* elf32-sparc.c (elf32_sparc_omit_section_dynsym): New function.
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50 PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
53
54 static bfd_boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static bfd_boolean sparc64_elf_omit_section_dynsym
60 PARAMS ((bfd *, struct bfd_link_info *, asection *));
61 static bfd_boolean sparc64_elf_size_dynamic_sections
62 PARAMS ((bfd *, struct bfd_link_info *));
63 static int sparc64_elf_get_symbol_type
64 PARAMS (( Elf_Internal_Sym *, int));
65 static bfd_boolean sparc64_elf_add_symbol_hook
66 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
67 const char **, flagword *, asection **, bfd_vma *));
68 static bfd_boolean sparc64_elf_output_arch_syms
69 PARAMS ((bfd *, struct bfd_link_info *, PTR,
70 bfd_boolean (*) (PTR, const char *, Elf_Internal_Sym *,
71 asection *, struct elf_link_hash_entry *)));
72 static void sparc64_elf_symbol_processing
73 PARAMS ((bfd *, asymbol *));
74
75 static bfd_boolean sparc64_elf_merge_private_bfd_data
76 PARAMS ((bfd *, bfd *));
77
78 static bfd_boolean sparc64_elf_fake_sections
79 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
80
81 static const char *sparc64_elf_print_symbol_all
82 PARAMS ((bfd *, PTR, asymbol *));
83 static bfd_boolean sparc64_elf_new_section_hook
84 PARAMS ((bfd *, asection *));
85 static bfd_boolean sparc64_elf_relax_section
86 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
87 static bfd_boolean sparc64_elf_relocate_section
88 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
89 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
90 static bfd_boolean sparc64_elf_finish_dynamic_symbol
91 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
92 Elf_Internal_Sym *));
93 static bfd_boolean sparc64_elf_finish_dynamic_sections
94 PARAMS ((bfd *, struct bfd_link_info *));
95 static bfd_boolean sparc64_elf_object_p PARAMS ((bfd *));
96 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
97 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
98 static bfd_boolean sparc64_elf_slurp_one_reloc_table
99 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, bfd_boolean));
100 static bfd_boolean sparc64_elf_slurp_reloc_table
101 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
102 static long sparc64_elf_canonicalize_reloc
103 PARAMS ((bfd *, asection *, arelent **, asymbol **));
104 static long sparc64_elf_canonicalize_dynamic_reloc
105 PARAMS ((bfd *, arelent **, asymbol **));
106 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
107 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
108 PARAMS ((const Elf_Internal_Rela *));
109 \f
110 /* The relocation "howto" table. */
111
112 static bfd_reloc_status_type sparc_elf_notsup_reloc
113 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
114 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
115 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
116 static bfd_reloc_status_type sparc_elf_hix22_reloc
117 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
118 static bfd_reloc_status_type sparc_elf_lox10_reloc
119 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
120
121 static reloc_howto_type sparc64_elf_howto_table[] =
122 {
123 HOWTO(R_SPARC_NONE, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", FALSE,0,0x00000000,TRUE),
124 HOWTO(R_SPARC_8, 0,0, 8,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", FALSE,0,0x000000ff,TRUE),
125 HOWTO(R_SPARC_16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", FALSE,0,0x0000ffff,TRUE),
126 HOWTO(R_SPARC_32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", FALSE,0,0xffffffff,TRUE),
127 HOWTO(R_SPARC_DISP8, 0,0, 8,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", FALSE,0,0x000000ff,TRUE),
128 HOWTO(R_SPARC_DISP16, 0,1,16,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", FALSE,0,0x0000ffff,TRUE),
129 HOWTO(R_SPARC_DISP32, 0,2,32,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", FALSE,0,0xffffffff,TRUE),
130 HOWTO(R_SPARC_WDISP30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", FALSE,0,0x3fffffff,TRUE),
131 HOWTO(R_SPARC_WDISP22, 2,2,22,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", FALSE,0,0x003fffff,TRUE),
132 HOWTO(R_SPARC_HI22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", FALSE,0,0x003fffff,TRUE),
133 HOWTO(R_SPARC_22, 0,2,22,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", FALSE,0,0x003fffff,TRUE),
134 HOWTO(R_SPARC_13, 0,2,13,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", FALSE,0,0x00001fff,TRUE),
135 HOWTO(R_SPARC_LO10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", FALSE,0,0x000003ff,TRUE),
136 HOWTO(R_SPARC_GOT10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", FALSE,0,0x000003ff,TRUE),
137 HOWTO(R_SPARC_GOT13, 0,2,13,FALSE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", FALSE,0,0x00001fff,TRUE),
138 HOWTO(R_SPARC_GOT22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", FALSE,0,0x003fffff,TRUE),
139 HOWTO(R_SPARC_PC10, 0,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", FALSE,0,0x000003ff,TRUE),
140 HOWTO(R_SPARC_PC22, 10,2,22,TRUE, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", FALSE,0,0x003fffff,TRUE),
141 HOWTO(R_SPARC_WPLT30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", FALSE,0,0x3fffffff,TRUE),
142 HOWTO(R_SPARC_COPY, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", FALSE,0,0x00000000,TRUE),
143 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",FALSE,0,0x00000000,TRUE),
144 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",FALSE,0,0x00000000,TRUE),
145 HOWTO(R_SPARC_RELATIVE, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",FALSE,0,0x00000000,TRUE),
146 HOWTO(R_SPARC_UA32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", FALSE,0,0xffffffff,TRUE),
147 #ifndef SPARC64_OLD_RELOCS
148 HOWTO(R_SPARC_PLT32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", FALSE,0,0xffffffff,TRUE),
149 /* These aren't implemented yet. */
150 HOWTO(R_SPARC_HIPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", FALSE,0,0x00000000,TRUE),
151 HOWTO(R_SPARC_LOPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", FALSE,0,0x00000000,TRUE),
152 HOWTO(R_SPARC_PCPLT32, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", FALSE,0,0x00000000,TRUE),
153 HOWTO(R_SPARC_PCPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", FALSE,0,0x00000000,TRUE),
154 HOWTO(R_SPARC_PCPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", FALSE,0,0x00000000,TRUE),
155 #endif
156 HOWTO(R_SPARC_10, 0,2,10,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", FALSE,0,0x000003ff,TRUE),
157 HOWTO(R_SPARC_11, 0,2,11,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", FALSE,0,0x000007ff,TRUE),
158 HOWTO(R_SPARC_64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", FALSE,0,MINUS_ONE, TRUE),
159 HOWTO(R_SPARC_OLO10, 0,2,13,FALSE,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", FALSE,0,0x00001fff,TRUE),
160 HOWTO(R_SPARC_HH22, 42,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", FALSE,0,0x003fffff,TRUE),
161 HOWTO(R_SPARC_HM10, 32,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", FALSE,0,0x000003ff,TRUE),
162 HOWTO(R_SPARC_LM22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", FALSE,0,0x003fffff,TRUE),
163 HOWTO(R_SPARC_PC_HH22, 42,2,22,TRUE, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", FALSE,0,0x003fffff,TRUE),
164 HOWTO(R_SPARC_PC_HM10, 32,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", FALSE,0,0x000003ff,TRUE),
165 HOWTO(R_SPARC_PC_LM22, 10,2,22,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", FALSE,0,0x003fffff,TRUE),
166 HOWTO(R_SPARC_WDISP16, 2,2,16,TRUE, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", FALSE,0,0x00000000,TRUE),
167 HOWTO(R_SPARC_WDISP19, 2,2,19,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", FALSE,0,0x0007ffff,TRUE),
168 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",FALSE,0,0x00000000,TRUE),
169 HOWTO(R_SPARC_7, 0,2, 7,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", FALSE,0,0x0000007f,TRUE),
170 HOWTO(R_SPARC_5, 0,2, 5,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", FALSE,0,0x0000001f,TRUE),
171 HOWTO(R_SPARC_6, 0,2, 6,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", FALSE,0,0x0000003f,TRUE),
172 HOWTO(R_SPARC_DISP64, 0,4,64,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", FALSE,0,MINUS_ONE, TRUE),
173 HOWTO(R_SPARC_PLT64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", FALSE,0,MINUS_ONE, TRUE),
174 HOWTO(R_SPARC_HIX22, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", FALSE,0,MINUS_ONE, FALSE),
175 HOWTO(R_SPARC_LOX10, 0,4, 0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", FALSE,0,MINUS_ONE, FALSE),
176 HOWTO(R_SPARC_H44, 22,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", FALSE,0,0x003fffff,FALSE),
177 HOWTO(R_SPARC_M44, 12,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", FALSE,0,0x000003ff,FALSE),
178 HOWTO(R_SPARC_L44, 0,2,13,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", FALSE,0,0x00000fff,FALSE),
179 HOWTO(R_SPARC_REGISTER, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",FALSE,0,MINUS_ONE, FALSE),
180 HOWTO(R_SPARC_UA64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", FALSE,0,MINUS_ONE, TRUE),
181 HOWTO(R_SPARC_UA16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", FALSE,0,0x0000ffff,TRUE),
182 HOWTO(R_SPARC_TLS_GD_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_HI22",FALSE,0,0x003fffff,TRUE),
183 HOWTO(R_SPARC_TLS_GD_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_LO10",FALSE,0,0x000003ff,TRUE),
184 HOWTO(R_SPARC_TLS_GD_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_ADD",FALSE,0,0x00000000,TRUE),
185 HOWTO(R_SPARC_TLS_GD_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_CALL",FALSE,0,0x3fffffff,TRUE),
186 HOWTO(R_SPARC_TLS_LDM_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_HI22",FALSE,0,0x003fffff,TRUE),
187 HOWTO(R_SPARC_TLS_LDM_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_LO10",FALSE,0,0x000003ff,TRUE),
188 HOWTO(R_SPARC_TLS_LDM_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_ADD",FALSE,0,0x00000000,TRUE),
189 HOWTO(R_SPARC_TLS_LDM_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_CALL",FALSE,0,0x3fffffff,TRUE),
190 HOWTO(R_SPARC_TLS_LDO_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_TLS_LDO_HIX22",FALSE,0,0x003fffff, FALSE),
191 HOWTO(R_SPARC_TLS_LDO_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LDO_LOX10",FALSE,0,0x000003ff, FALSE),
192 HOWTO(R_SPARC_TLS_LDO_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDO_ADD",FALSE,0,0x00000000,TRUE),
193 HOWTO(R_SPARC_TLS_IE_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_HI22",FALSE,0,0x003fffff,TRUE),
194 HOWTO(R_SPARC_TLS_IE_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LO10",FALSE,0,0x000003ff,TRUE),
195 HOWTO(R_SPARC_TLS_IE_LD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LD",FALSE,0,0x00000000,TRUE),
196 HOWTO(R_SPARC_TLS_IE_LDX,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LDX",FALSE,0,0x00000000,TRUE),
197 HOWTO(R_SPARC_TLS_IE_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_ADD",FALSE,0,0x00000000,TRUE),
198 HOWTO(R_SPARC_TLS_LE_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_TLS_LE_HIX22",FALSE,0,0x003fffff, FALSE),
199 HOWTO(R_SPARC_TLS_LE_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LE_LOX10",FALSE,0,0x000003ff, FALSE),
200 HOWTO(R_SPARC_TLS_DTPMOD32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD32",FALSE,0,0x00000000,TRUE),
201 HOWTO(R_SPARC_TLS_DTPMOD64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD64",FALSE,0,0x00000000,TRUE),
202 HOWTO(R_SPARC_TLS_DTPOFF32,0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF32",FALSE,0,0xffffffff,TRUE),
203 HOWTO(R_SPARC_TLS_DTPOFF64,0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF64",FALSE,0,MINUS_ONE,TRUE),
204 HOWTO(R_SPARC_TLS_TPOFF32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF32",FALSE,0,0x00000000,TRUE),
205 HOWTO(R_SPARC_TLS_TPOFF64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF64",FALSE,0,0x00000000,TRUE)
206 };
207
208 struct elf_reloc_map {
209 bfd_reloc_code_real_type bfd_reloc_val;
210 unsigned char elf_reloc_val;
211 };
212
213 static const struct elf_reloc_map sparc_reloc_map[] =
214 {
215 { BFD_RELOC_NONE, R_SPARC_NONE, },
216 { BFD_RELOC_16, R_SPARC_16, },
217 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
218 { BFD_RELOC_8, R_SPARC_8 },
219 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
220 { BFD_RELOC_CTOR, R_SPARC_64 },
221 { BFD_RELOC_32, R_SPARC_32 },
222 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
223 { BFD_RELOC_HI22, R_SPARC_HI22 },
224 { BFD_RELOC_LO10, R_SPARC_LO10, },
225 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
226 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
227 { BFD_RELOC_SPARC22, R_SPARC_22 },
228 { BFD_RELOC_SPARC13, R_SPARC_13 },
229 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
230 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
231 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
232 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
233 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
234 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
235 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
236 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
