;
4720 if (code_off != NULL)
4721 *code_off = val - likely->vma;
4722 }
4723 }
4724 return val;
4725 }
4726
4727 /* Go find the opd reloc at the sym address. */
4728 lo = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
4729 BFD_ASSERT (lo != NULL);
4730 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
4731
4732 while (lo < hi)
4733 {
4734 look = lo + (hi - lo) / 2;
4735 if (look->r_offset < offset)
4736 lo = look + 1;
4737 else if (look->r_offset > offset)
4738 hi = look;
4739 else
4740 {
4741 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (opd_bfd)->symtab_hdr;
4742 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
4743 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
4744 {
4745 unsigned long symndx = ELF64_R_SYM (look->r_info);
4746 bfd_vma val;
4747 asection *sec;
4748
4749 if (symndx < symtab_hdr->sh_info)
4750 {
4751 Elf_Internal_Sym *sym;
4752
4753 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
4754 if (sym == NULL)
4755 {
4756 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
4757 symtab_hdr->sh_info,
4758 0, NULL, NULL, NULL);
4759 if (sym == NULL)
4760 return (bfd_vma) -1;
4761 symtab_hdr->contents = (bfd_byte *) sym;
4762 }
4763
4764 sym += symndx;
4765 val = sym->st_value;
4766 sec = NULL;
4767 if ((sym->st_shndx != SHN_UNDEF
4768 && sym->st_shndx < SHN_LORESERVE)
4769 || sym->st_shndx > SHN_HIRESERVE)
4770 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
4771 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
4772 }
4773 else
4774 {
4775 struct elf_link_hash_entry **sym_hashes;
4776 struct elf_link_hash_entry *rh;
4777
4778 sym_hashes = elf_sym_hashes (opd_bfd);
4779 rh = sym_hashes[symndx - symtab_hdr->sh_info];
4780 while (rh->root.type == bfd_link_hash_indirect
4781 || rh->root.type == bfd_link_hash_warning)
4782 rh = ((struct elf_link_hash_entry *) rh->root.u.i.link);
4783 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
4784 || rh->root.type == bfd_link_hash_defweak);
4785 val = rh->root.u.def.value;
4786 sec = rh->root.u.def.section;
4787 }
4788 val += look->r_addend;
4789 if (code_off != NULL)
4790 *code_off = val;
4791 if (code_sec != NULL)
4792 *code_sec = sec;
4793 if (sec != NULL && sec->output_section != NULL)
4794 val += sec->output_section->vma + sec->output_offset;
4795 return val;
4796 }
4797 break;
4798 }
4799 }
4800 return (bfd_vma) -1;
4801 }
4802
4803 /* Return the section that should be marked against GC for a given
4804 relocation. */
4805
4806 static asection *
4807 ppc64_elf_gc_mark_hook (asection *sec,
4808 struct bfd_link_info *info,
4809 Elf_Internal_Rela *rel,
4810 struct elf_link_hash_entry *h,
4811 Elf_Internal_Sym *sym)
4812 {
4813 asection *rsec;
4814
4815 /* First mark all our entry sym sections. */
4816 if (info->gc_sym_list != NULL)
4817 {
4818 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4819 struct bfd_sym_chain *sym = info->gc_sym_list;
4820
4821 info->gc_sym_list = NULL;
4822 do
4823 {
4824 struct ppc_link_hash_entry *eh;
4825
4826 eh = (struct ppc_link_hash_entry *)
4827 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, FALSE);
4828 if (eh == NULL)
4829 continue;
4830 if (eh->elf.root.type != bfd_link_hash_defined
4831 && eh->elf.root.type != bfd_link_hash_defweak)
4832 continue;
4833
4834 if (eh->is_func_descriptor)
4835 rsec = eh->oh->elf.root.u.def.section;
4836 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4837 && opd_entry_value (eh->elf.root.u.def.section,
4838 eh->elf.root.u.def.value,
4839 &rsec, NULL) != (bfd_vma) -1)
4840 ;
4841 else
4842 continue;
4843
4844 if (!rsec->gc_mark)
4845 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4846
4847 rsec = eh->elf.root.u.def.section;
4848 if (!rsec->gc_mark)
4849 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4850
4851 sym = sym->next;
4852 }
4853 while (sym != NULL);
4854 }
4855
4856 /* Syms return NULL if we're marking .opd, so we avoid marking all
4857 function sections, as all functions are referenced in .opd. */
4858 rsec = NULL;
4859 if (get_opd_info (sec) != NULL)
4860 return rsec;
4861
4862 if (h != NULL)
4863 {
4864 enum elf_ppc64_reloc_type r_type;
4865 struct ppc_link_hash_entry *eh;
4866
4867 r_type = ELF64_R_TYPE (rel->r_info);
4868 switch (r_type)
4869 {
4870 case R_PPC64_GNU_VTINHERIT:
4871 case R_PPC64_GNU_VTENTRY:
4872 break;
4873
4874 default:
4875 switch (h->root.type)
4876 {
4877 case bfd_link_hash_defined:
4878 case bfd_link_hash_defweak:
4879 eh = (struct ppc_link_hash_entry *) h;
4880 if (eh->oh != NULL && eh->oh->is_func_descriptor)
4881 eh = eh->oh;
4882
4883 /* Function descriptor syms cause the associated
4884 function code sym section to be marked. */
4885 if (eh->is_func_descriptor)
4886 {
4887 /* They also mark their opd section. */
4888 if (!eh->elf.root.u.def.section->gc_mark)
4889 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
4890 ppc64_elf_gc_mark_hook);
4891
4892 rsec = eh->oh->elf.root.u.def.section;
4893 }
4894 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4895 && opd_entry_value (eh->elf.root.u.def.section,
4896 eh->elf.root.u.def.value,
4897 &rsec, NULL) != (bfd_vma) -1)
4898 {
4899 if (!eh->elf.root.u.def.section->gc_mark)
4900 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
4901 ppc64_elf_gc_mark_hook);
4902 }
4903 else
4904 rsec = h->root.u.def.section;
4905 break;
4906
4907 case bfd_link_hash_common:
4908 rsec = h->root.u.c.p->section;
4909 break;
4910
4911 default:
4912 break;
4913 }
4914 }
4915 }
4916 else
4917 {
4918 asection **opd_sym_section;
4919
4920 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
4921 opd_sym_section = get_opd_info (rsec);
4922 if (opd_sym_section != NULL)
4923 {
4924 if (!rsec->gc_mark)
4925 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4926
4927 rsec = opd_sym_section[sym->st_value / 8];
4928 }
4929 }
4930
4931 return rsec;
4932 }
4933
4934 /* Update the .got, .plt. and dynamic reloc reference counts for the
4935 section being removed. */
4936
4937 static bfd_boolean
4938 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
4939 asection *sec, const Elf_Internal_Rela *relocs)
4940 {
4941 struct ppc_link_hash_table *htab;
4942 Elf_Internal_Shdr *symtab_hdr;
4943 struct elf_link_hash_entry **sym_hashes;
4944 struct got_entry **local_got_ents;
4945 const Elf_Internal_Rela *rel, *relend;
4946
4947 if ((sec->flags & SEC_ALLOC) == 0)
4948 return TRUE;
4949
4950 elf_section_data (sec)->local_dynrel = NULL;
4951
4952 htab = ppc_hash_table (info);
4953 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4954 sym_hashes = elf_sym_hashes (abfd);
4955 local_got_ents = elf_local_got_ents (abfd);
4956
4957 relend = relocs + sec->reloc_count;
4958 for (rel = relocs; rel < relend; rel++)
4959 {
4960 unsigned long r_symndx;
4961 enum elf_ppc64_reloc_type r_type;
4962 struct elf_link_hash_entry *h = NULL;
4963 char tls_type = 0;
4964
4965 r_symndx = ELF64_R_SYM (rel->r_info);
4966 r_type = ELF64_R_TYPE (rel->r_info);
4967 if (r_symndx >= symtab_hdr->sh_info)
4968 {
4969 struct ppc_link_hash_entry *eh;
4970 struct ppc_dyn_relocs **pp;
4971 struct ppc_dyn_relocs *p;
4972
4973 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4974 eh = (struct ppc_link_hash_entry *) h;
4975
4976 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
4977 if (p->sec == sec)
4978 {
4979 /* Everything must go for SEC. */
4980 *pp = p->next;
4981 break;
4982 }
4983 }
4984
4985 switch (r_type)
4986 {
4987 case R_PPC64_GOT_TLSLD16:
4988 case R_PPC64_GOT_TLSLD16_LO:
4989 case R_PPC64_GOT_TLSLD16_HI:
4990 case R_PPC64_GOT_TLSLD16_HA:
4991 ppc64_tlsld_got (abfd)->refcount -= 1;
4992 tls_type = TLS_TLS | TLS_LD;
4993 goto dogot;
4994
4995 case R_PPC64_GOT_TLSGD16:
4996 case R_PPC64_GOT_TLSGD16_LO:
4997 case R_PPC64_GOT_TLSGD16_HI:
4998 case R_PPC64_GOT_TLSGD16_HA:
4999 tls_type = TLS_TLS | TLS_GD;
5000 goto dogot;
5001
5002 case R_PPC64_GOT_TPREL16_DS:
5003 case R_PPC64_GOT_TPREL16_LO_DS:
5004 case R_PPC64_GOT_TPREL16_HI:
5005 case R_PPC64_GOT_TPREL16_HA:
5006 tls_type = TLS_TLS | TLS_TPREL;
5007 goto dogot;
5008
5009 case R_PPC64_GOT_DTPREL16_DS:
5010 case R_PPC64_GOT_DTPREL16_LO_DS:
5011 case R_PPC64_GOT_DTPREL16_HI:
5012 case R_PPC64_GOT_DTPREL16_HA:
5013 tls_type = TLS_TLS | TLS_DTPREL;
5014 goto dogot;
5015
5016 case R_PPC64_GOT16:
5017 case R_PPC64_GOT16_DS:
5018 case R_PPC64_GOT16_HA:
5019 case R_PPC64_GOT16_HI:
5020 case R_PPC64_GOT16_LO:
5021 case R_PPC64_GOT16_LO_DS:
5022 dogot:
5023 {
5024 struct got_entry *ent;
5025
5026 if (h != NULL)
5027 ent = h->got.glist;
5028 else
5029 ent = local_got_ents[r_symndx];
5030
5031 for (; ent != NULL; ent = ent->next)
5032 if (ent->addend == rel->r_addend
5033 && ent->owner == abfd
5034 && ent->tls_type == tls_type)
5035 break;
5036 if (ent == NULL)
5037 abort ();
5038 if (ent->got.refcount > 0)
5039 ent->got.refcount -= 1;
5040 }
5041 break;
5042
5043 case R_PPC64_PLT16_HA:
5044 case R_PPC64_PLT16_HI:
5045 case R_PPC64_PLT16_LO:
5046 case R_PPC64_PLT32:
5047 case R_PPC64_PLT64:
5048 case R_PPC64_REL14:
5049 case R_PPC64_REL14_BRNTAKEN:
5050 case R_PPC64_REL14_BRTAKEN:
5051 case R_PPC64_REL24:
5052 if (h != NULL)
5053 {
5054 struct plt_entry *ent;
5055
5056 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5057 if (ent->addend == rel->r_addend)
5058 break;
5059 if (ent == NULL)
5060 abort ();
5061 if (ent->plt.refcount > 0)
5062 ent->plt.refcount -= 1;
5063 }
5064 break;
5065
5066 default:
5067 break;
5068 }
5069 }
5070 return TRUE;
5071 }
5072
5073 /* The maximum size of .sfpr. */
5074 #define SFPR_MAX (218*4)
5075
5076 struct sfpr_def_parms
5077 {
5078 const char name[12];
5079 unsigned char lo, hi;
5080 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
5081 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
5082 };
5083
5084 /* Auto-generate _save*, _rest* functions in .sfpr. */
5085
5086 static unsigned int
5087 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
5088 {
5089 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5090 unsigned int i;
5091 size_t len = strlen (parm->name);
5092 bfd_boolean writing = FALSE;
5093 char sym[16];
5094
5095 memcpy (sym, parm->name, len);
5096 sym[len + 2] = 0;
5097
5098 for (i = parm->lo; i <= parm->hi; i++)
5099 {
5100 struct elf_link_hash_entry *h;
5101
5102 sym[len + 0] = i / 10 + '0';
5103 sym[len + 1] = i % 10 + '0';
5104 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
5105 if (h != NULL
5106 && !h->def_regular)
5107 {
5108 h->root.type = bfd_link_hash_defined;
5109 h->root.u.def.section = htab->sfpr;
5110 h->root.u.def.value = htab->sfpr->size;
5111 h->type = STT_FUNC;
5112 h->def_regular = 1;
5113 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
5114 writing = TRUE;
5115 if (htab->sfpr->contents == NULL)
5116 {
5117 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5118 if (htab->sfpr->contents == NULL)
5119 return FALSE;
5120 }
5121 }
5122 if (writing)
5123 {
5124 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5125 if (i != parm->hi)
5126 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5127 else
5128 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5129 htab->sfpr->size = p - htab->sfpr->contents;
5130 }
5131 }
5132
5133 return TRUE;
5134 }
5135
5136 static bfd_byte *
5137 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5138 {
5139 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5140 return p + 4;
5141 }
5142
5143 static bfd_byte *
5144 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5145 {
5146 p = savegpr0 (abfd, p, r);
5147 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5148 p = p + 4;
5149 bfd_put_32 (abfd, BLR, p);
5150 return p + 4;
5151 }
5152
5153 static bfd_byte *
5154 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5155 {
5156 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5157 return p + 4;
5158 }
5159
5160 static bfd_byte *
5161 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5162 {
5163 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5164 p = p + 4;
5165 p = restgpr0 (abfd, p, r);
5166 bfd_put_32 (abfd, MTLR_R0, p);
5167 p = p + 4;
5168 if (r == 29)
5169 {
5170 p = restgpr0 (abfd, p, 30);
5171 p = restgpr0 (abfd, p, 31);
5172 }
5173 bfd_put_32 (abfd, BLR, p);
5174 return p + 4;
5175 }
5176
5177 static bfd_byte *
5178 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5179 {
5180 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5181 return p + 4;
5182 }
5183
5184 static bfd_byte *
5185 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5186 {
5187 p = savegpr1 (abfd, p, r);
5188 bfd_put_32 (abfd, BLR, p);
5189 return p + 4;
5190 }
5191
5192 static bfd_byte *
5193 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5194 {
5195 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5196 return p + 4;
5197 }
5198
5199 static bfd_byte *
5200 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5201 {
5202 p = restgpr1 (abfd, p, r);
5203 bfd_put_32 (abfd, BLR, p);
5204 return p + 4;
5205 }
5206
5207 static bfd_byte *
5208 savefpr (bfd *abfd, bfd_byte *p, int r)
5209 {
5210 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5211 return p + 4;
5212 }
5213
5214 static bfd_byte *
5215 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5216 {
5217 p = savefpr (abfd, p, r);
5218 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5219 p = p + 4;
5220 bfd_put_32 (abfd, BLR, p);
5221 return p + 4;
5222 }
5223
5224 static bfd_byte *
5225 restfpr (bfd *abfd, bfd_byte *p, int r)
5226 {
5227 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5228 return p + 4;
5229 }
5230
5231 static bfd_byte *
5232 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5233 {
5234 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5235 p = p + 4;
5236 p = restfpr (abfd, p, r);
5237 bfd_put_32 (abfd, MTLR_R0, p);
5238 p = p + 4;
5239 if (r == 29)
5240 {
5241 p = restfpr (abfd, p, 30);
5242 p = restfpr (abfd, p, 31);
5243 }
5244 bfd_put_32 (abfd, BLR, p);
5245 return p + 4;
5246 }
5247
5248 static bfd_byte *
5249 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5250 {
5251 p = savefpr (abfd, p, r);
5252 bfd_put_32 (abfd, BLR, p);
5253 return p + 4;
5254 }
5255
5256 static bfd_byte *
5257 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
5258 {
5259 p = restfpr (abfd, p, r);
5260 bfd_put_32 (abfd, BLR, p);
5261 return p + 4;
5262 }
5263
5264 static bfd_byte *
5265 savevr (bfd *abfd, bfd_byte *p, int r)
5266 {
5267 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5268 p = p + 4;
5269 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
5270 return p + 4;
5271 }
5272
5273 static bfd_byte *
5274 savevr_tail (bfd *abfd, bfd_byte *p, int r)
5275 {
5276 p = savevr (abfd, p, r);
5277 bfd_put_32 (abfd, BLR, p);
5278 return p + 4;
5279 }
5280
5281 static bfd_byte *
5282 restvr (bfd *abfd, bfd_byte *p, int r)
5283 {
5284 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5285 p = p + 4;
5286 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
5287 return p + 4;
5288 }
5289
5290 static bfd_byte *
5291 restvr_tail (bfd *abfd, bfd_byte *p, int r)
5292 {
5293 p = restvr (abfd, p, r);
5294 bfd_put_32 (abfd, BLR, p);
5295 return p + 4;
5296 }
5297
5298 /* Called via elf_link_hash_traverse to transfer dynamic linking
5299 information on function code symbol entries to their corresponding
5300 function descriptor symbol entries. */
5301
5302 static bfd_boolean
5303 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
5304 {
5305 struct bfd_link_info *info;
5306 struct ppc_link_hash_table *htab;
5307 struct plt_entry *ent;
5308 struct ppc_link_hash_entry *fh;
5309 struct ppc_link_hash_entry *fdh;
5310 bfd_boolean force_local;
5311
5312 fh = (struct ppc_link_hash_entry *) h;
5313 if (fh->elf.root.type == bfd_link_hash_indirect)
5314 return TRUE;
5315
5316 if (fh->elf.root.type == bfd_link_hash_warning)
5317 fh = (struct ppc_link_hash_entry *) fh->elf.root.u.i.link;
5318
5319 info = inf;
5320 htab = ppc_hash_table (info);
5321
5322 /* Resolve undefined references to dot-symbols as the value
5323 in the function descriptor, if we have one in a regular object.
5324 This is to satisfy cases like ".quad .foo". Calls to functions
5325 in dynamic objects are handled elsewhere. */
5326 if (fh->elf.root.type == bfd_link_hash_undefweak
5327 && fh->was_undefined
5328 && (fh->oh->elf.root.type == bfd_link_hash_defined
5329 || fh->oh->elf.root.type == bfd_link_hash_defweak)
5330 && get_opd_info (fh->oh->elf.root.u.def.section) != NULL
5331 && opd_entry_value (fh->oh->elf.root.u.def.section,
5332 fh->oh->elf.root.u.def.value,
5333 &fh->elf.root.u.def.section,
5334 &fh->elf.root.u.def.value) != (bfd_vma) -1)
5335 {
5336 fh->elf.root.type = fh->oh->elf.root.type;
5337 fh->elf.forced_local = 1;
5338 }
5339
5340 /* If this is a function code symbol, transfer dynamic linking
5341 information to the function descriptor symbol. */
5342 if (!fh->is_func)
5343 return TRUE;
5344
5345 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
5346 if (ent->plt.refcount > 0)
5347 break;
5348 if (ent == NULL
5349 || fh->elf.root.root.string[0] != '.'
5350 || fh->elf.root.root.string[1] == '\0')
5351 return TRUE;
5352
5353 /* Find the corresponding function descriptor symbol. Create it
5354 as undefined if necessary. */
5355
5356 fdh = get_fdh (fh, htab);
5357 if (fdh != NULL)
5358 while (fdh->elf.root.type == bfd_link_hash_indirect
5359 || fdh->elf.root.type == bfd_link_hash_warning)
5360 fdh = (struct ppc_link_hash_entry *) fdh->elf.root.u.i.link;
5361
5362 if (fdh == NULL
5363 && info->shared
5364 && (fh->elf.root.type == bfd_link_hash_undefined
5365 || fh->elf.root.type == bfd_link_hash_undefweak))
5366 {
5367 bfd *abfd;
5368 asymbol *newsym;
5369 struct bfd_link_hash_entry *bh;
5370
5371 abfd = fh->elf.root.u.undef.abfd;
5372 newsym = bfd_make_empty_symbol (abfd);
5373 newsym->name = fh->elf.root.root.string + 1;
5374 newsym->section = bfd_und_section_ptr;
5375 newsym->value = 0;
5376 newsym->flags = BSF_OBJECT;
5377 if (fh->elf.root.type == bfd_link_hash_undefweak)
5378 newsym->flags |= BSF_WEAK;
5379
5380 bh = &fdh->elf.root;
5381 if ( !(_bfd_generic_link_add_one_symbol
5382 (info, abfd, newsym->name, newsym->flags,
5383 newsym->section, newsym->value, NULL, FALSE, FALSE, &bh)))
5384 {
5385 return FALSE;
5386 }
5387 fdh = (struct ppc_link_hash_entry *) bh;
5388 fdh->elf.non_elf = 0;
5389 fdh->elf.size = 24;
5390 fdh->elf.type = STT_OBJECT;
5391 }
5392
5393 if (fdh != NULL
5394 && !fdh->elf.forced_local
5395 && (info->shared
5396 || fdh->elf.def_dynamic
5397 || fdh->elf.ref_dynamic
5398 || (fdh->elf.root.type == bfd_link_hash_undefweak
5399 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
5400 {
5401 if (fdh->elf.dynindx == -1)
5402 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
5403 return FALSE;
5404 fdh->elf.ref_regular |= fh->elf.ref_regular;
5405 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
5406 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
5407 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
5408 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
5409 {
5410 struct plt_entry **ep = &fdh->elf.plt.plist;
5411 while (*ep != NULL)
5412 ep = &(*ep)->next;
5413 *ep = fh->elf.plt.plist;
5414 fh->elf.plt.plist = NULL;
5415 fdh->elf.needs_plt = 1;
5416 }
5417 fdh->is_func_descriptor = 1;
5418 fdh->oh = fh;
5419 fh->oh = fdh;
5420 }
5421
5422 /* Now that the info is on the function descriptor, clear the
5423 function code sym info. Any function code syms for which we
5424 don't have a definition in a regular file, we force local.
5425 This prevents a shared library from exporting syms that have
5426 been imported from another library. Function code syms that
5427 are really in the library we must leave global to prevent the
5428 linker dragging in a definition from a static library. */
5429 force_local
5430 = (info->shared
5431 && (!fh->elf.def_regular
5432 || fdh == NULL
5433 || !fdh->elf.def_regular
5434 || fdh->elf.forced_local));
5435 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5436
5437 return TRUE;
5438 }
5439
5440 /* Called near the start of bfd_elf_size_dynamic_sections. We use
5441 this hook to a) provide some gcc support functions, and b) transfer
5442 dynamic linking information gathered so far on function code symbol
5443 entries, to their corresponding function descriptor symbol entries. */
5444
5445 static bfd_boolean
5446 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
5447 struct bfd_link_info *info)
5448 {
5449 struct ppc_link_hash_table *htab;
5450 unsigned int i;
5451 const struct sfpr_def_parms funcs[] =
5452 {
5453 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
5454 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
5455 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
5456 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
5457 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
5458 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
5459 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
5460 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
5461 { "._savef", 14, 31, savefpr, savefpr1_tail },
5462 { "._restf", 14, 31, restfpr, restfpr1_tail },
5463 { "_savevr_", 20, 31, savevr, savevr_tail },
5464 { "_restvr_", 20, 31, restvr, restvr_tail }
5465 };
5466
5467 htab = ppc_hash_table (info);
5468 if (htab->sfpr == NULL)
5469 /* We don't have any relocs. */
5470 return TRUE;
5471
5472 /* Provide any missing _save* and _rest* functions. */
5473 htab->sfpr->size = 0;
5474 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
5475 if (!sfpr_define (info, &funcs[i]))
5476 return FALSE;
5477
5478 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5479
5480 if (htab->sfpr->size == 0)
5481 _bfd_strip_section_from_output (info, htab->sfpr);
5482
5483 return TRUE;
5484 }
5485
5486 /* Adjust a symbol defined by a dynamic object and referenced by a
5487 regular object. The current definition is in some section of the
5488 dynamic object, but we're not including those sections. We have to
5489 change the definition to something the rest of the link can
5490 understand. */
5491
5492 static bfd_boolean
5493 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5494 struct elf_link_hash_entry *h)
5495 {
5496 struct ppc_link_hash_table *htab;
5497 asection *s;
5498 unsigned int power_of_two;
5499
5500 htab = ppc_hash_table (info);
5501
5502 /* Deal with function syms. */
5503 if (h->type == STT_FUNC
5504 || h->needs_plt)
5505 {
5506 /* Clear procedure linkage table information for any symbol that
5507 won't need a .plt entry. */
5508 struct plt_entry *ent;
5509 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5510 if (ent->plt.refcount > 0)
5511 break;
5512 if (ent == NULL
5513 || SYMBOL_CALLS_LOCAL (info, h)
5514 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5515 && h->root.type == bfd_link_hash_undefweak))
5516 {
5517 h->plt.plist = NULL;
5518 h->needs_plt = 0;
5519 }
5520 }
5521 else
5522 h->plt.plist = NULL;
5523
5524 /* If this is a weak symbol, and there is a real definition, the
5525 processor independent code will have arranged for us to see the
5526 real definition first, and we can just use the same value. */
5527 if (h->u.weakdef != NULL)
5528 {
5529 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5530 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5531 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5532 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5533 if (ELIMINATE_COPY_RELOCS)
5534 h->non_got_ref = h->u.weakdef->non_got_ref;
5535 return TRUE;
5536 }
5537
5538 /* If we are creating a shared library, we must presume that the
5539 only references to the symbol are via the global offset table.
