Convert mov to lea for loading local function address
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "bfd_stdint.h"
31 #include "objalloc.h"
32 #include "hashtab.h"
33 #include "dwarf2.h"
34 #include "libiberty.h"
35
36 #include "elf/x86-64.h"
37
38 #ifdef CORE_HEADER
39 #include <stdarg.h>
40 #include CORE_HEADER
41 #endif
42
43 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
44 #define MINUS_ONE (~ (bfd_vma) 0)
45
46 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
47 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
48 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
49 since they are the same. */
50
51 #define ABI_64_P(abfd) \
52 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
53
54 /* The relocation "howto" table. Order of fields:
55 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
56 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
57 static reloc_howto_type x86_64_elf_howto_table[] =
58 {
59 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
60 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
61 FALSE),
62 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
63 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
64 FALSE),
65 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
66 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
67 TRUE),
68 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
69 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
70 FALSE),
71 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
72 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
73 TRUE),
74 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
76 FALSE),
77 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
79 MINUS_ONE, FALSE),
80 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
82 MINUS_ONE, FALSE),
83 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
84 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
85 MINUS_ONE, FALSE),
86 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
87 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
88 0xffffffff, TRUE),
89 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
90 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
91 FALSE),
92 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
93 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
94 FALSE),
95 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
97 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
99 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
100 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
101 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
103 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
105 MINUS_ONE, FALSE),
106 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
108 MINUS_ONE, FALSE),
109 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
111 MINUS_ONE, FALSE),
112 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
114 0xffffffff, TRUE),
115 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
116 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
117 0xffffffff, TRUE),
118 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
119 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
120 0xffffffff, FALSE),
121 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
122 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
123 0xffffffff, TRUE),
124 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
125 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
126 0xffffffff, FALSE),
127 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
129 TRUE),
130 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
131 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
132 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
133 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
134 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
135 FALSE, 0xffffffff, 0xffffffff, TRUE),
136 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
138 FALSE),
139 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
140 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
141 MINUS_ONE, TRUE),
142 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
143 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
144 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
145 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
146 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
147 MINUS_ONE, FALSE),
148 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
149 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
150 MINUS_ONE, FALSE),
151 EMPTY_HOWTO (32),
152 EMPTY_HOWTO (33),
153 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
154 complain_overflow_bitfield, bfd_elf_generic_reloc,
155 "R_X86_64_GOTPC32_TLSDESC",
156 FALSE, 0xffffffff, 0xffffffff, TRUE),
157 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
158 complain_overflow_dont, bfd_elf_generic_reloc,
159 "R_X86_64_TLSDESC_CALL",
160 FALSE, 0, 0, FALSE),
161 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
162 complain_overflow_bitfield, bfd_elf_generic_reloc,
163 "R_X86_64_TLSDESC",
164 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
165 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
166 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
167 MINUS_ONE, FALSE),
168 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
170 MINUS_ONE, FALSE),
171
172 /* We have a gap in the reloc numbers here.
173 R_X86_64_standard counts the number up to this point, and
174 R_X86_64_vt_offset is the value to subtract from a reloc type of
175 R_X86_64_GNU_VT* to form an index into this table. */
176 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
177 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
178
179 /* GNU extension to record C++ vtable hierarchy. */
180 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
181 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
182
183 /* GNU extension to record C++ vtable member usage. */
184 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
185 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
186 FALSE),
187
188 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
189 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
191 FALSE)
192 };
193
194 #define IS_X86_64_PCREL_TYPE(TYPE) \
195 ( ((TYPE) == R_X86_64_PC8) \
196 || ((TYPE) == R_X86_64_PC16) \
197 || ((TYPE) == R_X86_64_PC32) \
198 || ((TYPE) == R_X86_64_PC64))
199
200 /* Map BFD relocs to the x86_64 elf relocs. */
201 struct elf_reloc_map
202 {
203 bfd_reloc_code_real_type bfd_reloc_val;
204 unsigned char elf_reloc_val;
205 };
206
207 static const struct elf_reloc_map x86_64_reloc_map[] =
208 {
209 { BFD_RELOC_NONE, R_X86_64_NONE, },
210 { BFD_RELOC_64, R_X86_64_64, },
211 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
212 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
213 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
214 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
215 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
216 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
217 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
218 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
219 { BFD_RELOC_32, R_X86_64_32, },
220 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
221 { BFD_RELOC_16, R_X86_64_16, },
222 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
223 { BFD_RELOC_8, R_X86_64_8, },
224 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
225 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
226 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
227 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
228 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
229 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
230 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
231 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
232 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
233 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
234 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
235 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
236 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
237 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
238 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
239 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
240 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
241 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
242 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
243 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
244 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
245 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
246 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
247 };
248
249 static reloc_howto_type *
250 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
251 {
252 unsigned i;
253
254 if (r_type == (unsigned int) R_X86_64_32)
255 {
256 if (ABI_64_P (abfd))
257 i = r_type;
258 else
259 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
260 }
261 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
262 || r_type >= (unsigned int) R_X86_64_max)
263 {
264 if (r_type >= (unsigned int) R_X86_64_standard)
265 {
266 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
267 abfd, (int) r_type);
268 r_type = R_X86_64_NONE;
269 }
270 i = r_type;
271 }
272 else
273 i = r_type - (unsigned int) R_X86_64_vt_offset;
274 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
275 return &x86_64_elf_howto_table[i];
276 }
277
278 /* Given a BFD reloc type, return a HOWTO structure. */
279 static reloc_howto_type *
280 elf_x86_64_reloc_type_lookup (bfd *abfd,
281 bfd_reloc_code_real_type code)
282 {
283 unsigned int i;
284
285 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
286 i++)
287 {
288 if (x86_64_reloc_map[i].bfd_reloc_val == code)
289 return elf_x86_64_rtype_to_howto (abfd,
290 x86_64_reloc_map[i].elf_reloc_val);
291 }
292 return 0;
293 }
294
295 static reloc_howto_type *
296 elf_x86_64_reloc_name_lookup (bfd *abfd,
297 const char *r_name)
298 {
299 unsigned int i;
300
301 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
302 {
303 /* Get x32 R_X86_64_32. */
304 reloc_howto_type *reloc
305 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
306 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
307 return reloc;
308 }
309
310 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
311 if (x86_64_elf_howto_table[i].name != NULL
312 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
313 return &x86_64_elf_howto_table[i];
314
315 return NULL;
316 }
317
318 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
319
320 static void
321 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
322 Elf_Internal_Rela *dst)
323 {
324 unsigned r_type;
325
326 r_type = ELF32_R_TYPE (dst->r_info);
327 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
328 BFD_ASSERT (r_type == cache_ptr->howto->type);
329 }
330 \f
331 /* Support for core dump NOTE sections. */
332 static bfd_boolean
333 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
334 {
335 int offset;
336 size_t size;
337
338 switch (note->descsz)
339 {
340 default:
341 return FALSE;
342
343 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
344 /* pr_cursig */
345 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
346
347 /* pr_pid */
348 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
349
350 /* pr_reg */
351 offset = 72;
352 size = 216;
353
354 break;
355
356 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
357 /* pr_cursig */
358 elf_tdata (abfd)->core_signal
359 = bfd_get_16 (abfd, note->descdata + 12);
360
361 /* pr_pid */
362 elf_tdata (abfd)->core_lwpid
363 = bfd_get_32 (abfd, note->descdata + 32);
364
365 /* pr_reg */
366 offset = 112;
367 size = 216;
368
369 break;
370 }
371
372 /* Make a ".reg/999" section. */
373 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
374 size, note->descpos + offset);
375 }
376
377 static bfd_boolean
378 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
379 {
380 switch (note->descsz)
381 {
382 default:
383 return FALSE;
384
385 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
386 elf_tdata (abfd)->core_pid
387 = bfd_get_32 (abfd, note->descdata + 12);
388 elf_tdata (abfd)->core_program
389 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
390 elf_tdata (abfd)->core_command
391 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
392 break;
393
394 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
395 elf_tdata (abfd)->core_pid
396 = bfd_get_32 (abfd, note->descdata + 24);
397 elf_tdata (abfd)->core_program
398 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
399 elf_tdata (abfd)->core_command
400 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
401 }
402
403 /* Note that for some reason, a spurious space is tacked
404 onto the end of the args in some (at least one anyway)
405 implementations, so strip it off if it exists. */
406
407 {
408 char *command = elf_tdata (abfd)->core_command;
409 int n = strlen (command);
410
411 if (0 < n && command[n - 1] == ' ')
412 command[n - 1] = '\0';
413 }
414
415 return TRUE;
416 }
417
418 #ifdef CORE_HEADER
419 static char *
420 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
421 int note_type, ...)
422 {
423 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
424 va_list ap;
425 const char *fname, *psargs;
426 long pid;
427 int cursig;
428 const void *gregs;
429
430 switch (note_type)
431 {
432 default:
433 return NULL;
434
435 case NT_PRPSINFO:
436 va_start (ap, note_type);
437 fname = va_arg (ap, const char *);
438 psargs = va_arg (ap, const char *);
439 va_end (ap);
440
441 if (bed->s->elfclass == ELFCLASS32)
442 {
443 prpsinfo32_t data;
444 memset (&data, 0, sizeof (data));
445 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
446 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
447 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
448 &data, sizeof (data));
449 }
450 else
451 {
452 prpsinfo_t data;
453 memset (&data, 0, sizeof (data));
454 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
455 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
456 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
457 &data, sizeof (data));
458 }
459 /* NOTREACHED */
460
461 case NT_PRSTATUS:
462 va_start (ap, note_type);
463 pid = va_arg (ap, long);
464 cursig = va_arg (ap, int);
465 gregs = va_arg (ap, const void *);
466 va_end (ap);
467
468 if (bed->s->elfclass == ELFCLASS32)
469 {
470 if (bed->elf_machine_code == EM_X86_64)
471 {
472 prstatusx32_t prstat;
473 memset (&prstat, 0, sizeof (prstat));
474 prstat.pr_pid = pid;
475 prstat.pr_cursig = cursig;
476 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
477 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
478 &prstat, sizeof (prstat));
479 }
480 else
481 {
482 prstatus32_t prstat;
483 memset (&prstat, 0, sizeof (prstat));
484 prstat.pr_pid = pid;
485 prstat.pr_cursig = cursig;
486 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
487 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
488 &prstat, sizeof (prstat));
489 }
490 }
491 else
492 {
493 prstatus_t prstat;
494 memset (&prstat, 0, sizeof (prstat));
495 prstat.pr_pid = pid;
496 prstat.pr_cursig = cursig;
497 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
498 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
499 &prstat, sizeof (prstat));
500 }
501 }
502 /* NOTREACHED */
503 }
504 #endif
505 \f
506 /* Functions for the x86-64 ELF linker. */
507
508 /* The name of the dynamic interpreter. This is put in the .interp
509 section. */
510
511 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
512 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
513
514 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
515 copying dynamic variables from a shared lib into an app's dynbss
516 section, and instead use a dynamic relocation to point into the
517 shared lib. */
518 #define ELIMINATE_COPY_RELOCS 1
519
520 /* The size in bytes of an entry in the global offset table. */
521
522 #define GOT_ENTRY_SIZE 8
523
524 /* The size in bytes of an entry in the procedure linkage table. */
525
526 #define PLT_ENTRY_SIZE 16
527
528 /* The first entry in a procedure linkage table looks like this. See the
529 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
530
531 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
532 {
533 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
534 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
535 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
536 };
537
538 /* Subsequent entries in a procedure linkage table look like this. */
539
540 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
541 {
542 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
543 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
544 0x68, /* pushq immediate */
545 0, 0, 0, 0, /* replaced with index into relocation table. */
546 0xe9, /* jmp relative */
547 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
548 };
549
550 /* .eh_frame covering the .plt section. */
551
552 static const bfd_byte elf_x86_64_eh_frame_plt[] =
553 {
554 #define PLT_CIE_LENGTH 20
555 #define PLT_FDE_LENGTH 36
556 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
557 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
558 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
559 0, 0, 0, 0, /* CIE ID */
560 1, /* CIE version */
561 'z', 'R', 0, /* Augmentation string */
562 1, /* Code alignment factor */
563 0x78, /* Data alignment factor */
564 16, /* Return address column */
565 1, /* Augmentation size */
566 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
567 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
568 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
569 DW_CFA_nop, DW_CFA_nop,
570
571 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
572 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
573 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
574 0, 0, 0, 0, /* .plt size goes here */
575 0, /* Augmentation size */
576 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
577 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
578 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
579 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
580 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
581 11, /* Block length */
582 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
583 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
584 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
585 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
586 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
587 };
588
589 /* Architecture-specific backend data for x86-64. */
590
591 struct elf_x86_64_backend_data
592 {
593 /* Templates for the initial PLT entry and for subsequent entries. */
594 const bfd_byte *plt0_entry;
595 const bfd_byte *plt_entry;
596 unsigned int plt_entry_size; /* Size of each PLT entry. */
597
598 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
599 unsigned int plt0_got1_offset;
