*** empty log message ***
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "bfd_stdint.h"
31 #include "objalloc.h"
32 #include "hashtab.h"
33 #include "dwarf2.h"
34 #include "libiberty.h"
35
36 #include "elf/x86-64.h"
37
38 #ifdef CORE_HEADER
39 #include <stdarg.h>
40 #include CORE_HEADER
41 #endif
42
43 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
44 #define MINUS_ONE (~ (bfd_vma) 0)
45
46 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
47 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
48 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
49 since they are the same. */
50
51 #define ABI_64_P(abfd) \
52 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
53
54 /* The relocation "howto" table. Order of fields:
55 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
56 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
57 static reloc_howto_type x86_64_elf_howto_table[] =
58 {
59 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
60 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
61 FALSE),
62 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
63 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
64 FALSE),
65 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
66 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
67 TRUE),
68 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
69 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
70 FALSE),
71 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
72 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
73 TRUE),
74 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
76 FALSE),
77 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
79 MINUS_ONE, FALSE),
80 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
82 MINUS_ONE, FALSE),
83 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
84 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
85 MINUS_ONE, FALSE),
86 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
87 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
88 0xffffffff, TRUE),
89 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
90 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
91 FALSE),
92 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
93 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
94 FALSE),
95 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
97 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
99 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
100 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
101 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
103 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
105 MINUS_ONE, FALSE),
106 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
108 MINUS_ONE, FALSE),
109 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
111 MINUS_ONE, FALSE),
112 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
114 0xffffffff, TRUE),
115 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
116 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
117 0xffffffff, TRUE),
118 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
119 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
120 0xffffffff, FALSE),
121 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
122 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
123 0xffffffff, TRUE),
124 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
125 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
126 0xffffffff, FALSE),
127 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
129 TRUE),
130 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
131 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
132 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
133 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
134 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
135 FALSE, 0xffffffff, 0xffffffff, TRUE),
136 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
138 FALSE),
139 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
140 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
141 MINUS_ONE, TRUE),
142 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
143 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
144 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
145 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
146 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
147 MINUS_ONE, FALSE),
148 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
149 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
150 MINUS_ONE, FALSE),
151 EMPTY_HOWTO (32),
152 EMPTY_HOWTO (33),
153 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
154 complain_overflow_bitfield, bfd_elf_generic_reloc,
155 "R_X86_64_GOTPC32_TLSDESC",
156 FALSE, 0xffffffff, 0xffffffff, TRUE),
157 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
158 complain_overflow_dont, bfd_elf_generic_reloc,
159 "R_X86_64_TLSDESC_CALL",
160 FALSE, 0, 0, FALSE),
161 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
162 complain_overflow_bitfield, bfd_elf_generic_reloc,
163 "R_X86_64_TLSDESC",
164 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
165 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
166 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
167 MINUS_ONE, FALSE),
168 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
170 MINUS_ONE, FALSE),
171
172 /* We have a gap in the reloc numbers here.
173 R_X86_64_standard counts the number up to this point, and
174 R_X86_64_vt_offset is the value to subtract from a reloc type of
175 R_X86_64_GNU_VT* to form an index into this table. */
176 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
177 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
178
179 /* GNU extension to record C++ vtable hierarchy. */
180 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
181 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
182
183 /* GNU extension to record C++ vtable member usage. */
184 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
185 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
186 FALSE),
187
188 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
189 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
191 FALSE)
192 };
193
194 #define IS_X86_64_PCREL_TYPE(TYPE) \
195 ( ((TYPE) == R_X86_64_PC8) \
196 || ((TYPE) == R_X86_64_PC16) \
197 || ((TYPE) == R_X86_64_PC32) \
198 || ((TYPE) == R_X86_64_PC64))
199
200 /* Map BFD relocs to the x86_64 elf relocs. */
201 struct elf_reloc_map
202 {
203 bfd_reloc_code_real_type bfd_reloc_val;
204 unsigned char elf_reloc_val;
205 };
206
207 static const struct elf_reloc_map x86_64_reloc_map[] =
208 {
209 { BFD_RELOC_NONE, R_X86_64_NONE, },
210 { BFD_RELOC_64, R_X86_64_64, },
211 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
212 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
213 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
214 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
215 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
216 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
217 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
218 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
219 { BFD_RELOC_32, R_X86_64_32, },
220 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
221 { BFD_RELOC_16, R_X86_64_16, },
222 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
223 { BFD_RELOC_8, R_X86_64_8, },
224 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
225 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
226 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
227 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
228 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
229 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
230 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
231 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
232 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
233 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
234 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
235 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
236 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
237 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
238 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
239 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
240 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
241 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
242 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
243 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
244 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
245 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
246 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
247 };
248
249 static reloc_howto_type *
250 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
251 {
252 unsigned i;
253
254 if (r_type == (unsigned int) R_X86_64_32)
255 {
256 if (ABI_64_P (abfd))
257 i = r_type;
258 else
259 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
260 }
261 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
262 || r_type >= (unsigned int) R_X86_64_max)
263 {
264 if (r_type >= (unsigned int) R_X86_64_standard)
265 {
266 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
267 abfd, (int) r_type);
268 r_type = R_X86_64_NONE;
269 }
270 i = r_type;
271 }
272 else
273 i = r_type - (unsigned int) R_X86_64_vt_offset;
274 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
275 return &x86_64_elf_howto_table[i];
276 }
277
278 /* Given a BFD reloc type, return a HOWTO structure. */
279 static reloc_howto_type *
280 elf_x86_64_reloc_type_lookup (bfd *abfd,
281 bfd_reloc_code_real_type code)
282 {
283 unsigned int i;
284
285 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
286 i++)
287 {
288 if (x86_64_reloc_map[i].bfd_reloc_val == code)
289 return elf_x86_64_rtype_to_howto (abfd,
290 x86_64_reloc_map[i].elf_reloc_val);
291 }
292 return 0;
293 }
294
295 static reloc_howto_type *
296 elf_x86_64_reloc_name_lookup (bfd *abfd,
297 const char *r_name)
298 {
299 unsigned int i;
300
301 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
302 {
303 /* Get x32 R_X86_64_32. */
304 reloc_howto_type *reloc
305 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
306 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
307 return reloc;
308 }
309
310 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
311 if (x86_64_elf_howto_table[i].name != NULL
312 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
313 return &x86_64_elf_howto_table[i];
314
315 return NULL;
316 }
317
318 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
319
320 static void
321 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
322 Elf_Internal_Rela *dst)
323 {
324 unsigned r_type;
325
326 r_type = ELF32_R_TYPE (dst->r_info);
327 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
328 BFD_ASSERT (r_type == cache_ptr->howto->type);
329 }
330 \f
331 /* Support for core dump NOTE sections. */
332 static bfd_boolean
333 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
334 {
335 int offset;
336 size_t size;
337
338 switch (note->descsz)
339 {
340 default:
341 return FALSE;
342
343 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
344 /* pr_cursig */
345 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
346
347 /* pr_pid */
348 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
349
350 /* pr_reg */
351 offset = 72;
352 size = 216;
353
354 break;
355
356 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
357 /* pr_cursig */
358 elf_tdata (abfd)->core_signal
359 = bfd_get_16 (abfd, note->descdata + 12);
360
361 /* pr_pid */
362 elf_tdata (abfd)->core_lwpid
363 = bfd_get_32 (abfd, note->descdata + 32);
364
365 /* pr_reg */
366 offset = 112;
367 size = 216;
368
369 break;
370 }
371
372 /* Make a ".reg/999" section. */
373 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
374 size, note->descpos + offset);
375 }
376
377 static bfd_boolean
378 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
379 {
380 switch (note->descsz)
381 {
382 default:
383 return FALSE;
384
385 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
386 elf_tdata (abfd)->core_pid
387 = bfd_get_32 (abfd, note->descdata + 12);
388 elf_tdata (abfd)->core_program
389 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
390 elf_tdata (abfd)->core_command
391 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
392 break;
393
394 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
395 elf_tdata (abfd)->core_pid
396 = bfd_get_32 (abfd, note->descdata + 24);
397 elf_tdata (abfd)->core_program
398 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
399 elf_tdata (abfd)->core_command
400 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
401 }
402
403 /* Note that for some reason, a spurious space is tacked
404 onto the end of the args in some (at least one anyway)
405 implementations, so strip it off if it exists. */
406
407 {
408 char *command = elf_tdata (abfd)->core_command;
409 int n = strlen (command);
410
411 if (0 < n && command[n - 1] == ' ')
412 command[n - 1] = '\0';
413 }
414
415 return TRUE;
416 }
417
418 #ifdef CORE_HEADER
419 static char *
420 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
421 int note_type, ...)
422 {
423 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
424 va_list ap;
425 const char *fname, *psargs;
426 long pid;
427 int cursig;
428 const void *gregs;
429
430 switch (note_type)
431 {
432 default:
433 return NULL;
434
435 case NT_PRPSINFO:
436 va_start (ap, note_type);
437 fname = va_arg (ap, const char *);
438 psargs = va_arg (ap, const char *);
439 va_end (ap);
440
441 if (bed->s->elfclass == ELFCLASS32)
442 {
443 prpsinfo32_t data;
444 memset (&data, 0, sizeof (data));
445 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
446 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
447 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
448 &data, sizeof (data));
449 }
450 else
451 {
452 prpsinfo64_t data;
453 memset (&data, 0, sizeof (data));
454 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
455 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
456 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
457 &data, sizeof (data));
458 }
459 /* NOTREACHED */
460
461 case NT_PRSTATUS:
462 va_start (ap, note_type);
463 pid = va_arg (ap, long);
464 cursig = va_arg (ap, int);
465 gregs = va_arg (ap, const void *);
466 va_end (ap);
467
468 if (bed->s->elfclass == ELFCLASS32)
469 {
470 if (bed->elf_machine_code == EM_X86_64)
471 {
472 prstatusx32_t prstat;
473 memset (&prstat, 0, sizeof (prstat));
474 prstat.pr_pid = pid;
475 prstat.pr_cursig = cursig;
476 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
477 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
478 &prstat, sizeof (prstat));
479 }
480 else
481 {
482 prstatus32_t prstat;
483 memset (&prstat, 0, sizeof (prstat));
484 prstat.pr_pid = pid;
485 prstat.pr_cursig = cursig;
486 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
487 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
488 &prstat, sizeof (prstat));
489 }
490 }
491 else
492 {
493 prstatus64_t prstat;
494 memset (&prstat, 0, sizeof (prstat));
495 prstat.pr_pid = pid;
496 prstat.pr_cursig = cursig;
497 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
498 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
499 &prstat, sizeof (prstat));
500 }
501 }
502 /* NOTREACHED */
503 }
504 #endif
505 \f
506 /* Functions for the x86-64 ELF linker. */
507
508 /* The name of the dynamic interpreter. This is put in the .interp
509 section. */
510
511 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
512 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
513
514 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
515 copying dynamic variables from a shared lib into an app's dynbss
516 section, and instead use a dynamic relocation to point into the
517 shared lib. */
518 #define ELIMINATE_COPY_RELOCS 1
519
520 /* The size in bytes of an entry in the global offset table. */
521
522 #define GOT_ENTRY_SIZE 8
523
524 /* The size in bytes of an entry in the procedure linkage table. */
525
526 #define PLT_ENTRY_SIZE 16
527
528 /* The first entry in a procedure linkage table looks like this. See the
529 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
530
531 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
532 {
533 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
534 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
535 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
536 };
537
538 /* Subsequent entries in a procedure linkage table look like this. */
539
540 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
541 {
542 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
543 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
544 0x68, /* pushq immediate */
545 0, 0, 0, 0, /* replaced with index into relocation table. */
546 0xe9, /* jmp relative */
547 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
548 };
549
550 /* .eh_frame covering the .plt section. */
551
552 static const bfd_byte elf_x86_64_eh_frame_plt[] =
553 {
554 #define PLT_CIE_LENGTH 20
555 #define PLT_FDE_LENGTH 36
556 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
557 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
558 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
559 0, 0, 0, 0, /* CIE ID */
560 1, /* CIE version */
561 'z', 'R', 0, /* Augmentation string */
562 1, /* Code alignment factor */
563 0x78, /* Data alignment factor */
564 16, /* Return address column */
565 1, /* Augmentation size */
566 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
567 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
568 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
569 DW_CFA_nop, DW_CFA_nop,
570
571 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
572 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
573 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
574 0, 0, 0, 0, /* .plt size goes here */
575 0, /* Augmentation size */
576 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
577 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
578 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
579 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
580 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
581 11, /* Block length */
582 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
583 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
584 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
585 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
586 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
587 };
588
589 /* Architecture-specific backend data for x86-64. */
590
591 struct elf_x86_64_backend_data
592 {
593 /* Templates for the initial PLT entry and for subsequent entries. */
594 const bfd_byte *plt0_entry;
595 const bfd_byte *plt_entry;
596 unsigned int plt_entry_size; /* Size of each PLT entry. */
597
598 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
599 unsigned int plt0_got1_offset;
600 unsigned int plt0_got2_offset;
601
602 /* Offset of the end of the PC-relative instruction containing
603 plt0_got2_offset. */
604 unsigned int plt0_got2_insn_end;
605
606 /* Offsets into plt_entry that are to be replaced with... */
607 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
608 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
609 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
610
611 /* Length of the PC-relative instruction containing plt_got_offset. */
612 unsigned int plt_got_insn_size;
613
614 /* Offset of the end of the PC-relative jump to plt0_entry. */
615 unsigned int plt_plt_insn_end;
616
617 /* Offset into plt_entry where the initial value of the GOT entry points. */
618 unsigned int plt_lazy_offset;
619
620 /* .eh_frame covering the .plt section. */
621 const bfd_byte *eh_frame_plt;
622 unsigned int eh_frame_plt_size;
623 };
624
625 #define get_elf_x86_64_backend_data(abfd) \
626 ((const struct elf_x86_64_backend_data *) \
627 get_elf_backend_data (abfd)->arch_data)
628
629 #define GET_PLT_ENTRY_SIZE(abfd) \
630 get_elf_x86_64_backend_data (abfd)->plt_entry_size
631
632 /* These are the standard parameters. */
633 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
634 {
635 elf_x86_64_plt0_entry, /* plt0_entry */
636 elf_x86_64_plt_entry, /* plt_entry */
637 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
638 2, /* plt0_got1_offset */
639 8, /* plt0_got2_offset */
640 12, /* plt0_got2_insn_end */
641 2, /* plt_got_offset */
642 7, /* plt_reloc_offset */
643 12, /* plt_plt_offset */
644 6, /* plt_got_insn_size */
645 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
646 6, /* plt_lazy_offset */
647 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
648 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
649 };
650
651 #define elf_backend_arch_data &elf_x86_64_arch_bed
652
653 /* x86-64 ELF linker hash entry. */
654
655 struct elf_x86_64_link_hash_entry
656 {
657 struct elf_link_hash_entry elf;
658
659 /* Track dynamic relocs copied for this symbol. */
660 struct elf_dyn_relocs *dyn_relocs;
661
662 #define GOT_UNKNOWN 0
663 #define GOT_NORMAL 1
664 #define GOT_TLS_GD 2
665 #define GOT_TLS_IE 3
666 #define GOT_TLS_GDESC 4
667 #define GOT_TLS_GD_BOTH_P(type) \
668 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
669 #define GOT_TLS_GD_P(type) \
670 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
671 #define GOT_TLS_GDESC_P(type) \
672 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
673 #define GOT_TLS_GD_ANY_P(type) \
674 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
675 unsigned char tls_type;
676
677 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
678 starting at the end of the jump table. */
679 bfd_vma tlsdesc_got;
680 };
681
682 #define elf_x86_64_hash_entry(ent) \
683 ((struct elf_x86_64_link_hash_entry *)(ent))
684
685 struct elf_x86_64_obj_tdata
686 {
687 struct elf_obj_tdata root;
688
689 /* tls_type for each local got entry. */
690 char *local_got_tls_type;
691
692 /* GOTPLT entries for TLS descriptors. */
693 bfd_vma *local_tlsdesc_gotent;
694 };
695
696 #define elf_x86_64_tdata(abfd) \
697 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
698
699 #define elf_x86_64_local_got_tls_type(abfd) \
700 (elf_x86_64_tdata (abfd)->local_got_tls_type)
701
702 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
703 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
704
705 #define is_x86_64_elf(bfd) \
706 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
707 && elf_tdata (bfd) != NULL \
708 && elf_object_id (bfd) == X86_64_ELF_DATA)
709
710 static bfd_boolean
711 elf_x86_64_mkobject (bfd *abfd)
712 {
713 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
714 X86_64_ELF_DATA);
715 }
716
717 /* x86-64 ELF linker hash table. */
718
719 struct elf_x86_64_link_hash_table
720 {
721 struct elf_link_hash_table elf;
722
723 /* Short-cuts to get to dynamic linker sections. */
724 asection *sdynbss;
725 asection *srelbss;
726 asection *plt_eh_frame;
727
728 union
729 {
730 bfd_signed_vma refcount;
731 bfd_vma offset;
732 } tls_ld_got;
733
734 /* The amount of space used by the jump slots in the GOT. */
735 bfd_vma sgotplt_jump_table_size;
736
737 /* Small local sym cache. */
738 struct sym_cache sym_cache;
739
740 bfd_vma (*r_info) (bfd_vma, bfd_vma);
741 bfd_vma (*r_sym) (bfd_vma);
742 unsigned int pointer_r_type;
743 const char *dynamic_interpreter;
744 int dynamic_interpreter_size;
745
746 /* _TLS_MODULE_BASE_ symbol. */
747 struct bfd_link_hash_entry *tls_module_base;
748
749 /* Used by local STT_GNU_IFUNC symbols. */
750 htab_t loc_hash_table;
751 void * loc_hash_memory;
752
753 /* The offset into splt of the PLT entry for the TLS descriptor
754 resolver. Special values are 0, if not necessary (or not found
755 to be necessary yet), and -1 if needed but not determined
756 yet. */
757 bfd_vma tlsdesc_plt;
758 /* The offset into sgot of the GOT entry used by the PLT entry
759 above. */
760 bfd_vma tlsdesc_got;
761
762 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
763 bfd_vma next_jump_slot_index;
764 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
765 bfd_vma next_irelative_index;
766 };
767
768 /* Get the x86-64 ELF linker hash table from a link_info structure. */
769
770 #define elf_x86_64_hash_table(p) \
771 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
772 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
773
774 #define elf_x86_64_compute_jump_table_size(htab) \
775 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
776
777 /* Create an entry in an x86-64 ELF linker hash table. */
778
779 static struct bfd_hash_entry *
780 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
781 struct bfd_hash_table *table,
782 const char *string)
783 {
784 /* Allocate the structure if it has not already been allocated by a
785 subclass. */
786 if (entry == NULL)
787 {
788 entry = (struct bfd_hash_entry *)
789 bfd_hash_allocate (table,
790 sizeof (struct elf_x86_64_link_hash_entry));
791 if (entry == NULL)
792 return entry;
793 }
794
795 /* Call the allocation method of the superclass. */
796 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
797 if (entry != NULL)
798 {
799 struct elf_x86_64_link_hash_entry *eh;
800
801 eh = (struct elf_x86_64_link_hash_entry *) entry;
802 eh->dyn_relocs = NULL;
803 eh->tls_type = GOT_UNKNOWN;
804 eh->tlsdesc_got = (bfd_vma) -1;
805 }
806
807 return entry;
808 }
809
810 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
811 for local symbol so that we can handle local STT_GNU_IFUNC symbols
812 as global symbol. We reuse indx and dynstr_index for local symbol
813 hash since they aren't used by global symbols in this backend. */
814
815 static hashval_t
