Set EI_OSABI to ELFOSABI_GNU for local IFUNC symbols
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_vma opd_entry_value
57 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
58
59 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
60 #define TARGET_LITTLE_NAME "elf64-powerpcle"
61 #define TARGET_BIG_SYM powerpc_elf64_vec
62 #define TARGET_BIG_NAME "elf64-powerpc"
63 #define ELF_ARCH bfd_arch_powerpc
64 #define ELF_TARGET_ID PPC64_ELF_DATA
65 #define ELF_MACHINE_CODE EM_PPC64
66 #define ELF_MAXPAGESIZE 0x10000
67 #define ELF_COMMONPAGESIZE 0x10000
68 #define elf_info_to_howto ppc64_elf_info_to_howto
69
70 #define elf_backend_want_got_sym 0
71 #define elf_backend_want_plt_sym 0
72 #define elf_backend_plt_alignment 3
73 #define elf_backend_plt_not_loaded 1
74 #define elf_backend_got_header_size 8
75 #define elf_backend_can_gc_sections 1
76 #define elf_backend_can_refcount 1
77 #define elf_backend_rela_normal 1
78 #define elf_backend_default_execstack 0
79
80 #define bfd_elf64_mkobject ppc64_elf_mkobject
81 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
82 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
83 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
84 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
88 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
89
90 #define elf_backend_object_p ppc64_elf_object_p
91 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
92 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
93 #define elf_backend_write_core_note ppc64_elf_write_core_note
94 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
95 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
96 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
97 #define elf_backend_check_directives ppc64_elf_before_check_relocs
98 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
99 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
100 #define elf_backend_check_relocs ppc64_elf_check_relocs
101 #define elf_backend_gc_keep ppc64_elf_gc_keep
102 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
103 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
104 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
105 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
106 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
107 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
108 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
109 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
110 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
130
131 /* Offsets to some stack save slots. */
132 #define STK_LR 16
133 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
134 /* This one is dodgy. ELFv2 does not have a linker word, so use the
135 CR save slot. Used only by optimised __tls_get_addr call stub,
136 relying on __tls_get_addr_opt not saving CR.. */
137 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
138
139 /* TOC base pointers offset from start of TOC. */
140 #define TOC_BASE_OFF 0x8000
141 /* TOC base alignment. */
142 #define TOC_BASE_ALIGN 256
143
144 /* Offset of tp and dtp pointers from start of TLS block. */
145 #define TP_OFFSET 0x7000
146 #define DTP_OFFSET 0x8000
147
148 /* .plt call stub instructions. The normal stub is like this, but
149 sometimes the .plt entry crosses a 64k boundary and we need to
150 insert an addi to adjust r11. */
151 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
152 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
153 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
154 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
155 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
156 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
157 #define BCTR 0x4e800420 /* bctr */
158
159 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
160 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
161 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
162
163 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
164 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
165 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
166 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
167 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
168 #define BNECTR 0x4ca20420 /* bnectr+ */
169 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
170
171 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
172 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
173 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
174
175 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
176
177 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
178 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
179 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
180
181 /* glink call stub instructions. We enter with the index in R0. */
182 #define GLINK_CALL_STUB_SIZE (16*4)
183 /* 0: */
184 /* .quad plt0-1f */
185 /* __glink: */
186 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
187 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
188 /* 1: */
189 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
190 /* ld %2,(0b-1b)(%11) */
191 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
192 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
193 /* ld %12,0(%11) */
194 /* ld %2,8(%11) */
195 /* mtctr %12 */
196 /* ld %11,16(%11) */
197 /* bctr */
198 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
199 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
200 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
201 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
202 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
203
204 /* Pad with this. */
205 #define NOP 0x60000000
206
207 /* Some other nops. */
208 #define CROR_151515 0x4def7b82
209 #define CROR_313131 0x4ffffb82
210
211 /* .glink entries for the first 32k functions are two instructions. */
212 #define LI_R0_0 0x38000000 /* li %r0,0 */
213 #define B_DOT 0x48000000 /* b . */
214
215 /* After that, we need two instructions to load the index, followed by
216 a branch. */
217 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
218 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
219
220 /* Instructions used by the save and restore reg functions. */
221 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
222 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
223 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
224 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
225 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
226 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
227 #define LI_R12_0 0x39800000 /* li %r12,0 */
228 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
229 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
230 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
231 #define BLR 0x4e800020 /* blr */
232
233 /* Since .opd is an array of descriptors and each entry will end up
234 with identical R_PPC64_RELATIVE relocs, there is really no need to
235 propagate .opd relocs; The dynamic linker should be taught to
236 relocate .opd without reloc entries. */
237 #ifndef NO_OPD_RELOCS
238 #define NO_OPD_RELOCS 0
239 #endif
240
241 static inline int
242 abiversion (bfd *abfd)
243 {
244 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
245 }
246
247 static inline void
248 set_abiversion (bfd *abfd, int ver)
249 {
250 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
251 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
252 }
253 \f
254 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
255
256 /* Relocation HOWTO's. */
257 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
258
259 static reloc_howto_type ppc64_elf_howto_raw[] = {
260 /* This reloc does nothing. */
261 HOWTO (R_PPC64_NONE, /* type */
262 0, /* rightshift */
263 3, /* size (0 = byte, 1 = short, 2 = long) */
264 0, /* bitsize */
265 FALSE, /* pc_relative */
266 0, /* bitpos */
267 complain_overflow_dont, /* complain_on_overflow */
268 bfd_elf_generic_reloc, /* special_function */
269 "R_PPC64_NONE", /* name */
270 FALSE, /* partial_inplace */
271 0, /* src_mask */
272 0, /* dst_mask */
273 FALSE), /* pcrel_offset */
274
275 /* A standard 32 bit relocation. */
276 HOWTO (R_PPC64_ADDR32, /* type */
277 0, /* rightshift */
278 2, /* size (0 = byte, 1 = short, 2 = long) */
279 32, /* bitsize */
280 FALSE, /* pc_relative */
281 0, /* bitpos */
282 complain_overflow_bitfield, /* complain_on_overflow */
283 bfd_elf_generic_reloc, /* special_function */
284 "R_PPC64_ADDR32", /* name */
285 FALSE, /* partial_inplace */
286 0, /* src_mask */
287 0xffffffff, /* dst_mask */
288 FALSE), /* pcrel_offset */
289
290 /* An absolute 26 bit branch; the lower two bits must be zero.
291 FIXME: we don't check that, we just clear them. */
292 HOWTO (R_PPC64_ADDR24, /* type */
293 0, /* rightshift */
294 2, /* size (0 = byte, 1 = short, 2 = long) */
295 26, /* bitsize */
296 FALSE, /* pc_relative */
297 0, /* bitpos */
298 complain_overflow_bitfield, /* complain_on_overflow */
299 bfd_elf_generic_reloc, /* special_function */
300 "R_PPC64_ADDR24", /* name */
301 FALSE, /* partial_inplace */
302 0, /* src_mask */
303 0x03fffffc, /* dst_mask */
304 FALSE), /* pcrel_offset */
305
306 /* A standard 16 bit relocation. */
307 HOWTO (R_PPC64_ADDR16, /* type */
308 0, /* rightshift */
309 1, /* size (0 = byte, 1 = short, 2 = long) */
310 16, /* bitsize */
311 FALSE, /* pc_relative */
312 0, /* bitpos */
313 complain_overflow_bitfield, /* complain_on_overflow */
314 bfd_elf_generic_reloc, /* special_function */
315 "R_PPC64_ADDR16", /* name */
316 FALSE, /* partial_inplace */
317 0, /* src_mask */
318 0xffff, /* dst_mask */
319 FALSE), /* pcrel_offset */
320
321 /* A 16 bit relocation without overflow. */
322 HOWTO (R_PPC64_ADDR16_LO, /* type */
323 0, /* rightshift */
324 1, /* size (0 = byte, 1 = short, 2 = long) */
325 16, /* bitsize */
326 FALSE, /* pc_relative */
327 0, /* bitpos */
328 complain_overflow_dont,/* complain_on_overflow */
329 bfd_elf_generic_reloc, /* special_function */
330 "R_PPC64_ADDR16_LO", /* name */
331 FALSE, /* partial_inplace */
332 0, /* src_mask */
333 0xffff, /* dst_mask */
334 FALSE), /* pcrel_offset */
335
336 /* Bits 16-31 of an address. */
337 HOWTO (R_PPC64_ADDR16_HI, /* type */
338 16, /* rightshift */
339 1, /* size (0 = byte, 1 = short, 2 = long) */
340 16, /* bitsize */
341 FALSE, /* pc_relative */
342 0, /* bitpos */
343 complain_overflow_signed, /* complain_on_overflow */
344 bfd_elf_generic_reloc, /* special_function */
345 "R_PPC64_ADDR16_HI", /* name */
346 FALSE, /* partial_inplace */
347 0, /* src_mask */
348 0xffff, /* dst_mask */
349 FALSE), /* pcrel_offset */
350
351 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
352 bits, treated as a signed number, is negative. */
353 HOWTO (R_PPC64_ADDR16_HA, /* type */
354 16, /* rightshift */
355 1, /* size (0 = byte, 1 = short, 2 = long) */
356 16, /* bitsize */
357 FALSE, /* pc_relative */
358 0, /* bitpos */
359 complain_overflow_signed, /* complain_on_overflow */
360 ppc64_elf_ha_reloc, /* special_function */
361 "R_PPC64_ADDR16_HA", /* name */
362 FALSE, /* partial_inplace */
363 0, /* src_mask */
364 0xffff, /* dst_mask */
365 FALSE), /* pcrel_offset */
366
367 /* An absolute 16 bit branch; the lower two bits must be zero.
368 FIXME: we don't check that, we just clear them. */
369 HOWTO (R_PPC64_ADDR14, /* type */
370 0, /* rightshift */
371 2, /* size (0 = byte, 1 = short, 2 = long) */
372 16, /* bitsize */
373 FALSE, /* pc_relative */
374 0, /* bitpos */
375 complain_overflow_signed, /* complain_on_overflow */
376 ppc64_elf_branch_reloc, /* special_function */
377 "R_PPC64_ADDR14", /* name */
378 FALSE, /* partial_inplace */
379 0, /* src_mask */
380 0x0000fffc, /* dst_mask */
381 FALSE), /* pcrel_offset */
382
383 /* An absolute 16 bit branch, for which bit 10 should be set to
384 indicate that the branch is expected to be taken. The lower two
385 bits must be zero. */
386 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 16, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_signed, /* complain_on_overflow */
393 ppc64_elf_brtaken_reloc, /* special_function */
394 "R_PPC64_ADDR14_BRTAKEN",/* name */
395 FALSE, /* partial_inplace */
396 0, /* src_mask */
397 0x0000fffc, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 /* An absolute 16 bit branch, for which bit 10 should be set to
401 indicate that the branch is not expected to be taken. The lower
402 two bits must be zero. */
403 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
404 0, /* rightshift */
405 2, /* size (0 = byte, 1 = short, 2 = long) */
406 16, /* bitsize */
407 FALSE, /* pc_relative */
408 0, /* bitpos */
409 complain_overflow_signed, /* complain_on_overflow */
410 ppc64_elf_brtaken_reloc, /* special_function */
411 "R_PPC64_ADDR14_BRNTAKEN",/* name */
412 FALSE, /* partial_inplace */
413 0, /* src_mask */
414 0x0000fffc, /* dst_mask */
415 FALSE), /* pcrel_offset */
416
417 /* A relative 26 bit branch; the lower two bits must be zero. */
418 HOWTO (R_PPC64_REL24, /* type */
419 0, /* rightshift */
420 2, /* size (0 = byte, 1 = short, 2 = long) */
421 26, /* bitsize */
422 TRUE, /* pc_relative */
423 0, /* bitpos */
424 complain_overflow_signed, /* complain_on_overflow */
425 ppc64_elf_branch_reloc, /* special_function */
426 "R_PPC64_REL24", /* name */
427 FALSE, /* partial_inplace */
428 0, /* src_mask */
429 0x03fffffc, /* dst_mask */
430 TRUE), /* pcrel_offset */
431
432 /* A relative 16 bit branch; the lower two bits must be zero. */
433 HOWTO (R_PPC64_REL14, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 16, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_signed, /* complain_on_overflow */
440 ppc64_elf_branch_reloc, /* special_function */
441 "R_PPC64_REL14", /* name */
442 FALSE, /* partial_inplace */
443 0, /* src_mask */
444 0x0000fffc, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 /* A relative 16 bit branch. Bit 10 should be set to indicate that
448 the branch is expected to be taken. The lower two bits must be
449 zero. */
450 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
451 0, /* rightshift */
452 2, /* size (0 = byte, 1 = short, 2 = long) */
453 16, /* bitsize */
454 TRUE, /* pc_relative */
455 0, /* bitpos */
456 complain_overflow_signed, /* complain_on_overflow */
457 ppc64_elf_brtaken_reloc, /* special_function */
458 "R_PPC64_REL14_BRTAKEN", /* name */
459 FALSE, /* partial_inplace */
460 0, /* src_mask */
461 0x0000fffc, /* dst_mask */
462 TRUE), /* pcrel_offset */
463
464 /* A relative 16 bit branch. Bit 10 should be set to indicate that
465 the branch is not expected to be taken. The lower two bits must
466 be zero. */
467 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
468 0, /* rightshift */
469 2, /* size (0 = byte, 1 = short, 2 = long) */
470 16, /* bitsize */
471 TRUE, /* pc_relative */
472 0, /* bitpos */
473 complain_overflow_signed, /* complain_on_overflow */
474 ppc64_elf_brtaken_reloc, /* special_function */
475 "R_PPC64_REL14_BRNTAKEN",/* name */
476 FALSE, /* partial_inplace */
477 0, /* src_mask */
478 0x0000fffc, /* dst_mask */
479 TRUE), /* pcrel_offset */
480
481 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
482 symbol. */
483 HOWTO (R_PPC64_GOT16, /* type */
484 0, /* rightshift */
485 1, /* size (0 = byte, 1 = short, 2 = long) */
486 16, /* bitsize */
487 FALSE, /* pc_relative */
488 0, /* bitpos */
489 complain_overflow_signed, /* complain_on_overflow */
490 ppc64_elf_unhandled_reloc, /* special_function */
491 "R_PPC64_GOT16", /* name */
492 FALSE, /* partial_inplace */
493 0, /* src_mask */
494 0xffff, /* dst_mask */
495 FALSE), /* pcrel_offset */
496
497 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
498 the symbol. */
499 HOWTO (R_PPC64_GOT16_LO, /* type */
500 0, /* rightshift */
501 1, /* size (0 = byte, 1 = short, 2 = long) */
502 16, /* bitsize */
503 FALSE, /* pc_relative */
504 0, /* bitpos */
505 complain_overflow_dont, /* complain_on_overflow */
506 ppc64_elf_unhandled_reloc, /* special_function */
507 "R_PPC64_GOT16_LO", /* name */
508 FALSE, /* partial_inplace */
509 0, /* src_mask */
510 0xffff, /* dst_mask */
511 FALSE), /* pcrel_offset */
512
513 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
514 the symbol. */
515 HOWTO (R_PPC64_GOT16_HI, /* type */
516 16, /* rightshift */
517 1, /* size (0 = byte, 1 = short, 2 = long) */
518 16, /* bitsize */
519 FALSE, /* pc_relative */
520 0, /* bitpos */
521 complain_overflow_signed,/* complain_on_overflow */
522 ppc64_elf_unhandled_reloc, /* special_function */
523 "R_PPC64_GOT16_HI", /* name */
524 FALSE, /* partial_inplace */
525 0, /* src_mask */
526 0xffff, /* dst_mask */
527 FALSE), /* pcrel_offset */
528
529 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
530 the symbol. */
531 HOWTO (R_PPC64_GOT16_HA, /* type */
532 16, /* rightshift */
533 1, /* size (0 = byte, 1 = short, 2 = long) */
534 16, /* bitsize */
535 FALSE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_signed,/* complain_on_overflow */
538 ppc64_elf_unhandled_reloc, /* special_function */
539 "R_PPC64_GOT16_HA", /* name */
540 FALSE, /* partial_inplace */
541 0, /* src_mask */
542 0xffff, /* dst_mask */
543 FALSE), /* pcrel_offset */
544
545 /* This is used only by the dynamic linker. The symbol should exist
546 both in the object being run and in some shared library. The
547 dynamic linker copies the data addressed by the symbol from the
548 shared library into the object, because the object being
549 run has to have the data at some particular address. */
550 HOWTO (R_PPC64_COPY, /* type */
551 0, /* rightshift */
552 0, /* this one is variable size */
553 0, /* bitsize */
554 FALSE, /* pc_relative */
555 0, /* bitpos */
556 complain_overflow_dont, /* complain_on_overflow */
557 ppc64_elf_unhandled_reloc, /* special_function */
558 "R_PPC64_COPY", /* name */
559 FALSE, /* partial_inplace */
560 0, /* src_mask */
561 0, /* dst_mask */
562 FALSE), /* pcrel_offset */
563
564 /* Like R_PPC64_ADDR64, but used when setting global offset table
565 entries. */
566 HOWTO (R_PPC64_GLOB_DAT, /* type */
567 0, /* rightshift */
568 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
569 64, /* bitsize */
570 FALSE, /* pc_relative */
571 0, /* bitpos */
572 complain_overflow_dont, /* complain_on_overflow */
573 ppc64_elf_unhandled_reloc, /* special_function */
574 "R_PPC64_GLOB_DAT", /* name */
575 FALSE, /* partial_inplace */
576 0, /* src_mask */
577 ONES (64), /* dst_mask */
578 FALSE), /* pcrel_offset */
579
580 /* Created by the link editor. Marks a procedure linkage table
581 entry for a symbol. */
582 HOWTO (R_PPC64_JMP_SLOT, /* type */
583 0, /* rightshift */
584 0, /* size (0 = byte, 1 = short, 2 = long) */
585 0, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont, /* complain_on_overflow */
589 ppc64_elf_unhandled_reloc, /* special_function */
590 "R_PPC64_JMP_SLOT", /* name */
591 FALSE, /* partial_inplace */
592 0, /* src_mask */
593 0, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 /* Used only by the dynamic linker. When the object is run, this
597 doubleword64 is set to the load address of the object, plus the
598 addend. */
599 HOWTO (R_PPC64_RELATIVE, /* type */
600 0, /* rightshift */
601 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
602 64, /* bitsize */
603 FALSE, /* pc_relative */
604 0, /* bitpos */
605 complain_overflow_dont, /* complain_on_overflow */
606 bfd_elf_generic_reloc, /* special_function */
607 "R_PPC64_RELATIVE", /* name */
608 FALSE, /* partial_inplace */
609 0, /* src_mask */
610 ONES (64), /* dst_mask */
611 FALSE), /* pcrel_offset */
612
613 /* Like R_PPC64_ADDR32, but may be unaligned. */
614 HOWTO (R_PPC64_UADDR32, /* type */
615 0, /* rightshift */
616 2, /* size (0 = byte, 1 = short, 2 = long) */
617 32, /* bitsize */
618 FALSE, /* pc_relative */
619 0, /* bitpos */
620 complain_overflow_bitfield, /* complain_on_overflow */
621 bfd_elf_generic_reloc, /* special_function */
622 "R_PPC64_UADDR32", /* name */
623 FALSE, /* partial_inplace */
624 0, /* src_mask */
625 0xffffffff, /* dst_mask */
626 FALSE), /* pcrel_offset */
627
628 /* Like R_PPC64_ADDR16, but may be unaligned. */
629 HOWTO (R_PPC64_UADDR16, /* type */
630 0, /* rightshift */
631 1, /* size (0 = byte, 1 = short, 2 = long) */
632 16, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_bitfield, /* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_PPC64_UADDR16", /* name */
638 FALSE, /* partial_inplace */
639 0, /* src_mask */
640 0xffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 /* 32-bit PC relative. */
644 HOWTO (R_PPC64_REL32, /* type */
645 0, /* rightshift */
646 2, /* size (0 = byte, 1 = short, 2 = long) */
647 32, /* bitsize */
648 TRUE, /* pc_relative */
649 0, /* bitpos */
650 complain_overflow_signed, /* complain_on_overflow */
651 bfd_elf_generic_reloc, /* special_function */
652 "R_PPC64_REL32", /* name */
653 FALSE, /* partial_inplace */
654 0, /* src_mask */
655 0xffffffff, /* dst_mask */
656 TRUE), /* pcrel_offset */
657
658 /* 32-bit relocation to the symbol's procedure linkage table. */
659 HOWTO (R_PPC64_PLT32, /* type */
660 0, /* rightshift */
661 2, /* size (0 = byte, 1 = short, 2 = long) */
662 32, /* bitsize */
663 FALSE, /* pc_relative */
664 0, /* bitpos */
665 complain_overflow_bitfield, /* complain_on_overflow */
666 ppc64_elf_unhandled_reloc, /* special_function */
667 "R_PPC64_PLT32", /* name */
668 FALSE, /* partial_inplace */
669 0, /* src_mask */
670 0xffffffff, /* dst_mask */
671 FALSE), /* pcrel_offset */
672
673 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
674 FIXME: R_PPC64_PLTREL32 not supported. */
675 HOWTO (R_PPC64_PLTREL32, /* type */
676 0, /* rightshift */
677 2, /* size (0 = byte, 1 = short, 2 = long) */
678 32, /* bitsize */
679 TRUE, /* pc_relative */
680 0, /* bitpos */
681 complain_overflow_signed, /* complain_on_overflow */
682 bfd_elf_generic_reloc, /* special_function */
683 "R_PPC64_PLTREL32", /* name */
684 FALSE, /* partial_inplace */
685 0, /* src_mask */
686 0xffffffff, /* dst_mask */
687 TRUE), /* pcrel_offset */
688
689 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
690 the symbol. */
691 HOWTO (R_PPC64_PLT16_LO, /* type */
692 0, /* rightshift */
693 1, /* size (0 = byte, 1 = short, 2 = long) */
694 16, /* bitsize */
695 FALSE, /* pc_relative */
696 0, /* bitpos */
697 complain_overflow_dont, /* complain_on_overflow */
698 ppc64_elf_unhandled_reloc, /* special_function */
699 "R_PPC64_PLT16_LO", /* name */
700 FALSE, /* partial_inplace */
701 0, /* src_mask */
702 0xffff, /* dst_mask */
703 FALSE), /* pcrel_offset */
704
705 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
706 the symbol. */
707 HOWTO (R_PPC64_PLT16_HI, /* type */
708 16, /* rightshift */
709 1, /* size (0 = byte, 1 = short, 2 = long) */
710 16, /* bitsize */
711 FALSE, /* pc_relative */
712 0, /* bitpos */
713 complain_overflow_signed, /* complain_on_overflow */
714 ppc64_elf_unhandled_reloc, /* special_function */
715 "R_PPC64_PLT16_HI", /* name */
716 FALSE, /* partial_inplace */
717 0, /* src_mask */
718 0xffff, /* dst_mask */
719 FALSE), /* pcrel_offset */
720
721 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
722 the symbol. */
723 HOWTO (R_PPC64_PLT16_HA, /* type */
724 16, /* rightshift */
725 1, /* size (0 = byte, 1 = short, 2 = long) */
726 16, /* bitsize */
727 FALSE, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_signed, /* complain_on_overflow */
730 ppc64_elf_unhandled_reloc, /* special_function */
731 "R_PPC64_PLT16_HA", /* name */
732 FALSE, /* partial_inplace */
733 0, /* src_mask */
734 0xffff, /* dst_mask */
735 FALSE), /* pcrel_offset */
736
737 /* 16-bit section relative relocation. */
738 HOWTO (R_PPC64_SECTOFF, /* type */
739 0, /* rightshift */
740 1, /* size (0 = byte, 1 = short, 2 = long) */
741 16, /* bitsize */
742 FALSE, /* pc_relative */
743 0, /* bitpos */
744 complain_overflow_signed, /* complain_on_overflow */
745 ppc64_elf_sectoff_reloc, /* special_function */
746 "R_PPC64_SECTOFF", /* name */
747 FALSE, /* partial_inplace */
748 0, /* src_mask */
749 0xffff, /* dst_mask */
750 FALSE), /* pcrel_offset */
751
752 /* Like R_PPC64_SECTOFF, but no overflow warning. */
753 HOWTO (R_PPC64_SECTOFF_LO, /* type */
754 0, /* rightshift */
755 1, /* size (0 = byte, 1 = short, 2 = long) */
756 16, /* bitsize */
757 FALSE, /* pc_relative */
758 0, /* bitpos */
759 complain_overflow_dont, /* complain_on_overflow */
760 ppc64_elf_sectoff_reloc, /* special_function */
761 "R_PPC64_SECTOFF_LO", /* name */
762 FALSE, /* partial_inplace */
763 0, /* src_mask */
764 0xffff, /* dst_mask */
765 FALSE), /* pcrel_offset */
766
767 /* 16-bit upper half section relative relocation. */
768 HOWTO (R_PPC64_SECTOFF_HI, /* type */
769 16, /* rightshift */
770 1, /* size (0 = byte, 1 = short, 2 = long) */
771 16, /* bitsize */
772 FALSE, /* pc_relative */
773 0, /* bitpos */
774 complain_overflow_signed, /* complain_on_overflow */
775 ppc64_elf_sectoff_reloc, /* special_function */
776 "R_PPC64_SECTOFF_HI", /* name */
777 FALSE, /* partial_inplace */
778 0, /* src_mask */
779 0xffff, /* dst_mask */
780 FALSE), /* pcrel_offset */
781
782 /* 16-bit upper half adjusted section relative relocation. */
783 HOWTO (R_PPC64_SECTOFF_HA, /* type */
784 16, /* rightshift */
785 1, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 FALSE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_signed, /* complain_on_overflow */
790 ppc64_elf_sectoff_ha_reloc, /* special_function */
791 "R_PPC64_SECTOFF_HA", /* name */
792 FALSE, /* partial_inplace */
793 0, /* src_mask */
794 0xffff, /* dst_mask */
795 FALSE), /* pcrel_offset */
796
797 /* Like R_PPC64_REL24 without touching the two least significant bits. */
798 HOWTO (R_PPC64_REL30, /* type */
799 2, /* rightshift */
800 2, /* size (0 = byte, 1 = short, 2 = long) */
801 30, /* bitsize */
802 TRUE, /* pc_relative */
803 0, /* bitpos */
804 complain_overflow_dont, /* complain_on_overflow */
805 bfd_elf_generic_reloc, /* special_function */
806 "R_PPC64_REL30", /* name */
807 FALSE, /* partial_inplace */
808 0, /* src_mask */
809 0xfffffffc, /* dst_mask */
810 TRUE), /* pcrel_offset */
811
812 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
813
814 /* A standard 64-bit relocation. */
815 HOWTO (R_PPC64_ADDR64, /* type */
816 0, /* rightshift */
817 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
818 64, /* bitsize */
819 FALSE, /* pc_relative */
820 0, /* bitpos */
821 complain_overflow_dont, /* complain_on_overflow */
822 bfd_elf_generic_reloc, /* special_function */
823 "R_PPC64_ADDR64", /* name */
824 FALSE, /* partial_inplace */
825 0, /* src_mask */
826 ONES (64), /* dst_mask */
827 FALSE), /* pcrel_offset */
828
829 /* The bits 32-47 of an address. */
830 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
831 32, /* rightshift */
832 1, /* size (0 = byte, 1 = short, 2 = long) */
833 16, /* bitsize */
834 FALSE, /* pc_relative */
835 0, /* bitpos */
836 complain_overflow_dont, /* complain_on_overflow */
837 bfd_elf_generic_reloc, /* special_function */
838 "R_PPC64_ADDR16_HIGHER", /* name */
839 FALSE, /* partial_inplace */
840 0, /* src_mask */
841 0xffff, /* dst_mask */
842 FALSE), /* pcrel_offset */
843
844 /* The bits 32-47 of an address, plus 1 if the contents of the low
845 16 bits, treated as a signed number, is negative. */
846 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
847 32, /* rightshift */
848 1, /* size (0 = byte, 1 = short, 2 = long) */
849 16, /* bitsize */
850 FALSE, /* pc_relative */
851 0, /* bitpos */
852 complain_overflow_dont, /* complain_on_overflow */
853 ppc64_elf_ha_reloc, /* special_function */
854 "R_PPC64_ADDR16_HIGHERA", /* name */
855 FALSE, /* partial_inplace */
856 0, /* src_mask */
857 0xffff, /* dst_mask */
858 FALSE), /* pcrel_offset */
859
860 /* The bits 48-63 of an address. */
861 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
862 48, /* rightshift */
863 1, /* size (0 = byte, 1 = short, 2 = long) */
864 16, /* bitsize */
865 FALSE, /* pc_relative */
866 0, /* bitpos */
867 complain_overflow_dont, /* complain_on_overflow */
868 bfd_elf_generic_reloc, /* special_function */
869 "R_PPC64_ADDR16_HIGHEST", /* name */
870 FALSE, /* partial_inplace */
871 0, /* src_mask */
872 0xffff, /* dst_mask */
873 FALSE), /* pcrel_offset */
874
875 /* The bits 48-63 of an address, plus 1 if the contents of the low
876 16 bits, treated as a signed number, is negative. */
877 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
878 48, /* rightshift */
879 1, /* size (0 = byte, 1 = short, 2 = long) */
880 16, /* bitsize */
881 FALSE, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_dont, /* complain_on_overflow */
884 ppc64_elf_ha_reloc, /* special_function */
885 "R_PPC64_ADDR16_HIGHESTA", /* name */
886 FALSE, /* partial_inplace */
887 0, /* src_mask */
888 0xffff, /* dst_mask */
889 FALSE), /* pcrel_offset */
890
891 /* Like ADDR64, but may be unaligned. */
892 HOWTO (R_PPC64_UADDR64, /* type */
893 0, /* rightshift */
894 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
895 64, /* bitsize */
896 FALSE, /* pc_relative */
897 0, /* bitpos */
898 complain_overflow_dont, /* complain_on_overflow */
899 bfd_elf_generic_reloc, /* special_function */
900 "R_PPC64_UADDR64", /* name */
901 FALSE, /* partial_inplace */
902 0, /* src_mask */
903 ONES (64), /* dst_mask */
904 FALSE), /* pcrel_offset */
905
906 /* 64-bit relative relocation. */
907 HOWTO (R_PPC64_REL64, /* type */
908 0, /* rightshift */
909 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
910 64, /* bitsize */
911 TRUE, /* pc_relative */
912 0, /* bitpos */
913 complain_overflow_dont, /* complain_on_overflow */
914 bfd_elf_generic_reloc, /* special_function */
915 "R_PPC64_REL64", /* name */
916 FALSE, /* partial_inplace */
917 0, /* src_mask */
918 ONES (64), /* dst_mask */
919 TRUE), /* pcrel_offset */
920
921 /* 64-bit relocation to the symbol's procedure linkage table. */
922 HOWTO (R_PPC64_PLT64, /* type */
923 0, /* rightshift */
924 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
925 64, /* bitsize */
926 FALSE, /* pc_relative */
927 0, /* bitpos */
928 complain_overflow_dont, /* complain_on_overflow */
929 ppc64_elf_unhandled_reloc, /* special_function */
930 "R_PPC64_PLT64", /* name */
931 FALSE, /* partial_inplace */
932 0, /* src_mask */
933 ONES (64), /* dst_mask */
934 FALSE), /* pcrel_offset */
935
936 /* 64-bit PC relative relocation to the symbol's procedure linkage
937 table. */
938 /* FIXME: R_PPC64_PLTREL64 not supported. */
939 HOWTO (R_PPC64_PLTREL64, /* type */
940 0, /* rightshift */
941 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
942 64, /* bitsize */
943 TRUE, /* pc_relative */
944 0, /* bitpos */
945 complain_overflow_dont, /* complain_on_overflow */
946 ppc64_elf_unhandled_reloc, /* special_function */
947 "R_PPC64_PLTREL64", /* name */
948 FALSE, /* partial_inplace */
949 0, /* src_mask */
950 ONES (64), /* dst_mask */
951 TRUE), /* pcrel_offset */
952
953 /* 16 bit TOC-relative relocation. */
954
955 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
956 HOWTO (R_PPC64_TOC16, /* type */
957 0, /* rightshift */
958 1, /* size (0 = byte, 1 = short, 2 = long) */
959 16, /* bitsize */
960 FALSE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_signed, /* complain_on_overflow */
963 ppc64_elf_toc_reloc, /* special_function */
964 "R_PPC64_TOC16", /* name */
965 FALSE, /* partial_inplace */
966 0, /* src_mask */
967 0xffff, /* dst_mask */
968 FALSE), /* pcrel_offset */
969
970 /* 16 bit TOC-relative relocation without overflow. */
971
972 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
973 HOWTO (R_PPC64_TOC16_LO, /* type */
974 0, /* rightshift */
975 1, /* size (0 = byte, 1 = short, 2 = long) */
976 16, /* bitsize */
977 FALSE, /* pc_relative */
978 0, /* bitpos */
979 complain_overflow_dont, /* complain_on_overflow */
980 ppc64_elf_toc_reloc, /* special_function */
981 "R_PPC64_TOC16_LO", /* name */
982 FALSE, /* partial_inplace */
983 0, /* src_mask */
984 0xffff, /* dst_mask */
985 FALSE), /* pcrel_offset */
986
987 /* 16 bit TOC-relative relocation, high 16 bits. */
988
989 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
990 HOWTO (R_PPC64_TOC16_HI, /* type */
991 16, /* rightshift */
992 1, /* size (0 = byte, 1 = short, 2 = long) */
993 16, /* bitsize */
994 FALSE, /* pc_relative */
995 0, /* bitpos */
996 complain_overflow_signed, /* complain_on_overflow */
997 ppc64_elf_toc_reloc, /* special_function */
998 "R_PPC64_TOC16_HI", /* name */
999 FALSE, /* partial_inplace */
1000 0, /* src_mask */
1001 0xffff, /* dst_mask */
1002 FALSE), /* pcrel_offset */
1003
1004 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
1005 contents of the low 16 bits, treated as a signed number, is
1006 negative. */
1007
1008 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
1009 HOWTO (R_PPC64_TOC16_HA, /* type */
1010 16, /* rightshift */
1011 1, /* size (0 = byte, 1 = short, 2 = long) */
1012 16, /* bitsize */
1013 FALSE, /* pc_relative */
1014 0, /* bitpos */
1015 complain_overflow_signed, /* complain_on_overflow */
1016 ppc64_elf_toc_ha_reloc, /* special_function */
1017 "R_PPC64_TOC16_HA", /* name */
1018 FALSE, /* partial_inplace */
1019 0, /* src_mask */
1020 0xffff, /* dst_mask */
1021 FALSE), /* pcrel_offset */
1022
1023 /* 64-bit relocation; insert value of TOC base (.TOC.). */
1024
1025 /* R_PPC64_TOC 51 doubleword64 .TOC. */
1026 HOWTO (R_PPC64_TOC, /* type */
1027 0, /* rightshift */
1028 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1029 64, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 ppc64_elf_toc64_reloc, /* special_function */
1034 "R_PPC64_TOC", /* name */
1035 FALSE, /* partial_inplace */
1036 0, /* src_mask */
1037 ONES (64), /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Like R_PPC64_GOT16, but also informs the link editor that the
1041 value to relocate may (!) refer to a PLT entry which the link
1042 editor (a) may replace with the symbol value. If the link editor
1043 is unable to fully resolve the symbol, it may (b) create a PLT
1044 entry and store the address to the new PLT entry in the GOT.
1045 This permits lazy resolution of function symbols at run time.
1046 The link editor may also skip all of this and just (c) emit a
1047 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1048 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1049 HOWTO (R_PPC64_PLTGOT16, /* type */
1050 0, /* rightshift */
1051 1, /* size (0 = byte, 1 = short, 2 = long) */
1052 16, /* bitsize */
1053 FALSE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_signed, /* complain_on_overflow */
1056 ppc64_elf_unhandled_reloc, /* special_function */
1057 "R_PPC64_PLTGOT16", /* name */
1058 FALSE, /* partial_inplace */
1059 0, /* src_mask */
1060 0xffff, /* dst_mask */
1061 FALSE), /* pcrel_offset */
1062
1063 /* Like R_PPC64_PLTGOT16, but without overflow. */
1064 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1065 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1066 0, /* rightshift */
1067 1, /* size (0 = byte, 1 = short, 2 = long) */
1068 16, /* bitsize */
1069 FALSE, /* pc_relative */
1070 0, /* bitpos */
1071 complain_overflow_dont, /* complain_on_overflow */
1072 ppc64_elf_unhandled_reloc, /* special_function */
1073 "R_PPC64_PLTGOT16_LO", /* name */
1074 FALSE, /* partial_inplace */
1075 0, /* src_mask */
1076 0xffff, /* dst_mask */
1077 FALSE), /* pcrel_offset */
1078
1079 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1080 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1081 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1082 16, /* rightshift */
1083 1, /* size (0 = byte, 1 = short, 2 = long) */
1084 16, /* bitsize */
1085 FALSE, /* pc_relative */
1086 0, /* bitpos */
1087 complain_overflow_signed, /* complain_on_overflow */
1088 ppc64_elf_unhandled_reloc, /* special_function */
1089 "R_PPC64_PLTGOT16_HI", /* name */
1090 FALSE, /* partial_inplace */
1091 0, /* src_mask */
1092 0xffff, /* dst_mask */
1093 FALSE), /* pcrel_offset */
1094
1095 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1096 1 if the contents of the low 16 bits, treated as a signed number,
1097 is negative. */
1098 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1099 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1100 16, /* rightshift */
1101 1, /* size (0 = byte, 1 = short, 2 = long) */
1102 16, /* bitsize */
1103 FALSE, /* pc_relative */
1104 0, /* bitpos */
1105 complain_overflow_signed, /* complain_on_overflow */
1106 ppc64_elf_unhandled_reloc, /* special_function */
1107 "R_PPC64_PLTGOT16_HA", /* name */
1108 FALSE, /* partial_inplace */
1109 0, /* src_mask */
1110 0xffff, /* dst_mask */
1111 FALSE), /* pcrel_offset */
1112
1113 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1114 HOWTO (R_PPC64_ADDR16_DS, /* type */
1115 0, /* rightshift */
1116 1, /* size (0 = byte, 1 = short, 2 = long) */
1117 16, /* bitsize */
1118 FALSE, /* pc_relative */
1119 0, /* bitpos */
1120 complain_overflow_signed, /* complain_on_overflow */
1121 bfd_elf_generic_reloc, /* special_function */
1122 "R_PPC64_ADDR16_DS", /* name */
1123 FALSE, /* partial_inplace */
1124 0, /* src_mask */
1125 0xfffc, /* dst_mask */
1126 FALSE), /* pcrel_offset */
1127
1128 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1129 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1130 0, /* rightshift */
1131 1, /* size (0 = byte, 1 = short, 2 = long) */
1132 16, /* bitsize */
1133 FALSE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont,/* complain_on_overflow */
1136 bfd_elf_generic_reloc, /* special_function */
1137 "R_PPC64_ADDR16_LO_DS",/* name */
1138 FALSE, /* partial_inplace */
1139 0, /* src_mask */
1140 0xfffc, /* dst_mask */
1141 FALSE), /* pcrel_offset */
1142
1143 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1144 HOWTO (R_PPC64_GOT16_DS, /* type */
1145 0, /* rightshift */
1146 1, /* size (0 = byte, 1 = short, 2 = long) */
1147 16, /* bitsize */
1148 FALSE, /* pc_relative */
1149 0, /* bitpos */
1150 complain_overflow_signed, /* complain_on_overflow */
1151 ppc64_elf_unhandled_reloc, /* special_function */
1152 "R_PPC64_GOT16_DS", /* name */
1153 FALSE, /* partial_inplace */
1154 0, /* src_mask */
1155 0xfffc, /* dst_mask */
1156 FALSE), /* pcrel_offset */
1157
1158 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1159 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1160 0, /* rightshift */
1161 1, /* size (0 = byte, 1 = short, 2 = long) */
1162 16, /* bitsize */
1163 FALSE, /* pc_relative */
1164 0, /* bitpos */
1165 complain_overflow_dont, /* complain_on_overflow */
1166 ppc64_elf_unhandled_reloc, /* special_function */
1167 "R_PPC64_GOT16_LO_DS", /* name */
1168 FALSE, /* partial_inplace */
1169 0, /* src_mask */
1170 0xfffc, /* dst_mask */
1171 FALSE), /* pcrel_offset */
1172
1173 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1174 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1175 0, /* rightshift */
1176 1, /* size (0 = byte, 1 = short, 2 = long) */
1177 16, /* bitsize */
1178 FALSE, /* pc_relative */
1179 0, /* bitpos */
1180 complain_overflow_dont, /* complain_on_overflow */
1181 ppc64_elf_unhandled_reloc, /* special_function */
1182 "R_PPC64_PLT16_LO_DS", /* name */
1183 FALSE, /* partial_inplace */
1184 0, /* src_mask */
1185 0xfffc, /* dst_mask */
1186 FALSE), /* pcrel_offset */
1187
1188 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1189 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1190 0, /* rightshift */
1191 1, /* size (0 = byte, 1 = short, 2 = long) */
1192 16, /* bitsize */
1193 FALSE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_signed, /* complain_on_overflow */
1196 ppc64_elf_sectoff_reloc, /* special_function */
1197 "R_PPC64_SECTOFF_DS", /* name */
1198 FALSE, /* partial_inplace */
1199 0, /* src_mask */
1200 0xfffc, /* dst_mask */
1201 FALSE), /* pcrel_offset */
1202
1203 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1204 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1205 0, /* rightshift */
1206 1, /* size (0 = byte, 1 = short, 2 = long) */
1207 16, /* bitsize */
1208 FALSE, /* pc_relative */
1209 0, /* bitpos */
1210 complain_overflow_dont, /* complain_on_overflow */
1211 ppc64_elf_sectoff_reloc, /* special_function */
1212 "R_PPC64_SECTOFF_LO_DS",/* name */
1213 FALSE, /* partial_inplace */
1214 0, /* src_mask */
1215 0xfffc, /* dst_mask */
1216 FALSE), /* pcrel_offset */
1217
1218 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1219 HOWTO (R_PPC64_TOC16_DS, /* type */
1220 0, /* rightshift */
1221 1, /* size (0 = byte, 1 = short, 2 = long) */
1222 16, /* bitsize */
1223 FALSE, /* pc_relative */
1224 0, /* bitpos */
1225 complain_overflow_signed, /* complain_on_overflow */
1226 ppc64_elf_toc_reloc, /* special_function */
1227 "R_PPC64_TOC16_DS", /* name */
1228 FALSE, /* partial_inplace */
1229 0, /* src_mask */
1230 0xfffc, /* dst_mask */
1231 FALSE), /* pcrel_offset */
1232
1233 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1234 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1235 0, /* rightshift */
1236 1, /* size (0 = byte, 1 = short, 2 = long) */
1237 16, /* bitsize */
1238 FALSE, /* pc_relative */
1239 0, /* bitpos */
1240 complain_overflow_dont, /* complain_on_overflow */
1241 ppc64_elf_toc_reloc, /* special_function */
1242 "R_PPC64_TOC16_LO_DS", /* name */
1243 FALSE, /* partial_inplace */
1244 0, /* src_mask */
1245 0xfffc, /* dst_mask */
1246 FALSE), /* pcrel_offset */
1247
1248 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1249 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1250 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1251 0, /* rightshift */
1252 1, /* size (0 = byte, 1 = short, 2 = long) */
1253 16, /* bitsize */
1254 FALSE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_signed, /* complain_on_overflow */
1257 ppc64_elf_unhandled_reloc, /* special_function */
1258 "R_PPC64_PLTGOT16_DS", /* name */
1259 FALSE, /* partial_inplace */
1260 0, /* src_mask */
1261 0xfffc, /* dst_mask */
1262 FALSE), /* pcrel_offset */
1263
1264 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1265 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1266 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1267 0, /* rightshift */
1268 1, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont, /* complain_on_overflow */
1273 ppc64_elf_unhandled_reloc, /* special_function */
1274 "R_PPC64_PLTGOT16_LO_DS",/* name */
1275 FALSE, /* partial_inplace */
1276 0, /* src_mask */
1277 0xfffc, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 /* Marker relocs for TLS. */
1281 HOWTO (R_PPC64_TLS,
1282 0, /* rightshift */
1283 2, /* size (0 = byte, 1 = short, 2 = long) */
1284 32, /* bitsize */
1285 FALSE, /* pc_relative */
1286 0, /* bitpos */
1287 complain_overflow_dont, /* complain_on_overflow */
1288 bfd_elf_generic_reloc, /* special_function */
1289 "R_PPC64_TLS", /* name */
1290 FALSE, /* partial_inplace */
1291 0, /* src_mask */
1292 0, /* dst_mask */
1293 FALSE), /* pcrel_offset */
1294
1295 HOWTO (R_PPC64_TLSGD,
1296 0, /* rightshift */
1297 2, /* size (0 = byte, 1 = short, 2 = long) */
1298 32, /* bitsize */
1299 FALSE, /* pc_relative */
1300 0, /* bitpos */
1301 complain_overflow_dont, /* complain_on_overflow */
1302 bfd_elf_generic_reloc, /* special_function */
1303 "R_PPC64_TLSGD", /* name */
1304 FALSE, /* partial_inplace */
1305 0, /* src_mask */
1306 0, /* dst_mask */
1307 FALSE), /* pcrel_offset */
1308
1309 HOWTO (R_PPC64_TLSLD,
1310 0, /* rightshift */
1311 2, /* size (0 = byte, 1 = short, 2 = long) */
1312 32, /* bitsize */
1313 FALSE, /* pc_relative */
1314 0, /* bitpos */
1315 complain_overflow_dont, /* complain_on_overflow */
1316 bfd_elf_generic_reloc, /* special_function */
1317 "R_PPC64_TLSLD", /* name */
1318 FALSE, /* partial_inplace */
1319 0, /* src_mask */
1320 0, /* dst_mask */
1321 FALSE), /* pcrel_offset */
1322
1323 HOWTO (R_PPC64_TOCSAVE,
1324 0, /* rightshift */
1325 2, /* size (0 = byte, 1 = short, 2 = long) */
1326 32, /* bitsize */
1327 FALSE, /* pc_relative */
1328 0, /* bitpos */
1329 complain_overflow_dont, /* complain_on_overflow */
1330 bfd_elf_generic_reloc, /* special_function */
1331 "R_PPC64_TOCSAVE", /* name */
1332 FALSE, /* partial_inplace */
1333 0, /* src_mask */
1334 0, /* dst_mask */
1335 FALSE), /* pcrel_offset */
1336
1337 /* Computes the load module index of the load module that contains the
1338 definition of its TLS sym. */
1339 HOWTO (R_PPC64_DTPMOD64,
1340 0, /* rightshift */
1341 4, /* size (0 = byte, 1 = short, 2 = long) */
1342 64, /* bitsize */
1343 FALSE, /* pc_relative */
1344 0, /* bitpos */
1345 complain_overflow_dont, /* complain_on_overflow */
1346 ppc64_elf_unhandled_reloc, /* special_function */
1347 "R_PPC64_DTPMOD64", /* name */
1348 FALSE, /* partial_inplace */
1349 0, /* src_mask */
1350 ONES (64), /* dst_mask */
1351 FALSE), /* pcrel_offset */
1352
1353 /* Computes a dtv-relative displacement, the difference between the value
1354 of sym+add and the base address of the thread-local storage block that
1355 contains the definition of sym, minus 0x8000. */
1356 HOWTO (R_PPC64_DTPREL64,
1357 0, /* rightshift */
1358 4, /* size (0 = byte, 1 = short, 2 = long) */
1359 64, /* bitsize */
1360 FALSE, /* pc_relative */
1361 0, /* bitpos */
1362 complain_overflow_dont, /* complain_on_overflow */
1363 ppc64_elf_unhandled_reloc, /* special_function */
1364 "R_PPC64_DTPREL64", /* name */
1365 FALSE, /* partial_inplace */
1366 0, /* src_mask */
1367 ONES (64), /* dst_mask */
1368 FALSE), /* pcrel_offset */
1369
1370 /* A 16 bit dtprel reloc. */
1371 HOWTO (R_PPC64_DTPREL16,
1372 0, /* rightshift */
1373 1, /* size (0 = byte, 1 = short, 2 = long) */
1374 16, /* bitsize */
1375 FALSE, /* pc_relative */
1376 0, /* bitpos */
1377 complain_overflow_signed, /* complain_on_overflow */
1378 ppc64_elf_unhandled_reloc, /* special_function */
1379 "R_PPC64_DTPREL16", /* name */
1380 FALSE, /* partial_inplace */
1381 0, /* src_mask */
1382 0xffff, /* dst_mask */
1383 FALSE), /* pcrel_offset */
1384
1385 /* Like DTPREL16, but no overflow. */
1386 HOWTO (R_PPC64_DTPREL16_LO,
1387 0, /* rightshift */
1388 1, /* size (0 = byte, 1 = short, 2 = long) */
1389 16, /* bitsize */
1390 FALSE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_dont, /* complain_on_overflow */
1393 ppc64_elf_unhandled_reloc, /* special_function */
1394 "R_PPC64_DTPREL16_LO", /* name */
1395 FALSE, /* partial_inplace */
1396 0, /* src_mask */
1397 0xffff, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1399
1400 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1401 HOWTO (R_PPC64_DTPREL16_HI,
1402 16, /* rightshift */
1403 1, /* size (0 = byte, 1 = short, 2 = long) */
1404 16, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_signed, /* complain_on_overflow */
1408 ppc64_elf_unhandled_reloc, /* special_function */
1409 "R_PPC64_DTPREL16_HI", /* name */
1410 FALSE, /* partial_inplace */
1411 0, /* src_mask */
1412 0xffff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1416 HOWTO (R_PPC64_DTPREL16_HA,
1417 16, /* rightshift */
1418 1, /* size (0 = byte, 1 = short, 2 = long) */
1419 16, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_signed, /* complain_on_overflow */
1423 ppc64_elf_unhandled_reloc, /* special_function */
1424 "R_PPC64_DTPREL16_HA", /* name */
1425 FALSE, /* partial_inplace */
1426 0, /* src_mask */
1427 0xffff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1431 HOWTO (R_PPC64_DTPREL16_HIGHER,
1432 32, /* rightshift */
1433 1, /* size (0 = byte, 1 = short, 2 = long) */
1434 16, /* bitsize */
1435 FALSE, /* pc_relative */
1436 0, /* bitpos */
1437 complain_overflow_dont, /* complain_on_overflow */
1438 ppc64_elf_unhandled_reloc, /* special_function */
1439 "R_PPC64_DTPREL16_HIGHER", /* name */
1440 FALSE, /* partial_inplace */
1441 0, /* src_mask */
1442 0xffff, /* dst_mask */
1443 FALSE), /* pcrel_offset */
1444
1445 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1446 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1447 32, /* rightshift */
1448 1, /* size (0 = byte, 1 = short, 2 = long) */
1449 16, /* bitsize */
1450 FALSE, /* pc_relative */
1451 0, /* bitpos */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 ppc64_elf_unhandled_reloc, /* special_function */
1454 "R_PPC64_DTPREL16_HIGHERA", /* name */
1455 FALSE, /* partial_inplace */
1456 0, /* src_mask */
1457 0xffff, /* dst_mask */
1458 FALSE), /* pcrel_offset */
1459
1460 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1461 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1462 48, /* rightshift */
1463 1, /* size (0 = byte, 1 = short, 2 = long) */
1464 16, /* bitsize */
1465 FALSE, /* pc_relative */
1466 0, /* bitpos */
1467 complain_overflow_dont, /* complain_on_overflow */
1468 ppc64_elf_unhandled_reloc, /* special_function */
1469 "R_PPC64_DTPREL16_HIGHEST", /* name */
1470 FALSE, /* partial_inplace */
1471 0, /* src_mask */
1472 0xffff, /* dst_mask */
1473 FALSE), /* pcrel_offset */
1474
1475 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1476 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1477 48, /* rightshift */
1478 1, /* size (0 = byte, 1 = short, 2 = long) */
1479 16, /* bitsize */
1480 FALSE, /* pc_relative */
1481 0, /* bitpos */
1482 complain_overflow_dont, /* complain_on_overflow */
1483 ppc64_elf_unhandled_reloc, /* special_function */
1484 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1485 FALSE, /* partial_inplace */
1486 0, /* src_mask */
1487 0xffff, /* dst_mask */
1488 FALSE), /* pcrel_offset */
1489
1490 /* Like DTPREL16, but for insns with a DS field. */
1491 HOWTO (R_PPC64_DTPREL16_DS,
1492 0, /* rightshift */
1493 1, /* size (0 = byte, 1 = short, 2 = long) */
1494 16, /* bitsize */
1495 FALSE, /* pc_relative */
1496 0, /* bitpos */
1497 complain_overflow_signed, /* complain_on_overflow */
1498 ppc64_elf_unhandled_reloc, /* special_function */
1499 "R_PPC64_DTPREL16_DS", /* name */
1500 FALSE, /* partial_inplace */
1501 0, /* src_mask */
1502 0xfffc, /* dst_mask */
1503 FALSE), /* pcrel_offset */
1504
1505 /* Like DTPREL16_DS, but no overflow. */
1506 HOWTO (R_PPC64_DTPREL16_LO_DS,
1507 0, /* rightshift */
1508 1, /* size (0 = byte, 1 = short, 2 = long) */
1509 16, /* bitsize */
1510 FALSE, /* pc_relative */
1511 0, /* bitpos */
1512 complain_overflow_dont, /* complain_on_overflow */
1513 ppc64_elf_unhandled_reloc, /* special_function */
1514 "R_PPC64_DTPREL16_LO_DS", /* name */
1515 FALSE, /* partial_inplace */
1516 0, /* src_mask */
1517 0xfffc, /* dst_mask */
1518 FALSE), /* pcrel_offset */
1519
1520 /* Computes a tp-relative displacement, the difference between the value of
1521 sym+add and the value of the thread pointer (r13). */
1522 HOWTO (R_PPC64_TPREL64,
1523 0, /* rightshift */
1524 4, /* size (0 = byte, 1 = short, 2 = long) */
1525 64, /* bitsize */
1526 FALSE, /* pc_relative */
1527 0, /* bitpos */
1528 complain_overflow_dont, /* complain_on_overflow */
1529 ppc64_elf_unhandled_reloc, /* special_function */
1530 "R_PPC64_TPREL64", /* name */
1531 FALSE, /* partial_inplace */
1532 0, /* src_mask */
1533 ONES (64), /* dst_mask */
1534 FALSE), /* pcrel_offset */
1535
1536 /* A 16 bit tprel reloc. */
1537 HOWTO (R_PPC64_TPREL16,
1538 0, /* rightshift */
1539 1, /* size (0 = byte, 1 = short, 2 = long) */
1540 16, /* bitsize */
1541 FALSE, /* pc_relative */
1542 0, /* bitpos */
1543 complain_overflow_signed, /* complain_on_overflow */
1544 ppc64_elf_unhandled_reloc, /* special_function */
1545 "R_PPC64_TPREL16", /* name */
1546 FALSE, /* partial_inplace */
1547 0, /* src_mask */
1548 0xffff, /* dst_mask */
1549 FALSE), /* pcrel_offset */
1550
1551 /* Like TPREL16, but no overflow. */
1552 HOWTO (R_PPC64_TPREL16_LO,
1553 0, /* rightshift */
1554 1, /* size (0 = byte, 1 = short, 2 = long) */
1555 16, /* bitsize */
1556 FALSE, /* pc_relative */
1557 0, /* bitpos */
1558 complain_overflow_dont, /* complain_on_overflow */
1559 ppc64_elf_unhandled_reloc, /* special_function */
1560 "R_PPC64_TPREL16_LO", /* name */
1561 FALSE, /* partial_inplace */
1562 0, /* src_mask */
1563 0xffff, /* dst_mask */
1564 FALSE), /* pcrel_offset */
1565
1566 /* Like TPREL16_LO, but next higher group of 16 bits. */
1567 HOWTO (R_PPC64_TPREL16_HI,
1568 16, /* rightshift */
1569 1, /* size (0 = byte, 1 = short, 2 = long) */
1570 16, /* bitsize */
1571 FALSE, /* pc_relative */
1572 0, /* bitpos */
1573 complain_overflow_signed, /* complain_on_overflow */
1574 ppc64_elf_unhandled_reloc, /* special_function */
1575 "R_PPC64_TPREL16_HI", /* name */
1576 FALSE, /* partial_inplace */
1577 0, /* src_mask */
1578 0xffff, /* dst_mask */
1579 FALSE), /* pcrel_offset */
1580
1581 /* Like TPREL16_HI, but adjust for low 16 bits. */
1582 HOWTO (R_PPC64_TPREL16_HA,
1583 16, /* rightshift */
1584 1, /* size (0 = byte, 1 = short, 2 = long) */
1585 16, /* bitsize */
1586 FALSE, /* pc_relative */
1587 0, /* bitpos */
1588 complain_overflow_signed, /* complain_on_overflow */
1589 ppc64_elf_unhandled_reloc, /* special_function */
1590 "R_PPC64_TPREL16_HA", /* name */
1591 FALSE, /* partial_inplace */
1592 0, /* src_mask */
1593 0xffff, /* dst_mask */
1594 FALSE), /* pcrel_offset */
1595
1596 /* Like TPREL16_HI, but next higher group of 16 bits. */
1597 HOWTO (R_PPC64_TPREL16_HIGHER,
1598 32, /* rightshift */
1599 1, /* size (0 = byte, 1 = short, 2 = long) */
1600 16, /* bitsize */
1601 FALSE, /* pc_relative */
1602 0, /* bitpos */
1603 complain_overflow_dont, /* complain_on_overflow */
1604 ppc64_elf_unhandled_reloc, /* special_function */
1605 "R_PPC64_TPREL16_HIGHER", /* name */
1606 FALSE, /* partial_inplace */
1607 0, /* src_mask */
1608 0xffff, /* dst_mask */
1609 FALSE), /* pcrel_offset */
1610
1611 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1612 HOWTO (R_PPC64_TPREL16_HIGHERA,
1613 32, /* rightshift */
1614 1, /* size (0 = byte, 1 = short, 2 = long) */
1615 16, /* bitsize */
1616 FALSE, /* pc_relative */
1617 0, /* bitpos */
1618 complain_overflow_dont, /* complain_on_overflow */
1619 ppc64_elf_unhandled_reloc, /* special_function */
1620 "R_PPC64_TPREL16_HIGHERA", /* name */
1621 FALSE, /* partial_inplace */
1622 0, /* src_mask */
1623 0xffff, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1625
1626 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1627 HOWTO (R_PPC64_TPREL16_HIGHEST,
1628 48, /* rightshift */
1629 1, /* size (0 = byte, 1 = short, 2 = long) */
1630 16, /* bitsize */
1631 FALSE, /* pc_relative */
1632 0, /* bitpos */
1633 complain_overflow_dont, /* complain_on_overflow */
1634 ppc64_elf_unhandled_reloc, /* special_function */
1635 "R_PPC64_TPREL16_HIGHEST", /* name */
1636 FALSE, /* partial_inplace */
1637 0, /* src_mask */
1638 0xffff, /* dst_mask */
1639 FALSE), /* pcrel_offset */
1640
1641 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1642 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1643 48, /* rightshift */
1644 1, /* size (0 = byte, 1 = short, 2 = long) */
1645 16, /* bitsize */
1646 FALSE, /* pc_relative */
1647 0, /* bitpos */
1648 complain_overflow_dont, /* complain_on_overflow */
1649 ppc64_elf_unhandled_reloc, /* special_function */
1650 "R_PPC64_TPREL16_HIGHESTA", /* name */
1651 FALSE, /* partial_inplace */
1652 0, /* src_mask */
1653 0xffff, /* dst_mask */
1654 FALSE), /* pcrel_offset */
1655
1656 /* Like TPREL16, but for insns with a DS field. */
1657 HOWTO (R_PPC64_TPREL16_DS,
1658 0, /* rightshift */
1659 1, /* size (0 = byte, 1 = short, 2 = long) */
1660 16, /* bitsize */
1661 FALSE, /* pc_relative */
1662 0, /* bitpos */
1663 complain_overflow_signed, /* complain_on_overflow */
1664 ppc64_elf_unhandled_reloc, /* special_function */
1665 "R_PPC64_TPREL16_DS", /* name */
1666 FALSE, /* partial_inplace */
1667 0, /* src_mask */
1668 0xfffc, /* dst_mask */
1669 FALSE), /* pcrel_offset */
1670
1671 /* Like TPREL16_DS, but no overflow. */
1672 HOWTO (R_PPC64_TPREL16_LO_DS,
1673 0, /* rightshift */
1674 1, /* size (0 = byte, 1 = short, 2 = long) */
1675 16, /* bitsize */
1676 FALSE, /* pc_relative */
1677 0, /* bitpos */
1678 complain_overflow_dont, /* complain_on_overflow */
1679 ppc64_elf_unhandled_reloc, /* special_function */
1680 "R_PPC64_TPREL16_LO_DS", /* name */
1681 FALSE, /* partial_inplace */
1682 0, /* src_mask */
1683 0xfffc, /* dst_mask */
1684 FALSE), /* pcrel_offset */
1685
1686 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1687 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1688 to the first entry relative to the TOC base (r2). */
1689 HOWTO (R_PPC64_GOT_TLSGD16,
1690 0, /* rightshift */
1691 1, /* size (0 = byte, 1 = short, 2 = long) */
1692 16, /* bitsize */
1693 FALSE, /* pc_relative */
1694 0, /* bitpos */
1695 complain_overflow_signed, /* complain_on_overflow */
1696 ppc64_elf_unhandled_reloc, /* special_function */
1697 "R_PPC64_GOT_TLSGD16", /* name */
1698 FALSE, /* partial_inplace */
1699 0, /* src_mask */
1700 0xffff, /* dst_mask */
1701 FALSE), /* pcrel_offset */
1702
1703 /* Like GOT_TLSGD16, but no overflow. */
1704 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1705 0, /* rightshift */
1706 1, /* size (0 = byte, 1 = short, 2 = long) */
1707 16, /* bitsize */
1708 FALSE, /* pc_relative */
1709 0, /* bitpos */
1710 complain_overflow_dont, /* complain_on_overflow */
1711 ppc64_elf_unhandled_reloc, /* special_function */
1712 "R_PPC64_GOT_TLSGD16_LO", /* name */
1713 FALSE, /* partial_inplace */
1714 0, /* src_mask */
1715 0xffff, /* dst_mask */
1716 FALSE), /* pcrel_offset */
1717
1718 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1719 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1720 16, /* rightshift */
1721 1, /* size (0 = byte, 1 = short, 2 = long) */
1722 16, /* bitsize */
1723 FALSE, /* pc_relative */
1724 0, /* bitpos */
1725 complain_overflow_signed, /* complain_on_overflow */
1726 ppc64_elf_unhandled_reloc, /* special_function */
1727 "R_PPC64_GOT_TLSGD16_HI", /* name */
1728 FALSE, /* partial_inplace */
1729 0, /* src_mask */
1730 0xffff, /* dst_mask */
1731 FALSE), /* pcrel_offset */
1732
1733 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1734 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1735 16, /* rightshift */
1736 1, /* size (0 = byte, 1 = short, 2 = long) */
1737 16, /* bitsize */
1738 FALSE, /* pc_relative */
1739 0, /* bitpos */
1740 complain_overflow_signed, /* complain_on_overflow */
1741 ppc64_elf_unhandled_reloc, /* special_function */
1742 "R_PPC64_GOT_TLSGD16_HA", /* name */
1743 FALSE, /* partial_inplace */
1744 0, /* src_mask */
1745 0xffff, /* dst_mask */
1746 FALSE), /* pcrel_offset */
1747
1748 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1749 with values (sym+add)@dtpmod and zero, and computes the offset to the
1750 first entry relative to the TOC base (r2). */
1751 HOWTO (R_PPC64_GOT_TLSLD16,
1752 0, /* rightshift */
1753 1, /* size (0 = byte, 1 = short, 2 = long) */
1754 16, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_signed, /* complain_on_overflow */
1758 ppc64_elf_unhandled_reloc, /* special_function */
1759 "R_PPC64_GOT_TLSLD16", /* name */
1760 FALSE, /* partial_inplace */
1761 0, /* src_mask */
1762 0xffff, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* Like GOT_TLSLD16, but no overflow. */
1766 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1767 0, /* rightshift */
1768 1, /* size (0 = byte, 1 = short, 2 = long) */
1769 16, /* bitsize */
1770 FALSE, /* pc_relative */
1771 0, /* bitpos */
1772 complain_overflow_dont, /* complain_on_overflow */
1773 ppc64_elf_unhandled_reloc, /* special_function */
1774 "R_PPC64_GOT_TLSLD16_LO", /* name */
1775 FALSE, /* partial_inplace */
1776 0, /* src_mask */
1777 0xffff, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1781 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1782 16, /* rightshift */
1783 1, /* size (0 = byte, 1 = short, 2 = long) */
1784 16, /* bitsize */
1785 FALSE, /* pc_relative */
1786 0, /* bitpos */
1787 complain_overflow_signed, /* complain_on_overflow */
1788 ppc64_elf_unhandled_reloc, /* special_function */
1789 "R_PPC64_GOT_TLSLD16_HI", /* name */
1790 FALSE, /* partial_inplace */
1791 0, /* src_mask */
1792 0xffff, /* dst_mask */
1793 FALSE), /* pcrel_offset */
1794
1795 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1796 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1797 16, /* rightshift */
