e0a18cdbbe353f396a9693e07447befa13973baa
[deliverable/binutils-gdb.git] / bfd / elf64-s390.c
1 /* IBM S/390-specific support for 64-bit ELF
2 Copyright 2000, 2001 Free Software Foundation, Inc.
3 Contributed Martin Schwidefsky (schwidefsky@de.ibm.com).
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27
28 static reloc_howto_type *elf_s390_reloc_type_lookup
29 PARAMS ((bfd *, bfd_reloc_code_real_type));
30 static void elf_s390_info_to_howto
31 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
32 static boolean elf_s390_is_local_label_name
33 PARAMS ((bfd *, const char *));
34 static struct bfd_hash_entry *link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_s390_link_hash_table_create
37 PARAMS ((bfd *));
38 static boolean create_got_section
39 PARAMS((bfd *, struct bfd_link_info *));
40 static boolean elf_s390_create_dynamic_sections
41 PARAMS((bfd *, struct bfd_link_info *));
42 static void elf_s390_copy_indirect_symbol
43 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
44 static boolean elf_s390_check_relocs
45 PARAMS ((bfd *, struct bfd_link_info *, asection *,
46 const Elf_Internal_Rela *));
47 static asection *elf_s390_gc_mark_hook
48 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
49 struct elf_link_hash_entry *, Elf_Internal_Sym *));
50 static boolean elf_s390_gc_sweep_hook
51 PARAMS ((bfd *, struct bfd_link_info *, asection *,
52 const Elf_Internal_Rela *));
53 static boolean elf_s390_adjust_dynamic_symbol
54 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
55 static boolean allocate_dynrelocs
56 PARAMS ((struct elf_link_hash_entry *, PTR));
57 static boolean readonly_dynrelocs
58 PARAMS ((struct elf_link_hash_entry *, PTR));
59 static boolean elf_s390_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static boolean elf_s390_relocate_section
62 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
63 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
64 static boolean elf_s390_finish_dynamic_symbol
65 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
66 Elf_Internal_Sym *));
67 static enum elf_reloc_type_class elf_s390_reloc_type_class
68 PARAMS ((const Elf_Internal_Rela *));
69 static boolean elf_s390_finish_dynamic_sections
70 PARAMS ((bfd *, struct bfd_link_info *));
71 static boolean elf_s390_object_p PARAMS ((bfd *));
72
73 #define USE_RELA 1 /* We want RELA relocations, not REL. */
74
75 #include "elf/s390.h"
76
77 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
78 from smaller values. Start with zero, widen, *then* decrement. */
79 #define MINUS_ONE (((bfd_vma)0) - 1)
80
81 /* The relocation "howto" table. */
82 static reloc_howto_type elf_howto_table[] =
83 {
84 HOWTO (R_390_NONE, /* type */
85 0, /* rightshift */
86 0, /* size (0 = byte, 1 = short, 2 = long) */
87 0, /* bitsize */
88 false, /* pc_relative */
89 0, /* bitpos */
90 complain_overflow_dont, /* complain_on_overflow */
91 bfd_elf_generic_reloc, /* special_function */
92 "R_390_NONE", /* name */
93 false, /* partial_inplace */
94 0, /* src_mask */
95 0, /* dst_mask */
96 false), /* pcrel_offset */
97
98 HOWTO(R_390_8, 0, 0, 8, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_8", false, 0,0x000000ff, false),
99 HOWTO(R_390_12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_12", false, 0,0x00000fff, false),
100 HOWTO(R_390_16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_16", false, 0,0x0000ffff, false),
101 HOWTO(R_390_32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_32", false, 0,0xffffffff, false),
102 HOWTO(R_390_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC32", false, 0,0xffffffff, true),
103 HOWTO(R_390_GOT12, 0, 1, 12, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "R_390_GOT12", false, 0,0x00000fff, false),
104 HOWTO(R_390_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT32", false, 0,0xffffffff, false),
105 HOWTO(R_390_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT32", false, 0,0xffffffff, true),
106 HOWTO(R_390_COPY, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_COPY", false, 0,MINUS_ONE, false),
107 HOWTO(R_390_GLOB_DAT, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GLOB_DAT",false, 0,MINUS_ONE, false),
108 HOWTO(R_390_JMP_SLOT, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_JMP_SLOT",false, 0,MINUS_ONE, false),
109 HOWTO(R_390_RELATIVE, 0, 4, 64, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_RELATIVE",false, 0,MINUS_ONE, false),
110 HOWTO(R_390_GOTOFF, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTOFF", false, 0,MINUS_ONE, false),
111 HOWTO(R_390_GOTPC, 0, 4, 64, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPC", false, 0,MINUS_ONE, true),
112 HOWTO(R_390_GOT16, 0, 1, 16, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT16", false, 0,0x0000ffff, false),
113 HOWTO(R_390_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16", false, 0,0x0000ffff, true),
114 HOWTO(R_390_PC16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC16DBL", false, 0,0x0000ffff, true),
115 HOWTO(R_390_PLT16DBL, 1, 1, 16, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT16DBL", false, 0,0x0000ffff, true),
116 HOWTO(R_390_PC32DBL, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC32DBL", false, 0,0xffffffff, true),
117 HOWTO(R_390_PLT32DBL, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT32DBL", false, 0,0xffffffff, true),
118 HOWTO(R_390_GOTPCDBL, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTPCDBL", false, 0,MINUS_ONE, true),
119 HOWTO(R_390_64, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_64", false, 0,MINUS_ONE, false),
120 HOWTO(R_390_PC64, 0, 4, 64, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PC64", false, 0,MINUS_ONE, true),
121 HOWTO(R_390_GOT64, 0, 4, 64, false, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOT64", false, 0,MINUS_ONE, false),
122 HOWTO(R_390_PLT64, 0, 4, 64, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_PLT64", false, 0,MINUS_ONE, true),
123 HOWTO(R_390_GOTENT, 1, 2, 32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_390_GOTENT", false, 0,MINUS_ONE, true),
124 };
125
126 /* GNU extension to record C++ vtable hierarchy. */
127 static reloc_howto_type elf64_s390_vtinherit_howto =
128 HOWTO (R_390_GNU_VTINHERIT, 0,4,0,false,0,complain_overflow_dont, NULL, "R_390_GNU_VTINHERIT", false,0, 0, false);
129 static reloc_howto_type elf64_s390_vtentry_howto =
130 HOWTO (R_390_GNU_VTENTRY, 0,4,0,false,0,complain_overflow_dont, _bfd_elf_rel_vtable_reloc_fn,"R_390_GNU_VTENTRY", false,0,0, false);
131
132 static reloc_howto_type *
133 elf_s390_reloc_type_lookup (abfd, code)
134 bfd *abfd ATTRIBUTE_UNUSED;
135 bfd_reloc_code_real_type code;
136 {
137 switch (code)
138 {
139 case BFD_RELOC_NONE:
140 return &elf_howto_table[(int) R_390_NONE];
141 case BFD_RELOC_8:
142 return &elf_howto_table[(int) R_390_8];
143 case BFD_RELOC_390_12:
144 return &elf_howto_table[(int) R_390_12];
145 case BFD_RELOC_16:
146 return &elf_howto_table[(int) R_390_16];
147 case BFD_RELOC_32:
148 return &elf_howto_table[(int) R_390_32];
149 case BFD_RELOC_CTOR:
150 return &elf_howto_table[(int) R_390_32];
151 case BFD_RELOC_32_PCREL:
152 return &elf_howto_table[(int) R_390_PC32];
153 case BFD_RELOC_390_GOT12:
154 return &elf_howto_table[(int) R_390_GOT12];
155 case BFD_RELOC_32_GOT_PCREL:
156 return &elf_howto_table[(int) R_390_GOT32];
157 case BFD_RELOC_390_PLT32:
158 return &elf_howto_table[(int) R_390_PLT32];
159 case BFD_RELOC_390_COPY:
160 return &elf_howto_table[(int) R_390_COPY];
161 case BFD_RELOC_390_GLOB_DAT:
162 return &elf_howto_table[(int) R_390_GLOB_DAT];
163 case BFD_RELOC_390_JMP_SLOT:
164 return &elf_howto_table[(int) R_390_JMP_SLOT];
165 case BFD_RELOC_390_RELATIVE:
166 return &elf_howto_table[(int) R_390_RELATIVE];
167 case BFD_RELOC_32_GOTOFF:
168 return &elf_howto_table[(int) R_390_GOTOFF];
169 case BFD_RELOC_390_GOTPC:
170 return &elf_howto_table[(int) R_390_GOTPC];
171 case BFD_RELOC_390_GOT16:
172 return &elf_howto_table[(int) R_390_GOT16];
173 case BFD_RELOC_16_PCREL:
174 return &elf_howto_table[(int) R_390_PC16];
175 case BFD_RELOC_390_PC16DBL:
176 return &elf_howto_table[(int) R_390_PC16DBL];
177 case BFD_RELOC_390_PLT16DBL:
178 return &elf_howto_table[(int) R_390_PLT16DBL];
179 case BFD_RELOC_VTABLE_INHERIT:
180 return &elf64_s390_vtinherit_howto;
181 case BFD_RELOC_VTABLE_ENTRY:
182 return &elf64_s390_vtentry_howto;
183 case BFD_RELOC_390_PC32DBL:
184 return &elf_howto_table[(int) R_390_PC32DBL];
185 case BFD_RELOC_390_PLT32DBL:
186 return &elf_howto_table[(int) R_390_PLT32DBL];
187 case BFD_RELOC_390_GOTPCDBL:
188 return &elf_howto_table[(int) R_390_GOTPCDBL];
189 case BFD_RELOC_64:
190 return &elf_howto_table[(int) R_390_64];
191 case BFD_RELOC_64_PCREL:
192 return &elf_howto_table[(int) R_390_PC64];
193 case BFD_RELOC_390_GOT64:
194 return &elf_howto_table[(int) R_390_GOT64];
195 case BFD_RELOC_390_PLT64:
196 return &elf_howto_table[(int) R_390_PLT64];
197 case BFD_RELOC_390_GOTENT:
198 return &elf_howto_table[(int) R_390_GOTENT];
199 default:
200 break;
201 }
202 return 0;
203 }
204
205 /* We need to use ELF64_R_TYPE so we have our own copy of this function,
206 and elf64-s390.c has its own copy. */
207
208 static void
209 elf_s390_info_to_howto (abfd, cache_ptr, dst)
210 bfd *abfd ATTRIBUTE_UNUSED;
211 arelent *cache_ptr;
212 Elf_Internal_Rela *dst;
213 {
214 switch (ELF64_R_TYPE(dst->r_info))
215 {
216 case R_390_GNU_VTINHERIT:
217 cache_ptr->howto = &elf64_s390_vtinherit_howto;
218 break;
219
220 case R_390_GNU_VTENTRY:
221 cache_ptr->howto = &elf64_s390_vtentry_howto;
222 break;
223
224 default:
225 BFD_ASSERT (ELF64_R_TYPE(dst->r_info) < (unsigned int) R_390_max);
226 cache_ptr->howto = &elf_howto_table[ELF64_R_TYPE(dst->r_info)];
227 }
228 }
229
230 static boolean
231 elf_s390_is_local_label_name (abfd, name)
232 bfd *abfd;
233 const char *name;
234 {
235 if (name[0] == '.' && (name[1] == 'X' || name[1] == 'L'))
236 return true;
237
238 return _bfd_elf_is_local_label_name (abfd, name);
239 }
240
241 /* Functions for the 390 ELF linker. */
242
243 /* The name of the dynamic interpreter. This is put in the .interp
244 section. */
245
246 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
247
248 /* The size in bytes of the first entry in the procedure linkage table. */
249 #define PLT_FIRST_ENTRY_SIZE 32
250 /* The size in bytes of an entry in the procedure linkage table. */
251 #define PLT_ENTRY_SIZE 32
252
253 #define GOT_ENTRY_SIZE 8
254
255 /* The first three entries in a procedure linkage table are reserved,
256 and the initial contents are unimportant (we zero them out).
