Move elfXX_r_info/elfXX_r_sym to elfcode.h.
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31
32 #include "elf/x86-64.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
38 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
39 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
40 since they are the same. */
41
42 #define ABI_64_P(abfd) \
43 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
44
45 /* The relocation "howto" table. Order of fields:
46 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
47 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
48 static reloc_howto_type x86_64_elf_howto_table[] =
49 {
50 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
51 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
52 FALSE),
53 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
54 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
55 FALSE),
56 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
57 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
58 TRUE),
59 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
60 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
61 FALSE),
62 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
63 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
64 TRUE),
65 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
66 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
67 FALSE),
68 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
69 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
70 MINUS_ONE, FALSE),
71 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
72 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
73 MINUS_ONE, FALSE),
74 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
76 MINUS_ONE, FALSE),
77 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
78 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
79 0xffffffff, TRUE),
80 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
81 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
82 FALSE),
83 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
84 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
85 FALSE),
86 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
87 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
88 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
89 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
90 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
91 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
92 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
93 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
94 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
95 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
96 MINUS_ONE, FALSE),
97 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
99 MINUS_ONE, FALSE),
100 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
101 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
102 MINUS_ONE, FALSE),
103 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
104 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
105 0xffffffff, TRUE),
106 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
107 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
108 0xffffffff, TRUE),
109 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
110 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
111 0xffffffff, FALSE),
112 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
114 0xffffffff, TRUE),
115 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
116 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
117 0xffffffff, FALSE),
118 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
119 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
120 TRUE),
121 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
122 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
123 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
124 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
125 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
126 FALSE, 0xffffffff, 0xffffffff, TRUE),
127 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
128 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
129 FALSE),
130 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
131 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
132 MINUS_ONE, TRUE),
133 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
134 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
135 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
136 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
138 MINUS_ONE, FALSE),
139 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
140 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
141 MINUS_ONE, FALSE),
142 EMPTY_HOWTO (32),
143 EMPTY_HOWTO (33),
144 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
145 complain_overflow_bitfield, bfd_elf_generic_reloc,
146 "R_X86_64_GOTPC32_TLSDESC",
147 FALSE, 0xffffffff, 0xffffffff, TRUE),
148 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
149 complain_overflow_dont, bfd_elf_generic_reloc,
150 "R_X86_64_TLSDESC_CALL",
151 FALSE, 0, 0, FALSE),
152 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
153 complain_overflow_bitfield, bfd_elf_generic_reloc,
154 "R_X86_64_TLSDESC",
155 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
156 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
157 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
158 MINUS_ONE, FALSE),
159
160 /* We have a gap in the reloc numbers here.
161 R_X86_64_standard counts the number up to this point, and
162 R_X86_64_vt_offset is the value to subtract from a reloc type of
163 R_X86_64_GNU_VT* to form an index into this table. */
164 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
165 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
166
167 /* GNU extension to record C++ vtable hierarchy. */
168 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
169 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
170
171 /* GNU extension to record C++ vtable member usage. */
172 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
173 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
174 FALSE)
175 };
176
177 #define IS_X86_64_PCREL_TYPE(TYPE) \
178 ( ((TYPE) == R_X86_64_PC8) \
179 || ((TYPE) == R_X86_64_PC16) \
180 || ((TYPE) == R_X86_64_PC32) \
181 || ((TYPE) == R_X86_64_PC64))
182
183 /* Map BFD relocs to the x86_64 elf relocs. */
184 struct elf_reloc_map
185 {
186 bfd_reloc_code_real_type bfd_reloc_val;
187 unsigned char elf_reloc_val;
188 };
189
190 static const struct elf_reloc_map x86_64_reloc_map[] =
191 {
192 { BFD_RELOC_NONE, R_X86_64_NONE, },
193 { BFD_RELOC_64, R_X86_64_64, },
194 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
195 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
196 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
197 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
198 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
199 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
200 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
201 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
202 { BFD_RELOC_32, R_X86_64_32, },
203 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
204 { BFD_RELOC_16, R_X86_64_16, },
205 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
206 { BFD_RELOC_8, R_X86_64_8, },
207 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
208 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
209 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
210 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
211 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
212 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
213 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
214 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
215 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
216 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
217 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
218 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
219 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
220 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
221 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
222 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
223 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
224 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
225 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
226 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
227 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
228 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
229 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
230 };
231
232 static reloc_howto_type *
233 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
234 {
235 unsigned i;
236
237 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
238 || r_type >= (unsigned int) R_X86_64_max)
239 {
240 if (r_type >= (unsigned int) R_X86_64_standard)
241 {
242 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
243 abfd, (int) r_type);
244 r_type = R_X86_64_NONE;
245 }
246 i = r_type;
247 }
248 else
249 i = r_type - (unsigned int) R_X86_64_vt_offset;
250 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
251 return &x86_64_elf_howto_table[i];
252 }
253
254 /* Given a BFD reloc type, return a HOWTO structure. */
255 static reloc_howto_type *
256 elf_x86_64_reloc_type_lookup (bfd *abfd,
257 bfd_reloc_code_real_type code)
258 {
259 unsigned int i;
260
261 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
262 i++)
263 {
264 if (x86_64_reloc_map[i].bfd_reloc_val == code)
265 return elf_x86_64_rtype_to_howto (abfd,
266 x86_64_reloc_map[i].elf_reloc_val);
267 }
268 return 0;
269 }
270
271 static reloc_howto_type *
272 elf_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
273 const char *r_name)
274 {
275 unsigned int i;
276
277 for (i = 0;
278 i < (sizeof (x86_64_elf_howto_table)
279 / sizeof (x86_64_elf_howto_table[0]));
280 i++)
281 if (x86_64_elf_howto_table[i].name != NULL
282 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
283 return &x86_64_elf_howto_table[i];
284
285 return NULL;
286 }
287
288 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
289
290 static void
291 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
292 Elf_Internal_Rela *dst)
293 {
294 unsigned r_type;
295
296 r_type = ELF32_R_TYPE (dst->r_info);
297 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
298 BFD_ASSERT (r_type == cache_ptr->howto->type);
299 }
300 \f
301 /* Support for core dump NOTE sections. */
302 static bfd_boolean
303 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
304 {
305 int offset;
306 size_t size;
307
308 switch (note->descsz)
309 {
310 default:
311 return FALSE;
312
313 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
314 /* pr_cursig */
315 elf_tdata (abfd)->core_signal
316 = bfd_get_16 (abfd, note->descdata + 12);
317
318 /* pr_pid */
319 elf_tdata (abfd)->core_lwpid
320 = bfd_get_32 (abfd, note->descdata + 32);
321
322 /* pr_reg */
323 offset = 112;
324 size = 216;
325
326 break;
327 }
328
329 /* Make a ".reg/999" section. */
330 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
331 size, note->descpos + offset);
332 }
333
334 static bfd_boolean
335 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
336 {
337 switch (note->descsz)
338 {
339 default:
340 return FALSE;
341
342 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
343 elf_tdata (abfd)->core_pid
344 = bfd_get_32 (abfd, note->descdata + 24);
345 elf_tdata (abfd)->core_program
346 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
347 elf_tdata (abfd)->core_command
348 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
349 }
350
351 /* Note that for some reason, a spurious space is tacked
352 onto the end of the args in some (at least one anyway)
353 implementations, so strip it off if it exists. */
354
355 {
356 char *command = elf_tdata (abfd)->core_command;
357 int n = strlen (command);
358
359 if (0 < n && command[n - 1] == ' ')
360 command[n - 1] = '\0';
361 }
362
363 return TRUE;
364 }
365 \f
366 /* Functions for the x86-64 ELF linker. */
367
368 /* The name of the dynamic interpreter. This is put in the .interp
369 section. */
370
371 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
372 #define ELF32_DYNAMIC_INTERPRETER "/lib/ld32.so.1"
373
374 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
375 copying dynamic variables from a shared lib into an app's dynbss
376 section, and instead use a dynamic relocation to point into the
377 shared lib. */
378 #define ELIMINATE_COPY_RELOCS 1
379
380 /* The size in bytes of an entry in the global offset table. */
381
382 #define GOT_ENTRY_SIZE 8
383
384 /* The size in bytes of an entry in the procedure linkage table. */
385
386 #define PLT_ENTRY_SIZE 16
387
388 /* The first entry in a procedure linkage table looks like this. See the
389 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
390
391 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
392 {
393 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
394 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
395 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
396 };
397
398 /* Subsequent entries in a procedure linkage table look like this. */
399
400 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
401 {
402 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
403 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
404 0x68, /* pushq immediate */
405 0, 0, 0, 0, /* replaced with index into relocation table. */
406 0xe9, /* jmp relative */
407 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
408 };
409
410 /* x86-64 ELF linker hash entry. */
411
412 struct elf_x86_64_link_hash_entry
413 {
414 struct elf_link_hash_entry elf;
415
416 /* Track dynamic relocs copied for this symbol. */
417 struct elf_dyn_relocs *dyn_relocs;
418
419 #define GOT_UNKNOWN 0
420 #define GOT_NORMAL 1
421 #define GOT_TLS_GD 2
422 #define GOT_TLS_IE 3
423 #define GOT_TLS_GDESC 4
424 #define GOT_TLS_GD_BOTH_P(type) \
425 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
426 #define GOT_TLS_GD_P(type) \
427 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
428 #define GOT_TLS_GDESC_P(type) \
429 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
430 #define GOT_TLS_GD_ANY_P(type) \
431 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
432 unsigned char tls_type;
433
434 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
435 starting at the end of the jump table. */
436 bfd_vma tlsdesc_got;
437 };
438
439 #define elf_x86_64_hash_entry(ent) \
440 ((struct elf_x86_64_link_hash_entry *)(ent))
441
442 struct elf_x86_64_obj_tdata
443 {
444 struct elf_obj_tdata root;
445
446 /* tls_type for each local got entry. */
447 char *local_got_tls_type;
448
449 /* GOTPLT entries for TLS descriptors. */
450 bfd_vma *local_tlsdesc_gotent;
451 };
452
453 #define elf_x86_64_tdata(abfd) \
454 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
455
456 #define elf_x86_64_local_got_tls_type(abfd) \
457 (elf_x86_64_tdata (abfd)->local_got_tls_type)
458
459 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
460 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
461
462 #define is_x86_64_elf(bfd) \
463 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
464 && elf_tdata (bfd) != NULL \
465 && elf_object_id (bfd) == X86_64_ELF_DATA)
466
467 static bfd_boolean
468 elf_x86_64_mkobject (bfd *abfd)
469 {
470 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
471 X86_64_ELF_DATA);
472 }
473
474 /* x86-64 ELF linker hash table. */
475
476 struct elf_x86_64_link_hash_table
477 {
478 struct elf_link_hash_table elf;
479
480 /* Short-cuts to get to dynamic linker sections. */
481 asection *sdynbss;
482 asection *srelbss;
483
484 union
485 {
486 bfd_signed_vma refcount;
487 bfd_vma offset;
488 } tls_ld_got;
489
490 /* The amount of space used by the jump slots in the GOT. */
491 bfd_vma sgotplt_jump_table_size;
492
493 /* Small local sym cache. */
494 struct sym_cache sym_cache;
495
496 bfd_vma (*r_info) (bfd_vma, bfd_vma);
497 bfd_vma (*r_sym) (bfd_vma);
498 void (*swap_reloca_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
499 const char *dynamic_interpreter;
500 int dynamic_interpreter_size;
501
502 /* _TLS_MODULE_BASE_ symbol. */
503 struct bfd_link_hash_entry *tls_module_base;
504
505 /* Used by local STT_GNU_IFUNC symbols. */
506 htab_t loc_hash_table;
507 void * loc_hash_memory;
508
509 /* The offset into splt of the PLT entry for the TLS descriptor
510 resolver. Special values are 0, if not necessary (or not found
511 to be necessary yet), and -1 if needed but not determined
512 yet. */
513 bfd_vma tlsdesc_plt;
514 /* The offset into sgot of the GOT entry used by the PLT entry
515 above. */
516 bfd_vma tlsdesc_got;
517 };
518
519 /* Get the x86-64 ELF linker hash table from a link_info structure. */
520
521 #define elf_x86_64_hash_table(p) \
522 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
523 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
524
525 #define elf_x86_64_compute_jump_table_size(htab) \
526 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
527
528 /* Create an entry in an x86-64 ELF linker hash table. */
529
530 static struct bfd_hash_entry *
531 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
532 struct bfd_hash_table *table,
533 const char *string)
534 {
535 /* Allocate the structure if it has not already been allocated by a
536 subclass. */
537 if (entry == NULL)
538 {
539 entry = (struct bfd_hash_entry *)
540 bfd_hash_allocate (table,
541 sizeof (struct elf_x86_64_link_hash_entry));
542 if (entry == NULL)
543 return entry;
544 }
545
546 /* Call the allocation method of the superclass. */
547 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
548 if (entry != NULL)
549 {
550 struct elf_x86_64_link_hash_entry *eh;
551
552 eh = (struct elf_x86_64_link_hash_entry *) entry;
553 eh->dyn_relocs = NULL;
554 eh->tls_type = GOT_UNKNOWN;
555 eh->tlsdesc_got = (bfd_vma) -1;
556 }
557
558 return entry;
559 }
560
561 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
562 for local symbol so that we can handle local STT_GNU_IFUNC symbols
563 as global symbol. We reuse indx and dynstr_index for local symbol
564 hash since they aren't used by global symbols in this backend. */
565
566 static hashval_t
567 elf_x86_64_local_htab_hash (const void *ptr)
568 {
569 struct elf_link_hash_entry *h
570 = (struct elf_link_hash_entry *) ptr;
571 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
572 }
573
574 /* Compare local hash entries. */
575
576 static int
577 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
578 {
579 struct elf_link_hash_entry *h1
580 = (struct elf_link_hash_entry *) ptr1;
581 struct elf_link_hash_entry *h2
582 = (struct elf_link_hash_entry *) ptr2;
583
584 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
585 }
586
587 /* Find and/or create a hash entry for local symbol. */
588
589 static struct elf_link_hash_entry *
590 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
591 bfd *abfd, const Elf_Internal_Rela *rel,
592 bfd_boolean create)
593 {
594 struct elf_x86_64_link_hash_entry e, *ret;
595 asection *sec = abfd->sections;
596 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
597 htab->r_sym (rel->r_info));
598 void **slot;
599
600 e.elf.indx = sec->id;
601 e.elf.dynstr_index = htab->r_sym (rel->r_info);
602 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
603 create ? INSERT : NO_INSERT);
604
605 if (!slot)
606 return NULL;
607
608 if (*slot)
609 {
610 ret = (struct elf_x86_64_link_hash_entry *) *slot;
611 return &ret->elf;
612 }
613
614 ret = (struct elf_x86_64_link_hash_entry *)
615 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
616 sizeof (struct elf_x86_64_link_hash_entry));
617 if (ret)
618 {
619 memset (ret, 0, sizeof (*ret));
620 ret->elf.indx = sec->id;
621 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
622 ret->elf.dynindx = -1;
623 *slot = ret;
624 }
625 return &ret->elf;
626 }
627
628 /* Create an X86-64 ELF linker hash table. */
629
630 static struct bfd_link_hash_table *
631 elf_x86_64_link_hash_table_create (bfd *abfd)
632 {
633 struct elf_x86_64_link_hash_table *ret;
634 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
635
636 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
637 if (ret == NULL)
638 return NULL;
639
640 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
641 elf_x86_64_link_hash_newfunc,
642 sizeof (struct elf_x86_64_link_hash_entry),
643 X86_64_ELF_DATA))
644 {
645 free (ret);
646 return NULL;
647 }
648
649 ret->sdynbss = NULL;
650 ret->srelbss = NULL;
651 ret->sym_cache.abfd = NULL;
652 ret->tlsdesc_plt = 0;
653 ret->tlsdesc_got = 0;
654 ret->tls_ld_got.refcount = 0;
655 ret->sgotplt_jump_table_size = 0;
656 ret->tls_module_base = NULL;
657
658 if (ABI_64_P (abfd))
659 {
660 ret->r_info = elf64_r_info;
661 ret->r_sym = elf64_r_sym;
662 ret->swap_reloca_out = bfd_elf64_swap_reloca_out;
663 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
664 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
665 }
666 else
667 {
668 ret->r_info = elf32_r_info;
669 ret->r_sym = elf32_r_sym;
670 ret->swap_reloca_out = bfd_elf32_swap_reloca_out;
671 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
672 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
673 }
674
675 ret->loc_hash_table = htab_try_create (1024,
676 elf_x86_64_local_htab_hash,
677 elf_x86_64_local_htab_eq,
678 NULL);
679 ret->loc_hash_memory = objalloc_create ();
680 if (!ret->loc_hash_table || !ret->loc_hash_memory)
681 {
682 free (ret);
683 return NULL;
684 }
685
686 return &ret->elf.root;
687 }
688
689 /* Destroy an X86-64 ELF linker hash table. */
690
691 static void
692 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
693 {
694 struct elf_x86_64_link_hash_table *htab
695 = (struct elf_x86_64_link_hash_table *) hash;