1798 1, /* size (0 = byte, 1 = short, 2 = long) */
1799 16, /* bitsize */
1800 FALSE, /* pc_relative */
1801 0, /* bitpos */
1802 complain_overflow_signed, /* complain_on_overflow */
1803 ppc64_elf_unhandled_reloc, /* special_function */
1804 "R_PPC64_GOT_TLSLD16_HA", /* name */
1805 FALSE, /* partial_inplace */
1806 0, /* src_mask */
1807 0xffff, /* dst_mask */
1808 FALSE), /* pcrel_offset */
1809
1810 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1811 the offset to the entry relative to the TOC base (r2). */
1812 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1813 0, /* rightshift */
1814 1, /* size (0 = byte, 1 = short, 2 = long) */
1815 16, /* bitsize */
1816 FALSE, /* pc_relative */
1817 0, /* bitpos */
1818 complain_overflow_signed, /* complain_on_overflow */
1819 ppc64_elf_unhandled_reloc, /* special_function */
1820 "R_PPC64_GOT_DTPREL16_DS", /* name */
1821 FALSE, /* partial_inplace */
1822 0, /* src_mask */
1823 0xfffc, /* dst_mask */
1824 FALSE), /* pcrel_offset */
1825
1826 /* Like GOT_DTPREL16_DS, but no overflow. */
1827 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1828 0, /* rightshift */
1829 1, /* size (0 = byte, 1 = short, 2 = long) */
1830 16, /* bitsize */
1831 FALSE, /* pc_relative */
1832 0, /* bitpos */
1833 complain_overflow_dont, /* complain_on_overflow */
1834 ppc64_elf_unhandled_reloc, /* special_function */
1835 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1836 FALSE, /* partial_inplace */
1837 0, /* src_mask */
1838 0xfffc, /* dst_mask */
1839 FALSE), /* pcrel_offset */
1840
1841 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1842 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1843 16, /* rightshift */
1844 1, /* size (0 = byte, 1 = short, 2 = long) */
1845 16, /* bitsize */
1846 FALSE, /* pc_relative */
1847 0, /* bitpos */
1848 complain_overflow_signed, /* complain_on_overflow */
1849 ppc64_elf_unhandled_reloc, /* special_function */
1850 "R_PPC64_GOT_DTPREL16_HI", /* name */
1851 FALSE, /* partial_inplace */
1852 0, /* src_mask */
1853 0xffff, /* dst_mask */
1854 FALSE), /* pcrel_offset */
1855
1856 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1857 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1858 16, /* rightshift */
1859 1, /* size (0 = byte, 1 = short, 2 = long) */
1860 16, /* bitsize */
1861 FALSE, /* pc_relative */
1862 0, /* bitpos */
1863 complain_overflow_signed, /* complain_on_overflow */
1864 ppc64_elf_unhandled_reloc, /* special_function */
1865 "R_PPC64_GOT_DTPREL16_HA", /* name */
1866 FALSE, /* partial_inplace */
1867 0, /* src_mask */
1868 0xffff, /* dst_mask */
1869 FALSE), /* pcrel_offset */
1870
1871 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1872 offset to the entry relative to the TOC base (r2). */
1873 HOWTO (R_PPC64_GOT_TPREL16_DS,
1874 0, /* rightshift */
1875 1, /* size (0 = byte, 1 = short, 2 = long) */
1876 16, /* bitsize */
1877 FALSE, /* pc_relative */
1878 0, /* bitpos */
1879 complain_overflow_signed, /* complain_on_overflow */
1880 ppc64_elf_unhandled_reloc, /* special_function */
1881 "R_PPC64_GOT_TPREL16_DS", /* name */
1882 FALSE, /* partial_inplace */
1883 0, /* src_mask */
1884 0xfffc, /* dst_mask */
1885 FALSE), /* pcrel_offset */
1886
1887 /* Like GOT_TPREL16_DS, but no overflow. */
1888 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1889 0, /* rightshift */
1890 1, /* size (0 = byte, 1 = short, 2 = long) */
1891 16, /* bitsize */
1892 FALSE, /* pc_relative */
1893 0, /* bitpos */
1894 complain_overflow_dont, /* complain_on_overflow */
1895 ppc64_elf_unhandled_reloc, /* special_function */
1896 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1897 FALSE, /* partial_inplace */
1898 0, /* src_mask */
1899 0xfffc, /* dst_mask */
1900 FALSE), /* pcrel_offset */
1901
1902 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1903 HOWTO (R_PPC64_GOT_TPREL16_HI,
1904 16, /* rightshift */
1905 1, /* size (0 = byte, 1 = short, 2 = long) */
1906 16, /* bitsize */
1907 FALSE, /* pc_relative */
1908 0, /* bitpos */
1909 complain_overflow_signed, /* complain_on_overflow */
1910 ppc64_elf_unhandled_reloc, /* special_function */
1911 "R_PPC64_GOT_TPREL16_HI", /* name */
1912 FALSE, /* partial_inplace */
1913 0, /* src_mask */
1914 0xffff, /* dst_mask */
1915 FALSE), /* pcrel_offset */
1916
1917 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1918 HOWTO (R_PPC64_GOT_TPREL16_HA,
1919 16, /* rightshift */
1920 1, /* size (0 = byte, 1 = short, 2 = long) */
1921 16, /* bitsize */
1922 FALSE, /* pc_relative */
1923 0, /* bitpos */
1924 complain_overflow_signed, /* complain_on_overflow */
1925 ppc64_elf_unhandled_reloc, /* special_function */
1926 "R_PPC64_GOT_TPREL16_HA", /* name */
1927 FALSE, /* partial_inplace */
1928 0, /* src_mask */
1929 0xffff, /* dst_mask */
1930 FALSE), /* pcrel_offset */
1931
1932 HOWTO (R_PPC64_JMP_IREL, /* type */
1933 0, /* rightshift */
1934 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1935 0, /* bitsize */
1936 FALSE, /* pc_relative */
1937 0, /* bitpos */
1938 complain_overflow_dont, /* complain_on_overflow */
1939 ppc64_elf_unhandled_reloc, /* special_function */
1940 "R_PPC64_JMP_IREL", /* name */
1941 FALSE, /* partial_inplace */
1942 0, /* src_mask */
1943 0, /* dst_mask */
1944 FALSE), /* pcrel_offset */
1945
1946 HOWTO (R_PPC64_IRELATIVE, /* type */
1947 0, /* rightshift */
1948 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1949 64, /* bitsize */
1950 FALSE, /* pc_relative */
1951 0, /* bitpos */
1952 complain_overflow_dont, /* complain_on_overflow */
1953 bfd_elf_generic_reloc, /* special_function */
1954 "R_PPC64_IRELATIVE", /* name */
1955 FALSE, /* partial_inplace */
1956 0, /* src_mask */
1957 ONES (64), /* dst_mask */
1958 FALSE), /* pcrel_offset */
1959
1960 /* A 16 bit relative relocation. */
1961 HOWTO (R_PPC64_REL16, /* type */
1962 0, /* rightshift */
1963 1, /* size (0 = byte, 1 = short, 2 = long) */
1964 16, /* bitsize */
1965 TRUE, /* pc_relative */
1966 0, /* bitpos */
1967 complain_overflow_signed, /* complain_on_overflow */
1968 bfd_elf_generic_reloc, /* special_function */
1969 "R_PPC64_REL16", /* name */
1970 FALSE, /* partial_inplace */
1971 0, /* src_mask */
1972 0xffff, /* dst_mask */
1973 TRUE), /* pcrel_offset */
1974
1975 /* A 16 bit relative relocation without overflow. */
1976 HOWTO (R_PPC64_REL16_LO, /* type */
1977 0, /* rightshift */
1978 1, /* size (0 = byte, 1 = short, 2 = long) */
1979 16, /* bitsize */
1980 TRUE, /* pc_relative */
1981 0, /* bitpos */
1982 complain_overflow_dont,/* complain_on_overflow */
1983 bfd_elf_generic_reloc, /* special_function */
1984 "R_PPC64_REL16_LO", /* name */
1985 FALSE, /* partial_inplace */
1986 0, /* src_mask */
1987 0xffff, /* dst_mask */
1988 TRUE), /* pcrel_offset */
1989
1990 /* The high order 16 bits of a relative address. */
1991 HOWTO (R_PPC64_REL16_HI, /* type */
1992 16, /* rightshift */
1993 1, /* size (0 = byte, 1 = short, 2 = long) */
1994 16, /* bitsize */
1995 TRUE, /* pc_relative */
1996 0, /* bitpos */
1997 complain_overflow_signed, /* complain_on_overflow */
1998 bfd_elf_generic_reloc, /* special_function */
1999 "R_PPC64_REL16_HI", /* name */
2000 FALSE, /* partial_inplace */
2001 0, /* src_mask */
2002 0xffff, /* dst_mask */
2003 TRUE), /* pcrel_offset */
2004
2005 /* The high order 16 bits of a relative address, plus 1 if the contents of
2006 the low 16 bits, treated as a signed number, is negative. */
2007 HOWTO (R_PPC64_REL16_HA, /* type */
2008 16, /* rightshift */
2009 1, /* size (0 = byte, 1 = short, 2 = long) */
2010 16, /* bitsize */
2011 TRUE, /* pc_relative */
2012 0, /* bitpos */
2013 complain_overflow_signed, /* complain_on_overflow */
2014 ppc64_elf_ha_reloc, /* special_function */
2015 "R_PPC64_REL16_HA", /* name */
2016 FALSE, /* partial_inplace */
2017 0, /* src_mask */
2018 0xffff, /* dst_mask */
2019 TRUE), /* pcrel_offset */
2020
2021 /* Like R_PPC64_ADDR16_HI, but no overflow. */
2022 HOWTO (R_PPC64_ADDR16_HIGH, /* type */
2023 16, /* rightshift */
2024 1, /* size (0 = byte, 1 = short, 2 = long) */
2025 16, /* bitsize */
2026 FALSE, /* pc_relative */
2027 0, /* bitpos */
2028 complain_overflow_dont, /* complain_on_overflow */
2029 bfd_elf_generic_reloc, /* special_function */
2030 "R_PPC64_ADDR16_HIGH", /* name */
2031 FALSE, /* partial_inplace */
2032 0, /* src_mask */
2033 0xffff, /* dst_mask */
2034 FALSE), /* pcrel_offset */
2035
2036 /* Like R_PPC64_ADDR16_HA, but no overflow. */
2037 HOWTO (R_PPC64_ADDR16_HIGHA, /* type */
2038 16, /* rightshift */
2039 1, /* size (0 = byte, 1 = short, 2 = long) */
2040 16, /* bitsize */
2041 FALSE, /* pc_relative */
2042 0, /* bitpos */
2043 complain_overflow_dont, /* complain_on_overflow */
2044 ppc64_elf_ha_reloc, /* special_function */
2045 "R_PPC64_ADDR16_HIGHA", /* name */
2046 FALSE, /* partial_inplace */
2047 0, /* src_mask */
2048 0xffff, /* dst_mask */
2049 FALSE), /* pcrel_offset */
2050
2051 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
2052 HOWTO (R_PPC64_DTPREL16_HIGH,
2053 16, /* rightshift */
2054 1, /* size (0 = byte, 1 = short, 2 = long) */
2055 16, /* bitsize */
2056 FALSE, /* pc_relative */
2057 0, /* bitpos */
2058 complain_overflow_dont, /* complain_on_overflow */
2059 ppc64_elf_unhandled_reloc, /* special_function */
2060 "R_PPC64_DTPREL16_HIGH", /* name */
2061 FALSE, /* partial_inplace */
2062 0, /* src_mask */
2063 0xffff, /* dst_mask */
2064 FALSE), /* pcrel_offset */
2065
2066 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
2067 HOWTO (R_PPC64_DTPREL16_HIGHA,
2068 16, /* rightshift */
2069 1, /* size (0 = byte, 1 = short, 2 = long) */
2070 16, /* bitsize */
2071 FALSE, /* pc_relative */
2072 0, /* bitpos */
2073 complain_overflow_dont, /* complain_on_overflow */
2074 ppc64_elf_unhandled_reloc, /* special_function */
2075 "R_PPC64_DTPREL16_HIGHA", /* name */
2076 FALSE, /* partial_inplace */
2077 0, /* src_mask */
2078 0xffff, /* dst_mask */
2079 FALSE), /* pcrel_offset */
2080
2081 /* Like R_PPC64_TPREL16_HI, but no overflow. */
2082 HOWTO (R_PPC64_TPREL16_HIGH,
2083 16, /* rightshift */
2084 1, /* size (0 = byte, 1 = short, 2 = long) */
2085 16, /* bitsize */
2086 FALSE, /* pc_relative */
2087 0, /* bitpos */
2088 complain_overflow_dont, /* complain_on_overflow */
2089 ppc64_elf_unhandled_reloc, /* special_function */
2090 "R_PPC64_TPREL16_HIGH", /* name */
2091 FALSE, /* partial_inplace */
2092 0, /* src_mask */
2093 0xffff, /* dst_mask */
2094 FALSE), /* pcrel_offset */
2095
2096 /* Like R_PPC64_TPREL16_HA, but no overflow. */
2097 HOWTO (R_PPC64_TPREL16_HIGHA,
2098 16, /* rightshift */
2099 1, /* size (0 = byte, 1 = short, 2 = long) */
2100 16, /* bitsize */
2101 FALSE, /* pc_relative */
2102 0, /* bitpos */
2103 complain_overflow_dont, /* complain_on_overflow */
2104 ppc64_elf_unhandled_reloc, /* special_function */
2105 "R_PPC64_TPREL16_HIGHA", /* name */
2106 FALSE, /* partial_inplace */
2107 0, /* src_mask */
2108 0xffff, /* dst_mask */
2109 FALSE), /* pcrel_offset */
2110
2111 /* Like ADDR64, but use local entry point of function. */
2112 HOWTO (R_PPC64_ADDR64_LOCAL, /* type */
2113 0, /* rightshift */
2114 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
2115 64, /* bitsize */
2116 FALSE, /* pc_relative */
2117 0, /* bitpos */
2118 complain_overflow_dont, /* complain_on_overflow */
2119 bfd_elf_generic_reloc, /* special_function */
2120 "R_PPC64_ADDR64_LOCAL", /* name */
2121 FALSE, /* partial_inplace */
2122 0, /* src_mask */
2123 ONES (64), /* dst_mask */
2124 FALSE), /* pcrel_offset */
2125
2126 /* GNU extension to record C++ vtable hierarchy. */
2127 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
2128 0, /* rightshift */
2129 0, /* size (0 = byte, 1 = short, 2 = long) */
2130 0, /* bitsize */
2131 FALSE, /* pc_relative */
2132 0, /* bitpos */
2133 complain_overflow_dont, /* complain_on_overflow */
2134 NULL, /* special_function */
2135 "R_PPC64_GNU_VTINHERIT", /* name */
2136 FALSE, /* partial_inplace */
2137 0, /* src_mask */
2138 0, /* dst_mask */
2139 FALSE), /* pcrel_offset */
2140
2141 /* GNU extension to record C++ vtable member usage. */
2142 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2143 0, /* rightshift */
2144 0, /* size (0 = byte, 1 = short, 2 = long) */
2145 0, /* bitsize */
2146 FALSE, /* pc_relative */
2147 0, /* bitpos */
2148 complain_overflow_dont, /* complain_on_overflow */
2149 NULL, /* special_function */
2150 "R_PPC64_GNU_VTENTRY", /* name */
2151 FALSE, /* partial_inplace */
2152 0, /* src_mask */
2153 0, /* dst_mask */
2154 FALSE), /* pcrel_offset */
2155 };
2156
2157 \f
2158 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2159 be done. */
2160
2161 static void
2162 ppc_howto_init (void)
2163 {
2164 unsigned int i, type;
2165
2166 for (i = 0;
2167 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2168 i++)
2169 {
2170 type = ppc64_elf_howto_raw[i].type;
2171 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2172 / sizeof (ppc64_elf_howto_table[0])));
2173 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2174 }
2175 }
2176
2177 static reloc_howto_type *
2178 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2179 bfd_reloc_code_real_type code)
2180 {
2181 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2182
2183 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2184 /* Initialize howto table if needed. */
2185 ppc_howto_init ();
2186
2187 switch (code)
2188 {
2189 default:
2190 return NULL;
2191
2192 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2193 break;
2194 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2195 break;
2196 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2197 break;
2198 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2199 break;
2200 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2201 break;
2202 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2203 break;
2204 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
2205 break;
2206 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2207 break;
2208 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
2209 break;
2210 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2211 break;
2212 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2213 break;
2214 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2215 break;
2216 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2217 break;
2218 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2219 break;
2220 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2221 break;
2222 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2223 break;
2224 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2225 break;
2226 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2227 break;
2228 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2229 break;
2230 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2231 break;
2232 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2233 break;
2234 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2235 break;
2236 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2237 break;
2238 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2239 break;
2240 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2241 break;
2242 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2243 break;
2244 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2245 break;
2246 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2247 break;
2248 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2249 break;
2250 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2251 break;
2252 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2253 break;
2254 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2255 break;
2256 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2257 break;
2258 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2259 break;
2260 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2261 break;
2262 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2263 break;
2264 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2265 break;
2266 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2267 break;
2268 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2269 break;
2270 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2271 break;
2272 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2273 break;
2274 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2275 break;
2276 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2277 break;
2278 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2279 break;
2280 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2281 break;
2282 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2283 break;
2284 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2285 break;
2286 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2287 break;
2288 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2289 break;
2290 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2291 break;
2292 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2293 break;
2294 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2295 break;
2296 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2297 break;
2298 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2299 break;
2300 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2301 break;
2302 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2303 break;
2304 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2305 break;
2306 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2307 break;
2308 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2309 break;
2310 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2311 break;
2312 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2313 break;
2314 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2315 break;
2316 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2317 break;
2318 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2319 break;
2320 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2321 break;
2322 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2323 break;
2324 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2325 break;
2326 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2327 break;
2328 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
2329 break;
2330 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2331 break;
2332 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
2333 break;
2334 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2335 break;
2336 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2337 break;
2338 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2339 break;
2340 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2341 break;
2342 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
2343 break;
2344 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2345 break;
2346 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
2347 break;
2348 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2349 break;
2350 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2351 break;
2352 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2353 break;
2354 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2355 break;
2356 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2357 break;
2358 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2359 break;
2360 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2361 break;
2362 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2363 break;
2364 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2365 break;
2366 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2367 break;
2368 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2369 break;
2370 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2371 break;
2372 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2373 break;
2374 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2375 break;
2376 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2377 break;
2378 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2379 break;
2380 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2381 break;
2382 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2383 break;
2384 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2385 break;
2386 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2387 break;
2388 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2389 break;
2390 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2391 break;
2392 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2393 break;
2394 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2395 break;
2396 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2397 break;
2398 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2399 break;
2400 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2401 break;
2402 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2403 break;
2404 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2405 break;
2406 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2407 break;
2408 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2409 break;
2410 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2411 break;
2412 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2413 break;
2414 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
2415 break;
2416 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2417 break;
2418 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2419 break;
2420 }
2421
2422 return ppc64_elf_howto_table[r];
2423 };
2424
2425 static reloc_howto_type *
2426 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2427 const char *r_name)
2428 {
2429 unsigned int i;
2430
2431 for (i = 0;
2432 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2433 i++)
2434 if (ppc64_elf_howto_raw[i].name != NULL
2435 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2436 return &ppc64_elf_howto_raw[i];
2437
2438 return NULL;
2439 }
2440
2441 /* Set the howto pointer for a PowerPC ELF reloc. */
2442
2443 static void
2444 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2445 Elf_Internal_Rela *dst)
2446 {
2447 unsigned int type;
2448
2449 /* Initialize howto table if needed. */
2450 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2451 ppc_howto_init ();
2452
2453 type = ELF64_R_TYPE (dst->r_info);
2454 if (type >= (sizeof (ppc64_elf_howto_table)
2455 / sizeof (ppc64_elf_howto_table[0])))
2456 {
2457 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2458 abfd, (int) type);
2459 type = R_PPC64_NONE;
2460 }
2461 cache_ptr->howto = ppc64_elf_howto_table[type];
2462 }
2463
2464 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2465
2466 static bfd_reloc_status_type
2467 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2468 void *data, asection *input_section,
2469 bfd *output_bfd, char **error_message)
2470 {
2471 /* If this is a relocatable link (output_bfd test tells us), just
2472 call the generic function. Any adjustment will be done at final
2473 link time. */
2474 if (output_bfd != NULL)
2475 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2476 input_section, output_bfd, error_message);
2477
2478 /* Adjust the addend for sign extension of the low 16 bits.
2479 We won't actually be using the low 16 bits, so trashing them
2480 doesn't matter. */
2481 reloc_entry->addend += 0x8000;
2482 return bfd_reloc_continue;
2483 }
2484
2485 static bfd_reloc_status_type
2486 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2487 void *data, asection *input_section,
2488 bfd *output_bfd, char **error_message)
2489 {
2490 if (output_bfd != NULL)
2491 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2492 input_section, output_bfd, error_message);
2493
2494 if (strcmp (symbol->section->name, ".opd") == 0
2495 && (symbol->section->owner->flags & DYNAMIC) == 0)
2496 {
2497 bfd_vma dest = opd_entry_value (symbol->section,
2498 symbol->value + reloc_entry->addend,
2499 NULL, NULL, FALSE);
2500 if (dest != (bfd_vma) -1)
2501 reloc_entry->addend = dest - (symbol->value
2502 + symbol->section->output_section->vma
2503 + symbol->section->output_offset);
2504 }
2505 else
2506 {
2507 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
2508
2509 if (symbol->section->owner != abfd
2510 && abiversion (symbol->section->owner) >= 2)
2511 {
2512 unsigned int i;
2513
2514 for (i = 0; i < symbol->section->owner->symcount; ++i)
2515 {
2516 asymbol *symdef = symbol->section->owner->outsymbols[i];
2517
2518 if (strcmp (symdef->name, symbol->name) == 0)
2519 {
2520 elfsym = (elf_symbol_type *) symdef;
2521 break;
2522 }
2523 }
2524 }
2525 reloc_entry->addend
2526 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
2527 }
2528 return bfd_reloc_continue;
2529 }
2530
2531 static bfd_reloc_status_type
2532 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2533 void *data, asection *input_section,
2534 bfd *output_bfd, char **error_message)
2535 {
2536 long insn;
2537 enum elf_ppc64_reloc_type r_type;
2538 bfd_size_type octets;
2539 /* Assume 'at' branch hints. */
2540 bfd_boolean is_isa_v2 = TRUE;
2541
2542 /* If this is a relocatable link (output_bfd test tells us), just
2543 call the generic function. Any adjustment will be done at final
2544 link time. */
2545 if (output_bfd != NULL)
2546 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2547 input_section, output_bfd, error_message);
2548
2549 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2550 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2551 insn &= ~(0x01 << 21);
2552 r_type = reloc_entry->howto->type;
2553 if (r_type == R_PPC64_ADDR14_BRTAKEN
2554 || r_type == R_PPC64_REL14_BRTAKEN)
2555 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2556
2557 if (is_isa_v2)
2558 {
2559 /* Set 'a' bit. This is 0b00010 in BO field for branch
2560 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2561 for branch on CTR insns (BO == 1a00t or 1a01t). */
2562 if ((insn & (0x14 << 21)) == (0x04 << 21))
2563 insn |= 0x02 << 21;
2564 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2565 insn |= 0x08 << 21;
2566 else
2567 goto out;
2568 }
2569 else
2570 {
2571 bfd_vma target = 0;
2572 bfd_vma from;
2573
2574 if (!bfd_is_com_section (symbol->section))
2575 target = symbol->value;
2576 target += symbol->section->output_section->vma;
2577 target += symbol->section->output_offset;
2578 target += reloc_entry->addend;
2579
2580 from = (reloc_entry->address
2581 + input_section->output_offset
2582 + input_section->output_section->vma);
2583
2584 /* Invert 'y' bit if not the default. */
2585 if ((bfd_signed_vma) (target - from) < 0)
2586 insn ^= 0x01 << 21;
2587 }
2588 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2589 out:
2590 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2591 input_section, output_bfd, error_message);
2592 }
2593
2594 static bfd_reloc_status_type
2595 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2596 void *data, asection *input_section,
2597 bfd *output_bfd, char **error_message)
2598 {
2599 /* If this is a relocatable link (output_bfd test tells us), just
2600 call the generic function. Any adjustment will be done at final
2601 link time. */
2602 if (output_bfd != NULL)
2603 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2604 input_section, output_bfd, error_message);
2605
2606 /* Subtract the symbol section base address. */
2607 reloc_entry->addend -= symbol->section->output_section->vma;
2608 return bfd_reloc_continue;
2609 }
2610
2611 static bfd_reloc_status_type
2612 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2613 void *data, asection *input_section,
2614 bfd *output_bfd, char **error_message)
2615 {
2616 /* If this is a relocatable link (output_bfd test tells us), just
2617 call the generic function. Any adjustment will be done at final
2618 link time. */
2619 if (output_bfd != NULL)
2620 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2621 input_section, output_bfd, error_message);
2622
2623 /* Subtract the symbol section base address. */
2624 reloc_entry->addend -= symbol->section->output_section->vma;
2625
2626 /* Adjust the addend for sign extension of the low 16 bits. */
2627 reloc_entry->addend += 0x8000;
2628 return bfd_reloc_continue;
2629 }
2630
2631 static bfd_reloc_status_type
2632 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2633 void *data, asection *input_section,
2634 bfd *output_bfd, char **error_message)
2635 {
2636 bfd_vma TOCstart;
2637
2638 /* If this is a relocatable link (output_bfd test tells us), just
2639 call the generic function. Any adjustment will be done at final
2640 link time. */
2641 if (output_bfd != NULL)
2642 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2643 input_section, output_bfd, error_message);
2644
2645 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2646 if (TOCstart == 0)
2647 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2648
2649 /* Subtract the TOC base address. */
2650 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2651 return bfd_reloc_continue;
2652 }
2653
2654 static bfd_reloc_status_type
2655 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2656 void *data, asection *input_section,
2657 bfd *output_bfd, char **error_message)
2658 {
2659 bfd_vma TOCstart;
2660
2661 /* If this is a relocatable link (output_bfd test tells us), just
2662 call the generic function. Any adjustment will be done at final
2663 link time. */
2664 if (output_bfd != NULL)
2665 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2666 input_section, output_bfd, error_message);
2667
2668 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2669 if (TOCstart == 0)
2670 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2671
2672 /* Subtract the TOC base address. */
2673 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2674
2675 /* Adjust the addend for sign extension of the low 16 bits. */
2676 reloc_entry->addend += 0x8000;
2677 return bfd_reloc_continue;
2678 }
2679
2680 static bfd_reloc_status_type
2681 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2682 void *data, asection *input_section,
2683 bfd *output_bfd, char **error_message)
2684 {
2685 bfd_vma TOCstart;
2686 bfd_size_type octets;
2687
2688 /* If this is a relocatable link (output_bfd test tells us), just
2689 call the generic function. Any adjustment will be done at final
2690 link time. */
2691 if (output_bfd != NULL)
2692 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2693 input_section, output_bfd, error_message);
2694
2695 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2696 if (TOCstart == 0)
2697 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
2698
2699 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2700 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2701 return bfd_reloc_ok;
2702 }
2703
2704 static bfd_reloc_status_type
2705 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2706 void *data, asection *input_section,
2707 bfd *output_bfd, char **error_message)
2708 {
2709 /* If this is a relocatable link (output_bfd test tells us), just
2710 call the generic function. Any adjustment will be done at final
2711 link time. */
2712 if (output_bfd != NULL)
2713 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2714 input_section, output_bfd, error_message);
2715
2716 if (error_message != NULL)
2717 {
2718 static char buf[60];
2719 sprintf (buf, "generic linker can't handle %s",
2720 reloc_entry->howto->name);
2721 *error_message = buf;
2722 }
2723 return bfd_reloc_dangerous;
2724 }
2725
2726 /* Track GOT entries needed for a given symbol. We might need more
2727 than one got entry per symbol. */
2728 struct got_entry
2729 {
2730 struct got_entry *next;
2731
2732 /* The symbol addend that we'll be placing in the GOT. */
2733 bfd_vma addend;
2734
2735 /* Unlike other ELF targets, we use separate GOT entries for the same
2736 symbol referenced from different input files. This is to support
2737 automatic multiple TOC/GOT sections, where the TOC base can vary
2738 from one input file to another. After partitioning into TOC groups
2739 we merge entries within the group.
2740
2741 Point to the BFD owning this GOT entry. */
2742 bfd *owner;
2743
2744 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2745 TLS_TPREL or TLS_DTPREL for tls entries. */
2746 unsigned char tls_type;
2747
2748 /* Non-zero if got.ent points to real entry. */
2749 unsigned char is_indirect;
2750
2751 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2752 union
2753 {
2754 bfd_signed_vma refcount;
2755 bfd_vma offset;
2756 struct got_entry *ent;
2757 } got;
2758 };
2759
2760 /* The same for PLT. */
2761 struct plt_entry
2762 {
2763 struct plt_entry *next;
2764
2765 bfd_vma addend;
2766
2767 union
2768 {
2769 bfd_signed_vma refcount;
2770 bfd_vma offset;
2771 } plt;
2772 };
2773
2774 struct ppc64_elf_obj_tdata
2775 {
2776 struct elf_obj_tdata elf;
2777
2778 /* Shortcuts to dynamic linker sections. */
2779 asection *got;
2780 asection *relgot;
2781
2782 /* Used during garbage collection. We attach global symbols defined
2783 on removed .opd entries to this section so that the sym is removed. */
2784 asection *deleted_section;
2785
2786 /* TLS local dynamic got entry handling. Support for multiple GOT
2787 sections means we potentially need one of these for each input bfd. */
2788 struct got_entry tlsld_got;
2789
2790 union {
2791 /* A copy of relocs before they are modified for --emit-relocs. */
2792 Elf_Internal_Rela *relocs;
2793
2794 /* Section contents. */
2795 bfd_byte *contents;
2796 } opd;
2797
2798 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2799 the reloc to be in the range -32768 to 32767. */
2800 unsigned int has_small_toc_reloc : 1;
2801
2802 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2803 instruction not one we handle. */
2804 unsigned int unexpected_toc_insn : 1;
2805 };
2806
2807 #define ppc64_elf_tdata(bfd) \
2808 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2809
2810 #define ppc64_tlsld_got(bfd) \
2811 (&ppc64_elf_tdata (bfd)->tlsld_got)
2812
2813 #define is_ppc64_elf(bfd) \
2814 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2815 && elf_object_id (bfd) == PPC64_ELF_DATA)
2816
2817 /* Override the generic function because we store some extras. */
2818
2819 static bfd_boolean
2820 ppc64_elf_mkobject (bfd *abfd)
2821 {
2822 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2823 PPC64_ELF_DATA);
2824 }
2825
2826 /* Fix bad default arch selected for a 64 bit input bfd when the
2827 default is 32 bit. */
2828
2829 static bfd_boolean
2830 ppc64_elf_object_p (bfd *abfd)
2831 {
2832 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2833 {
2834 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2835
2836 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2837 {
2838 /* Relies on arch after 32 bit default being 64 bit default. */
2839 abfd->arch_info = abfd->arch_info->next;
2840 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2841 }
2842 }
2843 return TRUE;
2844 }
2845
2846 /* Support for core dump NOTE sections. */
2847
2848 static bfd_boolean
2849 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2850 {
2851 size_t offset, size;
2852
2853 if (note->descsz != 504)
2854 return FALSE;
2855
2856 /* pr_cursig */
2857 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2858
2859 /* pr_pid */
2860 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2861
2862 /* pr_reg */
2863 offset = 112;
2864 size = 384;
2865
2866 /* Make a ".reg/999" section. */
2867 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2868 size, note->descpos + offset);
2869 }
2870
2871 static bfd_boolean
2872 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2873 {
2874 if (note->descsz != 136)
2875 return FALSE;
2876
2877 elf_tdata (abfd)->core->pid
2878 = bfd_get_32 (abfd, note->descdata + 24);
2879 elf_tdata (abfd)->core->program
2880 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2881 elf_tdata (abfd)->core->command
2882 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2883
2884 return TRUE;
2885 }
2886
2887 static char *
2888 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2889 ...)
2890 {
2891 switch (note_type)
2892 {
2893 default:
2894 return NULL;
2895
2896 case NT_PRPSINFO:
2897 {
2898 char data[136];
2899 va_list ap;
2900
2901 va_start (ap, note_type);
2902 memset (data, 0, sizeof (data));
2903 strncpy (data + 40, va_arg (ap, const char *), 16);
2904 strncpy (data + 56, va_arg (ap, const char *), 80);
2905 va_end (ap);
2906 return elfcore_write_note (abfd, buf, bufsiz,
2907 "CORE", note_type, data, sizeof (data));
2908 }
2909
2910 case NT_PRSTATUS:
2911 {
2912 char data[504];
2913 va_list ap;
2914 long pid;
2915 int cursig;
2916 const void *greg;
2917
2918 va_start (ap, note_type);
2919 memset (data, 0, 112);
2920 pid = va_arg (ap, long);
2921 bfd_put_32 (abfd, pid, data + 32);
2922 cursig = va_arg (ap, int);
2923 bfd_put_16 (abfd, cursig, data + 12);
2924 greg = va_arg (ap, const void *);
2925 memcpy (data + 112, greg, 384);
2926 memset (data + 496, 0, 8);
2927 va_end (ap);
2928 return elfcore_write_note (abfd, buf, bufsiz,
2929 "CORE", note_type, data, sizeof (data));
2930 }
2931 }
2932 }
2933
2934 /* Add extra PPC sections. */
2935
2936 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2937 {
2938 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2939 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2940 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2941 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2942 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2943 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2944 { NULL, 0, 0, 0, 0 }
2945 };
2946
2947 enum _ppc64_sec_type {
2948 sec_normal = 0,
2949 sec_opd = 1,
2950 sec_toc = 2
2951 };
2952
2953 struct _ppc64_elf_section_data
2954 {
2955 struct bfd_elf_section_data elf;
2956
2957 union
2958 {
2959 /* An array with one entry for each opd function descriptor,
2960 and some spares since opd entries may be either 16 or 24 bytes. */
2961 #define OPD_NDX(OFF) ((OFF) >> 4)
2962 struct _opd_sec_data
2963 {
2964 /* Points to the function code section for local opd entries. */
2965 asection **func_sec;
2966
2967 /* After editing .opd, adjust references to opd local syms. */
2968 long *adjust;
2969 } opd;
2970
2971 /* An array for toc sections, indexed by offset/8. */
2972 struct _toc_sec_data
2973 {
2974 /* Specifies the relocation symbol index used at a given toc offset. */
2975 unsigned *symndx;
2976
2977 /* And the relocation addend. */
2978 bfd_vma *add;
2979 } toc;
2980 } u;
2981
2982 enum _ppc64_sec_type sec_type:2;
2983
2984 /* Flag set when small branches are detected. Used to
2985 select suitable defaults for the stub group size. */
2986 unsigned int has_14bit_branch:1;
2987 };
2988
2989 #define ppc64_elf_section_data(sec) \
2990 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2991
2992 static bfd_boolean
2993 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2994 {
2995 if (!sec->used_by_bfd)
2996 {
2997 struct _ppc64_elf_section_data *sdata;
2998 bfd_size_type amt = sizeof (*sdata);
2999
3000 sdata = bfd_zalloc (abfd, amt);
3001 if (sdata == NULL)
3002 return FALSE;
3003 sec->used_by_bfd = sdata;
3004 }
3005
3006 return _bfd_elf_new_section_hook (abfd, sec);
3007 }
3008
3009 static struct _opd_sec_data *
3010 get_opd_info (asection * sec)
3011 {
3012 if (sec != NULL
3013 && ppc64_elf_section_data (sec) != NULL
3014 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
3015 return &ppc64_elf_section_data (sec)->u.opd;
3016 return NULL;
3017 }
3018 \f
3019 /* Parameters for the qsort hook. */
3020 static bfd_boolean synthetic_relocatable;
3021
3022 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
3023
3024 static int
3025 compare_symbols (const void *ap, const void *bp)
3026 {
3027 const asymbol *a = * (const asymbol **) ap;
3028 const asymbol *b = * (const asymbol **) bp;
3029
3030 /* Section symbols first. */
3031 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
3032 return -1;
3033 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
3034 return 1;
3035
3036 /* then .opd symbols. */
3037 if (strcmp (a->section->name, ".opd") == 0
3038 && strcmp (b->section->name, ".opd") != 0)
3039 return -1;
3040 if (strcmp (a->section->name, ".opd") != 0
3041 && strcmp (b->section->name, ".opd") == 0)
3042 return 1;
3043
3044 /* then other code symbols. */
3045 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3046 == (SEC_CODE | SEC_ALLOC)
3047 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3048 != (SEC_CODE | SEC_ALLOC))
3049 return -1;
3050
3051 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3052 != (SEC_CODE | SEC_ALLOC)
3053 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3054 == (SEC_CODE | SEC_ALLOC))
3055 return 1;
3056
3057 if (synthetic_relocatable)
3058 {
3059 if (a->section->id < b->section->id)
3060 return -1;
3061
3062 if (a->section->id > b->section->id)
3063 return 1;
3064 }
3065
3066 if (a->value + a->section->vma < b->value + b->section->vma)
3067 return -1;
3068
3069 if (a->value + a->section->vma > b->value + b->section->vma)
3070 return 1;
3071
3072 /* For syms with the same value, prefer strong dynamic global function
3073 syms over other syms. */
3074 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
3075 return -1;
3076
3077 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
3078 return 1;
3079
3080 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
3081 return -1;
3082
3083 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
3084 return 1;
3085
3086 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
3087 return -1;
3088
3089 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
3090 return 1;
3091
3092 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
3093 return -1;
3094
3095 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
3096 return 1;
3097
3098 return 0;
3099 }
3100
3101 /* Search SYMS for a symbol of the given VALUE. */
3102
3103 static asymbol *
3104 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
3105 {
3106 long mid;
3107
3108 if (id == -1)
3109 {
3110 while (lo < hi)
3111 {
3112 mid = (lo + hi) >> 1;
3113 if (syms[mid]->value + syms[mid]->section->vma < value)
3114 lo = mid + 1;
3115 else if (syms[mid]->value + syms[mid]->section->vma > value)
3116 hi = mid;
3117 else
3118 return syms[mid];
3119 }
3120 }
3121 else
3122 {
3123 while (lo < hi)
3124 {
3125 mid = (lo + hi) >> 1;
3126 if (syms[mid]->section->id < id)
3127 lo = mid + 1;
3128 else if (syms[mid]->section->id > id)
3129 hi = mid;
3130 else if (syms[mid]->value < value)
3131 lo = mid + 1;
3132 else if (syms[mid]->value > value)
3133 hi = mid;
3134 else
3135 return syms[mid];
3136 }
3137 }
3138 return NULL;
3139 }
3140
3141 static bfd_boolean
3142 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
3143 {
3144 bfd_vma vma = *(bfd_vma *) ptr;
3145 return ((section->flags & SEC_ALLOC) != 0
3146 && section->vma <= vma
3147 && vma < section->vma + section->size);
3148 }
3149
3150 /* Create synthetic symbols, effectively restoring "dot-symbol" function
3151 entry syms. Also generate @plt symbols for the glink branch table.
3152 Returns count of synthetic symbols in RET or -1 on error. */
3153
3154 static long
3155 ppc64_elf_get_synthetic_symtab (bfd *abfd,
3156 long static_count, asymbol **static_syms,
3157 long dyn_count, asymbol **dyn_syms,
3158 asymbol **ret)
3159 {
3160 asymbol *s;
3161 long i;
3162 long count;
3163 char *names;
3164 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
3165 asection *opd = NULL;
3166 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
3167 asymbol **syms;
3168 int abi = abiversion (abfd);
3169
3170 *ret = NULL;
3171
3172 if (abi < 2)
3173 {
3174 opd = bfd_get_section_by_name (abfd, ".opd");
3175 if (opd == NULL && abi == 1)
3176 return 0;
3177 }
3178
3179 symcount = static_count;
3180 if (!relocatable)
3181 symcount += dyn_count;
3182 if (symcount == 0)
3183 return 0;
3184
3185 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3186 if (syms == NULL)
3187 return -1;
3188
3189 if (!relocatable && static_count != 0 && dyn_count != 0)
3190 {
3191 /* Use both symbol tables. */
3192 memcpy (syms, static_syms, static_count * sizeof (*syms));
3193 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3194 }
3195 else if (!relocatable && static_count == 0)
3196 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3197 else
3198 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3199
3200 synthetic_relocatable = relocatable;
3201 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3202
3203 if (!relocatable && symcount > 1)
3204 {
3205 long j;
3206 /* Trim duplicate syms, since we may have merged the normal and
3207 dynamic symbols. Actually, we only care about syms that have
3208 different values, so trim any with the same value. */
3209 for (i = 1, j = 1; i < symcount; ++i)
3210 if (syms[i - 1]->value + syms[i - 1]->section->vma
3211 != syms[i]->value + syms[i]->section->vma)
3212 syms[j++] = syms[i];
3213 symcount = j;
3214 }
3215
3216 i = 0;
3217 if (strcmp (syms[i]->section->name, ".opd") == 0)
3218 ++i;
3219 codesecsym = i;
3220
3221 for (; i < symcount; ++i)
3222 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3223 != (SEC_CODE | SEC_ALLOC))
3224 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3225 break;
3226 codesecsymend = i;
3227
3228 for (; i < symcount; ++i)
3229 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3230 break;
3231 secsymend = i;
3232
3233 for (; i < symcount; ++i)
3234 if (strcmp (syms[i]->section->name, ".opd") != 0)
3235 break;
3236 opdsymend = i;
3237
3238 for (; i < symcount; ++i)
3239 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3240 != (SEC_CODE | SEC_ALLOC))
3241 break;
3242 symcount = i;
3243
3244 count = 0;
3245
3246 if (relocatable)
3247 {
3248 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3249 arelent *r;
3250 size_t size;
3251 long relcount;
3252
3253 if (opdsymend == secsymend)
3254 goto done;
3255
3256 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3257 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3258 if (relcount == 0)
3259 goto done;
3260
3261 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3262 {
3263 count = -1;
3264 goto done;
3265 }
3266
3267 size = 0;
3268 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3269 {
3270 asymbol *sym;
3271
3272 while (r < opd->relocation + relcount
3273 && r->address < syms[i]->value + opd->vma)
3274 ++r;
3275
3276 if (r == opd->relocation + relcount)
3277 break;
3278
3279 if (r->address != syms[i]->value + opd->vma)
3280 continue;
3281
3282 if (r->howto->type != R_PPC64_ADDR64)
3283 continue;
3284
3285 sym = *r->sym_ptr_ptr;
3286 if (!sym_exists_at (syms, opdsymend, symcount,
3287 sym->section->id, sym->value + r->addend))
3288 {
3289 ++count;
3290 size += sizeof (asymbol);
3291 size += strlen (syms[i]->name) + 2;
3292 }
3293 }
3294
3295 if (size == 0)
3296 goto done;
3297 s = *ret = bfd_malloc (size);
3298 if (s == NULL)
3299 {
3300 count = -1;
3301 goto done;
3302 }
3303
3304 names = (char *) (s + count);
3305
3306 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3307 {
3308 asymbol *sym;
3309
3310 while (r < opd->relocation + relcount
3311 && r->address < syms[i]->value + opd->vma)
3312 ++r;
3313
3314 if (r == opd->relocation + relcount)
3315 break;
3316
3317 if (r->address != syms[i]->value + opd->vma)
3318 continue;
3319
3320 if (r->howto->type != R_PPC64_ADDR64)
3321 continue;
3322
3323 sym = *r->sym_ptr_ptr;
3324 if (!sym_exists_at (syms, opdsymend, symcount,
3325 sym->section->id, sym->value + r->addend))
3326 {
3327 size_t len;
3328
3329 *s = *syms[i];
3330 s->flags |= BSF_SYNTHETIC;
3331 s->section = sym->section;
3332 s->value = sym->value + r->addend;
3333 s->name = names;
3334 *names++ = '.';
3335 len = strlen (syms[i]->name);
3336 memcpy (names, syms[i]->name, len + 1);
3337 names += len + 1;
3338 /* Have udata.p point back to the original symbol this
3339 synthetic symbol was derived from. */
3340 s->udata.p = syms[i];
3341 s++;
3342 }
3343 }
3344 }
3345 else
3346 {
3347 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3348 bfd_byte *contents = NULL;
3349 size_t size;
3350 long plt_count = 0;
3351 bfd_vma glink_vma = 0, resolv_vma = 0;
3352 asection *dynamic, *glink = NULL, *relplt = NULL;
3353 arelent *p;
3354
3355 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
3356 {
3357 free_contents_and_exit_err:
3358 count = -1;
3359 free_contents_and_exit:
3360 if (contents)
3361 free (contents);
3362 goto done;
3363 }
3364
3365 size = 0;
3366 for (i = secsymend; i < opdsymend; ++i)
3367 {
3368 bfd_vma ent;
3369
3370 /* Ignore bogus symbols. */
3371 if (syms[i]->value > opd->size - 8)
3372 continue;
3373
3374 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3375 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3376 {
3377 ++count;
3378 size += sizeof (asymbol);
3379 size += strlen (syms[i]->name) + 2;
3380 }
3381 }
3382
3383 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3384 if (dyn_count != 0
3385 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3386 {
3387 bfd_byte *dynbuf, *extdyn, *extdynend;
3388 size_t extdynsize;
3389 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3390
3391 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3392 goto free_contents_and_exit_err;
3393
3394 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3395 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3396
3397 extdyn = dynbuf;
3398 extdynend = extdyn + dynamic->size;
3399 for (; extdyn < extdynend; extdyn += extdynsize)
3400 {
3401 Elf_Internal_Dyn dyn;
3402 (*swap_dyn_in) (abfd, extdyn, &dyn);
3403
3404 if (dyn.d_tag == DT_NULL)
3405 break;
3406
3407 if (dyn.d_tag == DT_PPC64_GLINK)
3408 {
3409 /* The first glink stub starts at offset 32; see
3410 comment in ppc64_elf_finish_dynamic_sections. */
3411 glink_vma = dyn.d_un.d_val + GLINK_CALL_STUB_SIZE - 8 * 4;
3412 /* The .glink section usually does not survive the final
3413 link; search for the section (usually .text) where the
3414 glink stubs now reside. */
3415 glink = bfd_sections_find_if (abfd, section_covers_vma,
3416 &glink_vma);
3417 break;
3418 }
3419 }
3420
3421 free (dynbuf);
3422 }
3423
3424 if (glink != NULL)
3425 {
3426 /* Determine __glink trampoline by reading the relative branch
3427 from the first glink stub. */
3428 bfd_byte buf[4];
3429 unsigned int off = 0;
3430
3431 while (bfd_get_section_contents (abfd, glink, buf,
3432 glink_vma + off - glink->vma, 4))
3433 {
3434 unsigned int insn = bfd_get_32 (abfd, buf);
3435 insn ^= B_DOT;
3436 if ((insn & ~0x3fffffc) == 0)
3437 {
3438 resolv_vma = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
3439 break;
3440 }
3441 off += 4;
3442 if (off > 4)
3443 break;
3444 }
3445
3446 if (resolv_vma)
3447 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3448
3449 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3450 if (relplt != NULL)
3451 {
3452 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3453 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3454 goto free_contents_and_exit_err;
3455
3456 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3457 size += plt_count * sizeof (asymbol);
3458
3459 p = relplt->relocation;
3460 for (i = 0; i < plt_count; i++, p++)
3461 {
3462 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3463 if (p->addend != 0)
3464 size += sizeof ("+0x") - 1 + 16;
3465 }
3466 }
3467 }
3468
3469 if (size == 0)
3470 goto free_contents_and_exit;
3471 s = *ret = bfd_malloc (size);
3472 if (s == NULL)
3473 goto free_contents_and_exit_err;
3474
3475 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3476
3477 for (i = secsymend; i < opdsymend; ++i)
3478 {
3479 bfd_vma ent;
3480
3481 if (syms[i]->value > opd->size - 8)
3482 continue;
3483
3484 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3485 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3486 {
3487 long lo, hi;
3488 size_t len;
3489 asection *sec = abfd->sections;
3490
3491 *s = *syms[i];
3492 lo = codesecsym;
3493 hi = codesecsymend;
3494 while (lo < hi)
3495 {
3496 long mid = (lo + hi) >> 1;
3497 if (syms[mid]->section->vma < ent)
3498 lo = mid + 1;
3499 else if (syms[mid]->section->vma > ent)
3500 hi = mid;
3501 else
3502 {
3503 sec = syms[mid]->section;
3504 break;
3505 }
3506 }
3507
3508 if (lo >= hi && lo > codesecsym)
3509 sec = syms[lo - 1]->section;
3510
3511 for (; sec != NULL; sec = sec->next)
3512 {
3513 if (sec->vma > ent)
3514 break;
3515 /* SEC_LOAD may not be set if SEC is from a separate debug
3516 info file. */
3517 if ((sec->flags & SEC_ALLOC) == 0)
3518 break;
3519 if ((sec->flags & SEC_CODE) != 0)
3520 s->section = sec;
3521 }
3522 s->flags |= BSF_SYNTHETIC;
3523 s->value = ent - s->section->vma;
3524 s->name = names;
3525 *names++ = '.';
3526 len = strlen (syms[i]->name);
3527 memcpy (names, syms[i]->name, len + 1);
3528 names += len + 1;
3529 /* Have udata.p point back to the original symbol this
3530 synthetic symbol was derived from. */
3531 s->udata.p = syms[i];
3532 s++;
3533 }
3534 }
3535 free (contents);
3536
3537 if (glink != NULL && relplt != NULL)
3538 {
3539 if (resolv_vma)
3540 {
3541 /* Add a symbol for the main glink trampoline. */
3542 memset (s, 0, sizeof *s);
3543 s->the_bfd = abfd;
3544 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3545 s->section = glink;
3546 s->value = resolv_vma - glink->vma;
3547 s->name = names;
3548 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3549 names += sizeof ("__glink_PLTresolve");
3550 s++;
3551 count++;
3552 }
3553
3554 /* FIXME: It would be very much nicer to put sym@plt on the
3555 stub rather than on the glink branch table entry. The
3556 objdump disassembler would then use a sensible symbol
3557 name on plt calls. The difficulty in doing so is
3558 a) finding the stubs, and,
3559 b) matching stubs against plt entries, and,
3560 c) there can be multiple stubs for a given plt entry.
3561
3562 Solving (a) could be done by code scanning, but older
3563 ppc64 binaries used different stubs to current code.
3564 (b) is the tricky one since you need to known the toc
3565 pointer for at least one function that uses a pic stub to
3566 be able to calculate the plt address referenced.
3567 (c) means gdb would need to set multiple breakpoints (or
3568 find the glink branch itself) when setting breakpoints
3569 for pending shared library loads. */
3570 p = relplt->relocation;
3571 for (i = 0; i < plt_count; i++, p++)
3572 {
3573 size_t len;
3574
3575 *s = **p->sym_ptr_ptr;
3576 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3577 we are defining a symbol, ensure one of them is set. */
3578 if ((s->flags & BSF_LOCAL) == 0)
3579 s->flags |= BSF_GLOBAL;
3580 s->flags |= BSF_SYNTHETIC;
3581 s->section = glink;
3582 s->value = glink_vma - glink->vma;
3583 s->name = names;
3584 s->udata.p = NULL;
3585 len = strlen ((*p->sym_ptr_ptr)->name);
3586 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3587 names += len;
3588 if (p->addend != 0)
3589 {
3590 memcpy (names, "+0x", sizeof ("+0x") - 1);
3591 names += sizeof ("+0x") - 1;
3592 bfd_sprintf_vma (abfd, names, p->addend);
3593 names += strlen (names);
3594 }
3595 memcpy (names, "@plt", sizeof ("@plt"));
3596 names += sizeof ("@plt");
3597 s++;
3598 if (abi < 2)
3599 {
3600 glink_vma += 8;
3601 if (i >= 0x8000)
3602 glink_vma += 4;
3603 }
3604 else
3605 glink_vma += 4;
3606 }
3607 count += plt_count;
3608 }
3609 }
3610
3611 done:
3612 free (syms);
3613 return count;
3614 }
3615 \f
3616 /* The following functions are specific to the ELF linker, while
3617 functions above are used generally. Those named ppc64_elf_* are
3618 called by the main ELF linker code. They appear in this file more
3619 or less in the order in which they are called. eg.
3620 ppc64_elf_check_relocs is called early in the link process,
3621 ppc64_elf_finish_dynamic_sections is one of the last functions
3622 called.
3623
3624 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3625 functions have both a function code symbol and a function descriptor
3626 symbol. A call to foo in a relocatable object file looks like:
3627
3628 . .text
3629 . x:
3630 . bl .foo
3631 . nop
3632
3633 The function definition in another object file might be:
3634
3635 . .section .opd
3636 . foo: .quad .foo
3637 . .quad .TOC.@tocbase
3638 . .quad 0
3639 .
3640 . .text
3641 . .foo: blr
3642
3643 When the linker resolves the call during a static link, the branch
3644 unsurprisingly just goes to .foo and the .opd information is unused.
3645 If the function definition is in a shared library, things are a little
3646 different: The call goes via a plt call stub, the opd information gets
3647 copied to the plt, and the linker patches the nop.
3648
3649 . x:
3650 . bl .foo_stub
3651 . ld 2,40(1)
3652 .
3653 .
3654 . .foo_stub:
3655 . std 2,40(1) # in practice, the call stub
3656 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
3657 . addi 11,11,Lfoo@toc@l # this is the general idea
3658 . ld 12,0(11)
3659 . ld 2,8(11)
3660 . mtctr 12
3661 . ld 11,16(11)
3662 . bctr
3663 .
3664 . .section .plt
3665 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3666
3667 The "reloc ()" notation is supposed to indicate that the linker emits
3668 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3669 copying.
3670
3671 What are the difficulties here? Well, firstly, the relocations
3672 examined by the linker in check_relocs are against the function code
3673 sym .foo, while the dynamic relocation in the plt is emitted against
3674 the function descriptor symbol, foo. Somewhere along the line, we need
3675 to carefully copy dynamic link information from one symbol to the other.
3676 Secondly, the generic part of the elf linker will make .foo a dynamic
3677 symbol as is normal for most other backends. We need foo dynamic
3678 instead, at least for an application final link. However, when
3679 creating a shared library containing foo, we need to have both symbols
3680 dynamic so that references to .foo are satisfied during the early
3681 stages of linking. Otherwise the linker might decide to pull in a
3682 definition from some other object, eg. a static library.
3683
3684 Update: As of August 2004, we support a new convention. Function
3685 calls may use the function descriptor symbol, ie. "bl foo". This
3686 behaves exactly as "bl .foo". */
3687
3688 /* Of those relocs that might be copied as dynamic relocs, this function
3689 selects those that must be copied when linking a shared library,
3690 even when the symbol is local. */
3691
3692 static int
3693 must_be_dyn_reloc (struct bfd_link_info *info,
3694 enum elf_ppc64_reloc_type r_type)
3695 {
3696 switch (r_type)
3697 {
3698 default:
3699 return 1;
3700
3701 case R_PPC64_REL32:
3702 case R_PPC64_REL64:
3703 case R_PPC64_REL30:
3704 return 0;
3705
3706 case R_PPC64_TPREL16:
3707 case R_PPC64_TPREL16_LO:
3708 case R_PPC64_TPREL16_HI:
3709 case R_PPC64_TPREL16_HA:
3710 case R_PPC64_TPREL16_DS:
3711 case R_PPC64_TPREL16_LO_DS:
3712 case R_PPC64_TPREL16_HIGH:
3713 case R_PPC64_TPREL16_HIGHA:
3714 case R_PPC64_TPREL16_HIGHER:
3715 case R_PPC64_TPREL16_HIGHERA:
3716 case R_PPC64_TPREL16_HIGHEST:
3717 case R_PPC64_TPREL16_HIGHESTA:
3718 case R_PPC64_TPREL64:
3719 return !info->executable;
3720 }
3721 }
3722
3723 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3724 copying dynamic variables from a shared lib into an app's dynbss
3725 section, and instead use a dynamic relocation to point into the
3726 shared lib. With code that gcc generates, it's vital that this be
3727 enabled; In the PowerPC64 ABI, the address of a function is actually
3728 the address of a function descriptor, which resides in the .opd
3729 section. gcc uses the descriptor directly rather than going via the
3730 GOT as some other ABI's do, which means that initialized function
3731 pointers must reference the descriptor. Thus, a function pointer
3732 initialized to the address of a function in a shared library will
3733 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3734 redefines the function descriptor symbol to point to the copy. This
3735 presents a problem as a plt entry for that function is also
3736 initialized from the function descriptor symbol and the copy reloc
3737 may not be initialized first. */
3738 #define ELIMINATE_COPY_RELOCS 1
3739
3740 /* Section name for stubs is the associated section name plus this
3741 string. */
3742 #define STUB_SUFFIX ".stub"
3743
3744 /* Linker stubs.
