2001-12-18 H.J. Lu <hjl@gnu.org>
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50 PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
53
54 static boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
69 static void sparc64_elf_symbol_processing
70 PARAMS ((bfd *, asymbol *));
71
72 static boolean sparc64_elf_merge_private_bfd_data
73 PARAMS ((bfd *, bfd *));
74
75 static const char *sparc64_elf_print_symbol_all
76 PARAMS ((bfd *, PTR, asymbol *));
77 static boolean sparc64_elf_relax_section
78 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
79 static boolean sparc64_elf_relocate_section
80 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
81 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
82 static boolean sparc64_elf_finish_dynamic_symbol
83 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
84 Elf_Internal_Sym *));
85 static boolean sparc64_elf_finish_dynamic_sections
86 PARAMS ((bfd *, struct bfd_link_info *));
87 static boolean sparc64_elf_object_p PARAMS ((bfd *));
88 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
89 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
90 static boolean sparc64_elf_slurp_one_reloc_table
91 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
92 static boolean sparc64_elf_slurp_reloc_table
93 PARAMS ((bfd *, asection *, asymbol **, boolean));
94 static long sparc64_elf_canonicalize_dynamic_reloc
95 PARAMS ((bfd *, arelent **, asymbol **));
96 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
97 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
98 PARAMS ((const Elf_Internal_Rela *));
99 \f
100 /* The relocation "howto" table. */
101
102 static bfd_reloc_status_type sparc_elf_notsup_reloc
103 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
104 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
105 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
106 static bfd_reloc_status_type sparc_elf_hix22_reloc
107 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
108 static bfd_reloc_status_type sparc_elf_lox10_reloc
109 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
110
111 static reloc_howto_type sparc64_elf_howto_table[] =
112 {
113 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
114 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
115 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
116 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
117 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
118 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
119 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
120 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
121 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
122 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
123 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
124 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
125 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
126 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
127 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
128 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
129 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
130 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
131 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
132 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
133 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
134 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
135 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
136 HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
137 #ifndef SPARC64_OLD_RELOCS
138 /* These aren't implemented yet. */
139 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
140 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
141 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
142 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
143 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
144 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
145 #endif
146 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
147 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
148 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
149 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
150 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
151 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
152 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
153 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
154 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
155 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
156 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
157 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
158 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
159 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
160 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
161 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
162 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
163 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
164 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
165 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
166 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
167 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
168 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
169 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
170 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
171 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
172 };
173
174 struct elf_reloc_map {
175 bfd_reloc_code_real_type bfd_reloc_val;
176 unsigned char elf_reloc_val;
177 };
178
179 static const struct elf_reloc_map sparc_reloc_map[] =
180 {
181 { BFD_RELOC_NONE, R_SPARC_NONE, },
182 { BFD_RELOC_16, R_SPARC_16, },
183 { BFD_RELOC_8, R_SPARC_8 },
184 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
185 { BFD_RELOC_CTOR, R_SPARC_64 },
186 { BFD_RELOC_32, R_SPARC_32 },
187 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
188 { BFD_RELOC_HI22, R_SPARC_HI22 },
189 { BFD_RELOC_LO10, R_SPARC_LO10, },
190 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
191 { BFD_RELOC_SPARC22, R_SPARC_22 },
192 { BFD_RELOC_SPARC13, R_SPARC_13 },
193 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
194 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
195 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
196 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
197 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
198 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
199 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
200 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
201 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
202 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
203 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
204 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
205 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
206 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
207 { BFD_RELOC_SPARC_10, R_SPARC_10 },
208 { BFD_RELOC_SPARC_11, R_SPARC_11 },
209 { BFD_RELOC_SPARC_64, R_SPARC_64 },
210 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
211 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
212 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
213 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
214 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
215 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
216 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
217 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
218 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
219 { BFD_RELOC_SPARC_7, R_SPARC_7 },
220 { BFD_RELOC_SPARC_5, R_SPARC_5 },
221 { BFD_RELOC_SPARC_6, R_SPARC_6 },
222 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
223 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
224 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
225 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
226 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
227 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
228 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
229 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
230 };
231
232 static reloc_howto_type *
233 sparc64_elf_reloc_type_lookup (abfd, code)
234 bfd *abfd ATTRIBUTE_UNUSED;
235 bfd_reloc_code_real_type code;
236 {
237 unsigned int i;
238 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
239 {
240 if (sparc_reloc_map[i].bfd_reloc_val == code)
241 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
242 }
243 return 0;
244 }
245
246 static void
247 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
248 bfd *abfd ATTRIBUTE_UNUSED;
249 arelent *cache_ptr;
250 Elf64_Internal_Rela *dst;
251 {
252 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
253 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
254 }
255 \f
256 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
257 section can represent up to two relocs, we must tell the user to allocate
258 more space. */
259
260 static long
261 sparc64_elf_get_reloc_upper_bound (abfd, sec)
262 bfd *abfd ATTRIBUTE_UNUSED;
263 asection *sec;
264 {
265 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
266 }
267
268 static long
269 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
270 bfd *abfd;
271 {
272 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
273 }
274
275 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
276 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
277 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
278 for the same location, R_SPARC_LO10 and R_SPARC_13. */
279
280 static boolean
281 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
282 bfd *abfd;
283 asection *asect;
284 Elf_Internal_Shdr *rel_hdr;
285 asymbol **symbols;
286 boolean dynamic;
287 {
288 PTR allocated = NULL;
289 bfd_byte *native_relocs;
290 arelent *relent;
291 unsigned int i;
292 int entsize;
293 bfd_size_type count;
294 arelent *relents;
295
296 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
297 if (allocated == NULL)
298 goto error_return;
299
300 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
301 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
302 goto error_return;
303
304 native_relocs = (bfd_byte *) allocated;
305
306 relents = asect->relocation + asect->reloc_count;
307
308 entsize = rel_hdr->sh_entsize;
309 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
310
311 count = rel_hdr->sh_size / entsize;
312
313 for (i = 0, relent = relents; i < count;
314 i++, relent++, native_relocs += entsize)
315 {
316 Elf_Internal_Rela rela;
317
318 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
319
320 /* The address of an ELF reloc is section relative for an object
321 file, and absolute for an executable file or shared library.
322 The address of a normal BFD reloc is always section relative,
323 and the address of a dynamic reloc is absolute.. */
324 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
325 relent->address = rela.r_offset;
326 else
327 relent->address = rela.r_offset - asect->vma;
328
329 if (ELF64_R_SYM (rela.r_info) == 0)
330 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
331 else
332 {
333 asymbol **ps, *s;
334
335 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
336 s = *ps;
337
338 /* Canonicalize ELF section symbols. FIXME: Why? */
339 if ((s->flags & BSF_SECTION_SYM) == 0)
340 relent->sym_ptr_ptr = ps;
341 else
342 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
343 }
344
345 relent->addend = rela.r_addend;
346
347 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
348 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
349 {
350 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
351 relent[1].address = relent->address;
352 relent++;
353 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
354 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
355 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
356 }
357 else
358 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
359 }
360
361 asect->reloc_count += relent - relents;
362
363 if (allocated != NULL)
364 free (allocated);
365
366 return true;
367
368 error_return:
369 if (allocated != NULL)
370 free (allocated);
371 return false;
372 }
373
374 /* Read in and swap the external relocs. */
375
376 static boolean
377 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
378 bfd *abfd;
379 asection *asect;
380 asymbol **symbols;
381 boolean dynamic;
382 {
383 struct bfd_elf_section_data * const d = elf_section_data (asect);
384 Elf_Internal_Shdr *rel_hdr;
385 Elf_Internal_Shdr *rel_hdr2;
386 bfd_size_type amt;
387
388 if (asect->relocation != NULL)
389 return true;
390
391 if (! dynamic)
392 {
393 if ((asect->flags & SEC_RELOC) == 0
394 || asect->reloc_count == 0)
395 return true;
396
397 rel_hdr = &d->rel_hdr;
398 rel_hdr2 = d->rel_hdr2;
399
400 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
401 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
402 }
403 else
404 {
405 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
406 case because relocations against this section may use the
407 dynamic symbol table, and in that case bfd_section_from_shdr
408 in elf.c does not update the RELOC_COUNT. */
409 if (asect->_raw_size == 0)
410 return true;
411
412 rel_hdr = &d->this_hdr;
413 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
414 rel_hdr2 = NULL;
415 }
416
417 amt = asect->reloc_count;
418 amt *= 2 * sizeof (arelent);
419 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
420 if (asect->relocation == NULL)
421 return false;
422
423 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
424 asect->reloc_count = 0;
425
426 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
427 dynamic))
428 return false;
429
430 if (rel_hdr2
431 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
432 dynamic))
433 return false;
434
435 return true;
436 }
437
438 /* Canonicalize the dynamic relocation entries. Note that we return
439 the dynamic relocations as a single block, although they are
440 actually associated with particular sections; the interface, which
441 was designed for SunOS style shared libraries, expects that there
442 is only one set of dynamic relocs. Any section that was actually
443 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
444 the dynamic symbol table, is considered to be a dynamic reloc
445 section. */
446
447 static long
448 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
449 bfd *abfd;
450 arelent **storage;
451 asymbol **syms;
452 {
453 asection *s;
454 long ret;
455
456 if (elf_dynsymtab (abfd) == 0)
457 {
458 bfd_set_error (bfd_error_invalid_operation);
459 return -1;
460 }
461
462 ret = 0;
463 for (s = abfd->sections; s != NULL; s = s->next)
464 {
465 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
466 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
467 {
468 arelent *p;
469 long count, i;
470
471 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
472 return -1;
473 count = s->reloc_count;
474 p = s->relocation;
475 for (i = 0; i < count; i++)
476 *storage++ = p++;
477 ret += count;
478 }
479 }
480
481 *storage = NULL;
482
483 return ret;
484 }
485
486 /* Write out the relocs. */
487
488 static void
489 sparc64_elf_write_relocs (abfd, sec, data)
490 bfd *abfd;
491 asection *sec;
492 PTR data;
493 {
494 boolean *failedp = (boolean *) data;
495 Elf_Internal_Shdr *rela_hdr;
496 Elf64_External_Rela *outbound_relocas, *src_rela;
497 unsigned int idx, count;
498 asymbol *last_sym = 0;
499 int last_sym_idx = 0;
500
501 /* If we have already failed, don't do anything. */
502 if (*failedp)
503 return;
504
505 if ((sec->flags & SEC_RELOC) == 0)
506 return;
507
508 /* The linker backend writes the relocs out itself, and sets the
509 reloc_count field to zero to inhibit writing them here. Also,
510 sometimes the SEC_RELOC flag gets set even when there aren't any
511 relocs. */
512 if (sec->reloc_count == 0)
513 return;
514
515 /* We can combine two relocs that refer to the same address
516 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
517 latter is R_SPARC_13 with no associated symbol. */
518 count = 0;
519 for (idx = 0; idx < sec->reloc_count; idx++)
520 {
521 bfd_vma addr;
522
523 ++count;
524
525 addr = sec->orelocation[idx]->address;
526 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
527 && idx < sec->reloc_count - 1)
528 {
529 arelent *r = sec->orelocation[idx + 1];
530
531 if (r->howto->type == R_SPARC_13
532 && r->address == addr
533 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
534 && (*r->sym_ptr_ptr)->value == 0)
535 ++idx;
536 }
537 }
538
539 rela_hdr = &elf_section_data (sec)->rel_hdr;
540
541 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
542 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
543 if (rela_hdr->contents == NULL)
544 {
545 *failedp = true;
546 return;
547 }
548
549 /* Figure out whether the relocations are RELA or REL relocations. */
550 if (rela_hdr->sh_type != SHT_RELA)
551 abort ();
552
553 /* orelocation has the data, reloc_count has the count... */
554 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
555 src_rela = outbound_relocas;
556
557 for (idx = 0; idx < sec->reloc_count; idx++)
558 {
559 Elf_Internal_Rela dst_rela;
560 arelent *ptr;
561 asymbol *sym;
562 int n;
563
564 ptr = sec->orelocation[idx];
565
566 /* The address of an ELF reloc is section relative for an object
567 file, and absolute for an executable file or shared library.
