88c47f95e64d06cca8d2176e0f14f1258a5041e2
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "bfd_stdint.h"
30 #include "objalloc.h"
31 #include "hashtab.h"
32 #include "dwarf2.h"
33 #include "libiberty.h"
34
35 #include "elf/x86-64.h"
36
37 #ifdef CORE_HEADER
38 #include <stdarg.h>
39 #include CORE_HEADER
40 #endif
41
42 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
43 #define MINUS_ONE (~ (bfd_vma) 0)
44
45 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
46 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
47 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
48 since they are the same. */
49
50 #define ABI_64_P(abfd) \
51 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
52
53 /* The relocation "howto" table. Order of fields:
54 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
55 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
56 static reloc_howto_type x86_64_elf_howto_table[] =
57 {
58 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
59 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
60 FALSE),
61 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
63 FALSE),
64 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
65 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
66 TRUE),
67 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
68 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
69 FALSE),
70 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
71 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
72 TRUE),
73 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
74 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
75 FALSE),
76 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
77 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
78 MINUS_ONE, FALSE),
79 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
80 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
81 MINUS_ONE, FALSE),
82 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
84 MINUS_ONE, FALSE),
85 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
86 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
87 0xffffffff, TRUE),
88 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
89 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
90 FALSE),
91 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
92 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
93 FALSE),
94 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
95 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
96 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
97 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
98 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
99 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
100 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
101 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
102 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
103 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
104 MINUS_ONE, FALSE),
105 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
106 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
107 MINUS_ONE, FALSE),
108 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
109 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
110 MINUS_ONE, FALSE),
111 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
112 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
113 0xffffffff, TRUE),
114 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
115 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
116 0xffffffff, TRUE),
117 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
118 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
119 0xffffffff, FALSE),
120 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
121 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
122 0xffffffff, TRUE),
123 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
124 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
125 0xffffffff, FALSE),
126 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
127 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
128 TRUE),
129 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
130 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
131 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
132 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
133 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
134 FALSE, 0xffffffff, 0xffffffff, TRUE),
135 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
136 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
137 FALSE),
138 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
139 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
140 MINUS_ONE, TRUE),
141 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
142 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
143 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
144 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
145 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
146 MINUS_ONE, FALSE),
147 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
148 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
149 MINUS_ONE, FALSE),
150 EMPTY_HOWTO (32),
151 EMPTY_HOWTO (33),
152 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
153 complain_overflow_bitfield, bfd_elf_generic_reloc,
154 "R_X86_64_GOTPC32_TLSDESC",
155 FALSE, 0xffffffff, 0xffffffff, TRUE),
156 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
157 complain_overflow_dont, bfd_elf_generic_reloc,
158 "R_X86_64_TLSDESC_CALL",
159 FALSE, 0, 0, FALSE),
160 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
161 complain_overflow_bitfield, bfd_elf_generic_reloc,
162 "R_X86_64_TLSDESC",
163 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
164 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
165 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
166 MINUS_ONE, FALSE),
167 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
169 MINUS_ONE, FALSE),
170
171 /* We have a gap in the reloc numbers here.
172 R_X86_64_standard counts the number up to this point, and
173 R_X86_64_vt_offset is the value to subtract from a reloc type of
174 R_X86_64_GNU_VT* to form an index into this table. */
175 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
176 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
177
178 /* GNU extension to record C++ vtable hierarchy. */
179 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
180 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
181
182 /* GNU extension to record C++ vtable member usage. */
183 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
184 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
185 FALSE),
186
187 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
188 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
190 FALSE)
191 };
192
193 #define IS_X86_64_PCREL_TYPE(TYPE) \
194 ( ((TYPE) == R_X86_64_PC8) \
195 || ((TYPE) == R_X86_64_PC16) \
196 || ((TYPE) == R_X86_64_PC32) \
197 || ((TYPE) == R_X86_64_PC64))
198
199 /* Map BFD relocs to the x86_64 elf relocs. */
200 struct elf_reloc_map
201 {
202 bfd_reloc_code_real_type bfd_reloc_val;
203 unsigned char elf_reloc_val;
204 };
205
206 static const struct elf_reloc_map x86_64_reloc_map[] =
207 {
208 { BFD_RELOC_NONE, R_X86_64_NONE, },
209 { BFD_RELOC_64, R_X86_64_64, },
210 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
211 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
212 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
213 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
214 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
215 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
216 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
217 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
218 { BFD_RELOC_32, R_X86_64_32, },
219 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
220 { BFD_RELOC_16, R_X86_64_16, },
221 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
222 { BFD_RELOC_8, R_X86_64_8, },
223 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
224 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
225 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
226 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
227 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
228 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
229 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
230 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
231 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
232 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
233 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
234 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
235 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
236 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
237 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
238 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
239 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
240 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
241 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
242 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
243 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
244 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
245 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
246 };
247
248 static reloc_howto_type *
249 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
250 {
251 unsigned i;
252
253 if (r_type == (unsigned int) R_X86_64_32)
254 {
255 if (ABI_64_P (abfd))
256 i = r_type;
257 else
258 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
259 }
260 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
261 || r_type >= (unsigned int) R_X86_64_max)
262 {
263 if (r_type >= (unsigned int) R_X86_64_standard)
264 {
265 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
266 abfd, (int) r_type);
267 r_type = R_X86_64_NONE;
268 }
269 i = r_type;
270 }
271 else
272 i = r_type - (unsigned int) R_X86_64_vt_offset;
273 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
274 return &x86_64_elf_howto_table[i];
275 }
276
277 /* Given a BFD reloc type, return a HOWTO structure. */
278 static reloc_howto_type *
279 elf_x86_64_reloc_type_lookup (bfd *abfd,
280 bfd_reloc_code_real_type code)
281 {
282 unsigned int i;
283
284 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
285 i++)
286 {
287 if (x86_64_reloc_map[i].bfd_reloc_val == code)
288 return elf_x86_64_rtype_to_howto (abfd,
289 x86_64_reloc_map[i].elf_reloc_val);
290 }
291 return 0;
292 }
293
294 static reloc_howto_type *
295 elf_x86_64_reloc_name_lookup (bfd *abfd,
296 const char *r_name)
297 {
298 unsigned int i;
299
300 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
301 {
302 /* Get x32 R_X86_64_32. */
303 reloc_howto_type *reloc
304 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
305 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
306 return reloc;
307 }
308
309 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
310 if (x86_64_elf_howto_table[i].name != NULL
311 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
312 return &x86_64_elf_howto_table[i];
313
314 return NULL;
315 }
316
317 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
318
319 static void
320 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
321 Elf_Internal_Rela *dst)
322 {
323 unsigned r_type;
324
325 r_type = ELF32_R_TYPE (dst->r_info);
326 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
327 BFD_ASSERT (r_type == cache_ptr->howto->type);
328 }
329 \f
330 /* Support for core dump NOTE sections. */
331 static bfd_boolean
332 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
333 {
334 int offset;
335 size_t size;
336
337 switch (note->descsz)
338 {
339 default:
340 return FALSE;
341
342 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
343 /* pr_cursig */
344 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
345
346 /* pr_pid */
347 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
348
349 /* pr_reg */
350 offset = 72;
351 size = 216;
352
353 break;
354
355 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
356 /* pr_cursig */
357 elf_tdata (abfd)->core_signal
358 = bfd_get_16 (abfd, note->descdata + 12);
359
360 /* pr_pid */
361 elf_tdata (abfd)->core_lwpid
362 = bfd_get_32 (abfd, note->descdata + 32);
363
364 /* pr_reg */
365 offset = 112;
366 size = 216;
367
368 break;
369 }
370
371 /* Make a ".reg/999" section. */
372 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
373 size, note->descpos + offset);
374 }
375
376 static bfd_boolean
377 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
378 {
379 switch (note->descsz)
380 {
381 default:
382 return FALSE;
383
384 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
385 elf_tdata (abfd)->core_pid
386 = bfd_get_32 (abfd, note->descdata + 12);
387 elf_tdata (abfd)->core_program
388 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
389 elf_tdata (abfd)->core_command
390 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
391 break;
392
393 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
394 elf_tdata (abfd)->core_pid
395 = bfd_get_32 (abfd, note->descdata + 24);
396 elf_tdata (abfd)->core_program
397 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
398 elf_tdata (abfd)->core_command
399 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
400 }
401
402 /* Note that for some reason, a spurious space is tacked
403 onto the end of the args in some (at least one anyway)
404 implementations, so strip it off if it exists. */
405
406 {
407 char *command = elf_tdata (abfd)->core_command;
408 int n = strlen (command);
409
410 if (0 < n && command[n - 1] == ' ')
411 command[n - 1] = '\0';
412 }
413
414 return TRUE;
415 }
416
417 #ifdef CORE_HEADER
418 static char *
419 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
420 int note_type, ...)
421 {
422 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
423 va_list ap;
424 const char *fname, *psargs;
425 long pid;
426 int cursig;
427 const void *gregs;
428
429 switch (note_type)
430 {
431 default:
432 return NULL;
433
434 case NT_PRPSINFO:
435 va_start (ap, note_type);
436 fname = va_arg (ap, const char *);
437 psargs = va_arg (ap, const char *);
438 va_end (ap);
439
440 if (bed->s->elfclass == ELFCLASS32)
441 {
442 prpsinfo32_t data;
443 memset (&data, 0, sizeof (data));
444 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
445 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
446 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
447 &data, sizeof (data));
448 }
449 else
450 {
451 prpsinfo_t data;
452 memset (&data, 0, sizeof (data));
453 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
454 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
455 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
456 &data, sizeof (data));
457 }
458 /* NOTREACHED */
459
460 case NT_PRSTATUS:
461 va_start (ap, note_type);
462 pid = va_arg (ap, long);
463 cursig = va_arg (ap, int);
464 gregs = va_arg (ap, const void *);
465 va_end (ap);
466
467 if (bed->s->elfclass == ELFCLASS32)
468 {
469 if (bed->elf_machine_code == EM_X86_64)
470 {
471 prstatusx32_t prstat;
472 memset (&prstat, 0, sizeof (prstat));
473 prstat.pr_pid = pid;
474 prstat.pr_cursig = cursig;
475 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
476 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
477 &prstat, sizeof (prstat));
478 }
479 else
480 {
481 prstatus32_t prstat;
482 memset (&prstat, 0, sizeof (prstat));
483 prstat.pr_pid = pid;
484 prstat.pr_cursig = cursig;
485 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
486 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
487 &prstat, sizeof (prstat));
488 }
489 }
490 else
491 {
492 prstatus_t prstat;
493 memset (&prstat, 0, sizeof (prstat));
494 prstat.pr_pid = pid;
495 prstat.pr_cursig = cursig;
496 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
497 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
498 &prstat, sizeof (prstat));
499 }
500 }
501 /* NOTREACHED */
502 }
503 #endif
504 \f
505 /* Functions for the x86-64 ELF linker. */
506
507 /* The name of the dynamic interpreter. This is put in the .interp
508 section. */
509
510 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
511 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
512
513 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
514 copying dynamic variables from a shared lib into an app's dynbss
515 section, and instead use a dynamic relocation to point into the
516 shared lib. */
517 #define ELIMINATE_COPY_RELOCS 1
518
519 /* The size in bytes of an entry in the global offset table. */
520
521 #define GOT_ENTRY_SIZE 8
522
523 /* The size in bytes of an entry in the procedure linkage table. */
524
525 #define PLT_ENTRY_SIZE 16
526
527 /* The first entry in a procedure linkage table looks like this. See the
528 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
529
530 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
531 {
532 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
533 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
534 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
535 };
536
537 /* Subsequent entries in a procedure linkage table look like this. */
538
539 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
540 {
541 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
542 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
543 0x68, /* pushq immediate */
544 0, 0, 0, 0, /* replaced with index into relocation table. */
545 0xe9, /* jmp relative */
546 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
547 };
548
549 /* .eh_frame covering the .plt section. */
550
551 static const bfd_byte elf_x86_64_eh_frame_plt[] =
552 {
553 #define PLT_CIE_LENGTH 20
554 #define PLT_FDE_LENGTH 36
555 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
556 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
557 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
558 0, 0, 0, 0, /* CIE ID */
559 1, /* CIE version */
560 'z', 'R', 0, /* Augmentation string */
561 1, /* Code alignment factor */
562 0x78, /* Data alignment factor */
563 16, /* Return address column */
564 1, /* Augmentation size */
565 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
566 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
567 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
568 DW_CFA_nop, DW_CFA_nop,
569
570 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
571 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
572 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
573 0, 0, 0, 0, /* .plt size goes here */
574 0, /* Augmentation size */
575 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
576 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
577 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
578 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
579 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
580 11, /* Block length */
581 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
582 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
583 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
584 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
585 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
586 };
587
588 /* x86-64 ELF linker hash entry. */
589
590 struct elf_x86_64_link_hash_entry
591 {
592 struct elf_link_hash_entry elf;
593
594 /* Track dynamic relocs copied for this symbol. */
595 struct elf_dyn_relocs *dyn_relocs;
596
597 #define GOT_UNKNOWN 0
598 #define GOT_NORMAL 1
599 #define GOT_TLS_GD 2
600 #define GOT_TLS_IE 3
601 #define GOT_TLS_GDESC 4
602 #define GOT_TLS_GD_BOTH_P(type) \
603 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
604 #define GOT_TLS_GD_P(type) \
605 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
606 #define GOT_TLS_GDESC_P(type) \
607 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
608 #define GOT_TLS_GD_ANY_P(type) \
609 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
610 unsigned char tls_type;
611
612 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
613 starting at the end of the jump table. */
614 bfd_vma tlsdesc_got;
615 };
616
617 #define elf_x86_64_hash_entry(ent) \
618 ((struct elf_x86_64_link_hash_entry *)(ent))
619
620 struct elf_x86_64_obj_tdata
621 {
622 struct elf_obj_tdata root;
623
624 /* tls_type for each local got entry. */
625 char *local_got_tls_type;
626
627 /* GOTPLT entries for TLS descriptors. */
628 bfd_vma *local_tlsdesc_gotent;
629 };
630
631 #define elf_x86_64_tdata(abfd) \
632 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
633
634 #define elf_x86_64_local_got_tls_type(abfd) \
635 (elf_x86_64_tdata (abfd)->local_got_tls_type)
636
637 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
638 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
639
640 #define is_x86_64_elf(bfd) \
641 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
642 && elf_tdata (bfd) != NULL \
643 && elf_object_id (bfd) == X86_64_ELF_DATA)
644
645 static bfd_boolean
646 elf_x86_64_mkobject (bfd *abfd)
647 {
