* elf64-sparc.c (sparc64_elf_relocate_section): Set relocation address
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS((bfd *));
39 static reloc_howto_type *sparc64_elf_reloc_type_lookup
40 PARAMS ((bfd *, bfd_reloc_code_real_type));
41 static void sparc64_elf_info_to_howto
42 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
43
44 static void sparc64_elf_build_plt
45 PARAMS((bfd *, unsigned char *, int));
46 static bfd_vma sparc64_elf_plt_entry_offset
47 PARAMS((int));
48 static bfd_vma sparc64_elf_plt_ptr_offset
49 PARAMS((int, int));
50
51 static boolean sparc64_elf_check_relocs
52 PARAMS((bfd *, struct bfd_link_info *, asection *sec,
53 const Elf_Internal_Rela *));
54 static boolean sparc64_elf_adjust_dynamic_symbol
55 PARAMS((struct bfd_link_info *, struct elf_link_hash_entry *));
56 static boolean sparc64_elf_size_dynamic_sections
57 PARAMS((bfd *, struct bfd_link_info *));
58 static int sparc64_elf_get_symbol_type
59 PARAMS (( Elf_Internal_Sym *, int));
60 static boolean sparc64_elf_add_symbol_hook
61 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
62 const char **, flagword *, asection **, bfd_vma *));
63 static void sparc64_elf_symbol_processing
64 PARAMS ((bfd *, asymbol *));
65
66 static boolean sparc64_elf_merge_private_bfd_data
67 PARAMS ((bfd *, bfd *));
68
69 static boolean sparc64_elf_relax_section
70 PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
71 static boolean sparc64_elf_relocate_section
72 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
73 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
74 static boolean sparc64_elf_object_p PARAMS ((bfd *));
75 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
76 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
77 static boolean sparc64_elf_slurp_one_reloc_table
78 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
79 static boolean sparc64_elf_slurp_reloc_table
80 PARAMS ((bfd *, asection *, asymbol **, boolean));
81 static long sparc64_elf_canonicalize_dynamic_reloc
82 PARAMS ((bfd *, arelent **, asymbol **));
83 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
84 \f
85 /* The relocation "howto" table. */
86
87 static bfd_reloc_status_type sparc_elf_notsup_reloc
88 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
89 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
90 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
91 static bfd_reloc_status_type sparc_elf_hix22_reloc
92 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
93 static bfd_reloc_status_type sparc_elf_lox10_reloc
94 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
95
96 static reloc_howto_type sparc64_elf_howto_table[] =
97 {
98 HOWTO(R_SPARC_NONE, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
99 HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
100 HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
101 HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
102 HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
103 HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
104 HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0x00ffffff,true),
105 HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
106 HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
107 HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
108 HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
109 HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
110 HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
111 HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
112 HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
113 HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
114 HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
115 HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
116 HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
117 HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
118 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
119 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
120 HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
121 HOWTO(R_SPARC_UA32, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0x00000000,true),
122 #ifndef SPARC64_OLD_RELOCS
123 /* These aren't implemented yet. */
124 HOWTO(R_SPARC_PLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PLT32", false,0,0x00000000,true),
125 HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
126 HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
127 HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
128 HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
129 HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
130 #endif
131 HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
132 HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
133 HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
134 HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
135 HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
136 HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
137 HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
138 HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
139 HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
140 HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
141 HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
142 HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
143 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
144 HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
145 HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
146 HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
147 HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
148 HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, false),
149 HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
150 HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
151 HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
152 HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
153 HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
154 HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
155 HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
156 HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true)
157 };
158
159 struct elf_reloc_map {
160 bfd_reloc_code_real_type bfd_reloc_val;
161 unsigned char elf_reloc_val;
162 };
163
164 static CONST struct elf_reloc_map sparc_reloc_map[] =
165 {
166 { BFD_RELOC_NONE, R_SPARC_NONE, },
167 { BFD_RELOC_16, R_SPARC_16, },
168 { BFD_RELOC_8, R_SPARC_8 },
169 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
170 { BFD_RELOC_CTOR, R_SPARC_64 },
171 { BFD_RELOC_32, R_SPARC_32 },
172 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
173 { BFD_RELOC_HI22, R_SPARC_HI22 },
174 { BFD_RELOC_LO10, R_SPARC_LO10, },
175 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
176 { BFD_RELOC_SPARC22, R_SPARC_22 },
177 { BFD_RELOC_SPARC13, R_SPARC_13 },
178 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
179 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
180 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
181 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
182 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
183 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
184 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
185 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
186 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
187 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
188 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
189 /* ??? Doesn't dwarf use this? */
190 /*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
191 {BFD_RELOC_SPARC_10, R_SPARC_10},
192 {BFD_RELOC_SPARC_11, R_SPARC_11},
193 {BFD_RELOC_SPARC_64, R_SPARC_64},
194 {BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10},
195 {BFD_RELOC_SPARC_HH22, R_SPARC_HH22},
196 {BFD_RELOC_SPARC_HM10, R_SPARC_HM10},
197 {BFD_RELOC_SPARC_LM22, R_SPARC_LM22},
198 {BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22},
199 {BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10},
200 {BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22},
201 {BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16},
202 {BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19},
203 {BFD_RELOC_SPARC_7, R_SPARC_7},
204 {BFD_RELOC_SPARC_5, R_SPARC_5},
205 {BFD_RELOC_SPARC_6, R_SPARC_6},
206 {BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64},
207 {BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64},
208 {BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22},
209 {BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10},
210 {BFD_RELOC_SPARC_H44, R_SPARC_H44},
211 {BFD_RELOC_SPARC_M44, R_SPARC_M44},
212 {BFD_RELOC_SPARC_L44, R_SPARC_L44},
213 {BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER}
214 };
215
216 static reloc_howto_type *
217 sparc64_elf_reloc_type_lookup (abfd, code)
218 bfd *abfd ATTRIBUTE_UNUSED;
219 bfd_reloc_code_real_type code;
220 {
221 unsigned int i;
222 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
223 {
224 if (sparc_reloc_map[i].bfd_reloc_val == code)
225 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
226 }
227 return 0;
228 }
229
230 static void
231 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
232 bfd *abfd ATTRIBUTE_UNUSED;
233 arelent *cache_ptr;
234 Elf64_Internal_Rela *dst;
235 {
236 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
237 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
238 }
239 \f
240 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
241 section can represent up to two relocs, we must tell the user to allocate
242 more space. */
243
244 static long
245 sparc64_elf_get_reloc_upper_bound (abfd, sec)
246 bfd *abfd ATTRIBUTE_UNUSED;
247 asection *sec;
248 {
249 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
250 }
251
252 static long
253 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
254 bfd *abfd;
255 {
256 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
257 }
258
259 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
260 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
261 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
262 for the same location, R_SPARC_LO10 and R_SPARC_13. */
263
264 static boolean
265 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
266 bfd *abfd;
267 asection *asect;
268 Elf_Internal_Shdr *rel_hdr;
269 asymbol **symbols;
270 boolean dynamic;
271 {
272 PTR allocated = NULL;
273 bfd_byte *native_relocs;
274 arelent *relent;
275 unsigned int i;
276 int entsize;
277 bfd_size_type count;
278 arelent *relents;
279
280 allocated = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
281 if (allocated == NULL)
282 goto error_return;
283
284 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
285 || (bfd_read (allocated, 1, rel_hdr->sh_size, abfd)
286 != rel_hdr->sh_size))
287 goto error_return;
288
289 native_relocs = (bfd_byte *) allocated;
290
291 relents = asect->relocation + asect->reloc_count;
292
293 entsize = rel_hdr->sh_entsize;
294 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
295
296 count = rel_hdr->sh_size / entsize;
297
298 for (i = 0, relent = relents; i < count;
299 i++, relent++, native_relocs += entsize)
300 {
301 Elf_Internal_Rela rela;
302
303 bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
304
305 /* The address of an ELF reloc is section relative for an object
306 file, and absolute for an executable file or shared library.
307 The address of a normal BFD reloc is always section relative,
308 and the address of a dynamic reloc is absolute.. */
309 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
310 relent->address = rela.r_offset;
311 else
312 relent->address = rela.r_offset - asect->vma;
313
314 if (ELF64_R_SYM (rela.r_info) == 0)
315 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
316 else
317 {
318 asymbol **ps, *s;
319
320 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
321 s = *ps;
322
323 /* Canonicalize ELF section symbols. FIXME: Why? */
324 if ((s->flags & BSF_SECTION_SYM) == 0)
325 relent->sym_ptr_ptr = ps;
326 else
327 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
328 }
329
330 relent->addend = rela.r_addend;
331
332 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
333 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
334 {
335 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
336 relent[1].address = relent->address;
337 relent++;
338 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
339 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
340 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
341 }
342 else
343 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
344 }
345
346 asect->reloc_count += relent - relents;
347
348 if (allocated != NULL)
349 free (allocated);
350
351 return true;
352
353 error_return:
354 if (allocated != NULL)
355 free (allocated);
356 return false;
357 }
358
359 /* Read in and swap the external relocs. */
360
361 static boolean
362 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
363 bfd *abfd;
364 asection *asect;
365 asymbol **symbols;
366 boolean dynamic;
367 {
368 struct bfd_elf_section_data * const d = elf_section_data (asect);
369 Elf_Internal_Shdr *rel_hdr;
370 Elf_Internal_Shdr *rel_hdr2;
371
372 if (asect->relocation != NULL)
373 return true;
374
375 if (! dynamic)
376 {
377 if ((asect->flags & SEC_RELOC) == 0
378 || asect->reloc_count == 0)
379 return true;
380
381 rel_hdr = &d->rel_hdr;
382 rel_hdr2 = d->rel_hdr2;
383
384 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
385 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
386 }
387 else
388 {
389 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
390 case because relocations against this section may use the
391 dynamic symbol table, and in that case bfd_section_from_shdr
392 in elf.c does not update the RELOC_COUNT. */
393 if (asect->_raw_size == 0)
394 return true;
395
396 rel_hdr = &d->this_hdr;
397 asect->reloc_count = rel_hdr->sh_size / rel_hdr->sh_entsize;
398 rel_hdr2 = NULL;
399 }
400
401 asect->relocation = ((arelent *)
402 bfd_alloc (abfd,
403 asect->reloc_count * 2 * sizeof (arelent)));
404 if (asect->relocation == NULL)
405 return false;
406
407 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
408 asect->reloc_count = 0;
409
410 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
411 dynamic))
412 return false;
413
414 if (rel_hdr2
415 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
416 dynamic))
417 return false;
418
419 return true;
420 }
421
422 /* Canonicalize the dynamic relocation entries. Note that we return
423 the dynamic relocations as a single block, although they are
424 actually associated with particular sections; the interface, which
425 was designed for SunOS style shared libraries, expects that there
426 is only one set of dynamic relocs. Any section that was actually
427 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
428 the dynamic symbol table, is considered to be a dynamic reloc
429 section. */
430
431 static long
432 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
433 bfd *abfd;
434 arelent **storage;
435 asymbol **syms;
436 {
437 asection *s;
438 long ret;
439
440 if (elf_dynsymtab (abfd) == 0)
441 {
442 bfd_set_error (bfd_error_invalid_operation);
443 return -1;
444 }
445
446 ret = 0;
447 for (s = abfd->sections; s != NULL; s = s->next)
448 {
449 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
450 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
451 {
452 arelent *p;
453 long count, i;
454
455 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
456 return -1;
457 count = s->reloc_count;
458 p = s->relocation;
459 for (i = 0; i < count; i++)
460 *storage++ = p++;
461 ret += count;
462 }
463 }
464
465 *storage = NULL;
466
467 return ret;
468 }
469
470 /* Write out the relocs. */
471
472 static void
473 sparc64_elf_write_relocs (abfd, sec, data)
474 bfd *abfd;
475 asection *sec;
476 PTR data;
477 {
478 boolean *failedp = (boolean *) data;
479 Elf_Internal_Shdr *rela_hdr;
480 Elf64_External_Rela *outbound_relocas, *src_rela;
481 unsigned int idx, count;
482 asymbol *last_sym = 0;
483 int last_sym_idx = 0;
484
485 /* If we have already failed, don't do anything. */
486 if (*failedp)
487 return;
488
489 if ((sec->flags & SEC_RELOC) == 0)
490 return;
491
492 /* The linker backend writes the relocs out itself, and sets the
493 reloc_count field to zero to inhibit writing them here. Also,
494 sometimes the SEC_RELOC flag gets set even when there aren't any
495 relocs. */
496 if (sec->reloc_count == 0)
497 return;
498
499 /* We can combine two relocs that refer to the same address
500 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
501 latter is R_SPARC_13 with no associated symbol. */
502 count = 0;
503 for (idx = 0; idx < sec->reloc_count; idx++)
504 {
505 bfd_vma addr;
506
507 ++count;
508
509 addr = sec->orelocation[idx]->address;
510 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
511 && idx < sec->reloc_count - 1)
512 {
513 arelent *r = sec->orelocation[idx + 1];
514
515 if (r->howto->type == R_SPARC_13
516 && r->address == addr
517 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
518 && (*r->sym_ptr_ptr)->value == 0)
519 ++idx;
520 }
521 }
522
523 rela_hdr = &elf_section_data (sec)->rel_hdr;
524
525 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
526 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
527 if (rela_hdr->contents == NULL)
528 {
529 *failedp = true;
530 return;
531 }
532
533 /* Figure out whether the relocations are RELA or REL relocations. */
534 if (rela_hdr->sh_type != SHT_RELA)
535 abort ();
536
537 /* orelocation has the data, reloc_count has the count... */
538 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
539 src_rela = outbound_relocas;
540
541 for (idx = 0; idx < sec->reloc_count; idx++)
542 {
543 Elf_Internal_Rela dst_rela;
544 arelent *ptr;
545 asymbol *sym;
546 int n;
547
548 ptr = sec->orelocation[idx];
549
550 /* The address of an ELF reloc is section relative for an object
551 file, and absolute for an executable file or shared library.
