2001-10-05 H.J. Lu <hjl@gnu.org>
[deliverable/binutils-gdb.git] / bfd / elf64-s390.c
1 /* IBM S/390-specific support for 64-bit ELF
2 Copyright 2000, 2001 Free Software Foundation, Inc.
3 Contributed Martin Schwidefsky (schwidefsky@de.ibm.com).
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27
28 static reloc_howto_type *elf_s390_reloc_type_lookup
29 PARAMS ((bfd *, bfd_reloc_code_real_type));
30 static void elf_s390_info_to_howto
31 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
32 static boolean elf_s390_is_local_label_name PARAMS ((bfd *, const char *));
33 static struct bfd_hash_entry *elf_s390_link_hash_newfunc
34 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
35 static struct bfd_link_hash_table *elf_s390_link_hash_table_create
36 PARAMS ((bfd *));
37 static boolean elf_s390_check_relocs
38 PARAMS ((bfd *, struct bfd_link_info *, asection *,
39 const Elf_Internal_Rela *));
40 static asection *elf_s390_gc_mark_hook
41 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
42 struct elf_link_hash_entry *, Elf_Internal_Sym *));
43 static boolean elf_s390_gc_sweep_hook
44 PARAMS ((bfd *, struct bfd_link_info *, asection *,
45 const Elf_Internal_Rela *));
46 static boolean elf_s390_adjust_dynamic_symbol
47 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
48 static boolean elf_s390_size_dynamic_sections
49 PARAMS ((bfd *, struct bfd_link_info *));
50 static boolean elf_s390_relocate_section
51 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
52 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
53 static boolean elf_s390_finish_dynamic_symbol
54 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
55 Elf_Internal_Sym *));
56 static boolean elf_s390_finish_dynamic_sections
57 PARAMS ((bfd *, struct bfd_link_info *));
58 static boolean elf_s390_object_p PARAMS ((bfd *));
59 static enum elf_reloc_type_class elf_s390_reloc_type_class
60 PARAMS ((const Elf_Internal_Rela *));
61
62 #define USE_RELA 1 /* We want RELA relocations, not REL. */
63
64 #include "elf/s390.h"
65
66 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
67 from smaller values. Start with zero, widen, *then* decrement. */
68 #define MINUS_ONE (((bfd_vma)0) - 1)
69
70 /* The relocation "howto" table. */
71 static reloc_howto_type elf_howto_table[] =
72 {
73 HOWTO (R_390_NONE, /* type */
74 0, /* rightshift */
75 0, /* size (0 = byte, 1 = short, 2 = long) */
76 0, /* bitsize */
77 false, /* pc_relative */
78 0, /* bitpos */
79 complain_overflow_dont, /* complain_on_overflow */
80 bfd_elf_generic_reloc, /* special_function */
81 "R_390_NONE", /* name */
82 false, /* partial_inplace */
83 0, /* src_mask */
84 0, /* dst_mask */
85 false), /* pcrel_offset */
86
87 HOWTO(R_390_8, 0, 0, 8, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_8", false, 0,0x000000ff, false),
88 HOWTO(R_390_12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_12", false, 0,0x00000fff, false),
89 HOWTO(R_390_16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_16", false, 0,0x0000ffff, false),
90 HOWTO(R_390_32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_32", false, 0,0xffffffff, false),
91 HOWTO(R_390_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC32", false, 0,0xffffffff, true),
92 HOWTO(R_390_GOT12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_GOT12", false, 0,0x00000fff, false),
93 HOWTO(R_390_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT32", false, 0,0xffffffff, false),
94 HOWTO(R_390_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT32", false, 0,0xffffffff, true),
95 HOWTO(R_390_COPY, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_COPY", false, 0,MINUS_ONE, false),
96 HOWTO(R_390_GLOB_DAT, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GLOB_DAT",false, 0,MINUS_ONE, false),
97 HOWTO(R_390_JMP_SLOT, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_JMP_SLOT",false, 0,MINUS_ONE, false),
98 HOWTO(R_390_RELATIVE, 0, 4, 64, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_RELATIVE",false, 0,MINUS_ONE, false),
99 HOWTO(R_390_GOTOFF, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTOFF", false, 0,MINUS_ONE, false),
100 HOWTO(R_390_GOTPC, 0, 4, 64, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPC", false, 0,MINUS_ONE, true),
101 HOWTO(R_390_GOT16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT16", false, 0,0x0000ffff, false),
102 HOWTO(R_390_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16", false, 0,0x0000ffff, true),
103 HOWTO(R_390_PC16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16DBL", false, 0,0x0000ffff, true),
104 HOWTO(R_390_PLT16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT16DBL", false, 0,0x0000ffff, true),
105 HOWTO(R_390_PC32DBL, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC32DBL", false, 0,0xffffffff, true),
106 HOWTO(R_390_PLT32DBL, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT32DBL", false, 0,0xffffffff, true),
107 HOWTO(R_390_GOTPCDBL, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPCDBL", false, 0,MINUS_ONE, true),
108 HOWTO(R_390_64, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_64", false, 0,MINUS_ONE, false),
109 HOWTO(R_390_PC64, 0, 4, 64, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC64", false, 0,MINUS_ONE, true),
110 HOWTO(R_390_GOT64, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT64", false, 0,MINUS_ONE, false),
111 HOWTO(R_390_PLT64, 0, 4, 64, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT64", false, 0,MINUS_ONE, true),
112 HOWTO(R_390_GOTENT, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTENT", false, 0,MINUS_ONE, true),
113 };
114
115 /* GNU extension to record C++ vtable hierarchy. */
116 static reloc_howto_type elf64_s390_vtinherit_howto =
117 HOWTO (R_390_GNU_VTINHERIT, 0,4,0,false,0,complain_overflow_dont, NULL, "R_390_GNU_VTINHERIT", false,0, 0, false);
118 static reloc_howto_type elf64_s390_vtentry_howto =
119 HOWTO (R_390_GNU_VTENTRY, 0,4,0,false,0,complain_overflow_dont, _bfd_elf_rel_vtable_reloc_fn,"R_390_GNU_VTENTRY", false,0,0, false);
120
121 static reloc_howto_type *
122 elf_s390_reloc_type_lookup (abfd, code)
123 bfd *abfd ATTRIBUTE_UNUSED;
124 bfd_reloc_code_real_type code;
125 {
126 switch (code) {
127 case BFD_RELOC_NONE:
128 return &elf_howto_table[(int) R_390_NONE];
129 case BFD_RELOC_8:
130 return &elf_howto_table[(int) R_390_8];
131 case BFD_RELOC_390_12:
132 return &elf_howto_table[(int) R_390_12];
133 case BFD_RELOC_16:
134 return &elf_howto_table[(int) R_390_16];
135 case BFD_RELOC_32:
136 return &elf_howto_table[(int) R_390_32];
137 case BFD_RELOC_CTOR:
138 return &elf_howto_table[(int) R_390_32];
139 case BFD_RELOC_32_PCREL:
140 return &elf_howto_table[(int) R_390_PC32];
141 case BFD_RELOC_390_GOT12:
142 return &elf_howto_table[(int) R_390_GOT12];
143 case BFD_RELOC_32_GOT_PCREL:
144 return &elf_howto_table[(int) R_390_GOT32];
145 case BFD_RELOC_390_PLT32:
146 return &elf_howto_table[(int) R_390_PLT32];
147 case BFD_RELOC_390_COPY:
148 return &elf_howto_table[(int) R_390_COPY];
149 case BFD_RELOC_390_GLOB_DAT:
150 return &elf_howto_table[(int) R_390_GLOB_DAT];
151 case BFD_RELOC_390_JMP_SLOT:
152 return &elf_howto_table[(int) R_390_JMP_SLOT];
153 case BFD_RELOC_390_RELATIVE:
154 return &elf_howto_table[(int) R_390_RELATIVE];
155 case BFD_RELOC_32_GOTOFF:
156 return &elf_howto_table[(int) R_390_GOTOFF];
157 case BFD_RELOC_390_GOTPC:
158 return &elf_howto_table[(int) R_390_GOTPC];
159 case BFD_RELOC_390_GOT16:
160 return &elf_howto_table[(int) R_390_GOT16];
161 case BFD_RELOC_16_PCREL:
162 return &elf_howto_table[(int) R_390_PC16];
163 case BFD_RELOC_390_PC16DBL:
164 return &elf_howto_table[(int) R_390_PC16DBL];
165 case BFD_RELOC_390_PLT16DBL:
166 return &elf_howto_table[(int) R_390_PLT16DBL];
167 case BFD_RELOC_VTABLE_INHERIT:
168 return &elf64_s390_vtinherit_howto;
169 case BFD_RELOC_VTABLE_ENTRY:
170 return &elf64_s390_vtentry_howto;
171 case BFD_RELOC_390_PC32DBL:
172 return &elf_howto_table[(int) R_390_PC32DBL];
173 case BFD_RELOC_390_PLT32DBL:
174 return &elf_howto_table[(int) R_390_PLT32DBL];
175 case BFD_RELOC_390_GOTPCDBL:
176 return &elf_howto_table[(int) R_390_GOTPCDBL];
177 case BFD_RELOC_64:
178 return &elf_howto_table[(int) R_390_64];
179 case BFD_RELOC_64_PCREL:
180 return &elf_howto_table[(int) R_390_PC64];
181 case BFD_RELOC_390_GOT64:
182 return &elf_howto_table[(int) R_390_GOT64];
183 case BFD_RELOC_390_PLT64:
184 return &elf_howto_table[(int) R_390_PLT64];
185 case BFD_RELOC_390_GOTENT:
186 return &elf_howto_table[(int) R_390_GOTENT];
187 default:
188 break;
189 }
190 return 0;
191 }
192
193 /* We need to use ELF64_R_TYPE so we have our own copy of this function,
194 and elf64-s390.c has its own copy. */
195
196 static void
197 elf_s390_info_to_howto (abfd, cache_ptr, dst)
198 bfd *abfd ATTRIBUTE_UNUSED;
199 arelent *cache_ptr;
200 Elf_Internal_Rela *dst;
201 {
202 switch (ELF64_R_TYPE(dst->r_info))
203 {
204 case R_390_GNU_VTINHERIT:
205 cache_ptr->howto = &elf64_s390_vtinherit_howto;
206 break;
207
208 case R_390_GNU_VTENTRY:
209 cache_ptr->howto = &elf64_s390_vtentry_howto;
210 break;
211
212 default:
213 BFD_ASSERT (ELF64_R_TYPE(dst->r_info) < (unsigned int) R_390_max);
214 cache_ptr->howto = &elf_howto_table[ELF64_R_TYPE(dst->r_info)];
215 }
216 }
217
218 static boolean
219 elf_s390_is_local_label_name (abfd, name)
220 bfd *abfd;
221 const char *name;
222 {
223 if (name[0] == '.' && (name[1] == 'X' || name[1] == 'L'))
224 return true;
225
226 return _bfd_elf_is_local_label_name (abfd, name);
227 }
228
229 /* Functions for the 390 ELF linker. */
230
231 /* The name of the dynamic interpreter. This is put in the .interp
232 section. */
233
234 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
235
236 /* The nop opcode we use. */
237
238 #define s390_NOP 0x07070707
239
240
241 /* The size in bytes of the first entry in the procedure linkage table. */
242 #define PLT_FIRST_ENTRY_SIZE 32
243 /* The size in bytes of an entry in the procedure linkage table. */
244 #define PLT_ENTRY_SIZE 32
245
246 #define GOT_ENTRY_SIZE 8
247
248 /* The first three entries in a procedure linkage table are reserved,
249 and the initial contents are unimportant (we zero them out).