696
697 if (htab->loc_hash_table)
698 htab_delete (htab->loc_hash_table);
699 if (htab->loc_hash_memory)
700 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
701 _bfd_generic_link_hash_table_free (hash);
702 }
703
704 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
705 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
706 hash table. */
707
708 static bfd_boolean
709 elf_x86_64_create_dynamic_sections (bfd *dynobj,
710 struct bfd_link_info *info)
711 {
712 struct elf_x86_64_link_hash_table *htab;
713
714 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
715 return FALSE;
716
717 htab = elf_x86_64_hash_table (info);
718 if (htab == NULL)
719 return FALSE;
720
721 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
722 if (!info->shared)
723 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
724
725 if (!htab->sdynbss
726 || (!info->shared && !htab->srelbss))
727 abort ();
728
729 return TRUE;
730 }
731
732 /* Copy the extra info we tack onto an elf_link_hash_entry. */
733
734 static void
735 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
736 struct elf_link_hash_entry *dir,
737 struct elf_link_hash_entry *ind)
738 {
739 struct elf_x86_64_link_hash_entry *edir, *eind;
740
741 edir = (struct elf_x86_64_link_hash_entry *) dir;
742 eind = (struct elf_x86_64_link_hash_entry *) ind;
743
744 if (eind->dyn_relocs != NULL)
745 {
746 if (edir->dyn_relocs != NULL)
747 {
748 struct elf_dyn_relocs **pp;
749 struct elf_dyn_relocs *p;
750
751 /* Add reloc counts against the indirect sym to the direct sym
752 list. Merge any entries against the same section. */
753 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
754 {
755 struct elf_dyn_relocs *q;
756
757 for (q = edir->dyn_relocs; q != NULL; q = q->next)
758 if (q->sec == p->sec)
759 {
760 q->pc_count += p->pc_count;
761 q->count += p->count;
762 *pp = p->next;
763 break;
764 }
765 if (q == NULL)
766 pp = &p->next;
767 }
768 *pp = edir->dyn_relocs;
769 }
770
771 edir->dyn_relocs = eind->dyn_relocs;
772 eind->dyn_relocs = NULL;
773 }
774
775 if (ind->root.type == bfd_link_hash_indirect
776 && dir->got.refcount <= 0)
777 {
778 edir->tls_type = eind->tls_type;
779 eind->tls_type = GOT_UNKNOWN;
780 }
781
782 if (ELIMINATE_COPY_RELOCS
783 && ind->root.type != bfd_link_hash_indirect
784 && dir->dynamic_adjusted)
785 {
786 /* If called to transfer flags for a weakdef during processing
787 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
788 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
789 dir->ref_dynamic |= ind->ref_dynamic;
790 dir->ref_regular |= ind->ref_regular;
791 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
792 dir->needs_plt |= ind->needs_plt;
793 dir->pointer_equality_needed |= ind->pointer_equality_needed;
794 }
795 else
796 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
797 }
798
799 static bfd_boolean
800 elf64_x86_64_elf_object_p (bfd *abfd)
801 {
802 /* Set the right machine number for an x86-64 elf64 file. */
803 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
804 return TRUE;
805 }
806
807 typedef union
808 {
809 unsigned char c[2];
810 uint16_t i;
811 }
812 x86_64_opcode16;
813
814 typedef union
815 {
816 unsigned char c[4];
817 uint32_t i;
818 }
819 x86_64_opcode32;
820
821 /* Return TRUE if the TLS access code sequence support transition
822 from R_TYPE. */
823
824 static bfd_boolean
825 elf_x86_64_check_tls_transition (bfd *abfd,
826 struct bfd_link_info *info,
827 asection *sec,
828 bfd_byte *contents,
829 Elf_Internal_Shdr *symtab_hdr,
830 struct elf_link_hash_entry **sym_hashes,
831 unsigned int r_type,
832 const Elf_Internal_Rela *rel,
833 const Elf_Internal_Rela *relend)
834 {
835 unsigned int val;
836 unsigned long r_symndx;
837 struct elf_link_hash_entry *h;
838 bfd_vma offset;
839 struct elf_x86_64_link_hash_table *htab;
840
841 /* Get the section contents. */
842 if (contents == NULL)
843 {
844 if (elf_section_data (sec)->this_hdr.contents != NULL)
845 contents = elf_section_data (sec)->this_hdr.contents;
846 else
847 {
848 /* FIXME: How to better handle error condition? */
849 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
850 return FALSE;
851
852 /* Cache the section contents for elf_link_input_bfd. */
853 elf_section_data (sec)->this_hdr.contents = contents;
854 }
855 }
856
857 htab = elf_x86_64_hash_table (info);
858 offset = rel->r_offset;
859 switch (r_type)
860 {
861 case R_X86_64_TLSGD:
862 case R_X86_64_TLSLD:
863 if ((rel + 1) >= relend)
864 return FALSE;
865
866 if (r_type == R_X86_64_TLSGD)
867 {
868 /* Check transition from GD access model. Only
869 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
870 .word 0x6666; rex64; call __tls_get_addr
871 can transit to different access model. */
872
873 static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } },
874 call = { { 0x66, 0x66, 0x48, 0xe8 } };
875 if (offset < 4
876 || (offset + 12) > sec->size
877 || bfd_get_32 (abfd, contents + offset - 4) != leaq.i
878 || bfd_get_32 (abfd, contents + offset + 4) != call.i)
879 return FALSE;
880 }
881 else
882 {
883 /* Check transition from LD access model. Only
884 leaq foo@tlsld(%rip), %rdi;
885 call __tls_get_addr
886 can transit to different access model. */
887
888 static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } };
889 x86_64_opcode32 op;
890
891 if (offset < 3 || (offset + 9) > sec->size)
892 return FALSE;
893
894 op.i = bfd_get_32 (abfd, contents + offset - 3);
895 op.c[3] = bfd_get_8 (abfd, contents + offset + 4);
896 if (op.i != ld.i)
897 return FALSE;
898 }
899
900 r_symndx = htab->r_sym (rel[1].r_info);
901 if (r_symndx < symtab_hdr->sh_info)
902 return FALSE;
903
904 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
905 /* Use strncmp to check __tls_get_addr since __tls_get_addr
906 may be versioned. */
907 return (h != NULL
908 && h->root.root.string != NULL
909 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
910 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
911 && (strncmp (h->root.root.string,
912 "__tls_get_addr", 14) == 0));
913
914 case R_X86_64_GOTTPOFF:
915 /* Check transition from IE access model:
916 movq foo@gottpoff(%rip), %reg
917 addq foo@gottpoff(%rip), %reg
918 */
919
920 if (offset < 3 || (offset + 4) > sec->size)
921 return FALSE;
922
923 val = bfd_get_8 (abfd, contents + offset - 3);
924 if (val != 0x48 && val != 0x4c)
925 return FALSE;
926
927 val = bfd_get_8 (abfd, contents + offset - 2);
928 if (val != 0x8b && val != 0x03)
929 return FALSE;
930
931 val = bfd_get_8 (abfd, contents + offset - 1);
932 return (val & 0xc7) == 5;
933
934 case R_X86_64_GOTPC32_TLSDESC:
935 /* Check transition from GDesc access model:
936 leaq x@tlsdesc(%rip), %rax
937
938 Make sure it's a leaq adding rip to a 32-bit offset
939 into any register, although it's probably almost always
940 going to be rax. */
941
942 if (offset < 3 || (offset + 4) > sec->size)
943 return FALSE;
944
945 val = bfd_get_8 (abfd, contents + offset - 3);
946 if ((val & 0xfb) != 0x48)
947 return FALSE;
948
949 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
950 return FALSE;
951
952 val = bfd_get_8 (abfd, contents + offset - 1);
953 return (val & 0xc7) == 0x05;
954
955 case R_X86_64_TLSDESC_CALL:
956 /* Check transition from GDesc access model:
957 call *x@tlsdesc(%rax)
958 */
959 if (offset + 2 <= sec->size)
960 {
961 /* Make sure that it's a call *x@tlsdesc(%rax). */
962 static x86_64_opcode16 call = { { 0xff, 0x10 } };
963 return bfd_get_16 (abfd, contents + offset) == call.i;
964 }
965
966 return FALSE;
967
968 default:
969 abort ();
970 }
971 }
972
973 /* Return TRUE if the TLS access transition is OK or no transition
974 will be performed. Update R_TYPE if there is a transition. */
975
976 static bfd_boolean
977 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
978 asection *sec, bfd_byte *contents,
979 Elf_Internal_Shdr *symtab_hdr,
980 struct elf_link_hash_entry **sym_hashes,
981 unsigned int *r_type, int tls_type,
982 const Elf_Internal_Rela *rel,
983 const Elf_Internal_Rela *relend,
984 struct elf_link_hash_entry *h,
985 unsigned long r_symndx)
986 {
987 unsigned int from_type = *r_type;
988 unsigned int to_type = from_type;
989 bfd_boolean check = TRUE;
990
991 /* Skip TLS transition for functions. */
992 if (h != NULL
993 && (h->type == STT_FUNC
994 || h->type == STT_GNU_IFUNC))
995 return TRUE;
996
997 switch (from_type)
998 {
999 case R_X86_64_TLSGD:
1000 case R_X86_64_GOTPC32_TLSDESC:
1001 case R_X86_64_TLSDESC_CALL:
1002 case R_X86_64_GOTTPOFF:
1003 if (info->executable)
1004 {
1005 if (h == NULL)
1006 to_type = R_X86_64_TPOFF32;
1007 else
1008 to_type = R_X86_64_GOTTPOFF;
1009 }
1010
1011 /* When we are called from elf_x86_64_relocate_section,
1012 CONTENTS isn't NULL and there may be additional transitions
1013 based on TLS_TYPE. */
1014 if (contents != NULL)
1015 {
1016 unsigned int new_to_type = to_type;
1017
1018 if (info->executable
1019 && h != NULL
1020 && h->dynindx == -1
1021 && tls_type == GOT_TLS_IE)
1022 new_to_type = R_X86_64_TPOFF32;
1023
1024 if (to_type == R_X86_64_TLSGD
1025 || to_type == R_X86_64_GOTPC32_TLSDESC
1026 || to_type == R_X86_64_TLSDESC_CALL)
1027 {
1028 if (tls_type == GOT_TLS_IE)
1029 new_to_type = R_X86_64_GOTTPOFF;
1030 }
1031
1032 /* We checked the transition before when we were called from
1033 elf_x86_64_check_relocs. We only want to check the new
1034 transition which hasn't been checked before. */
1035 check = new_to_type != to_type && from_type == to_type;
1036 to_type = new_to_type;
1037 }
1038
1039 break;
1040
1041 case R_X86_64_TLSLD:
1042 if (info->executable)
1043 to_type = R_X86_64_TPOFF32;
1044 break;
1045
1046 default:
1047 return TRUE;
1048 }
1049
1050 /* Return TRUE if there is no transition. */
1051 if (from_type == to_type)
1052 return TRUE;
1053
1054 /* Check if the transition can be performed. */
1055 if (check
1056 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1057 symtab_hdr, sym_hashes,
1058 from_type, rel, relend))
1059 {
1060 reloc_howto_type *from, *to;
1061 const char *name;
1062
1063 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1064 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1065
1066 if (h)
1067 name = h->root.root.string;
1068 else
1069 {
1070 struct elf_x86_64_link_hash_table *htab;
1071
1072 htab = elf_x86_64_hash_table (info);
1073 if (htab == NULL)
1074 name = "*unknown*";
1075 else
1076 {
1077 Elf_Internal_Sym *isym;
1078
1079 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1080 abfd, r_symndx);
1081 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1082 }
1083 }
1084
1085 (*_bfd_error_handler)
1086 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1087 "in section `%A' failed"),
1088 abfd, sec, from->name, to->name, name,
1089 (unsigned long) rel->r_offset);
1090 bfd_set_error (bfd_error_bad_value);
1091 return FALSE;
1092 }
1093
1094 *r_type = to_type;
1095 return TRUE;
1096 }
1097
1098 /* Look through the relocs for a section during the first phase, and
1099 calculate needed space in the global offset table, procedure
1100 linkage table, and dynamic reloc sections. */
1101
1102 static bfd_boolean
1103 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1104 asection *sec,
1105 const Elf_Internal_Rela *relocs)
1106 {
1107 struct elf_x86_64_link_hash_table *htab;
1108 Elf_Internal_Shdr *symtab_hdr;
1109 struct elf_link_hash_entry **sym_hashes;
1110 const Elf_Internal_Rela *rel;
1111 const Elf_Internal_Rela *rel_end;
1112 asection *sreloc;
1113
1114 if (info->relocatable)
1115 return TRUE;
1116
1117 BFD_ASSERT (is_x86_64_elf (abfd));
1118
1119 htab = elf_x86_64_hash_table (info);
1120 if (htab == NULL)
1121 return FALSE;
1122
1123 symtab_hdr = &elf_symtab_hdr (abfd);
1124 sym_hashes = elf_sym_hashes (abfd);
1125
1126 sreloc = NULL;
1127
1128 rel_end = relocs + sec->reloc_count;
1129 for (rel = relocs; rel < rel_end; rel++)
1130 {
1131 unsigned int r_type;
1132 unsigned long r_symndx;
1133 struct elf_link_hash_entry *h;
1134 Elf_Internal_Sym *isym;
1135 const char *name;
1136
1137 r_symndx = htab->r_sym (rel->r_info);
1138 r_type = ELF32_R_TYPE (rel->r_info);
1139
1140 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1141 {
1142 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1143 abfd, r_symndx);
1144 return FALSE;
1145 }
1146
1147 if (r_symndx < symtab_hdr->sh_info)
1148 {
1149 /* A local symbol. */
1150 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1151 abfd, r_symndx);
1152 if (isym == NULL)
1153 return FALSE;
1154
1155 /* Check relocation against local STT_GNU_IFUNC symbol. */
1156 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1157 {
1158 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1159 TRUE);
1160 if (h == NULL)
1161 return FALSE;
1162
1163 /* Fake a STT_GNU_IFUNC symbol. */
1164 h->type = STT_GNU_IFUNC;
1165 h->def_regular = 1;
1166 h->ref_regular = 1;
1167 h->forced_local = 1;
1168 h->root.type = bfd_link_hash_defined;
1169 }
1170 else
1171 h = NULL;
1172 }
1173 else
1174 {
1175 isym = NULL;
1176 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1177 while (h->root.type == bfd_link_hash_indirect
1178 || h->root.type == bfd_link_hash_warning)
1179 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1180 }
1181
1182 if (h != NULL)
1183 {
1184 /* Create the ifunc sections for static executables. If we
1185 never see an indirect function symbol nor we are building
1186 a static executable, those sections will be empty and
1187 won't appear in output. */
1188 switch (r_type)
1189 {
1190 default:
1191 break;
1192
1193 case R_X86_64_32S:
1194 case R_X86_64_32:
1195 case R_X86_64_64:
1196 case R_X86_64_PC32:
1197 case R_X86_64_PC64:
1198 case R_X86_64_PLT32:
1199 case R_X86_64_GOTPCREL:
1200 case R_X86_64_GOTPCREL64:
1201 if (!_bfd_elf_create_ifunc_sections (abfd, info))
1202 return FALSE;
1203 break;
1204 }
1205
1206 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1207 it here if it is defined in a non-shared object. */
1208 if (h->type == STT_GNU_IFUNC
1209 && h->def_regular)
1210 {
1211 /* It is referenced by a non-shared object. */
1212 h->ref_regular = 1;
1213 h->needs_plt = 1;
1214
1215 /* STT_GNU_IFUNC symbol must go through PLT. */
1216 h->plt.refcount += 1;
1217
1218 /* STT_GNU_IFUNC needs dynamic sections. */
1219 if (htab->elf.dynobj == NULL)
1220 htab->elf.dynobj = abfd;
1221
1222 switch (r_type)
1223 {
1224 default:
1225 if (h->root.root.string)
1226 name = h->root.root.string;
1227 else
1228 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1229 NULL);
1230 (*_bfd_error_handler)
1231 (_("%B: relocation %s against STT_GNU_IFUNC "
1232 "symbol `%s' isn't handled by %s"), abfd,
1233 x86_64_elf_howto_table[r_type].name,
1234 name, __FUNCTION__);
1235 bfd_set_error (bfd_error_bad_value);
1236 return FALSE;
1237
1238 case R_X86_64_64:
1239 h->non_got_ref = 1;
1240 h->pointer_equality_needed = 1;
1241 if (info->shared)
1242 {
1243 /* We must copy these reloc types into the output
1244 file. Create a reloc section in dynobj and
1245 make room for this reloc. */
1246 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1247 (abfd, info, sec, sreloc,
1248 &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs);
1249 if (sreloc == NULL)
1250 return FALSE;
1251 }
1252 break;
1253
1254 case R_X86_64_32S:
1255 case R_X86_64_32:
1256 case R_X86_64_PC32:
1257 case R_X86_64_PC64:
1258 h->non_got_ref = 1;
1259 if (r_type != R_X86_64_PC32
1260 && r_type != R_X86_64_PC64)
1261 h->pointer_equality_needed = 1;
1262 break;
1263
1264 case R_X86_64_PLT32:
1265 break;
1266
1267 case R_X86_64_GOTPCREL:
1268 case R_X86_64_GOTPCREL64:
1269 h->got.refcount += 1;
1270 if (htab->elf.sgot == NULL
1271 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1272 info))
1273 return FALSE;
1274 break;
1275 }
1276
1277 continue;
1278 }
1279 }
1280
1281 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1282 symtab_hdr, sym_hashes,
1283 &r_type, GOT_UNKNOWN,
1284 rel, rel_end, h, r_symndx))
1285 return FALSE;
1286
1287 switch (r_type)
1288 {
1289 case R_X86_64_TLSLD:
1290 htab->tls_ld_got.refcount += 1;
1291 goto create_got;
1292
1293 case R_X86_64_TPOFF32:
1294 if (!info->executable && ABI_64_P (abfd))
1295 {
1296 if (h)
1297 name = h->root.root.string;
1298 else
1299 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1300 NULL);
1301 (*_bfd_error_handler)
1302 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1303 abfd,
1304 x86_64_elf_howto_table[r_type].name, name);
1305 bfd_set_error (bfd_error_bad_value);
1306 return FALSE;
1307 }
1308 break;
1309
1310 case R_X86_64_GOTTPOFF:
1311 if (!info->executable)
1312 info->flags |= DF_STATIC_TLS;
1313 /* Fall through */
1314
1315 case R_X86_64_GOT32:
1316 case R_X86_64_GOTPCREL:
1317 case R_X86_64_TLSGD:
1318 case R_X86_64_GOT64:
1319 case R_X86_64_GOTPCREL64:
1320 case R_X86_64_GOTPLT64:
1321 case R_X86_64_GOTPC32_TLSDESC:
1322 case R_X86_64_TLSDESC_CALL:
1323 /* This symbol requires a global offset table entry. */
1324 {
1325 int tls_type, old_tls_type;
1326
1327 switch (r_type)
1328 {
1329 default: tls_type = GOT_NORMAL; break;
1330 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1331 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1332 case R_X86_64_GOTPC32_TLSDESC:
1333 case R_X86_64_TLSDESC_CALL:
1334 tls_type = GOT_TLS_GDESC; break;
1335 }
1336
1337 if (h != NULL)
1338 {
1339 if (r_type == R_X86_64_GOTPLT64)
1340 {
1341 /* This relocation indicates that we also need
1342 a PLT entry, as this is a function. We don't need
1343 a PLT entry for local symbols. */
1344 h->needs_plt = 1;
1345 h->plt.refcount += 1;
1346 }
1347 h->got.refcount += 1;
1348 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1349 }
1350 else
1351 {
1352 bfd_signed_vma *local_got_refcounts;
1353
1354 /* This is a global offset table entry for a local symbol. */
1355 local_got_refcounts = elf_local_got_refcounts (abfd);
1356 if (local_got_refcounts == NULL)
1357 {
1358 bfd_size_type size;
1359
1360 size = symtab_hdr->sh_info;
1361 size *= sizeof (bfd_signed_vma)
1362 + sizeof (bfd_vma) + sizeof (char);
1363 local_got_refcounts = ((bfd_signed_vma *)
1364 bfd_zalloc (abfd, size));
1365 if (local_got_refcounts == NULL)
1366 return FALSE;
1367 elf_local_got_refcounts (abfd) = local_got_refcounts;
1368 elf_x86_64_local_tlsdesc_gotent (abfd)
1369 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1370 elf_x86_64_local_got_tls_type (abfd)
1371 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1372 }
1373 local_got_refcounts[r_symndx] += 1;
1374 old_tls_type
1375 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1376 }
1377
1378 /* If a TLS symbol is accessed using IE at least once,
1379 there is no point to use dynamic model for it. */
1380 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1381 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1382 || tls_type != GOT_TLS_IE))
1383 {
1384 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1385 tls_type = old_tls_type;
1386 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1387 && GOT_TLS_GD_ANY_P (tls_type))
1388 tls_type |= old_tls_type;
1389 else
1390 {
1391 if (h)
1392 name = h->root.root.string;
1393 else
1394 name = bfd_elf_sym_name (abfd, symtab_hdr,
1395 isym, NULL);
1396 (*_bfd_error_handler)
1397 (_("%B: '%s' accessed both as normal and thread local symbol"),
1398 abfd, name);
1399 return FALSE;
1400 }
1401 }
1402
1403 if (old_tls_type != tls_type)
1404 {
1405 if (h != NULL)
1406 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1407 else
1408 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1409 }
1410 }
1411 /* Fall through */
1412
1413 case R_X86_64_GOTOFF64:
1414 case R_X86_64_GOTPC32:
1415 case R_X86_64_GOTPC64:
1416 create_got:
1417 if (htab->elf.sgot == NULL)
1418 {
1419 if (htab->elf.dynobj == NULL)
1420 htab->elf.dynobj = abfd;
1421 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1422 info))
1423 return FALSE;
1424 }
1425 break;
1426
1427 case R_X86_64_PLT32:
1428 /* This symbol requires a procedure linkage table entry. We
1429 actually build the entry in adjust_dynamic_symbol,
1430 because this might be a case of linking PIC code which is
1431 never referenced by a dynamic object, in which case we
1432 don't need to generate a procedure linkage table entry
1433 after all. */
1434
1435 /* If this is a local symbol, we resolve it directly without
1436 creating a procedure linkage table entry. */
1437 if (h == NULL)
1438 continue;
1439
1440 h->needs_plt = 1;
1441 h->plt.refcount += 1;
1442 break;
1443
1444 case R_X86_64_PLTOFF64:
1445 /* This tries to form the 'address' of a function relative
1446 to GOT. For global symbols we need a PLT entry. */
1447 if (h != NULL)
1448 {
1449 h->needs_plt = 1;
1450 h->plt.refcount += 1;
1451 }
1452 goto create_got;
1453
1454 case R_X86_64_8:
1455 case R_X86_64_16:
1456 case R_X86_64_32:
1457 case R_X86_64_32S:
1458 /* Let's help debug shared library creation. These relocs
1459 cannot be used in shared libs. Don't error out for
1460 sections we don't care about, such as debug sections or
1461 non-constant sections. */
1462 if (info->shared
1463 && ABI_64_P (abfd)
1464 && (sec->flags & SEC_ALLOC) != 0
1465 && (sec->flags & SEC_READONLY) != 0)
1466 {
1467 if (h)
1468 name = h->root.root.string;
1469 else
1470 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1471 (*_bfd_error_handler)
1472 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1473 abfd, x86_64_elf_howto_table[r_type].name, name);
1474 bfd_set_error (bfd_error_bad_value);
1475 return FALSE;
1476 }
1477 /* Fall through. */
1478
1479 case R_X86_64_PC8:
1480 case R_X86_64_PC16:
1481 case R_X86_64_PC32:
1482 case R_X86_64_PC64:
1483 case R_X86_64_64:
1484 if (h != NULL && info->executable)
1485 {
1486 /* If this reloc is in a read-only section, we might
1487 need a copy reloc. We can't check reliably at this
1488 stage whether the section is read-only, as input
1489 sections have not yet been mapped to output sections.
