* acconfig.h, configure.in, i386bsd.c (HAVE_STRUCT_REG_R_FS):
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS((bfd *));
39 static reloc_howto_type *sparc64_elf_reloc_type_lookup
40 PARAMS ((bfd *, bfd_reloc_code_real_type));
41 static void sparc64_elf_info_to_howto
42 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
43
44 static void sparc64_elf_build_plt
45 PARAMS((bfd *, unsigned char *, int));
46 static bfd_vma sparc64_elf_plt_entry_offset
47 PARAMS((int));
48 static bfd_vma sparc64_elf_plt_ptr_offset
49 PARAMS((int, int));
50
51 static boolean sparc64_elf_check_relocs
52 PARAMS((bfd *, struct bfd_link_info *, asection *sec,
53 const Elf_Internal_Rela *));
54 static boolean sparc64_elf_adjust_dynamic_symbol
55 PARAMS((struct bfd_link_info *, struct elf_link_hash_entry *));
56 static boolean sparc64_elf_size_dynamic_sections
57 PARAMS((bfd *, struct bfd_link_info *));
58 static int sparc64_elf_get_symbol_type
59 PARAMS (( Elf_Internal_Sym *, int));
60 static boolean sparc64_elf_add_symbol_hook
61 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
62 const char **, flagword *, asection **, bfd_vma *));
63 static void sparc64_elf_symbol_processing
64 PARAMS ((bfd *, asymbol *));
65
66 static boolean sparc64_elf_merge_private_bfd_data
67 PARAMS ((bfd *, bfd *));
68
69 static boolean sparc64_elf_relax_section
70 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
71 static boolean sparc64_elf_relocate_section
72 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
73 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
74 static boolean sparc64_elf_object_p PARAMS ((bfd *));
75 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
76 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
77 static boolean sparc64_elf_slurp_one_reloc_table
78 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
79 static boolean sparc64_elf_slurp_reloc_table
80 PARAMS ((bfd *, asection *, asymbol **, boolean));
81 static long sparc64_elf_canonicalize_dynamic_reloc
82 PARAMS ((bfd *, arelent **, asymbol **));
83 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
84 \f
85 /* The relocation "howto" table. */
86
87 static bfd_reloc_status_type sparc_elf_notsup_reloc
88 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
89 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
90 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
91 static bfd_reloc_status_type sparc_elf_hix22_reloc
92 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
93 static bfd_reloc_status_type sparc_elf_lox10_reloc
94 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
95
96 static reloc_howto_type sparc64_elf_howto_table[] =
97 {
98 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
99 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
100 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
101 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
102 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
103 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
104 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
105 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
106 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
107 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
108 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
109 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
110 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
111 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
112 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
113 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
114 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
115 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
116 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
117 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
118 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
119 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
120 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
121 HOWTO(R_SPARC_UA32, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0x00000000,true),
122 #ifndef SPARC64_OLD_RELOCS
123 /* These aren't implemented yet. */
124 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
125 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
126 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
127 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
128 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
129 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
130 #endif
131 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
132 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
133 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
134 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
135 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
136 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
137 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
138 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
139 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
140 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
141 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
142 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
143 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
144 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
145 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
146 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
147 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
148 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
149 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
150 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
151 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
152 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
153 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
154 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
155 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
156 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
157 };
158
159 struct elf_reloc_map {
160 bfd_reloc_code_real_type bfd_reloc_val;
161 unsigned char elf_reloc_val;
162 };
163
164 static CONST struct elf_reloc_map sparc_reloc_map[] =
165 {
166 { BFD_RELOC_NONE, R_SPARC_NONE, },
167 { BFD_RELOC_16, R_SPARC_16, },
168 { BFD_RELOC_8, R_SPARC_8 },
169 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
170 { BFD_RELOC_CTOR, R_SPARC_64 },
171 { BFD_RELOC_32, R_SPARC_32 },
172 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
173 { BFD_RELOC_HI22, R_SPARC_HI22 },
174 { BFD_RELOC_LO10, R_SPARC_LO10, },
175 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
176 { BFD_RELOC_SPARC22, R_SPARC_22 },
177 { BFD_RELOC_SPARC13, R_SPARC_13 },
178 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
179 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
180 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
181 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
182 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
183 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
184 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
185 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
186 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
187 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
188 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
189 /* ??? Doesn't dwarf use this? */
190 /*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
191 {BFD_RELOC_SPARC_10, R_SPARC_10},
192 {BFD_RELOC_SPARC_11, R_SPARC_11},
193 {BFD_RELOC_SPARC_64, R_SPARC_64},
194 {BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10},
195 {BFD_RELOC_SPARC_HH22, R_SPARC_HH22},
196 {BFD_RELOC_SPARC_HM10, R_SPARC_HM10},
197 {BFD_RELOC_SPARC_LM22, R_SPARC_LM22},
198 {BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22},
199 {BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10},
200 {BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22},
201 {BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16},
202 {BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19},
203 {BFD_RELOC_SPARC_7, R_SPARC_7},
204 {BFD_RELOC_SPARC_5, R_SPARC_5},
205 {BFD_RELOC_SPARC_6, R_SPARC_6},
206 {BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64},
207 {BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64},
208 {BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22},
209 {BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10},
210 {BFD_RELOC_SPARC_H44, R_SPARC_H44},
211 {BFD_RELOC_SPARC_M44, R_SPARC_M44},
212 {BFD_RELOC_SPARC_L44, R_SPARC_L44},
213 {BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER}
214 };
215
216 static reloc_howto_type *
217 sparc64_elf_reloc_type_lookup (abfd, code)
218 bfd *abfd ATTRIBUTE_UNUSED;
219 bfd_reloc_code_real_type code;
220 {
221 unsigned int i;
222 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
223 {
224 if (sparc_reloc_map[i].bfd_reloc_val == code)
225 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
226 }
227 return 0;
228 }
229
230 static void
231 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
232 bfd *abfd ATTRIBUTE_UNUSED;
233 arelent *cache_ptr;
234 Elf64_Internal_Rela *dst;
235 {
236 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
237 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
238 }
239 \f
240 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
241 section can represent up to two relocs, we must tell the user to allocate
242 more space. */
243
244 static long
245 sparc64_elf_get_reloc_upper_bound (abfd, sec)
246 bfd *abfd ATTRIBUTE_UNUSED;
247 asection *sec;
248 {
249 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
250 }
251
252 static long
253 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
254 bfd *abfd;
255 {
256 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
257 }
258
259 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
260 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
261 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
262 for the same location, R_SPARC_LO10 and R_SPARC_13. */
263
264 static boolean
265 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
266 bfd *abfd;
267 asection *asect;
268 Elf_Internal_Shdr *rel_hdr;
269 asymbol **symbols;
270 boolean dynamic;
271 {
272 PTR allocated = NULL;
273 bfd_byte *native_relocs;
274 arelent *relent;
275 unsigned int i;
276 int entsize;
277 bfd_size_type count;
278 arelent *relents;
279
280 allocated = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
281 if (allocated == NULL)
282 goto error_return;
283
284 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
285 || (bfd_read (allocated, 1, rel_hdr->sh_size, abfd)
286 != rel_hdr->sh_size))
287 goto error_return;
288
289 native_relocs = (bfd_byte *) allocated;
290
291 relents = asect->relocation + asect->reloc_count;
292
293 entsize = rel_hdr->sh_entsize;
294 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
295
296 count = rel_hdr->sh_size / entsize;
297
298 for (i = 0, relent = relents; i < count;
299 i++, relent++, native_relocs += entsize)
300 {
301 Elf_Internal_Rela rela;
302
303 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
304
305 /* The address of an ELF reloc is section relative for an object
306 file, and absolute for an executable file or shared library.
307 The address of a normal BFD reloc is always section relative,
308 and the address of a dynamic reloc is absolute.. */
309 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
310 relent->address = rela.r_offset;
311 else
312 relent->address = rela.r_offset - asect->vma;
313
314 if (ELF64_R_SYM (rela.r_info) == 0)
315 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
316 else
317 {
318 asymbol **ps, *s;
319
320 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
321 s = *ps;
322
323 /* Canonicalize ELF section symbols. FIXME: Why? */
324 if ((s->flags & BSF_SECTION_SYM) == 0)
325 relent->sym_ptr_ptr = ps;
326 else
327 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
328 }
329
330 relent->addend = rela.r_addend;
331
332 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
333 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
334 {
335 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
336 relent[1].address = relent->address;
337 relent++;
338 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
339 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
340 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
341 }
342 else
343 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
344 }
345
346 asect->reloc_count += relent - relents;
347
348 if (allocated != NULL)
349 free (allocated);
350
351 return true;
352
353 error_return:
354 if (allocated != NULL)
355 free (allocated);
356 return false;
357 }
358
359 /* Read in and swap the external relocs. */
360
361 static boolean
362 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
363 bfd *abfd;
364 asection *asect;
365 asymbol **symbols;
366 boolean dynamic;
367 {
368 struct bfd_elf_section_data * const d = elf_section_data (asect);
369 Elf_Internal_Shdr *rel_hdr;
370 Elf_Internal_Shdr *rel_hdr2;
371
372 if (asect->relocation != NULL)
373 return true;
374
375 if (! dynamic)
376 {
377 if ((asect->flags & SEC_RELOC) == 0
378 || asect->reloc_count == 0)
379 return true;
380
381 rel_hdr = &d->rel_hdr;
382 rel_hdr2 = d->rel_hdr2;
383
384 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
385 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
386 }
387 else
388 {
389 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
390 case because relocations against this section may use the
391 dynamic symbol table, and in that case bfd_section_from_shdr
392 in elf.c does not update the RELOC_COUNT. */
393 if (asect->_raw_size == 0)
394 return true;
395
396 rel_hdr = &d->this_hdr;
397 asect->reloc_count = rel_hdr->sh_size / rel_hdr->sh_entsize;
398 rel_hdr2 = NULL;
399 }
400
401 asect->relocation = ((arelent *)
402 bfd_alloc (abfd,
403 asect->reloc_count * 2 * sizeof (arelent)));
404 if (asect->relocation == NULL)
405 return false;
406
407 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
408 asect->reloc_count = 0;
409
410 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
411 dynamic))
412 return false;
413
414 if (rel_hdr2
415 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
416 dynamic))
417 return false;
418
419 return true;
420 }
421
422 /* Canonicalize the dynamic relocation entries. Note that we return
423 the dynamic relocations as a single block, although they are
424 actually associated with particular sections; the interface, which
425 was designed for SunOS style shared libraries, expects that there
426 is only one set of dynamic relocs. Any section that was actually
427 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
428 the dynamic symbol table, is considered to be a dynamic reloc
429 section. */
430
431 static long
432 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
433 bfd *abfd;
434 arelent **storage;
435 asymbol **syms;
436 {
437 asection *s;
438 long ret;
439
440 if (elf_dynsymtab (abfd) == 0)
441 {
442 bfd_set_error (bfd_error_invalid_operation);
443 return -1;
444 }
445
446 ret = 0;
447 for (s = abfd->sections; s != NULL; s = s->next)
448 {
449 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
450 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
451 {
452 arelent *p;
453 long count, i;
454
455 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
456 return -1;
457 count = s->reloc_count;
458 p = s->relocation;
459 for (i = 0; i < count; i++)
460 *storage++ = p++;
461 ret += count;
462 }
463 }
464
465 *storage = NULL;
466
467 return ret;
468 }
469
470 /* Write out the relocs. */
471
472 static void
473 sparc64_elf_write_relocs (abfd, sec, data)
474 bfd *abfd;
475 asection *sec;
476 PTR data;
477 {
478 boolean *failedp = (boolean *) data;
479 Elf_Internal_Shdr *rela_hdr;
480 Elf64_External_Rela *outbound_relocas, *src_rela;
481 unsigned int idx, count;
482 asymbol *last_sym = 0;
483 int last_sym_idx = 0;
484
485 /* If we have already failed, don't do anything. */
486 if (*failedp)
487 return;
488
489 if ((sec->flags & SEC_RELOC) == 0)
490 return;
491
492 /* The linker backend writes the relocs out itself, and sets the
493 reloc_count field to zero to inhibit writing them here. Also,
494 sometimes the SEC_RELOC flag gets set even when there aren't any
495 relocs. */
496 if (sec->reloc_count == 0)
497 return;
498
499 /* We can combine two relocs that refer to the same address
500 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
501 latter is R_SPARC_13 with no associated symbol. */
502 count = 0;
503 for (idx = 0; idx < sec->reloc_count; idx++)
504 {
505 bfd_vma addr;
506
507 ++count;
508
509 addr = sec->orelocation[idx]->address;
510 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
511 && idx < sec->reloc_count - 1)
512 {
513 arelent *r = sec->orelocation[idx + 1];
514
515 if (r->howto->type == R_SPARC_13
516 && r->address == addr
517 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
518 && (*r->sym_ptr_ptr)->value == 0)
519 ++idx;
520 }
521 }
522
523 rela_hdr = &elf_section_data (sec)->rel_hdr;
524
525 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
526 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
527 if (rela_hdr->contents == NULL)
528 {
529 *failedp = true;
530 return;
531 }
532
533 /* Figure out whether the relocations are RELA or REL relocations. */
534 if (rela_hdr->sh_type != SHT_RELA)
535 abort ();
536
537 /* orelocation has the data, reloc_count has the count... */
538 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
539 src_rela = outbound_relocas;
540
541 for (idx = 0; idx < sec->reloc_count; idx++)
542 {
543 Elf_Internal_Rela dst_rela;
544 arelent *ptr;
545 asymbol *sym;
546 int n;
547
548 ptr = sec->orelocation[idx];
549
550 /* The address of an ELF reloc is section relative for an object
551 file, and absolute for an executable file or shared library.
