2001-01-20 Maciej W. Rozycki <macro@ds2.pg.gda.pl>
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS((bfd *));
39 static reloc_howto_type *sparc64_elf_reloc_type_lookup
40 PARAMS ((bfd *, bfd_reloc_code_real_type));
41 static void sparc64_elf_info_to_howto
42 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
43
44 static void sparc64_elf_build_plt
45 PARAMS((bfd *, unsigned char *, int));
46 static bfd_vma sparc64_elf_plt_entry_offset
47 PARAMS((int));
48 static bfd_vma sparc64_elf_plt_ptr_offset
49 PARAMS((int, int));
50
51 static boolean sparc64_elf_check_relocs
52 PARAMS((bfd *, struct bfd_link_info *, asection *sec,
53 const Elf_Internal_Rela *));
54 static boolean sparc64_elf_adjust_dynamic_symbol
55 PARAMS((struct bfd_link_info *, struct elf_link_hash_entry *));
56 static boolean sparc64_elf_size_dynamic_sections
57 PARAMS((bfd *, struct bfd_link_info *));
58 static int sparc64_elf_get_symbol_type
59 PARAMS (( Elf_Internal_Sym *, int));
60 static boolean sparc64_elf_add_symbol_hook
61 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
62 const char **, flagword *, asection **, bfd_vma *));
63 static void sparc64_elf_symbol_processing
64 PARAMS ((bfd *, asymbol *));
65
66 static boolean sparc64_elf_merge_private_bfd_data
67 PARAMS ((bfd *, bfd *));
68
69 static boolean sparc64_elf_relax_section
70 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
71 static boolean sparc64_elf_relocate_section
72 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
73 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
74 static boolean sparc64_elf_object_p PARAMS ((bfd *));
75 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
76 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
77 static boolean sparc64_elf_slurp_one_reloc_table
78 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
79 static boolean sparc64_elf_slurp_reloc_table
80 PARAMS ((bfd *, asection *, asymbol **, boolean));
81 static long sparc64_elf_canonicalize_dynamic_reloc
82 PARAMS ((bfd *, arelent **, asymbol **));
83 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
84 \f
85 /* The relocation "howto" table. */
86
87 static bfd_reloc_status_type sparc_elf_notsup_reloc
88 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
89 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
90 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
91 static bfd_reloc_status_type sparc_elf_hix22_reloc
92 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
93 static bfd_reloc_status_type sparc_elf_lox10_reloc
94 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
95
96 static reloc_howto_type sparc64_elf_howto_table[] =
97 {
98 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
99 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
100 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
101 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
102 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
103 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
104 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
105 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
106 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
107 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
108 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
109 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
110 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
111 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
112 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
113 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
114 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
115 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
116 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
117 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
118 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
119 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
120 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
121 HOWTO(R_SPARC_UA32, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0x00000000,true),
122 #ifndef SPARC64_OLD_RELOCS
123 /* These aren't implemented yet. */
124 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
125 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
126 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
127 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
128 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
129 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
130 #endif
131 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
132 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
133 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
134 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
135 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
136 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
137 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
138 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
139 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
140 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
141 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
142 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
143 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
144 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
145 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
146 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
147 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
148 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
149 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
150 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
151 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
152 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
153 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
154 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
155 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
156 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
157 };
158
159 struct elf_reloc_map {
160 bfd_reloc_code_real_type bfd_reloc_val;
161 unsigned char elf_reloc_val;
162 };
163
164 static CONST struct elf_reloc_map sparc_reloc_map[] =
165 {
166 { BFD_RELOC_NONE, R_SPARC_NONE, },
167 { BFD_RELOC_16, R_SPARC_16, },
168 { BFD_RELOC_8, R_SPARC_8 },
169 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
170 { BFD_RELOC_CTOR, R_SPARC_64 },
171 { BFD_RELOC_32, R_SPARC_32 },
172 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
173 { BFD_RELOC_HI22, R_SPARC_HI22 },
174 { BFD_RELOC_LO10, R_SPARC_LO10, },
175 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
176 { BFD_RELOC_SPARC22, R_SPARC_22 },
177 { BFD_RELOC_SPARC13, R_SPARC_13 },
178 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
179 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
180 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
181 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
182 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
183 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
184 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
185 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
186 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
187 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
188 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
189 /* ??? Doesn't dwarf use this? */
190 /*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
191 {BFD_RELOC_SPARC_10, R_SPARC_10},
192 {BFD_RELOC_SPARC_11, R_SPARC_11},
193 {BFD_RELOC_SPARC_64, R_SPARC_64},
194 {BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10},
195 {BFD_RELOC_SPARC_HH22, R_SPARC_HH22},
196 {BFD_RELOC_SPARC_HM10, R_SPARC_HM10},
197 {BFD_RELOC_SPARC_LM22, R_SPARC_LM22},
198 {BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22},
199 {BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10},
200 {BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22},
201 {BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16},
202 {BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19},
203 {BFD_RELOC_SPARC_7, R_SPARC_7},
204 {BFD_RELOC_SPARC_5, R_SPARC_5},
205 {BFD_RELOC_SPARC_6, R_SPARC_6},
206 {BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64},
207 {BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64},
208 {BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22},
209 {BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10},
210 {BFD_RELOC_SPARC_H44, R_SPARC_H44},
211 {BFD_RELOC_SPARC_M44, R_SPARC_M44},
212 {BFD_RELOC_SPARC_L44, R_SPARC_L44},
213 {BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER}
214 };
215
216 static reloc_howto_type *
217 sparc64_elf_reloc_type_lookup (abfd, code)
218 bfd *abfd ATTRIBUTE_UNUSED;
219 bfd_reloc_code_real_type code;
220 {
221 unsigned int i;
222 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
223 {
224 if (sparc_reloc_map[i].bfd_reloc_val == code)
225 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
226 }
227 return 0;
228 }
229
230 static void
231 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
232 bfd *abfd ATTRIBUTE_UNUSED;
233 arelent *cache_ptr;
234 Elf64_Internal_Rela *dst;
235 {
236 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
237 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
238 }
239 \f
240 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
241 section can represent up to two relocs, we must tell the user to allocate
242 more space. */
243
244 static long
245 sparc64_elf_get_reloc_upper_bound (abfd, sec)
246 bfd *abfd ATTRIBUTE_UNUSED;
247 asection *sec;
248 {
249 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
250 }
251
252 static long
253 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
254 bfd *abfd;
255 {
256 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
257 }
258
259 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
260 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
261 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
262 for the same location, R_SPARC_LO10 and R_SPARC_13. */
263
264 static boolean
265 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
266 bfd *abfd;
267 asection *asect;
268 Elf_Internal_Shdr *rel_hdr;
269 asymbol **symbols;
270 boolean dynamic;
271 {
272 PTR allocated = NULL;
273 bfd_byte *native_relocs;
274 arelent *relent;
275 unsigned int i;
276 int entsize;
277 bfd_size_type count;
278 arelent *relents;
279
280 allocated = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
281 if (allocated == NULL)
282 goto error_return;
283
284 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
285 || (bfd_read (allocated, 1, rel_hdr->sh_size, abfd)
286 != rel_hdr->sh_size))
287 goto error_return;
288
289 native_relocs = (bfd_byte *) allocated;
290
291 relents = asect->relocation + asect->reloc_count;
292
293 entsize = rel_hdr->sh_entsize;
294 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
295
296 count = rel_hdr->sh_size / entsize;
297
298 for (i = 0, relent = relents; i < count;
299 i++, relent++, native_relocs += entsize)
300 {
301 Elf_Internal_Rela rela;
302
303 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
304
305 /* The address of an ELF reloc is section relative for an object
306 file, and absolute for an executable file or shared library.
307 The address of a normal BFD reloc is always section relative,
308 and the address of a dynamic reloc is absolute.. */
309 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
310 relent->address = rela.r_offset;
311 else
312 relent->address = rela.r_offset - asect->vma;
313
314 if (ELF64_R_SYM (rela.r_info) == 0)
315 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
316 else
317 {
318 asymbol **ps, *s;
319
320 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
321 s = *ps;
322
323 /* Canonicalize ELF section symbols. FIXME: Why? */
324 if ((s->flags & BSF_SECTION_SYM) == 0)
325 relent->sym_ptr_ptr = ps;
326 else
327 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
328 }
329
330 relent->addend = rela.r_addend;
331
332 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
333 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
334 {
335 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
336 relent[1].address = relent->address;
337 relent++;
338 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
339 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
340 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
341 }
342 else
343 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
344 }
345
346 asect->reloc_count += relent - relents;
347
348 if (allocated != NULL)
349 free (allocated);
350
351 return true;
352
353 error_return:
354 if (allocated != NULL)
355 free (allocated);
356 return false;
357 }
358
359 /* Read in and swap the external relocs. */
360
361 static boolean
362 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
363 bfd *abfd;
364 asection *asect;
365 asymbol **symbols;
366 boolean dynamic;
367 {
368 struct bfd_elf_section_data * const d = elf_section_data (asect);
369 Elf_Internal_Shdr *rel_hdr;
370 Elf_Internal_Shdr *rel_hdr2;
371
372 if (asect->relocation != NULL)
373 return true;
374
375 if (! dynamic)
376 {
377 if ((asect->flags & SEC_RELOC) == 0
378 || asect->reloc_count == 0)
379 return true;
380
381 rel_hdr = &d->rel_hdr;
382 rel_hdr2 = d->rel_hdr2;
383
384 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
385 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
386 }
387 else
388 {
389 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
390 case because relocations against this section may use the
391 dynamic symbol table, and in that case bfd_section_from_shdr
392 in elf.c does not update the RELOC_COUNT. */
393 if (asect->_raw_size == 0)
394 return true;
395
396 rel_hdr = &d->this_hdr;
397 asect->reloc_count = rel_hdr->sh_size / rel_hdr->sh_entsize;
398 rel_hdr2 = NULL;
399 }
400
401 asect->relocation = ((arelent *)
402 bfd_alloc (abfd,
403 asect->reloc_count * 2 * sizeof (arelent)));
404 if (asect->relocation == NULL)
405 return false;
406
407 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
408 asect->reloc_count = 0;
409
410 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
411 dynamic))
412 return false;
413
414 if (rel_hdr2
415 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
416 dynamic))
417 return false;
418
419 return true;
420 }
421
422 /* Canonicalize the dynamic relocation entries. Note that we return
423 the dynamic relocations as a single block, although they are
424 actually associated with particular sections; the interface, which
425 was designed for SunOS style shared libraries, expects that there
426 is only one set of dynamic relocs. Any section that was actually
427 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
428 the dynamic symbol table, is considered to be a dynamic reloc
429 section. */
430
431 static long
432 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
433 bfd *abfd;
434 arelent **storage;
435 asymbol **syms;
436 {
437 asection *s;
438 long ret;
439
440 if (elf_dynsymtab (abfd) == 0)
441 {
442 bfd_set_error (bfd_error_invalid_operation);
443 return -1;
444 }
445
446 ret = 0;
447 for (s = abfd->sections; s != NULL; s = s->next)
448 {
449 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
450 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
451 {
452 arelent *p;
453 long count, i;
454
455 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
456 return -1;
457 count = s->reloc_count;
458 p = s->relocation;
459 for (i = 0; i < count; i++)
460 *storage++ = p++;
461 ret += count;
462 }
463 }
464
465 *storage = NULL;
466
467 return ret;
468 }
469
470 /* Write out the relocs. */
471
472 static void
473 sparc64_elf_write_relocs (abfd, sec, data)
474 bfd *abfd;
475 asection *sec;
476 PTR data;
477 {
478 boolean *failedp = (boolean *) data;
479 Elf_Internal_Shdr *rela_hdr;
480 Elf64_External_Rela *outbound_relocas, *src_rela;
481 unsigned int idx, count;
482 asymbol *last_sym = 0;
483 int last_sym_idx = 0;
484
485 /* If we have already failed, don't do anything. */
486 if (*failedp)
487 return;
488
489 if ((sec->flags & SEC_RELOC) == 0)
490 return;
491
492 /* The linker backend writes the relocs out itself, and sets the
493 reloc_count field to zero to inhibit writing them here. Also,
494 sometimes the SEC_RELOC flag gets set even when there aren't any
495 relocs. */
496 if (sec->reloc_count == 0)
497 return;
498
499 /* We can combine two relocs that refer to the same address
500 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
501 latter is R_SPARC_13 with no associated symbol. */
502 count = 0;
503 for (idx = 0; idx < sec->reloc_count; idx++)
504 {
505 bfd_vma addr;
506
507 ++count;
508
509 addr = sec->orelocation[idx]->address;
510 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
511 && idx < sec->reloc_count - 1)
512 {
513 arelent *r = sec->orelocation[idx + 1];
514
515 if (r->howto->type == R_SPARC_13
516 && r->address == addr
517 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
518 && (*r->sym_ptr_ptr)->value == 0)
519 ++idx;
520 }
521 }
522
523 rela_hdr = &elf_section_data (sec)->rel_hdr;
524
525 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
526 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
527 if (rela_hdr->contents == NULL)
528 {
529 *failedp = true;
530 return;
531 }
532
533 /* Figure out whether the relocations are RELA or REL relocations. */
534 if (rela_hdr->sh_type != SHT_RELA)
535 abort ();
536
537 /* orelocation has the data, reloc_count has the count... */
538 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
539 src_rela = outbound_relocas;
540
541 for (idx = 0; idx < sec->reloc_count; idx++)
542 {
543 Elf_Internal_Rela dst_rela;
544 arelent *ptr;
545 asymbol *sym;
546 int n;
547
548 ptr = sec->orelocation[idx];
549
550 /* The address of an ELF reloc is section relative for an object
551 file, and absolute for an executable file or shared library.