5540 For such cases we need not do anything here; the relocations will
5541 be handled correctly by relocate_section. */
5542 if (info->shared)
5543 return TRUE;
5544
5545 /* If there are no references to this symbol that do not use the
5546 GOT, we don't need to generate a copy reloc. */
5547 if (!h->non_got_ref)
5548 return TRUE;
5549
5550 if (ELIMINATE_COPY_RELOCS)
5551 {
5552 struct ppc_link_hash_entry * eh;
5553 struct ppc_dyn_relocs *p;
5554
5555 eh = (struct ppc_link_hash_entry *) h;
5556 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5557 {
5558 s = p->sec->output_section;
5559 if (s != NULL && (s->flags & SEC_READONLY) != 0)
5560 break;
5561 }
5562
5563 /* If we didn't find any dynamic relocs in read-only sections, then
5564 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
5565 if (p == NULL)
5566 {
5567 h->non_got_ref = 0;
5568 return TRUE;
5569 }
5570 }
5571
5572 if (h->plt.plist != NULL)
5573 {
5574 /* We should never get here, but unfortunately there are versions
5575 of gcc out there that improperly (for this ABI) put initialized
5576 function pointers, vtable refs and suchlike in read-only
5577 sections. Allow them to proceed, but warn that this might
5578 break at runtime. */
5579 (*_bfd_error_handler)
5580 (_("copy reloc against `%s' requires lazy plt linking; "
5581 "avoid setting LD_BIND_NOW=1 or upgrade gcc"),
5582 h->root.root.string);
5583 }
5584
5585 /* This is a reference to a symbol defined by a dynamic object which
5586 is not a function. */
5587
5588 /* We must allocate the symbol in our .dynbss section, which will
5589 become part of the .bss section of the executable. There will be
5590 an entry for this symbol in the .dynsym section. The dynamic
5591 object will contain position independent code, so all references
5592 from the dynamic object to this symbol will go through the global
5593 offset table. The dynamic linker will use the .dynsym entry to
5594 determine the address it must put in the global offset table, so
5595 both the dynamic object and the regular object will refer to the
5596 same memory location for the variable. */
5597
5598 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
5599 to copy the initial value out of the dynamic object and into the
5600 runtime process image. We need to remember the offset into the
5601 .rela.bss section we are going to use. */
5602 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
5603 {
5604 htab->relbss->size += sizeof (Elf64_External_Rela);
5605 h->needs_copy = 1;
5606 }
5607
5608 /* We need to figure out the alignment required for this symbol. I
5609 have no idea how ELF linkers handle this. */
5610 power_of_two = bfd_log2 (h->size);
5611 if (power_of_two > 4)
5612 power_of_two = 4;
5613
5614 /* Apply the required alignment. */
5615 s = htab->dynbss;
5616 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
5617 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
5618 {
5619 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
5620 return FALSE;
5621 }
5622
5623 /* Define the symbol as being at this point in the section. */
5624 h->root.u.def.section = s;
5625 h->root.u.def.value = s->size;
5626
5627 /* Increment the section size to make room for the symbol. */
5628 s->size += h->size;
5629
5630 return TRUE;
5631 }
5632
5633 /* If given a function descriptor symbol, hide both the function code
5634 sym and the descriptor. */
5635 static void
5636 ppc64_elf_hide_symbol (struct bfd_link_info *info,
5637 struct elf_link_hash_entry *h,
5638 bfd_boolean force_local)
5639 {
5640 struct ppc_link_hash_entry *eh;
5641 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
5642
5643 eh = (struct ppc_link_hash_entry *) h;
5644 if (eh->is_func_descriptor)
5645 {
5646 struct ppc_link_hash_entry *fh = eh->oh;
5647
5648 if (fh == NULL)
5649 {
5650 const char *p, *q;
5651 struct ppc_link_hash_table *htab;
5652 char save;
5653
5654 /* We aren't supposed to use alloca in BFD because on
5655 systems which do not have alloca the version in libiberty
5656 calls xmalloc, which might cause the program to crash
5657 when it runs out of memory. This function doesn't have a
5658 return status, so there's no way to gracefully return an
5659 error. So cheat. We know that string[-1] can be safely
5660 accessed; It's either a string in an ELF string table,
5661 or allocated in an objalloc structure. */
5662
5663 p = eh->elf.root.root.string - 1;
5664 save = *p;
5665 *(char *) p = '.';
5666 htab = ppc_hash_table (info);
5667 fh = (struct ppc_link_hash_entry *)
5668 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5669 *(char *) p = save;
5670
5671 /* Unfortunately, if it so happens that the string we were
5672 looking for was allocated immediately before this string,
5673 then we overwrote the string terminator. That's the only
5674 reason the lookup should fail. */
5675 if (fh == NULL)
5676 {
5677 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
5678 while (q >= eh->elf.root.root.string && *q == *p)
5679 --q, --p;
5680 if (q < eh->elf.root.root.string && *p == '.')
5681 fh = (struct ppc_link_hash_entry *)
5682 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5683 }
5684 if (fh != NULL)
5685 {
5686 eh->oh = fh;
5687 fh->oh = eh;
5688 }
5689 }
5690 if (fh != NULL)
5691 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5692 }
5693 }
5694
5695 static bfd_boolean
5696 get_sym_h (struct elf_link_hash_entry **hp,
5697 Elf_Internal_Sym **symp,
5698 asection **symsecp,
5699 char **tls_maskp,
5700 Elf_Internal_Sym **locsymsp,
5701 unsigned long r_symndx,
5702 bfd *ibfd)
5703 {
5704 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5705
5706 if (r_symndx >= symtab_hdr->sh_info)
5707 {
5708 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
5709 struct elf_link_hash_entry *h;
5710
5711 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5712 while (h->root.type == bfd_link_hash_indirect
5713 || h->root.type == bfd_link_hash_warning)
5714 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5715
5716 if (hp != NULL)
5717 *hp = h;
5718
5719 if (symp != NULL)
5720 *symp = NULL;
5721
5722 if (symsecp != NULL)
5723 {
5724 asection *symsec = NULL;
5725 if (h->root.type == bfd_link_hash_defined
5726 || h->root.type == bfd_link_hash_defweak)
5727 symsec = h->root.u.def.section;
5728 *symsecp = symsec;
5729 }
5730
5731 if (tls_maskp != NULL)
5732 {
5733 struct ppc_link_hash_entry *eh;
5734
5735 eh = (struct ppc_link_hash_entry *) h;
5736 *tls_maskp = &eh->tls_mask;
5737 }
5738 }
5739 else
5740 {
5741 Elf_Internal_Sym *sym;
5742 Elf_Internal_Sym *locsyms = *locsymsp;
5743
5744 if (locsyms == NULL)
5745 {
5746 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
5747 if (locsyms == NULL)
5748 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
5749 symtab_hdr->sh_info,
5750 0, NULL, NULL, NULL);
5751 if (locsyms == NULL)
5752 return FALSE;
5753 *locsymsp = locsyms;
5754 }
5755 sym = locsyms + r_symndx;
5756
5757 if (hp != NULL)
5758 *hp = NULL;
5759
5760 if (symp != NULL)
5761 *symp = sym;
5762
5763 if (symsecp != NULL)
5764 {
5765 asection *symsec = NULL;
5766 if ((sym->st_shndx != SHN_UNDEF
5767 && sym->st_shndx < SHN_LORESERVE)
5768 || sym->st_shndx > SHN_HIRESERVE)
5769 symsec = bfd_section_from_elf_index (ibfd, sym->st_shndx);
5770 *symsecp = symsec;
5771 }
5772
5773 if (tls_maskp != NULL)
5774 {
5775 struct got_entry **lgot_ents;
5776 char *tls_mask;
5777
5778 tls_mask = NULL;
5779 lgot_ents = elf_local_got_ents (ibfd);
5780 if (lgot_ents != NULL)
5781 {
5782 char *lgot_masks = (char *) (lgot_ents + symtab_hdr->sh_info);
5783 tls_mask = &lgot_masks[r_symndx];
5784 }
5785 *tls_maskp = tls_mask;
5786 }
5787 }
5788 return TRUE;
5789 }
5790
5791 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
5792 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
5793 type suitable for optimization, and 1 otherwise. */
5794
5795 static int
5796 get_tls_mask (char **tls_maskp, unsigned long *toc_symndx,
5797 Elf_Internal_Sym **locsymsp,
5798 const Elf_Internal_Rela *rel, bfd *ibfd)
5799 {
5800 unsigned long r_symndx;
5801 int next_r;
5802 struct elf_link_hash_entry *h;
5803 Elf_Internal_Sym *sym;
5804 asection *sec;
5805 bfd_vma off;
5806
5807 r_symndx = ELF64_R_SYM (rel->r_info);
5808 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5809 return 0;
5810
5811 if ((*tls_maskp != NULL && **tls_maskp != 0)
5812 || sec == NULL
5813 || ppc64_elf_section_data (sec)->t_symndx == NULL)
5814 return 1;
5815
5816 /* Look inside a TOC section too. */
5817 if (h != NULL)
5818 {
5819 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
5820 off = h->root.u.def.value;
5821 }
5822 else
5823 off = sym->st_value;
5824 off += rel->r_addend;
5825 BFD_ASSERT (off % 8 == 0);
5826 r_symndx = ppc64_elf_section_data (sec)->t_symndx[off / 8];
5827 next_r = ppc64_elf_section_data (sec)->t_symndx[off / 8 + 1];
5828 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5829 return 0;
5830 if (toc_symndx != NULL)
5831 *toc_symndx = r_symndx;
5832 if ((h == NULL
5833 || ((h->root.type == bfd_link_hash_defined
5834 || h->root.type == bfd_link_hash_defweak)
5835 && !h->def_dynamic))
5836 && (next_r == -1 || next_r == -2))
5837 return 1 - next_r;
5838 return 1;
5839 }
5840
5841 /* Adjust all global syms defined in opd sections. In gcc generated
5842 code for the old ABI, these will already have been done. */
5843
5844 static bfd_boolean
5845 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
5846 {
5847 struct ppc_link_hash_entry *eh;
5848 asection *sym_sec;
5849 long *opd_adjust;
5850
5851 if (h->root.type == bfd_link_hash_indirect)
5852 return TRUE;
5853
5854 if (h->root.type == bfd_link_hash_warning)
5855 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5856
5857 if (h->root.type != bfd_link_hash_defined
5858 && h->root.type != bfd_link_hash_defweak)
5859 return TRUE;
5860
5861 eh = (struct ppc_link_hash_entry *) h;
5862 if (eh->adjust_done)
5863 return TRUE;
5864
5865 sym_sec = eh->elf.root.u.def.section;
5866 opd_adjust = get_opd_info (sym_sec);
5867 if (opd_adjust != NULL)
5868 {
5869 long adjust = opd_adjust[eh->elf.root.u.def.value / 8];
5870 if (adjust == -1)
5871 {
5872 /* This entry has been deleted. */
5873 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
5874 if (dsec == NULL)
5875 {
5876 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
5877 if (elf_discarded_section (dsec))
5878 {
5879 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
5880 break;
5881 }
5882 }
5883 eh->elf.root.u.def.value = 0;
5884 eh->elf.root.u.def.section = dsec;
5885 }
5886 else
5887 eh->elf.root.u.def.value += adjust;
5888 eh->adjust_done = 1;
5889 }
5890 return TRUE;
5891 }
5892
5893 /* Remove unused Official Procedure Descriptor entries. Currently we
5894 only remove those associated with functions in discarded link-once
5895 sections, or weakly defined functions that have been overridden. It
5896 would be possible to remove many more entries for statically linked
5897 applications. */
5898
5899 bfd_boolean
5900 ppc64_elf_edit_opd (bfd *obfd, struct bfd_link_info *info,
5901 bfd_boolean non_overlapping)
5902 {
5903 bfd *ibfd;
5904 bfd_boolean some_edited = FALSE;
5905 asection *need_pad = NULL;
5906
5907 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5908 {
5909 asection *sec;
5910 Elf_Internal_Rela *relstart, *rel, *relend;
5911 Elf_Internal_Shdr *symtab_hdr;
5912 Elf_Internal_Sym *local_syms;
5913 struct elf_link_hash_entry **sym_hashes;
5914 bfd_vma offset;
5915 bfd_size_type amt;
5916 long *opd_adjust;
5917 bfd_boolean need_edit, add_aux_fields;
5918 bfd_size_type cnt_16b = 0;
5919
5920 sec = bfd_get_section_by_name (ibfd, ".opd");
5921 if (sec == NULL)
5922 continue;
5923
5924 amt = sec->size * sizeof (long) / 8;
5925 opd_adjust = get_opd_info (sec);
5926 if (opd_adjust == NULL)
5927 {
5928 /* check_relocs hasn't been called. Must be a ld -r link
5929 or --just-symbols object. */
5930 opd_adjust = bfd_zalloc (obfd, amt);
5931 ppc64_elf_section_data (sec)->opd.adjust = opd_adjust;
5932 }
5933 memset (opd_adjust, 0, amt);
5934
5935 if (sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
5936 continue;
5937
5938 if (sec->output_section == bfd_abs_section_ptr)
5939 continue;
5940
5941 /* Look through the section relocs. */
5942 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
5943 continue;
5944
5945 local_syms = NULL;
5946 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5947 sym_hashes = elf_sym_hashes (ibfd);
5948
5949 /* Read the relocations. */
5950 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
5951 info->keep_memory);
5952 if (relstart == NULL)
5953 return FALSE;
5954
5955 /* First run through the relocs to check they are sane, and to
5956 determine whether we need to edit this opd section. */
5957 need_edit = FALSE;
5958 need_pad = sec;
5959 offset = 0;
5960 relend = relstart + sec->reloc_count;
5961 for (rel = relstart; rel < relend; )
5962 {
5963 enum elf_ppc64_reloc_type r_type;
5964 unsigned long r_symndx;
5965 asection *sym_sec;
5966 struct elf_link_hash_entry *h;
5967 Elf_Internal_Sym *sym;
5968
5969 /* .opd contains a regular array of 16 or 24 byte entries. We're
5970 only interested in the reloc pointing to a function entry
5971 point. */
5972 if (rel->r_offset != offset
5973 || rel + 1 >= relend
5974 || (rel + 1)->r_offset != offset + 8)
5975 {
5976 /* If someone messes with .opd alignment then after a
5977 "ld -r" we might have padding in the middle of .opd.
5978 Also, there's nothing to prevent someone putting
5979 something silly in .opd with the assembler. No .opd
5980 optimization for them! */
5981 broken_opd:
5982 (*_bfd_error_handler)
5983 (_("%B: .opd is not a regular array of opd entries"), ibfd);
5984 need_edit = FALSE;
5985 break;
5986 }
5987
5988 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
5989 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
5990 {
5991 (*_bfd_error_handler)
5992 (_("%B: unexpected reloc type %u in .opd section"),
5993 ibfd, r_type);
5994 need_edit = FALSE;
5995 break;
5996 }
5997
5998 r_symndx = ELF64_R_SYM (rel->r_info);
5999 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6000 r_symndx, ibfd))
6001 goto error_ret;
6002
6003 if (sym_sec == NULL || sym_sec->owner == NULL)
6004 {
6005 const char *sym_name;
6006 if (h != NULL)
6007 sym_name = h->root.root.string;
6008 else
6009 sym_name = bfd_elf_local_sym_name (ibfd, sym);
6010
6011 (*_bfd_error_handler)
6012 (_("%B: undefined sym `%s' in .opd section"),
6013 ibfd, sym_name);
6014 need_edit = FALSE;
6015 break;
6016 }
6017
6018 /* opd entries are always for functions defined in the
6019 current input bfd. If the symbol isn't defined in the
6020 input bfd, then we won't be using the function in this
6021 bfd; It must be defined in a linkonce section in another
6022 bfd, or is weak. It's also possible that we are
6023 discarding the function due to a linker script /DISCARD/,
6024 which we test for via the output_section. */
6025 if (sym_sec->owner != ibfd
6026 || sym_sec->output_section == bfd_abs_section_ptr)
6027 need_edit = TRUE;
6028
6029 rel += 2;
6030 if (rel == relend
6031 || (rel + 1 == relend && rel->r_offset == offset + 16))
6032 {
6033 if (sec->size == offset + 24)
6034 {
6035 need_pad = NULL;
6036 break;
6037 }
6038 if (rel == relend && sec->size == offset + 16)
6039 {
6040 cnt_16b++;
6041 break;
6042 }
6043 goto broken_opd;
6044 }
6045
6046 if (rel->r_offset == offset + 24)
6047 offset += 24;
6048 else if (rel->r_offset != offset + 16)
6049 goto broken_opd;
6050 else if (rel + 1 < relend
6051 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
6052 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
6053 {
6054 offset += 16;
6055 cnt_16b++;
6056 }
6057 else if (rel + 2 < relend
6058 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
6059 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
6060 {
6061 offset += 24;
6062 rel += 1;
6063 }
6064 else
6065 goto broken_opd;
6066 }
6067
6068 add_aux_fields = non_overlapping && cnt_16b > 0;
6069
6070 if (need_edit || add_aux_fields)
6071 {
6072 Elf_Internal_Rela *write_rel;
6073 bfd_byte *rptr, *wptr;
6074 bfd_byte *new_contents = NULL;
6075 bfd_boolean skip;
6076 long opd_ent_size;
6077
6078 /* This seems a waste of time as input .opd sections are all
6079 zeros as generated by gcc, but I suppose there's no reason
6080 this will always be so. We might start putting something in
6081 the third word of .opd entries. */
6082 if ((sec->flags & SEC_IN_MEMORY) == 0)
6083 {
6084 bfd_byte *loc;
6085 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
6086 {
6087 if (loc != NULL)
6088 free (loc);
6089 error_ret:
6090 if (local_syms != NULL
6091 && symtab_hdr->contents != (unsigned char *) local_syms)
6092 free (local_syms);
6093 if (elf_section_data (sec)->relocs != relstart)
6094 free (relstart);
6095 return FALSE;
6096 }
6097 sec->contents = loc;
6098 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6099 }
6100
6101 elf_section_data (sec)->relocs = relstart;
6102
6103 wptr = sec->contents;
6104 rptr = sec->contents;
6105 new_contents = sec->contents;
6106
6107 if (add_aux_fields)
6108 {
6109 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
6110 if (new_contents == NULL)
6111 return FALSE;
6112 need_pad = FALSE;
6113 wptr = new_contents;
6114 }
6115
6116 write_rel = relstart;
6117 skip = FALSE;
6118 offset = 0;
6119 opd_ent_size = 0;
6120 for (rel = relstart; rel < relend; rel++)
6121 {
6122 unsigned long r_symndx;
6123 asection *sym_sec;
6124 struct elf_link_hash_entry *h;
6125 Elf_Internal_Sym *sym;
6126
6127 r_symndx = ELF64_R_SYM (rel->r_info);
6128 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6129 r_symndx, ibfd))
6130 goto error_ret;
6131
6132 if (rel->r_offset == offset)
6133 {
6134 struct ppc_link_hash_entry *fdh = NULL;
6135
6136 /* See if the .opd entry is full 24 byte or
6137 16 byte (with fd_aux entry overlapped with next
6138 fd_func). */
6139 opd_ent_size = 24;
6140 if ((rel + 2 == relend && sec->size == offset + 16)
6141 || (rel + 3 < relend
6142 && rel[2].r_offset == offset + 16
6143 && rel[3].r_offset == offset + 24
6144 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
6145 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
6146 opd_ent_size = 16;
6147
6148 if (h != NULL
6149 && h->root.root.string[0] == '.')
