* elf32-sparc.c (_bfd_sparc_elf_howto_table): Treat R_SPARC_UA32
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993, 95, 96, 97, 98, 99, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS((bfd *));
39 static reloc_howto_type *sparc64_elf_reloc_type_lookup
40 PARAMS ((bfd *, bfd_reloc_code_real_type));
41 static void sparc64_elf_info_to_howto
42 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
43
44 static void sparc64_elf_build_plt
45 PARAMS((bfd *, unsigned char *, int));
46 static bfd_vma sparc64_elf_plt_entry_offset
47 PARAMS((int));
48 static bfd_vma sparc64_elf_plt_ptr_offset
49 PARAMS((int, int));
50
51 static boolean sparc64_elf_check_relocs
52 PARAMS((bfd *, struct bfd_link_info *, asection *sec,
53 const Elf_Internal_Rela *));
54 static boolean sparc64_elf_adjust_dynamic_symbol
55 PARAMS((struct bfd_link_info *, struct elf_link_hash_entry *));
56 static boolean sparc64_elf_size_dynamic_sections
57 PARAMS((bfd *, struct bfd_link_info *));
58 static int sparc64_elf_get_symbol_type
59 PARAMS (( Elf_Internal_Sym *, int));
60 static boolean sparc64_elf_add_symbol_hook
61 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
62 const char **, flagword *, asection **, bfd_vma *));
63 static void sparc64_elf_symbol_processing
64 PARAMS ((bfd *, asymbol *));
65
66 static boolean sparc64_elf_merge_private_bfd_data
67 PARAMS ((bfd *, bfd *));
68
69 static boolean sparc64_elf_relax_section
70 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
71 static boolean sparc64_elf_relocate_section
72 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
73 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
74 static boolean sparc64_elf_object_p PARAMS ((bfd *));
75 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
76 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
77 static boolean sparc64_elf_slurp_one_reloc_table
78 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
79 static boolean sparc64_elf_slurp_reloc_table
80 PARAMS ((bfd *, asection *, asymbol **, boolean));
81 static long sparc64_elf_canonicalize_dynamic_reloc
82 PARAMS ((bfd *, arelent **, asymbol **));
83 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
84 \f
85 /* The relocation "howto" table. */
86
87 static bfd_reloc_status_type sparc_elf_notsup_reloc
88 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
89 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
90 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
91 static bfd_reloc_status_type sparc_elf_hix22_reloc
92 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
93 static bfd_reloc_status_type sparc_elf_lox10_reloc
94 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
95
96 static reloc_howto_type sparc64_elf_howto_table[] =
97 {
98 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
99 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
100 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
101 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
102 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
103 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
104 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
105 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
106 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
107 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
108 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
109 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
110 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
111 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
112 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
113 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
114 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
115 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
116 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
117 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
118 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
119 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
120 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
121 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
122 #ifndef SPARC64_OLD_RELOCS
123 /* These aren't implemented yet. */
124 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
125 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
126 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
127 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
128 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
129 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
130 #endif
131 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
132 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
133 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
134 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
135 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
136 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
137 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
138 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
139 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
140 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
141 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
142 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
143 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
144 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
145 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
146 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
147 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
148 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
149 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
150 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
151 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
152 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
153 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
154 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
155 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
156 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
157 };
158
159 struct elf_reloc_map {
160 bfd_reloc_code_real_type bfd_reloc_val;
161 unsigned char elf_reloc_val;
162 };
163
164 static CONST struct elf_reloc_map sparc_reloc_map[] =
165 {
166 { BFD_RELOC_NONE, R_SPARC_NONE, },
167 { BFD_RELOC_16, R_SPARC_16, },
168 { BFD_RELOC_8, R_SPARC_8 },
169 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
170 { BFD_RELOC_CTOR, R_SPARC_64 },
171 { BFD_RELOC_32, R_SPARC_32 },
172 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
173 { BFD_RELOC_HI22, R_SPARC_HI22 },
174 { BFD_RELOC_LO10, R_SPARC_LO10, },
175 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
176 { BFD_RELOC_SPARC22, R_SPARC_22 },
177 { BFD_RELOC_SPARC13, R_SPARC_13 },
178 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
179 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
180 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
181 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
182 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
183 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
184 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
185 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
186 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
187 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
188 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
189 /* ??? Doesn't dwarf use this? */
190 /*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
191 {BFD_RELOC_SPARC_10, R_SPARC_10},
192 {BFD_RELOC_SPARC_11, R_SPARC_11},
193 {BFD_RELOC_SPARC_64, R_SPARC_64},
194 {BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10},
195 {BFD_RELOC_SPARC_HH22, R_SPARC_HH22},
196 {BFD_RELOC_SPARC_HM10, R_SPARC_HM10},
197 {BFD_RELOC_SPARC_LM22, R_SPARC_LM22},
198 {BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22},
199 {BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10},
200 {BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22},
201 {BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16},
202 {BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19},
203 {BFD_RELOC_SPARC_7, R_SPARC_7},
204 {BFD_RELOC_SPARC_5, R_SPARC_5},
205 {BFD_RELOC_SPARC_6, R_SPARC_6},
206 {BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64},
207 {BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64},
208 {BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22},
209 {BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10},
210 {BFD_RELOC_SPARC_H44, R_SPARC_H44},
211 {BFD_RELOC_SPARC_M44, R_SPARC_M44},
212 {BFD_RELOC_SPARC_L44, R_SPARC_L44},
213 {BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER}
214 };
215
216 static reloc_howto_type *
217 sparc64_elf_reloc_type_lookup (abfd, code)
218 bfd *abfd ATTRIBUTE_UNUSED;
219 bfd_reloc_code_real_type code;
220 {
221 unsigned int i;
222 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
223 {
224 if (sparc_reloc_map[i].bfd_reloc_val == code)
225 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
226 }
227 return 0;
228 }
229
230 static void
231 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
232 bfd *abfd ATTRIBUTE_UNUSED;
233 arelent *cache_ptr;
234 Elf64_Internal_Rela *dst;
235 {
236 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
237 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
238 }
239 \f
240 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
241 section can represent up to two relocs, we must tell the user to allocate
242 more space. */
243
244 static long
245 sparc64_elf_get_reloc_upper_bound (abfd, sec)
246 bfd *abfd ATTRIBUTE_UNUSED;
247 asection *sec;
248 {
249 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
250 }
251
252 static long
253 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
254 bfd *abfd;
255 {
256 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
257 }
258
259 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
260 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
261 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
262 for the same location, R_SPARC_LO10 and R_SPARC_13. */
263
264 static boolean
265 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
266 bfd *abfd;
267 asection *asect;
268 Elf_Internal_Shdr *rel_hdr;
269 asymbol **symbols;
270 boolean dynamic;
271 {
272 PTR allocated = NULL;
273 bfd_byte *native_relocs;
274 arelent *relent;
275 unsigned int i;
276 int entsize;
277 bfd_size_type count;
278 arelent *relents;
279
280 allocated = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
281 if (allocated == NULL)
282 goto error_return;
283
284 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
285 || (bfd_read (allocated, 1, rel_hdr->sh_size, abfd)
286 != rel_hdr->sh_size))
287 goto error_return;
288
289 native_relocs = (bfd_byte *) allocated;
290
291 relents = asect->relocation + asect->reloc_count;
292
293 entsize = rel_hdr->sh_entsize;
294 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
295
296 count = rel_hdr->sh_size / entsize;
297
298 for (i = 0, relent = relents; i < count;
299 i++, relent++, native_relocs += entsize)
300 {
301 Elf_Internal_Rela rela;
302
303 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
304
305 /* The address of an ELF reloc is section relative for an object
306 file, and absolute for an executable file or shared library.
307 The address of a normal BFD reloc is always section relative,
308 and the address of a dynamic reloc is absolute.. */
309 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
310 relent->address = rela.r_offset;
311 else
312 relent->address = rela.r_offset - asect->vma;
313
314 if (ELF64_R_SYM (rela.r_info) == 0)
315 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
316 else
317 {
318 asymbol **ps, *s;
319
320 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
321 s = *ps;
322
323 /* Canonicalize ELF section symbols. FIXME: Why? */
324 if ((s->flags & BSF_SECTION_SYM) == 0)
325 relent->sym_ptr_ptr = ps;
326 else
327 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
328 }
329
330 relent->addend = rela.r_addend;
331
332 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
333 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
334 {
335 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
336 relent[1].address = relent->address;
337 relent++;
338 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
339 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
340 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
341 }
342 else
343 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
344 }
345
346 asect->reloc_count += relent - relents;
347
348 if (allocated != NULL)
349 free (allocated);
350
351 return true;
352
353 error_return:
354 if (allocated != NULL)
355 free (allocated);
356 return false;
357 }
358
359 /* Read in and swap the external relocs. */
360
361 static boolean
362 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
363 bfd *abfd;
364 asection *asect;
365 asymbol **symbols;
366 boolean dynamic;
367 {
368 struct bfd_elf_section_data * const d = elf_section_data (asect);
369 Elf_Internal_Shdr *rel_hdr;
370 Elf_Internal_Shdr *rel_hdr2;
371
372 if (asect->relocation != NULL)
373 return true;
374
375 if (! dynamic)
376 {
377 if ((asect->flags & SEC_RELOC) == 0
378 || asect->reloc_count == 0)
379 return true;
380
381 rel_hdr = &d->rel_hdr;
382 rel_hdr2 = d->rel_hdr2;
383
384 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
385 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
386 }
387 else
388 {
389 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
390 case because relocations against this section may use the
391 dynamic symbol table, and in that case bfd_section_from_shdr
392 in elf.c does not update the RELOC_COUNT. */
393 if (asect->_raw_size == 0)
394 return true;
395
396 rel_hdr = &d->this_hdr;
397 asect->reloc_count = rel_hdr->sh_size / rel_hdr->sh_entsize;
398 rel_hdr2 = NULL;
399 }
400
401 asect->relocation = ((arelent *)
402 bfd_alloc (abfd,
403 asect->reloc_count * 2 * sizeof (arelent)));
404 if (asect->relocation == NULL)
405 return false;
406
407 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
408 asect->reloc_count = 0;
409
410 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
411 dynamic))
412 return false;
413
414 if (rel_hdr2
415 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
416 dynamic))
417 return false;
418
419 return true;
420 }
421
422 /* Canonicalize the dynamic relocation entries. Note that we return
423 the dynamic relocations as a single block, although they are
424 actually associated with particular sections; the interface, which
425 was designed for SunOS style shared libraries, expects that there
426 is only one set of dynamic relocs. Any section that was actually
427 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
428 the dynamic symbol table, is considered to be a dynamic reloc
429 section. */
430
431 static long
432 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
433 bfd *abfd;
434 arelent **storage;
435 asymbol **syms;
436 {
437 asection *s;
438 long ret;
439
440 if (elf_dynsymtab (abfd) == 0)
441 {
442 bfd_set_error (bfd_error_invalid_operation);
443 return -1;
444 }
445
446 ret = 0;
447 for (s = abfd->sections; s != NULL; s = s->next)
448 {
449 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
450 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
451 {
452 arelent *p;
453 long count, i;
454
455 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
456 return -1;
457 count = s->reloc_count;
458 p = s->relocation;
459 for (i = 0; i < count; i++)
460 *storage++ = p++;
461 ret += count;
462 }
463 }
464
465 *storage = NULL;
466
467 return ret;
468 }
469
470 /* Write out the relocs. */
471
472 static void
473 sparc64_elf_write_relocs (abfd, sec, data)
474 bfd *abfd;
475 asection *sec;
476 PTR data;
477 {
478 boolean *failedp = (boolean *) data;
479 Elf_Internal_Shdr *rela_hdr;
480 Elf64_External_Rela *outbound_relocas, *src_rela;
481 unsigned int idx, count;
482 asymbol *last_sym = 0;
483 int last_sym_idx = 0;
484
485 /* If we have already failed, don't do anything. */
486 if (*failedp)
487 return;
488
489 if ((sec->flags & SEC_RELOC) == 0)
490 return;
491
492 /* The linker backend writes the relocs out itself, and sets the
493 reloc_count field to zero to inhibit writing them here. Also,
494 sometimes the SEC_RELOC flag gets set even when there aren't any
495 relocs. */
496 if (sec->reloc_count == 0)
497 return;
498
499 /* We can combine two relocs that refer to the same address
500 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
501 latter is R_SPARC_13 with no associated symbol. */
502 count = 0;
503 for (idx = 0; idx < sec->reloc_count; idx++)
504 {
505 bfd_vma addr;
506
507 ++count;
508
509 addr = sec->orelocation[idx]->address;
510 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
511 && idx < sec->reloc_count - 1)
512 {
513 arelent *r = sec->orelocation[idx + 1];
514
515 if (r->howto->type == R_SPARC_13
516 && r->address == addr
517 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
518 && (*r->sym_ptr_ptr)->value == 0)
519 ++idx;
520 }
521 }
522
523 rela_hdr = &elf_section_data (sec)->rel_hdr;
524
525 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
526 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
527 if (rela_hdr->contents == NULL)
528 {
529 *failedp = true;
530 return;
531 }
532
533 /* Figure out whether the relocations are RELA or REL relocations. */
534 if (rela_hdr->sh_type != SHT_RELA)
535 abort ();
536
537 /* orelocation has the data, reloc_count has the count... */
538 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
539 src_rela = outbound_relocas;
540
541 for (idx = 0; idx < sec->reloc_count; idx++)
542 {
543 Elf_Internal_Rela dst_rela;
544 arelent *ptr;
545 asymbol *sym;
546 int n;
547
548 ptr = sec->orelocation[idx];
549
550 /* The address of an ELF reloc is section relative for an object
551 file, and absolute for an executable file or shared library.
