* readelf.c (get_ppc_dynamic_type): New function for DT_PPC_GLINK.
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra <amodra@bigpond.net.au>
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "bfd.h"
29 #include "sysdep.h"
30 #include "bfdlink.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/ppc64.h"
34 #include "elf64-ppc.h"
35
36 static bfd_reloc_status_type ppc64_elf_ha_reloc
37 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
38 static bfd_reloc_status_type ppc64_elf_branch_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_toc_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc64_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_vma opd_entry_value
55 (asection *, bfd_vma, asection **, bfd_vma *);
56
57 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
58 #define TARGET_LITTLE_NAME "elf64-powerpcle"
59 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
60 #define TARGET_BIG_NAME "elf64-powerpc"
61 #define ELF_ARCH bfd_arch_powerpc
62 #define ELF_MACHINE_CODE EM_PPC64
63 #define ELF_MAXPAGESIZE 0x10000
64 #define elf_info_to_howto ppc64_elf_info_to_howto
65
66 #define elf_backend_want_got_sym 0
67 #define elf_backend_want_plt_sym 0
68 #define elf_backend_plt_alignment 3
69 #define elf_backend_plt_not_loaded 1
70 #define elf_backend_got_header_size 8
71 #define elf_backend_can_gc_sections 1
72 #define elf_backend_can_refcount 1
73 #define elf_backend_rela_normal 1
74
75 #define bfd_elf64_mkobject ppc64_elf_mkobject
76 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
77 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
78 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
79 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
80 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
81 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
82
83 #define elf_backend_object_p ppc64_elf_object_p
84 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
85 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
86 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
87 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
88 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
89 #define elf_backend_check_directives ppc64_elf_check_directives
90 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
91 #define elf_backend_check_relocs ppc64_elf_check_relocs
92 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
93 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
94 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
95 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
96 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
97 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
98 #define elf_backend_relocate_section ppc64_elf_relocate_section
99 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
100 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
101 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
102 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
103 #define elf_backend_special_sections ppc64_elf_special_sections
104
105 /* The name of the dynamic interpreter. This is put in the .interp
106 section. */
107 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
108
109 /* The size in bytes of an entry in the procedure linkage table. */
110 #define PLT_ENTRY_SIZE 24
111
112 /* The initial size of the plt reserved for the dynamic linker. */
113 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
114
115 /* TOC base pointers offset from start of TOC. */
116 #define TOC_BASE_OFF 0x8000
117
118 /* Offset of tp and dtp pointers from start of TLS block. */
119 #define TP_OFFSET 0x7000
120 #define DTP_OFFSET 0x8000
121
122 /* .plt call stub instructions. The normal stub is like this, but
123 sometimes the .plt entry crosses a 64k boundary and we need to
124 insert an addis to adjust r12. */
125 #define PLT_CALL_STUB_SIZE (7*4)
126 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
127 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
128 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
129 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
130 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
131 /* ld %r11,xxx+16@l(%r12) */
132 #define BCTR 0x4e800420 /* bctr */
133
134
135 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
136 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
137
138 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
139
140 /* glink call stub instructions. We enter with the index in R0, and the
141 address of glink entry in CTR. From that, we can calculate PLT0. */
142 #define GLINK_CALL_STUB_SIZE (16*4)
143 #define MFCTR_R12 0x7d8902a6 /* mfctr %r12 */
144 #define SLDI_R11_R0_3 0x780b1f24 /* sldi %r11,%r0,3 */
145 #define ADDIC_R2_R0_32K 0x34408000 /* addic. %r2,%r0,-32768 */
146 #define SUB_R12_R12_R11 0x7d8b6050 /* sub %r12,%r12,%r11 */
147 #define SRADI_R2_R2_63 0x7c42fe76 /* sradi %r2,%r2,63 */
148 #define SLDI_R11_R0_2 0x780b1764 /* sldi %r11,%r0,2 */
149 #define AND_R2_R2_R11 0x7c425838 /* and %r2,%r2,%r11 */
150 /* sub %r12,%r12,%r11 */
151 #define ADD_R12_R12_R2 0x7d8c1214 /* add %r12,%r12,%r2 */
152 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
153 /* ld %r11,xxx@l(%r12) */
154 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,xxx@l */
155 /* ld %r2,8(%r12) */
156 /* mtctr %r11 */
157 /* ld %r11,16(%r12) */
158 /* bctr */
159
160 /* Pad with this. */
161 #define NOP 0x60000000
162
163 /* Some other nops. */
164 #define CROR_151515 0x4def7b82
165 #define CROR_313131 0x4ffffb82
166
167 /* .glink entries for the first 32k functions are two instructions. */
168 #define LI_R0_0 0x38000000 /* li %r0,0 */
169 #define B_DOT 0x48000000 /* b . */
170
171 /* After that, we need two instructions to load the index, followed by
172 a branch. */
173 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
174 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
175
176 /* Instructions used by the save and restore reg functions. */
177 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
178 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
179 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
180 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
181 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
182 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
183 #define LI_R12_0 0x39800000 /* li %r12,0 */
184 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
185 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
186 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
187 #define BLR 0x4e800020 /* blr */
188
189 /* Since .opd is an array of descriptors and each entry will end up
190 with identical R_PPC64_RELATIVE relocs, there is really no need to
191 propagate .opd relocs; The dynamic linker should be taught to
192 relocate .opd without reloc entries. */
193 #ifndef NO_OPD_RELOCS
194 #define NO_OPD_RELOCS 0
195 #endif
196 \f
197 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
198
199 /* Relocation HOWTO's. */
200 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
201
202 static reloc_howto_type ppc64_elf_howto_raw[] = {
203 /* This reloc does nothing. */
204 HOWTO (R_PPC64_NONE, /* type */
205 0, /* rightshift */
206 2, /* size (0 = byte, 1 = short, 2 = long) */
207 32, /* bitsize */
208 FALSE, /* pc_relative */
209 0, /* bitpos */
210 complain_overflow_dont, /* complain_on_overflow */
211 bfd_elf_generic_reloc, /* special_function */
212 "R_PPC64_NONE", /* name */
213 FALSE, /* partial_inplace */
214 0, /* src_mask */
215 0, /* dst_mask */
216 FALSE), /* pcrel_offset */
217
218 /* A standard 32 bit relocation. */
219 HOWTO (R_PPC64_ADDR32, /* type */
220 0, /* rightshift */
221 2, /* size (0 = byte, 1 = short, 2 = long) */
222 32, /* bitsize */
223 FALSE, /* pc_relative */
224 0, /* bitpos */
225 complain_overflow_bitfield, /* complain_on_overflow */
226 bfd_elf_generic_reloc, /* special_function */
227 "R_PPC64_ADDR32", /* name */
228 FALSE, /* partial_inplace */
229 0, /* src_mask */
230 0xffffffff, /* dst_mask */
231 FALSE), /* pcrel_offset */
232
233 /* An absolute 26 bit branch; the lower two bits must be zero.
234 FIXME: we don't check that, we just clear them. */
235 HOWTO (R_PPC64_ADDR24, /* type */
236 0, /* rightshift */
237 2, /* size (0 = byte, 1 = short, 2 = long) */
238 26, /* bitsize */
239 FALSE, /* pc_relative */
240 0, /* bitpos */
241 complain_overflow_bitfield, /* complain_on_overflow */
242 bfd_elf_generic_reloc, /* special_function */
243 "R_PPC64_ADDR24", /* name */
244 FALSE, /* partial_inplace */
245 0, /* src_mask */
246 0x03fffffc, /* dst_mask */
247 FALSE), /* pcrel_offset */
248
249 /* A standard 16 bit relocation. */
250 HOWTO (R_PPC64_ADDR16, /* type */
251 0, /* rightshift */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
253 16, /* bitsize */
254 FALSE, /* pc_relative */
255 0, /* bitpos */
256 complain_overflow_bitfield, /* complain_on_overflow */
257 bfd_elf_generic_reloc, /* special_function */
258 "R_PPC64_ADDR16", /* name */
259 FALSE, /* partial_inplace */
260 0, /* src_mask */
261 0xffff, /* dst_mask */
262 FALSE), /* pcrel_offset */
263
264 /* A 16 bit relocation without overflow. */
265 HOWTO (R_PPC64_ADDR16_LO, /* type */
266 0, /* rightshift */
267 1, /* size (0 = byte, 1 = short, 2 = long) */
268 16, /* bitsize */
269 FALSE, /* pc_relative */
270 0, /* bitpos */
271 complain_overflow_dont,/* complain_on_overflow */
272 bfd_elf_generic_reloc, /* special_function */
273 "R_PPC64_ADDR16_LO", /* name */
274 FALSE, /* partial_inplace */
275 0, /* src_mask */
276 0xffff, /* dst_mask */
277 FALSE), /* pcrel_offset */
278
279 /* Bits 16-31 of an address. */
280 HOWTO (R_PPC64_ADDR16_HI, /* type */
281 16, /* rightshift */
282 1, /* size (0 = byte, 1 = short, 2 = long) */
283 16, /* bitsize */
284 FALSE, /* pc_relative */
285 0, /* bitpos */
286 complain_overflow_dont, /* complain_on_overflow */
287 bfd_elf_generic_reloc, /* special_function */
288 "R_PPC64_ADDR16_HI", /* name */
289 FALSE, /* partial_inplace */
290 0, /* src_mask */
291 0xffff, /* dst_mask */
292 FALSE), /* pcrel_offset */
293
294 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
295 bits, treated as a signed number, is negative. */
296 HOWTO (R_PPC64_ADDR16_HA, /* type */
297 16, /* rightshift */
298 1, /* size (0 = byte, 1 = short, 2 = long) */
299 16, /* bitsize */
300 FALSE, /* pc_relative */
301 0, /* bitpos */
302 complain_overflow_dont, /* complain_on_overflow */
303 ppc64_elf_ha_reloc, /* special_function */
304 "R_PPC64_ADDR16_HA", /* name */
305 FALSE, /* partial_inplace */
306 0, /* src_mask */
307 0xffff, /* dst_mask */
308 FALSE), /* pcrel_offset */
309
310 /* An absolute 16 bit branch; the lower two bits must be zero.
311 FIXME: we don't check that, we just clear them. */
312 HOWTO (R_PPC64_ADDR14, /* type */
313 0, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 16, /* bitsize */
316 FALSE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_bitfield, /* complain_on_overflow */
319 ppc64_elf_branch_reloc, /* special_function */
320 "R_PPC64_ADDR14", /* name */
321 FALSE, /* partial_inplace */
322 0, /* src_mask */
323 0x0000fffc, /* dst_mask */
324 FALSE), /* pcrel_offset */
325
326 /* An absolute 16 bit branch, for which bit 10 should be set to
327 indicate that the branch is expected to be taken. The lower two
328 bits must be zero. */
329 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
330 0, /* rightshift */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
332 16, /* bitsize */
333 FALSE, /* pc_relative */
334 0, /* bitpos */
335 complain_overflow_bitfield, /* complain_on_overflow */
336 ppc64_elf_brtaken_reloc, /* special_function */
337 "R_PPC64_ADDR14_BRTAKEN",/* name */
338 FALSE, /* partial_inplace */
339 0, /* src_mask */
340 0x0000fffc, /* dst_mask */
341 FALSE), /* pcrel_offset */
342
343 /* An absolute 16 bit branch, for which bit 10 should be set to
344 indicate that the branch is not expected to be taken. The lower
345 two bits must be zero. */
346 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
347 0, /* rightshift */
348 2, /* size (0 = byte, 1 = short, 2 = long) */
349 16, /* bitsize */
350 FALSE, /* pc_relative */
351 0, /* bitpos */
352 complain_overflow_bitfield, /* complain_on_overflow */
353 ppc64_elf_brtaken_reloc, /* special_function */
354 "R_PPC64_ADDR14_BRNTAKEN",/* name */
355 FALSE, /* partial_inplace */
356 0, /* src_mask */
357 0x0000fffc, /* dst_mask */
358 FALSE), /* pcrel_offset */
359
360 /* A relative 26 bit branch; the lower two bits must be zero. */
361 HOWTO (R_PPC64_REL24, /* type */
362 0, /* rightshift */
363 2, /* size (0 = byte, 1 = short, 2 = long) */
364 26, /* bitsize */
365 TRUE, /* pc_relative */
366 0, /* bitpos */
367 complain_overflow_signed, /* complain_on_overflow */
368 ppc64_elf_branch_reloc, /* special_function */
369 "R_PPC64_REL24", /* name */
370 FALSE, /* partial_inplace */
371 0, /* src_mask */
372 0x03fffffc, /* dst_mask */
373 TRUE), /* pcrel_offset */
374
375 /* A relative 16 bit branch; the lower two bits must be zero. */
376 HOWTO (R_PPC64_REL14, /* type */
377 0, /* rightshift */
378 2, /* size (0 = byte, 1 = short, 2 = long) */
379 16, /* bitsize */
380 TRUE, /* pc_relative */
381 0, /* bitpos */
382 complain_overflow_signed, /* complain_on_overflow */
383 ppc64_elf_branch_reloc, /* special_function */
384 "R_PPC64_REL14", /* name */
385 FALSE, /* partial_inplace */
386 0, /* src_mask */
387 0x0000fffc, /* dst_mask */
388 TRUE), /* pcrel_offset */
389
390 /* A relative 16 bit branch. Bit 10 should be set to indicate that
391 the branch is expected to be taken. The lower two bits must be
392 zero. */
393 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
394 0, /* rightshift */
395 2, /* size (0 = byte, 1 = short, 2 = long) */
396 16, /* bitsize */
397 TRUE, /* pc_relative */
398 0, /* bitpos */
399 complain_overflow_signed, /* complain_on_overflow */
400 ppc64_elf_brtaken_reloc, /* special_function */
401 "R_PPC64_REL14_BRTAKEN", /* name */
402 FALSE, /* partial_inplace */
403 0, /* src_mask */
404 0x0000fffc, /* dst_mask */
405 TRUE), /* pcrel_offset */
406
407 /* A relative 16 bit branch. Bit 10 should be set to indicate that
408 the branch is not expected to be taken. The lower two bits must
409 be zero. */
410 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
411 0, /* rightshift */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
413 16, /* bitsize */
414 TRUE, /* pc_relative */
415 0, /* bitpos */
416 complain_overflow_signed, /* complain_on_overflow */
417 ppc64_elf_brtaken_reloc, /* special_function */
418 "R_PPC64_REL14_BRNTAKEN",/* name */
419 FALSE, /* partial_inplace */
420 0, /* src_mask */
421 0x0000fffc, /* dst_mask */
422 TRUE), /* pcrel_offset */
423
424 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
425 symbol. */
426 HOWTO (R_PPC64_GOT16, /* type */
427 0, /* rightshift */
428 1, /* size (0 = byte, 1 = short, 2 = long) */
429 16, /* bitsize */
430 FALSE, /* pc_relative */
431 0, /* bitpos */
432 complain_overflow_signed, /* complain_on_overflow */
433 ppc64_elf_unhandled_reloc, /* special_function */
434 "R_PPC64_GOT16", /* name */
435 FALSE, /* partial_inplace */
436 0, /* src_mask */
437 0xffff, /* dst_mask */
438 FALSE), /* pcrel_offset */
439
440 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
441 the symbol. */
442 HOWTO (R_PPC64_GOT16_LO, /* type */
443 0, /* rightshift */
444 1, /* size (0 = byte, 1 = short, 2 = long) */
445 16, /* bitsize */
446 FALSE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_dont, /* complain_on_overflow */
449 ppc64_elf_unhandled_reloc, /* special_function */
450 "R_PPC64_GOT16_LO", /* name */
451 FALSE, /* partial_inplace */
452 0, /* src_mask */
453 0xffff, /* dst_mask */
454 FALSE), /* pcrel_offset */
455
456 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
457 the symbol. */
458 HOWTO (R_PPC64_GOT16_HI, /* type */
459 16, /* rightshift */
460 1, /* size (0 = byte, 1 = short, 2 = long) */
461 16, /* bitsize */
462 FALSE, /* pc_relative */
463 0, /* bitpos */
464 complain_overflow_dont,/* complain_on_overflow */
465 ppc64_elf_unhandled_reloc, /* special_function */
466 "R_PPC64_GOT16_HI", /* name */
467 FALSE, /* partial_inplace */
468 0, /* src_mask */
469 0xffff, /* dst_mask */
470 FALSE), /* pcrel_offset */
471
472 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
473 the symbol. */
474 HOWTO (R_PPC64_GOT16_HA, /* type */
475 16, /* rightshift */
476 1, /* size (0 = byte, 1 = short, 2 = long) */
477 16, /* bitsize */
478 FALSE, /* pc_relative */
479 0, /* bitpos */
480 complain_overflow_dont,/* complain_on_overflow */
481 ppc64_elf_unhandled_reloc, /* special_function */
482 "R_PPC64_GOT16_HA", /* name */
483 FALSE, /* partial_inplace */
484 0, /* src_mask */
485 0xffff, /* dst_mask */
486 FALSE), /* pcrel_offset */
487
488 /* This is used only by the dynamic linker. The symbol should exist
489 both in the object being run and in some shared library. The
490 dynamic linker copies the data addressed by the symbol from the
491 shared library into the object, because the object being
492 run has to have the data at some particular address. */
493 HOWTO (R_PPC64_COPY, /* type */
494 0, /* rightshift */
495 0, /* this one is variable size */
496 0, /* bitsize */
497 FALSE, /* pc_relative */
498 0, /* bitpos */
499 complain_overflow_dont, /* complain_on_overflow */
500 ppc64_elf_unhandled_reloc, /* special_function */
501 "R_PPC64_COPY", /* name */
502 FALSE, /* partial_inplace */
503 0, /* src_mask */
504 0, /* dst_mask */
505 FALSE), /* pcrel_offset */
506
507 /* Like R_PPC64_ADDR64, but used when setting global offset table
508 entries. */
509 HOWTO (R_PPC64_GLOB_DAT, /* type */
510 0, /* rightshift */
511 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
512 64, /* bitsize */
513 FALSE, /* pc_relative */
514 0, /* bitpos */
515 complain_overflow_dont, /* complain_on_overflow */
516 ppc64_elf_unhandled_reloc, /* special_function */
517 "R_PPC64_GLOB_DAT", /* name */
518 FALSE, /* partial_inplace */
519 0, /* src_mask */
520 ONES (64), /* dst_mask */
521 FALSE), /* pcrel_offset */
522
523 /* Created by the link editor. Marks a procedure linkage table
524 entry for a symbol. */
525 HOWTO (R_PPC64_JMP_SLOT, /* type */
526 0, /* rightshift */
527 0, /* size (0 = byte, 1 = short, 2 = long) */
528 0, /* bitsize */
529 FALSE, /* pc_relative */
530 0, /* bitpos */
531 complain_overflow_dont, /* complain_on_overflow */
532 ppc64_elf_unhandled_reloc, /* special_function */
533 "R_PPC64_JMP_SLOT", /* name */
534 FALSE, /* partial_inplace */
535 0, /* src_mask */
536 0, /* dst_mask */
537 FALSE), /* pcrel_offset */
538
539 /* Used only by the dynamic linker. When the object is run, this
540 doubleword64 is set to the load address of the object, plus the
541 addend. */
542 HOWTO (R_PPC64_RELATIVE, /* type */
543 0, /* rightshift */
544 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
545 64, /* bitsize */
546 FALSE, /* pc_relative */
547 0, /* bitpos */
548 complain_overflow_dont, /* complain_on_overflow */
549 bfd_elf_generic_reloc, /* special_function */
550 "R_PPC64_RELATIVE", /* name */
551 FALSE, /* partial_inplace */
552 0, /* src_mask */
553 ONES (64), /* dst_mask */
554 FALSE), /* pcrel_offset */
555
556 /* Like R_PPC64_ADDR32, but may be unaligned. */
557 HOWTO (R_PPC64_UADDR32, /* type */
558 0, /* rightshift */
559 2, /* size (0 = byte, 1 = short, 2 = long) */
560 32, /* bitsize */
561 FALSE, /* pc_relative */
562 0, /* bitpos */
563 complain_overflow_bitfield, /* complain_on_overflow */
564 bfd_elf_generic_reloc, /* special_function */
565 "R_PPC64_UADDR32", /* name */
566 FALSE, /* partial_inplace */
567 0, /* src_mask */
568 0xffffffff, /* dst_mask */
569 FALSE), /* pcrel_offset */
570
571 /* Like R_PPC64_ADDR16, but may be unaligned. */
572 HOWTO (R_PPC64_UADDR16, /* type */
573 0, /* rightshift */
574 1, /* size (0 = byte, 1 = short, 2 = long) */
575 16, /* bitsize */
576 FALSE, /* pc_relative */
577 0, /* bitpos */
578 complain_overflow_bitfield, /* complain_on_overflow */
579 bfd_elf_generic_reloc, /* special_function */
580 "R_PPC64_UADDR16", /* name */
581 FALSE, /* partial_inplace */
582 0, /* src_mask */
583 0xffff, /* dst_mask */
584 FALSE), /* pcrel_offset */
585
586 /* 32-bit PC relative. */
587 HOWTO (R_PPC64_REL32, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 32, /* bitsize */
591 TRUE, /* pc_relative */
592 0, /* bitpos */
593 /* FIXME: Verify. Was complain_overflow_bitfield. */
594 complain_overflow_signed, /* complain_on_overflow */
595 bfd_elf_generic_reloc, /* special_function */
596 "R_PPC64_REL32", /* name */
597 FALSE, /* partial_inplace */
598 0, /* src_mask */
599 0xffffffff, /* dst_mask */
600 TRUE), /* pcrel_offset */
601
602 /* 32-bit relocation to the symbol's procedure linkage table. */
603 HOWTO (R_PPC64_PLT32, /* type */
604 0, /* rightshift */
605 2, /* size (0 = byte, 1 = short, 2 = long) */
606 32, /* bitsize */
607 FALSE, /* pc_relative */
608 0, /* bitpos */
609 complain_overflow_bitfield, /* complain_on_overflow */
610 ppc64_elf_unhandled_reloc, /* special_function */
611 "R_PPC64_PLT32", /* name */
612 FALSE, /* partial_inplace */
613 0, /* src_mask */
614 0xffffffff, /* dst_mask */
615 FALSE), /* pcrel_offset */
616
617 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
618 FIXME: R_PPC64_PLTREL32 not supported. */
619 HOWTO (R_PPC64_PLTREL32, /* type */
620 0, /* rightshift */
621 2, /* size (0 = byte, 1 = short, 2 = long) */
622 32, /* bitsize */
623 TRUE, /* pc_relative */
624 0, /* bitpos */
625 complain_overflow_signed, /* complain_on_overflow */
626 bfd_elf_generic_reloc, /* special_function */
627 "R_PPC64_PLTREL32", /* name */
628 FALSE, /* partial_inplace */
629 0, /* src_mask */
630 0xffffffff, /* dst_mask */
631 TRUE), /* pcrel_offset */
632
633 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
634 the symbol. */
635 HOWTO (R_PPC64_PLT16_LO, /* type */
636 0, /* rightshift */
637 1, /* size (0 = byte, 1 = short, 2 = long) */
638 16, /* bitsize */
639 FALSE, /* pc_relative */
640 0, /* bitpos */
641 complain_overflow_dont, /* complain_on_overflow */
642 ppc64_elf_unhandled_reloc, /* special_function */
643 "R_PPC64_PLT16_LO", /* name */
644 FALSE, /* partial_inplace */
645 0, /* src_mask */
646 0xffff, /* dst_mask */
647 FALSE), /* pcrel_offset */
648
649 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
650 the symbol. */
651 HOWTO (R_PPC64_PLT16_HI, /* type */
652 16, /* rightshift */
653 1, /* size (0 = byte, 1 = short, 2 = long) */
654 16, /* bitsize */
655 FALSE, /* pc_relative */
656 0, /* bitpos */
657 complain_overflow_dont, /* complain_on_overflow */
658 ppc64_elf_unhandled_reloc, /* special_function */
659 "R_PPC64_PLT16_HI", /* name */
660 FALSE, /* partial_inplace */
661 0, /* src_mask */
662 0xffff, /* dst_mask */
663 FALSE), /* pcrel_offset */
664
665 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
666 the symbol. */
667 HOWTO (R_PPC64_PLT16_HA, /* type */
668 16, /* rightshift */
669 1, /* size (0 = byte, 1 = short, 2 = long) */
670 16, /* bitsize */
671 FALSE, /* pc_relative */
672 0, /* bitpos */
673 complain_overflow_dont, /* complain_on_overflow */
674 ppc64_elf_unhandled_reloc, /* special_function */
675 "R_PPC64_PLT16_HA", /* name */
676 FALSE, /* partial_inplace */
677 0, /* src_mask */
678 0xffff, /* dst_mask */
679 FALSE), /* pcrel_offset */
680
681 /* 16-bit section relative relocation. */
682 HOWTO (R_PPC64_SECTOFF, /* type */
683 0, /* rightshift */
684 1, /* size (0 = byte, 1 = short, 2 = long) */
685 16, /* bitsize */
686 FALSE, /* pc_relative */
687 0, /* bitpos */
688 complain_overflow_bitfield, /* complain_on_overflow */
689 ppc64_elf_sectoff_reloc, /* special_function */
690 "R_PPC64_SECTOFF", /* name */
691 FALSE, /* partial_inplace */
692 0, /* src_mask */
693 0xffff, /* dst_mask */
694 FALSE), /* pcrel_offset */
695
696 /* Like R_PPC64_SECTOFF, but no overflow warning. */
697 HOWTO (R_PPC64_SECTOFF_LO, /* type */
698 0, /* rightshift */
699 1, /* size (0 = byte, 1 = short, 2 = long) */
700 16, /* bitsize */
701 FALSE, /* pc_relative */
702 0, /* bitpos */
703 complain_overflow_dont, /* complain_on_overflow */
704 ppc64_elf_sectoff_reloc, /* special_function */
705 "R_PPC64_SECTOFF_LO", /* name */
706 FALSE, /* partial_inplace */
707 0, /* src_mask */
708 0xffff, /* dst_mask */
709 FALSE), /* pcrel_offset */
710
711 /* 16-bit upper half section relative relocation. */
712 HOWTO (R_PPC64_SECTOFF_HI, /* type */
713 16, /* rightshift */
714 1, /* size (0 = byte, 1 = short, 2 = long) */
715 16, /* bitsize */
716 FALSE, /* pc_relative */
717 0, /* bitpos */
718 complain_overflow_dont, /* complain_on_overflow */
719 ppc64_elf_sectoff_reloc, /* special_function */
720 "R_PPC64_SECTOFF_HI", /* name */
721 FALSE, /* partial_inplace */
722 0, /* src_mask */
723 0xffff, /* dst_mask */
724 FALSE), /* pcrel_offset */
725
726 /* 16-bit upper half adjusted section relative relocation. */
727 HOWTO (R_PPC64_SECTOFF_HA, /* type */
728 16, /* rightshift */
729 1, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 FALSE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_dont, /* complain_on_overflow */
734 ppc64_elf_sectoff_ha_reloc, /* special_function */
735 "R_PPC64_SECTOFF_HA", /* name */
736 FALSE, /* partial_inplace */
737 0, /* src_mask */
738 0xffff, /* dst_mask */
739 FALSE), /* pcrel_offset */
740
741 /* Like R_PPC64_REL24 without touching the two least significant bits. */
742 HOWTO (R_PPC64_REL30, /* type */
743 2, /* rightshift */
744 2, /* size (0 = byte, 1 = short, 2 = long) */
745 30, /* bitsize */
746 TRUE, /* pc_relative */
747 0, /* bitpos */
748 complain_overflow_dont, /* complain_on_overflow */
749 bfd_elf_generic_reloc, /* special_function */
750 "R_PPC64_REL30", /* name */
751 FALSE, /* partial_inplace */
752 0, /* src_mask */
753 0xfffffffc, /* dst_mask */
754 TRUE), /* pcrel_offset */
755
756 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
757
758 /* A standard 64-bit relocation. */
759 HOWTO (R_PPC64_ADDR64, /* type */
760 0, /* rightshift */
761 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
762 64, /* bitsize */
763 FALSE, /* pc_relative */
764 0, /* bitpos */
765 complain_overflow_dont, /* complain_on_overflow */
766 bfd_elf_generic_reloc, /* special_function */
767 "R_PPC64_ADDR64", /* name */
768 FALSE, /* partial_inplace */
769 0, /* src_mask */
770 ONES (64), /* dst_mask */
771 FALSE), /* pcrel_offset */
772
773 /* The bits 32-47 of an address. */
774 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
775 32, /* rightshift */
776 1, /* size (0 = byte, 1 = short, 2 = long) */
777 16, /* bitsize */
778 FALSE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont, /* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
782 "R_PPC64_ADDR16_HIGHER", /* name */
783 FALSE, /* partial_inplace */
784 0, /* src_mask */
785 0xffff, /* dst_mask */
786 FALSE), /* pcrel_offset */
787
788 /* The bits 32-47 of an address, plus 1 if the contents of the low
789 16 bits, treated as a signed number, is negative. */
790 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
791 32, /* rightshift */
792 1, /* size (0 = byte, 1 = short, 2 = long) */
793 16, /* bitsize */
794 FALSE, /* pc_relative */
795 0, /* bitpos */
796 complain_overflow_dont, /* complain_on_overflow */
797 ppc64_elf_ha_reloc, /* special_function */
798 "R_PPC64_ADDR16_HIGHERA", /* name */
799 FALSE, /* partial_inplace */
800 0, /* src_mask */
801 0xffff, /* dst_mask */
802 FALSE), /* pcrel_offset */
803
804 /* The bits 48-63 of an address. */
805 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
806 48, /* rightshift */
807 1, /* size (0 = byte, 1 = short, 2 = long) */
808 16, /* bitsize */
809 FALSE, /* pc_relative */
810 0, /* bitpos */
811 complain_overflow_dont, /* complain_on_overflow */
812 bfd_elf_generic_reloc, /* special_function */
813 "R_PPC64_ADDR16_HIGHEST", /* name */
814 FALSE, /* partial_inplace */
815 0, /* src_mask */
816 0xffff, /* dst_mask */
817 FALSE), /* pcrel_offset */
818
819 /* The bits 48-63 of an address, plus 1 if the contents of the low
820 16 bits, treated as a signed number, is negative. */
821 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
822 48, /* rightshift */
823 1, /* size (0 = byte, 1 = short, 2 = long) */
824 16, /* bitsize */
825 FALSE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_dont, /* complain_on_overflow */
828 ppc64_elf_ha_reloc, /* special_function */
829 "R_PPC64_ADDR16_HIGHESTA", /* name */
830 FALSE, /* partial_inplace */
831 0, /* src_mask */
832 0xffff, /* dst_mask */
833 FALSE), /* pcrel_offset */
834
835 /* Like ADDR64, but may be unaligned. */
836 HOWTO (R_PPC64_UADDR64, /* type */
837 0, /* rightshift */
838 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
839 64, /* bitsize */
840 FALSE, /* pc_relative */
841 0, /* bitpos */
842 complain_overflow_dont, /* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
844 "R_PPC64_UADDR64", /* name */
845 FALSE, /* partial_inplace */
846 0, /* src_mask */
847 ONES (64), /* dst_mask */
848 FALSE), /* pcrel_offset */
849
850 /* 64-bit relative relocation. */
851 HOWTO (R_PPC64_REL64, /* type */
852 0, /* rightshift */
853 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
854 64, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont, /* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_PPC64_REL64", /* name */
860 FALSE, /* partial_inplace */
861 0, /* src_mask */
862 ONES (64), /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 /* 64-bit relocation to the symbol's procedure linkage table. */
866 HOWTO (R_PPC64_PLT64, /* type */
867 0, /* rightshift */
868 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
869 64, /* bitsize */
870 FALSE, /* pc_relative */
871 0, /* bitpos */
872 complain_overflow_dont, /* complain_on_overflow */
873 ppc64_elf_unhandled_reloc, /* special_function */
874 "R_PPC64_PLT64", /* name */
875 FALSE, /* partial_inplace */
876 0, /* src_mask */
877 ONES (64), /* dst_mask */
878 FALSE), /* pcrel_offset */
879
880 /* 64-bit PC relative relocation to the symbol's procedure linkage
881 table. */
882 /* FIXME: R_PPC64_PLTREL64 not supported. */
883 HOWTO (R_PPC64_PLTREL64, /* type */
884 0, /* rightshift */
885 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
886 64, /* bitsize */
887 TRUE, /* pc_relative */
888 0, /* bitpos */
889 complain_overflow_dont, /* complain_on_overflow */
890 ppc64_elf_unhandled_reloc, /* special_function */
891 "R_PPC64_PLTREL64", /* name */
892 FALSE, /* partial_inplace */
893 0, /* src_mask */
894 ONES (64), /* dst_mask */
895 TRUE), /* pcrel_offset */
896
897 /* 16 bit TOC-relative relocation. */
898
899 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
900 HOWTO (R_PPC64_TOC16, /* type */
901 0, /* rightshift */
902 1, /* size (0 = byte, 1 = short, 2 = long) */
903 16, /* bitsize */
904 FALSE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_signed, /* complain_on_overflow */
907 ppc64_elf_toc_reloc, /* special_function */
908 "R_PPC64_TOC16", /* name */
909 FALSE, /* partial_inplace */
910 0, /* src_mask */
911 0xffff, /* dst_mask */
912 FALSE), /* pcrel_offset */
913
914 /* 16 bit TOC-relative relocation without overflow. */
915
916 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
917 HOWTO (R_PPC64_TOC16_LO, /* type */
918 0, /* rightshift */
919 1, /* size (0 = byte, 1 = short, 2 = long) */
920 16, /* bitsize */
921 FALSE, /* pc_relative */
922 0, /* bitpos */
923 complain_overflow_dont, /* complain_on_overflow */
924 ppc64_elf_toc_reloc, /* special_function */
925 "R_PPC64_TOC16_LO", /* name */
926 FALSE, /* partial_inplace */
927 0, /* src_mask */
928 0xffff, /* dst_mask */
929 FALSE), /* pcrel_offset */
930
931 /* 16 bit TOC-relative relocation, high 16 bits. */
932
933 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
934 HOWTO (R_PPC64_TOC16_HI, /* type */
935 16, /* rightshift */
936 1, /* size (0 = byte, 1 = short, 2 = long) */
937 16, /* bitsize */
938 FALSE, /* pc_relative */
939 0, /* bitpos */
940 complain_overflow_dont, /* complain_on_overflow */
941 ppc64_elf_toc_reloc, /* special_function */
942 "R_PPC64_TOC16_HI", /* name */
943 FALSE, /* partial_inplace */
944 0, /* src_mask */
945 0xffff, /* dst_mask */
946 FALSE), /* pcrel_offset */
947
948 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
949 contents of the low 16 bits, treated as a signed number, is
950 negative. */
951
952 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
953 HOWTO (R_PPC64_TOC16_HA, /* type */
954 16, /* rightshift */
955 1, /* size (0 = byte, 1 = short, 2 = long) */
956 16, /* bitsize */
957 FALSE, /* pc_relative */
958 0, /* bitpos */
959 complain_overflow_dont, /* complain_on_overflow */
960 ppc64_elf_toc_ha_reloc, /* special_function */
961 "R_PPC64_TOC16_HA", /* name */
962 FALSE, /* partial_inplace */
963 0, /* src_mask */
964 0xffff, /* dst_mask */
965 FALSE), /* pcrel_offset */
966
967 /* 64-bit relocation; insert value of TOC base (.TOC.). */
968
969 /* R_PPC64_TOC 51 doubleword64 .TOC. */
970 HOWTO (R_PPC64_TOC, /* type */
971 0, /* rightshift */
972 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
973 64, /* bitsize */
974 FALSE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_bitfield, /* complain_on_overflow */
977 ppc64_elf_toc64_reloc, /* special_function */
978 "R_PPC64_TOC", /* name */
979 FALSE, /* partial_inplace */
980 0, /* src_mask */
981 ONES (64), /* dst_mask */
982 FALSE), /* pcrel_offset */
983
984 /* Like R_PPC64_GOT16, but also informs the link editor that the
985 value to relocate may (!) refer to a PLT entry which the link
986 editor (a) may replace with the symbol value. If the link editor
987 is unable to fully resolve the symbol, it may (b) create a PLT
988 entry and store the address to the new PLT entry in the GOT.