552 The address of a BFD reloc is always section relative. */
553 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
554 dst_rela.r_offset = ptr->address;
555 else
556 dst_rela.r_offset = ptr->address + sec->vma;
557
558 sym = *ptr->sym_ptr_ptr;
559 if (sym == last_sym)
560 n = last_sym_idx;
561 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
562 n = STN_UNDEF;
563 else
564 {
565 last_sym = sym;
566 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
567 if (n < 0)
568 {
569 *failedp = true;
570 return;
571 }
572 last_sym_idx = n;
573 }
574
575 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
576 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
577 && ! _bfd_elf_validate_reloc (abfd, ptr))
578 {
579 *failedp = true;
580 return;
581 }
582
583 if (ptr->howto->type == R_SPARC_LO10
584 && idx < sec->reloc_count - 1)
585 {
586 arelent *r = sec->orelocation[idx + 1];
587
588 if (r->howto->type == R_SPARC_13
589 && r->address == ptr->address
590 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
591 && (*r->sym_ptr_ptr)->value == 0)
592 {
593 idx++;
594 dst_rela.r_info
595 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
596 R_SPARC_OLO10));
597 }
598 else
599 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
600 }
601 else
602 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
603
604 dst_rela.r_addend = ptr->addend;
605 bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
606 ++src_rela;
607 }
608 }
609 \f
610 /* Sparc64 ELF linker hash table. */
611
612 struct sparc64_elf_app_reg
613 {
614 unsigned char bind;
615 unsigned short shndx;
616 bfd *abfd;
617 char *name;
618 };
619
620 struct sparc64_elf_link_hash_table
621 {
622 struct elf_link_hash_table root;
623
624 struct sparc64_elf_app_reg app_regs [4];
625 };
626
627 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
628
629 #define sparc64_elf_hash_table(p) \
630 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
631
632 /* Create a Sparc64 ELF linker hash table. */
633
634 static struct bfd_link_hash_table *
635 sparc64_elf_bfd_link_hash_table_create (abfd)
636 bfd *abfd;
637 {
638 struct sparc64_elf_link_hash_table *ret;
639
640 ret = ((struct sparc64_elf_link_hash_table *)
641 bfd_zalloc (abfd, sizeof (struct sparc64_elf_link_hash_table)));
642 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
643 return NULL;
644
645 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
646 _bfd_elf_link_hash_newfunc))
647 {
648 bfd_release (abfd, ret);
649 return NULL;
650 }
651
652 return &ret->root.root;
653 }
654
655 \f
656 /* Utility for performing the standard initial work of an instruction
657 relocation.
658 *PRELOCATION will contain the relocated item.
659 *PINSN will contain the instruction from the input stream.
660 If the result is `bfd_reloc_other' the caller can continue with
661 performing the relocation. Otherwise it must stop and return the
662 value to its caller. */
663
664 static bfd_reloc_status_type
665 init_insn_reloc (abfd,
666 reloc_entry,
667 symbol,
668 data,
669 input_section,
670 output_bfd,
671 prelocation,
672 pinsn)
673 bfd *abfd;
674 arelent *reloc_entry;
675 asymbol *symbol;
676 PTR data;
677 asection *input_section;
678 bfd *output_bfd;
679 bfd_vma *prelocation;
680 bfd_vma *pinsn;
681 {
682 bfd_vma relocation;
683 reloc_howto_type *howto = reloc_entry->howto;
684
685 if (output_bfd != (bfd *) NULL
686 && (symbol->flags & BSF_SECTION_SYM) == 0
687 && (! howto->partial_inplace
688 || reloc_entry->addend == 0))
689 {
690 reloc_entry->address += input_section->output_offset;
691 return bfd_reloc_ok;
692 }
693
694 /* This works because partial_inplace == false. */
695 if (output_bfd != NULL)
696 return bfd_reloc_continue;
697
698 if (reloc_entry->address > input_section->_cooked_size)
699 return bfd_reloc_outofrange;
700
701 relocation = (symbol->value
702 + symbol->section->output_section->vma
703 + symbol->section->output_offset);
704 relocation += reloc_entry->addend;
705 if (howto->pc_relative)
706 {
707 relocation -= (input_section->output_section->vma
708 + input_section->output_offset);
709 relocation -= reloc_entry->address;
710 }
711
712 *prelocation = relocation;
713 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
714 return bfd_reloc_other;
715 }
716
717 /* For unsupported relocs. */
718
719 static bfd_reloc_status_type
720 sparc_elf_notsup_reloc (abfd,
721 reloc_entry,
722 symbol,
723 data,
724 input_section,
725 output_bfd,
726 error_message)
727 bfd *abfd ATTRIBUTE_UNUSED;
728 arelent *reloc_entry ATTRIBUTE_UNUSED;
729 asymbol *symbol ATTRIBUTE_UNUSED;
730 PTR data ATTRIBUTE_UNUSED;
731 asection *input_section ATTRIBUTE_UNUSED;
732 bfd *output_bfd ATTRIBUTE_UNUSED;
733 char **error_message ATTRIBUTE_UNUSED;
734 {
735 return bfd_reloc_notsupported;
736 }
737
738 /* Handle the WDISP16 reloc. */
739
740 static bfd_reloc_status_type
741 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
742 output_bfd, error_message)
743 bfd *abfd;
744 arelent *reloc_entry;
745 asymbol *symbol;
746 PTR data;
747 asection *input_section;
748 bfd *output_bfd;
749 char **error_message ATTRIBUTE_UNUSED;
750 {
751 bfd_vma relocation;
752 bfd_vma insn;
753 bfd_reloc_status_type status;
754
755 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
756 input_section, output_bfd, &relocation, &insn);
757 if (status != bfd_reloc_other)
758 return status;
759
760 insn = (insn & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
761 | ((relocation >> 2) & 0x3fff));
762 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
763
764 if ((bfd_signed_vma) relocation < - 0x40000
765 || (bfd_signed_vma) relocation > 0x3ffff)
766 return bfd_reloc_overflow;
767 else
768 return bfd_reloc_ok;
769 }
770
771 /* Handle the HIX22 reloc. */
772
773 static bfd_reloc_status_type
774 sparc_elf_hix22_reloc (abfd,
775 reloc_entry,
776 symbol,
777 data,
778 input_section,
779 output_bfd,
780 error_message)
781 bfd *abfd;
782 arelent *reloc_entry;
783 asymbol *symbol;
784 PTR data;
785 asection *input_section;
786 bfd *output_bfd;
787 char **error_message ATTRIBUTE_UNUSED;
788 {
789 bfd_vma relocation;
790 bfd_vma insn;
791 bfd_reloc_status_type status;
792
793 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
794 input_section, output_bfd, &relocation, &insn);
795 if (status != bfd_reloc_other)
796 return status;
797
798 relocation ^= MINUS_ONE;
799 insn = (insn & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
800 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
801
802 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
803 return bfd_reloc_overflow;
804 else
805 return bfd_reloc_ok;
806 }
807
808 /* Handle the LOX10 reloc. */
809
810 static bfd_reloc_status_type
811 sparc_elf_lox10_reloc (abfd,
812 reloc_entry,
813 symbol,
814 data,
815 input_section,
816 output_bfd,
817 error_message)
818 bfd *abfd;
819 arelent *reloc_entry;
820 asymbol *symbol;
821 PTR data;
822 asection *input_section;
823 bfd *output_bfd;
824 char **error_message ATTRIBUTE_UNUSED;
825 {
826 bfd_vma relocation;
827 bfd_vma insn;
828 bfd_reloc_status_type status;
829
830 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
831 input_section, output_bfd, &relocation, &insn);
832 if (status != bfd_reloc_other)
833 return status;
834
835 insn = (insn & ~0x1fff) | 0x1c00 | (relocation & 0x3ff);
836 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
837
838 return bfd_reloc_ok;
839 }
840 \f
841 /* PLT/GOT stuff */
842
843 /* Both the headers and the entries are icache aligned. */
844 #define PLT_ENTRY_SIZE 32
845 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
846 #define LARGE_PLT_THRESHOLD 32768
847 #define GOT_RESERVED_ENTRIES 1
848
849 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
850
851
852 /* Fill in the .plt section. */
853
854 static void
855 sparc64_elf_build_plt (output_bfd, contents, nentries)
856 bfd *output_bfd;
857 unsigned char *contents;
858 int nentries;
859 {
860 const unsigned int nop = 0x01000000;
861 int i, j;
862
863 /* The first four entries are reserved, and are initially undefined.