552 The address of a BFD reloc is always section relative. */
553 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
554 dst_rela.r_offset = ptr->address;
555 else
556 dst_rela.r_offset = ptr->address + sec->vma;
557
558 sym = *ptr->sym_ptr_ptr;
559 if (sym == last_sym)
560 n = last_sym_idx;
561 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
562 n = STN_UNDEF;
563 else
564 {
565 last_sym = sym;
566 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
567 if (n < 0)
568 {
569 *failedp = true;
570 return;
571 }
572 last_sym_idx = n;
573 }
574
575 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
576 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
577 && ! _bfd_elf_validate_reloc (abfd, ptr))
578 {
579 *failedp = true;
580 return;
581 }
582
583 if (ptr->howto->type == R_SPARC_LO10
584 && idx < sec->reloc_count - 1)
585 {
586 arelent *r = sec->orelocation[idx + 1];
587
588 if (r->howto->type == R_SPARC_13
589 && r->address == ptr->address
590 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
591 && (*r->sym_ptr_ptr)->value == 0)
592 {
593 idx++;
594 dst_rela.r_info
595 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
596 R_SPARC_OLO10));
597 }
598 else
599 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
600 }
601 else
602 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
603
604 dst_rela.r_addend = ptr->addend;
605 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
606 ++src_rela;
607 }
608 }
609 \f
610 /* Sparc64 ELF linker hash table. */
611
612 struct sparc64_elf_app_reg
613 {
614 unsigned char bind;
615 unsigned short shndx;
616 bfd *abfd;
617 char *name;
618 };
619
620 struct sparc64_elf_link_hash_table
621 {
622 struct elf_link_hash_table root;
623
624 struct sparc64_elf_app_reg app_regs [4];
625 };
626
627 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
628
629 #define sparc64_elf_hash_table(p) \
630 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
631
632 /* Create a Sparc64 ELF linker hash table. */
633
634 static struct bfd_link_hash_table *
635 sparc64_elf_bfd_link_hash_table_create (abfd)
636 bfd *abfd;
637 {
638 struct sparc64_elf_link_hash_table *ret;
639
640 ret = ((struct sparc64_elf_link_hash_table *)
641 bfd_zalloc (abfd, sizeof (struct sparc64_elf_link_hash_table)));
642 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
643 return NULL;
644
645 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
646 _bfd_elf_link_hash_newfunc))
647 {
648 bfd_release (abfd, ret);
649 return NULL;
650 }
651
652 return &ret->root.root;
653 }
654
655 \f
656 /* Utility for performing the standard initial work of an instruction
657 relocation.
658 *PRELOCATION will contain the relocated item.
659 *PINSN will contain the instruction from the input stream.
660 If the result is `bfd_reloc_other' the caller can continue with
661 performing the relocation. Otherwise it must stop and return the
662 value to its caller. */
663
664 static bfd_reloc_status_type
665 init_insn_reloc (abfd,
666 reloc_entry,
667 symbol,
668 data,
669 input_section,
670 output_bfd,
671 prelocation,
672 pinsn)
673 bfd *abfd;
674 arelent *reloc_entry;
675 asymbol *symbol;
676 PTR data;
677 asection *input_section;
678 bfd *output_bfd;
679 bfd_vma *prelocation;
680 bfd_vma *pinsn;
681 {
682 bfd_vma relocation;
683 reloc_howto_type *howto = reloc_entry->howto;
684
685 if (output_bfd != (bfd *) NULL
686 && (symbol->flags & BSF_SECTION_SYM) == 0
687 && (! howto->partial_inplace
688 || reloc_entry->addend == 0))
689 {
690 reloc_entry->address += input_section->output_offset;
691 return bfd_reloc_ok;
692 }
693
694 /* This works because partial_inplace == false. */
695 if (output_bfd != NULL)
696 return bfd_reloc_continue;
697
698 if (reloc_entry->address > input_section->_cooked_size)
699 return bfd_reloc_outofrange;
700
701 relocation = (symbol->value
702 + symbol->section->output_section->vma
703 + symbol->section->output_offset);
704 relocation += reloc_entry->addend;
705 if (howto->pc_relative)
706 {
707 relocation -= (input_section->output_section->vma
708 + input_section->output_offset);
709 relocation -= reloc_entry->address;
710 }
711
712 *prelocation = relocation;
713 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
714 return bfd_reloc_other;
715 }
716
717 /* For unsupported relocs. */
718
719 static bfd_reloc_status_type
720 sparc_elf_notsup_reloc (abfd,
721 reloc_entry,
722 symbol,
723 data,
724 input_section,
725 output_bfd,
726 error_message)
727 bfd *abfd ATTRIBUTE_UNUSED;
728 arelent *reloc_entry ATTRIBUTE_UNUSED;
729 asymbol *symbol ATTRIBUTE_UNUSED;
730 PTR data ATTRIBUTE_UNUSED;
731 asection *input_section ATTRIBUTE_UNUSED;
732 bfd *output_bfd ATTRIBUTE_UNUSED;
733 char **error_message ATTRIBUTE_UNUSED;
734 {
735 return bfd_reloc_notsupported;
736 }
737
738 /* Handle the WDISP16 reloc. */
739
740 static bfd_reloc_status_type
741 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
742 output_bfd, error_message)
743 bfd *abfd;
744 arelent *reloc_entry;
745 asymbol *symbol;
746 PTR data;
747 asection *input_section;
748 bfd *output_bfd;
749 char **error_message ATTRIBUTE_UNUSED;
750 {
751 bfd_vma relocation;
752 bfd_vma insn;
753 bfd_reloc_status_type status;
754
755 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
756 input_section, output_bfd, &relocation, &insn);
757 if (status != bfd_reloc_other)
758 return status;
759
760 insn = (insn & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
761 | ((relocation >> 2) & 0x3fff));
762 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
763
764 if ((bfd_signed_vma) relocation < - 0x40000
765 || (bfd_signed_vma) relocation > 0x3ffff)
766 return bfd_reloc_overflow;
767 else
768 return bfd_reloc_ok;
769 }
770
771 /* Handle the HIX22 reloc. */
772
773 static bfd_reloc_status_type
774 sparc_elf_hix22_reloc (abfd,
775 reloc_entry,
776 symbol,
777 data,
778 input_section,
779 output_bfd,
780 error_message)
781 bfd *abfd;
782 arelent *reloc_entry;
783 asymbol *symbol;
784 PTR data;
785 asection *input_section;
786 bfd *output_bfd;
787 char **error_message ATTRIBUTE_UNUSED;
788 {
789 bfd_vma relocation;
790 bfd_vma insn;
791 bfd_reloc_status_type status;
792
793 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
794 input_section, output_bfd, &relocation, &insn);
795 if (status != bfd_reloc_other)
796 return status;
797
798 relocation ^= MINUS_ONE;
799 insn = (insn & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
800 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
801
802 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
803 return bfd_reloc_overflow;
804 else
805 return bfd_reloc_ok;
806 }
807
808 /* Handle the LOX10 reloc. */
809
810 static bfd_reloc_status_type
811 sparc_elf_lox10_reloc (abfd,
812 reloc_entry,
813 symbol,
814 data,
815 input_section,
816 output_bfd,
817 error_message)
818 bfd *abfd;
819 arelent *reloc_entry;
820 asymbol *symbol;
821 PTR data;
822 asection *input_section;
823 bfd *output_bfd;
824 char **error_message ATTRIBUTE_UNUSED;
825 {
826 bfd_vma relocation;
827 bfd_vma insn;
828 bfd_reloc_status_type status;
829
830 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
831 input_section, output_bfd, &relocation, &insn);
832 if (status != bfd_reloc_other)
833 return status;
834
835 insn = (insn & ~0x1fff) | 0x1c00 | (relocation & 0x3ff);
836 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
837
838 return bfd_reloc_ok;
839 }
840 \f
841 /* PLT/GOT stuff */
842
843 /* Both the headers and the entries are icache aligned. */
844 #define PLT_ENTRY_SIZE 32
845 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
846 #define LARGE_PLT_THRESHOLD 32768
847 #define GOT_RESERVED_ENTRIES 1
848
849 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
850
851
852 /* Fill in the .plt section. */
853
854 static void
855 sparc64_elf_build_plt (output_bfd, contents, nentries)
856 bfd *output_bfd;
857 unsigned char *contents;
858 int nentries;
859 {
860 const unsigned int nop = 0x01000000;
861 int i, j;
862
863 /* The first four entries are reserved, and are initially undefined.