552 The address of a BFD reloc is always section relative. */
553 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
554 dst_rela.r_offset = ptr->address;
555 else
556 dst_rela.r_offset = ptr->address + sec->vma;
557
558 sym = *ptr->sym_ptr_ptr;
559 if (sym == last_sym)
560 n = last_sym_idx;
561 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
562 n = STN_UNDEF;
563 else
564 {
565 last_sym = sym;
566 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
567 if (n < 0)
568 {
569 *failedp = true;
570 return;
571 }
572 last_sym_idx = n;
573 }
574
575 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
576 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
577 && ! _bfd_elf_validate_reloc (abfd, ptr))
578 {
579 *failedp = true;
580 return;
581 }
582
583 if (ptr->howto->type == R_SPARC_LO10
584 && idx < sec->reloc_count - 1)
585 {
586 arelent *r = sec->orelocation[idx + 1];
587
588 if (r->howto->type == R_SPARC_13
589 && r->address == ptr->address
590 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
591 && (*r->sym_ptr_ptr)->value == 0)
592 {
593 idx++;
594 dst_rela.r_info
595 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
596 R_SPARC_OLO10));
597 }
598 else
599 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
600 }
601 else
602 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
603
604 dst_rela.r_addend = ptr->addend;
605 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
606 ++src_rela;
607 }
608 }
609 \f
610 /* Sparc64 ELF linker hash table. */
611
612 struct sparc64_elf_app_reg
613 {
614 unsigned char bind;
615 unsigned short shndx;
616 bfd *abfd;
617 char *name;
618 };
619
620 struct sparc64_elf_link_hash_table
621 {
622 struct elf_link_hash_table root;
623
624 struct sparc64_elf_app_reg app_regs [4];
625 };
626
627 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
628
629 #define sparc64_elf_hash_table(p) \
630 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
631
632 /* Create a Sparc64 ELF linker hash table. */
633
634 static struct bfd_link_hash_table *
635 sparc64_elf_bfd_link_hash_table_create (abfd)
636 bfd *abfd;
637 {
638 struct sparc64_elf_link_hash_table *ret;
639
640 ret = ((struct sparc64_elf_link_hash_table *)
641 bfd_zalloc (abfd, sizeof (struct sparc64_elf_link_hash_table)));
642 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
643 return NULL;
644
645 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
646 _bfd_elf_link_hash_newfunc))
647 {
648 bfd_release (abfd, ret);
649 return NULL;
650 }
651
652 return &ret->root.root;
653 }
654 \f
655 /* Utility for performing the standard initial work of an instruction
656 relocation.
657 *PRELOCATION will contain the relocated item.
658 *PINSN will contain the instruction from the input stream.
659 If the result is `bfd_reloc_other' the caller can continue with
660 performing the relocation. Otherwise it must stop and return the
661 value to its caller. */
662
663 static bfd_reloc_status_type
664 init_insn_reloc (abfd,
665 reloc_entry,
666 symbol,
667 data,
668 input_section,
669 output_bfd,
670 prelocation,
671 pinsn)
672 bfd *abfd;
673 arelent *reloc_entry;
674 asymbol *symbol;
675 PTR data;
676 asection *input_section;
677 bfd *output_bfd;
678 bfd_vma *prelocation;
679 bfd_vma *pinsn;
680 {
681 bfd_vma relocation;
682 reloc_howto_type *howto = reloc_entry->howto;
683
684 if (output_bfd != (bfd *) NULL
685 && (symbol->flags & BSF_SECTION_SYM) == 0
686 && (! howto->partial_inplace
687 || reloc_entry->addend == 0))
688 {
689 reloc_entry->address += input_section->output_offset;
690 return bfd_reloc_ok;
691 }
692
693 /* This works because partial_inplace == false. */
694 if (output_bfd != NULL)
695 return bfd_reloc_continue;
696
697 if (reloc_entry->address > input_section->_cooked_size)
698 return bfd_reloc_outofrange;
699
700 relocation = (symbol->value
701 + symbol->section->output_section->vma
702 + symbol->section->output_offset);
703 relocation += reloc_entry->addend;
704 if (howto->pc_relative)
705 {
706 relocation -= (input_section->output_section->vma
707 + input_section->output_offset);
708 relocation -= reloc_entry->address;
709 }
710
711 *prelocation = relocation;
712 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
713 return bfd_reloc_other;
714 }
715
716 /* For unsupported relocs. */
717
718 static bfd_reloc_status_type
719 sparc_elf_notsup_reloc (abfd,
720 reloc_entry,
721 symbol,
722 data,
723 input_section,
724 output_bfd,
725 error_message)
726 bfd *abfd ATTRIBUTE_UNUSED;
727 arelent *reloc_entry ATTRIBUTE_UNUSED;
728 asymbol *symbol ATTRIBUTE_UNUSED;
729 PTR data ATTRIBUTE_UNUSED;
730 asection *input_section ATTRIBUTE_UNUSED;
731 bfd *output_bfd ATTRIBUTE_UNUSED;
732 char **error_message ATTRIBUTE_UNUSED;
733 {
734 return bfd_reloc_notsupported;
735 }
736
737 /* Handle the WDISP16 reloc. */
738
739 static bfd_reloc_status_type
740 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
741 output_bfd, error_message)
742 bfd *abfd;
743 arelent *reloc_entry;
744 asymbol *symbol;
745 PTR data;
746 asection *input_section;
747 bfd *output_bfd;
748 char **error_message ATTRIBUTE_UNUSED;
749 {
750 bfd_vma relocation;
751 bfd_vma insn;
752 bfd_reloc_status_type status;
753
754 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
755 input_section, output_bfd, &relocation, &insn);
756 if (status != bfd_reloc_other)
757 return status;
758
759 insn = (insn & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
760 | ((relocation >> 2) & 0x3fff));
761 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
762
763 if ((bfd_signed_vma) relocation < - 0x40000
764 || (bfd_signed_vma) relocation > 0x3ffff)
765 return bfd_reloc_overflow;
766 else
767 return bfd_reloc_ok;
768 }
769
770 /* Handle the HIX22 reloc. */
771
772 static bfd_reloc_status_type
773 sparc_elf_hix22_reloc (abfd,
774 reloc_entry,
775 symbol,
776 data,
777 input_section,
778 output_bfd,
779 error_message)
780 bfd *abfd;
781 arelent *reloc_entry;
782 asymbol *symbol;
783 PTR data;
784 asection *input_section;
785 bfd *output_bfd;
786 char **error_message ATTRIBUTE_UNUSED;
787 {
788 bfd_vma relocation;
789 bfd_vma insn;
790 bfd_reloc_status_type status;
791
792 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
793 input_section, output_bfd, &relocation, &insn);
794 if (status != bfd_reloc_other)
795 return status;
796
797 relocation ^= MINUS_ONE;
798 insn = (insn & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
799 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
800
801 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
802 return bfd_reloc_overflow;
803 else
804 return bfd_reloc_ok;
805 }
806
807 /* Handle the LOX10 reloc. */
808
809 static bfd_reloc_status_type
810 sparc_elf_lox10_reloc (abfd,
811 reloc_entry,
812 symbol,
813 data,
814 input_section,
815 output_bfd,
816 error_message)
817 bfd *abfd;
818 arelent *reloc_entry;
819 asymbol *symbol;
820 PTR data;
821 asection *input_section;
822 bfd *output_bfd;
823 char **error_message ATTRIBUTE_UNUSED;
824 {
825 bfd_vma relocation;
826 bfd_vma insn;
827 bfd_reloc_status_type status;
828
829 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
830 input_section, output_bfd, &relocation, &insn);
831 if (status != bfd_reloc_other)
832 return status;
833
834 insn = (insn & ~0x1fff) | 0x1c00 | (relocation & 0x3ff);
835 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
836
837 return bfd_reloc_ok;
838 }
839 \f
840 /* PLT/GOT stuff */
841
842 /* Both the headers and the entries are icache aligned. */
843 #define PLT_ENTRY_SIZE 32
844 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
845 #define LARGE_PLT_THRESHOLD 32768
846 #define GOT_RESERVED_ENTRIES 1
847
848 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
849
850 /* Fill in the .plt section. */
851
852 static void
853 sparc64_elf_build_plt (output_bfd, contents, nentries)
854 bfd *output_bfd;
855 unsigned char *contents;
856 int nentries;
857 {
858 const unsigned int nop = 0x01000000;
859 int i, j;
860
861 /* The first four entries are reserved, and are initially undefined.