552 The address of a BFD reloc is always section relative. */
553 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
554 dst_rela.r_offset = ptr->address;
555 else
556 dst_rela.r_offset = ptr->address + sec->vma;
557
558 sym = *ptr->sym_ptr_ptr;
559 if (sym == last_sym)
560 n = last_sym_idx;
561 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
562 n = STN_UNDEF;
563 else
564 {
565 last_sym = sym;
566 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
567 if (n < 0)
568 {
569 *failedp = true;
570 return;
571 }
572 last_sym_idx = n;
573 }
574
575 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
576 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
577 && ! _bfd_elf_validate_reloc (abfd, ptr))
578 {
579 *failedp = true;
580 return;
581 }
582
583 if (ptr->howto->type == R_SPARC_LO10
584 && idx < sec->reloc_count - 1)
585 {
586 arelent *r = sec->orelocation[idx + 1];
587
588 if (r->howto->type == R_SPARC_13
589 && r->address == ptr->address
590 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
591 && (*r->sym_ptr_ptr)->value == 0)
592 {
593 idx++;
594 dst_rela.r_info
595 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
596 R_SPARC_OLO10));
597 }
598 else
599 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
600 }
601 else
602 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
603
604 dst_rela.r_addend = ptr->addend;
605 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
606 ++src_rela;
607 }
608 }
609 \f
610 /* Sparc64 ELF linker hash table. */
611
612 struct sparc64_elf_app_reg
613 {
614 unsigned char bind;
615 unsigned short shndx;
616 bfd *abfd;
617 char *name;
618 };
619
620 struct sparc64_elf_link_hash_table
621 {
622 struct elf_link_hash_table root;
623
624 struct sparc64_elf_app_reg app_regs [4];
625 };
626
627 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
628
629 #define sparc64_elf_hash_table(p) \
630 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
631
632 /* Create a Sparc64 ELF linker hash table. */
633
634 static struct bfd_link_hash_table *
635 sparc64_elf_bfd_link_hash_table_create (abfd)
636 bfd *abfd;
637 {
638 struct sparc64_elf_link_hash_table *ret;
639
640 ret = ((struct sparc64_elf_link_hash_table *)
641 bfd_zalloc (abfd, sizeof (struct sparc64_elf_link_hash_table)));
642 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
643 return NULL;
644
645 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
646 _bfd_elf_link_hash_newfunc))
647 {
648 bfd_release (abfd, ret);
649 return NULL;
650 }
651
652 return &ret->root.root;
653 }
654
655 \f
656 /* Utility for performing the standard initial work of an instruction
657 relocation.
658 *PRELOCATION will contain the relocated item.
659 *PINSN will contain the instruction from the input stream.
660 If the result is `bfd_reloc_other' the caller can continue with
661 performing the relocation. Otherwise it must stop and return the
662 value to its caller. */
663
664 static bfd_reloc_status_type
665 init_insn_reloc (abfd,
666 reloc_entry,
667 symbol,
668 data,
669 input_section,
670 output_bfd,
671 prelocation,
672 pinsn)
673 bfd *abfd;
674 arelent *reloc_entry;
675 asymbol *symbol;
676 PTR data;
677 asection *input_section;
678 bfd *output_bfd;
679 bfd_vma *prelocation;
680 bfd_vma *pinsn;
681 {
682 bfd_vma relocation;
683 reloc_howto_type *howto = reloc_entry->howto;
684
685 if (output_bfd != (bfd *) NULL
686 && (symbol->flags & BSF_SECTION_SYM) == 0
687 && (! howto->partial_inplace
688 || reloc_entry->addend == 0))
689 {
690 reloc_entry->address += input_section->output_offset;
691 return bfd_reloc_ok;
692 }
693
694 /* This works because partial_inplace == false. */
695 if (output_bfd != NULL)
696 return bfd_reloc_continue;
697
698 if (reloc_entry->address > input_section->_cooked_size)
699 return bfd_reloc_outofrange;
700
701 relocation = (symbol->value
702 + symbol->section->output_section->vma
703 + symbol->section->output_offset);
704 relocation += reloc_entry->addend;
705 if (howto->pc_relative)
706 {
707 relocation -= (input_section->output_section->vma
708 + input_section->output_offset);
709 relocation -= reloc_entry->address;
710 }
711
712 *prelocation = relocation;
713 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
714 return bfd_reloc_other;
715 }
716
717 /* For unsupported relocs. */
718
719 static bfd_reloc_status_type
720 sparc_elf_notsup_reloc (abfd,
721 reloc_entry,
722 symbol,
723 data,
724 input_section,
725 output_bfd,
726 error_message)
727 bfd *abfd ATTRIBUTE_UNUSED;
728 arelent *reloc_entry ATTRIBUTE_UNUSED;
729 asymbol *symbol ATTRIBUTE_UNUSED;
730 PTR data ATTRIBUTE_UNUSED;
731 asection *input_section ATTRIBUTE_UNUSED;
732 bfd *output_bfd ATTRIBUTE_UNUSED;
733 char **error_message ATTRIBUTE_UNUSED;
734 {
735 return bfd_reloc_notsupported;
736 }
737
738 /* Handle the WDISP16 reloc. */
739
740 static bfd_reloc_status_type
741 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
742 output_bfd, error_message)
743 bfd *abfd;
744 arelent *reloc_entry;
745 asymbol *symbol;
746 PTR data;
747 asection *input_section;
748 bfd *output_bfd;
749 char **error_message ATTRIBUTE_UNUSED;
750 {
751 bfd_vma relocation;
752 bfd_vma insn;
753 bfd_reloc_status_type status;
754
755 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
756 input_section, output_bfd, &relocation, &insn);
757 if (status != bfd_reloc_other)
758 return status;
759
760 insn = (insn & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
761 | ((relocation >> 2) & 0x3fff));
762 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
763
764 if ((bfd_signed_vma) relocation < - 0x40000
765 || (bfd_signed_vma) relocation > 0x3ffff)
766 return bfd_reloc_overflow;
767 else
768 return bfd_reloc_ok;
769 }
770
771 /* Handle the HIX22 reloc. */
772
773 static bfd_reloc_status_type
774 sparc_elf_hix22_reloc (abfd,
775 reloc_entry,
776 symbol,
777 data,
778 input_section,
779 output_bfd,
780 error_message)
781 bfd *abfd;
782 arelent *reloc_entry;
783 asymbol *symbol;
784 PTR data;
785 asection *input_section;
786 bfd *output_bfd;
787 char **error_message ATTRIBUTE_UNUSED;
788 {
789 bfd_vma relocation;
790 bfd_vma insn;
791 bfd_reloc_status_type status;
792
793 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
794 input_section, output_bfd, &relocation, &insn);
795 if (status != bfd_reloc_other)
796 return status;
797
798 relocation ^= MINUS_ONE;
799 insn = (insn & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
800 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
801
802 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
803 return bfd_reloc_overflow;
804 else
805 return bfd_reloc_ok;
806 }
807
808 /* Handle the LOX10 reloc. */
809
810 static bfd_reloc_status_type
811 sparc_elf_lox10_reloc (abfd,
812 reloc_entry,
813 symbol,
814 data,
815 input_section,
816 output_bfd,
817 error_message)
818 bfd *abfd;
819 arelent *reloc_entry;
820 asymbol *symbol;
821 PTR data;
822 asection *input_section;
823 bfd *output_bfd;
824 char **error_message ATTRIBUTE_UNUSED;
825 {
826 bfd_vma relocation;
827 bfd_vma insn;
828 bfd_reloc_status_type status;
829
830 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
831 input_section, output_bfd, &relocation, &insn);
832 if (status != bfd_reloc_other)
833 return status;
834
835 insn = (insn & ~0x1fff) | 0x1c00 | (relocation & 0x3ff);
836 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
837
838 return bfd_reloc_ok;
839 }
840 \f
841 /* PLT/GOT stuff */
842
843 /* Both the headers and the entries are icache aligned. */
844 #define PLT_ENTRY_SIZE 32
845 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
846 #define LARGE_PLT_THRESHOLD 32768
847 #define GOT_RESERVED_ENTRIES 1
848
849 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
850
851 /* Fill in the .plt section. */
852
853 static void
854 sparc64_elf_build_plt (output_bfd, contents, nentries)
855 bfd *output_bfd;
856 unsigned char *contents;
857 int nentries;
858 {
859 const unsigned int nop = 0x01000000;
860 int i, j;
861
862 /* The first four entries are reserved, and are initially undefined.
