ad2a1f34a0028e16bc6078b1c93f2cbea9f62e1a
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31
32 #include "elf/x86-64.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
38 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
39 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
40 since they are the same. */
41
42 #define ABI_64_P(abfd) \
43 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
44
45 /* The relocation "howto" table. Order of fields:
46 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
47 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
48 static reloc_howto_type x86_64_elf_howto_table[] =
49 {
50 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
51 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
52 FALSE),
53 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
54 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
55 FALSE),
56 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
57 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
58 TRUE),
59 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
60 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
61 FALSE),
62 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
63 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
64 TRUE),
65 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
66 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
67 FALSE),
68 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
69 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
70 MINUS_ONE, FALSE),
71 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
72 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
73 MINUS_ONE, FALSE),
74 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
76 MINUS_ONE, FALSE),
77 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
78 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
79 0xffffffff, TRUE),
80 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
81 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
82 FALSE),
83 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
84 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
85 FALSE),
86 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
87 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
88 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
89 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
90 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
91 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
92 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
93 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
94 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
95 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
96 MINUS_ONE, FALSE),
97 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
99 MINUS_ONE, FALSE),
100 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
101 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
102 MINUS_ONE, FALSE),
103 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
104 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
105 0xffffffff, TRUE),
106 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
107 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
108 0xffffffff, TRUE),
109 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
110 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
111 0xffffffff, FALSE),
112 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
114 0xffffffff, TRUE),
115 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
116 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
117 0xffffffff, FALSE),
118 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
119 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
120 TRUE),
121 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
122 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
123 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
124 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
125 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
126 FALSE, 0xffffffff, 0xffffffff, TRUE),
127 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
128 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
129 FALSE),
130 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
131 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
132 MINUS_ONE, TRUE),
133 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
134 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
135 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
136 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
138 MINUS_ONE, FALSE),
139 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
140 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
141 MINUS_ONE, FALSE),
142 EMPTY_HOWTO (32),
143 EMPTY_HOWTO (33),
144 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
145 complain_overflow_bitfield, bfd_elf_generic_reloc,
146 "R_X86_64_GOTPC32_TLSDESC",
147 FALSE, 0xffffffff, 0xffffffff, TRUE),
148 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
149 complain_overflow_dont, bfd_elf_generic_reloc,
150 "R_X86_64_TLSDESC_CALL",
151 FALSE, 0, 0, FALSE),
152 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
153 complain_overflow_bitfield, bfd_elf_generic_reloc,
154 "R_X86_64_TLSDESC",
155 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
156 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
157 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
158 MINUS_ONE, FALSE),
159
160 /* We have a gap in the reloc numbers here.
161 R_X86_64_standard counts the number up to this point, and
162 R_X86_64_vt_offset is the value to subtract from a reloc type of
163 R_X86_64_GNU_VT* to form an index into this table. */
164 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
165 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
166
167 /* GNU extension to record C++ vtable hierarchy. */
168 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
169 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
170
171 /* GNU extension to record C++ vtable member usage. */
172 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
173 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
174 FALSE)
175 };
176
177 #define IS_X86_64_PCREL_TYPE(TYPE) \
178 ( ((TYPE) == R_X86_64_PC8) \
179 || ((TYPE) == R_X86_64_PC16) \
180 || ((TYPE) == R_X86_64_PC32) \
181 || ((TYPE) == R_X86_64_PC64))
182
183 /* Map BFD relocs to the x86_64 elf relocs. */
184 struct elf_reloc_map
185 {
186 bfd_reloc_code_real_type bfd_reloc_val;
187 unsigned char elf_reloc_val;
188 };
189
190 static const struct elf_reloc_map x86_64_reloc_map[] =
191 {
192 { BFD_RELOC_NONE, R_X86_64_NONE, },
193 { BFD_RELOC_64, R_X86_64_64, },
194 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
195 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
196 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
197 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
198 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
199 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
200 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
201 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
202 { BFD_RELOC_32, R_X86_64_32, },
203 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
204 { BFD_RELOC_16, R_X86_64_16, },
205 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
206 { BFD_RELOC_8, R_X86_64_8, },
207 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
208 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
209 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
210 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
211 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
212 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
213 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
214 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
215 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
216 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
217 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
218 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
219 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
220 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
221 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
222 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
223 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
224 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
225 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
226 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
227 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
228 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
229 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
230 };
231
232 static reloc_howto_type *
233 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
234 {
235 unsigned i;
236
237 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
238 || r_type >= (unsigned int) R_X86_64_max)
239 {
240 if (r_type >= (unsigned int) R_X86_64_standard)
241 {
242 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
243 abfd, (int) r_type);
244 r_type = R_X86_64_NONE;
245 }
246 i = r_type;
247 }
248 else
249 i = r_type - (unsigned int) R_X86_64_vt_offset;
250 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
251 return &x86_64_elf_howto_table[i];
252 }
253
254 /* Given a BFD reloc type, return a HOWTO structure. */
255 static reloc_howto_type *
256 elf_x86_64_reloc_type_lookup (bfd *abfd,
257 bfd_reloc_code_real_type code)
258 {
259 unsigned int i;
260
261 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
262 i++)
263 {
264 if (x86_64_reloc_map[i].bfd_reloc_val == code)
265 return elf_x86_64_rtype_to_howto (abfd,
266 x86_64_reloc_map[i].elf_reloc_val);
267 }
268 return 0;
269 }
270
271 static reloc_howto_type *
272 elf_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
273 const char *r_name)
274 {
275 unsigned int i;
276
277 for (i = 0;
278 i < (sizeof (x86_64_elf_howto_table)
279 / sizeof (x86_64_elf_howto_table[0]));
280 i++)
281 if (x86_64_elf_howto_table[i].name != NULL
282 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
283 return &x86_64_elf_howto_table[i];
284
285 return NULL;
286 }
287
288 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
289
290 static void
291 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
292 Elf_Internal_Rela *dst)
293 {
294 unsigned r_type;
295
296 r_type = ELF32_R_TYPE (dst->r_info);
297 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
298 BFD_ASSERT (r_type == cache_ptr->howto->type);
299 }
300 \f
301 /* Support for core dump NOTE sections. */
302 static bfd_boolean
303 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
304 {
305 int offset;
306 size_t size;
307
308 switch (note->descsz)
309 {
310 default:
311 return FALSE;
312
313 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
314 /* pr_cursig */
315 elf_tdata (abfd)->core_signal
316 = bfd_get_16 (abfd, note->descdata + 12);
317
318 /* pr_pid */
319 elf_tdata (abfd)->core_lwpid
320 = bfd_get_32 (abfd, note->descdata + 32);
321
322 /* pr_reg */
323 offset = 112;
324 size = 216;
325
326 break;
327 }
328
329 /* Make a ".reg/999" section. */
330 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
331 size, note->descpos + offset);
332 }
333
334 static bfd_boolean
335 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
336 {
337 switch (note->descsz)
338 {
339 default:
340 return FALSE;
341
342 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
343 elf_tdata (abfd)->core_pid
344 = bfd_get_32 (abfd, note->descdata + 24);
345 elf_tdata (abfd)->core_program
346 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
347 elf_tdata (abfd)->core_command
348 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
349 }
350
351 /* Note that for some reason, a spurious space is tacked
352 onto the end of the args in some (at least one anyway)
353 implementations, so strip it off if it exists. */
354
355 {
356 char *command = elf_tdata (abfd)->core_command;
357 int n = strlen (command);
358
359 if (0 < n && command[n - 1] == ' ')
360 command[n - 1] = '\0';
361 }
362
363 return TRUE;
364 }
365 \f
366 /* Functions for the x86-64 ELF linker. */
367
368 /* The name of the dynamic interpreter. This is put in the .interp
369 section. */
370
371 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
372 #define ELF32_DYNAMIC_INTERPRETER "/lib/ld32.so.1"
373
374 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
375 copying dynamic variables from a shared lib into an app's dynbss
376 section, and instead use a dynamic relocation to point into the
377 shared lib. */
378 #define ELIMINATE_COPY_RELOCS 1
379
380 /* The size in bytes of an entry in the global offset table. */
381
382 #define GOT_ENTRY_SIZE 8
383
384 /* The size in bytes of an entry in the procedure linkage table. */
385
386 #define PLT_ENTRY_SIZE 16
387
388 /* The first entry in a procedure linkage table looks like this. See the
389 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
390
391 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
392 {
393 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
394 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
395 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
396 };
397
398 /* Subsequent entries in a procedure linkage table look like this. */
399
400 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
401 {
402 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
403 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
404 0x68, /* pushq immediate */
405 0, 0, 0, 0, /* replaced with index into relocation table. */
406 0xe9, /* jmp relative */
407 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
408 };
409
410 /* x86-64 ELF linker hash entry. */
411
412 struct elf_x86_64_link_hash_entry
413 {
414 struct elf_link_hash_entry elf;
415
416 /* Track dynamic relocs copied for this symbol. */
417 struct elf_dyn_relocs *dyn_relocs;
418
419 #define GOT_UNKNOWN 0
420 #define GOT_NORMAL 1
421 #define GOT_TLS_GD 2
422 #define GOT_TLS_IE 3
423 #define GOT_TLS_GDESC 4
424 #define GOT_TLS_GD_BOTH_P(type) \
425 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
426 #define GOT_TLS_GD_P(type) \
427 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
428 #define GOT_TLS_GDESC_P(type) \
429 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
430 #define GOT_TLS_GD_ANY_P(type) \
431 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
432 unsigned char tls_type;
433
434 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
435 starting at the end of the jump table. */
436 bfd_vma tlsdesc_got;
437 };
438
439 #define elf_x86_64_hash_entry(ent) \
440 ((struct elf_x86_64_link_hash_entry *)(ent))
441
442 struct elf_x86_64_obj_tdata
443 {
444 struct elf_obj_tdata root;
445
446 /* tls_type for each local got entry. */
447 char *local_got_tls_type;
448
449 /* GOTPLT entries for TLS descriptors. */
450 bfd_vma *local_tlsdesc_gotent;
451 };
452
453 #define elf_x86_64_tdata(abfd) \
454 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
455
456 #define elf_x86_64_local_got_tls_type(abfd) \
457 (elf_x86_64_tdata (abfd)->local_got_tls_type)
458
459 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
460 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
461
462 #define is_x86_64_elf(bfd) \
463 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
464 && elf_tdata (bfd) != NULL \
465 && elf_object_id (bfd) == X86_64_ELF_DATA)
466
467 static bfd_boolean
468 elf_x86_64_mkobject (bfd *abfd)
469 {
470 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
471 X86_64_ELF_DATA);
472 }
473
474 /* x86-64 ELF linker hash table. */
475
476 struct elf_x86_64_link_hash_table
477 {
478 struct elf_link_hash_table elf;
479
480 /* Short-cuts to get to dynamic linker sections. */
481 asection *sdynbss;
482 asection *srelbss;
483
484 union
485 {
486 bfd_signed_vma refcount;
487 bfd_vma offset;
488 } tls_ld_got;
489
490 /* The amount of space used by the jump slots in the GOT. */
491 bfd_vma sgotplt_jump_table_size;
492
493 /* Small local sym cache. */
494 struct sym_cache sym_cache;
495
496 bfd_vma (*r_info) (bfd_vma, bfd_vma);
497 bfd_vma (*r_sym) (bfd_vma);
498 unsigned int pointer_r_type;
499 const char *dynamic_interpreter;
500 int dynamic_interpreter_size;
501
502 /* _TLS_MODULE_BASE_ symbol. */
503 struct bfd_link_hash_entry *tls_module_base;
504
505 /* Used by local STT_GNU_IFUNC symbols. */
506 htab_t loc_hash_table;
507 void * loc_hash_memory;
508
509 /* The offset into splt of the PLT entry for the TLS descriptor
510 resolver. Special values are 0, if not necessary (or not found
511 to be necessary yet), and -1 if needed but not determined
512 yet. */
513 bfd_vma tlsdesc_plt;
514 /* The offset into sgot of the GOT entry used by the PLT entry
515 above. */
516 bfd_vma tlsdesc_got;
517 };
518
519 /* Get the x86-64 ELF linker hash table from a link_info structure. */
520
521 #define elf_x86_64_hash_table(p) \
522 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
523 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
524
525 #define elf_x86_64_compute_jump_table_size(htab) \
526 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
527
528 /* Create an entry in an x86-64 ELF linker hash table. */
529
530 static struct bfd_hash_entry *
531 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
532 struct bfd_hash_table *table,
533 const char *string)
534 {
535 /* Allocate the structure if it has not already been allocated by a
536 subclass. */
537 if (entry == NULL)
538 {
539 entry = (struct bfd_hash_entry *)
540 bfd_hash_allocate (table,
541 sizeof (struct elf_x86_64_link_hash_entry));
542 if (entry == NULL)
543 return entry;
544 }
545
546 /* Call the allocation method of the superclass. */
547 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
548 if (entry != NULL)
549 {
550 struct elf_x86_64_link_hash_entry *eh;
551
552 eh = (struct elf_x86_64_link_hash_entry *) entry;
553 eh->dyn_relocs = NULL;
554 eh->tls_type = GOT_UNKNOWN;
555 eh->tlsdesc_got = (bfd_vma) -1;
556 }
557
558 return entry;
559 }
560
561 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
562 for local symbol so that we can handle local STT_GNU_IFUNC symbols
563 as global symbol. We reuse indx and dynstr_index for local symbol
564 hash since they aren't used by global symbols in this backend. */
565
566 static hashval_t
567 elf_x86_64_local_htab_hash (const void *ptr)
568 {
569 struct elf_link_hash_entry *h
570 = (struct elf_link_hash_entry *) ptr;
571 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
572 }
573
574 /* Compare local hash entries. */
575
576 static int
577 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
578 {
579 struct elf_link_hash_entry *h1
580 = (struct elf_link_hash_entry *) ptr1;
581 struct elf_link_hash_entry *h2