237 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
238 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
239 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
240 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
241 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
242 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
243 { BFD_RELOC_SPARC_10, R_SPARC_10 },
244 { BFD_RELOC_SPARC_11, R_SPARC_11 },
245 { BFD_RELOC_SPARC_64, R_SPARC_64 },
246 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
247 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
248 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
249 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
250 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
251 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
252 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
253 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
254 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
255 { BFD_RELOC_SPARC_7, R_SPARC_7 },
256 { BFD_RELOC_SPARC_5, R_SPARC_5 },
257 { BFD_RELOC_SPARC_6, R_SPARC_6 },
258 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
259 { BFD_RELOC_SPARC_TLS_GD_HI22, R_SPARC_TLS_GD_HI22 },
260 { BFD_RELOC_SPARC_TLS_GD_LO10, R_SPARC_TLS_GD_LO10 },
261 { BFD_RELOC_SPARC_TLS_GD_ADD, R_SPARC_TLS_GD_ADD },
262 { BFD_RELOC_SPARC_TLS_GD_CALL, R_SPARC_TLS_GD_CALL },
263 { BFD_RELOC_SPARC_TLS_LDM_HI22, R_SPARC_TLS_LDM_HI22 },
264 { BFD_RELOC_SPARC_TLS_LDM_LO10, R_SPARC_TLS_LDM_LO10 },
265 { BFD_RELOC_SPARC_TLS_LDM_ADD, R_SPARC_TLS_LDM_ADD },
266 { BFD_RELOC_SPARC_TLS_LDM_CALL, R_SPARC_TLS_LDM_CALL },
267 { BFD_RELOC_SPARC_TLS_LDO_HIX22, R_SPARC_TLS_LDO_HIX22 },
268 { BFD_RELOC_SPARC_TLS_LDO_LOX10, R_SPARC_TLS_LDO_LOX10 },
269 { BFD_RELOC_SPARC_TLS_LDO_ADD, R_SPARC_TLS_LDO_ADD },
270 { BFD_RELOC_SPARC_TLS_IE_HI22, R_SPARC_TLS_IE_HI22 },
271 { BFD_RELOC_SPARC_TLS_IE_LO10, R_SPARC_TLS_IE_LO10 },
272 { BFD_RELOC_SPARC_TLS_IE_LD, R_SPARC_TLS_IE_LD },
273 { BFD_RELOC_SPARC_TLS_IE_LDX, R_SPARC_TLS_IE_LDX },
274 { BFD_RELOC_SPARC_TLS_IE_ADD, R_SPARC_TLS_IE_ADD },
275 { BFD_RELOC_SPARC_TLS_LE_HIX22, R_SPARC_TLS_LE_HIX22 },
276 { BFD_RELOC_SPARC_TLS_LE_LOX10, R_SPARC_TLS_LE_LOX10 },
277 { BFD_RELOC_SPARC_TLS_DTPMOD32, R_SPARC_TLS_DTPMOD32 },
278 { BFD_RELOC_SPARC_TLS_DTPMOD64, R_SPARC_TLS_DTPMOD64 },
279 { BFD_RELOC_SPARC_TLS_DTPOFF32, R_SPARC_TLS_DTPOFF32 },
280 { BFD_RELOC_SPARC_TLS_DTPOFF64, R_SPARC_TLS_DTPOFF64 },
281 { BFD_RELOC_SPARC_TLS_TPOFF32, R_SPARC_TLS_TPOFF32 },
282 { BFD_RELOC_SPARC_TLS_TPOFF64, R_SPARC_TLS_TPOFF64 },
283 #ifndef SPARC64_OLD_RELOCS
284 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
285 #endif
286 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
287 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
288 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
289 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
290 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
291 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
292 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
293 };
294
295 static reloc_howto_type *
296 sparc64_elf_reloc_type_lookup (abfd, code)
297 bfd *abfd ATTRIBUTE_UNUSED;
298 bfd_reloc_code_real_type code;
299 {
300 unsigned int i;
301 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
302 {
303 if (sparc_reloc_map[i].bfd_reloc_val == code)
304 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
305 }
306 return 0;
307 }
308
309 static void
310 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
311 bfd *abfd ATTRIBUTE_UNUSED;
312 arelent *cache_ptr;
313 Elf_Internal_Rela *dst;
314 {
315 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
316 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
317 }
318 \f
319 struct sparc64_elf_section_data
320 {
321 struct bfd_elf_section_data elf;
322 unsigned int do_relax, reloc_count;
323 };
324
325 #define sec_do_relax(sec) \
326 ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax
327 #define canon_reloc_count(sec) \
328 ((struct sparc64_elf_section_data *) elf_section_data (sec))->reloc_count
329
330 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
331 section can represent up to two relocs, we must tell the user to allocate
332 more space. */
333
334 static long
335 sparc64_elf_get_reloc_upper_bound (abfd, sec)
336 bfd *abfd ATTRIBUTE_UNUSED;
337 asection *sec;
338 {
339 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
340 }
341
342 static long
343 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
344 bfd *abfd;
345 {
346 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
347 }
348
349 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
350 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
351 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
352 for the same location, R_SPARC_LO10 and R_SPARC_13. */
353
354 static bfd_boolean
355 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
356 bfd *abfd;
357 asection *asect;
358 Elf_Internal_Shdr *rel_hdr;
359 asymbol **symbols;
360 bfd_boolean dynamic;
361 {
362 PTR allocated = NULL;
363 bfd_byte *native_relocs;
364 arelent *relent;
365 unsigned int i;
366 int entsize;
367 bfd_size_type count;
368 arelent *relents;
369
370 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
371 if (allocated == NULL)
372 goto error_return;
373
374 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
375 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
376 goto error_return;
377
378 native_relocs = (bfd_byte *) allocated;
379
380 relents = asect->relocation + canon_reloc_count (asect);
381
382 entsize = rel_hdr->sh_entsize;
383 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
384
385 count = rel_hdr->sh_size / entsize;
386
387 for (i = 0, relent = relents; i < count;
388 i++, relent++, native_relocs += entsize)
389 {
390 Elf_Internal_Rela rela;
391
392 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
393
394 /* The address of an ELF reloc is section relative for an object
395 file, and absolute for an executable file or shared library.
396 The address of a normal BFD reloc is always section relative,
397 and the address of a dynamic reloc is absolute.. */
398 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
399 relent->address = rela.r_offset;
400 else
401 relent->address = rela.r_offset - asect->vma;
402
403 if (ELF64_R_SYM (rela.r_info) == 0)
404 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
405 else
406 {
407 asymbol **ps, *s;
408
409 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
410 s = *ps;
411
412 /* Canonicalize ELF section symbols. FIXME: Why? */
413 if ((s->flags & BSF_SECTION_SYM) == 0)
414 relent->sym_ptr_ptr = ps;
415 else
416 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
417 }
418
419 relent->addend = rela.r_addend;
420
421 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
422 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
423 {
424 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
425 relent[1].address = relent->address;
426 relent++;
427 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
428 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
429 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
430 }
431 else
432 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
433 }
434
435 canon_reloc_count (asect) += relent - relents;
436
437 if (allocated != NULL)
438 free (allocated);
439
440 return TRUE;
441
442 error_return:
443 if (allocated != NULL)
444 free (allocated);
445 return FALSE;
446 }
447
448 /* Read in and swap the external relocs. */
449
450 static bfd_boolean
451 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
452 bfd *abfd;
453 asection *asect;
454 asymbol **symbols;
455 bfd_boolean dynamic;
456 {
457 struct bfd_elf_section_data * const d = elf_section_data (asect);
458 Elf_Internal_Shdr *rel_hdr;
459 Elf_Internal_Shdr *rel_hdr2;
460 bfd_size_type amt;
461
462 if (asect->relocation != NULL)
463 return TRUE;
464
465 if (! dynamic)
466 {
467 if ((asect->flags & SEC_RELOC) == 0
468 || asect->reloc_count == 0)
469 return TRUE;
470
471 rel_hdr = &d->rel_hdr;
472 rel_hdr2 = d->rel_hdr2;
473
474 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
475 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
476 }
477 else
478 {
479 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
480 case because relocations against this section may use the
481 dynamic symbol table, and in that case bfd_section_from_shdr
482 in elf.c does not update the RELOC_COUNT. */
483 if (asect->size == 0)
484 return TRUE;
485
486 rel_hdr = &d->this_hdr;
487 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
488 rel_hdr2 = NULL;
489 }
490
491 amt = asect->reloc_count;
492 amt *= 2 * sizeof (arelent);
493 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
494 if (asect->relocation == NULL)
495 return FALSE;
496
497 /* The sparc64_elf_slurp_one_reloc_table routine increments
498 canon_reloc_count. */
499 canon_reloc_count (asect) = 0;
500
501 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
502 dynamic))
503 return FALSE;
504
505 if (rel_hdr2
506 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
507 dynamic))
508 return FALSE;
509
510 return TRUE;
511 }
512
513 /* Canonicalize the relocs. */
514
515 static long
516 sparc64_elf_canonicalize_reloc (abfd, section, relptr, symbols)
517 bfd *abfd;
518 sec_ptr section;
519 arelent **relptr;
520 asymbol **symbols;
521 {
522 arelent *tblptr;
523 unsigned int i;
524 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
525
526 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
527 return -1;
528
529 tblptr = section->relocation;
530 for (i = 0; i < canon_reloc_count (section); i++)
531 *relptr++ = tblptr++;
532
533 *relptr = NULL;
534
535 return canon_reloc_count (section);
536 }
537
538
539 /* Canonicalize the dynamic relocation entries. Note that we return
540 the dynamic relocations as a single block, although they are
541 actually associated with particular sections; the interface, which
542 was designed for SunOS style shared libraries, expects that there
543 is only one set of dynamic relocs. Any section that was actually
544 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
545 the dynamic symbol table, is considered to be a dynamic reloc
546 section. */
547
548 static long
549 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
550 bfd *abfd;
551 arelent **storage;
552 asymbol **syms;
553 {
554 asection *s;
555 long ret;
556
557 if (elf_dynsymtab (abfd) == 0)
558 {
559 bfd_set_error (bfd_error_invalid_operation);
560 return -1;
561 }
562
563 ret = 0;
564 for (s = abfd->sections; s != NULL; s = s->next)
565 {
566 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
567 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
568 {
569 arelent *p;
570 long count, i;
571
572 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, TRUE))
573 return -1;
574 count = canon_reloc_count (s);
575 p = s->relocation;
576 for (i = 0; i < count; i++)
577 *storage++ = p++;
578 ret += count;
579 }
580 }
581
582 *storage = NULL;
583
584 return ret;
585 }
586
587 /* Write out the relocs. */
588
589 static void
590 sparc64_elf_write_relocs (abfd, sec, data)
591 bfd *abfd;
592 asection *sec;
593 PTR data;
594 {
595 bfd_boolean *failedp = (bfd_boolean *) data;
596 Elf_Internal_Shdr *rela_hdr;
597 Elf64_External_Rela *outbound_relocas, *src_rela;
598 unsigned int idx, count;
599 asymbol *last_sym = 0;
600 int last_sym_idx = 0;
601
602 /* If we have already failed, don't do anything. */
603 if (*failedp)
604 return;
605
606 if ((sec->flags & SEC_RELOC) == 0)
607 return;
608
609 /* The linker backend writes the relocs out itself, and sets the
610 reloc_count field to zero to inhibit writing them here. Also,
611 sometimes the SEC_RELOC flag gets set even when there aren't any
612 relocs. */
613 if (sec->reloc_count == 0)
614 return;
615
616 /* We can combine two relocs that refer to the same address
617 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
618 latter is R_SPARC_13 with no associated symbol. */
619 count = 0;
620 for (idx = 0; idx < sec->reloc_count; idx++)
621 {
622 bfd_vma addr;
623
624 ++count;
625
626 addr = sec->orelocation[idx]->address;
627 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
628 && idx < sec->reloc_count - 1)
629 {
630 arelent *r = sec->orelocation[idx + 1];
631
632 if (r->howto->type == R_SPARC_13
633 && r->address == addr
634 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
635 && (*r->sym_ptr_ptr)->value == 0)
636 ++idx;
637 }
638 }
639
640 rela_hdr = &elf_section_data (sec)->rel_hdr;
641
642 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
643 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
644 if (rela_hdr->contents == NULL)
645 {
646 *failedp = TRUE;
647 return;
648 }
649
650 /* Figure out whether the relocations are RELA or REL relocations. */
651 if (rela_hdr->sh_type != SHT_RELA)
652 abort ();
653
654 /* orelocation has the data, reloc_count has the count... */
655 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
656 src_rela = outbound_relocas;
657
658 for (idx = 0; idx < sec->reloc_count; idx++)
659 {
660 Elf_Internal_Rela dst_rela;
661 arelent *ptr;
662 asymbol *sym;
663 int n;
664
665 ptr = sec->orelocation[idx];
666
667 /* The address of an ELF reloc is section relative for an object
668 file, and absolute for an executable file or shared library.