600 unsigned int plt0_got2_offset;
601
602 /* Offset of the end of the PC-relative instruction containing
603 plt0_got2_offset. */
604 unsigned int plt0_got2_insn_end;
605
606 /* Offsets into plt_entry that are to be replaced with... */
607 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
608 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
609 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
610
611 /* Length of the PC-relative instruction containing plt_got_offset. */
612 unsigned int plt_got_insn_size;
613
614 /* Offset of the end of the PC-relative jump to plt0_entry. */
615 unsigned int plt_plt_insn_end;
616
617 /* Offset into plt_entry where the initial value of the GOT entry points. */
618 unsigned int plt_lazy_offset;
619
620 /* .eh_frame covering the .plt section. */
621 const bfd_byte *eh_frame_plt;
622 unsigned int eh_frame_plt_size;
623 };
624
625 #define get_elf_x86_64_backend_data(abfd) \
626 ((const struct elf_x86_64_backend_data *) \
627 get_elf_backend_data (abfd)->arch_data)
628
629 #define GET_PLT_ENTRY_SIZE(abfd) \
630 get_elf_x86_64_backend_data (abfd)->plt_entry_size
631
632 /* These are the standard parameters. */
633 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
634 {
635 elf_x86_64_plt0_entry, /* plt0_entry */
636 elf_x86_64_plt_entry, /* plt_entry */
637 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
638 2, /* plt0_got1_offset */
639 8, /* plt0_got2_offset */
640 12, /* plt0_got2_insn_end */
641 2, /* plt_got_offset */
642 7, /* plt_reloc_offset */
643 12, /* plt_plt_offset */
644 6, /* plt_got_insn_size */
645 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
646 6, /* plt_lazy_offset */
647 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
648 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
649 };
650
651 #define elf_backend_arch_data &elf_x86_64_arch_bed
652
653 /* x86-64 ELF linker hash entry. */
654
655 struct elf_x86_64_link_hash_entry
656 {
657 struct elf_link_hash_entry elf;
658
659 /* Track dynamic relocs copied for this symbol. */
660 struct elf_dyn_relocs *dyn_relocs;
661
662 #define GOT_UNKNOWN 0
663 #define GOT_NORMAL 1
664 #define GOT_TLS_GD 2
665 #define GOT_TLS_IE 3
666 #define GOT_TLS_GDESC 4
667 #define GOT_TLS_GD_BOTH_P(type) \
668 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
669 #define GOT_TLS_GD_P(type) \
670 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
671 #define GOT_TLS_GDESC_P(type) \
672 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
673 #define GOT_TLS_GD_ANY_P(type) \
674 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
675 unsigned char tls_type;
676
677 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
678 starting at the end of the jump table. */
679 bfd_vma tlsdesc_got;
680 };
681
682 #define elf_x86_64_hash_entry(ent) \
683 ((struct elf_x86_64_link_hash_entry *)(ent))
684
685 struct elf_x86_64_obj_tdata
686 {
687 struct elf_obj_tdata root;
688
689 /* tls_type for each local got entry. */
690 char *local_got_tls_type;
691
692 /* GOTPLT entries for TLS descriptors. */
693 bfd_vma *local_tlsdesc_gotent;
694 };
695
696 #define elf_x86_64_tdata(abfd) \
697 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
698
699 #define elf_x86_64_local_got_tls_type(abfd) \
700 (elf_x86_64_tdata (abfd)->local_got_tls_type)
701
702 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
703 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
704
705 #define is_x86_64_elf(bfd) \
706 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
707 && elf_tdata (bfd) != NULL \
708 && elf_object_id (bfd) == X86_64_ELF_DATA)
709
710 static bfd_boolean
711 elf_x86_64_mkobject (bfd *abfd)
712 {
713 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
714 X86_64_ELF_DATA);
715 }
716
717 /* x86-64 ELF linker hash table. */
718
719 struct elf_x86_64_link_hash_table
720 {
721 struct elf_link_hash_table elf;
722
723 /* Short-cuts to get to dynamic linker sections. */
724 asection *sdynbss;
725 asection *srelbss;
726 asection *plt_eh_frame;
727
728 union
729 {
730 bfd_signed_vma refcount;
731 bfd_vma offset;
732 } tls_ld_got;
733
734 /* The amount of space used by the jump slots in the GOT. */
735 bfd_vma sgotplt_jump_table_size;
736
737 /* Small local sym cache. */
738 struct sym_cache sym_cache;
739
740 bfd_vma (*r_info) (bfd_vma, bfd_vma);
741 bfd_vma (*r_sym) (bfd_vma);
742 unsigned int pointer_r_type;
743 const char *dynamic_interpreter;
744 int dynamic_interpreter_size;
745
746 /* _TLS_MODULE_BASE_ symbol. */
747 struct bfd_link_hash_entry *tls_module_base;
748
749 /* Used by local STT_GNU_IFUNC symbols. */
750 htab_t loc_hash_table;
751 void * loc_hash_memory;
752
753 /* The offset into splt of the PLT entry for the TLS descriptor
754 resolver. Special values are 0, if not necessary (or not found
755 to be necessary yet), and -1 if needed but not determined
756 yet. */
757 bfd_vma tlsdesc_plt;
758 /* The offset into sgot of the GOT entry used by the PLT entry
759 above. */
760 bfd_vma tlsdesc_got;
761
762 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
763 bfd_vma next_jump_slot_index;
764 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
765 bfd_vma next_irelative_index;
766 };
767
768 /* Get the x86-64 ELF linker hash table from a link_info structure. */
769
770 #define elf_x86_64_hash_table(p) \
771 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
772 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
773
774 #define elf_x86_64_compute_jump_table_size(htab) \
775 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
776
777 /* Create an entry in an x86-64 ELF linker hash table. */
778
779 static struct bfd_hash_entry *
780 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
781 struct bfd_hash_table *table,
782 const char *string)
783 {
784 /* Allocate the structure if it has not already been allocated by a
785 subclass. */
786 if (entry == NULL)
787 {
788 entry = (struct bfd_hash_entry *)
789 bfd_hash_allocate (table,
790 sizeof (struct elf_x86_64_link_hash_entry));
791 if (entry == NULL)
792 return entry;
793 }
794
795 /* Call the allocation method of the superclass. */
796 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
797 if (entry != NULL)
798 {
799 struct elf_x86_64_link_hash_entry *eh;
800
801 eh = (struct elf_x86_64_link_hash_entry *) entry;
802 eh->dyn_relocs = NULL;
803 eh->tls_type = GOT_UNKNOWN;
804 eh->tlsdesc_got = (bfd_vma) -1;
805 }
806
807 return entry;
808 }
809
810 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
811 for local symbol so that we can handle local STT_GNU_IFUNC symbols
812 as global symbol. We reuse indx and dynstr_index for local symbol
813 hash since they aren't used by global symbols in this backend. */
814
815 static hashval_t
816 elf_x86_64_local_htab_hash (const void *ptr)
817 {
818 struct elf_link_hash_entry *h
819 = (struct elf_link_hash_entry *) ptr;
820 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
821 }
822
823 /* Compare local hash entries. */
824
825 static int
826 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
827 {
828 struct elf_link_hash_entry *h1
829 = (struct elf_link_hash_entry *) ptr1;
830 struct elf_link_hash_entry *h2
831 = (struct elf_link_hash_entry *) ptr2;
832
833 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
834 }
835
836 /* Find and/or create a hash entry for local symbol. */
837
838 static struct elf_link_hash_entry *
839 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
840 bfd *abfd, const Elf_Internal_Rela *rel,
841 bfd_boolean create)
842 {
843 struct elf_x86_64_link_hash_entry e, *ret;
844 asection *sec = abfd->sections;
845 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
846 htab->r_sym (rel->r_info));
847 void **slot;
848
849 e.elf.indx = sec->id;
850 e.elf.dynstr_index = htab->r_sym (rel->r_info);
851 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
852 create ? INSERT : NO_INSERT);
853
854 if (!slot)
855 return NULL;
856
857 if (*slot)
858 {
859 ret = (struct elf_x86_64_link_hash_entry *) *slot;
860 return &ret->elf;
861 }
862
863 ret = (struct elf_x86_64_link_hash_entry *)
864 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
865 sizeof (struct elf_x86_64_link_hash_entry));
866 if (ret)
867 {
868 memset (ret, 0, sizeof (*ret));
869 ret->elf.indx = sec->id;
870 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
871 ret->elf.dynindx = -1;
872 *slot = ret;
873 }
874 return &ret->elf;
875 }
876
877 /* Create an X86-64 ELF linker hash table. */
878
879 static struct bfd_link_hash_table *
880 elf_x86_64_link_hash_table_create (bfd *abfd)
881 {
882 struct elf_x86_64_link_hash_table *ret;
883 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
884
885 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
886 if (ret == NULL)
887 return NULL;
888
889 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
890 elf_x86_64_link_hash_newfunc,
891 sizeof (struct elf_x86_64_link_hash_entry),
892 X86_64_ELF_DATA))
893 {
894 free (ret);
895 return NULL;
896 }
897
898 ret->sdynbss = NULL;
899 ret->srelbss = NULL;
900 ret->plt_eh_frame = NULL;
901 ret->sym_cache.abfd = NULL;
902 ret->tlsdesc_plt = 0;
903 ret->tlsdesc_got = 0;
904 ret->tls_ld_got.refcount = 0;
905 ret->sgotplt_jump_table_size = 0;
906 ret->tls_module_base = NULL;
907 ret->next_jump_slot_index = 0;
908 ret->next_irelative_index = 0;
909
910 if (ABI_64_P (abfd))
911 {
912 ret->r_info = elf64_r_info;
913 ret->r_sym = elf64_r_sym;
914 ret->pointer_r_type = R_X86_64_64;
915 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
916 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
917 }
918 else
919 {
920 ret->r_info = elf32_r_info;
921 ret->r_sym = elf32_r_sym;
922 ret->pointer_r_type = R_X86_64_32;
923 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
924 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
925 }
926
927 ret->loc_hash_table = htab_try_create (1024,
928 elf_x86_64_local_htab_hash,
929 elf_x86_64_local_htab_eq,
930 NULL);
931 ret->loc_hash_memory = objalloc_create ();
932 if (!ret->loc_hash_table || !ret->loc_hash_memory)
933 {
934 free (ret);
935 return NULL;
936 }
937
938 return &ret->elf.root;
939 }
940
941 /* Destroy an X86-64 ELF linker hash table. */
942
943 static void
944 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
945 {
946 struct elf_x86_64_link_hash_table *htab
947 = (struct elf_x86_64_link_hash_table *) hash;
948
949 if (htab->loc_hash_table)
950 htab_delete (htab->loc_hash_table);
951 if (htab->loc_hash_memory)
952 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
953 _bfd_generic_link_hash_table_free (hash);
954 }
955
956 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
957 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
958 hash table. */
959
960 static bfd_boolean
961 elf_x86_64_create_dynamic_sections (bfd *dynobj,
962 struct bfd_link_info *info)
963 {
964 struct elf_x86_64_link_hash_table *htab;
965
966 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
967 return FALSE;
968
969 htab = elf_x86_64_hash_table (info);
970 if (htab == NULL)
971 return FALSE;
972
973 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
974 if (!info->shared)
975 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
976
977 if (!htab->sdynbss
978 || (!info->shared && !htab->srelbss))
979 abort ();
980
981 if (!info->no_ld_generated_unwind_info
982 && htab->plt_eh_frame == NULL
983 && htab->elf.splt != NULL)
984 {
985 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
986 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
987 | SEC_LINKER_CREATED);
988 htab->plt_eh_frame
989 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
990 if (htab->plt_eh_frame == NULL
991 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
992 return FALSE;
993 }
994 return TRUE;
995 }
996
997 /* Copy the extra info we tack onto an elf_link_hash_entry. */
998
999 static void
1000 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1001 struct elf_link_hash_entry *dir,
1002 struct elf_link_hash_entry *ind)
1003 {
1004 struct elf_x86_64_link_hash_entry *edir, *eind;
1005
1006 edir = (struct elf_x86_64_link_hash_entry *) dir;
1007 eind = (struct elf_x86_64_link_hash_entry *) ind;
1008
1009 if (eind->dyn_relocs != NULL)
1010 {
1011 if (edir->dyn_relocs != NULL)
1012 {
1013 struct elf_dyn_relocs **pp;
1014 struct elf_dyn_relocs *p;
1015
1016 /* Add reloc counts against the indirect sym to the direct sym
1017 list. Merge any entries against the same section. */
1018 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1019 {
1020 struct elf_dyn_relocs *q;
1021
1022 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1023 if (q->sec == p->sec)
1024 {
1025 q->pc_count += p->pc_count;
1026 q->count += p->count;
1027 *pp = p->next;
1028 break;
1029 }
1030 if (q == NULL)
1031 pp = &p->next;
1032 }
1033 *pp = edir->dyn_relocs;
1034 }
1035
1036 edir->dyn_relocs = eind->dyn_relocs;
1037 eind->dyn_relocs = NULL;
1038 }
1039
1040 if (ind->root.type == bfd_link_hash_indirect
1041 && dir->got.refcount <= 0)
1042 {
1043 edir->tls_type = eind->tls_type;
1044 eind->tls_type = GOT_UNKNOWN;
1045 }
1046
1047 if (ELIMINATE_COPY_RELOCS
1048 && ind->root.type != bfd_link_hash_indirect
1049 && dir->dynamic_adjusted)
1050 {
1051 /* If called to transfer flags for a weakdef during processing
1052 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1053 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1054 dir->ref_dynamic |= ind->ref_dynamic;
1055 dir->ref_regular |= ind->ref_regular;
1056 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1057 dir->needs_plt |= ind->needs_plt;
1058 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1059 }
1060 else
1061 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1062 }
1063
1064 static bfd_boolean
1065 elf64_x86_64_elf_object_p (bfd *abfd)
1066 {
1067 /* Set the right machine number for an x86-64 elf64 file. */
1068 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1069 return TRUE;
1070 }
1071
1072 static bfd_boolean
1073 elf32_x86_64_elf_object_p (bfd *abfd)
1074 {
1075 /* Set the right machine number for an x86-64 elf32 file. */
1076 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1077 return TRUE;
1078 }
1079
1080 /* Return TRUE if the TLS access code sequence support transition
1081 from R_TYPE. */
1082
1083 static bfd_boolean
1084 elf_x86_64_check_tls_transition (bfd *abfd,
1085 struct bfd_link_info *info,
1086 asection *sec,
1087 bfd_byte *contents,
1088 Elf_Internal_Shdr *symtab_hdr,
1089 struct elf_link_hash_entry **sym_hashes,
1090 unsigned int r_type,
1091 const Elf_Internal_Rela *rel,
1092 const Elf_Internal_Rela *relend)
1093 {
1094 unsigned int val;
1095 unsigned long r_symndx;
1096 struct elf_link_hash_entry *h;
1097 bfd_vma offset;
1098 struct elf_x86_64_link_hash_table *htab;
1099
1100 /* Get the section contents. */
1101 if (contents == NULL)
1102 {
1103 if (elf_section_data (sec)->this_hdr.contents != NULL)
1104 contents = elf_section_data (sec)->this_hdr.contents;
1105 else
1106 {
1107 /* FIXME: How to better handle error condition? */
1108 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1109 return FALSE;
1110
1111 /* Cache the section contents for elf_link_input_bfd. */
1112 elf_section_data (sec)->this_hdr.contents = contents;
1113 }
1114 }
1115
1116 htab = elf_x86_64_hash_table (info);
1117 offset = rel->r_offset;
1118 switch (r_type)
1119 {
1120 case R_X86_64_TLSGD:
1121 case R_X86_64_TLSLD:
1122 if ((rel + 1) >= relend)
1123 return FALSE;
1124
1125 if (r_type == R_X86_64_TLSGD)
1126 {
1127 /* Check transition from GD access model. For 64bit, only
1128 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1129 .word 0x6666; rex64; call __tls_get_addr
1130 can transit to different access model. For 32bit, only
1131 leaq foo@tlsgd(%rip), %rdi
1132 .word 0x6666; rex64; call __tls_get_addr
1133 can transit to different access model. */
1134
1135 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1136 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1137
1138 if ((offset + 12) > sec->size
1139 || memcmp (contents + offset + 4, call, 4) != 0)
1140 return FALSE;
1141
1142 if (ABI_64_P (abfd))
1143 {
1144 if (offset < 4
1145 || memcmp (contents + offset - 4, leaq, 4) != 0)
1146 return FALSE;
1147 }
1148 else
1149 {
1150 if (offset < 3
1151 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1152 return FALSE;
1153 }
1154 }
1155 else
1156 {
1157 /* Check transition from LD access model. Only
1158 leaq foo@tlsld(%rip), %rdi;
1159 call __tls_get_addr
1160 can transit to different access model. */
1161
1162 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1163
1164 if (offset < 3 || (offset + 9) > sec->size)
1165 return FALSE;
1166
1167 if (memcmp (contents + offset - 3, lea, 3) != 0
1168 || 0xe8 != *(contents + offset + 4))
1169 return FALSE;
1170 }
1171
1172 r_symndx = htab->r_sym (rel[1].r_info);
1173 if (r_symndx < symtab_hdr->sh_info)
1174 return FALSE;
1175
1176 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1177 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1178 may be versioned. */
1179 return (h != NULL
1180 && h->root.root.string != NULL
1181 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1182 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
1183 && (strncmp (h->root.root.string,
1184 "__tls_get_addr", 14) == 0));
1185
1186 case R_X86_64_GOTTPOFF:
1187 /* Check transition from IE access model:
1188 mov foo@gottpoff(%rip), %reg
1189 add foo@gottpoff(%rip), %reg
1190 */
1191
1192 /* Check REX prefix first. */
1193 if (offset >= 3 && (offset + 4) <= sec->size)
1194 {
1195 val = bfd_get_8 (abfd, contents + offset - 3);
1196 if (val != 0x48 && val != 0x4c)
1197 {
1198 /* X32 may have 0x44 REX prefix or no REX prefix. */
1199 if (ABI_64_P (abfd))
1200 return FALSE;
1201 }
1202 }
1203 else
1204 {
1205 /* X32 may not have any REX prefix. */
1206 if (ABI_64_P (abfd))
1207 return FALSE;
1208 if (offset < 2 || (offset + 3) > sec->size)
1209 return FALSE;
1210 }
1211
1212 val = bfd_get_8 (abfd, contents + offset - 2);
1213 if (val != 0x8b && val != 0x03)
1214 return FALSE;
1215
1216 val = bfd_get_8 (abfd, contents + offset - 1);
1217 return (val & 0xc7) == 5;
1218
1219 case R_X86_64_GOTPC32_TLSDESC:
1220 /* Check transition from GDesc access model:
1221 leaq x@tlsdesc(%rip), %rax
1222
1223 Make sure it's a leaq adding rip to a 32-bit offset
1224 into any register, although it's probably almost always
1225 going to be rax. */
1226
1227 if (offset < 3 || (offset + 4) > sec->size)
1228 return FALSE;
1229
1230 val = bfd_get_8 (abfd, contents + offset - 3);
1231 if ((val & 0xfb) != 0x48)
1232 return FALSE;
1233
1234 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1235 return FALSE;
1236
1237 val = bfd_get_8 (abfd, contents + offset - 1);
1238 return (val & 0xc7) == 0x05;
1239
1240 case R_X86_64_TLSDESC_CALL:
1241 /* Check transition from GDesc access model:
1242 call *x@tlsdesc(%rax)
1243 */
1244 if (offset + 2 <= sec->size)
1245 {
1246 /* Make sure that it's a call *x@tlsdesc(%rax). */
1247 static const unsigned char call[] = { 0xff, 0x10 };
1248 return memcmp (contents + offset, call, 2) == 0;
