7dd51f76172e6dade17e210b12e6d36f04740c8e
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50 PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
53
54 static boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
69 static void sparc64_elf_symbol_processing
70 PARAMS ((bfd *, asymbol *));
71
72 static boolean sparc64_elf_merge_private_bfd_data
73 PARAMS ((bfd *, bfd *));
74
75 static boolean sparc64_elf_fake_sections
76 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
77
78 static const char *sparc64_elf_print_symbol_all
79 PARAMS ((bfd *, PTR, asymbol *));
80 static boolean sparc64_elf_relax_section
81 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
82 static boolean sparc64_elf_relocate_section
83 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
84 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
85 static boolean sparc64_elf_finish_dynamic_symbol
86 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
87 Elf_Internal_Sym *));
88 static boolean sparc64_elf_finish_dynamic_sections
89 PARAMS ((bfd *, struct bfd_link_info *));
90 static boolean sparc64_elf_object_p PARAMS ((bfd *));
91 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
92 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
93 static boolean sparc64_elf_slurp_one_reloc_table
94 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
95 static boolean sparc64_elf_slurp_reloc_table
96 PARAMS ((bfd *, asection *, asymbol **, boolean));
97 static long sparc64_elf_canonicalize_dynamic_reloc
98 PARAMS ((bfd *, arelent **, asymbol **));
99 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
100 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
101 PARAMS ((const Elf_Internal_Rela *));
102 \f
103 /* The relocation "howto" table. */
104
105 static bfd_reloc_status_type sparc_elf_notsup_reloc
106 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
107 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
108 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
109 static bfd_reloc_status_type sparc_elf_hix22_reloc
110 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
111 static bfd_reloc_status_type sparc_elf_lox10_reloc
112 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
113
114 static reloc_howto_type sparc64_elf_howto_table[] =
115 {
116 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
117 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
118 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
119 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
120 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
121 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
122 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0xffffffff,true),
123 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
124 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
125 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
126 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
127 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
128 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
129 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
130 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
131 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
132 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
133 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
134 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
135 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
136 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
137 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
138 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
139 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
140 #ifndef SPARC64_OLD_RELOCS
141 HOWTO(R_SPARC_PLT32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", false,0,0xffffffff,true),
142 /* These aren't implemented yet. */
143 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
144 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
145 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
146 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
147 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
148 #endif
149 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
150 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
151 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
152 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
153 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
154 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
155 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
156 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
157 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
158 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
159 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
160 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
161 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
162 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
163 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
164 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
165 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
166 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, true),
167 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
168 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
169 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
170 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
171 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
172 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
173 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
174 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
175 };
176
177 struct elf_reloc_map {
178 bfd_reloc_code_real_type bfd_reloc_val;
179 unsigned char elf_reloc_val;
180 };
181
182 static const struct elf_reloc_map sparc_reloc_map[] =
183 {
184 { BFD_RELOC_NONE, R_SPARC_NONE, },
185 { BFD_RELOC_16, R_SPARC_16, },
186 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
187 { BFD_RELOC_8, R_SPARC_8 },
188 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
189 { BFD_RELOC_CTOR, R_SPARC_64 },
190 { BFD_RELOC_32, R_SPARC_32 },
191 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
192 { BFD_RELOC_HI22, R_SPARC_HI22 },
193 { BFD_RELOC_LO10, R_SPARC_LO10, },
194 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
195 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
196 { BFD_RELOC_SPARC22, R_SPARC_22 },
197 { BFD_RELOC_SPARC13, R_SPARC_13 },
198 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
199 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
200 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
201 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
202 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
203 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
204 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
205 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
206 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
207 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
208 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
209 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
210 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
211 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
212 { BFD_RELOC_SPARC_10, R_SPARC_10 },
213 { BFD_RELOC_SPARC_11, R_SPARC_11 },
214 { BFD_RELOC_SPARC_64, R_SPARC_64 },
215 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
216 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
217 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
218 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
219 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
220 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
221 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
222 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
223 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
224 { BFD_RELOC_SPARC_7, R_SPARC_7 },
225 { BFD_RELOC_SPARC_5, R_SPARC_5 },
226 { BFD_RELOC_SPARC_6, R_SPARC_6 },
227 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
228 #ifndef SPARC64_OLD_RELOCS
229 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
230 #endif
231 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
232 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
233 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
234 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
235 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
236 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
237 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
238 };
239
240 static reloc_howto_type *
241 sparc64_elf_reloc_type_lookup (abfd, code)
242 bfd *abfd ATTRIBUTE_UNUSED;
243 bfd_reloc_code_real_type code;
244 {
245 unsigned int i;
246 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
247 {
248 if (sparc_reloc_map[i].bfd_reloc_val == code)
249 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
250 }
251 return 0;
252 }
253
254 static void
255 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
256 bfd *abfd ATTRIBUTE_UNUSED;
257 arelent *cache_ptr;
258 Elf64_Internal_Rela *dst;
259 {
260 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
261 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
262 }
263 \f
264 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
265 section can represent up to two relocs, we must tell the user to allocate
266 more space. */
267
268 static long
269 sparc64_elf_get_reloc_upper_bound (abfd, sec)
270 bfd *abfd ATTRIBUTE_UNUSED;
271 asection *sec;
272 {
273 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
274 }
275
276 static long
277 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
278 bfd *abfd;
279 {
280 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
281 }
282
283 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
284 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
285 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
286 for the same location, R_SPARC_LO10 and R_SPARC_13. */
287
288 static boolean
289 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
290 bfd *abfd;
291 asection *asect;
292 Elf_Internal_Shdr *rel_hdr;
293 asymbol **symbols;
294 boolean dynamic;
295 {
296 PTR allocated = NULL;
297 bfd_byte *native_relocs;
298 arelent *relent;
299 unsigned int i;
300 int entsize;
301 bfd_size_type count;
302 arelent *relents;
303
304 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
305 if (allocated == NULL)
306 goto error_return;
307
308 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
309 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
310 goto error_return;
311
312 native_relocs = (bfd_byte *) allocated;
313
314 relents = asect->relocation + asect->reloc_count;
315
316 entsize = rel_hdr->sh_entsize;
317 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
318
319 count = rel_hdr->sh_size / entsize;
320
321 for (i = 0, relent = relents; i < count;
322 i++, relent++, native_relocs += entsize)
323 {
324 Elf_Internal_Rela rela;
325
326 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
327
328 /* The address of an ELF reloc is section relative for an object
329 file, and absolute for an executable file or shared library.
330 The address of a normal BFD reloc is always section relative,
331 and the address of a dynamic reloc is absolute.. */
332 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
333 relent->address = rela.r_offset;
334 else
335 relent->address = rela.r_offset - asect->vma;
336
337 if (ELF64_R_SYM (rela.r_info) == 0)
338 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
339 else
340 {
341 asymbol **ps, *s;
342
343 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
344 s = *ps;
345
346 /* Canonicalize ELF section symbols. FIXME: Why? */
347 if ((s->flags & BSF_SECTION_SYM) == 0)
348 relent->sym_ptr_ptr = ps;
349 else
350 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
351 }
352
353 relent->addend = rela.r_addend;
354
355 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
356 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
357 {
358 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
359 relent[1].address = relent->address;
360 relent++;
361 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
362 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
363 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
364 }
365 else
366 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
367 }
368
369 asect->reloc_count += relent - relents;
370
371 if (allocated != NULL)
372 free (allocated);
373
374 return true;
375
376 error_return:
377 if (allocated != NULL)
378 free (allocated);
379 return false;
380 }
381
382 /* Read in and swap the external relocs. */
383
384 static boolean
385 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
386 bfd *abfd;
387 asection *asect;
388 asymbol **symbols;
389 boolean dynamic;
390 {
391 struct bfd_elf_section_data * const d = elf_section_data (asect);
392 Elf_Internal_Shdr *rel_hdr;
393 Elf_Internal_Shdr *rel_hdr2;
394 bfd_size_type amt;
395
396 if (asect->relocation != NULL)
397 return true;
398
399 if (! dynamic)
400 {
401 if ((asect->flags & SEC_RELOC) == 0
402 || asect->reloc_count == 0)
403 return true;
404
405 rel_hdr = &d->rel_hdr;
406 rel_hdr2 = d->rel_hdr2;
407
408 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
409 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
410 }
411 else
412 {
413 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
414 case because relocations against this section may use the
415 dynamic symbol table, and in that case bfd_section_from_shdr
416 in elf.c does not update the RELOC_COUNT. */
417 if (asect->_raw_size == 0)
418 return true;
419
420 rel_hdr = &d->this_hdr;
421 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
422 rel_hdr2 = NULL;
423 }
424
425 amt = asect->reloc_count;
426 amt *= 2 * sizeof (arelent);
427 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
428 if (asect->relocation == NULL)
429 return false;
430
431 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
432 asect->reloc_count = 0;
433
434 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
435 dynamic))
436 return false;
437
438 if (rel_hdr2
439 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
440 dynamic))
441 return false;
442
443 return true;
444 }
445
446 /* Canonicalize the dynamic relocation entries. Note that we return
447 the dynamic relocations as a single block, although they are
448 actually associated with particular sections; the interface, which
449 was designed for SunOS style shared libraries, expects that there
450 is only one set of dynamic relocs. Any section that was actually
451 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
452 the dynamic symbol table, is considered to be a dynamic reloc
453 section. */
454
455 static long
456 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
457 bfd *abfd;
458 arelent **storage;
459 asymbol **syms;
460 {
461 asection *s;
462 long ret;
463
464 if (elf_dynsymtab (abfd) == 0)
465 {
466 bfd_set_error (bfd_error_invalid_operation);
467 return -1;
468 }
469
470 ret = 0;
471 for (s = abfd->sections; s != NULL; s = s->next)
472 {
473 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
474 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
475 {
476 arelent *p;
477 long count, i;
478
479 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
480 return -1;
481 count = s->reloc_count;
482 p = s->relocation;
483 for (i = 0; i < count; i++)
484 *storage++ = p++;
485 ret += count;
486 }
487 }
488
489 *storage = NULL;
490
491 return ret;
492 }
493
494 /* Write out the relocs. */
495
496 static void
497 sparc64_elf_write_relocs (abfd, sec, data)
498 bfd *abfd;
499 asection *sec;
500 PTR data;
501 {
502 boolean *failedp = (boolean *) data;
503 Elf_Internal_Shdr *rela_hdr;
504 Elf64_External_Rela *outbound_relocas, *src_rela;
505 unsigned int idx, count;
506 asymbol *last_sym = 0;
507 int last_sym_idx = 0;
508
509 /* If we have already failed, don't do anything. */
510 if (*failedp)
511 return;
512
513 if ((sec->flags & SEC_RELOC) == 0)
514 return;
515
516 /* The linker backend writes the relocs out itself, and sets the
517 reloc_count field to zero to inhibit writing them here. Also,
518 sometimes the SEC_RELOC flag gets set even when there aren't any
519 relocs. */
520 if (sec->reloc_count == 0)
521 return;
522
523 /* We can combine two relocs that refer to the same address
524 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
525 latter is R_SPARC_13 with no associated symbol. */
526 count = 0;
527 for (idx = 0; idx < sec->reloc_count; idx++)
528 {
529 bfd_vma addr;
530
531 ++count;
532
533 addr = sec->orelocation[idx]->address;
534 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
535 && idx < sec->reloc_count - 1)
536 {
537 arelent *r = sec->orelocation[idx + 1];
538
539 if (r->howto->type == R_SPARC_13
540 && r->address == addr
541 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
542 && (*r->sym_ptr_ptr)->value == 0)
543 ++idx;
544 }
545 }
546
547 rela_hdr = &elf_section_data (sec)->rel_hdr;
548
549 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
550 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
551 if (rela_hdr->contents == NULL)
552 {
553 *failedp = true;
554 return;
555 }
556
557 /* Figure out whether the relocations are RELA or REL relocations. */
558 if (rela_hdr->sh_type != SHT_RELA)
559 abort ();
560
561 /* orelocation has the data, reloc_count has the count... */
562 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
563 src_rela = outbound_relocas;
564
565 for (idx = 0; idx < sec->reloc_count; idx++)
566 {
567 Elf_Internal_Rela dst_rela;
568 arelent *ptr;
569 asymbol *sym;
570 int n;
571
572 ptr = sec->orelocation[idx];
573
574 /* The address of an ELF reloc is section relative for an object
575 file, and absolute for an executable file or shared library.