863 We fill them with `illtrap 0' to force ld.so to do something. */
864
865 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
866 bfd_put_32 (output_bfd, 0, contents+i*4);
867
868 /* The first 32768 entries are close enough to plt1 to get there via
869 a straight branch. */
870
871 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
872 {
873 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
874 unsigned int sethi, ba;
875
876 /* sethi (. - plt0), %g1 */
877 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
878
879 /* ba,a,pt %xcc, plt1 */
880 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
881
882 bfd_put_32 (output_bfd, sethi, entry);
883 bfd_put_32 (output_bfd, ba, entry+4);
884 bfd_put_32 (output_bfd, nop, entry+8);
885 bfd_put_32 (output_bfd, nop, entry+12);
886 bfd_put_32 (output_bfd, nop, entry+16);
887 bfd_put_32 (output_bfd, nop, entry+20);
888 bfd_put_32 (output_bfd, nop, entry+24);
889 bfd_put_32 (output_bfd, nop, entry+28);
890 }
891
892 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
893 160: 160 entries and 160 pointers. This is to separate code from data,
894 which is much friendlier on the cache. */
895
896 for (; i < nentries; i += 160)
897 {
898 int block = (i + 160 <= nentries ? 160 : nentries - i);
899 for (j = 0; j < block; ++j)
900 {
901 unsigned char *entry, *ptr;
902 unsigned int ldx;
903
904 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
905 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
906
907 /* ldx [%o7 + ptr - entry+4], %g1 */
908 ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
909
910 bfd_put_32 (output_bfd, 0x8a10000f, entry); /* mov %o7,%g5 */
911 bfd_put_32 (output_bfd, 0x40000002, entry+4); /* call .+8 */
912 bfd_put_32 (output_bfd, nop, entry+8); /* nop */
913 bfd_put_32 (output_bfd, ldx, entry+12); /* ldx [%o7+P],%g1 */
914 bfd_put_32 (output_bfd, 0x83c3c001, entry+16); /* jmpl %o7+%g1,%g1 */
915 bfd_put_32 (output_bfd, 0x9e100005, entry+20); /* mov %g5,%o7 */
916
917 bfd_put_64 (output_bfd, contents - (entry+4), ptr);
918 }
919 }
920 }
921
922 /* Return the offset of a particular plt entry within the .plt section. */
923
924 static bfd_vma
925 sparc64_elf_plt_entry_offset (index)
926 int index;
927 {
928 int block, ofs;
929
930 if (index < LARGE_PLT_THRESHOLD)
931 return index * PLT_ENTRY_SIZE;
932
933 /* See above for details. */
934
935 block = (index - LARGE_PLT_THRESHOLD) / 160;
936 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
937
938 return ((bfd_vma) (LARGE_PLT_THRESHOLD + block*160) * PLT_ENTRY_SIZE
939 + ofs * 6*4);
940 }
941
942 static bfd_vma
943 sparc64_elf_plt_ptr_offset (index, max)
944 int index, max;
945 {
946 int block, ofs, last;
947
948 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
949
950 /* See above for details. */
951
952 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160)
953 + LARGE_PLT_THRESHOLD;
954 ofs = index - block;
955 if (block + 160 > max)
956 last = (max - LARGE_PLT_THRESHOLD) % 160;
957 else
958 last = 160;
959
960 return (block * PLT_ENTRY_SIZE
961 + last * 6*4
962 + ofs * 8);
963 }
964
965 \f
966 /* Look through the relocs for a section during the first phase, and
967 allocate space in the global offset table or procedure linkage
968 table. */
969
970 static boolean
971 sparc64_elf_check_relocs (abfd, info, sec, relocs)
972 bfd *abfd;
973 struct bfd_link_info *info;
974 asection *sec;
975 const Elf_Internal_Rela *relocs;
976 {
977 bfd *dynobj;
978 Elf_Internal_Shdr *symtab_hdr;
979 struct elf_link_hash_entry **sym_hashes;
980 bfd_vma *local_got_offsets;
981 const Elf_Internal_Rela *rel;
982 const Elf_Internal_Rela *rel_end;
983 asection *sgot;
984 asection *srelgot;
985 asection *sreloc;
986
987 if (info->relocateable || !(sec->flags & SEC_ALLOC))
988 return true;
989
990 dynobj = elf_hash_table (info)->dynobj;
991 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
992 sym_hashes = elf_sym_hashes (abfd);
993 local_got_offsets = elf_local_got_offsets (abfd);
994
995 sgot = NULL;
996 srelgot = NULL;
997 sreloc = NULL;
998
999 rel_end = relocs + sec->reloc_count;
1000 for (rel = relocs; rel < rel_end; rel++)
1001 {
1002 unsigned long r_symndx;
1003 struct elf_link_hash_entry *h;
1004
1005 r_symndx = ELF64_R_SYM (rel->r_info);
1006 if (r_symndx < symtab_hdr->sh_info)
1007 h = NULL;
1008 else
1009 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1010
1011 switch (ELF64_R_TYPE_ID (rel->r_info))
1012 {
1013 case R_SPARC_GOT10:
1014 case R_SPARC_GOT13:
1015 case R_SPARC_GOT22:
1016 /* This symbol requires a global offset table entry. */
1017
1018 if (dynobj == NULL)
1019 {
1020 /* Create the .got section. */
1021 elf_hash_table (info)->dynobj = dynobj = abfd;
1022 if (! _bfd_elf_create_got_section (dynobj, info))
1023 return false;
1024 }
1025
1026 if (sgot == NULL)
1027 {
1028 sgot = bfd_get_section_by_name (dynobj, ".got");
1029 BFD_ASSERT (sgot != NULL);
1030 }
1031
1032 if (srelgot == NULL && (h != NULL || info->shared))
1033 {
1034 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1035 if (srelgot == NULL)
1036 {
1037 srelgot = bfd_make_section (dynobj, ".rela.got");
1038 if (srelgot == NULL
1039 || ! bfd_set_section_flags (dynobj, srelgot,
1040 (SEC_ALLOC
1041 | SEC_LOAD
1042 | SEC_HAS_CONTENTS
1043 | SEC_IN_MEMORY
1044 | SEC_LINKER_CREATED
1045 | SEC_READONLY))
1046 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1047 return false;
1048 }
1049 }
1050
1051 if (h != NULL)
1052 {
1053 if (h->got.offset != (bfd_vma) -1)
1054 {
1055 /* We have already allocated space in the .got. */
1056 break;
1057 }
1058 h->got.offset = sgot->_raw_size;
1059
1060 /* Make sure this symbol is output as a dynamic symbol. */
1061 if (h->dynindx == -1)
1062 {
1063 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1064 return false;
1065 }
1066
1067 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1068 }
1069 else
1070 {
1071 /* This is a global offset table entry for a local
1072 symbol. */
1073 if (local_got_offsets == NULL)
1074 {
1075 size_t size;
1076 register unsigned int i;
1077
1078 size = symtab_hdr->sh_info * sizeof (bfd_vma);
1079 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1080 if (local_got_offsets == NULL)
1081 return false;
1082 elf_local_got_offsets (abfd) = local_got_offsets;
1083 for (i = 0; i < symtab_hdr->sh_info; i++)
1084 local_got_offsets[i] = (bfd_vma) -1;
1085 }
1086 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1087 {
1088 /* We have already allocated space in the .got. */
1089 break;
1090 }
1091 local_got_offsets[r_symndx] = sgot->_raw_size;
1092
1093 if (info->shared)
1094 {
1095 /* If we are generating a shared object, we need to
1096 output a R_SPARC_RELATIVE reloc so that the
1097 dynamic linker can adjust this GOT entry. */
1098 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1099 }
1100 }
1101
1102 sgot->_raw_size += 8;
1103
1104 #if 0
1105 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1106 unsigned numbers. If we permit ourselves to modify
1107 code so we get sethi/xor, this could work.
1108 Question: do we consider conditionally re-enabling
1109 this for -fpic, once we know about object code models? */
1110 /* If the .got section is more than 0x1000 bytes, we add
1111 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1112 bit relocations have a greater chance of working. */
1113 if (sgot->_raw_size >= 0x1000
1114 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1115 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1116 #endif
1117
1118 break;
1119
1120 case R_SPARC_WPLT30:
1121 case R_SPARC_PLT32:
1122 case R_SPARC_HIPLT22:
1123 case R_SPARC_LOPLT10:
1124 case R_SPARC_PCPLT32:
1125 case R_SPARC_PCPLT22:
1126 case R_SPARC_PCPLT10:
1127 case R_SPARC_PLT64:
1128 /* This symbol requires a procedure linkage table entry. We
1129 actually build the entry in adjust_dynamic_symbol,
1130 because this might be a case of linking PIC code without
1131 linking in any dynamic objects, in which case we don't
1132 need to generate a procedure linkage table after all. */
1133
1134 if (h == NULL)
1135 {
1136 /* It does not make sense to have a procedure linkage
1137 table entry for a local symbol. */
1138 bfd_set_error (bfd_error_bad_value);
1139 return false;
1140 }
1141
1142 /* Make sure this symbol is output as a dynamic symbol. */
1143 if (h->dynindx == -1)
1144 {
1145 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1146 return false;
1147 }
1148
1149 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1150 break;
1151
1152 case R_SPARC_PC10:
1153 case R_SPARC_PC22:
1154 case R_SPARC_PC_HH22:
1155 case R_SPARC_PC_HM10:
1156 case R_SPARC_PC_LM22:
1157 if (h != NULL
1158 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1159 break;
1160 /* Fall through. */
1161 case R_SPARC_DISP8:
1162 case R_SPARC_DISP16:
1163 case R_SPARC_DISP32:
1164 case R_SPARC_DISP64:
1165 case R_SPARC_WDISP30:
1166 case R_SPARC_WDISP22:
1167 case R_SPARC_WDISP19:
1168 case R_SPARC_WDISP16:
1169 if (h == NULL)
1170 break;
1171 /* Fall through. */
1172 case R_SPARC_8:
1173 case R_SPARC_16:
1174 case R_SPARC_32:
1175 case R_SPARC_HI22:
1176 case R_SPARC_22:
1177 case R_SPARC_13:
1178 case R_SPARC_LO10:
1179 case R_SPARC_UA32:
1180 case R_SPARC_10:
1181 case R_SPARC_11:
1182 case R_SPARC_64:
1183 case R_SPARC_OLO10:
1184 case R_SPARC_HH22:
1185 case R_SPARC_HM10:
1186 case R_SPARC_LM22:
1187 case R_SPARC_7:
1188 case R_SPARC_5:
1189 case R_SPARC_6:
1190 case R_SPARC_HIX22:
1191 case R_SPARC_LOX10:
1192 case R_SPARC_H44:
1193 case R_SPARC_M44:
1194 case R_SPARC_L44:
1195 case R_SPARC_UA64:
1196 case R_SPARC_UA16:
1197 /* When creating a shared object, we must copy these relocs
1198 into the output file. We create a reloc section in
1199 dynobj and make room for the reloc.
1200
1201 But don't do this for debugging sections -- this shows up
1202 with DWARF2 -- first because they are not loaded, and
1203 second because DWARF sez the debug info is not to be
1204 biased by the load address. */
1205 if (info->shared && (sec->flags & SEC_ALLOC))
1206 {
1207 if (sreloc == NULL)
1208 {
1209 const char *name;
1210
1211 name = (bfd_elf_string_from_elf_section
1212 (abfd,
1213 elf_elfheader (abfd)->e_shstrndx,
1214 elf_section_data (sec)->rel_hdr.sh_name));
1215 if (name == NULL)
1216 return false;
1217
1218 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1219 && strcmp (bfd_get_section_name (abfd, sec),
1220 name + 5) == 0);
1221
1222 sreloc = bfd_get_section_by_name (dynobj, name);
1223 if (sreloc == NULL)
1224 {
1225 flagword flags;
1226
1227 sreloc = bfd_make_section (dynobj, name);
1228 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1229 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1230 if ((sec->flags & SEC_ALLOC) != 0)
1231 flags |= SEC_ALLOC | SEC_LOAD;
1232 if (sreloc == NULL
1233 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1234 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1235 return false;
1236 }
1237 }
1238
1239 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1240 }
1241 break;
1242
1243 case R_SPARC_REGISTER:
1244 /* Nothing to do. */
1245 break;
1246
1247 default:
1248 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1249 bfd_get_filename(abfd),
1250 ELF64_R_TYPE_ID (rel->r_info));
1251 return false;
1252 }
1253 }
1254
1255 return true;
1256 }
1257
1258 /* Hook called by the linker routine which adds symbols from an object
1259 file. We use it for STT_REGISTER symbols. */
1260
1261 static boolean
1262 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1263 bfd *abfd;
1264 struct bfd_link_info *info;
1265 const Elf_Internal_Sym *sym;
1266 const char **namep;
1267 flagword *flagsp ATTRIBUTE_UNUSED;
1268 asection **secp ATTRIBUTE_UNUSED;
1269 bfd_vma *valp ATTRIBUTE_UNUSED;
1270 {
1271 static char *stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1272
1273 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1274 {
1275 int reg;
1276 struct sparc64_elf_app_reg *p;
1277
1278 reg = (int)sym->st_value;
1279 switch (reg & ~1)
1280 {
1281 case 2: reg -= 2; break;
1282 case 6: reg -= 4; break;
1283 default:
1284 (*_bfd_error_handler)
1285 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1286 bfd_get_filename (abfd));
1287 return false;
1288 }
1289
1290 if (info->hash->creator != abfd->xvec
1291 || (abfd->flags & DYNAMIC) != 0)
1292 {
1293 /* STT_REGISTER only works when linking an elf64_sparc object.