648 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
649 X86_64_ELF_DATA);
650 }
651
652 /* x86-64 ELF linker hash table. */
653
654 struct elf_x86_64_link_hash_table
655 {
656 struct elf_link_hash_table elf;
657
658 /* Short-cuts to get to dynamic linker sections. */
659 asection *sdynbss;
660 asection *srelbss;
661 asection *plt_eh_frame;
662
663 union
664 {
665 bfd_signed_vma refcount;
666 bfd_vma offset;
667 } tls_ld_got;
668
669 /* The amount of space used by the jump slots in the GOT. */
670 bfd_vma sgotplt_jump_table_size;
671
672 /* Small local sym cache. */
673 struct sym_cache sym_cache;
674
675 bfd_vma (*r_info) (bfd_vma, bfd_vma);
676 bfd_vma (*r_sym) (bfd_vma);
677 unsigned int pointer_r_type;
678 const char *dynamic_interpreter;
679 int dynamic_interpreter_size;
680
681 /* _TLS_MODULE_BASE_ symbol. */
682 struct bfd_link_hash_entry *tls_module_base;
683
684 /* Used by local STT_GNU_IFUNC symbols. */
685 htab_t loc_hash_table;
686 void * loc_hash_memory;
687
688 /* The offset into splt of the PLT entry for the TLS descriptor
689 resolver. Special values are 0, if not necessary (or not found
690 to be necessary yet), and -1 if needed but not determined
691 yet. */
692 bfd_vma tlsdesc_plt;
693 /* The offset into sgot of the GOT entry used by the PLT entry
694 above. */
695 bfd_vma tlsdesc_got;
696
697 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
698 bfd_vma next_jump_slot_index;
699 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
700 bfd_vma next_irelative_index;
701 };
702
703 /* Get the x86-64 ELF linker hash table from a link_info structure. */
704
705 #define elf_x86_64_hash_table(p) \
706 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
707 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
708
709 #define elf_x86_64_compute_jump_table_size(htab) \
710 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
711
712 /* Create an entry in an x86-64 ELF linker hash table. */
713
714 static struct bfd_hash_entry *
715 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
716 struct bfd_hash_table *table,
717 const char *string)
718 {
719 /* Allocate the structure if it has not already been allocated by a
720 subclass. */
721 if (entry == NULL)
722 {
723 entry = (struct bfd_hash_entry *)
724 bfd_hash_allocate (table,
725 sizeof (struct elf_x86_64_link_hash_entry));
726 if (entry == NULL)
727 return entry;
728 }
729
730 /* Call the allocation method of the superclass. */
731 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
732 if (entry != NULL)
733 {
734 struct elf_x86_64_link_hash_entry *eh;
735
736 eh = (struct elf_x86_64_link_hash_entry *) entry;
737 eh->dyn_relocs = NULL;
738 eh->tls_type = GOT_UNKNOWN;
739 eh->tlsdesc_got = (bfd_vma) -1;
740 }
741
742 return entry;
743 }
744
745 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
746 for local symbol so that we can handle local STT_GNU_IFUNC symbols
747 as global symbol. We reuse indx and dynstr_index for local symbol
748 hash since they aren't used by global symbols in this backend. */
749
750 static hashval_t
751 elf_x86_64_local_htab_hash (const void *ptr)
752 {
753 struct elf_link_hash_entry *h
754 = (struct elf_link_hash_entry *) ptr;
755 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
756 }
757
758 /* Compare local hash entries. */
759
760 static int
761 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
762 {
763 struct elf_link_hash_entry *h1
764 = (struct elf_link_hash_entry *) ptr1;
765 struct elf_link_hash_entry *h2
766 = (struct elf_link_hash_entry *) ptr2;
767
768 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
769 }
770
771 /* Find and/or create a hash entry for local symbol. */
772
773 static struct elf_link_hash_entry *
774 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
775 bfd *abfd, const Elf_Internal_Rela *rel,
776 bfd_boolean create)
777 {
778 struct elf_x86_64_link_hash_entry e, *ret;
779 asection *sec = abfd->sections;
780 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
781 htab->r_sym (rel->r_info));
782 void **slot;
783
784 e.elf.indx = sec->id;
785 e.elf.dynstr_index = htab->r_sym (rel->r_info);
786 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
787 create ? INSERT : NO_INSERT);
788
789 if (!slot)
790 return NULL;
791
792 if (*slot)
793 {
794 ret = (struct elf_x86_64_link_hash_entry *) *slot;
795 return &ret->elf;
796 }
797
798 ret = (struct elf_x86_64_link_hash_entry *)
799 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
800 sizeof (struct elf_x86_64_link_hash_entry));
801 if (ret)
802 {
803 memset (ret, 0, sizeof (*ret));
804 ret->elf.indx = sec->id;
805 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
806 ret->elf.dynindx = -1;
807 *slot = ret;
808 }
809 return &ret->elf;
810 }
811
812 /* Create an X86-64 ELF linker hash table. */
813
814 static struct bfd_link_hash_table *
815 elf_x86_64_link_hash_table_create (bfd *abfd)
816 {
817 struct elf_x86_64_link_hash_table *ret;
818 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
819
820 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
821 if (ret == NULL)
822 return NULL;
823
824 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
825 elf_x86_64_link_hash_newfunc,
826 sizeof (struct elf_x86_64_link_hash_entry),
827 X86_64_ELF_DATA))
828 {
829 free (ret);
830 return NULL;
831 }
832
833 ret->sdynbss = NULL;
834 ret->srelbss = NULL;
835 ret->plt_eh_frame = NULL;
836 ret->sym_cache.abfd = NULL;
837 ret->tlsdesc_plt = 0;
838 ret->tlsdesc_got = 0;
839 ret->tls_ld_got.refcount = 0;
840 ret->sgotplt_jump_table_size = 0;
841 ret->tls_module_base = NULL;
842 ret->next_jump_slot_index = 0;
843 ret->next_irelative_index = 0;
844
845 if (ABI_64_P (abfd))
846 {
847 ret->r_info = elf64_r_info;
848 ret->r_sym = elf64_r_sym;
849 ret->pointer_r_type = R_X86_64_64;
850 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
851 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
852 }
853 else
854 {
855 ret->r_info = elf32_r_info;
856 ret->r_sym = elf32_r_sym;
857 ret->pointer_r_type = R_X86_64_32;
858 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
859 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
860 }
861
862 ret->loc_hash_table = htab_try_create (1024,
863 elf_x86_64_local_htab_hash,
864 elf_x86_64_local_htab_eq,
865 NULL);
866 ret->loc_hash_memory = objalloc_create ();
867 if (!ret->loc_hash_table || !ret->loc_hash_memory)
868 {
869 free (ret);
870 return NULL;
871 }
872
873 return &ret->elf.root;
874 }
875
876 /* Destroy an X86-64 ELF linker hash table. */
877
878 static void
879 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
880 {
881 struct elf_x86_64_link_hash_table *htab
882 = (struct elf_x86_64_link_hash_table *) hash;
883
884 if (htab->loc_hash_table)
885 htab_delete (htab->loc_hash_table);
886 if (htab->loc_hash_memory)
887 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
888 _bfd_generic_link_hash_table_free (hash);
889 }
890
891 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
892 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
893 hash table. */
894
895 static bfd_boolean
896 elf_x86_64_create_dynamic_sections (bfd *dynobj,
897 struct bfd_link_info *info)
898 {
899 struct elf_x86_64_link_hash_table *htab;
900
901 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
902 return FALSE;
903
904 htab = elf_x86_64_hash_table (info);
905 if (htab == NULL)
906 return FALSE;
907
908 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
909 if (!info->shared)
910 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
911
912 if (!htab->sdynbss
913 || (!info->shared && !htab->srelbss))
914 abort ();
915
916 if (!info->no_ld_generated_unwind_info
917 && bfd_get_section_by_name (dynobj, ".eh_frame") == NULL
918 && htab->elf.splt != NULL)
919 {
920 flagword flags = get_elf_backend_data (dynobj)->dynamic_sec_flags;
921 htab->plt_eh_frame
922 = bfd_make_section_with_flags (dynobj, ".eh_frame",
923 flags | SEC_READONLY);
924 if (htab->plt_eh_frame == NULL
925 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
926 return FALSE;
927
928 htab->plt_eh_frame->size = sizeof (elf_x86_64_eh_frame_plt);
929 htab->plt_eh_frame->contents
930 = bfd_alloc (dynobj, htab->plt_eh_frame->size);
931 memcpy (htab->plt_eh_frame->contents, elf_x86_64_eh_frame_plt,
932 sizeof (elf_x86_64_eh_frame_plt));
933 }
934 return TRUE;
935 }
936
937 /* Copy the extra info we tack onto an elf_link_hash_entry. */
938
939 static void
940 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
941 struct elf_link_hash_entry *dir,
942 struct elf_link_hash_entry *ind)
943 {
944 struct elf_x86_64_link_hash_entry *edir, *eind;
945
946 edir = (struct elf_x86_64_link_hash_entry *) dir;
947 eind = (struct elf_x86_64_link_hash_entry *) ind;
948
949 if (eind->dyn_relocs != NULL)
950 {
951 if (edir->dyn_relocs != NULL)
952 {
953 struct elf_dyn_relocs **pp;
954 struct elf_dyn_relocs *p;
955
956 /* Add reloc counts against the indirect sym to the direct sym
957 list. Merge any entries against the same section. */
958 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
959 {
960 struct elf_dyn_relocs *q;
961
962 for (q = edir->dyn_relocs; q != NULL; q = q->next)
963 if (q->sec == p->sec)
964 {
965 q->pc_count += p->pc_count;
966 q->count += p->count;
967 *pp = p->next;
968 break;
969 }
970 if (q == NULL)
971 pp = &p->next;
972 }
973 *pp = edir->dyn_relocs;
974 }
975
976 edir->dyn_relocs = eind->dyn_relocs;
977 eind->dyn_relocs = NULL;
978 }
979
980 if (ind->root.type == bfd_link_hash_indirect
981 && dir->got.refcount <= 0)
982 {
983 edir->tls_type = eind->tls_type;
984 eind->tls_type = GOT_UNKNOWN;
985 }
986
987 if (ELIMINATE_COPY_RELOCS
988 && ind->root.type != bfd_link_hash_indirect
989 && dir->dynamic_adjusted)
990 {
991 /* If called to transfer flags for a weakdef during processing
992 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
993 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
994 dir->ref_dynamic |= ind->ref_dynamic;
995 dir->ref_regular |= ind->ref_regular;
996 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
997 dir->needs_plt |= ind->needs_plt;
998 dir->pointer_equality_needed |= ind->pointer_equality_needed;
999 }
1000 else
1001 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1002 }
1003
1004 static bfd_boolean
1005 elf64_x86_64_elf_object_p (bfd *abfd)
1006 {
1007 /* Set the right machine number for an x86-64 elf64 file. */
1008 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1009 return TRUE;
1010 }
1011
1012 /* Return TRUE if the TLS access code sequence support transition
1013 from R_TYPE. */
1014
1015 static bfd_boolean
1016 elf_x86_64_check_tls_transition (bfd *abfd,
1017 struct bfd_link_info *info,
1018 asection *sec,
1019 bfd_byte *contents,
1020 Elf_Internal_Shdr *symtab_hdr,
1021 struct elf_link_hash_entry **sym_hashes,
1022 unsigned int r_type,
1023 const Elf_Internal_Rela *rel,
1024 const Elf_Internal_Rela *relend)
1025 {
1026 unsigned int val;
1027 unsigned long r_symndx;
1028 struct elf_link_hash_entry *h;
1029 bfd_vma offset;
1030 struct elf_x86_64_link_hash_table *htab;
1031
1032 /* Get the section contents. */
1033 if (contents == NULL)
1034 {
1035 if (elf_section_data (sec)->this_hdr.contents != NULL)
1036 contents = elf_section_data (sec)->this_hdr.contents;
1037 else
1038 {
1039 /* FIXME: How to better handle error condition? */
1040 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1041 return FALSE;
1042
1043 /* Cache the section contents for elf_link_input_bfd. */
1044 elf_section_data (sec)->this_hdr.contents = contents;
1045 }
1046 }
1047
1048 htab = elf_x86_64_hash_table (info);
1049 offset = rel->r_offset;
1050 switch (r_type)
1051 {
1052 case R_X86_64_TLSGD:
1053 case R_X86_64_TLSLD:
1054 if ((rel + 1) >= relend)
1055 return FALSE;
1056
1057 if (r_type == R_X86_64_TLSGD)
1058 {
1059 /* Check transition from GD access model. For 64bit, only
1060 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1061 .word 0x6666; rex64; call __tls_get_addr
1062 can transit to different access model. For 32bit, only
1063 leaq foo@tlsgd(%rip), %rdi
1064 .word 0x6666; rex64; call __tls_get_addr
1065 can transit to different access model. */
1066
1067 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1068 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1069
1070 if ((offset + 12) > sec->size
1071 || memcmp (contents + offset + 4, call, 4) != 0)
1072 return FALSE;
1073
1074 if (ABI_64_P (abfd))
1075 {
1076 if (offset < 4
1077 || memcmp (contents + offset - 4, leaq, 4) != 0)
1078 return FALSE;
1079 }
1080 else
1081 {
1082 if (offset < 3
1083 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1084 return FALSE;
1085 }
1086 }
1087 else
1088 {
1089 /* Check transition from LD access model. Only
1090 leaq foo@tlsld(%rip), %rdi;
1091 call __tls_get_addr
1092 can transit to different access model. */
1093
1094 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1095
1096 if (offset < 3 || (offset + 9) > sec->size)
1097 return FALSE;
1098
1099 if (memcmp (contents + offset - 3, lea, 3) != 0
1100 || 0xe8 != *(contents + offset + 4))
1101 return FALSE;
1102 }
1103
1104 r_symndx = htab->r_sym (rel[1].r_info);
1105 if (r_symndx < symtab_hdr->sh_info)
1106 return FALSE;
1107
1108 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1109 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1110 may be versioned. */
1111 return (h != NULL
1112 && h->root.root.string != NULL
1113 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1114 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
1115 && (strncmp (h->root.root.string,
1116 "__tls_get_addr", 14) == 0));
1117
1118 case R_X86_64_GOTTPOFF:
1119 /* Check transition from IE access model:
1120 mov foo@gottpoff(%rip), %reg
1121 add foo@gottpoff(%rip), %reg
1122 */
1123
1124 /* Check REX prefix first. */
1125 if (offset >= 3 && (offset + 4) <= sec->size)
1126 {
1127 val = bfd_get_8 (abfd, contents + offset - 3);
1128 if (val != 0x48 && val != 0x4c)
1129 {
1130 /* X32 may have 0x44 REX prefix or no REX prefix. */
1131 if (ABI_64_P (abfd))
1132 return FALSE;
1133 }
1134 }
1135 else
1136 {
1137 /* X32 may not have any REX prefix. */
1138 if (ABI_64_P (abfd))
1139 return FALSE;
1140 if (offset < 2 || (offset + 3) > sec->size)
1141 return FALSE;
1142 }
1143
1144 val = bfd_get_8 (abfd, contents + offset - 2);
1145 if (val != 0x8b && val != 0x03)
1146 return FALSE;
1147
1148 val = bfd_get_8 (abfd, contents + offset - 1);
1149 return (val & 0xc7) == 5;
1150
1151 case R_X86_64_GOTPC32_TLSDESC:
1152 /* Check transition from GDesc access model:
1153 leaq x@tlsdesc(%rip), %rax
1154
1155 Make sure it's a leaq adding rip to a 32-bit offset
1156 into any register, although it's probably almost always
1157 going to be rax. */
1158
1159 if (offset < 3 || (offset + 4) > sec->size)
1160 return FALSE;
1161
1162 val = bfd_get_8 (abfd, contents + offset - 3);
1163 if ((val & 0xfb) != 0x48)
1164 return FALSE;
1165
1166 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1167 return FALSE;
1168
1169 val = bfd_get_8 (abfd, contents + offset - 1);
1170 return (val & 0xc7) == 0x05;
1171
1172 case R_X86_64_TLSDESC_CALL:
1173 /* Check transition from GDesc access model:
1174 call *x@tlsdesc(%rax)
1175 */
1176 if (offset + 2 <= sec->size)
1177 {
1178 /* Make sure that it's a call *x@tlsdesc(%rax). */
1179 static const unsigned char call[] = { 0xff, 0x10 };
1180 return memcmp (contents + offset, call, 2) == 0;
1181 }
1182
1183 return FALSE;
1184
1185 default:
1186 abort ();
1187 }
1188 }
1189
1190 /* Return TRUE if the TLS access transition is OK or no transition
1191 will be performed. Update R_TYPE if there is a transition. */
1192
1193 static bfd_boolean
1194 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1195 asection *sec, bfd_byte *contents,
1196 Elf_Internal_Shdr *symtab_hdr,
1197 struct elf_link_hash_entry **sym_hashes,
1198 unsigned int *r_type, int tls_type,
1199 const Elf_Internal_Rela *rel,
1200 const Elf_Internal_Rela *relend,
1201 struct elf_link_hash_entry *h,
1202 unsigned long r_symndx)
1203 {
1204 unsigned int from_type = *r_type;
1205 unsigned int to_type = from_type;
1206 bfd_boolean check = TRUE;
1207
1208 /* Skip TLS transition for functions. */
1209 if (h != NULL
1210 && (h->type == STT_FUNC
1211 || h->type == STT_GNU_IFUNC))
1212 return TRUE;
1213
1214 switch (from_type)
1215 {
1216 case R_X86_64_TLSGD:
1217 case R_X86_64_GOTPC32_TLSDESC:
1218 case R_X86_64_TLSDESC_CALL:
1219 case R_X86_64_GOTTPOFF:
1220 if (info->executable)
1221 {
1222 if (h == NULL)
1223 to_type = R_X86_64_TPOFF32;
1224 else
1225 to_type = R_X86_64_GOTTPOFF;
1226 }
1227
1228 /* When we are called from elf_x86_64_relocate_section,
1229 CONTENTS isn't NULL and there may be additional transitions
1230 based on TLS_TYPE. */
1231 if (contents != NULL)
1232 {
1233 unsigned int new_to_type = to_type;
1234
1235 if (info->executable
1236 && h != NULL
1237 && h->dynindx == -1
1238 && tls_type == GOT_TLS_IE)
1239 new_to_type = R_X86_64_TPOFF32;
1240
1241 if (to_type == R_X86_64_TLSGD
1242 || to_type == R_X86_64_GOTPC32_TLSDESC
1243 || to_type == R_X86_64_TLSDESC_CALL)
1244 {
1245 if (tls_type == GOT_TLS_IE)
1246 new_to_type = R_X86_64_GOTTPOFF;
1247 }
1248
1249 /* We checked the transition before when we were called from
1250 elf_x86_64_check_relocs. We only want to check the new
1251 transition which hasn't been checked before. */
1252 check = new_to_type != to_type && from_type == to_type;
1253 to_type = new_to_type;
1254 }
1255
1256 break;
1257
1258 case R_X86_64_TLSLD:
1259 if (info->executable)
1260 to_type = R_X86_64_TPOFF32;
1261 break;
1262
1263 default:
1264 return TRUE;
1265 }
1266
1267 /* Return TRUE if there is no transition. */
1268 if (from_type == to_type)
1269 return TRUE;
1270
1271 /* Check if the transition can be performed. */
1272 if (check
1273 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1274 symtab_hdr, sym_hashes,
1275 from_type, rel, relend))
1276 {
1277 reloc_howto_type *from, *to;
1278 const char *name;
1279
1280 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1281 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1282
1283 if (h)
1284 name = h->root.root.string;
1285 else
1286 {
1287 struct elf_x86_64_link_hash_table *htab;
1288
1289 htab = elf_x86_64_hash_table (info);
1290 if (htab == NULL)
1291 name = "*unknown*";
1292 else
1293 {
1294 Elf_Internal_Sym *isym;
1295
1296 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1297 abfd, r_symndx);
1298 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1299 }
1300 }
1301
1302 (*_bfd_error_handler)
1303 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1304 "in section `%A' failed"),
1305 abfd, sec, from->name, to->name, name,
1306 (unsigned long) rel->r_offset);
1307 bfd_set_error (bfd_error_bad_value);
1308 return FALSE;
1309 }
1310
1311 *r_type = to_type;
1312 return TRUE;
1313 }
1314
1315 /* Look through the relocs for a section during the first phase, and
1316 calculate needed space in the global offset table, procedure
1317 linkage table, and dynamic reloc sections. */
1318
1319 static bfd_boolean
1320 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1321 asection *sec,
1322 const Elf_Internal_Rela *relocs)
1323 {
1324 struct elf_x86_64_link_hash_table *htab;
1325 Elf_Internal_Shdr *symtab_hdr;
1326 struct elf_link_hash_entry **sym_hashes;
1327 const Elf_Internal_Rela *rel;
1328 const Elf_Internal_Rela *rel_end;
1329 asection *sreloc;
1330
1331 if (info->relocatable)
1332 return TRUE;
1333
1334 BFD_ASSERT (is_x86_64_elf (abfd));
1335
1336 htab = elf_x86_64_hash_table (info);
1337 if (htab == NULL)
1338 return FALSE;
1339
1340 symtab_hdr = &elf_symtab_hdr (abfd);
1341 sym_hashes = elf_sym_hashes (abfd);
1342
1343 sreloc = NULL;
1344
1345 rel_end = relocs + sec->reloc_count;
1346 for (rel = relocs; rel < rel_end; rel++)
1347 {
1348 unsigned int r_type;
1349 unsigned long r_symndx;
1350 struct elf_link_hash_entry *h;
1351 Elf_Internal_Sym *isym;
1352 const char *name;
1353
1354 r_symndx = htab->r_sym (rel->r_info);
1355 r_type = ELF32_R_TYPE (rel->r_info);
1356
1357 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1358 {
1359 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1360 abfd, r_symndx);
1361 return FALSE;
1362 }
1363
1364 if (r_symndx < symtab_hdr->sh_info)
1365 {
1366 /* A local symbol. */
1367 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1368 abfd, r_symndx);
1369 if (isym == NULL)
1370 return FALSE;
1371
1372 /* Check relocation against local STT_GNU_IFUNC symbol. */
1373 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1374 {
1375 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1376 TRUE);
1377 if (h == NULL)
1378 return FALSE;
1379
1380 /* Fake a STT_GNU_IFUNC symbol. */
1381 h->type = STT_GNU_IFUNC;
1382 h->def_regular = 1;
1383 h->ref_regular = 1;
1384 h->forced_local = 1;
1385 h->root.type = bfd_link_hash_defined;
1386 }
1387 else
1388 h = NULL;
1389 }
1390 else
1391 {
1392 isym = NULL;
1393 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1394 while (h->root.type == bfd_link_hash_indirect
1395 || h->root.type == bfd_link_hash_warning)