6150 fdh = get_fdh ((struct ppc_link_hash_entry *) h,
6151 ppc_hash_table (info));
6152
6153 skip = (sym_sec->owner != ibfd
6154 || sym_sec->output_section == bfd_abs_section_ptr);
6155 if (skip)
6156 {
6157 if (fdh != NULL && sym_sec->owner == ibfd)
6158 {
6159 /* Arrange for the function descriptor sym
6160 to be dropped. */
6161 fdh->elf.root.u.def.value = 0;
6162 fdh->elf.root.u.def.section = sym_sec;
6163 }
6164 opd_adjust[rel->r_offset / 8] = -1;
6165 }
6166 else
6167 {
6168 /* We'll be keeping this opd entry. */
6169
6170 if (fdh != NULL)
6171 {
6172 /* Redefine the function descriptor symbol to
6173 this location in the opd section. It is
6174 necessary to update the value here rather
6175 than using an array of adjustments as we do
6176 for local symbols, because various places
6177 in the generic ELF code use the value
6178 stored in u.def.value. */
6179 fdh->elf.root.u.def.value = wptr - new_contents;
6180 fdh->adjust_done = 1;
6181 }
6182
6183 /* Local syms are a bit tricky. We could
6184 tweak them as they can be cached, but
6185 we'd need to look through the local syms
6186 for the function descriptor sym which we
6187 don't have at the moment. So keep an
6188 array of adjustments. */
6189 opd_adjust[rel->r_offset / 8]
6190 = (wptr - new_contents) - (rptr - sec->contents);
6191
6192 if (wptr != rptr)
6193 memcpy (wptr, rptr, opd_ent_size);
6194 wptr += opd_ent_size;
6195 if (add_aux_fields && opd_ent_size == 16)
6196 {
6197 memset (wptr, '\0', 8);
6198 wptr += 8;
6199 }
6200 }
6201 rptr += opd_ent_size;
6202 offset += opd_ent_size;
6203 }
6204
6205 if (skip)
6206 {
6207 BFD_ASSERT (MUST_BE_DYN_RELOC (ELF64_R_TYPE (rel->r_info)));
6208 if (info->shared)
6209 {
6210 /* We won't be needing dynamic relocs here. */
6211 struct ppc_dyn_relocs **pp;
6212 struct ppc_dyn_relocs *p;
6213
6214 if (h != NULL)
6215 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6216 else if (sym_sec != NULL)
6217 pp = ((struct ppc_dyn_relocs **)
6218 &elf_section_data (sym_sec)->local_dynrel);
6219 else
6220 pp = ((struct ppc_dyn_relocs **)
6221 &elf_section_data (sec)->local_dynrel);
6222 while ((p = *pp) != NULL)
6223 {
6224 if (p->sec == sec)
6225 {
6226 p->count -= 1;
6227 if (p->count == 0)
6228 *pp = p->next;
6229 break;
6230 }
6231 pp = &p->next;
6232 }
6233 }
6234 }
6235 else
6236 {
6237 /* We need to adjust any reloc offsets to point to the
6238 new opd entries. While we're at it, we may as well
6239 remove redundant relocs. */
6240 rel->r_offset += opd_adjust[(offset - opd_ent_size) / 8];
6241 if (write_rel != rel)
6242 memcpy (write_rel, rel, sizeof (*rel));
6243 ++write_rel;
6244 }
6245 }
6246
6247 sec->size = wptr - new_contents;
6248 sec->reloc_count = write_rel - relstart;
6249 if (add_aux_fields)
6250 {
6251 free (sec->contents);
6252 sec->contents = new_contents;
6253 }
6254
6255 /* Fudge the size too, as this is used later in
6256 elf_bfd_final_link if we are emitting relocs. */
6257 elf_section_data (sec)->rel_hdr.sh_size
6258 = sec->reloc_count * elf_section_data (sec)->rel_hdr.sh_entsize;
6259 BFD_ASSERT (elf_section_data (sec)->rel_hdr2 == NULL);
6260 some_edited = TRUE;
6261 }
6262 else if (elf_section_data (sec)->relocs != relstart)
6263 free (relstart);
6264
6265 if (local_syms != NULL
6266 && symtab_hdr->contents != (unsigned char *) local_syms)
6267 {
6268 if (!info->keep_memory)
6269 free (local_syms);
6270 else
6271 symtab_hdr->contents = (unsigned char *) local_syms;
6272 }
6273 }
6274
6275 if (some_edited)
6276 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
6277
6278 /* If we are doing a final link and the last .opd entry is just 16 byte
6279 long, add a 8 byte padding after it. */
6280 if (need_pad != NULL && !info->relocatable)
6281 {
6282 bfd_byte *p;
6283
6284 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
6285 {
6286 BFD_ASSERT (need_pad->size > 0);
6287
6288 p = bfd_malloc (need_pad->size + 8);
6289 if (p == NULL)
6290 return FALSE;
6291
6292 if (! bfd_get_section_contents (need_pad->owner, need_pad,
6293 p, 0, need_pad->size))
6294 return FALSE;
6295
6296 need_pad->contents = p;
6297 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6298 }
6299 else
6300 {
6301 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
6302 if (p == NULL)
6303 return FALSE;
6304
6305 need_pad->contents = p;
6306 }
6307
6308 memset (need_pad->contents + need_pad->size, 0, 8);
6309 need_pad->size += 8;
6310 }
6311
6312 return TRUE;
6313 }
6314
6315 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
6316
6317 asection *
6318 ppc64_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
6319 {
6320 struct ppc_link_hash_table *htab;
6321
6322 htab = ppc_hash_table (info);
6323 if (htab->tls_get_addr != NULL)
6324 {
6325 struct ppc_link_hash_entry *h = htab->tls_get_addr;
6326
6327 while (h->elf.root.type == bfd_link_hash_indirect
6328 || h->elf.root.type == bfd_link_hash_warning)
6329 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6330
6331 htab->tls_get_addr = h;
6332
6333 if (htab->tls_get_addr_fd == NULL
6334 && h->oh != NULL
6335 && h->oh->is_func_descriptor)
6336 htab->tls_get_addr_fd = h->oh;
6337 }
6338
6339 if (htab->tls_get_addr_fd != NULL)
6340 {
6341 struct ppc_link_hash_entry *h = htab->tls_get_addr_fd;
6342
6343 while (h->elf.root.type == bfd_link_hash_indirect
6344 || h->elf.root.type == bfd_link_hash_warning)
6345 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6346
6347 htab->tls_get_addr_fd = h;
6348 }
6349
6350 return _bfd_elf_tls_setup (obfd, info);
6351 }
6352
6353 /* Run through all the TLS relocs looking for optimization
6354 opportunities. The linker has been hacked (see ppc64elf.em) to do
6355 a preliminary section layout so that we know the TLS segment
6356 offsets. We can't optimize earlier because some optimizations need
6357 to know the tp offset, and we need to optimize before allocating
6358 dynamic relocations. */
6359
6360 bfd_boolean
6361 ppc64_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6362 {
6363 bfd *ibfd;
6364 asection *sec;
6365 struct ppc_link_hash_table *htab;
6366
6367 if (info->relocatable || info->shared)
6368 return TRUE;
6369
6370 htab = ppc_hash_table (info);
6371 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6372 {
6373 Elf_Internal_Sym *locsyms = NULL;
6374
6375 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6376 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
6377 {
6378 Elf_Internal_Rela *relstart, *rel, *relend;
6379 int expecting_tls_get_addr;
6380
6381 /* Read the relocations. */
6382 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6383 info->keep_memory);
6384 if (relstart == NULL)
6385 return FALSE;
6386
6387 expecting_tls_get_addr = 0;
6388 relend = relstart + sec->reloc_count;
6389 for (rel = relstart; rel < relend; rel++)
6390 {
6391 enum elf_ppc64_reloc_type r_type;
6392 unsigned long r_symndx;
6393 struct elf_link_hash_entry *h;
6394 Elf_Internal_Sym *sym;
6395 asection *sym_sec;
6396 char *tls_mask;
6397 char tls_set, tls_clear, tls_type = 0;
6398 bfd_vma value;
6399 bfd_boolean ok_tprel, is_local;
6400
6401 r_symndx = ELF64_R_SYM (rel->r_info);
6402 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
6403 r_symndx, ibfd))
6404 {
6405 err_free_rel:
6406 if (elf_section_data (sec)->relocs != relstart)
6407 free (relstart);
6408 if (locsyms != NULL
6409 && (elf_tdata (ibfd)->symtab_hdr.contents
6410 != (unsigned char *) locsyms))
6411 free (locsyms);
6412 return FALSE;
6413 }
6414
6415 if (h != NULL)
6416 {
6417 if (h->root.type != bfd_link_hash_defined
6418 && h->root.type != bfd_link_hash_defweak)
6419 continue;
6420 value = h->root.u.def.value;
6421 }
6422 else
6423 /* Symbols referenced by TLS relocs must be of type
6424 STT_TLS. So no need for .opd local sym adjust. */
6425 value = sym->st_value;
6426
6427 ok_tprel = FALSE;
6428 is_local = FALSE;
6429 if (h == NULL
6430 || !h->def_dynamic)
6431 {
6432 is_local = TRUE;
6433 value += sym_sec->output_offset;
6434 value += sym_sec->output_section->vma;
6435 value -= htab->elf.tls_sec->vma;
6436 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
6437 < (bfd_vma) 1 << 32);
6438 }
6439
6440 r_type = ELF64_R_TYPE (rel->r_info);
6441 switch (r_type)
6442 {
6443 case R_PPC64_GOT_TLSLD16:
6444 case R_PPC64_GOT_TLSLD16_LO:
6445 case R_PPC64_GOT_TLSLD16_HI:
6446 case R_PPC64_GOT_TLSLD16_HA:
6447 /* These relocs should never be against a symbol
6448 defined in a shared lib. Leave them alone if
6449 that turns out to be the case. */
6450 ppc64_tlsld_got (ibfd)->refcount -= 1;
6451 if (!is_local)
6452 continue;
6453
6454 /* LD -> LE */
6455 tls_set = 0;
6456 tls_clear = TLS_LD;
6457 tls_type = TLS_TLS | TLS_LD;
6458 expecting_tls_get_addr = 1;
6459 break;
6460
6461 case R_PPC64_GOT_TLSGD16:
6462 case R_PPC64_GOT_TLSGD16_LO:
6463 case R_PPC64_GOT_TLSGD16_HI:
6464 case R_PPC64_GOT_TLSGD16_HA:
6465 if (ok_tprel)
6466 /* GD -> LE */
6467 tls_set = 0;
6468 else
6469 /* GD -> IE */
6470 tls_set = TLS_TLS | TLS_TPRELGD;
6471 tls_clear = TLS_GD;
6472 tls_type = TLS_TLS | TLS_GD;
6473 expecting_tls_get_addr = 1;
6474 break;
6475
6476 case R_PPC64_GOT_TPREL16_DS:
6477 case R_PPC64_GOT_TPREL16_LO_DS:
6478 case R_PPC64_GOT_TPREL16_HI:
6479 case R_PPC64_GOT_TPREL16_HA:
6480 expecting_tls_get_addr = 0;
6481 if (ok_tprel)
6482 {
6483 /* IE -> LE */
6484 tls_set = 0;
6485 tls_clear = TLS_TPREL;
6486 tls_type = TLS_TLS | TLS_TPREL;
6487 break;
6488 }
6489 else
6490 continue;
6491
6492 case R_PPC64_REL14:
6493 case R_PPC64_REL14_BRTAKEN:
6494 case R_PPC64_REL14_BRNTAKEN:
6495 case R_PPC64_REL24:
6496 if (h != NULL
6497 && (h == &htab->tls_get_addr->elf
6498 || h == &htab->tls_get_addr_fd->elf))
6499 {
6500 if (!expecting_tls_get_addr
6501 && rel != relstart
6502 && ((ELF64_R_TYPE (rel[-1].r_info)
6503 == R_PPC64_TOC16)
6504 || (ELF64_R_TYPE (rel[-1].r_info)
6505 == R_PPC64_TOC16_LO)))
6506 {
6507 /* Check for toc tls entries. */
6508 char *toc_tls;
6509 int retval;
6510
6511 retval = get_tls_mask (&toc_tls, NULL, &locsyms,
6512 rel - 1, ibfd);
6513 if (retval == 0)
6514 goto err_free_rel;
6515 if (toc_tls != NULL)
6516 expecting_tls_get_addr = retval > 1;
6517 }
6518
6519 if (expecting_tls_get_addr)
6520 {
6521 struct plt_entry *ent;
6522 for (ent = h->plt.plist; ent; ent = ent->next)
6523 if (ent->addend == 0)
6524 {
6525 if (ent->plt.refcount > 0)
6526 ent->plt.refcount -= 1;
6527 break;
6528 }
6529 }
6530 }
6531 expecting_tls_get_addr = 0;
6532 continue;
6533
6534 case R_PPC64_TPREL64:
6535 expecting_tls_get_addr = 0;
6536 if (ok_tprel)
6537 {
6538 /* IE -> LE */
6539 tls_set = TLS_EXPLICIT;
6540 tls_clear = TLS_TPREL;
6541 break;
6542 }
6543 else
6544 continue;
6545
6546 case R_PPC64_DTPMOD64:
6547 expecting_tls_get_addr = 0;
6548 if (rel + 1 < relend
6549 && (rel[1].r_info
6550 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
6551 && rel[1].r_offset == rel->r_offset + 8)
6552 {
6553 if (ok_tprel)
6554 /* GD -> LE */
6555 tls_set = TLS_EXPLICIT | TLS_GD;
6556 else
6557 /* GD -> IE */
6558 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
6559 tls_clear = TLS_GD;
6560 }
6561 else
6562 {
6563 if (!is_local)
6564 continue;
6565
6566 /* LD -> LE */
6567 tls_set = TLS_EXPLICIT;
6568 tls_clear = TLS_LD;
6569 }
6570 break;
6571
6572 default:
6573 expecting_tls_get_addr = 0;
6574 continue;
6575 }
6576
6577 if ((tls_set & TLS_EXPLICIT) == 0)
6578 {
6579 struct got_entry *ent;
6580
6581 /* Adjust got entry for this reloc. */
6582 if (h != NULL)
6583 ent = h->got.glist;
6584 else
6585 ent = elf_local_got_ents (ibfd)[r_symndx];
6586
6587 for (; ent != NULL; ent = ent->next)
6588 if (ent->addend == rel->r_addend
6589 && ent->owner == ibfd
6590 && ent->tls_type == tls_type)
6591 break;
6592 if (ent == NULL)
6593 abort ();
6594
6595 if (tls_set == 0)
6596 {
6597 /* We managed to get rid of a got entry. */
6598 if (ent->got.refcount > 0)
6599 ent->got.refcount -= 1;
6600 }
6601 }
6602 else if (h != NULL)
6603 {
6604 struct ppc_link_hash_entry * eh;
6605 struct ppc_dyn_relocs **pp;
6606 struct ppc_dyn_relocs *p;
6607
6608 /* Adjust dynamic relocs. */
6609 eh = (struct ppc_link_hash_entry *) h;
6610 for (pp = &eh->dyn_relocs;
6611 (p = *pp) != NULL;
6612 pp = &p->next)
6613 if (p->sec == sec)
6614 {
6615 /* If we got rid of a DTPMOD/DTPREL reloc
6616 pair then we'll lose one or two dyn
6617 relocs. */
6618 if (tls_set == (TLS_EXPLICIT | TLS_GD))
6619 p->count -= 1;
6620 p->count -= 1;
6621 if (p->count == 0)
6622 *pp = p->next;
6623 break;
6624 }
6625 }
6626
6627 *tls_mask |= tls_set;
6628 *tls_mask &= ~tls_clear;
6629 }
6630
6631 if (elf_section_data (sec)->relocs != relstart)
6632 free (relstart);
6633 }
6634
6635 if (locsyms != NULL
6636 && (elf_tdata (ibfd)->symtab_hdr.contents
6637 != (unsigned char *) locsyms))
6638 {
6639 if (!info->keep_memory)
6640 free (locsyms);
6641 else
6642 elf_tdata (ibfd)->symtab_hdr.contents = (unsigned char *) locsyms;
6643 }
6644 }
6645 return TRUE;
6646 }
6647
6648 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
6649 the values of any global symbols in a toc section that has been
6650 edited. Globals in toc sections should be a rarity, so this function
6651 sets a flag if any are found in toc sections other than the one just
6652 edited, so that futher hash table traversals can be avoided. */
6653
6654 struct adjust_toc_info
6655 {
6656 asection *toc;
6657 unsigned long *skip;
6658 bfd_boolean global_toc_syms;
6659 };
6660
6661 static bfd_boolean
6662 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
6663 {
6664 struct ppc_link_hash_entry *eh;
6665 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
6666
6667 if (h->root.type == bfd_link_hash_indirect)
6668 return TRUE;
6669
6670 if (h->root.type == bfd_link_hash_warning)
6671 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6672
6673 if (h->root.type != bfd_link_hash_defined
6674 && h->root.type != bfd_link_hash_defweak)
6675 return TRUE;
6676
6677 eh = (struct ppc_link_hash_entry *) h;
6678 if (eh->adjust_done)
6679 return TRUE;
6680
6681 if (eh->elf.root.u.def.section == toc_inf->toc)
6682 {
6683 unsigned long skip = toc_inf->skip[eh->elf.root.u.def.value >> 3];
6684 if (skip != (unsigned long) -1)
6685 eh->elf.root.u.def.value -= skip;
6686 else
6687 {
6688 (*_bfd_error_handler)
6689 (_("%s defined in removed toc entry"), eh->elf.root.root.string);
6690 eh->elf.root.u.def.section = &bfd_abs_section;
6691 eh->elf.root.u.def.value = 0;
6692 }
6693 eh->adjust_done = 1;
6694 }
6695 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
6696 toc_inf->global_toc_syms = TRUE;
6697
6698 return TRUE;
6699 }
6700
6701 /* Examine all relocs referencing .toc sections in order to remove
6702 unused .toc entries. */
6703
6704 bfd_boolean
6705 ppc64_elf_edit_toc (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6706 {
6707 bfd *ibfd;
6708 struct adjust_toc_info toc_inf;
6709
6710 toc_inf.global_toc_syms = TRUE;
6711 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6712 {
6713 asection *toc, *sec;
6714 Elf_Internal_Shdr *symtab_hdr;
6715 Elf_Internal_Sym *local_syms;
6716 struct elf_link_hash_entry **sym_hashes;
6717 Elf_Internal_Rela *relstart, *rel, *wrel;
6718 unsigned long *skip, *drop;
6719 unsigned char *used;
6720 unsigned char *keep, last, some_unused;
6721
6722 toc = bfd_get_section_by_name (ibfd, ".toc");
6723 if (toc == NULL
6724 || toc->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6725 || elf_discarded_section (toc))
6726 continue;
6727
6728 local_syms = NULL;
6729 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6730 sym_hashes = elf_sym_hashes (ibfd);
6731
6732 /* Look at sections dropped from the final link. */
6733 skip = NULL;
6734 relstart = NULL;
6735 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6736 {
6737 if (sec->reloc_count == 0
6738 || !elf_discarded_section (sec)
6739 || get_opd_info (sec)
6740 || (sec->flags & SEC_ALLOC) == 0
6741 || (sec->flags & SEC_DEBUGGING) != 0)
6742 continue;
6743
6744 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
6745 if (relstart == NULL)
6746 goto error_ret;
6747
6748 /* Run through the relocs to see which toc entries might be
6749 unused. */
6750 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
6751 {
6752 enum elf_ppc64_reloc_type r_type;
6753 unsigned long r_symndx;
6754 asection *sym_sec;
6755 struct elf_link_hash_entry *h;
6756 Elf_Internal_Sym *sym;
6757 bfd_vma val;
6758
6759 r_type = ELF64_R_TYPE (rel->r_info);
6760 switch (r_type)
6761 {
6762 default:
6763 continue;
6764
6765 case R_PPC64_TOC16:
6766 case R_PPC64_TOC16_LO:
6767 case R_PPC64_TOC16_HI:
6768 case R_PPC64_TOC16_HA:
6769 case R_PPC64_TOC16_DS:
6770 case R_PPC64_TOC16_LO_DS:
6771 break;
6772 }
6773
6774 r_symndx = ELF64_R_SYM (rel->r_info);
6775 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6776 r_symndx, ibfd))
6777 goto error_ret;
6778
6779 if (sym_sec != toc)
6780 continue;
6781
6782 if (h != NULL)
6783 val = h->root.u.def.value;
6784 else
6785 val = sym->st_value;
6786 val += rel->r_addend;
6787
6788 if (val >= toc->size)
6789 continue;
6790
6791 /* Anything in the toc ought to be aligned to 8 bytes.
6792 If not, don't mark as unused. */
6793 if (val & 7)
6794 continue;
6795
6796 if (skip == NULL)
6797 {
6798 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 7) / 8);
6799 if (skip == NULL)
6800 goto error_ret;
6801 }
6802
6803 skip[val >> 3] = 1;
6804 }
6805
6806 if (elf_section_data (sec)->relocs != relstart)
6807 free (relstart);
6808 }
6809
6810 if (skip == NULL)
6811 continue;
6812
6813 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
6814 if (used == NULL)
6815 {
6816 error_ret:
6817 if (local_syms != NULL
6818 && symtab_hdr->contents != (unsigned char *) local_syms)
6819 free (local_syms);
6820 if (sec != NULL
6821 && relstart != NULL
6822 && elf_section_data (sec)->relocs != relstart)
6823 free (relstart);
6824 if (skip != NULL)
6825 free (skip);
6826 return FALSE;
6827 }
6828
6829 /* Now check all kept sections that might reference the toc. */
6830 for (sec = ibfd->sections;
6831 sec != NULL;
6832 /* Check the toc itself last. */
6833 sec = (sec == toc ? NULL
6834 : sec->next == toc && sec->next->next ? sec->next->next
6835 : sec->next == NULL ? toc
6836 : sec->next))
6837 {
6838 int repeat;
6839
6840 if (sec->reloc_count == 0
6841 || elf_discarded_section (sec)
6842 || get_opd_info (sec)
6843 || (sec->flags & SEC_ALLOC) == 0
6844 || (sec->flags & SEC_DEBUGGING) != 0)
6845 continue;
6846
6847 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, TRUE);
6848 if (relstart == NULL)
6849 goto error_ret;
6850
6851 /* Mark toc entries referenced as used. */
6852 repeat = 0;
6853 do
6854 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
6855 {
6856 enum elf_ppc64_reloc_type r_type;
6857 unsigned long r_symndx;
6858 asection *sym_sec;
6859 struct elf_link_hash_entry *h;
6860 Elf_Internal_Sym *sym;
6861 bfd_vma val;
6862
6863 r_type = ELF64_R_TYPE (rel->r_info);
6864 switch (r_type)
6865 {
6866 case R_PPC64_TOC16:
6867 case R_PPC64_TOC16_LO:
6868 case R_PPC64_TOC16_HI:
6869 case R_PPC64_TOC16_HA:
6870 case R_PPC64_TOC16_DS:
6871 case R_PPC64_TOC16_LO_DS:
6872 /* In case we're taking addresses of toc entries. */
6873 case R_PPC64_ADDR64:
6874 break;
6875
6876 default:
6877 continue;
6878 }
6879
6880 r_symndx = ELF64_R_SYM (rel->r_info);
6881 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6882 r_symndx, ibfd))
6883 {
6884 free (used);
6885 goto error_ret;
6886 }
6887
6888 if (sym_sec != toc)
6889 continue;
6890
6891 if (h != NULL)
6892 val = h->root.u.def.value;
6893 else
6894 val = sym->st_value;
6895 val += rel->r_addend;
6896
6897 if (val >= toc->size)
6898 continue;
6899
6900 /* For the toc section, we only mark as used if
6901 this entry itself isn't unused. */
6902 if (sec == toc
6903 && !used[val >> 3]
6904 && (used[rel->r_offset >> 3]
6905 || !skip[rel->r_offset >> 3]))
6906 /* Do all the relocs again, to catch reference
6907 chains. */
6908 repeat = 1;
6909
6910 used[val >> 3] = 1;
6911 }
6912 while (repeat);
6913 }
6914
6915 /* Merge the used and skip arrays. Assume that TOC
6916 doublewords not appearing as either used or unused belong
6917 to to an entry more than one doubleword in size. */
6918 for (drop = skip, keep = used, last = 0, some_unused = 0;
6919 drop < skip + (toc->size + 7) / 8;
6920 ++drop, ++keep)
6921 {
6922 if (*keep)
6923 {
6924 *drop = 0;
6925 last = 0;
6926 }
6927 else if (*drop)
6928 {
6929 some_unused = 1;
6930 last = 1;
6931 }
6932 else
6933 *drop = last;
6934 }
6935
6936 free (used);
6937
6938 if (some_unused)
6939 {
6940 bfd_byte *contents, *src;
6941 unsigned long off;
6942
6943 /* Shuffle the toc contents, and at the same time convert the
6944 skip array from booleans into offsets. */
6945 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
6946 goto error_ret;
6947
6948 elf_section_data (toc)->this_hdr.contents = contents;
6949
6950 for (src = contents, off = 0, drop = skip;
6951 src < contents + toc->size;
6952 src += 8, ++drop)
6953 {
6954 if (*drop)
6955 {
6956 *drop = (unsigned long) -1;
6957 off += 8;
6958 }
6959 else if (off != 0)
6960 {
6961 *drop = off;
6962 memcpy (src - off, src, 8);
6963 }
6964 }
6965 toc->rawsize = toc->size;
6966 toc->size = src - contents - off;
6967
6968 /* Read toc relocs. */
6969 relstart = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL, TRUE);
6970 if (relstart == NULL)
6971 goto error_ret;
6972
6973 /* Remove unused toc relocs, and adjust those we keep. */
6974 wrel = relstart;
6975 for (rel = relstart; rel < relstart + toc->reloc_count; ++rel)
6976 if (skip[rel->r_offset >> 3] != (unsigned long) -1)
6977 {
6978 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
6979 wrel->r_info = rel->r_info;
6980 wrel->r_addend = rel->r_addend;
6981 ++wrel;
6982 }
6983 toc->reloc_count = wrel - relstart;
6984
6985 /* Adjust addends for relocs against the toc section sym. */
6986 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6987 {
6988 if (sec->reloc_count == 0
6989 || elf_discarded_section (sec))
6990 continue;
6991
6992 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6993 TRUE);
6994 if (relstart == NULL)
6995 goto error_ret;
6996
6997 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
6998 {
6999 enum elf_ppc64_reloc_type r_type;
7000 unsigned long r_symndx;
7001 asection *sym_sec;
7002 struct elf_link_hash_entry *h;
7003 Elf_Internal_Sym *sym;
7004
7005 r_type = ELF64_R_TYPE (rel->r_info);
7006 switch (r_type)
7007 {
7008 default:
7009 continue;
7010
7011 case R_PPC64_TOC16:
7012 case R_PPC64_TOC16_LO:
7013 case R_PPC64_TOC16_HI:
7014 case R_PPC64_TOC16_HA:
7015 case R_PPC64_TOC16_DS:
7016 case R_PPC64_TOC16_LO_DS:
7017 case R_PPC64_ADDR64:
7018 break;
7019 }
7020
7021 r_symndx = ELF64_R_SYM (rel->r_info);
7022 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7023 r_symndx, ibfd))
7024 goto error_ret;
7025
7026 if (sym_sec != toc || h != NULL || sym->st_value != 0)
7027 continue;
7028
7029 rel->r_addend -= skip[rel->r_addend >> 3];
7030 }
7031 }
7032
7033 /* We shouldn't have local or global symbols defined in the TOC,
7034 but handle them anyway. */
7035 if (local_syms != NULL)
7036 {
7037 Elf_Internal_Sym *sym;
7038
7039 for (sym = local_syms;
7040 sym < local_syms + symtab_hdr->sh_info;
7041 ++sym)
7042 if (sym->st_shndx != SHN_UNDEF
7043 && (sym->st_shndx < SHN_LORESERVE
7044 || sym->st_shndx > SHN_HIRESERVE)
7045 && sym->st_value != 0
7046 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
7047 {
7048 if (skip[sym->st_value >> 3] != (unsigned long) -1)
7049 sym->st_value -= skip[sym->st_value >> 3];
7050 else
7051 {
7052 (*_bfd_error_handler)
7053 (_("%s defined in removed toc entry"),
7054 bfd_elf_local_sym_name (ibfd, sym));
7055 sym->st_value = 0;
7056 sym->st_shndx = SHN_ABS;
7057 }
7058 symtab_hdr->contents = (unsigned char *) local_syms;
7059 }
7060 }
7061
7062 /* Finally, adjust any global syms defined in the toc. */
7063 if (toc_inf.global_toc_syms)
7064 {
7065 toc_inf.toc = toc;
7066 toc_inf.skip = skip;
7067 toc_inf.global_toc_syms = FALSE;
7068 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
7069 &toc_inf);
7070 }
7071 }
7072
7073 if (local_syms != NULL
7074 && symtab_hdr->contents != (unsigned char *) local_syms)
7075 {
7076 if (!info->keep_memory)
7077 free (local_syms);
7078 else
7079 symtab_hdr->contents = (unsigned char *) local_syms;
7080 }
7081 free (skip);
7082 }
7083
7084 return TRUE;
7085 }
7086
7087 /* Allocate space in .plt, .got and associated reloc sections for
7088 dynamic relocs. */
7089
7090 static bfd_boolean
7091 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7092 {
7093 struct bfd_link_info *info;
7094 struct ppc_link_hash_table *htab;
7095 asection *s;
7096 struct ppc_link_hash_entry *eh;
7097 struct ppc_dyn_relocs *p;
7098 struct got_entry *gent;
7099
7100 if (h->root.type == bfd_link_hash_indirect)
7101 return TRUE;
7102
7103 if (h->root.type == bfd_link_hash_warning)
7104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7105
7106 info = (struct bfd_link_info *) inf;
7107 htab = ppc_hash_table (info);
7108
7109 if (htab->elf.dynamic_sections_created
7110 && h->dynindx != -1
7111 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
7112 {
7113 struct plt_entry *pent;
7114 bfd_boolean doneone = FALSE;
7115 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
7116 if (pent->plt.refcount > 0)
7117 {
7118 /* If this is the first .plt entry, make room for the special
7119 first entry. */
7120 s = htab->plt;
7121 if (s->size == 0)
7122 s->size += PLT_INITIAL_ENTRY_SIZE;
7123
7124 pent->plt.offset = s->size;
7125
7126 /* Make room for this entry. */
7127 s->size += PLT_ENTRY_SIZE;
7128
7129 /* Make room for the .glink code. */
7130 s = htab->glink;
7131 if (s->size == 0)
7132 s->size += GLINK_CALL_STUB_SIZE;
7133 /* We need bigger stubs past index 32767. */
7134 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
7135 s->size += 4;
7136 s->size += 2*4;
7137
7138 /* We also need to make an entry in the .rela.plt section. */
7139 s = htab->relplt;
7140 s->size += sizeof (Elf64_External_Rela);
7141 doneone = TRUE;
7142 }
7143 else
7144 pent->plt.offset = (bfd_vma) -1;
7145 if (!doneone)
7146 {
7147 h->plt.plist = NULL;
7148 h->needs_plt = 0;
7149 }
7150 }
7151 else
7152 {
7153 h->plt.plist = NULL;
7154 h->needs_plt = 0;
7155 }
7156
7157 eh = (struct ppc_link_hash_entry *) h;
7158 /* Run through the TLS GD got entries first if we're changing them
7159 to TPREL. */
7160 if ((eh->tls_mask & TLS_TPRELGD) != 0)
7161 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7162 if (gent->got.refcount > 0
7163 && (gent->tls_type & TLS_GD) != 0)
7164 {
7165 /* This was a GD entry that has been converted to TPREL. If
7166 there happens to be a TPREL entry we can use that one. */
7167 struct got_entry *ent;
7168 for (ent = h->got.glist; ent != NULL; ent = ent->next)
7169 if (ent->got.refcount > 0
7170 && (ent->tls_type & TLS_TPREL) != 0
7171 && ent->addend == gent->addend
7172 && ent->owner == gent->owner)
7173 {
7174 gent->got.refcount = 0;
7175 break;
7176 }
7177
7178 /* If not, then we'll be using our own TPREL entry. */
7179 if (gent->got.refcount != 0)
7180 gent->tls_type = TLS_TLS | TLS_TPREL;
7181 }
7182
7183 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7184 if (gent->got.refcount > 0)
7185 {
7186 bfd_boolean dyn;
7187
7188 /* Make sure this symbol is output as a dynamic symbol.