3745 ppc_stub_long_branch:
3746 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3747 destination, but a 24 bit branch in a stub section will reach.
3748 . b dest
3749
3750 ppc_stub_plt_branch:
3751 Similar to the above, but a 24 bit branch in the stub section won't
3752 reach its destination.
3753 . addis %r11,%r2,xxx@toc@ha
3754 . ld %r12,xxx@toc@l(%r11)
3755 . mtctr %r12
3756 . bctr
3757
3758 ppc_stub_plt_call:
3759 Used to call a function in a shared library. If it so happens that
3760 the plt entry referenced crosses a 64k boundary, then an extra
3761 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
3762 . std %r2,40(%r1)
3763 . addis %r11,%r2,xxx@toc@ha
3764 . ld %r12,xxx+0@toc@l(%r11)
3765 . mtctr %r12
3766 . ld %r2,xxx+8@toc@l(%r11)
3767 . ld %r11,xxx+16@toc@l(%r11)
3768 . bctr
3769
3770 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3771 code to adjust the value and save r2 to support multiple toc sections.
3772 A ppc_stub_long_branch with an r2 offset looks like:
3773 . std %r2,40(%r1)
3774 . addis %r2,%r2,off@ha
3775 . addi %r2,%r2,off@l
3776 . b dest
3777
3778 A ppc_stub_plt_branch with an r2 offset looks like:
3779 . std %r2,40(%r1)
3780 . addis %r11,%r2,xxx@toc@ha
3781 . ld %r12,xxx@toc@l(%r11)
3782 . addis %r2,%r2,off@ha
3783 . addi %r2,%r2,off@l
3784 . mtctr %r12
3785 . bctr
3786
3787 In cases where the "addis" instruction would add zero, the "addis" is
3788 omitted and following instructions modified slightly in some cases.
3789 */
3790
3791 enum ppc_stub_type {
3792 ppc_stub_none,
3793 ppc_stub_long_branch,
3794 ppc_stub_long_branch_r2off,
3795 ppc_stub_plt_branch,
3796 ppc_stub_plt_branch_r2off,
3797 ppc_stub_plt_call,
3798 ppc_stub_plt_call_r2save,
3799 ppc_stub_global_entry
3800 };
3801
3802 struct ppc_stub_hash_entry {
3803
3804 /* Base hash table entry structure. */
3805 struct bfd_hash_entry root;
3806
3807 enum ppc_stub_type stub_type;
3808
3809 /* The stub section. */
3810 asection *stub_sec;
3811
3812 /* Offset within stub_sec of the beginning of this stub. */
3813 bfd_vma stub_offset;
3814
3815 /* Given the symbol's value and its section we can determine its final
3816 value when building the stubs (so the stub knows where to jump. */
3817 bfd_vma target_value;
3818 asection *target_section;
3819
3820 /* The symbol table entry, if any, that this was derived from. */
3821 struct ppc_link_hash_entry *h;
3822 struct plt_entry *plt_ent;
3823
3824 /* Where this stub is being called from, or, in the case of combined
3825 stub sections, the first input section in the group. */
3826 asection *id_sec;
3827
3828 /* Symbol st_other. */
3829 unsigned char other;
3830 };
3831
3832 struct ppc_branch_hash_entry {
3833
3834 /* Base hash table entry structure. */
3835 struct bfd_hash_entry root;
3836
3837 /* Offset within branch lookup table. */
3838 unsigned int offset;
3839
3840 /* Generation marker. */
3841 unsigned int iter;
3842 };
3843
3844 /* Used to track dynamic relocations for local symbols. */
3845 struct ppc_dyn_relocs
3846 {
3847 struct ppc_dyn_relocs *next;
3848
3849 /* The input section of the reloc. */
3850 asection *sec;
3851
3852 /* Total number of relocs copied for the input section. */
3853 unsigned int count : 31;
3854
3855 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3856 unsigned int ifunc : 1;
3857 };
3858
3859 struct ppc_link_hash_entry
3860 {
3861 struct elf_link_hash_entry elf;
3862
3863 union {
3864 /* A pointer to the most recently used stub hash entry against this
3865 symbol. */
3866 struct ppc_stub_hash_entry *stub_cache;
3867
3868 /* A pointer to the next symbol starting with a '.' */
3869 struct ppc_link_hash_entry *next_dot_sym;
3870 } u;
3871
3872 /* Track dynamic relocs copied for this symbol. */
3873 struct elf_dyn_relocs *dyn_relocs;
3874
3875 /* Link between function code and descriptor symbols. */
3876 struct ppc_link_hash_entry *oh;
3877
3878 /* Flag function code and descriptor symbols. */
3879 unsigned int is_func:1;
3880 unsigned int is_func_descriptor:1;
3881 unsigned int fake:1;
3882
3883 /* Whether global opd/toc sym has been adjusted or not.
3884 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3885 should be set for all globals defined in any opd/toc section. */
3886 unsigned int adjust_done:1;
3887
3888 /* Set if we twiddled this symbol to weak at some stage. */
3889 unsigned int was_undefined:1;
3890
3891 /* Contexts in which symbol is used in the GOT (or TOC).
3892 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3893 corresponding relocs are encountered during check_relocs.
3894 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3895 indicate the corresponding GOT entry type is not needed.
3896 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3897 a TPREL one. We use a separate flag rather than setting TPREL
3898 just for convenience in distinguishing the two cases. */
3899 #define TLS_GD 1 /* GD reloc. */
3900 #define TLS_LD 2 /* LD reloc. */
3901 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3902 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3903 #define TLS_TLS 16 /* Any TLS reloc. */
3904 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3905 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3906 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3907 unsigned char tls_mask;
3908 };
3909
3910 /* ppc64 ELF linker hash table. */
3911
3912 struct ppc_link_hash_table
3913 {
3914 struct elf_link_hash_table elf;
3915
3916 /* The stub hash table. */
3917 struct bfd_hash_table stub_hash_table;
3918
3919 /* Another hash table for plt_branch stubs. */
3920 struct bfd_hash_table branch_hash_table;
3921
3922 /* Hash table for function prologue tocsave. */
3923 htab_t tocsave_htab;
3924
3925 /* Various options and other info passed from the linker. */
3926 struct ppc64_elf_params *params;
3927
3928 /* Array to keep track of which stub sections have been created, and
3929 information on stub grouping. */
3930 struct map_stub {
3931 /* This is the section to which stubs in the group will be attached. */
3932 asection *link_sec;
3933 /* The stub section. */
3934 asection *stub_sec;
3935 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3936 bfd_vma toc_off;
3937 } *stub_group;
3938
3939 /* Temp used when calculating TOC pointers. */
3940 bfd_vma toc_curr;
3941 bfd *toc_bfd;
3942 asection *toc_first_sec;
3943
3944 /* Highest input section id. */
3945 int top_id;
3946
3947 /* Highest output section index. */
3948 int top_index;
3949
3950 /* Used when adding symbols. */
3951 struct ppc_link_hash_entry *dot_syms;
3952
3953 /* List of input sections for each output section. */
3954 asection **input_list;
3955
3956 /* Shortcuts to get to dynamic linker sections. */
3957 asection *dynbss;
3958 asection *relbss;
3959 asection *glink;
3960 asection *sfpr;
3961 asection *brlt;
3962 asection *relbrlt;
3963 asection *glink_eh_frame;
3964
3965 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3966 struct ppc_link_hash_entry *tls_get_addr;
3967 struct ppc_link_hash_entry *tls_get_addr_fd;
3968
3969 /* The size of reliplt used by got entry relocs. */
3970 bfd_size_type got_reli_size;
3971
3972 /* Statistics. */
3973 unsigned long stub_count[ppc_stub_global_entry];
3974
3975 /* Number of stubs against global syms. */
3976 unsigned long stub_globals;
3977
3978 /* Set if we're linking code with function descriptors. */
3979 unsigned int opd_abi:1;
3980
3981 /* Support for multiple toc sections. */
3982 unsigned int do_multi_toc:1;
3983 unsigned int multi_toc_needed:1;
3984 unsigned int second_toc_pass:1;
3985 unsigned int do_toc_opt:1;
3986
3987 /* Set on error. */
3988 unsigned int stub_error:1;
3989
3990 /* Temp used by ppc64_elf_before_check_relocs. */
3991 unsigned int twiddled_syms:1;
3992
3993 /* Incremented every time we size stubs. */
3994 unsigned int stub_iteration;
3995
3996 /* Small local sym cache. */
3997 struct sym_cache sym_cache;
3998 };
3999
4000 /* Rename some of the generic section flags to better document how they
4001 are used here. */
4002
4003 /* Nonzero if this section has TLS related relocations. */
4004 #define has_tls_reloc sec_flg0
4005
4006 /* Nonzero if this section has a call to __tls_get_addr. */
4007 #define has_tls_get_addr_call sec_flg1
4008
4009 /* Nonzero if this section has any toc or got relocs. */
4010 #define has_toc_reloc sec_flg2
4011
4012 /* Nonzero if this section has a call to another section that uses
4013 the toc or got. */
4014 #define makes_toc_func_call sec_flg3
4015
4016 /* Recursion protection when determining above flag. */
4017 #define call_check_in_progress sec_flg4
4018 #define call_check_done sec_flg5
4019
4020 /* Get the ppc64 ELF linker hash table from a link_info structure. */
4021
4022 #define ppc_hash_table(p) \
4023 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
4024 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
4025
4026 #define ppc_stub_hash_lookup(table, string, create, copy) \
4027 ((struct ppc_stub_hash_entry *) \
4028 bfd_hash_lookup ((table), (string), (create), (copy)))
4029
4030 #define ppc_branch_hash_lookup(table, string, create, copy) \
4031 ((struct ppc_branch_hash_entry *) \
4032 bfd_hash_lookup ((table), (string), (create), (copy)))
4033
4034 /* Create an entry in the stub hash table. */
4035
4036 static struct bfd_hash_entry *
4037 stub_hash_newfunc (struct bfd_hash_entry *entry,
4038 struct bfd_hash_table *table,
4039 const char *string)
4040 {
4041 /* Allocate the structure if it has not already been allocated by a
4042 subclass. */
4043 if (entry == NULL)
4044 {
4045 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
4046 if (entry == NULL)
4047 return entry;
4048 }
4049
4050 /* Call the allocation method of the superclass. */
4051 entry = bfd_hash_newfunc (entry, table, string);
4052 if (entry != NULL)
4053 {
4054 struct ppc_stub_hash_entry *eh;
4055
4056 /* Initialize the local fields. */
4057 eh = (struct ppc_stub_hash_entry *) entry;
4058 eh->stub_type = ppc_stub_none;
4059 eh->stub_sec = NULL;
4060 eh->stub_offset = 0;
4061 eh->target_value = 0;
4062 eh->target_section = NULL;
4063 eh->h = NULL;
4064 eh->plt_ent = NULL;
4065 eh->id_sec = NULL;
4066 eh->other = 0;
4067 }
4068
4069 return entry;
4070 }
4071
4072 /* Create an entry in the branch hash table. */
4073
4074 static struct bfd_hash_entry *
4075 branch_hash_newfunc (struct bfd_hash_entry *entry,
4076 struct bfd_hash_table *table,
4077 const char *string)
4078 {
4079 /* Allocate the structure if it has not already been allocated by a
4080 subclass. */
4081 if (entry == NULL)
4082 {
4083 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
4084 if (entry == NULL)
4085 return entry;
4086 }
4087
4088 /* Call the allocation method of the superclass. */
4089 entry = bfd_hash_newfunc (entry, table, string);
4090 if (entry != NULL)
4091 {
4092 struct ppc_branch_hash_entry *eh;
4093
4094 /* Initialize the local fields. */
4095 eh = (struct ppc_branch_hash_entry *) entry;
4096 eh->offset = 0;
4097 eh->iter = 0;
4098 }
4099
4100 return entry;
4101 }
4102
4103 /* Create an entry in a ppc64 ELF linker hash table. */
4104
4105 static struct bfd_hash_entry *
4106 link_hash_newfunc (struct bfd_hash_entry *entry,
4107 struct bfd_hash_table *table,
4108 const char *string)
4109 {
4110 /* Allocate the structure if it has not already been allocated by a
4111 subclass. */
4112 if (entry == NULL)
4113 {
4114 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
4115 if (entry == NULL)
4116 return entry;
4117 }
4118
4119 /* Call the allocation method of the superclass. */
4120 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
4121 if (entry != NULL)
4122 {
4123 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
4124
4125 memset (&eh->u.stub_cache, 0,
4126 (sizeof (struct ppc_link_hash_entry)
4127 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
4128
4129 /* When making function calls, old ABI code references function entry
4130 points (dot symbols), while new ABI code references the function
4131 descriptor symbol. We need to make any combination of reference and
4132 definition work together, without breaking archive linking.
4133
4134 For a defined function "foo" and an undefined call to "bar":
4135 An old object defines "foo" and ".foo", references ".bar" (possibly
4136 "bar" too).
4137 A new object defines "foo" and references "bar".
4138
4139 A new object thus has no problem with its undefined symbols being
4140 satisfied by definitions in an old object. On the other hand, the
4141 old object won't have ".bar" satisfied by a new object.
4142
4143 Keep a list of newly added dot-symbols. */
4144
4145 if (string[0] == '.')
4146 {
4147 struct ppc_link_hash_table *htab;
4148
4149 htab = (struct ppc_link_hash_table *) table;
4150 eh->u.next_dot_sym = htab->dot_syms;
4151 htab->dot_syms = eh;
4152 }
4153 }
4154
4155 return entry;
4156 }
4157
4158 struct tocsave_entry {
4159 asection *sec;
4160 bfd_vma offset;
4161 };
4162
4163 static hashval_t
4164 tocsave_htab_hash (const void *p)
4165 {
4166 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
4167 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
4168 }
4169
4170 static int
4171 tocsave_htab_eq (const void *p1, const void *p2)
4172 {
4173 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
4174 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
4175 return e1->sec == e2->sec && e1->offset == e2->offset;
4176 }
4177
4178 /* Destroy a ppc64 ELF linker hash table. */
4179
4180 static void
4181 ppc64_elf_link_hash_table_free (bfd *obfd)
4182 {
4183 struct ppc_link_hash_table *htab;
4184
4185 htab = (struct ppc_link_hash_table *) obfd->link.hash;
4186 if (htab->tocsave_htab)
4187 htab_delete (htab->tocsave_htab);
4188 bfd_hash_table_free (&htab->branch_hash_table);
4189 bfd_hash_table_free (&htab->stub_hash_table);
4190 _bfd_elf_link_hash_table_free (obfd);
4191 }
4192
4193 /* Create a ppc64 ELF linker hash table. */
4194
4195 static struct bfd_link_hash_table *
4196 ppc64_elf_link_hash_table_create (bfd *abfd)
4197 {
4198 struct ppc_link_hash_table *htab;
4199 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
4200
4201 htab = bfd_zmalloc (amt);
4202 if (htab == NULL)
4203 return NULL;
4204
4205 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
4206 sizeof (struct ppc_link_hash_entry),
4207 PPC64_ELF_DATA))
4208 {
4209 free (htab);
4210 return NULL;
4211 }
4212
4213 /* Init the stub hash table too. */
4214 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4215 sizeof (struct ppc_stub_hash_entry)))
4216 {
4217 _bfd_elf_link_hash_table_free (abfd);
4218 return NULL;
4219 }
4220
4221 /* And the branch hash table. */
4222 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4223 sizeof (struct ppc_branch_hash_entry)))
4224 {
4225 bfd_hash_table_free (&htab->stub_hash_table);
4226 _bfd_elf_link_hash_table_free (abfd);
4227 return NULL;
4228 }
4229
4230 htab->tocsave_htab = htab_try_create (1024,
4231 tocsave_htab_hash,
4232 tocsave_htab_eq,
4233 NULL);
4234 if (htab->tocsave_htab == NULL)
4235 {
4236 ppc64_elf_link_hash_table_free (abfd);
4237 return NULL;
4238 }
4239 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
4240
4241 /* Initializing two fields of the union is just cosmetic. We really
4242 only care about glist, but when compiled on a 32-bit host the
4243 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4244 debugger inspection of these fields look nicer. */
4245 htab->elf.init_got_refcount.refcount = 0;
4246 htab->elf.init_got_refcount.glist = NULL;
4247 htab->elf.init_plt_refcount.refcount = 0;
4248 htab->elf.init_plt_refcount.glist = NULL;
4249 htab->elf.init_got_offset.offset = 0;
4250 htab->elf.init_got_offset.glist = NULL;
4251 htab->elf.init_plt_offset.offset = 0;
4252 htab->elf.init_plt_offset.glist = NULL;
4253
4254 return &htab->elf.root;
4255 }
4256
4257 /* Create sections for linker generated code. */
4258
4259 static bfd_boolean
4260 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4261 {
4262 struct ppc_link_hash_table *htab;
4263 flagword flags;
4264
4265 htab = ppc_hash_table (info);
4266
4267 /* Create .sfpr for code to save and restore fp regs. */
4268 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4269 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4270 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4271 flags);
4272 if (htab->sfpr == NULL
4273 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4274 return FALSE;
4275
4276 /* Create .glink for lazy dynamic linking support. */
4277 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4278 flags);
4279 if (htab->glink == NULL
4280 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4281 return FALSE;
4282
4283 if (!info->no_ld_generated_unwind_info)
4284 {
4285 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4286 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4287 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4288 ".eh_frame",
4289 flags);
4290 if (htab->glink_eh_frame == NULL
4291 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4292 return FALSE;
4293 }
4294
4295 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4296 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4297 if (htab->elf.iplt == NULL
4298 || ! bfd_set_section_alignment (dynobj, htab->elf.iplt, 3))
4299 return FALSE;
4300
4301 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4302 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4303 htab->elf.irelplt
4304 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
4305 if (htab->elf.irelplt == NULL
4306 || ! bfd_set_section_alignment (dynobj, htab->elf.irelplt, 3))
4307 return FALSE;
4308
4309 /* Create branch lookup table for plt_branch stubs. */
4310 flags = (SEC_ALLOC | SEC_LOAD
4311 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4312 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4313 flags);
4314 if (htab->brlt == NULL
4315 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4316 return FALSE;
4317
4318 if (!info->shared)
4319 return TRUE;
4320
4321 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4322 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4323 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4324 ".rela.branch_lt",
4325 flags);
4326 if (htab->relbrlt == NULL
4327 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4328 return FALSE;
4329
4330 return TRUE;
4331 }
4332
4333 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4334
4335 bfd_boolean
4336 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
4337 struct ppc64_elf_params *params)
4338 {
4339 struct ppc_link_hash_table *htab;
4340
4341 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
4342
4343 /* Always hook our dynamic sections into the first bfd, which is the
4344 linker created stub bfd. This ensures that the GOT header is at
4345 the start of the output TOC section. */
4346 htab = ppc_hash_table (info);
4347 if (htab == NULL)
4348 return FALSE;
4349 htab->elf.dynobj = params->stub_bfd;
4350 htab->params = params;
4351
4352 if (info->relocatable)
4353 return TRUE;
4354
4355 return create_linkage_sections (htab->elf.dynobj, info);
4356 }
4357
4358 /* Build a name for an entry in the stub hash table. */
4359
4360 static char *
4361 ppc_stub_name (const asection *input_section,
4362 const asection *sym_sec,
4363 const struct ppc_link_hash_entry *h,
4364 const Elf_Internal_Rela *rel)
4365 {
4366 char *stub_name;
4367 ssize_t len;
4368
4369 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4370 offsets from a sym as a branch target? In fact, we could
4371 probably assume the addend is always zero. */
4372 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4373
4374 if (h)
4375 {
4376 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4377 stub_name = bfd_malloc (len);
4378 if (stub_name == NULL)
4379 return stub_name;
4380
4381 len = sprintf (stub_name, "%08x.%s+%x",
4382 input_section->id & 0xffffffff,
4383 h->elf.root.root.string,
4384 (int) rel->r_addend & 0xffffffff);
4385 }
4386 else
4387 {
4388 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4389 stub_name = bfd_malloc (len);
4390 if (stub_name == NULL)
4391 return stub_name;
4392
4393 len = sprintf (stub_name, "%08x.%x:%x+%x",
4394 input_section->id & 0xffffffff,
4395 sym_sec->id & 0xffffffff,
4396 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4397 (int) rel->r_addend & 0xffffffff);
4398 }
4399 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4400 stub_name[len - 2] = 0;
4401 return stub_name;
4402 }
4403
4404 /* Look up an entry in the stub hash. Stub entries are cached because
4405 creating the stub name takes a bit of time. */
4406
4407 static struct ppc_stub_hash_entry *
4408 ppc_get_stub_entry (const asection *input_section,
4409 const asection *sym_sec,
4410 struct ppc_link_hash_entry *h,
4411 const Elf_Internal_Rela *rel,
4412 struct ppc_link_hash_table *htab)
4413 {
4414 struct ppc_stub_hash_entry *stub_entry;
4415 const asection *id_sec;
4416
4417 /* If this input section is part of a group of sections sharing one
4418 stub section, then use the id of the first section in the group.
4419 Stub names need to include a section id, as there may well be
4420 more than one stub used to reach say, printf, and we need to
4421 distinguish between them. */
4422 id_sec = htab->stub_group[input_section->id].link_sec;
4423
4424 if (h != NULL && h->u.stub_cache != NULL
4425 && h->u.stub_cache->h == h
4426 && h->u.stub_cache->id_sec == id_sec)
4427 {
4428 stub_entry = h->u.stub_cache;
4429 }
4430 else
4431 {
4432 char *stub_name;
4433
4434 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4435 if (stub_name == NULL)
4436 return NULL;
4437
4438 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4439 stub_name, FALSE, FALSE);
4440 if (h != NULL)
4441 h->u.stub_cache = stub_entry;
4442
4443 free (stub_name);
4444 }
4445
4446 return stub_entry;
4447 }
4448
4449 /* Add a new stub entry to the stub hash. Not all fields of the new
4450 stub entry are initialised. */
4451
4452 static struct ppc_stub_hash_entry *
4453 ppc_add_stub (const char *stub_name,
4454 asection *section,
4455 struct bfd_link_info *info)
4456 {
4457 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4458 asection *link_sec;
4459 asection *stub_sec;
4460 struct ppc_stub_hash_entry *stub_entry;
4461
4462 link_sec = htab->stub_group[section->id].link_sec;
4463 stub_sec = htab->stub_group[section->id].stub_sec;
4464 if (stub_sec == NULL)
4465 {
4466 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4467 if (stub_sec == NULL)
4468 {
4469 size_t namelen;
4470 bfd_size_type len;
4471 char *s_name;
4472
4473 namelen = strlen (link_sec->name);
4474 len = namelen + sizeof (STUB_SUFFIX);
4475 s_name = bfd_alloc (htab->params->stub_bfd, len);
4476 if (s_name == NULL)
4477 return NULL;
4478
4479 memcpy (s_name, link_sec->name, namelen);
4480 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4481 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
4482 if (stub_sec == NULL)
4483 return NULL;
4484 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4485 }
4486 htab->stub_group[section->id].stub_sec = stub_sec;
4487 }
4488
4489 /* Enter this entry into the linker stub hash table. */
4490 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4491 TRUE, FALSE);
4492 if (stub_entry == NULL)
4493 {
4494 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4495 section->owner, stub_name);
4496 return NULL;
4497 }
4498
4499 stub_entry->stub_sec = stub_sec;
4500 stub_entry->stub_offset = 0;
4501 stub_entry->id_sec = link_sec;
4502 return stub_entry;
4503 }
4504
4505 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4506 not already done. */
4507
4508 static bfd_boolean
4509 create_got_section (bfd *abfd, struct bfd_link_info *info)
4510 {
4511 asection *got, *relgot;
4512 flagword flags;
4513 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4514
4515 if (!is_ppc64_elf (abfd))
4516 return FALSE;
4517 if (htab == NULL)
4518 return FALSE;
4519
4520 if (!htab->elf.sgot
4521 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
4522 return FALSE;
4523
4524 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4525 | SEC_LINKER_CREATED);
4526
4527 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4528 if (!got
4529 || !bfd_set_section_alignment (abfd, got, 3))
4530 return FALSE;
4531
4532 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4533 flags | SEC_READONLY);
4534 if (!relgot
4535 || ! bfd_set_section_alignment (abfd, relgot, 3))
4536 return FALSE;
4537
4538 ppc64_elf_tdata (abfd)->got = got;
4539 ppc64_elf_tdata (abfd)->relgot = relgot;
4540 return TRUE;
4541 }
4542
4543 /* Create the dynamic sections, and set up shortcuts. */
4544
4545 static bfd_boolean
4546 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4547 {
4548 struct ppc_link_hash_table *htab;
4549
4550 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4551 return FALSE;
4552
4553 htab = ppc_hash_table (info);
4554 if (htab == NULL)
4555 return FALSE;
4556
4557 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4558 if (!info->shared)
4559 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4560
4561 if (!htab->elf.sgot || !htab->elf.splt || !htab->elf.srelplt || !htab->dynbss
4562 || (!info->shared && !htab->relbss))
4563 abort ();
4564
4565 return TRUE;
4566 }
4567
4568 /* Follow indirect and warning symbol links. */
4569
4570 static inline struct bfd_link_hash_entry *
4571 follow_link (struct bfd_link_hash_entry *h)
4572 {
4573 while (h->type == bfd_link_hash_indirect
4574 || h->type == bfd_link_hash_warning)
4575 h = h->u.i.link;
4576 return h;
4577 }
4578
4579 static inline struct elf_link_hash_entry *
4580 elf_follow_link (struct elf_link_hash_entry *h)
4581 {
4582 return (struct elf_link_hash_entry *) follow_link (&h->root);
4583 }
4584
4585 static inline struct ppc_link_hash_entry *
4586 ppc_follow_link (struct ppc_link_hash_entry *h)
4587 {
4588 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4589 }
4590
4591 /* Merge PLT info on FROM with that on TO. */
4592
4593 static void
4594 move_plt_plist (struct ppc_link_hash_entry *from,
4595 struct ppc_link_hash_entry *to)
4596 {
4597 if (from->elf.plt.plist != NULL)
4598 {
4599 if (to->elf.plt.plist != NULL)
4600 {
4601 struct plt_entry **entp;
4602 struct plt_entry *ent;
4603
4604 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4605 {
4606 struct plt_entry *dent;
4607
4608 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4609 if (dent->addend == ent->addend)
4610 {
4611 dent->plt.refcount += ent->plt.refcount;
4612 *entp = ent->next;
4613 break;
4614 }
4615 if (dent == NULL)
4616 entp = &ent->next;
4617 }
4618 *entp = to->elf.plt.plist;
4619 }
4620
4621 to->elf.plt.plist = from->elf.plt.plist;
4622 from->elf.plt.plist = NULL;
4623 }
4624 }
4625
4626 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4627
4628 static void
4629 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4630 struct elf_link_hash_entry *dir,
4631 struct elf_link_hash_entry *ind)
4632 {
4633 struct ppc_link_hash_entry *edir, *eind;
4634
4635 edir = (struct ppc_link_hash_entry *) dir;
4636 eind = (struct ppc_link_hash_entry *) ind;
4637
4638 edir->is_func |= eind->is_func;
4639 edir->is_func_descriptor |= eind->is_func_descriptor;
4640 edir->tls_mask |= eind->tls_mask;
4641 if (eind->oh != NULL)
4642 edir->oh = ppc_follow_link (eind->oh);
4643
4644 /* If called to transfer flags for a weakdef during processing
4645 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4646 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4647 if (!(ELIMINATE_COPY_RELOCS
4648 && eind->elf.root.type != bfd_link_hash_indirect
4649 && edir->elf.dynamic_adjusted))
4650 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4651
4652 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4653 edir->elf.ref_regular |= eind->elf.ref_regular;
4654 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4655 edir->elf.needs_plt |= eind->elf.needs_plt;
4656 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
4657
4658 /* Copy over any dynamic relocs we may have on the indirect sym. */
4659 if (eind->dyn_relocs != NULL)
4660 {
4661 if (edir->dyn_relocs != NULL)
4662 {
4663 struct elf_dyn_relocs **pp;
4664 struct elf_dyn_relocs *p;
4665
4666 /* Add reloc counts against the indirect sym to the direct sym
4667 list. Merge any entries against the same section. */
4668 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4669 {
4670 struct elf_dyn_relocs *q;
4671
4672 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4673 if (q->sec == p->sec)
4674 {
4675 q->pc_count += p->pc_count;
4676 q->count += p->count;
4677 *pp = p->next;
4678 break;
4679 }
4680 if (q == NULL)
4681 pp = &p->next;
4682 }
4683 *pp = edir->dyn_relocs;
4684 }
4685
4686 edir->dyn_relocs = eind->dyn_relocs;
4687 eind->dyn_relocs = NULL;
4688 }
4689
4690 /* If we were called to copy over info for a weak sym, that's all.
4691 You might think dyn_relocs need not be copied over; After all,
4692 both syms will be dynamic or both non-dynamic so we're just
4693 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4694 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4695 dyn_relocs in read-only sections, and it does so on what is the
4696 DIR sym here. */
4697 if (eind->elf.root.type != bfd_link_hash_indirect)
4698 return;
4699
4700 /* Copy over got entries that we may have already seen to the
4701 symbol which just became indirect. */
4702 if (eind->elf.got.glist != NULL)
4703 {
4704 if (edir->elf.got.glist != NULL)
4705 {
4706 struct got_entry **entp;
4707 struct got_entry *ent;
4708
4709 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4710 {
4711 struct got_entry *dent;
4712
4713 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4714 if (dent->addend == ent->addend
4715 && dent->owner == ent->owner
4716 && dent->tls_type == ent->tls_type)
4717 {
4718 dent->got.refcount += ent->got.refcount;
4719 *entp = ent->next;
4720 break;
4721 }
4722 if (dent == NULL)
4723 entp = &ent->next;
4724 }
4725 *entp = edir->elf.got.glist;
4726 }
4727
4728 edir->elf.got.glist = eind->elf.got.glist;
4729 eind->elf.got.glist = NULL;
4730 }
4731
4732 /* And plt entries. */
4733 move_plt_plist (eind, edir);
4734
4735 if (eind->elf.dynindx != -1)
4736 {
4737 if (edir->elf.dynindx != -1)
4738 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4739 edir->elf.dynstr_index);
4740 edir->elf.dynindx = eind->elf.dynindx;
4741 edir->elf.dynstr_index = eind->elf.dynstr_index;
4742 eind->elf.dynindx = -1;
4743 eind->elf.dynstr_index = 0;
4744 }
4745 }
4746
4747 /* Find the function descriptor hash entry from the given function code
4748 hash entry FH. Link the entries via their OH fields. */
4749
4750 static struct ppc_link_hash_entry *
4751 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4752 {
4753 struct ppc_link_hash_entry *fdh = fh->oh;
4754
4755 if (fdh == NULL)
4756 {
4757 const char *fd_name = fh->elf.root.root.string + 1;
4758
4759 fdh = (struct ppc_link_hash_entry *)
4760 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4761 if (fdh == NULL)
4762 return fdh;
4763
4764 fdh->is_func_descriptor = 1;
4765 fdh->oh = fh;
4766 fh->is_func = 1;
4767 fh->oh = fdh;
4768 }
4769
4770 return ppc_follow_link (fdh);
4771 }
4772
4773 /* Make a fake function descriptor sym for the code sym FH. */
4774
4775 static struct ppc_link_hash_entry *
4776 make_fdh (struct bfd_link_info *info,
4777 struct ppc_link_hash_entry *fh)
4778 {
4779 bfd *abfd;
4780 asymbol *newsym;
4781 struct bfd_link_hash_entry *bh;
4782 struct ppc_link_hash_entry *fdh;
4783
4784 abfd = fh->elf.root.u.undef.abfd;
4785 newsym = bfd_make_empty_symbol (abfd);
4786 newsym->name = fh->elf.root.root.string + 1;
4787 newsym->section = bfd_und_section_ptr;
4788 newsym->value = 0;
4789 newsym->flags = BSF_WEAK;
4790
4791 bh = NULL;
4792 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4793 newsym->flags, newsym->section,
4794 newsym->value, NULL, FALSE, FALSE,
4795 &bh))
4796 return NULL;
4797
4798 fdh = (struct ppc_link_hash_entry *) bh;
4799 fdh->elf.non_elf = 0;
4800 fdh->fake = 1;
4801 fdh->is_func_descriptor = 1;
4802 fdh->oh = fh;
4803 fh->is_func = 1;
4804 fh->oh = fdh;
4805 return fdh;
4806 }
4807
4808 /* Fix function descriptor symbols defined in .opd sections to be
4809 function type. */
4810
4811 static bfd_boolean
4812 ppc64_elf_add_symbol_hook (bfd *ibfd,
4813 struct bfd_link_info *info,
4814 Elf_Internal_Sym *isym,
4815 const char **name,
4816 flagword *flags ATTRIBUTE_UNUSED,
4817 asection **sec,
4818 bfd_vma *value)
4819 {
4820 if ((ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4821 || ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4822 && (ibfd->flags & DYNAMIC) == 0
4823 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4824 elf_tdata (info->output_bfd)->has_gnu_symbols = elf_gnu_symbol_any;
4825
4826 if (*sec != NULL
4827 && strcmp ((*sec)->name, ".opd") == 0)
4828 {
4829 asection *code_sec;
4830
4831 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4832 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4833 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4834
4835 /* If the symbol is a function defined in .opd, and the function
4836 code is in a discarded group, let it appear to be undefined. */
4837 if (!info->relocatable
4838 && (*sec)->reloc_count != 0
4839 && opd_entry_value (*sec, *value, &code_sec, NULL,
4840 FALSE) != (bfd_vma) -1
4841 && discarded_section (code_sec))
4842 {
4843 *sec = bfd_und_section_ptr;
4844 isym->st_shndx = SHN_UNDEF;
4845 }
4846 }
4847 else if (*sec != NULL
4848 && strcmp ((*sec)->name, ".toc") == 0
4849 && ELF_ST_TYPE (isym->st_info) == STT_OBJECT)
4850 {
4851 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4852 if (htab != NULL)
4853 htab->params->object_in_toc = 1;
4854 }
4855
4856 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4857 {
4858 if (abiversion (ibfd) == 0)
4859 set_abiversion (ibfd, 2);
4860 else if (abiversion (ibfd) == 1)
4861 {
4862 info->callbacks->einfo (_("%P: symbol '%s' has invalid st_other"
4863 " for ABI version 1\n"), name);
4864 bfd_set_error (bfd_error_bad_value);
4865 return FALSE;
4866 }
4867 }
4868
4869 return TRUE;
4870 }
4871
4872 /* Merge non-visibility st_other attributes: local entry point. */
4873
4874 static void
4875 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4876 const Elf_Internal_Sym *isym,
4877 bfd_boolean definition,
4878 bfd_boolean dynamic)
4879 {
4880 if (definition && !dynamic)
4881 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4882 | ELF_ST_VISIBILITY (h->other));
4883 }
4884
4885 /* This function makes an old ABI object reference to ".bar" cause the
4886 inclusion of a new ABI object archive that defines "bar".
4887 NAME is a symbol defined in an archive. Return a symbol in the hash
4888 table that might be satisfied by the archive symbols. */
4889
4890 static struct elf_link_hash_entry *
4891 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4892 struct bfd_link_info *info,
4893 const char *name)
4894 {
4895 struct elf_link_hash_entry *h;
4896 char *dot_name;
4897 size_t len;
4898
4899 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4900 if (h != NULL
4901 /* Don't return this sym if it is a fake function descriptor
4902 created by add_symbol_adjust. */
4903 && !(h->root.type == bfd_link_hash_undefweak
4904 && ((struct ppc_link_hash_entry *) h)->fake))
4905 return h;
4906
4907 if (name[0] == '.')
4908 return h;
4909
4910 len = strlen (name);
4911 dot_name = bfd_alloc (abfd, len + 2);
4912 if (dot_name == NULL)
4913 return (struct elf_link_hash_entry *) 0 - 1;
4914 dot_name[0] = '.';
4915 memcpy (dot_name + 1, name, len + 1);
4916 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4917 bfd_release (abfd, dot_name);
4918 return h;
4919 }
4920
4921 /* This function satisfies all old ABI object references to ".bar" if a
4922 new ABI object defines "bar". Well, at least, undefined dot symbols
4923 are made weak. This stops later archive searches from including an
4924 object if we already have a function descriptor definition. It also
4925 prevents the linker complaining about undefined symbols.
4926 We also check and correct mismatched symbol visibility here. The
4927 most restrictive visibility of the function descriptor and the
4928 function entry symbol is used. */
4929
4930 static bfd_boolean
4931 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4932 {
4933 struct ppc_link_hash_table *htab;
4934 struct ppc_link_hash_entry *fdh;
4935
4936 if (eh->elf.root.type == bfd_link_hash_indirect)
4937 return TRUE;
4938
4939 if (eh->elf.root.type == bfd_link_hash_warning)
4940 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4941
4942 if (eh->elf.root.root.string[0] != '.')
4943 abort ();
4944
4945 htab = ppc_hash_table (info);
4946 if (htab == NULL)
4947 return FALSE;
4948
4949 fdh = lookup_fdh (eh, htab);
4950 if (fdh == NULL)
4951 {
4952 if (!info->relocatable
4953 && (eh->elf.root.type == bfd_link_hash_undefined
4954 || eh->elf.root.type == bfd_link_hash_undefweak)
4955 && eh->elf.ref_regular)
4956 {
4957 /* Make an undefweak function descriptor sym, which is enough to
4958 pull in an --as-needed shared lib, but won't cause link
4959 errors. Archives are handled elsewhere. */
4960 fdh = make_fdh (info, eh);
4961 if (fdh == NULL)
4962 return FALSE;
4963 fdh->elf.ref_regular = 1;
4964 }
4965 }
4966 else
4967 {
4968 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4969 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4970 if (entry_vis < descr_vis)
4971 fdh->elf.other += entry_vis - descr_vis;
4972 else if (entry_vis > descr_vis)
4973 eh->elf.other += descr_vis - entry_vis;
4974
4975 if ((fdh->elf.root.type == bfd_link_hash_defined
4976 || fdh->elf.root.type == bfd_link_hash_defweak)
4977 && eh->elf.root.type == bfd_link_hash_undefined)
4978 {
4979 eh->elf.root.type = bfd_link_hash_undefweak;
4980 eh->was_undefined = 1;
4981 htab->twiddled_syms = 1;
4982 }
4983 }
4984
4985 return TRUE;
4986 }
4987
4988 /* Set up opd section info and abiversion for IBFD, and process list
4989 of dot-symbols we made in link_hash_newfunc. */
4990
4991 static bfd_boolean
4992 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4993 {
4994 struct ppc_link_hash_table *htab;
4995 struct ppc_link_hash_entry **p, *eh;
4996 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4997
4998 if (opd != NULL && opd->size != 0)
4999 {
5000 if (abiversion (ibfd) == 0)
5001 set_abiversion (ibfd, 1);
5002 else if (abiversion (ibfd) == 2)
5003 {
5004 info->callbacks->einfo (_("%P: %B .opd not allowed in ABI"
5005 " version %d\n"),
5006 ibfd, abiversion (ibfd));
5007 bfd_set_error (bfd_error_bad_value);
5008 return FALSE;
5009 }
5010
5011 if ((ibfd->flags & DYNAMIC) == 0
5012 && (opd->flags & SEC_RELOC) != 0
5013 && opd->reloc_count != 0
5014 && !bfd_is_abs_section (opd->output_section))
5015 {
5016 /* Garbage collection needs some extra help with .opd sections.
5017 We don't want to necessarily keep everything referenced by
5018 relocs in .opd, as that would keep all functions. Instead,
5019 if we reference an .opd symbol (a function descriptor), we
5020 want to keep the function code symbol's section. This is
5021 easy for global symbols, but for local syms we need to keep
5022 information about the associated function section. */
5023 bfd_size_type amt;
5024 asection **opd_sym_map;
5025
5026 amt = OPD_NDX (opd->size) * sizeof (*opd_sym_map);
5027 opd_sym_map = bfd_zalloc (ibfd, amt);
5028 if (opd_sym_map == NULL)
5029 return FALSE;
5030 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
5031 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
5032 ppc64_elf_section_data (opd)->sec_type = sec_opd;
5033 }
5034 }
5035
5036 if (!is_ppc64_elf (info->output_bfd))
5037 return TRUE;
5038 htab = ppc_hash_table (info);
5039 if (htab == NULL)
5040 return FALSE;
5041
5042 /* For input files without an explicit abiversion in e_flags
5043 we should have flagged any with symbol st_other bits set
5044 as ELFv1 and above flagged those with .opd as ELFv2.
5045 Set the output abiversion if not yet set, and for any input
5046 still ambiguous, take its abiversion from the output.
5047 Differences in ABI are reported later. */
5048 if (abiversion (info->output_bfd) == 0)
5049 set_abiversion (info->output_bfd, abiversion (ibfd));
5050 else if (abiversion (ibfd) == 0)
5051 set_abiversion (ibfd, abiversion (info->output_bfd));
5052
5053 p = &htab->dot_syms;
5054 while ((eh = *p) != NULL)
5055 {
5056 *p = NULL;
5057 if (&eh->elf == htab->elf.hgot)
5058 ;
5059 else if (htab->elf.hgot == NULL
5060 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
5061 htab->elf.hgot = &eh->elf;
5062 else if (!add_symbol_adjust (eh, info))
5063 return FALSE;
5064 p = &eh->u.next_dot_sym;
5065 }
5066
5067 /* Clear the list for non-ppc64 input files. */
5068 p = &htab->dot_syms;
5069 while ((eh = *p) != NULL)
5070 {
5071 *p = NULL;
5072 p = &eh->u.next_dot_sym;
5073 }
5074
5075 /* We need to fix the undefs list for any syms we have twiddled to
5076 undef_weak. */
5077 if (htab->twiddled_syms)
5078 {
5079 bfd_link_repair_undef_list (&htab->elf.root);
5080 htab->twiddled_syms = 0;
5081 }
5082 return TRUE;
5083 }
5084
5085 /* Undo hash table changes when an --as-needed input file is determined
5086 not to be needed. */
5087
5088 static bfd_boolean
5089 ppc64_elf_notice_as_needed (bfd *ibfd,
5090 struct bfd_link_info *info,
5091 enum notice_asneeded_action act)
5092 {
5093 if (act == notice_not_needed)
5094 {
5095 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5096
5097 if (htab == NULL)
5098 return FALSE;
5099
5100 htab->dot_syms = NULL;
5101 }
5102 return _bfd_elf_notice_as_needed (ibfd, info, act);
5103 }
5104
5105 /* If --just-symbols against a final linked binary, then assume we need
5106 toc adjusting stubs when calling functions defined there. */
5107
5108 static void
5109 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
5110 {
5111 if ((sec->flags & SEC_CODE) != 0
5112 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
5113 && is_ppc64_elf (sec->owner))
5114 {
5115 if (abiversion (sec->owner) >= 2
5116 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
5117 sec->has_toc_reloc = 1;
5118 }
5119 _bfd_elf_link_just_syms (sec, info);
5120 }
5121
5122 static struct plt_entry **
5123 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
5124 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
5125 {
5126 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
5127 struct plt_entry **local_plt;
5128 unsigned char *local_got_tls_masks;
5129
5130 if (local_got_ents == NULL)
5131 {
5132 bfd_size_type size = symtab_hdr->sh_info;
5133
5134 size *= (sizeof (*local_got_ents)
5135 + sizeof (*local_plt)
5136 + sizeof (*local_got_tls_masks));
5137 local_got_ents = bfd_zalloc (abfd, size);
5138 if (local_got_ents == NULL)
5139 return NULL;
5140 elf_local_got_ents (abfd) = local_got_ents;
5141 }
5142
5143 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
5144 {
5145 struct got_entry *ent;
5146
5147 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
5148 if (ent->addend == r_addend
5149 && ent->owner == abfd
5150 && ent->tls_type == tls_type)
5151 break;
5152 if (ent == NULL)
5153 {
5154 bfd_size_type amt = sizeof (*ent);
5155 ent = bfd_alloc (abfd, amt);
5156 if (ent == NULL)
5157 return FALSE;
5158 ent->next = local_got_ents[r_symndx];
5159 ent->addend = r_addend;
5160 ent->owner = abfd;
5161 ent->tls_type = tls_type;
5162 ent->is_indirect = FALSE;
5163 ent->got.refcount = 0;
5164 local_got_ents[r_symndx] = ent;
5165 }
5166 ent->got.refcount += 1;
5167 }
5168
5169 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
5170 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
5171 local_got_tls_masks[r_symndx] |= tls_type;
5172
5173 return local_plt + r_symndx;
5174 }
5175
5176 static bfd_boolean
5177 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
5178 {
5179 struct plt_entry *ent;
5180
5181 for (ent = *plist; ent != NULL; ent = ent->next)
5182 if (ent->addend == addend)
5183 break;
5184 if (ent == NULL)
5185 {
5186 bfd_size_type amt = sizeof (*ent);
5187 ent = bfd_alloc (abfd, amt);
5188 if (ent == NULL)
5189 return FALSE;
5190 ent->next = *plist;
5191 ent->addend = addend;
5192 ent->plt.refcount = 0;
5193 *plist = ent;
5194 }
5195 ent->plt.refcount += 1;
5196 return TRUE;
5197 }
5198
5199 static bfd_boolean
5200 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
5201 {
5202 return (r_type == R_PPC64_REL24
5203 || r_type == R_PPC64_REL14
5204 || r_type == R_PPC64_REL14_BRTAKEN
5205 || r_type == R_PPC64_REL14_BRNTAKEN
5206 || r_type == R_PPC64_ADDR24
5207 || r_type == R_PPC64_ADDR14
5208 || r_type == R_PPC64_ADDR14_BRTAKEN
5209 || r_type == R_PPC64_ADDR14_BRNTAKEN);
5210 }
5211
5212 /* Look through the relocs for a section during the first phase, and
5213 calculate needed space in the global offset table, procedure
5214 linkage table, and dynamic reloc sections. */
5215
5216 static bfd_boolean
5217 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5218 asection *sec, const Elf_Internal_Rela *relocs)
5219 {
5220 struct ppc_link_hash_table *htab;
5221 Elf_Internal_Shdr *symtab_hdr;
5222 struct elf_link_hash_entry **sym_hashes;
5223 const Elf_Internal_Rela *rel;
5224 const Elf_Internal_Rela *rel_end;
5225 asection *sreloc;
5226 asection **opd_sym_map;
5227 struct elf_link_hash_entry *tga, *dottga;
5228
5229 if (info->relocatable)
5230 return TRUE;
5231
5232 /* Don't do anything special with non-loaded, non-alloced sections.
5233 In particular, any relocs in such sections should not affect GOT
5234 and PLT reference counting (ie. we don't allow them to create GOT
5235 or PLT entries), there's no possibility or desire to optimize TLS
5236 relocs, and there's not much point in propagating relocs to shared
5237 libs that the dynamic linker won't relocate. */
5238 if ((sec->flags & SEC_ALLOC) == 0)
5239 return TRUE;
5240
5241 BFD_ASSERT (is_ppc64_elf (abfd));
5242
5243 htab = ppc_hash_table (info);
5244 if (htab == NULL)
5245 return FALSE;
5246
5247 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
5248 FALSE, FALSE, TRUE);
5249 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
5250 FALSE, FALSE, TRUE);
5251 symtab_hdr = &elf_symtab_hdr (abfd);
5252 sym_hashes = elf_sym_hashes (abfd);
5253 sreloc = NULL;
5254 opd_sym_map = NULL;
5255 if (ppc64_elf_section_data (sec) != NULL
5256 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
5257 opd_sym_map = ppc64_elf_section_data (sec)->u.opd.func_sec;
5258
5259 rel_end = relocs + sec->reloc_count;
5260 for (rel = relocs; rel < rel_end; rel++)
5261 {
5262 unsigned long r_symndx;
5263 struct elf_link_hash_entry *h;
5264 enum elf_ppc64_reloc_type r_type;
5265 int tls_type;
5266 struct _ppc64_elf_section_data *ppc64_sec;
5267 struct plt_entry **ifunc;
5268
5269 r_symndx = ELF64_R_SYM (rel->r_info);
5270 if (r_symndx < symtab_hdr->sh_info)
5271 h = NULL;
5272 else
5273 {
5274 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5275 h = elf_follow_link (h);
5276
5277 /* PR15323, ref flags aren't set for references in the same
5278 object. */
5279 h->root.non_ir_ref = 1;
5280
5281 if (h == htab->elf.hgot)
5282 sec->has_toc_reloc = 1;
5283 }
5284
5285 tls_type = 0;
5286 ifunc = NULL;
5287 if (h != NULL)
5288 {
5289 if (h->type == STT_GNU_IFUNC)
5290 {
5291 h->needs_plt = 1;
5292 ifunc = &h->plt.plist;
5293 }
5294 }
5295 else
5296 {
5297 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5298 abfd, r_symndx);
5299 if (isym == NULL)
5300 return FALSE;
5301
5302 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5303 {
5304 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5305 rel->r_addend, PLT_IFUNC);
5306 if (ifunc == NULL)
5307 return FALSE;
5308 }
5309 }
5310 r_type = ELF64_R_TYPE (rel->r_info);
5311 if (is_branch_reloc (r_type))
5312 {
5313 if (h != NULL && (h == tga || h == dottga))
5314 {
5315 if (rel != relocs
5316 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5317 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5318 /* We have a new-style __tls_get_addr call with a marker
5319 reloc. */
5320 ;
5321 else
5322 /* Mark this section as having an old-style call. */
5323 sec->has_tls_get_addr_call = 1;
5324 }
5325
5326 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5327 if (ifunc != NULL
5328 && !update_plt_info (abfd, ifunc, rel->r_addend))
5329 return FALSE;
5330 }
5331
5332 switch (r_type)
5333 {
5334 case R_PPC64_TLSGD:
5335 case R_PPC64_TLSLD:
5336 /* These special tls relocs tie a call to __tls_get_addr with
5337 its parameter symbol. */
5338 break;
5339
5340 case R_PPC64_GOT_TLSLD16:
5341 case R_PPC64_GOT_TLSLD16_LO:
5342 case R_PPC64_GOT_TLSLD16_HI:
5343 case R_PPC64_GOT_TLSLD16_HA:
5344 tls_type = TLS_TLS | TLS_LD;
5345 goto dogottls;
5346
5347 case R_PPC64_GOT_TLSGD16:
5348 case R_PPC64_GOT_TLSGD16_LO:
5349 case R_PPC64_GOT_TLSGD16_HI:
5350 case R_PPC64_GOT_TLSGD16_HA:
5351 tls_type = TLS_TLS | TLS_GD;
5352 goto dogottls;
5353
5354 case R_PPC64_GOT_TPREL16_DS:
5355 case R_PPC64_GOT_TPREL16_LO_DS:
5356 case R_PPC64_GOT_TPREL16_HI:
5357 case R_PPC64_GOT_TPREL16_HA:
5358 if (info->shared)
5359 info->flags |= DF_STATIC_TLS;
5360 tls_type = TLS_TLS | TLS_TPREL;
5361 goto dogottls;
5362
5363 case R_PPC64_GOT_DTPREL16_DS:
5364 case R_PPC64_GOT_DTPREL16_LO_DS:
5365 case R_PPC64_GOT_DTPREL16_HI:
5366 case R_PPC64_GOT_DTPREL16_HA:
5367 tls_type = TLS_TLS | TLS_DTPREL;
5368 dogottls:
5369 sec->has_tls_reloc = 1;
5370 /* Fall thru */
5371
5372 case R_PPC64_GOT16:
5373 case R_PPC64_GOT16_DS:
5374 case R_PPC64_GOT16_HA:
5375 case R_PPC64_GOT16_HI:
5376 case R_PPC64_GOT16_LO:
5377 case R_PPC64_GOT16_LO_DS:
5378 /* This symbol requires a global offset table entry. */
5379 sec->has_toc_reloc = 1;
5380 if (r_type == R_PPC64_GOT_TLSLD16
5381 || r_type == R_PPC64_GOT_TLSGD16
5382 || r_type == R_PPC64_GOT_TPREL16_DS
5383 || r_type == R_PPC64_GOT_DTPREL16_DS
5384 || r_type == R_PPC64_GOT16
5385 || r_type == R_PPC64_GOT16_DS)
5386 {
5387 htab->do_multi_toc = 1;
5388 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5389 }
5390
5391 if (ppc64_elf_tdata (abfd)->got == NULL
5392 && !create_got_section (abfd, info))
5393 return FALSE;
5394
5395 if (h != NULL)
5396 {
5397 struct ppc_link_hash_entry *eh;
5398 struct got_entry *ent;
5399
5400 eh = (struct ppc_link_hash_entry *) h;
5401 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5402 if (ent->addend == rel->r_addend
5403 && ent->owner == abfd
5404 && ent->tls_type == tls_type)
5405 break;
5406 if (ent == NULL)
5407 {
5408 bfd_size_type amt = sizeof (*ent);
5409 ent = bfd_alloc (abfd, amt);
5410 if (ent == NULL)
5411 return FALSE;
5412 ent->next = eh->elf.got.glist;
5413 ent->addend = rel->r_addend;
5414 ent->owner = abfd;
5415 ent->tls_type = tls_type;
5416 ent->is_indirect = FALSE;
5417 ent->got.refcount = 0;
5418 eh->elf.got.glist = ent;
5419 }
5420 ent->got.refcount += 1;
5421 eh->tls_mask |= tls_type;
5422 }
5423 else
5424 /* This is a global offset table entry for a local symbol. */
5425 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5426 rel->r_addend, tls_type))
5427 return FALSE;
5428
5429 /* We may also need a plt entry if the symbol turns out to be
5430 an ifunc. */
5431 if (h != NULL && !info->shared && abiversion (abfd) != 1)
5432 {
5433 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5434 return FALSE;
5435 }
5436 break;
5437
5438 case R_PPC64_PLT16_HA:
5439 case R_PPC64_PLT16_HI:
5440 case R_PPC64_PLT16_LO:
5441 case R_PPC64_PLT32:
5442 case R_PPC64_PLT64:
5443 /* This symbol requires a procedure linkage table entry. We
5444 actually build the entry in adjust_dynamic_symbol,
5445 because this might be a case of linking PIC code without
5446 linking in any dynamic objects, in which case we don't
5447 need to generate a procedure linkage table after all. */
5448 if (h == NULL)
5449 {
5450 /* It does not make sense to have a procedure linkage
5451 table entry for a local symbol. */
5452 bfd_set_error (bfd_error_bad_value);
5453 return FALSE;
5454 }
5455 else
5456 {
5457 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5458 return FALSE;
5459 h->needs_plt = 1;
5460 if (h->root.root.string[0] == '.'
5461 && h->root.root.string[1] != '\0')
5462 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5463 }
5464 break;
5465
5466 /* The following relocations don't need to propagate the
5467 relocation if linking a shared object since they are
5468 section relative. */
5469 case R_PPC64_SECTOFF:
5470 case R_PPC64_SECTOFF_LO:
5471 case R_PPC64_SECTOFF_HI:
5472 case R_PPC64_SECTOFF_HA:
5473 case R_PPC64_SECTOFF_DS:
5474 case R_PPC64_SECTOFF_LO_DS:
5475 case R_PPC64_DTPREL16:
5476 case R_PPC64_DTPREL16_LO:
5477 case R_PPC64_DTPREL16_HI:
5478 case R_PPC64_DTPREL16_HA:
5479 case R_PPC64_DTPREL16_DS:
5480 case R_PPC64_DTPREL16_LO_DS:
5481 case R_PPC64_DTPREL16_HIGH:
5482 case R_PPC64_DTPREL16_HIGHA:
5483 case R_PPC64_DTPREL16_HIGHER:
5484 case R_PPC64_DTPREL16_HIGHERA:
5485 case R_PPC64_DTPREL16_HIGHEST:
5486 case R_PPC64_DTPREL16_HIGHESTA:
5487 break;
5488
5489 /* Nor do these. */
5490 case R_PPC64_REL16:
5491 case R_PPC64_REL16_LO:
5492 case R_PPC64_REL16_HI:
5493 case R_PPC64_REL16_HA:
5494 break;
5495
5496 /* Not supported as a dynamic relocation. */
5497 case R_PPC64_ADDR64_LOCAL:
5498 if (info->shared)
5499 {
5500 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
5501 ppc_howto_init ();
5502 info->callbacks->einfo (_("%P: %H: %s reloc unsupported "
5503 "in shared libraries and PIEs.\n"),
5504 abfd, sec, rel->r_offset,
5505 ppc64_elf_howto_table[r_type]->name);
5506 bfd_set_error (bfd_error_bad_value);
5507 return FALSE;
5508 }
5509 break;
5510
5511 case R_PPC64_TOC16:
5512 case R_PPC64_TOC16_DS:
5513 htab->do_multi_toc = 1;
5514 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5515 case R_PPC64_TOC16_LO:
5516 case R_PPC64_TOC16_HI:
5517 case R_PPC64_TOC16_HA:
5518 case R_PPC64_TOC16_LO_DS:
5519 sec->has_toc_reloc = 1;
5520 break;
5521
5522 /* This relocation describes the C++ object vtable hierarchy.
5523 Reconstruct it for later use during GC. */
5524 case R_PPC64_GNU_VTINHERIT:
5525 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5526 return FALSE;
5527 break;
5528
5529 /* This relocation describes which C++ vtable entries are actually
5530 used. Record for later use during GC. */
5531 case R_PPC64_GNU_VTENTRY:
5532 BFD_ASSERT (h != NULL);
5533 if (h != NULL
5534 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5535 return FALSE;
5536 break;
5537
5538 case R_PPC64_REL14:
5539 case R_PPC64_REL14_BRTAKEN:
5540 case R_PPC64_REL14_BRNTAKEN:
5541 {
5542 asection *dest = NULL;
5543
5544 /* Heuristic: If jumping outside our section, chances are
5545 we are going to need a stub. */
5546 if (h != NULL)
5547 {
5548 /* If the sym is weak it may be overridden later, so
5549 don't assume we know where a weak sym lives. */
5550 if (h->root.type == bfd_link_hash_defined)
5551 dest = h->root.u.def.section;
5552 }
5553 else
5554 {
5555 Elf_Internal_Sym *isym;
5556
5557 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5558 abfd, r_symndx);
5559 if (isym == NULL)
5560 return FALSE;
5561
5562 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5563 }
5564
5565 if (dest != sec)
5566 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5567 }
5568 /* Fall through. */
5569
5570 case R_PPC64_REL24:
5571 if (h != NULL && ifunc == NULL)
5572 {
5573 /* We may need a .plt entry if the function this reloc
5574 refers to is in a shared lib. */
5575 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5576 return FALSE;
5577 h->needs_plt = 1;
5578 if (h->root.root.string[0] == '.'
5579 && h->root.root.string[1] != '\0')
5580 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5581 if (h == tga || h == dottga)
5582 sec->has_tls_reloc = 1;
5583 }
5584 break;
5585
5586 case R_PPC64_TPREL64:
5587 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5588 if (info->shared)
5589 info->flags |= DF_STATIC_TLS;
5590 goto dotlstoc;
5591
5592 case R_PPC64_DTPMOD64:
5593 if (rel + 1 < rel_end
5594 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5595 && rel[1].r_offset == rel->r_offset + 8)
5596 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5597 else
5598 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5599 goto dotlstoc;
5600
5601 case R_PPC64_DTPREL64:
5602 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5603 if (rel != relocs
5604 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5605 && rel[-1].r_offset == rel->r_offset - 8)
5606 /* This is the second reloc of a dtpmod, dtprel pair.