582 = (struct elf_link_hash_entry *) ptr2;
583
584 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
585 }
586
587 /* Find and/or create a hash entry for local symbol. */
588
589 static struct elf_link_hash_entry *
590 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
591 bfd *abfd, const Elf_Internal_Rela *rel,
592 bfd_boolean create)
593 {
594 struct elf_x86_64_link_hash_entry e, *ret;
595 asection *sec = abfd->sections;
596 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
597 htab->r_sym (rel->r_info));
598 void **slot;
599
600 e.elf.indx = sec->id;
601 e.elf.dynstr_index = htab->r_sym (rel->r_info);
602 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
603 create ? INSERT : NO_INSERT);
604
605 if (!slot)
606 return NULL;
607
608 if (*slot)
609 {
610 ret = (struct elf_x86_64_link_hash_entry *) *slot;
611 return &ret->elf;
612 }
613
614 ret = (struct elf_x86_64_link_hash_entry *)
615 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
616 sizeof (struct elf_x86_64_link_hash_entry));
617 if (ret)
618 {
619 memset (ret, 0, sizeof (*ret));
620 ret->elf.indx = sec->id;
621 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
622 ret->elf.dynindx = -1;
623 *slot = ret;
624 }
625 return &ret->elf;
626 }
627
628 /* Create an X86-64 ELF linker hash table. */
629
630 static struct bfd_link_hash_table *
631 elf_x86_64_link_hash_table_create (bfd *abfd)
632 {
633 struct elf_x86_64_link_hash_table *ret;
634 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
635
636 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
637 if (ret == NULL)
638 return NULL;
639
640 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
641 elf_x86_64_link_hash_newfunc,
642 sizeof (struct elf_x86_64_link_hash_entry),
643 X86_64_ELF_DATA))
644 {
645 free (ret);
646 return NULL;
647 }
648
649 ret->sdynbss = NULL;
650 ret->srelbss = NULL;
651 ret->sym_cache.abfd = NULL;
652 ret->tlsdesc_plt = 0;
653 ret->tlsdesc_got = 0;
654 ret->tls_ld_got.refcount = 0;
655 ret->sgotplt_jump_table_size = 0;
656 ret->tls_module_base = NULL;
657
658 if (ABI_64_P (abfd))
659 {
660 ret->r_info = elf64_r_info;
661 ret->r_sym = elf64_r_sym;
662 ret->pointer_r_type = R_X86_64_64;
663 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
664 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
665 }
666 else
667 {
668 ret->r_info = elf32_r_info;
669 ret->r_sym = elf32_r_sym;
670 ret->pointer_r_type = R_X86_64_32;
671 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
672 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
673 }
674
675 ret->loc_hash_table = htab_try_create (1024,
676 elf_x86_64_local_htab_hash,
677 elf_x86_64_local_htab_eq,
678 NULL);
679 ret->loc_hash_memory = objalloc_create ();
680 if (!ret->loc_hash_table || !ret->loc_hash_memory)
681 {
682 free (ret);
683 return NULL;
684 }
685
686 return &ret->elf.root;
687 }
688
689 /* Destroy an X86-64 ELF linker hash table. */
690
691 static void
692 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
693 {
694 struct elf_x86_64_link_hash_table *htab
695 = (struct elf_x86_64_link_hash_table *) hash;
696
697 if (htab->loc_hash_table)
698 htab_delete (htab->loc_hash_table);
699 if (htab->loc_hash_memory)
700 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
701 _bfd_generic_link_hash_table_free (hash);
702 }
703
704 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
705 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
706 hash table. */
707
708 static bfd_boolean
709 elf_x86_64_create_dynamic_sections (bfd *dynobj,
710 struct bfd_link_info *info)
711 {
712 struct elf_x86_64_link_hash_table *htab;
713
714 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
715 return FALSE;
716
717 htab = elf_x86_64_hash_table (info);
718 if (htab == NULL)
719 return FALSE;
720
721 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
722 if (!info->shared)
723 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
724
725 if (!htab->sdynbss
726 || (!info->shared && !htab->srelbss))
727 abort ();
728
729 return TRUE;
730 }
731
732 /* Copy the extra info we tack onto an elf_link_hash_entry. */
733
734 static void
735 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
736 struct elf_link_hash_entry *dir,
737 struct elf_link_hash_entry *ind)
738 {
739 struct elf_x86_64_link_hash_entry *edir, *eind;
740
741 edir = (struct elf_x86_64_link_hash_entry *) dir;
742 eind = (struct elf_x86_64_link_hash_entry *) ind;
743
744 if (eind->dyn_relocs != NULL)
745 {
746 if (edir->dyn_relocs != NULL)
747 {
748 struct elf_dyn_relocs **pp;
749 struct elf_dyn_relocs *p;
750
751 /* Add reloc counts against the indirect sym to the direct sym
752 list. Merge any entries against the same section. */
753 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
754 {
755 struct elf_dyn_relocs *q;
756
757 for (q = edir->dyn_relocs; q != NULL; q = q->next)
758 if (q->sec == p->sec)
759 {
760 q->pc_count += p->pc_count;
761 q->count += p->count;
762 *pp = p->next;
763 break;
764 }
765 if (q == NULL)
766 pp = &p->next;
767 }
768 *pp = edir->dyn_relocs;
769 }
770
771 edir->dyn_relocs = eind->dyn_relocs;
772 eind->dyn_relocs = NULL;
773 }
774
775 if (ind->root.type == bfd_link_hash_indirect
776 && dir->got.refcount <= 0)
777 {
778 edir->tls_type = eind->tls_type;
779 eind->tls_type = GOT_UNKNOWN;
780 }
781
782 if (ELIMINATE_COPY_RELOCS
783 && ind->root.type != bfd_link_hash_indirect
784 && dir->dynamic_adjusted)
785 {
786 /* If called to transfer flags for a weakdef during processing
787 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
788 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
789 dir->ref_dynamic |= ind->ref_dynamic;
790 dir->ref_regular |= ind->ref_regular;
791 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
792 dir->needs_plt |= ind->needs_plt;
793 dir->pointer_equality_needed |= ind->pointer_equality_needed;
794 }
795 else
796 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
797 }
798
799 static bfd_boolean
800 elf64_x86_64_elf_object_p (bfd *abfd)
801 {
802 /* Set the right machine number for an x86-64 elf64 file. */
803 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
804 return TRUE;
805 }
806
807 typedef union
808 {
809 unsigned char c[2];
810 uint16_t i;
811 }
812 x86_64_opcode16;
813
814 typedef union
815 {
816 unsigned char c[4];
817 uint32_t i;
818 }
819 x86_64_opcode32;
820
821 /* Return TRUE if the TLS access code sequence support transition
822 from R_TYPE. */
823
824 static bfd_boolean
825 elf_x86_64_check_tls_transition (bfd *abfd,
826 struct bfd_link_info *info,
827 asection *sec,
828 bfd_byte *contents,
829 Elf_Internal_Shdr *symtab_hdr,
830 struct elf_link_hash_entry **sym_hashes,
831 unsigned int r_type,
832 const Elf_Internal_Rela *rel,
833 const Elf_Internal_Rela *relend)
834 {
835 unsigned int val;
836 unsigned long r_symndx;
837 struct elf_link_hash_entry *h;
838 bfd_vma offset;
839 struct elf_x86_64_link_hash_table *htab;
840
841 /* Get the section contents. */
842 if (contents == NULL)
843 {
844 if (elf_section_data (sec)->this_hdr.contents != NULL)
845 contents = elf_section_data (sec)->this_hdr.contents;
846 else
847 {
848 /* FIXME: How to better handle error condition? */
849 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
850 return FALSE;
851
852 /* Cache the section contents for elf_link_input_bfd. */
853 elf_section_data (sec)->this_hdr.contents = contents;
854 }
855 }
856
857 htab = elf_x86_64_hash_table (info);
858 offset = rel->r_offset;
859 switch (r_type)
860 {
861 case R_X86_64_TLSGD:
862 case R_X86_64_TLSLD:
863 if ((rel + 1) >= relend)
864 return FALSE;
865
866 if (r_type == R_X86_64_TLSGD)
867 {
868 /* Check transition from GD access model. Only
869 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
870 .word 0x6666; rex64; call __tls_get_addr
871 can transit to different access model. */
872
873 static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } },
874 call = { { 0x66, 0x66, 0x48, 0xe8 } };
875 if (offset < 4
876 || (offset + 12) > sec->size
877 || bfd_get_32 (abfd, contents + offset - 4) != leaq.i
878 || bfd_get_32 (abfd, contents + offset + 4) != call.i)
879 return FALSE;
880 }
881 else
882 {
883 /* Check transition from LD access model. Only
884 leaq foo@tlsld(%rip), %rdi;
885 call __tls_get_addr
886 can transit to different access model. */
887
888 static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } };
889 x86_64_opcode32 op;
890
891 if (offset < 3 || (offset + 9) > sec->size)
892 return FALSE;
893
894 op.i = bfd_get_32 (abfd, contents + offset - 3);
895 op.c[3] = bfd_get_8 (abfd, contents + offset + 4);
896 if (op.i != ld.i)
897 return FALSE;
898 }
899
900 r_symndx = htab->r_sym (rel[1].r_info);
901 if (r_symndx < symtab_hdr->sh_info)
902 return FALSE;
903
904 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
905 /* Use strncmp to check __tls_get_addr since __tls_get_addr
906 may be versioned. */
907 return (h != NULL
908 && h->root.root.string != NULL
909 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
910 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
911 && (strncmp (h->root.root.string,
912 "__tls_get_addr", 14) == 0));
913
914 case R_X86_64_GOTTPOFF:
915 /* Check transition from IE access model:
916 mov foo@gottpoff(%rip), %reg
917 add foo@gottpoff(%rip), %reg
918 */
919
920 /* Check REX prefix first. */
921 if (offset >= 3 && (offset + 4) <= sec->size)
922 {
923 val = bfd_get_8 (abfd, contents + offset - 3);
924 if (val != 0x48 && val != 0x4c)
925 {
926 /* X32 may have 0x44 REX prefix or no REX prefix. */
927 if (ABI_64_P (abfd))
928 return FALSE;
929 }
930 }
931 else
932 {
933 /* X32 may not have any REX prefix. */
934 if (ABI_64_P (abfd))
935 return FALSE;
936 if (offset < 2 || (offset + 3) > sec->size)
937 return FALSE;
938 }
939
940 val = bfd_get_8 (abfd, contents + offset - 2);
941 if (val != 0x8b && val != 0x03)
942 return FALSE;
943
944 val = bfd_get_8 (abfd, contents + offset - 1);
945 return (val & 0xc7) == 5;
946
947 case R_X86_64_GOTPC32_TLSDESC:
948 /* Check transition from GDesc access model:
949 leaq x@tlsdesc(%rip), %rax
950
951 Make sure it's a leaq adding rip to a 32-bit offset
952 into any register, although it's probably almost always
953 going to be rax. */
954
955 if (offset < 3 || (offset + 4) > sec->size)
956 return FALSE;
957
958 val = bfd_get_8 (abfd, contents + offset - 3);
959 if ((val & 0xfb) != 0x48)
960 return FALSE;
961
962 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
963 return FALSE;
964
965 val = bfd_get_8 (abfd, contents + offset - 1);
966 return (val & 0xc7) == 0x05;
967
968 case R_X86_64_TLSDESC_CALL:
969 /* Check transition from GDesc access model:
970 call *x@tlsdesc(%rax)
971 */
972 if (offset + 2 <= sec->size)
973 {
974 /* Make sure that it's a call *x@tlsdesc(%rax). */
975 static x86_64_opcode16 call = { { 0xff, 0x10 } };
976 return bfd_get_16 (abfd, contents + offset) == call.i;
977 }
978
979 return FALSE;
980
981 default:
982 abort ();
983 }
984 }
985
986 /* Return TRUE if the TLS access transition is OK or no transition
987 will be performed. Update R_TYPE if there is a transition. */
988
989 static bfd_boolean
990 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
991 asection *sec, bfd_byte *contents,
992 Elf_Internal_Shdr *symtab_hdr,
993 struct elf_link_hash_entry **sym_hashes,
994 unsigned int *r_type, int tls_type,
995 const Elf_Internal_Rela *rel,
996 const Elf_Internal_Rela *relend,
997 struct elf_link_hash_entry *h,
998 unsigned long r_symndx)
999 {
1000 unsigned int from_type = *r_type;
1001 unsigned int to_type = from_type;
1002 bfd_boolean check = TRUE;
1003
1004 /* Skip TLS transition for functions. */
1005 if (h != NULL
1006 && (h->type == STT_FUNC
1007 || h->type == STT_GNU_IFUNC))
1008 return TRUE;
1009
1010 switch (from_type)
1011 {
1012 case R_X86_64_TLSGD:
1013 case R_X86_64_GOTPC32_TLSDESC:
1014 case R_X86_64_TLSDESC_CALL:
1015 case R_X86_64_GOTTPOFF:
1016 if (info->executable)
1017 {
1018 if (h == NULL)
1019 to_type = R_X86_64_TPOFF32;
1020 else
1021 to_type = R_X86_64_GOTTPOFF;
1022 }
1023
1024 /* When we are called from elf_x86_64_relocate_section,
1025 CONTENTS isn't NULL and there may be additional transitions
1026 based on TLS_TYPE. */
1027 if (contents != NULL)
1028 {
1029 unsigned int new_to_type = to_type;
1030
1031 if (info->executable
1032 && h != NULL
1033 && h->dynindx == -1
1034 && tls_type == GOT_TLS_IE)
1035 new_to_type = R_X86_64_TPOFF32;
1036
1037 if (to_type == R_X86_64_TLSGD
1038 || to_type == R_X86_64_GOTPC32_TLSDESC
1039 || to_type == R_X86_64_TLSDESC_CALL)
1040 {
1041 if (tls_type == GOT_TLS_IE)
1042 new_to_type = R_X86_64_GOTTPOFF;
1043 }
1044
1045 /* We checked the transition before when we were called from
1046 elf_x86_64_check_relocs. We only want to check the new
1047 transition which hasn't been checked before. */
1048 check = new_to_type != to_type && from_type == to_type;
1049 to_type = new_to_type;
1050 }
1051
1052 break;
1053
1054 case R_X86_64_TLSLD:
1055 if (info->executable)
1056 to_type = R_X86_64_TPOFF32;
1057 break;
1058
1059 default:
1060 return TRUE;
1061 }
1062
1063 /* Return TRUE if there is no transition. */
1064 if (from_type == to_type)
1065 return TRUE;
1066
1067 /* Check if the transition can be performed. */
1068 if (check
1069 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1070 symtab_hdr, sym_hashes,
1071 from_type, rel, relend))
1072 {
1073 reloc_howto_type *from, *to;
1074 const char *name;
1075
1076 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1077 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1078
1079 if (h)
1080 name = h->root.root.string;
1081 else
1082 {
1083 struct elf_x86_64_link_hash_table *htab;
1084
1085 htab = elf_x86_64_hash_table (info);
1086 if (htab == NULL)
1087 name = "*unknown*";
1088 else
1089 {
1090 Elf_Internal_Sym *isym;
1091
1092 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1093 abfd, r_symndx);
1094 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1095 }
1096 }
1097
1098 (*_bfd_error_handler)
1099 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1100 "in section `%A' failed"),
1101 abfd, sec, from->name, to->name, name,
1102 (unsigned long) rel->r_offset);
1103 bfd_set_error (bfd_error_bad_value);
1104 return FALSE;
1105 }
1106
1107 *r_type = to_type;
1108 return TRUE;
1109 }
1110
1111 /* Look through the relocs for a section during the first phase, and
1112 calculate needed space in the global offset table, procedure
1113 linkage table, and dynamic reloc sections. */
1114
1115 static bfd_boolean
1116 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1117 asection *sec,
1118 const Elf_Internal_Rela *relocs)
1119 {
1120 struct elf_x86_64_link_hash_table *htab;
1121 Elf_Internal_Shdr *symtab_hdr;
1122 struct elf_link_hash_entry **sym_hashes;
1123 const Elf_Internal_Rela *rel;
1124 const Elf_Internal_Rela *rel_end;
1125 asection *sreloc;
1126
1127 if (info->relocatable)
1128 return TRUE;
1129
1130 BFD_ASSERT (is_x86_64_elf (abfd));
1131
1132 htab = elf_x86_64_hash_table (info);
1133 if (htab == NULL)
1134 return FALSE;
1135
1136 symtab_hdr = &elf_symtab_hdr (abfd);
1137 sym_hashes = elf_sym_hashes (abfd);
1138
1139 sreloc = NULL;
1140
1141 rel_end = relocs + sec->reloc_count;
1142 for (rel = relocs; rel < rel_end; rel++)
1143 {
1144 unsigned int r_type;
1145 unsigned long r_symndx;
1146 struct elf_link_hash_entry *h;
1147 Elf_Internal_Sym *isym;
1148 const char *name;
1149
1150 r_symndx = htab->r_sym (rel->r_info);
1151 r_type = ELF32_R_TYPE (rel->r_info);
1152
1153 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1154 {
1155 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1156 abfd, r_symndx);
1157 return FALSE;
1158 }
1159
1160 if (r_symndx < symtab_hdr->sh_info)
1161 {
1162 /* A local symbol. */
1163 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1164 abfd, r_symndx);
1165 if (isym == NULL)
1166 return FALSE;
1167
1168 /* Check relocation against local STT_GNU_IFUNC symbol. */
1169 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1170 {
1171 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1172 TRUE);
1173 if (h == NULL)
1174 return FALSE;
1175
1176 /* Fake a STT_GNU_IFUNC symbol. */
1177 h->type = STT_GNU_IFUNC;
1178 h->def_regular = 1;
1179 h->ref_regular = 1;
1180 h->forced_local = 1;
1181 h->root.type = bfd_link_hash_defined;
1182 }
1183 else
1184 h = NULL;
1185 }
1186 else
1187 {
1188 isym = NULL;
1189 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1190 while (h->root.type == bfd_link_hash_indirect
1191 || h->root.type == bfd_link_hash_warning)
1192 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1193 }
1194
1195 /* Check invalid x32 relocations. */
1196 if (!ABI_64_P (abfd))
1197 switch (r_type)
1198 {
1199 default:
1200 break;
1201
1202 case R_X86_64_64:
1203 case R_X86_64_DTPOFF64:
1204 case R_X86_64_TPOFF64:
1205 case R_X86_64_PC64:
1206 case R_X86_64_GOTOFF64:
1207 case R_X86_64_GOT64:
1208 case R_X86_64_GOTPCREL64:
1209 case R_X86_64_GOTPC64:
1210 case R_X86_64_GOTPLT64:
1211 case R_X86_64_PLTOFF64:
1212 {
1213 if (h)
1214 name = h->root.root.string;
1215 else
1216 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1217 NULL);
1218 (*_bfd_error_handler)
1219 (_("%B: relocation %s against symbol `%s' isn't "
1220 "supported in x32 mode"), abfd,
1221 x86_64_elf_howto_table[r_type].name, name);
1222 bfd_set_error (bfd_error_bad_value);
1223 return FALSE;
1224 }
1225 break;
1226 }
1227
1228 if (h != NULL)
1229 {
1230 /* Create the ifunc sections for static executables. If we
1231 never see an indirect function symbol nor we are building
1232 a static executable, those sections will be empty and
1233 won't appear in output. */
1234 switch (r_type)
1235 {
1236 default:
1237 break;
1238
1239 case R_X86_64_32S:
1240 case R_X86_64_32:
1241 case R_X86_64_64:
1242 case R_X86_64_PC32:
1243 case R_X86_64_PC64:
1244 case R_X86_64_PLT32:
1245 case R_X86_64_GOTPCREL:
1246 case R_X86_64_GOTPCREL64:
1247 if (!_bfd_elf_create_ifunc_sections (abfd, info))
1248 return FALSE;
1249 break;
1250 }
1251
1252 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1253 it here if it is defined in a non-shared object. */
1254 if (h->type == STT_GNU_IFUNC
1255 && h->def_regular)
1256 {
1257 /* It is referenced by a non-shared object. */
1258 h->ref_regular = 1;
1259 h->needs_plt = 1;
1260
1261 /* STT_GNU_IFUNC symbol must go through PLT. */
1262 h->plt.refcount += 1;
1263
1264 /* STT_GNU_IFUNC needs dynamic sections. */
1265 if (htab->elf.dynobj == NULL)
1266 htab->elf.dynobj = abfd;
1267
1268 switch (r_type)
1269 {
1270 default:
1271 if (h->root.root.string)
1272 name = h->root.root.string;
1273 else
1274 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1275 NULL);
1276 (*_bfd_error_handler)
1277 (_("%B: relocation %s against STT_GNU_IFUNC "