864 We fill them with `illtrap 0' to force ld.so to do something. */
865
866 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
867 bfd_put_32 (output_bfd, 0, contents+i*4);
868
869 /* The first 32768 entries are close enough to plt1 to get there via
870 a straight branch. */
871
872 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
873 {
874 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
875 unsigned int sethi, ba;
876
877 /* sethi (. - plt0), %g1 */
878 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
879
880 /* ba,a,pt %xcc, plt1 */
881 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
882
883 bfd_put_32 (output_bfd, sethi, entry);
884 bfd_put_32 (output_bfd, ba, entry+4);
885 bfd_put_32 (output_bfd, nop, entry+8);
886 bfd_put_32 (output_bfd, nop, entry+12);
887 bfd_put_32 (output_bfd, nop, entry+16);
888 bfd_put_32 (output_bfd, nop, entry+20);
889 bfd_put_32 (output_bfd, nop, entry+24);
890 bfd_put_32 (output_bfd, nop, entry+28);
891 }
892
893 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
894 160: 160 entries and 160 pointers. This is to separate code from data,
895 which is much friendlier on the cache. */
896
897 for (; i < nentries; i += 160)
898 {
899 int block = (i + 160 <= nentries ? 160 : nentries - i);
900 for (j = 0; j < block; ++j)
901 {
902 unsigned char *entry, *ptr;
903 unsigned int ldx;
904
905 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
906 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
907
908 /* ldx [%o7 + ptr - entry+4], %g1 */
909 ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
910
911 bfd_put_32 (output_bfd, 0x8a10000f, entry); /* mov %o7,%g5 */
912 bfd_put_32 (output_bfd, 0x40000002, entry+4); /* call .+8 */
913 bfd_put_32 (output_bfd, nop, entry+8); /* nop */
914 bfd_put_32 (output_bfd, ldx, entry+12); /* ldx [%o7+P],%g1 */
915 bfd_put_32 (output_bfd, 0x83c3c001, entry+16); /* jmpl %o7+%g1,%g1 */
916 bfd_put_32 (output_bfd, 0x9e100005, entry+20); /* mov %g5,%o7 */
917
918 bfd_put_64 (output_bfd, contents - (entry+4), ptr);
919 }
920 }
921 }
922
923 /* Return the offset of a particular plt entry within the .plt section. */
924
925 static bfd_vma
926 sparc64_elf_plt_entry_offset (index)
927 int index;
928 {
929 int block, ofs;
930
931 if (index < LARGE_PLT_THRESHOLD)
932 return index * PLT_ENTRY_SIZE;
933
934 /* See above for details. */
935
936 block = (index - LARGE_PLT_THRESHOLD) / 160;
937 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
938
939 return ((bfd_vma)(LARGE_PLT_THRESHOLD + block*160) * PLT_ENTRY_SIZE
940 + ofs * 6*4);
941 }
942
943 static bfd_vma
944 sparc64_elf_plt_ptr_offset (index, max)
945 int index, max;
946 {
947 int block, ofs, last;
948
949 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
950
951 /* See above for details. */
952
953 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160)
954 + LARGE_PLT_THRESHOLD;
955 ofs = index - block;
956 if (block + 160 > max)
957 last = (max - LARGE_PLT_THRESHOLD) % 160;
958 else
959 last = 160;
960
961 return (block * PLT_ENTRY_SIZE
962 + last * 6*4
963 + ofs * 8);
964 }
965
966
967 \f
968 /* Look through the relocs for a section during the first phase, and
969 allocate space in the global offset table or procedure linkage
970 table. */
971
972 static boolean
973 sparc64_elf_check_relocs (abfd, info, sec, relocs)
974 bfd *abfd;
975 struct bfd_link_info *info;
976 asection *sec;
977 const Elf_Internal_Rela *relocs;
978 {
979 bfd *dynobj;
980 Elf_Internal_Shdr *symtab_hdr;
981 struct elf_link_hash_entry **sym_hashes;
982 bfd_vma *local_got_offsets;
983 const Elf_Internal_Rela *rel;
984 const Elf_Internal_Rela *rel_end;
985 asection *sgot;
986 asection *srelgot;
987 asection *sreloc;
988
989 if (info->relocateable || !(sec->flags & SEC_ALLOC))
990 return true;
991
992 dynobj = elf_hash_table (info)->dynobj;
993 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
994 sym_hashes = elf_sym_hashes (abfd);
995 local_got_offsets = elf_local_got_offsets (abfd);
996
997 sgot = NULL;
998 srelgot = NULL;
999 sreloc = NULL;
1000
1001 rel_end = relocs + sec->reloc_count;
1002 for (rel = relocs; rel < rel_end; rel++)
1003 {
1004 unsigned long r_symndx;
1005 struct elf_link_hash_entry *h;
1006
1007 r_symndx = ELF64_R_SYM (rel->r_info);
1008 if (r_symndx < symtab_hdr->sh_info)
1009 h = NULL;
1010 else
1011 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1012
1013 switch (ELF64_R_TYPE_ID (rel->r_info))
1014 {
1015 case R_SPARC_GOT10:
1016 case R_SPARC_GOT13:
1017 case R_SPARC_GOT22:
1018 /* This symbol requires a global offset table entry. */
1019
1020 if (dynobj == NULL)
1021 {
1022 /* Create the .got section. */
1023 elf_hash_table (info)->dynobj = dynobj = abfd;
1024 if (! _bfd_elf_create_got_section (dynobj, info))
1025 return false;
1026 }
1027
1028 if (sgot == NULL)
1029 {
1030 sgot = bfd_get_section_by_name (dynobj, ".got");
1031 BFD_ASSERT (sgot != NULL);
1032 }
1033
1034 if (srelgot == NULL && (h != NULL || info->shared))
1035 {
1036 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1037 if (srelgot == NULL)
1038 {
1039 srelgot = bfd_make_section (dynobj, ".rela.got");
1040 if (srelgot == NULL
1041 || ! bfd_set_section_flags (dynobj, srelgot,
1042 (SEC_ALLOC
1043 | SEC_LOAD
1044 | SEC_HAS_CONTENTS
1045 | SEC_IN_MEMORY
1046 | SEC_LINKER_CREATED
1047 | SEC_READONLY))
1048 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1049 return false;
1050 }
1051 }
1052
1053 if (h != NULL)
1054 {
1055 if (h->got.offset != (bfd_vma) -1)
1056 {
1057 /* We have already allocated space in the .got. */
1058 break;
1059 }
1060 h->got.offset = sgot->_raw_size;
1061
1062 /* Make sure this symbol is output as a dynamic symbol. */
1063 if (h->dynindx == -1)
1064 {
1065 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1066 return false;
1067 }
1068
1069 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1070 }
1071 else
1072 {
1073 /* This is a global offset table entry for a local
1074 symbol. */
1075 if (local_got_offsets == NULL)
1076 {
1077 size_t size;
1078 register unsigned int i;
1079
1080 size = symtab_hdr->sh_info * sizeof (bfd_vma);
1081 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1082 if (local_got_offsets == NULL)
1083 return false;
1084 elf_local_got_offsets (abfd) = local_got_offsets;
1085 for (i = 0; i < symtab_hdr->sh_info; i++)
1086 local_got_offsets[i] = (bfd_vma) -1;
1087 }
1088 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1089 {
1090 /* We have already allocated space in the .got. */
1091 break;
1092 }
1093 local_got_offsets[r_symndx] = sgot->_raw_size;
1094
1095 if (info->shared)
1096 {
1097 /* If we are generating a shared object, we need to
1098 output a R_SPARC_RELATIVE reloc so that the
1099 dynamic linker can adjust this GOT entry. */
1100 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1101 }
1102 }
1103
1104 sgot->_raw_size += 8;
1105
1106 #if 0
1107 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1108 unsigned numbers. If we permit ourselves to modify
1109 code so we get sethi/xor, this could work.
1110 Question: do we consider conditionally re-enabling
1111 this for -fpic, once we know about object code models? */
1112 /* If the .got section is more than 0x1000 bytes, we add
1113 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1114 bit relocations have a greater chance of working. */
1115 if (sgot->_raw_size >= 0x1000
1116 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1117 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1118 #endif
1119
1120 break;
1121
1122 case R_SPARC_WPLT30:
1123 case R_SPARC_PLT32:
1124 case R_SPARC_HIPLT22:
1125 case R_SPARC_LOPLT10:
1126 case R_SPARC_PCPLT32:
1127 case R_SPARC_PCPLT22:
1128 case R_SPARC_PCPLT10:
1129 case R_SPARC_PLT64:
1130 /* This symbol requires a procedure linkage table entry. We
1131 actually build the entry in adjust_dynamic_symbol,
1132 because this might be a case of linking PIC code without
1133 linking in any dynamic objects, in which case we don't
1134 need to generate a procedure linkage table after all. */
1135
1136 if (h == NULL)
1137 {
1138 /* It does not make sense to have a procedure linkage
1139 table entry for a local symbol. */
1140 bfd_set_error (bfd_error_bad_value);
1141 return false;
1142 }
1143
1144 /* Make sure this symbol is output as a dynamic symbol. */
1145 if (h->dynindx == -1)
1146 {
1147 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1148 return false;
1149 }
1150
1151 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1152 break;
1153
1154 case R_SPARC_PC10:
1155 case R_SPARC_PC22:
1156 case R_SPARC_PC_HH22:
1157 case R_SPARC_PC_HM10:
1158 case R_SPARC_PC_LM22:
1159 if (h != NULL
1160 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1161 break;
1162 /* Fall through. */
1163 case R_SPARC_DISP8:
1164 case R_SPARC_DISP16:
1165 case R_SPARC_DISP32:
1166 case R_SPARC_DISP64:
1167 case R_SPARC_WDISP30:
1168 case R_SPARC_WDISP22:
1169 case R_SPARC_WDISP19:
1170 case R_SPARC_WDISP16:
1171 if (h == NULL)
1172 break;
1173 /* Fall through. */
1174 case R_SPARC_8:
1175 case R_SPARC_16:
1176 case R_SPARC_32:
1177 case R_SPARC_HI22:
1178 case R_SPARC_22:
1179 case R_SPARC_13:
1180 case R_SPARC_LO10:
1181 case R_SPARC_UA32:
1182 case R_SPARC_10:
1183 case R_SPARC_11:
1184 case R_SPARC_64:
1185 case R_SPARC_OLO10:
1186 case R_SPARC_HH22:
1187 case R_SPARC_HM10:
1188 case R_SPARC_LM22:
1189 case R_SPARC_7:
1190 case R_SPARC_5:
1191 case R_SPARC_6:
1192 case R_SPARC_HIX22:
1193 case R_SPARC_LOX10:
1194 case R_SPARC_H44:
1195 case R_SPARC_M44:
1196 case R_SPARC_L44:
1197 case R_SPARC_UA64:
1198 case R_SPARC_UA16:
1199 /* When creating a shared object, we must copy these relocs
1200 into the output file. We create a reloc section in
1201 dynobj and make room for the reloc.
1202
1203 But don't do this for debugging sections -- this shows up
1204 with DWARF2 -- first because they are not loaded, and
1205 second because DWARF sez the debug info is not to be
1206 biased by the load address. */
1207 if (info->shared && (sec->flags & SEC_ALLOC))
1208 {
1209 if (sreloc == NULL)
1210 {
1211 const char *name;
1212
1213 name = (bfd_elf_string_from_elf_section
1214 (abfd,
1215 elf_elfheader (abfd)->e_shstrndx,
1216 elf_section_data (sec)->rel_hdr.sh_name));
1217 if (name == NULL)
1218 return false;
1219
1220 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1221 && strcmp (bfd_get_section_name (abfd, sec),
1222 name + 5) == 0);
1223
1224 sreloc = bfd_get_section_by_name (dynobj, name);
1225 if (sreloc == NULL)
1226 {
1227 flagword flags;
1228
1229 sreloc = bfd_make_section (dynobj, name);
1230 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1231 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1232 if ((sec->flags & SEC_ALLOC) != 0)
1233 flags |= SEC_ALLOC | SEC_LOAD;
1234 if (sreloc == NULL
1235 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1236 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1237 return false;
1238 }
1239 }
1240
1241 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1242 }
1243 break;
1244
1245 case R_SPARC_REGISTER:
1246 /* Nothing to do. */
1247 break;
1248
1249 default:
1250 (*_bfd_error_handler)(_("%s: check_relocs: unhandled reloc type %d"),
1251 bfd_get_filename(abfd),
1252 ELF64_R_TYPE_ID (rel->r_info));
1253 return false;
1254 }
1255 }
1256
1257 return true;
1258 }
1259
1260 /* Hook called by the linker routine which adds symbols from an object
1261 file. We use it for STT_REGISTER symbols. */
1262
1263 static boolean
1264 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1265 bfd *abfd;
1266 struct bfd_link_info *info;
1267 const Elf_Internal_Sym *sym;
1268 const char **namep;
1269 flagword *flagsp ATTRIBUTE_UNUSED;
1270 asection **secp ATTRIBUTE_UNUSED;
1271 bfd_vma *valp ATTRIBUTE_UNUSED;
1272 {
1273 static char *stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1274
1275 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1276 {
1277 int reg;
1278 struct sparc64_elf_app_reg *p;
1279
1280 reg = (int)sym->st_value;
1281 switch (reg & ~1)
1282 {
1283 case 2: reg -= 2; break;
1284 case 6: reg -= 4; break;
1285 default:
1286 (*_bfd_error_handler)
1287 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1288 bfd_get_filename (abfd));
1289 return false;
1290 }
1291
1292 if (info->hash->creator != abfd->xvec
1293 || (abfd->flags & DYNAMIC) != 0)
1294 {
1295 /* STT_REGISTER only works when linking an elf64_sparc object.
