gdb/testsuite/
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24
25 /* The 64-bit PowerPC ELF ABI may be found at
26 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
27 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
28
29 #include "sysdep.h"
30 #include <stdarg.h>
31 #include "bfd.h"
32 #include "bfdlink.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/ppc64.h"
36 #include "elf64-ppc.h"
37 #include "dwarf2.h"
38
39 static bfd_reloc_status_type ppc64_elf_ha_reloc
40 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
41 static bfd_reloc_status_type ppc64_elf_branch_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
44 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
45 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
46 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
47 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
48 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
49 static bfd_reloc_status_type ppc64_elf_toc_reloc
50 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
51 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
52 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
53 static bfd_reloc_status_type ppc64_elf_toc64_reloc
54 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
55 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
56 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
57 static bfd_vma opd_entry_value
58 (asection *, bfd_vma, asection **, bfd_vma *);
59
60 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
61 #define TARGET_LITTLE_NAME "elf64-powerpcle"
62 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
63 #define TARGET_BIG_NAME "elf64-powerpc"
64 #define ELF_ARCH bfd_arch_powerpc
65 #define ELF_TARGET_ID PPC64_ELF_DATA
66 #define ELF_MACHINE_CODE EM_PPC64
67 #define ELF_MAXPAGESIZE 0x10000
68 #define ELF_COMMONPAGESIZE 0x1000
69 #define elf_info_to_howto ppc64_elf_info_to_howto
70
71 #define elf_backend_want_got_sym 0
72 #define elf_backend_want_plt_sym 0
73 #define elf_backend_plt_alignment 3
74 #define elf_backend_plt_not_loaded 1
75 #define elf_backend_got_header_size 8
76 #define elf_backend_can_gc_sections 1
77 #define elf_backend_can_refcount 1
78 #define elf_backend_rela_normal 1
79 #define elf_backend_default_execstack 0
80
81 #define bfd_elf64_mkobject ppc64_elf_mkobject
82 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
83 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
84 #define bfd_elf64_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
88 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
89 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
90
91 #define elf_backend_object_p ppc64_elf_object_p
92 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
93 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
94 #define elf_backend_write_core_note ppc64_elf_write_core_note
95 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
96 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
97 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
98 #define elf_backend_check_directives ppc64_elf_process_dot_syms
99 #define elf_backend_as_needed_cleanup ppc64_elf_as_needed_cleanup
100 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
101 #define elf_backend_check_relocs ppc64_elf_check_relocs
102 #define elf_backend_gc_keep ppc64_elf_gc_keep
103 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
104 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
105 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
106 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
107 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
108 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
109 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
110 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_post_process_headers _bfd_elf_set_osabi
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE 24
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
130
131 /* TOC base pointers offset from start of TOC. */
132 #define TOC_BASE_OFF 0x8000
133
134 /* Offset of tp and dtp pointers from start of TLS block. */
135 #define TP_OFFSET 0x7000
136 #define DTP_OFFSET 0x8000
137
138 /* .plt call stub instructions. The normal stub is like this, but
139 sometimes the .plt entry crosses a 64k boundary and we need to
140 insert an addi to adjust r12. */
141 #define PLT_CALL_STUB_SIZE (7*4)
142 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
143 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
144 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
145 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
146 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
147 /* ld %r11,xxx+16@l(%r12) */
148 #define BCTR 0x4e800420 /* bctr */
149
150
151 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,off@ha */
152 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
153 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
154 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
155
156 #define XOR_R11_R11_R11 0x7d6b5a78 /* xor %r11,%r11,%r11 */
157 #define ADD_R12_R12_R11 0x7d8c5a14 /* add %r12,%r12,%r11 */
158 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
159 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
160 #define BNECTR 0x4ca20420 /* bnectr+ */
161 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
162
163 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
164 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
165
166 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
167
168 /* glink call stub instructions. We enter with the index in R0. */
169 #define GLINK_CALL_STUB_SIZE (16*4)
170 /* 0: */
171 /* .quad plt0-1f */
172 /* __glink: */
173 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
174 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
175 /* 1: */
176 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
177 #define LD_R2_M16R11 0xe84bfff0 /* ld %2,(0b-1b)(%11) */
178 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
179 #define ADD_R12_R2_R11 0x7d825a14 /* add %12,%2,%11 */
180 /* ld %11,0(%12) */
181 /* ld %2,8(%12) */
182 /* mtctr %11 */
183 /* ld %11,16(%12) */
184 /* bctr */
185
186 /* Pad with this. */
187 #define NOP 0x60000000
188
189 /* Some other nops. */
190 #define CROR_151515 0x4def7b82
191 #define CROR_313131 0x4ffffb82
192
193 /* .glink entries for the first 32k functions are two instructions. */
194 #define LI_R0_0 0x38000000 /* li %r0,0 */
195 #define B_DOT 0x48000000 /* b . */
196
197 /* After that, we need two instructions to load the index, followed by
198 a branch. */
199 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
200 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
201
202 /* Instructions used by the save and restore reg functions. */
203 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
204 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
205 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
206 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
207 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
208 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
209 #define LI_R12_0 0x39800000 /* li %r12,0 */
210 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
211 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
212 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
213 #define BLR 0x4e800020 /* blr */
214
215 /* Since .opd is an array of descriptors and each entry will end up
216 with identical R_PPC64_RELATIVE relocs, there is really no need to
217 propagate .opd relocs; The dynamic linker should be taught to
218 relocate .opd without reloc entries. */
219 #ifndef NO_OPD_RELOCS
220 #define NO_OPD_RELOCS 0
221 #endif
222 \f
223 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
224
225 /* Relocation HOWTO's. */
226 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
227
228 static reloc_howto_type ppc64_elf_howto_raw[] = {
229 /* This reloc does nothing. */
230 HOWTO (R_PPC64_NONE, /* type */
231 0, /* rightshift */
232 2, /* size (0 = byte, 1 = short, 2 = long) */
233 32, /* bitsize */
234 FALSE, /* pc_relative */
235 0, /* bitpos */
236 complain_overflow_dont, /* complain_on_overflow */
237 bfd_elf_generic_reloc, /* special_function */
238 "R_PPC64_NONE", /* name */
239 FALSE, /* partial_inplace */
240 0, /* src_mask */
241 0, /* dst_mask */
242 FALSE), /* pcrel_offset */
243
244 /* A standard 32 bit relocation. */
245 HOWTO (R_PPC64_ADDR32, /* type */
246 0, /* rightshift */
247 2, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_bitfield, /* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_PPC64_ADDR32", /* name */
254 FALSE, /* partial_inplace */
255 0, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 /* An absolute 26 bit branch; the lower two bits must be zero.
260 FIXME: we don't check that, we just clear them. */
261 HOWTO (R_PPC64_ADDR24, /* type */
262 0, /* rightshift */
263 2, /* size (0 = byte, 1 = short, 2 = long) */
264 26, /* bitsize */
265 FALSE, /* pc_relative */
266 0, /* bitpos */
267 complain_overflow_bitfield, /* complain_on_overflow */
268 bfd_elf_generic_reloc, /* special_function */
269 "R_PPC64_ADDR24", /* name */
270 FALSE, /* partial_inplace */
271 0, /* src_mask */
272 0x03fffffc, /* dst_mask */
273 FALSE), /* pcrel_offset */
274
275 /* A standard 16 bit relocation. */
276 HOWTO (R_PPC64_ADDR16, /* type */
277 0, /* rightshift */
278 1, /* size (0 = byte, 1 = short, 2 = long) */
279 16, /* bitsize */
280 FALSE, /* pc_relative */
281 0, /* bitpos */
282 complain_overflow_bitfield, /* complain_on_overflow */
283 bfd_elf_generic_reloc, /* special_function */
284 "R_PPC64_ADDR16", /* name */
285 FALSE, /* partial_inplace */
286 0, /* src_mask */
287 0xffff, /* dst_mask */
288 FALSE), /* pcrel_offset */
289
290 /* A 16 bit relocation without overflow. */
291 HOWTO (R_PPC64_ADDR16_LO, /* type */
292 0, /* rightshift */
293 1, /* size (0 = byte, 1 = short, 2 = long) */
294 16, /* bitsize */
295 FALSE, /* pc_relative */
296 0, /* bitpos */
297 complain_overflow_dont,/* complain_on_overflow */
298 bfd_elf_generic_reloc, /* special_function */
299 "R_PPC64_ADDR16_LO", /* name */
300 FALSE, /* partial_inplace */
301 0, /* src_mask */
302 0xffff, /* dst_mask */
303 FALSE), /* pcrel_offset */
304
305 /* Bits 16-31 of an address. */
306 HOWTO (R_PPC64_ADDR16_HI, /* type */
307 16, /* rightshift */
308 1, /* size (0 = byte, 1 = short, 2 = long) */
309 16, /* bitsize */
310 FALSE, /* pc_relative */
311 0, /* bitpos */
312 complain_overflow_dont, /* complain_on_overflow */
313 bfd_elf_generic_reloc, /* special_function */
314 "R_PPC64_ADDR16_HI", /* name */
315 FALSE, /* partial_inplace */
316 0, /* src_mask */
317 0xffff, /* dst_mask */
318 FALSE), /* pcrel_offset */
319
320 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
321 bits, treated as a signed number, is negative. */
322 HOWTO (R_PPC64_ADDR16_HA, /* type */
323 16, /* rightshift */
324 1, /* size (0 = byte, 1 = short, 2 = long) */
325 16, /* bitsize */
326 FALSE, /* pc_relative */
327 0, /* bitpos */
328 complain_overflow_dont, /* complain_on_overflow */
329 ppc64_elf_ha_reloc, /* special_function */
330 "R_PPC64_ADDR16_HA", /* name */
331 FALSE, /* partial_inplace */
332 0, /* src_mask */
333 0xffff, /* dst_mask */
334 FALSE), /* pcrel_offset */
335
336 /* An absolute 16 bit branch; the lower two bits must be zero.
337 FIXME: we don't check that, we just clear them. */
338 HOWTO (R_PPC64_ADDR14, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 16, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield, /* complain_on_overflow */
345 ppc64_elf_branch_reloc, /* special_function */
346 "R_PPC64_ADDR14", /* name */
347 FALSE, /* partial_inplace */
348 0, /* src_mask */
349 0x0000fffc, /* dst_mask */
350 FALSE), /* pcrel_offset */
351
352 /* An absolute 16 bit branch, for which bit 10 should be set to
353 indicate that the branch is expected to be taken. The lower two
354 bits must be zero. */
355 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
356 0, /* rightshift */
357 2, /* size (0 = byte, 1 = short, 2 = long) */
358 16, /* bitsize */
359 FALSE, /* pc_relative */
360 0, /* bitpos */
361 complain_overflow_bitfield, /* complain_on_overflow */
362 ppc64_elf_brtaken_reloc, /* special_function */
363 "R_PPC64_ADDR14_BRTAKEN",/* name */
364 FALSE, /* partial_inplace */
365 0, /* src_mask */
366 0x0000fffc, /* dst_mask */
367 FALSE), /* pcrel_offset */
368
369 /* An absolute 16 bit branch, for which bit 10 should be set to
370 indicate that the branch is not expected to be taken. The lower
371 two bits must be zero. */
372 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 16, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield, /* complain_on_overflow */
379 ppc64_elf_brtaken_reloc, /* special_function */
380 "R_PPC64_ADDR14_BRNTAKEN",/* name */
381 FALSE, /* partial_inplace */
382 0, /* src_mask */
383 0x0000fffc, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 /* A relative 26 bit branch; the lower two bits must be zero. */
387 HOWTO (R_PPC64_REL24, /* type */
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 26, /* bitsize */
391 TRUE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_signed, /* complain_on_overflow */
394 ppc64_elf_branch_reloc, /* special_function */
395 "R_PPC64_REL24", /* name */
396 FALSE, /* partial_inplace */
397 0, /* src_mask */
398 0x03fffffc, /* dst_mask */
399 TRUE), /* pcrel_offset */
400
401 /* A relative 16 bit branch; the lower two bits must be zero. */
402 HOWTO (R_PPC64_REL14, /* type */
403 0, /* rightshift */
404 2, /* size (0 = byte, 1 = short, 2 = long) */
405 16, /* bitsize */
406 TRUE, /* pc_relative */
407 0, /* bitpos */
408 complain_overflow_signed, /* complain_on_overflow */
409 ppc64_elf_branch_reloc, /* special_function */
410 "R_PPC64_REL14", /* name */
411 FALSE, /* partial_inplace */
412 0, /* src_mask */
413 0x0000fffc, /* dst_mask */
414 TRUE), /* pcrel_offset */
415
416 /* A relative 16 bit branch. Bit 10 should be set to indicate that
417 the branch is expected to be taken. The lower two bits must be
418 zero. */
419 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 16, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 ppc64_elf_brtaken_reloc, /* special_function */
427 "R_PPC64_REL14_BRTAKEN", /* name */
428 FALSE, /* partial_inplace */
429 0, /* src_mask */
430 0x0000fffc, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 /* A relative 16 bit branch. Bit 10 should be set to indicate that
434 the branch is not expected to be taken. The lower two bits must
435 be zero. */
436 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
437 0, /* rightshift */
438 2, /* size (0 = byte, 1 = short, 2 = long) */
439 16, /* bitsize */
440 TRUE, /* pc_relative */
441 0, /* bitpos */
442 complain_overflow_signed, /* complain_on_overflow */
443 ppc64_elf_brtaken_reloc, /* special_function */
444 "R_PPC64_REL14_BRNTAKEN",/* name */
445 FALSE, /* partial_inplace */
446 0, /* src_mask */
447 0x0000fffc, /* dst_mask */
448 TRUE), /* pcrel_offset */
449
450 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
451 symbol. */
452 HOWTO (R_PPC64_GOT16, /* type */
453 0, /* rightshift */
454 1, /* size (0 = byte, 1 = short, 2 = long) */
455 16, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_signed, /* complain_on_overflow */
459 ppc64_elf_unhandled_reloc, /* special_function */
460 "R_PPC64_GOT16", /* name */
461 FALSE, /* partial_inplace */
462 0, /* src_mask */
463 0xffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465
466 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
467 the symbol. */
468 HOWTO (R_PPC64_GOT16_LO, /* type */
469 0, /* rightshift */
470 1, /* size (0 = byte, 1 = short, 2 = long) */
471 16, /* bitsize */
472 FALSE, /* pc_relative */
473 0, /* bitpos */
474 complain_overflow_dont, /* complain_on_overflow */
475 ppc64_elf_unhandled_reloc, /* special_function */
476 "R_PPC64_GOT16_LO", /* name */
477 FALSE, /* partial_inplace */
478 0, /* src_mask */
479 0xffff, /* dst_mask */
480 FALSE), /* pcrel_offset */
481
482 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
483 the symbol. */
484 HOWTO (R_PPC64_GOT16_HI, /* type */
485 16, /* rightshift */
486 1, /* size (0 = byte, 1 = short, 2 = long) */
487 16, /* bitsize */
488 FALSE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_dont,/* complain_on_overflow */
491 ppc64_elf_unhandled_reloc, /* special_function */
492 "R_PPC64_GOT16_HI", /* name */
493 FALSE, /* partial_inplace */
494 0, /* src_mask */
495 0xffff, /* dst_mask */
496 FALSE), /* pcrel_offset */
497
498 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
499 the symbol. */
500 HOWTO (R_PPC64_GOT16_HA, /* type */
501 16, /* rightshift */
502 1, /* size (0 = byte, 1 = short, 2 = long) */
503 16, /* bitsize */
504 FALSE, /* pc_relative */
505 0, /* bitpos */
506 complain_overflow_dont,/* complain_on_overflow */
507 ppc64_elf_unhandled_reloc, /* special_function */
508 "R_PPC64_GOT16_HA", /* name */
509 FALSE, /* partial_inplace */
510 0, /* src_mask */
511 0xffff, /* dst_mask */
512 FALSE), /* pcrel_offset */
513
514 /* This is used only by the dynamic linker. The symbol should exist
515 both in the object being run and in some shared library. The
516 dynamic linker copies the data addressed by the symbol from the
517 shared library into the object, because the object being
518 run has to have the data at some particular address. */
519 HOWTO (R_PPC64_COPY, /* type */
520 0, /* rightshift */
521 0, /* this one is variable size */
522 0, /* bitsize */
523 FALSE, /* pc_relative */
524 0, /* bitpos */
525 complain_overflow_dont, /* complain_on_overflow */
526 ppc64_elf_unhandled_reloc, /* special_function */
527 "R_PPC64_COPY", /* name */
528 FALSE, /* partial_inplace */
529 0, /* src_mask */
530 0, /* dst_mask */
531 FALSE), /* pcrel_offset */
532
533 /* Like R_PPC64_ADDR64, but used when setting global offset table
534 entries. */
535 HOWTO (R_PPC64_GLOB_DAT, /* type */
536 0, /* rightshift */
537 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
538 64, /* bitsize */
539 FALSE, /* pc_relative */
540 0, /* bitpos */
541 complain_overflow_dont, /* complain_on_overflow */
542 ppc64_elf_unhandled_reloc, /* special_function */
543 "R_PPC64_GLOB_DAT", /* name */
544 FALSE, /* partial_inplace */
545 0, /* src_mask */
546 ONES (64), /* dst_mask */
547 FALSE), /* pcrel_offset */
548
549 /* Created by the link editor. Marks a procedure linkage table
550 entry for a symbol. */
551 HOWTO (R_PPC64_JMP_SLOT, /* type */
552 0, /* rightshift */
553 0, /* size (0 = byte, 1 = short, 2 = long) */
554 0, /* bitsize */
555 FALSE, /* pc_relative */
556 0, /* bitpos */
557 complain_overflow_dont, /* complain_on_overflow */
558 ppc64_elf_unhandled_reloc, /* special_function */
559 "R_PPC64_JMP_SLOT", /* name */
560 FALSE, /* partial_inplace */
561 0, /* src_mask */
562 0, /* dst_mask */
563 FALSE), /* pcrel_offset */
564
565 /* Used only by the dynamic linker. When the object is run, this
566 doubleword64 is set to the load address of the object, plus the
567 addend. */
568 HOWTO (R_PPC64_RELATIVE, /* type */
569 0, /* rightshift */
570 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
571 64, /* bitsize */
572 FALSE, /* pc_relative */
573 0, /* bitpos */
574 complain_overflow_dont, /* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_PPC64_RELATIVE", /* name */
577 FALSE, /* partial_inplace */
578 0, /* src_mask */
579 ONES (64), /* dst_mask */
580 FALSE), /* pcrel_offset */
581
582 /* Like R_PPC64_ADDR32, but may be unaligned. */
583 HOWTO (R_PPC64_UADDR32, /* type */
584 0, /* rightshift */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
586 32, /* bitsize */
587 FALSE, /* pc_relative */
588 0, /* bitpos */
589 complain_overflow_bitfield, /* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_PPC64_UADDR32", /* name */
592 FALSE, /* partial_inplace */
593 0, /* src_mask */
594 0xffffffff, /* dst_mask */
595 FALSE), /* pcrel_offset */
596
597 /* Like R_PPC64_ADDR16, but may be unaligned. */
598 HOWTO (R_PPC64_UADDR16, /* type */
599 0, /* rightshift */
600 1, /* size (0 = byte, 1 = short, 2 = long) */
601 16, /* bitsize */
602 FALSE, /* pc_relative */
603 0, /* bitpos */
604 complain_overflow_bitfield, /* complain_on_overflow */
605 bfd_elf_generic_reloc, /* special_function */
606 "R_PPC64_UADDR16", /* name */
607 FALSE, /* partial_inplace */
608 0, /* src_mask */
609 0xffff, /* dst_mask */
610 FALSE), /* pcrel_offset */
611
612 /* 32-bit PC relative. */
613 HOWTO (R_PPC64_REL32, /* type */
614 0, /* rightshift */
615 2, /* size (0 = byte, 1 = short, 2 = long) */
616 32, /* bitsize */
617 TRUE, /* pc_relative */
618 0, /* bitpos */
619 /* FIXME: Verify. Was complain_overflow_bitfield. */
620 complain_overflow_signed, /* complain_on_overflow */
621 bfd_elf_generic_reloc, /* special_function */
622 "R_PPC64_REL32", /* name */
623 FALSE, /* partial_inplace */
624 0, /* src_mask */
625 0xffffffff, /* dst_mask */
626 TRUE), /* pcrel_offset */
627
628 /* 32-bit relocation to the symbol's procedure linkage table. */
629 HOWTO (R_PPC64_PLT32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_bitfield, /* complain_on_overflow */
636 ppc64_elf_unhandled_reloc, /* special_function */
637 "R_PPC64_PLT32", /* name */
638 FALSE, /* partial_inplace */
639 0, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
644 FIXME: R_PPC64_PLTREL32 not supported. */
645 HOWTO (R_PPC64_PLTREL32, /* type */
646 0, /* rightshift */
647 2, /* size (0 = byte, 1 = short, 2 = long) */
648 32, /* bitsize */
649 TRUE, /* pc_relative */
650 0, /* bitpos */
651 complain_overflow_signed, /* complain_on_overflow */
652 bfd_elf_generic_reloc, /* special_function */
653 "R_PPC64_PLTREL32", /* name */
654 FALSE, /* partial_inplace */
655 0, /* src_mask */
656 0xffffffff, /* dst_mask */
657 TRUE), /* pcrel_offset */
658
659 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
660 the symbol. */
661 HOWTO (R_PPC64_PLT16_LO, /* type */
662 0, /* rightshift */
663 1, /* size (0 = byte, 1 = short, 2 = long) */
664 16, /* bitsize */
665 FALSE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_dont, /* complain_on_overflow */
668 ppc64_elf_unhandled_reloc, /* special_function */
669 "R_PPC64_PLT16_LO", /* name */
670 FALSE, /* partial_inplace */
671 0, /* src_mask */
672 0xffff, /* dst_mask */
673 FALSE), /* pcrel_offset */
674
675 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
676 the symbol. */
677 HOWTO (R_PPC64_PLT16_HI, /* type */
678 16, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 16, /* bitsize */
681 FALSE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_dont, /* complain_on_overflow */
684 ppc64_elf_unhandled_reloc, /* special_function */
685 "R_PPC64_PLT16_HI", /* name */
686 FALSE, /* partial_inplace */
687 0, /* src_mask */
688 0xffff, /* dst_mask */
689 FALSE), /* pcrel_offset */
690
691 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
692 the symbol. */
693 HOWTO (R_PPC64_PLT16_HA, /* type */
694 16, /* rightshift */
695 1, /* size (0 = byte, 1 = short, 2 = long) */
696 16, /* bitsize */
697 FALSE, /* pc_relative */
698 0, /* bitpos */
699 complain_overflow_dont, /* complain_on_overflow */
700 ppc64_elf_unhandled_reloc, /* special_function */
701 "R_PPC64_PLT16_HA", /* name */
702 FALSE, /* partial_inplace */
703 0, /* src_mask */
704 0xffff, /* dst_mask */
705 FALSE), /* pcrel_offset */
706
707 /* 16-bit section relative relocation. */
708 HOWTO (R_PPC64_SECTOFF, /* type */
709 0, /* rightshift */
710 1, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield, /* complain_on_overflow */
715 ppc64_elf_sectoff_reloc, /* special_function */
716 "R_PPC64_SECTOFF", /* name */
717 FALSE, /* partial_inplace */
718 0, /* src_mask */
719 0xffff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 /* Like R_PPC64_SECTOFF, but no overflow warning. */
723 HOWTO (R_PPC64_SECTOFF_LO, /* type */
724 0, /* rightshift */
725 1, /* size (0 = byte, 1 = short, 2 = long) */
726 16, /* bitsize */
727 FALSE, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_dont, /* complain_on_overflow */
730 ppc64_elf_sectoff_reloc, /* special_function */
731 "R_PPC64_SECTOFF_LO", /* name */
732 FALSE, /* partial_inplace */
733 0, /* src_mask */
734 0xffff, /* dst_mask */
735 FALSE), /* pcrel_offset */
736
737 /* 16-bit upper half section relative relocation. */
738 HOWTO (R_PPC64_SECTOFF_HI, /* type */
739 16, /* rightshift */
740 1, /* size (0 = byte, 1 = short, 2 = long) */
741 16, /* bitsize */
742 FALSE, /* pc_relative */
743 0, /* bitpos */
744 complain_overflow_dont, /* complain_on_overflow */
745 ppc64_elf_sectoff_reloc, /* special_function */
746 "R_PPC64_SECTOFF_HI", /* name */
747 FALSE, /* partial_inplace */
748 0, /* src_mask */
749 0xffff, /* dst_mask */
750 FALSE), /* pcrel_offset */
751
752 /* 16-bit upper half adjusted section relative relocation. */
753 HOWTO (R_PPC64_SECTOFF_HA, /* type */
754 16, /* rightshift */
755 1, /* size (0 = byte, 1 = short, 2 = long) */
756 16, /* bitsize */
757 FALSE, /* pc_relative */
758 0, /* bitpos */
759 complain_overflow_dont, /* complain_on_overflow */
760 ppc64_elf_sectoff_ha_reloc, /* special_function */
761 "R_PPC64_SECTOFF_HA", /* name */
762 FALSE, /* partial_inplace */
763 0, /* src_mask */
764 0xffff, /* dst_mask */
765 FALSE), /* pcrel_offset */
766
767 /* Like R_PPC64_REL24 without touching the two least significant bits. */
768 HOWTO (R_PPC64_REL30, /* type */
769 2, /* rightshift */
770 2, /* size (0 = byte, 1 = short, 2 = long) */
771 30, /* bitsize */
772 TRUE, /* pc_relative */
773 0, /* bitpos */
774 complain_overflow_dont, /* complain_on_overflow */
775 bfd_elf_generic_reloc, /* special_function */
776 "R_PPC64_REL30", /* name */
777 FALSE, /* partial_inplace */
778 0, /* src_mask */
779 0xfffffffc, /* dst_mask */
780 TRUE), /* pcrel_offset */
781
782 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
783
784 /* A standard 64-bit relocation. */
785 HOWTO (R_PPC64_ADDR64, /* type */
786 0, /* rightshift */
787 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
788 64, /* bitsize */
789 FALSE, /* pc_relative */
790 0, /* bitpos */
791 complain_overflow_dont, /* complain_on_overflow */
792 bfd_elf_generic_reloc, /* special_function */
793 "R_PPC64_ADDR64", /* name */
794 FALSE, /* partial_inplace */
795 0, /* src_mask */
796 ONES (64), /* dst_mask */
797 FALSE), /* pcrel_offset */
798
799 /* The bits 32-47 of an address. */
800 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
801 32, /* rightshift */
802 1, /* size (0 = byte, 1 = short, 2 = long) */
803 16, /* bitsize */
804 FALSE, /* pc_relative */
805 0, /* bitpos */
806 complain_overflow_dont, /* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 "R_PPC64_ADDR16_HIGHER", /* name */
809 FALSE, /* partial_inplace */
810 0, /* src_mask */
811 0xffff, /* dst_mask */
812 FALSE), /* pcrel_offset */
813
814 /* The bits 32-47 of an address, plus 1 if the contents of the low
815 16 bits, treated as a signed number, is negative. */
816 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
817 32, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 16, /* bitsize */
820 FALSE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_dont, /* complain_on_overflow */
823 ppc64_elf_ha_reloc, /* special_function */
824 "R_PPC64_ADDR16_HIGHERA", /* name */
825 FALSE, /* partial_inplace */
826 0, /* src_mask */
827 0xffff, /* dst_mask */
828 FALSE), /* pcrel_offset */
829
830 /* The bits 48-63 of an address. */
831 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
832 48, /* rightshift */
833 1, /* size (0 = byte, 1 = short, 2 = long) */
834 16, /* bitsize */
835 FALSE, /* pc_relative */
836 0, /* bitpos */
837 complain_overflow_dont, /* complain_on_overflow */
838 bfd_elf_generic_reloc, /* special_function */
839 "R_PPC64_ADDR16_HIGHEST", /* name */
840 FALSE, /* partial_inplace */
841 0, /* src_mask */
842 0xffff, /* dst_mask */
843 FALSE), /* pcrel_offset */
844
845 /* The bits 48-63 of an address, plus 1 if the contents of the low
846 16 bits, treated as a signed number, is negative. */
847 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
848 48, /* rightshift */
849 1, /* size (0 = byte, 1 = short, 2 = long) */
850 16, /* bitsize */
851 FALSE, /* pc_relative */
852 0, /* bitpos */
853 complain_overflow_dont, /* complain_on_overflow */
854 ppc64_elf_ha_reloc, /* special_function */
855 "R_PPC64_ADDR16_HIGHESTA", /* name */
856 FALSE, /* partial_inplace */
857 0, /* src_mask */
858 0xffff, /* dst_mask */
859 FALSE), /* pcrel_offset */
860
861 /* Like ADDR64, but may be unaligned. */
862 HOWTO (R_PPC64_UADDR64, /* type */
863 0, /* rightshift */
864 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
865 64, /* bitsize */
866 FALSE, /* pc_relative */
867 0, /* bitpos */
868 complain_overflow_dont, /* complain_on_overflow */
869 bfd_elf_generic_reloc, /* special_function */
870 "R_PPC64_UADDR64", /* name */
871 FALSE, /* partial_inplace */
872 0, /* src_mask */
873 ONES (64), /* dst_mask */
874 FALSE), /* pcrel_offset */
875
876 /* 64-bit relative relocation. */
877 HOWTO (R_PPC64_REL64, /* type */
878 0, /* rightshift */
879 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
880 64, /* bitsize */
881 TRUE, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_dont, /* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 "R_PPC64_REL64", /* name */
886 FALSE, /* partial_inplace */
887 0, /* src_mask */
888 ONES (64), /* dst_mask */
889 TRUE), /* pcrel_offset */
890
891 /* 64-bit relocation to the symbol's procedure linkage table. */
892 HOWTO (R_PPC64_PLT64, /* type */
893 0, /* rightshift */
894 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
895 64, /* bitsize */
896 FALSE, /* pc_relative */
897 0, /* bitpos */
898 complain_overflow_dont, /* complain_on_overflow */
899 ppc64_elf_unhandled_reloc, /* special_function */
900 "R_PPC64_PLT64", /* name */
901 FALSE, /* partial_inplace */
902 0, /* src_mask */
903 ONES (64), /* dst_mask */
904 FALSE), /* pcrel_offset */
905
906 /* 64-bit PC relative relocation to the symbol's procedure linkage
907 table. */
908 /* FIXME: R_PPC64_PLTREL64 not supported. */
909 HOWTO (R_PPC64_PLTREL64, /* type */
910 0, /* rightshift */
911 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
912 64, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont, /* complain_on_overflow */
916 ppc64_elf_unhandled_reloc, /* special_function */
917 "R_PPC64_PLTREL64", /* name */
918 FALSE, /* partial_inplace */
919 0, /* src_mask */
920 ONES (64), /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 /* 16 bit TOC-relative relocation. */
924
925 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
926 HOWTO (R_PPC64_TOC16, /* type */
927 0, /* rightshift */
928 1, /* size (0 = byte, 1 = short, 2 = long) */
929 16, /* bitsize */
930 FALSE, /* pc_relative */
931 0, /* bitpos */
932 complain_overflow_signed, /* complain_on_overflow */
933 ppc64_elf_toc_reloc, /* special_function */
934 "R_PPC64_TOC16", /* name */
935 FALSE, /* partial_inplace */
936 0, /* src_mask */
937 0xffff, /* dst_mask */
938 FALSE), /* pcrel_offset */
939
940 /* 16 bit TOC-relative relocation without overflow. */
941
942 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
943 HOWTO (R_PPC64_TOC16_LO, /* type */
944 0, /* rightshift */
945 1, /* size (0 = byte, 1 = short, 2 = long) */
946 16, /* bitsize */
947 FALSE, /* pc_relative */
948 0, /* bitpos */
949 complain_overflow_dont, /* complain_on_overflow */
950 ppc64_elf_toc_reloc, /* special_function */
951 "R_PPC64_TOC16_LO", /* name */
952 FALSE, /* partial_inplace */
953 0, /* src_mask */
954 0xffff, /* dst_mask */
955 FALSE), /* pcrel_offset */
956
957 /* 16 bit TOC-relative relocation, high 16 bits. */
958
959 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
960 HOWTO (R_PPC64_TOC16_HI, /* type */
961 16, /* rightshift */
962 1, /* size (0 = byte, 1 = short, 2 = long) */
963 16, /* bitsize */
964 FALSE, /* pc_relative */
965 0, /* bitpos */
966 complain_overflow_dont, /* complain_on_overflow */
967 ppc64_elf_toc_reloc, /* special_function */
968 "R_PPC64_TOC16_HI", /* name */
969 FALSE, /* partial_inplace */
970 0, /* src_mask */
971 0xffff, /* dst_mask */
972 FALSE), /* pcrel_offset */
973
974 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
975 contents of the low 16 bits, treated as a signed number, is
976 negative. */
977
978 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
979 HOWTO (R_PPC64_TOC16_HA, /* type */
980 16, /* rightshift */
981 1, /* size (0 = byte, 1 = short, 2 = long) */
982 16, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 ppc64_elf_toc_ha_reloc, /* special_function */
987 "R_PPC64_TOC16_HA", /* name */
988 FALSE, /* partial_inplace */
989 0, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
993 /* 64-bit relocation; insert value of TOC base (.TOC.). */
994
995 /* R_PPC64_TOC 51 doubleword64 .TOC. */
996 HOWTO (R_PPC64_TOC, /* type */
997 0, /* rightshift */
998 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
999 64, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_bitfield, /* complain_on_overflow */
1003 ppc64_elf_toc64_reloc, /* special_function */
1004 "R_PPC64_TOC", /* name */
1005 FALSE, /* partial_inplace */
1006 0, /* src_mask */
1007 ONES (64), /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* Like R_PPC64_GOT16, but also informs the link editor that the
1011 value to relocate may (!) refer to a PLT entry which the link
1012 editor (a) may replace with the symbol value. If the link editor
1013 is unable to fully resolve the symbol, it may (b) create a PLT
1014 entry and store the address to the new PLT entry in the GOT.
1015 This permits lazy resolution of function symbols at run time.
1016 The link editor may also skip all of this and just (c) emit a
1017 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1018 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1019 HOWTO (R_PPC64_PLTGOT16, /* type */
1020 0, /* rightshift */
1021 1, /* size (0 = byte, 1 = short, 2 = long) */
1022 16, /* bitsize */
1023 FALSE, /* pc_relative */
1024 0, /* bitpos */
1025 complain_overflow_signed, /* complain_on_overflow */
1026 ppc64_elf_unhandled_reloc, /* special_function */
1027 "R_PPC64_PLTGOT16", /* name */
1028 FALSE, /* partial_inplace */
1029 0, /* src_mask */
1030 0xffff, /* dst_mask */
1031 FALSE), /* pcrel_offset */
1032
1033 /* Like R_PPC64_PLTGOT16, but without overflow. */
1034 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1035 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1036 0, /* rightshift */
1037 1, /* size (0 = byte, 1 = short, 2 = long) */
1038 16, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 ppc64_elf_unhandled_reloc, /* special_function */
1043 "R_PPC64_PLTGOT16_LO", /* name */
1044 FALSE, /* partial_inplace */
1045 0, /* src_mask */
1046 0xffff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
1049 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1050 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1051 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1052 16, /* rightshift */
1053 1, /* size (0 = byte, 1 = short, 2 = long) */
1054 16, /* bitsize */
1055 FALSE, /* pc_relative */
1056 0, /* bitpos */
1057 complain_overflow_dont, /* complain_on_overflow */
1058 ppc64_elf_unhandled_reloc, /* special_function */
1059 "R_PPC64_PLTGOT16_HI", /* name */
1060 FALSE, /* partial_inplace */
1061 0, /* src_mask */
1062 0xffff, /* dst_mask */
1063 FALSE), /* pcrel_offset */
1064
1065 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1066 1 if the contents of the low 16 bits, treated as a signed number,
1067 is negative. */
1068 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1069 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1070 16, /* rightshift */
1071 1, /* size (0 = byte, 1 = short, 2 = long) */
1072 16, /* bitsize */
1073 FALSE, /* pc_relative */
1074 0, /* bitpos */
1075 complain_overflow_dont,/* complain_on_overflow */
1076 ppc64_elf_unhandled_reloc, /* special_function */
1077 "R_PPC64_PLTGOT16_HA", /* name */
1078 FALSE, /* partial_inplace */
1079 0, /* src_mask */
1080 0xffff, /* dst_mask */
1081 FALSE), /* pcrel_offset */
1082
1083 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1084 HOWTO (R_PPC64_ADDR16_DS, /* type */
1085 0, /* rightshift */
1086 1, /* size (0 = byte, 1 = short, 2 = long) */
1087 16, /* bitsize */
1088 FALSE, /* pc_relative */
1089 0, /* bitpos */
1090 complain_overflow_bitfield, /* complain_on_overflow */
1091 bfd_elf_generic_reloc, /* special_function */
1092 "R_PPC64_ADDR16_DS", /* name */
1093 FALSE, /* partial_inplace */
1094 0, /* src_mask */
1095 0xfffc, /* dst_mask */
1096 FALSE), /* pcrel_offset */
1097
1098 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1099 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1100 0, /* rightshift */
1101 1, /* size (0 = byte, 1 = short, 2 = long) */
1102 16, /* bitsize */
1103 FALSE, /* pc_relative */
1104 0, /* bitpos */
1105 complain_overflow_dont,/* complain_on_overflow */
1106 bfd_elf_generic_reloc, /* special_function */
1107 "R_PPC64_ADDR16_LO_DS",/* name */
1108 FALSE, /* partial_inplace */
1109 0, /* src_mask */
1110 0xfffc, /* dst_mask */
1111 FALSE), /* pcrel_offset */
1112
1113 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1114 HOWTO (R_PPC64_GOT16_DS, /* type */
1115 0, /* rightshift */
1116 1, /* size (0 = byte, 1 = short, 2 = long) */
1117 16, /* bitsize */
1118 FALSE, /* pc_relative */
1119 0, /* bitpos */
1120 complain_overflow_signed, /* complain_on_overflow */
1121 ppc64_elf_unhandled_reloc, /* special_function */
1122 "R_PPC64_GOT16_DS", /* name */
1123 FALSE, /* partial_inplace */
1124 0, /* src_mask */
1125 0xfffc, /* dst_mask */
1126 FALSE), /* pcrel_offset */
1127
1128 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1129 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1130 0, /* rightshift */
1131 1, /* size (0 = byte, 1 = short, 2 = long) */
1132 16, /* bitsize */
1133 FALSE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont, /* complain_on_overflow */
1136 ppc64_elf_unhandled_reloc, /* special_function */
1137 "R_PPC64_GOT16_LO_DS", /* name */
1138 FALSE, /* partial_inplace */
1139 0, /* src_mask */
1140 0xfffc, /* dst_mask */
1141 FALSE), /* pcrel_offset */
1142
1143 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1144 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1145 0, /* rightshift */
1146 1, /* size (0 = byte, 1 = short, 2 = long) */
1147 16, /* bitsize */
1148 FALSE, /* pc_relative */
1149 0, /* bitpos */
1150 complain_overflow_dont, /* complain_on_overflow */
1151 ppc64_elf_unhandled_reloc, /* special_function */
1152 "R_PPC64_PLT16_LO_DS", /* name */
1153 FALSE, /* partial_inplace */
1154 0, /* src_mask */
1155 0xfffc, /* dst_mask */
1156 FALSE), /* pcrel_offset */
1157
1158 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1159 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1160 0, /* rightshift */
1161 1, /* size (0 = byte, 1 = short, 2 = long) */
1162 16, /* bitsize */
1163 FALSE, /* pc_relative */
1164 0, /* bitpos */
1165 complain_overflow_bitfield, /* complain_on_overflow */
1166 ppc64_elf_sectoff_reloc, /* special_function */
1167 "R_PPC64_SECTOFF_DS", /* name */
1168 FALSE, /* partial_inplace */
1169 0, /* src_mask */
1170 0xfffc, /* dst_mask */
1171 FALSE), /* pcrel_offset */
1172
1173 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1174 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1175 0, /* rightshift */
1176 1, /* size (0 = byte, 1 = short, 2 = long) */
1177 16, /* bitsize */
1178 FALSE, /* pc_relative */
1179 0, /* bitpos */
1180 complain_overflow_dont, /* complain_on_overflow */
1181 ppc64_elf_sectoff_reloc, /* special_function */
1182 "R_PPC64_SECTOFF_LO_DS",/* name */
1183 FALSE, /* partial_inplace */
1184 0, /* src_mask */
1185 0xfffc, /* dst_mask */
1186 FALSE), /* pcrel_offset */
1187
1188 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1189 HOWTO (R_PPC64_TOC16_DS, /* type */
1190 0, /* rightshift */
1191 1, /* size (0 = byte, 1 = short, 2 = long) */
1192 16, /* bitsize */
1193 FALSE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_signed, /* complain_on_overflow */
1196 ppc64_elf_toc_reloc, /* special_function */
1197 "R_PPC64_TOC16_DS", /* name */
1198 FALSE, /* partial_inplace */
1199 0, /* src_mask */
1200 0xfffc, /* dst_mask */
1201 FALSE), /* pcrel_offset */
1202
1203 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1204 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1205 0, /* rightshift */
1206 1, /* size (0 = byte, 1 = short, 2 = long) */
1207 16, /* bitsize */
1208 FALSE, /* pc_relative */
1209 0, /* bitpos */
1210 complain_overflow_dont, /* complain_on_overflow */
1211 ppc64_elf_toc_reloc, /* special_function */
1212 "R_PPC64_TOC16_LO_DS", /* name */
1213 FALSE, /* partial_inplace */
1214 0, /* src_mask */
1215 0xfffc, /* dst_mask */
1216 FALSE), /* pcrel_offset */
1217
1218 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1219 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1220 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1221 0, /* rightshift */
1222 1, /* size (0 = byte, 1 = short, 2 = long) */
1223 16, /* bitsize */
1224 FALSE, /* pc_relative */
1225 0, /* bitpos */
1226 complain_overflow_signed, /* complain_on_overflow */
1227 ppc64_elf_unhandled_reloc, /* special_function */
1228 "R_PPC64_PLTGOT16_DS", /* name */
1229 FALSE, /* partial_inplace */
1230 0, /* src_mask */
1231 0xfffc, /* dst_mask */
1232 FALSE), /* pcrel_offset */
1233
1234 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1235 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1236 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1237 0, /* rightshift */
1238 1, /* size (0 = byte, 1 = short, 2 = long) */
1239 16, /* bitsize */
1240 FALSE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont, /* complain_on_overflow */
1243 ppc64_elf_unhandled_reloc, /* special_function */
1244 "R_PPC64_PLTGOT16_LO_DS",/* name */
1245 FALSE, /* partial_inplace */
1246 0, /* src_mask */
1247 0xfffc, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 /* Marker relocs for TLS. */
1251 HOWTO (R_PPC64_TLS,
1252 0, /* rightshift */
1253 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 32, /* bitsize */
1255 FALSE, /* pc_relative */
1256 0, /* bitpos */
1257 complain_overflow_dont, /* complain_on_overflow */
1258 bfd_elf_generic_reloc, /* special_function */
1259 "R_PPC64_TLS", /* name */
1260 FALSE, /* partial_inplace */
1261 0, /* src_mask */
1262 0, /* dst_mask */
1263 FALSE), /* pcrel_offset */
1264
1265 HOWTO (R_PPC64_TLSGD,
1266 0, /* rightshift */
1267 2, /* size (0 = byte, 1 = short, 2 = long) */
1268 32, /* bitsize */
1269 FALSE, /* pc_relative */
1270 0, /* bitpos */
1271 complain_overflow_dont, /* complain_on_overflow */
1272 bfd_elf_generic_reloc, /* special_function */
1273 "R_PPC64_TLSGD", /* name */
1274 FALSE, /* partial_inplace */
1275 0, /* src_mask */
1276 0, /* dst_mask */
1277 FALSE), /* pcrel_offset */
1278
1279 HOWTO (R_PPC64_TLSLD,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLSLD", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TOCSAVE,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TOCSAVE", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 /* Computes the load module index of the load module that contains the
1308 definition of its TLS sym. */
1309 HOWTO (R_PPC64_DTPMOD64,
1310 0, /* rightshift */
1311 4, /* size (0 = byte, 1 = short, 2 = long) */
1312 64, /* bitsize */
1313 FALSE, /* pc_relative */
1314 0, /* bitpos */
1315 complain_overflow_dont, /* complain_on_overflow */
1316 ppc64_elf_unhandled_reloc, /* special_function */
1317 "R_PPC64_DTPMOD64", /* name */
1318 FALSE, /* partial_inplace */
1319 0, /* src_mask */
1320 ONES (64), /* dst_mask */
1321 FALSE), /* pcrel_offset */
1322
1323 /* Computes a dtv-relative displacement, the difference between the value
1324 of sym+add and the base address of the thread-local storage block that
1325 contains the definition of sym, minus 0x8000. */
1326 HOWTO (R_PPC64_DTPREL64,
1327 0, /* rightshift */
1328 4, /* size (0 = byte, 1 = short, 2 = long) */
1329 64, /* bitsize */
1330 FALSE, /* pc_relative */
1331 0, /* bitpos */
1332 complain_overflow_dont, /* complain_on_overflow */
1333 ppc64_elf_unhandled_reloc, /* special_function */
1334 "R_PPC64_DTPREL64", /* name */
1335 FALSE, /* partial_inplace */
1336 0, /* src_mask */
1337 ONES (64), /* dst_mask */
1338 FALSE), /* pcrel_offset */
1339
1340 /* A 16 bit dtprel reloc. */
1341 HOWTO (R_PPC64_DTPREL16,
1342 0, /* rightshift */
1343 1, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_signed, /* complain_on_overflow */
1348 ppc64_elf_unhandled_reloc, /* special_function */
1349 "R_PPC64_DTPREL16", /* name */
1350 FALSE, /* partial_inplace */
1351 0, /* src_mask */
1352 0xffff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
1355 /* Like DTPREL16, but no overflow. */
1356 HOWTO (R_PPC64_DTPREL16_LO,
1357 0, /* rightshift */
1358 1, /* size (0 = byte, 1 = short, 2 = long) */
1359 16, /* bitsize */
1360 FALSE, /* pc_relative */
1361 0, /* bitpos */
1362 complain_overflow_dont, /* complain_on_overflow */
1363 ppc64_elf_unhandled_reloc, /* special_function */
1364 "R_PPC64_DTPREL16_LO", /* name */
1365 FALSE, /* partial_inplace */
1366 0, /* src_mask */
1367 0xffff, /* dst_mask */
1368 FALSE), /* pcrel_offset */
1369
1370 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1371 HOWTO (R_PPC64_DTPREL16_HI,
1372 16, /* rightshift */
1373 1, /* size (0 = byte, 1 = short, 2 = long) */
1374 16, /* bitsize */
1375 FALSE, /* pc_relative */
1376 0, /* bitpos */
1377 complain_overflow_dont, /* complain_on_overflow */
1378 ppc64_elf_unhandled_reloc, /* special_function */
1379 "R_PPC64_DTPREL16_HI", /* name */
1380 FALSE, /* partial_inplace */
1381 0, /* src_mask */
1382 0xffff, /* dst_mask */
1383 FALSE), /* pcrel_offset */
1384
1385 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1386 HOWTO (R_PPC64_DTPREL16_HA,
1387 16, /* rightshift */
1388 1, /* size (0 = byte, 1 = short, 2 = long) */
1389 16, /* bitsize */
1390 FALSE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_dont, /* complain_on_overflow */
1393 ppc64_elf_unhandled_reloc, /* special_function */
1394 "R_PPC64_DTPREL16_HA", /* name */
1395 FALSE, /* partial_inplace */
1396 0, /* src_mask */
1397 0xffff, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1399
1400 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1401 HOWTO (R_PPC64_DTPREL16_HIGHER,
1402 32, /* rightshift */
1403 1, /* size (0 = byte, 1 = short, 2 = long) */
1404 16, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont, /* complain_on_overflow */
1408 ppc64_elf_unhandled_reloc, /* special_function */
1409 "R_PPC64_DTPREL16_HIGHER", /* name */
1410 FALSE, /* partial_inplace */
1411 0, /* src_mask */
1412 0xffff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1416 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1417 32, /* rightshift */
1418 1, /* size (0 = byte, 1 = short, 2 = long) */
1419 16, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_dont, /* complain_on_overflow */
1423 ppc64_elf_unhandled_reloc, /* special_function */
1424 "R_PPC64_DTPREL16_HIGHERA", /* name */
1425 FALSE, /* partial_inplace */
1426 0, /* src_mask */
1427 0xffff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1431 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1432 48, /* rightshift */
1433 1, /* size (0 = byte, 1 = short, 2 = long) */
1434 16, /* bitsize */
1435 FALSE, /* pc_relative */
1436 0, /* bitpos */
1437 complain_overflow_dont, /* complain_on_overflow */
1438 ppc64_elf_unhandled_reloc, /* special_function */
1439 "R_PPC64_DTPREL16_HIGHEST", /* name */
1440 FALSE, /* partial_inplace */
1441 0, /* src_mask */
1442 0xffff, /* dst_mask */
1443 FALSE), /* pcrel_offset */
1444
1445 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1446 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1447 48, /* rightshift */
1448 1, /* size (0 = byte, 1 = short, 2 = long) */
1449 16, /* bitsize */
1450 FALSE, /* pc_relative */
1451 0, /* bitpos */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 ppc64_elf_unhandled_reloc, /* special_function */
1454 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1455 FALSE, /* partial_inplace */
1456 0, /* src_mask */
1457 0xffff, /* dst_mask */
1458 FALSE), /* pcrel_offset */
1459
1460 /* Like DTPREL16, but for insns with a DS field. */
1461 HOWTO (R_PPC64_DTPREL16_DS,
1462 0, /* rightshift */
1463 1, /* size (0 = byte, 1 = short, 2 = long) */
1464 16, /* bitsize */
1465 FALSE, /* pc_relative */
1466 0, /* bitpos */
1467 complain_overflow_signed, /* complain_on_overflow */
1468 ppc64_elf_unhandled_reloc, /* special_function */
1469 "R_PPC64_DTPREL16_DS", /* name */
1470 FALSE, /* partial_inplace */
1471 0, /* src_mask */
1472 0xfffc, /* dst_mask */
1473 FALSE), /* pcrel_offset */
1474
1475 /* Like DTPREL16_DS, but no overflow. */
1476 HOWTO (R_PPC64_DTPREL16_LO_DS,
1477 0, /* rightshift */
1478 1, /* size (0 = byte, 1 = short, 2 = long) */
1479 16, /* bitsize */
1480 FALSE, /* pc_relative */
1481 0, /* bitpos */
1482 complain_overflow_dont, /* complain_on_overflow */
1483 ppc64_elf_unhandled_reloc, /* special_function */
1484 "R_PPC64_DTPREL16_LO_DS", /* name */
1485 FALSE, /* partial_inplace */
1486 0, /* src_mask */
1487 0xfffc, /* dst_mask */
1488 FALSE), /* pcrel_offset */
1489
1490 /* Computes a tp-relative displacement, the difference between the value of
1491 sym+add and the value of the thread pointer (r13). */
1492 HOWTO (R_PPC64_TPREL64,
1493 0, /* rightshift */
1494 4, /* size (0 = byte, 1 = short, 2 = long) */
1495 64, /* bitsize */
1496 FALSE, /* pc_relative */
1497 0, /* bitpos */
1498 complain_overflow_dont, /* complain_on_overflow */
1499 ppc64_elf_unhandled_reloc, /* special_function */
1500 "R_PPC64_TPREL64", /* name */
1501 FALSE, /* partial_inplace */
1502 0, /* src_mask */
1503 ONES (64), /* dst_mask */
1504 FALSE), /* pcrel_offset */
1505
1506 /* A 16 bit tprel reloc. */
1507 HOWTO (R_PPC64_TPREL16,
1508 0, /* rightshift */
1509 1, /* size (0 = byte, 1 = short, 2 = long) */
1510 16, /* bitsize */
1511 FALSE, /* pc_relative */
1512 0, /* bitpos */
1513 complain_overflow_signed, /* complain_on_overflow */
1514 ppc64_elf_unhandled_reloc, /* special_function */
1515 "R_PPC64_TPREL16", /* name */
1516 FALSE, /* partial_inplace */
1517 0, /* src_mask */
1518 0xffff, /* dst_mask */
1519 FALSE), /* pcrel_offset */
1520
1521 /* Like TPREL16, but no overflow. */
1522 HOWTO (R_PPC64_TPREL16_LO,
1523 0, /* rightshift */
1524 1, /* size (0 = byte, 1 = short, 2 = long) */
1525 16, /* bitsize */
1526 FALSE, /* pc_relative */
1527 0, /* bitpos */
1528 complain_overflow_dont, /* complain_on_overflow */
1529 ppc64_elf_unhandled_reloc, /* special_function */
1530 "R_PPC64_TPREL16_LO", /* name */
1531 FALSE, /* partial_inplace */
1532 0, /* src_mask */
1533 0xffff, /* dst_mask */
1534 FALSE), /* pcrel_offset */
1535
1536 /* Like TPREL16_LO, but next higher group of 16 bits. */
1537 HOWTO (R_PPC64_TPREL16_HI,
1538 16, /* rightshift */
1539 1, /* size (0 = byte, 1 = short, 2 = long) */
1540 16, /* bitsize */
1541 FALSE, /* pc_relative */
1542 0, /* bitpos */
1543 complain_overflow_dont, /* complain_on_overflow */
1544 ppc64_elf_unhandled_reloc, /* special_function */
1545 "R_PPC64_TPREL16_HI", /* name */
1546 FALSE, /* partial_inplace */
1547 0, /* src_mask */
1548 0xffff, /* dst_mask */
1549 FALSE), /* pcrel_offset */
1550
1551 /* Like TPREL16_HI, but adjust for low 16 bits. */
1552 HOWTO (R_PPC64_TPREL16_HA,
1553 16, /* rightshift */
1554 1, /* size (0 = byte, 1 = short, 2 = long) */
1555 16, /* bitsize */
1556 FALSE, /* pc_relative */
1557 0, /* bitpos */
1558 complain_overflow_dont, /* complain_on_overflow */
1559 ppc64_elf_unhandled_reloc, /* special_function */
1560 "R_PPC64_TPREL16_HA", /* name */
1561 FALSE, /* partial_inplace */
1562 0, /* src_mask */
1563 0xffff, /* dst_mask */
1564 FALSE), /* pcrel_offset */
1565
1566 /* Like TPREL16_HI, but next higher group of 16 bits. */
1567 HOWTO (R_PPC64_TPREL16_HIGHER,
1568 32, /* rightshift */
1569 1, /* size (0 = byte, 1 = short, 2 = long) */
1570 16, /* bitsize */
1571 FALSE, /* pc_relative */
1572 0, /* bitpos */
1573 complain_overflow_dont, /* complain_on_overflow */
1574 ppc64_elf_unhandled_reloc, /* special_function */
1575 "R_PPC64_TPREL16_HIGHER", /* name */
1576 FALSE, /* partial_inplace */
1577 0, /* src_mask */
1578 0xffff, /* dst_mask */
1579 FALSE), /* pcrel_offset */
1580
1581 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1582 HOWTO (R_PPC64_TPREL16_HIGHERA,
1583 32, /* rightshift */
1584 1, /* size (0 = byte, 1 = short, 2 = long) */
1585 16, /* bitsize */
1586 FALSE, /* pc_relative */
1587 0, /* bitpos */
1588 complain_overflow_dont, /* complain_on_overflow */
1589 ppc64_elf_unhandled_reloc, /* special_function */
1590 "R_PPC64_TPREL16_HIGHERA", /* name */
1591 FALSE, /* partial_inplace */
1592 0, /* src_mask */
1593 0xffff, /* dst_mask */
1594 FALSE), /* pcrel_offset */
1595
1596 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1597 HOWTO (R_PPC64_TPREL16_HIGHEST,
1598 48, /* rightshift */
1599 1, /* size (0 = byte, 1 = short, 2 = long) */
1600 16, /* bitsize */
1601 FALSE, /* pc_relative */
1602 0, /* bitpos */
1603 complain_overflow_dont, /* complain_on_overflow */
1604 ppc64_elf_unhandled_reloc, /* special_function */
1605 "R_PPC64_TPREL16_HIGHEST", /* name */
1606 FALSE, /* partial_inplace */
1607 0, /* src_mask */
1608 0xffff, /* dst_mask */
1609 FALSE), /* pcrel_offset */
1610
1611 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1612 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1613 48, /* rightshift */
1614 1, /* size (0 = byte, 1 = short, 2 = long) */
1615 16, /* bitsize */
1616 FALSE, /* pc_relative */
1617 0, /* bitpos */
1618 complain_overflow_dont, /* complain_on_overflow */
1619 ppc64_elf_unhandled_reloc, /* special_function */
1620 "R_PPC64_TPREL16_HIGHESTA", /* name */
1621 FALSE, /* partial_inplace */
1622 0, /* src_mask */
1623 0xffff, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1625
1626 /* Like TPREL16, but for insns with a DS field. */
1627 HOWTO (R_PPC64_TPREL16_DS,
1628 0, /* rightshift */
1629 1, /* size (0 = byte, 1 = short, 2 = long) */
1630 16, /* bitsize */
1631 FALSE, /* pc_relative */
1632 0, /* bitpos */
1633 complain_overflow_signed, /* complain_on_overflow */
1634 ppc64_elf_unhandled_reloc, /* special_function */
1635 "R_PPC64_TPREL16_DS", /* name */
1636 FALSE, /* partial_inplace */
1637 0, /* src_mask */
1638 0xfffc, /* dst_mask */
1639 FALSE), /* pcrel_offset */
1640
1641 /* Like TPREL16_DS, but no overflow. */
1642 HOWTO (R_PPC64_TPREL16_LO_DS,
1643 0, /* rightshift */
1644 1, /* size (0 = byte, 1 = short, 2 = long) */
1645 16, /* bitsize */
1646 FALSE, /* pc_relative */
1647 0, /* bitpos */
1648 complain_overflow_dont, /* complain_on_overflow */
1649 ppc64_elf_unhandled_reloc, /* special_function */
1650 "R_PPC64_TPREL16_LO_DS", /* name */
1651 FALSE, /* partial_inplace */
1652 0, /* src_mask */
1653 0xfffc, /* dst_mask */
1654 FALSE), /* pcrel_offset */
1655
1656 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1657 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1658 to the first entry relative to the TOC base (r2). */
1659 HOWTO (R_PPC64_GOT_TLSGD16,
1660 0, /* rightshift */
1661 1, /* size (0 = byte, 1 = short, 2 = long) */
1662 16, /* bitsize */
1663 FALSE, /* pc_relative */
1664 0, /* bitpos */
1665 complain_overflow_signed, /* complain_on_overflow */
1666 ppc64_elf_unhandled_reloc, /* special_function */
1667 "R_PPC64_GOT_TLSGD16", /* name */
1668 FALSE, /* partial_inplace */
1669 0, /* src_mask */
1670 0xffff, /* dst_mask */
1671 FALSE), /* pcrel_offset */
1672
1673 /* Like GOT_TLSGD16, but no overflow. */
1674 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1675 0, /* rightshift */
1676 1, /* size (0 = byte, 1 = short, 2 = long) */
1677 16, /* bitsize */
1678 FALSE, /* pc_relative */
1679 0, /* bitpos */
1680 complain_overflow_dont, /* complain_on_overflow */
1681 ppc64_elf_unhandled_reloc, /* special_function */
1682 "R_PPC64_GOT_TLSGD16_LO", /* name */
1683 FALSE, /* partial_inplace */
1684 0, /* src_mask */
1685 0xffff, /* dst_mask */
1686 FALSE), /* pcrel_offset */
1687
1688 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1689 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1690 16, /* rightshift */
1691 1, /* size (0 = byte, 1 = short, 2 = long) */
1692 16, /* bitsize */
1693 FALSE, /* pc_relative */
1694 0, /* bitpos */
1695 complain_overflow_dont, /* complain_on_overflow */
1696 ppc64_elf_unhandled_reloc, /* special_function */
1697 "R_PPC64_GOT_TLSGD16_HI", /* name */
1698 FALSE, /* partial_inplace */
1699 0, /* src_mask */
1700 0xffff, /* dst_mask */