1490 Tentatively set the flag for now, and correct in
1491 adjust_dynamic_symbol. */
1492 h->non_got_ref = 1;
1493
1494 /* We may need a .plt entry if the function this reloc
1495 refers to is in a shared lib. */
1496 h->plt.refcount += 1;
1497 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1498 h->pointer_equality_needed = 1;
1499 }
1500
1501 /* If we are creating a shared library, and this is a reloc
1502 against a global symbol, or a non PC relative reloc
1503 against a local symbol, then we need to copy the reloc
1504 into the shared library. However, if we are linking with
1505 -Bsymbolic, we do not need to copy a reloc against a
1506 global symbol which is defined in an object we are
1507 including in the link (i.e., DEF_REGULAR is set). At
1508 this point we have not seen all the input files, so it is
1509 possible that DEF_REGULAR is not set now but will be set
1510 later (it is never cleared). In case of a weak definition,
1511 DEF_REGULAR may be cleared later by a strong definition in
1512 a shared library. We account for that possibility below by
1513 storing information in the relocs_copied field of the hash
1514 table entry. A similar situation occurs when creating
1515 shared libraries and symbol visibility changes render the
1516 symbol local.
1517
1518 If on the other hand, we are creating an executable, we
1519 may need to keep relocations for symbols satisfied by a
1520 dynamic library if we manage to avoid copy relocs for the
1521 symbol. */
1522 if ((info->shared
1523 && (sec->flags & SEC_ALLOC) != 0
1524 && (! IS_X86_64_PCREL_TYPE (r_type)
1525 || (h != NULL
1526 && (! SYMBOLIC_BIND (info, h)
1527 || h->root.type == bfd_link_hash_defweak
1528 || !h->def_regular))))
1529 || (ELIMINATE_COPY_RELOCS
1530 && !info->shared
1531 && (sec->flags & SEC_ALLOC) != 0
1532 && h != NULL
1533 && (h->root.type == bfd_link_hash_defweak
1534 || !h->def_regular)))
1535 {
1536 struct elf_dyn_relocs *p;
1537 struct elf_dyn_relocs **head;
1538
1539 /* We must copy these reloc types into the output file.
1540 Create a reloc section in dynobj and make room for
1541 this reloc. */
1542 if (sreloc == NULL)
1543 {
1544 if (htab->elf.dynobj == NULL)
1545 htab->elf.dynobj = abfd;
1546
1547 sreloc = _bfd_elf_make_dynamic_reloc_section
1548 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
1549
1550 if (sreloc == NULL)
1551 return FALSE;
1552 }
1553
1554 /* If this is a global symbol, we count the number of
1555 relocations we need for this symbol. */
1556 if (h != NULL)
1557 {
1558 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1559 }
1560 else
1561 {
1562 /* Track dynamic relocs needed for local syms too.
1563 We really need local syms available to do this
1564 easily. Oh well. */
1565 asection *s;
1566 void **vpp;
1567
1568 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1569 abfd, r_symndx);
1570 if (isym == NULL)
1571 return FALSE;
1572
1573 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1574 if (s == NULL)
1575 s = sec;
1576
1577 /* Beware of type punned pointers vs strict aliasing
1578 rules. */
1579 vpp = &(elf_section_data (s)->local_dynrel);
1580 head = (struct elf_dyn_relocs **)vpp;
1581 }
1582
1583 p = *head;
1584 if (p == NULL || p->sec != sec)
1585 {
1586 bfd_size_type amt = sizeof *p;
1587
1588 p = ((struct elf_dyn_relocs *)
1589 bfd_alloc (htab->elf.dynobj, amt));
1590 if (p == NULL)
1591 return FALSE;
1592 p->next = *head;
1593 *head = p;
1594 p->sec = sec;
1595 p->count = 0;
1596 p->pc_count = 0;
1597 }
1598
1599 p->count += 1;
1600 if (IS_X86_64_PCREL_TYPE (r_type))
1601 p->pc_count += 1;
1602 }
1603 break;
1604
1605 /* This relocation describes the C++ object vtable hierarchy.
1606 Reconstruct it for later use during GC. */
1607 case R_X86_64_GNU_VTINHERIT:
1608 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1609 return FALSE;
1610 break;
1611
1612 /* This relocation describes which C++ vtable entries are actually
1613 used. Record for later use during GC. */
1614 case R_X86_64_GNU_VTENTRY:
1615 BFD_ASSERT (h != NULL);
1616 if (h != NULL
1617 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1618 return FALSE;
1619 break;
1620
1621 default:
1622 break;
1623 }
1624 }
1625
1626 return TRUE;
1627 }
1628
1629 /* Return the section that should be marked against GC for a given
1630 relocation. */
1631
1632 static asection *
1633 elf_x86_64_gc_mark_hook (asection *sec,
1634 struct bfd_link_info *info,
1635 Elf_Internal_Rela *rel,
1636 struct elf_link_hash_entry *h,
1637 Elf_Internal_Sym *sym)
1638 {
1639 if (h != NULL)
1640 switch (ELF32_R_TYPE (rel->r_info))
1641 {
1642 case R_X86_64_GNU_VTINHERIT:
1643 case R_X86_64_GNU_VTENTRY:
1644 return NULL;
1645 }
1646
1647 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1648 }
1649
1650 /* Update the got entry reference counts for the section being removed. */
1651
1652 static bfd_boolean
1653 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1654 asection *sec,
1655 const Elf_Internal_Rela *relocs)
1656 {
1657 struct elf_x86_64_link_hash_table *htab;
1658 Elf_Internal_Shdr *symtab_hdr;
1659 struct elf_link_hash_entry **sym_hashes;
1660 bfd_signed_vma *local_got_refcounts;
1661 const Elf_Internal_Rela *rel, *relend;
1662
1663 if (info->relocatable)
1664 return TRUE;
1665
1666 htab = elf_x86_64_hash_table (info);
1667 if (htab == NULL)
1668 return FALSE;
1669
1670 elf_section_data (sec)->local_dynrel = NULL;
1671
1672 symtab_hdr = &elf_symtab_hdr (abfd);
1673 sym_hashes = elf_sym_hashes (abfd);
1674 local_got_refcounts = elf_local_got_refcounts (abfd);
1675
1676 htab = elf_x86_64_hash_table (info);
1677 relend = relocs + sec->reloc_count;
1678 for (rel = relocs; rel < relend; rel++)
1679 {
1680 unsigned long r_symndx;
1681 unsigned int r_type;
1682 struct elf_link_hash_entry *h = NULL;
1683
1684 r_symndx = htab->r_sym (rel->r_info);
1685 if (r_symndx >= symtab_hdr->sh_info)
1686 {
1687 struct elf_x86_64_link_hash_entry *eh;
1688 struct elf_dyn_relocs **pp;
1689 struct elf_dyn_relocs *p;
1690
1691 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1692 while (h->root.type == bfd_link_hash_indirect
1693 || h->root.type == bfd_link_hash_warning)
1694 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1695 eh = (struct elf_x86_64_link_hash_entry *) h;
1696
1697 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1698 if (p->sec == sec)
1699 {
1700 /* Everything must go for SEC. */
1701 *pp = p->next;
1702 break;
1703 }
1704 }
1705 else
1706 {
1707 /* A local symbol. */
1708 Elf_Internal_Sym *isym;
1709
1710 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1711 abfd, r_symndx);
1712
1713 /* Check relocation against local STT_GNU_IFUNC symbol. */
1714 if (isym != NULL
1715 && ELF64_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1716 {
1717 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
1718 if (h == NULL)
1719 abort ();
1720 }
1721 }
1722
1723 r_type = ELF32_R_TYPE (rel->r_info);
1724 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1725 symtab_hdr, sym_hashes,
1726 &r_type, GOT_UNKNOWN,
1727 rel, relend, h, r_symndx))
1728 return FALSE;
1729
1730 switch (r_type)
1731 {
1732 case R_X86_64_TLSLD:
1733 if (htab->tls_ld_got.refcount > 0)
1734 htab->tls_ld_got.refcount -= 1;
1735 break;
1736
1737 case R_X86_64_TLSGD:
1738 case R_X86_64_GOTPC32_TLSDESC:
1739 case R_X86_64_TLSDESC_CALL:
1740 case R_X86_64_GOTTPOFF:
1741 case R_X86_64_GOT32:
1742 case R_X86_64_GOTPCREL:
1743 case R_X86_64_GOT64:
1744 case R_X86_64_GOTPCREL64:
1745 case R_X86_64_GOTPLT64:
1746 if (h != NULL)
1747 {
1748 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1749 h->plt.refcount -= 1;
1750 if (h->got.refcount > 0)
1751 h->got.refcount -= 1;
1752 if (h->type == STT_GNU_IFUNC)
1753 {
1754 if (h->plt.refcount > 0)
1755 h->plt.refcount -= 1;
1756 }
1757 }
1758 else if (local_got_refcounts != NULL)
1759 {
1760 if (local_got_refcounts[r_symndx] > 0)
1761 local_got_refcounts[r_symndx] -= 1;
1762 }
1763 break;
1764
1765 case R_X86_64_8:
1766 case R_X86_64_16:
1767 case R_X86_64_32:
1768 case R_X86_64_64:
1769 case R_X86_64_32S:
1770 case R_X86_64_PC8:
1771 case R_X86_64_PC16:
1772 case R_X86_64_PC32:
1773 case R_X86_64_PC64:
1774 if (info->shared)
1775 break;
1776 /* Fall thru */
1777
1778 case R_X86_64_PLT32:
1779 case R_X86_64_PLTOFF64:
1780 if (h != NULL)
1781 {
1782 if (h->plt.refcount > 0)
1783 h->plt.refcount -= 1;
1784 }
1785 break;
1786
1787 default:
1788 break;
1789 }
1790 }
1791
1792 return TRUE;
1793 }
1794
1795 /* Adjust a symbol defined by a dynamic object and referenced by a
1796 regular object. The current definition is in some section of the
1797 dynamic object, but we're not including those sections. We have to
1798 change the definition to something the rest of the link can
1799 understand. */
1800
1801 static bfd_boolean
1802 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1803 struct elf_link_hash_entry *h)
1804 {
1805 struct elf_x86_64_link_hash_table *htab;
1806 asection *s;
1807
1808 /* STT_GNU_IFUNC symbol must go through PLT. */
1809 if (h->type == STT_GNU_IFUNC)
1810 {
1811 if (h->plt.refcount <= 0)
1812 {
1813 h->plt.offset = (bfd_vma) -1;
1814 h->needs_plt = 0;
1815 }
1816 return TRUE;
1817 }
1818
1819 /* If this is a function, put it in the procedure linkage table. We
1820 will fill in the contents of the procedure linkage table later,
1821 when we know the address of the .got section. */
1822 if (h->type == STT_FUNC
1823 || h->needs_plt)
1824 {
1825 if (h->plt.refcount <= 0
1826 || SYMBOL_CALLS_LOCAL (info, h)
1827 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1828 && h->root.type == bfd_link_hash_undefweak))
1829 {
1830 /* This case can occur if we saw a PLT32 reloc in an input
1831 file, but the symbol was never referred to by a dynamic
1832 object, or if all references were garbage collected. In
1833 such a case, we don't actually need to build a procedure
1834 linkage table, and we can just do a PC32 reloc instead. */
1835 h->plt.offset = (bfd_vma) -1;
1836 h->needs_plt = 0;
1837 }
1838
1839 return TRUE;
1840 }
1841 else
1842 /* It's possible that we incorrectly decided a .plt reloc was
1843 needed for an R_X86_64_PC32 reloc to a non-function sym in
1844 check_relocs. We can't decide accurately between function and
1845 non-function syms in check-relocs; Objects loaded later in
1846 the link may change h->type. So fix it now. */
1847 h->plt.offset = (bfd_vma) -1;
1848
1849 /* If this is a weak symbol, and there is a real definition, the
1850 processor independent code will have arranged for us to see the
1851 real definition first, and we can just use the same value. */
1852 if (h->u.weakdef != NULL)
1853 {
1854 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1855 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1856 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1857 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1858 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1859 h->non_got_ref = h->u.weakdef->non_got_ref;
1860 return TRUE;
1861 }
1862
1863 /* This is a reference to a symbol defined by a dynamic object which
1864 is not a function. */
1865
1866 /* If we are creating a shared library, we must presume that the
1867 only references to the symbol are via the global offset table.