816 elf_x86_64_local_htab_hash (const void *ptr)
817 {
818 struct elf_link_hash_entry *h
819 = (struct elf_link_hash_entry *) ptr;
820 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
821 }
822
823 /* Compare local hash entries. */
824
825 static int
826 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
827 {
828 struct elf_link_hash_entry *h1
829 = (struct elf_link_hash_entry *) ptr1;
830 struct elf_link_hash_entry *h2
831 = (struct elf_link_hash_entry *) ptr2;
832
833 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
834 }
835
836 /* Find and/or create a hash entry for local symbol. */
837
838 static struct elf_link_hash_entry *
839 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
840 bfd *abfd, const Elf_Internal_Rela *rel,
841 bfd_boolean create)
842 {
843 struct elf_x86_64_link_hash_entry e, *ret;
844 asection *sec = abfd->sections;
845 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
846 htab->r_sym (rel->r_info));
847 void **slot;
848
849 e.elf.indx = sec->id;
850 e.elf.dynstr_index = htab->r_sym (rel->r_info);
851 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
852 create ? INSERT : NO_INSERT);
853
854 if (!slot)
855 return NULL;
856
857 if (*slot)
858 {
859 ret = (struct elf_x86_64_link_hash_entry *) *slot;
860 return &ret->elf;
861 }
862
863 ret = (struct elf_x86_64_link_hash_entry *)
864 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
865 sizeof (struct elf_x86_64_link_hash_entry));
866 if (ret)
867 {
868 memset (ret, 0, sizeof (*ret));
869 ret->elf.indx = sec->id;
870 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
871 ret->elf.dynindx = -1;
872 *slot = ret;
873 }
874 return &ret->elf;
875 }
876
877 /* Create an X86-64 ELF linker hash table. */
878
879 static struct bfd_link_hash_table *
880 elf_x86_64_link_hash_table_create (bfd *abfd)
881 {
882 struct elf_x86_64_link_hash_table *ret;
883 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
884
885 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
886 if (ret == NULL)
887 return NULL;
888
889 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
890 elf_x86_64_link_hash_newfunc,
891 sizeof (struct elf_x86_64_link_hash_entry),
892 X86_64_ELF_DATA))
893 {
894 free (ret);
895 return NULL;
896 }
897
898 ret->sdynbss = NULL;
899 ret->srelbss = NULL;
900 ret->plt_eh_frame = NULL;
901 ret->sym_cache.abfd = NULL;
902 ret->tlsdesc_plt = 0;
903 ret->tlsdesc_got = 0;
904 ret->tls_ld_got.refcount = 0;
905 ret->sgotplt_jump_table_size = 0;
906 ret->tls_module_base = NULL;
907 ret->next_jump_slot_index = 0;
908 ret->next_irelative_index = 0;
909
910 if (ABI_64_P (abfd))
911 {
912 ret->r_info = elf64_r_info;
913 ret->r_sym = elf64_r_sym;
914 ret->pointer_r_type = R_X86_64_64;
915 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
916 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
917 }
918 else
919 {
920 ret->r_info = elf32_r_info;
921 ret->r_sym = elf32_r_sym;
922 ret->pointer_r_type = R_X86_64_32;
923 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
924 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
925 }
926
927 ret->loc_hash_table = htab_try_create (1024,
928 elf_x86_64_local_htab_hash,
929 elf_x86_64_local_htab_eq,
930 NULL);
931 ret->loc_hash_memory = objalloc_create ();
932 if (!ret->loc_hash_table || !ret->loc_hash_memory)
933 {
934 free (ret);
935 return NULL;
936 }
937
938 return &ret->elf.root;
939 }
940
941 /* Destroy an X86-64 ELF linker hash table. */
942
943 static void
944 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
945 {
946 struct elf_x86_64_link_hash_table *htab
947 = (struct elf_x86_64_link_hash_table *) hash;
948
949 if (htab->loc_hash_table)
950 htab_delete (htab->loc_hash_table);
951 if (htab->loc_hash_memory)
952 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
953 _bfd_generic_link_hash_table_free (hash);
954 }
955
956 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
957 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
958 hash table. */
959
960 static bfd_boolean
961 elf_x86_64_create_dynamic_sections (bfd *dynobj,
962 struct bfd_link_info *info)
963 {
964 struct elf_x86_64_link_hash_table *htab;
965
966 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
967 return FALSE;
968
969 htab = elf_x86_64_hash_table (info);
970 if (htab == NULL)
971 return FALSE;
972
973 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
974 if (!info->shared)
975 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
976
977 if (!htab->sdynbss
978 || (!info->shared && !htab->srelbss))
979 abort ();
980
981 if (!info->no_ld_generated_unwind_info
982 && htab->plt_eh_frame == NULL
983 && htab->elf.splt != NULL)
984 {
985 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
986 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
987 | SEC_LINKER_CREATED);
988 htab->plt_eh_frame
989 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
990 if (htab->plt_eh_frame == NULL
991 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
992 return FALSE;
993 }
994 return TRUE;
995 }
996
997 /* Copy the extra info we tack onto an elf_link_hash_entry. */
998
999 static void
1000 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1001 struct elf_link_hash_entry *dir,
1002 struct elf_link_hash_entry *ind)
1003 {
1004 struct elf_x86_64_link_hash_entry *edir, *eind;
1005
1006 edir = (struct elf_x86_64_link_hash_entry *) dir;
1007 eind = (struct elf_x86_64_link_hash_entry *) ind;
1008
1009 if (eind->dyn_relocs != NULL)
1010 {
1011 if (edir->dyn_relocs != NULL)
1012 {
1013 struct elf_dyn_relocs **pp;
1014 struct elf_dyn_relocs *p;
1015
1016 /* Add reloc counts against the indirect sym to the direct sym
1017 list. Merge any entries against the same section. */
1018 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1019 {
1020 struct elf_dyn_relocs *q;
1021
1022 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1023 if (q->sec == p->sec)
1024 {
1025 q->pc_count += p->pc_count;
1026 q->count += p->count;
1027 *pp = p->next;
1028 break;
1029 }
1030 if (q == NULL)
1031 pp = &p->next;
1032 }
1033 *pp = edir->dyn_relocs;
1034 }
1035
1036 edir->dyn_relocs = eind->dyn_relocs;
1037 eind->dyn_relocs = NULL;
1038 }
1039
1040 if (ind->root.type == bfd_link_hash_indirect
1041 && dir->got.refcount <= 0)
1042 {
1043 edir->tls_type = eind->tls_type;
1044 eind->tls_type = GOT_UNKNOWN;
1045 }
1046
1047 if (ELIMINATE_COPY_RELOCS
1048 && ind->root.type != bfd_link_hash_indirect
1049 && dir->dynamic_adjusted)
1050 {
1051 /* If called to transfer flags for a weakdef during processing
1052 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1053 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1054 dir->ref_dynamic |= ind->ref_dynamic;
1055 dir->ref_regular |= ind->ref_regular;
1056 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1057 dir->needs_plt |= ind->needs_plt;
1058 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1059 }
1060 else
1061 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1062 }
1063
1064 static bfd_boolean
1065 elf64_x86_64_elf_object_p (bfd *abfd)
1066 {
1067 /* Set the right machine number for an x86-64 elf64 file. */
1068 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1069 return TRUE;
1070 }
1071
1072 static bfd_boolean
1073 elf32_x86_64_elf_object_p (bfd *abfd)
1074 {
1075 /* Set the right machine number for an x86-64 elf32 file. */
1076 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1077 return TRUE;
1078 }
1079
1080 /* Return TRUE if the TLS access code sequence support transition
1081 from R_TYPE. */
1082
1083 static bfd_boolean
1084 elf_x86_64_check_tls_transition (bfd *abfd,
1085 struct bfd_link_info *info,
1086 asection *sec,
1087 bfd_byte *contents,
1088 Elf_Internal_Shdr *symtab_hdr,
1089 struct elf_link_hash_entry **sym_hashes,
1090 unsigned int r_type,
1091 const Elf_Internal_Rela *rel,
1092 const Elf_Internal_Rela *relend)
1093 {
1094 unsigned int val;
1095 unsigned long r_symndx;
1096 struct elf_link_hash_entry *h;
1097 bfd_vma offset;
1098 struct elf_x86_64_link_hash_table *htab;
1099
1100 /* Get the section contents. */
1101 if (contents == NULL)
1102 {
1103 if (elf_section_data (sec)->this_hdr.contents != NULL)
1104 contents = elf_section_data (sec)->this_hdr.contents;
1105 else
1106 {
1107 /* FIXME: How to better handle error condition? */
1108 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1109 return FALSE;
1110
1111 /* Cache the section contents for elf_link_input_bfd. */
1112 elf_section_data (sec)->this_hdr.contents = contents;
1113 }
1114 }
1115
1116 htab = elf_x86_64_hash_table (info);
1117 offset = rel->r_offset;
1118 switch (r_type)
1119 {
1120 case R_X86_64_TLSGD:
1121 case R_X86_64_TLSLD:
1122 if ((rel + 1) >= relend)
1123 return FALSE;
1124
1125 if (r_type == R_X86_64_TLSGD)
1126 {
1127 /* Check transition from GD access model. For 64bit, only
1128 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1129 .word 0x6666; rex64; call __tls_get_addr
1130 can transit to different access model. For 32bit, only
1131 leaq foo@tlsgd(%rip), %rdi
1132 .word 0x6666; rex64; call __tls_get_addr
1133 can transit to different access model. */
1134
1135 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1136 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1137
1138 if ((offset + 12) > sec->size
1139 || memcmp (contents + offset + 4, call, 4) != 0)
1140 return FALSE;
1141
1142 if (ABI_64_P (abfd))
1143 {
1144 if (offset < 4
1145 || memcmp (contents + offset - 4, leaq, 4) != 0)
1146 return FALSE;
1147 }
1148 else
1149 {
1150 if (offset < 3
1151 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1152 return FALSE;
1153 }
1154 }
1155 else
1156 {
1157 /* Check transition from LD access model. Only
1158 leaq foo@tlsld(%rip), %rdi;
1159 call __tls_get_addr
1160 can transit to different access model. */
1161
1162 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1163
1164 if (offset < 3 || (offset + 9) > sec->size)
1165 return FALSE;
1166
1167 if (memcmp (contents + offset - 3, lea, 3) != 0
1168 || 0xe8 != *(contents + offset + 4))
1169 return FALSE;
1170 }
1171
1172 r_symndx = htab->r_sym (rel[1].r_info);
1173 if (r_symndx < symtab_hdr->sh_info)
1174 return FALSE;
1175
1176 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1177 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1178 may be versioned. */
1179 return (h != NULL
1180 && h->root.root.string != NULL
1181 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1182 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
1183 && (strncmp (h->root.root.string,
1184 "__tls_get_addr", 14) == 0));
1185
1186 case R_X86_64_GOTTPOFF:
1187 /* Check transition from IE access model:
1188 mov foo@gottpoff(%rip), %reg
1189 add foo@gottpoff(%rip), %reg
1190 */
1191
1192 /* Check REX prefix first. */
1193 if (offset >= 3 && (offset + 4) <= sec->size)
1194 {
1195 val = bfd_get_8 (abfd, contents + offset - 3);
1196 if (val != 0x48 && val != 0x4c)
1197 {
1198 /* X32 may have 0x44 REX prefix or no REX prefix. */
1199 if (ABI_64_P (abfd))
1200 return FALSE;
1201 }
1202 }
1203 else
1204 {
1205 /* X32 may not have any REX prefix. */
1206 if (ABI_64_P (abfd))
1207 return FALSE;
1208 if (offset < 2 || (offset + 3) > sec->size)
1209 return FALSE;
1210 }
1211
1212 val = bfd_get_8 (abfd, contents + offset - 2);
1213 if (val != 0x8b && val != 0x03)
1214 return FALSE;
1215
1216 val = bfd_get_8 (abfd, contents + offset - 1);
1217 return (val & 0xc7) == 5;
1218
1219 case R_X86_64_GOTPC32_TLSDESC:
1220 /* Check transition from GDesc access model:
1221 leaq x@tlsdesc(%rip), %rax
1222
1223 Make sure it's a leaq adding rip to a 32-bit offset
1224 into any register, although it's probably almost always
1225 going to be rax. */
1226
1227 if (offset < 3 || (offset + 4) > sec->size)
1228 return FALSE;
1229
1230 val = bfd_get_8 (abfd, contents + offset - 3);
1231 if ((val & 0xfb) != 0x48)
1232 return FALSE;
1233
1234 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1235 return FALSE;
1236
1237 val = bfd_get_8 (abfd, contents + offset - 1);
1238 return (val & 0xc7) == 0x05;
1239
1240 case R_X86_64_TLSDESC_CALL:
1241 /* Check transition from GDesc access model:
1242 call *x@tlsdesc(%rax)
1243 */
1244 if (offset + 2 <= sec->size)
1245 {
1246 /* Make sure that it's a call *x@tlsdesc(%rax). */
1247 static const unsigned char call[] = { 0xff, 0x10 };
1248 return memcmp (contents + offset, call, 2) == 0;
1249 }
1250
1251 return FALSE;
1252
1253 default:
1254 abort ();
1255 }
1256 }
1257
1258 /* Return TRUE if the TLS access transition is OK or no transition
1259 will be performed. Update R_TYPE if there is a transition. */
1260
1261 static bfd_boolean
1262 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1263 asection *sec, bfd_byte *contents,
1264 Elf_Internal_Shdr *symtab_hdr,
1265 struct elf_link_hash_entry **sym_hashes,
1266 unsigned int *r_type, int tls_type,
1267 const Elf_Internal_Rela *rel,
1268 const Elf_Internal_Rela *relend,
1269 struct elf_link_hash_entry *h,
1270 unsigned long r_symndx)
1271 {
1272 unsigned int from_type = *r_type;
1273 unsigned int to_type = from_type;
1274 bfd_boolean check = TRUE;
1275
1276 /* Skip TLS transition for functions. */
1277 if (h != NULL
1278 && (h->type == STT_FUNC
1279 || h->type == STT_GNU_IFUNC))
1280 return TRUE;
1281
1282 switch (from_type)
1283 {
1284 case R_X86_64_TLSGD:
1285 case R_X86_64_GOTPC32_TLSDESC:
1286 case R_X86_64_TLSDESC_CALL:
1287 case R_X86_64_GOTTPOFF:
1288 if (info->executable)
1289 {
1290 if (h == NULL)
1291 to_type = R_X86_64_TPOFF32;
1292 else
1293 to_type = R_X86_64_GOTTPOFF;
1294 }
1295
1296 /* When we are called from elf_x86_64_relocate_section,
1297 CONTENTS isn't NULL and there may be additional transitions
1298 based on TLS_TYPE. */
1299 if (contents != NULL)
1300 {
1301 unsigned int new_to_type = to_type;
1302
1303 if (info->executable
1304 && h != NULL
1305 && h->dynindx == -1
1306 && tls_type == GOT_TLS_IE)
1307 new_to_type = R_X86_64_TPOFF32;
1308
1309 if (to_type == R_X86_64_TLSGD
1310 || to_type == R_X86_64_GOTPC32_TLSDESC
1311 || to_type == R_X86_64_TLSDESC_CALL)
1312 {
1313 if (tls_type == GOT_TLS_IE)
1314 new_to_type = R_X86_64_GOTTPOFF;
1315 }
1316
1317 /* We checked the transition before when we were called from
1318 elf_x86_64_check_relocs. We only want to check the new
1319 transition which hasn't been checked before. */
1320 check = new_to_type != to_type && from_type == to_type;
1321 to_type = new_to_type;
1322 }
1323
1324 break;
1325
1326 case R_X86_64_TLSLD:
1327 if (info->executable)
1328 to_type = R_X86_64_TPOFF32;
1329 break;
1330
1331 default:
1332 return TRUE;
1333 }
1334
1335 /* Return TRUE if there is no transition. */
1336 if (from_type == to_type)
1337 return TRUE;
1338
1339 /* Check if the transition can be performed. */
1340 if (check
1341 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1342 symtab_hdr, sym_hashes,
1343 from_type, rel, relend))
1344 {
1345 reloc_howto_type *from, *to;
1346 const char *name;
1347
1348 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1349 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1350
1351 if (h)
1352 name = h->root.root.string;
1353 else
1354 {
1355 struct elf_x86_64_link_hash_table *htab;
1356
1357 htab = elf_x86_64_hash_table (info);
1358 if (htab == NULL)
1359 name = "*unknown*";
1360 else
1361 {
1362 Elf_Internal_Sym *isym;
1363
1364 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1365 abfd, r_symndx);
1366 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1367 }
1368 }
1369
1370 (*_bfd_error_handler)
1371 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1372 "in section `%A' failed"),
1373 abfd, sec, from->name, to->name, name,
1374 (unsigned long) rel->r_offset);
1375 bfd_set_error (bfd_error_bad_value);
1376 return FALSE;
1377 }
1378
1379 *r_type = to_type;
1380 return TRUE;
1381 }
1382
1383 /* Look through the relocs for a section during the first phase, and
1384 calculate needed space in the global offset table, procedure
1385 linkage table, and dynamic reloc sections. */
1386
1387 static bfd_boolean
1388 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1389 asection *sec,
1390 const Elf_Internal_Rela *relocs)
1391 {
1392 struct elf_x86_64_link_hash_table *htab;
1393 Elf_Internal_Shdr *symtab_hdr;
1394 struct elf_link_hash_entry **sym_hashes;
1395 const Elf_Internal_Rela *rel;
1396 const Elf_Internal_Rela *rel_end;
1397 asection *sreloc;
1398
1399 if (info->relocatable)
1400 return TRUE;
1401
1402 BFD_ASSERT (is_x86_64_elf (abfd));
1403
1404 htab = elf_x86_64_hash_table (info);
1405 if (htab == NULL)
1406 return FALSE;
1407
1408 symtab_hdr = &elf_symtab_hdr (abfd);
1409 sym_hashes = elf_sym_hashes (abfd);
1410
1411 sreloc = NULL;
1412
1413 rel_end = relocs + sec->reloc_count;
1414 for (rel = relocs; rel < rel_end; rel++)
1415 {
1416 unsigned int r_type;
1417 unsigned long r_symndx;
1418 struct elf_link_hash_entry *h;
1419 Elf_Internal_Sym *isym;
1420 const char *name;
1421
1422 r_symndx = htab->r_sym (rel->r_info);
1423 r_type = ELF32_R_TYPE (rel->r_info);
1424
1425 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1426 {
1427 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1428 abfd, r_symndx);
1429 return FALSE;
1430 }
1431
1432 if (r_symndx < symtab_hdr->sh_info)
1433 {
1434 /* A local symbol. */
1435 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1436 abfd, r_symndx);
1437 if (isym == NULL)
1438 return FALSE;
1439
1440 /* Check relocation against local STT_GNU_IFUNC symbol. */
1441 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1442 {
1443 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1444 TRUE);
1445 if (h == NULL)
1446 return FALSE;
1447
1448 /* Fake a STT_GNU_IFUNC symbol. */
1449 h->type = STT_GNU_IFUNC;
1450 h->def_regular = 1;
1451 h->ref_regular = 1;
1452 h->forced_local = 1;
1453 h->root.type = bfd_link_hash_defined;
1454 }
1455 else
1456 h = NULL;
1457 }
1458 else
1459 {
1460 isym = NULL;
1461 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1462 while (h->root.type == bfd_link_hash_indirect
1463 || h->root.type == bfd_link_hash_warning)
1464 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1465 }
1466
1467 /* Check invalid x32 relocations. */
1468 if (!ABI_64_P (abfd))
1469 switch (r_type)
1470 {
1471 default:
1472 break;
1473
1474 case R_X86_64_DTPOFF64:
1475 case R_X86_64_TPOFF64:
1476 case R_X86_64_PC64:
1477 case R_X86_64_GOTOFF64:
1478 case R_X86_64_GOT64:
1479 case R_X86_64_GOTPCREL64:
1480 case R_X86_64_GOTPC64:
1481 case R_X86_64_GOTPLT64:
1482 case R_X86_64_PLTOFF64:
1483 {
1484 if (h)
1485 name = h->root.root.string;
1486 else
1487 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1488 NULL);
1489 (*_bfd_error_handler)
1490 (_("%B: relocation %s against symbol `%s' isn't "
1491 "supported in x32 mode"), abfd,
1492 x86_64_elf_howto_table[r_type].name, name);
1493 bfd_set_error (bfd_error_bad_value);
1494 return FALSE;
1495 }
1496 break;
1497 }
1498
1499 if (h != NULL)
1500 {
1501 /* Create the ifunc sections for static executables. If we
1502 never see an indirect function symbol nor we are building
1503 a static executable, those sections will be empty and
1504 won't appear in output. */
1505 switch (r_type)
1506 {
1507 default:
1508 break;
1509
1510 case R_X86_64_32S:
1511 case R_X86_64_32:
1512 case R_X86_64_64:
1513 case R_X86_64_PC32:
1514 case R_X86_64_PC64:
1515 case R_X86_64_PLT32:
1516 case R_X86_64_GOTPCREL:
1517 case R_X86_64_GOTPCREL64:
1518 if (htab->elf.dynobj == NULL)
1519 htab->elf.dynobj = abfd;
1520 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1521 return FALSE;
1522 break;
1523 }
1524
1525 /* It is referenced by a non-shared object. */
1526 h->ref_regular = 1;
1527 }
1528
1529 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1530 symtab_hdr, sym_hashes,
1531 &r_type, GOT_UNKNOWN,
1532 rel, rel_end, h, r_symndx))
1533 return FALSE;
1534
1535 switch (r_type)
1536 {
1537 case R_X86_64_TLSLD:
1538 htab->tls_ld_got.refcount += 1;
1539 goto create_got;
1540
1541 case R_X86_64_TPOFF32:
1542 if (!info->executable && ABI_64_P (abfd))
1543 {
1544 if (h)
1545 name = h->root.root.string;
1546 else
1547 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1548 NULL);
1549 (*_bfd_error_handler)
1550 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1551 abfd,
1552 x86_64_elf_howto_table[r_type].name, name);
1553 bfd_set_error (bfd_error_bad_value);
1554 return FALSE;
1555 }
1556 break;
1557
1558 case R_X86_64_GOTTPOFF:
1559 if (!info->executable)
1560 info->flags |= DF_STATIC_TLS;
1561 /* Fall through */
1562
1563 case R_X86_64_GOT32:
1564 case R_X86_64_GOTPCREL:
1565 case R_X86_64_TLSGD:
1566 case R_X86_64_GOT64:
1567 case R_X86_64_GOTPCREL64:
1568 case R_X86_64_GOTPLT64:
1569 case R_X86_64_GOTPC32_TLSDESC:
1570 case R_X86_64_TLSDESC_CALL:
1571 /* This symbol requires a global offset table entry. */
1572 {
1573 int tls_type, old_tls_type;
1574
1575 switch (r_type)
1576 {
1577 default: tls_type = GOT_NORMAL; break;
1578 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1579 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1580 case R_X86_64_GOTPC32_TLSDESC:
1581 case R_X86_64_TLSDESC_CALL:
1582 tls_type = GOT_TLS_GDESC; break;
1583 }
1584
1585 if (h != NULL)
1586 {
1587 if (r_type == R_X86_64_GOTPLT64)
1588 {
1589 /* This relocation indicates that we also need
1590 a PLT entry, as this is a function. We don't need
1591 a PLT entry for local symbols. */
1592 h->needs_plt = 1;
1593 h->plt.refcount += 1;
1594 }
1595 h->got.refcount += 1;
1596 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1597 }
1598 else
1599 {
1600 bfd_signed_vma *local_got_refcounts;
1601
1602 /* This is a global offset table entry for a local symbol. */
1603 local_got_refcounts = elf_local_got_refcounts (abfd);
1604 if (local_got_refcounts == NULL)
1605 {
1606 bfd_size_type size;
1607
1608 size = symtab_hdr->sh_info;
1609 size *= sizeof (bfd_signed_vma)
1610 + sizeof (bfd_vma) + sizeof (char);
1611 local_got_refcounts = ((bfd_signed_vma *)
1612 bfd_zalloc (abfd, size));
1613 if (local_got_refcounts == NULL)
1614 return FALSE;
1615 elf_local_got_refcounts (abfd) = local_got_refcounts;
1616 elf_x86_64_local_tlsdesc_gotent (abfd)
1617 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1618 elf_x86_64_local_got_tls_type (abfd)
1619 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1620 }
1621 local_got_refcounts[r_symndx] += 1;
1622 old_tls_type
1623 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1624 }
1625
1626 /* If a TLS symbol is accessed using IE at least once,
1627 there is no point to use dynamic model for it. */
1628 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1629 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1630 || tls_type != GOT_TLS_IE))
1631 {
1632 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1633 tls_type = old_tls_type;
1634 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1635 && GOT_TLS_GD_ANY_P (tls_type))
1636 tls_type |= old_tls_type;
1637 else
1638 {
1639 if (h)
1640 name = h->root.root.string;
1641 else
1642 name = bfd_elf_sym_name (abfd, symtab_hdr,
1643 isym, NULL);
1644 (*_bfd_error_handler)
1645 (_("%B: '%s' accessed both as normal and thread local symbol"),
1646 abfd, name);
1647 return FALSE;
1648 }
1649 }
1650
1651 if (old_tls_type != tls_type)
1652 {
1653 if (h != NULL)
1654 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1655 else
1656 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1657 }
1658 }
1659 /* Fall through */
1660
1661 case R_X86_64_GOTOFF64:
1662 case R_X86_64_GOTPC32:
1663 case R_X86_64_GOTPC64:
1664 create_got:
1665 if (htab->elf.sgot == NULL)
1666 {
1667 if (htab->elf.dynobj == NULL)
1668 htab->elf.dynobj = abfd;
1669 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1670 info))
1671 return FALSE;
1672 }
1673 break;
1674
1675 case R_X86_64_PLT32:
1676 /* This symbol requires a procedure linkage table entry. We
1677 actually build the entry in adjust_dynamic_symbol,
1678 because this might be a case of linking PIC code which is
1679 never referenced by a dynamic object, in which case we
1680 don't need to generate a procedure linkage table entry
1681 after all. */
1682
1683 /* If this is a local symbol, we resolve it directly without
1684 creating a procedure linkage table entry. */
1685 if (h == NULL)
1686 continue;
1687
1688 h->needs_plt = 1;
1689 h->plt.refcount += 1;
1690 break;
1691
1692 case R_X86_64_PLTOFF64:
1693 /* This tries to form the 'address' of a function relative
1694 to GOT. For global symbols we need a PLT entry. */
1695 if (h != NULL)
1696 {
1697 h->needs_plt = 1;
1698 h->plt.refcount += 1;
1699 }
1700 goto create_got;
1701
1702 case R_X86_64_32:
1703 if (!ABI_64_P (abfd))
1704 goto pointer;
1705 case R_X86_64_8:
1706 case R_X86_64_16:
1707 case R_X86_64_32S:
1708 /* Let's help debug shared library creation. These relocs
1709 cannot be used in shared libs. Don't error out for
1710 sections we don't care about, such as debug sections or
1711 non-constant sections. */
1712 if (info->shared
1713 && (sec->flags & SEC_ALLOC) != 0
1714 && (sec->flags & SEC_READONLY) != 0)
1715 {
1716 if (h)
1717 name = h->root.root.string;
1718 else
1719 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1720 (*_bfd_error_handler)
1721 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1722 abfd, x86_64_elf_howto_table[r_type].name, name);
1723 bfd_set_error (bfd_error_bad_value);
1724 return FALSE;
1725 }
1726 /* Fall through. */
1727
1728 case R_X86_64_PC8:
1729 case R_X86_64_PC16:
1730 case R_X86_64_PC32:
1731 case R_X86_64_PC64:
1732 case R_X86_64_64:
1733 pointer:
1734 if (h != NULL && info->executable)
1735 {
1736 /* If this reloc is in a read-only section, we might
1737 need a copy reloc. We can't check reliably at this
1738 stage whether the section is read-only, as input
1739 sections have not yet been mapped to output sections.