1701 FALSE), /* pcrel_offset */
1702
1703 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1704 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1705 16, /* rightshift */
1706 1, /* size (0 = byte, 1 = short, 2 = long) */
1707 16, /* bitsize */
1708 FALSE, /* pc_relative */
1709 0, /* bitpos */
1710 complain_overflow_dont, /* complain_on_overflow */
1711 ppc64_elf_unhandled_reloc, /* special_function */
1712 "R_PPC64_GOT_TLSGD16_HA", /* name */
1713 FALSE, /* partial_inplace */
1714 0, /* src_mask */
1715 0xffff, /* dst_mask */
1716 FALSE), /* pcrel_offset */
1717
1718 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1719 with values (sym+add)@dtpmod and zero, and computes the offset to the
1720 first entry relative to the TOC base (r2). */
1721 HOWTO (R_PPC64_GOT_TLSLD16,
1722 0, /* rightshift */
1723 1, /* size (0 = byte, 1 = short, 2 = long) */
1724 16, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_signed, /* complain_on_overflow */
1728 ppc64_elf_unhandled_reloc, /* special_function */
1729 "R_PPC64_GOT_TLSLD16", /* name */
1730 FALSE, /* partial_inplace */
1731 0, /* src_mask */
1732 0xffff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* Like GOT_TLSLD16, but no overflow. */
1736 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1737 0, /* rightshift */
1738 1, /* size (0 = byte, 1 = short, 2 = long) */
1739 16, /* bitsize */
1740 FALSE, /* pc_relative */
1741 0, /* bitpos */
1742 complain_overflow_dont, /* complain_on_overflow */
1743 ppc64_elf_unhandled_reloc, /* special_function */
1744 "R_PPC64_GOT_TLSLD16_LO", /* name */
1745 FALSE, /* partial_inplace */
1746 0, /* src_mask */
1747 0xffff, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1751 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1752 16, /* rightshift */
1753 1, /* size (0 = byte, 1 = short, 2 = long) */
1754 16, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 ppc64_elf_unhandled_reloc, /* special_function */
1759 "R_PPC64_GOT_TLSLD16_HI", /* name */
1760 FALSE, /* partial_inplace */
1761 0, /* src_mask */
1762 0xffff, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1766 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1767 16, /* rightshift */
1768 1, /* size (0 = byte, 1 = short, 2 = long) */
1769 16, /* bitsize */
1770 FALSE, /* pc_relative */
1771 0, /* bitpos */
1772 complain_overflow_dont, /* complain_on_overflow */
1773 ppc64_elf_unhandled_reloc, /* special_function */
1774 "R_PPC64_GOT_TLSLD16_HA", /* name */
1775 FALSE, /* partial_inplace */
1776 0, /* src_mask */
1777 0xffff, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1781 the offset to the entry relative to the TOC base (r2). */
1782 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1783 0, /* rightshift */
1784 1, /* size (0 = byte, 1 = short, 2 = long) */
1785 16, /* bitsize */
1786 FALSE, /* pc_relative */
1787 0, /* bitpos */
1788 complain_overflow_signed, /* complain_on_overflow */
1789 ppc64_elf_unhandled_reloc, /* special_function */
1790 "R_PPC64_GOT_DTPREL16_DS", /* name */
1791 FALSE, /* partial_inplace */
1792 0, /* src_mask */
1793 0xfffc, /* dst_mask */
1794 FALSE), /* pcrel_offset */
1795
1796 /* Like GOT_DTPREL16_DS, but no overflow. */
1797 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1798 0, /* rightshift */
1799 1, /* size (0 = byte, 1 = short, 2 = long) */
1800 16, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont, /* complain_on_overflow */
1804 ppc64_elf_unhandled_reloc, /* special_function */
1805 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0xfffc, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1812 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1813 16, /* rightshift */
1814 1, /* size (0 = byte, 1 = short, 2 = long) */
1815 16, /* bitsize */
1816 FALSE, /* pc_relative */
1817 0, /* bitpos */
1818 complain_overflow_dont, /* complain_on_overflow */
1819 ppc64_elf_unhandled_reloc, /* special_function */
1820 "R_PPC64_GOT_DTPREL16_HI", /* name */
1821 FALSE, /* partial_inplace */
1822 0, /* src_mask */
1823 0xffff, /* dst_mask */
1824 FALSE), /* pcrel_offset */
1825
1826 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1827 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1828 16, /* rightshift */
1829 1, /* size (0 = byte, 1 = short, 2 = long) */
1830 16, /* bitsize */
1831 FALSE, /* pc_relative */
1832 0, /* bitpos */
1833 complain_overflow_dont, /* complain_on_overflow */
1834 ppc64_elf_unhandled_reloc, /* special_function */
1835 "R_PPC64_GOT_DTPREL16_HA", /* name */
1836 FALSE, /* partial_inplace */
1837 0, /* src_mask */
1838 0xffff, /* dst_mask */
1839 FALSE), /* pcrel_offset */
1840
1841 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1842 offset to the entry relative to the TOC base (r2). */
1843 HOWTO (R_PPC64_GOT_TPREL16_DS,
1844 0, /* rightshift */
1845 1, /* size (0 = byte, 1 = short, 2 = long) */
1846 16, /* bitsize */
1847 FALSE, /* pc_relative */
1848 0, /* bitpos */
1849 complain_overflow_signed, /* complain_on_overflow */
1850 ppc64_elf_unhandled_reloc, /* special_function */
1851 "R_PPC64_GOT_TPREL16_DS", /* name */
1852 FALSE, /* partial_inplace */
1853 0, /* src_mask */
1854 0xfffc, /* dst_mask */
1855 FALSE), /* pcrel_offset */
1856
1857 /* Like GOT_TPREL16_DS, but no overflow. */
1858 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1859 0, /* rightshift */
1860 1, /* size (0 = byte, 1 = short, 2 = long) */
1861 16, /* bitsize */
1862 FALSE, /* pc_relative */
1863 0, /* bitpos */
1864 complain_overflow_dont, /* complain_on_overflow */
1865 ppc64_elf_unhandled_reloc, /* special_function */
1866 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1867 FALSE, /* partial_inplace */
1868 0, /* src_mask */
1869 0xfffc, /* dst_mask */
1870 FALSE), /* pcrel_offset */
1871
1872 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1873 HOWTO (R_PPC64_GOT_TPREL16_HI,
1874 16, /* rightshift */
1875 1, /* size (0 = byte, 1 = short, 2 = long) */
1876 16, /* bitsize */
1877 FALSE, /* pc_relative */
1878 0, /* bitpos */
1879 complain_overflow_dont, /* complain_on_overflow */
1880 ppc64_elf_unhandled_reloc, /* special_function */
1881 "R_PPC64_GOT_TPREL16_HI", /* name */
1882 FALSE, /* partial_inplace */
1883 0, /* src_mask */
1884 0xffff, /* dst_mask */
1885 FALSE), /* pcrel_offset */
1886
1887 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1888 HOWTO (R_PPC64_GOT_TPREL16_HA,
1889 16, /* rightshift */
1890 1, /* size (0 = byte, 1 = short, 2 = long) */
1891 16, /* bitsize */
1892 FALSE, /* pc_relative */
1893 0, /* bitpos */
1894 complain_overflow_dont, /* complain_on_overflow */
1895 ppc64_elf_unhandled_reloc, /* special_function */
1896 "R_PPC64_GOT_TPREL16_HA", /* name */
1897 FALSE, /* partial_inplace */
1898 0, /* src_mask */
1899 0xffff, /* dst_mask */
1900 FALSE), /* pcrel_offset */
1901
1902 HOWTO (R_PPC64_JMP_IREL, /* type */
1903 0, /* rightshift */
1904 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1905 0, /* bitsize */
1906 FALSE, /* pc_relative */
1907 0, /* bitpos */
1908 complain_overflow_dont, /* complain_on_overflow */
1909 ppc64_elf_unhandled_reloc, /* special_function */
1910 "R_PPC64_JMP_IREL", /* name */
1911 FALSE, /* partial_inplace */
1912 0, /* src_mask */
1913 0, /* dst_mask */
1914 FALSE), /* pcrel_offset */
1915
1916 HOWTO (R_PPC64_IRELATIVE, /* type */
1917 0, /* rightshift */
1918 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1919 64, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_dont, /* complain_on_overflow */
1923 bfd_elf_generic_reloc, /* special_function */
1924 "R_PPC64_IRELATIVE", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 ONES (64), /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 /* A 16 bit relative relocation. */
1931 HOWTO (R_PPC64_REL16, /* type */
1932 0, /* rightshift */
1933 1, /* size (0 = byte, 1 = short, 2 = long) */
1934 16, /* bitsize */
1935 TRUE, /* pc_relative */
1936 0, /* bitpos */
1937 complain_overflow_bitfield, /* complain_on_overflow */
1938 bfd_elf_generic_reloc, /* special_function */
1939 "R_PPC64_REL16", /* name */
1940 FALSE, /* partial_inplace */
1941 0, /* src_mask */
1942 0xffff, /* dst_mask */
1943 TRUE), /* pcrel_offset */
1944
1945 /* A 16 bit relative relocation without overflow. */
1946 HOWTO (R_PPC64_REL16_LO, /* type */
1947 0, /* rightshift */
1948 1, /* size (0 = byte, 1 = short, 2 = long) */
1949 16, /* bitsize */
1950 TRUE, /* pc_relative */
1951 0, /* bitpos */
1952 complain_overflow_dont,/* complain_on_overflow */
1953 bfd_elf_generic_reloc, /* special_function */
1954 "R_PPC64_REL16_LO", /* name */
1955 FALSE, /* partial_inplace */
1956 0, /* src_mask */
1957 0xffff, /* dst_mask */
1958 TRUE), /* pcrel_offset */
1959
1960 /* The high order 16 bits of a relative address. */
1961 HOWTO (R_PPC64_REL16_HI, /* type */
1962 16, /* rightshift */
1963 1, /* size (0 = byte, 1 = short, 2 = long) */
1964 16, /* bitsize */
1965 TRUE, /* pc_relative */
1966 0, /* bitpos */
1967 complain_overflow_dont, /* complain_on_overflow */
1968 bfd_elf_generic_reloc, /* special_function */
1969 "R_PPC64_REL16_HI", /* name */
1970 FALSE, /* partial_inplace */
1971 0, /* src_mask */
1972 0xffff, /* dst_mask */
1973 TRUE), /* pcrel_offset */
1974
1975 /* The high order 16 bits of a relative address, plus 1 if the contents of
1976 the low 16 bits, treated as a signed number, is negative. */
1977 HOWTO (R_PPC64_REL16_HA, /* type */
1978 16, /* rightshift */
1979 1, /* size (0 = byte, 1 = short, 2 = long) */
1980 16, /* bitsize */
1981 TRUE, /* pc_relative */
1982 0, /* bitpos */
1983 complain_overflow_dont, /* complain_on_overflow */
1984 ppc64_elf_ha_reloc, /* special_function */
1985 "R_PPC64_REL16_HA", /* name */
1986 FALSE, /* partial_inplace */
1987 0, /* src_mask */
1988 0xffff, /* dst_mask */
1989 TRUE), /* pcrel_offset */
1990
1991 /* GNU extension to record C++ vtable hierarchy. */
1992 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1993 0, /* rightshift */
1994 0, /* size (0 = byte, 1 = short, 2 = long) */
1995 0, /* bitsize */
1996 FALSE, /* pc_relative */
1997 0, /* bitpos */
1998 complain_overflow_dont, /* complain_on_overflow */
1999 NULL, /* special_function */
2000 "R_PPC64_GNU_VTINHERIT", /* name */
2001 FALSE, /* partial_inplace */
2002 0, /* src_mask */
2003 0, /* dst_mask */
2004 FALSE), /* pcrel_offset */
2005
2006 /* GNU extension to record C++ vtable member usage. */
2007 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2008 0, /* rightshift */
2009 0, /* size (0 = byte, 1 = short, 2 = long) */
2010 0, /* bitsize */
2011 FALSE, /* pc_relative */
2012 0, /* bitpos */
2013 complain_overflow_dont, /* complain_on_overflow */
2014 NULL, /* special_function */
2015 "R_PPC64_GNU_VTENTRY", /* name */
2016 FALSE, /* partial_inplace */
2017 0, /* src_mask */
2018 0, /* dst_mask */
2019 FALSE), /* pcrel_offset */
2020 };
2021
2022 \f
2023 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2024 be done. */
2025
2026 static void
2027 ppc_howto_init (void)
2028 {
2029 unsigned int i, type;
2030
2031 for (i = 0;
2032 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2033 i++)
2034 {
2035 type = ppc64_elf_howto_raw[i].type;
2036 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2037 / sizeof (ppc64_elf_howto_table[0])));
2038 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2039 }
2040 }
2041
2042 static reloc_howto_type *
2043 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2044 bfd_reloc_code_real_type code)
2045 {
2046 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2047
2048 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2049 /* Initialize howto table if needed. */
2050 ppc_howto_init ();
2051
2052 switch (code)
2053 {
2054 default:
2055 return NULL;
2056
2057 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2058 break;
2059 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2060 break;
2061 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2062 break;
2063 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2064 break;
2065 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2066 break;
2067 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2068 break;
2069 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2070 break;
2071 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2072 break;
2073 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2074 break;
2075 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2076 break;
2077 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2078 break;
2079 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2080 break;
2081 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2082 break;
2083 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2084 break;
2085 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2086 break;
2087 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2088 break;
2089 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2090 break;
2091 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2092 break;
2093 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2094 break;
2095 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2096 break;
2097 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2098 break;
2099 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2100 break;
2101 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2102 break;
2103 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2104 break;
2105 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2106 break;
2107 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2108 break;
2109 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2110 break;
2111 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2112 break;
2113 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2114 break;
2115 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2116 break;
2117 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2118 break;
2119 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2120 break;
2121 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2122 break;
2123 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2124 break;
2125 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2126 break;
2127 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2128 break;
2129 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2130 break;
2131 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2132 break;
2133 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2134 break;
2135 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2136 break;
2137 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2138 break;
2139 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2140 break;
2141 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2142 break;
2143 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2144 break;
2145 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2146 break;
2147 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2148 break;
2149 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2150 break;
2151 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2152 break;
2153 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2154 break;
2155 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2156 break;
2157 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2158 break;
2159 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2160 break;
2161 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2162 break;
2163 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2164 break;
2165 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2166 break;
2167 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2168 break;
2169 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2170 break;
2171 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2172 break;
2173 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2174 break;
2175 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2176 break;
2177 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2178 break;
2179 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2180 break;
2181 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2182 break;
2183 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2184 break;
2185 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2186 break;
2187 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2188 break;
2189 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2190 break;
2191 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2192 break;
2193 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2194 break;
2195 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2196 break;
2197 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2198 break;
2199 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2200 break;
2201 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2202 break;
2203 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2204 break;
2205 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2206 break;
2207 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2208 break;
2209 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2210 break;
2211 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2212 break;
2213 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2214 break;
2215 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2216 break;
2217 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2218 break;
2219 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2220 break;
2221 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2222 break;
2223 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2224 break;
2225 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2226 break;
2227 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2228 break;
2229 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2230 break;
2231 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2232 break;
2233 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2234 break;
2235 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2236 break;
2237 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2238 break;
2239 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2240 break;
2241 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2242 break;
2243 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2244 break;
2245 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2246 break;
2247 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2248 break;
2249 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2250 break;
2251 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2252 break;
2253 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2254 break;
2255 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2256 break;
2257 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2258 break;
2259 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2260 break;
2261 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2262 break;
2263 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2264 break;
2265 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2266 break;
2267 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2268 break;
2269 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2270 break;
2271 }
2272
2273 return ppc64_elf_howto_table[r];
2274 };
2275
2276 static reloc_howto_type *
2277 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2278 const char *r_name)
2279 {
2280 unsigned int i;
2281
2282 for (i = 0;
2283 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2284 i++)
2285 if (ppc64_elf_howto_raw[i].name != NULL
2286 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2287 return &ppc64_elf_howto_raw[i];
2288
2289 return NULL;
2290 }
2291
2292 /* Set the howto pointer for a PowerPC ELF reloc. */
2293
2294 static void
2295 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2296 Elf_Internal_Rela *dst)
2297 {
2298 unsigned int type;
2299
2300 /* Initialize howto table if needed. */
2301 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2302 ppc_howto_init ();
2303
2304 type = ELF64_R_TYPE (dst->r_info);
2305 if (type >= (sizeof (ppc64_elf_howto_table)
2306 / sizeof (ppc64_elf_howto_table[0])))
2307 {
2308 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2309 abfd, (int) type);
2310 type = R_PPC64_NONE;
2311 }
2312 cache_ptr->howto = ppc64_elf_howto_table[type];
2313 }
2314
2315 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2316
2317 static bfd_reloc_status_type
2318 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2319 void *data, asection *input_section,
2320 bfd *output_bfd, char **error_message)
2321 {
2322 /* If this is a relocatable link (output_bfd test tells us), just
2323 call the generic function. Any adjustment will be done at final
2324 link time. */
2325 if (output_bfd != NULL)
2326 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2327 input_section, output_bfd, error_message);
2328
2329 /* Adjust the addend for sign extension of the low 16 bits.
2330 We won't actually be using the low 16 bits, so trashing them
2331 doesn't matter. */
2332 reloc_entry->addend += 0x8000;
2333 return bfd_reloc_continue;
2334 }
2335
2336 static bfd_reloc_status_type
2337 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2338 void *data, asection *input_section,
2339 bfd *output_bfd, char **error_message)
2340 {
2341 if (output_bfd != NULL)
2342 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2343 input_section, output_bfd, error_message);
2344
2345 if (strcmp (symbol->section->name, ".opd") == 0
2346 && (symbol->section->owner->flags & DYNAMIC) == 0)
2347 {
2348 bfd_vma dest = opd_entry_value (symbol->section,
2349 symbol->value + reloc_entry->addend,
2350 NULL, NULL);
2351 if (dest != (bfd_vma) -1)
2352 reloc_entry->addend = dest - (symbol->value
2353 + symbol->section->output_section->vma
2354 + symbol->section->output_offset);
2355 }
2356 return bfd_reloc_continue;
2357 }
2358
2359 static bfd_reloc_status_type
2360 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2361 void *data, asection *input_section,
2362 bfd *output_bfd, char **error_message)
2363 {
2364 long insn;
2365 enum elf_ppc64_reloc_type r_type;
2366 bfd_size_type octets;
2367 /* Assume 'at' branch hints. */
2368 bfd_boolean is_isa_v2 = TRUE;
2369
2370 /* If this is a relocatable link (output_bfd test tells us), just
2371 call the generic function. Any adjustment will be done at final
2372 link time. */
2373 if (output_bfd != NULL)
2374 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2375 input_section, output_bfd, error_message);
2376
2377 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2378 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2379 insn &= ~(0x01 << 21);
2380 r_type = reloc_entry->howto->type;
2381 if (r_type == R_PPC64_ADDR14_BRTAKEN
2382 || r_type == R_PPC64_REL14_BRTAKEN)
2383 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2384
2385 if (is_isa_v2)
2386 {
2387 /* Set 'a' bit. This is 0b00010 in BO field for branch
2388 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2389 for branch on CTR insns (BO == 1a00t or 1a01t). */
2390 if ((insn & (0x14 << 21)) == (0x04 << 21))
2391 insn |= 0x02 << 21;
2392 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2393 insn |= 0x08 << 21;
2394 else
2395 goto out;
2396 }
2397 else
2398 {
2399 bfd_vma target = 0;
2400 bfd_vma from;
2401
2402 if (!bfd_is_com_section (symbol->section))
2403 target = symbol->value;
2404 target += symbol->section->output_section->vma;
2405 target += symbol->section->output_offset;
2406 target += reloc_entry->addend;
2407
2408 from = (reloc_entry->address
2409 + input_section->output_offset
2410 + input_section->output_section->vma);
2411
2412 /* Invert 'y' bit if not the default. */
2413 if ((bfd_signed_vma) (target - from) < 0)
2414 insn ^= 0x01 << 21;
2415 }
2416 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2417 out:
2418 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2419 input_section, output_bfd, error_message);
2420 }
2421
2422 static bfd_reloc_status_type
2423 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2424 void *data, asection *input_section,
2425 bfd *output_bfd, char **error_message)
2426 {
2427 /* If this is a relocatable link (output_bfd test tells us), just
2428 call the generic function. Any adjustment will be done at final
2429 link time. */
2430 if (output_bfd != NULL)
2431 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2432 input_section, output_bfd, error_message);
2433
2434 /* Subtract the symbol section base address. */
2435 reloc_entry->addend -= symbol->section->output_section->vma;
2436 return bfd_reloc_continue;
2437 }
2438
2439 static bfd_reloc_status_type
2440 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2441 void *data, asection *input_section,
2442 bfd *output_bfd, char **error_message)
2443 {
2444 /* If this is a relocatable link (output_bfd test tells us), just
2445 call the generic function. Any adjustment will be done at final
2446 link time. */
2447 if (output_bfd != NULL)
2448 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2449 input_section, output_bfd, error_message);
2450
2451 /* Subtract the symbol section base address. */
2452 reloc_entry->addend -= symbol->section->output_section->vma;
2453
2454 /* Adjust the addend for sign extension of the low 16 bits. */
2455 reloc_entry->addend += 0x8000;
2456 return bfd_reloc_continue;
2457 }
2458
2459 static bfd_reloc_status_type
2460 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2461 void *data, asection *input_section,
2462 bfd *output_bfd, char **error_message)
2463 {
2464 bfd_vma TOCstart;
2465
2466 /* If this is a relocatable link (output_bfd test tells us), just
2467 call the generic function. Any adjustment will be done at final
2468 link time. */
2469 if (output_bfd != NULL)
2470 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2471 input_section, output_bfd, error_message);
2472
2473 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2474 if (TOCstart == 0)
2475 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2476
2477 /* Subtract the TOC base address. */
2478 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2479 return bfd_reloc_continue;
2480 }
2481
2482 static bfd_reloc_status_type
2483 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2484 void *data, asection *input_section,
2485 bfd *output_bfd, char **error_message)
2486 {
2487 bfd_vma TOCstart;
2488
2489 /* If this is a relocatable link (output_bfd test tells us), just
2490 call the generic function. Any adjustment will be done at final
2491 link time. */
2492 if (output_bfd != NULL)
2493 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2494 input_section, output_bfd, error_message);
2495
2496 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2497 if (TOCstart == 0)
2498 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2499
2500 /* Subtract the TOC base address. */
2501 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2502
2503 /* Adjust the addend for sign extension of the low 16 bits. */
2504 reloc_entry->addend += 0x8000;
2505 return bfd_reloc_continue;
2506 }
2507
2508 static bfd_reloc_status_type
2509 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 void *data, asection *input_section,
2511 bfd *output_bfd, char **error_message)
2512 {
2513 bfd_vma TOCstart;
2514 bfd_size_type octets;
2515
2516 /* If this is a relocatable link (output_bfd test tells us), just
2517 call the generic function. Any adjustment will be done at final
2518 link time. */
2519 if (output_bfd != NULL)
2520 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2521 input_section, output_bfd, error_message);
2522
2523 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2524 if (TOCstart == 0)
2525 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2526
2527 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2528 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2529 return bfd_reloc_ok;
2530 }
2531
2532 static bfd_reloc_status_type
2533 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2534 void *data, asection *input_section,
2535 bfd *output_bfd, char **error_message)
2536 {
2537 /* If this is a relocatable link (output_bfd test tells us), just
2538 call the generic function. Any adjustment will be done at final
2539 link time. */
2540 if (output_bfd != NULL)
2541 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2542 input_section, output_bfd, error_message);
2543
2544 if (error_message != NULL)
2545 {
2546 static char buf[60];
2547 sprintf (buf, "generic linker can't handle %s",
2548 reloc_entry->howto->name);
2549 *error_message = buf;
2550 }
2551 return bfd_reloc_dangerous;
2552 }
2553
2554 /* Track GOT entries needed for a given symbol. We might need more
2555 than one got entry per symbol. */
2556 struct got_entry
2557 {
2558 struct got_entry *next;
2559
2560 /* The symbol addend that we'll be placing in the GOT. */
2561 bfd_vma addend;
2562
2563 /* Unlike other ELF targets, we use separate GOT entries for the same
2564 symbol referenced from different input files. This is to support
2565 automatic multiple TOC/GOT sections, where the TOC base can vary
2566 from one input file to another. After partitioning into TOC groups
2567 we merge entries within the group.
2568
2569 Point to the BFD owning this GOT entry. */
2570 bfd *owner;
2571
2572 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2573 TLS_TPREL or TLS_DTPREL for tls entries. */
2574 unsigned char tls_type;
2575
2576 /* Non-zero if got.ent points to real entry. */
2577 unsigned char is_indirect;
2578
2579 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2580 union
2581 {
2582 bfd_signed_vma refcount;
2583 bfd_vma offset;
2584 struct got_entry *ent;
2585 } got;
2586 };
2587
2588 /* The same for PLT. */
2589 struct plt_entry
2590 {
2591 struct plt_entry *next;
2592
2593 bfd_vma addend;
2594
2595 union
2596 {
2597 bfd_signed_vma refcount;
2598 bfd_vma offset;
2599 } plt;
2600 };
2601
2602 struct ppc64_elf_obj_tdata
2603 {
2604 struct elf_obj_tdata elf;
2605
2606 /* Shortcuts to dynamic linker sections. */
2607 asection *got;
2608 asection *relgot;
2609
2610 /* Used during garbage collection. We attach global symbols defined
2611 on removed .opd entries to this section so that the sym is removed. */
2612 asection *deleted_section;
2613
2614 /* TLS local dynamic got entry handling. Support for multiple GOT
2615 sections means we potentially need one of these for each input bfd. */
2616 struct got_entry tlsld_got;
2617
2618 /* A copy of relocs before they are modified for --emit-relocs. */
2619 Elf_Internal_Rela *opd_relocs;
2620
2621 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2622 the reloc to be in the range -32768 to 32767. */
2623 unsigned int has_small_toc_reloc : 1;
2624
2625 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2626 instruction not one we handle. */
2627 unsigned int unexpected_toc_insn : 1;
2628 };
2629
2630 #define ppc64_elf_tdata(bfd) \
2631 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2632
2633 #define ppc64_tlsld_got(bfd) \
2634 (&ppc64_elf_tdata (bfd)->tlsld_got)
2635
2636 #define is_ppc64_elf(bfd) \
2637 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2638 && elf_object_id (bfd) == PPC64_ELF_DATA)
2639
2640 /* Override the generic function because we store some extras. */
2641
2642 static bfd_boolean
2643 ppc64_elf_mkobject (bfd *abfd)
2644 {
2645 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2646 PPC64_ELF_DATA);
2647 }
2648
2649 /* Fix bad default arch selected for a 64 bit input bfd when the
2650 default is 32 bit. */
2651
2652 static bfd_boolean
2653 ppc64_elf_object_p (bfd *abfd)
2654 {
2655 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2656 {
2657 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2658
2659 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2660 {
2661 /* Relies on arch after 32 bit default being 64 bit default. */
2662 abfd->arch_info = abfd->arch_info->next;
2663 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2664 }
2665 }
2666 return TRUE;
2667 }
2668
2669 /* Support for core dump NOTE sections. */
2670
2671 static bfd_boolean
2672 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2673 {
2674 size_t offset, size;
2675
2676 if (note->descsz != 504)
2677 return FALSE;
2678
2679 /* pr_cursig */
2680 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2681
2682 /* pr_pid */
2683 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 32);
2684
2685 /* pr_reg */
2686 offset = 112;
2687 size = 384;
2688
2689 /* Make a ".reg/999" section. */
2690 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2691 size, note->descpos + offset);
2692 }
2693
2694 static bfd_boolean
2695 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2696 {
2697 if (note->descsz != 136)
2698 return FALSE;
2699
2700 elf_tdata (abfd)->core_pid
2701 = bfd_get_32 (abfd, note->descdata + 24);
2702 elf_tdata (abfd)->core_program
2703 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2704 elf_tdata (abfd)->core_command
2705 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2706
2707 return TRUE;
2708 }
2709
2710 static char *
2711 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2712 ...)
2713 {
2714 switch (note_type)
2715 {
2716 default:
2717 return NULL;
2718
2719 case NT_PRPSINFO:
2720 {
2721 char data[136];
2722 va_list ap;
2723
2724 va_start (ap, note_type);
2725 memset (data, 0, sizeof (data));
2726 strncpy (data + 40, va_arg (ap, const char *), 16);
2727 strncpy (data + 56, va_arg (ap, const char *), 80);
2728 va_end (ap);
2729 return elfcore_write_note (abfd, buf, bufsiz,
2730 "CORE", note_type, data, sizeof (data));
2731 }
2732
2733 case NT_PRSTATUS:
2734 {
2735 char data[504];
2736 va_list ap;
2737 long pid;
2738 int cursig;
2739 const void *greg;
2740
2741 va_start (ap, note_type);
2742 memset (data, 0, 112);
2743 pid = va_arg (ap, long);
2744 bfd_put_32 (abfd, pid, data + 32);
2745 cursig = va_arg (ap, int);
2746 bfd_put_16 (abfd, cursig, data + 12);
2747 greg = va_arg (ap, const void *);
2748 memcpy (data + 112, greg, 384);
2749 memset (data + 496, 0, 8);
2750 va_end (ap);
2751 return elfcore_write_note (abfd, buf, bufsiz,
2752 "CORE", note_type, data, sizeof (data));
2753 }
2754 }
2755 }
2756
2757 /* Add extra PPC sections. */
2758
2759 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2760 {
2761 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2762 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2763 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2764 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2765 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2766 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2767 { NULL, 0, 0, 0, 0 }
2768 };
2769
2770 enum _ppc64_sec_type {
2771 sec_normal = 0,
2772 sec_opd = 1,
2773 sec_toc = 2
2774 };
2775
2776 struct _ppc64_elf_section_data
2777 {
2778 struct bfd_elf_section_data elf;
2779
2780 union
2781 {
2782 /* An array with one entry for each opd function descriptor. */
2783 struct _opd_sec_data
2784 {
2785 /* Points to the function code section for local opd entries. */
2786 asection **func_sec;
2787
2788 /* After editing .opd, adjust references to opd local syms. */
2789 long *adjust;
2790 } opd;
2791
2792 /* An array for toc sections, indexed by offset/8. */
2793 struct _toc_sec_data
2794 {
2795 /* Specifies the relocation symbol index used at a given toc offset. */
2796 unsigned *symndx;
2797
2798 /* And the relocation addend. */
2799 bfd_vma *add;
2800 } toc;
2801 } u;
2802
2803 enum _ppc64_sec_type sec_type:2;
2804
2805 /* Flag set when small branches are detected. Used to
2806 select suitable defaults for the stub group size. */
2807 unsigned int has_14bit_branch:1;
2808 };
2809
2810 #define ppc64_elf_section_data(sec) \
2811 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2812
2813 static bfd_boolean
2814 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2815 {
2816 if (!sec->used_by_bfd)
2817 {
2818 struct _ppc64_elf_section_data *sdata;
2819 bfd_size_type amt = sizeof (*sdata);
2820
2821 sdata = bfd_zalloc (abfd, amt);
2822 if (sdata == NULL)
2823 return FALSE;
2824 sec->used_by_bfd = sdata;
2825 }
2826
2827 return _bfd_elf_new_section_hook (abfd, sec);
2828 }
2829
2830 static struct _opd_sec_data *
2831 get_opd_info (asection * sec)
2832 {
2833 if (sec != NULL
2834 && ppc64_elf_section_data (sec) != NULL
2835 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2836 return &ppc64_elf_section_data (sec)->u.opd;
2837 return NULL;
2838 }
2839 \f
2840 /* Parameters for the qsort hook. */
2841 static bfd_boolean synthetic_relocatable;
2842
2843 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2844
2845 static int
2846 compare_symbols (const void *ap, const void *bp)
2847 {
2848 const asymbol *a = * (const asymbol **) ap;
2849 const asymbol *b = * (const asymbol **) bp;
2850
2851 /* Section symbols first. */
2852 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2853 return -1;
2854 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2855 return 1;
2856
2857 /* then .opd symbols. */
2858 if (strcmp (a->section->name, ".opd") == 0
2859 && strcmp (b->section->name, ".opd") != 0)
2860 return -1;
2861 if (strcmp (a->section->name, ".opd") != 0
2862 && strcmp (b->section->name, ".opd") == 0)
2863 return 1;
2864
2865 /* then other code symbols. */
2866 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2867 == (SEC_CODE | SEC_ALLOC)
2868 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2869 != (SEC_CODE | SEC_ALLOC))
2870 return -1;
2871
2872 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2873 != (SEC_CODE | SEC_ALLOC)
2874 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2875 == (SEC_CODE | SEC_ALLOC))
2876 return 1;
2877
2878 if (synthetic_relocatable)
2879 {
2880 if (a->section->id < b->section->id)
2881 return -1;
2882
2883 if (a->section->id > b->section->id)
2884 return 1;
2885 }
2886
2887 if (a->value + a->section->vma < b->value + b->section->vma)
2888 return -1;
2889
2890 if (a->value + a->section->vma > b->value + b->section->vma)
2891 return 1;
2892
2893 /* For syms with the same value, prefer strong dynamic global function
2894 syms over other syms. */
2895 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2896 return -1;
2897
2898 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2899 return 1;
2900
2901 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2902 return -1;
2903
2904 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2905 return 1;
2906
2907 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2908 return -1;
2909
2910 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2911 return 1;
2912
2913 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2914 return -1;
2915
2916 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2917 return 1;
2918
2919 return 0;
2920 }
2921
2922 /* Search SYMS for a symbol of the given VALUE. */
2923
2924 static asymbol *
2925 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2926 {
2927 long mid;
2928
2929 if (id == -1)
2930 {
2931 while (lo < hi)
2932 {
2933 mid = (lo + hi) >> 1;
2934 if (syms[mid]->value + syms[mid]->section->vma < value)
2935 lo = mid + 1;
2936 else if (syms[mid]->value + syms[mid]->section->vma > value)
2937 hi = mid;
2938 else
2939 return syms[mid];
2940 }
2941 }
2942 else
2943 {
2944 while (lo < hi)
2945 {
2946 mid = (lo + hi) >> 1;
2947 if (syms[mid]->section->id < id)
2948 lo = mid + 1;
2949 else if (syms[mid]->section->id > id)
2950 hi = mid;
2951 else if (syms[mid]->value < value)
2952 lo = mid + 1;
2953 else if (syms[mid]->value > value)
2954 hi = mid;
2955 else
2956 return syms[mid];
2957 }
2958 }
2959 return NULL;
2960 }
2961
2962 static bfd_boolean
2963 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2964 {
2965 bfd_vma vma = *(bfd_vma *) ptr;
2966 return ((section->flags & SEC_ALLOC) != 0
2967 && section->vma <= vma
2968 && vma < section->vma + section->size);
2969 }
2970
2971 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2972 entry syms. Also generate @plt symbols for the glink branch table. */
2973
2974 static long
2975 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2976 long static_count, asymbol **static_syms,
2977 long dyn_count, asymbol **dyn_syms,
2978 asymbol **ret)
2979 {
2980 asymbol *s;
2981 long i;
2982 long count;
2983 char *names;
2984 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2985 asection *opd;
2986 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2987 asymbol **syms;
2988
2989 *ret = NULL;
2990
2991 opd = bfd_get_section_by_name (abfd, ".opd");
2992 if (opd == NULL)
2993 return 0;
2994
2995 symcount = static_count;
2996 if (!relocatable)
2997 symcount += dyn_count;
2998 if (symcount == 0)
2999 return 0;
3000
3001 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3002 if (syms == NULL)
3003 return -1;
3004
3005 if (!relocatable && static_count != 0 && dyn_count != 0)
3006 {
3007 /* Use both symbol tables. */
3008 memcpy (syms, static_syms, static_count * sizeof (*syms));
3009 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3010 }
3011 else if (!relocatable && static_count == 0)
3012 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3013 else
3014 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3015
3016 synthetic_relocatable = relocatable;
3017 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3018
3019 if (!relocatable && symcount > 1)
3020 {
3021 long j;
3022 /* Trim duplicate syms, since we may have merged the normal and
3023 dynamic symbols. Actually, we only care about syms that have
3024 different values, so trim any with the same value. */
3025 for (i = 1, j = 1; i < symcount; ++i)
3026 if (syms[i - 1]->value + syms[i - 1]->section->vma
3027 != syms[i]->value + syms[i]->section->vma)
3028 syms[j++] = syms[i];
3029 symcount = j;
3030 }
3031
3032 i = 0;
3033 if (strcmp (syms[i]->section->name, ".opd") == 0)
3034 ++i;
3035 codesecsym = i;
3036
3037 for (; i < symcount; ++i)
3038 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3039 != (SEC_CODE | SEC_ALLOC))
3040 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3041 break;
3042 codesecsymend = i;
3043
3044 for (; i < symcount; ++i)
3045 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3046 break;
3047 secsymend = i;
3048
3049 for (; i < symcount; ++i)
3050 if (strcmp (syms[i]->section->name, ".opd") != 0)
3051 break;
3052 opdsymend = i;
3053
3054 for (; i < symcount; ++i)
3055 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3056 != (SEC_CODE | SEC_ALLOC))
3057 break;
3058 symcount = i;
3059
3060 count = 0;
3061
3062 if (relocatable)
3063 {
3064 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3065 arelent *r;
3066 size_t size;
3067 long relcount;
3068
3069 if (opdsymend == secsymend)
3070 goto done;
3071
3072 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3073 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3074 if (relcount == 0)
3075 goto done;
3076
3077 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3078 {
3079 count = -1;
3080 goto done;
3081 }
3082
3083 size = 0;
3084 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3085 {
3086 asymbol *sym;
3087
3088 while (r < opd->relocation + relcount
3089 && r->address < syms[i]->value + opd->vma)
3090 ++r;
3091
3092 if (r == opd->relocation + relcount)
3093 break;
3094
3095 if (r->address != syms[i]->value + opd->vma)
3096 continue;
3097
3098 if (r->howto->type != R_PPC64_ADDR64)
3099 continue;
3100
3101 sym = *r->sym_ptr_ptr;
3102 if (!sym_exists_at (syms, opdsymend, symcount,
3103 sym->section->id, sym->value + r->addend))
3104 {
3105 ++count;
3106 size += sizeof (asymbol);
3107 size += strlen (syms[i]->name) + 2;
3108 }
3109 }
3110
3111 s = *ret = bfd_malloc (size);
3112 if (s == NULL)
3113 {
3114 count = -1;
3115 goto done;
3116 }
3117
3118 names = (char *) (s + count);
3119
3120 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3121 {
3122 asymbol *sym;
3123
3124 while (r < opd->relocation + relcount
3125 && r->address < syms[i]->value + opd->vma)
3126 ++r;
3127
3128 if (r == opd->relocation + relcount)
3129 break;
3130
3131 if (r->address != syms[i]->value + opd->vma)
3132 continue;
3133
3134 if (r->howto->type != R_PPC64_ADDR64)
3135 continue;
3136
3137 sym = *r->sym_ptr_ptr;
3138 if (!sym_exists_at (syms, opdsymend, symcount,
3139 sym->section->id, sym->value + r->addend))
3140 {
3141 size_t len;
3142
3143 *s = *syms[i];
3144 s->flags |= BSF_SYNTHETIC;
3145 s->section = sym->section;
3146 s->value = sym->value + r->addend;
3147 s->name = names;
3148 *names++ = '.';
3149 len = strlen (syms[i]->name);
3150 memcpy (names, syms[i]->name, len + 1);
3151 names += len + 1;
3152 /* Have udata.p point back to the original symbol this
3153 synthetic symbol was derived from. */
3154 s->udata.p = syms[i];
3155 s++;
3156 }
3157 }
3158 }
3159 else
3160 {
3161 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3162 bfd_byte *contents;
3163 size_t size;
3164 long plt_count = 0;
3165 bfd_vma glink_vma = 0, resolv_vma = 0;
3166 asection *dynamic, *glink = NULL, *relplt = NULL;
3167 arelent *p;
3168
3169 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
3170 {
3171 if (contents)
3172 {
3173 free_contents_and_exit:
3174 free (contents);
3175 }
3176 count = -1;
3177 goto done;
3178 }
3179
3180 size = 0;
3181 for (i = secsymend; i < opdsymend; ++i)
3182 {
3183 bfd_vma ent;
3184
3185 /* Ignore bogus symbols. */
3186 if (syms[i]->value > opd->size - 8)
3187 continue;
3188
3189 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3190 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3191 {
3192 ++count;
3193 size += sizeof (asymbol);
3194 size += strlen (syms[i]->name) + 2;
3195 }
3196 }
3197
3198 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3199 if (dyn_count != 0
3200 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3201 {
3202 bfd_byte *dynbuf, *extdyn, *extdynend;
3203 size_t extdynsize;
3204 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3205
3206 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3207 goto free_contents_and_exit;
3208
3209 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3210 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3211
3212 extdyn = dynbuf;
3213 extdynend = extdyn + dynamic->size;
3214 for (; extdyn < extdynend; extdyn += extdynsize)
3215 {
3216 Elf_Internal_Dyn dyn;
3217 (*swap_dyn_in) (abfd, extdyn, &dyn);
3218
3219 if (dyn.d_tag == DT_NULL)
3220 break;
3221
3222 if (dyn.d_tag == DT_PPC64_GLINK)
3223 {
3224 /* The first glink stub starts at offset 32; see comment in
3225 ppc64_elf_finish_dynamic_sections. */
3226 glink_vma = dyn.d_un.d_val + 32;
3227 /* The .glink section usually does not survive the final
3228 link; search for the section (usually .text) where the
3229 glink stubs now reside. */
3230 glink = bfd_sections_find_if (abfd, section_covers_vma,
3231 &glink_vma);
3232 break;
3233 }
3234 }
3235
3236 free (dynbuf);
3237 }
3238
3239 if (glink != NULL)
3240 {
3241 /* Determine __glink trampoline by reading the relative branch
3242 from the first glink stub. */
3243 bfd_byte buf[4];
3244 if (bfd_get_section_contents (abfd, glink, buf,
3245 glink_vma + 4 - glink->vma, 4))
3246 {
3247 unsigned int insn = bfd_get_32 (abfd, buf);
3248 insn ^= B_DOT;
3249 if ((insn & ~0x3fffffc) == 0)
3250 resolv_vma = glink_vma + 4 + (insn ^ 0x2000000) - 0x2000000;
3251 }
3252
3253 if (resolv_vma)
3254 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3255
3256 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3257 if (relplt != NULL)
3258 {
3259 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3260 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3261 goto free_contents_and_exit;
3262
3263 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3264 size += plt_count * sizeof (asymbol);
3265
3266 p = relplt->relocation;
3267 for (i = 0; i < plt_count; i++, p++)
3268 {
3269 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3270 if (p->addend != 0)
3271 size += sizeof ("+0x") - 1 + 16;
3272 }
3273 }
3274 }
3275
3276 s = *ret = bfd_malloc (size);
3277 if (s == NULL)
3278 goto free_contents_and_exit;
3279
3280 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3281
3282 for (i = secsymend; i < opdsymend; ++i)
3283 {
3284 bfd_vma ent;
3285
3286 if (syms[i]->value > opd->size - 8)
3287 continue;
3288
3289 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3290 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3291 {
3292 long lo, hi;
3293 size_t len;
3294 asection *sec = abfd->sections;
3295
3296 *s = *syms[i];
3297 lo = codesecsym;
3298 hi = codesecsymend;
3299 while (lo < hi)
3300 {
3301 long mid = (lo + hi) >> 1;
3302 if (syms[mid]->section->vma < ent)
3303 lo = mid + 1;
3304 else if (syms[mid]->section->vma > ent)
3305 hi = mid;
3306 else
3307 {
3308 sec = syms[mid]->section;
3309 break;
3310 }
3311 }
3312
3313 if (lo >= hi && lo > codesecsym)
3314 sec = syms[lo - 1]->section;
3315
3316 for (; sec != NULL; sec = sec->next)
3317 {
3318 if (sec->vma > ent)
3319 break;
3320 /* SEC_LOAD may not be set if SEC is from a separate debug
3321 info file. */
3322 if ((sec->flags & SEC_ALLOC) == 0)
3323 break;
3324 if ((sec->flags & SEC_CODE) != 0)
3325 s->section = sec;
3326 }
3327 s->flags |= BSF_SYNTHETIC;
3328 s->value = ent - s->section->vma;
3329 s->name = names;
3330 *names++ = '.';
3331 len = strlen (syms[i]->name);
3332 memcpy (names, syms[i]->name, len + 1);
3333 names += len + 1;
3334 /* Have udata.p point back to the original symbol this
3335 synthetic symbol was derived from. */
3336 s->udata.p = syms[i];
3337 s++;
3338 }
3339 }
3340 free (contents);
3341
3342 if (glink != NULL && relplt != NULL)
3343 {
3344 if (resolv_vma)
3345 {
3346 /* Add a symbol for the main glink trampoline. */
3347 memset (s, 0, sizeof *s);
3348 s->the_bfd = abfd;
3349 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3350 s->section = glink;
3351 s->value = resolv_vma - glink->vma;
3352 s->name = names;
3353 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3354 names += sizeof ("__glink_PLTresolve");
3355 s++;
3356 count++;
3357 }
3358
3359 /* FIXME: It would be very much nicer to put sym@plt on the
3360 stub rather than on the glink branch table entry. The
3361 objdump disassembler would then use a sensible symbol
3362 name on plt calls. The difficulty in doing so is
3363 a) finding the stubs, and,
3364 b) matching stubs against plt entries, and,
3365 c) there can be multiple stubs for a given plt entry.
3366
3367 Solving (a) could be done by code scanning, but older
3368 ppc64 binaries used different stubs to current code.
3369 (b) is the tricky one since you need to known the toc
3370 pointer for at least one function that uses a pic stub to
3371 be able to calculate the plt address referenced.
3372 (c) means gdb would need to set multiple breakpoints (or
3373 find the glink branch itself) when setting breakpoints
3374 for pending shared library loads. */
3375 p = relplt->relocation;
3376 for (i = 0; i < plt_count; i++, p++)
3377 {
3378 size_t len;
3379
3380 *s = **p->sym_ptr_ptr;
3381 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3382 we are defining a symbol, ensure one of them is set. */
3383 if ((s->flags & BSF_LOCAL) == 0)
3384 s->flags |= BSF_GLOBAL;
3385 s->flags |= BSF_SYNTHETIC;
3386 s->section = glink;
3387 s->value = glink_vma - glink->vma;
3388 s->name = names;
3389 s->udata.p = NULL;
3390 len = strlen ((*p->sym_ptr_ptr)->name);
3391 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3392 names += len;
3393 if (p->addend != 0)
3394 {
3395 memcpy (names, "+0x", sizeof ("+0x") - 1);
3396 names += sizeof ("+0x") - 1;
3397 bfd_sprintf_vma (abfd, names, p->addend);
3398 names += strlen (names);
3399 }
3400 memcpy (names, "@plt", sizeof ("@plt"));
3401 names += sizeof ("@plt");
3402 s++;
3403 glink_vma += 8;
3404 if (i >= 0x8000)
3405 glink_vma += 4;
3406 }
3407 count += plt_count;
3408 }
3409 }
3410
3411 done:
3412 free (syms);
3413 return count;
3414 }
3415 \f
3416 /* The following functions are specific to the ELF linker, while
3417 functions above are used generally. Those named ppc64_elf_* are
3418 called by the main ELF linker code. They appear in this file more
3419 or less in the order in which they are called. eg.
3420 ppc64_elf_check_relocs is called early in the link process,
3421 ppc64_elf_finish_dynamic_sections is one of the last functions
3422 called.
3423
3424 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3425 functions have both a function code symbol and a function descriptor
3426 symbol. A call to foo in a relocatable object file looks like:
3427
3428 . .text
3429 . x:
3430 . bl .foo
3431 . nop
3432
3433 The function definition in another object file might be:
3434
3435 . .section .opd
3436 . foo: .quad .foo
3437 . .quad .TOC.@tocbase
3438 . .quad 0
3439 .
3440 . .text
3441 . .foo: blr
3442
3443 When the linker resolves the call during a static link, the branch
3444 unsurprisingly just goes to .foo and the .opd information is unused.
3445 If the function definition is in a shared library, things are a little
3446 different: The call goes via a plt call stub, the opd information gets
3447 copied to the plt, and the linker patches the nop.
3448
3449 . x:
3450 . bl .foo_stub
3451 . ld 2,40(1)
3452 .
3453 .
3454 . .foo_stub:
3455 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
3456 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
3457 . std 2,40(1) # this is the general idea
3458 . ld 11,0(12)
3459 . ld 2,8(12)
3460 . mtctr 11
3461 . ld 11,16(12)
3462 . bctr
3463 .
3464 . .section .plt
3465 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3466
3467 The "reloc ()" notation is supposed to indicate that the linker emits
3468 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3469 copying.
3470
3471 What are the difficulties here? Well, firstly, the relocations
3472 examined by the linker in check_relocs are against the function code
3473 sym .foo, while the dynamic relocation in the plt is emitted against
3474 the function descriptor symbol, foo. Somewhere along the line, we need
3475 to carefully copy dynamic link information from one symbol to the other.
3476 Secondly, the generic part of the elf linker will make .foo a dynamic
3477 symbol as is normal for most other backends. We need foo dynamic
3478 instead, at least for an application final link. However, when
3479 creating a shared library containing foo, we need to have both symbols
3480 dynamic so that references to .foo are satisfied during the early
3481 stages of linking. Otherwise the linker might decide to pull in a
3482 definition from some other object, eg. a static library.
3483
3484 Update: As of August 2004, we support a new convention. Function
3485 calls may use the function descriptor symbol, ie. "bl foo". This
3486 behaves exactly as "bl .foo". */
3487
3488 /* Of those relocs that might be copied as dynamic relocs, this function
3489 selects those that must be copied when linking a shared library,
3490 even when the symbol is local. */
3491
3492 static int
3493 must_be_dyn_reloc (struct bfd_link_info *info,
3494 enum elf_ppc64_reloc_type r_type)
3495 {
3496 switch (r_type)
3497 {
3498 default:
3499 return 1;
3500
3501 case R_PPC64_REL32:
3502 case R_PPC64_REL64:
3503 case R_PPC64_REL30:
3504 return 0;
3505
3506 case R_PPC64_TPREL16:
3507 case R_PPC64_TPREL16_LO:
3508 case R_PPC64_TPREL16_HI:
3509 case R_PPC64_TPREL16_HA:
3510 case R_PPC64_TPREL16_DS:
3511 case R_PPC64_TPREL16_LO_DS:
3512 case R_PPC64_TPREL16_HIGHER:
3513 case R_PPC64_TPREL16_HIGHERA:
3514 case R_PPC64_TPREL16_HIGHEST:
3515 case R_PPC64_TPREL16_HIGHESTA:
3516 case R_PPC64_TPREL64:
3517 return !info->executable;
3518 }
3519 }
3520
3521 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3522 copying dynamic variables from a shared lib into an app's dynbss
3523 section, and instead use a dynamic relocation to point into the
3524 shared lib. With code that gcc generates, it's vital that this be
3525 enabled; In the PowerPC64 ABI, the address of a function is actually
3526 the address of a function descriptor, which resides in the .opd
3527 section. gcc uses the descriptor directly rather than going via the
3528 GOT as some other ABI's do, which means that initialized function
3529 pointers must reference the descriptor. Thus, a function pointer
3530 initialized to the address of a function in a shared library will
3531 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3532 redefines the function descriptor symbol to point to the copy. This
3533 presents a problem as a plt entry for that function is also
3534 initialized from the function descriptor symbol and the copy reloc
3535 may not be initialized first. */
3536 #define ELIMINATE_COPY_RELOCS 1
3537
3538 /* Section name for stubs is the associated section name plus this
3539 string. */
3540 #define STUB_SUFFIX ".stub"
3541
3542 /* Linker stubs.