250 Subsequent entries look like this. See the SVR4 ABI 386
251 supplement to see how this works. */
252
253 /* For the s390, simple addr offset can only be 0 - 4096.
254 To use the full 16777216 TB address space, several instructions
255 are needed to load an address in a register and execute
256 a branch( or just saving the address)
257
258 Furthermore, only r 0 and 1 are free to use!!! */
259
260 /* The first 3 words in the GOT are then reserved.
261 Word 0 is the address of the dynamic table.
262 Word 1 is a pointer to a structure describing the object
263 Word 2 is used to point to the loader entry address.
264
265 The code for PLT entries looks like this:
266
267 The GOT holds the address in the PLT to be executed.
268 The loader then gets:
269 24(15) = Pointer to the structure describing the object.
270 28(15) = Offset in symbol table
271 The loader must then find the module where the function is
272 and insert the address in the GOT.
273
274 PLT1: LARL 1,<fn>@GOTENT # 6 bytes Load address of GOT entry in r1
275 LG 1,0(1) # 6 bytes Load address from GOT in r1
276 BCR 15,1 # 2 bytes Jump to address
277 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
278 LGF 1,12(1) # 6 bytes Load offset in symbl table in r1
279 BRCL 15,-x # 6 bytes Jump to start of PLT
280 .long ? # 4 bytes offset into symbol table
281
282 Total = 32 bytes per PLT entry
283 Fixup at offset 2: relative address to GOT entry
284 Fixup at offset 22: relative branch to PLT0
285 Fixup at offset 28: 32 bit offset into symbol table
286
287 A 32 bit offset into the symbol table is enough. It allows for symbol
288 tables up to a size of 2 gigabyte. A single dynamic object (the main
289 program, any shared library) is limited to 4GB in size and I want to see
290 the program that manages to have a symbol table of more than 2 GB with a
291 total size of at max 4 GB. */
292
293 #define PLT_ENTRY_WORD0 (bfd_vma) 0xc0100000
294 #define PLT_ENTRY_WORD1 (bfd_vma) 0x0000e310
295 #define PLT_ENTRY_WORD2 (bfd_vma) 0x10000004
296 #define PLT_ENTRY_WORD3 (bfd_vma) 0x07f10d10
297 #define PLT_ENTRY_WORD4 (bfd_vma) 0xe310100c
298 #define PLT_ENTRY_WORD5 (bfd_vma) 0x0014c0f4
299 #define PLT_ENTRY_WORD6 (bfd_vma) 0x00000000
300 #define PLT_ENTRY_WORD7 (bfd_vma) 0x00000000
301
302 /* The first PLT entry pushes the offset into the symbol table
303 from R1 onto the stack at 8(15) and the loader object info
304 at 12(15), loads the loader address in R1 and jumps to it. */
305
306 /* The first entry in the PLT:
307
308 PLT0:
309 STG 1,56(15) # r1 contains the offset into the symbol table
310 LARL 1,_GLOBAL_OFFSET_TABLE # load address of global offset table
311 MVC 48(8,15),8(1) # move loader ino (object struct address) to stack
312 LG 1,16(1) # get entry address of loader
313 BCR 15,1 # jump to loader
314
315 Fixup at offset 8: relative address to start of GOT. */
316
317 #define PLT_FIRST_ENTRY_WORD0 (bfd_vma) 0xe310f038
318 #define PLT_FIRST_ENTRY_WORD1 (bfd_vma) 0x0024c010
319 #define PLT_FIRST_ENTRY_WORD2 (bfd_vma) 0x00000000
320 #define PLT_FIRST_ENTRY_WORD3 (bfd_vma) 0xd207f030
321 #define PLT_FIRST_ENTRY_WORD4 (bfd_vma) 0x1008e310
322 #define PLT_FIRST_ENTRY_WORD5 (bfd_vma) 0x10100004
323 #define PLT_FIRST_ENTRY_WORD6 (bfd_vma) 0x07f10700
324 #define PLT_FIRST_ENTRY_WORD7 (bfd_vma) 0x07000700
325
326 /* The s390 linker needs to keep track of the number of relocs that it
327 decides to copy in check_relocs for each symbol. This is so that
328 it can discard PC relative relocs if it doesn't need them when
329 linking with -Bsymbolic. We store the information in a field
330 extending the regular ELF linker hash table. */
331
332 /* This structure keeps track of the number of PC relative relocs we
333 have copied for a given symbol. */
334
335 struct elf_s390_pcrel_relocs_copied
336 {
337 /* Next section. */
338 struct elf_s390_pcrel_relocs_copied *next;
339 /* A section in dynobj. */
340 asection *section;
341 /* Number of relocs copied in this section. */
342 bfd_size_type count;
343 };
344
345 /* s390 ELF linker hash entry. */
346
347 struct elf_s390_link_hash_entry
348 {
349 struct elf_link_hash_entry root;
350
351 /* Number of PC relative relocs copied for this symbol. */
352 struct elf_s390_pcrel_relocs_copied *pcrel_relocs_copied;
353 };
354
355 /* s390 ELF linker hash table. */
356
357 struct elf_s390_link_hash_table
358 {
359 struct elf_link_hash_table root;
360 };
361
362 /* Declare this now that the above structures are defined. */
363
364 static boolean elf_s390_discard_copies
365 PARAMS ((struct elf_s390_link_hash_entry *, PTR));
366
367 /* Traverse an s390 ELF linker hash table. */
368
369 #define elf_s390_link_hash_traverse(table, func, info) \
370 (elf_link_hash_traverse \
371 (&(table)->root, \
372 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
373 (info)))
374
375 /* Get the s390 ELF linker hash table from a link_info structure. */
376
377 #define elf_s390_hash_table(p) \
378 ((struct elf_s390_link_hash_table *) ((p)->hash))
379
380 /* Create an entry in an s390 ELF linker hash table. */
381
382 static struct bfd_hash_entry *
383 elf_s390_link_hash_newfunc (entry, table, string)
384 struct bfd_hash_entry *entry;
385 struct bfd_hash_table *table;
386 const char *string;
387 {
388 struct elf_s390_link_hash_entry *ret =
389 (struct elf_s390_link_hash_entry *) entry;
390
391 /* Allocate the structure if it has not already been allocated by a
392 subclass. */
393 if (ret == (struct elf_s390_link_hash_entry *) NULL)
394 ret = ((struct elf_s390_link_hash_entry *)
395 bfd_hash_allocate (table,
396 sizeof (struct elf_s390_link_hash_entry)));
397 if (ret == (struct elf_s390_link_hash_entry *) NULL)
398 return (struct bfd_hash_entry *) ret;
399
400 /* Call the allocation method of the superclass. */
401 ret = ((struct elf_s390_link_hash_entry *)
402 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
403 table, string));
404 if (ret != (struct elf_s390_link_hash_entry *) NULL)
405 {
406 ret->pcrel_relocs_copied = NULL;
407 }
408
409 return (struct bfd_hash_entry *) ret;
410 }
411
412 /* Create an s390 ELF linker hash table. */
413
414 static struct bfd_link_hash_table *
415 elf_s390_link_hash_table_create (abfd)
416 bfd *abfd;
417 {
418 struct elf_s390_link_hash_table *ret;
419 bfd_size_type amt = sizeof (struct elf_s390_link_hash_table);
420
421 ret = ((struct elf_s390_link_hash_table *) bfd_alloc (abfd, amt));
422 if (ret == (struct elf_s390_link_hash_table *) NULL)
423 return NULL;
424
425 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
426 elf_s390_link_hash_newfunc))
427 {
428 bfd_release (abfd, ret);
429 return NULL;
430 }
431
432 return &ret->root.root;
433 }
434
435
436 /* Look through the relocs for a section during the first phase, and
437 allocate space in the global offset table or procedure linkage
438 table. */
439
440 static boolean
441 elf_s390_check_relocs (abfd, info, sec, relocs)
442 bfd *abfd;
443 struct bfd_link_info *info;
444 asection *sec;
445 const Elf_Internal_Rela *relocs;
446 {
447 bfd *dynobj;
448 Elf_Internal_Shdr *symtab_hdr;
449 struct elf_link_hash_entry **sym_hashes;
450 bfd_signed_vma *local_got_refcounts;
451 const Elf_Internal_Rela *rel;
452 const Elf_Internal_Rela *rel_end;
453 asection *sgot;
454 asection *srelgot;
455 asection *sreloc;
456
457 if (info->relocateable)
458 return true;
459
460 dynobj = elf_hash_table (info)->dynobj;
461 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
462 sym_hashes = elf_sym_hashes (abfd);