669 The address of a BFD reloc is always section relative. */
670 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
671 dst_rela.r_offset = ptr->address;
672 else
673 dst_rela.r_offset = ptr->address + sec->vma;
674
675 sym = *ptr->sym_ptr_ptr;
676 if (sym == last_sym)
677 n = last_sym_idx;
678 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
679 n = STN_UNDEF;
680 else
681 {
682 last_sym = sym;
683 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
684 if (n < 0)
685 {
686 *failedp = TRUE;
687 return;
688 }
689 last_sym_idx = n;
690 }
691
692 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
693 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
694 && ! _bfd_elf_validate_reloc (abfd, ptr))
695 {
696 *failedp = TRUE;
697 return;
698 }
699
700 if (ptr->howto->type == R_SPARC_LO10
701 && idx < sec->reloc_count - 1)
702 {
703 arelent *r = sec->orelocation[idx + 1];
704
705 if (r->howto->type == R_SPARC_13
706 && r->address == ptr->address
707 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
708 && (*r->sym_ptr_ptr)->value == 0)
709 {
710 idx++;
711 dst_rela.r_info
712 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
713 R_SPARC_OLO10));
714 }
715 else
716 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
717 }
718 else
719 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
720
721 dst_rela.r_addend = ptr->addend;
722 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
723 ++src_rela;
724 }
725 }
726 \f
727 /* Sparc64 ELF linker hash table. */
728
729 struct sparc64_elf_app_reg
730 {
731 unsigned char bind;
732 unsigned short shndx;
733 bfd *abfd;
734 char *name;
735 };
736
737 struct sparc64_elf_link_hash_table
738 {
739 struct elf_link_hash_table root;
740
741 struct sparc64_elf_app_reg app_regs [4];
742 };
743
744 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
745
746 #define sparc64_elf_hash_table(p) \
747 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
748
749 /* Create a Sparc64 ELF linker hash table. */
750
751 static struct bfd_link_hash_table *
752 sparc64_elf_bfd_link_hash_table_create (abfd)
753 bfd *abfd;
754 {
755 struct sparc64_elf_link_hash_table *ret;
756 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
757
758 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
759 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
760 return NULL;
761
762 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
763 _bfd_elf_link_hash_newfunc))
764 {
765 free (ret);
766 return NULL;
767 }
768
769 return &ret->root.root;
770 }
771 \f
772 /* Utility for performing the standard initial work of an instruction
773 relocation.
774 *PRELOCATION will contain the relocated item.
775 *PINSN will contain the instruction from the input stream.
776 If the result is `bfd_reloc_other' the caller can continue with
777 performing the relocation. Otherwise it must stop and return the
778 value to its caller. */
779
780 static bfd_reloc_status_type
781 init_insn_reloc (abfd,
782 reloc_entry,
783 symbol,
784 data,
785 input_section,
786 output_bfd,
787 prelocation,
788 pinsn)
789 bfd *abfd;
790 arelent *reloc_entry;
791 asymbol *symbol;
792 PTR data;
793 asection *input_section;
794 bfd *output_bfd;
795 bfd_vma *prelocation;
796 bfd_vma *pinsn;
797 {
798 bfd_vma relocation;
799 reloc_howto_type *howto = reloc_entry->howto;
800
801 if (output_bfd != (bfd *) NULL
802 && (symbol->flags & BSF_SECTION_SYM) == 0
803 && (! howto->partial_inplace
804 || reloc_entry->addend == 0))
805 {
806 reloc_entry->address += input_section->output_offset;
807 return bfd_reloc_ok;
808 }
809
810 /* This works because partial_inplace is FALSE. */
811 if (output_bfd != NULL)
812 return bfd_reloc_continue;
813
814 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
815 return bfd_reloc_outofrange;
816
817 relocation = (symbol->value
818 + symbol->section->output_section->vma
819 + symbol->section->output_offset);
820 relocation += reloc_entry->addend;
821 if (howto->pc_relative)
822 {
823 relocation -= (input_section->output_section->vma
824 + input_section->output_offset);
825 relocation -= reloc_entry->address;
826 }
827
828 *prelocation = relocation;
829 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
830 return bfd_reloc_other;
831 }
832
833 /* For unsupported relocs. */
834
835 static bfd_reloc_status_type
836 sparc_elf_notsup_reloc (abfd,
837 reloc_entry,
838 symbol,
839 data,
840 input_section,
841 output_bfd,
842 error_message)
843 bfd *abfd ATTRIBUTE_UNUSED;
844 arelent *reloc_entry ATTRIBUTE_UNUSED;
845 asymbol *symbol ATTRIBUTE_UNUSED;
846 PTR data ATTRIBUTE_UNUSED;
847 asection *input_section ATTRIBUTE_UNUSED;
848 bfd *output_bfd ATTRIBUTE_UNUSED;
849 char **error_message ATTRIBUTE_UNUSED;
850 {
851 return bfd_reloc_notsupported;
852 }
853
854 /* Handle the WDISP16 reloc. */
855
856 static bfd_reloc_status_type
857 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
858 output_bfd, error_message)
859 bfd *abfd;
860 arelent *reloc_entry;
861 asymbol *symbol;
862 PTR data;
863 asection *input_section;
864 bfd *output_bfd;
865 char **error_message ATTRIBUTE_UNUSED;
866 {
867 bfd_vma relocation;
868 bfd_vma insn;
869 bfd_reloc_status_type status;
870
871 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
872 input_section, output_bfd, &relocation, &insn);
873 if (status != bfd_reloc_other)
874 return status;
875
876 insn &= ~ (bfd_vma) 0x303fff;
877 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
878 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
879
880 if ((bfd_signed_vma) relocation < - 0x40000
881 || (bfd_signed_vma) relocation > 0x3ffff)
882 return bfd_reloc_overflow;
883 else
884 return bfd_reloc_ok;
885 }
886
887 /* Handle the HIX22 reloc. */
888
889 static bfd_reloc_status_type
890 sparc_elf_hix22_reloc (abfd,
891 reloc_entry,
892 symbol,
893 data,
894 input_section,
895 output_bfd,
896 error_message)
897 bfd *abfd;
898 arelent *reloc_entry;
899 asymbol *symbol;
900 PTR data;
901 asection *input_section;
902 bfd *output_bfd;
903 char **error_message ATTRIBUTE_UNUSED;
904 {
905 bfd_vma relocation;
906 bfd_vma insn;
907 bfd_reloc_status_type status;
908
909 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
910 input_section, output_bfd, &relocation, &insn);
911 if (status != bfd_reloc_other)
912 return status;
913
914 relocation ^= MINUS_ONE;
915 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
916 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
917
918 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
919 return bfd_reloc_overflow;
920 else
921 return bfd_reloc_ok;
922 }
923
924 /* Handle the LOX10 reloc. */
925
926 static bfd_reloc_status_type
927 sparc_elf_lox10_reloc (abfd,
928 reloc_entry,
929 symbol,
930 data,
931 input_section,
932 output_bfd,
933 error_message)
934 bfd *abfd;
935 arelent *reloc_entry;
936 asymbol *symbol;
937 PTR data;
938 asection *input_section;
939 bfd *output_bfd;
940 char **error_message ATTRIBUTE_UNUSED;
941 {
942 bfd_vma relocation;
943 bfd_vma insn;
944 bfd_reloc_status_type status;
945
946 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
947 input_section, output_bfd, &relocation, &insn);
948 if (status != bfd_reloc_other)
949 return status;
950
951 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
952 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
953
954 return bfd_reloc_ok;
955 }
956 \f
957 /* PLT/GOT stuff */
958
959 /* Both the headers and the entries are icache aligned. */
960 #define PLT_ENTRY_SIZE 32
961 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
962 #define LARGE_PLT_THRESHOLD 32768
963 #define GOT_RESERVED_ENTRIES 1
964
965 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
966
967 /* Fill in the .plt section. */
968
969 static void
970 sparc64_elf_build_plt (output_bfd, contents, nentries)
971 bfd *output_bfd;
972 unsigned char *contents;
973 int nentries;
974 {
975 const unsigned int nop = 0x01000000;
976 int i, j;
977
978 /* The first four entries are reserved, and are initially undefined.
979 We fill them with `illtrap 0' to force ld.so to do something. */
980
981 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
982 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
983
984 /* The first 32768 entries are close enough to plt1 to get there via
985 a straight branch. */
986
987 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
988 {
989 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
990 unsigned int sethi, ba;
991
992 /* sethi (. - plt0), %g1 */
993 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
994
995 /* ba,a,pt %xcc, plt1 */
996 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
997
998 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
999 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
1000 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
1001 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
1002 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
1003 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
1004 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
1005 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
1006 }
1007
1008 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
1009 160: 160 entries and 160 pointers. This is to separate code from data,
1010 which is much friendlier on the cache. */
1011
1012 for (; i < nentries; i += 160)
1013 {
1014 int block = (i + 160 <= nentries ? 160 : nentries - i);
1015 for (j = 0; j < block; ++j)
1016 {
1017 unsigned char *entry, *ptr;
1018 unsigned int ldx;
1019
1020 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
1021 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
1022
1023 /* ldx [%o7 + ptr - (entry+4)], %g1 */
1024 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
1025
1026 /* mov %o7,%g5
1027 call .+8
1028 nop
1029 ldx [%o7+P],%g1
1030 jmpl %o7+%g1,%g1
1031 mov %g5,%o7 */
1032 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
1033 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
1034 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
1035 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
1036 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
1037 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
1038
1039 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
1040 }
1041 }
1042 }
1043
1044 /* Return the offset of a particular plt entry within the .plt section. */
1045
1046 static bfd_vma
1047 sparc64_elf_plt_entry_offset (index)
1048 bfd_vma index;
1049 {
1050 bfd_vma block, ofs;
1051
1052 if (index < LARGE_PLT_THRESHOLD)
1053 return index * PLT_ENTRY_SIZE;
1054
1055 /* See above for details. */
1056
1057 block = (index - LARGE_PLT_THRESHOLD) / 160;
1058 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
1059
1060 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
1061 }
1062
1063 static bfd_vma
1064 sparc64_elf_plt_ptr_offset (index, max)
1065 bfd_vma index;
1066 bfd_vma max;
1067 {
1068 bfd_vma block, ofs, last;
1069
1070 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
1071
1072 /* See above for details. */
1073
1074 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
1075 ofs = index - block;
1076 if (block + 160 > max)
1077 last = (max - LARGE_PLT_THRESHOLD) % 160;
1078 else
1079 last = 160;
1080
1081 return (block * PLT_ENTRY_SIZE
1082 + last * 6*4
1083 + ofs * 8);
1084 }
1085 \f
1086 /* Look through the relocs for a section during the first phase, and
1087 allocate space in the global offset table or procedure linkage
1088 table. */
1089
1090 static bfd_boolean
1091 sparc64_elf_check_relocs (abfd, info, sec, relocs)
1092 bfd *abfd;
1093 struct bfd_link_info *info;
1094 asection *sec;
1095 const Elf_Internal_Rela *relocs;
1096 {
1097 bfd *dynobj;
1098 Elf_Internal_Shdr *symtab_hdr;
1099 struct elf_link_hash_entry **sym_hashes;
1100 bfd_vma *local_got_offsets;
1101 const Elf_Internal_Rela *rel;
1102 const Elf_Internal_Rela *rel_end;
1103 asection *sgot;
1104 asection *srelgot;
1105 asection *sreloc;
1106
1107 if (info->relocatable || !(sec->flags & SEC_ALLOC))
1108 return TRUE;
1109
1110 dynobj = elf_hash_table (info)->dynobj;
1111 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1112 sym_hashes = elf_sym_hashes (abfd);
1113 local_got_offsets = elf_local_got_offsets (abfd);
1114
1115 sgot = NULL;
1116 srelgot = NULL;
1117 sreloc = NULL;
1118
1119 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1120 for (rel = relocs; rel < rel_end; rel++)
1121 {
1122 unsigned long r_symndx;
1123 struct elf_link_hash_entry *h;
1124
1125 r_symndx = ELF64_R_SYM (rel->r_info);
1126 if (r_symndx < symtab_hdr->sh_info)
1127 h = NULL;
1128 else
1129 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1130
1131 switch (ELF64_R_TYPE_ID (rel->r_info))
1132 {
1133 case R_SPARC_GOT10:
1134 case R_SPARC_GOT13:
1135 case R_SPARC_GOT22:
1136 /* This symbol requires a global offset table entry. */
1137
1138 if (dynobj == NULL)
1139 {
1140 /* Create the .got section. */
1141 elf_hash_table (info)->dynobj = dynobj = abfd;
1142 if (! _bfd_elf_create_got_section (dynobj, info))
1143 return FALSE;
1144 }
1145
1146 if (sgot == NULL)
1147 {
1148 sgot = bfd_get_section_by_name (dynobj, ".got");
1149 BFD_ASSERT (sgot != NULL);
1150 }
1151
1152 if (srelgot == NULL && (h != NULL || info->shared))
1153 {
1154 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1155 if (srelgot == NULL)
1156 {
1157 srelgot = bfd_make_section (dynobj, ".rela.got");
1158 if (srelgot == NULL
1159 || ! bfd_set_section_flags (dynobj, srelgot,
1160 (SEC_ALLOC
1161 | SEC_LOAD
1162 | SEC_HAS_CONTENTS
1163 | SEC_IN_MEMORY
1164 | SEC_LINKER_CREATED
1165 | SEC_READONLY))
1166 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1167 return FALSE;
1168 }
1169 }
1170
1171 if (h != NULL)
1172 {
1173 if (h->got.offset != (bfd_vma) -1)
1174 {
1175 /* We have already allocated space in the .got. */
1176 break;
1177 }
1178 h->got.offset = sgot->size;
1179
1180 /* Make sure this symbol is output as a dynamic symbol. */
1181 if (h->dynindx == -1)
1182 {
1183 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1184 return FALSE;
1185 }
1186
1187 srelgot->size += sizeof (Elf64_External_Rela);
1188 }
1189 else
1190 {
1191 /* This is a global offset table entry for a local
1192 symbol. */
1193 if (local_got_offsets == NULL)
1194 {
1195 bfd_size_type size;
1196 register unsigned int i;
1197
1198 size = symtab_hdr->sh_info;
1199 size *= sizeof (bfd_vma);
1200 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1201 if (local_got_offsets == NULL)
1202 return FALSE;
1203 elf_local_got_offsets (abfd) = local_got_offsets;
1204 for (i = 0; i < symtab_hdr->sh_info; i++)
1205 local_got_offsets[i] = (bfd_vma) -1;
1206 }
1207 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1208 {
1209 /* We have already allocated space in the .got. */
1210 break;
1211 }
1212 local_got_offsets[r_symndx] = sgot->size;
1213
1214 if (info->shared)
1215 {
1216 /* If we are generating a shared object, we need to
1217 output a R_SPARC_RELATIVE reloc so that the
1218 dynamic linker can adjust this GOT entry. */
1219 srelgot->size += sizeof (Elf64_External_Rela);
1220 }
1221 }
1222
1223 sgot->size += 8;
1224
1225 #if 0
1226 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1227 unsigned numbers. If we permit ourselves to modify
1228 code so we get sethi/xor, this could work.