1868 For such cases we need not do anything here; the relocations will
1869 be handled correctly by relocate_section. */
1870 if (info->shared)
1871 return TRUE;
1872
1873 /* If there are no references to this symbol that do not use the
1874 GOT, we don't need to generate a copy reloc. */
1875 if (!h->non_got_ref)
1876 return TRUE;
1877
1878 /* If -z nocopyreloc was given, we won't generate them either. */
1879 if (info->nocopyreloc)
1880 {
1881 h->non_got_ref = 0;
1882 return TRUE;
1883 }
1884
1885 if (ELIMINATE_COPY_RELOCS)
1886 {
1887 struct elf_x86_64_link_hash_entry * eh;
1888 struct elf_dyn_relocs *p;
1889
1890 eh = (struct elf_x86_64_link_hash_entry *) h;
1891 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1892 {
1893 s = p->sec->output_section;
1894 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1895 break;
1896 }
1897
1898 /* If we didn't find any dynamic relocs in read-only sections, then
1899 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1900 if (p == NULL)
1901 {
1902 h->non_got_ref = 0;
1903 return TRUE;
1904 }
1905 }
1906
1907 if (h->size == 0)
1908 {
1909 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1910 h->root.root.string);
1911 return TRUE;
1912 }
1913
1914 /* We must allocate the symbol in our .dynbss section, which will
1915 become part of the .bss section of the executable. There will be
1916 an entry for this symbol in the .dynsym section. The dynamic
1917 object will contain position independent code, so all references
1918 from the dynamic object to this symbol will go through the global
1919 offset table. The dynamic linker will use the .dynsym entry to
1920 determine the address it must put in the global offset table, so
1921 both the dynamic object and the regular object will refer to the
1922 same memory location for the variable. */
1923
1924 htab = elf_x86_64_hash_table (info);
1925 if (htab == NULL)
1926 return FALSE;
1927
1928 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1929 to copy the initial value out of the dynamic object and into the
1930 runtime process image. */
1931 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1932 {
1933 const struct elf_backend_data *bed;
1934 bed = get_elf_backend_data (info->output_bfd);
1935 htab->srelbss->size += bed->s->sizeof_rela;
1936 h->needs_copy = 1;
1937 }
1938
1939 s = htab->sdynbss;
1940
1941 return _bfd_elf_adjust_dynamic_copy (h, s);
1942 }
1943
1944 /* Allocate space in .plt, .got and associated reloc sections for
1945 dynamic relocs. */
1946
1947 static bfd_boolean
1948 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1949 {
1950 struct bfd_link_info *info;
1951 struct elf_x86_64_link_hash_table *htab;
1952 struct elf_x86_64_link_hash_entry *eh;
1953 struct elf_dyn_relocs *p;
1954 const struct elf_backend_data *bed;
1955
1956 if (h->root.type == bfd_link_hash_indirect)
1957 return TRUE;
1958
1959 if (h->root.type == bfd_link_hash_warning)
1960 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1961 eh = (struct elf_x86_64_link_hash_entry *) h;
1962
1963 info = (struct bfd_link_info *) inf;
1964 htab = elf_x86_64_hash_table (info);
1965 if (htab == NULL)
1966 return FALSE;
1967 bed = get_elf_backend_data (info->output_bfd);
1968
1969 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
1970 here if it is defined and referenced in a non-shared object. */
1971 if (h->type == STT_GNU_IFUNC
1972 && h->def_regular)
1973 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
1974 &eh->dyn_relocs,
1975 PLT_ENTRY_SIZE,
1976 GOT_ENTRY_SIZE);
1977 else if (htab->elf.dynamic_sections_created
1978 && h->plt.refcount > 0)
1979 {
1980 /* Make sure this symbol is output as a dynamic symbol.
1981 Undefined weak syms won't yet be marked as dynamic. */
1982 if (h->dynindx == -1
1983 && !h->forced_local)
1984 {
1985 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1986 return FALSE;
1987 }
1988
1989 if (info->shared
1990 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1991 {
1992 asection *s = htab->elf.splt;
1993
1994 /* If this is the first .plt entry, make room for the special
1995 first entry. */
1996 if (s->size == 0)
1997 s->size += PLT_ENTRY_SIZE;
1998
1999 h->plt.offset = s->size;
2000
2001 /* If this symbol is not defined in a regular file, and we are
2002 not generating a shared library, then set the symbol to this
2003 location in the .plt. This is required to make function
2004 pointers compare as equal between the normal executable and
2005 the shared library. */
2006 if (! info->shared
2007 && !h->def_regular)
2008 {
2009 h->root.u.def.section = s;
2010 h->root.u.def.value = h->plt.offset;
2011 }
2012
2013 /* Make room for this entry. */
2014 s->size += PLT_ENTRY_SIZE;
2015
2016 /* We also need to make an entry in the .got.plt section, which
2017 will be placed in the .got section by the linker script. */
2018 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2019
2020 /* We also need to make an entry in the .rela.plt section. */
2021 htab->elf.srelplt->size += bed->s->sizeof_rela;
2022 htab->elf.srelplt->reloc_count++;
2023 }
2024 else
2025 {
2026 h->plt.offset = (bfd_vma) -1;
2027 h->needs_plt = 0;
2028 }
2029 }
2030 else
2031 {
2032 h->plt.offset = (bfd_vma) -1;
2033 h->needs_plt = 0;
2034 }
2035
2036 eh->tlsdesc_got = (bfd_vma) -1;
2037
2038 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2039 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2040 if (h->got.refcount > 0
2041 && info->executable
2042 && h->dynindx == -1
2043 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2044 {
2045 h->got.offset = (bfd_vma) -1;
2046 }
2047 else if (h->got.refcount > 0)
2048 {
2049 asection *s;
2050 bfd_boolean dyn;
2051 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2052
2053 /* Make sure this symbol is output as a dynamic symbol.
2054 Undefined weak syms won't yet be marked as dynamic. */
2055 if (h->dynindx == -1
2056 && !h->forced_local)
2057 {
2058 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2059 return FALSE;
2060 }
2061
2062 if (GOT_TLS_GDESC_P (tls_type))
2063 {
2064 eh->tlsdesc_got = htab->elf.sgotplt->size
2065 - elf_x86_64_compute_jump_table_size (htab);
2066 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2067 h->got.offset = (bfd_vma) -2;
2068 }
2069 if (! GOT_TLS_GDESC_P (tls_type)
2070 || GOT_TLS_GD_P (tls_type))
2071 {
2072 s = htab->elf.sgot;
2073 h->got.offset = s->size;
2074 s->size += GOT_ENTRY_SIZE;
2075 if (GOT_TLS_GD_P (tls_type))
2076 s->size += GOT_ENTRY_SIZE;
2077 }
2078 dyn = htab->elf.dynamic_sections_created;
2079 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2080 and two if global.
2081 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2082 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2083 || tls_type == GOT_TLS_IE)
2084 htab->elf.srelgot->size += bed->s->sizeof_rela;
2085 else if (GOT_TLS_GD_P (tls_type))
2086 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2087 else if (! GOT_TLS_GDESC_P (tls_type)
2088 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2089 || h->root.type != bfd_link_hash_undefweak)
2090 && (info->shared
2091 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2092 htab->elf.srelgot->size += bed->s->sizeof_rela;
2093 if (GOT_TLS_GDESC_P (tls_type))
2094 {
2095 htab->elf.srelplt->size += bed->s->sizeof_rela;
2096 htab->tlsdesc_plt = (bfd_vma) -1;
2097 }
2098 }
2099 else
2100 h->got.offset = (bfd_vma) -1;
2101
2102 if (eh->dyn_relocs == NULL)
2103 return TRUE;
2104
2105 /* In the shared -Bsymbolic case, discard space allocated for
2106 dynamic pc-relative relocs against symbols which turn out to be
2107 defined in regular objects. For the normal shared case, discard
2108 space for pc-relative relocs that have become local due to symbol
2109 visibility changes. */
2110
2111 if (info->shared)
2112 {
2113 /* Relocs that use pc_count are those that appear on a call
2114 insn, or certain REL relocs that can generated via assembly.
2115 We want calls to protected symbols to resolve directly to the
2116 function rather than going via the plt. If people want
2117 function pointer comparisons to work as expected then they
2118 should avoid writing weird assembly. */
2119 if (SYMBOL_CALLS_LOCAL (info, h))
2120 {
2121 struct elf_dyn_relocs **pp;
2122
2123 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2124 {
2125 p->count -= p->pc_count;
2126 p->pc_count = 0;
2127 if (p->count == 0)
2128 *pp = p->next;
2129 else
2130 pp = &p->next;
2131 }
2132 }
2133
2134 /* Also discard relocs on undefined weak syms with non-default
2135 visibility. */
2136 if (eh->dyn_relocs != NULL
2137 && h->root.type == bfd_link_hash_undefweak)
2138 {
2139 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2140 eh->dyn_relocs = NULL;
2141
2142 /* Make sure undefined weak symbols are output as a dynamic
2143 symbol in PIEs. */
2144 else if (h->dynindx == -1
2145 && ! h->forced_local
2146 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2147 return FALSE;
2148 }
2149
2150 }
2151 else if (ELIMINATE_COPY_RELOCS)
2152 {
2153 /* For the non-shared case, discard space for relocs against
2154 symbols which turn out to need copy relocs or are not
2155 dynamic. */
2156
2157 if (!h->non_got_ref
2158 && ((h->def_dynamic
2159 && !h->def_regular)
2160 || (htab->elf.dynamic_sections_created
2161 && (h->root.type == bfd_link_hash_undefweak
2162 || h->root.type == bfd_link_hash_undefined))))
2163 {
2164 /* Make sure this symbol is output as a dynamic symbol.
2165 Undefined weak syms won't yet be marked as dynamic. */
2166 if (h->dynindx == -1
2167 && ! h->forced_local
2168 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2169 return FALSE;
2170
2171 /* If that succeeded, we know we'll be keeping all the
2172 relocs. */
2173 if (h->dynindx != -1)
2174 goto keep;
2175 }
2176
2177 eh->dyn_relocs = NULL;
2178
2179 keep: ;
2180 }
2181
2182 /* Finally, allocate space. */
2183 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2184 {
2185 asection * sreloc;
2186
2187 sreloc = elf_section_data (p->sec)->sreloc;
2188
2189 BFD_ASSERT (sreloc != NULL);
2190
2191 sreloc->size += p->count * bed->s->sizeof_rela;
2192 }
2193
2194 return TRUE;
2195 }
2196
2197 /* Allocate space in .plt, .got and associated reloc sections for
2198 local dynamic relocs. */
2199
2200 static bfd_boolean
2201 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2202 {
2203 struct elf_link_hash_entry *h
2204 = (struct elf_link_hash_entry *) *slot;
2205
2206 if (h->type != STT_GNU_IFUNC
2207 || !h->def_regular
2208 || !h->ref_regular
2209 || !h->forced_local
2210 || h->root.type != bfd_link_hash_defined)
2211 abort ();
2212
2213 return elf_x86_64_allocate_dynrelocs (h, inf);
2214 }
2215
2216 /* Find any dynamic relocs that apply to read-only sections. */
2217
2218 static bfd_boolean
2219 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2220 void * inf)
2221 {
2222 struct elf_x86_64_link_hash_entry *eh;
2223 struct elf_dyn_relocs *p;
2224
2225 if (h->root.type == bfd_link_hash_warning)
2226 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2227
2228 eh = (struct elf_x86_64_link_hash_entry *) h;
2229 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2230 {
2231 asection *s = p->sec->output_section;
2232
2233 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2234 {
2235 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2236
2237 info->flags |= DF_TEXTREL;
2238
2239 /* Not an error, just cut short the traversal. */
2240 return FALSE;
2241 }
2242 }
2243 return TRUE;
2244 }
2245
2246 /* Set the sizes of the dynamic sections. */
2247
2248 static bfd_boolean
2249 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2250 struct bfd_link_info *info)
2251 {
2252 struct elf_x86_64_link_hash_table *htab;
2253 bfd *dynobj;
2254 asection *s;
2255 bfd_boolean relocs;
2256 bfd *ibfd;
2257 const struct elf_backend_data *bed;
2258
2259 htab = elf_x86_64_hash_table (info);
2260 if (htab == NULL)
2261 return FALSE;
2262 bed = get_elf_backend_data (output_bfd);
2263
2264 dynobj = htab->elf.dynobj;
2265 if (dynobj == NULL)
2266 abort ();
2267
2268 if (htab->elf.dynamic_sections_created)
2269 {
2270 /* Set the contents of the .interp section to the interpreter. */
2271 if (info->executable)
2272 {
2273 s = bfd_get_section_by_name (dynobj, ".interp");
2274 if (s == NULL)
2275 abort ();
2276 s->size = htab->dynamic_interpreter_size;
2277 s->contents = (unsigned char *) htab->dynamic_interpreter;
2278 }
2279 }
2280
2281 /* Set up .got offsets for local syms, and space for local dynamic
2282 relocs. */
2283 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2284 {
2285 bfd_signed_vma *local_got;
2286 bfd_signed_vma *end_local_got;
2287 char *local_tls_type;
2288 bfd_vma *local_tlsdesc_gotent;
2289 bfd_size_type locsymcount;
2290 Elf_Internal_Shdr *symtab_hdr;
2291 asection *srel;
2292
2293 if (! is_x86_64_elf (ibfd))
2294 continue;
2295
2296 for (s = ibfd->sections; s != NULL; s = s->next)
2297 {
2298 struct elf_dyn_relocs *p;
2299
2300 for (p = (struct elf_dyn_relocs *)
2301 (elf_section_data (s)->local_dynrel);
2302 p != NULL;
2303 p = p->next)
2304 {
2305 if (!bfd_is_abs_section (p->sec)
2306 && bfd_is_abs_section (p->sec->output_section))
2307 {
2308 /* Input section has been discarded, either because
2309 it is a copy of a linkonce section or due to
2310 linker script /DISCARD/, so we'll be discarding
2311 the relocs too. */
2312 }
2313 else if (p->count != 0)
2314 {
2315 srel = elf_section_data (p->sec)->sreloc;
2316 srel->size += p->count * bed->s->sizeof_rela;
2317 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2318 info->flags |= DF_TEXTREL;
2319 }
2320 }
2321 }
2322
2323 local_got = elf_local_got_refcounts (ibfd);
2324 if (!local_got)
2325 continue;
2326
2327 symtab_hdr = &elf_symtab_hdr (ibfd);
2328 locsymcount = symtab_hdr->sh_info;
2329 end_local_got = local_got + locsymcount;
2330 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2331 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2332 s = htab->elf.sgot;
2333 srel = htab->elf.srelgot;
2334 for (; local_got < end_local_got;
2335 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2336 {
2337 *local_tlsdesc_gotent = (bfd_vma) -1;
2338 if (*local_got > 0)
2339 {
2340 if (GOT_TLS_GDESC_P (*local_tls_type))
2341 {
2342 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2343 - elf_x86_64_compute_jump_table_size (htab);
2344 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2345 *local_got = (bfd_vma) -2;
2346 }
2347 if (! GOT_TLS_GDESC_P (*local_tls_type)
2348 || GOT_TLS_GD_P (*local_tls_type))
2349 {
2350 *local_got = s->size;
2351 s->size += GOT_ENTRY_SIZE;
2352 if (GOT_TLS_GD_P (*local_tls_type))
2353 s->size += GOT_ENTRY_SIZE;
2354 }
2355 if (info->shared
2356 || GOT_TLS_GD_ANY_P (*local_tls_type)
2357 || *local_tls_type == GOT_TLS_IE)
2358 {
2359 if (GOT_TLS_GDESC_P (*local_tls_type))
2360 {
2361 htab->elf.srelplt->size
2362 += bed->s->sizeof_rela;
2363 htab->tlsdesc_plt = (bfd_vma) -1;
2364 }
2365 if (! GOT_TLS_GDESC_P (*local_tls_type)
2366 || GOT_TLS_GD_P (*local_tls_type))
2367 srel->size += bed->s->sizeof_rela;
2368 }
2369 }
2370 else
2371 *local_got = (bfd_vma) -1;
2372 }
2373 }
2374
2375 if (htab->tls_ld_got.refcount > 0)
2376 {
2377 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2378 relocs. */
2379 htab->tls_ld_got.offset = htab->elf.sgot->size;
2380 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2381 htab->elf.srelgot->size += bed->s->sizeof_rela;
2382 }
2383 else
2384 htab->tls_ld_got.offset = -1;
2385
2386 /* Allocate global sym .plt and .got entries, and space for global
2387 sym dynamic relocs. */
2388 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2389 info);
2390
2391 /* Allocate .plt and .got entries, and space for local symbols. */
2392 htab_traverse (htab->loc_hash_table,
2393 elf_x86_64_allocate_local_dynrelocs,
2394 info);
2395
2396 /* For every jump slot reserved in the sgotplt, reloc_count is
2397 incremented. However, when we reserve space for TLS descriptors,
2398 it's not incremented, so in order to compute the space reserved
2399 for them, it suffices to multiply the reloc count by the jump
2400 slot size. */
2401 if (htab->elf.srelplt)
2402 htab->sgotplt_jump_table_size
2403 = elf_x86_64_compute_jump_table_size (htab);
2404
2405 if (htab->tlsdesc_plt)
2406 {
2407 /* If we're not using lazy TLS relocations, don't generate the
2408 PLT and GOT entries they require. */
2409 if ((info->flags & DF_BIND_NOW))
2410 htab->tlsdesc_plt = 0;
2411 else
2412 {
2413 htab->tlsdesc_got = htab->elf.sgot->size;
2414 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2415 /* Reserve room for the initial entry.
2416 FIXME: we could probably do away with it in this case. */
2417 if (htab->elf.splt->size == 0)
2418 htab->elf.splt->size += PLT_ENTRY_SIZE;
2419 htab->tlsdesc_plt = htab->elf.splt->size;
2420 htab->elf.splt->size += PLT_ENTRY_SIZE;
2421 }
2422 }
2423
2424 if (htab->elf.sgotplt)
2425 {
2426 struct elf_link_hash_entry *got;
2427 got = elf_link_hash_lookup (elf_hash_table (info),
2428 "_GLOBAL_OFFSET_TABLE_",
2429 FALSE, FALSE, FALSE);
2430
2431 /* Don't allocate .got.plt section if there are no GOT nor PLT
2432 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2433 if ((got == NULL
2434 || !got->ref_regular_nonweak)
2435 && (htab->elf.sgotplt->size
2436 == get_elf_backend_data (output_bfd)->got_header_size)
2437 && (htab->elf.splt == NULL
2438 || htab->elf.splt->size == 0)
2439 && (htab->elf.sgot == NULL
2440 || htab->elf.sgot->size == 0)
2441 && (htab->elf.iplt == NULL
2442 || htab->elf.iplt->size == 0)
2443 && (htab->elf.igotplt == NULL
2444 || htab->elf.igotplt->size == 0))
2445 htab->elf.sgotplt->size = 0;
2446 }
2447
2448 /* We now have determined the sizes of the various dynamic sections.