257 Subsequent entries look like this. See the SVR4 ABI 386
258 supplement to see how this works. */
259
260 /* For the s390, simple addr offset can only be 0 - 4096.
261 To use the full 16777216 TB address space, several instructions
262 are needed to load an address in a register and execute
263 a branch( or just saving the address)
264
265 Furthermore, only r 0 and 1 are free to use!!! */
266
267 /* The first 3 words in the GOT are then reserved.
268 Word 0 is the address of the dynamic table.
269 Word 1 is a pointer to a structure describing the object
270 Word 2 is used to point to the loader entry address.
271
272 The code for PLT entries looks like this:
273
274 The GOT holds the address in the PLT to be executed.
275 The loader then gets:
276 24(15) = Pointer to the structure describing the object.
277 28(15) = Offset in symbol table
278 The loader must then find the module where the function is
279 and insert the address in the GOT.
280
281 PLT1: LARL 1,<fn>@GOTENT # 6 bytes Load address of GOT entry in r1
282 LG 1,0(1) # 6 bytes Load address from GOT in r1
283 BCR 15,1 # 2 bytes Jump to address
284 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
285 LGF 1,12(1) # 6 bytes Load offset in symbl table in r1
286 BRCL 15,-x # 6 bytes Jump to start of PLT
287 .long ? # 4 bytes offset into symbol table
288
289 Total = 32 bytes per PLT entry
290 Fixup at offset 2: relative address to GOT entry
291 Fixup at offset 22: relative branch to PLT0
292 Fixup at offset 28: 32 bit offset into symbol table
293
294 A 32 bit offset into the symbol table is enough. It allows for symbol
295 tables up to a size of 2 gigabyte. A single dynamic object (the main
296 program, any shared library) is limited to 4GB in size and I want to see
297 the program that manages to have a symbol table of more than 2 GB with a
298 total size of at max 4 GB. */
299
300 #define PLT_ENTRY_WORD0 (bfd_vma) 0xc0100000
301 #define PLT_ENTRY_WORD1 (bfd_vma) 0x0000e310
302 #define PLT_ENTRY_WORD2 (bfd_vma) 0x10000004
303 #define PLT_ENTRY_WORD3 (bfd_vma) 0x07f10d10
304 #define PLT_ENTRY_WORD4 (bfd_vma) 0xe310100c
305 #define PLT_ENTRY_WORD5 (bfd_vma) 0x0014c0f4
306 #define PLT_ENTRY_WORD6 (bfd_vma) 0x00000000
307 #define PLT_ENTRY_WORD7 (bfd_vma) 0x00000000
308
309 /* The first PLT entry pushes the offset into the symbol table
310 from R1 onto the stack at 8(15) and the loader object info
311 at 12(15), loads the loader address in R1 and jumps to it. */
312
313 /* The first entry in the PLT:
314
315 PLT0:
316 STG 1,56(15) # r1 contains the offset into the symbol table
317 LARL 1,_GLOBAL_OFFSET_TABLE # load address of global offset table
318 MVC 48(8,15),8(1) # move loader ino (object struct address) to stack
319 LG 1,16(1) # get entry address of loader
320 BCR 15,1 # jump to loader
321
322 Fixup at offset 8: relative address to start of GOT. */
323
324 #define PLT_FIRST_ENTRY_WORD0 (bfd_vma) 0xe310f038
325 #define PLT_FIRST_ENTRY_WORD1 (bfd_vma) 0x0024c010
326 #define PLT_FIRST_ENTRY_WORD2 (bfd_vma) 0x00000000
327 #define PLT_FIRST_ENTRY_WORD3 (bfd_vma) 0xd207f030
328 #define PLT_FIRST_ENTRY_WORD4 (bfd_vma) 0x1008e310
329 #define PLT_FIRST_ENTRY_WORD5 (bfd_vma) 0x10100004
330 #define PLT_FIRST_ENTRY_WORD6 (bfd_vma) 0x07f10700
331 #define PLT_FIRST_ENTRY_WORD7 (bfd_vma) 0x07000700
332
333 /* The s390 linker needs to keep track of the number of relocs that it
334 decides to copy as dynamic relocs in check_relocs for each symbol.
335 This is so that it can later discard them if they are found to be
336 unnecessary. We store the information in a field extending the
337 regular ELF linker hash table. */
338
339 struct elf_s390_dyn_relocs
340 {
341 struct elf_s390_dyn_relocs *next;
342
343 /* The input section of the reloc. */
344 asection *sec;
345
346 /* Total number of relocs copied for the input section. */
347 bfd_size_type count;
348
349 /* Number of pc-relative relocs copied for the input section. */
350 bfd_size_type pc_count;
351 };
352
353 /* s390 ELF linker hash entry. */
354
355 struct elf_s390_link_hash_entry
356 {
357 struct elf_link_hash_entry elf;
358
359 /* Track dynamic relocs copied for this symbol. */
360 struct elf_s390_dyn_relocs *dyn_relocs;
361 };
362
363 /* s390 ELF linker hash table. */
364
365 struct elf_s390_link_hash_table
366 {
367 struct elf_link_hash_table elf;
368
369 /* Short-cuts to get to dynamic linker sections. */
370 asection *sgot;
371 asection *sgotplt;
372 asection *srelgot;
373 asection *splt;
374 asection *srelplt;
375 asection *sdynbss;
376 asection *srelbss;
377
378 /* Small local sym to section mapping cache. */
379 struct sym_sec_cache sym_sec;
380 };
381
382 /* Get the s390 ELF linker hash table from a link_info structure. */
383
384 #define elf_s390_hash_table(p) \
385 ((struct elf_s390_link_hash_table *) ((p)->hash))
386
387 /* Create an entry in an s390 ELF linker hash table. */
388
389 static struct bfd_hash_entry *
390 link_hash_newfunc (entry, table, string)
391 struct bfd_hash_entry *entry;
392 struct bfd_hash_table *table;
393 const char *string;
394 {
395 /* Allocate the structure if it has not already been allocated by a
396 subclass. */
397 if (entry == NULL)
398 {
399 entry = bfd_hash_allocate (table,
400 sizeof (struct elf_s390_link_hash_entry));
401 if (entry == NULL)
402 return entry;
403 }
404
405 /* Call the allocation method of the superclass. */
406 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
407 if (entry != NULL)
408 {
409 struct elf_s390_link_hash_entry *eh;
410
411 eh = (struct elf_s390_link_hash_entry *) entry;
412 eh->dyn_relocs = NULL;
413 }
414
415 return entry;
416 }
417
418 /* Create an s390 ELF linker hash table. */
419
420 static struct bfd_link_hash_table *
421 elf_s390_link_hash_table_create (abfd)
422 bfd *abfd;
423 {
424 struct elf_s390_link_hash_table *ret;
425 bfd_size_type amt = sizeof (struct elf_s390_link_hash_table);
426
427 ret = (struct elf_s390_link_hash_table *) bfd_alloc (abfd, amt);
428 if (ret == NULL)
429 return NULL;
430
431 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
432 {
433 bfd_release (abfd, ret);
434 return NULL;
435 }
436
437 ret->sgot = NULL;
438 ret->sgotplt = NULL;
439 ret->srelgot = NULL;
440 ret->splt = NULL;
441 ret->srelplt = NULL;
442 ret->sdynbss = NULL;
443 ret->srelbss = NULL;
444 ret->sym_sec.abfd = NULL;
445
446 return &ret->elf.root;
447 }
448
449 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
450 shortcuts to them in our hash table. */
451
452 static boolean
453 create_got_section (dynobj, info)
454 bfd *dynobj;
455 struct bfd_link_info *info;
456 {
457 struct elf_s390_link_hash_table *htab;
458
459 if (! _bfd_elf_create_got_section (dynobj, info))
460 return false;
461
462 htab = elf_s390_hash_table (info);
463 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
464 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
465 if (!htab->sgot || !htab->sgotplt)
466 abort ();
467
468 htab->srelgot = bfd_make_section (dynobj, ".rela.got");
469 if (htab->srelgot == NULL
470 || ! bfd_set_section_flags (dynobj, htab->srelgot,
471 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
472 | SEC_IN_MEMORY | SEC_LINKER_CREATED
473 | SEC_READONLY))
474 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
475 return false;
476 return true;
477 }
478
479 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
480 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
481 hash table. */
482
483 static boolean
484 elf_s390_create_dynamic_sections (dynobj, info)
485 bfd *dynobj;
486 struct bfd_link_info *info;
487 {
488 struct elf_s390_link_hash_table *htab;
489
490 htab = elf_s390_hash_table (info);
491 if (!htab->sgot && !create_got_section (dynobj, info))
492 return false;
493
494 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
495 return false;
496
497 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
498 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
499 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
500 if (!info->shared)
501 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
502
503 if (!htab->splt || !htab->srelplt || !htab->sdynbss
504 || (!info->shared && !htab->srelbss))
505 abort ();
506
507 return true;
508 }
509
510 /* Copy the extra info we tack onto an elf_link_hash_entry. */
511
512 static void
513 elf_s390_copy_indirect_symbol (dir, ind)
514 struct elf_link_hash_entry *dir, *ind;
515 {
516 struct elf_s390_link_hash_entry *edir, *eind;
517
518 edir = (struct elf_s390_link_hash_entry *) dir;
519 eind = (struct elf_s390_link_hash_entry *) ind;
520
521 if (eind->dyn_relocs != NULL)
522 {
523 if (edir->dyn_relocs != NULL)
524 {
525 struct elf_s390_dyn_relocs **pp;
526 struct elf_s390_dyn_relocs *p;
527
528 if (ind->root.type == bfd_link_hash_indirect)
529 abort ();
530
531 /* Add reloc counts against the weak sym to the strong sym