1229 Question: do we consider conditionally re-enabling
1230 this for -fpic, once we know about object code models? */
1231 /* If the .got section is more than 0x1000 bytes, we add
1232 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1233 bit relocations have a greater chance of working. */
1234 if (sgot->size >= 0x1000
1235 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1236 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1237 #endif
1238
1239 break;
1240
1241 case R_SPARC_WPLT30:
1242 case R_SPARC_PLT32:
1243 case R_SPARC_HIPLT22:
1244 case R_SPARC_LOPLT10:
1245 case R_SPARC_PCPLT32:
1246 case R_SPARC_PCPLT22:
1247 case R_SPARC_PCPLT10:
1248 case R_SPARC_PLT64:
1249 /* This symbol requires a procedure linkage table entry. We
1250 actually build the entry in adjust_dynamic_symbol,
1251 because this might be a case of linking PIC code without
1252 linking in any dynamic objects, in which case we don't
1253 need to generate a procedure linkage table after all. */
1254
1255 if (h == NULL)
1256 {
1257 /* It does not make sense to have a procedure linkage
1258 table entry for a local symbol. */
1259 bfd_set_error (bfd_error_bad_value);
1260 return FALSE;
1261 }
1262
1263 /* Make sure this symbol is output as a dynamic symbol. */
1264 if (h->dynindx == -1)
1265 {
1266 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1267 return FALSE;
1268 }
1269
1270 h->needs_plt = 1;
1271 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1272 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1273 break;
1274 /* Fall through. */
1275 case R_SPARC_PC10:
1276 case R_SPARC_PC22:
1277 case R_SPARC_PC_HH22:
1278 case R_SPARC_PC_HM10:
1279 case R_SPARC_PC_LM22:
1280 if (h != NULL
1281 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1282 break;
1283 /* Fall through. */
1284 case R_SPARC_DISP8:
1285 case R_SPARC_DISP16:
1286 case R_SPARC_DISP32:
1287 case R_SPARC_DISP64:
1288 case R_SPARC_WDISP30:
1289 case R_SPARC_WDISP22:
1290 case R_SPARC_WDISP19:
1291 case R_SPARC_WDISP16:
1292 if (h == NULL)
1293 break;
1294 /* Fall through. */
1295 case R_SPARC_8:
1296 case R_SPARC_16:
1297 case R_SPARC_32:
1298 case R_SPARC_HI22:
1299 case R_SPARC_22:
1300 case R_SPARC_13:
1301 case R_SPARC_LO10:
1302 case R_SPARC_UA32:
1303 case R_SPARC_10:
1304 case R_SPARC_11:
1305 case R_SPARC_64:
1306 case R_SPARC_OLO10:
1307 case R_SPARC_HH22:
1308 case R_SPARC_HM10:
1309 case R_SPARC_LM22:
1310 case R_SPARC_7:
1311 case R_SPARC_5:
1312 case R_SPARC_6:
1313 case R_SPARC_HIX22:
1314 case R_SPARC_LOX10:
1315 case R_SPARC_H44:
1316 case R_SPARC_M44:
1317 case R_SPARC_L44:
1318 case R_SPARC_UA64:
1319 case R_SPARC_UA16:
1320 /* When creating a shared object, we must copy these relocs
1321 into the output file. We create a reloc section in
1322 dynobj and make room for the reloc.
1323
1324 But don't do this for debugging sections -- this shows up
1325 with DWARF2 -- first because they are not loaded, and
1326 second because DWARF sez the debug info is not to be
1327 biased by the load address. */
1328 if (info->shared && (sec->flags & SEC_ALLOC))
1329 {
1330 if (sreloc == NULL)
1331 {
1332 const char *name;
1333
1334 name = (bfd_elf_string_from_elf_section
1335 (abfd,
1336 elf_elfheader (abfd)->e_shstrndx,
1337 elf_section_data (sec)->rel_hdr.sh_name));
1338 if (name == NULL)
1339 return FALSE;
1340
1341 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1342 && strcmp (bfd_get_section_name (abfd, sec),
1343 name + 5) == 0);
1344
1345 sreloc = bfd_get_section_by_name (dynobj, name);
1346 if (sreloc == NULL)
1347 {
1348 flagword flags;
1349
1350 sreloc = bfd_make_section (dynobj, name);
1351 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1352 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1353 if ((sec->flags & SEC_ALLOC) != 0)
1354 flags |= SEC_ALLOC | SEC_LOAD;
1355 if (sreloc == NULL
1356 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1357 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1358 return FALSE;
1359 }
1360 if (sec->flags & SEC_READONLY)
1361 info->flags |= DF_TEXTREL;
1362 }
1363
1364 sreloc->size += sizeof (Elf64_External_Rela);
1365 }
1366 break;
1367
1368 case R_SPARC_REGISTER:
1369 /* Nothing to do. */
1370 break;
1371
1372 default:
1373 (*_bfd_error_handler) (_("%B: check_relocs: unhandled reloc type %d"),
1374 abfd, ELF64_R_TYPE_ID (rel->r_info));
1375 return FALSE;
1376 }
1377 }
1378
1379 return TRUE;
1380 }
1381
1382 /* Hook called by the linker routine which adds symbols from an object
1383 file. We use it for STT_REGISTER symbols. */
1384
1385 static bfd_boolean
1386 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1387 bfd *abfd;
1388 struct bfd_link_info *info;
1389 Elf_Internal_Sym *sym;
1390 const char **namep;
1391 flagword *flagsp ATTRIBUTE_UNUSED;
1392 asection **secp ATTRIBUTE_UNUSED;
1393 bfd_vma *valp ATTRIBUTE_UNUSED;
1394 {
1395 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1396
1397 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1398 {
1399 int reg;
1400 struct sparc64_elf_app_reg *p;
1401
1402 reg = (int)sym->st_value;
1403 switch (reg & ~1)
1404 {
1405 case 2: reg -= 2; break;
1406 case 6: reg -= 4; break;
1407 default:
1408 (*_bfd_error_handler)
1409 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
1410 abfd);
1411 return FALSE;
1412 }
1413
1414 if (info->hash->creator != abfd->xvec
1415 || (abfd->flags & DYNAMIC) != 0)
1416 {
1417 /* STT_REGISTER only works when linking an elf64_sparc object.
1418 If STT_REGISTER comes from a dynamic object, don't put it into
1419 the output bfd. The dynamic linker will recheck it. */
1420 *namep = NULL;
1421 return TRUE;
1422 }
1423
1424 p = sparc64_elf_hash_table(info)->app_regs + reg;
1425
1426 if (p->name != NULL && strcmp (p->name, *namep))
1427 {
1428 (*_bfd_error_handler)
1429 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
1430 abfd, p->abfd, (int) sym->st_value,
1431 **namep ? *namep : "#scratch",
1432 *p->name ? p->name : "#scratch");
1433 return FALSE;
1434 }
1435
1436 if (p->name == NULL)
1437 {
1438 if (**namep)
1439 {
1440 struct elf_link_hash_entry *h;
1441
1442 h = (struct elf_link_hash_entry *)
1443 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
1444
1445 if (h != NULL)
1446 {
1447 unsigned char type = h->type;
1448
1449 if (type > STT_FUNC)
1450 type = 0;
1451 (*_bfd_error_handler)
1452 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
1453 abfd, p->abfd, *namep, stt_types[type]);
1454 return FALSE;
1455 }
1456
1457 p->name = bfd_hash_allocate (&info->hash->table,
1458 strlen (*namep) + 1);
1459 if (!p->name)
1460 return FALSE;
1461
1462 strcpy (p->name, *namep);
1463 }
1464 else
1465 p->name = "";
1466 p->bind = ELF_ST_BIND (sym->st_info);
1467 p->abfd = abfd;
1468 p->shndx = sym->st_shndx;
1469 }
1470 else
1471 {
1472 if (p->bind == STB_WEAK
1473 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1474 {
1475 p->bind = STB_GLOBAL;
1476 p->abfd = abfd;
1477 }
1478 }
1479 *namep = NULL;
1480 return TRUE;
1481 }
1482 else if (*namep && **namep
1483 && info->hash->creator == abfd->xvec)
1484 {
1485 int i;
1486 struct sparc64_elf_app_reg *p;
1487
1488 p = sparc64_elf_hash_table(info)->app_regs;
1489 for (i = 0; i < 4; i++, p++)
1490 if (p->name != NULL && ! strcmp (p->name, *namep))
1491 {
1492 unsigned char type = ELF_ST_TYPE (sym->st_info);
1493
1494 if (type > STT_FUNC)
1495 type = 0;
1496 (*_bfd_error_handler)
1497 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
1498 abfd, p->abfd, *namep, stt_types[type]);
1499 return FALSE;
1500 }
1501 }
1502 return TRUE;
1503 }
1504
1505 /* This function takes care of emitting STT_REGISTER symbols
1506 which we cannot easily keep in the symbol hash table. */
1507
1508 static bfd_boolean
1509 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1510 bfd *output_bfd ATTRIBUTE_UNUSED;
1511 struct bfd_link_info *info;
1512 PTR finfo;
1513 bfd_boolean (*func)
1514 PARAMS ((PTR, const char *, Elf_Internal_Sym *, asection *,
1515 struct elf_link_hash_entry *));
1516 {
1517 int reg;
1518 struct sparc64_elf_app_reg *app_regs =
1519 sparc64_elf_hash_table(info)->app_regs;
1520 Elf_Internal_Sym sym;
1521
1522 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1523 at the end of the dynlocal list, so they came at the end of the local
1524 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1525 to back up symtab->sh_info. */
1526 if (elf_hash_table (info)->dynlocal)
1527 {
1528 bfd * dynobj = elf_hash_table (info)->dynobj;
1529 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1530 struct elf_link_local_dynamic_entry *e;
1531
1532 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1533 if (e->input_indx == -1)
1534 break;
1535 if (e)
1536 {
1537 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1538 = e->dynindx;
1539 }
1540 }
1541
1542 if (info->strip == strip_all)
1543 return TRUE;
1544
1545 for (reg = 0; reg < 4; reg++)
1546 if (app_regs [reg].name != NULL)
1547 {
1548 if (info->strip == strip_some
1549 && bfd_hash_lookup (info->keep_hash,
1550 app_regs [reg].name,
1551 FALSE, FALSE) == NULL)
1552 continue;
1553
1554 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1555 sym.st_size = 0;
1556 sym.st_other = 0;
1557 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1558 sym.st_shndx = app_regs [reg].shndx;
1559 if (! (*func) (finfo, app_regs [reg].name, &sym,
1560 sym.st_shndx == SHN_ABS
1561 ? bfd_abs_section_ptr : bfd_und_section_ptr,
1562 NULL))
1563 return FALSE;
1564 }
1565
1566 return TRUE;
1567 }
1568
1569 static int
1570 sparc64_elf_get_symbol_type (elf_sym, type)
1571 Elf_Internal_Sym * elf_sym;
1572 int type;
1573 {
1574 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1575 return STT_REGISTER;
1576 else
1577 return type;
1578 }
1579
1580 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1581 even in SHN_UNDEF section. */
1582
1583 static void
1584 sparc64_elf_symbol_processing (abfd, asym)
1585 bfd *abfd ATTRIBUTE_UNUSED;
1586 asymbol *asym;
1587 {
1588 elf_symbol_type *elfsym;
1589
1590 elfsym = (elf_symbol_type *) asym;
1591 if (elfsym->internal_elf_sym.st_info
1592 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1593 {
1594 asym->flags |= BSF_GLOBAL;
1595 }
1596 }
1597
1598 /* Adjust a symbol defined by a dynamic object and referenced by a
1599 regular object. The current definition is in some section of the
1600 dynamic object, but we're not including those sections. We have to
1601 change the definition to something the rest of the link can
1602 understand. */
1603
1604 static bfd_boolean
1605 sparc64_elf_adjust_dynamic_symbol (info, h)
1606 struct bfd_link_info *info;
1607 struct elf_link_hash_entry *h;
1608 {
1609 bfd *dynobj;
1610 asection *s;
1611 unsigned int power_of_two;
1612
1613 dynobj = elf_hash_table (info)->dynobj;
1614
1615 /* Make sure we know what is going on here. */
1616 BFD_ASSERT (dynobj != NULL
1617 && (h->needs_plt
1618 || h->u.weakdef != NULL
1619 || (h->def_dynamic
1620 && h->ref_regular
1621 && !h->def_regular)));
1622
1623 /* If this is a function, put it in the procedure linkage table. We
1624 will fill in the contents of the procedure linkage table later
1625 (although we could actually do it here). The STT_NOTYPE
1626 condition is a hack specifically for the Oracle libraries
1627 delivered for Solaris; for some inexplicable reason, they define
1628 some of their functions as STT_NOTYPE when they really should be
1629 STT_FUNC. */
1630 if (h->type == STT_FUNC
1631 || h->needs_plt
1632 || (h->type == STT_NOTYPE
1633 && (h->root.type == bfd_link_hash_defined
1634 || h->root.type == bfd_link_hash_defweak)
1635 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1636 {
1637 if (! elf_hash_table (info)->dynamic_sections_created)
1638 {
1639 /* This case can occur if we saw a WPLT30 reloc in an input
1640 file, but none of the input files were dynamic objects.