864 We fill them with `illtrap 0' to force ld.so to do something. */
865
866 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
867 bfd_put_32 (output_bfd, 0, contents+i*4);
868
869 /* The first 32768 entries are close enough to plt1 to get there via
870 a straight branch. */
871
872 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
873 {
874 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
875 unsigned int sethi, ba;
876
877 /* sethi (. - plt0), %g1 */
878 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
879
880 /* ba,a,pt %xcc, plt1 */
881 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
882
883 bfd_put_32 (output_bfd, sethi, entry);
884 bfd_put_32 (output_bfd, ba, entry+4);
885 bfd_put_32 (output_bfd, nop, entry+8);
886 bfd_put_32 (output_bfd, nop, entry+12);
887 bfd_put_32 (output_bfd, nop, entry+16);
888 bfd_put_32 (output_bfd, nop, entry+20);
889 bfd_put_32 (output_bfd, nop, entry+24);
890 bfd_put_32 (output_bfd, nop, entry+28);
891 }
892
893 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
894 160: 160 entries and 160 pointers. This is to separate code from data,
895 which is much friendlier on the cache. */
896
897 for (; i < nentries; i += 160)
898 {
899 int block = (i + 160 <= nentries ? 160 : nentries - i);
900 for (j = 0; j < block; ++j)
901 {
902 unsigned char *entry, *ptr;
903 unsigned int ldx;
904
905 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
906 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
907
908 /* ldx [%o7 + ptr - entry+4], %g1 */
909 ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
910
911 bfd_put_32 (output_bfd, 0x8a10000f, entry); /* mov %o7,%g5 */
912 bfd_put_32 (output_bfd, 0x40000002, entry+4); /* call .+8 */
913 bfd_put_32 (output_bfd, nop, entry+8); /* nop */
914 bfd_put_32 (output_bfd, ldx, entry+12); /* ldx [%o7+P],%g1 */
915 bfd_put_32 (output_bfd, 0x83c3c001, entry+16); /* jmpl %o7+%g1,%g1 */
916 bfd_put_32 (output_bfd, 0x9e100005, entry+20); /* mov %g5,%o7 */
917
918 bfd_put_64 (output_bfd, contents - (entry+4), ptr);
919 }
920 }
921 }
922
923 /* Return the offset of a particular plt entry within the .plt section. */
924
925 static bfd_vma
926 sparc64_elf_plt_entry_offset (index)
927 int index;
928 {
929 int block, ofs;
930
931 if (index < LARGE_PLT_THRESHOLD)
932 return index * PLT_ENTRY_SIZE;
933
934 /* See above for details. */
935
936 block = (index - LARGE_PLT_THRESHOLD) / 160;
937 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
938
939 return ((bfd_vma)(LARGE_PLT_THRESHOLD + block*160) * PLT_ENTRY_SIZE
940 + ofs * 6*4);
941 }
942
943 static bfd_vma
944 sparc64_elf_plt_ptr_offset (index, max)
945 int index, max;
946 {
947 int block, ofs, last;
948
949 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
950
951 /* See above for details. */
952
953 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160)
954 + LARGE_PLT_THRESHOLD;
955 ofs = index - block;
956 if (block + 160 > max)
957 last = (max - LARGE_PLT_THRESHOLD) % 160;
958 else
959 last = 160;
960
961 return (block * PLT_ENTRY_SIZE
962 + last * 6*4
963 + ofs * 8);
964 }
965
966
967 \f
968 /* Look through the relocs for a section during the first phase, and
969 allocate space in the global offset table or procedure linkage
970 table. */
971
972 static boolean
973 sparc64_elf_check_relocs (abfd, info, sec, relocs)
974 bfd *abfd;
975 struct bfd_link_info *info;
976 asection *sec;
977 const Elf_Internal_Rela *relocs;
978 {
979 bfd *dynobj;
980 Elf_Internal_Shdr *symtab_hdr;
981 struct elf_link_hash_entry **sym_hashes;
982 bfd_vma *local_got_offsets;
983 const Elf_Internal_Rela *rel;
984 const Elf_Internal_Rela *rel_end;
985 asection *sgot;
986 asection *srelgot;
987 asection *sreloc;
988
989 if (info->relocateable || !(sec->flags & SEC_ALLOC))
990 return true;
991
992 dynobj = elf_hash_table (info)->dynobj;
993 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
994 sym_hashes = elf_sym_hashes (abfd);
995 local_got_offsets = elf_local_got_offsets (abfd);
996
997 sgot = NULL;
998 srelgot = NULL;
999 sreloc = NULL;
1000
1001 rel_end = relocs + sec->reloc_count;
1002 for (rel = relocs; rel < rel_end; rel++)
1003 {
1004 unsigned long r_symndx;
1005 struct elf_link_hash_entry *h;
1006
1007 r_symndx = ELF64_R_SYM (rel->r_info);
1008 if (r_symndx < symtab_hdr->sh_info)
1009 h = NULL;
1010 else
1011 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1012
1013 switch (ELF64_R_TYPE_ID (rel->r_info))
1014 {
1015 case R_SPARC_GOT10:
1016 case R_SPARC_GOT13:
1017 case R_SPARC_GOT22:
1018 /* This symbol requires a global offset table entry. */
1019
1020 if (dynobj == NULL)
1021 {
1022 /* Create the .got section. */
1023 elf_hash_table (info)->dynobj = dynobj = abfd;
1024 if (! _bfd_elf_create_got_section (dynobj, info))
1025 return false;
1026 }
1027
1028 if (sgot == NULL)
1029 {
1030 sgot = bfd_get_section_by_name (dynobj, ".got");
1031 BFD_ASSERT (sgot != NULL);
1032 }
1033
1034 if (srelgot == NULL && (h != NULL || info->shared))
1035 {
1036 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1037 if (srelgot == NULL)
1038 {
1039 srelgot = bfd_make_section (dynobj, ".rela.got");
1040 if (srelgot == NULL
1041 || ! bfd_set_section_flags (dynobj, srelgot,
1042 (SEC_ALLOC
1043 | SEC_LOAD
1044 | SEC_HAS_CONTENTS
1045 | SEC_IN_MEMORY
1046 | SEC_LINKER_CREATED
1047 | SEC_READONLY))
1048 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1049 return false;
1050 }
1051 }
1052
1053 if (h != NULL)
1054 {
1055 if (h->got.offset != (bfd_vma) -1)
1056 {
1057 /* We have already allocated space in the .got. */
1058 break;
1059 }
1060 h->got.offset = sgot->_raw_size;
1061
1062 /* Make sure this symbol is output as a dynamic symbol. */
1063 if (h->dynindx == -1)
1064 {
1065 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1066 return false;
1067 }
1068
1069 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1070 }
1071 else
1072 {
1073 /* This is a global offset table entry for a local
1074 symbol. */
1075 if (local_got_offsets == NULL)
1076 {
1077 size_t size;
1078 register unsigned int i;
1079
1080 size = symtab_hdr->sh_info * sizeof (bfd_vma);
1081 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1082 if (local_got_offsets == NULL)
1083 return false;
1084 elf_local_got_offsets (abfd) = local_got_offsets;
1085 for (i = 0; i < symtab_hdr->sh_info; i++)
1086 local_got_offsets[i] = (bfd_vma) -1;
1087 }
1088 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1089 {
1090 /* We have already allocated space in the .got. */
1091 break;
1092 }
1093 local_got_offsets[r_symndx] = sgot->_raw_size;
1094
1095 if (info->shared)
1096 {
1097 /* If we are generating a shared object, we need to
1098 output a R_SPARC_RELATIVE reloc so that the
1099 dynamic linker can adjust this GOT entry. */
1100 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1101 }
1102 }
1103
1104 sgot->_raw_size += 8;
1105
1106 #if 0
1107 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1108 unsigned numbers. If we permit ourselves to modify
1109 code so we get sethi/xor, this could work.
1110 Question: do we consider conditionally re-enabling
1111 this for -fpic, once we know about object code models? */
1112 /* If the .got section is more than 0x1000 bytes, we add
1113 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1114 bit relocations have a greater chance of working. */
1115 if (sgot->_raw_size >= 0x1000
1116 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1117 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1118 #endif
1119
1120 break;
1121
1122 case R_SPARC_WPLT30:
1123 case R_SPARC_PLT32:
1124 case R_SPARC_HIPLT22:
1125 case R_SPARC_LOPLT10:
1126 case R_SPARC_PCPLT32:
1127 case R_SPARC_PCPLT22:
1128 case R_SPARC_PCPLT10:
1129 case R_SPARC_PLT64:
1130 /* This symbol requires a procedure linkage table entry. We
1131 actually build the entry in adjust_dynamic_symbol,
1132 because this might be a case of linking PIC code without
1133 linking in any dynamic objects, in which case we don't
1134 need to generate a procedure linkage table after all. */
1135
1136 if (h == NULL)
1137 {
1138 /* It does not make sense to have a procedure linkage
1139 table entry for a local symbol. */
1140 bfd_set_error (bfd_error_bad_value);
1141 return false;
1142 }
1143
1144 /* Make sure this symbol is output as a dynamic symbol. */
1145 if (h->dynindx == -1)
1146 {
1147 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1148 return false;
1149 }
1150
1151 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1152 break;
1153
1154 case R_SPARC_PC10:
1155 case R_SPARC_PC22:
1156 case R_SPARC_PC_HH22:
1157 case R_SPARC_PC_HM10:
1158 case R_SPARC_PC_LM22:
1159 if (h != NULL
1160 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1161 break;
1162 /* Fall through. */
1163 case R_SPARC_DISP8:
1164 case R_SPARC_DISP16:
1165 case R_SPARC_DISP32:
1166 case R_SPARC_DISP64:
1167 case R_SPARC_WDISP30:
1168 case R_SPARC_WDISP22:
1169 case R_SPARC_WDISP19:
1170 case R_SPARC_WDISP16:
1171 if (h == NULL)
1172 break;
1173 /* Fall through. */
1174 case R_SPARC_8:
1175 case R_SPARC_16:
1176 case R_SPARC_32:
1177 case R_SPARC_HI22:
1178 case R_SPARC_22:
1179 case R_SPARC_13:
1180 case R_SPARC_LO10:
1181 case R_SPARC_UA32:
1182 case R_SPARC_10:
1183 case R_SPARC_11:
1184 case R_SPARC_64:
1185 case R_SPARC_OLO10:
1186 case R_SPARC_HH22:
1187 case R_SPARC_HM10:
1188 case R_SPARC_LM22:
1189 case R_SPARC_7:
1190 case R_SPARC_5:
1191 case R_SPARC_6:
1192 case R_SPARC_HIX22:
1193 case R_SPARC_LOX10:
1194 case R_SPARC_H44:
1195 case R_SPARC_M44:
1196 case R_SPARC_L44:
1197 case R_SPARC_UA64:
1198 case R_SPARC_UA16:
1199 /* When creating a shared object, we must copy these relocs
1200 into the output file. We create a reloc section in
1201 dynobj and make room for the reloc.
1202
1203 But don't do this for debugging sections -- this shows up
1204 with DWARF2 -- first because they are not loaded, and
1205 second because DWARF sez the debug info is not to be
1206 biased by the load address. */
1207 if (info->shared && (sec->flags & SEC_ALLOC))
1208 {
1209 if (sreloc == NULL)
1210 {
1211 const char *name;
1212
1213 name = (bfd_elf_string_from_elf_section
1214 (abfd,
1215 elf_elfheader (abfd)->e_shstrndx,
1216 elf_section_data (sec)->rel_hdr.sh_name));
1217 if (name == NULL)
1218 return false;
1219
1220 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1221 && strcmp (bfd_get_section_name (abfd, sec),
1222 name + 5) == 0);
1223
1224 sreloc = bfd_get_section_by_name (dynobj, name);
1225 if (sreloc == NULL)
1226 {
1227 flagword flags;
1228
1229 sreloc = bfd_make_section (dynobj, name);
1230 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1231 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1232 if ((sec->flags & SEC_ALLOC) != 0)
1233 flags |= SEC_ALLOC | SEC_LOAD;
1234 if (sreloc == NULL
1235 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1236 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1237 return false;
1238 }
1239 }
1240
1241 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1242 }
1243 break;
1244
1245 case R_SPARC_REGISTER:
1246 /* Nothing to do. */
1247 break;
1248
1249 default:
1250 (*_bfd_error_handler)(_("%s: check_relocs: unhandled reloc type %d"),
1251 bfd_get_filename(abfd),
1252 ELF64_R_TYPE_ID (rel->r_info));
1253 return false;
1254 }
1255 }
1256
1257 return true;
1258 }
1259
1260 /* Hook called by the linker routine which adds symbols from an object
1261 file. We use it for STT_REGISTER symbols. */
1262
1263 static boolean
1264 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1265 bfd *abfd;
1266 struct bfd_link_info *info;
1267 const Elf_Internal_Sym *sym;
1268 const char **namep;
1269 flagword *flagsp ATTRIBUTE_UNUSED;
1270 asection **secp ATTRIBUTE_UNUSED;
1271 bfd_vma *valp ATTRIBUTE_UNUSED;
1272 {
1273 static char *stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1274
1275 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1276 {
1277 int reg;
1278 struct sparc64_elf_app_reg *p;
1279
1280 reg = (int)sym->st_value;
1281 switch (reg & ~1)
1282 {
1283 case 2: reg -= 2; break;
1284 case 6: reg -= 4; break;
1285 default:
1286 (*_bfd_error_handler)
1287 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1288 bfd_get_filename (abfd));
1289 return false;
1290 }
1291
1292 if (info->hash->creator != abfd->xvec
1293 || (abfd->flags & DYNAMIC) != 0)
1294 {
1295 /* STT_REGISTER only works when linking an elf64_sparc object.