862 We fill them with `illtrap 0' to force ld.so to do something. */
863
864 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
865 bfd_put_32 (output_bfd, 0, contents+i*4);
866
867 /* The first 32768 entries are close enough to plt1 to get there via
868 a straight branch. */
869
870 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
871 {
872 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
873 unsigned int sethi, ba;
874
875 /* sethi (. - plt0), %g1 */
876 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
877
878 /* ba,a,pt %xcc, plt1 */
879 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
880
881 bfd_put_32 (output_bfd, sethi, entry);
882 bfd_put_32 (output_bfd, ba, entry+4);
883 bfd_put_32 (output_bfd, nop, entry+8);
884 bfd_put_32 (output_bfd, nop, entry+12);
885 bfd_put_32 (output_bfd, nop, entry+16);
886 bfd_put_32 (output_bfd, nop, entry+20);
887 bfd_put_32 (output_bfd, nop, entry+24);
888 bfd_put_32 (output_bfd, nop, entry+28);
889 }
890
891 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
892 160: 160 entries and 160 pointers. This is to separate code from data,
893 which is much friendlier on the cache. */
894
895 for (; i < nentries; i += 160)
896 {
897 int block = (i + 160 <= nentries ? 160 : nentries - i);
898 for (j = 0; j < block; ++j)
899 {
900 unsigned char *entry, *ptr;
901 unsigned int ldx;
902
903 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
904 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
905
906 /* ldx [%o7 + ptr - entry+4], %g1 */
907 ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
908
909 bfd_put_32 (output_bfd, 0x8a10000f, entry); /* mov %o7,%g5 */
910 bfd_put_32 (output_bfd, 0x40000002, entry+4); /* call .+8 */
911 bfd_put_32 (output_bfd, nop, entry+8); /* nop */
912 bfd_put_32 (output_bfd, ldx, entry+12); /* ldx [%o7+P],%g1 */
913 bfd_put_32 (output_bfd, 0x83c3c001, entry+16); /* jmpl %o7+%g1,%g1 */
914 bfd_put_32 (output_bfd, 0x9e100005, entry+20); /* mov %g5,%o7 */
915
916 bfd_put_64 (output_bfd, contents - (entry+4), ptr);
917 }
918 }
919 }
920
921 /* Return the offset of a particular plt entry within the .plt section. */
922
923 static bfd_vma
924 sparc64_elf_plt_entry_offset (index)
925 int index;
926 {
927 int block, ofs;
928
929 if (index < LARGE_PLT_THRESHOLD)
930 return index * PLT_ENTRY_SIZE;
931
932 /* See above for details. */
933
934 block = (index - LARGE_PLT_THRESHOLD) / 160;
935 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
936
937 return ((bfd_vma) (LARGE_PLT_THRESHOLD + block*160) * PLT_ENTRY_SIZE
938 + ofs * 6*4);
939 }
940
941 static bfd_vma
942 sparc64_elf_plt_ptr_offset (index, max)
943 int index, max;
944 {
945 int block, ofs, last;
946
947 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
948
949 /* See above for details. */
950
951 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160)
952 + LARGE_PLT_THRESHOLD;
953 ofs = index - block;
954 if (block + 160 > max)
955 last = (max - LARGE_PLT_THRESHOLD) % 160;
956 else
957 last = 160;
958
959 return (block * PLT_ENTRY_SIZE
960 + last * 6*4
961 + ofs * 8);
962 }
963 \f
964 /* Look through the relocs for a section during the first phase, and
965 allocate space in the global offset table or procedure linkage
966 table. */
967
968 static boolean
969 sparc64_elf_check_relocs (abfd, info, sec, relocs)
970 bfd *abfd;
971 struct bfd_link_info *info;
972 asection *sec;
973 const Elf_Internal_Rela *relocs;
974 {
975 bfd *dynobj;
976 Elf_Internal_Shdr *symtab_hdr;
977 struct elf_link_hash_entry **sym_hashes;
978 bfd_vma *local_got_offsets;
979 const Elf_Internal_Rela *rel;
980 const Elf_Internal_Rela *rel_end;
981 asection *sgot;
982 asection *srelgot;
983 asection *sreloc;
984
985 if (info->relocateable || !(sec->flags & SEC_ALLOC))
986 return true;
987
988 dynobj = elf_hash_table (info)->dynobj;
989 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
990 sym_hashes = elf_sym_hashes (abfd);
991 local_got_offsets = elf_local_got_offsets (abfd);
992
993 sgot = NULL;
994 srelgot = NULL;
995 sreloc = NULL;
996
997 rel_end = relocs + sec->reloc_count;
998 for (rel = relocs; rel < rel_end; rel++)
999 {
1000 unsigned long r_symndx;
1001 struct elf_link_hash_entry *h;
1002
1003 r_symndx = ELF64_R_SYM (rel->r_info);
1004 if (r_symndx < symtab_hdr->sh_info)
1005 h = NULL;
1006 else
1007 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1008
1009 switch (ELF64_R_TYPE_ID (rel->r_info))
1010 {
1011 case R_SPARC_GOT10:
1012 case R_SPARC_GOT13:
1013 case R_SPARC_GOT22:
1014 /* This symbol requires a global offset table entry. */
1015
1016 if (dynobj == NULL)
1017 {
1018 /* Create the .got section. */
1019 elf_hash_table (info)->dynobj = dynobj = abfd;
1020 if (! _bfd_elf_create_got_section (dynobj, info))
1021 return false;
1022 }
1023
1024 if (sgot == NULL)
1025 {
1026 sgot = bfd_get_section_by_name (dynobj, ".got");
1027 BFD_ASSERT (sgot != NULL);
1028 }
1029
1030 if (srelgot == NULL && (h != NULL || info->shared))
1031 {
1032 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1033 if (srelgot == NULL)
1034 {
1035 srelgot = bfd_make_section (dynobj, ".rela.got");
1036 if (srelgot == NULL
1037 || ! bfd_set_section_flags (dynobj, srelgot,
1038 (SEC_ALLOC
1039 | SEC_LOAD
1040 | SEC_HAS_CONTENTS
1041 | SEC_IN_MEMORY
1042 | SEC_LINKER_CREATED
1043 | SEC_READONLY))
1044 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1045 return false;
1046 }
1047 }
1048
1049 if (h != NULL)
1050 {
1051 if (h->got.offset != (bfd_vma) -1)
1052 {
1053 /* We have already allocated space in the .got. */
1054 break;
1055 }
1056 h->got.offset = sgot->_raw_size;
1057
1058 /* Make sure this symbol is output as a dynamic symbol. */
1059 if (h->dynindx == -1)
1060 {
1061 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1062 return false;
1063 }
1064
1065 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1066 }
1067 else
1068 {
1069 /* This is a global offset table entry for a local
1070 symbol. */
1071 if (local_got_offsets == NULL)
1072 {
1073 size_t size;
1074 register unsigned int i;
1075
1076 size = symtab_hdr->sh_info * sizeof (bfd_vma);
1077 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1078 if (local_got_offsets == NULL)
1079 return false;
1080 elf_local_got_offsets (abfd) = local_got_offsets;
1081 for (i = 0; i < symtab_hdr->sh_info; i++)
1082 local_got_offsets[i] = (bfd_vma) -1;
1083 }
1084 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1085 {
1086 /* We have already allocated space in the .got. */
1087 break;
1088 }
1089 local_got_offsets[r_symndx] = sgot->_raw_size;
1090
1091 if (info->shared)
1092 {
1093 /* If we are generating a shared object, we need to
1094 output a R_SPARC_RELATIVE reloc so that the
1095 dynamic linker can adjust this GOT entry. */
1096 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1097 }
1098 }
1099
1100 sgot->_raw_size += 8;
1101
1102 #if 0
1103 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1104 unsigned numbers. If we permit ourselves to modify
1105 code so we get sethi/xor, this could work.
1106 Question: do we consider conditionally re-enabling
1107 this for -fpic, once we know about object code models? */
1108 /* If the .got section is more than 0x1000 bytes, we add
1109 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1110 bit relocations have a greater chance of working. */
1111 if (sgot->_raw_size >= 0x1000
1112 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1113 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1114 #endif
1115
1116 break;
1117
1118 case R_SPARC_WPLT30:
1119 case R_SPARC_PLT32:
1120 case R_SPARC_HIPLT22:
1121 case R_SPARC_LOPLT10:
1122 case R_SPARC_PCPLT32:
1123 case R_SPARC_PCPLT22:
1124 case R_SPARC_PCPLT10:
1125 case R_SPARC_PLT64:
1126 /* This symbol requires a procedure linkage table entry. We
1127 actually build the entry in adjust_dynamic_symbol,
1128 because this might be a case of linking PIC code without
1129 linking in any dynamic objects, in which case we don't
1130 need to generate a procedure linkage table after all. */
1131
1132 if (h == NULL)
1133 {
1134 /* It does not make sense to have a procedure linkage
1135 table entry for a local symbol. */
1136 bfd_set_error (bfd_error_bad_value);
1137 return false;
1138 }
1139
1140 /* Make sure this symbol is output as a dynamic symbol. */
1141 if (h->dynindx == -1)
1142 {
1143 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1144 return false;
1145 }
1146
1147 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1148 break;
1149
1150 case R_SPARC_PC10:
1151 case R_SPARC_PC22:
1152 case R_SPARC_PC_HH22:
1153 case R_SPARC_PC_HM10:
1154 case R_SPARC_PC_LM22:
1155 if (h != NULL
1156 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1157 break;
1158 /* Fall through. */
1159 case R_SPARC_DISP8:
1160 case R_SPARC_DISP16:
1161 case R_SPARC_DISP32:
1162 case R_SPARC_DISP64:
1163 case R_SPARC_WDISP30:
1164 case R_SPARC_WDISP22:
1165 case R_SPARC_WDISP19:
1166 case R_SPARC_WDISP16:
1167 if (h == NULL)
1168 break;
1169 /* Fall through. */
1170 case R_SPARC_8:
1171 case R_SPARC_16:
1172 case R_SPARC_32:
1173 case R_SPARC_HI22:
1174 case R_SPARC_22:
1175 case R_SPARC_13:
1176 case R_SPARC_LO10:
1177 case R_SPARC_UA32:
1178 case R_SPARC_10:
1179 case R_SPARC_11:
1180 case R_SPARC_64:
1181 case R_SPARC_OLO10:
1182 case R_SPARC_HH22:
1183 case R_SPARC_HM10:
1184 case R_SPARC_LM22:
1185 case R_SPARC_7:
1186 case R_SPARC_5:
1187 case R_SPARC_6:
1188 case R_SPARC_HIX22:
1189 case R_SPARC_LOX10:
1190 case R_SPARC_H44:
1191 case R_SPARC_M44:
1192 case R_SPARC_L44:
1193 case R_SPARC_UA64:
1194 case R_SPARC_UA16:
1195 /* When creating a shared object, we must copy these relocs
1196 into the output file. We create a reloc section in
1197 dynobj and make room for the reloc.
1198
1199 But don't do this for debugging sections -- this shows up
1200 with DWARF2 -- first because they are not loaded, and
1201 second because DWARF sez the debug info is not to be
1202 biased by the load address. */
1203 if (info->shared && (sec->flags & SEC_ALLOC))
1204 {
1205 if (sreloc == NULL)
1206 {
1207 const char *name;
1208
1209 name = (bfd_elf_string_from_elf_section
1210 (abfd,
1211 elf_elfheader (abfd)->e_shstrndx,
1212 elf_section_data (sec)->rel_hdr.sh_name));
1213 if (name == NULL)
1214 return false;
1215
1216 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1217 && strcmp (bfd_get_section_name (abfd, sec),
1218 name + 5) == 0);
1219
1220 sreloc = bfd_get_section_by_name (dynobj, name);
1221 if (sreloc == NULL)
1222 {
1223 flagword flags;
1224
1225 sreloc = bfd_make_section (dynobj, name);
1226 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1227 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1228 if ((sec->flags & SEC_ALLOC) != 0)
1229 flags |= SEC_ALLOC | SEC_LOAD;
1230 if (sreloc == NULL
1231 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1232 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1233 return false;
1234 }
1235 }
1236
1237 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1238 }
1239 break;
1240
1241 case R_SPARC_REGISTER:
1242 /* Nothing to do. */
1243 break;
1244
1245 default:
1246 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1247 bfd_get_filename(abfd),
1248 ELF64_R_TYPE_ID (rel->r_info));
1249 return false;
1250 }
1251 }
1252
1253 return true;
1254 }
1255
1256 /* Hook called by the linker routine which adds symbols from an object
1257 file. We use it for STT_REGISTER symbols. */
1258
1259 static boolean
1260 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1261 bfd *abfd;
1262 struct bfd_link_info *info;
1263 const Elf_Internal_Sym *sym;
1264 const char **namep;
1265 flagword *flagsp ATTRIBUTE_UNUSED;
1266 asection **secp ATTRIBUTE_UNUSED;
1267 bfd_vma *valp ATTRIBUTE_UNUSED;
1268 {
1269 static char *stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1270
1271 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1272 {
1273 int reg;
1274 struct sparc64_elf_app_reg *p;
1275
1276 reg = (int)sym->st_value;
1277 switch (reg & ~1)
1278 {
1279 case 2: reg -= 2; break;
1280 case 6: reg -= 4; break;
1281 default:
1282 (*_bfd_error_handler)
1283 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1284 bfd_get_filename (abfd));
1285 return false;
1286 }
1287
1288 if (info->hash->creator != abfd->xvec
1289 || (abfd->flags & DYNAMIC) != 0)
1290 {
1291 /* STT_REGISTER only works when linking an elf64_sparc object.