1641 In such a case, we don't actually need to build a
1642 procedure linkage table, and we can just do a WDISP30
1643 reloc instead. */
1644 BFD_ASSERT (h->needs_plt);
1645 return TRUE;
1646 }
1647
1648 s = bfd_get_section_by_name (dynobj, ".plt");
1649 BFD_ASSERT (s != NULL);
1650
1651 /* The first four bit in .plt is reserved. */
1652 if (s->size == 0)
1653 s->size = PLT_HEADER_SIZE;
1654
1655 /* To simplify matters later, just store the plt index here. */
1656 h->plt.offset = s->size / PLT_ENTRY_SIZE;
1657
1658 /* If this symbol is not defined in a regular file, and we are
1659 not generating a shared library, then set the symbol to this
1660 location in the .plt. This is required to make function
1661 pointers compare as equal between the normal executable and
1662 the shared library. */
1663 if (! info->shared
1664 && !h->def_regular)
1665 {
1666 h->root.u.def.section = s;
1667 h->root.u.def.value = sparc64_elf_plt_entry_offset (h->plt.offset);
1668 }
1669
1670 /* Make room for this entry. */
1671 s->size += PLT_ENTRY_SIZE;
1672
1673 /* We also need to make an entry in the .rela.plt section. */
1674
1675 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1676 BFD_ASSERT (s != NULL);
1677
1678 s->size += sizeof (Elf64_External_Rela);
1679
1680 /* The procedure linkage table size is bounded by the magnitude
1681 of the offset we can describe in the entry. */
1682 if (s->size >= (bfd_vma)1 << 32)
1683 {
1684 bfd_set_error (bfd_error_bad_value);
1685 return FALSE;
1686 }
1687
1688 return TRUE;
1689 }
1690
1691 /* If this is a weak symbol, and there is a real definition, the
1692 processor independent code will have arranged for us to see the
1693 real definition first, and we can just use the same value. */
1694 if (h->u.weakdef != NULL)
1695 {
1696 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1697 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1698 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1699 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1700 return TRUE;
1701 }
1702
1703 /* This is a reference to a symbol defined by a dynamic object which
1704 is not a function. */
1705
1706 /* If we are creating a shared library, we must presume that the
1707 only references to the symbol are via the global offset table.
1708 For such cases we need not do anything here; the relocations will
1709 be handled correctly by relocate_section. */
1710 if (info->shared)
1711 return TRUE;
1712
1713 /* We must allocate the symbol in our .dynbss section, which will
1714 become part of the .bss section of the executable. There will be
1715 an entry for this symbol in the .dynsym section. The dynamic
1716 object will contain position independent code, so all references
1717 from the dynamic object to this symbol will go through the global
1718 offset table. The dynamic linker will use the .dynsym entry to
1719 determine the address it must put in the global offset table, so
1720 both the dynamic object and the regular object will refer to the
1721 same memory location for the variable. */
1722
1723 s = bfd_get_section_by_name (dynobj, ".dynbss");
1724 BFD_ASSERT (s != NULL);
1725
1726 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1727 to copy the initial value out of the dynamic object and into the
1728 runtime process image. We need to remember the offset into the
1729 .rel.bss section we are going to use. */
1730 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1731 {
1732 asection *srel;
1733
1734 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1735 BFD_ASSERT (srel != NULL);
1736 srel->size += sizeof (Elf64_External_Rela);
1737 h->needs_copy = 1;
1738 }
1739
1740 /* We need to figure out the alignment required for this symbol. I
1741 have no idea how ELF linkers handle this. 16-bytes is the size
1742 of the largest type that requires hard alignment -- long double. */
1743 power_of_two = bfd_log2 (h->size);
1744 if (power_of_two > 4)
1745 power_of_two = 4;
1746
1747 /* Apply the required alignment. */
1748 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1749 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1750 {
1751 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1752 return FALSE;
1753 }
1754
1755 /* Define the symbol as being at this point in the section. */
1756 h->root.u.def.section = s;
1757 h->root.u.def.value = s->size;
1758
1759 /* Increment the section size to make room for the symbol. */
1760 s->size += h->size;
1761
1762 return TRUE;
1763 }
1764
1765 /* Return true if the dynamic symbol for a given section should be
1766 omitted when creating a shared library. */
1767
1768 static bfd_boolean
1769 sparc64_elf_omit_section_dynsym (bfd *output_bfd,
1770 struct bfd_link_info *info,
1771 asection *p)
1772 {
1773 /* We keep the .got section symbol so that explicit relocations
1774 against the _GLOBAL_OFFSET_TABLE_ symbol emitted in PIC mode
1775 can be turned into relocations against the .got symbol. */
1776 if (strcmp (p->name, ".got") == 0)
1777 return FALSE;
1778
1779 return _bfd_elf_link_omit_section_dynsym (output_bfd, info, p);
1780 }
1781
1782 /* Set the sizes of the dynamic sections. */
1783
1784 static bfd_boolean
1785 sparc64_elf_size_dynamic_sections (output_bfd, info)
1786 bfd *output_bfd;
1787 struct bfd_link_info *info;
1788 {
1789 bfd *dynobj;
1790 asection *s;
1791 bfd_boolean relplt;
1792
1793 dynobj = elf_hash_table (info)->dynobj;
1794 BFD_ASSERT (dynobj != NULL);
1795
1796 if (elf_hash_table (info)->dynamic_sections_created)
1797 {
1798 /* Set the contents of the .interp section to the interpreter. */
1799 if (info->executable)
1800 {
1801 s = bfd_get_section_by_name (dynobj, ".interp");
1802 BFD_ASSERT (s != NULL);
1803 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1804 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1805 }
1806 }
1807 else
1808 {
1809 /* We may have created entries in the .rela.got section.
1810 However, if we are not creating the dynamic sections, we will
1811 not actually use these entries. Reset the size of .rela.got,
1812 which will cause it to get stripped from the output file
1813 below. */
1814 s = bfd_get_section_by_name (dynobj, ".rela.got");
1815 if (s != NULL)
1816 s->size = 0;
1817 }
1818
1819 /* The check_relocs and adjust_dynamic_symbol entry points have
1820 determined the sizes of the various dynamic sections. Allocate
1821 memory for them. */
1822 relplt = FALSE;
1823 for (s = dynobj->sections; s != NULL; s = s->next)
1824 {
1825 const char *name;
1826 bfd_boolean strip;
1827
1828 if ((s->flags & SEC_LINKER_CREATED) == 0)
1829 continue;
1830
1831 /* It's OK to base decisions on the section name, because none
1832 of the dynobj section names depend upon the input files. */
1833 name = bfd_get_section_name (dynobj, s);
1834
1835 strip = FALSE;
1836
1837 if (strncmp (name, ".rela", 5) == 0)
1838 {
1839 if (s->size == 0)
1840 {
1841 /* If we don't need this section, strip it from the
1842 output file. This is to handle .rela.bss and
1843 .rel.plt. We must create it in
1844 create_dynamic_sections, because it must be created
1845 before the linker maps input sections to output
1846 sections. The linker does that before
1847 adjust_dynamic_symbol is called, and it is that
1848 function which decides whether anything needs to go
1849 into these sections. */
1850 strip = TRUE;
1851 }
1852 else
1853 {
1854 if (strcmp (name, ".rela.plt") == 0)
1855 relplt = TRUE;
1856
1857 /* We use the reloc_count field as a counter if we need
1858 to copy relocs into the output file. */
1859 s->reloc_count = 0;
1860 }
1861 }
1862 else if (strcmp (name, ".plt") != 0
1863 && strncmp (name, ".got", 4) != 0)
1864 {
1865 /* It's not one of our sections, so don't allocate space. */
1866 continue;
1867 }
1868
1869 if (strip)
1870 {
1871 _bfd_strip_section_from_output (info, s);
1872 continue;
1873 }
1874
1875 /* Allocate memory for the section contents. Zero the memory
1876 for the benefit of .rela.plt, which has 4 unused entries
1877 at the beginning, and we don't want garbage. */
1878 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1879 if (s->contents == NULL && s->size != 0)
1880 return FALSE;
1881 }
1882
1883 if (elf_hash_table (info)->dynamic_sections_created)
1884 {
1885 /* Add some entries to the .dynamic section. We fill in the
1886 values later, in sparc64_elf_finish_dynamic_sections, but we
1887 must add the entries now so that we get the correct size for
1888 the .dynamic section. The DT_DEBUG entry is filled in by the
1889 dynamic linker and used by the debugger. */
1890 #define add_dynamic_entry(TAG, VAL) \
1891 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1892
1893 int reg;
1894 struct sparc64_elf_app_reg * app_regs;
1895 struct elf_strtab_hash *dynstr;
1896 struct elf_link_hash_table *eht = elf_hash_table (info);
1897
1898 if (info->executable)
1899 {
1900 if (!add_dynamic_entry (DT_DEBUG, 0))
1901 return FALSE;
1902 }
1903
1904 if (relplt)
1905 {
1906 if (!add_dynamic_entry (DT_PLTGOT, 0)
1907 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1908 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1909 || !add_dynamic_entry (DT_JMPREL, 0))
1910 return FALSE;
1911 }
1912
1913 if (!add_dynamic_entry (DT_RELA, 0)
1914 || !add_dynamic_entry (DT_RELASZ, 0)
1915 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1916 return FALSE;
1917
1918 if (info->flags & DF_TEXTREL)
1919 {
1920 if (!add_dynamic_entry (DT_TEXTREL, 0))
1921 return FALSE;
1922 }
1923
1924 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1925 entries if needed. */
1926 app_regs = sparc64_elf_hash_table (info)->app_regs;
1927 dynstr = eht->dynstr;
1928
1929 for (reg = 0; reg < 4; reg++)
1930 if (app_regs [reg].name != NULL)
1931 {
1932 struct elf_link_local_dynamic_entry *entry, *e;
1933
1934 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1935 return FALSE;
1936
1937 entry = (struct elf_link_local_dynamic_entry *)
1938 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1939 if (entry == NULL)
1940 return FALSE;
1941
1942 /* We cheat here a little bit: the symbol will not be local, so we
1943 put it at the end of the dynlocal linked list. We will fix it
1944 later on, as we have to fix other fields anyway. */
1945 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1946 entry->isym.st_size = 0;
1947 if (*app_regs [reg].name != '\0')
1948 entry->isym.st_name
1949 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, FALSE);
1950 else
1951 entry->isym.st_name = 0;
1952 entry->isym.st_other = 0;
1953 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1954 STT_REGISTER);
1955 entry->isym.st_shndx = app_regs [reg].shndx;
1956 entry->next = NULL;
1957 entry->input_bfd = output_bfd;
1958 entry->input_indx = -1;
1959
1960 if (eht->dynlocal == NULL)
1961 eht->dynlocal = entry;
1962 else
1963 {
1964 for (e = eht->dynlocal; e->next; e = e->next)
1965 ;
1966 e->next = entry;
1967 }
1968 eht->dynsymcount++;
1969 }
1970 }
1971 #undef add_dynamic_entry
1972
1973 return TRUE;
1974 }
1975 \f
1976 static bfd_boolean
1977 sparc64_elf_new_section_hook (abfd, sec)
1978 bfd *abfd;
1979 asection *sec;
1980 {
1981 struct sparc64_elf_section_data *sdata;