1296 If STT_REGISTER comes from a dynamic object, don't put it into
1297 the output bfd. The dynamic linker will recheck it. */
1298 *namep = NULL;
1299 return true;
1300 }
1301
1302 p = sparc64_elf_hash_table(info)->app_regs + reg;
1303
1304 if (p->name != NULL && strcmp (p->name, *namep))
1305 {
1306 (*_bfd_error_handler)
1307 (_("Register %%g%d used incompatibly: "
1308 "previously declared in %s to %s, in %s redefined to %s"),
1309 (int)sym->st_value,
1310 bfd_get_filename (p->abfd), *p->name ? p->name : "#scratch",
1311 bfd_get_filename (abfd), **namep ? *namep : "#scratch");
1312 return false;
1313 }
1314
1315 if (p->name == NULL)
1316 {
1317 if (**namep)
1318 {
1319 struct elf_link_hash_entry *h;
1320
1321 h = (struct elf_link_hash_entry *)
1322 bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1323
1324 if (h != NULL)
1325 {
1326 unsigned char type = h->type;
1327
1328 if (type > STT_FUNC) type = 0;
1329 (*_bfd_error_handler)
1330 (_("Symbol `%s' has differing types: "
1331 "previously %s, REGISTER in %s"),
1332 *namep, stt_types [type], bfd_get_filename (abfd));
1333 return false;
1334 }
1335
1336 p->name = bfd_hash_allocate (&info->hash->table,
1337 strlen (*namep) + 1);
1338 if (!p->name)
1339 return false;
1340
1341 strcpy (p->name, *namep);
1342 }
1343 else
1344 p->name = "";
1345 p->bind = ELF_ST_BIND (sym->st_info);
1346 p->abfd = abfd;
1347 p->shndx = sym->st_shndx;
1348 }
1349 else
1350 {
1351 if (p->bind == STB_WEAK
1352 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1353 {
1354 p->bind = STB_GLOBAL;
1355 p->abfd = abfd;
1356 }
1357 }
1358 *namep = NULL;
1359 return true;
1360 }
1361 else if (! *namep || ! **namep)
1362 return true;
1363 else
1364 {
1365 int i;
1366 struct sparc64_elf_app_reg *p;
1367
1368 p = sparc64_elf_hash_table(info)->app_regs;
1369 for (i = 0; i < 4; i++, p++)
1370 if (p->name != NULL && ! strcmp (p->name, *namep))
1371 {
1372 unsigned char type = ELF_ST_TYPE (sym->st_info);
1373
1374 if (type > STT_FUNC) type = 0;
1375 (*_bfd_error_handler)
1376 (_("Symbol `%s' has differing types: "
1377 "REGISTER in %s, %s in %s"),
1378 *namep, bfd_get_filename (p->abfd), stt_types [type],
1379 bfd_get_filename (abfd));
1380 return false;
1381 }
1382 }
1383 return true;
1384 }
1385
1386 /* This function takes care of emiting STT_REGISTER symbols
1387 which we cannot easily keep in the symbol hash table. */
1388
1389 static boolean
1390 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1391 bfd *output_bfd ATTRIBUTE_UNUSED;
1392 struct bfd_link_info *info;
1393 PTR finfo;
1394 boolean (*func) PARAMS ((PTR, const char *,
1395 Elf_Internal_Sym *, asection *));
1396 {
1397 int reg;
1398 struct sparc64_elf_app_reg *app_regs =
1399 sparc64_elf_hash_table(info)->app_regs;
1400 Elf_Internal_Sym sym;
1401
1402 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1403 at the end of the dynlocal list, so they came at the end of the local
1404 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1405 to back up symtab->sh_info. */
1406 if (elf_hash_table (info)->dynlocal)
1407 {
1408 bfd * dynobj = elf_hash_table (info)->dynobj;
1409 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1410 struct elf_link_local_dynamic_entry *e;
1411
1412 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1413 if (e->input_indx == -1)
1414 break;
1415 if (e)
1416 {
1417 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1418 = e->dynindx;
1419 }
1420 }
1421
1422 if (info->strip == strip_all)
1423 return true;
1424
1425 for (reg = 0; reg < 4; reg++)
1426 if (app_regs [reg].name != NULL)
1427 {
1428 if (info->strip == strip_some
1429 && bfd_hash_lookup (info->keep_hash,
1430 app_regs [reg].name,
1431 false, false) == NULL)
1432 continue;
1433
1434 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1435 sym.st_size = 0;
1436 sym.st_other = 0;
1437 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1438 sym.st_shndx = app_regs [reg].shndx;
1439 if (! (*func) (finfo, app_regs [reg].name, &sym,
1440 sym.st_shndx == SHN_ABS
1441 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1442 return false;
1443 }
1444
1445 return true;
1446 }
1447
1448 static int
1449 sparc64_elf_get_symbol_type (elf_sym, type)
1450 Elf_Internal_Sym * elf_sym;
1451 int type;
1452 {
1453 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1454 return STT_REGISTER;
1455 else
1456 return type;
1457 }
1458
1459 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1460 even in SHN_UNDEF section. */
1461
1462 static void
1463 sparc64_elf_symbol_processing (abfd, asym)
1464 bfd *abfd ATTRIBUTE_UNUSED;
1465 asymbol *asym;
1466 {
1467 elf_symbol_type *elfsym;
1468
1469 elfsym = (elf_symbol_type *) asym;
1470 if (elfsym->internal_elf_sym.st_info
1471 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1472 {
1473 asym->flags |= BSF_GLOBAL;
1474 }
1475 }
1476
1477 /* Adjust a symbol defined by a dynamic object and referenced by a
1478 regular object. The current definition is in some section of the
1479 dynamic object, but we're not including those sections. We have to
1480 change the definition to something the rest of the link can
1481 understand. */
1482
1483 static boolean
1484 sparc64_elf_adjust_dynamic_symbol (info, h)
1485 struct bfd_link_info *info;
1486 struct elf_link_hash_entry *h;
1487 {
1488 bfd *dynobj;
1489 asection *s;
1490 unsigned int power_of_two;
1491
1492 dynobj = elf_hash_table (info)->dynobj;
1493
1494 /* Make sure we know what is going on here. */
1495 BFD_ASSERT (dynobj != NULL
1496 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1497 || h->weakdef != NULL
1498 || ((h->elf_link_hash_flags
1499 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1500 && (h->elf_link_hash_flags
1501 & ELF_LINK_HASH_REF_REGULAR) != 0
1502 && (h->elf_link_hash_flags
1503 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1504
1505 /* If this is a function, put it in the procedure linkage table. We
1506 will fill in the contents of the procedure linkage table later
1507 (although we could actually do it here). The STT_NOTYPE
1508 condition is a hack specifically for the Oracle libraries
1509 delivered for Solaris; for some inexplicable reason, they define
1510 some of their functions as STT_NOTYPE when they really should be
1511 STT_FUNC. */
1512 if (h->type == STT_FUNC
1513 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1514 || (h->type == STT_NOTYPE
1515 && (h->root.type == bfd_link_hash_defined
1516 || h->root.type == bfd_link_hash_defweak)
1517 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1518 {
1519 if (! elf_hash_table (info)->dynamic_sections_created)
1520 {
1521 /* This case can occur if we saw a WPLT30 reloc in an input
1522 file, but none of the input files were dynamic objects.
1523 In such a case, we don't actually need to build a
1524 procedure linkage table, and we can just do a WDISP30
1525 reloc instead. */
1526 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1527 return true;
1528 }
1529
1530 s = bfd_get_section_by_name (dynobj, ".plt");
1531 BFD_ASSERT (s != NULL);
1532
1533 /* The first four bit in .plt is reserved. */
1534 if (s->_raw_size == 0)
1535 s->_raw_size = PLT_HEADER_SIZE;
1536
1537 /* If this symbol is not defined in a regular file, and we are
1538 not generating a shared library, then set the symbol to this
1539 location in the .plt. This is required to make function
1540 pointers compare as equal between the normal executable and
1541 the shared library. */
1542 if (! info->shared
1543 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1544 {
1545 h->root.u.def.section = s;
1546 h->root.u.def.value = s->_raw_size;
1547 }
1548
1549 /* To simplify matters later, just store the plt index here. */
1550 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1551
1552 /* Make room for this entry. */
1553 s->_raw_size += PLT_ENTRY_SIZE;
1554
1555 /* We also need to make an entry in the .rela.plt section. */
1556
1557 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1558 BFD_ASSERT (s != NULL);
1559
1560 s->_raw_size += sizeof (Elf64_External_Rela);
1561
1562 /* The procedure linkage table size is bounded by the magnitude
1563 of the offset we can describe in the entry. */
1564 if (s->_raw_size >= (bfd_vma)1 << 32)
1565 {
1566 bfd_set_error (bfd_error_bad_value);
1567 return false;
1568 }
1569
1570 return true;
1571 }
1572
1573 /* If this is a weak symbol, and there is a real definition, the
1574 processor independent code will have arranged for us to see the
1575 real definition first, and we can just use the same value. */
1576 if (h->weakdef != NULL)
1577 {
1578 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1579 || h->weakdef->root.type == bfd_link_hash_defweak);
1580 h->root.u.def.section = h->weakdef->root.u.def.section;
1581 h->root.u.def.value = h->weakdef->root.u.def.value;
1582 return true;
1583 }
1584
1585 /* This is a reference to a symbol defined by a dynamic object which
1586 is not a function. */
1587
1588 /* If we are creating a shared library, we must presume that the
1589 only references to the symbol are via the global offset table.
1590 For such cases we need not do anything here; the relocations will
1591 be handled correctly by relocate_section. */
1592 if (info->shared)
1593 return true;
1594
1595 /* We must allocate the symbol in our .dynbss section, which will
1596 become part of the .bss section of the executable. There will be
1597 an entry for this symbol in the .dynsym section. The dynamic
1598 object will contain position independent code, so all references
1599 from the dynamic object to this symbol will go through the global
1600 offset table. The dynamic linker will use the .dynsym entry to
1601 determine the address it must put in the global offset table, so
1602 both the dynamic object and the regular object will refer to the
1603 same memory location for the variable. */
1604
1605 s = bfd_get_section_by_name (dynobj, ".dynbss");
1606 BFD_ASSERT (s != NULL);
1607
1608 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1609 to copy the initial value out of the dynamic object and into the
1610 runtime process image. We need to remember the offset into the
1611 .rel.bss section we are going to use. */
1612 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1613 {
1614 asection *srel;
1615
1616 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1617 BFD_ASSERT (srel != NULL);
1618 srel->_raw_size += sizeof (Elf64_External_Rela);
1619 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1620 }
1621
1622 /* We need to figure out the alignment required for this symbol. I
1623 have no idea how ELF linkers handle this. 16-bytes is the size
1624 of the largest type that requires hard alignment -- long double. */
1625 power_of_two = bfd_log2 (h->size);
1626 if (power_of_two > 4)
1627 power_of_two = 4;
1628
1629 /* Apply the required alignment. */
1630 s->_raw_size = BFD_ALIGN (s->_raw_size,
1631 (bfd_size_type) (1 << power_of_two));
1632 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1633 {
1634 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1635 return false;
1636 }
1637
1638 /* Define the symbol as being at this point in the section. */
1639 h->root.u.def.section = s;
1640 h->root.u.def.value = s->_raw_size;
1641
1642 /* Increment the section size to make room for the symbol. */
1643 s->_raw_size += h->size;
1644
1645 return true;
1646 }
1647
1648 /* Set the sizes of the dynamic sections. */
1649
1650 static boolean
1651 sparc64_elf_size_dynamic_sections (output_bfd, info)
1652 bfd *output_bfd;
1653 struct bfd_link_info *info;
1654 {
1655 bfd *dynobj;
1656 asection *s;
1657 boolean reltext;
1658 boolean relplt;
1659
1660 dynobj = elf_hash_table (info)->dynobj;
1661 BFD_ASSERT (dynobj != NULL);
1662
1663 if (elf_hash_table (info)->dynamic_sections_created)
1664 {
1665 /* Set the contents of the .interp section to the interpreter. */
1666 if (! info->shared)
1667 {
1668 s = bfd_get_section_by_name (dynobj, ".interp");
1669 BFD_ASSERT (s != NULL);
1670 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1671 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1672 }
1673 }
1674 else
1675 {
1676 /* We may have created entries in the .rela.got section.