3543 ppc_stub_long_branch:
3544 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3545 destination, but a 24 bit branch in a stub section will reach.
3546 . b dest
3547
3548 ppc_stub_plt_branch:
3549 Similar to the above, but a 24 bit branch in the stub section won't
3550 reach its destination.
3551 . addis %r12,%r2,xxx@toc@ha
3552 . ld %r11,xxx@toc@l(%r12)
3553 . mtctr %r11
3554 . bctr
3555
3556 ppc_stub_plt_call:
3557 Used to call a function in a shared library. If it so happens that
3558 the plt entry referenced crosses a 64k boundary, then an extra
3559 "addi %r12,%r12,xxx@toc@l" will be inserted before the "mtctr".
3560 . addis %r12,%r2,xxx@toc@ha
3561 . std %r2,40(%r1)
3562 . ld %r11,xxx+0@toc@l(%r12)
3563 . mtctr %r11
3564 . ld %r2,xxx+8@toc@l(%r12)
3565 . ld %r11,xxx+16@toc@l(%r12)
3566 . bctr
3567
3568 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3569 code to adjust the value and save r2 to support multiple toc sections.
3570 A ppc_stub_long_branch with an r2 offset looks like:
3571 . std %r2,40(%r1)
3572 . addis %r2,%r2,off@ha
3573 . addi %r2,%r2,off@l
3574 . b dest
3575
3576 A ppc_stub_plt_branch with an r2 offset looks like:
3577 . std %r2,40(%r1)
3578 . addis %r12,%r2,xxx@toc@ha
3579 . ld %r11,xxx@toc@l(%r12)
3580 . addis %r2,%r2,off@ha
3581 . addi %r2,%r2,off@l
3582 . mtctr %r11
3583 . bctr
3584
3585 In cases where the "addis" instruction would add zero, the "addis" is
3586 omitted and following instructions modified slightly in some cases.
3587 */
3588
3589 enum ppc_stub_type {
3590 ppc_stub_none,
3591 ppc_stub_long_branch,
3592 ppc_stub_long_branch_r2off,
3593 ppc_stub_plt_branch,
3594 ppc_stub_plt_branch_r2off,
3595 ppc_stub_plt_call,
3596 ppc_stub_plt_call_r2save
3597 };
3598
3599 struct ppc_stub_hash_entry {
3600
3601 /* Base hash table entry structure. */
3602 struct bfd_hash_entry root;
3603
3604 enum ppc_stub_type stub_type;
3605
3606 /* The stub section. */
3607 asection *stub_sec;
3608
3609 /* Offset within stub_sec of the beginning of this stub. */
3610 bfd_vma stub_offset;
3611
3612 /* Given the symbol's value and its section we can determine its final
3613 value when building the stubs (so the stub knows where to jump. */
3614 bfd_vma target_value;
3615 asection *target_section;
3616
3617 /* The symbol table entry, if any, that this was derived from. */
3618 struct ppc_link_hash_entry *h;
3619 struct plt_entry *plt_ent;
3620
3621 /* And the reloc addend that this was derived from. */
3622 bfd_vma addend;
3623
3624 /* Where this stub is being called from, or, in the case of combined
3625 stub sections, the first input section in the group. */
3626 asection *id_sec;
3627 };
3628
3629 struct ppc_branch_hash_entry {
3630
3631 /* Base hash table entry structure. */
3632 struct bfd_hash_entry root;
3633
3634 /* Offset within branch lookup table. */
3635 unsigned int offset;
3636
3637 /* Generation marker. */
3638 unsigned int iter;
3639 };
3640
3641 struct ppc_link_hash_entry
3642 {
3643 struct elf_link_hash_entry elf;
3644
3645 union {
3646 /* A pointer to the most recently used stub hash entry against this
3647 symbol. */
3648 struct ppc_stub_hash_entry *stub_cache;
3649
3650 /* A pointer to the next symbol starting with a '.' */
3651 struct ppc_link_hash_entry *next_dot_sym;
3652 } u;
3653
3654 /* Track dynamic relocs copied for this symbol. */
3655 struct elf_dyn_relocs *dyn_relocs;
3656
3657 /* Link between function code and descriptor symbols. */
3658 struct ppc_link_hash_entry *oh;
3659
3660 /* Flag function code and descriptor symbols. */
3661 unsigned int is_func:1;
3662 unsigned int is_func_descriptor:1;
3663 unsigned int fake:1;
3664
3665 /* Whether global opd/toc sym has been adjusted or not.
3666 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3667 should be set for all globals defined in any opd/toc section. */
3668 unsigned int adjust_done:1;
3669
3670 /* Set if we twiddled this symbol to weak at some stage. */
3671 unsigned int was_undefined:1;
3672
3673 /* Contexts in which symbol is used in the GOT (or TOC).
3674 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3675 corresponding relocs are encountered during check_relocs.
3676 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3677 indicate the corresponding GOT entry type is not needed.
3678 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3679 a TPREL one. We use a separate flag rather than setting TPREL
3680 just for convenience in distinguishing the two cases. */
3681 #define TLS_GD 1 /* GD reloc. */
3682 #define TLS_LD 2 /* LD reloc. */
3683 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3684 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3685 #define TLS_TLS 16 /* Any TLS reloc. */
3686 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3687 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3688 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3689 unsigned char tls_mask;
3690 };
3691
3692 /* ppc64 ELF linker hash table. */
3693
3694 struct ppc_link_hash_table
3695 {
3696 struct elf_link_hash_table elf;
3697
3698 /* The stub hash table. */
3699 struct bfd_hash_table stub_hash_table;
3700
3701 /* Another hash table for plt_branch stubs. */
3702 struct bfd_hash_table branch_hash_table;
3703
3704 /* Hash table for function prologue tocsave. */
3705 htab_t tocsave_htab;
3706
3707 /* Linker stub bfd. */
3708 bfd *stub_bfd;
3709
3710 /* Linker call-backs. */
3711 asection * (*add_stub_section) (const char *, asection *);
3712 void (*layout_sections_again) (void);
3713
3714 /* Array to keep track of which stub sections have been created, and
3715 information on stub grouping. */
3716 struct map_stub {
3717 /* This is the section to which stubs in the group will be attached. */
3718 asection *link_sec;
3719 /* The stub section. */
3720 asection *stub_sec;
3721 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3722 bfd_vma toc_off;
3723 } *stub_group;
3724
3725 /* Temp used when calculating TOC pointers. */
3726 bfd_vma toc_curr;
3727 bfd *toc_bfd;
3728 asection *toc_first_sec;
3729
3730 /* Highest input section id. */
3731 int top_id;
3732
3733 /* Highest output section index. */
3734 int top_index;
3735
3736 /* Used when adding symbols. */
3737 struct ppc_link_hash_entry *dot_syms;
3738
3739 /* List of input sections for each output section. */
3740 asection **input_list;
3741
3742 /* Short-cuts to get to dynamic linker sections. */
3743 asection *got;
3744 asection *plt;
3745 asection *relplt;
3746 asection *iplt;
3747 asection *reliplt;
3748 asection *dynbss;
3749 asection *relbss;
3750 asection *glink;
3751 asection *sfpr;
3752 asection *brlt;
3753 asection *relbrlt;
3754 asection *glink_eh_frame;
3755
3756 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3757 struct ppc_link_hash_entry *tls_get_addr;
3758 struct ppc_link_hash_entry *tls_get_addr_fd;
3759
3760 /* The size of reliplt used by got entry relocs. */
3761 bfd_size_type got_reli_size;
3762
3763 /* Statistics. */
3764 unsigned long stub_count[ppc_stub_plt_call_r2save];
3765
3766 /* Number of stubs against global syms. */
3767 unsigned long stub_globals;
3768
3769 /* Alignment of PLT call stubs. */
3770 unsigned int plt_stub_align:4;
3771
3772 /* Set if PLT call stubs should load r11. */
3773 unsigned int plt_static_chain:1;
3774
3775 /* Set if PLT call stubs need a read-read barrier. */
3776 unsigned int plt_thread_safe:1;
3777
3778 /* Set if we should emit symbols for stubs. */
3779 unsigned int emit_stub_syms:1;
3780
3781 /* Set if __tls_get_addr optimization should not be done. */
3782 unsigned int no_tls_get_addr_opt:1;
3783
3784 /* Support for multiple toc sections. */
3785 unsigned int do_multi_toc:1;
3786 unsigned int multi_toc_needed:1;
3787 unsigned int second_toc_pass:1;
3788 unsigned int do_toc_opt:1;
3789
3790 /* Set on error. */
3791 unsigned int stub_error:1;
3792
3793 /* Temp used by ppc64_elf_process_dot_syms. */
3794 unsigned int twiddled_syms:1;
3795
3796 /* Incremented every time we size stubs. */
3797 unsigned int stub_iteration;
3798
3799 /* Small local sym cache. */
3800 struct sym_cache sym_cache;
3801 };
3802
3803 /* Rename some of the generic section flags to better document how they
3804 are used here. */
3805
3806 /* Nonzero if this section has TLS related relocations. */
3807 #define has_tls_reloc sec_flg0
3808
3809 /* Nonzero if this section has a call to __tls_get_addr. */
3810 #define has_tls_get_addr_call sec_flg1
3811
3812 /* Nonzero if this section has any toc or got relocs. */
3813 #define has_toc_reloc sec_flg2
3814
3815 /* Nonzero if this section has a call to another section that uses
3816 the toc or got. */
3817 #define makes_toc_func_call sec_flg3
3818
3819 /* Recursion protection when determining above flag. */
3820 #define call_check_in_progress sec_flg4
3821 #define call_check_done sec_flg5
3822
3823 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3824
3825 #define ppc_hash_table(p) \
3826 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
3827 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
3828
3829 #define ppc_stub_hash_lookup(table, string, create, copy) \
3830 ((struct ppc_stub_hash_entry *) \
3831 bfd_hash_lookup ((table), (string), (create), (copy)))
3832
3833 #define ppc_branch_hash_lookup(table, string, create, copy) \
3834 ((struct ppc_branch_hash_entry *) \
3835 bfd_hash_lookup ((table), (string), (create), (copy)))
3836
3837 /* Create an entry in the stub hash table. */
3838
3839 static struct bfd_hash_entry *
3840 stub_hash_newfunc (struct bfd_hash_entry *entry,
3841 struct bfd_hash_table *table,
3842 const char *string)
3843 {
3844 /* Allocate the structure if it has not already been allocated by a
3845 subclass. */
3846 if (entry == NULL)
3847 {
3848 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3849 if (entry == NULL)
3850 return entry;
3851 }
3852
3853 /* Call the allocation method of the superclass. */
3854 entry = bfd_hash_newfunc (entry, table, string);
3855 if (entry != NULL)
3856 {
3857 struct ppc_stub_hash_entry *eh;
3858
3859 /* Initialize the local fields. */
3860 eh = (struct ppc_stub_hash_entry *) entry;
3861 eh->stub_type = ppc_stub_none;
3862 eh->stub_sec = NULL;
3863 eh->stub_offset = 0;
3864 eh->target_value = 0;
3865 eh->target_section = NULL;
3866 eh->h = NULL;
3867 eh->id_sec = NULL;
3868 }
3869
3870 return entry;
3871 }
3872
3873 /* Create an entry in the branch hash table. */
3874
3875 static struct bfd_hash_entry *
3876 branch_hash_newfunc (struct bfd_hash_entry *entry,
3877 struct bfd_hash_table *table,
3878 const char *string)
3879 {
3880 /* Allocate the structure if it has not already been allocated by a
3881 subclass. */
3882 if (entry == NULL)
3883 {
3884 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3885 if (entry == NULL)
3886 return entry;
3887 }
3888
3889 /* Call the allocation method of the superclass. */
3890 entry = bfd_hash_newfunc (entry, table, string);
3891 if (entry != NULL)
3892 {
3893 struct ppc_branch_hash_entry *eh;
3894
3895 /* Initialize the local fields. */
3896 eh = (struct ppc_branch_hash_entry *) entry;
3897 eh->offset = 0;
3898 eh->iter = 0;
3899 }
3900
3901 return entry;
3902 }
3903
3904 /* Create an entry in a ppc64 ELF linker hash table. */
3905
3906 static struct bfd_hash_entry *
3907 link_hash_newfunc (struct bfd_hash_entry *entry,
3908 struct bfd_hash_table *table,
3909 const char *string)
3910 {
3911 /* Allocate the structure if it has not already been allocated by a
3912 subclass. */
3913 if (entry == NULL)
3914 {
3915 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3916 if (entry == NULL)
3917 return entry;
3918 }
3919
3920 /* Call the allocation method of the superclass. */
3921 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3922 if (entry != NULL)
3923 {
3924 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3925
3926 memset (&eh->u.stub_cache, 0,
3927 (sizeof (struct ppc_link_hash_entry)
3928 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3929
3930 /* When making function calls, old ABI code references function entry
3931 points (dot symbols), while new ABI code references the function
3932 descriptor symbol. We need to make any combination of reference and
3933 definition work together, without breaking archive linking.
3934
3935 For a defined function "foo" and an undefined call to "bar":
3936 An old object defines "foo" and ".foo", references ".bar" (possibly
3937 "bar" too).
3938 A new object defines "foo" and references "bar".
3939
3940 A new object thus has no problem with its undefined symbols being
3941 satisfied by definitions in an old object. On the other hand, the
3942 old object won't have ".bar" satisfied by a new object.
3943
3944 Keep a list of newly added dot-symbols. */
3945
3946 if (string[0] == '.')
3947 {
3948 struct ppc_link_hash_table *htab;
3949
3950 htab = (struct ppc_link_hash_table *) table;
3951 eh->u.next_dot_sym = htab->dot_syms;
3952 htab->dot_syms = eh;
3953 }
3954 }
3955
3956 return entry;
3957 }
3958
3959 struct tocsave_entry {
3960 asection *sec;
3961 bfd_vma offset;
3962 };
3963
3964 static hashval_t
3965 tocsave_htab_hash (const void *p)
3966 {
3967 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3968 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
3969 }
3970
3971 static int
3972 tocsave_htab_eq (const void *p1, const void *p2)
3973 {
3974 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3975 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3976 return e1->sec == e2->sec && e1->offset == e2->offset;
3977 }
3978
3979 /* Create a ppc64 ELF linker hash table. */
3980
3981 static struct bfd_link_hash_table *
3982 ppc64_elf_link_hash_table_create (bfd *abfd)
3983 {
3984 struct ppc_link_hash_table *htab;
3985 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3986
3987 htab = bfd_zmalloc (amt);
3988 if (htab == NULL)
3989 return NULL;
3990
3991 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3992 sizeof (struct ppc_link_hash_entry),
3993 PPC64_ELF_DATA))
3994 {
3995 free (htab);
3996 return NULL;
3997 }
3998
3999 /* Init the stub hash table too. */
4000 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4001 sizeof (struct ppc_stub_hash_entry)))
4002 return NULL;
4003
4004 /* And the branch hash table. */
4005 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4006 sizeof (struct ppc_branch_hash_entry)))
4007 return NULL;
4008
4009 htab->tocsave_htab = htab_try_create (1024,
4010 tocsave_htab_hash,
4011 tocsave_htab_eq,
4012 NULL);
4013 if (htab->tocsave_htab == NULL)
4014 return NULL;
4015
4016 /* Initializing two fields of the union is just cosmetic. We really
4017 only care about glist, but when compiled on a 32-bit host the
4018 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4019 debugger inspection of these fields look nicer. */
4020 htab->elf.init_got_refcount.refcount = 0;
4021 htab->elf.init_got_refcount.glist = NULL;
4022 htab->elf.init_plt_refcount.refcount = 0;
4023 htab->elf.init_plt_refcount.glist = NULL;
4024 htab->elf.init_got_offset.offset = 0;
4025 htab->elf.init_got_offset.glist = NULL;
4026 htab->elf.init_plt_offset.offset = 0;
4027 htab->elf.init_plt_offset.glist = NULL;
4028
4029 return &htab->elf.root;
4030 }
4031
4032 /* Free the derived linker hash table. */
4033
4034 static void
4035 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
4036 {
4037 struct ppc_link_hash_table *htab = (struct ppc_link_hash_table *) hash;
4038
4039 bfd_hash_table_free (&htab->stub_hash_table);
4040 bfd_hash_table_free (&htab->branch_hash_table);
4041 if (htab->tocsave_htab)
4042 htab_delete (htab->tocsave_htab);
4043 _bfd_generic_link_hash_table_free (hash);
4044 }
4045
4046 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4047
4048 void
4049 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
4050 {
4051 struct ppc_link_hash_table *htab;
4052
4053 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
4054
4055 /* Always hook our dynamic sections into the first bfd, which is the
4056 linker created stub bfd. This ensures that the GOT header is at
4057 the start of the output TOC section. */
4058 htab = ppc_hash_table (info);
4059 if (htab == NULL)
4060 return;
4061 htab->stub_bfd = abfd;
4062 htab->elf.dynobj = abfd;
4063 }
4064
4065 /* Build a name for an entry in the stub hash table. */
4066
4067 static char *
4068 ppc_stub_name (const asection *input_section,
4069 const asection *sym_sec,
4070 const struct ppc_link_hash_entry *h,
4071 const Elf_Internal_Rela *rel)
4072 {
4073 char *stub_name;
4074 bfd_size_type len;
4075
4076 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4077 offsets from a sym as a branch target? In fact, we could
4078 probably assume the addend is always zero. */
4079 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4080
4081 if (h)
4082 {
4083 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4084 stub_name = bfd_malloc (len);
4085 if (stub_name == NULL)
4086 return stub_name;
4087
4088 sprintf (stub_name, "%08x.%s+%x",
4089 input_section->id & 0xffffffff,
4090 h->elf.root.root.string,
4091 (int) rel->r_addend & 0xffffffff);
4092 }
4093 else
4094 {
4095 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4096 stub_name = bfd_malloc (len);
4097 if (stub_name == NULL)
4098 return stub_name;
4099
4100 sprintf (stub_name, "%08x.%x:%x+%x",
4101 input_section->id & 0xffffffff,
4102 sym_sec->id & 0xffffffff,
4103 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4104 (int) rel->r_addend & 0xffffffff);
4105 }
4106 if (stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4107 stub_name[len - 2] = 0;
4108 return stub_name;
4109 }
4110
4111 /* Look up an entry in the stub hash. Stub entries are cached because
4112 creating the stub name takes a bit of time. */
4113
4114 static struct ppc_stub_hash_entry *
4115 ppc_get_stub_entry (const asection *input_section,
4116 const asection *sym_sec,
4117 struct ppc_link_hash_entry *h,
4118 const Elf_Internal_Rela *rel,
4119 struct ppc_link_hash_table *htab)
4120 {
4121 struct ppc_stub_hash_entry *stub_entry;
4122 const asection *id_sec;
4123
4124 /* If this input section is part of a group of sections sharing one
4125 stub section, then use the id of the first section in the group.
4126 Stub names need to include a section id, as there may well be
4127 more than one stub used to reach say, printf, and we need to
4128 distinguish between them. */
4129 id_sec = htab->stub_group[input_section->id].link_sec;
4130
4131 if (h != NULL && h->u.stub_cache != NULL
4132 && h->u.stub_cache->h == h
4133 && h->u.stub_cache->id_sec == id_sec)
4134 {
4135 stub_entry = h->u.stub_cache;
4136 }
4137 else
4138 {
4139 char *stub_name;
4140
4141 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4142 if (stub_name == NULL)
4143 return NULL;
4144
4145 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4146 stub_name, FALSE, FALSE);
4147 if (h != NULL)
4148 h->u.stub_cache = stub_entry;
4149
4150 free (stub_name);
4151 }
4152
4153 return stub_entry;
4154 }
4155
4156 /* Add a new stub entry to the stub hash. Not all fields of the new
4157 stub entry are initialised. */
4158
4159 static struct ppc_stub_hash_entry *
4160 ppc_add_stub (const char *stub_name,
4161 asection *section,
4162 struct bfd_link_info *info)
4163 {
4164 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4165 asection *link_sec;
4166 asection *stub_sec;
4167 struct ppc_stub_hash_entry *stub_entry;
4168
4169 link_sec = htab->stub_group[section->id].link_sec;
4170 stub_sec = htab->stub_group[section->id].stub_sec;
4171 if (stub_sec == NULL)
4172 {
4173 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4174 if (stub_sec == NULL)
4175 {
4176 size_t namelen;
4177 bfd_size_type len;
4178 char *s_name;
4179
4180 namelen = strlen (link_sec->name);
4181 len = namelen + sizeof (STUB_SUFFIX);
4182 s_name = bfd_alloc (htab->stub_bfd, len);
4183 if (s_name == NULL)
4184 return NULL;
4185
4186 memcpy (s_name, link_sec->name, namelen);
4187 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4188 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
4189 if (stub_sec == NULL)
4190 return NULL;
4191 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4192 }
4193 htab->stub_group[section->id].stub_sec = stub_sec;
4194 }
4195
4196 /* Enter this entry into the linker stub hash table. */
4197 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4198 TRUE, FALSE);
4199 if (stub_entry == NULL)
4200 {
4201 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4202 section->owner, stub_name);
4203 return NULL;
4204 }
4205
4206 stub_entry->stub_sec = stub_sec;
4207 stub_entry->stub_offset = 0;
4208 stub_entry->id_sec = link_sec;
4209 return stub_entry;
4210 }
4211
4212 /* Create sections for linker generated code. */
4213
4214 static bfd_boolean
4215 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4216 {
4217 struct ppc_link_hash_table *htab;
4218 flagword flags;
4219
4220 htab = ppc_hash_table (info);
4221 if (htab == NULL)
4222 return FALSE;
4223
4224 /* Create .sfpr for code to save and restore fp regs. */
4225 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4226 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4227 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4228 flags);
4229 if (htab->sfpr == NULL
4230 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4231 return FALSE;
4232
4233 /* Create .glink for lazy dynamic linking support. */
4234 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4235 flags);
4236 if (htab->glink == NULL
4237 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4238 return FALSE;
4239
4240 if (!info->no_ld_generated_unwind_info)
4241 {
4242 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4243 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4244 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4245 ".eh_frame",
4246 flags);
4247 if (htab->glink_eh_frame == NULL
4248 || !bfd_set_section_alignment (abfd, htab->glink_eh_frame, 2))
4249 return FALSE;
4250 }
4251
4252 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4253 htab->iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4254 if (htab->iplt == NULL
4255 || ! bfd_set_section_alignment (dynobj, htab->iplt, 3))
4256 return FALSE;
4257
4258 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4259 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4260 htab->reliplt = bfd_make_section_anyway_with_flags (dynobj,
4261 ".rela.iplt",
4262 flags);
4263 if (htab->reliplt == NULL
4264 || ! bfd_set_section_alignment (dynobj, htab->reliplt, 3))
4265 return FALSE;
4266
4267 /* Create branch lookup table for plt_branch stubs. */
4268 flags = (SEC_ALLOC | SEC_LOAD
4269 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4270 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4271 flags);
4272 if (htab->brlt == NULL
4273 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4274 return FALSE;
4275
4276 if (!info->shared)
4277 return TRUE;
4278
4279 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4280 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4281 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4282 ".rela.branch_lt",
4283 flags);
4284 if (htab->relbrlt == NULL
4285 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4286 return FALSE;
4287
4288 return TRUE;
4289 }
4290
4291 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4292 not already done. */
4293
4294 static bfd_boolean
4295 create_got_section (bfd *abfd, struct bfd_link_info *info)
4296 {
4297 asection *got, *relgot;
4298 flagword flags;
4299 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4300
4301 if (!is_ppc64_elf (abfd))
4302 return FALSE;
4303 if (htab == NULL)
4304 return FALSE;
4305
4306 if (!htab->got)
4307 {
4308 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
4309 return FALSE;
4310
4311 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
4312 if (!htab->got)
4313 abort ();
4314 }
4315
4316 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4317 | SEC_LINKER_CREATED);
4318
4319 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4320 if (!got
4321 || !bfd_set_section_alignment (abfd, got, 3))
4322 return FALSE;
4323
4324 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4325 flags | SEC_READONLY);
4326 if (!relgot
4327 || ! bfd_set_section_alignment (abfd, relgot, 3))
4328 return FALSE;
4329
4330 ppc64_elf_tdata (abfd)->got = got;
4331 ppc64_elf_tdata (abfd)->relgot = relgot;
4332 return TRUE;
4333 }
4334
4335 /* Create the dynamic sections, and set up shortcuts. */
4336
4337 static bfd_boolean
4338 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4339 {
4340 struct ppc_link_hash_table *htab;
4341
4342 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4343 return FALSE;
4344
4345 htab = ppc_hash_table (info);
4346 if (htab == NULL)
4347 return FALSE;
4348
4349 if (!htab->got)
4350 htab->got = bfd_get_section_by_name (dynobj, ".got");
4351 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
4352 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
4353 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
4354 if (!info->shared)
4355 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
4356
4357 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
4358 || (!info->shared && !htab->relbss))
4359 abort ();
4360
4361 return TRUE;
4362 }
4363
4364 /* Follow indirect and warning symbol links. */
4365
4366 static inline struct bfd_link_hash_entry *
4367 follow_link (struct bfd_link_hash_entry *h)
4368 {
4369 while (h->type == bfd_link_hash_indirect
4370 || h->type == bfd_link_hash_warning)
4371 h = h->u.i.link;
4372 return h;
4373 }
4374
4375 static inline struct elf_link_hash_entry *
4376 elf_follow_link (struct elf_link_hash_entry *h)
4377 {
4378 return (struct elf_link_hash_entry *) follow_link (&h->root);
4379 }
4380
4381 static inline struct ppc_link_hash_entry *
4382 ppc_follow_link (struct ppc_link_hash_entry *h)
4383 {
4384 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4385 }
4386
4387 /* Merge PLT info on FROM with that on TO. */
4388
4389 static void
4390 move_plt_plist (struct ppc_link_hash_entry *from,
4391 struct ppc_link_hash_entry *to)
4392 {
4393 if (from->elf.plt.plist != NULL)
4394 {
4395 if (to->elf.plt.plist != NULL)
4396 {
4397 struct plt_entry **entp;
4398 struct plt_entry *ent;
4399
4400 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4401 {
4402 struct plt_entry *dent;
4403
4404 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4405 if (dent->addend == ent->addend)
4406 {
4407 dent->plt.refcount += ent->plt.refcount;
4408 *entp = ent->next;
4409 break;
4410 }
4411 if (dent == NULL)
4412 entp = &ent->next;
4413 }
4414 *entp = to->elf.plt.plist;
4415 }
4416
4417 to->elf.plt.plist = from->elf.plt.plist;
4418 from->elf.plt.plist = NULL;
4419 }
4420 }
4421
4422 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4423
4424 static void
4425 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4426 struct elf_link_hash_entry *dir,
4427 struct elf_link_hash_entry *ind)
4428 {
4429 struct ppc_link_hash_entry *edir, *eind;
4430
4431 edir = (struct ppc_link_hash_entry *) dir;
4432 eind = (struct ppc_link_hash_entry *) ind;
4433
4434 edir->is_func |= eind->is_func;
4435 edir->is_func_descriptor |= eind->is_func_descriptor;
4436 edir->tls_mask |= eind->tls_mask;
4437 if (eind->oh != NULL)
4438 edir->oh = ppc_follow_link (eind->oh);
4439
4440 /* If called to transfer flags for a weakdef during processing
4441 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4442 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4443 if (!(ELIMINATE_COPY_RELOCS
4444 && eind->elf.root.type != bfd_link_hash_indirect
4445 && edir->elf.dynamic_adjusted))
4446 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4447
4448 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4449 edir->elf.ref_regular |= eind->elf.ref_regular;
4450 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4451 edir->elf.needs_plt |= eind->elf.needs_plt;
4452
4453 /* Copy over any dynamic relocs we may have on the indirect sym. */
4454 if (eind->dyn_relocs != NULL)
4455 {
4456 if (edir->dyn_relocs != NULL)
4457 {
4458 struct elf_dyn_relocs **pp;
4459 struct elf_dyn_relocs *p;
4460
4461 /* Add reloc counts against the indirect sym to the direct sym
4462 list. Merge any entries against the same section. */
4463 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4464 {
4465 struct elf_dyn_relocs *q;
4466
4467 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4468 if (q->sec == p->sec)
4469 {
4470 q->pc_count += p->pc_count;
4471 q->count += p->count;
4472 *pp = p->next;
4473 break;
4474 }
4475 if (q == NULL)
4476 pp = &p->next;
4477 }
4478 *pp = edir->dyn_relocs;
4479 }
4480
4481 edir->dyn_relocs = eind->dyn_relocs;
4482 eind->dyn_relocs = NULL;
4483 }
4484
4485 /* If we were called to copy over info for a weak sym, that's all.
4486 You might think dyn_relocs need not be copied over; After all,
4487 both syms will be dynamic or both non-dynamic so we're just
4488 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4489 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4490 dyn_relocs in read-only sections, and it does so on what is the
4491 DIR sym here. */
4492 if (eind->elf.root.type != bfd_link_hash_indirect)
4493 return;
4494
4495 /* Copy over got entries that we may have already seen to the
4496 symbol which just became indirect. */
4497 if (eind->elf.got.glist != NULL)
4498 {
4499 if (edir->elf.got.glist != NULL)
4500 {
4501 struct got_entry **entp;
4502 struct got_entry *ent;
4503
4504 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4505 {
4506 struct got_entry *dent;
4507
4508 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4509 if (dent->addend == ent->addend
4510 && dent->owner == ent->owner
4511 && dent->tls_type == ent->tls_type)
4512 {
4513 dent->got.refcount += ent->got.refcount;
4514 *entp = ent->next;
4515 break;
4516 }
4517 if (dent == NULL)
4518 entp = &ent->next;
4519 }
4520 *entp = edir->elf.got.glist;
4521 }
4522
4523 edir->elf.got.glist = eind->elf.got.glist;
4524 eind->elf.got.glist = NULL;
4525 }
4526
4527 /* And plt entries. */
4528 move_plt_plist (eind, edir);
4529
4530 if (eind->elf.dynindx != -1)
4531 {
4532 if (edir->elf.dynindx != -1)
4533 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4534 edir->elf.dynstr_index);
4535 edir->elf.dynindx = eind->elf.dynindx;
4536 edir->elf.dynstr_index = eind->elf.dynstr_index;
4537 eind->elf.dynindx = -1;
4538 eind->elf.dynstr_index = 0;
4539 }
4540 }
4541
4542 /* Find the function descriptor hash entry from the given function code
4543 hash entry FH. Link the entries via their OH fields. */
4544
4545 static struct ppc_link_hash_entry *
4546 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4547 {
4548 struct ppc_link_hash_entry *fdh = fh->oh;
4549
4550 if (fdh == NULL)
4551 {
4552 const char *fd_name = fh->elf.root.root.string + 1;
4553
4554 fdh = (struct ppc_link_hash_entry *)
4555 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4556 if (fdh == NULL)
4557 return fdh;
4558
4559 fdh->is_func_descriptor = 1;
4560 fdh->oh = fh;
4561 fh->is_func = 1;
4562 fh->oh = fdh;
4563 }
4564
4565 return ppc_follow_link (fdh);
4566 }
4567
4568 /* Make a fake function descriptor sym for the code sym FH. */
4569
4570 static struct ppc_link_hash_entry *
4571 make_fdh (struct bfd_link_info *info,
4572 struct ppc_link_hash_entry *fh)
4573 {
4574 bfd *abfd;
4575 asymbol *newsym;
4576 struct bfd_link_hash_entry *bh;
4577 struct ppc_link_hash_entry *fdh;
4578
4579 abfd = fh->elf.root.u.undef.abfd;
4580 newsym = bfd_make_empty_symbol (abfd);
4581 newsym->name = fh->elf.root.root.string + 1;
4582 newsym->section = bfd_und_section_ptr;
4583 newsym->value = 0;
4584 newsym->flags = BSF_WEAK;
4585
4586 bh = NULL;
4587 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4588 newsym->flags, newsym->section,
4589 newsym->value, NULL, FALSE, FALSE,
4590 &bh))
4591 return NULL;
4592
4593 fdh = (struct ppc_link_hash_entry *) bh;
4594 fdh->elf.non_elf = 0;
4595 fdh->fake = 1;
4596 fdh->is_func_descriptor = 1;
4597 fdh->oh = fh;
4598 fh->is_func = 1;
4599 fh->oh = fdh;
4600 return fdh;
4601 }
4602
4603 /* Fix function descriptor symbols defined in .opd sections to be
4604 function type. */
4605
4606 static bfd_boolean
4607 ppc64_elf_add_symbol_hook (bfd *ibfd,
4608 struct bfd_link_info *info,
4609 Elf_Internal_Sym *isym,
4610 const char **name ATTRIBUTE_UNUSED,
4611 flagword *flags ATTRIBUTE_UNUSED,
4612 asection **sec,
4613 bfd_vma *value ATTRIBUTE_UNUSED)
4614 {
4615 if ((ibfd->flags & DYNAMIC) == 0
4616 && ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4617 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4618
4619 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4620 {
4621 if ((ibfd->flags & DYNAMIC) == 0)
4622 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4623 }
4624 else if (ELF_ST_TYPE (isym->st_info) == STT_FUNC)
4625 ;
4626 else if (*sec != NULL
4627 && strcmp ((*sec)->name, ".opd") == 0)
4628 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4629
4630 return TRUE;
4631 }
4632
4633 /* This function makes an old ABI object reference to ".bar" cause the
4634 inclusion of a new ABI object archive that defines "bar".
4635 NAME is a symbol defined in an archive. Return a symbol in the hash
4636 table that might be satisfied by the archive symbols. */
4637
4638 static struct elf_link_hash_entry *
4639 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4640 struct bfd_link_info *info,
4641 const char *name)
4642 {
4643 struct elf_link_hash_entry *h;
4644 char *dot_name;
4645 size_t len;
4646
4647 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4648 if (h != NULL
4649 /* Don't return this sym if it is a fake function descriptor
4650 created by add_symbol_adjust. */
4651 && !(h->root.type == bfd_link_hash_undefweak
4652 && ((struct ppc_link_hash_entry *) h)->fake))
4653 return h;
4654
4655 if (name[0] == '.')
4656 return h;
4657
4658 len = strlen (name);
4659 dot_name = bfd_alloc (abfd, len + 2);
4660 if (dot_name == NULL)
4661 return (struct elf_link_hash_entry *) 0 - 1;
4662 dot_name[0] = '.';
4663 memcpy (dot_name + 1, name, len + 1);
4664 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4665 bfd_release (abfd, dot_name);
4666 return h;
4667 }
4668
4669 /* This function satisfies all old ABI object references to ".bar" if a
4670 new ABI object defines "bar". Well, at least, undefined dot symbols
4671 are made weak. This stops later archive searches from including an
4672 object if we already have a function descriptor definition. It also
4673 prevents the linker complaining about undefined symbols.
4674 We also check and correct mismatched symbol visibility here. The
4675 most restrictive visibility of the function descriptor and the
4676 function entry symbol is used. */
4677
4678 static bfd_boolean
4679 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4680 {
4681 struct ppc_link_hash_table *htab;
4682 struct ppc_link_hash_entry *fdh;
4683
4684 if (eh->elf.root.type == bfd_link_hash_indirect)
4685 return TRUE;
4686
4687 if (eh->elf.root.type == bfd_link_hash_warning)
4688 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4689
4690 if (eh->elf.root.root.string[0] != '.')
4691 abort ();
4692
4693 htab = ppc_hash_table (info);
4694 if (htab == NULL)
4695 return FALSE;
4696
4697 fdh = lookup_fdh (eh, htab);
4698 if (fdh == NULL)
4699 {
4700 if (!info->relocatable
4701 && (eh->elf.root.type == bfd_link_hash_undefined
4702 || eh->elf.root.type == bfd_link_hash_undefweak)
4703 && eh->elf.ref_regular)
4704 {
4705 /* Make an undefweak function descriptor sym, which is enough to
4706 pull in an --as-needed shared lib, but won't cause link
4707 errors. Archives are handled elsewhere. */
4708 fdh = make_fdh (info, eh);
4709 if (fdh == NULL)
4710 return FALSE;
4711 fdh->elf.ref_regular = 1;
4712 }
4713 }
4714 else
4715 {
4716 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4717 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4718 if (entry_vis < descr_vis)
4719 fdh->elf.other += entry_vis - descr_vis;
4720 else if (entry_vis > descr_vis)
4721 eh->elf.other += descr_vis - entry_vis;
4722
4723 if ((fdh->elf.root.type == bfd_link_hash_defined
4724 || fdh->elf.root.type == bfd_link_hash_defweak)
4725 && eh->elf.root.type == bfd_link_hash_undefined)
4726 {
4727 eh->elf.root.type = bfd_link_hash_undefweak;
4728 eh->was_undefined = 1;
4729 htab->twiddled_syms = 1;
4730 }
4731 }
4732
4733 return TRUE;
4734 }
4735
4736 /* Process list of dot-symbols we made in link_hash_newfunc. */
4737
4738 static bfd_boolean
4739 ppc64_elf_process_dot_syms (bfd *ibfd, struct bfd_link_info *info)
4740 {
4741 struct ppc_link_hash_table *htab;
4742 struct ppc_link_hash_entry **p, *eh;
4743
4744 if (!is_ppc64_elf (info->output_bfd))
4745 return TRUE;
4746 htab = ppc_hash_table (info);
4747 if (htab == NULL)
4748 return FALSE;
4749
4750 if (is_ppc64_elf (ibfd))
4751 {
4752 p = &htab->dot_syms;
4753 while ((eh = *p) != NULL)
4754 {
4755 *p = NULL;
4756 if (!add_symbol_adjust (eh, info))
4757 return FALSE;
4758 p = &eh->u.next_dot_sym;
4759 }
4760 }
4761
4762 /* Clear the list for non-ppc64 input files. */
4763 p = &htab->dot_syms;
4764 while ((eh = *p) != NULL)
4765 {
4766 *p = NULL;
4767 p = &eh->u.next_dot_sym;
4768 }
4769
4770 /* We need to fix the undefs list for any syms we have twiddled to
4771 undef_weak. */
4772 if (htab->twiddled_syms)
4773 {
4774 bfd_link_repair_undef_list (&htab->elf.root);
4775 htab->twiddled_syms = 0;
4776 }
4777 return TRUE;
4778 }
4779
4780 /* Undo hash table changes when an --as-needed input file is determined
4781 not to be needed. */
4782
4783 static bfd_boolean
4784 ppc64_elf_as_needed_cleanup (bfd *ibfd ATTRIBUTE_UNUSED,
4785 struct bfd_link_info *info)
4786 {
4787 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4788
4789 if (htab == NULL)
4790 return FALSE;
4791
4792 htab->dot_syms = NULL;
4793 return TRUE;
4794 }
4795
4796 /* If --just-symbols against a final linked binary, then assume we need
4797 toc adjusting stubs when calling functions defined there. */
4798
4799 static void
4800 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4801 {
4802 if ((sec->flags & SEC_CODE) != 0
4803 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4804 && is_ppc64_elf (sec->owner))
4805 {
4806 asection *got = bfd_get_section_by_name (sec->owner, ".got");
4807 if (got != NULL
4808 && got->size >= elf_backend_got_header_size
4809 && bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4810 sec->has_toc_reloc = 1;
4811 }
4812 _bfd_elf_link_just_syms (sec, info);
4813 }
4814
4815 static struct plt_entry **
4816 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4817 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4818 {
4819 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4820 struct plt_entry **local_plt;
4821 unsigned char *local_got_tls_masks;
4822
4823 if (local_got_ents == NULL)
4824 {
4825 bfd_size_type size = symtab_hdr->sh_info;
4826
4827 size *= (sizeof (*local_got_ents)
4828 + sizeof (*local_plt)
4829 + sizeof (*local_got_tls_masks));
4830 local_got_ents = bfd_zalloc (abfd, size);
4831 if (local_got_ents == NULL)
4832 return NULL;
4833 elf_local_got_ents (abfd) = local_got_ents;
4834 }
4835
4836 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
4837 {
4838 struct got_entry *ent;
4839
4840 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4841 if (ent->addend == r_addend
4842 && ent->owner == abfd
4843 && ent->tls_type == tls_type)
4844 break;
4845 if (ent == NULL)
4846 {
4847 bfd_size_type amt = sizeof (*ent);
4848 ent = bfd_alloc (abfd, amt);
4849 if (ent == NULL)
4850 return FALSE;
4851 ent->next = local_got_ents[r_symndx];
4852 ent->addend = r_addend;
4853 ent->owner = abfd;
4854 ent->tls_type = tls_type;
4855 ent->is_indirect = FALSE;
4856 ent->got.refcount = 0;
4857 local_got_ents[r_symndx] = ent;
4858 }
4859 ent->got.refcount += 1;
4860 }
4861
4862 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4863 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4864 local_got_tls_masks[r_symndx] |= tls_type;
4865
4866 return local_plt + r_symndx;
4867 }
4868
4869 static bfd_boolean
4870 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4871 {
4872 struct plt_entry *ent;
4873
4874 for (ent = *plist; ent != NULL; ent = ent->next)
4875 if (ent->addend == addend)
4876 break;
4877 if (ent == NULL)
4878 {
4879 bfd_size_type amt = sizeof (*ent);
4880 ent = bfd_alloc (abfd, amt);
4881 if (ent == NULL)
4882 return FALSE;
4883 ent->next = *plist;
4884 ent->addend = addend;
4885 ent->plt.refcount = 0;
4886 *plist = ent;
4887 }
4888 ent->plt.refcount += 1;
4889 return TRUE;
4890 }
4891
4892 static bfd_boolean
4893 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4894 {
4895 return (r_type == R_PPC64_REL24
4896 || r_type == R_PPC64_REL14
4897 || r_type == R_PPC64_REL14_BRTAKEN
4898 || r_type == R_PPC64_REL14_BRNTAKEN
4899 || r_type == R_PPC64_ADDR24
4900 || r_type == R_PPC64_ADDR14
4901 || r_type == R_PPC64_ADDR14_BRTAKEN
4902 || r_type == R_PPC64_ADDR14_BRNTAKEN);
4903 }
4904
4905 /* Look through the relocs for a section during the first phase, and
4906 calculate needed space in the global offset table, procedure
4907 linkage table, and dynamic reloc sections. */
4908
4909 static bfd_boolean
4910 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4911 asection *sec, const Elf_Internal_Rela *relocs)
4912 {
4913 struct ppc_link_hash_table *htab;
4914 Elf_Internal_Shdr *symtab_hdr;
4915 struct elf_link_hash_entry **sym_hashes;
4916 const Elf_Internal_Rela *rel;
4917 const Elf_Internal_Rela *rel_end;
4918 asection *sreloc;
4919 asection **opd_sym_map;
4920 struct elf_link_hash_entry *tga, *dottga;
4921
4922 if (info->relocatable)
4923 return TRUE;
4924
4925 /* Don't do anything special with non-loaded, non-alloced sections.
4926 In particular, any relocs in such sections should not affect GOT
4927 and PLT reference counting (ie. we don't allow them to create GOT
4928 or PLT entries), there's no possibility or desire to optimize TLS
4929 relocs, and there's not much point in propagating relocs to shared
4930 libs that the dynamic linker won't relocate. */
4931 if ((sec->flags & SEC_ALLOC) == 0)
4932 return TRUE;
4933
4934 BFD_ASSERT (is_ppc64_elf (abfd));
4935
4936 htab = ppc_hash_table (info);
4937 if (htab == NULL)
4938 return FALSE;
4939
4940 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4941 FALSE, FALSE, TRUE);
4942 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4943 FALSE, FALSE, TRUE);
4944 symtab_hdr = &elf_symtab_hdr (abfd);
4945 sym_hashes = elf_sym_hashes (abfd);
4946 sreloc = NULL;
4947 opd_sym_map = NULL;
4948 if (strcmp (sec->name, ".opd") == 0)
4949 {
4950 /* Garbage collection needs some extra help with .opd sections.
4951 We don't want to necessarily keep everything referenced by
4952 relocs in .opd, as that would keep all functions. Instead,
4953 if we reference an .opd symbol (a function descriptor), we
4954 want to keep the function code symbol's section. This is
4955 easy for global symbols, but for local syms we need to keep
4956 information about the associated function section. */
4957 bfd_size_type amt;
4958
4959 amt = sec->size * sizeof (*opd_sym_map) / 8;
4960 opd_sym_map = bfd_zalloc (abfd, amt);
4961 if (opd_sym_map == NULL)
4962 return FALSE;
4963 ppc64_elf_section_data (sec)->u.opd.func_sec = opd_sym_map;
4964 BFD_ASSERT (ppc64_elf_section_data (sec)->sec_type == sec_normal);
4965 ppc64_elf_section_data (sec)->sec_type = sec_opd;
4966 }
4967
4968 if (htab->sfpr == NULL
4969 && !create_linkage_sections (htab->elf.dynobj, info))
4970 return FALSE;
4971
4972 rel_end = relocs + sec->reloc_count;
4973 for (rel = relocs; rel < rel_end; rel++)
4974 {
4975 unsigned long r_symndx;
4976 struct elf_link_hash_entry *h;
4977 enum elf_ppc64_reloc_type r_type;
4978 int tls_type;
4979 struct _ppc64_elf_section_data *ppc64_sec;
4980 struct plt_entry **ifunc;
4981
4982 r_symndx = ELF64_R_SYM (rel->r_info);
4983 if (r_symndx < symtab_hdr->sh_info)
4984 h = NULL;
4985 else
4986 {
4987 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4988 h = elf_follow_link (h);
4989 }
4990
4991 tls_type = 0;
4992 ifunc = NULL;
4993 if (h != NULL)
4994 {
4995 if (h->type == STT_GNU_IFUNC)
4996 {
4997 h->needs_plt = 1;
4998 ifunc = &h->plt.plist;
4999 }
5000 }
5001 else
5002 {
5003 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5004 abfd, r_symndx);
5005 if (isym == NULL)
5006 return FALSE;
5007
5008 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5009 {
5010 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5011 rel->r_addend, PLT_IFUNC);
5012 if (ifunc == NULL)
5013 return FALSE;
5014 }
5015 }
5016 r_type = ELF64_R_TYPE (rel->r_info);
5017 if (is_branch_reloc (r_type))
5018 {
5019 if (h != NULL && (h == tga || h == dottga))
5020 {
5021 if (rel != relocs
5022 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5023 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5024 /* We have a new-style __tls_get_addr call with a marker
5025 reloc. */
5026 ;
5027 else
5028 /* Mark this section as having an old-style call. */
5029 sec->has_tls_get_addr_call = 1;
5030 }
5031
5032 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5033 if (ifunc != NULL
5034 && !update_plt_info (abfd, ifunc, rel->r_addend))
5035 return FALSE;
5036 }
5037
5038 switch (r_type)
5039 {
5040 case R_PPC64_TLSGD:
5041 case R_PPC64_TLSLD:
5042 /* These special tls relocs tie a call to __tls_get_addr with
5043 its parameter symbol. */
5044 break;
5045
5046 case R_PPC64_GOT_TLSLD16:
5047 case R_PPC64_GOT_TLSLD16_LO:
5048 case R_PPC64_GOT_TLSLD16_HI:
5049 case R_PPC64_GOT_TLSLD16_HA:
5050 tls_type = TLS_TLS | TLS_LD;
5051 goto dogottls;
5052
5053 case R_PPC64_GOT_TLSGD16:
5054 case R_PPC64_GOT_TLSGD16_LO:
5055 case R_PPC64_GOT_TLSGD16_HI:
5056 case R_PPC64_GOT_TLSGD16_HA:
5057 tls_type = TLS_TLS | TLS_GD;
5058 goto dogottls;
5059
5060 case R_PPC64_GOT_TPREL16_DS:
5061 case R_PPC64_GOT_TPREL16_LO_DS:
5062 case R_PPC64_GOT_TPREL16_HI:
5063 case R_PPC64_GOT_TPREL16_HA:
5064 if (!info->executable)
5065 info->flags |= DF_STATIC_TLS;
5066 tls_type = TLS_TLS | TLS_TPREL;
5067 goto dogottls;
5068
5069 case R_PPC64_GOT_DTPREL16_DS:
5070 case R_PPC64_GOT_DTPREL16_LO_DS:
5071 case R_PPC64_GOT_DTPREL16_HI:
5072 case R_PPC64_GOT_DTPREL16_HA:
5073 tls_type = TLS_TLS | TLS_DTPREL;
5074 dogottls:
5075 sec->has_tls_reloc = 1;
5076 /* Fall thru */
5077
5078 case R_PPC64_GOT16:
5079 case R_PPC64_GOT16_DS:
5080 case R_PPC64_GOT16_HA:
5081 case R_PPC64_GOT16_HI:
5082 case R_PPC64_GOT16_LO:
5083 case R_PPC64_GOT16_LO_DS:
5084 /* This symbol requires a global offset table entry. */
5085 sec->has_toc_reloc = 1;
5086 if (r_type == R_PPC64_GOT_TLSLD16
5087 || r_type == R_PPC64_GOT_TLSGD16
5088 || r_type == R_PPC64_GOT_TPREL16_DS
5089 || r_type == R_PPC64_GOT_DTPREL16_DS
5090 || r_type == R_PPC64_GOT16
5091 || r_type == R_PPC64_GOT16_DS)
5092 {
5093 htab->do_multi_toc = 1;
5094 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5095 }
5096
5097 if (ppc64_elf_tdata (abfd)->got == NULL
5098 && !create_got_section (abfd, info))
5099 return FALSE;
5100
5101 if (h != NULL)
5102 {
5103 struct ppc_link_hash_entry *eh;
5104 struct got_entry *ent;
5105
5106 eh = (struct ppc_link_hash_entry *) h;
5107 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5108 if (ent->addend == rel->r_addend
5109 && ent->owner == abfd
5110 && ent->tls_type == tls_type)
5111 break;
5112 if (ent == NULL)
5113 {
5114 bfd_size_type amt = sizeof (*ent);
5115 ent = bfd_alloc (abfd, amt);
5116 if (ent == NULL)
5117 return FALSE;
5118 ent->next = eh->elf.got.glist;
5119 ent->addend = rel->r_addend;
5120 ent->owner = abfd;
5121 ent->tls_type = tls_type;
5122 ent->is_indirect = FALSE;
5123 ent->got.refcount = 0;
5124 eh->elf.got.glist = ent;
5125 }
5126 ent->got.refcount += 1;
5127 eh->tls_mask |= tls_type;
5128 }
5129 else
5130 /* This is a global offset table entry for a local symbol. */
5131 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5132 rel->r_addend, tls_type))
5133 return FALSE;
5134 break;
5135
5136 case R_PPC64_PLT16_HA:
5137 case R_PPC64_PLT16_HI:
5138 case R_PPC64_PLT16_LO:
5139 case R_PPC64_PLT32:
5140 case R_PPC64_PLT64:
5141 /* This symbol requires a procedure linkage table entry. We
5142 actually build the entry in adjust_dynamic_symbol,
5143 because this might be a case of linking PIC code without
5144 linking in any dynamic objects, in which case we don't
5145 need to generate a procedure linkage table after all. */
5146 if (h == NULL)
5147 {
5148 /* It does not make sense to have a procedure linkage
5149 table entry for a local symbol. */
5150 bfd_set_error (bfd_error_bad_value);
5151 return FALSE;
5152 }
5153 else
5154 {
5155 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5156 return FALSE;
5157 h->needs_plt = 1;
5158 if (h->root.root.string[0] == '.'
5159 && h->root.root.string[1] != '\0')
5160 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5161 }
5162 break;
5163
5164 /* The following relocations don't need to propagate the
5165 relocation if linking a shared object since they are
5166 section relative. */
5167 case R_PPC64_SECTOFF:
5168 case R_PPC64_SECTOFF_LO:
5169 case R_PPC64_SECTOFF_HI:
5170 case R_PPC64_SECTOFF_HA:
5171 case R_PPC64_SECTOFF_DS:
5172 case R_PPC64_SECTOFF_LO_DS:
5173 case R_PPC64_DTPREL16:
5174 case R_PPC64_DTPREL16_LO:
5175 case R_PPC64_DTPREL16_HI:
5176 case R_PPC64_DTPREL16_HA:
5177 case R_PPC64_DTPREL16_DS:
5178 case R_PPC64_DTPREL16_LO_DS:
5179 case R_PPC64_DTPREL16_HIGHER:
5180 case R_PPC64_DTPREL16_HIGHERA:
5181 case R_PPC64_DTPREL16_HIGHEST:
5182 case R_PPC64_DTPREL16_HIGHESTA:
5183 break;
5184
5185 /* Nor do these. */
5186 case R_PPC64_REL16:
5187 case R_PPC64_REL16_LO:
5188 case R_PPC64_REL16_HI:
5189 case R_PPC64_REL16_HA:
5190 break;
5191
5192 case R_PPC64_TOC16:
5193 case R_PPC64_TOC16_DS:
5194 htab->do_multi_toc = 1;
5195 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5196 case R_PPC64_TOC16_LO:
5197 case R_PPC64_TOC16_HI:
5198 case R_PPC64_TOC16_HA:
5199 case R_PPC64_TOC16_LO_DS:
5200 sec->has_toc_reloc = 1;
5201 break;
5202
5203 /* This relocation describes the C++ object vtable hierarchy.
5204 Reconstruct it for later use during GC. */
5205 case R_PPC64_GNU_VTINHERIT:
5206 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5207 return FALSE;
5208 break;
5209
5210 /* This relocation describes which C++ vtable entries are actually
5211 used. Record for later use during GC. */
5212 case R_PPC64_GNU_VTENTRY:
5213 BFD_ASSERT (h != NULL);
5214 if (h != NULL
5215 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5216 return FALSE;
5217 break;
5218
5219 case R_PPC64_REL14:
5220 case R_PPC64_REL14_BRTAKEN:
5221 case R_PPC64_REL14_BRNTAKEN:
5222 {
5223 asection *dest = NULL;
5224
5225 /* Heuristic: If jumping outside our section, chances are
5226 we are going to need a stub. */
5227 if (h != NULL)
5228 {
5229 /* If the sym is weak it may be overridden later, so
5230 don't assume we know where a weak sym lives. */
5231 if (h->root.type == bfd_link_hash_defined)
5232 dest = h->root.u.def.section;
5233 }
5234 else
5235 {
5236 Elf_Internal_Sym *isym;
5237
5238 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5239 abfd, r_symndx);
5240 if (isym == NULL)
5241 return FALSE;
5242
5243 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5244 }
5245
5246 if (dest != sec)
5247 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5248 }
5249 /* Fall through. */
5250
5251 case R_PPC64_REL24:
5252 if (h != NULL && ifunc == NULL)
5253 {
5254 /* We may need a .plt entry if the function this reloc
5255 refers to is in a shared lib. */
5256 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5257 return FALSE;
5258 h->needs_plt = 1;
5259 if (h->root.root.string[0] == '.'
5260 && h->root.root.string[1] != '\0')
5261 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5262 if (h == tga || h == dottga)
5263 sec->has_tls_reloc = 1;
5264 }
5265 break;
5266
5267 case R_PPC64_TPREL64:
5268 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5269 if (!info->executable)
5270 info->flags |= DF_STATIC_TLS;
5271 goto dotlstoc;
5272
5273 case R_PPC64_DTPMOD64:
5274 if (rel + 1 < rel_end
5275 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5276 && rel[1].r_offset == rel->r_offset + 8)
5277 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5278 else
5279 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5280 goto dotlstoc;
5281
5282 case R_PPC64_DTPREL64:
5283 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5284 if (rel != relocs
5285 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5286 && rel[-1].r_offset == rel->r_offset - 8)
5287 /* This is the second reloc of a dtpmod, dtprel pair.
