24eb9f76a0b2fe4612ed60dff3bfe3b9669f05cd
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25
26 #include "elf/x86-64.h"
27
28 /* We use only the RELA entries. */
29 #define USE_RELA
30
31 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
32 #define MINUS_ONE (~ (bfd_vma) 0)
33
34 /* The relocation "howto" table. Order of fields:
35 type, size, bitsize, pc_relative, complain_on_overflow,
36 special_function, name, partial_inplace, src_mask, dst_pack, pcrel_offset. */
37 static reloc_howto_type x86_64_elf_howto_table[] =
38 {
39 HOWTO(R_X86_64_NONE, 0, 0, 0, false, 0, complain_overflow_dont,
40 bfd_elf_generic_reloc, "R_X86_64_NONE", false, 0x00000000, 0x00000000,
41 false),
42 HOWTO(R_X86_64_64, 0, 4, 64, false, 0, complain_overflow_bitfield,
43 bfd_elf_generic_reloc, "R_X86_64_64", false, MINUS_ONE, MINUS_ONE,
44 false),
45 HOWTO(R_X86_64_PC32, 0, 4, 32, true, 0, complain_overflow_signed,
46 bfd_elf_generic_reloc, "R_X86_64_PC32", false, 0xffffffff, 0xffffffff,
47 true),
48 HOWTO(R_X86_64_GOT32, 0, 4, 32, false, 0, complain_overflow_signed,
49 bfd_elf_generic_reloc, "R_X86_64_GOT32", false, 0xffffffff, 0xffffffff,
50 false),
51 HOWTO(R_X86_64_PLT32, 0, 4, 32, true, 0, complain_overflow_signed,
52 bfd_elf_generic_reloc, "R_X86_64_PLT32", false, 0xffffffff, 0xffffffff,
53 true),
54 HOWTO(R_X86_64_COPY, 0, 4, 32, false, 0, complain_overflow_bitfield,
55 bfd_elf_generic_reloc, "R_X86_64_COPY", false, 0xffffffff, 0xffffffff,
56 false),
57 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, false, 0, complain_overflow_bitfield,
58 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", false, MINUS_ONE,
59 MINUS_ONE, false),
60 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, false, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", false, MINUS_ONE,
62 MINUS_ONE, false),
63 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, false, 0, complain_overflow_bitfield,
64 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", false, MINUS_ONE,
65 MINUS_ONE, false),
66 HOWTO(R_X86_64_GOTPCREL, 0, 4, 32, true,0 , complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", false, 0xffffffff,
68 0xffffffff, true),
69 HOWTO(R_X86_64_32, 0, 4, 32, false, 0, complain_overflow_unsigned,
70 bfd_elf_generic_reloc, "R_X86_64_32", false, 0xffffffff, 0xffffffff,
71 false),
72 HOWTO(R_X86_64_32S, 0, 4, 32, false, 0, complain_overflow_signed,
73 bfd_elf_generic_reloc, "R_X86_64_32S", false, 0xffffffff, 0xffffffff,
74 false),
75 HOWTO(R_X86_64_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_16", false, 0xffff, 0xffff, false),
77 HOWTO(R_X86_64_PC16,0, 1, 16, true, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_PC16", false, 0xffff, 0xffff, true),
79 HOWTO(R_X86_64_8, 0, 0, 8, false, 0, complain_overflow_signed,
80 bfd_elf_generic_reloc, "R_X86_64_8", false, 0xff, 0xff, false),
81 HOWTO(R_X86_64_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
82 bfd_elf_generic_reloc, "R_X86_64_PC8", false, 0xff, 0xff, true),
83
84 /* GNU extension to record C++ vtable hierarchy. */
85 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, false, 0, complain_overflow_dont,
86 NULL, "R_X86_64_GNU_VTINHERIT", false, 0, 0, false),
87
88 /* GNU extension to record C++ vtable member usage. */
89 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, false, 0, complain_overflow_dont,
90 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", false, 0, 0,
91 false)
92 };
93
94 /* Map BFD relocs to the x86_64 elf relocs. */
95 struct elf_reloc_map
96 {
97 bfd_reloc_code_real_type bfd_reloc_val;
98 unsigned char elf_reloc_val;
99 };
100
101 static const struct elf_reloc_map x86_64_reloc_map[] =
102 {
103 { BFD_RELOC_NONE, R_X86_64_NONE, },
104 { BFD_RELOC_64, R_X86_64_64, },
105 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
106 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
107 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
108 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
109 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
110 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
111 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
112 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
113 { BFD_RELOC_32, R_X86_64_32, },
114 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
115 { BFD_RELOC_16, R_X86_64_16, },
116 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
117 { BFD_RELOC_8, R_X86_64_8, },
118 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
119 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
120 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
121 };
122
123 static reloc_howto_type *elf64_x86_64_reloc_type_lookup
124 PARAMS ((bfd *, bfd_reloc_code_real_type));
125 static void elf64_x86_64_info_to_howto
126 PARAMS ((bfd *, arelent *, Elf64_Internal_Rela *));
127 static struct bfd_link_hash_table *elf64_x86_64_link_hash_table_create
128 PARAMS ((bfd *));
129 static boolean elf64_x86_64_elf_object_p PARAMS ((bfd *abfd));
130 static boolean elf64_x86_64_check_relocs
131 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
132 const Elf_Internal_Rela *));
133 static asection *elf64_x86_64_gc_mark_hook
134 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
135 struct elf_link_hash_entry *, Elf_Internal_Sym *));
136
137 static boolean elf64_x86_64_gc_sweep_hook
138 PARAMS ((bfd *, struct bfd_link_info *, asection *,
139 const Elf_Internal_Rela *));
140
141 static struct bfd_hash_entry *elf64_x86_64_link_hash_newfunc
142 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
143 static boolean elf64_x86_64_adjust_dynamic_symbol
144 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
145
146 static boolean elf64_x86_64_size_dynamic_sections
147 PARAMS ((bfd *, struct bfd_link_info *));
148 static boolean elf64_x86_64_relocate_section
149 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
150 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
151 static boolean elf64_x86_64_finish_dynamic_symbol
152 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
153 Elf_Internal_Sym *sym));
154 static boolean elf64_x86_64_finish_dynamic_sections
155 PARAMS ((bfd *, struct bfd_link_info *));
156 static enum elf_reloc_type_class elf64_x86_64_reloc_type_class PARAMS ((int));
157
158 /* Given a BFD reloc type, return a HOWTO structure. */
159 static reloc_howto_type *
160 elf64_x86_64_reloc_type_lookup (abfd, code)
161 bfd *abfd ATTRIBUTE_UNUSED;
162 bfd_reloc_code_real_type code;
163 {
164 unsigned int i;
165 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
166 i++)
167 {
168 if (x86_64_reloc_map[i].bfd_reloc_val == code)
169 return &x86_64_elf_howto_table[(int)
170 x86_64_reloc_map[i].elf_reloc_val];
171 }
172 return 0;
173 }
174
175 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
176
177 static void
178 elf64_x86_64_info_to_howto (abfd, cache_ptr, dst)
179 bfd *abfd ATTRIBUTE_UNUSED;
180 arelent *cache_ptr;
181 Elf64_Internal_Rela *dst;
182 {
183 unsigned r_type, i;
184
185 r_type = ELF64_R_TYPE (dst->r_info);
186 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT)
187 {
188 BFD_ASSERT (r_type <= (unsigned int) R_X86_64_PC8);
189 i = r_type;
190 }
191 else
192 {
193 BFD_ASSERT (r_type < (unsigned int) R_X86_64_max);
194 i = r_type - ((unsigned int) R_X86_64_GNU_VTINHERIT - R_X86_64_PC8 - 1);
195 }
196 cache_ptr->howto = &x86_64_elf_howto_table[i];
197 BFD_ASSERT (r_type == cache_ptr->howto->type);
198 }
199 \f
200 /* Functions for the x86-64 ELF linker. */
201
202 /* The name of the dynamic interpreter. This is put in the .interp
203 section. */
204
205 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
206
207 /* The size in bytes of an entry in the global offset table. */
208
209 #define GOT_ENTRY_SIZE 8
210
211 /* The size in bytes of an entry in the procedure linkage table. */
212
213 #define PLT_ENTRY_SIZE 16
214
215 /* The first entry in a procedure linkage table looks like this. See the
216 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
217
218 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
219 {
220 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
221 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
222 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
223 };
224
225 /* Subsequent entries in a procedure linkage table look like this. */
226
227 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
228 {
229 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
230 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
231 0x68, /* pushq immediate */
232 0, 0, 0, 0, /* replaced with index into relocation table. */
233 0xe9, /* jmp relative */
234 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
235 };
236
237 /* The x86-64 linker needs to keep track of the number of relocs that
238 it decides to copy in check_relocs for each symbol. This is so