576 The address of a BFD reloc is always section relative. */
577 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
578 dst_rela.r_offset = ptr->address;
579 else
580 dst_rela.r_offset = ptr->address + sec->vma;
581
582 sym = *ptr->sym_ptr_ptr;
583 if (sym == last_sym)
584 n = last_sym_idx;
585 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
586 n = STN_UNDEF;
587 else
588 {
589 last_sym = sym;
590 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
591 if (n < 0)
592 {
593 *failedp = true;
594 return;
595 }
596 last_sym_idx = n;
597 }
598
599 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
600 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
601 && ! _bfd_elf_validate_reloc (abfd, ptr))
602 {
603 *failedp = true;
604 return;
605 }
606
607 if (ptr->howto->type == R_SPARC_LO10
608 && idx < sec->reloc_count - 1)
609 {
610 arelent *r = sec->orelocation[idx + 1];
611
612 if (r->howto->type == R_SPARC_13
613 && r->address == ptr->address
614 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
615 && (*r->sym_ptr_ptr)->value == 0)
616 {
617 idx++;
618 dst_rela.r_info
619 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
620 R_SPARC_OLO10));
621 }
622 else
623 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
624 }
625 else
626 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
627
628 dst_rela.r_addend = ptr->addend;
629 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
630 ++src_rela;
631 }
632 }
633 \f
634 /* Sparc64 ELF linker hash table. */
635
636 struct sparc64_elf_app_reg
637 {
638 unsigned char bind;
639 unsigned short shndx;
640 bfd *abfd;
641 char *name;
642 };
643
644 struct sparc64_elf_link_hash_table
645 {
646 struct elf_link_hash_table root;
647
648 struct sparc64_elf_app_reg app_regs [4];
649 };
650
651 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
652
653 #define sparc64_elf_hash_table(p) \
654 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
655
656 /* Create a Sparc64 ELF linker hash table. */
657
658 static struct bfd_link_hash_table *
659 sparc64_elf_bfd_link_hash_table_create (abfd)
660 bfd *abfd;
661 {
662 struct sparc64_elf_link_hash_table *ret;
663 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
664
665 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
666 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
667 return NULL;
668
669 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
670 _bfd_elf_link_hash_newfunc))
671 {
672 free (ret);
673 return NULL;
674 }
675
676 return &ret->root.root;
677 }
678 \f
679 /* Utility for performing the standard initial work of an instruction
680 relocation.
681 *PRELOCATION will contain the relocated item.
682 *PINSN will contain the instruction from the input stream.
683 If the result is `bfd_reloc_other' the caller can continue with
684 performing the relocation. Otherwise it must stop and return the
685 value to its caller. */
686
687 static bfd_reloc_status_type
688 init_insn_reloc (abfd,
689 reloc_entry,
690 symbol,
691 data,
692 input_section,
693 output_bfd,
694 prelocation,
695 pinsn)
696 bfd *abfd;
697 arelent *reloc_entry;
698 asymbol *symbol;
699 PTR data;
700 asection *input_section;
701 bfd *output_bfd;
702 bfd_vma *prelocation;
703 bfd_vma *pinsn;
704 {
705 bfd_vma relocation;
706 reloc_howto_type *howto = reloc_entry->howto;
707
708 if (output_bfd != (bfd *) NULL
709 && (symbol->flags & BSF_SECTION_SYM) == 0
710 && (! howto->partial_inplace
711 || reloc_entry->addend == 0))
712 {
713 reloc_entry->address += input_section->output_offset;
714 return bfd_reloc_ok;
715 }
716
717 /* This works because partial_inplace is false. */
718 if (output_bfd != NULL)
719 return bfd_reloc_continue;
720
721 if (reloc_entry->address > input_section->_cooked_size)
722 return bfd_reloc_outofrange;
723
724 relocation = (symbol->value
725 + symbol->section->output_section->vma
726 + symbol->section->output_offset);
727 relocation += reloc_entry->addend;
728 if (howto->pc_relative)
729 {
730 relocation -= (input_section->output_section->vma
731 + input_section->output_offset);
732 relocation -= reloc_entry->address;
733 }
734
735 *prelocation = relocation;
736 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
737 return bfd_reloc_other;
738 }
739
740 /* For unsupported relocs. */
741
742 static bfd_reloc_status_type
743 sparc_elf_notsup_reloc (abfd,
744 reloc_entry,
745 symbol,
746 data,
747 input_section,
748 output_bfd,
749 error_message)
750 bfd *abfd ATTRIBUTE_UNUSED;
751 arelent *reloc_entry ATTRIBUTE_UNUSED;
752 asymbol *symbol ATTRIBUTE_UNUSED;
753 PTR data ATTRIBUTE_UNUSED;
754 asection *input_section ATTRIBUTE_UNUSED;
755 bfd *output_bfd ATTRIBUTE_UNUSED;
756 char **error_message ATTRIBUTE_UNUSED;
757 {
758 return bfd_reloc_notsupported;
759 }
760
761 /* Handle the WDISP16 reloc. */
762
763 static bfd_reloc_status_type
764 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
765 output_bfd, error_message)
766 bfd *abfd;
767 arelent *reloc_entry;
768 asymbol *symbol;
769 PTR data;
770 asection *input_section;
771 bfd *output_bfd;
772 char **error_message ATTRIBUTE_UNUSED;
773 {
774 bfd_vma relocation;
775 bfd_vma insn;
776 bfd_reloc_status_type status;
777
778 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
779 input_section, output_bfd, &relocation, &insn);
780 if (status != bfd_reloc_other)
781 return status;
782
783 insn &= ~ (bfd_vma) 0x303fff;
784 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
785 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
786
787 if ((bfd_signed_vma) relocation < - 0x40000
788 || (bfd_signed_vma) relocation > 0x3ffff)
789 return bfd_reloc_overflow;
790 else
791 return bfd_reloc_ok;
792 }
793
794 /* Handle the HIX22 reloc. */
795
796 static bfd_reloc_status_type
797 sparc_elf_hix22_reloc (abfd,
798 reloc_entry,
799 symbol,
800 data,
801 input_section,
802 output_bfd,
803 error_message)
804 bfd *abfd;
805 arelent *reloc_entry;
806 asymbol *symbol;
807 PTR data;
808 asection *input_section;
809 bfd *output_bfd;
810 char **error_message ATTRIBUTE_UNUSED;
811 {
812 bfd_vma relocation;
813 bfd_vma insn;
814 bfd_reloc_status_type status;
815
816 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
817 input_section, output_bfd, &relocation, &insn);
818 if (status != bfd_reloc_other)
819 return status;
820
821 relocation ^= MINUS_ONE;
822 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
823 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
824
825 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
826 return bfd_reloc_overflow;
827 else
828 return bfd_reloc_ok;
829 }
830
831 /* Handle the LOX10 reloc. */
832
833 static bfd_reloc_status_type
834 sparc_elf_lox10_reloc (abfd,
835 reloc_entry,
836 symbol,
837 data,
838 input_section,
839 output_bfd,
840 error_message)
841 bfd *abfd;
842 arelent *reloc_entry;
843 asymbol *symbol;
844 PTR data;
845 asection *input_section;
846 bfd *output_bfd;
847 char **error_message ATTRIBUTE_UNUSED;
848 {
849 bfd_vma relocation;
850 bfd_vma insn;
851 bfd_reloc_status_type status;
852
853 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
854 input_section, output_bfd, &relocation, &insn);
855 if (status != bfd_reloc_other)
856 return status;
857
858 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
859 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
860
861 return bfd_reloc_ok;
862 }
863 \f
864 /* PLT/GOT stuff */
865
866 /* Both the headers and the entries are icache aligned. */
867 #define PLT_ENTRY_SIZE 32
868 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
869 #define LARGE_PLT_THRESHOLD 32768
870 #define GOT_RESERVED_ENTRIES 1
871
872 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
873
874 /* Fill in the .plt section. */
875
876 static void
877 sparc64_elf_build_plt (output_bfd, contents, nentries)
878 bfd *output_bfd;
879 unsigned char *contents;
880 int nentries;
881 {
882 const unsigned int nop = 0x01000000;
883 int i, j;
884
885 /* The first four entries are reserved, and are initially undefined.