1249 }
1250
1251 return FALSE;
1252
1253 default:
1254 abort ();
1255 }
1256 }
1257
1258 /* Return TRUE if the TLS access transition is OK or no transition
1259 will be performed. Update R_TYPE if there is a transition. */
1260
1261 static bfd_boolean
1262 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1263 asection *sec, bfd_byte *contents,
1264 Elf_Internal_Shdr *symtab_hdr,
1265 struct elf_link_hash_entry **sym_hashes,
1266 unsigned int *r_type, int tls_type,
1267 const Elf_Internal_Rela *rel,
1268 const Elf_Internal_Rela *relend,
1269 struct elf_link_hash_entry *h,
1270 unsigned long r_symndx)
1271 {
1272 unsigned int from_type = *r_type;
1273 unsigned int to_type = from_type;
1274 bfd_boolean check = TRUE;
1275
1276 /* Skip TLS transition for functions. */
1277 if (h != NULL
1278 && (h->type == STT_FUNC
1279 || h->type == STT_GNU_IFUNC))
1280 return TRUE;
1281
1282 switch (from_type)
1283 {
1284 case R_X86_64_TLSGD:
1285 case R_X86_64_GOTPC32_TLSDESC:
1286 case R_X86_64_TLSDESC_CALL:
1287 case R_X86_64_GOTTPOFF:
1288 if (info->executable)
1289 {
1290 if (h == NULL)
1291 to_type = R_X86_64_TPOFF32;
1292 else
1293 to_type = R_X86_64_GOTTPOFF;
1294 }
1295
1296 /* When we are called from elf_x86_64_relocate_section,
1297 CONTENTS isn't NULL and there may be additional transitions
1298 based on TLS_TYPE. */
1299 if (contents != NULL)
1300 {
1301 unsigned int new_to_type = to_type;
1302
1303 if (info->executable
1304 && h != NULL
1305 && h->dynindx == -1
1306 && tls_type == GOT_TLS_IE)
1307 new_to_type = R_X86_64_TPOFF32;
1308
1309 if (to_type == R_X86_64_TLSGD
1310 || to_type == R_X86_64_GOTPC32_TLSDESC
1311 || to_type == R_X86_64_TLSDESC_CALL)
1312 {
1313 if (tls_type == GOT_TLS_IE)
1314 new_to_type = R_X86_64_GOTTPOFF;
1315 }
1316
1317 /* We checked the transition before when we were called from
1318 elf_x86_64_check_relocs. We only want to check the new
1319 transition which hasn't been checked before. */
1320 check = new_to_type != to_type && from_type == to_type;
1321 to_type = new_to_type;
1322 }
1323
1324 break;
1325
1326 case R_X86_64_TLSLD:
1327 if (info->executable)
1328 to_type = R_X86_64_TPOFF32;
1329 break;
1330
1331 default:
1332 return TRUE;
1333 }
1334
1335 /* Return TRUE if there is no transition. */
1336 if (from_type == to_type)
1337 return TRUE;
1338
1339 /* Check if the transition can be performed. */
1340 if (check
1341 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1342 symtab_hdr, sym_hashes,
1343 from_type, rel, relend))
1344 {
1345 reloc_howto_type *from, *to;
1346 const char *name;
1347
1348 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1349 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1350
1351 if (h)
1352 name = h->root.root.string;
1353 else
1354 {
1355 struct elf_x86_64_link_hash_table *htab;
1356
1357 htab = elf_x86_64_hash_table (info);
1358 if (htab == NULL)
1359 name = "*unknown*";
1360 else
1361 {
1362 Elf_Internal_Sym *isym;
1363
1364 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1365 abfd, r_symndx);
1366 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1367 }
1368 }
1369
1370 (*_bfd_error_handler)
1371 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1372 "in section `%A' failed"),
1373 abfd, sec, from->name, to->name, name,
1374 (unsigned long) rel->r_offset);
1375 bfd_set_error (bfd_error_bad_value);
1376 return FALSE;
1377 }
1378
1379 *r_type = to_type;
1380 return TRUE;
1381 }
1382
1383 /* Look through the relocs for a section during the first phase, and
1384 calculate needed space in the global offset table, procedure
1385 linkage table, and dynamic reloc sections. */
1386
1387 static bfd_boolean
1388 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1389 asection *sec,
1390 const Elf_Internal_Rela *relocs)
1391 {
1392 struct elf_x86_64_link_hash_table *htab;
1393 Elf_Internal_Shdr *symtab_hdr;
1394 struct elf_link_hash_entry **sym_hashes;
1395 const Elf_Internal_Rela *rel;
1396 const Elf_Internal_Rela *rel_end;
1397 asection *sreloc;
1398
1399 if (info->relocatable)
1400 return TRUE;
1401
1402 BFD_ASSERT (is_x86_64_elf (abfd));
1403
1404 htab = elf_x86_64_hash_table (info);
1405 if (htab == NULL)
1406 return FALSE;
1407
1408 symtab_hdr = &elf_symtab_hdr (abfd);
1409 sym_hashes = elf_sym_hashes (abfd);
1410
1411 sreloc = NULL;
1412
1413 rel_end = relocs + sec->reloc_count;
1414 for (rel = relocs; rel < rel_end; rel++)
1415 {
1416 unsigned int r_type;
1417 unsigned long r_symndx;
1418 struct elf_link_hash_entry *h;
1419 Elf_Internal_Sym *isym;
1420 const char *name;
1421
1422 r_symndx = htab->r_sym (rel->r_info);
1423 r_type = ELF32_R_TYPE (rel->r_info);
1424
1425 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1426 {
1427 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1428 abfd, r_symndx);
1429 return FALSE;
1430 }
1431
1432 if (r_symndx < symtab_hdr->sh_info)
1433 {
1434 /* A local symbol. */
1435 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1436 abfd, r_symndx);
1437 if (isym == NULL)
1438 return FALSE;
1439
1440 /* Check relocation against local STT_GNU_IFUNC symbol. */
1441 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1442 {
1443 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1444 TRUE);
1445 if (h == NULL)
1446 return FALSE;
1447
1448 /* Fake a STT_GNU_IFUNC symbol. */
1449 h->type = STT_GNU_IFUNC;
1450 h->def_regular = 1;
1451 h->ref_regular = 1;
1452 h->forced_local = 1;
1453 h->root.type = bfd_link_hash_defined;
1454 }
1455 else
1456 h = NULL;
1457 }
1458 else
1459 {
1460 isym = NULL;
1461 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1462 while (h->root.type == bfd_link_hash_indirect
1463 || h->root.type == bfd_link_hash_warning)
1464 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1465 }
1466
1467 /* Check invalid x32 relocations. */
1468 if (!ABI_64_P (abfd))
1469 switch (r_type)
1470 {
1471 default:
1472 break;
1473
1474 case R_X86_64_DTPOFF64:
1475 case R_X86_64_TPOFF64:
1476 case R_X86_64_PC64:
1477 case R_X86_64_GOTOFF64:
1478 case R_X86_64_GOT64:
1479 case R_X86_64_GOTPCREL64:
1480 case R_X86_64_GOTPC64:
1481 case R_X86_64_GOTPLT64:
1482 case R_X86_64_PLTOFF64:
1483 {
1484 if (h)
1485 name = h->root.root.string;
1486 else
1487 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1488 NULL);
1489 (*_bfd_error_handler)
1490 (_("%B: relocation %s against symbol `%s' isn't "
1491 "supported in x32 mode"), abfd,
1492 x86_64_elf_howto_table[r_type].name, name);
1493 bfd_set_error (bfd_error_bad_value);
1494 return FALSE;
1495 }
1496 break;
1497 }
1498
1499 if (h != NULL)
1500 {
1501 /* Create the ifunc sections for static executables. If we
1502 never see an indirect function symbol nor we are building
1503 a static executable, those sections will be empty and
1504 won't appear in output. */
1505 switch (r_type)
1506 {
1507 default:
1508 break;
1509
1510 case R_X86_64_32S:
1511 case R_X86_64_32:
1512 case R_X86_64_64:
1513 case R_X86_64_PC32:
1514 case R_X86_64_PC64:
1515 case R_X86_64_PLT32:
1516 case R_X86_64_GOTPCREL:
1517 case R_X86_64_GOTPCREL64:
1518 if (htab->elf.dynobj == NULL)
1519 htab->elf.dynobj = abfd;
1520 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1521 return FALSE;
1522 break;
1523 }
1524
1525 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1526 it here if it is defined in a non-shared object. */
1527 if (h->type == STT_GNU_IFUNC
1528 && h->def_regular)
1529 {
1530 /* It is referenced by a non-shared object. */
1531 h->ref_regular = 1;
1532 h->needs_plt = 1;
1533
1534 /* STT_GNU_IFUNC symbol must go through PLT. */
1535 h->plt.refcount += 1;
1536
1537 /* STT_GNU_IFUNC needs dynamic sections. */
1538 if (htab->elf.dynobj == NULL)
1539 htab->elf.dynobj = abfd;
1540
1541 switch (r_type)
1542 {
1543 default:
1544 if (h->root.root.string)
1545 name = h->root.root.string;
1546 else
1547 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1548 NULL);
1549 (*_bfd_error_handler)
1550 (_("%B: relocation %s against STT_GNU_IFUNC "
1551 "symbol `%s' isn't handled by %s"), abfd,
1552 x86_64_elf_howto_table[r_type].name,
1553 name, __FUNCTION__);
1554 bfd_set_error (bfd_error_bad_value);
1555 return FALSE;
1556
1557 case R_X86_64_32:
1558 if (ABI_64_P (abfd))
1559 goto not_pointer;
1560 case R_X86_64_64:
1561 h->non_got_ref = 1;
1562 h->pointer_equality_needed = 1;
1563 if (info->shared)
1564 {
1565 /* We must copy these reloc types into the output
1566 file. Create a reloc section in dynobj and
1567 make room for this reloc. */
1568 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1569 (abfd, info, sec, sreloc,
1570 &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs);
1571 if (sreloc == NULL)
1572 return FALSE;
1573 }
1574 break;
1575
1576 case R_X86_64_32S:
1577 case R_X86_64_PC32:
1578 case R_X86_64_PC64:
1579 not_pointer:
1580 h->non_got_ref = 1;
1581 if (r_type != R_X86_64_PC32
1582 && r_type != R_X86_64_PC64)
1583 h->pointer_equality_needed = 1;
1584 break;
1585
1586 case R_X86_64_PLT32:
1587 break;
1588
1589 case R_X86_64_GOTPCREL:
1590 case R_X86_64_GOTPCREL64:
1591 h->got.refcount += 1;
1592 if (htab->elf.sgot == NULL
1593 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1594 info))
1595 return FALSE;
1596 break;
1597 }
1598
1599 continue;
1600 }
1601 }
1602
1603 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1604 symtab_hdr, sym_hashes,
1605 &r_type, GOT_UNKNOWN,
1606 rel, rel_end, h, r_symndx))
1607 return FALSE;
1608
1609 switch (r_type)
1610 {
1611 case R_X86_64_TLSLD:
1612 htab->tls_ld_got.refcount += 1;
1613 goto create_got;
1614
1615 case R_X86_64_TPOFF32:
1616 if (!info->executable && ABI_64_P (abfd))
1617 {
1618 if (h)
1619 name = h->root.root.string;
1620 else
1621 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1622 NULL);
1623 (*_bfd_error_handler)
1624 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1625 abfd,
1626 x86_64_elf_howto_table[r_type].name, name);
1627 bfd_set_error (bfd_error_bad_value);
1628 return FALSE;
1629 }
1630 break;
1631
1632 case R_X86_64_GOTTPOFF:
1633 if (!info->executable)
1634 info->flags |= DF_STATIC_TLS;
1635 /* Fall through */
1636
1637 case R_X86_64_GOT32:
1638 case R_X86_64_GOTPCREL:
1639 case R_X86_64_TLSGD:
1640 case R_X86_64_GOT64:
1641 case R_X86_64_GOTPCREL64:
1642 case R_X86_64_GOTPLT64:
1643 case R_X86_64_GOTPC32_TLSDESC:
1644 case R_X86_64_TLSDESC_CALL:
1645 /* This symbol requires a global offset table entry. */
1646 {
1647 int tls_type, old_tls_type;
1648
1649 switch (r_type)
1650 {
1651 default: tls_type = GOT_NORMAL; break;
1652 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1653 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1654 case R_X86_64_GOTPC32_TLSDESC:
1655 case R_X86_64_TLSDESC_CALL:
1656 tls_type = GOT_TLS_GDESC; break;
1657 }
1658
1659 if (h != NULL)
1660 {
1661 if (r_type == R_X86_64_GOTPLT64)
1662 {
1663 /* This relocation indicates that we also need
1664 a PLT entry, as this is a function. We don't need
1665 a PLT entry for local symbols. */
1666 h->needs_plt = 1;
1667 h->plt.refcount += 1;
1668 }
1669 h->got.refcount += 1;
1670 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1671 }
1672 else
1673 {
1674 bfd_signed_vma *local_got_refcounts;
1675
1676 /* This is a global offset table entry for a local symbol. */
1677 local_got_refcounts = elf_local_got_refcounts (abfd);
1678 if (local_got_refcounts == NULL)
1679 {
1680 bfd_size_type size;
1681
1682 size = symtab_hdr->sh_info;
1683 size *= sizeof (bfd_signed_vma)
1684 + sizeof (bfd_vma) + sizeof (char);
1685 local_got_refcounts = ((bfd_signed_vma *)
1686 bfd_zalloc (abfd, size));
1687 if (local_got_refcounts == NULL)
1688 return FALSE;
1689 elf_local_got_refcounts (abfd) = local_got_refcounts;
1690 elf_x86_64_local_tlsdesc_gotent (abfd)
1691 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1692 elf_x86_64_local_got_tls_type (abfd)
1693 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1694 }
1695 local_got_refcounts[r_symndx] += 1;
1696 old_tls_type
1697 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1698 }
1699
1700 /* If a TLS symbol is accessed using IE at least once,
1701 there is no point to use dynamic model for it. */
1702 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1703 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1704 || tls_type != GOT_TLS_IE))
1705 {
1706 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1707 tls_type = old_tls_type;
1708 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1709 && GOT_TLS_GD_ANY_P (tls_type))
1710 tls_type |= old_tls_type;
1711 else
1712 {
1713 if (h)
1714 name = h->root.root.string;
1715 else
1716 name = bfd_elf_sym_name (abfd, symtab_hdr,
1717 isym, NULL);
1718 (*_bfd_error_handler)
1719 (_("%B: '%s' accessed both as normal and thread local symbol"),
1720 abfd, name);
1721 return FALSE;
1722 }
1723 }
1724
1725 if (old_tls_type != tls_type)
1726 {
1727 if (h != NULL)
1728 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1729 else
1730 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1731 }
1732 }
1733 /* Fall through */
1734
1735 case R_X86_64_GOTOFF64:
1736 case R_X86_64_GOTPC32:
1737 case R_X86_64_GOTPC64:
1738 create_got:
1739 if (htab->elf.sgot == NULL)
1740 {
1741 if (htab->elf.dynobj == NULL)
1742 htab->elf.dynobj = abfd;
1743 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1744 info))
1745 return FALSE;
1746 }
1747 break;
1748
1749 case R_X86_64_PLT32:
1750 /* This symbol requires a procedure linkage table entry. We
1751 actually build the entry in adjust_dynamic_symbol,
1752 because this might be a case of linking PIC code which is
1753 never referenced by a dynamic object, in which case we
1754 don't need to generate a procedure linkage table entry
1755 after all. */
1756
1757 /* If this is a local symbol, we resolve it directly without
1758 creating a procedure linkage table entry. */
1759 if (h == NULL)
1760 continue;
1761
1762 h->needs_plt = 1;
1763 h->plt.refcount += 1;
1764 break;
1765
1766 case R_X86_64_PLTOFF64:
1767 /* This tries to form the 'address' of a function relative
1768 to GOT. For global symbols we need a PLT entry. */
1769 if (h != NULL)
1770 {
1771 h->needs_plt = 1;
1772 h->plt.refcount += 1;
1773 }
1774 goto create_got;
1775
1776 case R_X86_64_32:
1777 if (!ABI_64_P (abfd))
1778 goto pointer;
1779 case R_X86_64_8:
1780 case R_X86_64_16:
1781 case R_X86_64_32S:
1782 /* Let's help debug shared library creation. These relocs
1783 cannot be used in shared libs. Don't error out for
1784 sections we don't care about, such as debug sections or
1785 non-constant sections. */
1786 if (info->shared
1787 && (sec->flags & SEC_ALLOC) != 0
1788 && (sec->flags & SEC_READONLY) != 0)
1789 {
1790 if (h)
1791 name = h->root.root.string;
1792 else
1793 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1794 (*_bfd_error_handler)
1795 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1796 abfd, x86_64_elf_howto_table[r_type].name, name);
1797 bfd_set_error (bfd_error_bad_value);
1798 return FALSE;
1799 }
1800 /* Fall through. */
1801
1802 case R_X86_64_PC8:
1803 case R_X86_64_PC16:
1804 case R_X86_64_PC32:
1805 case R_X86_64_PC64:
1806 case R_X86_64_64:
1807 pointer:
1808 if (h != NULL && info->executable)
1809 {
1810 /* If this reloc is in a read-only section, we might
1811 need a copy reloc. We can't check reliably at this
1812 stage whether the section is read-only, as input
1813 sections have not yet been mapped to output sections.
1814 Tentatively set the flag for now, and correct in
1815 adjust_dynamic_symbol. */
1816 h->non_got_ref = 1;
1817
1818 /* We may need a .plt entry if the function this reloc
1819 refers to is in a shared lib. */
1820 h->plt.refcount += 1;
1821 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1822 h->pointer_equality_needed = 1;
1823 }
1824
1825 /* If we are creating a shared library, and this is a reloc
1826 against a global symbol, or a non PC relative reloc
1827 against a local symbol, then we need to copy the reloc
1828 into the shared library. However, if we are linking with
1829 -Bsymbolic, we do not need to copy a reloc against a
1830 global symbol which is defined in an object we are
1831 including in the link (i.e., DEF_REGULAR is set). At
1832 this point we have not seen all the input files, so it is
1833 possible that DEF_REGULAR is not set now but will be set
1834 later (it is never cleared). In case of a weak definition,
1835 DEF_REGULAR may be cleared later by a strong definition in
1836 a shared library. We account for that possibility below by
1837 storing information in the relocs_copied field of the hash
1838 table entry. A similar situation occurs when creating
1839 shared libraries and symbol visibility changes render the
1840 symbol local.
1841
1842 If on the other hand, we are creating an executable, we
1843 may need to keep relocations for symbols satisfied by a
1844 dynamic library if we manage to avoid copy relocs for the
1845 symbol. */
1846 if ((info->shared
1847 && (sec->flags & SEC_ALLOC) != 0
1848 && (! IS_X86_64_PCREL_TYPE (r_type)
1849 || (h != NULL
1850 && (! SYMBOLIC_BIND (info, h)
1851 || h->root.type == bfd_link_hash_defweak
1852 || !h->def_regular))))
1853 || (ELIMINATE_COPY_RELOCS
1854 && !info->shared
1855 && (sec->flags & SEC_ALLOC) != 0
1856 && h != NULL
1857 && (h->root.type == bfd_link_hash_defweak
1858 || !h->def_regular)))
1859 {
1860 struct elf_dyn_relocs *p;
1861 struct elf_dyn_relocs **head;
1862
1863 /* We must copy these reloc types into the output file.
1864 Create a reloc section in dynobj and make room for
1865 this reloc. */
1866 if (sreloc == NULL)
1867 {
1868 if (htab->elf.dynobj == NULL)
1869 htab->elf.dynobj = abfd;
1870
1871 sreloc = _bfd_elf_make_dynamic_reloc_section
1872 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1873 abfd, /*rela?*/ TRUE);
1874
1875 if (sreloc == NULL)
1876 return FALSE;
1877 }
1878
1879 /* If this is a global symbol, we count the number of
1880 relocations we need for this symbol. */
1881 if (h != NULL)
1882 {
1883 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1884 }
1885 else
1886 {
1887 /* Track dynamic relocs needed for local syms too.
1888 We really need local syms available to do this
1889 easily. Oh well. */
1890 asection *s;
1891 void **vpp;
1892
1893 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1894 abfd, r_symndx);
1895 if (isym == NULL)
1896 return FALSE;
1897
1898 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1899 if (s == NULL)
1900 s = sec;
1901
1902 /* Beware of type punned pointers vs strict aliasing
1903 rules. */
1904 vpp = &(elf_section_data (s)->local_dynrel);
1905 head = (struct elf_dyn_relocs **)vpp;
1906 }
1907
1908 p = *head;
1909 if (p == NULL || p->sec != sec)
1910 {
1911 bfd_size_type amt = sizeof *p;
1912
1913 p = ((struct elf_dyn_relocs *)
1914 bfd_alloc (htab->elf.dynobj, amt));
1915 if (p == NULL)
1916 return FALSE;
1917 p->next = *head;
1918 *head = p;
1919 p->sec = sec;
1920 p->count = 0;
1921 p->pc_count = 0;
1922 }
1923
1924 p->count += 1;
1925 if (IS_X86_64_PCREL_TYPE (r_type))
1926 p->pc_count += 1;
1927 }
1928 break;
1929
1930 /* This relocation describes the C++ object vtable hierarchy.