239 that it can discard PC relative relocs if it doesn't need them when
240 linking with -Bsymbolic. We store the information in a field
241 extending the regular ELF linker hash table. */
242
243 /* This structure keeps track of the number of PC relative relocs we
244 have copied for a given symbol. */
245
246 struct elf64_x86_64_pcrel_relocs_copied
247 {
248 /* Next section. */
249 struct elf64_x86_64_pcrel_relocs_copied *next;
250 /* A section in dynobj. */
251 asection *section;
252 /* Number of relocs copied in this section. */
253 bfd_size_type count;
254 };
255
256 /* x86-64 ELF linker hash entry. */
257
258 struct elf64_x86_64_link_hash_entry
259 {
260 struct elf_link_hash_entry root;
261
262 /* Number of PC relative relocs copied for this symbol. */
263 struct elf64_x86_64_pcrel_relocs_copied *pcrel_relocs_copied;
264 };
265
266 /* x86-64 ELF linker hash table. */
267
268 struct elf64_x86_64_link_hash_table
269 {
270 struct elf_link_hash_table root;
271 };
272
273 /* Declare this now that the above structures are defined. */
274
275 static boolean elf64_x86_64_discard_copies
276 PARAMS ((struct elf64_x86_64_link_hash_entry *, PTR));
277
278 /* Traverse an x86-64 ELF linker hash table. */
279
280 #define elf64_x86_64_link_hash_traverse(table, func, info) \
281 (elf_link_hash_traverse \
282 (&(table)->root, \
283 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
284 (info)))
285
286 /* Get the x86-64 ELF linker hash table from a link_info structure. */
287
288 #define elf64_x86_64_hash_table(p) \
289 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
290
291 /* Create an entry in an x86-64 ELF linker hash table. */
292
293 static struct bfd_hash_entry *
294 elf64_x86_64_link_hash_newfunc (entry, table, string)
295 struct bfd_hash_entry *entry;
296 struct bfd_hash_table *table;
297 const char *string;
298 {
299 struct elf64_x86_64_link_hash_entry *ret =
300 (struct elf64_x86_64_link_hash_entry *) entry;
301
302 /* Allocate the structure if it has not already been allocated by a
303 subclass. */
304 if (ret == (struct elf64_x86_64_link_hash_entry *) NULL)
305 ret = ((struct elf64_x86_64_link_hash_entry *)
306 bfd_hash_allocate (table,
307 sizeof (struct elf64_x86_64_link_hash_entry)));
308 if (ret == (struct elf64_x86_64_link_hash_entry *) NULL)
309 return (struct bfd_hash_entry *) ret;
310
311 /* Call the allocation method of the superclass. */
312 ret = ((struct elf64_x86_64_link_hash_entry *)
313 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
314 table, string));
315 if (ret != (struct elf64_x86_64_link_hash_entry *) NULL)
316 {
317 ret->pcrel_relocs_copied = NULL;
318 }
319
320 return (struct bfd_hash_entry *) ret;
321 }
322
323 /* Create an X86-64 ELF linker hash table. */
324
325 static struct bfd_link_hash_table *
326 elf64_x86_64_link_hash_table_create (abfd)
327 bfd *abfd;
328 {
329 struct elf64_x86_64_link_hash_table *ret;
330 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
331
332 ret = ((struct elf64_x86_64_link_hash_table *) bfd_alloc (abfd, amt));
333 if (ret == (struct elf64_x86_64_link_hash_table *) NULL)
334 return NULL;
335
336 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
337 elf64_x86_64_link_hash_newfunc))
338 {
339 bfd_release (abfd, ret);
340 return NULL;
341 }
342
343 return &ret->root.root;
344 }
345
346 static boolean
347 elf64_x86_64_elf_object_p (abfd)
348 bfd *abfd;
349 {
350 /* Set the right machine number for an x86-64 elf64 file. */
351 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
352 return true;
353 }
354
355 /* Look through the relocs for a section during the first phase, and
356 allocate space in the global offset table or procedure linkage
357 table. */
358
359 static boolean
360 elf64_x86_64_check_relocs (abfd, info, sec, relocs)
361 bfd *abfd;
362 struct bfd_link_info *info;
363 asection *sec;
364 const Elf_Internal_Rela *relocs;
365 {
366 bfd *dynobj;
367 Elf_Internal_Shdr *symtab_hdr;
368 struct elf_link_hash_entry **sym_hashes;
369 bfd_signed_vma *local_got_refcounts;
370 const Elf_Internal_Rela *rel;
371 const Elf_Internal_Rela *rel_end;
372 asection *sgot;
373 asection *srelgot;
374 asection *sreloc;
375
376 if (info->relocateable)
377 return true;
378
379 dynobj = elf_hash_table (info)->dynobj;
380 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
381 sym_hashes = elf_sym_hashes (abfd);
382 local_got_refcounts = elf_local_got_refcounts (abfd);
383
384 sgot = srelgot = sreloc = NULL;
385 rel_end = relocs + sec->reloc_count;
386 for (rel = relocs; rel < rel_end; rel++)
387 {
388 unsigned long r_symndx;
389 struct elf_link_hash_entry *h;
390
391 r_symndx = ELF64_R_SYM (rel->r_info);
392 if (r_symndx < symtab_hdr->sh_info)
393 h = NULL;
394 else
395 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
396
397 /* Some relocs require a global offset table. */
398 if (dynobj == NULL)
399 {
400 switch (ELF64_R_TYPE (rel->r_info))
401 {
402 case R_X86_64_GOT32:
403 case R_X86_64_GOTPCREL:
404 elf_hash_table (info)->dynobj = dynobj = abfd;
405 if (! _bfd_elf_create_got_section (dynobj, info))
406 return false;
407 break;
408 }
409 }
410
411 switch (ELF64_R_TYPE (rel->r_info))
412 {
413 case R_X86_64_GOTPCREL:
414 case R_X86_64_GOT32:
415 /* This symbol requires a global offset table entry. */
416
417 if (sgot == NULL)
418 {
419 sgot = bfd_get_section_by_name (dynobj, ".got");
420 BFD_ASSERT (sgot != NULL);
421 }
422
423 if (srelgot == NULL && (h != NULL || info->shared))
424 {
425 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
426 if (srelgot == NULL)
427 {
428 srelgot = bfd_make_section (dynobj, ".rela.got");
429 if (srelgot == NULL
430 || ! bfd_set_section_flags (dynobj, srelgot,
431 (SEC_ALLOC
432 | SEC_LOAD
433 | SEC_HAS_CONTENTS
434 | SEC_IN_MEMORY
435 | SEC_LINKER_CREATED
436 | SEC_READONLY))
437 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
438 return false;
439 }
440 }
441
442 if (h != NULL)
443 {
444 if (h->got.refcount == -1)
445 {
446 h->got.refcount = 1;
447
448 /* Make sure this symbol is output as a dynamic symbol. */
449 if (h->dynindx == -1)
450 {
451 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
452 return false;
453 }
454
455 sgot->_raw_size += GOT_ENTRY_SIZE;
456 srelgot->_raw_size += sizeof (Elf64_External_Rela);
457 }
458 else
459 h->got.refcount += 1;
460 }
461 else
462 {
463 /* This is a global offset table entry for a local symbol. */
464 if (local_got_refcounts == NULL)
465 {
466 bfd_size_type size;
467
468 size = symtab_hdr->sh_info;
469 size *= sizeof (bfd_signed_vma);
470 local_got_refcounts = ((bfd_signed_vma *)
471 bfd_alloc (abfd, size));
472 if (local_got_refcounts == NULL)
473 return false;
474 elf_local_got_refcounts (abfd) = local_got_refcounts;
475 memset (local_got_refcounts, -1, (size_t) size);
476 }
477 if (local_got_refcounts[r_symndx] == -1)
478 {
479 local_got_refcounts[r_symndx] = 1;
480
481 sgot->_raw_size += GOT_ENTRY_SIZE;
482 if (info->shared)
483 {
484 /* If we are generating a shared object, we need to
485 output a R_X86_64_RELATIVE reloc so that the dynamic
486 linker can adjust this GOT entry. */
487 srelgot->_raw_size += sizeof (Elf64_External_Rela);
488 }
489 }
490 else
491 local_got_refcounts[r_symndx] += 1;
492 }
493 break;
494
495 case R_X86_64_PLT32:
496 /* This symbol requires a procedure linkage table entry. We
497 actually build the entry in adjust_dynamic_symbol,
498 because this might be a case of linking PIC code which is
499 never referenced by a dynamic object, in which case we
500 don't need to generate a procedure linkage table entry
501 after all. */
502
503 /* If this is a local symbol, we resolve it directly without
504 creating a procedure linkage table entry. */
505 if (h == NULL)
506 continue;
507
508 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
509 if (h->plt.refcount == -1)
510 h->plt.refcount = 1;
511 else
512 h->plt.refcount += 1;
513 break;
514
515 case R_X86_64_8:
516 case R_X86_64_16:
517 case R_X86_64_32:
518 case R_X86_64_64:
519 case R_X86_64_32S:
520 case R_X86_64_PC32:
521 if (h != NULL)
522 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
523
524 /* If we are creating a shared library, and this is a reloc
525 against a global symbol, or a non PC relative reloc
526 against a local symbol, then we need to copy the reloc
527 into the shared library. However, if we are linking with
528 -Bsymbolic, we do not need to copy a reloc against a
529 global symbol which is defined in an object we are
530 including in the link (i.e., DEF_REGULAR is set). At
531 this point we have not seen all the input files, so it is
532 possible that DEF_REGULAR is not set now but will be set
533 later (it is never cleared). We account for that
534 possibility below by storing information in the
535 pcrel_relocs_copied field of the hash table entry.