1982 bfd_size_type amt = sizeof (*sdata);
1983
1984 sdata = (struct sparc64_elf_section_data *) bfd_zalloc (abfd, amt);
1985 if (sdata == NULL)
1986 return FALSE;
1987 sec->used_by_bfd = (PTR) sdata;
1988
1989 return _bfd_elf_new_section_hook (abfd, sec);
1990 }
1991
1992 static bfd_boolean
1993 sparc64_elf_relax_section (abfd, section, link_info, again)
1994 bfd *abfd ATTRIBUTE_UNUSED;
1995 asection *section ATTRIBUTE_UNUSED;
1996 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1997 bfd_boolean *again;
1998 {
1999 *again = FALSE;
2000 sec_do_relax (section) = 1;
2001 return TRUE;
2002 }
2003 \f
2004 /* Relocate a SPARC64 ELF section. */
2005
2006 static bfd_boolean
2007 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
2008 contents, relocs, local_syms, local_sections)
2009 bfd *output_bfd;
2010 struct bfd_link_info *info;
2011 bfd *input_bfd;
2012 asection *input_section;
2013 bfd_byte *contents;
2014 Elf_Internal_Rela *relocs;
2015 Elf_Internal_Sym *local_syms;
2016 asection **local_sections;
2017 {
2018 bfd *dynobj;
2019 Elf_Internal_Shdr *symtab_hdr;
2020 struct elf_link_hash_entry **sym_hashes;
2021 bfd_vma *local_got_offsets;
2022 bfd_vma got_base;
2023 asection *sgot;
2024 asection *splt;
2025 asection *sreloc;
2026 Elf_Internal_Rela *rel;
2027 Elf_Internal_Rela *relend;
2028
2029 if (info->relocatable)
2030 return TRUE;
2031
2032 dynobj = elf_hash_table (info)->dynobj;
2033 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2034 sym_hashes = elf_sym_hashes (input_bfd);
2035 local_got_offsets = elf_local_got_offsets (input_bfd);
2036
2037 if (elf_hash_table(info)->hgot == NULL)
2038 got_base = 0;
2039 else
2040 got_base = elf_hash_table (info)->hgot->root.u.def.value;
2041
2042 sgot = splt = sreloc = NULL;
2043 if (dynobj != NULL)
2044 splt = bfd_get_section_by_name (dynobj, ".plt");
2045
2046 rel = relocs;
2047 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
2048 for (; rel < relend; rel++)
2049 {
2050 int r_type;
2051 reloc_howto_type *howto;
2052 unsigned long r_symndx;
2053 struct elf_link_hash_entry *h;
2054 Elf_Internal_Sym *sym;
2055 asection *sec;
2056 bfd_vma relocation, off;
2057 bfd_reloc_status_type r;
2058 bfd_boolean is_plt = FALSE;
2059 bfd_boolean unresolved_reloc;
2060
2061 r_type = ELF64_R_TYPE_ID (rel->r_info);
2062 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
2063 {
2064 bfd_set_error (bfd_error_bad_value);
2065 return FALSE;
2066 }
2067 howto = sparc64_elf_howto_table + r_type;
2068
2069 /* This is a final link. */
2070 r_symndx = ELF64_R_SYM (rel->r_info);
2071 h = NULL;
2072 sym = NULL;
2073 sec = NULL;
2074 unresolved_reloc = FALSE;
2075 if (r_symndx < symtab_hdr->sh_info)
2076 {
2077 sym = local_syms + r_symndx;
2078 sec = local_sections[r_symndx];
2079 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2080 }
2081 else
2082 {
2083 bfd_boolean warned;
2084
2085 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2086 r_symndx, symtab_hdr, sym_hashes,
2087 h, sec, relocation,
2088 unresolved_reloc, warned);
2089 if (warned)
2090 {
2091 /* To avoid generating warning messages about truncated
2092 relocations, set the relocation's address to be the same as
2093 the start of this section. */
2094 if (input_section->output_section != NULL)
2095 relocation = input_section->output_section->vma;
2096 else
2097 relocation = 0;
2098 }
2099 }
2100
2101 do_dynreloc:
2102 /* When generating a shared object, these relocations are copied
2103 into the output file to be resolved at run time. */
2104 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2105 {
2106 switch (r_type)
2107 {
2108 case R_SPARC_PC10:
2109 case R_SPARC_PC22:
2110 case R_SPARC_PC_HH22:
2111 case R_SPARC_PC_HM10:
2112 case R_SPARC_PC_LM22:
2113 if (h != NULL
2114 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2115 break;
2116 /* Fall through. */
2117 case R_SPARC_DISP8:
2118 case R_SPARC_DISP16:
2119 case R_SPARC_DISP32:
2120 case R_SPARC_DISP64:
2121 case R_SPARC_WDISP30:
2122 case R_SPARC_WDISP22:
2123 case R_SPARC_WDISP19:
2124 case R_SPARC_WDISP16:
2125 if (h == NULL)
2126 break;
2127 /* Fall through. */
2128 case R_SPARC_8:
2129 case R_SPARC_16:
2130 case R_SPARC_32:
2131 case R_SPARC_HI22:
2132 case R_SPARC_22:
2133 case R_SPARC_13:
2134 case R_SPARC_LO10:
2135 case R_SPARC_UA32:
2136 case R_SPARC_10:
2137 case R_SPARC_11:
2138 case R_SPARC_64:
2139 case R_SPARC_OLO10:
2140 case R_SPARC_HH22:
2141 case R_SPARC_HM10:
2142 case R_SPARC_LM22:
2143 case R_SPARC_7:
2144 case R_SPARC_5:
2145 case R_SPARC_6:
2146 case R_SPARC_HIX22:
2147 case R_SPARC_LOX10:
2148 case R_SPARC_H44:
2149 case R_SPARC_M44:
2150 case R_SPARC_L44:
2151 case R_SPARC_UA64:
2152 case R_SPARC_UA16:
2153 {
2154 Elf_Internal_Rela outrel;
2155 bfd_byte *loc;
2156 bfd_boolean skip, relocate;
2157
2158 if (sreloc == NULL)
2159 {
2160 const char *name =
2161 (bfd_elf_string_from_elf_section
2162 (input_bfd,
2163 elf_elfheader (input_bfd)->e_shstrndx,
2164 elf_section_data (input_section)->rel_hdr.sh_name));
2165
2166 if (name == NULL)
2167 return FALSE;
2168
2169 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2170 && strcmp (bfd_get_section_name(input_bfd,
2171 input_section),
2172 name + 5) == 0);
2173
2174 sreloc = bfd_get_section_by_name (dynobj, name);
2175 BFD_ASSERT (sreloc != NULL);
2176 }
2177
2178 skip = FALSE;
2179 relocate = FALSE;
2180
2181 outrel.r_offset =
2182 _bfd_elf_section_offset (output_bfd, info, input_section,
2183 rel->r_offset);
2184 if (outrel.r_offset == (bfd_vma) -1)
2185 skip = TRUE;
2186 else if (outrel.r_offset == (bfd_vma) -2)
2187 skip = TRUE, relocate = TRUE;
2188
2189 outrel.r_offset += (input_section->output_section->vma
2190 + input_section->output_offset);
2191
2192 /* Optimize unaligned reloc usage now that we know where
2193 it finally resides. */
2194 switch (r_type)
2195 {
2196 case R_SPARC_16:
2197 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2198 break;
2199 case R_SPARC_UA16:
2200 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2201 break;
2202 case R_SPARC_32:
2203 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2204 break;
2205 case R_SPARC_UA32:
2206 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2207 break;
2208 case R_SPARC_64:
2209 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2210 break;
2211 case R_SPARC_UA64:
2212 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2213 break;
2214 case R_SPARC_DISP8:
2215 case R_SPARC_DISP16:
2216 case R_SPARC_DISP32:
2217 case R_SPARC_DISP64:
2218 /* If the symbol is not dynamic, we should not keep
2219 a dynamic relocation. But an .rela.* slot has been
2220 allocated for it, output R_SPARC_NONE.
2221 FIXME: Add code tracking needed dynamic relocs as
2222 e.g. i386 has. */
2223 if (h->dynindx == -1)
2224 skip = TRUE, relocate = TRUE;
2225 break;
2226 }
2227
2228 /* FIXME: Dynamic reloc handling really needs to be rewritten. */
2229 if (!skip
2230 && h != NULL
2231 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2232 && h->root.type == bfd_link_hash_undefweak)
2233 skip = TRUE, relocate = TRUE;
2234
2235 if (skip)
2236 memset (&outrel, 0, sizeof outrel);
2237 /* h->dynindx may be -1 if the symbol was marked to
2238 become local. */
2239 else if (h != NULL && ! is_plt
2240 && ((! info->symbolic && h->dynindx != -1)
2241 || !h->def_regular))
2242 {
2243 BFD_ASSERT (h->dynindx != -1);
2244 outrel.r_info
2245 = ELF64_R_INFO (h->dynindx,
2246 ELF64_R_TYPE_INFO (
2247 ELF64_R_TYPE_DATA (rel->r_info),
2248 r_type));
2249 outrel.r_addend = rel->r_addend;
2250 }
2251 else
2252 {
2253 outrel.r_addend = relocation + rel->r_addend;
2254 if (r_type == R_SPARC_64)
2255 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2256 else
2257 {
2258 long indx;
2259
2260 if (is_plt)
2261 sec = splt;
2262
2263 if (bfd_is_abs_section (sec))
2264 indx = 0;
2265 else if (sec == NULL || sec->owner == NULL)
2266 {
2267 bfd_set_error (bfd_error_bad_value);
2268 return FALSE;
2269 }
2270 else
2271 {
2272 asection *osec;
2273
2274 osec = sec->output_section;
2275 indx = elf_section_data (osec)->dynindx;
2276
2277 /* We are turning this relocation into one
2278 against a section symbol, so subtract out
2279 the output section's address but not the
2280 offset of the input section in the output
2281 section. */
2282 outrel.r_addend -= osec->vma;
2283
2284 /* FIXME: we really should be able to link non-pic
2285 shared libraries. */
2286 if (indx == 0)
2287 {
2288 BFD_FAIL ();
2289 (*_bfd_error_handler)
2290 (_("%B: probably compiled without -fPIC?"),
2291 input_bfd);
2292 bfd_set_error (bfd_error_bad_value);
2293 return FALSE;
2294 }
2295 }
2296
2297 outrel.r_info
2298 = ELF64_R_INFO (indx,
2299 ELF64_R_TYPE_INFO (
2300 ELF64_R_TYPE_DATA (rel->r_info),
2301 r_type));
2302 }
2303 }
2304
2305 loc = sreloc->contents;
2306 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2307 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2308
2309 /* This reloc will be computed at runtime, so there's no
2310 need to do anything now. */
2311 if (! relocate)
2312 continue;
2313 }
2314 break;
2315 }
2316 }
2317
2318 switch (r_type)
2319 {
2320 case R_SPARC_GOT10:
2321 case R_SPARC_GOT13:
2322 case R_SPARC_GOT22:
2323 /* Relocation is to the entry for this symbol in the global
2324 offset table. */
2325 if (sgot == NULL)
2326 {
2327 sgot = bfd_get_section_by_name (dynobj, ".got");
2328 BFD_ASSERT (sgot != NULL);
2329 }
2330
2331 if (h != NULL)
2332 {
2333 bfd_boolean dyn;
2334
2335 off = h->got.offset;
2336 BFD_ASSERT (off != (bfd_vma) -1);
2337 dyn = elf_hash_table (info)->dynamic_sections_created;
2338
2339 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2340 || (info->shared
2341 && (info->symbolic
2342 || h->dynindx == -1
2343 || h->forced_local)
2344 && h->def_regular))
2345 {
2346 /* This is actually a static link, or it is a -Bsymbolic
2347 link and the symbol is defined locally, or the symbol
2348 was forced to be local because of a version file. We
2349 must initialize this entry in the global offset table.
2350 Since the offset must always be a multiple of 8, we
2351 use the least significant bit to record whether we
2352 have initialized it already.
2353
2354 When doing a dynamic link, we create a .rela.got
2355 relocation entry to initialize the value. This is
2356 done in the finish_dynamic_symbol routine. */
2357
2358 if ((off & 1) != 0)
2359 off &= ~1;
2360 else
2361 {
2362 bfd_put_64 (output_bfd, relocation,
2363 sgot->contents + off);
2364 h->got.offset |= 1;
2365 }
2366 }
2367 else
2368 unresolved_reloc = FALSE;
2369 }
2370 else
2371 {
2372 BFD_ASSERT (local_got_offsets != NULL);
2373 off = local_got_offsets[r_symndx];
2374 BFD_ASSERT (off != (bfd_vma) -1);
2375
2376 /* The offset must always be a multiple of 8. We use
2377 the least significant bit to record whether we have
2378 already processed this entry. */
2379 if ((off & 1) != 0)
2380 off &= ~1;
2381 else
2382 {
2383 local_got_offsets[r_symndx] |= 1;
2384
2385 if (info->shared)
2386 {
2387 asection *s;
2388 Elf_Internal_Rela outrel;
2389 bfd_byte *loc;
2390
2391 /* The Solaris 2.7 64-bit linker adds the contents
2392 of the location to the value of the reloc.