1931 Reconstruct it for later use during GC. */
1932 case R_X86_64_GNU_VTINHERIT:
1933 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1934 return FALSE;
1935 break;
1936
1937 /* This relocation describes which C++ vtable entries are actually
1938 used. Record for later use during GC. */
1939 case R_X86_64_GNU_VTENTRY:
1940 BFD_ASSERT (h != NULL);
1941 if (h != NULL
1942 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1943 return FALSE;
1944 break;
1945
1946 default:
1947 break;
1948 }
1949 }
1950
1951 return TRUE;
1952 }
1953
1954 /* Return the section that should be marked against GC for a given
1955 relocation. */
1956
1957 static asection *
1958 elf_x86_64_gc_mark_hook (asection *sec,
1959 struct bfd_link_info *info,
1960 Elf_Internal_Rela *rel,
1961 struct elf_link_hash_entry *h,
1962 Elf_Internal_Sym *sym)
1963 {
1964 if (h != NULL)
1965 switch (ELF32_R_TYPE (rel->r_info))
1966 {
1967 case R_X86_64_GNU_VTINHERIT:
1968 case R_X86_64_GNU_VTENTRY:
1969 return NULL;
1970 }
1971
1972 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1973 }
1974
1975 /* Update the got entry reference counts for the section being removed. */
1976
1977 static bfd_boolean
1978 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1979 asection *sec,
1980 const Elf_Internal_Rela *relocs)
1981 {
1982 struct elf_x86_64_link_hash_table *htab;
1983 Elf_Internal_Shdr *symtab_hdr;
1984 struct elf_link_hash_entry **sym_hashes;
1985 bfd_signed_vma *local_got_refcounts;
1986 const Elf_Internal_Rela *rel, *relend;
1987
1988 if (info->relocatable)
1989 return TRUE;
1990
1991 htab = elf_x86_64_hash_table (info);
1992 if (htab == NULL)
1993 return FALSE;
1994
1995 elf_section_data (sec)->local_dynrel = NULL;
1996
1997 symtab_hdr = &elf_symtab_hdr (abfd);
1998 sym_hashes = elf_sym_hashes (abfd);
1999 local_got_refcounts = elf_local_got_refcounts (abfd);
2000
2001 htab = elf_x86_64_hash_table (info);
2002 relend = relocs + sec->reloc_count;
2003 for (rel = relocs; rel < relend; rel++)
2004 {
2005 unsigned long r_symndx;
2006 unsigned int r_type;
2007 struct elf_link_hash_entry *h = NULL;
2008
2009 r_symndx = htab->r_sym (rel->r_info);
2010 if (r_symndx >= symtab_hdr->sh_info)
2011 {
2012 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2013 while (h->root.type == bfd_link_hash_indirect
2014 || h->root.type == bfd_link_hash_warning)
2015 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2016 }
2017 else
2018 {
2019 /* A local symbol. */
2020 Elf_Internal_Sym *isym;
2021
2022 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2023 abfd, r_symndx);
2024
2025 /* Check relocation against local STT_GNU_IFUNC symbol. */
2026 if (isym != NULL
2027 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
2028 {
2029 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
2030 if (h == NULL)
2031 abort ();
2032 }
2033 }
2034
2035 if (h)
2036 {
2037 struct elf_x86_64_link_hash_entry *eh;
2038 struct elf_dyn_relocs **pp;
2039 struct elf_dyn_relocs *p;
2040
2041 eh = (struct elf_x86_64_link_hash_entry *) h;
2042
2043 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
2044 if (p->sec == sec)
2045 {
2046 /* Everything must go for SEC. */
2047 *pp = p->next;
2048 break;
2049 }
2050 }
2051
2052 r_type = ELF32_R_TYPE (rel->r_info);
2053 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
2054 symtab_hdr, sym_hashes,
2055 &r_type, GOT_UNKNOWN,
2056 rel, relend, h, r_symndx))
2057 return FALSE;
2058
2059 switch (r_type)
2060 {
2061 case R_X86_64_TLSLD:
2062 if (htab->tls_ld_got.refcount > 0)
2063 htab->tls_ld_got.refcount -= 1;
2064 break;
2065
2066 case R_X86_64_TLSGD:
2067 case R_X86_64_GOTPC32_TLSDESC:
2068 case R_X86_64_TLSDESC_CALL:
2069 case R_X86_64_GOTTPOFF:
2070 case R_X86_64_GOT32:
2071 case R_X86_64_GOTPCREL:
2072 case R_X86_64_GOT64:
2073 case R_X86_64_GOTPCREL64:
2074 case R_X86_64_GOTPLT64:
2075 if (h != NULL)
2076 {
2077 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2078 h->plt.refcount -= 1;
2079 if (h->got.refcount > 0)
2080 h->got.refcount -= 1;
2081 if (h->type == STT_GNU_IFUNC)
2082 {
2083 if (h->plt.refcount > 0)
2084 h->plt.refcount -= 1;
2085 }
2086 }
2087 else if (local_got_refcounts != NULL)
2088 {
2089 if (local_got_refcounts[r_symndx] > 0)
2090 local_got_refcounts[r_symndx] -= 1;
2091 }
2092 break;
2093
2094 case R_X86_64_8:
2095 case R_X86_64_16:
2096 case R_X86_64_32:
2097 case R_X86_64_64:
2098 case R_X86_64_32S:
2099 case R_X86_64_PC8:
2100 case R_X86_64_PC16:
2101 case R_X86_64_PC32:
2102 case R_X86_64_PC64:
2103 if (info->shared
2104 && (h == NULL || h->type != STT_GNU_IFUNC))
2105 break;
2106 /* Fall thru */
2107
2108 case R_X86_64_PLT32:
2109 case R_X86_64_PLTOFF64:
2110 if (h != NULL)
2111 {
2112 if (h->plt.refcount > 0)
2113 h->plt.refcount -= 1;
2114 }
2115 break;
2116
2117 default:
2118 break;
2119 }
2120 }
2121
2122 return TRUE;
2123 }
2124
2125 /* Adjust a symbol defined by a dynamic object and referenced by a
2126 regular object. The current definition is in some section of the
2127 dynamic object, but we're not including those sections. We have to
2128 change the definition to something the rest of the link can
2129 understand. */
2130
2131 static bfd_boolean
2132 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2133 struct elf_link_hash_entry *h)
2134 {
2135 struct elf_x86_64_link_hash_table *htab;
2136 asection *s;
2137
2138 /* STT_GNU_IFUNC symbol must go through PLT. */
2139 if (h->type == STT_GNU_IFUNC)
2140 {
2141 if (h->plt.refcount <= 0)
2142 {
2143 h->plt.offset = (bfd_vma) -1;
2144 h->needs_plt = 0;
2145 }
2146 return TRUE;
2147 }
2148
2149 /* If this is a function, put it in the procedure linkage table. We
2150 will fill in the contents of the procedure linkage table later,
2151 when we know the address of the .got section. */
2152 if (h->type == STT_FUNC
2153 || h->needs_plt)
2154 {
2155 if (h->plt.refcount <= 0
2156 || SYMBOL_CALLS_LOCAL (info, h)
2157 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2158 && h->root.type == bfd_link_hash_undefweak))
2159 {
2160 /* This case can occur if we saw a PLT32 reloc in an input
2161 file, but the symbol was never referred to by a dynamic
2162 object, or if all references were garbage collected. In
2163 such a case, we don't actually need to build a procedure
2164 linkage table, and we can just do a PC32 reloc instead. */
2165 h->plt.offset = (bfd_vma) -1;
2166 h->needs_plt = 0;
2167 }
2168
2169 return TRUE;
2170 }
2171 else
2172 /* It's possible that we incorrectly decided a .plt reloc was
2173 needed for an R_X86_64_PC32 reloc to a non-function sym in
2174 check_relocs. We can't decide accurately between function and
2175 non-function syms in check-relocs; Objects loaded later in
2176 the link may change h->type. So fix it now. */
2177 h->plt.offset = (bfd_vma) -1;
2178
2179 /* If this is a weak symbol, and there is a real definition, the
2180 processor independent code will have arranged for us to see the
2181 real definition first, and we can just use the same value. */
2182 if (h->u.weakdef != NULL)
2183 {
2184 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2185 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2186 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2187 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2188 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2189 h->non_got_ref = h->u.weakdef->non_got_ref;
2190 return TRUE;
2191 }
2192
2193 /* This is a reference to a symbol defined by a dynamic object which
2194 is not a function. */
2195
2196 /* If we are creating a shared library, we must presume that the
2197 only references to the symbol are via the global offset table.
2198 For such cases we need not do anything here; the relocations will
2199 be handled correctly by relocate_section. */
2200 if (info->shared)
2201 return TRUE;
2202
2203 /* If there are no references to this symbol that do not use the
2204 GOT, we don't need to generate a copy reloc. */
2205 if (!h->non_got_ref)
2206 return TRUE;
2207
2208 /* If -z nocopyreloc was given, we won't generate them either. */
2209 if (info->nocopyreloc)
2210 {
2211 h->non_got_ref = 0;
2212 return TRUE;
2213 }
2214
2215 if (ELIMINATE_COPY_RELOCS)
2216 {
2217 struct elf_x86_64_link_hash_entry * eh;
2218 struct elf_dyn_relocs *p;
2219
2220 eh = (struct elf_x86_64_link_hash_entry *) h;
2221 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2222 {
2223 s = p->sec->output_section;
2224 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2225 break;
2226 }
2227
2228 /* If we didn't find any dynamic relocs in read-only sections, then
2229 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2230 if (p == NULL)
2231 {
2232 h->non_got_ref = 0;
2233 return TRUE;
2234 }
2235 }
2236
2237 /* We must allocate the symbol in our .dynbss section, which will
2238 become part of the .bss section of the executable. There will be
2239 an entry for this symbol in the .dynsym section. The dynamic
2240 object will contain position independent code, so all references
2241 from the dynamic object to this symbol will go through the global
2242 offset table. The dynamic linker will use the .dynsym entry to
2243 determine the address it must put in the global offset table, so
2244 both the dynamic object and the regular object will refer to the
2245 same memory location for the variable. */
2246
2247 htab = elf_x86_64_hash_table (info);
2248 if (htab == NULL)
2249 return FALSE;
2250
2251 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2252 to copy the initial value out of the dynamic object and into the
2253 runtime process image. */
2254 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2255 {
2256 const struct elf_backend_data *bed;
2257 bed = get_elf_backend_data (info->output_bfd);
2258 htab->srelbss->size += bed->s->sizeof_rela;
2259 h->needs_copy = 1;
2260 }
2261
2262 s = htab->sdynbss;
2263
2264 return _bfd_elf_adjust_dynamic_copy (h, s);
2265 }
2266
2267 /* Allocate space in .plt, .got and associated reloc sections for
2268 dynamic relocs. */
2269
2270 static bfd_boolean
2271 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2272 {
2273 struct bfd_link_info *info;
2274 struct elf_x86_64_link_hash_table *htab;
2275 struct elf_x86_64_link_hash_entry *eh;
2276 struct elf_dyn_relocs *p;
2277 const struct elf_backend_data *bed;
2278 unsigned int plt_entry_size;
2279
2280 if (h->root.type == bfd_link_hash_indirect)
2281 return TRUE;
2282
2283 eh = (struct elf_x86_64_link_hash_entry *) h;
2284
2285 info = (struct bfd_link_info *) inf;
2286 htab = elf_x86_64_hash_table (info);
2287 if (htab == NULL)
2288 return FALSE;
2289 bed = get_elf_backend_data (info->output_bfd);
2290 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2291
2292 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2293 here if it is defined and referenced in a non-shared object. */
2294 if (h->type == STT_GNU_IFUNC
2295 && h->def_regular)
2296 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2297 &eh->dyn_relocs,
2298 plt_entry_size,
2299 GOT_ENTRY_SIZE);
2300 else if (htab->elf.dynamic_sections_created
2301 && h->plt.refcount > 0)
2302 {
2303 /* Make sure this symbol is output as a dynamic symbol.
2304 Undefined weak syms won't yet be marked as dynamic. */
2305 if (h->dynindx == -1
2306 && !h->forced_local)
2307 {
2308 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2309 return FALSE;
2310 }
2311
2312 if (info->shared
2313 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2314 {
2315 asection *s = htab->elf.splt;
2316
2317 /* If this is the first .plt entry, make room for the special
2318 first entry. */
2319 if (s->size == 0)
2320 s->size += plt_entry_size;
2321
2322 h->plt.offset = s->size;
2323
2324 /* If this symbol is not defined in a regular file, and we are
2325 not generating a shared library, then set the symbol to this
2326 location in the .plt. This is required to make function
2327 pointers compare as equal between the normal executable and
2328 the shared library. */
2329 if (! info->shared
2330 && !h->def_regular)
2331 {
2332 h->root.u.def.section = s;
2333 h->root.u.def.value = h->plt.offset;
2334 }
2335
2336 /* Make room for this entry. */
2337 s->size += plt_entry_size;
2338
2339 /* We also need to make an entry in the .got.plt section, which
2340 will be placed in the .got section by the linker script. */
2341 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2342
2343 /* We also need to make an entry in the .rela.plt section. */
2344 htab->elf.srelplt->size += bed->s->sizeof_rela;
2345 htab->elf.srelplt->reloc_count++;
2346 }
2347 else
2348 {
2349 h->plt.offset = (bfd_vma) -1;
2350 h->needs_plt = 0;
2351 }
2352 }
2353 else
2354 {
2355 h->plt.offset = (bfd_vma) -1;
2356 h->needs_plt = 0;
2357 }
2358
2359 eh->tlsdesc_got = (bfd_vma) -1;
2360
2361 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2362 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2363 if (h->got.refcount > 0
2364 && info->executable
2365 && h->dynindx == -1
2366 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2367 {
2368 h->got.offset = (bfd_vma) -1;
2369 }
2370 else if (h->got.refcount > 0)
2371 {
2372 asection *s;
2373 bfd_boolean dyn;
2374 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2375
2376 /* Make sure this symbol is output as a dynamic symbol.
2377 Undefined weak syms won't yet be marked as dynamic. */
2378 if (h->dynindx == -1
2379 && !h->forced_local)
2380 {
2381 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2382 return FALSE;
2383 }
2384
2385 if (GOT_TLS_GDESC_P (tls_type))
2386 {
2387 eh->tlsdesc_got = htab->elf.sgotplt->size
2388 - elf_x86_64_compute_jump_table_size (htab);
2389 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2390 h->got.offset = (bfd_vma) -2;
2391 }
2392 if (! GOT_TLS_GDESC_P (tls_type)
2393 || GOT_TLS_GD_P (tls_type))
2394 {
2395 s = htab->elf.sgot;
2396 h->got.offset = s->size;
2397 s->size += GOT_ENTRY_SIZE;
2398 if (GOT_TLS_GD_P (tls_type))
2399 s->size += GOT_ENTRY_SIZE;
2400 }
2401 dyn = htab->elf.dynamic_sections_created;
2402 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2403 and two if global.
2404 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2405 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2406 || tls_type == GOT_TLS_IE)
2407 htab->elf.srelgot->size += bed->s->sizeof_rela;
2408 else if (GOT_TLS_GD_P (tls_type))
2409 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2410 else if (! GOT_TLS_GDESC_P (tls_type)
2411 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2412 || h->root.type != bfd_link_hash_undefweak)
2413 && (info->shared
2414 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2415 htab->elf.srelgot->size += bed->s->sizeof_rela;
2416 if (GOT_TLS_GDESC_P (tls_type))
2417 {
2418 htab->elf.srelplt->size += bed->s->sizeof_rela;
2419 htab->tlsdesc_plt = (bfd_vma) -1;
2420 }
2421 }
2422 else
2423 h->got.offset = (bfd_vma) -1;
2424
2425 if (eh->dyn_relocs == NULL)
2426 return TRUE;
2427
2428 /* In the shared -Bsymbolic case, discard space allocated for
2429 dynamic pc-relative relocs against symbols which turn out to be
2430 defined in regular objects. For the normal shared case, discard
2431 space for pc-relative relocs that have become local due to symbol
2432 visibility changes. */
2433
2434 if (info->shared)
2435 {
2436 /* Relocs that use pc_count are those that appear on a call
2437 insn, or certain REL relocs that can generated via assembly.
2438 We want calls to protected symbols to resolve directly to the
2439 function rather than going via the plt. If people want
2440 function pointer comparisons to work as expected then they
2441 should avoid writing weird assembly. */
2442 if (SYMBOL_CALLS_LOCAL (info, h))
2443 {
2444 struct elf_dyn_relocs **pp;
2445
2446 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2447 {
2448 p->count -= p->pc_count;
2449 p->pc_count = 0;
2450 if (p->count == 0)
2451 *pp = p->next;
2452 else
2453 pp = &p->next;
2454 }
2455 }
2456
2457 /* Also discard relocs on undefined weak syms with non-default
2458 visibility. */
2459 if (eh->dyn_relocs != NULL
2460 && h->root.type == bfd_link_hash_undefweak)
2461 {
2462 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2463 eh->dyn_relocs = NULL;
2464
2465 /* Make sure undefined weak symbols are output as a dynamic
2466 symbol in PIEs. */
2467 else if (h->dynindx == -1
2468 && ! h->forced_local
2469 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2470 return FALSE;
2471 }
2472
2473 }
2474 else if (ELIMINATE_COPY_RELOCS)
2475 {
2476 /* For the non-shared case, discard space for relocs against
2477 symbols which turn out to need copy relocs or are not
2478 dynamic. */
2479
2480 if (!h->non_got_ref
2481 && ((h->def_dynamic
2482 && !h->def_regular)
2483 || (htab->elf.dynamic_sections_created
2484 && (h->root.type == bfd_link_hash_undefweak
2485 || h->root.type == bfd_link_hash_undefined))))
2486 {
2487 /* Make sure this symbol is output as a dynamic symbol.
2488 Undefined weak syms won't yet be marked as dynamic. */
2489 if (h->dynindx == -1
2490 && ! h->forced_local
2491 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2492 return FALSE;
2493
2494 /* If that succeeded, we know we'll be keeping all the
2495 relocs. */
2496 if (h->dynindx != -1)
2497 goto keep;
2498 }
2499
2500 eh->dyn_relocs = NULL;
2501
2502 keep: ;
2503 }
2504
2505 /* Finally, allocate space. */
2506 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2507 {
2508 asection * sreloc;
2509
2510 sreloc = elf_section_data (p->sec)->sreloc;
2511
2512 BFD_ASSERT (sreloc != NULL);
2513
2514 sreloc->size += p->count * bed->s->sizeof_rela;
2515 }
2516
2517 return TRUE;
2518 }
2519
2520 /* Allocate space in .plt, .got and associated reloc sections for
2521 local dynamic relocs. */
2522
2523 static bfd_boolean
2524 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2525 {
2526 struct elf_link_hash_entry *h
2527 = (struct elf_link_hash_entry *) *slot;
2528
2529 if (h->type != STT_GNU_IFUNC
2530 || !h->def_regular
2531 || !h->ref_regular
2532 || !h->forced_local
2533 || h->root.type != bfd_link_hash_defined)
2534 abort ();
2535
2536 return elf_x86_64_allocate_dynrelocs (h, inf);
2537 }
2538
2539 /* Find any dynamic relocs that apply to read-only sections. */
2540
2541 static bfd_boolean
2542 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2543 void * inf)
2544 {
2545 struct elf_x86_64_link_hash_entry *eh;
2546 struct elf_dyn_relocs *p;
2547
2548 /* Skip local IFUNC symbols. */
2549 if (h->forced_local && h->type == STT_GNU_IFUNC)
2550 return TRUE;
2551
2552 eh = (struct elf_x86_64_link_hash_entry *) h;
2553 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2554 {
2555 asection *s = p->sec->output_section;
2556
2557 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2558 {
2559 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2560
2561 info->flags |= DF_TEXTREL;
2562
2563 if (info->warn_shared_textrel && info->shared)
2564 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2565 p->sec->owner, h->root.root.string,
2566 p->sec);
2567
2568 /* Not an error, just cut short the traversal. */
2569 return FALSE;
2570 }
2571 }
2572 return TRUE;
2573 }
2574
2575 /* Set the sizes of the dynamic sections. */
2576
2577 static bfd_boolean
2578 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2579 struct bfd_link_info *info)
2580 {
2581 struct elf_x86_64_link_hash_table *htab;
2582 bfd *dynobj;
2583 asection *s;
2584 bfd_boolean relocs;
2585 bfd *ibfd;
2586 const struct elf_backend_data *bed;
2587
2588 htab = elf_x86_64_hash_table (info);
2589 if (htab == NULL)
2590 return FALSE;
2591 bed = get_elf_backend_data (output_bfd);
2592
2593 dynobj = htab->elf.dynobj;
2594 if (dynobj == NULL)
2595 abort ();
2596
2597 if (htab->elf.dynamic_sections_created)
2598 {
2599 /* Set the contents of the .interp section to the interpreter. */
2600 if (info->executable)
2601 {
2602 s = bfd_get_linker_section (dynobj, ".interp");
2603 if (s == NULL)
2604 abort ();
2605 s->size = htab->dynamic_interpreter_size;
2606 s->contents = (unsigned char *) htab->dynamic_interpreter;
2607 }
2608 }
2609
2610 /* Set up .got offsets for local syms, and space for local dynamic
2611 relocs. */
2612 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2613 {
2614 bfd_signed_vma *local_got;
2615 bfd_signed_vma *end_local_got;
2616 char *local_tls_type;
2617 bfd_vma *local_tlsdesc_gotent;
2618 bfd_size_type locsymcount;
2619 Elf_Internal_Shdr *symtab_hdr;
2620 asection *srel;
2621
2622 if (! is_x86_64_elf (ibfd))
2623 continue;
2624
2625 for (s = ibfd->sections; s != NULL; s = s->next)
2626 {
2627 struct elf_dyn_relocs *p;
2628
2629 for (p = (struct elf_dyn_relocs *)
2630 (elf_section_data (s)->local_dynrel);
2631 p != NULL;
2632 p = p->next)
2633 {
2634 if (!bfd_is_abs_section (p->sec)
2635 && bfd_is_abs_section (p->sec->output_section))
2636 {
2637 /* Input section has been discarded, either because
2638 it is a copy of a linkonce section or due to
2639 linker script /DISCARD/, so we'll be discarding
2640 the relocs too. */
2641 }
2642 else if (p->count != 0)
2643 {
2644 srel = elf_section_data (p->sec)->sreloc;
2645 srel->size += p->count * bed->s->sizeof_rela;
2646 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2647 && (info->flags & DF_TEXTREL) == 0)
2648 {
2649 info->flags |= DF_TEXTREL;
2650 if (info->warn_shared_textrel && info->shared)
2651 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2652 p->sec->owner, p->sec);
2653 }
2654 }
2655 }
2656 }
2657
2658 local_got = elf_local_got_refcounts (ibfd);
2659 if (!local_got)
2660 continue;
2661
2662 symtab_hdr = &elf_symtab_hdr (ibfd);
2663 locsymcount = symtab_hdr->sh_info;
2664 end_local_got = local_got + locsymcount;
2665 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2666 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2667 s = htab->elf.sgot;
2668 srel = htab->elf.srelgot;
2669 for (; local_got < end_local_got;
2670 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2671 {
2672 *local_tlsdesc_gotent = (bfd_vma) -1;
2673 if (*local_got > 0)
2674 {
2675 if (GOT_TLS_GDESC_P (*local_tls_type))
2676 {
2677 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2678 - elf_x86_64_compute_jump_table_size (htab);
2679 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2680 *local_got = (bfd_vma) -2;
2681 }
2682 if (! GOT_TLS_GDESC_P (*local_tls_type)
2683 || GOT_TLS_GD_P (*local_tls_type))
2684 {
2685 *local_got = s->size;
2686 s->size += GOT_ENTRY_SIZE;
2687 if (GOT_TLS_GD_P (*local_tls_type))
2688 s->size += GOT_ENTRY_SIZE;
2689 }
2690 if (info->shared
2691 || GOT_TLS_GD_ANY_P (*local_tls_type)
2692 || *local_tls_type == GOT_TLS_IE)
2693 {
2694 if (GOT_TLS_GDESC_P (*local_tls_type))
2695 {
2696 htab->elf.srelplt->size
2697 += bed->s->sizeof_rela;
2698 htab->tlsdesc_plt = (bfd_vma) -1;
2699 }
2700 if (! GOT_TLS_GDESC_P (*local_tls_type)
2701 || GOT_TLS_GD_P (*local_tls_type))
2702 srel->size += bed->s->sizeof_rela;
2703 }
2704 }
2705 else
2706 *local_got = (bfd_vma) -1;
2707 }
2708 }
2709
2710 if (htab->tls_ld_got.refcount > 0)
2711 {
2712 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2713 relocs. */
2714 htab->tls_ld_got.offset = htab->elf.sgot->size;
2715 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2716 htab->elf.srelgot->size += bed->s->sizeof_rela;
2717 }
2718 else
2719 htab->tls_ld_got.offset = -1;
2720
2721 /* Allocate global sym .plt and .got entries, and space for global
2722 sym dynamic relocs. */
2723 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2724 info);
2725
2726 /* Allocate .plt and .got entries, and space for local symbols. */
2727 htab_traverse (htab->loc_hash_table,
2728 elf_x86_64_allocate_local_dynrelocs,
2729 info);
2730
2731 /* For every jump slot reserved in the sgotplt, reloc_count is
2732 incremented. However, when we reserve space for TLS descriptors,
2733 it's not incremented, so in order to compute the space reserved
2734 for them, it suffices to multiply the reloc count by the jump
2735 slot size.