5607 Don't mark with TLS_DTPREL. */
5608 goto dodyn;
5609
5610 dotlstoc:
5611 sec->has_tls_reloc = 1;
5612 if (h != NULL)
5613 {
5614 struct ppc_link_hash_entry *eh;
5615 eh = (struct ppc_link_hash_entry *) h;
5616 eh->tls_mask |= tls_type;
5617 }
5618 else
5619 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5620 rel->r_addend, tls_type))
5621 return FALSE;
5622
5623 ppc64_sec = ppc64_elf_section_data (sec);
5624 if (ppc64_sec->sec_type != sec_toc)
5625 {
5626 bfd_size_type amt;
5627
5628 /* One extra to simplify get_tls_mask. */
5629 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5630 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5631 if (ppc64_sec->u.toc.symndx == NULL)
5632 return FALSE;
5633 amt = sec->size * sizeof (bfd_vma) / 8;
5634 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5635 if (ppc64_sec->u.toc.add == NULL)
5636 return FALSE;
5637 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5638 ppc64_sec->sec_type = sec_toc;
5639 }
5640 BFD_ASSERT (rel->r_offset % 8 == 0);
5641 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5642 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5643
5644 /* Mark the second slot of a GD or LD entry.
5645 -1 to indicate GD and -2 to indicate LD. */
5646 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5647 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5648 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5649 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5650 goto dodyn;
5651
5652 case R_PPC64_TPREL16:
5653 case R_PPC64_TPREL16_LO:
5654 case R_PPC64_TPREL16_HI:
5655 case R_PPC64_TPREL16_HA:
5656 case R_PPC64_TPREL16_DS:
5657 case R_PPC64_TPREL16_LO_DS:
5658 case R_PPC64_TPREL16_HIGH:
5659 case R_PPC64_TPREL16_HIGHA:
5660 case R_PPC64_TPREL16_HIGHER:
5661 case R_PPC64_TPREL16_HIGHERA:
5662 case R_PPC64_TPREL16_HIGHEST:
5663 case R_PPC64_TPREL16_HIGHESTA:
5664 if (info->shared)
5665 {
5666 info->flags |= DF_STATIC_TLS;
5667 goto dodyn;
5668 }
5669 break;
5670
5671 case R_PPC64_ADDR64:
5672 if (opd_sym_map != NULL
5673 && rel + 1 < rel_end
5674 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5675 {
5676 if (h != NULL)
5677 {
5678 if (h->root.root.string[0] == '.'
5679 && h->root.root.string[1] != 0
5680 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5681 ;
5682 else
5683 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5684 }
5685 else
5686 {
5687 asection *s;
5688 Elf_Internal_Sym *isym;
5689
5690 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5691 abfd, r_symndx);
5692 if (isym == NULL)
5693 return FALSE;
5694
5695 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5696 if (s != NULL && s != sec)
5697 opd_sym_map[OPD_NDX (rel->r_offset)] = s;
5698 }
5699 }
5700 /* Fall through. */
5701
5702 case R_PPC64_ADDR16:
5703 case R_PPC64_ADDR16_DS:
5704 case R_PPC64_ADDR16_HA:
5705 case R_PPC64_ADDR16_HI:
5706 case R_PPC64_ADDR16_HIGH:
5707 case R_PPC64_ADDR16_HIGHA:
5708 case R_PPC64_ADDR16_HIGHER:
5709 case R_PPC64_ADDR16_HIGHERA:
5710 case R_PPC64_ADDR16_HIGHEST:
5711 case R_PPC64_ADDR16_HIGHESTA:
5712 case R_PPC64_ADDR16_LO:
5713 case R_PPC64_ADDR16_LO_DS:
5714 if (h != NULL && !info->shared && abiversion (abfd) != 1
5715 && rel->r_addend == 0)
5716 {
5717 /* We may need a .plt entry if this reloc refers to a
5718 function in a shared lib. */
5719 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5720 return FALSE;
5721 h->pointer_equality_needed = 1;
5722 }
5723 /* Fall through. */
5724
5725 case R_PPC64_REL30:
5726 case R_PPC64_REL32:
5727 case R_PPC64_REL64:
5728 case R_PPC64_ADDR14:
5729 case R_PPC64_ADDR14_BRNTAKEN:
5730 case R_PPC64_ADDR14_BRTAKEN:
5731 case R_PPC64_ADDR24:
5732 case R_PPC64_ADDR32:
5733 case R_PPC64_UADDR16:
5734 case R_PPC64_UADDR32:
5735 case R_PPC64_UADDR64:
5736 case R_PPC64_TOC:
5737 if (h != NULL && !info->shared)
5738 /* We may need a copy reloc. */
5739 h->non_got_ref = 1;
5740
5741 /* Don't propagate .opd relocs. */
5742 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5743 break;
5744
5745 /* If we are creating a shared library, and this is a reloc
5746 against a global symbol, or a non PC relative reloc
5747 against a local symbol, then we need to copy the reloc
5748 into the shared library. However, if we are linking with
5749 -Bsymbolic, we do not need to copy a reloc against a
5750 global symbol which is defined in an object we are
5751 including in the link (i.e., DEF_REGULAR is set). At
5752 this point we have not seen all the input files, so it is
5753 possible that DEF_REGULAR is not set now but will be set
5754 later (it is never cleared). In case of a weak definition,
5755 DEF_REGULAR may be cleared later by a strong definition in
5756 a shared library. We account for that possibility below by
5757 storing information in the dyn_relocs field of the hash
5758 table entry. A similar situation occurs when creating
5759 shared libraries and symbol visibility changes render the
5760 symbol local.
5761
5762 If on the other hand, we are creating an executable, we
5763 may need to keep relocations for symbols satisfied by a
5764 dynamic library if we manage to avoid copy relocs for the
5765 symbol. */
5766 dodyn:
5767 if ((info->shared
5768 && (must_be_dyn_reloc (info, r_type)
5769 || (h != NULL
5770 && (!SYMBOLIC_BIND (info, h)
5771 || h->root.type == bfd_link_hash_defweak
5772 || !h->def_regular))))
5773 || (ELIMINATE_COPY_RELOCS
5774 && !info->shared
5775 && h != NULL
5776 && (h->root.type == bfd_link_hash_defweak
5777 || !h->def_regular))
5778 || (!info->shared
5779 && ifunc != NULL))
5780 {
5781 /* We must copy these reloc types into the output file.
5782 Create a reloc section in dynobj and make room for
5783 this reloc. */
5784 if (sreloc == NULL)
5785 {
5786 sreloc = _bfd_elf_make_dynamic_reloc_section
5787 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5788
5789 if (sreloc == NULL)
5790 return FALSE;
5791 }
5792
5793 /* If this is a global symbol, we count the number of
5794 relocations we need for this symbol. */
5795 if (h != NULL)
5796 {
5797 struct elf_dyn_relocs *p;
5798 struct elf_dyn_relocs **head;
5799
5800 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5801 p = *head;
5802 if (p == NULL || p->sec != sec)
5803 {
5804 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5805 if (p == NULL)
5806 return FALSE;
5807 p->next = *head;
5808 *head = p;
5809 p->sec = sec;
5810 p->count = 0;
5811 p->pc_count = 0;
5812 }
5813 p->count += 1;
5814 if (!must_be_dyn_reloc (info, r_type))
5815 p->pc_count += 1;
5816 }
5817 else
5818 {
5819 /* Track dynamic relocs needed for local syms too.
5820 We really need local syms available to do this
5821 easily. Oh well. */
5822 struct ppc_dyn_relocs *p;
5823 struct ppc_dyn_relocs **head;
5824 bfd_boolean is_ifunc;
5825 asection *s;
5826 void *vpp;
5827 Elf_Internal_Sym *isym;
5828
5829 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5830 abfd, r_symndx);
5831 if (isym == NULL)
5832 return FALSE;
5833
5834 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5835 if (s == NULL)
5836 s = sec;
5837
5838 vpp = &elf_section_data (s)->local_dynrel;
5839 head = (struct ppc_dyn_relocs **) vpp;
5840 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5841 p = *head;
5842 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5843 p = p->next;
5844 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5845 {
5846 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5847 if (p == NULL)
5848 return FALSE;
5849 p->next = *head;
5850 *head = p;
5851 p->sec = sec;
5852 p->ifunc = is_ifunc;
5853 p->count = 0;
5854 }
5855 p->count += 1;
5856 }
5857 }
5858 break;
5859
5860 default:
5861 break;
5862 }
5863 }
5864
5865 return TRUE;
5866 }
5867
5868 /* Merge backend specific data from an object file to the output
5869 object file when linking. */
5870
5871 static bfd_boolean
5872 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5873 {
5874 unsigned long iflags, oflags;
5875
5876 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5877 return TRUE;
5878
5879 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5880 return TRUE;
5881
5882 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
5883 return FALSE;
5884
5885 iflags = elf_elfheader (ibfd)->e_flags;
5886 oflags = elf_elfheader (obfd)->e_flags;
5887
5888 if (iflags & ~EF_PPC64_ABI)
5889 {
5890 (*_bfd_error_handler)
5891 (_("%B uses unknown e_flags 0x%lx"), ibfd, iflags);
5892 bfd_set_error (bfd_error_bad_value);
5893 return FALSE;
5894 }
5895 else if (iflags != oflags && iflags != 0)
5896 {
5897 (*_bfd_error_handler)
5898 (_("%B: ABI version %ld is not compatible with ABI version %ld output"),
5899 ibfd, iflags, oflags);
5900 bfd_set_error (bfd_error_bad_value);
5901 return FALSE;
5902 }
5903
5904 /* Merge Tag_compatibility attributes and any common GNU ones. */
5905 _bfd_elf_merge_object_attributes (ibfd, obfd);
5906
5907 return TRUE;
5908 }
5909
5910 static bfd_boolean
5911 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5912 {
5913 /* Print normal ELF private data. */
5914 _bfd_elf_print_private_bfd_data (abfd, ptr);
5915
5916 if (elf_elfheader (abfd)->e_flags != 0)
5917 {
5918 FILE *file = ptr;
5919
5920 /* xgettext:c-format */
5921 fprintf (file, _("private flags = 0x%lx:"),
5922 elf_elfheader (abfd)->e_flags);
5923
5924 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5925 fprintf (file, _(" [abiv%ld]"),
5926 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5927 fputc ('\n', file);
5928 }
5929
5930 return TRUE;
5931 }
5932
5933 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5934 of the code entry point, and its section, which must be in the same
5935 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5936
5937 static bfd_vma
5938 opd_entry_value (asection *opd_sec,
5939 bfd_vma offset,
5940 asection **code_sec,
5941 bfd_vma *code_off,
5942 bfd_boolean in_code_sec)
5943 {
5944 bfd *opd_bfd = opd_sec->owner;
5945 Elf_Internal_Rela *relocs;
5946 Elf_Internal_Rela *lo, *hi, *look;
5947 bfd_vma val;
5948
5949 /* No relocs implies we are linking a --just-symbols object, or looking
5950 at a final linked executable with addr2line or somesuch. */
5951 if (opd_sec->reloc_count == 0)
5952 {
5953 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5954
5955 if (contents == NULL)
5956 {
5957 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5958 return (bfd_vma) -1;
5959 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5960 }
5961
5962 /* PR 17512: file: 64b9dfbb. */
5963 if (offset + 7 >= opd_sec->size || offset + 7 < offset)
5964 return (bfd_vma) -1;
5965
5966 val = bfd_get_64 (opd_bfd, contents + offset);
5967 if (code_sec != NULL)
5968 {
5969 asection *sec, *likely = NULL;
5970
5971 if (in_code_sec)
5972 {
5973 sec = *code_sec;
5974 if (sec->vma <= val
5975 && val < sec->vma + sec->size)
5976 likely = sec;
5977 else
5978 val = -1;
5979 }
5980 else
5981 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5982 if (sec->vma <= val
5983 && (sec->flags & SEC_LOAD) != 0
5984 && (sec->flags & SEC_ALLOC) != 0)
5985 likely = sec;
5986 if (likely != NULL)
5987 {
5988 *code_sec = likely;
5989 if (code_off != NULL)
5990 *code_off = val - likely->vma;
5991 }
5992 }
5993 return val;
5994 }
5995
5996 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5997
5998 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5999 if (relocs == NULL)
6000 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
6001 /* PR 17512: file: df8e1fd6. */
6002 if (relocs == NULL)
6003 return (bfd_vma) -1;
6004
6005 /* Go find the opd reloc at the sym address. */
6006 lo = relocs;
6007 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
6008 val = (bfd_vma) -1;
6009 while (lo < hi)
6010 {
6011 look = lo + (hi - lo) / 2;
6012 if (look->r_offset < offset)
6013 lo = look + 1;
6014 else if (look->r_offset > offset)
6015 hi = look;
6016 else
6017 {
6018 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
6019
6020 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
6021 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
6022 {
6023 unsigned long symndx = ELF64_R_SYM (look->r_info);
6024 asection *sec = NULL;
6025
6026 if (symndx >= symtab_hdr->sh_info
6027 && elf_sym_hashes (opd_bfd) != NULL)
6028 {
6029 struct elf_link_hash_entry **sym_hashes;
6030 struct elf_link_hash_entry *rh;
6031
6032 sym_hashes = elf_sym_hashes (opd_bfd);
6033 rh = sym_hashes[symndx - symtab_hdr->sh_info];
6034 if (rh != NULL)
6035 {
6036 rh = elf_follow_link (rh);
6037 if (rh->root.type != bfd_link_hash_defined
6038 && rh->root.type != bfd_link_hash_defweak)
6039 break;
6040 if (rh->root.u.def.section->owner == opd_bfd)
6041 {
6042 val = rh->root.u.def.value;
6043 sec = rh->root.u.def.section;
6044 }
6045 }
6046 }
6047
6048 if (sec == NULL)
6049 {
6050 Elf_Internal_Sym *sym;
6051
6052 if (symndx < symtab_hdr->sh_info)
6053 {
6054 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
6055 if (sym == NULL)
6056 {
6057 size_t symcnt = symtab_hdr->sh_info;
6058 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6059 symcnt, 0,
6060 NULL, NULL, NULL);
6061 if (sym == NULL)
6062 break;
6063 symtab_hdr->contents = (bfd_byte *) sym;
6064 }
6065 sym += symndx;
6066 }
6067 else
6068 {
6069 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
6070 1, symndx,
6071 NULL, NULL, NULL);
6072 if (sym == NULL)
6073 break;
6074 }
6075 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
6076 if (sec == NULL)
6077 break;
6078 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
6079 val = sym->st_value;
6080 }
6081
6082 val += look->r_addend;
6083 if (code_off != NULL)
6084 *code_off = val;
6085 if (code_sec != NULL)
6086 {
6087 if (in_code_sec && *code_sec != sec)
6088 return -1;
6089 else
6090 *code_sec = sec;
6091 }
6092 if (sec->output_section != NULL)
6093 val += sec->output_section->vma + sec->output_offset;
6094 }
6095 break;
6096 }
6097 }
6098
6099 return val;
6100 }
6101
6102 /* If the ELF symbol SYM might be a function in SEC, return the
6103 function size and set *CODE_OFF to the function's entry point,
6104 otherwise return zero. */
6105
6106 static bfd_size_type
6107 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
6108 bfd_vma *code_off)
6109 {
6110 bfd_size_type size;
6111
6112 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
6113 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
6114 return 0;
6115
6116 size = 0;
6117 if (!(sym->flags & BSF_SYNTHETIC))
6118 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
6119
6120 if (strcmp (sym->section->name, ".opd") == 0)
6121 {
6122 if (opd_entry_value (sym->section, sym->value,
6123 &sec, code_off, TRUE) == (bfd_vma) -1)
6124 return 0;
6125 /* An old ABI binary with dot-syms has a size of 24 on the .opd
6126 symbol. This size has nothing to do with the code size of the
6127 function, which is what we're supposed to return, but the
6128 code size isn't available without looking up the dot-sym.
6129 However, doing that would be a waste of time particularly
6130 since elf_find_function will look at the dot-sym anyway.
6131 Now, elf_find_function will keep the largest size of any
6132 function sym found at the code address of interest, so return
6133 1 here to avoid it incorrectly caching a larger function size
6134 for a small function. This does mean we return the wrong
6135 size for a new-ABI function of size 24, but all that does is
6136 disable caching for such functions. */
6137 if (size == 24)
6138 size = 1;
6139 }
6140 else
6141 {
6142 if (sym->section != sec)
6143 return 0;
6144 *code_off = sym->value;
6145 }
6146 if (size == 0)
6147 size = 1;
6148 return size;
6149 }
6150
6151 /* Return true if symbol is defined in a regular object file. */
6152
6153 static bfd_boolean
6154 is_static_defined (struct elf_link_hash_entry *h)
6155 {
6156 return ((h->root.type == bfd_link_hash_defined
6157 || h->root.type == bfd_link_hash_defweak)
6158 && h->root.u.def.section != NULL
6159 && h->root.u.def.section->output_section != NULL);
6160 }
6161
6162 /* If FDH is a function descriptor symbol, return the associated code
6163 entry symbol if it is defined. Return NULL otherwise. */
6164
6165 static struct ppc_link_hash_entry *
6166 defined_code_entry (struct ppc_link_hash_entry *fdh)
6167 {
6168 if (fdh->is_func_descriptor)
6169 {
6170 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
6171 if (fh->elf.root.type == bfd_link_hash_defined
6172 || fh->elf.root.type == bfd_link_hash_defweak)
6173 return fh;
6174 }
6175 return NULL;
6176 }
6177
6178 /* If FH is a function code entry symbol, return the associated
6179 function descriptor symbol if it is defined. Return NULL otherwise. */
6180
6181 static struct ppc_link_hash_entry *
6182 defined_func_desc (struct ppc_link_hash_entry *fh)
6183 {
6184 if (fh->oh != NULL
6185 && fh->oh->is_func_descriptor)
6186 {
6187 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
6188 if (fdh->elf.root.type == bfd_link_hash_defined
6189 || fdh->elf.root.type == bfd_link_hash_defweak)
6190 return fdh;
6191 }
6192 return NULL;
6193 }
6194
6195 /* Mark all our entry sym sections, both opd and code section. */
6196
6197 static void
6198 ppc64_elf_gc_keep (struct bfd_link_info *info)
6199 {
6200 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6201 struct bfd_sym_chain *sym;
6202
6203 if (htab == NULL)
6204 return;
6205
6206 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
6207 {
6208 struct ppc_link_hash_entry *eh, *fh;
6209 asection *sec;
6210
6211 eh = (struct ppc_link_hash_entry *)
6212 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
6213 if (eh == NULL)
6214 continue;
6215 if (eh->elf.root.type != bfd_link_hash_defined
6216 && eh->elf.root.type != bfd_link_hash_defweak)
6217 continue;
6218
6219 fh = defined_code_entry (eh);
6220 if (fh != NULL)
6221 {
6222 sec = fh->elf.root.u.def.section;
6223 sec->flags |= SEC_KEEP;
6224 }
6225 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6226 && opd_entry_value (eh->elf.root.u.def.section,
6227 eh->elf.root.u.def.value,
6228 &sec, NULL, FALSE) != (bfd_vma) -1)
6229 sec->flags |= SEC_KEEP;
6230
6231 sec = eh->elf.root.u.def.section;
6232 sec->flags |= SEC_KEEP;
6233 }
6234 }
6235
6236 /* Mark sections containing dynamically referenced symbols. When
6237 building shared libraries, we must assume that any visible symbol is
6238 referenced. */
6239
6240 static bfd_boolean
6241 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
6242 {
6243 struct bfd_link_info *info = (struct bfd_link_info *) inf;
6244 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
6245 struct ppc_link_hash_entry *fdh;
6246 struct bfd_elf_dynamic_list *d = info->dynamic_list;
6247
6248 /* Dynamic linking info is on the func descriptor sym. */
6249 fdh = defined_func_desc (eh);
6250 if (fdh != NULL)
6251 eh = fdh;
6252
6253 if ((eh->elf.root.type == bfd_link_hash_defined
6254 || eh->elf.root.type == bfd_link_hash_defweak)
6255 && (eh->elf.ref_dynamic
6256 || ((eh->elf.def_regular || ELF_COMMON_DEF_P (&eh->elf))
6257 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
6258 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
6259 && (!info->executable
6260 || info->export_dynamic
6261 || (eh->elf.dynamic
6262 && d != NULL
6263 && (*d->match) (&d->head, NULL, eh->elf.root.root.string)))
6264 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
6265 || !bfd_hide_sym_by_version (info->version_info,
6266 eh->elf.root.root.string)))))
6267 {
6268 asection *code_sec;
6269 struct ppc_link_hash_entry *fh;
6270
6271 eh->elf.root.u.def.section->flags |= SEC_KEEP;
6272
6273 /* Function descriptor syms cause the associated
6274 function code sym section to be marked. */
6275 fh = defined_code_entry (eh);
6276 if (fh != NULL)
6277 {
6278 code_sec = fh->elf.root.u.def.section;
6279 code_sec->flags |= SEC_KEEP;
6280 }
6281 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6282 && opd_entry_value (eh->elf.root.u.def.section,
6283 eh->elf.root.u.def.value,
6284 &code_sec, NULL, FALSE) != (bfd_vma) -1)
6285 code_sec->flags |= SEC_KEEP;
6286 }
6287
6288 return TRUE;
6289 }
6290
6291 /* Return the section that should be marked against GC for a given
6292 relocation. */
6293
6294 static asection *
6295 ppc64_elf_gc_mark_hook (asection *sec,
6296 struct bfd_link_info *info,
6297 Elf_Internal_Rela *rel,
6298 struct elf_link_hash_entry *h,
6299 Elf_Internal_Sym *sym)
6300 {
6301 asection *rsec;
6302
6303 /* Syms return NULL if we're marking .opd, so we avoid marking all
6304 function sections, as all functions are referenced in .opd. */
6305 rsec = NULL;
6306 if (get_opd_info (sec) != NULL)
6307 return rsec;
6308
6309 if (h != NULL)
6310 {
6311 enum elf_ppc64_reloc_type r_type;
6312 struct ppc_link_hash_entry *eh, *fh, *fdh;
6313
6314 r_type = ELF64_R_TYPE (rel->r_info);
6315 switch (r_type)
6316 {
6317 case R_PPC64_GNU_VTINHERIT:
6318 case R_PPC64_GNU_VTENTRY:
6319 break;
6320
6321 default:
6322 switch (h->root.type)
6323 {
6324 case bfd_link_hash_defined:
6325 case bfd_link_hash_defweak:
6326 eh = (struct ppc_link_hash_entry *) h;
6327 fdh = defined_func_desc (eh);
6328 if (fdh != NULL)
6329 eh = fdh;
6330
6331 /* Function descriptor syms cause the associated
6332 function code sym section to be marked. */
6333 fh = defined_code_entry (eh);
6334 if (fh != NULL)
6335 {
6336 /* They also mark their opd section. */
6337 eh->elf.root.u.def.section->gc_mark = 1;
6338
6339 rsec = fh->elf.root.u.def.section;
6340 }
6341 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
6342 && opd_entry_value (eh->elf.root.u.def.section,
6343 eh->elf.root.u.def.value,
6344 &rsec, NULL, FALSE) != (bfd_vma) -1)
6345 eh->elf.root.u.def.section->gc_mark = 1;
6346 else
6347 rsec = h->root.u.def.section;
6348 break;
6349
6350 case bfd_link_hash_common:
6351 rsec = h->root.u.c.p->section;
6352 break;
6353
6354 default:
6355 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
6356 }
6357 }
6358 }
6359 else
6360 {
6361 struct _opd_sec_data *opd;
6362
6363 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6364 opd = get_opd_info (rsec);
6365 if (opd != NULL && opd->func_sec != NULL)
6366 {
6367 rsec->gc_mark = 1;
6368
6369 rsec = opd->func_sec[OPD_NDX (sym->st_value + rel->r_addend)];
6370 }
6371 }
6372
6373 return rsec;
6374 }
6375
6376 /* Update the .got, .plt. and dynamic reloc reference counts for the
6377 section being removed. */
6378
6379 static bfd_boolean
6380 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
6381 asection *sec, const Elf_Internal_Rela *relocs)
6382 {
6383 struct ppc_link_hash_table *htab;
6384 Elf_Internal_Shdr *symtab_hdr;
6385 struct elf_link_hash_entry **sym_hashes;
6386 struct got_entry **local_got_ents;
6387 const Elf_Internal_Rela *rel, *relend;
6388
6389 if (info->relocatable)
6390 return TRUE;
6391
6392 if ((sec->flags & SEC_ALLOC) == 0)
6393 return TRUE;
6394
6395 elf_section_data (sec)->local_dynrel = NULL;
6396
6397 htab = ppc_hash_table (info);
6398 if (htab == NULL)
6399 return FALSE;
6400
6401 symtab_hdr = &elf_symtab_hdr (abfd);
6402 sym_hashes = elf_sym_hashes (abfd);
6403 local_got_ents = elf_local_got_ents (abfd);
6404
6405 relend = relocs + sec->reloc_count;
6406 for (rel = relocs; rel < relend; rel++)
6407 {
6408 unsigned long r_symndx;
6409 enum elf_ppc64_reloc_type r_type;
6410 struct elf_link_hash_entry *h = NULL;
6411 unsigned char tls_type = 0;
6412
6413 r_symndx = ELF64_R_SYM (rel->r_info);
6414 r_type = ELF64_R_TYPE (rel->r_info);
6415 if (r_symndx >= symtab_hdr->sh_info)
6416 {
6417 struct ppc_link_hash_entry *eh;
6418 struct elf_dyn_relocs **pp;
6419 struct elf_dyn_relocs *p;
6420
6421 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6422 h = elf_follow_link (h);
6423 eh = (struct ppc_link_hash_entry *) h;
6424
6425 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6426 if (p->sec == sec)
6427 {
6428 /* Everything must go for SEC. */
6429 *pp = p->next;
6430 break;
6431 }
6432 }
6433
6434 if (is_branch_reloc (r_type))
6435 {
6436 struct plt_entry **ifunc = NULL;
6437 if (h != NULL)
6438 {
6439 if (h->type == STT_GNU_IFUNC)
6440 ifunc = &h->plt.plist;
6441 }
6442 else if (local_got_ents != NULL)
6443 {
6444 struct plt_entry **local_plt = (struct plt_entry **)
6445 (local_got_ents + symtab_hdr->sh_info);
6446 unsigned char *local_got_tls_masks = (unsigned char *)
6447 (local_plt + symtab_hdr->sh_info);
6448 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6449 ifunc = local_plt + r_symndx;
6450 }
6451 if (ifunc != NULL)
6452 {
6453 struct plt_entry *ent;
6454
6455 for (ent = *ifunc; ent != NULL; ent = ent->next)
6456 if (ent->addend == rel->r_addend)
6457 break;
6458 if (ent == NULL)
6459 abort ();
6460 if (ent->plt.refcount > 0)
6461 ent->plt.refcount -= 1;
6462 continue;
6463 }
6464 }
6465
6466 switch (r_type)
6467 {
6468 case R_PPC64_GOT_TLSLD16:
6469 case R_PPC64_GOT_TLSLD16_LO:
6470 case R_PPC64_GOT_TLSLD16_HI:
6471 case R_PPC64_GOT_TLSLD16_HA:
6472 tls_type = TLS_TLS | TLS_LD;
6473 goto dogot;
6474
6475 case R_PPC64_GOT_TLSGD16:
6476 case R_PPC64_GOT_TLSGD16_LO:
6477 case R_PPC64_GOT_TLSGD16_HI:
6478 case R_PPC64_GOT_TLSGD16_HA:
6479 tls_type = TLS_TLS | TLS_GD;
6480 goto dogot;
6481
6482 case R_PPC64_GOT_TPREL16_DS:
6483 case R_PPC64_GOT_TPREL16_LO_DS:
6484 case R_PPC64_GOT_TPREL16_HI:
6485 case R_PPC64_GOT_TPREL16_HA:
6486 tls_type = TLS_TLS | TLS_TPREL;
6487 goto dogot;
6488
6489 case R_PPC64_GOT_DTPREL16_DS:
6490 case R_PPC64_GOT_DTPREL16_LO_DS:
6491 case R_PPC64_GOT_DTPREL16_HI:
6492 case R_PPC64_GOT_DTPREL16_HA:
6493 tls_type = TLS_TLS | TLS_DTPREL;
6494 goto dogot;
6495
6496 case R_PPC64_GOT16:
6497 case R_PPC64_GOT16_DS:
6498 case R_PPC64_GOT16_HA:
6499 case R_PPC64_GOT16_HI:
6500 case R_PPC64_GOT16_LO:
6501 case R_PPC64_GOT16_LO_DS:
6502 dogot:
6503 {
6504 struct got_entry *ent;
6505
6506 if (h != NULL)
6507 ent = h->got.glist;
6508 else
6509 ent = local_got_ents[r_symndx];
6510
6511 for (; ent != NULL; ent = ent->next)
6512 if (ent->addend == rel->r_addend
6513 && ent->owner == abfd
6514 && ent->tls_type == tls_type)
6515 break;
6516 if (ent == NULL)
6517 abort ();
6518 if (ent->got.refcount > 0)
6519 ent->got.refcount -= 1;
6520 }
6521 break;
6522
6523 case R_PPC64_PLT16_HA:
6524 case R_PPC64_PLT16_HI:
6525 case R_PPC64_PLT16_LO:
6526 case R_PPC64_PLT32:
6527 case R_PPC64_PLT64:
6528 case R_PPC64_REL14:
6529 case R_PPC64_REL14_BRNTAKEN:
6530 case R_PPC64_REL14_BRTAKEN:
6531 case R_PPC64_REL24:
6532 if (h != NULL)
6533 {
6534 struct plt_entry *ent;
6535
6536 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6537 if (ent->addend == rel->r_addend)
6538 break;
6539 if (ent != NULL && ent->plt.refcount > 0)
6540 ent->plt.refcount -= 1;
6541 }
6542 break;
6543
6544 default:
6545 break;
6546 }
6547 }
6548 return TRUE;
6549 }
6550
6551 /* The maximum size of .sfpr. */
6552 #define SFPR_MAX (218*4)
6553
6554 struct sfpr_def_parms
6555 {
6556 const char name[12];
6557 unsigned char lo, hi;
6558 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6559 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6560 };
6561
6562 /* Auto-generate _save*, _rest* functions in .sfpr. */
6563
6564 static bfd_boolean
6565 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6566 {
6567 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6568 unsigned int i;
6569 size_t len = strlen (parm->name);
6570 bfd_boolean writing = FALSE;
6571 char sym[16];
6572
6573 if (htab == NULL)
6574 return FALSE;
6575
6576 memcpy (sym, parm->name, len);
6577 sym[len + 2] = 0;
6578
6579 for (i = parm->lo; i <= parm->hi; i++)
6580 {
6581 struct elf_link_hash_entry *h;
6582
6583 sym[len + 0] = i / 10 + '0';
6584 sym[len + 1] = i % 10 + '0';
6585 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6586 if (h != NULL
6587 && !h->def_regular)
6588 {
6589 h->root.type = bfd_link_hash_defined;
6590 h->root.u.def.section = htab->sfpr;
6591 h->root.u.def.value = htab->sfpr->size;
6592 h->type = STT_FUNC;
6593 h->def_regular = 1;
6594 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6595 writing = TRUE;
6596 if (htab->sfpr->contents == NULL)
6597 {
6598 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6599 if (htab->sfpr->contents == NULL)
6600 return FALSE;
6601 }
6602 }
6603 if (writing)
6604 {
6605 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6606 if (i != parm->hi)
6607 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6608 else
6609 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6610 htab->sfpr->size = p - htab->sfpr->contents;
6611 }
6612 }
6613
6614 return TRUE;
6615 }
6616
6617 static bfd_byte *
6618 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6619 {
6620 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6621 return p + 4;
6622 }
6623
6624 static bfd_byte *
6625 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6626 {
6627 p = savegpr0 (abfd, p, r);
6628 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6629 p = p + 4;
6630 bfd_put_32 (abfd, BLR, p);
6631 return p + 4;
6632 }
6633
6634 static bfd_byte *
6635 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6636 {
6637 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6638 return p + 4;
6639 }
6640
6641 static bfd_byte *
6642 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6643 {
6644 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6645 p = p + 4;
6646 p = restgpr0 (abfd, p, r);
6647 bfd_put_32 (abfd, MTLR_R0, p);
6648 p = p + 4;
6649 if (r == 29)
6650 {
6651 p = restgpr0 (abfd, p, 30);
6652 p = restgpr0 (abfd, p, 31);
6653 }
6654 bfd_put_32 (abfd, BLR, p);
6655 return p + 4;
6656 }
6657
6658 static bfd_byte *
6659 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6660 {
6661 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6662 return p + 4;
6663 }
6664
6665 static bfd_byte *
6666 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6667 {
6668 p = savegpr1 (abfd, p, r);
6669 bfd_put_32 (abfd, BLR, p);
6670 return p + 4;
6671 }
6672
6673 static bfd_byte *
6674 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6675 {
6676 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6677 return p + 4;
6678 }
6679
6680 static bfd_byte *
6681 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6682 {
6683 p = restgpr1 (abfd, p, r);
6684 bfd_put_32 (abfd, BLR, p);
6685 return p + 4;
6686 }
6687
6688 static bfd_byte *
6689 savefpr (bfd *abfd, bfd_byte *p, int r)
6690 {
6691 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6692 return p + 4;
6693 }
6694
6695 static bfd_byte *
6696 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6697 {
6698 p = savefpr (abfd, p, r);
6699 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6700 p = p + 4;
6701 bfd_put_32 (abfd, BLR, p);
6702 return p + 4;
6703 }
6704
6705 static bfd_byte *
6706 restfpr (bfd *abfd, bfd_byte *p, int r)
6707 {
6708 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6709 return p + 4;
6710 }
6711
6712 static bfd_byte *
6713 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6714 {
6715 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6716 p = p + 4;
6717 p = restfpr (abfd, p, r);
6718 bfd_put_32 (abfd, MTLR_R0, p);
6719 p = p + 4;
6720 if (r == 29)
6721 {
6722 p = restfpr (abfd, p, 30);
6723 p = restfpr (abfd, p, 31);
6724 }
6725 bfd_put_32 (abfd, BLR, p);
6726 return p + 4;
6727 }
6728
6729 static bfd_byte *
6730 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6731 {
6732 p = savefpr (abfd, p, r);
6733 bfd_put_32 (abfd, BLR, p);
6734 return p + 4;
6735 }
6736
6737 static bfd_byte *
6738 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6739 {
6740 p = restfpr (abfd, p, r);
6741 bfd_put_32 (abfd, BLR, p);
6742 return p + 4;
6743 }
6744
6745 static bfd_byte *
6746 savevr (bfd *abfd, bfd_byte *p, int r)
6747 {
6748 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6749 p = p + 4;
6750 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6751 return p + 4;
6752 }
6753
6754 static bfd_byte *
6755 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6756 {
6757 p = savevr (abfd, p, r);
6758 bfd_put_32 (abfd, BLR, p);
6759 return p + 4;
6760 }
6761
6762 static bfd_byte *
6763 restvr (bfd *abfd, bfd_byte *p, int r)
6764 {
6765 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6766 p = p + 4;
6767 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6768 return p + 4;
6769 }
6770
6771 static bfd_byte *
6772 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6773 {
6774 p = restvr (abfd, p, r);
6775 bfd_put_32 (abfd, BLR, p);
6776 return p + 4;
6777 }
6778
6779 /* Called via elf_link_hash_traverse to transfer dynamic linking
6780 information on function code symbol entries to their corresponding
6781 function descriptor symbol entries. */
6782
6783 static bfd_boolean
6784 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6785 {
6786 struct bfd_link_info *info;
6787 struct ppc_link_hash_table *htab;
6788 struct plt_entry *ent;
6789 struct ppc_link_hash_entry *fh;
6790 struct ppc_link_hash_entry *fdh;
6791 bfd_boolean force_local;
6792
6793 fh = (struct ppc_link_hash_entry *) h;
6794 if (fh->elf.root.type == bfd_link_hash_indirect)
6795 return TRUE;
6796
6797 info = inf;
6798 htab = ppc_hash_table (info);
6799 if (htab == NULL)
6800 return FALSE;
6801
6802 /* Resolve undefined references to dot-symbols as the value
6803 in the function descriptor, if we have one in a regular object.
6804 This is to satisfy cases like ".quad .foo". Calls to functions
6805 in dynamic objects are handled elsewhere. */
6806 if (fh->elf.root.type == bfd_link_hash_undefweak
6807 && fh->was_undefined
6808 && (fdh = defined_func_desc (fh)) != NULL
6809 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6810 && opd_entry_value (fdh->elf.root.u.def.section,
6811 fdh->elf.root.u.def.value,
6812 &fh->elf.root.u.def.section,
6813 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6814 {
6815 fh->elf.root.type = fdh->elf.root.type;
6816 fh->elf.forced_local = 1;
6817 fh->elf.def_regular = fdh->elf.def_regular;
6818 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6819 }
6820
6821 /* If this is a function code symbol, transfer dynamic linking
6822 information to the function descriptor symbol. */
6823 if (!fh->is_func)
6824 return TRUE;
6825
6826 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6827 if (ent->plt.refcount > 0)
6828 break;
6829 if (ent == NULL
6830 || fh->elf.root.root.string[0] != '.'
6831 || fh->elf.root.root.string[1] == '\0')
6832 return TRUE;
6833
6834 /* Find the corresponding function descriptor symbol. Create it
6835 as undefined if necessary. */
6836
6837 fdh = lookup_fdh (fh, htab);
6838 if (fdh == NULL
6839 && !info->executable
6840 && (fh->elf.root.type == bfd_link_hash_undefined
6841 || fh->elf.root.type == bfd_link_hash_undefweak))
6842 {
6843 fdh = make_fdh (info, fh);
6844 if (fdh == NULL)
6845 return FALSE;
6846 }
6847
6848 /* Fake function descriptors are made undefweak. If the function
6849 code symbol is strong undefined, make the fake sym the same.
6850 If the function code symbol is defined, then force the fake
6851 descriptor local; We can't support overriding of symbols in a
6852 shared library on a fake descriptor. */
6853
6854 if (fdh != NULL
6855 && fdh->fake
6856 && fdh->elf.root.type == bfd_link_hash_undefweak)
6857 {
6858 if (fh->elf.root.type == bfd_link_hash_undefined)
6859 {
6860 fdh->elf.root.type = bfd_link_hash_undefined;
6861 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6862 }
6863 else if (fh->elf.root.type == bfd_link_hash_defined
6864 || fh->elf.root.type == bfd_link_hash_defweak)
6865 {
6866 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6867 }
6868 }
6869
6870 if (fdh != NULL
6871 && !fdh->elf.forced_local
6872 && (!info->executable
6873 || fdh->elf.def_dynamic
6874 || fdh->elf.ref_dynamic
6875 || (fdh->elf.root.type == bfd_link_hash_undefweak
6876 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6877 {
6878 if (fdh->elf.dynindx == -1)
6879 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6880 return FALSE;
6881 fdh->elf.ref_regular |= fh->elf.ref_regular;
6882 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6883 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6884 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6885 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6886 {
6887 move_plt_plist (fh, fdh);
6888 fdh->elf.needs_plt = 1;
6889 }
6890 fdh->is_func_descriptor = 1;
6891 fdh->oh = fh;
6892 fh->oh = fdh;
6893 }
6894
6895 /* Now that the info is on the function descriptor, clear the
6896 function code sym info. Any function code syms for which we
6897 don't have a definition in a regular file, we force local.
6898 This prevents a shared library from exporting syms that have
6899 been imported from another library. Function code syms that
6900 are really in the library we must leave global to prevent the
6901 linker dragging in a definition from a static library. */
6902 force_local = (!fh->elf.def_regular
6903 || fdh == NULL
6904 || !fdh->elf.def_regular
6905 || fdh->elf.forced_local);
6906 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6907
6908 return TRUE;
6909 }
6910
6911 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6912 this hook to a) provide some gcc support functions, and b) transfer
6913 dynamic linking information gathered so far on function code symbol
6914 entries, to their corresponding function descriptor symbol entries. */
6915
6916 static bfd_boolean
6917 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6918 struct bfd_link_info *info)
6919 {
6920 struct ppc_link_hash_table *htab;
6921 unsigned int i;
6922 static const struct sfpr_def_parms funcs[] =
6923 {
6924 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6925 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6926 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6927 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6928 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6929 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6930 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6931 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6932 { "._savef", 14, 31, savefpr, savefpr1_tail },
6933 { "._restf", 14, 31, restfpr, restfpr1_tail },
6934 { "_savevr_", 20, 31, savevr, savevr_tail },
6935 { "_restvr_", 20, 31, restvr, restvr_tail }
6936 };
6937
6938 htab = ppc_hash_table (info);
6939 if (htab == NULL)
6940 return FALSE;
6941
6942 if (!info->relocatable
6943 && htab->elf.hgot != NULL)
6944 {
6945 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6946 /* Make .TOC. defined so as to prevent it being made dynamic.
6947 The wrong value here is fixed later in ppc64_elf_set_toc. */
6948 htab->elf.hgot->type = STT_OBJECT;
6949 htab->elf.hgot->root.type = bfd_link_hash_defined;
6950 htab->elf.hgot->root.u.def.value = 0;
6951 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6952 htab->elf.hgot->def_regular = 1;
6953 htab->elf.hgot->other = ((htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1))
6954 | STV_HIDDEN);
6955 }
6956
6957 if (htab->sfpr == NULL)
6958 /* We don't have any relocs. */
6959 return TRUE;
6960
6961 /* Provide any missing _save* and _rest* functions. */
6962 htab->sfpr->size = 0;
6963 if (htab->params->save_restore_funcs)
6964 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6965 if (!sfpr_define (info, &funcs[i]))
6966 return FALSE;
6967
6968 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6969
6970 if (htab->sfpr->size == 0)
6971 htab->sfpr->flags |= SEC_EXCLUDE;
6972
6973 return TRUE;
6974 }
6975
6976 /* Return true if we have dynamic relocs that apply to read-only sections. */
6977
6978 static bfd_boolean
6979 readonly_dynrelocs (struct elf_link_hash_entry *h)
6980 {
6981 struct ppc_link_hash_entry *eh;
6982 struct elf_dyn_relocs *p;
6983
6984 eh = (struct ppc_link_hash_entry *) h;
6985 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6986 {
6987 asection *s = p->sec->output_section;
6988
6989 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6990 return TRUE;
6991 }
6992 return FALSE;
6993 }
6994
6995 /* Adjust a symbol defined by a dynamic object and referenced by a
6996 regular object. The current definition is in some section of the
6997 dynamic object, but we're not including those sections. We have to
6998 change the definition to something the rest of the link can
6999 understand. */
7000
7001 static bfd_boolean
7002 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
7003 struct elf_link_hash_entry *h)
7004 {
7005 struct ppc_link_hash_table *htab;
7006 asection *s;
7007
7008 htab = ppc_hash_table (info);
7009 if (htab == NULL)
7010 return FALSE;
7011
7012 /* Deal with function syms. */
7013 if (h->type == STT_FUNC
7014 || h->type == STT_GNU_IFUNC
7015 || h->needs_plt)
7016 {
7017 /* Clear procedure linkage table information for any symbol that
7018 won't need a .plt entry. */
7019 struct plt_entry *ent;
7020 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
7021 if (ent->plt.refcount > 0)
7022 break;
7023 if (ent == NULL
7024 || (h->type != STT_GNU_IFUNC
7025 && (SYMBOL_CALLS_LOCAL (info, h)
7026 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7027 && h->root.type == bfd_link_hash_undefweak))))
7028 {
7029 h->plt.plist = NULL;
7030 h->needs_plt = 0;
7031 h->pointer_equality_needed = 0;
7032 }
7033 else if (abiversion (info->output_bfd) == 2)
7034 {
7035 /* Taking a function's address in a read/write section
7036 doesn't require us to define the function symbol in the
7037 executable on a global entry stub. A dynamic reloc can
7038 be used instead. */
7039 if (h->pointer_equality_needed
7040 && h->type != STT_GNU_IFUNC
7041 && !readonly_dynrelocs (h))
7042 {
7043 h->pointer_equality_needed = 0;
7044 h->non_got_ref = 0;
7045 }
7046
7047 /* After adjust_dynamic_symbol, non_got_ref set in the
7048 non-shared case means that we have allocated space in
7049 .dynbss for the symbol and thus dyn_relocs for this
7050 symbol should be discarded.
7051 If we get here we know we are making a PLT entry for this
7052 symbol, and in an executable we'd normally resolve
7053 relocations against this symbol to the PLT entry. Allow
7054 dynamic relocs if the reference is weak, and the dynamic
7055 relocs will not cause text relocation. */
7056 else if (!h->ref_regular_nonweak
7057 && h->non_got_ref
7058 && h->type != STT_GNU_IFUNC
7059 && !readonly_dynrelocs (h))
7060 h->non_got_ref = 0;
7061
7062 /* If making a plt entry, then we don't need copy relocs. */
7063 return TRUE;
7064 }
7065 }
7066 else
7067 h->plt.plist = NULL;
7068
7069 /* If this is a weak symbol, and there is a real definition, the
7070 processor independent code will have arranged for us to see the
7071 real definition first, and we can just use the same value. */
7072 if (h->u.weakdef != NULL)
7073 {
7074 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7075 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7076 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7077 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7078 if (ELIMINATE_COPY_RELOCS)
7079 h->non_got_ref = h->u.weakdef->non_got_ref;
7080 return TRUE;
7081 }
7082
7083 /* If we are creating a shared library, we must presume that the
7084 only references to the symbol are via the global offset table.
7085 For such cases we need not do anything here; the relocations will
7086 be handled correctly by relocate_section. */
7087 if (info->shared)
7088 return TRUE;
7089
7090 /* If there are no references to this symbol that do not use the
7091 GOT, we don't need to generate a copy reloc. */
7092 if (!h->non_got_ref)
7093 return TRUE;
7094
7095 /* Don't generate a copy reloc for symbols defined in the executable. */
7096 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
7097 return TRUE;
7098
7099 /* If -z nocopyreloc was given, don't generate them either. */
7100 if (info->nocopyreloc)
7101 {
7102 h->non_got_ref = 0;
7103 return TRUE;
7104 }
7105
7106 /* If we didn't find any dynamic relocs in read-only sections, then
7107 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7108 if (ELIMINATE_COPY_RELOCS && !readonly_dynrelocs (h))
7109 {
7110 h->non_got_ref = 0;
7111 return TRUE;
7112 }
7113
7114 /* Protected variables do not work with .dynbss. The copy in
7115 .dynbss won't be used by the shared library with the protected
7116 definition for the variable. Text relocations are preferable
7117 to an incorrect program. */
7118 if (h->protected_def)
7119 {
7120 h->non_got_ref = 0;
7121 return TRUE;
7122 }
7123
7124 if (h->plt.plist != NULL)
7125 {
7126 /* We should never get here, but unfortunately there are versions
7127 of gcc out there that improperly (for this ABI) put initialized
7128 function pointers, vtable refs and suchlike in read-only
7129 sections. Allow them to proceed, but warn that this might
7130 break at runtime. */
7131 info->callbacks->einfo
7132 (_("%P: copy reloc against `%T' requires lazy plt linking; "
7133 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
7134 h->root.root.string);
7135 }
7136
7137 /* This is a reference to a symbol defined by a dynamic object which
7138 is not a function. */
7139
7140 /* We must allocate the symbol in our .dynbss section, which will
7141 become part of the .bss section of the executable. There will be
7142 an entry for this symbol in the .dynsym section. The dynamic
7143 object will contain position independent code, so all references
7144 from the dynamic object to this symbol will go through the global
7145 offset table. The dynamic linker will use the .dynsym entry to
7146 determine the address it must put in the global offset table, so
7147 both the dynamic object and the regular object will refer to the
7148 same memory location for the variable. */
7149
7150 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
7151 to copy the initial value out of the dynamic object and into the
7152 runtime process image. We need to remember the offset into the
7153 .rela.bss section we are going to use. */
7154 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7155 {
7156 htab->relbss->size += sizeof (Elf64_External_Rela);
7157 h->needs_copy = 1;
7158 }
7159
7160 s = htab->dynbss;
7161
7162 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7163 }
7164
7165 /* If given a function descriptor symbol, hide both the function code
7166 sym and the descriptor. */
7167 static void
7168 ppc64_elf_hide_symbol (struct bfd_link_info *info,
7169 struct elf_link_hash_entry *h,
7170 bfd_boolean force_local)
7171 {
7172 struct ppc_link_hash_entry *eh;
7173 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
7174
7175 eh = (struct ppc_link_hash_entry *) h;
7176 if (eh->is_func_descriptor)
7177 {
7178 struct ppc_link_hash_entry *fh = eh->oh;
7179
7180 if (fh == NULL)
7181 {
7182 const char *p, *q;
7183 struct ppc_link_hash_table *htab;
7184 char save;
7185
7186 /* We aren't supposed to use alloca in BFD because on
7187 systems which do not have alloca the version in libiberty
7188 calls xmalloc, which might cause the program to crash
7189 when it runs out of memory. This function doesn't have a
7190 return status, so there's no way to gracefully return an
7191 error. So cheat. We know that string[-1] can be safely
7192 accessed; It's either a string in an ELF string table,
7193 or allocated in an objalloc structure. */
7194
7195 p = eh->elf.root.root.string - 1;
7196 save = *p;
7197 *(char *) p = '.';
7198 htab = ppc_hash_table (info);
7199 if (htab == NULL)
7200 return;
7201
7202 fh = (struct ppc_link_hash_entry *)
7203 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7204 *(char *) p = save;
7205
7206 /* Unfortunately, if it so happens that the string we were
7207 looking for was allocated immediately before this string,
7208 then we overwrote the string terminator. That's the only
7209 reason the lookup should fail. */
7210 if (fh == NULL)
7211 {
7212 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
7213 while (q >= eh->elf.root.root.string && *q == *p)
7214 --q, --p;
7215 if (q < eh->elf.root.root.string && *p == '.')
7216 fh = (struct ppc_link_hash_entry *)
7217 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
7218 }
7219 if (fh != NULL)
7220 {
7221 eh->oh = fh;
7222 fh->oh = eh;
7223 }
7224 }
7225 if (fh != NULL)
7226 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
7227 }
7228 }
7229
7230 static bfd_boolean
7231 get_sym_h (struct elf_link_hash_entry **hp,
7232 Elf_Internal_Sym **symp,
7233 asection **symsecp,
7234 unsigned char **tls_maskp,
7235 Elf_Internal_Sym **locsymsp,
7236 unsigned long r_symndx,
7237 bfd *ibfd)
7238 {
7239 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7240
7241 if (r_symndx >= symtab_hdr->sh_info)
7242 {
7243 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7244 struct elf_link_hash_entry *h;
7245
7246 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7247 h = elf_follow_link (h);
7248
7249 if (hp != NULL)
7250 *hp = h;
7251
7252 if (symp != NULL)
7253 *symp = NULL;
7254
7255 if (symsecp != NULL)
7256 {
7257 asection *symsec = NULL;
7258 if (h->root.type == bfd_link_hash_defined
7259 || h->root.type == bfd_link_hash_defweak)
7260 symsec = h->root.u.def.section;
7261 *symsecp = symsec;
7262 }
7263
7264 if (tls_maskp != NULL)
7265 {
7266 struct ppc_link_hash_entry *eh;
7267
7268 eh = (struct ppc_link_hash_entry *) h;
7269 *tls_maskp = &eh->tls_mask;
7270 }
7271 }
7272 else
7273 {
7274 Elf_Internal_Sym *sym;
7275 Elf_Internal_Sym *locsyms = *locsymsp;
7276
7277 if (locsyms == NULL)
7278 {
7279 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
7280 if (locsyms == NULL)
7281 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
7282 symtab_hdr->sh_info,
7283 0, NULL, NULL, NULL);
7284 if (locsyms == NULL)
7285 return FALSE;
7286 *locsymsp = locsyms;
7287 }
7288 sym = locsyms + r_symndx;
7289
7290 if (hp != NULL)
7291 *hp = NULL;
7292
7293 if (symp != NULL)
7294 *symp = sym;
7295
7296 if (symsecp != NULL)
7297 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
7298
7299 if (tls_maskp != NULL)
7300 {
7301 struct got_entry **lgot_ents;
7302 unsigned char *tls_mask;
7303
7304 tls_mask = NULL;
7305 lgot_ents = elf_local_got_ents (ibfd);
7306 if (lgot_ents != NULL)
7307 {
7308 struct plt_entry **local_plt = (struct plt_entry **)
7309 (lgot_ents + symtab_hdr->sh_info);
7310 unsigned char *lgot_masks = (unsigned char *)
7311 (local_plt + symtab_hdr->sh_info);
7312 tls_mask = &lgot_masks[r_symndx];
7313 }
7314 *tls_maskp = tls_mask;
7315 }
7316 }
7317 return TRUE;
7318 }
7319
7320 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
7321 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
7322 type suitable for optimization, and 1 otherwise. */
7323
7324 static int
7325 get_tls_mask (unsigned char **tls_maskp,
7326 unsigned long *toc_symndx,
7327 bfd_vma *toc_addend,
7328 Elf_Internal_Sym **locsymsp,
7329 const Elf_Internal_Rela *rel,
7330 bfd *ibfd)
7331 {
7332 unsigned long r_symndx;
7333 int next_r;
7334 struct elf_link_hash_entry *h;
7335 Elf_Internal_Sym *sym;
7336 asection *sec;
7337 bfd_vma off;
7338
7339 r_symndx = ELF64_R_SYM (rel->r_info);
7340 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7341 return 0;
7342
7343 if ((*tls_maskp != NULL && **tls_maskp != 0)
7344 || sec == NULL
7345 || ppc64_elf_section_data (sec) == NULL
7346 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
7347 return 1;
7348
7349 /* Look inside a TOC section too. */
7350 if (h != NULL)
7351 {
7352 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
7353 off = h->root.u.def.value;
7354 }
7355 else
7356 off = sym->st_value;
7357 off += rel->r_addend;
7358 BFD_ASSERT (off % 8 == 0);
7359 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
7360 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
7361 if (toc_symndx != NULL)
7362 *toc_symndx = r_symndx;
7363 if (toc_addend != NULL)
7364 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
7365 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
7366 return 0;
7367 if ((h == NULL || is_static_defined (h))
7368 && (next_r == -1 || next_r == -2))
7369 return 1 - next_r;
7370 return 1;
7371 }
7372
7373 /* Find (or create) an entry in the tocsave hash table. */
7374
7375 static struct tocsave_entry *
7376 tocsave_find (struct ppc_link_hash_table *htab,
7377 enum insert_option insert,
7378 Elf_Internal_Sym **local_syms,
7379 const Elf_Internal_Rela *irela,
7380 bfd *ibfd)
7381 {
7382 unsigned long r_indx;
7383 struct elf_link_hash_entry *h;
7384 Elf_Internal_Sym *sym;
7385 struct tocsave_entry ent, *p;
7386 hashval_t hash;
7387 struct tocsave_entry **slot;
7388
7389 r_indx = ELF64_R_SYM (irela->r_info);
7390 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
7391 return NULL;
7392 if (ent.sec == NULL || ent.sec->output_section == NULL)
7393 {
7394 (*_bfd_error_handler)
7395 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
7396 return NULL;
7397 }
7398
7399 if (h != NULL)
7400 ent.offset = h->root.u.def.value;
7401 else
7402 ent.offset = sym->st_value;
7403 ent.offset += irela->r_addend;
7404
7405 hash = tocsave_htab_hash (&ent);
7406 slot = ((struct tocsave_entry **)
7407 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
7408 if (slot == NULL)
7409 return NULL;
7410
7411 if (*slot == NULL)
7412 {
7413 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
7414 if (p == NULL)
7415 return NULL;
7416 *p = ent;
7417 *slot = p;
7418 }
7419 return *slot;
7420 }
7421
7422 /* Adjust all global syms defined in opd sections. In gcc generated
7423 code for the old ABI, these will already have been done. */
7424
7425 static bfd_boolean
7426 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
7427 {
7428 struct ppc_link_hash_entry *eh;
7429 asection *sym_sec;
7430 struct _opd_sec_data *opd;
7431
7432 if (h->root.type == bfd_link_hash_indirect)
7433 return TRUE;
7434
7435 if (h->root.type != bfd_link_hash_defined
7436 && h->root.type != bfd_link_hash_defweak)
7437 return TRUE;
7438
7439 eh = (struct ppc_link_hash_entry *) h;
7440 if (eh->adjust_done)
7441 return TRUE;
7442
7443 sym_sec = eh->elf.root.u.def.section;
7444 opd = get_opd_info (sym_sec);
7445 if (opd != NULL && opd->adjust != NULL)
7446 {
7447 long adjust = opd->adjust[OPD_NDX (eh->elf.root.u.def.value)];
7448 if (adjust == -1)
7449 {
7450 /* This entry has been deleted. */
7451 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
7452 if (dsec == NULL)
7453 {
7454 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
7455 if (discarded_section (dsec))
7456 {
7457 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
7458 break;
7459 }
7460 }
7461 eh->elf.root.u.def.value = 0;
7462 eh->elf.root.u.def.section = dsec;
7463 }
7464 else
7465 eh->elf.root.u.def.value += adjust;
7466 eh->adjust_done = 1;
7467 }
7468 return TRUE;
7469 }
7470
7471 /* Handles decrementing dynamic reloc counts for the reloc specified by
7472 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
7473 have already been determined. */
7474
7475 static bfd_boolean
7476 dec_dynrel_count (bfd_vma r_info,
7477 asection *sec,
7478 struct bfd_link_info *info,
7479 Elf_Internal_Sym **local_syms,
7480 struct elf_link_hash_entry *h,
7481 Elf_Internal_Sym *sym)
7482 {
7483 enum elf_ppc64_reloc_type r_type;
7484 asection *sym_sec = NULL;
7485
7486 /* Can this reloc be dynamic? This switch, and later tests here
7487 should be kept in sync with the code in check_relocs. */
7488 r_type = ELF64_R_TYPE (r_info);
7489 switch (r_type)
7490 {
7491 default:
7492 return TRUE;
7493
7494 case R_PPC64_TPREL16:
7495 case R_PPC64_TPREL16_LO:
7496 case R_PPC64_TPREL16_HI:
7497 case R_PPC64_TPREL16_HA:
7498 case R_PPC64_TPREL16_DS:
7499 case R_PPC64_TPREL16_LO_DS:
7500 case R_PPC64_TPREL16_HIGH:
7501 case R_PPC64_TPREL16_HIGHA:
7502 case R_PPC64_TPREL16_HIGHER:
7503 case R_PPC64_TPREL16_HIGHERA:
7504 case R_PPC64_TPREL16_HIGHEST:
7505 case R_PPC64_TPREL16_HIGHESTA:
7506 if (!info->shared)
7507 return TRUE;
7508
7509 case R_PPC64_TPREL64:
7510 case R_PPC64_DTPMOD64:
7511 case R_PPC64_DTPREL64:
7512 case R_PPC64_ADDR64:
7513 case R_PPC64_REL30:
7514 case R_PPC64_REL32:
7515 case R_PPC64_REL64:
7516 case R_PPC64_ADDR14:
7517 case R_PPC64_ADDR14_BRNTAKEN:
7518 case R_PPC64_ADDR14_BRTAKEN:
7519 case R_PPC64_ADDR16:
7520 case R_PPC64_ADDR16_DS:
7521 case R_PPC64_ADDR16_HA:
7522 case R_PPC64_ADDR16_HI:
7523 case R_PPC64_ADDR16_HIGH:
7524 case R_PPC64_ADDR16_HIGHA:
7525 case R_PPC64_ADDR16_HIGHER:
7526 case R_PPC64_ADDR16_HIGHERA:
7527 case R_PPC64_ADDR16_HIGHEST:
7528 case R_PPC64_ADDR16_HIGHESTA:
7529 case R_PPC64_ADDR16_LO:
7530 case R_PPC64_ADDR16_LO_DS:
7531 case R_PPC64_ADDR24:
7532 case R_PPC64_ADDR32:
7533 case R_PPC64_UADDR16:
7534 case R_PPC64_UADDR32:
7535 case R_PPC64_UADDR64:
7536 case R_PPC64_TOC:
7537 break;
7538 }
7539
7540 if (local_syms != NULL)
7541 {
7542 unsigned long r_symndx;
7543 bfd *ibfd = sec->owner;
7544
7545 r_symndx = ELF64_R_SYM (r_info);
7546 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7547 return FALSE;
7548 }
7549
7550 if ((info->shared
7551 && (must_be_dyn_reloc (info, r_type)
7552 || (h != NULL
7553 && (!SYMBOLIC_BIND (info, h)
7554 || h->root.type == bfd_link_hash_defweak
7555 || !h->def_regular))))
7556 || (ELIMINATE_COPY_RELOCS
7557 && !info->shared
7558 && h != NULL
7559 && (h->root.type == bfd_link_hash_defweak
7560 || !h->def_regular)))
7561 ;
7562 else
7563 return TRUE;
7564
7565 if (h != NULL)
7566 {
7567 struct elf_dyn_relocs *p;
7568 struct elf_dyn_relocs **pp;
7569 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7570
7571 /* elf_gc_sweep may have already removed all dyn relocs associated
7572 with local syms for a given section. Also, symbol flags are
7573 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7574 report a dynreloc miscount. */
7575 if (*pp == NULL && info->gc_sections)
7576 return TRUE;
7577
7578 while ((p = *pp) != NULL)
7579 {
7580 if (p->sec == sec)
7581 {
7582 if (!must_be_dyn_reloc (info, r_type))
7583 p->pc_count -= 1;
7584 p->count -= 1;
7585 if (p->count == 0)
7586 *pp = p->next;
7587 return TRUE;
7588 }
7589 pp = &p->next;
7590 }
7591 }
7592 else
7593 {
7594 struct ppc_dyn_relocs *p;
7595 struct ppc_dyn_relocs **pp;
7596 void *vpp;
7597 bfd_boolean is_ifunc;
7598
7599 if (local_syms == NULL)
7600 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7601 if (sym_sec == NULL)
7602 sym_sec = sec;
7603
7604 vpp = &elf_section_data (sym_sec)->local_dynrel;
7605 pp = (struct ppc_dyn_relocs **) vpp;
7606
7607 if (*pp == NULL && info->gc_sections)
7608 return TRUE;
7609
7610 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7611 while ((p = *pp) != NULL)
7612 {
7613 if (p->sec == sec && p->ifunc == is_ifunc)
7614 {
7615 p->count -= 1;
7616 if (p->count == 0)
7617 *pp = p->next;
7618 return TRUE;
7619 }
7620 pp = &p->next;
7621 }
7622 }
7623
7624 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7625 sec->owner, sec);
7626 bfd_set_error (bfd_error_bad_value);
7627 return FALSE;
7628 }
7629
7630 /* Remove unused Official Procedure Descriptor entries. Currently we
7631 only remove those associated with functions in discarded link-once
7632 sections, or weakly defined functions that have been overridden. It
7633 would be possible to remove many more entries for statically linked
7634 applications. */
7635
7636 bfd_boolean
7637 ppc64_elf_edit_opd (struct bfd_link_info *info)
7638 {
7639 bfd *ibfd;
7640 bfd_boolean some_edited = FALSE;
7641 asection *need_pad = NULL;
7642 struct ppc_link_hash_table *htab;
7643
7644 htab = ppc_hash_table (info);
7645 if (htab == NULL)
7646 return FALSE;
7647
7648 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7649 {
7650 asection *sec;
7651 Elf_Internal_Rela *relstart, *rel, *relend;
7652 Elf_Internal_Shdr *symtab_hdr;
7653 Elf_Internal_Sym *local_syms;
7654 struct _opd_sec_data *opd;
7655 bfd_boolean need_edit, add_aux_fields, broken;
7656 bfd_size_type cnt_16b = 0;
7657
7658 if (!is_ppc64_elf (ibfd))
7659 continue;
7660
7661 sec = bfd_get_section_by_name (ibfd, ".opd");
7662 if (sec == NULL || sec->size == 0)
7663 continue;
7664
7665 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7666 continue;
7667
7668 if (sec->output_section == bfd_abs_section_ptr)
7669 continue;
7670
7671 /* Look through the section relocs. */
7672 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7673 continue;
7674
7675 local_syms = NULL;
7676 symtab_hdr = &elf_symtab_hdr (ibfd);
7677
7678 /* Read the relocations. */
7679 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7680 info->keep_memory);
7681 if (relstart == NULL)
7682 return FALSE;
7683
7684 /* First run through the relocs to check they are sane, and to
7685 determine whether we need to edit this opd section. */
7686 need_edit = FALSE;
7687 broken = FALSE;
7688 need_pad = sec;
7689 relend = relstart + sec->reloc_count;
7690 for (rel = relstart; rel < relend; )
7691 {
7692 enum elf_ppc64_reloc_type r_type;
7693 unsigned long r_symndx;
7694 asection *sym_sec;
7695 struct elf_link_hash_entry *h;
7696 Elf_Internal_Sym *sym;
7697 bfd_vma offset;
7698
7699 /* .opd contains an array of 16 or 24 byte entries. We're
7700 only interested in the reloc pointing to a function entry
7701 point. */
7702 offset = rel->r_offset;
7703 if (rel + 1 == relend
7704 || rel[1].r_offset != offset + 8)
7705 {
7706 /* If someone messes with .opd alignment then after a
7707 "ld -r" we might have padding in the middle of .opd.