536 A similar situation occurs when creating shared libraries
537 and symbol visibility changes render the symbol local. */
538 if (info->shared
539 && (sec->flags & SEC_ALLOC) != 0
540 && (((ELF64_R_TYPE (rel->r_info) != R_X86_64_PC8)
541 && (ELF64_R_TYPE (rel->r_info) != R_X86_64_PC16)
542 && (ELF64_R_TYPE (rel->r_info) != R_X86_64_PC32))
543 || (h != NULL
544 && (! info->symbolic
545 || (h->elf_link_hash_flags
546 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
547 {
548 /* When creating a shared object, we must copy these
549 reloc types into the output file. We create a reloc
550 section in dynobj and make room for this reloc. */
551 if (sreloc == NULL)
552 {
553 const char *name;
554
555 name = (bfd_elf_string_from_elf_section
556 (abfd,
557 elf_elfheader (abfd)->e_shstrndx,
558 elf_section_data (sec)->rel_hdr.sh_name));
559 if (name == NULL)
560 return false;
561
562 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
563 && strcmp (bfd_get_section_name (abfd, sec),
564 name + 5) == 0);
565
566 sreloc = bfd_get_section_by_name (dynobj, name);
567 if (sreloc == NULL)
568 {
569 flagword flags;
570
571 sreloc = bfd_make_section (dynobj, name);
572 flags = (SEC_HAS_CONTENTS | SEC_READONLY
573 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
574 if ((sec->flags & SEC_ALLOC) != 0)
575 flags |= SEC_ALLOC | SEC_LOAD;
576 if (sreloc == NULL
577 || ! bfd_set_section_flags (dynobj, sreloc, flags)
578 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
579 return false;
580 }
581 if (sec->flags & SEC_READONLY)
582 info->flags |= DF_TEXTREL;
583 }
584
585 sreloc->_raw_size += sizeof (Elf64_External_Rela);
586
587 /* If this is a global symbol, we count the number of PC
588 relative relocations we have entered for this symbol,
589 so that we can discard them later as necessary. Note
590 that this function is only called if we are using an
591 elf64_x86_64 linker hash table, which means that h is
592 really a pointer to an elf64_x86_64_link_hash_entry. */
593 if (h != NULL
594 && ((ELF64_R_TYPE (rel->r_info) == R_X86_64_PC8)
595 || (ELF64_R_TYPE (rel->r_info) == R_X86_64_PC16)
596 || (ELF64_R_TYPE (rel->r_info) == R_X86_64_PC32)))
597 {
598 struct elf64_x86_64_link_hash_entry *eh;
599 struct elf64_x86_64_pcrel_relocs_copied *p;
600
601 eh = (struct elf64_x86_64_link_hash_entry *) h;
602
603 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
604 if (p->section == sreloc)
605 break;
606
607 if (p == NULL)
608 {
609 p = ((struct elf64_x86_64_pcrel_relocs_copied *)
610 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
611 if (p == NULL)
612 return false;
613 p->next = eh->pcrel_relocs_copied;
614 eh->pcrel_relocs_copied = p;
615 p->section = sreloc;
616 p->count = 0;
617 }
618
619 ++p->count;
620 }
621 }
622 break;
623
624 /* This relocation describes the C++ object vtable hierarchy.
625 Reconstruct it for later use during GC. */
626 case R_X86_64_GNU_VTINHERIT:
627 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
628 return false;
629 break;
630
631 /* This relocation describes which C++ vtable entries are actually
632 used. Record for later use during GC. */
633 case R_X86_64_GNU_VTENTRY:
634 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend))
635 return false;
636 break;
637 }
638 }
639
640 return true;
641 }
642
643 /* Return the section that should be marked against GC for a given
644 relocation. */
645
646 static asection *
647 elf64_x86_64_gc_mark_hook (abfd, info, rel, h, sym)
648 bfd *abfd;
649 struct bfd_link_info *info ATTRIBUTE_UNUSED;
650 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED;
651 struct elf_link_hash_entry *h;
652 Elf_Internal_Sym *sym;
653 {
654 if (h != NULL)
655 {
656 switch (ELF64_R_TYPE (rel->r_info))
657 {
658 case R_X86_64_GNU_VTINHERIT:
659 case R_X86_64_GNU_VTENTRY:
660 break;
661
662 default:
663 switch (h->root.type)
664 {
665 case bfd_link_hash_defined:
666 case bfd_link_hash_defweak:
667 return h->root.u.def.section;
668
669 case bfd_link_hash_common:
670 return h->root.u.c.p->section;
671
672 default:
673 break;
674 }
675 }
676 }
677 else
678 {
679 if (!(elf_bad_symtab (abfd)
680 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
681 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
682 && sym->st_shndx != SHN_COMMON))
683 {
684 return bfd_section_from_elf_index (abfd, sym->st_shndx);
685 }
686 }
687
688 return NULL;
689 }
690
691 /* Update the got entry reference counts for the section being removed. */
692
693 static boolean
694 elf64_x86_64_gc_sweep_hook (abfd, info, sec, relocs)
695 bfd *abfd;
696 struct bfd_link_info *info ATTRIBUTE_UNUSED;
697 asection *sec;
698 const Elf_Internal_Rela *relocs;
699 {
700 Elf_Internal_Shdr *symtab_hdr;
701 struct elf_link_hash_entry **sym_hashes;
702 bfd_signed_vma *local_got_refcounts;
703 const Elf_Internal_Rela *rel, *relend;
704 unsigned long r_symndx;
705 struct elf_link_hash_entry *h;
706 bfd *dynobj;
707 asection *sgot;
708 asection *srelgot;
709
710 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
711 sym_hashes = elf_sym_hashes (abfd);
712 local_got_refcounts = elf_local_got_refcounts (abfd);
713
714 dynobj = elf_hash_table (info)->dynobj;
715 if (dynobj == NULL)
716 return true;
717
718 sgot = bfd_get_section_by_name (dynobj, ".got");
719 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
720
721 relend = relocs + sec->reloc_count;
722 for (rel = relocs; rel < relend; rel++)
723 switch (ELF64_R_TYPE (rel->r_info))
724 {
725 case R_X86_64_GOT32:
726 case R_X86_64_GOTPCREL:
727 r_symndx = ELF64_R_SYM (rel->r_info);
728 if (r_symndx >= symtab_hdr->sh_info)
729 {
730 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
731 if (h->got.refcount > 0)
732 {
733 h->got.refcount -= 1;
734 if (h->got.refcount == 0)
735 {
736 sgot->_raw_size -= GOT_ENTRY_SIZE;
737 srelgot->_raw_size -= sizeof (Elf64_External_Rela);
738 }
739 }
740 }
741 else if (local_got_refcounts != NULL)
742 {
743 if (local_got_refcounts[r_symndx] > 0)
744 {
745 local_got_refcounts[r_symndx] -= 1;
746 if (local_got_refcounts[r_symndx] == 0)
747 {
748 sgot->_raw_size -= GOT_ENTRY_SIZE;
749 if (info->shared)
750 srelgot->_raw_size -= sizeof (Elf64_External_Rela);
751 }
752 }
753 }
754 break;
755
756 case R_X86_64_PLT32:
757 r_symndx = ELF64_R_SYM (rel->r_info);
758 if (r_symndx >= symtab_hdr->sh_info)
759 {
760 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
761 if (h->plt.refcount > 0)
762 h->plt.refcount -= 1;
763 }
764 break;
765
766 default:
767 break;
768 }
769
770 return true;
771 }
772
773 /* Adjust a symbol defined by a dynamic object and referenced by a
774 regular object. The current definition is in some section of the
775 dynamic object, but we're not including those sections. We have to
776 change the definition to something the rest of the link can
777 understand. */
778
779 static boolean
780 elf64_x86_64_adjust_dynamic_symbol (info, h)
781 struct bfd_link_info *info;
782 struct elf_link_hash_entry *h;