1677 However, if we are not creating the dynamic sections, we will
1678 not actually use these entries. Reset the size of .rela.got,
1679 which will cause it to get stripped from the output file
1680 below. */
1681 s = bfd_get_section_by_name (dynobj, ".rela.got");
1682 if (s != NULL)
1683 s->_raw_size = 0;
1684 }
1685
1686 /* The check_relocs and adjust_dynamic_symbol entry points have
1687 determined the sizes of the various dynamic sections. Allocate
1688 memory for them. */
1689 reltext = false;
1690 relplt = false;
1691 for (s = dynobj->sections; s != NULL; s = s->next)
1692 {
1693 const char *name;
1694 boolean strip;
1695
1696 if ((s->flags & SEC_LINKER_CREATED) == 0)
1697 continue;
1698
1699 /* It's OK to base decisions on the section name, because none
1700 of the dynobj section names depend upon the input files. */
1701 name = bfd_get_section_name (dynobj, s);
1702
1703 strip = false;
1704
1705 if (strncmp (name, ".rela", 5) == 0)
1706 {
1707 if (s->_raw_size == 0)
1708 {
1709 /* If we don't need this section, strip it from the
1710 output file. This is to handle .rela.bss and
1711 .rel.plt. We must create it in
1712 create_dynamic_sections, because it must be created
1713 before the linker maps input sections to output
1714 sections. The linker does that before
1715 adjust_dynamic_symbol is called, and it is that
1716 function which decides whether anything needs to go
1717 into these sections. */
1718 strip = true;
1719 }
1720 else
1721 {
1722 const char *outname;
1723 asection *target;
1724
1725 /* If this relocation section applies to a read only
1726 section, then we probably need a DT_TEXTREL entry. */
1727 outname = bfd_get_section_name (output_bfd,
1728 s->output_section);
1729 target = bfd_get_section_by_name (output_bfd, outname + 5);
1730 if (target != NULL
1731 && (target->flags & SEC_READONLY) != 0)
1732 reltext = true;
1733
1734 if (strcmp (name, ".rela.plt") == 0)
1735 relplt = true;
1736
1737 /* We use the reloc_count field as a counter if we need
1738 to copy relocs into the output file. */
1739 s->reloc_count = 0;
1740 }
1741 }
1742 else if (strcmp (name, ".plt") != 0
1743 && strncmp (name, ".got", 4) != 0)
1744 {
1745 /* It's not one of our sections, so don't allocate space. */
1746 continue;
1747 }
1748
1749 if (strip)
1750 {
1751 _bfd_strip_section_from_output (info, s);
1752 continue;
1753 }
1754
1755 /* Allocate memory for the section contents. Zero the memory
1756 for the benefit of .rela.plt, which has 4 unused entries
1757 at the beginning, and we don't want garbage. */
1758 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1759 if (s->contents == NULL && s->_raw_size != 0)
1760 return false;
1761 }
1762
1763 if (elf_hash_table (info)->dynamic_sections_created)
1764 {
1765 /* Add some entries to the .dynamic section. We fill in the
1766 values later, in sparc64_elf_finish_dynamic_sections, but we
1767 must add the entries now so that we get the correct size for
1768 the .dynamic section. The DT_DEBUG entry is filled in by the
1769 dynamic linker and used by the debugger. */
1770 int reg;
1771 struct sparc64_elf_app_reg * app_regs;
1772 struct bfd_strtab_hash *dynstr;
1773 struct elf_link_hash_table *eht = elf_hash_table (info);
1774
1775 if (! info->shared)
1776 {
1777 if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
1778 return false;
1779 }
1780
1781 if (relplt)
1782 {
1783 if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)
1784 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1785 || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1786 || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1787 return false;
1788 }
1789
1790 if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1791 || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1792 || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1793 sizeof (Elf64_External_Rela)))
1794 return false;
1795
1796 if (reltext)
1797 {
1798 if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1799 return false;
1800 info->flags |= DF_TEXTREL;
1801 }
1802
1803 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1804 entries if needed. */
1805 app_regs = sparc64_elf_hash_table (info)->app_regs;
1806 dynstr = eht->dynstr;
1807
1808 for (reg = 0; reg < 4; reg++)
1809 if (app_regs [reg].name != NULL)
1810 {
1811 struct elf_link_local_dynamic_entry *entry, *e;
1812
1813 if (! bfd_elf64_add_dynamic_entry (info, DT_SPARC_REGISTER, 0))
1814 return false;
1815
1816 entry = (struct elf_link_local_dynamic_entry *)
1817 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1818 if (entry == NULL)
1819 return false;
1820
1821 /* We cheat here a little bit: the symbol will not be local, so we
1822 put it at the end of the dynlocal linked list. We will fix it
1823 later on, as we have to fix other fields anyway. */
1824 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1825 entry->isym.st_size = 0;
1826 if (*app_regs [reg].name != '\0')
1827 entry->isym.st_name
1828 = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1829 else
1830 entry->isym.st_name = 0;
1831 entry->isym.st_other = 0;
1832 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1833 STT_REGISTER);
1834 entry->isym.st_shndx = app_regs [reg].shndx;
1835 entry->next = NULL;
1836 entry->input_bfd = output_bfd;
1837 entry->input_indx = -1;
1838
1839 if (eht->dynlocal == NULL)
1840 eht->dynlocal = entry;
1841 else
1842 {
1843 for (e = eht->dynlocal; e->next; e = e->next)
1844 ;
1845 e->next = entry;
1846 }
1847 eht->dynsymcount++;
1848 }
1849 }
1850
1851 return true;
1852 }
1853 \f
1854 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1855 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1856
1857 /*ARGSUSED*/
1858 static boolean
1859 sparc64_elf_relax_section (abfd, section, link_info, again)
1860 bfd *abfd ATTRIBUTE_UNUSED;
1861 asection *section ATTRIBUTE_UNUSED;
1862 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1863 boolean *again;
1864 {
1865 *again = false;
1866 SET_SEC_DO_RELAX (section);
1867 return true;
1868 }
1869 \f
1870 /* Relocate a SPARC64 ELF section. */
1871
1872 static boolean
1873 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1874 contents, relocs, local_syms, local_sections)
1875 bfd *output_bfd;
1876 struct bfd_link_info *info;
1877 bfd *input_bfd;
1878 asection *input_section;
1879 bfd_byte *contents;
1880 Elf_Internal_Rela *relocs;
1881 Elf_Internal_Sym *local_syms;
1882 asection **local_sections;
1883 {
1884 bfd *dynobj;
1885 Elf_Internal_Shdr *symtab_hdr;
1886 struct elf_link_hash_entry **sym_hashes;
1887 bfd_vma *local_got_offsets;
1888 bfd_vma got_base;
1889 asection *sgot;
1890 asection *splt;
1891 asection *sreloc;
1892 Elf_Internal_Rela *rel;
1893 Elf_Internal_Rela *relend;
1894
1895 dynobj = elf_hash_table (info)->dynobj;
1896 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1897 sym_hashes = elf_sym_hashes (input_bfd);
1898 local_got_offsets = elf_local_got_offsets (input_bfd);
1899
1900 if (elf_hash_table(info)->hgot == NULL)
1901 got_base = 0;
1902 else
1903 got_base = elf_hash_table (info)->hgot->root.u.def.value;
1904
1905 sgot = splt = sreloc = NULL;
1906
1907 rel = relocs;
1908 relend = relocs + input_section->reloc_count;
1909 for (; rel < relend; rel++)
1910 {
1911 int r_type;
1912 reloc_howto_type *howto;
1913 unsigned long r_symndx;
1914 struct elf_link_hash_entry *h;
1915 Elf_Internal_Sym *sym;
1916 asection *sec;
1917 bfd_vma relocation;
1918 bfd_reloc_status_type r;
1919
1920 r_type = ELF64_R_TYPE_ID (rel->r_info);
1921 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1922 {
1923 bfd_set_error (bfd_error_bad_value);
1924 return false;
1925 }
1926 howto = sparc64_elf_howto_table + r_type;
1927
1928 r_symndx = ELF64_R_SYM (rel->r_info);
1929
1930 if (info->relocateable)
1931 {
1932 /* This is a relocateable link. We don't have to change
1933 anything, unless the reloc is against a section symbol,
1934 in which case we have to adjust according to where the
1935 section symbol winds up in the output section. */
1936 if (r_symndx < symtab_hdr->sh_info)
1937 {
1938 sym = local_syms + r_symndx;
1939 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1940 {
1941 sec = local_sections[r_symndx];
1942 rel->r_addend += sec->output_offset + sym->st_value;
1943 }
1944 }
1945
1946 continue;
1947 }
1948
1949 /* This is a final link. */
1950 h = NULL;
1951 sym = NULL;
1952 sec = NULL;
1953 if (r_symndx < symtab_hdr->sh_info)
1954 {
1955 sym = local_syms + r_symndx;
1956 sec = local_sections[r_symndx];
1957 relocation = (sec->output_section->vma
1958 + sec->output_offset
1959 + sym->st_value);
1960 }
1961 else
1962 {
1963 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1964 while (h->root.type == bfd_link_hash_indirect
1965 || h->root.type == bfd_link_hash_warning)
1966 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1967 if (h->root.type == bfd_link_hash_defined
1968 || h->root.type == bfd_link_hash_defweak)
1969 {
1970 boolean skip_it = false;
1971 sec = h->root.u.def.section;
1972
1973 switch (r_type)
1974 {
1975 case R_SPARC_WPLT30:
1976 case R_SPARC_PLT32:
1977 case R_SPARC_HIPLT22:
1978 case R_SPARC_LOPLT10:
1979 case R_SPARC_PCPLT32:
1980 case R_SPARC_PCPLT22:
1981 case R_SPARC_PCPLT10:
1982 case R_SPARC_PLT64:
1983 if (h->plt.offset != (bfd_vma) -1)
1984 skip_it = true;
1985 break;
1986
1987 case R_SPARC_GOT10:
1988 case R_SPARC_GOT13:
1989 case R_SPARC_GOT22:
1990 if (elf_hash_table(info)->dynamic_sections_created
1991 && (!info->shared
1992 || (!info->symbolic && h->dynindx != -1)
1993 || !(h->elf_link_hash_flags
1994 & ELF_LINK_HASH_DEF_REGULAR)))
1995 skip_it = true;
1996 break;
1997
1998 case R_SPARC_PC10:
1999 case R_SPARC_PC22:
2000 case R_SPARC_PC_HH22:
2001 case R_SPARC_PC_HM10:
2002 case R_SPARC_PC_LM22:
2003 if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2004 break;
2005 /* FALLTHRU */
2006
2007 case R_SPARC_8:
2008 case R_SPARC_16:
2009 case R_SPARC_32:
2010 case R_SPARC_DISP8:
2011 case R_SPARC_DISP16:
2012 case R_SPARC_DISP32:
2013 case R_SPARC_WDISP30:
2014 case R_SPARC_WDISP22:
2015 case R_SPARC_HI22:
2016 case R_SPARC_22:
2017 case R_SPARC_13:
2018 case R_SPARC_LO10:
2019 case R_SPARC_UA32:
2020 case R_SPARC_10:
2021 case R_SPARC_11:
2022 case R_SPARC_64:
2023 case R_SPARC_OLO10:
2024 case R_SPARC_HH22:
2025 case R_SPARC_HM10:
2026 case R_SPARC_LM22:
2027 case R_SPARC_WDISP19:
2028 case R_SPARC_WDISP16:
2029 case R_SPARC_7:
2030 case R_SPARC_5:
2031 case R_SPARC_6:
2032 case R_SPARC_DISP64:
2033 case R_SPARC_HIX22:
2034 case R_SPARC_LOX10:
2035 case R_SPARC_H44:
2036 case R_SPARC_M44:
2037 case R_SPARC_L44:
2038 case R_SPARC_UA64:
2039 case R_SPARC_UA16:
2040 if (info->shared
2041 && ((!info->symbolic && h->dynindx != -1)
2042 || !(h->elf_link_hash_flags
2043 & ELF_LINK_HASH_DEF_REGULAR)))
2044 skip_it = true;
2045 break;
2046 }
2047
2048 if (skip_it)
2049 {
2050 /* In these cases, we don't need the relocation
2051 value. We check specially because in some
2052 obscure cases sec->output_section will be NULL. */
2053 relocation = 0;
2054 }
2055 else
2056 {
2057 relocation = (h->root.u.def.value
2058 + sec->output_section->vma
2059 + sec->output_offset);
2060 }
2061 }
2062 else if (h->root.type == bfd_link_hash_undefweak)
2063 relocation = 0;
2064 else if (info->shared && !info->symbolic
2065 && !info->no_undefined
2066 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2067 relocation = 0;
2068 else
2069 {
2070 if (! ((*info->callbacks->undefined_symbol)
2071 (info, h->root.root.string, input_bfd,
2072 input_section, rel->r_offset,
2073 (!info->shared || info->no_undefined
2074 || ELF_ST_VISIBILITY (h->other)))))
2075 return false;
2076
2077 /* To avoid generating warning messages about truncated
2078 relocations, set the relocation's address to be the same as
2079 the start of this section. */
2080
2081 if (input_section->output_section != NULL)
2082 relocation = input_section->output_section->vma;
2083 else
2084 relocation = 0;
2085 }
2086 }
2087
2088 /* When generating a shared object, these relocations are copied
2089 into the output file to be resolved at run time. */
2090 if (info->shared && (input_section->flags & SEC_ALLOC))
2091 {
2092 switch (r_type)
2093 {
2094 case R_SPARC_PC10:
2095 case R_SPARC_PC22:
2096 case R_SPARC_PC_HH22:
2097 case R_SPARC_PC_HM10:
2098 case R_SPARC_PC_LM22:
2099 if (h != NULL
2100 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2101 break;
2102 /* Fall through. */
2103 case R_SPARC_DISP8:
2104 case R_SPARC_DISP16:
2105 case R_SPARC_DISP32:
2106 case R_SPARC_WDISP30:
2107 case R_SPARC_WDISP22:
2108 case R_SPARC_WDISP19:
2109 case R_SPARC_WDISP16:
2110 case R_SPARC_DISP64:
2111 if (h == NULL)
2112 break;
2113 /* Fall through. */
2114 case R_SPARC_8:
2115 case R_SPARC_16:
2116 case R_SPARC_32:
2117 case R_SPARC_HI22:
2118 case R_SPARC_22:
2119 case R_SPARC_13:
2120 case R_SPARC_LO10:
2121 case R_SPARC_UA32:
2122 case R_SPARC_10:
2123 case R_SPARC_11:
2124 case R_SPARC_64:
2125 case R_SPARC_OLO10:
2126 case R_SPARC_HH22:
2127 case R_SPARC_HM10:
2128 case R_SPARC_LM22:
2129 case R_SPARC_7:
2130 case R_SPARC_5:
2131 case R_SPARC_6:
2132 case R_SPARC_HIX22:
2133 case R_SPARC_LOX10:
2134 case R_SPARC_H44:
2135 case R_SPARC_M44:
2136 case R_SPARC_L44:
2137 case R_SPARC_UA64:
2138 case R_SPARC_UA16:
2139 {
2140 Elf_Internal_Rela outrel;
2141 boolean skip;
2142
2143 if (sreloc == NULL)
2144 {
2145 const char *name =
2146 (bfd_elf_string_from_elf_section
2147 (input_bfd,
2148 elf_elfheader (input_bfd)->e_shstrndx,
2149 elf_section_data (input_section)->rel_hdr.sh_name));
2150
2151 if (name == NULL)
2152 return false;
2153
2154 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2155 && strcmp (bfd_get_section_name(input_bfd,
2156 input_section),
2157 name + 5) == 0);
2158
2159 sreloc = bfd_get_section_by_name (dynobj, name);
2160 BFD_ASSERT (sreloc != NULL);
2161 }
2162
2163 skip = false;
2164
2165 if (elf_section_data (input_section)->stab_info == NULL)
2166 outrel.r_offset = rel->r_offset;
2167 else
2168 {
2169 bfd_vma off;
2170
2171 off = (_bfd_stab_section_offset
2172 (output_bfd, &elf_hash_table (info)->stab_info,
2173 input_section,
2174 &elf_section_data (input_section)->stab_info,
2175 rel->r_offset));
2176 if (off == MINUS_ONE)
2177 skip = true;
2178 outrel.r_offset = off;
2179 }
2180
2181 outrel.r_offset += (input_section->output_section->vma
2182 + input_section->output_offset);
2183
2184 /* Optimize unaligned reloc usage now that we know where
2185 it finally resides. */
2186 switch (r_type)
2187 {
2188 case R_SPARC_16:
2189 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2190 break;
2191 case R_SPARC_UA16:
2192 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2193 break;
2194 case R_SPARC_32:
2195 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2196 break;
2197 case R_SPARC_UA32:
2198 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2199 break;
2200 case R_SPARC_64:
2201 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2202 break;
2203 case R_SPARC_UA64:
2204 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2205 break;
2206 }
2207
2208 if (skip)
2209 memset (&outrel, 0, sizeof outrel);
2210 /* h->dynindx may be -1 if the symbol was marked to
2211 become local. */
2212 else if (h != NULL
2213 && ((! info->symbolic && h->dynindx != -1)
2214 || (h->elf_link_hash_flags
2215 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2216 {
2217 BFD_ASSERT (h->dynindx != -1);
2218 outrel.r_info
2219 = ELF64_R_INFO (h->dynindx,
2220 ELF64_R_TYPE_INFO (
2221 ELF64_R_TYPE_DATA (rel->r_info),
2222 r_type));
2223 outrel.r_addend = rel->r_addend;
2224 }
2225 else
2226 {
2227 if (r_type == R_SPARC_64)
2228 {
2229 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2230 outrel.r_addend = relocation + rel->r_addend;
2231 }
2232 else
2233 {
2234 long indx;
2235
2236 if (h == NULL)
2237 sec = local_sections[r_symndx];
2238 else
2239 {
2240 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2241 || (h->root.type
2242 == bfd_link_hash_defweak));
2243 sec = h->root.u.def.section;
2244 }
2245 if (sec != NULL && bfd_is_abs_section (sec))
2246 indx = 0;
2247 else if (sec == NULL || sec->owner == NULL)
2248 {
2249 bfd_set_error (bfd_error_bad_value);
2250 return false;
2251 }
2252 else
2253 {
2254 asection *osec;
2255
2256 osec = sec->output_section;
2257 indx = elf_section_data (osec)->dynindx;
2258
2259 /* FIXME: we really should be able to link non-pic
2260 shared libraries. */
2261 if (indx == 0)
2262 {
2263 BFD_FAIL ();
2264 (*_bfd_error_handler)
2265 (_("%s: probably compiled without -fPIC?"),
2266 bfd_get_filename (input_bfd));
2267 bfd_set_error (bfd_error_bad_value);
2268 return false;
2269 }
2270 }
2271
2272 outrel.r_info
2273 = ELF64_R_INFO (indx,
2274 ELF64_R_TYPE_INFO (
2275 ELF64_R_TYPE_DATA (rel->r_info),
2276 r_type));
2277 outrel.r_addend = relocation + rel->r_addend;
2278 }
2279 }
2280
2281 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2282 (((Elf64_External_Rela *)
2283 sreloc->contents)
2284 + sreloc->reloc_count));
2285 ++sreloc->reloc_count;
2286
2287 /* This reloc will be computed at runtime, so there's no
2288 need to do anything now, unless this is a RELATIVE
2289 reloc in an unallocated section. */
2290 if (skip
2291 || (input_section->flags & SEC_ALLOC) != 0
2292 || ELF64_R_TYPE_ID (outrel.r_info) != R_SPARC_RELATIVE)
2293 continue;
2294 }
2295 break;
2296 }
2297 }
2298
2299 switch (r_type)
2300 {
2301 case R_SPARC_GOT10:
2302 case R_SPARC_GOT13:
2303 case R_SPARC_GOT22:
2304 /* Relocation is to the entry for this symbol in the global
2305 offset table. */
2306 if (sgot == NULL)
2307 {
2308 sgot = bfd_get_section_by_name (dynobj, ".got");
2309 BFD_ASSERT (sgot != NULL);
2310 }
2311
2312 if (h != NULL)
2313 {
2314 bfd_vma off = h->got.offset;
2315 BFD_ASSERT (off != (bfd_vma) -1);
2316
2317 if (! elf_hash_table (info)->dynamic_sections_created
2318 || (info->shared
2319 && (info->symbolic || h->dynindx == -1)
2320 && (h->elf_link_hash_flags
2321 & ELF_LINK_HASH_DEF_REGULAR)))
2322 {
2323 /* This is actually a static link, or it is a -Bsymbolic
2324 link and the symbol is defined locally, or the symbol
2325 was forced to be local because of a version file. We
2326 must initialize this entry in the global offset table.
2327 Since the offset must always be a multiple of 8, we
2328 use the least significant bit to record whether we
2329 have initialized it already.