568 The address of a BFD reloc is always section relative. */
569 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
570 dst_rela.r_offset = ptr->address;
571 else
572 dst_rela.r_offset = ptr->address + sec->vma;
573
574 sym = *ptr->sym_ptr_ptr;
575 if (sym == last_sym)
576 n = last_sym_idx;
577 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
578 n = STN_UNDEF;
579 else
580 {
581 last_sym = sym;
582 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
583 if (n < 0)
584 {
585 *failedp = true;
586 return;
587 }
588 last_sym_idx = n;
589 }
590
591 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
592 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
593 && ! _bfd_elf_validate_reloc (abfd, ptr))
594 {
595 *failedp = true;
596 return;
597 }
598
599 if (ptr->howto->type == R_SPARC_LO10
600 && idx < sec->reloc_count - 1)
601 {
602 arelent *r = sec->orelocation[idx + 1];
603
604 if (r->howto->type == R_SPARC_13
605 && r->address == ptr->address
606 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
607 && (*r->sym_ptr_ptr)->value == 0)
608 {
609 idx++;
610 dst_rela.r_info
611 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
612 R_SPARC_OLO10));
613 }
614 else
615 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
616 }
617 else
618 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
619
620 dst_rela.r_addend = ptr->addend;
621 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
622 ++src_rela;
623 }
624 }
625 \f
626 /* Sparc64 ELF linker hash table. */
627
628 struct sparc64_elf_app_reg
629 {
630 unsigned char bind;
631 unsigned short shndx;
632 bfd *abfd;
633 char *name;
634 };
635
636 struct sparc64_elf_link_hash_table
637 {
638 struct elf_link_hash_table root;
639
640 struct sparc64_elf_app_reg app_regs [4];
641 };
642
643 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
644
645 #define sparc64_elf_hash_table(p) \
646 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
647
648 /* Create a Sparc64 ELF linker hash table. */
649
650 static struct bfd_link_hash_table *
651 sparc64_elf_bfd_link_hash_table_create (abfd)
652 bfd *abfd;
653 {
654 struct sparc64_elf_link_hash_table *ret;
655 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
656
657 ret = (struct sparc64_elf_link_hash_table *) bfd_zalloc (abfd, amt);
658 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
659 return NULL;
660
661 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
662 _bfd_elf_link_hash_newfunc))
663 {
664 bfd_release (abfd, ret);
665 return NULL;
666 }
667
668 return &ret->root.root;
669 }
670 \f
671 /* Utility for performing the standard initial work of an instruction
672 relocation.
673 *PRELOCATION will contain the relocated item.
674 *PINSN will contain the instruction from the input stream.
675 If the result is `bfd_reloc_other' the caller can continue with
676 performing the relocation. Otherwise it must stop and return the
677 value to its caller. */
678
679 static bfd_reloc_status_type
680 init_insn_reloc (abfd,
681 reloc_entry,
682 symbol,
683 data,
684 input_section,
685 output_bfd,
686 prelocation,
687 pinsn)
688 bfd *abfd;
689 arelent *reloc_entry;
690 asymbol *symbol;
691 PTR data;
692 asection *input_section;
693 bfd *output_bfd;
694 bfd_vma *prelocation;
695 bfd_vma *pinsn;
696 {
697 bfd_vma relocation;
698 reloc_howto_type *howto = reloc_entry->howto;
699
700 if (output_bfd != (bfd *) NULL
701 && (symbol->flags & BSF_SECTION_SYM) == 0
702 && (! howto->partial_inplace
703 || reloc_entry->addend == 0))
704 {
705 reloc_entry->address += input_section->output_offset;
706 return bfd_reloc_ok;
707 }
708
709 /* This works because partial_inplace == false. */
710 if (output_bfd != NULL)
711 return bfd_reloc_continue;
712
713 if (reloc_entry->address > input_section->_cooked_size)
714 return bfd_reloc_outofrange;
715
716 relocation = (symbol->value
717 + symbol->section->output_section->vma
718 + symbol->section->output_offset);
719 relocation += reloc_entry->addend;
720 if (howto->pc_relative)
721 {
722 relocation -= (input_section->output_section->vma
723 + input_section->output_offset);
724 relocation -= reloc_entry->address;
725 }
726
727 *prelocation = relocation;
728 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
729 return bfd_reloc_other;
730 }
731
732 /* For unsupported relocs. */
733
734 static bfd_reloc_status_type
735 sparc_elf_notsup_reloc (abfd,
736 reloc_entry,
737 symbol,
738 data,
739 input_section,
740 output_bfd,
741 error_message)
742 bfd *abfd ATTRIBUTE_UNUSED;
743 arelent *reloc_entry ATTRIBUTE_UNUSED;
744 asymbol *symbol ATTRIBUTE_UNUSED;
745 PTR data ATTRIBUTE_UNUSED;
746 asection *input_section ATTRIBUTE_UNUSED;
747 bfd *output_bfd ATTRIBUTE_UNUSED;
748 char **error_message ATTRIBUTE_UNUSED;
749 {
750 return bfd_reloc_notsupported;
751 }
752
753 /* Handle the WDISP16 reloc. */
754
755 static bfd_reloc_status_type
756 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
757 output_bfd, error_message)
758 bfd *abfd;
759 arelent *reloc_entry;
760 asymbol *symbol;
761 PTR data;
762 asection *input_section;
763 bfd *output_bfd;
764 char **error_message ATTRIBUTE_UNUSED;
765 {
766 bfd_vma relocation;
767 bfd_vma insn;
768 bfd_reloc_status_type status;
769
770 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
771 input_section, output_bfd, &relocation, &insn);
772 if (status != bfd_reloc_other)
773 return status;
774
775 insn &= ~ (bfd_vma) 0x303fff;
776 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
777 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
778
779 if ((bfd_signed_vma) relocation < - 0x40000
780 || (bfd_signed_vma) relocation > 0x3ffff)
781 return bfd_reloc_overflow;
782 else
783 return bfd_reloc_ok;
784 }
785
786 /* Handle the HIX22 reloc. */
787
788 static bfd_reloc_status_type
789 sparc_elf_hix22_reloc (abfd,
790 reloc_entry,
791 symbol,
792 data,
793 input_section,
794 output_bfd,
795 error_message)
796 bfd *abfd;
797 arelent *reloc_entry;
798 asymbol *symbol;
799 PTR data;
800 asection *input_section;
801 bfd *output_bfd;
802 char **error_message ATTRIBUTE_UNUSED;
803 {
804 bfd_vma relocation;
805 bfd_vma insn;
806 bfd_reloc_status_type status;
807
808 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
809 input_section, output_bfd, &relocation, &insn);
810 if (status != bfd_reloc_other)
811 return status;
812
813 relocation ^= MINUS_ONE;
814 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
815 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
816
817 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
818 return bfd_reloc_overflow;
819 else
820 return bfd_reloc_ok;
821 }
822
823 /* Handle the LOX10 reloc. */
824
825 static bfd_reloc_status_type
826 sparc_elf_lox10_reloc (abfd,
827 reloc_entry,
828 symbol,
829 data,
830 input_section,
831 output_bfd,
832 error_message)
833 bfd *abfd;
834 arelent *reloc_entry;
835 asymbol *symbol;
836 PTR data;
837 asection *input_section;
838 bfd *output_bfd;
839 char **error_message ATTRIBUTE_UNUSED;
840 {
841 bfd_vma relocation;
842 bfd_vma insn;
843 bfd_reloc_status_type status;
844
845 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
846 input_section, output_bfd, &relocation, &insn);
847 if (status != bfd_reloc_other)
848 return status;
849
850 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
851 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
852
853 return bfd_reloc_ok;
854 }
855 \f
856 /* PLT/GOT stuff */
857
858 /* Both the headers and the entries are icache aligned. */
859 #define PLT_ENTRY_SIZE 32
860 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
861 #define LARGE_PLT_THRESHOLD 32768
862 #define GOT_RESERVED_ENTRIES 1
863
864 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
865
866 /* Fill in the .plt section. */
867
868 static void
869 sparc64_elf_build_plt (output_bfd, contents, nentries)
870 bfd *output_bfd;
871 unsigned char *contents;
872 int nentries;
873 {
874 const unsigned int nop = 0x01000000;
875 int i, j;
876
877 /* The first four entries are reserved, and are initially undefined.