7708 Also, there's nothing to prevent someone putting
7709 something silly in .opd with the assembler. No .opd
7710 optimization for them! */
7711 broken_opd:
7712 (*_bfd_error_handler)
7713 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7714 broken = TRUE;
7715 break;
7716 }
7717
7718 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7719 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7720 {
7721 (*_bfd_error_handler)
7722 (_("%B: unexpected reloc type %u in .opd section"),
7723 ibfd, r_type);
7724 broken = TRUE;
7725 break;
7726 }
7727
7728 r_symndx = ELF64_R_SYM (rel->r_info);
7729 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7730 r_symndx, ibfd))
7731 goto error_ret;
7732
7733 if (sym_sec == NULL || sym_sec->owner == NULL)
7734 {
7735 const char *sym_name;
7736 if (h != NULL)
7737 sym_name = h->root.root.string;
7738 else
7739 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7740 sym_sec);
7741
7742 (*_bfd_error_handler)
7743 (_("%B: undefined sym `%s' in .opd section"),
7744 ibfd, sym_name);
7745 broken = TRUE;
7746 break;
7747 }
7748
7749 /* opd entries are always for functions defined in the
7750 current input bfd. If the symbol isn't defined in the
7751 input bfd, then we won't be using the function in this
7752 bfd; It must be defined in a linkonce section in another
7753 bfd, or is weak. It's also possible that we are
7754 discarding the function due to a linker script /DISCARD/,
7755 which we test for via the output_section. */
7756 if (sym_sec->owner != ibfd
7757 || sym_sec->output_section == bfd_abs_section_ptr)
7758 need_edit = TRUE;
7759
7760 rel += 2;
7761 if (rel + 1 == relend
7762 || (rel + 2 < relend
7763 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC))
7764 ++rel;
7765
7766 if (rel == relend)
7767 {
7768 if (sec->size == offset + 24)
7769 {
7770 need_pad = NULL;
7771 break;
7772 }
7773 if (sec->size == offset + 16)
7774 {
7775 cnt_16b++;
7776 break;
7777 }
7778 goto broken_opd;
7779 }
7780 else if (rel + 1 < relend
7781 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7782 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7783 {
7784 if (rel[0].r_offset == offset + 16)
7785 cnt_16b++;
7786 else if (rel[0].r_offset != offset + 24)
7787 goto broken_opd;
7788 }
7789 else
7790 goto broken_opd;
7791 }
7792
7793 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7794
7795 if (!broken && (need_edit || add_aux_fields))
7796 {
7797 Elf_Internal_Rela *write_rel;
7798 Elf_Internal_Shdr *rel_hdr;
7799 bfd_byte *rptr, *wptr;
7800 bfd_byte *new_contents;
7801 bfd_size_type amt;
7802
7803 new_contents = NULL;
7804 amt = OPD_NDX (sec->size) * sizeof (long);
7805 opd = &ppc64_elf_section_data (sec)->u.opd;
7806 opd->adjust = bfd_zalloc (sec->owner, amt);
7807 if (opd->adjust == NULL)
7808 return FALSE;
7809 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7810
7811 /* This seems a waste of time as input .opd sections are all
7812 zeros as generated by gcc, but I suppose there's no reason
7813 this will always be so. We might start putting something in
7814 the third word of .opd entries. */
7815 if ((sec->flags & SEC_IN_MEMORY) == 0)
7816 {
7817 bfd_byte *loc;
7818 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7819 {
7820 if (loc != NULL)
7821 free (loc);
7822 error_ret:
7823 if (local_syms != NULL
7824 && symtab_hdr->contents != (unsigned char *) local_syms)
7825 free (local_syms);
7826 if (elf_section_data (sec)->relocs != relstart)
7827 free (relstart);
7828 return FALSE;
7829 }
7830 sec->contents = loc;
7831 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7832 }
7833
7834 elf_section_data (sec)->relocs = relstart;
7835
7836 new_contents = sec->contents;
7837 if (add_aux_fields)
7838 {
7839 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7840 if (new_contents == NULL)
7841 return FALSE;
7842 need_pad = NULL;
7843 }
7844 wptr = new_contents;
7845 rptr = sec->contents;
7846 write_rel = relstart;
7847 for (rel = relstart; rel < relend; )
7848 {
7849 unsigned long r_symndx;
7850 asection *sym_sec;
7851 struct elf_link_hash_entry *h;
7852 struct ppc_link_hash_entry *fdh = NULL;
7853 Elf_Internal_Sym *sym;
7854 long opd_ent_size;
7855 Elf_Internal_Rela *next_rel;
7856 bfd_boolean skip;
7857
7858 r_symndx = ELF64_R_SYM (rel->r_info);
7859 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7860 r_symndx, ibfd))
7861 goto error_ret;
7862
7863 next_rel = rel + 2;
7864 if (next_rel + 1 == relend
7865 || (next_rel + 2 < relend
7866 && ELF64_R_TYPE (next_rel[2].r_info) == R_PPC64_TOC))
7867 ++next_rel;
7868
7869 /* See if the .opd entry is full 24 byte or
7870 16 byte (with fd_aux entry overlapped with next
7871 fd_func). */
7872 opd_ent_size = 24;
7873 if (next_rel == relend)
7874 {
7875 if (sec->size == rel->r_offset + 16)
7876 opd_ent_size = 16;
7877 }
7878 else if (next_rel->r_offset == rel->r_offset + 16)
7879 opd_ent_size = 16;
7880
7881 if (h != NULL
7882 && h->root.root.string[0] == '.')
7883 {
7884 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h, htab);
7885 if (fdh != NULL
7886 && fdh->elf.root.type != bfd_link_hash_defined
7887 && fdh->elf.root.type != bfd_link_hash_defweak)
7888 fdh = NULL;
7889 }
7890
7891 skip = (sym_sec->owner != ibfd
7892 || sym_sec->output_section == bfd_abs_section_ptr);
7893 if (skip)
7894 {
7895 if (fdh != NULL && sym_sec->owner == ibfd)
7896 {
7897 /* Arrange for the function descriptor sym
7898 to be dropped. */
7899 fdh->elf.root.u.def.value = 0;
7900 fdh->elf.root.u.def.section = sym_sec;
7901 }
7902 opd->adjust[OPD_NDX (rel->r_offset)] = -1;
7903
7904 if (NO_OPD_RELOCS || info->relocatable)
7905 rel = next_rel;
7906 else
7907 while (1)
7908 {
7909 if (!dec_dynrel_count (rel->r_info, sec, info,
7910 NULL, h, sym))
7911 goto error_ret;
7912
7913 if (++rel == next_rel)
7914 break;
7915
7916 r_symndx = ELF64_R_SYM (rel->r_info);
7917 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7918 r_symndx, ibfd))
7919 goto error_ret;
7920 }
7921 }
7922 else
7923 {
7924 /* We'll be keeping this opd entry. */
7925 long adjust;
7926
7927 if (fdh != NULL)
7928 {
7929 /* Redefine the function descriptor symbol to
7930 this location in the opd section. It is
7931 necessary to update the value here rather
7932 than using an array of adjustments as we do
7933 for local symbols, because various places
7934 in the generic ELF code use the value
7935 stored in u.def.value. */
7936 fdh->elf.root.u.def.value = wptr - new_contents;
7937 fdh->adjust_done = 1;
7938 }
7939
7940 /* Local syms are a bit tricky. We could
7941 tweak them as they can be cached, but
7942 we'd need to look through the local syms
7943 for the function descriptor sym which we
7944 don't have at the moment. So keep an
7945 array of adjustments. */
7946 adjust = (wptr - new_contents) - (rptr - sec->contents);
7947 opd->adjust[OPD_NDX (rel->r_offset)] = adjust;
7948
7949 if (wptr != rptr)
7950 memcpy (wptr, rptr, opd_ent_size);
7951 wptr += opd_ent_size;
7952 if (add_aux_fields && opd_ent_size == 16)
7953 {
7954 memset (wptr, '\0', 8);
7955 wptr += 8;
7956 }
7957
7958 /* We need to adjust any reloc offsets to point to the
7959 new opd entries. */
7960 for ( ; rel != next_rel; ++rel)
7961 {
7962 rel->r_offset += adjust;
7963 if (write_rel != rel)
7964 memcpy (write_rel, rel, sizeof (*rel));
7965 ++write_rel;
7966 }
7967 }
7968
7969 rptr += opd_ent_size;
7970 }
7971
7972 sec->size = wptr - new_contents;
7973 sec->reloc_count = write_rel - relstart;
7974 if (add_aux_fields)
7975 {
7976 free (sec->contents);
7977 sec->contents = new_contents;
7978 }
7979
7980 /* Fudge the header size too, as this is used later in
7981 elf_bfd_final_link if we are emitting relocs. */
7982 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7983 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7984 some_edited = TRUE;
7985 }
7986 else if (elf_section_data (sec)->relocs != relstart)
7987 free (relstart);
7988
7989 if (local_syms != NULL
7990 && symtab_hdr->contents != (unsigned char *) local_syms)
7991 {
7992 if (!info->keep_memory)
7993 free (local_syms);
7994 else
7995 symtab_hdr->contents = (unsigned char *) local_syms;
7996 }
7997 }
7998
7999 if (some_edited)
8000 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
8001
8002 /* If we are doing a final link and the last .opd entry is just 16 byte
8003 long, add a 8 byte padding after it. */
8004 if (need_pad != NULL && !info->relocatable)
8005 {
8006 bfd_byte *p;
8007
8008 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
8009 {
8010 BFD_ASSERT (need_pad->size > 0);
8011
8012 p = bfd_malloc (need_pad->size + 8);
8013 if (p == NULL)
8014 return FALSE;
8015
8016 if (! bfd_get_section_contents (need_pad->owner, need_pad,
8017 p, 0, need_pad->size))
8018 return FALSE;
8019
8020 need_pad->contents = p;
8021 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
8022 }
8023 else
8024 {
8025 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
8026 if (p == NULL)
8027 return FALSE;
8028
8029 need_pad->contents = p;
8030 }
8031
8032 memset (need_pad->contents + need_pad->size, 0, 8);
8033 need_pad->size += 8;
8034 }
8035
8036 return TRUE;
8037 }
8038
8039 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
8040
8041 asection *
8042 ppc64_elf_tls_setup (struct bfd_link_info *info)
8043 {
8044 struct ppc_link_hash_table *htab;
8045
8046 htab = ppc_hash_table (info);
8047 if (htab == NULL)
8048 return NULL;
8049
8050 if (abiversion (info->output_bfd) == 1)
8051 htab->opd_abi = 1;
8052
8053 if (htab->params->no_multi_toc)
8054 htab->do_multi_toc = 0;
8055 else if (!htab->do_multi_toc)
8056 htab->params->no_multi_toc = 1;
8057
8058 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
8059 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
8060 FALSE, FALSE, TRUE));
8061 /* Move dynamic linking info to the function descriptor sym. */
8062 if (htab->tls_get_addr != NULL)
8063 func_desc_adjust (&htab->tls_get_addr->elf, info);
8064 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
8065 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
8066 FALSE, FALSE, TRUE));
8067 if (!htab->params->no_tls_get_addr_opt)
8068 {
8069 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
8070
8071 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
8072 FALSE, FALSE, TRUE);
8073 if (opt != NULL)
8074 func_desc_adjust (opt, info);
8075 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
8076 FALSE, FALSE, TRUE);
8077 if (opt_fd != NULL
8078 && (opt_fd->root.type == bfd_link_hash_defined
8079 || opt_fd->root.type == bfd_link_hash_defweak))
8080 {
8081 /* If glibc supports an optimized __tls_get_addr call stub,
8082 signalled by the presence of __tls_get_addr_opt, and we'll
8083 be calling __tls_get_addr via a plt call stub, then
8084 make __tls_get_addr point to __tls_get_addr_opt. */
8085 tga_fd = &htab->tls_get_addr_fd->elf;
8086 if (htab->elf.dynamic_sections_created
8087 && tga_fd != NULL
8088 && (tga_fd->type == STT_FUNC
8089 || tga_fd->needs_plt)
8090 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
8091 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
8092 && tga_fd->root.type == bfd_link_hash_undefweak)))
8093 {
8094 struct plt_entry *ent;
8095
8096 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
8097 if (ent->plt.refcount > 0)
8098 break;
8099 if (ent != NULL)
8100 {
8101 tga_fd->root.type = bfd_link_hash_indirect;
8102 tga_fd->root.u.i.link = &opt_fd->root;
8103 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
8104 if (opt_fd->dynindx != -1)
8105 {
8106 /* Use __tls_get_addr_opt in dynamic relocations. */
8107 opt_fd->dynindx = -1;
8108 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
8109 opt_fd->dynstr_index);
8110 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
8111 return NULL;
8112 }
8113 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
8114 tga = &htab->tls_get_addr->elf;
8115 if (opt != NULL && tga != NULL)
8116 {
8117 tga->root.type = bfd_link_hash_indirect;
8118 tga->root.u.i.link = &opt->root;
8119 ppc64_elf_copy_indirect_symbol (info, opt, tga);
8120 _bfd_elf_link_hash_hide_symbol (info, opt,
8121 tga->forced_local);
8122 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
8123 }
8124 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
8125 htab->tls_get_addr_fd->is_func_descriptor = 1;
8126 if (htab->tls_get_addr != NULL)
8127 {
8128 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
8129 htab->tls_get_addr->is_func = 1;
8130 }
8131 }
8132 }
8133 }
8134 else
8135 htab->params->no_tls_get_addr_opt = TRUE;
8136 }
8137 return _bfd_elf_tls_setup (info->output_bfd, info);
8138 }
8139
8140 /* Return TRUE iff REL is a branch reloc with a global symbol matching
8141 HASH1 or HASH2. */
8142
8143 static bfd_boolean
8144 branch_reloc_hash_match (const bfd *ibfd,
8145 const Elf_Internal_Rela *rel,
8146 const struct ppc_link_hash_entry *hash1,
8147 const struct ppc_link_hash_entry *hash2)
8148 {
8149 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
8150 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
8151 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
8152
8153 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
8154 {
8155 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
8156 struct elf_link_hash_entry *h;
8157
8158 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8159 h = elf_follow_link (h);
8160 if (h == &hash1->elf || h == &hash2->elf)
8161 return TRUE;
8162 }
8163 return FALSE;
8164 }
8165
8166 /* Run through all the TLS relocs looking for optimization
8167 opportunities. The linker has been hacked (see ppc64elf.em) to do
8168 a preliminary section layout so that we know the TLS segment
8169 offsets. We can't optimize earlier because some optimizations need
8170 to know the tp offset, and we need to optimize before allocating
8171 dynamic relocations. */
8172
8173 bfd_boolean
8174 ppc64_elf_tls_optimize (struct bfd_link_info *info)
8175 {
8176 bfd *ibfd;
8177 asection *sec;
8178 struct ppc_link_hash_table *htab;
8179 unsigned char *toc_ref;
8180 int pass;
8181
8182 if (info->relocatable || !info->executable)
8183 return TRUE;
8184
8185 htab = ppc_hash_table (info);
8186 if (htab == NULL)
8187 return FALSE;
8188
8189 /* Make two passes over the relocs. On the first pass, mark toc
8190 entries involved with tls relocs, and check that tls relocs
8191 involved in setting up a tls_get_addr call are indeed followed by
8192 such a call. If they are not, we can't do any tls optimization.
8193 On the second pass twiddle tls_mask flags to notify
8194 relocate_section that optimization can be done, and adjust got
8195 and plt refcounts. */
8196 toc_ref = NULL;
8197 for (pass = 0; pass < 2; ++pass)
8198 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8199 {
8200 Elf_Internal_Sym *locsyms = NULL;
8201 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
8202
8203 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8204 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
8205 {
8206 Elf_Internal_Rela *relstart, *rel, *relend;
8207 bfd_boolean found_tls_get_addr_arg = 0;
8208
8209 /* Read the relocations. */
8210 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8211 info->keep_memory);
8212 if (relstart == NULL)
8213 {
8214 free (toc_ref);
8215 return FALSE;
8216 }
8217
8218 relend = relstart + sec->reloc_count;
8219 for (rel = relstart; rel < relend; rel++)
8220 {
8221 enum elf_ppc64_reloc_type r_type;
8222 unsigned long r_symndx;
8223 struct elf_link_hash_entry *h;
8224 Elf_Internal_Sym *sym;
8225 asection *sym_sec;
8226 unsigned char *tls_mask;
8227 unsigned char tls_set, tls_clear, tls_type = 0;
8228 bfd_vma value;
8229 bfd_boolean ok_tprel, is_local;
8230 long toc_ref_index = 0;
8231 int expecting_tls_get_addr = 0;
8232 bfd_boolean ret = FALSE;
8233
8234 r_symndx = ELF64_R_SYM (rel->r_info);
8235 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
8236 r_symndx, ibfd))
8237 {
8238 err_free_rel:
8239 if (elf_section_data (sec)->relocs != relstart)
8240 free (relstart);
8241 if (toc_ref != NULL)
8242 free (toc_ref);
8243 if (locsyms != NULL
8244 && (elf_symtab_hdr (ibfd).contents
8245 != (unsigned char *) locsyms))
8246 free (locsyms);
8247 return ret;
8248 }
8249
8250 if (h != NULL)
8251 {
8252 if (h->root.type == bfd_link_hash_defined
8253 || h->root.type == bfd_link_hash_defweak)
8254 value = h->root.u.def.value;
8255 else if (h->root.type == bfd_link_hash_undefweak)
8256 value = 0;
8257 else
8258 {
8259 found_tls_get_addr_arg = 0;
8260 continue;
8261 }
8262 }
8263 else
8264 /* Symbols referenced by TLS relocs must be of type
8265 STT_TLS. So no need for .opd local sym adjust. */
8266 value = sym->st_value;
8267
8268 ok_tprel = FALSE;
8269 is_local = FALSE;
8270 if (h == NULL
8271 || !h->def_dynamic)
8272 {
8273 is_local = TRUE;
8274 if (h != NULL
8275 && h->root.type == bfd_link_hash_undefweak)
8276 ok_tprel = TRUE;
8277 else
8278 {
8279 value += sym_sec->output_offset;
8280 value += sym_sec->output_section->vma;
8281 value -= htab->elf.tls_sec->vma;
8282 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
8283 < (bfd_vma) 1 << 32);
8284 }
8285 }
8286
8287 r_type = ELF64_R_TYPE (rel->r_info);
8288 /* If this section has old-style __tls_get_addr calls
8289 without marker relocs, then check that each
8290 __tls_get_addr call reloc is preceded by a reloc
8291 that conceivably belongs to the __tls_get_addr arg
8292 setup insn. If we don't find matching arg setup
8293 relocs, don't do any tls optimization. */
8294 if (pass == 0
8295 && sec->has_tls_get_addr_call
8296 && h != NULL
8297 && (h == &htab->tls_get_addr->elf
8298 || h == &htab->tls_get_addr_fd->elf)
8299 && !found_tls_get_addr_arg
8300 && is_branch_reloc (r_type))
8301 {
8302 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8303 "TLS optimization disabled\n"),
8304 ibfd, sec, rel->r_offset);
8305 ret = TRUE;
8306 goto err_free_rel;
8307 }
8308
8309 found_tls_get_addr_arg = 0;
8310 switch (r_type)
8311 {
8312 case R_PPC64_GOT_TLSLD16:
8313 case R_PPC64_GOT_TLSLD16_LO:
8314 expecting_tls_get_addr = 1;
8315 found_tls_get_addr_arg = 1;
8316 /* Fall thru */
8317
8318 case R_PPC64_GOT_TLSLD16_HI:
8319 case R_PPC64_GOT_TLSLD16_HA:
8320 /* These relocs should never be against a symbol
8321 defined in a shared lib. Leave them alone if
8322 that turns out to be the case. */
8323 if (!is_local)
8324 continue;
8325
8326 /* LD -> LE */
8327 tls_set = 0;
8328 tls_clear = TLS_LD;
8329 tls_type = TLS_TLS | TLS_LD;
8330 break;
8331
8332 case R_PPC64_GOT_TLSGD16:
8333 case R_PPC64_GOT_TLSGD16_LO:
8334 expecting_tls_get_addr = 1;
8335 found_tls_get_addr_arg = 1;
8336 /* Fall thru */
8337
8338 case R_PPC64_GOT_TLSGD16_HI:
8339 case R_PPC64_GOT_TLSGD16_HA:
8340 if (ok_tprel)
8341 /* GD -> LE */
8342 tls_set = 0;
8343 else
8344 /* GD -> IE */
8345 tls_set = TLS_TLS | TLS_TPRELGD;
8346 tls_clear = TLS_GD;
8347 tls_type = TLS_TLS | TLS_GD;
8348 break;
8349
8350 case R_PPC64_GOT_TPREL16_DS:
8351 case R_PPC64_GOT_TPREL16_LO_DS:
8352 case R_PPC64_GOT_TPREL16_HI:
8353 case R_PPC64_GOT_TPREL16_HA:
8354 if (ok_tprel)
8355 {
8356 /* IE -> LE */
8357 tls_set = 0;
8358 tls_clear = TLS_TPREL;
8359 tls_type = TLS_TLS | TLS_TPREL;
8360 break;
8361 }
8362 continue;
8363
8364 case R_PPC64_TLSGD:
8365 case R_PPC64_TLSLD:
8366 found_tls_get_addr_arg = 1;
8367 /* Fall thru */
8368
8369 case R_PPC64_TLS:
8370 case R_PPC64_TOC16:
8371 case R_PPC64_TOC16_LO:
8372 if (sym_sec == NULL || sym_sec != toc)
8373 continue;
8374
8375 /* Mark this toc entry as referenced by a TLS
8376 code sequence. We can do that now in the
8377 case of R_PPC64_TLS, and after checking for
8378 tls_get_addr for the TOC16 relocs. */
8379 if (toc_ref == NULL)
8380 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
8381 if (toc_ref == NULL)
8382 goto err_free_rel;
8383
8384 if (h != NULL)
8385 value = h->root.u.def.value;
8386 else
8387 value = sym->st_value;
8388 value += rel->r_addend;
8389 if (value % 8 != 0)
8390 continue;
8391 BFD_ASSERT (value < toc->size
8392 && toc->output_offset % 8 == 0);
8393 toc_ref_index = (value + toc->output_offset) / 8;
8394 if (r_type == R_PPC64_TLS
8395 || r_type == R_PPC64_TLSGD
8396 || r_type == R_PPC64_TLSLD)
8397 {
8398 toc_ref[toc_ref_index] = 1;
8399 continue;
8400 }
8401
8402 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8403 continue;
8404
8405 tls_set = 0;
8406 tls_clear = 0;
8407 expecting_tls_get_addr = 2;
8408 break;
8409
8410 case R_PPC64_TPREL64:
8411 if (pass == 0
8412 || sec != toc
8413 || toc_ref == NULL
8414 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8415 continue;
8416 if (ok_tprel)
8417 {
8418 /* IE -> LE */
8419 tls_set = TLS_EXPLICIT;
8420 tls_clear = TLS_TPREL;
8421 break;
8422 }
8423 continue;
8424
8425 case R_PPC64_DTPMOD64:
8426 if (pass == 0
8427 || sec != toc
8428 || toc_ref == NULL
8429 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8430 continue;
8431 if (rel + 1 < relend
8432 && (rel[1].r_info
8433 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8434 && rel[1].r_offset == rel->r_offset + 8)
8435 {
8436 if (ok_tprel)
8437 /* GD -> LE */
8438 tls_set = TLS_EXPLICIT | TLS_GD;
8439 else
8440 /* GD -> IE */
8441 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
8442 tls_clear = TLS_GD;
8443 }
8444 else
8445 {
8446 if (!is_local)
8447 continue;
8448
8449 /* LD -> LE */
8450 tls_set = TLS_EXPLICIT;
8451 tls_clear = TLS_LD;
8452 }
8453 break;
8454
8455 default:
8456 continue;
8457 }
8458
8459 if (pass == 0)
8460 {
8461 if (!expecting_tls_get_addr
8462 || !sec->has_tls_get_addr_call)
8463 continue;
8464
8465 if (rel + 1 < relend
8466 && branch_reloc_hash_match (ibfd, rel + 1,
8467 htab->tls_get_addr,
8468 htab->tls_get_addr_fd))
8469 {
8470 if (expecting_tls_get_addr == 2)
8471 {
8472 /* Check for toc tls entries. */
8473 unsigned char *toc_tls;
8474 int retval;
8475
8476 retval = get_tls_mask (&toc_tls, NULL, NULL,
8477 &locsyms,
8478 rel, ibfd);
8479 if (retval == 0)
8480 goto err_free_rel;
8481 if (toc_tls != NULL)
8482 {
8483 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
8484 found_tls_get_addr_arg = 1;
8485 if (retval > 1)
8486 toc_ref[toc_ref_index] = 1;
8487 }
8488 }
8489 continue;
8490 }
8491
8492 if (expecting_tls_get_addr != 1)
8493 continue;
8494
8495 /* Uh oh, we didn't find the expected call. We
8496 could just mark this symbol to exclude it
8497 from tls optimization but it's safer to skip
8498 the entire optimization. */
8499 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8500 "TLS optimization disabled\n"),
8501 ibfd, sec, rel->r_offset);
8502 ret = TRUE;
8503 goto err_free_rel;
8504 }
8505
8506 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
8507 {
8508 struct plt_entry *ent;
8509 for (ent = htab->tls_get_addr->elf.plt.plist;
8510 ent != NULL;
8511 ent = ent->next)
8512 if (ent->addend == 0)
8513 {
8514 if (ent->plt.refcount > 0)
8515 {
8516 ent->plt.refcount -= 1;
8517 expecting_tls_get_addr = 0;
8518 }
8519 break;
8520 }
8521 }
8522
8523 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
8524 {
8525 struct plt_entry *ent;
8526 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8527 ent != NULL;
8528 ent = ent->next)
8529 if (ent->addend == 0)
8530 {
8531 if (ent->plt.refcount > 0)
8532 ent->plt.refcount -= 1;
8533 break;
8534 }
8535 }
8536
8537 if (tls_clear == 0)
8538 continue;
8539
8540 if ((tls_set & TLS_EXPLICIT) == 0)
8541 {
8542 struct got_entry *ent;
8543
8544 /* Adjust got entry for this reloc. */
8545 if (h != NULL)
8546 ent = h->got.glist;
8547 else
8548 ent = elf_local_got_ents (ibfd)[r_symndx];
8549
8550 for (; ent != NULL; ent = ent->next)
8551 if (ent->addend == rel->r_addend
8552 && ent->owner == ibfd
8553 && ent->tls_type == tls_type)
8554 break;
8555 if (ent == NULL)
8556 abort ();
8557
8558 if (tls_set == 0)
8559 {
8560 /* We managed to get rid of a got entry. */
8561 if (ent->got.refcount > 0)
8562 ent->got.refcount -= 1;
8563 }
8564 }
8565 else
8566 {
8567 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8568 we'll lose one or two dyn relocs. */
8569 if (!dec_dynrel_count (rel->r_info, sec, info,
8570 NULL, h, sym))
8571 return FALSE;
8572
8573 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8574 {
8575 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8576 NULL, h, sym))
8577 return FALSE;
8578 }
8579 }
8580
8581 *tls_mask |= tls_set;
8582 *tls_mask &= ~tls_clear;
8583 }
8584
8585 if (elf_section_data (sec)->relocs != relstart)
8586 free (relstart);
8587 }
8588
8589 if (locsyms != NULL
8590 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8591 {
8592 if (!info->keep_memory)
8593 free (locsyms);
8594 else
8595 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8596 }
8597 }
8598
8599 if (toc_ref != NULL)
8600 free (toc_ref);
8601 return TRUE;
8602 }
8603
8604 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8605 the values of any global symbols in a toc section that has been
8606 edited. Globals in toc sections should be a rarity, so this function
8607 sets a flag if any are found in toc sections other than the one just
8608 edited, so that futher hash table traversals can be avoided. */
8609
8610 struct adjust_toc_info
8611 {
8612 asection *toc;
8613 unsigned long *skip;
8614 bfd_boolean global_toc_syms;
8615 };
8616
8617 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8618
8619 static bfd_boolean
8620 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8621 {
8622 struct ppc_link_hash_entry *eh;
8623 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8624 unsigned long i;
8625
8626 if (h->root.type != bfd_link_hash_defined
8627 && h->root.type != bfd_link_hash_defweak)
8628 return TRUE;
8629
8630 eh = (struct ppc_link_hash_entry *) h;
8631 if (eh->adjust_done)
8632 return TRUE;
8633
8634 if (eh->elf.root.u.def.section == toc_inf->toc)
8635 {
8636 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8637 i = toc_inf->toc->rawsize >> 3;
8638 else
8639 i = eh->elf.root.u.def.value >> 3;
8640
8641 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8642 {
8643 (*_bfd_error_handler)
8644 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8645 do
8646 ++i;
8647 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8648 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8649 }
8650
8651 eh->elf.root.u.def.value -= toc_inf->skip[i];
8652 eh->adjust_done = 1;
8653 }
8654 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8655 toc_inf->global_toc_syms = TRUE;
8656
8657 return TRUE;
8658 }
8659
8660 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8661
8662 static bfd_boolean
8663 ok_lo_toc_insn (unsigned int insn)
8664 {
8665 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8666 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8667 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8668 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8669 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8670 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8671 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8672 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8673 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8674 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8675 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8676 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8677 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8678 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8679 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8680 && (insn & 3) != 1)
8681 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8682 && ((insn & 3) == 0 || (insn & 3) == 3))
8683 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8684 }
8685
8686 /* Examine all relocs referencing .toc sections in order to remove
8687 unused .toc entries. */
8688
8689 bfd_boolean
8690 ppc64_elf_edit_toc (struct bfd_link_info *info)
8691 {
8692 bfd *ibfd;
8693 struct adjust_toc_info toc_inf;
8694 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8695
8696 htab->do_toc_opt = 1;
8697 toc_inf.global_toc_syms = TRUE;
8698 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8699 {
8700 asection *toc, *sec;
8701 Elf_Internal_Shdr *symtab_hdr;
8702 Elf_Internal_Sym *local_syms;
8703 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8704 unsigned long *skip, *drop;
8705 unsigned char *used;
8706 unsigned char *keep, last, some_unused;
8707
8708 if (!is_ppc64_elf (ibfd))
8709 continue;
8710
8711 toc = bfd_get_section_by_name (ibfd, ".toc");
8712 if (toc == NULL
8713 || toc->size == 0
8714 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8715 || discarded_section (toc))
8716 continue;
8717
8718 toc_relocs = NULL;
8719 local_syms = NULL;
8720 symtab_hdr = &elf_symtab_hdr (ibfd);
8721
8722 /* Look at sections dropped from the final link. */
8723 skip = NULL;
8724 relstart = NULL;
8725 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8726 {
8727 if (sec->reloc_count == 0
8728 || !discarded_section (sec)
8729 || get_opd_info (sec)
8730 || (sec->flags & SEC_ALLOC) == 0
8731 || (sec->flags & SEC_DEBUGGING) != 0)
8732 continue;
8733
8734 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8735 if (relstart == NULL)
8736 goto error_ret;
8737
8738 /* Run through the relocs to see which toc entries might be
8739 unused. */
8740 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8741 {
8742 enum elf_ppc64_reloc_type r_type;
8743 unsigned long r_symndx;
8744 asection *sym_sec;
8745 struct elf_link_hash_entry *h;
8746 Elf_Internal_Sym *sym;
8747 bfd_vma val;
8748
8749 r_type = ELF64_R_TYPE (rel->r_info);
8750 switch (r_type)
8751 {
8752 default:
8753 continue;
8754
8755 case R_PPC64_TOC16:
8756 case R_PPC64_TOC16_LO:
8757 case R_PPC64_TOC16_HI:
8758 case R_PPC64_TOC16_HA:
8759 case R_PPC64_TOC16_DS:
8760 case R_PPC64_TOC16_LO_DS:
8761 break;
8762 }
8763
8764 r_symndx = ELF64_R_SYM (rel->r_info);
8765 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8766 r_symndx, ibfd))
8767 goto error_ret;
8768
8769 if (sym_sec != toc)
8770 continue;
8771
8772 if (h != NULL)
8773 val = h->root.u.def.value;
8774 else
8775 val = sym->st_value;
8776 val += rel->r_addend;
8777
8778 if (val >= toc->size)
8779 continue;
8780
8781 /* Anything in the toc ought to be aligned to 8 bytes.
8782 If not, don't mark as unused. */
8783 if (val & 7)
8784 continue;
8785
8786 if (skip == NULL)
8787 {
8788 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8789 if (skip == NULL)
8790 goto error_ret;
8791 }
8792
8793 skip[val >> 3] = ref_from_discarded;
8794 }
8795
8796 if (elf_section_data (sec)->relocs != relstart)
8797 free (relstart);
8798 }
8799
8800 /* For largetoc loads of address constants, we can convert
8801 . addis rx,2,addr@got@ha
8802 . ld ry,addr@got@l(rx)
8803 to
8804 . addis rx,2,addr@toc@ha
8805 . addi ry,rx,addr@toc@l
8806 when addr is within 2G of the toc pointer. This then means
8807 that the word storing "addr" in the toc is no longer needed. */
8808
8809 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8810 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8811 && toc->reloc_count != 0)
8812 {
8813 /* Read toc relocs. */
8814 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8815 info->keep_memory);
8816 if (toc_relocs == NULL)
8817 goto error_ret;
8818
8819 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8820 {
8821 enum elf_ppc64_reloc_type r_type;
8822 unsigned long r_symndx;
8823 asection *sym_sec;
8824 struct elf_link_hash_entry *h;
8825 Elf_Internal_Sym *sym;
8826 bfd_vma val, addr;
8827
8828 r_type = ELF64_R_TYPE (rel->r_info);
8829 if (r_type != R_PPC64_ADDR64)
8830 continue;
8831
8832 r_symndx = ELF64_R_SYM (rel->r_info);
8833 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8834 r_symndx, ibfd))
8835 goto error_ret;
8836
8837 if (sym_sec == NULL
8838 || discarded_section (sym_sec))
8839 continue;
8840
8841 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8842 continue;
8843
8844 if (h != NULL)
8845 {
8846 if (h->type == STT_GNU_IFUNC)
8847 continue;
8848 val = h->root.u.def.value;
8849 }
8850 else
8851 {
8852 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8853 continue;
8854 val = sym->st_value;
8855 }
8856 val += rel->r_addend;
8857 val += sym_sec->output_section->vma + sym_sec->output_offset;
8858
8859 /* We don't yet know the exact toc pointer value, but we
8860 know it will be somewhere in the toc section. Don't
8861 optimize if the difference from any possible toc
8862 pointer is outside [ff..f80008000, 7fff7fff]. */
8863 addr = toc->output_section->vma + TOC_BASE_OFF;
8864 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8865 continue;
8866
8867 addr = toc->output_section->vma + toc->output_section->rawsize;
8868 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8869 continue;
8870
8871 if (skip == NULL)
8872 {
8873 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8874 if (skip == NULL)
8875 goto error_ret;
8876 }
8877
8878 skip[rel->r_offset >> 3]
8879 |= can_optimize | ((rel - toc_relocs) << 2);
8880 }
8881 }
8882
8883 if (skip == NULL)
8884 continue;
8885
8886 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8887 if (used == NULL)
8888 {
8889 error_ret:
8890 if (local_syms != NULL
8891 && symtab_hdr->contents != (unsigned char *) local_syms)
8892 free (local_syms);
8893 if (sec != NULL
8894 && relstart != NULL
8895 && elf_section_data (sec)->relocs != relstart)
8896 free (relstart);
8897 if (toc_relocs != NULL
8898 && elf_section_data (toc)->relocs != toc_relocs)
8899 free (toc_relocs);
8900 if (skip != NULL)
8901 free (skip);
8902 return FALSE;
8903 }
8904
8905 /* Now check all kept sections that might reference the toc.
8906 Check the toc itself last. */
8907 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8908 : ibfd->sections);
8909 sec != NULL;
8910 sec = (sec == toc ? NULL
8911 : sec->next == NULL ? toc
8912 : sec->next == toc && toc->next ? toc->next
8913 : sec->next))
8914 {
8915 int repeat;
8916
8917 if (sec->reloc_count == 0
8918 || discarded_section (sec)
8919 || get_opd_info (sec)
8920 || (sec->flags & SEC_ALLOC) == 0
8921 || (sec->flags & SEC_DEBUGGING) != 0)
8922 continue;
8923
8924 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8925 info->keep_memory);
8926 if (relstart == NULL)
8927 {
8928 free (used);
8929 goto error_ret;
8930 }
8931
8932 /* Mark toc entries referenced as used. */
8933 do
8934 {
8935 repeat = 0;
8936 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8937 {
8938 enum elf_ppc64_reloc_type r_type;
8939 unsigned long r_symndx;
8940 asection *sym_sec;
8941 struct elf_link_hash_entry *h;
8942 Elf_Internal_Sym *sym;
8943 bfd_vma val;
8944 enum {no_check, check_lo, check_ha} insn_check;
8945
8946 r_type = ELF64_R_TYPE (rel->r_info);
8947 switch (r_type)
8948 {
8949 default:
8950 insn_check = no_check;
8951 break;
8952
8953 case R_PPC64_GOT_TLSLD16_HA:
8954 case R_PPC64_GOT_TLSGD16_HA:
8955 case R_PPC64_GOT_TPREL16_HA:
8956 case R_PPC64_GOT_DTPREL16_HA:
8957 case R_PPC64_GOT16_HA:
8958 case R_PPC64_TOC16_HA:
8959 insn_check = check_ha;
8960 break;
8961
8962 case R_PPC64_GOT_TLSLD16_LO:
8963 case R_PPC64_GOT_TLSGD16_LO:
8964 case R_PPC64_GOT_TPREL16_LO_DS:
8965 case R_PPC64_GOT_DTPREL16_LO_DS:
8966 case R_PPC64_GOT16_LO:
8967 case R_PPC64_GOT16_LO_DS:
8968 case R_PPC64_TOC16_LO:
8969 case R_PPC64_TOC16_LO_DS:
8970 insn_check = check_lo;
8971 break;
8972 }
8973
8974 if (insn_check != no_check)
8975 {
8976 bfd_vma off = rel->r_offset & ~3;
8977 unsigned char buf[4];
8978 unsigned int insn;
8979
8980 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8981 {
8982 free (used);
8983 goto error_ret;
8984 }
8985 insn = bfd_get_32 (ibfd, buf);
8986 if (insn_check == check_lo
8987 ? !ok_lo_toc_insn (insn)
8988 : ((insn & ((0x3f << 26) | 0x1f << 16))
8989 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8990 {
8991 char str[12];
8992
8993 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8994 sprintf (str, "%#08x", insn);
8995 info->callbacks->einfo
8996 (_("%P: %H: toc optimization is not supported for"
8997 " %s instruction.\n"),
8998 ibfd, sec, rel->r_offset & ~3, str);
8999 }
9000 }
9001
9002 switch (r_type)
9003 {
9004 case R_PPC64_TOC16:
9005 case R_PPC64_TOC16_LO:
9006 case R_PPC64_TOC16_HI:
9007 case R_PPC64_TOC16_HA:
9008 case R_PPC64_TOC16_DS:
9009 case R_PPC64_TOC16_LO_DS:
9010 /* In case we're taking addresses of toc entries. */
9011 case R_PPC64_ADDR64:
9012 break;
9013
9014 default:
9015 continue;
9016 }
9017
9018 r_symndx = ELF64_R_SYM (rel->r_info);
9019 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9020 r_symndx, ibfd))
9021 {
9022 free (used);
9023 goto error_ret;
9024 }
9025
9026 if (sym_sec != toc)
9027 continue;
9028
9029 if (h != NULL)
9030 val = h->root.u.def.value;
9031 else
9032 val = sym->st_value;
9033 val += rel->r_addend;
9034
9035 if (val >= toc->size)
9036 continue;
9037
9038 if ((skip[val >> 3] & can_optimize) != 0)
9039 {
9040 bfd_vma off;
9041 unsigned char opc;
9042
9043 switch (r_type)
9044 {
9045 case R_PPC64_TOC16_HA:
9046 break;
9047
9048 case R_PPC64_TOC16_LO_DS:
9049 off = rel->r_offset;
9050 off += (bfd_big_endian (ibfd) ? -2 : 3);
9051 if (!bfd_get_section_contents (ibfd, sec, &opc,
9052 off, 1))
9053 {
9054 free (used);
9055 goto error_ret;
9056 }
9057 if ((opc & (0x3f << 2)) == (58u << 2))
9058 break;
9059 /* Fall thru */
9060
9061 default:
9062 /* Wrong sort of reloc, or not a ld. We may
9063 as well clear ref_from_discarded too. */
9064 skip[val >> 3] = 0;
9065 }
9066 }
9067
9068 if (sec != toc)
9069 used[val >> 3] = 1;
9070 /* For the toc section, we only mark as used if this
9071 entry itself isn't unused. */
9072 else if ((used[rel->r_offset >> 3]
9073 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
9074 && !used[val >> 3])
9075 {
9076 /* Do all the relocs again, to catch reference
9077 chains. */
9078 repeat = 1;
9079 used[val >> 3] = 1;
9080 }
9081 }
9082 }
9083 while (repeat);
9084
9085 if (elf_section_data (sec)->relocs != relstart)
9086 free (relstart);
9087 }
9088
9089 /* Merge the used and skip arrays. Assume that TOC
9090 doublewords not appearing as either used or unused belong
9091 to to an entry more than one doubleword in size. */
9092 for (drop = skip, keep = used, last = 0, some_unused = 0;
9093 drop < skip + (toc->size + 7) / 8;
9094 ++drop, ++keep)
9095 {
9096 if (*keep)
9097 {
9098 *drop &= ~ref_from_discarded;
9099 if ((*drop & can_optimize) != 0)
9100 some_unused = 1;
9101 last = 0;
9102 }
9103 else if ((*drop & ref_from_discarded) != 0)
9104 {
9105 some_unused = 1;
9106 last = ref_from_discarded;
9107 }
9108 else
9109 *drop = last;
9110 }
9111
9112 free (used);
9113
9114 if (some_unused)
9115 {
9116 bfd_byte *contents, *src;
9117 unsigned long off;
9118 Elf_Internal_Sym *sym;
9119 bfd_boolean local_toc_syms = FALSE;
9120
9121 /* Shuffle the toc contents, and at the same time convert the
9122 skip array from booleans into offsets. */
9123 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9124 goto error_ret;
9125
9126 elf_section_data (toc)->this_hdr.contents = contents;
9127
9128 for (src = contents, off = 0, drop = skip;
9129 src < contents + toc->size;
9130 src += 8, ++drop)
9131 {
9132 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9133 off += 8;
9134 else if (off != 0)
9135 {
9136 *drop = off;
9137 memcpy (src - off, src, 8);
9138 }
9139 }
9140 *drop = off;
9141 toc->rawsize = toc->size;
9142 toc->size = src - contents - off;
9143
9144 /* Adjust addends for relocs against the toc section sym,
9145 and optimize any accesses we can. */
9146 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9147 {
9148 if (sec->reloc_count == 0
9149 || discarded_section (sec))
9150 continue;
9151
9152 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9153 info->keep_memory);
9154 if (relstart == NULL)
9155 goto error_ret;
9156
9157 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9158 {
9159 enum elf_ppc64_reloc_type r_type;
9160 unsigned long r_symndx;
9161 asection *sym_sec;
9162 struct elf_link_hash_entry *h;
9163 bfd_vma val;
9164
9165 r_type = ELF64_R_TYPE (rel->r_info);
9166 switch (r_type)
9167 {
9168 default:
9169 continue;
9170
9171 case R_PPC64_TOC16:
9172 case R_PPC64_TOC16_LO:
9173 case R_PPC64_TOC16_HI:
9174 case R_PPC64_TOC16_HA:
9175 case R_PPC64_TOC16_DS:
9176 case R_PPC64_TOC16_LO_DS:
9177 case R_PPC64_ADDR64:
9178 break;
9179 }
9180
9181 r_symndx = ELF64_R_SYM (rel->r_info);
9182 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9183 r_symndx, ibfd))
9184 goto error_ret;
9185
9186 if (sym_sec != toc)
9187 continue;
9188
9189 if (h != NULL)
9190 val = h->root.u.def.value;
9191 else
9192 {
9193 val = sym->st_value;
9194 if (val != 0)
9195 local_toc_syms = TRUE;
9196 }
9197
9198 val += rel->r_addend;
9199
9200 if (val > toc->rawsize)
9201 val = toc->rawsize;
9202 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9203 continue;
9204 else if ((skip[val >> 3] & can_optimize) != 0)
9205 {
9206 Elf_Internal_Rela *tocrel
9207 = toc_relocs + (skip[val >> 3] >> 2);
9208 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9209
9210 switch (r_type)
9211 {
9212 case R_PPC64_TOC16_HA:
9213 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9214 break;
9215
9216 case R_PPC64_TOC16_LO_DS:
9217 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9218 break;
9219
9220 default:
9221 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9222 ppc_howto_init ();
9223 info->callbacks->einfo
9224 (_("%P: %H: %s references "
9225 "optimized away TOC entry\n"),
9226 ibfd, sec, rel->r_offset,
9227 ppc64_elf_howto_table[r_type]->name);
9228 bfd_set_error (bfd_error_bad_value);
9229 goto error_ret;
9230 }
9231 rel->r_addend = tocrel->r_addend;
9232 elf_section_data (sec)->relocs = relstart;
9233 continue;
9234 }
9235
9236 if (h != NULL || sym->st_value != 0)
9237 continue;
9238
9239 rel->r_addend -= skip[val >> 3];
9240 elf_section_data (sec)->relocs = relstart;
9241 }
9242
9243 if (elf_section_data (sec)->relocs != relstart)
9244 free (relstart);
9245 }
9246
9247 /* We shouldn't have local or global symbols defined in the TOC,
9248 but handle them anyway. */
9249 if (local_syms != NULL)
9250 for (sym = local_syms;
9251 sym < local_syms + symtab_hdr->sh_info;
9252 ++sym)
9253 if (sym->st_value != 0
9254 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9255 {
9256 unsigned long i;
9257
9258 if (sym->st_value > toc->rawsize)
9259 i = toc->rawsize >> 3;
9260 else
9261 i = sym->st_value >> 3;
9262
9263 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9264 {
9265 if (local_toc_syms)
9266 (*_bfd_error_handler)
9267 (_("%s defined on removed toc entry"),
9268 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9269 do
9270 ++i;
9271 while ((skip[i] & (ref_from_discarded | can_optimize)));
9272 sym->st_value = (bfd_vma) i << 3;
9273 }
9274
9275 sym->st_value -= skip[i];
9276 symtab_hdr->contents = (unsigned char *) local_syms;
9277 }
9278
9279 /* Adjust any global syms defined in this toc input section. */
9280 if (toc_inf.global_toc_syms)
9281 {
9282 toc_inf.toc = toc;
9283 toc_inf.skip = skip;
9284 toc_inf.global_toc_syms = FALSE;
9285 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9286 &toc_inf);
9287 }
9288
9289 if (toc->reloc_count != 0)
9290 {
9291 Elf_Internal_Shdr *rel_hdr;
9292 Elf_Internal_Rela *wrel;
9293 bfd_size_type sz;
9294
9295 /* Remove unused toc relocs, and adjust those we keep. */
9296 if (toc_relocs == NULL)
9297 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9298 info->keep_memory);
9299 if (toc_relocs == NULL)
9300 goto error_ret;
9301
9302 wrel = toc_relocs;
9303 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9304 if ((skip[rel->r_offset >> 3]
9305 & (ref_from_discarded | can_optimize)) == 0)
9306 {
9307 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9308 wrel->r_info = rel->r_info;
9309 wrel->r_addend = rel->r_addend;
9310 ++wrel;
9311 }
9312 else if (!dec_dynrel_count (rel->r_info, toc, info,
9313 &local_syms, NULL, NULL))
9314 goto error_ret;
9315
9316 elf_section_data (toc)->relocs = toc_relocs;
9317 toc->reloc_count = wrel - toc_relocs;
9318 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9319 sz = rel_hdr->sh_entsize;
9320 rel_hdr->sh_size = toc->reloc_count * sz;
9321 }
9322 }
9323 else if (toc_relocs != NULL
9324 && elf_section_data (toc)->relocs != toc_relocs)
9325 free (toc_relocs);
9326
9327 if (local_syms != NULL
9328 && symtab_hdr->contents != (unsigned char *) local_syms)
9329 {
9330 if (!info->keep_memory)
9331 free (local_syms);
9332 else
9333 symtab_hdr->contents = (unsigned char *) local_syms;
9334 }
9335 free (skip);
9336 }
9337
9338 return TRUE;
9339 }
9340
9341 /* Return true iff input section I references the TOC using
9342 instructions limited to +/-32k offsets. */
9343
9344 bfd_boolean
9345 ppc64_elf_has_small_toc_reloc (asection *i)
9346 {
9347 return (is_ppc64_elf (i->owner)
9348 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9349 }
9350
9351 /* Allocate space for one GOT entry. */
9352
9353 static void
9354 allocate_got (struct elf_link_hash_entry *h,
9355 struct bfd_link_info *info,
9356 struct got_entry *gent)
9357 {
9358 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9359 bfd_boolean dyn;
9360 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9361 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9362 ? 16 : 8);
9363 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9364 ? 2 : 1) * sizeof (Elf64_External_Rela);
9365 asection *got = ppc64_elf_tdata (gent->owner)->got;
9366
9367 gent->got.offset = got->size;
9368 got->size += entsize;
9369
9370 dyn = htab->elf.dynamic_sections_created;
9371 if (h->type == STT_GNU_IFUNC)
9372 {
9373 htab->elf.irelplt->size += rentsize;
9374 htab->got_reli_size += rentsize;
9375 }
9376 else if ((info->shared
9377 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
9378 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9379 || h->root.type != bfd_link_hash_undefweak))
9380 {
9381 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9382 relgot->size += rentsize;
9383 }
9384 }
9385
9386 /* This function merges got entries in the same toc group. */
9387
9388 static void
9389 merge_got_entries (struct got_entry **pent)
9390 {
9391 struct got_entry *ent, *ent2;
9392
9393 for (ent = *pent; ent != NULL; ent = ent->next)
9394 if (!ent->is_indirect)
9395 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9396 if (!ent2->is_indirect
9397 && ent2->addend == ent->addend
9398 && ent2->tls_type == ent->tls_type
9399 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9400 {
9401 ent2->is_indirect = TRUE;
9402 ent2->got.ent = ent;
9403 }
9404 }
9405
9406 /* Allocate space in .plt, .got and associated reloc sections for
9407 dynamic relocs. */
9408
9409 static bfd_boolean
9410 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9411 {
9412 struct bfd_link_info *info;
9413 struct ppc_link_hash_table *htab;
9414 asection *s;
9415 struct ppc_link_hash_entry *eh;
9416 struct elf_dyn_relocs *p;
9417 struct got_entry **pgent, *gent;
9418
9419 if (h->root.type == bfd_link_hash_indirect)
9420 return TRUE;
9421
9422 info = (struct bfd_link_info *) inf;
9423 htab = ppc_hash_table (info);
9424 if (htab == NULL)
9425 return FALSE;
9426
9427 if ((htab->elf.dynamic_sections_created
9428 && h->dynindx != -1
9429 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
9430 || h->type == STT_GNU_IFUNC)
9431 {
9432 struct plt_entry *pent;
9433 bfd_boolean doneone = FALSE;
9434 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9435 if (pent->plt.refcount > 0)
9436 {
9437 if (!htab->elf.dynamic_sections_created
9438 || h->dynindx == -1)
9439 {
9440 s = htab->elf.iplt;
9441 pent->plt.offset = s->size;
9442 s->size += PLT_ENTRY_SIZE (htab);
9443 s = htab->elf.irelplt;
9444 }
9445 else
9446 {
9447 /* If this is the first .plt entry, make room for the special
9448 first entry. */
9449 s = htab->elf.splt;
9450 if (s->size == 0)
9451 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9452
9453 pent->plt.offset = s->size;
9454
9455 /* Make room for this entry. */
9456 s->size += PLT_ENTRY_SIZE (htab);
9457
9458 /* Make room for the .glink code. */
9459 s = htab->glink;
9460 if (s->size == 0)
9461 s->size += GLINK_CALL_STUB_SIZE;
9462 if (htab->opd_abi)
9463 {
9464 /* We need bigger stubs past index 32767. */
9465 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
9466 s->size += 4;
9467 s->size += 2*4;
9468 }
9469 else
9470 s->size += 4;
9471
9472 /* We also need to make an entry in the .rela.plt section. */
9473 s = htab->elf.srelplt;
9474 }
9475 s->size += sizeof (Elf64_External_Rela);
9476 doneone = TRUE;
9477 }
9478 else
9479 pent->plt.offset = (bfd_vma) -1;
9480 if (!doneone)
9481 {
9482 h->plt.plist = NULL;
9483 h->needs_plt = 0;
9484 }
9485 }
9486 else
9487 {
9488 h->plt.plist = NULL;
9489 h->needs_plt = 0;
9490 }
9491
9492 eh = (struct ppc_link_hash_entry *) h;
9493 /* Run through the TLS GD got entries first if we're changing them
9494 to TPREL. */
9495 if ((eh->tls_mask & TLS_TPRELGD) != 0)
9496 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9497 if (gent->got.refcount > 0
9498 && (gent->tls_type & TLS_GD) != 0)
9499 {
9500 /* This was a GD entry that has been converted to TPREL. If
9501 there happens to be a TPREL entry we can use that one. */
9502 struct got_entry *ent;
9503 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9504 if (ent->got.refcount > 0
9505 && (ent->tls_type & TLS_TPREL) != 0
9506 && ent->addend == gent->addend
9507 && ent->owner == gent->owner)
9508 {
9509 gent->got.refcount = 0;
9510 break;
9511 }
9512
9513 /* If not, then we'll be using our own TPREL entry. */
9514 if (gent->got.refcount != 0)
9515 gent->tls_type = TLS_TLS | TLS_TPREL;
9516 }
9517
9518 /* Remove any list entry that won't generate a word in the GOT before
9519 we call merge_got_entries. Otherwise we risk merging to empty
9520 entries. */
9521 pgent = &h->got.glist;
9522 while ((gent = *pgent) != NULL)
9523 if (gent->got.refcount > 0)
9524 {
9525 if ((gent->tls_type & TLS_LD) != 0
9526 && !h->def_dynamic)
9527 {
9528 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9529 *pgent = gent->next;
9530 }
9531 else
9532 pgent = &gent->next;
9533 }
9534 else
9535 *pgent = gent->next;
9536
9537 if (!htab->do_multi_toc)
9538 merge_got_entries (&h->got.glist);
9539
9540 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9541 if (!gent->is_indirect)
9542 {
9543 /* Make sure this symbol is output as a dynamic symbol.
9544 Undefined weak syms won't yet be marked as dynamic,
9545 nor will all TLS symbols. */
9546 if (h->dynindx == -1
9547 && !h->forced_local
9548 && h->type != STT_GNU_IFUNC
9549 && htab->elf.dynamic_sections_created)
9550 {
9551 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9552 return FALSE;
9553 }
9554
9555 if (!is_ppc64_elf (gent->owner))
9556 abort ();
9557
9558 allocate_got (h, info, gent);
9559 }
9560
9561 if (eh->dyn_relocs == NULL
9562 || (!htab->elf.dynamic_sections_created
9563 && h->type != STT_GNU_IFUNC))
9564 return TRUE;
9565
9566 /* In the shared -Bsymbolic case, discard space allocated for
9567 dynamic pc-relative relocs against symbols which turn out to be
9568 defined in regular objects. For the normal shared case, discard
9569 space for relocs that have become local due to symbol visibility
9570 changes. */
9571
9572 if (info->shared)
9573 {
9574 /* Relocs that use pc_count are those that appear on a call insn,
9575 or certain REL relocs (see must_be_dyn_reloc) that can be
9576 generated via assembly. We want calls to protected symbols to
9577 resolve directly to the function rather than going via the plt.
9578 If people want function pointer comparisons to work as expected
9579 then they should avoid writing weird assembly. */
9580 if (SYMBOL_CALLS_LOCAL (info, h))
9581 {
9582 struct elf_dyn_relocs **pp;
9583
9584 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9585 {
9586 p->count -= p->pc_count;
9587 p->pc_count = 0;
9588 if (p->count == 0)
9589 *pp = p->next;
9590 else
9591 pp = &p->next;
9592 }
9593 }
9594
9595 /* Also discard relocs on undefined weak syms with non-default
9596 visibility. */
9597 if (eh->dyn_relocs != NULL
9598 && h->root.type == bfd_link_hash_undefweak)
9599 {
9600 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9601 eh->dyn_relocs = NULL;
9602
9603 /* Make sure this symbol is output as a dynamic symbol.