1278 "symbol `%s' isn't handled by %s"), abfd,
1279 x86_64_elf_howto_table[r_type].name,
1280 name, __FUNCTION__);
1281 bfd_set_error (bfd_error_bad_value);
1282 return FALSE;
1283
1284 case R_X86_64_32:
1285 if (ABI_64_P (abfd))
1286 goto not_pointer;
1287 case R_X86_64_64:
1288 h->non_got_ref = 1;
1289 h->pointer_equality_needed = 1;
1290 if (info->shared)
1291 {
1292 /* We must copy these reloc types into the output
1293 file. Create a reloc section in dynobj and
1294 make room for this reloc. */
1295 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1296 (abfd, info, sec, sreloc,
1297 &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs);
1298 if (sreloc == NULL)
1299 return FALSE;
1300 }
1301 break;
1302
1303 case R_X86_64_32S:
1304 case R_X86_64_PC32:
1305 case R_X86_64_PC64:
1306 not_pointer:
1307 h->non_got_ref = 1;
1308 if (r_type != R_X86_64_PC32
1309 && r_type != R_X86_64_PC64)
1310 h->pointer_equality_needed = 1;
1311 break;
1312
1313 case R_X86_64_PLT32:
1314 break;
1315
1316 case R_X86_64_GOTPCREL:
1317 case R_X86_64_GOTPCREL64:
1318 h->got.refcount += 1;
1319 if (htab->elf.sgot == NULL
1320 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1321 info))
1322 return FALSE;
1323 break;
1324 }
1325
1326 continue;
1327 }
1328 }
1329
1330 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1331 symtab_hdr, sym_hashes,
1332 &r_type, GOT_UNKNOWN,
1333 rel, rel_end, h, r_symndx))
1334 return FALSE;
1335
1336 switch (r_type)
1337 {
1338 case R_X86_64_TLSLD:
1339 htab->tls_ld_got.refcount += 1;
1340 goto create_got;
1341
1342 case R_X86_64_TPOFF32:
1343 if (!info->executable && ABI_64_P (abfd))
1344 {
1345 if (h)
1346 name = h->root.root.string;
1347 else
1348 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1349 NULL);
1350 (*_bfd_error_handler)
1351 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1352 abfd,
1353 x86_64_elf_howto_table[r_type].name, name);
1354 bfd_set_error (bfd_error_bad_value);
1355 return FALSE;
1356 }
1357 break;
1358
1359 case R_X86_64_GOTTPOFF:
1360 if (!info->executable)
1361 info->flags |= DF_STATIC_TLS;
1362 /* Fall through */
1363
1364 case R_X86_64_GOT32:
1365 case R_X86_64_GOTPCREL:
1366 case R_X86_64_TLSGD:
1367 case R_X86_64_GOT64:
1368 case R_X86_64_GOTPCREL64:
1369 case R_X86_64_GOTPLT64:
1370 case R_X86_64_GOTPC32_TLSDESC:
1371 case R_X86_64_TLSDESC_CALL:
1372 /* This symbol requires a global offset table entry. */
1373 {
1374 int tls_type, old_tls_type;
1375
1376 switch (r_type)
1377 {
1378 default: tls_type = GOT_NORMAL; break;
1379 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1380 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1381 case R_X86_64_GOTPC32_TLSDESC:
1382 case R_X86_64_TLSDESC_CALL:
1383 tls_type = GOT_TLS_GDESC; break;
1384 }
1385
1386 if (h != NULL)
1387 {
1388 if (r_type == R_X86_64_GOTPLT64)
1389 {
1390 /* This relocation indicates that we also need
1391 a PLT entry, as this is a function. We don't need
1392 a PLT entry for local symbols. */
1393 h->needs_plt = 1;
1394 h->plt.refcount += 1;
1395 }
1396 h->got.refcount += 1;
1397 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1398 }
1399 else
1400 {
1401 bfd_signed_vma *local_got_refcounts;
1402
1403 /* This is a global offset table entry for a local symbol. */
1404 local_got_refcounts = elf_local_got_refcounts (abfd);
1405 if (local_got_refcounts == NULL)
1406 {
1407 bfd_size_type size;
1408
1409 size = symtab_hdr->sh_info;
1410 size *= sizeof (bfd_signed_vma)
1411 + sizeof (bfd_vma) + sizeof (char);
1412 local_got_refcounts = ((bfd_signed_vma *)
1413 bfd_zalloc (abfd, size));
1414 if (local_got_refcounts == NULL)
1415 return FALSE;
1416 elf_local_got_refcounts (abfd) = local_got_refcounts;
1417 elf_x86_64_local_tlsdesc_gotent (abfd)
1418 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1419 elf_x86_64_local_got_tls_type (abfd)
1420 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1421 }
1422 local_got_refcounts[r_symndx] += 1;
1423 old_tls_type
1424 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1425 }
1426
1427 /* If a TLS symbol is accessed using IE at least once,
1428 there is no point to use dynamic model for it. */
1429 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1430 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1431 || tls_type != GOT_TLS_IE))
1432 {
1433 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1434 tls_type = old_tls_type;
1435 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1436 && GOT_TLS_GD_ANY_P (tls_type))
1437 tls_type |= old_tls_type;
1438 else
1439 {
1440 if (h)
1441 name = h->root.root.string;
1442 else
1443 name = bfd_elf_sym_name (abfd, symtab_hdr,
1444 isym, NULL);
1445 (*_bfd_error_handler)
1446 (_("%B: '%s' accessed both as normal and thread local symbol"),
1447 abfd, name);
1448 return FALSE;
1449 }
1450 }
1451
1452 if (old_tls_type != tls_type)
1453 {
1454 if (h != NULL)
1455 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1456 else
1457 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1458 }
1459 }
1460 /* Fall through */
1461
1462 case R_X86_64_GOTOFF64:
1463 case R_X86_64_GOTPC32:
1464 case R_X86_64_GOTPC64:
1465 create_got:
1466 if (htab->elf.sgot == NULL)
1467 {
1468 if (htab->elf.dynobj == NULL)
1469 htab->elf.dynobj = abfd;
1470 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1471 info))
1472 return FALSE;
1473 }
1474 break;
1475
1476 case R_X86_64_PLT32:
1477 /* This symbol requires a procedure linkage table entry. We
1478 actually build the entry in adjust_dynamic_symbol,
1479 because this might be a case of linking PIC code which is
1480 never referenced by a dynamic object, in which case we
1481 don't need to generate a procedure linkage table entry
1482 after all. */
1483
1484 /* If this is a local symbol, we resolve it directly without
1485 creating a procedure linkage table entry. */
1486 if (h == NULL)
1487 continue;
1488
1489 h->needs_plt = 1;
1490 h->plt.refcount += 1;
1491 break;
1492
1493 case R_X86_64_PLTOFF64:
1494 /* This tries to form the 'address' of a function relative
1495 to GOT. For global symbols we need a PLT entry. */
1496 if (h != NULL)
1497 {
1498 h->needs_plt = 1;
1499 h->plt.refcount += 1;
1500 }
1501 goto create_got;
1502
1503 case R_X86_64_32:
1504 if (!ABI_64_P (abfd))
1505 goto pointer;
1506 case R_X86_64_8:
1507 case R_X86_64_16:
1508 case R_X86_64_32S:
1509 /* Let's help debug shared library creation. These relocs
1510 cannot be used in shared libs. Don't error out for
1511 sections we don't care about, such as debug sections or
1512 non-constant sections. */
1513 if (info->shared
1514 && (sec->flags & SEC_ALLOC) != 0
1515 && (sec->flags & SEC_READONLY) != 0)
1516 {
1517 if (h)
1518 name = h->root.root.string;
1519 else
1520 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1521 (*_bfd_error_handler)
1522 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1523 abfd, x86_64_elf_howto_table[r_type].name, name);
1524 bfd_set_error (bfd_error_bad_value);
1525 return FALSE;
1526 }
1527 /* Fall through. */
1528
1529 case R_X86_64_PC8:
1530 case R_X86_64_PC16:
1531 case R_X86_64_PC32:
1532 case R_X86_64_PC64:
1533 case R_X86_64_64:
1534 pointer:
1535 if (h != NULL && info->executable)
1536 {
1537 /* If this reloc is in a read-only section, we might
1538 need a copy reloc. We can't check reliably at this
1539 stage whether the section is read-only, as input
1540 sections have not yet been mapped to output sections.
1541 Tentatively set the flag for now, and correct in
1542 adjust_dynamic_symbol. */
1543 h->non_got_ref = 1;
1544
1545 /* We may need a .plt entry if the function this reloc
1546 refers to is in a shared lib. */
1547 h->plt.refcount += 1;
1548 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1549 h->pointer_equality_needed = 1;
1550 }
1551
1552 /* If we are creating a shared library, and this is a reloc
1553 against a global symbol, or a non PC relative reloc
1554 against a local symbol, then we need to copy the reloc
1555 into the shared library. However, if we are linking with
1556 -Bsymbolic, we do not need to copy a reloc against a
1557 global symbol which is defined in an object we are
1558 including in the link (i.e., DEF_REGULAR is set). At
1559 this point we have not seen all the input files, so it is
1560 possible that DEF_REGULAR is not set now but will be set
1561 later (it is never cleared). In case of a weak definition,
1562 DEF_REGULAR may be cleared later by a strong definition in
1563 a shared library. We account for that possibility below by
1564 storing information in the relocs_copied field of the hash
1565 table entry. A similar situation occurs when creating
1566 shared libraries and symbol visibility changes render the
1567 symbol local.
1568
1569 If on the other hand, we are creating an executable, we
1570 may need to keep relocations for symbols satisfied by a
1571 dynamic library if we manage to avoid copy relocs for the
1572 symbol. */
1573 if ((info->shared
1574 && (sec->flags & SEC_ALLOC) != 0
1575 && (! IS_X86_64_PCREL_TYPE (r_type)
1576 || (h != NULL
1577 && (! SYMBOLIC_BIND (info, h)
1578 || h->root.type == bfd_link_hash_defweak
1579 || !h->def_regular))))
1580 || (ELIMINATE_COPY_RELOCS
1581 && !info->shared
1582 && (sec->flags & SEC_ALLOC) != 0
1583 && h != NULL
1584 && (h->root.type == bfd_link_hash_defweak
1585 || !h->def_regular)))
1586 {
1587 struct elf_dyn_relocs *p;
1588 struct elf_dyn_relocs **head;
1589
1590 /* We must copy these reloc types into the output file.
1591 Create a reloc section in dynobj and make room for
1592 this reloc. */
1593 if (sreloc == NULL)
1594 {
1595 if (htab->elf.dynobj == NULL)
1596 htab->elf.dynobj = abfd;
1597
1598 sreloc = _bfd_elf_make_dynamic_reloc_section
1599 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1600 abfd, /*rela?*/ TRUE);
1601
1602 if (sreloc == NULL)
1603 return FALSE;
1604 }
1605
1606 /* If this is a global symbol, we count the number of
1607 relocations we need for this symbol. */
1608 if (h != NULL)
1609 {
1610 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1611 }
1612 else
1613 {
1614 /* Track dynamic relocs needed for local syms too.
1615 We really need local syms available to do this
1616 easily. Oh well. */
1617 asection *s;
1618 void **vpp;
1619
1620 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1621 abfd, r_symndx);
1622 if (isym == NULL)
1623 return FALSE;
1624
1625 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1626 if (s == NULL)
1627 s = sec;
1628
1629 /* Beware of type punned pointers vs strict aliasing
1630 rules. */
1631 vpp = &(elf_section_data (s)->local_dynrel);
1632 head = (struct elf_dyn_relocs **)vpp;
1633 }
1634
1635 p = *head;
1636 if (p == NULL || p->sec != sec)
1637 {
1638 bfd_size_type amt = sizeof *p;
1639
1640 p = ((struct elf_dyn_relocs *)
1641 bfd_alloc (htab->elf.dynobj, amt));
1642 if (p == NULL)
1643 return FALSE;
1644 p->next = *head;
1645 *head = p;
1646 p->sec = sec;
1647 p->count = 0;
1648 p->pc_count = 0;
1649 }
1650
1651 p->count += 1;
1652 if (IS_X86_64_PCREL_TYPE (r_type))
1653 p->pc_count += 1;
1654 }
1655 break;
1656
1657 /* This relocation describes the C++ object vtable hierarchy.
1658 Reconstruct it for later use during GC. */
1659 case R_X86_64_GNU_VTINHERIT:
1660 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1661 return FALSE;
1662 break;
1663
1664 /* This relocation describes which C++ vtable entries are actually
1665 used. Record for later use during GC. */
1666 case R_X86_64_GNU_VTENTRY:
1667 BFD_ASSERT (h != NULL);
1668 if (h != NULL
1669 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1670 return FALSE;
1671 break;
1672
1673 default:
1674 break;
1675 }
1676 }
1677
1678 return TRUE;
1679 }
1680
1681 /* Return the section that should be marked against GC for a given
1682 relocation. */
1683
1684 static asection *
1685 elf_x86_64_gc_mark_hook (asection *sec,
1686 struct bfd_link_info *info,
1687 Elf_Internal_Rela *rel,
1688 struct elf_link_hash_entry *h,
1689 Elf_Internal_Sym *sym)
1690 {
1691 if (h != NULL)
1692 switch (ELF32_R_TYPE (rel->r_info))
1693 {
1694 case R_X86_64_GNU_VTINHERIT:
1695 case R_X86_64_GNU_VTENTRY:
1696 return NULL;
1697 }
1698
1699 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1700 }
1701
1702 /* Update the got entry reference counts for the section being removed. */
1703
1704 static bfd_boolean
1705 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1706 asection *sec,
1707 const Elf_Internal_Rela *relocs)
1708 {
1709 struct elf_x86_64_link_hash_table *htab;
1710 Elf_Internal_Shdr *symtab_hdr;
1711 struct elf_link_hash_entry **sym_hashes;
1712 bfd_signed_vma *local_got_refcounts;
1713 const Elf_Internal_Rela *rel, *relend;
1714
1715 if (info->relocatable)
1716 return TRUE;
1717
1718 htab = elf_x86_64_hash_table (info);
1719 if (htab == NULL)
1720 return FALSE;
1721
1722 elf_section_data (sec)->local_dynrel = NULL;
1723
1724 symtab_hdr = &elf_symtab_hdr (abfd);
1725 sym_hashes = elf_sym_hashes (abfd);
1726 local_got_refcounts = elf_local_got_refcounts (abfd);
1727
1728 htab = elf_x86_64_hash_table (info);
1729 relend = relocs + sec->reloc_count;
1730 for (rel = relocs; rel < relend; rel++)
1731 {
1732 unsigned long r_symndx;
1733 unsigned int r_type;
1734 struct elf_link_hash_entry *h = NULL;
1735
1736 r_symndx = htab->r_sym (rel->r_info);
1737 if (r_symndx >= symtab_hdr->sh_info)
1738 {
1739 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1740 while (h->root.type == bfd_link_hash_indirect
1741 || h->root.type == bfd_link_hash_warning)
1742 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1743 }
1744 else
1745 {
1746 /* A local symbol. */
1747 Elf_Internal_Sym *isym;
1748
1749 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1750 abfd, r_symndx);
1751
1752 /* Check relocation against local STT_GNU_IFUNC symbol. */
1753 if (isym != NULL
1754 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1755 {
1756 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
1757 if (h == NULL)
1758 abort ();
1759 }
1760 }
1761
1762 if (h)
1763 {
1764 struct elf_x86_64_link_hash_entry *eh;
1765 struct elf_dyn_relocs **pp;
1766 struct elf_dyn_relocs *p;
1767
1768 eh = (struct elf_x86_64_link_hash_entry *) h;
1769
1770 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1771 if (p->sec == sec)
1772 {
1773 /* Everything must go for SEC. */
1774 *pp = p->next;
1775 break;
1776 }
1777 }
1778
1779 r_type = ELF32_R_TYPE (rel->r_info);
1780 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1781 symtab_hdr, sym_hashes,
1782 &r_type, GOT_UNKNOWN,
1783 rel, relend, h, r_symndx))
1784 return FALSE;
1785
1786 switch (r_type)
1787 {
1788 case R_X86_64_TLSLD:
1789 if (htab->tls_ld_got.refcount > 0)
1790 htab->tls_ld_got.refcount -= 1;
1791 break;
1792
1793 case R_X86_64_TLSGD:
1794 case R_X86_64_GOTPC32_TLSDESC:
1795 case R_X86_64_TLSDESC_CALL:
1796 case R_X86_64_GOTTPOFF:
1797 case R_X86_64_GOT32:
1798 case R_X86_64_GOTPCREL:
1799 case R_X86_64_GOT64:
1800 case R_X86_64_GOTPCREL64:
1801 case R_X86_64_GOTPLT64:
1802 if (h != NULL)
1803 {
1804 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1805 h->plt.refcount -= 1;
1806 if (h->got.refcount > 0)
1807 h->got.refcount -= 1;
1808 if (h->type == STT_GNU_IFUNC)
1809 {
1810 if (h->plt.refcount > 0)
1811 h->plt.refcount -= 1;
1812 }
1813 }
1814 else if (local_got_refcounts != NULL)
1815 {
1816 if (local_got_refcounts[r_symndx] > 0)
1817 local_got_refcounts[r_symndx] -= 1;
1818 }
1819 break;
1820
1821 case R_X86_64_8:
1822 case R_X86_64_16:
1823 case R_X86_64_32:
1824 case R_X86_64_64:
1825 case R_X86_64_32S:
1826 case R_X86_64_PC8:
1827 case R_X86_64_PC16:
1828 case R_X86_64_PC32:
1829 case R_X86_64_PC64:
1830 if (info->shared
1831 && (h == NULL || h->type != STT_GNU_IFUNC))
1832 break;
1833 /* Fall thru */
1834
1835 case R_X86_64_PLT32:
1836 case R_X86_64_PLTOFF64:
1837 if (h != NULL)
1838 {
1839 if (h->plt.refcount > 0)
1840 h->plt.refcount -= 1;
1841 }
1842 break;
1843
1844 default:
1845 break;
1846 }
1847 }
1848
1849 return TRUE;
1850 }
1851
1852 /* Adjust a symbol defined by a dynamic object and referenced by a
1853 regular object. The current definition is in some section of the
1854 dynamic object, but we're not including those sections. We have to
1855 change the definition to something the rest of the link can
1856 understand. */
1857
1858 static bfd_boolean
1859 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1860 struct elf_link_hash_entry *h)
1861 {
1862 struct elf_x86_64_link_hash_table *htab;
1863 asection *s;
1864
1865 /* STT_GNU_IFUNC symbol must go through PLT. */
1866 if (h->type == STT_GNU_IFUNC)
1867 {
1868 if (h->plt.refcount <= 0)
1869 {
1870 h->plt.offset = (bfd_vma) -1;
1871 h->needs_plt = 0;
1872 }
1873 return TRUE;
1874 }
1875
1876 /* If this is a function, put it in the procedure linkage table. We
1877 will fill in the contents of the procedure linkage table later,
1878 when we know the address of the .got section. */
1879 if (h->type == STT_FUNC
1880 || h->needs_plt)
1881 {
1882 if (h->plt.refcount <= 0
1883 || SYMBOL_CALLS_LOCAL (info, h)
1884 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1885 && h->root.type == bfd_link_hash_undefweak))
1886 {
1887 /* This case can occur if we saw a PLT32 reloc in an input
1888 file, but the symbol was never referred to by a dynamic
1889 object, or if all references were garbage collected. In
1890 such a case, we don't actually need to build a procedure
1891 linkage table, and we can just do a PC32 reloc instead. */
1892 h->plt.offset = (bfd_vma) -1;
1893 h->needs_plt = 0;
1894 }
1895
1896 return TRUE;
1897 }
1898 else
1899 /* It's possible that we incorrectly decided a .plt reloc was
1900 needed for an R_X86_64_PC32 reloc to a non-function sym in
1901 check_relocs. We can't decide accurately between function and
1902 non-function syms in check-relocs; Objects loaded later in
1903 the link may change h->type. So fix it now. */
1904 h->plt.offset = (bfd_vma) -1;
1905
1906 /* If this is a weak symbol, and there is a real definition, the
1907 processor independent code will have arranged for us to see the
1908 real definition first, and we can just use the same value. */
1909 if (h->u.weakdef != NULL)
1910 {
1911 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1912 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1913 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1914 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1915 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1916 h->non_got_ref = h->u.weakdef->non_got_ref;
1917 return TRUE;
1918 }
1919
1920 /* This is a reference to a symbol defined by a dynamic object which
1921 is not a function. */
1922
1923 /* If we are creating a shared library, we must presume that the
1924 only references to the symbol are via the global offset table.