463 local_got_refcounts = elf_local_got_offsets (abfd);
464
465 sgot = NULL;
466 srelgot = NULL;
467 sreloc = NULL;
468
469 rel_end = relocs + sec->reloc_count;
470 for (rel = relocs; rel < rel_end; rel++)
471 {
472 unsigned long r_symndx;
473 struct elf_link_hash_entry *h;
474
475 r_symndx = ELF64_R_SYM (rel->r_info);
476
477 if (r_symndx < symtab_hdr->sh_info)
478 h = NULL;
479 else
480 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
481
482 /* Some relocs require a global offset table. */
483 if (dynobj == NULL)
484 {
485 switch (ELF64_R_TYPE (rel->r_info))
486 {
487 case R_390_GOT12:
488 case R_390_GOT16:
489 case R_390_GOT32:
490 case R_390_GOT64:
491 case R_390_GOTOFF:
492 case R_390_GOTPC:
493 case R_390_GOTPCDBL:
494 case R_390_GOTENT:
495 elf_hash_table (info)->dynobj = dynobj = abfd;
496 if (! _bfd_elf_create_got_section (dynobj, info))
497 return false;
498 break;
499
500 default:
501 break;
502 }
503 }
504
505
506 switch (ELF64_R_TYPE (rel->r_info))
507 {
508 case R_390_GOT12:
509 case R_390_GOT16:
510 case R_390_GOT32:
511 case R_390_GOT64:
512 case R_390_GOTENT:
513 /* This symbol requires a global offset table entry. */
514
515 if (sgot == NULL)
516 {
517 sgot = bfd_get_section_by_name (dynobj, ".got");
518 BFD_ASSERT (sgot != NULL);
519 }
520
521
522 if (srelgot == NULL
523 && (h != NULL || info->shared))
524 {
525 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
526 if (srelgot == NULL)
527 {
528 srelgot = bfd_make_section (dynobj, ".rela.got");
529 if (srelgot == NULL
530 || ! bfd_set_section_flags (dynobj, srelgot,
531 (SEC_ALLOC
532 | SEC_LOAD
533 | SEC_HAS_CONTENTS
534 | SEC_IN_MEMORY
535 | SEC_LINKER_CREATED
536 | SEC_READONLY))
537 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
538 return false;
539 }
540 }
541
542 if (h != NULL)
543 {
544 if (h->got.refcount == 0)
545 {
546 /* Make sure this symbol is output as a dynamic symbol. */
547 if (h->dynindx == -1)
548 {
549 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
550 return false;
551 }
552
553 sgot->_raw_size += 8;
554 srelgot->_raw_size += sizeof (Elf64_External_Rela);
555 }
556 h->got.refcount += 1;
557 }
558 else
559 {
560 /* This is a global offset table entry for a local symbol. */
561 if (local_got_refcounts == NULL)
562 {
563 bfd_size_type size;
564
565 size = symtab_hdr->sh_info * sizeof (bfd_vma);
566 local_got_refcounts = ((bfd_signed_vma *)
567 bfd_zalloc (abfd, size));
568 if (local_got_refcounts == NULL)
569 return false;
570 elf_local_got_refcounts (abfd) = local_got_refcounts;
571 }
572 if (local_got_refcounts[r_symndx] == 0)
573 {
574 sgot->_raw_size += 8;
575 if (info->shared)
576 {
577 /* If we are generating a shared object, we need to
578 output a R_390_RELATIVE reloc so that the dynamic
579 linker can adjust this GOT entry. */
580 srelgot->_raw_size += sizeof (Elf64_External_Rela);
581 }
582 }
583 local_got_refcounts[r_symndx] += 1;
584 }
585 break;
586
587 case R_390_PLT16DBL:
588 case R_390_PLT32:
589 case R_390_PLT32DBL:
590 case R_390_PLT64:
591 /* This symbol requires a procedure linkage table entry. We
592 actually build the entry in adjust_dynamic_symbol,
593 because this might be a case of linking PIC code which is
594 never referenced by a dynamic object, in which case we
595 don't need to generate a procedure linkage table entry
596 after all. */
597
598 /* If this is a local symbol, we resolve it directly without
599 creating a procedure linkage table entry. */
600 if (h == NULL)
601 continue;
602
603 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
604 h->plt.refcount += 1;
605 break;
606
607 case R_390_8:
608 case R_390_16:
609 case R_390_32:
610 case R_390_64:
611 case R_390_PC16:
612 case R_390_PC16DBL:
613 case R_390_PC32:
614 case R_390_PC32DBL:
615 case R_390_PC64:
616 if (h != NULL)
617 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
618
619 /* If we are creating a shared library, and this is a reloc
620 against a global symbol, or a non PC relative reloc
621 against a local symbol, then we need to copy the reloc
622 into the shared library. However, if we are linking with
623 -Bsymbolic, we do not need to copy a reloc against a
624 global symbol which is defined in an object we are
625 including in the link (i.e., DEF_REGULAR is set). At
626 this point we have not seen all the input files, so it is
627 possible that DEF_REGULAR is not set now but will be set
628 later (it is never cleared). We account for that
629 possibility below by storing information in the
630 pcrel_relocs_copied field of the hash table entry. */
631 if (info->shared
632 && (sec->flags & SEC_ALLOC) != 0
633 && (ELF64_R_TYPE (rel->r_info) == R_390_8
634 || ELF64_R_TYPE (rel->r_info) == R_390_16
635 || ELF64_R_TYPE (rel->r_info) == R_390_32
636 || ELF64_R_TYPE (rel->r_info) == R_390_64
637 || (h != NULL
638 && h->dynindx != -1
639 && (! info->symbolic
640 || (h->elf_link_hash_flags
641 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
642 {
643 /* When creating a shared object, we must copy these
644 reloc types into the output file. We create a reloc
645 section in dynobj and make room for this reloc. */
646 if (sreloc == NULL)
647 {
648 const char *name;
649
650 name = (bfd_elf_string_from_elf_section
651 (abfd,
652 elf_elfheader (abfd)->e_shstrndx,
653 elf_section_data (sec)->rel_hdr.sh_name));
654 if (name == NULL)
655 return false;
656
657 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
658 && strcmp (bfd_get_section_name (abfd, sec),
659 name + 5) == 0);
660
661 sreloc = bfd_get_section_by_name (dynobj, name);
662 if (sreloc == NULL)
663 {
664 flagword flags;
665
666 sreloc = bfd_make_section (dynobj, name);
667 flags = (SEC_HAS_CONTENTS | SEC_READONLY
668 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
669 if ((sec->flags & SEC_ALLOC) != 0)
670 flags |= SEC_ALLOC | SEC_LOAD;
671 if (sreloc == NULL
672 || ! bfd_set_section_flags (dynobj, sreloc, flags)
673 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
674 return false;
675 }
676 if (sec->flags & SEC_READONLY)
677 info->flags |= DF_TEXTREL;
678 }
679
680 sreloc->_raw_size += sizeof (Elf64_External_Rela);
681
682 /* If we are linking with -Bsymbolic, and this is a
683 global symbol, we count the number of PC relative
684 relocations we have entered for this symbol, so that
685 we can discard them again if the symbol is later
686 defined by a regular object. Note that this function
687 is only called if we are using an elf64_s390 linker
688 hash table, which means that h is really a pointer to
689 an elf64_s390_link_hash_entry. */
690 if (h != NULL
691 && (ELF64_R_TYPE (rel->r_info) == R_390_PC16 ||
692 ELF64_R_TYPE (rel->r_info) == R_390_PC16DBL ||
693 ELF64_R_TYPE (rel->r_info) == R_390_PC32 ||
694 ELF64_R_TYPE (rel->r_info) == R_390_PC32DBL ||
695 ELF64_R_TYPE (rel->r_info) == R_390_PC64))
696 {
697 struct elf_s390_link_hash_entry *eh;
698 struct elf_s390_pcrel_relocs_copied *p;
699
700 eh = (struct elf_s390_link_hash_entry *) h;
701
702 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
703 if (p->section == sreloc)
704 break;
705
706 if (p == NULL)
707 {
708 p = ((struct elf_s390_pcrel_relocs_copied *)
709 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
710 if (p == NULL)
711 return false;
712 p->next = eh->pcrel_relocs_copied;
713 eh->pcrel_relocs_copied = p;
714 p->section = sreloc;
715 p->count = 0;
716 }
717
718 ++p->count;
719 }
720 }
721
722 break;
723
724 /* This relocation describes the C++ object vtable hierarchy.