878 We fill them with `illtrap 0' to force ld.so to do something. */
879
880 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
881 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
882
883 /* The first 32768 entries are close enough to plt1 to get there via
884 a straight branch. */
885
886 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
887 {
888 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
889 unsigned int sethi, ba;
890
891 /* sethi (. - plt0), %g1 */
892 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
893
894 /* ba,a,pt %xcc, plt1 */
895 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
896
897 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
898 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
899 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
900 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
901 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
902 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
903 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
904 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
905 }
906
907 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
908 160: 160 entries and 160 pointers. This is to separate code from data,
909 which is much friendlier on the cache. */
910
911 for (; i < nentries; i += 160)
912 {
913 int block = (i + 160 <= nentries ? 160 : nentries - i);
914 for (j = 0; j < block; ++j)
915 {
916 unsigned char *entry, *ptr;
917 unsigned int ldx;
918
919 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
920 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
921
922 /* ldx [%o7 + ptr - (entry+4)], %g1 */
923 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
924
925 /* mov %o7,%g5
926 call .+8
927 nop
928 ldx [%o7+P],%g1
929 jmpl %o7+%g1,%g1
930 mov %g5,%o7 */
931 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
932 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
933 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
934 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
935 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
936 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
937
938 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
939 }
940 }
941 }
942
943 /* Return the offset of a particular plt entry within the .plt section. */
944
945 static bfd_vma
946 sparc64_elf_plt_entry_offset (index)
947 bfd_vma index;
948 {
949 bfd_vma block, ofs;
950
951 if (index < LARGE_PLT_THRESHOLD)
952 return index * PLT_ENTRY_SIZE;
953
954 /* See above for details. */
955
956 block = (index - LARGE_PLT_THRESHOLD) / 160;
957 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
958
959 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
960 }
961
962 static bfd_vma
963 sparc64_elf_plt_ptr_offset (index, max)
964 bfd_vma index;
965 bfd_vma max;
966 {
967 bfd_vma block, ofs, last;
968
969 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
970
971 /* See above for details. */
972
973 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
974 ofs = index - block;
975 if (block + 160 > max)
976 last = (max - LARGE_PLT_THRESHOLD) % 160;
977 else
978 last = 160;
979
980 return (block * PLT_ENTRY_SIZE
981 + last * 6*4
982 + ofs * 8);
983 }
984 \f
985 /* Look through the relocs for a section during the first phase, and
986 allocate space in the global offset table or procedure linkage
987 table. */
988
989 static boolean
990 sparc64_elf_check_relocs (abfd, info, sec, relocs)
991 bfd *abfd;
992 struct bfd_link_info *info;
993 asection *sec;
994 const Elf_Internal_Rela *relocs;
995 {
996 bfd *dynobj;
997 Elf_Internal_Shdr *symtab_hdr;
998 struct elf_link_hash_entry **sym_hashes;
999 bfd_vma *local_got_offsets;
1000 const Elf_Internal_Rela *rel;
1001 const Elf_Internal_Rela *rel_end;
1002 asection *sgot;
1003 asection *srelgot;
1004 asection *sreloc;
1005
1006 if (info->relocateable || !(sec->flags & SEC_ALLOC))
1007 return true;
1008
1009 dynobj = elf_hash_table (info)->dynobj;
1010 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1011 sym_hashes = elf_sym_hashes (abfd);
1012 local_got_offsets = elf_local_got_offsets (abfd);
1013
1014 sgot = NULL;
1015 srelgot = NULL;
1016 sreloc = NULL;
1017
1018 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1019 for (rel = relocs; rel < rel_end; rel++)
1020 {
1021 unsigned long r_symndx;
1022 struct elf_link_hash_entry *h;
1023
1024 r_symndx = ELF64_R_SYM (rel->r_info);
1025 if (r_symndx < symtab_hdr->sh_info)
1026 h = NULL;
1027 else
1028 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1029
1030 switch (ELF64_R_TYPE_ID (rel->r_info))
1031 {
1032 case R_SPARC_GOT10:
1033 case R_SPARC_GOT13:
1034 case R_SPARC_GOT22:
1035 /* This symbol requires a global offset table entry. */
1036
1037 if (dynobj == NULL)
1038 {
1039 /* Create the .got section. */
1040 elf_hash_table (info)->dynobj = dynobj = abfd;
1041 if (! _bfd_elf_create_got_section (dynobj, info))
1042 return false;
1043 }
1044
1045 if (sgot == NULL)
1046 {
1047 sgot = bfd_get_section_by_name (dynobj, ".got");
1048 BFD_ASSERT (sgot != NULL);
1049 }
1050
1051 if (srelgot == NULL && (h != NULL || info->shared))
1052 {
1053 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1054 if (srelgot == NULL)
1055 {
1056 srelgot = bfd_make_section (dynobj, ".rela.got");
1057 if (srelgot == NULL
1058 || ! bfd_set_section_flags (dynobj, srelgot,
1059 (SEC_ALLOC
1060 | SEC_LOAD
1061 | SEC_HAS_CONTENTS
1062 | SEC_IN_MEMORY
1063 | SEC_LINKER_CREATED
1064 | SEC_READONLY))
1065 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1066 return false;
1067 }
1068 }
1069
1070 if (h != NULL)
1071 {
1072 if (h->got.offset != (bfd_vma) -1)
1073 {
1074 /* We have already allocated space in the .got. */
1075 break;
1076 }
1077 h->got.offset = sgot->_raw_size;
1078
1079 /* Make sure this symbol is output as a dynamic symbol. */
1080 if (h->dynindx == -1)
1081 {
1082 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1083 return false;
1084 }
1085
1086 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1087 }
1088 else
1089 {
1090 /* This is a global offset table entry for a local
1091 symbol. */
1092 if (local_got_offsets == NULL)
1093 {
1094 bfd_size_type size;
1095 register unsigned int i;
1096
1097 size = symtab_hdr->sh_info;
1098 size *= sizeof (bfd_vma);
1099 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1100 if (local_got_offsets == NULL)
1101 return false;
1102 elf_local_got_offsets (abfd) = local_got_offsets;
1103 for (i = 0; i < symtab_hdr->sh_info; i++)
1104 local_got_offsets[i] = (bfd_vma) -1;
1105 }
1106 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1107 {
1108 /* We have already allocated space in the .got. */
1109 break;
1110 }
1111 local_got_offsets[r_symndx] = sgot->_raw_size;
1112
1113 if (info->shared)
1114 {
1115 /* If we are generating a shared object, we need to
1116 output a R_SPARC_RELATIVE reloc so that the
1117 dynamic linker can adjust this GOT entry. */
1118 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1119 }
1120 }
1121
1122 sgot->_raw_size += 8;
1123
1124 #if 0
1125 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1126 unsigned numbers. If we permit ourselves to modify
1127 code so we get sethi/xor, this could work.
1128 Question: do we consider conditionally re-enabling
1129 this for -fpic, once we know about object code models? */
1130 /* If the .got section is more than 0x1000 bytes, we add
1131 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1132 bit relocations have a greater chance of working. */
1133 if (sgot->_raw_size >= 0x1000
1134 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1135 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1136 #endif
1137
1138 break;
1139
1140 case R_SPARC_WPLT30:
1141 case R_SPARC_PLT32:
1142 case R_SPARC_HIPLT22:
1143 case R_SPARC_LOPLT10:
1144 case R_SPARC_PCPLT32:
1145 case R_SPARC_PCPLT22:
1146 case R_SPARC_PCPLT10:
1147 case R_SPARC_PLT64:
1148 /* This symbol requires a procedure linkage table entry. We
1149 actually build the entry in adjust_dynamic_symbol,
1150 because this might be a case of linking PIC code without
1151 linking in any dynamic objects, in which case we don't
1152 need to generate a procedure linkage table after all. */
1153
1154 if (h == NULL)
1155 {
1156 /* It does not make sense to have a procedure linkage
1157 table entry for a local symbol. */
1158 bfd_set_error (bfd_error_bad_value);
1159 return false;
1160 }
1161
1162 /* Make sure this symbol is output as a dynamic symbol. */
1163 if (h->dynindx == -1)
1164 {
1165 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1166 return false;
1167 }
1168
1169 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1170 break;
1171
1172 case R_SPARC_PC10:
1173 case R_SPARC_PC22:
1174 case R_SPARC_PC_HH22:
1175 case R_SPARC_PC_HM10:
1176 case R_SPARC_PC_LM22:
1177 if (h != NULL
1178 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1179 break;
1180 /* Fall through. */
1181 case R_SPARC_DISP8:
1182 case R_SPARC_DISP16:
1183 case R_SPARC_DISP32:
1184 case R_SPARC_DISP64:
1185 case R_SPARC_WDISP30:
1186 case R_SPARC_WDISP22:
1187 case R_SPARC_WDISP19:
1188 case R_SPARC_WDISP16:
1189 if (h == NULL)
1190 break;
1191 /* Fall through. */
1192 case R_SPARC_8:
1193 case R_SPARC_16:
1194 case R_SPARC_32:
1195 case R_SPARC_HI22:
1196 case R_SPARC_22:
1197 case R_SPARC_13:
1198 case R_SPARC_LO10:
1199 case R_SPARC_UA32:
1200 case R_SPARC_10:
1201 case R_SPARC_11:
1202 case R_SPARC_64:
1203 case R_SPARC_OLO10:
1204 case R_SPARC_HH22:
1205 case R_SPARC_HM10:
1206 case R_SPARC_LM22:
1207 case R_SPARC_7:
1208 case R_SPARC_5:
1209 case R_SPARC_6:
1210 case R_SPARC_HIX22:
1211 case R_SPARC_LOX10:
1212 case R_SPARC_H44:
1213 case R_SPARC_M44:
1214 case R_SPARC_L44:
1215 case R_SPARC_UA64:
1216 case R_SPARC_UA16:
1217 /* When creating a shared object, we must copy these relocs
1218 into the output file. We create a reloc section in
1219 dynobj and make room for the reloc.
1220
1221 But don't do this for debugging sections -- this shows up
1222 with DWARF2 -- first because they are not loaded, and
1223 second because DWARF sez the debug info is not to be
1224 biased by the load address. */
1225 if (info->shared && (sec->flags & SEC_ALLOC))
1226 {
1227 if (sreloc == NULL)
1228 {
1229 const char *name;
1230
1231 name = (bfd_elf_string_from_elf_section
1232 (abfd,
1233 elf_elfheader (abfd)->e_shstrndx,
1234 elf_section_data (sec)->rel_hdr.sh_name));
1235 if (name == NULL)
1236 return false;
1237
1238 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1239 && strcmp (bfd_get_section_name (abfd, sec),
1240 name + 5) == 0);
1241
1242 sreloc = bfd_get_section_by_name (dynobj, name);
1243 if (sreloc == NULL)
1244 {
1245 flagword flags;
1246
1247 sreloc = bfd_make_section (dynobj, name);
1248 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1249 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1250 if ((sec->flags & SEC_ALLOC) != 0)
1251 flags |= SEC_ALLOC | SEC_LOAD;
1252 if (sreloc == NULL
1253 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1254 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1255 return false;
1256 }
1257 if (sec->flags & SEC_READONLY)
1258 info->flags |= DF_TEXTREL;
1259 }
1260
1261 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1262 }
1263 break;
1264
1265 case R_SPARC_REGISTER:
1266 /* Nothing to do. */
1267 break;
1268
1269 default:
1270 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1271 bfd_archive_filename (abfd),
1272 ELF64_R_TYPE_ID (rel->r_info));
1273 return false;
1274 }
1275 }
1276
1277 return true;
1278 }
1279
1280 /* Hook called by the linker routine which adds symbols from an object
1281 file. We use it for STT_REGISTER symbols. */
1282
1283 static boolean
1284 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1285 bfd *abfd;
1286 struct bfd_link_info *info;
1287 const Elf_Internal_Sym *sym;
1288 const char **namep;
1289 flagword *flagsp ATTRIBUTE_UNUSED;
1290 asection **secp ATTRIBUTE_UNUSED;
1291 bfd_vma *valp ATTRIBUTE_UNUSED;
1292 {
1293 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1294
1295 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1296 {
1297 int reg;
1298 struct sparc64_elf_app_reg *p;
1299
1300 reg = (int)sym->st_value;
1301 switch (reg & ~1)
1302 {
1303 case 2: reg -= 2; break;
1304 case 6: reg -= 4; break;
1305 default:
1306 (*_bfd_error_handler)
1307 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1308 bfd_archive_filename (abfd));
1309 return false;
1310 }
1311
1312 if (info->hash->creator != abfd->xvec
1313 || (abfd->flags & DYNAMIC) != 0)
1314 {
1315 /* STT_REGISTER only works when linking an elf64_sparc object.