1292 If STT_REGISTER comes from a dynamic object, don't put it into
1293 the output bfd. The dynamic linker will recheck it. */
1294 *namep = NULL;
1295 return true;
1296 }
1297
1298 p = sparc64_elf_hash_table(info)->app_regs + reg;
1299
1300 if (p->name != NULL && strcmp (p->name, *namep))
1301 {
1302 (*_bfd_error_handler)
1303 (_("Register %%g%d used incompatibly: "
1304 "previously declared in %s to %s, in %s redefined to %s"),
1305 (int)sym->st_value,
1306 bfd_get_filename (p->abfd), *p->name ? p->name : "#scratch",
1307 bfd_get_filename (abfd), **namep ? *namep : "#scratch");
1308 return false;
1309 }
1310
1311 if (p->name == NULL)
1312 {
1313 if (**namep)
1314 {
1315 struct elf_link_hash_entry *h;
1316
1317 h = (struct elf_link_hash_entry *)
1318 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1319
1320 if (h != NULL)
1321 {
1322 unsigned char type = h->type;
1323
1324 if (type > STT_FUNC) type = 0;
1325 (*_bfd_error_handler)
1326 (_("Symbol `%s' has differing types: "
1327 "previously %s, REGISTER in %s"),
1328 *namep, stt_types [type], bfd_get_filename (abfd));
1329 return false;
1330 }
1331
1332 p->name = bfd_hash_allocate (&info->hash->table,
1333 strlen (*namep) + 1);
1334 if (!p->name)
1335 return false;
1336
1337 strcpy (p->name, *namep);
1338 }
1339 else
1340 p->name = "";
1341 p->bind = ELF_ST_BIND (sym->st_info);
1342 p->abfd = abfd;
1343 p->shndx = sym->st_shndx;
1344 }
1345 else
1346 {
1347 if (p->bind == STB_WEAK
1348 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1349 {
1350 p->bind = STB_GLOBAL;
1351 p->abfd = abfd;
1352 }
1353 }
1354 *namep = NULL;
1355 return true;
1356 }
1357 else if (! *namep || ! **namep)
1358 return true;
1359 else
1360 {
1361 int i;
1362 struct sparc64_elf_app_reg *p;
1363
1364 p = sparc64_elf_hash_table(info)->app_regs;
1365 for (i = 0; i < 4; i++, p++)
1366 if (p->name != NULL && ! strcmp (p->name, *namep))
1367 {
1368 unsigned char type = ELF_ST_TYPE (sym->st_info);
1369
1370 if (type > STT_FUNC) type = 0;
1371 (*_bfd_error_handler)
1372 (_("Symbol `%s' has differing types: "
1373 "REGISTER in %s, %s in %s"),
1374 *namep, bfd_get_filename (p->abfd), stt_types [type],
1375 bfd_get_filename (abfd));
1376 return false;
1377 }
1378 }
1379 return true;
1380 }
1381
1382 /* This function takes care of emiting STT_REGISTER symbols
1383 which we cannot easily keep in the symbol hash table. */
1384
1385 static boolean
1386 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1387 bfd *output_bfd ATTRIBUTE_UNUSED;
1388 struct bfd_link_info *info;
1389 PTR finfo;
1390 boolean (*func) PARAMS ((PTR, const char *,
1391 Elf_Internal_Sym *, asection *));
1392 {
1393 int reg;
1394 struct sparc64_elf_app_reg *app_regs =
1395 sparc64_elf_hash_table(info)->app_regs;
1396 Elf_Internal_Sym sym;
1397
1398 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1399 at the end of the dynlocal list, so they came at the end of the local
1400 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1401 to back up symtab->sh_info. */
1402 if (elf_hash_table (info)->dynlocal)
1403 {
1404 bfd * dynobj = elf_hash_table (info)->dynobj;
1405 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1406 struct elf_link_local_dynamic_entry *e;
1407
1408 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1409 if (e->input_indx == -1)
1410 break;
1411 if (e)
1412 {
1413 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1414 = e->dynindx;
1415 }
1416 }
1417
1418 if (info->strip == strip_all)
1419 return true;
1420
1421 for (reg = 0; reg < 4; reg++)
1422 if (app_regs [reg].name != NULL)
1423 {
1424 if (info->strip == strip_some
1425 && bfd_hash_lookup (info->keep_hash,
1426 app_regs [reg].name,
1427 false, false) == NULL)
1428 continue;
1429
1430 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1431 sym.st_size = 0;
1432 sym.st_other = 0;
1433 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1434 sym.st_shndx = app_regs [reg].shndx;
1435 if (! (*func) (finfo, app_regs [reg].name, &sym,
1436 sym.st_shndx == SHN_ABS
1437 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1438 return false;
1439 }
1440
1441 return true;
1442 }
1443
1444 static int
1445 sparc64_elf_get_symbol_type (elf_sym, type)
1446 Elf_Internal_Sym * elf_sym;
1447 int type;
1448 {
1449 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1450 return STT_REGISTER;
1451 else
1452 return type;
1453 }
1454
1455 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1456 even in SHN_UNDEF section. */
1457
1458 static void
1459 sparc64_elf_symbol_processing (abfd, asym)
1460 bfd *abfd ATTRIBUTE_UNUSED;
1461 asymbol *asym;
1462 {
1463 elf_symbol_type *elfsym;
1464
1465 elfsym = (elf_symbol_type *) asym;
1466 if (elfsym->internal_elf_sym.st_info
1467 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1468 {
1469 asym->flags |= BSF_GLOBAL;
1470 }
1471 }
1472
1473 /* Adjust a symbol defined by a dynamic object and referenced by a
1474 regular object. The current definition is in some section of the
1475 dynamic object, but we're not including those sections. We have to
1476 change the definition to something the rest of the link can
1477 understand. */
1478
1479 static boolean
1480 sparc64_elf_adjust_dynamic_symbol (info, h)
1481 struct bfd_link_info *info;
1482 struct elf_link_hash_entry *h;
1483 {
1484 bfd *dynobj;
1485 asection *s;
1486 unsigned int power_of_two;
1487
1488 dynobj = elf_hash_table (info)->dynobj;
1489
1490 /* Make sure we know what is going on here. */
1491 BFD_ASSERT (dynobj != NULL
1492 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1493 || h->weakdef != NULL
1494 || ((h->elf_link_hash_flags
1495 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1496 && (h->elf_link_hash_flags
1497 & ELF_LINK_HASH_REF_REGULAR) != 0
1498 && (h->elf_link_hash_flags
1499 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1500
1501 /* If this is a function, put it in the procedure linkage table. We
1502 will fill in the contents of the procedure linkage table later
1503 (although we could actually do it here). The STT_NOTYPE
1504 condition is a hack specifically for the Oracle libraries
1505 delivered for Solaris; for some inexplicable reason, they define
1506 some of their functions as STT_NOTYPE when they really should be
1507 STT_FUNC. */
1508 if (h->type == STT_FUNC
1509 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1510 || (h->type == STT_NOTYPE
1511 && (h->root.type == bfd_link_hash_defined
1512 || h->root.type == bfd_link_hash_defweak)
1513 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1514 {
1515 if (! elf_hash_table (info)->dynamic_sections_created)
1516 {
1517 /* This case can occur if we saw a WPLT30 reloc in an input
1518 file, but none of the input files were dynamic objects.
1519 In such a case, we don't actually need to build a
1520 procedure linkage table, and we can just do a WDISP30
1521 reloc instead. */
1522 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1523 return true;
1524 }
1525
1526 s = bfd_get_section_by_name (dynobj, ".plt");
1527 BFD_ASSERT (s != NULL);
1528
1529 /* The first four bit in .plt is reserved. */
1530 if (s->_raw_size == 0)
1531 s->_raw_size = PLT_HEADER_SIZE;
1532
1533 /* If this symbol is not defined in a regular file, and we are
1534 not generating a shared library, then set the symbol to this
1535 location in the .plt. This is required to make function
1536 pointers compare as equal between the normal executable and
1537 the shared library. */
1538 if (! info->shared
1539 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1540 {
1541 h->root.u.def.section = s;
1542 h->root.u.def.value = s->_raw_size;
1543 }
1544
1545 /* To simplify matters later, just store the plt index here. */
1546 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1547
1548 /* Make room for this entry. */
1549 s->_raw_size += PLT_ENTRY_SIZE;
1550
1551 /* We also need to make an entry in the .rela.plt section. */
1552
1553 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1554 BFD_ASSERT (s != NULL);
1555
1556 s->_raw_size += sizeof (Elf64_External_Rela);
1557
1558 /* The procedure linkage table size is bounded by the magnitude
1559 of the offset we can describe in the entry. */
1560 if (s->_raw_size >= (bfd_vma)1 << 32)
1561 {
1562 bfd_set_error (bfd_error_bad_value);
1563 return false;
1564 }
1565
1566 return true;
1567 }
1568
1569 /* If this is a weak symbol, and there is a real definition, the
1570 processor independent code will have arranged for us to see the
1571 real definition first, and we can just use the same value. */
1572 if (h->weakdef != NULL)
1573 {
1574 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1575 || h->weakdef->root.type == bfd_link_hash_defweak);
1576 h->root.u.def.section = h->weakdef->root.u.def.section;
1577 h->root.u.def.value = h->weakdef->root.u.def.value;
1578 return true;
1579 }
1580
1581 /* This is a reference to a symbol defined by a dynamic object which
1582 is not a function. */
1583
1584 /* If we are creating a shared library, we must presume that the
1585 only references to the symbol are via the global offset table.
1586 For such cases we need not do anything here; the relocations will
1587 be handled correctly by relocate_section. */
1588 if (info->shared)
1589 return true;
1590
1591 /* We must allocate the symbol in our .dynbss section, which will
1592 become part of the .bss section of the executable. There will be
1593 an entry for this symbol in the .dynsym section. The dynamic
1594 object will contain position independent code, so all references
1595 from the dynamic object to this symbol will go through the global
1596 offset table. The dynamic linker will use the .dynsym entry to
1597 determine the address it must put in the global offset table, so
1598 both the dynamic object and the regular object will refer to the
1599 same memory location for the variable. */
1600
1601 s = bfd_get_section_by_name (dynobj, ".dynbss");
1602 BFD_ASSERT (s != NULL);
1603
1604 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1605 to copy the initial value out of the dynamic object and into the
1606 runtime process image. We need to remember the offset into the
1607 .rel.bss section we are going to use. */
1608 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1609 {
1610 asection *srel;
1611
1612 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1613 BFD_ASSERT (srel != NULL);
1614 srel->_raw_size += sizeof (Elf64_External_Rela);
1615 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1616 }
1617
1618 /* We need to figure out the alignment required for this symbol. I
1619 have no idea how ELF linkers handle this. 16-bytes is the size
1620 of the largest type that requires hard alignment -- long double. */
1621 power_of_two = bfd_log2 (h->size);
1622 if (power_of_two > 4)
1623 power_of_two = 4;
1624
1625 /* Apply the required alignment. */
1626 s->_raw_size = BFD_ALIGN (s->_raw_size,
1627 (bfd_size_type) (1 << power_of_two));
1628 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1629 {
1630 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1631 return false;
1632 }
1633
1634 /* Define the symbol as being at this point in the section. */
1635 h->root.u.def.section = s;
1636 h->root.u.def.value = s->_raw_size;
1637
1638 /* Increment the section size to make room for the symbol. */
1639 s->_raw_size += h->size;
1640
1641 return true;
1642 }
1643
1644 /* Set the sizes of the dynamic sections. */
1645
1646 static boolean
1647 sparc64_elf_size_dynamic_sections (output_bfd, info)
1648 bfd *output_bfd;
1649 struct bfd_link_info *info;
1650 {
1651 bfd *dynobj;
1652 asection *s;
1653 boolean reltext;
1654 boolean relplt;
1655
1656 dynobj = elf_hash_table (info)->dynobj;
1657 BFD_ASSERT (dynobj != NULL);
1658
1659 if (elf_hash_table (info)->dynamic_sections_created)
1660 {
1661 /* Set the contents of the .interp section to the interpreter. */
1662 if (! info->shared)
1663 {
1664 s = bfd_get_section_by_name (dynobj, ".interp");
1665 BFD_ASSERT (s != NULL);
1666 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1667 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1668 }
1669 }
1670 else
1671 {
1672 /* We may have created entries in the .rela.got section.