989 This permits lazy resolution of function symbols at run time.
990 The link editor may also skip all of this and just (c) emit a
991 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
992 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
993 HOWTO (R_PPC64_PLTGOT16, /* type */
994 0, /* rightshift */
995 1, /* size (0 = byte, 1 = short, 2 = long) */
996 16, /* bitsize */
997 FALSE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_signed, /* complain_on_overflow */
1000 ppc64_elf_unhandled_reloc, /* special_function */
1001 "R_PPC64_PLTGOT16", /* name */
1002 FALSE, /* partial_inplace */
1003 0, /* src_mask */
1004 0xffff, /* dst_mask */
1005 FALSE), /* pcrel_offset */
1006
1007 /* Like R_PPC64_PLTGOT16, but without overflow. */
1008 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1009 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1010 0, /* rightshift */
1011 1, /* size (0 = byte, 1 = short, 2 = long) */
1012 16, /* bitsize */
1013 FALSE, /* pc_relative */
1014 0, /* bitpos */
1015 complain_overflow_dont, /* complain_on_overflow */
1016 ppc64_elf_unhandled_reloc, /* special_function */
1017 "R_PPC64_PLTGOT16_LO", /* name */
1018 FALSE, /* partial_inplace */
1019 0, /* src_mask */
1020 0xffff, /* dst_mask */
1021 FALSE), /* pcrel_offset */
1022
1023 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1024 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1025 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1026 16, /* rightshift */
1027 1, /* size (0 = byte, 1 = short, 2 = long) */
1028 16, /* bitsize */
1029 FALSE, /* pc_relative */
1030 0, /* bitpos */
1031 complain_overflow_dont, /* complain_on_overflow */
1032 ppc64_elf_unhandled_reloc, /* special_function */
1033 "R_PPC64_PLTGOT16_HI", /* name */
1034 FALSE, /* partial_inplace */
1035 0, /* src_mask */
1036 0xffff, /* dst_mask */
1037 FALSE), /* pcrel_offset */
1038
1039 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1040 1 if the contents of the low 16 bits, treated as a signed number,
1041 is negative. */
1042 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1043 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1044 16, /* rightshift */
1045 1, /* size (0 = byte, 1 = short, 2 = long) */
1046 16, /* bitsize */
1047 FALSE, /* pc_relative */
1048 0, /* bitpos */
1049 complain_overflow_dont,/* complain_on_overflow */
1050 ppc64_elf_unhandled_reloc, /* special_function */
1051 "R_PPC64_PLTGOT16_HA", /* name */
1052 FALSE, /* partial_inplace */
1053 0, /* src_mask */
1054 0xffff, /* dst_mask */
1055 FALSE), /* pcrel_offset */
1056
1057 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1058 HOWTO (R_PPC64_ADDR16_DS, /* type */
1059 0, /* rightshift */
1060 1, /* size (0 = byte, 1 = short, 2 = long) */
1061 16, /* bitsize */
1062 FALSE, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_bitfield, /* complain_on_overflow */
1065 bfd_elf_generic_reloc, /* special_function */
1066 "R_PPC64_ADDR16_DS", /* name */
1067 FALSE, /* partial_inplace */
1068 0, /* src_mask */
1069 0xfffc, /* dst_mask */
1070 FALSE), /* pcrel_offset */
1071
1072 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1073 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1074 0, /* rightshift */
1075 1, /* size (0 = byte, 1 = short, 2 = long) */
1076 16, /* bitsize */
1077 FALSE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont,/* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 "R_PPC64_ADDR16_LO_DS",/* name */
1082 FALSE, /* partial_inplace */
1083 0, /* src_mask */
1084 0xfffc, /* dst_mask */
1085 FALSE), /* pcrel_offset */
1086
1087 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1088 HOWTO (R_PPC64_GOT16_DS, /* type */
1089 0, /* rightshift */
1090 1, /* size (0 = byte, 1 = short, 2 = long) */
1091 16, /* bitsize */
1092 FALSE, /* pc_relative */
1093 0, /* bitpos */
1094 complain_overflow_signed, /* complain_on_overflow */
1095 ppc64_elf_unhandled_reloc, /* special_function */
1096 "R_PPC64_GOT16_DS", /* name */
1097 FALSE, /* partial_inplace */
1098 0, /* src_mask */
1099 0xfffc, /* dst_mask */
1100 FALSE), /* pcrel_offset */
1101
1102 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1103 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1104 0, /* rightshift */
1105 1, /* size (0 = byte, 1 = short, 2 = long) */
1106 16, /* bitsize */
1107 FALSE, /* pc_relative */
1108 0, /* bitpos */
1109 complain_overflow_dont, /* complain_on_overflow */
1110 ppc64_elf_unhandled_reloc, /* special_function */
1111 "R_PPC64_GOT16_LO_DS", /* name */
1112 FALSE, /* partial_inplace */
1113 0, /* src_mask */
1114 0xfffc, /* dst_mask */
1115 FALSE), /* pcrel_offset */
1116
1117 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1118 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1119 0, /* rightshift */
1120 1, /* size (0 = byte, 1 = short, 2 = long) */
1121 16, /* bitsize */
1122 FALSE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_dont, /* complain_on_overflow */
1125 ppc64_elf_unhandled_reloc, /* special_function */
1126 "R_PPC64_PLT16_LO_DS", /* name */
1127 FALSE, /* partial_inplace */
1128 0, /* src_mask */
1129 0xfffc, /* dst_mask */
1130 FALSE), /* pcrel_offset */
1131
1132 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1133 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1134 0, /* rightshift */
1135 1, /* size (0 = byte, 1 = short, 2 = long) */
1136 16, /* bitsize */
1137 FALSE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_bitfield, /* complain_on_overflow */
1140 ppc64_elf_sectoff_reloc, /* special_function */
1141 "R_PPC64_SECTOFF_DS", /* name */
1142 FALSE, /* partial_inplace */
1143 0, /* src_mask */
1144 0xfffc, /* dst_mask */
1145 FALSE), /* pcrel_offset */
1146
1147 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1148 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1149 0, /* rightshift */
1150 1, /* size (0 = byte, 1 = short, 2 = long) */
1151 16, /* bitsize */
1152 FALSE, /* pc_relative */
1153 0, /* bitpos */
1154 complain_overflow_dont, /* complain_on_overflow */
1155 ppc64_elf_sectoff_reloc, /* special_function */
1156 "R_PPC64_SECTOFF_LO_DS",/* name */
1157 FALSE, /* partial_inplace */
1158 0, /* src_mask */
1159 0xfffc, /* dst_mask */
1160 FALSE), /* pcrel_offset */
1161
1162 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1163 HOWTO (R_PPC64_TOC16_DS, /* type */
1164 0, /* rightshift */
1165 1, /* size (0 = byte, 1 = short, 2 = long) */
1166 16, /* bitsize */
1167 FALSE, /* pc_relative */
1168 0, /* bitpos */
1169 complain_overflow_signed, /* complain_on_overflow */
1170 ppc64_elf_toc_reloc, /* special_function */
1171 "R_PPC64_TOC16_DS", /* name */
1172 FALSE, /* partial_inplace */
1173 0, /* src_mask */
1174 0xfffc, /* dst_mask */
1175 FALSE), /* pcrel_offset */
1176
1177 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1178 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1179 0, /* rightshift */
1180 1, /* size (0 = byte, 1 = short, 2 = long) */
1181 16, /* bitsize */
1182 FALSE, /* pc_relative */
1183 0, /* bitpos */
1184 complain_overflow_dont, /* complain_on_overflow */
1185 ppc64_elf_toc_reloc, /* special_function */
1186 "R_PPC64_TOC16_LO_DS", /* name */
1187 FALSE, /* partial_inplace */
1188 0, /* src_mask */
1189 0xfffc, /* dst_mask */
1190 FALSE), /* pcrel_offset */
1191
1192 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1193 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1194 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1195 0, /* rightshift */
1196 1, /* size (0 = byte, 1 = short, 2 = long) */
1197 16, /* bitsize */
1198 FALSE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_signed, /* complain_on_overflow */
1201 ppc64_elf_unhandled_reloc, /* special_function */
1202 "R_PPC64_PLTGOT16_DS", /* name */
1203 FALSE, /* partial_inplace */
1204 0, /* src_mask */
1205 0xfffc, /* dst_mask */
1206 FALSE), /* pcrel_offset */
1207
1208 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1209 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1210 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1211 0, /* rightshift */
1212 1, /* size (0 = byte, 1 = short, 2 = long) */
1213 16, /* bitsize */
1214 FALSE, /* pc_relative */
1215 0, /* bitpos */
1216 complain_overflow_dont, /* complain_on_overflow */
1217 ppc64_elf_unhandled_reloc, /* special_function */
1218 "R_PPC64_PLTGOT16_LO_DS",/* name */
1219 FALSE, /* partial_inplace */
1220 0, /* src_mask */
1221 0xfffc, /* dst_mask */
1222 FALSE), /* pcrel_offset */
1223
1224 /* Marker reloc for TLS. */
1225 HOWTO (R_PPC64_TLS,
1226 0, /* rightshift */
1227 2, /* size (0 = byte, 1 = short, 2 = long) */
1228 32, /* bitsize */
1229 FALSE, /* pc_relative */
1230 0, /* bitpos */
1231 complain_overflow_dont, /* complain_on_overflow */
1232 bfd_elf_generic_reloc, /* special_function */
1233 "R_PPC64_TLS", /* name */
1234 FALSE, /* partial_inplace */
1235 0, /* src_mask */
1236 0, /* dst_mask */
1237 FALSE), /* pcrel_offset */
1238
1239 /* Computes the load module index of the load module that contains the
1240 definition of its TLS sym. */
1241 HOWTO (R_PPC64_DTPMOD64,
1242 0, /* rightshift */
1243 4, /* size (0 = byte, 1 = short, 2 = long) */
1244 64, /* bitsize */
1245 FALSE, /* pc_relative */
1246 0, /* bitpos */
1247 complain_overflow_dont, /* complain_on_overflow */
1248 ppc64_elf_unhandled_reloc, /* special_function */
1249 "R_PPC64_DTPMOD64", /* name */
1250 FALSE, /* partial_inplace */
1251 0, /* src_mask */
1252 ONES (64), /* dst_mask */
1253 FALSE), /* pcrel_offset */
1254
1255 /* Computes a dtv-relative displacement, the difference between the value
1256 of sym+add and the base address of the thread-local storage block that
1257 contains the definition of sym, minus 0x8000. */
1258 HOWTO (R_PPC64_DTPREL64,
1259 0, /* rightshift */
1260 4, /* size (0 = byte, 1 = short, 2 = long) */
1261 64, /* bitsize */
1262 FALSE, /* pc_relative */
1263 0, /* bitpos */
1264 complain_overflow_dont, /* complain_on_overflow */
1265 ppc64_elf_unhandled_reloc, /* special_function */
1266 "R_PPC64_DTPREL64", /* name */
1267 FALSE, /* partial_inplace */
1268 0, /* src_mask */
1269 ONES (64), /* dst_mask */
1270 FALSE), /* pcrel_offset */
1271
1272 /* A 16 bit dtprel reloc. */
1273 HOWTO (R_PPC64_DTPREL16,
1274 0, /* rightshift */
1275 1, /* size (0 = byte, 1 = short, 2 = long) */
1276 16, /* bitsize */
1277 FALSE, /* pc_relative */
1278 0, /* bitpos */
1279 complain_overflow_signed, /* complain_on_overflow */
1280 ppc64_elf_unhandled_reloc, /* special_function */
1281 "R_PPC64_DTPREL16", /* name */
1282 FALSE, /* partial_inplace */
1283 0, /* src_mask */
1284 0xffff, /* dst_mask */
1285 FALSE), /* pcrel_offset */
1286
1287 /* Like DTPREL16, but no overflow. */
1288 HOWTO (R_PPC64_DTPREL16_LO,
1289 0, /* rightshift */
1290 1, /* size (0 = byte, 1 = short, 2 = long) */
1291 16, /* bitsize */
1292 FALSE, /* pc_relative */
1293 0, /* bitpos */
1294 complain_overflow_dont, /* complain_on_overflow */
1295 ppc64_elf_unhandled_reloc, /* special_function */
1296 "R_PPC64_DTPREL16_LO", /* name */
1297 FALSE, /* partial_inplace */
1298 0, /* src_mask */
1299 0xffff, /* dst_mask */
1300 FALSE), /* pcrel_offset */
1301
1302 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1303 HOWTO (R_PPC64_DTPREL16_HI,
1304 16, /* rightshift */
1305 1, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont, /* complain_on_overflow */
1310 ppc64_elf_unhandled_reloc, /* special_function */
1311 "R_PPC64_DTPREL16_HI", /* name */
1312 FALSE, /* partial_inplace */
1313 0, /* src_mask */
1314 0xffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1318 HOWTO (R_PPC64_DTPREL16_HA,
1319 16, /* rightshift */
1320 1, /* size (0 = byte, 1 = short, 2 = long) */
1321 16, /* bitsize */
1322 FALSE, /* pc_relative */
1323 0, /* bitpos */
1324 complain_overflow_dont, /* complain_on_overflow */
1325 ppc64_elf_unhandled_reloc, /* special_function */
1326 "R_PPC64_DTPREL16_HA", /* name */
1327 FALSE, /* partial_inplace */
1328 0, /* src_mask */
1329 0xffff, /* dst_mask */
1330 FALSE), /* pcrel_offset */
1331
1332 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1333 HOWTO (R_PPC64_DTPREL16_HIGHER,
1334 32, /* rightshift */
1335 1, /* size (0 = byte, 1 = short, 2 = long) */
1336 16, /* bitsize */
1337 FALSE, /* pc_relative */
1338 0, /* bitpos */
1339 complain_overflow_dont, /* complain_on_overflow */
1340 ppc64_elf_unhandled_reloc, /* special_function */
1341 "R_PPC64_DTPREL16_HIGHER", /* name */
1342 FALSE, /* partial_inplace */
1343 0, /* src_mask */
1344 0xffff, /* dst_mask */
1345 FALSE), /* pcrel_offset */
1346
1347 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1348 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1349 32, /* rightshift */
1350 1, /* size (0 = byte, 1 = short, 2 = long) */
1351 16, /* bitsize */
1352 FALSE, /* pc_relative */
1353 0, /* bitpos */
1354 complain_overflow_dont, /* complain_on_overflow */
1355 ppc64_elf_unhandled_reloc, /* special_function */
1356 "R_PPC64_DTPREL16_HIGHERA", /* name */
1357 FALSE, /* partial_inplace */
1358 0, /* src_mask */
1359 0xffff, /* dst_mask */
1360 FALSE), /* pcrel_offset */
1361
1362 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1363 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1364 48, /* rightshift */
1365 1, /* size (0 = byte, 1 = short, 2 = long) */
1366 16, /* bitsize */
1367 FALSE, /* pc_relative */
1368 0, /* bitpos */
1369 complain_overflow_dont, /* complain_on_overflow */
1370 ppc64_elf_unhandled_reloc, /* special_function */
1371 "R_PPC64_DTPREL16_HIGHEST", /* name */
1372 FALSE, /* partial_inplace */
1373 0, /* src_mask */
1374 0xffff, /* dst_mask */
1375 FALSE), /* pcrel_offset */
1376
1377 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1378 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1379 48, /* rightshift */
1380 1, /* size (0 = byte, 1 = short, 2 = long) */
1381 16, /* bitsize */
1382 FALSE, /* pc_relative */
1383 0, /* bitpos */
1384 complain_overflow_dont, /* complain_on_overflow */
1385 ppc64_elf_unhandled_reloc, /* special_function */
1386 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1387 FALSE, /* partial_inplace */
1388 0, /* src_mask */
1389 0xffff, /* dst_mask */
1390 FALSE), /* pcrel_offset */
1391
1392 /* Like DTPREL16, but for insns with a DS field. */
1393 HOWTO (R_PPC64_DTPREL16_DS,
1394 0, /* rightshift */
1395 1, /* size (0 = byte, 1 = short, 2 = long) */
1396 16, /* bitsize */
1397 FALSE, /* pc_relative */
1398 0, /* bitpos */
1399 complain_overflow_signed, /* complain_on_overflow */
1400 ppc64_elf_unhandled_reloc, /* special_function */
1401 "R_PPC64_DTPREL16_DS", /* name */
1402 FALSE, /* partial_inplace */
1403 0, /* src_mask */
1404 0xfffc, /* dst_mask */
1405 FALSE), /* pcrel_offset */
1406
1407 /* Like DTPREL16_DS, but no overflow. */
1408 HOWTO (R_PPC64_DTPREL16_LO_DS,
1409 0, /* rightshift */
1410 1, /* size (0 = byte, 1 = short, 2 = long) */
1411 16, /* bitsize */
1412 FALSE, /* pc_relative */
1413 0, /* bitpos */
1414 complain_overflow_dont, /* complain_on_overflow */
1415 ppc64_elf_unhandled_reloc, /* special_function */
1416 "R_PPC64_DTPREL16_LO_DS", /* name */
1417 FALSE, /* partial_inplace */
1418 0, /* src_mask */
1419 0xfffc, /* dst_mask */
1420 FALSE), /* pcrel_offset */
1421
1422 /* Computes a tp-relative displacement, the difference between the value of
1423 sym+add and the value of the thread pointer (r13). */
1424 HOWTO (R_PPC64_TPREL64,
1425 0, /* rightshift */
1426 4, /* size (0 = byte, 1 = short, 2 = long) */
1427 64, /* bitsize */
1428 FALSE, /* pc_relative */
1429 0, /* bitpos */
1430 complain_overflow_dont, /* complain_on_overflow */
1431 ppc64_elf_unhandled_reloc, /* special_function */
1432 "R_PPC64_TPREL64", /* name */
1433 FALSE, /* partial_inplace */
1434 0, /* src_mask */
1435 ONES (64), /* dst_mask */
1436 FALSE), /* pcrel_offset */
1437
1438 /* A 16 bit tprel reloc. */
1439 HOWTO (R_PPC64_TPREL16,
1440 0, /* rightshift */
1441 1, /* size (0 = byte, 1 = short, 2 = long) */
1442 16, /* bitsize */
1443 FALSE, /* pc_relative */
1444 0, /* bitpos */
1445 complain_overflow_signed, /* complain_on_overflow */
1446 ppc64_elf_unhandled_reloc, /* special_function */
1447 "R_PPC64_TPREL16", /* name */
1448 FALSE, /* partial_inplace */
1449 0, /* src_mask */
1450 0xffff, /* dst_mask */
1451 FALSE), /* pcrel_offset */
1452
1453 /* Like TPREL16, but no overflow. */
1454 HOWTO (R_PPC64_TPREL16_LO,
1455 0, /* rightshift */
1456 1, /* size (0 = byte, 1 = short, 2 = long) */
1457 16, /* bitsize */
1458 FALSE, /* pc_relative */
1459 0, /* bitpos */
1460 complain_overflow_dont, /* complain_on_overflow */
1461 ppc64_elf_unhandled_reloc, /* special_function */
1462 "R_PPC64_TPREL16_LO", /* name */
1463 FALSE, /* partial_inplace */
1464 0, /* src_mask */
1465 0xffff, /* dst_mask */
1466 FALSE), /* pcrel_offset */
1467
1468 /* Like TPREL16_LO, but next higher group of 16 bits. */
1469 HOWTO (R_PPC64_TPREL16_HI,
1470 16, /* rightshift */
1471 1, /* size (0 = byte, 1 = short, 2 = long) */
1472 16, /* bitsize */
1473 FALSE, /* pc_relative */
1474 0, /* bitpos */
1475 complain_overflow_dont, /* complain_on_overflow */
1476 ppc64_elf_unhandled_reloc, /* special_function */
1477 "R_PPC64_TPREL16_HI", /* name */
1478 FALSE, /* partial_inplace */
1479 0, /* src_mask */
1480 0xffff, /* dst_mask */
1481 FALSE), /* pcrel_offset */
1482
1483 /* Like TPREL16_HI, but adjust for low 16 bits. */
1484 HOWTO (R_PPC64_TPREL16_HA,
1485 16, /* rightshift */
1486 1, /* size (0 = byte, 1 = short, 2 = long) */
1487 16, /* bitsize */
1488 FALSE, /* pc_relative */
1489 0, /* bitpos */
1490 complain_overflow_dont, /* complain_on_overflow */
1491 ppc64_elf_unhandled_reloc, /* special_function */
1492 "R_PPC64_TPREL16_HA", /* name */
1493 FALSE, /* partial_inplace */
1494 0, /* src_mask */
1495 0xffff, /* dst_mask */
1496 FALSE), /* pcrel_offset */
1497
1498 /* Like TPREL16_HI, but next higher group of 16 bits. */
1499 HOWTO (R_PPC64_TPREL16_HIGHER,
1500 32, /* rightshift */
1501 1, /* size (0 = byte, 1 = short, 2 = long) */
1502 16, /* bitsize */
1503 FALSE, /* pc_relative */
1504 0, /* bitpos */
1505 complain_overflow_dont, /* complain_on_overflow */
1506 ppc64_elf_unhandled_reloc, /* special_function */
1507 "R_PPC64_TPREL16_HIGHER", /* name */
1508 FALSE, /* partial_inplace */
1509 0, /* src_mask */
1510 0xffff, /* dst_mask */
1511 FALSE), /* pcrel_offset */
1512
1513 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1514 HOWTO (R_PPC64_TPREL16_HIGHERA,
1515 32, /* rightshift */
1516 1, /* size (0 = byte, 1 = short, 2 = long) */
1517 16, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_dont, /* complain_on_overflow */
1521 ppc64_elf_unhandled_reloc, /* special_function */
1522 "R_PPC64_TPREL16_HIGHERA", /* name */
1523 FALSE, /* partial_inplace */
1524 0, /* src_mask */
1525 0xffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1529 HOWTO (R_PPC64_TPREL16_HIGHEST,
1530 48, /* rightshift */
1531 1, /* size (0 = byte, 1 = short, 2 = long) */
1532 16, /* bitsize */
1533 FALSE, /* pc_relative */
1534 0, /* bitpos */
1535 complain_overflow_dont, /* complain_on_overflow */
1536 ppc64_elf_unhandled_reloc, /* special_function */
1537 "R_PPC64_TPREL16_HIGHEST", /* name */
1538 FALSE, /* partial_inplace */
1539 0, /* src_mask */
1540 0xffff, /* dst_mask */
1541 FALSE), /* pcrel_offset */
1542
1543 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1544 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1545 48, /* rightshift */
1546 1, /* size (0 = byte, 1 = short, 2 = long) */
1547 16, /* bitsize */
1548 FALSE, /* pc_relative */
1549 0, /* bitpos */
1550 complain_overflow_dont, /* complain_on_overflow */
1551 ppc64_elf_unhandled_reloc, /* special_function */
1552 "R_PPC64_TPREL16_HIGHESTA", /* name */
1553 FALSE, /* partial_inplace */
1554 0, /* src_mask */
1555 0xffff, /* dst_mask */
1556 FALSE), /* pcrel_offset */
1557
1558 /* Like TPREL16, but for insns with a DS field. */
1559 HOWTO (R_PPC64_TPREL16_DS,
1560 0, /* rightshift */
1561 1, /* size (0 = byte, 1 = short, 2 = long) */
1562 16, /* bitsize */
1563 FALSE, /* pc_relative */
1564 0, /* bitpos */
1565 complain_overflow_signed, /* complain_on_overflow */
1566 ppc64_elf_unhandled_reloc, /* special_function */
1567 "R_PPC64_TPREL16_DS", /* name */
1568 FALSE, /* partial_inplace */
1569 0, /* src_mask */
1570 0xfffc, /* dst_mask */
1571 FALSE), /* pcrel_offset */
1572
1573 /* Like TPREL16_DS, but no overflow. */
1574 HOWTO (R_PPC64_TPREL16_LO_DS,
1575 0, /* rightshift */
1576 1, /* size (0 = byte, 1 = short, 2 = long) */
1577 16, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_dont, /* complain_on_overflow */
1581 ppc64_elf_unhandled_reloc, /* special_function */
1582 "R_PPC64_TPREL16_LO_DS", /* name */
1583 FALSE, /* partial_inplace */
1584 0, /* src_mask */
1585 0xfffc, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1589 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1590 to the first entry relative to the TOC base (r2). */
1591 HOWTO (R_PPC64_GOT_TLSGD16,
1592 0, /* rightshift */
1593 1, /* size (0 = byte, 1 = short, 2 = long) */
1594 16, /* bitsize */
1595 FALSE, /* pc_relative */
1596 0, /* bitpos */
1597 complain_overflow_signed, /* complain_on_overflow */
1598 ppc64_elf_unhandled_reloc, /* special_function */
1599 "R_PPC64_GOT_TLSGD16", /* name */
1600 FALSE, /* partial_inplace */
1601 0, /* src_mask */
1602 0xffff, /* dst_mask */
1603 FALSE), /* pcrel_offset */
1604
1605 /* Like GOT_TLSGD16, but no overflow. */
1606 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1607 0, /* rightshift */
1608 1, /* size (0 = byte, 1 = short, 2 = long) */
1609 16, /* bitsize */
1610 FALSE, /* pc_relative */
1611 0, /* bitpos */
1612 complain_overflow_dont, /* complain_on_overflow */
1613 ppc64_elf_unhandled_reloc, /* special_function */
1614 "R_PPC64_GOT_TLSGD16_LO", /* name */
1615 FALSE, /* partial_inplace */
1616 0, /* src_mask */
1617 0xffff, /* dst_mask */
1618 FALSE), /* pcrel_offset */
1619
1620 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1621 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1622 16, /* rightshift */
1623 1, /* size (0 = byte, 1 = short, 2 = long) */
1624 16, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont, /* complain_on_overflow */
1628 ppc64_elf_unhandled_reloc, /* special_function */
1629 "R_PPC64_GOT_TLSGD16_HI", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0xffff, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1636 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1637 16, /* rightshift */
1638 1, /* size (0 = byte, 1 = short, 2 = long) */
1639 16, /* bitsize */
1640 FALSE, /* pc_relative */
1641 0, /* bitpos */
1642 complain_overflow_dont, /* complain_on_overflow */
1643 ppc64_elf_unhandled_reloc, /* special_function */
1644 "R_PPC64_GOT_TLSGD16_HA", /* name */
1645 FALSE, /* partial_inplace */
1646 0, /* src_mask */
1647 0xffff, /* dst_mask */
1648 FALSE), /* pcrel_offset */
1649
1650 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1651 with values (sym+add)@dtpmod and zero, and computes the offset to the
1652 first entry relative to the TOC base (r2). */
1653 HOWTO (R_PPC64_GOT_TLSLD16,
1654 0, /* rightshift */
1655 1, /* size (0 = byte, 1 = short, 2 = long) */
1656 16, /* bitsize */
1657 FALSE, /* pc_relative */
1658 0, /* bitpos */
1659 complain_overflow_signed, /* complain_on_overflow */
1660 ppc64_elf_unhandled_reloc, /* special_function */
1661 "R_PPC64_GOT_TLSLD16", /* name */
1662 FALSE, /* partial_inplace */
1663 0, /* src_mask */
1664 0xffff, /* dst_mask */
1665 FALSE), /* pcrel_offset */
1666
1667 /* Like GOT_TLSLD16, but no overflow. */
1668 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1669 0, /* rightshift */
1670 1, /* size (0 = byte, 1 = short, 2 = long) */
1671 16, /* bitsize */
1672 FALSE, /* pc_relative */
1673 0, /* bitpos */
1674 complain_overflow_dont, /* complain_on_overflow */
1675 ppc64_elf_unhandled_reloc, /* special_function */
1676 "R_PPC64_GOT_TLSLD16_LO", /* name */
1677 FALSE, /* partial_inplace */
1678 0, /* src_mask */
1679 0xffff, /* dst_mask */
1680 FALSE), /* pcrel_offset */
1681
1682 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1683 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1684 16, /* rightshift */
1685 1, /* size (0 = byte, 1 = short, 2 = long) */
1686 16, /* bitsize */
1687 FALSE, /* pc_relative */
1688 0, /* bitpos */
1689 complain_overflow_dont, /* complain_on_overflow */
1690 ppc64_elf_unhandled_reloc, /* special_function */
1691 "R_PPC64_GOT_TLSLD16_HI", /* name */
1692 FALSE, /* partial_inplace */
1693 0, /* src_mask */
1694 0xffff, /* dst_mask */
1695 FALSE), /* pcrel_offset */
1696
1697 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1698 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1699 16, /* rightshift */
1700 1, /* size (0 = byte, 1 = short, 2 = long) */
1701 16, /* bitsize */
1702 FALSE, /* pc_relative */
1703 0, /* bitpos */
1704 complain_overflow_dont, /* complain_on_overflow */
1705 ppc64_elf_unhandled_reloc, /* special_function */
1706 "R_PPC64_GOT_TLSLD16_HA", /* name */
1707 FALSE, /* partial_inplace */
1708 0, /* src_mask */
1709 0xffff, /* dst_mask */
1710 FALSE), /* pcrel_offset */
1711
1712 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1713 the offset to the entry relative to the TOC base (r2). */
1714 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1715 0, /* rightshift */
1716 1, /* size (0 = byte, 1 = short, 2 = long) */
1717 16, /* bitsize */
1718 FALSE, /* pc_relative */
1719 0, /* bitpos */
1720 complain_overflow_signed, /* complain_on_overflow */
1721 ppc64_elf_unhandled_reloc, /* special_function */
1722 "R_PPC64_GOT_DTPREL16_DS", /* name */
1723 FALSE, /* partial_inplace */
1724 0, /* src_mask */
1725 0xfffc, /* dst_mask */
1726 FALSE), /* pcrel_offset */
1727
1728 /* Like GOT_DTPREL16_DS, but no overflow. */
1729 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1730 0, /* rightshift */
1731 1, /* size (0 = byte, 1 = short, 2 = long) */
1732 16, /* bitsize */
1733 FALSE, /* pc_relative */
1734 0, /* bitpos */
1735 complain_overflow_dont, /* complain_on_overflow */
1736 ppc64_elf_unhandled_reloc, /* special_function */
1737 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1738 FALSE, /* partial_inplace */
1739 0, /* src_mask */
1740 0xfffc, /* dst_mask */
1741 FALSE), /* pcrel_offset */
1742
1743 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1744 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1745 16, /* rightshift */
1746 1, /* size (0 = byte, 1 = short, 2 = long) */
1747 16, /* bitsize */
1748 FALSE, /* pc_relative */
1749 0, /* bitpos */
1750 complain_overflow_dont, /* complain_on_overflow */
1751 ppc64_elf_unhandled_reloc, /* special_function */
1752 "R_PPC64_GOT_DTPREL16_HI", /* name */
1753 FALSE, /* partial_inplace */
1754 0, /* src_mask */
1755 0xffff, /* dst_mask */
1756 FALSE), /* pcrel_offset */
1757
1758 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1759 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1760 16, /* rightshift */
1761 1, /* size (0 = byte, 1 = short, 2 = long) */
1762 16, /* bitsize */
1763 FALSE, /* pc_relative */
1764 0, /* bitpos */
1765 complain_overflow_dont, /* complain_on_overflow */
1766 ppc64_elf_unhandled_reloc, /* special_function */
1767 "R_PPC64_GOT_DTPREL16_HA", /* name */
1768 FALSE, /* partial_inplace */
1769 0, /* src_mask */
1770 0xffff, /* dst_mask */
1771 FALSE), /* pcrel_offset */
1772
1773 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1774 offset to the entry relative to the TOC base (r2). */
1775 HOWTO (R_PPC64_GOT_TPREL16_DS,
1776 0, /* rightshift */
1777 1, /* size (0 = byte, 1 = short, 2 = long) */
1778 16, /* bitsize */
1779 FALSE, /* pc_relative */
1780 0, /* bitpos */
1781 complain_overflow_signed, /* complain_on_overflow */
1782 ppc64_elf_unhandled_reloc, /* special_function */
1783 "R_PPC64_GOT_TPREL16_DS", /* name */
1784 FALSE, /* partial_inplace */
1785 0, /* src_mask */
1786 0xfffc, /* dst_mask */
1787 FALSE), /* pcrel_offset */
1788
1789 /* Like GOT_TPREL16_DS, but no overflow. */
1790 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1791 0, /* rightshift */
1792 1, /* size (0 = byte, 1 = short, 2 = long) */
1793 16, /* bitsize */
1794 FALSE, /* pc_relative */
1795 0, /* bitpos */
1796 complain_overflow_dont, /* complain_on_overflow */
1797 ppc64_elf_unhandled_reloc, /* special_function */
1798 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1799 FALSE, /* partial_inplace */
1800 0, /* src_mask */
1801 0xfffc, /* dst_mask */
1802 FALSE), /* pcrel_offset */
1803
1804 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1805 HOWTO (R_PPC64_GOT_TPREL16_HI,
1806 16, /* rightshift */
1807 1, /* size (0 = byte, 1 = short, 2 = long) */
1808 16, /* bitsize */
1809 FALSE, /* pc_relative */
1810 0, /* bitpos */
1811 complain_overflow_dont, /* complain_on_overflow */
1812 ppc64_elf_unhandled_reloc, /* special_function */
1813 "R_PPC64_GOT_TPREL16_HI", /* name */
1814 FALSE, /* partial_inplace */
1815 0, /* src_mask */
1816 0xffff, /* dst_mask */
1817 FALSE), /* pcrel_offset */
1818
1819 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1820 HOWTO (R_PPC64_GOT_TPREL16_HA,
1821 16, /* rightshift */
1822 1, /* size (0 = byte, 1 = short, 2 = long) */
1823 16, /* bitsize */
1824 FALSE, /* pc_relative */
1825 0, /* bitpos */
1826 complain_overflow_dont, /* complain_on_overflow */
1827 ppc64_elf_unhandled_reloc, /* special_function */
1828 "R_PPC64_GOT_TPREL16_HA", /* name */
1829 FALSE, /* partial_inplace */
1830 0, /* src_mask */
1831 0xffff, /* dst_mask */
1832 FALSE), /* pcrel_offset */
1833
1834 /* GNU extension to record C++ vtable hierarchy. */
1835 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1836 0, /* rightshift */
1837 0, /* size (0 = byte, 1 = short, 2 = long) */
1838 0, /* bitsize */
1839 FALSE, /* pc_relative */
1840 0, /* bitpos */
1841 complain_overflow_dont, /* complain_on_overflow */
1842 NULL, /* special_function */
1843 "R_PPC64_GNU_VTINHERIT", /* name */
1844 FALSE, /* partial_inplace */
1845 0, /* src_mask */
1846 0, /* dst_mask */
1847 FALSE), /* pcrel_offset */
1848
1849 /* GNU extension to record C++ vtable member usage. */
1850 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
1851 0, /* rightshift */
1852 0, /* size (0 = byte, 1 = short, 2 = long) */
1853 0, /* bitsize */
1854 FALSE, /* pc_relative */
1855 0, /* bitpos */
1856 complain_overflow_dont, /* complain_on_overflow */
1857 NULL, /* special_function */
1858 "R_PPC64_GNU_VTENTRY", /* name */
1859 FALSE, /* partial_inplace */
1860 0, /* src_mask */
1861 0, /* dst_mask */
1862 FALSE), /* pcrel_offset */
1863 };
1864
1865 \f
1866 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
1867 be done. */
1868
1869 static void
1870 ppc_howto_init (void)
1871 {
1872 unsigned int i, type;
1873
1874 for (i = 0;
1875 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
1876 i++)
1877 {
1878 type = ppc64_elf_howto_raw[i].type;
1879 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
1880 / sizeof (ppc64_elf_howto_table[0])));
1881 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1882 }
1883 }
1884
1885 static reloc_howto_type *
1886 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1887 bfd_reloc_code_real_type code)
1888 {
1889 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1890
1891 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1892 /* Initialize howto table if needed. */
1893 ppc_howto_init ();
1894
1895 switch (code)
1896 {
1897 default:
1898 return NULL;
1899
1900 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1901 break;
1902 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1903 break;
1904 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1905 break;
1906 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1907 break;
1908 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1909 break;
1910 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1911 break;
1912 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1913 break;
1914 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1915 break;
1916 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1917 break;
1918 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1919 break;
1920 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1921 break;
1922 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1923 break;
1924 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1925 break;
1926 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1927 break;
1928 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1929 break;
1930 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1931 break;
1932 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1933 break;
1934 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1935 break;
1936 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1937 break;
1938 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1939 break;
1940 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1941 break;
1942 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1943 break;
1944 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1945 break;
1946 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1947 break;
1948 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1949 break;
1950 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1951 break;
1952 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1953 break;
1954 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1955 break;
1956 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1957 break;
1958 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1959 break;
1960 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1961 break;
1962 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1963 break;
1964 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1965 break;
1966 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1967 break;
1968 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1969 break;
1970 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1971 break;
1972 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1973 break;
1974 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1975 break;
1976 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1977 break;
1978 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1979 break;
1980 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1981 break;
1982 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1983 break;
1984 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1985 break;
1986 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1987 break;
1988 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1989 break;
1990 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1991 break;
1992 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1993 break;
1994 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1995 break;
1996 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1997 break;
1998 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
1999 break;
2000 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2001 break;
2002 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2003 break;
2004 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2005 break;
2006 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2007 break;
2008 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2009 break;
2010 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2011 break;
2012 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2013 break;
2014 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2015 break;
2016 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2017 break;
2018 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2019 break;
2020 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2021 break;
2022 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2023 break;
2024 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2025 break;
2026 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2027 break;
2028 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2029 break;
2030 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2031 break;
2032 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2033 break;
2034 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2035 break;
2036 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2037 break;
2038 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2039 break;
2040 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2041 break;
2042 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2043 break;
2044 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2045 break;
2046 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2047 break;
2048 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2049 break;
2050 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2051 break;
2052 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2053 break;
2054 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2055 break;
2056 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2057 break;
2058 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2059 break;
2060 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2061 break;
2062 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2063 break;
2064 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2065 break;
2066 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2067 break;
2068 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2069 break;
2070 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2071 break;
2072 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2073 break;
2074 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2075 break;
2076 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2077 break;
2078 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2079 break;
2080 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2081 break;
2082 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2083 break;
2084 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2085 break;
2086 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2087 break;
2088 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2089 break;
2090 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2091 break;
2092 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2093 break;
2094 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2095 break;
2096 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2097 break;
2098 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2099 break;
2100 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2101 break;
2102 }
2103
2104 return ppc64_elf_howto_table[r];
2105 };
2106
2107 /* Set the howto pointer for a PowerPC ELF reloc. */
2108
2109 static void
2110 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2111 Elf_Internal_Rela *dst)
2112 {
2113 unsigned int type;
2114
2115 /* Initialize howto table if needed. */
2116 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2117 ppc_howto_init ();
2118
2119 type = ELF64_R_TYPE (dst->r_info);
2120 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2121 / sizeof (ppc64_elf_howto_table[0])));
2122 cache_ptr->howto = ppc64_elf_howto_table[type];
2123 }
2124
2125 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2126
2127 static bfd_reloc_status_type
2128 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2129 void *data, asection *input_section,
2130 bfd *output_bfd, char **error_message)
2131 {
2132 /* If this is a relocatable link (output_bfd test tells us), just
2133 call the generic function. Any adjustment will be done at final
2134 link time. */
2135 if (output_bfd != NULL)
2136 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2137 input_section, output_bfd, error_message);
2138
2139 /* Adjust the addend for sign extension of the low 16 bits.
2140 We won't actually be using the low 16 bits, so trashing them
2141 doesn't matter. */
2142 reloc_entry->addend += 0x8000;
2143 return bfd_reloc_continue;
2144 }
2145
2146 static bfd_reloc_status_type
2147 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2148 void *data, asection *input_section,
2149 bfd *output_bfd, char **error_message)
2150 {
2151 if (output_bfd != NULL)
2152 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2153 input_section, output_bfd, error_message);
2154
2155 if (strcmp (symbol->section->name, ".opd") == 0
2156 && (symbol->section->owner->flags & DYNAMIC) == 0)
2157 {
2158 bfd_vma dest = opd_entry_value (symbol->section,
2159 symbol->value + reloc_entry->addend,
2160 NULL, NULL);
2161 if (dest != (bfd_vma) -1)
2162 reloc_entry->addend = dest - (symbol->value
2163 + symbol->section->output_section->vma
2164 + symbol->section->output_offset);
2165 }
2166 return bfd_reloc_continue;
2167 }
2168
2169 static bfd_reloc_status_type
2170 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2171 void *data, asection *input_section,
2172 bfd *output_bfd, char **error_message)
2173 {
2174 long insn;
2175 enum elf_ppc64_reloc_type r_type;
2176 bfd_size_type octets;
2177 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
2178 bfd_boolean is_power4 = FALSE;
2179
2180 /* If this is a relocatable link (output_bfd test tells us), just
2181 call the generic function. Any adjustment will be done at final
2182 link time. */
2183 if (output_bfd != NULL)
2184 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2185 input_section, output_bfd, error_message);
2186
2187 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2188 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2189 insn &= ~(0x01 << 21);
2190 r_type = reloc_entry->howto->type;
2191 if (r_type == R_PPC64_ADDR14_BRTAKEN
2192 || r_type == R_PPC64_REL14_BRTAKEN)
2193 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2194
2195 if (is_power4)
2196 {
2197 /* Set 'a' bit. This is 0b00010 in BO field for branch
2198 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2199 for branch on CTR insns (BO == 1a00t or 1a01t). */
2200 if ((insn & (0x14 << 21)) == (0x04 << 21))
2201 insn |= 0x02 << 21;
2202 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2203 insn |= 0x08 << 21;
2204 else
2205 goto out;
2206 }
2207 else
2208 {
2209 bfd_vma target = 0;
2210 bfd_vma from;
2211
2212 if (!bfd_is_com_section (symbol->section))
2213 target = symbol->value;
2214 target += symbol->section->output_section->vma;
2215 target += symbol->section->output_offset;
2216 target += reloc_entry->addend;
2217
2218 from = (reloc_entry->address
2219 + input_section->output_offset
2220 + input_section->output_section->vma);
2221
2222 /* Invert 'y' bit if not the default. */
2223 if ((bfd_signed_vma) (target - from) < 0)
2224 insn ^= 0x01 << 21;
2225 }
2226 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2227 out:
2228 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2229 input_section, output_bfd, error_message);
2230 }
2231
2232 static bfd_reloc_status_type
2233 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2234 void *data, asection *input_section,
2235 bfd *output_bfd, char **error_message)
2236 {
2237 /* If this is a relocatable link (output_bfd test tells us), just
2238 call the generic function. Any adjustment will be done at final
2239 link time. */
2240 if (output_bfd != NULL)
2241 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2242 input_section, output_bfd, error_message);
2243
2244 /* Subtract the symbol section base address. */
2245 reloc_entry->addend -= symbol->section->output_section->vma;
2246 return bfd_reloc_continue;
2247 }
2248
2249 static bfd_reloc_status_type
2250 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2251 void *data, asection *input_section,
2252 bfd *output_bfd, char **error_message)
2253 {
2254 /* If this is a relocatable link (output_bfd test tells us), just
2255 call the generic function. Any adjustment will be done at final
2256 link time. */
2257 if (output_bfd != NULL)
2258 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2259 input_section, output_bfd, error_message);
2260
2261 /* Subtract the symbol section base address. */
2262 reloc_entry->addend -= symbol->section->output_section->vma;
2263
2264 /* Adjust the addend for sign extension of the low 16 bits. */
2265 reloc_entry->addend += 0x8000;
2266 return bfd_reloc_continue;
2267 }
2268
2269 static bfd_reloc_status_type
2270 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2271 void *data, asection *input_section,
2272 bfd *output_bfd, char **error_message)
2273 {
2274 bfd_vma TOCstart;
2275
2276 /* If this is a relocatable link (output_bfd test tells us), just
2277 call the generic function. Any adjustment will be done at final
2278 link time. */
2279 if (output_bfd != NULL)
2280 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2281 input_section, output_bfd, error_message);
2282
2283 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2284 if (TOCstart == 0)
2285 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2286
2287 /* Subtract the TOC base address. */
2288 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2289 return bfd_reloc_continue;
2290 }
2291
2292 static bfd_reloc_status_type
2293 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2294 void *data, asection *input_section,
2295 bfd *output_bfd, char **error_message)
2296 {
2297 bfd_vma TOCstart;
2298
2299 /* If this is a relocatable link (output_bfd test tells us), just
2300 call the generic function. Any adjustment will be done at final
2301 link time. */
2302 if (output_bfd != NULL)
2303 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2304 input_section, output_bfd, error_message);
2305
2306 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2307 if (TOCstart == 0)
2308 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2309
2310 /* Subtract the TOC base address. */
2311 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2312
2313 /* Adjust the addend for sign extension of the low 16 bits. */
2314 reloc_entry->addend += 0x8000;
2315 return bfd_reloc_continue;
2316 }
2317
2318 static bfd_reloc_status_type
2319 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2320 void *data, asection *input_section,
2321 bfd *output_bfd, char **error_message)
2322 {
2323 bfd_vma TOCstart;
2324 bfd_size_type octets;
2325
2326 /* If this is a relocatable link (output_bfd test tells us), just
2327 call the generic function. Any adjustment will be done at final
2328 link time. */
2329 if (output_bfd != NULL)
2330 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2331 input_section, output_bfd, error_message);
2332
2333 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2334 if (TOCstart == 0)
2335 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2336
2337 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2338 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2339 return bfd_reloc_ok;
2340 }
2341
2342 static bfd_reloc_status_type
2343 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2344 void *data, asection *input_section,
2345 bfd *output_bfd, char **error_message)
2346 {
2347 /* If this is a relocatable link (output_bfd test tells us), just
2348 call the generic function. Any adjustment will be done at final
2349 link time. */
2350 if (output_bfd != NULL)
2351 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2352 input_section, output_bfd, error_message);
2353
2354 if (error_message != NULL)
2355 {
2356 static char buf[60];
2357 sprintf (buf, "generic linker can't handle %s",
2358 reloc_entry->howto->name);
2359 *error_message = buf;
2360 }
2361 return bfd_reloc_dangerous;
2362 }
2363
2364 struct ppc64_elf_obj_tdata
2365 {
2366 struct elf_obj_tdata elf;
2367
2368 /* Shortcuts to dynamic linker sections. */
2369 asection *got;
2370 asection *relgot;
2371
2372 union {
2373 /* Used during garbage collection. We attach global symbols defined
2374 on removed .opd entries to this section so that the sym is removed. */
2375 asection *deleted_section;
2376
2377 /* Used when adding symbols. */
2378 bfd_boolean has_dotsym;
2379 } u;
2380
2381 /* TLS local dynamic got entry handling. Suppose for multiple GOT
2382 sections means we potentially need one of these for each input bfd. */
2383 union {
2384 bfd_signed_vma refcount;
2385 bfd_vma offset;
2386 } tlsld_got;
2387
2388 /* A copy of relocs before they are modified for --emit-relocs. */
2389 Elf_Internal_Rela *opd_relocs;
2390 };
2391
2392 #define ppc64_elf_tdata(bfd) \
2393 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2394
2395 #define ppc64_tlsld_got(bfd) \
2396 (&ppc64_elf_tdata (bfd)->tlsld_got)
2397
2398 /* Override the generic function because we store some extras. */
2399
2400 static bfd_boolean
2401 ppc64_elf_mkobject (bfd *abfd)
2402 {
2403 bfd_size_type amt = sizeof (struct ppc64_elf_obj_tdata);
2404 abfd->tdata.any = bfd_zalloc (abfd, amt);
2405 if (abfd->tdata.any == NULL)
2406 return FALSE;
2407 return TRUE;
2408 }
2409
2410 /* Return 1 if target is one of ours. */
2411
2412 static bfd_boolean
2413 is_ppc64_elf_target (const struct bfd_target *targ)
2414 {
2415 extern const bfd_target bfd_elf64_powerpc_vec;
2416 extern const bfd_target bfd_elf64_powerpcle_vec;
2417
2418 return targ == &bfd_elf64_powerpc_vec || targ == &bfd_elf64_powerpcle_vec;
2419 }
2420
2421 /* Fix bad default arch selected for a 64 bit input bfd when the
2422 default is 32 bit. */
2423
2424 static bfd_boolean
2425 ppc64_elf_object_p (bfd *abfd)
2426 {
2427 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2428 {
2429 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2430
2431 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2432 {
2433 /* Relies on arch after 32 bit default being 64 bit default. */
2434 abfd->arch_info = abfd->arch_info->next;
2435 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2436 }
2437 }
2438 return TRUE;
2439 }
2440
2441 /* Support for core dump NOTE sections. */
2442
2443 static bfd_boolean
2444 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2445 {
2446 size_t offset, size;
2447
2448 if (note->descsz != 504)
2449 return FALSE;
2450
2451 /* pr_cursig */
2452 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2453
2454 /* pr_pid */
2455 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2456
2457 /* pr_reg */
2458 offset = 112;
2459 size = 384;
2460
2461 /* Make a ".reg/999" section. */
2462 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2463 size, note->descpos + offset);
2464 }
2465
2466 static bfd_boolean
2467 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2468 {
2469 if (note->descsz != 136)
2470 return FALSE;
2471
2472 elf_tdata (abfd)->core_program
2473 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2474 elf_tdata (abfd)->core_command
2475 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2476
2477 return TRUE;
2478 }
2479
2480 /* Merge backend specific data from an object file to the output
2481 object file when linking. */
2482
2483 static bfd_boolean
2484 ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2485 {
2486 /* Check if we have the same endianess. */
2487 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2488 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
2489 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2490 {
2491 const char *msg;
2492
2493 if (bfd_big_endian (ibfd))
2494 msg = _("%B: compiled for a big endian system "
2495 "and target is little endian");
2496 else
2497 msg = _("%B: compiled for a little endian system "
2498 "and target is big endian");
2499
2500 (*_bfd_error_handler) (msg, ibfd);
2501
2502 bfd_set_error (bfd_error_wrong_format);
2503 return FALSE;
2504 }
2505
2506 return TRUE;
2507 }
2508
2509 /* Add extra PPC sections. */
2510
2511 static struct bfd_elf_special_section const
2512 ppc64_special_sections_p[]=
2513 {
2514 { ".plt", 4, 0, SHT_NOBITS, 0 },
2515 { NULL, 0, 0, 0, 0 }
2516 };
2517
2518 static struct bfd_elf_special_section const
2519 ppc64_special_sections_s[]=
2520 {
2521 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2522 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2523 { NULL, 0, 0, 0, 0 }
2524 };
2525
2526 static struct bfd_elf_special_section const
2527 ppc64_special_sections_t[]=
2528 {
2529 { ".toc", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2530 { ".toc1", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2531 { ".tocbss", 7, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2532 { NULL, 0, 0, 0, 0 }
2533 };
2534
2535 static struct bfd_elf_special_section const *
2536 ppc64_elf_special_sections[27]=
2537 {
2538 NULL, /* 'a' */
2539 NULL, /* 'b' */
2540 NULL, /* 'c' */
2541 NULL, /* 'd' */
2542 NULL, /* 'e' */
2543 NULL, /* 'f' */
2544 NULL, /* 'g' */
2545 NULL, /* 'h' */
2546 NULL, /* 'i' */
2547 NULL, /* 'j' */
2548 NULL, /* 'k' */
2549 NULL, /* 'l' */
2550 NULL, /* 'm' */
2551 NULL, /* 'n' */
2552 NULL, /* 'o' */
2553 ppc64_special_sections_p, /* 'p' */
2554 NULL, /* 'q' */
2555 NULL, /* 'r' */
2556 ppc64_special_sections_s, /* 's' */
2557 ppc64_special_sections_t, /* 't' */
2558 NULL, /* 'u' */
2559 NULL, /* 'v' */
2560 NULL, /* 'w' */
2561 NULL, /* 'x' */
2562 NULL, /* 'y' */
2563 NULL, /* 'z' */
2564 NULL /* other */
2565 };
2566
2567 struct _ppc64_elf_section_data
2568 {
2569 struct bfd_elf_section_data elf;
2570
2571 /* An array with one entry for each opd function descriptor. */
2572 union
2573 {
2574 /* Points to the function code section for local opd entries. */
2575 asection **func_sec;
2576 /* After editing .opd, adjust references to opd local syms. */
2577 long *adjust;
2578 } opd;
2579
2580 /* An array for toc sections, indexed by offset/8.