725 Reconstruct it for later use during GC. */
726 case R_390_GNU_VTINHERIT:
727 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
728 return false;
729 break;
730
731 /* This relocation describes which C++ vtable entries are actually
732 used. Record for later use during GC. */
733 case R_390_GNU_VTENTRY:
734 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend))
735 return false;
736 break;
737
738 default:
739 break;
740 }
741 }
742
743 return true;
744 }
745
746 /* Return the section that should be marked against GC for a given
747 relocation. */
748
749 static asection *
750 elf_s390_gc_mark_hook (abfd, info, rel, h, sym)
751 bfd *abfd;
752 struct bfd_link_info *info ATTRIBUTE_UNUSED;
753 Elf_Internal_Rela *rel;
754 struct elf_link_hash_entry *h;
755 Elf_Internal_Sym *sym;
756 {
757 if (h != NULL)
758 {
759 switch (ELF64_R_TYPE (rel->r_info))
760 {
761 case R_390_GNU_VTINHERIT:
762 case R_390_GNU_VTENTRY:
763 break;
764
765 default:
766 switch (h->root.type)
767 {
768 case bfd_link_hash_defined:
769 case bfd_link_hash_defweak:
770 return h->root.u.def.section;
771
772 case bfd_link_hash_common:
773 return h->root.u.c.p->section;
774
775 default:
776 break;
777 }
778 }
779 }
780 else
781 {
782 if (!(elf_bad_symtab (abfd)
783 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
784 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
785 && sym->st_shndx != SHN_COMMON))
786 {
787 return bfd_section_from_elf_index (abfd, sym->st_shndx);
788 }
789 }
790
791 return NULL;
792 }
793
794 /* Update the got entry reference counts for the section being removed. */
795
796 static boolean
797 elf_s390_gc_sweep_hook (abfd, info, sec, relocs)
798 bfd *abfd ATTRIBUTE_UNUSED;
799 struct bfd_link_info *info ATTRIBUTE_UNUSED;
800 asection *sec ATTRIBUTE_UNUSED;
801 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
802 {
803 Elf_Internal_Shdr *symtab_hdr;
804 struct elf_link_hash_entry **sym_hashes;
805 bfd_signed_vma *local_got_refcounts;
806 const Elf_Internal_Rela *rel, *relend;
807 unsigned long r_symndx;
808 struct elf_link_hash_entry *h;
809 bfd *dynobj;
810 asection *sgot;
811 asection *srelgot;
812
813 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
814 sym_hashes = elf_sym_hashes (abfd);
815 local_got_refcounts = elf_local_got_refcounts (abfd);
816
817 dynobj = elf_hash_table (info)->dynobj;
818 if (dynobj == NULL)
819 return true;
820
821 sgot = bfd_get_section_by_name (dynobj, ".got");
822 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
823
824 relend = relocs + sec->reloc_count;
825 for (rel = relocs; rel < relend; rel++)
826 switch (ELF64_R_TYPE (rel->r_info))
827 {
828 case R_390_GOT12:
829 case R_390_GOT16:
830 case R_390_GOT32:
831 case R_390_GOT64:
832 case R_390_GOTOFF:
833 case R_390_GOTPC:
834 case R_390_GOTPCDBL:
835 case R_390_GOTENT:
836 r_symndx = ELF64_R_SYM (rel->r_info);
837 if (r_symndx >= symtab_hdr->sh_info)
838 {
839 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
840 if (h->got.refcount > 0)
841 {
842 h->got.refcount -= 1;
843 if (h->got.refcount == 0)
844 {
845 sgot->_raw_size -= 8;
846 srelgot->_raw_size -= sizeof (Elf64_External_Rela);
847 }
848 }
849 }
850 else if (local_got_refcounts != NULL)
851 {
852 if (local_got_refcounts[r_symndx] > 0)
853 {
854 local_got_refcounts[r_symndx] -= 1;
855 if (local_got_refcounts[r_symndx] == 0)
856 {
857 sgot->_raw_size -= 8;
858 if (info->shared)
859 srelgot->_raw_size -= sizeof (Elf64_External_Rela);
860 }
861 }
862 }
863 break;
864
865 case R_390_PLT16DBL:
866 case R_390_PLT32:
867 case R_390_PLT32DBL:
868 case R_390_PLT64:
869 r_symndx = ELF64_R_SYM (rel->r_info);
870 if (r_symndx >= symtab_hdr->sh_info)
871 {
872 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
873 if (h->plt.refcount > 0)
874 h->plt.refcount -= 1;
875 }
876 break;
877
878 default:
879 break;
880 }
881
882 return true;
883 }
884
885 /* Adjust a symbol defined by a dynamic object and referenced by a
886 regular object. The current definition is in some section of the
887 dynamic object, but we're not including those sections. We have to
888 change the definition to something the rest of the link can
889 understand. */
890
891 static boolean
892 elf_s390_adjust_dynamic_symbol (info, h)
893 struct bfd_link_info *info;
894 struct elf_link_hash_entry *h;
895 {
896 bfd *dynobj;
897 asection *s;
898 unsigned int power_of_two;
899
900 dynobj = elf_hash_table (info)->dynobj;
901
902 /* Make sure we know what is going on here. */
903 BFD_ASSERT (dynobj != NULL
904 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
905 || h->weakdef != NULL
906 || ((h->elf_link_hash_flags
907 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
908 && (h->elf_link_hash_flags
909 & ELF_LINK_HASH_REF_REGULAR) != 0
910 && (h->elf_link_hash_flags
911 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
912
913 /* If this is a function, put it in the procedure linkage table. We
914 will fill in the contents of the procedure linkage table later
915 (although we could actually do it here). */
916 if (h->type == STT_FUNC
917 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
918 {
919 if ((! info->shared
920 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
921 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
922 || (info->shared && h->plt.refcount <= 0))
923 {
924 /* This case can occur if we saw a PLT32 reloc in an input
925 file, but the symbol was never referred to by a dynamic
926 object. In such a case, we don't actually need to build
927 a procedure linkage table, and we can just do a PC32
928 reloc instead. */
929 h->plt.offset = (bfd_vma) -1;
930 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
931 return true;
932 }
933
934 /* Make sure this symbol is output as a dynamic symbol. */
935 if (h->dynindx == -1)
936 {
937 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
938 return false;
939 }
940
941 s = bfd_get_section_by_name (dynobj, ".plt");
942 BFD_ASSERT (s != NULL);
943
944
945 /* The first entry in .plt is reserved. */
946 if (s->_raw_size == 0)
947 s->_raw_size = PLT_FIRST_ENTRY_SIZE;
948
949 /* If this symbol is not defined in a regular file, and we are
950 not generating a shared library, then set the symbol to this
951 location in the .plt. This is required to make function
952 pointers compare as equal between the normal executable and
953 the shared library. */
954 if (! info->shared
955 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
956 {
957 h->root.u.def.section = s;
958 h->root.u.def.value = s->_raw_size;
959 }
960
961 h->plt.offset = s->_raw_size;
962
963 /* Make room for this entry. */
964 s->_raw_size += PLT_ENTRY_SIZE;
965
966 /* We also need to make an entry in the .got.plt section, which
967 will be placed in the .got section by the linker script. */
968 s = bfd_get_section_by_name (dynobj, ".got.plt");
969 BFD_ASSERT (s != NULL);
970 s->_raw_size += GOT_ENTRY_SIZE;
971
972 /* We also need to make an entry in the .rela.plt section. */
973 s = bfd_get_section_by_name (dynobj, ".rela.plt");
974 BFD_ASSERT (s != NULL);
975 s->_raw_size += sizeof (Elf64_External_Rela);
976
977 return true;
978 }
979
980 /* If this is a weak symbol, and there is a real definition, the
981 processor independent code will have arranged for us to see the
982 real definition first, and we can just use the same value. */
983 if (h->weakdef != NULL)
984 {
985 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
986 || h->weakdef->root.type == bfd_link_hash_defweak);
987 h->root.u.def.section = h->weakdef->root.u.def.section;
988 h->root.u.def.value = h->weakdef->root.u.def.value;
989 return true;
990 }
991
992 /* This is a reference to a symbol defined by a dynamic object which
993 is not a function. */
994
995 /* If we are creating a shared library, we must presume that the
996 only references to the symbol are via the global offset table.
997 For such cases we need not do anything here; the relocations will
998 be handled correctly by relocate_section. */
999 if (info->shared)
1000 return true;
1001
1002 /* If there are no references to this symbol that do not use the
1003 GOT, we don't need to generate a copy reloc. */
1004 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1005 return true;
1006
1007 /* We must allocate the symbol in our .dynbss section, which will
1008 become part of the .bss section of the executable. There will be
1009 an entry for this symbol in the .dynsym section. The dynamic
1010 object will contain position independent code, so all references
1011 from the dynamic object to this symbol will go through the global
1012 offset table. The dynamic linker will use the .dynsym entry to
1013 determine the address it must put in the global offset table, so
1014 both the dynamic object and the regular object will refer to the
1015 same memory location for the variable. */
1016
1017 s = bfd_get_section_by_name (dynobj, ".dynbss");
1018 BFD_ASSERT (s != NULL);
1019
1020 /* We must generate a R_390_COPY reloc to tell the dynamic linker
1021 to copy the initial value out of the dynamic object and into the
1022 runtime process image. We need to remember the offset into the
1023 .rel.bss section we are going to use. */
1024 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1025 {
1026 asection *srel;
1027
1028 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1029 BFD_ASSERT (srel != NULL);
1030 srel->_raw_size += sizeof (Elf64_External_Rela);
1031 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1032 }
1033
1034 /* We need to figure out the alignment required for this symbol. I
1035 have no idea how ELF linkers handle this. */
1036 power_of_two = bfd_log2 (h->size);
1037 if (power_of_two > 3)
1038 power_of_two = 3;
1039
1040 /* Apply the required alignment. */
1041 s->_raw_size = BFD_ALIGN (s->_raw_size,
1042 (bfd_size_type) (1 << power_of_two));
1043 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1044 {
1045 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1046 return false;
1047 }
1048
1049 /* Define the symbol as being at this point in the section. */
1050 h->root.u.def.section = s;
1051 h->root.u.def.value = s->_raw_size;
1052
1053 /* Increment the section size to make room for the symbol. */
1054 s->_raw_size += h->size;
1055
1056 return true;
1057 }
1058
1059 /* Set the sizes of the dynamic sections. */
1060
1061 static boolean
1062 elf_s390_size_dynamic_sections (output_bfd, info)
1063 bfd *output_bfd ATTRIBUTE_UNUSED;
1064 struct bfd_link_info *info;
1065 {
1066 bfd *dynobj;
1067 asection *s;
1068 boolean relocs;
1069 boolean plt;
1070
1071 dynobj = elf_hash_table (info)->dynobj;
1072 BFD_ASSERT (dynobj != NULL);
1073
1074 if (elf_hash_table (info)->dynamic_sections_created)
1075 {
1076 /* Set the contents of the .interp section to the interpreter. */
1077 if (! info->shared)
1078 {
1079 s = bfd_get_section_by_name (dynobj, ".interp");
1080 BFD_ASSERT (s != NULL);
1081 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1082 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1083 }
1084 }
1085 else
1086 {
1087 /* We may have created entries in the .rela.got section.