1673 However, if we are not creating the dynamic sections, we will
1674 not actually use these entries. Reset the size of .rela.got,
1675 which will cause it to get stripped from the output file
1676 below. */
1677 s = bfd_get_section_by_name (dynobj, ".rela.got");
1678 if (s != NULL)
1679 s->_raw_size = 0;
1680 }
1681
1682 /* The check_relocs and adjust_dynamic_symbol entry points have
1683 determined the sizes of the various dynamic sections. Allocate
1684 memory for them. */
1685 reltext = false;
1686 relplt = false;
1687 for (s = dynobj->sections; s != NULL; s = s->next)
1688 {
1689 const char *name;
1690 boolean strip;
1691
1692 if ((s->flags & SEC_LINKER_CREATED) == 0)
1693 continue;
1694
1695 /* It's OK to base decisions on the section name, because none
1696 of the dynobj section names depend upon the input files. */
1697 name = bfd_get_section_name (dynobj, s);
1698
1699 strip = false;
1700
1701 if (strncmp (name, ".rela", 5) == 0)
1702 {
1703 if (s->_raw_size == 0)
1704 {
1705 /* If we don't need this section, strip it from the
1706 output file. This is to handle .rela.bss and
1707 .rel.plt. We must create it in
1708 create_dynamic_sections, because it must be created
1709 before the linker maps input sections to output
1710 sections. The linker does that before
1711 adjust_dynamic_symbol is called, and it is that
1712 function which decides whether anything needs to go
1713 into these sections. */
1714 strip = true;
1715 }
1716 else
1717 {
1718 const char *outname;
1719 asection *target;
1720
1721 /* If this relocation section applies to a read only
1722 section, then we probably need a DT_TEXTREL entry. */
1723 outname = bfd_get_section_name (output_bfd,
1724 s->output_section);
1725 target = bfd_get_section_by_name (output_bfd, outname + 5);
1726 if (target != NULL
1727 && (target->flags & SEC_READONLY) != 0)
1728 reltext = true;
1729
1730 if (strcmp (name, ".rela.plt") == 0)
1731 relplt = true;
1732
1733 /* We use the reloc_count field as a counter if we need
1734 to copy relocs into the output file. */
1735 s->reloc_count = 0;
1736 }
1737 }
1738 else if (strcmp (name, ".plt") != 0
1739 && strncmp (name, ".got", 4) != 0)
1740 {
1741 /* It's not one of our sections, so don't allocate space. */
1742 continue;
1743 }
1744
1745 if (strip)
1746 {
1747 _bfd_strip_section_from_output (info, s);
1748 continue;
1749 }
1750
1751 /* Allocate memory for the section contents. Zero the memory
1752 for the benefit of .rela.plt, which has 4 unused entries
1753 at the beginning, and we don't want garbage. */
1754 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1755 if (s->contents == NULL && s->_raw_size != 0)
1756 return false;
1757 }
1758
1759 if (elf_hash_table (info)->dynamic_sections_created)
1760 {
1761 /* Add some entries to the .dynamic section. We fill in the
1762 values later, in sparc64_elf_finish_dynamic_sections, but we
1763 must add the entries now so that we get the correct size for
1764 the .dynamic section. The DT_DEBUG entry is filled in by the
1765 dynamic linker and used by the debugger. */
1766 int reg;
1767 struct sparc64_elf_app_reg * app_regs;
1768 struct bfd_strtab_hash *dynstr;
1769 struct elf_link_hash_table *eht = elf_hash_table (info);
1770
1771 if (! info->shared)
1772 {
1773 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
1774 return false;
1775 }
1776
1777 if (relplt)
1778 {
1779 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)
1780 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1781 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1782 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1783 return false;
1784 }
1785
1786 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1787 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1788 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1789 sizeof (Elf64_External_Rela)))
1790 return false;
1791
1792 if (reltext)
1793 {
1794 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1795 return false;
1796 info->flags |= DF_TEXTREL;
1797 }
1798
1799 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1800 entries if needed. */
1801 app_regs = sparc64_elf_hash_table (info)->app_regs;
1802 dynstr = eht->dynstr;
1803
1804 for (reg = 0; reg < 4; reg++)
1805 if (app_regs [reg].name != NULL)
1806 {
1807 struct elf_link_local_dynamic_entry *entry, *e;
1808
1809 if (! bfd_elf64_add_dynamic_entry (info, DT_SPARC_REGISTER, 0))
1810 return false;
1811
1812 entry = (struct elf_link_local_dynamic_entry *)
1813 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1814 if (entry == NULL)
1815 return false;
1816
1817 /* We cheat here a little bit: the symbol will not be local, so we
1818 put it at the end of the dynlocal linked list. We will fix it
1819 later on, as we have to fix other fields anyway. */
1820 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1821 entry->isym.st_size = 0;
1822 if (*app_regs [reg].name != '\0')
1823 entry->isym.st_name
1824 = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1825 else
1826 entry->isym.st_name = 0;
1827 entry->isym.st_other = 0;
1828 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1829 STT_REGISTER);
1830 entry->isym.st_shndx = app_regs [reg].shndx;
1831 entry->next = NULL;
1832 entry->input_bfd = output_bfd;
1833 entry->input_indx = -1;
1834
1835 if (eht->dynlocal == NULL)
1836 eht->dynlocal = entry;
1837 else
1838 {
1839 for (e = eht->dynlocal; e->next; e = e->next)
1840 ;
1841 e->next = entry;
1842 }
1843 eht->dynsymcount++;
1844 }
1845 }
1846
1847 return true;
1848 }
1849 \f
1850 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1851 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1852
1853 static boolean
1854 sparc64_elf_relax_section (abfd, section, link_info, again)
1855 bfd *abfd ATTRIBUTE_UNUSED;
1856 asection *section ATTRIBUTE_UNUSED;
1857 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1858 boolean *again;
1859 {
1860 *again = false;
1861 SET_SEC_DO_RELAX (section);
1862 return true;
1863 }
1864 \f
1865 /* Relocate a SPARC64 ELF section. */
1866
1867 static boolean
1868 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1869 contents, relocs, local_syms, local_sections)
1870 bfd *output_bfd;
1871 struct bfd_link_info *info;
1872 bfd *input_bfd;
1873 asection *input_section;
1874 bfd_byte *contents;
1875 Elf_Internal_Rela *relocs;
1876 Elf_Internal_Sym *local_syms;
1877 asection **local_sections;
1878 {
1879 bfd *dynobj;
1880 Elf_Internal_Shdr *symtab_hdr;
1881 struct elf_link_hash_entry **sym_hashes;
1882 bfd_vma *local_got_offsets;
1883 bfd_vma got_base;
1884 asection *sgot;
1885 asection *splt;
1886 asection *sreloc;
1887 Elf_Internal_Rela *rel;
1888 Elf_Internal_Rela *relend;
1889
1890 dynobj = elf_hash_table (info)->dynobj;
1891 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1892 sym_hashes = elf_sym_hashes (input_bfd);
1893 local_got_offsets = elf_local_got_offsets (input_bfd);
1894
1895 if (elf_hash_table(info)->hgot == NULL)
1896 got_base = 0;
1897 else
1898 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1899
1900 sgot = splt = sreloc = NULL;
1901
1902 rel = relocs;
1903 relend = relocs + input_section->reloc_count;
1904 for (; rel < relend; rel++)
1905 {
1906 int r_type;
1907 reloc_howto_type *howto;
1908 unsigned long r_symndx;
1909 struct elf_link_hash_entry *h;
1910 Elf_Internal_Sym *sym;
1911 asection *sec;
1912 bfd_vma relocation;
1913 bfd_reloc_status_type r;
1914
1915 r_type = ELF64_R_TYPE_ID (rel->r_info);
1916 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1917 {
1918 bfd_set_error (bfd_error_bad_value);
1919 return false;
1920 }
1921 howto = sparc64_elf_howto_table + r_type;
1922
1923 r_symndx = ELF64_R_SYM (rel->r_info);
1924
1925 if (info->relocateable)
1926 {
1927 /* This is a relocateable link. We don't have to change
1928 anything, unless the reloc is against a section symbol,
1929 in which case we have to adjust according to where the
1930 section symbol winds up in the output section. */
1931 if (r_symndx < symtab_hdr->sh_info)
1932 {
1933 sym = local_syms + r_symndx;
1934 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1935 {
1936 sec = local_sections[r_symndx];
1937 rel->r_addend += sec->output_offset + sym->st_value;
1938 }
1939 }
1940
1941 continue;
1942 }
1943
1944 /* This is a final link. */
1945 h = NULL;
1946 sym = NULL;
1947 sec = NULL;
1948 if (r_symndx < symtab_hdr->sh_info)
1949 {
1950 sym = local_syms + r_symndx;
1951 sec = local_sections[r_symndx];
1952 relocation = (sec->output_section->vma
1953 + sec->output_offset
1954 + sym->st_value);
1955 }
1956 else
1957 {
1958 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1959 while (h->root.type == bfd_link_hash_indirect
1960 || h->root.type == bfd_link_hash_warning)
1961 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1962 if (h->root.type == bfd_link_hash_defined
1963 || h->root.type == bfd_link_hash_defweak)
1964 {
1965 boolean skip_it = false;
1966 sec = h->root.u.def.section;
1967
1968 switch (r_type)
1969 {
1970 case R_SPARC_WPLT30:
1971 case R_SPARC_PLT32:
1972 case R_SPARC_HIPLT22:
1973 case R_SPARC_LOPLT10:
1974 case R_SPARC_PCPLT32:
1975 case R_SPARC_PCPLT22:
1976 case R_SPARC_PCPLT10:
1977 case R_SPARC_PLT64:
1978 if (h->plt.offset != (bfd_vma) -1)
1979 skip_it = true;
1980 break;
1981
1982 case R_SPARC_GOT10:
1983 case R_SPARC_GOT13:
1984 case R_SPARC_GOT22:
1985 if (elf_hash_table(info)->dynamic_sections_created
1986 && (!info->shared
1987 || (!info->symbolic && h->dynindx != -1)
1988 || !(h->elf_link_hash_flags
1989 & ELF_LINK_HASH_DEF_REGULAR)))
1990 skip_it = true;
1991 break;
1992
1993 case R_SPARC_PC10:
1994 case R_SPARC_PC22:
1995 case R_SPARC_PC_HH22:
1996 case R_SPARC_PC_HM10:
1997 case R_SPARC_PC_LM22:
1998 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
1999 break;
2000 /* FALLTHRU */
2001
2002 case R_SPARC_8:
2003 case R_SPARC_16:
2004 case R_SPARC_32:
2005 case R_SPARC_DISP8:
2006 case R_SPARC_DISP16:
2007 case R_SPARC_DISP32:
2008 case R_SPARC_WDISP30:
2009 case R_SPARC_WDISP22:
2010 case R_SPARC_HI22:
2011 case R_SPARC_22:
2012 case R_SPARC_13:
2013 case R_SPARC_LO10:
2014 case R_SPARC_UA32:
2015 case R_SPARC_10:
2016 case R_SPARC_11:
2017 case R_SPARC_64:
2018 case R_SPARC_OLO10:
2019 case R_SPARC_HH22:
2020 case R_SPARC_HM10:
2021 case R_SPARC_LM22:
2022 case R_SPARC_WDISP19:
2023 case R_SPARC_WDISP16:
2024 case R_SPARC_7:
2025 case R_SPARC_5:
2026 case R_SPARC_6:
2027 case R_SPARC_DISP64:
2028 case R_SPARC_HIX22:
2029 case R_SPARC_LOX10:
2030 case R_SPARC_H44:
2031 case R_SPARC_M44:
2032 case R_SPARC_L44:
2033 case R_SPARC_UA64:
2034 case R_SPARC_UA16:
2035 if (info->shared
2036 && ((!info->symbolic && h->dynindx != -1)
2037 || !(h->elf_link_hash_flags
2038 & ELF_LINK_HASH_DEF_REGULAR)))
2039 skip_it = true;
2040 break;
2041 }
2042
2043 if (skip_it)
2044 {
2045 /* In these cases, we don't need the relocation
2046 value. We check specially because in some
2047 obscure cases sec->output_section will be NULL. */
2048 relocation = 0;
2049 }
2050 else
2051 {
2052 relocation = (h->root.u.def.value
2053 + sec->output_section->vma
2054 + sec->output_offset);
2055 }
2056 }
2057 else if (h->root.type == bfd_link_hash_undefweak)
2058 relocation = 0;
2059 else if (info->shared && !info->symbolic
2060 && !info->no_undefined
2061 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2062 relocation = 0;
2063 else
2064 {
2065 if (! ((*info->callbacks->undefined_symbol)
2066 (info, h->root.root.string, input_bfd,
2067 input_section, rel->r_offset,
2068 (!info->shared || info->no_undefined
2069 || ELF_ST_VISIBILITY (h->other)))))
2070 return false;
2071
2072 /* To avoid generating warning messages about truncated
2073 relocations, set the relocation's address to be the same as
2074 the start of this section. */
2075
2076 if (input_section->output_section != NULL)
2077 relocation = input_section->output_section->vma;
2078 else
2079 relocation = 0;
2080 }
2081 }
2082
2083 /* When generating a shared object, these relocations are copied
2084 into the output file to be resolved at run time. */
2085 if (info->shared && (input_section->flags & SEC_ALLOC))
2086 {
2087 switch (r_type)
2088 {
2089 case R_SPARC_PC10:
2090 case R_SPARC_PC22:
2091 case R_SPARC_PC_HH22:
2092 case R_SPARC_PC_HM10:
2093 case R_SPARC_PC_LM22:
2094 if (h != NULL
2095 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2096 break;
2097 /* Fall through. */
2098 case R_SPARC_DISP8:
2099 case R_SPARC_DISP16:
2100 case R_SPARC_DISP32:
2101 case R_SPARC_WDISP30:
2102 case R_SPARC_WDISP22:
2103 case R_SPARC_WDISP19:
2104 case R_SPARC_WDISP16:
2105 case R_SPARC_DISP64:
2106 if (h == NULL)
2107 break;
2108 /* Fall through. */
2109 case R_SPARC_8:
2110 case R_SPARC_16:
2111 case R_SPARC_32:
2112 case R_SPARC_HI22:
2113 case R_SPARC_22:
2114 case R_SPARC_13:
2115 case R_SPARC_LO10:
2116 case R_SPARC_UA32:
2117 case R_SPARC_10:
2118 case R_SPARC_11:
2119 case R_SPARC_64:
2120 case R_SPARC_OLO10:
2121 case R_SPARC_HH22:
2122 case R_SPARC_HM10:
2123 case R_SPARC_LM22:
2124 case R_SPARC_7:
2125 case R_SPARC_5:
2126 case R_SPARC_6:
2127 case R_SPARC_HIX22:
2128 case R_SPARC_LOX10:
2129 case R_SPARC_H44:
2130 case R_SPARC_M44:
2131 case R_SPARC_L44:
2132 case R_SPARC_UA64:
2133 case R_SPARC_UA16:
2134 {
2135 Elf_Internal_Rela outrel;
2136 boolean skip;
2137
2138 if (sreloc == NULL)
2139 {
2140 const char *name =
2141 (bfd_elf_string_from_elf_section
2142 (input_bfd,
2143 elf_elfheader (input_bfd)->e_shstrndx,
2144 elf_section_data (input_section)->rel_hdr.sh_name));
2145
2146 if (name == NULL)
2147 return false;
2148
2149 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2150 && strcmp (bfd_get_section_name(input_bfd,
2151 input_section),
2152 name + 5) == 0);
2153
2154 sreloc = bfd_get_section_by_name (dynobj, name);
2155 BFD_ASSERT (sreloc != NULL);
2156 }
2157
2158 skip = false;
2159
2160 if (elf_section_data (input_section)->stab_info == NULL)
2161 outrel.r_offset = rel->r_offset;
2162 else
2163 {
2164 bfd_vma off;
2165
2166 off = (_bfd_stab_section_offset
2167 (output_bfd, &elf_hash_table (info)->stab_info,
2168 input_section,
2169 &elf_section_data (input_section)->stab_info,
2170 rel->r_offset));
2171 if (off == MINUS_ONE)
2172 skip = true;
2173 outrel.r_offset = off;
2174 }
2175
2176 outrel.r_offset += (input_section->output_section->vma
2177 + input_section->output_offset);
2178
2179 /* Optimize unaligned reloc usage now that we know where
2180 it finally resides. */
2181 switch (r_type)
2182 {
2183 case R_SPARC_16:
2184 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2185 break;
2186 case R_SPARC_UA16:
2187 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2188 break;
2189 case R_SPARC_32:
2190 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2191 break;
2192 case R_SPARC_UA32:
2193 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2194 break;
2195 case R_SPARC_64:
2196 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2197 break;
2198 case R_SPARC_UA64:
2199 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2200 break;
2201 }
2202
2203 if (skip)
2204 memset (&outrel, 0, sizeof outrel);
2205 /* h->dynindx may be -1 if the symbol was marked to
2206 become local. */
2207 else if (h != NULL
2208 && ((! info->symbolic && h->dynindx != -1)
2209 || (h->elf_link_hash_flags
2210 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2211 {
2212 BFD_ASSERT (h->dynindx != -1);
2213 outrel.r_info
2214 = ELF64_R_INFO (h->dynindx,
2215 ELF64_R_TYPE_INFO (
2216 ELF64_R_TYPE_DATA (rel->r_info),
2217 r_type));
2218 outrel.r_addend = rel->r_addend;
2219 }
2220 else
2221 {
2222 if (r_type == R_SPARC_64)
2223 {
2224 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2225 outrel.r_addend = relocation + rel->r_addend;
2226 }
2227 else
2228 {
2229 long indx;
2230
2231 if (h == NULL)
2232 sec = local_sections[r_symndx];
2233 else
2234 {
2235 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2236 || (h->root.type
2237 == bfd_link_hash_defweak));
2238 sec = h->root.u.def.section;
2239 }
2240 if (sec != NULL && bfd_is_abs_section (sec))
2241 indx = 0;
2242 else if (sec == NULL || sec->owner == NULL)
2243 {
2244 bfd_set_error (bfd_error_bad_value);
2245 return false;
2246 }
2247 else
2248 {
2249 asection *osec;
2250
2251 osec = sec->output_section;
2252 indx = elf_section_data (osec)->dynindx;
2253
2254 /* FIXME: we really should be able to link non-pic
2255 shared libraries. */
2256 if (indx == 0)
2257 {
2258 BFD_FAIL ();
2259 (*_bfd_error_handler)
2260 (_("%s: probably compiled without -fPIC?"),
2261 bfd_get_filename (input_bfd));
2262 bfd_set_error (bfd_error_bad_value);
2263 return false;
2264 }
2265 }
2266
2267 outrel.r_info
2268 = ELF64_R_INFO (indx,
2269 ELF64_R_TYPE_INFO (
2270 ELF64_R_TYPE_DATA (rel->r_info),
2271 r_type));
2272 outrel.r_addend = relocation + rel->r_addend;
2273 }
2274 }
2275
2276 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2277 (((Elf64_External_Rela *)
2278 sreloc->contents)
2279 + sreloc->reloc_count));
2280 ++sreloc->reloc_count;
2281
2282 /* This reloc will be computed at runtime, so there's no
2283 need to do anything now, unless this is a RELATIVE
2284 reloc in an unallocated section. */
2285 if (skip
2286 || (input_section->flags & SEC_ALLOC) != 0
2287 || ELF64_R_TYPE_ID (outrel.r_info) != R_SPARC_RELATIVE)
2288 continue;
2289 }
2290 break;
2291 }
2292 }
2293
2294 switch (r_type)
2295 {
2296 case R_SPARC_GOT10:
2297 case R_SPARC_GOT13:
2298 case R_SPARC_GOT22:
2299 /* Relocation is to the entry for this symbol in the global
2300 offset table. */
2301 if (sgot == NULL)
2302 {
2303 sgot = bfd_get_section_by_name (dynobj, ".got");
2304 BFD_ASSERT (sgot != NULL);
2305 }
2306
2307 if (h != NULL)
2308 {
2309 bfd_vma off = h->got.offset;
2310 BFD_ASSERT (off != (bfd_vma) -1);
2311
2312 if (! elf_hash_table (info)->dynamic_sections_created
2313 || (info->shared
2314 && (info->symbolic || h->dynindx == -1)
2315 && (h->elf_link_hash_flags
2316 & ELF_LINK_HASH_DEF_REGULAR)))
2317 {
2318 /* This is actually a static link, or it is a -Bsymbolic
2319 link and the symbol is defined locally, or the symbol
2320 was forced to be local because of a version file. We
2321 must initialize this entry in the global offset table.
2322 Since the offset must always be a multiple of 8, we
2323 use the least significant bit to record whether we
2324 have initialized it already.
2325
2326 When doing a dynamic link, we create a .rela.got
2327 relocation entry to initialize the value. This is
2328 done in the finish_dynamic_symbol routine. */
2329
2330 if ((off & 1) != 0)
2331 off &= ~1;
2332 else
2333 {
2334 bfd_put_64 (output_bfd, relocation,
2335 sgot->contents + off);
2336 h->got.offset |= 1;
2337 }
2338 }
2339 relocation = sgot->output_offset + off - got_base;
2340 }
2341 else
2342 {
2343 bfd_vma off;
2344
2345 BFD_ASSERT (local_got_offsets != NULL);
2346 off = local_got_offsets[r_symndx];
2347 BFD_ASSERT (off != (bfd_vma) -1);
2348
2349 /* The offset must always be a multiple of 8. We use
2350 the least significant bit to record whether we have
2351 already processed this entry. */
2352 if ((off & 1) != 0)
2353 off &= ~1;
2354 else
2355 {
2356 local_got_offsets[r_symndx] |= 1;
2357
2358 if (info->shared)
2359 {
2360 asection *srelgot;
2361 Elf_Internal_Rela outrel;
2362
2363 /* The Solaris 2.7 64-bit linker adds the contents
2364 of the location to the value of the reloc.