1296 If STT_REGISTER comes from a dynamic object, don't put it into
1297 the output bfd. The dynamic linker will recheck it. */
1298 *namep = NULL;
1299 return true;
1300 }
1301
1302 p = sparc64_elf_hash_table(info)->app_regs + reg;
1303
1304 if (p->name != NULL && strcmp (p->name, *namep))
1305 {
1306 (*_bfd_error_handler)
1307 (_("Register %%g%d used incompatibly: "
1308 "previously declared in %s to %s, in %s redefined to %s"),
1309 (int)sym->st_value,
1310 bfd_get_filename (p->abfd), *p->name ? p->name : "#scratch",
1311 bfd_get_filename (abfd), **namep ? *namep : "#scratch");
1312 return false;
1313 }
1314
1315 if (p->name == NULL)
1316 {
1317 if (**namep)
1318 {
1319 struct elf_link_hash_entry *h;
1320
1321 h = (struct elf_link_hash_entry *)
1322 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1323
1324 if (h != NULL)
1325 {
1326 unsigned char type = h->type;
1327
1328 if (type > STT_FUNC) type = 0;
1329 (*_bfd_error_handler)
1330 (_("Symbol `%s' has differing types: "
1331 "previously %s, REGISTER in %s"),
1332 *namep, stt_types [type], bfd_get_filename (abfd));
1333 return false;
1334 }
1335
1336 p->name = bfd_hash_allocate (&info->hash->table,
1337 strlen (*namep) + 1);
1338 if (!p->name)
1339 return false;
1340
1341 strcpy (p->name, *namep);
1342 }
1343 else
1344 p->name = "";
1345 p->bind = ELF_ST_BIND (sym->st_info);
1346 p->abfd = abfd;
1347 p->shndx = sym->st_shndx;
1348 }
1349 else
1350 {
1351 if (p->bind == STB_WEAK
1352 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1353 {
1354 p->bind = STB_GLOBAL;
1355 p->abfd = abfd;
1356 }
1357 }
1358 *namep = NULL;
1359 return true;
1360 }
1361 else if (! *namep || ! **namep)
1362 return true;
1363 else
1364 {
1365 int i;
1366 struct sparc64_elf_app_reg *p;
1367
1368 p = sparc64_elf_hash_table(info)->app_regs;
1369 for (i = 0; i < 4; i++, p++)
1370 if (p->name != NULL && ! strcmp (p->name, *namep))
1371 {
1372 unsigned char type = ELF_ST_TYPE (sym->st_info);
1373
1374 if (type > STT_FUNC) type = 0;
1375 (*_bfd_error_handler)
1376 (_("Symbol `%s' has differing types: "
1377 "REGISTER in %s, %s in %s"),
1378 *namep, bfd_get_filename (p->abfd), stt_types [type],
1379 bfd_get_filename (abfd));
1380 return false;
1381 }
1382 }
1383 return true;
1384 }
1385
1386 /* This function takes care of emiting STT_REGISTER symbols
1387 which we cannot easily keep in the symbol hash table. */
1388
1389 static boolean
1390 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1391 bfd *output_bfd ATTRIBUTE_UNUSED;
1392 struct bfd_link_info *info;
1393 PTR finfo;
1394 boolean (*func) PARAMS ((PTR, const char *,
1395 Elf_Internal_Sym *, asection *));
1396 {
1397 int reg;
1398 struct sparc64_elf_app_reg *app_regs =
1399 sparc64_elf_hash_table(info)->app_regs;
1400 Elf_Internal_Sym sym;
1401
1402 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1403 at the end of the dynlocal list, so they came at the end of the local
1404 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1405 to back up symtab->sh_info. */
1406 if (elf_hash_table (info)->dynlocal)
1407 {
1408 bfd * dynobj = elf_hash_table (info)->dynobj;
1409 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1410 struct elf_link_local_dynamic_entry *e;
1411
1412 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1413 if (e->input_indx == -1)
1414 break;
1415 if (e)
1416 {
1417 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1418 = e->dynindx;
1419 }
1420 }
1421
1422 if (info->strip == strip_all)
1423 return true;
1424
1425 for (reg = 0; reg < 4; reg++)
1426 if (app_regs [reg].name != NULL)
1427 {
1428 if (info->strip == strip_some
1429 && bfd_hash_lookup (info->keep_hash,
1430 app_regs [reg].name,
1431 false, false) == NULL)
1432 continue;
1433
1434 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1435 sym.st_size = 0;
1436 sym.st_other = 0;
1437 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1438 sym.st_shndx = app_regs [reg].shndx;
1439 if (! (*func) (finfo, app_regs [reg].name, &sym,
1440 sym.st_shndx == SHN_ABS
1441 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1442 return false;
1443 }
1444
1445 return true;
1446 }
1447
1448 static int
1449 sparc64_elf_get_symbol_type (elf_sym, type)
1450 Elf_Internal_Sym * elf_sym;
1451 int type;
1452 {
1453 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1454 return STT_REGISTER;
1455 else
1456 return type;
1457 }
1458
1459 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1460 even in SHN_UNDEF section. */
1461
1462 static void
1463 sparc64_elf_symbol_processing (abfd, asym)
1464 bfd *abfd ATTRIBUTE_UNUSED;
1465 asymbol *asym;
1466 {
1467 elf_symbol_type *elfsym;
1468
1469 elfsym = (elf_symbol_type *) asym;
1470 if (elfsym->internal_elf_sym.st_info
1471 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1472 {
1473 asym->flags |= BSF_GLOBAL;
1474 }
1475 }
1476
1477 /* Adjust a symbol defined by a dynamic object and referenced by a
1478 regular object. The current definition is in some section of the
1479 dynamic object, but we're not including those sections. We have to
1480 change the definition to something the rest of the link can
1481 understand. */
1482
1483 static boolean
1484 sparc64_elf_adjust_dynamic_symbol (info, h)
1485 struct bfd_link_info *info;
1486 struct elf_link_hash_entry *h;
1487 {
1488 bfd *dynobj;
1489 asection *s;
1490 unsigned int power_of_two;
1491
1492 dynobj = elf_hash_table (info)->dynobj;
1493
1494 /* Make sure we know what is going on here. */
1495 BFD_ASSERT (dynobj != NULL
1496 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1497 || h->weakdef != NULL
1498 || ((h->elf_link_hash_flags
1499 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1500 && (h->elf_link_hash_flags
1501 & ELF_LINK_HASH_REF_REGULAR) != 0
1502 && (h->elf_link_hash_flags
1503 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1504
1505 /* If this is a function, put it in the procedure linkage table. We
1506 will fill in the contents of the procedure linkage table later
1507 (although we could actually do it here). The STT_NOTYPE
1508 condition is a hack specifically for the Oracle libraries
1509 delivered for Solaris; for some inexplicable reason, they define
1510 some of their functions as STT_NOTYPE when they really should be
1511 STT_FUNC. */
1512 if (h->type == STT_FUNC
1513 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1514 || (h->type == STT_NOTYPE
1515 && (h->root.type == bfd_link_hash_defined
1516 || h->root.type == bfd_link_hash_defweak)
1517 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1518 {
1519 if (! elf_hash_table (info)->dynamic_sections_created)
1520 {
1521 /* This case can occur if we saw a WPLT30 reloc in an input
1522 file, but none of the input files were dynamic objects.
1523 In such a case, we don't actually need to build a
1524 procedure linkage table, and we can just do a WDISP30
1525 reloc instead. */
1526 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1527 return true;
1528 }
1529
1530 s = bfd_get_section_by_name (dynobj, ".plt");
1531 BFD_ASSERT (s != NULL);
1532
1533 /* The first four bit in .plt is reserved. */
1534 if (s->_raw_size == 0)
1535 s->_raw_size = PLT_HEADER_SIZE;
1536
1537 /* If this symbol is not defined in a regular file, and we are
1538 not generating a shared library, then set the symbol to this
1539 location in the .plt. This is required to make function
1540 pointers compare as equal between the normal executable and
1541 the shared library. */
1542 if (! info->shared
1543 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1544 {
1545 h->root.u.def.section = s;
1546 h->root.u.def.value = s->_raw_size;
1547 }
1548
1549 /* To simplify matters later, just store the plt index here. */
1550 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1551
1552 /* Make room for this entry. */
1553 s->_raw_size += PLT_ENTRY_SIZE;
1554
1555 /* We also need to make an entry in the .rela.plt section. */
1556
1557 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1558 BFD_ASSERT (s != NULL);
1559
1560 /* The first plt entries are reserved, and the relocations must
1561 pair up exactly. */
1562 if (s->_raw_size == 0)
1563 s->_raw_size += (PLT_HEADER_SIZE/PLT_ENTRY_SIZE
1564 * sizeof (Elf64_External_Rela));
1565
1566 s->_raw_size += sizeof (Elf64_External_Rela);
1567
1568 /* The procedure linkage table size is bounded by the magnitude
1569 of the offset we can describe in the entry. */
1570 if (s->_raw_size >= (bfd_vma)1 << 32)
1571 {
1572 bfd_set_error (bfd_error_bad_value);
1573 return false;
1574 }
1575
1576 return true;
1577 }
1578
1579 /* If this is a weak symbol, and there is a real definition, the
1580 processor independent code will have arranged for us to see the
1581 real definition first, and we can just use the same value. */
1582 if (h->weakdef != NULL)
1583 {
1584 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1585 || h->weakdef->root.type == bfd_link_hash_defweak);
1586 h->root.u.def.section = h->weakdef->root.u.def.section;
1587 h->root.u.def.value = h->weakdef->root.u.def.value;
1588 return true;
1589 }
1590
1591 /* This is a reference to a symbol defined by a dynamic object which
1592 is not a function. */
1593
1594 /* If we are creating a shared library, we must presume that the
1595 only references to the symbol are via the global offset table.