532 list. Merge any entries against the same section. */
533 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
534 {
535 struct elf_s390_dyn_relocs *q;
536
537 for (q = edir->dyn_relocs; q != NULL; q = q->next)
538 if (q->sec == p->sec)
539 {
540 q->pc_count += p->pc_count;
541 q->count += p->count;
542 *pp = p->next;
543 break;
544 }
545 if (q == NULL)
546 pp = &p->next;
547 }
548 *pp = edir->dyn_relocs;
549 }
550
551 edir->dyn_relocs = eind->dyn_relocs;
552 eind->dyn_relocs = NULL;
553 }
554
555 _bfd_elf_link_hash_copy_indirect (dir, ind);
556 }
557
558 /* Look through the relocs for a section during the first phase, and
559 allocate space in the global offset table or procedure linkage
560 table. */
561
562 static boolean
563 elf_s390_check_relocs (abfd, info, sec, relocs)
564 bfd *abfd;
565 struct bfd_link_info *info;
566 asection *sec;
567 const Elf_Internal_Rela *relocs;
568 {
569 struct elf_s390_link_hash_table *htab;
570 Elf_Internal_Shdr *symtab_hdr;
571 struct elf_link_hash_entry **sym_hashes;
572 const Elf_Internal_Rela *rel;
573 const Elf_Internal_Rela *rel_end;
574 asection *sreloc;
575
576 if (info->relocateable)
577 return true;
578
579 htab = elf_s390_hash_table (info);
580 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
581 sym_hashes = elf_sym_hashes (abfd);
582
583 sreloc = NULL;
584
585 rel_end = relocs + sec->reloc_count;
586 for (rel = relocs; rel < rel_end; rel++)
587 {
588 unsigned long r_symndx;
589 struct elf_link_hash_entry *h;
590
591 r_symndx = ELF64_R_SYM (rel->r_info);
592
593 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
594 {
595 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
596 bfd_archive_filename (abfd),
597 r_symndx);
598 return false;
599 }
600
601 if (r_symndx < symtab_hdr->sh_info)
602 h = NULL;
603 else
604 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
605
606 switch (ELF64_R_TYPE (rel->r_info))
607 {
608 case R_390_GOT12:
609 case R_390_GOT16:
610 case R_390_GOT32:
611 case R_390_GOT64:
612 case R_390_GOTENT:
613 /* This symbol requires a global offset table entry. */
614 if (h != NULL)
615 {
616 h->got.refcount += 1;
617 }
618 else
619 {
620 bfd_signed_vma *local_got_refcounts;
621
622 /* This is a global offset table entry for a local symbol. */
623 local_got_refcounts = elf_local_got_refcounts (abfd);
624 if (local_got_refcounts == NULL)
625 {
626 bfd_size_type size;
627
628 size = symtab_hdr->sh_info;
629 size *= sizeof (bfd_signed_vma);
630 local_got_refcounts = ((bfd_signed_vma *)
631 bfd_zalloc (abfd, size));
632 if (local_got_refcounts == NULL)
633 return false;
634 elf_local_got_refcounts (abfd) = local_got_refcounts;
635 }
636 local_got_refcounts[r_symndx] += 1;
637 }
638 /* Fall through */
639
640 case R_390_GOTOFF:
641 case R_390_GOTPC:
642 case R_390_GOTPCDBL:
643 if (htab->sgot == NULL)
644 {
645 if (htab->elf.dynobj == NULL)
646 htab->elf.dynobj = abfd;
647 if (!create_got_section (htab->elf.dynobj, info))
648 return false;
649 }
650 break;
651
652 case R_390_PLT16DBL:
653 case R_390_PLT32:
654 case R_390_PLT32DBL:
655 case R_390_PLT64:
656 /* This symbol requires a procedure linkage table entry. We
657 actually build the entry in adjust_dynamic_symbol,
658 because this might be a case of linking PIC code which is
659 never referenced by a dynamic object, in which case we
660 don't need to generate a procedure linkage table entry
661 after all. */
662
663 /* If this is a local symbol, we resolve it directly without
664 creating a procedure linkage table entry. */
665 if (h == NULL)
666 continue;
667
668 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
669 h->plt.refcount += 1;
670 break;
671
672 case R_390_8:
673 case R_390_16:
674 case R_390_32:
675 case R_390_64:
676 case R_390_PC16:
677 case R_390_PC16DBL:
678 case R_390_PC32:
679 case R_390_PC32DBL:
680 case R_390_PC64:
681 if (h != NULL && !info->shared)
682 {
683 /* If this reloc is in a read-only section, we might
684 need a copy reloc. We can't check reliably at this
685 stage whether the section is read-only, as input
686 sections have not yet been mapped to output sections.
687 Tentatively set the flag for now, and correct in
688 adjust_dynamic_symbol. */
689 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
690
691 /* We may need a .plt entry if the function this reloc
692 refers to is in a shared lib. */
693 h->plt.refcount += 1;
694 }
695
696 /* If we are creating a shared library, and this is a reloc
697 against a global symbol, or a non PC relative reloc
698 against a local symbol, then we need to copy the reloc
699 into the shared library. However, if we are linking with
700 -Bsymbolic, we do not need to copy a reloc against a
701 global symbol which is defined in an object we are
702 including in the link (i.e., DEF_REGULAR is set). At
703 this point we have not seen all the input files, so it is
704 possible that DEF_REGULAR is not set now but will be set
705 later (it is never cleared). In case of a weak definition,
706 DEF_REGULAR may be cleared later by a strong definition in
707 a shared library. We account for that possibility below by
708 storing information in the relocs_copied field of the hash
709 table entry. A similar situation occurs when creating
710 shared libraries and symbol visibility changes render the
711 symbol local.
712
713 If on the other hand, we are creating an executable, we
714 may need to keep relocations for symbols satisfied by a
715 dynamic library if we manage to avoid copy relocs for the
716 symbol. */
717 if ((info->shared
718 && (sec->flags & SEC_ALLOC) != 0
719 && ((ELF64_R_TYPE (rel->r_info) != R_390_PC16
720 && ELF64_R_TYPE (rel->r_info) != R_390_PC16DBL
721 && ELF64_R_TYPE (rel->r_info) != R_390_PC32
722 && ELF64_R_TYPE (rel->r_info) != R_390_PC32DBL
723 && ELF64_R_TYPE (rel->r_info) != R_390_PC64)
724 || (h != NULL
725 && (! info->symbolic
726 || h->root.type == bfd_link_hash_defweak
727 || (h->elf_link_hash_flags
728 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
729 || (!info->shared
730 && (sec->flags & SEC_ALLOC) != 0
731 && h != NULL
732 && (h->root.type == bfd_link_hash_defweak
733 || (h->elf_link_hash_flags
734 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
735 {
736 struct elf_s390_dyn_relocs *p;
737 struct elf_s390_dyn_relocs **head;
738
739 /* We must copy these reloc types into the output file.
740 Create a reloc section in dynobj and make room for
741 this reloc. */
742 if (sreloc == NULL)
743 {
744 const char *name;
745 bfd *dynobj;
746
747 name = (bfd_elf_string_from_elf_section
748 (abfd,
749 elf_elfheader (abfd)->e_shstrndx,
750 elf_section_data (sec)->rel_hdr.sh_name));
751 if (name == NULL)
752 return false;
753
754 if (strncmp (name, ".rela", 5) != 0
755 || strcmp (bfd_get_section_name (abfd, sec),
756 name + 5) != 0)
757 {
758 (*_bfd_error_handler)
759 (_("%s: bad relocation section name `%s\'"),
760 bfd_archive_filename (abfd), name);
761 }
762
763 if (htab->elf.dynobj == NULL)
764 htab->elf.dynobj = abfd;
765
766 dynobj = htab->elf.dynobj;
767 sreloc = bfd_get_section_by_name (dynobj, name);
768 if (sreloc == NULL)
769 {
770 flagword flags;
771
772 sreloc = bfd_make_section (dynobj, name);
773 flags = (SEC_HAS_CONTENTS | SEC_READONLY
774 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
775 if ((sec->flags & SEC_ALLOC) != 0)
776 flags |= SEC_ALLOC | SEC_LOAD;
777 if (sreloc == NULL
778 || ! bfd_set_section_flags (dynobj, sreloc, flags)
779 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
780 return false;
781 }
782 elf_section_data (sec)->sreloc = sreloc;
783 }
784
785 /* If this is a global symbol, we count the number of
786 relocations we need for this symbol. */
787 if (h != NULL)
788 {
789 head = &((struct elf_s390_link_hash_entry *) h)->dyn_relocs;
790 }
791 else
792 {
793 /* Track dynamic relocs needed for local syms too.
794 We really need local syms available to do this
795 easily. Oh well. */
796
797 asection *s;
798 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
799 sec, r_symndx);
800 if (s == NULL)
801 return false;
802
803 head = ((struct elf_s390_dyn_relocs **)
804 &elf_section_data (s)->local_dynrel);
805 }
806
807 p = *head;
808 if (p == NULL || p->sec != sec)
809 {
810 bfd_size_type amt = sizeof *p;
811 p = ((struct elf_s390_dyn_relocs *)
812 bfd_alloc (htab->elf.dynobj, amt));
813 if (p == NULL)
814 return false;
815 p->next = *head;
816 *head = p;
817 p->sec = sec;
818 p->count = 0;
819 p->pc_count = 0;
820 }
821
822 p->count += 1;
823 if (ELF64_R_TYPE (rel->r_info) == R_390_PC16
824 || ELF64_R_TYPE (rel->r_info) == R_390_PC16DBL
825 || ELF64_R_TYPE (rel->r_info) == R_390_PC32
826 || ELF64_R_TYPE (rel->r_info) == R_390_PC32DBL
827 || ELF64_R_TYPE (rel->r_info) == R_390_PC64)
828 p->pc_count += 1;
829 }
830 break;
831
832 /* This relocation describes the C++ object vtable hierarchy.