5288 Don't mark with TLS_DTPREL. */
5289 goto dodyn;
5290
5291 dotlstoc:
5292 sec->has_tls_reloc = 1;
5293 if (h != NULL)
5294 {
5295 struct ppc_link_hash_entry *eh;
5296 eh = (struct ppc_link_hash_entry *) h;
5297 eh->tls_mask |= tls_type;
5298 }
5299 else
5300 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5301 rel->r_addend, tls_type))
5302 return FALSE;
5303
5304 ppc64_sec = ppc64_elf_section_data (sec);
5305 if (ppc64_sec->sec_type != sec_toc)
5306 {
5307 bfd_size_type amt;
5308
5309 /* One extra to simplify get_tls_mask. */
5310 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5311 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5312 if (ppc64_sec->u.toc.symndx == NULL)
5313 return FALSE;
5314 amt = sec->size * sizeof (bfd_vma) / 8;
5315 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5316 if (ppc64_sec->u.toc.add == NULL)
5317 return FALSE;
5318 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5319 ppc64_sec->sec_type = sec_toc;
5320 }
5321 BFD_ASSERT (rel->r_offset % 8 == 0);
5322 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5323 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5324
5325 /* Mark the second slot of a GD or LD entry.
5326 -1 to indicate GD and -2 to indicate LD. */
5327 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5328 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5329 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5330 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5331 goto dodyn;
5332
5333 case R_PPC64_TPREL16:
5334 case R_PPC64_TPREL16_LO:
5335 case R_PPC64_TPREL16_HI:
5336 case R_PPC64_TPREL16_HA:
5337 case R_PPC64_TPREL16_DS:
5338 case R_PPC64_TPREL16_LO_DS:
5339 case R_PPC64_TPREL16_HIGHER:
5340 case R_PPC64_TPREL16_HIGHERA:
5341 case R_PPC64_TPREL16_HIGHEST:
5342 case R_PPC64_TPREL16_HIGHESTA:
5343 if (info->shared)
5344 {
5345 if (!info->executable)
5346 info->flags |= DF_STATIC_TLS;
5347 goto dodyn;
5348 }
5349 break;
5350
5351 case R_PPC64_ADDR64:
5352 if (opd_sym_map != NULL
5353 && rel + 1 < rel_end
5354 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5355 {
5356 if (h != NULL)
5357 {
5358 if (h->root.root.string[0] == '.'
5359 && h->root.root.string[1] != 0
5360 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5361 ;
5362 else
5363 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5364 }
5365 else
5366 {
5367 asection *s;
5368 Elf_Internal_Sym *isym;
5369
5370 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5371 abfd, r_symndx);
5372 if (isym == NULL)
5373 return FALSE;
5374
5375 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5376 if (s != NULL && s != sec)
5377 opd_sym_map[rel->r_offset / 8] = s;
5378 }
5379 }
5380 /* Fall through. */
5381
5382 case R_PPC64_REL30:
5383 case R_PPC64_REL32:
5384 case R_PPC64_REL64:
5385 case R_PPC64_ADDR14:
5386 case R_PPC64_ADDR14_BRNTAKEN:
5387 case R_PPC64_ADDR14_BRTAKEN:
5388 case R_PPC64_ADDR16:
5389 case R_PPC64_ADDR16_DS:
5390 case R_PPC64_ADDR16_HA:
5391 case R_PPC64_ADDR16_HI:
5392 case R_PPC64_ADDR16_HIGHER:
5393 case R_PPC64_ADDR16_HIGHERA:
5394 case R_PPC64_ADDR16_HIGHEST:
5395 case R_PPC64_ADDR16_HIGHESTA:
5396 case R_PPC64_ADDR16_LO:
5397 case R_PPC64_ADDR16_LO_DS:
5398 case R_PPC64_ADDR24:
5399 case R_PPC64_ADDR32:
5400 case R_PPC64_UADDR16:
5401 case R_PPC64_UADDR32:
5402 case R_PPC64_UADDR64:
5403 case R_PPC64_TOC:
5404 if (h != NULL && !info->shared)
5405 /* We may need a copy reloc. */
5406 h->non_got_ref = 1;
5407
5408 /* Don't propagate .opd relocs. */
5409 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5410 break;
5411
5412 /* If we are creating a shared library, and this is a reloc
5413 against a global symbol, or a non PC relative reloc
5414 against a local symbol, then we need to copy the reloc
5415 into the shared library. However, if we are linking with
5416 -Bsymbolic, we do not need to copy a reloc against a
5417 global symbol which is defined in an object we are
5418 including in the link (i.e., DEF_REGULAR is set). At
5419 this point we have not seen all the input files, so it is
5420 possible that DEF_REGULAR is not set now but will be set
5421 later (it is never cleared). In case of a weak definition,
5422 DEF_REGULAR may be cleared later by a strong definition in
5423 a shared library. We account for that possibility below by
5424 storing information in the dyn_relocs field of the hash
5425 table entry. A similar situation occurs when creating
5426 shared libraries and symbol visibility changes render the
5427 symbol local.
5428
5429 If on the other hand, we are creating an executable, we
5430 may need to keep relocations for symbols satisfied by a
5431 dynamic library if we manage to avoid copy relocs for the
5432 symbol. */
5433 dodyn:
5434 if ((info->shared
5435 && (must_be_dyn_reloc (info, r_type)
5436 || (h != NULL
5437 && (! info->symbolic
5438 || h->root.type == bfd_link_hash_defweak
5439 || !h->def_regular))))
5440 || (ELIMINATE_COPY_RELOCS
5441 && !info->shared
5442 && h != NULL
5443 && (h->root.type == bfd_link_hash_defweak
5444 || !h->def_regular))
5445 || (!info->shared
5446 && ifunc != NULL))
5447 {
5448 struct elf_dyn_relocs *p;
5449 struct elf_dyn_relocs **head;
5450
5451 /* We must copy these reloc types into the output file.
5452 Create a reloc section in dynobj and make room for
5453 this reloc. */
5454 if (sreloc == NULL)
5455 {
5456 sreloc = _bfd_elf_make_dynamic_reloc_section
5457 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5458
5459 if (sreloc == NULL)
5460 return FALSE;
5461 }
5462
5463 /* If this is a global symbol, we count the number of
5464 relocations we need for this symbol. */
5465 if (h != NULL)
5466 {
5467 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5468 }
5469 else
5470 {
5471 /* Track dynamic relocs needed for local syms too.
5472 We really need local syms available to do this
5473 easily. Oh well. */
5474 asection *s;
5475 void *vpp;
5476 Elf_Internal_Sym *isym;
5477
5478 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5479 abfd, r_symndx);
5480 if (isym == NULL)
5481 return FALSE;
5482
5483 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5484 if (s == NULL)
5485 s = sec;
5486
5487 vpp = &elf_section_data (s)->local_dynrel;
5488 head = (struct elf_dyn_relocs **) vpp;
5489 }
5490
5491 p = *head;
5492 if (p == NULL || p->sec != sec)
5493 {
5494 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5495 if (p == NULL)
5496 return FALSE;
5497 p->next = *head;
5498 *head = p;
5499 p->sec = sec;
5500 p->count = 0;
5501 p->pc_count = 0;
5502 }
5503
5504 p->count += 1;
5505 if (!must_be_dyn_reloc (info, r_type))
5506 p->pc_count += 1;
5507 }
5508 break;
5509
5510 default:
5511 break;
5512 }
5513 }
5514
5515 return TRUE;
5516 }
5517
5518 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5519 of the code entry point, and its section. */
5520
5521 static bfd_vma
5522 opd_entry_value (asection *opd_sec,
5523 bfd_vma offset,
5524 asection **code_sec,
5525 bfd_vma *code_off)
5526 {
5527 bfd *opd_bfd = opd_sec->owner;
5528 Elf_Internal_Rela *relocs;
5529 Elf_Internal_Rela *lo, *hi, *look;
5530 bfd_vma val;
5531
5532 /* No relocs implies we are linking a --just-symbols object, or looking
5533 at a final linked executable with addr2line or somesuch. */
5534 if (opd_sec->reloc_count == 0)
5535 {
5536 char buf[8];
5537
5538 if (!bfd_get_section_contents (opd_bfd, opd_sec, buf, offset, 8))
5539 return (bfd_vma) -1;
5540
5541 val = bfd_get_64 (opd_bfd, buf);
5542 if (code_sec != NULL)
5543 {
5544 asection *sec, *likely = NULL;
5545 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5546 if (sec->vma <= val
5547 && (sec->flags & SEC_LOAD) != 0
5548 && (sec->flags & SEC_ALLOC) != 0)
5549 likely = sec;
5550 if (likely != NULL)
5551 {
5552 *code_sec = likely;
5553 if (code_off != NULL)
5554 *code_off = val - likely->vma;
5555 }
5556 }
5557 return val;
5558 }
5559
5560 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5561
5562 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs;
5563 if (relocs == NULL)
5564 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5565
5566 /* Go find the opd reloc at the sym address. */
5567 lo = relocs;
5568 BFD_ASSERT (lo != NULL);
5569 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5570 val = (bfd_vma) -1;
5571 while (lo < hi)
5572 {
5573 look = lo + (hi - lo) / 2;
5574 if (look->r_offset < offset)
5575 lo = look + 1;
5576 else if (look->r_offset > offset)
5577 hi = look;
5578 else
5579 {
5580 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5581
5582 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5583 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5584 {
5585 unsigned long symndx = ELF64_R_SYM (look->r_info);
5586 asection *sec;
5587
5588 if (symndx < symtab_hdr->sh_info)
5589 {
5590 Elf_Internal_Sym *sym;
5591
5592 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5593 if (sym == NULL)
5594 {
5595 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5596 symtab_hdr->sh_info,
5597 0, NULL, NULL, NULL);
5598 if (sym == NULL)
5599 break;
5600 symtab_hdr->contents = (bfd_byte *) sym;
5601 }
5602
5603 sym += symndx;
5604 val = sym->st_value;
5605 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5606 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5607 }
5608 else
5609 {
5610 struct elf_link_hash_entry **sym_hashes;
5611 struct elf_link_hash_entry *rh;
5612
5613 sym_hashes = elf_sym_hashes (opd_bfd);
5614 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5615 rh = elf_follow_link (rh);
5616 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
5617 || rh->root.type == bfd_link_hash_defweak);
5618 val = rh->root.u.def.value;
5619 sec = rh->root.u.def.section;
5620 }
5621 val += look->r_addend;
5622 if (code_off != NULL)
5623 *code_off = val;
5624 if (code_sec != NULL)
5625 *code_sec = sec;
5626 if (sec != NULL && sec->output_section != NULL)
5627 val += sec->output_section->vma + sec->output_offset;
5628 }
5629 break;
5630 }
5631 }
5632
5633 return val;
5634 }
5635
5636 /* Return TRUE iff the ELF symbol SYM might be a function. Set *CODE_SEC
5637 and *CODE_OFF to the function's entry point. */
5638
5639 static bfd_boolean
5640 ppc64_elf_maybe_function_sym (const asymbol *sym,
5641 asection **code_sec, bfd_vma *code_off)
5642 {
5643 if (_bfd_elf_maybe_function_sym (sym, code_sec, code_off))
5644 {
5645 if (strcmp (sym->section->name, ".opd") == 0)
5646 opd_entry_value (sym->section, sym->value, code_sec, code_off);
5647 return TRUE;
5648 }
5649 return FALSE;
5650 }
5651
5652 /* Return true if symbol is defined in a regular object file. */
5653
5654 static bfd_boolean
5655 is_static_defined (struct elf_link_hash_entry *h)
5656 {
5657 return ((h->root.type == bfd_link_hash_defined
5658 || h->root.type == bfd_link_hash_defweak)
5659 && h->root.u.def.section != NULL
5660 && h->root.u.def.section->output_section != NULL);
5661 }
5662
5663 /* If FDH is a function descriptor symbol, return the associated code
5664 entry symbol if it is defined. Return NULL otherwise. */
5665
5666 static struct ppc_link_hash_entry *
5667 defined_code_entry (struct ppc_link_hash_entry *fdh)
5668 {
5669 if (fdh->is_func_descriptor)
5670 {
5671 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5672 if (fh->elf.root.type == bfd_link_hash_defined
5673 || fh->elf.root.type == bfd_link_hash_defweak)
5674 return fh;
5675 }
5676 return NULL;
5677 }
5678
5679 /* If FH is a function code entry symbol, return the associated
5680 function descriptor symbol if it is defined. Return NULL otherwise. */
5681
5682 static struct ppc_link_hash_entry *
5683 defined_func_desc (struct ppc_link_hash_entry *fh)
5684 {
5685 if (fh->oh != NULL
5686 && fh->oh->is_func_descriptor)
5687 {
5688 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5689 if (fdh->elf.root.type == bfd_link_hash_defined
5690 || fdh->elf.root.type == bfd_link_hash_defweak)
5691 return fdh;
5692 }
5693 return NULL;
5694 }
5695
5696 /* Mark all our entry sym sections, both opd and code section. */
5697
5698 static void
5699 ppc64_elf_gc_keep (struct bfd_link_info *info)
5700 {
5701 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5702 struct bfd_sym_chain *sym;
5703
5704 if (htab == NULL)
5705 return;
5706
5707 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5708 {
5709 struct ppc_link_hash_entry *eh, *fh;
5710 asection *sec;
5711
5712 eh = (struct ppc_link_hash_entry *)
5713 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
5714 if (eh == NULL)
5715 continue;
5716 if (eh->elf.root.type != bfd_link_hash_defined
5717 && eh->elf.root.type != bfd_link_hash_defweak)
5718 continue;
5719
5720 fh = defined_code_entry (eh);
5721 if (fh != NULL)
5722 {
5723 sec = fh->elf.root.u.def.section;
5724 sec->flags |= SEC_KEEP;
5725 }
5726 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5727 && opd_entry_value (eh->elf.root.u.def.section,
5728 eh->elf.root.u.def.value,
5729 &sec, NULL) != (bfd_vma) -1)
5730 sec->flags |= SEC_KEEP;
5731
5732 sec = eh->elf.root.u.def.section;
5733 sec->flags |= SEC_KEEP;
5734 }
5735 }
5736
5737 /* Mark sections containing dynamically referenced symbols. When
5738 building shared libraries, we must assume that any visible symbol is
5739 referenced. */
5740
5741 static bfd_boolean
5742 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5743 {
5744 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5745 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
5746 struct ppc_link_hash_entry *fdh;
5747
5748 /* Dynamic linking info is on the func descriptor sym. */
5749 fdh = defined_func_desc (eh);
5750 if (fdh != NULL)
5751 eh = fdh;
5752
5753 if ((eh->elf.root.type == bfd_link_hash_defined
5754 || eh->elf.root.type == bfd_link_hash_defweak)
5755 && (eh->elf.ref_dynamic
5756 || (!info->executable
5757 && eh->elf.def_regular
5758 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5759 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5760 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
5761 || !bfd_hide_sym_by_version (info->version_info,
5762 eh->elf.root.root.string)))))
5763 {
5764 asection *code_sec;
5765 struct ppc_link_hash_entry *fh;
5766
5767 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5768
5769 /* Function descriptor syms cause the associated
5770 function code sym section to be marked. */
5771 fh = defined_code_entry (eh);
5772 if (fh != NULL)
5773 {
5774 code_sec = fh->elf.root.u.def.section;
5775 code_sec->flags |= SEC_KEEP;
5776 }
5777 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5778 && opd_entry_value (eh->elf.root.u.def.section,
5779 eh->elf.root.u.def.value,
5780 &code_sec, NULL) != (bfd_vma) -1)
5781 code_sec->flags |= SEC_KEEP;
5782 }
5783
5784 return TRUE;
5785 }
5786
5787 /* Return the section that should be marked against GC for a given
5788 relocation. */
5789
5790 static asection *
5791 ppc64_elf_gc_mark_hook (asection *sec,
5792 struct bfd_link_info *info,
5793 Elf_Internal_Rela *rel,
5794 struct elf_link_hash_entry *h,
5795 Elf_Internal_Sym *sym)
5796 {
5797 asection *rsec;
5798
5799 /* Syms return NULL if we're marking .opd, so we avoid marking all
5800 function sections, as all functions are referenced in .opd. */
5801 rsec = NULL;
5802 if (get_opd_info (sec) != NULL)
5803 return rsec;
5804
5805 if (h != NULL)
5806 {
5807 enum elf_ppc64_reloc_type r_type;
5808 struct ppc_link_hash_entry *eh, *fh, *fdh;
5809
5810 r_type = ELF64_R_TYPE (rel->r_info);
5811 switch (r_type)
5812 {
5813 case R_PPC64_GNU_VTINHERIT:
5814 case R_PPC64_GNU_VTENTRY:
5815 break;
5816
5817 default:
5818 switch (h->root.type)
5819 {
5820 case bfd_link_hash_defined:
5821 case bfd_link_hash_defweak:
5822 eh = (struct ppc_link_hash_entry *) h;
5823 fdh = defined_func_desc (eh);
5824 if (fdh != NULL)
5825 eh = fdh;
5826
5827 /* Function descriptor syms cause the associated
5828 function code sym section to be marked. */
5829 fh = defined_code_entry (eh);
5830 if (fh != NULL)
5831 {
5832 /* They also mark their opd section. */
5833 eh->elf.root.u.def.section->gc_mark = 1;
5834
5835 rsec = fh->elf.root.u.def.section;
5836 }
5837 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5838 && opd_entry_value (eh->elf.root.u.def.section,
5839 eh->elf.root.u.def.value,
5840 &rsec, NULL) != (bfd_vma) -1)
5841 eh->elf.root.u.def.section->gc_mark = 1;
5842 else
5843 rsec = h->root.u.def.section;
5844 break;
5845
5846 case bfd_link_hash_common:
5847 rsec = h->root.u.c.p->section;
5848 break;
5849
5850 default:
5851 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5852 }
5853 }
5854 }
5855 else
5856 {
5857 struct _opd_sec_data *opd;
5858
5859 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5860 opd = get_opd_info (rsec);
5861 if (opd != NULL && opd->func_sec != NULL)
5862 {
5863 rsec->gc_mark = 1;
5864
5865 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
5866 }
5867 }
5868
5869 return rsec;
5870 }
5871
5872 /* Update the .got, .plt. and dynamic reloc reference counts for the
5873 section being removed. */
5874
5875 static bfd_boolean
5876 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5877 asection *sec, const Elf_Internal_Rela *relocs)
5878 {
5879 struct ppc_link_hash_table *htab;
5880 Elf_Internal_Shdr *symtab_hdr;
5881 struct elf_link_hash_entry **sym_hashes;
5882 struct got_entry **local_got_ents;
5883 const Elf_Internal_Rela *rel, *relend;
5884
5885 if (info->relocatable)
5886 return TRUE;
5887
5888 if ((sec->flags & SEC_ALLOC) == 0)
5889 return TRUE;
5890
5891 elf_section_data (sec)->local_dynrel = NULL;
5892
5893 htab = ppc_hash_table (info);
5894 if (htab == NULL)
5895 return FALSE;
5896
5897 symtab_hdr = &elf_symtab_hdr (abfd);
5898 sym_hashes = elf_sym_hashes (abfd);
5899 local_got_ents = elf_local_got_ents (abfd);
5900
5901 relend = relocs + sec->reloc_count;
5902 for (rel = relocs; rel < relend; rel++)
5903 {
5904 unsigned long r_symndx;
5905 enum elf_ppc64_reloc_type r_type;
5906 struct elf_link_hash_entry *h = NULL;
5907 unsigned char tls_type = 0;
5908
5909 r_symndx = ELF64_R_SYM (rel->r_info);
5910 r_type = ELF64_R_TYPE (rel->r_info);
5911 if (r_symndx >= symtab_hdr->sh_info)
5912 {
5913 struct ppc_link_hash_entry *eh;
5914 struct elf_dyn_relocs **pp;
5915 struct elf_dyn_relocs *p;
5916
5917 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5918 h = elf_follow_link (h);
5919 eh = (struct ppc_link_hash_entry *) h;
5920
5921 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
5922 if (p->sec == sec)
5923 {
5924 /* Everything must go for SEC. */
5925 *pp = p->next;
5926 break;
5927 }
5928 }
5929
5930 if (is_branch_reloc (r_type))
5931 {
5932 struct plt_entry **ifunc = NULL;
5933 if (h != NULL)
5934 {
5935 if (h->type == STT_GNU_IFUNC)
5936 ifunc = &h->plt.plist;
5937 }
5938 else if (local_got_ents != NULL)
5939 {
5940 struct plt_entry **local_plt = (struct plt_entry **)
5941 (local_got_ents + symtab_hdr->sh_info);
5942 unsigned char *local_got_tls_masks = (unsigned char *)
5943 (local_plt + symtab_hdr->sh_info);
5944 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
5945 ifunc = local_plt + r_symndx;
5946 }
5947 if (ifunc != NULL)
5948 {
5949 struct plt_entry *ent;
5950
5951 for (ent = *ifunc; ent != NULL; ent = ent->next)
5952 if (ent->addend == rel->r_addend)
5953 break;
5954 if (ent == NULL)
5955 abort ();
5956 if (ent->plt.refcount > 0)
5957 ent->plt.refcount -= 1;
5958 continue;
5959 }
5960 }
5961
5962 switch (r_type)
5963 {
5964 case R_PPC64_GOT_TLSLD16:
5965 case R_PPC64_GOT_TLSLD16_LO:
5966 case R_PPC64_GOT_TLSLD16_HI:
5967 case R_PPC64_GOT_TLSLD16_HA:
5968 tls_type = TLS_TLS | TLS_LD;
5969 goto dogot;
5970
5971 case R_PPC64_GOT_TLSGD16:
5972 case R_PPC64_GOT_TLSGD16_LO:
5973 case R_PPC64_GOT_TLSGD16_HI:
5974 case R_PPC64_GOT_TLSGD16_HA:
5975 tls_type = TLS_TLS | TLS_GD;
5976 goto dogot;
5977
5978 case R_PPC64_GOT_TPREL16_DS:
5979 case R_PPC64_GOT_TPREL16_LO_DS:
5980 case R_PPC64_GOT_TPREL16_HI:
5981 case R_PPC64_GOT_TPREL16_HA:
5982 tls_type = TLS_TLS | TLS_TPREL;
5983 goto dogot;
5984
5985 case R_PPC64_GOT_DTPREL16_DS:
5986 case R_PPC64_GOT_DTPREL16_LO_DS:
5987 case R_PPC64_GOT_DTPREL16_HI:
5988 case R_PPC64_GOT_DTPREL16_HA:
5989 tls_type = TLS_TLS | TLS_DTPREL;
5990 goto dogot;
5991
5992 case R_PPC64_GOT16:
5993 case R_PPC64_GOT16_DS:
5994 case R_PPC64_GOT16_HA:
5995 case R_PPC64_GOT16_HI:
5996 case R_PPC64_GOT16_LO:
5997 case R_PPC64_GOT16_LO_DS:
5998 dogot:
5999 {
6000 struct got_entry *ent;
6001
6002 if (h != NULL)
6003 ent = h->got.glist;
6004 else
6005 ent = local_got_ents[r_symndx];
6006
6007 for (; ent != NULL; ent = ent->next)
6008 if (ent->addend == rel->r_addend
6009 && ent->owner == abfd
6010 && ent->tls_type == tls_type)
6011 break;
6012 if (ent == NULL)
6013 abort ();
6014 if (ent->got.refcount > 0)
6015 ent->got.refcount -= 1;
6016 }
6017 break;
6018
6019 case R_PPC64_PLT16_HA:
6020 case R_PPC64_PLT16_HI:
6021 case R_PPC64_PLT16_LO:
6022 case R_PPC64_PLT32:
6023 case R_PPC64_PLT64:
6024 case R_PPC64_REL14:
6025 case R_PPC64_REL14_BRNTAKEN:
6026 case R_PPC64_REL14_BRTAKEN:
6027 case R_PPC64_REL24:
6028 if (h != NULL)
6029 {
6030 struct plt_entry *ent;
6031
6032 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6033 if (ent->addend == rel->r_addend)
6034 break;
6035 if (ent != NULL && ent->plt.refcount > 0)
6036 ent->plt.refcount -= 1;
6037 }
6038 break;
6039
6040 default:
6041 break;
6042 }
6043 }
6044 return TRUE;
6045 }
6046
6047 /* The maximum size of .sfpr. */
6048 #define SFPR_MAX (218*4)
6049
6050 struct sfpr_def_parms
6051 {
6052 const char name[12];
6053 unsigned char lo, hi;
6054 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6055 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6056 };
6057
6058 /* Auto-generate _save*, _rest* functions in .sfpr. */
6059
6060 static bfd_boolean
6061 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6062 {
6063 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6064 unsigned int i;
6065 size_t len = strlen (parm->name);
6066 bfd_boolean writing = FALSE;
6067 char sym[16];
6068
6069 if (htab == NULL)
6070 return FALSE;
6071
6072 memcpy (sym, parm->name, len);
6073 sym[len + 2] = 0;
6074
6075 for (i = parm->lo; i <= parm->hi; i++)
6076 {
6077 struct elf_link_hash_entry *h;
6078
6079 sym[len + 0] = i / 10 + '0';
6080 sym[len + 1] = i % 10 + '0';
6081 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6082 if (h != NULL
6083 && !h->def_regular)
6084 {
6085 h->root.type = bfd_link_hash_defined;
6086 h->root.u.def.section = htab->sfpr;
6087 h->root.u.def.value = htab->sfpr->size;
6088 h->type = STT_FUNC;
6089 h->def_regular = 1;
6090 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6091 writing = TRUE;
6092 if (htab->sfpr->contents == NULL)
6093 {
6094 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6095 if (htab->sfpr->contents == NULL)
6096 return FALSE;
6097 }
6098 }
6099 if (writing)
6100 {
6101 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6102 if (i != parm->hi)
6103 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6104 else
6105 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6106 htab->sfpr->size = p - htab->sfpr->contents;
6107 }
6108 }
6109
6110 return TRUE;
6111 }
6112
6113 static bfd_byte *
6114 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6115 {
6116 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6117 return p + 4;
6118 }
6119
6120 static bfd_byte *
6121 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6122 {
6123 p = savegpr0 (abfd, p, r);
6124 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
6125 p = p + 4;
6126 bfd_put_32 (abfd, BLR, p);
6127 return p + 4;
6128 }
6129
6130 static bfd_byte *
6131 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6132 {
6133 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6134 return p + 4;
6135 }
6136
6137 static bfd_byte *
6138 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6139 {
6140 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
6141 p = p + 4;
6142 p = restgpr0 (abfd, p, r);
6143 bfd_put_32 (abfd, MTLR_R0, p);
6144 p = p + 4;
6145 if (r == 29)
6146 {
6147 p = restgpr0 (abfd, p, 30);
6148 p = restgpr0 (abfd, p, 31);
6149 }
6150 bfd_put_32 (abfd, BLR, p);
6151 return p + 4;
6152 }
6153
6154 static bfd_byte *
6155 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6156 {
6157 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6158 return p + 4;
6159 }
6160
6161 static bfd_byte *
6162 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6163 {
6164 p = savegpr1 (abfd, p, r);
6165 bfd_put_32 (abfd, BLR, p);
6166 return p + 4;
6167 }
6168
6169 static bfd_byte *
6170 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6171 {
6172 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6173 return p + 4;
6174 }
6175
6176 static bfd_byte *
6177 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6178 {
6179 p = restgpr1 (abfd, p, r);
6180 bfd_put_32 (abfd, BLR, p);
6181 return p + 4;
6182 }
6183
6184 static bfd_byte *
6185 savefpr (bfd *abfd, bfd_byte *p, int r)
6186 {
6187 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6188 return p + 4;
6189 }
6190
6191 static bfd_byte *
6192 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6193 {
6194 p = savefpr (abfd, p, r);
6195 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
6196 p = p + 4;
6197 bfd_put_32 (abfd, BLR, p);
6198 return p + 4;
6199 }
6200
6201 static bfd_byte *
6202 restfpr (bfd *abfd, bfd_byte *p, int r)
6203 {
6204 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6205 return p + 4;
6206 }
6207
6208 static bfd_byte *
6209 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6210 {
6211 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
6212 p = p + 4;
6213 p = restfpr (abfd, p, r);
6214 bfd_put_32 (abfd, MTLR_R0, p);
6215 p = p + 4;
6216 if (r == 29)
6217 {
6218 p = restfpr (abfd, p, 30);
6219 p = restfpr (abfd, p, 31);
6220 }
6221 bfd_put_32 (abfd, BLR, p);
6222 return p + 4;
6223 }
6224
6225 static bfd_byte *
6226 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6227 {
6228 p = savefpr (abfd, p, r);
6229 bfd_put_32 (abfd, BLR, p);
6230 return p + 4;
6231 }
6232
6233 static bfd_byte *
6234 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6235 {
6236 p = restfpr (abfd, p, r);
6237 bfd_put_32 (abfd, BLR, p);
6238 return p + 4;
6239 }
6240
6241 static bfd_byte *
6242 savevr (bfd *abfd, bfd_byte *p, int r)
6243 {
6244 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6245 p = p + 4;
6246 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6247 return p + 4;
6248 }
6249
6250 static bfd_byte *
6251 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6252 {
6253 p = savevr (abfd, p, r);
6254 bfd_put_32 (abfd, BLR, p);
6255 return p + 4;
6256 }
6257
6258 static bfd_byte *
6259 restvr (bfd *abfd, bfd_byte *p, int r)
6260 {
6261 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6262 p = p + 4;
6263 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6264 return p + 4;
6265 }
6266
6267 static bfd_byte *
6268 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6269 {
6270 p = restvr (abfd, p, r);
6271 bfd_put_32 (abfd, BLR, p);
6272 return p + 4;
6273 }
6274
6275 /* Called via elf_link_hash_traverse to transfer dynamic linking
6276 information on function code symbol entries to their corresponding
6277 function descriptor symbol entries. */
6278
6279 static bfd_boolean
6280 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6281 {
6282 struct bfd_link_info *info;
6283 struct ppc_link_hash_table *htab;
6284 struct plt_entry *ent;
6285 struct ppc_link_hash_entry *fh;
6286 struct ppc_link_hash_entry *fdh;
6287 bfd_boolean force_local;
6288
6289 fh = (struct ppc_link_hash_entry *) h;
6290 if (fh->elf.root.type == bfd_link_hash_indirect)
6291 return TRUE;
6292
6293 info = inf;
6294 htab = ppc_hash_table (info);
6295 if (htab == NULL)
6296 return FALSE;
6297
6298 /* Resolve undefined references to dot-symbols as the value
6299 in the function descriptor, if we have one in a regular object.
6300 This is to satisfy cases like ".quad .foo". Calls to functions
6301 in dynamic objects are handled elsewhere. */
6302 if (fh->elf.root.type == bfd_link_hash_undefweak
6303 && fh->was_undefined
6304 && (fdh = defined_func_desc (fh)) != NULL
6305 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6306 && opd_entry_value (fdh->elf.root.u.def.section,
6307 fdh->elf.root.u.def.value,
6308 &fh->elf.root.u.def.section,
6309 &fh->elf.root.u.def.value) != (bfd_vma) -1)
6310 {
6311 fh->elf.root.type = fdh->elf.root.type;
6312 fh->elf.forced_local = 1;
6313 fh->elf.def_regular = fdh->elf.def_regular;
6314 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6315 }
6316
6317 /* If this is a function code symbol, transfer dynamic linking
6318 information to the function descriptor symbol. */
6319 if (!fh->is_func)
6320 return TRUE;
6321
6322 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6323 if (ent->plt.refcount > 0)
6324 break;
6325 if (ent == NULL
6326 || fh->elf.root.root.string[0] != '.'
6327 || fh->elf.root.root.string[1] == '\0')
6328 return TRUE;
6329
6330 /* Find the corresponding function descriptor symbol. Create it
6331 as undefined if necessary. */
6332
6333 fdh = lookup_fdh (fh, htab);
6334 if (fdh == NULL
6335 && !info->executable
6336 && (fh->elf.root.type == bfd_link_hash_undefined
6337 || fh->elf.root.type == bfd_link_hash_undefweak))
6338 {
6339 fdh = make_fdh (info, fh);
6340 if (fdh == NULL)
6341 return FALSE;
6342 }
6343
6344 /* Fake function descriptors are made undefweak. If the function
6345 code symbol is strong undefined, make the fake sym the same.
6346 If the function code symbol is defined, then force the fake
6347 descriptor local; We can't support overriding of symbols in a
6348 shared library on a fake descriptor. */
6349
6350 if (fdh != NULL
6351 && fdh->fake
6352 && fdh->elf.root.type == bfd_link_hash_undefweak)
6353 {
6354 if (fh->elf.root.type == bfd_link_hash_undefined)
6355 {
6356 fdh->elf.root.type = bfd_link_hash_undefined;
6357 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6358 }
6359 else if (fh->elf.root.type == bfd_link_hash_defined
6360 || fh->elf.root.type == bfd_link_hash_defweak)
6361 {
6362 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6363 }
6364 }
6365
6366 if (fdh != NULL
6367 && !fdh->elf.forced_local
6368 && (!info->executable
6369 || fdh->elf.def_dynamic
6370 || fdh->elf.ref_dynamic
6371 || (fdh->elf.root.type == bfd_link_hash_undefweak
6372 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6373 {
6374 if (fdh->elf.dynindx == -1)
6375 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6376 return FALSE;
6377 fdh->elf.ref_regular |= fh->elf.ref_regular;
6378 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6379 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6380 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6381 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6382 {
6383 move_plt_plist (fh, fdh);
6384 fdh->elf.needs_plt = 1;
6385 }
6386 fdh->is_func_descriptor = 1;
6387 fdh->oh = fh;
6388 fh->oh = fdh;
6389 }
6390
6391 /* Now that the info is on the function descriptor, clear the
6392 function code sym info. Any function code syms for which we
6393 don't have a definition in a regular file, we force local.
6394 This prevents a shared library from exporting syms that have
6395 been imported from another library. Function code syms that
6396 are really in the library we must leave global to prevent the
6397 linker dragging in a definition from a static library. */
6398 force_local = (!fh->elf.def_regular
6399 || fdh == NULL
6400 || !fdh->elf.def_regular
6401 || fdh->elf.forced_local);
6402 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6403
6404 return TRUE;
6405 }
6406
6407 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6408 this hook to a) provide some gcc support functions, and b) transfer
6409 dynamic linking information gathered so far on function code symbol
6410 entries, to their corresponding function descriptor symbol entries. */
6411
6412 static bfd_boolean
6413 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6414 struct bfd_link_info *info)
6415 {
6416 struct ppc_link_hash_table *htab;
6417 unsigned int i;
6418 const struct sfpr_def_parms funcs[] =
6419 {
6420 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6421 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6422 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6423 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6424 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6425 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6426 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6427 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6428 { "._savef", 14, 31, savefpr, savefpr1_tail },
6429 { "._restf", 14, 31, restfpr, restfpr1_tail },
6430 { "_savevr_", 20, 31, savevr, savevr_tail },
6431 { "_restvr_", 20, 31, restvr, restvr_tail }
6432 };
6433
6434 htab = ppc_hash_table (info);
6435 if (htab == NULL)
6436 return FALSE;
6437
6438 if (htab->sfpr == NULL)
6439 /* We don't have any relocs. */
6440 return TRUE;
6441
6442 /* Provide any missing _save* and _rest* functions. */
6443 htab->sfpr->size = 0;
6444 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6445 if (!sfpr_define (info, &funcs[i]))
6446 return FALSE;
6447
6448 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6449
6450 if (htab->sfpr->size == 0)
6451 htab->sfpr->flags |= SEC_EXCLUDE;
6452
6453 return TRUE;
6454 }
6455
6456 /* Adjust a symbol defined by a dynamic object and referenced by a
6457 regular object. The current definition is in some section of the
6458 dynamic object, but we're not including those sections. We have to
6459 change the definition to something the rest of the link can
6460 understand. */
6461
6462 static bfd_boolean
6463 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6464 struct elf_link_hash_entry *h)
6465 {
6466 struct ppc_link_hash_table *htab;
6467 asection *s;
6468
6469 htab = ppc_hash_table (info);
6470 if (htab == NULL)
6471 return FALSE;
6472
6473 /* Deal with function syms. */
6474 if (h->type == STT_FUNC
6475 || h->type == STT_GNU_IFUNC
6476 || h->needs_plt)
6477 {
6478 /* Clear procedure linkage table information for any symbol that
6479 won't need a .plt entry. */
6480 struct plt_entry *ent;
6481 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6482 if (ent->plt.refcount > 0)
6483 break;
6484 if (ent == NULL
6485 || (h->type != STT_GNU_IFUNC
6486 && (SYMBOL_CALLS_LOCAL (info, h)
6487 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6488 && h->root.type == bfd_link_hash_undefweak))))
6489 {
6490 h->plt.plist = NULL;
6491 h->needs_plt = 0;
6492 }
6493 }
6494 else
6495 h->plt.plist = NULL;
6496
6497 /* If this is a weak symbol, and there is a real definition, the
6498 processor independent code will have arranged for us to see the
6499 real definition first, and we can just use the same value. */
6500 if (h->u.weakdef != NULL)
6501 {
6502 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6503 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6504 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6505 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6506 if (ELIMINATE_COPY_RELOCS)
6507 h->non_got_ref = h->u.weakdef->non_got_ref;
6508 return TRUE;
6509 }
6510
6511 /* If we are creating a shared library, we must presume that the
6512 only references to the symbol are via the global offset table.
6513 For such cases we need not do anything here; the relocations will
6514 be handled correctly by relocate_section. */
6515 if (info->shared)
6516 return TRUE;
6517
6518 /* If there are no references to this symbol that do not use the
6519 GOT, we don't need to generate a copy reloc. */
6520 if (!h->non_got_ref)
6521 return TRUE;
6522
6523 /* Don't generate a copy reloc for symbols defined in the executable. */
6524 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
6525 return TRUE;
6526
6527 if (ELIMINATE_COPY_RELOCS)
6528 {
6529 struct ppc_link_hash_entry * eh;
6530 struct elf_dyn_relocs *p;
6531
6532 eh = (struct ppc_link_hash_entry *) h;
6533 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6534 {
6535 s = p->sec->output_section;
6536 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6537 break;
6538 }
6539
6540 /* If we didn't find any dynamic relocs in read-only sections, then
6541 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6542 if (p == NULL)
6543 {
6544 h->non_got_ref = 0;
6545 return TRUE;
6546 }
6547 }
6548
6549 if (h->plt.plist != NULL)
6550 {
6551 /* We should never get here, but unfortunately there are versions
6552 of gcc out there that improperly (for this ABI) put initialized
6553 function pointers, vtable refs and suchlike in read-only
6554 sections. Allow them to proceed, but warn that this might
6555 break at runtime. */
6556 info->callbacks->einfo
6557 (_("%P: copy reloc against `%s' requires lazy plt linking; "
6558 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6559 h->root.root.string);
6560 }
6561
6562 /* This is a reference to a symbol defined by a dynamic object which
6563 is not a function. */
6564
6565 if (h->size == 0)
6566 {
6567 info->callbacks->einfo (_("%P: dynamic variable `%s' is zero size\n"),
6568 h->root.root.string);
6569 return TRUE;
6570 }
6571
6572 /* We must allocate the symbol in our .dynbss section, which will
6573 become part of the .bss section of the executable. There will be
6574 an entry for this symbol in the .dynsym section. The dynamic
6575 object will contain position independent code, so all references
6576 from the dynamic object to this symbol will go through the global
6577 offset table. The dynamic linker will use the .dynsym entry to
6578 determine the address it must put in the global offset table, so
6579 both the dynamic object and the regular object will refer to the
6580 same memory location for the variable. */
6581
6582 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
6583 to copy the initial value out of the dynamic object and into the
6584 runtime process image. We need to remember the offset into the
6585 .rela.bss section we are going to use. */
6586 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
6587 {
6588 htab->relbss->size += sizeof (Elf64_External_Rela);
6589 h->needs_copy = 1;
6590 }
6591
6592 s = htab->dynbss;
6593
6594 return _bfd_elf_adjust_dynamic_copy (h, s);
6595 }
6596
6597 /* If given a function descriptor symbol, hide both the function code
6598 sym and the descriptor. */
6599 static void
6600 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6601 struct elf_link_hash_entry *h,
6602 bfd_boolean force_local)
6603 {
6604 struct ppc_link_hash_entry *eh;
6605 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6606
6607 eh = (struct ppc_link_hash_entry *) h;
6608 if (eh->is_func_descriptor)
6609 {
6610 struct ppc_link_hash_entry *fh = eh->oh;
6611
6612 if (fh == NULL)
6613 {
6614 const char *p, *q;
6615 struct ppc_link_hash_table *htab;
6616 char save;
6617
6618 /* We aren't supposed to use alloca in BFD because on
6619 systems which do not have alloca the version in libiberty
6620 calls xmalloc, which might cause the program to crash
6621 when it runs out of memory. This function doesn't have a
6622 return status, so there's no way to gracefully return an
6623 error. So cheat. We know that string[-1] can be safely
6624 accessed; It's either a string in an ELF string table,
6625 or allocated in an objalloc structure. */
6626
6627 p = eh->elf.root.root.string - 1;
6628 save = *p;
6629 *(char *) p = '.';
6630 htab = ppc_hash_table (info);
6631 if (htab == NULL)
6632 return;
6633
6634 fh = (struct ppc_link_hash_entry *)
6635 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6636 *(char *) p = save;
6637
6638 /* Unfortunately, if it so happens that the string we were
6639 looking for was allocated immediately before this string,
6640 then we overwrote the string terminator. That's the only
6641 reason the lookup should fail. */
6642 if (fh == NULL)
6643 {
6644 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6645 while (q >= eh->elf.root.root.string && *q == *p)
6646 --q, --p;
6647 if (q < eh->elf.root.root.string && *p == '.')
6648 fh = (struct ppc_link_hash_entry *)
6649 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6650 }
6651 if (fh != NULL)
6652 {
6653 eh->oh = fh;
6654 fh->oh = eh;
6655 }
6656 }
6657 if (fh != NULL)
6658 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6659 }
6660 }
6661
6662 static bfd_boolean
6663 get_sym_h (struct elf_link_hash_entry **hp,
6664 Elf_Internal_Sym **symp,
6665 asection **symsecp,
6666 unsigned char **tls_maskp,
6667 Elf_Internal_Sym **locsymsp,
6668 unsigned long r_symndx,
6669 bfd *ibfd)
6670 {
6671 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6672
6673 if (r_symndx >= symtab_hdr->sh_info)
6674 {
6675 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6676 struct elf_link_hash_entry *h;
6677
6678 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6679 h = elf_follow_link (h);
6680
6681 if (hp != NULL)
6682 *hp = h;
6683
6684 if (symp != NULL)
6685 *symp = NULL;
6686
6687 if (symsecp != NULL)
6688 {
6689 asection *symsec = NULL;
6690 if (h->root.type == bfd_link_hash_defined
6691 || h->root.type == bfd_link_hash_defweak)
6692 symsec = h->root.u.def.section;
6693 *symsecp = symsec;
6694 }
6695
6696 if (tls_maskp != NULL)
6697 {
6698 struct ppc_link_hash_entry *eh;
6699
6700 eh = (struct ppc_link_hash_entry *) h;
6701 *tls_maskp = &eh->tls_mask;
6702 }
6703 }
6704 else
6705 {
6706 Elf_Internal_Sym *sym;
6707 Elf_Internal_Sym *locsyms = *locsymsp;
6708
6709 if (locsyms == NULL)
6710 {
6711 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6712 if (locsyms == NULL)
6713 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6714 symtab_hdr->sh_info,
6715 0, NULL, NULL, NULL);
6716 if (locsyms == NULL)
6717 return FALSE;
6718 *locsymsp = locsyms;
6719 }
6720 sym = locsyms + r_symndx;
6721
6722 if (hp != NULL)
6723 *hp = NULL;
6724
6725 if (symp != NULL)
6726 *symp = sym;
6727
6728 if (symsecp != NULL)
6729 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6730
6731 if (tls_maskp != NULL)
6732 {
6733 struct got_entry **lgot_ents;
6734 unsigned char *tls_mask;
6735
6736 tls_mask = NULL;
6737 lgot_ents = elf_local_got_ents (ibfd);
6738 if (lgot_ents != NULL)
6739 {
6740 struct plt_entry **local_plt = (struct plt_entry **)
6741 (lgot_ents + symtab_hdr->sh_info);
6742 unsigned char *lgot_masks = (unsigned char *)
6743 (local_plt + symtab_hdr->sh_info);
6744 tls_mask = &lgot_masks[r_symndx];
6745 }
6746 *tls_maskp = tls_mask;
6747 }
6748 }
6749 return TRUE;
6750 }
6751
6752 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6753 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6754 type suitable for optimization, and 1 otherwise. */
6755
6756 static int
6757 get_tls_mask (unsigned char **tls_maskp,
6758 unsigned long *toc_symndx,
6759 bfd_vma *toc_addend,
6760 Elf_Internal_Sym **locsymsp,
6761 const Elf_Internal_Rela *rel,
6762 bfd *ibfd)
6763 {
6764 unsigned long r_symndx;
6765 int next_r;
6766 struct elf_link_hash_entry *h;
6767 Elf_Internal_Sym *sym;
6768 asection *sec;
6769 bfd_vma off;
6770
6771 r_symndx = ELF64_R_SYM (rel->r_info);
6772 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6773 return 0;
6774
6775 if ((*tls_maskp != NULL && **tls_maskp != 0)
6776 || sec == NULL
6777 || ppc64_elf_section_data (sec) == NULL
6778 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6779 return 1;
6780
6781 /* Look inside a TOC section too. */
6782 if (h != NULL)
6783 {
6784 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6785 off = h->root.u.def.value;
6786 }
6787 else
6788 off = sym->st_value;
6789 off += rel->r_addend;
6790 BFD_ASSERT (off % 8 == 0);
6791 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6792 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6793 if (toc_symndx != NULL)
6794 *toc_symndx = r_symndx;
6795 if (toc_addend != NULL)
6796 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6797 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6798 return 0;
6799 if ((h == NULL || is_static_defined (h))
6800 && (next_r == -1 || next_r == -2))
6801 return 1 - next_r;
6802 return 1;
6803 }
6804
6805 /* Find (or create) an entry in the tocsave hash table. */
6806
6807 static struct tocsave_entry *
6808 tocsave_find (struct ppc_link_hash_table *htab,
6809 enum insert_option insert,
6810 Elf_Internal_Sym **local_syms,
6811 const Elf_Internal_Rela *irela,
6812 bfd *ibfd)
6813 {
6814 unsigned long r_indx;
6815 struct elf_link_hash_entry *h;
6816 Elf_Internal_Sym *sym;
6817 struct tocsave_entry ent, *p;
6818 hashval_t hash;
6819 struct tocsave_entry **slot;
6820
6821 r_indx = ELF64_R_SYM (irela->r_info);
6822 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6823 return NULL;
6824 if (ent.sec == NULL || ent.sec->output_section == NULL)
6825 {
6826 (*_bfd_error_handler)
6827 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
6828 return NULL;
6829 }
6830
6831 if (h != NULL)
6832 ent.offset = h->root.u.def.value;
6833 else
6834 ent.offset = sym->st_value;
6835 ent.offset += irela->r_addend;
6836
6837 hash = tocsave_htab_hash (&ent);
6838 slot = ((struct tocsave_entry **)
6839 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6840 if (slot == NULL)
6841 return NULL;
6842
6843 if (*slot == NULL)
6844 {
6845 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6846 if (p == NULL)
6847 return NULL;
6848 *p = ent;
6849 *slot = p;
6850 }
6851 return *slot;
6852 }
6853
6854 /* Adjust all global syms defined in opd sections. In gcc generated
6855 code for the old ABI, these will already have been done. */
6856
6857 static bfd_boolean
6858 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6859 {
6860 struct ppc_link_hash_entry *eh;
6861 asection *sym_sec;
6862 struct _opd_sec_data *opd;
6863
6864 if (h->root.type == bfd_link_hash_indirect)
6865 return TRUE;
6866
6867 if (h->root.type != bfd_link_hash_defined
6868 && h->root.type != bfd_link_hash_defweak)
6869 return TRUE;
6870
6871 eh = (struct ppc_link_hash_entry *) h;
6872 if (eh->adjust_done)
6873 return TRUE;
6874
6875 sym_sec = eh->elf.root.u.def.section;
6876 opd = get_opd_info (sym_sec);
6877 if (opd != NULL && opd->adjust != NULL)
6878 {
6879 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
6880 if (adjust == -1)
6881 {
6882 /* This entry has been deleted. */
6883 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6884 if (dsec == NULL)
6885 {
6886 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6887 if (elf_discarded_section (dsec))
6888 {
6889 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6890 break;
6891 }
6892 }
6893 eh->elf.root.u.def.value = 0;
6894 eh->elf.root.u.def.section = dsec;
6895 }
6896 else
6897 eh->elf.root.u.def.value += adjust;
6898 eh->adjust_done = 1;
6899 }
6900 return TRUE;
6901 }
6902
6903 /* Handles decrementing dynamic reloc counts for the reloc specified by
6904 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM_SEC
6905 have already been determined. */
6906
6907 static bfd_boolean
6908 dec_dynrel_count (bfd_vma r_info,
6909 asection *sec,
6910 struct bfd_link_info *info,
6911 Elf_Internal_Sym **local_syms,
6912 struct elf_link_hash_entry *h,
6913 asection *sym_sec)
6914 {
6915 enum elf_ppc64_reloc_type r_type;
6916 struct elf_dyn_relocs *p;
6917 struct elf_dyn_relocs **pp;
6918
6919 /* Can this reloc be dynamic? This switch, and later tests here
6920 should be kept in sync with the code in check_relocs. */
6921 r_type = ELF64_R_TYPE (r_info);
6922 switch (r_type)
6923 {
6924 default:
6925 return TRUE;
6926
6927 case R_PPC64_TPREL16:
6928 case R_PPC64_TPREL16_LO:
6929 case R_PPC64_TPREL16_HI:
6930 case R_PPC64_TPREL16_HA:
6931 case R_PPC64_TPREL16_DS:
6932 case R_PPC64_TPREL16_LO_DS:
6933 case R_PPC64_TPREL16_HIGHER:
6934 case R_PPC64_TPREL16_HIGHERA:
6935 case R_PPC64_TPREL16_HIGHEST:
6936 case R_PPC64_TPREL16_HIGHESTA:
6937 if (!info->shared)
6938 return TRUE;
6939
6940 case R_PPC64_TPREL64:
6941 case R_PPC64_DTPMOD64:
6942 case R_PPC64_DTPREL64:
6943 case R_PPC64_ADDR64:
6944 case R_PPC64_REL30:
6945 case R_PPC64_REL32:
6946 case R_PPC64_REL64:
6947 case R_PPC64_ADDR14:
6948 case R_PPC64_ADDR14_BRNTAKEN:
6949 case R_PPC64_ADDR14_BRTAKEN:
6950 case R_PPC64_ADDR16:
6951 case R_PPC64_ADDR16_DS:
6952 case R_PPC64_ADDR16_HA:
6953 case R_PPC64_ADDR16_HI:
6954 case R_PPC64_ADDR16_HIGHER:
6955 case R_PPC64_ADDR16_HIGHERA:
6956 case R_PPC64_ADDR16_HIGHEST:
6957 case R_PPC64_ADDR16_HIGHESTA:
6958 case R_PPC64_ADDR16_LO:
6959 case R_PPC64_ADDR16_LO_DS:
6960 case R_PPC64_ADDR24:
6961 case R_PPC64_ADDR32:
6962 case R_PPC64_UADDR16:
6963 case R_PPC64_UADDR32:
6964 case R_PPC64_UADDR64:
6965 case R_PPC64_TOC:
6966 break;
6967 }
6968
6969 if (local_syms != NULL)
6970 {
6971 unsigned long r_symndx;
6972 Elf_Internal_Sym *sym;
6973 bfd *ibfd = sec->owner;
6974
6975 r_symndx = ELF64_R_SYM (r_info);
6976 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
6977 return FALSE;
6978 }
6979
6980 if ((info->shared
6981 && (must_be_dyn_reloc (info, r_type)
6982 || (h != NULL
6983 && (!info->symbolic
6984 || h->root.type == bfd_link_hash_defweak
6985 || !h->def_regular))))
6986 || (ELIMINATE_COPY_RELOCS
6987 && !info->shared
6988 && h != NULL
6989 && (h->root.type == bfd_link_hash_defweak
6990 || !h->def_regular)))
6991 ;
6992 else
6993 return TRUE;
6994
6995 if (h != NULL)
6996 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6997 else
6998 {
6999 if (sym_sec != NULL)
7000 {
7001 void *vpp = &elf_section_data (sym_sec)->local_dynrel;
7002 pp = (struct elf_dyn_relocs **) vpp;
7003 }
7004 else
7005 {
7006 void *vpp = &elf_section_data (sec)->local_dynrel;
7007 pp = (struct elf_dyn_relocs **) vpp;
7008 }
7009
7010 /* elf_gc_sweep may have already removed all dyn relocs associated
7011 with local syms for a given section. Don't report a dynreloc
7012 miscount. */
7013 if (*pp == NULL)
7014 return TRUE;
7015 }
7016
7017 while ((p = *pp) != NULL)
7018 {
7019 if (p->sec == sec)
7020 {
7021 if (!must_be_dyn_reloc (info, r_type))
7022 p->pc_count -= 1;
7023 p->count -= 1;
7024 if (p->count == 0)
7025 *pp = p->next;
7026 return TRUE;
7027 }
7028 pp = &p->next;
7029 }
7030
7031 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7032 sec->owner, sec);
7033 bfd_set_error (bfd_error_bad_value);
7034 return FALSE;
7035 }
7036
7037 /* Remove unused Official Procedure Descriptor entries. Currently we
7038 only remove those associated with functions in discarded link-once
7039 sections, or weakly defined functions that have been overridden. It
7040 would be possible to remove many more entries for statically linked
7041 applications. */
7042
7043 bfd_boolean
7044 ppc64_elf_edit_opd (struct bfd_link_info *info, bfd_boolean non_overlapping)
7045 {
7046 bfd *ibfd;
7047 bfd_boolean some_edited = FALSE;
7048 asection *need_pad = NULL;
7049
7050 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7051 {
7052 asection *sec;
7053 Elf_Internal_Rela *relstart, *rel, *relend;
7054 Elf_Internal_Shdr *symtab_hdr;
7055 Elf_Internal_Sym *local_syms;
7056 bfd_vma offset;
7057 struct _opd_sec_data *opd;
7058 bfd_boolean need_edit, add_aux_fields;
7059 bfd_size_type cnt_16b = 0;
7060
7061 if (!is_ppc64_elf (ibfd))
7062 continue;
7063
7064 sec = bfd_get_section_by_name (ibfd, ".opd");
7065 if (sec == NULL || sec->size == 0)
7066 continue;
7067
7068 if (sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
7069 continue;
7070
7071 if (sec->output_section == bfd_abs_section_ptr)
7072 continue;
7073
7074 /* Look through the section relocs. */
7075 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7076 continue;
7077
7078 local_syms = NULL;
7079 symtab_hdr = &elf_symtab_hdr (ibfd);
7080
7081 /* Read the relocations. */
7082 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7083 info->keep_memory);
7084 if (relstart == NULL)
7085 return FALSE;
7086
7087 /* First run through the relocs to check they are sane, and to
7088 determine whether we need to edit this opd section. */
7089 need_edit = FALSE;
7090 need_pad = sec;
7091 offset = 0;
7092 relend = relstart + sec->reloc_count;
7093 for (rel = relstart; rel < relend; )
7094 {
7095 enum elf_ppc64_reloc_type r_type;
7096 unsigned long r_symndx;
7097 asection *sym_sec;
7098 struct elf_link_hash_entry *h;
7099 Elf_Internal_Sym *sym;
7100
7101 /* .opd contains a regular array of 16 or 24 byte entries. We're
7102 only interested in the reloc pointing to a function entry
7103 point. */
7104 if (rel->r_offset != offset
7105 || rel + 1 >= relend
7106 || (rel + 1)->r_offset != offset + 8)
7107 {
7108 /* If someone messes with .opd alignment then after a
7109 "ld -r" we might have padding in the middle of .opd.