1925 For such cases we need not do anything here; the relocations will
1926 be handled correctly by relocate_section. */
1927 if (info->shared)
1928 return TRUE;
1929
1930 /* If there are no references to this symbol that do not use the
1931 GOT, we don't need to generate a copy reloc. */
1932 if (!h->non_got_ref)
1933 return TRUE;
1934
1935 /* If -z nocopyreloc was given, we won't generate them either. */
1936 if (info->nocopyreloc)
1937 {
1938 h->non_got_ref = 0;
1939 return TRUE;
1940 }
1941
1942 if (ELIMINATE_COPY_RELOCS)
1943 {
1944 struct elf_x86_64_link_hash_entry * eh;
1945 struct elf_dyn_relocs *p;
1946
1947 eh = (struct elf_x86_64_link_hash_entry *) h;
1948 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1949 {
1950 s = p->sec->output_section;
1951 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1952 break;
1953 }
1954
1955 /* If we didn't find any dynamic relocs in read-only sections, then
1956 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1957 if (p == NULL)
1958 {
1959 h->non_got_ref = 0;
1960 return TRUE;
1961 }
1962 }
1963
1964 if (h->size == 0)
1965 {
1966 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1967 h->root.root.string);
1968 return TRUE;
1969 }
1970
1971 /* We must allocate the symbol in our .dynbss section, which will
1972 become part of the .bss section of the executable. There will be
1973 an entry for this symbol in the .dynsym section. The dynamic
1974 object will contain position independent code, so all references
1975 from the dynamic object to this symbol will go through the global
1976 offset table. The dynamic linker will use the .dynsym entry to
1977 determine the address it must put in the global offset table, so
1978 both the dynamic object and the regular object will refer to the
1979 same memory location for the variable. */
1980
1981 htab = elf_x86_64_hash_table (info);
1982 if (htab == NULL)
1983 return FALSE;
1984
1985 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1986 to copy the initial value out of the dynamic object and into the
1987 runtime process image. */
1988 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1989 {
1990 const struct elf_backend_data *bed;
1991 bed = get_elf_backend_data (info->output_bfd);
1992 htab->srelbss->size += bed->s->sizeof_rela;
1993 h->needs_copy = 1;
1994 }
1995
1996 s = htab->sdynbss;
1997
1998 return _bfd_elf_adjust_dynamic_copy (h, s);
1999 }
2000
2001 /* Allocate space in .plt, .got and associated reloc sections for
2002 dynamic relocs. */
2003
2004 static bfd_boolean
2005 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2006 {
2007 struct bfd_link_info *info;
2008 struct elf_x86_64_link_hash_table *htab;
2009 struct elf_x86_64_link_hash_entry *eh;
2010 struct elf_dyn_relocs *p;
2011 const struct elf_backend_data *bed;
2012
2013 if (h->root.type == bfd_link_hash_indirect)
2014 return TRUE;
2015
2016 if (h->root.type == bfd_link_hash_warning)
2017 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2018 eh = (struct elf_x86_64_link_hash_entry *) h;
2019
2020 info = (struct bfd_link_info *) inf;
2021 htab = elf_x86_64_hash_table (info);
2022 if (htab == NULL)
2023 return FALSE;
2024 bed = get_elf_backend_data (info->output_bfd);
2025
2026 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2027 here if it is defined and referenced in a non-shared object. */
2028 if (h->type == STT_GNU_IFUNC
2029 && h->def_regular)
2030 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2031 &eh->dyn_relocs,
2032 PLT_ENTRY_SIZE,
2033 GOT_ENTRY_SIZE);
2034 else if (htab->elf.dynamic_sections_created
2035 && h->plt.refcount > 0)
2036 {
2037 /* Make sure this symbol is output as a dynamic symbol.
2038 Undefined weak syms won't yet be marked as dynamic. */
2039 if (h->dynindx == -1
2040 && !h->forced_local)
2041 {
2042 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2043 return FALSE;
2044 }
2045
2046 if (info->shared
2047 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2048 {
2049 asection *s = htab->elf.splt;
2050
2051 /* If this is the first .plt entry, make room for the special
2052 first entry. */
2053 if (s->size == 0)
2054 s->size += PLT_ENTRY_SIZE;
2055
2056 h->plt.offset = s->size;
2057
2058 /* If this symbol is not defined in a regular file, and we are
2059 not generating a shared library, then set the symbol to this
2060 location in the .plt. This is required to make function
2061 pointers compare as equal between the normal executable and
2062 the shared library. */
2063 if (! info->shared
2064 && !h->def_regular)
2065 {
2066 h->root.u.def.section = s;
2067 h->root.u.def.value = h->plt.offset;
2068 }
2069
2070 /* Make room for this entry. */
2071 s->size += PLT_ENTRY_SIZE;
2072
2073 /* We also need to make an entry in the .got.plt section, which
2074 will be placed in the .got section by the linker script. */
2075 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2076
2077 /* We also need to make an entry in the .rela.plt section. */
2078 htab->elf.srelplt->size += bed->s->sizeof_rela;
2079 htab->elf.srelplt->reloc_count++;
2080 }
2081 else
2082 {
2083 h->plt.offset = (bfd_vma) -1;
2084 h->needs_plt = 0;
2085 }
2086 }
2087 else
2088 {
2089 h->plt.offset = (bfd_vma) -1;
2090 h->needs_plt = 0;
2091 }
2092
2093 eh->tlsdesc_got = (bfd_vma) -1;
2094
2095 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2096 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2097 if (h->got.refcount > 0
2098 && info->executable
2099 && h->dynindx == -1
2100 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2101 {
2102 h->got.offset = (bfd_vma) -1;
2103 }
2104 else if (h->got.refcount > 0)
2105 {
2106 asection *s;
2107 bfd_boolean dyn;
2108 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2109
2110 /* Make sure this symbol is output as a dynamic symbol.
2111 Undefined weak syms won't yet be marked as dynamic. */
2112 if (h->dynindx == -1
2113 && !h->forced_local)
2114 {
2115 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2116 return FALSE;
2117 }
2118
2119 if (GOT_TLS_GDESC_P (tls_type))
2120 {
2121 eh->tlsdesc_got = htab->elf.sgotplt->size
2122 - elf_x86_64_compute_jump_table_size (htab);
2123 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2124 h->got.offset = (bfd_vma) -2;
2125 }
2126 if (! GOT_TLS_GDESC_P (tls_type)
2127 || GOT_TLS_GD_P (tls_type))
2128 {
2129 s = htab->elf.sgot;
2130 h->got.offset = s->size;
2131 s->size += GOT_ENTRY_SIZE;
2132 if (GOT_TLS_GD_P (tls_type))
2133 s->size += GOT_ENTRY_SIZE;
2134 }
2135 dyn = htab->elf.dynamic_sections_created;
2136 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2137 and two if global.
2138 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2139 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2140 || tls_type == GOT_TLS_IE)
2141 htab->elf.srelgot->size += bed->s->sizeof_rela;
2142 else if (GOT_TLS_GD_P (tls_type))
2143 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2144 else if (! GOT_TLS_GDESC_P (tls_type)
2145 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2146 || h->root.type != bfd_link_hash_undefweak)
2147 && (info->shared
2148 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2149 htab->elf.srelgot->size += bed->s->sizeof_rela;
2150 if (GOT_TLS_GDESC_P (tls_type))
2151 {
2152 htab->elf.srelplt->size += bed->s->sizeof_rela;
2153 htab->tlsdesc_plt = (bfd_vma) -1;
2154 }
2155 }
2156 else
2157 h->got.offset = (bfd_vma) -1;
2158
2159 if (eh->dyn_relocs == NULL)
2160 return TRUE;
2161
2162 /* In the shared -Bsymbolic case, discard space allocated for
2163 dynamic pc-relative relocs against symbols which turn out to be
2164 defined in regular objects. For the normal shared case, discard
2165 space for pc-relative relocs that have become local due to symbol
2166 visibility changes. */
2167
2168 if (info->shared)
2169 {
2170 /* Relocs that use pc_count are those that appear on a call
2171 insn, or certain REL relocs that can generated via assembly.
2172 We want calls to protected symbols to resolve directly to the
2173 function rather than going via the plt. If people want
2174 function pointer comparisons to work as expected then they
2175 should avoid writing weird assembly. */
2176 if (SYMBOL_CALLS_LOCAL (info, h))
2177 {
2178 struct elf_dyn_relocs **pp;
2179
2180 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2181 {
2182 p->count -= p->pc_count;
2183 p->pc_count = 0;
2184 if (p->count == 0)
2185 *pp = p->next;
2186 else
2187 pp = &p->next;
2188 }
2189 }
2190
2191 /* Also discard relocs on undefined weak syms with non-default
2192 visibility. */
2193 if (eh->dyn_relocs != NULL
2194 && h->root.type == bfd_link_hash_undefweak)
2195 {
2196 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2197 eh->dyn_relocs = NULL;
2198
2199 /* Make sure undefined weak symbols are output as a dynamic
2200 symbol in PIEs. */
2201 else if (h->dynindx == -1
2202 && ! h->forced_local
2203 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2204 return FALSE;
2205 }
2206
2207 }
2208 else if (ELIMINATE_COPY_RELOCS)
2209 {
2210 /* For the non-shared case, discard space for relocs against
2211 symbols which turn out to need copy relocs or are not
2212 dynamic. */
2213
2214 if (!h->non_got_ref
2215 && ((h->def_dynamic
2216 && !h->def_regular)
2217 || (htab->elf.dynamic_sections_created
2218 && (h->root.type == bfd_link_hash_undefweak
2219 || h->root.type == bfd_link_hash_undefined))))
2220 {
2221 /* Make sure this symbol is output as a dynamic symbol.
2222 Undefined weak syms won't yet be marked as dynamic. */
2223 if (h->dynindx == -1
2224 && ! h->forced_local
2225 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2226 return FALSE;
2227
2228 /* If that succeeded, we know we'll be keeping all the
2229 relocs. */
2230 if (h->dynindx != -1)
2231 goto keep;
2232 }
2233
2234 eh->dyn_relocs = NULL;
2235
2236 keep: ;
2237 }
2238
2239 /* Finally, allocate space. */
2240 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2241 {
2242 asection * sreloc;
2243
2244 sreloc = elf_section_data (p->sec)->sreloc;
2245
2246 BFD_ASSERT (sreloc != NULL);
2247
2248 sreloc->size += p->count * bed->s->sizeof_rela;
2249 }
2250
2251 return TRUE;
2252 }
2253
2254 /* Allocate space in .plt, .got and associated reloc sections for
2255 local dynamic relocs. */
2256
2257 static bfd_boolean
2258 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2259 {
2260 struct elf_link_hash_entry *h
2261 = (struct elf_link_hash_entry *) *slot;
2262
2263 if (h->type != STT_GNU_IFUNC
2264 || !h->def_regular
2265 || !h->ref_regular
2266 || !h->forced_local
2267 || h->root.type != bfd_link_hash_defined)
2268 abort ();
2269
2270 return elf_x86_64_allocate_dynrelocs (h, inf);
2271 }
2272
2273 /* Find any dynamic relocs that apply to read-only sections. */
2274
2275 static bfd_boolean
2276 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2277 void * inf)
2278 {
2279 struct elf_x86_64_link_hash_entry *eh;
2280 struct elf_dyn_relocs *p;
2281
2282 if (h->root.type == bfd_link_hash_warning)
2283 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2284
2285 eh = (struct elf_x86_64_link_hash_entry *) h;
2286 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2287 {
2288 asection *s = p->sec->output_section;
2289
2290 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2291 {
2292 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2293
2294 info->flags |= DF_TEXTREL;
2295
2296 /* Not an error, just cut short the traversal. */
2297 return FALSE;
2298 }
2299 }
2300 return TRUE;
2301 }
2302
2303 /* Set the sizes of the dynamic sections. */
2304
2305 static bfd_boolean
2306 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2307 struct bfd_link_info *info)
2308 {
2309 struct elf_x86_64_link_hash_table *htab;
2310 bfd *dynobj;
2311 asection *s;
2312 bfd_boolean relocs;
2313 bfd *ibfd;
2314 const struct elf_backend_data *bed;
2315
2316 htab = elf_x86_64_hash_table (info);
2317 if (htab == NULL)
2318 return FALSE;
2319 bed = get_elf_backend_data (output_bfd);
2320
2321 dynobj = htab->elf.dynobj;
2322 if (dynobj == NULL)
2323 abort ();
2324
2325 if (htab->elf.dynamic_sections_created)
2326 {
2327 /* Set the contents of the .interp section to the interpreter. */
2328 if (info->executable)
2329 {
2330 s = bfd_get_section_by_name (dynobj, ".interp");
2331 if (s == NULL)
2332 abort ();
2333 s->size = htab->dynamic_interpreter_size;
2334 s->contents = (unsigned char *) htab->dynamic_interpreter;
2335 }
2336 }
2337
2338 /* Set up .got offsets for local syms, and space for local dynamic
2339 relocs. */
2340 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2341 {
2342 bfd_signed_vma *local_got;
2343 bfd_signed_vma *end_local_got;
2344 char *local_tls_type;
2345 bfd_vma *local_tlsdesc_gotent;
2346 bfd_size_type locsymcount;
2347 Elf_Internal_Shdr *symtab_hdr;
2348 asection *srel;
2349
2350 if (! is_x86_64_elf (ibfd))
2351 continue;
2352
2353 for (s = ibfd->sections; s != NULL; s = s->next)
2354 {
2355 struct elf_dyn_relocs *p;
2356
2357 for (p = (struct elf_dyn_relocs *)
2358 (elf_section_data (s)->local_dynrel);
2359 p != NULL;
2360 p = p->next)
2361 {
2362 if (!bfd_is_abs_section (p->sec)
2363 && bfd_is_abs_section (p->sec->output_section))
2364 {
2365 /* Input section has been discarded, either because
2366 it is a copy of a linkonce section or due to
2367 linker script /DISCARD/, so we'll be discarding
2368 the relocs too. */
2369 }
2370 else if (p->count != 0)
2371 {
2372 srel = elf_section_data (p->sec)->sreloc;
2373 srel->size += p->count * bed->s->sizeof_rela;
2374 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2375 info->flags |= DF_TEXTREL;
2376 }
2377 }
2378 }
2379
2380 local_got = elf_local_got_refcounts (ibfd);
2381 if (!local_got)
2382 continue;
2383
2384 symtab_hdr = &elf_symtab_hdr (ibfd);
2385 locsymcount = symtab_hdr->sh_info;
2386 end_local_got = local_got + locsymcount;
2387 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2388 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2389 s = htab->elf.sgot;
2390 srel = htab->elf.srelgot;
2391 for (; local_got < end_local_got;
2392 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2393 {
2394 *local_tlsdesc_gotent = (bfd_vma) -1;
2395 if (*local_got > 0)
2396 {
2397 if (GOT_TLS_GDESC_P (*local_tls_type))
2398 {
2399 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2400 - elf_x86_64_compute_jump_table_size (htab);
2401 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2402 *local_got = (bfd_vma) -2;
2403 }
2404 if (! GOT_TLS_GDESC_P (*local_tls_type)
2405 || GOT_TLS_GD_P (*local_tls_type))
2406 {
2407 *local_got = s->size;
2408 s->size += GOT_ENTRY_SIZE;
2409 if (GOT_TLS_GD_P (*local_tls_type))
2410 s->size += GOT_ENTRY_SIZE;
2411 }
2412 if (info->shared
2413 || GOT_TLS_GD_ANY_P (*local_tls_type)
2414 || *local_tls_type == GOT_TLS_IE)
2415 {
2416 if (GOT_TLS_GDESC_P (*local_tls_type))
2417 {
2418 htab->elf.srelplt->size
2419 += bed->s->sizeof_rela;
2420 htab->tlsdesc_plt = (bfd_vma) -1;
2421 }
2422 if (! GOT_TLS_GDESC_P (*local_tls_type)
2423 || GOT_TLS_GD_P (*local_tls_type))
2424 srel->size += bed->s->sizeof_rela;
2425 }
2426 }
2427 else
2428 *local_got = (bfd_vma) -1;
2429 }
2430 }
2431
2432 if (htab->tls_ld_got.refcount > 0)
2433 {
2434 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2435 relocs. */
2436 htab->tls_ld_got.offset = htab->elf.sgot->size;
2437 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2438 htab->elf.srelgot->size += bed->s->sizeof_rela;
2439 }
2440 else
2441 htab->tls_ld_got.offset = -1;
2442
2443 /* Allocate global sym .plt and .got entries, and space for global
2444 sym dynamic relocs. */
2445 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2446 info);
2447
2448 /* Allocate .plt and .got entries, and space for local symbols. */
2449 htab_traverse (htab->loc_hash_table,
2450 elf_x86_64_allocate_local_dynrelocs,
2451 info);
2452
2453 /* For every jump slot reserved in the sgotplt, reloc_count is
2454 incremented. However, when we reserve space for TLS descriptors,
2455 it's not incremented, so in order to compute the space reserved
2456 for them, it suffices to multiply the reloc count by the jump
2457 slot size. */
2458 if (htab->elf.srelplt)
2459 htab->sgotplt_jump_table_size
2460 = elf_x86_64_compute_jump_table_size (htab);
2461
2462 if (htab->tlsdesc_plt)
2463 {
2464 /* If we're not using lazy TLS relocations, don't generate the
2465 PLT and GOT entries they require. */
2466 if ((info->flags & DF_BIND_NOW))
2467 htab->tlsdesc_plt = 0;
2468 else
2469 {
2470 htab->tlsdesc_got = htab->elf.sgot->size;
2471 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2472 /* Reserve room for the initial entry.