1596 For such cases we need not do anything here; the relocations will
1597 be handled correctly by relocate_section. */
1598 if (info->shared)
1599 return true;
1600
1601 /* We must allocate the symbol in our .dynbss section, which will
1602 become part of the .bss section of the executable. There will be
1603 an entry for this symbol in the .dynsym section. The dynamic
1604 object will contain position independent code, so all references
1605 from the dynamic object to this symbol will go through the global
1606 offset table. The dynamic linker will use the .dynsym entry to
1607 determine the address it must put in the global offset table, so
1608 both the dynamic object and the regular object will refer to the
1609 same memory location for the variable. */
1610
1611 s = bfd_get_section_by_name (dynobj, ".dynbss");
1612 BFD_ASSERT (s != NULL);
1613
1614 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1615 to copy the initial value out of the dynamic object and into the
1616 runtime process image. We need to remember the offset into the
1617 .rel.bss section we are going to use. */
1618 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1619 {
1620 asection *srel;
1621
1622 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1623 BFD_ASSERT (srel != NULL);
1624 srel->_raw_size += sizeof (Elf64_External_Rela);
1625 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1626 }
1627
1628 /* We need to figure out the alignment required for this symbol. I
1629 have no idea how ELF linkers handle this. 16-bytes is the size
1630 of the largest type that requires hard alignment -- long double. */
1631 power_of_two = bfd_log2 (h->size);
1632 if (power_of_two > 4)
1633 power_of_two = 4;
1634
1635 /* Apply the required alignment. */
1636 s->_raw_size = BFD_ALIGN (s->_raw_size,
1637 (bfd_size_type) (1 << power_of_two));
1638 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1639 {
1640 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1641 return false;
1642 }
1643
1644 /* Define the symbol as being at this point in the section. */
1645 h->root.u.def.section = s;
1646 h->root.u.def.value = s->_raw_size;
1647
1648 /* Increment the section size to make room for the symbol. */
1649 s->_raw_size += h->size;
1650
1651 return true;
1652 }
1653
1654 /* Set the sizes of the dynamic sections. */
1655
1656 static boolean
1657 sparc64_elf_size_dynamic_sections (output_bfd, info)
1658 bfd *output_bfd;
1659 struct bfd_link_info *info;
1660 {
1661 bfd *dynobj;
1662 asection *s;
1663 boolean reltext;
1664 boolean relplt;
1665
1666 dynobj = elf_hash_table (info)->dynobj;
1667 BFD_ASSERT (dynobj != NULL);
1668
1669 if (elf_hash_table (info)->dynamic_sections_created)
1670 {
1671 /* Set the contents of the .interp section to the interpreter. */
1672 if (! info->shared)
1673 {
1674 s = bfd_get_section_by_name (dynobj, ".interp");
1675 BFD_ASSERT (s != NULL);
1676 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1677 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1678 }
1679 }
1680 else
1681 {
1682 /* We may have created entries in the .rela.got section.
1683 However, if we are not creating the dynamic sections, we will
1684 not actually use these entries. Reset the size of .rela.got,
1685 which will cause it to get stripped from the output file
1686 below. */
1687 s = bfd_get_section_by_name (dynobj, ".rela.got");
1688 if (s != NULL)
1689 s->_raw_size = 0;
1690 }
1691
1692 /* The check_relocs and adjust_dynamic_symbol entry points have
1693 determined the sizes of the various dynamic sections. Allocate
1694 memory for them. */
1695 reltext = false;
1696 relplt = false;
1697 for (s = dynobj->sections; s != NULL; s = s->next)
1698 {
1699 const char *name;
1700 boolean strip;
1701
1702 if ((s->flags & SEC_LINKER_CREATED) == 0)
1703 continue;
1704
1705 /* It's OK to base decisions on the section name, because none
1706 of the dynobj section names depend upon the input files. */
1707 name = bfd_get_section_name (dynobj, s);
1708
1709 strip = false;
1710
1711 if (strncmp (name, ".rela", 5) == 0)
1712 {
1713 if (s->_raw_size == 0)
1714 {
1715 /* If we don't need this section, strip it from the
1716 output file. This is to handle .rela.bss and
1717 .rel.plt. We must create it in
1718 create_dynamic_sections, because it must be created
1719 before the linker maps input sections to output
1720 sections. The linker does that before
1721 adjust_dynamic_symbol is called, and it is that
1722 function which decides whether anything needs to go
1723 into these sections. */
1724 strip = true;
1725 }
1726 else
1727 {
1728 const char *outname;
1729 asection *target;
1730
1731 /* If this relocation section applies to a read only
1732 section, then we probably need a DT_TEXTREL entry. */
1733 outname = bfd_get_section_name (output_bfd,
1734 s->output_section);
1735 target = bfd_get_section_by_name (output_bfd, outname + 5);
1736 if (target != NULL
1737 && (target->flags & SEC_READONLY) != 0)
1738 reltext = true;
1739
1740 if (strcmp (name, ".rela.plt") == 0)
1741 relplt = true;
1742
1743 /* We use the reloc_count field as a counter if we need
1744 to copy relocs into the output file. */
1745 s->reloc_count = 0;
1746 }
1747 }
1748 else if (strcmp (name, ".plt") != 0
1749 && strncmp (name, ".got", 4) != 0)
1750 {
1751 /* It's not one of our sections, so don't allocate space. */
1752 continue;
1753 }
1754
1755 if (strip)
1756 {
1757 _bfd_strip_section_from_output (info, s);
1758 continue;
1759 }
1760
1761 /* Allocate memory for the section contents. Zero the memory
1762 for the benefit of .rela.plt, which has 4 unused entries
1763 at the beginning, and we don't want garbage. */
1764 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1765 if (s->contents == NULL && s->_raw_size != 0)
1766 return false;
1767 }
1768
1769 if (elf_hash_table (info)->dynamic_sections_created)
1770 {
1771 /* Add some entries to the .dynamic section. We fill in the
1772 values later, in sparc64_elf_finish_dynamic_sections, but we
1773 must add the entries now so that we get the correct size for
1774 the .dynamic section. The DT_DEBUG entry is filled in by the
1775 dynamic linker and used by the debugger. */
1776 int reg;
1777 struct sparc64_elf_app_reg * app_regs;
1778 struct bfd_strtab_hash *dynstr;
1779 struct elf_link_hash_table *eht = elf_hash_table (info);
1780
1781 if (! info->shared)
1782 {
1783 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
1784 return false;
1785 }
1786
1787 if (relplt)
1788 {
1789 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)
1790 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1791 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1792 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1793 return false;
1794 }
1795
1796 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1797 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1798 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1799 sizeof (Elf64_External_Rela)))
1800 return false;
1801
1802 if (reltext)
1803 {
1804 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1805 return false;
1806 }
1807
1808 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1809 entries if needed. */
1810 app_regs = sparc64_elf_hash_table (info)->app_regs;
1811 dynstr = eht->dynstr;
1812
1813 for (reg = 0; reg < 4; reg++)
1814 if (app_regs [reg].name != NULL)
1815 {
1816 struct elf_link_local_dynamic_entry *entry, *e;
1817
1818 if (! bfd_elf64_add_dynamic_entry (info, DT_SPARC_REGISTER, 0))
1819 return false;
1820
1821 entry = (struct elf_link_local_dynamic_entry *)
1822 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1823 if (entry == NULL)
1824 return false;
1825
1826 /* We cheat here a little bit: the symbol will not be local, so we
1827 put it at the end of the dynlocal linked list. We will fix it
1828 later on, as we have to fix other fields anyway. */
1829 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1830 entry->isym.st_size = 0;
1831 if (*app_regs [reg].name != '\0')
1832 entry->isym.st_name
1833 = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1834 else
1835 entry->isym.st_name = 0;
1836 entry->isym.st_other = 0;
1837 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1838 STT_REGISTER);
1839 entry->isym.st_shndx = app_regs [reg].shndx;
1840 entry->next = NULL;
1841 entry->input_bfd = output_bfd;
1842 entry->input_indx = -1;
1843
1844 if (eht->dynlocal == NULL)
1845 eht->dynlocal = entry;
1846 else
1847 {
1848 for (e = eht->dynlocal; e->next; e = e->next)
1849 ;
1850 e->next = entry;
1851 }
1852 eht->dynsymcount++;
1853 }
1854 }
1855
1856 return true;
1857 }
1858 \f
1859 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1860 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1861
1862 /*ARGSUSED*/
1863 static boolean
1864 sparc64_elf_relax_section (abfd, section, link_info, again)
1865 bfd *abfd ATTRIBUTE_UNUSED;
1866 asection *section ATTRIBUTE_UNUSED;
1867 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1868 boolean *again;
1869 {
1870 *again = false;
1871 SET_SEC_DO_RELAX (section);
1872 return true;
1873 }
1874 \f
1875 /* Relocate a SPARC64 ELF section. */
1876
1877 static boolean
1878 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1879 contents, relocs, local_syms, local_sections)
1880 bfd *output_bfd;
1881 struct bfd_link_info *info;
1882 bfd *input_bfd;
1883 asection *input_section;
1884 bfd_byte *contents;
1885 Elf_Internal_Rela *relocs;
1886 Elf_Internal_Sym *local_syms;
1887 asection **local_sections;
1888 {
1889 bfd *dynobj;
1890 Elf_Internal_Shdr *symtab_hdr;
1891 struct elf_link_hash_entry **sym_hashes;
1892 bfd_vma *local_got_offsets;
1893 bfd_vma got_base;
1894 asection *sgot;
1895 asection *splt;
1896 asection *sreloc;
1897 Elf_Internal_Rela *rel;
1898 Elf_Internal_Rela *relend;
1899
1900 dynobj = elf_hash_table (info)->dynobj;
1901 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1902 sym_hashes = elf_sym_hashes (input_bfd);
1903 local_got_offsets = elf_local_got_offsets (input_bfd);
1904
1905 if (elf_hash_table(info)->hgot == NULL)
1906 got_base = 0;
1907 else
1908 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1909
1910 sgot = splt = sreloc = NULL;
1911
1912 rel = relocs;
1913 relend = relocs + input_section->reloc_count;
1914 for (; rel < relend; rel++)
1915 {
1916 int r_type;
1917 reloc_howto_type *howto;
1918 unsigned long r_symndx;
1919 struct elf_link_hash_entry *h;
1920 Elf_Internal_Sym *sym;
1921 asection *sec;
1922 bfd_vma relocation;
1923 bfd_reloc_status_type r;
1924
1925 r_type = ELF64_R_TYPE_ID (rel->r_info);