2365 Note this is different behaviour to the
2366 32-bit linker, which both adds the contents
2367 and ignores the addend. So clear the location. */
2368 bfd_put_64 (output_bfd, 0, sgot->contents + off);
2369
2370 /* We need to generate a R_SPARC_RELATIVE reloc
2371 for the dynamic linker. */
2372 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2373 BFD_ASSERT (srelgot != NULL);
2374
2375 outrel.r_offset = (sgot->output_section->vma
2376 + sgot->output_offset
2377 + off);
2378 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2379 outrel.r_addend = relocation;
2380 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2381 (((Elf64_External_Rela *)
2382 srelgot->contents)
2383 + srelgot->reloc_count));
2384 ++srelgot->reloc_count;
2385 }
2386 else
2387 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2388 }
2389 relocation = sgot->output_offset + off - got_base;
2390 }
2391 goto do_default;
2392
2393 case R_SPARC_WPLT30:
2394 case R_SPARC_PLT32:
2395 case R_SPARC_HIPLT22:
2396 case R_SPARC_LOPLT10:
2397 case R_SPARC_PCPLT32:
2398 case R_SPARC_PCPLT22:
2399 case R_SPARC_PCPLT10:
2400 case R_SPARC_PLT64:
2401 /* Relocation is to the entry for this symbol in the
2402 procedure linkage table. */
2403 BFD_ASSERT (h != NULL);
2404
2405 if (h->plt.offset == (bfd_vma) -1)
2406 {
2407 /* We didn't make a PLT entry for this symbol. This
2408 happens when statically linking PIC code, or when
2409 using -Bsymbolic. */
2410 goto do_default;
2411 }
2412
2413 if (splt == NULL)
2414 {
2415 splt = bfd_get_section_by_name (dynobj, ".plt");
2416 BFD_ASSERT (splt != NULL);
2417 }
2418
2419 relocation = (splt->output_section->vma
2420 + splt->output_offset
2421 + sparc64_elf_plt_entry_offset (h->plt.offset));
2422 if (r_type == R_SPARC_WPLT30)
2423 goto do_wplt30;
2424 goto do_default;
2425
2426 case R_SPARC_OLO10:
2427 {
2428 bfd_vma x;
2429
2430 relocation += rel->r_addend;
2431 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2432
2433 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2434 x = (x & ~0x1fff) | (relocation & 0x1fff);
2435 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2436
2437 r = bfd_check_overflow (howto->complain_on_overflow,
2438 howto->bitsize, howto->rightshift,
2439 bfd_arch_bits_per_address (input_bfd),
2440 relocation);
2441 }
2442 break;
2443
2444 case R_SPARC_WDISP16:
2445 {
2446 bfd_vma x;
2447
2448 relocation += rel->r_addend;
2449 /* Adjust for pc-relative-ness. */
2450 relocation -= (input_section->output_section->vma
2451 + input_section->output_offset);
2452 relocation -= rel->r_offset;
2453
2454 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2455 x = (x & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
2456 | ((relocation >> 2) & 0x3fff));
2457 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2458
2459 r = bfd_check_overflow (howto->complain_on_overflow,
2460 howto->bitsize, howto->rightshift,
2461 bfd_arch_bits_per_address (input_bfd),
2462 relocation);
2463 }
2464 break;
2465
2466 case R_SPARC_HIX22:
2467 {
2468 bfd_vma x;
2469
2470 relocation += rel->r_addend;
2471 relocation = relocation ^ MINUS_ONE;
2472
2473 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2474 x = (x & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
2475 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2476
2477 r = bfd_check_overflow (howto->complain_on_overflow,
2478 howto->bitsize, howto->rightshift,
2479 bfd_arch_bits_per_address (input_bfd),
2480 relocation);
2481 }
2482 break;
2483
2484 case R_SPARC_LOX10:
2485 {
2486 bfd_vma x;
2487
2488 relocation += rel->r_addend;
2489 relocation = (relocation & 0x3ff) | 0x1c00;
2490
2491 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2492 x = (x & ~0x1fff) | relocation;
2493 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2494
2495 r = bfd_reloc_ok;
2496 }
2497 break;
2498
2499 case R_SPARC_WDISP30:
2500 do_wplt30:
2501 if (SEC_DO_RELAX (input_section)
2502 && rel->r_offset + 4 < input_section->_raw_size)
2503 {
2504 #define G0 0
2505 #define O7 15
2506 #define XCC (2 << 20)
2507 #define COND(x) (((x)&0xf)<<25)
2508 #define CONDA COND(0x8)
2509 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2510 #define INSN_BA (F2(0,2) | CONDA)
2511 #define INSN_OR F3(2, 0x2, 0)
2512 #define INSN_NOP F2(0,4)
2513
2514 bfd_vma x, y;
2515
2516 /* If the instruction is a call with either:
2517 restore
2518 arithmetic instruction with rd == %o7
2519 where rs1 != %o7 and rs2 if it is register != %o7
2520 then we can optimize if the call destination is near
2521 by changing the call into a branch always. */
2522 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2523 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2524 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2525 {
2526 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2527 || ((y & OP3(0x28)) == 0 /* arithmetic */
2528 && (y & RD(~0)) == RD(O7)))
2529 && (y & RS1(~0)) != RS1(O7)
2530 && ((y & F3I(~0))
2531 || (y & RS2(~0)) != RS2(O7)))
2532 {
2533 bfd_vma reloc;
2534
2535 reloc = relocation + rel->r_addend - rel->r_offset;
2536 reloc -= (input_section->output_section->vma
2537 + input_section->output_offset);
2538 if (reloc & 3)
2539 goto do_default;
2540
2541 /* Ensure the branch fits into simm22. */
2542 if ((reloc & ~(bfd_vma)0x7fffff)
2543 && ((reloc | 0x7fffff) != MINUS_ONE))
2544 goto do_default;
2545 reloc >>= 2;
2546
2547 /* Check whether it fits into simm19. */
2548 if ((reloc & 0x3c0000) == 0
2549 || (reloc & 0x3c0000) == 0x3c0000)
2550 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2551 else
2552 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2553 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2554 r = bfd_reloc_ok;
2555 if (rel->r_offset >= 4
2556 && (y & (0xffffffff ^ RS1(~0)))
2557 == (INSN_OR | RD(O7) | RS2(G0)))
2558 {
2559 bfd_vma z;
2560 unsigned int reg;
2561
2562 z = bfd_get_32 (input_bfd,
2563 contents + rel->r_offset - 4);
2564 if ((z & (0xffffffff ^ RD(~0)))
2565 != (INSN_OR | RS1(O7) | RS2(G0)))
2566 break;
2567
2568 /* The sequence was
2569 or %o7, %g0, %rN
2570 call foo
2571 or %rN, %g0, %o7
2572
2573 If call foo was replaced with ba, replace
2574 or %rN, %g0, %o7 with nop. */
2575
2576 reg = (y & RS1(~0)) >> 14;
2577 if (reg != ((z & RD(~0)) >> 25)
2578 || reg == G0 || reg == O7)
2579 break;
2580
2581 bfd_put_32 (input_bfd, INSN_NOP,
2582 contents + rel->r_offset + 4);
2583 }
2584 break;
2585 }
2586 }
2587 }
2588 /* FALLTHROUGH */
2589
2590 default:
2591 do_default:
2592 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2593 contents, rel->r_offset,
2594 relocation, rel->r_addend);
2595 break;
2596 }
2597
2598 switch (r)
2599 {
2600 case bfd_reloc_ok:
2601 break;
2602
2603 default:
2604 case bfd_reloc_outofrange:
2605 abort ();
2606
2607 case bfd_reloc_overflow:
2608 {
2609 const char *name;
2610
2611 if (h != NULL)
2612 {
2613 if (h->root.type == bfd_link_hash_undefweak
2614 && howto->pc_relative)
2615 {
2616 /* Assume this is a call protected by other code that
2617 detect the symbol is undefined. If this is the case,
2618 we can safely ignore the overflow. If not, the
2619 program is hosed anyway, and a little warning isn't
2620 going to help. */
2621 break;
2622 }
2623
2624 name = h->root.root.string;
2625 }
2626 else
2627 {
2628 name = (bfd_elf_string_from_elf_section
2629 (input_bfd,
2630 symtab_hdr->sh_link,
2631 sym->st_name));
2632 if (name == NULL)
2633 return false;
2634 if (*name == '\0')
2635 name = bfd_section_name (input_bfd, sec);
2636 }
2637 if (! ((*info->callbacks->reloc_overflow)
2638 (info, name, howto->name, (bfd_vma) 0,
2639 input_bfd, input_section, rel->r_offset)))
2640 return false;
2641 }
2642 break;
2643 }
2644 }
2645
2646 return true;
2647 }
2648
2649 /* Finish up dynamic symbol handling. We set the contents of various
2650 dynamic sections here. */
2651
2652 static boolean
2653 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2654 bfd *output_bfd;
2655 struct bfd_link_info *info;
2656 struct elf_link_hash_entry *h;
2657 Elf_Internal_Sym *sym;
2658 {
2659 bfd *dynobj;
2660
2661 dynobj = elf_hash_table (info)->dynobj;
2662
2663 if (h->plt.offset != (bfd_vma) -1)
2664 {
2665 asection *splt;
2666 asection *srela;
2667 Elf_Internal_Rela rela;
2668
2669 /* This symbol has an entry in the PLT. Set it up. */
2670
2671 BFD_ASSERT (h->dynindx != -1);
2672
2673 splt = bfd_get_section_by_name (dynobj, ".plt");
2674 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2675 BFD_ASSERT (splt != NULL && srela != NULL);
2676
2677 /* Fill in the entry in the .rela.plt section. */
2678
2679 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2680 {
2681 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2682 rela.r_addend = 0;
2683 }
2684 else
2685 {
2686 int max = splt->_raw_size / PLT_ENTRY_SIZE;
2687 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2688 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2689 -(splt->output_section->vma + splt->output_offset);
2690 }
2691 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2692 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2693
2694 /* Adjust for the first 4 reserved elements in the .plt section
2695 when setting the offset in the .rela.plt section.
2696 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2697 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2698
2699 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2700 ((Elf64_External_Rela *) srela->contents
2701 + (h->plt.offset - 4)));
2702
2703 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2704 {
2705 /* Mark the symbol as undefined, rather than as defined in
2706 the .plt section. Leave the value alone. */
2707 sym->st_shndx = SHN_UNDEF;
2708 }
2709 }
2710
2711 if (h->got.offset != (bfd_vma) -1)
2712 {
2713 asection *sgot;
2714 asection *srela;
2715 Elf_Internal_Rela rela;
2716
2717 /* This symbol has an entry in the GOT. Set it up. */
2718
2719 sgot = bfd_get_section_by_name (dynobj, ".got");
2720 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2721 BFD_ASSERT (sgot != NULL && srela != NULL);
2722
2723 rela.r_offset = (sgot->output_section->vma
2724 + sgot->output_offset
2725 + (h->got.offset &~ 1));
2726
2727 /* If this is a -Bsymbolic link, and the symbol is defined
2728 locally, we just want to emit a RELATIVE reloc. Likewise if
2729 the symbol was forced to be local because of a version file.