2581 Specifies the relocation symbol index used at a given toc offset. */
2582 unsigned *t_symndx;
2583 };
2584
2585 #define ppc64_elf_section_data(sec) \
2586 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2587
2588 static bfd_boolean
2589 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2590 {
2591 struct _ppc64_elf_section_data *sdata;
2592 bfd_size_type amt = sizeof (*sdata);
2593
2594 sdata = bfd_zalloc (abfd, amt);
2595 if (sdata == NULL)
2596 return FALSE;
2597 sec->used_by_bfd = sdata;
2598
2599 return _bfd_elf_new_section_hook (abfd, sec);
2600 }
2601
2602 static void *
2603 get_opd_info (asection * sec)
2604 {
2605 if (sec != NULL
2606 && ppc64_elf_section_data (sec) != NULL
2607 && ppc64_elf_section_data (sec)->opd.adjust != NULL)
2608 return ppc64_elf_section_data (sec)->opd.adjust;
2609 return NULL;
2610 }
2611 \f
2612 /* Parameters for the qsort hook. */
2613 static asection *synthetic_opd;
2614 static bfd_boolean synthetic_relocatable;
2615
2616 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2617
2618 static int
2619 compare_symbols (const void *ap, const void *bp)
2620 {
2621 const asymbol *a = * (const asymbol **) ap;
2622 const asymbol *b = * (const asymbol **) bp;
2623
2624 /* Section symbols first. */
2625 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2626 return -1;
2627 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2628 return 1;
2629
2630 /* then .opd symbols. */
2631 if (a->section == synthetic_opd && b->section != synthetic_opd)
2632 return -1;
2633 if (a->section != synthetic_opd && b->section == synthetic_opd)
2634 return 1;
2635
2636 /* then other code symbols. */
2637 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2638 == (SEC_CODE | SEC_ALLOC)
2639 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2640 != (SEC_CODE | SEC_ALLOC))
2641 return -1;
2642
2643 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2644 != (SEC_CODE | SEC_ALLOC)
2645 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2646 == (SEC_CODE | SEC_ALLOC))
2647 return 1;
2648
2649 if (synthetic_relocatable)
2650 {
2651 if (a->section->id < b->section->id)
2652 return -1;
2653
2654 if (a->section->id > b->section->id)
2655 return 1;
2656 }
2657
2658 if (a->value + a->section->vma < b->value + b->section->vma)
2659 return -1;
2660
2661 if (a->value + a->section->vma > b->value + b->section->vma)
2662 return 1;
2663
2664 return 0;
2665 }
2666
2667 /* Search SYMS for a symbol of the given VALUE. */
2668
2669 static asymbol *
2670 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2671 {
2672 long mid;
2673
2674 if (id == -1)
2675 {
2676 while (lo < hi)
2677 {
2678 mid = (lo + hi) >> 1;
2679 if (syms[mid]->value + syms[mid]->section->vma < value)
2680 lo = mid + 1;
2681 else if (syms[mid]->value + syms[mid]->section->vma > value)
2682 hi = mid;
2683 else
2684 return syms[mid];
2685 }
2686 }
2687 else
2688 {
2689 while (lo < hi)
2690 {
2691 mid = (lo + hi) >> 1;
2692 if (syms[mid]->section->id < id)
2693 lo = mid + 1;
2694 else if (syms[mid]->section->id > id)
2695 hi = mid;
2696 else if (syms[mid]->value < value)
2697 lo = mid + 1;
2698 else if (syms[mid]->value > value)
2699 hi = mid;
2700 else
2701 return syms[mid];
2702 }
2703 }
2704 return NULL;
2705 }
2706
2707 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2708 entry syms. */
2709
2710 static long
2711 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2712 long static_count, asymbol **static_syms,
2713 long dyn_count, asymbol **dyn_syms,
2714 asymbol **ret)
2715 {
2716 asymbol *s;
2717 long i;
2718 long count;
2719 char *names;
2720 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2721 asection *opd;
2722 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2723 asymbol **syms;
2724
2725 *ret = NULL;
2726
2727 opd = bfd_get_section_by_name (abfd, ".opd");
2728 if (opd == NULL)
2729 return 0;
2730
2731 symcount = static_count;
2732 if (!relocatable)
2733 symcount += dyn_count;
2734 if (symcount == 0)
2735 return 0;
2736
2737 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2738 if (syms == NULL)
2739 return -1;
2740
2741 if (!relocatable && static_count != 0 && dyn_count != 0)
2742 {
2743 /* Use both symbol tables. */
2744 memcpy (syms, static_syms, static_count * sizeof (*syms));
2745 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
2746 }
2747 else if (!relocatable && static_count == 0)
2748 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2749 else
2750 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2751
2752 synthetic_opd = opd;
2753 synthetic_relocatable = relocatable;
2754 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2755
2756 if (!relocatable && symcount > 1)
2757 {
2758 long j;
2759 /* Trim duplicate syms, since we may have merged the normal and
2760 dynamic symbols. Actually, we only care about syms that have
2761 different values, so trim any with the same value. */
2762 for (i = 1, j = 1; i < symcount; ++i)
2763 if (syms[i - 1]->value + syms[i - 1]->section->vma
2764 != syms[i]->value + syms[i]->section->vma)
2765 syms[j++] = syms[i];
2766 symcount = j;
2767 }
2768
2769 i = 0;
2770 if (syms[i]->section == opd)
2771 ++i;
2772 codesecsym = i;
2773
2774 for (; i < symcount; ++i)
2775 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2776 != (SEC_CODE | SEC_ALLOC))
2777 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2778 break;
2779 codesecsymend = i;
2780
2781 for (; i < symcount; ++i)
2782 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2783 break;
2784 secsymend = i;
2785
2786 for (; i < symcount; ++i)
2787 if (syms[i]->section != opd)
2788 break;
2789 opdsymend = i;
2790
2791 for (; i < symcount; ++i)
2792 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2793 != (SEC_CODE | SEC_ALLOC))
2794 break;
2795 symcount = i;
2796
2797 count = 0;
2798 if (opdsymend == secsymend)
2799 goto done;
2800
2801 if (relocatable)
2802 {
2803 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2804 arelent *r;
2805 size_t size;
2806 long relcount;
2807
2808 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2809 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2810 if (relcount == 0)
2811 goto done;
2812
2813 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2814 {
2815 count = -1;
2816 goto done;
2817 }
2818
2819 size = 0;
2820 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2821 {
2822 asymbol *sym;
2823
2824 while (r < opd->relocation + relcount
2825 && r->address < syms[i]->value + opd->vma)
2826 ++r;
2827
2828 if (r == opd->relocation + relcount)
2829 break;
2830
2831 if (r->address != syms[i]->value + opd->vma)
2832 continue;
2833
2834 if (r->howto->type != R_PPC64_ADDR64)
2835 continue;
2836
2837 sym = *r->sym_ptr_ptr;
2838 if (!sym_exists_at (syms, opdsymend, symcount,
2839 sym->section->id, sym->value + r->addend))
2840 {
2841 ++count;
2842 size += sizeof (asymbol);
2843 size += strlen (syms[i]->name) + 2;
2844 }
2845 }
2846
2847 s = *ret = bfd_malloc (size);
2848 if (s == NULL)
2849 {
2850 count = -1;
2851 goto done;
2852 }
2853
2854 names = (char *) (s + count);
2855
2856 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2857 {
2858 asymbol *sym;
2859
2860 while (r < opd->relocation + relcount
2861 && r->address < syms[i]->value + opd->vma)
2862 ++r;
2863
2864 if (r == opd->relocation + relcount)
2865 break;
2866
2867 if (r->address != syms[i]->value + opd->vma)
2868 continue;
2869
2870 if (r->howto->type != R_PPC64_ADDR64)
2871 continue;
2872
2873 sym = *r->sym_ptr_ptr;
2874 if (!sym_exists_at (syms, opdsymend, symcount,
2875 sym->section->id, sym->value + r->addend))
2876 {
2877 size_t len;
2878
2879 *s = *syms[i];
2880 s->section = sym->section;
2881 s->value = sym->value + r->addend;
2882 s->name = names;
2883 *names++ = '.';
2884 len = strlen (syms[i]->name);
2885 memcpy (names, syms[i]->name, len + 1);
2886 names += len + 1;
2887 s++;
2888 }
2889 }
2890 }
2891 else
2892 {
2893 bfd_byte *contents;
2894 size_t size;
2895
2896 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
2897 {
2898 if (contents)
2899 {
2900 free_contents_and_exit:
2901 free (contents);
2902 }
2903 count = -1;
2904 goto done;
2905 }
2906
2907 size = 0;
2908 for (i = secsymend; i < opdsymend; ++i)
2909 {
2910 bfd_vma ent;
2911
2912 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2913 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2914 {
2915 ++count;
2916 size += sizeof (asymbol);
2917 size += strlen (syms[i]->name) + 2;
2918 }
2919 }
2920
2921 s = *ret = bfd_malloc (size);
2922 if (s == NULL)
2923 goto free_contents_and_exit;
2924
2925 names = (char *) (s + count);
2926
2927 for (i = secsymend; i < opdsymend; ++i)
2928 {
2929 bfd_vma ent;
2930
2931 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2932 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2933 {
2934 long lo, hi;
2935 size_t len;
2936 asection *sec = abfd->sections;
2937
2938 *s = *syms[i];
2939 lo = codesecsym;
2940 hi = codesecsymend;
2941 while (lo < hi)
2942 {
2943 long mid = (lo + hi) >> 1;
2944 if (syms[mid]->section->vma < ent)
2945 lo = mid + 1;
2946 else if (syms[mid]->section->vma > ent)
2947 hi = mid;
2948 else
2949 {
2950 sec = syms[mid]->section;
2951 break;
2952 }
2953 }
2954
2955 if (lo >= hi && lo > codesecsym)
2956 sec = syms[lo - 1]->section;
2957
2958 for (; sec != NULL; sec = sec->next)
2959 {
2960 if (sec->vma > ent)
2961 break;
2962 if ((sec->flags & SEC_ALLOC) == 0
2963 || (sec->flags & SEC_LOAD) == 0)
2964 break;
2965 if ((sec->flags & SEC_CODE) != 0)
2966 s->section = sec;
2967 }
2968 s->value = ent - s->section->vma;
2969 s->name = names;
2970 *names++ = '.';
2971 len = strlen (syms[i]->name);
2972 memcpy (names, syms[i]->name, len + 1);
2973 names += len + 1;
2974 s++;
2975 }
2976 }
2977 free (contents);
2978 }
2979
2980 done:
2981 free (syms);
2982 return count;
2983 }
2984 \f
2985 /* The following functions are specific to the ELF linker, while
2986 functions above are used generally. Those named ppc64_elf_* are
2987 called by the main ELF linker code. They appear in this file more
2988 or less in the order in which they are called. eg.
2989 ppc64_elf_check_relocs is called early in the link process,
2990 ppc64_elf_finish_dynamic_sections is one of the last functions
2991 called.
2992
2993 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2994 functions have both a function code symbol and a function descriptor
2995 symbol. A call to foo in a relocatable object file looks like:
2996
2997 . .text
2998 . x:
2999 . bl .foo
3000 . nop
3001
3002 The function definition in another object file might be:
3003
3004 . .section .opd
3005 . foo: .quad .foo
3006 . .quad .TOC.@tocbase
3007 . .quad 0
3008 .
3009 . .text
3010 . .foo: blr
3011
3012 When the linker resolves the call during a static link, the branch
3013 unsurprisingly just goes to .foo and the .opd information is unused.
3014 If the function definition is in a shared library, things are a little
3015 different: The call goes via a plt call stub, the opd information gets
3016 copied to the plt, and the linker patches the nop.
3017
3018 . x:
3019 . bl .foo_stub
3020 . ld 2,40(1)
3021 .
3022 .
3023 . .foo_stub:
3024 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
3025 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
3026 . std 2,40(1) # this is the general idea
3027 . ld 11,0(12)
3028 . ld 2,8(12)
3029 . mtctr 11
3030 . ld 11,16(12)
3031 . bctr
3032 .
3033 . .section .plt
3034 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3035
3036 The "reloc ()" notation is supposed to indicate that the linker emits
3037 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3038 copying.
3039
3040 What are the difficulties here? Well, firstly, the relocations
3041 examined by the linker in check_relocs are against the function code
3042 sym .foo, while the dynamic relocation in the plt is emitted against
3043 the function descriptor symbol, foo. Somewhere along the line, we need
3044 to carefully copy dynamic link information from one symbol to the other.
3045 Secondly, the generic part of the elf linker will make .foo a dynamic
3046 symbol as is normal for most other backends. We need foo dynamic
3047 instead, at least for an application final link. However, when
3048 creating a shared library containing foo, we need to have both symbols
3049 dynamic so that references to .foo are satisfied during the early
3050 stages of linking. Otherwise the linker might decide to pull in a
3051 definition from some other object, eg. a static library.
3052
3053 Update: As of August 2004, we support a new convention. Function
3054 calls may use the function descriptor symbol, ie. "bl foo". This
3055 behaves exactly as "bl .foo". */
3056
3057 /* The linker needs to keep track of the number of relocs that it
3058 decides to copy as dynamic relocs in check_relocs for each symbol.
3059 This is so that it can later discard them if they are found to be
3060 unnecessary. We store the information in a field extending the
3061 regular ELF linker hash table. */
3062
3063 struct ppc_dyn_relocs
3064 {
3065 struct ppc_dyn_relocs *next;
3066
3067 /* The input section of the reloc. */
3068 asection *sec;
3069
3070 /* Total number of relocs copied for the input section. */
3071 bfd_size_type count;
3072
3073 /* Number of pc-relative relocs copied for the input section. */
3074 bfd_size_type pc_count;
3075 };
3076
3077 /* Track GOT entries needed for a given symbol. We might need more
3078 than one got entry per symbol. */
3079 struct got_entry
3080 {
3081 struct got_entry *next;
3082
3083 /* The symbol addend that we'll be placing in the GOT. */
3084 bfd_vma addend;
3085
3086 /* Unlike other ELF targets, we use separate GOT entries for the same
3087 symbol referenced from different input files. This is to support
3088 automatic multiple TOC/GOT sections, where the TOC base can vary
3089 from one input file to another.
3090
3091 Point to the BFD owning this GOT entry. */
3092 bfd *owner;
3093
3094 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
3095 TLS_TPREL or TLS_DTPREL for tls entries. */
3096 char tls_type;
3097
3098 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
3099 union
3100 {
3101 bfd_signed_vma refcount;
3102 bfd_vma offset;
3103 } got;
3104 };
3105
3106 /* The same for PLT. */
3107 struct plt_entry
3108 {
3109 struct plt_entry *next;
3110
3111 bfd_vma addend;
3112
3113 union
3114 {
3115 bfd_signed_vma refcount;
3116 bfd_vma offset;
3117 } plt;
3118 };
3119
3120 /* Of those relocs that might be copied as dynamic relocs, this macro
3121 selects those that must be copied when linking a shared library,
3122 even when the symbol is local. */
3123
3124 #define MUST_BE_DYN_RELOC(RTYPE) \
3125 ((RTYPE) != R_PPC64_REL32 \
3126 && (RTYPE) != R_PPC64_REL64 \
3127 && (RTYPE) != R_PPC64_REL30)
3128
3129 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3130 copying dynamic variables from a shared lib into an app's dynbss
3131 section, and instead use a dynamic relocation to point into the
3132 shared lib. With code that gcc generates, it's vital that this be
3133 enabled; In the PowerPC64 ABI, the address of a function is actually
3134 the address of a function descriptor, which resides in the .opd
3135 section. gcc uses the descriptor directly rather than going via the
3136 GOT as some other ABI's do, which means that initialized function
3137 pointers must reference the descriptor. Thus, a function pointer
3138 initialized to the address of a function in a shared library will
3139 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3140 redefines the function descriptor symbol to point to the copy. This
3141 presents a problem as a plt entry for that function is also
3142 initialized from the function descriptor symbol and the copy reloc
3143 may not be initialized first. */
3144 #define ELIMINATE_COPY_RELOCS 1
3145
3146 /* Section name for stubs is the associated section name plus this
3147 string. */
3148 #define STUB_SUFFIX ".stub"
3149
3150 /* Linker stubs.
3151 ppc_stub_long_branch:
3152 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3153 destination, but a 24 bit branch in a stub section will reach.
3154 . b dest
3155
3156 ppc_stub_plt_branch:
3157 Similar to the above, but a 24 bit branch in the stub section won't
3158 reach its destination.
3159 . addis %r12,%r2,xxx@toc@ha
3160 . ld %r11,xxx@toc@l(%r12)
3161 . mtctr %r11
3162 . bctr
3163
3164 ppc_stub_plt_call:
3165 Used to call a function in a shared library. If it so happens that
3166 the plt entry referenced crosses a 64k boundary, then an extra
3167 "addis %r12,%r12,1" will be inserted before the load at xxx+8 or
3168 xxx+16 as appropriate.
3169 . addis %r12,%r2,xxx@toc@ha
3170 . std %r2,40(%r1)
3171 . ld %r11,xxx+0@toc@l(%r12)
3172 . ld %r2,xxx+8@toc@l(%r12)
3173 . mtctr %r11
3174 . ld %r11,xxx+16@toc@l(%r12)
3175 . bctr
3176
3177 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3178 code to adjust the value and save r2 to support multiple toc sections.
3179 A ppc_stub_long_branch with an r2 offset looks like:
3180 . std %r2,40(%r1)
3181 . addis %r2,%r2,off@ha
3182 . addi %r2,%r2,off@l
3183 . b dest
3184
3185 A ppc_stub_plt_branch with an r2 offset looks like:
3186 . std %r2,40(%r1)
3187 . addis %r12,%r2,xxx@toc@ha
3188 . ld %r11,xxx@toc@l(%r12)
3189 . addis %r2,%r2,off@ha
3190 . addi %r2,%r2,off@l
3191 . mtctr %r11
3192 . bctr
3193 */
3194
3195 enum ppc_stub_type {
3196 ppc_stub_none,
3197 ppc_stub_long_branch,
3198 ppc_stub_long_branch_r2off,
3199 ppc_stub_plt_branch,
3200 ppc_stub_plt_branch_r2off,
3201 ppc_stub_plt_call
3202 };
3203
3204 struct ppc_stub_hash_entry {
3205
3206 /* Base hash table entry structure. */
3207 struct bfd_hash_entry root;
3208
3209 enum ppc_stub_type stub_type;
3210
3211 /* The stub section. */
3212 asection *stub_sec;
3213
3214 /* Offset within stub_sec of the beginning of this stub. */
3215 bfd_vma stub_offset;
3216
3217 /* Given the symbol's value and its section we can determine its final
3218 value when building the stubs (so the stub knows where to jump. */
3219 bfd_vma target_value;
3220 asection *target_section;
3221
3222 /* The symbol table entry, if any, that this was derived from. */
3223 struct ppc_link_hash_entry *h;
3224
3225 /* And the reloc addend that this was derived from. */
3226 bfd_vma addend;
3227
3228 /* Where this stub is being called from, or, in the case of combined
3229 stub sections, the first input section in the group. */
3230 asection *id_sec;
3231 };
3232
3233 struct ppc_branch_hash_entry {
3234
3235 /* Base hash table entry structure. */
3236 struct bfd_hash_entry root;
3237
3238 /* Offset within .branch_lt. */
3239 unsigned int offset;
3240
3241 /* Generation marker. */
3242 unsigned int iter;
3243 };
3244
3245 struct ppc_link_hash_entry
3246 {
3247 struct elf_link_hash_entry elf;
3248
3249 /* A pointer to the most recently used stub hash entry against this
3250 symbol. */
3251 struct ppc_stub_hash_entry *stub_cache;
3252
3253 /* Track dynamic relocs copied for this symbol. */
3254 struct ppc_dyn_relocs *dyn_relocs;
3255
3256 /* Link between function code and descriptor symbols. */
3257 struct ppc_link_hash_entry *oh;
3258
3259 /* Flag function code and descriptor symbols. */
3260 unsigned int is_func:1;
3261 unsigned int is_func_descriptor:1;
3262 unsigned int fake:1;
3263
3264 /* Whether global opd/toc sym has been adjusted or not.
3265 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3266 should be set for all globals defined in any opd/toc section. */
3267 unsigned int adjust_done:1;
3268
3269 /* Set if we twiddled this symbol to weak at some stage. */
3270 unsigned int was_undefined:1;
3271
3272 /* Contexts in which symbol is used in the GOT (or TOC).
3273 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3274 corresponding relocs are encountered during check_relocs.
3275 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3276 indicate the corresponding GOT entry type is not needed.
3277 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3278 a TPREL one. We use a separate flag rather than setting TPREL
3279 just for convenience in distinguishing the two cases. */
3280 #define TLS_GD 1 /* GD reloc. */
3281 #define TLS_LD 2 /* LD reloc. */
3282 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3283 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3284 #define TLS_TLS 16 /* Any TLS reloc. */
3285 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3286 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3287 char tls_mask;
3288 };
3289
3290 /* ppc64 ELF linker hash table. */
3291
3292 struct ppc_link_hash_table
3293 {
3294 struct elf_link_hash_table elf;
3295
3296 /* The stub hash table. */
3297 struct bfd_hash_table stub_hash_table;
3298
3299 /* Another hash table for plt_branch stubs. */
3300 struct bfd_hash_table branch_hash_table;
3301
3302 /* Linker stub bfd. */
3303 bfd *stub_bfd;
3304
3305 /* Linker call-backs. */
3306 asection * (*add_stub_section) (const char *, asection *);
3307 void (*layout_sections_again) (void);
3308
3309 /* Array to keep track of which stub sections have been created, and
3310 information on stub grouping. */
3311 struct map_stub {
3312 /* This is the section to which stubs in the group will be attached. */
3313 asection *link_sec;
3314 /* The stub section. */
3315 asection *stub_sec;
3316 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3317 bfd_vma toc_off;
3318 } *stub_group;
3319
3320 /* Temp used when calculating TOC pointers. */
3321 bfd_vma toc_curr;
3322
3323 /* Highest input section id. */
3324 int top_id;
3325
3326 /* Highest output section index. */
3327 int top_index;
3328
3329 /* List of input sections for each output section. */
3330 asection **input_list;
3331
3332 /* Short-cuts to get to dynamic linker sections. */
3333 asection *got;
3334 asection *plt;
3335 asection *relplt;
3336 asection *dynbss;
3337 asection *relbss;
3338 asection *glink;
3339 asection *sfpr;
3340 asection *brlt;
3341 asection *relbrlt;
3342
3343 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3344 struct ppc_link_hash_entry *tls_get_addr;
3345 struct ppc_link_hash_entry *tls_get_addr_fd;
3346
3347 /* Statistics. */
3348 unsigned long stub_count[ppc_stub_plt_call];
3349
3350 /* Number of stubs against global syms. */
3351 unsigned long stub_globals;
3352
3353 /* Set if we should emit symbols for stubs. */
3354 unsigned int emit_stub_syms:1;
3355
3356 /* Support for multiple toc sections. */
3357 unsigned int no_multi_toc:1;
3358 unsigned int multi_toc_needed:1;
3359
3360 /* Set on error. */
3361 unsigned int stub_error:1;
3362
3363 /* Flag set when small branches are detected. Used to
3364 select suitable defaults for the stub group size. */
3365 unsigned int has_14bit_branch:1;
3366
3367 /* Temp used by ppc64_elf_check_directives. */
3368 unsigned int twiddled_syms:1;
3369
3370 /* Incremented every time we size stubs. */
3371 unsigned int stub_iteration;
3372
3373 /* Small local sym to section mapping cache. */
3374 struct sym_sec_cache sym_sec;
3375 };
3376
3377 /* Rename some of the generic section flags to better document how they
3378 are used here. */
3379 #define has_toc_reloc has_gp_reloc
3380 #define makes_toc_func_call need_finalize_relax
3381 #define call_check_in_progress reloc_done
3382
3383 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3384
3385 #define ppc_hash_table(p) \
3386 ((struct ppc_link_hash_table *) ((p)->hash))
3387
3388 #define ppc_stub_hash_lookup(table, string, create, copy) \
3389 ((struct ppc_stub_hash_entry *) \
3390 bfd_hash_lookup ((table), (string), (create), (copy)))
3391
3392 #define ppc_branch_hash_lookup(table, string, create, copy) \
3393 ((struct ppc_branch_hash_entry *) \
3394 bfd_hash_lookup ((table), (string), (create), (copy)))
3395
3396 /* Create an entry in the stub hash table. */
3397
3398 static struct bfd_hash_entry *
3399 stub_hash_newfunc (struct bfd_hash_entry *entry,
3400 struct bfd_hash_table *table,
3401 const char *string)
3402 {
3403 /* Allocate the structure if it has not already been allocated by a
3404 subclass. */
3405 if (entry == NULL)
3406 {
3407 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3408 if (entry == NULL)
3409 return entry;
3410 }
3411
3412 /* Call the allocation method of the superclass. */
3413 entry = bfd_hash_newfunc (entry, table, string);
3414 if (entry != NULL)
3415 {
3416 struct ppc_stub_hash_entry *eh;
3417
3418 /* Initialize the local fields. */
3419 eh = (struct ppc_stub_hash_entry *) entry;
3420 eh->stub_type = ppc_stub_none;
3421 eh->stub_sec = NULL;
3422 eh->stub_offset = 0;
3423 eh->target_value = 0;
3424 eh->target_section = NULL;
3425 eh->h = NULL;
3426 eh->id_sec = NULL;
3427 }
3428
3429 return entry;
3430 }
3431
3432 /* Create an entry in the branch hash table. */
3433
3434 static struct bfd_hash_entry *
3435 branch_hash_newfunc (struct bfd_hash_entry *entry,
3436 struct bfd_hash_table *table,
3437 const char *string)
3438 {
3439 /* Allocate the structure if it has not already been allocated by a
3440 subclass. */
3441 if (entry == NULL)
3442 {
3443 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3444 if (entry == NULL)
3445 return entry;
3446 }
3447
3448 /* Call the allocation method of the superclass. */
3449 entry = bfd_hash_newfunc (entry, table, string);
3450 if (entry != NULL)
3451 {
3452 struct ppc_branch_hash_entry *eh;
3453
3454 /* Initialize the local fields. */
3455 eh = (struct ppc_branch_hash_entry *) entry;
3456 eh->offset = 0;
3457 eh->iter = 0;
3458 }
3459
3460 return entry;
3461 }
3462
3463 /* Create an entry in a ppc64 ELF linker hash table. */
3464
3465 static struct bfd_hash_entry *
3466 link_hash_newfunc (struct bfd_hash_entry *entry,
3467 struct bfd_hash_table *table,
3468 const char *string)
3469 {
3470 /* Allocate the structure if it has not already been allocated by a
3471 subclass. */
3472 if (entry == NULL)
3473 {
3474 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3475 if (entry == NULL)
3476 return entry;
3477 }
3478
3479 /* Call the allocation method of the superclass. */
3480 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3481 if (entry != NULL)
3482 {
3483 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3484
3485 memset (&eh->stub_cache, 0,
3486 (sizeof (struct ppc_link_hash_entry)
3487 - offsetof (struct ppc_link_hash_entry, stub_cache)));
3488 }
3489
3490 return entry;
3491 }
3492
3493 /* Create a ppc64 ELF linker hash table. */
3494
3495 static struct bfd_link_hash_table *
3496 ppc64_elf_link_hash_table_create (bfd *abfd)
3497 {
3498 struct ppc_link_hash_table *htab;
3499 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3500
3501 htab = bfd_zmalloc (amt);
3502 if (htab == NULL)
3503 return NULL;
3504
3505 if (! _bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc))
3506 {
3507 free (htab);
3508 return NULL;
3509 }
3510
3511 /* Init the stub hash table too. */
3512 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc))
3513 return NULL;
3514
3515 /* And the branch hash table. */
3516 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc))
3517 return NULL;
3518
3519 /* Initializing two fields of the union is just cosmetic. We really
3520 only care about glist, but when compiled on a 32-bit host the
3521 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3522 debugger inspection of these fields look nicer. */
3523 htab->elf.init_refcount.refcount = 0;
3524 htab->elf.init_refcount.glist = NULL;
3525 htab->elf.init_offset.offset = 0;
3526 htab->elf.init_offset.glist = NULL;
3527
3528 return &htab->elf.root;
3529 }
3530
3531 /* Free the derived linker hash table. */
3532
3533 static void
3534 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
3535 {
3536 struct ppc_link_hash_table *ret = (struct ppc_link_hash_table *) hash;
3537
3538 bfd_hash_table_free (&ret->stub_hash_table);
3539 bfd_hash_table_free (&ret->branch_hash_table);
3540 _bfd_generic_link_hash_table_free (hash);
3541 }
3542
3543 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3544
3545 void
3546 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
3547 {
3548 struct ppc_link_hash_table *htab;
3549
3550 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
3551
3552 /* Always hook our dynamic sections into the first bfd, which is the
3553 linker created stub bfd. This ensures that the GOT header is at
3554 the start of the output TOC section. */
3555 htab = ppc_hash_table (info);
3556 htab->stub_bfd = abfd;
3557 htab->elf.dynobj = abfd;
3558 }
3559
3560 /* Build a name for an entry in the stub hash table. */
3561
3562 static char *
3563 ppc_stub_name (const asection *input_section,
3564 const asection *sym_sec,
3565 const struct ppc_link_hash_entry *h,
3566 const Elf_Internal_Rela *rel)
3567 {
3568 char *stub_name;
3569 bfd_size_type len;
3570
3571 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3572 offsets from a sym as a branch target? In fact, we could
3573 probably assume the addend is always zero. */
3574 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3575
3576 if (h)
3577 {
3578 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3579 stub_name = bfd_malloc (len);
3580 if (stub_name != NULL)
3581 {
3582 sprintf (stub_name, "%08x.%s+%x",
3583 input_section->id & 0xffffffff,
3584 h->elf.root.root.string,
3585 (int) rel->r_addend & 0xffffffff);
3586 }
3587 }
3588 else
3589 {
3590 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3591 stub_name = bfd_malloc (len);
3592 if (stub_name != NULL)
3593 {
3594 sprintf (stub_name, "%08x.%x:%x+%x",
3595 input_section->id & 0xffffffff,
3596 sym_sec->id & 0xffffffff,
3597 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3598 (int) rel->r_addend & 0xffffffff);
3599 }
3600 }
3601 if (stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3602 stub_name[len - 2] = 0;
3603 return stub_name;
3604 }
3605
3606 /* Look up an entry in the stub hash. Stub entries are cached because
3607 creating the stub name takes a bit of time. */
3608
3609 static struct ppc_stub_hash_entry *
3610 ppc_get_stub_entry (const asection *input_section,
3611 const asection *sym_sec,
3612 struct ppc_link_hash_entry *h,
3613 const Elf_Internal_Rela *rel,
3614 struct ppc_link_hash_table *htab)
3615 {
3616 struct ppc_stub_hash_entry *stub_entry;
3617 const asection *id_sec;
3618
3619 /* If this input section is part of a group of sections sharing one
3620 stub section, then use the id of the first section in the group.
3621 Stub names need to include a section id, as there may well be
3622 more than one stub used to reach say, printf, and we need to
3623 distinguish between them. */
3624 id_sec = htab->stub_group[input_section->id].link_sec;
3625
3626 if (h != NULL && h->stub_cache != NULL
3627 && h->stub_cache->h == h
3628 && h->stub_cache->id_sec == id_sec)
3629 {
3630 stub_entry = h->stub_cache;
3631 }
3632 else
3633 {
3634 char *stub_name;
3635
3636 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
3637 if (stub_name == NULL)
3638 return NULL;
3639
3640 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3641 stub_name, FALSE, FALSE);
3642 if (h != NULL)
3643 h->stub_cache = stub_entry;
3644
3645 free (stub_name);
3646 }
3647
3648 return stub_entry;
3649 }
3650
3651 /* Add a new stub entry to the stub hash. Not all fields of the new
3652 stub entry are initialised. */
3653
3654 static struct ppc_stub_hash_entry *
3655 ppc_add_stub (const char *stub_name,
3656 asection *section,
3657 struct ppc_link_hash_table *htab)
3658 {
3659 asection *link_sec;
3660 asection *stub_sec;
3661 struct ppc_stub_hash_entry *stub_entry;
3662
3663 link_sec = htab->stub_group[section->id].link_sec;
3664 stub_sec = htab->stub_group[section->id].stub_sec;
3665 if (stub_sec == NULL)
3666 {
3667 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3668 if (stub_sec == NULL)
3669 {
3670 size_t namelen;
3671 bfd_size_type len;
3672 char *s_name;
3673
3674 namelen = strlen (link_sec->name);
3675 len = namelen + sizeof (STUB_SUFFIX);
3676 s_name = bfd_alloc (htab->stub_bfd, len);
3677 if (s_name == NULL)
3678 return NULL;
3679
3680 memcpy (s_name, link_sec->name, namelen);
3681 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3682 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3683 if (stub_sec == NULL)
3684 return NULL;
3685 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3686 }
3687 htab->stub_group[section->id].stub_sec = stub_sec;
3688 }
3689
3690 /* Enter this entry into the linker stub hash table. */
3691 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3692 TRUE, FALSE);
3693 if (stub_entry == NULL)
3694 {
3695 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3696 section->owner, stub_name);
3697 return NULL;
3698 }
3699
3700 stub_entry->stub_sec = stub_sec;
3701 stub_entry->stub_offset = 0;
3702 stub_entry->id_sec = link_sec;
3703 return stub_entry;
3704 }
3705
3706 /* Create sections for linker generated code. */
3707
3708 static bfd_boolean
3709 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3710 {
3711 struct ppc_link_hash_table *htab;
3712 flagword flags;
3713
3714 htab = ppc_hash_table (info);
3715
3716 /* Create .sfpr for code to save and restore fp regs. */
3717 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3718 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3719 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
3720 flags);
3721 if (htab->sfpr == NULL
3722 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
3723 return FALSE;
3724
3725 /* Create .glink for lazy dynamic linking support. */
3726 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3727 flags);
3728 if (htab->glink == NULL
3729 || ! bfd_set_section_alignment (dynobj, htab->glink, 2))
3730 return FALSE;
3731
3732 /* Create .branch_lt for plt_branch stubs. */
3733 flags = (SEC_ALLOC | SEC_LOAD
3734 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3735 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3736 flags);
3737 if (htab->brlt == NULL
3738 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
3739 return FALSE;
3740
3741 if (info->shared || info->emitrelocations)
3742 {
3743 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3744 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3745 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
3746 ".rela.branch_lt",
3747 flags);
3748 if (!htab->relbrlt
3749 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
3750 return FALSE;
3751 }
3752 return TRUE;
3753 }
3754
3755 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3756 not already done. */
3757
3758 static bfd_boolean
3759 create_got_section (bfd *abfd, struct bfd_link_info *info)
3760 {
3761 asection *got, *relgot;
3762 flagword flags;
3763 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3764
3765 if (!htab->got)
3766 {
3767 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
3768 return FALSE;
3769
3770 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
3771 if (!htab->got)
3772 abort ();
3773 }
3774
3775 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3776 | SEC_LINKER_CREATED);
3777
3778 got = bfd_make_section_with_flags (abfd, ".got", flags);
3779 if (!got
3780 || !bfd_set_section_alignment (abfd, got, 3))
3781 return FALSE;
3782
3783 relgot = bfd_make_section_with_flags (abfd, ".rela.got",
3784 flags | SEC_READONLY);
3785 if (!relgot
3786 || ! bfd_set_section_alignment (abfd, relgot, 3))
3787 return FALSE;
3788
3789 ppc64_elf_tdata (abfd)->got = got;
3790 ppc64_elf_tdata (abfd)->relgot = relgot;
3791 return TRUE;
3792 }
3793
3794 /* Create the dynamic sections, and set up shortcuts. */
3795
3796 static bfd_boolean
3797 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3798 {
3799 struct ppc_link_hash_table *htab;
3800
3801 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3802 return FALSE;
3803
3804 htab = ppc_hash_table (info);
3805 if (!htab->got)
3806 htab->got = bfd_get_section_by_name (dynobj, ".got");
3807 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
3808 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
3809 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3810 if (!info->shared)
3811 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
3812
3813 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
3814 || (!info->shared && !htab->relbss))
3815 abort ();
3816
3817 return TRUE;
3818 }
3819
3820 /* Merge PLT info on FROM with that on TO. */
3821
3822 static void
3823 move_plt_plist (struct ppc_link_hash_entry *from,
3824 struct ppc_link_hash_entry *to)
3825 {
3826 if (from->elf.plt.plist != NULL)
3827 {
3828 if (to->elf.plt.plist != NULL)
3829 {
3830 struct plt_entry **entp;
3831 struct plt_entry *ent;
3832
3833 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3834 {
3835 struct plt_entry *dent;
3836
3837 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3838 if (dent->addend == ent->addend)
3839 {
3840 dent->plt.refcount += ent->plt.refcount;
3841 *entp = ent->next;
3842 break;
3843 }
3844 if (dent == NULL)
3845 entp = &ent->next;
3846 }
3847 *entp = to->elf.plt.plist;
3848 }
3849
3850 to->elf.plt.plist = from->elf.plt.plist;
3851 from->elf.plt.plist = NULL;
3852 }
3853 }
3854
3855 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3856
3857 static void
3858 ppc64_elf_copy_indirect_symbol
3859 (const struct elf_backend_data *bed ATTRIBUTE_UNUSED,
3860 struct elf_link_hash_entry *dir,
3861 struct elf_link_hash_entry *ind)
3862 {
3863 struct ppc_link_hash_entry *edir, *eind;
3864
3865 edir = (struct ppc_link_hash_entry *) dir;
3866 eind = (struct ppc_link_hash_entry *) ind;
3867
3868 /* Copy over any dynamic relocs we may have on the indirect sym. */
3869 if (eind->dyn_relocs != NULL)
3870 {
3871 if (edir->dyn_relocs != NULL)
3872 {
3873 struct ppc_dyn_relocs **pp;
3874 struct ppc_dyn_relocs *p;
3875
3876 if (eind->elf.root.type == bfd_link_hash_indirect)
3877 abort ();
3878
3879 /* Add reloc counts against the weak sym to the strong sym
3880 list. Merge any entries against the same section. */
3881 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3882 {
3883 struct ppc_dyn_relocs *q;
3884
3885 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3886 if (q->sec == p->sec)
3887 {
3888 q->pc_count += p->pc_count;
3889 q->count += p->count;
3890 *pp = p->next;
3891 break;
3892 }
3893 if (q == NULL)
3894 pp = &p->next;
3895 }
3896 *pp = edir->dyn_relocs;
3897 }
3898
3899 edir->dyn_relocs = eind->dyn_relocs;
3900 eind->dyn_relocs = NULL;
3901 }
3902
3903 edir->is_func |= eind->is_func;
3904 edir->is_func_descriptor |= eind->is_func_descriptor;
3905 edir->tls_mask |= eind->tls_mask;
3906
3907 /* If called to transfer flags for a weakdef during processing
3908 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
3909 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
3910 if (!(ELIMINATE_COPY_RELOCS
3911 && eind->elf.root.type != bfd_link_hash_indirect
3912 && edir->elf.dynamic_adjusted))
3913 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3914
3915 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3916 edir->elf.ref_regular |= eind->elf.ref_regular;
3917 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3918 edir->elf.needs_plt |= eind->elf.needs_plt;
3919
3920 /* If we were called to copy over info for a weak sym, that's all. */
3921 if (eind->elf.root.type != bfd_link_hash_indirect)
3922 return;
3923
3924 /* Copy over got entries that we may have already seen to the
3925 symbol which just became indirect. */
3926 if (eind->elf.got.glist != NULL)
3927 {
3928 if (edir->elf.got.glist != NULL)
3929 {
3930 struct got_entry **entp;
3931 struct got_entry *ent;
3932
3933 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3934 {
3935 struct got_entry *dent;
3936
3937 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3938 if (dent->addend == ent->addend
3939 && dent->owner == ent->owner
3940 && dent->tls_type == ent->tls_type)
3941 {
3942 dent->got.refcount += ent->got.refcount;
3943 *entp = ent->next;
3944 break;
3945 }
3946 if (dent == NULL)
3947 entp = &ent->next;
3948 }
3949 *entp = edir->elf.got.glist;
3950 }
3951
3952 edir->elf.got.glist = eind->elf.got.glist;
3953 eind->elf.got.glist = NULL;
3954 }
3955
3956 /* And plt entries. */
3957 move_plt_plist (eind, edir);
3958
3959 if (edir->elf.dynindx == -1)
3960 {
3961 edir->elf.dynindx = eind->elf.dynindx;
3962 edir->elf.dynstr_index = eind->elf.dynstr_index;
3963 eind->elf.dynindx = -1;
3964 eind->elf.dynstr_index = 0;
3965 }
3966 else
3967 BFD_ASSERT (eind->elf.dynindx == -1);
3968 }
3969
3970 /* Find the function descriptor hash entry from the given function code
3971 hash entry FH. Link the entries via their OH fields. */
3972
3973 static struct ppc_link_hash_entry *
3974 get_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3975 {
3976 struct ppc_link_hash_entry *fdh = fh->oh;
3977
3978 if (fdh == NULL)
3979 {
3980 const char *fd_name = fh->elf.root.root.string + 1;
3981
3982 fdh = (struct ppc_link_hash_entry *)
3983 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
3984 if (fdh != NULL)
3985 {
3986 fdh->is_func_descriptor = 1;
3987 fdh->oh = fh;
3988 fh->is_func = 1;
3989 fh->oh = fdh;
3990 }
3991 }
3992
3993 return fdh;
3994 }
3995
3996 /* Make a fake function descriptor sym for the code sym FH. */
3997
3998 static struct ppc_link_hash_entry *
3999 make_fdh (struct bfd_link_info *info,
4000 struct ppc_link_hash_entry *fh)
4001 {
4002 bfd *abfd;
4003 asymbol *newsym;
4004 struct bfd_link_hash_entry *bh;
4005 struct ppc_link_hash_entry *fdh;
4006
4007 abfd = fh->elf.root.u.undef.abfd;
4008 newsym = bfd_make_empty_symbol (abfd);
4009 newsym->name = fh->elf.root.root.string + 1;
4010 newsym->section = bfd_und_section_ptr;
4011 newsym->value = 0;
4012 newsym->flags = BSF_WEAK;
4013
4014 bh = NULL;
4015 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4016 newsym->flags, newsym->section,
4017 newsym->value, NULL, FALSE, FALSE,
4018 &bh))
4019 return NULL;
4020
4021 fdh = (struct ppc_link_hash_entry *) bh;
4022 fdh->elf.non_elf = 0;
4023 fdh->fake = 1;
4024 fdh->is_func_descriptor = 1;
4025 fdh->oh = fh;
4026 fh->is_func = 1;
4027 fh->oh = fdh;
4028 return fdh;
4029 }
4030
4031 /* Hacks to support old ABI code.
4032 When making function calls, old ABI code references function entry
4033 points (dot symbols), while new ABI code references the function
4034 descriptor symbol. We need to make any combination of reference and
4035 definition work together, without breaking archive linking.
4036
4037 For a defined function "foo" and an undefined call to "bar":
4038 An old object defines "foo" and ".foo", references ".bar" (possibly
4039 "bar" too).
4040 A new object defines "foo" and references "bar".
4041
4042 A new object thus has no problem with its undefined symbols being
4043 satisfied by definitions in an old object. On the other hand, the
4044 old object won't have ".bar" satisfied by a new object. */
4045
4046 /* Fix function descriptor symbols defined in .opd sections to be
4047 function type. */
4048
4049 static bfd_boolean
4050 ppc64_elf_add_symbol_hook (bfd *ibfd,
4051 struct bfd_link_info *info ATTRIBUTE_UNUSED,
4052 Elf_Internal_Sym *isym,
4053 const char **name,
4054 flagword *flags ATTRIBUTE_UNUSED,
4055 asection **sec,
4056 bfd_vma *value ATTRIBUTE_UNUSED)
4057 {
4058 if (*sec != NULL
4059 && strcmp (bfd_get_section_name (ibfd, *sec), ".opd") == 0)
4060 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4061
4062 if ((*name)[0] == '.'
4063 && ELF_ST_BIND (isym->st_info) == STB_GLOBAL
4064 && ELF_ST_TYPE (isym->st_info) < STT_SECTION
4065 && is_ppc64_elf_target (ibfd->xvec))
4066 ppc64_elf_tdata (ibfd)->u.has_dotsym = 1;
4067
4068 return TRUE;
4069 }
4070
4071 /* This function makes an old ABI object reference to ".bar" cause the
4072 inclusion of a new ABI object archive that defines "bar".
4073 NAME is a symbol defined in an archive. Return a symbol in the hash
4074 table that might be satisfied by the archive symbols. */
4075
4076 static struct elf_link_hash_entry *
4077 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4078 struct bfd_link_info *info,
4079 const char *name)
4080 {
4081 struct elf_link_hash_entry *h;
4082 char *dot_name;
4083 size_t len;
4084
4085 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4086 if (h != NULL
4087 /* Don't return this sym if it is a fake function descriptor
4088 created by add_symbol_adjust. */
4089 && !(h->root.type == bfd_link_hash_undefweak
4090 && ((struct ppc_link_hash_entry *) h)->fake))
4091 return h;
4092
4093 if (name[0] == '.')
4094 return h;
4095
4096 len = strlen (name);
4097 dot_name = bfd_alloc (abfd, len + 2);
4098 if (dot_name == NULL)
4099 return (struct elf_link_hash_entry *) 0 - 1;
4100 dot_name[0] = '.';
4101 memcpy (dot_name + 1, name, len + 1);
4102 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4103 bfd_release (abfd, dot_name);
4104 return h;
4105 }
4106
4107 /* This function satisfies all old ABI object references to ".bar" if a
4108 new ABI object defines "bar". Well, at least, undefined dot symbols
4109 are made weak. This stops later archive searches from including an
4110 object if we already have a function descriptor definition. It also
4111 prevents the linker complaining about undefined symbols.
4112 We also check and correct mismatched symbol visibility here. The
4113 most restrictive visibility of the function descriptor and the
4114 function entry symbol is used. */
4115
4116 struct add_symbol_adjust_data
4117 {
4118 struct bfd_link_info *info;
4119 bfd_boolean ok;
4120 };
4121
4122 static bfd_boolean
4123 add_symbol_adjust (struct elf_link_hash_entry *h, void *inf)
4124 {
4125 struct add_symbol_adjust_data *data;
4126 struct ppc_link_hash_table *htab;
4127 struct ppc_link_hash_entry *eh;
4128 struct ppc_link_hash_entry *fdh;
4129
4130 if (h->root.type == bfd_link_hash_indirect)
4131 return TRUE;
4132
4133 if (h->root.type == bfd_link_hash_warning)
4134 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4135
4136 if (h->root.root.string[0] != '.')