886 We fill them with `illtrap 0' to force ld.so to do something. */
887
888 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
889 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
890
891 /* The first 32768 entries are close enough to plt1 to get there via
892 a straight branch. */
893
894 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
895 {
896 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
897 unsigned int sethi, ba;
898
899 /* sethi (. - plt0), %g1 */
900 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
901
902 /* ba,a,pt %xcc, plt1 */
903 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
904
905 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
906 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
907 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
908 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
909 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
910 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
911 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
912 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
913 }
914
915 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
916 160: 160 entries and 160 pointers. This is to separate code from data,
917 which is much friendlier on the cache. */
918
919 for (; i < nentries; i += 160)
920 {
921 int block = (i + 160 <= nentries ? 160 : nentries - i);
922 for (j = 0; j < block; ++j)
923 {
924 unsigned char *entry, *ptr;
925 unsigned int ldx;
926
927 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
928 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
929
930 /* ldx [%o7 + ptr - (entry+4)], %g1 */
931 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
932
933 /* mov %o7,%g5
934 call .+8
935 nop
936 ldx [%o7+P],%g1
937 jmpl %o7+%g1,%g1
938 mov %g5,%o7 */
939 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
940 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
941 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
942 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
943 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
944 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
945
946 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
947 }
948 }
949 }
950
951 /* Return the offset of a particular plt entry within the .plt section. */
952
953 static bfd_vma
954 sparc64_elf_plt_entry_offset (index)
955 bfd_vma index;
956 {
957 bfd_vma block, ofs;
958
959 if (index < LARGE_PLT_THRESHOLD)
960 return index * PLT_ENTRY_SIZE;
961
962 /* See above for details. */
963
964 block = (index - LARGE_PLT_THRESHOLD) / 160;
965 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
966
967 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
968 }
969
970 static bfd_vma
971 sparc64_elf_plt_ptr_offset (index, max)
972 bfd_vma index;
973 bfd_vma max;
974 {
975 bfd_vma block, ofs, last;
976
977 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
978
979 /* See above for details. */
980
981 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
982 ofs = index - block;
983 if (block + 160 > max)
984 last = (max - LARGE_PLT_THRESHOLD) % 160;
985 else
986 last = 160;
987
988 return (block * PLT_ENTRY_SIZE
989 + last * 6*4
990 + ofs * 8);
991 }
992 \f
993 /* Look through the relocs for a section during the first phase, and
994 allocate space in the global offset table or procedure linkage
995 table. */
996
997 static boolean
998 sparc64_elf_check_relocs (abfd, info, sec, relocs)
999 bfd *abfd;
1000 struct bfd_link_info *info;
1001 asection *sec;
1002 const Elf_Internal_Rela *relocs;
1003 {
1004 bfd *dynobj;
1005 Elf_Internal_Shdr *symtab_hdr;
1006 struct elf_link_hash_entry **sym_hashes;
1007 bfd_vma *local_got_offsets;
1008 const Elf_Internal_Rela *rel;
1009 const Elf_Internal_Rela *rel_end;
1010 asection *sgot;
1011 asection *srelgot;
1012 asection *sreloc;
1013
1014 if (info->relocateable || !(sec->flags & SEC_ALLOC))
1015 return true;
1016
1017 dynobj = elf_hash_table (info)->dynobj;
1018 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1019 sym_hashes = elf_sym_hashes (abfd);
1020 local_got_offsets = elf_local_got_offsets (abfd);
1021
1022 sgot = NULL;
1023 srelgot = NULL;
1024 sreloc = NULL;
1025
1026 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1027 for (rel = relocs; rel < rel_end; rel++)
1028 {
1029 unsigned long r_symndx;
1030 struct elf_link_hash_entry *h;
1031
1032 r_symndx = ELF64_R_SYM (rel->r_info);
1033 if (r_symndx < symtab_hdr->sh_info)
1034 h = NULL;
1035 else
1036 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1037
1038 switch (ELF64_R_TYPE_ID (rel->r_info))
1039 {
1040 case R_SPARC_GOT10:
1041 case R_SPARC_GOT13:
1042 case R_SPARC_GOT22:
1043 /* This symbol requires a global offset table entry. */
1044
1045 if (dynobj == NULL)
1046 {
1047 /* Create the .got section. */
1048 elf_hash_table (info)->dynobj = dynobj = abfd;
1049 if (! _bfd_elf_create_got_section (dynobj, info))
1050 return false;
1051 }
1052
1053 if (sgot == NULL)
1054 {
1055 sgot = bfd_get_section_by_name (dynobj, ".got");
1056 BFD_ASSERT (sgot != NULL);
1057 }
1058
1059 if (srelgot == NULL && (h != NULL || info->shared))
1060 {
1061 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1062 if (srelgot == NULL)
1063 {
1064 srelgot = bfd_make_section (dynobj, ".rela.got");
1065 if (srelgot == NULL
1066 || ! bfd_set_section_flags (dynobj, srelgot,
1067 (SEC_ALLOC
1068 | SEC_LOAD
1069 | SEC_HAS_CONTENTS
1070 | SEC_IN_MEMORY
1071 | SEC_LINKER_CREATED
1072 | SEC_READONLY))
1073 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1074 return false;
1075 }
1076 }
1077
1078 if (h != NULL)
1079 {
1080 if (h->got.offset != (bfd_vma) -1)
1081 {
1082 /* We have already allocated space in the .got. */
1083 break;
1084 }
1085 h->got.offset = sgot->_raw_size;
1086
1087 /* Make sure this symbol is output as a dynamic symbol. */
1088 if (h->dynindx == -1)
1089 {
1090 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1091 return false;
1092 }
1093
1094 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1095 }
1096 else
1097 {
1098 /* This is a global offset table entry for a local
1099 symbol. */
1100 if (local_got_offsets == NULL)
1101 {
1102 bfd_size_type size;
1103 register unsigned int i;
1104
1105 size = symtab_hdr->sh_info;
1106 size *= sizeof (bfd_vma);
1107 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1108 if (local_got_offsets == NULL)
1109 return false;
1110 elf_local_got_offsets (abfd) = local_got_offsets;
1111 for (i = 0; i < symtab_hdr->sh_info; i++)
1112 local_got_offsets[i] = (bfd_vma) -1;
1113 }
1114 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1115 {
1116 /* We have already allocated space in the .got. */
1117 break;
1118 }
1119 local_got_offsets[r_symndx] = sgot->_raw_size;
1120
1121 if (info->shared)
1122 {
1123 /* If we are generating a shared object, we need to
1124 output a R_SPARC_RELATIVE reloc so that the
1125 dynamic linker can adjust this GOT entry. */
1126 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1127 }
1128 }
1129
1130 sgot->_raw_size += 8;
1131
1132 #if 0
1133 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1134 unsigned numbers. If we permit ourselves to modify
1135 code so we get sethi/xor, this could work.
1136 Question: do we consider conditionally re-enabling
1137 this for -fpic, once we know about object code models? */
1138 /* If the .got section is more than 0x1000 bytes, we add
1139 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1140 bit relocations have a greater chance of working. */
1141 if (sgot->_raw_size >= 0x1000
1142 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1143 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1144 #endif
1145
1146 break;
1147
1148 case R_SPARC_WPLT30:
1149 case R_SPARC_PLT32:
1150 case R_SPARC_HIPLT22:
1151 case R_SPARC_LOPLT10:
1152 case R_SPARC_PCPLT32:
1153 case R_SPARC_PCPLT22:
1154 case R_SPARC_PCPLT10:
1155 case R_SPARC_PLT64:
1156 /* This symbol requires a procedure linkage table entry. We
1157 actually build the entry in adjust_dynamic_symbol,
1158 because this might be a case of linking PIC code without
1159 linking in any dynamic objects, in which case we don't
1160 need to generate a procedure linkage table after all. */
1161
1162 if (h == NULL)
1163 {
1164 /* It does not make sense to have a procedure linkage
1165 table entry for a local symbol. */
1166 bfd_set_error (bfd_error_bad_value);
1167 return false;
1168 }
1169
1170 /* Make sure this symbol is output as a dynamic symbol. */
1171 if (h->dynindx == -1)
1172 {
1173 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1174 return false;
1175 }
1176
1177 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1178 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1179 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1180 break;
1181 /* Fall through. */
1182 case R_SPARC_PC10:
1183 case R_SPARC_PC22:
1184 case R_SPARC_PC_HH22:
1185 case R_SPARC_PC_HM10:
1186 case R_SPARC_PC_LM22:
1187 if (h != NULL
1188 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1189 break;
1190 /* Fall through. */
1191 case R_SPARC_DISP8:
1192 case R_SPARC_DISP16:
1193 case R_SPARC_DISP32:
1194 case R_SPARC_DISP64:
1195 case R_SPARC_WDISP30:
1196 case R_SPARC_WDISP22:
1197 case R_SPARC_WDISP19:
1198 case R_SPARC_WDISP16:
1199 if (h == NULL)
1200 break;
1201 /* Fall through. */
1202 case R_SPARC_8:
1203 case R_SPARC_16:
1204 case R_SPARC_32:
1205 case R_SPARC_HI22:
1206 case R_SPARC_22:
1207 case R_SPARC_13:
1208 case R_SPARC_LO10:
1209 case R_SPARC_UA32:
1210 case R_SPARC_10:
1211 case R_SPARC_11:
1212 case R_SPARC_64:
1213 case R_SPARC_OLO10:
1214 case R_SPARC_HH22:
1215 case R_SPARC_HM10:
1216 case R_SPARC_LM22:
1217 case R_SPARC_7:
1218 case R_SPARC_5:
1219 case R_SPARC_6:
1220 case R_SPARC_HIX22:
1221 case R_SPARC_LOX10:
1222 case R_SPARC_H44:
1223 case R_SPARC_M44:
1224 case R_SPARC_L44:
1225 case R_SPARC_UA64:
1226 case R_SPARC_UA16:
1227 /* When creating a shared object, we must copy these relocs
1228 into the output file. We create a reloc section in
1229 dynobj and make room for the reloc.
1230
1231 But don't do this for debugging sections -- this shows up
1232 with DWARF2 -- first because they are not loaded, and
1233 second because DWARF sez the debug info is not to be
1234 biased by the load address. */
1235 if (info->shared && (sec->flags & SEC_ALLOC))
1236 {
1237 if (sreloc == NULL)
1238 {
1239 const char *name;
1240
1241 name = (bfd_elf_string_from_elf_section
1242 (abfd,
1243 elf_elfheader (abfd)->e_shstrndx,
1244 elf_section_data (sec)->rel_hdr.sh_name));
1245 if (name == NULL)
1246 return false;
1247
1248 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1249 && strcmp (bfd_get_section_name (abfd, sec),
1250 name + 5) == 0);
1251
1252 sreloc = bfd_get_section_by_name (dynobj, name);
1253 if (sreloc == NULL)
1254 {
1255 flagword flags;
1256
1257 sreloc = bfd_make_section (dynobj, name);
1258 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1259 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1260 if ((sec->flags & SEC_ALLOC) != 0)
1261 flags |= SEC_ALLOC | SEC_LOAD;
1262 if (sreloc == NULL
1263 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1264 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1265 return false;
1266 }
1267 if (sec->flags & SEC_READONLY)
1268 info->flags |= DF_TEXTREL;
1269 }
1270
1271 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1272 }
1273 break;
1274
1275 case R_SPARC_REGISTER:
1276 /* Nothing to do. */
1277 break;
1278
1279 default:
1280 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1281 bfd_archive_filename (abfd),
1282 ELF64_R_TYPE_ID (rel->r_info));
1283 return false;
1284 }
1285 }
1286
1287 return true;
1288 }
1289
1290 /* Hook called by the linker routine which adds symbols from an object
1291 file. We use it for STT_REGISTER symbols. */
1292
1293 static boolean
1294 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1295 bfd *abfd;
1296 struct bfd_link_info *info;
1297 const Elf_Internal_Sym *sym;
1298 const char **namep;
1299 flagword *flagsp ATTRIBUTE_UNUSED;
1300 asection **secp ATTRIBUTE_UNUSED;
1301 bfd_vma *valp ATTRIBUTE_UNUSED;
1302 {
1303 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1304
1305 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1306 {
1307 int reg;
1308 struct sparc64_elf_app_reg *p;
1309
1310 reg = (int)sym->st_value;
1311 switch (reg & ~1)
1312 {
1313 case 2: reg -= 2; break;
1314 case 6: reg -= 4; break;
1315 default:
1316 (*_bfd_error_handler)
1317 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1318 bfd_archive_filename (abfd));
1319 return false;
1320 }
1321
1322 if (info->hash->creator != abfd->xvec
1323 || (abfd->flags & DYNAMIC) != 0)
1324 {
1325 /* STT_REGISTER only works when linking an elf64_sparc object.