2473 FIXME: we could probably do away with it in this case. */
2474 if (htab->elf.splt->size == 0)
2475 htab->elf.splt->size += PLT_ENTRY_SIZE;
2476 htab->tlsdesc_plt = htab->elf.splt->size;
2477 htab->elf.splt->size += PLT_ENTRY_SIZE;
2478 }
2479 }
2480
2481 if (htab->elf.sgotplt)
2482 {
2483 struct elf_link_hash_entry *got;
2484 got = elf_link_hash_lookup (elf_hash_table (info),
2485 "_GLOBAL_OFFSET_TABLE_",
2486 FALSE, FALSE, FALSE);
2487
2488 /* Don't allocate .got.plt section if there are no GOT nor PLT
2489 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2490 if ((got == NULL
2491 || !got->ref_regular_nonweak)
2492 && (htab->elf.sgotplt->size
2493 == get_elf_backend_data (output_bfd)->got_header_size)
2494 && (htab->elf.splt == NULL
2495 || htab->elf.splt->size == 0)
2496 && (htab->elf.sgot == NULL
2497 || htab->elf.sgot->size == 0)
2498 && (htab->elf.iplt == NULL
2499 || htab->elf.iplt->size == 0)
2500 && (htab->elf.igotplt == NULL
2501 || htab->elf.igotplt->size == 0))
2502 htab->elf.sgotplt->size = 0;
2503 }
2504
2505 /* We now have determined the sizes of the various dynamic sections.
2506 Allocate memory for them. */
2507 relocs = FALSE;
2508 for (s = dynobj->sections; s != NULL; s = s->next)
2509 {
2510 if ((s->flags & SEC_LINKER_CREATED) == 0)
2511 continue;
2512
2513 if (s == htab->elf.splt
2514 || s == htab->elf.sgot
2515 || s == htab->elf.sgotplt
2516 || s == htab->elf.iplt
2517 || s == htab->elf.igotplt
2518 || s == htab->sdynbss)
2519 {
2520 /* Strip this section if we don't need it; see the
2521 comment below. */
2522 }
2523 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2524 {
2525 if (s->size != 0 && s != htab->elf.srelplt)
2526 relocs = TRUE;
2527
2528 /* We use the reloc_count field as a counter if we need
2529 to copy relocs into the output file. */
2530 if (s != htab->elf.srelplt)
2531 s->reloc_count = 0;
2532 }
2533 else
2534 {
2535 /* It's not one of our sections, so don't allocate space. */
2536 continue;
2537 }
2538
2539 if (s->size == 0)
2540 {
2541 /* If we don't need this section, strip it from the
2542 output file. This is mostly to handle .rela.bss and
2543 .rela.plt. We must create both sections in
2544 create_dynamic_sections, because they must be created
2545 before the linker maps input sections to output
2546 sections. The linker does that before
2547 adjust_dynamic_symbol is called, and it is that
2548 function which decides whether anything needs to go
2549 into these sections. */
2550
2551 s->flags |= SEC_EXCLUDE;
2552 continue;
2553 }
2554
2555 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2556 continue;
2557
2558 /* Allocate memory for the section contents. We use bfd_zalloc
2559 here in case unused entries are not reclaimed before the
2560 section's contents are written out. This should not happen,
2561 but this way if it does, we get a R_X86_64_NONE reloc instead
2562 of garbage. */
2563 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2564 if (s->contents == NULL)
2565 return FALSE;
2566 }
2567
2568 if (htab->elf.dynamic_sections_created)
2569 {
2570 /* Add some entries to the .dynamic section. We fill in the
2571 values later, in elf_x86_64_finish_dynamic_sections, but we
2572 must add the entries now so that we get the correct size for
2573 the .dynamic section. The DT_DEBUG entry is filled in by the
2574 dynamic linker and used by the debugger. */
2575 #define add_dynamic_entry(TAG, VAL) \
2576 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2577
2578 if (info->executable)
2579 {
2580 if (!add_dynamic_entry (DT_DEBUG, 0))
2581 return FALSE;
2582 }
2583
2584 if (htab->elf.splt->size != 0)
2585 {
2586 if (!add_dynamic_entry (DT_PLTGOT, 0)
2587 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2588 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2589 || !add_dynamic_entry (DT_JMPREL, 0))
2590 return FALSE;
2591
2592 if (htab->tlsdesc_plt
2593 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2594 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2595 return FALSE;
2596 }
2597
2598 if (relocs)
2599 {
2600 if (!add_dynamic_entry (DT_RELA, 0)
2601 || !add_dynamic_entry (DT_RELASZ, 0)
2602 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
2603 return FALSE;
2604
2605 /* If any dynamic relocs apply to a read-only section,
2606 then we need a DT_TEXTREL entry. */
2607 if ((info->flags & DF_TEXTREL) == 0)
2608 elf_link_hash_traverse (&htab->elf,
2609 elf_x86_64_readonly_dynrelocs,
2610 info);
2611
2612 if ((info->flags & DF_TEXTREL) != 0)
2613 {
2614 if (!add_dynamic_entry (DT_TEXTREL, 0))
2615 return FALSE;
2616 }
2617 }
2618 }
2619 #undef add_dynamic_entry
2620
2621 return TRUE;
2622 }
2623
2624 static bfd_boolean
2625 elf_x86_64_always_size_sections (bfd *output_bfd,
2626 struct bfd_link_info *info)
2627 {
2628 asection *tls_sec = elf_hash_table (info)->tls_sec;
2629
2630 if (tls_sec)
2631 {
2632 struct elf_link_hash_entry *tlsbase;
2633
2634 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2635 "_TLS_MODULE_BASE_",
2636 FALSE, FALSE, FALSE);
2637
2638 if (tlsbase && tlsbase->type == STT_TLS)
2639 {
2640 struct elf_x86_64_link_hash_table *htab;
2641 struct bfd_link_hash_entry *bh = NULL;
2642 const struct elf_backend_data *bed
2643 = get_elf_backend_data (output_bfd);
2644
2645 htab = elf_x86_64_hash_table (info);
2646 if (htab == NULL)
2647 return FALSE;
2648
2649 if (!(_bfd_generic_link_add_one_symbol
2650 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2651 tls_sec, 0, NULL, FALSE,
2652 bed->collect, &bh)))
2653 return FALSE;
2654
2655 htab->tls_module_base = bh;
2656
2657 tlsbase = (struct elf_link_hash_entry *)bh;
2658 tlsbase->def_regular = 1;
2659 tlsbase->other = STV_HIDDEN;
2660 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2661 }
2662 }
2663
2664 return TRUE;
2665 }
2666
2667 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2668 executables. Rather than setting it to the beginning of the TLS
2669 section, we have to set it to the end. This function may be called
2670 multiple times, it is idempotent. */
2671
2672 static void
2673 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
2674 {
2675 struct elf_x86_64_link_hash_table *htab;
2676 struct bfd_link_hash_entry *base;
2677
2678 if (!info->executable)
2679 return;
2680
2681 htab = elf_x86_64_hash_table (info);
2682 if (htab == NULL)
2683 return;
2684
2685 base = htab->tls_module_base;
2686 if (base == NULL)
2687 return;
2688
2689 base->u.def.value = htab->elf.tls_size;
2690 }
2691
2692 /* Return the base VMA address which should be subtracted from real addresses
2693 when resolving @dtpoff relocation.
2694 This is PT_TLS segment p_vaddr. */
2695
2696 static bfd_vma
2697 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
2698 {
2699 /* If tls_sec is NULL, we should have signalled an error already. */
2700 if (elf_hash_table (info)->tls_sec == NULL)
2701 return 0;
2702 return elf_hash_table (info)->tls_sec->vma;
2703 }
2704
2705 /* Return the relocation value for @tpoff relocation
2706 if STT_TLS virtual address is ADDRESS. */
2707
2708 static bfd_vma
2709 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
2710 {
2711 struct elf_link_hash_table *htab = elf_hash_table (info);
2712 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
2713 bfd_vma static_tls_size;
2714
2715 /* If tls_segment is NULL, we should have signalled an error already. */
2716 if (htab->tls_sec == NULL)
2717 return 0;
2718
2719 /* Consider special static TLS alignment requirements. */
2720 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
2721 return address - static_tls_size - htab->tls_sec->vma;
2722 }
2723
2724 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2725 branch? */
2726
2727 static bfd_boolean
2728 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2729 {
2730 /* Opcode Instruction
2731 0xe8 call
2732 0xe9 jump
2733 0x0f 0x8x conditional jump */
2734 return ((offset > 0
2735 && (contents [offset - 1] == 0xe8
2736 || contents [offset - 1] == 0xe9))
2737 || (offset > 1
2738 && contents [offset - 2] == 0x0f
2739 && (contents [offset - 1] & 0xf0) == 0x80));
2740 }
2741
2742 /* Relocate an x86_64 ELF section. */
2743
2744 static bfd_boolean
2745 elf_x86_64_relocate_section (bfd *output_bfd,
2746 struct bfd_link_info *info,
2747 bfd *input_bfd,
2748 asection *input_section,
2749 bfd_byte *contents,
2750 Elf_Internal_Rela *relocs,
2751 Elf_Internal_Sym *local_syms,
2752 asection **local_sections)
2753 {
2754 struct elf_x86_64_link_hash_table *htab;
2755 Elf_Internal_Shdr *symtab_hdr;
2756 struct elf_link_hash_entry **sym_hashes;
2757 bfd_vma *local_got_offsets;
2758 bfd_vma *local_tlsdesc_gotents;
2759 Elf_Internal_Rela *rel;
2760 Elf_Internal_Rela *relend;
2761
2762 BFD_ASSERT (is_x86_64_elf (input_bfd));
2763
2764 htab = elf_x86_64_hash_table (info);
2765 if (htab == NULL)
2766 return FALSE;
2767 symtab_hdr = &elf_symtab_hdr (input_bfd);
2768 sym_hashes = elf_sym_hashes (input_bfd);
2769 local_got_offsets = elf_local_got_offsets (input_bfd);
2770 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
2771
2772 elf_x86_64_set_tls_module_base (info);
2773
2774 rel = relocs;
2775 relend = relocs + input_section->reloc_count;
2776 for (; rel < relend; rel++)
2777 {
2778 unsigned int r_type;
2779 reloc_howto_type *howto;
2780 unsigned long r_symndx;
2781 struct elf_link_hash_entry *h;
2782 Elf_Internal_Sym *sym;
2783 asection *sec;
2784 bfd_vma off, offplt;
2785 bfd_vma relocation;
2786 bfd_boolean unresolved_reloc;
2787 bfd_reloc_status_type r;
2788 int tls_type;
2789 asection *base_got;
2790
2791 r_type = ELF32_R_TYPE (rel->r_info);
2792 if (r_type == (int) R_X86_64_GNU_VTINHERIT
2793 || r_type == (int) R_X86_64_GNU_VTENTRY)
2794 continue;
2795
2796 if (r_type >= R_X86_64_max)
2797 {
2798 bfd_set_error (bfd_error_bad_value);
2799 return FALSE;
2800 }
2801
2802 howto = x86_64_elf_howto_table + r_type;
2803 r_symndx = htab->r_sym (rel->r_info);
2804 h = NULL;
2805 sym = NULL;
2806 sec = NULL;
2807 unresolved_reloc = FALSE;
2808 if (r_symndx < symtab_hdr->sh_info)
2809 {
2810 sym = local_syms + r_symndx;
2811 sec = local_sections[r_symndx];
2812
2813 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
2814 &sec, rel);
2815
2816 /* Relocate against local STT_GNU_IFUNC symbol. */
2817 if (!info->relocatable
2818 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
2819 {
2820 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
2821 rel, FALSE);
2822 if (h == NULL)
2823 abort ();
2824
2825 /* Set STT_GNU_IFUNC symbol value. */
2826 h->root.u.def.value = sym->st_value;
2827 h->root.u.def.section = sec;
2828 }
2829 }
2830 else
2831 {
2832 bfd_boolean warned ATTRIBUTE_UNUSED;
2833
2834 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2835 r_symndx, symtab_hdr, sym_hashes,
2836 h, sec, relocation,
2837 unresolved_reloc, warned);
2838 }
2839
2840 if (sec != NULL && elf_discarded_section (sec))
2841 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2842 rel, relend, howto, contents);
2843
2844 if (info->relocatable)
2845 continue;
2846
2847 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
2848 it here if it is defined in a non-shared object. */
2849 if (h != NULL
2850 && h->type == STT_GNU_IFUNC
2851 && h->def_regular)
2852 {
2853 asection *plt;
2854 bfd_vma plt_index;
2855 const char *name;
2856
2857 if ((input_section->flags & SEC_ALLOC) == 0
2858 || h->plt.offset == (bfd_vma) -1)
2859 abort ();
2860
2861 /* STT_GNU_IFUNC symbol must go through PLT. */
2862 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
2863 relocation = (plt->output_section->vma
2864 + plt->output_offset + h->plt.offset);
2865
2866 switch (r_type)
2867 {
2868 default:
2869 if (h->root.root.string)
2870 name = h->root.root.string;
2871 else
2872 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
2873 NULL);
2874 (*_bfd_error_handler)
2875 (_("%B: relocation %s against STT_GNU_IFUNC "
2876 "symbol `%s' isn't handled by %s"), input_bfd,
2877 x86_64_elf_howto_table[r_type].name,
2878 name, __FUNCTION__);
2879 bfd_set_error (bfd_error_bad_value);
2880 return FALSE;
2881
2882 case R_X86_64_32S:
2883 if (info->shared)
2884 abort ();
2885 goto do_relocation;
2886
2887 case R_X86_64_32:
2888 if (ABI_64_P (output_bfd))
2889 goto do_relocation;
2890 case R_X86_64_64:
2891 if (rel->r_addend != 0)
2892 {
2893 if (h->root.root.string)
2894 name = h->root.root.string;
2895 else
2896 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
2897 sym, NULL);
2898 (*_bfd_error_handler)
2899 (_("%B: relocation %s against STT_GNU_IFUNC "
2900 "symbol `%s' has non-zero addend: %d"),
2901 input_bfd, x86_64_elf_howto_table[r_type].name,
2902 name, rel->r_addend);
2903 bfd_set_error (bfd_error_bad_value);
2904 return FALSE;
2905 }
2906
2907 /* Generate dynamic relcoation only when there is a
2908 non-GOF reference in a shared object. */
2909 if (info->shared && h->non_got_ref)
2910 {
2911 Elf_Internal_Rela outrel;
2912 asection *sreloc;
2913
2914 /* Need a dynamic relocation to get the real function
2915 address. */
2916 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
2917 info,
2918 input_section,
2919 rel->r_offset);
2920 if (outrel.r_offset == (bfd_vma) -1
2921 || outrel.r_offset == (bfd_vma) -2)
2922 abort ();
2923
2924 outrel.r_offset += (input_section->output_section->vma
2925 + input_section->output_offset);
2926
2927 if (h->dynindx == -1
2928 || h->forced_local
2929 || info->executable)
2930 {
2931 /* This symbol is resolved locally. */
2932 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
2933 outrel.r_addend = (h->root.u.def.value
2934 + h->root.u.def.section->output_section->vma
2935 + h->root.u.def.section->output_offset);
2936 }
2937 else
2938 {
2939 outrel.r_info = htab->r_info (h->dynindx, r_type);
2940 outrel.r_addend = 0;
2941 }
2942
2943 sreloc = htab->elf.irelifunc;
2944 elf_append_rela (output_bfd, sreloc, &outrel);
2945
2946 /* If this reloc is against an external symbol, we
2947 do not want to fiddle with the addend. Otherwise,
2948 we need to include the symbol value so that it
2949 becomes an addend for the dynamic reloc. For an
2950 internal symbol, we have updated addend. */
2951 continue;
2952 }
2953
2954 case R_X86_64_PC32:
2955 case R_X86_64_PC64:
2956 case R_X86_64_PLT32:
2957 goto do_relocation;
2958
2959 case R_X86_64_GOTPCREL:
2960 case R_X86_64_GOTPCREL64:
2961 base_got = htab->elf.sgot;
2962 off = h->got.offset;
2963
2964 if (base_got == NULL)
2965 abort ();
2966
2967 if (off == (bfd_vma) -1)
2968 {
2969 /* We can't use h->got.offset here to save state, or
2970 even just remember the offset, as finish_dynamic_symbol
2971 would use that as offset into .got. */
2972
2973 if (htab->elf.splt != NULL)
2974 {
2975 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2976 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2977 base_got = htab->elf.sgotplt;
2978 }
2979 else
2980 {
2981 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
2982 off = plt_index * GOT_ENTRY_SIZE;
2983 base_got = htab->elf.igotplt;
2984 }
2985
2986 if (h->dynindx == -1
2987 || h->forced_local
2988 || info->symbolic)
2989 {
2990 /* This references the local defitionion. We must
2991 initialize this entry in the global offset table.
2992 Since the offset must always be a multiple of 8,
2993 we use the least significant bit to record
2994 whether we have initialized it already.
2995
2996 When doing a dynamic link, we create a .rela.got
2997 relocation entry to initialize the value. This
2998 is done in the finish_dynamic_symbol routine. */
2999 if ((off & 1) != 0)
3000 off &= ~1;
3001 else
3002 {
3003 bfd_put_64 (output_bfd, relocation,
3004 base_got->contents + off);
3005 /* Note that this is harmless for the GOTPLT64
3006 case, as -1 | 1 still is -1. */
3007 h->got.offset |= 1;
3008 }
3009 }
3010 }
3011
3012 relocation = (base_got->output_section->vma
3013 + base_got->output_offset + off);
3014
3015 goto do_relocation;
3016 }
3017 }
3018
3019 /* When generating a shared object, the relocations handled here are
3020 copied into the output file to be resolved at run time. */
3021 switch (r_type)
3022 {
3023 case R_X86_64_GOT32:
3024 case R_X86_64_GOT64:
3025 /* Relocation is to the entry for this symbol in the global
3026 offset table. */
3027 case R_X86_64_GOTPCREL:
3028 case R_X86_64_GOTPCREL64:
3029 /* Use global offset table entry as symbol value. */
3030 case R_X86_64_GOTPLT64:
3031 /* This is the same as GOT64 for relocation purposes, but
3032 indicates the existence of a PLT entry. The difficulty is,
3033 that we must calculate the GOT slot offset from the PLT
3034 offset, if this symbol got a PLT entry (it was global).
3035 Additionally if it's computed from the PLT entry, then that
3036 GOT offset is relative to .got.plt, not to .got. */
3037 base_got = htab->elf.sgot;
3038
3039 if (htab->elf.sgot == NULL)
3040 abort ();
3041
3042 if (h != NULL)
3043 {
3044 bfd_boolean dyn;
3045
3046 off = h->got.offset;
3047 if (h->needs_plt
3048 && h->plt.offset != (bfd_vma)-1
3049 && off == (bfd_vma)-1)
3050 {
3051 /* We can't use h->got.offset here to save
3052 state, or even just remember the offset, as
3053 finish_dynamic_symbol would use that as offset into
3054 .got. */
3055 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3056 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3057 base_got = htab->elf.sgotplt;
3058 }
3059
3060 dyn = htab->elf.dynamic_sections_created;
3061
3062 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3063 || (info->shared
3064 && SYMBOL_REFERENCES_LOCAL (info, h))
3065 || (ELF_ST_VISIBILITY (h->other)
3066 && h->root.type == bfd_link_hash_undefweak))
3067 {
3068 /* This is actually a static link, or it is a -Bsymbolic
3069 link and the symbol is defined locally, or the symbol
3070 was forced to be local because of a version file. We
3071 must initialize this entry in the global offset table.