4137 return TRUE;
4138
4139 data = inf;
4140 htab = ppc_hash_table (data->info);
4141 eh = (struct ppc_link_hash_entry *) h;
4142 fdh = get_fdh (eh, htab);
4143 if (fdh == NULL
4144 && !data->info->relocatable
4145 && (eh->elf.root.type == bfd_link_hash_undefined
4146 || eh->elf.root.type == bfd_link_hash_undefweak)
4147 && eh->elf.ref_regular)
4148 {
4149 /* Make an undefweak function descriptor sym, which is enough to
4150 pull in an --as-needed shared lib, but won't cause link
4151 errors. Archives are handled elsewhere. */
4152 fdh = make_fdh (data->info, eh);
4153 if (fdh == NULL)
4154 data->ok = FALSE;
4155 else
4156 fdh->elf.ref_regular = 1;
4157 }
4158 else if (fdh != NULL
4159 && (fdh->elf.root.type == bfd_link_hash_defined
4160 || fdh->elf.root.type == bfd_link_hash_defweak))
4161 {
4162 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4163 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4164 if (entry_vis < descr_vis)
4165 fdh->elf.other += entry_vis - descr_vis;
4166 else if (entry_vis > descr_vis)
4167 eh->elf.other += descr_vis - entry_vis;
4168
4169 if (eh->elf.root.type == bfd_link_hash_undefined)
4170 {
4171 eh->elf.root.type = bfd_link_hash_undefweak;
4172 eh->was_undefined = 1;
4173 htab->twiddled_syms = 1;
4174 }
4175 }
4176
4177 return TRUE;
4178 }
4179
4180 static bfd_boolean
4181 ppc64_elf_check_directives (bfd *abfd, struct bfd_link_info *info)
4182 {
4183 struct ppc_link_hash_table *htab;
4184 struct add_symbol_adjust_data data;
4185
4186 if (!is_ppc64_elf_target (abfd->xvec))
4187 return TRUE;
4188
4189 if (!ppc64_elf_tdata (abfd)->u.has_dotsym)
4190 return TRUE;
4191 ppc64_elf_tdata (abfd)->u.deleted_section = NULL;
4192
4193 htab = ppc_hash_table (info);
4194 if (!is_ppc64_elf_target (htab->elf.root.creator))
4195 return TRUE;
4196
4197 data.info = info;
4198 data.ok = TRUE;
4199 elf_link_hash_traverse (&htab->elf, add_symbol_adjust, &data);
4200
4201 /* We need to fix the undefs list for any syms we have twiddled to
4202 undef_weak. */
4203 if (htab->twiddled_syms)
4204 {
4205 bfd_link_repair_undef_list (&htab->elf.root);
4206 htab->twiddled_syms = 0;
4207 }
4208 return data.ok;
4209 }
4210
4211 static bfd_boolean
4212 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4213 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4214 {
4215 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4216 char *local_got_tls_masks;
4217
4218 if (local_got_ents == NULL)
4219 {
4220 bfd_size_type size = symtab_hdr->sh_info;
4221
4222 size *= sizeof (*local_got_ents) + sizeof (*local_got_tls_masks);
4223 local_got_ents = bfd_zalloc (abfd, size);
4224 if (local_got_ents == NULL)
4225 return FALSE;
4226 elf_local_got_ents (abfd) = local_got_ents;
4227 }
4228
4229 if ((tls_type & TLS_EXPLICIT) == 0)
4230 {
4231 struct got_entry *ent;
4232
4233 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4234 if (ent->addend == r_addend
4235 && ent->owner == abfd
4236 && ent->tls_type == tls_type)
4237 break;
4238 if (ent == NULL)
4239 {
4240 bfd_size_type amt = sizeof (*ent);
4241 ent = bfd_alloc (abfd, amt);
4242 if (ent == NULL)
4243 return FALSE;
4244 ent->next = local_got_ents[r_symndx];
4245 ent->addend = r_addend;
4246 ent->owner = abfd;
4247 ent->tls_type = tls_type;
4248 ent->got.refcount = 0;
4249 local_got_ents[r_symndx] = ent;
4250 }
4251 ent->got.refcount += 1;
4252 }
4253
4254 local_got_tls_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
4255 local_got_tls_masks[r_symndx] |= tls_type;
4256 return TRUE;
4257 }
4258
4259 static bfd_boolean
4260 update_plt_info (bfd *abfd, struct ppc_link_hash_entry *eh, bfd_vma addend)
4261 {
4262 struct plt_entry *ent;
4263
4264 for (ent = eh->elf.plt.plist; ent != NULL; ent = ent->next)
4265 if (ent->addend == addend)
4266 break;
4267 if (ent == NULL)
4268 {
4269 bfd_size_type amt = sizeof (*ent);
4270 ent = bfd_alloc (abfd, amt);
4271 if (ent == NULL)
4272 return FALSE;
4273 ent->next = eh->elf.plt.plist;
4274 ent->addend = addend;
4275 ent->plt.refcount = 0;
4276 eh->elf.plt.plist = ent;
4277 }
4278 ent->plt.refcount += 1;
4279 eh->elf.needs_plt = 1;
4280 if (eh->elf.root.root.string[0] == '.'
4281 && eh->elf.root.root.string[1] != '\0')
4282 eh->is_func = 1;
4283 return TRUE;
4284 }
4285
4286 /* Look through the relocs for a section during the first phase, and
4287 calculate needed space in the global offset table, procedure
4288 linkage table, and dynamic reloc sections. */
4289
4290 static bfd_boolean
4291 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4292 asection *sec, const Elf_Internal_Rela *relocs)
4293 {
4294 struct ppc_link_hash_table *htab;
4295 Elf_Internal_Shdr *symtab_hdr;
4296 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4297 const Elf_Internal_Rela *rel;
4298 const Elf_Internal_Rela *rel_end;
4299 asection *sreloc;
4300 asection **opd_sym_map;
4301
4302 if (info->relocatable)
4303 return TRUE;
4304
4305 /* Don't do anything special with non-loaded, non-alloced sections.
4306 In particular, any relocs in such sections should not affect GOT
4307 and PLT reference counting (ie. we don't allow them to create GOT
4308 or PLT entries), there's no possibility or desire to optimize TLS
4309 relocs, and there's not much point in propagating relocs to shared
4310 libs that the dynamic linker won't relocate. */
4311 if ((sec->flags & SEC_ALLOC) == 0)
4312 return TRUE;
4313
4314 htab = ppc_hash_table (info);
4315 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4316
4317 sym_hashes = elf_sym_hashes (abfd);
4318 sym_hashes_end = (sym_hashes
4319 + symtab_hdr->sh_size / sizeof (Elf64_External_Sym)
4320 - symtab_hdr->sh_info);
4321
4322 sreloc = NULL;
4323 opd_sym_map = NULL;
4324 if (strcmp (bfd_get_section_name (abfd, sec), ".opd") == 0)
4325 {
4326 /* Garbage collection needs some extra help with .opd sections.
4327 We don't want to necessarily keep everything referenced by
4328 relocs in .opd, as that would keep all functions. Instead,
4329 if we reference an .opd symbol (a function descriptor), we
4330 want to keep the function code symbol's section. This is
4331 easy for global symbols, but for local syms we need to keep
4332 information about the associated function section. Later, if
4333 edit_opd deletes entries, we'll use this array to adjust
4334 local syms in .opd. */
4335 union opd_info {
4336 asection *func_section;
4337 long entry_adjust;
4338 };
4339 bfd_size_type amt;
4340
4341 amt = sec->size * sizeof (union opd_info) / 8;
4342 opd_sym_map = bfd_zalloc (abfd, amt);
4343 if (opd_sym_map == NULL)
4344 return FALSE;
4345 ppc64_elf_section_data (sec)->opd.func_sec = opd_sym_map;
4346 }
4347
4348 if (htab->sfpr == NULL
4349 && !create_linkage_sections (htab->elf.dynobj, info))
4350 return FALSE;
4351
4352 rel_end = relocs + sec->reloc_count;
4353 for (rel = relocs; rel < rel_end; rel++)
4354 {
4355 unsigned long r_symndx;
4356 struct elf_link_hash_entry *h;
4357 enum elf_ppc64_reloc_type r_type;
4358 int tls_type = 0;
4359
4360 r_symndx = ELF64_R_SYM (rel->r_info);
4361 if (r_symndx < symtab_hdr->sh_info)
4362 h = NULL;
4363 else
4364 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4365
4366 r_type = ELF64_R_TYPE (rel->r_info);
4367 switch (r_type)
4368 {
4369 case R_PPC64_GOT_TLSLD16:
4370 case R_PPC64_GOT_TLSLD16_LO:
4371 case R_PPC64_GOT_TLSLD16_HI:
4372 case R_PPC64_GOT_TLSLD16_HA:
4373 ppc64_tlsld_got (abfd)->refcount += 1;
4374 tls_type = TLS_TLS | TLS_LD;
4375 goto dogottls;
4376
4377 case R_PPC64_GOT_TLSGD16:
4378 case R_PPC64_GOT_TLSGD16_LO:
4379 case R_PPC64_GOT_TLSGD16_HI:
4380 case R_PPC64_GOT_TLSGD16_HA:
4381 tls_type = TLS_TLS | TLS_GD;
4382 goto dogottls;
4383
4384 case R_PPC64_GOT_TPREL16_DS:
4385 case R_PPC64_GOT_TPREL16_LO_DS:
4386 case R_PPC64_GOT_TPREL16_HI:
4387 case R_PPC64_GOT_TPREL16_HA:
4388 if (info->shared)
4389 info->flags |= DF_STATIC_TLS;
4390 tls_type = TLS_TLS | TLS_TPREL;
4391 goto dogottls;
4392
4393 case R_PPC64_GOT_DTPREL16_DS:
4394 case R_PPC64_GOT_DTPREL16_LO_DS:
4395 case R_PPC64_GOT_DTPREL16_HI:
4396 case R_PPC64_GOT_DTPREL16_HA:
4397 tls_type = TLS_TLS | TLS_DTPREL;
4398 dogottls:
4399 sec->has_tls_reloc = 1;
4400 /* Fall thru */
4401
4402 case R_PPC64_GOT16:
4403 case R_PPC64_GOT16_DS:
4404 case R_PPC64_GOT16_HA:
4405 case R_PPC64_GOT16_HI:
4406 case R_PPC64_GOT16_LO:
4407 case R_PPC64_GOT16_LO_DS:
4408 /* This symbol requires a global offset table entry. */
4409 sec->has_toc_reloc = 1;
4410 if (ppc64_elf_tdata (abfd)->got == NULL
4411 && !create_got_section (abfd, info))
4412 return FALSE;
4413
4414 if (h != NULL)
4415 {
4416 struct ppc_link_hash_entry *eh;
4417 struct got_entry *ent;
4418
4419 eh = (struct ppc_link_hash_entry *) h;
4420 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4421 if (ent->addend == rel->r_addend
4422 && ent->owner == abfd
4423 && ent->tls_type == tls_type)
4424 break;
4425 if (ent == NULL)
4426 {
4427 bfd_size_type amt = sizeof (*ent);
4428 ent = bfd_alloc (abfd, amt);
4429 if (ent == NULL)
4430 return FALSE;
4431 ent->next = eh->elf.got.glist;
4432 ent->addend = rel->r_addend;
4433 ent->owner = abfd;
4434 ent->tls_type = tls_type;
4435 ent->got.refcount = 0;
4436 eh->elf.got.glist = ent;
4437 }
4438 ent->got.refcount += 1;
4439 eh->tls_mask |= tls_type;
4440 }
4441 else
4442 /* This is a global offset table entry for a local symbol. */
4443 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4444 rel->r_addend, tls_type))
4445 return FALSE;
4446 break;
4447
4448 case R_PPC64_PLT16_HA:
4449 case R_PPC64_PLT16_HI:
4450 case R_PPC64_PLT16_LO:
4451 case R_PPC64_PLT32:
4452 case R_PPC64_PLT64:
4453 /* This symbol requires a procedure linkage table entry. We
4454 actually build the entry in adjust_dynamic_symbol,
4455 because this might be a case of linking PIC code without
4456 linking in any dynamic objects, in which case we don't
4457 need to generate a procedure linkage table after all. */
4458 if (h == NULL)
4459 {
4460 /* It does not make sense to have a procedure linkage
4461 table entry for a local symbol. */
4462 bfd_set_error (bfd_error_bad_value);
4463 return FALSE;
4464 }
4465 else
4466 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4467 rel->r_addend))
4468 return FALSE;
4469 break;
4470
4471 /* The following relocations don't need to propagate the
4472 relocation if linking a shared object since they are
4473 section relative. */
4474 case R_PPC64_SECTOFF:
4475 case R_PPC64_SECTOFF_LO:
4476 case R_PPC64_SECTOFF_HI:
4477 case R_PPC64_SECTOFF_HA:
4478 case R_PPC64_SECTOFF_DS:
4479 case R_PPC64_SECTOFF_LO_DS:
4480 case R_PPC64_DTPREL16:
4481 case R_PPC64_DTPREL16_LO:
4482 case R_PPC64_DTPREL16_HI:
4483 case R_PPC64_DTPREL16_HA:
4484 case R_PPC64_DTPREL16_DS:
4485 case R_PPC64_DTPREL16_LO_DS:
4486 case R_PPC64_DTPREL16_HIGHER:
4487 case R_PPC64_DTPREL16_HIGHERA:
4488 case R_PPC64_DTPREL16_HIGHEST:
4489 case R_PPC64_DTPREL16_HIGHESTA:
4490 break;
4491
4492 /* Nor do these. */
4493 case R_PPC64_TOC16:
4494 case R_PPC64_TOC16_LO:
4495 case R_PPC64_TOC16_HI:
4496 case R_PPC64_TOC16_HA:
4497 case R_PPC64_TOC16_DS:
4498 case R_PPC64_TOC16_LO_DS:
4499 sec->has_toc_reloc = 1;
4500 break;
4501
4502 /* This relocation describes the C++ object vtable hierarchy.
4503 Reconstruct it for later use during GC. */
4504 case R_PPC64_GNU_VTINHERIT:
4505 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4506 return FALSE;
4507 break;
4508
4509 /* This relocation describes which C++ vtable entries are actually
4510 used. Record for later use during GC. */
4511 case R_PPC64_GNU_VTENTRY:
4512 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4513 return FALSE;
4514 break;
4515
4516 case R_PPC64_REL14:
4517 case R_PPC64_REL14_BRTAKEN:
4518 case R_PPC64_REL14_BRNTAKEN:
4519 htab->has_14bit_branch = 1;
4520 /* Fall through. */
4521
4522 case R_PPC64_REL24:
4523 if (h != NULL)
4524 {
4525 /* We may need a .plt entry if the function this reloc
4526 refers to is in a shared lib. */
4527 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4528 rel->r_addend))
4529 return FALSE;
4530 if (h == &htab->tls_get_addr->elf
4531 || h == &htab->tls_get_addr_fd->elf)
4532 sec->has_tls_reloc = 1;
4533 else if (htab->tls_get_addr == NULL
4534 && !strncmp (h->root.root.string, ".__tls_get_addr", 15)
4535 && (h->root.root.string[15] == 0
4536 || h->root.root.string[15] == '@'))
4537 {
4538 htab->tls_get_addr = (struct ppc_link_hash_entry *) h;
4539 sec->has_tls_reloc = 1;
4540 }
4541 else if (htab->tls_get_addr_fd == NULL
4542 && !strncmp (h->root.root.string, "__tls_get_addr", 14)
4543 && (h->root.root.string[14] == 0
4544 || h->root.root.string[14] == '@'))
4545 {
4546 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) h;
4547 sec->has_tls_reloc = 1;
4548 }
4549 }
4550 break;
4551
4552 case R_PPC64_TPREL64:
4553 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4554 if (info->shared)
4555 info->flags |= DF_STATIC_TLS;
4556 goto dotlstoc;
4557
4558 case R_PPC64_DTPMOD64:
4559 if (rel + 1 < rel_end
4560 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4561 && rel[1].r_offset == rel->r_offset + 8)
4562 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4563 else
4564 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4565 goto dotlstoc;
4566
4567 case R_PPC64_DTPREL64:
4568 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4569 if (rel != relocs
4570 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4571 && rel[-1].r_offset == rel->r_offset - 8)
4572 /* This is the second reloc of a dtpmod, dtprel pair.
4573 Don't mark with TLS_DTPREL. */
4574 goto dodyn;
4575
4576 dotlstoc:
4577 sec->has_tls_reloc = 1;
4578 if (h != NULL)
4579 {
4580 struct ppc_link_hash_entry *eh;
4581 eh = (struct ppc_link_hash_entry *) h;
4582 eh->tls_mask |= tls_type;
4583 }
4584 else
4585 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4586 rel->r_addend, tls_type))
4587 return FALSE;
4588
4589 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4590 {
4591 /* One extra to simplify get_tls_mask. */
4592 bfd_size_type amt = sec->size * sizeof (unsigned) / 8 + 1;
4593 ppc64_elf_section_data (sec)->t_symndx = bfd_zalloc (abfd, amt);
4594 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4595 return FALSE;
4596 }
4597 BFD_ASSERT (rel->r_offset % 8 == 0);
4598 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8] = r_symndx;
4599
4600 /* Mark the second slot of a GD or LD entry.
4601 -1 to indicate GD and -2 to indicate LD. */
4602 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
4603 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -1;
4604 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
4605 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -2;
4606 goto dodyn;
4607
4608 case R_PPC64_TPREL16:
4609 case R_PPC64_TPREL16_LO:
4610 case R_PPC64_TPREL16_HI:
4611 case R_PPC64_TPREL16_HA:
4612 case R_PPC64_TPREL16_DS:
4613 case R_PPC64_TPREL16_LO_DS:
4614 case R_PPC64_TPREL16_HIGHER:
4615 case R_PPC64_TPREL16_HIGHERA:
4616 case R_PPC64_TPREL16_HIGHEST:
4617 case R_PPC64_TPREL16_HIGHESTA:
4618 if (info->shared)
4619 {
4620 info->flags |= DF_STATIC_TLS;
4621 goto dodyn;
4622 }
4623 break;
4624
4625 case R_PPC64_ADDR64:
4626 if (opd_sym_map != NULL
4627 && rel + 1 < rel_end
4628 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
4629 {
4630 if (h != NULL)
4631 {
4632 if (h->root.root.string[0] == '.'
4633 && h->root.root.string[1] != 0
4634 && get_fdh ((struct ppc_link_hash_entry *) h, htab))
4635 ;
4636 else
4637 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4638 }
4639 else
4640 {
4641 asection *s;
4642
4643 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec,
4644 r_symndx);
4645 if (s == NULL)
4646 return FALSE;
4647 else if (s != sec)
4648 opd_sym_map[rel->r_offset / 8] = s;
4649 }
4650 }
4651 /* Fall through. */
4652
4653 case R_PPC64_REL30:
4654 case R_PPC64_REL32:
4655 case R_PPC64_REL64:
4656 case R_PPC64_ADDR14:
4657 case R_PPC64_ADDR14_BRNTAKEN:
4658 case R_PPC64_ADDR14_BRTAKEN:
4659 case R_PPC64_ADDR16:
4660 case R_PPC64_ADDR16_DS:
4661 case R_PPC64_ADDR16_HA:
4662 case R_PPC64_ADDR16_HI:
4663 case R_PPC64_ADDR16_HIGHER:
4664 case R_PPC64_ADDR16_HIGHERA:
4665 case R_PPC64_ADDR16_HIGHEST:
4666 case R_PPC64_ADDR16_HIGHESTA:
4667 case R_PPC64_ADDR16_LO:
4668 case R_PPC64_ADDR16_LO_DS:
4669 case R_PPC64_ADDR24:
4670 case R_PPC64_ADDR32:
4671 case R_PPC64_UADDR16:
4672 case R_PPC64_UADDR32:
4673 case R_PPC64_UADDR64:
4674 case R_PPC64_TOC:
4675 if (h != NULL && !info->shared)
4676 /* We may need a copy reloc. */
4677 h->non_got_ref = 1;
4678
4679 /* Don't propagate .opd relocs. */
4680 if (NO_OPD_RELOCS && opd_sym_map != NULL)
4681 break;
4682
4683 /* If we are creating a shared library, and this is a reloc
4684 against a global symbol, or a non PC relative reloc
4685 against a local symbol, then we need to copy the reloc
4686 into the shared library. However, if we are linking with
4687 -Bsymbolic, we do not need to copy a reloc against a
4688 global symbol which is defined in an object we are
4689 including in the link (i.e., DEF_REGULAR is set). At
4690 this point we have not seen all the input files, so it is
4691 possible that DEF_REGULAR is not set now but will be set
4692 later (it is never cleared). In case of a weak definition,
4693 DEF_REGULAR may be cleared later by a strong definition in
4694 a shared library. We account for that possibility below by
4695 storing information in the dyn_relocs field of the hash
4696 table entry. A similar situation occurs when creating
4697 shared libraries and symbol visibility changes render the
4698 symbol local.
4699
4700 If on the other hand, we are creating an executable, we
4701 may need to keep relocations for symbols satisfied by a
4702 dynamic library if we manage to avoid copy relocs for the
4703 symbol. */
4704 dodyn:
4705 if ((info->shared
4706 && (MUST_BE_DYN_RELOC (r_type)
4707 || (h != NULL
4708 && (! info->symbolic
4709 || h->root.type == bfd_link_hash_defweak
4710 || !h->def_regular))))
4711 || (ELIMINATE_COPY_RELOCS
4712 && !info->shared
4713 && h != NULL
4714 && (h->root.type == bfd_link_hash_defweak
4715 || !h->def_regular)))
4716 {
4717 struct ppc_dyn_relocs *p;
4718 struct ppc_dyn_relocs **head;
4719
4720 /* We must copy these reloc types into the output file.
4721 Create a reloc section in dynobj and make room for
4722 this reloc. */
4723 if (sreloc == NULL)
4724 {
4725 const char *name;
4726 bfd *dynobj;
4727
4728 name = (bfd_elf_string_from_elf_section
4729 (abfd,
4730 elf_elfheader (abfd)->e_shstrndx,
4731 elf_section_data (sec)->rel_hdr.sh_name));
4732 if (name == NULL)
4733 return FALSE;
4734
4735 if (strncmp (name, ".rela", 5) != 0
4736 || strcmp (bfd_get_section_name (abfd, sec),
4737 name + 5) != 0)
4738 {
4739 (*_bfd_error_handler)
4740 (_("%B: bad relocation section name `%s\'"),
4741 abfd, name);
4742 bfd_set_error (bfd_error_bad_value);
4743 }
4744
4745 dynobj = htab->elf.dynobj;
4746 sreloc = bfd_get_section_by_name (dynobj, name);
4747 if (sreloc == NULL)
4748 {
4749 flagword flags;
4750
4751 flags = (SEC_HAS_CONTENTS | SEC_READONLY
4752 | SEC_IN_MEMORY | SEC_LINKER_CREATED
4753 | SEC_ALLOC | SEC_LOAD);
4754 sreloc = bfd_make_section_with_flags (dynobj,
4755 name,
4756 flags);
4757 if (sreloc == NULL
4758 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
4759 return FALSE;
4760 }
4761 elf_section_data (sec)->sreloc = sreloc;
4762 }
4763
4764 /* If this is a global symbol, we count the number of
4765 relocations we need for this symbol. */
4766 if (h != NULL)
4767 {
4768 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
4769 }
4770 else
4771 {
4772 /* Track dynamic relocs needed for local syms too.
4773 We really need local syms available to do this
4774 easily. Oh well. */
4775
4776 asection *s;
4777 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
4778 sec, r_symndx);
4779 if (s == NULL)
4780 return FALSE;
4781
4782 head = ((struct ppc_dyn_relocs **)
4783 &elf_section_data (s)->local_dynrel);
4784 }
4785
4786 p = *head;
4787 if (p == NULL || p->sec != sec)
4788 {
4789 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
4790 if (p == NULL)
4791 return FALSE;
4792 p->next = *head;
4793 *head = p;
4794 p->sec = sec;
4795 p->count = 0;
4796 p->pc_count = 0;
4797 }
4798
4799 p->count += 1;
4800 if (!MUST_BE_DYN_RELOC (r_type))
4801 p->pc_count += 1;
4802 }
4803 break;
4804
4805 default:
4806 break;
4807 }
4808 }
4809
4810 return TRUE;
4811 }
4812
4813 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
4814 of the code entry point, and its section. */
4815
4816 static bfd_vma
4817 opd_entry_value (asection *opd_sec,
4818 bfd_vma offset,
4819 asection **code_sec,
4820 bfd_vma *code_off)
4821 {
4822 bfd *opd_bfd = opd_sec->owner;
4823 Elf_Internal_Rela *relocs;
4824 Elf_Internal_Rela *lo, *hi, *look;
4825 bfd_vma val;
4826
4827 /* No relocs implies we are linking a --just-symbols object. */
4828 if (opd_sec->reloc_count == 0)
4829 {
4830 bfd_vma val;
4831
4832 if (!bfd_get_section_contents (opd_bfd, opd_sec, &val, offset, 8))
4833 return (bfd_vma) -1;
4834
4835 if (code_sec != NULL)
4836 {
4837 asection *sec, *likely = NULL;
4838 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
4839 if (sec->vma <= val
4840 && (sec->flags & SEC_LOAD) != 0
4841 && (sec->flags & SEC_ALLOC) != 0)
4842 likely = sec;
4843 if (likely != NULL)
4844 {
4845 *code_sec = likely;
4846 if (code_off != NULL)
4847 *code_off = val - likely->vma;
4848 }
4849 }
4850 return val;
4851 }
4852
4853 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs;
4854 if (relocs == NULL)
4855 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
4856
4857 /* Go find the opd reloc at the sym address. */
4858 lo = relocs;
4859 BFD_ASSERT (lo != NULL);
4860 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
4861 val = (bfd_vma) -1;
4862 while (lo < hi)
4863 {
4864 look = lo + (hi - lo) / 2;
4865 if (look->r_offset < offset)
4866 lo = look + 1;
4867 else if (look->r_offset > offset)
4868 hi = look;
4869 else
4870 {
4871 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (opd_bfd)->symtab_hdr;
4872 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
4873 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
4874 {
4875 unsigned long symndx = ELF64_R_SYM (look->r_info);
4876 asection *sec;
4877
4878 if (symndx < symtab_hdr->sh_info)
4879 {
4880 Elf_Internal_Sym *sym;
4881
4882 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
4883 if (sym == NULL)
4884 {
4885 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
4886 symtab_hdr->sh_info,
4887 0, NULL, NULL, NULL);
4888 if (sym == NULL)
4889 break;
4890 symtab_hdr->contents = (bfd_byte *) sym;
4891 }
4892
4893 sym += symndx;
4894 val = sym->st_value;
4895 sec = NULL;
4896 if ((sym->st_shndx != SHN_UNDEF
4897 && sym->st_shndx < SHN_LORESERVE)
4898 || sym->st_shndx > SHN_HIRESERVE)
4899 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
4900 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
4901 }
4902 else
4903 {
4904 struct elf_link_hash_entry **sym_hashes;
4905 struct elf_link_hash_entry *rh;
4906
4907 sym_hashes = elf_sym_hashes (opd_bfd);
4908 rh = sym_hashes[symndx - symtab_hdr->sh_info];
4909 while (rh->root.type == bfd_link_hash_indirect
4910 || rh->root.type == bfd_link_hash_warning)
4911 rh = ((struct elf_link_hash_entry *) rh->root.u.i.link);
4912 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
4913 || rh->root.type == bfd_link_hash_defweak);
4914 val = rh->root.u.def.value;
4915 sec = rh->root.u.def.section;
4916 }
4917 val += look->r_addend;
4918 if (code_off != NULL)
4919 *code_off = val;
4920 if (code_sec != NULL)
4921 *code_sec = sec;
4922 if (sec != NULL && sec->output_section != NULL)
4923 val += sec->output_section->vma + sec->output_offset;
4924 }
4925 break;
4926 }
4927 }
4928
4929 return val;
4930 }
4931
4932 /* Return the section that should be marked against GC for a given
4933 relocation. */
4934
4935 static asection *
4936 ppc64_elf_gc_mark_hook (asection *sec,
4937 struct bfd_link_info *info,
4938 Elf_Internal_Rela *rel,
4939 struct elf_link_hash_entry *h,
4940 Elf_Internal_Sym *sym)
4941 {
4942 asection *rsec;
4943
4944 /* First mark all our entry sym sections. */
4945 if (info->gc_sym_list != NULL)
4946 {
4947 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4948 struct bfd_sym_chain *sym = info->gc_sym_list;
4949
4950 info->gc_sym_list = NULL;
4951 do
4952 {
4953 struct ppc_link_hash_entry *eh;
4954
4955 eh = (struct ppc_link_hash_entry *)
4956 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, FALSE);
4957 if (eh == NULL)
4958 continue;
4959 if (eh->elf.root.type != bfd_link_hash_defined
4960 && eh->elf.root.type != bfd_link_hash_defweak)
4961 continue;
4962
4963 if (eh->is_func_descriptor
4964 && (eh->oh->elf.root.type == bfd_link_hash_defined
4965 || eh->oh->elf.root.type == bfd_link_hash_defweak))
4966 rsec = eh->oh->elf.root.u.def.section;
4967 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4968 && opd_entry_value (eh->elf.root.u.def.section,
4969 eh->elf.root.u.def.value,
4970 &rsec, NULL) != (bfd_vma) -1)
4971 ;
4972 else
4973 continue;
4974
4975 if (!rsec->gc_mark)
4976 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4977
4978 rsec = eh->elf.root.u.def.section;
4979 if (!rsec->gc_mark)
4980 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4981
4982 sym = sym->next;
4983 }
4984 while (sym != NULL);
4985 }
4986
4987 /* Syms return NULL if we're marking .opd, so we avoid marking all
4988 function sections, as all functions are referenced in .opd. */
4989 rsec = NULL;
4990 if (get_opd_info (sec) != NULL)
4991 return rsec;
4992
4993 if (h != NULL)
4994 {
4995 enum elf_ppc64_reloc_type r_type;
4996 struct ppc_link_hash_entry *eh;
4997
4998 r_type = ELF64_R_TYPE (rel->r_info);
4999 switch (r_type)
5000 {
5001 case R_PPC64_GNU_VTINHERIT:
5002 case R_PPC64_GNU_VTENTRY:
5003 break;
5004
5005 default:
5006 switch (h->root.type)
5007 {
5008 case bfd_link_hash_defined:
5009 case bfd_link_hash_defweak:
5010 eh = (struct ppc_link_hash_entry *) h;
5011 if (eh->oh != NULL
5012 && eh->oh->is_func_descriptor
5013 && (eh->oh->elf.root.type == bfd_link_hash_defined
5014 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5015 eh = eh->oh;
5016
5017 /* Function descriptor syms cause the associated
5018 function code sym section to be marked. */
5019 if (eh->is_func_descriptor
5020 && (eh->oh->elf.root.type == bfd_link_hash_defined
5021 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5022 {
5023 /* They also mark their opd section. */
5024 if (!eh->elf.root.u.def.section->gc_mark)
5025 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
5026 ppc64_elf_gc_mark_hook);
5027
5028 rsec = eh->oh->elf.root.u.def.section;
5029 }
5030 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5031 && opd_entry_value (eh->elf.root.u.def.section,
5032 eh->elf.root.u.def.value,
5033 &rsec, NULL) != (bfd_vma) -1)
5034 {
5035 if (!eh->elf.root.u.def.section->gc_mark)
5036 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
5037 ppc64_elf_gc_mark_hook);
5038 }
5039 else
5040 rsec = h->root.u.def.section;
5041 break;
5042
5043 case bfd_link_hash_common:
5044 rsec = h->root.u.c.p->section;
5045 break;
5046
5047 default:
5048 break;
5049 }
5050 }
5051 }
5052 else
5053 {
5054 asection **opd_sym_section;
5055
5056 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5057 opd_sym_section = get_opd_info (rsec);
5058 if (opd_sym_section != NULL)
5059 {
5060 if (!rsec->gc_mark)
5061 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
5062
5063 rsec = opd_sym_section[sym->st_value / 8];
5064 }
5065 }
5066
5067 return rsec;
5068 }
5069
5070 /* Update the .got, .plt. and dynamic reloc reference counts for the
5071 section being removed. */
5072
5073 static bfd_boolean
5074 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5075 asection *sec, const Elf_Internal_Rela *relocs)
5076 {
5077 struct ppc_link_hash_table *htab;
5078 Elf_Internal_Shdr *symtab_hdr;
5079 struct elf_link_hash_entry **sym_hashes;
5080 struct got_entry **local_got_ents;
5081 const Elf_Internal_Rela *rel, *relend;
5082
5083 if ((sec->flags & SEC_ALLOC) == 0)
5084 return TRUE;
5085
5086 elf_section_data (sec)->local_dynrel = NULL;
5087
5088 htab = ppc_hash_table (info);
5089 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5090 sym_hashes = elf_sym_hashes (abfd);
5091 local_got_ents = elf_local_got_ents (abfd);
5092
5093 relend = relocs + sec->reloc_count;
5094 for (rel = relocs; rel < relend; rel++)
5095 {
5096 unsigned long r_symndx;
5097 enum elf_ppc64_reloc_type r_type;
5098 struct elf_link_hash_entry *h = NULL;
5099 char tls_type = 0;
5100
5101 r_symndx = ELF64_R_SYM (rel->r_info);
5102 r_type = ELF64_R_TYPE (rel->r_info);
5103 if (r_symndx >= symtab_hdr->sh_info)
5104 {
5105 struct ppc_link_hash_entry *eh;
5106 struct ppc_dyn_relocs **pp;
5107 struct ppc_dyn_relocs *p;
5108
5109 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5110 while (h->root.type == bfd_link_hash_indirect
5111 || h->root.type == bfd_link_hash_warning)
5112 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5113 eh = (struct ppc_link_hash_entry *) h;
5114
5115 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
5116 if (p->sec == sec)
5117 {
5118 /* Everything must go for SEC. */
5119 *pp = p->next;
5120 break;
5121 }
5122 }
5123
5124 switch (r_type)
5125 {
5126 case R_PPC64_GOT_TLSLD16:
5127 case R_PPC64_GOT_TLSLD16_LO:
5128 case R_PPC64_GOT_TLSLD16_HI:
5129 case R_PPC64_GOT_TLSLD16_HA:
5130 ppc64_tlsld_got (abfd)->refcount -= 1;
5131 tls_type = TLS_TLS | TLS_LD;
5132 goto dogot;
5133
5134 case R_PPC64_GOT_TLSGD16:
5135 case R_PPC64_GOT_TLSGD16_LO:
5136 case R_PPC64_GOT_TLSGD16_HI:
5137 case R_PPC64_GOT_TLSGD16_HA:
5138 tls_type = TLS_TLS | TLS_GD;
5139 goto dogot;
5140
5141 case R_PPC64_GOT_TPREL16_DS:
5142 case R_PPC64_GOT_TPREL16_LO_DS:
5143 case R_PPC64_GOT_TPREL16_HI:
5144 case R_PPC64_GOT_TPREL16_HA:
5145 tls_type = TLS_TLS | TLS_TPREL;
5146 goto dogot;
5147
5148 case R_PPC64_GOT_DTPREL16_DS:
5149 case R_PPC64_GOT_DTPREL16_LO_DS:
5150 case R_PPC64_GOT_DTPREL16_HI:
5151 case R_PPC64_GOT_DTPREL16_HA:
5152 tls_type = TLS_TLS | TLS_DTPREL;
5153 goto dogot;
5154
5155 case R_PPC64_GOT16:
5156 case R_PPC64_GOT16_DS:
5157 case R_PPC64_GOT16_HA:
5158 case R_PPC64_GOT16_HI:
5159 case R_PPC64_GOT16_LO:
5160 case R_PPC64_GOT16_LO_DS:
5161 dogot:
5162 {
5163 struct got_entry *ent;
5164
5165 if (h != NULL)
5166 ent = h->got.glist;
5167 else
5168 ent = local_got_ents[r_symndx];
5169
5170 for (; ent != NULL; ent = ent->next)
5171 if (ent->addend == rel->r_addend
5172 && ent->owner == abfd
5173 && ent->tls_type == tls_type)
5174 break;
5175 if (ent == NULL)
5176 abort ();
5177 if (ent->got.refcount > 0)
5178 ent->got.refcount -= 1;
5179 }
5180 break;
5181
5182 case R_PPC64_PLT16_HA:
5183 case R_PPC64_PLT16_HI:
5184 case R_PPC64_PLT16_LO:
5185 case R_PPC64_PLT32:
5186 case R_PPC64_PLT64:
5187 case R_PPC64_REL14:
5188 case R_PPC64_REL14_BRNTAKEN:
5189 case R_PPC64_REL14_BRTAKEN:
5190 case R_PPC64_REL24:
5191 if (h != NULL)
5192 {
5193 struct plt_entry *ent;
5194
5195 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5196 if (ent->addend == rel->r_addend)
5197 break;
5198 if (ent == NULL)
5199 abort ();
5200 if (ent->plt.refcount > 0)
5201 ent->plt.refcount -= 1;
5202 }
5203 break;
5204
5205 default:
5206 break;
5207 }
5208 }
5209 return TRUE;
5210 }
5211
5212 /* The maximum size of .sfpr. */
5213 #define SFPR_MAX (218*4)
5214
5215 struct sfpr_def_parms
5216 {
5217 const char name[12];
5218 unsigned char lo, hi;
5219 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
5220 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
5221 };
5222
5223 /* Auto-generate _save*, _rest* functions in .sfpr. */
5224
5225 static unsigned int
5226 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
5227 {
5228 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5229 unsigned int i;
5230 size_t len = strlen (parm->name);
5231 bfd_boolean writing = FALSE;
5232 char sym[16];
5233
5234 memcpy (sym, parm->name, len);
5235 sym[len + 2] = 0;
5236
5237 for (i = parm->lo; i <= parm->hi; i++)
5238 {
5239 struct elf_link_hash_entry *h;
5240
5241 sym[len + 0] = i / 10 + '0';
5242 sym[len + 1] = i % 10 + '0';
5243 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
5244 if (h != NULL
5245 && !h->def_regular)
5246 {
5247 h->root.type = bfd_link_hash_defined;
5248 h->root.u.def.section = htab->sfpr;
5249 h->root.u.def.value = htab->sfpr->size;
5250 h->type = STT_FUNC;
5251 h->def_regular = 1;
5252 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
5253 writing = TRUE;
5254 if (htab->sfpr->contents == NULL)
5255 {
5256 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5257 if (htab->sfpr->contents == NULL)
5258 return FALSE;
5259 }
5260 }
5261 if (writing)
5262 {
5263 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5264 if (i != parm->hi)
5265 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5266 else
5267 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5268 htab->sfpr->size = p - htab->sfpr->contents;
5269 }
5270 }
5271
5272 return TRUE;
5273 }
5274
5275 static bfd_byte *
5276 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5277 {
5278 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5279 return p + 4;
5280 }
5281
5282 static bfd_byte *
5283 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5284 {
5285 p = savegpr0 (abfd, p, r);
5286 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5287 p = p + 4;
5288 bfd_put_32 (abfd, BLR, p);
5289 return p + 4;
5290 }
5291
5292 static bfd_byte *
5293 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5294 {
5295 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5296 return p + 4;
5297 }
5298
5299 static bfd_byte *
5300 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5301 {
5302 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5303 p = p + 4;
5304 p = restgpr0 (abfd, p, r);
5305 bfd_put_32 (abfd, MTLR_R0, p);
5306 p = p + 4;
5307 if (r == 29)
5308 {
5309 p = restgpr0 (abfd, p, 30);
5310 p = restgpr0 (abfd, p, 31);
5311 }
5312 bfd_put_32 (abfd, BLR, p);
5313 return p + 4;
5314 }
5315
5316 static bfd_byte *
5317 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5318 {
5319 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5320 return p + 4;
5321 }
5322
5323 static bfd_byte *
5324 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5325 {
5326 p = savegpr1 (abfd, p, r);
5327 bfd_put_32 (abfd, BLR, p);
5328 return p + 4;
5329 }
5330
5331 static bfd_byte *
5332 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5333 {
5334 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5335 return p + 4;
5336 }
5337
5338 static bfd_byte *
5339 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5340 {
5341 p = restgpr1 (abfd, p, r);
5342 bfd_put_32 (abfd, BLR, p);
5343 return p + 4;
5344 }
5345
5346 static bfd_byte *
5347 savefpr (bfd *abfd, bfd_byte *p, int r)
5348 {
5349 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5350 return p + 4;
5351 }
5352
5353 static bfd_byte *
5354 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5355 {
5356 p = savefpr (abfd, p, r);
5357 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5358 p = p + 4;
5359 bfd_put_32 (abfd, BLR, p);
5360 return p + 4;
5361 }
5362
5363 static bfd_byte *
5364 restfpr (bfd *abfd, bfd_byte *p, int r)
5365 {
5366 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5367 return p + 4;
5368 }
5369
5370 static bfd_byte *
5371 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5372 {
5373 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5374 p = p + 4;
5375 p = restfpr (abfd, p, r);
5376 bfd_put_32 (abfd, MTLR_R0, p);
5377 p = p + 4;
5378 if (r == 29)
5379 {
5380 p = restfpr (abfd, p, 30);
5381 p = restfpr (abfd, p, 31);
5382 }
5383 bfd_put_32 (abfd, BLR, p);
5384 return p + 4;
5385 }
5386
5387 static bfd_byte *
5388 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5389 {
5390 p = savefpr (abfd, p, r);
5391 bfd_put_32 (abfd, BLR, p);
5392 return p + 4;
5393 }
5394
5395 static bfd_byte *
5396 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
5397 {
5398 p = restfpr (abfd, p, r);
5399 bfd_put_32 (abfd, BLR, p);
5400 return p + 4;
5401 }
5402
5403 static bfd_byte *
5404 savevr (bfd *abfd, bfd_byte *p, int r)
5405 {
5406 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5407 p = p + 4;
5408 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
5409 return p + 4;
5410 }
5411
5412 static bfd_byte *
5413 savevr_tail (bfd *abfd, bfd_byte *p, int r)
5414 {
5415 p = savevr (abfd, p, r);
5416 bfd_put_32 (abfd, BLR, p);
5417 return p + 4;
5418 }
5419
5420 static bfd_byte *
5421 restvr (bfd *abfd, bfd_byte *p, int r)
5422 {
5423 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5424 p = p + 4;
5425 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
5426 return p + 4;
5427 }
5428
5429 static bfd_byte *
5430 restvr_tail (bfd *abfd, bfd_byte *p, int r)
5431 {
5432 p = restvr (abfd, p, r);
5433 bfd_put_32 (abfd, BLR, p);
5434 return p + 4;
5435 }
5436
5437 /* Called via elf_link_hash_traverse to transfer dynamic linking
5438 information on function code symbol entries to their corresponding
5439 function descriptor symbol entries. */
5440
5441 static bfd_boolean
5442 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
5443 {
5444 struct bfd_link_info *info;
5445 struct ppc_link_hash_table *htab;
5446 struct plt_entry *ent;
5447 struct ppc_link_hash_entry *fh;
5448 struct ppc_link_hash_entry *fdh;
5449 bfd_boolean force_local;
5450
5451 fh = (struct ppc_link_hash_entry *) h;
5452 if (fh->elf.root.type == bfd_link_hash_indirect)
5453 return TRUE;
5454
5455 if (fh->elf.root.type == bfd_link_hash_warning)
5456 fh = (struct ppc_link_hash_entry *) fh->elf.root.u.i.link;
5457
5458 info = inf;
5459 htab = ppc_hash_table (info);
5460
5461 /* Resolve undefined references to dot-symbols as the value
5462 in the function descriptor, if we have one in a regular object.
5463 This is to satisfy cases like ".quad .foo". Calls to functions
5464 in dynamic objects are handled elsewhere. */
5465 if (fh->elf.root.type == bfd_link_hash_undefweak
5466 && fh->was_undefined
5467 && (fh->oh->elf.root.type == bfd_link_hash_defined
5468 || fh->oh->elf.root.type == bfd_link_hash_defweak)
5469 && get_opd_info (fh->oh->elf.root.u.def.section) != NULL
5470 && opd_entry_value (fh->oh->elf.root.u.def.section,
5471 fh->oh->elf.root.u.def.value,
5472 &fh->elf.root.u.def.section,
5473 &fh->elf.root.u.def.value) != (bfd_vma) -1)
5474 {
5475 fh->elf.root.type = fh->oh->elf.root.type;
5476 fh->elf.forced_local = 1;
5477 }
5478
5479 /* If this is a function code symbol, transfer dynamic linking
5480 information to the function descriptor symbol. */
5481 if (!fh->is_func)
5482 return TRUE;
5483
5484 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
5485 if (ent->plt.refcount > 0)
5486 break;
5487 if (ent == NULL
5488 || fh->elf.root.root.string[0] != '.'
5489 || fh->elf.root.root.string[1] == '\0')
5490 return TRUE;
5491
5492 /* Find the corresponding function descriptor symbol. Create it
5493 as undefined if necessary. */
5494
5495 fdh = get_fdh (fh, htab);
5496 if (fdh != NULL)
5497 while (fdh->elf.root.type == bfd_link_hash_indirect
5498 || fdh->elf.root.type == bfd_link_hash_warning)
5499 fdh = (struct ppc_link_hash_entry *) fdh->elf.root.u.i.link;
5500
5501 if (fdh == NULL
5502 && info->shared
5503 && (fh->elf.root.type == bfd_link_hash_undefined
5504 || fh->elf.root.type == bfd_link_hash_undefweak))
5505 {
5506 fdh = make_fdh (info, fh);
5507 if (fdh == NULL)
5508 return FALSE;
5509 }
5510
5511 /* Fake function descriptors are made undefweak. If the function
5512 code symbol is strong undefined, make the fake sym the same.