9604 Undefined weak syms won't yet be marked as dynamic. */
9605 else if (h->dynindx == -1
9606 && !h->forced_local)
9607 {
9608 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9609 return FALSE;
9610 }
9611 }
9612 }
9613 else if (h->type == STT_GNU_IFUNC)
9614 {
9615 if (!h->non_got_ref)
9616 eh->dyn_relocs = NULL;
9617 }
9618 else if (ELIMINATE_COPY_RELOCS)
9619 {
9620 /* For the non-shared case, discard space for relocs against
9621 symbols which turn out to need copy relocs or are not
9622 dynamic. */
9623
9624 if (!h->non_got_ref
9625 && !h->def_regular)
9626 {
9627 /* Make sure this symbol is output as a dynamic symbol.
9628 Undefined weak syms won't yet be marked as dynamic. */
9629 if (h->dynindx == -1
9630 && !h->forced_local)
9631 {
9632 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9633 return FALSE;
9634 }
9635
9636 /* If that succeeded, we know we'll be keeping all the
9637 relocs. */
9638 if (h->dynindx != -1)
9639 goto keep;
9640 }
9641
9642 eh->dyn_relocs = NULL;
9643
9644 keep: ;
9645 }
9646
9647 /* Finally, allocate space. */
9648 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9649 {
9650 asection *sreloc = elf_section_data (p->sec)->sreloc;
9651 if (eh->elf.type == STT_GNU_IFUNC)
9652 sreloc = htab->elf.irelplt;
9653 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9654 }
9655
9656 return TRUE;
9657 }
9658
9659 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9660 to set up space for global entry stubs. These are put in glink,
9661 after the branch table. */
9662
9663 static bfd_boolean
9664 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9665 {
9666 struct bfd_link_info *info;
9667 struct ppc_link_hash_table *htab;
9668 struct plt_entry *pent;
9669 asection *s;
9670
9671 if (h->root.type == bfd_link_hash_indirect)
9672 return TRUE;
9673
9674 if (!h->pointer_equality_needed)
9675 return TRUE;
9676
9677 if (h->def_regular)
9678 return TRUE;
9679
9680 info = inf;
9681 htab = ppc_hash_table (info);
9682 if (htab == NULL)
9683 return FALSE;
9684
9685 s = htab->glink;
9686 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9687 if (pent->plt.offset != (bfd_vma) -1
9688 && pent->addend == 0)
9689 {
9690 /* For ELFv2, if this symbol is not defined in a regular file
9691 and we are not generating a shared library or pie, then we
9692 need to define the symbol in the executable on a call stub.
9693 This is to avoid text relocations. */
9694 s->size = (s->size + 15) & -16;
9695 h->root.u.def.section = s;
9696 h->root.u.def.value = s->size;
9697 s->size += 16;
9698 break;
9699 }
9700 return TRUE;
9701 }
9702
9703 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9704 read-only sections. */
9705
9706 static bfd_boolean
9707 maybe_set_textrel (struct elf_link_hash_entry *h, void *info)
9708 {
9709 if (h->root.type == bfd_link_hash_indirect)
9710 return TRUE;
9711
9712 if (readonly_dynrelocs (h))
9713 {
9714 ((struct bfd_link_info *) info)->flags |= DF_TEXTREL;
9715
9716 /* Not an error, just cut short the traversal. */
9717 return FALSE;
9718 }
9719 return TRUE;
9720 }
9721
9722 /* Set the sizes of the dynamic sections. */
9723
9724 static bfd_boolean
9725 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9726 struct bfd_link_info *info)
9727 {
9728 struct ppc_link_hash_table *htab;
9729 bfd *dynobj;
9730 asection *s;
9731 bfd_boolean relocs;
9732 bfd *ibfd;
9733 struct got_entry *first_tlsld;
9734
9735 htab = ppc_hash_table (info);
9736 if (htab == NULL)
9737 return FALSE;
9738
9739 dynobj = htab->elf.dynobj;
9740 if (dynobj == NULL)
9741 abort ();
9742
9743 if (htab->elf.dynamic_sections_created)
9744 {
9745 /* Set the contents of the .interp section to the interpreter. */
9746 if (info->executable)
9747 {
9748 s = bfd_get_linker_section (dynobj, ".interp");
9749 if (s == NULL)
9750 abort ();
9751 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9752 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9753 }
9754 }
9755
9756 /* Set up .got offsets for local syms, and space for local dynamic
9757 relocs. */
9758 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9759 {
9760 struct got_entry **lgot_ents;
9761 struct got_entry **end_lgot_ents;
9762 struct plt_entry **local_plt;
9763 struct plt_entry **end_local_plt;
9764 unsigned char *lgot_masks;
9765 bfd_size_type locsymcount;
9766 Elf_Internal_Shdr *symtab_hdr;
9767
9768 if (!is_ppc64_elf (ibfd))
9769 continue;
9770
9771 for (s = ibfd->sections; s != NULL; s = s->next)
9772 {
9773 struct ppc_dyn_relocs *p;
9774
9775 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9776 {
9777 if (!bfd_is_abs_section (p->sec)
9778 && bfd_is_abs_section (p->sec->output_section))
9779 {
9780 /* Input section has been discarded, either because
9781 it is a copy of a linkonce section or due to
9782 linker script /DISCARD/, so we'll be discarding
9783 the relocs too. */
9784 }
9785 else if (p->count != 0)
9786 {
9787 asection *srel = elf_section_data (p->sec)->sreloc;
9788 if (p->ifunc)
9789 srel = htab->elf.irelplt;
9790 srel->size += p->count * sizeof (Elf64_External_Rela);
9791 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9792 info->flags |= DF_TEXTREL;
9793 }
9794 }
9795 }
9796
9797 lgot_ents = elf_local_got_ents (ibfd);
9798 if (!lgot_ents)
9799 continue;
9800
9801 symtab_hdr = &elf_symtab_hdr (ibfd);
9802 locsymcount = symtab_hdr->sh_info;
9803 end_lgot_ents = lgot_ents + locsymcount;
9804 local_plt = (struct plt_entry **) end_lgot_ents;
9805 end_local_plt = local_plt + locsymcount;
9806 lgot_masks = (unsigned char *) end_local_plt;
9807 s = ppc64_elf_tdata (ibfd)->got;
9808 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9809 {
9810 struct got_entry **pent, *ent;
9811
9812 pent = lgot_ents;
9813 while ((ent = *pent) != NULL)
9814 if (ent->got.refcount > 0)
9815 {
9816 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9817 {
9818 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9819 *pent = ent->next;
9820 }
9821 else
9822 {
9823 unsigned int ent_size = 8;
9824 unsigned int rel_size = sizeof (Elf64_External_Rela);
9825
9826 ent->got.offset = s->size;
9827 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9828 {
9829 ent_size *= 2;
9830 rel_size *= 2;
9831 }
9832 s->size += ent_size;
9833 if ((*lgot_masks & PLT_IFUNC) != 0)
9834 {
9835 htab->elf.irelplt->size += rel_size;
9836 htab->got_reli_size += rel_size;
9837 }
9838 else if (info->shared)
9839 {
9840 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9841 srel->size += rel_size;
9842 }
9843 pent = &ent->next;
9844 }
9845 }
9846 else
9847 *pent = ent->next;
9848 }
9849
9850 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9851 for (; local_plt < end_local_plt; ++local_plt)
9852 {
9853 struct plt_entry *ent;
9854
9855 for (ent = *local_plt; ent != NULL; ent = ent->next)
9856 if (ent->plt.refcount > 0)
9857 {
9858 s = htab->elf.iplt;
9859 ent->plt.offset = s->size;
9860 s->size += PLT_ENTRY_SIZE (htab);
9861
9862 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9863 }
9864 else
9865 ent->plt.offset = (bfd_vma) -1;
9866 }
9867 }
9868
9869 /* Allocate global sym .plt and .got entries, and space for global
9870 sym dynamic relocs. */
9871 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9872 /* Stash the end of glink branch table. */
9873 if (htab->glink != NULL)
9874 htab->glink->rawsize = htab->glink->size;
9875
9876 if (!htab->opd_abi && !info->shared)
9877 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9878
9879 first_tlsld = NULL;
9880 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9881 {
9882 struct got_entry *ent;
9883
9884 if (!is_ppc64_elf (ibfd))
9885 continue;
9886
9887 ent = ppc64_tlsld_got (ibfd);
9888 if (ent->got.refcount > 0)
9889 {
9890 if (!htab->do_multi_toc && first_tlsld != NULL)
9891 {
9892 ent->is_indirect = TRUE;
9893 ent->got.ent = first_tlsld;
9894 }
9895 else
9896 {
9897 if (first_tlsld == NULL)
9898 first_tlsld = ent;
9899 s = ppc64_elf_tdata (ibfd)->got;
9900 ent->got.offset = s->size;
9901 ent->owner = ibfd;
9902 s->size += 16;
9903 if (info->shared)
9904 {
9905 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9906 srel->size += sizeof (Elf64_External_Rela);
9907 }
9908 }
9909 }
9910 else
9911 ent->got.offset = (bfd_vma) -1;
9912 }
9913
9914 /* We now have determined the sizes of the various dynamic sections.
9915 Allocate memory for them. */
9916 relocs = FALSE;
9917 for (s = dynobj->sections; s != NULL; s = s->next)
9918 {
9919 if ((s->flags & SEC_LINKER_CREATED) == 0)
9920 continue;
9921
9922 if (s == htab->brlt || s == htab->relbrlt)
9923 /* These haven't been allocated yet; don't strip. */
9924 continue;
9925 else if (s == htab->elf.sgot
9926 || s == htab->elf.splt
9927 || s == htab->elf.iplt
9928 || s == htab->glink
9929 || s == htab->dynbss)
9930 {
9931 /* Strip this section if we don't need it; see the
9932 comment below. */
9933 }
9934 else if (s == htab->glink_eh_frame)
9935 {
9936 if (!bfd_is_abs_section (s->output_section))
9937 /* Not sized yet. */
9938 continue;
9939 }
9940 else if (CONST_STRNEQ (s->name, ".rela"))
9941 {
9942 if (s->size != 0)
9943 {
9944 if (s != htab->elf.srelplt)
9945 relocs = TRUE;
9946
9947 /* We use the reloc_count field as a counter if we need
9948 to copy relocs into the output file. */
9949 s->reloc_count = 0;
9950 }
9951 }
9952 else
9953 {
9954 /* It's not one of our sections, so don't allocate space. */
9955 continue;
9956 }
9957
9958 if (s->size == 0)
9959 {
9960 /* If we don't need this section, strip it from the
9961 output file. This is mostly to handle .rela.bss and
9962 .rela.plt. We must create both sections in
9963 create_dynamic_sections, because they must be created
9964 before the linker maps input sections to output
9965 sections. The linker does that before
9966 adjust_dynamic_symbol is called, and it is that
9967 function which decides whether anything needs to go
9968 into these sections. */
9969 s->flags |= SEC_EXCLUDE;
9970 continue;
9971 }
9972
9973 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9974 continue;
9975
9976 /* Allocate memory for the section contents. We use bfd_zalloc
9977 here in case unused entries are not reclaimed before the
9978 section's contents are written out. This should not happen,
9979 but this way if it does we get a R_PPC64_NONE reloc in .rela
9980 sections instead of garbage.
9981 We also rely on the section contents being zero when writing
9982 the GOT. */
9983 s->contents = bfd_zalloc (dynobj, s->size);
9984 if (s->contents == NULL)
9985 return FALSE;
9986 }
9987
9988 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9989 {
9990 if (!is_ppc64_elf (ibfd))
9991 continue;
9992
9993 s = ppc64_elf_tdata (ibfd)->got;
9994 if (s != NULL && s != htab->elf.sgot)
9995 {
9996 if (s->size == 0)
9997 s->flags |= SEC_EXCLUDE;
9998 else
9999 {
10000 s->contents = bfd_zalloc (ibfd, s->size);
10001 if (s->contents == NULL)
10002 return FALSE;
10003 }
10004 }
10005 s = ppc64_elf_tdata (ibfd)->relgot;
10006 if (s != NULL)
10007 {
10008 if (s->size == 0)
10009 s->flags |= SEC_EXCLUDE;
10010 else
10011 {
10012 s->contents = bfd_zalloc (ibfd, s->size);
10013 if (s->contents == NULL)
10014 return FALSE;
10015 relocs = TRUE;
10016 s->reloc_count = 0;
10017 }
10018 }
10019 }
10020
10021 if (htab->elf.dynamic_sections_created)
10022 {
10023 bfd_boolean tls_opt;
10024
10025 /* Add some entries to the .dynamic section. We fill in the
10026 values later, in ppc64_elf_finish_dynamic_sections, but we
10027 must add the entries now so that we get the correct size for
10028 the .dynamic section. The DT_DEBUG entry is filled in by the
10029 dynamic linker and used by the debugger. */
10030 #define add_dynamic_entry(TAG, VAL) \
10031 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10032
10033 if (info->executable)
10034 {
10035 if (!add_dynamic_entry (DT_DEBUG, 0))
10036 return FALSE;
10037 }
10038
10039 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
10040 {
10041 if (!add_dynamic_entry (DT_PLTGOT, 0)
10042 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10043 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
10044 || !add_dynamic_entry (DT_JMPREL, 0)
10045 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10046 return FALSE;
10047 }
10048
10049 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10050 {
10051 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10052 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10053 return FALSE;
10054 }
10055
10056 tls_opt = (!htab->params->no_tls_get_addr_opt
10057 && htab->tls_get_addr_fd != NULL
10058 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
10059 if (tls_opt || !htab->opd_abi)
10060 {
10061 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10062 return FALSE;
10063 }
10064
10065 if (relocs)
10066 {
10067 if (!add_dynamic_entry (DT_RELA, 0)
10068 || !add_dynamic_entry (DT_RELASZ, 0)
10069 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10070 return FALSE;
10071
10072 /* If any dynamic relocs apply to a read-only section,
10073 then we need a DT_TEXTREL entry. */
10074 if ((info->flags & DF_TEXTREL) == 0)
10075 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
10076
10077 if ((info->flags & DF_TEXTREL) != 0)
10078 {
10079 if (!add_dynamic_entry (DT_TEXTREL, 0))
10080 return FALSE;
10081 }
10082 }
10083 }
10084 #undef add_dynamic_entry
10085
10086 return TRUE;
10087 }
10088
10089 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10090
10091 static bfd_boolean
10092 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10093 {
10094 if (h->plt.plist != NULL
10095 && !h->def_regular
10096 && !h->pointer_equality_needed)
10097 return FALSE;
10098
10099 return _bfd_elf_hash_symbol (h);
10100 }
10101
10102 /* Determine the type of stub needed, if any, for a call. */
10103
10104 static inline enum ppc_stub_type
10105 ppc_type_of_stub (asection *input_sec,
10106 const Elf_Internal_Rela *rel,
10107 struct ppc_link_hash_entry **hash,
10108 struct plt_entry **plt_ent,
10109 bfd_vma destination,
10110 unsigned long local_off)
10111 {
10112 struct ppc_link_hash_entry *h = *hash;
10113 bfd_vma location;
10114 bfd_vma branch_offset;
10115 bfd_vma max_branch_offset;
10116 enum elf_ppc64_reloc_type r_type;
10117
10118 if (h != NULL)
10119 {
10120 struct plt_entry *ent;
10121 struct ppc_link_hash_entry *fdh = h;
10122 if (h->oh != NULL
10123 && h->oh->is_func_descriptor)
10124 {
10125 fdh = ppc_follow_link (h->oh);
10126 *hash = fdh;
10127 }
10128
10129 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10130 if (ent->addend == rel->r_addend
10131 && ent->plt.offset != (bfd_vma) -1)
10132 {
10133 *plt_ent = ent;
10134 return ppc_stub_plt_call;
10135 }
10136
10137 /* Here, we know we don't have a plt entry. If we don't have a
10138 either a defined function descriptor or a defined entry symbol
10139 in a regular object file, then it is pointless trying to make
10140 any other type of stub. */
10141 if (!is_static_defined (&fdh->elf)
10142 && !is_static_defined (&h->elf))
10143 return ppc_stub_none;
10144 }
10145 else if (elf_local_got_ents (input_sec->owner) != NULL)
10146 {
10147 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10148 struct plt_entry **local_plt = (struct plt_entry **)
10149 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10150 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10151
10152 if (local_plt[r_symndx] != NULL)
10153 {
10154 struct plt_entry *ent;
10155
10156 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10157 if (ent->addend == rel->r_addend
10158 && ent->plt.offset != (bfd_vma) -1)
10159 {
10160 *plt_ent = ent;
10161 return ppc_stub_plt_call;
10162 }
10163 }
10164 }
10165
10166 /* Determine where the call point is. */
10167 location = (input_sec->output_offset
10168 + input_sec->output_section->vma
10169 + rel->r_offset);
10170
10171 branch_offset = destination - location;
10172 r_type = ELF64_R_TYPE (rel->r_info);
10173
10174 /* Determine if a long branch stub is needed. */
10175 max_branch_offset = 1 << 25;
10176 if (r_type != R_PPC64_REL24)
10177 max_branch_offset = 1 << 15;
10178
10179 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10180 /* We need a stub. Figure out whether a long_branch or plt_branch
10181 is needed later. */
10182 return ppc_stub_long_branch;
10183
10184 return ppc_stub_none;
10185 }
10186
10187 /* With power7 weakly ordered memory model, it is possible for ld.so
10188 to update a plt entry in one thread and have another thread see a
10189 stale zero toc entry. To avoid this we need some sort of acquire
10190 barrier in the call stub. One solution is to make the load of the
10191 toc word seem to appear to depend on the load of the function entry
10192 word. Another solution is to test for r2 being zero, and branch to
10193 the appropriate glink entry if so.
10194
10195 . fake dep barrier compare
10196 . ld 12,xxx(2) ld 12,xxx(2)
10197 . mtctr 12 mtctr 12
10198 . xor 11,12,12 ld 2,xxx+8(2)
10199 . add 2,2,11 cmpldi 2,0
10200 . ld 2,xxx+8(2) bnectr+
10201 . bctr b <glink_entry>
10202
10203 The solution involving the compare turns out to be faster, so
10204 that's what we use unless the branch won't reach. */
10205
10206 #define ALWAYS_USE_FAKE_DEP 0
10207 #define ALWAYS_EMIT_R2SAVE 0
10208
10209 #define PPC_LO(v) ((v) & 0xffff)
10210 #define PPC_HI(v) (((v) >> 16) & 0xffff)
10211 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
10212
10213 static inline unsigned int
10214 plt_stub_size (struct ppc_link_hash_table *htab,
10215 struct ppc_stub_hash_entry *stub_entry,
10216 bfd_vma off)
10217 {
10218 unsigned size = 12;
10219
10220 if (ALWAYS_EMIT_R2SAVE
10221 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10222 size += 4;
10223 if (PPC_HA (off) != 0)
10224 size += 4;
10225 if (htab->opd_abi)
10226 {
10227 size += 4;
10228 if (htab->params->plt_static_chain)
10229 size += 4;
10230 if (htab->params->plt_thread_safe
10231 && htab->elf.dynamic_sections_created
10232 && stub_entry->h != NULL
10233 && stub_entry->h->elf.dynindx != -1)
10234 size += 8;
10235 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10236 size += 4;
10237 }
10238 if (stub_entry->h != NULL
10239 && (stub_entry->h == htab->tls_get_addr_fd
10240 || stub_entry->h == htab->tls_get_addr)
10241 && !htab->params->no_tls_get_addr_opt)
10242 size += 13 * 4;
10243 return size;
10244 }
10245
10246 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
10247 then return the padding needed to do so. */
10248 static inline unsigned int
10249 plt_stub_pad (struct ppc_link_hash_table *htab,
10250 struct ppc_stub_hash_entry *stub_entry,
10251 bfd_vma plt_off)
10252 {
10253 int stub_align = 1 << htab->params->plt_stub_align;
10254 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
10255 bfd_vma stub_off = stub_entry->stub_sec->size;
10256
10257 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10258 > ((stub_size - 1) & -stub_align))
10259 return stub_align - (stub_off & (stub_align - 1));
10260 return 0;
10261 }
10262
10263 /* Build a .plt call stub. */
10264
10265 static inline bfd_byte *
10266 build_plt_stub (struct ppc_link_hash_table *htab,
10267 struct ppc_stub_hash_entry *stub_entry,
10268 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10269 {
10270 bfd *obfd = htab->params->stub_bfd;
10271 bfd_boolean plt_load_toc = htab->opd_abi;
10272 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10273 bfd_boolean plt_thread_safe = (htab->params->plt_thread_safe
10274 && htab->elf.dynamic_sections_created
10275 && stub_entry->h != NULL
10276 && stub_entry->h->elf.dynindx != -1);
10277 bfd_boolean use_fake_dep = plt_thread_safe;
10278 bfd_vma cmp_branch_off = 0;
10279
10280 if (!ALWAYS_USE_FAKE_DEP
10281 && plt_load_toc
10282 && plt_thread_safe
10283 && !((stub_entry->h == htab->tls_get_addr_fd
10284 || stub_entry->h == htab->tls_get_addr)
10285 && !htab->params->no_tls_get_addr_opt))
10286 {
10287 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10288 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10289 / PLT_ENTRY_SIZE (htab));
10290 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
10291 bfd_vma to, from;
10292
10293 if (pltindex > 32768)
10294 glinkoff += (pltindex - 32768) * 4;
10295 to = (glinkoff
10296 + htab->glink->output_offset
10297 + htab->glink->output_section->vma);
10298 from = (p - stub_entry->stub_sec->contents
10299 + 4 * (ALWAYS_EMIT_R2SAVE
10300 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10301 + 4 * (PPC_HA (offset) != 0)
10302 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10303 != PPC_HA (offset))
10304 + 4 * (plt_static_chain != 0)
10305 + 20
10306 + stub_entry->stub_sec->output_offset
10307 + stub_entry->stub_sec->output_section->vma);
10308 cmp_branch_off = to - from;
10309 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10310 }
10311
10312 if (PPC_HA (offset) != 0)
10313 {
10314 if (r != NULL)
10315 {
10316 if (ALWAYS_EMIT_R2SAVE
10317 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10318 r[0].r_offset += 4;
10319 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10320 r[1].r_offset = r[0].r_offset + 4;
10321 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10322 r[1].r_addend = r[0].r_addend;
10323 if (plt_load_toc)
10324 {
10325 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10326 {
10327 r[2].r_offset = r[1].r_offset + 4;
10328 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10329 r[2].r_addend = r[0].r_addend;
10330 }
10331 else
10332 {
10333 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10334 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10335 r[2].r_addend = r[0].r_addend + 8;
10336 if (plt_static_chain)
10337 {
10338 r[3].r_offset = r[2].r_offset + 4;
10339 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10340 r[3].r_addend = r[0].r_addend + 16;
10341 }
10342 }
10343 }
10344 }
10345 if (ALWAYS_EMIT_R2SAVE
10346 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10347 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10348 if (plt_load_toc)
10349 {
10350 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10351 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10352 }
10353 else
10354 {
10355 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
10356 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
10357 }
10358 if (plt_load_toc
10359 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10360 {
10361 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10362 offset = 0;
10363 }
10364 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10365 if (plt_load_toc)
10366 {
10367 if (use_fake_dep)
10368 {
10369 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10370 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10371 }
10372 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10373 if (plt_static_chain)
10374 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10375 }
10376 }
10377 else
10378 {
10379 if (r != NULL)
10380 {
10381 if (ALWAYS_EMIT_R2SAVE
10382 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10383 r[0].r_offset += 4;
10384 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10385 if (plt_load_toc)
10386 {
10387 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10388 {
10389 r[1].r_offset = r[0].r_offset + 4;
10390 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10391 r[1].r_addend = r[0].r_addend;
10392 }
10393 else
10394 {
10395 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10396 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10397 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10398 if (plt_static_chain)
10399 {
10400 r[2].r_offset = r[1].r_offset + 4;
10401 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10402 r[2].r_addend = r[0].r_addend + 8;
10403 }
10404 }
10405 }
10406 }
10407 if (ALWAYS_EMIT_R2SAVE
10408 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10409 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10410 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10411 if (plt_load_toc
10412 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10413 {
10414 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10415 offset = 0;
10416 }
10417 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10418 if (plt_load_toc)
10419 {
10420 if (use_fake_dep)
10421 {
10422 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10423 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10424 }
10425 if (plt_static_chain)
10426 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10427 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10428 }
10429 }
10430 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10431 {
10432 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10433 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10434 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10435 }
10436 else
10437 bfd_put_32 (obfd, BCTR, p), p += 4;
10438 return p;
10439 }
10440
10441 /* Build a special .plt call stub for __tls_get_addr. */
10442
10443 #define LD_R11_0R3 0xe9630000
10444 #define LD_R12_0R3 0xe9830000
10445 #define MR_R0_R3 0x7c601b78
10446 #define CMPDI_R11_0 0x2c2b0000
10447 #define ADD_R3_R12_R13 0x7c6c6a14
10448 #define BEQLR 0x4d820020
10449 #define MR_R3_R0 0x7c030378
10450 #define STD_R11_0R1 0xf9610000
10451 #define BCTRL 0x4e800421
10452 #define LD_R11_0R1 0xe9610000
10453 #define MTLR_R11 0x7d6803a6
10454
10455 static inline bfd_byte *
10456 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10457 struct ppc_stub_hash_entry *stub_entry,
10458 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10459 {
10460 bfd *obfd = htab->params->stub_bfd;
10461
10462 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10463 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10464 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10465 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10466 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10467 bfd_put_32 (obfd, BEQLR, p), p += 4;
10468 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10469 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10470 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10471
10472 if (r != NULL)
10473 r[0].r_offset += 9 * 4;
10474 p = build_plt_stub (htab, stub_entry, p, offset, r);
10475 bfd_put_32 (obfd, BCTRL, p - 4);
10476
10477 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10478 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10479 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10480 bfd_put_32 (obfd, BLR, p), p += 4;
10481
10482 return p;
10483 }
10484
10485 static Elf_Internal_Rela *
10486 get_relocs (asection *sec, int count)
10487 {
10488 Elf_Internal_Rela *relocs;
10489 struct bfd_elf_section_data *elfsec_data;
10490
10491 elfsec_data = elf_section_data (sec);
10492 relocs = elfsec_data->relocs;
10493 if (relocs == NULL)
10494 {
10495 bfd_size_type relsize;
10496 relsize = sec->reloc_count * sizeof (*relocs);
10497 relocs = bfd_alloc (sec->owner, relsize);
10498 if (relocs == NULL)
10499 return NULL;
10500 elfsec_data->relocs = relocs;
10501 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10502 sizeof (Elf_Internal_Shdr));
10503 if (elfsec_data->rela.hdr == NULL)
10504 return NULL;
10505 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10506 * sizeof (Elf64_External_Rela));
10507 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10508 sec->reloc_count = 0;
10509 }
10510 relocs += sec->reloc_count;
10511 sec->reloc_count += count;
10512 return relocs;
10513 }
10514
10515 static bfd_vma
10516 get_r2off (struct bfd_link_info *info,
10517 struct ppc_stub_hash_entry *stub_entry)
10518 {
10519 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10520 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
10521
10522 if (r2off == 0)
10523 {
10524 /* Support linking -R objects. Get the toc pointer from the
10525 opd entry. */
10526 char buf[8];
10527 if (!htab->opd_abi)
10528 return r2off;
10529 asection *opd = stub_entry->h->elf.root.u.def.section;
10530 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
10531
10532 if (strcmp (opd->name, ".opd") != 0
10533 || opd->reloc_count != 0)
10534 {
10535 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
10536 stub_entry->h->elf.root.root.string);
10537 bfd_set_error (bfd_error_bad_value);
10538 return 0;
10539 }
10540 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
10541 return 0;
10542 r2off = bfd_get_64 (opd->owner, buf);
10543 r2off -= elf_gp (info->output_bfd);
10544 }
10545 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
10546 return r2off;
10547 }
10548
10549 static bfd_boolean
10550 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10551 {
10552 struct ppc_stub_hash_entry *stub_entry;
10553 struct ppc_branch_hash_entry *br_entry;
10554 struct bfd_link_info *info;
10555 struct ppc_link_hash_table *htab;
10556 bfd_byte *loc;
10557 bfd_byte *p;
10558 bfd_vma dest, off;
10559 int size;
10560 Elf_Internal_Rela *r;
10561 asection *plt;
10562
10563 /* Massage our args to the form they really have. */
10564 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10565 info = in_arg;
10566
10567 htab = ppc_hash_table (info);
10568 if (htab == NULL)
10569 return FALSE;
10570
10571 /* Make a note of the offset within the stubs for this entry. */
10572 stub_entry->stub_offset = stub_entry->stub_sec->size;
10573 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
10574
10575 htab->stub_count[stub_entry->stub_type - 1] += 1;
10576 switch (stub_entry->stub_type)
10577 {
10578 case ppc_stub_long_branch:
10579 case ppc_stub_long_branch_r2off:
10580 /* Branches are relative. This is where we are going to. */
10581 dest = (stub_entry->target_value
10582 + stub_entry->target_section->output_offset
10583 + stub_entry->target_section->output_section->vma);
10584 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10585 off = dest;
10586
10587 /* And this is where we are coming from. */
10588 off -= (stub_entry->stub_offset
10589 + stub_entry->stub_sec->output_offset
10590 + stub_entry->stub_sec->output_section->vma);
10591
10592 size = 4;
10593 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10594 {
10595 bfd_vma r2off = get_r2off (info, stub_entry);
10596
10597 if (r2off == 0)
10598 {
10599 htab->stub_error = TRUE;
10600 return FALSE;
10601 }
10602 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10603 loc += 4;
10604 size = 12;
10605 if (PPC_HA (r2off) != 0)
10606 {
10607 size = 16;
10608 bfd_put_32 (htab->params->stub_bfd,
10609 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10610 loc += 4;
10611 }
10612 bfd_put_32 (htab->params->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10613 loc += 4;
10614 off -= size - 4;
10615 }
10616 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
10617
10618 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10619 {
10620 info->callbacks->einfo
10621 (_("%P: long branch stub `%s' offset overflow\n"),
10622 stub_entry->root.string);
10623 htab->stub_error = TRUE;
10624 return FALSE;
10625 }
10626
10627 if (info->emitrelocations)
10628 {
10629 r = get_relocs (stub_entry->stub_sec, 1);
10630 if (r == NULL)
10631 return FALSE;
10632 r->r_offset = loc - stub_entry->stub_sec->contents;
10633 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
10634 r->r_addend = dest;
10635 if (stub_entry->h != NULL)
10636 {
10637 struct elf_link_hash_entry **hashes;
10638 unsigned long symndx;
10639 struct ppc_link_hash_entry *h;
10640
10641 hashes = elf_sym_hashes (htab->params->stub_bfd);
10642 if (hashes == NULL)
10643 {
10644 bfd_size_type hsize;
10645
10646 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10647 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
10648 if (hashes == NULL)
10649 return FALSE;
10650 elf_sym_hashes (htab->params->stub_bfd) = hashes;
10651 htab->stub_globals = 1;
10652 }
10653 symndx = htab->stub_globals++;
10654 h = stub_entry->h;
10655 hashes[symndx] = &h->elf;
10656 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
10657 if (h->oh != NULL && h->oh->is_func)
10658 h = ppc_follow_link (h->oh);
10659 if (h->elf.root.u.def.section != stub_entry->target_section)
10660 /* H is an opd symbol. The addend must be zero. */
10661 r->r_addend = 0;
10662 else
10663 {
10664 off = (h->elf.root.u.def.value
10665 + h->elf.root.u.def.section->output_offset
10666 + h->elf.root.u.def.section->output_section->vma);
10667 r->r_addend -= off;
10668 }
10669 }
10670 }
10671 break;
10672
10673 case ppc_stub_plt_branch:
10674 case ppc_stub_plt_branch_r2off:
10675 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10676 stub_entry->root.string + 9,
10677 FALSE, FALSE);
10678 if (br_entry == NULL)
10679 {
10680 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10681 stub_entry->root.string);
10682 htab->stub_error = TRUE;
10683 return FALSE;
10684 }
10685
10686 dest = (stub_entry->target_value
10687 + stub_entry->target_section->output_offset
10688 + stub_entry->target_section->output_section->vma);
10689 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10690 dest += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
10691
10692 bfd_put_64 (htab->brlt->owner, dest,
10693 htab->brlt->contents + br_entry->offset);
10694
10695 if (br_entry->iter == htab->stub_iteration)
10696 {
10697 br_entry->iter = 0;
10698
10699 if (htab->relbrlt != NULL)
10700 {
10701 /* Create a reloc for the branch lookup table entry. */
10702 Elf_Internal_Rela rela;
10703 bfd_byte *rl;
10704
10705 rela.r_offset = (br_entry->offset
10706 + htab->brlt->output_offset
10707 + htab->brlt->output_section->vma);
10708 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10709 rela.r_addend = dest;
10710
10711 rl = htab->relbrlt->contents;
10712 rl += (htab->relbrlt->reloc_count++
10713 * sizeof (Elf64_External_Rela));
10714 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10715 }
10716 else if (info->emitrelocations)
10717 {
10718 r = get_relocs (htab->brlt, 1);
10719 if (r == NULL)
10720 return FALSE;
10721 /* brlt, being SEC_LINKER_CREATED does not go through the
10722 normal reloc processing. Symbols and offsets are not
10723 translated from input file to output file form, so
10724 set up the offset per the output file. */
10725 r->r_offset = (br_entry->offset
10726 + htab->brlt->output_offset
10727 + htab->brlt->output_section->vma);
10728 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10729 r->r_addend = dest;
10730 }
10731 }
10732
10733 dest = (br_entry->offset
10734 + htab->brlt->output_offset
10735 + htab->brlt->output_section->vma);
10736
10737 off = (dest
10738 - elf_gp (htab->brlt->output_section->owner)
10739 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10740
10741 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10742 {
10743 info->callbacks->einfo
10744 (_("%P: linkage table error against `%T'\n"),
10745 stub_entry->root.string);
10746 bfd_set_error (bfd_error_bad_value);
10747 htab->stub_error = TRUE;
10748 return FALSE;
10749 }
10750
10751 if (info->emitrelocations)
10752 {
10753 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10754 if (r == NULL)
10755 return FALSE;
10756 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10757 if (bfd_big_endian (info->output_bfd))
10758 r[0].r_offset += 2;
10759 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10760 r[0].r_offset += 4;
10761 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10762 r[0].r_addend = dest;
10763 if (PPC_HA (off) != 0)
10764 {
10765 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10766 r[1].r_offset = r[0].r_offset + 4;
10767 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10768 r[1].r_addend = r[0].r_addend;
10769 }
10770 }
10771
10772 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10773 {
10774 if (PPC_HA (off) != 0)
10775 {
10776 size = 16;
10777 bfd_put_32 (htab->params->stub_bfd,
10778 ADDIS_R12_R2 | PPC_HA (off), loc);
10779 loc += 4;
10780 bfd_put_32 (htab->params->stub_bfd,
10781 LD_R12_0R12 | PPC_LO (off), loc);
10782 }
10783 else
10784 {
10785 size = 12;
10786 bfd_put_32 (htab->params->stub_bfd,
10787 LD_R12_0R2 | PPC_LO (off), loc);
10788 }
10789 }
10790 else
10791 {
10792 bfd_vma r2off = get_r2off (info, stub_entry);
10793
10794 if (r2off == 0 && htab->opd_abi)
10795 {
10796 htab->stub_error = TRUE;
10797 return FALSE;
10798 }
10799
10800 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), loc);
10801 loc += 4;
10802 size = 16;
10803 if (PPC_HA (off) != 0)
10804 {
10805 size += 4;
10806 bfd_put_32 (htab->params->stub_bfd,
10807 ADDIS_R12_R2 | PPC_HA (off), loc);
10808 loc += 4;
10809 bfd_put_32 (htab->params->stub_bfd,
10810 LD_R12_0R12 | PPC_LO (off), loc);
10811 }
10812 else
10813 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), loc);
10814
10815 if (PPC_HA (r2off) != 0)
10816 {
10817 size += 4;
10818 loc += 4;
10819 bfd_put_32 (htab->params->stub_bfd,
10820 ADDIS_R2_R2 | PPC_HA (r2off), loc);
10821 }
10822 if (PPC_LO (r2off) != 0)
10823 {
10824 size += 4;
10825 loc += 4;
10826 bfd_put_32 (htab->params->stub_bfd,
10827 ADDI_R2_R2 | PPC_LO (r2off), loc);
10828 }
10829 }
10830 loc += 4;
10831 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, loc);
10832 loc += 4;
10833 bfd_put_32 (htab->params->stub_bfd, BCTR, loc);
10834 break;
10835
10836 case ppc_stub_plt_call:
10837 case ppc_stub_plt_call_r2save:
10838 if (stub_entry->h != NULL
10839 && stub_entry->h->is_func_descriptor
10840 && stub_entry->h->oh != NULL)
10841 {
10842 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10843
10844 /* If the old-ABI "dot-symbol" is undefined make it weak so
10845 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10846 FIXME: We used to define the symbol on one of the call
10847 stubs instead, which is why we test symbol section id
10848 against htab->top_id in various places. Likely all
10849 these checks could now disappear. */
10850 if (fh->elf.root.type == bfd_link_hash_undefined)
10851 fh->elf.root.type = bfd_link_hash_undefweak;
10852 /* Stop undo_symbol_twiddle changing it back to undefined. */
10853 fh->was_undefined = 0;
10854 }
10855
10856 /* Now build the stub. */
10857 dest = stub_entry->plt_ent->plt.offset & ~1;
10858 if (dest >= (bfd_vma) -2)
10859 abort ();
10860
10861 plt = htab->elf.splt;
10862 if (!htab->elf.dynamic_sections_created
10863 || stub_entry->h == NULL
10864 || stub_entry->h->elf.dynindx == -1)
10865 plt = htab->elf.iplt;
10866
10867 dest += plt->output_offset + plt->output_section->vma;
10868
10869 if (stub_entry->h == NULL
10870 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10871 {
10872 Elf_Internal_Rela rela;
10873 bfd_byte *rl;
10874
10875 rela.r_offset = dest;
10876 if (htab->opd_abi)
10877 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10878 else
10879 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
10880 rela.r_addend = (stub_entry->target_value
10881 + stub_entry->target_section->output_offset
10882 + stub_entry->target_section->output_section->vma);
10883
10884 rl = (htab->elf.irelplt->contents
10885 + (htab->elf.irelplt->reloc_count++
10886 * sizeof (Elf64_External_Rela)));
10887 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10888 stub_entry->plt_ent->plt.offset |= 1;
10889 }
10890
10891 off = (dest
10892 - elf_gp (plt->output_section->owner)
10893 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10894
10895 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10896 {
10897 info->callbacks->einfo
10898 (_("%P: linkage table error against `%T'\n"),
10899 stub_entry->h != NULL
10900 ? stub_entry->h->elf.root.root.string
10901 : "<local sym>");
10902 bfd_set_error (bfd_error_bad_value);
10903 htab->stub_error = TRUE;
10904 return FALSE;
10905 }
10906
10907 if (htab->params->plt_stub_align != 0)
10908 {
10909 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10910
10911 stub_entry->stub_sec->size += pad;
10912 stub_entry->stub_offset = stub_entry->stub_sec->size;
10913 loc += pad;
10914 }
10915
10916 r = NULL;
10917 if (info->emitrelocations)
10918 {
10919 r = get_relocs (stub_entry->stub_sec,
10920 ((PPC_HA (off) != 0)
10921 + (htab->opd_abi
10922 ? 2 + (htab->params->plt_static_chain
10923 && PPC_HA (off + 16) == PPC_HA (off))
10924 : 1)));
10925 if (r == NULL)
10926 return FALSE;
10927 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10928 if (bfd_big_endian (info->output_bfd))
10929 r[0].r_offset += 2;
10930 r[0].r_addend = dest;
10931 }
10932 if (stub_entry->h != NULL
10933 && (stub_entry->h == htab->tls_get_addr_fd
10934 || stub_entry->h == htab->tls_get_addr)
10935 && !htab->params->no_tls_get_addr_opt)
10936 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10937 else
10938 p = build_plt_stub (htab, stub_entry, loc, off, r);
10939 size = p - loc;
10940 break;
10941
10942 default:
10943 BFD_FAIL ();
10944 return FALSE;
10945 }
10946
10947 stub_entry->stub_sec->size += size;
10948
10949 if (htab->params->emit_stub_syms)
10950 {
10951 struct elf_link_hash_entry *h;
10952 size_t len1, len2;
10953 char *name;
10954 const char *const stub_str[] = { "long_branch",
10955 "long_branch_r2off",
10956 "plt_branch",
10957 "plt_branch_r2off",
10958 "plt_call",
10959 "plt_call" };
10960
10961 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10962 len2 = strlen (stub_entry->root.string);
10963 name = bfd_malloc (len1 + len2 + 2);
10964 if (name == NULL)
10965 return FALSE;
10966 memcpy (name, stub_entry->root.string, 9);
10967 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10968 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10969 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10970 if (h == NULL)
10971 return FALSE;
10972 if (h->root.type == bfd_link_hash_new)
10973 {
10974 h->root.type = bfd_link_hash_defined;
10975 h->root.u.def.section = stub_entry->stub_sec;
10976 h->root.u.def.value = stub_entry->stub_offset;
10977 h->ref_regular = 1;
10978 h->def_regular = 1;
10979 h->ref_regular_nonweak = 1;
10980 h->forced_local = 1;
10981 h->non_elf = 0;
10982 h->root.linker_def = 1;
10983 }
10984 }
10985
10986 return TRUE;
10987 }
10988
10989 /* As above, but don't actually build the stub. Just bump offset so
10990 we know stub section sizes, and select plt_branch stubs where
10991 long_branch stubs won't do. */
10992
10993 static bfd_boolean
10994 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10995 {
10996 struct ppc_stub_hash_entry *stub_entry;
10997 struct bfd_link_info *info;
10998 struct ppc_link_hash_table *htab;
10999 bfd_vma off;
11000 int size;
11001
11002 /* Massage our args to the form they really have. */
11003 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11004 info = in_arg;
11005
11006 htab = ppc_hash_table (info);
11007 if (htab == NULL)
11008 return FALSE;
11009
11010 if (stub_entry->stub_type == ppc_stub_plt_call
11011 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11012 {
11013 asection *plt;
11014 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
11015 if (off >= (bfd_vma) -2)
11016 abort ();
11017 plt = htab->elf.splt;
11018 if (!htab->elf.dynamic_sections_created
11019 || stub_entry->h == NULL
11020 || stub_entry->h->elf.dynindx == -1)
11021 plt = htab->elf.iplt;
11022 off += (plt->output_offset
11023 + plt->output_section->vma
11024 - elf_gp (plt->output_section->owner)
11025 - htab->stub_group[stub_entry->id_sec->id].toc_off);
11026
11027 size = plt_stub_size (htab, stub_entry, off);
11028 if (htab->params->plt_stub_align)
11029 size += plt_stub_pad (htab, stub_entry, off);
11030 if (info->emitrelocations)
11031 {
11032 stub_entry->stub_sec->reloc_count
11033 += ((PPC_HA (off) != 0)
11034 + (htab->opd_abi
11035 ? 2 + (htab->params->plt_static_chain
11036 && PPC_HA (off + 16) == PPC_HA (off))
11037 : 1));
11038 stub_entry->stub_sec->flags |= SEC_RELOC;
11039 }
11040 }
11041 else
11042 {
11043 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
11044 variants. */
11045 bfd_vma r2off = 0;
11046 bfd_vma local_off = 0;
11047
11048 off = (stub_entry->target_value
11049 + stub_entry->target_section->output_offset
11050 + stub_entry->target_section->output_section->vma);
11051 off -= (stub_entry->stub_sec->size
11052 + stub_entry->stub_sec->output_offset
11053 + stub_entry->stub_sec->output_section->vma);
11054
11055 /* Reset the stub type from the plt variant in case we now
11056 can reach with a shorter stub. */
11057 if (stub_entry->stub_type >= ppc_stub_plt_branch)
11058 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11059
11060 size = 4;
11061 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11062 {
11063 r2off = get_r2off (info, stub_entry);
11064 if (r2off == 0 && htab->opd_abi)
11065 {
11066 htab->stub_error = TRUE;
11067 return FALSE;
11068 }
11069 size = 12;
11070 if (PPC_HA (r2off) != 0)
11071 size = 16;
11072 off -= size - 4;
11073 }
11074
11075 local_off = PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11076
11077 /* If the branch offset if too big, use a ppc_stub_plt_branch.
11078 Do the same for -R objects without function descriptors. */
11079 if (off + (1 << 25) >= (bfd_vma) (1 << 26) - local_off
11080 || (stub_entry->stub_type == ppc_stub_long_branch_r2off
11081 && r2off == 0))
11082 {
11083 struct ppc_branch_hash_entry *br_entry;
11084
11085 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11086 stub_entry->root.string + 9,
11087 TRUE, FALSE);
11088 if (br_entry == NULL)
11089 {
11090 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
11091 stub_entry->root.string);
11092 htab->stub_error = TRUE;
11093 return FALSE;
11094 }
11095
11096 if (br_entry->iter != htab->stub_iteration)
11097 {
11098 br_entry->iter = htab->stub_iteration;
11099 br_entry->offset = htab->brlt->size;
11100 htab->brlt->size += 8;
11101
11102 if (htab->relbrlt != NULL)
11103 htab->relbrlt->size += sizeof (Elf64_External_Rela);
11104 else if (info->emitrelocations)
11105 {
11106 htab->brlt->reloc_count += 1;
11107 htab->brlt->flags |= SEC_RELOC;
11108 }
11109 }
11110
11111 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
11112 off = (br_entry->offset
11113 + htab->brlt->output_offset
11114 + htab->brlt->output_section->vma
11115 - elf_gp (htab->brlt->output_section->owner)
11116 - htab->stub_group[stub_entry->id_sec->id].toc_off);
11117
11118 if (info->emitrelocations)
11119 {
11120 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
11121 stub_entry->stub_sec->flags |= SEC_RELOC;
11122 }
11123
11124 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11125 {
11126 size = 12;
11127 if (PPC_HA (off) != 0)
11128 size = 16;
11129 }
11130 else
11131 {
11132 size = 16;
11133 if (PPC_HA (off) != 0)
11134 size += 4;
11135
11136 if (PPC_HA (r2off) != 0)
11137 size += 4;
11138 if (PPC_LO (r2off) != 0)
11139 size += 4;
11140 }
11141 }
11142 else if (info->emitrelocations)
11143 {
11144 stub_entry->stub_sec->reloc_count += 1;
11145 stub_entry->stub_sec->flags |= SEC_RELOC;
11146 }
11147 }
11148
11149 stub_entry->stub_sec->size += size;
11150 return TRUE;
11151 }
11152
11153 /* Set up various things so that we can make a list of input sections
11154 for each output section included in the link. Returns -1 on error,
11155 0 when no stubs will be needed, and 1 on success. */
11156
11157 int
11158 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
11159 {
11160 bfd *input_bfd;
11161 int top_id, top_index, id;
11162 asection *section;
11163 asection **input_list;
11164 bfd_size_type amt;
11165 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11166
11167 if (htab == NULL)
11168 return -1;
11169
11170 /* Find the top input section id. */
11171 for (input_bfd = info->input_bfds, top_id = 3;
11172 input_bfd != NULL;
11173 input_bfd = input_bfd->link.next)
11174 {
11175 for (section = input_bfd->sections;
11176 section != NULL;
11177 section = section->next)
11178 {
11179 if (top_id < section->id)
11180 top_id = section->id;
11181 }
11182 }
11183
11184 htab->top_id = top_id;
11185 amt = sizeof (struct map_stub) * (top_id + 1);
11186 htab->stub_group = bfd_zmalloc (amt);
11187 if (htab->stub_group == NULL)
11188 return -1;
11189
11190 /* Set toc_off for com, und, abs and ind sections. */
11191 for (id = 0; id < 3; id++)
11192 htab->stub_group[id].toc_off = TOC_BASE_OFF;
11193
11194 /* We can't use output_bfd->section_count here to find the top output
11195 section index as some sections may have been removed, and
11196 strip_excluded_output_sections doesn't renumber the indices. */
11197 for (section = info->output_bfd->sections, top_index = 0;
11198 section != NULL;
11199 section = section->next)
11200 {
11201 if (top_index < section->index)
11202 top_index = section->index;
11203 }
11204
11205 htab->top_index = top_index;
11206 amt = sizeof (asection *) * (top_index + 1);
11207 input_list = bfd_zmalloc (amt);
11208 htab->input_list = input_list;
11209 if (input_list == NULL)
11210 return -1;
11211
11212 return 1;
11213 }
11214
11215 /* Set up for first pass at multitoc partitioning. */
11216
11217 void
11218 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11219 {
11220 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11221
11222 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11223 htab->toc_bfd = NULL;
11224 htab->toc_first_sec = NULL;
11225 }
11226
11227 /* The linker repeatedly calls this function for each TOC input section
11228 and linker generated GOT section. Group input bfds such that the toc
11229 within a group is less than 64k in size. */
11230
11231 bfd_boolean
11232 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11233 {
11234 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11235 bfd_vma addr, off, limit;
11236
11237 if (htab == NULL)
11238 return FALSE;
11239
11240 if (!htab->second_toc_pass)
11241 {
11242 /* Keep track of the first .toc or .got section for this input bfd. */
11243 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11244
11245 if (new_bfd)
11246 {
11247 htab->toc_bfd = isec->owner;
11248 htab->toc_first_sec = isec;
11249 }
11250
11251 addr = isec->output_offset + isec->output_section->vma;
11252 off = addr - htab->toc_curr;
11253 limit = 0x80008000;
11254 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11255 limit = 0x10000;
11256 if (off + isec->size > limit)
11257 {
11258 addr = (htab->toc_first_sec->output_offset
11259 + htab->toc_first_sec->output_section->vma);
11260 htab->toc_curr = addr;
11261 htab->toc_curr &= -TOC_BASE_ALIGN;
11262 }
11263
11264 /* toc_curr is the base address of this toc group. Set elf_gp
11265 for the input section to be the offset relative to the
11266 output toc base plus 0x8000. Making the input elf_gp an
11267 offset allows us to move the toc as a whole without
11268 recalculating input elf_gp. */
11269 off = htab->toc_curr - elf_gp (isec->output_section->owner);
11270 off += TOC_BASE_OFF;
11271
11272 /* Die if someone uses a linker script that doesn't keep input
11273 file .toc and .got together. */
11274 if (new_bfd
11275 && elf_gp (isec->owner) != 0
11276 && elf_gp (isec->owner) != off)
11277 return FALSE;
11278
11279 elf_gp (isec->owner) = off;
11280 return TRUE;
11281 }
11282
11283 /* During the second pass toc_first_sec points to the start of
11284 a toc group, and toc_curr is used to track the old elf_gp.
11285 We use toc_bfd to ensure we only look at each bfd once. */
11286 if (htab->toc_bfd == isec->owner)
11287 return TRUE;
11288 htab->toc_bfd = isec->owner;
11289
11290 if (htab->toc_first_sec == NULL
11291 || htab->toc_curr != elf_gp (isec->owner))
11292 {
11293 htab->toc_curr = elf_gp (isec->owner);
11294 htab->toc_first_sec = isec;
11295 }
11296 addr = (htab->toc_first_sec->output_offset
11297 + htab->toc_first_sec->output_section->vma);
11298 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
11299 elf_gp (isec->owner) = off;
11300
11301 return TRUE;
11302 }
11303
11304 /* Called via elf_link_hash_traverse to merge GOT entries for global
11305 symbol H. */
11306
11307 static bfd_boolean
11308 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
11309 {
11310 if (h->root.type == bfd_link_hash_indirect)
11311 return TRUE;
11312
11313 merge_got_entries (&h->got.glist);
11314
11315 return TRUE;
11316 }
11317
11318 /* Called via elf_link_hash_traverse to allocate GOT entries for global
11319 symbol H. */
11320
11321 static bfd_boolean
11322 reallocate_got (struct elf_link_hash_entry *h, void *inf)
11323 {
11324 struct got_entry *gent;
11325
11326 if (h->root.type == bfd_link_hash_indirect)
11327 return TRUE;
11328
11329 for (gent = h->got.glist; gent != NULL; gent = gent->next)
11330 if (!gent->is_indirect)
11331 allocate_got (h, (struct bfd_link_info *) inf, gent);
11332 return TRUE;
11333 }
11334
11335 /* Called on the first multitoc pass after the last call to
11336 ppc64_elf_next_toc_section. This function removes duplicate GOT
11337 entries. */
11338
11339 bfd_boolean
11340 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
11341 {
11342 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11343 struct bfd *ibfd, *ibfd2;
11344 bfd_boolean done_something;
11345
11346 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
11347
11348 if (!htab->do_multi_toc)
11349 return FALSE;
11350
11351 /* Merge global sym got entries within a toc group. */
11352 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
11353
11354 /* And tlsld_got. */
11355 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11356 {
11357 struct got_entry *ent, *ent2;
11358
11359 if (!is_ppc64_elf (ibfd))
11360 continue;
11361
11362 ent = ppc64_tlsld_got (ibfd);
11363 if (!ent->is_indirect
11364 && ent->got.offset != (bfd_vma) -1)
11365 {
11366 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
11367 {
11368 if (!is_ppc64_elf (ibfd2))
11369 continue;
11370
11371 ent2 = ppc64_tlsld_got (ibfd2);
11372 if (!ent2->is_indirect
11373 && ent2->got.offset != (bfd_vma) -1
11374 && elf_gp (ibfd2) == elf_gp (ibfd))
11375 {
11376 ent2->is_indirect = TRUE;
11377 ent2->got.ent = ent;
11378 }
11379 }
11380 }
11381 }
11382
11383 /* Zap sizes of got sections. */
11384 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
11385 htab->elf.irelplt->size -= htab->got_reli_size;
11386 htab->got_reli_size = 0;
11387
11388 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11389 {
11390 asection *got, *relgot;
11391
11392 if (!is_ppc64_elf (ibfd))
11393 continue;
11394
11395 got = ppc64_elf_tdata (ibfd)->got;
11396 if (got != NULL)
11397 {
11398 got->rawsize = got->size;
11399 got->size = 0;
11400 relgot = ppc64_elf_tdata (ibfd)->relgot;
11401 relgot->rawsize = relgot->size;
11402 relgot->size = 0;
11403 }
11404 }
11405
11406 /* Now reallocate the got, local syms first. We don't need to
11407 allocate section contents again since we never increase size. */
11408 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11409 {
11410 struct got_entry **lgot_ents;
11411 struct got_entry **end_lgot_ents;
11412 struct plt_entry **local_plt;
11413 struct plt_entry **end_local_plt;
11414 unsigned char *lgot_masks;
11415 bfd_size_type locsymcount;
11416 Elf_Internal_Shdr *symtab_hdr;
11417 asection *s;
11418
11419 if (!is_ppc64_elf (ibfd))
11420 continue;
11421
11422 lgot_ents = elf_local_got_ents (ibfd);
11423 if (!lgot_ents)
11424 continue;
11425
11426 symtab_hdr = &elf_symtab_hdr (ibfd);
11427 locsymcount = symtab_hdr->sh_info;
11428 end_lgot_ents = lgot_ents + locsymcount;
11429 local_plt = (struct plt_entry **) end_lgot_ents;
11430 end_local_plt = local_plt + locsymcount;
11431 lgot_masks = (unsigned char *) end_local_plt;
11432 s = ppc64_elf_tdata (ibfd)->got;
11433 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
11434 {
11435 struct got_entry *ent;
11436
11437 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
11438 {
11439 unsigned int ent_size = 8;
11440 unsigned int rel_size = sizeof (Elf64_External_Rela);
11441
11442 ent->got.offset = s->size;
11443 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
11444 {
11445 ent_size *= 2;
11446 rel_size *= 2;
11447 }
11448 s->size += ent_size;
11449 if ((*lgot_masks & PLT_IFUNC) != 0)
11450 {
11451 htab->elf.irelplt->size += rel_size;
11452 htab->got_reli_size += rel_size;
11453 }
11454 else if (info->shared)
11455 {
11456 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11457 srel->size += rel_size;
11458 }
11459 }
11460 }
11461 }
11462
11463 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
11464
11465 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11466 {
11467 struct got_entry *ent;
11468
11469 if (!is_ppc64_elf (ibfd))
11470 continue;
11471
11472 ent = ppc64_tlsld_got (ibfd);
11473 if (!ent->is_indirect
11474 && ent->got.offset != (bfd_vma) -1)
11475 {
11476 asection *s = ppc64_elf_tdata (ibfd)->got;
11477 ent->got.offset = s->size;
11478 s->size += 16;
11479 if (info->shared)
11480 {
11481 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
11482 srel->size += sizeof (Elf64_External_Rela);
11483 }
11484 }
11485 }
11486
11487 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
11488 if (!done_something)
11489 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
11490 {
11491 asection *got;
11492
11493 if (!is_ppc64_elf (ibfd))
11494 continue;
11495
11496 got = ppc64_elf_tdata (ibfd)->got;
11497 if (got != NULL)
11498 {
11499 done_something = got->rawsize != got->size;
11500 if (done_something)
11501 break;
11502 }
11503 }
11504
11505 if (done_something)
11506 (*htab->params->layout_sections_again) ();
11507
11508 /* Set up for second pass over toc sections to recalculate elf_gp
11509 on input sections. */
11510 htab->toc_bfd = NULL;
11511 htab->toc_first_sec = NULL;
11512 htab->second_toc_pass = TRUE;
11513 return done_something;
11514 }
11515
11516 /* Called after second pass of multitoc partitioning. */
11517
11518 void
11519 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
11520 {
11521 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11522
11523 /* After the second pass, toc_curr tracks the TOC offset used
11524 for code sections below in ppc64_elf_next_input_section. */
11525 htab->toc_curr = TOC_BASE_OFF;
11526 }
11527
11528 /* No toc references were found in ISEC. If the code in ISEC makes no
11529 calls, then there's no need to use toc adjusting stubs when branching
11530 into ISEC. Actually, indirect calls from ISEC are OK as they will
11531 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
11532 needed, and 2 if a cyclical call-graph was found but no other reason
11533 for a stub was detected. If called from the top level, a return of
11534 2 means the same as a return of 0. */
11535
11536 static int
11537 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
11538 {
11539 int ret;
11540
11541 /* Mark this section as checked. */
11542 isec->call_check_done = 1;
11543
11544 /* We know none of our code bearing sections will need toc stubs. */
11545 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11546 return 0;
11547
11548 if (isec->size == 0)
11549 return 0;
11550
11551 if (isec->output_section == NULL)
11552 return 0;
11553
11554 ret = 0;
11555 if (isec->reloc_count != 0)
11556 {
11557 Elf_Internal_Rela *relstart, *rel;
11558 Elf_Internal_Sym *local_syms;
11559 struct ppc_link_hash_table *htab;
11560
11561 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
11562 info->keep_memory);
11563 if (relstart == NULL)
11564 return -1;
11565
11566 /* Look for branches to outside of this section. */
11567 local_syms = NULL;
11568 htab = ppc_hash_table (info);
11569 if (htab == NULL)
11570 return -1;
11571
11572 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
11573 {
11574 enum elf_ppc64_reloc_type r_type;
11575 unsigned long r_symndx;
11576 struct elf_link_hash_entry *h;
11577 struct ppc_link_hash_entry *eh;
11578 Elf_Internal_Sym *sym;
11579 asection *sym_sec;
11580 struct _opd_sec_data *opd;
11581 bfd_vma sym_value;
11582 bfd_vma dest;
11583
11584 r_type = ELF64_R_TYPE (rel->r_info);
11585 if (r_type != R_PPC64_REL24
11586 && r_type != R_PPC64_REL14
11587 && r_type != R_PPC64_REL14_BRTAKEN
11588 && r_type != R_PPC64_REL14_BRNTAKEN)
11589 continue;
11590
11591 r_symndx = ELF64_R_SYM (rel->r_info);
11592 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
11593 isec->owner))
11594 {
11595 ret = -1;
11596 break;
11597 }
11598
11599 /* Calls to dynamic lib functions go through a plt call stub
11600 that uses r2. */
11601 eh = (struct ppc_link_hash_entry *) h;
11602 if (eh != NULL
11603 && (eh->elf.plt.plist != NULL
11604 || (eh->oh != NULL
11605 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
11606 {
11607 ret = 1;
11608 break;
11609 }
11610
11611 if (sym_sec == NULL)
11612 /* Ignore other undefined symbols. */
11613 continue;
11614
11615 /* Assume branches to other sections not included in the
11616 link need stubs too, to cover -R and absolute syms. */
11617 if (sym_sec->output_section == NULL)
11618 {
11619 ret = 1;
11620 break;
11621 }
11622
11623 if (h == NULL)
11624 sym_value = sym->st_value;
11625 else
11626 {
11627 if (h->root.type != bfd_link_hash_defined
11628 && h->root.type != bfd_link_hash_defweak)
11629 abort ();
11630 sym_value = h->root.u.def.value;
11631 }
11632 sym_value += rel->r_addend;
11633
11634 /* If this branch reloc uses an opd sym, find the code section. */
11635 opd = get_opd_info (sym_sec);
11636 if (opd != NULL)
11637 {
11638 if (h == NULL && opd->adjust != NULL)
11639 {
11640 long adjust;
11641
11642 adjust = opd->adjust[OPD_NDX (sym_value)];
11643 if (adjust == -1)
11644 /* Assume deleted functions won't ever be called. */
11645 continue;
11646 sym_value += adjust;
11647 }
11648
11649 dest = opd_entry_value (sym_sec, sym_value,
11650 &sym_sec, NULL, FALSE);
11651 if (dest == (bfd_vma) -1)
11652 continue;
11653 }
11654 else
11655 dest = (sym_value
11656 + sym_sec->output_offset
11657 + sym_sec->output_section->vma);
11658
11659 /* Ignore branch to self. */
11660 if (sym_sec == isec)
11661 continue;
11662
11663 /* If the called function uses the toc, we need a stub. */
11664 if (sym_sec->has_toc_reloc
11665 || sym_sec->makes_toc_func_call)
11666 {
11667 ret = 1;
11668 break;
11669 }
11670
11671 /* Assume any branch that needs a long branch stub might in fact
11672 need a plt_branch stub. A plt_branch stub uses r2. */
11673 else if (dest - (isec->output_offset
11674 + isec->output_section->vma
11675 + rel->r_offset) + (1 << 25)
11676 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
11677 ? h->other
11678 : sym->st_other))
11679 {
11680 ret = 1;
11681 break;
11682 }
11683
11684 /* If calling back to a section in the process of being
11685 tested, we can't say for sure that no toc adjusting stubs
11686 are needed, so don't return zero. */
11687 else if (sym_sec->call_check_in_progress)
11688 ret = 2;
11689
11690 /* Branches to another section that itself doesn't have any TOC
11691 references are OK. Recursively call ourselves to check. */
11692 else if (!sym_sec->call_check_done)
11693 {
11694 int recur;
11695
11696 /* Mark current section as indeterminate, so that other
11697 sections that call back to current won't be marked as
11698 known. */
11699 isec->call_check_in_progress = 1;
11700 recur = toc_adjusting_stub_needed (info, sym_sec);
11701 isec->call_check_in_progress = 0;
11702
11703 if (recur != 0)
11704 {
11705 ret = recur;
11706 if (recur != 2)
11707 break;
11708 }
11709 }
11710 }
11711
11712 if (local_syms != NULL
11713 && (elf_symtab_hdr (isec->owner).contents
11714 != (unsigned char *) local_syms))
11715 free (local_syms);
11716 if (elf_section_data (isec)->relocs != relstart)
11717 free (relstart);
11718 }
11719
11720 if ((ret & 1) == 0
11721 && isec->map_head.s != NULL
11722 && (strcmp (isec->output_section->name, ".init") == 0
11723 || strcmp (isec->output_section->name, ".fini") == 0))
11724 {
11725 if (isec->map_head.s->has_toc_reloc
11726 || isec->map_head.s->makes_toc_func_call)
11727 ret = 1;
11728 else if (!isec->map_head.s->call_check_done)
11729 {
11730 int recur;
11731 isec->call_check_in_progress = 1;
11732 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11733 isec->call_check_in_progress = 0;
11734 if (recur != 0)
11735 ret = recur;
11736 }
11737 }
11738
11739 if (ret == 1)
11740 isec->makes_toc_func_call = 1;
11741
11742 return ret;
11743 }
11744
11745 /* The linker repeatedly calls this function for each input section,
11746 in the order that input sections are linked into output sections.