1088 However, if we are not creating the dynamic sections, we will
1089 not actually use these entries. Reset the size of .rela.got,
1090 which will cause it to get stripped from the output file
1091 below. */
1092 s = bfd_get_section_by_name (dynobj, ".rela.got");
1093 if (s != NULL)
1094 s->_raw_size = 0;
1095 }
1096
1097 /* If this is a -Bsymbolic shared link, then we need to discard all
1098 PC relative relocs against symbols defined in a regular object.
1099 We allocated space for them in the check_relocs routine, but we
1100 will not fill them in in the relocate_section routine. */
1101 if (info->shared)
1102 elf_s390_link_hash_traverse (elf_s390_hash_table (info),
1103 elf_s390_discard_copies,
1104 (PTR) info);
1105
1106 /* The check_relocs and adjust_dynamic_symbol entry points have
1107 determined the sizes of the various dynamic sections. Allocate
1108 memory for them. */
1109 plt = false;
1110 relocs = false;
1111 for (s = dynobj->sections; s != NULL; s = s->next)
1112 {
1113 const char *name;
1114 boolean strip;
1115
1116 if ((s->flags & SEC_LINKER_CREATED) == 0)
1117 continue;
1118
1119 /* It's OK to base decisions on the section name, because none
1120 of the dynobj section names depend upon the input files. */
1121 name = bfd_get_section_name (dynobj, s);
1122
1123 strip = false;
1124
1125 if (strcmp (name, ".plt") == 0)
1126 {
1127 if (s->_raw_size == 0)
1128 {
1129 /* Strip this section if we don't need it; see the
1130 comment below. */
1131 strip = true;
1132 }
1133 else
1134 {
1135 /* Remember whether there is a PLT. */
1136 plt = true;
1137 }
1138 }
1139 else if (strncmp (name, ".rela", 5) == 0)
1140 {
1141 if (s->_raw_size == 0)
1142 {
1143 /* If we don't need this section, strip it from the
1144 output file. This is to handle .rela.bss and
1145 .rel.plt. We must create it in
1146 create_dynamic_sections, because it must be created
1147 before the linker maps input sections to output
1148 sections. The linker does that before
1149 adjust_dynamic_symbol is called, and it is that
1150 function which decides whether anything needs to go
1151 into these sections. */
1152 strip = true;
1153 }
1154 else
1155 {
1156 /* Remember whether there are any reloc sections other
1157 than .rela.plt. */
1158 if (strcmp (name, ".rela.plt") != 0)
1159 relocs = true;
1160
1161 /* We use the reloc_count field as a counter if we need
1162 to copy relocs into the output file. */
1163 s->reloc_count = 0;
1164 }
1165 }
1166 else if (strncmp (name, ".got", 4) != 0)
1167 {
1168 /* It's not one of our sections, so don't allocate space. */
1169 continue;
1170 }
1171
1172 if (strip)
1173 {
1174 _bfd_strip_section_from_output (info, s);
1175 continue;
1176 }
1177
1178 /* Allocate memory for the section contents. */
1179 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1180 if (s->contents == NULL && s->_raw_size != 0)
1181 return false;
1182 }
1183
1184 if (elf_hash_table (info)->dynamic_sections_created)
1185 {
1186 /* Add some entries to the .dynamic section. We fill in the
1187 values later, in elf_s390_finish_dynamic_sections, but we
1188 must add the entries now so that we get the correct size for
1189 the .dynamic section. The DT_DEBUG entry is filled in by the
1190 dynamic linker and used by the debugger. */
1191 #define add_dynamic_entry(TAG, VAL) \
1192 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1193
1194 if (! info->shared)
1195 {
1196 if (!add_dynamic_entry (DT_DEBUG, 0))
1197 return false;
1198 }
1199
1200 if (plt)
1201 {
1202 if (!add_dynamic_entry (DT_PLTGOT, 0)
1203 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1204 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1205 || !add_dynamic_entry (DT_JMPREL, 0))
1206 return false;
1207 }
1208
1209 if (relocs)
1210 {
1211 if (!add_dynamic_entry (DT_RELA, 0)
1212 || !add_dynamic_entry (DT_RELASZ, 0)
1213 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1214 return false;
1215 }
1216
1217 if ((info->flags & DF_TEXTREL) != 0)
1218 {
1219 if (!add_dynamic_entry (DT_TEXTREL, 0))
1220 return false;
1221 info->flags |= DF_TEXTREL;
1222 }
1223 }
1224 #undef add_dynamic_entry
1225
1226 return true;
1227 }
1228
1229 /* This function is called via elf64_s390_link_hash_traverse if we are
1230 creating a shared object with -Bsymbolic. It discards the space
1231 allocated to copy PC relative relocs against symbols which are
1232 defined in regular objects. We allocated space for them in the
1233 check_relocs routine, but we won't fill them in in the
1234 relocate_section routine. */
1235
1236 /*ARGSUSED*/
1237 static boolean
1238 elf_s390_discard_copies (h, inf)
1239 struct elf_s390_link_hash_entry *h;
1240 PTR inf;
1241 {
1242 struct elf_s390_pcrel_relocs_copied *s;
1243 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1244
1245 /* If a symbol has been forced local or we have found a regular
1246 definition for the symbolic link case, then we won't be needing
1247 any relocs. */
1248 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1249 && ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1250 || info->symbolic))
1251 {
1252 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1253 s->section->_raw_size -= s->count * sizeof (Elf64_External_Rela);
1254 }
1255
1256 return true;
1257 }
1258 /* Relocate a 390 ELF section. */
1259
1260 static boolean
1261 elf_s390_relocate_section (output_bfd, info, input_bfd, input_section,
1262 contents, relocs, local_syms, local_sections)
1263 bfd *output_bfd;
1264 struct bfd_link_info *info;
1265 bfd *input_bfd;
1266 asection *input_section;
1267 bfd_byte *contents;
1268 Elf_Internal_Rela *relocs;
1269 Elf_Internal_Sym *local_syms;
1270 asection **local_sections;
1271 {
1272 bfd *dynobj;
1273 Elf_Internal_Shdr *symtab_hdr;
1274 struct elf_link_hash_entry **sym_hashes;
1275 bfd_vma *local_got_offsets;
1276 asection *sgot;
1277 asection *splt;
1278 asection *sreloc;
1279 Elf_Internal_Rela *rel;
1280 Elf_Internal_Rela *relend;
1281
1282 dynobj = elf_hash_table (info)->dynobj;
1283 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1284 sym_hashes = elf_sym_hashes (input_bfd);
1285 local_got_offsets = elf_local_got_offsets (input_bfd);
1286
1287 sgot = NULL;
1288 splt = NULL;
1289 sreloc = NULL;
1290 if (dynobj != NULL)
1291 {
1292 splt = bfd_get_section_by_name (dynobj, ".plt");
1293 sgot = bfd_get_section_by_name (dynobj, ".got");
1294 }
1295
1296 rel = relocs;
1297 relend = relocs + input_section->reloc_count;
1298 for (; rel < relend; rel++)
1299 {
1300 int r_type;
1301 reloc_howto_type *howto;
1302 unsigned long r_symndx;
1303 struct elf_link_hash_entry *h;
1304 Elf_Internal_Sym *sym;
1305 asection *sec;
1306 bfd_vma relocation;
1307 bfd_reloc_status_type r;
1308
1309 r_type = ELF64_R_TYPE (rel->r_info);
1310 if (r_type == R_390_GNU_VTINHERIT
1311 || r_type == R_390_GNU_VTENTRY)
1312 continue;
1313 if (r_type < 0 || r_type >= (int) R_390_max)
1314 {
1315 bfd_set_error (bfd_error_bad_value);
1316 return false;
1317 }
1318 howto = elf_howto_table + r_type;
1319
1320 r_symndx = ELF64_R_SYM (rel->r_info);
1321
1322 if (info->relocateable)
1323 {
1324 /* This is a relocateable link. We don't have to change
1325 anything, unless the reloc is against a section symbol,
1326 in which case we have to adjust according to where the
1327 section symbol winds up in the output section. */
1328 if (r_symndx < symtab_hdr->sh_info)
1329 {
1330 sym = local_syms + r_symndx;
1331 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1332 {
1333 sec = local_sections[r_symndx];
1334 rel->r_addend += sec->output_offset + sym->st_value;
1335 }
1336 }
1337
1338 continue;
1339 }
1340
1341 /* This is a final link. */
1342 h = NULL;
1343 sym = NULL;
1344 sec = NULL;
1345 if (r_symndx < symtab_hdr->sh_info)
1346 {
1347 sym = local_syms + r_symndx;
1348 sec = local_sections[r_symndx];
1349 relocation = (sec->output_section->vma