1740 Tentatively set the flag for now, and correct in
1741 adjust_dynamic_symbol. */
1742 h->non_got_ref = 1;
1743
1744 /* We may need a .plt entry if the function this reloc
1745 refers to is in a shared lib. */
1746 h->plt.refcount += 1;
1747 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1748 h->pointer_equality_needed = 1;
1749 }
1750
1751 /* If we are creating a shared library, and this is a reloc
1752 against a global symbol, or a non PC relative reloc
1753 against a local symbol, then we need to copy the reloc
1754 into the shared library. However, if we are linking with
1755 -Bsymbolic, we do not need to copy a reloc against a
1756 global symbol which is defined in an object we are
1757 including in the link (i.e., DEF_REGULAR is set). At
1758 this point we have not seen all the input files, so it is
1759 possible that DEF_REGULAR is not set now but will be set
1760 later (it is never cleared). In case of a weak definition,
1761 DEF_REGULAR may be cleared later by a strong definition in
1762 a shared library. We account for that possibility below by
1763 storing information in the relocs_copied field of the hash
1764 table entry. A similar situation occurs when creating
1765 shared libraries and symbol visibility changes render the
1766 symbol local.
1767
1768 If on the other hand, we are creating an executable, we
1769 may need to keep relocations for symbols satisfied by a
1770 dynamic library if we manage to avoid copy relocs for the
1771 symbol. */
1772 if ((info->shared
1773 && (sec->flags & SEC_ALLOC) != 0
1774 && (! IS_X86_64_PCREL_TYPE (r_type)
1775 || (h != NULL
1776 && (! SYMBOLIC_BIND (info, h)
1777 || h->root.type == bfd_link_hash_defweak
1778 || !h->def_regular))))
1779 || (ELIMINATE_COPY_RELOCS
1780 && !info->shared
1781 && (sec->flags & SEC_ALLOC) != 0
1782 && h != NULL
1783 && (h->root.type == bfd_link_hash_defweak
1784 || !h->def_regular)))
1785 {
1786 struct elf_dyn_relocs *p;
1787 struct elf_dyn_relocs **head;
1788
1789 /* We must copy these reloc types into the output file.
1790 Create a reloc section in dynobj and make room for
1791 this reloc. */
1792 if (sreloc == NULL)
1793 {
1794 if (htab->elf.dynobj == NULL)
1795 htab->elf.dynobj = abfd;
1796
1797 sreloc = _bfd_elf_make_dynamic_reloc_section
1798 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1799 abfd, /*rela?*/ TRUE);
1800
1801 if (sreloc == NULL)
1802 return FALSE;
1803 }
1804
1805 /* If this is a global symbol, we count the number of
1806 relocations we need for this symbol. */
1807 if (h != NULL)
1808 {
1809 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1810 }
1811 else
1812 {
1813 /* Track dynamic relocs needed for local syms too.
1814 We really need local syms available to do this
1815 easily. Oh well. */
1816 asection *s;
1817 void **vpp;
1818
1819 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1820 abfd, r_symndx);
1821 if (isym == NULL)
1822 return FALSE;
1823
1824 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1825 if (s == NULL)
1826 s = sec;
1827
1828 /* Beware of type punned pointers vs strict aliasing
1829 rules. */
1830 vpp = &(elf_section_data (s)->local_dynrel);
1831 head = (struct elf_dyn_relocs **)vpp;
1832 }
1833
1834 p = *head;
1835 if (p == NULL || p->sec != sec)
1836 {
1837 bfd_size_type amt = sizeof *p;
1838
1839 p = ((struct elf_dyn_relocs *)
1840 bfd_alloc (htab->elf.dynobj, amt));
1841 if (p == NULL)
1842 return FALSE;
1843 p->next = *head;
1844 *head = p;
1845 p->sec = sec;
1846 p->count = 0;
1847 p->pc_count = 0;
1848 }
1849
1850 p->count += 1;
1851 if (IS_X86_64_PCREL_TYPE (r_type))
1852 p->pc_count += 1;
1853 }
1854 break;
1855
1856 /* This relocation describes the C++ object vtable hierarchy.
1857 Reconstruct it for later use during GC. */
1858 case R_X86_64_GNU_VTINHERIT:
1859 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1860 return FALSE;
1861 break;
1862
1863 /* This relocation describes which C++ vtable entries are actually
1864 used. Record for later use during GC. */
1865 case R_X86_64_GNU_VTENTRY:
1866 BFD_ASSERT (h != NULL);
1867 if (h != NULL
1868 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1869 return FALSE;
1870 break;
1871
1872 default:
1873 break;
1874 }
1875 }
1876
1877 return TRUE;
1878 }
1879
1880 /* Return the section that should be marked against GC for a given
1881 relocation. */
1882
1883 static asection *
1884 elf_x86_64_gc_mark_hook (asection *sec,
1885 struct bfd_link_info *info,
1886 Elf_Internal_Rela *rel,
1887 struct elf_link_hash_entry *h,
1888 Elf_Internal_Sym *sym)
1889 {
1890 if (h != NULL)
1891 switch (ELF32_R_TYPE (rel->r_info))
1892 {
1893 case R_X86_64_GNU_VTINHERIT:
1894 case R_X86_64_GNU_VTENTRY:
1895 return NULL;
1896 }
1897
1898 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1899 }
1900
1901 /* Update the got entry reference counts for the section being removed. */
1902
1903 static bfd_boolean
1904 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1905 asection *sec,
1906 const Elf_Internal_Rela *relocs)
1907 {
1908 struct elf_x86_64_link_hash_table *htab;
1909 Elf_Internal_Shdr *symtab_hdr;
1910 struct elf_link_hash_entry **sym_hashes;
1911 bfd_signed_vma *local_got_refcounts;
1912 const Elf_Internal_Rela *rel, *relend;
1913
1914 if (info->relocatable)
1915 return TRUE;
1916
1917 htab = elf_x86_64_hash_table (info);
1918 if (htab == NULL)
1919 return FALSE;
1920
1921 elf_section_data (sec)->local_dynrel = NULL;
1922
1923 symtab_hdr = &elf_symtab_hdr (abfd);
1924 sym_hashes = elf_sym_hashes (abfd);
1925 local_got_refcounts = elf_local_got_refcounts (abfd);
1926
1927 htab = elf_x86_64_hash_table (info);
1928 relend = relocs + sec->reloc_count;
1929 for (rel = relocs; rel < relend; rel++)
1930 {
1931 unsigned long r_symndx;
1932 unsigned int r_type;
1933 struct elf_link_hash_entry *h = NULL;
1934
1935 r_symndx = htab->r_sym (rel->r_info);
1936 if (r_symndx >= symtab_hdr->sh_info)
1937 {
1938 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1939 while (h->root.type == bfd_link_hash_indirect
1940 || h->root.type == bfd_link_hash_warning)
1941 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1942 }
1943 else
1944 {
1945 /* A local symbol. */
1946 Elf_Internal_Sym *isym;
1947
1948 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1949 abfd, r_symndx);
1950
1951 /* Check relocation against local STT_GNU_IFUNC symbol. */
1952 if (isym != NULL
1953 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1954 {
1955 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
1956 if (h == NULL)
1957 abort ();
1958 }
1959 }
1960
1961 if (h)
1962 {
1963 struct elf_x86_64_link_hash_entry *eh;
1964 struct elf_dyn_relocs **pp;
1965 struct elf_dyn_relocs *p;
1966
1967 eh = (struct elf_x86_64_link_hash_entry *) h;
1968
1969 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1970 if (p->sec == sec)
1971 {
1972 /* Everything must go for SEC. */
1973 *pp = p->next;
1974 break;
1975 }
1976 }
1977
1978 r_type = ELF32_R_TYPE (rel->r_info);
1979 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1980 symtab_hdr, sym_hashes,
1981 &r_type, GOT_UNKNOWN,
1982 rel, relend, h, r_symndx))
1983 return FALSE;
1984
1985 switch (r_type)
1986 {
1987 case R_X86_64_TLSLD:
1988 if (htab->tls_ld_got.refcount > 0)
1989 htab->tls_ld_got.refcount -= 1;
1990 break;
1991
1992 case R_X86_64_TLSGD:
1993 case R_X86_64_GOTPC32_TLSDESC:
1994 case R_X86_64_TLSDESC_CALL:
1995 case R_X86_64_GOTTPOFF:
1996 case R_X86_64_GOT32:
1997 case R_X86_64_GOTPCREL:
1998 case R_X86_64_GOT64:
1999 case R_X86_64_GOTPCREL64:
2000 case R_X86_64_GOTPLT64:
2001 if (h != NULL)
2002 {
2003 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2004 h->plt.refcount -= 1;
2005 if (h->got.refcount > 0)
2006 h->got.refcount -= 1;
2007 if (h->type == STT_GNU_IFUNC)
2008 {
2009 if (h->plt.refcount > 0)
2010 h->plt.refcount -= 1;
2011 }
2012 }
2013 else if (local_got_refcounts != NULL)
2014 {
2015 if (local_got_refcounts[r_symndx] > 0)
2016 local_got_refcounts[r_symndx] -= 1;
2017 }
2018 break;
2019
2020 case R_X86_64_8:
2021 case R_X86_64_16:
2022 case R_X86_64_32:
2023 case R_X86_64_64:
2024 case R_X86_64_32S:
2025 case R_X86_64_PC8:
2026 case R_X86_64_PC16:
2027 case R_X86_64_PC32:
2028 case R_X86_64_PC64:
2029 if (info->shared
2030 && (h == NULL || h->type != STT_GNU_IFUNC))
2031 break;
2032 /* Fall thru */
2033
2034 case R_X86_64_PLT32:
2035 case R_X86_64_PLTOFF64:
2036 if (h != NULL)
2037 {
2038 if (h->plt.refcount > 0)
2039 h->plt.refcount -= 1;
2040 }
2041 break;
2042
2043 default:
2044 break;
2045 }
2046 }
2047
2048 return TRUE;
2049 }
2050
2051 /* Adjust a symbol defined by a dynamic object and referenced by a
2052 regular object. The current definition is in some section of the
2053 dynamic object, but we're not including those sections. We have to
2054 change the definition to something the rest of the link can
2055 understand. */
2056
2057 static bfd_boolean
2058 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2059 struct elf_link_hash_entry *h)
2060 {
2061 struct elf_x86_64_link_hash_table *htab;
2062 asection *s;
2063 struct elf_x86_64_link_hash_entry *eh;
2064 struct elf_dyn_relocs *p;
2065
2066 /* STT_GNU_IFUNC symbol must go through PLT. */
2067 if (h->type == STT_GNU_IFUNC)
2068 {
2069 /* All local STT_GNU_IFUNC references must be treate as local
2070 calls via local PLT. */
2071 if (h->ref_regular
2072 && SYMBOL_CALLS_LOCAL (info, h))
2073 {
2074 bfd_size_type pc_count = 0, count = 0;
2075 struct elf_dyn_relocs **pp;
2076
2077 eh = (struct elf_x86_64_link_hash_entry *) h;
2078 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2079 {
2080 pc_count += p->pc_count;
2081 p->count -= p->pc_count;
2082 p->pc_count = 0;
2083 count += p->count;
2084 if (p->count == 0)
2085 *pp = p->next;
2086 else
2087 pp = &p->next;
2088 }
2089
2090 if (pc_count || count)
2091 {
2092 h->needs_plt = 1;
2093 h->non_got_ref = 1;
2094 if (h->plt.refcount <= 0)
2095 h->plt.refcount = 1;
2096 else
2097 h->plt.refcount += 1;
2098 }
2099 }
2100
2101 if (h->plt.refcount <= 0)
2102 {
2103 h->plt.offset = (bfd_vma) -1;
2104 h->needs_plt = 0;
2105 }
2106 return TRUE;
2107 }
2108
2109 /* If this is a function, put it in the procedure linkage table. We
2110 will fill in the contents of the procedure linkage table later,
2111 when we know the address of the .got section. */
2112 if (h->type == STT_FUNC
2113 || h->needs_plt)
2114 {
2115 if (h->plt.refcount <= 0
2116 || SYMBOL_CALLS_LOCAL (info, h)
2117 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2118 && h->root.type == bfd_link_hash_undefweak))
2119 {
2120 /* This case can occur if we saw a PLT32 reloc in an input
2121 file, but the symbol was never referred to by a dynamic
2122 object, or if all references were garbage collected. In
2123 such a case, we don't actually need to build a procedure
2124 linkage table, and we can just do a PC32 reloc instead. */
2125 h->plt.offset = (bfd_vma) -1;
2126 h->needs_plt = 0;
2127 }
2128
2129 return TRUE;
2130 }
2131 else
2132 /* It's possible that we incorrectly decided a .plt reloc was
2133 needed for an R_X86_64_PC32 reloc to a non-function sym in
2134 check_relocs. We can't decide accurately between function and
2135 non-function syms in check-relocs; Objects loaded later in
2136 the link may change h->type. So fix it now. */
2137 h->plt.offset = (bfd_vma) -1;
2138
2139 /* If this is a weak symbol, and there is a real definition, the
2140 processor independent code will have arranged for us to see the
2141 real definition first, and we can just use the same value. */
2142 if (h->u.weakdef != NULL)
2143 {
2144 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2145 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2146 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2147 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2148 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2149 h->non_got_ref = h->u.weakdef->non_got_ref;
2150 return TRUE;
2151 }
2152
2153 /* This is a reference to a symbol defined by a dynamic object which
2154 is not a function. */
2155
2156 /* If we are creating a shared library, we must presume that the
2157 only references to the symbol are via the global offset table.
2158 For such cases we need not do anything here; the relocations will
2159 be handled correctly by relocate_section. */
2160 if (info->shared)
2161 return TRUE;
2162
2163 /* If there are no references to this symbol that do not use the
2164 GOT, we don't need to generate a copy reloc. */
2165 if (!h->non_got_ref)
2166 return TRUE;
2167
2168 /* If -z nocopyreloc was given, we won't generate them either. */
2169 if (info->nocopyreloc)
2170 {
2171 h->non_got_ref = 0;
2172 return TRUE;
2173 }
2174
2175 if (ELIMINATE_COPY_RELOCS)
2176 {
2177 eh = (struct elf_x86_64_link_hash_entry *) h;
2178 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2179 {
2180 s = p->sec->output_section;
2181 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2182 break;
2183 }
2184
2185 /* If we didn't find any dynamic relocs in read-only sections, then
2186 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2187 if (p == NULL)
2188 {
2189 h->non_got_ref = 0;
2190 return TRUE;
2191 }
2192 }
2193
2194 /* We must allocate the symbol in our .dynbss section, which will
2195 become part of the .bss section of the executable. There will be
2196 an entry for this symbol in the .dynsym section. The dynamic
2197 object will contain position independent code, so all references
2198 from the dynamic object to this symbol will go through the global
2199 offset table. The dynamic linker will use the .dynsym entry to
2200 determine the address it must put in the global offset table, so
2201 both the dynamic object and the regular object will refer to the
2202 same memory location for the variable. */
2203
2204 htab = elf_x86_64_hash_table (info);
2205 if (htab == NULL)
2206 return FALSE;
2207
2208 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2209 to copy the initial value out of the dynamic object and into the
2210 runtime process image. */
2211 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2212 {
2213 const struct elf_backend_data *bed;
2214 bed = get_elf_backend_data (info->output_bfd);
2215 htab->srelbss->size += bed->s->sizeof_rela;
2216 h->needs_copy = 1;
2217 }
2218
2219 s = htab->sdynbss;
2220
2221 return _bfd_elf_adjust_dynamic_copy (h, s);
2222 }
2223
2224 /* Allocate space in .plt, .got and associated reloc sections for
2225 dynamic relocs. */
2226
2227 static bfd_boolean
2228 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2229 {
2230 struct bfd_link_info *info;
2231 struct elf_x86_64_link_hash_table *htab;
2232 struct elf_x86_64_link_hash_entry *eh;
2233 struct elf_dyn_relocs *p;
2234 const struct elf_backend_data *bed;
2235 unsigned int plt_entry_size;
2236
2237 if (h->root.type == bfd_link_hash_indirect)
2238 return TRUE;
2239
2240 eh = (struct elf_x86_64_link_hash_entry *) h;
2241
2242 info = (struct bfd_link_info *) inf;
2243 htab = elf_x86_64_hash_table (info);
2244 if (htab == NULL)
2245 return FALSE;
2246 bed = get_elf_backend_data (info->output_bfd);
2247 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2248
2249 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2250 here if it is defined and referenced in a non-shared object. */
2251 if (h->type == STT_GNU_IFUNC
2252 && h->def_regular)
2253 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2254 &eh->dyn_relocs,
2255 plt_entry_size,
2256 GOT_ENTRY_SIZE);
2257 else if (htab->elf.dynamic_sections_created
2258 && h->plt.refcount > 0)
2259 {
2260 /* Make sure this symbol is output as a dynamic symbol.