11747 Build lists of input sections to determine groupings between which
11748 we may insert linker stubs. */
11749
11750 bfd_boolean
11751 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11752 {
11753 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11754
11755 if (htab == NULL)
11756 return FALSE;
11757
11758 if ((isec->output_section->flags & SEC_CODE) != 0
11759 && isec->output_section->index <= htab->top_index)
11760 {
11761 asection **list = htab->input_list + isec->output_section->index;
11762 /* Steal the link_sec pointer for our list. */
11763 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11764 /* This happens to make the list in reverse order,
11765 which is what we want. */
11766 PREV_SEC (isec) = *list;
11767 *list = isec;
11768 }
11769
11770 if (htab->multi_toc_needed)
11771 {
11772 /* Analyse sections that aren't already flagged as needing a
11773 valid toc pointer. Exclude .fixup for the linux kernel.
11774 .fixup contains branches, but only back to the function that
11775 hit an exception. */
11776 if (!(isec->has_toc_reloc
11777 || (isec->flags & SEC_CODE) == 0
11778 || strcmp (isec->name, ".fixup") == 0
11779 || isec->call_check_done))
11780 {
11781 if (toc_adjusting_stub_needed (info, isec) < 0)
11782 return FALSE;
11783 }
11784 /* Make all sections use the TOC assigned for this object file.
11785 This will be wrong for pasted sections; We fix that in
11786 check_pasted_section(). */
11787 if (elf_gp (isec->owner) != 0)
11788 htab->toc_curr = elf_gp (isec->owner);
11789 }
11790
11791 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11792 return TRUE;
11793 }
11794
11795 /* Check that all .init and .fini sections use the same toc, if they
11796 have toc relocs. */
11797
11798 static bfd_boolean
11799 check_pasted_section (struct bfd_link_info *info, const char *name)
11800 {
11801 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11802
11803 if (o != NULL)
11804 {
11805 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11806 bfd_vma toc_off = 0;
11807 asection *i;
11808
11809 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11810 if (i->has_toc_reloc)
11811 {
11812 if (toc_off == 0)
11813 toc_off = htab->stub_group[i->id].toc_off;
11814 else if (toc_off != htab->stub_group[i->id].toc_off)
11815 return FALSE;
11816 }
11817
11818 if (toc_off == 0)
11819 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11820 if (i->makes_toc_func_call)
11821 {
11822 toc_off = htab->stub_group[i->id].toc_off;
11823 break;
11824 }
11825
11826 /* Make sure the whole pasted function uses the same toc offset. */
11827 if (toc_off != 0)
11828 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11829 htab->stub_group[i->id].toc_off = toc_off;
11830 }
11831 return TRUE;
11832 }
11833
11834 bfd_boolean
11835 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11836 {
11837 return (check_pasted_section (info, ".init")
11838 & check_pasted_section (info, ".fini"));
11839 }
11840
11841 /* See whether we can group stub sections together. Grouping stub
11842 sections may result in fewer stubs. More importantly, we need to
11843 put all .init* and .fini* stubs at the beginning of the .init or
11844 .fini output sections respectively, because glibc splits the
11845 _init and _fini functions into multiple parts. Putting a stub in
11846 the middle of a function is not a good idea. */
11847
11848 static void
11849 group_sections (struct ppc_link_hash_table *htab,
11850 bfd_size_type stub_group_size,
11851 bfd_boolean stubs_always_before_branch)
11852 {
11853 asection **list;
11854 bfd_size_type stub14_group_size;
11855 bfd_boolean suppress_size_errors;
11856
11857 suppress_size_errors = FALSE;
11858 stub14_group_size = stub_group_size >> 10;
11859 if (stub_group_size == 1)
11860 {
11861 /* Default values. */
11862 if (stubs_always_before_branch)
11863 {
11864 stub_group_size = 0x1e00000;
11865 stub14_group_size = 0x7800;
11866 }
11867 else
11868 {
11869 stub_group_size = 0x1c00000;
11870 stub14_group_size = 0x7000;
11871 }
11872 suppress_size_errors = TRUE;
11873 }
11874
11875 list = htab->input_list + htab->top_index;
11876 do
11877 {
11878 asection *tail = *list;
11879 while (tail != NULL)
11880 {
11881 asection *curr;
11882 asection *prev;
11883 bfd_size_type total;
11884 bfd_boolean big_sec;
11885 bfd_vma curr_toc;
11886
11887 curr = tail;
11888 total = tail->size;
11889 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11890 && ppc64_elf_section_data (tail)->has_14bit_branch
11891 ? stub14_group_size : stub_group_size);
11892 if (big_sec && !suppress_size_errors)
11893 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11894 tail->owner, tail);
11895 curr_toc = htab->stub_group[tail->id].toc_off;
11896
11897 while ((prev = PREV_SEC (curr)) != NULL
11898 && ((total += curr->output_offset - prev->output_offset)
11899 < (ppc64_elf_section_data (prev) != NULL
11900 && ppc64_elf_section_data (prev)->has_14bit_branch
11901 ? stub14_group_size : stub_group_size))
11902 && htab->stub_group[prev->id].toc_off == curr_toc)
11903 curr = prev;
11904
11905 /* OK, the size from the start of CURR to the end is less
11906 than stub_group_size and thus can be handled by one stub
11907 section. (or the tail section is itself larger than
11908 stub_group_size, in which case we may be toast.) We
11909 should really be keeping track of the total size of stubs
11910 added here, as stubs contribute to the final output
11911 section size. That's a little tricky, and this way will
11912 only break if stubs added make the total size more than
11913 2^25, ie. for the default stub_group_size, if stubs total
11914 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11915 do
11916 {
11917 prev = PREV_SEC (tail);
11918 /* Set up this stub group. */
11919 htab->stub_group[tail->id].link_sec = curr;
11920 }
11921 while (tail != curr && (tail = prev) != NULL);
11922
11923 /* But wait, there's more! Input sections up to stub_group_size
11924 bytes before the stub section can be handled by it too.
11925 Don't do this if we have a really large section after the
11926 stubs, as adding more stubs increases the chance that
11927 branches may not reach into the stub section. */
11928 if (!stubs_always_before_branch && !big_sec)
11929 {
11930 total = 0;
11931 while (prev != NULL
11932 && ((total += tail->output_offset - prev->output_offset)
11933 < (ppc64_elf_section_data (prev) != NULL
11934 && ppc64_elf_section_data (prev)->has_14bit_branch
11935 ? stub14_group_size : stub_group_size))
11936 && htab->stub_group[prev->id].toc_off == curr_toc)
11937 {
11938 tail = prev;
11939 prev = PREV_SEC (tail);
11940 htab->stub_group[tail->id].link_sec = curr;
11941 }
11942 }
11943 tail = prev;
11944 }
11945 }
11946 while (list-- != htab->input_list);
11947 free (htab->input_list);
11948 #undef PREV_SEC
11949 }
11950
11951 static const unsigned char glink_eh_frame_cie[] =
11952 {
11953 0, 0, 0, 16, /* length. */
11954 0, 0, 0, 0, /* id. */
11955 1, /* CIE version. */
11956 'z', 'R', 0, /* Augmentation string. */
11957 4, /* Code alignment. */
11958 0x78, /* Data alignment. */
11959 65, /* RA reg. */
11960 1, /* Augmentation size. */
11961 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11962 DW_CFA_def_cfa, 1, 0, /* def_cfa: r1 offset 0. */
11963 0, 0, 0, 0
11964 };
11965
11966 /* Stripping output sections is normally done before dynamic section
11967 symbols have been allocated. This function is called later, and
11968 handles cases like htab->brlt which is mapped to its own output
11969 section. */
11970
11971 static void
11972 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11973 {
11974 if (isec->size == 0
11975 && isec->output_section->size == 0
11976 && !(isec->output_section->flags & SEC_KEEP)
11977 && !bfd_section_removed_from_list (info->output_bfd,
11978 isec->output_section)
11979 && elf_section_data (isec->output_section)->dynindx == 0)
11980 {
11981 isec->output_section->flags |= SEC_EXCLUDE;
11982 bfd_section_list_remove (info->output_bfd, isec->output_section);
11983 info->output_bfd->section_count--;
11984 }
11985 }
11986
11987 /* Determine and set the size of the stub section for a final link.
11988
11989 The basic idea here is to examine all the relocations looking for
11990 PC-relative calls to a target that is unreachable with a "bl"
11991 instruction. */
11992
11993 bfd_boolean
11994 ppc64_elf_size_stubs (struct bfd_link_info *info)
11995 {
11996 bfd_size_type stub_group_size;
11997 bfd_boolean stubs_always_before_branch;
11998 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11999
12000 if (htab == NULL)
12001 return FALSE;
12002
12003 if (htab->params->plt_thread_safe == -1 && !info->executable)
12004 htab->params->plt_thread_safe = 1;
12005 if (!htab->opd_abi)
12006 htab->params->plt_thread_safe = 0;
12007 else if (htab->params->plt_thread_safe == -1)
12008 {
12009 static const char *const thread_starter[] =
12010 {
12011 "pthread_create",
12012 /* libstdc++ */
12013 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
12014 /* librt */
12015 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
12016 "mq_notify", "create_timer",
12017 /* libanl */
12018 "getaddrinfo_a",
12019 /* libgomp */
12020 "GOMP_parallel",
12021 "GOMP_parallel_start",
12022 "GOMP_parallel_loop_static",
12023 "GOMP_parallel_loop_static_start",
12024 "GOMP_parallel_loop_dynamic",
12025 "GOMP_parallel_loop_dynamic_start",
12026 "GOMP_parallel_loop_guided",
12027 "GOMP_parallel_loop_guided_start",
12028 "GOMP_parallel_loop_runtime",
12029 "GOMP_parallel_loop_runtime_start",
12030 "GOMP_parallel_sections",
12031 "GOMP_parallel_sections_start",
12032 /* libgo */
12033 "__go_go",
12034 };
12035 unsigned i;
12036
12037 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
12038 {
12039 struct elf_link_hash_entry *h;
12040 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
12041 FALSE, FALSE, TRUE);
12042 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
12043 if (htab->params->plt_thread_safe)
12044 break;
12045 }
12046 }
12047 stubs_always_before_branch = htab->params->group_size < 0;
12048 if (htab->params->group_size < 0)
12049 stub_group_size = -htab->params->group_size;
12050 else
12051 stub_group_size = htab->params->group_size;
12052
12053 group_sections (htab, stub_group_size, stubs_always_before_branch);
12054
12055 while (1)
12056 {
12057 bfd *input_bfd;
12058 unsigned int bfd_indx;
12059 asection *stub_sec;
12060
12061 htab->stub_iteration += 1;
12062
12063 for (input_bfd = info->input_bfds, bfd_indx = 0;
12064 input_bfd != NULL;
12065 input_bfd = input_bfd->link.next, bfd_indx++)
12066 {
12067 Elf_Internal_Shdr *symtab_hdr;
12068 asection *section;
12069 Elf_Internal_Sym *local_syms = NULL;
12070
12071 if (!is_ppc64_elf (input_bfd))
12072 continue;
12073
12074 /* We'll need the symbol table in a second. */
12075 symtab_hdr = &elf_symtab_hdr (input_bfd);
12076 if (symtab_hdr->sh_info == 0)
12077 continue;
12078
12079 /* Walk over each section attached to the input bfd. */
12080 for (section = input_bfd->sections;
12081 section != NULL;
12082 section = section->next)
12083 {
12084 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
12085
12086 /* If there aren't any relocs, then there's nothing more
12087 to do. */
12088 if ((section->flags & SEC_RELOC) == 0
12089 || (section->flags & SEC_ALLOC) == 0
12090 || (section->flags & SEC_LOAD) == 0
12091 || (section->flags & SEC_CODE) == 0
12092 || section->reloc_count == 0)
12093 continue;
12094
12095 /* If this section is a link-once section that will be
12096 discarded, then don't create any stubs. */
12097 if (section->output_section == NULL
12098 || section->output_section->owner != info->output_bfd)
12099 continue;
12100
12101 /* Get the relocs. */
12102 internal_relocs
12103 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
12104 info->keep_memory);
12105 if (internal_relocs == NULL)
12106 goto error_ret_free_local;
12107
12108 /* Now examine each relocation. */
12109 irela = internal_relocs;
12110 irelaend = irela + section->reloc_count;
12111 for (; irela < irelaend; irela++)
12112 {
12113 enum elf_ppc64_reloc_type r_type;
12114 unsigned int r_indx;
12115 enum ppc_stub_type stub_type;
12116 struct ppc_stub_hash_entry *stub_entry;
12117 asection *sym_sec, *code_sec;
12118 bfd_vma sym_value, code_value;
12119 bfd_vma destination;
12120 unsigned long local_off;
12121 bfd_boolean ok_dest;
12122 struct ppc_link_hash_entry *hash;
12123 struct ppc_link_hash_entry *fdh;
12124 struct elf_link_hash_entry *h;
12125 Elf_Internal_Sym *sym;
12126 char *stub_name;
12127 const asection *id_sec;
12128 struct _opd_sec_data *opd;
12129 struct plt_entry *plt_ent;
12130
12131 r_type = ELF64_R_TYPE (irela->r_info);
12132 r_indx = ELF64_R_SYM (irela->r_info);
12133
12134 if (r_type >= R_PPC64_max)
12135 {
12136 bfd_set_error (bfd_error_bad_value);
12137 goto error_ret_free_internal;
12138 }
12139
12140 /* Only look for stubs on branch instructions. */
12141 if (r_type != R_PPC64_REL24
12142 && r_type != R_PPC64_REL14
12143 && r_type != R_PPC64_REL14_BRTAKEN
12144 && r_type != R_PPC64_REL14_BRNTAKEN)
12145 continue;
12146
12147 /* Now determine the call target, its name, value,
12148 section. */
12149 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
12150 r_indx, input_bfd))
12151 goto error_ret_free_internal;
12152 hash = (struct ppc_link_hash_entry *) h;
12153
12154 ok_dest = FALSE;
12155 fdh = NULL;
12156 sym_value = 0;
12157 if (hash == NULL)
12158 {
12159 sym_value = sym->st_value;
12160 ok_dest = TRUE;
12161 }
12162 else if (hash->elf.root.type == bfd_link_hash_defined
12163 || hash->elf.root.type == bfd_link_hash_defweak)
12164 {
12165 sym_value = hash->elf.root.u.def.value;
12166 if (sym_sec->output_section != NULL)
12167 ok_dest = TRUE;
12168 }
12169 else if (hash->elf.root.type == bfd_link_hash_undefweak
12170 || hash->elf.root.type == bfd_link_hash_undefined)
12171 {
12172 /* Recognise an old ABI func code entry sym, and
12173 use the func descriptor sym instead if it is
12174 defined. */
12175 if (hash->elf.root.root.string[0] == '.'
12176 && (fdh = lookup_fdh (hash, htab)) != NULL)
12177 {
12178 if (fdh->elf.root.type == bfd_link_hash_defined
12179 || fdh->elf.root.type == bfd_link_hash_defweak)
12180 {
12181 sym_sec = fdh->elf.root.u.def.section;
12182 sym_value = fdh->elf.root.u.def.value;
12183 if (sym_sec->output_section != NULL)
12184 ok_dest = TRUE;
12185 }
12186 else
12187 fdh = NULL;
12188 }
12189 }
12190 else
12191 {
12192 bfd_set_error (bfd_error_bad_value);
12193 goto error_ret_free_internal;
12194 }
12195
12196 destination = 0;
12197 local_off = 0;
12198 if (ok_dest)
12199 {
12200 sym_value += irela->r_addend;
12201 destination = (sym_value
12202 + sym_sec->output_offset
12203 + sym_sec->output_section->vma);
12204 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12205 ? hash->elf.other
12206 : sym->st_other);
12207 }
12208
12209 code_sec = sym_sec;
12210 code_value = sym_value;
12211 opd = get_opd_info (sym_sec);
12212 if (opd != NULL)
12213 {
12214 bfd_vma dest;
12215
12216 if (hash == NULL && opd->adjust != NULL)
12217 {
12218 long adjust = opd->adjust[OPD_NDX (sym_value)];
12219 if (adjust == -1)
12220 continue;
12221 code_value += adjust;
12222 sym_value += adjust;
12223 }
12224 dest = opd_entry_value (sym_sec, sym_value,
12225 &code_sec, &code_value, FALSE);
12226 if (dest != (bfd_vma) -1)
12227 {
12228 destination = dest;
12229 if (fdh != NULL)
12230 {
12231 /* Fixup old ABI sym to point at code
12232 entry. */
12233 hash->elf.root.type = bfd_link_hash_defweak;
12234 hash->elf.root.u.def.section = code_sec;
12235 hash->elf.root.u.def.value = code_value;
12236 }
12237 }
12238 }
12239
12240 /* Determine what (if any) linker stub is needed. */
12241 plt_ent = NULL;
12242 stub_type = ppc_type_of_stub (section, irela, &hash,
12243 &plt_ent, destination,
12244 local_off);
12245
12246 if (stub_type != ppc_stub_plt_call)
12247 {
12248 /* Check whether we need a TOC adjusting stub.
12249 Since the linker pastes together pieces from
12250 different object files when creating the
12251 _init and _fini functions, it may be that a
12252 call to what looks like a local sym is in
12253 fact a call needing a TOC adjustment. */
12254 if (code_sec != NULL
12255 && code_sec->output_section != NULL
12256 && (htab->stub_group[code_sec->id].toc_off
12257 != htab->stub_group[section->id].toc_off)
12258 && (code_sec->has_toc_reloc
12259 || code_sec->makes_toc_func_call))
12260 stub_type = ppc_stub_long_branch_r2off;
12261 }
12262
12263 if (stub_type == ppc_stub_none)
12264 continue;
12265
12266 /* __tls_get_addr calls might be eliminated. */
12267 if (stub_type != ppc_stub_plt_call
12268 && hash != NULL
12269 && (hash == htab->tls_get_addr
12270 || hash == htab->tls_get_addr_fd)
12271 && section->has_tls_reloc
12272 && irela != internal_relocs)
12273 {
12274 /* Get tls info. */
12275 unsigned char *tls_mask;
12276
12277 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
12278 irela - 1, input_bfd))
12279 goto error_ret_free_internal;
12280 if (*tls_mask != 0)
12281 continue;
12282 }
12283
12284 if (stub_type == ppc_stub_plt_call
12285 && irela + 1 < irelaend
12286 && irela[1].r_offset == irela->r_offset + 4
12287 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
12288 {
12289 if (!tocsave_find (htab, INSERT,
12290 &local_syms, irela + 1, input_bfd))
12291 goto error_ret_free_internal;
12292 }
12293 else if (stub_type == ppc_stub_plt_call)
12294 stub_type = ppc_stub_plt_call_r2save;
12295
12296 /* Support for grouping stub sections. */
12297 id_sec = htab->stub_group[section->id].link_sec;
12298
12299 /* Get the name of this stub. */
12300 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
12301 if (!stub_name)
12302 goto error_ret_free_internal;
12303
12304 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
12305 stub_name, FALSE, FALSE);
12306 if (stub_entry != NULL)
12307 {
12308 /* The proper stub has already been created. */
12309 free (stub_name);
12310 if (stub_type == ppc_stub_plt_call_r2save)
12311 stub_entry->stub_type = stub_type;
12312 continue;
12313 }
12314
12315 stub_entry = ppc_add_stub (stub_name, section, info);
12316 if (stub_entry == NULL)
12317 {
12318 free (stub_name);
12319 error_ret_free_internal:
12320 if (elf_section_data (section)->relocs == NULL)
12321 free (internal_relocs);
12322 error_ret_free_local:
12323 if (local_syms != NULL
12324 && (symtab_hdr->contents
12325 != (unsigned char *) local_syms))
12326 free (local_syms);
12327 return FALSE;
12328 }
12329
12330 stub_entry->stub_type = stub_type;
12331 if (stub_type != ppc_stub_plt_call
12332 && stub_type != ppc_stub_plt_call_r2save)
12333 {
12334 stub_entry->target_value = code_value;
12335 stub_entry->target_section = code_sec;
12336 }
12337 else
12338 {
12339 stub_entry->target_value = sym_value;
12340 stub_entry->target_section = sym_sec;
12341 }
12342 stub_entry->h = hash;
12343 stub_entry->plt_ent = plt_ent;
12344 stub_entry->other = hash ? hash->elf.other : sym->st_other;
12345
12346 if (stub_entry->h != NULL)
12347 htab->stub_globals += 1;
12348 }
12349
12350 /* We're done with the internal relocs, free them. */
12351 if (elf_section_data (section)->relocs != internal_relocs)
12352 free (internal_relocs);
12353 }
12354
12355 if (local_syms != NULL
12356 && symtab_hdr->contents != (unsigned char *) local_syms)
12357 {
12358 if (!info->keep_memory)
12359 free (local_syms);
12360 else
12361 symtab_hdr->contents = (unsigned char *) local_syms;
12362 }
12363 }
12364
12365 /* We may have added some stubs. Find out the new size of the
12366 stub sections. */
12367 for (stub_sec = htab->params->stub_bfd->sections;
12368 stub_sec != NULL;
12369 stub_sec = stub_sec->next)
12370 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12371 {
12372 stub_sec->rawsize = stub_sec->size;
12373 stub_sec->size = 0;
12374 stub_sec->reloc_count = 0;
12375 stub_sec->flags &= ~SEC_RELOC;
12376 }
12377
12378 htab->brlt->size = 0;
12379 htab->brlt->reloc_count = 0;
12380 htab->brlt->flags &= ~SEC_RELOC;
12381 if (htab->relbrlt != NULL)
12382 htab->relbrlt->size = 0;
12383
12384 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
12385
12386 if (info->emitrelocations
12387 && htab->glink != NULL && htab->glink->size != 0)
12388 {
12389 htab->glink->reloc_count = 1;
12390 htab->glink->flags |= SEC_RELOC;
12391 }
12392
12393 if (htab->glink_eh_frame != NULL
12394 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
12395 && htab->glink_eh_frame->output_section->size != 0)
12396 {
12397 size_t size = 0, align;
12398
12399 for (stub_sec = htab->params->stub_bfd->sections;
12400 stub_sec != NULL;
12401 stub_sec = stub_sec->next)
12402 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12403 size += 24;
12404 if (htab->glink != NULL && htab->glink->size != 0)
12405 size += 24;
12406 if (size != 0)
12407 size += sizeof (glink_eh_frame_cie);
12408 align = 1;
12409 align <<= htab->glink_eh_frame->output_section->alignment_power;
12410 align -= 1;
12411 size = (size + align) & ~align;
12412 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
12413 htab->glink_eh_frame->size = size;
12414 }
12415
12416 if (htab->params->plt_stub_align != 0)
12417 for (stub_sec = htab->params->stub_bfd->sections;
12418 stub_sec != NULL;
12419 stub_sec = stub_sec->next)
12420 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12421 stub_sec->size = ((stub_sec->size
12422 + (1 << htab->params->plt_stub_align) - 1)
12423 & (-1 << htab->params->plt_stub_align));
12424
12425 for (stub_sec = htab->params->stub_bfd->sections;
12426 stub_sec != NULL;
12427 stub_sec = stub_sec->next)
12428 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12429 && stub_sec->rawsize != stub_sec->size)
12430 break;
12431
12432 /* Exit from this loop when no stubs have been added, and no stubs
12433 have changed size. */
12434 if (stub_sec == NULL
12435 && (htab->glink_eh_frame == NULL
12436 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
12437 break;
12438
12439 /* Ask the linker to do its stuff. */
12440 (*htab->params->layout_sections_again) ();
12441 }
12442
12443 if (htab->glink_eh_frame != NULL
12444 && htab->glink_eh_frame->size != 0)
12445 {
12446 bfd_vma val;
12447 bfd_byte *p, *last_fde;
12448 size_t last_fde_len, size, align, pad;
12449 asection *stub_sec;
12450
12451 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
12452 if (p == NULL)
12453 return FALSE;
12454 htab->glink_eh_frame->contents = p;
12455 last_fde = p;
12456
12457 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
12458 /* CIE length (rewrite in case little-endian). */
12459 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
12460 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
12461 p += sizeof (glink_eh_frame_cie);
12462
12463 for (stub_sec = htab->params->stub_bfd->sections;
12464 stub_sec != NULL;
12465 stub_sec = stub_sec->next)
12466 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12467 {
12468 last_fde = p;
12469 last_fde_len = 20;
12470 /* FDE length. */
12471 bfd_put_32 (htab->elf.dynobj, 20, p);
12472 p += 4;
12473 /* CIE pointer. */
12474 val = p - htab->glink_eh_frame->contents;
12475 bfd_put_32 (htab->elf.dynobj, val, p);
12476 p += 4;
12477 /* Offset to stub section, written later. */
12478 p += 4;
12479 /* stub section size. */
12480 bfd_put_32 (htab->elf.dynobj, stub_sec->size, p);
12481 p += 4;
12482 /* Augmentation. */
12483 p += 1;
12484 /* Pad. */
12485 p += 7;
12486 }
12487 if (htab->glink != NULL && htab->glink->size != 0)
12488 {
12489 last_fde = p;
12490 last_fde_len = 20;
12491 /* FDE length. */
12492 bfd_put_32 (htab->elf.dynobj, 20, p);
12493 p += 4;
12494 /* CIE pointer. */
12495 val = p - htab->glink_eh_frame->contents;
12496 bfd_put_32 (htab->elf.dynobj, val, p);
12497 p += 4;
12498 /* Offset to .glink, written later. */
12499 p += 4;
12500 /* .glink size. */
12501 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
12502 p += 4;
12503 /* Augmentation. */
12504 p += 1;
12505
12506 *p++ = DW_CFA_advance_loc + 1;
12507 *p++ = DW_CFA_register;
12508 *p++ = 65;
12509 *p++ = 12;
12510 *p++ = DW_CFA_advance_loc + 4;
12511 *p++ = DW_CFA_restore_extended;
12512 *p++ = 65;
12513 }
12514 /* Subsume any padding into the last FDE if user .eh_frame
12515 sections are aligned more than glink_eh_frame. Otherwise any
12516 zero padding will be seen as a terminator. */
12517 size = p - htab->glink_eh_frame->contents;
12518 align = 1;
12519 align <<= htab->glink_eh_frame->output_section->alignment_power;
12520 align -= 1;
12521 pad = ((size + align) & ~align) - size;
12522 htab->glink_eh_frame->size = size + pad;
12523 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12524 }
12525
12526 maybe_strip_output (info, htab->brlt);
12527 if (htab->glink_eh_frame != NULL)
12528 maybe_strip_output (info, htab->glink_eh_frame);
12529
12530 return TRUE;
12531 }
12532
12533 /* Called after we have determined section placement. If sections
12534 move, we'll be called again. Provide a value for TOCstart. */
12535
12536 bfd_vma
12537 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
12538 {
12539 asection *s;
12540 bfd_vma TOCstart, adjust;
12541
12542 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
12543 order. The TOC starts where the first of these sections starts. */
12544 s = bfd_get_section_by_name (obfd, ".got");
12545 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12546 s = bfd_get_section_by_name (obfd, ".toc");
12547 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12548 s = bfd_get_section_by_name (obfd, ".tocbss");
12549 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12550 s = bfd_get_section_by_name (obfd, ".plt");
12551 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
12552 {
12553 /* This may happen for
12554 o references to TOC base (SYM@toc / TOC[tc0]) without a
12555 .toc directive
12556 o bad linker script
12557 o --gc-sections and empty TOC sections
12558
12559 FIXME: Warn user? */
12560
12561 /* Look for a likely section. We probably won't even be
12562 using TOCstart. */
12563 for (s = obfd->sections; s != NULL; s = s->next)
12564 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
12565 | SEC_EXCLUDE))
12566 == (SEC_ALLOC | SEC_SMALL_DATA))
12567 break;
12568 if (s == NULL)
12569 for (s = obfd->sections; s != NULL; s = s->next)
12570 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
12571 == (SEC_ALLOC | SEC_SMALL_DATA))
12572 break;
12573 if (s == NULL)
12574 for (s = obfd->sections; s != NULL; s = s->next)
12575 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
12576 == SEC_ALLOC)
12577 break;
12578 if (s == NULL)
12579 for (s = obfd->sections; s != NULL; s = s->next)
12580 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
12581 break;
12582 }
12583
12584 TOCstart = 0;
12585 if (s != NULL)
12586 TOCstart = s->output_section->vma + s->output_offset;
12587
12588 /* Force alignment. */
12589 adjust = TOCstart & (TOC_BASE_ALIGN - 1);
12590 TOCstart -= adjust;
12591 _bfd_set_gp_value (obfd, TOCstart);
12592
12593 if (info != NULL && s != NULL)
12594 {
12595 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12596
12597 if (htab != NULL)
12598 {
12599 if (htab->elf.hgot != NULL)
12600 {
12601 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF - adjust;
12602 htab->elf.hgot->root.u.def.section = s;
12603 }
12604 }
12605 else
12606 {
12607 struct bfd_link_hash_entry *bh = NULL;
12608 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
12609 s, TOC_BASE_OFF - adjust,
12610 NULL, FALSE, FALSE, &bh);
12611 }
12612 }
12613 return TOCstart;
12614 }
12615
12616 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
12617 write out any global entry stubs. */
12618
12619 static bfd_boolean
12620 build_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
12621 {
12622 struct bfd_link_info *info;
12623 struct ppc_link_hash_table *htab;
12624 struct plt_entry *pent;
12625 asection *s;
12626
12627 if (h->root.type == bfd_link_hash_indirect)
12628 return TRUE;
12629
12630 if (!h->pointer_equality_needed)
12631 return TRUE;
12632
12633 if (h->def_regular)
12634 return TRUE;
12635
12636 info = inf;
12637 htab = ppc_hash_table (info);
12638 if (htab == NULL)
12639 return FALSE;
12640
12641 s = htab->glink;
12642 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
12643 if (pent->plt.offset != (bfd_vma) -1
12644 && pent->addend == 0)
12645 {
12646 bfd_byte *p;
12647 asection *plt;
12648 bfd_vma off;
12649
12650 p = s->contents + h->root.u.def.value;
12651 plt = htab->elf.splt;
12652 if (!htab->elf.dynamic_sections_created
12653 || h->dynindx == -1)
12654 plt = htab->elf.iplt;
12655 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
12656 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
12657
12658 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
12659 {
12660 info->callbacks->einfo
12661 (_("%P: linkage table error against `%T'\n"),
12662 h->root.root.string);
12663 bfd_set_error (bfd_error_bad_value);
12664 htab->stub_error = TRUE;
12665 }
12666
12667 htab->stub_count[ppc_stub_global_entry - 1] += 1;
12668 if (htab->params->emit_stub_syms)
12669 {
12670 size_t len = strlen (h->root.root.string);
12671 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
12672
12673 if (name == NULL)
12674 return FALSE;
12675
12676 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
12677 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
12678 if (h == NULL)
12679 return FALSE;
12680 if (h->root.type == bfd_link_hash_new)
12681 {
12682 h->root.type = bfd_link_hash_defined;
12683 h->root.u.def.section = s;
12684 h->root.u.def.value = p - s->contents;
12685 h->ref_regular = 1;
12686 h->def_regular = 1;
12687 h->ref_regular_nonweak = 1;
12688 h->forced_local = 1;
12689 h->non_elf = 0;
12690 h->root.linker_def = 1;
12691 }
12692 }
12693
12694 if (PPC_HA (off) != 0)
12695 {
12696 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
12697 p += 4;
12698 }
12699 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
12700 p += 4;
12701 bfd_put_32 (s->owner, MTCTR_R12, p);
12702 p += 4;
12703 bfd_put_32 (s->owner, BCTR, p);
12704 break;
12705 }
12706 return TRUE;
12707 }
12708
12709 /* Build all the stubs associated with the current output file.
12710 The stubs are kept in a hash table attached to the main linker
12711 hash table. This function is called via gldelf64ppc_finish. */
12712
12713 bfd_boolean
12714 ppc64_elf_build_stubs (struct bfd_link_info *info,
12715 char **stats)
12716 {
12717 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12718 asection *stub_sec;
12719 bfd_byte *p;
12720 int stub_sec_count = 0;
12721
12722 if (htab == NULL)
12723 return FALSE;
12724
12725 /* Allocate memory to hold the linker stubs. */
12726 for (stub_sec = htab->params->stub_bfd->sections;
12727 stub_sec != NULL;
12728 stub_sec = stub_sec->next)
12729 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
12730 && stub_sec->size != 0)
12731 {
12732 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd, stub_sec->size);
12733 if (stub_sec->contents == NULL)
12734 return FALSE;
12735 /* We want to check that built size is the same as calculated
12736 size. rawsize is a convenient location to use. */
12737 stub_sec->rawsize = stub_sec->size;
12738 stub_sec->size = 0;
12739 }
12740
12741 if (htab->glink != NULL && htab->glink->size != 0)
12742 {
12743 unsigned int indx;
12744 bfd_vma plt0;
12745
12746 /* Build the .glink plt call stub. */
12747 if (htab->params->emit_stub_syms)
12748 {
12749 struct elf_link_hash_entry *h;
12750 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
12751 TRUE, FALSE, FALSE);
12752 if (h == NULL)
12753 return FALSE;
12754 if (h->root.type == bfd_link_hash_new)
12755 {
12756 h->root.type = bfd_link_hash_defined;
12757 h->root.u.def.section = htab->glink;
12758 h->root.u.def.value = 8;
12759 h->ref_regular = 1;
12760 h->def_regular = 1;
12761 h->ref_regular_nonweak = 1;
12762 h->forced_local = 1;
12763 h->non_elf = 0;
12764 h->root.linker_def = 1;
12765 }
12766 }
12767 plt0 = (htab->elf.splt->output_section->vma
12768 + htab->elf.splt->output_offset
12769 - 16);
12770 if (info->emitrelocations)
12771 {
12772 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
12773 if (r == NULL)
12774 return FALSE;
12775 r->r_offset = (htab->glink->output_offset
12776 + htab->glink->output_section->vma);
12777 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
12778 r->r_addend = plt0;
12779 }
12780 p = htab->glink->contents;
12781 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
12782 bfd_put_64 (htab->glink->owner, plt0, p);
12783 p += 8;
12784 if (htab->opd_abi)
12785 {
12786 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
12787 p += 4;
12788 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12789 p += 4;
12790 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12791 p += 4;
12792 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12793 p += 4;
12794 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
12795 p += 4;
12796 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12797 p += 4;
12798 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12799 p += 4;
12800 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
12801 p += 4;
12802 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12803 p += 4;
12804 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
12805 p += 4;
12806 }
12807 else
12808 {
12809 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
12810 p += 4;
12811 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
12812 p += 4;
12813 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
12814 p += 4;
12815 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
12816 p += 4;
12817 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
12818 p += 4;
12819 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
12820 p += 4;
12821 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
12822 p += 4;
12823 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
12824 p += 4;
12825 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
12826 p += 4;
12827 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
12828 p += 4;
12829 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
12830 p += 4;
12831 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
12832 p += 4;
12833 }
12834 bfd_put_32 (htab->glink->owner, BCTR, p);
12835 p += 4;
12836 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
12837 {
12838 bfd_put_32 (htab->glink->owner, NOP, p);
12839 p += 4;
12840 }
12841
12842 /* Build the .glink lazy link call stubs. */
12843 indx = 0;
12844 while (p < htab->glink->contents + htab->glink->rawsize)
12845 {
12846 if (htab->opd_abi)
12847 {
12848 if (indx < 0x8000)
12849 {
12850 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
12851 p += 4;
12852 }
12853 else
12854 {
12855 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
12856 p += 4;
12857 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
12858 p);
12859 p += 4;
12860 }
12861 }
12862 bfd_put_32 (htab->glink->owner,
12863 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
12864 indx++;
12865 p += 4;
12866 }
12867
12868 /* Build .glink global entry stubs. */
12869 if (htab->glink->size > htab->glink->rawsize)
12870 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs, info);
12871 }
12872
12873 if (htab->brlt != NULL && htab->brlt->size != 0)
12874 {
12875 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
12876 htab->brlt->size);
12877 if (htab->brlt->contents == NULL)
12878 return FALSE;
12879 }
12880 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
12881 {
12882 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
12883 htab->relbrlt->size);
12884 if (htab->relbrlt->contents == NULL)
12885 return FALSE;
12886 }
12887
12888 /* Build the stubs as directed by the stub hash table. */
12889 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12890
12891 if (htab->relbrlt != NULL)
12892 htab->relbrlt->reloc_count = 0;
12893
12894 if (htab->params->plt_stub_align != 0)
12895 for (stub_sec = htab->params->stub_bfd->sections;
12896 stub_sec != NULL;
12897 stub_sec = stub_sec->next)
12898 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12899 stub_sec->size = ((stub_sec->size
12900 + (1 << htab->params->plt_stub_align) - 1)
12901 & (-1 << htab->params->plt_stub_align));
12902
12903 for (stub_sec = htab->params->stub_bfd->sections;
12904 stub_sec != NULL;
12905 stub_sec = stub_sec->next)
12906 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12907 {
12908 stub_sec_count += 1;
12909 if (stub_sec->rawsize != stub_sec->size)
12910 break;
12911 }
12912
12913 /* Note that the glink_eh_frame check here is not only testing that
12914 the generated size matched the calculated size but also that
12915 bfd_elf_discard_info didn't make any changes to the section. */
12916 if (stub_sec != NULL
12917 || (htab->glink_eh_frame != NULL
12918 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12919 {
12920 htab->stub_error = TRUE;
12921 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12922 }
12923
12924 if (htab->stub_error)
12925 return FALSE;
12926
12927 if (stats != NULL)
12928 {
12929 *stats = bfd_malloc (500);
12930 if (*stats == NULL)
12931 return FALSE;
12932
12933 sprintf (*stats, _("linker stubs in %u group%s\n"
12934 " branch %lu\n"
12935 " toc adjust %lu\n"
12936 " long branch %lu\n"
12937 " long toc adj %lu\n"
12938 " plt call %lu\n"
12939 " plt call toc %lu\n"
12940 " global entry %lu"),
12941 stub_sec_count,
12942 stub_sec_count == 1 ? "" : "s",
12943 htab->stub_count[ppc_stub_long_branch - 1],
12944 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12945 htab->stub_count[ppc_stub_plt_branch - 1],
12946 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12947 htab->stub_count[ppc_stub_plt_call - 1],
12948 htab->stub_count[ppc_stub_plt_call_r2save - 1],
12949 htab->stub_count[ppc_stub_global_entry - 1]);
12950 }
12951 return TRUE;
12952 }
12953
12954 /* This function undoes the changes made by add_symbol_adjust. */
12955
12956 static bfd_boolean
12957 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12958 {
12959 struct ppc_link_hash_entry *eh;
12960
12961 if (h->root.type == bfd_link_hash_indirect)
12962 return TRUE;
12963
12964 eh = (struct ppc_link_hash_entry *) h;
12965 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12966 return TRUE;
12967
12968 eh->elf.root.type = bfd_link_hash_undefined;
12969 return TRUE;
12970 }
12971
12972 void
12973 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12974 {
12975 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12976
12977 if (htab != NULL)
12978 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12979 }
12980
12981 /* What to do when ld finds relocations against symbols defined in
12982 discarded sections. */
12983
12984 static unsigned int
12985 ppc64_elf_action_discarded (asection *sec)
12986 {
12987 if (strcmp (".opd", sec->name) == 0)
12988 return 0;
12989
12990 if (strcmp (".toc", sec->name) == 0)
12991 return 0;
12992
12993 if (strcmp (".toc1", sec->name) == 0)
12994 return 0;
12995
12996 return _bfd_elf_default_action_discarded (sec);
12997 }
12998
12999 /* The RELOCATE_SECTION function is called by the ELF backend linker
13000 to handle the relocations for a section.
13001
13002 The relocs are always passed as Rela structures; if the section
13003 actually uses Rel structures, the r_addend field will always be
13004 zero.
13005
13006 This function is responsible for adjust the section contents as
13007 necessary, and (if using Rela relocs and generating a
13008 relocatable output file) adjusting the reloc addend as
13009 necessary.
13010
13011 This function does not have to worry about setting the reloc
13012 address or the reloc symbol index.
13013
13014 LOCAL_SYMS is a pointer to the swapped in local symbols.
13015
13016 LOCAL_SECTIONS is an array giving the section in the input file
13017 corresponding to the st_shndx field of each local symbol.
13018
13019 The global hash table entry for the global symbols can be found
13020 via elf_sym_hashes (input_bfd).
13021
13022 When generating relocatable output, this function must handle
13023 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
13024 going to be the section symbol corresponding to the output
13025 section, which means that the addend must be adjusted
13026 accordingly. */
13027
13028 static bfd_boolean
13029 ppc64_elf_relocate_section (bfd *output_bfd,
13030 struct bfd_link_info *info,
13031 bfd *input_bfd,
13032 asection *input_section,
13033 bfd_byte *contents,
13034 Elf_Internal_Rela *relocs,
13035 Elf_Internal_Sym *local_syms,
13036 asection **local_sections)
13037 {
13038 struct ppc_link_hash_table *htab;
13039 Elf_Internal_Shdr *symtab_hdr;
13040 struct elf_link_hash_entry **sym_hashes;
13041 Elf_Internal_Rela *rel;
13042 Elf_Internal_Rela *relend;
13043 Elf_Internal_Rela outrel;
13044 bfd_byte *loc;
13045 struct got_entry **local_got_ents;
13046 bfd_vma TOCstart;
13047 bfd_boolean ret = TRUE;
13048 bfd_boolean is_opd;
13049 /* Assume 'at' branch hints. */
13050 bfd_boolean is_isa_v2 = TRUE;
13051 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
13052
13053 /* Initialize howto table if needed. */
13054 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
13055 ppc_howto_init ();
13056
13057 htab = ppc_hash_table (info);
13058 if (htab == NULL)
13059 return FALSE;
13060
13061 /* Don't relocate stub sections. */
13062 if (input_section->owner == htab->params->stub_bfd)
13063 return TRUE;
13064
13065 BFD_ASSERT (is_ppc64_elf (input_bfd));
13066
13067 local_got_ents = elf_local_got_ents (input_bfd);
13068 TOCstart = elf_gp (output_bfd);
13069 symtab_hdr = &elf_symtab_hdr (input_bfd);
13070 sym_hashes = elf_sym_hashes (input_bfd);
13071 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
13072
13073 rel = relocs;
13074 relend = relocs + input_section->reloc_count;
13075 for (; rel < relend; rel++)
13076 {
13077 enum elf_ppc64_reloc_type r_type;
13078 bfd_vma addend;
13079 bfd_reloc_status_type r;
13080 Elf_Internal_Sym *sym;
13081 asection *sec;
13082 struct elf_link_hash_entry *h_elf;
13083 struct ppc_link_hash_entry *h;
13084 struct ppc_link_hash_entry *fdh;
13085 const char *sym_name;
13086 unsigned long r_symndx, toc_symndx;
13087 bfd_vma toc_addend;
13088 unsigned char tls_mask, tls_gd, tls_type;
13089 unsigned char sym_type;
13090 bfd_vma relocation;
13091 bfd_boolean unresolved_reloc;
13092 bfd_boolean warned;
13093 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
13094 unsigned int insn;
13095 unsigned int mask;
13096 struct ppc_stub_hash_entry *stub_entry;
13097 bfd_vma max_br_offset;
13098 bfd_vma from;
13099 const Elf_Internal_Rela orig_rel = *rel;
13100 reloc_howto_type *howto;
13101 struct reloc_howto_struct alt_howto;
13102
13103 r_type = ELF64_R_TYPE (rel->r_info);
13104 r_symndx = ELF64_R_SYM (rel->r_info);
13105
13106 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
13107 symbol of the previous ADDR64 reloc. The symbol gives us the
13108 proper TOC base to use. */
13109 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
13110 && rel != relocs
13111 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
13112 && is_opd)
13113 r_symndx = ELF64_R_SYM (rel[-1].r_info);
13114
13115 sym = NULL;
13116 sec = NULL;
13117 h_elf = NULL;
13118 sym_name = NULL;
13119 unresolved_reloc = FALSE;
13120 warned = FALSE;
13121
13122 if (r_symndx < symtab_hdr->sh_info)
13123 {
13124 /* It's a local symbol. */
13125 struct _opd_sec_data *opd;
13126
13127 sym = local_syms + r_symndx;
13128 sec = local_sections[r_symndx];
13129 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
13130 sym_type = ELF64_ST_TYPE (sym->st_info);
13131 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13132 opd = get_opd_info (sec);
13133 if (opd != NULL && opd->adjust != NULL)
13134 {
13135 long adjust = opd->adjust[OPD_NDX (sym->st_value
13136 + rel->r_addend)];
13137 if (adjust == -1)
13138 relocation = 0;
13139 else
13140 {
13141 /* If this is a relocation against the opd section sym
13142 and we have edited .opd, adjust the reloc addend so
13143 that ld -r and ld --emit-relocs output is correct.
13144 If it is a reloc against some other .opd symbol,
13145 then the symbol value will be adjusted later. */
13146 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13147 rel->r_addend += adjust;
13148 else
13149 relocation += adjust;
13150 }
13151 }
13152 }
13153 else
13154 {
13155 bfd_boolean ignored;
13156
13157 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13158 r_symndx, symtab_hdr, sym_hashes,
13159 h_elf, sec, relocation,
13160 unresolved_reloc, warned, ignored);
13161 sym_name = h_elf->root.root.string;
13162 sym_type = h_elf->type;
13163 if (sec != NULL
13164 && sec->owner == output_bfd
13165 && strcmp (sec->name, ".opd") == 0)
13166 {
13167 /* This is a symbol defined in a linker script. All
13168 such are defined in output sections, even those
13169 defined by simple assignment from a symbol defined in
13170 an input section. Transfer the symbol to an
13171 appropriate input .opd section, so that a branch to
13172 this symbol will be mapped to the location specified
13173 by the opd entry. */
13174 struct bfd_link_order *lo;
13175 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
13176 if (lo->type == bfd_indirect_link_order)
13177 {
13178 asection *isec = lo->u.indirect.section;
13179 if (h_elf->root.u.def.value >= isec->output_offset
13180 && h_elf->root.u.def.value < (isec->output_offset
13181 + isec->size))
13182 {
13183 h_elf->root.u.def.value -= isec->output_offset;
13184 h_elf->root.u.def.section = isec;
13185 sec = isec;
13186 break;
13187 }
13188 }
13189 }
13190 }
13191 h = (struct ppc_link_hash_entry *) h_elf;
13192
13193 if (sec != NULL && discarded_section (sec))
13194 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13195 rel, 1, relend,
13196 ppc64_elf_howto_table[r_type], 0,
13197 contents);
13198
13199 if (info->relocatable)
13200 continue;
13201
13202 if (h != NULL && &h->elf == htab->elf.hgot)
13203 {
13204 relocation = (TOCstart
13205 + htab->stub_group[input_section->id].toc_off);
13206 sec = bfd_abs_section_ptr;
13207 unresolved_reloc = FALSE;
13208 }
13209
13210 /* TLS optimizations. Replace instruction sequences and relocs
13211 based on information we collected in tls_optimize. We edit
13212 RELOCS so that --emit-relocs will output something sensible
13213 for the final instruction stream. */
13214 tls_mask = 0;
13215 tls_gd = 0;
13216 toc_symndx = 0;
13217 if (h != NULL)
13218 tls_mask = h->tls_mask;
13219 else if (local_got_ents != NULL)
13220 {
13221 struct plt_entry **local_plt = (struct plt_entry **)
13222 (local_got_ents + symtab_hdr->sh_info);
13223 unsigned char *lgot_masks = (unsigned char *)
13224 (local_plt + symtab_hdr->sh_info);
13225 tls_mask = lgot_masks[r_symndx];
13226 }
13227 if (tls_mask == 0
13228 && (r_type == R_PPC64_TLS
13229 || r_type == R_PPC64_TLSGD
13230 || r_type == R_PPC64_TLSLD))
13231 {
13232 /* Check for toc tls entries. */
13233 unsigned char *toc_tls;
13234
13235 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13236 &local_syms, rel, input_bfd))
13237 return FALSE;
13238
13239 if (toc_tls)
13240 tls_mask = *toc_tls;
13241 }
13242
13243 /* Check that tls relocs are used with tls syms, and non-tls
13244 relocs are used with non-tls syms. */
13245 if (r_symndx != STN_UNDEF
13246 && r_type != R_PPC64_NONE
13247 && (h == NULL
13248 || h->elf.root.type == bfd_link_hash_defined
13249 || h->elf.root.type == bfd_link_hash_defweak)
13250 && (IS_PPC64_TLS_RELOC (r_type)
13251 != (sym_type == STT_TLS
13252 || (sym_type == STT_SECTION
13253 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
13254 {
13255 if (tls_mask != 0
13256 && (r_type == R_PPC64_TLS
13257 || r_type == R_PPC64_TLSGD
13258 || r_type == R_PPC64_TLSLD))
13259 /* R_PPC64_TLS is OK against a symbol in the TOC. */
13260 ;
13261 else
13262 info->callbacks->einfo
13263 (!IS_PPC64_TLS_RELOC (r_type)
13264 ? _("%P: %H: %s used with TLS symbol `%T'\n")
13265 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
13266 input_bfd, input_section, rel->r_offset,
13267 ppc64_elf_howto_table[r_type]->name,
13268 sym_name);
13269 }
13270
13271 /* Ensure reloc mapping code below stays sane. */
13272 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
13273 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
13274 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
13275 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
13276 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
13277 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
13278 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
13279 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
13280 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
13281 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
13282 abort ();
13283
13284 switch (r_type)
13285 {
13286 default:
13287 break;
13288
13289 case R_PPC64_LO_DS_OPT:
13290 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13291 if ((insn & (0x3f << 26)) != 58u << 26)
13292 abort ();
13293 insn += (14u << 26) - (58u << 26);
13294 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13295 r_type = R_PPC64_TOC16_LO;
13296 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13297 break;
13298
13299 case R_PPC64_TOC16:
13300 case R_PPC64_TOC16_LO:
13301 case R_PPC64_TOC16_DS:
13302 case R_PPC64_TOC16_LO_DS:
13303 {
13304 /* Check for toc tls entries. */
13305 unsigned char *toc_tls;
13306 int retval;
13307
13308 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
13309 &local_syms, rel, input_bfd);
13310 if (retval == 0)
13311 return FALSE;
13312
13313 if (toc_tls)
13314 {
13315 tls_mask = *toc_tls;
13316 if (r_type == R_PPC64_TOC16_DS
13317 || r_type == R_PPC64_TOC16_LO_DS)
13318 {
13319 if (tls_mask != 0
13320 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
13321 goto toctprel;
13322 }
13323 else
13324 {
13325 /* If we found a GD reloc pair, then we might be
13326 doing a GD->IE transition. */
13327 if (retval == 2)
13328 {
13329 tls_gd = TLS_TPRELGD;
13330 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13331 goto tls_ldgd_opt;
13332 }
13333 else if (retval == 3)
13334 {
13335 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13336 goto tls_ldgd_opt;
13337 }
13338 }
13339 }
13340 }
13341 break;
13342
13343 case R_PPC64_GOT_TPREL16_HI:
13344 case R_PPC64_GOT_TPREL16_HA:
13345 if (tls_mask != 0
13346 && (tls_mask & TLS_TPREL) == 0)
13347 {
13348 rel->r_offset -= d_offset;
13349 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13350 r_type = R_PPC64_NONE;
13351 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13352 }
13353 break;
13354
13355 case R_PPC64_GOT_TPREL16_DS:
13356 case R_PPC64_GOT_TPREL16_LO_DS:
13357 if (tls_mask != 0
13358 && (tls_mask & TLS_TPREL) == 0)
13359 {
13360 toctprel:
13361 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
13362 insn &= 31 << 21;
13363 insn |= 0x3c0d0000; /* addis 0,13,0 */
13364 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
13365 r_type = R_PPC64_TPREL16_HA;
13366 if (toc_symndx != 0)
13367 {
13368 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13369 rel->r_addend = toc_addend;
13370 /* We changed the symbol. Start over in order to
13371 get h, sym, sec etc. right. */
13372 rel--;
13373 continue;
13374 }
13375 else
13376 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13377 }
13378 break;
13379
13380 case R_PPC64_TLS:
13381 if (tls_mask != 0
13382 && (tls_mask & TLS_TPREL) == 0)
13383 {
13384 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
13385 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
13386 if (insn == 0)
13387 abort ();
13388 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13389 /* Was PPC64_TLS which sits on insn boundary, now
13390 PPC64_TPREL16_LO which is at low-order half-word. */
13391 rel->r_offset += d_offset;
13392 r_type = R_PPC64_TPREL16_LO;
13393 if (toc_symndx != 0)
13394 {
13395 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
13396 rel->r_addend = toc_addend;
13397 /* We changed the symbol. Start over in order to
13398 get h, sym, sec etc. right. */
13399 rel--;
13400 continue;
13401 }
13402 else
13403 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13404 }
13405 break;
13406
13407 case R_PPC64_GOT_TLSGD16_HI:
13408 case R_PPC64_GOT_TLSGD16_HA:
13409 tls_gd = TLS_TPRELGD;
13410 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13411 goto tls_gdld_hi;
13412 break;
13413
13414 case R_PPC64_GOT_TLSLD16_HI:
13415 case R_PPC64_GOT_TLSLD16_HA:
13416 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13417 {
13418 tls_gdld_hi:
13419 if ((tls_mask & tls_gd) != 0)
13420 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13421 + R_PPC64_GOT_TPREL16_DS);
13422 else
13423 {
13424 rel->r_offset -= d_offset;
13425 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13426 r_type = R_PPC64_NONE;
13427 }
13428 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13429 }
13430 break;
13431
13432 case R_PPC64_GOT_TLSGD16:
13433 case R_PPC64_GOT_TLSGD16_LO:
13434 tls_gd = TLS_TPRELGD;
13435 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13436 goto tls_ldgd_opt;
13437 break;
13438
13439 case R_PPC64_GOT_TLSLD16:
13440 case R_PPC64_GOT_TLSLD16_LO:
13441 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13442 {
13443 unsigned int insn1, insn2, insn3;
13444 bfd_vma offset;
13445
13446 tls_ldgd_opt:
13447 offset = (bfd_vma) -1;
13448 /* If not using the newer R_PPC64_TLSGD/LD to mark
13449 __tls_get_addr calls, we must trust that the call
13450 stays with its arg setup insns, ie. that the next
13451 reloc is the __tls_get_addr call associated with
13452 the current reloc. Edit both insns. */
13453 if (input_section->has_tls_get_addr_call
13454 && rel + 1 < relend
13455 && branch_reloc_hash_match (input_bfd, rel + 1,
13456 htab->tls_get_addr,
13457 htab->tls_get_addr_fd))
13458 offset = rel[1].r_offset;
13459 /* We read the low GOT_TLS (or TOC16) insn because we
13460 need to keep the destination reg. It may be
13461 something other than the usual r3, and moved to r3
13462 before the call by intervening code. */
13463 insn1 = bfd_get_32 (output_bfd,
13464 contents + rel->r_offset - d_offset);
13465 if ((tls_mask & tls_gd) != 0)
13466 {
13467 /* IE */
13468 insn1 &= (0x1f << 21) | (0x1f << 16);
13469 insn1 |= 58 << 26; /* ld */
13470 insn2 = 0x7c636a14; /* add 3,3,13 */
13471 if (offset != (bfd_vma) -1)
13472 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13473 if ((tls_mask & TLS_EXPLICIT) == 0)
13474 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
13475 + R_PPC64_GOT_TPREL16_DS);
13476 else
13477 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
13478 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13479 }
13480 else
13481 {
13482 /* LE */
13483 insn1 &= 0x1f << 21;
13484 insn1 |= 0x3c0d0000; /* addis r,13,0 */
13485 insn2 = 0x38630000; /* addi 3,3,0 */
13486 if (tls_gd == 0)
13487 {
13488 /* Was an LD reloc. */
13489 if (toc_symndx)
13490 sec = local_sections[toc_symndx];
13491 for (r_symndx = 0;
13492 r_symndx < symtab_hdr->sh_info;
13493 r_symndx++)
13494 if (local_sections[r_symndx] == sec)
13495 break;
13496 if (r_symndx >= symtab_hdr->sh_info)
13497 r_symndx = STN_UNDEF;
13498 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13499 if (r_symndx != STN_UNDEF)
13500 rel->r_addend -= (local_syms[r_symndx].st_value
13501 + sec->output_offset
13502 + sec->output_section->vma);
13503 }
13504 else if (toc_symndx != 0)
13505 {
13506 r_symndx = toc_symndx;
13507 rel->r_addend = toc_addend;
13508 }
13509 r_type = R_PPC64_TPREL16_HA;
13510 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13511 if (offset != (bfd_vma) -1)
13512 {
13513 rel[1].r_info = ELF64_R_INFO (r_symndx,
13514 R_PPC64_TPREL16_LO);
13515 rel[1].r_offset = offset + d_offset;
13516 rel[1].r_addend = rel->r_addend;
13517 }
13518 }
13519 bfd_put_32 (output_bfd, insn1,
13520 contents + rel->r_offset - d_offset);
13521 if (offset != (bfd_vma) -1)
13522 {
13523 insn3 = bfd_get_32 (output_bfd,
13524 contents + offset + 4);
13525 if (insn3 == NOP
13526 || insn3 == CROR_151515 || insn3 == CROR_313131)
13527 {
13528 rel[1].r_offset += 4;
13529 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13530 insn2 = NOP;
13531 }
13532 bfd_put_32 (output_bfd, insn2, contents + offset);
13533 }
13534 if ((tls_mask & tls_gd) == 0
13535 && (tls_gd == 0 || toc_symndx != 0))
13536 {
13537 /* We changed the symbol. Start over in order
13538 to get h, sym, sec etc. right. */
13539 rel--;
13540 continue;
13541 }
13542 }
13543 break;
13544
13545 case R_PPC64_TLSGD:
13546 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
13547 {
13548 unsigned int insn2, insn3;
13549 bfd_vma offset = rel->r_offset;
13550
13551 if ((tls_mask & TLS_TPRELGD) != 0)
13552 {
13553 /* IE */
13554 r_type = R_PPC64_NONE;
13555 insn2 = 0x7c636a14; /* add 3,3,13 */
13556 }
13557 else
13558 {
13559 /* LE */
13560 if (toc_symndx != 0)
13561 {
13562 r_symndx = toc_symndx;
13563 rel->r_addend = toc_addend;
13564 }
13565 r_type = R_PPC64_TPREL16_LO;
13566 rel->r_offset = offset + d_offset;
13567 insn2 = 0x38630000; /* addi 3,3,0 */
13568 }
13569 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13570 /* Zap the reloc on the _tls_get_addr call too. */
13571 BFD_ASSERT (offset == rel[1].r_offset);
13572 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13573 insn3 = bfd_get_32 (output_bfd,
13574 contents + offset + 4);
13575 if (insn3 == NOP
13576 || insn3 == CROR_151515 || insn3 == CROR_313131)
13577 {
13578 rel->r_offset += 4;
13579 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13580 insn2 = NOP;
13581 }
13582 bfd_put_32 (output_bfd, insn2, contents + offset);
13583 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
13584 {
13585 rel--;
13586 continue;
13587 }
13588 }
13589 break;
13590
13591 case R_PPC64_TLSLD:
13592 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
13593 {
13594 unsigned int insn2, insn3;
13595 bfd_vma offset = rel->r_offset;
13596
13597 if (toc_symndx)
13598 sec = local_sections[toc_symndx];
13599 for (r_symndx = 0;
13600 r_symndx < symtab_hdr->sh_info;
13601 r_symndx++)
13602 if (local_sections[r_symndx] == sec)
13603 break;
13604 if (r_symndx >= symtab_hdr->sh_info)
13605 r_symndx = STN_UNDEF;
13606 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
13607 if (r_symndx != STN_UNDEF)
13608 rel->r_addend -= (local_syms[r_symndx].st_value
13609 + sec->output_offset
13610 + sec->output_section->vma);
13611
13612 r_type = R_PPC64_TPREL16_LO;
13613 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13614 rel->r_offset = offset + d_offset;
13615 /* Zap the reloc on the _tls_get_addr call too. */
13616 BFD_ASSERT (offset == rel[1].r_offset);
13617 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
13618 insn2 = 0x38630000; /* addi 3,3,0 */
13619 insn3 = bfd_get_32 (output_bfd,
13620 contents + offset + 4);
13621 if (insn3 == NOP
13622 || insn3 == CROR_151515 || insn3 == CROR_313131)
13623 {
13624 rel->r_offset += 4;
13625 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
13626 insn2 = NOP;
13627 }
13628 bfd_put_32 (output_bfd, insn2, contents + offset);
13629 rel--;
13630 continue;
13631 }
13632 break;
13633
13634 case R_PPC64_DTPMOD64:
13635 if (rel + 1 < relend
13636 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
13637 && rel[1].r_offset == rel->r_offset + 8)
13638 {
13639 if ((tls_mask & TLS_GD) == 0)
13640 {
13641 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
13642 if ((tls_mask & TLS_TPRELGD) != 0)
13643 r_type = R_PPC64_TPREL64;
13644 else
13645 {
13646 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13647 r_type = R_PPC64_NONE;
13648 }
13649 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13650 }
13651 }
13652 else
13653 {
13654 if ((tls_mask & TLS_LD) == 0)
13655 {
13656 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
13657 r_type = R_PPC64_NONE;
13658 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13659 }
13660 }
13661 break;
13662
13663 case R_PPC64_TPREL64:
13664 if ((tls_mask & TLS_TPREL) == 0)
13665 {
13666 r_type = R_PPC64_NONE;
13667 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13668 }
13669 break;
13670
13671 case R_PPC64_REL16_HA:
13672 /* If we are generating a non-PIC executable, edit
13673 . 0: addis 2,12,.TOC.-0b@ha
13674 . addi 2,2,.TOC.-0b@l
13675 used by ELFv2 global entry points to set up r2, to
13676 . lis 2,.TOC.@ha
13677 . addi 2,2,.TOC.@l
13678 if .TOC. is in range. */
13679 if (!info->shared
13680 && !info->traditional_format
13681 && h != NULL && &h->elf == htab->elf.hgot
13682 && rel + 1 < relend
13683 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
13684 && rel[1].r_offset == rel->r_offset + 4
13685 && rel[1].r_addend == rel->r_addend + 4
13686 && relocation + 0x80008000 <= 0xffffffff)
13687 {
13688 unsigned int insn1, insn2;
13689 bfd_vma offset = rel->r_offset - d_offset;
13690 insn1 = bfd_get_32 (output_bfd, contents + offset);
13691 insn2 = bfd_get_32 (output_bfd, contents + offset + 4);
13692 if ((insn1 & 0xffff0000) == 0x3c4c0000 /* addis 2,12 */
13693 && (insn2 & 0xffff0000) == 0x38420000 /* addi 2,2 */)
13694 {
13695 r_type = R_PPC64_ADDR16_HA;
13696 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
13697 rel->r_addend -= d_offset;
13698 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
13699 rel[1].r_addend -= d_offset + 4;
13700 bfd_put_32 (output_bfd, 0x3c400000, contents + offset);
13701 }
13702 }
13703 break;
13704 }
13705
13706 /* Handle other relocations that tweak non-addend part of insn. */
13707 insn = 0;
13708 max_br_offset = 1 << 25;
13709 addend = rel->r_addend;
13710 reloc_dest = DEST_NORMAL;
13711 switch (r_type)
13712 {
13713 default:
13714 break;
13715
13716 case R_PPC64_TOCSAVE:
13717 if (relocation + addend == (rel->r_offset
13718 + input_section->output_offset
13719 + input_section->output_section->vma)
13720 && tocsave_find (htab, NO_INSERT,
13721 &local_syms, rel, input_bfd))
13722 {
13723 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
13724 if (insn == NOP
13725 || insn == CROR_151515 || insn == CROR_313131)
13726 bfd_put_32 (input_bfd,
13727 STD_R2_0R1 + STK_TOC (htab),
13728 contents + rel->r_offset);
13729 }
13730 break;
13731
13732 /* Branch taken prediction relocations. */
13733 case R_PPC64_ADDR14_BRTAKEN:
13734 case R_PPC64_REL14_BRTAKEN:
13735 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
13736 /* Fall thru. */
13737
13738 /* Branch not taken prediction relocations. */
13739 case R_PPC64_ADDR14_BRNTAKEN:
13740 case R_PPC64_REL14_BRNTAKEN:
13741 insn |= bfd_get_32 (output_bfd,
13742 contents + rel->r_offset) & ~(0x01 << 21);
13743 /* Fall thru. */
13744
13745 case R_PPC64_REL14:
13746 max_br_offset = 1 << 15;
13747 /* Fall thru. */
13748
13749 case R_PPC64_REL24:
13750 /* Calls to functions with a different TOC, such as calls to
13751 shared objects, need to alter the TOC pointer. This is
13752 done using a linkage stub. A REL24 branching to these
13753 linkage stubs needs to be followed by a nop, as the nop
13754 will be replaced with an instruction to restore the TOC
13755 base pointer. */
13756 fdh = h;
13757 if (h != NULL
13758 && h->oh != NULL
13759 && h->oh->is_func_descriptor)
13760 fdh = ppc_follow_link (h->oh);
13761 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
13762 htab);
13763 if (stub_entry != NULL
13764 && (stub_entry->stub_type == ppc_stub_plt_call
13765 || stub_entry->stub_type == ppc_stub_plt_call_r2save
13766 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
13767 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
13768 {
13769 bfd_boolean can_plt_call = FALSE;
13770
13771 /* All of these stubs will modify r2, so there must be a
13772 branch and link followed by a nop. The nop is
13773 replaced by an insn to restore r2. */
13774 if (rel->r_offset + 8 <= input_section->size)
13775 {
13776 unsigned long br;
13777
13778 br = bfd_get_32 (input_bfd,
13779 contents + rel->r_offset);
13780 if ((br & 1) != 0)
13781 {
13782 unsigned long nop;
13783
13784 nop = bfd_get_32 (input_bfd,
13785 contents + rel->r_offset + 4);
13786 if (nop == NOP
13787 || nop == CROR_151515 || nop == CROR_313131)
13788 {
13789 if (h != NULL
13790 && (h == htab->tls_get_addr_fd
13791 || h == htab->tls_get_addr)
13792 && !htab->params->no_tls_get_addr_opt)
13793 {
13794 /* Special stub used, leave nop alone. */
13795 }
13796 else
13797 bfd_put_32 (input_bfd,
13798 LD_R2_0R1 + STK_TOC (htab),
13799 contents + rel->r_offset + 4);
13800 can_plt_call = TRUE;
13801 }
13802 }
13803 }
13804
13805 if (!can_plt_call && h != NULL)
13806 {
13807 const char *name = h->elf.root.root.string;
13808
13809 if (*name == '.')