1396 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1397 }
1398
1399 /* Check invalid x32 relocations. */
1400 if (!ABI_64_P (abfd))
1401 switch (r_type)
1402 {
1403 default:
1404 break;
1405
1406 case R_X86_64_DTPOFF64:
1407 case R_X86_64_TPOFF64:
1408 case R_X86_64_PC64:
1409 case R_X86_64_GOTOFF64:
1410 case R_X86_64_GOT64:
1411 case R_X86_64_GOTPCREL64:
1412 case R_X86_64_GOTPC64:
1413 case R_X86_64_GOTPLT64:
1414 case R_X86_64_PLTOFF64:
1415 {
1416 if (h)
1417 name = h->root.root.string;
1418 else
1419 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1420 NULL);
1421 (*_bfd_error_handler)
1422 (_("%B: relocation %s against symbol `%s' isn't "
1423 "supported in x32 mode"), abfd,
1424 x86_64_elf_howto_table[r_type].name, name);
1425 bfd_set_error (bfd_error_bad_value);
1426 return FALSE;
1427 }
1428 break;
1429 }
1430
1431 if (h != NULL)
1432 {
1433 /* Create the ifunc sections for static executables. If we
1434 never see an indirect function symbol nor we are building
1435 a static executable, those sections will be empty and
1436 won't appear in output. */
1437 switch (r_type)
1438 {
1439 default:
1440 break;
1441
1442 case R_X86_64_32S:
1443 case R_X86_64_32:
1444 case R_X86_64_64:
1445 case R_X86_64_PC32:
1446 case R_X86_64_PC64:
1447 case R_X86_64_PLT32:
1448 case R_X86_64_GOTPCREL:
1449 case R_X86_64_GOTPCREL64:
1450 if (htab->elf.dynobj == NULL)
1451 htab->elf.dynobj = abfd;
1452 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1453 return FALSE;
1454 break;
1455 }
1456
1457 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1458 it here if it is defined in a non-shared object. */
1459 if (h->type == STT_GNU_IFUNC
1460 && h->def_regular)
1461 {
1462 /* It is referenced by a non-shared object. */
1463 h->ref_regular = 1;
1464 h->needs_plt = 1;
1465
1466 /* STT_GNU_IFUNC symbol must go through PLT. */
1467 h->plt.refcount += 1;
1468
1469 /* STT_GNU_IFUNC needs dynamic sections. */
1470 if (htab->elf.dynobj == NULL)
1471 htab->elf.dynobj = abfd;
1472
1473 switch (r_type)
1474 {
1475 default:
1476 if (h->root.root.string)
1477 name = h->root.root.string;
1478 else
1479 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1480 NULL);
1481 (*_bfd_error_handler)
1482 (_("%B: relocation %s against STT_GNU_IFUNC "
1483 "symbol `%s' isn't handled by %s"), abfd,
1484 x86_64_elf_howto_table[r_type].name,
1485 name, __FUNCTION__);
1486 bfd_set_error (bfd_error_bad_value);
1487 return FALSE;
1488
1489 case R_X86_64_32:
1490 if (ABI_64_P (abfd))
1491 goto not_pointer;
1492 case R_X86_64_64:
1493 h->non_got_ref = 1;
1494 h->pointer_equality_needed = 1;
1495 if (info->shared)
1496 {
1497 /* We must copy these reloc types into the output
1498 file. Create a reloc section in dynobj and
1499 make room for this reloc. */
1500 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1501 (abfd, info, sec, sreloc,
1502 &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs);
1503 if (sreloc == NULL)
1504 return FALSE;
1505 }
1506 break;
1507
1508 case R_X86_64_32S:
1509 case R_X86_64_PC32:
1510 case R_X86_64_PC64:
1511 not_pointer:
1512 h->non_got_ref = 1;
1513 if (r_type != R_X86_64_PC32
1514 && r_type != R_X86_64_PC64)
1515 h->pointer_equality_needed = 1;
1516 break;
1517
1518 case R_X86_64_PLT32:
1519 break;
1520
1521 case R_X86_64_GOTPCREL:
1522 case R_X86_64_GOTPCREL64:
1523 h->got.refcount += 1;
1524 if (htab->elf.sgot == NULL
1525 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1526 info))
1527 return FALSE;
1528 break;
1529 }
1530
1531 continue;
1532 }
1533 }
1534
1535 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1536 symtab_hdr, sym_hashes,
1537 &r_type, GOT_UNKNOWN,
1538 rel, rel_end, h, r_symndx))
1539 return FALSE;
1540
1541 switch (r_type)
1542 {
1543 case R_X86_64_TLSLD:
1544 htab->tls_ld_got.refcount += 1;
1545 goto create_got;
1546
1547 case R_X86_64_TPOFF32:
1548 if (!info->executable && ABI_64_P (abfd))
1549 {
1550 if (h)
1551 name = h->root.root.string;
1552 else
1553 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1554 NULL);
1555 (*_bfd_error_handler)
1556 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1557 abfd,
1558 x86_64_elf_howto_table[r_type].name, name);
1559 bfd_set_error (bfd_error_bad_value);
1560 return FALSE;
1561 }
1562 break;
1563
1564 case R_X86_64_GOTTPOFF:
1565 if (!info->executable)
1566 info->flags |= DF_STATIC_TLS;
1567 /* Fall through */
1568
1569 case R_X86_64_GOT32:
1570 case R_X86_64_GOTPCREL:
1571 case R_X86_64_TLSGD:
1572 case R_X86_64_GOT64:
1573 case R_X86_64_GOTPCREL64:
1574 case R_X86_64_GOTPLT64:
1575 case R_X86_64_GOTPC32_TLSDESC:
1576 case R_X86_64_TLSDESC_CALL:
1577 /* This symbol requires a global offset table entry. */
1578 {
1579 int tls_type, old_tls_type;
1580
1581 switch (r_type)
1582 {
1583 default: tls_type = GOT_NORMAL; break;
1584 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1585 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1586 case R_X86_64_GOTPC32_TLSDESC:
1587 case R_X86_64_TLSDESC_CALL:
1588 tls_type = GOT_TLS_GDESC; break;
1589 }
1590
1591 if (h != NULL)
1592 {
1593 if (r_type == R_X86_64_GOTPLT64)
1594 {
1595 /* This relocation indicates that we also need
1596 a PLT entry, as this is a function. We don't need
1597 a PLT entry for local symbols. */
1598 h->needs_plt = 1;
1599 h->plt.refcount += 1;
1600 }
1601 h->got.refcount += 1;
1602 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1603 }
1604 else
1605 {
1606 bfd_signed_vma *local_got_refcounts;
1607
1608 /* This is a global offset table entry for a local symbol. */
1609 local_got_refcounts = elf_local_got_refcounts (abfd);
1610 if (local_got_refcounts == NULL)
1611 {
1612 bfd_size_type size;
1613
1614 size = symtab_hdr->sh_info;
1615 size *= sizeof (bfd_signed_vma)
1616 + sizeof (bfd_vma) + sizeof (char);
1617 local_got_refcounts = ((bfd_signed_vma *)
1618 bfd_zalloc (abfd, size));
1619 if (local_got_refcounts == NULL)
1620 return FALSE;
1621 elf_local_got_refcounts (abfd) = local_got_refcounts;
1622 elf_x86_64_local_tlsdesc_gotent (abfd)
1623 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1624 elf_x86_64_local_got_tls_type (abfd)
1625 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1626 }
1627 local_got_refcounts[r_symndx] += 1;
1628 old_tls_type
1629 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1630 }
1631
1632 /* If a TLS symbol is accessed using IE at least once,
1633 there is no point to use dynamic model for it. */
1634 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1635 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1636 || tls_type != GOT_TLS_IE))
1637 {
1638 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1639 tls_type = old_tls_type;
1640 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1641 && GOT_TLS_GD_ANY_P (tls_type))
1642 tls_type |= old_tls_type;
1643 else
1644 {
1645 if (h)
1646 name = h->root.root.string;
1647 else
1648 name = bfd_elf_sym_name (abfd, symtab_hdr,
1649 isym, NULL);
1650 (*_bfd_error_handler)
1651 (_("%B: '%s' accessed both as normal and thread local symbol"),
1652 abfd, name);
1653 return FALSE;
1654 }
1655 }
1656
1657 if (old_tls_type != tls_type)
1658 {
1659 if (h != NULL)
1660 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1661 else
1662 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1663 }
1664 }
1665 /* Fall through */
1666
1667 case R_X86_64_GOTOFF64:
1668 case R_X86_64_GOTPC32:
1669 case R_X86_64_GOTPC64:
1670 create_got:
1671 if (htab->elf.sgot == NULL)
1672 {
1673 if (htab->elf.dynobj == NULL)
1674 htab->elf.dynobj = abfd;
1675 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1676 info))
1677 return FALSE;
1678 }
1679 break;
1680
1681 case R_X86_64_PLT32:
1682 /* This symbol requires a procedure linkage table entry. We
1683 actually build the entry in adjust_dynamic_symbol,
1684 because this might be a case of linking PIC code which is
1685 never referenced by a dynamic object, in which case we
1686 don't need to generate a procedure linkage table entry
1687 after all. */
1688
1689 /* If this is a local symbol, we resolve it directly without
1690 creating a procedure linkage table entry. */
1691 if (h == NULL)
1692 continue;
1693
1694 h->needs_plt = 1;
1695 h->plt.refcount += 1;
1696 break;
1697
1698 case R_X86_64_PLTOFF64:
1699 /* This tries to form the 'address' of a function relative
1700 to GOT. For global symbols we need a PLT entry. */
1701 if (h != NULL)
1702 {
1703 h->needs_plt = 1;
1704 h->plt.refcount += 1;
1705 }
1706 goto create_got;
1707
1708 case R_X86_64_32:
1709 if (!ABI_64_P (abfd))
1710 goto pointer;
1711 case R_X86_64_8:
1712 case R_X86_64_16:
1713 case R_X86_64_32S:
1714 /* Let's help debug shared library creation. These relocs
1715 cannot be used in shared libs. Don't error out for
1716 sections we don't care about, such as debug sections or
1717 non-constant sections. */
1718 if (info->shared
1719 && (sec->flags & SEC_ALLOC) != 0
1720 && (sec->flags & SEC_READONLY) != 0)
1721 {
1722 if (h)
1723 name = h->root.root.string;
1724 else
1725 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1726 (*_bfd_error_handler)
1727 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1728 abfd, x86_64_elf_howto_table[r_type].name, name);
1729 bfd_set_error (bfd_error_bad_value);
1730 return FALSE;
1731 }
1732 /* Fall through. */
1733
1734 case R_X86_64_PC8:
1735 case R_X86_64_PC16:
1736 case R_X86_64_PC32:
1737 case R_X86_64_PC64:
1738 case R_X86_64_64:
1739 pointer:
1740 if (h != NULL && info->executable)
1741 {
1742 /* If this reloc is in a read-only section, we might
1743 need a copy reloc. We can't check reliably at this
1744 stage whether the section is read-only, as input
1745 sections have not yet been mapped to output sections.
1746 Tentatively set the flag for now, and correct in
1747 adjust_dynamic_symbol. */
1748 h->non_got_ref = 1;
1749
1750 /* We may need a .plt entry if the function this reloc
1751 refers to is in a shared lib. */
1752 h->plt.refcount += 1;
1753 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1754 h->pointer_equality_needed = 1;
1755 }
1756
1757 /* If we are creating a shared library, and this is a reloc
1758 against a global symbol, or a non PC relative reloc
1759 against a local symbol, then we need to copy the reloc
1760 into the shared library. However, if we are linking with
1761 -Bsymbolic, we do not need to copy a reloc against a
1762 global symbol which is defined in an object we are
1763 including in the link (i.e., DEF_REGULAR is set). At
1764 this point we have not seen all the input files, so it is
1765 possible that DEF_REGULAR is not set now but will be set
1766 later (it is never cleared). In case of a weak definition,
1767 DEF_REGULAR may be cleared later by a strong definition in
1768 a shared library. We account for that possibility below by
1769 storing information in the relocs_copied field of the hash
1770 table entry. A similar situation occurs when creating
1771 shared libraries and symbol visibility changes render the
1772 symbol local.
1773
1774 If on the other hand, we are creating an executable, we
1775 may need to keep relocations for symbols satisfied by a
1776 dynamic library if we manage to avoid copy relocs for the
1777 symbol. */
1778 if ((info->shared
1779 && (sec->flags & SEC_ALLOC) != 0
1780 && (! IS_X86_64_PCREL_TYPE (r_type)
1781 || (h != NULL
1782 && (! SYMBOLIC_BIND (info, h)
1783 || h->root.type == bfd_link_hash_defweak
1784 || !h->def_regular))))
1785 || (ELIMINATE_COPY_RELOCS
1786 && !info->shared
1787 && (sec->flags & SEC_ALLOC) != 0
1788 && h != NULL
1789 && (h->root.type == bfd_link_hash_defweak
1790 || !h->def_regular)))
1791 {
1792 struct elf_dyn_relocs *p;
1793 struct elf_dyn_relocs **head;
1794
1795 /* We must copy these reloc types into the output file.
1796 Create a reloc section in dynobj and make room for
1797 this reloc. */
1798 if (sreloc == NULL)
1799 {
1800 if (htab->elf.dynobj == NULL)
1801 htab->elf.dynobj = abfd;
1802
1803 sreloc = _bfd_elf_make_dynamic_reloc_section
1804 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1805 abfd, /*rela?*/ TRUE);
1806
1807 if (sreloc == NULL)
1808 return FALSE;
1809 }
1810
1811 /* If this is a global symbol, we count the number of
1812 relocations we need for this symbol. */
1813 if (h != NULL)
1814 {
1815 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1816 }
1817 else
1818 {
1819 /* Track dynamic relocs needed for local syms too.
1820 We really need local syms available to do this
1821 easily. Oh well. */
1822 asection *s;
1823 void **vpp;
1824
1825 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1826 abfd, r_symndx);
1827 if (isym == NULL)
1828 return FALSE;
1829
1830 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1831 if (s == NULL)
1832 s = sec;
1833
1834 /* Beware of type punned pointers vs strict aliasing
1835 rules. */
1836 vpp = &(elf_section_data (s)->local_dynrel);
1837 head = (struct elf_dyn_relocs **)vpp;
1838 }
1839
1840 p = *head;
1841 if (p == NULL || p->sec != sec)
1842 {
1843 bfd_size_type amt = sizeof *p;
1844
1845 p = ((struct elf_dyn_relocs *)
1846 bfd_alloc (htab->elf.dynobj, amt));
1847 if (p == NULL)
1848 return FALSE;
1849 p->next = *head;
1850 *head = p;
1851 p->sec = sec;
1852 p->count = 0;
1853 p->pc_count = 0;
1854 }
1855
1856 p->count += 1;
1857 if (IS_X86_64_PCREL_TYPE (r_type))
1858 p->pc_count += 1;
1859 }
1860 break;
1861
1862 /* This relocation describes the C++ object vtable hierarchy.
1863 Reconstruct it for later use during GC. */
1864 case R_X86_64_GNU_VTINHERIT:
1865 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1866 return FALSE;
1867 break;
1868
1869 /* This relocation describes which C++ vtable entries are actually
1870 used. Record for later use during GC. */
1871 case R_X86_64_GNU_VTENTRY:
1872 BFD_ASSERT (h != NULL);
1873 if (h != NULL
1874 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1875 return FALSE;
1876 break;
1877
1878 default:
1879 break;
1880 }
1881 }
1882
1883 return TRUE;
1884 }
1885
1886 /* Return the section that should be marked against GC for a given
1887 relocation. */
1888
1889 static asection *
1890 elf_x86_64_gc_mark_hook (asection *sec,
1891 struct bfd_link_info *info,
1892 Elf_Internal_Rela *rel,
1893 struct elf_link_hash_entry *h,
1894 Elf_Internal_Sym *sym)
1895 {
1896 if (h != NULL)
1897 switch (ELF32_R_TYPE (rel->r_info))
1898 {
1899 case R_X86_64_GNU_VTINHERIT:
1900 case R_X86_64_GNU_VTENTRY:
1901 return NULL;
1902 }
1903
1904 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1905 }
1906
1907 /* Update the got entry reference counts for the section being removed. */
1908
1909 static bfd_boolean
1910 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1911 asection *sec,
1912 const Elf_Internal_Rela *relocs)
1913 {
1914 struct elf_x86_64_link_hash_table *htab;
1915 Elf_Internal_Shdr *symtab_hdr;
1916 struct elf_link_hash_entry **sym_hashes;
1917 bfd_signed_vma *local_got_refcounts;
1918 const Elf_Internal_Rela *rel, *relend;
1919
1920 if (info->relocatable)
1921 return TRUE;
1922
1923 htab = elf_x86_64_hash_table (info);
1924 if (htab == NULL)
1925 return FALSE;
1926
1927 elf_section_data (sec)->local_dynrel = NULL;
1928
1929 symtab_hdr = &elf_symtab_hdr (abfd);
1930 sym_hashes = elf_sym_hashes (abfd);
1931 local_got_refcounts = elf_local_got_refcounts (abfd);
1932
1933 htab = elf_x86_64_hash_table (info);
1934 relend = relocs + sec->reloc_count;
1935 for (rel = relocs; rel < relend; rel++)
1936 {
1937 unsigned long r_symndx;
1938 unsigned int r_type;
1939 struct elf_link_hash_entry *h = NULL;
1940
1941 r_symndx = htab->r_sym (rel->r_info);
1942 if (r_symndx >= symtab_hdr->sh_info)
1943 {
1944 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1945 while (h->root.type == bfd_link_hash_indirect
1946 || h->root.type == bfd_link_hash_warning)
1947 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1948 }
1949 else
1950 {
1951 /* A local symbol. */
1952 Elf_Internal_Sym *isym;
1953
1954 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1955 abfd, r_symndx);
1956
1957 /* Check relocation against local STT_GNU_IFUNC symbol. */
1958 if (isym != NULL
1959 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1960 {
1961 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
1962 if (h == NULL)
1963 abort ();
1964 }
1965 }
1966
1967 if (h)
1968 {
1969 struct elf_x86_64_link_hash_entry *eh;
1970 struct elf_dyn_relocs **pp;
1971 struct elf_dyn_relocs *p;
1972
1973 eh = (struct elf_x86_64_link_hash_entry *) h;
1974
1975 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1976 if (p->sec == sec)
1977 {
1978 /* Everything must go for SEC. */
1979 *pp = p->next;
1980 break;
1981 }
1982 }
1983
1984 r_type = ELF32_R_TYPE (rel->r_info);
1985 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1986 symtab_hdr, sym_hashes,
1987 &r_type, GOT_UNKNOWN,
1988 rel, relend, h, r_symndx))
1989 return FALSE;
1990
1991 switch (r_type)
1992 {
1993 case R_X86_64_TLSLD:
1994 if (htab->tls_ld_got.refcount > 0)
1995 htab->tls_ld_got.refcount -= 1;
1996 break;
1997
1998 case R_X86_64_TLSGD:
1999 case R_X86_64_GOTPC32_TLSDESC:
2000 case R_X86_64_TLSDESC_CALL:
2001 case R_X86_64_GOTTPOFF:
2002 case R_X86_64_GOT32:
2003 case R_X86_64_GOTPCREL:
2004 case R_X86_64_GOT64:
2005 case R_X86_64_GOTPCREL64:
2006 case R_X86_64_GOTPLT64:
2007 if (h != NULL)
2008 {
2009 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2010 h->plt.refcount -= 1;
2011 if (h->got.refcount > 0)
2012 h->got.refcount -= 1;
2013 if (h->type == STT_GNU_IFUNC)
2014 {
2015 if (h->plt.refcount > 0)
2016 h->plt.refcount -= 1;
2017 }
2018 }
2019 else if (local_got_refcounts != NULL)
2020 {
2021 if (local_got_refcounts[r_symndx] > 0)
2022 local_got_refcounts[r_symndx] -= 1;
2023 }
2024 break;
2025
2026 case R_X86_64_8:
2027 case R_X86_64_16:
2028 case R_X86_64_32:
2029 case R_X86_64_64:
2030 case R_X86_64_32S:
2031 case R_X86_64_PC8:
2032 case R_X86_64_PC16:
2033 case R_X86_64_PC32:
2034 case R_X86_64_PC64:
2035 if (info->shared
2036 && (h == NULL || h->type != STT_GNU_IFUNC))
2037 break;
2038 /* Fall thru */
2039
2040 case R_X86_64_PLT32:
2041 case R_X86_64_PLTOFF64:
2042 if (h != NULL)
2043 {
2044 if (h->plt.refcount > 0)
2045 h->plt.refcount -= 1;
2046 }
2047 break;
2048
2049 default:
2050 break;
2051 }
2052 }
2053
2054 return TRUE;
2055 }
2056
2057 /* Adjust a symbol defined by a dynamic object and referenced by a
2058 regular object. The current definition is in some section of the
2059 dynamic object, but we're not including those sections. We have to
2060 change the definition to something the rest of the link can
2061 understand. */
2062
2063 static bfd_boolean
2064 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2065 struct elf_link_hash_entry *h)
2066 {
2067 struct elf_x86_64_link_hash_table *htab;
2068 asection *s;
2069
2070 /* STT_GNU_IFUNC symbol must go through PLT. */
2071 if (h->type == STT_GNU_IFUNC)
2072 {
2073 if (h->plt.refcount <= 0)
2074 {
2075 h->plt.offset = (bfd_vma) -1;
2076 h->needs_plt = 0;
2077 }
2078 return TRUE;
2079 }
2080
2081 /* If this is a function, put it in the procedure linkage table. We
2082 will fill in the contents of the procedure linkage table later,
2083 when we know the address of the .got section. */
2084 if (h->type == STT_FUNC
2085 || h->needs_plt)
2086 {
2087 if (h->plt.refcount <= 0
2088 || SYMBOL_CALLS_LOCAL (info, h)
2089 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2090 && h->root.type == bfd_link_hash_undefweak))
2091 {
2092 /* This case can occur if we saw a PLT32 reloc in an input
2093 file, but the symbol was never referred to by a dynamic
2094 object, or if all references were garbage collected. In
2095 such a case, we don't actually need to build a procedure
2096 linkage table, and we can just do a PC32 reloc instead. */
2097 h->plt.offset = (bfd_vma) -1;
2098 h->needs_plt = 0;
2099 }
2100
2101 return TRUE;
2102 }
2103 else
2104 /* It's possible that we incorrectly decided a .plt reloc was
2105 needed for an R_X86_64_PC32 reloc to a non-function sym in
2106 check_relocs. We can't decide accurately between function and
2107 non-function syms in check-relocs; Objects loaded later in
2108 the link may change h->type. So fix it now. */
2109 h->plt.offset = (bfd_vma) -1;
2110
2111 /* If this is a weak symbol, and there is a real definition, the
2112 processor independent code will have arranged for us to see the
2113 real definition first, and we can just use the same value. */
2114 if (h->u.weakdef != NULL)
2115 {
2116 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2117 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2118 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2119 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2120 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2121 h->non_got_ref = h->u.weakdef->non_got_ref;
2122 return TRUE;
2123 }
2124
2125 /* This is a reference to a symbol defined by a dynamic object which
2126 is not a function. */
2127
2128 /* If we are creating a shared library, we must presume that the
2129 only references to the symbol are via the global offset table.