2261 Undefined weak syms won't yet be marked as dynamic. */
2262 if (h->dynindx == -1
2263 && !h->forced_local)
2264 {
2265 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2266 return FALSE;
2267 }
2268
2269 if (info->shared
2270 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2271 {
2272 asection *s = htab->elf.splt;
2273
2274 /* If this is the first .plt entry, make room for the special
2275 first entry. */
2276 if (s->size == 0)
2277 s->size += plt_entry_size;
2278
2279 h->plt.offset = s->size;
2280
2281 /* If this symbol is not defined in a regular file, and we are
2282 not generating a shared library, then set the symbol to this
2283 location in the .plt. This is required to make function
2284 pointers compare as equal between the normal executable and
2285 the shared library. */
2286 if (! info->shared
2287 && !h->def_regular)
2288 {
2289 h->root.u.def.section = s;
2290 h->root.u.def.value = h->plt.offset;
2291 }
2292
2293 /* Make room for this entry. */
2294 s->size += plt_entry_size;
2295
2296 /* We also need to make an entry in the .got.plt section, which
2297 will be placed in the .got section by the linker script. */
2298 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2299
2300 /* We also need to make an entry in the .rela.plt section. */
2301 htab->elf.srelplt->size += bed->s->sizeof_rela;
2302 htab->elf.srelplt->reloc_count++;
2303 }
2304 else
2305 {
2306 h->plt.offset = (bfd_vma) -1;
2307 h->needs_plt = 0;
2308 }
2309 }
2310 else
2311 {
2312 h->plt.offset = (bfd_vma) -1;
2313 h->needs_plt = 0;
2314 }
2315
2316 eh->tlsdesc_got = (bfd_vma) -1;
2317
2318 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2319 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2320 if (h->got.refcount > 0
2321 && info->executable
2322 && h->dynindx == -1
2323 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2324 {
2325 h->got.offset = (bfd_vma) -1;
2326 }
2327 else if (h->got.refcount > 0)
2328 {
2329 asection *s;
2330 bfd_boolean dyn;
2331 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2332
2333 /* Make sure this symbol is output as a dynamic symbol.
2334 Undefined weak syms won't yet be marked as dynamic. */
2335 if (h->dynindx == -1
2336 && !h->forced_local)
2337 {
2338 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2339 return FALSE;
2340 }
2341
2342 if (GOT_TLS_GDESC_P (tls_type))
2343 {
2344 eh->tlsdesc_got = htab->elf.sgotplt->size
2345 - elf_x86_64_compute_jump_table_size (htab);
2346 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2347 h->got.offset = (bfd_vma) -2;
2348 }
2349 if (! GOT_TLS_GDESC_P (tls_type)
2350 || GOT_TLS_GD_P (tls_type))
2351 {
2352 s = htab->elf.sgot;
2353 h->got.offset = s->size;
2354 s->size += GOT_ENTRY_SIZE;
2355 if (GOT_TLS_GD_P (tls_type))
2356 s->size += GOT_ENTRY_SIZE;
2357 }
2358 dyn = htab->elf.dynamic_sections_created;
2359 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2360 and two if global.
2361 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2362 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2363 || tls_type == GOT_TLS_IE)
2364 htab->elf.srelgot->size += bed->s->sizeof_rela;
2365 else if (GOT_TLS_GD_P (tls_type))
2366 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2367 else if (! GOT_TLS_GDESC_P (tls_type)
2368 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2369 || h->root.type != bfd_link_hash_undefweak)
2370 && (info->shared
2371 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2372 htab->elf.srelgot->size += bed->s->sizeof_rela;
2373 if (GOT_TLS_GDESC_P (tls_type))
2374 {
2375 htab->elf.srelplt->size += bed->s->sizeof_rela;
2376 htab->tlsdesc_plt = (bfd_vma) -1;
2377 }
2378 }
2379 else
2380 h->got.offset = (bfd_vma) -1;
2381
2382 if (eh->dyn_relocs == NULL)
2383 return TRUE;
2384
2385 /* In the shared -Bsymbolic case, discard space allocated for
2386 dynamic pc-relative relocs against symbols which turn out to be
2387 defined in regular objects. For the normal shared case, discard
2388 space for pc-relative relocs that have become local due to symbol
2389 visibility changes. */
2390
2391 if (info->shared)
2392 {
2393 /* Relocs that use pc_count are those that appear on a call
2394 insn, or certain REL relocs that can generated via assembly.
2395 We want calls to protected symbols to resolve directly to the
2396 function rather than going via the plt. If people want
2397 function pointer comparisons to work as expected then they
2398 should avoid writing weird assembly. */
2399 if (SYMBOL_CALLS_LOCAL (info, h))
2400 {
2401 struct elf_dyn_relocs **pp;
2402
2403 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2404 {
2405 p->count -= p->pc_count;
2406 p->pc_count = 0;
2407 if (p->count == 0)
2408 *pp = p->next;
2409 else
2410 pp = &p->next;
2411 }
2412 }
2413
2414 /* Also discard relocs on undefined weak syms with non-default
2415 visibility. */
2416 if (eh->dyn_relocs != NULL
2417 && h->root.type == bfd_link_hash_undefweak)
2418 {
2419 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2420 eh->dyn_relocs = NULL;
2421
2422 /* Make sure undefined weak symbols are output as a dynamic
2423 symbol in PIEs. */
2424 else if (h->dynindx == -1
2425 && ! h->forced_local
2426 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2427 return FALSE;
2428 }
2429
2430 }
2431 else if (ELIMINATE_COPY_RELOCS)
2432 {
2433 /* For the non-shared case, discard space for relocs against
2434 symbols which turn out to need copy relocs or are not
2435 dynamic. */
2436
2437 if (!h->non_got_ref
2438 && ((h->def_dynamic
2439 && !h->def_regular)
2440 || (htab->elf.dynamic_sections_created
2441 && (h->root.type == bfd_link_hash_undefweak
2442 || h->root.type == bfd_link_hash_undefined))))
2443 {
2444 /* Make sure this symbol is output as a dynamic symbol.
2445 Undefined weak syms won't yet be marked as dynamic. */
2446 if (h->dynindx == -1
2447 && ! h->forced_local
2448 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2449 return FALSE;
2450
2451 /* If that succeeded, we know we'll be keeping all the
2452 relocs. */
2453 if (h->dynindx != -1)
2454 goto keep;
2455 }
2456
2457 eh->dyn_relocs = NULL;
2458
2459 keep: ;
2460 }
2461
2462 /* Finally, allocate space. */
2463 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2464 {
2465 asection * sreloc;
2466
2467 sreloc = elf_section_data (p->sec)->sreloc;
2468
2469 BFD_ASSERT (sreloc != NULL);
2470
2471 sreloc->size += p->count * bed->s->sizeof_rela;
2472 }
2473
2474 return TRUE;
2475 }
2476
2477 /* Allocate space in .plt, .got and associated reloc sections for
2478 local dynamic relocs. */
2479
2480 static bfd_boolean
2481 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2482 {
2483 struct elf_link_hash_entry *h
2484 = (struct elf_link_hash_entry *) *slot;
2485
2486 if (h->type != STT_GNU_IFUNC
2487 || !h->def_regular
2488 || !h->ref_regular
2489 || !h->forced_local
2490 || h->root.type != bfd_link_hash_defined)
2491 abort ();
2492
2493 return elf_x86_64_allocate_dynrelocs (h, inf);
2494 }
2495
2496 /* Find any dynamic relocs that apply to read-only sections. */
2497
2498 static bfd_boolean
2499 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2500 void * inf)
2501 {
2502 struct elf_x86_64_link_hash_entry *eh;
2503 struct elf_dyn_relocs *p;
2504
2505 /* Skip local IFUNC symbols. */
2506 if (h->forced_local && h->type == STT_GNU_IFUNC)
2507 return TRUE;
2508
2509 eh = (struct elf_x86_64_link_hash_entry *) h;
2510 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2511 {
2512 asection *s = p->sec->output_section;
2513
2514 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2515 {
2516 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2517
2518 info->flags |= DF_TEXTREL;
2519
2520 if (info->warn_shared_textrel && info->shared)
2521 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2522 p->sec->owner, h->root.root.string,
2523 p->sec);
2524
2525 /* Not an error, just cut short the traversal. */
2526 return FALSE;
2527 }
2528 }
2529 return TRUE;
2530 }
2531
2532 /* Convert
2533 mov foo@GOTPCREL(%rip), %reg
2534 to
2535 lea foo(%rip), %reg
2536 with the local symbol, foo. */
2537
2538 static bfd_boolean
2539 elf_x86_64_convert_mov_to_lea (bfd *abfd, asection *sec,
2540 struct bfd_link_info *link_info)
2541 {
2542 Elf_Internal_Shdr *symtab_hdr;
2543 Elf_Internal_Rela *internal_relocs;
2544 Elf_Internal_Rela *irel, *irelend;
2545 bfd_byte *contents;
2546 struct elf_x86_64_link_hash_table *htab;
2547 bfd_boolean changed_contents;
2548 bfd_boolean changed_relocs;
2549 bfd_signed_vma *local_got_refcounts;
2550
2551 /* Don't even try to convert non-ELF outputs. */
2552 if (!is_elf_hash_table (link_info->hash))
2553 return FALSE;
2554
2555 /* Nothing to do if there are no codes, no relocations or no output. */
2556 if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
2557 || sec->reloc_count == 0
2558 || discarded_section (sec))
2559 return TRUE;
2560
2561 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2562
2563 /* Load the relocations for this section. */
2564 internal_relocs = (_bfd_elf_link_read_relocs
2565 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
2566 link_info->keep_memory));
2567 if (internal_relocs == NULL)
2568 return FALSE;
2569
2570 htab = elf_x86_64_hash_table (link_info);
2571 changed_contents = FALSE;
2572 changed_relocs = FALSE;
2573 local_got_refcounts = elf_local_got_refcounts (abfd);
2574
2575 /* Get the section contents. */
2576 if (elf_section_data (sec)->this_hdr.contents != NULL)
2577 contents = elf_section_data (sec)->this_hdr.contents;
2578 else
2579 {
2580 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
2581 goto error_return;
2582 }
2583
2584 irelend = internal_relocs + sec->reloc_count;
2585 for (irel = internal_relocs; irel < irelend; irel++)
2586 {
2587 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
2588 unsigned int r_symndx = htab->r_sym (irel->r_info);
2589 unsigned int indx;
2590 struct elf_link_hash_entry *h;
2591
2592 if (r_type != R_X86_64_GOTPCREL)
2593 continue;
2594
2595 /* Get the symbol referred to by the reloc. */
2596 if (r_symndx < symtab_hdr->sh_info)
2597 {
2598 Elf_Internal_Sym *isym;
2599
2600 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2601 abfd, r_symndx);
2602
2603 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. */
2604 if (ELF_ST_TYPE (isym->st_info) != STT_GNU_IFUNC
2605 && bfd_get_8 (input_bfd,
2606 contents + irel->r_offset - 2) == 0x8b)
2607 {
2608 bfd_put_8 (output_bfd, 0x8d,
2609 contents + irel->r_offset - 2);
2610 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2611 if (local_got_refcounts != NULL
2612 && local_got_refcounts[r_symndx] > 0)
2613 local_got_refcounts[r_symndx] -= 1;
2614 changed_contents = TRUE;
2615 changed_relocs = TRUE;
2616 }
2617 continue;
2618 }
2619
2620 indx = r_symndx - symtab_hdr->sh_info;
2621 h = elf_sym_hashes (abfd)[indx];
2622 BFD_ASSERT (h != NULL);
2623
2624 while (h->root.type == bfd_link_hash_indirect
2625 || h->root.type == bfd_link_hash_warning)
2626 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2627
2628 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. We also
2629 avoid optimizing _DYNAMIC since ld.so may use its link-time
2630 address. */
2631 if (h->def_regular
2632 && h->type != STT_GNU_IFUNC
2633 && h != htab->elf.hdynamic
2634 && SYMBOL_REFERENCES_LOCAL (link_info, h)
2635 && bfd_get_8 (input_bfd,
2636 contents + irel->r_offset - 2) == 0x8b)
2637 {
2638 bfd_put_8 (output_bfd, 0x8d,
2639 contents + irel->r_offset - 2);
2640 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2641 if (h->got.refcount > 0)
2642 h->got.refcount -= 1;
2643 changed_contents = TRUE;
2644 changed_relocs = TRUE;
2645 }
2646 }
2647
2648 if (contents != NULL
2649 && elf_section_data (sec)->this_hdr.contents != contents)
2650 {
2651 if (!changed_contents && !link_info->keep_memory)
2652 free (contents);
2653 else
2654 {
2655 /* Cache the section contents for elf_link_input_bfd. */
2656 elf_section_data (sec)->this_hdr.contents = contents;
2657 }
2658 }
2659
2660 if (elf_section_data (sec)->relocs != internal_relocs)
2661 {
2662 if (!changed_relocs)
2663 free (internal_relocs);
2664 else
2665 elf_section_data (sec)->relocs = internal_relocs;
2666 }
2667
2668 return TRUE;
2669
2670 error_return:
2671 if (contents != NULL
2672 && elf_section_data (sec)->this_hdr.contents != contents)
2673 free (contents);
2674 if (internal_relocs != NULL
2675 && elf_section_data (sec)->relocs != internal_relocs)
2676 free (internal_relocs);
2677 return FALSE;
2678 }
2679
2680 /* Set the sizes of the dynamic sections. */
2681
2682 static bfd_boolean
2683 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2684 struct bfd_link_info *info)
2685 {
2686 struct elf_x86_64_link_hash_table *htab;
2687 bfd *dynobj;
2688 asection *s;
2689 bfd_boolean relocs;
2690 bfd *ibfd;
2691 const struct elf_backend_data *bed;
2692
2693 htab = elf_x86_64_hash_table (info);
2694 if (htab == NULL)
2695 return FALSE;
2696 bed = get_elf_backend_data (output_bfd);
2697
2698 dynobj = htab->elf.dynobj;
2699 if (dynobj == NULL)
2700 abort ();
2701
2702 if (htab->elf.dynamic_sections_created)
2703 {
2704 /* Set the contents of the .interp section to the interpreter. */
2705 if (info->executable)
2706 {
2707 s = bfd_get_linker_section (dynobj, ".interp");
2708 if (s == NULL)
2709 abort ();
2710 s->size = htab->dynamic_interpreter_size;
2711 s->contents = (unsigned char *) htab->dynamic_interpreter;
2712 }
2713 }
2714
2715 /* Set up .got offsets for local syms, and space for local dynamic
2716 relocs. */
2717 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2718 {
2719 bfd_signed_vma *local_got;
2720 bfd_signed_vma *end_local_got;
2721 char *local_tls_type;
2722 bfd_vma *local_tlsdesc_gotent;
2723 bfd_size_type locsymcount;
2724 Elf_Internal_Shdr *symtab_hdr;
2725 asection *srel;
2726
2727 if (! is_x86_64_elf (ibfd))
2728 continue;
2729
2730 for (s = ibfd->sections; s != NULL; s = s->next)
2731 {
2732 struct elf_dyn_relocs *p;
2733
2734 if (!elf_x86_64_convert_mov_to_lea (ibfd, s, info))
2735 return FALSE;
2736
2737 for (p = (struct elf_dyn_relocs *)
2738 (elf_section_data (s)->local_dynrel);
2739 p != NULL;
2740 p = p->next)
2741 {
2742 if (!bfd_is_abs_section (p->sec)
2743 && bfd_is_abs_section (p->sec->output_section))
2744 {
2745 /* Input section has been discarded, either because
2746 it is a copy of a linkonce section or due to
2747 linker script /DISCARD/, so we'll be discarding
2748 the relocs too. */
2749 }
2750 else if (p->count != 0)
2751 {
2752 srel = elf_section_data (p->sec)->sreloc;
2753 srel->size += p->count * bed->s->sizeof_rela;
2754 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2755 && (info->flags & DF_TEXTREL) == 0)
2756 {
2757 info->flags |= DF_TEXTREL;
2758 if (info->warn_shared_textrel && info->shared)
2759 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2760 p->sec->owner, p->sec);
2761 }
2762 }
2763 }
2764 }
2765
2766 local_got = elf_local_got_refcounts (ibfd);
2767 if (!local_got)
2768 continue;
2769
2770 symtab_hdr = &elf_symtab_hdr (ibfd);
2771 locsymcount = symtab_hdr->sh_info;
2772 end_local_got = local_got + locsymcount;
2773 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2774 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2775 s = htab->elf.sgot;
2776 srel = htab->elf.srelgot;
2777 for (; local_got < end_local_got;
2778 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2779 {
2780 *local_tlsdesc_gotent = (bfd_vma) -1;
2781 if (*local_got > 0)
2782 {
2783 if (GOT_TLS_GDESC_P (*local_tls_type))
2784 {
2785 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2786 - elf_x86_64_compute_jump_table_size (htab);
2787 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2788 *local_got = (bfd_vma) -2;
2789 }
2790 if (! GOT_TLS_GDESC_P (*local_tls_type)
2791 || GOT_TLS_GD_P (*local_tls_type))
2792 {
2793 *local_got = s->size;
2794 s->size += GOT_ENTRY_SIZE;
2795 if (GOT_TLS_GD_P (*local_tls_type))
2796 s->size += GOT_ENTRY_SIZE;
2797 }
2798 if (info->shared
2799 || GOT_TLS_GD_ANY_P (*local_tls_type)
2800 || *local_tls_type == GOT_TLS_IE)
2801 {
2802 if (GOT_TLS_GDESC_P (*local_tls_type))
2803 {
2804 htab->elf.srelplt->size
2805 += bed->s->sizeof_rela;
2806 htab->tlsdesc_plt = (bfd_vma) -1;
2807 }
2808 if (! GOT_TLS_GDESC_P (*local_tls_type)
2809 || GOT_TLS_GD_P (*local_tls_type))
2810 srel->size += bed->s->sizeof_rela;
2811 }
2812 }
2813 else
2814 *local_got = (bfd_vma) -1;
2815 }
2816 }
2817
2818 if (htab->tls_ld_got.refcount > 0)
2819 {
2820 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2821 relocs. */
2822 htab->tls_ld_got.offset = htab->elf.sgot->size;
2823 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2824 htab->elf.srelgot->size += bed->s->sizeof_rela;
2825 }
2826 else
2827 htab->tls_ld_got.offset = -1;
2828
2829 /* Allocate global sym .plt and .got entries, and space for global
2830 sym dynamic relocs. */
2831 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2832 info);
2833
2834 /* Allocate .plt and .got entries, and space for local symbols. */
2835 htab_traverse (htab->loc_hash_table,
2836 elf_x86_64_allocate_local_dynrelocs,
2837 info);
2838
2839 /* For every jump slot reserved in the sgotplt, reloc_count is
2840 incremented. However, when we reserve space for TLS descriptors,
2841 it's not incremented, so in order to compute the space reserved
2842 for them, it suffices to multiply the reloc count by the jump
2843 slot size.
2844
2845 PR ld/13302: We start next_irelative_index at the end of .rela.plt
2846 so that R_X86_64_IRELATIVE entries come last. */
2847 if (htab->elf.srelplt)
2848 {
2849 htab->sgotplt_jump_table_size
2850 = elf_x86_64_compute_jump_table_size (htab);
2851 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
2852 }
2853 else if (htab->elf.irelplt)
2854 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
2855
2856 if (htab->tlsdesc_plt)
2857 {
2858 /* If we're not using lazy TLS relocations, don't generate the
2859 PLT and GOT entries they require. */
2860 if ((info->flags & DF_BIND_NOW))
2861 htab->tlsdesc_plt = 0;
2862 else
2863 {
2864 htab->tlsdesc_got = htab->elf.sgot->size;
2865 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2866 /* Reserve room for the initial entry.
2867 FIXME: we could probably do away with it in this case. */
2868 if (htab->elf.splt->size == 0)
2869 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2870 htab->tlsdesc_plt = htab->elf.splt->size;
2871 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2872 }
2873 }
2874
2875 if (htab->elf.sgotplt)
2876 {
2877 /* Don't allocate .got.plt section if there are no GOT nor PLT
2878 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2879 if ((htab->elf.hgot == NULL
2880 || !htab->elf.hgot->ref_regular_nonweak)
2881 && (htab->elf.sgotplt->size
2882 == get_elf_backend_data (output_bfd)->got_header_size)
2883 && (htab->elf.splt == NULL
2884 || htab->elf.splt->size == 0)
2885 && (htab->elf.sgot == NULL
2886 || htab->elf.sgot->size == 0)
2887 && (htab->elf.iplt == NULL
2888 || htab->elf.iplt->size == 0)
2889 && (htab->elf.igotplt == NULL
2890 || htab->elf.igotplt->size == 0))
2891 htab->elf.sgotplt->size = 0;
2892 }
2893
2894 if (htab->plt_eh_frame != NULL
2895 && htab->elf.splt != NULL
2896 && htab->elf.splt->size != 0
2897 && !bfd_is_abs_section (htab->elf.splt->output_section)
2898 && _bfd_elf_eh_frame_present (info))
2899 {
2900 const struct elf_x86_64_backend_data *arch_data
2901 = (const struct elf_x86_64_backend_data *) bed->arch_data;
2902 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
2903 }
2904
2905 /* We now have determined the sizes of the various dynamic sections.