7189 Undefined weak syms won't yet be marked as dynamic,
7190 nor will all TLS symbols. */
7191 if (h->dynindx == -1
7192 && !h->forced_local)
7193 {
7194 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7195 return FALSE;
7196 }
7197
7198 if ((gent->tls_type & TLS_LD) != 0
7199 && !h->def_dynamic)
7200 {
7201 gent->got.offset = ppc64_tlsld_got (gent->owner)->offset;
7202 continue;
7203 }
7204
7205 s = ppc64_elf_tdata (gent->owner)->got;
7206 gent->got.offset = s->size;
7207 s->size
7208 += (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)) ? 16 : 8;
7209 dyn = htab->elf.dynamic_sections_created;
7210 if ((info->shared
7211 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
7212 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7213 || h->root.type != bfd_link_hash_undefweak))
7214 ppc64_elf_tdata (gent->owner)->relgot->size
7215 += (gent->tls_type & eh->tls_mask & TLS_GD
7216 ? 2 * sizeof (Elf64_External_Rela)
7217 : sizeof (Elf64_External_Rela));
7218 }
7219 else
7220 gent->got.offset = (bfd_vma) -1;
7221
7222 if (eh->dyn_relocs == NULL)
7223 return TRUE;
7224
7225 /* In the shared -Bsymbolic case, discard space allocated for
7226 dynamic pc-relative relocs against symbols which turn out to be
7227 defined in regular objects. For the normal shared case, discard
7228 space for relocs that have become local due to symbol visibility
7229 changes. */
7230
7231 if (info->shared)
7232 {
7233 /* Relocs that use pc_count are those that appear on a call insn,
7234 or certain REL relocs (see MUST_BE_DYN_RELOC) that can be
7235 generated via assembly. We want calls to protected symbols to
7236 resolve directly to the function rather than going via the plt.
7237 If people want function pointer comparisons to work as expected
7238 then they should avoid writing weird assembly. */
7239 if (SYMBOL_CALLS_LOCAL (info, h))
7240 {
7241 struct ppc_dyn_relocs **pp;
7242
7243 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
7244 {
7245 p->count -= p->pc_count;
7246 p->pc_count = 0;
7247 if (p->count == 0)
7248 *pp = p->next;
7249 else
7250 pp = &p->next;
7251 }
7252 }
7253
7254 /* Also discard relocs on undefined weak syms with non-default
7255 visibility. */
7256 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7257 && h->root.type == bfd_link_hash_undefweak)
7258 eh->dyn_relocs = NULL;
7259 }
7260 else if (ELIMINATE_COPY_RELOCS)
7261 {
7262 /* For the non-shared case, discard space for relocs against
7263 symbols which turn out to need copy relocs or are not
7264 dynamic. */
7265
7266 if (!h->non_got_ref
7267 && h->def_dynamic
7268 && !h->def_regular)
7269 {
7270 /* Make sure this symbol is output as a dynamic symbol.
7271 Undefined weak syms won't yet be marked as dynamic. */
7272 if (h->dynindx == -1
7273 && !h->forced_local)
7274 {
7275 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7276 return FALSE;
7277 }
7278
7279 /* If that succeeded, we know we'll be keeping all the
7280 relocs. */
7281 if (h->dynindx != -1)
7282 goto keep;
7283 }
7284
7285 eh->dyn_relocs = NULL;
7286
7287 keep: ;
7288 }
7289
7290 /* Finally, allocate space. */
7291 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7292 {
7293 asection *sreloc = elf_section_data (p->sec)->sreloc;
7294 sreloc->size += p->count * sizeof (Elf64_External_Rela);
7295 }
7296
7297 return TRUE;
7298 }
7299
7300 /* Find any dynamic relocs that apply to read-only sections. */
7301
7302 static bfd_boolean
7303 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7304 {
7305 struct ppc_link_hash_entry *eh;
7306 struct ppc_dyn_relocs *p;
7307
7308 if (h->root.type == bfd_link_hash_warning)
7309 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7310
7311 eh = (struct ppc_link_hash_entry *) h;
7312 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7313 {
7314 asection *s = p->sec->output_section;
7315
7316 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7317 {
7318 struct bfd_link_info *info = inf;
7319
7320 info->flags |= DF_TEXTREL;
7321
7322 /* Not an error, just cut short the traversal. */
7323 return FALSE;
7324 }
7325 }
7326 return TRUE;
7327 }
7328
7329 /* Set the sizes of the dynamic sections. */
7330
7331 static bfd_boolean
7332 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
7333 struct bfd_link_info *info)
7334 {
7335 struct ppc_link_hash_table *htab;
7336 bfd *dynobj;
7337 asection *s;
7338 bfd_boolean relocs;
7339 bfd *ibfd;
7340
7341 htab = ppc_hash_table (info);
7342 dynobj = htab->elf.dynobj;
7343 if (dynobj == NULL)
7344 abort ();
7345
7346 if (htab->elf.dynamic_sections_created)
7347 {
7348 /* Set the contents of the .interp section to the interpreter. */
7349 if (info->executable)
7350 {
7351 s = bfd_get_section_by_name (dynobj, ".interp");
7352 if (s == NULL)
7353 abort ();
7354 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
7355 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
7356 }
7357 }
7358
7359 /* Set up .got offsets for local syms, and space for local dynamic
7360 relocs. */
7361 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7362 {
7363 struct got_entry **lgot_ents;
7364 struct got_entry **end_lgot_ents;
7365 char *lgot_masks;
7366 bfd_size_type locsymcount;
7367 Elf_Internal_Shdr *symtab_hdr;
7368 asection *srel;
7369
7370 if (!is_ppc64_elf_target (ibfd->xvec))
7371 continue;
7372
7373 if (ppc64_tlsld_got (ibfd)->refcount > 0)
7374 {
7375 s = ppc64_elf_tdata (ibfd)->got;
7376 ppc64_tlsld_got (ibfd)->offset = s->size;
7377 s->size += 16;
7378 if (info->shared)
7379 {
7380 srel = ppc64_elf_tdata (ibfd)->relgot;
7381 srel->size += sizeof (Elf64_External_Rela);
7382 }
7383 }
7384 else
7385 ppc64_tlsld_got (ibfd)->offset = (bfd_vma) -1;
7386
7387 for (s = ibfd->sections; s != NULL; s = s->next)
7388 {
7389 struct ppc_dyn_relocs *p;
7390
7391 for (p = *((struct ppc_dyn_relocs **)
7392 &elf_section_data (s)->local_dynrel);
7393 p != NULL;
7394 p = p->next)
7395 {
7396 if (!bfd_is_abs_section (p->sec)
7397 && bfd_is_abs_section (p->sec->output_section))
7398 {
7399 /* Input section has been discarded, either because
7400 it is a copy of a linkonce section or due to
7401 linker script /DISCARD/, so we'll be discarding
7402 the relocs too. */
7403 }
7404 else if (p->count != 0)
7405 {
7406 srel = elf_section_data (p->sec)->sreloc;
7407 srel->size += p->count * sizeof (Elf64_External_Rela);
7408 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
7409 info->flags |= DF_TEXTREL;
7410 }
7411 }
7412 }
7413
7414 lgot_ents = elf_local_got_ents (ibfd);
7415 if (!lgot_ents)
7416 continue;
7417
7418 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
7419 locsymcount = symtab_hdr->sh_info;
7420 end_lgot_ents = lgot_ents + locsymcount;
7421 lgot_masks = (char *) end_lgot_ents;
7422 s = ppc64_elf_tdata (ibfd)->got;
7423 srel = ppc64_elf_tdata (ibfd)->relgot;
7424 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
7425 {
7426 struct got_entry *ent;
7427
7428 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
7429 if (ent->got.refcount > 0)
7430 {
7431 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
7432 {
7433 if (ppc64_tlsld_got (ibfd)->offset == (bfd_vma) -1)
7434 {
7435 ppc64_tlsld_got (ibfd)->offset = s->size;
7436 s->size += 16;
7437 if (info->shared)
7438 srel->size += sizeof (Elf64_External_Rela);
7439 }
7440 ent->got.offset = ppc64_tlsld_got (ibfd)->offset;
7441 }
7442 else
7443 {
7444 ent->got.offset = s->size;
7445 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
7446 {
7447 s->size += 16;
7448 if (info->shared)
7449 srel->size += 2 * sizeof (Elf64_External_Rela);
7450 }
7451 else
7452 {
7453 s->size += 8;
7454 if (info->shared)
7455 srel->size += sizeof (Elf64_External_Rela);
7456 }
7457 }
7458 }
7459 else
7460 ent->got.offset = (bfd_vma) -1;
7461 }
7462 }
7463
7464 /* Allocate global sym .plt and .got entries, and space for global
7465 sym dynamic relocs. */
7466 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
7467
7468 /* We now have determined the sizes of the various dynamic sections.
7469 Allocate memory for them. */
7470 relocs = FALSE;
7471 for (s = dynobj->sections; s != NULL; s = s->next)
7472 {
7473 if ((s->flags & SEC_LINKER_CREATED) == 0)
7474 continue;
7475
7476 if (s == htab->brlt || s == htab->relbrlt)
7477 /* These haven't been allocated yet; don't strip. */
7478 continue;
7479 else if (s == htab->got
7480 || s == htab->plt
7481 || s == htab->glink)
7482 {
7483 /* Strip this section if we don't need it; see the
7484 comment below. */
7485 }
7486 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
7487 {
7488 if (s->size == 0)
7489 {
7490 /* If we don't need this section, strip it from the
7491 output file. This is mostly to handle .rela.bss and
7492 .rela.plt. We must create both sections in
7493 create_dynamic_sections, because they must be created
7494 before the linker maps input sections to output
7495 sections. The linker does that before
7496 adjust_dynamic_symbol is called, and it is that
7497 function which decides whether anything needs to go
7498 into these sections. */
7499 }
7500 else
7501 {
7502 if (s != htab->relplt)
7503 relocs = TRUE;
7504
7505 /* We use the reloc_count field as a counter if we need
7506 to copy relocs into the output file. */
7507 s->reloc_count = 0;
7508 }
7509 }
7510 else
7511 {
7512 /* It's not one of our sections, so don't allocate space. */
7513 continue;
7514 }
7515
7516 if (s->size == 0)
7517 {
7518 _bfd_strip_section_from_output (info, s);
7519 continue;
7520 }
7521
7522 /* .plt is in the bss section. We don't initialise it. */
7523 if (s == htab->plt)
7524 continue;
7525
7526 /* Allocate memory for the section contents. We use bfd_zalloc
7527 here in case unused entries are not reclaimed before the
7528 section's contents are written out. This should not happen,
7529 but this way if it does we get a R_PPC64_NONE reloc in .rela
7530 sections instead of garbage.
7531 We also rely on the section contents being zero when writing
7532 the GOT. */
7533 s->contents = bfd_zalloc (dynobj, s->size);
7534 if (s->contents == NULL)
7535 return FALSE;
7536 }
7537
7538 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7539 {
7540 if (!is_ppc64_elf_target (ibfd->xvec))
7541 continue;
7542
7543 s = ppc64_elf_tdata (ibfd)->got;
7544 if (s != NULL && s != htab->got)
7545 {
7546 if (s->size == 0)
7547 _bfd_strip_section_from_output (info, s);
7548 else
7549 {
7550 s->contents = bfd_zalloc (ibfd, s->size);
7551 if (s->contents == NULL)
7552 return FALSE;
7553 }
7554 }
7555 s = ppc64_elf_tdata (ibfd)->relgot;
7556 if (s != NULL)
7557 {
7558 if (s->size == 0)
7559 _bfd_strip_section_from_output (info, s);
7560 else
7561 {
7562 s->contents = bfd_zalloc (ibfd, s->size);
7563 if (s->contents == NULL)
7564 return FALSE;
7565 relocs = TRUE;
7566 s->reloc_count = 0;
7567 }
7568 }
7569 }
7570
7571 if (htab->elf.dynamic_sections_created)
7572 {
7573 /* Add some entries to the .dynamic section. We fill in the
7574 values later, in ppc64_elf_finish_dynamic_sections, but we
7575 must add the entries now so that we get the correct size for
7576 the .dynamic section. The DT_DEBUG entry is filled in by the
7577 dynamic linker and used by the debugger. */
7578 #define add_dynamic_entry(TAG, VAL) \
7579 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
7580
7581 if (info->executable)
7582 {
7583 if (!add_dynamic_entry (DT_DEBUG, 0))
7584 return FALSE;
7585 }
7586
7587 if (htab->plt != NULL && htab->plt->size != 0)
7588 {
7589 if (!add_dynamic_entry (DT_PLTGOT, 0)
7590 || !add_dynamic_entry (DT_PLTRELSZ, 0)
7591 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
7592 || !add_dynamic_entry (DT_JMPREL, 0)
7593 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
7594 return FALSE;
7595 }
7596
7597 if (NO_OPD_RELOCS)
7598 {
7599 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
7600 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
7601 return FALSE;
7602 }
7603
7604 if (relocs)
7605 {
7606 if (!add_dynamic_entry (DT_RELA, 0)
7607 || !add_dynamic_entry (DT_RELASZ, 0)
7608 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
7609 return FALSE;
7610
7611 /* If any dynamic relocs apply to a read-only section,
7612 then we need a DT_TEXTREL entry. */
7613 if ((info->flags & DF_TEXTREL) == 0)
7614 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
7615
7616 if ((info->flags & DF_TEXTREL) != 0)
7617 {
7618 if (!add_dynamic_entry (DT_TEXTREL, 0))
7619 return FALSE;
7620 }
7621 }
7622 }
7623 #undef add_dynamic_entry
7624
7625 return TRUE;
7626 }
7627
7628 /* Determine the type of stub needed, if any, for a call. */
7629
7630 static inline enum ppc_stub_type
7631 ppc_type_of_stub (asection *input_sec,
7632 const Elf_Internal_Rela *rel,
7633 struct ppc_link_hash_entry **hash,
7634 bfd_vma destination)
7635 {
7636 struct ppc_link_hash_entry *h = *hash;
7637 bfd_vma location;
7638 bfd_vma branch_offset;
7639 bfd_vma max_branch_offset;
7640 enum elf_ppc64_reloc_type r_type;
7641
7642 if (h != NULL)
7643 {
7644 if (h->oh != NULL
7645 && h->oh->is_func_descriptor)
7646 h = h->oh;
7647
7648 if (h->elf.dynindx != -1)
7649 {
7650 struct plt_entry *ent;
7651
7652 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
7653 if (ent->addend == rel->r_addend
7654 && ent->plt.offset != (bfd_vma) -1)
7655 {
7656 *hash = h;
7657 return ppc_stub_plt_call;
7658 }
7659 }
7660
7661 if (!(h->elf.root.type == bfd_link_hash_defined
7662 || h->elf.root.type == bfd_link_hash_defweak)
7663 || h->elf.root.u.def.section->output_section == NULL)
7664 return ppc_stub_none;
7665 }
7666
7667 /* Determine where the call point is. */
7668 location = (input_sec->output_offset
7669 + input_sec->output_section->vma
7670 + rel->r_offset);
7671
7672 branch_offset = destination - location;
7673 r_type = ELF64_R_TYPE (rel->r_info);
7674
7675 /* Determine if a long branch stub is needed. */
7676 max_branch_offset = 1 << 25;
7677 if (r_type != R_PPC64_REL24)
7678 max_branch_offset = 1 << 15;
7679
7680 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
7681 /* We need a stub. Figure out whether a long_branch or plt_branch
7682 is needed later. */
7683 return ppc_stub_long_branch;
7684
7685 return ppc_stub_none;
7686 }
7687
7688 /* Build a .plt call stub. */
7689
7690 static inline bfd_byte *
7691 build_plt_stub (bfd *obfd, bfd_byte *p, int offset)
7692 {
7693 #define PPC_LO(v) ((v) & 0xffff)
7694 #define PPC_HI(v) (((v) >> 16) & 0xffff)
7695 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
7696
7697 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
7698 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
7699 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7700 if (PPC_HA (offset + 8) != PPC_HA (offset))
7701 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7702 offset += 8;
7703 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset), p), p += 4;
7704 if (PPC_HA (offset + 8) != PPC_HA (offset))
7705 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7706 offset += 8;
7707 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
7708 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7709 bfd_put_32 (obfd, BCTR, p), p += 4;
7710 return p;
7711 }
7712
7713 static bfd_boolean
7714 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7715 {
7716 struct ppc_stub_hash_entry *stub_entry;
7717 struct ppc_branch_hash_entry *br_entry;
7718 struct bfd_link_info *info;
7719 struct ppc_link_hash_table *htab;
7720 bfd_byte *loc;
7721 bfd_byte *p;
7722 unsigned int indx;
7723 struct plt_entry *ent;
7724 bfd_vma dest, off;
7725 int size;
7726
7727 /* Massage our args to the form they really have. */
7728 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
7729 info = in_arg;
7730
7731 htab = ppc_hash_table (info);
7732
7733 /* Make a note of the offset within the stubs for this entry. */
7734 stub_entry->stub_offset = stub_entry->stub_sec->size;
7735 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
7736
7737 htab->stub_count[stub_entry->stub_type - 1] += 1;
7738 switch (stub_entry->stub_type)
7739 {
7740 case ppc_stub_long_branch:
7741 case ppc_stub_long_branch_r2off:
7742 /* Branches are relative. This is where we are going to. */
7743 off = dest = (stub_entry->target_value
7744 + stub_entry->target_section->output_offset
7745 + stub_entry->target_section->output_section->vma);
7746
7747 /* And this is where we are coming from. */
7748 off -= (stub_entry->stub_offset
7749 + stub_entry->stub_sec->output_offset
7750 + stub_entry->stub_sec->output_section->vma);
7751
7752 if (stub_entry->stub_type != ppc_stub_long_branch_r2off)
7753 size = 4;
7754 else
7755 {
7756 bfd_vma r2off;
7757
7758 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
7759 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7760 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
7761 loc += 4;
7762 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
7763 loc += 4;
7764 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
7765 loc += 4;
7766 off -= 12;
7767 size = 16;
7768 }
7769 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
7770
7771 BFD_ASSERT (off + (1 << 25) < (bfd_vma) (1 << 26));
7772
7773 if (info->emitrelocations)
7774 {
7775 Elf_Internal_Rela *relocs, *r;
7776 struct bfd_elf_section_data *elfsec_data;
7777
7778 elfsec_data = elf_section_data (stub_entry->stub_sec);
7779 relocs = elfsec_data->relocs;
7780 if (relocs == NULL)
7781 {
7782 bfd_size_type relsize;
7783 relsize = stub_entry->stub_sec->reloc_count * sizeof (*relocs);
7784 relocs = bfd_alloc (htab->stub_bfd, relsize);
7785 if (relocs == NULL)
7786 return FALSE;
7787 elfsec_data->relocs = relocs;
7788 elfsec_data->rel_hdr.sh_size = relsize;
7789 elfsec_data->rel_hdr.sh_entsize = 24;
7790 stub_entry->stub_sec->reloc_count = 0;
7791 }
7792 r = relocs + stub_entry->stub_sec->reloc_count;
7793 stub_entry->stub_sec->reloc_count += 1;
7794 r->r_offset = loc - stub_entry->stub_sec->contents;
7795 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
7796 r->r_addend = dest;
7797 if (stub_entry->h != NULL)
7798 {
7799 struct elf_link_hash_entry **hashes;
7800 unsigned long symndx;
7801 struct ppc_link_hash_entry *h;
7802
7803 hashes = elf_sym_hashes (htab->stub_bfd);
7804 if (hashes == NULL)
7805 {
7806 bfd_size_type hsize;
7807
7808 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
7809 hashes = bfd_zalloc (htab->stub_bfd, hsize);
7810 if (hashes == NULL)
7811 return FALSE;
7812 elf_sym_hashes (htab->stub_bfd) = hashes;
7813 htab->stub_globals = 1;
7814 }
7815 symndx = htab->stub_globals++;
7816 h = stub_entry->h;
7817 hashes[symndx] = &h->elf;
7818 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
7819 if (h->oh != NULL && h->oh->is_func)
7820 h = h->oh;
7821 if (h->elf.root.u.def.section != stub_entry->target_section)
7822 /* H is an opd symbol. The addend must be zero. */
7823 r->r_addend = 0;
7824 else
7825 {
7826 off = (h->elf.root.u.def.value
7827 + h->elf.root.u.def.section->output_offset
7828 + h->elf.root.u.def.section->output_section->vma);
7829 r->r_addend -= off;
7830 }
7831 }
7832 }
7833 break;
7834
7835 case ppc_stub_plt_branch:
7836 case ppc_stub_plt_branch_r2off:
7837 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
7838 stub_entry->root.string + 9,
7839 FALSE, FALSE);
7840 if (br_entry == NULL)
7841 {
7842 (*_bfd_error_handler) (_("can't find branch stub `%s'"),
7843 stub_entry->root.string + 9);
7844 htab->stub_error = TRUE;
7845 return FALSE;
7846 }
7847
7848 off = (stub_entry->target_value
7849 + stub_entry->target_section->output_offset
7850 + stub_entry->target_section->output_section->vma);
7851
7852 bfd_put_64 (htab->brlt->owner, off,
7853 htab->brlt->contents + br_entry->offset);
7854
7855 if (htab->relbrlt != NULL)
7856 {
7857 /* Create a reloc for the branch lookup table entry. */
7858 Elf_Internal_Rela rela;
7859 bfd_byte *rl;
7860
7861 rela.r_offset = (br_entry->offset
7862 + htab->brlt->output_offset
7863 + htab->brlt->output_section->vma);
7864 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
7865 rela.r_addend = off;
7866
7867 rl = htab->relbrlt->contents;
7868 rl += htab->relbrlt->reloc_count++ * sizeof (Elf64_External_Rela);
7869 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
7870 }
7871
7872 off = (br_entry->offset
7873 + htab->brlt->output_offset
7874 + htab->brlt->output_section->vma
7875 - elf_gp (htab->brlt->output_section->owner)
7876 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7877
7878 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
7879 {
7880 (*_bfd_error_handler)
7881 (_("linkage table error against `%s'"),
7882 stub_entry->root.string);
7883 bfd_set_error (bfd_error_bad_value);
7884 htab->stub_error = TRUE;
7885 return FALSE;
7886 }
7887
7888 indx = off;
7889 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
7890 {