3072 Since the offset must always be a multiple of 8, we
3073 use the least significant bit to record whether we
3074 have initialized it already.
3075
3076 When doing a dynamic link, we create a .rela.got
3077 relocation entry to initialize the value. This is
3078 done in the finish_dynamic_symbol routine. */
3079 if ((off & 1) != 0)
3080 off &= ~1;
3081 else
3082 {
3083 bfd_put_64 (output_bfd, relocation,
3084 base_got->contents + off);
3085 /* Note that this is harmless for the GOTPLT64 case,
3086 as -1 | 1 still is -1. */
3087 h->got.offset |= 1;
3088 }
3089 }
3090 else
3091 unresolved_reloc = FALSE;
3092 }
3093 else
3094 {
3095 if (local_got_offsets == NULL)
3096 abort ();
3097
3098 off = local_got_offsets[r_symndx];
3099
3100 /* The offset must always be a multiple of 8. We use
3101 the least significant bit to record whether we have
3102 already generated the necessary reloc. */
3103 if ((off & 1) != 0)
3104 off &= ~1;
3105 else
3106 {
3107 bfd_put_64 (output_bfd, relocation,
3108 base_got->contents + off);
3109
3110 if (info->shared)
3111 {
3112 asection *s;
3113 Elf_Internal_Rela outrel;
3114
3115 /* We need to generate a R_X86_64_RELATIVE reloc
3116 for the dynamic linker. */
3117 s = htab->elf.srelgot;
3118 if (s == NULL)
3119 abort ();
3120
3121 outrel.r_offset = (base_got->output_section->vma
3122 + base_got->output_offset
3123 + off);
3124 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3125 outrel.r_addend = relocation;
3126 elf_append_rela (output_bfd, s, &outrel);
3127 }
3128
3129 local_got_offsets[r_symndx] |= 1;
3130 }
3131 }
3132
3133 if (off >= (bfd_vma) -2)
3134 abort ();
3135
3136 relocation = base_got->output_section->vma
3137 + base_got->output_offset + off;
3138 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3139 relocation -= htab->elf.sgotplt->output_section->vma
3140 - htab->elf.sgotplt->output_offset;
3141
3142 break;
3143
3144 case R_X86_64_GOTOFF64:
3145 /* Relocation is relative to the start of the global offset
3146 table. */
3147
3148 /* Check to make sure it isn't a protected function symbol
3149 for shared library since it may not be local when used
3150 as function address. */
3151 if (info->shared
3152 && h
3153 && h->def_regular
3154 && h->type == STT_FUNC
3155 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3156 {
3157 (*_bfd_error_handler)
3158 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3159 input_bfd, h->root.root.string);
3160 bfd_set_error (bfd_error_bad_value);
3161 return FALSE;
3162 }
3163
3164 /* Note that sgot is not involved in this
3165 calculation. We always want the start of .got.plt. If we
3166 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3167 permitted by the ABI, we might have to change this
3168 calculation. */
3169 relocation -= htab->elf.sgotplt->output_section->vma
3170 + htab->elf.sgotplt->output_offset;
3171 break;
3172
3173 case R_X86_64_GOTPC32:
3174 case R_X86_64_GOTPC64:
3175 /* Use global offset table as symbol value. */
3176 relocation = htab->elf.sgotplt->output_section->vma
3177 + htab->elf.sgotplt->output_offset;
3178 unresolved_reloc = FALSE;
3179 break;
3180
3181 case R_X86_64_PLTOFF64:
3182 /* Relocation is PLT entry relative to GOT. For local
3183 symbols it's the symbol itself relative to GOT. */
3184 if (h != NULL
3185 /* See PLT32 handling. */
3186 && h->plt.offset != (bfd_vma) -1
3187 && htab->elf.splt != NULL)
3188 {
3189 relocation = (htab->elf.splt->output_section->vma
3190 + htab->elf.splt->output_offset
3191 + h->plt.offset);
3192 unresolved_reloc = FALSE;
3193 }
3194
3195 relocation -= htab->elf.sgotplt->output_section->vma
3196 + htab->elf.sgotplt->output_offset;
3197 break;
3198
3199 case R_X86_64_PLT32:
3200 /* Relocation is to the entry for this symbol in the
3201 procedure linkage table. */
3202
3203 /* Resolve a PLT32 reloc against a local symbol directly,
3204 without using the procedure linkage table. */
3205 if (h == NULL)
3206 break;
3207
3208 if (h->plt.offset == (bfd_vma) -1
3209 || htab->elf.splt == NULL)
3210 {
3211 /* We didn't make a PLT entry for this symbol. This
3212 happens when statically linking PIC code, or when
3213 using -Bsymbolic. */
3214 break;
3215 }
3216
3217 relocation = (htab->elf.splt->output_section->vma
3218 + htab->elf.splt->output_offset
3219 + h->plt.offset);
3220 unresolved_reloc = FALSE;
3221 break;
3222
3223 case R_X86_64_PC8:
3224 case R_X86_64_PC16:
3225 case R_X86_64_PC32:
3226 if (info->shared
3227 && ABI_64_P (output_bfd)
3228 && (input_section->flags & SEC_ALLOC) != 0
3229 && (input_section->flags & SEC_READONLY) != 0
3230 && h != NULL)
3231 {
3232 bfd_boolean fail = FALSE;
3233 bfd_boolean branch
3234 = (r_type == R_X86_64_PC32
3235 && is_32bit_relative_branch (contents, rel->r_offset));
3236
3237 if (SYMBOL_REFERENCES_LOCAL (info, h))
3238 {
3239 /* Symbol is referenced locally. Make sure it is
3240 defined locally or for a branch. */
3241 fail = !h->def_regular && !branch;
3242 }
3243 else
3244 {
3245 /* Symbol isn't referenced locally. We only allow
3246 branch to symbol with non-default visibility. */
3247 fail = (!branch
3248 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3249 }
3250
3251 if (fail)
3252 {
3253 const char *fmt;
3254 const char *v;
3255 const char *pic = "";
3256
3257 switch (ELF_ST_VISIBILITY (h->other))
3258 {
3259 case STV_HIDDEN:
3260 v = _("hidden symbol");
3261 break;
3262 case STV_INTERNAL:
3263 v = _("internal symbol");
3264 break;
3265 case STV_PROTECTED:
3266 v = _("protected symbol");
3267 break;
3268 default:
3269 v = _("symbol");
3270 pic = _("; recompile with -fPIC");
3271 break;
3272 }
3273
3274 if (h->def_regular)
3275 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3276 else
3277 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3278
3279 (*_bfd_error_handler) (fmt, input_bfd,
3280 x86_64_elf_howto_table[r_type].name,
3281 v, h->root.root.string, pic);
3282 bfd_set_error (bfd_error_bad_value);
3283 return FALSE;
3284 }
3285 }
3286 /* Fall through. */
3287
3288 case R_X86_64_8:
3289 case R_X86_64_16:
3290 case R_X86_64_32:
3291 case R_X86_64_PC64:
3292 case R_X86_64_64:
3293 /* FIXME: The ABI says the linker should make sure the value is
3294 the same when it's zeroextended to 64 bit. */
3295
3296 if ((input_section->flags & SEC_ALLOC) == 0)
3297 break;
3298
3299 if ((info->shared
3300 && (h == NULL
3301 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3302 || h->root.type != bfd_link_hash_undefweak)
3303 && (! IS_X86_64_PCREL_TYPE (r_type)
3304 || ! SYMBOL_CALLS_LOCAL (info, h)))
3305 || (ELIMINATE_COPY_RELOCS
3306 && !info->shared
3307 && h != NULL
3308 && h->dynindx != -1
3309 && !h->non_got_ref
3310 && ((h->def_dynamic
3311 && !h->def_regular)
3312 || h->root.type == bfd_link_hash_undefweak
3313 || h->root.type == bfd_link_hash_undefined)))
3314 {
3315 Elf_Internal_Rela outrel;
3316 bfd_boolean skip, relocate;
3317 asection *sreloc;
3318
3319 /* When generating a shared object, these relocations
3320 are copied into the output file to be resolved at run
3321 time. */
3322 skip = FALSE;
3323 relocate = FALSE;
3324
3325 outrel.r_offset =
3326 _bfd_elf_section_offset (output_bfd, info, input_section,
3327 rel->r_offset);
3328 if (outrel.r_offset == (bfd_vma) -1)
3329 skip = TRUE;
3330 else if (outrel.r_offset == (bfd_vma) -2)
3331 skip = TRUE, relocate = TRUE;
3332
3333 outrel.r_offset += (input_section->output_section->vma
3334 + input_section->output_offset);
3335
3336 if (skip)
3337 memset (&outrel, 0, sizeof outrel);
3338
3339 /* h->dynindx may be -1 if this symbol was marked to
3340 become local. */
3341 else if (h != NULL
3342 && h->dynindx != -1
3343 && (IS_X86_64_PCREL_TYPE (r_type)
3344 || ! info->shared
3345 || ! SYMBOLIC_BIND (info, h)
3346 || ! h->def_regular))
3347 {
3348 outrel.r_info = htab->r_info (h->dynindx, r_type);
3349 outrel.r_addend = rel->r_addend;
3350 }
3351 else
3352 {
3353 /* This symbol is local, or marked to become local. */
3354 if (r_type == htab->pointer_r_type)
3355 {
3356 relocate = TRUE;
3357 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3358 outrel.r_addend = relocation + rel->r_addend;
3359 }
3360 else
3361 {
3362 long sindx;
3363
3364 if (bfd_is_abs_section (sec))
3365 sindx = 0;
3366 else if (sec == NULL || sec->owner == NULL)
3367 {
3368 bfd_set_error (bfd_error_bad_value);
3369 return FALSE;
3370 }
3371 else
3372 {
3373 asection *osec;
3374
3375 /* We are turning this relocation into one
3376 against a section symbol. It would be
3377 proper to subtract the symbol's value,
3378 osec->vma, from the emitted reloc addend,
3379 but ld.so expects buggy relocs. */
3380 osec = sec->output_section;
3381 sindx = elf_section_data (osec)->dynindx;
3382 if (sindx == 0)
3383 {
3384 asection *oi = htab->elf.text_index_section;
3385 sindx = elf_section_data (oi)->dynindx;
3386 }
3387 BFD_ASSERT (sindx != 0);
3388 }
3389
3390 outrel.r_info = htab->r_info (sindx, r_type);
3391 outrel.r_addend = relocation + rel->r_addend;
3392 }
3393 }
3394
3395 sreloc = elf_section_data (input_section)->sreloc;
3396
3397 BFD_ASSERT (sreloc != NULL && sreloc->contents != NULL);
3398
3399 elf_append_rela (output_bfd, sreloc, &outrel);
3400
3401 /* If this reloc is against an external symbol, we do
3402 not want to fiddle with the addend. Otherwise, we
3403 need to include the symbol value so that it becomes
3404 an addend for the dynamic reloc. */
3405 if (! relocate)
3406 continue;
3407 }
3408
3409 break;
3410
3411 case R_X86_64_TLSGD:
3412 case R_X86_64_GOTPC32_TLSDESC:
3413 case R_X86_64_TLSDESC_CALL:
3414 case R_X86_64_GOTTPOFF:
3415 tls_type = GOT_UNKNOWN;
3416 if (h == NULL && local_got_offsets)
3417 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3418 else if (h != NULL)
3419 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3420
3421 if (! elf_x86_64_tls_transition (info, input_bfd,
3422 input_section, contents,
3423 symtab_hdr, sym_hashes,
3424 &r_type, tls_type, rel,
3425 relend, h, r_symndx))
3426 return FALSE;
3427
3428 if (r_type == R_X86_64_TPOFF32)
3429 {
3430 bfd_vma roff = rel->r_offset;
3431
3432 BFD_ASSERT (! unresolved_reloc);
3433
3434 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3435 {
3436 /* GD->LE transition.
3437 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3438 .word 0x6666; rex64; call __tls_get_addr
3439 Change it into:
3440 movq %fs:0, %rax
3441 leaq foo@tpoff(%rax), %rax */
3442 memcpy (contents + roff - 4,
3443 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3444 16);
3445 bfd_put_32 (output_bfd,
3446 elf_x86_64_tpoff (info, relocation),
3447 contents + roff + 8);
3448 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3449 rel++;
3450 continue;
3451 }
3452 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3453 {
3454 /* GDesc -> LE transition.
3455 It's originally something like:
3456 leaq x@tlsdesc(%rip), %rax
3457
3458 Change it to:
3459 movl $x@tpoff, %rax. */
3460
3461 unsigned int val, type;
3462
3463 type = bfd_get_8 (input_bfd, contents + roff - 3);
3464 val = bfd_get_8 (input_bfd, contents + roff - 1);
3465 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3466 contents + roff - 3);
3467 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3468 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3469 contents + roff - 1);
3470 bfd_put_32 (output_bfd,
3471 elf_x86_64_tpoff (info, relocation),
3472 contents + roff);
3473 continue;
3474 }
3475 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3476 {
3477 /* GDesc -> LE transition.
3478 It's originally:
3479 call *(%rax)
3480 Turn it into:
3481 xchg %ax,%ax. */
3482 bfd_put_8 (output_bfd, 0x66, contents + roff);
3483 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3484 continue;
3485 }
3486 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3487 {
3488 /* IE->LE transition:
3489 Originally it can be one of:
3490 movq foo@gottpoff(%rip), %reg
3491 addq foo@gottpoff(%rip), %reg
3492 We change it into:
3493 movq $foo, %reg
3494 leaq foo(%reg), %reg
3495 addq $foo, %reg. */
3496
3497 unsigned int val, type, reg;
3498
3499 val = bfd_get_8 (input_bfd, contents + roff - 3);
3500 type = bfd_get_8 (input_bfd, contents + roff - 2);
3501 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3502 reg >>= 3;
3503 if (type == 0x8b)
3504 {
3505 /* movq */
3506 if (val == 0x4c)
3507 bfd_put_8 (output_bfd, 0x49,
3508 contents + roff - 3);
3509 else if (!ABI_64_P (output_bfd) && val == 0x44)
3510 bfd_put_8 (output_bfd, 0x41,
3511 contents + roff - 3);
3512 bfd_put_8 (output_bfd, 0xc7,
3513 contents + roff - 2);
3514 bfd_put_8 (output_bfd, 0xc0 | reg,
3515 contents + roff - 1);
3516 }
3517 else if (reg == 4)
3518 {
3519 /* addq -> addq - addressing with %rsp/%r12 is
3520 special */
3521 if (val == 0x4c)
3522 bfd_put_8 (output_bfd, 0x49,
3523 contents + roff - 3);
3524 else if (!ABI_64_P (output_bfd) && val == 0x44)
3525 bfd_put_8 (output_bfd, 0x41,
3526 contents + roff - 3);
3527 bfd_put_8 (output_bfd, 0x81,
3528 contents + roff - 2);
3529 bfd_put_8 (output_bfd, 0xc0 | reg,
3530 contents + roff - 1);
3531 }
3532 else
3533 {
3534 /* addq -> leaq */
3535 if (val == 0x4c)
3536 bfd_put_8 (output_bfd, 0x4d,
3537 contents + roff - 3);
3538 else if (!ABI_64_P (output_bfd) && val == 0x44)
3539 bfd_put_8 (output_bfd, 0x45,
3540 contents + roff - 3);
3541 bfd_put_8 (output_bfd, 0x8d,
3542 contents + roff - 2);
3543 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3544 contents + roff - 1);
3545 }
3546 bfd_put_32 (output_bfd,
3547 elf_x86_64_tpoff (info, relocation),
3548 contents + roff);
3549 continue;
3550 }
3551 else
3552 BFD_ASSERT (FALSE);
3553 }
3554
3555 if (htab->elf.sgot == NULL)
3556 abort ();
3557
3558 if (h != NULL)
3559 {
3560 off = h->got.offset;
3561 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
3562 }
3563 else
3564 {
3565 if (local_got_offsets == NULL)
3566 abort ();
3567
3568 off = local_got_offsets[r_symndx];
3569 offplt = local_tlsdesc_gotents[r_symndx];
3570 }
3571
3572 if ((off & 1) != 0)
3573 off &= ~1;
3574 else
3575 {
3576 Elf_Internal_Rela outrel;
3577 int dr_type, indx;
3578 asection *sreloc;
3579
3580 if (htab->elf.srelgot == NULL)
3581 abort ();
3582
3583 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3584
3585 if (GOT_TLS_GDESC_P (tls_type))
3586 {
3587 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
3588 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3589 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3590 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3591 + htab->elf.sgotplt->output_offset
3592 + offplt
3593 + htab->sgotplt_jump_table_size);
3594 sreloc = htab->elf.srelplt;
3595 if (indx == 0)
3596 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3597 else
3598 outrel.r_addend = 0;
3599 elf_append_rela (output_bfd, sreloc, &outrel);
3600 }
3601
3602 sreloc = htab->elf.srelgot;
3603
3604 outrel.r_offset = (htab->elf.sgot->output_section->vma
3605 + htab->elf.sgot->output_offset + off);
3606
3607 if (GOT_TLS_GD_P (tls_type))
3608 dr_type = R_X86_64_DTPMOD64;
3609 else if (GOT_TLS_GDESC_P (tls_type))
3610 goto dr_done;
3611 else
3612 dr_type = R_X86_64_TPOFF64;
3613
3614 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
3615 outrel.r_addend = 0;
3616 if ((dr_type == R_X86_64_TPOFF64
3617 || dr_type == R_X86_64_TLSDESC) && indx == 0)
3618 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3619 outrel.r_info = htab->r_info (indx, dr_type);
3620
3621 elf_append_rela (output_bfd, sreloc, &outrel);
3622
3623 if (GOT_TLS_GD_P (tls_type))
3624 {
3625 if (indx == 0)
3626 {
3627 BFD_ASSERT (! unresolved_reloc);
3628 bfd_put_64 (output_bfd,
3629 relocation - elf_x86_64_dtpoff_base (info),
3630 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3631 }
3632 else
3633 {
3634 bfd_put_64 (output_bfd, 0,
3635 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3636 outrel.r_info = htab->r_info (indx,
3637 R_X86_64_DTPOFF64);
3638 outrel.r_offset += GOT_ENTRY_SIZE;
3639 elf_append_rela (output_bfd, sreloc,
3640 &outrel);
3641 }
3642 }
3643
3644 dr_done:
3645 if (h != NULL)
3646 h->got.offset |= 1;
3647 else
3648 local_got_offsets[r_symndx] |= 1;
3649 }
3650
3651 if (off >= (bfd_vma) -2
3652 && ! GOT_TLS_GDESC_P (tls_type))
3653 abort ();
3654 if (r_type == ELF32_R_TYPE (rel->r_info))
3655 {
3656 if (r_type == R_X86_64_GOTPC32_TLSDESC
3657 || r_type == R_X86_64_TLSDESC_CALL)
3658 relocation = htab->elf.sgotplt->output_section->vma
3659 + htab->elf.sgotplt->output_offset
3660 + offplt + htab->sgotplt_jump_table_size;
3661 else
3662 relocation = htab->elf.sgot->output_section->vma
3663 + htab->elf.sgot->output_offset + off;
3664 unresolved_reloc = FALSE;
3665 }
3666 else
3667 {
3668 bfd_vma roff = rel->r_offset;
3669
3670 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3671 {
3672 /* GD->IE transition.