2330
2331 When doing a dynamic link, we create a .rela.got
2332 relocation entry to initialize the value. This is
2333 done in the finish_dynamic_symbol routine. */
2334
2335 if ((off & 1) != 0)
2336 off &= ~1;
2337 else
2338 {
2339 bfd_put_64 (output_bfd, relocation,
2340 sgot->contents + off);
2341 h->got.offset |= 1;
2342 }
2343 }
2344 relocation = sgot->output_offset + off - got_base;
2345 }
2346 else
2347 {
2348 bfd_vma off;
2349
2350 BFD_ASSERT (local_got_offsets != NULL);
2351 off = local_got_offsets[r_symndx];
2352 BFD_ASSERT (off != (bfd_vma) -1);
2353
2354 /* The offset must always be a multiple of 8. We use
2355 the least significant bit to record whether we have
2356 already processed this entry. */
2357 if ((off & 1) != 0)
2358 off &= ~1;
2359 else
2360 {
2361 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2362 local_got_offsets[r_symndx] |= 1;
2363
2364 if (info->shared)
2365 {
2366 asection *srelgot;
2367 Elf_Internal_Rela outrel;
2368
2369 /* We need to generate a R_SPARC_RELATIVE reloc
2370 for the dynamic linker. */
2371 srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2372 BFD_ASSERT (srelgot != NULL);
2373
2374 outrel.r_offset = (sgot->output_section->vma
2375 + sgot->output_offset
2376 + off);
2377 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2378 outrel.r_addend = relocation;
2379 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2380 (((Elf64_External_Rela *)
2381 srelgot->contents)
2382 + srelgot->reloc_count));
2383 ++srelgot->reloc_count;
2384 }
2385 }
2386 relocation = sgot->output_offset + off - got_base;
2387 }
2388 goto do_default;
2389
2390 case R_SPARC_WPLT30:
2391 case R_SPARC_PLT32:
2392 case R_SPARC_HIPLT22:
2393 case R_SPARC_LOPLT10:
2394 case R_SPARC_PCPLT32:
2395 case R_SPARC_PCPLT22:
2396 case R_SPARC_PCPLT10:
2397 case R_SPARC_PLT64:
2398 /* Relocation is to the entry for this symbol in the
2399 procedure linkage table. */
2400 BFD_ASSERT (h != NULL);
2401
2402 if (h->plt.offset == (bfd_vma) -1)
2403 {
2404 /* We didn't make a PLT entry for this symbol. This
2405 happens when statically linking PIC code, or when
2406 using -Bsymbolic. */
2407 goto do_default;
2408 }
2409
2410 if (splt == NULL)
2411 {
2412 splt = bfd_get_section_by_name (dynobj, ".plt");
2413 BFD_ASSERT (splt != NULL);
2414 }
2415
2416 relocation = (splt->output_section->vma
2417 + splt->output_offset
2418 + sparc64_elf_plt_entry_offset (h->plt.offset));
2419 if (r_type == R_SPARC_WPLT30)
2420 goto do_wplt30;
2421 goto do_default;
2422
2423 case R_SPARC_OLO10:
2424 {
2425 bfd_vma x;
2426
2427 relocation += rel->r_addend;
2428 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2429
2430 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2431 x = (x & ~0x1fff) | (relocation & 0x1fff);
2432 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2433
2434 r = bfd_check_overflow (howto->complain_on_overflow,
2435 howto->bitsize, howto->rightshift,
2436 bfd_arch_bits_per_address (input_bfd),
2437 relocation);
2438 }
2439 break;
2440
2441 case R_SPARC_WDISP16:
2442 {
2443 bfd_vma x;
2444
2445 relocation += rel->r_addend;
2446 /* Adjust for pc-relative-ness. */
2447 relocation -= (input_section->output_section->vma
2448 + input_section->output_offset);
2449 relocation -= rel->r_offset;
2450
2451 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2452 x = (x & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
2453 | ((relocation >> 2) & 0x3fff));
2454 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2455
2456 r = bfd_check_overflow (howto->complain_on_overflow,
2457 howto->bitsize, howto->rightshift,
2458 bfd_arch_bits_per_address (input_bfd),
2459 relocation);
2460 }
2461 break;
2462
2463 case R_SPARC_HIX22:
2464 {
2465 bfd_vma x;
2466
2467 relocation += rel->r_addend;
2468 relocation = relocation ^ MINUS_ONE;
2469
2470 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2471 x = (x & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
2472 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2473
2474 r = bfd_check_overflow (howto->complain_on_overflow,
2475 howto->bitsize, howto->rightshift,
2476 bfd_arch_bits_per_address (input_bfd),
2477 relocation);
2478 }
2479 break;
2480
2481 case R_SPARC_LOX10:
2482 {
2483 bfd_vma x;
2484
2485 relocation += rel->r_addend;
2486 relocation = (relocation & 0x3ff) | 0x1c00;
2487
2488 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2489 x = (x & ~0x1fff) | relocation;
2490 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2491
2492 r = bfd_reloc_ok;
2493 }
2494 break;
2495
2496 case R_SPARC_WDISP30:
2497 do_wplt30:
2498 if (SEC_DO_RELAX (input_section)
2499 && rel->r_offset + 4 < input_section->_raw_size)
2500 {
2501 #define G0 0
2502 #define O7 15
2503 #define XCC (2 << 20)
2504 #define COND(x) (((x)&0xf)<<25)
2505 #define CONDA COND(0x8)
2506 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2507 #define INSN_BA (F2(0,2) | CONDA)
2508 #define INSN_OR F3(2, 0x2, 0)
2509 #define INSN_NOP F2(0,4)
2510
2511 bfd_vma x, y;
2512
2513 /* If the instruction is a call with either:
2514 restore
2515 arithmetic instruction with rd == %o7
2516 where rs1 != %o7 and rs2 if it is register != %o7
2517 then we can optimize if the call destination is near
2518 by changing the call into a branch always. */
2519 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2520 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2521 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2522 {
2523 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2524 || ((y & OP3(0x28)) == 0 /* arithmetic */
2525 && (y & RD(~0)) == RD(O7)))
2526 && (y & RS1(~0)) != RS1(O7)
2527 && ((y & F3I(~0))
2528 || (y & RS2(~0)) != RS2(O7)))
2529 {
2530 bfd_vma reloc;
2531
2532 reloc = relocation + rel->r_addend - rel->r_offset;
2533 reloc -= (input_section->output_section->vma
2534 + input_section->output_offset);
2535 if (reloc & 3)
2536 goto do_default;
2537
2538 /* Ensure the branch fits into simm22. */
2539 if ((reloc & ~(bfd_vma)0x7fffff)
2540 && ((reloc | 0x7fffff) != MINUS_ONE))
2541 goto do_default;
2542 reloc >>= 2;
2543
2544 /* Check whether it fits into simm19. */
2545 if ((reloc & 0x3c0000) == 0
2546 || (reloc & 0x3c0000) == 0x3c0000)
2547 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2548 else
2549 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2550 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2551 r = bfd_reloc_ok;
2552 if (rel->r_offset >= 4
2553 && (y & (0xffffffff ^ RS1(~0)))
2554 == (INSN_OR | RD(O7) | RS2(G0)))
2555 {
2556 bfd_vma z;
2557 unsigned int reg;
2558
2559 z = bfd_get_32 (input_bfd,
2560 contents + rel->r_offset - 4);
2561 if ((z & (0xffffffff ^ RD(~0)))
2562 != (INSN_OR | RS1(O7) | RS2(G0)))
2563 break;
2564
2565 /* The sequence was
2566 or %o7, %g0, %rN
2567 call foo
2568 or %rN, %g0, %o7
2569
2570 If call foo was replaced with ba, replace
2571 or %rN, %g0, %o7 with nop. */
2572
2573 reg = (y & RS1(~0)) >> 14;
2574 if (reg != ((z & RD(~0)) >> 25)
2575 || reg == G0 || reg == O7)
2576 break;
2577
2578 bfd_put_32 (input_bfd, INSN_NOP,
2579 contents + rel->r_offset + 4);
2580 }
2581 break;
2582 }
2583 }
2584 }
2585 /* FALLTHROUGH */
2586
2587 default:
2588 do_default:
2589 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2590 contents, rel->r_offset,
2591 relocation, rel->r_addend);
2592 break;
2593 }
2594
2595 switch (r)
2596 {
2597 case bfd_reloc_ok:
2598 break;
2599
2600 default:
2601 case bfd_reloc_outofrange:
2602 abort ();
2603
2604 case bfd_reloc_overflow:
2605 {
2606 const char *name;
2607
2608 if (h != NULL)
2609 {
2610 if (h->root.type == bfd_link_hash_undefweak
2611 && howto->pc_relative)
2612 {
2613 /* Assume this is a call protected by other code that
2614 detect the symbol is undefined. If this is the case,
2615 we can safely ignore the overflow. If not, the
2616 program is hosed anyway, and a little warning isn't
2617 going to help. */
2618 break;
2619 }
2620
2621 name = h->root.root.string;
2622 }
2623 else
2624 {
2625 name = (bfd_elf_string_from_elf_section
2626 (input_bfd,
2627 symtab_hdr->sh_link,
2628 sym->st_name));
2629 if (name == NULL)
2630 return false;
2631 if (*name == '\0')
2632 name = bfd_section_name (input_bfd, sec);
2633 }
2634 if (! ((*info->callbacks->reloc_overflow)
2635 (info, name, howto->name, (bfd_vma) 0,
2636 input_bfd, input_section, rel->r_offset)))
2637 return false;
2638 }
2639 break;
2640 }
2641 }
2642
2643 return true;
2644 }
2645
2646 /* Finish up dynamic symbol handling. We set the contents of various
2647 dynamic sections here. */
2648
2649 static boolean
2650 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2651 bfd *output_bfd;
2652 struct bfd_link_info *info;
2653 struct elf_link_hash_entry *h;
2654 Elf_Internal_Sym *sym;
2655 {
2656 bfd *dynobj;
2657
2658 dynobj = elf_hash_table (info)->dynobj;
2659
2660 if (h->plt.offset != (bfd_vma) -1)
2661 {
2662 asection *splt;
2663 asection *srela;
2664 Elf_Internal_Rela rela;
2665
2666 /* This symbol has an entry in the PLT. Set it up. */
2667
2668 BFD_ASSERT (h->dynindx != -1);
2669
2670 splt = bfd_get_section_by_name (dynobj, ".plt");
2671 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2672 BFD_ASSERT (splt != NULL && srela != NULL);
2673
2674 /* Fill in the entry in the .rela.plt section. */
2675
2676 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2677 {
2678 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2679 rela.r_addend = 0;
2680 }
2681 else
2682 {
2683 int max = splt->_raw_size / PLT_ENTRY_SIZE;
2684 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2685 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2686 -(splt->output_section->vma + splt->output_offset);
2687 }
2688 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2689 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2690
2691 /* Adjust for the first 4 reserved elements in the .plt section
2692 when setting the offset in the .rela.plt section.
2693 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2694 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2695
2696 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2697 ((Elf64_External_Rela *) srela->contents
2698 + (h->plt.offset - 4)));
2699
2700 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2701 {
2702 /* Mark the symbol as undefined, rather than as defined in
2703 the .plt section. Leave the value alone. */
2704 sym->st_shndx = SHN_UNDEF;
2705 }
2706 }
2707
2708 if (h->got.offset != (bfd_vma) -1)
2709 {
2710 asection *sgot;
2711 asection *srela;
2712 Elf_Internal_Rela rela;
2713
2714 /* This symbol has an entry in the GOT. Set it up. */
2715
2716 sgot = bfd_get_section_by_name (dynobj, ".got");
2717 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2718 BFD_ASSERT (sgot != NULL && srela != NULL);
2719
2720 rela.r_offset = (sgot->output_section->vma
2721 + sgot->output_offset
2722 + (h->got.offset &~ 1));
2723
2724 /* If this is a -Bsymbolic link, and the symbol is defined
2725 locally, we just want to emit a RELATIVE reloc. Likewise if
2726 the symbol was forced to be local because of a version file.