7891 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
7892 loc += 4;
7893 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
7894 size = 16;
7895 }
7896 else
7897 {
7898 bfd_vma r2off;
7899
7900 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
7901 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7902 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
7903 loc += 4;
7904 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
7905 loc += 4;
7906 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
7907 loc += 4;
7908 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
7909 loc += 4;
7910 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
7911 size = 28;
7912 }
7913 loc += 4;
7914 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
7915 loc += 4;
7916 bfd_put_32 (htab->stub_bfd, BCTR, loc);
7917 break;
7918
7919 case ppc_stub_plt_call:
7920 /* Do the best we can for shared libraries built without
7921 exporting ".foo" for each "foo". This can happen when symbol
7922 versioning scripts strip all bar a subset of symbols. */
7923 if (stub_entry->h->oh != NULL
7924 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defined
7925 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defweak)
7926 {
7927 /* Point the symbol at the stub. There may be multiple stubs,
7928 we don't really care; The main thing is to make this sym
7929 defined somewhere. Maybe defining the symbol in the stub
7930 section is a silly idea. If we didn't do this, htab->top_id
7931 could disappear. */
7932 stub_entry->h->oh->elf.root.type = bfd_link_hash_defined;
7933 stub_entry->h->oh->elf.root.u.def.section = stub_entry->stub_sec;
7934 stub_entry->h->oh->elf.root.u.def.value = stub_entry->stub_offset;
7935 }
7936
7937 /* Now build the stub. */
7938 off = (bfd_vma) -1;
7939 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
7940 if (ent->addend == stub_entry->addend)
7941 {
7942 off = ent->plt.offset;
7943 break;
7944 }
7945 if (off >= (bfd_vma) -2)
7946 abort ();
7947
7948 off &= ~ (bfd_vma) 1;
7949 off += (htab->plt->output_offset
7950 + htab->plt->output_section->vma
7951 - elf_gp (htab->plt->output_section->owner)
7952 - htab->stub_group[stub_entry->id_sec->id].toc_off);
7953
7954 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
7955 {
7956 (*_bfd_error_handler)
7957 (_("linkage table error against `%s'"),
7958 stub_entry->h->elf.root.root.string);
7959 bfd_set_error (bfd_error_bad_value);
7960 htab->stub_error = TRUE;
7961 return FALSE;
7962 }
7963
7964 p = build_plt_stub (htab->stub_bfd, loc, off);
7965 size = p - loc;
7966 break;
7967
7968 default:
7969 BFD_FAIL ();
7970 return FALSE;
7971 }
7972
7973 stub_entry->stub_sec->size += size;
7974
7975 if (htab->emit_stub_syms)
7976 {
7977 struct elf_link_hash_entry *h;
7978 size_t len1, len2;
7979 char *name;
7980 const char *const stub_str[] = { "long_branch",
7981 "long_branch_r2off",
7982 "plt_branch",
7983 "plt_branch_r2off",
7984 "plt_call" };
7985
7986 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
7987 len2 = strlen (stub_entry->root.string);
7988 name = bfd_malloc (len1 + len2 + 2);
7989 if (name == NULL)
7990 return FALSE;
7991 memcpy (name, stub_entry->root.string, 9);
7992 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
7993 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
7994 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
7995 if (h == NULL)
7996 return FALSE;
7997 if (h->root.type == bfd_link_hash_new)
7998 {
7999 h->root.type = bfd_link_hash_defined;
8000 h->root.u.def.section = stub_entry->stub_sec;
8001 h->root.u.def.value = stub_entry->stub_offset;
8002 h->ref_regular = 1;
8003 h->def_regular = 1;
8004 h->ref_regular_nonweak = 1;
8005 h->forced_local = 1;
8006 h->non_elf = 0;
8007 }
8008 }
8009
8010 return TRUE;
8011 }
8012
8013 /* As above, but don't actually build the stub. Just bump offset so
8014 we know stub section sizes, and select plt_branch stubs where
8015 long_branch stubs won't do. */
8016
8017 static bfd_boolean
8018 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8019 {
8020 struct ppc_stub_hash_entry *stub_entry;
8021 struct bfd_link_info *info;
8022 struct ppc_link_hash_table *htab;
8023 bfd_vma off;
8024 int size;
8025
8026 /* Massage our args to the form they really have. */
8027 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
8028 info = in_arg;
8029
8030 htab = ppc_hash_table (info);
8031
8032 if (stub_entry->stub_type == ppc_stub_plt_call)
8033 {
8034 struct plt_entry *ent;
8035 off = (bfd_vma) -1;
8036 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8037 if (ent->addend == stub_entry->addend)
8038 {
8039 off = ent->plt.offset & ~(bfd_vma) 1;
8040 break;
8041 }
8042 if (off >= (bfd_vma) -2)
8043 abort ();
8044 off += (htab->plt->output_offset
8045 + htab->plt->output_section->vma
8046 - elf_gp (htab->plt->output_section->owner)
8047 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8048
8049 size = PLT_CALL_STUB_SIZE;
8050 if (PPC_HA (off + 16) != PPC_HA (off))
8051 size += 4;
8052 }
8053 else
8054 {
8055 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
8056 variants. */
8057 off = (stub_entry->target_value
8058 + stub_entry->target_section->output_offset
8059 + stub_entry->target_section->output_section->vma);
8060 off -= (stub_entry->stub_sec->size
8061 + stub_entry->stub_sec->output_offset
8062 + stub_entry->stub_sec->output_section->vma);
8063
8064 /* Reset the stub type from the plt variant in case we now
8065 can reach with a shorter stub. */
8066 if (stub_entry->stub_type >= ppc_stub_plt_branch)
8067 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
8068
8069 size = 4;
8070 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
8071 {
8072 off -= 12;
8073 size = 16;
8074 }
8075
8076 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
8077 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
8078 {
8079 struct ppc_branch_hash_entry *br_entry;
8080
8081 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8082 stub_entry->root.string + 9,
8083 TRUE, FALSE);
8084 if (br_entry == NULL)
8085 {
8086 (*_bfd_error_handler) (_("can't build branch stub `%s'"),
8087 stub_entry->root.string + 9);
8088 htab->stub_error = TRUE;
8089 return FALSE;
8090 }
8091
8092 if (br_entry->iter != htab->stub_iteration)
8093 {
8094 br_entry->iter = htab->stub_iteration;
8095 br_entry->offset = htab->brlt->size;
8096 htab->brlt->size += 8;
8097
8098 if (htab->relbrlt != NULL)
8099 htab->relbrlt->size += sizeof (Elf64_External_Rela);
8100 }
8101
8102 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
8103 size = 16;
8104 if (stub_entry->stub_type != ppc_stub_plt_branch)
8105 size = 28;
8106 }
8107
8108 if (info->emitrelocations
8109 && (stub_entry->stub_type == ppc_stub_long_branch
8110 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
8111 stub_entry->stub_sec->reloc_count += 1;
8112 }
8113
8114 stub_entry->stub_sec->size += size;
8115 return TRUE;
8116 }
8117
8118 /* Set up various things so that we can make a list of input sections
8119 for each output section included in the link. Returns -1 on error,
8120 0 when no stubs will be needed, and 1 on success. */
8121
8122 int
8123 ppc64_elf_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
8124 {
8125 bfd *input_bfd;
8126 int top_id, top_index, id;
8127 asection *section;
8128 asection **input_list;
8129 bfd_size_type amt;
8130 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8131
8132 if (htab->brlt == NULL)
8133 return 0;
8134
8135 /* Find the top input section id. */
8136 for (input_bfd = info->input_bfds, top_id = 3;
8137 input_bfd != NULL;
8138 input_bfd = input_bfd->link_next)
8139 {
8140 for (section = input_bfd->sections;
8141 section != NULL;
8142 section = section->next)
8143 {
8144 if (top_id < section->id)
8145 top_id = section->id;
8146 }
8147 }
8148
8149 htab->top_id = top_id;
8150 amt = sizeof (struct map_stub) * (top_id + 1);
8151 htab->stub_group = bfd_zmalloc (amt);
8152 if (htab->stub_group == NULL)
8153 return -1;
8154
8155 /* Set toc_off for com, und, abs and ind sections. */
8156 for (id = 0; id < 3; id++)
8157 htab->stub_group[id].toc_off = TOC_BASE_OFF;
8158
8159 elf_gp (output_bfd) = htab->toc_curr = ppc64_elf_toc (output_bfd);
8160
8161 /* We can't use output_bfd->section_count here to find the top output
8162 section index as some sections may have been removed, and
8163 _bfd_strip_section_from_output doesn't renumber the indices. */
8164 for (section = output_bfd->sections, top_index = 0;
8165 section != NULL;
8166 section = section->next)
8167 {
8168 if (top_index < section->index)
8169 top_index = section->index;
8170 }
8171
8172 htab->top_index = top_index;
8173 amt = sizeof (asection *) * (top_index + 1);
8174 input_list = bfd_zmalloc (amt);
8175 htab->input_list = input_list;
8176 if (input_list == NULL)
8177 return -1;
8178
8179 return 1;
8180 }
8181
8182 /* The linker repeatedly calls this function for each TOC input section
8183 and linker generated GOT section. Group input bfds such that the toc
8184 within a group is less than 64k in size. Will break with cute linker
8185 scripts that play games with dot in the output toc section. */
8186
8187 void
8188 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
8189 {
8190 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8191 bfd_vma addr = isec->output_offset + isec->output_section->vma;
8192 bfd_vma off = addr - htab->toc_curr;
8193
8194 if (off + isec->size > 0x10000)
8195 htab->toc_curr = addr;
8196
8197 elf_gp (isec->owner) = (htab->toc_curr
8198 - elf_gp (isec->output_section->owner)
8199 + TOC_BASE_OFF);
8200 }
8201
8202 /* Called after the last call to the above function. */
8203
8204 void
8205 ppc64_elf_reinit_toc (bfd *output_bfd ATTRIBUTE_UNUSED,
8206 struct bfd_link_info *info)
8207 {
8208 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8209
8210 /* toc_curr tracks the TOC offset used for code sections below in
8211 ppc64_elf_next_input_section. Start off at 0x8000. */
8212 htab->toc_curr = TOC_BASE_OFF;
8213 }
8214
8215 /* No toc references were found in ISEC. If the code in ISEC makes no
8216 calls, then there's no need to use toc adjusting stubs when branching
8217 into ISEC. Actually, indirect calls from ISEC are OK as they will
8218 load r2. */
8219
8220 static int
8221 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
8222 {
8223 bfd_byte *contents;
8224 bfd_size_type i;
8225 int ret;
8226 int branch_ok;
8227
8228 /* We know none of our code bearing sections will need toc stubs. */
8229 if ((isec->flags & SEC_LINKER_CREATED) != 0)
8230 return 0;
8231
8232 if (isec->size == 0)
8233 return 0;
8234
8235 /* Hack for linux kernel. .fixup contains branches, but only back to
8236 the function that hit an exception. */
8237 branch_ok = strcmp (isec->name, ".fixup") == 0;
8238
8239 contents = elf_section_data (isec)->this_hdr.contents;
8240 if (contents == NULL)
8241 {
8242 if (!bfd_malloc_and_get_section (isec->owner, isec, &contents))
8243 {
8244 if (contents != NULL)
8245 free (contents);
8246 return -1;
8247 }
8248 if (info->keep_memory)
8249 elf_section_data (isec)->this_hdr.contents = contents;
8250 }
8251
8252 /* Code scan, because we don't necessarily have relocs on calls to
8253 static functions. */
8254 ret = 0;
8255 for (i = 0; i < isec->size; i += 4)
8256 {
8257 unsigned long insn = bfd_get_32 (isec->owner, contents + i);
8258 /* Is this a branch? */
8259 if ((insn & (0x3f << 26)) == (18 << 26)
8260 /* If branch and link, it's a function call. */
8261 && ((insn & 1) != 0
8262 /* Sibling calls use a plain branch. I don't know a way
8263 of deciding whether a branch is really a sibling call. */
8264 || !branch_ok))
8265 {
8266 ret = 1;
8267 break;
8268 }
8269 }
8270
8271 if (elf_section_data (isec)->this_hdr.contents != contents)
8272 free (contents);
8273 return ret;
8274 }
8275
8276 /* The linker repeatedly calls this function for each input section,
8277 in the order that input sections are linked into output sections.
8278 Build lists of input sections to determine groupings between which
8279 we may insert linker stubs. */
8280
8281 bfd_boolean
8282 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
8283 {
8284 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8285 int ret;
8286
8287 if ((isec->output_section->flags & SEC_CODE) != 0
8288 && isec->output_section->index <= htab->top_index)
8289 {
8290 asection **list = htab->input_list + isec->output_section->index;
8291 /* Steal the link_sec pointer for our list. */
8292 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
8293 /* This happens to make the list in reverse order,
8294 which is what we want. */
8295 PREV_SEC (isec) = *list;
8296 *list = isec;
8297 }
8298
8299 /* If a code section has a function that uses the TOC then we need
8300 to use the right TOC (obviously). Also, make sure that .opd gets
8301 the correct TOC value for R_PPC64_TOC relocs that don't have or
8302 can't find their function symbol (shouldn't ever happen now). */
8303 if (isec->has_gp_reloc || (isec->flags & SEC_CODE) == 0)
8304 {
8305 if (elf_gp (isec->owner) != 0)
8306 htab->toc_curr = elf_gp (isec->owner);
8307 }
8308 else if ((ret = toc_adjusting_stub_needed (info, isec)) < 0)
8309 return FALSE;
8310 else
8311 isec->has_gp_reloc = ret;
8312
8313 /* Functions that don't use the TOC can belong in any TOC group.
8314 Use the last TOC base. This happens to make _init and _fini
8315 pasting work. */
8316 htab->stub_group[isec->id].toc_off = htab->toc_curr;
8317 return TRUE;
8318 }
8319
8320 /* See whether we can group stub sections together. Grouping stub
8321 sections may result in fewer stubs. More importantly, we need to
8322 put all .init* and .fini* stubs at the beginning of the .init or
8323 .fini output sections respectively, because glibc splits the
8324 _init and _fini functions into multiple parts. Putting a stub in
8325 the middle of a function is not a good idea. */
8326
8327 static void
8328 group_sections (struct ppc_link_hash_table *htab,
8329 bfd_size_type stub_group_size,
8330 bfd_boolean stubs_always_before_branch)
8331 {
8332 asection **list = htab->input_list + htab->top_index;
8333 do
8334 {
8335 asection *tail = *list;
8336 while (tail != NULL)
8337 {
8338 asection *curr;
8339 asection *prev;
8340 bfd_size_type total;
8341 bfd_boolean big_sec;
8342 bfd_vma curr_toc;
8343
8344 curr = tail;
8345 total = tail->size;
8346 big_sec = total >= stub_group_size;
8347 curr_toc = htab->stub_group[tail->id].toc_off;
8348
8349 while ((prev = PREV_SEC (curr)) != NULL
8350 && ((total += curr->output_offset - prev->output_offset)
8351 < stub_group_size)
8352 && htab->stub_group[prev->id].toc_off == curr_toc)
8353 curr = prev;
8354
8355 /* OK, the size from the start of CURR to the end is less
8356 than stub_group_size and thus can be handled by one stub
8357 section. (or the tail section is itself larger than
8358 stub_group_size, in which case we may be toast.) We
8359 should really be keeping track of the total size of stubs
8360 added here, as stubs contribute to the final output
8361 section size. That's a little tricky, and this way will
8362 only break if stubs added make the total size more than
8363 2^25, ie. for the default stub_group_size, if stubs total
8364 more than 2097152 bytes, or nearly 75000 plt call stubs. */
8365 do
8366 {
8367 prev = PREV_SEC (tail);
8368 /* Set up this stub group. */
8369 htab->stub_group[tail->id].link_sec = curr;
8370 }
8371 while (tail != curr && (tail = prev) != NULL);
8372
8373 /* But wait, there's more! Input sections up to stub_group_size
8374 bytes before the stub section can be handled by it too.
8375 Don't do this if we have a really large section after the
8376 stubs, as adding more stubs increases the chance that
8377 branches may not reach into the stub section. */
8378 if (!stubs_always_before_branch && !big_sec)
8379 {
8380 total = 0;
8381 while (prev != NULL
8382 && ((total += tail->output_offset - prev->output_offset)
8383 < stub_group_size)
8384 && htab->stub_group[prev->id].toc_off == curr_toc)
8385 {
8386 tail = prev;
8387 prev = PREV_SEC (tail);
8388 htab->stub_group[tail->id].link_sec = curr;
8389 }
8390 }
8391 tail = prev;
8392 }
8393 }
8394 while (list-- != htab->input_list);
8395 free (htab->input_list);
8396 #undef PREV_SEC
8397 }
8398
8399 /* Determine and set the size of the stub section for a final link.
8400
8401 The basic idea here is to examine all the relocations looking for
8402 PC-relative calls to a target that is unreachable with a "bl"
8403 instruction. */
8404
8405 bfd_boolean
8406 ppc64_elf_size_stubs (bfd *output_bfd,
8407 struct bfd_link_info *info,
8408 bfd_signed_vma group_size,
8409 asection *(*add_stub_section) (const char *, asection *),
8410 void (*layout_sections_again) (void))
8411 {
8412 bfd_size_type stub_group_size;
8413 bfd_boolean stubs_always_before_branch;
8414 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8415
8416 /* Stash our params away. */
8417 htab->add_stub_section = add_stub_section;
8418 htab->layout_sections_again = layout_sections_again;
8419 stubs_always_before_branch = group_size < 0;
8420 if (group_size < 0)
8421 stub_group_size = -group_size;
8422 else
8423 stub_group_size = group_size;
8424 if (stub_group_size == 1)
8425 {
8426 /* Default values. */
8427 if (stubs_always_before_branch)
8428 {
8429 stub_group_size = 0x1e00000;
8430 if (htab->has_14bit_branch)
8431 stub_group_size = 0x7800;
8432 }
8433 else
8434 {
8435 stub_group_size = 0x1c00000;
8436 if (htab->has_14bit_branch)
8437 stub_group_size = 0x7000;
8438 }
8439 }
8440
8441 group_sections (htab, stub_group_size, stubs_always_before_branch);
8442
8443 while (1)
8444 {
8445 bfd *input_bfd;
8446 unsigned int bfd_indx;
8447 asection *stub_sec;
8448 bfd_boolean stub_changed;
8449
8450 htab->stub_iteration += 1;
8451 stub_changed = FALSE;
8452
8453 for (input_bfd = info->input_bfds, bfd_indx = 0;
8454 input_bfd != NULL;
8455 input_bfd = input_bfd->link_next, bfd_indx++)
8456 {
8457 Elf_Internal_Shdr *symtab_hdr;
8458 asection *section;
8459 Elf_Internal_Sym *local_syms = NULL;
8460
8461 /* We'll need the symbol table in a second. */
8462 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8463 if (symtab_hdr->sh_info == 0)
8464 continue;
8465
8466 /* Walk over each section attached to the input bfd. */
8467 for (section = input_bfd->sections;
8468 section != NULL;
8469 section = section->next)
8470 {
8471 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
8472
8473 /* If there aren't any relocs, then there's nothing more
8474 to do. */
8475 if ((section->flags & SEC_RELOC) == 0
8476 || section->reloc_count == 0)
8477 continue;
8478
8479 /* If this section is a link-once section that will be
8480 discarded, then don't create any stubs. */
8481 if (section->output_section == NULL
8482 || section->output_section->owner != output_bfd)
8483 continue;
8484
8485 /* Get the relocs. */
8486 internal_relocs
8487 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
8488 info->keep_memory);
8489 if (internal_relocs == NULL)
8490 goto error_ret_free_local;
8491
8492 /* Now examine each relocation. */
8493 irela = internal_relocs;
8494 irelaend = irela + section->reloc_count;
8495 for (; irela < irelaend; irela++)
8496 {
8497 enum elf_ppc64_reloc_type r_type;
8498 unsigned int r_indx;
8499 enum ppc_stub_type stub_type;
8500 struct ppc_stub_hash_entry *stub_entry;
8501 asection *sym_sec, *code_sec;
8502 bfd_vma sym_value;
8503 bfd_vma destination;
8504 bfd_boolean ok_dest;
8505 struct ppc_link_hash_entry *hash;
8506 struct ppc_link_hash_entry *fdh;
8507 struct elf_link_hash_entry *h;
8508 Elf_Internal_Sym *sym;
8509 char *stub_name;
8510 const asection *id_sec;
8511 long *opd_adjust;
8512
8513 r_type = ELF64_R_TYPE (irela->r_info);
8514 r_indx = ELF64_R_SYM (irela->r_info);
8515
8516 if (r_type >= R_PPC64_max)
8517 {
8518 bfd_set_error (bfd_error_bad_value);
8519 goto error_ret_free_internal;
8520 }
8521
8522 /* Only look for stubs on branch instructions. */
8523 if (r_type != R_PPC64_REL24
8524 && r_type != R_PPC64_REL14
8525 && r_type != R_PPC64_REL14_BRTAKEN
8526 && r_type != R_PPC64_REL14_BRNTAKEN)
8527 continue;
8528
8529 /* Now determine the call target, its name, value,
8530 section. */
8531 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8532 r_indx, input_bfd))
8533 goto error_ret_free_internal;
8534 hash = (struct ppc_link_hash_entry *) h;
8535
8536 ok_dest = FALSE;
8537 fdh = NULL;
8538 if (hash == NULL)
8539 {
8540 sym_value = sym->st_value;
8541 ok_dest = TRUE;
8542 }
8543 else
8544 {
8545 sym_value = 0;
8546 /* Recognise an old ABI func code entry sym, and
8547 use the func descriptor sym instead. */
8548 if (hash->elf.root.type == bfd_link_hash_undefweak
8549 && hash->elf.root.root.string[0] == '.'