3673 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3674 .word 0x6666; rex64; call __tls_get_addr@plt
3675 Change it into:
3676 movq %fs:0, %rax
3677 addq foo@gottpoff(%rip), %rax */
3678 memcpy (contents + roff - 4,
3679 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3680 16);
3681
3682 relocation = (htab->elf.sgot->output_section->vma
3683 + htab->elf.sgot->output_offset + off
3684 - roff
3685 - input_section->output_section->vma
3686 - input_section->output_offset
3687 - 12);
3688 bfd_put_32 (output_bfd, relocation,
3689 contents + roff + 8);
3690 /* Skip R_X86_64_PLT32. */
3691 rel++;
3692 continue;
3693 }
3694 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3695 {
3696 /* GDesc -> IE transition.
3697 It's originally something like:
3698 leaq x@tlsdesc(%rip), %rax
3699
3700 Change it to:
3701 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
3702
3703 /* Now modify the instruction as appropriate. To
3704 turn a leaq into a movq in the form we use it, it
3705 suffices to change the second byte from 0x8d to
3706 0x8b. */
3707 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3708
3709 bfd_put_32 (output_bfd,
3710 htab->elf.sgot->output_section->vma
3711 + htab->elf.sgot->output_offset + off
3712 - rel->r_offset
3713 - input_section->output_section->vma
3714 - input_section->output_offset
3715 - 4,
3716 contents + roff);
3717 continue;
3718 }
3719 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3720 {
3721 /* GDesc -> IE transition.
3722 It's originally:
3723 call *(%rax)
3724
3725 Change it to:
3726 xchg %ax, %ax. */
3727
3728 bfd_put_8 (output_bfd, 0x66, contents + roff);
3729 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3730 continue;
3731 }
3732 else
3733 BFD_ASSERT (FALSE);
3734 }
3735 break;
3736
3737 case R_X86_64_TLSLD:
3738 if (! elf_x86_64_tls_transition (info, input_bfd,
3739 input_section, contents,
3740 symtab_hdr, sym_hashes,
3741 &r_type, GOT_UNKNOWN,
3742 rel, relend, h, r_symndx))
3743 return FALSE;
3744
3745 if (r_type != R_X86_64_TLSLD)
3746 {
3747 /* LD->LE transition:
3748 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3749 We change it into:
3750 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3751
3752 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
3753 memcpy (contents + rel->r_offset - 3,
3754 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3755 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3756 rel++;
3757 continue;
3758 }
3759
3760 if (htab->elf.sgot == NULL)
3761 abort ();
3762
3763 off = htab->tls_ld_got.offset;
3764 if (off & 1)
3765 off &= ~1;
3766 else
3767 {
3768 Elf_Internal_Rela outrel;
3769
3770 if (htab->elf.srelgot == NULL)
3771 abort ();
3772
3773 outrel.r_offset = (htab->elf.sgot->output_section->vma
3774 + htab->elf.sgot->output_offset + off);
3775
3776 bfd_put_64 (output_bfd, 0,
3777 htab->elf.sgot->contents + off);
3778 bfd_put_64 (output_bfd, 0,
3779 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3780 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
3781 outrel.r_addend = 0;
3782 elf_append_rela (output_bfd, htab->elf.srelgot,
3783 &outrel);
3784 htab->tls_ld_got.offset |= 1;
3785 }
3786 relocation = htab->elf.sgot->output_section->vma
3787 + htab->elf.sgot->output_offset + off;
3788 unresolved_reloc = FALSE;
3789 break;
3790
3791 case R_X86_64_DTPOFF32:
3792 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
3793 relocation -= elf_x86_64_dtpoff_base (info);
3794 else
3795 relocation = elf_x86_64_tpoff (info, relocation);
3796 break;
3797
3798 case R_X86_64_TPOFF32:
3799 BFD_ASSERT (info->executable);
3800 relocation = elf_x86_64_tpoff (info, relocation);
3801 break;
3802
3803 default:
3804 break;
3805 }
3806
3807 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3808 because such sections are not SEC_ALLOC and thus ld.so will
3809 not process them. */
3810 if (unresolved_reloc
3811 && !((input_section->flags & SEC_DEBUGGING) != 0
3812 && h->def_dynamic))
3813 (*_bfd_error_handler)
3814 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3815 input_bfd,
3816 input_section,
3817 (long) rel->r_offset,
3818 howto->name,
3819 h->root.root.string);
3820
3821 do_relocation:
3822 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3823 contents, rel->r_offset,
3824 relocation, rel->r_addend);
3825
3826 if (r != bfd_reloc_ok)
3827 {
3828 const char *name;
3829
3830 if (h != NULL)
3831 name = h->root.root.string;
3832 else
3833 {
3834 name = bfd_elf_string_from_elf_section (input_bfd,
3835 symtab_hdr->sh_link,
3836 sym->st_name);
3837 if (name == NULL)
3838 return FALSE;
3839 if (*name == '\0')
3840 name = bfd_section_name (input_bfd, sec);
3841 }
3842
3843 if (r == bfd_reloc_overflow)
3844 {
3845 if (! ((*info->callbacks->reloc_overflow)
3846 (info, (h ? &h->root : NULL), name, howto->name,
3847 (bfd_vma) 0, input_bfd, input_section,
3848 rel->r_offset)))
3849 return FALSE;
3850 }
3851 else
3852 {
3853 (*_bfd_error_handler)
3854 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3855 input_bfd, input_section,
3856 (long) rel->r_offset, name, (int) r);
3857 return FALSE;
3858 }
3859 }
3860 }
3861
3862 return TRUE;
3863 }
3864
3865 /* Finish up dynamic symbol handling. We set the contents of various
3866 dynamic sections here. */
3867
3868 static bfd_boolean
3869 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3870 struct bfd_link_info *info,
3871 struct elf_link_hash_entry *h,
3872 Elf_Internal_Sym *sym)
3873 {
3874 struct elf_x86_64_link_hash_table *htab;
3875
3876 htab = elf_x86_64_hash_table (info);
3877 if (htab == NULL)
3878 return FALSE;
3879
3880 if (h->plt.offset != (bfd_vma) -1)
3881 {
3882 bfd_vma plt_index;
3883 bfd_vma got_offset;
3884 Elf_Internal_Rela rela;
3885 bfd_byte *loc;
3886 asection *plt, *gotplt, *relplt;
3887 const struct elf_backend_data *bed;
3888
3889 /* When building a static executable, use .iplt, .igot.plt and
3890 .rela.iplt sections for STT_GNU_IFUNC symbols. */
3891 if (htab->elf.splt != NULL)
3892 {
3893 plt = htab->elf.splt;
3894 gotplt = htab->elf.sgotplt;
3895 relplt = htab->elf.srelplt;
3896 }
3897 else
3898 {
3899 plt = htab->elf.iplt;
3900 gotplt = htab->elf.igotplt;
3901 relplt = htab->elf.irelplt;
3902 }
3903
3904 /* This symbol has an entry in the procedure linkage table. Set
3905 it up. */
3906 if ((h->dynindx == -1
3907 && !((h->forced_local || info->executable)
3908 && h->def_regular
3909 && h->type == STT_GNU_IFUNC))
3910 || plt == NULL
3911 || gotplt == NULL
3912 || relplt == NULL)
3913 abort ();
3914
3915 /* Get the index in the procedure linkage table which
3916 corresponds to this symbol. This is the index of this symbol
3917 in all the symbols for which we are making plt entries. The
3918 first entry in the procedure linkage table is reserved.
3919
3920 Get the offset into the .got table of the entry that
3921 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3922 bytes. The first three are reserved for the dynamic linker.
3923
3924 For static executables, we don't reserve anything. */
3925
3926 if (plt == htab->elf.splt)
3927 {
3928 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3929 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3930 }
3931 else
3932 {
3933 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3934 got_offset = plt_index * GOT_ENTRY_SIZE;
3935 }
3936
3937 /* Fill in the entry in the procedure linkage table. */
3938 memcpy (plt->contents + h->plt.offset, elf_x86_64_plt_entry,
3939 PLT_ENTRY_SIZE);
3940
3941 /* Insert the relocation positions of the plt section. The magic
3942 numbers at the end of the statements are the positions of the
3943 relocations in the plt section. */
3944 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3945 instruction uses 6 bytes, subtract this value. */
3946 bfd_put_32 (output_bfd,
3947 (gotplt->output_section->vma
3948 + gotplt->output_offset
3949 + got_offset
3950 - plt->output_section->vma
3951 - plt->output_offset
3952 - h->plt.offset
3953 - 6),
3954 plt->contents + h->plt.offset + 2);
3955
3956 /* Don't fill PLT entry for static executables. */
3957 if (plt == htab->elf.splt)
3958 {
3959 /* Put relocation index. */
3960 bfd_put_32 (output_bfd, plt_index,
3961 plt->contents + h->plt.offset + 7);
3962 /* Put offset for jmp .PLT0. */
3963 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3964 plt->contents + h->plt.offset + 12);
3965 }
3966
3967 /* Fill in the entry in the global offset table, initially this
3968 points to the pushq instruction in the PLT which is at offset 6. */
3969 bfd_put_64 (output_bfd, (plt->output_section->vma
3970 + plt->output_offset
3971 + h->plt.offset + 6),
3972 gotplt->contents + got_offset);
3973
3974 /* Fill in the entry in the .rela.plt section. */
3975 rela.r_offset = (gotplt->output_section->vma
3976 + gotplt->output_offset
3977 + got_offset);
3978 if (h->dynindx == -1
3979 || ((info->executable
3980 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
3981 && h->def_regular
3982 && h->type == STT_GNU_IFUNC))
3983 {
3984 /* If an STT_GNU_IFUNC symbol is locally defined, generate
3985 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
3986 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3987 rela.r_addend = (h->root.u.def.value
3988 + h->root.u.def.section->output_section->vma
3989 + h->root.u.def.section->output_offset);
3990 }
3991 else
3992 {
3993 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
3994 rela.r_addend = 0;
3995 }
3996
3997 bed = get_elf_backend_data (output_bfd);
3998 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
3999 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4000
4001 if (!h->def_regular)
4002 {
4003 /* Mark the symbol as undefined, rather than as defined in
4004 the .plt section. Leave the value if there were any
4005 relocations where pointer equality matters (this is a clue
4006 for the dynamic linker, to make function pointer
4007 comparisons work between an application and shared
4008 library), otherwise set it to zero. If a function is only
4009 called from a binary, there is no need to slow down
4010 shared libraries because of that. */
4011 sym->st_shndx = SHN_UNDEF;
4012 if (!h->pointer_equality_needed)
4013 sym->st_value = 0;
4014 }
4015 }
4016
4017 if (h->got.offset != (bfd_vma) -1
4018 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4019 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4020 {
4021 Elf_Internal_Rela rela;
4022
4023 /* This symbol has an entry in the global offset table. Set it
4024 up. */
4025 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4026 abort ();
4027
4028 rela.r_offset = (htab->elf.sgot->output_section->vma
4029 + htab->elf.sgot->output_offset
4030 + (h->got.offset &~ (bfd_vma) 1));
4031
4032 /* If this is a static link, or it is a -Bsymbolic link and the
4033 symbol is defined locally or was forced to be local because
4034 of a version file, we just want to emit a RELATIVE reloc.
4035 The entry in the global offset table will already have been
4036 initialized in the relocate_section function. */
4037 if (h->def_regular
4038 && h->type == STT_GNU_IFUNC)
4039 {
4040 if (info->shared)
4041 {
4042 /* Generate R_X86_64_GLOB_DAT. */
4043 goto do_glob_dat;
4044 }
4045 else
4046 {
4047 asection *plt;
4048
4049 if (!h->pointer_equality_needed)
4050 abort ();
4051
4052 /* For non-shared object, we can't use .got.plt, which
4053 contains the real function addres if we need pointer
4054 equality. We load the GOT entry with the PLT entry. */
4055 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4056 bfd_put_64 (output_bfd, (plt->output_section->vma
4057 + plt->output_offset
4058 + h->plt.offset),
4059 htab->elf.sgot->contents + h->got.offset);
4060 return TRUE;
4061 }
4062 }
4063 else if (info->shared
4064 && SYMBOL_REFERENCES_LOCAL (info, h))
4065 {
4066 if (!h->def_regular)
4067 return FALSE;
4068 BFD_ASSERT((h->got.offset & 1) != 0);
4069 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4070 rela.r_addend = (h->root.u.def.value
4071 + h->root.u.def.section->output_section->vma
4072 + h->root.u.def.section->output_offset);
4073 }
4074 else
4075 {
4076 BFD_ASSERT((h->got.offset & 1) == 0);
4077 do_glob_dat:
4078 bfd_put_64 (output_bfd, (bfd_vma) 0,
4079 htab->elf.sgot->contents + h->got.offset);
4080 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4081 rela.r_addend = 0;
4082 }
4083
4084 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4085 }
4086
4087 if (h->needs_copy)
4088 {
4089 Elf_Internal_Rela rela;
4090
4091 /* This symbol needs a copy reloc. Set it up. */
4092
4093 if (h->dynindx == -1
4094 || (h->root.type != bfd_link_hash_defined
4095 && h->root.type != bfd_link_hash_defweak)
4096 || htab->srelbss == NULL)
4097 abort ();
4098
4099 rela.r_offset = (h->root.u.def.value
4100 + h->root.u.def.section->output_section->vma
4101 + h->root.u.def.section->output_offset);
4102 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4103 rela.r_addend = 0;
4104 elf_append_rela (output_bfd, htab->srelbss, &rela);
4105 }
4106
4107 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
4108 be NULL for local symbols. */
4109 if (sym != NULL
4110 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4111 || h == htab->elf.hgot))
4112 sym->st_shndx = SHN_ABS;
4113
4114 return TRUE;
4115 }
4116
4117 /* Finish up local dynamic symbol handling. We set the contents of
4118 various dynamic sections here. */
4119
4120 static bfd_boolean
4121 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4122 {
4123 struct elf_link_hash_entry *h
4124 = (struct elf_link_hash_entry *) *slot;
4125 struct bfd_link_info *info
4126 = (struct bfd_link_info *) inf;
4127
4128 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4129 info, h, NULL);
4130 }
4131
4132 /* Used to decide how to sort relocs in an optimal manner for the
4133 dynamic linker, before writing them out. */
4134
4135 static enum elf_reloc_type_class
4136 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4137 {
4138 switch ((int) ELF32_R_TYPE (rela->r_info))
4139 {
4140 case R_X86_64_RELATIVE:
4141 return reloc_class_relative;
4142 case R_X86_64_JUMP_SLOT:
4143 return reloc_class_plt;
4144 case R_X86_64_COPY:
4145 return reloc_class_copy;
4146 default:
4147 return reloc_class_normal;
4148 }
4149 }
4150
4151 /* Finish up the dynamic sections. */
4152
4153 static bfd_boolean
4154 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4155 struct bfd_link_info *info)
4156 {
4157 struct elf_x86_64_link_hash_table *htab;
4158 bfd *dynobj;
4159 asection *sdyn;
4160
4161 htab = elf_x86_64_hash_table (info);
4162 if (htab == NULL)
4163 return FALSE;
4164
4165 dynobj = htab->elf.dynobj;
4166 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4167
4168 if (htab->elf.dynamic_sections_created)
4169 {
4170 bfd_byte *dyncon, *dynconend;
4171 const struct elf_backend_data *bed;
4172 bfd_size_type sizeof_dyn;
4173
4174 if (sdyn == NULL || htab->elf.sgot == NULL)
4175 abort ();
4176
4177 bed = get_elf_backend_data (dynobj);
4178 sizeof_dyn = bed->s->sizeof_dyn;
4179 dyncon = sdyn->contents;
4180 dynconend = sdyn->contents + sdyn->size;
4181 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4182 {
4183 Elf_Internal_Dyn dyn;
4184 asection *s;
4185
4186 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4187
4188 switch (dyn.d_tag)
4189 {
4190 default:
4191 continue;
4192
4193 case DT_PLTGOT:
4194 s = htab->elf.sgotplt;
4195 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4196 break;
4197
4198 case DT_JMPREL:
4199 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4200 break;
4201
4202 case DT_PLTRELSZ:
4203 s = htab->elf.srelplt->output_section;
4204 dyn.d_un.d_val = s->size;
4205 break;
4206
4207 case DT_RELASZ:
4208 /* The procedure linkage table relocs (DT_JMPREL) should
4209 not be included in the overall relocs (DT_RELA).