1326 If STT_REGISTER comes from a dynamic object, don't put it into
1327 the output bfd. The dynamic linker will recheck it. */
1328 *namep = NULL;
1329 return true;
1330 }
1331
1332 p = sparc64_elf_hash_table(info)->app_regs + reg;
1333
1334 if (p->name != NULL && strcmp (p->name, *namep))
1335 {
1336 (*_bfd_error_handler)
1337 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1338 (int) sym->st_value,
1339 **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1340 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1341 return false;
1342 }
1343
1344 if (p->name == NULL)
1345 {
1346 if (**namep)
1347 {
1348 struct elf_link_hash_entry *h;
1349
1350 h = (struct elf_link_hash_entry *)
1351 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1352
1353 if (h != NULL)
1354 {
1355 unsigned char type = h->type;
1356
1357 if (type > STT_FUNC)
1358 type = 0;
1359 (*_bfd_error_handler)
1360 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1361 *namep, bfd_archive_filename (abfd),
1362 stt_types[type], bfd_archive_filename (p->abfd));
1363 return false;
1364 }
1365
1366 p->name = bfd_hash_allocate (&info->hash->table,
1367 strlen (*namep) + 1);
1368 if (!p->name)
1369 return false;
1370
1371 strcpy (p->name, *namep);
1372 }
1373 else
1374 p->name = "";
1375 p->bind = ELF_ST_BIND (sym->st_info);
1376 p->abfd = abfd;
1377 p->shndx = sym->st_shndx;
1378 }
1379 else
1380 {
1381 if (p->bind == STB_WEAK
1382 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1383 {
1384 p->bind = STB_GLOBAL;
1385 p->abfd = abfd;
1386 }
1387 }
1388 *namep = NULL;
1389 return true;
1390 }
1391 else if (*namep && **namep
1392 && info->hash->creator == abfd->xvec)
1393 {
1394 int i;
1395 struct sparc64_elf_app_reg *p;
1396
1397 p = sparc64_elf_hash_table(info)->app_regs;
1398 for (i = 0; i < 4; i++, p++)
1399 if (p->name != NULL && ! strcmp (p->name, *namep))
1400 {
1401 unsigned char type = ELF_ST_TYPE (sym->st_info);
1402
1403 if (type > STT_FUNC)
1404 type = 0;
1405 (*_bfd_error_handler)
1406 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1407 *namep, stt_types[type], bfd_archive_filename (abfd),
1408 bfd_archive_filename (p->abfd));
1409 return false;
1410 }
1411 }
1412 return true;
1413 }
1414
1415 /* This function takes care of emiting STT_REGISTER symbols
1416 which we cannot easily keep in the symbol hash table. */
1417
1418 static boolean
1419 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1420 bfd *output_bfd ATTRIBUTE_UNUSED;
1421 struct bfd_link_info *info;
1422 PTR finfo;
1423 boolean (*func) PARAMS ((PTR, const char *,
1424 Elf_Internal_Sym *, asection *));
1425 {
1426 int reg;
1427 struct sparc64_elf_app_reg *app_regs =
1428 sparc64_elf_hash_table(info)->app_regs;
1429 Elf_Internal_Sym sym;
1430
1431 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1432 at the end of the dynlocal list, so they came at the end of the local
1433 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1434 to back up symtab->sh_info. */
1435 if (elf_hash_table (info)->dynlocal)
1436 {
1437 bfd * dynobj = elf_hash_table (info)->dynobj;
1438 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1439 struct elf_link_local_dynamic_entry *e;
1440
1441 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1442 if (e->input_indx == -1)
1443 break;
1444 if (e)
1445 {
1446 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1447 = e->dynindx;
1448 }
1449 }
1450
1451 if (info->strip == strip_all)
1452 return true;
1453
1454 for (reg = 0; reg < 4; reg++)
1455 if (app_regs [reg].name != NULL)
1456 {
1457 if (info->strip == strip_some
1458 && bfd_hash_lookup (info->keep_hash,
1459 app_regs [reg].name,
1460 false, false) == NULL)
1461 continue;
1462
1463 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1464 sym.st_size = 0;
1465 sym.st_other = 0;
1466 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1467 sym.st_shndx = app_regs [reg].shndx;
1468 if (! (*func) (finfo, app_regs [reg].name, &sym,
1469 sym.st_shndx == SHN_ABS
1470 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1471 return false;
1472 }
1473
1474 return true;
1475 }
1476
1477 static int
1478 sparc64_elf_get_symbol_type (elf_sym, type)
1479 Elf_Internal_Sym * elf_sym;
1480 int type;
1481 {
1482 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1483 return STT_REGISTER;
1484 else
1485 return type;
1486 }
1487
1488 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1489 even in SHN_UNDEF section. */
1490
1491 static void
1492 sparc64_elf_symbol_processing (abfd, asym)
1493 bfd *abfd ATTRIBUTE_UNUSED;
1494 asymbol *asym;
1495 {
1496 elf_symbol_type *elfsym;
1497
1498 elfsym = (elf_symbol_type *) asym;
1499 if (elfsym->internal_elf_sym.st_info
1500 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1501 {
1502 asym->flags |= BSF_GLOBAL;
1503 }
1504 }
1505
1506 /* Adjust a symbol defined by a dynamic object and referenced by a
1507 regular object. The current definition is in some section of the
1508 dynamic object, but we're not including those sections. We have to
1509 change the definition to something the rest of the link can
1510 understand. */
1511
1512 static boolean
1513 sparc64_elf_adjust_dynamic_symbol (info, h)
1514 struct bfd_link_info *info;
1515 struct elf_link_hash_entry *h;
1516 {
1517 bfd *dynobj;
1518 asection *s;
1519 unsigned int power_of_two;
1520
1521 dynobj = elf_hash_table (info)->dynobj;
1522
1523 /* Make sure we know what is going on here. */
1524 BFD_ASSERT (dynobj != NULL
1525 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1526 || h->weakdef != NULL
1527 || ((h->elf_link_hash_flags
1528 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1529 && (h->elf_link_hash_flags
1530 & ELF_LINK_HASH_REF_REGULAR) != 0
1531 && (h->elf_link_hash_flags
1532 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1533
1534 /* If this is a function, put it in the procedure linkage table. We
1535 will fill in the contents of the procedure linkage table later
1536 (although we could actually do it here). The STT_NOTYPE
1537 condition is a hack specifically for the Oracle libraries
1538 delivered for Solaris; for some inexplicable reason, they define
1539 some of their functions as STT_NOTYPE when they really should be
1540 STT_FUNC. */
1541 if (h->type == STT_FUNC
1542 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1543 || (h->type == STT_NOTYPE
1544 && (h->root.type == bfd_link_hash_defined
1545 || h->root.type == bfd_link_hash_defweak)
1546 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1547 {
1548 if (! elf_hash_table (info)->dynamic_sections_created)
1549 {
1550 /* This case can occur if we saw a WPLT30 reloc in an input
1551 file, but none of the input files were dynamic objects.
1552 In such a case, we don't actually need to build a
1553 procedure linkage table, and we can just do a WDISP30
1554 reloc instead. */
1555 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1556 return true;
1557 }
1558
1559 s = bfd_get_section_by_name (dynobj, ".plt");
1560 BFD_ASSERT (s != NULL);
1561
1562 /* The first four bit in .plt is reserved. */
1563 if (s->_raw_size == 0)
1564 s->_raw_size = PLT_HEADER_SIZE;
1565
1566 /* If this symbol is not defined in a regular file, and we are
1567 not generating a shared library, then set the symbol to this
1568 location in the .plt. This is required to make function
1569 pointers compare as equal between the normal executable and
1570 the shared library. */
1571 if (! info->shared
1572 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1573 {
1574 h->root.u.def.section = s;
1575 h->root.u.def.value = s->_raw_size;
1576 }
1577
1578 /* To simplify matters later, just store the plt index here. */
1579 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1580
1581 /* Make room for this entry. */
1582 s->_raw_size += PLT_ENTRY_SIZE;
1583
1584 /* We also need to make an entry in the .rela.plt section. */
1585
1586 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1587 BFD_ASSERT (s != NULL);
1588
1589 s->_raw_size += sizeof (Elf64_External_Rela);
1590
1591 /* The procedure linkage table size is bounded by the magnitude
1592 of the offset we can describe in the entry. */
1593 if (s->_raw_size >= (bfd_vma)1 << 32)
1594 {
1595 bfd_set_error (bfd_error_bad_value);
1596 return false;
1597 }
1598
1599 return true;
1600 }
1601
1602 /* If this is a weak symbol, and there is a real definition, the
1603 processor independent code will have arranged for us to see the
1604 real definition first, and we can just use the same value. */
1605 if (h->weakdef != NULL)
1606 {
1607 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1608 || h->weakdef->root.type == bfd_link_hash_defweak);
1609 h->root.u.def.section = h->weakdef->root.u.def.section;
1610 h->root.u.def.value = h->weakdef->root.u.def.value;
1611 return true;
1612 }
1613
1614 /* This is a reference to a symbol defined by a dynamic object which
1615 is not a function. */
1616
1617 /* If we are creating a shared library, we must presume that the
1618 only references to the symbol are via the global offset table.
1619 For such cases we need not do anything here; the relocations will
1620 be handled correctly by relocate_section. */
1621 if (info->shared)
1622 return true;
1623
1624 /* We must allocate the symbol in our .dynbss section, which will
1625 become part of the .bss section of the executable. There will be
1626 an entry for this symbol in the .dynsym section. The dynamic
1627 object will contain position independent code, so all references
1628 from the dynamic object to this symbol will go through the global
1629 offset table. The dynamic linker will use the .dynsym entry to
1630 determine the address it must put in the global offset table, so
1631 both the dynamic object and the regular object will refer to the
1632 same memory location for the variable. */
1633
1634 s = bfd_get_section_by_name (dynobj, ".dynbss");
1635 BFD_ASSERT (s != NULL);
1636
1637 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1638 to copy the initial value out of the dynamic object and into the
1639 runtime process image. We need to remember the offset into the
1640 .rel.bss section we are going to use. */
1641 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1642 {
1643 asection *srel;
1644
1645 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1646 BFD_ASSERT (srel != NULL);
1647 srel->_raw_size += sizeof (Elf64_External_Rela);
1648 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1649 }
1650
1651 /* We need to figure out the alignment required for this symbol. I
1652 have no idea how ELF linkers handle this. 16-bytes is the size
1653 of the largest type that requires hard alignment -- long double. */
1654 power_of_two = bfd_log2 (h->size);
1655 if (power_of_two > 4)
1656 power_of_two = 4;
1657
1658 /* Apply the required alignment. */
1659 s->_raw_size = BFD_ALIGN (s->_raw_size,
1660 (bfd_size_type) (1 << power_of_two));
1661 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1662 {
1663 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1664 return false;
1665 }
1666
1667 /* Define the symbol as being at this point in the section. */
1668 h->root.u.def.section = s;
1669 h->root.u.def.value = s->_raw_size;
1670
1671 /* Increment the section size to make room for the symbol. */
1672 s->_raw_size += h->size;
1673
1674 return true;
1675 }
1676
1677 /* Set the sizes of the dynamic sections. */
1678
1679 static boolean
1680 sparc64_elf_size_dynamic_sections (output_bfd, info)
1681 bfd *output_bfd;
1682 struct bfd_link_info *info;
1683 {
1684 bfd *dynobj;
1685 asection *s;
1686 boolean relplt;
1687
1688 dynobj = elf_hash_table (info)->dynobj;
1689 BFD_ASSERT (dynobj != NULL);
1690
1691 if (elf_hash_table (info)->dynamic_sections_created)
1692 {
1693 /* Set the contents of the .interp section to the interpreter. */
1694 if (! info->shared)
1695 {
1696 s = bfd_get_section_by_name (dynobj, ".interp");
1697 BFD_ASSERT (s != NULL);
1698 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1699 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1700 }
1701 }
1702 else
1703 {
1704 /* We may have created entries in the .rela.got section.