833 Reconstruct it for later use during GC. */
834 case R_390_GNU_VTINHERIT:
835 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
836 return false;
837 break;
838
839 /* This relocation describes which C++ vtable entries are actually
840 used. Record for later use during GC. */
841 case R_390_GNU_VTENTRY:
842 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_offset))
843 return false;
844 break;
845
846 default:
847 break;
848 }
849 }
850
851 return true;
852 }
853
854 /* Return the section that should be marked against GC for a given
855 relocation. */
856
857 static asection *
858 elf_s390_gc_mark_hook (abfd, info, rel, h, sym)
859 bfd *abfd;
860 struct bfd_link_info *info ATTRIBUTE_UNUSED;
861 Elf_Internal_Rela *rel;
862 struct elf_link_hash_entry *h;
863 Elf_Internal_Sym *sym;
864 {
865 if (h != NULL)
866 {
867 switch (ELF64_R_TYPE (rel->r_info))
868 {
869 case R_390_GNU_VTINHERIT:
870 case R_390_GNU_VTENTRY:
871 break;
872
873 default:
874 switch (h->root.type)
875 {
876 case bfd_link_hash_defined:
877 case bfd_link_hash_defweak:
878 return h->root.u.def.section;
879
880 case bfd_link_hash_common:
881 return h->root.u.c.p->section;
882
883 default:
884 break;
885 }
886 }
887 }
888 else
889 {
890 if (!(elf_bad_symtab (abfd)
891 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
892 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
893 && sym->st_shndx != SHN_COMMON))
894 {
895 return bfd_section_from_elf_index (abfd, sym->st_shndx);
896 }
897 }
898
899 return NULL;
900 }
901
902 /* Update the got entry reference counts for the section being removed. */
903
904 static boolean
905 elf_s390_gc_sweep_hook (abfd, info, sec, relocs)
906 bfd *abfd;
907 struct bfd_link_info *info;
908 asection *sec;
909 const Elf_Internal_Rela *relocs;
910 {
911 Elf_Internal_Shdr *symtab_hdr;
912 struct elf_link_hash_entry **sym_hashes;
913 bfd_signed_vma *local_got_refcounts;
914 const Elf_Internal_Rela *rel, *relend;
915 unsigned long r_symndx;
916 struct elf_link_hash_entry *h;
917
918 elf_section_data (sec)->local_dynrel = NULL;
919
920 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
921 sym_hashes = elf_sym_hashes (abfd);
922 local_got_refcounts = elf_local_got_refcounts (abfd);
923
924 relend = relocs + sec->reloc_count;
925 for (rel = relocs; rel < relend; rel++)
926 switch (ELF64_R_TYPE (rel->r_info))
927 {
928 case R_390_GOT12:
929 case R_390_GOT16:
930 case R_390_GOT32:
931 case R_390_GOT64:
932 case R_390_GOTOFF:
933 case R_390_GOTPC:
934 case R_390_GOTPCDBL:
935 case R_390_GOTENT:
936 r_symndx = ELF64_R_SYM (rel->r_info);
937 if (r_symndx >= symtab_hdr->sh_info)
938 {
939 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
940 if (h->got.refcount > 0)
941 h->got.refcount -= 1;
942 }
943 else if (local_got_refcounts != NULL)
944 {
945 if (local_got_refcounts[r_symndx] > 0)
946 local_got_refcounts[r_symndx] -= 1;
947 }
948 break;
949
950 case R_390_8:
951 case R_390_12:
952 case R_390_16:
953 case R_390_32:
954 case R_390_64:
955 case R_390_PC16:
956 case R_390_PC16DBL:
957 case R_390_PC32:
958 case R_390_PC32DBL:
959 case R_390_PC64:
960 r_symndx = ELF64_R_SYM (rel->r_info);
961 if (r_symndx >= symtab_hdr->sh_info)
962 {
963 struct elf_s390_link_hash_entry *eh;
964 struct elf_s390_dyn_relocs **pp;
965 struct elf_s390_dyn_relocs *p;
966
967 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
968
969 if (!info->shared && h->plt.refcount > 0)
970 h->plt.refcount -= 1;
971
972 eh = (struct elf_s390_link_hash_entry *) h;
973
974 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
975 if (p->sec == sec)
976 {
977 if (ELF64_R_TYPE (rel->r_info) == R_390_PC16
978 || ELF64_R_TYPE (rel->r_info) == R_390_PC16DBL
979 || ELF64_R_TYPE (rel->r_info) == R_390_PC32)
980 p->pc_count -= 1;
981 p->count -= 1;
982 if (p->count == 0)
983 *pp = p->next;
984 break;
985 }
986 }
987 break;
988
989 case R_390_PLT16DBL:
990 case R_390_PLT32:
991 case R_390_PLT32DBL:
992 case R_390_PLT64:
993 r_symndx = ELF64_R_SYM (rel->r_info);
994 if (r_symndx >= symtab_hdr->sh_info)
995 {
996 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
997 if (h->plt.refcount > 0)
998 h->plt.refcount -= 1;
999 }
1000 break;
1001
1002 default:
1003 break;
1004 }
1005
1006 return true;
1007 }
1008
1009 /* Adjust a symbol defined by a dynamic object and referenced by a
1010 regular object. The current definition is in some section of the
1011 dynamic object, but we're not including those sections. We have to
1012 change the definition to something the rest of the link can
1013 understand. */
1014
1015 static boolean
1016 elf_s390_adjust_dynamic_symbol (info, h)
1017 struct bfd_link_info *info;
1018 struct elf_link_hash_entry *h;
1019 {
1020 struct elf_s390_link_hash_table *htab;
1021 struct elf_s390_link_hash_entry * eh;
1022 struct elf_s390_dyn_relocs *p;
1023 asection *s;
1024 unsigned int power_of_two;
1025
1026 /* If this is a function, put it in the procedure linkage table. We
1027 will fill in the contents of the procedure linkage table later
1028 (although we could actually do it here). */
1029 if (h->type == STT_FUNC
1030 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1031 {
1032 if (h->plt.refcount <= 0
1033 || (! info->shared
1034 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1035 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
1036 {
1037 /* This case can occur if we saw a PLT32 reloc in an input
1038 file, but the symbol was never referred to by a dynamic
1039 object, or if all references were garbage collected. In
1040 such a case, we don't actually need to build a procedure
1041 linkage table, and we can just do a PC32 reloc instead. */
1042 h->plt.offset = (bfd_vma) -1;
1043 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1044 }
1045
1046 return true;
1047 }
1048 else
1049 /* It's possible that we incorrectly decided a .plt reloc was
1050 needed for an R_390_PC32 reloc to a non-function sym in
1051 check_relocs. We can't decide accurately between function and
1052 non-function syms in check-relocs; Objects loaded later in
1053 the link may change h->type. So fix it now. */
1054 h->plt.offset = (bfd_vma) -1;
1055
1056 /* If this is a weak symbol, and there is a real definition, the
1057 processor independent code will have arranged for us to see the
1058 real definition first, and we can just use the same value. */
1059 if (h->weakdef != NULL)
1060 {
1061 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1062 || h->weakdef->root.type == bfd_link_hash_defweak);
1063 h->root.u.def.section = h->weakdef->root.u.def.section;
1064 h->root.u.def.value = h->weakdef->root.u.def.value;
1065 return true;
1066 }
1067
1068 /* This is a reference to a symbol defined by a dynamic object which
1069 is not a function. */
1070
1071 /* If we are creating a shared library, we must presume that the
1072 only references to the symbol are via the global offset table.
1073 For such cases we need not do anything here; the relocations will
1074 be handled correctly by relocate_section. */
1075 if (info->shared)
1076 return true;
1077
1078 /* If there are no references to this symbol that do not use the
1079 GOT, we don't need to generate a copy reloc. */
1080 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1081 return true;
1082
1083 /* If -z nocopyreloc was given, we won't generate them either. */
1084 if (info->nocopyreloc)
1085 {
1086 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1087 return true;
1088 }
1089
1090 eh = (struct elf_s390_link_hash_entry *) h;
1091 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1092 {
1093 s = p->sec->output_section;
1094 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1095 break;
1096 }
1097
1098 /* If we didn't find any dynamic relocs in read-only sections, then
1099 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1100 if (p == NULL)
1101 {
1102 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1103 return true;
1104 }
1105
1106 /* We must allocate the symbol in our .dynbss section, which will
1107 become part of the .bss section of the executable. There will be
1108 an entry for this symbol in the .dynsym section. The dynamic
1109 object will contain position independent code, so all references
1110 from the dynamic object to this symbol will go through the global
1111 offset table. The dynamic linker will use the .dynsym entry to
1112 determine the address it must put in the global offset table, so
1113 both the dynamic object and the regular object will refer to the
1114 same memory location for the variable. */
1115
1116 htab = elf_s390_hash_table (info);
1117
1118 /* We must generate a R_390_COPY reloc to tell the dynamic linker to
1119 copy the initial value out of the dynamic object and into the
1120 runtime process image. */
1121 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1122 {
1123 htab->srelbss->_raw_size += sizeof (Elf64_External_Rela);
1124 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1125 }
1126
1127 /* We need to figure out the alignment required for this symbol. I
1128 have no idea how ELF linkers handle this. */
1129 power_of_two = bfd_log2 (h->size);
1130 if (power_of_two > 3)
1131 power_of_two = 3;
1132
1133 /* Apply the required alignment. */
1134 s = htab->sdynbss;
1135 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1136 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1137 {
1138 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1139 return false;
1140 }
1141
1142 /* Define the symbol as being at this point in the section. */
1143 h->root.u.def.section = s;
1144 h->root.u.def.value = s->_raw_size;
1145
1146 /* Increment the section size to make room for the symbol. */
1147 s->_raw_size += h->size;
1148
1149 return true;
1150 }
1151
1152 /* This is the condition under which elf_s390_finish_dynamic_symbol
1153 will be called from elflink.h. If elflink.h doesn't call our
1154 finish_dynamic_symbol routine, we'll need to do something about
1155 initializing any .plt and .got entries in elf_s390_relocate_section. */
1156 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1157 ((DYN) \
1158 && ((INFO)->shared \
1159 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1160 && ((H)->dynindx != -1 \
1161 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1162
1163 /* Allocate space in .plt, .got and associated reloc sections for
1164 dynamic relocs. */
1165
1166 static boolean
1167 allocate_dynrelocs (h, inf)
1168 struct elf_link_hash_entry *h;
1169 PTR inf;
1170 {
1171 struct bfd_link_info *info;
1172 struct elf_s390_link_hash_table *htab;
1173 struct elf_s390_link_hash_entry *eh;
1174 struct elf_s390_dyn_relocs *p;
1175
1176 if (h->root.type == bfd_link_hash_indirect
1177 || h->root.type == bfd_link_hash_warning)
1178 return true;
1179
1180 info = (struct bfd_link_info *) inf;
1181 htab = elf_s390_hash_table (info);
1182
1183 if (htab->elf.dynamic_sections_created
1184 && h->plt.refcount > 0)
1185 {
1186 /* Make sure this symbol is output as a dynamic symbol.