783 {
784 bfd *dynobj;
785 asection *s;
786 unsigned int power_of_two;
787
788 dynobj = elf_hash_table (info)->dynobj;
789
790 /* Make sure we know what is going on here. */
791 BFD_ASSERT (dynobj != NULL
792 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
793 || h->weakdef != NULL
794 || ((h->elf_link_hash_flags
795 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
796 && (h->elf_link_hash_flags
797 & ELF_LINK_HASH_REF_REGULAR) != 0
798 && (h->elf_link_hash_flags
799 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
800
801 /* If this is a function, put it in the procedure linkage table. We
802 will fill in the contents of the procedure linkage table later,
803 when we know the address of the .got section. */
804 if (h->type == STT_FUNC
805 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
806 {
807 if ((! info->shared
808 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
809 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
810 || (info->shared && h->plt.refcount <= 0))
811 {
812 /* This case can occur if we saw a PLT32 reloc in an input
813 file, but the symbol was never referred to by a dynamic
814 object, or if all references were garbage collected. In
815 such a case, we don't actually need to build a procedure
816 linkage table, and we can just do a PC32 reloc instead. */
817 h->plt.offset = (bfd_vma) -1;
818 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
819 return true;
820 }
821
822 /* Make sure this symbol is output as a dynamic symbol. */
823 if (h->dynindx == -1)
824 {
825 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
826 return false;
827 }
828
829 s = bfd_get_section_by_name (dynobj, ".plt");
830 BFD_ASSERT (s != NULL);
831
832 /* If this is the first .plt entry, make room for the special
833 first entry. */
834 if (s->_raw_size == 0)
835 s->_raw_size = PLT_ENTRY_SIZE;
836
837 /* If this symbol is not defined in a regular file, and we are
838 not generating a shared library, then set the symbol to this
839 location in the .plt. This is required to make function
840 pointers compare as equal between the normal executable and
841 the shared library. */
842 if (! info->shared
843 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
844 {
845 h->root.u.def.section = s;
846 h->root.u.def.value = s->_raw_size;
847 }
848
849 h->plt.offset = s->_raw_size;
850
851 /* Make room for this entry. */
852 s->_raw_size += PLT_ENTRY_SIZE;
853
854 /* We also need to make an entry in the .got.plt section, which
855 will be placed in the .got section by the linker script. */
856 s = bfd_get_section_by_name (dynobj, ".got.plt");
857 BFD_ASSERT (s != NULL);
858 s->_raw_size += GOT_ENTRY_SIZE;
859
860 /* We also need to make an entry in the .rela.plt section. */
861 s = bfd_get_section_by_name (dynobj, ".rela.plt");
862 BFD_ASSERT (s != NULL);
863 s->_raw_size += sizeof (Elf64_External_Rela);
864
865 return true;
866 }
867
868 /* If this is a weak symbol, and there is a real definition, the
869 processor independent code will have arranged for us to see the
870 real definition first, and we can just use the same value. */
871 if (h->weakdef != NULL)
872 {
873 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
874 || h->weakdef->root.type == bfd_link_hash_defweak);
875 h->root.u.def.section = h->weakdef->root.u.def.section;
876 h->root.u.def.value = h->weakdef->root.u.def.value;
877 return true;
878 }
879
880 /* This is a reference to a symbol defined by a dynamic object which
881 is not a function. */
882
883 /* If we are creating a shared library, we must presume that the
884 only references to the symbol are via the global offset table.
885 For such cases we need not do anything here; the relocations will
886 be handled correctly by relocate_section. */
887 if (info->shared)
888 return true;
889
890 /* If there are no references to this symbol that do not use the
891 GOT, we don't need to generate a copy reloc. */
892 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
893 return true;
894
895 /* We must allocate the symbol in our .dynbss section, which will
896 become part of the .bss section of the executable. There will be
897 an entry for this symbol in the .dynsym section. The dynamic
898 object will contain position independent code, so all references
899 from the dynamic object to this symbol will go through the global
900 offset table. The dynamic linker will use the .dynsym entry to
901 determine the address it must put in the global offset table, so
902 both the dynamic object and the regular object will refer to the
903 same memory location for the variable. */
904
905 s = bfd_get_section_by_name (dynobj, ".dynbss");
906 BFD_ASSERT (s != NULL);
907
908 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
909 to copy the initial value out of the dynamic object and into the
910 runtime process image. We need to remember the offset into the
911 .rela.bss section we are going to use. */
912 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
913 {
914 asection *srel;
915
916 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
917 BFD_ASSERT (srel != NULL);
918 srel->_raw_size += sizeof (Elf64_External_Rela);
919 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
920 }
921
922 /* We need to figure out the alignment required for this symbol. I
923 have no idea how ELF linkers handle this. 16-bytes is the size
924 of the largest type that requires hard alignment -- long double. */
925 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
926 this construct. */
927 power_of_two = bfd_log2 (h->size);
928 if (power_of_two > 4)
929 power_of_two = 4;
930
931 /* Apply the required alignment. */
932 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
933 if (power_of_two > bfd_get_section_alignment (dynobj, s))
934 {
935 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
936 return false;
937 }
938
939 /* Define the symbol as being at this point in the section. */
940 h->root.u.def.section = s;
941 h->root.u.def.value = s->_raw_size;
942
943 /* Increment the section size to make room for the symbol. */
944 s->_raw_size += h->size;
945
946 return true;
947 }
948
949 /* Set the sizes of the dynamic sections. */
950
951 static boolean
952 elf64_x86_64_size_dynamic_sections (output_bfd, info)
953 bfd *output_bfd ATTRIBUTE_UNUSED;
954 struct bfd_link_info *info;
955 {
956 bfd *dynobj;
957 asection *s;
958 boolean plt;
959 boolean relocs;
960
961 dynobj = elf_hash_table (info)->dynobj;
962 BFD_ASSERT (dynobj != NULL);
963
964 if (elf_hash_table (info)->dynamic_sections_created)
965 {
966 /* Set the contents of the .interp section to the interpreter. */
967 if (! info->shared)
968 {
969 s = bfd_get_section_by_name (dynobj, ".interp");
970 BFD_ASSERT (s != NULL);
971 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
972 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
973 }
974 }
975 else
976 {
977 /* We may have created entries in the .rela.got section.