1705 However, if we are not creating the dynamic sections, we will
1706 not actually use these entries. Reset the size of .rela.got,
1707 which will cause it to get stripped from the output file
1708 below. */
1709 s = bfd_get_section_by_name (dynobj, ".rela.got");
1710 if (s != NULL)
1711 s->_raw_size = 0;
1712 }
1713
1714 /* The check_relocs and adjust_dynamic_symbol entry points have
1715 determined the sizes of the various dynamic sections. Allocate
1716 memory for them. */
1717 relplt = false;
1718 for (s = dynobj->sections; s != NULL; s = s->next)
1719 {
1720 const char *name;
1721 boolean strip;
1722
1723 if ((s->flags & SEC_LINKER_CREATED) == 0)
1724 continue;
1725
1726 /* It's OK to base decisions on the section name, because none
1727 of the dynobj section names depend upon the input files. */
1728 name = bfd_get_section_name (dynobj, s);
1729
1730 strip = false;
1731
1732 if (strncmp (name, ".rela", 5) == 0)
1733 {
1734 if (s->_raw_size == 0)
1735 {
1736 /* If we don't need this section, strip it from the
1737 output file. This is to handle .rela.bss and
1738 .rel.plt. We must create it in
1739 create_dynamic_sections, because it must be created
1740 before the linker maps input sections to output
1741 sections. The linker does that before
1742 adjust_dynamic_symbol is called, and it is that
1743 function which decides whether anything needs to go
1744 into these sections. */
1745 strip = true;
1746 }
1747 else
1748 {
1749 if (strcmp (name, ".rela.plt") == 0)
1750 relplt = true;
1751
1752 /* We use the reloc_count field as a counter if we need
1753 to copy relocs into the output file. */
1754 s->reloc_count = 0;
1755 }
1756 }
1757 else if (strcmp (name, ".plt") != 0
1758 && strncmp (name, ".got", 4) != 0)
1759 {
1760 /* It's not one of our sections, so don't allocate space. */
1761 continue;
1762 }
1763
1764 if (strip)
1765 {
1766 _bfd_strip_section_from_output (info, s);
1767 continue;
1768 }
1769
1770 /* Allocate memory for the section contents. Zero the memory
1771 for the benefit of .rela.plt, which has 4 unused entries
1772 at the beginning, and we don't want garbage. */
1773 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1774 if (s->contents == NULL && s->_raw_size != 0)
1775 return false;
1776 }
1777
1778 if (elf_hash_table (info)->dynamic_sections_created)
1779 {
1780 /* Add some entries to the .dynamic section. We fill in the
1781 values later, in sparc64_elf_finish_dynamic_sections, but we
1782 must add the entries now so that we get the correct size for
1783 the .dynamic section. The DT_DEBUG entry is filled in by the
1784 dynamic linker and used by the debugger. */
1785 #define add_dynamic_entry(TAG, VAL) \
1786 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1787
1788 int reg;
1789 struct sparc64_elf_app_reg * app_regs;
1790 struct elf_strtab_hash *dynstr;
1791 struct elf_link_hash_table *eht = elf_hash_table (info);
1792
1793 if (!info->shared)
1794 {
1795 if (!add_dynamic_entry (DT_DEBUG, 0))
1796 return false;
1797 }
1798
1799 if (relplt)
1800 {
1801 if (!add_dynamic_entry (DT_PLTGOT, 0)
1802 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1803 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1804 || !add_dynamic_entry (DT_JMPREL, 0))
1805 return false;
1806 }
1807
1808 if (!add_dynamic_entry (DT_RELA, 0)
1809 || !add_dynamic_entry (DT_RELASZ, 0)
1810 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1811 return false;
1812
1813 if (info->flags & DF_TEXTREL)
1814 {
1815 if (!add_dynamic_entry (DT_TEXTREL, 0))
1816 return false;
1817 }
1818
1819 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1820 entries if needed. */
1821 app_regs = sparc64_elf_hash_table (info)->app_regs;
1822 dynstr = eht->dynstr;
1823
1824 for (reg = 0; reg < 4; reg++)
1825 if (app_regs [reg].name != NULL)
1826 {
1827 struct elf_link_local_dynamic_entry *entry, *e;
1828
1829 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1830 return false;
1831
1832 entry = (struct elf_link_local_dynamic_entry *)
1833 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1834 if (entry == NULL)
1835 return false;
1836
1837 /* We cheat here a little bit: the symbol will not be local, so we
1838 put it at the end of the dynlocal linked list. We will fix it
1839 later on, as we have to fix other fields anyway. */
1840 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1841 entry->isym.st_size = 0;
1842 if (*app_regs [reg].name != '\0')
1843 entry->isym.st_name
1844 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, false);
1845 else
1846 entry->isym.st_name = 0;
1847 entry->isym.st_other = 0;
1848 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1849 STT_REGISTER);
1850 entry->isym.st_shndx = app_regs [reg].shndx;
1851 entry->next = NULL;
1852 entry->input_bfd = output_bfd;
1853 entry->input_indx = -1;
1854
1855 if (eht->dynlocal == NULL)
1856 eht->dynlocal = entry;
1857 else
1858 {
1859 for (e = eht->dynlocal; e->next; e = e->next)
1860 ;
1861 e->next = entry;
1862 }
1863 eht->dynsymcount++;
1864 }
1865 }
1866 #undef add_dynamic_entry
1867
1868 return true;
1869 }
1870 \f
1871 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1872 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1873
1874 static boolean
1875 sparc64_elf_relax_section (abfd, section, link_info, again)
1876 bfd *abfd ATTRIBUTE_UNUSED;
1877 asection *section ATTRIBUTE_UNUSED;
1878 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1879 boolean *again;
1880 {
1881 *again = false;
1882 SET_SEC_DO_RELAX (section);
1883 return true;
1884 }
1885 \f
1886 /* This is the condition under which finish_dynamic_symbol will be called
1887 from elflink.h. If elflink.h doesn't call our finish_dynamic_symbol
1888 routine, we'll need to do something about initializing any .plt and
1889 .got entries in relocate_section. */
1890 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1891 ((DYN) \
1892 && ((INFO)->shared \
1893 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1894 && ((H)->dynindx != -1 \
1895 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1896
1897 /* Relocate a SPARC64 ELF section. */
1898
1899 static boolean
1900 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1901 contents, relocs, local_syms, local_sections)
1902 bfd *output_bfd;
1903 struct bfd_link_info *info;
1904 bfd *input_bfd;
1905 asection *input_section;
1906 bfd_byte *contents;
1907 Elf_Internal_Rela *relocs;
1908 Elf_Internal_Sym *local_syms;
1909 asection **local_sections;
1910 {
1911 bfd *dynobj;
1912 Elf_Internal_Shdr *symtab_hdr;
1913 struct elf_link_hash_entry **sym_hashes;
1914 bfd_vma *local_got_offsets;
1915 bfd_vma got_base;
1916 asection *sgot;
1917 asection *splt;
1918 asection *sreloc;
1919 Elf_Internal_Rela *rel;
1920 Elf_Internal_Rela *relend;
1921
1922 dynobj = elf_hash_table (info)->dynobj;
1923 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1924 sym_hashes = elf_sym_hashes (input_bfd);
1925 local_got_offsets = elf_local_got_offsets (input_bfd);
1926
1927 if (elf_hash_table(info)->hgot == NULL)
1928 got_base = 0;
1929 else
1930 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1931
1932 sgot = splt = sreloc = NULL;
1933
1934 rel = relocs;
1935 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
1936 for (; rel < relend; rel++)
1937 {
1938 int r_type;
1939 reloc_howto_type *howto;
1940 unsigned long r_symndx;
1941 struct elf_link_hash_entry *h;
1942 Elf_Internal_Sym *sym;
1943 asection *sec;
1944 bfd_vma relocation, off;
1945 bfd_reloc_status_type r;
1946 boolean is_plt = false;
1947 boolean unresolved_reloc;
1948
1949 r_type = ELF64_R_TYPE_ID (rel->r_info);
1950 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1951 {
1952 bfd_set_error (bfd_error_bad_value);
1953 return false;
1954 }
1955 howto = sparc64_elf_howto_table + r_type;
1956
1957 r_symndx = ELF64_R_SYM (rel->r_info);
1958
1959 if (info->relocateable)
1960 {
1961 /* This is a relocateable link. We don't have to change
1962 anything, unless the reloc is against a section symbol,
1963 in which case we have to adjust according to where the
1964 section symbol winds up in the output section. */
1965 if (r_symndx < symtab_hdr->sh_info)
1966 {
1967 sym = local_syms + r_symndx;
1968 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1969 {
1970 sec = local_sections[r_symndx];
1971 rel->r_addend += sec->output_offset + sym->st_value;
1972 }
1973 }
1974
1975 continue;
1976 }
1977
1978 /* This is a final link. */
1979 h = NULL;
1980 sym = NULL;
1981 sec = NULL;
1982 unresolved_reloc = false;
1983 if (r_symndx < symtab_hdr->sh_info)
1984 {
1985 sym = local_syms + r_symndx;
1986 sec = local_sections[r_symndx];
1987 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1988 }
1989 else
1990 {
1991 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1992 while (h->root.type == bfd_link_hash_indirect
1993 || h->root.type == bfd_link_hash_warning)
1994 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1995
1996 relocation = 0;
1997 if (h->root.type == bfd_link_hash_defined
1998 || h->root.type == bfd_link_hash_defweak)
1999 {
2000 sec = h->root.u.def.section;
2001 if (sec->output_section == NULL)
2002 /* Set a flag that will be cleared later if we find a
2003 relocation value for this symbol. output_section
2004 is typically NULL for symbols satisfied by a shared
2005 library. */
2006 unresolved_reloc = true;
2007 else
2008 relocation = (h->root.u.def.value
2009 + sec->output_section->vma
2010 + sec->output_offset);
2011 }
2012 else if (h->root.type == bfd_link_hash_undefweak)
2013 ;
2014 else if (info->shared
2015 && (!info->symbolic || info->allow_shlib_undefined)
2016 && !info->no_undefined
2017 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2018 ;
2019 else
2020 {
2021 if (! ((*info->callbacks->undefined_symbol)
2022 (info, h->root.root.string, input_bfd,
2023 input_section, rel->r_offset,
2024 (!info->shared || info->no_undefined
2025 || ELF_ST_VISIBILITY (h->other)))))
2026 return false;
2027
2028 /* To avoid generating warning messages about truncated
2029 relocations, set the relocation's address to be the same as
2030 the start of this section. */
2031
2032 if (input_section->output_section != NULL)
2033 relocation = input_section->output_section->vma;
2034 else
2035 relocation = 0;
2036 }
2037 }
2038
2039 do_dynreloc:
2040 /* When generating a shared object, these relocations are copied
2041 into the output file to be resolved at run time. */
2042 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2043 {
2044 switch (r_type)
2045 {
2046 case R_SPARC_PC10:
2047 case R_SPARC_PC22:
2048 case R_SPARC_PC_HH22:
2049 case R_SPARC_PC_HM10:
2050 case R_SPARC_PC_LM22:
2051 if (h != NULL
2052 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2053 break;
2054 /* Fall through. */
2055 case R_SPARC_DISP8:
2056 case R_SPARC_DISP16:
2057 case R_SPARC_DISP32:
2058 case R_SPARC_DISP64:
2059 case R_SPARC_WDISP30:
2060 case R_SPARC_WDISP22:
2061 case R_SPARC_WDISP19:
2062 case R_SPARC_WDISP16:
2063 if (h == NULL)
2064 break;
2065 /* Fall through. */
2066 case R_SPARC_8:
2067 case R_SPARC_16:
2068 case R_SPARC_32:
2069 case R_SPARC_HI22:
2070 case R_SPARC_22:
2071 case R_SPARC_13:
2072 case R_SPARC_LO10:
2073 case R_SPARC_UA32:
2074 case R_SPARC_10:
2075 case R_SPARC_11:
2076 case R_SPARC_64:
2077 case R_SPARC_OLO10:
2078 case R_SPARC_HH22:
2079 case R_SPARC_HM10:
2080 case R_SPARC_LM22:
2081 case R_SPARC_7:
2082 case R_SPARC_5:
2083 case R_SPARC_6:
2084 case R_SPARC_HIX22:
2085 case R_SPARC_LOX10:
2086 case R_SPARC_H44:
2087 case R_SPARC_M44:
2088 case R_SPARC_L44:
2089 case R_SPARC_UA64:
2090 case R_SPARC_UA16:
2091 {
2092 Elf_Internal_Rela outrel;
2093 boolean skip, relocate;
2094
2095 if (sreloc == NULL)
2096 {
2097 const char *name =
2098 (bfd_elf_string_from_elf_section
2099 (input_bfd,
2100 elf_elfheader (input_bfd)->e_shstrndx,
2101 elf_section_data (input_section)->rel_hdr.sh_name));
2102
2103 if (name == NULL)
2104 return false;
2105
2106 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2107 && strcmp (bfd_get_section_name(input_bfd,
2108 input_section),
2109 name + 5) == 0);
2110
2111 sreloc = bfd_get_section_by_name (dynobj, name);
2112 BFD_ASSERT (sreloc != NULL);
2113 }
2114
2115 skip = false;
2116 relocate = false;
2117
2118 outrel.r_offset =
2119 _bfd_elf_section_offset (output_bfd, info, input_section,
2120 rel->r_offset);
2121 if (outrel.r_offset == (bfd_vma) -1)
2122 skip = true;
2123 else if (outrel.r_offset == (bfd_vma) -2)
2124 skip = true, relocate = true;
2125
2126 outrel.r_offset += (input_section->output_section->vma
2127 + input_section->output_offset);
2128
2129 /* Optimize unaligned reloc usage now that we know where
2130 it finally resides. */
2131 switch (r_type)
2132 {
2133 case R_SPARC_16:
2134 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2135 break;
2136 case R_SPARC_UA16:
2137 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2138 break;
2139 case R_SPARC_32:
2140 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2141 break;
2142 case R_SPARC_UA32:
2143 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2144 break;
2145 case R_SPARC_64:
2146 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2147 break;
2148 case R_SPARC_UA64:
2149 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2150 break;
2151 case R_SPARC_DISP8:
2152 case R_SPARC_DISP16:
2153 case R_SPARC_DISP32:
2154 case R_SPARC_DISP64:
2155 /* If the symbol is not dynamic, we should not keep
2156 a dynamic relocation. But an .rela.* slot has been
2157 allocated for it, output R_SPARC_NONE.