5513 If the function code symbol is defined, then force the fake
5514 descriptor local; We can't support overriding of symbols in a
5515 shared library on a fake descriptor. */
5516
5517 if (fdh != NULL
5518 && fdh->fake
5519 && fdh->elf.root.type == bfd_link_hash_undefweak)
5520 {
5521 if (fh->elf.root.type == bfd_link_hash_undefined)
5522 {
5523 fdh->elf.root.type = bfd_link_hash_undefined;
5524 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
5525 }
5526 else if (fh->elf.root.type == bfd_link_hash_defined
5527 || fh->elf.root.type == bfd_link_hash_defweak)
5528 {
5529 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
5530 }
5531 }
5532
5533 if (fdh != NULL
5534 && !fdh->elf.forced_local
5535 && (info->shared
5536 || fdh->elf.def_dynamic
5537 || fdh->elf.ref_dynamic
5538 || (fdh->elf.root.type == bfd_link_hash_undefweak
5539 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
5540 {
5541 if (fdh->elf.dynindx == -1)
5542 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
5543 return FALSE;
5544 fdh->elf.ref_regular |= fh->elf.ref_regular;
5545 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
5546 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
5547 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
5548 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
5549 {
5550 move_plt_plist (fh, fdh);
5551 fdh->elf.needs_plt = 1;
5552 }
5553 fdh->is_func_descriptor = 1;
5554 fdh->oh = fh;
5555 fh->oh = fdh;
5556 }
5557
5558 /* Now that the info is on the function descriptor, clear the
5559 function code sym info. Any function code syms for which we
5560 don't have a definition in a regular file, we force local.
5561 This prevents a shared library from exporting syms that have
5562 been imported from another library. Function code syms that
5563 are really in the library we must leave global to prevent the
5564 linker dragging in a definition from a static library. */
5565 force_local = (!fh->elf.def_regular
5566 || fdh == NULL
5567 || !fdh->elf.def_regular
5568 || fdh->elf.forced_local);
5569 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5570
5571 return TRUE;
5572 }
5573
5574 /* Called near the start of bfd_elf_size_dynamic_sections. We use
5575 this hook to a) provide some gcc support functions, and b) transfer
5576 dynamic linking information gathered so far on function code symbol
5577 entries, to their corresponding function descriptor symbol entries. */
5578
5579 static bfd_boolean
5580 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
5581 struct bfd_link_info *info)
5582 {
5583 struct ppc_link_hash_table *htab;
5584 unsigned int i;
5585 const struct sfpr_def_parms funcs[] =
5586 {
5587 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
5588 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
5589 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
5590 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
5591 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
5592 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
5593 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
5594 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
5595 { "._savef", 14, 31, savefpr, savefpr1_tail },
5596 { "._restf", 14, 31, restfpr, restfpr1_tail },
5597 { "_savevr_", 20, 31, savevr, savevr_tail },
5598 { "_restvr_", 20, 31, restvr, restvr_tail }
5599 };
5600
5601 htab = ppc_hash_table (info);
5602 if (htab->sfpr == NULL)
5603 /* We don't have any relocs. */
5604 return TRUE;
5605
5606 /* Provide any missing _save* and _rest* functions. */
5607 htab->sfpr->size = 0;
5608 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
5609 if (!sfpr_define (info, &funcs[i]))
5610 return FALSE;
5611
5612 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5613
5614 if (htab->sfpr->size == 0)
5615 htab->sfpr->flags |= SEC_EXCLUDE;
5616
5617 return TRUE;
5618 }
5619
5620 /* Adjust a symbol defined by a dynamic object and referenced by a
5621 regular object. The current definition is in some section of the
5622 dynamic object, but we're not including those sections. We have to
5623 change the definition to something the rest of the link can
5624 understand. */
5625
5626 static bfd_boolean
5627 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5628 struct elf_link_hash_entry *h)
5629 {
5630 struct ppc_link_hash_table *htab;
5631 asection *s;
5632 unsigned int power_of_two;
5633
5634 htab = ppc_hash_table (info);
5635
5636 /* Deal with function syms. */
5637 if (h->type == STT_FUNC
5638 || h->needs_plt)
5639 {
5640 /* Clear procedure linkage table information for any symbol that
5641 won't need a .plt entry. */
5642 struct plt_entry *ent;
5643 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5644 if (ent->plt.refcount > 0)
5645 break;
5646 if (ent == NULL
5647 || SYMBOL_CALLS_LOCAL (info, h)
5648 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5649 && h->root.type == bfd_link_hash_undefweak))
5650 {
5651 h->plt.plist = NULL;
5652 h->needs_plt = 0;
5653 }
5654 }
5655 else
5656 h->plt.plist = NULL;
5657
5658 /* If this is a weak symbol, and there is a real definition, the
5659 processor independent code will have arranged for us to see the
5660 real definition first, and we can just use the same value. */
5661 if (h->u.weakdef != NULL)
5662 {
5663 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5664 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5665 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5666 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5667 if (ELIMINATE_COPY_RELOCS)
5668 h->non_got_ref = h->u.weakdef->non_got_ref;
5669 return TRUE;
5670 }
5671
5672 /* If we are creating a shared library, we must presume that the
5673 only references to the symbol are via the global offset table.
5674 For such cases we need not do anything here; the relocations will
5675 be handled correctly by relocate_section. */
5676 if (info->shared)
5677 return TRUE;
5678
5679 /* If there are no references to this symbol that do not use the
5680 GOT, we don't need to generate a copy reloc. */
5681 if (!h->non_got_ref)
5682 return TRUE;
5683
5684 if (ELIMINATE_COPY_RELOCS)
5685 {
5686 struct ppc_link_hash_entry * eh;
5687 struct ppc_dyn_relocs *p;
5688
5689 eh = (struct ppc_link_hash_entry *) h;
5690 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5691 {
5692 s = p->sec->output_section;
5693 if (s != NULL && (s->flags & SEC_READONLY) != 0)
5694 break;
5695 }
5696
5697 /* If we didn't find any dynamic relocs in read-only sections, then
5698 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
5699 if (p == NULL)
5700 {
5701 h->non_got_ref = 0;
5702 return TRUE;
5703 }
5704 }
5705
5706 if (h->plt.plist != NULL)
5707 {
5708 /* We should never get here, but unfortunately there are versions
5709 of gcc out there that improperly (for this ABI) put initialized
5710 function pointers, vtable refs and suchlike in read-only
5711 sections. Allow them to proceed, but warn that this might
5712 break at runtime. */
5713 (*_bfd_error_handler)
5714 (_("copy reloc against `%s' requires lazy plt linking; "
5715 "avoid setting LD_BIND_NOW=1 or upgrade gcc"),
5716 h->root.root.string);
5717 }
5718
5719 /* This is a reference to a symbol defined by a dynamic object which
5720 is not a function. */
5721
5722 /* We must allocate the symbol in our .dynbss section, which will
5723 become part of the .bss section of the executable. There will be
5724 an entry for this symbol in the .dynsym section. The dynamic
5725 object will contain position independent code, so all references
5726 from the dynamic object to this symbol will go through the global
5727 offset table. The dynamic linker will use the .dynsym entry to
5728 determine the address it must put in the global offset table, so
5729 both the dynamic object and the regular object will refer to the
5730 same memory location for the variable. */
5731
5732 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
5733 to copy the initial value out of the dynamic object and into the
5734 runtime process image. We need to remember the offset into the
5735 .rela.bss section we are going to use. */
5736 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
5737 {
5738 htab->relbss->size += sizeof (Elf64_External_Rela);
5739 h->needs_copy = 1;
5740 }
5741
5742 /* We need to figure out the alignment required for this symbol. I
5743 have no idea how ELF linkers handle this. */
5744 power_of_two = bfd_log2 (h->size);
5745 if (power_of_two > 4)
5746 power_of_two = 4;
5747
5748 /* Apply the required alignment. */
5749 s = htab->dynbss;
5750 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
5751 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
5752 {
5753 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
5754 return FALSE;
5755 }
5756
5757 /* Define the symbol as being at this point in the section. */
5758 h->root.u.def.section = s;
5759 h->root.u.def.value = s->size;
5760
5761 /* Increment the section size to make room for the symbol. */
5762 s->size += h->size;
5763
5764 return TRUE;
5765 }
5766
5767 /* If given a function descriptor symbol, hide both the function code
5768 sym and the descriptor. */
5769 static void
5770 ppc64_elf_hide_symbol (struct bfd_link_info *info,
5771 struct elf_link_hash_entry *h,
5772 bfd_boolean force_local)
5773 {
5774 struct ppc_link_hash_entry *eh;
5775 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
5776
5777 eh = (struct ppc_link_hash_entry *) h;
5778 if (eh->is_func_descriptor)
5779 {
5780 struct ppc_link_hash_entry *fh = eh->oh;
5781
5782 if (fh == NULL)
5783 {
5784 const char *p, *q;
5785 struct ppc_link_hash_table *htab;
5786 char save;
5787
5788 /* We aren't supposed to use alloca in BFD because on
5789 systems which do not have alloca the version in libiberty
5790 calls xmalloc, which might cause the program to crash
5791 when it runs out of memory. This function doesn't have a
5792 return status, so there's no way to gracefully return an
5793 error. So cheat. We know that string[-1] can be safely
5794 accessed; It's either a string in an ELF string table,
5795 or allocated in an objalloc structure. */
5796
5797 p = eh->elf.root.root.string - 1;
5798 save = *p;
5799 *(char *) p = '.';
5800 htab = ppc_hash_table (info);
5801 fh = (struct ppc_link_hash_entry *)
5802 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5803 *(char *) p = save;
5804
5805 /* Unfortunately, if it so happens that the string we were
5806 looking for was allocated immediately before this string,
5807 then we overwrote the string terminator. That's the only
5808 reason the lookup should fail. */
5809 if (fh == NULL)
5810 {
5811 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
5812 while (q >= eh->elf.root.root.string && *q == *p)
5813 --q, --p;
5814 if (q < eh->elf.root.root.string && *p == '.')
5815 fh = (struct ppc_link_hash_entry *)
5816 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5817 }
5818 if (fh != NULL)
5819 {
5820 eh->oh = fh;
5821 fh->oh = eh;
5822 }
5823 }
5824 if (fh != NULL)
5825 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5826 }
5827 }
5828
5829 static bfd_boolean
5830 get_sym_h (struct elf_link_hash_entry **hp,
5831 Elf_Internal_Sym **symp,
5832 asection **symsecp,
5833 char **tls_maskp,
5834 Elf_Internal_Sym **locsymsp,
5835 unsigned long r_symndx,
5836 bfd *ibfd)
5837 {
5838 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5839
5840 if (r_symndx >= symtab_hdr->sh_info)
5841 {
5842 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
5843 struct elf_link_hash_entry *h;
5844
5845 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5846 while (h->root.type == bfd_link_hash_indirect
5847 || h->root.type == bfd_link_hash_warning)
5848 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5849
5850 if (hp != NULL)
5851 *hp = h;
5852
5853 if (symp != NULL)
5854 *symp = NULL;
5855
5856 if (symsecp != NULL)
5857 {
5858 asection *symsec = NULL;
5859 if (h->root.type == bfd_link_hash_defined
5860 || h->root.type == bfd_link_hash_defweak)
5861 symsec = h->root.u.def.section;
5862 *symsecp = symsec;
5863 }
5864
5865 if (tls_maskp != NULL)
5866 {
5867 struct ppc_link_hash_entry *eh;
5868
5869 eh = (struct ppc_link_hash_entry *) h;
5870 *tls_maskp = &eh->tls_mask;
5871 }
5872 }
5873 else
5874 {
5875 Elf_Internal_Sym *sym;
5876 Elf_Internal_Sym *locsyms = *locsymsp;
5877
5878 if (locsyms == NULL)
5879 {
5880 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
5881 if (locsyms == NULL)
5882 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
5883 symtab_hdr->sh_info,
5884 0, NULL, NULL, NULL);
5885 if (locsyms == NULL)
5886 return FALSE;
5887 *locsymsp = locsyms;
5888 }
5889 sym = locsyms + r_symndx;
5890
5891 if (hp != NULL)
5892 *hp = NULL;
5893
5894 if (symp != NULL)
5895 *symp = sym;
5896
5897 if (symsecp != NULL)
5898 {
5899 asection *symsec = NULL;
5900 if ((sym->st_shndx != SHN_UNDEF
5901 && sym->st_shndx < SHN_LORESERVE)
5902 || sym->st_shndx > SHN_HIRESERVE)
5903 symsec = bfd_section_from_elf_index (ibfd, sym->st_shndx);
5904 *symsecp = symsec;
5905 }
5906
5907 if (tls_maskp != NULL)
5908 {
5909 struct got_entry **lgot_ents;
5910 char *tls_mask;
5911
5912 tls_mask = NULL;
5913 lgot_ents = elf_local_got_ents (ibfd);
5914 if (lgot_ents != NULL)
5915 {
5916 char *lgot_masks = (char *) (lgot_ents + symtab_hdr->sh_info);
5917 tls_mask = &lgot_masks[r_symndx];
5918 }
5919 *tls_maskp = tls_mask;
5920 }
5921 }
5922 return TRUE;
5923 }
5924
5925 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
5926 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
5927 type suitable for optimization, and 1 otherwise. */
5928
5929 static int
5930 get_tls_mask (char **tls_maskp, unsigned long *toc_symndx,
5931 Elf_Internal_Sym **locsymsp,
5932 const Elf_Internal_Rela *rel, bfd *ibfd)
5933 {
5934 unsigned long r_symndx;
5935 int next_r;
5936 struct elf_link_hash_entry *h;
5937 Elf_Internal_Sym *sym;
5938 asection *sec;
5939 bfd_vma off;
5940
5941 r_symndx = ELF64_R_SYM (rel->r_info);
5942 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5943 return 0;
5944
5945 if ((*tls_maskp != NULL && **tls_maskp != 0)
5946 || sec == NULL
5947 || ppc64_elf_section_data (sec)->t_symndx == NULL)
5948 return 1;
5949
5950 /* Look inside a TOC section too. */
5951 if (h != NULL)
5952 {
5953 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
5954 off = h->root.u.def.value;
5955 }
5956 else
5957 off = sym->st_value;
5958 off += rel->r_addend;
5959 BFD_ASSERT (off % 8 == 0);
5960 r_symndx = ppc64_elf_section_data (sec)->t_symndx[off / 8];
5961 next_r = ppc64_elf_section_data (sec)->t_symndx[off / 8 + 1];
5962 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5963 return 0;
5964 if (toc_symndx != NULL)
5965 *toc_symndx = r_symndx;
5966 if ((h == NULL
5967 || ((h->root.type == bfd_link_hash_defined
5968 || h->root.type == bfd_link_hash_defweak)
5969 && !h->def_dynamic))
5970 && (next_r == -1 || next_r == -2))
5971 return 1 - next_r;
5972 return 1;
5973 }
5974
5975 /* Adjust all global syms defined in opd sections. In gcc generated
5976 code for the old ABI, these will already have been done. */
5977
5978 static bfd_boolean
5979 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
5980 {
5981 struct ppc_link_hash_entry *eh;
5982 asection *sym_sec;
5983 long *opd_adjust;
5984
5985 if (h->root.type == bfd_link_hash_indirect)
5986 return TRUE;
5987
5988 if (h->root.type == bfd_link_hash_warning)
5989 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5990
5991 if (h->root.type != bfd_link_hash_defined
5992 && h->root.type != bfd_link_hash_defweak)
5993 return TRUE;
5994
5995 eh = (struct ppc_link_hash_entry *) h;
5996 if (eh->adjust_done)
5997 return TRUE;
5998
5999 sym_sec = eh->elf.root.u.def.section;
6000 opd_adjust = get_opd_info (sym_sec);
6001 if (opd_adjust != NULL)
6002 {
6003 long adjust = opd_adjust[eh->elf.root.u.def.value / 8];
6004 if (adjust == -1)
6005 {
6006 /* This entry has been deleted. */
6007 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->u.deleted_section;
6008 if (dsec == NULL)
6009 {
6010 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6011 if (elf_discarded_section (dsec))
6012 {
6013 ppc64_elf_tdata (sym_sec->owner)->u.deleted_section = dsec;
6014 break;
6015 }
6016 }
6017 eh->elf.root.u.def.value = 0;
6018 eh->elf.root.u.def.section = dsec;
6019 }
6020 else
6021 eh->elf.root.u.def.value += adjust;
6022 eh->adjust_done = 1;
6023 }
6024 return TRUE;
6025 }
6026
6027 /* Handles decrementing dynamic reloc counts for the reloc specified by
6028 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM_SEC
6029 have already been determined. */
6030
6031 static bfd_boolean
6032 dec_dynrel_count (bfd_vma r_info,
6033 asection *sec,
6034 struct bfd_link_info *info,
6035 Elf_Internal_Sym **local_syms,
6036 struct elf_link_hash_entry *h,
6037 asection *sym_sec)
6038 {
6039 enum elf_ppc64_reloc_type r_type;
6040 struct ppc_dyn_relocs *p;
6041 struct ppc_dyn_relocs **pp;
6042
6043 /* Can this reloc be dynamic? This switch, and later tests here
6044 should be kept in sync with the code in check_relocs. */
6045 r_type = ELF64_R_TYPE (r_info);
6046 switch (r_type)
6047 {
6048 default:
6049 return TRUE;
6050
6051 case R_PPC64_TPREL16:
6052 case R_PPC64_TPREL16_LO:
6053 case R_PPC64_TPREL16_HI:
6054 case R_PPC64_TPREL16_HA:
6055 case R_PPC64_TPREL16_DS:
6056 case R_PPC64_TPREL16_LO_DS:
6057 case R_PPC64_TPREL16_HIGHER:
6058 case R_PPC64_TPREL16_HIGHERA:
6059 case R_PPC64_TPREL16_HIGHEST:
6060 case R_PPC64_TPREL16_HIGHESTA:
6061 if (!info->shared)
6062 return TRUE;
6063
6064 case R_PPC64_TPREL64:
6065 case R_PPC64_DTPMOD64:
6066 case R_PPC64_DTPREL64:
6067 case R_PPC64_ADDR64:
6068 case R_PPC64_REL30:
6069 case R_PPC64_REL32:
6070 case R_PPC64_REL64:
6071 case R_PPC64_ADDR14:
6072 case R_PPC64_ADDR14_BRNTAKEN:
6073 case R_PPC64_ADDR14_BRTAKEN:
6074 case R_PPC64_ADDR16:
6075 case R_PPC64_ADDR16_DS:
6076 case R_PPC64_ADDR16_HA:
6077 case R_PPC64_ADDR16_HI:
6078 case R_PPC64_ADDR16_HIGHER:
6079 case R_PPC64_ADDR16_HIGHERA:
6080 case R_PPC64_ADDR16_HIGHEST:
6081 case R_PPC64_ADDR16_HIGHESTA:
6082 case R_PPC64_ADDR16_LO:
6083 case R_PPC64_ADDR16_LO_DS:
6084 case R_PPC64_ADDR24:
6085 case R_PPC64_ADDR32:
6086 case R_PPC64_UADDR16:
6087 case R_PPC64_UADDR32:
6088 case R_PPC64_UADDR64:
6089 case R_PPC64_TOC:
6090 break;
6091 }
6092
6093 if (local_syms != NULL)
6094 {
6095 unsigned long r_symndx;
6096 Elf_Internal_Sym *sym;
6097 bfd *ibfd = sec->owner;
6098
6099 r_symndx = ELF64_R_SYM (r_info);
6100 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
6101 return FALSE;
6102 }
6103
6104 if ((info->shared
6105 && (MUST_BE_DYN_RELOC (r_type)
6106 || (h != NULL
6107 && (!info->symbolic
6108 || h->root.type == bfd_link_hash_defweak
6109 || !h->def_regular))))
6110 || (ELIMINATE_COPY_RELOCS
6111 && !info->shared
6112 && h != NULL
6113 && (h->root.type == bfd_link_hash_defweak
6114 || !h->def_regular)))
6115 ;
6116 else
6117 return TRUE;
6118
6119 if (h != NULL)
6120 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6121 else if (sym_sec != NULL)
6122 pp = (struct ppc_dyn_relocs **) &elf_section_data (sym_sec)->local_dynrel;
6123 else
6124 pp = (struct ppc_dyn_relocs **) &elf_section_data (sec)->local_dynrel;
6125
6126 while ((p = *pp) != NULL)
6127 {
6128 if (p->sec == sec)
6129 {
6130 if (!MUST_BE_DYN_RELOC (r_type))
6131 p->pc_count -= 1;
6132 p->count -= 1;
6133 if (p->count == 0)
6134 *pp = p->next;
6135 return TRUE;
6136 }
6137 pp = &p->next;
6138 }
6139
6140 (*_bfd_error_handler) (_("dynreloc miscount for %B, section %A"),
6141 sec->owner, sec);
6142 bfd_set_error (bfd_error_bad_value);
6143 return FALSE;
6144 }
6145
6146 /* Remove unused Official Procedure Descriptor entries. Currently we
6147 only remove those associated with functions in discarded link-once
6148 sections, or weakly defined functions that have been overridden. It
6149 would be possible to remove many more entries for statically linked
6150 applications. */
6151
6152 bfd_boolean
6153 ppc64_elf_edit_opd (bfd *obfd, struct bfd_link_info *info,
6154 bfd_boolean non_overlapping)
6155 {
6156 bfd *ibfd;
6157 bfd_boolean some_edited = FALSE;
6158 asection *need_pad = NULL;
6159
6160 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6161 {
6162 asection *sec;
6163 Elf_Internal_Rela *relstart, *rel, *relend;
6164 Elf_Internal_Shdr *symtab_hdr;
6165 Elf_Internal_Sym *local_syms;
6166 struct elf_link_hash_entry **sym_hashes;
6167 bfd_vma offset;
6168 bfd_size_type amt;
6169 long *opd_adjust;
6170 bfd_boolean need_edit, add_aux_fields;
6171 bfd_size_type cnt_16b = 0;
6172
6173 sec = bfd_get_section_by_name (ibfd, ".opd");
6174 if (sec == NULL)
6175 continue;
6176
6177 amt = sec->size * sizeof (long) / 8;
6178 opd_adjust = get_opd_info (sec);
6179 if (opd_adjust == NULL)
6180 {
6181 /* check_relocs hasn't been called. Must be a ld -r link
6182 or --just-symbols object. */
6183 opd_adjust = bfd_zalloc (obfd, amt);
6184 ppc64_elf_section_data (sec)->opd.adjust = opd_adjust;
6185 }
6186 memset (opd_adjust, 0, amt);
6187
6188 if (sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
6189 continue;
6190
6191 if (sec->output_section == bfd_abs_section_ptr)
6192 continue;
6193
6194 /* Look through the section relocs. */
6195 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
6196 continue;
6197
6198 local_syms = NULL;
6199 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6200 sym_hashes = elf_sym_hashes (ibfd);
6201
6202 /* Read the relocations. */
6203 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6204 info->keep_memory);
6205 if (relstart == NULL)
6206 return FALSE;
6207
6208 /* First run through the relocs to check they are sane, and to
6209 determine whether we need to edit this opd section. */
6210 need_edit = FALSE;
6211 need_pad = sec;
6212 offset = 0;
6213 relend = relstart + sec->reloc_count;
6214 for (rel = relstart; rel < relend; )
6215 {
6216 enum elf_ppc64_reloc_type r_type;
6217 unsigned long r_symndx;
6218 asection *sym_sec;
6219 struct elf_link_hash_entry *h;
6220 Elf_Internal_Sym *sym;
6221
6222 /* .opd contains a regular array of 16 or 24 byte entries. We're
6223 only interested in the reloc pointing to a function entry
6224 point. */
6225 if (rel->r_offset != offset
6226 || rel + 1 >= relend
6227 || (rel + 1)->r_offset != offset + 8)
6228 {
6229 /* If someone messes with .opd alignment then after a
6230 "ld -r" we might have padding in the middle of .opd.
6231 Also, there's nothing to prevent someone putting
6232 something silly in .opd with the assembler. No .opd
6233 optimization for them! */
6234 broken_opd:
6235 (*_bfd_error_handler)
6236 (_("%B: .opd is not a regular array of opd entries"), ibfd);
6237 need_edit = FALSE;
6238 break;
6239 }
6240
6241 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
6242 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
6243 {
6244 (*_bfd_error_handler)
6245 (_("%B: unexpected reloc type %u in .opd section"),
6246 ibfd, r_type);
6247 need_edit = FALSE;
6248 break;
6249 }
6250
6251 r_symndx = ELF64_R_SYM (rel->r_info);
6252 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6253 r_symndx, ibfd))
6254 goto error_ret;
6255
6256 if (sym_sec == NULL || sym_sec->owner == NULL)
6257 {
6258 const char *sym_name;
6259 if (h != NULL)
6260 sym_name = h->root.root.string;
6261 else
6262 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
6263 sym_sec);
6264
6265 (*_bfd_error_handler)
6266 (_("%B: undefined sym `%s' in .opd section"),
6267 ibfd, sym_name);
6268 need_edit = FALSE;
6269 break;
6270 }
6271
6272 /* opd entries are always for functions defined in the
6273 current input bfd. If the symbol isn't defined in the
6274 input bfd, then we won't be using the function in this
6275 bfd; It must be defined in a linkonce section in another
6276 bfd, or is weak. It's also possible that we are
6277 discarding the function due to a linker script /DISCARD/,
6278 which we test for via the output_section. */
6279 if (sym_sec->owner != ibfd
6280 || sym_sec->output_section == bfd_abs_section_ptr)
6281 need_edit = TRUE;
6282
6283 rel += 2;
6284 if (rel == relend
6285 || (rel + 1 == relend && rel->r_offset == offset + 16))
6286 {
6287 if (sec->size == offset + 24)
6288 {
6289 need_pad = NULL;
6290 break;
6291 }
6292 if (rel == relend && sec->size == offset + 16)
6293 {
6294 cnt_16b++;
6295 break;
6296 }
6297 goto broken_opd;
6298 }
6299
6300 if (rel->r_offset == offset + 24)
6301 offset += 24;
6302 else if (rel->r_offset != offset + 16)
6303 goto broken_opd;
6304 else if (rel + 1 < relend
6305 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
6306 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
6307 {
6308 offset += 16;
6309 cnt_16b++;
6310 }
6311 else if (rel + 2 < relend
6312 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
6313 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
6314 {
6315 offset += 24;
6316 rel += 1;
6317 }
6318 else
6319 goto broken_opd;
6320 }
6321
6322 add_aux_fields = non_overlapping && cnt_16b > 0;
6323
6324 if (need_edit || add_aux_fields)
6325 {
6326 Elf_Internal_Rela *write_rel;
6327 bfd_byte *rptr, *wptr;
6328 bfd_byte *new_contents = NULL;
6329 bfd_boolean skip;
6330 long opd_ent_size;
6331
6332 /* This seems a waste of time as input .opd sections are all
6333 zeros as generated by gcc, but I suppose there's no reason
6334 this will always be so. We might start putting something in
6335 the third word of .opd entries. */
6336 if ((sec->flags & SEC_IN_MEMORY) == 0)
6337 {
6338 bfd_byte *loc;
6339 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
6340 {
6341 if (loc != NULL)
6342 free (loc);
6343 error_ret:
6344 if (local_syms != NULL
6345 && symtab_hdr->contents != (unsigned char *) local_syms)
6346 free (local_syms);
6347 if (elf_section_data (sec)->relocs != relstart)
6348 free (relstart);
6349 return FALSE;
6350 }
6351 sec->contents = loc;
6352 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6353 }
6354
6355 elf_section_data (sec)->relocs = relstart;
6356
6357 wptr = sec->contents;
6358 rptr = sec->contents;
6359 new_contents = sec->contents;
6360
6361 if (add_aux_fields)
6362 {
6363 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
6364 if (new_contents == NULL)
6365 return FALSE;
6366 need_pad = FALSE;
6367 wptr = new_contents;
6368 }
6369
6370 write_rel = relstart;
6371 skip = FALSE;
6372 offset = 0;
6373 opd_ent_size = 0;
6374 for (rel = relstart; rel < relend; rel++)
6375 {
6376 unsigned long r_symndx;
6377 asection *sym_sec;
6378 struct elf_link_hash_entry *h;
6379 Elf_Internal_Sym *sym;
6380
6381 r_symndx = ELF64_R_SYM (rel->r_info);
6382 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6383 r_symndx, ibfd))
6384 goto error_ret;
6385
6386 if (rel->r_offset == offset)
6387 {
6388 struct ppc_link_hash_entry *fdh = NULL;
6389
6390 /* See if the .opd entry is full 24 byte or
6391 16 byte (with fd_aux entry overlapped with next
6392 fd_func). */
6393 opd_ent_size = 24;
6394 if ((rel + 2 == relend && sec->size == offset + 16)
6395 || (rel + 3 < relend
6396 && rel[2].r_offset == offset + 16
6397 && rel[3].r_offset == offset + 24
6398 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
6399 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
6400 opd_ent_size = 16;
6401
6402 if (h != NULL
6403 && h->root.root.string[0] == '.')
6404 {
6405 fdh = get_fdh ((struct ppc_link_hash_entry *) h,
6406 ppc_hash_table (info));
6407 if (fdh != NULL
6408 && fdh->elf.root.type != bfd_link_hash_defined
6409 && fdh->elf.root.type != bfd_link_hash_defweak)
6410 fdh = NULL;
6411 }
6412
6413 skip = (sym_sec->owner != ibfd
6414 || sym_sec->output_section == bfd_abs_section_ptr);
6415 if (skip)
6416 {
6417 if (fdh != NULL && sym_sec->owner == ibfd)
6418 {
6419 /* Arrange for the function descriptor sym
6420 to be dropped. */
6421 fdh->elf.root.u.def.value = 0;
6422 fdh->elf.root.u.def.section = sym_sec;
6423 }
6424 opd_adjust[rel->r_offset / 8] = -1;
6425 }
6426 else
6427 {
6428 /* We'll be keeping this opd entry. */
6429
6430 if (fdh != NULL)
6431 {
6432 /* Redefine the function descriptor symbol to
6433 this location in the opd section. It is
6434 necessary to update the value here rather
6435 than using an array of adjustments as we do
6436 for local symbols, because various places
6437 in the generic ELF code use the value
6438 stored in u.def.value. */
6439 fdh->elf.root.u.def.value = wptr - new_contents;
6440 fdh->adjust_done = 1;
6441 }
6442
6443 /* Local syms are a bit tricky. We could
6444 tweak them as they can be cached, but
6445 we'd need to look through the local syms
6446 for the function descriptor sym which we
6447 don't have at the moment. So keep an
6448 array of adjustments. */
6449 opd_adjust[rel->r_offset / 8]
6450 = (wptr - new_contents) - (rptr - sec->contents);
6451
6452 if (wptr != rptr)
6453 memcpy (wptr, rptr, opd_ent_size);
6454 wptr += opd_ent_size;
6455 if (add_aux_fields && opd_ent_size == 16)
6456 {
6457 memset (wptr, '\0', 8);
6458 wptr += 8;
6459 }
6460 }
6461 rptr += opd_ent_size;
6462 offset += opd_ent_size;
6463 }
6464
6465 if (skip)
6466 {
6467 if (!dec_dynrel_count (rel->r_info, sec, info,
6468 NULL, h, sym_sec))
6469 goto error_ret;
6470 }
6471 else
6472 {
6473 /* We need to adjust any reloc offsets to point to the
6474 new opd entries. While we're at it, we may as well
6475 remove redundant relocs. */
6476 rel->r_offset += opd_adjust[(offset - opd_ent_size) / 8];
6477 if (write_rel != rel)
6478 memcpy (write_rel, rel, sizeof (*rel));
6479 ++write_rel;
6480 }
6481 }
6482
6483 sec->size = wptr - new_contents;
6484 sec->reloc_count = write_rel - relstart;
6485 if (add_aux_fields)
6486 {
6487 free (sec->contents);
6488 sec->contents = new_contents;
6489 }
6490
6491 /* Fudge the size too, as this is used later in
6492 elf_bfd_final_link if we are emitting relocs. */
6493 elf_section_data (sec)->rel_hdr.sh_size
6494 = sec->reloc_count * elf_section_data (sec)->rel_hdr.sh_entsize;
6495 BFD_ASSERT (elf_section_data (sec)->rel_hdr2 == NULL);
6496 some_edited = TRUE;
6497 }
6498 else if (elf_section_data (sec)->relocs != relstart)
6499 free (relstart);
6500
6501 if (local_syms != NULL
6502 && symtab_hdr->contents != (unsigned char *) local_syms)
6503 {
6504 if (!info->keep_memory)
6505 free (local_syms);
6506 else
6507 symtab_hdr->contents = (unsigned char *) local_syms;
6508 }
6509 }
6510
6511 if (some_edited)
6512 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
6513
6514 /* If we are doing a final link and the last .opd entry is just 16 byte
6515 long, add a 8 byte padding after it. */
6516 if (need_pad != NULL && !info->relocatable)
6517 {
6518 bfd_byte *p;
6519
6520 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
6521 {
6522 BFD_ASSERT (need_pad->size > 0);
6523
6524 p = bfd_malloc (need_pad->size + 8);
6525 if (p == NULL)
6526 return FALSE;
6527
6528 if (! bfd_get_section_contents (need_pad->owner, need_pad,
6529 p, 0, need_pad->size))
6530 return FALSE;
6531
6532 need_pad->contents = p;
6533 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6534 }
6535 else
6536 {
6537 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
6538 if (p == NULL)
6539 return FALSE;
6540
6541 need_pad->contents = p;
6542 }
6543
6544 memset (need_pad->contents + need_pad->size, 0, 8);
6545 need_pad->size += 8;
6546 }
6547
6548 return TRUE;
6549 }
6550
6551 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
6552
6553 asection *
6554 ppc64_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
6555 {
6556 struct ppc_link_hash_table *htab;
6557
6558 htab = ppc_hash_table (info);
6559 if (htab->tls_get_addr != NULL)
6560 {
6561 struct ppc_link_hash_entry *h = htab->tls_get_addr;
6562
6563 while (h->elf.root.type == bfd_link_hash_indirect
6564 || h->elf.root.type == bfd_link_hash_warning)
6565 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6566
6567 htab->tls_get_addr = h;
6568
6569 if (htab->tls_get_addr_fd == NULL
6570 && h->oh != NULL
6571 && h->oh->is_func_descriptor
6572 && (h->oh->elf.root.type == bfd_link_hash_defined
6573 || h->oh->elf.root.type == bfd_link_hash_defweak))
6574 htab->tls_get_addr_fd = h->oh;
6575 }
6576
6577 if (htab->tls_get_addr_fd != NULL)
6578 {
6579 struct ppc_link_hash_entry *h = htab->tls_get_addr_fd;
6580
6581 while (h->elf.root.type == bfd_link_hash_indirect
6582 || h->elf.root.type == bfd_link_hash_warning)
6583 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6584
6585 htab->tls_get_addr_fd = h;
6586 }
6587
6588 return _bfd_elf_tls_setup (obfd, info);
6589 }
6590
6591 /* Run through all the TLS relocs looking for optimization
6592 opportunities. The linker has been hacked (see ppc64elf.em) to do
6593 a preliminary section layout so that we know the TLS segment
6594 offsets. We can't optimize earlier because some optimizations need
6595 to know the tp offset, and we need to optimize before allocating
6596 dynamic relocations. */
6597
6598 bfd_boolean
6599 ppc64_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6600 {
6601 bfd *ibfd;
6602 asection *sec;
6603 struct ppc_link_hash_table *htab;
6604
6605 if (info->relocatable || info->shared)
6606 return TRUE;
6607
6608 htab = ppc_hash_table (info);
6609 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6610 {
6611 Elf_Internal_Sym *locsyms = NULL;
6612
6613 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6614 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
6615 {
6616 Elf_Internal_Rela *relstart, *rel, *relend;
6617 int expecting_tls_get_addr;
6618
6619 /* Read the relocations. */
6620 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6621 info->keep_memory);
6622 if (relstart == NULL)
6623 return FALSE;
6624
6625 expecting_tls_get_addr = 0;
6626 relend = relstart + sec->reloc_count;
6627 for (rel = relstart; rel < relend; rel++)
6628 {
6629 enum elf_ppc64_reloc_type r_type;
6630 unsigned long r_symndx;
6631 struct elf_link_hash_entry *h;
6632 Elf_Internal_Sym *sym;
6633 asection *sym_sec;
6634 char *tls_mask;
6635 char tls_set, tls_clear, tls_type = 0;
6636 bfd_vma value;
6637 bfd_boolean ok_tprel, is_local;
6638
6639 r_symndx = ELF64_R_SYM (rel->r_info);
6640 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
6641 r_symndx, ibfd))
6642 {
6643 err_free_rel:
6644 if (elf_section_data (sec)->relocs != relstart)
6645 free (relstart);
6646 if (locsyms != NULL
6647 && (elf_tdata (ibfd)->symtab_hdr.contents
6648 != (unsigned char *) locsyms))
6649 free (locsyms);
6650 return FALSE;
6651 }
6652
6653 if (h != NULL)
6654 {
6655 if (h->root.type != bfd_link_hash_defined
6656 && h->root.type != bfd_link_hash_defweak)
6657 continue;
6658 value = h->root.u.def.value;
6659 }
6660 else
6661 /* Symbols referenced by TLS relocs must be of type
6662 STT_TLS. So no need for .opd local sym adjust. */
6663 value = sym->st_value;
6664
6665 ok_tprel = FALSE;
6666 is_local = FALSE;
6667 if (h == NULL
6668 || !h->def_dynamic)
6669 {
6670 is_local = TRUE;
6671 value += sym_sec->output_offset;
6672 value += sym_sec->output_section->vma;
6673 value -= htab->elf.tls_sec->vma;
6674 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
6675 < (bfd_vma) 1 << 32);
6676 }
6677
6678 r_type = ELF64_R_TYPE (rel->r_info);
6679 switch (r_type)
6680 {
6681 case R_PPC64_GOT_TLSLD16:
6682 case R_PPC64_GOT_TLSLD16_LO:
6683 case R_PPC64_GOT_TLSLD16_HI:
6684 case R_PPC64_GOT_TLSLD16_HA:
6685 /* These relocs should never be against a symbol
6686 defined in a shared lib. Leave them alone if
6687 that turns out to be the case. */
6688 ppc64_tlsld_got (ibfd)->refcount -= 1;
6689 if (!is_local)
6690 continue;
6691
6692 /* LD -> LE */
6693 tls_set = 0;
6694 tls_clear = TLS_LD;
6695 tls_type = TLS_TLS | TLS_LD;
6696 expecting_tls_get_addr = 1;
6697 break;
6698
6699 case R_PPC64_GOT_TLSGD16:
6700 case R_PPC64_GOT_TLSGD16_LO:
6701 case R_PPC64_GOT_TLSGD16_HI:
6702 case R_PPC64_GOT_TLSGD16_HA:
6703 if (ok_tprel)
6704 /* GD -> LE */
6705 tls_set = 0;
6706 else
6707 /* GD -> IE */
6708 tls_set = TLS_TLS | TLS_TPRELGD;
6709 tls_clear = TLS_GD;
6710 tls_type = TLS_TLS | TLS_GD;
6711 expecting_tls_get_addr = 1;
6712 break;
6713
6714 case R_PPC64_GOT_TPREL16_DS:
6715 case R_PPC64_GOT_TPREL16_LO_DS:
6716 case R_PPC64_GOT_TPREL16_HI:
6717 case R_PPC64_GOT_TPREL16_HA:
6718 expecting_tls_get_addr = 0;
6719 if (ok_tprel)
6720 {
6721 /* IE -> LE */
6722 tls_set = 0;
6723 tls_clear = TLS_TPREL;
6724 tls_type = TLS_TLS | TLS_TPREL;
6725 break;
6726 }
6727 else
6728 continue;
6729
6730 case R_PPC64_REL14:
6731 case R_PPC64_REL14_BRTAKEN:
6732 case R_PPC64_REL14_BRNTAKEN:
6733 case R_PPC64_REL24:
6734 if (h != NULL
6735 && (h == &htab->tls_get_addr->elf
6736 || h == &htab->tls_get_addr_fd->elf))
6737 {
6738 if (!expecting_tls_get_addr
6739 && rel != relstart
6740 && ((ELF64_R_TYPE (rel[-1].r_info)
6741 == R_PPC64_TOC16)
6742 || (ELF64_R_TYPE (rel[-1].r_info)
6743 == R_PPC64_TOC16_LO)))
6744 {
6745 /* Check for toc tls entries. */
6746 char *toc_tls;
6747 int retval;
6748
6749 retval = get_tls_mask (&toc_tls, NULL, &locsyms,
6750 rel - 1, ibfd);
6751 if (retval == 0)
6752 goto err_free_rel;
6753 if (toc_tls != NULL)
6754 expecting_tls_get_addr = retval > 1;
6755 }
6756
6757 if (expecting_tls_get_addr)
6758 {
6759 struct plt_entry *ent;
6760 for (ent = h->plt.plist; ent; ent = ent->next)
6761 if (ent->addend == 0)
6762 {
6763 if (ent->plt.refcount > 0)
6764 ent->plt.refcount -= 1;
6765 break;
6766 }
6767 }
6768 }
6769 expecting_tls_get_addr = 0;
6770 continue;
6771
6772 case R_PPC64_TPREL64:
6773 expecting_tls_get_addr = 0;
6774 if (ok_tprel)
6775 {
6776 /* IE -> LE */
6777 tls_set = TLS_EXPLICIT;
6778 tls_clear = TLS_TPREL;
6779 break;
6780 }
6781 else
6782 continue;
6783
6784 case R_PPC64_DTPMOD64:
6785 expecting_tls_get_addr = 0;
6786 if (rel + 1 < relend
6787 && (rel[1].r_info
6788 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
6789 && rel[1].r_offset == rel->r_offset + 8)
6790 {
6791 if (ok_tprel)
6792 /* GD -> LE */
6793 tls_set = TLS_EXPLICIT | TLS_GD;
6794 else
6795 /* GD -> IE */
6796 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
6797 tls_clear = TLS_GD;
6798 }
6799 else
6800 {
6801 if (!is_local)
6802 continue;
6803
6804 /* LD -> LE */
6805 tls_set = TLS_EXPLICIT;
6806 tls_clear = TLS_LD;
6807 }
6808 break;
6809
6810 default:
6811 expecting_tls_get_addr = 0;
6812 continue;
6813 }
6814
6815 if ((tls_set & TLS_EXPLICIT) == 0)
6816 {
6817 struct got_entry *ent;
6818
6819 /* Adjust got entry for this reloc. */
6820 if (h != NULL)
6821 ent = h->got.glist;
6822 else
6823 ent = elf_local_got_ents (ibfd)[r_symndx];
6824
6825 for (; ent != NULL; ent = ent->next)
6826 if (ent->addend == rel->r_addend
6827 && ent->owner == ibfd
6828 && ent->tls_type == tls_type)
6829 break;
6830 if (ent == NULL)
6831 abort ();
6832
6833 if (tls_set == 0)
6834 {
6835 /* We managed to get rid of a got entry. */
6836 if (ent->got.refcount > 0)
6837 ent->got.refcount -= 1;
6838 }
6839 }
6840 else
6841 {
6842 /* If we got rid of a DTPMOD/DTPREL reloc pair then
6843 we'll lose one or two dyn relocs. */
6844 if (!dec_dynrel_count (rel->r_info, sec, info,
6845 NULL, h, sym_sec))
6846 return FALSE;
6847
6848 if (tls_set == (TLS_EXPLICIT | TLS_GD))
6849 {
6850 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
6851 NULL, h, sym_sec))
6852 return FALSE;
6853 }
6854 }
6855
6856 *tls_mask |= tls_set;
6857 *tls_mask &= ~tls_clear;
6858 }
6859
6860 if (elf_section_data (sec)->relocs != relstart)
6861 free (relstart);
6862 }
6863
6864 if (locsyms != NULL
6865 && (elf_tdata (ibfd)->symtab_hdr.contents
6866 != (unsigned char *) locsyms))
6867 {
6868 if (!info->keep_memory)
6869 free (locsyms);
6870 else
6871 elf_tdata (ibfd)->symtab_hdr.contents = (unsigned char *) locsyms;
6872 }
6873 }
6874 return TRUE;
6875 }
6876
6877 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
6878 the values of any global symbols in a toc section that has been
6879 edited. Globals in toc sections should be a rarity, so this function
6880 sets a flag if any are found in toc sections other than the one just
6881 edited, so that futher hash table traversals can be avoided. */
6882
6883 struct adjust_toc_info
6884 {
6885 asection *toc;
6886 unsigned long *skip;
6887 bfd_boolean global_toc_syms;
6888 };
6889
6890 static bfd_boolean
6891 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
6892 {
6893 struct ppc_link_hash_entry *eh;
6894 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
6895
6896 if (h->root.type == bfd_link_hash_indirect)
6897 return TRUE;
6898
6899 if (h->root.type == bfd_link_hash_warning)
6900 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6901
6902 if (h->root.type != bfd_link_hash_defined
6903 && h->root.type != bfd_link_hash_defweak)
6904 return TRUE;
6905
6906 eh = (struct ppc_link_hash_entry *) h;
6907 if (eh->adjust_done)
6908 return TRUE;
6909
6910 if (eh->elf.root.u.def.section == toc_inf->toc)
6911 {
6912 unsigned long skip = toc_inf->skip[eh->elf.root.u.def.value >> 3];
6913 if (skip != (unsigned long) -1)
6914 eh->elf.root.u.def.value -= skip;
6915 else
6916 {
6917 (*_bfd_error_handler)
6918 (_("%s defined in removed toc entry"), eh->elf.root.root.string);
6919 eh->elf.root.u.def.section = &bfd_abs_section;
6920 eh->elf.root.u.def.value = 0;
6921 }
6922 eh->adjust_done = 1;
6923 }
6924 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
6925 toc_inf->global_toc_syms = TRUE;
6926
6927 return TRUE;
6928 }
6929
6930 /* Examine all relocs referencing .toc sections in order to remove
6931 unused .toc entries. */
6932
6933 bfd_boolean
6934 ppc64_elf_edit_toc (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6935 {
6936 bfd *ibfd;
6937 struct adjust_toc_info toc_inf;
6938
6939 toc_inf.global_toc_syms = TRUE;
6940 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6941 {
6942 asection *toc, *sec;
6943 Elf_Internal_Shdr *symtab_hdr;
6944 Elf_Internal_Sym *local_syms;
6945 struct elf_link_hash_entry **sym_hashes;
6946 Elf_Internal_Rela *relstart, *rel;
6947 unsigned long *skip, *drop;
6948 unsigned char *used;
6949 unsigned char *keep, last, some_unused;
6950
6951 toc = bfd_get_section_by_name (ibfd, ".toc");
6952 if (toc == NULL
6953 || toc->size == 0
6954 || toc->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6955 || elf_discarded_section (toc))
6956 continue;
6957
6958 local_syms = NULL;
6959 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6960 sym_hashes = elf_sym_hashes (ibfd);
6961
6962 /* Look at sections dropped from the final link. */
6963 skip = NULL;
6964 relstart = NULL;
6965 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6966 {
6967 if (sec->reloc_count == 0
6968 || !elf_discarded_section (sec)
6969 || get_opd_info (sec)
6970 || (sec->flags & SEC_ALLOC) == 0
6971 || (sec->flags & SEC_DEBUGGING) != 0)
6972 continue;
6973
6974 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
6975 if (relstart == NULL)
6976 goto error_ret;
6977
6978 /* Run through the relocs to see which toc entries might be
6979 unused. */
6980 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
6981 {
6982 enum elf_ppc64_reloc_type r_type;
6983 unsigned long r_symndx;
6984 asection *sym_sec;
6985 struct elf_link_hash_entry *h;
6986 Elf_Internal_Sym *sym;
6987 bfd_vma val;
6988
6989 r_type = ELF64_R_TYPE (rel->r_info);
6990 switch (r_type)
6991 {
6992 default:
6993 continue;
6994
6995 case R_PPC64_TOC16:
6996 case R_PPC64_TOC16_LO:
6997 case R_PPC64_TOC16_HI:
6998 case R_PPC64_TOC16_HA:
6999 case R_PPC64_TOC16_DS:
7000 case R_PPC64_TOC16_LO_DS:
7001 break;
7002 }
7003
7004 r_symndx = ELF64_R_SYM (rel->r_info);
7005 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7006 r_symndx, ibfd))
7007 goto error_ret;
7008
7009 if (sym_sec != toc)
7010 continue;
7011
7012 if (h != NULL)
7013 val = h->root.u.def.value;
7014 else
7015 val = sym->st_value;
7016 val += rel->r_addend;
7017
7018 if (val >= toc->size)
7019 continue;
7020
7021 /* Anything in the toc ought to be aligned to 8 bytes.