978 However, if we are not creating the dynamic sections, we will
979 not actually use these entries. Reset the size of .rela.got,
980 which will cause it to get stripped from the output file
981 below. */
982 s = bfd_get_section_by_name (dynobj, ".rela.got");
983 if (s != NULL)
984 s->_raw_size = 0;
985 }
986
987 /* If this is a -Bsymbolic shared link, then we need to discard all
988 PC relative relocs against symbols defined in a regular object.
989 We allocated space for them in the check_relocs routine, but we
990 will not fill them in in the relocate_section routine. */
991 if (info->shared)
992 elf64_x86_64_link_hash_traverse (elf64_x86_64_hash_table (info),
993 elf64_x86_64_discard_copies,
994 (PTR) info);
995
996 /* The check_relocs and adjust_dynamic_symbol entry points have
997 determined the sizes of the various dynamic sections. Allocate
998 memory for them. */
999 plt = relocs = false;
1000 for (s = dynobj->sections; s != NULL; s = s->next)
1001 {
1002 const char *name;
1003 boolean strip;
1004
1005 if ((s->flags & SEC_LINKER_CREATED) == 0)
1006 continue;
1007
1008 /* It's OK to base decisions on the section name, because none
1009 of the dynobj section names depend upon the input files. */
1010 name = bfd_get_section_name (dynobj, s);
1011
1012 strip = false;
1013 if (strcmp (name, ".plt") == 0)
1014 {
1015 if (s->_raw_size == 0)
1016 {
1017 /* Strip this section if we don't need it; see the
1018 comment below. */
1019 strip = true;
1020 }
1021 else
1022 {
1023 /* Remember whether there is a PLT. */
1024 plt = true;
1025 }
1026 }
1027 else if (strncmp (name, ".rela", 5) == 0)
1028 {
1029 if (s->_raw_size == 0)
1030 {
1031 /* If we don't need this section, strip it from the
1032 output file. This is mostly to handle .rela.bss and
1033 .rela.plt. We must create both sections in
1034 create_dynamic_sections, because they must be created
1035 before the linker maps input sections to output
1036 sections. The linker does that before
1037 adjust_dynamic_symbol is called, and it is that
1038 function which decides whether anything needs to go
1039 into these sections. */
1040 strip = true;
1041 }
1042 else
1043 {
1044 if (strcmp (name, ".rela.plt") != 0)
1045 relocs = true;
1046
1047 /* We use the reloc_count field as a counter if we need
1048 to copy relocs into the output file. */
1049 s->reloc_count = 0;
1050 }
1051 }
1052 else if (strncmp (name, ".got", 4) != 0)
1053 {
1054 /* It's not one of our sections, so don't allocate space. */
1055 continue;
1056 }
1057
1058 if (strip)
1059 {
1060 _bfd_strip_section_from_output (info, s);
1061 continue;
1062 }
1063
1064 /* Allocate memory for the section contents. We use bfd_zalloc
1065 here in case unused entries are not reclaimed before the
1066 section's contents are written out. This should not happen,
1067 but this way if it does, we get a R_X86_64_NONE reloc instead
1068 of garbage. */
1069 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1070 if (s->contents == NULL && s->_raw_size != 0)
1071 return false;
1072 }
1073
1074 if (elf_hash_table (info)->dynamic_sections_created)
1075 {
1076 /* Add some entries to the .dynamic section. We fill in the
1077 values later, in elf64_x86_64_finish_dynamic_sections, but we
1078 must add the entries now so that we get the correct size for
1079 the .dynamic section. The DT_DEBUG entry is filled in by the
1080 dynamic linker and used by the debugger. */
1081 #define add_dynamic_entry(TAG, VAL) \
1082 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1083
1084 if (! info->shared)
1085 {
1086 if (!add_dynamic_entry (DT_DEBUG, 0))
1087 return false;
1088 }
1089
1090 if (plt)
1091 {
1092 if (!add_dynamic_entry (DT_PLTGOT, 0)
1093 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1094 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1095 || !add_dynamic_entry (DT_JMPREL, 0))
1096 return false;
1097 }
1098
1099 if (relocs)
1100 {
1101 if (!add_dynamic_entry (DT_RELA, 0)
1102 || !add_dynamic_entry (DT_RELASZ, 0)
1103 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1104 return false;
1105 }
1106
1107 if ((info->flags & DF_TEXTREL) != 0)
1108 {
1109 if (!add_dynamic_entry (DT_TEXTREL, 0))
1110 return false;
1111 }
1112 }
1113 #undef add_dynamic_entry
1114
1115 return true;
1116 }
1117
1118 /* This function is called via elf64_x86_64_link_hash_traverse if we are
1119 creating a shared object. In the -Bsymbolic case, it discards the
1120 space allocated to copy PC relative relocs against symbols which
1121 are defined in regular objects. For the normal non-symbolic case,
1122 we also discard space for relocs that have become local due to
1123 symbol visibility changes. We allocated space for them in the
1124 check_relocs routine, but we won't fill them in in the
1125 relocate_section routine. */
1126
1127 static boolean
1128 elf64_x86_64_discard_copies (h, inf)
1129 struct elf64_x86_64_link_hash_entry *h;
1130 PTR inf;
1131 {
1132 struct elf64_x86_64_pcrel_relocs_copied *s;
1133 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1134
1135 /* If a symbol has been forced local or we have found a regular
1136 definition for the symbolic link case, then we won't be needing
1137 any relocs. */
1138 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1139 && ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1140 || info->symbolic))
1141 {
1142 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1143 s->section->_raw_size -= s->count * sizeof (Elf64_External_Rela);
1144 }
1145
1146 return true;
1147 }
1148
1149 /* Relocate an x86_64 ELF section. */
1150
1151 static boolean
1152 elf64_x86_64_relocate_section (output_bfd, info, input_bfd, input_section,
1153 contents, relocs, local_syms, local_sections)
1154 bfd *output_bfd;
1155 struct bfd_link_info *info;
1156 bfd *input_bfd;
1157 asection *input_section;
1158 bfd_byte *contents;
1159 Elf_Internal_Rela *relocs;
1160 Elf_Internal_Sym *local_syms;
1161 asection **local_sections;
1162 {
1163 bfd *dynobj;
1164 Elf_Internal_Shdr *symtab_hdr;
1165 struct elf_link_hash_entry **sym_hashes;
1166 bfd_vma *local_got_offsets;
1167 asection *sgot;
1168 asection *splt;
1169 asection *sreloc;
1170 Elf_Internal_Rela *rela;
1171 Elf_Internal_Rela *relend;
1172
1173 dynobj = elf_hash_table (info)->dynobj;
1174 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1175 sym_hashes = elf_sym_hashes (input_bfd);
1176 local_got_offsets = elf_local_got_offsets (input_bfd);
1177
1178 sreloc = splt = sgot = NULL;
1179 if (dynobj != NULL)
1180 {
1181 splt = bfd_get_section_by_name (dynobj, ".plt");
1182 sgot = bfd_get_section_by_name (dynobj, ".got");
1183 }
1184
1185 rela = relocs;
1186 relend = relocs + input_section->reloc_count;
1187 for (; rela < relend; rela++)
1188 {
1189 int r_type;
1190 reloc_howto_type *howto;
1191 unsigned long r_symndx;
1192 struct elf_link_hash_entry *h;
1193 Elf_Internal_Sym *sym;
1194 asection *sec;
1195 bfd_vma relocation;
1196 bfd_reloc_status_type r;
1197 unsigned int indx;
1198
1199 r_type = ELF64_R_TYPE (rela->r_info);
1200 if (r_type == (int) R_X86_64_GNU_VTINHERIT
1201 || r_type == (int) R_X86_64_GNU_VTENTRY)
1202 continue;
1203
1204 if ((indx = (unsigned) r_type) >= R_X86_64_max)
1205 {
1206 bfd_set_error (bfd_error_bad_value);
1207 return false;
1208 }
1209 howto = x86_64_elf_howto_table + indx;
1210
1211 r_symndx = ELF64_R_SYM (rela->r_info);
1212
1213 if (info->relocateable)
1214 {
1215 /* This is a relocateable link. We don't have to change
1216 anything, unless the reloc is against a section symbol,
1217 in which case we have to adjust according to where the
1218 section symbol winds up in the output section. */
1219 if (r_symndx < symtab_hdr->sh_info)
1220 {
1221 sym = local_syms + r_symndx;
1222 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1223 {