7110 Also, there's nothing to prevent someone putting
7111 something silly in .opd with the assembler. No .opd
7112 optimization for them! */
7113 broken_opd:
7114 (*_bfd_error_handler)
7115 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7116 need_edit = FALSE;
7117 break;
7118 }
7119
7120 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7121 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7122 {
7123 (*_bfd_error_handler)
7124 (_("%B: unexpected reloc type %u in .opd section"),
7125 ibfd, r_type);
7126 need_edit = FALSE;
7127 break;
7128 }
7129
7130 r_symndx = ELF64_R_SYM (rel->r_info);
7131 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7132 r_symndx, ibfd))
7133 goto error_ret;
7134
7135 if (sym_sec == NULL || sym_sec->owner == NULL)
7136 {
7137 const char *sym_name;
7138 if (h != NULL)
7139 sym_name = h->root.root.string;
7140 else
7141 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7142 sym_sec);
7143
7144 (*_bfd_error_handler)
7145 (_("%B: undefined sym `%s' in .opd section"),
7146 ibfd, sym_name);
7147 need_edit = FALSE;
7148 break;
7149 }
7150
7151 /* opd entries are always for functions defined in the
7152 current input bfd. If the symbol isn't defined in the
7153 input bfd, then we won't be using the function in this
7154 bfd; It must be defined in a linkonce section in another
7155 bfd, or is weak. It's also possible that we are
7156 discarding the function due to a linker script /DISCARD/,
7157 which we test for via the output_section. */
7158 if (sym_sec->owner != ibfd
7159 || sym_sec->output_section == bfd_abs_section_ptr)
7160 need_edit = TRUE;
7161
7162 rel += 2;
7163 if (rel == relend
7164 || (rel + 1 == relend && rel->r_offset == offset + 16))
7165 {
7166 if (sec->size == offset + 24)
7167 {
7168 need_pad = NULL;
7169 break;
7170 }
7171 if (rel == relend && sec->size == offset + 16)
7172 {
7173 cnt_16b++;
7174 break;
7175 }
7176 goto broken_opd;
7177 }
7178
7179 if (rel->r_offset == offset + 24)
7180 offset += 24;
7181 else if (rel->r_offset != offset + 16)
7182 goto broken_opd;
7183 else if (rel + 1 < relend
7184 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7185 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7186 {
7187 offset += 16;
7188 cnt_16b++;
7189 }
7190 else if (rel + 2 < relend
7191 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
7192 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
7193 {
7194 offset += 24;
7195 rel += 1;
7196 }
7197 else
7198 goto broken_opd;
7199 }
7200
7201 add_aux_fields = non_overlapping && cnt_16b > 0;
7202
7203 if (need_edit || add_aux_fields)
7204 {
7205 Elf_Internal_Rela *write_rel;
7206 Elf_Internal_Shdr *rel_hdr;
7207 bfd_byte *rptr, *wptr;
7208 bfd_byte *new_contents;
7209 bfd_boolean skip;
7210 long opd_ent_size;
7211 bfd_size_type amt;
7212
7213 new_contents = NULL;
7214 amt = sec->size * sizeof (long) / 8;
7215 opd = &ppc64_elf_section_data (sec)->u.opd;
7216 opd->adjust = bfd_zalloc (sec->owner, amt);
7217 if (opd->adjust == NULL)
7218 return FALSE;
7219 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7220
7221 /* This seems a waste of time as input .opd sections are all
7222 zeros as generated by gcc, but I suppose there's no reason
7223 this will always be so. We might start putting something in
7224 the third word of .opd entries. */
7225 if ((sec->flags & SEC_IN_MEMORY) == 0)
7226 {
7227 bfd_byte *loc;
7228 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7229 {
7230 if (loc != NULL)
7231 free (loc);
7232 error_ret:
7233 if (local_syms != NULL
7234 && symtab_hdr->contents != (unsigned char *) local_syms)
7235 free (local_syms);
7236 if (elf_section_data (sec)->relocs != relstart)
7237 free (relstart);
7238 return FALSE;
7239 }
7240 sec->contents = loc;
7241 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7242 }
7243
7244 elf_section_data (sec)->relocs = relstart;
7245
7246 new_contents = sec->contents;
7247 if (add_aux_fields)
7248 {
7249 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7250 if (new_contents == NULL)
7251 return FALSE;
7252 need_pad = FALSE;
7253 }
7254 wptr = new_contents;
7255 rptr = sec->contents;
7256
7257 write_rel = relstart;
7258 skip = FALSE;
7259 offset = 0;
7260 opd_ent_size = 0;
7261 for (rel = relstart; rel < relend; rel++)
7262 {
7263 unsigned long r_symndx;
7264 asection *sym_sec;
7265 struct elf_link_hash_entry *h;
7266 Elf_Internal_Sym *sym;
7267
7268 r_symndx = ELF64_R_SYM (rel->r_info);
7269 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7270 r_symndx, ibfd))
7271 goto error_ret;
7272
7273 if (rel->r_offset == offset)
7274 {
7275 struct ppc_link_hash_entry *fdh = NULL;
7276
7277 /* See if the .opd entry is full 24 byte or
7278 16 byte (with fd_aux entry overlapped with next
7279 fd_func). */
7280 opd_ent_size = 24;
7281 if ((rel + 2 == relend && sec->size == offset + 16)
7282 || (rel + 3 < relend
7283 && rel[2].r_offset == offset + 16
7284 && rel[3].r_offset == offset + 24
7285 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
7286 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
7287 opd_ent_size = 16;
7288
7289 if (h != NULL
7290 && h->root.root.string[0] == '.')
7291 {
7292 struct ppc_link_hash_table *htab;
7293
7294 htab = ppc_hash_table (info);
7295 if (htab != NULL)
7296 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h,
7297 htab);
7298 if (fdh != NULL
7299 && fdh->elf.root.type != bfd_link_hash_defined
7300 && fdh->elf.root.type != bfd_link_hash_defweak)
7301 fdh = NULL;
7302 }
7303
7304 skip = (sym_sec->owner != ibfd
7305 || sym_sec->output_section == bfd_abs_section_ptr);
7306 if (skip)
7307 {
7308 if (fdh != NULL && sym_sec->owner == ibfd)
7309 {
7310 /* Arrange for the function descriptor sym
7311 to be dropped. */
7312 fdh->elf.root.u.def.value = 0;
7313 fdh->elf.root.u.def.section = sym_sec;
7314 }
7315 opd->adjust[rel->r_offset / 8] = -1;
7316 }
7317 else
7318 {
7319 /* We'll be keeping this opd entry. */
7320
7321 if (fdh != NULL)
7322 {
7323 /* Redefine the function descriptor symbol to
7324 this location in the opd section. It is
7325 necessary to update the value here rather
7326 than using an array of adjustments as we do
7327 for local symbols, because various places
7328 in the generic ELF code use the value
7329 stored in u.def.value. */
7330 fdh->elf.root.u.def.value = wptr - new_contents;
7331 fdh->adjust_done = 1;
7332 }
7333
7334 /* Local syms are a bit tricky. We could
7335 tweak them as they can be cached, but
7336 we'd need to look through the local syms
7337 for the function descriptor sym which we
7338 don't have at the moment. So keep an
7339 array of adjustments. */
7340 opd->adjust[rel->r_offset / 8]
7341 = (wptr - new_contents) - (rptr - sec->contents);
7342
7343 if (wptr != rptr)
7344 memcpy (wptr, rptr, opd_ent_size);
7345 wptr += opd_ent_size;
7346 if (add_aux_fields && opd_ent_size == 16)
7347 {
7348 memset (wptr, '\0', 8);
7349 wptr += 8;
7350 }
7351 }
7352 rptr += opd_ent_size;
7353 offset += opd_ent_size;
7354 }
7355
7356 if (skip)
7357 {
7358 if (!NO_OPD_RELOCS
7359 && !info->relocatable
7360 && !dec_dynrel_count (rel->r_info, sec, info,
7361 NULL, h, sym_sec))
7362 goto error_ret;
7363 }
7364 else
7365 {
7366 /* We need to adjust any reloc offsets to point to the
7367 new opd entries. While we're at it, we may as well
7368 remove redundant relocs. */
7369 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
7370 if (write_rel != rel)
7371 memcpy (write_rel, rel, sizeof (*rel));
7372 ++write_rel;
7373 }
7374 }
7375
7376 sec->size = wptr - new_contents;
7377 sec->reloc_count = write_rel - relstart;
7378 if (add_aux_fields)
7379 {
7380 free (sec->contents);
7381 sec->contents = new_contents;
7382 }
7383
7384 /* Fudge the header size too, as this is used later in
7385 elf_bfd_final_link if we are emitting relocs. */
7386 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7387 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7388 some_edited = TRUE;
7389 }
7390 else if (elf_section_data (sec)->relocs != relstart)
7391 free (relstart);
7392
7393 if (local_syms != NULL
7394 && symtab_hdr->contents != (unsigned char *) local_syms)
7395 {
7396 if (!info->keep_memory)
7397 free (local_syms);
7398 else
7399 symtab_hdr->contents = (unsigned char *) local_syms;
7400 }
7401 }
7402
7403 if (some_edited)
7404 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7405
7406 /* If we are doing a final link and the last .opd entry is just 16 byte
7407 long, add a 8 byte padding after it. */
7408 if (need_pad != NULL && !info->relocatable)
7409 {
7410 bfd_byte *p;
7411
7412 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7413 {
7414 BFD_ASSERT (need_pad->size > 0);
7415
7416 p = bfd_malloc (need_pad->size + 8);
7417 if (p == NULL)
7418 return FALSE;
7419
7420 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7421 p, 0, need_pad->size))
7422 return FALSE;
7423
7424 need_pad->contents = p;
7425 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7426 }
7427 else
7428 {
7429 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7430 if (p == NULL)
7431 return FALSE;
7432
7433 need_pad->contents = p;
7434 }
7435
7436 memset (need_pad->contents + need_pad->size, 0, 8);
7437 need_pad->size += 8;
7438 }
7439
7440 return TRUE;
7441 }
7442
7443 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7444
7445 asection *
7446 ppc64_elf_tls_setup (struct bfd_link_info *info,
7447 int no_tls_get_addr_opt,
7448 int *no_multi_toc)
7449 {
7450 struct ppc_link_hash_table *htab;
7451
7452 htab = ppc_hash_table (info);
7453 if (htab == NULL)
7454 return NULL;
7455
7456 if (*no_multi_toc)
7457 htab->do_multi_toc = 0;
7458 else if (!htab->do_multi_toc)
7459 *no_multi_toc = 1;
7460
7461 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
7462 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7463 FALSE, FALSE, TRUE));
7464 /* Move dynamic linking info to the function descriptor sym. */
7465 if (htab->tls_get_addr != NULL)
7466 func_desc_adjust (&htab->tls_get_addr->elf, info);
7467 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
7468 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7469 FALSE, FALSE, TRUE));
7470 if (!no_tls_get_addr_opt)
7471 {
7472 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
7473
7474 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7475 FALSE, FALSE, TRUE);
7476 if (opt != NULL)
7477 func_desc_adjust (opt, info);
7478 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7479 FALSE, FALSE, TRUE);
7480 if (opt_fd != NULL
7481 && (opt_fd->root.type == bfd_link_hash_defined
7482 || opt_fd->root.type == bfd_link_hash_defweak))
7483 {
7484 /* If glibc supports an optimized __tls_get_addr call stub,
7485 signalled by the presence of __tls_get_addr_opt, and we'll
7486 be calling __tls_get_addr via a plt call stub, then
7487 make __tls_get_addr point to __tls_get_addr_opt. */
7488 tga_fd = &htab->tls_get_addr_fd->elf;
7489 if (htab->elf.dynamic_sections_created
7490 && tga_fd != NULL
7491 && (tga_fd->type == STT_FUNC
7492 || tga_fd->needs_plt)
7493 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7494 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
7495 && tga_fd->root.type == bfd_link_hash_undefweak)))
7496 {
7497 struct plt_entry *ent;
7498
7499 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7500 if (ent->plt.refcount > 0)
7501 break;
7502 if (ent != NULL)
7503 {
7504 tga_fd->root.type = bfd_link_hash_indirect;
7505 tga_fd->root.u.i.link = &opt_fd->root;
7506 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7507 if (opt_fd->dynindx != -1)
7508 {
7509 /* Use __tls_get_addr_opt in dynamic relocations. */
7510 opt_fd->dynindx = -1;
7511 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7512 opt_fd->dynstr_index);
7513 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7514 return NULL;
7515 }
7516 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
7517 tga = &htab->tls_get_addr->elf;
7518 if (opt != NULL && tga != NULL)
7519 {
7520 tga->root.type = bfd_link_hash_indirect;
7521 tga->root.u.i.link = &opt->root;
7522 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7523 _bfd_elf_link_hash_hide_symbol (info, opt,
7524 tga->forced_local);
7525 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
7526 }
7527 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7528 htab->tls_get_addr_fd->is_func_descriptor = 1;
7529 if (htab->tls_get_addr != NULL)
7530 {
7531 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7532 htab->tls_get_addr->is_func = 1;
7533 }
7534 }
7535 }
7536 }
7537 else
7538 no_tls_get_addr_opt = TRUE;
7539 }
7540 htab->no_tls_get_addr_opt = no_tls_get_addr_opt;
7541 return _bfd_elf_tls_setup (info->output_bfd, info);
7542 }
7543
7544 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7545 HASH1 or HASH2. */
7546
7547 static bfd_boolean
7548 branch_reloc_hash_match (const bfd *ibfd,
7549 const Elf_Internal_Rela *rel,
7550 const struct ppc_link_hash_entry *hash1,
7551 const struct ppc_link_hash_entry *hash2)
7552 {
7553 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7554 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7555 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7556
7557 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7558 {
7559 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7560 struct elf_link_hash_entry *h;
7561
7562 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7563 h = elf_follow_link (h);
7564 if (h == &hash1->elf || h == &hash2->elf)
7565 return TRUE;
7566 }
7567 return FALSE;
7568 }
7569
7570 /* Run through all the TLS relocs looking for optimization
7571 opportunities. The linker has been hacked (see ppc64elf.em) to do
7572 a preliminary section layout so that we know the TLS segment
7573 offsets. We can't optimize earlier because some optimizations need
7574 to know the tp offset, and we need to optimize before allocating
7575 dynamic relocations. */
7576
7577 bfd_boolean
7578 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7579 {
7580 bfd *ibfd;
7581 asection *sec;
7582 struct ppc_link_hash_table *htab;
7583 unsigned char *toc_ref;
7584 int pass;
7585
7586 if (info->relocatable || !info->executable)
7587 return TRUE;
7588
7589 htab = ppc_hash_table (info);
7590 if (htab == NULL)
7591 return FALSE;
7592
7593 /* Make two passes over the relocs. On the first pass, mark toc
7594 entries involved with tls relocs, and check that tls relocs
7595 involved in setting up a tls_get_addr call are indeed followed by
7596 such a call. If they are not, we can't do any tls optimization.
7597 On the second pass twiddle tls_mask flags to notify
7598 relocate_section that optimization can be done, and adjust got
7599 and plt refcounts. */
7600 toc_ref = NULL;
7601 for (pass = 0; pass < 2; ++pass)
7602 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7603 {
7604 Elf_Internal_Sym *locsyms = NULL;
7605 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7606
7607 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7608 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7609 {
7610 Elf_Internal_Rela *relstart, *rel, *relend;
7611 bfd_boolean found_tls_get_addr_arg = 0;
7612
7613 /* Read the relocations. */
7614 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7615 info->keep_memory);
7616 if (relstart == NULL)
7617 return FALSE;
7618
7619 relend = relstart + sec->reloc_count;
7620 for (rel = relstart; rel < relend; rel++)
7621 {
7622 enum elf_ppc64_reloc_type r_type;
7623 unsigned long r_symndx;
7624 struct elf_link_hash_entry *h;
7625 Elf_Internal_Sym *sym;
7626 asection *sym_sec;
7627 unsigned char *tls_mask;
7628 unsigned char tls_set, tls_clear, tls_type = 0;
7629 bfd_vma value;
7630 bfd_boolean ok_tprel, is_local;
7631 long toc_ref_index = 0;
7632 int expecting_tls_get_addr = 0;
7633 bfd_boolean ret = FALSE;
7634
7635 r_symndx = ELF64_R_SYM (rel->r_info);
7636 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
7637 r_symndx, ibfd))
7638 {
7639 err_free_rel:
7640 if (elf_section_data (sec)->relocs != relstart)
7641 free (relstart);
7642 if (toc_ref != NULL)
7643 free (toc_ref);
7644 if (locsyms != NULL
7645 && (elf_symtab_hdr (ibfd).contents
7646 != (unsigned char *) locsyms))
7647 free (locsyms);
7648 return ret;
7649 }
7650
7651 if (h != NULL)
7652 {
7653 if (h->root.type == bfd_link_hash_defined
7654 || h->root.type == bfd_link_hash_defweak)
7655 value = h->root.u.def.value;
7656 else if (h->root.type == bfd_link_hash_undefweak)
7657 value = 0;
7658 else
7659 {
7660 found_tls_get_addr_arg = 0;
7661 continue;
7662 }
7663 }
7664 else
7665 /* Symbols referenced by TLS relocs must be of type
7666 STT_TLS. So no need for .opd local sym adjust. */
7667 value = sym->st_value;
7668
7669 ok_tprel = FALSE;
7670 is_local = FALSE;
7671 if (h == NULL
7672 || !h->def_dynamic)
7673 {
7674 is_local = TRUE;
7675 if (h != NULL
7676 && h->root.type == bfd_link_hash_undefweak)
7677 ok_tprel = TRUE;
7678 else
7679 {
7680 value += sym_sec->output_offset;
7681 value += sym_sec->output_section->vma;
7682 value -= htab->elf.tls_sec->vma;
7683 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
7684 < (bfd_vma) 1 << 32);
7685 }
7686 }
7687
7688 r_type = ELF64_R_TYPE (rel->r_info);
7689 /* If this section has old-style __tls_get_addr calls
7690 without marker relocs, then check that each
7691 __tls_get_addr call reloc is preceded by a reloc
7692 that conceivably belongs to the __tls_get_addr arg
7693 setup insn. If we don't find matching arg setup
7694 relocs, don't do any tls optimization. */
7695 if (pass == 0
7696 && sec->has_tls_get_addr_call
7697 && h != NULL
7698 && (h == &htab->tls_get_addr->elf
7699 || h == &htab->tls_get_addr_fd->elf)
7700 && !found_tls_get_addr_arg
7701 && is_branch_reloc (r_type))
7702 {
7703 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
7704 "TLS optimization disabled\n"),
7705 ibfd, sec, rel->r_offset);
7706 ret = TRUE;
7707 goto err_free_rel;
7708 }
7709
7710 found_tls_get_addr_arg = 0;
7711 switch (r_type)
7712 {
7713 case R_PPC64_GOT_TLSLD16:
7714 case R_PPC64_GOT_TLSLD16_LO:
7715 expecting_tls_get_addr = 1;
7716 found_tls_get_addr_arg = 1;
7717 /* Fall thru */
7718
7719 case R_PPC64_GOT_TLSLD16_HI:
7720 case R_PPC64_GOT_TLSLD16_HA:
7721 /* These relocs should never be against a symbol
7722 defined in a shared lib. Leave them alone if
7723 that turns out to be the case. */
7724 if (!is_local)
7725 continue;
7726
7727 /* LD -> LE */
7728 tls_set = 0;
7729 tls_clear = TLS_LD;
7730 tls_type = TLS_TLS | TLS_LD;
7731 break;
7732
7733 case R_PPC64_GOT_TLSGD16:
7734 case R_PPC64_GOT_TLSGD16_LO:
7735 expecting_tls_get_addr = 1;
7736 found_tls_get_addr_arg = 1;
7737 /* Fall thru */
7738
7739 case R_PPC64_GOT_TLSGD16_HI:
7740 case R_PPC64_GOT_TLSGD16_HA:
7741 if (ok_tprel)
7742 /* GD -> LE */
7743 tls_set = 0;
7744 else
7745 /* GD -> IE */
7746 tls_set = TLS_TLS | TLS_TPRELGD;
7747 tls_clear = TLS_GD;
7748 tls_type = TLS_TLS | TLS_GD;
7749 break;
7750
7751 case R_PPC64_GOT_TPREL16_DS:
7752 case R_PPC64_GOT_TPREL16_LO_DS:
7753 case R_PPC64_GOT_TPREL16_HI:
7754 case R_PPC64_GOT_TPREL16_HA:
7755 if (ok_tprel)
7756 {
7757 /* IE -> LE */
7758 tls_set = 0;
7759 tls_clear = TLS_TPREL;
7760 tls_type = TLS_TLS | TLS_TPREL;
7761 break;
7762 }
7763 continue;
7764
7765 case R_PPC64_TLSGD:
7766 case R_PPC64_TLSLD:
7767 found_tls_get_addr_arg = 1;
7768 /* Fall thru */
7769
7770 case R_PPC64_TLS:
7771 case R_PPC64_TOC16:
7772 case R_PPC64_TOC16_LO:
7773 if (sym_sec == NULL || sym_sec != toc)
7774 continue;
7775
7776 /* Mark this toc entry as referenced by a TLS
7777 code sequence. We can do that now in the
7778 case of R_PPC64_TLS, and after checking for
7779 tls_get_addr for the TOC16 relocs. */
7780 if (toc_ref == NULL)
7781 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
7782 if (toc_ref == NULL)
7783 goto err_free_rel;
7784
7785 if (h != NULL)
7786 value = h->root.u.def.value;
7787 else
7788 value = sym->st_value;
7789 value += rel->r_addend;
7790 BFD_ASSERT (value < toc->size && value % 8 == 0);
7791 toc_ref_index = (value + toc->output_offset) / 8;
7792 if (r_type == R_PPC64_TLS
7793 || r_type == R_PPC64_TLSGD
7794 || r_type == R_PPC64_TLSLD)
7795 {
7796 toc_ref[toc_ref_index] = 1;
7797 continue;
7798 }
7799
7800 if (pass != 0 && toc_ref[toc_ref_index] == 0)
7801 continue;
7802
7803 tls_set = 0;
7804 tls_clear = 0;
7805 expecting_tls_get_addr = 2;
7806 break;
7807
7808 case R_PPC64_TPREL64:
7809 if (pass == 0
7810 || sec != toc
7811 || toc_ref == NULL
7812 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7813 continue;
7814 if (ok_tprel)
7815 {
7816 /* IE -> LE */
7817 tls_set = TLS_EXPLICIT;
7818 tls_clear = TLS_TPREL;
7819 break;
7820 }
7821 continue;
7822
7823 case R_PPC64_DTPMOD64:
7824 if (pass == 0
7825 || sec != toc
7826 || toc_ref == NULL
7827 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7828 continue;
7829 if (rel + 1 < relend
7830 && (rel[1].r_info
7831 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
7832 && rel[1].r_offset == rel->r_offset + 8)
7833 {
7834 if (ok_tprel)
7835 /* GD -> LE */
7836 tls_set = TLS_EXPLICIT | TLS_GD;
7837 else
7838 /* GD -> IE */
7839 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
7840 tls_clear = TLS_GD;
7841 }
7842 else
7843 {
7844 if (!is_local)
7845 continue;
7846
7847 /* LD -> LE */
7848 tls_set = TLS_EXPLICIT;
7849 tls_clear = TLS_LD;
7850 }
7851 break;
7852
7853 default:
7854 continue;
7855 }
7856
7857 if (pass == 0)
7858 {
7859 if (!expecting_tls_get_addr
7860 || !sec->has_tls_get_addr_call)
7861 continue;
7862
7863 if (rel + 1 < relend
7864 && branch_reloc_hash_match (ibfd, rel + 1,
7865 htab->tls_get_addr,
7866 htab->tls_get_addr_fd))
7867 {
7868 if (expecting_tls_get_addr == 2)
7869 {
7870 /* Check for toc tls entries. */
7871 unsigned char *toc_tls;
7872 int retval;
7873
7874 retval = get_tls_mask (&toc_tls, NULL, NULL,
7875 &locsyms,
7876 rel, ibfd);
7877 if (retval == 0)
7878 goto err_free_rel;
7879 if (toc_tls != NULL)
7880 {
7881 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
7882 found_tls_get_addr_arg = 1;
7883 if (retval > 1)
7884 toc_ref[toc_ref_index] = 1;
7885 }
7886 }
7887 continue;
7888 }
7889
7890 if (expecting_tls_get_addr != 1)
7891 continue;
7892
7893 /* Uh oh, we didn't find the expected call. We
7894 could just mark this symbol to exclude it
7895 from tls optimization but it's safer to skip
7896 the entire optimization. */
7897 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
7898 "TLS optimization disabled\n"),
7899 ibfd, sec, rel->r_offset);
7900 ret = TRUE;
7901 goto err_free_rel;
7902 }
7903
7904 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
7905 {
7906 struct plt_entry *ent;
7907 for (ent = htab->tls_get_addr->elf.plt.plist;
7908 ent != NULL;
7909 ent = ent->next)
7910 if (ent->addend == 0)
7911 {
7912 if (ent->plt.refcount > 0)
7913 {
7914 ent->plt.refcount -= 1;
7915 expecting_tls_get_addr = 0;
7916 }
7917 break;
7918 }
7919 }
7920
7921 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
7922 {
7923 struct plt_entry *ent;
7924 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
7925 ent != NULL;
7926 ent = ent->next)
7927 if (ent->addend == 0)
7928 {
7929 if (ent->plt.refcount > 0)
7930 ent->plt.refcount -= 1;
7931 break;
7932 }
7933 }
7934
7935 if (tls_clear == 0)
7936 continue;
7937
7938 if ((tls_set & TLS_EXPLICIT) == 0)
7939 {
7940 struct got_entry *ent;
7941
7942 /* Adjust got entry for this reloc. */
7943 if (h != NULL)
7944 ent = h->got.glist;
7945 else
7946 ent = elf_local_got_ents (ibfd)[r_symndx];
7947
7948 for (; ent != NULL; ent = ent->next)
7949 if (ent->addend == rel->r_addend
7950 && ent->owner == ibfd
7951 && ent->tls_type == tls_type)
7952 break;
7953 if (ent == NULL)
7954 abort ();
7955
7956 if (tls_set == 0)
7957 {
7958 /* We managed to get rid of a got entry. */
7959 if (ent->got.refcount > 0)
7960 ent->got.refcount -= 1;
7961 }
7962 }
7963 else
7964 {
7965 /* If we got rid of a DTPMOD/DTPREL reloc pair then
7966 we'll lose one or two dyn relocs. */
7967 if (!dec_dynrel_count (rel->r_info, sec, info,
7968 NULL, h, sym_sec))
7969 return FALSE;
7970
7971 if (tls_set == (TLS_EXPLICIT | TLS_GD))
7972 {
7973 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
7974 NULL, h, sym_sec))
7975 return FALSE;
7976 }
7977 }
7978
7979 *tls_mask |= tls_set;
7980 *tls_mask &= ~tls_clear;
7981 }
7982
7983 if (elf_section_data (sec)->relocs != relstart)
7984 free (relstart);
7985 }
7986
7987 if (locsyms != NULL
7988 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
7989 {
7990 if (!info->keep_memory)
7991 free (locsyms);
7992 else
7993 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
7994 }
7995 }
7996
7997 if (toc_ref != NULL)
7998 free (toc_ref);
7999 return TRUE;
8000 }
8001
8002 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8003 the values of any global symbols in a toc section that has been
8004 edited. Globals in toc sections should be a rarity, so this function
8005 sets a flag if any are found in toc sections other than the one just
8006 edited, so that futher hash table traversals can be avoided. */
8007
8008 struct adjust_toc_info
8009 {
8010 asection *toc;
8011 unsigned long *skip;
8012 bfd_boolean global_toc_syms;
8013 };
8014
8015 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8016
8017 static bfd_boolean
8018 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8019 {
8020 struct ppc_link_hash_entry *eh;
8021 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8022 unsigned long i;
8023
8024 if (h->root.type != bfd_link_hash_defined
8025 && h->root.type != bfd_link_hash_defweak)
8026 return TRUE;
8027
8028 eh = (struct ppc_link_hash_entry *) h;
8029 if (eh->adjust_done)
8030 return TRUE;
8031
8032 if (eh->elf.root.u.def.section == toc_inf->toc)
8033 {
8034 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8035 i = toc_inf->toc->rawsize >> 3;
8036 else
8037 i = eh->elf.root.u.def.value >> 3;
8038
8039 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8040 {
8041 (*_bfd_error_handler)
8042 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8043 do
8044 ++i;
8045 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8046 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8047 }
8048
8049 eh->elf.root.u.def.value -= toc_inf->skip[i];
8050 eh->adjust_done = 1;
8051 }
8052 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8053 toc_inf->global_toc_syms = TRUE;
8054
8055 return TRUE;
8056 }
8057
8058 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8059
8060 static bfd_boolean
8061 ok_lo_toc_insn (unsigned int insn)
8062 {
8063 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8064 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8065 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8066 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8067 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8068 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8069 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8070 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8071 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8072 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8073 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8074 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8075 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8076 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8077 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8078 && (insn & 3) != 1)
8079 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8080 && ((insn & 3) == 0 || (insn & 3) == 3))
8081 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8082 }
8083
8084 /* Examine all relocs referencing .toc sections in order to remove
8085 unused .toc entries. */
8086
8087 bfd_boolean
8088 ppc64_elf_edit_toc (struct bfd_link_info *info)
8089 {
8090 bfd *ibfd;
8091 struct adjust_toc_info toc_inf;
8092 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8093
8094 htab->do_toc_opt = 1;
8095 toc_inf.global_toc_syms = TRUE;
8096 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8097 {
8098 asection *toc, *sec;
8099 Elf_Internal_Shdr *symtab_hdr;
8100 Elf_Internal_Sym *local_syms;
8101 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8102 unsigned long *skip, *drop;
8103 unsigned char *used;
8104 unsigned char *keep, last, some_unused;
8105
8106 if (!is_ppc64_elf (ibfd))
8107 continue;
8108
8109 toc = bfd_get_section_by_name (ibfd, ".toc");
8110 if (toc == NULL
8111 || toc->size == 0
8112 || toc->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
8113 || elf_discarded_section (toc))
8114 continue;
8115
8116 toc_relocs = NULL;
8117 local_syms = NULL;
8118 symtab_hdr = &elf_symtab_hdr (ibfd);
8119
8120 /* Look at sections dropped from the final link. */
8121 skip = NULL;
8122 relstart = NULL;
8123 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8124 {
8125 if (sec->reloc_count == 0
8126 || !elf_discarded_section (sec)
8127 || get_opd_info (sec)
8128 || (sec->flags & SEC_ALLOC) == 0
8129 || (sec->flags & SEC_DEBUGGING) != 0)
8130 continue;
8131
8132 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8133 if (relstart == NULL)
8134 goto error_ret;
8135
8136 /* Run through the relocs to see which toc entries might be
8137 unused. */
8138 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8139 {
8140 enum elf_ppc64_reloc_type r_type;
8141 unsigned long r_symndx;
8142 asection *sym_sec;
8143 struct elf_link_hash_entry *h;
8144 Elf_Internal_Sym *sym;
8145 bfd_vma val;
8146
8147 r_type = ELF64_R_TYPE (rel->r_info);
8148 switch (r_type)
8149 {
8150 default:
8151 continue;
8152
8153 case R_PPC64_TOC16:
8154 case R_PPC64_TOC16_LO:
8155 case R_PPC64_TOC16_HI:
8156 case R_PPC64_TOC16_HA:
8157 case R_PPC64_TOC16_DS:
8158 case R_PPC64_TOC16_LO_DS:
8159 break;
8160 }
8161
8162 r_symndx = ELF64_R_SYM (rel->r_info);
8163 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8164 r_symndx, ibfd))
8165 goto error_ret;
8166
8167 if (sym_sec != toc)
8168 continue;
8169
8170 if (h != NULL)
8171 val = h->root.u.def.value;
8172 else
8173 val = sym->st_value;
8174 val += rel->r_addend;
8175
8176 if (val >= toc->size)
8177 continue;
8178
8179 /* Anything in the toc ought to be aligned to 8 bytes.
8180 If not, don't mark as unused. */
8181 if (val & 7)
8182 continue;
8183
8184 if (skip == NULL)
8185 {
8186 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8187 if (skip == NULL)
8188 goto error_ret;
8189 }
8190
8191 skip[val >> 3] = ref_from_discarded;
8192 }
8193
8194 if (elf_section_data (sec)->relocs != relstart)
8195 free (relstart);
8196 }
8197
8198 /* For largetoc loads of address constants, we can convert
8199 . addis rx,2,addr@got@ha
8200 . ld ry,addr@got@l(rx)
8201 to
8202 . addis rx,2,addr@toc@ha
8203 . addi ry,rx,addr@toc@l
8204 when addr is within 2G of the toc pointer. This then means
8205 that the word storing "addr" in the toc is no longer needed. */
8206
8207 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8208 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8209 && toc->reloc_count != 0)
8210 {
8211 /* Read toc relocs. */
8212 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8213 info->keep_memory);
8214 if (toc_relocs == NULL)
8215 goto error_ret;
8216
8217 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8218 {
8219 enum elf_ppc64_reloc_type r_type;
8220 unsigned long r_symndx;
8221 asection *sym_sec;
8222 struct elf_link_hash_entry *h;
8223 Elf_Internal_Sym *sym;
8224 bfd_vma val, addr;
8225
8226 r_type = ELF64_R_TYPE (rel->r_info);
8227 if (r_type != R_PPC64_ADDR64)
8228 continue;
8229
8230 r_symndx = ELF64_R_SYM (rel->r_info);
8231 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8232 r_symndx, ibfd))
8233 goto error_ret;
8234
8235 if (sym_sec == NULL
8236 || elf_discarded_section (sym_sec))
8237 continue;
8238
8239 if (!SYMBOL_CALLS_LOCAL (info, h))
8240 continue;
8241
8242 if (h != NULL)
8243 {
8244 if (h->type == STT_GNU_IFUNC)
8245 continue;
8246 val = h->root.u.def.value;
8247 }
8248 else
8249 {
8250 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8251 continue;
8252 val = sym->st_value;
8253 }
8254 val += rel->r_addend;
8255 val += sym_sec->output_section->vma + sym_sec->output_offset;
8256
8257 /* We don't yet know the exact toc pointer value, but we
8258 know it will be somewhere in the toc section. Don't
8259 optimize if the difference from any possible toc
8260 pointer is outside [ff..f80008000, 7fff7fff]. */
8261 addr = toc->output_section->vma + TOC_BASE_OFF;
8262 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8263 continue;
8264
8265 addr = toc->output_section->vma + toc->output_section->rawsize;
8266 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8267 continue;
8268
8269 if (skip == NULL)
8270 {
8271 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8272 if (skip == NULL)
8273 goto error_ret;
8274 }
8275
8276 skip[rel->r_offset >> 3]
8277 |= can_optimize | ((rel - toc_relocs) << 2);
8278 }
8279 }
8280
8281 if (skip == NULL)
8282 continue;
8283
8284 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8285 if (used == NULL)
8286 {
8287 error_ret:
8288 if (local_syms != NULL
8289 && symtab_hdr->contents != (unsigned char *) local_syms)
8290 free (local_syms);
8291 if (sec != NULL
8292 && relstart != NULL
8293 && elf_section_data (sec)->relocs != relstart)
8294 free (relstart);
8295 if (toc_relocs != NULL
8296 && elf_section_data (toc)->relocs != toc_relocs)
8297 free (toc_relocs);
8298 if (skip != NULL)
8299 free (skip);
8300 return FALSE;
8301 }
8302
8303 /* Now check all kept sections that might reference the toc.
8304 Check the toc itself last. */
8305 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8306 : ibfd->sections);
8307 sec != NULL;
8308 sec = (sec == toc ? NULL
8309 : sec->next == NULL ? toc
8310 : sec->next == toc && toc->next ? toc->next
8311 : sec->next))
8312 {
8313 int repeat;
8314
8315 if (sec->reloc_count == 0
8316 || elf_discarded_section (sec)
8317 || get_opd_info (sec)
8318 || (sec->flags & SEC_ALLOC) == 0
8319 || (sec->flags & SEC_DEBUGGING) != 0)
8320 continue;
8321
8322 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8323 info->keep_memory);
8324 if (relstart == NULL)
8325 goto error_ret;
8326
8327 /* Mark toc entries referenced as used. */
8328 repeat = 0;
8329 do
8330 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8331 {
8332 enum elf_ppc64_reloc_type r_type;
8333 unsigned long r_symndx;
8334 asection *sym_sec;
8335 struct elf_link_hash_entry *h;
8336 Elf_Internal_Sym *sym;
8337 bfd_vma val;
8338 enum {no_check, check_lo, check_ha} insn_check;
8339
8340 r_type = ELF64_R_TYPE (rel->r_info);
8341 switch (r_type)
8342 {
8343 default:
8344 insn_check = no_check;
8345 break;
8346
8347 case R_PPC64_GOT_TLSLD16_HA:
8348 case R_PPC64_GOT_TLSGD16_HA:
8349 case R_PPC64_GOT_TPREL16_HA:
8350 case R_PPC64_GOT_DTPREL16_HA:
8351 case R_PPC64_GOT16_HA:
8352 case R_PPC64_TOC16_HA:
8353 insn_check = check_ha;
8354 break;
8355
8356 case R_PPC64_GOT_TLSLD16_LO:
8357 case R_PPC64_GOT_TLSGD16_LO:
8358 case R_PPC64_GOT_TPREL16_LO_DS:
8359 case R_PPC64_GOT_DTPREL16_LO_DS:
8360 case R_PPC64_GOT16_LO:
8361 case R_PPC64_GOT16_LO_DS:
8362 case R_PPC64_TOC16_LO:
8363 case R_PPC64_TOC16_LO_DS:
8364 insn_check = check_lo;
8365 break;
8366 }
8367
8368 if (insn_check != no_check)
8369 {
8370 bfd_vma off = rel->r_offset & ~3;
8371 unsigned char buf[4];
8372 unsigned int insn;
8373
8374 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8375 {
8376 free (used);
8377 goto error_ret;
8378 }
8379 insn = bfd_get_32 (ibfd, buf);
8380 if (insn_check == check_lo
8381 ? !ok_lo_toc_insn (insn)
8382 : ((insn & ((0x3f << 26) | 0x1f << 16))
8383 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8384 {
8385 char str[12];
8386
8387 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8388 sprintf (str, "%#08x", insn);
8389 info->callbacks->einfo
8390 (_("%P: %H: toc optimization is not supported for"
8391 " %s instruction.\n"),
8392 ibfd, sec, rel->r_offset & ~3, str);
8393 }
8394 }
8395
8396 switch (r_type)
8397 {
8398 case R_PPC64_TOC16:
8399 case R_PPC64_TOC16_LO:
8400 case R_PPC64_TOC16_HI:
8401 case R_PPC64_TOC16_HA:
8402 case R_PPC64_TOC16_DS:
8403 case R_PPC64_TOC16_LO_DS:
8404 /* In case we're taking addresses of toc entries. */
8405 case R_PPC64_ADDR64:
8406 break;
8407
8408 default:
8409 continue;
8410 }
8411
8412 r_symndx = ELF64_R_SYM (rel->r_info);
8413 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8414 r_symndx, ibfd))
8415 {
8416 free (used);
8417 goto error_ret;
8418 }
8419
8420 if (sym_sec != toc)
8421 continue;
8422
8423 if (h != NULL)
8424 val = h->root.u.def.value;
8425 else
8426 val = sym->st_value;
8427 val += rel->r_addend;
8428
8429 if (val >= toc->size)
8430 continue;
8431
8432 if ((skip[val >> 3] & can_optimize) != 0)
8433 {
8434 bfd_vma off;
8435 unsigned char opc;
8436
8437 switch (r_type)
8438 {
8439 case R_PPC64_TOC16_HA:
8440 break;
8441
8442 case R_PPC64_TOC16_LO_DS:
8443 off = rel->r_offset + (bfd_big_endian (ibfd) ? -2 : 3);
8444 if (!bfd_get_section_contents (ibfd, sec, &opc, off, 1))
8445 {
8446 free (used);
8447 goto error_ret;
8448 }
8449 if ((opc & (0x3f << 2)) == (58u << 2))
8450 break;
8451 /* Fall thru */
8452
8453 default:
8454 /* Wrong sort of reloc, or not a ld. We may
8455 as well clear ref_from_discarded too. */
8456 skip[val >> 3] = 0;
8457 }
8458 }
8459
8460 /* For the toc section, we only mark as used if
8461 this entry itself isn't unused. */
8462 if (sec == toc
8463 && !used[val >> 3]
8464 && (used[rel->r_offset >> 3]
8465 || !(skip[rel->r_offset >> 3] & ref_from_discarded)))
8466 /* Do all the relocs again, to catch reference
8467 chains. */
8468 repeat = 1;
8469
8470 used[val >> 3] = 1;
8471 }
8472 while (repeat);
8473
8474 if (elf_section_data (sec)->relocs != relstart)
8475 free (relstart);
8476 }
8477
8478 /* Merge the used and skip arrays. Assume that TOC
8479 doublewords not appearing as either used or unused belong
8480 to to an entry more than one doubleword in size. */
8481 for (drop = skip, keep = used, last = 0, some_unused = 0;
8482 drop < skip + (toc->size + 7) / 8;
8483 ++drop, ++keep)
8484 {
8485 if (*keep)
8486 {
8487 *drop &= ~ref_from_discarded;
8488 if ((*drop & can_optimize) != 0)
8489 some_unused = 1;
8490 last = 0;
8491 }
8492 else if ((*drop & ref_from_discarded) != 0)
8493 {
8494 some_unused = 1;
8495 last = ref_from_discarded;
8496 }
8497 else
8498 *drop = last;
8499 }
8500
8501 free (used);
8502
8503 if (some_unused)
8504 {
8505 bfd_byte *contents, *src;
8506 unsigned long off;
8507 Elf_Internal_Sym *sym;
8508 bfd_boolean local_toc_syms = FALSE;
8509
8510 /* Shuffle the toc contents, and at the same time convert the
8511 skip array from booleans into offsets. */
8512 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
8513 goto error_ret;
8514
8515 elf_section_data (toc)->this_hdr.contents = contents;
8516
8517 for (src = contents, off = 0, drop = skip;
8518 src < contents + toc->size;
8519 src += 8, ++drop)
8520 {
8521 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
8522 off += 8;
8523 else if (off != 0)
8524 {
8525 *drop = off;
8526 memcpy (src - off, src, 8);
8527 }
8528 }
8529 *drop = off;
8530 toc->rawsize = toc->size;
8531 toc->size = src - contents - off;
8532
8533 /* Adjust addends for relocs against the toc section sym,
8534 and optimize any accesses we can. */
8535 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8536 {
8537 if (sec->reloc_count == 0
8538 || elf_discarded_section (sec))
8539 continue;
8540
8541 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8542 info->keep_memory);
8543 if (relstart == NULL)
8544 goto error_ret;
8545
8546 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8547 {
8548 enum elf_ppc64_reloc_type r_type;
8549 unsigned long r_symndx;
8550 asection *sym_sec;
8551 struct elf_link_hash_entry *h;
8552 bfd_vma val;
8553
8554 r_type = ELF64_R_TYPE (rel->r_info);
8555 switch (r_type)
8556 {
8557 default:
8558 continue;
8559
8560 case R_PPC64_TOC16:
8561 case R_PPC64_TOC16_LO:
8562 case R_PPC64_TOC16_HI:
8563 case R_PPC64_TOC16_HA:
8564 case R_PPC64_TOC16_DS:
8565 case R_PPC64_TOC16_LO_DS:
8566 case R_PPC64_ADDR64:
8567 break;
8568 }
8569
8570 r_symndx = ELF64_R_SYM (rel->r_info);
8571 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8572 r_symndx, ibfd))
8573 goto error_ret;
8574
8575 if (sym_sec != toc)
8576 continue;
8577
8578 if (h != NULL)
8579 val = h->root.u.def.value;
8580 else
8581 {
8582 val = sym->st_value;
8583 if (val != 0)
8584 local_toc_syms = TRUE;
8585 }
8586
8587 val += rel->r_addend;
8588
8589 if (val > toc->rawsize)
8590 val = toc->rawsize;
8591 else if ((skip[val >> 3] & ref_from_discarded) != 0)
8592 continue;
8593 else if ((skip[val >> 3] & can_optimize) != 0)
8594 {
8595 Elf_Internal_Rela *tocrel
8596 = toc_relocs + (skip[val >> 3] >> 2);
8597 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
8598
8599 switch (r_type)
8600 {
8601 case R_PPC64_TOC16_HA:
8602 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
8603 break;
8604
8605 case R_PPC64_TOC16_LO_DS:
8606 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
8607 break;
8608
8609 default:
8610 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
8611 ppc_howto_init ();
8612 info->callbacks->einfo
8613 (_("%P: %H: %s relocation references "
8614 "optimized away TOC entry\n"),
8615 ibfd, sec, rel->r_offset,
8616 ppc64_elf_howto_table[r_type]->name);
8617 bfd_set_error (bfd_error_bad_value);
8618 goto error_ret;
8619 }
8620 rel->r_addend = tocrel->r_addend;
8621 elf_section_data (sec)->relocs = relstart;
8622 continue;
8623 }
8624
8625 if (h != NULL || sym->st_value != 0)
8626 continue;
8627
8628 rel->r_addend -= skip[val >> 3];
8629 elf_section_data (sec)->relocs = relstart;
8630 }
8631
8632 if (elf_section_data (sec)->relocs != relstart)
8633 free (relstart);
8634 }
8635
8636 /* We shouldn't have local or global symbols defined in the TOC,
8637 but handle them anyway. */
8638 if (local_syms != NULL)
8639 for (sym = local_syms;
8640 sym < local_syms + symtab_hdr->sh_info;
8641 ++sym)
8642 if (sym->st_value != 0
8643 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
8644 {
8645 unsigned long i;
8646
8647 if (sym->st_value > toc->rawsize)
8648 i = toc->rawsize >> 3;
8649 else
8650 i = sym->st_value >> 3;
8651
8652 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
8653 {
8654 if (local_toc_syms)
8655 (*_bfd_error_handler)
8656 (_("%s defined on removed toc entry"),
8657 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
8658 do
8659 ++i;
8660 while ((skip[i] & (ref_from_discarded | can_optimize)));
8661 sym->st_value = (bfd_vma) i << 3;
8662 }
8663
8664 sym->st_value -= skip[i];
8665 symtab_hdr->contents = (unsigned char *) local_syms;
8666 }
8667
8668 /* Adjust any global syms defined in this toc input section. */
8669 if (toc_inf.global_toc_syms)
8670 {
8671 toc_inf.toc = toc;
8672 toc_inf.skip = skip;
8673 toc_inf.global_toc_syms = FALSE;
8674 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
8675 &toc_inf);
8676 }
8677
8678 if (toc->reloc_count != 0)
8679 {
8680 Elf_Internal_Shdr *rel_hdr;
8681 Elf_Internal_Rela *wrel;
8682 bfd_size_type sz;
8683
8684 /* Remove unused toc relocs, and adjust those we keep. */
8685 if (toc_relocs == NULL)
8686 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8687 info->keep_memory);
8688 if (toc_relocs == NULL)
8689 goto error_ret;
8690
8691 wrel = toc_relocs;
8692 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8693 if ((skip[rel->r_offset >> 3]
8694 & (ref_from_discarded | can_optimize)) == 0)
8695 {
8696 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
8697 wrel->r_info = rel->r_info;
8698 wrel->r_addend = rel->r_addend;
8699 ++wrel;
8700 }
8701 else if (!dec_dynrel_count (rel->r_info, toc, info,
8702 &local_syms, NULL, NULL))
8703 goto error_ret;
8704
8705 elf_section_data (toc)->relocs = toc_relocs;
8706 toc->reloc_count = wrel - toc_relocs;
8707 rel_hdr = _bfd_elf_single_rel_hdr (toc);
8708 sz = rel_hdr->sh_entsize;
8709 rel_hdr->sh_size = toc->reloc_count * sz;
8710 }
8711 }
8712 else if (toc_relocs != NULL
8713 && elf_section_data (toc)->relocs != toc_relocs)
8714 free (toc_relocs);
8715
8716 if (local_syms != NULL
8717 && symtab_hdr->contents != (unsigned char *) local_syms)
8718 {
8719 if (!info->keep_memory)
8720 free (local_syms);
8721 else
8722 symtab_hdr->contents = (unsigned char *) local_syms;
8723 }
8724 free (skip);
8725 }
8726
8727 return TRUE;
8728 }
8729
8730 /* Return true iff input section I references the TOC using
8731 instructions limited to +/-32k offsets. */
8732
8733 bfd_boolean
8734 ppc64_elf_has_small_toc_reloc (asection *i)
8735 {
8736 return (is_ppc64_elf (i->owner)
8737 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
8738 }
8739
8740 /* Allocate space for one GOT entry. */
8741
8742 static void
8743 allocate_got (struct elf_link_hash_entry *h,
8744 struct bfd_link_info *info,
8745 struct got_entry *gent)
8746 {
8747 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8748 bfd_boolean dyn;
8749 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
8750 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
8751 ? 16 : 8);
8752 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
8753 ? 2 : 1) * sizeof (Elf64_External_Rela);
8754 asection *got = ppc64_elf_tdata (gent->owner)->got;
8755
8756 gent->got.offset = got->size;
8757 got->size += entsize;
8758
8759 dyn = htab->elf.dynamic_sections_created;
8760 if ((info->shared
8761 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8762 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8763 || h->root.type != bfd_link_hash_undefweak))
8764 {
8765 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
8766 relgot->size += rentsize;
8767 }
8768 else if (h->type == STT_GNU_IFUNC)
8769 {
8770 asection *relgot = htab->reliplt;
8771 relgot->size += rentsize;
8772 htab->got_reli_size += rentsize;
8773 }
8774 }
8775
8776 /* This function merges got entries in the same toc group. */
8777
8778 static void
8779 merge_got_entries (struct got_entry **pent)
8780 {
8781 struct got_entry *ent, *ent2;
8782
8783 for (ent = *pent; ent != NULL; ent = ent->next)
8784 if (!ent->is_indirect)
8785 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
8786 if (!ent2->is_indirect
8787 && ent2->addend == ent->addend
8788 && ent2->tls_type == ent->tls_type
8789 && elf_gp (ent2->owner) == elf_gp (ent->owner))
8790 {
8791 ent2->is_indirect = TRUE;
8792 ent2->got.ent = ent;
8793 }
8794 }
8795
8796 /* Allocate space in .plt, .got and associated reloc sections for
8797 dynamic relocs. */
8798
8799 static bfd_boolean
8800 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8801 {
8802 struct bfd_link_info *info;
8803 struct ppc_link_hash_table *htab;
8804 asection *s;
8805 struct ppc_link_hash_entry *eh;
8806 struct elf_dyn_relocs *p;
8807 struct got_entry **pgent, *gent;
8808
8809 if (h->root.type == bfd_link_hash_indirect)
8810 return TRUE;
8811
8812 info = (struct bfd_link_info *) inf;
8813 htab = ppc_hash_table (info);
8814 if (htab == NULL)
8815 return FALSE;
8816
8817 if ((htab->elf.dynamic_sections_created
8818 && h->dynindx != -1
8819 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
8820 || h->type == STT_GNU_IFUNC)
8821 {
8822 struct plt_entry *pent;
8823 bfd_boolean doneone = FALSE;
8824 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
8825 if (pent->plt.refcount > 0)
8826 {
8827 if (!htab->elf.dynamic_sections_created
8828 || h->dynindx == -1)
8829 {
8830 s = htab->iplt;
8831 pent->plt.offset = s->size;
8832 s->size += PLT_ENTRY_SIZE;
8833 s = htab->reliplt;
8834 }
8835 else
8836 {
8837 /* If this is the first .plt entry, make room for the special
8838 first entry. */
8839 s = htab->plt;
8840 if (s->size == 0)
8841 s->size += PLT_INITIAL_ENTRY_SIZE;
8842
8843 pent->plt.offset = s->size;
8844
8845 /* Make room for this entry. */
8846 s->size += PLT_ENTRY_SIZE;
8847
8848 /* Make room for the .glink code. */
8849 s = htab->glink;
8850 if (s->size == 0)
8851 s->size += GLINK_CALL_STUB_SIZE;
8852 /* We need bigger stubs past index 32767. */
8853 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
8854 s->size += 4;
8855 s->size += 2*4;
8856
8857 /* We also need to make an entry in the .rela.plt section. */
8858 s = htab->relplt;
8859 }
8860 s->size += sizeof (Elf64_External_Rela);
8861 doneone = TRUE;
8862 }
8863 else
8864 pent->plt.offset = (bfd_vma) -1;
8865 if (!doneone)
8866 {
8867 h->plt.plist = NULL;
8868 h->needs_plt = 0;
8869 }
8870 }
8871 else
8872 {
8873 h->plt.plist = NULL;
8874 h->needs_plt = 0;
8875 }
8876
8877 eh = (struct ppc_link_hash_entry *) h;
8878 /* Run through the TLS GD got entries first if we're changing them
8879 to TPREL. */
8880 if ((eh->tls_mask & TLS_TPRELGD) != 0)
8881 for (gent = h->got.glist; gent != NULL; gent = gent->next)
8882 if (gent->got.refcount > 0
8883 && (gent->tls_type & TLS_GD) != 0)
8884 {
8885 /* This was a GD entry that has been converted to TPREL. If
8886 there happens to be a TPREL entry we can use that one. */
8887 struct got_entry *ent;
8888 for (ent = h->got.glist; ent != NULL; ent = ent->next)
8889 if (ent->got.refcount > 0
8890 && (ent->tls_type & TLS_TPREL) != 0
8891 && ent->addend == gent->addend
8892 && ent->owner == gent->owner)
8893 {
8894 gent->got.refcount = 0;
8895 break;
8896 }
8897
8898 /* If not, then we'll be using our own TPREL entry. */
8899 if (gent->got.refcount != 0)
8900 gent->tls_type = TLS_TLS | TLS_TPREL;
8901 }
8902
8903 /* Remove any list entry that won't generate a word in the GOT before
8904 we call merge_got_entries. Otherwise we risk merging to empty
8905 entries. */
8906 pgent = &h->got.glist;
8907 while ((gent = *pgent) != NULL)
8908 if (gent->got.refcount > 0)
8909 {
8910 if ((gent->tls_type & TLS_LD) != 0
8911 && !h->def_dynamic)
8912 {
8913 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
8914 *pgent = gent->next;
8915 }
8916 else
8917 pgent = &gent->next;
8918 }
8919 else
8920 *pgent = gent->next;
8921
8922 if (!htab->do_multi_toc)
8923 merge_got_entries (&h->got.glist);
8924
8925 for (gent = h->got.glist; gent != NULL; gent = gent->next)
8926 if (!gent->is_indirect)
8927 {
8928 /* Make sure this symbol is output as a dynamic symbol.
8929 Undefined weak syms won't yet be marked as dynamic,
8930 nor will all TLS symbols. */
8931 if (h->dynindx == -1
8932 && !h->forced_local
8933 && h->type != STT_GNU_IFUNC
8934 && htab->elf.dynamic_sections_created)
8935 {
8936 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8937 return FALSE;
8938 }
8939
8940 if (!is_ppc64_elf (gent->owner))
8941 abort ();
8942
8943 allocate_got (h, info, gent);
8944 }
8945
8946 if (eh->dyn_relocs == NULL
8947 || (!htab->elf.dynamic_sections_created
8948 && h->type != STT_GNU_IFUNC))
8949 return TRUE;
8950
8951 /* In the shared -Bsymbolic case, discard space allocated for
8952 dynamic pc-relative relocs against symbols which turn out to be
8953 defined in regular objects. For the normal shared case, discard
8954 space for relocs that have become local due to symbol visibility
8955 changes. */
8956
8957 if (info->shared)
8958 {
8959 /* Relocs that use pc_count are those that appear on a call insn,
8960 or certain REL relocs (see must_be_dyn_reloc) that can be
8961 generated via assembly. We want calls to protected symbols to
8962 resolve directly to the function rather than going via the plt.