2393 Note this is different behaviour to the
2394 32-bit linker, which both adds the contents
2395 and ignores the addend. So clear the location. */
2396 bfd_put_64 (output_bfd, (bfd_vma) 0,
2397 sgot->contents + off);
2398
2399 /* We need to generate a R_SPARC_RELATIVE reloc
2400 for the dynamic linker. */
2401 s = bfd_get_section_by_name(dynobj, ".rela.got");
2402 BFD_ASSERT (s != NULL);
2403
2404 outrel.r_offset = (sgot->output_section->vma
2405 + sgot->output_offset
2406 + off);
2407 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2408 outrel.r_addend = relocation;
2409 loc = s->contents;
2410 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2411 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2412 }
2413 else
2414 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2415 }
2416 }
2417 relocation = sgot->output_offset + off - got_base;
2418 goto do_default;
2419
2420 case R_SPARC_WPLT30:
2421 case R_SPARC_PLT32:
2422 case R_SPARC_HIPLT22:
2423 case R_SPARC_LOPLT10:
2424 case R_SPARC_PCPLT32:
2425 case R_SPARC_PCPLT22:
2426 case R_SPARC_PCPLT10:
2427 case R_SPARC_PLT64:
2428 /* Relocation is to the entry for this symbol in the
2429 procedure linkage table. */
2430 BFD_ASSERT (h != NULL);
2431
2432 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
2433 {
2434 /* We didn't make a PLT entry for this symbol. This
2435 happens when statically linking PIC code, or when
2436 using -Bsymbolic. */
2437 goto do_default;
2438 }
2439
2440 relocation = (splt->output_section->vma
2441 + splt->output_offset
2442 + sparc64_elf_plt_entry_offset (h->plt.offset));
2443 unresolved_reloc = FALSE;
2444 if (r_type == R_SPARC_WPLT30)
2445 goto do_wplt30;
2446 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2447 {
2448 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2449 is_plt = TRUE;
2450 goto do_dynreloc;
2451 }
2452 goto do_default;
2453
2454 case R_SPARC_OLO10:
2455 {
2456 bfd_vma x;
2457
2458 relocation += rel->r_addend;
2459 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2460
2461 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2462 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2463 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2464
2465 r = bfd_check_overflow (howto->complain_on_overflow,
2466 howto->bitsize, howto->rightshift,
2467 bfd_arch_bits_per_address (input_bfd),
2468 relocation);
2469 }
2470 break;
2471
2472 case R_SPARC_WDISP16:
2473 {
2474 bfd_vma x;
2475
2476 relocation += rel->r_addend;
2477 /* Adjust for pc-relative-ness. */
2478 relocation -= (input_section->output_section->vma
2479 + input_section->output_offset);
2480 relocation -= rel->r_offset;
2481
2482 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2483 x &= ~(bfd_vma) 0x303fff;
2484 x |= ((((relocation >> 2) & 0xc000) << 6)
2485 | ((relocation >> 2) & 0x3fff));
2486 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2487
2488 r = bfd_check_overflow (howto->complain_on_overflow,
2489 howto->bitsize, howto->rightshift,
2490 bfd_arch_bits_per_address (input_bfd),
2491 relocation);
2492 }
2493 break;
2494
2495 case R_SPARC_HIX22:
2496 {
2497 bfd_vma x;
2498
2499 relocation += rel->r_addend;
2500 relocation = relocation ^ MINUS_ONE;
2501
2502 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2503 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2504 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2505
2506 r = bfd_check_overflow (howto->complain_on_overflow,
2507 howto->bitsize, howto->rightshift,
2508 bfd_arch_bits_per_address (input_bfd),
2509 relocation);
2510 }
2511 break;
2512
2513 case R_SPARC_LOX10:
2514 {
2515 bfd_vma x;
2516
2517 relocation += rel->r_addend;
2518 relocation = (relocation & 0x3ff) | 0x1c00;
2519
2520 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2521 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2522 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2523
2524 r = bfd_reloc_ok;
2525 }
2526 break;
2527
2528 case R_SPARC_WDISP30:
2529 do_wplt30:
2530 if (sec_do_relax (input_section)
2531 && rel->r_offset + 4 < input_section->size)
2532 {
2533 #define G0 0
2534 #define O7 15
2535 #define XCC (2 << 20)
2536 #define COND(x) (((x)&0xf)<<25)
2537 #define CONDA COND(0x8)
2538 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2539 #define INSN_BA (F2(0,2) | CONDA)
2540 #define INSN_OR F3(2, 0x2, 0)
2541 #define INSN_NOP F2(0,4)
2542
2543 bfd_vma x, y;
2544
2545 /* If the instruction is a call with either:
2546 restore
2547 arithmetic instruction with rd == %o7
2548 where rs1 != %o7 and rs2 if it is register != %o7
2549 then we can optimize if the call destination is near
2550 by changing the call into a branch always. */
2551 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2552 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2553 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2554 {
2555 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2556 || ((y & OP3(0x28)) == 0 /* arithmetic */
2557 && (y & RD(~0)) == RD(O7)))
2558 && (y & RS1(~0)) != RS1(O7)
2559 && ((y & F3I(~0))
2560 || (y & RS2(~0)) != RS2(O7)))
2561 {
2562 bfd_vma reloc;
2563
2564 reloc = relocation + rel->r_addend - rel->r_offset;
2565 reloc -= (input_section->output_section->vma
2566 + input_section->output_offset);
2567 if (reloc & 3)
2568 goto do_default;
2569
2570 /* Ensure the branch fits into simm22. */
2571 if ((reloc & ~(bfd_vma)0x7fffff)
2572 && ((reloc | 0x7fffff) != MINUS_ONE))
2573 goto do_default;
2574 reloc >>= 2;
2575
2576 /* Check whether it fits into simm19. */
2577 if ((reloc & 0x3c0000) == 0
2578 || (reloc & 0x3c0000) == 0x3c0000)
2579 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2580 else
2581 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2582 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2583 r = bfd_reloc_ok;
2584 if (rel->r_offset >= 4
2585 && (y & (0xffffffff ^ RS1(~0)))
2586 == (INSN_OR | RD(O7) | RS2(G0)))
2587 {
2588 bfd_vma z;
2589 unsigned int reg;
2590
2591 z = bfd_get_32 (input_bfd,
2592 contents + rel->r_offset - 4);
2593 if ((z & (0xffffffff ^ RD(~0)))
2594 != (INSN_OR | RS1(O7) | RS2(G0)))
2595 break;
2596
2597 /* The sequence was
2598 or %o7, %g0, %rN
2599 call foo
2600 or %rN, %g0, %o7
2601
2602 If call foo was replaced with ba, replace
2603 or %rN, %g0, %o7 with nop. */
2604
2605 reg = (y & RS1(~0)) >> 14;
2606 if (reg != ((z & RD(~0)) >> 25)
2607 || reg == G0 || reg == O7)
2608 break;
2609
2610 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2611 contents + rel->r_offset + 4);
2612 }
2613 break;
2614 }
2615 }
2616 }
2617 /* Fall through. */
2618
2619 default:
2620 do_default:
2621 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2622 contents, rel->r_offset,
2623 relocation, rel->r_addend);
2624 break;
2625 }
2626
2627 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2628 because such sections are not SEC_ALLOC and thus ld.so will
2629 not process them. */
2630 if (unresolved_reloc
2631 && !((input_section->flags & SEC_DEBUGGING) != 0
2632 && h->def_dynamic))
2633 (*_bfd_error_handler)
2634 (_("%B(%A+0x%lx): unresolvable relocation against symbol `%s'"),
2635 input_bfd, input_section,
2636 (long) rel->r_offset,
2637 h->root.root.string);
2638
2639 switch (r)
2640 {
2641 case bfd_reloc_ok:
2642 break;
2643
2644 default:
2645 case bfd_reloc_outofrange:
2646 abort ();
2647
2648 case bfd_reloc_overflow:
2649 {
2650 const char *name;
2651
2652 /* The Solaris native linker silently disregards
2653 overflows. We don't, but this breaks stabs debugging
2654 info, whose relocations are only 32-bits wide. Ignore
2655 overflows in this case and also for discarded entries. */
2656 if ((r_type == R_SPARC_32 || r_type == R_SPARC_DISP32)
2657 && (((input_section->flags & SEC_DEBUGGING) != 0
2658 && strcmp (bfd_section_name (input_bfd, input_section),
2659 ".stab") == 0)
2660 || _bfd_elf_section_offset (output_bfd, info,
2661 input_section,
2662 rel->r_offset) == (bfd_vma)-1))
2663 break;
2664
2665 if (h != NULL)
2666 {
2667 if (h->root.type == bfd_link_hash_undefweak
2668 && howto->pc_relative)
2669 {
2670 /* Assume this is a call protected by other code that
2671 detect the symbol is undefined. If this is the case,
2672 we can safely ignore the overflow. If not, the
2673 program is hosed anyway, and a little warning isn't
2674 going to help. */
2675 break;
2676 }
2677
2678 name = NULL;
2679 }
2680 else
2681 {
2682 name = (bfd_elf_string_from_elf_section
2683 (input_bfd,
2684 symtab_hdr->sh_link,
2685 sym->st_name));
2686 if (name == NULL)
2687 return FALSE;
2688 if (*name == '\0')
2689 name = bfd_section_name (input_bfd, sec);
2690 }
2691 if (! ((*info->callbacks->reloc_overflow)
2692 (info, (h ? &h->root : NULL), name, howto->name,
2693 (bfd_vma) 0, input_bfd, input_section,
2694 rel->r_offset)))
2695 return FALSE;
2696 }
2697 break;
2698 }
2699 }
2700
2701 return TRUE;
2702 }
2703
2704 /* Finish up dynamic symbol handling. We set the contents of various
2705 dynamic sections here. */
2706
2707 static bfd_boolean
2708 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2709 bfd *output_bfd;
2710 struct bfd_link_info *info;
2711 struct elf_link_hash_entry *h;
2712 Elf_Internal_Sym *sym;
2713 {
2714 bfd *dynobj;
2715
2716 dynobj = elf_hash_table (info)->dynobj;
2717
2718 if (h->plt.offset != (bfd_vma) -1)
2719 {
2720 asection *splt;
2721 asection *srela;
2722 Elf_Internal_Rela rela;
2723 bfd_byte *loc;
2724
2725 /* This symbol has an entry in the PLT. Set it up. */
2726
2727 BFD_ASSERT (h->dynindx != -1);
2728
2729 splt = bfd_get_section_by_name (dynobj, ".plt");
2730 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2731 BFD_ASSERT (splt != NULL && srela != NULL);
2732
2733 /* Fill in the entry in the .rela.plt section. */
2734
2735 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2736 {
2737 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2738 rela.r_addend = 0;
2739 }
2740 else
2741 {
2742 bfd_vma max = splt->size / PLT_ENTRY_SIZE;
2743 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2744 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2745 -(splt->output_section->vma + splt->output_offset);
2746 }
2747 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2748 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2749
2750 /* Adjust for the first 4 reserved elements in the .plt section
2751 when setting the offset in the .rela.plt section.
2752 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2753 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2754
2755 loc = srela->contents;
2756 loc += (h->plt.offset - 4) * sizeof (Elf64_External_Rela);
2757 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2758
2759 if (!h->def_regular)
2760 {
2761 /* Mark the symbol as undefined, rather than as defined in
2762 the .plt section. Leave the value alone. */
2763 sym->st_shndx = SHN_UNDEF;
2764 /* If the symbol is weak, we do need to clear the value.
2765 Otherwise, the PLT entry would provide a definition for
2766 the symbol even if the symbol wasn't defined anywhere,
2767 and so the symbol would never be NULL. */
2768 if (!h->ref_regular_nonweak)
2769 sym->st_value = 0;
2770 }
2771 }
2772
2773 if (h->got.offset != (bfd_vma) -1)
2774 {
2775 asection *sgot;
2776 asection *srela;
2777 Elf_Internal_Rela rela;
2778 bfd_byte *loc;
2779
2780 /* This symbol has an entry in the GOT. Set it up. */
2781
2782 sgot = bfd_get_section_by_name (dynobj, ".got");
2783 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2784 BFD_ASSERT (sgot != NULL && srela != NULL);
2785
2786 rela.r_offset = (sgot->output_section->vma
2787 + sgot->output_offset
2788 + (h->got.offset &~ (bfd_vma) 1));
2789
2790 /* If this is a -Bsymbolic link, and the symbol is defined
2791 locally, we just want to emit a RELATIVE reloc. Likewise if
2792 the symbol was forced to be local because of a version file.