8550 && (fdh = get_fdh (hash, htab)) != NULL)
8551 {
8552 if (fdh->elf.root.type == bfd_link_hash_defined
8553 || fdh->elf.root.type == bfd_link_hash_defweak)
8554 {
8555 sym_sec = fdh->elf.root.u.def.section;
8556 sym_value = fdh->elf.root.u.def.value;
8557 if (sym_sec->output_section != NULL)
8558 ok_dest = TRUE;
8559 }
8560 else
8561 fdh = NULL;
8562 }
8563 else if (hash->elf.root.type == bfd_link_hash_defined
8564 || hash->elf.root.type == bfd_link_hash_defweak)
8565 {
8566 sym_value = hash->elf.root.u.def.value;
8567 if (sym_sec->output_section != NULL)
8568 ok_dest = TRUE;
8569 }
8570 else if (hash->elf.root.type == bfd_link_hash_undefweak)
8571 ;
8572 else if (hash->elf.root.type == bfd_link_hash_undefined)
8573 ;
8574 else
8575 {
8576 bfd_set_error (bfd_error_bad_value);
8577 goto error_ret_free_internal;
8578 }
8579 }
8580
8581 destination = 0;
8582 if (ok_dest)
8583 {
8584 sym_value += irela->r_addend;
8585 destination = (sym_value
8586 + sym_sec->output_offset
8587 + sym_sec->output_section->vma);
8588 }
8589
8590 code_sec = sym_sec;
8591 opd_adjust = get_opd_info (sym_sec);
8592 if (opd_adjust != NULL)
8593 {
8594 bfd_vma dest;
8595
8596 if (hash == NULL)
8597 {
8598 long adjust = opd_adjust[sym_value / 8];
8599 if (adjust == -1)
8600 continue;
8601 sym_value += adjust;
8602 }
8603 dest = opd_entry_value (sym_sec, sym_value,
8604 &code_sec, &sym_value);
8605 if (dest != (bfd_vma) -1)
8606 {
8607 destination = dest;
8608 if (fdh != NULL)
8609 {
8610 /* Fixup old ABI sym to point at code
8611 entry. */
8612 hash->elf.root.type = bfd_link_hash_defweak;
8613 hash->elf.root.u.def.section = code_sec;
8614 hash->elf.root.u.def.value = sym_value;
8615 }
8616 }
8617 }
8618
8619 /* Determine what (if any) linker stub is needed. */
8620 stub_type = ppc_type_of_stub (section, irela, &hash,
8621 destination);
8622
8623 if (stub_type != ppc_stub_plt_call)
8624 {
8625 /* Check whether we need a TOC adjusting stub.
8626 Since the linker pastes together pieces from
8627 different object files when creating the
8628 _init and _fini functions, it may be that a
8629 call to what looks like a local sym is in
8630 fact a call needing a TOC adjustment. */
8631 if (code_sec != NULL
8632 && code_sec->output_section != NULL
8633 && (htab->stub_group[code_sec->id].toc_off
8634 != htab->stub_group[section->id].toc_off)
8635 && code_sec->has_gp_reloc
8636 && section->has_gp_reloc)
8637 stub_type = ppc_stub_long_branch_r2off;
8638 }
8639
8640 if (stub_type == ppc_stub_none)
8641 continue;
8642
8643 /* __tls_get_addr calls might be eliminated. */
8644 if (stub_type != ppc_stub_plt_call
8645 && hash != NULL
8646 && (hash == htab->tls_get_addr
8647 || hash == htab->tls_get_addr_fd)
8648 && section->has_tls_reloc
8649 && irela != internal_relocs)
8650 {
8651 /* Get tls info. */
8652 char *tls_mask;
8653
8654 if (!get_tls_mask (&tls_mask, NULL, &local_syms,
8655 irela - 1, input_bfd))
8656 goto error_ret_free_internal;
8657 if (*tls_mask != 0)
8658 continue;
8659 }
8660
8661 /* Support for grouping stub sections. */
8662 id_sec = htab->stub_group[section->id].link_sec;
8663
8664 /* Get the name of this stub. */
8665 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
8666 if (!stub_name)
8667 goto error_ret_free_internal;
8668
8669 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
8670 stub_name, FALSE, FALSE);
8671 if (stub_entry != NULL)
8672 {
8673 /* The proper stub has already been created. */
8674 free (stub_name);
8675 continue;
8676 }
8677
8678 stub_entry = ppc_add_stub (stub_name, section, htab);
8679 if (stub_entry == NULL)
8680 {
8681 free (stub_name);
8682 error_ret_free_internal:
8683 if (elf_section_data (section)->relocs == NULL)
8684 free (internal_relocs);
8685 error_ret_free_local:
8686 if (local_syms != NULL
8687 && (symtab_hdr->contents
8688 != (unsigned char *) local_syms))
8689 free (local_syms);
8690 return FALSE;
8691 }
8692
8693 stub_entry->stub_type = stub_type;
8694 stub_entry->target_value = sym_value;
8695 stub_entry->target_section = code_sec;
8696 stub_entry->h = hash;
8697 stub_entry->addend = irela->r_addend;
8698
8699 if (stub_entry->h != NULL)
8700 htab->stub_globals += 1;
8701
8702 stub_changed = TRUE;
8703 }
8704
8705 /* We're done with the internal relocs, free them. */
8706 if (elf_section_data (section)->relocs != internal_relocs)
8707 free (internal_relocs);
8708 }
8709
8710 if (local_syms != NULL
8711 && symtab_hdr->contents != (unsigned char *) local_syms)
8712 {
8713 if (!info->keep_memory)
8714 free (local_syms);
8715 else
8716 symtab_hdr->contents = (unsigned char *) local_syms;
8717 }
8718 }
8719
8720 if (!stub_changed)
8721 break;
8722
8723 /* OK, we've added some stubs. Find out the new size of the
8724 stub sections. */
8725 for (stub_sec = htab->stub_bfd->sections;
8726 stub_sec != NULL;
8727 stub_sec = stub_sec->next)
8728 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
8729 {
8730 stub_sec->size = 0;
8731 stub_sec->reloc_count = 0;
8732 }
8733
8734 htab->brlt->size = 0;
8735 if (htab->relbrlt != NULL)
8736 htab->relbrlt->size = 0;
8737
8738 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
8739
8740 /* Ask the linker to do its stuff. */
8741 (*htab->layout_sections_again) ();
8742 }
8743
8744 /* It would be nice to strip .branch_lt from the output if the
8745 section is empty, but it's too late. If we strip sections here,
8746 the dynamic symbol table is corrupted since the section symbol
8747 for the stripped section isn't written. */
8748
8749 return TRUE;
8750 }
8751
8752 /* Called after we have determined section placement. If sections
8753 move, we'll be called again. Provide a value for TOCstart. */
8754
8755 bfd_vma
8756 ppc64_elf_toc (bfd *obfd)
8757 {
8758 asection *s;
8759 bfd_vma TOCstart;
8760
8761 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
8762 order. The TOC starts where the first of these sections starts. */
8763 s = bfd_get_section_by_name (obfd, ".got");
8764 if (s == NULL)
8765 s = bfd_get_section_by_name (obfd, ".toc");
8766 if (s == NULL)
8767 s = bfd_get_section_by_name (obfd, ".tocbss");
8768 if (s == NULL)
8769 s = bfd_get_section_by_name (obfd, ".plt");
8770 if (s == NULL)
8771 {
8772 /* This may happen for
8773 o references to TOC base (SYM@toc / TOC[tc0]) without a
8774 .toc directive
8775 o bad linker script
8776 o --gc-sections and empty TOC sections
8777
8778 FIXME: Warn user? */
8779
8780 /* Look for a likely section. We probably won't even be
8781 using TOCstart. */
8782 for (s = obfd->sections; s != NULL; s = s->next)
8783 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY))
8784 == (SEC_ALLOC | SEC_SMALL_DATA))
8785 break;
8786 if (s == NULL)
8787 for (s = obfd->sections; s != NULL; s = s->next)
8788 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA))
8789 == (SEC_ALLOC | SEC_SMALL_DATA))
8790 break;
8791 if (s == NULL)
8792 for (s = obfd->sections; s != NULL; s = s->next)
8793 if ((s->flags & (SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
8794 break;
8795 if (s == NULL)
8796 for (s = obfd->sections; s != NULL; s = s->next)
8797 if ((s->flags & SEC_ALLOC) == SEC_ALLOC)
8798 break;
8799 }
8800
8801 TOCstart = 0;
8802 if (s != NULL)
8803 TOCstart = s->output_section->vma + s->output_offset;
8804
8805 return TOCstart;
8806 }
8807
8808 /* Build all the stubs associated with the current output file.
8809 The stubs are kept in a hash table attached to the main linker
8810 hash table. This function is called via gldelf64ppc_finish. */
8811
8812 bfd_boolean
8813 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
8814 struct bfd_link_info *info,
8815 char **stats)
8816 {
8817 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8818 asection *stub_sec;
8819 bfd_byte *p;
8820 int stub_sec_count = 0;
8821
8822 htab->emit_stub_syms = emit_stub_syms;
8823
8824 /* Allocate memory to hold the linker stubs. */
8825 for (stub_sec = htab->stub_bfd->sections;
8826 stub_sec != NULL;
8827 stub_sec = stub_sec->next)
8828 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
8829 && stub_sec->size != 0)
8830 {
8831 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
8832 if (stub_sec->contents == NULL)
8833 return FALSE;
8834 /* We want to check that built size is the same as calculated
8835 size. rawsize is a convenient location to use. */
8836 stub_sec->rawsize = stub_sec->size;
8837 stub_sec->size = 0;
8838 }
8839
8840 if (htab->plt != NULL)
8841 {
8842 unsigned int indx;
8843 bfd_vma plt0;
8844
8845 /* Build the .glink plt call stub. */
8846 plt0 = (htab->plt->output_section->vma
8847 + htab->plt->output_offset
8848 - (htab->glink->output_section->vma
8849 + htab->glink->output_offset
8850 + GLINK_CALL_STUB_SIZE));
8851 if (plt0 + 0x80008000 > 0xffffffff)
8852 {
8853 (*_bfd_error_handler) (_(".glink and .plt too far apart"));
8854 bfd_set_error (bfd_error_bad_value);
8855 return FALSE;
8856 }
8857
8858 if (htab->emit_stub_syms)
8859 {
8860 struct elf_link_hash_entry *h;
8861 h = elf_link_hash_lookup (&htab->elf, "__glink", TRUE, FALSE, FALSE);
8862 if (h == NULL)
8863 return FALSE;
8864 if (h->root.type == bfd_link_hash_new)
8865 {
8866 h->root.type = bfd_link_hash_defined;
8867 h->root.u.def.section = htab->glink;
8868 h->root.u.def.value = 0;
8869 h->ref_regular = 1;
8870 h->def_regular = 1;
8871 h->ref_regular_nonweak = 1;
8872 h->forced_local = 1;
8873 h->non_elf = 0;
8874 }
8875 }
8876 p = htab->glink->contents;
8877 bfd_put_32 (htab->glink->owner, MFCTR_R12, p);
8878 p += 4;
8879 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_3, p);
8880 p += 4;
8881 bfd_put_32 (htab->glink->owner, ADDIC_R2_R0_32K, p);
8882 p += 4;
8883 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
8884 p += 4;
8885 bfd_put_32 (htab->glink->owner, SRADI_R2_R2_63, p);
8886 p += 4;
8887 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_2, p);
8888 p += 4;
8889 bfd_put_32 (htab->glink->owner, AND_R2_R2_R11, p);
8890 p += 4;
8891 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
8892 p += 4;
8893 bfd_put_32 (htab->glink->owner, ADD_R12_R12_R2, p);
8894 p += 4;
8895 bfd_put_32 (htab->glink->owner, ADDIS_R12_R12 | PPC_HA (plt0), p);
8896 p += 4;
8897 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | PPC_LO (plt0), p);
8898 p += 4;
8899 bfd_put_32 (htab->glink->owner, ADDI_R12_R12 | PPC_LO (plt0), p);
8900 p += 4;
8901 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
8902 p += 4;
8903 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
8904 p += 4;
8905 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
8906 p += 4;
8907 bfd_put_32 (htab->glink->owner, BCTR, p);
8908 p += 4;
8909
8910 /* Build the .glink lazy link call stubs. */
8911 indx = 0;
8912 while (p < htab->glink->contents + htab->glink->size)
8913 {
8914 if (indx < 0x8000)
8915 {
8916 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
8917 p += 4;
8918 }
8919 else
8920 {
8921 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
8922 p += 4;
8923 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
8924 p += 4;
8925 }
8926 bfd_put_32 (htab->glink->owner,
8927 B_DOT | ((htab->glink->contents - p) & 0x3fffffc), p);
8928 indx++;
8929 p += 4;
8930 }
8931 htab->glink->rawsize = p - htab->glink->contents;
8932 }
8933
8934 if (htab->brlt->size != 0)
8935 {
8936 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
8937 htab->brlt->size);
8938 if (htab->brlt->contents == NULL)
8939 return FALSE;
8940 }
8941 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
8942 {
8943 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
8944 htab->relbrlt->size);
8945 if (htab->relbrlt->contents == NULL)
8946 return FALSE;
8947 }
8948
8949 /* Build the stubs as directed by the stub hash table. */
8950 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
8951
8952 for (stub_sec = htab->stub_bfd->sections;
8953 stub_sec != NULL;
8954 stub_sec = stub_sec->next)
8955 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
8956 {
8957 stub_sec_count += 1;
8958 if (stub_sec->rawsize != stub_sec->size)
8959 break;
8960 }
8961
8962 if (stub_sec != NULL
8963 || htab->glink->rawsize != htab->glink->size)
8964 {
8965 htab->stub_error = TRUE;
8966 (*_bfd_error_handler) (_("stubs don't match calculated size"));
8967 }
8968
8969 if (htab->stub_error)
8970 return FALSE;
8971
8972 if (stats != NULL)
8973 {
8974 *stats = bfd_malloc (500);
8975 if (*stats == NULL)
8976 return FALSE;
8977
8978 sprintf (*stats, _("linker stubs in %u group%s\n"
8979 " branch %lu\n"
8980 " toc adjust %lu\n"
8981 " long branch %lu\n"
8982 " long toc adj %lu\n"
8983 " plt call %lu"),
8984 stub_sec_count,
8985 stub_sec_count == 1 ? "" : "s",
8986 htab->stub_count[ppc_stub_long_branch - 1],
8987 htab->stub_count[ppc_stub_long_branch_r2off - 1],
8988 htab->stub_count[ppc_stub_plt_branch - 1],
8989 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
8990 htab->stub_count[ppc_stub_plt_call - 1]);
8991 }
8992 return TRUE;
8993 }
8994
8995 /* This function undoes the changes made by add_symbol_adjust. */
8996
8997 static bfd_boolean
8998 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
8999 {
9000 struct ppc_link_hash_entry *eh;
9001
9002 if (h->root.type == bfd_link_hash_indirect)
9003 return TRUE;
9004
9005 if (h->root.type == bfd_link_hash_warning)
9006 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9007
9008 eh = (struct ppc_link_hash_entry *) h;
9009 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
9010 return TRUE;
9011
9012 eh->elf.root.type = bfd_link_hash_undefined;
9013 return TRUE;
9014 }
9015
9016 void
9017 ppc64_elf_restore_symbols (struct bfd_link_info *info)
9018 {
9019 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9020 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
9021 }
9022
9023 /* The RELOCATE_SECTION function is called by the ELF backend linker
9024 to handle the relocations for a section.
9025
9026 The relocs are always passed as Rela structures; if the section
9027 actually uses Rel structures, the r_addend field will always be
9028 zero.
9029
9030 This function is responsible for adjust the section contents as
9031 necessary, and (if using Rela relocs and generating a
9032 relocatable output file) adjusting the reloc addend as
9033 necessary.
9034
9035 This function does not have to worry about setting the reloc
9036 address or the reloc symbol index.
9037
9038 LOCAL_SYMS is a pointer to the swapped in local symbols.
9039
9040 LOCAL_SECTIONS is an array giving the section in the input file
9041 corresponding to the st_shndx field of each local symbol.
9042
9043 The global hash table entry for the global symbols can be found
9044 via elf_sym_hashes (input_bfd).
9045
9046 When generating relocatable output, this function must handle
9047 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
9048 going to be the section symbol corresponding to the output
9049 section, which means that the addend must be adjusted
9050 accordingly. */
9051
9052 static bfd_boolean
9053 ppc64_elf_relocate_section (bfd *output_bfd,
9054 struct bfd_link_info *info,
9055 bfd *input_bfd,
9056 asection *input_section,
9057 bfd_byte *contents,
9058 Elf_Internal_Rela *relocs,
9059 Elf_Internal_Sym *local_syms,
9060 asection **local_sections)
9061 {
9062 struct ppc_link_hash_table *htab;
9063 Elf_Internal_Shdr *symtab_hdr;
9064 struct elf_link_hash_entry **sym_hashes;
9065 Elf_Internal_Rela *rel;
9066 Elf_Internal_Rela *relend;
9067 Elf_Internal_Rela outrel;
9068 bfd_byte *loc;
9069 struct got_entry **local_got_ents;
9070 bfd_vma TOCstart;
9071 bfd_boolean ret = TRUE;
9072 bfd_boolean is_opd;
9073 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
9074 bfd_boolean is_power4 = FALSE;
9075
9076 if (info->relocatable)
9077 return TRUE;
9078
9079 /* Initialize howto table if needed. */
9080 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9081 ppc_howto_init ();
9082
9083 htab = ppc_hash_table (info);
9084
9085 /* Don't relocate stub sections. */
9086 if (input_section->owner == htab->stub_bfd)
9087 return TRUE;
9088
9089 local_got_ents = elf_local_got_ents (input_bfd);
9090 TOCstart = elf_gp (output_bfd);
9091 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9092 sym_hashes = elf_sym_hashes (input_bfd);
9093 is_opd = ppc64_elf_section_data (input_section)->opd.adjust != NULL;
9094
9095 rel = relocs;
9096 relend = relocs + input_section->reloc_count;
9097 for (; rel < relend; rel++)
9098 {
9099 enum elf_ppc64_reloc_type r_type;
9100 bfd_vma addend;
9101 bfd_reloc_status_type r;
9102 Elf_Internal_Sym *sym;
9103 asection *sec;
9104 struct elf_link_hash_entry *h_elf;
9105 struct ppc_link_hash_entry *h;
9106 struct ppc_link_hash_entry *fdh;
9107 const char *sym_name;
9108 unsigned long r_symndx, toc_symndx;
9109 char tls_mask, tls_gd, tls_type;
9110 char sym_type;
9111 bfd_vma relocation;
9112 bfd_boolean unresolved_reloc;
9113 bfd_boolean warned;
9114 unsigned long insn, mask;
9115 struct ppc_stub_hash_entry *stub_entry;
9116 bfd_vma max_br_offset;
9117 bfd_vma from;
9118
9119 r_type = ELF64_R_TYPE (rel->r_info);
9120 r_symndx = ELF64_R_SYM (rel->r_info);
9121
9122 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
9123 symbol of the previous ADDR64 reloc. The symbol gives us the
9124 proper TOC base to use. */
9125 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
9126 && rel != relocs
9127 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
9128 && is_opd)
9129 r_symndx = ELF64_R_SYM (rel[-1].r_info);
9130
9131 sym = NULL;
9132 sec = NULL;
9133 h_elf = NULL;
9134 sym_name = NULL;
9135 unresolved_reloc = FALSE;
9136 warned = FALSE;
9137
9138 if (r_symndx < symtab_hdr->sh_info)
9139 {
9140 /* It's a local symbol. */
9141 long *opd_adjust;
9142
9143 sym = local_syms + r_symndx;
9144 sec = local_sections[r_symndx];
9145 sym_name = bfd_elf_local_sym_name (input_bfd, sym);
9146 sym_type = ELF64_ST_TYPE (sym->st_info);
9147 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9148 opd_adjust = get_opd_info (sec);
9149 if (opd_adjust != NULL)
9150 {
9151 long adjust = opd_adjust[(sym->st_value + rel->r_addend) / 8];
9152 if (adjust == -1)
9153 relocation = 0;
9154 else
9155 relocation += adjust;
9156 }
9157 }
9158 else
9159 {
9160 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
9161 r_symndx, symtab_hdr, sym_hashes,
9162 h_elf, sec, relocation,
9163 unresolved_reloc, warned);
9164 sym_name = h_elf->root.root.string;
9165 sym_type = h_elf->type;
9166 }
9167 h = (struct ppc_link_hash_entry *) h_elf;
9168
9169 /* TLS optimizations. Replace instruction sequences and relocs
9170 based on information we collected in tls_optimize. We edit
9171 RELOCS so that --emit-relocs will output something sensible
9172 for the final instruction stream. */
9173 tls_mask = 0;
9174 tls_gd = 0;
9175 toc_symndx = 0;
9176 if (IS_PPC64_TLS_RELOC (r_type))
9177 {
9178 if (h != NULL)
9179 tls_mask = h->tls_mask;
9180 else if (local_got_ents != NULL)
9181 {
9182 char *lgot_masks;
9183 lgot_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
9184 tls_mask = lgot_masks[r_symndx];
9185 }
9186 if (tls_mask == 0 && r_type == R_PPC64_TLS)
9187 {
9188 /* Check for toc tls entries. */
9189 char *toc_tls;
9190
9191 if (!get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
9192 rel, input_bfd))
9193 return FALSE;
9194
9195 if (toc_tls)
9196 tls_mask = *toc_tls;
9197 }
9198 }
9199
9200 /* Check that tls relocs are used with tls syms, and non-tls
9201 relocs are used with non-tls syms. */
9202 if (r_symndx != 0
9203 && r_type != R_PPC64_NONE
9204 && (h == NULL
9205 || h->elf.root.type == bfd_link_hash_defined
9206 || h->elf.root.type == bfd_link_hash_defweak)
9207 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
9208 {
9209 if (r_type == R_PPC64_TLS && tls_mask != 0)
9210 /* R_PPC64_TLS is OK against a symbol in the TOC. */
9211 ;
9212 else
9213 (*_bfd_error_handler)
9214 (sym_type == STT_TLS
9215 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
9216 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s"),
9217 input_bfd,
9218 input_section,
9219 (long) rel->r_offset,
9220 ppc64_elf_howto_table[r_type]->name,
9221 sym_name);
9222 }
9223
9224 /* Ensure reloc mapping code below stays sane. */
9225 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
9226 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
9227 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
9228 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
9229 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
9230 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
9231 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
9232 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
9233 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
9234 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
9235 abort ();
9236
9237 switch (r_type)
9238 {
9239 default:
9240 break;
9241
9242 case R_PPC64_TOC16:
9243 case R_PPC64_TOC16_LO:
9244 case R_PPC64_TOC16_DS:
9245 case R_PPC64_TOC16_LO_DS:
9246 {
9247 /* Check for toc tls entries. */
9248 char *toc_tls;
9249 int retval;
9250
9251 retval = get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
9252 rel, input_bfd);
9253 if (retval == 0)
9254 return FALSE;
9255
9256 if (toc_tls)
9257 {