1224 sec = local_sections[r_symndx];
1225 rela->r_addend += sec->output_offset + sym->st_value;
1226 }
1227 }
1228
1229 continue;
1230 }
1231
1232 /* This is a final link. */
1233 h = NULL;
1234 sym = NULL;
1235 sec = NULL;
1236 if (r_symndx < symtab_hdr->sh_info)
1237 {
1238 sym = local_syms + r_symndx;
1239 sec = local_sections[r_symndx];
1240 relocation = (sec->output_section->vma
1241 + sec->output_offset
1242 + sym->st_value);
1243 }
1244 else
1245 {
1246 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1247 while (h->root.type == bfd_link_hash_indirect
1248 || h->root.type == bfd_link_hash_warning)
1249 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1250 if (h->root.type == bfd_link_hash_defined
1251 || h->root.type == bfd_link_hash_defweak)
1252 {
1253 sec = h->root.u.def.section;
1254 if ((r_type == R_X86_64_PLT32
1255 && splt != NULL
1256 && h->plt.offset != (bfd_vma) -1)
1257 || ((r_type == R_X86_64_GOT32 || r_type == R_X86_64_GOTPCREL)
1258 && elf_hash_table (info)->dynamic_sections_created
1259 && (!info->shared
1260 || (! info->symbolic && h->dynindx != -1)
1261 || (h->elf_link_hash_flags
1262 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1263 || (info->shared
1264 && ((! info->symbolic && h->dynindx != -1)
1265 || (h->elf_link_hash_flags
1266 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1267 && (r_type == R_X86_64_8
1268 || r_type == R_X86_64_16
1269 || r_type == R_X86_64_32
1270 || r_type == R_X86_64_64
1271 || r_type == R_X86_64_PC8
1272 || r_type == R_X86_64_PC16
1273 || r_type == R_X86_64_PC32)
1274 && ((input_section->flags & SEC_ALLOC) != 0
1275 /* DWARF will emit R_X86_64_32 relocations in its
1276 sections against symbols defined externally
1277 in shared libraries. We can't do anything
1278 with them here. */
1279 || ((input_section->flags & SEC_DEBUGGING) != 0
1280 && (h->elf_link_hash_flags
1281 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))))
1282 {
1283 /* In these cases, we don't need the relocation
1284 value. We check specially because in some
1285 obscure cases sec->output_section will be NULL. */
1286 relocation = 0;
1287 }
1288 else if (sec->output_section == NULL)
1289 {
1290 (*_bfd_error_handler)
1291 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1292 bfd_get_filename (input_bfd), h->root.root.string,
1293 bfd_get_section_name (input_bfd, input_section));
1294 relocation = 0;
1295 }
1296 else
1297 relocation = (h->root.u.def.value
1298 + sec->output_section->vma
1299 + sec->output_offset);
1300 }
1301 else if (h->root.type == bfd_link_hash_undefweak)
1302 relocation = 0;
1303 else if (info->shared && !info->symbolic && !info->no_undefined
1304 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1305 relocation = 0;
1306 else
1307 {
1308 if (! ((*info->callbacks->undefined_symbol)
1309 (info, h->root.root.string, input_bfd,
1310 input_section, rela->r_offset,
1311 (!info->shared || info->no_undefined
1312 || ELF_ST_VISIBILITY (h->other)))))
1313 return false;
1314 relocation = 0;
1315 }
1316 }
1317
1318 /* When generating a shared object, the relocations handled here are
1319 copied into the output file to be resolved at run time. */
1320 switch (r_type)
1321 {
1322 case R_X86_64_GOT32:
1323 /* Relocation is to the entry for this symbol in the global
1324 offset table. */
1325 case R_X86_64_GOTPCREL:
1326 /* Use global offset table as symbol value. */
1327 BFD_ASSERT (sgot != NULL);
1328
1329 if (h != NULL)
1330 {
1331 bfd_vma off = h->got.offset;
1332 BFD_ASSERT (off != (bfd_vma) -1);
1333
1334 if (! elf_hash_table (info)->dynamic_sections_created
1335 || (info->shared
1336 && (info->symbolic || h->dynindx == -1)
1337 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1338 {
1339 /* This is actually a static link, or it is a -Bsymbolic
1340 link and the symbol is defined locally, or the symbol
1341 was forced to be local because of a version file. We
1342 must initialize this entry in the global offset table.
1343 Since the offset must always be a multiple of 8, we
1344 use the least significant bit to record whether we
1345 have initialized it already.
1346
1347 When doing a dynamic link, we create a .rela.got
1348 relocation entry to initialize the value. This is
1349 done in the finish_dynamic_symbol routine. */
1350 if ((off & 1) != 0)
1351 off &= ~1;
1352 else
1353 {
1354 bfd_put_64 (output_bfd, relocation,
1355 sgot->contents + off);
1356 h->got.offset |= 1;
1357 }
1358 }
1359 if (r_type == R_X86_64_GOTPCREL)
1360 relocation = sgot->output_section->vma + sgot->output_offset + off;
1361 else
1362 relocation = sgot->output_offset + off;
1363 }
1364 else
1365 {
1366 bfd_vma off;
1367
1368 BFD_ASSERT (local_got_offsets != NULL
1369 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1370
1371 off = local_got_offsets[r_symndx];
1372
1373 /* The offset must always be a multiple of 8. We use
1374 the least significant bit to record whether we have
1375 already generated the necessary reloc. */
1376 if ((off & 1) != 0)
1377 off &= ~1;
1378 else
1379 {
1380 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
1381
1382 if (info->shared)
1383 {
1384 asection *srelgot;
1385 Elf_Internal_Rela outrel;
1386
1387 /* We need to generate a R_X86_64_RELATIVE reloc
1388 for the dynamic linker. */
1389 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1390 BFD_ASSERT (srelgot != NULL);
1391
1392 outrel.r_offset = (sgot->output_section->vma
1393 + sgot->output_offset
1394 + off);
1395 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1396 outrel.r_addend = relocation;
1397 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
1398 (((Elf64_External_Rela *)
1399 srelgot->contents)
1400 + srelgot->reloc_count));
1401 ++srelgot->reloc_count;
1402 }
1403
1404 local_got_offsets[r_symndx] |= 1;
1405 }
1406
1407 if (r_type == R_X86_64_GOTPCREL)
1408 relocation = sgot->output_section->vma + sgot->output_offset + off;
1409 else
1410 relocation = sgot->output_offset + off;
1411 }
1412
1413 break;
1414
1415 case R_X86_64_PLT32:
1416 /* Relocation is to the entry for this symbol in the
1417 procedure linkage table. */
1418
1419 /* Resolve a PLT32 reloc against a local symbol directly,
1420 without using the procedure linkage table. */
1421 if (h == NULL)
1422 break;
1423
1424 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
1425 {
1426 /* We didn't make a PLT entry for this symbol. This
1427 happens when statically linking PIC code, or when
1428 using -Bsymbolic. */
1429 break;
1430 }
1431
1432 relocation = (splt->output_section->vma
1433 + splt->output_offset
1434 + h->plt.offset);
1435 break;
1436
1437 case R_X86_64_PC8:
1438 case R_X86_64_PC16:
1439 case R_X86_64_PC32:
1440 if (h == NULL || h->dynindx == -1
1441 || (info->symbolic
1442 && h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1443 break;
1444 /* Fall through. */
1445 case R_X86_64_8:
1446 case R_X86_64_16:
1447 case R_X86_64_32:
1448 case R_X86_64_64:
1449 /* FIXME: The ABI says the linker should make sure the value is
1450 the same when it's zeroextended to 64 bit. */
1451 if (info->shared && (input_section->flags & SEC_ALLOC) != 0)
1452 {
1453 Elf_Internal_Rela outrel;
1454 boolean skip, relocate;
1455
1456 /* When generating a shared object, these relocations
1457 are copied into the output file to be resolved at run
1458 time. */
1459
1460 if (sreloc == NULL)
1461 {
1462 const char *name;
1463
1464 name = (bfd_elf_string_from_elf_section
1465 (input_bfd,
1466 elf_elfheader (input_bfd)->e_shstrndx,
1467 elf_section_data (input_section)->rel_hdr.sh_name));
1468 if (name == NULL)
1469 return false;
1470
1471 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1472 && strcmp (bfd_get_section_name (input_bfd,
1473 input_section),
1474 name + 5) == 0);
1475
1476 sreloc = bfd_get_section_by_name (dynobj, name);