8963 If people want function pointer comparisons to work as expected
8964 then they should avoid writing weird assembly. */
8965 if (SYMBOL_CALLS_LOCAL (info, h))
8966 {
8967 struct elf_dyn_relocs **pp;
8968
8969 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
8970 {
8971 p->count -= p->pc_count;
8972 p->pc_count = 0;
8973 if (p->count == 0)
8974 *pp = p->next;
8975 else
8976 pp = &p->next;
8977 }
8978 }
8979
8980 /* Also discard relocs on undefined weak syms with non-default
8981 visibility. */
8982 if (eh->dyn_relocs != NULL
8983 && h->root.type == bfd_link_hash_undefweak)
8984 {
8985 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8986 eh->dyn_relocs = NULL;
8987
8988 /* Make sure this symbol is output as a dynamic symbol.
8989 Undefined weak syms won't yet be marked as dynamic. */
8990 else if (h->dynindx == -1
8991 && !h->forced_local)
8992 {
8993 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8994 return FALSE;
8995 }
8996 }
8997 }
8998 else if (h->type == STT_GNU_IFUNC)
8999 {
9000 if (!h->non_got_ref)
9001 eh->dyn_relocs = NULL;
9002 }
9003 else if (ELIMINATE_COPY_RELOCS)
9004 {
9005 /* For the non-shared case, discard space for relocs against
9006 symbols which turn out to need copy relocs or are not
9007 dynamic. */
9008
9009 if (!h->non_got_ref
9010 && !h->def_regular)
9011 {
9012 /* Make sure this symbol is output as a dynamic symbol.
9013 Undefined weak syms won't yet be marked as dynamic. */
9014 if (h->dynindx == -1
9015 && !h->forced_local)
9016 {
9017 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9018 return FALSE;
9019 }
9020
9021 /* If that succeeded, we know we'll be keeping all the
9022 relocs. */
9023 if (h->dynindx != -1)
9024 goto keep;
9025 }
9026
9027 eh->dyn_relocs = NULL;
9028
9029 keep: ;
9030 }
9031
9032 /* Finally, allocate space. */
9033 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9034 {
9035 asection *sreloc = elf_section_data (p->sec)->sreloc;
9036 if (!htab->elf.dynamic_sections_created)
9037 sreloc = htab->reliplt;
9038 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9039 }
9040
9041 return TRUE;
9042 }
9043
9044 /* Find any dynamic relocs that apply to read-only sections. */
9045
9046 static bfd_boolean
9047 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9048 {
9049 struct ppc_link_hash_entry *eh;
9050 struct elf_dyn_relocs *p;
9051
9052 eh = (struct ppc_link_hash_entry *) h;
9053 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9054 {
9055 asection *s = p->sec->output_section;
9056
9057 if (s != NULL && (s->flags & SEC_READONLY) != 0)
9058 {
9059 struct bfd_link_info *info = inf;
9060
9061 info->flags |= DF_TEXTREL;
9062
9063 /* Not an error, just cut short the traversal. */
9064 return FALSE;
9065 }
9066 }
9067 return TRUE;
9068 }
9069
9070 /* Set the sizes of the dynamic sections. */
9071
9072 static bfd_boolean
9073 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
9074 struct bfd_link_info *info)
9075 {
9076 struct ppc_link_hash_table *htab;
9077 bfd *dynobj;
9078 asection *s;
9079 bfd_boolean relocs;
9080 bfd *ibfd;
9081 struct got_entry *first_tlsld;
9082
9083 htab = ppc_hash_table (info);
9084 if (htab == NULL)
9085 return FALSE;
9086
9087 dynobj = htab->elf.dynobj;
9088 if (dynobj == NULL)
9089 abort ();
9090
9091 if (htab->elf.dynamic_sections_created)
9092 {
9093 /* Set the contents of the .interp section to the interpreter. */
9094 if (info->executable)
9095 {
9096 s = bfd_get_section_by_name (dynobj, ".interp");
9097 if (s == NULL)
9098 abort ();
9099 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9100 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9101 }
9102 }
9103
9104 /* Set up .got offsets for local syms, and space for local dynamic
9105 relocs. */
9106 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9107 {
9108 struct got_entry **lgot_ents;
9109 struct got_entry **end_lgot_ents;
9110 struct plt_entry **local_plt;
9111 struct plt_entry **end_local_plt;
9112 unsigned char *lgot_masks;
9113 bfd_size_type locsymcount;
9114 Elf_Internal_Shdr *symtab_hdr;
9115 asection *srel;
9116
9117 if (!is_ppc64_elf (ibfd))
9118 continue;
9119
9120 for (s = ibfd->sections; s != NULL; s = s->next)
9121 {
9122 struct elf_dyn_relocs *p;
9123
9124 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9125 {
9126 if (!bfd_is_abs_section (p->sec)
9127 && bfd_is_abs_section (p->sec->output_section))
9128 {
9129 /* Input section has been discarded, either because
9130 it is a copy of a linkonce section or due to
9131 linker script /DISCARD/, so we'll be discarding
9132 the relocs too. */
9133 }
9134 else if (p->count != 0)
9135 {
9136 srel = elf_section_data (p->sec)->sreloc;
9137 if (!htab->elf.dynamic_sections_created)
9138 srel = htab->reliplt;
9139 srel->size += p->count * sizeof (Elf64_External_Rela);
9140 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9141 info->flags |= DF_TEXTREL;
9142 }
9143 }
9144 }
9145
9146 lgot_ents = elf_local_got_ents (ibfd);
9147 if (!lgot_ents)
9148 continue;
9149
9150 symtab_hdr = &elf_symtab_hdr (ibfd);
9151 locsymcount = symtab_hdr->sh_info;
9152 end_lgot_ents = lgot_ents + locsymcount;
9153 local_plt = (struct plt_entry **) end_lgot_ents;
9154 end_local_plt = local_plt + locsymcount;
9155 lgot_masks = (unsigned char *) end_local_plt;
9156 s = ppc64_elf_tdata (ibfd)->got;
9157 srel = ppc64_elf_tdata (ibfd)->relgot;
9158 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9159 {
9160 struct got_entry **pent, *ent;
9161
9162 pent = lgot_ents;
9163 while ((ent = *pent) != NULL)
9164 if (ent->got.refcount > 0)
9165 {
9166 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9167 {
9168 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9169 *pent = ent->next;
9170 }
9171 else
9172 {
9173 unsigned int num = 1;
9174 ent->got.offset = s->size;
9175 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9176 num = 2;
9177 s->size += num * 8;
9178 if (info->shared)
9179 srel->size += num * sizeof (Elf64_External_Rela);
9180 else if ((*lgot_masks & PLT_IFUNC) != 0)
9181 {
9182 htab->reliplt->size
9183 += num * sizeof (Elf64_External_Rela);
9184 htab->got_reli_size
9185 += num * sizeof (Elf64_External_Rela);
9186 }
9187 pent = &ent->next;
9188 }
9189 }
9190 else
9191 *pent = ent->next;
9192 }
9193
9194 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9195 for (; local_plt < end_local_plt; ++local_plt)
9196 {
9197 struct plt_entry *ent;
9198
9199 for (ent = *local_plt; ent != NULL; ent = ent->next)
9200 if (ent->plt.refcount > 0)
9201 {
9202 s = htab->iplt;
9203 ent->plt.offset = s->size;
9204 s->size += PLT_ENTRY_SIZE;
9205
9206 htab->reliplt->size += sizeof (Elf64_External_Rela);
9207 }
9208 else
9209 ent->plt.offset = (bfd_vma) -1;
9210 }
9211 }
9212
9213 /* Allocate global sym .plt and .got entries, and space for global
9214 sym dynamic relocs. */
9215 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9216
9217 first_tlsld = NULL;
9218 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9219 {
9220 struct got_entry *ent;
9221
9222 if (!is_ppc64_elf (ibfd))
9223 continue;
9224
9225 ent = ppc64_tlsld_got (ibfd);
9226 if (ent->got.refcount > 0)
9227 {
9228 if (!htab->do_multi_toc && first_tlsld != NULL)
9229 {
9230 ent->is_indirect = TRUE;
9231 ent->got.ent = first_tlsld;
9232 }
9233 else
9234 {
9235 if (first_tlsld == NULL)
9236 first_tlsld = ent;
9237 s = ppc64_elf_tdata (ibfd)->got;
9238 ent->got.offset = s->size;
9239 ent->owner = ibfd;
9240 s->size += 16;
9241 if (info->shared)
9242 {
9243 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9244 srel->size += sizeof (Elf64_External_Rela);
9245 }
9246 }
9247 }
9248 else
9249 ent->got.offset = (bfd_vma) -1;
9250 }
9251
9252 /* We now have determined the sizes of the various dynamic sections.
9253 Allocate memory for them. */
9254 relocs = FALSE;
9255 for (s = dynobj->sections; s != NULL; s = s->next)
9256 {
9257 if ((s->flags & SEC_LINKER_CREATED) == 0)
9258 continue;
9259
9260 if (s == htab->brlt || s == htab->relbrlt)
9261 /* These haven't been allocated yet; don't strip. */
9262 continue;
9263 else if (s == htab->got
9264 || s == htab->plt
9265 || s == htab->iplt
9266 || s == htab->glink
9267 || s == htab->dynbss)
9268 {
9269 /* Strip this section if we don't need it; see the
9270 comment below. */
9271 }
9272 else if (s == htab->glink_eh_frame)
9273 {
9274 if (!bfd_is_abs_section (s->output_section))
9275 /* Not sized yet. */
9276 continue;
9277 }
9278 else if (CONST_STRNEQ (s->name, ".rela"))
9279 {
9280 if (s->size != 0)
9281 {
9282 if (s != htab->relplt)
9283 relocs = TRUE;
9284
9285 /* We use the reloc_count field as a counter if we need
9286 to copy relocs into the output file. */
9287 s->reloc_count = 0;
9288 }
9289 }
9290 else
9291 {
9292 /* It's not one of our sections, so don't allocate space. */
9293 continue;
9294 }
9295
9296 if (s->size == 0)
9297 {
9298 /* If we don't need this section, strip it from the
9299 output file. This is mostly to handle .rela.bss and
9300 .rela.plt. We must create both sections in
9301 create_dynamic_sections, because they must be created
9302 before the linker maps input sections to output
9303 sections. The linker does that before
9304 adjust_dynamic_symbol is called, and it is that
9305 function which decides whether anything needs to go
9306 into these sections. */
9307 s->flags |= SEC_EXCLUDE;
9308 continue;
9309 }
9310
9311 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9312 continue;
9313
9314 /* Allocate memory for the section contents. We use bfd_zalloc
9315 here in case unused entries are not reclaimed before the
9316 section's contents are written out. This should not happen,
9317 but this way if it does we get a R_PPC64_NONE reloc in .rela
9318 sections instead of garbage.
9319 We also rely on the section contents being zero when writing
9320 the GOT. */
9321 s->contents = bfd_zalloc (dynobj, s->size);
9322 if (s->contents == NULL)
9323 return FALSE;
9324 }
9325
9326 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9327 {
9328 if (!is_ppc64_elf (ibfd))
9329 continue;
9330
9331 s = ppc64_elf_tdata (ibfd)->got;
9332 if (s != NULL && s != htab->got)
9333 {
9334 if (s->size == 0)
9335 s->flags |= SEC_EXCLUDE;
9336 else
9337 {
9338 s->contents = bfd_zalloc (ibfd, s->size);
9339 if (s->contents == NULL)
9340 return FALSE;
9341 }
9342 }
9343 s = ppc64_elf_tdata (ibfd)->relgot;
9344 if (s != NULL)
9345 {
9346 if (s->size == 0)
9347 s->flags |= SEC_EXCLUDE;
9348 else
9349 {
9350 s->contents = bfd_zalloc (ibfd, s->size);
9351 if (s->contents == NULL)
9352 return FALSE;
9353 relocs = TRUE;
9354 s->reloc_count = 0;
9355 }
9356 }
9357 }
9358
9359 if (htab->elf.dynamic_sections_created)
9360 {
9361 /* Add some entries to the .dynamic section. We fill in the
9362 values later, in ppc64_elf_finish_dynamic_sections, but we
9363 must add the entries now so that we get the correct size for
9364 the .dynamic section. The DT_DEBUG entry is filled in by the
9365 dynamic linker and used by the debugger. */
9366 #define add_dynamic_entry(TAG, VAL) \
9367 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9368
9369 if (info->executable)
9370 {
9371 if (!add_dynamic_entry (DT_DEBUG, 0))
9372 return FALSE;
9373 }
9374
9375 if (htab->plt != NULL && htab->plt->size != 0)
9376 {
9377 if (!add_dynamic_entry (DT_PLTGOT, 0)
9378 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9379 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9380 || !add_dynamic_entry (DT_JMPREL, 0)
9381 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
9382 return FALSE;
9383 }
9384
9385 if (NO_OPD_RELOCS)
9386 {
9387 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
9388 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
9389 return FALSE;
9390 }
9391
9392 if (!htab->no_tls_get_addr_opt
9393 && htab->tls_get_addr_fd != NULL
9394 && htab->tls_get_addr_fd->elf.plt.plist != NULL
9395 && !add_dynamic_entry (DT_PPC64_TLSOPT, 0))
9396 return FALSE;
9397
9398 if (relocs)
9399 {
9400 if (!add_dynamic_entry (DT_RELA, 0)
9401 || !add_dynamic_entry (DT_RELASZ, 0)
9402 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
9403 return FALSE;
9404
9405 /* If any dynamic relocs apply to a read-only section,
9406 then we need a DT_TEXTREL entry. */
9407 if ((info->flags & DF_TEXTREL) == 0)
9408 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
9409
9410 if ((info->flags & DF_TEXTREL) != 0)
9411 {
9412 if (!add_dynamic_entry (DT_TEXTREL, 0))
9413 return FALSE;
9414 }
9415 }
9416 }
9417 #undef add_dynamic_entry
9418
9419 return TRUE;
9420 }
9421
9422 /* Determine the type of stub needed, if any, for a call. */
9423
9424 static inline enum ppc_stub_type
9425 ppc_type_of_stub (asection *input_sec,
9426 const Elf_Internal_Rela *rel,
9427 struct ppc_link_hash_entry **hash,
9428 struct plt_entry **plt_ent,
9429 bfd_vma destination)
9430 {
9431 struct ppc_link_hash_entry *h = *hash;
9432 bfd_vma location;
9433 bfd_vma branch_offset;
9434 bfd_vma max_branch_offset;
9435 enum elf_ppc64_reloc_type r_type;
9436
9437 if (h != NULL)
9438 {
9439 struct plt_entry *ent;
9440 struct ppc_link_hash_entry *fdh = h;
9441 if (h->oh != NULL
9442 && h->oh->is_func_descriptor)
9443 {
9444 fdh = ppc_follow_link (h->oh);
9445 *hash = fdh;
9446 }
9447
9448 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
9449 if (ent->addend == rel->r_addend
9450 && ent->plt.offset != (bfd_vma) -1)
9451 {
9452 *plt_ent = ent;
9453 return ppc_stub_plt_call;
9454 }
9455
9456 /* Here, we know we don't have a plt entry. If we don't have a
9457 either a defined function descriptor or a defined entry symbol
9458 in a regular object file, then it is pointless trying to make
9459 any other type of stub. */
9460 if (!is_static_defined (&fdh->elf)
9461 && !is_static_defined (&h->elf))
9462 return ppc_stub_none;
9463 }
9464 else if (elf_local_got_ents (input_sec->owner) != NULL)
9465 {
9466 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
9467 struct plt_entry **local_plt = (struct plt_entry **)
9468 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
9469 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
9470
9471 if (local_plt[r_symndx] != NULL)
9472 {
9473 struct plt_entry *ent;
9474
9475 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
9476 if (ent->addend == rel->r_addend
9477 && ent->plt.offset != (bfd_vma) -1)
9478 {
9479 *plt_ent = ent;
9480 return ppc_stub_plt_call;
9481 }
9482 }
9483 }
9484
9485 /* Determine where the call point is. */
9486 location = (input_sec->output_offset
9487 + input_sec->output_section->vma
9488 + rel->r_offset);
9489
9490 branch_offset = destination - location;
9491 r_type = ELF64_R_TYPE (rel->r_info);
9492
9493 /* Determine if a long branch stub is needed. */
9494 max_branch_offset = 1 << 25;
9495 if (r_type != R_PPC64_REL24)
9496 max_branch_offset = 1 << 15;
9497
9498 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
9499 /* We need a stub. Figure out whether a long_branch or plt_branch
9500 is needed later. */
9501 return ppc_stub_long_branch;
9502
9503 return ppc_stub_none;
9504 }
9505
9506 /* With power7 weakly ordered memory model, it is possible for ld.so
9507 to update a plt entry in one thread and have another thread see a
9508 stale zero toc entry. To avoid this we need some sort of acquire
9509 barrier in the call stub. One solution is to make the load of the
9510 toc word seem to appear to depend on the load of the function entry
9511 word. Another solution is to test for r2 being zero, and branch to
9512 the appropriate glink entry if so.
9513
9514 . fake dep barrier compare
9515 . ld 11,xxx(2) ld 11,xxx(2)
9516 . mtctr 11 mtctr 11
9517 . xor 11,11,11 ld 2,xxx+8(2)
9518 . add 2,2,11 cmpldi 2,0
9519 . ld 2,xxx+8(2) bnectr+
9520 . bctr b <glink_entry>
9521
9522 The solution involving the compare turns out to be faster, so
9523 that's what we use unless the branch won't reach. */
9524
9525 #define ALWAYS_USE_FAKE_DEP 0
9526 #define ALWAYS_EMIT_R2SAVE 0
9527
9528 #define PPC_LO(v) ((v) & 0xffff)
9529 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9530 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9531
9532 static inline unsigned int
9533 plt_stub_size (struct ppc_link_hash_table *htab,
9534 struct ppc_stub_hash_entry *stub_entry,
9535 bfd_vma off)
9536 {
9537 unsigned size = PLT_CALL_STUB_SIZE;
9538
9539 if (!(ALWAYS_EMIT_R2SAVE
9540 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
9541 size -= 4;
9542 if (!htab->plt_static_chain)
9543 size -= 4;
9544 if (htab->plt_thread_safe)
9545 size += 8;
9546 if (PPC_HA (off) == 0)
9547 size -= 4;
9548 if (PPC_HA (off + 8 + 8 * htab->plt_static_chain) != PPC_HA (off))
9549 size += 4;
9550 if (stub_entry->h != NULL
9551 && (stub_entry->h == htab->tls_get_addr_fd
9552 || stub_entry->h == htab->tls_get_addr)
9553 && !htab->no_tls_get_addr_opt)
9554 size += 13 * 4;
9555 return size;
9556 }
9557
9558 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
9559 then return the padding needed to do so. */
9560 static inline unsigned int
9561 plt_stub_pad (struct ppc_link_hash_table *htab,
9562 struct ppc_stub_hash_entry *stub_entry,
9563 bfd_vma plt_off)
9564 {
9565 int stub_align = 1 << htab->plt_stub_align;
9566 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
9567 bfd_vma stub_off = stub_entry->stub_sec->size;
9568
9569 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
9570 > (stub_size & -stub_align))
9571 return stub_align - (stub_off & (stub_align - 1));
9572 return 0;
9573 }
9574
9575 /* Build a .plt call stub. */
9576
9577 static inline bfd_byte *
9578 build_plt_stub (struct ppc_link_hash_table *htab,
9579 struct ppc_stub_hash_entry *stub_entry,
9580 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
9581 {
9582 bfd *obfd = htab->stub_bfd;
9583 bfd_boolean plt_static_chain = htab->plt_static_chain;
9584 bfd_boolean plt_thread_safe = htab->plt_thread_safe;
9585 bfd_boolean use_fake_dep = plt_thread_safe;
9586 bfd_vma cmp_branch_off = 0;
9587
9588 if (!ALWAYS_USE_FAKE_DEP
9589 && plt_thread_safe
9590 && !(stub_entry->h != NULL
9591 && (stub_entry->h == htab->tls_get_addr_fd
9592 || stub_entry->h == htab->tls_get_addr)
9593 && !htab->no_tls_get_addr_opt))
9594 {
9595 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
9596 bfd_vma pltindex = (pltoff - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE;
9597 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
9598 bfd_vma to, from;
9599
9600 if (pltindex > 32767)
9601 glinkoff += (pltindex - 32767) * 4;
9602 to = (glinkoff
9603 + htab->glink->output_offset
9604 + htab->glink->output_section->vma);
9605 from = (p - stub_entry->stub_sec->contents
9606 + 4 * (ALWAYS_EMIT_R2SAVE
9607 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9608 + 4 * (PPC_HA (offset) != 0)
9609 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
9610 != PPC_HA (offset))
9611 + 4 * (plt_static_chain != 0)
9612 + 20
9613 + stub_entry->stub_sec->output_offset
9614 + stub_entry->stub_sec->output_section->vma);
9615 cmp_branch_off = to - from;
9616 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
9617 }
9618
9619 if (PPC_HA (offset) != 0)
9620 {
9621 if (r != NULL)
9622 {
9623 if (ALWAYS_EMIT_R2SAVE
9624 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9625 r[0].r_offset += 4;
9626 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
9627 r[1].r_offset = r[0].r_offset + 4;
9628 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9629 r[1].r_addend = r[0].r_addend;
9630 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9631 {
9632 r[2].r_offset = r[1].r_offset + 4;
9633 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
9634 r[2].r_addend = r[0].r_addend;
9635 }
9636 else
9637 {
9638 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
9639 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9640 r[2].r_addend = r[0].r_addend + 8;
9641 if (plt_static_chain)
9642 {
9643 r[3].r_offset = r[2].r_offset + 4;
9644 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9645 r[3].r_addend = r[0].r_addend + 16;
9646 }
9647 }
9648 }
9649 if (ALWAYS_EMIT_R2SAVE
9650 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9651 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
9652 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
9653 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
9654 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9655 {
9656 bfd_put_32 (obfd, ADDI_R12_R12 | PPC_LO (offset), p), p += 4;
9657 offset = 0;
9658 }
9659 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
9660 if (use_fake_dep)
9661 {
9662 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4;
9663 bfd_put_32 (obfd, ADD_R12_R12_R11, p), p += 4;
9664 }
9665 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset + 8), p), p += 4;
9666 if (plt_static_chain)
9667 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset + 16), p), p += 4;
9668 }
9669 else
9670 {
9671 if (r != NULL)
9672 {
9673 if (ALWAYS_EMIT_R2SAVE
9674 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9675 r[0].r_offset += 4;
9676 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9677 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9678 {
9679 r[1].r_offset = r[0].r_offset + 4;
9680 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
9681 r[1].r_addend = r[0].r_addend;
9682 }
9683 else
9684 {
9685 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
9686 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9687 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
9688 if (plt_static_chain)
9689 {
9690 r[2].r_offset = r[1].r_offset + 4;
9691 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9692 r[2].r_addend = r[0].r_addend + 8;
9693 }
9694 }
9695 }
9696 if (ALWAYS_EMIT_R2SAVE
9697 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9698 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
9699 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset), p), p += 4;
9700 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9701 {
9702 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
9703 offset = 0;
9704 }
9705 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
9706 if (use_fake_dep)
9707 {
9708 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4;
9709 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
9710 }
9711 if (plt_static_chain)
9712 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
9713 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
9714 }
9715 if (plt_thread_safe && !use_fake_dep)
9716 {
9717 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
9718 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
9719 bfd_put_32 (obfd, B_DOT + cmp_branch_off, p), p += 4;
9720 }
9721 else
9722 bfd_put_32 (obfd, BCTR, p), p += 4;
9723 return p;
9724 }
9725
9726 /* Build a special .plt call stub for __tls_get_addr. */
9727
9728 #define LD_R11_0R3 0xe9630000
9729 #define LD_R12_0R3 0xe9830000
9730 #define MR_R0_R3 0x7c601b78
9731 #define CMPDI_R11_0 0x2c2b0000
9732 #define ADD_R3_R12_R13 0x7c6c6a14
9733 #define BEQLR 0x4d820020
9734 #define MR_R3_R0 0x7c030378
9735 #define MFLR_R11 0x7d6802a6
9736 #define STD_R11_0R1 0xf9610000
9737 #define BCTRL 0x4e800421
9738 #define LD_R11_0R1 0xe9610000
9739 #define LD_R2_0R1 0xe8410000
9740 #define MTLR_R11 0x7d6803a6
9741
9742 static inline bfd_byte *
9743 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
9744 struct ppc_stub_hash_entry *stub_entry,
9745 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
9746 {
9747 bfd *obfd = htab->stub_bfd;
9748
9749 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
9750 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
9751 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
9752 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
9753 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
9754 bfd_put_32 (obfd, BEQLR, p), p += 4;
9755 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
9756 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
9757 bfd_put_32 (obfd, STD_R11_0R1 + 32, p), p += 4;
9758
9759 if (r != NULL)
9760 r[0].r_offset += 9 * 4;
9761 p = build_plt_stub (htab, stub_entry, p, offset, r);
9762 bfd_put_32 (obfd, BCTRL, p - 4);
9763
9764 bfd_put_32 (obfd, LD_R11_0R1 + 32, p), p += 4;
9765 bfd_put_32 (obfd, LD_R2_0R1 + 40, p), p += 4;
9766 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
9767 bfd_put_32 (obfd, BLR, p), p += 4;
9768
9769 return p;
9770 }
9771
9772 static Elf_Internal_Rela *
9773 get_relocs (asection *sec, int count)
9774 {
9775 Elf_Internal_Rela *relocs;
9776 struct bfd_elf_section_data *elfsec_data;
9777
9778 elfsec_data = elf_section_data (sec);
9779 relocs = elfsec_data->relocs;
9780 if (relocs == NULL)
9781 {
9782 bfd_size_type relsize;
9783 relsize = sec->reloc_count * sizeof (*relocs);
9784 relocs = bfd_alloc (sec->owner, relsize);
9785 if (relocs == NULL)
9786 return NULL;
9787 elfsec_data->relocs = relocs;
9788 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
9789 sizeof (Elf_Internal_Shdr));
9790 if (elfsec_data->rela.hdr == NULL)
9791 return NULL;
9792 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
9793 * sizeof (Elf64_External_Rela));
9794 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
9795 sec->reloc_count = 0;
9796 }
9797 relocs += sec->reloc_count;
9798 sec->reloc_count += count;
9799 return relocs;
9800 }
9801
9802 static bfd_vma
9803 get_r2off (struct bfd_link_info *info,
9804 struct ppc_stub_hash_entry *stub_entry)
9805 {
9806 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9807 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
9808
9809 if (r2off == 0)
9810 {
9811 /* Support linking -R objects. Get the toc pointer from the
9812 opd entry. */
9813 char buf[8];
9814 asection *opd = stub_entry->h->elf.root.u.def.section;
9815 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
9816
9817 if (strcmp (opd->name, ".opd") != 0
9818 || opd->reloc_count != 0)
9819 {
9820 info->callbacks->einfo (_("%P: cannot find opd entry toc for %s\n"),
9821 stub_entry->h->elf.root.root.string);
9822 bfd_set_error (bfd_error_bad_value);
9823 return 0;
9824 }
9825 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
9826 return 0;
9827 r2off = bfd_get_64 (opd->owner, buf);
9828 r2off -= elf_gp (info->output_bfd);
9829 }
9830 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
9831 return r2off;
9832 }
9833
9834 static bfd_boolean
9835 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
9836 {
9837 struct ppc_stub_hash_entry *stub_entry;
9838 struct ppc_branch_hash_entry *br_entry;
9839 struct bfd_link_info *info;
9840 struct ppc_link_hash_table *htab;
9841 bfd_byte *loc;
9842 bfd_byte *p;
9843 bfd_vma dest, off;
9844 int size;
9845 Elf_Internal_Rela *r;
9846 asection *plt;
9847
9848 /* Massage our args to the form they really have. */
9849 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
9850 info = in_arg;
9851
9852 htab = ppc_hash_table (info);
9853 if (htab == NULL)
9854 return FALSE;
9855
9856 /* Make a note of the offset within the stubs for this entry. */
9857 stub_entry->stub_offset = stub_entry->stub_sec->size;
9858 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
9859
9860 htab->stub_count[stub_entry->stub_type - 1] += 1;
9861 switch (stub_entry->stub_type)
9862 {
9863 case ppc_stub_long_branch:
9864 case ppc_stub_long_branch_r2off:
9865 /* Branches are relative. This is where we are going to. */
9866 off = dest = (stub_entry->target_value
9867 + stub_entry->target_section->output_offset
9868 + stub_entry->target_section->output_section->vma);
9869
9870 /* And this is where we are coming from. */
9871 off -= (stub_entry->stub_offset
9872 + stub_entry->stub_sec->output_offset
9873 + stub_entry->stub_sec->output_section->vma);
9874
9875 size = 4;
9876 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
9877 {
9878 bfd_vma r2off = get_r2off (info, stub_entry);
9879
9880 if (r2off == 0)
9881 {
9882 htab->stub_error = TRUE;
9883 return FALSE;
9884 }
9885 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
9886 loc += 4;
9887 size = 12;
9888 if (PPC_HA (r2off) != 0)
9889 {
9890 size = 16;
9891 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
9892 loc += 4;
9893 }
9894 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
9895 loc += 4;
9896 off -= size - 4;
9897 }
9898 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
9899
9900 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
9901 {
9902 info->callbacks->einfo (_("%P: long branch stub `%s' offset overflow\n"),
9903 stub_entry->root.string);
9904 htab->stub_error = TRUE;
9905 return FALSE;
9906 }
9907
9908 if (info->emitrelocations)
9909 {
9910 r = get_relocs (stub_entry->stub_sec, 1);
9911 if (r == NULL)
9912 return FALSE;
9913 r->r_offset = loc - stub_entry->stub_sec->contents;
9914 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
9915 r->r_addend = dest;
9916 if (stub_entry->h != NULL)
9917 {
9918 struct elf_link_hash_entry **hashes;
9919 unsigned long symndx;
9920 struct ppc_link_hash_entry *h;
9921
9922 hashes = elf_sym_hashes (htab->stub_bfd);
9923 if (hashes == NULL)
9924 {
9925 bfd_size_type hsize;
9926
9927 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
9928 hashes = bfd_zalloc (htab->stub_bfd, hsize);
9929 if (hashes == NULL)
9930 return FALSE;
9931 elf_sym_hashes (htab->stub_bfd) = hashes;
9932 htab->stub_globals = 1;
9933 }
9934 symndx = htab->stub_globals++;
9935 h = stub_entry->h;
9936 hashes[symndx] = &h->elf;
9937 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
9938 if (h->oh != NULL && h->oh->is_func)
9939 h = ppc_follow_link (h->oh);
9940 if (h->elf.root.u.def.section != stub_entry->target_section)
9941 /* H is an opd symbol. The addend must be zero. */
9942 r->r_addend = 0;
9943 else
9944 {
9945 off = (h->elf.root.u.def.value
9946 + h->elf.root.u.def.section->output_offset
9947 + h->elf.root.u.def.section->output_section->vma);
9948 r->r_addend -= off;
9949 }
9950 }
9951 }
9952 break;
9953
9954 case ppc_stub_plt_branch:
9955 case ppc_stub_plt_branch_r2off:
9956 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
9957 stub_entry->root.string + 9,
9958 FALSE, FALSE);
9959 if (br_entry == NULL)
9960 {
9961 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
9962 stub_entry->root.string);
9963 htab->stub_error = TRUE;
9964 return FALSE;
9965 }
9966
9967 dest = (stub_entry->target_value
9968 + stub_entry->target_section->output_offset
9969 + stub_entry->target_section->output_section->vma);
9970
9971 bfd_put_64 (htab->brlt->owner, dest,
9972 htab->brlt->contents + br_entry->offset);
9973
9974 if (br_entry->iter == htab->stub_iteration)
9975 {
9976 br_entry->iter = 0;
9977
9978 if (htab->relbrlt != NULL)
9979 {
9980 /* Create a reloc for the branch lookup table entry. */
9981 Elf_Internal_Rela rela;
9982 bfd_byte *rl;
9983
9984 rela.r_offset = (br_entry->offset
9985 + htab->brlt->output_offset
9986 + htab->brlt->output_section->vma);
9987 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
9988 rela.r_addend = dest;
9989
9990 rl = htab->relbrlt->contents;
9991 rl += (htab->relbrlt->reloc_count++
9992 * sizeof (Elf64_External_Rela));
9993 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
9994 }
9995 else if (info->emitrelocations)
9996 {
9997 r = get_relocs (htab->brlt, 1);
9998 if (r == NULL)
9999 return FALSE;
10000 /* brlt, being SEC_LINKER_CREATED does not go through the
10001 normal reloc processing. Symbols and offsets are not
10002 translated from input file to output file form, so
10003 set up the offset per the output file. */
10004 r->r_offset = (br_entry->offset
10005 + htab->brlt->output_offset
10006 + htab->brlt->output_section->vma);
10007 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10008 r->r_addend = dest;
10009 }
10010 }
10011
10012 dest = (br_entry->offset
10013 + htab->brlt->output_offset
10014 + htab->brlt->output_section->vma);
10015
10016 off = (dest
10017 - elf_gp (htab->brlt->output_section->owner)
10018 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10019
10020 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10021 {
10022 info->callbacks->einfo
10023 (_("%P: linkage table error against `%s'\n"),
10024 stub_entry->root.string);
10025 bfd_set_error (bfd_error_bad_value);
10026 htab->stub_error = TRUE;
10027 return FALSE;
10028 }
10029
10030 if (info->emitrelocations)
10031 {
10032 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10033 if (r == NULL)
10034 return FALSE;
10035 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10036 if (bfd_big_endian (info->output_bfd))
10037 r[0].r_offset += 2;
10038 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10039 r[0].r_offset += 4;
10040 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10041 r[0].r_addend = dest;
10042 if (PPC_HA (off) != 0)
10043 {
10044 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10045 r[1].r_offset = r[0].r_offset + 4;
10046 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10047 r[1].r_addend = r[0].r_addend;
10048 }
10049 }
10050
10051 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10052 {
10053 if (PPC_HA (off) != 0)
10054 {
10055 size = 16;
10056 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
10057 loc += 4;
10058 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
10059 }
10060 else
10061 {
10062 size = 12;
10063 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
10064 }
10065 }
10066 else
10067 {
10068 bfd_vma r2off = get_r2off (info, stub_entry);
10069
10070 if (r2off == 0)
10071 {
10072 htab->stub_error = TRUE;
10073 return FALSE;
10074 }
10075
10076 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
10077 loc += 4;
10078 size = 20;
10079 if (PPC_HA (off) != 0)
10080 {
10081 size += 4;
10082 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
10083 loc += 4;
10084 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
10085 loc += 4;
10086 }
10087 else
10088 {
10089 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
10090 loc += 4;
10091 }
10092
10093 if (PPC_HA (r2off) != 0)
10094 {
10095 size += 4;
10096 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
10097 loc += 4;
10098 }
10099 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10100 }
10101 loc += 4;
10102 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
10103 loc += 4;
10104 bfd_put_32 (htab->stub_bfd, BCTR, loc);
10105 break;
10106
10107 case ppc_stub_plt_call:
10108 case ppc_stub_plt_call_r2save:
10109 if (stub_entry->h != NULL
10110 && stub_entry->h->is_func_descriptor
10111 && stub_entry->h->oh != NULL)
10112 {
10113 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10114
10115 /* If the old-ABI "dot-symbol" is undefined make it weak so
10116 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10117 FIXME: We used to define the symbol on one of the call
10118 stubs instead, which is why we test symbol section id
10119 against htab->top_id in various places. Likely all
10120 these checks could now disappear. */
10121 if (fh->elf.root.type == bfd_link_hash_undefined)
10122 fh->elf.root.type = bfd_link_hash_undefweak;
10123 /* Stop undo_symbol_twiddle changing it back to undefined. */
10124 fh->was_undefined = 0;
10125 }
10126
10127 /* Now build the stub. */
10128 dest = stub_entry->plt_ent->plt.offset & ~1;
10129 if (dest >= (bfd_vma) -2)
10130 abort ();
10131
10132 plt = htab->plt;
10133 if (!htab->elf.dynamic_sections_created
10134 || stub_entry->h == NULL
10135 || stub_entry->h->elf.dynindx == -1)
10136 plt = htab->iplt;
10137
10138 dest += plt->output_offset + plt->output_section->vma;
10139
10140 if (stub_entry->h == NULL
10141 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10142 {
10143 Elf_Internal_Rela rela;
10144 bfd_byte *rl;
10145
10146 rela.r_offset = dest;
10147 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10148 rela.r_addend = (stub_entry->target_value
10149 + stub_entry->target_section->output_offset
10150 + stub_entry->target_section->output_section->vma);
10151
10152 rl = (htab->reliplt->contents
10153 + (htab->reliplt->reloc_count++
10154 * sizeof (Elf64_External_Rela)));
10155 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10156 stub_entry->plt_ent->plt.offset |= 1;
10157 }
10158
10159 off = (dest
10160 - elf_gp (plt->output_section->owner)
10161 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10162
10163 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10164 {
10165 info->callbacks->einfo
10166 (_("%P: linkage table error against `%s'\n"),
10167 stub_entry->h != NULL
10168 ? stub_entry->h->elf.root.root.string
10169 : "<local sym>");
10170 bfd_set_error (bfd_error_bad_value);
10171 htab->stub_error = TRUE;
10172 return FALSE;
10173 }
10174
10175 if (htab->plt_stub_align != 0)
10176 {
10177 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10178
10179 stub_entry->stub_sec->size += pad;
10180 stub_entry->stub_offset = stub_entry->stub_sec->size;
10181 loc += pad;
10182 }
10183
10184 r = NULL;
10185 if (info->emitrelocations)
10186 {
10187 r = get_relocs (stub_entry->stub_sec,
10188 (2
10189 + (PPC_HA (off) != 0)
10190 + (htab->plt_static_chain
10191 && PPC_HA (off + 16) == PPC_HA (off))));
10192 if (r == NULL)
10193 return FALSE;
10194 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10195 if (bfd_big_endian (info->output_bfd))
10196 r[0].r_offset += 2;
10197 r[0].r_addend = dest;
10198 }
10199 if (stub_entry->h != NULL
10200 && (stub_entry->h == htab->tls_get_addr_fd
10201 || stub_entry->h == htab->tls_get_addr)
10202 && !htab->no_tls_get_addr_opt)
10203 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10204 else
10205 p = build_plt_stub (htab, stub_entry, loc, off, r);
10206 size = p - loc;
10207 break;
10208
10209 default:
10210 BFD_FAIL ();
10211 return FALSE;
10212 }
10213
10214 stub_entry->stub_sec->size += size;
10215
10216 if (htab->emit_stub_syms)
10217 {
10218 struct elf_link_hash_entry *h;
10219 size_t len1, len2;
10220 char *name;
10221 const char *const stub_str[] = { "long_branch",
10222 "long_branch_r2off",
10223 "plt_branch",
10224 "plt_branch_r2off",
10225 "plt_call",
10226 "plt_call" };
10227
10228 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10229 len2 = strlen (stub_entry->root.string);
10230 name = bfd_malloc (len1 + len2 + 2);
10231 if (name == NULL)
10232 return FALSE;
10233 memcpy (name, stub_entry->root.string, 9);
10234 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10235 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10236 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10237 if (h == NULL)
10238 return FALSE;
10239 if (h->root.type == bfd_link_hash_new)
10240 {
10241 h->root.type = bfd_link_hash_defined;
10242 h->root.u.def.section = stub_entry->stub_sec;
10243 h->root.u.def.value = stub_entry->stub_offset;
10244 h->ref_regular = 1;
10245 h->def_regular = 1;
10246 h->ref_regular_nonweak = 1;
10247 h->forced_local = 1;
10248 h->non_elf = 0;
10249 }
10250 }
10251
10252 return TRUE;
10253 }
10254
10255 /* As above, but don't actually build the stub. Just bump offset so
10256 we know stub section sizes, and select plt_branch stubs where
10257 long_branch stubs won't do. */
10258
10259 static bfd_boolean
10260 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10261 {
10262 struct ppc_stub_hash_entry *stub_entry;
10263 struct bfd_link_info *info;
10264 struct ppc_link_hash_table *htab;
10265 bfd_vma off;
10266 int size;
10267
10268 /* Massage our args to the form they really have. */
10269 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10270 info = in_arg;
10271
10272 htab = ppc_hash_table (info);
10273 if (htab == NULL)
10274 return FALSE;
10275
10276 if (stub_entry->stub_type == ppc_stub_plt_call
10277 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10278 {
10279 asection *plt;
10280 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10281 if (off >= (bfd_vma) -2)
10282 abort ();
10283 plt = htab->plt;
10284 if (!htab->elf.dynamic_sections_created
10285 || stub_entry->h == NULL
10286 || stub_entry->h->elf.dynindx == -1)
10287 plt = htab->iplt;
10288 off += (plt->output_offset
10289 + plt->output_section->vma
10290 - elf_gp (plt->output_section->owner)
10291 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10292
10293 size = plt_stub_size (htab, stub_entry, off);
10294 if (htab->plt_stub_align)
10295 size += plt_stub_pad (htab, stub_entry, off);
10296 if (info->emitrelocations)
10297 {
10298 stub_entry->stub_sec->reloc_count
10299 += (2
10300 + (PPC_HA (off) != 0)
10301 + (htab->plt_static_chain
10302 && PPC_HA (off + 16) == PPC_HA (off)));
10303 stub_entry->stub_sec->flags |= SEC_RELOC;
10304 }
10305 }
10306 else
10307 {
10308 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
10309 variants. */
10310 bfd_vma r2off = 0;
10311
10312 off = (stub_entry->target_value
10313 + stub_entry->target_section->output_offset
10314 + stub_entry->target_section->output_section->vma);
10315 off -= (stub_entry->stub_sec->size
10316 + stub_entry->stub_sec->output_offset
10317 + stub_entry->stub_sec->output_section->vma);
10318
10319 /* Reset the stub type from the plt variant in case we now
10320 can reach with a shorter stub. */
10321 if (stub_entry->stub_type >= ppc_stub_plt_branch)
10322 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
10323
10324 size = 4;
10325 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10326 {
10327 r2off = get_r2off (info, stub_entry);
10328 if (r2off == 0)
10329 {
10330 htab->stub_error = TRUE;
10331 return FALSE;
10332 }
10333 size = 12;
10334 if (PPC_HA (r2off) != 0)
10335 size = 16;
10336 off -= size - 4;
10337 }
10338
10339 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
10340 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10341 {
10342 struct ppc_branch_hash_entry *br_entry;
10343
10344 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10345 stub_entry->root.string + 9,
10346 TRUE, FALSE);
10347 if (br_entry == NULL)
10348 {
10349 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
10350 stub_entry->root.string);
10351 htab->stub_error = TRUE;
10352 return FALSE;
10353 }
10354
10355 if (br_entry->iter != htab->stub_iteration)
10356 {
10357 br_entry->iter = htab->stub_iteration;
10358 br_entry->offset = htab->brlt->size;
10359 htab->brlt->size += 8;
10360
10361 if (htab->relbrlt != NULL)
10362 htab->relbrlt->size += sizeof (Elf64_External_Rela);
10363 else if (info->emitrelocations)
10364 {
10365 htab->brlt->reloc_count += 1;
10366 htab->brlt->flags |= SEC_RELOC;
10367 }
10368 }
10369
10370 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
10371 off = (br_entry->offset
10372 + htab->brlt->output_offset
10373 + htab->brlt->output_section->vma
10374 - elf_gp (htab->brlt->output_section->owner)
10375 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10376
10377 if (info->emitrelocations)
10378 {
10379 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
10380 stub_entry->stub_sec->flags |= SEC_RELOC;
10381 }
10382
10383 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10384 {
10385 size = 12;
10386 if (PPC_HA (off) != 0)
10387 size = 16;
10388 }
10389 else
10390 {
10391 size = 20;
10392 if (PPC_HA (off) != 0)
10393 size += 4;
10394
10395 if (PPC_HA (r2off) != 0)
10396 size += 4;
10397 }
10398 }
10399 else if (info->emitrelocations)
10400 {
10401 stub_entry->stub_sec->reloc_count += 1;
10402 stub_entry->stub_sec->flags |= SEC_RELOC;
10403 }
10404 }
10405
10406 stub_entry->stub_sec->size += size;
10407 return TRUE;
10408 }
10409
10410 /* Set up various things so that we can make a list of input sections
10411 for each output section included in the link. Returns -1 on error,
10412 0 when no stubs will be needed, and 1 on success. */
10413
10414 int
10415 ppc64_elf_setup_section_lists
10416 (struct bfd_link_info *info,
10417 asection *(*add_stub_section) (const char *, asection *),
10418 void (*layout_sections_again) (void))
10419 {
10420 bfd *input_bfd;
10421 int top_id, top_index, id;
10422 asection *section;
10423 asection **input_list;
10424 bfd_size_type amt;
10425 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10426
10427 if (htab == NULL)
10428 return -1;
10429 /* Stash our params away. */
10430 htab->add_stub_section = add_stub_section;
10431 htab->layout_sections_again = layout_sections_again;
10432
10433 if (htab->brlt == NULL)
10434 return 0;
10435
10436 /* Find the top input section id. */
10437 for (input_bfd = info->input_bfds, top_id = 3;
10438 input_bfd != NULL;
10439 input_bfd = input_bfd->link_next)
10440 {
10441 for (section = input_bfd->sections;
10442 section != NULL;
10443 section = section->next)
10444 {
10445 if (top_id < section->id)
10446 top_id = section->id;
10447 }
10448 }
10449
10450 htab->top_id = top_id;
10451 amt = sizeof (struct map_stub) * (top_id + 1);
10452 htab->stub_group = bfd_zmalloc (amt);
10453 if (htab->stub_group == NULL)
10454 return -1;
10455
10456 /* Set toc_off for com, und, abs and ind sections. */
10457 for (id = 0; id < 3; id++)
10458 htab->stub_group[id].toc_off = TOC_BASE_OFF;
10459
10460 /* We can't use output_bfd->section_count here to find the top output
10461 section index as some sections may have been removed, and
10462 strip_excluded_output_sections doesn't renumber the indices. */
10463 for (section = info->output_bfd->sections, top_index = 0;
10464 section != NULL;
10465 section = section->next)
10466 {
10467 if (top_index < section->index)
10468 top_index = section->index;
10469 }
10470
10471 htab->top_index = top_index;
10472 amt = sizeof (asection *) * (top_index + 1);
10473 input_list = bfd_zmalloc (amt);
10474 htab->input_list = input_list;
10475 if (input_list == NULL)
10476 return -1;
10477
10478 return 1;
10479 }
10480
10481 /* Set up for first pass at multitoc partitioning. */
10482
10483 void
10484 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
10485 {
10486 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10487
10488 elf_gp (info->output_bfd) = ppc64_elf_toc (info->output_bfd);
10489 htab->toc_curr = elf_gp (info->output_bfd);
10490 htab->toc_bfd = NULL;
10491 htab->toc_first_sec = NULL;
10492 }
10493
10494 /* The linker repeatedly calls this function for each TOC input section
10495 and linker generated GOT section. Group input bfds such that the toc
10496 within a group is less than 64k in size. */
10497
10498 bfd_boolean
10499 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
10500 {
10501 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10502 bfd_vma addr, off, limit;
10503
10504 if (htab == NULL)
10505 return FALSE;
10506
10507 if (!htab->second_toc_pass)
10508 {
10509 /* Keep track of the first .toc or .got section for this input bfd. */
10510 if (htab->toc_bfd != isec->owner)
10511 {
10512 htab->toc_bfd = isec->owner;
10513 htab->toc_first_sec = isec;
10514 }
10515
10516 addr = isec->output_offset + isec->output_section->vma;
10517 off = addr - htab->toc_curr;
10518 limit = 0x80008000;
10519 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
10520 limit = 0x10000;
10521 if (off + isec->size > limit)
10522 {
10523 addr = (htab->toc_first_sec->output_offset
10524 + htab->toc_first_sec->output_section->vma);
10525 htab->toc_curr = addr;
10526 }
10527
10528 /* toc_curr is the base address of this toc group. Set elf_gp
10529 for the input section to be the offset relative to the
10530 output toc base plus 0x8000. Making the input elf_gp an
10531 offset allows us to move the toc as a whole without
10532 recalculating input elf_gp. */
10533 off = htab->toc_curr - elf_gp (isec->output_section->owner);
10534 off += TOC_BASE_OFF;
10535
10536 /* Die if someone uses a linker script that doesn't keep input
10537 file .toc and .got together. */
10538 if (elf_gp (isec->owner) != 0
10539 && elf_gp (isec->owner) != off)
10540 return FALSE;
10541
10542 elf_gp (isec->owner) = off;
10543 return TRUE;
10544 }
10545
10546 /* During the second pass toc_first_sec points to the start of
10547 a toc group, and toc_curr is used to track the old elf_gp.
10548 We use toc_bfd to ensure we only look at each bfd once. */
10549 if (htab->toc_bfd == isec->owner)
10550 return TRUE;
10551 htab->toc_bfd = isec->owner;
10552
10553 if (htab->toc_first_sec == NULL
10554 || htab->toc_curr != elf_gp (isec->owner))
10555 {
10556 htab->toc_curr = elf_gp (isec->owner);
10557 htab->toc_first_sec = isec;
10558 }
10559 addr = (htab->toc_first_sec->output_offset
10560 + htab->toc_first_sec->output_section->vma);
10561 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
10562 elf_gp (isec->owner) = off;
10563
10564 return TRUE;
10565 }
10566
10567 /* Called via elf_link_hash_traverse to merge GOT entries for global
10568 symbol H. */
10569
10570 static bfd_boolean
10571 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
10572 {
10573 if (h->root.type == bfd_link_hash_indirect)
10574 return TRUE;
10575
10576 merge_got_entries (&h->got.glist);
10577
10578 return TRUE;
10579 }
10580
10581 /* Called via elf_link_hash_traverse to allocate GOT entries for global
10582 symbol H. */
10583
10584 static bfd_boolean
10585 reallocate_got (struct elf_link_hash_entry *h, void *inf)
10586 {
10587 struct got_entry *gent;
10588
10589 if (h->root.type == bfd_link_hash_indirect)
10590 return TRUE;
10591
10592 for (gent = h->got.glist; gent != NULL; gent = gent->next)
10593 if (!gent->is_indirect)
10594 allocate_got (h, (struct bfd_link_info *) inf, gent);
10595 return TRUE;
10596 }
10597
10598 /* Called on the first multitoc pass after the last call to
10599 ppc64_elf_next_toc_section. This function removes duplicate GOT
10600 entries. */
10601
10602 bfd_boolean
10603 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
10604 {
10605 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10606 struct bfd *ibfd, *ibfd2;
10607 bfd_boolean done_something;
10608
10609 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
10610
10611 if (!htab->do_multi_toc)
10612 return FALSE;
10613
10614 /* Merge global sym got entries within a toc group. */
10615 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
10616
10617 /* And tlsld_got. */
10618 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10619 {
10620 struct got_entry *ent, *ent2;
10621
10622 if (!is_ppc64_elf (ibfd))
10623 continue;
10624
10625 ent = ppc64_tlsld_got (ibfd);
10626 if (!ent->is_indirect
10627 && ent->got.offset != (bfd_vma) -1)
10628 {
10629 for (ibfd2 = ibfd->link_next; ibfd2 != NULL; ibfd2 = ibfd2->link_next)
10630 {
10631 if (!is_ppc64_elf (ibfd2))
10632 continue;
10633
10634 ent2 = ppc64_tlsld_got (ibfd2);
10635 if (!ent2->is_indirect
10636 && ent2->got.offset != (bfd_vma) -1
10637 && elf_gp (ibfd2) == elf_gp (ibfd))
10638 {
10639 ent2->is_indirect = TRUE;
10640 ent2->got.ent = ent;
10641 }
10642 }
10643 }
10644 }
10645
10646 /* Zap sizes of got sections. */
10647 htab->reliplt->rawsize = htab->reliplt->size;
10648 htab->reliplt->size -= htab->got_reli_size;
10649 htab->got_reli_size = 0;
10650
10651 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10652 {
10653 asection *got, *relgot;
10654
10655 if (!is_ppc64_elf (ibfd))
10656 continue;
10657
10658 got = ppc64_elf_tdata (ibfd)->got;
10659 if (got != NULL)
10660 {
10661 got->rawsize = got->size;
10662 got->size = 0;
10663 relgot = ppc64_elf_tdata (ibfd)->relgot;
10664 relgot->rawsize = relgot->size;
10665 relgot->size = 0;
10666 }
10667 }
10668
10669 /* Now reallocate the got, local syms first. We don't need to
10670 allocate section contents again since we never increase size. */
10671 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10672 {
10673 struct got_entry **lgot_ents;
10674 struct got_entry **end_lgot_ents;
10675 struct plt_entry **local_plt;
10676 struct plt_entry **end_local_plt;
10677 unsigned char *lgot_masks;
10678 bfd_size_type locsymcount;
10679 Elf_Internal_Shdr *symtab_hdr;
10680 asection *s, *srel;
10681
10682 if (!is_ppc64_elf (ibfd))
10683 continue;
10684
10685 lgot_ents = elf_local_got_ents (ibfd);
10686 if (!lgot_ents)
10687 continue;
10688
10689 symtab_hdr = &elf_symtab_hdr (ibfd);
10690 locsymcount = symtab_hdr->sh_info;
10691 end_lgot_ents = lgot_ents + locsymcount;
10692 local_plt = (struct plt_entry **) end_lgot_ents;
10693 end_local_plt = local_plt + locsymcount;
10694 lgot_masks = (unsigned char *) end_local_plt;
10695 s = ppc64_elf_tdata (ibfd)->got;
10696 srel = ppc64_elf_tdata (ibfd)->relgot;
10697 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
10698 {
10699 struct got_entry *ent;
10700
10701 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
10702 {
10703 unsigned int num = 1;
10704 ent->got.offset = s->size;
10705 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
10706 num = 2;
10707 s->size += num * 8;
10708 if (info->shared)
10709 srel->size += num * sizeof (Elf64_External_Rela);
10710 else if ((*lgot_masks & PLT_IFUNC) != 0)
10711 {
10712 htab->reliplt->size
10713 += num * sizeof (Elf64_External_Rela);
10714 htab->got_reli_size
10715 += num * sizeof (Elf64_External_Rela);
10716 }
10717 }
10718 }
10719 }
10720
10721 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
10722
10723 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10724 {
10725 struct got_entry *ent;
10726
10727 if (!is_ppc64_elf (ibfd))
10728 continue;
10729
10730 ent = ppc64_tlsld_got (ibfd);
10731 if (!ent->is_indirect
10732 && ent->got.offset != (bfd_vma) -1)
10733 {
10734 asection *s = ppc64_elf_tdata (ibfd)->got;
10735 ent->got.offset = s->size;
10736 s->size += 16;
10737 if (info->shared)
10738 {
10739 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10740 srel->size += sizeof (Elf64_External_Rela);
10741 }
10742 }
10743 }
10744
10745 done_something = htab->reliplt->rawsize != htab->reliplt->size;
10746 if (!done_something)
10747 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10748 {
10749 asection *got;
10750
10751 if (!is_ppc64_elf (ibfd))
10752 continue;
10753
10754 got = ppc64_elf_tdata (ibfd)->got;
10755 if (got != NULL)
10756 {
10757 done_something = got->rawsize != got->size;
10758 if (done_something)
10759 break;
10760 }
10761 }
10762
10763 if (done_something)
10764 (*htab->layout_sections_again) ();
10765
10766 /* Set up for second pass over toc sections to recalculate elf_gp
10767 on input sections. */
10768 htab->toc_bfd = NULL;
10769 htab->toc_first_sec = NULL;
10770 htab->second_toc_pass = TRUE;
10771 return done_something;
10772 }
10773
10774 /* Called after second pass of multitoc partitioning. */
10775
10776 void
10777 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
10778 {
10779 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10780
10781 /* After the second pass, toc_curr tracks the TOC offset used
10782 for code sections below in ppc64_elf_next_input_section. */
10783 htab->toc_curr = TOC_BASE_OFF;
10784 }
10785
10786 /* No toc references were found in ISEC. If the code in ISEC makes no
10787 calls, then there's no need to use toc adjusting stubs when branching
10788 into ISEC. Actually, indirect calls from ISEC are OK as they will
10789 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
10790 needed, and 2 if a cyclical call-graph was found but no other reason
10791 for a stub was detected. If called from the top level, a return of
10792 2 means the same as a return of 0. */
10793
10794 static int
10795 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
10796 {
10797 int ret;
10798
10799 /* Mark this section as checked. */
10800 isec->call_check_done = 1;
10801
10802 /* We know none of our code bearing sections will need toc stubs. */
10803 if ((isec->flags & SEC_LINKER_CREATED) != 0)
10804 return 0;
10805
10806 if (isec->size == 0)
10807 return 0;
10808
10809 if (isec->output_section == NULL)
10810 return 0;
10811
10812 ret = 0;
10813 if (isec->reloc_count != 0)
10814 {
10815 Elf_Internal_Rela *relstart, *rel;
10816 Elf_Internal_Sym *local_syms;
10817 struct ppc_link_hash_table *htab;
10818
10819 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
10820 info->keep_memory);
10821 if (relstart == NULL)
10822 return -1;
10823
10824 /* Look for branches to outside of this section. */
10825 local_syms = NULL;
10826 htab = ppc_hash_table (info);
10827 if (htab == NULL)
10828 return -1;
10829
10830 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
10831 {
10832 enum elf_ppc64_reloc_type r_type;
10833 unsigned long r_symndx;
10834 struct elf_link_hash_entry *h;
10835 struct ppc_link_hash_entry *eh;
10836 Elf_Internal_Sym *sym;
10837 asection *sym_sec;
10838 struct _opd_sec_data *opd;
10839 bfd_vma sym_value;
10840 bfd_vma dest;
10841
10842 r_type = ELF64_R_TYPE (rel->r_info);
10843 if (r_type != R_PPC64_REL24
10844 && r_type != R_PPC64_REL14
10845 && r_type != R_PPC64_REL14_BRTAKEN
10846 && r_type != R_PPC64_REL14_BRNTAKEN)
10847 continue;
10848
10849 r_symndx = ELF64_R_SYM (rel->r_info);
10850 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
10851 isec->owner))
10852 {
10853 ret = -1;
10854 break;
10855 }
10856
10857 /* Calls to dynamic lib functions go through a plt call stub
10858 that uses r2. */
10859 eh = (struct ppc_link_hash_entry *) h;
10860 if (eh != NULL
10861 && (eh->elf.plt.plist != NULL
10862 || (eh->oh != NULL
10863 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
10864 {
10865 ret = 1;
10866 break;
10867 }
10868
10869 if (sym_sec == NULL)
10870 /* Ignore other undefined symbols. */
10871 continue;
10872
10873 /* Assume branches to other sections not included in the
10874 link need stubs too, to cover -R and absolute syms. */
10875 if (sym_sec->output_section == NULL)
10876 {
10877 ret = 1;
10878 break;
10879 }
10880
10881 if (h == NULL)
10882 sym_value = sym->st_value;
10883 else
10884 {
10885 if (h->root.type != bfd_link_hash_defined
10886 && h->root.type != bfd_link_hash_defweak)
10887 abort ();
10888 sym_value = h->root.u.def.value;
10889 }
10890 sym_value += rel->r_addend;
10891
10892 /* If this branch reloc uses an opd sym, find the code section. */
10893 opd = get_opd_info (sym_sec);
10894 if (opd != NULL)
10895 {
10896 if (h == NULL && opd->adjust != NULL)
10897 {
10898 long adjust;
10899
10900 adjust = opd->adjust[sym->st_value / 8];
10901 if (adjust == -1)
10902 /* Assume deleted functions won't ever be called. */
10903 continue;
10904 sym_value += adjust;
10905 }
10906
10907 dest = opd_entry_value (sym_sec, sym_value, &sym_sec, NULL);
10908 if (dest == (bfd_vma) -1)
10909 continue;
10910 }
10911 else
10912 dest = (sym_value
10913 + sym_sec->output_offset
10914 + sym_sec->output_section->vma);
10915
10916 /* Ignore branch to self. */
10917 if (sym_sec == isec)
10918 continue;
10919
10920 /* If the called function uses the toc, we need a stub. */
10921 if (sym_sec->has_toc_reloc
10922 || sym_sec->makes_toc_func_call)
10923 {
10924 ret = 1;
10925 break;
10926 }
10927
10928 /* Assume any branch that needs a long branch stub might in fact
10929 need a plt_branch stub. A plt_branch stub uses r2. */
10930 else if (dest - (isec->output_offset
10931 + isec->output_section->vma
10932 + rel->r_offset) + (1 << 25) >= (2 << 25))
10933 {
10934 ret = 1;
10935 break;
10936 }
10937
10938 /* If calling back to a section in the process of being
10939 tested, we can't say for sure that no toc adjusting stubs
10940 are needed, so don't return zero. */
10941 else if (sym_sec->call_check_in_progress)
10942 ret = 2;
10943
10944 /* Branches to another section that itself doesn't have any TOC
10945 references are OK. Recursively call ourselves to check. */
10946 else if (!sym_sec->call_check_done)
10947 {
10948 int recur;
10949
10950 /* Mark current section as indeterminate, so that other
10951 sections that call back to current won't be marked as
10952 known. */
10953 isec->call_check_in_progress = 1;
10954 recur = toc_adjusting_stub_needed (info, sym_sec);
10955 isec->call_check_in_progress = 0;
10956
10957 if (recur != 0)
10958 {
10959 ret = recur;
10960 if (recur != 2)
10961 break;
10962 }
10963 }
10964 }
10965
10966 if (local_syms != NULL
10967 && (elf_symtab_hdr (isec->owner).contents
10968 != (unsigned char *) local_syms))
10969 free (local_syms);
10970 if (elf_section_data (isec)->relocs != relstart)
10971 free (relstart);
10972 }
10973
10974 if ((ret & 1) == 0
10975 && isec->map_head.s != NULL
10976 && (strcmp (isec->output_section->name, ".init") == 0
10977 || strcmp (isec->output_section->name, ".fini") == 0))
10978 {
10979 if (isec->map_head.s->has_toc_reloc
10980 || isec->map_head.s->makes_toc_func_call)
10981 ret = 1;
10982 else if (!isec->map_head.s->call_check_done)
10983 {
10984 int recur;
10985 isec->call_check_in_progress = 1;
10986 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
10987 isec->call_check_in_progress = 0;
10988 if (recur != 0)
10989 ret = recur;
10990 }
10991 }
10992
10993 if (ret == 1)
10994 isec->makes_toc_func_call = 1;
10995
10996 return ret;
10997 }
10998
10999 /* The linker repeatedly calls this function for each input section,
11000 in the order that input sections are linked into output sections.