2793 The entry in the global offset table will already have been
2794 initialized in the relocate_section function. */
2795 if (info->shared
2796 && (info->symbolic || h->dynindx == -1)
2797 && h->def_regular)
2798 {
2799 asection *sec = h->root.u.def.section;
2800 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2801 rela.r_addend = (h->root.u.def.value
2802 + sec->output_section->vma
2803 + sec->output_offset);
2804 }
2805 else
2806 {
2807 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2808 rela.r_addend = 0;
2809 }
2810
2811 bfd_put_64 (output_bfd, (bfd_vma) 0,
2812 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
2813 loc = srela->contents;
2814 loc += srela->reloc_count++ * sizeof (Elf64_External_Rela);
2815 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2816 }
2817
2818 if (h->needs_copy)
2819 {
2820 asection *s;
2821 Elf_Internal_Rela rela;
2822 bfd_byte *loc;
2823
2824 /* This symbols needs a copy reloc. Set it up. */
2825 BFD_ASSERT (h->dynindx != -1);
2826
2827 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2828 ".rela.bss");
2829 BFD_ASSERT (s != NULL);
2830
2831 rela.r_offset = (h->root.u.def.value
2832 + h->root.u.def.section->output_section->vma
2833 + h->root.u.def.section->output_offset);
2834 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2835 rela.r_addend = 0;
2836 loc = s->contents + s->reloc_count++ * sizeof (Elf64_External_Rela);
2837 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2838 }
2839
2840 /* Mark some specially defined symbols as absolute. */
2841 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2842 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2843 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2844 sym->st_shndx = SHN_ABS;
2845
2846 return TRUE;
2847 }
2848
2849 /* Finish up the dynamic sections. */
2850
2851 static bfd_boolean
2852 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2853 bfd *output_bfd;
2854 struct bfd_link_info *info;
2855 {
2856 bfd *dynobj;
2857 int stt_regidx = -1;
2858 asection *sdyn;
2859 asection *sgot;
2860
2861 dynobj = elf_hash_table (info)->dynobj;
2862
2863 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2864
2865 if (elf_hash_table (info)->dynamic_sections_created)
2866 {
2867 asection *splt;
2868 Elf64_External_Dyn *dyncon, *dynconend;
2869
2870 splt = bfd_get_section_by_name (dynobj, ".plt");
2871 BFD_ASSERT (splt != NULL && sdyn != NULL);
2872
2873 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2874 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2875 for (; dyncon < dynconend; dyncon++)
2876 {
2877 Elf_Internal_Dyn dyn;
2878 const char *name;
2879 bfd_boolean size;
2880
2881 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2882
2883 switch (dyn.d_tag)
2884 {
2885 case DT_PLTGOT: name = ".plt"; size = FALSE; break;
2886 case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break;
2887 case DT_JMPREL: name = ".rela.plt"; size = FALSE; break;
2888 case DT_SPARC_REGISTER:
2889 if (stt_regidx == -1)
2890 {
2891 stt_regidx =
2892 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2893 if (stt_regidx == -1)
2894 return FALSE;
2895 }
2896 dyn.d_un.d_val = stt_regidx++;
2897 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2898 /* fallthrough */
2899 default: name = NULL; size = FALSE; break;
2900 }
2901
2902 if (name != NULL)
2903 {
2904 asection *s;
2905
2906 s = bfd_get_section_by_name (output_bfd, name);
2907 if (s == NULL)
2908 dyn.d_un.d_val = 0;
2909 else
2910 {
2911 if (! size)
2912 dyn.d_un.d_ptr = s->vma;
2913 else
2914 dyn.d_un.d_val = s->size;
2915 }
2916 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2917 }
2918 }
2919
2920 /* Initialize the contents of the .plt section. */
2921 if (splt->size > 0)
2922 sparc64_elf_build_plt (output_bfd, splt->contents,
2923 (int) (splt->size / PLT_ENTRY_SIZE));
2924
2925 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2926 PLT_ENTRY_SIZE;
2927 }
2928
2929 /* Set the first entry in the global offset table to the address of
2930 the dynamic section. */
2931 sgot = bfd_get_section_by_name (dynobj, ".got");
2932 BFD_ASSERT (sgot != NULL);
2933 if (sgot->size > 0)
2934 {
2935 if (sdyn == NULL)
2936 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2937 else
2938 bfd_put_64 (output_bfd,
2939 sdyn->output_section->vma + sdyn->output_offset,
2940 sgot->contents);
2941 }
2942
2943 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2944
2945 return TRUE;
2946 }
2947
2948 static enum elf_reloc_type_class
2949 sparc64_elf_reloc_type_class (rela)
2950 const Elf_Internal_Rela *rela;
2951 {
2952 switch ((int) ELF64_R_TYPE (rela->r_info))
2953 {
2954 case R_SPARC_RELATIVE:
2955 return reloc_class_relative;
2956 case R_SPARC_JMP_SLOT:
2957 return reloc_class_plt;
2958 case R_SPARC_COPY:
2959 return reloc_class_copy;
2960 default:
2961 return reloc_class_normal;
2962 }
2963 }
2964 \f
2965 /* Functions for dealing with the e_flags field. */
2966
2967 /* Merge backend specific data from an object file to the output
2968 object file when linking. */
2969
2970 static bfd_boolean
2971 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2972 bfd *ibfd;
2973 bfd *obfd;
2974 {
2975 bfd_boolean error;
2976 flagword new_flags, old_flags;
2977 int new_mm, old_mm;
2978
2979 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2980 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2981 return TRUE;
2982
2983 new_flags = elf_elfheader (ibfd)->e_flags;
2984 old_flags = elf_elfheader (obfd)->e_flags;
2985
2986 if (!elf_flags_init (obfd)) /* First call, no flags set */
2987 {
2988 elf_flags_init (obfd) = TRUE;
2989 elf_elfheader (obfd)->e_flags = new_flags;
2990 }
2991
2992 else if (new_flags == old_flags) /* Compatible flags are ok */
2993 ;
2994
2995 else /* Incompatible flags */
2996 {
2997 error = FALSE;
2998
2999 #define EF_SPARC_ISA_EXTENSIONS \
3000 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
3001
3002 if ((ibfd->flags & DYNAMIC) != 0)
3003 {
3004 /* We don't want dynamic objects memory ordering and
3005 architecture to have any role. That's what dynamic linker
3006 should do. */
3007 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
3008 new_flags |= (old_flags
3009 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
3010 }
3011 else
3012 {
3013 /* Choose the highest architecture requirements. */
3014 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
3015 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3016 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3017 && (old_flags & EF_SPARC_HAL_R1))
3018 {
3019 error = TRUE;
3020 (*_bfd_error_handler)
3021 (_("%B: linking UltraSPARC specific with HAL specific code"),
3022 ibfd);
3023 }
3024 /* Choose the most restrictive memory ordering. */
3025 old_mm = (old_flags & EF_SPARCV9_MM);
3026 new_mm = (new_flags & EF_SPARCV9_MM);
3027 old_flags &= ~EF_SPARCV9_MM;
3028 new_flags &= ~EF_SPARCV9_MM;
3029 if (new_mm < old_mm)
3030 old_mm = new_mm;
3031 old_flags |= old_mm;
3032 new_flags |= old_mm;
3033 }
3034
3035 /* Warn about any other mismatches */
3036 if (new_flags != old_flags)
3037 {
3038 error = TRUE;
3039 (*_bfd_error_handler)
3040 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3041 ibfd, (long) new_flags, (long) old_flags);
3042 }
3043
3044 elf_elfheader (obfd)->e_flags = old_flags;
3045
3046 if (error)
3047 {
3048 bfd_set_error (bfd_error_bad_value);
3049 return FALSE;
3050 }
3051 }
3052 return TRUE;
3053 }
3054
3055 /* MARCO: Set the correct entry size for the .stab section. */
3056
3057 static bfd_boolean
3058 sparc64_elf_fake_sections (abfd, hdr, sec)
3059 bfd *abfd ATTRIBUTE_UNUSED;
3060 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3061 asection *sec;
3062 {
3063 const char *name;
3064
3065 name = bfd_get_section_name (abfd, sec);
3066
3067 if (strcmp (name, ".stab") == 0)
3068 {
3069 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3070 elf_section_data (sec)->this_hdr.sh_entsize = 12;
3071 }
3072
3073 return TRUE;
3074 }
3075 \f
3076 /* Print a STT_REGISTER symbol to file FILE. */
3077
3078 static const char *
3079 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3080 bfd *abfd ATTRIBUTE_UNUSED;
3081 PTR filep;
3082 asymbol *symbol;
3083 {
3084 FILE *file = (FILE *) filep;
3085 int reg, type;
3086
3087 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3088 != STT_REGISTER)
3089 return NULL;
3090
3091 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3092 type = symbol->flags;
3093 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3094 ((type & BSF_LOCAL)
3095 ? (type & BSF_GLOBAL) ? '!' : 'l'
3096 : (type & BSF_GLOBAL) ? 'g' : ' '),
3097 (type & BSF_WEAK) ? 'w' : ' ');
3098 if (symbol->name == NULL || symbol->name [0] == '\0')
3099 return "#scratch";
3100 else
3101 return symbol->name;
3102 }
3103 \f
3104 /* Set the right machine number for a SPARC64 ELF file. */
3105
3106 static bfd_boolean
3107 sparc64_elf_object_p (abfd)
3108 bfd *abfd;
3109 {
3110 unsigned long mach = bfd_mach_sparc_v9;
3111
3112 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3113 mach = bfd_mach_sparc_v9b;
3114 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3115 mach = bfd_mach_sparc_v9a;
3116 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3117 }
3118
3119 /* Return address for Ith PLT stub in section PLT, for relocation REL
3120 or (bfd_vma) -1 if it should not be included. */
3121
3122 static bfd_vma
3123 sparc64_elf_plt_sym_val (bfd_vma i, const asection *plt,
3124 const arelent *rel ATTRIBUTE_UNUSED)
3125 {
3126 bfd_vma j;
3127
3128 i += PLT_HEADER_SIZE / PLT_ENTRY_SIZE;
3129 if (i < LARGE_PLT_THRESHOLD)
3130 return plt->vma + i * PLT_ENTRY_SIZE;
3131
3132 j = (i - LARGE_PLT_THRESHOLD) % 160;
3133 i -= j;
3134 return plt->vma + i * PLT_ENTRY_SIZE + j * 4 * 6;
3135 }
3136
3137 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3138 standard ELF, because R_SPARC_OLO10 has secondary addend in
3139 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3140 relocation handling routines. */
3141
3142 const struct elf_size_info sparc64_elf_size_info =
3143 {
3144 sizeof (Elf64_External_Ehdr),
3145 sizeof (Elf64_External_Phdr),
3146 sizeof (Elf64_External_Shdr),
3147 sizeof (Elf64_External_Rel),
3148 sizeof (Elf64_External_Rela),
3149 sizeof (Elf64_External_Sym),
3150 sizeof (Elf64_External_Dyn),
3151 sizeof (Elf_External_Note),
3152 4, /* hash-table entry size. */
3153 /* Internal relocations per external relocations.
3154 For link purposes we use just 1 internal per
3155 1 external, for assembly and slurp symbol table
3156 we use 2. */
3157 1,
3158 64, /* arch_size. */
3159 3, /* log_file_align. */
3160 ELFCLASS64,
3161 EV_CURRENT,
3162 bfd_elf64_write_out_phdrs,
3163 bfd_elf64_write_shdrs_and_ehdr,
3164 sparc64_elf_write_relocs,
3165 bfd_elf64_swap_symbol_in,
3166 bfd_elf64_swap_symbol_out,
3167 sparc64_elf_slurp_reloc_table,
3168 bfd_elf64_slurp_symbol_table,
3169 bfd_elf64_swap_dyn_in,
3170 bfd_elf64_swap_dyn_out,
3171 bfd_elf64_swap_reloc_in,
3172 bfd_elf64_swap_reloc_out,
3173 bfd_elf64_swap_reloca_in,
3174 bfd_elf64_swap_reloca_out
3175 };
3176
3177 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3178 #define TARGET_BIG_NAME "elf64-sparc"
3179 #define ELF_ARCH bfd_arch_sparc
3180 #define ELF_MAXPAGESIZE 0x100000
3181
3182 /* This is the official ABI value. */
3183 #define ELF_MACHINE_CODE EM_SPARCV9
3184
3185 /* This is the value that we used before the ABI was released. */
3186 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3187
3188 #define bfd_elf64_bfd_link_hash_table_create \
3189 sparc64_elf_bfd_link_hash_table_create
3190
3191 #define elf_info_to_howto \
3192 sparc64_elf_info_to_howto
3193 #define bfd_elf64_get_reloc_upper_bound \
3194 sparc64_elf_get_reloc_upper_bound
3195 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3196 sparc64_elf_get_dynamic_reloc_upper_bound
3197 #define bfd_elf64_canonicalize_reloc \
3198 sparc64_elf_canonicalize_reloc
3199 #define bfd_elf64_canonicalize_dynamic_reloc \
3200 sparc64_elf_canonicalize_dynamic_reloc
3201 #define bfd_elf64_bfd_reloc_type_lookup \
3202 sparc64_elf_reloc_type_lookup
3203 #define bfd_elf64_bfd_relax_section \
3204 sparc64_elf_relax_section
3205 #define bfd_elf64_new_section_hook \
3206 sparc64_elf_new_section_hook
3207
3208 #define elf_backend_create_dynamic_sections \
3209 _bfd_elf_create_dynamic_sections
3210 #define elf_backend_add_symbol_hook \
3211 sparc64_elf_add_symbol_hook
3212 #define elf_backend_get_symbol_type \
3213 sparc64_elf_get_symbol_type
3214 #define elf_backend_symbol_processing \
3215 sparc64_elf_symbol_processing
3216 #define elf_backend_check_relocs \
3217 sparc64_elf_check_relocs
3218 #define elf_backend_adjust_dynamic_symbol \
3219 sparc64_elf_adjust_dynamic_symbol
3220 #define elf_backend_omit_section_dynsym \
3221 sparc64_elf_omit_section_dynsym
3222 #define elf_backend_size_dynamic_sections \
3223 sparc64_elf_size_dynamic_sections
3224 #define elf_backend_relocate_section \
3225 sparc64_elf_relocate_section
3226 #define elf_backend_finish_dynamic_symbol \
3227 sparc64_elf_finish_dynamic_symbol
3228 #define elf_backend_finish_dynamic_sections \
3229 sparc64_elf_finish_dynamic_sections
3230 #define elf_backend_print_symbol_all \
3231 sparc64_elf_print_symbol_all
3232 #define elf_backend_output_arch_syms \
3233 sparc64_elf_output_arch_syms
3234 #define bfd_elf64_bfd_merge_private_bfd_data \
3235 sparc64_elf_merge_private_bfd_data
3236 #define elf_backend_fake_sections \
3237 sparc64_elf_fake_sections
3238 #define elf_backend_plt_sym_val \
3239 sparc64_elf_plt_sym_val
3240
3241 #define elf_backend_size_info \
3242 sparc64_elf_size_info
3243 #define elf_backend_object_p \
3244 sparc64_elf_object_p
3245 #define elf_backend_reloc_type_class \
3246 sparc64_elf_reloc_type_class
3247
3248 #define elf_backend_want_got_plt 0
3249 #define elf_backend_plt_readonly 0
3250 #define elf_backend_want_plt_sym 1
3251 #define elf_backend_rela_normal 1
3252
3253 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3254 #define elf_backend_plt_alignment 8
3255
3256 #define elf_backend_got_header_size 8
3257
3258 #include "elf64-target.h"
This page took 0.106886 seconds and 4 git commands to generate.