1477 BFD_ASSERT (sreloc != NULL);
1478 }
1479
1480 skip = false;
1481
1482 if (elf_section_data (input_section)->stab_info == NULL)
1483 outrel.r_offset = rela->r_offset;
1484 else
1485 {
1486 bfd_vma off;
1487
1488 off = (_bfd_stab_section_offset
1489 (output_bfd, &elf_hash_table (info)->stab_info,
1490 input_section,
1491 &elf_section_data (input_section)->stab_info,
1492 rela->r_offset));
1493 if (off == (bfd_vma) -1)
1494 skip = true;
1495 outrel.r_offset = off;
1496 }
1497
1498 outrel.r_offset += (input_section->output_section->vma
1499 + input_section->output_offset);
1500
1501 if (skip)
1502 {
1503 memset (&outrel, 0, sizeof outrel);
1504 relocate = false;
1505 }
1506 /* h->dynindx may be -1 if this symbol was marked to
1507 become local. */
1508 else if (h != NULL
1509 && ((! info->symbolic && h->dynindx != -1)
1510 || (h->elf_link_hash_flags
1511 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1512 {
1513 BFD_ASSERT (h->dynindx != -1);
1514 relocate = false;
1515 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
1516 outrel.r_addend = relocation + rela->r_addend;
1517 }
1518 else
1519 {
1520 if (r_type == R_X86_64_64)
1521 {
1522 relocate = true;
1523 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1524 outrel.r_addend = relocation + rela->r_addend;
1525 }
1526 else
1527 {
1528 long sindx;
1529
1530 if (h == NULL)
1531 sec = local_sections[r_symndx];
1532 else
1533 {
1534 BFD_ASSERT (h->root.type == bfd_link_hash_defined
1535 || (h->root.type
1536 == bfd_link_hash_defweak));
1537 sec = h->root.u.def.section;
1538 }
1539 if (sec != NULL && bfd_is_abs_section (sec))
1540 sindx = 0;
1541 else if (sec == NULL || sec->owner == NULL)
1542 {
1543 bfd_set_error (bfd_error_bad_value);
1544 return false;
1545 }
1546 else
1547 {
1548 asection *osec;
1549
1550 osec = sec->output_section;
1551 sindx = elf_section_data (osec)->dynindx;
1552 BFD_ASSERT (sindx > 0);
1553 }
1554
1555 relocate = false;
1556 outrel.r_info = ELF64_R_INFO (sindx, r_type);
1557 outrel.r_addend = relocation + rela->r_addend;
1558 }
1559
1560 }
1561
1562 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
1563 (((Elf64_External_Rela *)
1564 sreloc->contents)
1565 + sreloc->reloc_count));
1566 ++sreloc->reloc_count;
1567
1568 /* If this reloc is against an external symbol, we do
1569 not want to fiddle with the addend. Otherwise, we
1570 need to include the symbol value so that it becomes
1571 an addend for the dynamic reloc. */
1572 if (! relocate)
1573 continue;
1574 }
1575
1576 break;
1577
1578 default:
1579 break;
1580 }
1581
1582 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1583 contents, rela->r_offset,
1584 relocation, rela->r_addend);
1585
1586 if (r != bfd_reloc_ok)
1587 {
1588 switch (r)
1589 {
1590 default:
1591 case bfd_reloc_outofrange:
1592 abort ();
1593 case bfd_reloc_overflow:
1594 {
1595 const char *name;
1596
1597 if (h != NULL)
1598 name = h->root.root.string;
1599 else
1600 {
1601 name = bfd_elf_string_from_elf_section (input_bfd,
1602 symtab_hdr->sh_link,
1603 sym->st_name);
1604 if (name == NULL)
1605 return false;
1606 if (*name == '\0')
1607 name = bfd_section_name (input_bfd, sec);
1608 }
1609 if (! ((*info->callbacks->reloc_overflow)
1610 (info, name, howto->name, (bfd_vma) 0,
1611 input_bfd, input_section, rela->r_offset)))
1612 return false;
1613 }
1614 break;
1615 }
1616 }
1617 }
1618
1619 return true;
1620 }
1621
1622 /* Finish up dynamic symbol handling. We set the contents of various
1623 dynamic sections here. */
1624
1625 static boolean
1626 elf64_x86_64_finish_dynamic_symbol (output_bfd, info, h, sym)
1627 bfd *output_bfd;
1628 struct bfd_link_info *info;
1629 struct elf_link_hash_entry *h;
1630 Elf_Internal_Sym *sym;
1631 {
1632 bfd *dynobj;
1633
1634 dynobj = elf_hash_table (info)->dynobj;
1635
1636 if (h->plt.offset != (bfd_vma) -1)
1637 {
1638 asection *splt;
1639 asection *sgot;
1640 asection *srela;
1641 bfd_vma plt_index;
1642 bfd_vma got_offset;
1643 Elf_Internal_Rela rela;
1644
1645 /* This symbol has an entry in the procedure linkage table. Set
1646 it up. */
1647
1648 BFD_ASSERT (h->dynindx != -1);
1649
1650 splt = bfd_get_section_by_name (dynobj, ".plt");
1651 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1652 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1653 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
1654
1655 /* Get the index in the procedure linkage table which
1656 corresponds to this symbol. This is the index of this symbol
1657 in all the symbols for which we are making plt entries. The
1658 first entry in the procedure linkage table is reserved. */
1659 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1660
1661 /* Get the offset into the .got table of the entry that
1662 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
1663 bytes. The first three are reserved for the dynamic linker. */
1664 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
1665
1666 /* Fill in the entry in the procedure linkage table. */
1667 memcpy (splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
1668 PLT_ENTRY_SIZE);
1669
1670 /* Insert the relocation positions of the plt section. The magic
1671 numbers at the end of the statements are the positions of the
1672 relocations in the plt section. */
1673 /* Put offset for jmp *name@GOTPCREL(%rip), since the
1674 instruction uses 6 bytes, subtract this value. */
1675 bfd_put_32 (output_bfd,
1676 (sgot->output_section->vma
1677 + sgot->output_offset
1678 + got_offset
1679 - splt->output_section->vma
1680 - splt->output_offset
1681 - h->plt.offset
1682 - 6),
1683 splt->contents + h->plt.offset + 2);
1684 /* Put relocation index. */
1685 bfd_put_32 (output_bfd, plt_index,
1686 splt->contents + h->plt.offset + 7);
1687 /* Put offset for jmp .PLT0. */
1688 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1689 splt->contents + h->plt.offset + 12);
1690
1691 /* Fill in the entry in the global offset table, initially this
1692 points to the pushq instruction in the PLT which is at offset 6. */
1693 bfd_put_64 (output_bfd, (splt->output_section->vma + splt->output_offset
1694 + h->plt.offset + 6),
1695 sgot->contents + got_offset);
1696
1697 /* Fill in the entry in the .rela.plt section. */
1698 rela.r_offset = (sgot->output_section->vma
1699 + sgot->output_offset
1700 + got_offset);
1701 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
1702 rela.r_addend = 0;
1703 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1704 ((Elf64_External_Rela *) srela->contents
1705 + plt_index));
1706
1707 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1708 {
1709 /* Mark the symbol as undefined, rather than as defined in
1710 the .plt section. Leave the value alone. */
1711 sym->st_shndx = SHN_UNDEF;
1712 /* If the symbol is weak, we do need to clear the value.
1713 Otherwise, the PLT entry would provide a definition for
1714 the symbol even if the symbol wasn't defined anywhere,
1715 and so the symbol would never be NULL. */
1716 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
1717 == 0)
1718 sym->st_value = 0;
1719 }
1720 }
1721
1722 if (h->got.offset != (bfd_vma) -1)
1723 {
1724 asection *sgot;
1725 asection *srela;
1726 Elf_Internal_Rela rela;
1727
1728 /* This symbol has an entry in the global offset table. Set it
1729 up. */
1730
1731 sgot = bfd_get_section_by_name (dynobj, ".got");
1732 srela = bfd_get_section_by_name (dynobj, ".rela.got");
1733 BFD_ASSERT (sgot != NULL && srela != NULL);
1734
1735 rela.r_offset = (sgot->output_section->vma
1736 + sgot->output_offset
1737 + (h->got.offset &~ (bfd_vma) 1));
1738
1739 /* If this is a static link, or it is a -Bsymbolic link and the
1740 symbol is defined locally or was forced to be local because
1741 of a version file, we just want to emit a RELATIVE reloc.