1294 If STT_REGISTER comes from a dynamic object, don't put it into
1295 the output bfd. The dynamic linker will recheck it. */
1296 *namep = NULL;
1297 return true;
1298 }
1299
1300 p = sparc64_elf_hash_table(info)->app_regs + reg;
1301
1302 if (p->name != NULL && strcmp (p->name, *namep))
1303 {
1304 (*_bfd_error_handler)
1305 (_("Register %%g%d used incompatibly: "
1306 "previously declared in %s to %s, in %s redefined to %s"),
1307 (int)sym->st_value,
1308 bfd_get_filename (p->abfd), *p->name ? p->name : "#scratch",
1309 bfd_get_filename (abfd), **namep ? *namep : "#scratch");
1310 return false;
1311 }
1312
1313 if (p->name == NULL)
1314 {
1315 if (**namep)
1316 {
1317 struct elf_link_hash_entry *h;
1318
1319 h = (struct elf_link_hash_entry *)
1320 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1321
1322 if (h != NULL)
1323 {
1324 unsigned char type = h->type;
1325
1326 if (type > STT_FUNC) type = 0;
1327 (*_bfd_error_handler)
1328 (_("Symbol `%s' has differing types: "
1329 "previously %s, REGISTER in %s"),
1330 *namep, stt_types [type], bfd_get_filename (abfd));
1331 return false;
1332 }
1333
1334 p->name = bfd_hash_allocate (&info->hash->table,
1335 strlen (*namep) + 1);
1336 if (!p->name)
1337 return false;
1338
1339 strcpy (p->name, *namep);
1340 }
1341 else
1342 p->name = "";
1343 p->bind = ELF_ST_BIND (sym->st_info);
1344 p->abfd = abfd;
1345 p->shndx = sym->st_shndx;
1346 }
1347 else
1348 {
1349 if (p->bind == STB_WEAK
1350 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1351 {
1352 p->bind = STB_GLOBAL;
1353 p->abfd = abfd;
1354 }
1355 }
1356 *namep = NULL;
1357 return true;
1358 }
1359 else if (! *namep || ! **namep)
1360 return true;
1361 else
1362 {
1363 int i;
1364 struct sparc64_elf_app_reg *p;
1365
1366 p = sparc64_elf_hash_table(info)->app_regs;
1367 for (i = 0; i < 4; i++, p++)
1368 if (p->name != NULL && ! strcmp (p->name, *namep))
1369 {
1370 unsigned char type = ELF_ST_TYPE (sym->st_info);
1371
1372 if (type > STT_FUNC) type = 0;
1373 (*_bfd_error_handler)
1374 (_("Symbol `%s' has differing types: "
1375 "REGISTER in %s, %s in %s"),
1376 *namep, bfd_get_filename (p->abfd), stt_types [type],
1377 bfd_get_filename (abfd));
1378 return false;
1379 }
1380 }
1381 return true;
1382 }
1383
1384 /* This function takes care of emiting STT_REGISTER symbols
1385 which we cannot easily keep in the symbol hash table. */
1386
1387 static boolean
1388 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1389 bfd *output_bfd ATTRIBUTE_UNUSED;
1390 struct bfd_link_info *info;
1391 PTR finfo;
1392 boolean (*func) PARAMS ((PTR, const char *,
1393 Elf_Internal_Sym *, asection *));
1394 {
1395 int reg;
1396 struct sparc64_elf_app_reg *app_regs =
1397 sparc64_elf_hash_table(info)->app_regs;
1398 Elf_Internal_Sym sym;
1399
1400 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1401 at the end of the dynlocal list, so they came at the end of the local
1402 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1403 to back up symtab->sh_info. */
1404 if (elf_hash_table (info)->dynlocal)
1405 {
1406 bfd * dynobj = elf_hash_table (info)->dynobj;
1407 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1408 struct elf_link_local_dynamic_entry *e;
1409
1410 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1411 if (e->input_indx == -1)
1412 break;
1413 if (e)
1414 {
1415 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1416 = e->dynindx;
1417 }
1418 }
1419
1420 if (info->strip == strip_all)
1421 return true;
1422
1423 for (reg = 0; reg < 4; reg++)
1424 if (app_regs [reg].name != NULL)
1425 {
1426 if (info->strip == strip_some
1427 && bfd_hash_lookup (info->keep_hash,
1428 app_regs [reg].name,
1429 false, false) == NULL)
1430 continue;
1431
1432 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1433 sym.st_size = 0;
1434 sym.st_other = 0;
1435 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1436 sym.st_shndx = app_regs [reg].shndx;
1437 if (! (*func) (finfo, app_regs [reg].name, &sym,
1438 sym.st_shndx == SHN_ABS
1439 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1440 return false;
1441 }
1442
1443 return true;
1444 }
1445
1446 static int
1447 sparc64_elf_get_symbol_type (elf_sym, type)
1448 Elf_Internal_Sym * elf_sym;
1449 int type;
1450 {
1451 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1452 return STT_REGISTER;
1453 else
1454 return type;
1455 }
1456
1457 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1458 even in SHN_UNDEF section. */
1459
1460 static void
1461 sparc64_elf_symbol_processing (abfd, asym)
1462 bfd *abfd ATTRIBUTE_UNUSED;
1463 asymbol *asym;
1464 {
1465 elf_symbol_type *elfsym;
1466
1467 elfsym = (elf_symbol_type *) asym;
1468 if (elfsym->internal_elf_sym.st_info
1469 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1470 {
1471 asym->flags |= BSF_GLOBAL;
1472 }
1473 }
1474
1475 /* Adjust a symbol defined by a dynamic object and referenced by a
1476 regular object. The current definition is in some section of the
1477 dynamic object, but we're not including those sections. We have to
1478 change the definition to something the rest of the link can
1479 understand. */
1480
1481 static boolean
1482 sparc64_elf_adjust_dynamic_symbol (info, h)
1483 struct bfd_link_info *info;
1484 struct elf_link_hash_entry *h;
1485 {
1486 bfd *dynobj;
1487 asection *s;
1488 unsigned int power_of_two;
1489
1490 dynobj = elf_hash_table (info)->dynobj;
1491
1492 /* Make sure we know what is going on here. */
1493 BFD_ASSERT (dynobj != NULL
1494 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1495 || h->weakdef != NULL
1496 || ((h->elf_link_hash_flags
1497 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1498 && (h->elf_link_hash_flags
1499 & ELF_LINK_HASH_REF_REGULAR) != 0
1500 && (h->elf_link_hash_flags
1501 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1502
1503 /* If this is a function, put it in the procedure linkage table. We
1504 will fill in the contents of the procedure linkage table later
1505 (although we could actually do it here). The STT_NOTYPE
1506 condition is a hack specifically for the Oracle libraries
1507 delivered for Solaris; for some inexplicable reason, they define
1508 some of their functions as STT_NOTYPE when they really should be
1509 STT_FUNC. */
1510 if (h->type == STT_FUNC
1511 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1512 || (h->type == STT_NOTYPE
1513 && (h->root.type == bfd_link_hash_defined
1514 || h->root.type == bfd_link_hash_defweak)
1515 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1516 {
1517 if (! elf_hash_table (info)->dynamic_sections_created)
1518 {
1519 /* This case can occur if we saw a WPLT30 reloc in an input
1520 file, but none of the input files were dynamic objects.
1521 In such a case, we don't actually need to build a
1522 procedure linkage table, and we can just do a WDISP30
1523 reloc instead. */
1524 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1525 return true;
1526 }
1527
1528 s = bfd_get_section_by_name (dynobj, ".plt");
1529 BFD_ASSERT (s != NULL);
1530
1531 /* The first four bit in .plt is reserved. */
1532 if (s->_raw_size == 0)
1533 s->_raw_size = PLT_HEADER_SIZE;
1534
1535 /* If this symbol is not defined in a regular file, and we are
1536 not generating a shared library, then set the symbol to this
1537 location in the .plt. This is required to make function
1538 pointers compare as equal between the normal executable and
1539 the shared library. */
1540 if (! info->shared
1541 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1542 {
1543 h->root.u.def.section = s;
1544 h->root.u.def.value = s->_raw_size;
1545 }
1546
1547 /* To simplify matters later, just store the plt index here. */
1548 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1549
1550 /* Make room for this entry. */
1551 s->_raw_size += PLT_ENTRY_SIZE;
1552
1553 /* We also need to make an entry in the .rela.plt section. */
1554
1555 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1556 BFD_ASSERT (s != NULL);
1557
1558 s->_raw_size += sizeof (Elf64_External_Rela);
1559
1560 /* The procedure linkage table size is bounded by the magnitude
1561 of the offset we can describe in the entry. */
1562 if (s->_raw_size >= (bfd_vma)1 << 32)
1563 {
1564 bfd_set_error (bfd_error_bad_value);
1565 return false;
1566 }
1567
1568 return true;
1569 }
1570
1571 /* If this is a weak symbol, and there is a real definition, the
1572 processor independent code will have arranged for us to see the
1573 real definition first, and we can just use the same value. */
1574 if (h->weakdef != NULL)
1575 {
1576 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1577 || h->weakdef->root.type == bfd_link_hash_defweak);
1578 h->root.u.def.section = h->weakdef->root.u.def.section;
1579 h->root.u.def.value = h->weakdef->root.u.def.value;
1580 return true;
1581 }
1582
1583 /* This is a reference to a symbol defined by a dynamic object which
1584 is not a function. */
1585
1586 /* If we are creating a shared library, we must presume that the
1587 only references to the symbol are via the global offset table.
1588 For such cases we need not do anything here; the relocations will
1589 be handled correctly by relocate_section. */
1590 if (info->shared)
1591 return true;
1592
1593 /* We must allocate the symbol in our .dynbss section, which will
1594 become part of the .bss section of the executable. There will be
1595 an entry for this symbol in the .dynsym section. The dynamic
1596 object will contain position independent code, so all references
1597 from the dynamic object to this symbol will go through the global
1598 offset table. The dynamic linker will use the .dynsym entry to
1599 determine the address it must put in the global offset table, so
1600 both the dynamic object and the regular object will refer to the
1601 same memory location for the variable. */
1602
1603 s = bfd_get_section_by_name (dynobj, ".dynbss");
1604 BFD_ASSERT (s != NULL);
1605
1606 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1607 to copy the initial value out of the dynamic object and into the
1608 runtime process image. We need to remember the offset into the
1609 .rel.bss section we are going to use. */
1610 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1611 {
1612 asection *srel;
1613
1614 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1615 BFD_ASSERT (srel != NULL);
1616 srel->_raw_size += sizeof (Elf64_External_Rela);
1617 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1618 }
1619
1620 /* We need to figure out the alignment required for this symbol. I
1621 have no idea how ELF linkers handle this. 16-bytes is the size
1622 of the largest type that requires hard alignment -- long double. */
1623 power_of_two = bfd_log2 (h->size);
1624 if (power_of_two > 4)
1625 power_of_two = 4;
1626
1627 /* Apply the required alignment. */
1628 s->_raw_size = BFD_ALIGN (s->_raw_size,
1629 (bfd_size_type) (1 << power_of_two));
1630 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1631 {
1632 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1633 return false;
1634 }
1635
1636 /* Define the symbol as being at this point in the section. */
1637 h->root.u.def.section = s;
1638 h->root.u.def.value = s->_raw_size;
1639
1640 /* Increment the section size to make room for the symbol. */
1641 s->_raw_size += h->size;
1642
1643 return true;
1644 }
1645
1646 /* Set the sizes of the dynamic sections. */
1647
1648 static boolean
1649 sparc64_elf_size_dynamic_sections (output_bfd, info)
1650 bfd *output_bfd;
1651 struct bfd_link_info *info;
1652 {
1653 bfd *dynobj;
1654 asection *s;
1655 boolean reltext;
1656 boolean relplt;
1657
1658 dynobj = elf_hash_table (info)->dynobj;
1659 BFD_ASSERT (dynobj != NULL);
1660
1661 if (elf_hash_table (info)->dynamic_sections_created)
1662 {
1663 /* Set the contents of the .interp section to the interpreter. */
1664 if (! info->shared)
1665 {
1666 s = bfd_get_section_by_name (dynobj, ".interp");
1667 BFD_ASSERT (s != NULL);
1668 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1669 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1670 }
1671 }
1672 else
1673 {
1674 /* We may have created entries in the .rela.got section.