1926 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1927 {
1928 bfd_set_error (bfd_error_bad_value);
1929 return false;
1930 }
1931 howto = sparc64_elf_howto_table + r_type;
1932
1933 r_symndx = ELF64_R_SYM (rel->r_info);
1934
1935 if (info->relocateable)
1936 {
1937 /* This is a relocateable link. We don't have to change
1938 anything, unless the reloc is against a section symbol,
1939 in which case we have to adjust according to where the
1940 section symbol winds up in the output section. */
1941 if (r_symndx < symtab_hdr->sh_info)
1942 {
1943 sym = local_syms + r_symndx;
1944 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1945 {
1946 sec = local_sections[r_symndx];
1947 rel->r_addend += sec->output_offset + sym->st_value;
1948 }
1949 }
1950
1951 continue;
1952 }
1953
1954 /* This is a final link. */
1955 h = NULL;
1956 sym = NULL;
1957 sec = NULL;
1958 if (r_symndx < symtab_hdr->sh_info)
1959 {
1960 sym = local_syms + r_symndx;
1961 sec = local_sections[r_symndx];
1962 relocation = (sec->output_section->vma
1963 + sec->output_offset
1964 + sym->st_value);
1965 }
1966 else
1967 {
1968 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1969 while (h->root.type == bfd_link_hash_indirect
1970 || h->root.type == bfd_link_hash_warning)
1971 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1972 if (h->root.type == bfd_link_hash_defined
1973 || h->root.type == bfd_link_hash_defweak)
1974 {
1975 boolean skip_it = false;
1976 sec = h->root.u.def.section;
1977
1978 switch (r_type)
1979 {
1980 case R_SPARC_WPLT30:
1981 case R_SPARC_PLT32:
1982 case R_SPARC_HIPLT22:
1983 case R_SPARC_LOPLT10:
1984 case R_SPARC_PCPLT32:
1985 case R_SPARC_PCPLT22:
1986 case R_SPARC_PCPLT10:
1987 case R_SPARC_PLT64:
1988 if (h->plt.offset != (bfd_vma) -1)
1989 skip_it = true;
1990 break;
1991
1992 case R_SPARC_GOT10:
1993 case R_SPARC_GOT13:
1994 case R_SPARC_GOT22:
1995 if (elf_hash_table(info)->dynamic_sections_created
1996 && (!info->shared
1997 || (!info->symbolic && h->dynindx != -1)
1998 || !(h->elf_link_hash_flags
1999 & ELF_LINK_HASH_DEF_REGULAR)))
2000 skip_it = true;
2001 break;
2002
2003 case R_SPARC_PC10:
2004 case R_SPARC_PC22:
2005 case R_SPARC_PC_HH22:
2006 case R_SPARC_PC_HM10:
2007 case R_SPARC_PC_LM22:
2008 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2009 break;
2010 /* FALLTHRU */
2011
2012 case R_SPARC_8:
2013 case R_SPARC_16:
2014 case R_SPARC_32:
2015 case R_SPARC_DISP8:
2016 case R_SPARC_DISP16:
2017 case R_SPARC_DISP32:
2018 case R_SPARC_WDISP30:
2019 case R_SPARC_WDISP22:
2020 case R_SPARC_HI22:
2021 case R_SPARC_22:
2022 case R_SPARC_13:
2023 case R_SPARC_LO10:
2024 case R_SPARC_UA32:
2025 case R_SPARC_10:
2026 case R_SPARC_11:
2027 case R_SPARC_64:
2028 case R_SPARC_OLO10:
2029 case R_SPARC_HH22:
2030 case R_SPARC_HM10:
2031 case R_SPARC_LM22:
2032 case R_SPARC_WDISP19:
2033 case R_SPARC_WDISP16:
2034 case R_SPARC_7:
2035 case R_SPARC_5:
2036 case R_SPARC_6:
2037 case R_SPARC_DISP64:
2038 case R_SPARC_HIX22:
2039 case R_SPARC_LOX10:
2040 case R_SPARC_H44:
2041 case R_SPARC_M44:
2042 case R_SPARC_L44:
2043 case R_SPARC_UA64:
2044 case R_SPARC_UA16:
2045 if (info->shared
2046 && ((!info->symbolic && h->dynindx != -1)
2047 || !(h->elf_link_hash_flags
2048 & ELF_LINK_HASH_DEF_REGULAR)))
2049 skip_it = true;
2050 break;
2051 }
2052
2053 if (skip_it)
2054 {
2055 /* In these cases, we don't need the relocation
2056 value. We check specially because in some
2057 obscure cases sec->output_section will be NULL. */
2058 relocation = 0;
2059 }
2060 else
2061 {
2062 relocation = (h->root.u.def.value
2063 + sec->output_section->vma
2064 + sec->output_offset);
2065 }
2066 }
2067 else if (h->root.type == bfd_link_hash_undefweak)
2068 relocation = 0;
2069 else if (info->shared && !info->symbolic
2070 && !info->no_undefined
2071 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2072 relocation = 0;
2073 else
2074 {
2075 if (! ((*info->callbacks->undefined_symbol)
2076 (info, h->root.root.string, input_bfd,
2077 input_section, rel->r_offset,
2078 (!info->shared || info->no_undefined
2079 || ELF_ST_VISIBILITY (h->other)))))
2080 return false;
2081 relocation = 0;
2082 }
2083 }
2084
2085 /* When generating a shared object, these relocations are copied
2086 into the output file to be resolved at run time. */
2087 if (info->shared && (input_section->flags & SEC_ALLOC))
2088 {
2089 switch (r_type)
2090 {
2091 case R_SPARC_PC10:
2092 case R_SPARC_PC22:
2093 case R_SPARC_PC_HH22:
2094 case R_SPARC_PC_HM10:
2095 case R_SPARC_PC_LM22:
2096 if (h != NULL
2097 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2098 break;
2099 /* Fall through. */
2100 case R_SPARC_DISP8:
2101 case R_SPARC_DISP16:
2102 case R_SPARC_DISP32:
2103 case R_SPARC_WDISP30:
2104 case R_SPARC_WDISP22:
2105 case R_SPARC_WDISP19:
2106 case R_SPARC_WDISP16:
2107 case R_SPARC_DISP64:
2108 if (h == NULL)
2109 break;
2110 /* Fall through. */
2111 case R_SPARC_8:
2112 case R_SPARC_16:
2113 case R_SPARC_32:
2114 case R_SPARC_HI22:
2115 case R_SPARC_22:
2116 case R_SPARC_13:
2117 case R_SPARC_LO10:
2118 case R_SPARC_UA32:
2119 case R_SPARC_10:
2120 case R_SPARC_11:
2121 case R_SPARC_64:
2122 case R_SPARC_OLO10:
2123 case R_SPARC_HH22:
2124 case R_SPARC_HM10:
2125 case R_SPARC_LM22:
2126 case R_SPARC_7:
2127 case R_SPARC_5:
2128 case R_SPARC_6:
2129 case R_SPARC_HIX22:
2130 case R_SPARC_LOX10:
2131 case R_SPARC_H44:
2132 case R_SPARC_M44:
2133 case R_SPARC_L44:
2134 case R_SPARC_UA64:
2135 case R_SPARC_UA16:
2136 {
2137 Elf_Internal_Rela outrel;
2138 boolean skip;
2139
2140 if (sreloc == NULL)
2141 {
2142 const char *name =
2143 (bfd_elf_string_from_elf_section
2144 (input_bfd,
2145 elf_elfheader (input_bfd)->e_shstrndx,
2146 elf_section_data (input_section)->rel_hdr.sh_name));
2147
2148 if (name == NULL)
2149 return false;
2150
2151 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2152 && strcmp (bfd_get_section_name(input_bfd,
2153 input_section),
2154 name + 5) == 0);
2155
2156 sreloc = bfd_get_section_by_name (dynobj, name);
2157 BFD_ASSERT (sreloc != NULL);
2158 }
2159
2160 skip = false;
2161
2162 if (elf_section_data (input_section)->stab_info == NULL)
2163 outrel.r_offset = rel->r_offset;
2164 else
2165 {
2166 bfd_vma off;
2167
2168 off = (_bfd_stab_section_offset
2169 (output_bfd, &elf_hash_table (info)->stab_info,
2170 input_section,
2171 &elf_section_data (input_section)->stab_info,
2172 rel->r_offset));
2173 if (off == MINUS_ONE)
2174 skip = true;
2175 outrel.r_offset = off;
2176 }
2177
2178 outrel.r_offset += (input_section->output_section->vma
2179 + input_section->output_offset);
2180
2181 /* Optimize unaligned reloc usage now that we know where
2182 it finally resides. */
2183 switch (r_type)
2184 {
2185 case R_SPARC_16:
2186 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2187 break;
2188 case R_SPARC_UA16:
2189 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2190 break;
2191 case R_SPARC_32:
2192 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2193 break;
2194 case R_SPARC_UA32:
2195 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2196 break;
2197 case R_SPARC_64:
2198 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2199 break;
2200 case R_SPARC_UA64:
2201 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2202 break;
2203 }
2204
2205 if (skip)
2206 memset (&outrel, 0, sizeof outrel);
2207 /* h->dynindx may be -1 if the symbol was marked to
2208 become local. */
2209 else if (h != NULL
2210 && ((! info->symbolic && h->dynindx != -1)
2211 || (h->elf_link_hash_flags
2212 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2213 {
2214 BFD_ASSERT (h->dynindx != -1);
2215 outrel.r_info
2216 = ELF64_R_INFO (h->dynindx,
2217 ELF64_R_TYPE_INFO (
2218 ELF64_R_TYPE_DATA (rel->r_info),
2219 r_type));
2220 outrel.r_addend = rel->r_addend;
2221 }
2222 else
2223 {
2224 if (r_type == R_SPARC_64)
2225 {
2226 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2227 outrel.r_addend = relocation + rel->r_addend;
2228 }
2229 else
2230 {
2231 long indx;
2232
2233 if (h == NULL)
2234 sec = local_sections[r_symndx];
2235 else
2236 {
2237 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2238 || (h->root.type
2239 == bfd_link_hash_defweak));
2240 sec = h->root.u.def.section;
2241 }
2242 if (sec != NULL && bfd_is_abs_section (sec))
2243 indx = 0;
2244 else if (sec == NULL || sec->owner == NULL)
2245 {
2246 bfd_set_error (bfd_error_bad_value);
2247 return false;
2248 }
2249 else
2250 {
2251 asection *osec;
2252
2253 osec = sec->output_section;
2254 indx = elf_section_data (osec)->dynindx;
2255
2256 /* FIXME: we really should be able to link non-pic
2257 shared libraries. */
2258 if (indx == 0)
2259 {
2260 BFD_FAIL ();
2261 (*_bfd_error_handler)
2262 (_("%s: probably compiled without -fPIC?"),
2263 bfd_get_filename (input_bfd));
2264 bfd_set_error (bfd_error_bad_value);
2265 return false;
2266 }
2267 }
2268
2269 outrel.r_info
2270 = ELF64_R_INFO (indx,
2271 ELF64_R_TYPE_INFO (
2272 ELF64_R_TYPE_DATA (rel->r_info),
2273 r_type));
2274 outrel.r_addend = relocation + rel->r_addend;
2275 }
2276 }
2277
2278 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2279 (((Elf64_External_Rela *)
2280 sreloc->contents)
2281 + sreloc->reloc_count));
2282 ++sreloc->reloc_count;
2283
2284 /* This reloc will be computed at runtime, so there's no
2285 need to do anything now, unless this is a RELATIVE
2286 reloc in an unallocated section. */
2287 if (skip
2288 || (input_section->flags & SEC_ALLOC) != 0
2289 || ELF64_R_TYPE_ID (outrel.r_info) != R_SPARC_RELATIVE)
2290 continue;
2291 }
2292 break;
2293 }
2294 }
2295
2296 switch (r_type)
2297 {
2298 case R_SPARC_GOT10:
2299 case R_SPARC_GOT13:
2300 case R_SPARC_GOT22:
2301 /* Relocation is to the entry for this symbol in the global
2302 offset table. */
2303 if (sgot == NULL)
2304 {
2305 sgot = bfd_get_section_by_name (dynobj, ".got");
2306 BFD_ASSERT (sgot != NULL);
2307 }
2308
2309 if (h != NULL)
2310 {
2311 bfd_vma off = h->got.offset;
2312 BFD_ASSERT (off != (bfd_vma) -1);
2313
2314 if (! elf_hash_table (info)->dynamic_sections_created
2315 || (info->shared
2316 && (info->symbolic || h->dynindx == -1)
2317 && (h->elf_link_hash_flags
2318 & ELF_LINK_HASH_DEF_REGULAR)))
2319 {
2320 /* This is actually a static link, or it is a -Bsymbolic
2321 link and the symbol is defined locally, or the symbol
2322 was forced to be local because of a version file. We
2323 must initialize this entry in the global offset table.
2324 Since the offset must always be a multiple of 8, we
2325 use the least significant bit to record whether we
2326 have initialized it already.