2130 For such cases we need not do anything here; the relocations will
2131 be handled correctly by relocate_section. */
2132 if (info->shared)
2133 return TRUE;
2134
2135 /* If there are no references to this symbol that do not use the
2136 GOT, we don't need to generate a copy reloc. */
2137 if (!h->non_got_ref)
2138 return TRUE;
2139
2140 /* If -z nocopyreloc was given, we won't generate them either. */
2141 if (info->nocopyreloc)
2142 {
2143 h->non_got_ref = 0;
2144 return TRUE;
2145 }
2146
2147 if (ELIMINATE_COPY_RELOCS)
2148 {
2149 struct elf_x86_64_link_hash_entry * eh;
2150 struct elf_dyn_relocs *p;
2151
2152 eh = (struct elf_x86_64_link_hash_entry *) h;
2153 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2154 {
2155 s = p->sec->output_section;
2156 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2157 break;
2158 }
2159
2160 /* If we didn't find any dynamic relocs in read-only sections, then
2161 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2162 if (p == NULL)
2163 {
2164 h->non_got_ref = 0;
2165 return TRUE;
2166 }
2167 }
2168
2169 /* We must allocate the symbol in our .dynbss section, which will
2170 become part of the .bss section of the executable. There will be
2171 an entry for this symbol in the .dynsym section. The dynamic
2172 object will contain position independent code, so all references
2173 from the dynamic object to this symbol will go through the global
2174 offset table. The dynamic linker will use the .dynsym entry to
2175 determine the address it must put in the global offset table, so
2176 both the dynamic object and the regular object will refer to the
2177 same memory location for the variable. */
2178
2179 htab = elf_x86_64_hash_table (info);
2180 if (htab == NULL)
2181 return FALSE;
2182
2183 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2184 to copy the initial value out of the dynamic object and into the
2185 runtime process image. */
2186 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2187 {
2188 const struct elf_backend_data *bed;
2189 bed = get_elf_backend_data (info->output_bfd);
2190 htab->srelbss->size += bed->s->sizeof_rela;
2191 h->needs_copy = 1;
2192 }
2193
2194 s = htab->sdynbss;
2195
2196 return _bfd_elf_adjust_dynamic_copy (h, s);
2197 }
2198
2199 /* Allocate space in .plt, .got and associated reloc sections for
2200 dynamic relocs. */
2201
2202 static bfd_boolean
2203 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2204 {
2205 struct bfd_link_info *info;
2206 struct elf_x86_64_link_hash_table *htab;
2207 struct elf_x86_64_link_hash_entry *eh;
2208 struct elf_dyn_relocs *p;
2209 const struct elf_backend_data *bed;
2210
2211 if (h->root.type == bfd_link_hash_indirect)
2212 return TRUE;
2213
2214 eh = (struct elf_x86_64_link_hash_entry *) h;
2215
2216 info = (struct bfd_link_info *) inf;
2217 htab = elf_x86_64_hash_table (info);
2218 if (htab == NULL)
2219 return FALSE;
2220 bed = get_elf_backend_data (info->output_bfd);
2221
2222 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2223 here if it is defined and referenced in a non-shared object. */
2224 if (h->type == STT_GNU_IFUNC
2225 && h->def_regular)
2226 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2227 &eh->dyn_relocs,
2228 PLT_ENTRY_SIZE,
2229 GOT_ENTRY_SIZE);
2230 else if (htab->elf.dynamic_sections_created
2231 && h->plt.refcount > 0)
2232 {
2233 /* Make sure this symbol is output as a dynamic symbol.
2234 Undefined weak syms won't yet be marked as dynamic. */
2235 if (h->dynindx == -1
2236 && !h->forced_local)
2237 {
2238 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2239 return FALSE;
2240 }
2241
2242 if (info->shared
2243 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2244 {
2245 asection *s = htab->elf.splt;
2246
2247 /* If this is the first .plt entry, make room for the special
2248 first entry. */
2249 if (s->size == 0)
2250 s->size += PLT_ENTRY_SIZE;
2251
2252 h->plt.offset = s->size;
2253
2254 /* If this symbol is not defined in a regular file, and we are
2255 not generating a shared library, then set the symbol to this
2256 location in the .plt. This is required to make function
2257 pointers compare as equal between the normal executable and
2258 the shared library. */
2259 if (! info->shared
2260 && !h->def_regular)
2261 {
2262 h->root.u.def.section = s;
2263 h->root.u.def.value = h->plt.offset;
2264 }
2265
2266 /* Make room for this entry. */
2267 s->size += PLT_ENTRY_SIZE;
2268
2269 /* We also need to make an entry in the .got.plt section, which
2270 will be placed in the .got section by the linker script. */
2271 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2272
2273 /* We also need to make an entry in the .rela.plt section. */
2274 htab->elf.srelplt->size += bed->s->sizeof_rela;
2275 htab->elf.srelplt->reloc_count++;
2276 }
2277 else
2278 {
2279 h->plt.offset = (bfd_vma) -1;
2280 h->needs_plt = 0;
2281 }
2282 }
2283 else
2284 {
2285 h->plt.offset = (bfd_vma) -1;
2286 h->needs_plt = 0;
2287 }
2288
2289 eh->tlsdesc_got = (bfd_vma) -1;
2290
2291 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2292 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2293 if (h->got.refcount > 0
2294 && info->executable
2295 && h->dynindx == -1
2296 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2297 {
2298 h->got.offset = (bfd_vma) -1;
2299 }
2300 else if (h->got.refcount > 0)
2301 {
2302 asection *s;
2303 bfd_boolean dyn;
2304 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2305
2306 /* Make sure this symbol is output as a dynamic symbol.
2307 Undefined weak syms won't yet be marked as dynamic. */
2308 if (h->dynindx == -1
2309 && !h->forced_local)
2310 {
2311 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2312 return FALSE;
2313 }
2314
2315 if (GOT_TLS_GDESC_P (tls_type))
2316 {
2317 eh->tlsdesc_got = htab->elf.sgotplt->size
2318 - elf_x86_64_compute_jump_table_size (htab);
2319 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2320 h->got.offset = (bfd_vma) -2;
2321 }
2322 if (! GOT_TLS_GDESC_P (tls_type)
2323 || GOT_TLS_GD_P (tls_type))
2324 {
2325 s = htab->elf.sgot;
2326 h->got.offset = s->size;
2327 s->size += GOT_ENTRY_SIZE;
2328 if (GOT_TLS_GD_P (tls_type))
2329 s->size += GOT_ENTRY_SIZE;
2330 }
2331 dyn = htab->elf.dynamic_sections_created;
2332 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2333 and two if global.
2334 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2335 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2336 || tls_type == GOT_TLS_IE)
2337 htab->elf.srelgot->size += bed->s->sizeof_rela;
2338 else if (GOT_TLS_GD_P (tls_type))
2339 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2340 else if (! GOT_TLS_GDESC_P (tls_type)
2341 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2342 || h->root.type != bfd_link_hash_undefweak)
2343 && (info->shared
2344 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2345 htab->elf.srelgot->size += bed->s->sizeof_rela;
2346 if (GOT_TLS_GDESC_P (tls_type))
2347 {
2348 htab->elf.srelplt->size += bed->s->sizeof_rela;
2349 htab->tlsdesc_plt = (bfd_vma) -1;
2350 }
2351 }
2352 else
2353 h->got.offset = (bfd_vma) -1;
2354
2355 if (eh->dyn_relocs == NULL)
2356 return TRUE;
2357
2358 /* In the shared -Bsymbolic case, discard space allocated for
2359 dynamic pc-relative relocs against symbols which turn out to be
2360 defined in regular objects. For the normal shared case, discard
2361 space for pc-relative relocs that have become local due to symbol
2362 visibility changes. */
2363
2364 if (info->shared)
2365 {
2366 /* Relocs that use pc_count are those that appear on a call
2367 insn, or certain REL relocs that can generated via assembly.
2368 We want calls to protected symbols to resolve directly to the
2369 function rather than going via the plt. If people want
2370 function pointer comparisons to work as expected then they
2371 should avoid writing weird assembly. */
2372 if (SYMBOL_CALLS_LOCAL (info, h))
2373 {
2374 struct elf_dyn_relocs **pp;
2375
2376 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2377 {
2378 p->count -= p->pc_count;
2379 p->pc_count = 0;
2380 if (p->count == 0)
2381 *pp = p->next;
2382 else
2383 pp = &p->next;
2384 }
2385 }
2386
2387 /* Also discard relocs on undefined weak syms with non-default
2388 visibility. */
2389 if (eh->dyn_relocs != NULL
2390 && h->root.type == bfd_link_hash_undefweak)
2391 {
2392 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2393 eh->dyn_relocs = NULL;
2394
2395 /* Make sure undefined weak symbols are output as a dynamic
2396 symbol in PIEs. */
2397 else if (h->dynindx == -1
2398 && ! h->forced_local
2399 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2400 return FALSE;
2401 }
2402
2403 }
2404 else if (ELIMINATE_COPY_RELOCS)
2405 {
2406 /* For the non-shared case, discard space for relocs against
2407 symbols which turn out to need copy relocs or are not
2408 dynamic. */
2409
2410 if (!h->non_got_ref
2411 && ((h->def_dynamic
2412 && !h->def_regular)
2413 || (htab->elf.dynamic_sections_created
2414 && (h->root.type == bfd_link_hash_undefweak
2415 || h->root.type == bfd_link_hash_undefined))))
2416 {
2417 /* Make sure this symbol is output as a dynamic symbol.
2418 Undefined weak syms won't yet be marked as dynamic. */
2419 if (h->dynindx == -1
2420 && ! h->forced_local
2421 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2422 return FALSE;
2423
2424 /* If that succeeded, we know we'll be keeping all the
2425 relocs. */
2426 if (h->dynindx != -1)
2427 goto keep;
2428 }
2429
2430 eh->dyn_relocs = NULL;
2431
2432 keep: ;
2433 }
2434
2435 /* Finally, allocate space. */
2436 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2437 {
2438 asection * sreloc;
2439
2440 sreloc = elf_section_data (p->sec)->sreloc;
2441
2442 BFD_ASSERT (sreloc != NULL);
2443
2444 sreloc->size += p->count * bed->s->sizeof_rela;
2445 }
2446
2447 return TRUE;
2448 }
2449
2450 /* Allocate space in .plt, .got and associated reloc sections for
2451 local dynamic relocs. */
2452
2453 static bfd_boolean
2454 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2455 {
2456 struct elf_link_hash_entry *h
2457 = (struct elf_link_hash_entry *) *slot;
2458
2459 if (h->type != STT_GNU_IFUNC
2460 || !h->def_regular
2461 || !h->ref_regular
2462 || !h->forced_local
2463 || h->root.type != bfd_link_hash_defined)
2464 abort ();
2465
2466 return elf_x86_64_allocate_dynrelocs (h, inf);
2467 }
2468
2469 /* Find any dynamic relocs that apply to read-only sections. */
2470
2471 static bfd_boolean
2472 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2473 void * inf)
2474 {
2475 struct elf_x86_64_link_hash_entry *eh;
2476 struct elf_dyn_relocs *p;
2477
2478 /* Skip local IFUNC symbols. */
2479 if (h->forced_local && h->type == STT_GNU_IFUNC)
2480 return TRUE;
2481
2482 eh = (struct elf_x86_64_link_hash_entry *) h;
2483 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2484 {
2485 asection *s = p->sec->output_section;
2486
2487 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2488 {
2489 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2490
2491 info->flags |= DF_TEXTREL;
2492
2493 if (info->warn_shared_textrel && info->shared)
2494 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2495 p->sec->owner, h->root.root.string,
2496 p->sec);
2497
2498 /* Not an error, just cut short the traversal. */
2499 return FALSE;
2500 }
2501 }
2502 return TRUE;
2503 }
2504
2505 /* Set the sizes of the dynamic sections. */
2506
2507 static bfd_boolean
2508 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2509 struct bfd_link_info *info)
2510 {
2511 struct elf_x86_64_link_hash_table *htab;
2512 bfd *dynobj;
2513 asection *s;
2514 bfd_boolean relocs;
2515 bfd *ibfd;
2516 const struct elf_backend_data *bed;
2517
2518 htab = elf_x86_64_hash_table (info);
2519 if (htab == NULL)
2520 return FALSE;
2521 bed = get_elf_backend_data (output_bfd);
2522
2523 dynobj = htab->elf.dynobj;
2524 if (dynobj == NULL)
2525 abort ();
2526
2527 if (htab->elf.dynamic_sections_created)
2528 {
2529 /* Set the contents of the .interp section to the interpreter. */
2530 if (info->executable)
2531 {
2532 s = bfd_get_section_by_name (dynobj, ".interp");
2533 if (s == NULL)
2534 abort ();
2535 s->size = htab->dynamic_interpreter_size;
2536 s->contents = (unsigned char *) htab->dynamic_interpreter;
2537 }
2538 }
2539
2540 /* Set up .got offsets for local syms, and space for local dynamic
2541 relocs. */
2542 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2543 {
2544 bfd_signed_vma *local_got;
2545 bfd_signed_vma *end_local_got;
2546 char *local_tls_type;
2547 bfd_vma *local_tlsdesc_gotent;
2548 bfd_size_type locsymcount;
2549 Elf_Internal_Shdr *symtab_hdr;
2550 asection *srel;
2551
2552 if (! is_x86_64_elf (ibfd))
2553 continue;
2554
2555 for (s = ibfd->sections; s != NULL; s = s->next)
2556 {
2557 struct elf_dyn_relocs *p;
2558
2559 for (p = (struct elf_dyn_relocs *)
2560 (elf_section_data (s)->local_dynrel);
2561 p != NULL;
2562 p = p->next)
2563 {
2564 if (!bfd_is_abs_section (p->sec)
2565 && bfd_is_abs_section (p->sec->output_section))
2566 {
2567 /* Input section has been discarded, either because
2568 it is a copy of a linkonce section or due to
2569 linker script /DISCARD/, so we'll be discarding
2570 the relocs too. */
2571 }
2572 else if (p->count != 0)
2573 {
2574 srel = elf_section_data (p->sec)->sreloc;
2575 srel->size += p->count * bed->s->sizeof_rela;
2576 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2577 && (info->flags & DF_TEXTREL) == 0)
2578 {
2579 info->flags |= DF_TEXTREL;
2580 if (info->warn_shared_textrel && info->shared)
2581 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2582 p->sec->owner, p->sec);
2583 }
2584 }
2585 }
2586 }
2587
2588 local_got = elf_local_got_refcounts (ibfd);
2589 if (!local_got)
2590 continue;
2591
2592 symtab_hdr = &elf_symtab_hdr (ibfd);
2593 locsymcount = symtab_hdr->sh_info;
2594 end_local_got = local_got + locsymcount;
2595 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2596 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2597 s = htab->elf.sgot;
2598 srel = htab->elf.srelgot;
2599 for (; local_got < end_local_got;
2600 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2601 {
2602 *local_tlsdesc_gotent = (bfd_vma) -1;
2603 if (*local_got > 0)
2604 {
2605 if (GOT_TLS_GDESC_P (*local_tls_type))
2606 {
2607 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2608 - elf_x86_64_compute_jump_table_size (htab);
2609 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2610 *local_got = (bfd_vma) -2;
2611 }
2612 if (! GOT_TLS_GDESC_P (*local_tls_type)
2613 || GOT_TLS_GD_P (*local_tls_type))
2614 {
2615 *local_got = s->size;
2616 s->size += GOT_ENTRY_SIZE;
2617 if (GOT_TLS_GD_P (*local_tls_type))
2618 s->size += GOT_ENTRY_SIZE;
2619 }
2620 if (info->shared
2621 || GOT_TLS_GD_ANY_P (*local_tls_type)
2622 || *local_tls_type == GOT_TLS_IE)
2623 {
2624 if (GOT_TLS_GDESC_P (*local_tls_type))
2625 {
2626 htab->elf.srelplt->size
2627 += bed->s->sizeof_rela;
2628 htab->tlsdesc_plt = (bfd_vma) -1;
2629 }
2630 if (! GOT_TLS_GDESC_P (*local_tls_type)
2631 || GOT_TLS_GD_P (*local_tls_type))
2632 srel->size += bed->s->sizeof_rela;
2633 }
2634 }
2635 else
2636 *local_got = (bfd_vma) -1;
2637 }
2638 }
2639
2640 if (htab->tls_ld_got.refcount > 0)
2641 {
2642 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2643 relocs. */
2644 htab->tls_ld_got.offset = htab->elf.sgot->size;
2645 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2646 htab->elf.srelgot->size += bed->s->sizeof_rela;
2647 }
2648 else
2649 htab->tls_ld_got.offset = -1;
2650
2651 /* Allocate global sym .plt and .got entries, and space for global
2652 sym dynamic relocs. */
2653 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2654 info);
2655
2656 /* Allocate .plt and .got entries, and space for local symbols. */
2657 htab_traverse (htab->loc_hash_table,
2658 elf_x86_64_allocate_local_dynrelocs,
2659 info);
2660
2661 /* For every jump slot reserved in the sgotplt, reloc_count is
2662 incremented. However, when we reserve space for TLS descriptors,
2663 it's not incremented, so in order to compute the space reserved
2664 for them, it suffices to multiply the reloc count by the jump
2665 slot size.
2666
2667 PR ld/13302: We start next_irelative_index at the end of .rela.plt
2668 so that R_X86_64_IRELATIVE entries come last. */
2669 if (htab->elf.srelplt)
2670 {
2671 htab->sgotplt_jump_table_size
2672 = elf_x86_64_compute_jump_table_size (htab);
2673 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
2674 }
2675 else if (htab->elf.irelplt)
2676 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
2677
2678 if (htab->tlsdesc_plt)
2679 {
2680 /* If we're not using lazy TLS relocations, don't generate the
2681 PLT and GOT entries they require. */
2682 if ((info->flags & DF_BIND_NOW))
2683 htab->tlsdesc_plt = 0;
2684 else
2685 {
2686 htab->tlsdesc_got = htab->elf.sgot->size;
2687 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2688 /* Reserve room for the initial entry.