1350 + sec->output_offset
1351 + sym->st_value);
1352 }
1353 else
1354 {
1355 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1356 while (h->root.type == bfd_link_hash_indirect
1357 || h->root.type == bfd_link_hash_warning)
1358 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1359 if (h->root.type == bfd_link_hash_defined
1360 || h->root.type == bfd_link_hash_defweak)
1361 {
1362 sec = h->root.u.def.section;
1363 if ((r_type == R_390_GOTPC
1364 || r_type == R_390_GOTPCDBL)
1365 || ((r_type == R_390_PLT16DBL ||
1366 r_type == R_390_PLT32 ||
1367 r_type == R_390_PLT32DBL ||
1368 r_type == R_390_PLT64)
1369 && splt != NULL
1370 && h->plt.offset != (bfd_vma) -1)
1371 || ((r_type == R_390_GOT12 ||
1372 r_type == R_390_GOT16 ||
1373 r_type == R_390_GOT32 ||
1374 r_type == R_390_GOT64 ||
1375 r_type == R_390_GOTENT)
1376 && elf_hash_table (info)->dynamic_sections_created
1377 && (! info->shared
1378 || (! info->symbolic && h->dynindx != -1)
1379 || (h->elf_link_hash_flags
1380 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1381 || (info->shared
1382 && ((! info->symbolic && h->dynindx != -1)
1383 || (h->elf_link_hash_flags
1384 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1385 && ( r_type == R_390_8 ||
1386 r_type == R_390_16 ||
1387 r_type == R_390_32 ||
1388 r_type == R_390_64 ||
1389 r_type == R_390_PC16 ||
1390 r_type == R_390_PC16DBL ||
1391 r_type == R_390_PC32 ||
1392 r_type == R_390_PC32DBL ||
1393 r_type == R_390_PC64)
1394 && ((input_section->flags & SEC_ALLOC) != 0
1395 /* DWARF will emit R_386_32 relocations in its
1396 sections against symbols defined externally
1397 in shared libraries. We can't do anything
1398 with them here. */
1399 || ((input_section->flags & SEC_DEBUGGING) != 0
1400 && (h->elf_link_hash_flags
1401 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))))
1402 {
1403 /* In these cases, we don't need the relocation
1404 value. We check specially because in some
1405 obscure cases sec->output_section will be NULL. */
1406 relocation = 0;
1407 }
1408 else if (sec->output_section == NULL)
1409 {
1410 (*_bfd_error_handler)
1411 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1412 bfd_archive_filename (input_bfd), h->root.root.string,
1413 bfd_get_section_name (input_bfd, input_section));
1414 relocation = 0;
1415 }
1416 else
1417 relocation = (h->root.u.def.value
1418 + sec->output_section->vma
1419 + sec->output_offset);
1420 }
1421 else if (h->root.type == bfd_link_hash_undefweak)
1422 relocation = 0;
1423 else if (info->shared
1424 && (!info->symbolic || info->allow_shlib_undefined)
1425 && !info->no_undefined
1426 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1427 relocation = 0;
1428 else
1429 {
1430 if (! ((*info->callbacks->undefined_symbol)
1431 (info, h->root.root.string, input_bfd,
1432 input_section, rel->r_offset,
1433 (!info->shared || info->no_undefined
1434 || ELF_ST_VISIBILITY (h->other)))))
1435 return false;
1436 relocation = 0;
1437 }
1438 }
1439
1440 switch (r_type)
1441 {
1442 case R_390_GOT12:
1443 case R_390_GOT16:
1444 case R_390_GOT32:
1445 case R_390_GOT64:
1446 case R_390_GOTENT:
1447 /* Relocation is to the entry for this symbol in the global
1448 offset table. */
1449 BFD_ASSERT (sgot != NULL);
1450
1451 if (h != NULL)
1452 {
1453 bfd_vma off;
1454
1455 off = h->got.offset;
1456 BFD_ASSERT (off != (bfd_vma) -1);
1457
1458 if (! elf_hash_table (info)->dynamic_sections_created
1459 || (info->shared
1460 && (info->symbolic || h->dynindx == -1)
1461 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1462 {
1463 /* This is actually a static link, or it is a
1464 -Bsymbolic link and the symbol is defined
1465 locally, or the symbol was forced to be local
1466 because of a version file. We must initialize
1467 this entry in the global offset table. Since the
1468 offset must always be a multiple of 2, we use the
1469 least significant bit to record whether we have
1470 initialized it already.
1471
1472 When doing a dynamic link, we create a .rel.got
1473 relocation entry to initialize the value. This
1474 is done in the finish_dynamic_symbol routine. */
1475 if ((off & 1) != 0)
1476 off &= ~1;
1477 else
1478 {
1479 bfd_put_64 (output_bfd, relocation,
1480 sgot->contents + off);
1481 h->got.offset |= 1;
1482 }
1483 }
1484 relocation = sgot->output_offset + off;
1485 }
1486 else
1487 {
1488 bfd_vma off;
1489
1490 BFD_ASSERT (local_got_offsets != NULL
1491 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1492
1493 off = local_got_offsets[r_symndx];
1494
1495 /* The offset must always be a multiple of 8. We use
1496 the least significant bit to record whether we have
1497 already generated the necessary reloc. */
1498 if ((off & 1) != 0)
1499 off &= ~1;
1500 else
1501 {
1502 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
1503
1504 if (info->shared)
1505 {
1506 asection *srelgot;
1507 Elf_Internal_Rela outrel;
1508
1509 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1510 BFD_ASSERT (srelgot != NULL);
1511
1512 outrel.r_offset = (sgot->output_section->vma
1513 + sgot->output_offset
1514 + off);
1515 outrel.r_info = ELF64_R_INFO (0, R_390_RELATIVE);
1516 outrel.r_addend = relocation;
1517 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
1518 (((Elf64_External_Rela *)
1519 srelgot->contents)
1520 + srelgot->reloc_count));
1521 ++srelgot->reloc_count;
1522 }
1523
1524 local_got_offsets[r_symndx] |= 1;
1525 }
1526
1527 relocation = sgot->output_offset + off;
1528 }
1529
1530 /*
1531 * For @GOTENT the relocation is against the offset between
1532 * the instruction and the symbols entry in the GOT and not
1533 * between the start of the GOT and the symbols entry. We
1534 * add the vma of the GOT to get the correct value.
1535 */
1536 if (r_type == R_390_GOTENT)
1537 relocation += sgot->output_section->vma;
1538
1539 break;
1540
1541 case R_390_GOTOFF:
1542 /* Relocation is relative to the start of the global offset
1543 table. */
1544
1545 if (sgot == NULL)
1546 {
1547 sgot = bfd_get_section_by_name (dynobj, ".got");
1548 BFD_ASSERT (sgot != NULL);
1549 }
1550
1551 /* Note that sgot->output_offset is not involved in this
1552 calculation. We always want the start of .got. If we
1553 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1554 permitted by the ABI, we might have to change this
1555 calculation. */
1556 relocation -= sgot->output_section->vma;
1557
1558 break;
1559
1560 case R_390_GOTPC:
1561 case R_390_GOTPCDBL:
1562 /* Use global offset table as symbol value. */
1563
1564 if (sgot == NULL)
1565 {
1566 sgot = bfd_get_section_by_name (dynobj, ".got");
1567 BFD_ASSERT (sgot != NULL);
1568 }
1569
1570 relocation = sgot->output_section->vma;
1571
1572 break;
1573
1574 case R_390_PLT16DBL:
1575 case R_390_PLT32:
1576 case R_390_PLT32DBL:
1577 case R_390_PLT64:
1578 /* Relocation is to the entry for this symbol in the
1579 procedure linkage table. */
1580
1581 /* Resolve a PLT32 reloc against a local symbol directly,
1582 without using the procedure linkage table. */
1583 if (h == NULL)
1584 break;
1585
1586 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
1587 {
1588 /* We didn't make a PLT entry for this symbol. This
1589 happens when statically linking PIC code, or when
1590 using -Bsymbolic. */
1591 break;
1592 }
1593
1594 relocation = (splt->output_section->vma
1595 + splt->output_offset
1596 + h->plt.offset);
1597
1598 break;
1599
1600 case R_390_8:
1601 case R_390_16:
1602 case R_390_32:
1603 case R_390_64:
1604 case R_390_PC16:
1605 case R_390_PC16DBL:
1606 case R_390_PC32:
1607 case R_390_PC32DBL:
1608 case R_390_PC64:
1609 if (info->shared
1610 && (input_section->flags & SEC_ALLOC) != 0
1611 && (r_type == R_390_8
1612 || r_type == R_390_16
1613 || r_type == R_390_32
1614 || r_type == R_390_64
1615 || (h != NULL
1616 && h->dynindx != -1
1617 && (! info->symbolic
1618 || (h->elf_link_hash_flags