2327
2328 When doing a dynamic link, we create a .rela.got
2329 relocation entry to initialize the value. This is
2330 done in the finish_dynamic_symbol routine. */
2331
2332 if ((off & 1) != 0)
2333 off &= ~1;
2334 else
2335 {
2336 bfd_put_64 (output_bfd, relocation,
2337 sgot->contents + off);
2338 h->got.offset |= 1;
2339 }
2340 }
2341 relocation = sgot->output_offset + off - got_base;
2342 }
2343 else
2344 {
2345 bfd_vma off;
2346
2347 BFD_ASSERT (local_got_offsets != NULL);
2348 off = local_got_offsets[r_symndx];
2349 BFD_ASSERT (off != (bfd_vma) -1);
2350
2351 /* The offset must always be a multiple of 8. We use
2352 the least significant bit to record whether we have
2353 already processed this entry. */
2354 if ((off & 1) != 0)
2355 off &= ~1;
2356 else
2357 {
2358 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2359 local_got_offsets[r_symndx] |= 1;
2360
2361 if (info->shared)
2362 {
2363 asection *srelgot;
2364 Elf_Internal_Rela outrel;
2365
2366 /* We need to generate a R_SPARC_RELATIVE reloc
2367 for the dynamic linker. */
2368 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2369 BFD_ASSERT (srelgot != NULL);
2370
2371 outrel.r_offset = (sgot->output_section->vma
2372 + sgot->output_offset
2373 + off);
2374 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2375 outrel.r_addend = relocation;
2376 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2377 (((Elf64_External_Rela *)
2378 srelgot->contents)
2379 + srelgot->reloc_count));
2380 ++srelgot->reloc_count;
2381 }
2382 }
2383 relocation = sgot->output_offset + off - got_base;
2384 }
2385 goto do_default;
2386
2387 case R_SPARC_WPLT30:
2388 case R_SPARC_PLT32:
2389 case R_SPARC_HIPLT22:
2390 case R_SPARC_LOPLT10:
2391 case R_SPARC_PCPLT32:
2392 case R_SPARC_PCPLT22:
2393 case R_SPARC_PCPLT10:
2394 case R_SPARC_PLT64:
2395 /* Relocation is to the entry for this symbol in the
2396 procedure linkage table. */
2397 BFD_ASSERT (h != NULL);
2398
2399 if (h->plt.offset == (bfd_vma) -1)
2400 {
2401 /* We didn't make a PLT entry for this symbol. This
2402 happens when statically linking PIC code, or when
2403 using -Bsymbolic. */
2404 goto do_default;
2405 }
2406
2407 if (splt == NULL)
2408 {
2409 splt = bfd_get_section_by_name (dynobj, ".plt");
2410 BFD_ASSERT (splt != NULL);
2411 }
2412
2413 relocation = (splt->output_section->vma
2414 + splt->output_offset
2415 + sparc64_elf_plt_entry_offset (h->plt.offset));
2416 if (r_type == R_SPARC_WPLT30)
2417 goto do_wplt30;
2418 goto do_default;
2419
2420 case R_SPARC_OLO10:
2421 {
2422 bfd_vma x;
2423
2424 relocation += rel->r_addend;
2425 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2426
2427 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2428 x = (x & ~0x1fff) | (relocation & 0x1fff);
2429 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2430
2431 r = bfd_check_overflow (howto->complain_on_overflow,
2432 howto->bitsize, howto->rightshift,
2433 bfd_arch_bits_per_address (input_bfd),
2434 relocation);
2435 }
2436 break;
2437
2438 case R_SPARC_WDISP16:
2439 {
2440 bfd_vma x;
2441
2442 relocation += rel->r_addend;
2443 /* Adjust for pc-relative-ness. */
2444 relocation -= (input_section->output_section->vma
2445 + input_section->output_offset);
2446 relocation -= rel->r_offset;
2447
2448 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2449 x = (x & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
2450 | ((relocation >> 2) & 0x3fff));
2451 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2452
2453 r = bfd_check_overflow (howto->complain_on_overflow,
2454 howto->bitsize, howto->rightshift,
2455 bfd_arch_bits_per_address (input_bfd),
2456 relocation);
2457 }
2458 break;
2459
2460 case R_SPARC_HIX22:
2461 {
2462 bfd_vma x;
2463
2464 relocation += rel->r_addend;
2465 relocation = relocation ^ MINUS_ONE;
2466
2467 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2468 x = (x & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
2469 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2470
2471 r = bfd_check_overflow (howto->complain_on_overflow,
2472 howto->bitsize, howto->rightshift,
2473 bfd_arch_bits_per_address (input_bfd),
2474 relocation);
2475 }
2476 break;
2477
2478 case R_SPARC_LOX10:
2479 {
2480 bfd_vma x;
2481
2482 relocation += rel->r_addend;
2483 relocation = (relocation & 0x3ff) | 0x1c00;
2484
2485 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2486 x = (x & ~0x1fff) | relocation;
2487 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2488
2489 r = bfd_reloc_ok;
2490 }
2491 break;
2492
2493 case R_SPARC_WDISP30:
2494 do_wplt30:
2495 if (SEC_DO_RELAX (input_section)
2496 && rel->r_offset + 4 < input_section->_raw_size)
2497 {
2498 #define G0 0
2499 #define O7 15
2500 #define XCC (2 << 20)
2501 #define COND(x) (((x)&0xf)<<25)
2502 #define CONDA COND(0x8)
2503 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2504 #define INSN_BA (F2(0,2) | CONDA)
2505 #define INSN_OR F3(2, 0x2, 0)
2506 #define INSN_NOP F2(0,4)
2507
2508 bfd_vma x, y;
2509
2510 /* If the instruction is a call with either:
2511 restore
2512 arithmetic instruction with rd == %o7
2513 where rs1 != %o7 and rs2 if it is register != %o7
2514 then we can optimize if the call destination is near
2515 by changing the call into a branch always. */
2516 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2517 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2518 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2519 {
2520 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2521 || ((y & OP3(0x28)) == 0 /* arithmetic */
2522 && (y & RD(~0)) == RD(O7)))
2523 && (y & RS1(~0)) != RS1(O7)
2524 && ((y & F3I(~0))
2525 || (y & RS2(~0)) != RS2(O7)))
2526 {
2527 bfd_vma reloc;
2528
2529 reloc = relocation + rel->r_addend - rel->r_offset;
2530 reloc -= (input_section->output_section->vma
2531 + input_section->output_offset);
2532 if (reloc & 3)
2533 goto do_default;
2534
2535 /* Ensure the branch fits into simm22. */
2536 if ((reloc & ~(bfd_vma)0x7fffff)
2537 && ((reloc | 0x7fffff) != MINUS_ONE))
2538 goto do_default;
2539 reloc >>= 2;
2540
2541 /* Check whether it fits into simm19. */
2542 if ((reloc & 0x3c0000) == 0
2543 || (reloc & 0x3c0000) == 0x3c0000)
2544 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2545 else
2546 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2547 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2548 r = bfd_reloc_ok;
2549 if (rel->r_offset >= 4
2550 && (y & (0xffffffff ^ RS1(~0)))
2551 == (INSN_OR | RD(O7) | RS2(G0)))
2552 {
2553 bfd_vma z;
2554 unsigned int reg;
2555
2556 z = bfd_get_32 (input_bfd,
2557 contents + rel->r_offset - 4);
2558 if ((z & (0xffffffff ^ RD(~0)))
2559 != (INSN_OR | RS1(O7) | RS2(G0)))
2560 break;
2561
2562 /* The sequence was
2563 or %o7, %g0, %rN
2564 call foo
2565 or %rN, %g0, %o7
2566
2567 If call foo was replaced with ba, replace
2568 or %rN, %g0, %o7 with nop. */
2569
2570 reg = (y & RS1(~0)) >> 14;
2571 if (reg != ((z & RD(~0)) >> 25)
2572 || reg == G0 || reg == O7)
2573 break;
2574
2575 bfd_put_32 (input_bfd, INSN_NOP,
2576 contents + rel->r_offset + 4);
2577 }
2578 break;
2579 }
2580 }
2581 }
2582 /* FALLTHROUGH */
2583
2584 default:
2585 do_default:
2586 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2587 contents, rel->r_offset,
2588 relocation, rel->r_addend);
2589 break;
2590 }
2591
2592 switch (r)
2593 {
2594 case bfd_reloc_ok:
2595 break;
2596
2597 default:
2598 case bfd_reloc_outofrange:
2599 abort ();
2600
2601 case bfd_reloc_overflow:
2602 {
2603 const char *name;
2604
2605 if (h != NULL)
2606 {
2607 if (h->root.type == bfd_link_hash_undefweak
2608 && howto->pc_relative)
2609 {
2610 /* Assume this is a call protected by other code that
2611 detect the symbol is undefined. If this is the case,
2612 we can safely ignore the overflow. If not, the
2613 program is hosed anyway, and a little warning isn't
2614 going to help. */
2615 break;
2616 }
2617
2618 name = h->root.root.string;
2619 }
2620 else
2621 {
2622 name = (bfd_elf_string_from_elf_section
2623 (input_bfd,
2624 symtab_hdr->sh_link,
2625 sym->st_name));
2626 if (name == NULL)
2627 return false;
2628 if (*name == '\0')
2629 name = bfd_section_name (input_bfd, sec);
2630 }
2631 if (! ((*info->callbacks->reloc_overflow)
2632 (info, name, howto->name, (bfd_vma) 0,
2633 input_bfd, input_section, rel->r_offset)))
2634 return false;
2635 }
2636 break;
2637 }
2638 }
2639
2640 return true;
2641 }
2642
2643 /* Finish up dynamic symbol handling. We set the contents of various
2644 dynamic sections here. */
2645
2646 static boolean
2647 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2648 bfd *output_bfd;
2649 struct bfd_link_info *info;
2650 struct elf_link_hash_entry *h;
2651 Elf_Internal_Sym *sym;
2652 {
2653 bfd *dynobj;
2654
2655 dynobj = elf_hash_table (info)->dynobj;
2656
2657 if (h->plt.offset != (bfd_vma) -1)
2658 {
2659 asection *splt;
2660 asection *srela;
2661 Elf_Internal_Rela rela;
2662
2663 /* This symbol has an entry in the PLT. Set it up. */
2664
2665 BFD_ASSERT (h->dynindx != -1);
2666
2667 splt = bfd_get_section_by_name (dynobj, ".plt");
2668 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2669 BFD_ASSERT (splt != NULL && srela != NULL);
2670
2671 /* Fill in the entry in the .rela.plt section. */
2672
2673 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2674 {
2675 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2676 rela.r_addend = 0;
2677 }
2678 else
2679 {
2680 int max = splt->_raw_size / PLT_ENTRY_SIZE;
2681 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2682 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2683 -(splt->output_section->vma + splt->output_offset);
2684 }
2685 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2686 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2687
2688 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2689 ((Elf64_External_Rela *) srela->contents
2690 + h->plt.offset));
2691
2692 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2693 {
2694 /* Mark the symbol as undefined, rather than as defined in
2695 the .plt section. Leave the value alone. */
2696 sym->st_shndx = SHN_UNDEF;
2697 }
2698 }
2699
2700 if (h->got.offset != (bfd_vma) -1)
2701 {
2702 asection *sgot;
2703 asection *srela;
2704 Elf_Internal_Rela rela;
2705
2706 /* This symbol has an entry in the GOT. Set it up. */
2707
2708 sgot = bfd_get_section_by_name (dynobj, ".got");
2709 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2710 BFD_ASSERT (sgot != NULL && srela != NULL);
2711
2712 rela.r_offset = (sgot->output_section->vma
2713 + sgot->output_offset
2714 + (h->got.offset &~ 1));
2715
2716 /* If this is a -Bsymbolic link, and the symbol is defined
2717 locally, we just want to emit a RELATIVE reloc. Likewise if
2718 the symbol was forced to be local because of a version file.