2158 FIXME: Add code tracking needed dynamic relocs as
2159 e.g. i386 has. */
2160 if (h->dynindx == -1)
2161 skip = true, relocate = true;
2162 break;
2163 }
2164
2165 if (skip)
2166 memset (&outrel, 0, sizeof outrel);
2167 /* h->dynindx may be -1 if the symbol was marked to
2168 become local. */
2169 else if (h != NULL && ! is_plt
2170 && ((! info->symbolic && h->dynindx != -1)
2171 || (h->elf_link_hash_flags
2172 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2173 {
2174 BFD_ASSERT (h->dynindx != -1);
2175 outrel.r_info
2176 = ELF64_R_INFO (h->dynindx,
2177 ELF64_R_TYPE_INFO (
2178 ELF64_R_TYPE_DATA (rel->r_info),
2179 r_type));
2180 outrel.r_addend = rel->r_addend;
2181 }
2182 else
2183 {
2184 if (r_type == R_SPARC_64)
2185 {
2186 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2187 outrel.r_addend = relocation + rel->r_addend;
2188 }
2189 else
2190 {
2191 long indx;
2192
2193 if (is_plt)
2194 sec = splt;
2195 else if (h == NULL)
2196 sec = local_sections[r_symndx];
2197 else
2198 {
2199 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2200 || (h->root.type
2201 == bfd_link_hash_defweak));
2202 sec = h->root.u.def.section;
2203 }
2204 if (sec != NULL && bfd_is_abs_section (sec))
2205 indx = 0;
2206 else if (sec == NULL || sec->owner == NULL)
2207 {
2208 bfd_set_error (bfd_error_bad_value);
2209 return false;
2210 }
2211 else
2212 {
2213 asection *osec;
2214
2215 osec = sec->output_section;
2216 indx = elf_section_data (osec)->dynindx;
2217
2218 /* FIXME: we really should be able to link non-pic
2219 shared libraries. */
2220 if (indx == 0)
2221 {
2222 BFD_FAIL ();
2223 (*_bfd_error_handler)
2224 (_("%s: probably compiled without -fPIC?"),
2225 bfd_archive_filename (input_bfd));
2226 bfd_set_error (bfd_error_bad_value);
2227 return false;
2228 }
2229 }
2230
2231 outrel.r_info
2232 = ELF64_R_INFO (indx,
2233 ELF64_R_TYPE_INFO (
2234 ELF64_R_TYPE_DATA (rel->r_info),
2235 r_type));
2236 outrel.r_addend = relocation + rel->r_addend;
2237 }
2238 }
2239
2240 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2241 (((Elf64_External_Rela *)
2242 sreloc->contents)
2243 + sreloc->reloc_count));
2244 ++sreloc->reloc_count;
2245
2246 /* This reloc will be computed at runtime, so there's no
2247 need to do anything now. */
2248 if (! relocate)
2249 continue;
2250 }
2251 break;
2252 }
2253 }
2254
2255 switch (r_type)
2256 {
2257 case R_SPARC_GOT10:
2258 case R_SPARC_GOT13:
2259 case R_SPARC_GOT22:
2260 /* Relocation is to the entry for this symbol in the global
2261 offset table. */
2262 if (sgot == NULL)
2263 {
2264 sgot = bfd_get_section_by_name (dynobj, ".got");
2265 BFD_ASSERT (sgot != NULL);
2266 }
2267
2268 if (h != NULL)
2269 {
2270 boolean dyn;
2271
2272 off = h->got.offset;
2273 BFD_ASSERT (off != (bfd_vma) -1);
2274 dyn = elf_hash_table (info)->dynamic_sections_created;
2275
2276 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
2277 || (info->shared
2278 && (info->symbolic
2279 || h->dynindx == -1
2280 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2281 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2282 {
2283 /* This is actually a static link, or it is a -Bsymbolic
2284 link and the symbol is defined locally, or the symbol
2285 was forced to be local because of a version file. We
2286 must initialize this entry in the global offset table.
2287 Since the offset must always be a multiple of 8, we
2288 use the least significant bit to record whether we
2289 have initialized it already.
2290
2291 When doing a dynamic link, we create a .rela.got
2292 relocation entry to initialize the value. This is
2293 done in the finish_dynamic_symbol routine. */
2294
2295 if ((off & 1) != 0)
2296 off &= ~1;
2297 else
2298 {
2299 bfd_put_64 (output_bfd, relocation,
2300 sgot->contents + off);
2301 h->got.offset |= 1;
2302 }
2303 }
2304 else
2305 unresolved_reloc = false;
2306 }
2307 else
2308 {
2309 BFD_ASSERT (local_got_offsets != NULL);
2310 off = local_got_offsets[r_symndx];
2311 BFD_ASSERT (off != (bfd_vma) -1);
2312
2313 /* The offset must always be a multiple of 8. We use
2314 the least significant bit to record whether we have
2315 already processed this entry. */
2316 if ((off & 1) != 0)
2317 off &= ~1;
2318 else
2319 {
2320 local_got_offsets[r_symndx] |= 1;
2321
2322 if (info->shared)
2323 {
2324 asection *srelgot;
2325 Elf_Internal_Rela outrel;
2326
2327 /* The Solaris 2.7 64-bit linker adds the contents
2328 of the location to the value of the reloc.
2329 Note this is different behaviour to the
2330 32-bit linker, which both adds the contents
2331 and ignores the addend. So clear the location. */
2332 bfd_put_64 (output_bfd, (bfd_vma) 0,
2333 sgot->contents + off);
2334
2335 /* We need to generate a R_SPARC_RELATIVE reloc
2336 for the dynamic linker. */
2337 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2338 BFD_ASSERT (srelgot != NULL);
2339
2340 outrel.r_offset = (sgot->output_section->vma
2341 + sgot->output_offset
2342 + off);
2343 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2344 outrel.r_addend = relocation;
2345 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2346 (((Elf64_External_Rela *)
2347 srelgot->contents)
2348 + srelgot->reloc_count));
2349 ++srelgot->reloc_count;
2350 }
2351 else
2352 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2353 }
2354 }
2355 relocation = sgot->output_offset + off - got_base;
2356 goto do_default;
2357
2358 case R_SPARC_WPLT30:
2359 case R_SPARC_PLT32:
2360 case R_SPARC_HIPLT22:
2361 case R_SPARC_LOPLT10:
2362 case R_SPARC_PCPLT32:
2363 case R_SPARC_PCPLT22:
2364 case R_SPARC_PCPLT10:
2365 case R_SPARC_PLT64:
2366 /* Relocation is to the entry for this symbol in the
2367 procedure linkage table. */
2368 BFD_ASSERT (h != NULL);
2369
2370 if (h->plt.offset == (bfd_vma) -1)
2371 {
2372 /* We didn't make a PLT entry for this symbol. This
2373 happens when statically linking PIC code, or when
2374 using -Bsymbolic. */
2375 goto do_default;
2376 }
2377
2378 if (splt == NULL)
2379 {
2380 splt = bfd_get_section_by_name (dynobj, ".plt");
2381 BFD_ASSERT (splt != NULL);
2382 }
2383
2384 relocation = (splt->output_section->vma
2385 + splt->output_offset
2386 + sparc64_elf_plt_entry_offset (h->plt.offset));
2387 unresolved_reloc = false;
2388 if (r_type == R_SPARC_WPLT30)
2389 goto do_wplt30;
2390 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2391 {
2392 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2393 is_plt = true;
2394 goto do_dynreloc;
2395 }
2396 goto do_default;
2397
2398 case R_SPARC_OLO10:
2399 {
2400 bfd_vma x;
2401
2402 relocation += rel->r_addend;
2403 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2404
2405 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2406 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2407 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2408
2409 r = bfd_check_overflow (howto->complain_on_overflow,
2410 howto->bitsize, howto->rightshift,
2411 bfd_arch_bits_per_address (input_bfd),
2412 relocation);
2413 }
2414 break;
2415
2416 case R_SPARC_WDISP16:
2417 {
2418 bfd_vma x;
2419
2420 relocation += rel->r_addend;
2421 /* Adjust for pc-relative-ness. */
2422 relocation -= (input_section->output_section->vma
2423 + input_section->output_offset);
2424 relocation -= rel->r_offset;
2425
2426 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2427 x &= ~(bfd_vma) 0x303fff;
2428 x |= ((((relocation >> 2) & 0xc000) << 6)
2429 | ((relocation >> 2) & 0x3fff));
2430 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2431
2432 r = bfd_check_overflow (howto->complain_on_overflow,
2433 howto->bitsize, howto->rightshift,
2434 bfd_arch_bits_per_address (input_bfd),
2435 relocation);
2436 }
2437 break;
2438
2439 case R_SPARC_HIX22:
2440 {
2441 bfd_vma x;
2442
2443 relocation += rel->r_addend;
2444 relocation = relocation ^ MINUS_ONE;
2445
2446 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2447 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2448 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2449
2450 r = bfd_check_overflow (howto->complain_on_overflow,
2451 howto->bitsize, howto->rightshift,