1316 If STT_REGISTER comes from a dynamic object, don't put it into
1317 the output bfd. The dynamic linker will recheck it. */
1318 *namep = NULL;
1319 return true;
1320 }
1321
1322 p = sparc64_elf_hash_table(info)->app_regs + reg;
1323
1324 if (p->name != NULL && strcmp (p->name, *namep))
1325 {
1326 (*_bfd_error_handler)
1327 (_("Register %%g%d used incompatibly: %s in %s"),
1328 (int) sym->st_value,
1329 **namep ? *namep : "#scratch", bfd_archive_filename (abfd));
1330 (*_bfd_error_handler)
1331 (_(" previously %s in %s"),
1332 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1333 return false;
1334 }
1335
1336 if (p->name == NULL)
1337 {
1338 if (**namep)
1339 {
1340 struct elf_link_hash_entry *h;
1341
1342 h = (struct elf_link_hash_entry *)
1343 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1344
1345 if (h != NULL)
1346 {
1347 unsigned char type = h->type;
1348
1349 if (type > STT_FUNC)
1350 type = 0;
1351 (*_bfd_error_handler)
1352 (_("Symbol `%s' has differing types: %s in %s"),
1353 *namep, "REGISTER", bfd_archive_filename (abfd));
1354 (*_bfd_error_handler)
1355 (_(" previously %s in %s"),
1356 stt_types[type], bfd_archive_filename (p->abfd));
1357 return false;
1358 }
1359
1360 p->name = bfd_hash_allocate (&info->hash->table,
1361 strlen (*namep) + 1);
1362 if (!p->name)
1363 return false;
1364
1365 strcpy (p->name, *namep);
1366 }
1367 else
1368 p->name = "";
1369 p->bind = ELF_ST_BIND (sym->st_info);
1370 p->abfd = abfd;
1371 p->shndx = sym->st_shndx;
1372 }
1373 else
1374 {
1375 if (p->bind == STB_WEAK
1376 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1377 {
1378 p->bind = STB_GLOBAL;
1379 p->abfd = abfd;
1380 }
1381 }
1382 *namep = NULL;
1383 return true;
1384 }
1385 else if (! *namep || ! **namep)
1386 return true;
1387 else
1388 {
1389 int i;
1390 struct sparc64_elf_app_reg *p;
1391
1392 p = sparc64_elf_hash_table(info)->app_regs;
1393 for (i = 0; i < 4; i++, p++)
1394 if (p->name != NULL && ! strcmp (p->name, *namep))
1395 {
1396 unsigned char type = ELF_ST_TYPE (sym->st_info);
1397
1398 if (type > STT_FUNC)
1399 type = 0;
1400 (*_bfd_error_handler)
1401 (_("Symbol `%s' has differing types: %s in %s"),
1402 *namep, stt_types[type], bfd_archive_filename (abfd));
1403 (*_bfd_error_handler)
1404 (_(" previously %s in %s"),
1405 "REGISTER", bfd_archive_filename (p->abfd));
1406 return false;
1407 }
1408 }
1409 return true;
1410 }
1411
1412 /* This function takes care of emiting STT_REGISTER symbols
1413 which we cannot easily keep in the symbol hash table. */
1414
1415 static boolean
1416 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1417 bfd *output_bfd ATTRIBUTE_UNUSED;
1418 struct bfd_link_info *info;
1419 PTR finfo;
1420 boolean (*func) PARAMS ((PTR, const char *,
1421 Elf_Internal_Sym *, asection *));
1422 {
1423 int reg;
1424 struct sparc64_elf_app_reg *app_regs =
1425 sparc64_elf_hash_table(info)->app_regs;
1426 Elf_Internal_Sym sym;
1427
1428 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1429 at the end of the dynlocal list, so they came at the end of the local
1430 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1431 to back up symtab->sh_info. */
1432 if (elf_hash_table (info)->dynlocal)
1433 {
1434 bfd * dynobj = elf_hash_table (info)->dynobj;
1435 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1436 struct elf_link_local_dynamic_entry *e;
1437
1438 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1439 if (e->input_indx == -1)
1440 break;
1441 if (e)
1442 {
1443 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1444 = e->dynindx;
1445 }
1446 }
1447
1448 if (info->strip == strip_all)
1449 return true;
1450
1451 for (reg = 0; reg < 4; reg++)
1452 if (app_regs [reg].name != NULL)
1453 {
1454 if (info->strip == strip_some
1455 && bfd_hash_lookup (info->keep_hash,
1456 app_regs [reg].name,
1457 false, false) == NULL)
1458 continue;
1459
1460 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1461 sym.st_size = 0;
1462 sym.st_other = 0;
1463 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1464 sym.st_shndx = app_regs [reg].shndx;
1465 if (! (*func) (finfo, app_regs [reg].name, &sym,
1466 sym.st_shndx == SHN_ABS
1467 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1468 return false;
1469 }
1470
1471 return true;
1472 }
1473
1474 static int
1475 sparc64_elf_get_symbol_type (elf_sym, type)
1476 Elf_Internal_Sym * elf_sym;
1477 int type;
1478 {
1479 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1480 return STT_REGISTER;
1481 else
1482 return type;
1483 }
1484
1485 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1486 even in SHN_UNDEF section. */
1487
1488 static void
1489 sparc64_elf_symbol_processing (abfd, asym)
1490 bfd *abfd ATTRIBUTE_UNUSED;
1491 asymbol *asym;
1492 {
1493 elf_symbol_type *elfsym;
1494
1495 elfsym = (elf_symbol_type *) asym;
1496 if (elfsym->internal_elf_sym.st_info
1497 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1498 {
1499 asym->flags |= BSF_GLOBAL;
1500 }
1501 }
1502
1503 /* Adjust a symbol defined by a dynamic object and referenced by a
1504 regular object. The current definition is in some section of the
1505 dynamic object, but we're not including those sections. We have to
1506 change the definition to something the rest of the link can
1507 understand. */
1508
1509 static boolean
1510 sparc64_elf_adjust_dynamic_symbol (info, h)
1511 struct bfd_link_info *info;
1512 struct elf_link_hash_entry *h;
1513 {
1514 bfd *dynobj;
1515 asection *s;
1516 unsigned int power_of_two;
1517
1518 dynobj = elf_hash_table (info)->dynobj;
1519
1520 /* Make sure we know what is going on here. */
1521 BFD_ASSERT (dynobj != NULL
1522 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1523 || h->weakdef != NULL
1524 || ((h->elf_link_hash_flags
1525 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1526 && (h->elf_link_hash_flags
1527 & ELF_LINK_HASH_REF_REGULAR) != 0
1528 && (h->elf_link_hash_flags
1529 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1530
1531 /* If this is a function, put it in the procedure linkage table. We
1532 will fill in the contents of the procedure linkage table later
1533 (although we could actually do it here). The STT_NOTYPE
1534 condition is a hack specifically for the Oracle libraries
1535 delivered for Solaris; for some inexplicable reason, they define
1536 some of their functions as STT_NOTYPE when they really should be
1537 STT_FUNC. */
1538 if (h->type == STT_FUNC
1539 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1540 || (h->type == STT_NOTYPE
1541 && (h->root.type == bfd_link_hash_defined
1542 || h->root.type == bfd_link_hash_defweak)
1543 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1544 {
1545 if (! elf_hash_table (info)->dynamic_sections_created)
1546 {
1547 /* This case can occur if we saw a WPLT30 reloc in an input
1548 file, but none of the input files were dynamic objects.
1549 In such a case, we don't actually need to build a
1550 procedure linkage table, and we can just do a WDISP30
1551 reloc instead. */
1552 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1553 return true;
1554 }
1555
1556 s = bfd_get_section_by_name (dynobj, ".plt");
1557 BFD_ASSERT (s != NULL);
1558
1559 /* The first four bit in .plt is reserved. */
1560 if (s->_raw_size == 0)
1561 s->_raw_size = PLT_HEADER_SIZE;
1562
1563 /* If this symbol is not defined in a regular file, and we are
1564 not generating a shared library, then set the symbol to this
1565 location in the .plt. This is required to make function
1566 pointers compare as equal between the normal executable and
1567 the shared library. */
1568 if (! info->shared
1569 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1570 {
1571 h->root.u.def.section = s;
1572 h->root.u.def.value = s->_raw_size;
1573 }
1574
1575 /* To simplify matters later, just store the plt index here. */
1576 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1577
1578 /* Make room for this entry. */
1579 s->_raw_size += PLT_ENTRY_SIZE;
1580
1581 /* We also need to make an entry in the .rela.plt section. */
1582
1583 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1584 BFD_ASSERT (s != NULL);
1585
1586 s->_raw_size += sizeof (Elf64_External_Rela);
1587
1588 /* The procedure linkage table size is bounded by the magnitude
1589 of the offset we can describe in the entry. */
1590 if (s->_raw_size >= (bfd_vma)1 << 32)
1591 {
1592 bfd_set_error (bfd_error_bad_value);
1593 return false;
1594 }
1595
1596 return true;
1597 }
1598
1599 /* If this is a weak symbol, and there is a real definition, the
1600 processor independent code will have arranged for us to see the
1601 real definition first, and we can just use the same value. */
1602 if (h->weakdef != NULL)
1603 {
1604 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1605 || h->weakdef->root.type == bfd_link_hash_defweak);
1606 h->root.u.def.section = h->weakdef->root.u.def.section;
1607 h->root.u.def.value = h->weakdef->root.u.def.value;
1608 return true;
1609 }
1610
1611 /* This is a reference to a symbol defined by a dynamic object which
1612 is not a function. */
1613
1614 /* If we are creating a shared library, we must presume that the
1615 only references to the symbol are via the global offset table.
1616 For such cases we need not do anything here; the relocations will
1617 be handled correctly by relocate_section. */
1618 if (info->shared)
1619 return true;
1620
1621 /* We must allocate the symbol in our .dynbss section, which will
1622 become part of the .bss section of the executable. There will be
1623 an entry for this symbol in the .dynsym section. The dynamic
1624 object will contain position independent code, so all references
1625 from the dynamic object to this symbol will go through the global
1626 offset table. The dynamic linker will use the .dynsym entry to
1627 determine the address it must put in the global offset table, so
1628 both the dynamic object and the regular object will refer to the
1629 same memory location for the variable. */
1630
1631 s = bfd_get_section_by_name (dynobj, ".dynbss");
1632 BFD_ASSERT (s != NULL);
1633
1634 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1635 to copy the initial value out of the dynamic object and into the
1636 runtime process image. We need to remember the offset into the
1637 .rel.bss section we are going to use. */
1638 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1639 {
1640 asection *srel;
1641
1642 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1643 BFD_ASSERT (srel != NULL);
1644 srel->_raw_size += sizeof (Elf64_External_Rela);
1645 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1646 }
1647
1648 /* We need to figure out the alignment required for this symbol. I
1649 have no idea how ELF linkers handle this. 16-bytes is the size
1650 of the largest type that requires hard alignment -- long double. */
1651 power_of_two = bfd_log2 (h->size);
1652 if (power_of_two > 4)
1653 power_of_two = 4;
1654
1655 /* Apply the required alignment. */
1656 s->_raw_size = BFD_ALIGN (s->_raw_size,
1657 (bfd_size_type) (1 << power_of_two));
1658 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1659 {
1660 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1661 return false;
1662 }
1663
1664 /* Define the symbol as being at this point in the section. */
1665 h->root.u.def.section = s;
1666 h->root.u.def.value = s->_raw_size;
1667
1668 /* Increment the section size to make room for the symbol. */
1669 s->_raw_size += h->size;
1670
1671 return true;
1672 }
1673
1674 /* Set the sizes of the dynamic sections. */
1675
1676 static boolean
1677 sparc64_elf_size_dynamic_sections (output_bfd, info)
1678 bfd *output_bfd;
1679 struct bfd_link_info *info;
1680 {
1681 bfd *dynobj;
1682 asection *s;
1683 boolean relplt;
1684
1685 dynobj = elf_hash_table (info)->dynobj;
1686 BFD_ASSERT (dynobj != NULL);
1687
1688 if (elf_hash_table (info)->dynamic_sections_created)
1689 {
1690 /* Set the contents of the .interp section to the interpreter. */
1691 if (! info->shared)
1692 {
1693 s = bfd_get_section_by_name (dynobj, ".interp");
1694 BFD_ASSERT (s != NULL);
1695 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1696 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1697 }
1698 }
1699 else
1700 {
1701 /* We may have created entries in the .rela.got section.