4210 Therefore, we override the DT_RELASZ entry here to
4211 make it not include the JMPREL relocs. Since the
4212 linker script arranges for .rela.plt to follow all
4213 other relocation sections, we don't have to worry
4214 about changing the DT_RELA entry. */
4215 if (htab->elf.srelplt != NULL)
4216 {
4217 s = htab->elf.srelplt->output_section;
4218 dyn.d_un.d_val -= s->size;
4219 }
4220 break;
4221
4222 case DT_TLSDESC_PLT:
4223 s = htab->elf.splt;
4224 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4225 + htab->tlsdesc_plt;
4226 break;
4227
4228 case DT_TLSDESC_GOT:
4229 s = htab->elf.sgot;
4230 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4231 + htab->tlsdesc_got;
4232 break;
4233 }
4234
4235 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4236 }
4237
4238 /* Fill in the special first entry in the procedure linkage table. */
4239 if (htab->elf.splt && htab->elf.splt->size > 0)
4240 {
4241 /* Fill in the first entry in the procedure linkage table. */
4242 memcpy (htab->elf.splt->contents, elf_x86_64_plt0_entry,
4243 PLT_ENTRY_SIZE);
4244 /* Add offset for pushq GOT+8(%rip), since the instruction
4245 uses 6 bytes subtract this value. */
4246 bfd_put_32 (output_bfd,
4247 (htab->elf.sgotplt->output_section->vma
4248 + htab->elf.sgotplt->output_offset
4249 + 8
4250 - htab->elf.splt->output_section->vma
4251 - htab->elf.splt->output_offset
4252 - 6),
4253 htab->elf.splt->contents + 2);
4254 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4255 the end of the instruction. */
4256 bfd_put_32 (output_bfd,
4257 (htab->elf.sgotplt->output_section->vma
4258 + htab->elf.sgotplt->output_offset
4259 + 16
4260 - htab->elf.splt->output_section->vma
4261 - htab->elf.splt->output_offset
4262 - 12),
4263 htab->elf.splt->contents + 8);
4264
4265 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize =
4266 PLT_ENTRY_SIZE;
4267
4268 if (htab->tlsdesc_plt)
4269 {
4270 bfd_put_64 (output_bfd, (bfd_vma) 0,
4271 htab->elf.sgot->contents + htab->tlsdesc_got);
4272
4273 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4274 elf_x86_64_plt0_entry,
4275 PLT_ENTRY_SIZE);
4276
4277 /* Add offset for pushq GOT+8(%rip), since the
4278 instruction uses 6 bytes subtract this value. */
4279 bfd_put_32 (output_bfd,
4280 (htab->elf.sgotplt->output_section->vma
4281 + htab->elf.sgotplt->output_offset
4282 + 8
4283 - htab->elf.splt->output_section->vma
4284 - htab->elf.splt->output_offset
4285 - htab->tlsdesc_plt
4286 - 6),
4287 htab->elf.splt->contents + htab->tlsdesc_plt + 2);
4288 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4289 htab->tlsdesc_got. The 12 is the offset to the end of
4290 the instruction. */
4291 bfd_put_32 (output_bfd,
4292 (htab->elf.sgot->output_section->vma
4293 + htab->elf.sgot->output_offset
4294 + htab->tlsdesc_got
4295 - htab->elf.splt->output_section->vma
4296 - htab->elf.splt->output_offset
4297 - htab->tlsdesc_plt
4298 - 12),
4299 htab->elf.splt->contents + htab->tlsdesc_plt + 8);
4300 }
4301 }
4302 }
4303
4304 if (htab->elf.sgotplt)
4305 {
4306 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4307 {
4308 (*_bfd_error_handler)
4309 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4310 return FALSE;
4311 }
4312
4313 /* Fill in the first three entries in the global offset table. */
4314 if (htab->elf.sgotplt->size > 0)
4315 {
4316 /* Set the first entry in the global offset table to the address of
4317 the dynamic section. */
4318 if (sdyn == NULL)
4319 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4320 else
4321 bfd_put_64 (output_bfd,
4322 sdyn->output_section->vma + sdyn->output_offset,
4323 htab->elf.sgotplt->contents);
4324 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4325 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4326 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4327 }
4328
4329 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4330 GOT_ENTRY_SIZE;
4331 }
4332
4333 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4334 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4335 = GOT_ENTRY_SIZE;
4336
4337 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4338 htab_traverse (htab->loc_hash_table,
4339 elf_x86_64_finish_local_dynamic_symbol,
4340 info);
4341
4342 return TRUE;
4343 }
4344
4345 /* Return address for Ith PLT stub in section PLT, for relocation REL
4346 or (bfd_vma) -1 if it should not be included. */
4347
4348 static bfd_vma
4349 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4350 const arelent *rel ATTRIBUTE_UNUSED)
4351 {
4352 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
4353 }
4354
4355 /* Handle an x86-64 specific section when reading an object file. This
4356 is called when elfcode.h finds a section with an unknown type. */
4357
4358 static bfd_boolean
4359 elf_x86_64_section_from_shdr (bfd *abfd,
4360 Elf_Internal_Shdr *hdr,
4361 const char *name,
4362 int shindex)
4363 {
4364 if (hdr->sh_type != SHT_X86_64_UNWIND)
4365 return FALSE;
4366
4367 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4368 return FALSE;
4369
4370 return TRUE;
4371 }
4372
4373 /* Hook called by the linker routine which adds symbols from an object
4374 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4375 of .bss. */
4376
4377 static bfd_boolean
4378 elf_x86_64_add_symbol_hook (bfd *abfd,
4379 struct bfd_link_info *info,
4380 Elf_Internal_Sym *sym,
4381 const char **namep ATTRIBUTE_UNUSED,
4382 flagword *flagsp ATTRIBUTE_UNUSED,
4383 asection **secp,
4384 bfd_vma *valp)
4385 {
4386 asection *lcomm;
4387
4388 switch (sym->st_shndx)
4389 {
4390 case SHN_X86_64_LCOMMON:
4391 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4392 if (lcomm == NULL)
4393 {
4394 lcomm = bfd_make_section_with_flags (abfd,
4395 "LARGE_COMMON",
4396 (SEC_ALLOC
4397 | SEC_IS_COMMON
4398 | SEC_LINKER_CREATED));
4399 if (lcomm == NULL)
4400 return FALSE;
4401 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4402 }
4403 *secp = lcomm;
4404 *valp = sym->st_size;
4405 return TRUE;
4406 }
4407
4408 if ((abfd->flags & DYNAMIC) == 0
4409 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
4410 elf_tdata (info->output_bfd)->has_ifunc_symbols = TRUE;
4411
4412 return TRUE;
4413 }
4414
4415
4416 /* Given a BFD section, try to locate the corresponding ELF section
4417 index. */
4418
4419 static bfd_boolean
4420 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4421 asection *sec, int *index_return)
4422 {
4423 if (sec == &_bfd_elf_large_com_section)
4424 {
4425 *index_return = SHN_X86_64_LCOMMON;
4426 return TRUE;
4427 }
4428 return FALSE;
4429 }
4430
4431 /* Process a symbol. */
4432
4433 static void
4434 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4435 asymbol *asym)
4436 {
4437 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4438
4439 switch (elfsym->internal_elf_sym.st_shndx)
4440 {
4441 case SHN_X86_64_LCOMMON:
4442 asym->section = &_bfd_elf_large_com_section;
4443 asym->value = elfsym->internal_elf_sym.st_size;
4444 /* Common symbol doesn't set BSF_GLOBAL. */
4445 asym->flags &= ~BSF_GLOBAL;
4446 break;
4447 }
4448 }
4449
4450 static bfd_boolean
4451 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
4452 {
4453 return (sym->st_shndx == SHN_COMMON
4454 || sym->st_shndx == SHN_X86_64_LCOMMON);
4455 }
4456
4457 static unsigned int
4458 elf_x86_64_common_section_index (asection *sec)
4459 {
4460 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4461 return SHN_COMMON;
4462 else
4463 return SHN_X86_64_LCOMMON;
4464 }
4465
4466 static asection *
4467 elf_x86_64_common_section (asection *sec)
4468 {
4469 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4470 return bfd_com_section_ptr;
4471 else
4472 return &_bfd_elf_large_com_section;
4473 }
4474
4475 static bfd_boolean
4476 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4477 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4478 struct elf_link_hash_entry *h,
4479 Elf_Internal_Sym *sym,
4480 asection **psec,
4481 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4482 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4483 bfd_boolean *skip ATTRIBUTE_UNUSED,
4484 bfd_boolean *override ATTRIBUTE_UNUSED,
4485 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4486 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4487 bfd_boolean *newdef ATTRIBUTE_UNUSED,
4488 bfd_boolean *newdyn,
4489 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4490 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4491 bfd *abfd ATTRIBUTE_UNUSED,
4492 asection **sec,
4493 bfd_boolean *olddef ATTRIBUTE_UNUSED,
4494 bfd_boolean *olddyn,
4495 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4496 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4497 bfd *oldbfd,
4498 asection **oldsec)
4499 {
4500 /* A normal common symbol and a large common symbol result in a
4501 normal common symbol. We turn the large common symbol into a
4502 normal one. */
4503 if (!*olddyn
4504 && h->root.type == bfd_link_hash_common
4505 && !*newdyn
4506 && bfd_is_com_section (*sec)
4507 && *oldsec != *sec)
4508 {
4509 if (sym->st_shndx == SHN_COMMON
4510 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4511 {
4512 h->root.u.c.p->section
4513 = bfd_make_section_old_way (oldbfd, "COMMON");
4514 h->root.u.c.p->section->flags = SEC_ALLOC;
4515 }
4516 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4517 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4518 *psec = *sec = bfd_com_section_ptr;
4519 }
4520
4521 return TRUE;
4522 }
4523
4524 static int
4525 elf_x86_64_additional_program_headers (bfd *abfd,
4526 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4527 {
4528 asection *s;
4529 int count = 0;
4530
4531 /* Check to see if we need a large readonly segment. */
4532 s = bfd_get_section_by_name (abfd, ".lrodata");
4533 if (s && (s->flags & SEC_LOAD))
4534 count++;
4535
4536 /* Check to see if we need a large data segment. Since .lbss sections
4537 is placed right after the .bss section, there should be no need for
4538 a large data segment just because of .lbss. */
4539 s = bfd_get_section_by_name (abfd, ".ldata");
4540 if (s && (s->flags & SEC_LOAD))
4541 count++;
4542
4543 return count;
4544 }
4545
4546 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4547
4548 static bfd_boolean
4549 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4550 {
4551 if (h->plt.offset != (bfd_vma) -1
4552 && !h->def_regular
4553 && !h->pointer_equality_needed)
4554 return FALSE;
4555
4556 return _bfd_elf_hash_symbol (h);
4557 }
4558
4559 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
4560
4561 static bfd_boolean
4562 elf_x86_64_relocs_compatible (const bfd_target *input,
4563 const bfd_target *output)
4564 {
4565 return ((xvec_get_elf_backend_data (input)->s->elfclass
4566 == xvec_get_elf_backend_data (output)->s->elfclass)
4567 && _bfd_elf_relocs_compatible (input, output));
4568 }
4569
4570 static const struct bfd_elf_special_section
4571 elf_x86_64_special_sections[]=
4572 {
4573 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4574 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4575 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4576 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4577 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4578 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4579 { NULL, 0, 0, 0, 0 }
4580 };
4581
4582 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4583 #define TARGET_LITTLE_NAME "elf64-x86-64"
4584 #define ELF_ARCH bfd_arch_i386
4585 #define ELF_TARGET_ID X86_64_ELF_DATA
4586 #define ELF_MACHINE_CODE EM_X86_64
4587 #define ELF_MAXPAGESIZE 0x200000
4588 #define ELF_MINPAGESIZE 0x1000
4589 #define ELF_COMMONPAGESIZE 0x1000
4590
4591 #define elf_backend_can_gc_sections 1
4592 #define elf_backend_can_refcount 1
4593 #define elf_backend_want_got_plt 1
4594 #define elf_backend_plt_readonly 1
4595 #define elf_backend_want_plt_sym 0
4596 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4597 #define elf_backend_rela_normal 1
4598
4599 #define elf_info_to_howto elf_x86_64_info_to_howto
4600
4601 #define bfd_elf64_bfd_link_hash_table_create \
4602 elf_x86_64_link_hash_table_create
4603 #define bfd_elf64_bfd_link_hash_table_free \
4604 elf_x86_64_link_hash_table_free
4605 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
4606 #define bfd_elf64_bfd_reloc_name_lookup \
4607 elf_x86_64_reloc_name_lookup
4608
4609 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
4610 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
4611 #define elf_backend_check_relocs elf_x86_64_check_relocs
4612 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
4613 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
4614 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
4615 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
4616 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
4617 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
4618 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
4619 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
4620 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
4621 #define elf_backend_relocate_section elf_x86_64_relocate_section
4622 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
4623 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
4624 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4625 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
4626 #define elf_backend_object_p elf64_x86_64_elf_object_p
4627 #define bfd_elf64_mkobject elf_x86_64_mkobject
4628
4629 #define elf_backend_section_from_shdr \
4630 elf_x86_64_section_from_shdr
4631
4632 #define elf_backend_section_from_bfd_section \
4633 elf_x86_64_elf_section_from_bfd_section
4634 #define elf_backend_add_symbol_hook \
4635 elf_x86_64_add_symbol_hook
4636 #define elf_backend_symbol_processing \
4637 elf_x86_64_symbol_processing
4638 #define elf_backend_common_section_index \
4639 elf_x86_64_common_section_index
4640 #define elf_backend_common_section \
4641 elf_x86_64_common_section
4642 #define elf_backend_common_definition \
4643 elf_x86_64_common_definition
4644 #define elf_backend_merge_symbol \
4645 elf_x86_64_merge_symbol
4646 #define elf_backend_special_sections \
4647 elf_x86_64_special_sections
4648 #define elf_backend_additional_program_headers \
4649 elf_x86_64_additional_program_headers
4650 #define elf_backend_hash_symbol \
4651 elf_x86_64_hash_symbol
4652
4653 #undef elf_backend_post_process_headers
4654 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4655
4656 #include "elf64-target.h"
4657
4658 /* FreeBSD support. */
4659
4660 #undef TARGET_LITTLE_SYM
4661 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4662 #undef TARGET_LITTLE_NAME
4663 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4664
4665 #undef ELF_OSABI
4666 #define ELF_OSABI ELFOSABI_FREEBSD
4667
4668 #undef elf64_bed
4669 #define elf64_bed elf64_x86_64_fbsd_bed
4670
4671 #include "elf64-target.h"
4672
4673 /* Solaris 2 support. */
4674
4675 #undef TARGET_LITTLE_SYM
4676 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
4677 #undef TARGET_LITTLE_NAME
4678 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
4679
4680 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
4681 objects won't be recognized. */
4682 #undef ELF_OSABI
4683
4684 #undef elf64_bed
4685 #define elf64_bed elf64_x86_64_sol2_bed
4686
4687 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
4688 boundary. */
4689 #undef elf_backend_static_tls_alignment
4690 #define elf_backend_static_tls_alignment 16
4691
4692 /* The Solaris 2 ABI requires a plt symbol on all platforms.
4693
4694 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
4695 File, p.63. */
4696 #undef elf_backend_want_plt_sym
4697 #define elf_backend_want_plt_sym 1
4698
4699 #include "elf64-target.h"
4700
4701 /* Intel L1OM support. */
4702
4703 static bfd_boolean
4704 elf64_l1om_elf_object_p (bfd *abfd)
4705 {
4706 /* Set the right machine number for an L1OM elf64 file. */
4707 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
4708 return TRUE;
4709 }
4710
4711 #undef TARGET_LITTLE_SYM
4712 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
4713 #undef TARGET_LITTLE_NAME
4714 #define TARGET_LITTLE_NAME "elf64-l1om"
4715 #undef ELF_ARCH
4716 #define ELF_ARCH bfd_arch_l1om
4717
4718 #undef ELF_MACHINE_CODE
4719 #define ELF_MACHINE_CODE EM_L1OM
4720
4721 #undef ELF_OSABI
4722
4723 #undef elf64_bed
4724 #define elf64_bed elf64_l1om_bed
4725
4726 #undef elf_backend_object_p
4727 #define elf_backend_object_p elf64_l1om_elf_object_p
4728
4729 #undef elf_backend_post_process_headers
4730 #undef elf_backend_static_tls_alignment
4731
4732 #undef elf_backend_want_plt_sym
4733 #define elf_backend_want_plt_sym 0
4734
4735 #include "elf64-target.h"
4736
4737 /* FreeBSD L1OM support. */
4738
4739 #undef TARGET_LITTLE_SYM
4740 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
4741 #undef TARGET_LITTLE_NAME
4742 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
4743
4744 #undef ELF_OSABI
4745 #define ELF_OSABI ELFOSABI_FREEBSD
4746
4747 #undef elf64_bed
4748 #define elf64_bed elf64_l1om_fbsd_bed
4749
4750 #undef elf_backend_post_process_headers
4751 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4752
4753 #include "elf64-target.h"
4754
4755 /* 32bit x86-64 support. */
4756
4757 static bfd_boolean
4758 elf32_x86_64_elf_object_p (bfd *abfd)
4759 {
4760 /* Set the right machine number for an x86-64 elf32 file. */
4761 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
4762 return TRUE;
4763 }
4764
4765 #undef TARGET_LITTLE_SYM
4766 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
4767 #undef TARGET_LITTLE_NAME
4768 #define TARGET_LITTLE_NAME "elf32-x86-64"
4769
4770 #undef ELF_ARCH
4771 #define ELF_ARCH bfd_arch_i386
4772
4773 #undef ELF_MACHINE_CODE
4774 #define ELF_MACHINE_CODE EM_X86_64
4775
4776 #define bfd_elf32_bfd_link_hash_table_create \
4777 elf_x86_64_link_hash_table_create
4778 #define bfd_elf32_bfd_link_hash_table_free \
4779 elf_x86_64_link_hash_table_free
4780 #define bfd_elf32_bfd_reloc_type_lookup \
4781 elf_x86_64_reloc_type_lookup
4782 #define bfd_elf32_bfd_reloc_name_lookup \
4783 elf_x86_64_reloc_name_lookup
4784 #define bfd_elf32_mkobject \
4785 elf_x86_64_mkobject
4786
4787 #undef ELF_OSABI
4788
4789 #undef elf_backend_post_process_headers
4790
4791 #undef elf_backend_object_p
4792 #define elf_backend_object_p \
4793 elf32_x86_64_elf_object_p
4794
4795 #undef elf_backend_bfd_from_remote_memory
4796 #define elf_backend_bfd_from_remote_memory \
4797 _bfd_elf32_bfd_from_remote_memory
4798
4799 #undef elf_backend_size_info
4800 #define elf_backend_size_info \
4801 _bfd_elf32_size_info
4802
4803 #include "elf32-target.h"
This page took 0.131896 seconds and 4 git commands to generate.