2452 bfd_arch_bits_per_address (input_bfd),
2453 relocation);
2454 }
2455 break;
2456
2457 case R_SPARC_LOX10:
2458 {
2459 bfd_vma x;
2460
2461 relocation += rel->r_addend;
2462 relocation = (relocation & 0x3ff) | 0x1c00;
2463
2464 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2465 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2466 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2467
2468 r = bfd_reloc_ok;
2469 }
2470 break;
2471
2472 case R_SPARC_WDISP30:
2473 do_wplt30:
2474 if (SEC_DO_RELAX (input_section)
2475 && rel->r_offset + 4 < input_section->_raw_size)
2476 {
2477 #define G0 0
2478 #define O7 15
2479 #define XCC (2 << 20)
2480 #define COND(x) (((x)&0xf)<<25)
2481 #define CONDA COND(0x8)
2482 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2483 #define INSN_BA (F2(0,2) | CONDA)
2484 #define INSN_OR F3(2, 0x2, 0)
2485 #define INSN_NOP F2(0,4)
2486
2487 bfd_vma x, y;
2488
2489 /* If the instruction is a call with either:
2490 restore
2491 arithmetic instruction with rd == %o7
2492 where rs1 != %o7 and rs2 if it is register != %o7
2493 then we can optimize if the call destination is near
2494 by changing the call into a branch always. */
2495 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2496 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2497 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2498 {
2499 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2500 || ((y & OP3(0x28)) == 0 /* arithmetic */
2501 && (y & RD(~0)) == RD(O7)))
2502 && (y & RS1(~0)) != RS1(O7)
2503 && ((y & F3I(~0))
2504 || (y & RS2(~0)) != RS2(O7)))
2505 {
2506 bfd_vma reloc;
2507
2508 reloc = relocation + rel->r_addend - rel->r_offset;
2509 reloc -= (input_section->output_section->vma
2510 + input_section->output_offset);
2511 if (reloc & 3)
2512 goto do_default;
2513
2514 /* Ensure the branch fits into simm22. */
2515 if ((reloc & ~(bfd_vma)0x7fffff)
2516 && ((reloc | 0x7fffff) != MINUS_ONE))
2517 goto do_default;
2518 reloc >>= 2;
2519
2520 /* Check whether it fits into simm19. */
2521 if ((reloc & 0x3c0000) == 0
2522 || (reloc & 0x3c0000) == 0x3c0000)
2523 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2524 else
2525 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2526 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2527 r = bfd_reloc_ok;
2528 if (rel->r_offset >= 4
2529 && (y & (0xffffffff ^ RS1(~0)))
2530 == (INSN_OR | RD(O7) | RS2(G0)))
2531 {
2532 bfd_vma z;
2533 unsigned int reg;
2534
2535 z = bfd_get_32 (input_bfd,
2536 contents + rel->r_offset - 4);
2537 if ((z & (0xffffffff ^ RD(~0)))
2538 != (INSN_OR | RS1(O7) | RS2(G0)))
2539 break;
2540
2541 /* The sequence was
2542 or %o7, %g0, %rN
2543 call foo
2544 or %rN, %g0, %o7
2545
2546 If call foo was replaced with ba, replace
2547 or %rN, %g0, %o7 with nop. */
2548
2549 reg = (y & RS1(~0)) >> 14;
2550 if (reg != ((z & RD(~0)) >> 25)
2551 || reg == G0 || reg == O7)
2552 break;
2553
2554 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2555 contents + rel->r_offset + 4);
2556 }
2557 break;
2558 }
2559 }
2560 }
2561 /* FALLTHROUGH */
2562
2563 default:
2564 do_default:
2565 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2566 contents, rel->r_offset,
2567 relocation, rel->r_addend);
2568 break;
2569 }
2570
2571 if (unresolved_reloc
2572 && !(info->shared
2573 && (input_section->flags & SEC_DEBUGGING) != 0
2574 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2575 (*_bfd_error_handler)
2576 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2577 bfd_archive_filename (input_bfd),
2578 bfd_get_section_name (input_bfd, input_section),
2579 (long) rel->r_offset,
2580 h->root.root.string);
2581
2582 switch (r)
2583 {
2584 case bfd_reloc_ok:
2585 break;
2586
2587 default:
2588 case bfd_reloc_outofrange:
2589 abort ();
2590
2591 case bfd_reloc_overflow:
2592 {
2593 const char *name;
2594
2595 /* The Solaris native linker silently disregards
2596 overflows. We don't, but this breaks stabs debugging
2597 info, whose relocations are only 32-bits wide. Ignore
2598 overflows in this case. */
2599 if (r_type == R_SPARC_32
2600 && (input_section->flags & SEC_DEBUGGING) != 0
2601 && strcmp (bfd_section_name (input_bfd, input_section),
2602 ".stab") == 0)
2603 break;
2604
2605 if (h != NULL)
2606 {
2607 if (h->root.type == bfd_link_hash_undefweak
2608 && howto->pc_relative)
2609 {
2610 /* Assume this is a call protected by other code that
2611 detect the symbol is undefined. If this is the case,
2612 we can safely ignore the overflow. If not, the
2613 program is hosed anyway, and a little warning isn't
2614 going to help. */
2615 break;
2616 }
2617
2618 name = h->root.root.string;
2619 }
2620 else
2621 {
2622 name = (bfd_elf_string_from_elf_section
2623 (input_bfd,
2624 symtab_hdr->sh_link,
2625 sym->st_name));
2626 if (name == NULL)
2627 return false;
2628 if (*name == '\0')
2629 name = bfd_section_name (input_bfd, sec);
2630 }
2631 if (! ((*info->callbacks->reloc_overflow)
2632 (info, name, howto->name, (bfd_vma) 0,
2633 input_bfd, input_section, rel->r_offset)))
2634 return false;
2635 }
2636 break;
2637 }
2638 }
2639
2640 return true;
2641 }
2642
2643 /* Finish up dynamic symbol handling. We set the contents of various
2644 dynamic sections here. */
2645
2646 static boolean
2647 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2648 bfd *output_bfd;
2649 struct bfd_link_info *info;
2650 struct elf_link_hash_entry *h;
2651 Elf_Internal_Sym *sym;
2652 {
2653 bfd *dynobj;
2654
2655 dynobj = elf_hash_table (info)->dynobj;
2656
2657 if (h->plt.offset != (bfd_vma) -1)
2658 {
2659 asection *splt;
2660 asection *srela;
2661 Elf_Internal_Rela rela;
2662
2663 /* This symbol has an entry in the PLT. Set it up. */
2664
2665 BFD_ASSERT (h->dynindx != -1);
2666
2667 splt = bfd_get_section_by_name (dynobj, ".plt");
2668 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2669 BFD_ASSERT (splt != NULL && srela != NULL);
2670
2671 /* Fill in the entry in the .rela.plt section. */
2672
2673 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2674 {
2675 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2676 rela.r_addend = 0;
2677 }
2678 else
2679 {
2680 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2681 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2682 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2683 -(splt->output_section->vma + splt->output_offset);
2684 }
2685 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2686 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2687
2688 /* Adjust for the first 4 reserved elements in the .plt section
2689 when setting the offset in the .rela.plt section.
2690 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2691 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2692
2693 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2694 ((Elf64_External_Rela *) srela->contents
2695 + (h->plt.offset - 4)));
2696
2697 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2698 {
2699 /* Mark the symbol as undefined, rather than as defined in
2700 the .plt section. Leave the value alone. */
2701 sym->st_shndx = SHN_UNDEF;
2702 /* If the symbol is weak, we do need to clear the value.
2703 Otherwise, the PLT entry would provide a definition for
2704 the symbol even if the symbol wasn't defined anywhere,
2705 and so the symbol would never be NULL. */
2706 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2707 == 0)
2708 sym->st_value = 0;
2709 }
2710 }
2711
2712 if (h->got.offset != (bfd_vma) -1)
2713 {
2714 asection *sgot;
2715 asection *srela;
2716 Elf_Internal_Rela rela;
2717
2718 /* This symbol has an entry in the GOT. Set it up. */
2719
2720 sgot = bfd_get_section_by_name (dynobj, ".got");
2721 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2722 BFD_ASSERT (sgot != NULL && srela != NULL);
2723
2724 rela.r_offset = (sgot->output_section->vma
2725 + sgot->output_offset
2726 + (h->got.offset &~ (bfd_vma) 1));
2727
2728 /* If this is a -Bsymbolic link, and the symbol is defined
2729 locally, we just want to emit a RELATIVE reloc. Likewise if
2730 the symbol was forced to be local because of a version file.