2689 FIXME: we could probably do away with it in this case. */
2690 if (htab->elf.splt->size == 0)
2691 htab->elf.splt->size += PLT_ENTRY_SIZE;
2692 htab->tlsdesc_plt = htab->elf.splt->size;
2693 htab->elf.splt->size += PLT_ENTRY_SIZE;
2694 }
2695 }
2696
2697 if (htab->elf.sgotplt)
2698 {
2699 struct elf_link_hash_entry *got;
2700 got = elf_link_hash_lookup (elf_hash_table (info),
2701 "_GLOBAL_OFFSET_TABLE_",
2702 FALSE, FALSE, FALSE);
2703
2704 /* Don't allocate .got.plt section if there are no GOT nor PLT
2705 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2706 if ((got == NULL
2707 || !got->ref_regular_nonweak)
2708 && (htab->elf.sgotplt->size
2709 == get_elf_backend_data (output_bfd)->got_header_size)
2710 && (htab->elf.splt == NULL
2711 || htab->elf.splt->size == 0)
2712 && (htab->elf.sgot == NULL
2713 || htab->elf.sgot->size == 0)
2714 && (htab->elf.iplt == NULL
2715 || htab->elf.iplt->size == 0)
2716 && (htab->elf.igotplt == NULL
2717 || htab->elf.igotplt->size == 0))
2718 htab->elf.sgotplt->size = 0;
2719 }
2720
2721 /* We now have determined the sizes of the various dynamic sections.
2722 Allocate memory for them. */
2723 relocs = FALSE;
2724 for (s = dynobj->sections; s != NULL; s = s->next)
2725 {
2726 if ((s->flags & SEC_LINKER_CREATED) == 0)
2727 continue;
2728
2729 if (s == htab->elf.splt
2730 || s == htab->elf.sgot
2731 || s == htab->elf.sgotplt
2732 || s == htab->elf.iplt
2733 || s == htab->elf.igotplt
2734 || s == htab->sdynbss)
2735 {
2736 /* Strip this section if we don't need it; see the
2737 comment below. */
2738 }
2739 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2740 {
2741 if (s->size != 0 && s != htab->elf.srelplt)
2742 relocs = TRUE;
2743
2744 /* We use the reloc_count field as a counter if we need
2745 to copy relocs into the output file. */
2746 if (s != htab->elf.srelplt)
2747 s->reloc_count = 0;
2748 }
2749 else
2750 {
2751 /* It's not one of our sections, so don't allocate space. */
2752 continue;
2753 }
2754
2755 if (s->size == 0)
2756 {
2757 /* If we don't need this section, strip it from the
2758 output file. This is mostly to handle .rela.bss and
2759 .rela.plt. We must create both sections in
2760 create_dynamic_sections, because they must be created
2761 before the linker maps input sections to output
2762 sections. The linker does that before
2763 adjust_dynamic_symbol is called, and it is that
2764 function which decides whether anything needs to go
2765 into these sections. */
2766
2767 s->flags |= SEC_EXCLUDE;
2768 continue;
2769 }
2770
2771 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2772 continue;
2773
2774 /* Allocate memory for the section contents. We use bfd_zalloc
2775 here in case unused entries are not reclaimed before the
2776 section's contents are written out. This should not happen,
2777 but this way if it does, we get a R_X86_64_NONE reloc instead
2778 of garbage. */
2779 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2780 if (s->contents == NULL)
2781 return FALSE;
2782 }
2783
2784 if (htab->plt_eh_frame != NULL
2785 && htab->elf.splt != NULL
2786 && htab->elf.splt->size != 0
2787 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0)
2788 bfd_put_32 (dynobj, htab->elf.splt->size,
2789 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
2790
2791 if (htab->elf.dynamic_sections_created)
2792 {
2793 /* Add some entries to the .dynamic section. We fill in the
2794 values later, in elf_x86_64_finish_dynamic_sections, but we
2795 must add the entries now so that we get the correct size for
2796 the .dynamic section. The DT_DEBUG entry is filled in by the
2797 dynamic linker and used by the debugger. */
2798 #define add_dynamic_entry(TAG, VAL) \
2799 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2800
2801 if (info->executable)
2802 {
2803 if (!add_dynamic_entry (DT_DEBUG, 0))
2804 return FALSE;
2805 }
2806
2807 if (htab->elf.splt->size != 0)
2808 {
2809 if (!add_dynamic_entry (DT_PLTGOT, 0)
2810 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2811 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2812 || !add_dynamic_entry (DT_JMPREL, 0))
2813 return FALSE;
2814
2815 if (htab->tlsdesc_plt
2816 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2817 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2818 return FALSE;
2819 }
2820
2821 if (relocs)
2822 {
2823 if (!add_dynamic_entry (DT_RELA, 0)
2824 || !add_dynamic_entry (DT_RELASZ, 0)
2825 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
2826 return FALSE;
2827
2828 /* If any dynamic relocs apply to a read-only section,
2829 then we need a DT_TEXTREL entry. */
2830 if ((info->flags & DF_TEXTREL) == 0)
2831 elf_link_hash_traverse (&htab->elf,
2832 elf_x86_64_readonly_dynrelocs,
2833 info);
2834
2835 if ((info->flags & DF_TEXTREL) != 0)
2836 {
2837 if (!add_dynamic_entry (DT_TEXTREL, 0))
2838 return FALSE;
2839 }
2840 }
2841 }
2842 #undef add_dynamic_entry
2843
2844 return TRUE;
2845 }
2846
2847 static bfd_boolean
2848 elf_x86_64_always_size_sections (bfd *output_bfd,
2849 struct bfd_link_info *info)
2850 {
2851 asection *tls_sec = elf_hash_table (info)->tls_sec;
2852
2853 if (tls_sec)
2854 {
2855 struct elf_link_hash_entry *tlsbase;
2856
2857 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2858 "_TLS_MODULE_BASE_",
2859 FALSE, FALSE, FALSE);
2860
2861 if (tlsbase && tlsbase->type == STT_TLS)
2862 {
2863 struct elf_x86_64_link_hash_table *htab;
2864 struct bfd_link_hash_entry *bh = NULL;
2865 const struct elf_backend_data *bed
2866 = get_elf_backend_data (output_bfd);
2867
2868 htab = elf_x86_64_hash_table (info);
2869 if (htab == NULL)
2870 return FALSE;
2871
2872 if (!(_bfd_generic_link_add_one_symbol
2873 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2874 tls_sec, 0, NULL, FALSE,
2875 bed->collect, &bh)))
2876 return FALSE;
2877
2878 htab->tls_module_base = bh;
2879
2880 tlsbase = (struct elf_link_hash_entry *)bh;
2881 tlsbase->def_regular = 1;
2882 tlsbase->other = STV_HIDDEN;
2883 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2884 }
2885 }
2886
2887 return TRUE;
2888 }
2889
2890 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2891 executables. Rather than setting it to the beginning of the TLS
2892 section, we have to set it to the end. This function may be called
2893 multiple times, it is idempotent. */
2894
2895 static void
2896 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
2897 {
2898 struct elf_x86_64_link_hash_table *htab;
2899 struct bfd_link_hash_entry *base;
2900
2901 if (!info->executable)
2902 return;
2903
2904 htab = elf_x86_64_hash_table (info);
2905 if (htab == NULL)
2906 return;
2907
2908 base = htab->tls_module_base;
2909 if (base == NULL)
2910 return;
2911
2912 base->u.def.value = htab->elf.tls_size;
2913 }
2914
2915 /* Return the base VMA address which should be subtracted from real addresses
2916 when resolving @dtpoff relocation.
2917 This is PT_TLS segment p_vaddr. */
2918
2919 static bfd_vma
2920 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
2921 {
2922 /* If tls_sec is NULL, we should have signalled an error already. */
2923 if (elf_hash_table (info)->tls_sec == NULL)
2924 return 0;
2925 return elf_hash_table (info)->tls_sec->vma;
2926 }
2927
2928 /* Return the relocation value for @tpoff relocation
2929 if STT_TLS virtual address is ADDRESS. */
2930
2931 static bfd_vma
2932 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
2933 {
2934 struct elf_link_hash_table *htab = elf_hash_table (info);
2935 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
2936 bfd_vma static_tls_size;
2937
2938 /* If tls_segment is NULL, we should have signalled an error already. */
2939 if (htab->tls_sec == NULL)
2940 return 0;
2941
2942 /* Consider special static TLS alignment requirements. */
2943 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
2944 return address - static_tls_size - htab->tls_sec->vma;
2945 }
2946
2947 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2948 branch? */
2949
2950 static bfd_boolean
2951 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2952 {
2953 /* Opcode Instruction
2954 0xe8 call
2955 0xe9 jump
2956 0x0f 0x8x conditional jump */
2957 return ((offset > 0
2958 && (contents [offset - 1] == 0xe8
2959 || contents [offset - 1] == 0xe9))
2960 || (offset > 1
2961 && contents [offset - 2] == 0x0f
2962 && (contents [offset - 1] & 0xf0) == 0x80));
2963 }
2964
2965 /* Relocate an x86_64 ELF section. */
2966
2967 static bfd_boolean
2968 elf_x86_64_relocate_section (bfd *output_bfd,
2969 struct bfd_link_info *info,
2970 bfd *input_bfd,
2971 asection *input_section,
2972 bfd_byte *contents,
2973 Elf_Internal_Rela *relocs,
2974 Elf_Internal_Sym *local_syms,
2975 asection **local_sections)
2976 {
2977 struct elf_x86_64_link_hash_table *htab;
2978 Elf_Internal_Shdr *symtab_hdr;
2979 struct elf_link_hash_entry **sym_hashes;
2980 bfd_vma *local_got_offsets;
2981 bfd_vma *local_tlsdesc_gotents;
2982 Elf_Internal_Rela *rel;
2983 Elf_Internal_Rela *relend;
2984
2985 BFD_ASSERT (is_x86_64_elf (input_bfd));
2986
2987 htab = elf_x86_64_hash_table (info);
2988 if (htab == NULL)
2989 return FALSE;
2990 symtab_hdr = &elf_symtab_hdr (input_bfd);
2991 sym_hashes = elf_sym_hashes (input_bfd);
2992 local_got_offsets = elf_local_got_offsets (input_bfd);
2993 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
2994
2995 elf_x86_64_set_tls_module_base (info);
2996
2997 rel = relocs;
2998 relend = relocs + input_section->reloc_count;
2999 for (; rel < relend; rel++)
3000 {
3001 unsigned int r_type;
3002 reloc_howto_type *howto;
3003 unsigned long r_symndx;
3004 struct elf_link_hash_entry *h;
3005 Elf_Internal_Sym *sym;
3006 asection *sec;
3007 bfd_vma off, offplt;
3008 bfd_vma relocation;
3009 bfd_boolean unresolved_reloc;
3010 bfd_reloc_status_type r;
3011 int tls_type;
3012 asection *base_got;
3013
3014 r_type = ELF32_R_TYPE (rel->r_info);
3015 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3016 || r_type == (int) R_X86_64_GNU_VTENTRY)
3017 continue;
3018
3019 if (r_type >= R_X86_64_max)
3020 {
3021 bfd_set_error (bfd_error_bad_value);
3022 return FALSE;
3023 }
3024
3025 if (r_type != (int) R_X86_64_32
3026 || ABI_64_P (output_bfd))
3027 howto = x86_64_elf_howto_table + r_type;
3028 else
3029 howto = (x86_64_elf_howto_table
3030 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3031 r_symndx = htab->r_sym (rel->r_info);
3032 h = NULL;
3033 sym = NULL;
3034 sec = NULL;
3035 unresolved_reloc = FALSE;
3036 if (r_symndx < symtab_hdr->sh_info)
3037 {
3038 sym = local_syms + r_symndx;
3039 sec = local_sections[r_symndx];
3040
3041 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3042 &sec, rel);
3043
3044 /* Relocate against local STT_GNU_IFUNC symbol. */
3045 if (!info->relocatable
3046 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3047 {
3048 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3049 rel, FALSE);
3050 if (h == NULL)
3051 abort ();
3052
3053 /* Set STT_GNU_IFUNC symbol value. */
3054 h->root.u.def.value = sym->st_value;
3055 h->root.u.def.section = sec;
3056 }
3057 }
3058 else
3059 {
3060 bfd_boolean warned ATTRIBUTE_UNUSED;
3061
3062 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3063 r_symndx, symtab_hdr, sym_hashes,
3064 h, sec, relocation,
3065 unresolved_reloc, warned);
3066 }
3067
3068 if (sec != NULL && elf_discarded_section (sec))
3069 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3070 rel, relend, howto, contents);
3071
3072 if (info->relocatable)
3073 continue;
3074
3075 if (rel->r_addend == 0
3076 && r_type == R_X86_64_64
3077 && !ABI_64_P (output_bfd))
3078 {
3079 /* For x32, treat R_X86_64_64 like R_X86_64_32 and zero-extend
3080 it to 64bit if addend is zero. */
3081 r_type = R_X86_64_32;
3082 memset (contents + rel->r_offset + 4, 0, 4);
3083 }
3084
3085 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3086 it here if it is defined in a non-shared object. */
3087 if (h != NULL
3088 && h->type == STT_GNU_IFUNC
3089 && h->def_regular)
3090 {
3091 asection *plt;
3092 bfd_vma plt_index;
3093 const char *name;
3094
3095 if ((input_section->flags & SEC_ALLOC) == 0
3096 || h->plt.offset == (bfd_vma) -1)
3097 abort ();
3098
3099 /* STT_GNU_IFUNC symbol must go through PLT. */
3100 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3101 relocation = (plt->output_section->vma
3102 + plt->output_offset + h->plt.offset);
3103
3104 switch (r_type)
3105 {
3106 default:
3107 if (h->root.root.string)
3108 name = h->root.root.string;
3109 else
3110 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3111 NULL);
3112 (*_bfd_error_handler)
3113 (_("%B: relocation %s against STT_GNU_IFUNC "
3114 "symbol `%s' isn't handled by %s"), input_bfd,
3115 x86_64_elf_howto_table[r_type].name,
3116 name, __FUNCTION__);
3117 bfd_set_error (bfd_error_bad_value);
3118 return FALSE;
3119
3120 case R_X86_64_32S:
3121 if (info->shared)
3122 abort ();
3123 goto do_relocation;
3124
3125 case R_X86_64_32:
3126 if (ABI_64_P (output_bfd))
3127 goto do_relocation;
3128 /* FALLTHROUGH */
3129 case R_X86_64_64:
3130 if (rel->r_addend != 0)
3131 {
3132 if (h->root.root.string)
3133 name = h->root.root.string;
3134 else
3135 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3136 sym, NULL);
3137 (*_bfd_error_handler)
3138 (_("%B: relocation %s against STT_GNU_IFUNC "
3139 "symbol `%s' has non-zero addend: %d"),
3140 input_bfd, x86_64_elf_howto_table[r_type].name,
3141 name, rel->r_addend);
3142 bfd_set_error (bfd_error_bad_value);
3143 return FALSE;
3144 }
3145
3146 /* Generate dynamic relcoation only when there is a
3147 non-GOT reference in a shared object. */
3148 if (info->shared && h->non_got_ref)
3149 {
3150 Elf_Internal_Rela outrel;
3151 asection *sreloc;
3152
3153 /* Need a dynamic relocation to get the real function
3154 address. */
3155 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3156 info,
3157 input_section,
3158 rel->r_offset);
3159 if (outrel.r_offset == (bfd_vma) -1
3160 || outrel.r_offset == (bfd_vma) -2)
3161 abort ();
3162
3163 outrel.r_offset += (input_section->output_section->vma
3164 + input_section->output_offset);
3165
3166 if (h->dynindx == -1
3167 || h->forced_local
3168 || info->executable)
3169 {
3170 /* This symbol is resolved locally. */
3171 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3172 outrel.r_addend = (h->root.u.def.value
3173 + h->root.u.def.section->output_section->vma
3174 + h->root.u.def.section->output_offset);
3175 }
3176 else
3177 {
3178 outrel.r_info = htab->r_info (h->dynindx, r_type);
3179 outrel.r_addend = 0;
3180 }
3181
3182 sreloc = htab->elf.irelifunc;
3183 elf_append_rela (output_bfd, sreloc, &outrel);
3184
3185 /* If this reloc is against an external symbol, we
3186 do not want to fiddle with the addend. Otherwise,
3187 we need to include the symbol value so that it
3188 becomes an addend for the dynamic reloc. For an
3189 internal symbol, we have updated addend. */
3190 continue;
3191 }
3192 /* FALLTHROUGH */
3193 case R_X86_64_PC32:
3194 case R_X86_64_PC64:
3195 case R_X86_64_PLT32:
3196 goto do_relocation;
3197
3198 case R_X86_64_GOTPCREL:
3199 case R_X86_64_GOTPCREL64:
3200 base_got = htab->elf.sgot;
3201 off = h->got.offset;
3202
3203 if (base_got == NULL)
3204 abort ();
3205
3206 if (off == (bfd_vma) -1)
3207 {
3208 /* We can't use h->got.offset here to save state, or
3209 even just remember the offset, as finish_dynamic_symbol
3210 would use that as offset into .got. */
3211
3212 if (htab->elf.splt != NULL)
3213 {
3214 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3215 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3216 base_got = htab->elf.sgotplt;
3217 }
3218 else
3219 {
3220 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3221 off = plt_index * GOT_ENTRY_SIZE;
3222 base_got = htab->elf.igotplt;
3223 }
3224
3225 if (h->dynindx == -1
3226 || h->forced_local
3227 || info->symbolic)
3228 {
3229 /* This references the local defitionion. We must
3230 initialize this entry in the global offset table.
3231 Since the offset must always be a multiple of 8,
3232 we use the least significant bit to record
3233 whether we have initialized it already.
3234
3235 When doing a dynamic link, we create a .rela.got
3236 relocation entry to initialize the value. This
3237 is done in the finish_dynamic_symbol routine. */
3238 if ((off & 1) != 0)
3239 off &= ~1;
3240 else
3241 {
3242 bfd_put_64 (output_bfd, relocation,
3243 base_got->contents + off);
3244 /* Note that this is harmless for the GOTPLT64
3245 case, as -1 | 1 still is -1. */
3246 h->got.offset |= 1;
3247 }
3248 }
3249 }
3250
3251 relocation = (base_got->output_section->vma
3252 + base_got->output_offset + off);
3253
3254 goto do_relocation;
3255 }
3256 }
3257
3258 /* When generating a shared object, the relocations handled here are
3259 copied into the output file to be resolved at run time. */
3260 switch (r_type)
3261 {
3262 case R_X86_64_GOT32:
3263 case R_X86_64_GOT64:
3264 /* Relocation is to the entry for this symbol in the global
3265 offset table. */
3266 case R_X86_64_GOTPCREL:
3267 case R_X86_64_GOTPCREL64:
3268 /* Use global offset table entry as symbol value. */
3269 case R_X86_64_GOTPLT64:
3270 /* This is the same as GOT64 for relocation purposes, but
3271 indicates the existence of a PLT entry. The difficulty is,
3272 that we must calculate the GOT slot offset from the PLT
3273 offset, if this symbol got a PLT entry (it was global).
3274 Additionally if it's computed from the PLT entry, then that
3275 GOT offset is relative to .got.plt, not to .got. */
3276 base_got = htab->elf.sgot;
3277
3278 if (htab->elf.sgot == NULL)
3279 abort ();
3280
3281 if (h != NULL)
3282 {
3283 bfd_boolean dyn;
3284
3285 off = h->got.offset;
3286 if (h->needs_plt
3287 && h->plt.offset != (bfd_vma)-1
3288 && off == (bfd_vma)-1)
3289 {
3290 /* We can't use h->got.offset here to save
3291 state, or even just remember the offset, as
3292 finish_dynamic_symbol would use that as offset into
3293 .got. */
3294 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3295 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3296 base_got = htab->elf.sgotplt;
3297 }
3298
3299 dyn = htab->elf.dynamic_sections_created;
3300
3301 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3302 || (info->shared
3303 && SYMBOL_REFERENCES_LOCAL (info, h))
3304 || (ELF_ST_VISIBILITY (h->other)
3305 && h->root.type == bfd_link_hash_undefweak))
3306 {
3307 /* This is actually a static link, or it is a -Bsymbolic
3308 link and the symbol is defined locally, or the symbol
3309 was forced to be local because of a version file. We
3310 must initialize this entry in the global offset table.