1702 However, if we are not creating the dynamic sections, we will
1703 not actually use these entries. Reset the size of .rela.got,
1704 which will cause it to get stripped from the output file
1705 below. */
1706 s = bfd_get_section_by_name (dynobj, ".rela.got");
1707 if (s != NULL)
1708 s->_raw_size = 0;
1709 }
1710
1711 /* The check_relocs and adjust_dynamic_symbol entry points have
1712 determined the sizes of the various dynamic sections. Allocate
1713 memory for them. */
1714 relplt = false;
1715 for (s = dynobj->sections; s != NULL; s = s->next)
1716 {
1717 const char *name;
1718 boolean strip;
1719
1720 if ((s->flags & SEC_LINKER_CREATED) == 0)
1721 continue;
1722
1723 /* It's OK to base decisions on the section name, because none
1724 of the dynobj section names depend upon the input files. */
1725 name = bfd_get_section_name (dynobj, s);
1726
1727 strip = false;
1728
1729 if (strncmp (name, ".rela", 5) == 0)
1730 {
1731 if (s->_raw_size == 0)
1732 {
1733 /* If we don't need this section, strip it from the
1734 output file. This is to handle .rela.bss and
1735 .rel.plt. We must create it in
1736 create_dynamic_sections, because it must be created
1737 before the linker maps input sections to output
1738 sections. The linker does that before
1739 adjust_dynamic_symbol is called, and it is that
1740 function which decides whether anything needs to go
1741 into these sections. */
1742 strip = true;
1743 }
1744 else
1745 {
1746 if (strcmp (name, ".rela.plt") == 0)
1747 relplt = true;
1748
1749 /* We use the reloc_count field as a counter if we need
1750 to copy relocs into the output file. */
1751 s->reloc_count = 0;
1752 }
1753 }
1754 else if (strcmp (name, ".plt") != 0
1755 && strncmp (name, ".got", 4) != 0)
1756 {
1757 /* It's not one of our sections, so don't allocate space. */
1758 continue;
1759 }
1760
1761 if (strip)
1762 {
1763 _bfd_strip_section_from_output (info, s);
1764 continue;
1765 }
1766
1767 /* Allocate memory for the section contents. Zero the memory
1768 for the benefit of .rela.plt, which has 4 unused entries
1769 at the beginning, and we don't want garbage. */
1770 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1771 if (s->contents == NULL && s->_raw_size != 0)
1772 return false;
1773 }
1774
1775 if (elf_hash_table (info)->dynamic_sections_created)
1776 {
1777 /* Add some entries to the .dynamic section. We fill in the
1778 values later, in sparc64_elf_finish_dynamic_sections, but we
1779 must add the entries now so that we get the correct size for
1780 the .dynamic section. The DT_DEBUG entry is filled in by the
1781 dynamic linker and used by the debugger. */
1782 #define add_dynamic_entry(TAG, VAL) \
1783 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1784
1785 int reg;
1786 struct sparc64_elf_app_reg * app_regs;
1787 struct elf_strtab_hash *dynstr;
1788 struct elf_link_hash_table *eht = elf_hash_table (info);
1789
1790 if (!info->shared)
1791 {
1792 if (!add_dynamic_entry (DT_DEBUG, 0))
1793 return false;
1794 }
1795
1796 if (relplt)
1797 {
1798 if (!add_dynamic_entry (DT_PLTGOT, 0)
1799 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1800 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1801 || !add_dynamic_entry (DT_JMPREL, 0))
1802 return false;
1803 }
1804
1805 if (!add_dynamic_entry (DT_RELA, 0)
1806 || !add_dynamic_entry (DT_RELASZ, 0)
1807 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1808 return false;
1809
1810 if (info->flags & DF_TEXTREL)
1811 {
1812 if (!add_dynamic_entry (DT_TEXTREL, 0))
1813 return false;
1814 }
1815
1816 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1817 entries if needed. */
1818 app_regs = sparc64_elf_hash_table (info)->app_regs;
1819 dynstr = eht->dynstr;
1820
1821 for (reg = 0; reg < 4; reg++)
1822 if (app_regs [reg].name != NULL)
1823 {
1824 struct elf_link_local_dynamic_entry *entry, *e;
1825
1826 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1827 return false;
1828
1829 entry = (struct elf_link_local_dynamic_entry *)
1830 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1831 if (entry == NULL)
1832 return false;
1833
1834 /* We cheat here a little bit: the symbol will not be local, so we
1835 put it at the end of the dynlocal linked list. We will fix it
1836 later on, as we have to fix other fields anyway. */
1837 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1838 entry->isym.st_size = 0;
1839 if (*app_regs [reg].name != '\0')
1840 entry->isym.st_name
1841 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, false);
1842 else
1843 entry->isym.st_name = 0;
1844 entry->isym.st_other = 0;
1845 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1846 STT_REGISTER);
1847 entry->isym.st_shndx = app_regs [reg].shndx;
1848 entry->next = NULL;
1849 entry->input_bfd = output_bfd;
1850 entry->input_indx = -1;
1851
1852 if (eht->dynlocal == NULL)
1853 eht->dynlocal = entry;
1854 else
1855 {
1856 for (e = eht->dynlocal; e->next; e = e->next)
1857 ;
1858 e->next = entry;
1859 }
1860 eht->dynsymcount++;
1861 }
1862 }
1863 #undef add_dynamic_entry
1864
1865 return true;
1866 }
1867 \f
1868 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1869 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1870
1871 static boolean
1872 sparc64_elf_relax_section (abfd, section, link_info, again)
1873 bfd *abfd ATTRIBUTE_UNUSED;
1874 asection *section ATTRIBUTE_UNUSED;
1875 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1876 boolean *again;
1877 {
1878 *again = false;
1879 SET_SEC_DO_RELAX (section);
1880 return true;
1881 }
1882 \f
1883 /* Relocate a SPARC64 ELF section. */
1884
1885 static boolean
1886 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1887 contents, relocs, local_syms, local_sections)
1888 bfd *output_bfd;
1889 struct bfd_link_info *info;
1890 bfd *input_bfd;
1891 asection *input_section;
1892 bfd_byte *contents;
1893 Elf_Internal_Rela *relocs;
1894 Elf_Internal_Sym *local_syms;
1895 asection **local_sections;
1896 {
1897 bfd *dynobj;
1898 Elf_Internal_Shdr *symtab_hdr;
1899 struct elf_link_hash_entry **sym_hashes;
1900 bfd_vma *local_got_offsets;
1901 bfd_vma got_base;
1902 asection *sgot;
1903 asection *splt;
1904 asection *sreloc;
1905 Elf_Internal_Rela *rel;
1906 Elf_Internal_Rela *relend;
1907
1908 dynobj = elf_hash_table (info)->dynobj;
1909 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1910 sym_hashes = elf_sym_hashes (input_bfd);
1911 local_got_offsets = elf_local_got_offsets (input_bfd);
1912
1913 if (elf_hash_table(info)->hgot == NULL)
1914 got_base = 0;
1915 else
1916 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1917
1918 sgot = splt = sreloc = NULL;
1919
1920 rel = relocs;
1921 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
1922 for (; rel < relend; rel++)
1923 {
1924 int r_type;
1925 reloc_howto_type *howto;
1926 unsigned long r_symndx;
1927 struct elf_link_hash_entry *h;
1928 Elf_Internal_Sym *sym;
1929 asection *sec;
1930 bfd_vma relocation;
1931 bfd_reloc_status_type r;
1932
1933 r_type = ELF64_R_TYPE_ID (rel->r_info);
1934 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1935 {
1936 bfd_set_error (bfd_error_bad_value);
1937 return false;
1938 }
1939 howto = sparc64_elf_howto_table + r_type;
1940
1941 r_symndx = ELF64_R_SYM (rel->r_info);
1942
1943 if (info->relocateable)
1944 {
1945 /* This is a relocateable link. We don't have to change
1946 anything, unless the reloc is against a section symbol,
1947 in which case we have to adjust according to where the
1948 section symbol winds up in the output section. */
1949 if (r_symndx < symtab_hdr->sh_info)
1950 {
1951 sym = local_syms + r_symndx;
1952 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1953 {
1954 sec = local_sections[r_symndx];
1955 rel->r_addend += sec->output_offset + sym->st_value;
1956 }
1957 }
1958
1959 continue;
1960 }
1961
1962 /* This is a final link. */
1963 h = NULL;
1964 sym = NULL;
1965 sec = NULL;
1966 if (r_symndx < symtab_hdr->sh_info)
1967 {
1968 sym = local_syms + r_symndx;
1969 sec = local_sections[r_symndx];
1970 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1971 }
1972 else
1973 {
1974 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1975 while (h->root.type == bfd_link_hash_indirect
1976 || h->root.type == bfd_link_hash_warning)
1977 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1978 if (h->root.type == bfd_link_hash_defined
1979 || h->root.type == bfd_link_hash_defweak)
1980 {
1981 boolean skip_it = false;
1982 sec = h->root.u.def.section;
1983
1984 switch (r_type)
1985 {
1986 case R_SPARC_WPLT30:
1987 case R_SPARC_PLT32:
1988 case R_SPARC_HIPLT22:
1989 case R_SPARC_LOPLT10:
1990 case R_SPARC_PCPLT32:
1991 case R_SPARC_PCPLT22:
1992 case R_SPARC_PCPLT10:
1993 case R_SPARC_PLT64:
1994 if (h->plt.offset != (bfd_vma) -1)
1995 skip_it = true;
1996 break;
1997
1998 case R_SPARC_GOT10:
1999 case R_SPARC_GOT13:
2000 case R_SPARC_GOT22:
2001 if (elf_hash_table(info)->dynamic_sections_created
2002 && (!info->shared
2003 || (!info->symbolic && h->dynindx != -1)
2004 || !(h->elf_link_hash_flags
2005 & ELF_LINK_HASH_DEF_REGULAR)))
2006 skip_it = true;
2007 break;
2008
2009 case R_SPARC_PC10:
2010 case R_SPARC_PC22:
2011 case R_SPARC_PC_HH22:
2012 case R_SPARC_PC_HM10:
2013 case R_SPARC_PC_LM22:
2014 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2015 break;
2016 /* FALLTHRU */
2017
2018 case R_SPARC_8:
2019 case R_SPARC_16:
2020 case R_SPARC_32:
2021 case R_SPARC_DISP8:
2022 case R_SPARC_DISP16:
2023 case R_SPARC_DISP32:
2024 case R_SPARC_WDISP30:
2025 case R_SPARC_WDISP22:
2026 case R_SPARC_HI22:
2027 case R_SPARC_22:
2028 case R_SPARC_13:
2029 case R_SPARC_LO10:
2030 case R_SPARC_UA32:
2031 case R_SPARC_10:
2032 case R_SPARC_11:
2033 case R_SPARC_64:
2034 case R_SPARC_OLO10:
2035 case R_SPARC_HH22:
2036 case R_SPARC_HM10:
2037 case R_SPARC_LM22:
2038 case R_SPARC_WDISP19:
2039 case R_SPARC_WDISP16:
2040 case R_SPARC_7:
2041 case R_SPARC_5:
2042 case R_SPARC_6:
2043 case R_SPARC_DISP64:
2044 case R_SPARC_HIX22:
2045 case R_SPARC_LOX10:
2046 case R_SPARC_H44:
2047 case R_SPARC_M44:
2048 case R_SPARC_L44:
2049 case R_SPARC_UA64:
2050 case R_SPARC_UA16:
2051 if (info->shared
2052 && ((!info->symbolic && h->dynindx != -1)
2053 || !(h->elf_link_hash_flags
2054 & ELF_LINK_HASH_DEF_REGULAR))
2055 && ((input_section->flags & SEC_ALLOC) != 0
2056 /* DWARF will emit R_SPARC_{32,64} relocations in
2057 its sections against symbols defined externally
2058 in shared libraries. We can't do anything
2059 with them here. */
2060 || ((input_section->flags & SEC_DEBUGGING) != 0
2061 && (h->elf_link_hash_flags
2062 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)))
2063 skip_it = true;
2064 break;
2065 }
2066
2067 if (skip_it)
2068 {
2069 /* In these cases, we don't need the relocation
2070 value. We check specially because in some
2071 obscure cases sec->output_section will be NULL. */
2072 relocation = 0;
2073 }
2074 else
2075 {
2076 relocation = (h->root.u.def.value
2077 + sec->output_section->vma
2078 + sec->output_offset);
2079 }
2080 }
2081 else if (h->root.type == bfd_link_hash_undefweak)
2082 relocation = 0;
2083 else if (info->shared
2084 && (!info->symbolic || info->allow_shlib_undefined)
2085 && !info->no_undefined
2086 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2087 relocation = 0;
2088 else
2089 {
2090 if (! ((*info->callbacks->undefined_symbol)
2091 (info, h->root.root.string, input_bfd,
2092 input_section, rel->r_offset,
2093 (!info->shared || info->no_undefined
2094 || ELF_ST_VISIBILITY (h->other)))))
2095 return false;
2096
2097 /* To avoid generating warning messages about truncated
2098 relocations, set the relocation's address to be the same as
2099 the start of this section. */
2100
2101 if (input_section->output_section != NULL)
2102 relocation = input_section->output_section->vma;
2103 else
2104 relocation = 0;
2105 }
2106 }
2107
2108 /* When generating a shared object, these relocations are copied
2109 into the output file to be resolved at run time. */
2110 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2111 {
2112 switch (r_type)
2113 {
2114 case R_SPARC_PC10:
2115 case R_SPARC_PC22:
2116 case R_SPARC_PC_HH22:
2117 case R_SPARC_PC_HM10:
2118 case R_SPARC_PC_LM22:
2119 if (h != NULL
2120 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2121 break;
2122 /* Fall through. */
2123 case R_SPARC_DISP8:
2124 case R_SPARC_DISP16:
2125 case R_SPARC_DISP32:
2126 case R_SPARC_WDISP30:
2127 case R_SPARC_WDISP22:
2128 case R_SPARC_WDISP19:
2129 case R_SPARC_WDISP16:
2130 case R_SPARC_DISP64:
2131 if (h == NULL)
2132 break;
2133 /* Fall through. */
2134 case R_SPARC_8:
2135 case R_SPARC_16:
2136 case R_SPARC_32:
2137 case R_SPARC_HI22:
2138 case R_SPARC_22:
2139 case R_SPARC_13:
2140 case R_SPARC_LO10:
2141 case R_SPARC_UA32:
2142 case R_SPARC_10:
2143 case R_SPARC_11:
2144 case R_SPARC_64:
2145 case R_SPARC_OLO10:
2146 case R_SPARC_HH22:
2147 case R_SPARC_HM10:
2148 case R_SPARC_LM22:
2149 case R_SPARC_7:
2150 case R_SPARC_5:
2151 case R_SPARC_6:
2152 case R_SPARC_HIX22:
2153 case R_SPARC_LOX10:
2154 case R_SPARC_H44:
2155 case R_SPARC_M44:
2156 case R_SPARC_L44:
2157 case R_SPARC_UA64:
2158 case R_SPARC_UA16:
2159 {
2160 Elf_Internal_Rela outrel;
2161 boolean skip;
2162
2163 if (sreloc == NULL)
2164 {
2165 const char *name =
2166 (bfd_elf_string_from_elf_section
2167 (input_bfd,
2168 elf_elfheader (input_bfd)->e_shstrndx,
2169 elf_section_data (input_section)->rel_hdr.sh_name));
2170
2171 if (name == NULL)
2172 return false;
2173
2174 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2175 && strcmp (bfd_get_section_name(input_bfd,
2176 input_section),
2177 name + 5) == 0);
2178
2179 sreloc = bfd_get_section_by_name (dynobj, name);
2180 BFD_ASSERT (sreloc != NULL);
2181 }
2182
2183 skip = false;
2184
2185 outrel.r_offset =
2186 _bfd_elf_section_offset (output_bfd, info, input_section,
2187 rel->r_offset);
2188 if (outrel.r_offset == (bfd_vma) -1)
2189 skip = true;
2190
2191 outrel.r_offset += (input_section->output_section->vma
2192 + input_section->output_offset);
2193
2194 /* Optimize unaligned reloc usage now that we know where
2195 it finally resides. */
2196 switch (r_type)
2197 {
2198 case R_SPARC_16:
2199 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2200 break;
2201 case R_SPARC_UA16:
2202 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2203 break;
2204 case R_SPARC_32:
2205 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2206 break;
2207 case R_SPARC_UA32:
2208 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2209 break;
2210 case R_SPARC_64:
2211 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2212 break;
2213 case R_SPARC_UA64:
2214 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2215 break;
2216 }
2217
2218 if (skip)
2219 memset (&outrel, 0, sizeof outrel);
2220 /* h->dynindx may be -1 if the symbol was marked to
2221 become local. */
2222 else if (h != NULL
2223 && ((! info->symbolic && h->dynindx != -1)
2224 || (h->elf_link_hash_flags
2225 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2226 {
2227 BFD_ASSERT (h->dynindx != -1);
2228 outrel.r_info
2229 = ELF64_R_INFO (h->dynindx,
2230 ELF64_R_TYPE_INFO (
2231 ELF64_R_TYPE_DATA (rel->r_info),
2232 r_type));
2233 outrel.r_addend = rel->r_addend;
2234 }
2235 else
2236 {
2237 if (r_type == R_SPARC_64)
2238 {
2239 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2240 outrel.r_addend = relocation + rel->r_addend;
2241 }
2242 else
2243 {
2244 long indx;
2245
2246 if (h == NULL)
2247 sec = local_sections[r_symndx];
2248 else
2249 {
2250 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2251 || (h->root.type
2252 == bfd_link_hash_defweak));
2253 sec = h->root.u.def.section;
2254 }
2255 if (sec != NULL && bfd_is_abs_section (sec))
2256 indx = 0;
2257 else if (sec == NULL || sec->owner == NULL)
2258 {
2259 bfd_set_error (bfd_error_bad_value);
2260 return false;
2261 }
2262 else
2263 {
2264 asection *osec;
2265
2266 osec = sec->output_section;
2267 indx = elf_section_data (osec)->dynindx;
2268
2269 /* FIXME: we really should be able to link non-pic
2270 shared libraries. */
2271 if (indx == 0)
2272 {
2273 BFD_FAIL ();
2274 (*_bfd_error_handler)
2275 (_("%s: probably compiled without -fPIC?"),
2276 bfd_archive_filename (input_bfd));
2277 bfd_set_error (bfd_error_bad_value);
2278 return false;
2279 }
2280 }
2281
2282 outrel.r_info
2283 = ELF64_R_INFO (indx,
2284 ELF64_R_TYPE_INFO (
2285 ELF64_R_TYPE_DATA (rel->r_info),
2286 r_type));
2287 outrel.r_addend = relocation + rel->r_addend;
2288 }
2289 }
2290
2291 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2292 (((Elf64_External_Rela *)
2293 sreloc->contents)
2294 + sreloc->reloc_count));
2295 ++sreloc->reloc_count;
2296
2297 /* This reloc will be computed at runtime, so there's no
2298 need to do anything now. */
2299 continue;
2300 }
2301 break;
2302 }
2303 }
2304
2305 switch (r_type)
2306 {
2307 case R_SPARC_GOT10:
2308 case R_SPARC_GOT13:
2309 case R_SPARC_GOT22:
2310 /* Relocation is to the entry for this symbol in the global
2311 offset table. */
2312 if (sgot == NULL)
2313 {
2314 sgot = bfd_get_section_by_name (dynobj, ".got");
2315 BFD_ASSERT (sgot != NULL);
2316 }
2317
2318 if (h != NULL)
2319 {
2320 bfd_vma off = h->got.offset;
2321 BFD_ASSERT (off != (bfd_vma) -1);
2322
2323 if (! elf_hash_table (info)->dynamic_sections_created
2324 || (info->shared
2325 && (info->symbolic || h->dynindx == -1)
2326 && (h->elf_link_hash_flags
2327 & ELF_LINK_HASH_DEF_REGULAR)))
2328 {
2329 /* This is actually a static link, or it is a -Bsymbolic
2330 link and the symbol is defined locally, or the symbol
2331 was forced to be local because of a version file. We
2332 must initialize this entry in the global offset table.
2333 Since the offset must always be a multiple of 8, we
2334 use the least significant bit to record whether we
2335 have initialized it already.
2336
2337 When doing a dynamic link, we create a .rela.got
2338 relocation entry to initialize the value. This is
2339 done in the finish_dynamic_symbol routine. */
2340
2341 if ((off & 1) != 0)
2342 off &= ~1;
2343 else
2344 {
2345 bfd_put_64 (output_bfd, relocation,
2346 sgot->contents + off);
2347 h->got.offset |= 1;
2348 }
2349 }
2350 relocation = sgot->output_offset + off - got_base;
2351 }
2352 else
2353 {
2354 bfd_vma off;
2355
2356 BFD_ASSERT (local_got_offsets != NULL);
2357 off = local_got_offsets[r_symndx];
2358 BFD_ASSERT (off != (bfd_vma) -1);
2359
2360 /* The offset must always be a multiple of 8. We use
2361 the least significant bit to record whether we have
2362 already processed this entry. */
2363 if ((off & 1) != 0)
2364 off &= ~1;
2365 else
2366 {
2367 local_got_offsets[r_symndx] |= 1;
2368
2369 if (info->shared)
2370 {
2371 asection *srelgot;
2372 Elf_Internal_Rela outrel;
2373
2374 /* The Solaris 2.7 64-bit linker adds the contents
2375 of the location to the value of the reloc.