2906 Allocate memory for them. */
2907 relocs = FALSE;
2908 for (s = dynobj->sections; s != NULL; s = s->next)
2909 {
2910 if ((s->flags & SEC_LINKER_CREATED) == 0)
2911 continue;
2912
2913 if (s == htab->elf.splt
2914 || s == htab->elf.sgot
2915 || s == htab->elf.sgotplt
2916 || s == htab->elf.iplt
2917 || s == htab->elf.igotplt
2918 || s == htab->plt_eh_frame
2919 || s == htab->sdynbss)
2920 {
2921 /* Strip this section if we don't need it; see the
2922 comment below. */
2923 }
2924 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2925 {
2926 if (s->size != 0 && s != htab->elf.srelplt)
2927 relocs = TRUE;
2928
2929 /* We use the reloc_count field as a counter if we need
2930 to copy relocs into the output file. */
2931 if (s != htab->elf.srelplt)
2932 s->reloc_count = 0;
2933 }
2934 else
2935 {
2936 /* It's not one of our sections, so don't allocate space. */
2937 continue;
2938 }
2939
2940 if (s->size == 0)
2941 {
2942 /* If we don't need this section, strip it from the
2943 output file. This is mostly to handle .rela.bss and
2944 .rela.plt. We must create both sections in
2945 create_dynamic_sections, because they must be created
2946 before the linker maps input sections to output
2947 sections. The linker does that before
2948 adjust_dynamic_symbol is called, and it is that
2949 function which decides whether anything needs to go
2950 into these sections. */
2951
2952 s->flags |= SEC_EXCLUDE;
2953 continue;
2954 }
2955
2956 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2957 continue;
2958
2959 /* Allocate memory for the section contents. We use bfd_zalloc
2960 here in case unused entries are not reclaimed before the
2961 section's contents are written out. This should not happen,
2962 but this way if it does, we get a R_X86_64_NONE reloc instead
2963 of garbage. */
2964 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2965 if (s->contents == NULL)
2966 return FALSE;
2967 }
2968
2969 if (htab->plt_eh_frame != NULL
2970 && htab->plt_eh_frame->contents != NULL)
2971 {
2972 const struct elf_x86_64_backend_data *arch_data
2973 = (const struct elf_x86_64_backend_data *) bed->arch_data;
2974
2975 memcpy (htab->plt_eh_frame->contents,
2976 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
2977 bfd_put_32 (dynobj, htab->elf.splt->size,
2978 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
2979 }
2980
2981 if (htab->elf.dynamic_sections_created)
2982 {
2983 /* Add some entries to the .dynamic section. We fill in the
2984 values later, in elf_x86_64_finish_dynamic_sections, but we
2985 must add the entries now so that we get the correct size for
2986 the .dynamic section. The DT_DEBUG entry is filled in by the
2987 dynamic linker and used by the debugger. */
2988 #define add_dynamic_entry(TAG, VAL) \
2989 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2990
2991 if (info->executable)
2992 {
2993 if (!add_dynamic_entry (DT_DEBUG, 0))
2994 return FALSE;
2995 }
2996
2997 if (htab->elf.splt->size != 0)
2998 {
2999 if (!add_dynamic_entry (DT_PLTGOT, 0)
3000 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3001 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3002 || !add_dynamic_entry (DT_JMPREL, 0))
3003 return FALSE;
3004
3005 if (htab->tlsdesc_plt
3006 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
3007 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
3008 return FALSE;
3009 }
3010
3011 if (relocs)
3012 {
3013 if (!add_dynamic_entry (DT_RELA, 0)
3014 || !add_dynamic_entry (DT_RELASZ, 0)
3015 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
3016 return FALSE;
3017
3018 /* If any dynamic relocs apply to a read-only section,
3019 then we need a DT_TEXTREL entry. */
3020 if ((info->flags & DF_TEXTREL) == 0)
3021 elf_link_hash_traverse (&htab->elf,
3022 elf_x86_64_readonly_dynrelocs,
3023 info);
3024
3025 if ((info->flags & DF_TEXTREL) != 0)
3026 {
3027 if (!add_dynamic_entry (DT_TEXTREL, 0))
3028 return FALSE;
3029 }
3030 }
3031 }
3032 #undef add_dynamic_entry
3033
3034 return TRUE;
3035 }
3036
3037 static bfd_boolean
3038 elf_x86_64_always_size_sections (bfd *output_bfd,
3039 struct bfd_link_info *info)
3040 {
3041 asection *tls_sec = elf_hash_table (info)->tls_sec;
3042
3043 if (tls_sec)
3044 {
3045 struct elf_link_hash_entry *tlsbase;
3046
3047 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
3048 "_TLS_MODULE_BASE_",
3049 FALSE, FALSE, FALSE);
3050
3051 if (tlsbase && tlsbase->type == STT_TLS)
3052 {
3053 struct elf_x86_64_link_hash_table *htab;
3054 struct bfd_link_hash_entry *bh = NULL;
3055 const struct elf_backend_data *bed
3056 = get_elf_backend_data (output_bfd);
3057
3058 htab = elf_x86_64_hash_table (info);
3059 if (htab == NULL)
3060 return FALSE;
3061
3062 if (!(_bfd_generic_link_add_one_symbol
3063 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
3064 tls_sec, 0, NULL, FALSE,
3065 bed->collect, &bh)))
3066 return FALSE;
3067
3068 htab->tls_module_base = bh;
3069
3070 tlsbase = (struct elf_link_hash_entry *)bh;
3071 tlsbase->def_regular = 1;
3072 tlsbase->other = STV_HIDDEN;
3073 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
3074 }
3075 }
3076
3077 return TRUE;
3078 }
3079
3080 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
3081 executables. Rather than setting it to the beginning of the TLS
3082 section, we have to set it to the end. This function may be called
3083 multiple times, it is idempotent. */
3084
3085 static void
3086 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
3087 {
3088 struct elf_x86_64_link_hash_table *htab;
3089 struct bfd_link_hash_entry *base;
3090
3091 if (!info->executable)
3092 return;
3093
3094 htab = elf_x86_64_hash_table (info);
3095 if (htab == NULL)
3096 return;
3097
3098 base = htab->tls_module_base;
3099 if (base == NULL)
3100 return;
3101
3102 base->u.def.value = htab->elf.tls_size;
3103 }
3104
3105 /* Return the base VMA address which should be subtracted from real addresses
3106 when resolving @dtpoff relocation.
3107 This is PT_TLS segment p_vaddr. */
3108
3109 static bfd_vma
3110 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3111 {
3112 /* If tls_sec is NULL, we should have signalled an error already. */
3113 if (elf_hash_table (info)->tls_sec == NULL)
3114 return 0;
3115 return elf_hash_table (info)->tls_sec->vma;
3116 }
3117
3118 /* Return the relocation value for @tpoff relocation
3119 if STT_TLS virtual address is ADDRESS. */
3120
3121 static bfd_vma
3122 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3123 {
3124 struct elf_link_hash_table *htab = elf_hash_table (info);
3125 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3126 bfd_vma static_tls_size;
3127
3128 /* If tls_segment is NULL, we should have signalled an error already. */
3129 if (htab->tls_sec == NULL)
3130 return 0;
3131
3132 /* Consider special static TLS alignment requirements. */
3133 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3134 return address - static_tls_size - htab->tls_sec->vma;
3135 }
3136
3137 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3138 branch? */
3139
3140 static bfd_boolean
3141 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3142 {
3143 /* Opcode Instruction
3144 0xe8 call
3145 0xe9 jump
3146 0x0f 0x8x conditional jump */
3147 return ((offset > 0
3148 && (contents [offset - 1] == 0xe8
3149 || contents [offset - 1] == 0xe9))
3150 || (offset > 1
3151 && contents [offset - 2] == 0x0f
3152 && (contents [offset - 1] & 0xf0) == 0x80));
3153 }
3154
3155 /* Relocate an x86_64 ELF section. */
3156
3157 static bfd_boolean
3158 elf_x86_64_relocate_section (bfd *output_bfd,
3159 struct bfd_link_info *info,
3160 bfd *input_bfd,
3161 asection *input_section,
3162 bfd_byte *contents,
3163 Elf_Internal_Rela *relocs,
3164 Elf_Internal_Sym *local_syms,
3165 asection **local_sections)
3166 {
3167 struct elf_x86_64_link_hash_table *htab;
3168 Elf_Internal_Shdr *symtab_hdr;
3169 struct elf_link_hash_entry **sym_hashes;
3170 bfd_vma *local_got_offsets;
3171 bfd_vma *local_tlsdesc_gotents;
3172 Elf_Internal_Rela *rel;
3173 Elf_Internal_Rela *relend;
3174 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3175
3176 BFD_ASSERT (is_x86_64_elf (input_bfd));
3177
3178 htab = elf_x86_64_hash_table (info);
3179 if (htab == NULL)
3180 return FALSE;
3181 symtab_hdr = &elf_symtab_hdr (input_bfd);
3182 sym_hashes = elf_sym_hashes (input_bfd);
3183 local_got_offsets = elf_local_got_offsets (input_bfd);
3184 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3185
3186 elf_x86_64_set_tls_module_base (info);
3187
3188 rel = relocs;
3189 relend = relocs + input_section->reloc_count;
3190 for (; rel < relend; rel++)
3191 {
3192 unsigned int r_type;
3193 reloc_howto_type *howto;
3194 unsigned long r_symndx;
3195 struct elf_link_hash_entry *h;
3196 Elf_Internal_Sym *sym;
3197 asection *sec;
3198 bfd_vma off, offplt;
3199 bfd_vma relocation;
3200 bfd_boolean unresolved_reloc;
3201 bfd_reloc_status_type r;
3202 int tls_type;
3203 asection *base_got;
3204
3205 r_type = ELF32_R_TYPE (rel->r_info);
3206 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3207 || r_type == (int) R_X86_64_GNU_VTENTRY)
3208 continue;
3209
3210 if (r_type >= (int) R_X86_64_standard)
3211 {
3212 (*_bfd_error_handler)
3213 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
3214 input_bfd, input_section, r_type);
3215 bfd_set_error (bfd_error_bad_value);
3216 return FALSE;
3217 }
3218
3219 if (r_type != (int) R_X86_64_32
3220 || ABI_64_P (output_bfd))
3221 howto = x86_64_elf_howto_table + r_type;
3222 else
3223 howto = (x86_64_elf_howto_table
3224 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3225 r_symndx = htab->r_sym (rel->r_info);
3226 h = NULL;
3227 sym = NULL;
3228 sec = NULL;
3229 unresolved_reloc = FALSE;
3230 if (r_symndx < symtab_hdr->sh_info)
3231 {
3232 sym = local_syms + r_symndx;
3233 sec = local_sections[r_symndx];
3234
3235 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3236 &sec, rel);
3237
3238 /* Relocate against local STT_GNU_IFUNC symbol. */
3239 if (!info->relocatable
3240 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3241 {
3242 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3243 rel, FALSE);
3244 if (h == NULL)
3245 abort ();
3246
3247 /* Set STT_GNU_IFUNC symbol value. */
3248 h->root.u.def.value = sym->st_value;
3249 h->root.u.def.section = sec;
3250 }
3251 }
3252 else
3253 {
3254 bfd_boolean warned ATTRIBUTE_UNUSED;
3255
3256 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3257 r_symndx, symtab_hdr, sym_hashes,
3258 h, sec, relocation,
3259 unresolved_reloc, warned);
3260 }
3261
3262 if (sec != NULL && discarded_section (sec))
3263 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3264 rel, 1, relend, howto, 0, contents);
3265
3266 if (info->relocatable)
3267 continue;
3268
3269 if (rel->r_addend == 0
3270 && r_type == R_X86_64_64
3271 && !ABI_64_P (output_bfd))
3272 {
3273 /* For x32, treat R_X86_64_64 like R_X86_64_32 and zero-extend
3274 it to 64bit if addend is zero. */
3275 r_type = R_X86_64_32;
3276 memset (contents + rel->r_offset + 4, 0, 4);
3277 }
3278
3279 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3280 it here if it is defined in a non-shared object. */
3281 if (h != NULL
3282 && h->type == STT_GNU_IFUNC
3283 && h->def_regular)
3284 {
3285 asection *plt;
3286 bfd_vma plt_index;
3287 const char *name;
3288
3289 if ((input_section->flags & SEC_ALLOC) == 0
3290 || h->plt.offset == (bfd_vma) -1)
3291 abort ();
3292
3293 /* STT_GNU_IFUNC symbol must go through PLT. */
3294 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3295 relocation = (plt->output_section->vma
3296 + plt->output_offset + h->plt.offset);
3297
3298 switch (r_type)
3299 {
3300 default:
3301 if (h->root.root.string)
3302 name = h->root.root.string;
3303 else
3304 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3305 NULL);
3306 (*_bfd_error_handler)
3307 (_("%B: relocation %s against STT_GNU_IFUNC "
3308 "symbol `%s' isn't handled by %s"), input_bfd,
3309 x86_64_elf_howto_table[r_type].name,
3310 name, __FUNCTION__);
3311 bfd_set_error (bfd_error_bad_value);
3312 return FALSE;
3313
3314 case R_X86_64_32S:
3315 if (info->shared)
3316 abort ();
3317 goto do_relocation;
3318
3319 case R_X86_64_32:
3320 if (ABI_64_P (output_bfd))
3321 goto do_relocation;
3322 /* FALLTHROUGH */
3323 case R_X86_64_64:
3324 if (rel->r_addend != 0)
3325 {
3326 if (h->root.root.string)
3327 name = h->root.root.string;
3328 else
3329 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3330 sym, NULL);
3331 (*_bfd_error_handler)
3332 (_("%B: relocation %s against STT_GNU_IFUNC "
3333 "symbol `%s' has non-zero addend: %d"),
3334 input_bfd, x86_64_elf_howto_table[r_type].name,
3335 name, rel->r_addend);
3336 bfd_set_error (bfd_error_bad_value);
3337 return FALSE;
3338 }
3339
3340 /* Generate dynamic relcoation only when there is a
3341 non-GOT reference in a shared object. */
3342 if (info->shared && h->non_got_ref)
3343 {
3344 Elf_Internal_Rela outrel;
3345 asection *sreloc;
3346
3347 /* Need a dynamic relocation to get the real function
3348 address. */
3349 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3350 info,
3351 input_section,
3352 rel->r_offset);
3353 if (outrel.r_offset == (bfd_vma) -1
3354 || outrel.r_offset == (bfd_vma) -2)
3355 abort ();
3356
3357 outrel.r_offset += (input_section->output_section->vma
3358 + input_section->output_offset);
3359
3360 if (h->dynindx == -1
3361 || h->forced_local
3362 || info->executable)
3363 {
3364 /* This symbol is resolved locally. */
3365 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3366 outrel.r_addend = (h->root.u.def.value
3367 + h->root.u.def.section->output_section->vma
3368 + h->root.u.def.section->output_offset);
3369 }
3370 else
3371 {
3372 outrel.r_info = htab->r_info (h->dynindx, r_type);
3373 outrel.r_addend = 0;
3374 }
3375
3376 sreloc = htab->elf.irelifunc;
3377 elf_append_rela (output_bfd, sreloc, &outrel);
3378
3379 /* If this reloc is against an external symbol, we
3380 do not want to fiddle with the addend. Otherwise,
3381 we need to include the symbol value so that it
3382 becomes an addend for the dynamic reloc. For an
3383 internal symbol, we have updated addend. */
3384 continue;
3385 }
3386 /* FALLTHROUGH */
3387 case R_X86_64_PC32:
3388 case R_X86_64_PC64:
3389 case R_X86_64_PLT32:
3390 goto do_relocation;
3391
3392 case R_X86_64_GOTPCREL:
3393 case R_X86_64_GOTPCREL64:
3394 base_got = htab->elf.sgot;
3395 off = h->got.offset;
3396
3397 if (base_got == NULL)
3398 abort ();
3399
3400 if (off == (bfd_vma) -1)
3401 {
3402 /* We can't use h->got.offset here to save state, or
3403 even just remember the offset, as finish_dynamic_symbol
3404 would use that as offset into .got. */
3405
3406 if (htab->elf.splt != NULL)
3407 {
3408 plt_index = h->plt.offset / plt_entry_size - 1;
3409 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3410 base_got = htab->elf.sgotplt;
3411 }
3412 else
3413 {
3414 plt_index = h->plt.offset / plt_entry_size;
3415 off = plt_index * GOT_ENTRY_SIZE;
3416 base_got = htab->elf.igotplt;
3417 }
3418
3419 if (h->dynindx == -1
3420 || h->forced_local
3421 || info->symbolic)
3422 {
3423 /* This references the local defitionion. We must
3424 initialize this entry in the global offset table.
3425 Since the offset must always be a multiple of 8,
3426 we use the least significant bit to record
3427 whether we have initialized it already.
3428
3429 When doing a dynamic link, we create a .rela.got
3430 relocation entry to initialize the value. This
3431 is done in the finish_dynamic_symbol routine. */
3432 if ((off & 1) != 0)
3433 off &= ~1;
3434 else
3435 {
3436 bfd_put_64 (output_bfd, relocation,
3437 base_got->contents + off);
3438 /* Note that this is harmless for the GOTPLT64
3439 case, as -1 | 1 still is -1. */
3440 h->got.offset |= 1;
3441 }
3442 }
3443 }
3444
3445 relocation = (base_got->output_section->vma
3446 + base_got->output_offset + off);
3447
3448 goto do_relocation;
3449 }
3450 }
3451
3452 /* When generating a shared object, the relocations handled here are
3453 copied into the output file to be resolved at run time. */
3454 switch (r_type)
3455 {
3456 case R_X86_64_GOT32:
3457 case R_X86_64_GOT64:
3458 /* Relocation is to the entry for this symbol in the global
3459 offset table. */
3460 case R_X86_64_GOTPCREL:
3461 case R_X86_64_GOTPCREL64:
3462 /* Use global offset table entry as symbol value. */
3463 case R_X86_64_GOTPLT64:
3464 /* This is the same as GOT64 for relocation purposes, but
3465 indicates the existence of a PLT entry. The difficulty is,
3466 that we must calculate the GOT slot offset from the PLT
3467 offset, if this symbol got a PLT entry (it was global).
3468 Additionally if it's computed from the PLT entry, then that
3469 GOT offset is relative to .got.plt, not to .got. */
3470 base_got = htab->elf.sgot;
3471
3472 if (htab->elf.sgot == NULL)
3473 abort ();
3474
3475 if (h != NULL)
3476 {
3477 bfd_boolean dyn;
3478
3479 off = h->got.offset;
3480 if (h->needs_plt
3481 && h->plt.offset != (bfd_vma)-1
3482 && off == (bfd_vma)-1)
3483 {
3484 /* We can't use h->got.offset here to save
3485 state, or even just remember the offset, as
3486 finish_dynamic_symbol would use that as offset into
3487 .got. */
3488 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
3489 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3490 base_got = htab->elf.sgotplt;
3491 }
3492
3493 dyn = htab->elf.dynamic_sections_created;
3494
3495 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3496 || (info->shared
3497 && SYMBOL_REFERENCES_LOCAL (info, h))
3498 || (ELF_ST_VISIBILITY (h->other)
3499 && h->root.type == bfd_link_hash_undefweak))
3500 {
3501 /* This is actually a static link, or it is a -Bsymbolic
3502 link and the symbol is defined locally, or the symbol
3503 was forced to be local because of a version file. We
3504 must initialize this entry in the global offset table.
3505 Since the offset must always be a multiple of 8, we
3506 use the least significant bit to record whether we
3507 have initialized it already.