11001 Build lists of input sections to determine groupings between which
11002 we may insert linker stubs. */
11003
11004 bfd_boolean
11005 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11006 {
11007 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11008
11009 if (htab == NULL)
11010 return FALSE;
11011
11012 if ((isec->output_section->flags & SEC_CODE) != 0
11013 && isec->output_section->index <= htab->top_index)
11014 {
11015 asection **list = htab->input_list + isec->output_section->index;
11016 /* Steal the link_sec pointer for our list. */
11017 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11018 /* This happens to make the list in reverse order,
11019 which is what we want. */
11020 PREV_SEC (isec) = *list;
11021 *list = isec;
11022 }
11023
11024 if (htab->multi_toc_needed)
11025 {
11026 /* If a code section has a function that uses the TOC then we need
11027 to use the right TOC (obviously). Also, make sure that .opd gets
11028 the correct TOC value for R_PPC64_TOC relocs that don't have or
11029 can't find their function symbol (shouldn't ever happen now).
11030 Also specially treat .fixup for the linux kernel. .fixup
11031 contains branches, but only back to the function that hit an
11032 exception. */
11033 if (isec->has_toc_reloc
11034 || (isec->flags & SEC_CODE) == 0
11035 || strcmp (isec->name, ".fixup") == 0)
11036 {
11037 if (elf_gp (isec->owner) != 0)
11038 htab->toc_curr = elf_gp (isec->owner);
11039 }
11040 else
11041 {
11042 if (!isec->call_check_done
11043 && toc_adjusting_stub_needed (info, isec) < 0)
11044 return FALSE;
11045 /* If we make a local call from this section, ie. a branch
11046 without a following nop, then we have no place to put a
11047 toc restoring insn. We must use the same toc group as
11048 the callee.
11049 Testing makes_toc_func_call actually tests for *any*
11050 calls to functions that need a good toc pointer. A more
11051 precise test would be better, as this one will set
11052 incorrect values for pasted .init/.fini fragments.
11053 (Fixed later in check_pasted_section.) */
11054 if (isec->makes_toc_func_call
11055 && elf_gp (isec->owner) != 0)
11056 htab->toc_curr = elf_gp (isec->owner);
11057 }
11058 }
11059
11060 /* Functions that don't use the TOC can belong in any TOC group.
11061 Use the last TOC base. */
11062 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11063 return TRUE;
11064 }
11065
11066 /* Check that all .init and .fini sections use the same toc, if they
11067 have toc relocs. */
11068
11069 static bfd_boolean
11070 check_pasted_section (struct bfd_link_info *info, const char *name)
11071 {
11072 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11073
11074 if (o != NULL)
11075 {
11076 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11077 bfd_vma toc_off = 0;
11078 asection *i;
11079
11080 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11081 if (i->has_toc_reloc)
11082 {
11083 if (toc_off == 0)
11084 toc_off = htab->stub_group[i->id].toc_off;
11085 else if (toc_off != htab->stub_group[i->id].toc_off)
11086 return FALSE;
11087 }
11088
11089 if (toc_off == 0)
11090 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11091 if (i->makes_toc_func_call)
11092 {
11093 toc_off = htab->stub_group[i->id].toc_off;
11094 break;
11095 }
11096
11097 /* Make sure the whole pasted function uses the same toc offset. */
11098 if (toc_off != 0)
11099 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11100 htab->stub_group[i->id].toc_off = toc_off;
11101 }
11102 return TRUE;
11103 }
11104
11105 bfd_boolean
11106 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11107 {
11108 return (check_pasted_section (info, ".init")
11109 & check_pasted_section (info, ".fini"));
11110 }
11111
11112 /* See whether we can group stub sections together. Grouping stub
11113 sections may result in fewer stubs. More importantly, we need to
11114 put all .init* and .fini* stubs at the beginning of the .init or
11115 .fini output sections respectively, because glibc splits the
11116 _init and _fini functions into multiple parts. Putting a stub in
11117 the middle of a function is not a good idea. */
11118
11119 static void
11120 group_sections (struct ppc_link_hash_table *htab,
11121 bfd_size_type stub_group_size,
11122 bfd_boolean stubs_always_before_branch)
11123 {
11124 asection **list;
11125 bfd_size_type stub14_group_size;
11126 bfd_boolean suppress_size_errors;
11127
11128 suppress_size_errors = FALSE;
11129 stub14_group_size = stub_group_size;
11130 if (stub_group_size == 1)
11131 {
11132 /* Default values. */
11133 if (stubs_always_before_branch)
11134 {
11135 stub_group_size = 0x1e00000;
11136 stub14_group_size = 0x7800;
11137 }
11138 else
11139 {
11140 stub_group_size = 0x1c00000;
11141 stub14_group_size = 0x7000;
11142 }
11143 suppress_size_errors = TRUE;
11144 }
11145
11146 list = htab->input_list + htab->top_index;
11147 do
11148 {
11149 asection *tail = *list;
11150 while (tail != NULL)
11151 {
11152 asection *curr;
11153 asection *prev;
11154 bfd_size_type total;
11155 bfd_boolean big_sec;
11156 bfd_vma curr_toc;
11157
11158 curr = tail;
11159 total = tail->size;
11160 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11161 && ppc64_elf_section_data (tail)->has_14bit_branch
11162 ? stub14_group_size : stub_group_size);
11163 if (big_sec && !suppress_size_errors)
11164 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11165 tail->owner, tail);
11166 curr_toc = htab->stub_group[tail->id].toc_off;
11167
11168 while ((prev = PREV_SEC (curr)) != NULL
11169 && ((total += curr->output_offset - prev->output_offset)
11170 < (ppc64_elf_section_data (prev) != NULL
11171 && ppc64_elf_section_data (prev)->has_14bit_branch
11172 ? stub14_group_size : stub_group_size))
11173 && htab->stub_group[prev->id].toc_off == curr_toc)
11174 curr = prev;
11175
11176 /* OK, the size from the start of CURR to the end is less
11177 than stub_group_size and thus can be handled by one stub
11178 section. (or the tail section is itself larger than
11179 stub_group_size, in which case we may be toast.) We
11180 should really be keeping track of the total size of stubs
11181 added here, as stubs contribute to the final output
11182 section size. That's a little tricky, and this way will
11183 only break if stubs added make the total size more than
11184 2^25, ie. for the default stub_group_size, if stubs total
11185 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11186 do
11187 {
11188 prev = PREV_SEC (tail);
11189 /* Set up this stub group. */
11190 htab->stub_group[tail->id].link_sec = curr;
11191 }
11192 while (tail != curr && (tail = prev) != NULL);
11193
11194 /* But wait, there's more! Input sections up to stub_group_size
11195 bytes before the stub section can be handled by it too.
11196 Don't do this if we have a really large section after the
11197 stubs, as adding more stubs increases the chance that
11198 branches may not reach into the stub section. */
11199 if (!stubs_always_before_branch && !big_sec)
11200 {
11201 total = 0;
11202 while (prev != NULL
11203 && ((total += tail->output_offset - prev->output_offset)
11204 < (ppc64_elf_section_data (prev) != NULL
11205 && ppc64_elf_section_data (prev)->has_14bit_branch
11206 ? stub14_group_size : stub_group_size))
11207 && htab->stub_group[prev->id].toc_off == curr_toc)
11208 {
11209 tail = prev;
11210 prev = PREV_SEC (tail);
11211 htab->stub_group[tail->id].link_sec = curr;
11212 }
11213 }
11214 tail = prev;
11215 }
11216 }
11217 while (list-- != htab->input_list);
11218 free (htab->input_list);
11219 #undef PREV_SEC
11220 }
11221
11222 static const unsigned char glink_eh_frame_cie[] =
11223 {
11224 0, 0, 0, 16, /* length. */
11225 0, 0, 0, 0, /* id. */
11226 1, /* CIE version. */
11227 'z', 'R', 0, /* Augmentation string. */
11228 4, /* Code alignment. */
11229 0x78, /* Data alignment. */
11230 65, /* RA reg. */
11231 1, /* Augmentation size. */
11232 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11233 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
11234 };
11235
11236 /* Stripping output sections is normally done before dynamic section
11237 symbols have been allocated. This function is called later, and
11238 handles cases like htab->brlt which is mapped to its own output
11239 section. */
11240
11241 static void
11242 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11243 {
11244 if (isec->size == 0
11245 && isec->output_section->size == 0
11246 && !bfd_section_removed_from_list (info->output_bfd,
11247 isec->output_section)
11248 && elf_section_data (isec->output_section)->dynindx == 0)
11249 {
11250 isec->output_section->flags |= SEC_EXCLUDE;
11251 bfd_section_list_remove (info->output_bfd, isec->output_section);
11252 info->output_bfd->section_count--;
11253 }
11254 }
11255
11256 /* Determine and set the size of the stub section for a final link.
11257
11258 The basic idea here is to examine all the relocations looking for
11259 PC-relative calls to a target that is unreachable with a "bl"
11260 instruction. */
11261
11262 bfd_boolean
11263 ppc64_elf_size_stubs (struct bfd_link_info *info, bfd_signed_vma group_size,
11264 bfd_boolean plt_static_chain, int plt_thread_safe,
11265 int plt_stub_align)
11266 {
11267 bfd_size_type stub_group_size;
11268 bfd_boolean stubs_always_before_branch;
11269 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11270
11271 if (htab == NULL)
11272 return FALSE;
11273
11274 htab->plt_static_chain = plt_static_chain;
11275 htab->plt_stub_align = plt_stub_align;
11276 if (plt_thread_safe == -1)
11277 {
11278 const char *const thread_starter[] =
11279 {
11280 "pthread_create",
11281 /* libstdc++ */
11282 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11283 /* librt */
11284 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11285 "mq_notify", "create_timer",
11286 /* libanl */
11287 "getaddrinfo_a",
11288 /* libgomp */
11289 "GOMP_parallel_start",
11290 "GOMP_parallel_loop_static_start",
11291 "GOMP_parallel_loop_dynamic_start",
11292 "GOMP_parallel_loop_guided_start",
11293 "GOMP_parallel_loop_runtime_start",
11294 "GOMP_parallel_sections_start",
11295 };
11296 unsigned i;
11297
11298 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
11299 {
11300 struct elf_link_hash_entry *h;
11301 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
11302 FALSE, FALSE, TRUE);
11303 plt_thread_safe = h != NULL && h->ref_regular;
11304 if (plt_thread_safe)
11305 break;
11306 }
11307 }
11308 htab->plt_thread_safe = plt_thread_safe;
11309 stubs_always_before_branch = group_size < 0;
11310 if (group_size < 0)
11311 stub_group_size = -group_size;
11312 else
11313 stub_group_size = group_size;
11314
11315 group_sections (htab, stub_group_size, stubs_always_before_branch);
11316
11317 while (1)
11318 {
11319 bfd *input_bfd;
11320 unsigned int bfd_indx;
11321 asection *stub_sec;
11322
11323 htab->stub_iteration += 1;
11324
11325 for (input_bfd = info->input_bfds, bfd_indx = 0;
11326 input_bfd != NULL;
11327 input_bfd = input_bfd->link_next, bfd_indx++)
11328 {
11329 Elf_Internal_Shdr *symtab_hdr;
11330 asection *section;
11331 Elf_Internal_Sym *local_syms = NULL;
11332
11333 if (!is_ppc64_elf (input_bfd))
11334 continue;
11335
11336 /* We'll need the symbol table in a second. */
11337 symtab_hdr = &elf_symtab_hdr (input_bfd);
11338 if (symtab_hdr->sh_info == 0)
11339 continue;
11340
11341 /* Walk over each section attached to the input bfd. */
11342 for (section = input_bfd->sections;
11343 section != NULL;
11344 section = section->next)
11345 {
11346 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
11347
11348 /* If there aren't any relocs, then there's nothing more
11349 to do. */
11350 if ((section->flags & SEC_RELOC) == 0
11351 || (section->flags & SEC_ALLOC) == 0
11352 || (section->flags & SEC_LOAD) == 0
11353 || (section->flags & SEC_CODE) == 0
11354 || section->reloc_count == 0)
11355 continue;
11356
11357 /* If this section is a link-once section that will be
11358 discarded, then don't create any stubs. */
11359 if (section->output_section == NULL
11360 || section->output_section->owner != info->output_bfd)
11361 continue;
11362
11363 /* Get the relocs. */
11364 internal_relocs
11365 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
11366 info->keep_memory);
11367 if (internal_relocs == NULL)
11368 goto error_ret_free_local;
11369
11370 /* Now examine each relocation. */
11371 irela = internal_relocs;
11372 irelaend = irela + section->reloc_count;
11373 for (; irela < irelaend; irela++)
11374 {
11375 enum elf_ppc64_reloc_type r_type;
11376 unsigned int r_indx;
11377 enum ppc_stub_type stub_type;
11378 struct ppc_stub_hash_entry *stub_entry;
11379 asection *sym_sec, *code_sec;
11380 bfd_vma sym_value, code_value;
11381 bfd_vma destination;
11382 bfd_boolean ok_dest;
11383 struct ppc_link_hash_entry *hash;
11384 struct ppc_link_hash_entry *fdh;
11385 struct elf_link_hash_entry *h;
11386 Elf_Internal_Sym *sym;
11387 char *stub_name;
11388 const asection *id_sec;
11389 struct _opd_sec_data *opd;
11390 struct plt_entry *plt_ent;
11391
11392 r_type = ELF64_R_TYPE (irela->r_info);
11393 r_indx = ELF64_R_SYM (irela->r_info);
11394
11395 if (r_type >= R_PPC64_max)
11396 {
11397 bfd_set_error (bfd_error_bad_value);
11398 goto error_ret_free_internal;
11399 }
11400
11401 /* Only look for stubs on branch instructions. */
11402 if (r_type != R_PPC64_REL24
11403 && r_type != R_PPC64_REL14
11404 && r_type != R_PPC64_REL14_BRTAKEN
11405 && r_type != R_PPC64_REL14_BRNTAKEN)
11406 continue;
11407
11408 /* Now determine the call target, its name, value,
11409 section. */
11410 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
11411 r_indx, input_bfd))
11412 goto error_ret_free_internal;
11413 hash = (struct ppc_link_hash_entry *) h;
11414
11415 ok_dest = FALSE;
11416 fdh = NULL;
11417 sym_value = 0;
11418 if (hash == NULL)
11419 {
11420 sym_value = sym->st_value;
11421 ok_dest = TRUE;
11422 }
11423 else if (hash->elf.root.type == bfd_link_hash_defined
11424 || hash->elf.root.type == bfd_link_hash_defweak)
11425 {
11426 sym_value = hash->elf.root.u.def.value;
11427 if (sym_sec->output_section != NULL)
11428 ok_dest = TRUE;
11429 }
11430 else if (hash->elf.root.type == bfd_link_hash_undefweak
11431 || hash->elf.root.type == bfd_link_hash_undefined)
11432 {
11433 /* Recognise an old ABI func code entry sym, and
11434 use the func descriptor sym instead if it is
11435 defined. */
11436 if (hash->elf.root.root.string[0] == '.'
11437 && (fdh = lookup_fdh (hash, htab)) != NULL)
11438 {
11439 if (fdh->elf.root.type == bfd_link_hash_defined
11440 || fdh->elf.root.type == bfd_link_hash_defweak)
11441 {
11442 sym_sec = fdh->elf.root.u.def.section;
11443 sym_value = fdh->elf.root.u.def.value;
11444 if (sym_sec->output_section != NULL)
11445 ok_dest = TRUE;
11446 }
11447 else
11448 fdh = NULL;
11449 }
11450 }
11451 else
11452 {
11453 bfd_set_error (bfd_error_bad_value);
11454 goto error_ret_free_internal;
11455 }
11456
11457 destination = 0;
11458 if (ok_dest)
11459 {
11460 sym_value += irela->r_addend;
11461 destination = (sym_value
11462 + sym_sec->output_offset
11463 + sym_sec->output_section->vma);
11464 }
11465
11466 code_sec = sym_sec;
11467 code_value = sym_value;
11468 opd = get_opd_info (sym_sec);
11469 if (opd != NULL)
11470 {
11471 bfd_vma dest;
11472
11473 if (hash == NULL && opd->adjust != NULL)
11474 {
11475 long adjust = opd->adjust[sym_value / 8];
11476 if (adjust == -1)
11477 continue;
11478 code_value += adjust;
11479 sym_value += adjust;
11480 }
11481 dest = opd_entry_value (sym_sec, sym_value,
11482 &code_sec, &code_value);
11483 if (dest != (bfd_vma) -1)
11484 {
11485 destination = dest;
11486 if (fdh != NULL)
11487 {
11488 /* Fixup old ABI sym to point at code
11489 entry. */
11490 hash->elf.root.type = bfd_link_hash_defweak;
11491 hash->elf.root.u.def.section = code_sec;
11492 hash->elf.root.u.def.value = code_value;
11493 }
11494 }
11495 }
11496
11497 /* Determine what (if any) linker stub is needed. */
11498 plt_ent = NULL;
11499 stub_type = ppc_type_of_stub (section, irela, &hash,
11500 &plt_ent, destination);
11501
11502 if (stub_type != ppc_stub_plt_call)
11503 {
11504 /* Check whether we need a TOC adjusting stub.
11505 Since the linker pastes together pieces from
11506 different object files when creating the
11507 _init and _fini functions, it may be that a
11508 call to what looks like a local sym is in
11509 fact a call needing a TOC adjustment. */
11510 if (code_sec != NULL
11511 && code_sec->output_section != NULL
11512 && (htab->stub_group[code_sec->id].toc_off
11513 != htab->stub_group[section->id].toc_off)
11514 && (code_sec->has_toc_reloc
11515 || code_sec->makes_toc_func_call))
11516 stub_type = ppc_stub_long_branch_r2off;
11517 }
11518
11519 if (stub_type == ppc_stub_none)
11520 continue;
11521
11522 /* __tls_get_addr calls might be eliminated. */
11523 if (stub_type != ppc_stub_plt_call
11524 && hash != NULL
11525 && (hash == htab->tls_get_addr
11526 || hash == htab->tls_get_addr_fd)
11527 && section->has_tls_reloc
11528 && irela != internal_relocs)
11529 {
11530 /* Get tls info. */
11531 unsigned char *tls_mask;
11532
11533 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
11534 irela - 1, input_bfd))
11535 goto error_ret_free_internal;
11536 if (*tls_mask != 0)
11537 continue;
11538 }
11539
11540 if (stub_type == ppc_stub_plt_call
11541 && irela + 1 < irelaend
11542 && irela[1].r_offset == irela->r_offset + 4
11543 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
11544 {
11545 if (!tocsave_find (htab, INSERT,
11546 &local_syms, irela + 1, input_bfd))
11547 goto error_ret_free_internal;
11548 }
11549 else if (stub_type == ppc_stub_plt_call)
11550 stub_type = ppc_stub_plt_call_r2save;
11551
11552 /* Support for grouping stub sections. */
11553 id_sec = htab->stub_group[section->id].link_sec;
11554
11555 /* Get the name of this stub. */
11556 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
11557 if (!stub_name)
11558 goto error_ret_free_internal;
11559
11560 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
11561 stub_name, FALSE, FALSE);
11562 if (stub_entry != NULL)
11563 {
11564 /* The proper stub has already been created. */
11565 free (stub_name);
11566 if (stub_type == ppc_stub_plt_call_r2save)
11567 stub_entry->stub_type = stub_type;
11568 continue;
11569 }
11570
11571 stub_entry = ppc_add_stub (stub_name, section, info);
11572 if (stub_entry == NULL)
11573 {
11574 free (stub_name);
11575 error_ret_free_internal:
11576 if (elf_section_data (section)->relocs == NULL)
11577 free (internal_relocs);
11578 error_ret_free_local:
11579 if (local_syms != NULL
11580 && (symtab_hdr->contents
11581 != (unsigned char *) local_syms))
11582 free (local_syms);
11583 return FALSE;
11584 }
11585
11586 stub_entry->stub_type = stub_type;
11587 if (stub_type != ppc_stub_plt_call
11588 && stub_type != ppc_stub_plt_call_r2save)
11589 {
11590 stub_entry->target_value = code_value;
11591 stub_entry->target_section = code_sec;
11592 }
11593 else
11594 {
11595 stub_entry->target_value = sym_value;
11596 stub_entry->target_section = sym_sec;
11597 }
11598 stub_entry->h = hash;
11599 stub_entry->plt_ent = plt_ent;
11600 stub_entry->addend = irela->r_addend;
11601
11602 if (stub_entry->h != NULL)
11603 htab->stub_globals += 1;
11604 }
11605
11606 /* We're done with the internal relocs, free them. */
11607 if (elf_section_data (section)->relocs != internal_relocs)
11608 free (internal_relocs);
11609 }
11610
11611 if (local_syms != NULL
11612 && symtab_hdr->contents != (unsigned char *) local_syms)
11613 {
11614 if (!info->keep_memory)
11615 free (local_syms);
11616 else
11617 symtab_hdr->contents = (unsigned char *) local_syms;
11618 }
11619 }
11620
11621 /* We may have added some stubs. Find out the new size of the
11622 stub sections. */
11623 for (stub_sec = htab->stub_bfd->sections;
11624 stub_sec != NULL;
11625 stub_sec = stub_sec->next)
11626 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11627 {
11628 stub_sec->rawsize = stub_sec->size;
11629 stub_sec->size = 0;
11630 stub_sec->reloc_count = 0;
11631 stub_sec->flags &= ~SEC_RELOC;
11632 }
11633
11634 htab->brlt->size = 0;
11635 htab->brlt->reloc_count = 0;
11636 htab->brlt->flags &= ~SEC_RELOC;
11637 if (htab->relbrlt != NULL)
11638 htab->relbrlt->size = 0;
11639
11640 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
11641
11642 if (info->emitrelocations
11643 && htab->glink != NULL && htab->glink->size != 0)
11644 {
11645 htab->glink->reloc_count = 1;
11646 htab->glink->flags |= SEC_RELOC;
11647 }
11648
11649 if (htab->glink_eh_frame != NULL
11650 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
11651 && (htab->glink_eh_frame->flags & SEC_EXCLUDE) == 0)
11652 {
11653 bfd_size_type size = 0;
11654
11655 for (stub_sec = htab->stub_bfd->sections;
11656 stub_sec != NULL;
11657 stub_sec = stub_sec->next)
11658 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11659 size += 20;
11660 if (htab->glink != NULL && htab->glink->size != 0)
11661 size += 24;
11662 if (size != 0)
11663 size += sizeof (glink_eh_frame_cie);
11664 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
11665 htab->glink_eh_frame->size = size;
11666 }
11667
11668 if (htab->plt_stub_align != 0)
11669 for (stub_sec = htab->stub_bfd->sections;
11670 stub_sec != NULL;
11671 stub_sec = stub_sec->next)
11672 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11673 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
11674 & (-1 << htab->plt_stub_align));
11675
11676 for (stub_sec = htab->stub_bfd->sections;
11677 stub_sec != NULL;
11678 stub_sec = stub_sec->next)
11679 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
11680 && stub_sec->rawsize != stub_sec->size)
11681 break;
11682
11683 /* Exit from this loop when no stubs have been added, and no stubs
11684 have changed size. */
11685 if (stub_sec == NULL
11686 && (htab->glink_eh_frame == NULL
11687 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
11688 break;
11689
11690 /* Ask the linker to do its stuff. */
11691 (*htab->layout_sections_again) ();
11692 }
11693
11694 maybe_strip_output (info, htab->brlt);
11695 if (htab->glink_eh_frame != NULL)
11696 maybe_strip_output (info, htab->glink_eh_frame);
11697
11698 return TRUE;
11699 }
11700
11701 /* Called after we have determined section placement. If sections
11702 move, we'll be called again. Provide a value for TOCstart. */
11703
11704 bfd_vma
11705 ppc64_elf_toc (bfd *obfd)
11706 {
11707 asection *s;
11708 bfd_vma TOCstart;
11709
11710 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
11711 order. The TOC starts where the first of these sections starts. */
11712 s = bfd_get_section_by_name (obfd, ".got");
11713 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11714 s = bfd_get_section_by_name (obfd, ".toc");
11715 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11716 s = bfd_get_section_by_name (obfd, ".tocbss");
11717 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11718 s = bfd_get_section_by_name (obfd, ".plt");
11719 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11720 {
11721 /* This may happen for
11722 o references to TOC base (SYM@toc / TOC[tc0]) without a
11723 .toc directive
11724 o bad linker script
11725 o --gc-sections and empty TOC sections
11726
11727 FIXME: Warn user? */
11728
11729 /* Look for a likely section. We probably won't even be
11730 using TOCstart. */
11731 for (s = obfd->sections; s != NULL; s = s->next)
11732 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
11733 | SEC_EXCLUDE))
11734 == (SEC_ALLOC | SEC_SMALL_DATA))
11735 break;
11736 if (s == NULL)
11737 for (s = obfd->sections; s != NULL; s = s->next)
11738 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
11739 == (SEC_ALLOC | SEC_SMALL_DATA))
11740 break;
11741 if (s == NULL)
11742 for (s = obfd->sections; s != NULL; s = s->next)
11743 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
11744 == SEC_ALLOC)
11745 break;
11746 if (s == NULL)
11747 for (s = obfd->sections; s != NULL; s = s->next)
11748 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
11749 break;
11750 }
11751
11752 TOCstart = 0;
11753 if (s != NULL)
11754 TOCstart = s->output_section->vma + s->output_offset;
11755
11756 return TOCstart;
11757 }
11758
11759 /* Build all the stubs associated with the current output file.
11760 The stubs are kept in a hash table attached to the main linker
11761 hash table. This function is called via gldelf64ppc_finish. */
11762
11763 bfd_boolean
11764 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
11765 struct bfd_link_info *info,
11766 char **stats)
11767 {
11768 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11769 asection *stub_sec;
11770 bfd_byte *p;
11771 int stub_sec_count = 0;
11772
11773 if (htab == NULL)
11774 return FALSE;
11775
11776 htab->emit_stub_syms = emit_stub_syms;
11777
11778 /* Allocate memory to hold the linker stubs. */
11779 for (stub_sec = htab->stub_bfd->sections;
11780 stub_sec != NULL;
11781 stub_sec = stub_sec->next)
11782 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
11783 && stub_sec->size != 0)
11784 {
11785 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
11786 if (stub_sec->contents == NULL)
11787 return FALSE;
11788 /* We want to check that built size is the same as calculated
11789 size. rawsize is a convenient location to use. */
11790 stub_sec->rawsize = stub_sec->size;
11791 stub_sec->size = 0;
11792 }
11793
11794 if (htab->glink != NULL && htab->glink->size != 0)
11795 {
11796 unsigned int indx;
11797 bfd_vma plt0;
11798
11799 /* Build the .glink plt call stub. */
11800 if (htab->emit_stub_syms)
11801 {
11802 struct elf_link_hash_entry *h;
11803 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
11804 TRUE, FALSE, FALSE);
11805 if (h == NULL)
11806 return FALSE;
11807 if (h->root.type == bfd_link_hash_new)
11808 {
11809 h->root.type = bfd_link_hash_defined;
11810 h->root.u.def.section = htab->glink;
11811 h->root.u.def.value = 8;
11812 h->ref_regular = 1;
11813 h->def_regular = 1;
11814 h->ref_regular_nonweak = 1;
11815 h->forced_local = 1;
11816 h->non_elf = 0;
11817 }
11818 }
11819 plt0 = htab->plt->output_section->vma + htab->plt->output_offset - 16;
11820 if (info->emitrelocations)
11821 {
11822 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
11823 if (r == NULL)
11824 return FALSE;
11825 r->r_offset = (htab->glink->output_offset
11826 + htab->glink->output_section->vma);
11827 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
11828 r->r_addend = plt0;
11829 }
11830 p = htab->glink->contents;
11831 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
11832 bfd_put_64 (htab->glink->owner, plt0, p);
11833 p += 8;
11834 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
11835 p += 4;
11836 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
11837 p += 4;
11838 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
11839 p += 4;
11840 bfd_put_32 (htab->glink->owner, LD_R2_M16R11, p);
11841 p += 4;
11842 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
11843 p += 4;
11844 bfd_put_32 (htab->glink->owner, ADD_R12_R2_R11, p);
11845 p += 4;
11846 bfd_put_32 (htab->glink->owner, LD_R11_0R12, p);
11847 p += 4;
11848 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
11849 p += 4;
11850 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
11851 p += 4;
11852 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
11853 p += 4;
11854 bfd_put_32 (htab->glink->owner, BCTR, p);
11855 p += 4;
11856 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
11857 {
11858 bfd_put_32 (htab->glink->owner, NOP, p);
11859 p += 4;
11860 }
11861
11862 /* Build the .glink lazy link call stubs. */
11863 indx = 0;
11864 while (p < htab->glink->contents + htab->glink->size)
11865 {
11866 if (indx < 0x8000)
11867 {
11868 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
11869 p += 4;
11870 }
11871 else
11872 {
11873 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
11874 p += 4;
11875 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
11876 p += 4;
11877 }
11878 bfd_put_32 (htab->glink->owner,
11879 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
11880 indx++;
11881 p += 4;
11882 }
11883 htab->glink->rawsize = p - htab->glink->contents;
11884 }
11885
11886 if (htab->brlt->size != 0)
11887 {
11888 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
11889 htab->brlt->size);
11890 if (htab->brlt->contents == NULL)
11891 return FALSE;
11892 }
11893 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
11894 {
11895 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
11896 htab->relbrlt->size);
11897 if (htab->relbrlt->contents == NULL)
11898 return FALSE;
11899 }
11900
11901 if (htab->glink_eh_frame != NULL
11902 && htab->glink_eh_frame->size != 0)
11903 {
11904 bfd_vma val;
11905
11906 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
11907 if (p == NULL)
11908 return FALSE;
11909 htab->glink_eh_frame->contents = p;
11910
11911 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
11912
11913 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
11914 /* CIE length (rewrite in case little-endian). */
11915 bfd_put_32 (htab->elf.dynobj, sizeof (glink_eh_frame_cie) - 4, p);
11916 p += sizeof (glink_eh_frame_cie);
11917
11918 for (stub_sec = htab->stub_bfd->sections;
11919 stub_sec != NULL;
11920 stub_sec = stub_sec->next)
11921 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11922 {
11923 /* FDE length. */
11924 bfd_put_32 (htab->elf.dynobj, 16, p);
11925 p += 4;
11926 /* CIE pointer. */
11927 val = p - htab->glink_eh_frame->contents;
11928 bfd_put_32 (htab->elf.dynobj, val, p);
11929 p += 4;
11930 /* Offset to stub section. */
11931 val = (stub_sec->output_section->vma
11932 + stub_sec->output_offset);
11933 val -= (htab->glink_eh_frame->output_section->vma
11934 + htab->glink_eh_frame->output_offset);
11935 val -= p - htab->glink_eh_frame->contents;
11936 if (val + 0x80000000 > 0xffffffff)
11937 {
11938 info->callbacks->einfo
11939 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
11940 stub_sec->name);
11941 return FALSE;
11942 }
11943 bfd_put_32 (htab->elf.dynobj, val, p);
11944 p += 4;
11945 /* stub section size. */
11946 bfd_put_32 (htab->elf.dynobj, stub_sec->rawsize, p);
11947 p += 4;
11948 /* Augmentation. */
11949 p += 1;
11950 /* Pad. */
11951 p += 3;
11952 }
11953 if (htab->glink != NULL && htab->glink->size != 0)
11954 {
11955 /* FDE length. */
11956 bfd_put_32 (htab->elf.dynobj, 20, p);
11957 p += 4;
11958 /* CIE pointer. */
11959 val = p - htab->glink_eh_frame->contents;
11960 bfd_put_32 (htab->elf.dynobj, val, p);
11961 p += 4;
11962 /* Offset to .glink. */
11963 val = (htab->glink->output_section->vma
11964 + htab->glink->output_offset
11965 + 8);
11966 val -= (htab->glink_eh_frame->output_section->vma
11967 + htab->glink_eh_frame->output_offset);
11968 val -= p - htab->glink_eh_frame->contents;
11969 if (val + 0x80000000 > 0xffffffff)
11970 {
11971 info->callbacks->einfo
11972 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
11973 htab->glink->name);
11974 return FALSE;
11975 }
11976 bfd_put_32 (htab->elf.dynobj, val, p);
11977 p += 4;
11978 /* .glink size. */
11979 bfd_put_32 (htab->elf.dynobj, htab->glink->rawsize - 8, p);
11980 p += 4;
11981 /* Augmentation. */
11982 p += 1;
11983
11984 *p++ = DW_CFA_advance_loc + 1;
11985 *p++ = DW_CFA_register;
11986 *p++ = 65;
11987 *p++ = 12;
11988 *p++ = DW_CFA_advance_loc + 4;
11989 *p++ = DW_CFA_restore_extended;
11990 *p++ = 65;
11991 }
11992 htab->glink_eh_frame->size = p - htab->glink_eh_frame->contents;
11993 }
11994
11995 /* Build the stubs as directed by the stub hash table. */
11996 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
11997
11998 if (htab->relbrlt != NULL)
11999 htab->relbrlt->reloc_count = 0;
12000
12001 if (htab->plt_stub_align != 0)
12002 for (stub_sec = htab->stub_bfd->sections;
12003 stub_sec != NULL;
12004 stub_sec = stub_sec->next)
12005 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12006 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
12007 & (-1 << htab->plt_stub_align));
12008
12009 for (stub_sec = htab->stub_bfd->sections;
12010 stub_sec != NULL;
12011 stub_sec = stub_sec->next)
12012 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12013 {
12014 stub_sec_count += 1;
12015 if (stub_sec->rawsize != stub_sec->size)
12016 break;
12017 }
12018
12019 if (stub_sec != NULL
12020 || htab->glink->rawsize != htab->glink->size
12021 || (htab->glink_eh_frame != NULL
12022 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12023 {
12024 htab->stub_error = TRUE;
12025 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12026 }
12027
12028 if (htab->stub_error)
12029 return FALSE;
12030
12031 if (stats != NULL)
12032 {
12033 *stats = bfd_malloc (500);
12034 if (*stats == NULL)
12035 return FALSE;
12036
12037 sprintf (*stats, _("linker stubs in %u group%s\n"
12038 " branch %lu\n"
12039 " toc adjust %lu\n"
12040 " long branch %lu\n"
12041 " long toc adj %lu\n"
12042 " plt call %lu\n"
12043 " plt call toc %lu"),
12044 stub_sec_count,
12045 stub_sec_count == 1 ? "" : "s",
12046 htab->stub_count[ppc_stub_long_branch - 1],
12047 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12048 htab->stub_count[ppc_stub_plt_branch - 1],
12049 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12050 htab->stub_count[ppc_stub_plt_call - 1],
12051 htab->stub_count[ppc_stub_plt_call_r2save - 1]);
12052 }
12053 return TRUE;
12054 }
12055
12056 /* This function undoes the changes made by add_symbol_adjust. */
12057
12058 static bfd_boolean
12059 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12060 {
12061 struct ppc_link_hash_entry *eh;
12062
12063 if (h->root.type == bfd_link_hash_indirect)
12064 return TRUE;
12065
12066 eh = (struct ppc_link_hash_entry *) h;
12067 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12068 return TRUE;
12069
12070 eh->elf.root.type = bfd_link_hash_undefined;
12071 return TRUE;
12072 }
12073
12074 void
12075 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12076 {
12077 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12078
12079 if (htab != NULL)
12080 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12081 }
12082
12083 /* What to do when ld finds relocations against symbols defined in
12084 discarded sections. */
12085
12086 static unsigned int
12087 ppc64_elf_action_discarded (asection *sec)
12088 {
12089 if (strcmp (".opd", sec->name) == 0)
12090 return 0;
12091
12092 if (strcmp (".toc", sec->name) == 0)
12093 return 0;
12094
12095 if (strcmp (".toc1", sec->name) == 0)
12096 return 0;
12097
12098 return _bfd_elf_default_action_discarded (sec);
12099 }
12100
12101 /* The RELOCATE_SECTION function is called by the ELF backend linker
12102 to handle the relocations for a section.
12103
12104 The relocs are always passed as Rela structures; if the section
12105 actually uses Rel structures, the r_addend field will always be
12106 zero.
12107
12108 This function is responsible for adjust the section contents as
12109 necessary, and (if using Rela relocs and generating a
12110 relocatable output file) adjusting the reloc addend as
12111 necessary.
12112
12113 This function does not have to worry about setting the reloc
12114 address or the reloc symbol index.
12115
12116 LOCAL_SYMS is a pointer to the swapped in local symbols.
12117
12118 LOCAL_SECTIONS is an array giving the section in the input file
12119 corresponding to the st_shndx field of each local symbol.
12120
12121 The global hash table entry for the global symbols can be found
12122 via elf_sym_hashes (input_bfd).
12123
12124 When generating relocatable output, this function must handle
12125 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12126 going to be the section symbol corresponding to the output
12127 section, which means that the addend must be adjusted
12128 accordingly. */
12129
12130 static bfd_boolean
12131 ppc64_elf_relocate_section (bfd *output_bfd,
12132 struct bfd_link_info *info,
12133 bfd *input_bfd,
12134 asection *input_section,
12135 bfd_byte *contents,
12136 Elf_Internal_Rela *relocs,
12137 Elf_Internal_Sym *local_syms,
12138 asection **local_sections)
12139 {
12140 struct ppc_link_hash_table *htab;
12141 Elf_Internal_Shdr *symtab_hdr;
12142 struct elf_link_hash_entry **sym_hashes;
12143 Elf_Internal_Rela *rel;
12144 Elf_Internal_Rela *relend;
12145 Elf_Internal_Rela outrel;
12146 bfd_byte *loc;
12147 struct got_entry **local_got_ents;
12148 bfd_vma TOCstart;
12149 bfd_boolean ret = TRUE;
12150 bfd_boolean is_opd;
12151 /* Assume 'at' branch hints. */
12152 bfd_boolean is_isa_v2 = TRUE;
12153 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
12154
12155 /* Initialize howto table if needed. */
12156 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
12157 ppc_howto_init ();
12158
12159 htab = ppc_hash_table (info);
12160 if (htab == NULL)
12161 return FALSE;
12162
12163 /* Don't relocate stub sections. */
12164 if (input_section->owner == htab->stub_bfd)
12165 return TRUE;
12166
12167 BFD_ASSERT (is_ppc64_elf (input_bfd));
12168
12169 local_got_ents = elf_local_got_ents (input_bfd);
12170 TOCstart = elf_gp (output_bfd);
12171 symtab_hdr = &elf_symtab_hdr (input_bfd);
12172 sym_hashes = elf_sym_hashes (input_bfd);
12173 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
12174
12175 rel = relocs;
12176 relend = relocs + input_section->reloc_count;
12177 for (; rel < relend; rel++)
12178 {
12179 enum elf_ppc64_reloc_type r_type;
12180 bfd_vma addend, orig_addend;
12181 bfd_reloc_status_type r;
12182 Elf_Internal_Sym *sym;
12183 asection *sec;
12184 struct elf_link_hash_entry *h_elf;
12185 struct ppc_link_hash_entry *h;
12186 struct ppc_link_hash_entry *fdh;
12187 const char *sym_name;
12188 unsigned long r_symndx, toc_symndx;
12189 bfd_vma toc_addend;
12190 unsigned char tls_mask, tls_gd, tls_type;
12191 unsigned char sym_type;
12192 bfd_vma relocation;
12193 bfd_boolean unresolved_reloc;
12194 bfd_boolean warned;
12195 unsigned int insn;
12196 unsigned int mask;
12197 struct ppc_stub_hash_entry *stub_entry;
12198 bfd_vma max_br_offset;
12199 bfd_vma from;
12200
12201 r_type = ELF64_R_TYPE (rel->r_info);
12202 r_symndx = ELF64_R_SYM (rel->r_info);
12203
12204 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
12205 symbol of the previous ADDR64 reloc. The symbol gives us the
12206 proper TOC base to use. */
12207 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
12208 && rel != relocs
12209 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
12210 && is_opd)
12211 r_symndx = ELF64_R_SYM (rel[-1].r_info);
12212
12213 sym = NULL;
12214 sec = NULL;
12215 h_elf = NULL;
12216 sym_name = NULL;
12217 unresolved_reloc = FALSE;
12218 warned = FALSE;
12219 orig_addend = rel->r_addend;
12220
12221 if (r_symndx < symtab_hdr->sh_info)
12222 {
12223 /* It's a local symbol. */
12224 struct _opd_sec_data *opd;
12225
12226 sym = local_syms + r_symndx;
12227 sec = local_sections[r_symndx];
12228 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
12229 sym_type = ELF64_ST_TYPE (sym->st_info);
12230 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12231 opd = get_opd_info (sec);
12232 if (opd != NULL && opd->adjust != NULL)
12233 {
12234 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
12235 if (adjust == -1)
12236 relocation = 0;
12237 else
12238 {
12239 /* If this is a relocation against the opd section sym
12240 and we have edited .opd, adjust the reloc addend so
12241 that ld -r and ld --emit-relocs output is correct.