1187 Undefined weak syms won't yet be marked as dynamic. */
1188 if (h->dynindx == -1
1189 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1190 {
1191 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1192 return false;
1193 }
1194
1195 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1196 {
1197 asection *s = htab->splt;
1198
1199 /* If this is the first .plt entry, make room for the special
1200 first entry. */
1201 if (s->_raw_size == 0)
1202 s->_raw_size += PLT_FIRST_ENTRY_SIZE;
1203
1204 h->plt.offset = s->_raw_size;
1205
1206 /* If this symbol is not defined in a regular file, and we are
1207 not generating a shared library, then set the symbol to this
1208 location in the .plt. This is required to make function
1209 pointers compare as equal between the normal executable and
1210 the shared library. */
1211 if (! info->shared
1212 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1213 {
1214 h->root.u.def.section = s;
1215 h->root.u.def.value = h->plt.offset;
1216 }
1217
1218 /* Make room for this entry. */
1219 s->_raw_size += PLT_ENTRY_SIZE;
1220
1221 /* We also need to make an entry in the .got.plt section, which
1222 will be placed in the .got section by the linker script. */
1223 htab->sgotplt->_raw_size += GOT_ENTRY_SIZE;
1224
1225 /* We also need to make an entry in the .rela.plt section. */
1226 htab->srelplt->_raw_size += sizeof (Elf64_External_Rela);
1227 }
1228 else
1229 {
1230 h->plt.offset = (bfd_vma) -1;
1231 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1232 }
1233 }
1234 else
1235 {
1236 h->plt.offset = (bfd_vma) -1;
1237 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1238 }
1239
1240 if (h->got.refcount > 0)
1241 {
1242 asection *s;
1243 boolean dyn;
1244
1245 /* Make sure this symbol is output as a dynamic symbol.
1246 Undefined weak syms won't yet be marked as dynamic. */
1247 if (h->dynindx == -1
1248 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1249 {
1250 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1251 return false;
1252 }
1253
1254 s = htab->sgot;
1255 h->got.offset = s->_raw_size;
1256 s->_raw_size += GOT_ENTRY_SIZE;
1257 dyn = htab->elf.dynamic_sections_created;
1258 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1259 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1260 }
1261 else
1262 h->got.offset = (bfd_vma) -1;
1263
1264 eh = (struct elf_s390_link_hash_entry *) h;
1265 if (eh->dyn_relocs == NULL)
1266 return true;
1267
1268 /* In the shared -Bsymbolic case, discard space allocated for
1269 dynamic pc-relative relocs against symbols which turn out to be
1270 defined in regular objects. For the normal shared case, discard
1271 space for pc-relative relocs that have become local due to symbol
1272 visibility changes. */
1273
1274 if (info->shared)
1275 {
1276 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1277 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1278 || info->symbolic))
1279 {
1280 struct elf_s390_dyn_relocs **pp;
1281
1282 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1283 {
1284 p->count -= p->pc_count;
1285 p->pc_count = 0;
1286 if (p->count == 0)
1287 *pp = p->next;
1288 else
1289 pp = &p->next;
1290 }
1291 }
1292 }
1293 else
1294 {
1295 /* For the non-shared case, discard space for relocs against
1296 symbols which turn out to need copy relocs or are not
1297 dynamic. */
1298
1299 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1300 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1301 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1302 || (htab->elf.dynamic_sections_created
1303 && (h->root.type == bfd_link_hash_undefweak
1304 || h->root.type == bfd_link_hash_undefined))))
1305 {
1306 /* Make sure this symbol is output as a dynamic symbol.
1307 Undefined weak syms won't yet be marked as dynamic. */
1308 if (h->dynindx == -1
1309 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1310 {
1311 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1312 return false;
1313 }
1314
1315 /* If that succeeded, we know we'll be keeping all the
1316 relocs. */
1317 if (h->dynindx != -1)
1318 goto keep;
1319 }
1320
1321 eh->dyn_relocs = NULL;
1322
1323 keep: ;
1324 }
1325
1326 /* Finally, allocate space. */
1327 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1328 {
1329 asection *sreloc = elf_section_data (p->sec)->sreloc;
1330 sreloc->_raw_size += p->count * sizeof (Elf64_External_Rela);
1331 }
1332
1333 return true;
1334 }
1335
1336 /* Find any dynamic relocs that apply to read-only sections. */
1337
1338 static boolean
1339 readonly_dynrelocs (h, inf)
1340 struct elf_link_hash_entry *h;
1341 PTR inf;
1342 {
1343 struct elf_s390_link_hash_entry *eh;
1344 struct elf_s390_dyn_relocs *p;
1345
1346 eh = (struct elf_s390_link_hash_entry *) h;
1347 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1348 {
1349 asection *s = p->sec->output_section;
1350
1351 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1352 {
1353 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1354
1355 info->flags |= DF_TEXTREL;
1356
1357 /* Not an error, just cut short the traversal. */
1358 return false;
1359 }
1360 }
1361 return true;
1362 }
1363
1364 /* Set the sizes of the dynamic sections. */
1365
1366 static boolean
1367 elf_s390_size_dynamic_sections (output_bfd, info)
1368 bfd *output_bfd ATTRIBUTE_UNUSED;
1369 struct bfd_link_info *info;
1370 {
1371 struct elf_s390_link_hash_table *htab;
1372 bfd *dynobj;
1373 asection *s;
1374 boolean relocs;
1375 bfd *ibfd;
1376
1377 htab = elf_s390_hash_table (info);
1378 dynobj = htab->elf.dynobj;
1379 if (dynobj == NULL)
1380 abort ();
1381
1382 if (htab->elf.dynamic_sections_created)
1383 {
1384 /* Set the contents of the .interp section to the interpreter. */
1385 if (! info->shared)
1386 {
1387 s = bfd_get_section_by_name (dynobj, ".interp");
1388 if (s == NULL)
1389 abort ();
1390 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1391 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1392 }
1393 }
1394
1395 /* Set up .got offsets for local syms, and space for local dynamic
1396 relocs. */
1397 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1398 {
1399 bfd_signed_vma *local_got;
1400 bfd_signed_vma *end_local_got;
1401 bfd_size_type locsymcount;
1402 Elf_Internal_Shdr *symtab_hdr;
1403 asection *srela;
1404
1405 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1406 continue;
1407
1408 for (s = ibfd->sections; s != NULL; s = s->next)
1409 {
1410 struct elf_s390_dyn_relocs *p;
1411
1412 for (p = *((struct elf_s390_dyn_relocs **)
1413 &elf_section_data (s)->local_dynrel);
1414 p != NULL;
1415 p = p->next)
1416 {
1417 if (!bfd_is_abs_section (p->sec)
1418 && bfd_is_abs_section (p->sec->output_section))
1419 {
1420 /* Input section has been discarded, either because
1421 it is a copy of a linkonce section or due to
1422 linker script /DISCARD/, so we'll be discarding
1423 the relocs too. */
1424 }
1425 else
1426 {
1427 srela = elf_section_data (p->sec)->sreloc;
1428 srela->_raw_size += p->count * sizeof (Elf64_External_Rela);
1429 }
1430 }
1431 }
1432
1433 local_got = elf_local_got_refcounts (ibfd);
1434 if (!local_got)
1435 continue;
1436
1437 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1438 locsymcount = symtab_hdr->sh_info;
1439 end_local_got = local_got + locsymcount;
1440 s = htab->sgot;
1441 srela = htab->srelgot;
1442 for (; local_got < end_local_got; ++local_got)
1443 {
1444 if (*local_got > 0)
1445 {
1446 *local_got = s->_raw_size;
1447 s->_raw_size += GOT_ENTRY_SIZE;
1448 if (info->shared)
1449 srela->_raw_size += sizeof (Elf64_External_Rela);
1450 }
1451 else
1452 *local_got = (bfd_vma) -1;
1453 }
1454 }
1455
1456 /* Allocate global sym .plt and .got entries, and space for global
1457 sym dynamic relocs. */
1458 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1459
1460 /* We now have determined the sizes of the various dynamic sections.