13810 ++name;
13811
13812 if (strncmp (name, "__libc_start_main", 17) == 0
13813 && (name[17] == 0 || name[17] == '@'))
13814 {
13815 /* Allow crt1 branch to go via a toc adjusting
13816 stub. Other calls that never return could do
13817 the same, if we could detect such. */
13818 can_plt_call = TRUE;
13819 }
13820 }
13821
13822 if (!can_plt_call)
13823 {
13824 /* g++ as of 20130507 emits self-calls without a
13825 following nop. This is arguably wrong since we
13826 have conflicting information. On the one hand a
13827 global symbol and on the other a local call
13828 sequence, but don't error for this special case.
13829 It isn't possible to cheaply verify we have
13830 exactly such a call. Allow all calls to the same
13831 section. */
13832 asection *code_sec = sec;
13833
13834 if (get_opd_info (sec) != NULL)
13835 {
13836 bfd_vma off = (relocation + addend
13837 - sec->output_section->vma
13838 - sec->output_offset);
13839
13840 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
13841 }
13842 if (code_sec == input_section)
13843 can_plt_call = TRUE;
13844 }
13845
13846 if (!can_plt_call)
13847 {
13848 if (stub_entry->stub_type == ppc_stub_plt_call
13849 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13850 info->callbacks->einfo
13851 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13852 "recompile with -fPIC\n"),
13853 input_bfd, input_section, rel->r_offset, sym_name);
13854 else
13855 info->callbacks->einfo
13856 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
13857 "(-mcmodel=small toc adjust stub)\n"),
13858 input_bfd, input_section, rel->r_offset, sym_name);
13859
13860 bfd_set_error (bfd_error_bad_value);
13861 ret = FALSE;
13862 }
13863
13864 if (can_plt_call
13865 && (stub_entry->stub_type == ppc_stub_plt_call
13866 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
13867 unresolved_reloc = FALSE;
13868 }
13869
13870 if ((stub_entry == NULL
13871 || stub_entry->stub_type == ppc_stub_long_branch
13872 || stub_entry->stub_type == ppc_stub_plt_branch)
13873 && get_opd_info (sec) != NULL)
13874 {
13875 /* The branch destination is the value of the opd entry. */
13876 bfd_vma off = (relocation + addend
13877 - sec->output_section->vma
13878 - sec->output_offset);
13879 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
13880 if (dest != (bfd_vma) -1)
13881 {
13882 relocation = dest;
13883 addend = 0;
13884 reloc_dest = DEST_OPD;
13885 }
13886 }
13887
13888 /* If the branch is out of reach we ought to have a long
13889 branch stub. */
13890 from = (rel->r_offset
13891 + input_section->output_offset
13892 + input_section->output_section->vma);
13893
13894 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
13895 ? fdh->elf.other
13896 : sym->st_other);
13897
13898 if (stub_entry != NULL
13899 && (stub_entry->stub_type == ppc_stub_long_branch
13900 || stub_entry->stub_type == ppc_stub_plt_branch)
13901 && (r_type == R_PPC64_ADDR14_BRTAKEN
13902 || r_type == R_PPC64_ADDR14_BRNTAKEN
13903 || (relocation + addend - from + max_br_offset
13904 < 2 * max_br_offset)))
13905 /* Don't use the stub if this branch is in range. */
13906 stub_entry = NULL;
13907
13908 if (stub_entry != NULL)
13909 {
13910 /* Munge up the value and addend so that we call the stub
13911 rather than the procedure directly. */
13912 relocation = (stub_entry->stub_offset
13913 + stub_entry->stub_sec->output_offset
13914 + stub_entry->stub_sec->output_section->vma);
13915 addend = 0;
13916 reloc_dest = DEST_STUB;
13917
13918 if ((stub_entry->stub_type == ppc_stub_plt_call
13919 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13920 && (ALWAYS_EMIT_R2SAVE
13921 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13922 && rel + 1 < relend
13923 && rel[1].r_offset == rel->r_offset + 4
13924 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13925 relocation += 4;
13926 }
13927
13928 if (insn != 0)
13929 {
13930 if (is_isa_v2)
13931 {
13932 /* Set 'a' bit. This is 0b00010 in BO field for branch
13933 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13934 for branch on CTR insns (BO == 1a00t or 1a01t). */
13935 if ((insn & (0x14 << 21)) == (0x04 << 21))
13936 insn |= 0x02 << 21;
13937 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13938 insn |= 0x08 << 21;
13939 else
13940 break;
13941 }
13942 else
13943 {
13944 /* Invert 'y' bit if not the default. */
13945 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13946 insn ^= 0x01 << 21;
13947 }
13948
13949 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13950 }
13951
13952 /* NOP out calls to undefined weak functions.
13953 We can thus call a weak function without first
13954 checking whether the function is defined. */
13955 else if (h != NULL
13956 && h->elf.root.type == bfd_link_hash_undefweak
13957 && h->elf.dynindx == -1
13958 && r_type == R_PPC64_REL24
13959 && relocation == 0
13960 && addend == 0)
13961 {
13962 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13963 continue;
13964 }
13965 break;
13966 }
13967
13968 /* Set `addend'. */
13969 tls_type = 0;
13970 switch (r_type)
13971 {
13972 default:
13973 info->callbacks->einfo
13974 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13975 input_bfd, (int) r_type, sym_name);
13976
13977 bfd_set_error (bfd_error_bad_value);
13978 ret = FALSE;
13979 continue;
13980
13981 case R_PPC64_NONE:
13982 case R_PPC64_TLS:
13983 case R_PPC64_TLSGD:
13984 case R_PPC64_TLSLD:
13985 case R_PPC64_TOCSAVE:
13986 case R_PPC64_GNU_VTINHERIT:
13987 case R_PPC64_GNU_VTENTRY:
13988 continue;
13989
13990 /* GOT16 relocations. Like an ADDR16 using the symbol's
13991 address in the GOT as relocation value instead of the
13992 symbol's value itself. Also, create a GOT entry for the
13993 symbol and put the symbol value there. */
13994 case R_PPC64_GOT_TLSGD16:
13995 case R_PPC64_GOT_TLSGD16_LO:
13996 case R_PPC64_GOT_TLSGD16_HI:
13997 case R_PPC64_GOT_TLSGD16_HA:
13998 tls_type = TLS_TLS | TLS_GD;
13999 goto dogot;
14000
14001 case R_PPC64_GOT_TLSLD16:
14002 case R_PPC64_GOT_TLSLD16_LO:
14003 case R_PPC64_GOT_TLSLD16_HI:
14004 case R_PPC64_GOT_TLSLD16_HA:
14005 tls_type = TLS_TLS | TLS_LD;
14006 goto dogot;
14007
14008 case R_PPC64_GOT_TPREL16_DS:
14009 case R_PPC64_GOT_TPREL16_LO_DS:
14010 case R_PPC64_GOT_TPREL16_HI:
14011 case R_PPC64_GOT_TPREL16_HA:
14012 tls_type = TLS_TLS | TLS_TPREL;
14013 goto dogot;
14014
14015 case R_PPC64_GOT_DTPREL16_DS:
14016 case R_PPC64_GOT_DTPREL16_LO_DS:
14017 case R_PPC64_GOT_DTPREL16_HI:
14018 case R_PPC64_GOT_DTPREL16_HA:
14019 tls_type = TLS_TLS | TLS_DTPREL;
14020 goto dogot;
14021
14022 case R_PPC64_GOT16:
14023 case R_PPC64_GOT16_LO:
14024 case R_PPC64_GOT16_HI:
14025 case R_PPC64_GOT16_HA:
14026 case R_PPC64_GOT16_DS:
14027 case R_PPC64_GOT16_LO_DS:
14028 dogot:
14029 {
14030 /* Relocation is to the entry for this symbol in the global
14031 offset table. */
14032 asection *got;
14033 bfd_vma *offp;
14034 bfd_vma off;
14035 unsigned long indx = 0;
14036 struct got_entry *ent;
14037
14038 if (tls_type == (TLS_TLS | TLS_LD)
14039 && (h == NULL
14040 || !h->elf.def_dynamic))
14041 ent = ppc64_tlsld_got (input_bfd);
14042 else
14043 {
14044
14045 if (h != NULL)
14046 {
14047 bfd_boolean dyn = htab->elf.dynamic_sections_created;
14048 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
14049 &h->elf)
14050 || (info->shared
14051 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
14052 /* This is actually a static link, or it is a
14053 -Bsymbolic link and the symbol is defined
14054 locally, or the symbol was forced to be local
14055 because of a version file. */
14056 ;
14057 else
14058 {
14059 BFD_ASSERT (h->elf.dynindx != -1);
14060 indx = h->elf.dynindx;
14061 unresolved_reloc = FALSE;
14062 }
14063 ent = h->elf.got.glist;
14064 }
14065 else
14066 {
14067 if (local_got_ents == NULL)
14068 abort ();
14069 ent = local_got_ents[r_symndx];
14070 }
14071
14072 for (; ent != NULL; ent = ent->next)
14073 if (ent->addend == orig_rel.r_addend
14074 && ent->owner == input_bfd
14075 && ent->tls_type == tls_type)
14076 break;
14077 }
14078
14079 if (ent == NULL)
14080 abort ();
14081 if (ent->is_indirect)
14082 ent = ent->got.ent;
14083 offp = &ent->got.offset;
14084 got = ppc64_elf_tdata (ent->owner)->got;
14085 if (got == NULL)
14086 abort ();
14087
14088 /* The offset must always be a multiple of 8. We use the
14089 least significant bit to record whether we have already
14090 processed this entry. */
14091 off = *offp;
14092 if ((off & 1) != 0)
14093 off &= ~1;
14094 else
14095 {
14096 /* Generate relocs for the dynamic linker, except in
14097 the case of TLSLD where we'll use one entry per
14098 module. */
14099 asection *relgot;
14100 bfd_boolean ifunc;
14101
14102 *offp = off | 1;
14103 relgot = NULL;
14104 ifunc = (h != NULL
14105 ? h->elf.type == STT_GNU_IFUNC
14106 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
14107 if (ifunc)
14108 relgot = htab->elf.irelplt;
14109 else if ((info->shared || indx != 0)
14110 && (h == NULL
14111 || (tls_type == (TLS_TLS | TLS_LD)
14112 && !h->elf.def_dynamic)
14113 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14114 || h->elf.root.type != bfd_link_hash_undefweak))
14115 relgot = ppc64_elf_tdata (ent->owner)->relgot;
14116 if (relgot != NULL)
14117 {
14118 outrel.r_offset = (got->output_section->vma
14119 + got->output_offset
14120 + off);
14121 outrel.r_addend = addend;
14122 if (tls_type & (TLS_LD | TLS_GD))
14123 {
14124 outrel.r_addend = 0;
14125 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
14126 if (tls_type == (TLS_TLS | TLS_GD))
14127 {
14128 loc = relgot->contents;
14129 loc += (relgot->reloc_count++
14130 * sizeof (Elf64_External_Rela));
14131 bfd_elf64_swap_reloca_out (output_bfd,
14132 &outrel, loc);
14133 outrel.r_offset += 8;
14134 outrel.r_addend = addend;
14135 outrel.r_info
14136 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14137 }
14138 }
14139 else if (tls_type == (TLS_TLS | TLS_DTPREL))
14140 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
14141 else if (tls_type == (TLS_TLS | TLS_TPREL))
14142 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
14143 else if (indx != 0)
14144 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
14145 else
14146 {
14147 if (ifunc)
14148 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14149 else
14150 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14151
14152 /* Write the .got section contents for the sake
14153 of prelink. */
14154 loc = got->contents + off;
14155 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
14156 loc);
14157 }
14158
14159 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
14160 {
14161 outrel.r_addend += relocation;
14162 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
14163 {
14164 if (htab->elf.tls_sec == NULL)
14165 outrel.r_addend = 0;
14166 else
14167 outrel.r_addend -= htab->elf.tls_sec->vma;
14168 }
14169 }
14170 loc = relgot->contents;
14171 loc += (relgot->reloc_count++
14172 * sizeof (Elf64_External_Rela));
14173 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14174 }
14175
14176 /* Init the .got section contents here if we're not
14177 emitting a reloc. */
14178 else
14179 {
14180 relocation += addend;
14181 if (tls_type == (TLS_TLS | TLS_LD))
14182 relocation = 1;
14183 else if (tls_type != 0)
14184 {
14185 if (htab->elf.tls_sec == NULL)
14186 relocation = 0;
14187 else
14188 {
14189 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
14190 if (tls_type == (TLS_TLS | TLS_TPREL))
14191 relocation += DTP_OFFSET - TP_OFFSET;
14192 }
14193
14194 if (tls_type == (TLS_TLS | TLS_GD))
14195 {
14196 bfd_put_64 (output_bfd, relocation,
14197 got->contents + off + 8);
14198 relocation = 1;
14199 }
14200 }
14201
14202 bfd_put_64 (output_bfd, relocation,
14203 got->contents + off);
14204 }
14205 }
14206
14207 if (off >= (bfd_vma) -2)
14208 abort ();
14209
14210 relocation = got->output_section->vma + got->output_offset + off;
14211 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
14212 }
14213 break;
14214
14215 case R_PPC64_PLT16_HA:
14216 case R_PPC64_PLT16_HI:
14217 case R_PPC64_PLT16_LO:
14218 case R_PPC64_PLT32:
14219 case R_PPC64_PLT64:
14220 /* Relocation is to the entry for this symbol in the
14221 procedure linkage table. */
14222
14223 /* Resolve a PLT reloc against a local symbol directly,
14224 without using the procedure linkage table. */
14225 if (h == NULL)
14226 break;
14227
14228 /* It's possible that we didn't make a PLT entry for this
14229 symbol. This happens when statically linking PIC code,
14230 or when using -Bsymbolic. Go find a match if there is a
14231 PLT entry. */
14232 if (htab->elf.splt != NULL)
14233 {
14234 struct plt_entry *ent;
14235 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
14236 if (ent->plt.offset != (bfd_vma) -1
14237 && ent->addend == orig_rel.r_addend)
14238 {
14239 relocation = (htab->elf.splt->output_section->vma
14240 + htab->elf.splt->output_offset
14241 + ent->plt.offset);
14242 unresolved_reloc = FALSE;
14243 break;
14244 }
14245 }
14246 break;
14247
14248 case R_PPC64_TOC:
14249 /* Relocation value is TOC base. */
14250 relocation = TOCstart;
14251 if (r_symndx == STN_UNDEF)
14252 relocation += htab->stub_group[input_section->id].toc_off;
14253 else if (unresolved_reloc)
14254 ;
14255 else if (sec != NULL && sec->id <= htab->top_id)
14256 relocation += htab->stub_group[sec->id].toc_off;
14257 else
14258 unresolved_reloc = TRUE;
14259 goto dodyn;
14260
14261 /* TOC16 relocs. We want the offset relative to the TOC base,
14262 which is the address of the start of the TOC plus 0x8000.
14263 The TOC consists of sections .got, .toc, .tocbss, and .plt,
14264 in this order. */
14265 case R_PPC64_TOC16:
14266 case R_PPC64_TOC16_LO:
14267 case R_PPC64_TOC16_HI:
14268 case R_PPC64_TOC16_DS:
14269 case R_PPC64_TOC16_LO_DS:
14270 case R_PPC64_TOC16_HA:
14271 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
14272 break;
14273
14274 /* Relocate against the beginning of the section. */
14275 case R_PPC64_SECTOFF:
14276 case R_PPC64_SECTOFF_LO:
14277 case R_PPC64_SECTOFF_HI:
14278 case R_PPC64_SECTOFF_DS:
14279 case R_PPC64_SECTOFF_LO_DS:
14280 case R_PPC64_SECTOFF_HA:
14281 if (sec != NULL)
14282 addend -= sec->output_section->vma;
14283 break;
14284
14285 case R_PPC64_REL16:
14286 case R_PPC64_REL16_LO:
14287 case R_PPC64_REL16_HI:
14288 case R_PPC64_REL16_HA:
14289 break;
14290
14291 case R_PPC64_REL14:
14292 case R_PPC64_REL14_BRNTAKEN:
14293 case R_PPC64_REL14_BRTAKEN:
14294 case R_PPC64_REL24:
14295 break;
14296
14297 case R_PPC64_TPREL16:
14298 case R_PPC64_TPREL16_LO:
14299 case R_PPC64_TPREL16_HI:
14300 case R_PPC64_TPREL16_HA:
14301 case R_PPC64_TPREL16_DS:
14302 case R_PPC64_TPREL16_LO_DS:
14303 case R_PPC64_TPREL16_HIGH:
14304 case R_PPC64_TPREL16_HIGHA:
14305 case R_PPC64_TPREL16_HIGHER:
14306 case R_PPC64_TPREL16_HIGHERA:
14307 case R_PPC64_TPREL16_HIGHEST:
14308 case R_PPC64_TPREL16_HIGHESTA:
14309 if (h != NULL
14310 && h->elf.root.type == bfd_link_hash_undefweak
14311 && h->elf.dynindx == -1)
14312 {
14313 /* Make this relocation against an undefined weak symbol
14314 resolve to zero. This is really just a tweak, since
14315 code using weak externs ought to check that they are
14316 defined before using them. */
14317 bfd_byte *p = contents + rel->r_offset - d_offset;
14318
14319 insn = bfd_get_32 (output_bfd, p);
14320 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
14321 if (insn != 0)
14322 bfd_put_32 (output_bfd, insn, p);
14323 break;
14324 }
14325 if (htab->elf.tls_sec != NULL)
14326 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14327 if (info->shared)
14328 /* The TPREL16 relocs shouldn't really be used in shared
14329 libs as they will result in DT_TEXTREL being set, but
14330 support them anyway. */
14331 goto dodyn;
14332 break;
14333
14334 case R_PPC64_DTPREL16:
14335 case R_PPC64_DTPREL16_LO:
14336 case R_PPC64_DTPREL16_HI:
14337 case R_PPC64_DTPREL16_HA:
14338 case R_PPC64_DTPREL16_DS:
14339 case R_PPC64_DTPREL16_LO_DS:
14340 case R_PPC64_DTPREL16_HIGH:
14341 case R_PPC64_DTPREL16_HIGHA:
14342 case R_PPC64_DTPREL16_HIGHER:
14343 case R_PPC64_DTPREL16_HIGHERA:
14344 case R_PPC64_DTPREL16_HIGHEST:
14345 case R_PPC64_DTPREL16_HIGHESTA:
14346 if (htab->elf.tls_sec != NULL)
14347 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14348 break;
14349
14350 case R_PPC64_ADDR64_LOCAL:
14351 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
14352 ? h->elf.other
14353 : sym->st_other);
14354 break;
14355
14356 case R_PPC64_DTPMOD64:
14357 relocation = 1;
14358 addend = 0;
14359 goto dodyn;
14360
14361 case R_PPC64_TPREL64:
14362 if (htab->elf.tls_sec != NULL)
14363 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
14364 goto dodyn;
14365
14366 case R_PPC64_DTPREL64:
14367 if (htab->elf.tls_sec != NULL)
14368 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
14369 /* Fall thru */
14370
14371 /* Relocations that may need to be propagated if this is a
14372 dynamic object. */
14373 case R_PPC64_REL30:
14374 case R_PPC64_REL32:
14375 case R_PPC64_REL64:
14376 case R_PPC64_ADDR14:
14377 case R_PPC64_ADDR14_BRNTAKEN:
14378 case R_PPC64_ADDR14_BRTAKEN:
14379 case R_PPC64_ADDR16:
14380 case R_PPC64_ADDR16_DS:
14381 case R_PPC64_ADDR16_HA:
14382 case R_PPC64_ADDR16_HI:
14383 case R_PPC64_ADDR16_HIGH:
14384 case R_PPC64_ADDR16_HIGHA:
14385 case R_PPC64_ADDR16_HIGHER:
14386 case R_PPC64_ADDR16_HIGHERA:
14387 case R_PPC64_ADDR16_HIGHEST:
14388 case R_PPC64_ADDR16_HIGHESTA:
14389 case R_PPC64_ADDR16_LO:
14390 case R_PPC64_ADDR16_LO_DS:
14391 case R_PPC64_ADDR24:
14392 case R_PPC64_ADDR32:
14393 case R_PPC64_ADDR64:
14394 case R_PPC64_UADDR16:
14395 case R_PPC64_UADDR32:
14396 case R_PPC64_UADDR64:
14397 dodyn:
14398 if ((input_section->flags & SEC_ALLOC) == 0)
14399 break;
14400
14401 if (NO_OPD_RELOCS && is_opd)
14402 break;
14403
14404 if ((info->shared
14405 && (h == NULL
14406 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
14407 || h->elf.root.type != bfd_link_hash_undefweak)
14408 && (must_be_dyn_reloc (info, r_type)
14409 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
14410 || (ELIMINATE_COPY_RELOCS
14411 && !info->shared
14412 && h != NULL
14413 && h->elf.dynindx != -1
14414 && !h->elf.non_got_ref
14415 && !h->elf.def_regular)
14416 || (!info->shared
14417 && (h != NULL
14418 ? h->elf.type == STT_GNU_IFUNC
14419 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
14420 {
14421 bfd_boolean skip, relocate;
14422 asection *sreloc;
14423 bfd_vma out_off;
14424
14425 /* When generating a dynamic object, these relocations
14426 are copied into the output file to be resolved at run
14427 time. */
14428
14429 skip = FALSE;
14430 relocate = FALSE;
14431
14432 out_off = _bfd_elf_section_offset (output_bfd, info,
14433 input_section, rel->r_offset);
14434 if (out_off == (bfd_vma) -1)
14435 skip = TRUE;
14436 else if (out_off == (bfd_vma) -2)
14437 skip = TRUE, relocate = TRUE;
14438 out_off += (input_section->output_section->vma
14439 + input_section->output_offset);
14440 outrel.r_offset = out_off;
14441 outrel.r_addend = rel->r_addend;
14442
14443 /* Optimize unaligned reloc use. */
14444 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
14445 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
14446 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
14447 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
14448 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
14449 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
14450 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
14451 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
14452 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
14453
14454 if (skip)
14455 memset (&outrel, 0, sizeof outrel);
14456 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
14457 && !is_opd
14458 && r_type != R_PPC64_TOC)
14459 {
14460 BFD_ASSERT (h->elf.dynindx != -1);
14461 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
14462 }
14463 else
14464 {
14465 /* This symbol is local, or marked to become local,
14466 or this is an opd section reloc which must point
14467 at a local function. */
14468 outrel.r_addend += relocation;
14469 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
14470 {
14471 if (is_opd && h != NULL)
14472 {
14473 /* Lie about opd entries. This case occurs
14474 when building shared libraries and we
14475 reference a function in another shared
14476 lib. The same thing happens for a weak
14477 definition in an application that's
14478 overridden by a strong definition in a
14479 shared lib. (I believe this is a generic
14480 bug in binutils handling of weak syms.)
14481 In these cases we won't use the opd
14482 entry in this lib. */
14483 unresolved_reloc = FALSE;
14484 }
14485 if (!is_opd
14486 && r_type == R_PPC64_ADDR64
14487 && (h != NULL
14488 ? h->elf.type == STT_GNU_IFUNC
14489 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
14490 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14491 else
14492 {
14493 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14494
14495 /* We need to relocate .opd contents for ld.so.
14496 Prelink also wants simple and consistent rules
14497 for relocs. This make all RELATIVE relocs have
14498 *r_offset equal to r_addend. */
14499 relocate = TRUE;
14500 }
14501 }
14502 else
14503 {
14504 long indx = 0;
14505
14506 if (h != NULL
14507 ? h->elf.type == STT_GNU_IFUNC
14508 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14509 {
14510 info->callbacks->einfo
14511 (_("%P: %H: %s for indirect "
14512 "function `%T' unsupported\n"),
14513 input_bfd, input_section, rel->r_offset,
14514 ppc64_elf_howto_table[r_type]->name,
14515 sym_name);
14516 ret = FALSE;
14517 }
14518 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
14519 ;
14520 else if (sec == NULL || sec->owner == NULL)
14521 {
14522 bfd_set_error (bfd_error_bad_value);
14523 return FALSE;
14524 }
14525 else
14526 {
14527 asection *osec;
14528
14529 osec = sec->output_section;
14530 indx = elf_section_data (osec)->dynindx;
14531
14532 if (indx == 0)
14533 {
14534 if ((osec->flags & SEC_READONLY) == 0
14535 && htab->elf.data_index_section != NULL)
14536 osec = htab->elf.data_index_section;
14537 else
14538 osec = htab->elf.text_index_section;
14539 indx = elf_section_data (osec)->dynindx;
14540 }
14541 BFD_ASSERT (indx != 0);
14542
14543 /* We are turning this relocation into one
14544 against a section symbol, so subtract out
14545 the output section's address but not the
14546 offset of the input section in the output
14547 section. */
14548 outrel.r_addend -= osec->vma;
14549 }
14550
14551 outrel.r_info = ELF64_R_INFO (indx, r_type);
14552 }
14553 }
14554
14555 sreloc = elf_section_data (input_section)->sreloc;
14556 if (h != NULL
14557 ? h->elf.type == STT_GNU_IFUNC
14558 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14559 sreloc = htab->elf.irelplt;
14560 if (sreloc == NULL)
14561 abort ();
14562
14563 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
14564 >= sreloc->size)
14565 abort ();
14566 loc = sreloc->contents;
14567 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
14568 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
14569
14570 /* If this reloc is against an external symbol, it will
14571 be computed at runtime, so there's no need to do
14572 anything now. However, for the sake of prelink ensure
14573 that the section contents are a known value. */
14574 if (! relocate)
14575 {
14576 unresolved_reloc = FALSE;
14577 /* The value chosen here is quite arbitrary as ld.so
14578 ignores section contents except for the special
14579 case of .opd where the contents might be accessed
14580 before relocation. Choose zero, as that won't
14581 cause reloc overflow. */
14582 relocation = 0;
14583 addend = 0;
14584 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
14585 to improve backward compatibility with older
14586 versions of ld. */
14587 if (r_type == R_PPC64_ADDR64)
14588 addend = outrel.r_addend;
14589 /* Adjust pc_relative relocs to have zero in *r_offset. */
14590 else if (ppc64_elf_howto_table[r_type]->pc_relative)
14591 addend = (input_section->output_section->vma
14592 + input_section->output_offset
14593 + rel->r_offset);
14594 }
14595 }
14596 break;
14597
14598 case R_PPC64_COPY:
14599 case R_PPC64_GLOB_DAT:
14600 case R_PPC64_JMP_SLOT:
14601 case R_PPC64_JMP_IREL:
14602 case R_PPC64_RELATIVE:
14603 /* We shouldn't ever see these dynamic relocs in relocatable
14604 files. */
14605 /* Fall through. */
14606
14607 case R_PPC64_PLTGOT16:
14608 case R_PPC64_PLTGOT16_DS:
14609 case R_PPC64_PLTGOT16_HA:
14610 case R_PPC64_PLTGOT16_HI:
14611 case R_PPC64_PLTGOT16_LO:
14612 case R_PPC64_PLTGOT16_LO_DS:
14613 case R_PPC64_PLTREL32:
14614 case R_PPC64_PLTREL64:
14615 /* These ones haven't been implemented yet. */
14616
14617 info->callbacks->einfo
14618 (_("%P: %B: %s is not supported for `%T'\n"),
14619 input_bfd,
14620 ppc64_elf_howto_table[r_type]->name, sym_name);
14621
14622 bfd_set_error (bfd_error_invalid_operation);
14623 ret = FALSE;
14624 continue;
14625 }
14626
14627 /* Multi-instruction sequences that access the TOC can be
14628 optimized, eg. addis ra,r2,0; addi rb,ra,x;
14629 to nop; addi rb,r2,x; */
14630 switch (r_type)
14631 {
14632 default:
14633 break;
14634
14635 case R_PPC64_GOT_TLSLD16_HI:
14636 case R_PPC64_GOT_TLSGD16_HI:
14637 case R_PPC64_GOT_TPREL16_HI:
14638 case R_PPC64_GOT_DTPREL16_HI:
14639 case R_PPC64_GOT16_HI:
14640 case R_PPC64_TOC16_HI:
14641 /* These relocs would only be useful if building up an
14642 offset to later add to r2, perhaps in an indexed
14643 addressing mode instruction. Don't try to optimize.
14644 Unfortunately, the possibility of someone building up an
14645 offset like this or even with the HA relocs, means that
14646 we need to check the high insn when optimizing the low
14647 insn. */
14648 break;
14649
14650 case R_PPC64_GOT_TLSLD16_HA:
14651 case R_PPC64_GOT_TLSGD16_HA:
14652 case R_PPC64_GOT_TPREL16_HA:
14653 case R_PPC64_GOT_DTPREL16_HA:
14654 case R_PPC64_GOT16_HA:
14655 case R_PPC64_TOC16_HA:
14656 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14657 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14658 {
14659 bfd_byte *p = contents + (rel->r_offset & ~3);
14660 bfd_put_32 (input_bfd, NOP, p);
14661 }
14662 break;
14663
14664 case R_PPC64_GOT_TLSLD16_LO:
14665 case R_PPC64_GOT_TLSGD16_LO:
14666 case R_PPC64_GOT_TPREL16_LO_DS:
14667 case R_PPC64_GOT_DTPREL16_LO_DS:
14668 case R_PPC64_GOT16_LO:
14669 case R_PPC64_GOT16_LO_DS:
14670 case R_PPC64_TOC16_LO:
14671 case R_PPC64_TOC16_LO_DS:
14672 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
14673 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
14674 {
14675 bfd_byte *p = contents + (rel->r_offset & ~3);
14676 insn = bfd_get_32 (input_bfd, p);
14677 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
14678 {
14679 /* Transform addic to addi when we change reg. */
14680 insn &= ~((0x3f << 26) | (0x1f << 16));
14681 insn |= (14u << 26) | (2 << 16);
14682 }
14683 else
14684 {
14685 insn &= ~(0x1f << 16);
14686 insn |= 2 << 16;
14687 }
14688 bfd_put_32 (input_bfd, insn, p);
14689 }
14690 break;
14691 }
14692
14693 /* Do any further special processing. */
14694 howto = ppc64_elf_howto_table[(int) r_type];
14695 switch (r_type)
14696 {
14697 default:
14698 break;
14699
14700 case R_PPC64_REL16_HA:
14701 case R_PPC64_ADDR16_HA:
14702 case R_PPC64_ADDR16_HIGHA:
14703 case R_PPC64_ADDR16_HIGHERA:
14704 case R_PPC64_ADDR16_HIGHESTA:
14705 case R_PPC64_TOC16_HA:
14706 case R_PPC64_SECTOFF_HA:
14707 case R_PPC64_TPREL16_HA:
14708 case R_PPC64_TPREL16_HIGHA:
14709 case R_PPC64_TPREL16_HIGHERA:
14710 case R_PPC64_TPREL16_HIGHESTA:
14711 case R_PPC64_DTPREL16_HA:
14712 case R_PPC64_DTPREL16_HIGHA:
14713 case R_PPC64_DTPREL16_HIGHERA:
14714 case R_PPC64_DTPREL16_HIGHESTA:
14715 /* It's just possible that this symbol is a weak symbol
14716 that's not actually defined anywhere. In that case,
14717 'sec' would be NULL, and we should leave the symbol
14718 alone (it will be set to zero elsewhere in the link). */
14719 if (sec == NULL)
14720 break;
14721 /* Fall thru */
14722
14723 case R_PPC64_GOT16_HA:
14724 case R_PPC64_PLTGOT16_HA:
14725 case R_PPC64_PLT16_HA:
14726 case R_PPC64_GOT_TLSGD16_HA:
14727 case R_PPC64_GOT_TLSLD16_HA:
14728 case R_PPC64_GOT_TPREL16_HA:
14729 case R_PPC64_GOT_DTPREL16_HA:
14730 /* Add 0x10000 if sign bit in 0:15 is set.
14731 Bits 0:15 are not used. */
14732 addend += 0x8000;
14733 break;
14734
14735 case R_PPC64_ADDR16_DS:
14736 case R_PPC64_ADDR16_LO_DS:
14737 case R_PPC64_GOT16_DS:
14738 case R_PPC64_GOT16_LO_DS:
14739 case R_PPC64_PLT16_LO_DS:
14740 case R_PPC64_SECTOFF_DS:
14741 case R_PPC64_SECTOFF_LO_DS:
14742 case R_PPC64_TOC16_DS:
14743 case R_PPC64_TOC16_LO_DS:
14744 case R_PPC64_PLTGOT16_DS:
14745 case R_PPC64_PLTGOT16_LO_DS:
14746 case R_PPC64_GOT_TPREL16_DS:
14747 case R_PPC64_GOT_TPREL16_LO_DS:
14748 case R_PPC64_GOT_DTPREL16_DS:
14749 case R_PPC64_GOT_DTPREL16_LO_DS:
14750 case R_PPC64_TPREL16_DS:
14751 case R_PPC64_TPREL16_LO_DS:
14752 case R_PPC64_DTPREL16_DS:
14753 case R_PPC64_DTPREL16_LO_DS:
14754 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14755 mask = 3;
14756 /* If this reloc is against an lq insn, then the value must be
14757 a multiple of 16. This is somewhat of a hack, but the
14758 "correct" way to do this by defining _DQ forms of all the
14759 _DS relocs bloats all reloc switches in this file. It
14760 doesn't seem to make much sense to use any of these relocs
14761 in data, so testing the insn should be safe. */
14762 if ((insn & (0x3f << 26)) == (56u << 26))
14763 mask = 15;
14764 if (((relocation + addend) & mask) != 0)
14765 {
14766 info->callbacks->einfo
14767 (_("%P: %H: error: %s not a multiple of %u\n"),
14768 input_bfd, input_section, rel->r_offset,
14769 howto->name,
14770 mask + 1);
14771 bfd_set_error (bfd_error_bad_value);
14772 ret = FALSE;
14773 continue;
14774 }
14775 break;
14776 }
14777
14778 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
14779 because such sections are not SEC_ALLOC and thus ld.so will
14780 not process them. */
14781 if (unresolved_reloc
14782 && !((input_section->flags & SEC_DEBUGGING) != 0
14783 && h->elf.def_dynamic)
14784 && _bfd_elf_section_offset (output_bfd, info, input_section,
14785 rel->r_offset) != (bfd_vma) -1)
14786 {
14787 info->callbacks->einfo
14788 (_("%P: %H: unresolvable %s against `%T'\n"),
14789 input_bfd, input_section, rel->r_offset,
14790 howto->name,
14791 h->elf.root.root.string);
14792 ret = FALSE;
14793 }
14794
14795 /* 16-bit fields in insns mostly have signed values, but a
14796 few insns have 16-bit unsigned values. Really, we should
14797 have different reloc types. */
14798 if (howto->complain_on_overflow != complain_overflow_dont
14799 && howto->dst_mask == 0xffff
14800 && (input_section->flags & SEC_CODE) != 0)
14801 {
14802 enum complain_overflow complain = complain_overflow_signed;
14803
14804 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14805 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
14806 complain = complain_overflow_bitfield;
14807 else if (howto->rightshift == 0
14808 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
14809 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
14810 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
14811 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
14812 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
14813 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
14814 complain = complain_overflow_unsigned;
14815 if (howto->complain_on_overflow != complain)
14816 {
14817 alt_howto = *howto;
14818 alt_howto.complain_on_overflow = complain;
14819 howto = &alt_howto;
14820 }
14821 }
14822
14823 r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents,
14824 rel->r_offset, relocation, addend);
14825
14826 if (r != bfd_reloc_ok)
14827 {
14828 char *more_info = NULL;
14829 const char *reloc_name = howto->name;
14830
14831 if (reloc_dest != DEST_NORMAL)
14832 {
14833 more_info = bfd_malloc (strlen (reloc_name) + 8);
14834 if (more_info != NULL)
14835 {
14836 strcpy (more_info, reloc_name);
14837 strcat (more_info, (reloc_dest == DEST_OPD
14838 ? " (OPD)" : " (stub)"));
14839 reloc_name = more_info;
14840 }
14841 }
14842
14843 if (r == bfd_reloc_overflow)
14844 {
14845 /* On code like "if (foo) foo();" don't report overflow
14846 on a branch to zero when foo is undefined. */
14847 if (!warned
14848 && (reloc_dest == DEST_STUB
14849 || !(h != NULL
14850 && (h->elf.root.type == bfd_link_hash_undefweak
14851 || h->elf.root.type == bfd_link_hash_undefined)
14852 && is_branch_reloc (r_type))))
14853 {
14854 if (!((*info->callbacks->reloc_overflow)
14855 (info, &h->elf.root, sym_name,
14856 reloc_name, orig_rel.r_addend,
14857 input_bfd, input_section, rel->r_offset)))
14858 return FALSE;
14859 }
14860 }
14861 else
14862 {
14863 info->callbacks->einfo
14864 (_("%P: %H: %s against `%T': error %d\n"),
14865 input_bfd, input_section, rel->r_offset,
14866 reloc_name, sym_name, (int) r);
14867 ret = FALSE;
14868 }
14869 if (more_info != NULL)
14870 free (more_info);
14871 }
14872 }
14873
14874 /* If we're emitting relocations, then shortly after this function
14875 returns, reloc offsets and addends for this section will be
14876 adjusted. Worse, reloc symbol indices will be for the output
14877 file rather than the input. Save a copy of the relocs for
14878 opd_entry_value. */
14879 if (is_opd && (info->emitrelocations || info->relocatable))
14880 {
14881 bfd_size_type amt;
14882 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
14883 rel = bfd_alloc (input_bfd, amt);
14884 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
14885 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
14886 if (rel == NULL)
14887 return FALSE;
14888 memcpy (rel, relocs, amt);
14889 }
14890 return ret;
14891 }
14892
14893 /* Adjust the value of any local symbols in opd sections. */
14894
14895 static int
14896 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
14897 const char *name ATTRIBUTE_UNUSED,
14898 Elf_Internal_Sym *elfsym,
14899 asection *input_sec,
14900 struct elf_link_hash_entry *h)
14901 {
14902 struct _opd_sec_data *opd;
14903 long adjust;
14904 bfd_vma value;
14905
14906 if (h != NULL)
14907 return 1;
14908
14909 opd = get_opd_info (input_sec);
14910 if (opd == NULL || opd->adjust == NULL)
14911 return 1;
14912
14913 value = elfsym->st_value - input_sec->output_offset;
14914 if (!info->relocatable)
14915 value -= input_sec->output_section->vma;
14916
14917 adjust = opd->adjust[OPD_NDX (value)];
14918 if (adjust == -1)
14919 return 2;
14920
14921 elfsym->st_value += adjust;
14922 return 1;
14923 }
14924
14925 /* Finish up dynamic symbol handling. We set the contents of various
14926 dynamic sections here. */
14927
14928 static bfd_boolean
14929 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
14930 struct bfd_link_info *info,
14931 struct elf_link_hash_entry *h,
14932 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
14933 {
14934 struct ppc_link_hash_table *htab;
14935 struct plt_entry *ent;
14936 Elf_Internal_Rela rela;
14937 bfd_byte *loc;
14938
14939 htab = ppc_hash_table (info);
14940 if (htab == NULL)
14941 return FALSE;
14942
14943 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14944 if (ent->plt.offset != (bfd_vma) -1)
14945 {
14946 /* This symbol has an entry in the procedure linkage
14947 table. Set it up. */
14948 if (!htab->elf.dynamic_sections_created
14949 || h->dynindx == -1)
14950 {
14951 BFD_ASSERT (h->type == STT_GNU_IFUNC
14952 && h->def_regular
14953 && (h->root.type == bfd_link_hash_defined
14954 || h->root.type == bfd_link_hash_defweak));
14955 rela.r_offset = (htab->elf.iplt->output_section->vma
14956 + htab->elf.iplt->output_offset
14957 + ent->plt.offset);
14958 if (htab->opd_abi)
14959 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14960 else
14961 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14962 rela.r_addend = (h->root.u.def.value
14963 + h->root.u.def.section->output_offset
14964 + h->root.u.def.section->output_section->vma
14965 + ent->addend);
14966 loc = (htab->elf.irelplt->contents
14967 + (htab->elf.irelplt->reloc_count++
14968 * sizeof (Elf64_External_Rela)));
14969 }
14970 else
14971 {
14972 rela.r_offset = (htab->elf.splt->output_section->vma
14973 + htab->elf.splt->output_offset
14974 + ent->plt.offset);
14975 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14976 rela.r_addend = ent->addend;
14977 loc = (htab->elf.srelplt->contents
14978 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
14979 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
14980 }
14981 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14982
14983 if (!htab->opd_abi)
14984 {
14985 if (!h->def_regular)
14986 {
14987 /* Mark the symbol as undefined, rather than as
14988 defined in glink. Leave the value if there were
14989 any relocations where pointer equality matters
14990 (this is a clue for the dynamic linker, to make
14991 function pointer comparisons work between an
14992 application and shared library), otherwise set it
14993 to zero. */
14994 sym->st_shndx = SHN_UNDEF;
14995 if (!h->pointer_equality_needed)
14996 sym->st_value = 0;
14997 else if (!h->ref_regular_nonweak)
14998 {
14999 /* This breaks function pointer comparisons, but
15000 that is better than breaking tests for a NULL
15001 function pointer. */
15002 sym->st_value = 0;
15003 }
15004 }
15005 }
15006 }
15007
15008 if (h->needs_copy)
15009 {
15010 /* This symbol needs a copy reloc. Set it up. */
15011
15012 if (h->dynindx == -1
15013 || (h->root.type != bfd_link_hash_defined
15014 && h->root.type != bfd_link_hash_defweak)
15015 || htab->relbss == NULL)
15016 abort ();
15017
15018 rela.r_offset = (h->root.u.def.value
15019 + h->root.u.def.section->output_section->vma
15020 + h->root.u.def.section->output_offset);
15021 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
15022 rela.r_addend = 0;
15023 loc = htab->relbss->contents;
15024 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
15025 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
15026 }
15027
15028 return TRUE;
15029 }
15030
15031 /* Used to decide how to sort relocs in an optimal manner for the
15032 dynamic linker, before writing them out. */
15033
15034 static enum elf_reloc_type_class
15035 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
15036 const asection *rel_sec,
15037 const Elf_Internal_Rela *rela)
15038 {
15039 enum elf_ppc64_reloc_type r_type;
15040 struct ppc_link_hash_table *htab = ppc_hash_table (info);
15041
15042 if (rel_sec == htab->elf.irelplt)
15043 return reloc_class_ifunc;
15044
15045 r_type = ELF64_R_TYPE (rela->r_info);
15046 switch (r_type)
15047 {
15048 case R_PPC64_RELATIVE:
15049 return reloc_class_relative;
15050 case R_PPC64_JMP_SLOT:
15051 return reloc_class_plt;
15052 case R_PPC64_COPY:
15053 return reloc_class_copy;
15054 default:
15055 return reloc_class_normal;
15056 }
15057 }
15058
15059 /* Finish up the dynamic sections. */
15060
15061 static bfd_boolean
15062 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
15063 struct bfd_link_info *info)
15064 {
15065 struct ppc_link_hash_table *htab;
15066 bfd *dynobj;
15067 asection *sdyn;
15068
15069 htab = ppc_hash_table (info);
15070 if (htab == NULL)
15071 return FALSE;
15072
15073 dynobj = htab->elf.dynobj;
15074 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
15075
15076 if (htab->elf.dynamic_sections_created)
15077 {
15078 Elf64_External_Dyn *dyncon, *dynconend;
15079
15080 if (sdyn == NULL || htab->elf.sgot == NULL)
15081 abort ();
15082
15083 dyncon = (Elf64_External_Dyn *) sdyn->contents;
15084 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
15085 for (; dyncon < dynconend; dyncon++)
15086 {
15087 Elf_Internal_Dyn dyn;
15088 asection *s;
15089
15090 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
15091
15092 switch (dyn.d_tag)
15093 {
15094 default:
15095 continue;
15096
15097 case DT_PPC64_GLINK:
15098 s = htab->glink;
15099 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15100 /* We stupidly defined DT_PPC64_GLINK to be the start
15101 of glink rather than the first entry point, which is
15102 what ld.so needs, and now have a bigger stub to
15103 support automatic multiple TOCs. */
15104 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 8 * 4;
15105 break;
15106
15107 case DT_PPC64_OPD:
15108 s = bfd_get_section_by_name (output_bfd, ".opd");
15109 if (s == NULL)
15110 continue;
15111 dyn.d_un.d_ptr = s->vma;
15112 break;
15113
15114 case DT_PPC64_OPT:
15115 if (htab->do_multi_toc && htab->multi_toc_needed)
15116 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
15117 break;
15118
15119 case DT_PPC64_OPDSZ:
15120 s = bfd_get_section_by_name (output_bfd, ".opd");
15121 if (s == NULL)
15122 continue;
15123 dyn.d_un.d_val = s->size;
15124 break;
15125
15126 case DT_PLTGOT:
15127 s = htab->elf.splt;
15128 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15129 break;
15130
15131 case DT_JMPREL:
15132 s = htab->elf.srelplt;
15133 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
15134 break;
15135
15136 case DT_PLTRELSZ:
15137 dyn.d_un.d_val = htab->elf.srelplt->size;
15138 break;
15139
15140 case DT_RELASZ:
15141 /* Don't count procedure linkage table relocs in the
15142 overall reloc count. */
15143 s = htab->elf.srelplt;
15144 if (s == NULL)
15145 continue;
15146 dyn.d_un.d_val -= s->size;
15147 break;
15148
15149 case DT_RELA:
15150 /* We may not be using the standard ELF linker script.
15151 If .rela.plt is the first .rela section, we adjust
15152 DT_RELA to not include it. */
15153 s = htab->elf.srelplt;
15154 if (s == NULL)
15155 continue;
15156 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
15157 continue;
15158 dyn.d_un.d_ptr += s->size;
15159 break;
15160 }
15161
15162 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
15163 }
15164 }
15165
15166 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0)
15167 {
15168 /* Fill in the first entry in the global offset table.
15169 We use it to hold the link-time TOCbase. */
15170 bfd_put_64 (output_bfd,
15171 elf_gp (output_bfd) + TOC_BASE_OFF,
15172 htab->elf.sgot->contents);
15173
15174 /* Set .got entry size. */
15175 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize = 8;
15176 }
15177
15178 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
15179 {
15180 /* Set .plt entry size. */
15181 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
15182 = PLT_ENTRY_SIZE (htab);
15183 }
15184
15185 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
15186 brlt ourselves if emitrelocations. */
15187 if (htab->brlt != NULL
15188 && htab->brlt->reloc_count != 0
15189 && !_bfd_elf_link_output_relocs (output_bfd,
15190 htab->brlt,
15191 elf_section_data (htab->brlt)->rela.hdr,
15192 elf_section_data (htab->brlt)->relocs,
15193 NULL))
15194 return FALSE;
15195
15196 if (htab->glink != NULL
15197 && htab->glink->reloc_count != 0
15198 && !_bfd_elf_link_output_relocs (output_bfd,
15199 htab->glink,
15200 elf_section_data (htab->glink)->rela.hdr,
15201 elf_section_data (htab->glink)->relocs,
15202 NULL))
15203 return FALSE;
15204
15205 if (htab->glink_eh_frame != NULL
15206 && htab->glink_eh_frame->size != 0)
15207 {
15208 bfd_vma val;
15209 bfd_byte *p;
15210 asection *stub_sec;
15211
15212 p = htab->glink_eh_frame->contents + sizeof (glink_eh_frame_cie);
15213 for (stub_sec = htab->params->stub_bfd->sections;
15214 stub_sec != NULL;
15215 stub_sec = stub_sec->next)
15216 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
15217 {
15218 /* FDE length. */
15219 p += 4;
15220 /* CIE pointer. */
15221 p += 4;
15222 /* Offset to stub section. */
15223 val = (stub_sec->output_section->vma
15224 + stub_sec->output_offset);
15225 val -= (htab->glink_eh_frame->output_section->vma
15226 + htab->glink_eh_frame->output_offset
15227 + (p - htab->glink_eh_frame->contents));
15228 if (val + 0x80000000 > 0xffffffff)
15229 {
15230 info->callbacks->einfo
15231 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15232 stub_sec->name);
15233 return FALSE;
15234 }
15235 bfd_put_32 (dynobj, val, p);
15236 p += 4;
15237 /* stub section size. */
15238 p += 4;
15239 /* Augmentation. */
15240 p += 1;
15241 /* Pad. */
15242 p += 7;
15243 }
15244 if (htab->glink != NULL && htab->glink->size != 0)
15245 {
15246 /* FDE length. */
15247 p += 4;
15248 /* CIE pointer. */
15249 p += 4;
15250 /* Offset to .glink. */
15251 val = (htab->glink->output_section->vma
15252 + htab->glink->output_offset
15253 + 8);
15254 val -= (htab->glink_eh_frame->output_section->vma
15255 + htab->glink_eh_frame->output_offset
15256 + (p - htab->glink_eh_frame->contents));
15257 if (val + 0x80000000 > 0xffffffff)
15258 {
15259 info->callbacks->einfo
15260 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
15261 htab->glink->name);
15262 return FALSE;
15263 }
15264 bfd_put_32 (dynobj, val, p);
15265 p += 4;
15266 /* .glink size. */
15267 p += 4;
15268 /* Augmentation. */
15269 p += 1;
15270 /* Ops. */
15271 p += 7;
15272 }
15273
15274 if (htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
15275 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
15276 htab->glink_eh_frame,
15277 htab->glink_eh_frame->contents))
15278 return FALSE;
15279 }
15280
15281 /* We need to handle writing out multiple GOT sections ourselves,
15282 since we didn't add them to DYNOBJ. We know dynobj is the first
15283 bfd. */
15284 while ((dynobj = dynobj->link.next) != NULL)
15285 {
15286 asection *s;
15287
15288 if (!is_ppc64_elf (dynobj))
15289 continue;
15290
15291 s = ppc64_elf_tdata (dynobj)->got;
15292 if (s != NULL
15293 && s->size != 0
15294 && s->output_section != bfd_abs_section_ptr
15295 && !bfd_set_section_contents (output_bfd, s->output_section,
15296 s->contents, s->output_offset,
15297 s->size))
15298 return FALSE;
15299 s = ppc64_elf_tdata (dynobj)->relgot;
15300 if (s != NULL
15301 && s->size != 0
15302 && s->output_section != bfd_abs_section_ptr
15303 && !bfd_set_section_contents (output_bfd, s->output_section,
15304 s->contents, s->output_offset,
15305 s->size))
15306 return FALSE;
15307 }
15308
15309 return TRUE;
15310 }
15311
15312 #include "elf64-target.h"
15313
15314 /* FreeBSD support */
15315
15316 #undef TARGET_LITTLE_SYM
15317 #undef TARGET_LITTLE_NAME
15318
15319 #undef TARGET_BIG_SYM
15320 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
15321 #undef TARGET_BIG_NAME
15322 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
15323
15324 #undef ELF_OSABI
15325 #define ELF_OSABI ELFOSABI_FREEBSD
15326
15327 #undef elf64_bed
15328 #define elf64_bed elf64_powerpc_fbsd_bed
15329
15330 #include "elf64-target.h"
15331
This page took 0.345899 seconds and 4 git commands to generate.