3311 Since the offset must always be a multiple of 8, we
3312 use the least significant bit to record whether we
3313 have initialized it already.
3314
3315 When doing a dynamic link, we create a .rela.got
3316 relocation entry to initialize the value. This is
3317 done in the finish_dynamic_symbol routine. */
3318 if ((off & 1) != 0)
3319 off &= ~1;
3320 else
3321 {
3322 bfd_put_64 (output_bfd, relocation,
3323 base_got->contents + off);
3324 /* Note that this is harmless for the GOTPLT64 case,
3325 as -1 | 1 still is -1. */
3326 h->got.offset |= 1;
3327 }
3328 }
3329 else
3330 unresolved_reloc = FALSE;
3331 }
3332 else
3333 {
3334 if (local_got_offsets == NULL)
3335 abort ();
3336
3337 off = local_got_offsets[r_symndx];
3338
3339 /* The offset must always be a multiple of 8. We use
3340 the least significant bit to record whether we have
3341 already generated the necessary reloc. */
3342 if ((off & 1) != 0)
3343 off &= ~1;
3344 else
3345 {
3346 bfd_put_64 (output_bfd, relocation,
3347 base_got->contents + off);
3348
3349 if (info->shared)
3350 {
3351 asection *s;
3352 Elf_Internal_Rela outrel;
3353
3354 /* We need to generate a R_X86_64_RELATIVE reloc
3355 for the dynamic linker. */
3356 s = htab->elf.srelgot;
3357 if (s == NULL)
3358 abort ();
3359
3360 outrel.r_offset = (base_got->output_section->vma
3361 + base_got->output_offset
3362 + off);
3363 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3364 outrel.r_addend = relocation;
3365 elf_append_rela (output_bfd, s, &outrel);
3366 }
3367
3368 local_got_offsets[r_symndx] |= 1;
3369 }
3370 }
3371
3372 if (off >= (bfd_vma) -2)
3373 abort ();
3374
3375 relocation = base_got->output_section->vma
3376 + base_got->output_offset + off;
3377 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3378 relocation -= htab->elf.sgotplt->output_section->vma
3379 - htab->elf.sgotplt->output_offset;
3380
3381 break;
3382
3383 case R_X86_64_GOTOFF64:
3384 /* Relocation is relative to the start of the global offset
3385 table. */
3386
3387 /* Check to make sure it isn't a protected function symbol
3388 for shared library since it may not be local when used
3389 as function address. */
3390 if (info->shared
3391 && h
3392 && h->def_regular
3393 && h->type == STT_FUNC
3394 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3395 {
3396 (*_bfd_error_handler)
3397 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3398 input_bfd, h->root.root.string);
3399 bfd_set_error (bfd_error_bad_value);
3400 return FALSE;
3401 }
3402
3403 /* Note that sgot is not involved in this
3404 calculation. We always want the start of .got.plt. If we
3405 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3406 permitted by the ABI, we might have to change this
3407 calculation. */
3408 relocation -= htab->elf.sgotplt->output_section->vma
3409 + htab->elf.sgotplt->output_offset;
3410 break;
3411
3412 case R_X86_64_GOTPC32:
3413 case R_X86_64_GOTPC64:
3414 /* Use global offset table as symbol value. */
3415 relocation = htab->elf.sgotplt->output_section->vma
3416 + htab->elf.sgotplt->output_offset;
3417 unresolved_reloc = FALSE;
3418 break;
3419
3420 case R_X86_64_PLTOFF64:
3421 /* Relocation is PLT entry relative to GOT. For local
3422 symbols it's the symbol itself relative to GOT. */
3423 if (h != NULL
3424 /* See PLT32 handling. */
3425 && h->plt.offset != (bfd_vma) -1
3426 && htab->elf.splt != NULL)
3427 {
3428 relocation = (htab->elf.splt->output_section->vma
3429 + htab->elf.splt->output_offset
3430 + h->plt.offset);
3431 unresolved_reloc = FALSE;
3432 }
3433
3434 relocation -= htab->elf.sgotplt->output_section->vma
3435 + htab->elf.sgotplt->output_offset;
3436 break;
3437
3438 case R_X86_64_PLT32:
3439 /* Relocation is to the entry for this symbol in the
3440 procedure linkage table. */
3441
3442 /* Resolve a PLT32 reloc against a local symbol directly,
3443 without using the procedure linkage table. */
3444 if (h == NULL)
3445 break;
3446
3447 if (h->plt.offset == (bfd_vma) -1
3448 || htab->elf.splt == NULL)
3449 {
3450 /* We didn't make a PLT entry for this symbol. This
3451 happens when statically linking PIC code, or when
3452 using -Bsymbolic. */
3453 break;
3454 }
3455
3456 relocation = (htab->elf.splt->output_section->vma
3457 + htab->elf.splt->output_offset
3458 + h->plt.offset);
3459 unresolved_reloc = FALSE;
3460 break;
3461
3462 case R_X86_64_PC8:
3463 case R_X86_64_PC16:
3464 case R_X86_64_PC32:
3465 if (info->shared
3466 && (input_section->flags & SEC_ALLOC) != 0
3467 && (input_section->flags & SEC_READONLY) != 0
3468 && h != NULL)
3469 {
3470 bfd_boolean fail = FALSE;
3471 bfd_boolean branch
3472 = (r_type == R_X86_64_PC32
3473 && is_32bit_relative_branch (contents, rel->r_offset));
3474
3475 if (SYMBOL_REFERENCES_LOCAL (info, h))
3476 {
3477 /* Symbol is referenced locally. Make sure it is
3478 defined locally or for a branch. */
3479 fail = !h->def_regular && !branch;
3480 }
3481 else
3482 {
3483 /* Symbol isn't referenced locally. We only allow
3484 branch to symbol with non-default visibility. */
3485 fail = (!branch
3486 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3487 }
3488
3489 if (fail)
3490 {
3491 const char *fmt;
3492 const char *v;
3493 const char *pic = "";
3494
3495 switch (ELF_ST_VISIBILITY (h->other))
3496 {
3497 case STV_HIDDEN:
3498 v = _("hidden symbol");
3499 break;
3500 case STV_INTERNAL:
3501 v = _("internal symbol");
3502 break;
3503 case STV_PROTECTED:
3504 v = _("protected symbol");
3505 break;
3506 default:
3507 v = _("symbol");
3508 pic = _("; recompile with -fPIC");
3509 break;
3510 }
3511
3512 if (h->def_regular)
3513 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3514 else
3515 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3516
3517 (*_bfd_error_handler) (fmt, input_bfd,
3518 x86_64_elf_howto_table[r_type].name,
3519 v, h->root.root.string, pic);
3520 bfd_set_error (bfd_error_bad_value);
3521 return FALSE;
3522 }
3523 }
3524 /* Fall through. */
3525
3526 case R_X86_64_8:
3527 case R_X86_64_16:
3528 case R_X86_64_32:
3529 case R_X86_64_PC64:
3530 case R_X86_64_64:
3531 /* FIXME: The ABI says the linker should make sure the value is
3532 the same when it's zeroextended to 64 bit. */
3533
3534 if ((input_section->flags & SEC_ALLOC) == 0)
3535 break;
3536
3537 if ((info->shared
3538 && (h == NULL
3539 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3540 || h->root.type != bfd_link_hash_undefweak)
3541 && (! IS_X86_64_PCREL_TYPE (r_type)
3542 || ! SYMBOL_CALLS_LOCAL (info, h)))
3543 || (ELIMINATE_COPY_RELOCS
3544 && !info->shared
3545 && h != NULL
3546 && h->dynindx != -1
3547 && !h->non_got_ref
3548 && ((h->def_dynamic
3549 && !h->def_regular)
3550 || h->root.type == bfd_link_hash_undefweak
3551 || h->root.type == bfd_link_hash_undefined)))
3552 {
3553 Elf_Internal_Rela outrel;
3554 bfd_boolean skip, relocate;
3555 asection *sreloc;
3556
3557 /* When generating a shared object, these relocations
3558 are copied into the output file to be resolved at run
3559 time. */
3560 skip = FALSE;
3561 relocate = FALSE;
3562
3563 outrel.r_offset =
3564 _bfd_elf_section_offset (output_bfd, info, input_section,
3565 rel->r_offset);
3566 if (outrel.r_offset == (bfd_vma) -1)
3567 skip = TRUE;
3568 else if (outrel.r_offset == (bfd_vma) -2)
3569 skip = TRUE, relocate = TRUE;
3570
3571 outrel.r_offset += (input_section->output_section->vma
3572 + input_section->output_offset);
3573
3574 if (skip)
3575 memset (&outrel, 0, sizeof outrel);
3576
3577 /* h->dynindx may be -1 if this symbol was marked to
3578 become local. */
3579 else if (h != NULL
3580 && h->dynindx != -1
3581 && (IS_X86_64_PCREL_TYPE (r_type)
3582 || ! info->shared
3583 || ! SYMBOLIC_BIND (info, h)
3584 || ! h->def_regular))
3585 {
3586 outrel.r_info = htab->r_info (h->dynindx, r_type);
3587 outrel.r_addend = rel->r_addend;
3588 }
3589 else
3590 {
3591 /* This symbol is local, or marked to become local. */
3592 if (r_type == htab->pointer_r_type)
3593 {
3594 relocate = TRUE;
3595 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3596 outrel.r_addend = relocation + rel->r_addend;
3597 }
3598 else if (r_type == R_X86_64_64
3599 && !ABI_64_P (output_bfd))
3600 {
3601 relocate = TRUE;
3602 outrel.r_info = htab->r_info (0,
3603 R_X86_64_RELATIVE64);
3604 outrel.r_addend = relocation + rel->r_addend;
3605 }
3606 else
3607 {
3608 long sindx;
3609
3610 if (bfd_is_abs_section (sec))
3611 sindx = 0;
3612 else if (sec == NULL || sec->owner == NULL)
3613 {
3614 bfd_set_error (bfd_error_bad_value);
3615 return FALSE;
3616 }
3617 else
3618 {
3619 asection *osec;
3620
3621 /* We are turning this relocation into one
3622 against a section symbol. It would be
3623 proper to subtract the symbol's value,
3624 osec->vma, from the emitted reloc addend,
3625 but ld.so expects buggy relocs. */
3626 osec = sec->output_section;
3627 sindx = elf_section_data (osec)->dynindx;
3628 if (sindx == 0)
3629 {
3630 asection *oi = htab->elf.text_index_section;
3631 sindx = elf_section_data (oi)->dynindx;
3632 }
3633 BFD_ASSERT (sindx != 0);
3634 }
3635
3636 outrel.r_info = htab->r_info (sindx, r_type);
3637 outrel.r_addend = relocation + rel->r_addend;
3638 }
3639 }
3640
3641 sreloc = elf_section_data (input_section)->sreloc;
3642
3643 if (sreloc == NULL || sreloc->contents == NULL)
3644 {
3645 r = bfd_reloc_notsupported;
3646 goto check_relocation_error;
3647 }
3648
3649 elf_append_rela (output_bfd, sreloc, &outrel);
3650
3651 /* If this reloc is against an external symbol, we do
3652 not want to fiddle with the addend. Otherwise, we
3653 need to include the symbol value so that it becomes
3654 an addend for the dynamic reloc. */
3655 if (! relocate)
3656 continue;
3657 }
3658
3659 break;
3660
3661 case R_X86_64_TLSGD:
3662 case R_X86_64_GOTPC32_TLSDESC:
3663 case R_X86_64_TLSDESC_CALL:
3664 case R_X86_64_GOTTPOFF:
3665 tls_type = GOT_UNKNOWN;
3666 if (h == NULL && local_got_offsets)
3667 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3668 else if (h != NULL)
3669 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3670
3671 if (! elf_x86_64_tls_transition (info, input_bfd,
3672 input_section, contents,
3673 symtab_hdr, sym_hashes,
3674 &r_type, tls_type, rel,
3675 relend, h, r_symndx))
3676 return FALSE;
3677
3678 if (r_type == R_X86_64_TPOFF32)
3679 {
3680 bfd_vma roff = rel->r_offset;
3681
3682 BFD_ASSERT (! unresolved_reloc);
3683
3684 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3685 {
3686 /* GD->LE transition. For 64bit, change
3687 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3688 .word 0x6666; rex64; call __tls_get_addr
3689 into:
3690 movq %fs:0, %rax
3691 leaq foo@tpoff(%rax), %rax
3692 For 32bit, change
3693 leaq foo@tlsgd(%rip), %rdi
3694 .word 0x6666; rex64; call __tls_get_addr
3695 into:
3696 movl %fs:0, %eax
3697 leaq foo@tpoff(%rax), %rax */
3698 if (ABI_64_P (output_bfd))
3699 memcpy (contents + roff - 4,
3700 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3701 16);
3702 else
3703 memcpy (contents + roff - 3,
3704 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3705 15);
3706 bfd_put_32 (output_bfd,
3707 elf_x86_64_tpoff (info, relocation),
3708 contents + roff + 8);
3709 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3710 rel++;
3711 continue;
3712 }
3713 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3714 {
3715 /* GDesc -> LE transition.
3716 It's originally something like:
3717 leaq x@tlsdesc(%rip), %rax
3718
3719 Change it to:
3720 movl $x@tpoff, %rax. */
3721
3722 unsigned int val, type;
3723
3724 type = bfd_get_8 (input_bfd, contents + roff - 3);
3725 val = bfd_get_8 (input_bfd, contents + roff - 1);
3726 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3727 contents + roff - 3);
3728 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3729 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3730 contents + roff - 1);
3731 bfd_put_32 (output_bfd,
3732 elf_x86_64_tpoff (info, relocation),
3733 contents + roff);
3734 continue;
3735 }
3736 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3737 {
3738 /* GDesc -> LE transition.
3739 It's originally:
3740 call *(%rax)
3741 Turn it into:
3742 xchg %ax,%ax. */
3743 bfd_put_8 (output_bfd, 0x66, contents + roff);
3744 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3745 continue;
3746 }
3747 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3748 {
3749 /* IE->LE transition:
3750 Originally it can be one of:
3751 movq foo@gottpoff(%rip), %reg
3752 addq foo@gottpoff(%rip), %reg
3753 We change it into:
3754 movq $foo, %reg
3755 leaq foo(%reg), %reg
3756 addq $foo, %reg. */
3757
3758 unsigned int val, type, reg;
3759
3760 val = bfd_get_8 (input_bfd, contents + roff - 3);
3761 type = bfd_get_8 (input_bfd, contents + roff - 2);
3762 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3763 reg >>= 3;
3764 if (type == 0x8b)
3765 {
3766 /* movq */
3767 if (val == 0x4c)
3768 bfd_put_8 (output_bfd, 0x49,
3769 contents + roff - 3);
3770 else if (!ABI_64_P (output_bfd) && val == 0x44)
3771 bfd_put_8 (output_bfd, 0x41,
3772 contents + roff - 3);
3773 bfd_put_8 (output_bfd, 0xc7,
3774 contents + roff - 2);
3775 bfd_put_8 (output_bfd, 0xc0 | reg,
3776 contents + roff - 1);
3777 }
3778 else if (reg == 4)
3779 {
3780 /* addq -> addq - addressing with %rsp/%r12 is
3781 special */
3782 if (val == 0x4c)
3783 bfd_put_8 (output_bfd, 0x49,
3784 contents + roff - 3);
3785 else if (!ABI_64_P (output_bfd) && val == 0x44)
3786 bfd_put_8 (output_bfd, 0x41,
3787 contents + roff - 3);
3788 bfd_put_8 (output_bfd, 0x81,
3789 contents + roff - 2);
3790 bfd_put_8 (output_bfd, 0xc0 | reg,
3791 contents + roff - 1);
3792 }
3793 else
3794 {
3795 /* addq -> leaq */
3796 if (val == 0x4c)
3797 bfd_put_8 (output_bfd, 0x4d,
3798 contents + roff - 3);
3799 else if (!ABI_64_P (output_bfd) && val == 0x44)
3800 bfd_put_8 (output_bfd, 0x45,
3801 contents + roff - 3);
3802 bfd_put_8 (output_bfd, 0x8d,
3803 contents + roff - 2);
3804 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3805 contents + roff - 1);
3806 }
3807 bfd_put_32 (output_bfd,
3808 elf_x86_64_tpoff (info, relocation),
3809 contents + roff);
3810 continue;
3811 }
3812 else
3813 BFD_ASSERT (FALSE);
3814 }
3815
3816 if (htab->elf.sgot == NULL)
3817 abort ();
3818
3819 if (h != NULL)
3820 {
3821 off = h->got.offset;
3822 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
3823 }
3824 else
3825 {
3826 if (local_got_offsets == NULL)
3827 abort ();
3828
3829 off = local_got_offsets[r_symndx];
3830 offplt = local_tlsdesc_gotents[r_symndx];
3831 }
3832
3833 if ((off & 1) != 0)
3834 off &= ~1;
3835 else
3836 {
3837 Elf_Internal_Rela outrel;
3838 int dr_type, indx;
3839 asection *sreloc;
3840
3841 if (htab->elf.srelgot == NULL)
3842 abort ();
3843
3844 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3845
3846 if (GOT_TLS_GDESC_P (tls_type))
3847 {
3848 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
3849 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3850 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3851 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3852 + htab->elf.sgotplt->output_offset
3853 + offplt
3854 + htab->sgotplt_jump_table_size);
3855 sreloc = htab->elf.srelplt;
3856 if (indx == 0)
3857 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3858 else
3859 outrel.r_addend = 0;
3860 elf_append_rela (output_bfd, sreloc, &outrel);
3861 }
3862
3863 sreloc = htab->elf.srelgot;
3864
3865 outrel.r_offset = (htab->elf.sgot->output_section->vma
3866 + htab->elf.sgot->output_offset + off);
3867
3868 if (GOT_TLS_GD_P (tls_type))
3869 dr_type = R_X86_64_DTPMOD64;
3870 else if (GOT_TLS_GDESC_P (tls_type))
3871 goto dr_done;
3872 else
3873 dr_type = R_X86_64_TPOFF64;
3874
3875 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
3876 outrel.r_addend = 0;
3877 if ((dr_type == R_X86_64_TPOFF64
3878 || dr_type == R_X86_64_TLSDESC) && indx == 0)
3879 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3880 outrel.r_info = htab->r_info (indx, dr_type);
3881
3882 elf_append_rela (output_bfd, sreloc, &outrel);
3883
3884 if (GOT_TLS_GD_P (tls_type))
3885 {
3886 if (indx == 0)
3887 {
3888 BFD_ASSERT (! unresolved_reloc);
3889 bfd_put_64 (output_bfd,
3890 relocation - elf_x86_64_dtpoff_base (info),
3891 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3892 }
3893 else
3894 {
3895 bfd_put_64 (output_bfd, 0,
3896 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3897 outrel.r_info = htab->r_info (indx,
3898 R_X86_64_DTPOFF64);
3899 outrel.r_offset += GOT_ENTRY_SIZE;
3900 elf_append_rela (output_bfd, sreloc,
3901 &outrel);
3902 }
3903 }
3904
3905 dr_done:
3906 if (h != NULL)
3907 h->got.offset |= 1;
3908 else
3909 local_got_offsets[r_symndx] |= 1;
3910 }
3911
3912 if (off >= (bfd_vma) -2
3913 && ! GOT_TLS_GDESC_P (tls_type))
3914 abort ();
3915 if (r_type == ELF32_R_TYPE (rel->r_info))
3916 {
3917 if (r_type == R_X86_64_GOTPC32_TLSDESC
3918 || r_type == R_X86_64_TLSDESC_CALL)
3919 relocation = htab->elf.sgotplt->output_section->vma
3920 + htab->elf.sgotplt->output_offset
3921 + offplt + htab->sgotplt_jump_table_size;
3922 else
3923 relocation = htab->elf.sgot->output_section->vma
3924 + htab->elf.sgot->output_offset + off;
3925 unresolved_reloc = FALSE;
3926 }
3927 else
3928 {
3929 bfd_vma roff = rel->r_offset;
3930
3931 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3932 {
3933 /* GD->IE transition. For 64bit, change
3934 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3935 .word 0x6666; rex64; call __tls_get_addr@plt
3936 into:
3937 movq %fs:0, %rax
3938 addq foo@gottpoff(%rip), %rax
3939 For 32bit, change
3940 leaq foo@tlsgd(%rip), %rdi
3941 .word 0x6666; rex64; call __tls_get_addr@plt
3942 into:
3943 movl %fs:0, %eax
3944 addq foo@gottpoff(%rip), %rax */
3945 if (ABI_64_P (output_bfd))
3946 memcpy (contents + roff - 4,
3947 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3948 16);
3949 else
3950 memcpy (contents + roff - 3,
3951 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3952 15);
3953
3954 relocation = (htab->elf.sgot->output_section->vma
3955 + htab->elf.sgot->output_offset + off
3956 - roff
3957 - input_section->output_section->vma
3958 - input_section->output_offset
3959 - 12);
3960 bfd_put_32 (output_bfd, relocation,
3961 contents + roff + 8);
3962 /* Skip R_X86_64_PLT32. */
3963 rel++;
3964 continue;
3965 }
3966 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3967 {
3968 /* GDesc -> IE transition.