2449 Allocate memory for them. */
2450 relocs = FALSE;
2451 for (s = dynobj->sections; s != NULL; s = s->next)
2452 {
2453 if ((s->flags & SEC_LINKER_CREATED) == 0)
2454 continue;
2455
2456 if (s == htab->elf.splt
2457 || s == htab->elf.sgot
2458 || s == htab->elf.sgotplt
2459 || s == htab->elf.iplt
2460 || s == htab->elf.igotplt
2461 || s == htab->sdynbss)
2462 {
2463 /* Strip this section if we don't need it; see the
2464 comment below. */
2465 }
2466 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2467 {
2468 if (s->size != 0 && s != htab->elf.srelplt)
2469 relocs = TRUE;
2470
2471 /* We use the reloc_count field as a counter if we need
2472 to copy relocs into the output file. */
2473 if (s != htab->elf.srelplt)
2474 s->reloc_count = 0;
2475 }
2476 else
2477 {
2478 /* It's not one of our sections, so don't allocate space. */
2479 continue;
2480 }
2481
2482 if (s->size == 0)
2483 {
2484 /* If we don't need this section, strip it from the
2485 output file. This is mostly to handle .rela.bss and
2486 .rela.plt. We must create both sections in
2487 create_dynamic_sections, because they must be created
2488 before the linker maps input sections to output
2489 sections. The linker does that before
2490 adjust_dynamic_symbol is called, and it is that
2491 function which decides whether anything needs to go
2492 into these sections. */
2493
2494 s->flags |= SEC_EXCLUDE;
2495 continue;
2496 }
2497
2498 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2499 continue;
2500
2501 /* Allocate memory for the section contents. We use bfd_zalloc
2502 here in case unused entries are not reclaimed before the
2503 section's contents are written out. This should not happen,
2504 but this way if it does, we get a R_X86_64_NONE reloc instead
2505 of garbage. */
2506 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2507 if (s->contents == NULL)
2508 return FALSE;
2509 }
2510
2511 if (htab->elf.dynamic_sections_created)
2512 {
2513 /* Add some entries to the .dynamic section. We fill in the
2514 values later, in elf_x86_64_finish_dynamic_sections, but we
2515 must add the entries now so that we get the correct size for
2516 the .dynamic section. The DT_DEBUG entry is filled in by the
2517 dynamic linker and used by the debugger. */
2518 #define add_dynamic_entry(TAG, VAL) \
2519 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2520
2521 if (info->executable)
2522 {
2523 if (!add_dynamic_entry (DT_DEBUG, 0))
2524 return FALSE;
2525 }
2526
2527 if (htab->elf.splt->size != 0)
2528 {
2529 if (!add_dynamic_entry (DT_PLTGOT, 0)
2530 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2531 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2532 || !add_dynamic_entry (DT_JMPREL, 0))
2533 return FALSE;
2534
2535 if (htab->tlsdesc_plt
2536 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2537 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2538 return FALSE;
2539 }
2540
2541 if (relocs)
2542 {
2543 if (!add_dynamic_entry (DT_RELA, 0)
2544 || !add_dynamic_entry (DT_RELASZ, 0)
2545 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
2546 return FALSE;
2547
2548 /* If any dynamic relocs apply to a read-only section,
2549 then we need a DT_TEXTREL entry. */
2550 if ((info->flags & DF_TEXTREL) == 0)
2551 elf_link_hash_traverse (&htab->elf,
2552 elf_x86_64_readonly_dynrelocs,
2553 info);
2554
2555 if ((info->flags & DF_TEXTREL) != 0)
2556 {
2557 if (!add_dynamic_entry (DT_TEXTREL, 0))
2558 return FALSE;
2559 }
2560 }
2561 }
2562 #undef add_dynamic_entry
2563
2564 return TRUE;
2565 }
2566
2567 static bfd_boolean
2568 elf_x86_64_always_size_sections (bfd *output_bfd,
2569 struct bfd_link_info *info)
2570 {
2571 asection *tls_sec = elf_hash_table (info)->tls_sec;
2572
2573 if (tls_sec)
2574 {
2575 struct elf_link_hash_entry *tlsbase;
2576
2577 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2578 "_TLS_MODULE_BASE_",
2579 FALSE, FALSE, FALSE);
2580
2581 if (tlsbase && tlsbase->type == STT_TLS)
2582 {
2583 struct elf_x86_64_link_hash_table *htab;
2584 struct bfd_link_hash_entry *bh = NULL;
2585 const struct elf_backend_data *bed
2586 = get_elf_backend_data (output_bfd);
2587
2588 htab = elf_x86_64_hash_table (info);
2589 if (htab == NULL)
2590 return FALSE;
2591
2592 if (!(_bfd_generic_link_add_one_symbol
2593 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2594 tls_sec, 0, NULL, FALSE,
2595 bed->collect, &bh)))
2596 return FALSE;
2597
2598 htab->tls_module_base = bh;
2599
2600 tlsbase = (struct elf_link_hash_entry *)bh;
2601 tlsbase->def_regular = 1;
2602 tlsbase->other = STV_HIDDEN;
2603 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2604 }
2605 }
2606
2607 return TRUE;
2608 }
2609
2610 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2611 executables. Rather than setting it to the beginning of the TLS
2612 section, we have to set it to the end. This function may be called
2613 multiple times, it is idempotent. */
2614
2615 static void
2616 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
2617 {
2618 struct elf_x86_64_link_hash_table *htab;
2619 struct bfd_link_hash_entry *base;
2620
2621 if (!info->executable)
2622 return;
2623
2624 htab = elf_x86_64_hash_table (info);
2625 if (htab == NULL)
2626 return;
2627
2628 base = htab->tls_module_base;
2629 if (base == NULL)
2630 return;
2631
2632 base->u.def.value = htab->elf.tls_size;
2633 }
2634
2635 /* Return the base VMA address which should be subtracted from real addresses
2636 when resolving @dtpoff relocation.
2637 This is PT_TLS segment p_vaddr. */
2638
2639 static bfd_vma
2640 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
2641 {
2642 /* If tls_sec is NULL, we should have signalled an error already. */
2643 if (elf_hash_table (info)->tls_sec == NULL)
2644 return 0;
2645 return elf_hash_table (info)->tls_sec->vma;
2646 }
2647
2648 /* Return the relocation value for @tpoff relocation
2649 if STT_TLS virtual address is ADDRESS. */
2650
2651 static bfd_vma
2652 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
2653 {
2654 struct elf_link_hash_table *htab = elf_hash_table (info);
2655 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
2656 bfd_vma static_tls_size;
2657
2658 /* If tls_segment is NULL, we should have signalled an error already. */
2659 if (htab->tls_sec == NULL)
2660 return 0;
2661
2662 /* Consider special static TLS alignment requirements. */
2663 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
2664 return address - static_tls_size - htab->tls_sec->vma;
2665 }
2666
2667 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2668 branch? */
2669
2670 static bfd_boolean
2671 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2672 {
2673 /* Opcode Instruction
2674 0xe8 call
2675 0xe9 jump
2676 0x0f 0x8x conditional jump */
2677 return ((offset > 0
2678 && (contents [offset - 1] == 0xe8
2679 || contents [offset - 1] == 0xe9))
2680 || (offset > 1
2681 && contents [offset - 2] == 0x0f
2682 && (contents [offset - 1] & 0xf0) == 0x80));
2683 }
2684
2685 /* Relocate an x86_64 ELF section. */
2686
2687 static bfd_boolean
2688 elf_x86_64_relocate_section (bfd *output_bfd,
2689 struct bfd_link_info *info,
2690 bfd *input_bfd,
2691 asection *input_section,
2692 bfd_byte *contents,
2693 Elf_Internal_Rela *relocs,
2694 Elf_Internal_Sym *local_syms,
2695 asection **local_sections)
2696 {
2697 struct elf_x86_64_link_hash_table *htab;
2698 Elf_Internal_Shdr *symtab_hdr;
2699 struct elf_link_hash_entry **sym_hashes;
2700 bfd_vma *local_got_offsets;
2701 bfd_vma *local_tlsdesc_gotents;
2702 Elf_Internal_Rela *rel;
2703 Elf_Internal_Rela *relend;
2704
2705 BFD_ASSERT (is_x86_64_elf (input_bfd));
2706
2707 htab = elf_x86_64_hash_table (info);
2708 if (htab == NULL)
2709 return FALSE;
2710 symtab_hdr = &elf_symtab_hdr (input_bfd);
2711 sym_hashes = elf_sym_hashes (input_bfd);
2712 local_got_offsets = elf_local_got_offsets (input_bfd);
2713 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
2714
2715 elf_x86_64_set_tls_module_base (info);
2716
2717 rel = relocs;
2718 relend = relocs + input_section->reloc_count;
2719 for (; rel < relend; rel++)
2720 {
2721 unsigned int r_type;
2722 reloc_howto_type *howto;
2723 unsigned long r_symndx;
2724 struct elf_link_hash_entry *h;
2725 Elf_Internal_Sym *sym;
2726 asection *sec;
2727 bfd_vma off, offplt;
2728 bfd_vma relocation;
2729 bfd_boolean unresolved_reloc;
2730 bfd_reloc_status_type r;
2731 int tls_type;
2732 asection *base_got;
2733
2734 r_type = ELF32_R_TYPE (rel->r_info);
2735 if (r_type == (int) R_X86_64_GNU_VTINHERIT
2736 || r_type == (int) R_X86_64_GNU_VTENTRY)
2737 continue;
2738
2739 if (r_type >= R_X86_64_max)
2740 {
2741 bfd_set_error (bfd_error_bad_value);
2742 return FALSE;
2743 }
2744
2745 howto = x86_64_elf_howto_table + r_type;
2746 r_symndx = htab->r_sym (rel->r_info);
2747 h = NULL;
2748 sym = NULL;
2749 sec = NULL;
2750 unresolved_reloc = FALSE;
2751 if (r_symndx < symtab_hdr->sh_info)
2752 {
2753 sym = local_syms + r_symndx;
2754 sec = local_sections[r_symndx];
2755
2756 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
2757 &sec, rel);
2758
2759 /* Relocate against local STT_GNU_IFUNC symbol. */
2760 if (!info->relocatable
2761 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
2762 {
2763 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
2764 rel, FALSE);
2765 if (h == NULL)
2766 abort ();
2767
2768 /* Set STT_GNU_IFUNC symbol value. */
2769 h->root.u.def.value = sym->st_value;
2770 h->root.u.def.section = sec;
2771 }
2772 }
2773 else
2774 {
2775 bfd_boolean warned ATTRIBUTE_UNUSED;
2776
2777 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2778 r_symndx, symtab_hdr, sym_hashes,
2779 h, sec, relocation,
2780 unresolved_reloc, warned);
2781 }
2782
2783 if (sec != NULL && elf_discarded_section (sec))
2784 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2785 rel, relend, howto, contents);
2786
2787 if (info->relocatable)
2788 continue;
2789
2790 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
2791 it here if it is defined in a non-shared object. */
2792 if (h != NULL
2793 && h->type == STT_GNU_IFUNC
2794 && h->def_regular)
2795 {
2796 asection *plt;
2797 bfd_vma plt_index;
2798 const char *name;
2799
2800 if ((input_section->flags & SEC_ALLOC) == 0
2801 || h->plt.offset == (bfd_vma) -1)
2802 abort ();
2803
2804 /* STT_GNU_IFUNC symbol must go through PLT. */
2805 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
2806 relocation = (plt->output_section->vma
2807 + plt->output_offset + h->plt.offset);
2808
2809 switch (r_type)
2810 {
2811 default:
2812 if (h->root.root.string)
2813 name = h->root.root.string;
2814 else
2815 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
2816 NULL);
2817 (*_bfd_error_handler)
2818 (_("%B: relocation %s against STT_GNU_IFUNC "
2819 "symbol `%s' isn't handled by %s"), input_bfd,
2820 x86_64_elf_howto_table[r_type].name,
2821 name, __FUNCTION__);
2822 bfd_set_error (bfd_error_bad_value);
2823 return FALSE;
2824
2825 case R_X86_64_32S:
2826 if (info->shared)
2827 abort ();
2828 goto do_relocation;
2829
2830 case R_X86_64_64:
2831 if (rel->r_addend != 0)
2832 {
2833 if (h->root.root.string)
2834 name = h->root.root.string;
2835 else
2836 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
2837 sym, NULL);
2838 (*_bfd_error_handler)
2839 (_("%B: relocation %s against STT_GNU_IFUNC "
2840 "symbol `%s' has non-zero addend: %d"),
2841 input_bfd, x86_64_elf_howto_table[r_type].name,
2842 name, rel->r_addend);
2843 bfd_set_error (bfd_error_bad_value);
2844 return FALSE;
2845 }
2846
2847 /* Generate dynamic relcoation only when there is a
2848 non-GOF reference in a shared object. */
2849 if (info->shared && h->non_got_ref)
2850 {
2851 Elf_Internal_Rela outrel;
2852 asection *sreloc;
2853
2854 /* Need a dynamic relocation to get the real function
2855 address. */
2856 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
2857 info,
2858 input_section,
2859 rel->r_offset);
2860 if (outrel.r_offset == (bfd_vma) -1
2861 || outrel.r_offset == (bfd_vma) -2)
2862 abort ();
2863
2864 outrel.r_offset += (input_section->output_section->vma
2865 + input_section->output_offset);
2866
2867 if (h->dynindx == -1
2868 || h->forced_local
2869 || info->executable)
2870 {
2871 /* This symbol is resolved locally. */
2872 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
2873 outrel.r_addend = (h->root.u.def.value
2874 + h->root.u.def.section->output_section->vma
2875 + h->root.u.def.section->output_offset);
2876 }
2877 else
2878 {
2879 outrel.r_info = htab->r_info (h->dynindx, r_type);
2880 outrel.r_addend = 0;
2881 }
2882
2883 sreloc = htab->elf.irelifunc;
2884 elf_append_rela (output_bfd, sreloc, &outrel);
2885
2886 /* If this reloc is against an external symbol, we
2887 do not want to fiddle with the addend. Otherwise,
2888 we need to include the symbol value so that it
2889 becomes an addend for the dynamic reloc. For an
2890 internal symbol, we have updated addend. */
2891 continue;
2892 }
2893
2894 case R_X86_64_32:
2895 case R_X86_64_PC32:
2896 case R_X86_64_PC64:
2897 case R_X86_64_PLT32:
2898 goto do_relocation;
2899
2900 case R_X86_64_GOTPCREL:
2901 case R_X86_64_GOTPCREL64:
2902 base_got = htab->elf.sgot;
2903 off = h->got.offset;
2904
2905 if (base_got == NULL)
2906 abort ();
2907
2908 if (off == (bfd_vma) -1)
2909 {
2910 /* We can't use h->got.offset here to save state, or
2911 even just remember the offset, as finish_dynamic_symbol
2912 would use that as offset into .got. */
2913
2914 if (htab->elf.splt != NULL)
2915 {
2916 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2917 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2918 base_got = htab->elf.sgotplt;
2919 }
2920 else
2921 {
2922 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
2923 off = plt_index * GOT_ENTRY_SIZE;
2924 base_got = htab->elf.igotplt;
2925 }
2926
2927 if (h->dynindx == -1
2928 || h->forced_local
2929 || info->symbolic)
2930 {
2931 /* This references the local defitionion. We must
2932 initialize this entry in the global offset table.
2933 Since the offset must always be a multiple of 8,
2934 we use the least significant bit to record
2935 whether we have initialized it already.
2936
2937 When doing a dynamic link, we create a .rela.got
2938 relocation entry to initialize the value. This
2939 is done in the finish_dynamic_symbol routine. */
2940 if ((off & 1) != 0)
2941 off &= ~1;
2942 else
2943 {
2944 bfd_put_64 (output_bfd, relocation,
2945 base_got->contents + off);
2946 /* Note that this is harmless for the GOTPLT64
2947 case, as -1 | 1 still is -1. */
2948 h->got.offset |= 1;
2949 }
2950 }
2951 }
2952
2953 relocation = (base_got->output_section->vma
2954 + base_got->output_offset + off);
2955
2956 if (r_type != R_X86_64_GOTPCREL
2957 && r_type != R_X86_64_GOTPCREL64)
2958 {
2959 asection *gotplt;
2960 if (htab->elf.splt != NULL)
2961 gotplt = htab->elf.sgotplt;
2962 else
2963 gotplt = htab->elf.igotplt;
2964 relocation -= (gotplt->output_section->vma
2965 - gotplt->output_offset);
2966 }
2967
2968 goto do_relocation;
2969 }
2970 }
2971
2972 /* When generating a shared object, the relocations handled here are
2973 copied into the output file to be resolved at run time. */
2974 switch (r_type)
2975 {
2976 case R_X86_64_GOT32:
2977 case R_X86_64_GOT64:
2978 /* Relocation is to the entry for this symbol in the global
2979 offset table. */
2980 case R_X86_64_GOTPCREL:
2981 case R_X86_64_GOTPCREL64:
2982 /* Use global offset table entry as symbol value. */
2983 case R_X86_64_GOTPLT64:
2984 /* This is the same as GOT64 for relocation purposes, but
2985 indicates the existence of a PLT entry. The difficulty is,
2986 that we must calculate the GOT slot offset from the PLT
2987 offset, if this symbol got a PLT entry (it was global).
2988 Additionally if it's computed from the PLT entry, then that
2989 GOT offset is relative to .got.plt, not to .got. */
2990 base_got = htab->elf.sgot;
2991
2992 if (htab->elf.sgot == NULL)
2993 abort ();
2994
2995 if (h != NULL)
2996 {
2997 bfd_boolean dyn;
2998
2999 off = h->got.offset;
3000 if (h->needs_plt
3001 && h->plt.offset != (bfd_vma)-1
3002 && off == (bfd_vma)-1)
3003 {
3004 /* We can't use h->got.offset here to save
3005 state, or even just remember the offset, as
3006 finish_dynamic_symbol would use that as offset into
3007 .got. */
3008 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3009 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3010 base_got = htab->elf.sgotplt;
3011 }
3012
3013 dyn = htab->elf.dynamic_sections_created;
3014
3015 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3016 || (info->shared
3017 && SYMBOL_REFERENCES_LOCAL (info, h))
3018 || (ELF_ST_VISIBILITY (h->other)
3019 && h->root.type == bfd_link_hash_undefweak))
3020 {
3021 /* This is actually a static link, or it is a -Bsymbolic
3022 link and the symbol is defined locally, or the symbol
3023 was forced to be local because of a version file. We
3024 must initialize this entry in the global offset table.