2736
2737 PR ld/13302: We start next_irelative_index at the end of .rela.plt
2738 so that R_X86_64_IRELATIVE entries come last. */
2739 if (htab->elf.srelplt)
2740 {
2741 htab->sgotplt_jump_table_size
2742 = elf_x86_64_compute_jump_table_size (htab);
2743 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
2744 }
2745 else if (htab->elf.irelplt)
2746 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
2747
2748 if (htab->tlsdesc_plt)
2749 {
2750 /* If we're not using lazy TLS relocations, don't generate the
2751 PLT and GOT entries they require. */
2752 if ((info->flags & DF_BIND_NOW))
2753 htab->tlsdesc_plt = 0;
2754 else
2755 {
2756 htab->tlsdesc_got = htab->elf.sgot->size;
2757 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2758 /* Reserve room for the initial entry.
2759 FIXME: we could probably do away with it in this case. */
2760 if (htab->elf.splt->size == 0)
2761 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2762 htab->tlsdesc_plt = htab->elf.splt->size;
2763 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2764 }
2765 }
2766
2767 if (htab->elf.sgotplt)
2768 {
2769 struct elf_link_hash_entry *got;
2770 got = elf_link_hash_lookup (elf_hash_table (info),
2771 "_GLOBAL_OFFSET_TABLE_",
2772 FALSE, FALSE, FALSE);
2773
2774 /* Don't allocate .got.plt section if there are no GOT nor PLT
2775 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2776 if ((got == NULL
2777 || !got->ref_regular_nonweak)
2778 && (htab->elf.sgotplt->size
2779 == get_elf_backend_data (output_bfd)->got_header_size)
2780 && (htab->elf.splt == NULL
2781 || htab->elf.splt->size == 0)
2782 && (htab->elf.sgot == NULL
2783 || htab->elf.sgot->size == 0)
2784 && (htab->elf.iplt == NULL
2785 || htab->elf.iplt->size == 0)
2786 && (htab->elf.igotplt == NULL
2787 || htab->elf.igotplt->size == 0))
2788 htab->elf.sgotplt->size = 0;
2789 }
2790
2791 if (htab->plt_eh_frame != NULL
2792 && htab->elf.splt != NULL
2793 && htab->elf.splt->size != 0
2794 && !bfd_is_abs_section (htab->elf.splt->output_section)
2795 && _bfd_elf_eh_frame_present (info))
2796 {
2797 const struct elf_x86_64_backend_data *arch_data
2798 = (const struct elf_x86_64_backend_data *) bed->arch_data;
2799 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
2800 }
2801
2802 /* We now have determined the sizes of the various dynamic sections.
2803 Allocate memory for them. */
2804 relocs = FALSE;
2805 for (s = dynobj->sections; s != NULL; s = s->next)
2806 {
2807 if ((s->flags & SEC_LINKER_CREATED) == 0)
2808 continue;
2809
2810 if (s == htab->elf.splt
2811 || s == htab->elf.sgot
2812 || s == htab->elf.sgotplt
2813 || s == htab->elf.iplt
2814 || s == htab->elf.igotplt
2815 || s == htab->plt_eh_frame
2816 || s == htab->sdynbss)
2817 {
2818 /* Strip this section if we don't need it; see the
2819 comment below. */
2820 }
2821 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2822 {
2823 if (s->size != 0 && s != htab->elf.srelplt)
2824 relocs = TRUE;
2825
2826 /* We use the reloc_count field as a counter if we need
2827 to copy relocs into the output file. */
2828 if (s != htab->elf.srelplt)
2829 s->reloc_count = 0;
2830 }
2831 else
2832 {
2833 /* It's not one of our sections, so don't allocate space. */
2834 continue;
2835 }
2836
2837 if (s->size == 0)
2838 {
2839 /* If we don't need this section, strip it from the
2840 output file. This is mostly to handle .rela.bss and
2841 .rela.plt. We must create both sections in
2842 create_dynamic_sections, because they must be created
2843 before the linker maps input sections to output
2844 sections. The linker does that before
2845 adjust_dynamic_symbol is called, and it is that
2846 function which decides whether anything needs to go
2847 into these sections. */
2848
2849 s->flags |= SEC_EXCLUDE;
2850 continue;
2851 }
2852
2853 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2854 continue;
2855
2856 /* Allocate memory for the section contents. We use bfd_zalloc
2857 here in case unused entries are not reclaimed before the
2858 section's contents are written out. This should not happen,
2859 but this way if it does, we get a R_X86_64_NONE reloc instead
2860 of garbage. */
2861 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2862 if (s->contents == NULL)
2863 return FALSE;
2864 }
2865
2866 if (htab->plt_eh_frame != NULL
2867 && htab->plt_eh_frame->contents != NULL)
2868 {
2869 const struct elf_x86_64_backend_data *arch_data
2870 = (const struct elf_x86_64_backend_data *) bed->arch_data;
2871
2872 memcpy (htab->plt_eh_frame->contents,
2873 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
2874 bfd_put_32 (dynobj, htab->elf.splt->size,
2875 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
2876 }
2877
2878 if (htab->elf.dynamic_sections_created)
2879 {
2880 /* Add some entries to the .dynamic section. We fill in the
2881 values later, in elf_x86_64_finish_dynamic_sections, but we
2882 must add the entries now so that we get the correct size for
2883 the .dynamic section. The DT_DEBUG entry is filled in by the
2884 dynamic linker and used by the debugger. */
2885 #define add_dynamic_entry(TAG, VAL) \
2886 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2887
2888 if (info->executable)
2889 {
2890 if (!add_dynamic_entry (DT_DEBUG, 0))
2891 return FALSE;
2892 }
2893
2894 if (htab->elf.splt->size != 0)
2895 {
2896 if (!add_dynamic_entry (DT_PLTGOT, 0)
2897 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2898 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2899 || !add_dynamic_entry (DT_JMPREL, 0))
2900 return FALSE;
2901
2902 if (htab->tlsdesc_plt
2903 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2904 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2905 return FALSE;
2906 }
2907
2908 if (relocs)
2909 {
2910 if (!add_dynamic_entry (DT_RELA, 0)
2911 || !add_dynamic_entry (DT_RELASZ, 0)
2912 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
2913 return FALSE;
2914
2915 /* If any dynamic relocs apply to a read-only section,
2916 then we need a DT_TEXTREL entry. */
2917 if ((info->flags & DF_TEXTREL) == 0)
2918 elf_link_hash_traverse (&htab->elf,
2919 elf_x86_64_readonly_dynrelocs,
2920 info);
2921
2922 if ((info->flags & DF_TEXTREL) != 0)
2923 {
2924 if (!add_dynamic_entry (DT_TEXTREL, 0))
2925 return FALSE;
2926 }
2927 }
2928 }
2929 #undef add_dynamic_entry
2930
2931 return TRUE;
2932 }
2933
2934 static bfd_boolean
2935 elf_x86_64_always_size_sections (bfd *output_bfd,
2936 struct bfd_link_info *info)
2937 {
2938 asection *tls_sec = elf_hash_table (info)->tls_sec;
2939
2940 if (tls_sec)
2941 {
2942 struct elf_link_hash_entry *tlsbase;
2943
2944 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2945 "_TLS_MODULE_BASE_",
2946 FALSE, FALSE, FALSE);
2947
2948 if (tlsbase && tlsbase->type == STT_TLS)
2949 {
2950 struct elf_x86_64_link_hash_table *htab;
2951 struct bfd_link_hash_entry *bh = NULL;
2952 const struct elf_backend_data *bed
2953 = get_elf_backend_data (output_bfd);
2954
2955 htab = elf_x86_64_hash_table (info);
2956 if (htab == NULL)
2957 return FALSE;
2958
2959 if (!(_bfd_generic_link_add_one_symbol
2960 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2961 tls_sec, 0, NULL, FALSE,
2962 bed->collect, &bh)))
2963 return FALSE;
2964
2965 htab->tls_module_base = bh;
2966
2967 tlsbase = (struct elf_link_hash_entry *)bh;
2968 tlsbase->def_regular = 1;
2969 tlsbase->other = STV_HIDDEN;
2970 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2971 }
2972 }
2973
2974 return TRUE;
2975 }
2976
2977 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2978 executables. Rather than setting it to the beginning of the TLS
2979 section, we have to set it to the end. This function may be called
2980 multiple times, it is idempotent. */
2981
2982 static void
2983 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
2984 {
2985 struct elf_x86_64_link_hash_table *htab;
2986 struct bfd_link_hash_entry *base;
2987
2988 if (!info->executable)
2989 return;
2990
2991 htab = elf_x86_64_hash_table (info);
2992 if (htab == NULL)
2993 return;
2994
2995 base = htab->tls_module_base;
2996 if (base == NULL)
2997 return;
2998
2999 base->u.def.value = htab->elf.tls_size;
3000 }
3001
3002 /* Return the base VMA address which should be subtracted from real addresses
3003 when resolving @dtpoff relocation.
3004 This is PT_TLS segment p_vaddr. */
3005
3006 static bfd_vma
3007 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3008 {
3009 /* If tls_sec is NULL, we should have signalled an error already. */
3010 if (elf_hash_table (info)->tls_sec == NULL)
3011 return 0;
3012 return elf_hash_table (info)->tls_sec->vma;
3013 }
3014
3015 /* Return the relocation value for @tpoff relocation
3016 if STT_TLS virtual address is ADDRESS. */
3017
3018 static bfd_vma
3019 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3020 {
3021 struct elf_link_hash_table *htab = elf_hash_table (info);
3022 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3023 bfd_vma static_tls_size;
3024
3025 /* If tls_segment is NULL, we should have signalled an error already. */
3026 if (htab->tls_sec == NULL)
3027 return 0;
3028
3029 /* Consider special static TLS alignment requirements. */
3030 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3031 return address - static_tls_size - htab->tls_sec->vma;
3032 }
3033
3034 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3035 branch? */
3036
3037 static bfd_boolean
3038 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3039 {
3040 /* Opcode Instruction
3041 0xe8 call
3042 0xe9 jump
3043 0x0f 0x8x conditional jump */
3044 return ((offset > 0
3045 && (contents [offset - 1] == 0xe8
3046 || contents [offset - 1] == 0xe9))
3047 || (offset > 1
3048 && contents [offset - 2] == 0x0f
3049 && (contents [offset - 1] & 0xf0) == 0x80));
3050 }
3051
3052 /* Relocate an x86_64 ELF section. */
3053
3054 static bfd_boolean
3055 elf_x86_64_relocate_section (bfd *output_bfd,
3056 struct bfd_link_info *info,
3057 bfd *input_bfd,
3058 asection *input_section,
3059 bfd_byte *contents,
3060 Elf_Internal_Rela *relocs,
3061 Elf_Internal_Sym *local_syms,
3062 asection **local_sections)
3063 {
3064 struct elf_x86_64_link_hash_table *htab;
3065 Elf_Internal_Shdr *symtab_hdr;
3066 struct elf_link_hash_entry **sym_hashes;
3067 bfd_vma *local_got_offsets;
3068 bfd_vma *local_tlsdesc_gotents;
3069 Elf_Internal_Rela *rel;
3070 Elf_Internal_Rela *relend;
3071 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3072
3073 BFD_ASSERT (is_x86_64_elf (input_bfd));
3074
3075 htab = elf_x86_64_hash_table (info);
3076 if (htab == NULL)
3077 return FALSE;
3078 symtab_hdr = &elf_symtab_hdr (input_bfd);
3079 sym_hashes = elf_sym_hashes (input_bfd);
3080 local_got_offsets = elf_local_got_offsets (input_bfd);
3081 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3082
3083 elf_x86_64_set_tls_module_base (info);
3084
3085 rel = relocs;
3086 relend = relocs + input_section->reloc_count;
3087 for (; rel < relend; rel++)
3088 {
3089 unsigned int r_type;
3090 reloc_howto_type *howto;
3091 unsigned long r_symndx;
3092 struct elf_link_hash_entry *h;
3093 Elf_Internal_Sym *sym;
3094 asection *sec;
3095 bfd_vma off, offplt;
3096 bfd_vma relocation;
3097 bfd_boolean unresolved_reloc;
3098 bfd_reloc_status_type r;
3099 int tls_type;
3100 asection *base_got;
3101
3102 r_type = ELF32_R_TYPE (rel->r_info);
3103 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3104 || r_type == (int) R_X86_64_GNU_VTENTRY)
3105 continue;
3106
3107 if (r_type >= R_X86_64_max)
3108 {
3109 bfd_set_error (bfd_error_bad_value);
3110 return FALSE;
3111 }
3112
3113 if (r_type != (int) R_X86_64_32
3114 || ABI_64_P (output_bfd))
3115 howto = x86_64_elf_howto_table + r_type;
3116 else
3117 howto = (x86_64_elf_howto_table
3118 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3119 r_symndx = htab->r_sym (rel->r_info);
3120 h = NULL;
3121 sym = NULL;
3122 sec = NULL;
3123 unresolved_reloc = FALSE;
3124 if (r_symndx < symtab_hdr->sh_info)
3125 {
3126 sym = local_syms + r_symndx;
3127 sec = local_sections[r_symndx];
3128
3129 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3130 &sec, rel);
3131
3132 /* Relocate against local STT_GNU_IFUNC symbol. */
3133 if (!info->relocatable
3134 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3135 {
3136 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3137 rel, FALSE);
3138 if (h == NULL)
3139 abort ();
3140
3141 /* Set STT_GNU_IFUNC symbol value. */
3142 h->root.u.def.value = sym->st_value;
3143 h->root.u.def.section = sec;
3144 }
3145 }
3146 else
3147 {
3148 bfd_boolean warned ATTRIBUTE_UNUSED;
3149
3150 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3151 r_symndx, symtab_hdr, sym_hashes,
3152 h, sec, relocation,
3153 unresolved_reloc, warned);
3154 }
3155
3156 if (sec != NULL && discarded_section (sec))
3157 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3158 rel, 1, relend, howto, 0, contents);
3159
3160 if (info->relocatable)
3161 continue;
3162
3163 if (rel->r_addend == 0
3164 && r_type == R_X86_64_64
3165 && !ABI_64_P (output_bfd))
3166 {
3167 /* For x32, treat R_X86_64_64 like R_X86_64_32 and zero-extend
3168 it to 64bit if addend is zero. */
3169 r_type = R_X86_64_32;
3170 memset (contents + rel->r_offset + 4, 0, 4);
3171 }
3172
3173 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3174 it here if it is defined in a non-shared object. */
3175 if (h != NULL
3176 && h->type == STT_GNU_IFUNC
3177 && h->def_regular)
3178 {
3179 asection *plt;
3180 bfd_vma plt_index;
3181 const char *name;
3182
3183 if ((input_section->flags & SEC_ALLOC) == 0
3184 || h->plt.offset == (bfd_vma) -1)
3185 abort ();
3186
3187 /* STT_GNU_IFUNC symbol must go through PLT. */
3188 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3189 relocation = (plt->output_section->vma
3190 + plt->output_offset + h->plt.offset);
3191
3192 switch (r_type)
3193 {
3194 default:
3195 if (h->root.root.string)
3196 name = h->root.root.string;
3197 else
3198 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3199 NULL);
3200 (*_bfd_error_handler)
3201 (_("%B: relocation %s against STT_GNU_IFUNC "
3202 "symbol `%s' isn't handled by %s"), input_bfd,
3203 x86_64_elf_howto_table[r_type].name,
3204 name, __FUNCTION__);
3205 bfd_set_error (bfd_error_bad_value);
3206 return FALSE;
3207
3208 case R_X86_64_32S:
3209 if (info->shared)
3210 abort ();
3211 goto do_relocation;
3212
3213 case R_X86_64_32:
3214 if (ABI_64_P (output_bfd))
3215 goto do_relocation;
3216 /* FALLTHROUGH */
3217 case R_X86_64_64:
3218 if (rel->r_addend != 0)
3219 {
3220 if (h->root.root.string)
3221 name = h->root.root.string;
3222 else
3223 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3224 sym, NULL);
3225 (*_bfd_error_handler)
3226 (_("%B: relocation %s against STT_GNU_IFUNC "
3227 "symbol `%s' has non-zero addend: %d"),
3228 input_bfd, x86_64_elf_howto_table[r_type].name,
3229 name, rel->r_addend);
3230 bfd_set_error (bfd_error_bad_value);
3231 return FALSE;
3232 }
3233
3234 /* Generate dynamic relcoation only when there is a
3235 non-GOT reference in a shared object. */
3236 if (info->shared && h->non_got_ref)
3237 {
3238 Elf_Internal_Rela outrel;
3239 asection *sreloc;
3240
3241 /* Need a dynamic relocation to get the real function
3242 address. */
3243 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3244 info,
3245 input_section,
3246 rel->r_offset);
3247 if (outrel.r_offset == (bfd_vma) -1
3248 || outrel.r_offset == (bfd_vma) -2)
3249 abort ();
3250
3251 outrel.r_offset += (input_section->output_section->vma
3252 + input_section->output_offset);
3253
3254 if (h->dynindx == -1
3255 || h->forced_local
3256 || info->executable)
3257 {
3258 /* This symbol is resolved locally. */
3259 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3260 outrel.r_addend = (h->root.u.def.value
3261 + h->root.u.def.section->output_section->vma
3262 + h->root.u.def.section->output_offset);
3263 }
3264 else
3265 {
3266 outrel.r_info = htab->r_info (h->dynindx, r_type);
3267 outrel.r_addend = 0;
3268 }
3269
3270 sreloc = htab->elf.irelifunc;
3271 elf_append_rela (output_bfd, sreloc, &outrel);
3272
3273 /* If this reloc is against an external symbol, we
3274 do not want to fiddle with the addend. Otherwise,
3275 we need to include the symbol value so that it
3276 becomes an addend for the dynamic reloc. For an
3277 internal symbol, we have updated addend. */
3278 continue;
3279 }
3280 /* FALLTHROUGH */
3281 case R_X86_64_PC32:
3282 case R_X86_64_PC64:
3283 case R_X86_64_PLT32:
3284 goto do_relocation;
3285
3286 case R_X86_64_GOTPCREL:
3287 case R_X86_64_GOTPCREL64:
3288 base_got = htab->elf.sgot;
3289 off = h->got.offset;
3290
3291 if (base_got == NULL)
3292 abort ();
3293
3294 if (off == (bfd_vma) -1)
3295 {
3296 /* We can't use h->got.offset here to save state, or
3297 even just remember the offset, as finish_dynamic_symbol
3298 would use that as offset into .got. */
3299
3300 if (htab->elf.splt != NULL)
3301 {
3302 plt_index = h->plt.offset / plt_entry_size - 1;
3303 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3304 base_got = htab->elf.sgotplt;
3305 }
3306 else
3307 {
3308 plt_index = h->plt.offset / plt_entry_size;
3309 off = plt_index * GOT_ENTRY_SIZE;
3310 base_got = htab->elf.igotplt;
3311 }
3312
3313 if (h->dynindx == -1
3314 || h->forced_local
3315 || info->symbolic)
3316 {
3317 /* This references the local defitionion. We must
3318 initialize this entry in the global offset table.