3508
3509 When doing a dynamic link, we create a .rela.got
3510 relocation entry to initialize the value. This is
3511 done in the finish_dynamic_symbol routine. */
3512 if ((off & 1) != 0)
3513 off &= ~1;
3514 else
3515 {
3516 bfd_put_64 (output_bfd, relocation,
3517 base_got->contents + off);
3518 /* Note that this is harmless for the GOTPLT64 case,
3519 as -1 | 1 still is -1. */
3520 h->got.offset |= 1;
3521 }
3522 }
3523 else
3524 unresolved_reloc = FALSE;
3525 }
3526 else
3527 {
3528 if (local_got_offsets == NULL)
3529 abort ();
3530
3531 off = local_got_offsets[r_symndx];
3532
3533 /* The offset must always be a multiple of 8. We use
3534 the least significant bit to record whether we have
3535 already generated the necessary reloc. */
3536 if ((off & 1) != 0)
3537 off &= ~1;
3538 else
3539 {
3540 bfd_put_64 (output_bfd, relocation,
3541 base_got->contents + off);
3542
3543 if (info->shared)
3544 {
3545 asection *s;
3546 Elf_Internal_Rela outrel;
3547
3548 /* We need to generate a R_X86_64_RELATIVE reloc
3549 for the dynamic linker. */
3550 s = htab->elf.srelgot;
3551 if (s == NULL)
3552 abort ();
3553
3554 outrel.r_offset = (base_got->output_section->vma
3555 + base_got->output_offset
3556 + off);
3557 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3558 outrel.r_addend = relocation;
3559 elf_append_rela (output_bfd, s, &outrel);
3560 }
3561
3562 local_got_offsets[r_symndx] |= 1;
3563 }
3564 }
3565
3566 if (off >= (bfd_vma) -2)
3567 abort ();
3568
3569 relocation = base_got->output_section->vma
3570 + base_got->output_offset + off;
3571 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3572 relocation -= htab->elf.sgotplt->output_section->vma
3573 - htab->elf.sgotplt->output_offset;
3574
3575 break;
3576
3577 case R_X86_64_GOTOFF64:
3578 /* Relocation is relative to the start of the global offset
3579 table. */
3580
3581 /* Check to make sure it isn't a protected function symbol
3582 for shared library since it may not be local when used
3583 as function address. */
3584 if (!info->executable
3585 && h
3586 && !SYMBOLIC_BIND (info, h)
3587 && h->def_regular
3588 && h->type == STT_FUNC
3589 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3590 {
3591 (*_bfd_error_handler)
3592 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3593 input_bfd, h->root.root.string);
3594 bfd_set_error (bfd_error_bad_value);
3595 return FALSE;
3596 }
3597
3598 /* Note that sgot is not involved in this
3599 calculation. We always want the start of .got.plt. If we
3600 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3601 permitted by the ABI, we might have to change this
3602 calculation. */
3603 relocation -= htab->elf.sgotplt->output_section->vma
3604 + htab->elf.sgotplt->output_offset;
3605 break;
3606
3607 case R_X86_64_GOTPC32:
3608 case R_X86_64_GOTPC64:
3609 /* Use global offset table as symbol value. */
3610 relocation = htab->elf.sgotplt->output_section->vma
3611 + htab->elf.sgotplt->output_offset;
3612 unresolved_reloc = FALSE;
3613 break;
3614
3615 case R_X86_64_PLTOFF64:
3616 /* Relocation is PLT entry relative to GOT. For local
3617 symbols it's the symbol itself relative to GOT. */
3618 if (h != NULL
3619 /* See PLT32 handling. */
3620 && h->plt.offset != (bfd_vma) -1
3621 && htab->elf.splt != NULL)
3622 {
3623 relocation = (htab->elf.splt->output_section->vma
3624 + htab->elf.splt->output_offset
3625 + h->plt.offset);
3626 unresolved_reloc = FALSE;
3627 }
3628
3629 relocation -= htab->elf.sgotplt->output_section->vma
3630 + htab->elf.sgotplt->output_offset;
3631 break;
3632
3633 case R_X86_64_PLT32:
3634 /* Relocation is to the entry for this symbol in the
3635 procedure linkage table. */
3636
3637 /* Resolve a PLT32 reloc against a local symbol directly,
3638 without using the procedure linkage table. */
3639 if (h == NULL)
3640 break;
3641
3642 if (h->plt.offset == (bfd_vma) -1
3643 || htab->elf.splt == NULL)
3644 {
3645 /* We didn't make a PLT entry for this symbol. This
3646 happens when statically linking PIC code, or when
3647 using -Bsymbolic. */
3648 break;
3649 }
3650
3651 relocation = (htab->elf.splt->output_section->vma
3652 + htab->elf.splt->output_offset
3653 + h->plt.offset);
3654 unresolved_reloc = FALSE;
3655 break;
3656
3657 case R_X86_64_PC8:
3658 case R_X86_64_PC16:
3659 case R_X86_64_PC32:
3660 if (info->shared
3661 && (input_section->flags & SEC_ALLOC) != 0
3662 && (input_section->flags & SEC_READONLY) != 0
3663 && h != NULL)
3664 {
3665 bfd_boolean fail = FALSE;
3666 bfd_boolean branch
3667 = (r_type == R_X86_64_PC32
3668 && is_32bit_relative_branch (contents, rel->r_offset));
3669
3670 if (SYMBOL_REFERENCES_LOCAL (info, h))
3671 {
3672 /* Symbol is referenced locally. Make sure it is
3673 defined locally or for a branch. */
3674 fail = !h->def_regular && !branch;
3675 }
3676 else
3677 {
3678 /* Symbol isn't referenced locally. We only allow
3679 branch to symbol with non-default visibility. */
3680 fail = (!branch
3681 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3682 }
3683
3684 if (fail)
3685 {
3686 const char *fmt;
3687 const char *v;
3688 const char *pic = "";
3689
3690 switch (ELF_ST_VISIBILITY (h->other))
3691 {
3692 case STV_HIDDEN:
3693 v = _("hidden symbol");
3694 break;
3695 case STV_INTERNAL:
3696 v = _("internal symbol");
3697 break;
3698 case STV_PROTECTED:
3699 v = _("protected symbol");
3700 break;
3701 default:
3702 v = _("symbol");
3703 pic = _("; recompile with -fPIC");
3704 break;
3705 }
3706
3707 if (h->def_regular)
3708 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3709 else
3710 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3711
3712 (*_bfd_error_handler) (fmt, input_bfd,
3713 x86_64_elf_howto_table[r_type].name,
3714 v, h->root.root.string, pic);
3715 bfd_set_error (bfd_error_bad_value);
3716 return FALSE;
3717 }
3718 }
3719 /* Fall through. */
3720
3721 case R_X86_64_8:
3722 case R_X86_64_16:
3723 case R_X86_64_32:
3724 case R_X86_64_PC64:
3725 case R_X86_64_64:
3726 /* FIXME: The ABI says the linker should make sure the value is
3727 the same when it's zeroextended to 64 bit. */
3728
3729 if ((input_section->flags & SEC_ALLOC) == 0)
3730 break;
3731
3732 if ((info->shared
3733 && (h == NULL
3734 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3735 || h->root.type != bfd_link_hash_undefweak)
3736 && (! IS_X86_64_PCREL_TYPE (r_type)
3737 || ! SYMBOL_CALLS_LOCAL (info, h)))
3738 || (ELIMINATE_COPY_RELOCS
3739 && !info->shared
3740 && h != NULL
3741 && h->dynindx != -1
3742 && !h->non_got_ref
3743 && ((h->def_dynamic
3744 && !h->def_regular)
3745 || h->root.type == bfd_link_hash_undefweak
3746 || h->root.type == bfd_link_hash_undefined)))
3747 {
3748 Elf_Internal_Rela outrel;
3749 bfd_boolean skip, relocate;
3750 asection *sreloc;
3751
3752 /* When generating a shared object, these relocations
3753 are copied into the output file to be resolved at run
3754 time. */
3755 skip = FALSE;
3756 relocate = FALSE;
3757
3758 outrel.r_offset =
3759 _bfd_elf_section_offset (output_bfd, info, input_section,
3760 rel->r_offset);
3761 if (outrel.r_offset == (bfd_vma) -1)
3762 skip = TRUE;
3763 else if (outrel.r_offset == (bfd_vma) -2)
3764 skip = TRUE, relocate = TRUE;
3765
3766 outrel.r_offset += (input_section->output_section->vma
3767 + input_section->output_offset);
3768
3769 if (skip)
3770 memset (&outrel, 0, sizeof outrel);
3771
3772 /* h->dynindx may be -1 if this symbol was marked to
3773 become local. */
3774 else if (h != NULL
3775 && h->dynindx != -1
3776 && (IS_X86_64_PCREL_TYPE (r_type)
3777 || ! info->shared
3778 || ! SYMBOLIC_BIND (info, h)
3779 || ! h->def_regular))
3780 {
3781 outrel.r_info = htab->r_info (h->dynindx, r_type);
3782 outrel.r_addend = rel->r_addend;
3783 }
3784 else
3785 {
3786 /* This symbol is local, or marked to become local. */
3787 if (r_type == htab->pointer_r_type)
3788 {
3789 relocate = TRUE;
3790 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3791 outrel.r_addend = relocation + rel->r_addend;
3792 }
3793 else if (r_type == R_X86_64_64
3794 && !ABI_64_P (output_bfd))
3795 {
3796 relocate = TRUE;
3797 outrel.r_info = htab->r_info (0,
3798 R_X86_64_RELATIVE64);
3799 outrel.r_addend = relocation + rel->r_addend;
3800 /* Check addend overflow. */
3801 if ((outrel.r_addend & 0x80000000)
3802 != (rel->r_addend & 0x80000000))
3803 {
3804 const char *name;
3805 int addend = rel->r_addend;
3806 if (h && h->root.root.string)
3807 name = h->root.root.string;
3808 else
3809 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3810 sym, NULL);
3811 if (addend < 0)
3812 (*_bfd_error_handler)
3813 (_("%B: addend -0x%x in relocation %s against "
3814 "symbol `%s' at 0x%lx in section `%A' is "
3815 "out of range"),
3816 input_bfd, input_section, addend,
3817 x86_64_elf_howto_table[r_type].name,
3818 name, (unsigned long) rel->r_offset);
3819 else
3820 (*_bfd_error_handler)
3821 (_("%B: addend 0x%x in relocation %s against "
3822 "symbol `%s' at 0x%lx in section `%A' is "
3823 "out of range"),
3824 input_bfd, input_section, addend,
3825 x86_64_elf_howto_table[r_type].name,
3826 name, (unsigned long) rel->r_offset);
3827 bfd_set_error (bfd_error_bad_value);
3828 return FALSE;
3829 }
3830 }
3831 else
3832 {
3833 long sindx;
3834
3835 if (bfd_is_abs_section (sec))
3836 sindx = 0;
3837 else if (sec == NULL || sec->owner == NULL)
3838 {
3839 bfd_set_error (bfd_error_bad_value);
3840 return FALSE;
3841 }
3842 else
3843 {
3844 asection *osec;
3845
3846 /* We are turning this relocation into one
3847 against a section symbol. It would be
3848 proper to subtract the symbol's value,
3849 osec->vma, from the emitted reloc addend,
3850 but ld.so expects buggy relocs. */
3851 osec = sec->output_section;
3852 sindx = elf_section_data (osec)->dynindx;
3853 if (sindx == 0)
3854 {
3855 asection *oi = htab->elf.text_index_section;
3856 sindx = elf_section_data (oi)->dynindx;
3857 }
3858 BFD_ASSERT (sindx != 0);
3859 }
3860
3861 outrel.r_info = htab->r_info (sindx, r_type);
3862 outrel.r_addend = relocation + rel->r_addend;
3863 }
3864 }
3865
3866 sreloc = elf_section_data (input_section)->sreloc;
3867
3868 if (sreloc == NULL || sreloc->contents == NULL)
3869 {
3870 r = bfd_reloc_notsupported;
3871 goto check_relocation_error;
3872 }
3873
3874 elf_append_rela (output_bfd, sreloc, &outrel);
3875
3876 /* If this reloc is against an external symbol, we do
3877 not want to fiddle with the addend. Otherwise, we
3878 need to include the symbol value so that it becomes
3879 an addend for the dynamic reloc. */
3880 if (! relocate)
3881 continue;
3882 }
3883
3884 break;
3885
3886 case R_X86_64_TLSGD:
3887 case R_X86_64_GOTPC32_TLSDESC:
3888 case R_X86_64_TLSDESC_CALL:
3889 case R_X86_64_GOTTPOFF:
3890 tls_type = GOT_UNKNOWN;
3891 if (h == NULL && local_got_offsets)
3892 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3893 else if (h != NULL)
3894 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3895
3896 if (! elf_x86_64_tls_transition (info, input_bfd,
3897 input_section, contents,
3898 symtab_hdr, sym_hashes,
3899 &r_type, tls_type, rel,
3900 relend, h, r_symndx))
3901 return FALSE;
3902
3903 if (r_type == R_X86_64_TPOFF32)
3904 {
3905 bfd_vma roff = rel->r_offset;
3906
3907 BFD_ASSERT (! unresolved_reloc);
3908
3909 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3910 {
3911 /* GD->LE transition. For 64bit, change
3912 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3913 .word 0x6666; rex64; call __tls_get_addr
3914 into:
3915 movq %fs:0, %rax
3916 leaq foo@tpoff(%rax), %rax
3917 For 32bit, change
3918 leaq foo@tlsgd(%rip), %rdi
3919 .word 0x6666; rex64; call __tls_get_addr
3920 into:
3921 movl %fs:0, %eax
3922 leaq foo@tpoff(%rax), %rax */
3923 if (ABI_64_P (output_bfd))
3924 memcpy (contents + roff - 4,
3925 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3926 16);
3927 else
3928 memcpy (contents + roff - 3,
3929 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3930 15);
3931 bfd_put_32 (output_bfd,
3932 elf_x86_64_tpoff (info, relocation),
3933 contents + roff + 8);
3934 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3935 rel++;
3936 continue;
3937 }
3938 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3939 {
3940 /* GDesc -> LE transition.
3941 It's originally something like:
3942 leaq x@tlsdesc(%rip), %rax
3943
3944 Change it to:
3945 movl $x@tpoff, %rax. */
3946
3947 unsigned int val, type;
3948
3949 type = bfd_get_8 (input_bfd, contents + roff - 3);
3950 val = bfd_get_8 (input_bfd, contents + roff - 1);
3951 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3952 contents + roff - 3);
3953 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3954 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3955 contents + roff - 1);
3956 bfd_put_32 (output_bfd,
3957 elf_x86_64_tpoff (info, relocation),
3958 contents + roff);
3959 continue;
3960 }
3961 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3962 {
3963 /* GDesc -> LE transition.
3964 It's originally:
3965 call *(%rax)
3966 Turn it into:
3967 xchg %ax,%ax. */
3968 bfd_put_8 (output_bfd, 0x66, contents + roff);
3969 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3970 continue;
3971 }
3972 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3973 {
3974 /* IE->LE transition:
3975 Originally it can be one of:
3976 movq foo@gottpoff(%rip), %reg
3977 addq foo@gottpoff(%rip), %reg
3978 We change it into:
3979 movq $foo, %reg
3980 leaq foo(%reg), %reg
3981 addq $foo, %reg. */
3982
3983 unsigned int val, type, reg;
3984
3985 val = bfd_get_8 (input_bfd, contents + roff - 3);
3986 type = bfd_get_8 (input_bfd, contents + roff - 2);
3987 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3988 reg >>= 3;
3989 if (type == 0x8b)
3990 {
3991 /* movq */
3992 if (val == 0x4c)
3993 bfd_put_8 (output_bfd, 0x49,
3994 contents + roff - 3);
3995 else if (!ABI_64_P (output_bfd) && val == 0x44)
3996 bfd_put_8 (output_bfd, 0x41,
3997 contents + roff - 3);
3998 bfd_put_8 (output_bfd, 0xc7,
3999 contents + roff - 2);
4000 bfd_put_8 (output_bfd, 0xc0 | reg,
4001 contents + roff - 1);
4002 }
4003 else if (reg == 4)
4004 {
4005 /* addq -> addq - addressing with %rsp/%r12 is
4006 special */
4007 if (val == 0x4c)
4008 bfd_put_8 (output_bfd, 0x49,
4009 contents + roff - 3);
4010 else if (!ABI_64_P (output_bfd) && val == 0x44)
4011 bfd_put_8 (output_bfd, 0x41,
4012 contents + roff - 3);
4013 bfd_put_8 (output_bfd, 0x81,
4014 contents + roff - 2);
4015 bfd_put_8 (output_bfd, 0xc0 | reg,
4016 contents + roff - 1);
4017 }
4018 else
4019 {
4020 /* addq -> leaq */
4021 if (val == 0x4c)
4022 bfd_put_8 (output_bfd, 0x4d,
4023 contents + roff - 3);
4024 else if (!ABI_64_P (output_bfd) && val == 0x44)
4025 bfd_put_8 (output_bfd, 0x45,
4026 contents + roff - 3);
4027 bfd_put_8 (output_bfd, 0x8d,
4028 contents + roff - 2);
4029 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
4030 contents + roff - 1);
4031 }
4032 bfd_put_32 (output_bfd,
4033 elf_x86_64_tpoff (info, relocation),
4034 contents + roff);
4035 continue;
4036 }
4037 else
4038 BFD_ASSERT (FALSE);
4039 }
4040
4041 if (htab->elf.sgot == NULL)
4042 abort ();
4043
4044 if (h != NULL)
4045 {
4046 off = h->got.offset;
4047 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
4048 }
4049 else
4050 {
4051 if (local_got_offsets == NULL)
4052 abort ();
4053
4054 off = local_got_offsets[r_symndx];
4055 offplt = local_tlsdesc_gotents[r_symndx];
4056 }
4057
4058 if ((off & 1) != 0)
4059 off &= ~1;
4060 else
4061 {
4062 Elf_Internal_Rela outrel;
4063 int dr_type, indx;
4064 asection *sreloc;
4065
4066 if (htab->elf.srelgot == NULL)
4067 abort ();
4068
4069 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4070
4071 if (GOT_TLS_GDESC_P (tls_type))
4072 {
4073 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
4074 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
4075 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
4076 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
4077 + htab->elf.sgotplt->output_offset
4078 + offplt
4079 + htab->sgotplt_jump_table_size);
4080 sreloc = htab->elf.srelplt;
4081 if (indx == 0)
4082 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4083 else
4084 outrel.r_addend = 0;
4085 elf_append_rela (output_bfd, sreloc, &outrel);
4086 }
4087
4088 sreloc = htab->elf.srelgot;
4089
4090 outrel.r_offset = (htab->elf.sgot->output_section->vma
4091 + htab->elf.sgot->output_offset + off);
4092
4093 if (GOT_TLS_GD_P (tls_type))
4094 dr_type = R_X86_64_DTPMOD64;
4095 else if (GOT_TLS_GDESC_P (tls_type))
4096 goto dr_done;
4097 else
4098 dr_type = R_X86_64_TPOFF64;
4099
4100 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
4101 outrel.r_addend = 0;
4102 if ((dr_type == R_X86_64_TPOFF64
4103 || dr_type == R_X86_64_TLSDESC) && indx == 0)
4104 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4105 outrel.r_info = htab->r_info (indx, dr_type);
4106
4107 elf_append_rela (output_bfd, sreloc, &outrel);
4108
4109 if (GOT_TLS_GD_P (tls_type))
4110 {
4111 if (indx == 0)
4112 {
4113 BFD_ASSERT (! unresolved_reloc);
4114 bfd_put_64 (output_bfd,
4115 relocation - elf_x86_64_dtpoff_base (info),
4116 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4117 }
4118 else
4119 {
4120 bfd_put_64 (output_bfd, 0,
4121 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4122 outrel.r_info = htab->r_info (indx,
4123 R_X86_64_DTPOFF64);
4124 outrel.r_offset += GOT_ENTRY_SIZE;
4125 elf_append_rela (output_bfd, sreloc,
4126 &outrel);
4127 }
4128 }
4129
4130 dr_done:
4131 if (h != NULL)
4132 h->got.offset |= 1;
4133 else
4134 local_got_offsets[r_symndx] |= 1;
4135 }
4136
4137 if (off >= (bfd_vma) -2
4138 && ! GOT_TLS_GDESC_P (tls_type))
4139 abort ();
4140 if (r_type == ELF32_R_TYPE (rel->r_info))
4141 {
4142 if (r_type == R_X86_64_GOTPC32_TLSDESC
4143 || r_type == R_X86_64_TLSDESC_CALL)
4144 relocation = htab->elf.sgotplt->output_section->vma
4145 + htab->elf.sgotplt->output_offset
4146 + offplt + htab->sgotplt_jump_table_size;
4147 else
4148 relocation = htab->elf.sgot->output_section->vma
4149 + htab->elf.sgot->output_offset + off;
4150 unresolved_reloc = FALSE;
4151 }
4152 else
4153 {
4154 bfd_vma roff = rel->r_offset;
4155
4156 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4157 {
4158 /* GD->IE transition. For 64bit, change
4159 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4160 .word 0x6666; rex64; call __tls_get_addr@plt
4161 into:
4162 movq %fs:0, %rax
4163 addq foo@gottpoff(%rip), %rax
4164 For 32bit, change
4165 leaq foo@tlsgd(%rip), %rdi
4166 .word 0x6666; rex64; call __tls_get_addr@plt
4167 into:
4168 movl %fs:0, %eax
4169 addq foo@gottpoff(%rip), %rax */
4170 if (ABI_64_P (output_bfd))
4171 memcpy (contents + roff - 4,
4172 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4173 16);
4174 else
4175 memcpy (contents + roff - 3,
4176 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4177 15);
4178
4179 relocation = (htab->elf.sgot->output_section->vma
4180 + htab->elf.sgot->output_offset + off
4181 - roff
4182 - input_section->output_section->vma
4183 - input_section->output_offset
4184 - 12);
4185 bfd_put_32 (output_bfd, relocation,
4186 contents + roff + 8);
4187 /* Skip R_X86_64_PLT32. */
4188 rel++;
4189 continue;
4190 }
4191 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4192 {
4193 /* GDesc -> IE transition.
4194 It's originally something like:
4195 leaq x@tlsdesc(%rip), %rax
4196
4197 Change it to:
4198 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4199
4200 /* Now modify the instruction as appropriate. To
4201 turn a leaq into a movq in the form we use it, it
4202 suffices to change the second byte from 0x8d to
4203 0x8b. */
4204 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4205
4206 bfd_put_32 (output_bfd,
4207 htab->elf.sgot->output_section->vma
4208 + htab->elf.sgot->output_offset + off
4209 - rel->r_offset
4210 - input_section->output_section->vma
4211 - input_section->output_offset
4212 - 4,
4213 contents + roff);
4214 continue;
4215 }
4216 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4217 {
4218 /* GDesc -> IE transition.