3025 Since the offset must always be a multiple of 8, we
3026 use the least significant bit to record whether we
3027 have initialized it already.
3028
3029 When doing a dynamic link, we create a .rela.got
3030 relocation entry to initialize the value. This is
3031 done in the finish_dynamic_symbol routine. */
3032 if ((off & 1) != 0)
3033 off &= ~1;
3034 else
3035 {
3036 bfd_put_64 (output_bfd, relocation,
3037 base_got->contents + off);
3038 /* Note that this is harmless for the GOTPLT64 case,
3039 as -1 | 1 still is -1. */
3040 h->got.offset |= 1;
3041 }
3042 }
3043 else
3044 unresolved_reloc = FALSE;
3045 }
3046 else
3047 {
3048 if (local_got_offsets == NULL)
3049 abort ();
3050
3051 off = local_got_offsets[r_symndx];
3052
3053 /* The offset must always be a multiple of 8. We use
3054 the least significant bit to record whether we have
3055 already generated the necessary reloc. */
3056 if ((off & 1) != 0)
3057 off &= ~1;
3058 else
3059 {
3060 bfd_put_64 (output_bfd, relocation,
3061 base_got->contents + off);
3062
3063 if (info->shared)
3064 {
3065 asection *s;
3066 Elf_Internal_Rela outrel;
3067
3068 /* We need to generate a R_X86_64_RELATIVE reloc
3069 for the dynamic linker. */
3070 s = htab->elf.srelgot;
3071 if (s == NULL)
3072 abort ();
3073
3074 outrel.r_offset = (base_got->output_section->vma
3075 + base_got->output_offset
3076 + off);
3077 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3078 outrel.r_addend = relocation;
3079 elf_append_rela (output_bfd, s, &outrel);
3080 }
3081
3082 local_got_offsets[r_symndx] |= 1;
3083 }
3084 }
3085
3086 if (off >= (bfd_vma) -2)
3087 abort ();
3088
3089 relocation = base_got->output_section->vma
3090 + base_got->output_offset + off;
3091 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3092 relocation -= htab->elf.sgotplt->output_section->vma
3093 - htab->elf.sgotplt->output_offset;
3094
3095 break;
3096
3097 case R_X86_64_GOTOFF64:
3098 /* Relocation is relative to the start of the global offset
3099 table. */
3100
3101 /* Check to make sure it isn't a protected function symbol
3102 for shared library since it may not be local when used
3103 as function address. */
3104 if (info->shared
3105 && h
3106 && h->def_regular
3107 && h->type == STT_FUNC
3108 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3109 {
3110 (*_bfd_error_handler)
3111 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3112 input_bfd, h->root.root.string);
3113 bfd_set_error (bfd_error_bad_value);
3114 return FALSE;
3115 }
3116
3117 /* Note that sgot is not involved in this
3118 calculation. We always want the start of .got.plt. If we
3119 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3120 permitted by the ABI, we might have to change this
3121 calculation. */
3122 relocation -= htab->elf.sgotplt->output_section->vma
3123 + htab->elf.sgotplt->output_offset;
3124 break;
3125
3126 case R_X86_64_GOTPC32:
3127 case R_X86_64_GOTPC64:
3128 /* Use global offset table as symbol value. */
3129 relocation = htab->elf.sgotplt->output_section->vma
3130 + htab->elf.sgotplt->output_offset;
3131 unresolved_reloc = FALSE;
3132 break;
3133
3134 case R_X86_64_PLTOFF64:
3135 /* Relocation is PLT entry relative to GOT. For local
3136 symbols it's the symbol itself relative to GOT. */
3137 if (h != NULL
3138 /* See PLT32 handling. */
3139 && h->plt.offset != (bfd_vma) -1
3140 && htab->elf.splt != NULL)
3141 {
3142 relocation = (htab->elf.splt->output_section->vma
3143 + htab->elf.splt->output_offset
3144 + h->plt.offset);
3145 unresolved_reloc = FALSE;
3146 }
3147
3148 relocation -= htab->elf.sgotplt->output_section->vma
3149 + htab->elf.sgotplt->output_offset;
3150 break;
3151
3152 case R_X86_64_PLT32:
3153 /* Relocation is to the entry for this symbol in the
3154 procedure linkage table. */
3155
3156 /* Resolve a PLT32 reloc against a local symbol directly,
3157 without using the procedure linkage table. */
3158 if (h == NULL)
3159 break;
3160
3161 if (h->plt.offset == (bfd_vma) -1
3162 || htab->elf.splt == NULL)
3163 {
3164 /* We didn't make a PLT entry for this symbol. This
3165 happens when statically linking PIC code, or when
3166 using -Bsymbolic. */
3167 break;
3168 }
3169
3170 relocation = (htab->elf.splt->output_section->vma
3171 + htab->elf.splt->output_offset
3172 + h->plt.offset);
3173 unresolved_reloc = FALSE;
3174 break;
3175
3176 case R_X86_64_PC8:
3177 case R_X86_64_PC16:
3178 case R_X86_64_PC32:
3179 if (info->shared
3180 && ABI_64_P (output_bfd)
3181 && (input_section->flags & SEC_ALLOC) != 0
3182 && (input_section->flags & SEC_READONLY) != 0
3183 && h != NULL)
3184 {
3185 bfd_boolean fail = FALSE;
3186 bfd_boolean branch
3187 = (r_type == R_X86_64_PC32
3188 && is_32bit_relative_branch (contents, rel->r_offset));
3189
3190 if (SYMBOL_REFERENCES_LOCAL (info, h))
3191 {
3192 /* Symbol is referenced locally. Make sure it is
3193 defined locally or for a branch. */
3194 fail = !h->def_regular && !branch;
3195 }
3196 else
3197 {
3198 /* Symbol isn't referenced locally. We only allow
3199 branch to symbol with non-default visibility. */
3200 fail = (!branch
3201 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3202 }
3203
3204 if (fail)
3205 {
3206 const char *fmt;
3207 const char *v;
3208 const char *pic = "";
3209
3210 switch (ELF_ST_VISIBILITY (h->other))
3211 {
3212 case STV_HIDDEN:
3213 v = _("hidden symbol");
3214 break;
3215 case STV_INTERNAL:
3216 v = _("internal symbol");
3217 break;
3218 case STV_PROTECTED:
3219 v = _("protected symbol");
3220 break;
3221 default:
3222 v = _("symbol");
3223 pic = _("; recompile with -fPIC");
3224 break;
3225 }
3226
3227 if (h->def_regular)
3228 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3229 else
3230 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3231
3232 (*_bfd_error_handler) (fmt, input_bfd,
3233 x86_64_elf_howto_table[r_type].name,
3234 v, h->root.root.string, pic);
3235 bfd_set_error (bfd_error_bad_value);
3236 return FALSE;
3237 }
3238 }
3239 /* Fall through. */
3240
3241 case R_X86_64_8:
3242 case R_X86_64_16:
3243 case R_X86_64_32:
3244 case R_X86_64_PC64:
3245 case R_X86_64_64:
3246 /* FIXME: The ABI says the linker should make sure the value is
3247 the same when it's zeroextended to 64 bit. */
3248
3249 if ((input_section->flags & SEC_ALLOC) == 0)
3250 break;
3251
3252 if ((info->shared
3253 && (h == NULL
3254 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3255 || h->root.type != bfd_link_hash_undefweak)
3256 && (! IS_X86_64_PCREL_TYPE (r_type)
3257 || ! SYMBOL_CALLS_LOCAL (info, h)))
3258 || (ELIMINATE_COPY_RELOCS
3259 && !info->shared
3260 && h != NULL
3261 && h->dynindx != -1
3262 && !h->non_got_ref
3263 && ((h->def_dynamic
3264 && !h->def_regular)
3265 || h->root.type == bfd_link_hash_undefweak
3266 || h->root.type == bfd_link_hash_undefined)))
3267 {
3268 Elf_Internal_Rela outrel;
3269 bfd_boolean skip, relocate;
3270 asection *sreloc;
3271
3272 /* When generating a shared object, these relocations
3273 are copied into the output file to be resolved at run
3274 time. */
3275 skip = FALSE;
3276 relocate = FALSE;
3277
3278 outrel.r_offset =
3279 _bfd_elf_section_offset (output_bfd, info, input_section,
3280 rel->r_offset);
3281 if (outrel.r_offset == (bfd_vma) -1)
3282 skip = TRUE;
3283 else if (outrel.r_offset == (bfd_vma) -2)
3284 skip = TRUE, relocate = TRUE;
3285
3286 outrel.r_offset += (input_section->output_section->vma
3287 + input_section->output_offset);
3288
3289 if (skip)
3290 memset (&outrel, 0, sizeof outrel);
3291
3292 /* h->dynindx may be -1 if this symbol was marked to
3293 become local. */
3294 else if (h != NULL
3295 && h->dynindx != -1
3296 && (IS_X86_64_PCREL_TYPE (r_type)
3297 || ! info->shared
3298 || ! SYMBOLIC_BIND (info, h)
3299 || ! h->def_regular))
3300 {
3301 outrel.r_info = htab->r_info (h->dynindx, r_type);
3302 outrel.r_addend = rel->r_addend;
3303 }
3304 else
3305 {
3306 /* This symbol is local, or marked to become local. */
3307 if (r_type == R_X86_64_64)
3308 {
3309 relocate = TRUE;
3310 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3311 outrel.r_addend = relocation + rel->r_addend;
3312 }
3313 else
3314 {
3315 long sindx;
3316
3317 if (bfd_is_abs_section (sec))
3318 sindx = 0;
3319 else if (sec == NULL || sec->owner == NULL)
3320 {
3321 bfd_set_error (bfd_error_bad_value);
3322 return FALSE;
3323 }
3324 else
3325 {
3326 asection *osec;
3327
3328 /* We are turning this relocation into one
3329 against a section symbol. It would be
3330 proper to subtract the symbol's value,
3331 osec->vma, from the emitted reloc addend,
3332 but ld.so expects buggy relocs. */
3333 osec = sec->output_section;
3334 sindx = elf_section_data (osec)->dynindx;
3335 if (sindx == 0)
3336 {
3337 asection *oi = htab->elf.text_index_section;
3338 sindx = elf_section_data (oi)->dynindx;
3339 }
3340 BFD_ASSERT (sindx != 0);
3341 }
3342
3343 outrel.r_info = htab->r_info (sindx, r_type);
3344 outrel.r_addend = relocation + rel->r_addend;
3345 }
3346 }
3347
3348 sreloc = elf_section_data (input_section)->sreloc;
3349
3350 BFD_ASSERT (sreloc != NULL && sreloc->contents != NULL);
3351
3352 elf_append_rela (output_bfd, sreloc, &outrel);
3353
3354 /* If this reloc is against an external symbol, we do
3355 not want to fiddle with the addend. Otherwise, we
3356 need to include the symbol value so that it becomes
3357 an addend for the dynamic reloc. */
3358 if (! relocate)
3359 continue;
3360 }
3361
3362 break;
3363
3364 case R_X86_64_TLSGD:
3365 case R_X86_64_GOTPC32_TLSDESC:
3366 case R_X86_64_TLSDESC_CALL:
3367 case R_X86_64_GOTTPOFF:
3368 tls_type = GOT_UNKNOWN;
3369 if (h == NULL && local_got_offsets)
3370 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3371 else if (h != NULL)
3372 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3373
3374 if (! elf_x86_64_tls_transition (info, input_bfd,
3375 input_section, contents,
3376 symtab_hdr, sym_hashes,
3377 &r_type, tls_type, rel,
3378 relend, h, r_symndx))
3379 return FALSE;
3380
3381 if (r_type == R_X86_64_TPOFF32)
3382 {
3383 bfd_vma roff = rel->r_offset;
3384
3385 BFD_ASSERT (! unresolved_reloc);
3386
3387 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3388 {
3389 /* GD->LE transition.
3390 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3391 .word 0x6666; rex64; call __tls_get_addr
3392 Change it into:
3393 movq %fs:0, %rax
3394 leaq foo@tpoff(%rax), %rax */
3395 memcpy (contents + roff - 4,
3396 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3397 16);
3398 bfd_put_32 (output_bfd,
3399 elf_x86_64_tpoff (info, relocation),
3400 contents + roff + 8);
3401 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3402 rel++;
3403 continue;
3404 }
3405 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3406 {
3407 /* GDesc -> LE transition.
3408 It's originally something like:
3409 leaq x@tlsdesc(%rip), %rax
3410
3411 Change it to:
3412 movl $x@tpoff, %rax. */
3413
3414 unsigned int val, type;
3415
3416 type = bfd_get_8 (input_bfd, contents + roff - 3);
3417 val = bfd_get_8 (input_bfd, contents + roff - 1);
3418 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3419 contents + roff - 3);
3420 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3421 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3422 contents + roff - 1);
3423 bfd_put_32 (output_bfd,
3424 elf_x86_64_tpoff (info, relocation),
3425 contents + roff);
3426 continue;
3427 }
3428 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3429 {
3430 /* GDesc -> LE transition.
3431 It's originally:
3432 call *(%rax)
3433 Turn it into:
3434 xchg %ax,%ax. */
3435 bfd_put_8 (output_bfd, 0x66, contents + roff);
3436 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3437 continue;
3438 }
3439 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3440 {
3441 /* IE->LE transition:
3442 Originally it can be one of:
3443 movq foo@gottpoff(%rip), %reg
3444 addq foo@gottpoff(%rip), %reg
3445 We change it into:
3446 movq $foo, %reg
3447 leaq foo(%reg), %reg
3448 addq $foo, %reg. */
3449
3450 unsigned int val, type, reg;
3451
3452 val = bfd_get_8 (input_bfd, contents + roff - 3);
3453 type = bfd_get_8 (input_bfd, contents + roff - 2);
3454 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3455 reg >>= 3;
3456 if (type == 0x8b)
3457 {
3458 /* movq */
3459 if (val == 0x4c)
3460 bfd_put_8 (output_bfd, 0x49,
3461 contents + roff - 3);
3462 bfd_put_8 (output_bfd, 0xc7,
3463 contents + roff - 2);
3464 bfd_put_8 (output_bfd, 0xc0 | reg,
3465 contents + roff - 1);
3466 }
3467 else if (reg == 4)
3468 {
3469 /* addq -> addq - addressing with %rsp/%r12 is
3470 special */
3471 if (val == 0x4c)
3472 bfd_put_8 (output_bfd, 0x49,
3473 contents + roff - 3);
3474 bfd_put_8 (output_bfd, 0x81,
3475 contents + roff - 2);
3476 bfd_put_8 (output_bfd, 0xc0 | reg,
3477 contents + roff - 1);
3478 }
3479 else
3480 {
3481 /* addq -> leaq */
3482 if (val == 0x4c)
3483 bfd_put_8 (output_bfd, 0x4d,
3484 contents + roff - 3);
3485 bfd_put_8 (output_bfd, 0x8d,
3486 contents + roff - 2);
3487 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3488 contents + roff - 1);
3489 }
3490 bfd_put_32 (output_bfd,
3491 elf_x86_64_tpoff (info, relocation),
3492 contents + roff);
3493 continue;
3494 }
3495 else
3496 BFD_ASSERT (FALSE);
3497 }
3498
3499 if (htab->elf.sgot == NULL)
3500 abort ();
3501
3502 if (h != NULL)
3503 {
3504 off = h->got.offset;
3505 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
3506 }
3507 else
3508 {
3509 if (local_got_offsets == NULL)
3510 abort ();
3511
3512 off = local_got_offsets[r_symndx];
3513 offplt = local_tlsdesc_gotents[r_symndx];
3514 }
3515
3516 if ((off & 1) != 0)
3517 off &= ~1;
3518 else
3519 {
3520 Elf_Internal_Rela outrel;
3521 int dr_type, indx;
3522 asection *sreloc;
3523
3524 if (htab->elf.srelgot == NULL)
3525 abort ();
3526
3527 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3528
3529 if (GOT_TLS_GDESC_P (tls_type))
3530 {
3531 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
3532 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3533 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3534 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3535 + htab->elf.sgotplt->output_offset
3536 + offplt
3537 + htab->sgotplt_jump_table_size);
3538 sreloc = htab->elf.srelplt;
3539 if (indx == 0)
3540 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3541 else
3542 outrel.r_addend = 0;
3543 elf_append_rela (output_bfd, sreloc, &outrel);
3544 }
3545
3546 sreloc = htab->elf.srelgot;
3547
3548 outrel.r_offset = (htab->elf.sgot->output_section->vma
3549 + htab->elf.sgot->output_offset + off);
3550
3551 if (GOT_TLS_GD_P (tls_type))
3552 dr_type = R_X86_64_DTPMOD64;
3553 else if (GOT_TLS_GDESC_P (tls_type))
3554 goto dr_done;
3555 else
3556 dr_type = R_X86_64_TPOFF64;
3557
3558 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
3559 outrel.r_addend = 0;
3560 if ((dr_type == R_X86_64_TPOFF64
3561 || dr_type == R_X86_64_TLSDESC) && indx == 0)
3562 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3563 outrel.r_info = htab->r_info (indx, dr_type);
3564
3565 elf_append_rela (output_bfd, sreloc, &outrel);
3566
3567 if (GOT_TLS_GD_P (tls_type))
3568 {
3569 if (indx == 0)
3570 {
3571 BFD_ASSERT (! unresolved_reloc);
3572 bfd_put_64 (output_bfd,
3573 relocation - elf_x86_64_dtpoff_base (info),
3574 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3575 }
3576 else
3577 {
3578 bfd_put_64 (output_bfd, 0,
3579 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3580 outrel.r_info = htab->r_info (indx,
3581 R_X86_64_DTPOFF64);
3582 outrel.r_offset += GOT_ENTRY_SIZE;
3583 elf_append_rela (output_bfd, sreloc,
3584 &outrel);
3585 }
3586 }
3587
3588 dr_done:
3589 if (h != NULL)
3590 h->got.offset |= 1;
3591 else
3592 local_got_offsets[r_symndx] |= 1;
3593 }
3594
3595 if (off >= (bfd_vma) -2
3596 && ! GOT_TLS_GDESC_P (tls_type))
3597 abort ();
3598 if (r_type == ELF32_R_TYPE (rel->r_info))
3599 {
3600 if (r_type == R_X86_64_GOTPC32_TLSDESC
3601 || r_type == R_X86_64_TLSDESC_CALL)
3602 relocation = htab->elf.sgotplt->output_section->vma
3603 + htab->elf.sgotplt->output_offset
3604 + offplt + htab->sgotplt_jump_table_size;
3605 else
3606 relocation = htab->elf.sgot->output_section->vma
3607 + htab->elf.sgot->output_offset + off;
3608 unresolved_reloc = FALSE;
3609 }
3610 else
3611 {
3612 bfd_vma roff = rel->r_offset;
3613
3614 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3615 {
3616 /* GD->IE transition.