7022 If not, don't mark as unused. */
7023 if (val & 7)
7024 continue;
7025
7026 if (skip == NULL)
7027 {
7028 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 7) / 8);
7029 if (skip == NULL)
7030 goto error_ret;
7031 }
7032
7033 skip[val >> 3] = 1;
7034 }
7035
7036 if (elf_section_data (sec)->relocs != relstart)
7037 free (relstart);
7038 }
7039
7040 if (skip == NULL)
7041 continue;
7042
7043 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
7044 if (used == NULL)
7045 {
7046 error_ret:
7047 if (local_syms != NULL
7048 && symtab_hdr->contents != (unsigned char *) local_syms)
7049 free (local_syms);
7050 if (sec != NULL
7051 && relstart != NULL
7052 && elf_section_data (sec)->relocs != relstart)
7053 free (relstart);
7054 if (skip != NULL)
7055 free (skip);
7056 return FALSE;
7057 }
7058
7059 /* Now check all kept sections that might reference the toc. */
7060 for (sec = ibfd->sections;
7061 sec != NULL;
7062 /* Check the toc itself last. */
7063 sec = (sec == toc ? NULL
7064 : sec->next == toc && sec->next->next ? sec->next->next
7065 : sec->next == NULL ? toc
7066 : sec->next))
7067 {
7068 int repeat;
7069
7070 if (sec->reloc_count == 0
7071 || elf_discarded_section (sec)
7072 || get_opd_info (sec)
7073 || (sec->flags & SEC_ALLOC) == 0
7074 || (sec->flags & SEC_DEBUGGING) != 0)
7075 continue;
7076
7077 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, TRUE);
7078 if (relstart == NULL)
7079 goto error_ret;
7080
7081 /* Mark toc entries referenced as used. */
7082 repeat = 0;
7083 do
7084 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7085 {
7086 enum elf_ppc64_reloc_type r_type;
7087 unsigned long r_symndx;
7088 asection *sym_sec;
7089 struct elf_link_hash_entry *h;
7090 Elf_Internal_Sym *sym;
7091 bfd_vma val;
7092
7093 r_type = ELF64_R_TYPE (rel->r_info);
7094 switch (r_type)
7095 {
7096 case R_PPC64_TOC16:
7097 case R_PPC64_TOC16_LO:
7098 case R_PPC64_TOC16_HI:
7099 case R_PPC64_TOC16_HA:
7100 case R_PPC64_TOC16_DS:
7101 case R_PPC64_TOC16_LO_DS:
7102 /* In case we're taking addresses of toc entries. */
7103 case R_PPC64_ADDR64:
7104 break;
7105
7106 default:
7107 continue;
7108 }
7109
7110 r_symndx = ELF64_R_SYM (rel->r_info);
7111 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7112 r_symndx, ibfd))
7113 {
7114 free (used);
7115 goto error_ret;
7116 }
7117
7118 if (sym_sec != toc)
7119 continue;
7120
7121 if (h != NULL)
7122 val = h->root.u.def.value;
7123 else
7124 val = sym->st_value;
7125 val += rel->r_addend;
7126
7127 if (val >= toc->size)
7128 continue;
7129
7130 /* For the toc section, we only mark as used if
7131 this entry itself isn't unused. */
7132 if (sec == toc
7133 && !used[val >> 3]
7134 && (used[rel->r_offset >> 3]
7135 || !skip[rel->r_offset >> 3]))
7136 /* Do all the relocs again, to catch reference
7137 chains. */
7138 repeat = 1;
7139
7140 used[val >> 3] = 1;
7141 }
7142 while (repeat);
7143 }
7144
7145 /* Merge the used and skip arrays. Assume that TOC
7146 doublewords not appearing as either used or unused belong
7147 to to an entry more than one doubleword in size. */
7148 for (drop = skip, keep = used, last = 0, some_unused = 0;
7149 drop < skip + (toc->size + 7) / 8;
7150 ++drop, ++keep)
7151 {
7152 if (*keep)
7153 {
7154 *drop = 0;
7155 last = 0;
7156 }
7157 else if (*drop)
7158 {
7159 some_unused = 1;
7160 last = 1;
7161 }
7162 else
7163 *drop = last;
7164 }
7165
7166 free (used);
7167
7168 if (some_unused)
7169 {
7170 bfd_byte *contents, *src;
7171 unsigned long off;
7172
7173 /* Shuffle the toc contents, and at the same time convert the
7174 skip array from booleans into offsets. */
7175 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
7176 goto error_ret;
7177
7178 elf_section_data (toc)->this_hdr.contents = contents;
7179
7180 for (src = contents, off = 0, drop = skip;
7181 src < contents + toc->size;
7182 src += 8, ++drop)
7183 {
7184 if (*drop)
7185 {
7186 *drop = (unsigned long) -1;
7187 off += 8;
7188 }
7189 else if (off != 0)
7190 {
7191 *drop = off;
7192 memcpy (src - off, src, 8);
7193 }
7194 }
7195 toc->rawsize = toc->size;
7196 toc->size = src - contents - off;
7197
7198 if (toc->reloc_count != 0)
7199 {
7200 Elf_Internal_Rela *wrel;
7201 bfd_size_type sz;
7202
7203 /* Read toc relocs. */
7204 relstart = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
7205 TRUE);
7206 if (relstart == NULL)
7207 goto error_ret;
7208
7209 /* Remove unused toc relocs, and adjust those we keep. */
7210 wrel = relstart;
7211 for (rel = relstart; rel < relstart + toc->reloc_count; ++rel)
7212 if (skip[rel->r_offset >> 3] != (unsigned long) -1)
7213 {
7214 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
7215 wrel->r_info = rel->r_info;
7216 wrel->r_addend = rel->r_addend;
7217 ++wrel;
7218 }
7219 else if (!dec_dynrel_count (rel->r_info, toc, info,
7220 &local_syms, NULL, NULL))
7221 goto error_ret;
7222
7223 toc->reloc_count = wrel - relstart;
7224 sz = elf_section_data (toc)->rel_hdr.sh_entsize;
7225 elf_section_data (toc)->rel_hdr.sh_size = toc->reloc_count * sz;
7226 BFD_ASSERT (elf_section_data (toc)->rel_hdr2 == NULL);
7227 }
7228
7229 /* Adjust addends for relocs against the toc section sym. */
7230 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7231 {
7232 if (sec->reloc_count == 0
7233 || elf_discarded_section (sec))
7234 continue;
7235
7236 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7237 TRUE);
7238 if (relstart == NULL)
7239 goto error_ret;
7240
7241 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7242 {
7243 enum elf_ppc64_reloc_type r_type;
7244 unsigned long r_symndx;
7245 asection *sym_sec;
7246 struct elf_link_hash_entry *h;
7247 Elf_Internal_Sym *sym;
7248
7249 r_type = ELF64_R_TYPE (rel->r_info);
7250 switch (r_type)
7251 {
7252 default:
7253 continue;
7254
7255 case R_PPC64_TOC16:
7256 case R_PPC64_TOC16_LO:
7257 case R_PPC64_TOC16_HI:
7258 case R_PPC64_TOC16_HA:
7259 case R_PPC64_TOC16_DS:
7260 case R_PPC64_TOC16_LO_DS:
7261 case R_PPC64_ADDR64:
7262 break;
7263 }
7264
7265 r_symndx = ELF64_R_SYM (rel->r_info);
7266 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7267 r_symndx, ibfd))
7268 goto error_ret;
7269
7270 if (sym_sec != toc || h != NULL || sym->st_value != 0)
7271 continue;
7272
7273 rel->r_addend -= skip[rel->r_addend >> 3];
7274 }
7275 }
7276
7277 /* We shouldn't have local or global symbols defined in the TOC,
7278 but handle them anyway. */
7279 if (local_syms != NULL)
7280 {
7281 Elf_Internal_Sym *sym;
7282
7283 for (sym = local_syms;
7284 sym < local_syms + symtab_hdr->sh_info;
7285 ++sym)
7286 if (sym->st_shndx != SHN_UNDEF
7287 && (sym->st_shndx < SHN_LORESERVE
7288 || sym->st_shndx > SHN_HIRESERVE)
7289 && sym->st_value != 0
7290 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
7291 {
7292 if (skip[sym->st_value >> 3] != (unsigned long) -1)
7293 sym->st_value -= skip[sym->st_value >> 3];
7294 else
7295 {
7296 (*_bfd_error_handler)
7297 (_("%s defined in removed toc entry"),
7298 bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7299 NULL));
7300 sym->st_value = 0;
7301 sym->st_shndx = SHN_ABS;
7302 }
7303 symtab_hdr->contents = (unsigned char *) local_syms;
7304 }
7305 }
7306
7307 /* Finally, adjust any global syms defined in the toc. */
7308 if (toc_inf.global_toc_syms)
7309 {
7310 toc_inf.toc = toc;
7311 toc_inf.skip = skip;
7312 toc_inf.global_toc_syms = FALSE;
7313 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
7314 &toc_inf);
7315 }
7316 }
7317
7318 if (local_syms != NULL
7319 && symtab_hdr->contents != (unsigned char *) local_syms)
7320 {
7321 if (!info->keep_memory)
7322 free (local_syms);
7323 else
7324 symtab_hdr->contents = (unsigned char *) local_syms;
7325 }
7326 free (skip);
7327 }
7328
7329 return TRUE;
7330 }
7331
7332 /* Allocate space in .plt, .got and associated reloc sections for
7333 dynamic relocs. */
7334
7335 static bfd_boolean
7336 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7337 {
7338 struct bfd_link_info *info;
7339 struct ppc_link_hash_table *htab;
7340 asection *s;
7341 struct ppc_link_hash_entry *eh;
7342 struct ppc_dyn_relocs *p;
7343 struct got_entry *gent;
7344
7345 if (h->root.type == bfd_link_hash_indirect)
7346 return TRUE;
7347
7348 if (h->root.type == bfd_link_hash_warning)
7349 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7350
7351 info = (struct bfd_link_info *) inf;
7352 htab = ppc_hash_table (info);
7353
7354 if (htab->elf.dynamic_sections_created
7355 && h->dynindx != -1
7356 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
7357 {
7358 struct plt_entry *pent;
7359 bfd_boolean doneone = FALSE;
7360 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
7361 if (pent->plt.refcount > 0)
7362 {
7363 /* If this is the first .plt entry, make room for the special
7364 first entry. */
7365 s = htab->plt;
7366 if (s->size == 0)
7367 s->size += PLT_INITIAL_ENTRY_SIZE;
7368
7369 pent->plt.offset = s->size;
7370
7371 /* Make room for this entry. */
7372 s->size += PLT_ENTRY_SIZE;
7373
7374 /* Make room for the .glink code. */
7375 s = htab->glink;
7376 if (s->size == 0)
7377 s->size += GLINK_CALL_STUB_SIZE;
7378 /* We need bigger stubs past index 32767. */
7379 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
7380 s->size += 4;
7381 s->size += 2*4;
7382
7383 /* We also need to make an entry in the .rela.plt section. */
7384 s = htab->relplt;
7385 s->size += sizeof (Elf64_External_Rela);
7386 doneone = TRUE;
7387 }
7388 else
7389 pent->plt.offset = (bfd_vma) -1;
7390 if (!doneone)
7391 {
7392 h->plt.plist = NULL;
7393 h->needs_plt = 0;
7394 }
7395 }
7396 else
7397 {
7398 h->plt.plist = NULL;
7399 h->needs_plt = 0;
7400 }
7401
7402 eh = (struct ppc_link_hash_entry *) h;
7403 /* Run through the TLS GD got entries first if we're changing them
7404 to TPREL. */
7405 if ((eh->tls_mask & TLS_TPRELGD) != 0)
7406 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7407 if (gent->got.refcount > 0
7408 && (gent->tls_type & TLS_GD) != 0)
7409 {
7410 /* This was a GD entry that has been converted to TPREL. If
7411 there happens to be a TPREL entry we can use that one. */
7412 struct got_entry *ent;
7413 for (ent = h->got.glist; ent != NULL; ent = ent->next)
7414 if (ent->got.refcount > 0
7415 && (ent->tls_type & TLS_TPREL) != 0
7416 && ent->addend == gent->addend
7417 && ent->owner == gent->owner)
7418 {
7419 gent->got.refcount = 0;
7420 break;
7421 }
7422
7423 /* If not, then we'll be using our own TPREL entry. */
7424 if (gent->got.refcount != 0)
7425 gent->tls_type = TLS_TLS | TLS_TPREL;
7426 }
7427
7428 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7429 if (gent->got.refcount > 0)
7430 {
7431 bfd_boolean dyn;
7432
7433 /* Make sure this symbol is output as a dynamic symbol.
7434 Undefined weak syms won't yet be marked as dynamic,
7435 nor will all TLS symbols. */
7436 if (h->dynindx == -1
7437 && !h->forced_local)
7438 {
7439 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7440 return FALSE;
7441 }
7442
7443 if ((gent->tls_type & TLS_LD) != 0
7444 && !h->def_dynamic)
7445 {
7446 gent->got.offset = ppc64_tlsld_got (gent->owner)->offset;
7447 continue;
7448 }
7449
7450 s = ppc64_elf_tdata (gent->owner)->got;
7451 gent->got.offset = s->size;
7452 s->size
7453 += (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)) ? 16 : 8;
7454 dyn = htab->elf.dynamic_sections_created;
7455 if ((info->shared
7456 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
7457 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7458 || h->root.type != bfd_link_hash_undefweak))
7459 ppc64_elf_tdata (gent->owner)->relgot->size
7460 += (gent->tls_type & eh->tls_mask & TLS_GD
7461 ? 2 * sizeof (Elf64_External_Rela)
7462 : sizeof (Elf64_External_Rela));
7463 }
7464 else
7465 gent->got.offset = (bfd_vma) -1;
7466
7467 if (eh->dyn_relocs == NULL)
7468 return TRUE;
7469
7470 /* In the shared -Bsymbolic case, discard space allocated for
7471 dynamic pc-relative relocs against symbols which turn out to be
7472 defined in regular objects. For the normal shared case, discard
7473 space for relocs that have become local due to symbol visibility
7474 changes. */
7475
7476 if (info->shared)
7477 {
7478 /* Relocs that use pc_count are those that appear on a call insn,
7479 or certain REL relocs (see MUST_BE_DYN_RELOC) that can be
7480 generated via assembly. We want calls to protected symbols to
7481 resolve directly to the function rather than going via the plt.
7482 If people want function pointer comparisons to work as expected
7483 then they should avoid writing weird assembly. */
7484 if (SYMBOL_CALLS_LOCAL (info, h))
7485 {
7486 struct ppc_dyn_relocs **pp;
7487
7488 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
7489 {
7490 p->count -= p->pc_count;
7491 p->pc_count = 0;
7492 if (p->count == 0)
7493 *pp = p->next;
7494 else
7495 pp = &p->next;
7496 }
7497 }
7498
7499 /* Also discard relocs on undefined weak syms with non-default
7500 visibility. */
7501 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7502 && h->root.type == bfd_link_hash_undefweak)
7503 eh->dyn_relocs = NULL;
7504 }
7505 else if (ELIMINATE_COPY_RELOCS)
7506 {
7507 /* For the non-shared case, discard space for relocs against
7508 symbols which turn out to need copy relocs or are not
7509 dynamic. */
7510
7511 if (!h->non_got_ref
7512 && h->def_dynamic
7513 && !h->def_regular)
7514 {
7515 /* Make sure this symbol is output as a dynamic symbol.
7516 Undefined weak syms won't yet be marked as dynamic. */
7517 if (h->dynindx == -1
7518 && !h->forced_local)
7519 {
7520 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7521 return FALSE;
7522 }
7523
7524 /* If that succeeded, we know we'll be keeping all the
7525 relocs. */
7526 if (h->dynindx != -1)
7527 goto keep;
7528 }
7529
7530 eh->dyn_relocs = NULL;
7531
7532 keep: ;
7533 }
7534
7535 /* Finally, allocate space. */
7536 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7537 {
7538 asection *sreloc = elf_section_data (p->sec)->sreloc;
7539 sreloc->size += p->count * sizeof (Elf64_External_Rela);
7540 }
7541
7542 return TRUE;
7543 }
7544
7545 /* Find any dynamic relocs that apply to read-only sections. */
7546
7547 static bfd_boolean
7548 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7549 {
7550 struct ppc_link_hash_entry *eh;
7551 struct ppc_dyn_relocs *p;
7552
7553 if (h->root.type == bfd_link_hash_warning)
7554 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7555
7556 eh = (struct ppc_link_hash_entry *) h;
7557 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7558 {
7559 asection *s = p->sec->output_section;
7560
7561 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7562 {
7563 struct bfd_link_info *info = inf;
7564
7565 info->flags |= DF_TEXTREL;
7566
7567 /* Not an error, just cut short the traversal. */
7568 return FALSE;
7569 }
7570 }
7571 return TRUE;
7572 }
7573
7574 /* Set the sizes of the dynamic sections. */
7575
7576 static bfd_boolean
7577 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
7578 struct bfd_link_info *info)
7579 {
7580 struct ppc_link_hash_table *htab;
7581 bfd *dynobj;
7582 asection *s;
7583 bfd_boolean relocs;
7584 bfd *ibfd;
7585
7586 htab = ppc_hash_table (info);
7587 dynobj = htab->elf.dynobj;
7588 if (dynobj == NULL)
7589 abort ();
7590
7591 if (htab->elf.dynamic_sections_created)
7592 {
7593 /* Set the contents of the .interp section to the interpreter. */
7594 if (info->executable)
7595 {
7596 s = bfd_get_section_by_name (dynobj, ".interp");
7597 if (s == NULL)
7598 abort ();
7599 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
7600 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
7601 }
7602 }
7603
7604 /* Set up .got offsets for local syms, and space for local dynamic
7605 relocs. */
7606 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7607 {
7608 struct got_entry **lgot_ents;
7609 struct got_entry **end_lgot_ents;
7610 char *lgot_masks;
7611 bfd_size_type locsymcount;
7612 Elf_Internal_Shdr *symtab_hdr;
7613 asection *srel;
7614
7615 if (!is_ppc64_elf_target (ibfd->xvec))
7616 continue;
7617
7618 if (ppc64_tlsld_got (ibfd)->refcount > 0)
7619 {
7620 s = ppc64_elf_tdata (ibfd)->got;
7621 ppc64_tlsld_got (ibfd)->offset = s->size;
7622 s->size += 16;
7623 if (info->shared)
7624 {
7625 srel = ppc64_elf_tdata (ibfd)->relgot;
7626 srel->size += sizeof (Elf64_External_Rela);
7627 }
7628 }
7629 else
7630 ppc64_tlsld_got (ibfd)->offset = (bfd_vma) -1;
7631
7632 for (s = ibfd->sections; s != NULL; s = s->next)
7633 {
7634 struct ppc_dyn_relocs *p;
7635
7636 for (p = *((struct ppc_dyn_relocs **)
7637 &elf_section_data (s)->local_dynrel);
7638 p != NULL;
7639 p = p->next)
7640 {
7641 if (!bfd_is_abs_section (p->sec)
7642 && bfd_is_abs_section (p->sec->output_section))
7643 {
7644 /* Input section has been discarded, either because
7645 it is a copy of a linkonce section or due to
7646 linker script /DISCARD/, so we'll be discarding
7647 the relocs too. */
7648 }
7649 else if (p->count != 0)
7650 {
7651 srel = elf_section_data (p->sec)->sreloc;
7652 srel->size += p->count * sizeof (Elf64_External_Rela);
7653 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
7654 info->flags |= DF_TEXTREL;
7655 }
7656 }
7657 }
7658
7659 lgot_ents = elf_local_got_ents (ibfd);
7660 if (!lgot_ents)
7661 continue;
7662
7663 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
7664 locsymcount = symtab_hdr->sh_info;
7665 end_lgot_ents = lgot_ents + locsymcount;
7666 lgot_masks = (char *) end_lgot_ents;
7667 s = ppc64_elf_tdata (ibfd)->got;
7668 srel = ppc64_elf_tdata (ibfd)->relgot;
7669 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
7670 {
7671 struct got_entry *ent;
7672
7673 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
7674 if (ent->got.refcount > 0)
7675 {
7676 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
7677 {
7678 if (ppc64_tlsld_got (ibfd)->offset == (bfd_vma) -1)
7679 {
7680 ppc64_tlsld_got (ibfd)->offset = s->size;
7681 s->size += 16;
7682 if (info->shared)
7683 srel->size += sizeof (Elf64_External_Rela);
7684 }
7685 ent->got.offset = ppc64_tlsld_got (ibfd)->offset;
7686 }
7687 else
7688 {
7689 ent->got.offset = s->size;
7690 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
7691 {
7692 s->size += 16;
7693 if (info->shared)
7694 srel->size += 2 * sizeof (Elf64_External_Rela);
7695 }
7696 else
7697 {
7698 s->size += 8;
7699 if (info->shared)
7700 srel->size += sizeof (Elf64_External_Rela);
7701 }
7702 }
7703 }
7704 else
7705 ent->got.offset = (bfd_vma) -1;
7706 }
7707 }
7708
7709 /* Allocate global sym .plt and .got entries, and space for global
7710 sym dynamic relocs. */
7711 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
7712
7713 /* We now have determined the sizes of the various dynamic sections.
7714 Allocate memory for them. */
7715 relocs = FALSE;
7716 for (s = dynobj->sections; s != NULL; s = s->next)
7717 {
7718 if ((s->flags & SEC_LINKER_CREATED) == 0)
7719 continue;
7720
7721 if (s == htab->brlt || s == htab->relbrlt)
7722 /* These haven't been allocated yet; don't strip. */
7723 continue;
7724 else if (s == htab->got
7725 || s == htab->plt
7726 || s == htab->glink)
7727 {
7728 /* Strip this section if we don't need it; see the
7729 comment below. */
7730 }
7731 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
7732 {
7733 if (s->size == 0)
7734 {
7735 /* If we don't need this section, strip it from the
7736 output file. This is mostly to handle .rela.bss and
7737 .rela.plt. We must create both sections in
7738 create_dynamic_sections, because they must be created
7739 before the linker maps input sections to output
7740 sections. The linker does that before
7741 adjust_dynamic_symbol is called, and it is that
7742 function which decides whether anything needs to go
7743 into these sections. */
7744 }
7745 else
7746 {
7747 if (s != htab->relplt)
7748 relocs = TRUE;
7749
7750 /* We use the reloc_count field as a counter if we need
7751 to copy relocs into the output file. */
7752 s->reloc_count = 0;
7753 }
7754 }
7755 else
7756 {
7757 /* It's not one of our sections, so don't allocate space. */
7758 continue;
7759 }
7760
7761 if (s->size == 0)
7762 {
7763 s->flags |= SEC_EXCLUDE;
7764 continue;
7765 }
7766
7767 /* .plt is in the bss section. We don't initialise it. */
7768 if (s == htab->plt)
7769 continue;
7770
7771 /* Allocate memory for the section contents. We use bfd_zalloc
7772 here in case unused entries are not reclaimed before the
7773 section's contents are written out. This should not happen,
7774 but this way if it does we get a R_PPC64_NONE reloc in .rela
7775 sections instead of garbage.
7776 We also rely on the section contents being zero when writing
7777 the GOT. */
7778 s->contents = bfd_zalloc (dynobj, s->size);
7779 if (s->contents == NULL)
7780 return FALSE;
7781 }
7782
7783 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7784 {
7785 if (!is_ppc64_elf_target (ibfd->xvec))
7786 continue;
7787
7788 s = ppc64_elf_tdata (ibfd)->got;
7789 if (s != NULL && s != htab->got)
7790 {
7791 if (s->size == 0)
7792 s->flags |= SEC_EXCLUDE;
7793 else
7794 {
7795 s->contents = bfd_zalloc (ibfd, s->size);
7796 if (s->contents == NULL)
7797 return FALSE;
7798 }
7799 }
7800 s = ppc64_elf_tdata (ibfd)->relgot;
7801 if (s != NULL)
7802 {
7803 if (s->size == 0)
7804 s->flags |= SEC_EXCLUDE;
7805 else
7806 {
7807 s->contents = bfd_zalloc (ibfd, s->size);
7808 if (s->contents == NULL)
7809 return FALSE;
7810 relocs = TRUE;
7811 s->reloc_count = 0;
7812 }
7813 }
7814 }
7815
7816 if (htab->elf.dynamic_sections_created)
7817 {
7818 /* Add some entries to the .dynamic section. We fill in the
7819 values later, in ppc64_elf_finish_dynamic_sections, but we
7820 must add the entries now so that we get the correct size for
7821 the .dynamic section. The DT_DEBUG entry is filled in by the
7822 dynamic linker and used by the debugger. */
7823 #define add_dynamic_entry(TAG, VAL) \
7824 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
7825
7826 if (info->executable)
7827 {
7828 if (!add_dynamic_entry (DT_DEBUG, 0))
7829 return FALSE;
7830 }
7831
7832 if (htab->plt != NULL && htab->plt->size != 0)
7833 {
7834 if (!add_dynamic_entry (DT_PLTGOT, 0)
7835 || !add_dynamic_entry (DT_PLTRELSZ, 0)
7836 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
7837 || !add_dynamic_entry (DT_JMPREL, 0)
7838 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
7839 return FALSE;
7840 }
7841
7842 if (NO_OPD_RELOCS)
7843 {
7844 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
7845 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
7846 return FALSE;
7847 }
7848
7849 if (relocs)
7850 {
7851 if (!add_dynamic_entry (DT_RELA, 0)
7852 || !add_dynamic_entry (DT_RELASZ, 0)
7853 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
7854 return FALSE;
7855
7856 /* If any dynamic relocs apply to a read-only section,
7857 then we need a DT_TEXTREL entry. */
7858 if ((info->flags & DF_TEXTREL) == 0)
7859 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
7860
7861 if ((info->flags & DF_TEXTREL) != 0)
7862 {
7863 if (!add_dynamic_entry (DT_TEXTREL, 0))
7864 return FALSE;
7865 }
7866 }
7867 }
7868 #undef add_dynamic_entry
7869
7870 return TRUE;
7871 }
7872
7873 /* Determine the type of stub needed, if any, for a call. */
7874
7875 static inline enum ppc_stub_type
7876 ppc_type_of_stub (asection *input_sec,
7877 const Elf_Internal_Rela *rel,
7878 struct ppc_link_hash_entry **hash,
7879 bfd_vma destination)
7880 {
7881 struct ppc_link_hash_entry *h = *hash;
7882 bfd_vma location;
7883 bfd_vma branch_offset;
7884 bfd_vma max_branch_offset;
7885 enum elf_ppc64_reloc_type r_type;
7886
7887 if (h != NULL)
7888 {
7889 if (h->oh != NULL
7890 && h->oh->is_func_descriptor)
7891 h = h->oh;
7892
7893 if (h->elf.dynindx != -1)
7894 {
7895 struct plt_entry *ent;
7896
7897 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
7898 if (ent->addend == rel->r_addend
7899 && ent->plt.offset != (bfd_vma) -1)
7900 {
7901 *hash = h;
7902 return ppc_stub_plt_call;
7903 }
7904 }
7905
7906 if (!(h->elf.root.type == bfd_link_hash_defined
7907 || h->elf.root.type == bfd_link_hash_defweak)
7908 || h->elf.root.u.def.section->output_section == NULL)
7909 return ppc_stub_none;
7910 }
7911
7912 /* Determine where the call point is. */
7913 location = (input_sec->output_offset
7914 + input_sec->output_section->vma
7915 + rel->r_offset);
7916
7917 branch_offset = destination - location;
7918 r_type = ELF64_R_TYPE (rel->r_info);
7919
7920 /* Determine if a long branch stub is needed. */
7921 max_branch_offset = 1 << 25;
7922 if (r_type != R_PPC64_REL24)
7923 max_branch_offset = 1 << 15;
7924
7925 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
7926 /* We need a stub. Figure out whether a long_branch or plt_branch
7927 is needed later. */
7928 return ppc_stub_long_branch;
7929
7930 return ppc_stub_none;
7931 }
7932
7933 /* Build a .plt call stub. */
7934
7935 static inline bfd_byte *
7936 build_plt_stub (bfd *obfd, bfd_byte *p, int offset)
7937 {
7938 #define PPC_LO(v) ((v) & 0xffff)
7939 #define PPC_HI(v) (((v) >> 16) & 0xffff)
7940 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
7941
7942 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
7943 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
7944 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7945 if (PPC_HA (offset + 8) != PPC_HA (offset))
7946 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7947 offset += 8;
7948 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset), p), p += 4;
7949 if (PPC_HA (offset + 8) != PPC_HA (offset))
7950 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7951 offset += 8;
7952 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
7953 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7954 bfd_put_32 (obfd, BCTR, p), p += 4;
7955 return p;
7956 }
7957
7958 static bfd_boolean
7959 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7960 {
7961 struct ppc_stub_hash_entry *stub_entry;
7962 struct ppc_branch_hash_entry *br_entry;
7963 struct bfd_link_info *info;
7964 struct ppc_link_hash_table *htab;
7965 bfd_byte *loc;
7966 bfd_byte *p;
7967 unsigned int indx;
7968 struct plt_entry *ent;
7969 bfd_vma dest, off;
7970 int size;
7971
7972 /* Massage our args to the form they really have. */
7973 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
7974 info = in_arg;
7975
7976 htab = ppc_hash_table (info);
7977
7978 /* Make a note of the offset within the stubs for this entry. */
7979 stub_entry->stub_offset = stub_entry->stub_sec->size;
7980 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
7981
7982 htab->stub_count[stub_entry->stub_type - 1] += 1;
7983 switch (stub_entry->stub_type)
7984 {
7985 case ppc_stub_long_branch:
7986 case ppc_stub_long_branch_r2off:
7987 /* Branches are relative. This is where we are going to. */
7988 off = dest = (stub_entry->target_value
7989 + stub_entry->target_section->output_offset
7990 + stub_entry->target_section->output_section->vma);
7991
7992 /* And this is where we are coming from. */
7993 off -= (stub_entry->stub_offset
7994 + stub_entry->stub_sec->output_offset
7995 + stub_entry->stub_sec->output_section->vma);
7996
7997 if (stub_entry->stub_type != ppc_stub_long_branch_r2off)
7998 size = 4;
7999 else
8000 {
8001 bfd_vma r2off;
8002
8003 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8004 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8005 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
8006 loc += 4;
8007 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
8008 loc += 4;
8009 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
8010 loc += 4;
8011 off -= 12;
8012 size = 16;
8013 }
8014 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
8015
8016 BFD_ASSERT (off + (1 << 25) < (bfd_vma) (1 << 26));
8017
8018 if (info->emitrelocations)
8019 {
8020 Elf_Internal_Rela *relocs, *r;
8021 struct bfd_elf_section_data *elfsec_data;
8022
8023 elfsec_data = elf_section_data (stub_entry->stub_sec);
8024 relocs = elfsec_data->relocs;
8025 if (relocs == NULL)
8026 {
8027 bfd_size_type relsize;
8028 relsize = stub_entry->stub_sec->reloc_count * sizeof (*relocs);
8029 relocs = bfd_alloc (htab->stub_bfd, relsize);
8030 if (relocs == NULL)
8031 return FALSE;
8032 elfsec_data->relocs = relocs;
8033 elfsec_data->rel_hdr.sh_size = relsize;
8034 elfsec_data->rel_hdr.sh_entsize = 24;
8035 stub_entry->stub_sec->reloc_count = 0;
8036 }
8037 r = relocs + stub_entry->stub_sec->reloc_count;
8038 stub_entry->stub_sec->reloc_count += 1;
8039 r->r_offset = loc - stub_entry->stub_sec->contents;
8040 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
8041 r->r_addend = dest;
8042 if (stub_entry->h != NULL)
8043 {
8044 struct elf_link_hash_entry **hashes;
8045 unsigned long symndx;
8046 struct ppc_link_hash_entry *h;
8047
8048 hashes = elf_sym_hashes (htab->stub_bfd);
8049 if (hashes == NULL)
8050 {
8051 bfd_size_type hsize;
8052
8053 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
8054 hashes = bfd_zalloc (htab->stub_bfd, hsize);
8055 if (hashes == NULL)
8056 return FALSE;
8057 elf_sym_hashes (htab->stub_bfd) = hashes;
8058 htab->stub_globals = 1;
8059 }
8060 symndx = htab->stub_globals++;
8061 h = stub_entry->h;
8062 hashes[symndx] = &h->elf;
8063 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
8064 if (h->oh != NULL && h->oh->is_func)
8065 h = h->oh;
8066 if (h->elf.root.u.def.section != stub_entry->target_section)
8067 /* H is an opd symbol. The addend must be zero. */
8068 r->r_addend = 0;
8069 else
8070 {
8071 off = (h->elf.root.u.def.value
8072 + h->elf.root.u.def.section->output_offset
8073 + h->elf.root.u.def.section->output_section->vma);
8074 r->r_addend -= off;
8075 }
8076 }
8077 }
8078 break;
8079
8080 case ppc_stub_plt_branch:
8081 case ppc_stub_plt_branch_r2off:
8082 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8083 stub_entry->root.string + 9,
8084 FALSE, FALSE);
8085 if (br_entry == NULL)
8086 {
8087 (*_bfd_error_handler) (_("can't find branch stub `%s'"),
8088 stub_entry->root.string + 9);
8089 htab->stub_error = TRUE;
8090 return FALSE;
8091 }
8092
8093 off = (stub_entry->target_value
8094 + stub_entry->target_section->output_offset
8095 + stub_entry->target_section->output_section->vma);
8096
8097 bfd_put_64 (htab->brlt->owner, off,
8098 htab->brlt->contents + br_entry->offset);
8099
8100 if (htab->relbrlt != NULL)
8101 {
8102 /* Create a reloc for the branch lookup table entry. */
8103 Elf_Internal_Rela rela;
8104 bfd_byte *rl;
8105
8106 rela.r_offset = (br_entry->offset
8107 + htab->brlt->output_offset
8108 + htab->brlt->output_section->vma);
8109 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
8110 rela.r_addend = off;
8111
8112 rl = htab->relbrlt->contents;
8113 rl += htab->relbrlt->reloc_count++ * sizeof (Elf64_External_Rela);
8114 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
8115 }
8116
8117 off = (br_entry->offset
8118 + htab->brlt->output_offset
8119 + htab->brlt->output_section->vma
8120 - elf_gp (htab->brlt->output_section->owner)
8121 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8122
8123 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8124 {
8125 (*_bfd_error_handler)
8126 (_("linkage table error against `%s'"),
8127 stub_entry->root.string);
8128 bfd_set_error (bfd_error_bad_value);
8129 htab->stub_error = TRUE;
8130 return FALSE;
8131 }
8132
8133 indx = off;
8134 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
8135 {
8136 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
8137 loc += 4;
8138 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
8139 size = 16;
8140 }
8141 else
8142 {
8143 bfd_vma r2off;
8144
8145 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8146 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8147 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
8148 loc += 4;
8149 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
8150 loc += 4;
8151 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
8152 loc += 4;
8153 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
8154 loc += 4;
8155 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
8156 size = 28;
8157 }
8158 loc += 4;
8159 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
8160 loc += 4;
8161 bfd_put_32 (htab->stub_bfd, BCTR, loc);
8162 break;
8163
8164 case ppc_stub_plt_call:
8165 /* Do the best we can for shared libraries built without
8166 exporting ".foo" for each "foo". This can happen when symbol
8167 versioning scripts strip all bar a subset of symbols. */
8168 if (stub_entry->h->oh != NULL
8169 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defined
8170 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defweak)
8171 {
8172 /* Point the symbol at the stub. There may be multiple stubs,
8173 we don't really care; The main thing is to make this sym
8174 defined somewhere. Maybe defining the symbol in the stub
8175 section is a silly idea. If we didn't do this, htab->top_id
8176 could disappear. */
8177 stub_entry->h->oh->elf.root.type = bfd_link_hash_defined;
8178 stub_entry->h->oh->elf.root.u.def.section = stub_entry->stub_sec;
8179 stub_entry->h->oh->elf.root.u.def.value = stub_entry->stub_offset;
8180 }
8181
8182 /* Now build the stub. */
8183 off = (bfd_vma) -1;
8184 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8185 if (ent->addend == stub_entry->addend)
8186 {
8187 off = ent->plt.offset;
8188 break;
8189 }
8190 if (off >= (bfd_vma) -2)
8191 abort ();
8192
8193 off &= ~ (bfd_vma) 1;
8194 off += (htab->plt->output_offset
8195 + htab->plt->output_section->vma
8196 - elf_gp (htab->plt->output_section->owner)
8197 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8198
8199 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8200 {
8201 (*_bfd_error_handler)
8202 (_("linkage table error against `%s'"),
8203 stub_entry->h->elf.root.root.string);
8204 bfd_set_error (bfd_error_bad_value);
8205 htab->stub_error = TRUE;
8206 return FALSE;
8207 }
8208
8209 p = build_plt_stub (htab->stub_bfd, loc, off);
8210 size = p - loc;
8211 break;
8212
8213 default:
8214 BFD_FAIL ();
8215 return FALSE;
8216 }
8217
8218 stub_entry->stub_sec->size += size;
8219
8220 if (htab->emit_stub_syms)
8221 {
8222 struct elf_link_hash_entry *h;
8223 size_t len1, len2;
8224 char *name;
8225 const char *const stub_str[] = { "long_branch",
8226 "long_branch_r2off",
8227 "plt_branch",
8228 "plt_branch_r2off",
8229 "plt_call" };
8230
8231 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
8232 len2 = strlen (stub_entry->root.string);
8233 name = bfd_malloc (len1 + len2 + 2);
8234 if (name == NULL)
8235 return FALSE;
8236 memcpy (name, stub_entry->root.string, 9);
8237 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
8238 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
8239 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
8240 if (h == NULL)
8241 return FALSE;
8242 if (h->root.type == bfd_link_hash_new)
8243 {
8244 h->root.type = bfd_link_hash_defined;
8245 h->root.u.def.section = stub_entry->stub_sec;
8246 h->root.u.def.value = stub_entry->stub_offset;
8247 h->ref_regular = 1;
8248 h->def_regular = 1;
8249 h->ref_regular_nonweak = 1;
8250 h->forced_local = 1;
8251 h->non_elf = 0;
8252 }
8253 }
8254
8255 return TRUE;
8256 }
8257
8258 /* As above, but don't actually build the stub. Just bump offset so
8259 we know stub section sizes, and select plt_branch stubs where
8260 long_branch stubs won't do. */
8261
8262 static bfd_boolean
8263 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8264 {
8265 struct ppc_stub_hash_entry *stub_entry;
8266 struct bfd_link_info *info;
8267 struct ppc_link_hash_table *htab;
8268 bfd_vma off;
8269 int size;
8270
8271 /* Massage our args to the form they really have. */
8272 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
8273 info = in_arg;
8274
8275 htab = ppc_hash_table (info);
8276
8277 if (stub_entry->stub_type == ppc_stub_plt_call)
8278 {
8279 struct plt_entry *ent;
8280 off = (bfd_vma) -1;
8281 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8282 if (ent->addend == stub_entry->addend)
8283 {
8284 off = ent->plt.offset & ~(bfd_vma) 1;
8285 break;
8286 }
8287 if (off >= (bfd_vma) -2)
8288 abort ();
8289 off += (htab->plt->output_offset
8290 + htab->plt->output_section->vma
8291 - elf_gp (htab->plt->output_section->owner)
8292 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8293
8294 size = PLT_CALL_STUB_SIZE;
8295 if (PPC_HA (off + 16) != PPC_HA (off))
8296 size += 4;
8297 }
8298 else
8299 {
8300 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
8301 variants. */
8302 off = (stub_entry->target_value
8303 + stub_entry->target_section->output_offset
8304 + stub_entry->target_section->output_section->vma);
8305 off -= (stub_entry->stub_sec->size
8306 + stub_entry->stub_sec->output_offset
8307 + stub_entry->stub_sec->output_section->vma);
8308
8309 /* Reset the stub type from the plt variant in case we now
8310 can reach with a shorter stub. */
8311 if (stub_entry->stub_type >= ppc_stub_plt_branch)
8312 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
8313
8314 size = 4;
8315 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
8316 {
8317 off -= 12;
8318 size = 16;
8319 }
8320
8321 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
8322 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
8323 {
8324 struct ppc_branch_hash_entry *br_entry;
8325
8326 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8327 stub_entry->root.string + 9,
8328 TRUE, FALSE);
8329 if (br_entry == NULL)
8330 {
8331 (*_bfd_error_handler) (_("can't build branch stub `%s'"),
8332 stub_entry->root.string + 9);
8333 htab->stub_error = TRUE;
8334 return FALSE;
8335 }
8336
8337 if (br_entry->iter != htab->stub_iteration)
8338 {
8339 br_entry->iter = htab->stub_iteration;
8340 br_entry->offset = htab->brlt->size;
8341 htab->brlt->size += 8;
8342
8343 if (htab->relbrlt != NULL)
8344 htab->relbrlt->size += sizeof (Elf64_External_Rela);
8345 }
8346
8347 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
8348 size = 16;
8349 if (stub_entry->stub_type != ppc_stub_plt_branch)
8350 size = 28;
8351 }
8352
8353 if (info->emitrelocations
8354 && (stub_entry->stub_type == ppc_stub_long_branch
8355 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
8356 stub_entry->stub_sec->reloc_count += 1;
8357 }
8358
8359 stub_entry->stub_sec->size += size;
8360 return TRUE;
8361 }
8362
8363 /* Set up various things so that we can make a list of input sections
8364 for each output section included in the link. Returns -1 on error,
8365 0 when no stubs will be needed, and 1 on success. */
8366
8367 int
8368 ppc64_elf_setup_section_lists (bfd *output_bfd,
8369 struct bfd_link_info *info,
8370 int no_multi_toc)
8371 {
8372 bfd *input_bfd;
8373 int top_id, top_index, id;
8374 asection *section;
8375 asection **input_list;
8376 bfd_size_type amt;
8377 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8378
8379 htab->no_multi_toc = no_multi_toc;
8380
8381 if (htab->brlt == NULL)
8382 return 0;
8383
8384 /* Find the top input section id. */
8385 for (input_bfd = info->input_bfds, top_id = 3;
8386 input_bfd != NULL;
8387 input_bfd = input_bfd->link_next)
8388 {
8389 for (section = input_bfd->sections;
8390 section != NULL;
8391 section = section->next)
8392 {
8393 if (top_id < section->id)
8394 top_id = section->id;
8395 }
8396 }
8397
8398 htab->top_id = top_id;
8399 amt = sizeof (struct map_stub) * (top_id + 1);
8400 htab->stub_group = bfd_zmalloc (amt);
8401 if (htab->stub_group == NULL)
8402 return -1;
8403
8404 /* Set toc_off for com, und, abs and ind sections. */
8405 for (id = 0; id < 3; id++)
8406 htab->stub_group[id].toc_off = TOC_BASE_OFF;
8407
8408 elf_gp (output_bfd) = htab->toc_curr = ppc64_elf_toc (output_bfd);
8409
8410 /* We can't use output_bfd->section_count here to find the top output
8411 section index as some sections may have been removed, and
8412 strip_excluded_output_sections doesn't renumber the indices. */
8413 for (section = output_bfd->sections, top_index = 0;
8414 section != NULL;
8415 section = section->next)
8416 {
8417 if (top_index < section->index)
8418 top_index = section->index;
8419 }
8420
8421 htab->top_index = top_index;
8422 amt = sizeof (asection *) * (top_index + 1);
8423 input_list = bfd_zmalloc (amt);
8424 htab->input_list = input_list;
8425 if (input_list == NULL)
8426 return -1;
8427
8428 return 1;
8429 }
8430
8431 /* The linker repeatedly calls this function for each TOC input section
8432 and linker generated GOT section. Group input bfds such that the toc
8433 within a group is less than 64k in size. Will break with cute linker
8434 scripts that play games with dot in the output toc section. */
8435
8436 void
8437 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
8438 {
8439 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8440
8441 if (!htab->no_multi_toc)
8442 {
8443 bfd_vma addr = isec->output_offset + isec->output_section->vma;
8444 bfd_vma off = addr - htab->toc_curr;
8445
8446 if (off + isec->size > 0x10000)
8447 htab->toc_curr = addr;
8448
8449 elf_gp (isec->owner) = (htab->toc_curr
8450 - elf_gp (isec->output_section->owner)
8451 + TOC_BASE_OFF);
8452 }
8453 }
8454
8455 /* Called after the last call to the above function. */
8456
8457 void
8458 ppc64_elf_reinit_toc (bfd *output_bfd, struct bfd_link_info *info)
8459 {
8460 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8461
8462 htab->multi_toc_needed = htab->toc_curr != elf_gp (output_bfd);
8463
8464 /* toc_curr tracks the TOC offset used for code sections below in
8465 ppc64_elf_next_input_section. Start off at 0x8000. */
8466 htab->toc_curr = TOC_BASE_OFF;
8467 }
8468
8469 /* No toc references were found in ISEC. If the code in ISEC makes no
8470 calls, then there's no need to use toc adjusting stubs when branching
8471 into ISEC. Actually, indirect calls from ISEC are OK as they will
8472 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
8473 needed, and 2 if a cyclical call-graph was found but no other reason
8474 for a stub was detected. If called from the top level, a return of
8475 2 means the same as a return of 0. */
8476
8477 static int
8478 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
8479 {
8480 Elf_Internal_Rela *relstart, *rel;
8481 Elf_Internal_Sym *local_syms;
8482 int ret;
8483 struct ppc_link_hash_table *htab;
8484
8485 /* We know none of our code bearing sections will need toc stubs. */
8486 if ((isec->flags & SEC_LINKER_CREATED) != 0)
8487 return 0;
8488
8489 if (isec->size == 0)
8490 return 0;
8491
8492 if (isec->output_section == NULL)
8493 return 0;
8494
8495 /* Hack for linux kernel. .fixup contains branches, but only back to
8496 the function that hit an exception. */
8497 if (strcmp (isec->name, ".fixup") == 0)
8498 return 0;
8499
8500 if (isec->reloc_count == 0)
8501 return 0;
8502
8503 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
8504 info->keep_memory);
8505 if (relstart == NULL)
8506 return -1;
8507
8508 /* Look for branches to outside of this section. */
8509 local_syms = NULL;
8510 ret = 0;
8511 htab = ppc_hash_table (info);
8512 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
8513 {
8514 enum elf_ppc64_reloc_type r_type;
8515 unsigned long r_symndx;
8516 struct elf_link_hash_entry *h;
8517 Elf_Internal_Sym *sym;
8518 asection *sym_sec;
8519 long *opd_adjust;
8520 bfd_vma sym_value;
8521 bfd_vma dest;
8522
8523 r_type = ELF64_R_TYPE (rel->r_info);
8524 if (r_type != R_PPC64_REL24
8525 && r_type != R_PPC64_REL14
8526 && r_type != R_PPC64_REL14_BRTAKEN
8527 && r_type != R_PPC64_REL14_BRNTAKEN)
8528 continue;
8529
8530 r_symndx = ELF64_R_SYM (rel->r_info);
8531 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
8532 isec->owner))
8533 {
8534 ret = -1;
8535 break;
8536 }
8537
8538 /* Calls to dynamic lib functions go through a plt call stub
8539 that uses r2. Branches to undefined symbols might be a call
8540 using old-style dot symbols that can be satisfied by a plt
8541 call into a new-style dynamic library. */
8542 if (sym_sec == NULL)
8543 {
8544 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
8545 if (eh != NULL
8546 && eh->oh != NULL
8547 && eh->oh->elf.plt.plist != NULL)
8548 {
8549 ret = 1;
8550 break;
8551 }
8552
8553 /* Ignore other undefined symbols. */
8554 continue;
8555 }
8556
8557 /* Assume branches to other sections not included in the link need
8558 stubs too, to cover -R and absolute syms. */
8559 if (sym_sec->output_section == NULL)
8560 {
8561 ret = 1;
8562 break;
8563 }
8564
8565 if (h == NULL)
8566 sym_value = sym->st_value;
8567 else
8568 {
8569 if (h->root.type != bfd_link_hash_defined
8570 && h->root.type != bfd_link_hash_defweak)
8571 abort ();
8572 sym_value = h->root.u.def.value;
8573 }
8574 sym_value += rel->r_addend;
8575
8576 /* If this branch reloc uses an opd sym, find the code section. */
8577 opd_adjust = get_opd_info (sym_sec);
8578 if (opd_adjust != NULL)
8579 {
8580 if (h == NULL)
8581 {
8582 long adjust;
8583
8584 adjust = opd_adjust[sym->st_value / 8];
8585 if (adjust == -1)
8586 /* Assume deleted functions won't ever be called. */
8587 continue;
8588 sym_value += adjust;
8589 }
8590
8591 dest = opd_entry_value (sym_sec, sym_value, &sym_sec, NULL);
8592 if (dest == (bfd_vma) -1)
8593 continue;
8594 }
8595 else
8596 dest = (sym_value
8597 + sym_sec->output_offset
8598 + sym_sec->output_section->vma);
8599
8600 /* Ignore branch to self. */
8601 if (sym_sec == isec)
8602 continue;
8603
8604 /* If the called function uses the toc, we need a stub. */
8605 if (sym_sec->has_toc_reloc
8606 || sym_sec->makes_toc_func_call)
8607 {
8608 ret = 1;
8609 break;
8610 }
8611
8612 /* Assume any branch that needs a long branch stub might in fact
8613 need a plt_branch stub. A plt_branch stub uses r2. */
8614 else if (dest - (isec->output_offset
8615 + isec->output_section->vma
8616 + rel->r_offset) + (1 << 25) >= (2 << 25))
8617 {
8618 ret = 1;
8619 break;
8620 }
8621
8622 /* If calling back to a section in the process of being tested, we
8623 can't say for sure that no toc adjusting stubs are needed, so
8624 don't return zero. */
8625 else if (sym_sec->call_check_in_progress)
8626 ret = 2;
8627
8628 /* Branches to another section that itself doesn't have any TOC
8629 references are OK. Recursively call ourselves to check. */
8630 else if (sym_sec->id <= htab->top_id
8631 && htab->stub_group[sym_sec->id].toc_off == 0)
8632 {
8633 int recur;
8634
8635 /* Mark current section as indeterminate, so that other
8636 sections that call back to current won't be marked as
8637 known. */
8638 isec->call_check_in_progress = 1;
8639 recur = toc_adjusting_stub_needed (info, sym_sec);
8640 isec->call_check_in_progress = 0;
8641
8642 if (recur < 0)
8643 {
8644 /* An error. Exit. */
8645 ret = -1;
8646 break;
8647 }
8648 else if (recur <= 1)
8649 {
8650 /* Known result. Mark as checked and set section flag. */
8651 htab->stub_group[sym_sec->id].toc_off = 1;
8652 if (recur != 0)
8653 {
8654 sym_sec->makes_toc_func_call = 1;
8655 ret = 1;
8656 break;
8657 }
8658 }
8659 else
8660 {
8661 /* Unknown result. Continue checking. */
8662 ret = 2;
8663 }
8664 }
8665 }
8666
8667 if (local_syms != NULL
8668 && (elf_tdata (isec->owner)->symtab_hdr.contents
8669 != (unsigned char *) local_syms))
8670 free (local_syms);
8671 if (elf_section_data (isec)->relocs != relstart)
8672 free (relstart);
8673
8674 return ret;
8675 }
8676
8677 /* The linker repeatedly calls this function for each input section,
8678 in the order that input sections are linked into output sections.