3969 It's originally something like:
3970 leaq x@tlsdesc(%rip), %rax
3971
3972 Change it to:
3973 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
3974
3975 /* Now modify the instruction as appropriate. To
3976 turn a leaq into a movq in the form we use it, it
3977 suffices to change the second byte from 0x8d to
3978 0x8b. */
3979 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3980
3981 bfd_put_32 (output_bfd,
3982 htab->elf.sgot->output_section->vma
3983 + htab->elf.sgot->output_offset + off
3984 - rel->r_offset
3985 - input_section->output_section->vma
3986 - input_section->output_offset
3987 - 4,
3988 contents + roff);
3989 continue;
3990 }
3991 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3992 {
3993 /* GDesc -> IE transition.
3994 It's originally:
3995 call *(%rax)
3996
3997 Change it to:
3998 xchg %ax, %ax. */
3999
4000 bfd_put_8 (output_bfd, 0x66, contents + roff);
4001 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4002 continue;
4003 }
4004 else
4005 BFD_ASSERT (FALSE);
4006 }
4007 break;
4008
4009 case R_X86_64_TLSLD:
4010 if (! elf_x86_64_tls_transition (info, input_bfd,
4011 input_section, contents,
4012 symtab_hdr, sym_hashes,
4013 &r_type, GOT_UNKNOWN,
4014 rel, relend, h, r_symndx))
4015 return FALSE;
4016
4017 if (r_type != R_X86_64_TLSLD)
4018 {
4019 /* LD->LE transition:
4020 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4021 For 64bit, we change it into:
4022 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4023 For 32bit, we change it into:
4024 nopl 0x0(%rax); movl %fs:0, %eax. */
4025
4026 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4027 if (ABI_64_P (output_bfd))
4028 memcpy (contents + rel->r_offset - 3,
4029 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4030 else
4031 memcpy (contents + rel->r_offset - 3,
4032 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4033 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
4034 rel++;
4035 continue;
4036 }
4037
4038 if (htab->elf.sgot == NULL)
4039 abort ();
4040
4041 off = htab->tls_ld_got.offset;
4042 if (off & 1)
4043 off &= ~1;
4044 else
4045 {
4046 Elf_Internal_Rela outrel;
4047
4048 if (htab->elf.srelgot == NULL)
4049 abort ();
4050
4051 outrel.r_offset = (htab->elf.sgot->output_section->vma
4052 + htab->elf.sgot->output_offset + off);
4053
4054 bfd_put_64 (output_bfd, 0,
4055 htab->elf.sgot->contents + off);
4056 bfd_put_64 (output_bfd, 0,
4057 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4058 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4059 outrel.r_addend = 0;
4060 elf_append_rela (output_bfd, htab->elf.srelgot,
4061 &outrel);
4062 htab->tls_ld_got.offset |= 1;
4063 }
4064 relocation = htab->elf.sgot->output_section->vma
4065 + htab->elf.sgot->output_offset + off;
4066 unresolved_reloc = FALSE;
4067 break;
4068
4069 case R_X86_64_DTPOFF32:
4070 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4071 relocation -= elf_x86_64_dtpoff_base (info);
4072 else
4073 relocation = elf_x86_64_tpoff (info, relocation);
4074 break;
4075
4076 case R_X86_64_TPOFF32:
4077 case R_X86_64_TPOFF64:
4078 BFD_ASSERT (info->executable);
4079 relocation = elf_x86_64_tpoff (info, relocation);
4080 break;
4081
4082 default:
4083 break;
4084 }
4085
4086 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4087 because such sections are not SEC_ALLOC and thus ld.so will
4088 not process them. */
4089 if (unresolved_reloc
4090 && !((input_section->flags & SEC_DEBUGGING) != 0
4091 && h->def_dynamic)
4092 && _bfd_elf_section_offset (output_bfd, info, input_section,
4093 rel->r_offset) != (bfd_vma) -1)
4094 (*_bfd_error_handler)
4095 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4096 input_bfd,
4097 input_section,
4098 (long) rel->r_offset,
4099 howto->name,
4100 h->root.root.string);
4101
4102 do_relocation:
4103 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4104 contents, rel->r_offset,
4105 relocation, rel->r_addend);
4106
4107 check_relocation_error:
4108 if (r != bfd_reloc_ok)
4109 {
4110 const char *name;
4111
4112 if (h != NULL)
4113 name = h->root.root.string;
4114 else
4115 {
4116 name = bfd_elf_string_from_elf_section (input_bfd,
4117 symtab_hdr->sh_link,
4118 sym->st_name);
4119 if (name == NULL)
4120 return FALSE;
4121 if (*name == '\0')
4122 name = bfd_section_name (input_bfd, sec);
4123 }
4124
4125 if (r == bfd_reloc_overflow)
4126 {
4127 if (! ((*info->callbacks->reloc_overflow)
4128 (info, (h ? &h->root : NULL), name, howto->name,
4129 (bfd_vma) 0, input_bfd, input_section,
4130 rel->r_offset)))
4131 return FALSE;
4132 }
4133 else
4134 {
4135 (*_bfd_error_handler)
4136 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4137 input_bfd, input_section,
4138 (long) rel->r_offset, name, (int) r);
4139 return FALSE;
4140 }
4141 }
4142 }
4143
4144 return TRUE;
4145 }
4146
4147 /* Finish up dynamic symbol handling. We set the contents of various
4148 dynamic sections here. */
4149
4150 static bfd_boolean
4151 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4152 struct bfd_link_info *info,
4153 struct elf_link_hash_entry *h,
4154 Elf_Internal_Sym *sym)
4155 {
4156 struct elf_x86_64_link_hash_table *htab;
4157
4158 htab = elf_x86_64_hash_table (info);
4159 if (htab == NULL)
4160 return FALSE;
4161
4162 if (h->plt.offset != (bfd_vma) -1)
4163 {
4164 bfd_vma plt_index;
4165 bfd_vma got_offset;
4166 Elf_Internal_Rela rela;
4167 bfd_byte *loc;
4168 asection *plt, *gotplt, *relplt;
4169 const struct elf_backend_data *bed;
4170
4171 /* When building a static executable, use .iplt, .igot.plt and
4172 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4173 if (htab->elf.splt != NULL)
4174 {
4175 plt = htab->elf.splt;
4176 gotplt = htab->elf.sgotplt;
4177 relplt = htab->elf.srelplt;
4178 }
4179 else
4180 {
4181 plt = htab->elf.iplt;
4182 gotplt = htab->elf.igotplt;
4183 relplt = htab->elf.irelplt;
4184 }
4185
4186 /* This symbol has an entry in the procedure linkage table. Set
4187 it up. */
4188 if ((h->dynindx == -1
4189 && !((h->forced_local || info->executable)
4190 && h->def_regular
4191 && h->type == STT_GNU_IFUNC))
4192 || plt == NULL
4193 || gotplt == NULL
4194 || relplt == NULL)
4195 return FALSE;
4196
4197 /* Get the index in the procedure linkage table which
4198 corresponds to this symbol. This is the index of this symbol
4199 in all the symbols for which we are making plt entries. The
4200 first entry in the procedure linkage table is reserved.
4201
4202 Get the offset into the .got table of the entry that
4203 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4204 bytes. The first three are reserved for the dynamic linker.
4205
4206 For static executables, we don't reserve anything. */
4207
4208 if (plt == htab->elf.splt)
4209 {
4210 got_offset = h->plt.offset / PLT_ENTRY_SIZE - 1;
4211 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4212 }
4213 else
4214 {
4215 got_offset = h->plt.offset / PLT_ENTRY_SIZE;
4216 got_offset = got_offset * GOT_ENTRY_SIZE;
4217 }
4218
4219 /* Fill in the entry in the procedure linkage table. */
4220 memcpy (plt->contents + h->plt.offset, elf_x86_64_plt_entry,
4221 PLT_ENTRY_SIZE);
4222
4223 /* Insert the relocation positions of the plt section. The magic
4224 numbers at the end of the statements are the positions of the
4225 relocations in the plt section. */
4226 /* Put offset for jmp *name@GOTPCREL(%rip), since the
4227 instruction uses 6 bytes, subtract this value. */
4228 bfd_put_32 (output_bfd,
4229 (gotplt->output_section->vma
4230 + gotplt->output_offset
4231 + got_offset
4232 - plt->output_section->vma
4233 - plt->output_offset
4234 - h->plt.offset
4235 - 6),
4236 plt->contents + h->plt.offset + 2);
4237
4238 /* Fill in the entry in the global offset table, initially this
4239 points to the pushq instruction in the PLT which is at offset 6. */
4240 bfd_put_64 (output_bfd, (plt->output_section->vma
4241 + plt->output_offset
4242 + h->plt.offset + 6),
4243 gotplt->contents + got_offset);
4244
4245 /* Fill in the entry in the .rela.plt section. */
4246 rela.r_offset = (gotplt->output_section->vma
4247 + gotplt->output_offset
4248 + got_offset);
4249 if (h->dynindx == -1
4250 || ((info->executable
4251 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4252 && h->def_regular
4253 && h->type == STT_GNU_IFUNC))
4254 {
4255 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4256 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4257 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4258 rela.r_addend = (h->root.u.def.value
4259 + h->root.u.def.section->output_section->vma
4260 + h->root.u.def.section->output_offset);
4261 /* R_X86_64_IRELATIVE comes last. */
4262 plt_index = htab->next_irelative_index--;
4263 }
4264 else
4265 {
4266 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4267 rela.r_addend = 0;
4268 plt_index = htab->next_jump_slot_index++;
4269 }
4270
4271 /* Don't fill PLT entry for static executables. */
4272 if (plt == htab->elf.splt)
4273 {
4274 /* Put relocation index. */
4275 bfd_put_32 (output_bfd, plt_index,
4276 plt->contents + h->plt.offset + 7);
4277 /* Put offset for jmp .PLT0. */
4278 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
4279 plt->contents + h->plt.offset + 12);
4280 }
4281
4282 bed = get_elf_backend_data (output_bfd);
4283 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4284 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4285
4286 if (!h->def_regular)
4287 {
4288 /* Mark the symbol as undefined, rather than as defined in
4289 the .plt section. Leave the value if there were any
4290 relocations where pointer equality matters (this is a clue
4291 for the dynamic linker, to make function pointer
4292 comparisons work between an application and shared
4293 library), otherwise set it to zero. If a function is only
4294 called from a binary, there is no need to slow down
4295 shared libraries because of that. */
4296 sym->st_shndx = SHN_UNDEF;
4297 if (!h->pointer_equality_needed)
4298 sym->st_value = 0;
4299 }
4300 }
4301
4302 if (h->got.offset != (bfd_vma) -1
4303 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4304 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4305 {
4306 Elf_Internal_Rela rela;
4307
4308 /* This symbol has an entry in the global offset table. Set it
4309 up. */
4310 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4311 abort ();
4312
4313 rela.r_offset = (htab->elf.sgot->output_section->vma
4314 + htab->elf.sgot->output_offset
4315 + (h->got.offset &~ (bfd_vma) 1));
4316
4317 /* If this is a static link, or it is a -Bsymbolic link and the
4318 symbol is defined locally or was forced to be local because
4319 of a version file, we just want to emit a RELATIVE reloc.
4320 The entry in the global offset table will already have been
4321 initialized in the relocate_section function. */
4322 if (h->def_regular
4323 && h->type == STT_GNU_IFUNC)
4324 {
4325 if (info->shared)
4326 {
4327 /* Generate R_X86_64_GLOB_DAT. */
4328 goto do_glob_dat;
4329 }
4330 else
4331 {
4332 asection *plt;
4333
4334 if (!h->pointer_equality_needed)
4335 abort ();
4336
4337 /* For non-shared object, we can't use .got.plt, which
4338 contains the real function addres if we need pointer
4339 equality. We load the GOT entry with the PLT entry. */
4340 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4341 bfd_put_64 (output_bfd, (plt->output_section->vma
4342 + plt->output_offset
4343 + h->plt.offset),
4344 htab->elf.sgot->contents + h->got.offset);
4345 return TRUE;
4346 }
4347 }
4348 else if (info->shared
4349 && SYMBOL_REFERENCES_LOCAL (info, h))
4350 {
4351 if (!h->def_regular)
4352 return FALSE;
4353 BFD_ASSERT((h->got.offset & 1) != 0);
4354 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4355 rela.r_addend = (h->root.u.def.value
4356 + h->root.u.def.section->output_section->vma
4357 + h->root.u.def.section->output_offset);
4358 }
4359 else
4360 {
4361 BFD_ASSERT((h->got.offset & 1) == 0);
4362 do_glob_dat:
4363 bfd_put_64 (output_bfd, (bfd_vma) 0,
4364 htab->elf.sgot->contents + h->got.offset);
4365 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4366 rela.r_addend = 0;
4367 }
4368
4369 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4370 }
4371
4372 if (h->needs_copy)
4373 {
4374 Elf_Internal_Rela rela;
4375
4376 /* This symbol needs a copy reloc. Set it up. */
4377
4378 if (h->dynindx == -1
4379 || (h->root.type != bfd_link_hash_defined
4380 && h->root.type != bfd_link_hash_defweak)
4381 || htab->srelbss == NULL)
4382 abort ();
4383
4384 rela.r_offset = (h->root.u.def.value
4385 + h->root.u.def.section->output_section->vma
4386 + h->root.u.def.section->output_offset);
4387 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4388 rela.r_addend = 0;
4389 elf_append_rela (output_bfd, htab->srelbss, &rela);
4390 }
4391
4392 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
4393 be NULL for local symbols. */
4394 if (sym != NULL
4395 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4396 || h == htab->elf.hgot))
4397 sym->st_shndx = SHN_ABS;
4398
4399 return TRUE;
4400 }
4401
4402 /* Finish up local dynamic symbol handling. We set the contents of
4403 various dynamic sections here. */
4404
4405 static bfd_boolean
4406 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4407 {
4408 struct elf_link_hash_entry *h
4409 = (struct elf_link_hash_entry *) *slot;
4410 struct bfd_link_info *info
4411 = (struct bfd_link_info *) inf;
4412
4413 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4414 info, h, NULL);
4415 }
4416
4417 /* Used to decide how to sort relocs in an optimal manner for the
4418 dynamic linker, before writing them out. */
4419
4420 static enum elf_reloc_type_class
4421 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4422 {
4423 switch ((int) ELF32_R_TYPE (rela->r_info))
4424 {
4425 case R_X86_64_RELATIVE:
4426 return reloc_class_relative;
4427 case R_X86_64_JUMP_SLOT:
4428 return reloc_class_plt;
4429 case R_X86_64_COPY:
4430 return reloc_class_copy;
4431 default:
4432 return reloc_class_normal;
4433 }
4434 }
4435
4436 /* Finish up the dynamic sections. */
4437
4438 static bfd_boolean
4439 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4440 struct bfd_link_info *info)
4441 {
4442 struct elf_x86_64_link_hash_table *htab;
4443 bfd *dynobj;
4444 asection *sdyn;
4445
4446 htab = elf_x86_64_hash_table (info);
4447 if (htab == NULL)
4448 return FALSE;
4449
4450 dynobj = htab->elf.dynobj;
4451 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4452
4453 if (htab->elf.dynamic_sections_created)
4454 {
4455 bfd_byte *dyncon, *dynconend;
4456 const struct elf_backend_data *bed;
4457 bfd_size_type sizeof_dyn;
4458
4459 if (sdyn == NULL || htab->elf.sgot == NULL)
4460 abort ();
4461
4462 bed = get_elf_backend_data (dynobj);
4463 sizeof_dyn = bed->s->sizeof_dyn;
4464 dyncon = sdyn->contents;
4465 dynconend = sdyn->contents + sdyn->size;
4466 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4467 {
4468 Elf_Internal_Dyn dyn;
4469 asection *s;
4470
4471 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4472
4473 switch (dyn.d_tag)
4474 {
4475 default:
4476 continue;
4477
4478 case DT_PLTGOT:
4479 s = htab->elf.sgotplt;
4480 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4481 break;
4482
4483 case DT_JMPREL:
4484 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4485 break;
4486
4487 case DT_PLTRELSZ:
4488 s = htab->elf.srelplt->output_section;
4489 dyn.d_un.d_val = s->size;
4490 break;
4491
4492 case DT_RELASZ:
4493 /* The procedure linkage table relocs (DT_JMPREL) should
4494 not be included in the overall relocs (DT_RELA).