1742 The entry in the global offset table will already have been
1743 initialized in the relocate_section function. */
1744 if (! elf_hash_table (info)->dynamic_sections_created
1745 || (info->shared
1746 && (info->symbolic || h->dynindx == -1)
1747 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1748 {
1749 BFD_ASSERT((h->got.offset & 1) != 0);
1750 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1751 rela.r_addend = (h->root.u.def.value
1752 + h->root.u.def.section->output_section->vma
1753 + h->root.u.def.section->output_offset);
1754 }
1755 else
1756 {
1757 BFD_ASSERT((h->got.offset & 1) == 0);
1758 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
1759 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
1760 rela.r_addend = 0;
1761 }
1762
1763 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1764 ((Elf64_External_Rela *) srela->contents
1765 + srela->reloc_count));
1766 ++srela->reloc_count;
1767 }
1768
1769 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1770 {
1771 asection *s;
1772 Elf_Internal_Rela rela;
1773
1774 /* This symbol needs a copy reloc. Set it up. */
1775
1776 BFD_ASSERT (h->dynindx != -1
1777 && (h->root.type == bfd_link_hash_defined
1778 || h->root.type == bfd_link_hash_defweak));
1779
1780 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1781 ".rela.bss");
1782 BFD_ASSERT (s != NULL);
1783
1784 rela.r_offset = (h->root.u.def.value
1785 + h->root.u.def.section->output_section->vma
1786 + h->root.u.def.section->output_offset);
1787 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
1788 rela.r_addend = 0;
1789 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1790 ((Elf64_External_Rela *) s->contents
1791 + s->reloc_count));
1792 ++s->reloc_count;
1793 }
1794
1795 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
1796 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1797 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1798 sym->st_shndx = SHN_ABS;
1799
1800 return true;
1801 }
1802
1803 /* Finish up the dynamic sections. */
1804
1805 static boolean
1806 elf64_x86_64_finish_dynamic_sections (output_bfd, info)
1807 bfd *output_bfd;
1808 struct bfd_link_info *info;
1809 {
1810 bfd *dynobj;
1811 asection *sdyn;
1812 asection *sgot;
1813
1814 dynobj = elf_hash_table (info)->dynobj;
1815
1816 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1817 BFD_ASSERT (sgot != NULL);
1818 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1819
1820 if (elf_hash_table (info)->dynamic_sections_created)
1821 {
1822 asection *splt;
1823 Elf64_External_Dyn *dyncon, *dynconend;
1824
1825 BFD_ASSERT (sdyn != NULL);
1826
1827 dyncon = (Elf64_External_Dyn *) sdyn->contents;
1828 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
1829 for (; dyncon < dynconend; dyncon++)
1830 {
1831 Elf_Internal_Dyn dyn;
1832 const char *name;
1833 asection *s;
1834
1835 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
1836
1837 switch (dyn.d_tag)
1838 {
1839 default:
1840 continue;
1841
1842 case DT_PLTGOT:
1843 name = ".got";
1844 goto get_vma;
1845
1846 case DT_JMPREL:
1847 name = ".rela.plt";
1848
1849 get_vma:
1850 s = bfd_get_section_by_name (output_bfd, name);
1851 BFD_ASSERT (s != NULL);
1852 dyn.d_un.d_ptr = s->vma;
1853 break;
1854
1855 case DT_RELASZ:
1856 /* FIXME: This comment and code is from elf64-alpha.c: */
1857 /* My interpretation of the TIS v1.1 ELF document indicates
1858 that RELASZ should not include JMPREL. This is not what
1859 the rest of the BFD does. It is, however, what the
1860 glibc ld.so wants. Do this fixup here until we found
1861 out who is right. */
1862 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
1863 if (s)
1864 {
1865 /* Subtract JMPREL size from RELASZ. */
1866 dyn.d_un.d_val -=
1867 (s->_cooked_size ? s->_cooked_size : s->_raw_size);
1868 }
1869 break;
1870
1871 case DT_PLTRELSZ:
1872 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
1873 BFD_ASSERT (s != NULL);
1874 dyn.d_un.d_val =
1875 (s->_cooked_size != 0 ? s->_cooked_size : s->_raw_size);
1876 break;
1877 }
1878 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
1879 }
1880
1881 /* Initialize the contents of the .plt section. */
1882 splt = bfd_get_section_by_name (dynobj, ".plt");
1883 BFD_ASSERT (splt != NULL);
1884 if (splt->_raw_size > 0)
1885 {
1886 /* Fill in the first entry in the procedure linkage table. */
1887 memcpy (splt->contents, elf64_x86_64_plt0_entry, PLT_ENTRY_SIZE);
1888 /* Add offset for pushq GOT+8(%rip), since the instruction
1889 uses 6 bytes subtract this value. */
1890 bfd_put_32 (output_bfd,
1891 (sgot->output_section->vma
1892 + sgot->output_offset
1893 + 8
1894 - splt->output_section->vma
1895 - splt->output_offset
1896 - 6),
1897 splt->contents + 2);
1898 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
1899 the end of the instruction. */
1900 bfd_put_32 (output_bfd,
1901 (sgot->output_section->vma
1902 + sgot->output_offset
1903 + 16
1904 - splt->output_section->vma
1905 - splt->output_offset
1906 - 12),
1907 splt->contents + 8);
1908
1909 }
1910
1911 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
1912 PLT_ENTRY_SIZE;
1913 }
1914
1915 /* Set the first entry in the global offset table to the address of
1916 the dynamic section. */
1917 if (sgot->_raw_size > 0)
1918 {
1919 if (sdyn == NULL)
1920 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
1921 else
1922 bfd_put_64 (output_bfd,
1923 sdyn->output_section->vma + sdyn->output_offset,
1924 sgot->contents);
1925 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
1926 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + GOT_ENTRY_SIZE);
1927 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + GOT_ENTRY_SIZE*2);
1928 }
1929
1930 elf_section_data (sgot->output_section)->this_hdr.sh_entsize =
1931 GOT_ENTRY_SIZE;
1932
1933 return true;
1934 }
1935
1936 static enum elf_reloc_type_class
1937 elf64_x86_64_reloc_type_class (type)
1938 int type;
1939 {
1940 switch (type)
1941 {
1942 case R_X86_64_RELATIVE:
1943 return reloc_class_relative;
1944 case R_X86_64_JUMP_SLOT:
1945 return reloc_class_plt;
1946 case R_X86_64_COPY:
1947 return reloc_class_copy;
1948 default:
1949 return reloc_class_normal;
1950 }
1951 }
1952
1953 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
1954 #define TARGET_LITTLE_NAME "elf64-x86-64"
1955 #define ELF_ARCH bfd_arch_i386
1956 #define ELF_MACHINE_CODE EM_X86_64
1957 #define ELF_MAXPAGESIZE 0x100000
1958
1959 #define elf_backend_can_gc_sections 1
1960 #define elf_backend_want_got_plt 1
1961 #define elf_backend_plt_readonly 1
1962 #define elf_backend_want_plt_sym 0
1963 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
1964 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
1965
1966 #define elf_info_to_howto elf64_x86_64_info_to_howto
1967
1968 #define bfd_elf64_bfd_final_link _bfd_elf64_gc_common_final_link
1969 #define bfd_elf64_bfd_link_hash_table_create \
1970 elf64_x86_64_link_hash_table_create
1971 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
1972
1973 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
1974 #define elf_backend_check_relocs elf64_x86_64_check_relocs
1975 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
1976 #define elf_backend_finish_dynamic_sections \
1977 elf64_x86_64_finish_dynamic_sections
1978 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
1979 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
1980 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
1981 #define elf_backend_relocate_section elf64_x86_64_relocate_section
1982 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
1983 #define elf_backend_object_p elf64_x86_64_elf_object_p
1984 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
1985
1986 #include "elf64-target.h"
This page took 0.070501 seconds and 4 git commands to generate.