1619 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1620 {
1621 Elf_Internal_Rela outrel;
1622 boolean skip, relocate;
1623
1624 /* When generating a shared object, these relocations
1625 are copied into the output file to be resolved at run
1626 time. */
1627
1628 if (sreloc == NULL)
1629 {
1630 const char *name;
1631
1632 name = (bfd_elf_string_from_elf_section
1633 (input_bfd,
1634 elf_elfheader (input_bfd)->e_shstrndx,
1635 elf_section_data (input_section)->rel_hdr.sh_name));
1636 if (name == NULL)
1637 return false;
1638
1639 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1640 && strcmp (bfd_get_section_name (input_bfd,
1641 input_section),
1642 name + 5) == 0);
1643
1644 sreloc = bfd_get_section_by_name (dynobj, name);
1645 BFD_ASSERT (sreloc != NULL);
1646 }
1647
1648 skip = false;
1649
1650 if (elf_section_data (input_section)->stab_info == NULL)
1651 outrel.r_offset = rel->r_offset;
1652 else
1653 {
1654 bfd_vma off;
1655
1656 off = (_bfd_stab_section_offset
1657 (output_bfd, &elf_hash_table (info)->stab_info,
1658 input_section,
1659 &elf_section_data (input_section)->stab_info,
1660 rel->r_offset));
1661 if (off == (bfd_vma) -1)
1662 skip = true;
1663 outrel.r_offset = off;
1664 }
1665
1666 outrel.r_offset += (input_section->output_section->vma
1667 + input_section->output_offset);
1668
1669 if (skip)
1670 {
1671 memset (&outrel, 0, sizeof outrel);
1672 relocate = false;
1673 }
1674 else if (r_type == R_390_PC16 ||
1675 r_type == R_390_PC16DBL ||
1676 r_type == R_390_PC32 ||
1677 r_type == R_390_PC32DBL ||
1678 r_type == R_390_PC64)
1679 {
1680 BFD_ASSERT (h != NULL && h->dynindx != -1);
1681 relocate = false;
1682 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
1683 outrel.r_addend = relocation + rel->r_addend;
1684 }
1685 else
1686 {
1687 /* h->dynindx may be -1 if this symbol was marked to
1688 become local. */
1689 if (h == NULL
1690 || ((info->symbolic || h->dynindx == -1)
1691 && (h->elf_link_hash_flags
1692 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1693 {
1694 relocate = true;
1695 outrel.r_info = ELF64_R_INFO (0, R_390_RELATIVE);
1696 outrel.r_addend = relocation + rel->r_addend;
1697 }
1698 else
1699 {
1700 BFD_ASSERT (h->dynindx != -1);
1701 relocate = false;
1702 outrel.r_info = ELF64_R_INFO (h->dynindx, R_390_64);
1703 outrel.r_addend = relocation + rel->r_addend;
1704 }
1705 }
1706
1707 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
1708 (((Elf64_External_Rela *)
1709 sreloc->contents)
1710 + sreloc->reloc_count));
1711 ++sreloc->reloc_count;
1712
1713 /* If this reloc is against an external symbol, we do
1714 not want to fiddle with the addend. Otherwise, we
1715 need to include the symbol value so that it becomes
1716 an addend for the dynamic reloc. */
1717 if (! relocate)
1718 continue;
1719 }
1720
1721 break;
1722
1723 default:
1724 break;
1725 }
1726
1727 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1728 contents, rel->r_offset,
1729 relocation, rel->r_addend);
1730
1731 if (r != bfd_reloc_ok)
1732 {
1733 switch (r)
1734 {
1735 default:
1736 case bfd_reloc_outofrange:
1737 abort ();
1738 case bfd_reloc_overflow:
1739 {
1740 const char *name;
1741
1742 if (h != NULL)
1743 name = h->root.root.string;
1744 else
1745 {
1746 name = bfd_elf_string_from_elf_section (input_bfd,
1747 symtab_hdr->sh_link,
1748 sym->st_name);
1749 if (name == NULL)
1750 return false;
1751 if (*name == '\0')
1752 name = bfd_section_name (input_bfd, sec);
1753 }
1754 if (! ((*info->callbacks->reloc_overflow)
1755 (info, name, howto->name, (bfd_vma) 0,
1756 input_bfd, input_section, rel->r_offset)))
1757 return false;
1758 }
1759 break;
1760 }
1761 }
1762 }
1763
1764 return true;
1765 }
1766
1767 /* Finish up dynamic symbol handling. We set the contents of various
1768 dynamic sections here. */
1769
1770 static boolean
1771 elf_s390_finish_dynamic_symbol (output_bfd, info, h, sym)
1772 bfd *output_bfd;
1773 struct bfd_link_info *info;
1774 struct elf_link_hash_entry *h;
1775 Elf_Internal_Sym *sym;
1776 {
1777 bfd *dynobj;
1778
1779 dynobj = elf_hash_table (info)->dynobj;
1780
1781 if (h->plt.offset != (bfd_vma) -1)
1782 {
1783 asection *splt;
1784 asection *srela;
1785 Elf_Internal_Rela rela;
1786 bfd_vma got_offset;
1787 bfd_vma plt_index;
1788 asection *sgot;
1789
1790 /* This symbol has an entry in the procedure linkage table. Set
1791 it up. */
1792
1793 BFD_ASSERT (h->dynindx != -1);
1794
1795 splt = bfd_get_section_by_name (dynobj, ".plt");
1796 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1797 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1798 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
1799
1800 /* Calc. index no.
1801 Current offset - size first entry / entry size. */
1802 plt_index = (h->plt.offset - PLT_FIRST_ENTRY_SIZE) / PLT_ENTRY_SIZE;
1803
1804 /* Offset in GOT is PLT index plus GOT headers(3) times 8,
1805 addr & GOT addr. */
1806 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
1807
1808 /* Fill in the blueprint of a PLT. */
1809 bfd_put_32 (output_bfd, PLT_ENTRY_WORD0,
1810 splt->contents + h->plt.offset);
1811 bfd_put_32 (output_bfd, PLT_ENTRY_WORD1,
1812 splt->contents + h->plt.offset + 4);
1813 bfd_put_32 (output_bfd, PLT_ENTRY_WORD2,
1814 splt->contents + h->plt.offset + 8);
1815 bfd_put_32 (output_bfd, PLT_ENTRY_WORD3,
1816 splt->contents + h->plt.offset + 12);
1817 bfd_put_32 (output_bfd, PLT_ENTRY_WORD4,
1818 splt->contents + h->plt.offset + 16);
1819 bfd_put_32 (output_bfd, PLT_ENTRY_WORD5,
1820 splt->contents + h->plt.offset + 20);
1821 bfd_put_32 (output_bfd, PLT_ENTRY_WORD6,
1822 splt->contents + h->plt.offset + 24);
1823 bfd_put_32 (output_bfd, PLT_ENTRY_WORD7,
1824 splt->contents + h->plt.offset + 28);
1825 /* Fixup the relative address to the GOT entry */
1826 bfd_put_32 (output_bfd,
1827 (sgot->output_section->vma + sgot->output_offset + got_offset
1828 - (splt->output_section->vma + h->plt.offset))/2,
1829 splt->contents + h->plt.offset + 2);
1830 /* Fixup the relative branch to PLT 0 */
1831 bfd_put_32 (output_bfd, - (PLT_FIRST_ENTRY_SIZE +
1832 (PLT_ENTRY_SIZE * plt_index) + 22)/2,
1833 splt->contents + h->plt.offset + 24);
1834 /* Fixup offset into symbol table */
1835 bfd_put_32 (output_bfd, plt_index * sizeof (Elf64_External_Rela),
1836 splt->contents + h->plt.offset + 28);
1837
1838 /* Fill in the entry in the .rela.plt section. */
1839 rela.r_offset = (sgot->output_section->vma
1840 + sgot->output_offset
1841 + got_offset);
1842 rela.r_info = ELF64_R_INFO (h->dynindx, R_390_JMP_SLOT);
1843 rela.r_addend = 0;
1844 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1845 ((Elf64_External_Rela *) srela->contents
1846 + plt_index ));
1847
1848 /* Fill in the entry in the global offset table.
1849 Points to instruction after GOT offset. */
1850 bfd_put_64 (output_bfd,
1851 (splt->output_section->vma
1852 + splt->output_offset
1853 + h->plt.offset
1854 + 14),
1855 sgot->contents + got_offset);
1856
1857
1858 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1859 {
1860 /* Mark the symbol as undefined, rather than as defined in
1861 the .plt section. Leave the value alone. */
1862 sym->st_shndx = SHN_UNDEF;
1863 }
1864 }
1865
1866 if (h->got.offset != (bfd_vma) -1)
1867 {
1868 asection *sgot;
1869 asection *srela;
1870 Elf_Internal_Rela rela;
1871
1872 /* This symbol has an entry in the global offset table. Set it
1873 up. */
1874
1875 sgot = bfd_get_section_by_name (dynobj, ".got");
1876 srela = bfd_get_section_by_name (dynobj, ".rela.got");
1877 BFD_ASSERT (sgot != NULL && srela != NULL);
1878
1879 rela.r_offset = (sgot->output_section->vma
1880 + sgot->output_offset
1881 + (h->got.offset &~ (bfd_vma) 1));
1882
1883 /* If this is a static link, or it is a -Bsymbolic link and the
1884 symbol is defined locally or was forced to be local because
1885 of a version file, we just want to emit a RELATIVE reloc.