3617 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3618 .word 0x6666; rex64; call __tls_get_addr@plt
3619 Change it into:
3620 movq %fs:0, %rax
3621 addq foo@gottpoff(%rip), %rax */
3622 memcpy (contents + roff - 4,
3623 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3624 16);
3625
3626 relocation = (htab->elf.sgot->output_section->vma
3627 + htab->elf.sgot->output_offset + off
3628 - roff
3629 - input_section->output_section->vma
3630 - input_section->output_offset
3631 - 12);
3632 bfd_put_32 (output_bfd, relocation,
3633 contents + roff + 8);
3634 /* Skip R_X86_64_PLT32. */
3635 rel++;
3636 continue;
3637 }
3638 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3639 {
3640 /* GDesc -> IE transition.
3641 It's originally something like:
3642 leaq x@tlsdesc(%rip), %rax
3643
3644 Change it to:
3645 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
3646
3647 /* Now modify the instruction as appropriate. To
3648 turn a leaq into a movq in the form we use it, it
3649 suffices to change the second byte from 0x8d to
3650 0x8b. */
3651 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3652
3653 bfd_put_32 (output_bfd,
3654 htab->elf.sgot->output_section->vma
3655 + htab->elf.sgot->output_offset + off
3656 - rel->r_offset
3657 - input_section->output_section->vma
3658 - input_section->output_offset
3659 - 4,
3660 contents + roff);
3661 continue;
3662 }
3663 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3664 {
3665 /* GDesc -> IE transition.
3666 It's originally:
3667 call *(%rax)
3668
3669 Change it to:
3670 xchg %ax, %ax. */
3671
3672 bfd_put_8 (output_bfd, 0x66, contents + roff);
3673 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3674 continue;
3675 }
3676 else
3677 BFD_ASSERT (FALSE);
3678 }
3679 break;
3680
3681 case R_X86_64_TLSLD:
3682 if (! elf_x86_64_tls_transition (info, input_bfd,
3683 input_section, contents,
3684 symtab_hdr, sym_hashes,
3685 &r_type, GOT_UNKNOWN,
3686 rel, relend, h, r_symndx))
3687 return FALSE;
3688
3689 if (r_type != R_X86_64_TLSLD)
3690 {
3691 /* LD->LE transition:
3692 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3693 We change it into:
3694 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3695
3696 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
3697 memcpy (contents + rel->r_offset - 3,
3698 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3699 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3700 rel++;
3701 continue;
3702 }
3703
3704 if (htab->elf.sgot == NULL)
3705 abort ();
3706
3707 off = htab->tls_ld_got.offset;
3708 if (off & 1)
3709 off &= ~1;
3710 else
3711 {
3712 Elf_Internal_Rela outrel;
3713
3714 if (htab->elf.srelgot == NULL)
3715 abort ();
3716
3717 outrel.r_offset = (htab->elf.sgot->output_section->vma
3718 + htab->elf.sgot->output_offset + off);
3719
3720 bfd_put_64 (output_bfd, 0,
3721 htab->elf.sgot->contents + off);
3722 bfd_put_64 (output_bfd, 0,
3723 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3724 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
3725 outrel.r_addend = 0;
3726 elf_append_rela (output_bfd, htab->elf.srelgot,
3727 &outrel);
3728 htab->tls_ld_got.offset |= 1;
3729 }
3730 relocation = htab->elf.sgot->output_section->vma
3731 + htab->elf.sgot->output_offset + off;
3732 unresolved_reloc = FALSE;
3733 break;
3734
3735 case R_X86_64_DTPOFF32:
3736 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
3737 relocation -= elf_x86_64_dtpoff_base (info);
3738 else
3739 relocation = elf_x86_64_tpoff (info, relocation);
3740 break;
3741
3742 case R_X86_64_TPOFF32:
3743 BFD_ASSERT (info->executable);
3744 relocation = elf_x86_64_tpoff (info, relocation);
3745 break;
3746
3747 default:
3748 break;
3749 }
3750
3751 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3752 because such sections are not SEC_ALLOC and thus ld.so will
3753 not process them. */
3754 if (unresolved_reloc
3755 && !((input_section->flags & SEC_DEBUGGING) != 0
3756 && h->def_dynamic))
3757 (*_bfd_error_handler)
3758 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3759 input_bfd,
3760 input_section,
3761 (long) rel->r_offset,
3762 howto->name,
3763 h->root.root.string);
3764
3765 do_relocation:
3766 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3767 contents, rel->r_offset,
3768 relocation, rel->r_addend);
3769
3770 if (r != bfd_reloc_ok)
3771 {
3772 const char *name;
3773
3774 if (h != NULL)
3775 name = h->root.root.string;
3776 else
3777 {
3778 name = bfd_elf_string_from_elf_section (input_bfd,
3779 symtab_hdr->sh_link,
3780 sym->st_name);
3781 if (name == NULL)
3782 return FALSE;
3783 if (*name == '\0')
3784 name = bfd_section_name (input_bfd, sec);
3785 }
3786
3787 if (r == bfd_reloc_overflow)
3788 {
3789 if (! ((*info->callbacks->reloc_overflow)
3790 (info, (h ? &h->root : NULL), name, howto->name,
3791 (bfd_vma) 0, input_bfd, input_section,
3792 rel->r_offset)))
3793 return FALSE;
3794 }
3795 else
3796 {
3797 (*_bfd_error_handler)
3798 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3799 input_bfd, input_section,
3800 (long) rel->r_offset, name, (int) r);
3801 return FALSE;
3802 }
3803 }
3804 }
3805
3806 return TRUE;
3807 }
3808
3809 /* Finish up dynamic symbol handling. We set the contents of various
3810 dynamic sections here. */
3811
3812 static bfd_boolean
3813 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3814 struct bfd_link_info *info,
3815 struct elf_link_hash_entry *h,
3816 Elf_Internal_Sym *sym)
3817 {
3818 struct elf_x86_64_link_hash_table *htab;
3819
3820 htab = elf_x86_64_hash_table (info);
3821 if (htab == NULL)
3822 return FALSE;
3823
3824 if (h->plt.offset != (bfd_vma) -1)
3825 {
3826 bfd_vma plt_index;
3827 bfd_vma got_offset;
3828 Elf_Internal_Rela rela;
3829 bfd_byte *loc;
3830 asection *plt, *gotplt, *relplt;
3831 const struct elf_backend_data *bed;
3832
3833 /* When building a static executable, use .iplt, .igot.plt and
3834 .rela.iplt sections for STT_GNU_IFUNC symbols. */
3835 if (htab->elf.splt != NULL)
3836 {
3837 plt = htab->elf.splt;
3838 gotplt = htab->elf.sgotplt;
3839 relplt = htab->elf.srelplt;
3840 }
3841 else
3842 {
3843 plt = htab->elf.iplt;
3844 gotplt = htab->elf.igotplt;
3845 relplt = htab->elf.irelplt;
3846 }
3847
3848 /* This symbol has an entry in the procedure linkage table. Set
3849 it up. */
3850 if ((h->dynindx == -1
3851 && !((h->forced_local || info->executable)
3852 && h->def_regular
3853 && h->type == STT_GNU_IFUNC))
3854 || plt == NULL
3855 || gotplt == NULL
3856 || relplt == NULL)
3857 abort ();
3858
3859 /* Get the index in the procedure linkage table which
3860 corresponds to this symbol. This is the index of this symbol
3861 in all the symbols for which we are making plt entries. The
3862 first entry in the procedure linkage table is reserved.
3863
3864 Get the offset into the .got table of the entry that
3865 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3866 bytes. The first three are reserved for the dynamic linker.
3867
3868 For static executables, we don't reserve anything. */
3869
3870 if (plt == htab->elf.splt)
3871 {
3872 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3873 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3874 }
3875 else
3876 {
3877 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3878 got_offset = plt_index * GOT_ENTRY_SIZE;
3879 }
3880
3881 /* Fill in the entry in the procedure linkage table. */
3882 memcpy (plt->contents + h->plt.offset, elf_x86_64_plt_entry,
3883 PLT_ENTRY_SIZE);
3884
3885 /* Insert the relocation positions of the plt section. The magic
3886 numbers at the end of the statements are the positions of the
3887 relocations in the plt section. */
3888 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3889 instruction uses 6 bytes, subtract this value. */
3890 bfd_put_32 (output_bfd,
3891 (gotplt->output_section->vma
3892 + gotplt->output_offset
3893 + got_offset
3894 - plt->output_section->vma
3895 - plt->output_offset
3896 - h->plt.offset
3897 - 6),
3898 plt->contents + h->plt.offset + 2);
3899
3900 /* Don't fill PLT entry for static executables. */
3901 if (plt == htab->elf.splt)
3902 {
3903 /* Put relocation index. */
3904 bfd_put_32 (output_bfd, plt_index,
3905 plt->contents + h->plt.offset + 7);
3906 /* Put offset for jmp .PLT0. */
3907 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3908 plt->contents + h->plt.offset + 12);
3909 }
3910
3911 /* Fill in the entry in the global offset table, initially this
3912 points to the pushq instruction in the PLT which is at offset 6. */
3913 bfd_put_64 (output_bfd, (plt->output_section->vma
3914 + plt->output_offset
3915 + h->plt.offset + 6),
3916 gotplt->contents + got_offset);
3917
3918 /* Fill in the entry in the .rela.plt section. */
3919 rela.r_offset = (gotplt->output_section->vma
3920 + gotplt->output_offset
3921 + got_offset);
3922 if (h->dynindx == -1
3923 || ((info->executable
3924 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
3925 && h->def_regular
3926 && h->type == STT_GNU_IFUNC))
3927 {
3928 /* If an STT_GNU_IFUNC symbol is locally defined, generate
3929 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
3930 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3931 rela.r_addend = (h->root.u.def.value
3932 + h->root.u.def.section->output_section->vma
3933 + h->root.u.def.section->output_offset);
3934 }
3935 else
3936 {
3937 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
3938 rela.r_addend = 0;
3939 }
3940
3941 bed = get_elf_backend_data (output_bfd);
3942 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
3943 htab->swap_reloca_out (output_bfd, &rela, loc);
3944
3945 if (!h->def_regular)
3946 {
3947 /* Mark the symbol as undefined, rather than as defined in
3948 the .plt section. Leave the value if there were any
3949 relocations where pointer equality matters (this is a clue
3950 for the dynamic linker, to make function pointer
3951 comparisons work between an application and shared
3952 library), otherwise set it to zero. If a function is only
3953 called from a binary, there is no need to slow down
3954 shared libraries because of that. */
3955 sym->st_shndx = SHN_UNDEF;
3956 if (!h->pointer_equality_needed)
3957 sym->st_value = 0;
3958 }
3959 }
3960
3961 if (h->got.offset != (bfd_vma) -1
3962 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
3963 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
3964 {
3965 Elf_Internal_Rela rela;
3966
3967 /* This symbol has an entry in the global offset table. Set it
3968 up. */
3969 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
3970 abort ();
3971
3972 rela.r_offset = (htab->elf.sgot->output_section->vma
3973 + htab->elf.sgot->output_offset
3974 + (h->got.offset &~ (bfd_vma) 1));
3975
3976 /* If this is a static link, or it is a -Bsymbolic link and the
3977 symbol is defined locally or was forced to be local because
3978 of a version file, we just want to emit a RELATIVE reloc.
3979 The entry in the global offset table will already have been
3980 initialized in the relocate_section function. */
3981 if (h->def_regular
3982 && h->type == STT_GNU_IFUNC)
3983 {
3984 if (info->shared)
3985 {
3986 /* Generate R_X86_64_GLOB_DAT. */
3987 goto do_glob_dat;
3988 }
3989 else
3990 {
3991 asection *plt;
3992
3993 if (!h->pointer_equality_needed)
3994 abort ();
3995
3996 /* For non-shared object, we can't use .got.plt, which
3997 contains the real function addres if we need pointer
3998 equality. We load the GOT entry with the PLT entry. */
3999 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4000 bfd_put_64 (output_bfd, (plt->output_section->vma
4001 + plt->output_offset
4002 + h->plt.offset),
4003 htab->elf.sgot->contents + h->got.offset);
4004 return TRUE;
4005 }
4006 }
4007 else if (info->shared
4008 && SYMBOL_REFERENCES_LOCAL (info, h))
4009 {
4010 if (!h->def_regular)
4011 return FALSE;
4012 BFD_ASSERT((h->got.offset & 1) != 0);
4013 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4014 rela.r_addend = (h->root.u.def.value
4015 + h->root.u.def.section->output_section->vma
4016 + h->root.u.def.section->output_offset);
4017 }
4018 else
4019 {
4020 BFD_ASSERT((h->got.offset & 1) == 0);
4021 do_glob_dat:
4022 bfd_put_64 (output_bfd, (bfd_vma) 0,
4023 htab->elf.sgot->contents + h->got.offset);
4024 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4025 rela.r_addend = 0;
4026 }
4027
4028 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4029 }
4030
4031 if (h->needs_copy)
4032 {
4033 Elf_Internal_Rela rela;
4034
4035 /* This symbol needs a copy reloc. Set it up. */
4036
4037 if (h->dynindx == -1
4038 || (h->root.type != bfd_link_hash_defined
4039 && h->root.type != bfd_link_hash_defweak)
4040 || htab->srelbss == NULL)
4041 abort ();
4042
4043 rela.r_offset = (h->root.u.def.value
4044 + h->root.u.def.section->output_section->vma
4045 + h->root.u.def.section->output_offset);
4046 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4047 rela.r_addend = 0;
4048 elf_append_rela (output_bfd, htab->srelbss, &rela);
4049 }
4050
4051 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
4052 be NULL for local symbols. */
4053 if (sym != NULL
4054 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4055 || h == htab->elf.hgot))
4056 sym->st_shndx = SHN_ABS;
4057
4058 return TRUE;
4059 }
4060
4061 /* Finish up local dynamic symbol handling. We set the contents of
4062 various dynamic sections here. */
4063
4064 static bfd_boolean
4065 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4066 {
4067 struct elf_link_hash_entry *h
4068 = (struct elf_link_hash_entry *) *slot;
4069 struct bfd_link_info *info
4070 = (struct bfd_link_info *) inf;
4071
4072 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4073 info, h, NULL);
4074 }
4075
4076 /* Used to decide how to sort relocs in an optimal manner for the
4077 dynamic linker, before writing them out. */
4078
4079 static enum elf_reloc_type_class
4080 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4081 {
4082 switch ((int) ELF32_R_TYPE (rela->r_info))
4083 {
4084 case R_X86_64_RELATIVE:
4085 return reloc_class_relative;
4086 case R_X86_64_JUMP_SLOT:
4087 return reloc_class_plt;
4088 case R_X86_64_COPY:
4089 return reloc_class_copy;
4090 default:
4091 return reloc_class_normal;
4092 }
4093 }
4094
4095 /* Finish up the dynamic sections. */
4096
4097 static bfd_boolean
4098 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4099 struct bfd_link_info *info)
4100 {
4101 struct elf_x86_64_link_hash_table *htab;
4102 bfd *dynobj;
4103 asection *sdyn;
4104
4105 htab = elf_x86_64_hash_table (info);
4106 if (htab == NULL)
4107 return FALSE;
4108
4109 dynobj = htab->elf.dynobj;
4110 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4111
4112 if (htab->elf.dynamic_sections_created)
4113 {
4114 Elf64_External_Dyn *dyncon, *dynconend;
4115
4116 if (sdyn == NULL || htab->elf.sgot == NULL)
4117 abort ();
4118
4119 dyncon = (Elf64_External_Dyn *) sdyn->contents;
4120 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
4121 for (; dyncon < dynconend; dyncon++)
4122 {
4123 Elf_Internal_Dyn dyn;
4124 asection *s;
4125
4126 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
4127
4128 switch (dyn.d_tag)
4129 {
4130 default:
4131 continue;
4132
4133 case DT_PLTGOT:
4134 s = htab->elf.sgotplt;
4135 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4136 break;
4137
4138 case DT_JMPREL:
4139 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4140 break;
4141
4142 case DT_PLTRELSZ:
4143 s = htab->elf.srelplt->output_section;
4144 dyn.d_un.d_val = s->size;
4145 break;
4146
4147 case DT_RELASZ:
4148 /* The procedure linkage table relocs (DT_JMPREL) should
4149 not be included in the overall relocs (DT_RELA).