2376 Note this is different behaviour to the
2377 32-bit linker, which both adds the contents
2378 and ignores the addend. So clear the location. */
2379 bfd_put_64 (output_bfd, (bfd_vma) 0,
2380 sgot->contents + off);
2381
2382 /* We need to generate a R_SPARC_RELATIVE reloc
2383 for the dynamic linker. */
2384 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2385 BFD_ASSERT (srelgot != NULL);
2386
2387 outrel.r_offset = (sgot->output_section->vma
2388 + sgot->output_offset
2389 + off);
2390 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2391 outrel.r_addend = relocation;
2392 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2393 (((Elf64_External_Rela *)
2394 srelgot->contents)
2395 + srelgot->reloc_count));
2396 ++srelgot->reloc_count;
2397 }
2398 else
2399 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2400 }
2401 relocation = sgot->output_offset + off - got_base;
2402 }
2403 goto do_default;
2404
2405 case R_SPARC_WPLT30:
2406 case R_SPARC_PLT32:
2407 case R_SPARC_HIPLT22:
2408 case R_SPARC_LOPLT10:
2409 case R_SPARC_PCPLT32:
2410 case R_SPARC_PCPLT22:
2411 case R_SPARC_PCPLT10:
2412 case R_SPARC_PLT64:
2413 /* Relocation is to the entry for this symbol in the
2414 procedure linkage table. */
2415 BFD_ASSERT (h != NULL);
2416
2417 if (h->plt.offset == (bfd_vma) -1)
2418 {
2419 /* We didn't make a PLT entry for this symbol. This
2420 happens when statically linking PIC code, or when
2421 using -Bsymbolic. */
2422 goto do_default;
2423 }
2424
2425 if (splt == NULL)
2426 {
2427 splt = bfd_get_section_by_name (dynobj, ".plt");
2428 BFD_ASSERT (splt != NULL);
2429 }
2430
2431 relocation = (splt->output_section->vma
2432 + splt->output_offset
2433 + sparc64_elf_plt_entry_offset (h->plt.offset));
2434 if (r_type == R_SPARC_WPLT30)
2435 goto do_wplt30;
2436 goto do_default;
2437
2438 case R_SPARC_OLO10:
2439 {
2440 bfd_vma x;
2441
2442 relocation += rel->r_addend;
2443 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2444
2445 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2446 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2447 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2448
2449 r = bfd_check_overflow (howto->complain_on_overflow,
2450 howto->bitsize, howto->rightshift,
2451 bfd_arch_bits_per_address (input_bfd),
2452 relocation);
2453 }
2454 break;
2455
2456 case R_SPARC_WDISP16:
2457 {
2458 bfd_vma x;
2459
2460 relocation += rel->r_addend;
2461 /* Adjust for pc-relative-ness. */
2462 relocation -= (input_section->output_section->vma
2463 + input_section->output_offset);
2464 relocation -= rel->r_offset;
2465
2466 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2467 x &= ~(bfd_vma) 0x303fff;
2468 x |= ((((relocation >> 2) & 0xc000) << 6)
2469 | ((relocation >> 2) & 0x3fff));
2470 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2471
2472 r = bfd_check_overflow (howto->complain_on_overflow,
2473 howto->bitsize, howto->rightshift,
2474 bfd_arch_bits_per_address (input_bfd),
2475 relocation);
2476 }
2477 break;
2478
2479 case R_SPARC_HIX22:
2480 {
2481 bfd_vma x;
2482
2483 relocation += rel->r_addend;
2484 relocation = relocation ^ MINUS_ONE;
2485
2486 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2487 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2488 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2489
2490 r = bfd_check_overflow (howto->complain_on_overflow,
2491 howto->bitsize, howto->rightshift,
2492 bfd_arch_bits_per_address (input_bfd),
2493 relocation);
2494 }
2495 break;
2496
2497 case R_SPARC_LOX10:
2498 {
2499 bfd_vma x;
2500
2501 relocation += rel->r_addend;
2502 relocation = (relocation & 0x3ff) | 0x1c00;
2503
2504 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2505 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2506 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2507
2508 r = bfd_reloc_ok;
2509 }
2510 break;
2511
2512 case R_SPARC_WDISP30:
2513 do_wplt30:
2514 if (SEC_DO_RELAX (input_section)
2515 && rel->r_offset + 4 < input_section->_raw_size)
2516 {
2517 #define G0 0
2518 #define O7 15
2519 #define XCC (2 << 20)
2520 #define COND(x) (((x)&0xf)<<25)
2521 #define CONDA COND(0x8)
2522 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2523 #define INSN_BA (F2(0,2) | CONDA)
2524 #define INSN_OR F3(2, 0x2, 0)
2525 #define INSN_NOP F2(0,4)
2526
2527 bfd_vma x, y;
2528
2529 /* If the instruction is a call with either:
2530 restore
2531 arithmetic instruction with rd == %o7
2532 where rs1 != %o7 and rs2 if it is register != %o7
2533 then we can optimize if the call destination is near
2534 by changing the call into a branch always. */
2535 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2536 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2537 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2538 {
2539 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2540 || ((y & OP3(0x28)) == 0 /* arithmetic */
2541 && (y & RD(~0)) == RD(O7)))
2542 && (y & RS1(~0)) != RS1(O7)
2543 && ((y & F3I(~0))
2544 || (y & RS2(~0)) != RS2(O7)))
2545 {
2546 bfd_vma reloc;
2547
2548 reloc = relocation + rel->r_addend - rel->r_offset;
2549 reloc -= (input_section->output_section->vma
2550 + input_section->output_offset);
2551 if (reloc & 3)
2552 goto do_default;
2553
2554 /* Ensure the branch fits into simm22. */
2555 if ((reloc & ~(bfd_vma)0x7fffff)
2556 && ((reloc | 0x7fffff) != MINUS_ONE))
2557 goto do_default;
2558 reloc >>= 2;
2559
2560 /* Check whether it fits into simm19. */
2561 if ((reloc & 0x3c0000) == 0
2562 || (reloc & 0x3c0000) == 0x3c0000)
2563 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2564 else
2565 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2566 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2567 r = bfd_reloc_ok;
2568 if (rel->r_offset >= 4
2569 && (y & (0xffffffff ^ RS1(~0)))
2570 == (INSN_OR | RD(O7) | RS2(G0)))
2571 {
2572 bfd_vma z;
2573 unsigned int reg;
2574
2575 z = bfd_get_32 (input_bfd,
2576 contents + rel->r_offset - 4);
2577 if ((z & (0xffffffff ^ RD(~0)))
2578 != (INSN_OR | RS1(O7) | RS2(G0)))
2579 break;
2580
2581 /* The sequence was
2582 or %o7, %g0, %rN
2583 call foo
2584 or %rN, %g0, %o7
2585
2586 If call foo was replaced with ba, replace
2587 or %rN, %g0, %o7 with nop. */
2588
2589 reg = (y & RS1(~0)) >> 14;
2590 if (reg != ((z & RD(~0)) >> 25)
2591 || reg == G0 || reg == O7)
2592 break;
2593
2594 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2595 contents + rel->r_offset + 4);
2596 }
2597 break;
2598 }
2599 }
2600 }
2601 /* FALLTHROUGH */
2602
2603 default:
2604 do_default:
2605 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2606 contents, rel->r_offset,
2607 relocation, rel->r_addend);
2608 break;
2609 }
2610
2611 switch (r)
2612 {
2613 case bfd_reloc_ok:
2614 break;
2615
2616 default:
2617 case bfd_reloc_outofrange:
2618 abort ();
2619
2620 case bfd_reloc_overflow:
2621 {
2622 const char *name;
2623
2624 /* The Solaris native linker silently disregards
2625 overflows. We don't, but this breaks stabs debugging
2626 info, whose relocations are only 32-bits wide. Ignore
2627 overflows in this case. */
2628 if (r_type == R_SPARC_32
2629 && (input_section->flags & SEC_DEBUGGING) != 0
2630 && strcmp (bfd_section_name (input_bfd, input_section),
2631 ".stab") == 0)
2632 break;
2633
2634 if (h != NULL)
2635 {
2636 if (h->root.type == bfd_link_hash_undefweak
2637 && howto->pc_relative)
2638 {
2639 /* Assume this is a call protected by other code that
2640 detect the symbol is undefined. If this is the case,
2641 we can safely ignore the overflow. If not, the
2642 program is hosed anyway, and a little warning isn't
2643 going to help. */
2644 break;
2645 }
2646
2647 name = h->root.root.string;
2648 }
2649 else
2650 {
2651 name = (bfd_elf_string_from_elf_section
2652 (input_bfd,
2653 symtab_hdr->sh_link,
2654 sym->st_name));
2655 if (name == NULL)
2656 return false;
2657 if (*name == '\0')
2658 name = bfd_section_name (input_bfd, sec);
2659 }
2660 if (! ((*info->callbacks->reloc_overflow)
2661 (info, name, howto->name, (bfd_vma) 0,
2662 input_bfd, input_section, rel->r_offset)))
2663 return false;
2664 }
2665 break;
2666 }
2667 }
2668
2669 return true;
2670 }
2671
2672 /* Finish up dynamic symbol handling. We set the contents of various
2673 dynamic sections here. */
2674
2675 static boolean
2676 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2677 bfd *output_bfd;
2678 struct bfd_link_info *info;
2679 struct elf_link_hash_entry *h;
2680 Elf_Internal_Sym *sym;
2681 {
2682 bfd *dynobj;
2683
2684 dynobj = elf_hash_table (info)->dynobj;
2685
2686 if (h->plt.offset != (bfd_vma) -1)
2687 {
2688 asection *splt;
2689 asection *srela;
2690 Elf_Internal_Rela rela;
2691
2692 /* This symbol has an entry in the PLT. Set it up. */
2693
2694 BFD_ASSERT (h->dynindx != -1);
2695
2696 splt = bfd_get_section_by_name (dynobj, ".plt");
2697 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2698 BFD_ASSERT (splt != NULL && srela != NULL);
2699
2700 /* Fill in the entry in the .rela.plt section. */
2701
2702 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2703 {
2704 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2705 rela.r_addend = 0;
2706 }
2707 else
2708 {
2709 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2710 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2711 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2712 -(splt->output_section->vma + splt->output_offset);
2713 }
2714 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2715 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2716
2717 /* Adjust for the first 4 reserved elements in the .plt section
2718 when setting the offset in the .rela.plt section.
2719 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2720 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2721
2722 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2723 ((Elf64_External_Rela *) srela->contents
2724 + (h->plt.offset - 4)));
2725
2726 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2727 {
2728 /* Mark the symbol as undefined, rather than as defined in
2729 the .plt section. Leave the value alone. */
2730 sym->st_shndx = SHN_UNDEF;
2731 /* If the symbol is weak, we do need to clear the value.
2732 Otherwise, the PLT entry would provide a definition for
2733 the symbol even if the symbol wasn't defined anywhere,
2734 and so the symbol would never be NULL. */
2735 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2736 == 0)
2737 sym->st_value = 0;
2738 }
2739 }
2740
2741 if (h->got.offset != (bfd_vma) -1)
2742 {
2743 asection *sgot;
2744 asection *srela;
2745 Elf_Internal_Rela rela;
2746
2747 /* This symbol has an entry in the GOT. Set it up. */
2748
2749 sgot = bfd_get_section_by_name (dynobj, ".got");
2750 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2751 BFD_ASSERT (sgot != NULL && srela != NULL);
2752
2753 rela.r_offset = (sgot->output_section->vma
2754 + sgot->output_offset
2755 + (h->got.offset &~ (bfd_vma) 1));
2756
2757 /* If this is a -Bsymbolic link, and the symbol is defined
2758 locally, we just want to emit a RELATIVE reloc. Likewise if
2759 the symbol was forced to be local because of a version file.