12242 If it is a reloc against some other .opd symbol,
12243 then the symbol value will be adjusted later. */
12244 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12245 rel->r_addend += adjust;
12246 else
12247 relocation += adjust;
12248 }
12249 }
12250 }
12251 else
12252 {
12253 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12254 r_symndx, symtab_hdr, sym_hashes,
12255 h_elf, sec, relocation,
12256 unresolved_reloc, warned);
12257 sym_name = h_elf->root.root.string;
12258 sym_type = h_elf->type;
12259 }
12260 h = (struct ppc_link_hash_entry *) h_elf;
12261
12262 if (sec != NULL && elf_discarded_section (sec))
12263 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12264 rel, relend,
12265 ppc64_elf_howto_table[r_type],
12266 contents);
12267
12268 if (info->relocatable)
12269 continue;
12270
12271 /* TLS optimizations. Replace instruction sequences and relocs
12272 based on information we collected in tls_optimize. We edit
12273 RELOCS so that --emit-relocs will output something sensible
12274 for the final instruction stream. */
12275 tls_mask = 0;
12276 tls_gd = 0;
12277 toc_symndx = 0;
12278 if (h != NULL)
12279 tls_mask = h->tls_mask;
12280 else if (local_got_ents != NULL)
12281 {
12282 struct plt_entry **local_plt = (struct plt_entry **)
12283 (local_got_ents + symtab_hdr->sh_info);
12284 unsigned char *lgot_masks = (unsigned char *)
12285 (local_plt + symtab_hdr->sh_info);
12286 tls_mask = lgot_masks[r_symndx];
12287 }
12288 if (tls_mask == 0
12289 && (r_type == R_PPC64_TLS
12290 || r_type == R_PPC64_TLSGD
12291 || r_type == R_PPC64_TLSLD))
12292 {
12293 /* Check for toc tls entries. */
12294 unsigned char *toc_tls;
12295
12296 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
12297 &local_syms, rel, input_bfd))
12298 return FALSE;
12299
12300 if (toc_tls)
12301 tls_mask = *toc_tls;
12302 }
12303
12304 /* Check that tls relocs are used with tls syms, and non-tls
12305 relocs are used with non-tls syms. */
12306 if (r_symndx != STN_UNDEF
12307 && r_type != R_PPC64_NONE
12308 && (h == NULL
12309 || h->elf.root.type == bfd_link_hash_defined
12310 || h->elf.root.type == bfd_link_hash_defweak)
12311 && (IS_PPC64_TLS_RELOC (r_type)
12312 != (sym_type == STT_TLS
12313 || (sym_type == STT_SECTION
12314 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
12315 {
12316 if (tls_mask != 0
12317 && (r_type == R_PPC64_TLS
12318 || r_type == R_PPC64_TLSGD
12319 || r_type == R_PPC64_TLSLD))
12320 /* R_PPC64_TLS is OK against a symbol in the TOC. */
12321 ;
12322 else
12323 info->callbacks->einfo
12324 (!IS_PPC64_TLS_RELOC (r_type)
12325 ? _("%P: %H: %s used with TLS symbol %s\n")
12326 : _("%P: %H: %s used with non-TLS symbol %s\n"),
12327 input_bfd, input_section, rel->r_offset,
12328 ppc64_elf_howto_table[r_type]->name,
12329 sym_name);
12330 }
12331
12332 /* Ensure reloc mapping code below stays sane. */
12333 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
12334 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
12335 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
12336 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
12337 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
12338 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
12339 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
12340 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
12341 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
12342 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
12343 abort ();
12344
12345 switch (r_type)
12346 {
12347 default:
12348 break;
12349
12350 case R_PPC64_LO_DS_OPT:
12351 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
12352 if ((insn & (0x3f << 26)) != 58u << 26)
12353 abort ();
12354 insn += (14u << 26) - (58u << 26);
12355 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
12356 r_type = R_PPC64_TOC16_LO;
12357 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12358 break;
12359
12360 case R_PPC64_TOC16:
12361 case R_PPC64_TOC16_LO:
12362 case R_PPC64_TOC16_DS:
12363 case R_PPC64_TOC16_LO_DS:
12364 {
12365 /* Check for toc tls entries. */
12366 unsigned char *toc_tls;
12367 int retval;
12368
12369 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
12370 &local_syms, rel, input_bfd);
12371 if (retval == 0)
12372 return FALSE;
12373
12374 if (toc_tls)
12375 {
12376 tls_mask = *toc_tls;
12377 if (r_type == R_PPC64_TOC16_DS
12378 || r_type == R_PPC64_TOC16_LO_DS)
12379 {
12380 if (tls_mask != 0
12381 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
12382 goto toctprel;
12383 }
12384 else
12385 {
12386 /* If we found a GD reloc pair, then we might be
12387 doing a GD->IE transition. */
12388 if (retval == 2)
12389 {
12390 tls_gd = TLS_TPRELGD;
12391 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12392 goto tls_ldgd_opt;
12393 }
12394 else if (retval == 3)
12395 {
12396 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12397 goto tls_ldgd_opt;
12398 }
12399 }
12400 }
12401 }
12402 break;
12403
12404 case R_PPC64_GOT_TPREL16_HI:
12405 case R_PPC64_GOT_TPREL16_HA:
12406 if (tls_mask != 0
12407 && (tls_mask & TLS_TPREL) == 0)
12408 {
12409 rel->r_offset -= d_offset;
12410 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12411 r_type = R_PPC64_NONE;
12412 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12413 }
12414 break;
12415
12416 case R_PPC64_GOT_TPREL16_DS:
12417 case R_PPC64_GOT_TPREL16_LO_DS:
12418 if (tls_mask != 0
12419 && (tls_mask & TLS_TPREL) == 0)
12420 {
12421 toctprel:
12422 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
12423 insn &= 31 << 21;
12424 insn |= 0x3c0d0000; /* addis 0,13,0 */
12425 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
12426 r_type = R_PPC64_TPREL16_HA;
12427 if (toc_symndx != 0)
12428 {
12429 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
12430 rel->r_addend = toc_addend;
12431 /* We changed the symbol. Start over in order to
12432 get h, sym, sec etc. right. */
12433 rel--;
12434 continue;
12435 }
12436 else
12437 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12438 }
12439 break;
12440
12441 case R_PPC64_TLS:
12442 if (tls_mask != 0
12443 && (tls_mask & TLS_TPREL) == 0)
12444 {
12445 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
12446 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
12447 if (insn == 0)
12448 abort ();
12449 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
12450 /* Was PPC64_TLS which sits on insn boundary, now
12451 PPC64_TPREL16_LO which is at low-order half-word. */
12452 rel->r_offset += d_offset;
12453 r_type = R_PPC64_TPREL16_LO;
12454 if (toc_symndx != 0)
12455 {
12456 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
12457 rel->r_addend = toc_addend;
12458 /* We changed the symbol. Start over in order to
12459 get h, sym, sec etc. right. */
12460 rel--;
12461 continue;
12462 }
12463 else
12464 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12465 }
12466 break;
12467
12468 case R_PPC64_GOT_TLSGD16_HI:
12469 case R_PPC64_GOT_TLSGD16_HA:
12470 tls_gd = TLS_TPRELGD;
12471 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12472 goto tls_gdld_hi;
12473 break;
12474
12475 case R_PPC64_GOT_TLSLD16_HI:
12476 case R_PPC64_GOT_TLSLD16_HA:
12477 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12478 {
12479 tls_gdld_hi:
12480 if ((tls_mask & tls_gd) != 0)
12481 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
12482 + R_PPC64_GOT_TPREL16_DS);
12483 else
12484 {
12485 rel->r_offset -= d_offset;
12486 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12487 r_type = R_PPC64_NONE;
12488 }
12489 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12490 }
12491 break;
12492
12493 case R_PPC64_GOT_TLSGD16:
12494 case R_PPC64_GOT_TLSGD16_LO:
12495 tls_gd = TLS_TPRELGD;
12496 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12497 goto tls_ldgd_opt;
12498 break;
12499
12500 case R_PPC64_GOT_TLSLD16:
12501 case R_PPC64_GOT_TLSLD16_LO:
12502 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12503 {
12504 unsigned int insn1, insn2, insn3;
12505 bfd_vma offset;
12506
12507 tls_ldgd_opt:
12508 offset = (bfd_vma) -1;
12509 /* If not using the newer R_PPC64_TLSGD/LD to mark
12510 __tls_get_addr calls, we must trust that the call
12511 stays with its arg setup insns, ie. that the next
12512 reloc is the __tls_get_addr call associated with
12513 the current reloc. Edit both insns. */
12514 if (input_section->has_tls_get_addr_call
12515 && rel + 1 < relend
12516 && branch_reloc_hash_match (input_bfd, rel + 1,
12517 htab->tls_get_addr,
12518 htab->tls_get_addr_fd))
12519 offset = rel[1].r_offset;
12520 if ((tls_mask & tls_gd) != 0)
12521 {
12522 /* IE */
12523 insn1 = bfd_get_32 (output_bfd,
12524 contents + rel->r_offset - d_offset);
12525 insn1 &= (1 << 26) - (1 << 2);
12526 insn1 |= 58 << 26; /* ld */
12527 insn2 = 0x7c636a14; /* add 3,3,13 */
12528 if (offset != (bfd_vma) -1)
12529 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12530 if ((tls_mask & TLS_EXPLICIT) == 0)
12531 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
12532 + R_PPC64_GOT_TPREL16_DS);
12533 else
12534 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
12535 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12536 }
12537 else
12538 {
12539 /* LE */
12540 insn1 = 0x3c6d0000; /* addis 3,13,0 */
12541 insn2 = 0x38630000; /* addi 3,3,0 */
12542 if (tls_gd == 0)
12543 {
12544 /* Was an LD reloc. */
12545 if (toc_symndx)
12546 sec = local_sections[toc_symndx];
12547 for (r_symndx = 0;
12548 r_symndx < symtab_hdr->sh_info;
12549 r_symndx++)
12550 if (local_sections[r_symndx] == sec)
12551 break;
12552 if (r_symndx >= symtab_hdr->sh_info)
12553 r_symndx = STN_UNDEF;
12554 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
12555 if (r_symndx != STN_UNDEF)
12556 rel->r_addend -= (local_syms[r_symndx].st_value
12557 + sec->output_offset
12558 + sec->output_section->vma);
12559 }
12560 else if (toc_symndx != 0)
12561 {
12562 r_symndx = toc_symndx;
12563 rel->r_addend = toc_addend;
12564 }
12565 r_type = R_PPC64_TPREL16_HA;
12566 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12567 if (offset != (bfd_vma) -1)
12568 {
12569 rel[1].r_info = ELF64_R_INFO (r_symndx,
12570 R_PPC64_TPREL16_LO);
12571 rel[1].r_offset = offset + d_offset;
12572 rel[1].r_addend = rel->r_addend;
12573 }
12574 }
12575 bfd_put_32 (output_bfd, insn1,
12576 contents + rel->r_offset - d_offset);
12577 if (offset != (bfd_vma) -1)
12578 {
12579 insn3 = bfd_get_32 (output_bfd,
12580 contents + offset + 4);
12581 if (insn3 == NOP
12582 || insn3 == CROR_151515 || insn3 == CROR_313131)
12583 {
12584 rel[1].r_offset += 4;
12585 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12586 insn2 = NOP;
12587 }
12588 bfd_put_32 (output_bfd, insn2, contents + offset);
12589 }
12590 if ((tls_mask & tls_gd) == 0
12591 && (tls_gd == 0 || toc_symndx != 0))
12592 {
12593 /* We changed the symbol. Start over in order
12594 to get h, sym, sec etc. right. */
12595 rel--;
12596 continue;
12597 }
12598 }
12599 break;
12600
12601 case R_PPC64_TLSGD:
12602 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12603 {
12604 unsigned int insn2, insn3;
12605 bfd_vma offset = rel->r_offset;
12606
12607 if ((tls_mask & TLS_TPRELGD) != 0)
12608 {
12609 /* IE */
12610 r_type = R_PPC64_NONE;
12611 insn2 = 0x7c636a14; /* add 3,3,13 */
12612 }
12613 else
12614 {
12615 /* LE */
12616 if (toc_symndx != 0)
12617 {
12618 r_symndx = toc_symndx;
12619 rel->r_addend = toc_addend;
12620 }
12621 r_type = R_PPC64_TPREL16_LO;
12622 rel->r_offset = offset + d_offset;
12623 insn2 = 0x38630000; /* addi 3,3,0 */
12624 }
12625 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12626 /* Zap the reloc on the _tls_get_addr call too. */
12627 BFD_ASSERT (offset == rel[1].r_offset);
12628 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12629 insn3 = bfd_get_32 (output_bfd,
12630 contents + offset + 4);
12631 if (insn3 == NOP
12632 || insn3 == CROR_151515 || insn3 == CROR_313131)
12633 {
12634 rel->r_offset += 4;
12635 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12636 insn2 = NOP;
12637 }
12638 bfd_put_32 (output_bfd, insn2, contents + offset);
12639 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
12640 {
12641 rel--;
12642 continue;
12643 }
12644 }
12645 break;
12646
12647 case R_PPC64_TLSLD:
12648 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12649 {
12650 unsigned int insn2, insn3;
12651 bfd_vma offset = rel->r_offset;
12652
12653 if (toc_symndx)
12654 sec = local_sections[toc_symndx];
12655 for (r_symndx = 0;
12656 r_symndx < symtab_hdr->sh_info;
12657 r_symndx++)
12658 if (local_sections[r_symndx] == sec)
12659 break;
12660 if (r_symndx >= symtab_hdr->sh_info)
12661 r_symndx = STN_UNDEF;
12662 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
12663 if (r_symndx != STN_UNDEF)
12664 rel->r_addend -= (local_syms[r_symndx].st_value
12665 + sec->output_offset
12666 + sec->output_section->vma);
12667
12668 r_type = R_PPC64_TPREL16_LO;
12669 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12670 rel->r_offset = offset + d_offset;
12671 /* Zap the reloc on the _tls_get_addr call too. */
12672 BFD_ASSERT (offset == rel[1].r_offset);
12673 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12674 insn2 = 0x38630000; /* addi 3,3,0 */
12675 insn3 = bfd_get_32 (output_bfd,
12676 contents + offset + 4);
12677 if (insn3 == NOP
12678 || insn3 == CROR_151515 || insn3 == CROR_313131)
12679 {
12680 rel->r_offset += 4;
12681 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12682 insn2 = NOP;
12683 }
12684 bfd_put_32 (output_bfd, insn2, contents + offset);
12685 rel--;
12686 continue;
12687 }
12688 break;
12689
12690 case R_PPC64_DTPMOD64:
12691 if (rel + 1 < relend
12692 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
12693 && rel[1].r_offset == rel->r_offset + 8)
12694 {
12695 if ((tls_mask & TLS_GD) == 0)
12696 {
12697 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
12698 if ((tls_mask & TLS_TPRELGD) != 0)
12699 r_type = R_PPC64_TPREL64;
12700 else
12701 {
12702 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
12703 r_type = R_PPC64_NONE;
12704 }
12705 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12706 }
12707 }
12708 else
12709 {
12710 if ((tls_mask & TLS_LD) == 0)
12711 {
12712 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
12713 r_type = R_PPC64_NONE;
12714 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12715 }
12716 }
12717 break;
12718
12719 case R_PPC64_TPREL64:
12720 if ((tls_mask & TLS_TPREL) == 0)
12721 {
12722 r_type = R_PPC64_NONE;
12723 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12724 }
12725 break;
12726 }
12727
12728 /* Handle other relocations that tweak non-addend part of insn. */
12729 insn = 0;
12730 max_br_offset = 1 << 25;
12731 addend = rel->r_addend;
12732 switch (r_type)
12733 {
12734 default:
12735 break;
12736
12737 case R_PPC64_TOCSAVE:
12738 if (relocation + addend == (rel->r_offset
12739 + input_section->output_offset
12740 + input_section->output_section->vma)
12741 && tocsave_find (htab, NO_INSERT,
12742 &local_syms, rel, input_bfd))
12743 {
12744 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
12745 if (insn == NOP
12746 || insn == CROR_151515 || insn == CROR_313131)
12747 bfd_put_32 (input_bfd, STD_R2_40R1,
12748 contents + rel->r_offset);
12749 }
12750 break;
12751
12752 /* Branch taken prediction relocations. */
12753 case R_PPC64_ADDR14_BRTAKEN:
12754 case R_PPC64_REL14_BRTAKEN:
12755 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
12756 /* Fall thru. */
12757
12758 /* Branch not taken prediction relocations. */
12759 case R_PPC64_ADDR14_BRNTAKEN:
12760 case R_PPC64_REL14_BRNTAKEN:
12761 insn |= bfd_get_32 (output_bfd,
12762 contents + rel->r_offset) & ~(0x01 << 21);
12763 /* Fall thru. */
12764
12765 case R_PPC64_REL14:
12766 max_br_offset = 1 << 15;
12767 /* Fall thru. */
12768
12769 case R_PPC64_REL24:
12770 /* Calls to functions with a different TOC, such as calls to
12771 shared objects, need to alter the TOC pointer. This is
12772 done using a linkage stub. A REL24 branching to these
12773 linkage stubs needs to be followed by a nop, as the nop
12774 will be replaced with an instruction to restore the TOC
12775 base pointer. */
12776 fdh = h;
12777 if (h != NULL
12778 && h->oh != NULL
12779 && h->oh->is_func_descriptor)
12780 fdh = ppc_follow_link (h->oh);
12781 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, rel, htab);
12782 if (stub_entry != NULL
12783 && (stub_entry->stub_type == ppc_stub_plt_call
12784 || stub_entry->stub_type == ppc_stub_plt_call_r2save
12785 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
12786 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
12787 {
12788 bfd_boolean can_plt_call = FALSE;
12789
12790 if (rel->r_offset + 8 <= input_section->size)
12791 {
12792 unsigned long nop;
12793 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
12794 if (nop == NOP
12795 || nop == CROR_151515 || nop == CROR_313131)
12796 {
12797 if (h != NULL
12798 && (h == htab->tls_get_addr_fd
12799 || h == htab->tls_get_addr)
12800 && !htab->no_tls_get_addr_opt)
12801 {
12802 /* Special stub used, leave nop alone. */
12803 }
12804 else
12805 bfd_put_32 (input_bfd, LD_R2_40R1,
12806 contents + rel->r_offset + 4);
12807 can_plt_call = TRUE;
12808 }
12809 }
12810
12811 if (!can_plt_call)
12812 {
12813 if (stub_entry->stub_type == ppc_stub_plt_call
12814 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
12815 {
12816 /* If this is a plain branch rather than a branch
12817 and link, don't require a nop. However, don't
12818 allow tail calls in a shared library as they
12819 will result in r2 being corrupted. */
12820 unsigned long br;
12821 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
12822 if (info->executable && (br & 1) == 0)
12823 can_plt_call = TRUE;
12824 else
12825 stub_entry = NULL;
12826 }
12827 else if (h != NULL
12828 && strcmp (h->elf.root.root.string,
12829 ".__libc_start_main") == 0)
12830 {
12831 /* Allow crt1 branch to go via a toc adjusting stub. */
12832 can_plt_call = TRUE;
12833 }
12834 else
12835 {
12836 if (strcmp (input_section->output_section->name,
12837 ".init") == 0
12838 || strcmp (input_section->output_section->name,
12839 ".fini") == 0)
12840 info->callbacks->einfo
12841 (_("%P: %H: automatic multiple TOCs "
12842 "not supported using your crt files; "
12843 "recompile with -mminimal-toc or upgrade gcc\n"),
12844 input_bfd, input_section, rel->r_offset);
12845 else
12846 info->callbacks->einfo
12847 (_("%P: %H: sibling call optimization to `%s' "
12848 "does not allow automatic multiple TOCs; "
12849 "recompile with -mminimal-toc or "
12850 "-fno-optimize-sibling-calls, "
12851 "or make `%s' extern\n"),
12852 input_bfd, input_section, rel->r_offset,
12853 sym_name,
12854 sym_name);
12855 bfd_set_error (bfd_error_bad_value);
12856 ret = FALSE;
12857 }
12858 }
12859
12860 if (can_plt_call
12861 && (stub_entry->stub_type == ppc_stub_plt_call
12862 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
12863 unresolved_reloc = FALSE;
12864 }
12865
12866 if ((stub_entry == NULL
12867 || stub_entry->stub_type == ppc_stub_long_branch
12868 || stub_entry->stub_type == ppc_stub_plt_branch)
12869 && get_opd_info (sec) != NULL)
12870 {
12871 /* The branch destination is the value of the opd entry. */
12872 bfd_vma off = (relocation + addend
12873 - sec->output_section->vma
12874 - sec->output_offset);
12875 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
12876 if (dest != (bfd_vma) -1)
12877 {
12878 relocation = dest;
12879 addend = 0;
12880 }
12881 }
12882
12883 /* If the branch is out of reach we ought to have a long
12884 branch stub. */
12885 from = (rel->r_offset
12886 + input_section->output_offset
12887 + input_section->output_section->vma);
12888
12889 if (stub_entry != NULL
12890 && (stub_entry->stub_type == ppc_stub_long_branch
12891 || stub_entry->stub_type == ppc_stub_plt_branch)
12892 && (r_type == R_PPC64_ADDR14_BRTAKEN
12893 || r_type == R_PPC64_ADDR14_BRNTAKEN
12894 || (relocation + addend - from + max_br_offset
12895 < 2 * max_br_offset)))
12896 /* Don't use the stub if this branch is in range. */
12897 stub_entry = NULL;
12898
12899 if (stub_entry != NULL)
12900 {
12901 /* Munge up the value and addend so that we call the stub
12902 rather than the procedure directly. */
12903 relocation = (stub_entry->stub_offset
12904 + stub_entry->stub_sec->output_offset
12905 + stub_entry->stub_sec->output_section->vma);
12906 addend = 0;
12907
12908 if ((stub_entry->stub_type == ppc_stub_plt_call
12909 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
12910 && (ALWAYS_EMIT_R2SAVE
12911 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
12912 && rel + 1 < relend
12913 && rel[1].r_offset == rel->r_offset + 4
12914 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
12915 relocation += 4;
12916 }
12917
12918 if (insn != 0)
12919 {
12920 if (is_isa_v2)
12921 {
12922 /* Set 'a' bit. This is 0b00010 in BO field for branch
12923 on CR(BI) insns (BO == 001at or 011at), and 0b01000
12924 for branch on CTR insns (BO == 1a00t or 1a01t). */
12925 if ((insn & (0x14 << 21)) == (0x04 << 21))
12926 insn |= 0x02 << 21;
12927 else if ((insn & (0x14 << 21)) == (0x10 << 21))
12928 insn |= 0x08 << 21;
12929 else
12930 break;
12931 }
12932 else
12933 {
12934 /* Invert 'y' bit if not the default. */
12935 if ((bfd_signed_vma) (relocation + addend - from) < 0)
12936 insn ^= 0x01 << 21;
12937 }
12938
12939 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
12940 }
12941
12942 /* NOP out calls to undefined weak functions.
12943 We can thus call a weak function without first
12944 checking whether the function is defined. */
12945 else if (h != NULL
12946 && h->elf.root.type == bfd_link_hash_undefweak
12947 && h->elf.dynindx == -1
12948 && r_type == R_PPC64_REL24
12949 && relocation == 0
12950 && addend == 0)
12951 {
12952 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12953 continue;
12954 }
12955 break;
12956 }
12957
12958 /* Set `addend'. */
12959 tls_type = 0;
12960 switch (r_type)
12961 {
12962 default:
12963 info->callbacks->einfo
12964 (_("%P: %B: unknown relocation type %d for symbol %s\n"),
12965 input_bfd, (int) r_type, sym_name);
12966
12967 bfd_set_error (bfd_error_bad_value);
12968 ret = FALSE;
12969 continue;
12970
12971 case R_PPC64_NONE:
12972 case R_PPC64_TLS:
12973 case R_PPC64_TLSGD:
12974 case R_PPC64_TLSLD:
12975 case R_PPC64_TOCSAVE:
12976 case R_PPC64_GNU_VTINHERIT:
12977 case R_PPC64_GNU_VTENTRY:
12978 continue;
12979
12980 /* GOT16 relocations. Like an ADDR16 using the symbol's
12981 address in the GOT as relocation value instead of the
12982 symbol's value itself. Also, create a GOT entry for the
12983 symbol and put the symbol value there. */
12984 case R_PPC64_GOT_TLSGD16:
12985 case R_PPC64_GOT_TLSGD16_LO:
12986 case R_PPC64_GOT_TLSGD16_HI:
12987 case R_PPC64_GOT_TLSGD16_HA:
12988 tls_type = TLS_TLS | TLS_GD;
12989 goto dogot;
12990
12991 case R_PPC64_GOT_TLSLD16:
12992 case R_PPC64_GOT_TLSLD16_LO:
12993 case R_PPC64_GOT_TLSLD16_HI:
12994 case R_PPC64_GOT_TLSLD16_HA:
12995 tls_type = TLS_TLS | TLS_LD;
12996 goto dogot;
12997
12998 case R_PPC64_GOT_TPREL16_DS:
12999 case R_PPC64_GOT_TPREL16_LO_DS:
13000 case R_PPC64_GOT_TPREL16_HI:
13001 case R_PPC64_GOT_TPREL16_HA:
13002 tls_type = TLS_TLS | TLS_TPREL;
13003 goto dogot;
13004
13005 case R_PPC64_GOT_DTPREL16_DS:
13006 case R_PPC64_GOT_DTPREL16_LO_DS:
13007 case R_PPC64_GOT_DTPREL16_HI:
13008 case R_PPC64_GOT_DTPREL16_HA:
13009 tls_type = TLS_TLS | TLS_DTPREL;
13010 goto dogot;
13011
13012 case R_PPC64_GOT16:
13013 case R_PPC64_GOT16_LO:
13014 case R_PPC64_GOT16_HI:
13015 case R_PPC64_GOT16_HA:
13016 case R_PPC64_GOT16_DS:
13017 case R_PPC64_GOT16_LO_DS:
13018 dogot:
13019 {
13020 /* Relocation is to the entry for this symbol in the global
13021 offset table. */
13022 asection *got;
13023 bfd_vma *offp;
13024 bfd_vma off;
13025 unsigned long indx = 0;
13026 struct got_entry *ent;
13027
13028 if (tls_type == (TLS_TLS | TLS_LD)
13029 && (h == NULL
13030 || !h->elf.def_dynamic))
13031 ent = ppc64_tlsld_got (input_bfd);
13032 else
13033 {
13034
13035 if (h != NULL)
13036 {
13037 bfd_boolean dyn = htab->elf.dynamic_sections_created;
13038 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
13039 &h->elf)
13040 || (info->shared
13041 && SYMBOL_CALLS_LOCAL (info, &h->elf)))
13042 /* This is actually a static link, or it is a
13043 -Bsymbolic link and the symbol is defined
13044 locally, or the symbol was forced to be local
13045 because of a version file. */
13046 ;
13047 else
13048 {
13049 indx = h->elf.dynindx;
13050 unresolved_reloc = FALSE;
13051 }
13052 ent = h->elf.got.glist;
13053 }
13054 else
13055 {
13056 if (local_got_ents == NULL)
13057 abort ();
13058 ent = local_got_ents[r_symndx];
13059 }
13060
13061 for (; ent != NULL; ent = ent->next)
13062 if (ent->addend == orig_addend
13063 && ent->owner == input_bfd
13064 && ent->tls_type == tls_type)
13065 break;
13066 }
13067
13068 if (ent == NULL)
13069 abort ();
13070 if (ent->is_indirect)
13071 ent = ent->got.ent;
13072 offp = &ent->got.offset;
13073 got = ppc64_elf_tdata (ent->owner)->got;
13074 if (got == NULL)
13075 abort ();
13076
13077 /* The offset must always be a multiple of 8. We use the
13078 least significant bit to record whether we have already
13079 processed this entry. */
13080 off = *offp;
13081 if ((off & 1) != 0)
13082 off &= ~1;
13083 else
13084 {
13085 /* Generate relocs for the dynamic linker, except in
13086 the case of TLSLD where we'll use one entry per
13087 module. */
13088 asection *relgot;
13089 bfd_boolean ifunc;
13090
13091 *offp = off | 1;
13092 relgot = NULL;
13093 ifunc = (h != NULL
13094 ? h->elf.type == STT_GNU_IFUNC
13095 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
13096 if ((info->shared || indx != 0)
13097 && (h == NULL
13098 || (tls_type == (TLS_TLS | TLS_LD)
13099 && !h->elf.def_dynamic)
13100 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13101 || h->elf.root.type != bfd_link_hash_undefweak))
13102 relgot = ppc64_elf_tdata (ent->owner)->relgot;
13103 else if (ifunc)
13104 relgot = htab->reliplt;
13105 if (relgot != NULL)
13106 {
13107 outrel.r_offset = (got->output_section->vma
13108 + got->output_offset
13109 + off);
13110 outrel.r_addend = addend;
13111 if (tls_type & (TLS_LD | TLS_GD))
13112 {
13113 outrel.r_addend = 0;
13114 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
13115 if (tls_type == (TLS_TLS | TLS_GD))
13116 {
13117 loc = relgot->contents;
13118 loc += (relgot->reloc_count++
13119 * sizeof (Elf64_External_Rela));
13120 bfd_elf64_swap_reloca_out (output_bfd,
13121 &outrel, loc);
13122 outrel.r_offset += 8;
13123 outrel.r_addend = addend;
13124 outrel.r_info
13125 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13126 }
13127 }
13128 else if (tls_type == (TLS_TLS | TLS_DTPREL))
13129 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13130 else if (tls_type == (TLS_TLS | TLS_TPREL))
13131 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
13132 else if (indx != 0)
13133 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
13134 else
13135 {
13136 if (ifunc)
13137 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13138 else
13139 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13140
13141 /* Write the .got section contents for the sake
13142 of prelink. */
13143 loc = got->contents + off;
13144 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
13145 loc);
13146 }
13147
13148 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
13149 {
13150 outrel.r_addend += relocation;
13151 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
13152 outrel.r_addend -= htab->elf.tls_sec->vma;
13153 }
13154 loc = relgot->contents;
13155 loc += (relgot->reloc_count++
13156 * sizeof (Elf64_External_Rela));
13157 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13158 }
13159
13160 /* Init the .got section contents here if we're not
13161 emitting a reloc. */
13162 else
13163 {
13164 relocation += addend;
13165 if (tls_type == (TLS_TLS | TLS_LD))
13166 relocation = 1;
13167 else if (tls_type != 0)
13168 {
13169 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
13170 if (tls_type == (TLS_TLS | TLS_TPREL))
13171 relocation += DTP_OFFSET - TP_OFFSET;
13172
13173 if (tls_type == (TLS_TLS | TLS_GD))
13174 {
13175 bfd_put_64 (output_bfd, relocation,
13176 got->contents + off + 8);
13177 relocation = 1;
13178 }
13179 }
13180
13181 bfd_put_64 (output_bfd, relocation,
13182 got->contents + off);
13183 }
13184 }
13185
13186 if (off >= (bfd_vma) -2)
13187 abort ();
13188
13189 relocation = got->output_section->vma + got->output_offset + off;
13190 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
13191 }
13192 break;
13193
13194 case R_PPC64_PLT16_HA:
13195 case R_PPC64_PLT16_HI:
13196 case R_PPC64_PLT16_LO:
13197 case R_PPC64_PLT32:
13198 case R_PPC64_PLT64:
13199 /* Relocation is to the entry for this symbol in the
13200 procedure linkage table. */
13201
13202 /* Resolve a PLT reloc against a local symbol directly,
13203 without using the procedure linkage table. */
13204 if (h == NULL)
13205 break;
13206
13207 /* It's possible that we didn't make a PLT entry for this
13208 symbol. This happens when statically linking PIC code,
13209 or when using -Bsymbolic. Go find a match if there is a
13210 PLT entry. */
13211 if (htab->plt != NULL)
13212 {
13213 struct plt_entry *ent;
13214 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
13215 if (ent->addend == orig_addend
13216 && ent->plt.offset != (bfd_vma) -1)
13217 {
13218 relocation = (htab->plt->output_section->vma
13219 + htab->plt->output_offset
13220 + ent->plt.offset);
13221 unresolved_reloc = FALSE;
13222 }
13223 }
13224 break;
13225
13226 case R_PPC64_TOC:
13227 /* Relocation value is TOC base. */
13228 relocation = TOCstart;
13229 if (r_symndx == STN_UNDEF)
13230 relocation += htab->stub_group[input_section->id].toc_off;
13231 else if (unresolved_reloc)
13232 ;
13233 else if (sec != NULL && sec->id <= htab->top_id)
13234 relocation += htab->stub_group[sec->id].toc_off;
13235 else
13236 unresolved_reloc = TRUE;
13237 goto dodyn;
13238
13239 /* TOC16 relocs. We want the offset relative to the TOC base,
13240 which is the address of the start of the TOC plus 0x8000.
13241 The TOC consists of sections .got, .toc, .tocbss, and .plt,
13242 in this order. */
13243 case R_PPC64_TOC16:
13244 case R_PPC64_TOC16_LO:
13245 case R_PPC64_TOC16_HI:
13246 case R_PPC64_TOC16_DS:
13247 case R_PPC64_TOC16_LO_DS:
13248 case R_PPC64_TOC16_HA:
13249 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
13250 break;
13251
13252 /* Relocate against the beginning of the section. */
13253 case R_PPC64_SECTOFF:
13254 case R_PPC64_SECTOFF_LO:
13255 case R_PPC64_SECTOFF_HI:
13256 case R_PPC64_SECTOFF_DS:
13257 case R_PPC64_SECTOFF_LO_DS:
13258 case R_PPC64_SECTOFF_HA:
13259 if (sec != NULL)
13260 addend -= sec->output_section->vma;
13261 break;
13262
13263 case R_PPC64_REL16:
13264 case R_PPC64_REL16_LO:
13265 case R_PPC64_REL16_HI:
13266 case R_PPC64_REL16_HA:
13267 break;
13268
13269 case R_PPC64_REL14:
13270 case R_PPC64_REL14_BRNTAKEN:
13271 case R_PPC64_REL14_BRTAKEN:
13272 case R_PPC64_REL24:
13273 break;
13274
13275 case R_PPC64_TPREL16:
13276 case R_PPC64_TPREL16_LO:
13277 case R_PPC64_TPREL16_HI:
13278 case R_PPC64_TPREL16_HA:
13279 case R_PPC64_TPREL16_DS:
13280 case R_PPC64_TPREL16_LO_DS:
13281 case R_PPC64_TPREL16_HIGHER:
13282 case R_PPC64_TPREL16_HIGHERA:
13283 case R_PPC64_TPREL16_HIGHEST:
13284 case R_PPC64_TPREL16_HIGHESTA:
13285 if (h != NULL
13286 && h->elf.root.type == bfd_link_hash_undefweak
13287 && h->elf.dynindx == -1)
13288 {
13289 /* Make this relocation against an undefined weak symbol
13290 resolve to zero. This is really just a tweak, since
13291 code using weak externs ought to check that they are
13292 defined before using them. */
13293 bfd_byte *p = contents + rel->r_offset - d_offset;
13294
13295 insn = bfd_get_32 (output_bfd, p);
13296 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
13297 if (insn != 0)
13298 bfd_put_32 (output_bfd, insn, p);
13299 break;
13300 }
13301 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
13302 if (info->shared)
13303 /* The TPREL16 relocs shouldn't really be used in shared
13304 libs as they will result in DT_TEXTREL being set, but
13305 support them anyway. */
13306 goto dodyn;
13307 break;
13308
13309 case R_PPC64_DTPREL16:
13310 case R_PPC64_DTPREL16_LO:
13311 case R_PPC64_DTPREL16_HI:
13312 case R_PPC64_DTPREL16_HA:
13313 case R_PPC64_DTPREL16_DS:
13314 case R_PPC64_DTPREL16_LO_DS:
13315 case R_PPC64_DTPREL16_HIGHER:
13316 case R_PPC64_DTPREL16_HIGHERA:
13317 case R_PPC64_DTPREL16_HIGHEST:
13318 case R_PPC64_DTPREL16_HIGHESTA:
13319 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
13320 break;
13321
13322 case R_PPC64_DTPMOD64:
13323 relocation = 1;
13324 addend = 0;
13325 goto dodyn;
13326
13327 case R_PPC64_TPREL64:
13328 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
13329 goto dodyn;
13330
13331 case R_PPC64_DTPREL64:
13332 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
13333 /* Fall thru */
13334
13335 /* Relocations that may need to be propagated if this is a
13336 dynamic object. */
13337 case R_PPC64_REL30:
13338 case R_PPC64_REL32:
13339 case R_PPC64_REL64:
13340 case R_PPC64_ADDR14:
13341 case R_PPC64_ADDR14_BRNTAKEN:
13342 case R_PPC64_ADDR14_BRTAKEN:
13343 case R_PPC64_ADDR16:
13344 case R_PPC64_ADDR16_DS:
13345 case R_PPC64_ADDR16_HA:
13346 case R_PPC64_ADDR16_HI:
13347 case R_PPC64_ADDR16_HIGHER:
13348 case R_PPC64_ADDR16_HIGHERA:
13349 case R_PPC64_ADDR16_HIGHEST:
13350 case R_PPC64_ADDR16_HIGHESTA:
13351 case R_PPC64_ADDR16_LO:
13352 case R_PPC64_ADDR16_LO_DS:
13353 case R_PPC64_ADDR24:
13354 case R_PPC64_ADDR32:
13355 case R_PPC64_ADDR64:
13356 case R_PPC64_UADDR16:
13357 case R_PPC64_UADDR32:
13358 case R_PPC64_UADDR64:
13359 dodyn:
13360 if ((input_section->flags & SEC_ALLOC) == 0)
13361 break;
13362
13363 if (NO_OPD_RELOCS && is_opd)
13364 break;
13365
13366 if ((info->shared
13367 && (h == NULL
13368 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13369 || h->elf.root.type != bfd_link_hash_undefweak)
13370 && (must_be_dyn_reloc (info, r_type)
13371 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
13372 || (ELIMINATE_COPY_RELOCS
13373 && !info->shared
13374 && h != NULL
13375 && h->elf.dynindx != -1
13376 && !h->elf.non_got_ref
13377 && !h->elf.def_regular)
13378 || (!info->shared
13379 && (h != NULL
13380 ? h->elf.type == STT_GNU_IFUNC
13381 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
13382 {
13383 bfd_boolean skip, relocate;
13384 asection *sreloc;
13385 bfd_vma out_off;
13386
13387 /* When generating a dynamic object, these relocations
13388 are copied into the output file to be resolved at run
13389 time. */
13390
13391 skip = FALSE;
13392 relocate = FALSE;
13393
13394 out_off = _bfd_elf_section_offset (output_bfd, info,
13395 input_section, rel->r_offset);
13396 if (out_off == (bfd_vma) -1)
13397 skip = TRUE;
13398 else if (out_off == (bfd_vma) -2)
13399 skip = TRUE, relocate = TRUE;
13400 out_off += (input_section->output_section->vma
13401 + input_section->output_offset);
13402 outrel.r_offset = out_off;
13403 outrel.r_addend = rel->r_addend;
13404
13405 /* Optimize unaligned reloc use. */
13406 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
13407 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
13408 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
13409 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
13410 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
13411 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
13412 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
13413 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
13414 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
13415
13416 if (skip)
13417 memset (&outrel, 0, sizeof outrel);
13418 else if (!SYMBOL_CALLS_LOCAL (info, &h->elf)
13419 && !is_opd
13420 && r_type != R_PPC64_TOC)
13421 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
13422 else
13423 {
13424 /* This symbol is local, or marked to become local,
13425 or this is an opd section reloc which must point
13426 at a local function. */
13427 outrel.r_addend += relocation;
13428 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
13429 {
13430 if (is_opd && h != NULL)
13431 {
13432 /* Lie about opd entries. This case occurs
13433 when building shared libraries and we
13434 reference a function in another shared
13435 lib. The same thing happens for a weak
13436 definition in an application that's
13437 overridden by a strong definition in a
13438 shared lib. (I believe this is a generic
13439 bug in binutils handling of weak syms.)
13440 In these cases we won't use the opd
13441 entry in this lib. */
13442 unresolved_reloc = FALSE;
13443 }
13444 if (!is_opd
13445 && r_type == R_PPC64_ADDR64
13446 && (h != NULL
13447 ? h->elf.type == STT_GNU_IFUNC
13448 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
13449 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13450 else
13451 {
13452 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13453
13454 /* We need to relocate .opd contents for ld.so.
13455 Prelink also wants simple and consistent rules
13456 for relocs. This make all RELATIVE relocs have
13457 *r_offset equal to r_addend. */
13458 relocate = TRUE;
13459 }
13460 }
13461 else
13462 {
13463 long indx = 0;
13464
13465 if (h != NULL
13466 ? h->elf.type == STT_GNU_IFUNC
13467 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13468 {
13469 info->callbacks->einfo
13470 (_("%P: %H: relocation %s for indirect "
13471 "function %s unsupported\n"),
13472 input_bfd, input_section, rel->r_offset,
13473 ppc64_elf_howto_table[r_type]->name,
13474 sym_name);
13475 ret = FALSE;
13476 }
13477 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
13478 ;
13479 else if (sec == NULL || sec->owner == NULL)
13480 {
13481 bfd_set_error (bfd_error_bad_value);
13482 return FALSE;
13483 }
13484 else
13485 {
13486 asection *osec;
13487
13488 osec = sec->output_section;
13489 indx = elf_section_data (osec)->dynindx;
13490
13491 if (indx == 0)
13492 {
13493 if ((osec->flags & SEC_READONLY) == 0
13494 && htab->elf.data_index_section != NULL)
13495 osec = htab->elf.data_index_section;
13496 else
13497 osec = htab->elf.text_index_section;
13498 indx = elf_section_data (osec)->dynindx;
13499 }
13500 BFD_ASSERT (indx != 0);
13501
13502 /* We are turning this relocation into one
13503 against a section symbol, so subtract out
13504 the output section's address but not the
13505 offset of the input section in the output
13506 section. */
13507 outrel.r_addend -= osec->vma;
13508 }
13509
13510 outrel.r_info = ELF64_R_INFO (indx, r_type);
13511 }
13512 }
13513
13514 sreloc = elf_section_data (input_section)->sreloc;
13515 if (!htab->elf.dynamic_sections_created)
13516 sreloc = htab->reliplt;
13517 if (sreloc == NULL)
13518 abort ();
13519
13520 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
13521 >= sreloc->size)
13522 abort ();
13523 loc = sreloc->contents;
13524 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
13525 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13526
13527 /* If this reloc is against an external symbol, it will
13528 be computed at runtime, so there's no need to do
13529 anything now. However, for the sake of prelink ensure
13530 that the section contents are a known value. */
13531 if (! relocate)
13532 {
13533 unresolved_reloc = FALSE;
13534 /* The value chosen here is quite arbitrary as ld.so
13535 ignores section contents except for the special
13536 case of .opd where the contents might be accessed
13537 before relocation. Choose zero, as that won't
13538 cause reloc overflow. */
13539 relocation = 0;
13540 addend = 0;
13541 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
13542 to improve backward compatibility with older
13543 versions of ld. */
13544 if (r_type == R_PPC64_ADDR64)
13545 addend = outrel.r_addend;
13546 /* Adjust pc_relative relocs to have zero in *r_offset. */
13547 else if (ppc64_elf_howto_table[r_type]->pc_relative)
13548 addend = (input_section->output_section->vma
13549 + input_section->output_offset
13550 + rel->r_offset);
13551 }
13552 }
13553 break;
13554
13555 case R_PPC64_COPY:
13556 case R_PPC64_GLOB_DAT:
13557 case R_PPC64_JMP_SLOT:
13558 case R_PPC64_JMP_IREL:
13559 case R_PPC64_RELATIVE:
13560 /* We shouldn't ever see these dynamic relocs in relocatable
13561 files. */
13562 /* Fall through. */
13563
13564 case R_PPC64_PLTGOT16:
13565 case R_PPC64_PLTGOT16_DS:
13566 case R_PPC64_PLTGOT16_HA:
13567 case R_PPC64_PLTGOT16_HI:
13568 case R_PPC64_PLTGOT16_LO:
13569 case R_PPC64_PLTGOT16_LO_DS:
13570 case R_PPC64_PLTREL32:
13571 case R_PPC64_PLTREL64:
13572 /* These ones haven't been implemented yet. */
13573
13574 info->callbacks->einfo
13575 (_("%P: %B: relocation %s is not supported for symbol %s\n"),
13576 input_bfd,
13577 ppc64_elf_howto_table[r_type]->name, sym_name);
13578
13579 bfd_set_error (bfd_error_invalid_operation);
13580 ret = FALSE;
13581 continue;
13582 }
13583
13584 /* Multi-instruction sequences that access the TOC can be
13585 optimized, eg. addis ra,r2,0; addi rb,ra,x;
13586 to nop; addi rb,r2,x; */
13587 switch (r_type)
13588 {
13589 default:
13590 break;
13591
13592 case R_PPC64_GOT_TLSLD16_HI:
13593 case R_PPC64_GOT_TLSGD16_HI:
13594 case R_PPC64_GOT_TPREL16_HI:
13595 case R_PPC64_GOT_DTPREL16_HI:
13596 case R_PPC64_GOT16_HI:
13597 case R_PPC64_TOC16_HI:
13598 /* These relocs would only be useful if building up an
13599 offset to later add to r2, perhaps in an indexed
13600 addressing mode instruction. Don't try to optimize.
13601 Unfortunately, the possibility of someone building up an
13602 offset like this or even with the HA relocs, means that
13603 we need to check the high insn when optimizing the low
13604 insn. */
13605 break;
13606
13607 case R_PPC64_GOT_TLSLD16_HA:
13608 case R_PPC64_GOT_TLSGD16_HA:
13609 case R_PPC64_GOT_TPREL16_HA:
13610 case R_PPC64_GOT_DTPREL16_HA:
13611 case R_PPC64_GOT16_HA:
13612 case R_PPC64_TOC16_HA:
13613 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
13614 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
13615 {
13616 bfd_byte *p = contents + (rel->r_offset & ~3);
13617 bfd_put_32 (input_bfd, NOP, p);
13618 }
13619 break;
13620
13621 case R_PPC64_GOT_TLSLD16_LO:
13622 case R_PPC64_GOT_TLSGD16_LO:
13623 case R_PPC64_GOT_TPREL16_LO_DS:
13624 case R_PPC64_GOT_DTPREL16_LO_DS:
13625 case R_PPC64_GOT16_LO:
13626 case R_PPC64_GOT16_LO_DS:
13627 case R_PPC64_TOC16_LO:
13628 case R_PPC64_TOC16_LO_DS:
13629 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
13630 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
13631 {
13632 bfd_byte *p = contents + (rel->r_offset & ~3);
13633 insn = bfd_get_32 (input_bfd, p);
13634 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
13635 {
13636 /* Transform addic to addi when we change reg. */
13637 insn &= ~((0x3f << 26) | (0x1f << 16));
13638 insn |= (14u << 26) | (2 << 16);
13639 }
13640 else
13641 {
13642 insn &= ~(0x1f << 16);
13643 insn |= 2 << 16;
13644 }
13645 bfd_put_32 (input_bfd, insn, p);
13646 }
13647 break;
13648 }
13649
13650 /* Do any further special processing. */
13651 switch (r_type)
13652 {
13653 default:
13654 break;
13655
13656 case R_PPC64_ADDR16_HA:
13657 case R_PPC64_REL16_HA:
13658 case R_PPC64_ADDR16_HIGHERA:
13659 case R_PPC64_ADDR16_HIGHESTA:
13660 case R_PPC64_TOC16_HA:
13661 case R_PPC64_SECTOFF_HA:
13662 case R_PPC64_TPREL16_HA:
13663 case R_PPC64_DTPREL16_HA:
13664 case R_PPC64_TPREL16_HIGHER:
13665 case R_PPC64_TPREL16_HIGHERA:
13666 case R_PPC64_TPREL16_HIGHEST:
13667 case R_PPC64_TPREL16_HIGHESTA:
13668 case R_PPC64_DTPREL16_HIGHER:
13669 case R_PPC64_DTPREL16_HIGHERA:
13670 case R_PPC64_DTPREL16_HIGHEST:
13671 case R_PPC64_DTPREL16_HIGHESTA:
13672 /* It's just possible that this symbol is a weak symbol
13673 that's not actually defined anywhere. In that case,
13674 'sec' would be NULL, and we should leave the symbol
13675 alone (it will be set to zero elsewhere in the link). */
13676 if (sec == NULL)
13677 break;
13678 /* Fall thru */
13679
13680 case R_PPC64_GOT16_HA:
13681 case R_PPC64_PLTGOT16_HA:
13682 case R_PPC64_PLT16_HA:
13683 case R_PPC64_GOT_TLSGD16_HA:
13684 case R_PPC64_GOT_TLSLD16_HA:
13685 case R_PPC64_GOT_TPREL16_HA:
13686 case R_PPC64_GOT_DTPREL16_HA:
13687 /* Add 0x10000 if sign bit in 0:15 is set.
13688 Bits 0:15 are not used. */
13689 addend += 0x8000;
13690 break;
13691
13692 case R_PPC64_ADDR16_DS:
13693 case R_PPC64_ADDR16_LO_DS:
13694 case R_PPC64_GOT16_DS:
13695 case R_PPC64_GOT16_LO_DS:
13696 case R_PPC64_PLT16_LO_DS:
13697 case R_PPC64_SECTOFF_DS:
13698 case R_PPC64_SECTOFF_LO_DS:
13699 case R_PPC64_TOC16_DS:
13700 case R_PPC64_TOC16_LO_DS:
13701 case R_PPC64_PLTGOT16_DS:
13702 case R_PPC64_PLTGOT16_LO_DS:
13703 case R_PPC64_GOT_TPREL16_DS:
13704 case R_PPC64_GOT_TPREL16_LO_DS:
13705 case R_PPC64_GOT_DTPREL16_DS:
13706 case R_PPC64_GOT_DTPREL16_LO_DS:
13707 case R_PPC64_TPREL16_DS:
13708 case R_PPC64_TPREL16_LO_DS:
13709 case R_PPC64_DTPREL16_DS:
13710 case R_PPC64_DTPREL16_LO_DS:
13711 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
13712 mask = 3;
13713 /* If this reloc is against an lq insn, then the value must be
13714 a multiple of 16. This is somewhat of a hack, but the
13715 "correct" way to do this by defining _DQ forms of all the
13716 _DS relocs bloats all reloc switches in this file. It
13717 doesn't seem to make much sense to use any of these relocs
13718 in data, so testing the insn should be safe. */
13719 if ((insn & (0x3f << 26)) == (56u << 26))
13720 mask = 15;
13721 if (((relocation + addend) & mask) != 0)
13722 {
13723 info->callbacks->einfo
13724 (_("%P: %H: error: %s not a multiple of %u\n"),
13725 input_bfd, input_section, rel->r_offset,
13726 ppc64_elf_howto_table[r_type]->name,
13727 mask + 1);
13728 bfd_set_error (bfd_error_bad_value);
13729 ret = FALSE;
13730 continue;
13731 }
13732 break;
13733 }
13734
13735 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13736 because such sections are not SEC_ALLOC and thus ld.so will
13737 not process them. */
13738 if (unresolved_reloc
13739 && !((input_section->flags & SEC_DEBUGGING) != 0
13740 && h->elf.def_dynamic)
13741 && _bfd_elf_section_offset (output_bfd, info, input_section,
13742 rel->r_offset) != (bfd_vma) -1)
13743 {
13744 info->callbacks->einfo
13745 (_("%P: %H: unresolvable %s relocation against symbol `%s'\n"),
13746 input_bfd, input_section, rel->r_offset,
13747 ppc64_elf_howto_table[(int) r_type]->name,
13748 h->elf.root.root.string);
13749 ret = FALSE;
13750 }
13751
13752 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
13753 input_bfd,
13754 input_section,
13755 contents,
13756 rel->r_offset,
13757 relocation,
13758 addend);
13759
13760 if (r != bfd_reloc_ok)
13761 {
13762 if (sym_name == NULL)
13763 sym_name = "(null)";
13764 if (r == bfd_reloc_overflow)
13765 {
13766 if (warned)
13767 continue;
13768 if (h != NULL
13769 && h->elf.root.type == bfd_link_hash_undefweak
13770 && ppc64_elf_howto_table[r_type]->pc_relative)
13771 {
13772 /* Assume this is a call protected by other code that
13773 detects the symbol is undefined. If this is the case,
13774 we can safely ignore the overflow. If not, the
13775 program is hosed anyway, and a little warning isn't
13776 going to help. */
13777
13778 continue;
13779 }
13780
13781 if (!((*info->callbacks->reloc_overflow)
13782 (info, (h ? &h->elf.root : NULL), sym_name,
13783 ppc64_elf_howto_table[r_type]->name,
13784 orig_addend, input_bfd, input_section, rel->r_offset)))
13785 return FALSE;
13786 }
13787 else
13788 {
13789 info->callbacks->einfo
13790 (_("%P: %H: %s reloc against `%s': error %d\n"),
13791 input_bfd, input_section, rel->r_offset,
13792 ppc64_elf_howto_table[r_type]->name,
13793 sym_name,
13794 (int) r);
13795 ret = FALSE;
13796 }
13797 }
13798 }
13799
13800 /* If we're emitting relocations, then shortly after this function
13801 returns, reloc offsets and addends for this section will be
13802 adjusted. Worse, reloc symbol indices will be for the output
13803 file rather than the input. Save a copy of the relocs for
13804 opd_entry_value. */
13805 if (is_opd && (info->emitrelocations || info->relocatable))
13806 {
13807 bfd_size_type amt;
13808 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
13809 rel = bfd_alloc (input_bfd, amt);
13810 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL);
13811 ppc64_elf_tdata (input_bfd)->opd_relocs = rel;
13812 if (rel == NULL)
13813 return FALSE;
13814 memcpy (rel, relocs, amt);
13815 }
13816 return ret;
13817 }
13818
13819 /* Adjust the value of any local symbols in opd sections. */
13820
13821 static int
13822 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
13823 const char *name ATTRIBUTE_UNUSED,
13824 Elf_Internal_Sym *elfsym,
13825 asection *input_sec,
13826 struct elf_link_hash_entry *h)
13827 {
13828 struct _opd_sec_data *opd;
13829 long adjust;
13830 bfd_vma value;
13831
13832 if (h != NULL)
13833 return 1;
13834
13835 opd = get_opd_info (input_sec);
13836 if (opd == NULL || opd->adjust == NULL)
13837 return 1;
13838
13839 value = elfsym->st_value - input_sec->output_offset;
13840 if (!info->relocatable)
13841 value -= input_sec->output_section->vma;
13842
13843 adjust = opd->adjust[value / 8];
13844 if (adjust == -1)
13845 return 2;
13846
13847 elfsym->st_value += adjust;
13848 return 1;
13849 }
13850
13851 /* Finish up dynamic symbol handling. We set the contents of various
13852 dynamic sections here. */
13853
13854 static bfd_boolean
13855 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
13856 struct bfd_link_info *info,
13857 struct elf_link_hash_entry *h,
13858 Elf_Internal_Sym *sym)
13859 {
13860 struct ppc_link_hash_table *htab;
13861 struct plt_entry *ent;
13862 Elf_Internal_Rela rela;
13863 bfd_byte *loc;
13864
13865 htab = ppc_hash_table (info);
13866 if (htab == NULL)
13867 return FALSE;
13868
13869 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
13870 if (ent->plt.offset != (bfd_vma) -1)
13871 {
13872 /* This symbol has an entry in the procedure linkage
13873 table. Set it up. */
13874 if (!htab->elf.dynamic_sections_created
13875 || h->dynindx == -1)
13876 {
13877 BFD_ASSERT (h->type == STT_GNU_IFUNC
13878 && h->def_regular
13879 && (h->root.type == bfd_link_hash_defined
13880 || h->root.type == bfd_link_hash_defweak));
13881 rela.r_offset = (htab->iplt->output_section->vma
13882 + htab->iplt->output_offset
13883 + ent->plt.offset);
13884 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
13885 rela.r_addend = (h->root.u.def.value
13886 + h->root.u.def.section->output_offset
13887 + h->root.u.def.section->output_section->vma
13888 + ent->addend);
13889 loc = (htab->reliplt->contents
13890 + (htab->reliplt->reloc_count++
13891 * sizeof (Elf64_External_Rela)));
13892 }
13893 else
13894 {
13895 rela.r_offset = (htab->plt->output_section->vma
13896 + htab->plt->output_offset
13897 + ent->plt.offset);
13898 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
13899 rela.r_addend = ent->addend;
13900 loc = (htab->relplt->contents
13901 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE)
13902 / (PLT_ENTRY_SIZE / sizeof (Elf64_External_Rela))));
13903 }
13904 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
13905 }
13906
13907 if (h->needs_copy)
13908 {
13909 /* This symbol needs a copy reloc. Set it up. */
13910
13911 if (h->dynindx == -1
13912 || (h->root.type != bfd_link_hash_defined
13913 && h->root.type != bfd_link_hash_defweak)
13914 || htab->relbss == NULL)
13915 abort ();
13916
13917 rela.r_offset = (h->root.u.def.value
13918 + h->root.u.def.section->output_section->vma
13919 + h->root.u.def.section->output_offset);
13920 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
13921 rela.r_addend = 0;
13922 loc = htab->relbss->contents;
13923 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
13924 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
13925 }
13926
13927 /* Mark some specially defined symbols as absolute. */
13928 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
13929 sym->st_shndx = SHN_ABS;
13930
13931 return TRUE;
13932 }
13933
13934 /* Used to decide how to sort relocs in an optimal manner for the
13935 dynamic linker, before writing them out. */
13936
13937 static enum elf_reloc_type_class
13938 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
13939 {
13940 enum elf_ppc64_reloc_type r_type;
13941
13942 r_type = ELF64_R_TYPE (rela->r_info);
13943 switch (r_type)
13944 {
13945 case R_PPC64_RELATIVE:
13946 return reloc_class_relative;
13947 case R_PPC64_JMP_SLOT:
13948 return reloc_class_plt;
13949 case R_PPC64_COPY:
13950 return reloc_class_copy;
13951 default:
13952 return reloc_class_normal;
13953 }
13954 }
13955
13956 /* Finish up the dynamic sections. */
13957
13958 static bfd_boolean
13959 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
13960 struct bfd_link_info *info)
13961 {
13962 struct ppc_link_hash_table *htab;
13963 bfd *dynobj;
13964 asection *sdyn;
13965
13966 htab = ppc_hash_table (info);
13967 if (htab == NULL)
13968 return FALSE;
13969
13970 dynobj = htab->elf.dynobj;
13971 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
13972
13973 if (htab->elf.dynamic_sections_created)
13974 {
13975 Elf64_External_Dyn *dyncon, *dynconend;
13976
13977 if (sdyn == NULL || htab->got == NULL)
13978 abort ();
13979
13980 dyncon = (Elf64_External_Dyn *) sdyn->contents;
13981 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
13982 for (; dyncon < dynconend; dyncon++)
13983 {
13984 Elf_Internal_Dyn dyn;
13985 asection *s;
13986
13987 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
13988
13989 switch (dyn.d_tag)
13990 {
13991 default:
13992 continue;
13993
13994 case DT_PPC64_GLINK:
13995 s = htab->glink;
13996 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
13997 /* We stupidly defined DT_PPC64_GLINK to be the start
13998 of glink rather than the first entry point, which is
13999 what ld.so needs, and now have a bigger stub to
14000 support automatic multiple TOCs. */
14001 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
14002 break;
14003
14004 case DT_PPC64_OPD:
14005 s = bfd_get_section_by_name (output_bfd, ".opd");
14006 if (s == NULL)
14007 continue;
14008 dyn.d_un.d_ptr = s->vma;
14009 break;
14010
14011 case DT_PPC64_OPDSZ:
14012 s = bfd_get_section_by_name (output_bfd, ".opd");
14013 if (s == NULL)
14014 continue;
14015 dyn.d_un.d_val = s->size;
14016 break;
14017
14018 case DT_PLTGOT:
14019 s = htab->plt;
14020 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14021 break;
14022
14023 case DT_JMPREL:
14024 s = htab->relplt;
14025 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14026 break;
14027
14028 case DT_PLTRELSZ:
14029 dyn.d_un.d_val = htab->relplt->size;
14030 break;
14031
14032 case DT_RELASZ:
14033 /* Don't count procedure linkage table relocs in the
14034 overall reloc count. */
14035 s = htab->relplt;
14036 if (s == NULL)
14037 continue;
14038 dyn.d_un.d_val -= s->size;
14039 break;
14040
14041 case DT_RELA:
14042 /* We may not be using the standard ELF linker script.
14043 If .rela.plt is the first .rela section, we adjust
14044 DT_RELA to not include it. */
14045 s = htab->relplt;
14046 if (s == NULL)
14047 continue;
14048 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
14049 continue;
14050 dyn.d_un.d_ptr += s->size;
14051 break;
14052 }
14053
14054 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
14055 }
14056 }
14057
14058 if (htab->got != NULL && htab->got->size != 0)
14059 {
14060 /* Fill in the first entry in the global offset table.
14061 We use it to hold the link-time TOCbase. */
14062 bfd_put_64 (output_bfd,
14063 elf_gp (output_bfd) + TOC_BASE_OFF,
14064 htab->got->contents);
14065
14066 /* Set .got entry size. */
14067 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
14068 }
14069
14070 if (htab->plt != NULL && htab->plt->size != 0)
14071 {
14072 /* Set .plt entry size. */
14073 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
14074 = PLT_ENTRY_SIZE;
14075 }
14076
14077 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
14078 brlt ourselves if emitrelocations. */
14079 if (htab->brlt != NULL
14080 && htab->brlt->reloc_count != 0
14081 && !_bfd_elf_link_output_relocs (output_bfd,
14082 htab->brlt,
14083 elf_section_data (htab->brlt)->rela.hdr,
14084 elf_section_data (htab->brlt)->relocs,
14085 NULL))
14086 return FALSE;
14087
14088 if (htab->glink != NULL
14089 && htab->glink->reloc_count != 0
14090 && !_bfd_elf_link_output_relocs (output_bfd,
14091 htab->glink,
14092 elf_section_data (htab->glink)->rela.hdr,
14093 elf_section_data (htab->glink)->relocs,
14094 NULL))
14095 return FALSE;
14096
14097
14098 if (htab->glink_eh_frame != NULL
14099 && htab->glink_eh_frame->sec_info_type == ELF_INFO_TYPE_EH_FRAME
14100 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
14101 htab->glink_eh_frame,
14102 htab->glink_eh_frame->contents))
14103 return FALSE;
14104
14105 /* We need to handle writing out multiple GOT sections ourselves,
14106 since we didn't add them to DYNOBJ. We know dynobj is the first
14107 bfd. */
14108 while ((dynobj = dynobj->link_next) != NULL)
14109 {
14110 asection *s;
14111
14112 if (!is_ppc64_elf (dynobj))
14113 continue;
14114
14115 s = ppc64_elf_tdata (dynobj)->got;
14116 if (s != NULL
14117 && s->size != 0
14118 && s->output_section != bfd_abs_section_ptr
14119 && !bfd_set_section_contents (output_bfd, s->output_section,
14120 s->contents, s->output_offset,
14121 s->size))
14122 return FALSE;
14123 s = ppc64_elf_tdata (dynobj)->relgot;
14124 if (s != NULL
14125 && s->size != 0
14126 && s->output_section != bfd_abs_section_ptr
14127 && !bfd_set_section_contents (output_bfd, s->output_section,
14128 s->contents, s->output_offset,
14129 s->size))
14130 return FALSE;
14131 }
14132
14133 return TRUE;
14134 }
14135
14136 #include "elf64-target.h"
14137
14138 /* FreeBSD support */
14139
14140 #undef TARGET_LITTLE_SYM
14141 #undef TARGET_LITTLE_NAME
14142
14143 #undef TARGET_BIG_SYM
14144 #define TARGET_BIG_SYM bfd_elf64_powerpc_freebsd_vec
14145 #undef TARGET_BIG_NAME
14146 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
14147
14148 #undef ELF_OSABI
14149 #define ELF_OSABI ELFOSABI_FREEBSD
14150
14151 #undef elf64_bed
14152 #define elf64_bed elf64_powerpc_fbsd_bed
14153
14154 #include "elf64-target.h"
14155
This page took 0.330767 seconds and 4 git commands to generate.