2727 The entry in the global offset table will already have been
2728 initialized in the relocate_section function. */
2729 if (info->shared
2730 && (info->symbolic || h->dynindx == -1)
2731 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2732 {
2733 asection *sec = h->root.u.def.section;
2734 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2735 rela.r_addend = (h->root.u.def.value
2736 + sec->output_section->vma
2737 + sec->output_offset);
2738 }
2739 else
2740 {
2741 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2742 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2743 rela.r_addend = 0;
2744 }
2745
2746 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2747 ((Elf64_External_Rela *) srela->contents
2748 + srela->reloc_count));
2749 ++srela->reloc_count;
2750 }
2751
2752 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2753 {
2754 asection *s;
2755 Elf_Internal_Rela rela;
2756
2757 /* This symbols needs a copy reloc. Set it up. */
2758
2759 BFD_ASSERT (h->dynindx != -1);
2760
2761 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2762 ".rela.bss");
2763 BFD_ASSERT (s != NULL);
2764
2765 rela.r_offset = (h->root.u.def.value
2766 + h->root.u.def.section->output_section->vma
2767 + h->root.u.def.section->output_offset);
2768 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2769 rela.r_addend = 0;
2770 bfd_elf64_swap_reloca_out (output_bfd, &rela,
2771 ((Elf64_External_Rela *) s->contents
2772 + s->reloc_count));
2773 ++s->reloc_count;
2774 }
2775
2776 /* Mark some specially defined symbols as absolute. */
2777 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2778 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2779 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2780 sym->st_shndx = SHN_ABS;
2781
2782 return true;
2783 }
2784
2785 /* Finish up the dynamic sections. */
2786
2787 static boolean
2788 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2789 bfd *output_bfd;
2790 struct bfd_link_info *info;
2791 {
2792 bfd *dynobj;
2793 int stt_regidx = -1;
2794 asection *sdyn;
2795 asection *sgot;
2796
2797 dynobj = elf_hash_table (info)->dynobj;
2798
2799 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2800
2801 if (elf_hash_table (info)->dynamic_sections_created)
2802 {
2803 asection *splt;
2804 Elf64_External_Dyn *dyncon, *dynconend;
2805
2806 splt = bfd_get_section_by_name (dynobj, ".plt");
2807 BFD_ASSERT (splt != NULL && sdyn != NULL);
2808
2809 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2810 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2811 for (; dyncon < dynconend; dyncon++)
2812 {
2813 Elf_Internal_Dyn dyn;
2814 const char *name;
2815 boolean size;
2816
2817 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2818
2819 switch (dyn.d_tag)
2820 {
2821 case DT_PLTGOT: name = ".plt"; size = false; break;
2822 case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2823 case DT_JMPREL: name = ".rela.plt"; size = false; break;
2824 case DT_SPARC_REGISTER:
2825 if (stt_regidx == -1)
2826 {
2827 stt_regidx =
2828 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2829 if (stt_regidx == -1)
2830 return false;
2831 }
2832 dyn.d_un.d_val = stt_regidx++;
2833 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2834 /* fallthrough */
2835 default: name = NULL; size = false; break;
2836 }
2837
2838 if (name != NULL)
2839 {
2840 asection *s;
2841
2842 s = bfd_get_section_by_name (output_bfd, name);
2843 if (s == NULL)
2844 dyn.d_un.d_val = 0;
2845 else
2846 {
2847 if (! size)
2848 dyn.d_un.d_ptr = s->vma;
2849 else
2850 {
2851 if (s->_cooked_size != 0)
2852 dyn.d_un.d_val = s->_cooked_size;
2853 else
2854 dyn.d_un.d_val = s->_raw_size;
2855 }
2856 }
2857 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2858 }
2859 }
2860
2861 /* Initialize the contents of the .plt section. */
2862 if (splt->_raw_size > 0)
2863 {
2864 sparc64_elf_build_plt(output_bfd, splt->contents,
2865 splt->_raw_size / PLT_ENTRY_SIZE);
2866 }
2867
2868 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2869 PLT_ENTRY_SIZE;
2870 }
2871
2872 /* Set the first entry in the global offset table to the address of
2873 the dynamic section. */
2874 sgot = bfd_get_section_by_name (dynobj, ".got");
2875 BFD_ASSERT (sgot != NULL);
2876 if (sgot->_raw_size > 0)
2877 {
2878 if (sdyn == NULL)
2879 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2880 else
2881 bfd_put_64 (output_bfd,
2882 sdyn->output_section->vma + sdyn->output_offset,
2883 sgot->contents);
2884 }
2885
2886 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2887
2888 return true;
2889 }
2890 \f
2891 /* Functions for dealing with the e_flags field. */
2892
2893 /* Merge backend specific data from an object file to the output
2894 object file when linking. */
2895
2896 static boolean
2897 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2898 bfd *ibfd;
2899 bfd *obfd;
2900 {
2901 boolean error;
2902 flagword new_flags, old_flags;
2903 int new_mm, old_mm;
2904
2905 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2906 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2907 return true;
2908
2909 new_flags = elf_elfheader (ibfd)->e_flags;
2910 old_flags = elf_elfheader (obfd)->e_flags;
2911
2912 if (!elf_flags_init (obfd)) /* First call, no flags set */
2913 {
2914 elf_flags_init (obfd) = true;
2915 elf_elfheader (obfd)->e_flags = new_flags;
2916 }
2917
2918 else if (new_flags == old_flags) /* Compatible flags are ok */
2919 ;
2920
2921 else /* Incompatible flags */
2922 {
2923 error = false;
2924
2925 if ((ibfd->flags & DYNAMIC) != 0)
2926 {
2927 /* We don't want dynamic objects memory ordering and
2928 architecture to have any role. That's what dynamic linker
2929 should do. */
2930 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1);
2931 new_flags |= (old_flags
2932 & (EF_SPARCV9_MM
2933 | EF_SPARC_SUN_US1
2934 | EF_SPARC_HAL_R1));
2935 }
2936 else
2937 {
2938 /* Choose the highest architecture requirements. */
2939 old_flags |= (new_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1));
2940 new_flags |= (old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1));
2941 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1))
2942 == (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1))
2943 {
2944 error = true;
2945 (*_bfd_error_handler)
2946 (_("%s: linking UltraSPARC specific with HAL specific code"),
2947 bfd_get_filename (ibfd));
2948 }
2949 /* Choose the most restrictive memory ordering. */
2950 old_mm = (old_flags & EF_SPARCV9_MM);
2951 new_mm = (new_flags & EF_SPARCV9_MM);
2952 old_flags &= ~EF_SPARCV9_MM;
2953 new_flags &= ~EF_SPARCV9_MM;
2954 if (new_mm < old_mm)
2955 old_mm = new_mm;
2956 old_flags |= old_mm;
2957 new_flags |= old_mm;
2958 }
2959
2960 /* Warn about any other mismatches */
2961 if (new_flags != old_flags)
2962 {
2963 error = true;
2964 (*_bfd_error_handler)
2965 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2966 bfd_get_filename (ibfd), (long)new_flags, (long)old_flags);
2967 }
2968
2969 elf_elfheader (obfd)->e_flags = old_flags;
2970
2971 if (error)
2972 {
2973 bfd_set_error (bfd_error_bad_value);
2974 return false;
2975 }
2976 }
2977 return true;
2978 }
2979 \f
2980 /* Print a STT_REGISTER symbol to file FILE. */
2981
2982 static const char *
2983 sparc64_elf_print_symbol_all (abfd, filep, symbol)
2984 bfd *abfd ATTRIBUTE_UNUSED;
2985 PTR filep;
2986 asymbol *symbol;
2987 {
2988 FILE *file = (FILE *) filep;
2989 int reg, type;
2990
2991 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
2992 != STT_REGISTER)
2993 return NULL;
2994
2995 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2996 type = symbol->flags;
2997 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
2998 ((type & BSF_LOCAL)
2999 ? (type & BSF_GLOBAL) ? '!' : 'l'
3000 : (type & BSF_GLOBAL) ? 'g' : ' '),
3001 (type & BSF_WEAK) ? 'w' : ' ');
3002 if (symbol->name == NULL || symbol->name [0] == '\0')
3003 return "#scratch";
3004 else
3005 return symbol->name;
3006 }
3007 \f
3008 /* Set the right machine number for a SPARC64 ELF file. */
3009
3010 static boolean
3011 sparc64_elf_object_p (abfd)
3012 bfd *abfd;
3013 {
3014 unsigned long mach = bfd_mach_sparc_v9;
3015
3016 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3017 mach = bfd_mach_sparc_v9a;
3018 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3019 }
3020
3021 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3022 standard ELF, because R_SPARC_OLO10 has secondary addend in
3023 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3024 relocation handling routines. */
3025
3026 const struct elf_size_info sparc64_elf_size_info =
3027 {
3028 sizeof (Elf64_External_Ehdr),
3029 sizeof (Elf64_External_Phdr),
3030 sizeof (Elf64_External_Shdr),
3031 sizeof (Elf64_External_Rel),
3032 sizeof (Elf64_External_Rela),
3033 sizeof (Elf64_External_Sym),
3034 sizeof (Elf64_External_Dyn),
3035 sizeof (Elf_External_Note),
3036 4, /* hash-table entry size */
3037 /* internal relocations per external relocations.
3038 For link purposes we use just 1 internal per
3039 1 external, for assembly and slurp symbol table
3040 we use 2. */
3041 1,
3042 64, /* arch_size */
3043 8, /* file_align */
3044 ELFCLASS64,
3045 EV_CURRENT,
3046 bfd_elf64_write_out_phdrs,
3047 bfd_elf64_write_shdrs_and_ehdr,
3048 sparc64_elf_write_relocs,
3049 bfd_elf64_swap_symbol_out,
3050 sparc64_elf_slurp_reloc_table,
3051 bfd_elf64_slurp_symbol_table,
3052 bfd_elf64_swap_dyn_in,
3053 bfd_elf64_swap_dyn_out,
3054 NULL,
3055 NULL,
3056 NULL,
3057 NULL
3058 };
3059
3060 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3061 #define TARGET_BIG_NAME "elf64-sparc"
3062 #define ELF_ARCH bfd_arch_sparc
3063 #define ELF_MAXPAGESIZE 0x100000
3064
3065 /* This is the official ABI value. */
3066 #define ELF_MACHINE_CODE EM_SPARCV9
3067
3068 /* This is the value that we used before the ABI was released. */
3069 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3070
3071 #define bfd_elf64_bfd_link_hash_table_create \
3072 sparc64_elf_bfd_link_hash_table_create
3073
3074 #define elf_info_to_howto \
3075 sparc64_elf_info_to_howto
3076 #define bfd_elf64_get_reloc_upper_bound \
3077 sparc64_elf_get_reloc_upper_bound
3078 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3079 sparc64_elf_get_dynamic_reloc_upper_bound
3080 #define bfd_elf64_canonicalize_dynamic_reloc \
3081 sparc64_elf_canonicalize_dynamic_reloc
3082 #define bfd_elf64_bfd_reloc_type_lookup \
3083 sparc64_elf_reloc_type_lookup
3084 #define bfd_elf64_bfd_relax_section \
3085 sparc64_elf_relax_section
3086
3087 #define elf_backend_create_dynamic_sections \
3088 _bfd_elf_create_dynamic_sections
3089 #define elf_backend_add_symbol_hook \
3090 sparc64_elf_add_symbol_hook
3091 #define elf_backend_get_symbol_type \
3092 sparc64_elf_get_symbol_type
3093 #define elf_backend_symbol_processing \
3094 sparc64_elf_symbol_processing
3095 #define elf_backend_check_relocs \
3096 sparc64_elf_check_relocs
3097 #define elf_backend_adjust_dynamic_symbol \
3098 sparc64_elf_adjust_dynamic_symbol
3099 #define elf_backend_size_dynamic_sections \
3100 sparc64_elf_size_dynamic_sections
3101 #define elf_backend_relocate_section \
3102 sparc64_elf_relocate_section
3103 #define elf_backend_finish_dynamic_symbol \
3104 sparc64_elf_finish_dynamic_symbol
3105 #define elf_backend_finish_dynamic_sections \
3106 sparc64_elf_finish_dynamic_sections
3107 #define elf_backend_print_symbol_all \
3108 sparc64_elf_print_symbol_all
3109 #define elf_backend_output_arch_syms \
3110 sparc64_elf_output_arch_syms
3111
3112 #define bfd_elf64_bfd_merge_private_bfd_data \
3113 sparc64_elf_merge_private_bfd_data
3114
3115 #define elf_backend_size_info \
3116 sparc64_elf_size_info
3117 #define elf_backend_object_p \
3118 sparc64_elf_object_p
3119
3120 #define elf_backend_want_got_plt 0
3121 #define elf_backend_plt_readonly 0
3122 #define elf_backend_want_plt_sym 1
3123
3124 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3125 #define elf_backend_plt_alignment 8
3126
3127 #define elf_backend_got_header_size 8
3128 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3129
3130 #include "elf64-target.h"
This page took 0.092658 seconds and 5 git commands to generate.