2760 The entry in the global offset table will already have been
2761 initialized in the relocate_section function. */
2762 if (info->shared
2763 && (info->symbolic || h->dynindx == -1)
2764 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2765 {
2766 asection *sec = h->root.u.def.section;
2767 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2768 rela.r_addend = (h->root.u.def.value
2769 + sec->output_section->vma
2770 + sec->output_offset);
2771 }
2772 else
2773 {
2774 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2775 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2776 rela.r_addend = 0;
2777 }
2778
2779 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2780 ((Elf64_External_Rela *) srela->contents
2781 + srela->reloc_count));
2782 ++srela->reloc_count;
2783 }
2784
2785 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2786 {
2787 asection *s;
2788 Elf_Internal_Rela rela;
2789
2790 /* This symbols needs a copy reloc. Set it up. */
2791
2792 BFD_ASSERT (h->dynindx != -1);
2793
2794 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2795 ".rela.bss");
2796 BFD_ASSERT (s != NULL);
2797
2798 rela.r_offset = (h->root.u.def.value
2799 + h->root.u.def.section->output_section->vma
2800 + h->root.u.def.section->output_offset);
2801 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2802 rela.r_addend = 0;
2803 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2804 ((Elf64_External_Rela *) s->contents
2805 + s->reloc_count));
2806 ++s->reloc_count;
2807 }
2808
2809 /* Mark some specially defined symbols as absolute. */
2810 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2811 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2812 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2813 sym->st_shndx = SHN_ABS;
2814
2815 return true;
2816 }
2817
2818 /* Finish up the dynamic sections. */
2819
2820 static boolean
2821 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2822 bfd *output_bfd;
2823 struct bfd_link_info *info;
2824 {
2825 bfd *dynobj;
2826 int stt_regidx = -1;
2827 asection *sdyn;
2828 asection *sgot;
2829
2830 dynobj = elf_hash_table (info)->dynobj;
2831
2832 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2833
2834 if (elf_hash_table (info)->dynamic_sections_created)
2835 {
2836 asection *splt;
2837 Elf64_External_Dyn *dyncon, *dynconend;
2838
2839 splt = bfd_get_section_by_name (dynobj, ".plt");
2840 BFD_ASSERT (splt != NULL && sdyn != NULL);
2841
2842 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2843 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2844 for (; dyncon < dynconend; dyncon++)
2845 {
2846 Elf_Internal_Dyn dyn;
2847 const char *name;
2848 boolean size;
2849
2850 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2851
2852 switch (dyn.d_tag)
2853 {
2854 case DT_PLTGOT: name = ".plt"; size = false; break;
2855 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2856 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2857 case DT_SPARC_REGISTER:
2858 if (stt_regidx == -1)
2859 {
2860 stt_regidx =
2861 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2862 if (stt_regidx == -1)
2863 return false;
2864 }
2865 dyn.d_un.d_val = stt_regidx++;
2866 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2867 /* fallthrough */
2868 default: name = NULL; size = false; break;
2869 }
2870
2871 if (name != NULL)
2872 {
2873 asection *s;
2874
2875 s = bfd_get_section_by_name (output_bfd, name);
2876 if (s == NULL)
2877 dyn.d_un.d_val = 0;
2878 else
2879 {
2880 if (! size)
2881 dyn.d_un.d_ptr = s->vma;
2882 else
2883 {
2884 if (s->_cooked_size != 0)
2885 dyn.d_un.d_val = s->_cooked_size;
2886 else
2887 dyn.d_un.d_val = s->_raw_size;
2888 }
2889 }
2890 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2891 }
2892 }
2893
2894 /* Initialize the contents of the .plt section. */
2895 if (splt->_raw_size > 0)
2896 {
2897 sparc64_elf_build_plt (output_bfd, splt->contents,
2898 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2899 }
2900
2901 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2902 PLT_ENTRY_SIZE;
2903 }
2904
2905 /* Set the first entry in the global offset table to the address of
2906 the dynamic section. */
2907 sgot = bfd_get_section_by_name (dynobj, ".got");
2908 BFD_ASSERT (sgot != NULL);
2909 if (sgot->_raw_size > 0)
2910 {
2911 if (sdyn == NULL)
2912 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2913 else
2914 bfd_put_64 (output_bfd,
2915 sdyn->output_section->vma + sdyn->output_offset,
2916 sgot->contents);
2917 }
2918
2919 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2920
2921 return true;
2922 }
2923
2924 static enum elf_reloc_type_class
2925 sparc64_elf_reloc_type_class (rela)
2926 const Elf_Internal_Rela *rela;
2927 {
2928 switch ((int) ELF64_R_TYPE (rela->r_info))
2929 {
2930 case R_SPARC_RELATIVE:
2931 return reloc_class_relative;
2932 case R_SPARC_JMP_SLOT:
2933 return reloc_class_plt;
2934 case R_SPARC_COPY:
2935 return reloc_class_copy;
2936 default:
2937 return reloc_class_normal;
2938 }
2939 }
2940 \f
2941 /* Functions for dealing with the e_flags field. */
2942
2943 /* Merge backend specific data from an object file to the output
2944 object file when linking. */
2945
2946 static boolean
2947 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2948 bfd *ibfd;
2949 bfd *obfd;
2950 {
2951 boolean error;
2952 flagword new_flags, old_flags;
2953 int new_mm, old_mm;
2954
2955 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2956 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2957 return true;
2958
2959 new_flags = elf_elfheader (ibfd)->e_flags;
2960 old_flags = elf_elfheader (obfd)->e_flags;
2961
2962 if (!elf_flags_init (obfd)) /* First call, no flags set */
2963 {
2964 elf_flags_init (obfd) = true;
2965 elf_elfheader (obfd)->e_flags = new_flags;
2966 }
2967
2968 else if (new_flags == old_flags) /* Compatible flags are ok */
2969 ;
2970
2971 else /* Incompatible flags */
2972 {
2973 error = false;
2974
2975 #define EF_SPARC_ISA_EXTENSIONS \
2976 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2977
2978 if ((ibfd->flags & DYNAMIC) != 0)
2979 {
2980 /* We don't want dynamic objects memory ordering and
2981 architecture to have any role. That's what dynamic linker
2982 should do. */
2983 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2984 new_flags |= (old_flags
2985 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2986 }
2987 else
2988 {
2989 /* Choose the highest architecture requirements. */
2990 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2991 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2992 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
2993 && (old_flags & EF_SPARC_HAL_R1))
2994 {
2995 error = true;
2996 (*_bfd_error_handler)
2997 (_("%s: linking UltraSPARC specific with HAL specific code"),
2998 bfd_archive_filename (ibfd));
2999 }
3000 /* Choose the most restrictive memory ordering. */
3001 old_mm = (old_flags & EF_SPARCV9_MM);
3002 new_mm = (new_flags & EF_SPARCV9_MM);
3003 old_flags &= ~EF_SPARCV9_MM;
3004 new_flags &= ~EF_SPARCV9_MM;
3005 if (new_mm < old_mm)
3006 old_mm = new_mm;
3007 old_flags |= old_mm;
3008 new_flags |= old_mm;
3009 }
3010
3011 /* Warn about any other mismatches */
3012 if (new_flags != old_flags)
3013 {
3014 error = true;
3015 (*_bfd_error_handler)
3016 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3017 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
3018 }
3019
3020 elf_elfheader (obfd)->e_flags = old_flags;
3021
3022 if (error)
3023 {
3024 bfd_set_error (bfd_error_bad_value);
3025 return false;
3026 }
3027 }
3028 return true;
3029 }
3030 \f
3031 /* Print a STT_REGISTER symbol to file FILE. */
3032
3033 static const char *
3034 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3035 bfd *abfd ATTRIBUTE_UNUSED;
3036 PTR filep;
3037 asymbol *symbol;
3038 {
3039 FILE *file = (FILE *) filep;
3040 int reg, type;
3041
3042 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3043 != STT_REGISTER)
3044 return NULL;
3045
3046 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3047 type = symbol->flags;
3048 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3049 ((type & BSF_LOCAL)
3050 ? (type & BSF_GLOBAL) ? '!' : 'l'
3051 : (type & BSF_GLOBAL) ? 'g' : ' '),
3052 (type & BSF_WEAK) ? 'w' : ' ');
3053 if (symbol->name == NULL || symbol->name [0] == '\0')
3054 return "#scratch";
3055 else
3056 return symbol->name;
3057 }
3058 \f
3059 /* Set the right machine number for a SPARC64 ELF file. */
3060
3061 static boolean
3062 sparc64_elf_object_p (abfd)
3063 bfd *abfd;
3064 {
3065 unsigned long mach = bfd_mach_sparc_v9;
3066
3067 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3068 mach = bfd_mach_sparc_v9b;
3069 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3070 mach = bfd_mach_sparc_v9a;
3071 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3072 }
3073
3074 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3075 standard ELF, because R_SPARC_OLO10 has secondary addend in
3076 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3077 relocation handling routines. */
3078
3079 const struct elf_size_info sparc64_elf_size_info =
3080 {
3081 sizeof (Elf64_External_Ehdr),
3082 sizeof (Elf64_External_Phdr),
3083 sizeof (Elf64_External_Shdr),
3084 sizeof (Elf64_External_Rel),
3085 sizeof (Elf64_External_Rela),
3086 sizeof (Elf64_External_Sym),
3087 sizeof (Elf64_External_Dyn),
3088 sizeof (Elf_External_Note),
3089 4, /* hash-table entry size */
3090 /* internal relocations per external relocations.
3091 For link purposes we use just 1 internal per
3092 1 external, for assembly and slurp symbol table
3093 we use 2. */
3094 1,
3095 64, /* arch_size */
3096 8, /* file_align */
3097 ELFCLASS64,
3098 EV_CURRENT,
3099 bfd_elf64_write_out_phdrs,
3100 bfd_elf64_write_shdrs_and_ehdr,
3101 sparc64_elf_write_relocs,
3102 bfd_elf64_swap_symbol_out,
3103 sparc64_elf_slurp_reloc_table,
3104 bfd_elf64_slurp_symbol_table,
3105 bfd_elf64_swap_dyn_in,
3106 bfd_elf64_swap_dyn_out,
3107 NULL,
3108 NULL,
3109 NULL,
3110 NULL
3111 };
3112
3113 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3114 #define TARGET_BIG_NAME "elf64-sparc"
3115 #define ELF_ARCH bfd_arch_sparc
3116 #define ELF_MAXPAGESIZE 0x100000
3117
3118 /* This is the official ABI value. */
3119 #define ELF_MACHINE_CODE EM_SPARCV9
3120
3121 /* This is the value that we used before the ABI was released. */
3122 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3123
3124 #define bfd_elf64_bfd_link_hash_table_create \
3125 sparc64_elf_bfd_link_hash_table_create
3126
3127 #define elf_info_to_howto \
3128 sparc64_elf_info_to_howto
3129 #define bfd_elf64_get_reloc_upper_bound \
3130 sparc64_elf_get_reloc_upper_bound
3131 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3132 sparc64_elf_get_dynamic_reloc_upper_bound
3133 #define bfd_elf64_canonicalize_dynamic_reloc \
3134 sparc64_elf_canonicalize_dynamic_reloc
3135 #define bfd_elf64_bfd_reloc_type_lookup \
3136 sparc64_elf_reloc_type_lookup
3137 #define bfd_elf64_bfd_relax_section \
3138 sparc64_elf_relax_section
3139
3140 #define elf_backend_create_dynamic_sections \
3141 _bfd_elf_create_dynamic_sections
3142 #define elf_backend_add_symbol_hook \
3143 sparc64_elf_add_symbol_hook
3144 #define elf_backend_get_symbol_type \
3145 sparc64_elf_get_symbol_type
3146 #define elf_backend_symbol_processing \
3147 sparc64_elf_symbol_processing
3148 #define elf_backend_check_relocs \
3149 sparc64_elf_check_relocs
3150 #define elf_backend_adjust_dynamic_symbol \
3151 sparc64_elf_adjust_dynamic_symbol
3152 #define elf_backend_size_dynamic_sections \
3153 sparc64_elf_size_dynamic_sections
3154 #define elf_backend_relocate_section \
3155 sparc64_elf_relocate_section
3156 #define elf_backend_finish_dynamic_symbol \
3157 sparc64_elf_finish_dynamic_symbol
3158 #define elf_backend_finish_dynamic_sections \
3159 sparc64_elf_finish_dynamic_sections
3160 #define elf_backend_print_symbol_all \
3161 sparc64_elf_print_symbol_all
3162 #define elf_backend_output_arch_syms \
3163 sparc64_elf_output_arch_syms
3164 #define bfd_elf64_bfd_merge_private_bfd_data \
3165 sparc64_elf_merge_private_bfd_data
3166
3167 #define elf_backend_size_info \
3168 sparc64_elf_size_info
3169 #define elf_backend_object_p \
3170 sparc64_elf_object_p
3171 #define elf_backend_reloc_type_class \
3172 sparc64_elf_reloc_type_class
3173
3174 #define elf_backend_want_got_plt 0
3175 #define elf_backend_plt_readonly 0
3176 #define elf_backend_want_plt_sym 1
3177
3178 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3179 #define elf_backend_plt_alignment 8
3180
3181 #define elf_backend_got_header_size 8
3182 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3183
3184 #include "elf64-target.h"
This page took 0.095813 seconds and 5 git commands to generate.