1675 However, if we are not creating the dynamic sections, we will
1676 not actually use these entries. Reset the size of .rela.got,
1677 which will cause it to get stripped from the output file
1678 below. */
1679 s = bfd_get_section_by_name (dynobj, ".rela.got");
1680 if (s != NULL)
1681 s->_raw_size = 0;
1682 }
1683
1684 /* The check_relocs and adjust_dynamic_symbol entry points have
1685 determined the sizes of the various dynamic sections. Allocate
1686 memory for them. */
1687 reltext = false;
1688 relplt = false;
1689 for (s = dynobj->sections; s != NULL; s = s->next)
1690 {
1691 const char *name;
1692 boolean strip;
1693
1694 if ((s->flags & SEC_LINKER_CREATED) == 0)
1695 continue;
1696
1697 /* It's OK to base decisions on the section name, because none
1698 of the dynobj section names depend upon the input files. */
1699 name = bfd_get_section_name (dynobj, s);
1700
1701 strip = false;
1702
1703 if (strncmp (name, ".rela", 5) == 0)
1704 {
1705 if (s->_raw_size == 0)
1706 {
1707 /* If we don't need this section, strip it from the
1708 output file. This is to handle .rela.bss and
1709 .rel.plt. We must create it in
1710 create_dynamic_sections, because it must be created
1711 before the linker maps input sections to output
1712 sections. The linker does that before
1713 adjust_dynamic_symbol is called, and it is that
1714 function which decides whether anything needs to go
1715 into these sections. */
1716 strip = true;
1717 }
1718 else
1719 {
1720 const char *outname;
1721 asection *target;
1722
1723 /* If this relocation section applies to a read only
1724 section, then we probably need a DT_TEXTREL entry. */
1725 outname = bfd_get_section_name (output_bfd,
1726 s->output_section);
1727 target = bfd_get_section_by_name (output_bfd, outname + 5);
1728 if (target != NULL
1729 && (target->flags & SEC_READONLY) != 0)
1730 reltext = true;
1731
1732 if (strcmp (name, ".rela.plt") == 0)
1733 relplt = true;
1734
1735 /* We use the reloc_count field as a counter if we need
1736 to copy relocs into the output file. */
1737 s->reloc_count = 0;
1738 }
1739 }
1740 else if (strcmp (name, ".plt") != 0
1741 && strncmp (name, ".got", 4) != 0)
1742 {
1743 /* It's not one of our sections, so don't allocate space. */
1744 continue;
1745 }
1746
1747 if (strip)
1748 {
1749 _bfd_strip_section_from_output (info, s);
1750 continue;
1751 }
1752
1753 /* Allocate memory for the section contents. Zero the memory
1754 for the benefit of .rela.plt, which has 4 unused entries
1755 at the beginning, and we don't want garbage. */
1756 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1757 if (s->contents == NULL && s->_raw_size != 0)
1758 return false;
1759 }
1760
1761 if (elf_hash_table (info)->dynamic_sections_created)
1762 {
1763 /* Add some entries to the .dynamic section. We fill in the
1764 values later, in sparc64_elf_finish_dynamic_sections, but we
1765 must add the entries now so that we get the correct size for
1766 the .dynamic section. The DT_DEBUG entry is filled in by the
1767 dynamic linker and used by the debugger. */
1768 int reg;
1769 struct sparc64_elf_app_reg * app_regs;
1770 struct bfd_strtab_hash *dynstr;
1771 struct elf_link_hash_table *eht = elf_hash_table (info);
1772
1773 if (! info->shared)
1774 {
1775 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
1776 return false;
1777 }
1778
1779 if (relplt)
1780 {
1781 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)
1782 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1783 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1784 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1785 return false;
1786 }
1787
1788 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1789 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1790 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1791 sizeof (Elf64_External_Rela)))
1792 return false;
1793
1794 if (reltext)
1795 {
1796 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1797 return false;
1798 info->flags |= DF_TEXTREL;
1799 }
1800
1801 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1802 entries if needed. */
1803 app_regs = sparc64_elf_hash_table (info)->app_regs;
1804 dynstr = eht->dynstr;
1805
1806 for (reg = 0; reg < 4; reg++)
1807 if (app_regs [reg].name != NULL)
1808 {
1809 struct elf_link_local_dynamic_entry *entry, *e;
1810
1811 if (! bfd_elf64_add_dynamic_entry (info, DT_SPARC_REGISTER, 0))
1812 return false;
1813
1814 entry = (struct elf_link_local_dynamic_entry *)
1815 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1816 if (entry == NULL)
1817 return false;
1818
1819 /* We cheat here a little bit: the symbol will not be local, so we
1820 put it at the end of the dynlocal linked list. We will fix it
1821 later on, as we have to fix other fields anyway. */
1822 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1823 entry->isym.st_size = 0;
1824 if (*app_regs [reg].name != '\0')
1825 entry->isym.st_name
1826 = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1827 else
1828 entry->isym.st_name = 0;
1829 entry->isym.st_other = 0;
1830 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1831 STT_REGISTER);
1832 entry->isym.st_shndx = app_regs [reg].shndx;
1833 entry->next = NULL;
1834 entry->input_bfd = output_bfd;
1835 entry->input_indx = -1;
1836
1837 if (eht->dynlocal == NULL)
1838 eht->dynlocal = entry;
1839 else
1840 {
1841 for (e = eht->dynlocal; e->next; e = e->next)
1842 ;
1843 e->next = entry;
1844 }
1845 eht->dynsymcount++;
1846 }
1847 }
1848
1849 return true;
1850 }
1851 \f
1852 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1853 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1854
1855 static boolean
1856 sparc64_elf_relax_section (abfd, section, link_info, again)
1857 bfd *abfd ATTRIBUTE_UNUSED;
1858 asection *section ATTRIBUTE_UNUSED;
1859 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1860 boolean *again;
1861 {
1862 *again = false;
1863 SET_SEC_DO_RELAX (section);
1864 return true;
1865 }
1866 \f
1867 /* Relocate a SPARC64 ELF section. */
1868
1869 static boolean
1870 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1871 contents, relocs, local_syms, local_sections)
1872 bfd *output_bfd;
1873 struct bfd_link_info *info;
1874 bfd *input_bfd;
1875 asection *input_section;
1876 bfd_byte *contents;
1877 Elf_Internal_Rela *relocs;
1878 Elf_Internal_Sym *local_syms;
1879 asection **local_sections;
1880 {
1881 bfd *dynobj;
1882 Elf_Internal_Shdr *symtab_hdr;
1883 struct elf_link_hash_entry **sym_hashes;
1884 bfd_vma *local_got_offsets;
1885 bfd_vma got_base;
1886 asection *sgot;
1887 asection *splt;
1888 asection *sreloc;
1889 Elf_Internal_Rela *rel;
1890 Elf_Internal_Rela *relend;
1891
1892 dynobj = elf_hash_table (info)->dynobj;
1893 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1894 sym_hashes = elf_sym_hashes (input_bfd);
1895 local_got_offsets = elf_local_got_offsets (input_bfd);
1896
1897 if (elf_hash_table(info)->hgot == NULL)
1898 got_base = 0;
1899 else
1900 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1901
1902 sgot = splt = sreloc = NULL;
1903
1904 rel = relocs;
1905 relend = relocs + input_section->reloc_count;
1906 for (; rel < relend; rel++)
1907 {
1908 int r_type;
1909 reloc_howto_type *howto;
1910 unsigned long r_symndx;
1911 struct elf_link_hash_entry *h;
1912 Elf_Internal_Sym *sym;
1913 asection *sec;
1914 bfd_vma relocation;
1915 bfd_reloc_status_type r;
1916
1917 r_type = ELF64_R_TYPE_ID (rel->r_info);
1918 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1919 {
1920 bfd_set_error (bfd_error_bad_value);
1921 return false;
1922 }
1923 howto = sparc64_elf_howto_table + r_type;
1924
1925 r_symndx = ELF64_R_SYM (rel->r_info);
1926
1927 if (info->relocateable)
1928 {
1929 /* This is a relocateable link. We don't have to change
1930 anything, unless the reloc is against a section symbol,
1931 in which case we have to adjust according to where the
1932 section symbol winds up in the output section. */
1933 if (r_symndx < symtab_hdr->sh_info)
1934 {
1935 sym = local_syms + r_symndx;
1936 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1937 {
1938 sec = local_sections[r_symndx];
1939 rel->r_addend += sec->output_offset + sym->st_value;
1940 }
1941 }
1942
1943 continue;
1944 }
1945
1946 /* This is a final link. */
1947 h = NULL;
1948 sym = NULL;
1949 sec = NULL;
1950 if (r_symndx < symtab_hdr->sh_info)
1951 {
1952 sym = local_syms + r_symndx;
1953 sec = local_sections[r_symndx];
1954 relocation = (sec->output_section->vma
1955 + sec->output_offset
1956 + sym->st_value);
1957 }
1958 else
1959 {
1960 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1961 while (h->root.type == bfd_link_hash_indirect
1962 || h->root.type == bfd_link_hash_warning)
1963 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1964 if (h->root.type == bfd_link_hash_defined
1965 || h->root.type == bfd_link_hash_defweak)
1966 {
1967 boolean skip_it = false;
1968 sec = h->root.u.def.section;
1969
1970 switch (r_type)
1971 {
1972 case R_SPARC_WPLT30:
1973 case R_SPARC_PLT32:
1974 case R_SPARC_HIPLT22:
1975 case R_SPARC_LOPLT10:
1976 case R_SPARC_PCPLT32:
1977 case R_SPARC_PCPLT22:
1978 case R_SPARC_PCPLT10:
1979 case R_SPARC_PLT64:
1980 if (h->plt.offset != (bfd_vma) -1)
1981 skip_it = true;
1982 break;
1983
1984 case R_SPARC_GOT10:
1985 case R_SPARC_GOT13:
1986 case R_SPARC_GOT22:
1987 if (elf_hash_table(info)->dynamic_sections_created
1988 && (!info->shared
1989 || (!info->symbolic && h->dynindx != -1)
1990 || !(h->elf_link_hash_flags
1991 & ELF_LINK_HASH_DEF_REGULAR)))
1992 skip_it = true;
1993 break;
1994
1995 case R_SPARC_PC10:
1996 case R_SPARC_PC22:
1997 case R_SPARC_PC_HH22:
1998 case R_SPARC_PC_HM10:
1999 case R_SPARC_PC_LM22:
2000 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2001 break;
2002 /* FALLTHRU */
2003
2004 case R_SPARC_8:
2005 case R_SPARC_16:
2006 case R_SPARC_32:
2007 case R_SPARC_DISP8:
2008 case R_SPARC_DISP16:
2009 case R_SPARC_DISP32:
2010 case R_SPARC_WDISP30:
2011 case R_SPARC_WDISP22:
2012 case R_SPARC_HI22:
2013 case R_SPARC_22:
2014 case R_SPARC_13:
2015 case R_SPARC_LO10:
2016 case R_SPARC_UA32:
2017 case R_SPARC_10:
2018 case R_SPARC_11:
2019 case R_SPARC_64:
2020 case R_SPARC_OLO10:
2021 case R_SPARC_HH22:
2022 case R_SPARC_HM10:
2023 case R_SPARC_LM22:
2024 case R_SPARC_WDISP19:
2025 case R_SPARC_WDISP16:
2026 case R_SPARC_7:
2027 case R_SPARC_5:
2028 case R_SPARC_6:
2029 case R_SPARC_DISP64:
2030 case R_SPARC_HIX22:
2031 case R_SPARC_LOX10:
2032 case R_SPARC_H44:
2033 case R_SPARC_M44:
2034 case R_SPARC_L44:
2035 case R_SPARC_UA64:
2036 case R_SPARC_UA16:
2037 if (info->shared
2038 && ((!info->symbolic && h->dynindx != -1)
2039 || !(h->elf_link_hash_flags
2040 & ELF_LINK_HASH_DEF_REGULAR)))
2041 skip_it = true;
2042 break;
2043 }
2044
2045 if (skip_it)
2046 {
2047 /* In these cases, we don't need the relocation
2048 value. We check specially because in some
2049 obscure cases sec->output_section will be NULL. */
2050 relocation = 0;
2051 }
2052 else
2053 {
2054 relocation = (h->root.u.def.value
2055 + sec->output_section->vma
2056 + sec->output_offset);
2057 }
2058 }
2059 else if (h->root.type == bfd_link_hash_undefweak)
2060 relocation = 0;
2061 else if (info->shared && !info->symbolic
2062 && !info->no_undefined
2063 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2064 relocation = 0;
2065 else
2066 {
2067 if (! ((*info->callbacks->undefined_symbol)
2068 (info, h->root.root.string, input_bfd,
2069 input_section, rel->r_offset,
2070 (!info->shared || info->no_undefined
2071 || ELF_ST_VISIBILITY (h->other)))))
2072 return false;
2073
2074 /* To avoid generating warning messages about truncated
2075 relocations, set the relocation's address to be the same as
2076 the start of this section. */
2077
2078 if (input_section->output_section != NULL)
2079 relocation = input_section->output_section->vma;
2080 else
2081 relocation = 0;
2082 }
2083 }
2084
2085 /* When generating a shared object, these relocations are copied
2086 into the output file to be resolved at run time. */
2087 if (info->shared && (input_section->flags & SEC_ALLOC))
2088 {
2089 switch (r_type)
2090 {
2091 case R_SPARC_PC10:
2092 case R_SPARC_PC22:
2093 case R_SPARC_PC_HH22:
2094 case R_SPARC_PC_HM10:
2095 case R_SPARC_PC_LM22:
2096 if (h != NULL
2097 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2098 break;
2099 /* Fall through. */
2100 case R_SPARC_DISP8:
2101 case R_SPARC_DISP16:
2102 case R_SPARC_DISP32:
2103 case R_SPARC_WDISP30:
2104 case R_SPARC_WDISP22:
2105 case R_SPARC_WDISP19:
2106 case R_SPARC_WDISP16:
2107 case R_SPARC_DISP64:
2108 if (h == NULL)
2109 break;
2110 /* Fall through. */
2111 case R_SPARC_8:
2112 case R_SPARC_16:
2113 case R_SPARC_32:
2114 case R_SPARC_HI22:
2115 case R_SPARC_22:
2116 case R_SPARC_13:
2117 case R_SPARC_LO10:
2118 case R_SPARC_UA32:
2119 case R_SPARC_10:
2120 case R_SPARC_11:
2121 case R_SPARC_64:
2122 case R_SPARC_OLO10:
2123 case R_SPARC_HH22:
2124 case R_SPARC_HM10:
2125 case R_SPARC_LM22:
2126 case R_SPARC_7:
2127 case R_SPARC_5:
2128 case R_SPARC_6:
2129 case R_SPARC_HIX22:
2130 case R_SPARC_LOX10:
2131 case R_SPARC_H44:
2132 case R_SPARC_M44:
2133 case R_SPARC_L44:
2134 case R_SPARC_UA64:
2135 case R_SPARC_UA16:
2136 {
2137 Elf_Internal_Rela outrel;
2138 boolean skip;
2139
2140 if (sreloc == NULL)
2141 {
2142 const char *name =
2143 (bfd_elf_string_from_elf_section
2144 (input_bfd,
2145 elf_elfheader (input_bfd)->e_shstrndx,
2146 elf_section_data (input_section)->rel_hdr.sh_name));
2147
2148 if (name == NULL)
2149 return false;
2150
2151 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2152 && strcmp (bfd_get_section_name(input_bfd,
2153 input_section),
2154 name + 5) == 0);
2155
2156 sreloc = bfd_get_section_by_name (dynobj, name);
2157 BFD_ASSERT (sreloc != NULL);
2158 }
2159
2160 skip = false;
2161
2162 if (elf_section_data (input_section)->stab_info == NULL)
2163 outrel.r_offset = rel->r_offset;
2164 else
2165 {
2166 bfd_vma off;
2167
2168 off = (_bfd_stab_section_offset
2169 (output_bfd, &elf_hash_table (info)->stab_info,
2170 input_section,
2171 &elf_section_data (input_section)->stab_info,
2172 rel->r_offset));
2173 if (off == MINUS_ONE)
2174 skip = true;
2175 outrel.r_offset = off;
2176 }
2177
2178 outrel.r_offset += (input_section->output_section->vma
2179 + input_section->output_offset);
2180
2181 /* Optimize unaligned reloc usage now that we know where
2182 it finally resides. */
2183 switch (r_type)
2184 {
2185 case R_SPARC_16:
2186 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2187 break;
2188 case R_SPARC_UA16:
2189 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2190 break;
2191 case R_SPARC_32:
2192 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2193 break;
2194 case R_SPARC_UA32:
2195 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2196 break;
2197 case R_SPARC_64:
2198 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2199 break;
2200 case R_SPARC_UA64:
2201 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2202 break;
2203 }
2204
2205 if (skip)
2206 memset (&outrel, 0, sizeof outrel);
2207 /* h->dynindx may be -1 if the symbol was marked to
2208 become local. */
2209 else if (h != NULL
2210 && ((! info->symbolic && h->dynindx != -1)
2211 || (h->elf_link_hash_flags
2212 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2213 {
2214 BFD_ASSERT (h->dynindx != -1);
2215 outrel.r_info
2216 = ELF64_R_INFO (h->dynindx,
2217 ELF64_R_TYPE_INFO (
2218 ELF64_R_TYPE_DATA (rel->r_info),
2219 r_type));
2220 outrel.r_addend = rel->r_addend;
2221 }
2222 else
2223 {
2224 if (r_type == R_SPARC_64)
2225 {
2226 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2227 outrel.r_addend = relocation + rel->r_addend;
2228 }
2229 else
2230 {
2231 long indx;
2232
2233 if (h == NULL)
2234 sec = local_sections[r_symndx];
2235 else
2236 {
2237 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2238 || (h->root.type
2239 == bfd_link_hash_defweak));
2240 sec = h->root.u.def.section;
2241 }
2242 if (sec != NULL && bfd_is_abs_section (sec))
2243 indx = 0;
2244 else if (sec == NULL || sec->owner == NULL)
2245 {
2246 bfd_set_error (bfd_error_bad_value);
2247 return false;
2248 }
2249 else
2250 {
2251 asection *osec;
2252
2253 osec = sec->output_section;
2254 indx = elf_section_data (osec)->dynindx;
2255
2256 /* FIXME: we really should be able to link non-pic
2257 shared libraries. */
2258 if (indx == 0)
2259 {
2260 BFD_FAIL ();
2261 (*_bfd_error_handler)
2262 (_("%s: probably compiled without -fPIC?"),
2263 bfd_get_filename (input_bfd));
2264 bfd_set_error (bfd_error_bad_value);
2265 return false;
2266 }
2267 }
2268
2269 outrel.r_info
2270 = ELF64_R_INFO (indx,
2271 ELF64_R_TYPE_INFO (
2272 ELF64_R_TYPE_DATA (rel->r_info),
2273 r_type));
2274 outrel.r_addend = relocation + rel->r_addend;
2275 }
2276 }
2277
2278 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2279 (((Elf64_External_Rela *)
2280 sreloc->contents)
2281 + sreloc->reloc_count));
2282 ++sreloc->reloc_count;
2283
2284 /* This reloc will be computed at runtime, so there's no
2285 need to do anything now, unless this is a RELATIVE
2286 reloc in an unallocated section. */
2287 if (skip
2288 || (input_section->flags & SEC_ALLOC) != 0
2289 || ELF64_R_TYPE_ID (outrel.r_info) != R_SPARC_RELATIVE)
2290 continue;
2291 }
2292 break;
2293 }
2294 }
2295
2296 switch (r_type)
2297 {
2298 case R_SPARC_GOT10:
2299 case R_SPARC_GOT13:
2300 case R_SPARC_GOT22:
2301 /* Relocation is to the entry for this symbol in the global
2302 offset table. */
2303 if (sgot == NULL)
2304 {
2305 sgot = bfd_get_section_by_name (dynobj, ".got");
2306 BFD_ASSERT (sgot != NULL);
2307 }
2308
2309 if (h != NULL)
2310 {
2311 bfd_vma off = h->got.offset;
2312 BFD_ASSERT (off != (bfd_vma) -1);
2313
2314 if (! elf_hash_table (info)->dynamic_sections_created
2315 || (info->shared
2316 && (info->symbolic || h->dynindx == -1)
2317 && (h->elf_link_hash_flags
2318 & ELF_LINK_HASH_DEF_REGULAR)))
2319 {
2320 /* This is actually a static link, or it is a -Bsymbolic
2321 link and the symbol is defined locally, or the symbol
2322 was forced to be local because of a version file. We
2323 must initialize this entry in the global offset table.
2324 Since the offset must always be a multiple of 8, we
2325 use the least significant bit to record whether we
2326 have initialized it already.
2327
2328 When doing a dynamic link, we create a .rela.got
2329 relocation entry to initialize the value. This is
2330 done in the finish_dynamic_symbol routine. */
2331
2332 if ((off & 1) != 0)
2333 off &= ~1;
2334 else
2335 {
2336 bfd_put_64 (output_bfd, relocation,
2337 sgot->contents + off);
2338 h->got.offset |= 1;
2339 }
2340 }
2341 relocation = sgot->output_offset + off - got_base;
2342 }
2343 else
2344 {
2345 bfd_vma off;
2346
2347 BFD_ASSERT (local_got_offsets != NULL);
2348 off = local_got_offsets[r_symndx];
2349 BFD_ASSERT (off != (bfd_vma) -1);
2350
2351 /* The offset must always be a multiple of 8. We use
2352 the least significant bit to record whether we have
2353 already processed this entry. */
2354 if ((off & 1) != 0)
2355 off &= ~1;
2356 else
2357 {
2358 local_got_offsets[r_symndx] |= 1;
2359
2360 if (info->shared)
2361 {
2362 asection *srelgot;
2363 Elf_Internal_Rela outrel;
2364
2365 /* The Solaris 2.7 64-bit linker adds the contents
2366 of the location to the value of the reloc.