3319 Since the offset must always be a multiple of 8,
3320 we use the least significant bit to record
3321 whether we have initialized it already.
3322
3323 When doing a dynamic link, we create a .rela.got
3324 relocation entry to initialize the value. This
3325 is done in the finish_dynamic_symbol routine. */
3326 if ((off & 1) != 0)
3327 off &= ~1;
3328 else
3329 {
3330 bfd_put_64 (output_bfd, relocation,
3331 base_got->contents + off);
3332 /* Note that this is harmless for the GOTPLT64
3333 case, as -1 | 1 still is -1. */
3334 h->got.offset |= 1;
3335 }
3336 }
3337 }
3338
3339 relocation = (base_got->output_section->vma
3340 + base_got->output_offset + off);
3341
3342 goto do_relocation;
3343 }
3344 }
3345
3346 /* When generating a shared object, the relocations handled here are
3347 copied into the output file to be resolved at run time. */
3348 switch (r_type)
3349 {
3350 case R_X86_64_GOT32:
3351 case R_X86_64_GOT64:
3352 /* Relocation is to the entry for this symbol in the global
3353 offset table. */
3354 case R_X86_64_GOTPCREL:
3355 case R_X86_64_GOTPCREL64:
3356 /* Use global offset table entry as symbol value. */
3357 case R_X86_64_GOTPLT64:
3358 /* This is the same as GOT64 for relocation purposes, but
3359 indicates the existence of a PLT entry. The difficulty is,
3360 that we must calculate the GOT slot offset from the PLT
3361 offset, if this symbol got a PLT entry (it was global).
3362 Additionally if it's computed from the PLT entry, then that
3363 GOT offset is relative to .got.plt, not to .got. */
3364 base_got = htab->elf.sgot;
3365
3366 if (htab->elf.sgot == NULL)
3367 abort ();
3368
3369 if (h != NULL)
3370 {
3371 bfd_boolean dyn;
3372
3373 off = h->got.offset;
3374 if (h->needs_plt
3375 && h->plt.offset != (bfd_vma)-1
3376 && off == (bfd_vma)-1)
3377 {
3378 /* We can't use h->got.offset here to save
3379 state, or even just remember the offset, as
3380 finish_dynamic_symbol would use that as offset into
3381 .got. */
3382 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
3383 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3384 base_got = htab->elf.sgotplt;
3385 }
3386
3387 dyn = htab->elf.dynamic_sections_created;
3388
3389 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3390 || (info->shared
3391 && SYMBOL_REFERENCES_LOCAL (info, h))
3392 || (ELF_ST_VISIBILITY (h->other)
3393 && h->root.type == bfd_link_hash_undefweak))
3394 {
3395 /* This is actually a static link, or it is a -Bsymbolic
3396 link and the symbol is defined locally, or the symbol
3397 was forced to be local because of a version file. We
3398 must initialize this entry in the global offset table.
3399 Since the offset must always be a multiple of 8, we
3400 use the least significant bit to record whether we
3401 have initialized it already.
3402
3403 When doing a dynamic link, we create a .rela.got
3404 relocation entry to initialize the value. This is
3405 done in the finish_dynamic_symbol routine. */
3406 if ((off & 1) != 0)
3407 off &= ~1;
3408 else
3409 {
3410 bfd_put_64 (output_bfd, relocation,
3411 base_got->contents + off);
3412 /* Note that this is harmless for the GOTPLT64 case,
3413 as -1 | 1 still is -1. */
3414 h->got.offset |= 1;
3415 }
3416 }
3417 else
3418 unresolved_reloc = FALSE;
3419 }
3420 else
3421 {
3422 if (local_got_offsets == NULL)
3423 abort ();
3424
3425 off = local_got_offsets[r_symndx];
3426
3427 /* The offset must always be a multiple of 8. We use
3428 the least significant bit to record whether we have
3429 already generated the necessary reloc. */
3430 if ((off & 1) != 0)
3431 off &= ~1;
3432 else
3433 {
3434 bfd_put_64 (output_bfd, relocation,
3435 base_got->contents + off);
3436
3437 if (info->shared)
3438 {
3439 asection *s;
3440 Elf_Internal_Rela outrel;
3441
3442 /* We need to generate a R_X86_64_RELATIVE reloc
3443 for the dynamic linker. */
3444 s = htab->elf.srelgot;
3445 if (s == NULL)
3446 abort ();
3447
3448 outrel.r_offset = (base_got->output_section->vma
3449 + base_got->output_offset
3450 + off);
3451 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3452 outrel.r_addend = relocation;
3453 elf_append_rela (output_bfd, s, &outrel);
3454 }
3455
3456 local_got_offsets[r_symndx] |= 1;
3457 }
3458 }
3459
3460 if (off >= (bfd_vma) -2)
3461 abort ();
3462
3463 if (r_type == R_X86_64_GOTPCREL
3464 && h->def_regular
3465 && SYMBOL_REFERENCES_LOCAL (info, h)
3466 && bfd_get_8 (input_bfd,
3467 contents + rel->r_offset - 2) == 0x8b)
3468 {
3469 /* Convert
3470 mov foo@GOTPCREL(%rip), %reg
3471 to
3472 lea foo(%rip), %reg
3473 */
3474 bfd_put_8 (output_bfd, 0x8d,
3475 contents + rel->r_offset - 2);
3476 break;
3477 }
3478
3479 relocation = base_got->output_section->vma
3480 + base_got->output_offset + off;
3481 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3482 relocation -= htab->elf.sgotplt->output_section->vma
3483 - htab->elf.sgotplt->output_offset;
3484
3485 break;
3486
3487 case R_X86_64_GOTOFF64:
3488 /* Relocation is relative to the start of the global offset
3489 table. */
3490
3491 /* Check to make sure it isn't a protected function symbol
3492 for shared library since it may not be local when used
3493 as function address. */
3494 if (!info->executable
3495 && h
3496 && !SYMBOLIC_BIND (info, h)
3497 && h->def_regular
3498 && h->type == STT_FUNC
3499 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3500 {
3501 (*_bfd_error_handler)
3502 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3503 input_bfd, h->root.root.string);
3504 bfd_set_error (bfd_error_bad_value);
3505 return FALSE;
3506 }
3507
3508 /* Note that sgot is not involved in this
3509 calculation. We always want the start of .got.plt. If we
3510 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3511 permitted by the ABI, we might have to change this
3512 calculation. */
3513 relocation -= htab->elf.sgotplt->output_section->vma
3514 + htab->elf.sgotplt->output_offset;
3515 break;
3516
3517 case R_X86_64_GOTPC32:
3518 case R_X86_64_GOTPC64:
3519 /* Use global offset table as symbol value. */
3520 relocation = htab->elf.sgotplt->output_section->vma
3521 + htab->elf.sgotplt->output_offset;
3522 unresolved_reloc = FALSE;
3523 break;
3524
3525 case R_X86_64_PLTOFF64:
3526 /* Relocation is PLT entry relative to GOT. For local
3527 symbols it's the symbol itself relative to GOT. */
3528 if (h != NULL
3529 /* See PLT32 handling. */
3530 && h->plt.offset != (bfd_vma) -1
3531 && htab->elf.splt != NULL)
3532 {
3533 relocation = (htab->elf.splt->output_section->vma
3534 + htab->elf.splt->output_offset
3535 + h->plt.offset);
3536 unresolved_reloc = FALSE;
3537 }
3538
3539 relocation -= htab->elf.sgotplt->output_section->vma
3540 + htab->elf.sgotplt->output_offset;
3541 break;
3542
3543 case R_X86_64_PLT32:
3544 /* Relocation is to the entry for this symbol in the
3545 procedure linkage table. */
3546
3547 /* Resolve a PLT32 reloc against a local symbol directly,
3548 without using the procedure linkage table. */
3549 if (h == NULL)
3550 break;
3551
3552 if (h->plt.offset == (bfd_vma) -1
3553 || htab->elf.splt == NULL)
3554 {
3555 /* We didn't make a PLT entry for this symbol. This
3556 happens when statically linking PIC code, or when
3557 using -Bsymbolic. */
3558 break;
3559 }
3560
3561 relocation = (htab->elf.splt->output_section->vma
3562 + htab->elf.splt->output_offset
3563 + h->plt.offset);
3564 unresolved_reloc = FALSE;
3565 break;
3566
3567 case R_X86_64_PC8:
3568 case R_X86_64_PC16:
3569 case R_X86_64_PC32:
3570 if (info->shared
3571 && (input_section->flags & SEC_ALLOC) != 0
3572 && (input_section->flags & SEC_READONLY) != 0
3573 && h != NULL)
3574 {
3575 bfd_boolean fail = FALSE;
3576 bfd_boolean branch
3577 = (r_type == R_X86_64_PC32
3578 && is_32bit_relative_branch (contents, rel->r_offset));
3579
3580 if (SYMBOL_REFERENCES_LOCAL (info, h))
3581 {
3582 /* Symbol is referenced locally. Make sure it is
3583 defined locally or for a branch. */
3584 fail = !h->def_regular && !branch;
3585 }
3586 else
3587 {
3588 /* Symbol isn't referenced locally. We only allow
3589 branch to symbol with non-default visibility. */
3590 fail = (!branch
3591 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3592 }
3593
3594 if (fail)
3595 {
3596 const char *fmt;
3597 const char *v;
3598 const char *pic = "";
3599
3600 switch (ELF_ST_VISIBILITY (h->other))
3601 {
3602 case STV_HIDDEN:
3603 v = _("hidden symbol");
3604 break;
3605 case STV_INTERNAL:
3606 v = _("internal symbol");
3607 break;
3608 case STV_PROTECTED:
3609 v = _("protected symbol");
3610 break;
3611 default:
3612 v = _("symbol");
3613 pic = _("; recompile with -fPIC");
3614 break;
3615 }
3616
3617 if (h->def_regular)
3618 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3619 else
3620 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3621
3622 (*_bfd_error_handler) (fmt, input_bfd,
3623 x86_64_elf_howto_table[r_type].name,
3624 v, h->root.root.string, pic);
3625 bfd_set_error (bfd_error_bad_value);
3626 return FALSE;
3627 }
3628 }
3629 /* Fall through. */
3630
3631 case R_X86_64_8:
3632 case R_X86_64_16:
3633 case R_X86_64_32:
3634 case R_X86_64_PC64:
3635 case R_X86_64_64:
3636 /* FIXME: The ABI says the linker should make sure the value is
3637 the same when it's zeroextended to 64 bit. */
3638
3639 if ((input_section->flags & SEC_ALLOC) == 0)
3640 break;
3641
3642 if ((info->shared
3643 && (h == NULL
3644 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3645 || h->root.type != bfd_link_hash_undefweak)
3646 && (! IS_X86_64_PCREL_TYPE (r_type)
3647 || ! SYMBOL_CALLS_LOCAL (info, h)))
3648 || (ELIMINATE_COPY_RELOCS
3649 && !info->shared
3650 && h != NULL
3651 && h->dynindx != -1
3652 && !h->non_got_ref
3653 && ((h->def_dynamic
3654 && !h->def_regular)
3655 || h->root.type == bfd_link_hash_undefweak
3656 || h->root.type == bfd_link_hash_undefined)))
3657 {
3658 Elf_Internal_Rela outrel;
3659 bfd_boolean skip, relocate;
3660 asection *sreloc;
3661
3662 /* When generating a shared object, these relocations
3663 are copied into the output file to be resolved at run
3664 time. */
3665 skip = FALSE;
3666 relocate = FALSE;
3667
3668 outrel.r_offset =
3669 _bfd_elf_section_offset (output_bfd, info, input_section,
3670 rel->r_offset);
3671 if (outrel.r_offset == (bfd_vma) -1)
3672 skip = TRUE;
3673 else if (outrel.r_offset == (bfd_vma) -2)
3674 skip = TRUE, relocate = TRUE;
3675
3676 outrel.r_offset += (input_section->output_section->vma
3677 + input_section->output_offset);
3678
3679 if (skip)
3680 memset (&outrel, 0, sizeof outrel);
3681
3682 /* h->dynindx may be -1 if this symbol was marked to
3683 become local. */
3684 else if (h != NULL
3685 && h->dynindx != -1
3686 && (IS_X86_64_PCREL_TYPE (r_type)
3687 || ! info->shared
3688 || ! SYMBOLIC_BIND (info, h)
3689 || ! h->def_regular))
3690 {
3691 outrel.r_info = htab->r_info (h->dynindx, r_type);
3692 outrel.r_addend = rel->r_addend;
3693 }
3694 else
3695 {
3696 /* This symbol is local, or marked to become local. */
3697 if (r_type == htab->pointer_r_type)
3698 {
3699 relocate = TRUE;
3700 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3701 outrel.r_addend = relocation + rel->r_addend;
3702 }
3703 else if (r_type == R_X86_64_64
3704 && !ABI_64_P (output_bfd))
3705 {
3706 relocate = TRUE;
3707 outrel.r_info = htab->r_info (0,
3708 R_X86_64_RELATIVE64);
3709 outrel.r_addend = relocation + rel->r_addend;
3710 /* Check addend overflow. */
3711 if ((outrel.r_addend & 0x80000000)
3712 != (rel->r_addend & 0x80000000))
3713 {
3714 const char *name;
3715 int addend = rel->r_addend;
3716 if (h && h->root.root.string)
3717 name = h->root.root.string;
3718 else
3719 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3720 sym, NULL);
3721 if (addend < 0)
3722 (*_bfd_error_handler)
3723 (_("%B: addend -0x%x in relocation %s against "
3724 "symbol `%s' at 0x%lx in section `%A' is "
3725 "out of range"),
3726 input_bfd, input_section, addend,
3727 x86_64_elf_howto_table[r_type].name,
3728 name, (unsigned long) rel->r_offset);
3729 else
3730 (*_bfd_error_handler)
3731 (_("%B: addend 0x%x in relocation %s against "
3732 "symbol `%s' at 0x%lx in section `%A' is "
3733 "out of range"),
3734 input_bfd, input_section, addend,
3735 x86_64_elf_howto_table[r_type].name,
3736 name, (unsigned long) rel->r_offset);
3737 bfd_set_error (bfd_error_bad_value);
3738 return FALSE;
3739 }
3740 }
3741 else
3742 {
3743 long sindx;
3744
3745 if (bfd_is_abs_section (sec))
3746 sindx = 0;
3747 else if (sec == NULL || sec->owner == NULL)
3748 {
3749 bfd_set_error (bfd_error_bad_value);
3750 return FALSE;
3751 }
3752 else
3753 {
3754 asection *osec;
3755
3756 /* We are turning this relocation into one
3757 against a section symbol. It would be
3758 proper to subtract the symbol's value,
3759 osec->vma, from the emitted reloc addend,
3760 but ld.so expects buggy relocs. */
3761 osec = sec->output_section;
3762 sindx = elf_section_data (osec)->dynindx;
3763 if (sindx == 0)
3764 {
3765 asection *oi = htab->elf.text_index_section;
3766 sindx = elf_section_data (oi)->dynindx;
3767 }
3768 BFD_ASSERT (sindx != 0);
3769 }
3770
3771 outrel.r_info = htab->r_info (sindx, r_type);
3772 outrel.r_addend = relocation + rel->r_addend;
3773 }
3774 }
3775
3776 sreloc = elf_section_data (input_section)->sreloc;
3777
3778 if (sreloc == NULL || sreloc->contents == NULL)
3779 {
3780 r = bfd_reloc_notsupported;
3781 goto check_relocation_error;
3782 }
3783
3784 elf_append_rela (output_bfd, sreloc, &outrel);
3785
3786 /* If this reloc is against an external symbol, we do
3787 not want to fiddle with the addend. Otherwise, we
3788 need to include the symbol value so that it becomes
3789 an addend for the dynamic reloc. */
3790 if (! relocate)
3791 continue;
3792 }
3793
3794 break;
3795
3796 case R_X86_64_TLSGD:
3797 case R_X86_64_GOTPC32_TLSDESC:
3798 case R_X86_64_TLSDESC_CALL:
3799 case R_X86_64_GOTTPOFF:
3800 tls_type = GOT_UNKNOWN;
3801 if (h == NULL && local_got_offsets)
3802 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3803 else if (h != NULL)
3804 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3805
3806 if (! elf_x86_64_tls_transition (info, input_bfd,
3807 input_section, contents,
3808 symtab_hdr, sym_hashes,
3809 &r_type, tls_type, rel,
3810 relend, h, r_symndx))
3811 return FALSE;
3812
3813 if (r_type == R_X86_64_TPOFF32)
3814 {
3815 bfd_vma roff = rel->r_offset;
3816
3817 BFD_ASSERT (! unresolved_reloc);
3818
3819 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3820 {
3821 /* GD->LE transition. For 64bit, change
3822 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3823 .word 0x6666; rex64; call __tls_get_addr
3824 into:
3825 movq %fs:0, %rax
3826 leaq foo@tpoff(%rax), %rax
3827 For 32bit, change
3828 leaq foo@tlsgd(%rip), %rdi
3829 .word 0x6666; rex64; call __tls_get_addr
3830 into:
3831 movl %fs:0, %eax
3832 leaq foo@tpoff(%rax), %rax */
3833 if (ABI_64_P (output_bfd))
3834 memcpy (contents + roff - 4,
3835 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3836 16);
3837 else
3838 memcpy (contents + roff - 3,
3839 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3840 15);
3841 bfd_put_32 (output_bfd,
3842 elf_x86_64_tpoff (info, relocation),
3843 contents + roff + 8);
3844 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3845 rel++;
3846 continue;
3847 }
3848 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3849 {
3850 /* GDesc -> LE transition.