8679 Build lists of input sections to determine groupings between which
8680 we may insert linker stubs. */
8681
8682 bfd_boolean
8683 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
8684 {
8685 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8686
8687 if ((isec->output_section->flags & SEC_CODE) != 0
8688 && isec->output_section->index <= htab->top_index)
8689 {
8690 asection **list = htab->input_list + isec->output_section->index;
8691 /* Steal the link_sec pointer for our list. */
8692 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
8693 /* This happens to make the list in reverse order,
8694 which is what we want. */
8695 PREV_SEC (isec) = *list;
8696 *list = isec;
8697 }
8698
8699 if (htab->multi_toc_needed)
8700 {
8701 /* If a code section has a function that uses the TOC then we need
8702 to use the right TOC (obviously). Also, make sure that .opd gets
8703 the correct TOC value for R_PPC64_TOC relocs that don't have or
8704 can't find their function symbol (shouldn't ever happen now). */
8705 if (isec->has_toc_reloc || (isec->flags & SEC_CODE) == 0)
8706 {
8707 if (elf_gp (isec->owner) != 0)
8708 htab->toc_curr = elf_gp (isec->owner);
8709 }
8710 else if (htab->stub_group[isec->id].toc_off == 0)
8711 {
8712 int ret = toc_adjusting_stub_needed (info, isec);
8713 if (ret < 0)
8714 return FALSE;
8715 else
8716 isec->makes_toc_func_call = ret & 1;
8717 }
8718 }
8719
8720 /* Functions that don't use the TOC can belong in any TOC group.
8721 Use the last TOC base. This happens to make _init and _fini
8722 pasting work. */
8723 htab->stub_group[isec->id].toc_off = htab->toc_curr;
8724 return TRUE;
8725 }
8726
8727 /* See whether we can group stub sections together. Grouping stub
8728 sections may result in fewer stubs. More importantly, we need to
8729 put all .init* and .fini* stubs at the beginning of the .init or
8730 .fini output sections respectively, because glibc splits the
8731 _init and _fini functions into multiple parts. Putting a stub in
8732 the middle of a function is not a good idea. */
8733
8734 static void
8735 group_sections (struct ppc_link_hash_table *htab,
8736 bfd_size_type stub_group_size,
8737 bfd_boolean stubs_always_before_branch)
8738 {
8739 asection **list = htab->input_list + htab->top_index;
8740 do
8741 {
8742 asection *tail = *list;
8743 while (tail != NULL)
8744 {
8745 asection *curr;
8746 asection *prev;
8747 bfd_size_type total;
8748 bfd_boolean big_sec;
8749 bfd_vma curr_toc;
8750
8751 curr = tail;
8752 total = tail->size;
8753 big_sec = total >= stub_group_size;
8754 curr_toc = htab->stub_group[tail->id].toc_off;
8755
8756 while ((prev = PREV_SEC (curr)) != NULL
8757 && ((total += curr->output_offset - prev->output_offset)
8758 < stub_group_size)
8759 && htab->stub_group[prev->id].toc_off == curr_toc)
8760 curr = prev;
8761
8762 /* OK, the size from the start of CURR to the end is less
8763 than stub_group_size and thus can be handled by one stub
8764 section. (or the tail section is itself larger than
8765 stub_group_size, in which case we may be toast.) We
8766 should really be keeping track of the total size of stubs
8767 added here, as stubs contribute to the final output
8768 section size. That's a little tricky, and this way will
8769 only break if stubs added make the total size more than
8770 2^25, ie. for the default stub_group_size, if stubs total
8771 more than 2097152 bytes, or nearly 75000 plt call stubs. */
8772 do
8773 {
8774 prev = PREV_SEC (tail);
8775 /* Set up this stub group. */
8776 htab->stub_group[tail->id].link_sec = curr;
8777 }
8778 while (tail != curr && (tail = prev) != NULL);
8779
8780 /* But wait, there's more! Input sections up to stub_group_size
8781 bytes before the stub section can be handled by it too.
8782 Don't do this if we have a really large section after the
8783 stubs, as adding more stubs increases the chance that
8784 branches may not reach into the stub section. */
8785 if (!stubs_always_before_branch && !big_sec)
8786 {
8787 total = 0;
8788 while (prev != NULL
8789 && ((total += tail->output_offset - prev->output_offset)
8790 < stub_group_size)
8791 && htab->stub_group[prev->id].toc_off == curr_toc)
8792 {
8793 tail = prev;
8794 prev = PREV_SEC (tail);
8795 htab->stub_group[tail->id].link_sec = curr;
8796 }
8797 }
8798 tail = prev;
8799 }
8800 }
8801 while (list-- != htab->input_list);
8802 free (htab->input_list);
8803 #undef PREV_SEC
8804 }
8805
8806 /* Determine and set the size of the stub section for a final link.
8807
8808 The basic idea here is to examine all the relocations looking for
8809 PC-relative calls to a target that is unreachable with a "bl"
8810 instruction. */
8811
8812 bfd_boolean
8813 ppc64_elf_size_stubs (bfd *output_bfd,
8814 struct bfd_link_info *info,
8815 bfd_signed_vma group_size,
8816 asection *(*add_stub_section) (const char *, asection *),
8817 void (*layout_sections_again) (void))
8818 {
8819 bfd_size_type stub_group_size;
8820 bfd_boolean stubs_always_before_branch;
8821 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8822
8823 /* Stash our params away. */
8824 htab->add_stub_section = add_stub_section;
8825 htab->layout_sections_again = layout_sections_again;
8826 stubs_always_before_branch = group_size < 0;
8827 if (group_size < 0)
8828 stub_group_size = -group_size;
8829 else
8830 stub_group_size = group_size;
8831 if (stub_group_size == 1)
8832 {
8833 /* Default values. */
8834 if (stubs_always_before_branch)
8835 {
8836 stub_group_size = 0x1e00000;
8837 if (htab->has_14bit_branch)
8838 stub_group_size = 0x7800;
8839 }
8840 else
8841 {
8842 stub_group_size = 0x1c00000;
8843 if (htab->has_14bit_branch)
8844 stub_group_size = 0x7000;
8845 }
8846 }
8847
8848 group_sections (htab, stub_group_size, stubs_always_before_branch);
8849
8850 while (1)
8851 {
8852 bfd *input_bfd;
8853 unsigned int bfd_indx;
8854 asection *stub_sec;
8855 bfd_boolean stub_changed;
8856
8857 htab->stub_iteration += 1;
8858 stub_changed = FALSE;
8859
8860 for (input_bfd = info->input_bfds, bfd_indx = 0;
8861 input_bfd != NULL;
8862 input_bfd = input_bfd->link_next, bfd_indx++)
8863 {
8864 Elf_Internal_Shdr *symtab_hdr;
8865 asection *section;
8866 Elf_Internal_Sym *local_syms = NULL;
8867
8868 /* We'll need the symbol table in a second. */
8869 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8870 if (symtab_hdr->sh_info == 0)
8871 continue;
8872
8873 /* Walk over each section attached to the input bfd. */
8874 for (section = input_bfd->sections;
8875 section != NULL;
8876 section = section->next)
8877 {
8878 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
8879
8880 /* If there aren't any relocs, then there's nothing more
8881 to do. */
8882 if ((section->flags & SEC_RELOC) == 0
8883 || section->reloc_count == 0)
8884 continue;
8885
8886 /* If this section is a link-once section that will be
8887 discarded, then don't create any stubs. */
8888 if (section->output_section == NULL
8889 || section->output_section->owner != output_bfd)
8890 continue;
8891
8892 /* Get the relocs. */
8893 internal_relocs
8894 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
8895 info->keep_memory);
8896 if (internal_relocs == NULL)
8897 goto error_ret_free_local;
8898
8899 /* Now examine each relocation. */
8900 irela = internal_relocs;
8901 irelaend = irela + section->reloc_count;
8902 for (; irela < irelaend; irela++)
8903 {
8904 enum elf_ppc64_reloc_type r_type;
8905 unsigned int r_indx;
8906 enum ppc_stub_type stub_type;
8907 struct ppc_stub_hash_entry *stub_entry;
8908 asection *sym_sec, *code_sec;
8909 bfd_vma sym_value;
8910 bfd_vma destination;
8911 bfd_boolean ok_dest;
8912 struct ppc_link_hash_entry *hash;
8913 struct ppc_link_hash_entry *fdh;
8914 struct elf_link_hash_entry *h;
8915 Elf_Internal_Sym *sym;
8916 char *stub_name;
8917 const asection *id_sec;
8918 long *opd_adjust;
8919
8920 r_type = ELF64_R_TYPE (irela->r_info);
8921 r_indx = ELF64_R_SYM (irela->r_info);
8922
8923 if (r_type >= R_PPC64_max)
8924 {
8925 bfd_set_error (bfd_error_bad_value);
8926 goto error_ret_free_internal;
8927 }
8928
8929 /* Only look for stubs on branch instructions. */
8930 if (r_type != R_PPC64_REL24
8931 && r_type != R_PPC64_REL14
8932 && r_type != R_PPC64_REL14_BRTAKEN
8933 && r_type != R_PPC64_REL14_BRNTAKEN)
8934 continue;
8935
8936 /* Now determine the call target, its name, value,
8937 section. */
8938 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8939 r_indx, input_bfd))
8940 goto error_ret_free_internal;
8941 hash = (struct ppc_link_hash_entry *) h;
8942
8943 ok_dest = FALSE;
8944 fdh = NULL;
8945 if (hash == NULL)
8946 {
8947 sym_value = sym->st_value;
8948 ok_dest = TRUE;
8949 }
8950 else
8951 {
8952 sym_value = 0;
8953 /* Recognise an old ABI func code entry sym, and
8954 use the func descriptor sym instead. */
8955 if (hash->elf.root.root.string[0] == '.'
8956 && (fdh = get_fdh (hash, htab)) != NULL)
8957 {
8958 if (fdh->elf.root.type == bfd_link_hash_defined
8959 || fdh->elf.root.type == bfd_link_hash_defweak)
8960 {
8961 sym_sec = fdh->elf.root.u.def.section;
8962 sym_value = fdh->elf.root.u.def.value;
8963 if (sym_sec->output_section != NULL)
8964 ok_dest = TRUE;
8965 }
8966 else
8967 fdh = NULL;
8968 }
8969 else if (hash->elf.root.type == bfd_link_hash_defined
8970 || hash->elf.root.type == bfd_link_hash_defweak)
8971 {
8972 sym_value = hash->elf.root.u.def.value;
8973 if (sym_sec->output_section != NULL)
8974 ok_dest = TRUE;
8975 }
8976 else if (hash->elf.root.type == bfd_link_hash_undefweak)
8977 ;
8978 else if (hash->elf.root.type == bfd_link_hash_undefined)
8979 ;
8980 else
8981 {
8982 bfd_set_error (bfd_error_bad_value);
8983 goto error_ret_free_internal;
8984 }
8985 }
8986
8987 destination = 0;
8988 if (ok_dest)
8989 {
8990 sym_value += irela->r_addend;
8991 destination = (sym_value
8992 + sym_sec->output_offset
8993 + sym_sec->output_section->vma);
8994 }
8995
8996 code_sec = sym_sec;
8997 opd_adjust = get_opd_info (sym_sec);
8998 if (opd_adjust != NULL)
8999 {
9000 bfd_vma dest;
9001
9002 if (hash == NULL)
9003 {
9004 long adjust = opd_adjust[sym_value / 8];
9005 if (adjust == -1)
9006 continue;
9007 sym_value += adjust;
9008 }
9009 dest = opd_entry_value (sym_sec, sym_value,
9010 &code_sec, &sym_value);
9011 if (dest != (bfd_vma) -1)
9012 {
9013 destination = dest;
9014 if (fdh != NULL)
9015 {
9016 /* Fixup old ABI sym to point at code
9017 entry. */
9018 hash->elf.root.type = bfd_link_hash_defweak;
9019 hash->elf.root.u.def.section = code_sec;
9020 hash->elf.root.u.def.value = sym_value;
9021 }
9022 }
9023 }
9024
9025 /* Determine what (if any) linker stub is needed. */
9026 stub_type = ppc_type_of_stub (section, irela, &hash,
9027 destination);
9028
9029 if (stub_type != ppc_stub_plt_call)
9030 {
9031 /* Check whether we need a TOC adjusting stub.
9032 Since the linker pastes together pieces from
9033 different object files when creating the
9034 _init and _fini functions, it may be that a
9035 call to what looks like a local sym is in
9036 fact a call needing a TOC adjustment. */
9037 if (code_sec != NULL
9038 && code_sec->output_section != NULL
9039 && (htab->stub_group[code_sec->id].toc_off
9040 != htab->stub_group[section->id].toc_off)
9041 && (code_sec->has_toc_reloc
9042 || code_sec->makes_toc_func_call))
9043 stub_type = ppc_stub_long_branch_r2off;
9044 }
9045
9046 if (stub_type == ppc_stub_none)
9047 continue;
9048
9049 /* __tls_get_addr calls might be eliminated. */
9050 if (stub_type != ppc_stub_plt_call
9051 && hash != NULL
9052 && (hash == htab->tls_get_addr
9053 || hash == htab->tls_get_addr_fd)
9054 && section->has_tls_reloc
9055 && irela != internal_relocs)
9056 {
9057 /* Get tls info. */
9058 char *tls_mask;
9059
9060 if (!get_tls_mask (&tls_mask, NULL, &local_syms,
9061 irela - 1, input_bfd))
9062 goto error_ret_free_internal;
9063 if (*tls_mask != 0)
9064 continue;
9065 }
9066
9067 /* Support for grouping stub sections. */
9068 id_sec = htab->stub_group[section->id].link_sec;
9069
9070 /* Get the name of this stub. */
9071 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
9072 if (!stub_name)
9073 goto error_ret_free_internal;
9074
9075 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
9076 stub_name, FALSE, FALSE);
9077 if (stub_entry != NULL)
9078 {
9079 /* The proper stub has already been created. */
9080 free (stub_name);
9081 continue;
9082 }
9083
9084 stub_entry = ppc_add_stub (stub_name, section, htab);
9085 if (stub_entry == NULL)
9086 {
9087 free (stub_name);
9088 error_ret_free_internal:
9089 if (elf_section_data (section)->relocs == NULL)
9090 free (internal_relocs);
9091 error_ret_free_local:
9092 if (local_syms != NULL
9093 && (symtab_hdr->contents
9094 != (unsigned char *) local_syms))
9095 free (local_syms);
9096 return FALSE;
9097 }
9098
9099 stub_entry->stub_type = stub_type;
9100 stub_entry->target_value = sym_value;
9101 stub_entry->target_section = code_sec;
9102 stub_entry->h = hash;
9103 stub_entry->addend = irela->r_addend;
9104
9105 if (stub_entry->h != NULL)
9106 htab->stub_globals += 1;
9107
9108 stub_changed = TRUE;
9109 }
9110
9111 /* We're done with the internal relocs, free them. */
9112 if (elf_section_data (section)->relocs != internal_relocs)
9113 free (internal_relocs);
9114 }
9115
9116 if (local_syms != NULL
9117 && symtab_hdr->contents != (unsigned char *) local_syms)
9118 {
9119 if (!info->keep_memory)
9120 free (local_syms);
9121 else
9122 symtab_hdr->contents = (unsigned char *) local_syms;
9123 }
9124 }
9125
9126 if (!stub_changed)
9127 break;
9128
9129 /* OK, we've added some stubs. Find out the new size of the
9130 stub sections. */
9131 for (stub_sec = htab->stub_bfd->sections;
9132 stub_sec != NULL;
9133 stub_sec = stub_sec->next)
9134 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9135 {
9136 stub_sec->size = 0;
9137 stub_sec->reloc_count = 0;
9138 }
9139
9140 htab->brlt->size = 0;
9141 if (htab->relbrlt != NULL)
9142 htab->relbrlt->size = 0;
9143
9144 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
9145
9146 /* Ask the linker to do its stuff. */
9147 (*htab->layout_sections_again) ();
9148 }
9149
9150 /* It would be nice to strip .branch_lt from the output if the
9151 section is empty, but it's too late. If we strip sections here,
9152 the dynamic symbol table is corrupted since the section symbol
9153 for the stripped section isn't written. */
9154
9155 return TRUE;
9156 }
9157
9158 /* Called after we have determined section placement. If sections
9159 move, we'll be called again. Provide a value for TOCstart. */
9160
9161 bfd_vma
9162 ppc64_elf_toc (bfd *obfd)
9163 {
9164 asection *s;
9165 bfd_vma TOCstart;
9166
9167 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
9168 order. The TOC starts where the first of these sections starts. */
9169 s = bfd_get_section_by_name (obfd, ".got");
9170 if (s == NULL)
9171 s = bfd_get_section_by_name (obfd, ".toc");
9172 if (s == NULL)
9173 s = bfd_get_section_by_name (obfd, ".tocbss");
9174 if (s == NULL)
9175 s = bfd_get_section_by_name (obfd, ".plt");
9176 if (s == NULL)
9177 {
9178 /* This may happen for
9179 o references to TOC base (SYM@toc / TOC[tc0]) without a
9180 .toc directive
9181 o bad linker script
9182 o --gc-sections and empty TOC sections
9183
9184 FIXME: Warn user? */
9185
9186 /* Look for a likely section. We probably won't even be
9187 using TOCstart. */
9188 for (s = obfd->sections; s != NULL; s = s->next)
9189 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY))
9190 == (SEC_ALLOC | SEC_SMALL_DATA))
9191 break;
9192 if (s == NULL)
9193 for (s = obfd->sections; s != NULL; s = s->next)
9194 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA))
9195 == (SEC_ALLOC | SEC_SMALL_DATA))
9196 break;
9197 if (s == NULL)
9198 for (s = obfd->sections; s != NULL; s = s->next)
9199 if ((s->flags & (SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
9200 break;
9201 if (s == NULL)
9202 for (s = obfd->sections; s != NULL; s = s->next)
9203 if ((s->flags & SEC_ALLOC) == SEC_ALLOC)
9204 break;
9205 }
9206
9207 TOCstart = 0;
9208 if (s != NULL)
9209 TOCstart = s->output_section->vma + s->output_offset;
9210
9211 return TOCstart;
9212 }
9213
9214 /* Build all the stubs associated with the current output file.
9215 The stubs are kept in a hash table attached to the main linker
9216 hash table. This function is called via gldelf64ppc_finish. */
9217
9218 bfd_boolean
9219 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
9220 struct bfd_link_info *info,
9221 char **stats)
9222 {
9223 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9224 asection *stub_sec;
9225 bfd_byte *p;
9226 int stub_sec_count = 0;
9227
9228 htab->emit_stub_syms = emit_stub_syms;
9229
9230 /* Allocate memory to hold the linker stubs. */
9231 for (stub_sec = htab->stub_bfd->sections;
9232 stub_sec != NULL;
9233 stub_sec = stub_sec->next)
9234 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
9235 && stub_sec->size != 0)
9236 {
9237 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
9238 if (stub_sec->contents == NULL)
9239 return FALSE;
9240 /* We want to check that built size is the same as calculated
9241 size. rawsize is a convenient location to use. */
9242 stub_sec->rawsize = stub_sec->size;
9243 stub_sec->size = 0;
9244 }
9245
9246 if (htab->plt != NULL)
9247 {
9248 unsigned int indx;
9249 bfd_vma plt0;
9250
9251 /* Build the .glink plt call stub. */
9252 plt0 = (htab->plt->output_section->vma
9253 + htab->plt->output_offset
9254 - (htab->glink->output_section->vma
9255 + htab->glink->output_offset
9256 + GLINK_CALL_STUB_SIZE));
9257 if (plt0 + 0x80008000 > 0xffffffff)
9258 {
9259 (*_bfd_error_handler) (_(".glink and .plt too far apart"));
9260 bfd_set_error (bfd_error_bad_value);
9261 return FALSE;
9262 }
9263
9264 if (htab->emit_stub_syms)
9265 {
9266 struct elf_link_hash_entry *h;
9267 h = elf_link_hash_lookup (&htab->elf, "__glink", TRUE, FALSE, FALSE);
9268 if (h == NULL)
9269 return FALSE;
9270 if (h->root.type == bfd_link_hash_new)
9271 {
9272 h->root.type = bfd_link_hash_defined;
9273 h->root.u.def.section = htab->glink;
9274 h->root.u.def.value = 0;
9275 h->ref_regular = 1;
9276 h->def_regular = 1;
9277 h->ref_regular_nonweak = 1;
9278 h->forced_local = 1;
9279 h->non_elf = 0;
9280 }
9281 }
9282 p = htab->glink->contents;
9283 bfd_put_32 (htab->glink->owner, MFCTR_R12, p);
9284 p += 4;
9285 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_3, p);
9286 p += 4;
9287 bfd_put_32 (htab->glink->owner, ADDIC_R2_R0_32K, p);
9288 p += 4;
9289 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
9290 p += 4;
9291 bfd_put_32 (htab->glink->owner, SRADI_R2_R2_63, p);
9292 p += 4;
9293 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_2, p);
9294 p += 4;
9295 bfd_put_32 (htab->glink->owner, AND_R2_R2_R11, p);
9296 p += 4;
9297 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
9298 p += 4;
9299 bfd_put_32 (htab->glink->owner, ADD_R12_R12_R2, p);
9300 p += 4;
9301 bfd_put_32 (htab->glink->owner, ADDIS_R12_R12 | PPC_HA (plt0), p);
9302 p += 4;
9303 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | PPC_LO (plt0), p);
9304 p += 4;
9305 bfd_put_32 (htab->glink->owner, ADDI_R12_R12 | PPC_LO (plt0), p);
9306 p += 4;
9307 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
9308 p += 4;
9309 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
9310 p += 4;
9311 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
9312 p += 4;
9313 bfd_put_32 (htab->glink->owner, BCTR, p);
9314 p += 4;
9315
9316 /* Build the .glink lazy link call stubs. */
9317 indx = 0;
9318 while (p < htab->glink->contents + htab->glink->size)
9319 {
9320 if (indx < 0x8000)
9321 {
9322 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
9323 p += 4;
9324 }
9325 else
9326 {
9327 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
9328 p += 4;
9329 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
9330 p += 4;
9331 }
9332 bfd_put_32 (htab->glink->owner,
9333 B_DOT | ((htab->glink->contents - p) & 0x3fffffc), p);
9334 indx++;
9335 p += 4;
9336 }
9337 htab->glink->rawsize = p - htab->glink->contents;
9338 }
9339
9340 if (htab->brlt->size != 0)
9341 {
9342 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
9343 htab->brlt->size);
9344 if (htab->brlt->contents == NULL)
9345 return FALSE;
9346 }
9347 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
9348 {
9349 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
9350 htab->relbrlt->size);
9351 if (htab->relbrlt->contents == NULL)
9352 return FALSE;
9353 }
9354
9355 /* Build the stubs as directed by the stub hash table. */
9356 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
9357
9358 for (stub_sec = htab->stub_bfd->sections;
9359 stub_sec != NULL;
9360 stub_sec = stub_sec->next)
9361 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9362 {
9363 stub_sec_count += 1;
9364 if (stub_sec->rawsize != stub_sec->size)
9365 break;
9366 }
9367
9368 if (stub_sec != NULL
9369 || htab->glink->rawsize != htab->glink->size)
9370 {
9371 htab->stub_error = TRUE;
9372 (*_bfd_error_handler) (_("stubs don't match calculated size"));
9373 }
9374
9375 if (htab->stub_error)
9376 return FALSE;
9377
9378 if (stats != NULL)
9379 {
9380 *stats = bfd_malloc (500);
9381 if (*stats == NULL)
9382 return FALSE;
9383
9384 sprintf (*stats, _("linker stubs in %u group%s\n"
9385 " branch %lu\n"
9386 " toc adjust %lu\n"
9387 " long branch %lu\n"
9388 " long toc adj %lu\n"
9389 " plt call %lu"),
9390 stub_sec_count,
9391 stub_sec_count == 1 ? "" : "s",
9392 htab->stub_count[ppc_stub_long_branch - 1],
9393 htab->stub_count[ppc_stub_long_branch_r2off - 1],
9394 htab->stub_count[ppc_stub_plt_branch - 1],
9395 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
9396 htab->stub_count[ppc_stub_plt_call - 1]);
9397 }
9398 return TRUE;
9399 }
9400
9401 /* This function undoes the changes made by add_symbol_adjust. */
9402
9403 static bfd_boolean
9404 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
9405 {
9406 struct ppc_link_hash_entry *eh;
9407
9408 if (h->root.type == bfd_link_hash_indirect)
9409 return TRUE;
9410
9411 if (h->root.type == bfd_link_hash_warning)
9412 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9413
9414 eh = (struct ppc_link_hash_entry *) h;
9415 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
9416 return TRUE;
9417
9418 eh->elf.root.type = bfd_link_hash_undefined;
9419 return TRUE;
9420 }
9421
9422 void
9423 ppc64_elf_restore_symbols (struct bfd_link_info *info)
9424 {
9425 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9426 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
9427 }
9428
9429 /* The RELOCATE_SECTION function is called by the ELF backend linker
9430 to handle the relocations for a section.
9431
9432 The relocs are always passed as Rela structures; if the section
9433 actually uses Rel structures, the r_addend field will always be
9434 zero.
9435
9436 This function is responsible for adjust the section contents as
9437 necessary, and (if using Rela relocs and generating a
9438 relocatable output file) adjusting the reloc addend as
9439 necessary.
9440
9441 This function does not have to worry about setting the reloc
9442 address or the reloc symbol index.
9443
9444 LOCAL_SYMS is a pointer to the swapped in local symbols.
9445
9446 LOCAL_SECTIONS is an array giving the section in the input file
9447 corresponding to the st_shndx field of each local symbol.
9448
9449 The global hash table entry for the global symbols can be found
9450 via elf_sym_hashes (input_bfd).