4219 It's originally:
4220 call *(%rax)
4221
4222 Change it to:
4223 xchg %ax, %ax. */
4224
4225 bfd_put_8 (output_bfd, 0x66, contents + roff);
4226 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4227 continue;
4228 }
4229 else
4230 BFD_ASSERT (FALSE);
4231 }
4232 break;
4233
4234 case R_X86_64_TLSLD:
4235 if (! elf_x86_64_tls_transition (info, input_bfd,
4236 input_section, contents,
4237 symtab_hdr, sym_hashes,
4238 &r_type, GOT_UNKNOWN,
4239 rel, relend, h, r_symndx))
4240 return FALSE;
4241
4242 if (r_type != R_X86_64_TLSLD)
4243 {
4244 /* LD->LE transition:
4245 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4246 For 64bit, we change it into:
4247 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4248 For 32bit, we change it into:
4249 nopl 0x0(%rax); movl %fs:0, %eax. */
4250
4251 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4252 if (ABI_64_P (output_bfd))
4253 memcpy (contents + rel->r_offset - 3,
4254 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4255 else
4256 memcpy (contents + rel->r_offset - 3,
4257 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4258 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
4259 rel++;
4260 continue;
4261 }
4262
4263 if (htab->elf.sgot == NULL)
4264 abort ();
4265
4266 off = htab->tls_ld_got.offset;
4267 if (off & 1)
4268 off &= ~1;
4269 else
4270 {
4271 Elf_Internal_Rela outrel;
4272
4273 if (htab->elf.srelgot == NULL)
4274 abort ();
4275
4276 outrel.r_offset = (htab->elf.sgot->output_section->vma
4277 + htab->elf.sgot->output_offset + off);
4278
4279 bfd_put_64 (output_bfd, 0,
4280 htab->elf.sgot->contents + off);
4281 bfd_put_64 (output_bfd, 0,
4282 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4283 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4284 outrel.r_addend = 0;
4285 elf_append_rela (output_bfd, htab->elf.srelgot,
4286 &outrel);
4287 htab->tls_ld_got.offset |= 1;
4288 }
4289 relocation = htab->elf.sgot->output_section->vma
4290 + htab->elf.sgot->output_offset + off;
4291 unresolved_reloc = FALSE;
4292 break;
4293
4294 case R_X86_64_DTPOFF32:
4295 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4296 relocation -= elf_x86_64_dtpoff_base (info);
4297 else
4298 relocation = elf_x86_64_tpoff (info, relocation);
4299 break;
4300
4301 case R_X86_64_TPOFF32:
4302 case R_X86_64_TPOFF64:
4303 BFD_ASSERT (info->executable);
4304 relocation = elf_x86_64_tpoff (info, relocation);
4305 break;
4306
4307 default:
4308 break;
4309 }
4310
4311 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4312 because such sections are not SEC_ALLOC and thus ld.so will
4313 not process them. */
4314 if (unresolved_reloc
4315 && !((input_section->flags & SEC_DEBUGGING) != 0
4316 && h->def_dynamic)
4317 && _bfd_elf_section_offset (output_bfd, info, input_section,
4318 rel->r_offset) != (bfd_vma) -1)
4319 {
4320 (*_bfd_error_handler)
4321 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4322 input_bfd,
4323 input_section,
4324 (long) rel->r_offset,
4325 howto->name,
4326 h->root.root.string);
4327 return FALSE;
4328 }
4329
4330 do_relocation:
4331 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4332 contents, rel->r_offset,
4333 relocation, rel->r_addend);
4334
4335 check_relocation_error:
4336 if (r != bfd_reloc_ok)
4337 {
4338 const char *name;
4339
4340 if (h != NULL)
4341 name = h->root.root.string;
4342 else
4343 {
4344 name = bfd_elf_string_from_elf_section (input_bfd,
4345 symtab_hdr->sh_link,
4346 sym->st_name);
4347 if (name == NULL)
4348 return FALSE;
4349 if (*name == '\0')
4350 name = bfd_section_name (input_bfd, sec);
4351 }
4352
4353 if (r == bfd_reloc_overflow)
4354 {
4355 if (! ((*info->callbacks->reloc_overflow)
4356 (info, (h ? &h->root : NULL), name, howto->name,
4357 (bfd_vma) 0, input_bfd, input_section,
4358 rel->r_offset)))
4359 return FALSE;
4360 }
4361 else
4362 {
4363 (*_bfd_error_handler)
4364 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4365 input_bfd, input_section,
4366 (long) rel->r_offset, name, (int) r);
4367 return FALSE;
4368 }
4369 }
4370 }
4371
4372 return TRUE;
4373 }
4374
4375 /* Finish up dynamic symbol handling. We set the contents of various
4376 dynamic sections here. */
4377
4378 static bfd_boolean
4379 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4380 struct bfd_link_info *info,
4381 struct elf_link_hash_entry *h,
4382 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
4383 {
4384 struct elf_x86_64_link_hash_table *htab;
4385 const struct elf_x86_64_backend_data *const abed
4386 = get_elf_x86_64_backend_data (output_bfd);
4387
4388 htab = elf_x86_64_hash_table (info);
4389 if (htab == NULL)
4390 return FALSE;
4391
4392 if (h->plt.offset != (bfd_vma) -1)
4393 {
4394 bfd_vma plt_index;
4395 bfd_vma got_offset;
4396 Elf_Internal_Rela rela;
4397 bfd_byte *loc;
4398 asection *plt, *gotplt, *relplt;
4399 const struct elf_backend_data *bed;
4400
4401 /* When building a static executable, use .iplt, .igot.plt and
4402 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4403 if (htab->elf.splt != NULL)
4404 {
4405 plt = htab->elf.splt;
4406 gotplt = htab->elf.sgotplt;
4407 relplt = htab->elf.srelplt;
4408 }
4409 else
4410 {
4411 plt = htab->elf.iplt;
4412 gotplt = htab->elf.igotplt;
4413 relplt = htab->elf.irelplt;
4414 }
4415
4416 /* This symbol has an entry in the procedure linkage table. Set
4417 it up. */
4418 if ((h->dynindx == -1
4419 && !((h->forced_local || info->executable)
4420 && h->def_regular
4421 && h->type == STT_GNU_IFUNC))
4422 || plt == NULL
4423 || gotplt == NULL
4424 || relplt == NULL)
4425 abort ();
4426
4427 /* Get the index in the procedure linkage table which
4428 corresponds to this symbol. This is the index of this symbol
4429 in all the symbols for which we are making plt entries. The
4430 first entry in the procedure linkage table is reserved.
4431
4432 Get the offset into the .got table of the entry that
4433 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4434 bytes. The first three are reserved for the dynamic linker.
4435
4436 For static executables, we don't reserve anything. */
4437
4438 if (plt == htab->elf.splt)
4439 {
4440 got_offset = h->plt.offset / abed->plt_entry_size - 1;
4441 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4442 }
4443 else
4444 {
4445 got_offset = h->plt.offset / abed->plt_entry_size;
4446 got_offset = got_offset * GOT_ENTRY_SIZE;
4447 }
4448
4449 /* Fill in the entry in the procedure linkage table. */
4450 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
4451 abed->plt_entry_size);
4452
4453 /* Insert the relocation positions of the plt section. */
4454
4455 /* Put offset the PC-relative instruction referring to the GOT entry,
4456 subtracting the size of that instruction. */
4457 bfd_put_32 (output_bfd,
4458 (gotplt->output_section->vma
4459 + gotplt->output_offset
4460 + got_offset
4461 - plt->output_section->vma
4462 - plt->output_offset
4463 - h->plt.offset
4464 - abed->plt_got_insn_size),
4465 plt->contents + h->plt.offset + abed->plt_got_offset);
4466
4467 /* Fill in the entry in the global offset table, initially this
4468 points to the second part of the PLT entry. */
4469 bfd_put_64 (output_bfd, (plt->output_section->vma
4470 + plt->output_offset
4471 + h->plt.offset + abed->plt_lazy_offset),
4472 gotplt->contents + got_offset);
4473
4474 /* Fill in the entry in the .rela.plt section. */
4475 rela.r_offset = (gotplt->output_section->vma
4476 + gotplt->output_offset
4477 + got_offset);
4478 if (h->dynindx == -1
4479 || ((info->executable
4480 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4481 && h->def_regular
4482 && h->type == STT_GNU_IFUNC))
4483 {
4484 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4485 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4486 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4487 rela.r_addend = (h->root.u.def.value
4488 + h->root.u.def.section->output_section->vma
4489 + h->root.u.def.section->output_offset);
4490 /* R_X86_64_IRELATIVE comes last. */
4491 plt_index = htab->next_irelative_index--;
4492 }
4493 else
4494 {
4495 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4496 rela.r_addend = 0;
4497 plt_index = htab->next_jump_slot_index++;
4498 }
4499
4500 /* Don't fill PLT entry for static executables. */
4501 if (plt == htab->elf.splt)
4502 {
4503 /* Put relocation index. */
4504 bfd_put_32 (output_bfd, plt_index,
4505 plt->contents + h->plt.offset + abed->plt_reloc_offset);
4506 /* Put offset for jmp .PLT0. */
4507 bfd_put_32 (output_bfd, - (h->plt.offset + abed->plt_plt_insn_end),
4508 plt->contents + h->plt.offset + abed->plt_plt_offset);
4509 }
4510
4511 bed = get_elf_backend_data (output_bfd);
4512 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4513 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4514
4515 if (!h->def_regular)
4516 {
4517 /* Mark the symbol as undefined, rather than as defined in
4518 the .plt section. Leave the value if there were any
4519 relocations where pointer equality matters (this is a clue
4520 for the dynamic linker, to make function pointer
4521 comparisons work between an application and shared
4522 library), otherwise set it to zero. If a function is only
4523 called from a binary, there is no need to slow down
4524 shared libraries because of that. */
4525 sym->st_shndx = SHN_UNDEF;
4526 if (!h->pointer_equality_needed)
4527 sym->st_value = 0;
4528 }
4529 }
4530
4531 if (h->got.offset != (bfd_vma) -1
4532 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4533 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4534 {
4535 Elf_Internal_Rela rela;
4536
4537 /* This symbol has an entry in the global offset table. Set it
4538 up. */
4539 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4540 abort ();
4541
4542 rela.r_offset = (htab->elf.sgot->output_section->vma
4543 + htab->elf.sgot->output_offset
4544 + (h->got.offset &~ (bfd_vma) 1));
4545
4546 /* If this is a static link, or it is a -Bsymbolic link and the
4547 symbol is defined locally or was forced to be local because
4548 of a version file, we just want to emit a RELATIVE reloc.
4549 The entry in the global offset table will already have been
4550 initialized in the relocate_section function. */
4551 if (h->def_regular
4552 && h->type == STT_GNU_IFUNC)
4553 {
4554 if (info->shared)
4555 {
4556 /* Generate R_X86_64_GLOB_DAT. */
4557 goto do_glob_dat;
4558 }
4559 else
4560 {
4561 asection *plt;
4562
4563 if (!h->pointer_equality_needed)
4564 abort ();
4565
4566 /* For non-shared object, we can't use .got.plt, which
4567 contains the real function addres if we need pointer
4568 equality. We load the GOT entry with the PLT entry. */
4569 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4570 bfd_put_64 (output_bfd, (plt->output_section->vma
4571 + plt->output_offset
4572 + h->plt.offset),
4573 htab->elf.sgot->contents + h->got.offset);
4574 return TRUE;
4575 }
4576 }
4577 else if (info->shared
4578 && SYMBOL_REFERENCES_LOCAL (info, h))
4579 {
4580 if (!h->def_regular)
4581 return FALSE;
4582 BFD_ASSERT((h->got.offset & 1) != 0);
4583 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4584 rela.r_addend = (h->root.u.def.value
4585 + h->root.u.def.section->output_section->vma
4586 + h->root.u.def.section->output_offset);
4587 }
4588 else
4589 {
4590 BFD_ASSERT((h->got.offset & 1) == 0);
4591 do_glob_dat:
4592 bfd_put_64 (output_bfd, (bfd_vma) 0,
4593 htab->elf.sgot->contents + h->got.offset);
4594 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4595 rela.r_addend = 0;
4596 }
4597
4598 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4599 }
4600
4601 if (h->needs_copy)
4602 {
4603 Elf_Internal_Rela rela;
4604
4605 /* This symbol needs a copy reloc. Set it up. */
4606
4607 if (h->dynindx == -1
4608 || (h->root.type != bfd_link_hash_defined
4609 && h->root.type != bfd_link_hash_defweak)
4610 || htab->srelbss == NULL)
4611 abort ();
4612
4613 rela.r_offset = (h->root.u.def.value
4614 + h->root.u.def.section->output_section->vma
4615 + h->root.u.def.section->output_offset);
4616 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4617 rela.r_addend = 0;
4618 elf_append_rela (output_bfd, htab->srelbss, &rela);
4619 }
4620
4621 return TRUE;
4622 }
4623
4624 /* Finish up local dynamic symbol handling. We set the contents of
4625 various dynamic sections here. */
4626
4627 static bfd_boolean
4628 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4629 {
4630 struct elf_link_hash_entry *h
4631 = (struct elf_link_hash_entry *) *slot;
4632 struct bfd_link_info *info
4633 = (struct bfd_link_info *) inf;
4634
4635 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4636 info, h, NULL);
4637 }
4638
4639 /* Used to decide how to sort relocs in an optimal manner for the
4640 dynamic linker, before writing them out. */
4641
4642 static enum elf_reloc_type_class
4643 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4644 {
4645 switch ((int) ELF32_R_TYPE (rela->r_info))
4646 {
4647 case R_X86_64_RELATIVE:
4648 case R_X86_64_RELATIVE64:
4649 return reloc_class_relative;
4650 case R_X86_64_JUMP_SLOT:
4651 return reloc_class_plt;
4652 case R_X86_64_COPY:
4653 return reloc_class_copy;
4654 default:
4655 return reloc_class_normal;
4656 }
4657 }
4658
4659 /* Finish up the dynamic sections. */
4660
4661 static bfd_boolean
4662 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4663 struct bfd_link_info *info)
4664 {
4665 struct elf_x86_64_link_hash_table *htab;
4666 bfd *dynobj;
4667 asection *sdyn;
4668 const struct elf_x86_64_backend_data *const abed
4669 = get_elf_x86_64_backend_data (output_bfd);
4670
4671 htab = elf_x86_64_hash_table (info);
4672 if (htab == NULL)
4673 return FALSE;
4674
4675 dynobj = htab->elf.dynobj;
4676 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4677
4678 if (htab->elf.dynamic_sections_created)
4679 {
4680 bfd_byte *dyncon, *dynconend;
4681 const struct elf_backend_data *bed;
4682 bfd_size_type sizeof_dyn;
4683
4684 if (sdyn == NULL || htab->elf.sgot == NULL)
4685 abort ();
4686
4687 bed = get_elf_backend_data (dynobj);
4688 sizeof_dyn = bed->s->sizeof_dyn;
4689 dyncon = sdyn->contents;
4690 dynconend = sdyn->contents + sdyn->size;
4691 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4692 {
4693 Elf_Internal_Dyn dyn;
4694 asection *s;
4695
4696 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4697
4698 switch (dyn.d_tag)
4699 {
4700 default:
4701 continue;
4702
4703 case DT_PLTGOT:
4704 s = htab->elf.sgotplt;
4705 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4706 break;
4707
4708 case DT_JMPREL:
4709 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4710 break;
4711
4712 case DT_PLTRELSZ:
4713 s = htab->elf.srelplt->output_section;
4714 dyn.d_un.d_val = s->size;
4715 break;
4716
4717 case DT_RELASZ:
4718 /* The procedure linkage table relocs (DT_JMPREL) should
4719 not be included in the overall relocs (DT_RELA).