3851 It's originally something like:
3852 leaq x@tlsdesc(%rip), %rax
3853
3854 Change it to:
3855 movl $x@tpoff, %rax. */
3856
3857 unsigned int val, type;
3858
3859 type = bfd_get_8 (input_bfd, contents + roff - 3);
3860 val = bfd_get_8 (input_bfd, contents + roff - 1);
3861 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3862 contents + roff - 3);
3863 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3864 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3865 contents + roff - 1);
3866 bfd_put_32 (output_bfd,
3867 elf_x86_64_tpoff (info, relocation),
3868 contents + roff);
3869 continue;
3870 }
3871 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3872 {
3873 /* GDesc -> LE transition.
3874 It's originally:
3875 call *(%rax)
3876 Turn it into:
3877 xchg %ax,%ax. */
3878 bfd_put_8 (output_bfd, 0x66, contents + roff);
3879 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3880 continue;
3881 }
3882 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3883 {
3884 /* IE->LE transition:
3885 Originally it can be one of:
3886 movq foo@gottpoff(%rip), %reg
3887 addq foo@gottpoff(%rip), %reg
3888 We change it into:
3889 movq $foo, %reg
3890 leaq foo(%reg), %reg
3891 addq $foo, %reg. */
3892
3893 unsigned int val, type, reg;
3894
3895 val = bfd_get_8 (input_bfd, contents + roff - 3);
3896 type = bfd_get_8 (input_bfd, contents + roff - 2);
3897 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3898 reg >>= 3;
3899 if (type == 0x8b)
3900 {
3901 /* movq */
3902 if (val == 0x4c)
3903 bfd_put_8 (output_bfd, 0x49,
3904 contents + roff - 3);
3905 else if (!ABI_64_P (output_bfd) && val == 0x44)
3906 bfd_put_8 (output_bfd, 0x41,
3907 contents + roff - 3);
3908 bfd_put_8 (output_bfd, 0xc7,
3909 contents + roff - 2);
3910 bfd_put_8 (output_bfd, 0xc0 | reg,
3911 contents + roff - 1);
3912 }
3913 else if (reg == 4)
3914 {
3915 /* addq -> addq - addressing with %rsp/%r12 is
3916 special */
3917 if (val == 0x4c)
3918 bfd_put_8 (output_bfd, 0x49,
3919 contents + roff - 3);
3920 else if (!ABI_64_P (output_bfd) && val == 0x44)
3921 bfd_put_8 (output_bfd, 0x41,
3922 contents + roff - 3);
3923 bfd_put_8 (output_bfd, 0x81,
3924 contents + roff - 2);
3925 bfd_put_8 (output_bfd, 0xc0 | reg,
3926 contents + roff - 1);
3927 }
3928 else
3929 {
3930 /* addq -> leaq */
3931 if (val == 0x4c)
3932 bfd_put_8 (output_bfd, 0x4d,
3933 contents + roff - 3);
3934 else if (!ABI_64_P (output_bfd) && val == 0x44)
3935 bfd_put_8 (output_bfd, 0x45,
3936 contents + roff - 3);
3937 bfd_put_8 (output_bfd, 0x8d,
3938 contents + roff - 2);
3939 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3940 contents + roff - 1);
3941 }
3942 bfd_put_32 (output_bfd,
3943 elf_x86_64_tpoff (info, relocation),
3944 contents + roff);
3945 continue;
3946 }
3947 else
3948 BFD_ASSERT (FALSE);
3949 }
3950
3951 if (htab->elf.sgot == NULL)
3952 abort ();
3953
3954 if (h != NULL)
3955 {
3956 off = h->got.offset;
3957 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
3958 }
3959 else
3960 {
3961 if (local_got_offsets == NULL)
3962 abort ();
3963
3964 off = local_got_offsets[r_symndx];
3965 offplt = local_tlsdesc_gotents[r_symndx];
3966 }
3967
3968 if ((off & 1) != 0)
3969 off &= ~1;
3970 else
3971 {
3972 Elf_Internal_Rela outrel;
3973 int dr_type, indx;
3974 asection *sreloc;
3975
3976 if (htab->elf.srelgot == NULL)
3977 abort ();
3978
3979 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3980
3981 if (GOT_TLS_GDESC_P (tls_type))
3982 {
3983 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
3984 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3985 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3986 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3987 + htab->elf.sgotplt->output_offset
3988 + offplt
3989 + htab->sgotplt_jump_table_size);
3990 sreloc = htab->elf.srelplt;
3991 if (indx == 0)
3992 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3993 else
3994 outrel.r_addend = 0;
3995 elf_append_rela (output_bfd, sreloc, &outrel);
3996 }
3997
3998 sreloc = htab->elf.srelgot;
3999
4000 outrel.r_offset = (htab->elf.sgot->output_section->vma
4001 + htab->elf.sgot->output_offset + off);
4002
4003 if (GOT_TLS_GD_P (tls_type))
4004 dr_type = R_X86_64_DTPMOD64;
4005 else if (GOT_TLS_GDESC_P (tls_type))
4006 goto dr_done;
4007 else
4008 dr_type = R_X86_64_TPOFF64;
4009
4010 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
4011 outrel.r_addend = 0;
4012 if ((dr_type == R_X86_64_TPOFF64
4013 || dr_type == R_X86_64_TLSDESC) && indx == 0)
4014 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4015 outrel.r_info = htab->r_info (indx, dr_type);
4016
4017 elf_append_rela (output_bfd, sreloc, &outrel);
4018
4019 if (GOT_TLS_GD_P (tls_type))
4020 {
4021 if (indx == 0)
4022 {
4023 BFD_ASSERT (! unresolved_reloc);
4024 bfd_put_64 (output_bfd,
4025 relocation - elf_x86_64_dtpoff_base (info),
4026 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4027 }
4028 else
4029 {
4030 bfd_put_64 (output_bfd, 0,
4031 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4032 outrel.r_info = htab->r_info (indx,
4033 R_X86_64_DTPOFF64);
4034 outrel.r_offset += GOT_ENTRY_SIZE;
4035 elf_append_rela (output_bfd, sreloc,
4036 &outrel);
4037 }
4038 }
4039
4040 dr_done:
4041 if (h != NULL)
4042 h->got.offset |= 1;
4043 else
4044 local_got_offsets[r_symndx] |= 1;
4045 }
4046
4047 if (off >= (bfd_vma) -2
4048 && ! GOT_TLS_GDESC_P (tls_type))
4049 abort ();
4050 if (r_type == ELF32_R_TYPE (rel->r_info))
4051 {
4052 if (r_type == R_X86_64_GOTPC32_TLSDESC
4053 || r_type == R_X86_64_TLSDESC_CALL)
4054 relocation = htab->elf.sgotplt->output_section->vma
4055 + htab->elf.sgotplt->output_offset
4056 + offplt + htab->sgotplt_jump_table_size;
4057 else
4058 relocation = htab->elf.sgot->output_section->vma
4059 + htab->elf.sgot->output_offset + off;
4060 unresolved_reloc = FALSE;
4061 }
4062 else
4063 {
4064 bfd_vma roff = rel->r_offset;
4065
4066 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4067 {
4068 /* GD->IE transition. For 64bit, change
4069 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4070 .word 0x6666; rex64; call __tls_get_addr@plt
4071 into:
4072 movq %fs:0, %rax
4073 addq foo@gottpoff(%rip), %rax
4074 For 32bit, change
4075 leaq foo@tlsgd(%rip), %rdi
4076 .word 0x6666; rex64; call __tls_get_addr@plt
4077 into:
4078 movl %fs:0, %eax
4079 addq foo@gottpoff(%rip), %rax */
4080 if (ABI_64_P (output_bfd))
4081 memcpy (contents + roff - 4,
4082 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4083 16);
4084 else
4085 memcpy (contents + roff - 3,
4086 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4087 15);
4088
4089 relocation = (htab->elf.sgot->output_section->vma
4090 + htab->elf.sgot->output_offset + off
4091 - roff
4092 - input_section->output_section->vma
4093 - input_section->output_offset
4094 - 12);
4095 bfd_put_32 (output_bfd, relocation,
4096 contents + roff + 8);
4097 /* Skip R_X86_64_PLT32. */
4098 rel++;
4099 continue;
4100 }
4101 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4102 {
4103 /* GDesc -> IE transition.
4104 It's originally something like:
4105 leaq x@tlsdesc(%rip), %rax
4106
4107 Change it to:
4108 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4109
4110 /* Now modify the instruction as appropriate. To
4111 turn a leaq into a movq in the form we use it, it
4112 suffices to change the second byte from 0x8d to
4113 0x8b. */
4114 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4115
4116 bfd_put_32 (output_bfd,
4117 htab->elf.sgot->output_section->vma
4118 + htab->elf.sgot->output_offset + off
4119 - rel->r_offset
4120 - input_section->output_section->vma
4121 - input_section->output_offset
4122 - 4,
4123 contents + roff);
4124 continue;
4125 }
4126 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4127 {
4128 /* GDesc -> IE transition.
4129 It's originally:
4130 call *(%rax)
4131
4132 Change it to:
4133 xchg %ax, %ax. */
4134
4135 bfd_put_8 (output_bfd, 0x66, contents + roff);
4136 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4137 continue;
4138 }
4139 else
4140 BFD_ASSERT (FALSE);
4141 }
4142 break;
4143
4144 case R_X86_64_TLSLD:
4145 if (! elf_x86_64_tls_transition (info, input_bfd,
4146 input_section, contents,
4147 symtab_hdr, sym_hashes,
4148 &r_type, GOT_UNKNOWN,
4149 rel, relend, h, r_symndx))
4150 return FALSE;
4151
4152 if (r_type != R_X86_64_TLSLD)
4153 {
4154 /* LD->LE transition:
4155 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4156 For 64bit, we change it into:
4157 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4158 For 32bit, we change it into:
4159 nopl 0x0(%rax); movl %fs:0, %eax. */
4160
4161 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4162 if (ABI_64_P (output_bfd))
4163 memcpy (contents + rel->r_offset - 3,
4164 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4165 else
4166 memcpy (contents + rel->r_offset - 3,
4167 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4168 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
4169 rel++;
4170 continue;
4171 }
4172
4173 if (htab->elf.sgot == NULL)
4174 abort ();
4175
4176 off = htab->tls_ld_got.offset;
4177 if (off & 1)
4178 off &= ~1;
4179 else
4180 {
4181 Elf_Internal_Rela outrel;
4182
4183 if (htab->elf.srelgot == NULL)
4184 abort ();
4185
4186 outrel.r_offset = (htab->elf.sgot->output_section->vma
4187 + htab->elf.sgot->output_offset + off);
4188
4189 bfd_put_64 (output_bfd, 0,
4190 htab->elf.sgot->contents + off);
4191 bfd_put_64 (output_bfd, 0,
4192 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4193 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4194 outrel.r_addend = 0;
4195 elf_append_rela (output_bfd, htab->elf.srelgot,
4196 &outrel);
4197 htab->tls_ld_got.offset |= 1;
4198 }
4199 relocation = htab->elf.sgot->output_section->vma
4200 + htab->elf.sgot->output_offset + off;
4201 unresolved_reloc = FALSE;
4202 break;
4203
4204 case R_X86_64_DTPOFF32:
4205 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4206 relocation -= elf_x86_64_dtpoff_base (info);
4207 else
4208 relocation = elf_x86_64_tpoff (info, relocation);
4209 break;
4210
4211 case R_X86_64_TPOFF32:
4212 case R_X86_64_TPOFF64:
4213 BFD_ASSERT (info->executable);
4214 relocation = elf_x86_64_tpoff (info, relocation);
4215 break;
4216
4217 default:
4218 break;
4219 }
4220
4221 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4222 because such sections are not SEC_ALLOC and thus ld.so will
4223 not process them. */
4224 if (unresolved_reloc
4225 && !((input_section->flags & SEC_DEBUGGING) != 0
4226 && h->def_dynamic)
4227 && _bfd_elf_section_offset (output_bfd, info, input_section,
4228 rel->r_offset) != (bfd_vma) -1)
4229 {
4230 (*_bfd_error_handler)
4231 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4232 input_bfd,
4233 input_section,
4234 (long) rel->r_offset,
4235 howto->name,
4236 h->root.root.string);
4237 return FALSE;
4238 }
4239
4240 do_relocation:
4241 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4242 contents, rel->r_offset,
4243 relocation, rel->r_addend);
4244
4245 check_relocation_error:
4246 if (r != bfd_reloc_ok)
4247 {
4248 const char *name;
4249
4250 if (h != NULL)
4251 name = h->root.root.string;
4252 else
4253 {
4254 name = bfd_elf_string_from_elf_section (input_bfd,
4255 symtab_hdr->sh_link,
4256 sym->st_name);
4257 if (name == NULL)
4258 return FALSE;
4259 if (*name == '\0')
4260 name = bfd_section_name (input_bfd, sec);
4261 }
4262
4263 if (r == bfd_reloc_overflow)
4264 {
4265 if (! ((*info->callbacks->reloc_overflow)
4266 (info, (h ? &h->root : NULL), name, howto->name,
4267 (bfd_vma) 0, input_bfd, input_section,
4268 rel->r_offset)))
4269 return FALSE;
4270 }
4271 else
4272 {
4273 (*_bfd_error_handler)
4274 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4275 input_bfd, input_section,
4276 (long) rel->r_offset, name, (int) r);
4277 return FALSE;
4278 }
4279 }
4280 }
4281
4282 return TRUE;
4283 }
4284
4285 /* Finish up dynamic symbol handling. We set the contents of various
4286 dynamic sections here. */
4287
4288 static bfd_boolean
4289 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4290 struct bfd_link_info *info,
4291 struct elf_link_hash_entry *h,
4292 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
4293 {
4294 struct elf_x86_64_link_hash_table *htab;
4295 const struct elf_x86_64_backend_data *const abed
4296 = get_elf_x86_64_backend_data (output_bfd);
4297
4298 htab = elf_x86_64_hash_table (info);
4299 if (htab == NULL)
4300 return FALSE;
4301
4302 if (h->plt.offset != (bfd_vma) -1)
4303 {
4304 bfd_vma plt_index;
4305 bfd_vma got_offset;
4306 Elf_Internal_Rela rela;
4307 bfd_byte *loc;
4308 asection *plt, *gotplt, *relplt;
4309 const struct elf_backend_data *bed;
4310
4311 /* When building a static executable, use .iplt, .igot.plt and
4312 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4313 if (htab->elf.splt != NULL)
4314 {
4315 plt = htab->elf.splt;
4316 gotplt = htab->elf.sgotplt;
4317 relplt = htab->elf.srelplt;
4318 }
4319 else
4320 {
4321 plt = htab->elf.iplt;
4322 gotplt = htab->elf.igotplt;
4323 relplt = htab->elf.irelplt;
4324 }
4325
4326 /* This symbol has an entry in the procedure linkage table. Set
4327 it up. */
4328 if ((h->dynindx == -1
4329 && !((h->forced_local || info->executable)
4330 && h->def_regular
4331 && h->type == STT_GNU_IFUNC))
4332 || plt == NULL
4333 || gotplt == NULL
4334 || relplt == NULL)
4335 return FALSE;
4336
4337 /* Get the index in the procedure linkage table which
4338 corresponds to this symbol. This is the index of this symbol
4339 in all the symbols for which we are making plt entries. The
4340 first entry in the procedure linkage table is reserved.
4341
4342 Get the offset into the .got table of the entry that
4343 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4344 bytes. The first three are reserved for the dynamic linker.