9258 tls_mask = *toc_tls;
9259 if (r_type == R_PPC64_TOC16_DS
9260 || r_type == R_PPC64_TOC16_LO_DS)
9261 {
9262 if (tls_mask != 0
9263 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
9264 goto toctprel;
9265 }
9266 else
9267 {
9268 /* If we found a GD reloc pair, then we might be
9269 doing a GD->IE transition. */
9270 if (retval == 2)
9271 {
9272 tls_gd = TLS_TPRELGD;
9273 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9274 goto tls_get_addr_check;
9275 }
9276 else if (retval == 3)
9277 {
9278 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9279 goto tls_get_addr_check;
9280 }
9281 }
9282 }
9283 }
9284 break;
9285
9286 case R_PPC64_GOT_TPREL16_DS:
9287 case R_PPC64_GOT_TPREL16_LO_DS:
9288 if (tls_mask != 0
9289 && (tls_mask & TLS_TPREL) == 0)
9290 {
9291 toctprel:
9292 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - 2);
9293 insn &= 31 << 21;
9294 insn |= 0x3c0d0000; /* addis 0,13,0 */
9295 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - 2);
9296 r_type = R_PPC64_TPREL16_HA;
9297 if (toc_symndx != 0)
9298 {
9299 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
9300 /* We changed the symbol. Start over in order to
9301 get h, sym, sec etc. right. */
9302 rel--;
9303 continue;
9304 }
9305 else
9306 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9307 }
9308 break;
9309
9310 case R_PPC64_TLS:
9311 if (tls_mask != 0
9312 && (tls_mask & TLS_TPREL) == 0)
9313 {
9314 bfd_vma rtra;
9315 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
9316 if ((insn & ((0x3f << 26) | (31 << 11)))
9317 == ((31 << 26) | (13 << 11)))
9318 rtra = insn & ((1 << 26) - (1 << 16));
9319 else if ((insn & ((0x3f << 26) | (31 << 16)))
9320 == ((31 << 26) | (13 << 16)))
9321 rtra = (insn & (31 << 21)) | ((insn & (31 << 11)) << 5);
9322 else
9323 abort ();
9324 if ((insn & ((1 << 11) - (1 << 1))) == 266 << 1)
9325 /* add -> addi. */
9326 insn = 14 << 26;
9327 else if ((insn & (31 << 1)) == 23 << 1
9328 && ((insn & (31 << 6)) < 14 << 6
9329 || ((insn & (31 << 6)) >= 16 << 6
9330 && (insn & (31 << 6)) < 24 << 6)))
9331 /* load and store indexed -> dform. */
9332 insn = (32 | ((insn >> 6) & 31)) << 26;
9333 else if ((insn & (31 << 1)) == 21 << 1
9334 && (insn & (0x1a << 6)) == 0)
9335 /* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */
9336 insn = (((58 | ((insn >> 6) & 4)) << 26)
9337 | ((insn >> 6) & 1));
9338 else if ((insn & (31 << 1)) == 21 << 1
9339 && (insn & ((1 << 11) - (1 << 1))) == 341 << 1)
9340 /* lwax -> lwa. */
9341 insn = (58 << 26) | 2;
9342 else
9343 abort ();
9344 insn |= rtra;
9345 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
9346 /* Was PPC64_TLS which sits on insn boundary, now
9347 PPC64_TPREL16_LO which is at insn+2. */
9348 rel->r_offset += 2;
9349 r_type = R_PPC64_TPREL16_LO;
9350 if (toc_symndx != 0)
9351 {
9352 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
9353 /* We changed the symbol. Start over in order to
9354 get h, sym, sec etc. right. */
9355 rel--;
9356 continue;
9357 }
9358 else
9359 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9360 }
9361 break;
9362
9363 case R_PPC64_GOT_TLSGD16_HI:
9364 case R_PPC64_GOT_TLSGD16_HA:
9365 tls_gd = TLS_TPRELGD;
9366 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9367 goto tls_gdld_hi;
9368 break;
9369
9370 case R_PPC64_GOT_TLSLD16_HI:
9371 case R_PPC64_GOT_TLSLD16_HA:
9372 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9373 {
9374 tls_gdld_hi:
9375 if ((tls_mask & tls_gd) != 0)
9376 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
9377 + R_PPC64_GOT_TPREL16_DS);
9378 else
9379 {
9380 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
9381 rel->r_offset -= 2;
9382 r_type = R_PPC64_NONE;
9383 }
9384 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9385 }
9386 break;
9387
9388 case R_PPC64_GOT_TLSGD16:
9389 case R_PPC64_GOT_TLSGD16_LO:
9390 tls_gd = TLS_TPRELGD;
9391 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9392 goto tls_get_addr_check;
9393 break;
9394
9395 case R_PPC64_GOT_TLSLD16:
9396 case R_PPC64_GOT_TLSLD16_LO:
9397 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9398 {
9399 tls_get_addr_check:
9400 if (rel + 1 < relend)
9401 {
9402 enum elf_ppc64_reloc_type r_type2;
9403 unsigned long r_symndx2;
9404 struct elf_link_hash_entry *h2;
9405 bfd_vma insn1, insn2, insn3;
9406 bfd_vma offset;
9407
9408 /* The next instruction should be a call to
9409 __tls_get_addr. Peek at the reloc to be sure. */
9410 r_type2 = ELF64_R_TYPE (rel[1].r_info);
9411 r_symndx2 = ELF64_R_SYM (rel[1].r_info);
9412 if (r_symndx2 < symtab_hdr->sh_info
9413 || (r_type2 != R_PPC64_REL14
9414 && r_type2 != R_PPC64_REL14_BRTAKEN
9415 && r_type2 != R_PPC64_REL14_BRNTAKEN
9416 && r_type2 != R_PPC64_REL24))
9417 break;
9418
9419 h2 = sym_hashes[r_symndx2 - symtab_hdr->sh_info];
9420 while (h2->root.type == bfd_link_hash_indirect
9421 || h2->root.type == bfd_link_hash_warning)
9422 h2 = (struct elf_link_hash_entry *) h2->root.u.i.link;
9423 if (h2 == NULL || (h2 != &htab->tls_get_addr->elf
9424 && h2 != &htab->tls_get_addr_fd->elf))
9425 break;
9426
9427 /* OK, it checks out. Replace the call. */
9428 offset = rel[1].r_offset;
9429 insn1 = bfd_get_32 (output_bfd,
9430 contents + rel->r_offset - 2);
9431 insn3 = bfd_get_32 (output_bfd,
9432 contents + offset + 4);
9433 if ((tls_mask & tls_gd) != 0)
9434 {
9435 /* IE */
9436 insn1 &= (1 << 26) - (1 << 2);
9437 insn1 |= 58 << 26; /* ld */
9438 insn2 = 0x7c636a14; /* add 3,3,13 */
9439 rel[1].r_info = ELF64_R_INFO (r_symndx2, R_PPC64_NONE);
9440 if ((tls_mask & TLS_EXPLICIT) == 0)
9441 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
9442 + R_PPC64_GOT_TPREL16_DS);
9443 else
9444 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
9445 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9446 }
9447 else
9448 {
9449 /* LE */
9450 insn1 = 0x3c6d0000; /* addis 3,13,0 */
9451 insn2 = 0x38630000; /* addi 3,3,0 */
9452 if (tls_gd == 0)
9453 {
9454 /* Was an LD reloc. */
9455 r_symndx = 0;
9456 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
9457 rel[1].r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
9458 }
9459 else if (toc_symndx != 0)
9460 r_symndx = toc_symndx;
9461 r_type = R_PPC64_TPREL16_HA;
9462 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9463 rel[1].r_info = ELF64_R_INFO (r_symndx,
9464 R_PPC64_TPREL16_LO);
9465 rel[1].r_offset += 2;
9466 }
9467 if (insn3 == NOP
9468 || insn3 == CROR_151515 || insn3 == CROR_313131)
9469 {
9470 insn3 = insn2;
9471 insn2 = NOP;
9472 rel[1].r_offset += 4;
9473 }
9474 bfd_put_32 (output_bfd, insn1, contents + rel->r_offset - 2);
9475 bfd_put_32 (output_bfd, insn2, contents + offset);
9476 bfd_put_32 (output_bfd, insn3, contents + offset + 4);
9477 if (tls_gd == 0 || toc_symndx != 0)
9478 {
9479 /* We changed the symbol. Start over in order
9480 to get h, sym, sec etc. right. */
9481 rel--;
9482 continue;
9483 }
9484 }
9485 }
9486 break;
9487
9488 case R_PPC64_DTPMOD64:
9489 if (rel + 1 < relend
9490 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
9491 && rel[1].r_offset == rel->r_offset + 8)
9492 {
9493 if ((tls_mask & TLS_GD) == 0)
9494 {
9495 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
9496 if ((tls_mask & TLS_TPRELGD) != 0)
9497 r_type = R_PPC64_TPREL64;
9498 else
9499 {
9500 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9501 r_type = R_PPC64_NONE;
9502 }
9503 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9504 }
9505 }
9506 else
9507 {
9508 if ((tls_mask & TLS_LD) == 0)
9509 {
9510 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9511 r_type = R_PPC64_NONE;
9512 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9513 }
9514 }
9515 break;
9516
9517 case R_PPC64_TPREL64:
9518 if ((tls_mask & TLS_TPREL) == 0)
9519 {
9520 r_type = R_PPC64_NONE;
9521 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9522 }
9523 break;
9524 }
9525
9526 /* Handle other relocations that tweak non-addend part of insn. */
9527 insn = 0;
9528 max_br_offset = 1 << 25;
9529 addend = rel->r_addend;
9530 switch (r_type)
9531 {
9532 default:
9533 break;
9534
9535 /* Branch taken prediction relocations. */
9536 case R_PPC64_ADDR14_BRTAKEN:
9537 case R_PPC64_REL14_BRTAKEN:
9538 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
9539 /* Fall thru. */
9540
9541 /* Branch not taken prediction relocations. */
9542 case R_PPC64_ADDR14_BRNTAKEN:
9543 case R_PPC64_REL14_BRNTAKEN:
9544 insn |= bfd_get_32 (output_bfd,
9545 contents + rel->r_offset) & ~(0x01 << 21);
9546 /* Fall thru. */
9547
9548 case R_PPC64_REL14:
9549 max_br_offset = 1 << 15;
9550 /* Fall thru. */
9551
9552 case R_PPC64_REL24:
9553 /* Calls to functions with a different TOC, such as calls to
9554 shared objects, need to alter the TOC pointer. This is
9555 done using a linkage stub. A REL24 branching to these
9556 linkage stubs needs to be followed by a nop, as the nop
9557 will be replaced with an instruction to restore the TOC
9558 base pointer. */
9559 stub_entry = NULL;
9560 fdh = h;
9561 if (((h != NULL
9562 && (((fdh = h->oh) != NULL
9563 && fdh->elf.plt.plist != NULL)
9564 || (fdh = h)->elf.plt.plist != NULL))
9565 || (sec != NULL
9566 && sec->output_section != NULL
9567 && sec->id <= htab->top_id
9568 && (htab->stub_group[sec->id].toc_off
9569 != htab->stub_group[input_section->id].toc_off)))
9570 && (stub_entry = ppc_get_stub_entry (input_section, sec, fdh,
9571 rel, htab)) != NULL
9572 && (stub_entry->stub_type == ppc_stub_plt_call
9573 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
9574 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
9575 {
9576 bfd_boolean can_plt_call = FALSE;
9577
9578 if (rel->r_offset + 8 <= input_section->size)
9579 {
9580 unsigned long nop;
9581 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
9582 if (nop == NOP
9583 || nop == CROR_151515 || nop == CROR_313131)
9584 {
9585 bfd_put_32 (input_bfd, LD_R2_40R1,
9586 contents + rel->r_offset + 4);
9587 can_plt_call = TRUE;
9588 }
9589 }
9590
9591 if (!can_plt_call)
9592 {
9593 if (stub_entry->stub_type == ppc_stub_plt_call)
9594 {
9595 /* If this is a plain branch rather than a branch
9596 and link, don't require a nop. */
9597 unsigned long br;
9598 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
9599 if ((br & 1) == 0)
9600 can_plt_call = TRUE;
9601 }
9602 else if (h != NULL
9603 && strcmp (h->elf.root.root.string,
9604 ".__libc_start_main") == 0)
9605 {
9606 /* Allow crt1 branch to go via a toc adjusting stub. */
9607 can_plt_call = TRUE;
9608 }
9609 else
9610 {
9611 if (strcmp (input_section->output_section->name,
9612 ".init") == 0
9613 || strcmp (input_section->output_section->name,
9614 ".fini") == 0)
9615 (*_bfd_error_handler)
9616 (_("%B(%A+0x%lx): automatic multiple TOCs "
9617 "not supported using your crt files; "
9618 "recompile with -mminimal-toc or upgrade gcc"),
9619 input_bfd,
9620 input_section,
9621 (long) rel->r_offset);
9622 else
9623 (*_bfd_error_handler)
9624 (_("%B(%A+0x%lx): sibling call optimization to `%s' "
9625 "does not allow automatic multiple TOCs; "
9626 "recompile with -mminimal-toc or "
9627 "-fno-optimize-sibling-calls, "
9628 "or make `%s' extern"),
9629 input_bfd,
9630 input_section,
9631 (long) rel->r_offset,
9632 sym_name,
9633 sym_name);
9634 bfd_set_error (bfd_error_bad_value);
9635 ret = FALSE;
9636 }
9637 }
9638
9639 if (can_plt_call
9640 && stub_entry->stub_type == ppc_stub_plt_call)
9641 unresolved_reloc = FALSE;
9642 }
9643
9644 if (stub_entry == NULL
9645 && get_opd_info (sec) != NULL)
9646 {
9647 /* The branch destination is the value of the opd entry. */
9648 bfd_vma off = (relocation - sec->output_section->vma
9649 - sec->output_offset + rel->r_addend);
9650 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
9651 if (dest != (bfd_vma) -1)
9652 {
9653 relocation = dest;
9654 addend = 0;
9655 }
9656 }
9657
9658 /* If the branch is out of reach we ought to have a long
9659 branch stub. */
9660 from = (rel->r_offset
9661 + input_section->output_offset
9662 + input_section->output_section->vma);
9663
9664 if (stub_entry == NULL
9665 && (relocation + rel->r_addend - from + max_br_offset
9666 >= 2 * max_br_offset)
9667 && r_type != R_PPC64_ADDR14_BRTAKEN
9668 && r_type != R_PPC64_ADDR14_BRNTAKEN)
9669 stub_entry = ppc_get_stub_entry (input_section, sec, h, rel,
9670 htab);
9671
9672 if (stub_entry != NULL)
9673 {
9674 /* Munge up the value and addend so that we call the stub
9675 rather than the procedure directly. */
9676 relocation = (stub_entry->stub_offset
9677 + stub_entry->stub_sec->output_offset
9678 + stub_entry->stub_sec->output_section->vma);
9679 addend = 0;
9680 }
9681
9682 if (insn != 0)
9683 {
9684 if (is_power4)
9685 {
9686 /* Set 'a' bit. This is 0b00010 in BO field for branch
9687 on CR(BI) insns (BO == 001at or 011at), and 0b01000
9688 for branch on CTR insns (BO == 1a00t or 1a01t). */
9689 if ((insn & (0x14 << 21)) == (0x04 << 21))
9690 insn |= 0x02 << 21;
9691 else if ((insn & (0x14 << 21)) == (0x10 << 21))
9692 insn |= 0x08 << 21;
9693 else
9694 break;
9695 }
9696 else
9697 {
9698 /* Invert 'y' bit if not the default. */
9699 if ((bfd_signed_vma) (relocation + rel->r_addend - from) < 0)
9700 insn ^= 0x01 << 21;
9701 }
9702
9703 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
9704 }
9705
9706 /* NOP out calls to undefined weak functions.
9707 We can thus call a weak function without first
9708 checking whether the function is defined. */
9709 else if (h != NULL
9710 && h->elf.root.type == bfd_link_hash_undefweak
9711 && r_type == R_PPC64_REL24
9712 && relocation == 0
9713 && rel->r_addend == 0)
9714 {
9715 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
9716 continue;
9717 }
9718 break;
9719 }
9720
9721 /* Set `addend'. */
9722 tls_type = 0;
9723 switch (r_type)
9724 {
9725 default:
9726 (*_bfd_error_handler)
9727 (_("%B: unknown relocation type %d for symbol %s"),
9728 input_bfd, (int) r_type, sym_name);
9729
9730 bfd_set_error (bfd_error_bad_value);
9731 ret = FALSE;
9732 continue;
9733
9734 case R_PPC64_NONE:
9735 case R_PPC64_TLS:
9736 case R_PPC64_GNU_VTINHERIT:
9737 case R_PPC64_GNU_VTENTRY:
9738 continue;
9739
9740 /* GOT16 relocations. Like an ADDR16 using the symbol's
9741 address in the GOT as relocation value instead of the
9742 symbol's value itself. Also, create a GOT entry for the
9743 symbol and put the symbol value there. */
9744 case R_PPC64_GOT_TLSGD16:
9745 case R_PPC64_GOT_TLSGD16_LO:
9746 case R_PPC64_GOT_TLSGD16_HI:
9747 case R_PPC64_GOT_TLSGD16_HA:
9748 tls_type = TLS_TLS | TLS_GD;
9749 goto dogot;
9750
9751 case R_PPC64_GOT_TLSLD16:
9752 case R_PPC64_GOT_TLSLD16_LO:
9753 case R_PPC64_GOT_TLSLD16_HI:
9754 case R_PPC64_GOT_TLSLD16_HA:
9755 tls_type = TLS_TLS | TLS_LD;
9756 goto dogot;
9757
9758 case R_PPC64_GOT_TPREL16_DS:
9759 case R_PPC64_GOT_TPREL16_LO_DS:
9760 case R_PPC64_GOT_TPREL16_HI:
9761 case R_PPC64_GOT_TPREL16_HA:
9762 tls_type = TLS_TLS | TLS_TPREL;
9763 goto dogot;
9764
9765 case R_PPC64_GOT_DTPREL16_DS:
9766 case R_PPC64_GOT_DTPREL16_LO_DS:
9767 case R_PPC64_GOT_DTPREL16_HI:
9768 case R_PPC64_GOT_DTPREL16_HA:
9769 tls_type = TLS_TLS | TLS_DTPREL;
9770 goto dogot;
9771
9772 case R_PPC64_GOT16:
9773 case R_PPC64_GOT16_LO:
9774 case R_PPC64_GOT16_HI:
9775 case R_PPC64_GOT16_HA:
9776 case R_PPC64_GOT16_DS:
9777 case R_PPC64_GOT16_LO_DS:
9778 dogot:
9779 {
9780 /* Relocation is to the entry for this symbol in the global
9781 offset table. */
9782 asection *got;
9783 bfd_vma *offp;
9784 bfd_vma off;
9785 unsigned long indx = 0;
9786
9787 if (tls_type == (TLS_TLS | TLS_LD)
9788 && (h == NULL
9789 || !h->elf.def_dynamic))
9790 offp = &ppc64_tlsld_got (input_bfd)->offset;
9791 else
9792 {
9793 struct got_entry *ent;
9794
9795 if (h != NULL)
9796 {
9797 bfd_boolean dyn = htab->elf.dynamic_sections_created;
9798 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
9799 &h->elf)
9800 || (info->shared
9801 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
9802 /* This is actually a static link, or it is a
9803 -Bsymbolic link and the symbol is defined
9804 locally, or the symbol was forced to be local
9805 because of a version file. */
9806 ;
9807 else
9808 {
9809 indx = h->elf.dynindx;
9810 unresolved_reloc = FALSE;
9811 }
9812 ent = h->elf.got.glist;
9813 }
9814 else
9815 {
9816 if (local_got_ents == NULL)
9817 abort ();
9818 ent = local_got_ents[r_symndx];
9819 }
9820
9821 for (; ent != NULL; ent = ent->next)
9822 if (ent->addend == rel->r_addend
9823 && ent->owner == input_bfd
9824 && ent->tls_type == tls_type)
9825 break;
9826 if (ent == NULL)
9827 abort ();
9828 offp = &ent->got.offset;
9829 }
9830
9831 got = ppc64_elf_tdata (input_bfd)->got;
9832 if (got == NULL)
9833 abort ();
9834
9835 /* The offset must always be a multiple of 8. We use the
9836 least significant bit to record whether we have already
9837 processed this entry. */
9838 off = *offp;
9839 if ((off & 1) != 0)
9840 off &= ~1;
9841 else
9842 {
9843 /* Generate relocs for the dynamic linker, except in
9844 the case of TLSLD where we'll use one entry per
9845 module. */
9846 asection *relgot = ppc64_elf_tdata (input_bfd)->relgot;
9847
9848 *offp = off | 1;
9849 if ((info->shared || indx != 0)
9850 && (h == NULL
9851 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
9852 || h->elf.root.type != bfd_link_hash_undefweak))
9853 {
9854 outrel.r_offset = (got->output_section->vma
9855 + got->output_offset
9856 + off);
9857 outrel.r_addend = rel->r_addend;
9858 if (tls_type & (TLS_LD | TLS_GD))
9859 {
9860 outrel.r_addend = 0;
9861 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
9862 if (tls_type == (TLS_TLS | TLS_GD))
9863 {
9864 loc = relgot->contents;
9865 loc += (relgot->reloc_count++
9866 * sizeof (Elf64_External_Rela));
9867 bfd_elf64_swap_reloca_out (output_bfd,
9868 &outrel, loc);
9869 outrel.r_offset += 8;
9870 outrel.r_addend = rel->r_addend;
9871 outrel.r_info
9872 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
9873 }
9874 }
9875 else if (tls_type == (TLS_TLS | TLS_DTPREL))
9876 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
9877 else if (tls_type == (TLS_TLS | TLS_TPREL))
9878 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
9879 else if (indx == 0)
9880 {
9881 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_RELATIVE);
9882
9883 /* Write the .got section contents for the sake
9884 of prelink. */
9885 loc = got->contents + off;
9886 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
9887 loc);
9888 }
9889 else
9890 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
9891
9892 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
9893 {
9894 outrel.r_addend += relocation;
9895 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
9896 outrel.r_addend -= htab->elf.tls_sec->vma;
9897 }
9898 loc = relgot->contents;
9899 loc += (relgot->reloc_count++
9900 * sizeof (Elf64_External_Rela));
9901 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
9902 }
9903
9904 /* Init the .got section contents here if we're not
9905 emitting a reloc. */
9906 else
9907 {
9908 relocation += rel->r_addend;
9909 if (tls_type == (TLS_TLS | TLS_LD))
9910 relocation = 1;
9911 else if (tls_type != 0)
9912 {
9913 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
9914 if (tls_type == (TLS_TLS | TLS_TPREL))
9915 relocation += DTP_OFFSET - TP_OFFSET;
9916
9917 if (tls_type == (TLS_TLS | TLS_GD))
9918 {
9919 bfd_put_64 (output_bfd, relocation,
9920 got->contents + off + 8);
9921 relocation = 1;
9922 }
9923 }
9924
9925 bfd_put_64 (output_bfd, relocation,
9926 got->contents + off);
9927 }
9928 }
9929
9930 if (off >= (bfd_vma) -2)
9931 abort ();
9932
9933 relocation = got->output_offset + off;
9934
9935 /* TOC base (r2) is TOC start plus 0x8000. */
9936 addend = -TOC_BASE_OFF;
9937 }
9938 break;
9939
9940 case R_PPC64_PLT16_HA:
9941 case R_PPC64_PLT16_HI:
9942 case R_PPC64_PLT16_LO:
9943 case R_PPC64_PLT32:
9944 case R_PPC64_PLT64:
9945 /* Relocation is to the entry for this symbol in the
9946 procedure linkage table. */
9947
9948 /* Resolve a PLT reloc against a local symbol directly,
9949 without using the procedure linkage table. */
9950 if (h == NULL)
9951 break;
9952
9953 /* It's possible that we didn't make a PLT entry for this
9954 symbol. This happens when statically linking PIC code,
9955 or when using -Bsymbolic. Go find a match if there is a
9956 PLT entry. */
9957 if (htab->plt != NULL)
9958 {
9959 struct plt_entry *ent;
9960 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
9961 if (ent->addend == rel->r_addend
9962 && ent->plt.offset != (bfd_vma) -1)
9963 {
9964 relocation = (htab->plt->output_section->vma
9965 + htab->plt->output_offset
9966 + ent->plt.offset);
9967 unresolved_reloc = FALSE;
9968 }
9969 }
9970 break;
9971
9972 case R_PPC64_TOC:
9973 /* Relocation value is TOC base. */
9974 relocation = TOCstart;
9975 if (r_symndx == 0)
9976 relocation += htab->stub_group[input_section->id].toc_off;
9977 else if (unresolved_reloc)
9978 ;
9979 else if (sec != NULL && sec->id <= htab->top_id)
9980 relocation += htab->stub_group[sec->id].toc_off;
9981 else
9982 unresolved_reloc = TRUE;
9983 goto dodyn2;
9984
9985 /* TOC16 relocs. We want the offset relative to the TOC base,
9986 which is the address of the start of the TOC plus 0x8000.