1461 Allocate memory for them. */
1462 relocs = false;
1463 for (s = dynobj->sections; s != NULL; s = s->next)
1464 {
1465 if ((s->flags & SEC_LINKER_CREATED) == 0)
1466 continue;
1467
1468 if (s == htab->splt
1469 || s == htab->sgot
1470 || s == htab->sgotplt)
1471 {
1472 /* Strip this section if we don't need it; see the
1473 comment below. */
1474 }
1475 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
1476 {
1477 if (s->_raw_size != 0 && s != htab->srelplt)
1478 relocs = true;
1479
1480 /* We use the reloc_count field as a counter if we need
1481 to copy relocs into the output file. */
1482 s->reloc_count = 0;
1483 }
1484 else
1485 {
1486 /* It's not one of our sections, so don't allocate space. */
1487 continue;
1488 }
1489
1490 if (s->_raw_size == 0)
1491 {
1492 /* If we don't need this section, strip it from the
1493 output file. This is to handle .rela.bss and
1494 .rela.plt. We must create it in
1495 create_dynamic_sections, because it must be created
1496 before the linker maps input sections to output
1497 sections. The linker does that before
1498 adjust_dynamic_symbol is called, and it is that
1499 function which decides whether anything needs to go
1500 into these sections. */
1501
1502 _bfd_strip_section_from_output (info, s);
1503 continue;
1504 }
1505
1506 /* Allocate memory for the section contents. We use bfd_zalloc
1507 here in case unused entries are not reclaimed before the
1508 section's contents are written out. This should not happen,
1509 but this way if it does, we get a R_390_NONE reloc instead
1510 of garbage. */
1511 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1512 if (s->contents == NULL)
1513 return false;
1514 }
1515
1516 if (htab->elf.dynamic_sections_created)
1517 {
1518 /* Add some entries to the .dynamic section. We fill in the
1519 values later, in elf_s390_finish_dynamic_sections, but we
1520 must add the entries now so that we get the correct size for
1521 the .dynamic section. The DT_DEBUG entry is filled in by the
1522 dynamic linker and used by the debugger. */
1523 #define add_dynamic_entry(TAG, VAL) \
1524 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1525
1526 if (! info->shared)
1527 {
1528 if (!add_dynamic_entry (DT_DEBUG, 0))
1529 return false;
1530 }
1531
1532 if (htab->splt->_raw_size != 0)
1533 {
1534 if (!add_dynamic_entry (DT_PLTGOT, 0)
1535 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1536 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1537 || !add_dynamic_entry (DT_JMPREL, 0))
1538 return false;
1539 }
1540
1541 if (relocs)
1542 {
1543 if (!add_dynamic_entry (DT_RELA, 0)
1544 || !add_dynamic_entry (DT_RELASZ, 0)
1545 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1546 return false;
1547
1548 /* If any dynamic relocs apply to a read-only section,
1549 then we need a DT_TEXTREL entry. */
1550 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info);
1551
1552 if ((info->flags & DF_TEXTREL) != 0)
1553 {
1554 if (!add_dynamic_entry (DT_TEXTREL, 0))
1555 return false;
1556 }
1557 }
1558 }
1559 #undef add_dynamic_entry
1560
1561 return true;
1562 }
1563
1564 /* Relocate a 390 ELF section. */
1565
1566 static boolean
1567 elf_s390_relocate_section (output_bfd, info, input_bfd, input_section,
1568 contents, relocs, local_syms, local_sections)
1569 bfd *output_bfd;
1570 struct bfd_link_info *info;
1571 bfd *input_bfd;
1572 asection *input_section;
1573 bfd_byte *contents;
1574 Elf_Internal_Rela *relocs;
1575 Elf_Internal_Sym *local_syms;
1576 asection **local_sections;
1577 {
1578 struct elf_s390_link_hash_table *htab;
1579 Elf_Internal_Shdr *symtab_hdr;
1580 struct elf_link_hash_entry **sym_hashes;
1581 bfd_vma *local_got_offsets;
1582 Elf_Internal_Rela *rel;
1583 Elf_Internal_Rela *relend;
1584
1585 htab = elf_s390_hash_table (info);
1586 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1587 sym_hashes = elf_sym_hashes (input_bfd);
1588 local_got_offsets = elf_local_got_offsets (input_bfd);
1589
1590 rel = relocs;
1591 relend = relocs + input_section->reloc_count;
1592 for (; rel < relend; rel++)
1593 {
1594 int r_type;
1595 reloc_howto_type *howto;
1596 unsigned long r_symndx;
1597 struct elf_link_hash_entry *h;
1598 Elf_Internal_Sym *sym;
1599 asection *sec;
1600 bfd_vma off;
1601 bfd_vma relocation;
1602 boolean unresolved_reloc;
1603 bfd_reloc_status_type r;
1604
1605 r_type = ELF64_R_TYPE (rel->r_info);
1606 if (r_type == (int) R_390_GNU_VTINHERIT
1607 || r_type == (int) R_390_GNU_VTENTRY)
1608 continue;
1609 if (r_type < 0 || r_type >= (int) R_390_max)
1610 {
1611 bfd_set_error (bfd_error_bad_value);
1612 return false;
1613 }
1614 howto = elf_howto_table + r_type;
1615
1616 r_symndx = ELF64_R_SYM (rel->r_info);
1617
1618 if (info->relocateable)
1619 {
1620 /* This is a relocateable link. We don't have to change
1621 anything, unless the reloc is against a section symbol,
1622 in which case we have to adjust according to where the
1623 section symbol winds up in the output section. */
1624 if (r_symndx < symtab_hdr->sh_info)
1625 {
1626 sym = local_syms + r_symndx;
1627 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1628 {
1629 sec = local_sections[r_symndx];
1630 rel->r_addend += sec->output_offset + sym->st_value;
1631 }
1632 }
1633
1634 continue;
1635 }
1636
1637 /* This is a final link. */
1638 h = NULL;
1639 sym = NULL;
1640 sec = NULL;
1641 unresolved_reloc = false;
1642 if (r_symndx < symtab_hdr->sh_info)
1643 {
1644 sym = local_syms + r_symndx;
1645 sec = local_sections[r_symndx];
1646 relocation = (sec->output_section->vma
1647 + sec->output_offset
1648 + sym->st_value);
1649 }
1650 else
1651 {
1652 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1653 while (h->root.type == bfd_link_hash_indirect
1654 || h->root.type == bfd_link_hash_warning)
1655 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1656
1657 if (h->root.type == bfd_link_hash_defined
1658 || h->root.type == bfd_link_hash_defweak)
1659 {
1660 sec = h->root.u.def.section;
1661 if (r_type == R_390_GOTPC
1662 || r_type == R_390_GOTPCDBL
1663 || ((r_type == R_390_PLT16DBL
1664 || r_type == R_390_PLT32
1665 || r_type == R_390_PLT32DBL
1666 || r_type == R_390_PLT64)
1667 && htab->splt != NULL
1668 && h->plt.offset != (bfd_vma) -1)
1669 || ((r_type == R_390_GOT12
1670 || r_type == R_390_GOT16
1671 || r_type == R_390_GOT32
1672 || r_type == R_390_GOT64
1673 || r_type == R_390_GOTENT)
1674 && elf_hash_table (info)->dynamic_sections_created
1675 && (! info->shared
1676 || (! info->symbolic && h->dynindx != -1)
1677 || (h->elf_link_hash_flags
1678 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1679 || (info->shared
1680 && ((! info->symbolic && h->dynindx != -1)
1681 || (h->elf_link_hash_flags
1682 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1683 && (r_type == R_390_8
1684 || r_type == R_390_16
1685 || r_type == R_390_32
1686 || r_type == R_390_64
1687 || r_type == R_390_PC16
1688 || r_type == R_390_PC16DBL
1689 || r_type == R_390_PC32
1690 || r_type == R_390_PC32DBL
1691 || r_type == R_390_PC64)
1692 && ((input_section->flags & SEC_ALLOC) != 0
1693 /* DWARF will emit R_390_32 relocations in its
1694 sections against symbols defined externally
1695 in shared libraries. We can't do anything
1696 with them here. */
1697 || ((input_section->flags & SEC_DEBUGGING) != 0
1698 && (h->elf_link_hash_flags
1699 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))))
1700 {
1701 /* In these cases, we don't need the relocation
1702 value. We check specially because in some
1703 obscure cases sec->output_section will be NULL. */
1704 relocation = 0;
1705 }
1706 else if (sec->output_section == NULL)
1707 {
1708 /* Set a flag that will be cleared later if we find a
1709 relocation value for this symbol. output_section
1710 is typically NULL for symbols satisfied by a shared
1711 library. */
1712 unresolved_reloc = true;
1713 relocation = 0;
1714 }
1715 else
1716 relocation = (h->root.u.def.value
1717 + sec->output_section->vma
1718 + sec->output_offset);
1719 }
1720 else if (h->root.type == bfd_link_hash_undefweak)
1721 relocation = 0;
1722 else if (info->shared
1723 && (!info->symbolic || info->allow_shlib_undefined)
1724 && !info->no_undefined
1725 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1726 relocation = 0;
1727 else
1728 {
1729 if (! ((*info->callbacks->undefined_symbol)
1730 (info, h->root.root.string, input_bfd,
1731 input_section, rel->r_offset,
1732 (!info->shared || info->no_undefined
1733 || ELF_ST_VISIBILITY (h->other)))))
1734 return false;
1735 relocation = 0;
1736 }
1737 }
1738
1739 switch (r_type)
1740 {
1741 case R_390_GOT12:
1742 case R_390_GOT16:
1743 case R_390_GOT32:
1744 case R_390_GOT64:
1745 case R_390_GOTENT:
1746 /* Relocation is to the entry for this symbol in the global
1747 offset table. */
1748 if (htab->sgot == NULL)
1749 abort ();
1750
1751 if (h != NULL)
1752 {
1753 boolean dyn;
1754
1755 off = h->got.offset;
1756 dyn = htab->elf.dynamic_sections_created;
1757 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1758 || (info->shared
1759 && (info->symbolic
1760 || h->dynindx == -1
1761 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1762 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1763 {
1764 /* This is actually a static link, or it is a
1765 -Bsymbolic link and the symbol is defined
1766 locally, or the symbol was forced to be local
1767 because of a version file. We must initialize
1768 this entry in the global offset table. Since the
1769 offset must always be a multiple of 2, we use the
1770 least significant bit to record whether we have
1771 initialized it already.
1772
1773 When doing a dynamic link, we create a .rel.got
1774 relocation entry to initialize the value. This
1775 is done in the finish_dynamic_symbol routine. */
1776 if ((off & 1) != 0)
1777 off &= ~1;
1778 else
1779 {
1780 bfd_put_64 (output_bfd, relocation,
1781 htab->sgot->contents + off);
1782 h->got.offset |= 1;
1783 }
1784 }
1785 else
1786 unresolved_reloc = false;
1787 }
1788 else
1789 {
1790 if (local_got_offsets == NULL)
1791 abort ();
1792
1793 off = local_got_offsets[r_symndx];
1794
1795 /* The offset must always be a multiple of 8. We use
1796 the least significant bit to record whether we have
1797 already generated the necessary reloc. */
1798 if ((off & 1) != 0)
1799 off &= ~1;
1800 else
1801 {
1802 bfd_put_64 (output_bfd, relocation,
1803 htab->sgot->contents + off);
1804
1805 if (info->shared)
1806 {
1807 asection *srelgot;
1808 Elf_Internal_Rela outrel;
1809 Elf64_External_Rela *loc;
1810
1811 srelgot = htab->srelgot;
1812 if (srelgot == NULL)
1813 abort ();
1814
1815 outrel.r_offset = (htab->sgot->output_section->vma
1816 + htab->sgot->output_offset
1817 + off);
1818 outrel.r_info = ELF64_R_INFO (0, R_390_RELATIVE);
1819 outrel.r_addend = relocation;
1820 loc = (Elf64_External_Rela *) srelgot->contents;
1821 loc += srelgot->reloc_count++;
1822 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
1823 }
1824
1825 local_got_offsets[r_symndx] |= 1;
1826 }
1827 }
1828
1829 if (off >= (bfd_vma) -2)
1830 abort ();
1831
1832 relocation = htab->sgot->output_offset + off;
1833
1834 /*
1835 * For @GOTENT the relocation is against the offset between
1836 * the instruction and the symbols entry in the GOT and not
1837 * between the start of the GOT and the symbols entry. We
1838 * add the vma of the GOT to get the correct value.