4720 Therefore, we override the DT_RELASZ entry here to
4721 make it not include the JMPREL relocs. Since the
4722 linker script arranges for .rela.plt to follow all
4723 other relocation sections, we don't have to worry
4724 about changing the DT_RELA entry. */
4725 if (htab->elf.srelplt != NULL)
4726 {
4727 s = htab->elf.srelplt->output_section;
4728 dyn.d_un.d_val -= s->size;
4729 }
4730 break;
4731
4732 case DT_TLSDESC_PLT:
4733 s = htab->elf.splt;
4734 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4735 + htab->tlsdesc_plt;
4736 break;
4737
4738 case DT_TLSDESC_GOT:
4739 s = htab->elf.sgot;
4740 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4741 + htab->tlsdesc_got;
4742 break;
4743 }
4744
4745 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4746 }
4747
4748 /* Fill in the special first entry in the procedure linkage table. */
4749 if (htab->elf.splt && htab->elf.splt->size > 0)
4750 {
4751 /* Fill in the first entry in the procedure linkage table. */
4752 memcpy (htab->elf.splt->contents,
4753 abed->plt0_entry, abed->plt_entry_size);
4754 /* Add offset for pushq GOT+8(%rip), since the instruction
4755 uses 6 bytes subtract this value. */
4756 bfd_put_32 (output_bfd,
4757 (htab->elf.sgotplt->output_section->vma
4758 + htab->elf.sgotplt->output_offset
4759 + 8
4760 - htab->elf.splt->output_section->vma
4761 - htab->elf.splt->output_offset
4762 - 6),
4763 htab->elf.splt->contents + abed->plt0_got1_offset);
4764 /* Add offset for the PC-relative instruction accessing GOT+16,
4765 subtracting the offset to the end of that instruction. */
4766 bfd_put_32 (output_bfd,
4767 (htab->elf.sgotplt->output_section->vma
4768 + htab->elf.sgotplt->output_offset
4769 + 16
4770 - htab->elf.splt->output_section->vma
4771 - htab->elf.splt->output_offset
4772 - abed->plt0_got2_insn_end),
4773 htab->elf.splt->contents + abed->plt0_got2_offset);
4774
4775 elf_section_data (htab->elf.splt->output_section)
4776 ->this_hdr.sh_entsize = abed->plt_entry_size;
4777
4778 if (htab->tlsdesc_plt)
4779 {
4780 bfd_put_64 (output_bfd, (bfd_vma) 0,
4781 htab->elf.sgot->contents + htab->tlsdesc_got);
4782
4783 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4784 abed->plt0_entry, abed->plt_entry_size);
4785
4786 /* Add offset for pushq GOT+8(%rip), since the
4787 instruction uses 6 bytes subtract this value. */
4788 bfd_put_32 (output_bfd,
4789 (htab->elf.sgotplt->output_section->vma
4790 + htab->elf.sgotplt->output_offset
4791 + 8
4792 - htab->elf.splt->output_section->vma
4793 - htab->elf.splt->output_offset
4794 - htab->tlsdesc_plt
4795 - 6),
4796 htab->elf.splt->contents
4797 + htab->tlsdesc_plt + abed->plt0_got1_offset);
4798 /* Add offset for the PC-relative instruction accessing GOT+TDG,
4799 where TGD stands for htab->tlsdesc_got, subtracting the offset
4800 to the end of that instruction. */
4801 bfd_put_32 (output_bfd,
4802 (htab->elf.sgot->output_section->vma
4803 + htab->elf.sgot->output_offset
4804 + htab->tlsdesc_got
4805 - htab->elf.splt->output_section->vma
4806 - htab->elf.splt->output_offset
4807 - htab->tlsdesc_plt
4808 - abed->plt0_got2_insn_end),
4809 htab->elf.splt->contents
4810 + htab->tlsdesc_plt + abed->plt0_got2_offset);
4811 }
4812 }
4813 }
4814
4815 if (htab->elf.sgotplt)
4816 {
4817 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4818 {
4819 (*_bfd_error_handler)
4820 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4821 return FALSE;
4822 }
4823
4824 /* Fill in the first three entries in the global offset table. */
4825 if (htab->elf.sgotplt->size > 0)
4826 {
4827 /* Set the first entry in the global offset table to the address of
4828 the dynamic section. */
4829 if (sdyn == NULL)
4830 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4831 else
4832 bfd_put_64 (output_bfd,
4833 sdyn->output_section->vma + sdyn->output_offset,
4834 htab->elf.sgotplt->contents);
4835 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4836 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4837 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4838 }
4839
4840 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4841 GOT_ENTRY_SIZE;
4842 }
4843
4844 /* Adjust .eh_frame for .plt section. */
4845 if (htab->plt_eh_frame != NULL
4846 && htab->plt_eh_frame->contents != NULL)
4847 {
4848 if (htab->elf.splt != NULL
4849 && htab->elf.splt->size != 0
4850 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
4851 && htab->elf.splt->output_section != NULL
4852 && htab->plt_eh_frame->output_section != NULL)
4853 {
4854 bfd_vma plt_start = htab->elf.splt->output_section->vma;
4855 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
4856 + htab->plt_eh_frame->output_offset
4857 + PLT_FDE_START_OFFSET;
4858 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
4859 htab->plt_eh_frame->contents
4860 + PLT_FDE_START_OFFSET);
4861 }
4862 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
4863 {
4864 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
4865 htab->plt_eh_frame,
4866 htab->plt_eh_frame->contents))
4867 return FALSE;
4868 }
4869 }
4870
4871 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4872 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4873 = GOT_ENTRY_SIZE;
4874
4875 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4876 htab_traverse (htab->loc_hash_table,
4877 elf_x86_64_finish_local_dynamic_symbol,
4878 info);
4879
4880 return TRUE;
4881 }
4882
4883 /* Return address for Ith PLT stub in section PLT, for relocation REL
4884 or (bfd_vma) -1 if it should not be included. */
4885
4886 static bfd_vma
4887 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4888 const arelent *rel ATTRIBUTE_UNUSED)
4889 {
4890 return plt->vma + (i + 1) * GET_PLT_ENTRY_SIZE (plt->owner);
4891 }
4892
4893 /* Handle an x86-64 specific section when reading an object file. This
4894 is called when elfcode.h finds a section with an unknown type. */
4895
4896 static bfd_boolean
4897 elf_x86_64_section_from_shdr (bfd *abfd,
4898 Elf_Internal_Shdr *hdr,
4899 const char *name,
4900 int shindex)
4901 {
4902 if (hdr->sh_type != SHT_X86_64_UNWIND)
4903 return FALSE;
4904
4905 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4906 return FALSE;
4907
4908 return TRUE;
4909 }
4910
4911 /* Hook called by the linker routine which adds symbols from an object
4912 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4913 of .bss. */
4914
4915 static bfd_boolean
4916 elf_x86_64_add_symbol_hook (bfd *abfd,
4917 struct bfd_link_info *info,
4918 Elf_Internal_Sym *sym,
4919 const char **namep ATTRIBUTE_UNUSED,
4920 flagword *flagsp ATTRIBUTE_UNUSED,
4921 asection **secp,
4922 bfd_vma *valp)
4923 {
4924 asection *lcomm;
4925
4926 switch (sym->st_shndx)
4927 {
4928 case SHN_X86_64_LCOMMON:
4929 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4930 if (lcomm == NULL)
4931 {
4932 lcomm = bfd_make_section_with_flags (abfd,
4933 "LARGE_COMMON",
4934 (SEC_ALLOC
4935 | SEC_IS_COMMON
4936 | SEC_LINKER_CREATED));
4937 if (lcomm == NULL)
4938 return FALSE;
4939 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4940 }
4941 *secp = lcomm;
4942 *valp = sym->st_size;
4943 return TRUE;
4944 }
4945
4946 if ((abfd->flags & DYNAMIC) == 0
4947 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4948 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
4949 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4950
4951 return TRUE;
4952 }
4953
4954
4955 /* Given a BFD section, try to locate the corresponding ELF section
4956 index. */
4957
4958 static bfd_boolean
4959 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4960 asection *sec, int *index_return)
4961 {
4962 if (sec == &_bfd_elf_large_com_section)
4963 {
4964 *index_return = SHN_X86_64_LCOMMON;
4965 return TRUE;
4966 }
4967 return FALSE;
4968 }
4969
4970 /* Process a symbol. */
4971
4972 static void
4973 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4974 asymbol *asym)
4975 {
4976 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4977
4978 switch (elfsym->internal_elf_sym.st_shndx)
4979 {
4980 case SHN_X86_64_LCOMMON:
4981 asym->section = &_bfd_elf_large_com_section;
4982 asym->value = elfsym->internal_elf_sym.st_size;
4983 /* Common symbol doesn't set BSF_GLOBAL. */
4984 asym->flags &= ~BSF_GLOBAL;
4985 break;
4986 }
4987 }
4988
4989 static bfd_boolean
4990 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
4991 {
4992 return (sym->st_shndx == SHN_COMMON
4993 || sym->st_shndx == SHN_X86_64_LCOMMON);
4994 }
4995
4996 static unsigned int
4997 elf_x86_64_common_section_index (asection *sec)
4998 {
4999 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5000 return SHN_COMMON;
5001 else
5002 return SHN_X86_64_LCOMMON;
5003 }
5004
5005 static asection *
5006 elf_x86_64_common_section (asection *sec)
5007 {
5008 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5009 return bfd_com_section_ptr;
5010 else
5011 return &_bfd_elf_large_com_section;
5012 }
5013
5014 static bfd_boolean
5015 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5016 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
5017 struct elf_link_hash_entry *h,
5018 Elf_Internal_Sym *sym,
5019 asection **psec,
5020 bfd_vma *pvalue ATTRIBUTE_UNUSED,
5021 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
5022 bfd_boolean *skip ATTRIBUTE_UNUSED,
5023 bfd_boolean *override ATTRIBUTE_UNUSED,
5024 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
5025 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
5026 bfd_boolean *newdyn ATTRIBUTE_UNUSED,
5027 bfd_boolean *newdef,
5028 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
5029 bfd_boolean *newweak ATTRIBUTE_UNUSED,
5030 bfd *abfd ATTRIBUTE_UNUSED,
5031 asection **sec,
5032 bfd_boolean *olddyn ATTRIBUTE_UNUSED,
5033 bfd_boolean *olddef,
5034 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
5035 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
5036 bfd *oldbfd,
5037 asection **oldsec)
5038 {
5039 /* A normal common symbol and a large common symbol result in a
5040 normal common symbol. We turn the large common symbol into a
5041 normal one. */
5042 if (!*olddef
5043 && h->root.type == bfd_link_hash_common
5044 && !*newdef
5045 && bfd_is_com_section (*sec)
5046 && *oldsec != *sec)
5047 {
5048 if (sym->st_shndx == SHN_COMMON
5049 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
5050 {
5051 h->root.u.c.p->section
5052 = bfd_make_section_old_way (oldbfd, "COMMON");
5053 h->root.u.c.p->section->flags = SEC_ALLOC;
5054 }
5055 else if (sym->st_shndx == SHN_X86_64_LCOMMON
5056 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
5057 *psec = *sec = bfd_com_section_ptr;
5058 }
5059
5060 return TRUE;
5061 }
5062
5063 static int
5064 elf_x86_64_additional_program_headers (bfd *abfd,
5065 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5066 {
5067 asection *s;
5068 int count = 0;
5069
5070 /* Check to see if we need a large readonly segment. */
5071 s = bfd_get_section_by_name (abfd, ".lrodata");
5072 if (s && (s->flags & SEC_LOAD))
5073 count++;
5074
5075 /* Check to see if we need a large data segment. Since .lbss sections
5076 is placed right after the .bss section, there should be no need for
5077 a large data segment just because of .lbss. */
5078 s = bfd_get_section_by_name (abfd, ".ldata");
5079 if (s && (s->flags & SEC_LOAD))
5080 count++;
5081
5082 return count;
5083 }
5084
5085 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5086
5087 static bfd_boolean
5088 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
5089 {
5090 if (h->plt.offset != (bfd_vma) -1
5091 && !h->def_regular
5092 && !h->pointer_equality_needed)
5093 return FALSE;
5094
5095 return _bfd_elf_hash_symbol (h);
5096 }
5097
5098 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
5099
5100 static bfd_boolean
5101 elf_x86_64_relocs_compatible (const bfd_target *input,
5102 const bfd_target *output)
5103 {
5104 return ((xvec_get_elf_backend_data (input)->s->elfclass
5105 == xvec_get_elf_backend_data (output)->s->elfclass)
5106 && _bfd_elf_relocs_compatible (input, output));
5107 }
5108
5109 static const struct bfd_elf_special_section
5110 elf_x86_64_special_sections[]=
5111 {
5112 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5113 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5114 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
5115 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5116 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5117 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5118 { NULL, 0, 0, 0, 0 }
5119 };
5120
5121 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
5122 #define TARGET_LITTLE_NAME "elf64-x86-64"
5123 #define ELF_ARCH bfd_arch_i386
5124 #define ELF_TARGET_ID X86_64_ELF_DATA
5125 #define ELF_MACHINE_CODE EM_X86_64
5126 #define ELF_MAXPAGESIZE 0x200000
5127 #define ELF_MINPAGESIZE 0x1000
5128 #define ELF_COMMONPAGESIZE 0x1000
5129
5130 #define elf_backend_can_gc_sections 1
5131 #define elf_backend_can_refcount 1
5132 #define elf_backend_want_got_plt 1
5133 #define elf_backend_plt_readonly 1
5134 #define elf_backend_want_plt_sym 0
5135 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
5136 #define elf_backend_rela_normal 1
5137 #define elf_backend_plt_alignment 4
5138
5139 #define elf_info_to_howto elf_x86_64_info_to_howto
5140
5141 #define bfd_elf64_bfd_link_hash_table_create \
5142 elf_x86_64_link_hash_table_create
5143 #define bfd_elf64_bfd_link_hash_table_free \
5144 elf_x86_64_link_hash_table_free
5145 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
5146 #define bfd_elf64_bfd_reloc_name_lookup \
5147 elf_x86_64_reloc_name_lookup
5148
5149 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
5150 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
5151 #define elf_backend_check_relocs elf_x86_64_check_relocs
5152 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
5153 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
5154 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
5155 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
5156 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
5157 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
5158 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
5159 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
5160 #ifdef CORE_HEADER
5161 #define elf_backend_write_core_note elf_x86_64_write_core_note
5162 #endif
5163 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
5164 #define elf_backend_relocate_section elf_x86_64_relocate_section
5165 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
5166 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
5167 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
5168 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
5169 #define elf_backend_object_p elf64_x86_64_elf_object_p
5170 #define bfd_elf64_mkobject elf_x86_64_mkobject
5171
5172 #define elf_backend_section_from_shdr \
5173 elf_x86_64_section_from_shdr
5174
5175 #define elf_backend_section_from_bfd_section \
5176 elf_x86_64_elf_section_from_bfd_section
5177 #define elf_backend_add_symbol_hook \
5178 elf_x86_64_add_symbol_hook
5179 #define elf_backend_symbol_processing \
5180 elf_x86_64_symbol_processing
5181 #define elf_backend_common_section_index \
5182 elf_x86_64_common_section_index
5183 #define elf_backend_common_section \
5184 elf_x86_64_common_section
5185 #define elf_backend_common_definition \
5186 elf_x86_64_common_definition
5187 #define elf_backend_merge_symbol \
5188 elf_x86_64_merge_symbol
5189 #define elf_backend_special_sections \
5190 elf_x86_64_special_sections
5191 #define elf_backend_additional_program_headers \
5192 elf_x86_64_additional_program_headers
5193 #define elf_backend_hash_symbol \
5194 elf_x86_64_hash_symbol
5195
5196 #define elf_backend_post_process_headers _bfd_elf_set_osabi
5197
5198 #include "elf64-target.h"
5199
5200 /* FreeBSD support. */
5201
5202 #undef TARGET_LITTLE_SYM
5203 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
5204 #undef TARGET_LITTLE_NAME
5205 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
5206
5207 #undef ELF_OSABI
5208 #define ELF_OSABI ELFOSABI_FREEBSD
5209
5210 #undef elf64_bed
5211 #define elf64_bed elf64_x86_64_fbsd_bed
5212
5213 #include "elf64-target.h"
5214
5215 /* Solaris 2 support. */
5216
5217 #undef TARGET_LITTLE_SYM
5218 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
5219 #undef TARGET_LITTLE_NAME
5220 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5221
5222 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5223 objects won't be recognized. */
5224 #undef ELF_OSABI
5225
5226 #undef elf64_bed
5227 #define elf64_bed elf64_x86_64_sol2_bed
5228
5229 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5230 boundary. */
5231 #undef elf_backend_static_tls_alignment
5232 #define elf_backend_static_tls_alignment 16
5233
5234 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5235
5236 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5237 File, p.63. */
5238 #undef elf_backend_want_plt_sym
5239 #define elf_backend_want_plt_sym 1
5240
5241 #include "elf64-target.h"
5242
5243 /* Native Client support. */
5244
5245 #undef TARGET_LITTLE_SYM
5246 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_nacl_vec
5247 #undef TARGET_LITTLE_NAME
5248 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
5249 #undef elf64_bed
5250 #define elf64_bed elf64_x86_64_nacl_bed
5251
5252 #undef ELF_MAXPAGESIZE
5253 #undef ELF_MINPAGESIZE
5254 #undef ELF_COMMONPAGESIZE
5255 #define ELF_MAXPAGESIZE 0x10000
5256 #define ELF_MINPAGESIZE 0x10000
5257 #define ELF_COMMONPAGESIZE 0x10000
5258
5259 /* Restore defaults. */
5260 #undef ELF_OSABI
5261 #undef elf_backend_static_tls_alignment
5262 #undef elf_backend_want_plt_sym
5263 #define elf_backend_want_plt_sym 0
5264
5265 /* NaCl uses substantially different PLT entries for the same effects. */
5266
5267 #undef elf_backend_plt_alignment
5268 #define elf_backend_plt_alignment 5
5269 #define NACL_PLT_ENTRY_SIZE 64
5270 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
5271
5272 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
5273 {
5274 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
5275 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
5276 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5277 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5278 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5279
5280 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
5281 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopl %cs:0x0(%rax,%rax,1) */
5282
5283 /* 32 bytes of nop to pad out to the standard size. */
5284 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5285 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5286 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5287 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5288 0x66, /* excess data32 prefix */
5289 0x90 /* nop */
5290 };
5291
5292 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
5293 {
5294 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
5295 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5296 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5297 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5298
5299 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
5300 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5301 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5302
5303 /* Lazy GOT entries point here (32-byte aligned). */
5304 0x68, /* pushq immediate */
5305 0, 0, 0, 0, /* replaced with index into relocation table. */
5306 0xe9, /* jmp relative */
5307 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
5308
5309 /* 22 bytes of nop to pad out to the standard size. */
5310 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5311 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5312 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
5313 };
5314
5315 /* .eh_frame covering the .plt section. */
5316
5317 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
5318 {
5319 #if (PLT_CIE_LENGTH != 20 \
5320 || PLT_FDE_LENGTH != 36 \
5321 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
5322 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
5323 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
5324 #endif
5325 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
5326 0, 0, 0, 0, /* CIE ID */
5327 1, /* CIE version */
5328 'z', 'R', 0, /* Augmentation string */
5329 1, /* Code alignment factor */
5330 0x78, /* Data alignment factor */
5331 16, /* Return address column */
5332 1, /* Augmentation size */
5333 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
5334 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
5335 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
5336 DW_CFA_nop, DW_CFA_nop,
5337
5338 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
5339 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
5340 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
5341 0, 0, 0, 0, /* .plt size goes here */
5342 0, /* Augmentation size */
5343 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
5344 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
5345 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
5346 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
5347 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
5348 13, /* Block length */
5349 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
5350 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
5351 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
5352 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
5353 DW_CFA_nop, DW_CFA_nop
5354 };
5355
5356 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
5357 {
5358 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
5359 elf_x86_64_nacl_plt_entry, /* plt_entry */
5360 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
5361 2, /* plt0_got1_offset */
5362 9, /* plt0_got2_offset */
5363 13, /* plt0_got2_insn_end */
5364 3, /* plt_got_offset */
5365 33, /* plt_reloc_offset */
5366 38, /* plt_plt_offset */
5367 7, /* plt_got_insn_size */
5368 42, /* plt_plt_insn_end */
5369 32, /* plt_lazy_offset */
5370 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
5371 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
5372 };
5373
5374 #undef elf_backend_arch_data
5375 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
5376
5377 #undef elf_backend_modify_segment_map
5378 #define elf_backend_modify_segment_map nacl_modify_segment_map
5379 #undef elf_backend_modify_program_headers
5380 #define elf_backend_modify_program_headers nacl_modify_program_headers
5381
5382 #include "elf64-target.h"
5383
5384 /* Native Client x32 support. */
5385
5386 #undef TARGET_LITTLE_SYM
5387 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_nacl_vec
5388 #undef TARGET_LITTLE_NAME
5389 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
5390 #undef elf32_bed
5391 #define elf32_bed elf32_x86_64_nacl_bed
5392
5393 #define bfd_elf32_bfd_link_hash_table_create \
5394 elf_x86_64_link_hash_table_create
5395 #define bfd_elf32_bfd_link_hash_table_free \
5396 elf_x86_64_link_hash_table_free
5397 #define bfd_elf32_bfd_reloc_type_lookup \
5398 elf_x86_64_reloc_type_lookup
5399 #define bfd_elf32_bfd_reloc_name_lookup \
5400 elf_x86_64_reloc_name_lookup
5401 #define bfd_elf32_mkobject \
5402 elf_x86_64_mkobject
5403
5404 #undef elf_backend_object_p
5405 #define elf_backend_object_p \
5406 elf32_x86_64_elf_object_p
5407
5408 #undef elf_backend_bfd_from_remote_memory
5409 #define elf_backend_bfd_from_remote_memory \
5410 _bfd_elf32_bfd_from_remote_memory
5411
5412 #undef elf_backend_size_info
5413 #define elf_backend_size_info \
5414 _bfd_elf32_size_info
5415
5416 #include "elf32-target.h"
5417
5418 /* Restore defaults. */
5419 #undef elf_backend_object_p
5420 #define elf_backend_object_p elf64_x86_64_elf_object_p
5421 #undef elf_backend_bfd_from_remote_memory
5422 #undef elf_backend_size_info
5423 #undef elf_backend_modify_segment_map
5424 #undef elf_backend_modify_program_headers
5425
5426 /* Intel L1OM support. */
5427
5428 static bfd_boolean
5429 elf64_l1om_elf_object_p (bfd *abfd)
5430 {
5431 /* Set the right machine number for an L1OM elf64 file. */
5432 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
5433 return TRUE;
5434 }
5435
5436 #undef TARGET_LITTLE_SYM
5437 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
5438 #undef TARGET_LITTLE_NAME
5439 #define TARGET_LITTLE_NAME "elf64-l1om"
5440 #undef ELF_ARCH
5441 #define ELF_ARCH bfd_arch_l1om
5442
5443 #undef ELF_MACHINE_CODE
5444 #define ELF_MACHINE_CODE EM_L1OM
5445
5446 #undef ELF_OSABI
5447
5448 #undef elf64_bed
5449 #define elf64_bed elf64_l1om_bed
5450
5451 #undef elf_backend_object_p
5452 #define elf_backend_object_p elf64_l1om_elf_object_p
5453
5454 /* Restore defaults. */
5455 #undef ELF_MAXPAGESIZE
5456 #undef ELF_MINPAGESIZE
5457 #undef ELF_COMMONPAGESIZE
5458 #define ELF_MAXPAGESIZE 0x200000
5459 #define ELF_MINPAGESIZE 0x1000
5460 #define ELF_COMMONPAGESIZE 0x1000
5461 #undef elf_backend_plt_alignment
5462 #define elf_backend_plt_alignment 4
5463 #undef elf_backend_arch_data
5464 #define elf_backend_arch_data &elf_x86_64_arch_bed
5465
5466 #include "elf64-target.h"
5467
5468 /* FreeBSD L1OM support. */
5469
5470 #undef TARGET_LITTLE_SYM
5471 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
5472 #undef TARGET_LITTLE_NAME
5473 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
5474
5475 #undef ELF_OSABI
5476 #define ELF_OSABI ELFOSABI_FREEBSD
5477
5478 #undef elf64_bed
5479 #define elf64_bed elf64_l1om_fbsd_bed
5480
5481 #include "elf64-target.h"
5482
5483 /* Intel K1OM support. */
5484
5485 static bfd_boolean
5486 elf64_k1om_elf_object_p (bfd *abfd)
5487 {
5488 /* Set the right machine number for an K1OM elf64 file. */
5489 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
5490 return TRUE;
5491 }
5492
5493 #undef TARGET_LITTLE_SYM
5494 #define TARGET_LITTLE_SYM bfd_elf64_k1om_vec
5495 #undef TARGET_LITTLE_NAME
5496 #define TARGET_LITTLE_NAME "elf64-k1om"
5497 #undef ELF_ARCH
5498 #define ELF_ARCH bfd_arch_k1om
5499
5500 #undef ELF_MACHINE_CODE
5501 #define ELF_MACHINE_CODE EM_K1OM
5502
5503 #undef ELF_OSABI
5504
5505 #undef elf64_bed
5506 #define elf64_bed elf64_k1om_bed
5507
5508 #undef elf_backend_object_p
5509 #define elf_backend_object_p elf64_k1om_elf_object_p
5510
5511 #undef elf_backend_static_tls_alignment
5512
5513 #undef elf_backend_want_plt_sym
5514 #define elf_backend_want_plt_sym 0
5515
5516 #include "elf64-target.h"
5517
5518 /* FreeBSD K1OM support. */
5519
5520 #undef TARGET_LITTLE_SYM
5521 #define TARGET_LITTLE_SYM bfd_elf64_k1om_freebsd_vec
5522 #undef TARGET_LITTLE_NAME
5523 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
5524
5525 #undef ELF_OSABI
5526 #define ELF_OSABI ELFOSABI_FREEBSD
5527
5528 #undef elf64_bed
5529 #define elf64_bed elf64_k1om_fbsd_bed
5530
5531 #include "elf64-target.h"
5532
5533 /* 32bit x86-64 support. */
5534
5535 #undef TARGET_LITTLE_SYM
5536 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
5537 #undef TARGET_LITTLE_NAME
5538 #define TARGET_LITTLE_NAME "elf32-x86-64"
5539 #undef elf32_bed
5540
5541 #undef ELF_ARCH
5542 #define ELF_ARCH bfd_arch_i386
5543
5544 #undef ELF_MACHINE_CODE
5545 #define ELF_MACHINE_CODE EM_X86_64
5546
5547 #undef ELF_OSABI
5548
5549 #undef elf_backend_object_p
5550 #define elf_backend_object_p \
5551 elf32_x86_64_elf_object_p
5552
5553 #undef elf_backend_bfd_from_remote_memory
5554 #define elf_backend_bfd_from_remote_memory \
5555 _bfd_elf32_bfd_from_remote_memory
5556
5557 #undef elf_backend_size_info
5558 #define elf_backend_size_info \
5559 _bfd_elf32_size_info
5560
5561 #include "elf32-target.h"
This page took 0.163518 seconds and 4 git commands to generate.