2719 The entry in the global offset table will already have been
2720 initialized in the relocate_section function. */
2721 if (info->shared
2722 && (info->symbolic || h->dynindx == -1)
2723 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2724 {
2725 asection *sec = h->root.u.def.section;
2726 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2727 rela.r_addend = (h->root.u.def.value
2728 + sec->output_section->vma
2729 + sec->output_offset);
2730 }
2731 else
2732 {
2733 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2734 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2735 rela.r_addend = 0;
2736 }
2737
2738 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2739 ((Elf64_External_Rela *) srela->contents
2740 + srela->reloc_count));
2741 ++srela->reloc_count;
2742 }
2743
2744 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2745 {
2746 asection *s;
2747 Elf_Internal_Rela rela;
2748
2749 /* This symbols needs a copy reloc. Set it up. */
2750
2751 BFD_ASSERT (h->dynindx != -1);
2752
2753 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2754 ".rela.bss");
2755 BFD_ASSERT (s != NULL);
2756
2757 rela.r_offset = (h->root.u.def.value
2758 + h->root.u.def.section->output_section->vma
2759 + h->root.u.def.section->output_offset);
2760 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2761 rela.r_addend = 0;
2762 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2763 ((Elf64_External_Rela *) s->contents
2764 + s->reloc_count));
2765 ++s->reloc_count;
2766 }
2767
2768 /* Mark some specially defined symbols as absolute. */
2769 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2770 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2771 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2772 sym->st_shndx = SHN_ABS;
2773
2774 return true;
2775 }
2776
2777 /* Finish up the dynamic sections. */
2778
2779 static boolean
2780 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2781 bfd *output_bfd;
2782 struct bfd_link_info *info;
2783 {
2784 bfd *dynobj;
2785 int stt_regidx = -1;
2786 asection *sdyn;
2787 asection *sgot;
2788
2789 dynobj = elf_hash_table (info)->dynobj;
2790
2791 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2792
2793 if (elf_hash_table (info)->dynamic_sections_created)
2794 {
2795 asection *splt;
2796 Elf64_External_Dyn *dyncon, *dynconend;
2797
2798 splt = bfd_get_section_by_name (dynobj, ".plt");
2799 BFD_ASSERT (splt != NULL && sdyn != NULL);
2800
2801 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2802 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2803 for (; dyncon < dynconend; dyncon++)
2804 {
2805 Elf_Internal_Dyn dyn;
2806 const char *name;
2807 boolean size;
2808
2809 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2810
2811 switch (dyn.d_tag)
2812 {
2813 case DT_PLTGOT: name = ".plt"; size = false; break;
2814 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2815 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2816 case DT_SPARC_REGISTER:
2817 if (stt_regidx == -1)
2818 {
2819 stt_regidx =
2820 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2821 if (stt_regidx == -1)
2822 return false;
2823 }
2824 dyn.d_un.d_val = stt_regidx++;
2825 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2826 /* fallthrough */
2827 default: name = NULL; size = false; break;
2828 }
2829
2830 if (name != NULL)
2831 {
2832 asection *s;
2833
2834 s = bfd_get_section_by_name (output_bfd, name);
2835 if (s == NULL)
2836 dyn.d_un.d_val = 0;
2837 else
2838 {
2839 if (! size)
2840 dyn.d_un.d_ptr = s->vma;
2841 else
2842 {
2843 if (s->_cooked_size != 0)
2844 dyn.d_un.d_val = s->_cooked_size;
2845 else
2846 dyn.d_un.d_val = s->_raw_size;
2847 }
2848 }
2849 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2850 }
2851 }
2852
2853 /* Initialize the contents of the .plt section. */
2854 if (splt->_raw_size > 0)
2855 {
2856 sparc64_elf_build_plt(output_bfd, splt->contents,
2857 splt->_raw_size / PLT_ENTRY_SIZE);
2858 }
2859
2860 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2861 PLT_ENTRY_SIZE;
2862 }
2863
2864 /* Set the first entry in the global offset table to the address of
2865 the dynamic section. */
2866 sgot = bfd_get_section_by_name (dynobj, ".got");
2867 BFD_ASSERT (sgot != NULL);
2868 if (sgot->_raw_size > 0)
2869 {
2870 if (sdyn == NULL)
2871 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2872 else
2873 bfd_put_64 (output_bfd,
2874 sdyn->output_section->vma + sdyn->output_offset,
2875 sgot->contents);
2876 }
2877
2878 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2879
2880 return true;
2881 }
2882 \f
2883 /* Functions for dealing with the e_flags field. */
2884
2885 /* Merge backend specific data from an object file to the output
2886 object file when linking. */
2887
2888 static boolean
2889 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2890 bfd *ibfd;
2891 bfd *obfd;
2892 {
2893 boolean error;
2894 flagword new_flags, old_flags;
2895 int new_mm, old_mm;
2896
2897 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2898 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2899 return true;
2900
2901 new_flags = elf_elfheader (ibfd)->e_flags;
2902 old_flags = elf_elfheader (obfd)->e_flags;
2903
2904 if (!elf_flags_init (obfd)) /* First call, no flags set */
2905 {
2906 elf_flags_init (obfd) = true;
2907 elf_elfheader (obfd)->e_flags = new_flags;
2908 }
2909
2910 else if (new_flags == old_flags) /* Compatible flags are ok */
2911 ;
2912
2913 else /* Incompatible flags */
2914 {
2915 error = false;
2916
2917 if ((ibfd->flags & DYNAMIC) != 0)
2918 {
2919 /* We don't want dynamic objects memory ordering and
2920 architecture to have any role. That's what dynamic linker
2921 should do. */
2922 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1);
2923 new_flags |= (old_flags
2924 & (EF_SPARCV9_MM
2925 | EF_SPARC_SUN_US1
2926 | EF_SPARC_HAL_R1));
2927 }
2928 else
2929 {
2930 /* Choose the highest architecture requirements. */
2931 old_flags |= (new_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1));
2932 new_flags |= (old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1));
2933 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1))
2934 == (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1))
2935 {
2936 error = true;
2937 (*_bfd_error_handler)
2938 (_("%s: linking UltraSPARC specific with HAL specific code"),
2939 bfd_get_filename (ibfd));
2940 }
2941 /* Choose the most restrictive memory ordering. */
2942 old_mm = (old_flags & EF_SPARCV9_MM);
2943 new_mm = (new_flags & EF_SPARCV9_MM);
2944 old_flags &= ~EF_SPARCV9_MM;
2945 new_flags &= ~EF_SPARCV9_MM;
2946 if (new_mm < old_mm)
2947 old_mm = new_mm;
2948 old_flags |= old_mm;
2949 new_flags |= old_mm;
2950 }
2951
2952 /* Warn about any other mismatches */
2953 if (new_flags != old_flags)
2954 {
2955 error = true;
2956 (*_bfd_error_handler)
2957 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2958 bfd_get_filename (ibfd), (long)new_flags, (long)old_flags);
2959 }
2960
2961 elf_elfheader (obfd)->e_flags = old_flags;
2962
2963 if (error)
2964 {
2965 bfd_set_error (bfd_error_bad_value);
2966 return false;
2967 }
2968 }
2969 return true;
2970 }
2971 \f
2972 /* Print a STT_REGISTER symbol to file FILE. */
2973
2974 static const char *
2975 sparc64_elf_print_symbol_all (abfd, filep, symbol)
2976 bfd *abfd ATTRIBUTE_UNUSED;
2977 PTR filep;
2978 asymbol *symbol;
2979 {
2980 FILE *file = (FILE *) filep;
2981 int reg, type;
2982
2983 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
2984 != STT_REGISTER)
2985 return NULL;
2986
2987 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2988 type = symbol->flags;
2989 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
2990 ((type & BSF_LOCAL)
2991 ? (type & BSF_GLOBAL) ? '!' : 'l'
2992 : (type & BSF_GLOBAL) ? 'g' : ' '),
2993 (type & BSF_WEAK) ? 'w' : ' ');
2994 if (symbol->name == NULL || symbol->name [0] == '\0')
2995 return "#scratch";
2996 else
2997 return symbol->name;
2998 }
2999 \f
3000 /* Set the right machine number for a SPARC64 ELF file. */
3001
3002 static boolean
3003 sparc64_elf_object_p (abfd)
3004 bfd *abfd;
3005 {
3006 unsigned long mach = bfd_mach_sparc_v9;
3007
3008 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3009 mach = bfd_mach_sparc_v9a;
3010 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3011 }
3012
3013 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3014 standard ELF, because R_SPARC_OLO10 has secondary addend in
3015 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3016 relocation handling routines. */
3017
3018 const struct elf_size_info sparc64_elf_size_info =
3019 {
3020 sizeof (Elf64_External_Ehdr),
3021 sizeof (Elf64_External_Phdr),
3022 sizeof (Elf64_External_Shdr),
3023 sizeof (Elf64_External_Rel),
3024 sizeof (Elf64_External_Rela),
3025 sizeof (Elf64_External_Sym),
3026 sizeof (Elf64_External_Dyn),
3027 sizeof (Elf_External_Note),
3028 4, /* hash-table entry size */
3029 /* internal relocations per external relocations.
3030 For link purposes we use just 1 internal per
3031 1 external, for assembly and slurp symbol table
3032 we use 2. */
3033 1,
3034 64, /* arch_size */
3035 8, /* file_align */
3036 ELFCLASS64,
3037 EV_CURRENT,
3038 bfd_elf64_write_out_phdrs,
3039 bfd_elf64_write_shdrs_and_ehdr,
3040 sparc64_elf_write_relocs,
3041 bfd_elf64_swap_symbol_out,
3042 sparc64_elf_slurp_reloc_table,
3043 bfd_elf64_slurp_symbol_table,
3044 bfd_elf64_swap_dyn_in,
3045 bfd_elf64_swap_dyn_out,
3046 NULL,
3047 NULL,
3048 NULL,
3049 NULL
3050 };
3051
3052 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3053 #define TARGET_BIG_NAME "elf64-sparc"
3054 #define ELF_ARCH bfd_arch_sparc
3055 #define ELF_MAXPAGESIZE 0x100000
3056
3057 /* This is the official ABI value. */
3058 #define ELF_MACHINE_CODE EM_SPARCV9
3059
3060 /* This is the value that we used before the ABI was released. */
3061 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3062
3063 #define bfd_elf64_bfd_link_hash_table_create \
3064 sparc64_elf_bfd_link_hash_table_create
3065
3066 #define elf_info_to_howto \
3067 sparc64_elf_info_to_howto
3068 #define bfd_elf64_get_reloc_upper_bound \
3069 sparc64_elf_get_reloc_upper_bound
3070 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3071 sparc64_elf_get_dynamic_reloc_upper_bound
3072 #define bfd_elf64_canonicalize_dynamic_reloc \
3073 sparc64_elf_canonicalize_dynamic_reloc
3074 #define bfd_elf64_bfd_reloc_type_lookup \
3075 sparc64_elf_reloc_type_lookup
3076 #define bfd_elf64_bfd_relax_section \
3077 sparc64_elf_relax_section
3078
3079 #define elf_backend_create_dynamic_sections \
3080 _bfd_elf_create_dynamic_sections
3081 #define elf_backend_add_symbol_hook \
3082 sparc64_elf_add_symbol_hook
3083 #define elf_backend_get_symbol_type \
3084 sparc64_elf_get_symbol_type
3085 #define elf_backend_symbol_processing \
3086 sparc64_elf_symbol_processing
3087 #define elf_backend_check_relocs \
3088 sparc64_elf_check_relocs
3089 #define elf_backend_adjust_dynamic_symbol \
3090 sparc64_elf_adjust_dynamic_symbol
3091 #define elf_backend_size_dynamic_sections \
3092 sparc64_elf_size_dynamic_sections
3093 #define elf_backend_relocate_section \
3094 sparc64_elf_relocate_section
3095 #define elf_backend_finish_dynamic_symbol \
3096 sparc64_elf_finish_dynamic_symbol
3097 #define elf_backend_finish_dynamic_sections \
3098 sparc64_elf_finish_dynamic_sections
3099 #define elf_backend_print_symbol_all \
3100 sparc64_elf_print_symbol_all
3101 #define elf_backend_output_arch_syms \
3102 sparc64_elf_output_arch_syms
3103
3104 #define bfd_elf64_bfd_merge_private_bfd_data \
3105 sparc64_elf_merge_private_bfd_data
3106
3107 #define elf_backend_size_info \
3108 sparc64_elf_size_info
3109 #define elf_backend_object_p \
3110 sparc64_elf_object_p
3111
3112 #define elf_backend_want_got_plt 0
3113 #define elf_backend_plt_readonly 0
3114 #define elf_backend_want_plt_sym 1
3115
3116 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3117 #define elf_backend_plt_alignment 8
3118
3119 #define elf_backend_got_header_size 8
3120 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3121
3122 #include "elf64-target.h"
This page took 0.1032 seconds and 4 git commands to generate.