2367 Note this is different behaviour to the
2368 32-bit linker, which both adds the contents
2369 and ignores the addend. So clear the location. */
2370 bfd_put_64 (output_bfd, 0, sgot->contents + off);
2371
2372 /* We need to generate a R_SPARC_RELATIVE reloc
2373 for the dynamic linker. */
2374 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2375 BFD_ASSERT (srelgot != NULL);
2376
2377 outrel.r_offset = (sgot->output_section->vma
2378 + sgot->output_offset
2379 + off);
2380 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2381 outrel.r_addend = relocation;
2382 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2383 (((Elf64_External_Rela *)
2384 srelgot->contents)
2385 + srelgot->reloc_count));
2386 ++srelgot->reloc_count;
2387 }
2388 else
2389 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2390 }
2391 relocation = sgot->output_offset + off - got_base;
2392 }
2393 goto do_default;
2394
2395 case R_SPARC_WPLT30:
2396 case R_SPARC_PLT32:
2397 case R_SPARC_HIPLT22:
2398 case R_SPARC_LOPLT10:
2399 case R_SPARC_PCPLT32:
2400 case R_SPARC_PCPLT22:
2401 case R_SPARC_PCPLT10:
2402 case R_SPARC_PLT64:
2403 /* Relocation is to the entry for this symbol in the
2404 procedure linkage table. */
2405 BFD_ASSERT (h != NULL);
2406
2407 if (h->plt.offset == (bfd_vma) -1)
2408 {
2409 /* We didn't make a PLT entry for this symbol. This
2410 happens when statically linking PIC code, or when
2411 using -Bsymbolic. */
2412 goto do_default;
2413 }
2414
2415 if (splt == NULL)
2416 {
2417 splt = bfd_get_section_by_name (dynobj, ".plt");
2418 BFD_ASSERT (splt != NULL);
2419 }
2420
2421 relocation = (splt->output_section->vma
2422 + splt->output_offset
2423 + sparc64_elf_plt_entry_offset (h->plt.offset));
2424 if (r_type == R_SPARC_WPLT30)
2425 goto do_wplt30;
2426 goto do_default;
2427
2428 case R_SPARC_OLO10:
2429 {
2430 bfd_vma x;
2431
2432 relocation += rel->r_addend;
2433 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2434
2435 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2436 x = (x & ~0x1fff) | (relocation & 0x1fff);
2437 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2438
2439 r = bfd_check_overflow (howto->complain_on_overflow,
2440 howto->bitsize, howto->rightshift,
2441 bfd_arch_bits_per_address (input_bfd),
2442 relocation);
2443 }
2444 break;
2445
2446 case R_SPARC_WDISP16:
2447 {
2448 bfd_vma x;
2449
2450 relocation += rel->r_addend;
2451 /* Adjust for pc-relative-ness. */
2452 relocation -= (input_section->output_section->vma
2453 + input_section->output_offset);
2454 relocation -= rel->r_offset;
2455
2456 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2457 x = (x & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
2458 | ((relocation >> 2) & 0x3fff));
2459 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2460
2461 r = bfd_check_overflow (howto->complain_on_overflow,
2462 howto->bitsize, howto->rightshift,
2463 bfd_arch_bits_per_address (input_bfd),
2464 relocation);
2465 }
2466 break;
2467
2468 case R_SPARC_HIX22:
2469 {
2470 bfd_vma x;
2471
2472 relocation += rel->r_addend;
2473 relocation = relocation ^ MINUS_ONE;
2474
2475 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2476 x = (x & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
2477 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2478
2479 r = bfd_check_overflow (howto->complain_on_overflow,
2480 howto->bitsize, howto->rightshift,
2481 bfd_arch_bits_per_address (input_bfd),
2482 relocation);
2483 }
2484 break;
2485
2486 case R_SPARC_LOX10:
2487 {
2488 bfd_vma x;
2489
2490 relocation += rel->r_addend;
2491 relocation = (relocation & 0x3ff) | 0x1c00;
2492
2493 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2494 x = (x & ~0x1fff) | relocation;
2495 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2496
2497 r = bfd_reloc_ok;
2498 }
2499 break;
2500
2501 case R_SPARC_WDISP30:
2502 do_wplt30:
2503 if (SEC_DO_RELAX (input_section)
2504 && rel->r_offset + 4 < input_section->_raw_size)
2505 {
2506 #define G0 0
2507 #define O7 15
2508 #define XCC (2 << 20)
2509 #define COND(x) (((x)&0xf)<<25)
2510 #define CONDA COND(0x8)
2511 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2512 #define INSN_BA (F2(0,2) | CONDA)
2513 #define INSN_OR F3(2, 0x2, 0)
2514 #define INSN_NOP F2(0,4)
2515
2516 bfd_vma x, y;
2517
2518 /* If the instruction is a call with either:
2519 restore
2520 arithmetic instruction with rd == %o7
2521 where rs1 != %o7 and rs2 if it is register != %o7
2522 then we can optimize if the call destination is near
2523 by changing the call into a branch always. */
2524 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2525 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2526 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2527 {
2528 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2529 || ((y & OP3(0x28)) == 0 /* arithmetic */
2530 && (y & RD(~0)) == RD(O7)))
2531 && (y & RS1(~0)) != RS1(O7)
2532 && ((y & F3I(~0))
2533 || (y & RS2(~0)) != RS2(O7)))
2534 {
2535 bfd_vma reloc;
2536
2537 reloc = relocation + rel->r_addend - rel->r_offset;
2538 reloc -= (input_section->output_section->vma
2539 + input_section->output_offset);
2540 if (reloc & 3)
2541 goto do_default;
2542
2543 /* Ensure the branch fits into simm22. */
2544 if ((reloc & ~(bfd_vma)0x7fffff)
2545 && ((reloc | 0x7fffff) != MINUS_ONE))
2546 goto do_default;
2547 reloc >>= 2;
2548
2549 /* Check whether it fits into simm19. */
2550 if ((reloc & 0x3c0000) == 0
2551 || (reloc & 0x3c0000) == 0x3c0000)
2552 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2553 else
2554 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2555 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2556 r = bfd_reloc_ok;
2557 if (rel->r_offset >= 4
2558 && (y & (0xffffffff ^ RS1(~0)))
2559 == (INSN_OR | RD(O7) | RS2(G0)))
2560 {
2561 bfd_vma z;
2562 unsigned int reg;
2563
2564 z = bfd_get_32 (input_bfd,
2565 contents + rel->r_offset - 4);
2566 if ((z & (0xffffffff ^ RD(~0)))
2567 != (INSN_OR | RS1(O7) | RS2(G0)))
2568 break;
2569
2570 /* The sequence was
2571 or %o7, %g0, %rN
2572 call foo
2573 or %rN, %g0, %o7
2574
2575 If call foo was replaced with ba, replace
2576 or %rN, %g0, %o7 with nop. */
2577
2578 reg = (y & RS1(~0)) >> 14;
2579 if (reg != ((z & RD(~0)) >> 25)
2580 || reg == G0 || reg == O7)
2581 break;
2582
2583 bfd_put_32 (input_bfd, INSN_NOP,
2584 contents + rel->r_offset + 4);
2585 }
2586 break;
2587 }
2588 }
2589 }
2590 /* FALLTHROUGH */
2591
2592 default:
2593 do_default:
2594 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2595 contents, rel->r_offset,
2596 relocation, rel->r_addend);
2597 break;
2598 }
2599
2600 switch (r)
2601 {
2602 case bfd_reloc_ok:
2603 break;
2604
2605 default:
2606 case bfd_reloc_outofrange:
2607 abort ();
2608
2609 case bfd_reloc_overflow:
2610 {
2611 const char *name;
2612
2613 if (h != NULL)
2614 {
2615 if (h->root.type == bfd_link_hash_undefweak
2616 && howto->pc_relative)
2617 {
2618 /* Assume this is a call protected by other code that
2619 detect the symbol is undefined. If this is the case,
2620 we can safely ignore the overflow. If not, the
2621 program is hosed anyway, and a little warning isn't
2622 going to help. */
2623 break;
2624 }
2625
2626 name = h->root.root.string;
2627 }
2628 else
2629 {
2630 name = (bfd_elf_string_from_elf_section
2631 (input_bfd,
2632 symtab_hdr->sh_link,
2633 sym->st_name));
2634 if (name == NULL)
2635 return false;
2636 if (*name == '\0')
2637 name = bfd_section_name (input_bfd, sec);
2638 }
2639 if (! ((*info->callbacks->reloc_overflow)
2640 (info, name, howto->name, (bfd_vma) 0,
2641 input_bfd, input_section, rel->r_offset)))
2642 return false;
2643 }
2644 break;
2645 }
2646 }
2647
2648 return true;
2649 }
2650
2651 /* Finish up dynamic symbol handling. We set the contents of various
2652 dynamic sections here. */
2653
2654 static boolean
2655 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2656 bfd *output_bfd;
2657 struct bfd_link_info *info;
2658 struct elf_link_hash_entry *h;
2659 Elf_Internal_Sym *sym;
2660 {
2661 bfd *dynobj;
2662
2663 dynobj = elf_hash_table (info)->dynobj;
2664
2665 if (h->plt.offset != (bfd_vma) -1)
2666 {
2667 asection *splt;
2668 asection *srela;
2669 Elf_Internal_Rela rela;
2670
2671 /* This symbol has an entry in the PLT. Set it up. */
2672
2673 BFD_ASSERT (h->dynindx != -1);
2674
2675 splt = bfd_get_section_by_name (dynobj, ".plt");
2676 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2677 BFD_ASSERT (splt != NULL && srela != NULL);
2678
2679 /* Fill in the entry in the .rela.plt section. */
2680
2681 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2682 {
2683 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2684 rela.r_addend = 0;
2685 }
2686 else
2687 {
2688 int max = splt->_raw_size / PLT_ENTRY_SIZE;
2689 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2690 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2691 -(splt->output_section->vma + splt->output_offset);
2692 }
2693 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2694 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2695
2696 /* Adjust for the first 4 reserved elements in the .plt section
2697 when setting the offset in the .rela.plt section.
2698 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2699 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2700
2701 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2702 ((Elf64_External_Rela *) srela->contents
2703 + (h->plt.offset - 4)));
2704
2705 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2706 {
2707 /* Mark the symbol as undefined, rather than as defined in
2708 the .plt section. Leave the value alone. */
2709 sym->st_shndx = SHN_UNDEF;
2710 }
2711 }
2712
2713 if (h->got.offset != (bfd_vma) -1)
2714 {
2715 asection *sgot;
2716 asection *srela;
2717 Elf_Internal_Rela rela;
2718
2719 /* This symbol has an entry in the GOT. Set it up. */
2720
2721 sgot = bfd_get_section_by_name (dynobj, ".got");
2722 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2723 BFD_ASSERT (sgot != NULL && srela != NULL);
2724
2725 rela.r_offset = (sgot->output_section->vma
2726 + sgot->output_offset
2727 + (h->got.offset &~ 1));
2728
2729 /* If this is a -Bsymbolic link, and the symbol is defined
2730 locally, we just want to emit a RELATIVE reloc. Likewise if
2731 the symbol was forced to be local because of a version file.