4150 Therefore, we override the DT_RELASZ entry here to
4151 make it not include the JMPREL relocs. Since the
4152 linker script arranges for .rela.plt to follow all
4153 other relocation sections, we don't have to worry
4154 about changing the DT_RELA entry. */
4155 if (htab->elf.srelplt != NULL)
4156 {
4157 s = htab->elf.srelplt->output_section;
4158 dyn.d_un.d_val -= s->size;
4159 }
4160 break;
4161
4162 case DT_TLSDESC_PLT:
4163 s = htab->elf.splt;
4164 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4165 + htab->tlsdesc_plt;
4166 break;
4167
4168 case DT_TLSDESC_GOT:
4169 s = htab->elf.sgot;
4170 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4171 + htab->tlsdesc_got;
4172 break;
4173 }
4174
4175 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
4176 }
4177
4178 /* Fill in the special first entry in the procedure linkage table. */
4179 if (htab->elf.splt && htab->elf.splt->size > 0)
4180 {
4181 /* Fill in the first entry in the procedure linkage table. */
4182 memcpy (htab->elf.splt->contents, elf_x86_64_plt0_entry,
4183 PLT_ENTRY_SIZE);
4184 /* Add offset for pushq GOT+8(%rip), since the instruction
4185 uses 6 bytes subtract this value. */
4186 bfd_put_32 (output_bfd,
4187 (htab->elf.sgotplt->output_section->vma
4188 + htab->elf.sgotplt->output_offset
4189 + 8
4190 - htab->elf.splt->output_section->vma
4191 - htab->elf.splt->output_offset
4192 - 6),
4193 htab->elf.splt->contents + 2);
4194 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4195 the end of the instruction. */
4196 bfd_put_32 (output_bfd,
4197 (htab->elf.sgotplt->output_section->vma
4198 + htab->elf.sgotplt->output_offset
4199 + 16
4200 - htab->elf.splt->output_section->vma
4201 - htab->elf.splt->output_offset
4202 - 12),
4203 htab->elf.splt->contents + 8);
4204
4205 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize =
4206 PLT_ENTRY_SIZE;
4207
4208 if (htab->tlsdesc_plt)
4209 {
4210 bfd_put_64 (output_bfd, (bfd_vma) 0,
4211 htab->elf.sgot->contents + htab->tlsdesc_got);
4212
4213 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4214 elf_x86_64_plt0_entry,
4215 PLT_ENTRY_SIZE);
4216
4217 /* Add offset for pushq GOT+8(%rip), since the
4218 instruction uses 6 bytes subtract this value. */
4219 bfd_put_32 (output_bfd,
4220 (htab->elf.sgotplt->output_section->vma
4221 + htab->elf.sgotplt->output_offset
4222 + 8
4223 - htab->elf.splt->output_section->vma
4224 - htab->elf.splt->output_offset
4225 - htab->tlsdesc_plt
4226 - 6),
4227 htab->elf.splt->contents + htab->tlsdesc_plt + 2);
4228 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4229 htab->tlsdesc_got. The 12 is the offset to the end of
4230 the instruction. */
4231 bfd_put_32 (output_bfd,
4232 (htab->elf.sgot->output_section->vma
4233 + htab->elf.sgot->output_offset
4234 + htab->tlsdesc_got
4235 - htab->elf.splt->output_section->vma
4236 - htab->elf.splt->output_offset
4237 - htab->tlsdesc_plt
4238 - 12),
4239 htab->elf.splt->contents + htab->tlsdesc_plt + 8);
4240 }
4241 }
4242 }
4243
4244 if (htab->elf.sgotplt)
4245 {
4246 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4247 {
4248 (*_bfd_error_handler)
4249 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4250 return FALSE;
4251 }
4252
4253 /* Fill in the first three entries in the global offset table. */
4254 if (htab->elf.sgotplt->size > 0)
4255 {
4256 /* Set the first entry in the global offset table to the address of
4257 the dynamic section. */
4258 if (sdyn == NULL)
4259 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4260 else
4261 bfd_put_64 (output_bfd,
4262 sdyn->output_section->vma + sdyn->output_offset,
4263 htab->elf.sgotplt->contents);
4264 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4265 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4266 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4267 }
4268
4269 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4270 GOT_ENTRY_SIZE;
4271 }
4272
4273 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4274 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4275 = GOT_ENTRY_SIZE;
4276
4277 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4278 htab_traverse (htab->loc_hash_table,
4279 elf_x86_64_finish_local_dynamic_symbol,
4280 info);
4281
4282 return TRUE;
4283 }
4284
4285 /* Return address for Ith PLT stub in section PLT, for relocation REL
4286 or (bfd_vma) -1 if it should not be included. */
4287
4288 static bfd_vma
4289 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4290 const arelent *rel ATTRIBUTE_UNUSED)
4291 {
4292 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
4293 }
4294
4295 /* Handle an x86-64 specific section when reading an object file. This
4296 is called when elfcode.h finds a section with an unknown type. */
4297
4298 static bfd_boolean
4299 elf_x86_64_section_from_shdr (bfd *abfd,
4300 Elf_Internal_Shdr *hdr,
4301 const char *name,
4302 int shindex)
4303 {
4304 if (hdr->sh_type != SHT_X86_64_UNWIND)
4305 return FALSE;
4306
4307 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4308 return FALSE;
4309
4310 return TRUE;
4311 }
4312
4313 /* Hook called by the linker routine which adds symbols from an object
4314 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4315 of .bss. */
4316
4317 static bfd_boolean
4318 elf_x86_64_add_symbol_hook (bfd *abfd,
4319 struct bfd_link_info *info,
4320 Elf_Internal_Sym *sym,
4321 const char **namep ATTRIBUTE_UNUSED,
4322 flagword *flagsp ATTRIBUTE_UNUSED,
4323 asection **secp,
4324 bfd_vma *valp)
4325 {
4326 asection *lcomm;
4327
4328 switch (sym->st_shndx)
4329 {
4330 case SHN_X86_64_LCOMMON:
4331 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4332 if (lcomm == NULL)
4333 {
4334 lcomm = bfd_make_section_with_flags (abfd,
4335 "LARGE_COMMON",
4336 (SEC_ALLOC
4337 | SEC_IS_COMMON
4338 | SEC_LINKER_CREATED));
4339 if (lcomm == NULL)
4340 return FALSE;
4341 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4342 }
4343 *secp = lcomm;
4344 *valp = sym->st_size;
4345 return TRUE;
4346 }
4347
4348 if ((abfd->flags & DYNAMIC) == 0
4349 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
4350 elf_tdata (info->output_bfd)->has_ifunc_symbols = TRUE;
4351
4352 return TRUE;
4353 }
4354
4355
4356 /* Given a BFD section, try to locate the corresponding ELF section
4357 index. */
4358
4359 static bfd_boolean
4360 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4361 asection *sec, int *index_return)
4362 {
4363 if (sec == &_bfd_elf_large_com_section)
4364 {
4365 *index_return = SHN_X86_64_LCOMMON;
4366 return TRUE;
4367 }
4368 return FALSE;
4369 }
4370
4371 /* Process a symbol. */
4372
4373 static void
4374 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4375 asymbol *asym)
4376 {
4377 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4378
4379 switch (elfsym->internal_elf_sym.st_shndx)
4380 {
4381 case SHN_X86_64_LCOMMON:
4382 asym->section = &_bfd_elf_large_com_section;
4383 asym->value = elfsym->internal_elf_sym.st_size;
4384 /* Common symbol doesn't set BSF_GLOBAL. */
4385 asym->flags &= ~BSF_GLOBAL;
4386 break;
4387 }
4388 }
4389
4390 static bfd_boolean
4391 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
4392 {
4393 return (sym->st_shndx == SHN_COMMON
4394 || sym->st_shndx == SHN_X86_64_LCOMMON);
4395 }
4396
4397 static unsigned int
4398 elf_x86_64_common_section_index (asection *sec)
4399 {
4400 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4401 return SHN_COMMON;
4402 else
4403 return SHN_X86_64_LCOMMON;
4404 }
4405
4406 static asection *
4407 elf_x86_64_common_section (asection *sec)
4408 {
4409 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4410 return bfd_com_section_ptr;
4411 else
4412 return &_bfd_elf_large_com_section;
4413 }
4414
4415 static bfd_boolean
4416 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4417 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4418 struct elf_link_hash_entry *h,
4419 Elf_Internal_Sym *sym,
4420 asection **psec,
4421 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4422 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4423 bfd_boolean *skip ATTRIBUTE_UNUSED,
4424 bfd_boolean *override ATTRIBUTE_UNUSED,
4425 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4426 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4427 bfd_boolean *newdef ATTRIBUTE_UNUSED,
4428 bfd_boolean *newdyn,
4429 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4430 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4431 bfd *abfd ATTRIBUTE_UNUSED,
4432 asection **sec,
4433 bfd_boolean *olddef ATTRIBUTE_UNUSED,
4434 bfd_boolean *olddyn,
4435 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4436 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4437 bfd *oldbfd,
4438 asection **oldsec)
4439 {
4440 /* A normal common symbol and a large common symbol result in a
4441 normal common symbol. We turn the large common symbol into a
4442 normal one. */
4443 if (!*olddyn
4444 && h->root.type == bfd_link_hash_common
4445 && !*newdyn
4446 && bfd_is_com_section (*sec)
4447 && *oldsec != *sec)
4448 {
4449 if (sym->st_shndx == SHN_COMMON
4450 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4451 {
4452 h->root.u.c.p->section
4453 = bfd_make_section_old_way (oldbfd, "COMMON");
4454 h->root.u.c.p->section->flags = SEC_ALLOC;
4455 }
4456 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4457 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4458 *psec = *sec = bfd_com_section_ptr;
4459 }
4460
4461 return TRUE;
4462 }
4463
4464 static int
4465 elf_x86_64_additional_program_headers (bfd *abfd,
4466 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4467 {
4468 asection *s;
4469 int count = 0;
4470
4471 /* Check to see if we need a large readonly segment. */
4472 s = bfd_get_section_by_name (abfd, ".lrodata");
4473 if (s && (s->flags & SEC_LOAD))
4474 count++;
4475
4476 /* Check to see if we need a large data segment. Since .lbss sections
4477 is placed right after the .bss section, there should be no need for
4478 a large data segment just because of .lbss. */
4479 s = bfd_get_section_by_name (abfd, ".ldata");
4480 if (s && (s->flags & SEC_LOAD))
4481 count++;
4482
4483 return count;
4484 }
4485
4486 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4487
4488 static bfd_boolean
4489 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4490 {
4491 if (h->plt.offset != (bfd_vma) -1
4492 && !h->def_regular
4493 && !h->pointer_equality_needed)
4494 return FALSE;
4495
4496 return _bfd_elf_hash_symbol (h);
4497 }
4498
4499 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
4500
4501 static bfd_boolean
4502 elf_x86_64_relocs_compatible (const bfd_target *input,
4503 const bfd_target *output)
4504 {
4505 return ((xvec_get_elf_backend_data (input)->s->elfclass
4506 == xvec_get_elf_backend_data (output)->s->elfclass)
4507 && _bfd_elf_relocs_compatible (input, output));
4508 }
4509
4510 static const struct bfd_elf_special_section
4511 elf_x86_64_special_sections[]=
4512 {
4513 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4514 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4515 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4516 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4517 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4518 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4519 { NULL, 0, 0, 0, 0 }
4520 };
4521
4522 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4523 #define TARGET_LITTLE_NAME "elf64-x86-64"
4524 #define ELF_ARCH bfd_arch_i386
4525 #define ELF_TARGET_ID X86_64_ELF_DATA
4526 #define ELF_MACHINE_CODE EM_X86_64
4527 #define ELF_MAXPAGESIZE 0x200000
4528 #define ELF_MINPAGESIZE 0x1000
4529 #define ELF_COMMONPAGESIZE 0x1000
4530
4531 #define elf_backend_can_gc_sections 1
4532 #define elf_backend_can_refcount 1
4533 #define elf_backend_want_got_plt 1
4534 #define elf_backend_plt_readonly 1
4535 #define elf_backend_want_plt_sym 0
4536 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4537 #define elf_backend_rela_normal 1
4538
4539 #define elf_info_to_howto elf_x86_64_info_to_howto
4540
4541 #define bfd_elf64_bfd_link_hash_table_create \
4542 elf_x86_64_link_hash_table_create
4543 #define bfd_elf64_bfd_link_hash_table_free \
4544 elf_x86_64_link_hash_table_free
4545 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
4546 #define bfd_elf64_bfd_reloc_name_lookup \
4547 elf_x86_64_reloc_name_lookup
4548
4549 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
4550 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
4551 #define elf_backend_check_relocs elf_x86_64_check_relocs
4552 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
4553 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
4554 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
4555 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
4556 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
4557 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
4558 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
4559 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
4560 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
4561 #define elf_backend_relocate_section elf_x86_64_relocate_section
4562 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
4563 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
4564 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4565 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
4566 #define elf_backend_object_p elf64_x86_64_elf_object_p
4567 #define bfd_elf64_mkobject elf_x86_64_mkobject
4568
4569 #define elf_backend_section_from_shdr \
4570 elf_x86_64_section_from_shdr
4571
4572 #define elf_backend_section_from_bfd_section \
4573 elf_x86_64_elf_section_from_bfd_section
4574 #define elf_backend_add_symbol_hook \
4575 elf_x86_64_add_symbol_hook
4576 #define elf_backend_symbol_processing \
4577 elf_x86_64_symbol_processing
4578 #define elf_backend_common_section_index \
4579 elf_x86_64_common_section_index
4580 #define elf_backend_common_section \
4581 elf_x86_64_common_section
4582 #define elf_backend_common_definition \
4583 elf_x86_64_common_definition
4584 #define elf_backend_merge_symbol \
4585 elf_x86_64_merge_symbol
4586 #define elf_backend_special_sections \
4587 elf_x86_64_special_sections
4588 #define elf_backend_additional_program_headers \
4589 elf_x86_64_additional_program_headers
4590 #define elf_backend_hash_symbol \
4591 elf_x86_64_hash_symbol
4592
4593 #undef elf_backend_post_process_headers
4594 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4595
4596 #include "elf64-target.h"
4597
4598 /* FreeBSD support. */
4599
4600 #undef TARGET_LITTLE_SYM
4601 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4602 #undef TARGET_LITTLE_NAME
4603 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4604
4605 #undef ELF_OSABI
4606 #define ELF_OSABI ELFOSABI_FREEBSD
4607
4608 #undef elf64_bed
4609 #define elf64_bed elf64_x86_64_fbsd_bed
4610
4611 #include "elf64-target.h"
4612
4613 /* Solaris 2 support. */
4614
4615 #undef TARGET_LITTLE_SYM
4616 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
4617 #undef TARGET_LITTLE_NAME
4618 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
4619
4620 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
4621 objects won't be recognized. */
4622 #undef ELF_OSABI
4623
4624 #undef elf64_bed
4625 #define elf64_bed elf64_x86_64_sol2_bed
4626
4627 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
4628 boundary. */
4629 #undef elf_backend_static_tls_alignment
4630 #define elf_backend_static_tls_alignment 16
4631
4632 /* The Solaris 2 ABI requires a plt symbol on all platforms.
4633
4634 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
4635 File, p.63. */
4636 #undef elf_backend_want_plt_sym
4637 #define elf_backend_want_plt_sym 1
4638
4639 #include "elf64-target.h"
4640
4641 /* Intel L1OM support. */
4642
4643 static bfd_boolean
4644 elf64_l1om_elf_object_p (bfd *abfd)
4645 {
4646 /* Set the right machine number for an L1OM elf64 file. */
4647 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
4648 return TRUE;
4649 }
4650
4651 #undef TARGET_LITTLE_SYM
4652 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
4653 #undef TARGET_LITTLE_NAME
4654 #define TARGET_LITTLE_NAME "elf64-l1om"
4655 #undef ELF_ARCH
4656 #define ELF_ARCH bfd_arch_l1om
4657
4658 #undef ELF_MACHINE_CODE
4659 #define ELF_MACHINE_CODE EM_L1OM
4660
4661 #undef ELF_OSABI
4662
4663 #undef elf64_bed
4664 #define elf64_bed elf64_l1om_bed
4665
4666 #undef elf_backend_object_p
4667 #define elf_backend_object_p elf64_l1om_elf_object_p
4668
4669 #undef elf_backend_post_process_headers
4670 #undef elf_backend_static_tls_alignment
4671
4672 #include "elf64-target.h"
4673
4674 /* FreeBSD L1OM support. */
4675
4676 #undef TARGET_LITTLE_SYM
4677 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
4678 #undef TARGET_LITTLE_NAME
4679 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
4680
4681 #undef ELF_OSABI
4682 #define ELF_OSABI ELFOSABI_FREEBSD
4683
4684 #undef elf64_bed
4685 #define elf64_bed elf64_l1om_fbsd_bed
4686
4687 #undef elf_backend_post_process_headers
4688 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4689
4690 #include "elf64-target.h"
4691
4692 /* 32bit x86-64 support. */
4693
4694 static bfd_boolean
4695 elf32_x86_64_elf_object_p (bfd *abfd)
4696 {
4697 /* Set the right machine number for an x86-64 elf32 file. */
4698 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
4699 return TRUE;
4700 }
4701
4702 #undef TARGET_LITTLE_SYM
4703 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
4704 #undef TARGET_LITTLE_NAME
4705 #define TARGET_LITTLE_NAME "elf32-x86-64"
4706
4707 #undef ELF_ARCH
4708 #define ELF_ARCH bfd_arch_i386
4709
4710 #undef ELF_MACHINE_CODE
4711 #define ELF_MACHINE_CODE EM_X86_64
4712
4713 #define bfd_elf32_bfd_link_hash_table_create \
4714 elf_x86_64_link_hash_table_create
4715 #define bfd_elf32_bfd_link_hash_table_free \
4716 elf_x86_64_link_hash_table_free
4717 #define bfd_elf32_bfd_reloc_type_lookup \
4718 elf_x86_64_reloc_type_lookup
4719 #define bfd_elf32_bfd_reloc_name_lookup \
4720 elf_x86_64_reloc_name_lookup
4721 #define bfd_elf32_mkobject \
4722 elf_x86_64_mkobject
4723
4724 #undef ELF_OSABI
4725
4726 #undef elf_backend_post_process_headers
4727
4728 #undef elf_backend_object_p
4729 #define elf_backend_object_p \
4730 elf32_x86_64_elf_object_p
4731
4732 #undef elf_backend_bfd_from_remote_memory
4733 #define elf_backend_bfd_from_remote_memory \
4734 _bfd_elf32_bfd_from_remote_memory
4735
4736 #undef elf_backend_size_info
4737 #define elf_backend_size_info \
4738 _bfd_elf32_size_info
4739
4740 #include "elf32-target.h"
This page took 0.145437 seconds and 4 git commands to generate.