1839 */
1840 if (r_type == R_390_GOTENT)
1841 relocation += htab->sgot->output_section->vma;
1842
1843 break;
1844
1845 case R_390_GOTOFF:
1846 /* Relocation is relative to the start of the global offset
1847 table. */
1848
1849 /* Note that sgot->output_offset is not involved in this
1850 calculation. We always want the start of .got. If we
1851 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1852 permitted by the ABI, we might have to change this
1853 calculation. */
1854 relocation -= htab->sgot->output_section->vma;
1855
1856 break;
1857
1858 case R_390_GOTPC:
1859 case R_390_GOTPCDBL:
1860 /* Use global offset table as symbol value. */
1861 relocation = htab->sgot->output_section->vma;
1862 unresolved_reloc = false;
1863 break;
1864
1865 case R_390_PLT16DBL:
1866 case R_390_PLT32:
1867 case R_390_PLT32DBL:
1868 case R_390_PLT64:
1869 /* Relocation is to the entry for this symbol in the
1870 procedure linkage table. */
1871
1872 /* Resolve a PLT32 reloc against a local symbol directly,
1873 without using the procedure linkage table. */
1874 if (h == NULL)
1875 break;
1876
1877 if (h->plt.offset == (bfd_vma) -1
1878 || htab->splt == NULL)
1879 {
1880 /* We didn't make a PLT entry for this symbol. This
1881 happens when statically linking PIC code, or when
1882 using -Bsymbolic. */
1883 break;
1884 }
1885
1886 relocation = (htab->splt->output_section->vma
1887 + htab->splt->output_offset
1888 + h->plt.offset);
1889 unresolved_reloc = false;
1890 break;
1891
1892 case R_390_8:
1893 case R_390_16:
1894 case R_390_32:
1895 case R_390_64:
1896 case R_390_PC16:
1897 case R_390_PC16DBL:
1898 case R_390_PC32:
1899 case R_390_PC32DBL:
1900 case R_390_PC64:
1901 /* r_symndx will be zero only for relocs against symbols
1902 from removed linkonce sections, or sections discarded by
1903 a linker script. */
1904 if (r_symndx == 0
1905 || (input_section->flags & SEC_ALLOC) == 0)
1906 break;
1907
1908 if ((info->shared
1909 && ((r_type != R_390_PC16
1910 && r_type != R_390_PC16DBL
1911 && r_type != R_390_PC32
1912 && r_type != R_390_PC32DBL
1913 && r_type != R_390_PC64)
1914 || (h != NULL
1915 && h->dynindx != -1
1916 && (! info->symbolic
1917 || (h->elf_link_hash_flags
1918 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1919 || (!info->shared
1920 && h != NULL
1921 && h->dynindx != -1
1922 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1923 && (((h->elf_link_hash_flags
1924 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1925 && (h->elf_link_hash_flags
1926 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1927 || h->root.type == bfd_link_hash_undefweak
1928 || h->root.type == bfd_link_hash_undefined)))
1929 {
1930 Elf_Internal_Rela outrel;
1931 boolean skip, relocate;
1932 asection *sreloc;
1933 Elf64_External_Rela *loc;
1934
1935 /* When generating a shared object, these relocations
1936 are copied into the output file to be resolved at run
1937 time. */
1938
1939 skip = false;
1940
1941 if (elf_section_data (input_section)->stab_info == NULL)
1942 outrel.r_offset = rel->r_offset;
1943 else
1944 {
1945 off = (_bfd_stab_section_offset
1946 (output_bfd, htab->elf.stab_info, input_section,
1947 &elf_section_data (input_section)->stab_info,
1948 rel->r_offset));
1949 if (off == (bfd_vma) -1)
1950 skip = true;
1951 outrel.r_offset = off;
1952 }
1953
1954 outrel.r_offset += (input_section->output_section->vma
1955 + input_section->output_offset);
1956
1957 if (skip)
1958 {
1959 memset (&outrel, 0, sizeof outrel);
1960 relocate = false;
1961 }
1962 else if (h != NULL
1963 && h->dynindx != -1
1964 && (r_type == R_390_PC16
1965 || r_type == R_390_PC16DBL
1966 || r_type == R_390_PC32
1967 || r_type == R_390_PC32DBL
1968 || r_type == R_390_PC64
1969 || !info->shared
1970 || !info->symbolic
1971 || (h->elf_link_hash_flags
1972 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1973 {
1974 relocate = false;
1975 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
1976 outrel.r_addend = relocation + rel->r_addend;
1977 }
1978 else
1979 {
1980 /* This symbol is local, or marked to become local. */
1981 relocate = true;
1982 outrel.r_info = ELF64_R_INFO (0, R_390_RELATIVE);
1983 outrel.r_addend = relocation + rel->r_addend;
1984 }
1985
1986 sreloc = elf_section_data (input_section)->sreloc;
1987 if (sreloc == NULL)
1988 abort ();
1989
1990 loc = (Elf64_External_Rela *) sreloc->contents;
1991 loc += sreloc->reloc_count++;
1992 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
1993
1994 /* If this reloc is against an external symbol, we do
1995 not want to fiddle with the addend. Otherwise, we
1996 need to include the symbol value so that it becomes
1997 an addend for the dynamic reloc. */
1998 if (! relocate)
1999 continue;
2000 }
2001
2002 break;
2003
2004 default:
2005 break;
2006 }
2007
2008 if (unresolved_reloc
2009 && !(info->shared
2010 && (input_section->flags & SEC_DEBUGGING) != 0
2011 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2012 (*_bfd_error_handler)
2013 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2014 bfd_archive_filename (input_bfd),
2015 bfd_get_section_name (input_bfd, input_section),
2016 (long) rel->r_offset,
2017 h->root.root.string);
2018
2019 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2020 contents, rel->r_offset,
2021 relocation, rel->r_addend);
2022
2023 if (r != bfd_reloc_ok)
2024 {
2025 const char *name;
2026
2027 if (h != NULL)
2028 name = h->root.root.string;
2029 else
2030 {
2031 name = bfd_elf_string_from_elf_section (input_bfd,
2032 symtab_hdr->sh_link,
2033 sym->st_name);
2034 if (name == NULL)
2035 return false;
2036 if (*name == '\0')
2037 name = bfd_section_name (input_bfd, sec);
2038 }
2039
2040 if (r == bfd_reloc_overflow)
2041 {
2042
2043 if (! ((*info->callbacks->reloc_overflow)
2044 (info, name, howto->name, (bfd_vma) 0,
2045 input_bfd, input_section, rel->r_offset)))
2046 return false;
2047 }
2048 else
2049 {
2050 (*_bfd_error_handler)
2051 (_("%s(%s+0x%lx): reloc against `%s': error %d"),
2052 bfd_archive_filename (input_bfd),
2053 bfd_get_section_name (input_bfd, input_section),
2054 (long) rel->r_offset, name, (int) r);
2055 return false;
2056 }
2057 }
2058 }
2059
2060 return true;
2061 }
2062
2063 /* Finish up dynamic symbol handling. We set the contents of various
2064 dynamic sections here. */
2065
2066 static boolean
2067 elf_s390_finish_dynamic_symbol (output_bfd, info, h, sym)
2068 bfd *output_bfd;
2069 struct bfd_link_info *info;
2070 struct elf_link_hash_entry *h;
2071 Elf_Internal_Sym *sym;
2072 {
2073 struct elf_s390_link_hash_table *htab;
2074
2075 htab = elf_s390_hash_table (info);
2076
2077 if (h->plt.offset != (bfd_vma) -1)
2078 {
2079 bfd_vma plt_index;
2080 bfd_vma got_offset;
2081 Elf_Internal_Rela rela;
2082 Elf64_External_Rela *loc;
2083
2084 /* This symbol has an entry in the procedure linkage table. Set
2085 it up. */
2086
2087 if (h->dynindx == -1
2088 || htab->splt == NULL
2089 || htab->sgotplt == NULL
2090 || htab->srelplt == NULL)
2091 abort ();
2092
2093 /* Calc. index no.
2094 Current offset - size first entry / entry size. */
2095 plt_index = (h->plt.offset - PLT_FIRST_ENTRY_SIZE) / PLT_ENTRY_SIZE;
2096
2097 /* Offset in GOT is PLT index plus GOT headers(3) times 8,
2098 addr & GOT addr. */
2099 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
2100
2101 /* Fill in the blueprint of a PLT. */
2102 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD0,
2103 htab->splt->contents + h->plt.offset);
2104 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD1,
2105 htab->splt->contents + h->plt.offset + 4);
2106 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD2,
2107 htab->splt->contents + h->plt.offset + 8);
2108 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD3,
2109 htab->splt->contents + h->plt.offset + 12);
2110 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD4,
2111 htab->splt->contents + h->plt.offset + 16);
2112 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD5,
2113 htab->splt->contents + h->plt.offset + 20);
2114 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD6,
2115 htab->splt->contents + h->plt.offset + 24);
2116 bfd_put_32 (output_bfd, (bfd_vma) PLT_ENTRY_WORD7,
2117 htab->splt->contents + h->plt.offset + 28);
2118 /* Fixup the relative address to the GOT entry */
2119 bfd_put_32 (output_bfd,
2120 (htab->sgotplt->output_section->vma +
2121 htab->sgotplt->output_offset + got_offset
2122 - (htab->splt->output_section->vma + h->plt.offset))/2,
2123 htab->splt->contents + h->plt.offset + 2);
2124 /* Fixup the relative branch to PLT 0 */
2125 bfd_put_32 (output_bfd, - (PLT_FIRST_ENTRY_SIZE +
2126 (PLT_ENTRY_SIZE * plt_index) + 22)/2,
2127 htab->splt->contents + h->plt.offset + 24);
2128 /* Fixup offset into symbol table */
2129 bfd_put_32 (output_bfd, plt_index * sizeof (Elf64_External_Rela),
2130 htab->splt->contents + h->plt.offset + 28);
2131
2132 /* Fill in the entry in the global offset table.
2133 Points to instruction after GOT offset. */
2134 bfd_put_64 (output_bfd,
2135 (htab->splt->output_section->vma
2136 + htab->splt->output_offset
2137 + h->plt.offset
2138 + 14),
2139 htab->sgotplt->contents + got_offset);
2140
2141 /* Fill in the entry in the .rela.plt section. */
2142 rela.r_offset = (htab->sgotplt->output_section->vma
2143 + htab->sgotplt->output_offset
2144 + got_offset);
2145 rela.r_info = ELF64_R_INFO (h->dynindx, R_390_JMP_SLOT);
2146 rela.r_addend = 0;
2147 loc = (Elf64_External_Rela *) htab->srelplt->contents + plt_index;
2148 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2149
2150 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2151 {
2152 /* Mark the symbol as undefined, rather than as defined in
2153 the .plt section. Leave the value alone. This is a clue
2154 for the dynamic linker, to make function pointer
2155 comparisons work between an application and shared
2156 library. */
2157 sym->st_shndx = SHN_UNDEF;
2158 }
2159 }
2160
2161 if (h->got.offset != (bfd_vma) -1)
2162 {
2163 Elf_Internal_Rela rela;
2164 Elf64_External_Rela *loc;
2165
2166 /* This symbol has an entry in the global offset table. Set it
2167 up. */
2168
2169 if (htab->sgot == NULL || htab->srelgot == NULL)
2170 abort ();
2171
2172 rela.r_offset = (htab->sgot->output_section->vma
2173 + htab->sgot->output_offset
2174 + (h->got.offset &~ (bfd_vma) 1));
2175
2176 /* If this is a static link, or it is a -Bsymbolic link and the
2177 symbol is defined locally or was forced to be local because
2178 of a version file, we just want to emit a RELATIVE reloc.