2732 The entry in the global offset table will already have been
2733 initialized in the relocate_section function. */
2734 if (info->shared
2735 && (info->symbolic || h->dynindx == -1)
2736 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2737 {
2738 asection *sec = h->root.u.def.section;
2739 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2740 rela.r_addend = (h->root.u.def.value
2741 + sec->output_section->vma
2742 + sec->output_offset);
2743 }
2744 else
2745 {
2746 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2747 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2748 rela.r_addend = 0;
2749 }
2750
2751 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2752 ((Elf64_External_Rela *) srela->contents
2753 + srela->reloc_count));
2754 ++srela->reloc_count;
2755 }
2756
2757 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2758 {
2759 asection *s;
2760 Elf_Internal_Rela rela;
2761
2762 /* This symbols needs a copy reloc. Set it up. */
2763
2764 BFD_ASSERT (h->dynindx != -1);
2765
2766 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2767 ".rela.bss");
2768 BFD_ASSERT (s != NULL);
2769
2770 rela.r_offset = (h->root.u.def.value
2771 + h->root.u.def.section->output_section->vma
2772 + h->root.u.def.section->output_offset);
2773 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2774 rela.r_addend = 0;
2775 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2776 ((Elf64_External_Rela *) s->contents
2777 + s->reloc_count));
2778 ++s->reloc_count;
2779 }
2780
2781 /* Mark some specially defined symbols as absolute. */
2782 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2783 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2784 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2785 sym->st_shndx = SHN_ABS;
2786
2787 return true;
2788 }
2789
2790 /* Finish up the dynamic sections. */
2791
2792 static boolean
2793 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2794 bfd *output_bfd;
2795 struct bfd_link_info *info;
2796 {
2797 bfd *dynobj;
2798 int stt_regidx = -1;
2799 asection *sdyn;
2800 asection *sgot;
2801
2802 dynobj = elf_hash_table (info)->dynobj;
2803
2804 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2805
2806 if (elf_hash_table (info)->dynamic_sections_created)
2807 {
2808 asection *splt;
2809 Elf64_External_Dyn *dyncon, *dynconend;
2810
2811 splt = bfd_get_section_by_name (dynobj, ".plt");
2812 BFD_ASSERT (splt != NULL && sdyn != NULL);
2813
2814 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2815 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2816 for (; dyncon < dynconend; dyncon++)
2817 {
2818 Elf_Internal_Dyn dyn;
2819 const char *name;
2820 boolean size;
2821
2822 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2823
2824 switch (dyn.d_tag)
2825 {
2826 case DT_PLTGOT: name = ".plt"; size = false; break;
2827 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2828 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2829 case DT_SPARC_REGISTER:
2830 if (stt_regidx == -1)
2831 {
2832 stt_regidx =
2833 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2834 if (stt_regidx == -1)
2835 return false;
2836 }
2837 dyn.d_un.d_val = stt_regidx++;
2838 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2839 /* fallthrough */
2840 default: name = NULL; size = false; break;
2841 }
2842
2843 if (name != NULL)
2844 {
2845 asection *s;
2846
2847 s = bfd_get_section_by_name (output_bfd, name);
2848 if (s == NULL)
2849 dyn.d_un.d_val = 0;
2850 else
2851 {
2852 if (! size)
2853 dyn.d_un.d_ptr = s->vma;
2854 else
2855 {
2856 if (s->_cooked_size != 0)
2857 dyn.d_un.d_val = s->_cooked_size;
2858 else
2859 dyn.d_un.d_val = s->_raw_size;
2860 }
2861 }
2862 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2863 }
2864 }
2865
2866 /* Initialize the contents of the .plt section. */
2867 if (splt->_raw_size > 0)
2868 {
2869 sparc64_elf_build_plt(output_bfd, splt->contents,
2870 splt->_raw_size / PLT_ENTRY_SIZE);
2871 }
2872
2873 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2874 PLT_ENTRY_SIZE;
2875 }
2876
2877 /* Set the first entry in the global offset table to the address of
2878 the dynamic section. */
2879 sgot = bfd_get_section_by_name (dynobj, ".got");
2880 BFD_ASSERT (sgot != NULL);
2881 if (sgot->_raw_size > 0)
2882 {
2883 if (sdyn == NULL)
2884 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2885 else
2886 bfd_put_64 (output_bfd,
2887 sdyn->output_section->vma + sdyn->output_offset,
2888 sgot->contents);
2889 }
2890
2891 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2892
2893 return true;
2894 }
2895 \f
2896 /* Functions for dealing with the e_flags field. */
2897
2898 /* Merge backend specific data from an object file to the output
2899 object file when linking. */
2900
2901 static boolean
2902 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2903 bfd *ibfd;
2904 bfd *obfd;
2905 {
2906 boolean error;
2907 flagword new_flags, old_flags;
2908 int new_mm, old_mm;
2909
2910 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2911 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2912 return true;
2913
2914 new_flags = elf_elfheader (ibfd)->e_flags;
2915 old_flags = elf_elfheader (obfd)->e_flags;
2916
2917 if (!elf_flags_init (obfd)) /* First call, no flags set */
2918 {
2919 elf_flags_init (obfd) = true;
2920 elf_elfheader (obfd)->e_flags = new_flags;
2921 }
2922
2923 else if (new_flags == old_flags) /* Compatible flags are ok */
2924 ;
2925
2926 else /* Incompatible flags */
2927 {
2928 error = false;
2929
2930 #define EF_SPARC_ISA_EXTENSIONS \
2931 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2932
2933 if ((ibfd->flags & DYNAMIC) != 0)
2934 {
2935 /* We don't want dynamic objects memory ordering and
2936 architecture to have any role. That's what dynamic linker
2937 should do. */
2938 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2939 new_flags |= (old_flags
2940 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2941 }
2942 else
2943 {
2944 /* Choose the highest architecture requirements. */
2945 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2946 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2947 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
2948 && (old_flags & EF_SPARC_HAL_R1))
2949 {
2950 error = true;
2951 (*_bfd_error_handler)
2952 (_("%s: linking UltraSPARC specific with HAL specific code"),
2953 bfd_get_filename (ibfd));
2954 }
2955 /* Choose the most restrictive memory ordering. */
2956 old_mm = (old_flags & EF_SPARCV9_MM);
2957 new_mm = (new_flags & EF_SPARCV9_MM);
2958 old_flags &= ~EF_SPARCV9_MM;
2959 new_flags &= ~EF_SPARCV9_MM;
2960 if (new_mm < old_mm)
2961 old_mm = new_mm;
2962 old_flags |= old_mm;
2963 new_flags |= old_mm;
2964 }
2965
2966 /* Warn about any other mismatches */
2967 if (new_flags != old_flags)
2968 {
2969 error = true;
2970 (*_bfd_error_handler)
2971 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2972 bfd_get_filename (ibfd), (long)new_flags, (long)old_flags);
2973 }
2974
2975 elf_elfheader (obfd)->e_flags = old_flags;
2976
2977 if (error)
2978 {
2979 bfd_set_error (bfd_error_bad_value);
2980 return false;
2981 }
2982 }
2983 return true;
2984 }
2985 \f
2986 /* Print a STT_REGISTER symbol to file FILE. */
2987
2988 static const char *
2989 sparc64_elf_print_symbol_all (abfd, filep, symbol)
2990 bfd *abfd ATTRIBUTE_UNUSED;
2991 PTR filep;
2992 asymbol *symbol;
2993 {
2994 FILE *file = (FILE *) filep;
2995 int reg, type;
2996
2997 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
2998 != STT_REGISTER)
2999 return NULL;
3000
3001 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3002 type = symbol->flags;
3003 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3004 ((type & BSF_LOCAL)
3005 ? (type & BSF_GLOBAL) ? '!' : 'l'
3006 : (type & BSF_GLOBAL) ? 'g' : ' '),
3007 (type & BSF_WEAK) ? 'w' : ' ');
3008 if (symbol->name == NULL || symbol->name [0] == '\0')
3009 return "#scratch";
3010 else
3011 return symbol->name;
3012 }
3013 \f
3014 /* Set the right machine number for a SPARC64 ELF file. */
3015
3016 static boolean
3017 sparc64_elf_object_p (abfd)
3018 bfd *abfd;
3019 {
3020 unsigned long mach = bfd_mach_sparc_v9;
3021
3022 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3023 mach = bfd_mach_sparc_v9b;
3024 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3025 mach = bfd_mach_sparc_v9a;
3026 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3027 }
3028
3029 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3030 standard ELF, because R_SPARC_OLO10 has secondary addend in
3031 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3032 relocation handling routines. */
3033
3034 const struct elf_size_info sparc64_elf_size_info =
3035 {
3036 sizeof (Elf64_External_Ehdr),
3037 sizeof (Elf64_External_Phdr),
3038 sizeof (Elf64_External_Shdr),
3039 sizeof (Elf64_External_Rel),
3040 sizeof (Elf64_External_Rela),
3041 sizeof (Elf64_External_Sym),
3042 sizeof (Elf64_External_Dyn),
3043 sizeof (Elf_External_Note),
3044 4, /* hash-table entry size */
3045 /* internal relocations per external relocations.
3046 For link purposes we use just 1 internal per
3047 1 external, for assembly and slurp symbol table
3048 we use 2. */
3049 1,
3050 64, /* arch_size */
3051 8, /* file_align */
3052 ELFCLASS64,
3053 EV_CURRENT,
3054 bfd_elf64_write_out_phdrs,
3055 bfd_elf64_write_shdrs_and_ehdr,
3056 sparc64_elf_write_relocs,
3057 bfd_elf64_swap_symbol_out,
3058 sparc64_elf_slurp_reloc_table,
3059 bfd_elf64_slurp_symbol_table,
3060 bfd_elf64_swap_dyn_in,
3061 bfd_elf64_swap_dyn_out,
3062 NULL,
3063 NULL,
3064 NULL,
3065 NULL
3066 };
3067
3068 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3069 #define TARGET_BIG_NAME "elf64-sparc"
3070 #define ELF_ARCH bfd_arch_sparc
3071 #define ELF_MAXPAGESIZE 0x100000
3072
3073 /* This is the official ABI value. */
3074 #define ELF_MACHINE_CODE EM_SPARCV9
3075
3076 /* This is the value that we used before the ABI was released. */
3077 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3078
3079 #define bfd_elf64_bfd_link_hash_table_create \
3080 sparc64_elf_bfd_link_hash_table_create
3081
3082 #define elf_info_to_howto \
3083 sparc64_elf_info_to_howto
3084 #define bfd_elf64_get_reloc_upper_bound \
3085 sparc64_elf_get_reloc_upper_bound
3086 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3087 sparc64_elf_get_dynamic_reloc_upper_bound
3088 #define bfd_elf64_canonicalize_dynamic_reloc \
3089 sparc64_elf_canonicalize_dynamic_reloc
3090 #define bfd_elf64_bfd_reloc_type_lookup \
3091 sparc64_elf_reloc_type_lookup
3092 #define bfd_elf64_bfd_relax_section \
3093 sparc64_elf_relax_section
3094
3095 #define elf_backend_create_dynamic_sections \
3096 _bfd_elf_create_dynamic_sections
3097 #define elf_backend_add_symbol_hook \
3098 sparc64_elf_add_symbol_hook
3099 #define elf_backend_get_symbol_type \
3100 sparc64_elf_get_symbol_type
3101 #define elf_backend_symbol_processing \
3102 sparc64_elf_symbol_processing
3103 #define elf_backend_check_relocs \
3104 sparc64_elf_check_relocs
3105 #define elf_backend_adjust_dynamic_symbol \
3106 sparc64_elf_adjust_dynamic_symbol
3107 #define elf_backend_size_dynamic_sections \
3108 sparc64_elf_size_dynamic_sections
3109 #define elf_backend_relocate_section \
3110 sparc64_elf_relocate_section
3111 #define elf_backend_finish_dynamic_symbol \
3112 sparc64_elf_finish_dynamic_symbol
3113 #define elf_backend_finish_dynamic_sections \
3114 sparc64_elf_finish_dynamic_sections
3115 #define elf_backend_print_symbol_all \
3116 sparc64_elf_print_symbol_all
3117 #define elf_backend_output_arch_syms \
3118 sparc64_elf_output_arch_syms
3119
3120 #define bfd_elf64_bfd_merge_private_bfd_data \
3121 sparc64_elf_merge_private_bfd_data
3122
3123 #define elf_backend_size_info \
3124 sparc64_elf_size_info
3125 #define elf_backend_object_p \
3126 sparc64_elf_object_p
3127
3128 #define elf_backend_want_got_plt 0
3129 #define elf_backend_plt_readonly 0
3130 #define elf_backend_want_plt_sym 1
3131
3132 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3133 #define elf_backend_plt_alignment 8
3134
3135 #define elf_backend_got_header_size 8
3136 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3137
3138 #include "elf64-target.h"
This page took 0.546158 seconds and 4 git commands to generate.