9451
9452 When generating relocatable output, this function must handle
9453 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
9454 going to be the section symbol corresponding to the output
9455 section, which means that the addend must be adjusted
9456 accordingly. */
9457
9458 static bfd_boolean
9459 ppc64_elf_relocate_section (bfd *output_bfd,
9460 struct bfd_link_info *info,
9461 bfd *input_bfd,
9462 asection *input_section,
9463 bfd_byte *contents,
9464 Elf_Internal_Rela *relocs,
9465 Elf_Internal_Sym *local_syms,
9466 asection **local_sections)
9467 {
9468 struct ppc_link_hash_table *htab;
9469 Elf_Internal_Shdr *symtab_hdr;
9470 struct elf_link_hash_entry **sym_hashes;
9471 Elf_Internal_Rela *rel;
9472 Elf_Internal_Rela *relend;
9473 Elf_Internal_Rela outrel;
9474 bfd_byte *loc;
9475 struct got_entry **local_got_ents;
9476 bfd_vma TOCstart;
9477 bfd_boolean ret = TRUE;
9478 bfd_boolean is_opd;
9479 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
9480 bfd_boolean is_power4 = FALSE;
9481
9482 if (info->relocatable)
9483 return TRUE;
9484
9485 /* Initialize howto table if needed. */
9486 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9487 ppc_howto_init ();
9488
9489 htab = ppc_hash_table (info);
9490
9491 /* Don't relocate stub sections. */
9492 if (input_section->owner == htab->stub_bfd)
9493 return TRUE;
9494
9495 local_got_ents = elf_local_got_ents (input_bfd);
9496 TOCstart = elf_gp (output_bfd);
9497 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9498 sym_hashes = elf_sym_hashes (input_bfd);
9499 is_opd = ppc64_elf_section_data (input_section)->opd.adjust != NULL;
9500
9501 rel = relocs;
9502 relend = relocs + input_section->reloc_count;
9503 for (; rel < relend; rel++)
9504 {
9505 enum elf_ppc64_reloc_type r_type;
9506 bfd_vma addend;
9507 bfd_reloc_status_type r;
9508 Elf_Internal_Sym *sym;
9509 asection *sec;
9510 struct elf_link_hash_entry *h_elf;
9511 struct ppc_link_hash_entry *h;
9512 struct ppc_link_hash_entry *fdh;
9513 const char *sym_name;
9514 unsigned long r_symndx, toc_symndx;
9515 char tls_mask, tls_gd, tls_type;
9516 char sym_type;
9517 bfd_vma relocation;
9518 bfd_boolean unresolved_reloc;
9519 bfd_boolean warned;
9520 unsigned long insn, mask;
9521 struct ppc_stub_hash_entry *stub_entry;
9522 bfd_vma max_br_offset;
9523 bfd_vma from;
9524
9525 r_type = ELF64_R_TYPE (rel->r_info);
9526 r_symndx = ELF64_R_SYM (rel->r_info);
9527
9528 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
9529 symbol of the previous ADDR64 reloc. The symbol gives us the
9530 proper TOC base to use. */
9531 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
9532 && rel != relocs
9533 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
9534 && is_opd)
9535 r_symndx = ELF64_R_SYM (rel[-1].r_info);
9536
9537 sym = NULL;
9538 sec = NULL;
9539 h_elf = NULL;
9540 sym_name = NULL;
9541 unresolved_reloc = FALSE;
9542 warned = FALSE;
9543
9544 if (r_symndx < symtab_hdr->sh_info)
9545 {
9546 /* It's a local symbol. */
9547 long *opd_adjust;
9548
9549 sym = local_syms + r_symndx;
9550 sec = local_sections[r_symndx];
9551 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
9552 sym_type = ELF64_ST_TYPE (sym->st_info);
9553 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9554 opd_adjust = get_opd_info (sec);
9555 if (opd_adjust != NULL)
9556 {
9557 long adjust = opd_adjust[(sym->st_value + rel->r_addend) / 8];
9558 if (adjust == -1)
9559 relocation = 0;
9560 else
9561 relocation += adjust;
9562 }
9563 }
9564 else
9565 {
9566 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
9567 r_symndx, symtab_hdr, sym_hashes,
9568 h_elf, sec, relocation,
9569 unresolved_reloc, warned);
9570 sym_name = h_elf->root.root.string;
9571 sym_type = h_elf->type;
9572 }
9573 h = (struct ppc_link_hash_entry *) h_elf;
9574
9575 /* TLS optimizations. Replace instruction sequences and relocs
9576 based on information we collected in tls_optimize. We edit
9577 RELOCS so that --emit-relocs will output something sensible
9578 for the final instruction stream. */
9579 tls_mask = 0;
9580 tls_gd = 0;
9581 toc_symndx = 0;
9582 if (IS_PPC64_TLS_RELOC (r_type))
9583 {
9584 if (h != NULL)
9585 tls_mask = h->tls_mask;
9586 else if (local_got_ents != NULL)
9587 {
9588 char *lgot_masks;
9589 lgot_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
9590 tls_mask = lgot_masks[r_symndx];
9591 }
9592 if (tls_mask == 0 && r_type == R_PPC64_TLS)
9593 {
9594 /* Check for toc tls entries. */
9595 char *toc_tls;
9596
9597 if (!get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
9598 rel, input_bfd))
9599 return FALSE;
9600
9601 if (toc_tls)
9602 tls_mask = *toc_tls;
9603 }
9604 }
9605
9606 /* Check that tls relocs are used with tls syms, and non-tls
9607 relocs are used with non-tls syms. */
9608 if (r_symndx != 0
9609 && r_type != R_PPC64_NONE
9610 && (h == NULL
9611 || h->elf.root.type == bfd_link_hash_defined
9612 || h->elf.root.type == bfd_link_hash_defweak)
9613 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
9614 {
9615 if (r_type == R_PPC64_TLS && tls_mask != 0)
9616 /* R_PPC64_TLS is OK against a symbol in the TOC. */
9617 ;
9618 else
9619 (*_bfd_error_handler)
9620 (sym_type == STT_TLS
9621 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
9622 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s"),
9623 input_bfd,
9624 input_section,
9625 (long) rel->r_offset,
9626 ppc64_elf_howto_table[r_type]->name,
9627 sym_name);
9628 }
9629
9630 /* Ensure reloc mapping code below stays sane. */
9631 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
9632 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
9633 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
9634 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
9635 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
9636 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
9637 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
9638 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
9639 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
9640 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
9641 abort ();
9642
9643 switch (r_type)
9644 {
9645 default:
9646 break;
9647
9648 case R_PPC64_TOC16:
9649 case R_PPC64_TOC16_LO:
9650 case R_PPC64_TOC16_DS:
9651 case R_PPC64_TOC16_LO_DS:
9652 {
9653 /* Check for toc tls entries. */
9654 char *toc_tls;
9655 int retval;
9656
9657 retval = get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
9658 rel, input_bfd);
9659 if (retval == 0)
9660 return FALSE;
9661
9662 if (toc_tls)
9663 {
9664 tls_mask = *toc_tls;
9665 if (r_type == R_PPC64_TOC16_DS
9666 || r_type == R_PPC64_TOC16_LO_DS)
9667 {
9668 if (tls_mask != 0
9669 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
9670 goto toctprel;
9671 }
9672 else
9673 {
9674 /* If we found a GD reloc pair, then we might be
9675 doing a GD->IE transition. */
9676 if (retval == 2)
9677 {
9678 tls_gd = TLS_TPRELGD;
9679 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9680 goto tls_get_addr_check;
9681 }
9682 else if (retval == 3)
9683 {
9684 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9685 goto tls_get_addr_check;
9686 }
9687 }
9688 }
9689 }
9690 break;
9691
9692 case R_PPC64_GOT_TPREL16_DS:
9693 case R_PPC64_GOT_TPREL16_LO_DS:
9694 if (tls_mask != 0
9695 && (tls_mask & TLS_TPREL) == 0)
9696 {
9697 toctprel:
9698 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - 2);
9699 insn &= 31 << 21;
9700 insn |= 0x3c0d0000; /* addis 0,13,0 */
9701 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - 2);
9702 r_type = R_PPC64_TPREL16_HA;
9703 if (toc_symndx != 0)
9704 {
9705 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
9706 /* We changed the symbol. Start over in order to
9707 get h, sym, sec etc. right. */
9708 rel--;
9709 continue;
9710 }
9711 else
9712 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9713 }
9714 break;
9715
9716 case R_PPC64_TLS:
9717 if (tls_mask != 0
9718 && (tls_mask & TLS_TPREL) == 0)
9719 {
9720 bfd_vma rtra;
9721 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
9722 if ((insn & ((0x3f << 26) | (31 << 11)))
9723 == ((31 << 26) | (13 << 11)))
9724 rtra = insn & ((1 << 26) - (1 << 16));
9725 else if ((insn & ((0x3f << 26) | (31 << 16)))
9726 == ((31 << 26) | (13 << 16)))
9727 rtra = (insn & (31 << 21)) | ((insn & (31 << 11)) << 5);
9728 else
9729 abort ();
9730 if ((insn & ((1 << 11) - (1 << 1))) == 266 << 1)
9731 /* add -> addi. */
9732 insn = 14 << 26;
9733 else if ((insn & (31 << 1)) == 23 << 1
9734 && ((insn & (31 << 6)) < 14 << 6
9735 || ((insn & (31 << 6)) >= 16 << 6
9736 && (insn & (31 << 6)) < 24 << 6)))
9737 /* load and store indexed -> dform. */
9738 insn = (32 | ((insn >> 6) & 31)) << 26;
9739 else if ((insn & (31 << 1)) == 21 << 1
9740 && (insn & (0x1a << 6)) == 0)
9741 /* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */
9742 insn = (((58 | ((insn >> 6) & 4)) << 26)
9743 | ((insn >> 6) & 1));
9744 else if ((insn & (31 << 1)) == 21 << 1
9745 && (insn & ((1 << 11) - (1 << 1))) == 341 << 1)
9746 /* lwax -> lwa. */
9747 insn = (58 << 26) | 2;
9748 else
9749 abort ();
9750 insn |= rtra;
9751 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
9752 /* Was PPC64_TLS which sits on insn boundary, now
9753 PPC64_TPREL16_LO which is at insn+2. */
9754 rel->r_offset += 2;
9755 r_type = R_PPC64_TPREL16_LO;
9756 if (toc_symndx != 0)
9757 {
9758 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
9759 /* We changed the symbol. Start over in order to
9760 get h, sym, sec etc. right. */
9761 rel--;
9762 continue;
9763 }
9764 else
9765 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9766 }
9767 break;
9768
9769 case R_PPC64_GOT_TLSGD16_HI:
9770 case R_PPC64_GOT_TLSGD16_HA:
9771 tls_gd = TLS_TPRELGD;
9772 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9773 goto tls_gdld_hi;
9774 break;
9775
9776 case R_PPC64_GOT_TLSLD16_HI:
9777 case R_PPC64_GOT_TLSLD16_HA:
9778 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9779 {
9780 tls_gdld_hi:
9781 if ((tls_mask & tls_gd) != 0)
9782 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
9783 + R_PPC64_GOT_TPREL16_DS);
9784 else
9785 {
9786 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
9787 rel->r_offset -= 2;
9788 r_type = R_PPC64_NONE;
9789 }
9790 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9791 }
9792 break;
9793
9794 case R_PPC64_GOT_TLSGD16:
9795 case R_PPC64_GOT_TLSGD16_LO:
9796 tls_gd = TLS_TPRELGD;
9797 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9798 goto tls_get_addr_check;
9799 break;
9800
9801 case R_PPC64_GOT_TLSLD16:
9802 case R_PPC64_GOT_TLSLD16_LO:
9803 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9804 {
9805 tls_get_addr_check:
9806 if (rel + 1 < relend)
9807 {
9808 enum elf_ppc64_reloc_type r_type2;
9809 unsigned long r_symndx2;
9810 struct elf_link_hash_entry *h2;
9811 bfd_vma insn1, insn2, insn3;
9812 bfd_vma offset;
9813
9814 /* The next instruction should be a call to
9815 __tls_get_addr. Peek at the reloc to be sure. */
9816 r_type2 = ELF64_R_TYPE (rel[1].r_info);
9817 r_symndx2 = ELF64_R_SYM (rel[1].r_info);
9818 if (r_symndx2 < symtab_hdr->sh_info
9819 || (r_type2 != R_PPC64_REL14
9820 && r_type2 != R_PPC64_REL14_BRTAKEN
9821 && r_type2 != R_PPC64_REL14_BRNTAKEN
9822 && r_type2 != R_PPC64_REL24))
9823 break;
9824
9825 h2 = sym_hashes[r_symndx2 - symtab_hdr->sh_info];
9826 while (h2->root.type == bfd_link_hash_indirect
9827 || h2->root.type == bfd_link_hash_warning)
9828 h2 = (struct elf_link_hash_entry *) h2->root.u.i.link;
9829 if (h2 == NULL || (h2 != &htab->tls_get_addr->elf
9830 && h2 != &htab->tls_get_addr_fd->elf))
9831 break;
9832
9833 /* OK, it checks out. Replace the call. */
9834 offset = rel[1].r_offset;
9835 insn1 = bfd_get_32 (output_bfd,
9836 contents + rel->r_offset - 2);
9837 insn3 = bfd_get_32 (output_bfd,
9838 contents + offset + 4);
9839 if ((tls_mask & tls_gd) != 0)
9840 {
9841 /* IE */
9842 insn1 &= (1 << 26) - (1 << 2);
9843 insn1 |= 58 << 26; /* ld */
9844 insn2 = 0x7c636a14; /* add 3,3,13 */
9845 rel[1].r_info = ELF64_R_INFO (r_symndx2, R_PPC64_NONE);
9846 if ((tls_mask & TLS_EXPLICIT) == 0)
9847 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
9848 + R_PPC64_GOT_TPREL16_DS);
9849 else
9850 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
9851 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9852 }
9853 else
9854 {
9855 /* LE */
9856 insn1 = 0x3c6d0000; /* addis 3,13,0 */
9857 insn2 = 0x38630000; /* addi 3,3,0 */
9858 if (tls_gd == 0)
9859 {
9860 /* Was an LD reloc. */
9861 r_symndx = 0;
9862 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
9863 rel[1].r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
9864 }
9865 else if (toc_symndx != 0)
9866 r_symndx = toc_symndx;
9867 r_type = R_PPC64_TPREL16_HA;
9868 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9869 rel[1].r_info = ELF64_R_INFO (r_symndx,
9870 R_PPC64_TPREL16_LO);
9871 rel[1].r_offset += 2;
9872 }
9873 if (insn3 == NOP
9874 || insn3 == CROR_151515 || insn3 == CROR_313131)
9875 {
9876 insn3 = insn2;
9877 insn2 = NOP;
9878 rel[1].r_offset += 4;
9879 }
9880 bfd_put_32 (output_bfd, insn1, contents + rel->r_offset - 2);
9881 bfd_put_32 (output_bfd, insn2, contents + offset);
9882 bfd_put_32 (output_bfd, insn3, contents + offset + 4);
9883 if (tls_gd == 0 || toc_symndx != 0)
9884 {
9885 /* We changed the symbol. Start over in order
9886 to get h, sym, sec etc. right. */
9887 rel--;
9888 continue;
9889 }
9890 }
9891 }
9892 break;
9893
9894 case R_PPC64_DTPMOD64:
9895 if (rel + 1 < relend
9896 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
9897 && rel[1].r_offset == rel->r_offset + 8)
9898 {
9899 if ((tls_mask & TLS_GD) == 0)
9900 {
9901 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
9902 if ((tls_mask & TLS_TPRELGD) != 0)
9903 r_type = R_PPC64_TPREL64;
9904 else
9905 {
9906 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9907 r_type = R_PPC64_NONE;
9908 }
9909 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9910 }
9911 }
9912 else
9913 {
9914 if ((tls_mask & TLS_LD) == 0)
9915 {
9916 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9917 r_type = R_PPC64_NONE;
9918 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9919 }
9920 }
9921 break;
9922
9923 case R_PPC64_TPREL64:
9924 if ((tls_mask & TLS_TPREL) == 0)
9925 {
9926 r_type = R_PPC64_NONE;
9927 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9928 }
9929 break;
9930 }
9931
9932 /* Handle other relocations that tweak non-addend part of insn. */
9933 insn = 0;
9934 max_br_offset = 1 << 25;
9935 addend = rel->r_addend;
9936 switch (r_type)
9937 {
9938 default:
9939 break;
9940
9941 /* Branch taken prediction relocations. */
9942 case R_PPC64_ADDR14_BRTAKEN:
9943 case R_PPC64_REL14_BRTAKEN:
9944 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
9945 /* Fall thru. */
9946
9947 /* Branch not taken prediction relocations. */
9948 case R_PPC64_ADDR14_BRNTAKEN:
9949 case R_PPC64_REL14_BRNTAKEN:
9950 insn |= bfd_get_32 (output_bfd,
9951 contents + rel->r_offset) & ~(0x01 << 21);
9952 /* Fall thru. */
9953
9954 case R_PPC64_REL14:
9955 max_br_offset = 1 << 15;
9956 /* Fall thru. */
9957
9958 case R_PPC64_REL24:
9959 /* Calls to functions with a different TOC, such as calls to
9960 shared objects, need to alter the TOC pointer. This is
9961 done using a linkage stub. A REL24 branching to these
9962 linkage stubs needs to be followed by a nop, as the nop
9963 will be replaced with an instruction to restore the TOC
9964 base pointer. */
9965 stub_entry = NULL;
9966 fdh = h;
9967 if (((h != NULL
9968 && (((fdh = h->oh) != NULL
9969 && fdh->elf.plt.plist != NULL)
9970 || (fdh = h)->elf.plt.plist != NULL))
9971 || (sec != NULL
9972 && sec->output_section != NULL
9973 && sec->id <= htab->top_id
9974 && (htab->stub_group[sec->id].toc_off
9975 != htab->stub_group[input_section->id].toc_off)))
9976 && (stub_entry = ppc_get_stub_entry (input_section, sec, fdh,
9977 rel, htab)) != NULL
9978 && (stub_entry->stub_type == ppc_stub_plt_call
9979 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
9980 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
9981 {
9982 bfd_boolean can_plt_call = FALSE;
9983
9984 if (rel->r_offset + 8 <= input_section->size)
9985 {
9986 unsigned long nop;
9987 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
9988 if (nop == NOP
9989 || nop == CROR_151515 || nop == CROR_313131)
9990 {
9991 bfd_put_32 (input_bfd, LD_R2_40R1,
9992 contents + rel->r_offset + 4);
9993 can_plt_call = TRUE;
9994 }
9995 }
9996
9997 if (!can_plt_call)
9998 {
9999 if (stub_entry->stub_type == ppc_stub_plt_call)
10000 {
10001 /* If this is a plain branch rather than a branch
10002 and link, don't require a nop. */
10003 unsigned long br;
10004 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
10005 if ((br & 1) == 0)
10006 can_plt_call = TRUE;
10007 }
10008 else if (h != NULL
10009 && strcmp (h->elf.root.root.string,
10010 ".__libc_start_main") == 0)
10011 {
10012 /* Allow crt1 branch to go via a toc adjusting stub. */
10013 can_plt_call = TRUE;
10014 }
10015 else
10016 {
10017 if (strcmp (input_section->output_section->name,
10018 ".init") == 0
10019 || strcmp (input_section->output_section->name,
10020 ".fini") == 0)
10021 (*_bfd_error_handler)
10022 (_("%B(%A+0x%lx): automatic multiple TOCs "
10023 "not supported using your crt files; "
10024 "recompile with -mminimal-toc or upgrade gcc"),
10025 input_bfd,
10026 input_section,
10027 (long) rel->r_offset);
10028 else
10029 (*_bfd_error_handler)
10030 (_("%B(%A+0x%lx): sibling call optimization to `%s' "
10031 "does not allow automatic multiple TOCs; "
10032 "recompile with -mminimal-toc or "
10033 "-fno-optimize-sibling-calls, "
10034 "or make `%s' extern"),
10035 input_bfd,
10036 input_section,
10037 (long) rel->r_offset,
10038 sym_name,
10039 sym_name);
10040 bfd_set_error (bfd_error_bad_value);
10041 ret = FALSE;
10042 }
10043 }
10044
10045 if (can_plt_call
10046 && stub_entry->stub_type == ppc_stub_plt_call)
10047 unresolved_reloc = FALSE;
10048 }
10049
10050 if (stub_entry == NULL
10051 && get_opd_info (sec) != NULL)
10052 {
10053 /* The branch destination is the value of the opd entry. */
10054 bfd_vma off = (relocation - sec->output_section->vma
10055 - sec->output_offset + rel->r_addend);
10056 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
10057 if (dest != (bfd_vma) -1)
10058 {
10059 relocation = dest;
10060 addend = 0;
10061 }
10062 }
10063
10064 /* If the branch is out of reach we ought to have a long
10065 branch stub. */
10066 from = (rel->r_offset
10067 + input_section->output_offset
10068 + input_section->output_section->vma);
10069
10070 if (stub_entry == NULL
10071 && (relocation + rel->r_addend - from + max_br_offset
10072 >= 2 * max_br_offset)
10073 && r_type != R_PPC64_ADDR14_BRTAKEN
10074 && r_type != R_PPC64_ADDR14_BRNTAKEN)
10075 stub_entry = ppc_get_stub_entry (input_section, sec, h, rel,
10076 htab);
10077
10078 if (stub_entry != NULL)
10079 {
10080 /* Munge up the value and addend so that we call the stub
10081 rather than the procedure directly. */
10082 relocation = (stub_entry->stub_offset
10083 + stub_entry->stub_sec->output_offset
10084 + stub_entry->stub_sec->output_section->vma);
10085 addend = 0;
10086 }
10087
10088 if (insn != 0)
10089 {
10090 if (is_power4)
10091 {
10092 /* Set 'a' bit. This is 0b00010 in BO field for branch
10093 on CR(BI) insns (BO == 001at or 011at), and 0b01000
10094 for branch on CTR insns (BO == 1a00t or 1a01t). */
10095 if ((insn & (0x14 << 21)) == (0x04 << 21))
10096 insn |= 0x02 << 21;
10097 else if ((insn & (0x14 << 21)) == (0x10 << 21))
10098 insn |= 0x08 << 21;
10099 else
10100 break;
10101 }
10102 else
10103 {
10104 /* Invert 'y' bit if not the default. */
10105 if ((bfd_signed_vma) (relocation + rel->r_addend - from) < 0)
10106 insn ^= 0x01 << 21;
10107 }
10108
10109 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
10110 }
10111
10112 /* NOP out calls to undefined weak functions.
10113 We can thus call a weak function without first
10114 checking whether the function is defined. */
10115 else if (h != NULL
10116 && h->elf.root.type == bfd_link_hash_undefweak
10117 && r_type == R_PPC64_REL24
10118 && relocation == 0
10119 && rel->r_addend == 0)
10120 {
10121 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
10122 continue;
10123 }
10124 break;
10125 }
10126
10127 /* Set `addend'. */
10128 tls_type = 0;
10129 switch (r_type)
10130 {
10131 default:
10132 (*_bfd_error_handler)
10133 (_("%B: unknown relocation type %d for symbol %s"),
10134 input_bfd, (int) r_type, sym_name);
10135
10136 bfd_set_error (bfd_error_bad_value);
10137 ret = FALSE;
10138 continue;
10139
10140 case R_PPC64_NONE:
10141 case R_PPC64_TLS:
10142 case R_PPC64_GNU_VTINHERIT:
10143 case R_PPC64_GNU_VTENTRY:
10144 continue;
10145
10146 /* GOT16 relocations. Like an ADDR16 using the symbol's
10147 address in the GOT as relocation value instead of the
10148 symbol's value itself. Also, create a GOT entry for the
10149 symbol and put the symbol value there. */
10150 case R_PPC64_GOT_TLSGD16:
10151 case R_PPC64_GOT_TLSGD16_LO:
10152 case R_PPC64_GOT_TLSGD16_HI:
10153 case R_PPC64_GOT_TLSGD16_HA:
10154 tls_type = TLS_TLS | TLS_GD;
10155 goto dogot;
10156
10157 case R_PPC64_GOT_TLSLD16:
10158 case R_PPC64_GOT_TLSLD16_LO:
10159 case R_PPC64_GOT_TLSLD16_HI:
10160 case R_PPC64_GOT_TLSLD16_HA:
10161 tls_type = TLS_TLS | TLS_LD;
10162 goto dogot;
10163
10164 case R_PPC64_GOT_TPREL16_DS:
10165 case R_PPC64_GOT_TPREL16_LO_DS:
10166 case R_PPC64_GOT_TPREL16_HI:
10167 case R_PPC64_GOT_TPREL16_HA:
10168 tls_type = TLS_TLS | TLS_TPREL;
10169 goto dogot;
10170
10171 case R_PPC64_GOT_DTPREL16_DS:
10172 case R_PPC64_GOT_DTPREL16_LO_DS:
10173 case R_PPC64_GOT_DTPREL16_HI:
10174 case R_PPC64_GOT_DTPREL16_HA:
10175 tls_type = TLS_TLS | TLS_DTPREL;
10176 goto dogot;
10177
10178 case R_PPC64_GOT16:
10179 case R_PPC64_GOT16_LO:
10180 case R_PPC64_GOT16_HI:
10181 case R_PPC64_GOT16_HA:
10182 case R_PPC64_GOT16_DS:
10183 case R_PPC64_GOT16_LO_DS:
10184 dogot:
10185 {
10186 /* Relocation is to the entry for this symbol in the global
10187 offset table. */
10188 asection *got;
10189 bfd_vma *offp;
10190 bfd_vma off;
10191 unsigned long indx = 0;
10192
10193 if (tls_type == (TLS_TLS | TLS_LD)
10194 && (h == NULL
10195 || !h->elf.def_dynamic))
10196 offp = &ppc64_tlsld_got (input_bfd)->offset;
10197 else
10198 {
10199 struct got_entry *ent;
10200
10201 if (h != NULL)
10202 {
10203 bfd_boolean dyn = htab->elf.dynamic_sections_created;
10204 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
10205 &h->elf)
10206 || (info->shared
10207 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
10208 /* This is actually a static link, or it is a
10209 -Bsymbolic link and the symbol is defined
10210 locally, or the symbol was forced to be local
10211 because of a version file. */
10212 ;
10213 else
10214 {
10215 indx = h->elf.dynindx;
10216 unresolved_reloc = FALSE;
10217 }
10218 ent = h->elf.got.glist;
10219 }
10220 else
10221 {
10222 if (local_got_ents == NULL)
10223 abort ();
10224 ent = local_got_ents[r_symndx];
10225 }
10226
10227 for (; ent != NULL; ent = ent->next)
10228 if (ent->addend == rel->r_addend
10229 && ent->owner == input_bfd
10230 && ent->tls_type == tls_type)
10231 break;
10232 if (ent == NULL)
10233 abort ();
10234 offp = &ent->got.offset;
10235 }
10236
10237 got = ppc64_elf_tdata (input_bfd)->got;
10238 if (got == NULL)
10239 abort ();
10240
10241 /* The offset must always be a multiple of 8. We use the
10242 least significant bit to record whether we have already
10243 processed this entry. */
10244 off = *offp;
10245 if ((off & 1) != 0)
10246 off &= ~1;
10247 else
10248 {
10249 /* Generate relocs for the dynamic linker, except in
10250 the case of TLSLD where we'll use one entry per
10251 module. */
10252 asection *relgot = ppc64_elf_tdata (input_bfd)->relgot;
10253
10254 *offp = off | 1;
10255 if ((info->shared || indx != 0)
10256 && (h == NULL
10257 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10258 || h->elf.root.type != bfd_link_hash_undefweak))
10259 {
10260 outrel.r_offset = (got->output_section->vma
10261 + got->output_offset
10262 + off);
10263 outrel.r_addend = rel->r_addend;
10264 if (tls_type & (TLS_LD | TLS_GD))
10265 {
10266 outrel.r_addend = 0;
10267 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
10268 if (tls_type == (TLS_TLS | TLS_GD))
10269 {
10270 loc = relgot->contents;
10271 loc += (relgot->reloc_count++
10272 * sizeof (Elf64_External_Rela));
10273 bfd_elf64_swap_reloca_out (output_bfd,
10274 &outrel, loc);
10275 outrel.r_offset += 8;
10276 outrel.r_addend = rel->r_addend;
10277 outrel.r_info
10278 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10279 }
10280 }
10281 else if (tls_type == (TLS_TLS | TLS_DTPREL))
10282 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10283 else if (tls_type == (TLS_TLS | TLS_TPREL))
10284 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
10285 else if (indx == 0)
10286 {
10287 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_RELATIVE);
10288
10289 /* Write the .got section contents for the sake
10290 of prelink. */
10291 loc = got->contents + off;
10292 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
10293 loc);
10294 }
10295 else
10296 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
10297
10298 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
10299 {
10300 outrel.r_addend += relocation;
10301 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
10302 outrel.r_addend -= htab->elf.tls_sec->vma;
10303 }
10304 loc = relgot->contents;
10305 loc += (relgot->reloc_count++
10306 * sizeof (Elf64_External_Rela));
10307 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
10308 }
10309
10310 /* Init the .got section contents here if we're not
10311 emitting a reloc. */
10312 else
10313 {
10314 relocation += rel->r_addend;
10315 if (tls_type == (TLS_TLS | TLS_LD))
10316 relocation = 1;
10317 else if (tls_type != 0)
10318 {
10319 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
10320 if (tls_type == (TLS_TLS | TLS_TPREL))
10321 relocation += DTP_OFFSET - TP_OFFSET;
10322
10323 if (tls_type == (TLS_TLS | TLS_GD))
10324 {
10325 bfd_put_64 (output_bfd, relocation,
10326 got->contents + off + 8);
10327 relocation = 1;
10328 }
10329 }
10330
10331 bfd_put_64 (output_bfd, relocation,
10332 got->contents + off);
10333 }
10334 }
10335
10336 if (off >= (bfd_vma) -2)
10337 abort ();
10338
10339 relocation = got->output_offset + off;
10340
10341 /* TOC base (r2) is TOC start plus 0x8000. */
10342 addend = -TOC_BASE_OFF;
10343 }
10344 break;
10345
10346 case R_PPC64_PLT16_HA:
10347 case R_PPC64_PLT16_HI:
10348 case R_PPC64_PLT16_LO:
10349 case R_PPC64_PLT32:
10350 case R_PPC64_PLT64:
10351 /* Relocation is to the entry for this symbol in the
10352 procedure linkage table. */
10353
10354 /* Resolve a PLT reloc against a local symbol directly,
10355 without using the procedure linkage table. */
10356 if (h == NULL)
10357 break;
10358
10359 /* It's possible that we didn't make a PLT entry for this
10360 symbol. This happens when statically linking PIC code,
10361 or when using -Bsymbolic. Go find a match if there is a
10362 PLT entry. */
10363 if (htab->plt != NULL)
10364 {
10365 struct plt_entry *ent;
10366 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
10367 if (ent->addend == rel->r_addend
10368 && ent->plt.offset != (bfd_vma) -1)
10369 {
10370 relocation = (htab->plt->output_section->vma
10371 + htab->plt->output_offset
10372 + ent->plt.offset);
10373 unresolved_reloc = FALSE;
10374 }
10375 }
10376 break;
10377
10378 case R_PPC64_TOC:
10379 /* Relocation value is TOC base. */
10380 relocation = TOCstart;
10381 if (r_symndx == 0)
10382 relocation += htab->stub_group[input_section->id].toc_off;
10383 else if (unresolved_reloc)
10384 ;
10385 else if (sec != NULL && sec->id <= htab->top_id)
10386 relocation += htab->stub_group[sec->id].toc_off;
10387 else
10388 unresolved_reloc = TRUE;
10389 goto dodyn2;
10390
10391 /* TOC16 relocs. We want the offset relative to the TOC base,
10392 which is the address of the start of the TOC plus 0x8000.
10393 The TOC consists of sections .got, .toc, .tocbss, and .plt,
10394 in this order. */
10395 case R_PPC64_TOC16:
10396 case R_PPC64_TOC16_LO:
10397 case R_PPC64_TOC16_HI:
10398 case R_PPC64_TOC16_DS:
10399 case R_PPC64_TOC16_LO_DS:
10400 case R_PPC64_TOC16_HA:
10401 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
10402 break;
10403
10404 /* Relocate against the beginning of the section. */
10405 case R_PPC64_SECTOFF:
10406 case R_PPC64_SECTOFF_LO:
10407 case R_PPC64_SECTOFF_HI:
10408 case R_PPC64_SECTOFF_DS:
10409 case R_PPC64_SECTOFF_LO_DS:
10410 case R_PPC64_SECTOFF_HA:
10411 if (sec != NULL)
10412 addend -= sec->output_section->vma;
10413 break;
10414
10415 case R_PPC64_REL14:
10416 case R_PPC64_REL14_BRNTAKEN:
10417 case R_PPC64_REL14_BRTAKEN:
10418 case R_PPC64_REL24:
10419 break;
10420
10421 case R_PPC64_TPREL16:
10422 case R_PPC64_TPREL16_LO:
10423 case R_PPC64_TPREL16_HI:
10424 case R_PPC64_TPREL16_HA:
10425 case R_PPC64_TPREL16_DS:
10426 case R_PPC64_TPREL16_LO_DS:
10427 case R_PPC64_TPREL16_HIGHER:
10428 case R_PPC64_TPREL16_HIGHERA:
10429 case R_PPC64_TPREL16_HIGHEST:
10430 case R_PPC64_TPREL16_HIGHESTA:
10431 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10432 if (info->shared)
10433 /* The TPREL16 relocs shouldn't really be used in shared
10434 libs as they will result in DT_TEXTREL being set, but
10435 support them anyway. */
10436 goto dodyn;
10437 break;
10438
10439 case R_PPC64_DTPREL16:
10440 case R_PPC64_DTPREL16_LO:
10441 case R_PPC64_DTPREL16_HI:
10442 case R_PPC64_DTPREL16_HA:
10443 case R_PPC64_DTPREL16_DS:
10444 case R_PPC64_DTPREL16_LO_DS:
10445 case R_PPC64_DTPREL16_HIGHER:
10446 case R_PPC64_DTPREL16_HIGHERA:
10447 case R_PPC64_DTPREL16_HIGHEST:
10448 case R_PPC64_DTPREL16_HIGHESTA:
10449 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10450 break;
10451
10452 case R_PPC64_DTPMOD64:
10453 relocation = 1;
10454 addend = 0;
10455 goto dodyn;
10456
10457 case R_PPC64_TPREL64:
10458 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10459 goto dodyn;
10460
10461 case R_PPC64_DTPREL64:
10462 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10463 /* Fall thru */
10464
10465 /* Relocations that may need to be propagated if this is a
10466 dynamic object. */
10467 case R_PPC64_REL30:
10468 case R_PPC64_REL32:
10469 case R_PPC64_REL64:
10470 case R_PPC64_ADDR14:
10471 case R_PPC64_ADDR14_BRNTAKEN:
10472 case R_PPC64_ADDR14_BRTAKEN:
10473 case R_PPC64_ADDR16:
10474 case R_PPC64_ADDR16_DS:
10475 case R_PPC64_ADDR16_HA:
10476 case R_PPC64_ADDR16_HI:
10477 case R_PPC64_ADDR16_HIGHER:
10478 case R_PPC64_ADDR16_HIGHERA:
10479 case R_PPC64_ADDR16_HIGHEST:
10480 case R_PPC64_ADDR16_HIGHESTA:
10481 case R_PPC64_ADDR16_LO:
10482 case R_PPC64_ADDR16_LO_DS:
10483 case R_PPC64_ADDR24:
10484 case R_PPC64_ADDR32:
10485 case R_PPC64_ADDR64:
10486 case R_PPC64_UADDR16:
10487 case R_PPC64_UADDR32:
10488 case R_PPC64_UADDR64:
10489 /* r_symndx will be zero only for relocs against symbols
10490 from removed linkonce sections, or sections discarded by
10491 a linker script. */
10492 dodyn:
10493 if (r_symndx == 0)
10494 break;
10495 /* Fall thru. */
10496
10497 dodyn2:
10498 if ((input_section->flags & SEC_ALLOC) == 0)
10499 break;
10500
10501 if (NO_OPD_RELOCS && is_opd)
10502 break;
10503
10504 if ((info->shared
10505 && (h == NULL
10506 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10507 || h->elf.root.type != bfd_link_hash_undefweak)
10508 && (MUST_BE_DYN_RELOC (r_type)
10509 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
10510 || (ELIMINATE_COPY_RELOCS
10511 && !info->shared
10512 && h != NULL
10513 && h->elf.dynindx != -1
10514 && !h->elf.non_got_ref
10515 && h->elf.def_dynamic
10516 && !h->elf.def_regular))
10517 {
10518 Elf_Internal_Rela outrel;
10519 bfd_boolean skip, relocate;
10520 asection *sreloc;
10521 bfd_byte *loc;
10522 bfd_vma out_off;
10523
10524 /* When generating a dynamic object, these relocations
10525 are copied into the output file to be resolved at run
10526 time. */
10527
10528 skip = FALSE;
10529 relocate = FALSE;
10530
10531 out_off = _bfd_elf_section_offset (output_bfd, info,
10532 input_section, rel->r_offset);
10533 if (out_off == (bfd_vma) -1)
10534 skip = TRUE;
10535 else if (out_off == (bfd_vma) -2)
10536 skip = TRUE, relocate = TRUE;
10537 out_off += (input_section->output_section->vma
10538 + input_section->output_offset);
10539 outrel.r_offset = out_off;
10540 outrel.r_addend = rel->r_addend;
10541
10542 /* Optimize unaligned reloc use. */
10543 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
10544 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
10545 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
10546 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
10547 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
10548 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
10549 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
10550 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
10551 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
10552
10553 if (skip)
10554 memset (&outrel, 0, sizeof outrel);
10555 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
10556 && !is_opd
10557 && r_type != R_PPC64_TOC)
10558 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
10559 else
10560 {
10561 /* This symbol is local, or marked to become local,
10562 or this is an opd section reloc which must point
10563 at a local function. */
10564 outrel.r_addend += relocation;
10565 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
10566 {
10567 if (is_opd && h != NULL)
10568 {
10569 /* Lie about opd entries. This case occurs
10570 when building shared libraries and we
10571 reference a function in another shared
10572 lib. The same thing happens for a weak
10573 definition in an application that's
10574 overridden by a strong definition in a
10575 shared lib. (I believe this is a generic
10576 bug in binutils handling of weak syms.)
10577 In these cases we won't use the opd
10578 entry in this lib. */
10579 unresolved_reloc = FALSE;
10580 }
10581 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10582
10583 /* We need to relocate .opd contents for ld.so.
10584 Prelink also wants simple and consistent rules
10585 for relocs. This make all RELATIVE relocs have
10586 *r_offset equal to r_addend. */
10587 relocate = TRUE;
10588 }
10589 else
10590 {
10591 long indx = 0;
10592
10593 if (bfd_is_abs_section (sec))
10594 ;
10595 else if (sec == NULL || sec->owner == NULL)
10596 {
10597 bfd_set_error (bfd_error_bad_value);
10598 return FALSE;
10599 }
10600 else
10601 {
10602 asection *osec;
10603
10604 osec = sec->output_section;
10605 indx = elf_section_data (osec)->dynindx;
10606
10607 /* We are turning this relocation into one
10608 against a section symbol, so subtract out
10609 the output section's address but not the
10610 offset of the input section in the output
10611 section. */
10612 outrel.r_addend -= osec->vma;
10613 }
10614
10615 outrel.r_info = ELF64_R_INFO (indx, r_type);
10616 }
10617 }
10618
10619 sreloc = elf_section_data (input_section)->sreloc;
10620 if (sreloc == NULL)
10621 abort ();
10622
10623 loc = sreloc->contents;
10624 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
10625 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
10626
10627 /* If this reloc is against an external symbol, it will
10628 be computed at runtime, so there's no need to do
10629 anything now. However, for the sake of prelink ensure
10630 that the section contents are a known value. */
10631 if (! relocate)
10632 {
10633 unresolved_reloc = FALSE;
10634 /* The value chosen here is quite arbitrary as ld.so
10635 ignores section contents except for the special
10636 case of .opd where the contents might be accessed
10637 before relocation. Choose zero, as that won't
10638 cause reloc overflow. */
10639 relocation = 0;
10640 addend = 0;
10641 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
10642 to improve backward compatibility with older
10643 versions of ld. */
10644 if (r_type == R_PPC64_ADDR64)
10645 addend = outrel.r_addend;
10646 /* Adjust pc_relative relocs to have zero in *r_offset. */
10647 else if (ppc64_elf_howto_table[r_type]->pc_relative)
10648 addend = (input_section->output_section->vma
10649 + input_section->output_offset
10650 + rel->r_offset);
10651 }
10652 }
10653 break;
10654
10655 case R_PPC64_COPY:
10656 case R_PPC64_GLOB_DAT:
10657 case R_PPC64_JMP_SLOT:
10658 case R_PPC64_RELATIVE:
10659 /* We shouldn't ever see these dynamic relocs in relocatable
10660 files. */
10661 /* Fall through. */
10662
10663 case R_PPC64_PLTGOT16:
10664 case R_PPC64_PLTGOT16_DS:
10665 case R_PPC64_PLTGOT16_HA:
10666 case R_PPC64_PLTGOT16_HI:
10667 case R_PPC64_PLTGOT16_LO:
10668 case R_PPC64_PLTGOT16_LO_DS:
10669 case R_PPC64_PLTREL32:
10670 case R_PPC64_PLTREL64:
10671 /* These ones haven't been implemented yet. */
10672
10673 (*_bfd_error_handler)
10674 (_("%B: relocation %s is not supported for symbol %s."),
10675 input_bfd,
10676 ppc64_elf_howto_table[r_type]->name, sym_name);
10677
10678 bfd_set_error (bfd_error_invalid_operation);
10679 ret = FALSE;
10680 continue;
10681 }
10682
10683 /* Do any further special processing. */
10684 switch (r_type)
10685 {
10686 default:
10687 break;
10688
10689 case R_PPC64_ADDR16_HA:
10690 case R_PPC64_ADDR16_HIGHERA:
10691 case R_PPC64_ADDR16_HIGHESTA:
10692 case R_PPC64_GOT16_HA:
10693 case R_PPC64_PLTGOT16_HA:
10694 case R_PPC64_PLT16_HA:
10695 case R_PPC64_TOC16_HA:
10696 case R_PPC64_SECTOFF_HA:
10697 case R_PPC64_TPREL16_HA:
10698 case R_PPC64_DTPREL16_HA:
10699 case R_PPC64_GOT_TLSGD16_HA:
10700 case R_PPC64_GOT_TLSLD16_HA:
10701 case R_PPC64_GOT_TPREL16_HA:
10702 case R_PPC64_GOT_DTPREL16_HA:
10703 case R_PPC64_TPREL16_HIGHER:
10704 case R_PPC64_TPREL16_HIGHERA:
10705 case R_PPC64_TPREL16_HIGHEST:
10706 case R_PPC64_TPREL16_HIGHESTA:
10707 case R_PPC64_DTPREL16_HIGHER:
10708 case R_PPC64_DTPREL16_HIGHERA:
10709 case R_PPC64_DTPREL16_HIGHEST:
10710 case R_PPC64_DTPREL16_HIGHESTA:
10711 /* It's just possible that this symbol is a weak symbol
10712 that's not actually defined anywhere. In that case,
10713 'sec' would be NULL, and we should leave the symbol
10714 alone (it will be set to zero elsewhere in the link). */
10715 if (sec != NULL)
10716 /* Add 0x10000 if sign bit in 0:15 is set.
10717 Bits 0:15 are not used. */
10718 addend += 0x8000;
10719 break;
10720
10721 case R_PPC64_ADDR16_DS:
10722 case R_PPC64_ADDR16_LO_DS:
10723 case R_PPC64_GOT16_DS:
10724 case R_PPC64_GOT16_LO_DS:
10725 case R_PPC64_PLT16_LO_DS:
10726 case R_PPC64_SECTOFF_DS:
10727 case R_PPC64_SECTOFF_LO_DS:
10728 case R_PPC64_TOC16_DS:
10729 case R_PPC64_TOC16_LO_DS:
10730 case R_PPC64_PLTGOT16_DS:
10731 case R_PPC64_PLTGOT16_LO_DS:
10732 case R_PPC64_GOT_TPREL16_DS:
10733 case R_PPC64_GOT_TPREL16_LO_DS:
10734 case R_PPC64_GOT_DTPREL16_DS:
10735 case R_PPC64_GOT_DTPREL16_LO_DS:
10736 case R_PPC64_TPREL16_DS:
10737 case R_PPC64_TPREL16_LO_DS:
10738 case R_PPC64_DTPREL16_DS:
10739 case R_PPC64_DTPREL16_LO_DS:
10740 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
10741 mask = 3;
10742 /* If this reloc is against an lq insn, then the value must be
10743 a multiple of 16. This is somewhat of a hack, but the
10744 "correct" way to do this by defining _DQ forms of all the
10745 _DS relocs bloats all reloc switches in this file. It
10746 doesn't seem to make much sense to use any of these relocs
10747 in data, so testing the insn should be safe. */
10748 if ((insn & (0x3f << 26)) == (56u << 26))
10749 mask = 15;
10750 if (((relocation + addend) & mask) != 0)
10751 {
10752 (*_bfd_error_handler)
10753 (_("%B: error: relocation %s not a multiple of %d"),
10754 input_bfd,
10755 ppc64_elf_howto_table[r_type]->name,
10756 mask + 1);
10757 bfd_set_error (bfd_error_bad_value);
10758 ret = FALSE;
10759 continue;
10760 }
10761 break;
10762 }
10763
10764 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10765 because such sections are not SEC_ALLOC and thus ld.so will
10766 not process them. */
10767 if (unresolved_reloc
10768 && !((input_section->flags & SEC_DEBUGGING) != 0
10769 && h->elf.def_dynamic))
10770 {
10771 (*_bfd_error_handler)
10772 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10773 input_bfd,
10774 input_section,
10775 (long) rel->r_offset,
10776 ppc64_elf_howto_table[(int) r_type]->name,
10777 h->elf.root.root.string);
10778 ret = FALSE;
10779 }
10780
10781 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
10782 input_bfd,
10783 input_section,
10784 contents,
10785 rel->r_offset,
10786 relocation,
10787 addend);
10788
10789 if (r != bfd_reloc_ok)
10790 {
10791 if (sym_name == NULL)
10792 sym_name = "(null)";
10793 if (r == bfd_reloc_overflow)
10794 {
10795 if (warned)
10796 continue;
10797 if (h != NULL
10798 && h->elf.root.type == bfd_link_hash_undefweak
10799 && ppc64_elf_howto_table[r_type]->pc_relative)
10800 {
10801 /* Assume this is a call protected by other code that
10802 detects the symbol is undefined. If this is the case,
10803 we can safely ignore the overflow. If not, the
10804 program is hosed anyway, and a little warning isn't
10805 going to help. */
10806
10807 continue;
10808 }
10809
10810 if (!((*info->callbacks->reloc_overflow)
10811 (info, (h ? &h->elf.root : NULL), sym_name,
10812 ppc64_elf_howto_table[r_type]->name,
10813 rel->r_addend, input_bfd, input_section, rel->r_offset)))
10814 return FALSE;
10815 }
10816 else
10817 {
10818 (*_bfd_error_handler)
10819 (_("%B(%A+0x%lx): %s reloc against `%s': error %d"),
10820 input_bfd,
10821 input_section,
10822 (long) rel->r_offset,
10823 ppc64_elf_howto_table[r_type]->name,
10824 sym_name,
10825 (int) r);
10826 ret = FALSE;
10827 }
10828 }
10829 }
10830
10831 /* If we're emitting relocations, then shortly after this function
10832 returns, reloc offsets and addends for this section will be
10833 adjusted. Worse, reloc symbol indices will be for the output
10834 file rather than the input. Save a copy of the relocs for
10835 opd_entry_value. */
10836 if (is_opd && info->emitrelocations)
10837 {
10838 bfd_size_type amt;
10839 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
10840 rel = bfd_alloc (input_bfd, amt);
10841 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL);
10842 ppc64_elf_tdata (input_bfd)->opd_relocs = rel;
10843 if (rel == NULL)
10844 return FALSE;
10845 memcpy (rel, relocs, amt);
10846 }
10847 return ret;
10848 }
10849
10850 /* Adjust the value of any local symbols in opd sections. */
10851
10852 static bfd_boolean
10853 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
10854 const char *name ATTRIBUTE_UNUSED,
10855 Elf_Internal_Sym *elfsym,
10856 asection *input_sec,
10857 struct elf_link_hash_entry *h)
10858 {
10859 long *opd_adjust, adjust;
10860 bfd_vma value;
10861
10862 if (h != NULL)
10863 return TRUE;
10864
10865 opd_adjust = get_opd_info (input_sec);
10866 if (opd_adjust == NULL)
10867 return TRUE;
10868
10869 value = elfsym->st_value - input_sec->output_offset;
10870 if (!info->relocatable)
10871 value -= input_sec->output_section->vma;
10872
10873 adjust = opd_adjust[value / 8];
10874 if (adjust == -1)
10875 elfsym->st_value = 0;
10876 else
10877 elfsym->st_value += adjust;
10878 return TRUE;
10879 }
10880
10881 /* Finish up dynamic symbol handling. We set the contents of various
10882 dynamic sections here. */
10883
10884 static bfd_boolean
10885 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
10886 struct bfd_link_info *info,
10887 struct elf_link_hash_entry *h,
10888 Elf_Internal_Sym *sym)
10889 {
10890 struct ppc_link_hash_table *htab;
10891 bfd *dynobj;
10892 struct plt_entry *ent;
10893 Elf_Internal_Rela rela;
10894 bfd_byte *loc;
10895
10896 htab = ppc_hash_table (info);
10897 dynobj = htab->elf.dynobj;
10898
10899 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
10900 if (ent->plt.offset != (bfd_vma) -1)
10901 {
10902 /* This symbol has an entry in the procedure linkage
10903 table. Set it up. */
10904
10905 if (htab->plt == NULL
10906 || htab->relplt == NULL
10907 || htab->glink == NULL)
10908 abort ();
10909
10910 /* Create a JMP_SLOT reloc to inform the dynamic linker to
10911 fill in the PLT entry. */
10912 rela.r_offset = (htab->plt->output_section->vma
10913 + htab->plt->output_offset
10914 + ent->plt.offset);
10915 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
10916 rela.r_addend = ent->addend;
10917
10918 loc = htab->relplt->contents;
10919 loc += ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE
10920 * sizeof (Elf64_External_Rela));
10921 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10922 }
10923
10924 if (h->needs_copy)
10925 {
10926 Elf_Internal_Rela rela;
10927 bfd_byte *loc;
10928
10929 /* This symbol needs a copy reloc. Set it up. */
10930
10931 if (h->dynindx == -1
10932 || (h->root.type != bfd_link_hash_defined
10933 && h->root.type != bfd_link_hash_defweak)
10934 || htab->relbss == NULL)
10935 abort ();
10936
10937 rela.r_offset = (h->root.u.def.value
10938 + h->root.u.def.section->output_section->vma
10939 + h->root.u.def.section->output_offset);
10940 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
10941 rela.r_addend = 0;
10942 loc = htab->relbss->contents;
10943 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
10944 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10945 }
10946
10947 /* Mark some specially defined symbols as absolute. */
10948 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
10949 sym->st_shndx = SHN_ABS;
10950
10951 return TRUE;
10952 }
10953
10954 /* Used to decide how to sort relocs in an optimal manner for the
10955 dynamic linker, before writing them out. */
10956
10957 static enum elf_reloc_type_class
10958 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
10959 {
10960 enum elf_ppc64_reloc_type r_type;
10961
10962 r_type = ELF64_R_TYPE (rela->r_info);
10963 switch (r_type)
10964 {
10965 case R_PPC64_RELATIVE:
10966 return reloc_class_relative;
10967 case R_PPC64_JMP_SLOT:
10968 return reloc_class_plt;
10969 case R_PPC64_COPY:
10970 return reloc_class_copy;
10971 default:
10972 return reloc_class_normal;
10973 }
10974 }
10975
10976 /* Finish up the dynamic sections. */
10977
10978 static bfd_boolean
10979 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
10980 struct bfd_link_info *info)
10981 {
10982 struct ppc_link_hash_table *htab;
10983 bfd *dynobj;
10984 asection *sdyn;
10985
10986 htab = ppc_hash_table (info);
10987 dynobj = htab->elf.dynobj;
10988 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10989
10990 if (htab->elf.dynamic_sections_created)
10991 {
10992 Elf64_External_Dyn *dyncon, *dynconend;
10993
10994 if (sdyn == NULL || htab->got == NULL)
10995 abort ();
10996
10997 dyncon = (Elf64_External_Dyn *) sdyn->contents;
10998 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
10999 for (; dyncon < dynconend; dyncon++)
11000 {
11001 Elf_Internal_Dyn dyn;
11002 asection *s;
11003
11004 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
11005
11006 switch (dyn.d_tag)
11007 {
11008 default:
11009 continue;
11010
11011 case DT_PPC64_GLINK:
11012 s = htab->glink;
11013 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11014 /* We stupidly defined DT_PPC64_GLINK to be the start
11015 of glink rather than the first entry point, which is
11016 what ld.so needs, and now have a bigger stub to
11017 support automatic multiple TOCs. */
11018 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
11019 break;
11020
11021 case DT_PPC64_OPD:
11022 s = bfd_get_section_by_name (output_bfd, ".opd");
11023 if (s == NULL)
11024 continue;
11025 dyn.d_un.d_ptr = s->vma;
11026 break;
11027
11028 case DT_PPC64_OPDSZ:
11029 s = bfd_get_section_by_name (output_bfd, ".opd");
11030 if (s == NULL)
11031 continue;
11032 dyn.d_un.d_val = s->size;
11033 break;
11034
11035 case DT_PLTGOT:
11036 s = htab->plt;
11037 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11038 break;
11039
11040 case DT_JMPREL:
11041 s = htab->relplt;
11042 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11043 break;
11044
11045 case DT_PLTRELSZ:
11046 dyn.d_un.d_val = htab->relplt->size;
11047 break;
11048
11049 case DT_RELASZ:
11050 /* Don't count procedure linkage table relocs in the
11051 overall reloc count. */
11052 s = htab->relplt;
11053 if (s == NULL)
11054 continue;
11055 dyn.d_un.d_val -= s->size;
11056 break;
11057
11058 case DT_RELA:
11059 /* We may not be using the standard ELF linker script.
11060 If .rela.plt is the first .rela section, we adjust
11061 DT_RELA to not include it. */
11062 s = htab->relplt;
11063 if (s == NULL)
11064 continue;
11065 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
11066 continue;
11067 dyn.d_un.d_ptr += s->size;
11068 break;
11069 }
11070
11071 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
11072 }
11073 }
11074
11075 if (htab->got != NULL && htab->got->size != 0)
11076 {
11077 /* Fill in the first entry in the global offset table.
11078 We use it to hold the link-time TOCbase. */
11079 bfd_put_64 (output_bfd,
11080 elf_gp (output_bfd) + TOC_BASE_OFF,
11081 htab->got->contents);
11082
11083 /* Set .got entry size. */
11084 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
11085 }
11086
11087 if (htab->plt != NULL && htab->plt->size != 0)
11088 {
11089 /* Set .plt entry size. */
11090 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
11091 = PLT_ENTRY_SIZE;
11092 }
11093
11094 /* We need to handle writing out multiple GOT sections ourselves,
11095 since we didn't add them to DYNOBJ. We know dynobj is the first
11096 bfd. */
11097 while ((dynobj = dynobj->link_next) != NULL)
11098 {
11099 asection *s;
11100
11101 if (!is_ppc64_elf_target (dynobj->xvec))
11102 continue;
11103
11104 s = ppc64_elf_tdata (dynobj)->got;
11105 if (s != NULL
11106 && s->size != 0
11107 && s->output_section != bfd_abs_section_ptr
11108 && !bfd_set_section_contents (output_bfd, s->output_section,
11109 s->contents, s->output_offset,
11110 s->size))
11111 return FALSE;
11112 s = ppc64_elf_tdata (dynobj)->relgot;
11113 if (s != NULL
11114 && s->size != 0
11115 && s->output_section != bfd_abs_section_ptr
11116 && !bfd_set_section_contents (output_bfd, s->output_section,
11117 s->contents, s->output_offset,
11118 s->size))
11119 return FALSE;
11120 }
11121
11122 return TRUE;
11123 }
11124
11125 #include "elf64-target.h"
This page took 0.345477 seconds and 4 git commands to generate.