1886 The entry in the global offset table will already have been
1887 initialized in the relocate_section function. */
1888 if (! elf_hash_table (info)->dynamic_sections_created
1889 || (info->shared
1890 && (info->symbolic || h->dynindx == -1)
1891 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1892 {
1893 rela.r_info = ELF64_R_INFO (0, R_390_RELATIVE);
1894 rela.r_addend = (h->root.u.def.value
1895 + h->root.u.def.section->output_section->vma
1896 + h->root.u.def.section->output_offset);
1897 }
1898 else
1899 {
1900 BFD_ASSERT((h->got.offset & 1) == 0);
1901 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
1902 rela.r_info = ELF64_R_INFO (h->dynindx, R_390_GLOB_DAT);
1903 rela.r_addend = 0;
1904 }
1905
1906 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1907 ((Elf64_External_Rela *) srela->contents
1908 + srela->reloc_count));
1909 ++srela->reloc_count;
1910 }
1911
1912 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1913 {
1914 asection *s;
1915 Elf_Internal_Rela rela;
1916
1917 /* This symbols needs a copy reloc. Set it up. */
1918
1919 BFD_ASSERT (h->dynindx != -1
1920 && (h->root.type == bfd_link_hash_defined
1921 || h->root.type == bfd_link_hash_defweak));
1922
1923
1924 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1925 ".rela.bss");
1926 BFD_ASSERT (s != NULL);
1927
1928 rela.r_offset = (h->root.u.def.value
1929 + h->root.u.def.section->output_section->vma
1930 + h->root.u.def.section->output_offset);
1931 rela.r_info = ELF64_R_INFO (h->dynindx, R_390_COPY);
1932 rela.r_addend = 0;
1933 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1934 ((Elf64_External_Rela *) s->contents
1935 + s->reloc_count));
1936 ++s->reloc_count;
1937 }
1938
1939 /* Mark some specially defined symbols as absolute. */
1940 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1941 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
1942 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
1943 sym->st_shndx = SHN_ABS;
1944
1945 return true;
1946 }
1947
1948 /* Finish up the dynamic sections. */
1949
1950 static boolean
1951 elf_s390_finish_dynamic_sections (output_bfd, info)
1952 bfd *output_bfd;
1953 struct bfd_link_info *info;
1954 {
1955 bfd *dynobj;
1956 asection *sdyn;
1957 asection *sgot;
1958
1959 dynobj = elf_hash_table (info)->dynobj;
1960
1961 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1962 BFD_ASSERT (sgot != NULL);
1963 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1964
1965 if (elf_hash_table (info)->dynamic_sections_created)
1966 {
1967 asection *splt;
1968 Elf64_External_Dyn *dyncon, *dynconend;
1969
1970 BFD_ASSERT (sdyn != NULL);
1971
1972 dyncon = (Elf64_External_Dyn *) sdyn->contents;
1973 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
1974 for (; dyncon < dynconend; dyncon++)
1975 {
1976 Elf_Internal_Dyn dyn;
1977 const char *name;
1978 asection *s;
1979
1980 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
1981
1982 switch (dyn.d_tag)
1983 {
1984 default:
1985 break;
1986
1987 case DT_PLTGOT:
1988 name = ".got";
1989 goto get_vma;
1990 case DT_JMPREL:
1991 name = ".rela.plt";
1992 get_vma:
1993 s = bfd_get_section_by_name(output_bfd, name);
1994 BFD_ASSERT (s != NULL);
1995 dyn.d_un.d_ptr = s->vma;
1996 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
1997 break;
1998
1999 case DT_PLTRELSZ:
2000 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2001 BFD_ASSERT (s != NULL);
2002 if (s->_cooked_size != 0)
2003 dyn.d_un.d_val = s->_cooked_size;
2004 else
2005 dyn.d_un.d_val = s->_raw_size;
2006 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2007 break;
2008
2009 case DT_RELASZ:
2010 /* The procedure linkage table relocs (DT_JMPREL) should
2011 not be included in the overall relocs (DT_RELA).
2012 Therefore, we override the DT_RELASZ entry here to
2013 make it not include the JMPREL relocs. Since the
2014 linker script arranges for .rela.plt to follow all
2015 other relocation sections, we don't have to worry
2016 about changing the DT_RELA entry. */
2017 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2018 if (s != NULL)
2019 {
2020 if (s->_cooked_size != 0)
2021 dyn.d_un.d_val -= s->_cooked_size;
2022 else
2023 dyn.d_un.d_val -= s->_raw_size;
2024 }
2025 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2026 break;
2027 }
2028 }
2029
2030 /* Fill in the special first entry in the procedure linkage table. */
2031 splt = bfd_get_section_by_name (dynobj, ".plt");
2032 if (splt && splt->_raw_size > 0)
2033 {
2034 /* fill in blueprint for plt 0 entry */
2035 bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD0,
2036 splt->contents );
2037 bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD1,
2038 splt->contents +4 );
2039 bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD3,
2040 splt->contents +12 );
2041 bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD4,
2042 splt->contents +16 );
2043 bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD5,
2044 splt->contents +20 );
2045 bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD6,
2046 splt->contents + 24);
2047 bfd_put_32 (output_bfd, PLT_FIRST_ENTRY_WORD7,
2048 splt->contents + 28 );
2049 /* Fixup relative address to start of GOT */
2050 bfd_put_32 (output_bfd,
2051 (sgot->output_section->vma + sgot->output_offset
2052 - splt->output_section->vma - 6)/2,
2053 splt->contents + 8);
2054 }
2055
2056 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2057 PLT_ENTRY_SIZE;
2058 }
2059
2060 /* Set the first entry in the global offset table to the address of
2061 the dynamic section. */
2062 if (sgot->_raw_size > 0)
2063 {
2064 if (sdyn == NULL)
2065 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2066 else
2067 bfd_put_64 (output_bfd,
2068 sdyn->output_section->vma + sdyn->output_offset,
2069 sgot->contents);
2070
2071 /* One entry for shared object struct ptr. */
2072 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
2073 /* One entry for _dl_runtime_resolve. */
2074 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + 12);
2075 }
2076
2077 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2078
2079 return true;
2080 }
2081
2082 static boolean
2083 elf_s390_object_p (abfd)
2084 bfd *abfd;
2085 {
2086 return bfd_default_set_arch_mach (abfd, bfd_arch_s390, bfd_mach_s390_esame);
2087 }
2088
2089
2090 static enum elf_reloc_type_class
2091 elf_s390_reloc_type_class (rela)
2092 const Elf_Internal_Rela *rela;
2093 {
2094 switch ((int) ELF64_R_TYPE (rela->r_info))
2095 {
2096 case R_390_RELATIVE:
2097 return reloc_class_relative;
2098 case R_390_JMP_SLOT:
2099 return reloc_class_plt;
2100 case R_390_COPY:
2101 return reloc_class_copy;
2102 default:
2103 return reloc_class_normal;
2104 }
2105 }
2106
2107 /*
2108 * Why was the hash table entry size definition changed from
2109 * ARCH_SIZE/8 to 4? This breaks the 64 bit dynamic linker and
2110 * this is the only reason for the s390_elf64_size_info structure.
2111 */
2112
2113 const struct elf_size_info s390_elf64_size_info =
2114 {
2115 sizeof (Elf64_External_Ehdr),
2116 sizeof (Elf64_External_Phdr),
2117 sizeof (Elf64_External_Shdr),
2118 sizeof (Elf64_External_Rel),
2119 sizeof (Elf64_External_Rela),
2120 sizeof (Elf64_External_Sym),
2121 sizeof (Elf64_External_Dyn),
2122 sizeof (Elf_External_Note),
2123 8, /* hash-table entry size */
2124 1, /* internal relocations per external relocations */
2125 64, /* arch_size */
2126 8, /* file_align */
2127 ELFCLASS64, EV_CURRENT,
2128 bfd_elf64_write_out_phdrs,
2129 bfd_elf64_write_shdrs_and_ehdr,
2130 bfd_elf64_write_relocs,
2131 bfd_elf64_swap_symbol_out,
2132 bfd_elf64_slurp_reloc_table,
2133 bfd_elf64_slurp_symbol_table,
2134 bfd_elf64_swap_dyn_in,
2135 bfd_elf64_swap_dyn_out,
2136 NULL,
2137 NULL,
2138 NULL,
2139 NULL
2140 };
2141
2142 #define TARGET_BIG_SYM bfd_elf64_s390_vec
2143 #define TARGET_BIG_NAME "elf64-s390"
2144 #define ELF_ARCH bfd_arch_s390
2145 #define ELF_MACHINE_CODE EM_S390
2146 #define ELF_MACHINE_ALT1 EM_S390_OLD
2147 #define ELF_MAXPAGESIZE 0x1000
2148
2149 #define elf_backend_size_info s390_elf64_size_info
2150
2151 #define elf_backend_can_gc_sections 1
2152 #define elf_backend_can_refcount 1
2153 #define elf_backend_want_got_plt 1
2154 #define elf_backend_plt_readonly 1
2155 #define elf_backend_want_plt_sym 0
2156 #define elf_backend_got_header_size 24
2157 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2158
2159 #define elf_info_to_howto elf_s390_info_to_howto
2160
2161 #define bfd_elf64_bfd_final_link _bfd_elf64_gc_common_final_link
2162 #define bfd_elf64_bfd_is_local_label_name elf_s390_is_local_label_name
2163 #define bfd_elf64_bfd_link_hash_table_create elf_s390_link_hash_table_create
2164 #define bfd_elf64_bfd_reloc_type_lookup elf_s390_reloc_type_lookup
2165
2166 #define elf_backend_adjust_dynamic_symbol elf_s390_adjust_dynamic_symbol
2167 #define elf_backend_check_relocs elf_s390_check_relocs
2168 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
2169 #define elf_backend_finish_dynamic_sections elf_s390_finish_dynamic_sections
2170 #define elf_backend_finish_dynamic_symbol elf_s390_finish_dynamic_symbol
2171 #define elf_backend_gc_mark_hook elf_s390_gc_mark_hook
2172 #define elf_backend_gc_sweep_hook elf_s390_gc_sweep_hook
2173 #define elf_backend_relocate_section elf_s390_relocate_section
2174 #define elf_backend_size_dynamic_sections elf_s390_size_dynamic_sections
2175 #define elf_backend_reloc_type_class elf_s390_reloc_type_class
2176
2177 #define elf_backend_object_p elf_s390_object_p
2178
2179 #include "elf64-target.h"
This page took 0.133108 seconds and 4 git commands to generate.