9987 The TOC consists of sections .got, .toc, .tocbss, and .plt,
9988 in this order. */
9989 case R_PPC64_TOC16:
9990 case R_PPC64_TOC16_LO:
9991 case R_PPC64_TOC16_HI:
9992 case R_PPC64_TOC16_DS:
9993 case R_PPC64_TOC16_LO_DS:
9994 case R_PPC64_TOC16_HA:
9995 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
9996 break;
9997
9998 /* Relocate against the beginning of the section. */
9999 case R_PPC64_SECTOFF:
10000 case R_PPC64_SECTOFF_LO:
10001 case R_PPC64_SECTOFF_HI:
10002 case R_PPC64_SECTOFF_DS:
10003 case R_PPC64_SECTOFF_LO_DS:
10004 case R_PPC64_SECTOFF_HA:
10005 if (sec != NULL)
10006 addend -= sec->output_section->vma;
10007 break;
10008
10009 case R_PPC64_REL14:
10010 case R_PPC64_REL14_BRNTAKEN:
10011 case R_PPC64_REL14_BRTAKEN:
10012 case R_PPC64_REL24:
10013 break;
10014
10015 case R_PPC64_TPREL16:
10016 case R_PPC64_TPREL16_LO:
10017 case R_PPC64_TPREL16_HI:
10018 case R_PPC64_TPREL16_HA:
10019 case R_PPC64_TPREL16_DS:
10020 case R_PPC64_TPREL16_LO_DS:
10021 case R_PPC64_TPREL16_HIGHER:
10022 case R_PPC64_TPREL16_HIGHERA:
10023 case R_PPC64_TPREL16_HIGHEST:
10024 case R_PPC64_TPREL16_HIGHESTA:
10025 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10026 if (info->shared)
10027 /* The TPREL16 relocs shouldn't really be used in shared
10028 libs as they will result in DT_TEXTREL being set, but
10029 support them anyway. */
10030 goto dodyn;
10031 break;
10032
10033 case R_PPC64_DTPREL16:
10034 case R_PPC64_DTPREL16_LO:
10035 case R_PPC64_DTPREL16_HI:
10036 case R_PPC64_DTPREL16_HA:
10037 case R_PPC64_DTPREL16_DS:
10038 case R_PPC64_DTPREL16_LO_DS:
10039 case R_PPC64_DTPREL16_HIGHER:
10040 case R_PPC64_DTPREL16_HIGHERA:
10041 case R_PPC64_DTPREL16_HIGHEST:
10042 case R_PPC64_DTPREL16_HIGHESTA:
10043 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10044 break;
10045
10046 case R_PPC64_DTPMOD64:
10047 relocation = 1;
10048 addend = 0;
10049 goto dodyn;
10050
10051 case R_PPC64_TPREL64:
10052 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10053 goto dodyn;
10054
10055 case R_PPC64_DTPREL64:
10056 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10057 /* Fall thru */
10058
10059 /* Relocations that may need to be propagated if this is a
10060 dynamic object. */
10061 case R_PPC64_REL30:
10062 case R_PPC64_REL32:
10063 case R_PPC64_REL64:
10064 case R_PPC64_ADDR14:
10065 case R_PPC64_ADDR14_BRNTAKEN:
10066 case R_PPC64_ADDR14_BRTAKEN:
10067 case R_PPC64_ADDR16:
10068 case R_PPC64_ADDR16_DS:
10069 case R_PPC64_ADDR16_HA:
10070 case R_PPC64_ADDR16_HI:
10071 case R_PPC64_ADDR16_HIGHER:
10072 case R_PPC64_ADDR16_HIGHERA:
10073 case R_PPC64_ADDR16_HIGHEST:
10074 case R_PPC64_ADDR16_HIGHESTA:
10075 case R_PPC64_ADDR16_LO:
10076 case R_PPC64_ADDR16_LO_DS:
10077 case R_PPC64_ADDR24:
10078 case R_PPC64_ADDR32:
10079 case R_PPC64_ADDR64:
10080 case R_PPC64_UADDR16:
10081 case R_PPC64_UADDR32:
10082 case R_PPC64_UADDR64:
10083 /* r_symndx will be zero only for relocs against symbols
10084 from removed linkonce sections, or sections discarded by
10085 a linker script. */
10086 dodyn:
10087 if (r_symndx == 0)
10088 break;
10089 /* Fall thru. */
10090
10091 dodyn2:
10092 if ((input_section->flags & SEC_ALLOC) == 0)
10093 break;
10094
10095 if (NO_OPD_RELOCS && is_opd)
10096 break;
10097
10098 if ((info->shared
10099 && (h == NULL
10100 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10101 || h->elf.root.type != bfd_link_hash_undefweak)
10102 && (MUST_BE_DYN_RELOC (r_type)
10103 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
10104 || (ELIMINATE_COPY_RELOCS
10105 && !info->shared
10106 && h != NULL
10107 && h->elf.dynindx != -1
10108 && !h->elf.non_got_ref
10109 && h->elf.def_dynamic
10110 && !h->elf.def_regular))
10111 {
10112 Elf_Internal_Rela outrel;
10113 bfd_boolean skip, relocate;
10114 asection *sreloc;
10115 bfd_byte *loc;
10116 bfd_vma out_off;
10117
10118 /* When generating a dynamic object, these relocations
10119 are copied into the output file to be resolved at run
10120 time. */
10121
10122 skip = FALSE;
10123 relocate = FALSE;
10124
10125 out_off = _bfd_elf_section_offset (output_bfd, info,
10126 input_section, rel->r_offset);
10127 if (out_off == (bfd_vma) -1)
10128 skip = TRUE;
10129 else if (out_off == (bfd_vma) -2)
10130 skip = TRUE, relocate = TRUE;
10131 out_off += (input_section->output_section->vma
10132 + input_section->output_offset);
10133 outrel.r_offset = out_off;
10134 outrel.r_addend = rel->r_addend;
10135
10136 /* Optimize unaligned reloc use. */
10137 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
10138 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
10139 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
10140 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
10141 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
10142 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
10143 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
10144 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
10145 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
10146
10147 if (skip)
10148 memset (&outrel, 0, sizeof outrel);
10149 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
10150 && !is_opd
10151 && r_type != R_PPC64_TOC)
10152 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
10153 else
10154 {
10155 /* This symbol is local, or marked to become local,
10156 or this is an opd section reloc which must point
10157 at a local function. */
10158 outrel.r_addend += relocation;
10159 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
10160 {
10161 if (is_opd && h != NULL)
10162 {
10163 /* Lie about opd entries. This case occurs
10164 when building shared libraries and we
10165 reference a function in another shared
10166 lib. The same thing happens for a weak
10167 definition in an application that's
10168 overridden by a strong definition in a
10169 shared lib. (I believe this is a generic
10170 bug in binutils handling of weak syms.)
10171 In these cases we won't use the opd
10172 entry in this lib. */
10173 unresolved_reloc = FALSE;
10174 }
10175 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10176
10177 /* We need to relocate .opd contents for ld.so.
10178 Prelink also wants simple and consistent rules
10179 for relocs. This make all RELATIVE relocs have
10180 *r_offset equal to r_addend. */
10181 relocate = TRUE;
10182 }
10183 else
10184 {
10185 long indx = 0;
10186
10187 if (bfd_is_abs_section (sec))
10188 ;
10189 else if (sec == NULL || sec->owner == NULL)
10190 {
10191 bfd_set_error (bfd_error_bad_value);
10192 return FALSE;
10193 }
10194 else
10195 {
10196 asection *osec;
10197
10198 osec = sec->output_section;
10199 indx = elf_section_data (osec)->dynindx;
10200
10201 /* We are turning this relocation into one
10202 against a section symbol, so subtract out
10203 the output section's address but not the
10204 offset of the input section in the output
10205 section. */
10206 outrel.r_addend -= osec->vma;
10207 }
10208
10209 outrel.r_info = ELF64_R_INFO (indx, r_type);
10210 }
10211 }
10212
10213 sreloc = elf_section_data (input_section)->sreloc;
10214 if (sreloc == NULL)
10215 abort ();
10216
10217 loc = sreloc->contents;
10218 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
10219 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
10220
10221 /* If this reloc is against an external symbol, it will
10222 be computed at runtime, so there's no need to do
10223 anything now. However, for the sake of prelink ensure
10224 that the section contents are a known value. */
10225 if (! relocate)
10226 {
10227 unresolved_reloc = FALSE;
10228 /* The value chosen here is quite arbitrary as ld.so
10229 ignores section contents except for the special
10230 case of .opd where the contents might be accessed
10231 before relocation. Choose zero, as that won't
10232 cause reloc overflow. */
10233 relocation = 0;
10234 addend = 0;
10235 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
10236 to improve backward compatibility with older
10237 versions of ld. */
10238 if (r_type == R_PPC64_ADDR64)
10239 addend = outrel.r_addend;
10240 /* Adjust pc_relative relocs to have zero in *r_offset. */
10241 else if (ppc64_elf_howto_table[r_type]->pc_relative)
10242 addend = (input_section->output_section->vma
10243 + input_section->output_offset
10244 + rel->r_offset);
10245 }
10246 }
10247 break;
10248
10249 case R_PPC64_COPY:
10250 case R_PPC64_GLOB_DAT:
10251 case R_PPC64_JMP_SLOT:
10252 case R_PPC64_RELATIVE:
10253 /* We shouldn't ever see these dynamic relocs in relocatable
10254 files. */
10255 /* Fall through. */
10256
10257 case R_PPC64_PLTGOT16:
10258 case R_PPC64_PLTGOT16_DS:
10259 case R_PPC64_PLTGOT16_HA:
10260 case R_PPC64_PLTGOT16_HI:
10261 case R_PPC64_PLTGOT16_LO:
10262 case R_PPC64_PLTGOT16_LO_DS:
10263 case R_PPC64_PLTREL32:
10264 case R_PPC64_PLTREL64:
10265 /* These ones haven't been implemented yet. */
10266
10267 (*_bfd_error_handler)
10268 (_("%B: relocation %s is not supported for symbol %s."),
10269 input_bfd,
10270 ppc64_elf_howto_table[r_type]->name, sym_name);
10271
10272 bfd_set_error (bfd_error_invalid_operation);
10273 ret = FALSE;
10274 continue;
10275 }
10276
10277 /* Do any further special processing. */
10278 switch (r_type)
10279 {
10280 default:
10281 break;
10282
10283 case R_PPC64_ADDR16_HA:
10284 case R_PPC64_ADDR16_HIGHERA:
10285 case R_PPC64_ADDR16_HIGHESTA:
10286 case R_PPC64_GOT16_HA:
10287 case R_PPC64_PLTGOT16_HA:
10288 case R_PPC64_PLT16_HA:
10289 case R_PPC64_TOC16_HA:
10290 case R_PPC64_SECTOFF_HA:
10291 case R_PPC64_TPREL16_HA:
10292 case R_PPC64_DTPREL16_HA:
10293 case R_PPC64_GOT_TLSGD16_HA:
10294 case R_PPC64_GOT_TLSLD16_HA:
10295 case R_PPC64_GOT_TPREL16_HA:
10296 case R_PPC64_GOT_DTPREL16_HA:
10297 case R_PPC64_TPREL16_HIGHER:
10298 case R_PPC64_TPREL16_HIGHERA:
10299 case R_PPC64_TPREL16_HIGHEST:
10300 case R_PPC64_TPREL16_HIGHESTA:
10301 case R_PPC64_DTPREL16_HIGHER:
10302 case R_PPC64_DTPREL16_HIGHERA:
10303 case R_PPC64_DTPREL16_HIGHEST:
10304 case R_PPC64_DTPREL16_HIGHESTA:
10305 /* It's just possible that this symbol is a weak symbol
10306 that's not actually defined anywhere. In that case,
10307 'sec' would be NULL, and we should leave the symbol
10308 alone (it will be set to zero elsewhere in the link). */
10309 if (sec != NULL)
10310 /* Add 0x10000 if sign bit in 0:15 is set.
10311 Bits 0:15 are not used. */
10312 addend += 0x8000;
10313 break;
10314
10315 case R_PPC64_ADDR16_DS:
10316 case R_PPC64_ADDR16_LO_DS:
10317 case R_PPC64_GOT16_DS:
10318 case R_PPC64_GOT16_LO_DS:
10319 case R_PPC64_PLT16_LO_DS:
10320 case R_PPC64_SECTOFF_DS:
10321 case R_PPC64_SECTOFF_LO_DS:
10322 case R_PPC64_TOC16_DS:
10323 case R_PPC64_TOC16_LO_DS:
10324 case R_PPC64_PLTGOT16_DS:
10325 case R_PPC64_PLTGOT16_LO_DS:
10326 case R_PPC64_GOT_TPREL16_DS:
10327 case R_PPC64_GOT_TPREL16_LO_DS:
10328 case R_PPC64_GOT_DTPREL16_DS:
10329 case R_PPC64_GOT_DTPREL16_LO_DS:
10330 case R_PPC64_TPREL16_DS:
10331 case R_PPC64_TPREL16_LO_DS:
10332 case R_PPC64_DTPREL16_DS:
10333 case R_PPC64_DTPREL16_LO_DS:
10334 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
10335 mask = 3;
10336 /* If this reloc is against an lq insn, then the value must be
10337 a multiple of 16. This is somewhat of a hack, but the
10338 "correct" way to do this by defining _DQ forms of all the
10339 _DS relocs bloats all reloc switches in this file. It
10340 doesn't seem to make much sense to use any of these relocs
10341 in data, so testing the insn should be safe. */
10342 if ((insn & (0x3f << 26)) == (56u << 26))
10343 mask = 15;
10344 if (((relocation + addend) & mask) != 0)
10345 {
10346 (*_bfd_error_handler)
10347 (_("%B: error: relocation %s not a multiple of %d"),
10348 input_bfd,
10349 ppc64_elf_howto_table[r_type]->name,
10350 mask + 1);
10351 bfd_set_error (bfd_error_bad_value);
10352 ret = FALSE;
10353 continue;
10354 }
10355 break;
10356 }
10357
10358 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10359 because such sections are not SEC_ALLOC and thus ld.so will
10360 not process them. */
10361 if (unresolved_reloc
10362 && !((input_section->flags & SEC_DEBUGGING) != 0
10363 && h->elf.def_dynamic))
10364 {
10365 (*_bfd_error_handler)
10366 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10367 input_bfd,
10368 input_section,
10369 (long) rel->r_offset,
10370 ppc64_elf_howto_table[(int) r_type]->name,
10371 h->elf.root.root.string);
10372 ret = FALSE;
10373 }
10374
10375 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
10376 input_bfd,
10377 input_section,
10378 contents,
10379 rel->r_offset,
10380 relocation,
10381 addend);
10382
10383 if (r != bfd_reloc_ok)
10384 {
10385 if (sym_name == NULL)
10386 sym_name = "(null)";
10387 if (r == bfd_reloc_overflow)
10388 {
10389 if (warned)
10390 continue;
10391 if (h != NULL
10392 && h->elf.root.type == bfd_link_hash_undefweak
10393 && ppc64_elf_howto_table[r_type]->pc_relative)
10394 {
10395 /* Assume this is a call protected by other code that
10396 detects the symbol is undefined. If this is the case,
10397 we can safely ignore the overflow. If not, the
10398 program is hosed anyway, and a little warning isn't
10399 going to help. */
10400
10401 continue;
10402 }
10403
10404 if (!((*info->callbacks->reloc_overflow)
10405 (info, (h ? &h->elf.root : NULL), sym_name,
10406 ppc64_elf_howto_table[r_type]->name,
10407 rel->r_addend, input_bfd, input_section, rel->r_offset)))
10408 return FALSE;
10409 }
10410 else
10411 {
10412 (*_bfd_error_handler)
10413 (_("%B(%A+0x%lx): %s reloc against `%s': error %d"),
10414 input_bfd,
10415 input_section,
10416 (long) rel->r_offset,
10417 ppc64_elf_howto_table[r_type]->name,
10418 sym_name,
10419 (int) r);
10420 ret = FALSE;
10421 }
10422 }
10423 }
10424
10425 return ret;
10426 }
10427
10428 /* Adjust the value of any local symbols in opd sections. */
10429
10430 static bfd_boolean
10431 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
10432 const char *name ATTRIBUTE_UNUSED,
10433 Elf_Internal_Sym *elfsym,
10434 asection *input_sec,
10435 struct elf_link_hash_entry *h)
10436 {
10437 long *opd_adjust, adjust;
10438 bfd_vma value;
10439
10440 if (h != NULL)
10441 return TRUE;
10442
10443 opd_adjust = get_opd_info (input_sec);
10444 if (opd_adjust == NULL)
10445 return TRUE;
10446
10447 value = elfsym->st_value - input_sec->output_offset;
10448 if (!info->relocatable)
10449 value -= input_sec->output_section->vma;
10450
10451 adjust = opd_adjust[value / 8];
10452 if (adjust == -1)
10453 elfsym->st_value = 0;
10454 else
10455 elfsym->st_value += adjust;
10456 return TRUE;
10457 }
10458
10459 /* Finish up dynamic symbol handling. We set the contents of various
10460 dynamic sections here. */
10461
10462 static bfd_boolean
10463 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
10464 struct bfd_link_info *info,
10465 struct elf_link_hash_entry *h,
10466 Elf_Internal_Sym *sym)
10467 {
10468 struct ppc_link_hash_table *htab;
10469 bfd *dynobj;
10470 struct plt_entry *ent;
10471 Elf_Internal_Rela rela;
10472 bfd_byte *loc;
10473
10474 htab = ppc_hash_table (info);
10475 dynobj = htab->elf.dynobj;
10476
10477 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
10478 if (ent->plt.offset != (bfd_vma) -1)
10479 {
10480 /* This symbol has an entry in the procedure linkage
10481 table. Set it up. */
10482
10483 if (htab->plt == NULL
10484 || htab->relplt == NULL
10485 || htab->glink == NULL)
10486 abort ();
10487
10488 /* Create a JMP_SLOT reloc to inform the dynamic linker to
10489 fill in the PLT entry. */
10490 rela.r_offset = (htab->plt->output_section->vma
10491 + htab->plt->output_offset
10492 + ent->plt.offset);
10493 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
10494 rela.r_addend = ent->addend;
10495
10496 loc = htab->relplt->contents;
10497 loc += ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE
10498 * sizeof (Elf64_External_Rela));
10499 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10500 }
10501
10502 if (h->needs_copy)
10503 {
10504 Elf_Internal_Rela rela;
10505 bfd_byte *loc;
10506
10507 /* This symbol needs a copy reloc. Set it up. */
10508
10509 if (h->dynindx == -1
10510 || (h->root.type != bfd_link_hash_defined
10511 && h->root.type != bfd_link_hash_defweak)
10512 || htab->relbss == NULL)
10513 abort ();
10514
10515 rela.r_offset = (h->root.u.def.value
10516 + h->root.u.def.section->output_section->vma
10517 + h->root.u.def.section->output_offset);
10518 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
10519 rela.r_addend = 0;
10520 loc = htab->relbss->contents;
10521 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
10522 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10523 }
10524
10525 /* Mark some specially defined symbols as absolute. */
10526 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
10527 sym->st_shndx = SHN_ABS;
10528
10529 return TRUE;
10530 }
10531
10532 /* Used to decide how to sort relocs in an optimal manner for the
10533 dynamic linker, before writing them out. */
10534
10535 static enum elf_reloc_type_class
10536 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
10537 {
10538 enum elf_ppc64_reloc_type r_type;
10539
10540 r_type = ELF64_R_TYPE (rela->r_info);
10541 switch (r_type)
10542 {
10543 case R_PPC64_RELATIVE:
10544 return reloc_class_relative;
10545 case R_PPC64_JMP_SLOT:
10546 return reloc_class_plt;
10547 case R_PPC64_COPY:
10548 return reloc_class_copy;
10549 default:
10550 return reloc_class_normal;
10551 }
10552 }
10553
10554 /* Finish up the dynamic sections. */
10555
10556 static bfd_boolean
10557 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
10558 struct bfd_link_info *info)
10559 {
10560 struct ppc_link_hash_table *htab;
10561 bfd *dynobj;
10562 asection *sdyn;
10563
10564 htab = ppc_hash_table (info);
10565 dynobj = htab->elf.dynobj;
10566 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10567
10568 if (htab->elf.dynamic_sections_created)
10569 {
10570 Elf64_External_Dyn *dyncon, *dynconend;
10571
10572 if (sdyn == NULL || htab->got == NULL)
10573 abort ();
10574
10575 dyncon = (Elf64_External_Dyn *) sdyn->contents;
10576 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
10577 for (; dyncon < dynconend; dyncon++)
10578 {
10579 Elf_Internal_Dyn dyn;
10580 asection *s;
10581
10582 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
10583
10584 switch (dyn.d_tag)
10585 {
10586 default:
10587 continue;
10588
10589 case DT_PPC64_GLINK:
10590 s = htab->glink;
10591 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10592 /* We stupidly defined DT_PPC64_GLINK to be the start
10593 of glink rather than the first entry point, which is
10594 what ld.so needs, and now have a bigger stub to
10595 support automatic multiple TOCs. */
10596 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
10597 break;
10598
10599 case DT_PPC64_OPD:
10600 s = bfd_get_section_by_name (output_bfd, ".opd");
10601 if (s == NULL)
10602 continue;
10603 dyn.d_un.d_ptr = s->vma;
10604 break;
10605
10606 case DT_PPC64_OPDSZ:
10607 s = bfd_get_section_by_name (output_bfd, ".opd");
10608 if (s == NULL)
10609 continue;
10610 dyn.d_un.d_val = s->size;
10611 break;
10612
10613 case DT_PLTGOT:
10614 s = htab->plt;
10615 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10616 break;
10617
10618 case DT_JMPREL:
10619 s = htab->relplt;
10620 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10621 break;
10622
10623 case DT_PLTRELSZ:
10624 dyn.d_un.d_val = htab->relplt->size;
10625 break;
10626
10627 case DT_RELASZ:
10628 /* Don't count procedure linkage table relocs in the
10629 overall reloc count. */
10630 s = htab->relplt;
10631 if (s == NULL)
10632 continue;
10633 dyn.d_un.d_val -= s->size;
10634 break;
10635
10636 case DT_RELA:
10637 /* We may not be using the standard ELF linker script.
10638 If .rela.plt is the first .rela section, we adjust
10639 DT_RELA to not include it. */
10640 s = htab->relplt;
10641 if (s == NULL)
10642 continue;
10643 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
10644 continue;
10645 dyn.d_un.d_ptr += s->size;
10646 break;
10647 }
10648
10649 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
10650 }
10651 }
10652
10653 if (htab->got != NULL && htab->got->size != 0)
10654 {
10655 /* Fill in the first entry in the global offset table.
10656 We use it to hold the link-time TOCbase. */
10657 bfd_put_64 (output_bfd,
10658 elf_gp (output_bfd) + TOC_BASE_OFF,
10659 htab->got->contents);
10660
10661 /* Set .got entry size. */
10662 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
10663 }
10664
10665 if (htab->plt != NULL && htab->plt->size != 0)
10666 {
10667 /* Set .plt entry size. */
10668 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
10669 = PLT_ENTRY_SIZE;
10670 }
10671
10672 /* We need to handle writing out multiple GOT sections ourselves,
10673 since we didn't add them to DYNOBJ. We know dynobj is the first
10674 bfd. */
10675 while ((dynobj = dynobj->link_next) != NULL)
10676 {
10677 asection *s;
10678
10679 if (!is_ppc64_elf_target (dynobj->xvec))
10680 continue;
10681
10682 s = ppc64_elf_tdata (dynobj)->got;
10683 if (s != NULL
10684 && s->size != 0
10685 && s->output_section != bfd_abs_section_ptr
10686 && !bfd_set_section_contents (output_bfd, s->output_section,
10687 s->contents, s->output_offset,
10688 s->size))
10689 return FALSE;
10690 s = ppc64_elf_tdata (dynobj)->relgot;
10691 if (s != NULL
10692 && s->size != 0
10693 && s->output_section != bfd_abs_section_ptr
10694 && !bfd_set_section_contents (output_bfd, s->output_section,
10695 s->contents, s->output_offset,
10696 s->size))
10697 return FALSE;
10698 }
10699
10700 return TRUE;
10701 }
10702
10703 #include "elf64-target.h"
This page took 0.29064 seconds and 4 git commands to generate.