2731 The entry in the global offset table will already have been
2732 initialized in the relocate_section function. */
2733 if (info->shared
2734 && (info->symbolic || h->dynindx == -1)
2735 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2736 {
2737 asection *sec = h->root.u.def.section;
2738 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2739 rela.r_addend = (h->root.u.def.value
2740 + sec->output_section->vma
2741 + sec->output_offset);
2742 }
2743 else
2744 {
2745 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2746 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2747 rela.r_addend = 0;
2748 }
2749
2750 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2751 ((Elf64_External_Rela *) srela->contents
2752 + srela->reloc_count));
2753 ++srela->reloc_count;
2754 }
2755
2756 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2757 {
2758 asection *s;
2759 Elf_Internal_Rela rela;
2760
2761 /* This symbols needs a copy reloc. Set it up. */
2762
2763 BFD_ASSERT (h->dynindx != -1);
2764
2765 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2766 ".rela.bss");
2767 BFD_ASSERT (s != NULL);
2768
2769 rela.r_offset = (h->root.u.def.value
2770 + h->root.u.def.section->output_section->vma
2771 + h->root.u.def.section->output_offset);
2772 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2773 rela.r_addend = 0;
2774 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2775 ((Elf64_External_Rela *) s->contents
2776 + s->reloc_count));
2777 ++s->reloc_count;
2778 }
2779
2780 /* Mark some specially defined symbols as absolute. */
2781 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2782 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2783 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2784 sym->st_shndx = SHN_ABS;
2785
2786 return true;
2787 }
2788
2789 /* Finish up the dynamic sections. */
2790
2791 static boolean
2792 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2793 bfd *output_bfd;
2794 struct bfd_link_info *info;
2795 {
2796 bfd *dynobj;
2797 int stt_regidx = -1;
2798 asection *sdyn;
2799 asection *sgot;
2800
2801 dynobj = elf_hash_table (info)->dynobj;
2802
2803 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2804
2805 if (elf_hash_table (info)->dynamic_sections_created)
2806 {
2807 asection *splt;
2808 Elf64_External_Dyn *dyncon, *dynconend;
2809
2810 splt = bfd_get_section_by_name (dynobj, ".plt");
2811 BFD_ASSERT (splt != NULL && sdyn != NULL);
2812
2813 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2814 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2815 for (; dyncon < dynconend; dyncon++)
2816 {
2817 Elf_Internal_Dyn dyn;
2818 const char *name;
2819 boolean size;
2820
2821 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2822
2823 switch (dyn.d_tag)
2824 {
2825 case DT_PLTGOT: name = ".plt"; size = false; break;
2826 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2827 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2828 case DT_SPARC_REGISTER:
2829 if (stt_regidx == -1)
2830 {
2831 stt_regidx =
2832 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2833 if (stt_regidx == -1)
2834 return false;
2835 }
2836 dyn.d_un.d_val = stt_regidx++;
2837 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2838 /* fallthrough */
2839 default: name = NULL; size = false; break;
2840 }
2841
2842 if (name != NULL)
2843 {
2844 asection *s;
2845
2846 s = bfd_get_section_by_name (output_bfd, name);
2847 if (s == NULL)
2848 dyn.d_un.d_val = 0;
2849 else
2850 {
2851 if (! size)
2852 dyn.d_un.d_ptr = s->vma;
2853 else
2854 {
2855 if (s->_cooked_size != 0)
2856 dyn.d_un.d_val = s->_cooked_size;
2857 else
2858 dyn.d_un.d_val = s->_raw_size;
2859 }
2860 }
2861 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2862 }
2863 }
2864
2865 /* Initialize the contents of the .plt section. */
2866 if (splt->_raw_size > 0)
2867 {
2868 sparc64_elf_build_plt (output_bfd, splt->contents,
2869 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2870 }
2871
2872 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2873 PLT_ENTRY_SIZE;
2874 }
2875
2876 /* Set the first entry in the global offset table to the address of
2877 the dynamic section. */
2878 sgot = bfd_get_section_by_name (dynobj, ".got");
2879 BFD_ASSERT (sgot != NULL);
2880 if (sgot->_raw_size > 0)
2881 {
2882 if (sdyn == NULL)
2883 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2884 else
2885 bfd_put_64 (output_bfd,
2886 sdyn->output_section->vma + sdyn->output_offset,
2887 sgot->contents);
2888 }
2889
2890 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2891
2892 return true;
2893 }
2894
2895 static enum elf_reloc_type_class
2896 sparc64_elf_reloc_type_class (rela)
2897 const Elf_Internal_Rela *rela;
2898 {
2899 switch ((int) ELF64_R_TYPE (rela->r_info))
2900 {
2901 case R_SPARC_RELATIVE:
2902 return reloc_class_relative;
2903 case R_SPARC_JMP_SLOT:
2904 return reloc_class_plt;
2905 case R_SPARC_COPY:
2906 return reloc_class_copy;
2907 default:
2908 return reloc_class_normal;
2909 }
2910 }
2911 \f
2912 /* Functions for dealing with the e_flags field. */
2913
2914 /* Merge backend specific data from an object file to the output
2915 object file when linking. */
2916
2917 static boolean
2918 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2919 bfd *ibfd;
2920 bfd *obfd;
2921 {
2922 boolean error;
2923 flagword new_flags, old_flags;
2924 int new_mm, old_mm;
2925
2926 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2927 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2928 return true;
2929
2930 new_flags = elf_elfheader (ibfd)->e_flags;
2931 old_flags = elf_elfheader (obfd)->e_flags;
2932
2933 if (!elf_flags_init (obfd)) /* First call, no flags set */
2934 {
2935 elf_flags_init (obfd) = true;
2936 elf_elfheader (obfd)->e_flags = new_flags;
2937 }
2938
2939 else if (new_flags == old_flags) /* Compatible flags are ok */
2940 ;
2941
2942 else /* Incompatible flags */
2943 {
2944 error = false;
2945
2946 #define EF_SPARC_ISA_EXTENSIONS \
2947 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2948
2949 if ((ibfd->flags & DYNAMIC) != 0)
2950 {
2951 /* We don't want dynamic objects memory ordering and
2952 architecture to have any role. That's what dynamic linker
2953 should do. */
2954 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2955 new_flags |= (old_flags
2956 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2957 }
2958 else
2959 {
2960 /* Choose the highest architecture requirements. */
2961 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2962 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2963 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
2964 && (old_flags & EF_SPARC_HAL_R1))
2965 {
2966 error = true;
2967 (*_bfd_error_handler)
2968 (_("%s: linking UltraSPARC specific with HAL specific code"),
2969 bfd_archive_filename (ibfd));
2970 }
2971 /* Choose the most restrictive memory ordering. */
2972 old_mm = (old_flags & EF_SPARCV9_MM);
2973 new_mm = (new_flags & EF_SPARCV9_MM);
2974 old_flags &= ~EF_SPARCV9_MM;
2975 new_flags &= ~EF_SPARCV9_MM;
2976 if (new_mm < old_mm)
2977 old_mm = new_mm;
2978 old_flags |= old_mm;
2979 new_flags |= old_mm;
2980 }
2981
2982 /* Warn about any other mismatches */
2983 if (new_flags != old_flags)
2984 {
2985 error = true;
2986 (*_bfd_error_handler)
2987 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2988 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
2989 }
2990
2991 elf_elfheader (obfd)->e_flags = old_flags;
2992
2993 if (error)
2994 {
2995 bfd_set_error (bfd_error_bad_value);
2996 return false;
2997 }
2998 }
2999 return true;
3000 }
3001
3002 /* MARCO: Set the correct entry size for the .stab section. */
3003
3004 static boolean
3005 sparc64_elf_fake_sections (abfd, hdr, sec)
3006 bfd *abfd ATTRIBUTE_UNUSED;
3007 Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3008 asection *sec;
3009 {
3010 const char *name;
3011
3012 name = bfd_get_section_name (abfd, sec);
3013
3014 if (strcmp (name, ".stab") == 0)
3015 {
3016 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3017 elf_section_data (sec)->this_hdr.sh_entsize = 12;
3018 }
3019
3020 return true;
3021 }
3022 \f
3023 /* Print a STT_REGISTER symbol to file FILE. */
3024
3025 static const char *
3026 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3027 bfd *abfd ATTRIBUTE_UNUSED;
3028 PTR filep;
3029 asymbol *symbol;
3030 {
3031 FILE *file = (FILE *) filep;
3032 int reg, type;
3033
3034 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3035 != STT_REGISTER)
3036 return NULL;
3037
3038 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3039 type = symbol->flags;
3040 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3041 ((type & BSF_LOCAL)
3042 ? (type & BSF_GLOBAL) ? '!' : 'l'
3043 : (type & BSF_GLOBAL) ? 'g' : ' '),
3044 (type & BSF_WEAK) ? 'w' : ' ');
3045 if (symbol->name == NULL || symbol->name [0] == '\0')
3046 return "#scratch";
3047 else
3048 return symbol->name;
3049 }
3050 \f
3051 /* Set the right machine number for a SPARC64 ELF file. */
3052
3053 static boolean
3054 sparc64_elf_object_p (abfd)
3055 bfd *abfd;
3056 {
3057 unsigned long mach = bfd_mach_sparc_v9;
3058
3059 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3060 mach = bfd_mach_sparc_v9b;
3061 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3062 mach = bfd_mach_sparc_v9a;
3063 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3064 }
3065
3066 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3067 standard ELF, because R_SPARC_OLO10 has secondary addend in
3068 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3069 relocation handling routines. */
3070
3071 const struct elf_size_info sparc64_elf_size_info =
3072 {
3073 sizeof (Elf64_External_Ehdr),
3074 sizeof (Elf64_External_Phdr),
3075 sizeof (Elf64_External_Shdr),
3076 sizeof (Elf64_External_Rel),
3077 sizeof (Elf64_External_Rela),
3078 sizeof (Elf64_External_Sym),
3079 sizeof (Elf64_External_Dyn),
3080 sizeof (Elf_External_Note),
3081 4, /* hash-table entry size */
3082 /* internal relocations per external relocations.
3083 For link purposes we use just 1 internal per
3084 1 external, for assembly and slurp symbol table
3085 we use 2. */
3086 1,
3087 64, /* arch_size */
3088 8, /* file_align */
3089 ELFCLASS64,
3090 EV_CURRENT,
3091 bfd_elf64_write_out_phdrs,
3092 bfd_elf64_write_shdrs_and_ehdr,
3093 sparc64_elf_write_relocs,
3094 bfd_elf64_swap_symbol_in,
3095 bfd_elf64_swap_symbol_out,
3096 sparc64_elf_slurp_reloc_table,
3097 bfd_elf64_slurp_symbol_table,
3098 bfd_elf64_swap_dyn_in,
3099 bfd_elf64_swap_dyn_out,
3100 NULL,
3101 NULL,
3102 NULL,
3103 NULL
3104 };
3105
3106 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3107 #define TARGET_BIG_NAME "elf64-sparc"
3108 #define ELF_ARCH bfd_arch_sparc
3109 #define ELF_MAXPAGESIZE 0x100000
3110
3111 /* This is the official ABI value. */
3112 #define ELF_MACHINE_CODE EM_SPARCV9
3113
3114 /* This is the value that we used before the ABI was released. */
3115 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3116
3117 #define bfd_elf64_bfd_link_hash_table_create \
3118 sparc64_elf_bfd_link_hash_table_create
3119
3120 #define elf_info_to_howto \
3121 sparc64_elf_info_to_howto
3122 #define bfd_elf64_get_reloc_upper_bound \
3123 sparc64_elf_get_reloc_upper_bound
3124 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3125 sparc64_elf_get_dynamic_reloc_upper_bound
3126 #define bfd_elf64_canonicalize_dynamic_reloc \
3127 sparc64_elf_canonicalize_dynamic_reloc
3128 #define bfd_elf64_bfd_reloc_type_lookup \
3129 sparc64_elf_reloc_type_lookup
3130 #define bfd_elf64_bfd_relax_section \
3131 sparc64_elf_relax_section
3132
3133 #define elf_backend_create_dynamic_sections \
3134 _bfd_elf_create_dynamic_sections
3135 #define elf_backend_add_symbol_hook \
3136 sparc64_elf_add_symbol_hook
3137 #define elf_backend_get_symbol_type \
3138 sparc64_elf_get_symbol_type
3139 #define elf_backend_symbol_processing \
3140 sparc64_elf_symbol_processing
3141 #define elf_backend_check_relocs \
3142 sparc64_elf_check_relocs
3143 #define elf_backend_adjust_dynamic_symbol \
3144 sparc64_elf_adjust_dynamic_symbol
3145 #define elf_backend_size_dynamic_sections \
3146 sparc64_elf_size_dynamic_sections
3147 #define elf_backend_relocate_section \
3148 sparc64_elf_relocate_section
3149 #define elf_backend_finish_dynamic_symbol \
3150 sparc64_elf_finish_dynamic_symbol
3151 #define elf_backend_finish_dynamic_sections \
3152 sparc64_elf_finish_dynamic_sections
3153 #define elf_backend_print_symbol_all \
3154 sparc64_elf_print_symbol_all
3155 #define elf_backend_output_arch_syms \
3156 sparc64_elf_output_arch_syms
3157 #define bfd_elf64_bfd_merge_private_bfd_data \
3158 sparc64_elf_merge_private_bfd_data
3159 #define elf_backend_fake_sections \
3160 sparc64_elf_fake_sections
3161
3162 #define elf_backend_size_info \
3163 sparc64_elf_size_info
3164 #define elf_backend_object_p \
3165 sparc64_elf_object_p
3166 #define elf_backend_reloc_type_class \
3167 sparc64_elf_reloc_type_class
3168
3169 #define elf_backend_want_got_plt 0
3170 #define elf_backend_plt_readonly 0
3171 #define elf_backend_want_plt_sym 1
3172
3173 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3174 #define elf_backend_plt_alignment 8
3175
3176 #define elf_backend_got_header_size 8
3177 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3178
3179 #include "elf64-target.h"
This page took 0.145791 seconds and 4 git commands to generate.