2179 The entry in the global offset table will already have been
2180 initialized in the relocate_section function. */
2181 if (info->shared
2182 && (info->symbolic
2183 || h->dynindx == -1
2184 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2185 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2186 {
2187 BFD_ASSERT((h->got.offset & 1) != 0);
2188 rela.r_info = ELF64_R_INFO (0, R_390_RELATIVE);
2189 rela.r_addend = (h->root.u.def.value
2190 + h->root.u.def.section->output_section->vma
2191 + h->root.u.def.section->output_offset);
2192 }
2193 else
2194 {
2195 BFD_ASSERT((h->got.offset & 1) == 0);
2196 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgot->contents + h->got.offset);
2197 rela.r_info = ELF64_R_INFO (h->dynindx, R_390_GLOB_DAT);
2198 rela.r_addend = 0;
2199 }
2200
2201 loc = (Elf64_External_Rela *) htab->srelgot->contents;
2202 loc += htab->srelgot->reloc_count++;
2203 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2204 }
2205
2206 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2207 {
2208 Elf_Internal_Rela rela;
2209 Elf64_External_Rela *loc;
2210
2211 /* This symbols needs a copy reloc. Set it up. */
2212
2213 if (h->dynindx == -1
2214 || (h->root.type != bfd_link_hash_defined
2215 && h->root.type != bfd_link_hash_defweak)
2216 || htab->srelbss == NULL)
2217 abort ();
2218
2219 rela.r_offset = (h->root.u.def.value
2220 + h->root.u.def.section->output_section->vma
2221 + h->root.u.def.section->output_offset);
2222 rela.r_info = ELF64_R_INFO (h->dynindx, R_390_COPY);
2223 rela.r_addend = 0;
2224 loc = (Elf64_External_Rela *) htab->srelbss->contents;
2225 loc += htab->srelbss->reloc_count++;
2226 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2227 }
2228
2229 /* Mark some specially defined symbols as absolute. */
2230 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2231 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2232 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2233 sym->st_shndx = SHN_ABS;
2234
2235 return true;
2236 }
2237
2238 /* Used to decide how to sort relocs in an optimal manner for the
2239 dynamic linker, before writing them out. */
2240
2241 static enum elf_reloc_type_class
2242 elf_s390_reloc_type_class (rela)
2243 const Elf_Internal_Rela *rela;
2244 {
2245 switch ((int) ELF64_R_TYPE (rela->r_info))
2246 {
2247 case R_390_RELATIVE:
2248 return reloc_class_relative;
2249 case R_390_JMP_SLOT:
2250 return reloc_class_plt;
2251 case R_390_COPY:
2252 return reloc_class_copy;
2253 default:
2254 return reloc_class_normal;
2255 }
2256 }
2257
2258 /* Finish up the dynamic sections. */
2259
2260 static boolean
2261 elf_s390_finish_dynamic_sections (output_bfd, info)
2262 bfd *output_bfd;
2263 struct bfd_link_info *info;
2264 {
2265 struct elf_s390_link_hash_table *htab;
2266 bfd *dynobj;
2267 asection *sdyn;
2268
2269 htab = elf_s390_hash_table (info);
2270 dynobj = htab->elf.dynobj;
2271 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2272
2273 if (htab->elf.dynamic_sections_created)
2274 {
2275 Elf64_External_Dyn *dyncon, *dynconend;
2276
2277 if (sdyn == NULL || htab->sgot == NULL)
2278 abort ();
2279
2280 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2281 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2282 for (; dyncon < dynconend; dyncon++)
2283 {
2284 Elf_Internal_Dyn dyn;
2285 asection *s;
2286
2287 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2288
2289 switch (dyn.d_tag)
2290 {
2291 default:
2292 continue;
2293
2294 case DT_PLTGOT:
2295 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2296 break;
2297
2298 case DT_JMPREL:
2299 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2300 break;
2301
2302 case DT_PLTRELSZ:
2303 s = htab->srelplt->output_section;
2304 if (s->_cooked_size != 0)
2305 dyn.d_un.d_val = s->_cooked_size;
2306 else
2307 dyn.d_un.d_val = s->_raw_size;
2308 break;
2309
2310 case DT_RELASZ:
2311 /* The procedure linkage table relocs (DT_JMPREL) should
2312 not be included in the overall relocs (DT_RELA).
2313 Therefore, we override the DT_RELASZ entry here to
2314 make it not include the JMPREL relocs. Since the
2315 linker script arranges for .rela.plt to follow all
2316 other relocation sections, we don't have to worry
2317 about changing the DT_RELA entry. */
2318 s = htab->srelplt->output_section;
2319 if (s->_cooked_size != 0)
2320 dyn.d_un.d_val -= s->_cooked_size;
2321 else
2322 dyn.d_un.d_val -= s->_raw_size;
2323 break;
2324 }
2325
2326 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2327 }
2328
2329 /* Fill in the special first entry in the procedure linkage table. */
2330 if (htab->splt && htab->splt->_raw_size > 0)
2331 {
2332 /* fill in blueprint for plt 0 entry */
2333 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD0,
2334 htab->splt->contents );
2335 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD1,
2336 htab->splt->contents +4 );
2337 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD3,
2338 htab->splt->contents +12 );
2339 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD4,
2340 htab->splt->contents +16 );
2341 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD5,
2342 htab->splt->contents +20 );
2343 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD6,
2344 htab->splt->contents + 24);
2345 bfd_put_32 (output_bfd, (bfd_vma) PLT_FIRST_ENTRY_WORD7,
2346 htab->splt->contents + 28 );
2347 /* Fixup relative address to start of GOT */
2348 bfd_put_32 (output_bfd,
2349 (htab->sgotplt->output_section->vma +
2350 htab->sgotplt->output_offset
2351 - htab->splt->output_section->vma - 6)/2,
2352 htab->splt->contents + 8);
2353 }
2354 elf_section_data (htab->splt->output_section)
2355 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
2356 }
2357
2358 if (htab->sgotplt)
2359 {
2360 /* Fill in the first three entries in the global offset table. */
2361 if (htab->sgotplt->_raw_size > 0)
2362 {
2363 bfd_put_64 (output_bfd,
2364 (sdyn == NULL ? (bfd_vma) 0
2365 : sdyn->output_section->vma + sdyn->output_offset),
2366 htab->sgotplt->contents);
2367 /* One entry for shared object struct ptr. */
2368 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2369 /* One entry for _dl_runtime_resolve. */
2370 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 12);
2371 }
2372
2373 elf_section_data (htab->sgot->output_section)
2374 ->this_hdr.sh_entsize = 8;
2375 }
2376 return true;
2377 }
2378
2379 static boolean
2380 elf_s390_object_p (abfd)
2381 bfd *abfd;
2382 {
2383 return bfd_default_set_arch_mach (abfd, bfd_arch_s390, bfd_mach_s390_esame);
2384 }
2385
2386 /*
2387 * Why was the hash table entry size definition changed from
2388 * ARCH_SIZE/8 to 4? This breaks the 64 bit dynamic linker and
2389 * this is the only reason for the s390_elf64_size_info structure.
2390 */
2391
2392 const struct elf_size_info s390_elf64_size_info =
2393 {
2394 sizeof (Elf64_External_Ehdr),
2395 sizeof (Elf64_External_Phdr),
2396 sizeof (Elf64_External_Shdr),
2397 sizeof (Elf64_External_Rel),
2398 sizeof (Elf64_External_Rela),
2399 sizeof (Elf64_External_Sym),
2400 sizeof (Elf64_External_Dyn),
2401 sizeof (Elf_External_Note),
2402 8, /* hash-table entry size */
2403 1, /* internal relocations per external relocations */
2404 64, /* arch_size */
2405 8, /* file_align */
2406 ELFCLASS64, EV_CURRENT,
2407 bfd_elf64_write_out_phdrs,
2408 bfd_elf64_write_shdrs_and_ehdr,
2409 bfd_elf64_write_relocs,
2410 bfd_elf64_swap_symbol_out,
2411 bfd_elf64_slurp_reloc_table,
2412 bfd_elf64_slurp_symbol_table,
2413 bfd_elf64_swap_dyn_in,
2414 bfd_elf64_swap_dyn_out,
2415 NULL,
2416 NULL,
2417 NULL,
2418 NULL
2419 };
2420
2421 #define TARGET_BIG_SYM bfd_elf64_s390_vec
2422 #define TARGET_BIG_NAME "elf64-s390"
2423 #define ELF_ARCH bfd_arch_s390
2424 #define ELF_MACHINE_CODE EM_S390
2425 #define ELF_MACHINE_ALT1 EM_S390_OLD
2426 #define ELF_MAXPAGESIZE 0x1000
2427
2428 #define elf_backend_size_info s390_elf64_size_info
2429
2430 #define elf_backend_can_gc_sections 1
2431 #define elf_backend_can_refcount 1
2432 #define elf_backend_want_got_plt 1
2433 #define elf_backend_plt_readonly 1
2434 #define elf_backend_want_plt_sym 0
2435 #define elf_backend_got_header_size 24
2436 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2437
2438 #define elf_info_to_howto elf_s390_info_to_howto
2439
2440 #define bfd_elf64_bfd_is_local_label_name elf_s390_is_local_label_name
2441 #define bfd_elf64_bfd_link_hash_table_create elf_s390_link_hash_table_create
2442 #define bfd_elf64_bfd_reloc_type_lookup elf_s390_reloc_type_lookup
2443
2444 #define elf_backend_adjust_dynamic_symbol elf_s390_adjust_dynamic_symbol
2445 #define elf_backend_check_relocs elf_s390_check_relocs
2446 #define elf_backend_copy_indirect_symbol elf_s390_copy_indirect_symbol
2447 #define elf_backend_create_dynamic_sections elf_s390_create_dynamic_sections
2448 #define elf_backend_finish_dynamic_sections elf_s390_finish_dynamic_sections
2449 #define elf_backend_finish_dynamic_symbol elf_s390_finish_dynamic_symbol
2450 #define elf_backend_gc_mark_hook elf_s390_gc_mark_hook
2451 #define elf_backend_gc_sweep_hook elf_s390_gc_sweep_hook
2452 #define elf_backend_reloc_type_class elf_s390_reloc_type_class
2453 #define elf_backend_relocate_section elf_s390_relocate_section
2454 #define elf_backend_size_dynamic_sections elf_s390_size_dynamic_sections
2455 #define elf_backend_reloc_type_class elf_s390_reloc_type_class
2456
2457 #define elf_backend_object_p elf_s390_object_p
2458
2459 #include "elf64-target.h"
This page took 0.080996 seconds and 4 git commands to generate.