2730 The entry in the global offset table will already have been
2731 initialized in the relocate_section function. */
2732 if (info->shared
2733 && (info->symbolic || h->dynindx == -1)
2734 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2735 {
2736 asection *sec = h->root.u.def.section;
2737 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2738 rela.r_addend = (h->root.u.def.value
2739 + sec->output_section->vma
2740 + sec->output_offset);
2741 }
2742 else
2743 {
2744 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2745 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2746 rela.r_addend = 0;
2747 }
2748
2749 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2750 ((Elf64_External_Rela *) srela->contents
2751 + srela->reloc_count));
2752 ++srela->reloc_count;
2753 }
2754
2755 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2756 {
2757 asection *s;
2758 Elf_Internal_Rela rela;
2759
2760 /* This symbols needs a copy reloc. Set it up. */
2761
2762 BFD_ASSERT (h->dynindx != -1);
2763
2764 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2765 ".rela.bss");
2766 BFD_ASSERT (s != NULL);
2767
2768 rela.r_offset = (h->root.u.def.value
2769 + h->root.u.def.section->output_section->vma
2770 + h->root.u.def.section->output_offset);
2771 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2772 rela.r_addend = 0;
2773 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2774 ((Elf64_External_Rela *) s->contents
2775 + s->reloc_count));
2776 ++s->reloc_count;
2777 }
2778
2779 /* Mark some specially defined symbols as absolute. */
2780 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2781 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2782 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2783 sym->st_shndx = SHN_ABS;
2784
2785 return true;
2786 }
2787
2788 /* Finish up the dynamic sections. */
2789
2790 static boolean
2791 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2792 bfd *output_bfd;
2793 struct bfd_link_info *info;
2794 {
2795 bfd *dynobj;
2796 int stt_regidx = -1;
2797 asection *sdyn;
2798 asection *sgot;
2799
2800 dynobj = elf_hash_table (info)->dynobj;
2801
2802 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2803
2804 if (elf_hash_table (info)->dynamic_sections_created)
2805 {
2806 asection *splt;
2807 Elf64_External_Dyn *dyncon, *dynconend;
2808
2809 splt = bfd_get_section_by_name (dynobj, ".plt");
2810 BFD_ASSERT (splt != NULL && sdyn != NULL);
2811
2812 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2813 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2814 for (; dyncon < dynconend; dyncon++)
2815 {
2816 Elf_Internal_Dyn dyn;
2817 const char *name;
2818 boolean size;
2819
2820 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2821
2822 switch (dyn.d_tag)
2823 {
2824 case DT_PLTGOT: name = ".plt"; size = false; break;
2825 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2826 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2827 case DT_SPARC_REGISTER:
2828 if (stt_regidx == -1)
2829 {
2830 stt_regidx =
2831 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2832 if (stt_regidx == -1)
2833 return false;
2834 }
2835 dyn.d_un.d_val = stt_regidx++;
2836 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2837 /* fallthrough */
2838 default: name = NULL; size = false; break;
2839 }
2840
2841 if (name != NULL)
2842 {
2843 asection *s;
2844
2845 s = bfd_get_section_by_name (output_bfd, name);
2846 if (s == NULL)
2847 dyn.d_un.d_val = 0;
2848 else
2849 {
2850 if (! size)
2851 dyn.d_un.d_ptr = s->vma;
2852 else
2853 {
2854 if (s->_cooked_size != 0)
2855 dyn.d_un.d_val = s->_cooked_size;
2856 else
2857 dyn.d_un.d_val = s->_raw_size;
2858 }
2859 }
2860 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2861 }
2862 }
2863
2864 /* Initialize the contents of the .plt section. */
2865 if (splt->_raw_size > 0)
2866 {
2867 sparc64_elf_build_plt(output_bfd, splt->contents,
2868 splt->_raw_size / PLT_ENTRY_SIZE);
2869 }
2870
2871 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2872 PLT_ENTRY_SIZE;
2873 }
2874
2875 /* Set the first entry in the global offset table to the address of
2876 the dynamic section. */
2877 sgot = bfd_get_section_by_name (dynobj, ".got");
2878 BFD_ASSERT (sgot != NULL);
2879 if (sgot->_raw_size > 0)
2880 {
2881 if (sdyn == NULL)
2882 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2883 else
2884 bfd_put_64 (output_bfd,
2885 sdyn->output_section->vma + sdyn->output_offset,
2886 sgot->contents);
2887 }
2888
2889 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2890
2891 return true;
2892 }
2893 \f
2894 /* Functions for dealing with the e_flags field. */
2895
2896 /* Merge backend specific data from an object file to the output
2897 object file when linking. */
2898
2899 static boolean
2900 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2901 bfd *ibfd;
2902 bfd *obfd;
2903 {
2904 boolean error;
2905 flagword new_flags, old_flags;
2906 int new_mm, old_mm;
2907
2908 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2909 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2910 return true;
2911
2912 new_flags = elf_elfheader (ibfd)->e_flags;
2913 old_flags = elf_elfheader (obfd)->e_flags;
2914
2915 if (!elf_flags_init (obfd)) /* First call, no flags set */
2916 {
2917 elf_flags_init (obfd) = true;
2918 elf_elfheader (obfd)->e_flags = new_flags;
2919 }
2920
2921 else if (new_flags == old_flags) /* Compatible flags are ok */
2922 ;
2923
2924 else /* Incompatible flags */
2925 {
2926 error = false;
2927
2928 #define EF_SPARC_ISA_EXTENSIONS \
2929 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2930
2931 if ((ibfd->flags & DYNAMIC) != 0)
2932 {
2933 /* We don't want dynamic objects memory ordering and
2934 architecture to have any role. That's what dynamic linker
2935 should do. */
2936 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2937 new_flags |= (old_flags
2938 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2939 }
2940 else
2941 {
2942 /* Choose the highest architecture requirements. */
2943 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2944 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2945 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
2946 && (old_flags & EF_SPARC_HAL_R1))
2947 {
2948 error = true;
2949 (*_bfd_error_handler)
2950 (_("%s: linking UltraSPARC specific with HAL specific code"),
2951 bfd_get_filename (ibfd));
2952 }
2953 /* Choose the most restrictive memory ordering. */
2954 old_mm = (old_flags & EF_SPARCV9_MM);
2955 new_mm = (new_flags & EF_SPARCV9_MM);
2956 old_flags &= ~EF_SPARCV9_MM;
2957 new_flags &= ~EF_SPARCV9_MM;
2958 if (new_mm < old_mm)
2959 old_mm = new_mm;
2960 old_flags |= old_mm;
2961 new_flags |= old_mm;
2962 }
2963
2964 /* Warn about any other mismatches */
2965 if (new_flags != old_flags)
2966 {
2967 error = true;
2968 (*_bfd_error_handler)
2969 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2970 bfd_get_filename (ibfd), (long)new_flags, (long)old_flags);
2971 }
2972
2973 elf_elfheader (obfd)->e_flags = old_flags;
2974
2975 if (error)
2976 {
2977 bfd_set_error (bfd_error_bad_value);
2978 return false;
2979 }
2980 }
2981 return true;
2982 }
2983 \f
2984 /* Print a STT_REGISTER symbol to file FILE. */
2985
2986 static const char *
2987 sparc64_elf_print_symbol_all (abfd, filep, symbol)
2988 bfd *abfd ATTRIBUTE_UNUSED;
2989 PTR filep;
2990 asymbol *symbol;
2991 {
2992 FILE *file = (FILE *) filep;
2993 int reg, type;
2994
2995 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
2996 != STT_REGISTER)
2997 return NULL;
2998
2999 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3000 type = symbol->flags;
3001 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3002 ((type & BSF_LOCAL)
3003 ? (type & BSF_GLOBAL) ? '!' : 'l'
3004 : (type & BSF_GLOBAL) ? 'g' : ' '),
3005 (type & BSF_WEAK) ? 'w' : ' ');
3006 if (symbol->name == NULL || symbol->name [0] == '\0')
3007 return "#scratch";
3008 else
3009 return symbol->name;
3010 }
3011 \f
3012 /* Set the right machine number for a SPARC64 ELF file. */
3013
3014 static boolean
3015 sparc64_elf_object_p (abfd)
3016 bfd *abfd;
3017 {
3018 unsigned long mach = bfd_mach_sparc_v9;
3019
3020 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3021 mach = bfd_mach_sparc_v9b;
3022 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3023 mach = bfd_mach_sparc_v9a;
3024 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3025 }
3026
3027 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3028 standard ELF, because R_SPARC_OLO10 has secondary addend in
3029 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3030 relocation handling routines. */
3031
3032 const struct elf_size_info sparc64_elf_size_info =
3033 {
3034 sizeof (Elf64_External_Ehdr),
3035 sizeof (Elf64_External_Phdr),
3036 sizeof (Elf64_External_Shdr),
3037 sizeof (Elf64_External_Rel),
3038 sizeof (Elf64_External_Rela),
3039 sizeof (Elf64_External_Sym),
3040 sizeof (Elf64_External_Dyn),
3041 sizeof (Elf_External_Note),
3042 4, /* hash-table entry size */
3043 /* internal relocations per external relocations.
3044 For link purposes we use just 1 internal per
3045 1 external, for assembly and slurp symbol table
3046 we use 2. */
3047 1,
3048 64, /* arch_size */
3049 8, /* file_align */
3050 ELFCLASS64,
3051 EV_CURRENT,
3052 bfd_elf64_write_out_phdrs,
3053 bfd_elf64_write_shdrs_and_ehdr,
3054 sparc64_elf_write_relocs,
3055 bfd_elf64_swap_symbol_out,
3056 sparc64_elf_slurp_reloc_table,
3057 bfd_elf64_slurp_symbol_table,
3058 bfd_elf64_swap_dyn_in,
3059 bfd_elf64_swap_dyn_out,
3060 NULL,
3061 NULL,
3062 NULL,
3063 NULL
3064 };
3065
3066 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3067 #define TARGET_BIG_NAME "elf64-sparc"
3068 #define ELF_ARCH bfd_arch_sparc
3069 #define ELF_MAXPAGESIZE 0x100000
3070
3071 /* This is the official ABI value. */
3072 #define ELF_MACHINE_CODE EM_SPARCV9
3073
3074 /* This is the value that we used before the ABI was released. */
3075 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3076
3077 #define bfd_elf64_bfd_link_hash_table_create \
3078 sparc64_elf_bfd_link_hash_table_create
3079
3080 #define elf_info_to_howto \
3081 sparc64_elf_info_to_howto
3082 #define bfd_elf64_get_reloc_upper_bound \
3083 sparc64_elf_get_reloc_upper_bound
3084 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3085 sparc64_elf_get_dynamic_reloc_upper_bound
3086 #define bfd_elf64_canonicalize_dynamic_reloc \
3087 sparc64_elf_canonicalize_dynamic_reloc
3088 #define bfd_elf64_bfd_reloc_type_lookup \
3089 sparc64_elf_reloc_type_lookup
3090 #define bfd_elf64_bfd_relax_section \
3091 sparc64_elf_relax_section
3092
3093 #define elf_backend_create_dynamic_sections \
3094 _bfd_elf_create_dynamic_sections
3095 #define elf_backend_add_symbol_hook \
3096 sparc64_elf_add_symbol_hook
3097 #define elf_backend_get_symbol_type \
3098 sparc64_elf_get_symbol_type
3099 #define elf_backend_symbol_processing \
3100 sparc64_elf_symbol_processing
3101 #define elf_backend_check_relocs \
3102 sparc64_elf_check_relocs
3103 #define elf_backend_adjust_dynamic_symbol \
3104 sparc64_elf_adjust_dynamic_symbol
3105 #define elf_backend_size_dynamic_sections \
3106 sparc64_elf_size_dynamic_sections
3107 #define elf_backend_relocate_section \
3108 sparc64_elf_relocate_section
3109 #define elf_backend_finish_dynamic_symbol \
3110 sparc64_elf_finish_dynamic_symbol
3111 #define elf_backend_finish_dynamic_sections \
3112 sparc64_elf_finish_dynamic_sections
3113 #define elf_backend_print_symbol_all \
3114 sparc64_elf_print_symbol_all
3115 #define elf_backend_output_arch_syms \
3116 sparc64_elf_output_arch_syms
3117
3118 #define bfd_elf64_bfd_merge_private_bfd_data \
3119 sparc64_elf_merge_private_bfd_data
3120
3121 #define elf_backend_size_info \
3122 sparc64_elf_size_info
3123 #define elf_backend_object_p \
3124 sparc64_elf_object_p
3125
3126 #define elf_backend_want_got_plt 0
3127 #define elf_backend_plt_readonly 0
3128 #define elf_backend_want_plt_sym 1
3129
3130 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3131 #define elf_backend_plt_alignment 8
3132
3133 #define elf_backend_got_header_size 8
3134 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3135
3136 #include "elf64-target.h"
This page took 0.110742 seconds and 4 git commands to generate.