4495 Therefore, we override the DT_RELASZ entry here to
4496 make it not include the JMPREL relocs. Since the
4497 linker script arranges for .rela.plt to follow all
4498 other relocation sections, we don't have to worry
4499 about changing the DT_RELA entry. */
4500 if (htab->elf.srelplt != NULL)
4501 {
4502 s = htab->elf.srelplt->output_section;
4503 dyn.d_un.d_val -= s->size;
4504 }
4505 break;
4506
4507 case DT_TLSDESC_PLT:
4508 s = htab->elf.splt;
4509 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4510 + htab->tlsdesc_plt;
4511 break;
4512
4513 case DT_TLSDESC_GOT:
4514 s = htab->elf.sgot;
4515 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4516 + htab->tlsdesc_got;
4517 break;
4518 }
4519
4520 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4521 }
4522
4523 /* Fill in the special first entry in the procedure linkage table. */
4524 if (htab->elf.splt && htab->elf.splt->size > 0)
4525 {
4526 /* Fill in the first entry in the procedure linkage table. */
4527 memcpy (htab->elf.splt->contents, elf_x86_64_plt0_entry,
4528 PLT_ENTRY_SIZE);
4529 /* Add offset for pushq GOT+8(%rip), since the instruction
4530 uses 6 bytes subtract this value. */
4531 bfd_put_32 (output_bfd,
4532 (htab->elf.sgotplt->output_section->vma
4533 + htab->elf.sgotplt->output_offset
4534 + 8
4535 - htab->elf.splt->output_section->vma
4536 - htab->elf.splt->output_offset
4537 - 6),
4538 htab->elf.splt->contents + 2);
4539 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4540 the end of the instruction. */
4541 bfd_put_32 (output_bfd,
4542 (htab->elf.sgotplt->output_section->vma
4543 + htab->elf.sgotplt->output_offset
4544 + 16
4545 - htab->elf.splt->output_section->vma
4546 - htab->elf.splt->output_offset
4547 - 12),
4548 htab->elf.splt->contents + 8);
4549
4550 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize =
4551 PLT_ENTRY_SIZE;
4552
4553 if (htab->tlsdesc_plt)
4554 {
4555 bfd_put_64 (output_bfd, (bfd_vma) 0,
4556 htab->elf.sgot->contents + htab->tlsdesc_got);
4557
4558 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4559 elf_x86_64_plt0_entry,
4560 PLT_ENTRY_SIZE);
4561
4562 /* Add offset for pushq GOT+8(%rip), since the
4563 instruction uses 6 bytes subtract this value. */
4564 bfd_put_32 (output_bfd,
4565 (htab->elf.sgotplt->output_section->vma
4566 + htab->elf.sgotplt->output_offset
4567 + 8
4568 - htab->elf.splt->output_section->vma
4569 - htab->elf.splt->output_offset
4570 - htab->tlsdesc_plt
4571 - 6),
4572 htab->elf.splt->contents + htab->tlsdesc_plt + 2);
4573 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4574 htab->tlsdesc_got. The 12 is the offset to the end of
4575 the instruction. */
4576 bfd_put_32 (output_bfd,
4577 (htab->elf.sgot->output_section->vma
4578 + htab->elf.sgot->output_offset
4579 + htab->tlsdesc_got
4580 - htab->elf.splt->output_section->vma
4581 - htab->elf.splt->output_offset
4582 - htab->tlsdesc_plt
4583 - 12),
4584 htab->elf.splt->contents + htab->tlsdesc_plt + 8);
4585 }
4586 }
4587 }
4588
4589 if (htab->elf.sgotplt)
4590 {
4591 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4592 {
4593 (*_bfd_error_handler)
4594 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4595 return FALSE;
4596 }
4597
4598 /* Fill in the first three entries in the global offset table. */
4599 if (htab->elf.sgotplt->size > 0)
4600 {
4601 /* Set the first entry in the global offset table to the address of
4602 the dynamic section. */
4603 if (sdyn == NULL)
4604 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4605 else
4606 bfd_put_64 (output_bfd,
4607 sdyn->output_section->vma + sdyn->output_offset,
4608 htab->elf.sgotplt->contents);
4609 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4610 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4611 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4612 }
4613
4614 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4615 GOT_ENTRY_SIZE;
4616 }
4617
4618 /* Adjust .eh_frame for .plt section. */
4619 if (htab->plt_eh_frame != NULL)
4620 {
4621 if (htab->elf.splt != NULL
4622 && htab->elf.splt->size != 0
4623 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
4624 && htab->elf.splt->output_section != NULL
4625 && htab->plt_eh_frame->output_section != NULL)
4626 {
4627 bfd_vma plt_start = htab->elf.splt->output_section->vma;
4628 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
4629 + htab->plt_eh_frame->output_offset
4630 + PLT_FDE_START_OFFSET;
4631 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
4632 htab->plt_eh_frame->contents
4633 + PLT_FDE_START_OFFSET);
4634 }
4635 if (htab->plt_eh_frame->sec_info_type
4636 == ELF_INFO_TYPE_EH_FRAME)
4637 {
4638 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
4639 htab->plt_eh_frame,
4640 htab->plt_eh_frame->contents))
4641 return FALSE;
4642 }
4643 }
4644
4645 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4646 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4647 = GOT_ENTRY_SIZE;
4648
4649 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4650 htab_traverse (htab->loc_hash_table,
4651 elf_x86_64_finish_local_dynamic_symbol,
4652 info);
4653
4654 return TRUE;
4655 }
4656
4657 /* Return address for Ith PLT stub in section PLT, for relocation REL
4658 or (bfd_vma) -1 if it should not be included. */
4659
4660 static bfd_vma
4661 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4662 const arelent *rel ATTRIBUTE_UNUSED)
4663 {
4664 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
4665 }
4666
4667 /* Handle an x86-64 specific section when reading an object file. This
4668 is called when elfcode.h finds a section with an unknown type. */
4669
4670 static bfd_boolean
4671 elf_x86_64_section_from_shdr (bfd *abfd,
4672 Elf_Internal_Shdr *hdr,
4673 const char *name,
4674 int shindex)
4675 {
4676 if (hdr->sh_type != SHT_X86_64_UNWIND)
4677 return FALSE;
4678
4679 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4680 return FALSE;
4681
4682 return TRUE;
4683 }
4684
4685 /* Hook called by the linker routine which adds symbols from an object
4686 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4687 of .bss. */
4688
4689 static bfd_boolean
4690 elf_x86_64_add_symbol_hook (bfd *abfd,
4691 struct bfd_link_info *info,
4692 Elf_Internal_Sym *sym,
4693 const char **namep ATTRIBUTE_UNUSED,
4694 flagword *flagsp ATTRIBUTE_UNUSED,
4695 asection **secp,
4696 bfd_vma *valp)
4697 {
4698 asection *lcomm;
4699
4700 switch (sym->st_shndx)
4701 {
4702 case SHN_X86_64_LCOMMON:
4703 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4704 if (lcomm == NULL)
4705 {
4706 lcomm = bfd_make_section_with_flags (abfd,
4707 "LARGE_COMMON",
4708 (SEC_ALLOC
4709 | SEC_IS_COMMON
4710 | SEC_LINKER_CREATED));
4711 if (lcomm == NULL)
4712 return FALSE;
4713 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4714 }
4715 *secp = lcomm;
4716 *valp = sym->st_size;
4717 return TRUE;
4718 }
4719
4720 if ((abfd->flags & DYNAMIC) == 0
4721 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4722 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
4723 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4724
4725 return TRUE;
4726 }
4727
4728
4729 /* Given a BFD section, try to locate the corresponding ELF section
4730 index. */
4731
4732 static bfd_boolean
4733 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4734 asection *sec, int *index_return)
4735 {
4736 if (sec == &_bfd_elf_large_com_section)
4737 {
4738 *index_return = SHN_X86_64_LCOMMON;
4739 return TRUE;
4740 }
4741 return FALSE;
4742 }
4743
4744 /* Process a symbol. */
4745
4746 static void
4747 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4748 asymbol *asym)
4749 {
4750 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4751
4752 switch (elfsym->internal_elf_sym.st_shndx)
4753 {
4754 case SHN_X86_64_LCOMMON:
4755 asym->section = &_bfd_elf_large_com_section;
4756 asym->value = elfsym->internal_elf_sym.st_size;
4757 /* Common symbol doesn't set BSF_GLOBAL. */
4758 asym->flags &= ~BSF_GLOBAL;
4759 break;
4760 }
4761 }
4762
4763 static bfd_boolean
4764 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
4765 {
4766 return (sym->st_shndx == SHN_COMMON
4767 || sym->st_shndx == SHN_X86_64_LCOMMON);
4768 }
4769
4770 static unsigned int
4771 elf_x86_64_common_section_index (asection *sec)
4772 {
4773 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4774 return SHN_COMMON;
4775 else
4776 return SHN_X86_64_LCOMMON;
4777 }
4778
4779 static asection *
4780 elf_x86_64_common_section (asection *sec)
4781 {
4782 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4783 return bfd_com_section_ptr;
4784 else
4785 return &_bfd_elf_large_com_section;
4786 }
4787
4788 static bfd_boolean
4789 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4790 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4791 struct elf_link_hash_entry *h,
4792 Elf_Internal_Sym *sym,
4793 asection **psec,
4794 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4795 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4796 bfd_boolean *skip ATTRIBUTE_UNUSED,
4797 bfd_boolean *override ATTRIBUTE_UNUSED,
4798 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4799 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4800 bfd_boolean *newdyn ATTRIBUTE_UNUSED,
4801 bfd_boolean *newdef,
4802 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4803 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4804 bfd *abfd ATTRIBUTE_UNUSED,
4805 asection **sec,
4806 bfd_boolean *olddyn ATTRIBUTE_UNUSED,
4807 bfd_boolean *olddef,
4808 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4809 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4810 bfd *oldbfd,
4811 asection **oldsec)
4812 {
4813 /* A normal common symbol and a large common symbol result in a
4814 normal common symbol. We turn the large common symbol into a
4815 normal one. */
4816 if (!*olddef
4817 && h->root.type == bfd_link_hash_common
4818 && !*newdef
4819 && bfd_is_com_section (*sec)
4820 && *oldsec != *sec)
4821 {
4822 if (sym->st_shndx == SHN_COMMON
4823 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4824 {
4825 h->root.u.c.p->section
4826 = bfd_make_section_old_way (oldbfd, "COMMON");
4827 h->root.u.c.p->section->flags = SEC_ALLOC;
4828 }
4829 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4830 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4831 *psec = *sec = bfd_com_section_ptr;
4832 }
4833
4834 return TRUE;
4835 }
4836
4837 static int
4838 elf_x86_64_additional_program_headers (bfd *abfd,
4839 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4840 {
4841 asection *s;
4842 int count = 0;
4843
4844 /* Check to see if we need a large readonly segment. */
4845 s = bfd_get_section_by_name (abfd, ".lrodata");
4846 if (s && (s->flags & SEC_LOAD))
4847 count++;
4848
4849 /* Check to see if we need a large data segment. Since .lbss sections
4850 is placed right after the .bss section, there should be no need for
4851 a large data segment just because of .lbss. */
4852 s = bfd_get_section_by_name (abfd, ".ldata");
4853 if (s && (s->flags & SEC_LOAD))
4854 count++;
4855
4856 return count;
4857 }
4858
4859 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4860
4861 static bfd_boolean
4862 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4863 {
4864 if (h->plt.offset != (bfd_vma) -1
4865 && !h->def_regular
4866 && !h->pointer_equality_needed)
4867 return FALSE;
4868
4869 return _bfd_elf_hash_symbol (h);
4870 }
4871
4872 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
4873
4874 static bfd_boolean
4875 elf_x86_64_relocs_compatible (const bfd_target *input,
4876 const bfd_target *output)
4877 {
4878 return ((xvec_get_elf_backend_data (input)->s->elfclass
4879 == xvec_get_elf_backend_data (output)->s->elfclass)
4880 && _bfd_elf_relocs_compatible (input, output));
4881 }
4882
4883 static const struct bfd_elf_special_section
4884 elf_x86_64_special_sections[]=
4885 {
4886 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4887 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4888 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4889 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4890 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4891 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4892 { NULL, 0, 0, 0, 0 }
4893 };
4894
4895 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4896 #define TARGET_LITTLE_NAME "elf64-x86-64"
4897 #define ELF_ARCH bfd_arch_i386
4898 #define ELF_TARGET_ID X86_64_ELF_DATA
4899 #define ELF_MACHINE_CODE EM_X86_64
4900 #define ELF_MAXPAGESIZE 0x200000
4901 #define ELF_MINPAGESIZE 0x1000
4902 #define ELF_COMMONPAGESIZE 0x1000
4903
4904 #define elf_backend_can_gc_sections 1
4905 #define elf_backend_can_refcount 1
4906 #define elf_backend_want_got_plt 1
4907 #define elf_backend_plt_readonly 1
4908 #define elf_backend_want_plt_sym 0
4909 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4910 #define elf_backend_rela_normal 1
4911 #define elf_backend_plt_alignment 4
4912
4913 #define elf_info_to_howto elf_x86_64_info_to_howto
4914
4915 #define bfd_elf64_bfd_link_hash_table_create \
4916 elf_x86_64_link_hash_table_create
4917 #define bfd_elf64_bfd_link_hash_table_free \
4918 elf_x86_64_link_hash_table_free
4919 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
4920 #define bfd_elf64_bfd_reloc_name_lookup \
4921 elf_x86_64_reloc_name_lookup
4922
4923 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
4924 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
4925 #define elf_backend_check_relocs elf_x86_64_check_relocs
4926 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
4927 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
4928 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
4929 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
4930 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
4931 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
4932 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
4933 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
4934 #ifdef CORE_HEADER
4935 #define elf_backend_write_core_note elf_x86_64_write_core_note
4936 #endif
4937 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
4938 #define elf_backend_relocate_section elf_x86_64_relocate_section
4939 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
4940 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
4941 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4942 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
4943 #define elf_backend_object_p elf64_x86_64_elf_object_p
4944 #define bfd_elf64_mkobject elf_x86_64_mkobject
4945
4946 #define elf_backend_section_from_shdr \
4947 elf_x86_64_section_from_shdr
4948
4949 #define elf_backend_section_from_bfd_section \
4950 elf_x86_64_elf_section_from_bfd_section
4951 #define elf_backend_add_symbol_hook \
4952 elf_x86_64_add_symbol_hook
4953 #define elf_backend_symbol_processing \
4954 elf_x86_64_symbol_processing
4955 #define elf_backend_common_section_index \
4956 elf_x86_64_common_section_index
4957 #define elf_backend_common_section \
4958 elf_x86_64_common_section
4959 #define elf_backend_common_definition \
4960 elf_x86_64_common_definition
4961 #define elf_backend_merge_symbol \
4962 elf_x86_64_merge_symbol
4963 #define elf_backend_special_sections \
4964 elf_x86_64_special_sections
4965 #define elf_backend_additional_program_headers \
4966 elf_x86_64_additional_program_headers
4967 #define elf_backend_hash_symbol \
4968 elf_x86_64_hash_symbol
4969
4970 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4971
4972 #include "elf64-target.h"
4973
4974 /* FreeBSD support. */
4975
4976 #undef TARGET_LITTLE_SYM
4977 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4978 #undef TARGET_LITTLE_NAME
4979 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4980
4981 #undef ELF_OSABI
4982 #define ELF_OSABI ELFOSABI_FREEBSD
4983
4984 #undef elf64_bed
4985 #define elf64_bed elf64_x86_64_fbsd_bed
4986
4987 #include "elf64-target.h"
4988
4989 /* Solaris 2 support. */
4990
4991 #undef TARGET_LITTLE_SYM
4992 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
4993 #undef TARGET_LITTLE_NAME
4994 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
4995
4996 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
4997 objects won't be recognized. */
4998 #undef ELF_OSABI
4999
5000 #undef elf64_bed
5001 #define elf64_bed elf64_x86_64_sol2_bed
5002
5003 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5004 boundary. */
5005 #undef elf_backend_static_tls_alignment
5006 #define elf_backend_static_tls_alignment 16
5007
5008 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5009
5010 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5011 File, p.63. */
5012 #undef elf_backend_want_plt_sym
5013 #define elf_backend_want_plt_sym 1
5014
5015 #include "elf64-target.h"
5016
5017 /* Intel L1OM support. */
5018
5019 static bfd_boolean
5020 elf64_l1om_elf_object_p (bfd *abfd)
5021 {
5022 /* Set the right machine number for an L1OM elf64 file. */
5023 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
5024 return TRUE;
5025 }
5026
5027 #undef TARGET_LITTLE_SYM
5028 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
5029 #undef TARGET_LITTLE_NAME
5030 #define TARGET_LITTLE_NAME "elf64-l1om"
5031 #undef ELF_ARCH
5032 #define ELF_ARCH bfd_arch_l1om
5033
5034 #undef ELF_MACHINE_CODE
5035 #define ELF_MACHINE_CODE EM_L1OM
5036
5037 #undef ELF_OSABI
5038
5039 #undef elf64_bed
5040 #define elf64_bed elf64_l1om_bed
5041
5042 #undef elf_backend_object_p
5043 #define elf_backend_object_p elf64_l1om_elf_object_p
5044
5045 #undef elf_backend_static_tls_alignment
5046
5047 #undef elf_backend_want_plt_sym
5048 #define elf_backend_want_plt_sym 0
5049
5050 #include "elf64-target.h"
5051
5052 /* FreeBSD L1OM support. */
5053
5054 #undef TARGET_LITTLE_SYM
5055 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
5056 #undef TARGET_LITTLE_NAME
5057 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
5058
5059 #undef ELF_OSABI
5060 #define ELF_OSABI ELFOSABI_FREEBSD
5061
5062 #undef elf64_bed
5063 #define elf64_bed elf64_l1om_fbsd_bed
5064
5065 #include "elf64-target.h"
5066
5067 /* Intel K1OM support. */
5068
5069 static bfd_boolean
5070 elf64_k1om_elf_object_p (bfd *abfd)
5071 {
5072 /* Set the right machine number for an K1OM elf64 file. */
5073 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
5074 return TRUE;
5075 }
5076
5077 #undef TARGET_LITTLE_SYM
5078 #define TARGET_LITTLE_SYM bfd_elf64_k1om_vec
5079 #undef TARGET_LITTLE_NAME
5080 #define TARGET_LITTLE_NAME "elf64-k1om"
5081 #undef ELF_ARCH
5082 #define ELF_ARCH bfd_arch_k1om
5083
5084 #undef ELF_MACHINE_CODE
5085 #define ELF_MACHINE_CODE EM_K1OM
5086
5087 #undef ELF_OSABI
5088
5089 #undef elf64_bed
5090 #define elf64_bed elf64_k1om_bed
5091
5092 #undef elf_backend_object_p
5093 #define elf_backend_object_p elf64_k1om_elf_object_p
5094
5095 #undef elf_backend_static_tls_alignment
5096
5097 #undef elf_backend_want_plt_sym
5098 #define elf_backend_want_plt_sym 0
5099
5100 #include "elf64-target.h"
5101
5102 /* FreeBSD K1OM support. */
5103
5104 #undef TARGET_LITTLE_SYM
5105 #define TARGET_LITTLE_SYM bfd_elf64_k1om_freebsd_vec
5106 #undef TARGET_LITTLE_NAME
5107 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
5108
5109 #undef ELF_OSABI
5110 #define ELF_OSABI ELFOSABI_FREEBSD
5111
5112 #undef elf64_bed
5113 #define elf64_bed elf64_k1om_fbsd_bed
5114
5115 #include "elf64-target.h"
5116
5117 /* 32bit x86-64 support. */
5118
5119 static bfd_boolean
5120 elf32_x86_64_elf_object_p (bfd *abfd)
5121 {
5122 /* Set the right machine number for an x86-64 elf32 file. */
5123 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
5124 return TRUE;
5125 }
5126
5127 #undef TARGET_LITTLE_SYM
5128 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
5129 #undef TARGET_LITTLE_NAME
5130 #define TARGET_LITTLE_NAME "elf32-x86-64"
5131
5132 #undef ELF_ARCH
5133 #define ELF_ARCH bfd_arch_i386
5134
5135 #undef ELF_MACHINE_CODE
5136 #define ELF_MACHINE_CODE EM_X86_64
5137
5138 #define bfd_elf32_bfd_link_hash_table_create \
5139 elf_x86_64_link_hash_table_create
5140 #define bfd_elf32_bfd_link_hash_table_free \
5141 elf_x86_64_link_hash_table_free
5142 #define bfd_elf32_bfd_reloc_type_lookup \
5143 elf_x86_64_reloc_type_lookup
5144 #define bfd_elf32_bfd_reloc_name_lookup \
5145 elf_x86_64_reloc_name_lookup
5146 #define bfd_elf32_mkobject \
5147 elf_x86_64_mkobject
5148
5149 #undef ELF_OSABI
5150
5151 #undef elf_backend_object_p
5152 #define elf_backend_object_p \
5153 elf32_x86_64_elf_object_p
5154
5155 #undef elf_backend_bfd_from_remote_memory
5156 #define elf_backend_bfd_from_remote_memory \
5157 _bfd_elf32_bfd_from_remote_memory
5158
5159 #undef elf_backend_size_info
5160 #define elf_backend_size_info \
5161 _bfd_elf32_size_info
5162
5163 #include "elf32-target.h"
This page took 0.13471 seconds and 4 git commands to generate.