4345
4346 For static executables, we don't reserve anything. */
4347
4348 if (plt == htab->elf.splt)
4349 {
4350 got_offset = h->plt.offset / abed->plt_entry_size - 1;
4351 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4352 }
4353 else
4354 {
4355 got_offset = h->plt.offset / abed->plt_entry_size;
4356 got_offset = got_offset * GOT_ENTRY_SIZE;
4357 }
4358
4359 /* Fill in the entry in the procedure linkage table. */
4360 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
4361 abed->plt_entry_size);
4362
4363 /* Insert the relocation positions of the plt section. */
4364
4365 /* Put offset the PC-relative instruction referring to the GOT entry,
4366 subtracting the size of that instruction. */
4367 bfd_put_32 (output_bfd,
4368 (gotplt->output_section->vma
4369 + gotplt->output_offset
4370 + got_offset
4371 - plt->output_section->vma
4372 - plt->output_offset
4373 - h->plt.offset
4374 - abed->plt_got_insn_size),
4375 plt->contents + h->plt.offset + abed->plt_got_offset);
4376
4377 /* Fill in the entry in the global offset table, initially this
4378 points to the second part of the PLT entry. */
4379 bfd_put_64 (output_bfd, (plt->output_section->vma
4380 + plt->output_offset
4381 + h->plt.offset + abed->plt_lazy_offset),
4382 gotplt->contents + got_offset);
4383
4384 /* Fill in the entry in the .rela.plt section. */
4385 rela.r_offset = (gotplt->output_section->vma
4386 + gotplt->output_offset
4387 + got_offset);
4388 if (h->dynindx == -1
4389 || ((info->executable
4390 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4391 && h->def_regular
4392 && h->type == STT_GNU_IFUNC))
4393 {
4394 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4395 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4396 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4397 rela.r_addend = (h->root.u.def.value
4398 + h->root.u.def.section->output_section->vma
4399 + h->root.u.def.section->output_offset);
4400 /* R_X86_64_IRELATIVE comes last. */
4401 plt_index = htab->next_irelative_index--;
4402 }
4403 else
4404 {
4405 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4406 rela.r_addend = 0;
4407 plt_index = htab->next_jump_slot_index++;
4408 }
4409
4410 /* Don't fill PLT entry for static executables. */
4411 if (plt == htab->elf.splt)
4412 {
4413 /* Put relocation index. */
4414 bfd_put_32 (output_bfd, plt_index,
4415 plt->contents + h->plt.offset + abed->plt_reloc_offset);
4416 /* Put offset for jmp .PLT0. */
4417 bfd_put_32 (output_bfd, - (h->plt.offset + abed->plt_plt_insn_end),
4418 plt->contents + h->plt.offset + abed->plt_plt_offset);
4419 }
4420
4421 bed = get_elf_backend_data (output_bfd);
4422 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4423 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4424
4425 if (!h->def_regular)
4426 {
4427 /* Mark the symbol as undefined, rather than as defined in
4428 the .plt section. Leave the value if there were any
4429 relocations where pointer equality matters (this is a clue
4430 for the dynamic linker, to make function pointer
4431 comparisons work between an application and shared
4432 library), otherwise set it to zero. If a function is only
4433 called from a binary, there is no need to slow down
4434 shared libraries because of that. */
4435 sym->st_shndx = SHN_UNDEF;
4436 if (!h->pointer_equality_needed)
4437 sym->st_value = 0;
4438 }
4439 }
4440
4441 if (h->got.offset != (bfd_vma) -1
4442 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4443 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4444 {
4445 Elf_Internal_Rela rela;
4446
4447 /* This symbol has an entry in the global offset table. Set it
4448 up. */
4449 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4450 abort ();
4451
4452 rela.r_offset = (htab->elf.sgot->output_section->vma
4453 + htab->elf.sgot->output_offset
4454 + (h->got.offset &~ (bfd_vma) 1));
4455
4456 /* If this is a static link, or it is a -Bsymbolic link and the
4457 symbol is defined locally or was forced to be local because
4458 of a version file, we just want to emit a RELATIVE reloc.
4459 The entry in the global offset table will already have been
4460 initialized in the relocate_section function. */
4461 if (h->def_regular
4462 && h->type == STT_GNU_IFUNC)
4463 {
4464 if (info->shared)
4465 {
4466 /* Generate R_X86_64_GLOB_DAT. */
4467 goto do_glob_dat;
4468 }
4469 else
4470 {
4471 asection *plt;
4472
4473 if (!h->pointer_equality_needed)
4474 abort ();
4475
4476 /* For non-shared object, we can't use .got.plt, which
4477 contains the real function addres if we need pointer
4478 equality. We load the GOT entry with the PLT entry. */
4479 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4480 bfd_put_64 (output_bfd, (plt->output_section->vma
4481 + plt->output_offset
4482 + h->plt.offset),
4483 htab->elf.sgot->contents + h->got.offset);
4484 return TRUE;
4485 }
4486 }
4487 else if (info->shared
4488 && SYMBOL_REFERENCES_LOCAL (info, h))
4489 {
4490 if (!h->def_regular)
4491 return FALSE;
4492 BFD_ASSERT((h->got.offset & 1) != 0);
4493 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4494 rela.r_addend = (h->root.u.def.value
4495 + h->root.u.def.section->output_section->vma
4496 + h->root.u.def.section->output_offset);
4497 }
4498 else
4499 {
4500 BFD_ASSERT((h->got.offset & 1) == 0);
4501 do_glob_dat:
4502 bfd_put_64 (output_bfd, (bfd_vma) 0,
4503 htab->elf.sgot->contents + h->got.offset);
4504 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4505 rela.r_addend = 0;
4506 }
4507
4508 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4509 }
4510
4511 if (h->needs_copy)
4512 {
4513 Elf_Internal_Rela rela;
4514
4515 /* This symbol needs a copy reloc. Set it up. */
4516
4517 if (h->dynindx == -1
4518 || (h->root.type != bfd_link_hash_defined
4519 && h->root.type != bfd_link_hash_defweak)
4520 || htab->srelbss == NULL)
4521 abort ();
4522
4523 rela.r_offset = (h->root.u.def.value
4524 + h->root.u.def.section->output_section->vma
4525 + h->root.u.def.section->output_offset);
4526 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4527 rela.r_addend = 0;
4528 elf_append_rela (output_bfd, htab->srelbss, &rela);
4529 }
4530
4531 return TRUE;
4532 }
4533
4534 /* Finish up local dynamic symbol handling. We set the contents of
4535 various dynamic sections here. */
4536
4537 static bfd_boolean
4538 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4539 {
4540 struct elf_link_hash_entry *h
4541 = (struct elf_link_hash_entry *) *slot;
4542 struct bfd_link_info *info
4543 = (struct bfd_link_info *) inf;
4544
4545 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4546 info, h, NULL);
4547 }
4548
4549 /* Used to decide how to sort relocs in an optimal manner for the
4550 dynamic linker, before writing them out. */
4551
4552 static enum elf_reloc_type_class
4553 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4554 {
4555 switch ((int) ELF32_R_TYPE (rela->r_info))
4556 {
4557 case R_X86_64_RELATIVE:
4558 case R_X86_64_RELATIVE64:
4559 return reloc_class_relative;
4560 case R_X86_64_JUMP_SLOT:
4561 return reloc_class_plt;
4562 case R_X86_64_COPY:
4563 return reloc_class_copy;
4564 default:
4565 return reloc_class_normal;
4566 }
4567 }
4568
4569 /* Finish up the dynamic sections. */
4570
4571 static bfd_boolean
4572 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4573 struct bfd_link_info *info)
4574 {
4575 struct elf_x86_64_link_hash_table *htab;
4576 bfd *dynobj;
4577 asection *sdyn;
4578 const struct elf_x86_64_backend_data *const abed
4579 = get_elf_x86_64_backend_data (output_bfd);
4580
4581 htab = elf_x86_64_hash_table (info);
4582 if (htab == NULL)
4583 return FALSE;
4584
4585 dynobj = htab->elf.dynobj;
4586 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4587
4588 if (htab->elf.dynamic_sections_created)
4589 {
4590 bfd_byte *dyncon, *dynconend;
4591 const struct elf_backend_data *bed;
4592 bfd_size_type sizeof_dyn;
4593
4594 if (sdyn == NULL || htab->elf.sgot == NULL)
4595 abort ();
4596
4597 bed = get_elf_backend_data (dynobj);
4598 sizeof_dyn = bed->s->sizeof_dyn;
4599 dyncon = sdyn->contents;
4600 dynconend = sdyn->contents + sdyn->size;
4601 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4602 {
4603 Elf_Internal_Dyn dyn;
4604 asection *s;
4605
4606 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4607
4608 switch (dyn.d_tag)
4609 {
4610 default:
4611 continue;
4612
4613 case DT_PLTGOT:
4614 s = htab->elf.sgotplt;
4615 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4616 break;
4617
4618 case DT_JMPREL:
4619 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4620 break;
4621
4622 case DT_PLTRELSZ:
4623 s = htab->elf.srelplt->output_section;
4624 dyn.d_un.d_val = s->size;
4625 break;
4626
4627 case DT_RELASZ:
4628 /* The procedure linkage table relocs (DT_JMPREL) should
4629 not be included in the overall relocs (DT_RELA).
4630 Therefore, we override the DT_RELASZ entry here to
4631 make it not include the JMPREL relocs. Since the
4632 linker script arranges for .rela.plt to follow all
4633 other relocation sections, we don't have to worry
4634 about changing the DT_RELA entry. */
4635 if (htab->elf.srelplt != NULL)
4636 {
4637 s = htab->elf.srelplt->output_section;
4638 dyn.d_un.d_val -= s->size;
4639 }
4640 break;
4641
4642 case DT_TLSDESC_PLT:
4643 s = htab->elf.splt;
4644 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4645 + htab->tlsdesc_plt;
4646 break;
4647
4648 case DT_TLSDESC_GOT:
4649 s = htab->elf.sgot;
4650 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4651 + htab->tlsdesc_got;
4652 break;
4653 }
4654
4655 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4656 }
4657
4658 /* Fill in the special first entry in the procedure linkage table. */
4659 if (htab->elf.splt && htab->elf.splt->size > 0)
4660 {
4661 /* Fill in the first entry in the procedure linkage table. */
4662 memcpy (htab->elf.splt->contents,
4663 abed->plt0_entry, abed->plt_entry_size);
4664 /* Add offset for pushq GOT+8(%rip), since the instruction
4665 uses 6 bytes subtract this value. */
4666 bfd_put_32 (output_bfd,
4667 (htab->elf.sgotplt->output_section->vma
4668 + htab->elf.sgotplt->output_offset
4669 + 8
4670 - htab->elf.splt->output_section->vma
4671 - htab->elf.splt->output_offset
4672 - 6),
4673 htab->elf.splt->contents + abed->plt0_got1_offset);
4674 /* Add offset for the PC-relative instruction accessing GOT+16,
4675 subtracting the offset to the end of that instruction. */
4676 bfd_put_32 (output_bfd,
4677 (htab->elf.sgotplt->output_section->vma
4678 + htab->elf.sgotplt->output_offset
4679 + 16
4680 - htab->elf.splt->output_section->vma
4681 - htab->elf.splt->output_offset
4682 - abed->plt0_got2_insn_end),
4683 htab->elf.splt->contents + abed->plt0_got2_offset);
4684
4685 elf_section_data (htab->elf.splt->output_section)
4686 ->this_hdr.sh_entsize = abed->plt_entry_size;
4687
4688 if (htab->tlsdesc_plt)
4689 {
4690 bfd_put_64 (output_bfd, (bfd_vma) 0,
4691 htab->elf.sgot->contents + htab->tlsdesc_got);
4692
4693 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4694 abed->plt0_entry, abed->plt_entry_size);
4695
4696 /* Add offset for pushq GOT+8(%rip), since the
4697 instruction uses 6 bytes subtract this value. */
4698 bfd_put_32 (output_bfd,
4699 (htab->elf.sgotplt->output_section->vma
4700 + htab->elf.sgotplt->output_offset
4701 + 8
4702 - htab->elf.splt->output_section->vma
4703 - htab->elf.splt->output_offset
4704 - htab->tlsdesc_plt
4705 - 6),
4706 htab->elf.splt->contents
4707 + htab->tlsdesc_plt + abed->plt0_got1_offset);
4708 /* Add offset for the PC-relative instruction accessing GOT+TDG,
4709 where TGD stands for htab->tlsdesc_got, subtracting the offset
4710 to the end of that instruction. */
4711 bfd_put_32 (output_bfd,
4712 (htab->elf.sgot->output_section->vma
4713 + htab->elf.sgot->output_offset
4714 + htab->tlsdesc_got
4715 - htab->elf.splt->output_section->vma
4716 - htab->elf.splt->output_offset
4717 - htab->tlsdesc_plt
4718 - abed->plt0_got2_insn_end),
4719 htab->elf.splt->contents
4720 + htab->tlsdesc_plt + abed->plt0_got2_offset);
4721 }
4722 }
4723 }
4724
4725 if (htab->elf.sgotplt)
4726 {
4727 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4728 {
4729 (*_bfd_error_handler)
4730 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4731 return FALSE;
4732 }
4733
4734 /* Fill in the first three entries in the global offset table. */
4735 if (htab->elf.sgotplt->size > 0)
4736 {
4737 /* Set the first entry in the global offset table to the address of
4738 the dynamic section. */
4739 if (sdyn == NULL)
4740 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4741 else
4742 bfd_put_64 (output_bfd,
4743 sdyn->output_section->vma + sdyn->output_offset,
4744 htab->elf.sgotplt->contents);
4745 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4746 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4747 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4748 }
4749
4750 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4751 GOT_ENTRY_SIZE;
4752 }
4753
4754 /* Adjust .eh_frame for .plt section. */
4755 if (htab->plt_eh_frame != NULL
4756 && htab->plt_eh_frame->contents != NULL)
4757 {
4758 if (htab->elf.splt != NULL
4759 && htab->elf.splt->size != 0
4760 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
4761 && htab->elf.splt->output_section != NULL
4762 && htab->plt_eh_frame->output_section != NULL)
4763 {
4764 bfd_vma plt_start = htab->elf.splt->output_section->vma;
4765 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
4766 + htab->plt_eh_frame->output_offset
4767 + PLT_FDE_START_OFFSET;
4768 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
4769 htab->plt_eh_frame->contents
4770 + PLT_FDE_START_OFFSET);
4771 }
4772 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
4773 {
4774 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
4775 htab->plt_eh_frame,
4776 htab->plt_eh_frame->contents))
4777 return FALSE;
4778 }
4779 }
4780
4781 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4782 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4783 = GOT_ENTRY_SIZE;
4784
4785 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4786 htab_traverse (htab->loc_hash_table,
4787 elf_x86_64_finish_local_dynamic_symbol,
4788 info);
4789
4790 return TRUE;
4791 }
4792
4793 /* Return address for Ith PLT stub in section PLT, for relocation REL
4794 or (bfd_vma) -1 if it should not be included. */
4795
4796 static bfd_vma
4797 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4798 const arelent *rel ATTRIBUTE_UNUSED)
4799 {
4800 return plt->vma + (i + 1) * GET_PLT_ENTRY_SIZE (plt->owner);
4801 }
4802
4803 /* Handle an x86-64 specific section when reading an object file. This
4804 is called when elfcode.h finds a section with an unknown type. */
4805
4806 static bfd_boolean
4807 elf_x86_64_section_from_shdr (bfd *abfd,
4808 Elf_Internal_Shdr *hdr,
4809 const char *name,
4810 int shindex)
4811 {
4812 if (hdr->sh_type != SHT_X86_64_UNWIND)
4813 return FALSE;
4814
4815 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4816 return FALSE;
4817
4818 return TRUE;
4819 }
4820
4821 /* Hook called by the linker routine which adds symbols from an object
4822 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4823 of .bss. */
4824
4825 static bfd_boolean
4826 elf_x86_64_add_symbol_hook (bfd *abfd,
4827 struct bfd_link_info *info,
4828 Elf_Internal_Sym *sym,
4829 const char **namep ATTRIBUTE_UNUSED,
4830 flagword *flagsp ATTRIBUTE_UNUSED,
4831 asection **secp,
4832 bfd_vma *valp)
4833 {
4834 asection *lcomm;
4835
4836 switch (sym->st_shndx)
4837 {
4838 case SHN_X86_64_LCOMMON:
4839 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4840 if (lcomm == NULL)
4841 {
4842 lcomm = bfd_make_section_with_flags (abfd,
4843 "LARGE_COMMON",
4844 (SEC_ALLOC
4845 | SEC_IS_COMMON
4846 | SEC_LINKER_CREATED));
4847 if (lcomm == NULL)
4848 return FALSE;
4849 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4850 }
4851 *secp = lcomm;
4852 *valp = sym->st_size;
4853 return TRUE;
4854 }
4855
4856 if ((abfd->flags & DYNAMIC) == 0
4857 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4858 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
4859 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4860
4861 return TRUE;
4862 }
4863
4864
4865 /* Given a BFD section, try to locate the corresponding ELF section
4866 index. */
4867
4868 static bfd_boolean
4869 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4870 asection *sec, int *index_return)
4871 {
4872 if (sec == &_bfd_elf_large_com_section)
4873 {
4874 *index_return = SHN_X86_64_LCOMMON;
4875 return TRUE;
4876 }
4877 return FALSE;
4878 }
4879
4880 /* Process a symbol. */
4881
4882 static void
4883 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4884 asymbol *asym)
4885 {
4886 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4887
4888 switch (elfsym->internal_elf_sym.st_shndx)
4889 {
4890 case SHN_X86_64_LCOMMON:
4891 asym->section = &_bfd_elf_large_com_section;
4892 asym->value = elfsym->internal_elf_sym.st_size;
4893 /* Common symbol doesn't set BSF_GLOBAL. */
4894 asym->flags &= ~BSF_GLOBAL;
4895 break;
4896 }
4897 }
4898
4899 static bfd_boolean
4900 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
4901 {
4902 return (sym->st_shndx == SHN_COMMON
4903 || sym->st_shndx == SHN_X86_64_LCOMMON);
4904 }
4905
4906 static unsigned int
4907 elf_x86_64_common_section_index (asection *sec)
4908 {
4909 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4910 return SHN_COMMON;
4911 else
4912 return SHN_X86_64_LCOMMON;
4913 }
4914
4915 static asection *
4916 elf_x86_64_common_section (asection *sec)
4917 {
4918 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4919 return bfd_com_section_ptr;
4920 else
4921 return &_bfd_elf_large_com_section;
4922 }
4923
4924 static bfd_boolean
4925 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4926 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4927 struct elf_link_hash_entry *h,
4928 Elf_Internal_Sym *sym,
4929 asection **psec,
4930 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4931 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4932 bfd_boolean *skip ATTRIBUTE_UNUSED,
4933 bfd_boolean *override ATTRIBUTE_UNUSED,
4934 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4935 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4936 bfd_boolean *newdyn ATTRIBUTE_UNUSED,
4937 bfd_boolean *newdef,
4938 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4939 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4940 bfd *abfd ATTRIBUTE_UNUSED,
4941 asection **sec,
4942 bfd_boolean *olddyn ATTRIBUTE_UNUSED,
4943 bfd_boolean *olddef,
4944 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4945 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4946 bfd *oldbfd,
4947 asection **oldsec)
4948 {
4949 /* A normal common symbol and a large common symbol result in a
4950 normal common symbol. We turn the large common symbol into a
4951 normal one. */
4952 if (!*olddef
4953 && h->root.type == bfd_link_hash_common
4954 && !*newdef
4955 && bfd_is_com_section (*sec)
4956 && *oldsec != *sec)
4957 {
4958 if (sym->st_shndx == SHN_COMMON
4959 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4960 {
4961 h->root.u.c.p->section
4962 = bfd_make_section_old_way (oldbfd, "COMMON");
4963 h->root.u.c.p->section->flags = SEC_ALLOC;
4964 }
4965 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4966 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4967 *psec = *sec = bfd_com_section_ptr;
4968 }
4969
4970 return TRUE;
4971 }
4972
4973 static int
4974 elf_x86_64_additional_program_headers (bfd *abfd,
4975 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4976 {
4977 asection *s;
4978 int count = 0;
4979
4980 /* Check to see if we need a large readonly segment. */
4981 s = bfd_get_section_by_name (abfd, ".lrodata");
4982 if (s && (s->flags & SEC_LOAD))
4983 count++;
4984
4985 /* Check to see if we need a large data segment. Since .lbss sections
4986 is placed right after the .bss section, there should be no need for
4987 a large data segment just because of .lbss. */
4988 s = bfd_get_section_by_name (abfd, ".ldata");
4989 if (s && (s->flags & SEC_LOAD))
4990 count++;
4991
4992 return count;
4993 }
4994
4995 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4996
4997 static bfd_boolean
4998 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4999 {
5000 if (h->plt.offset != (bfd_vma) -1
5001 && !h->def_regular
5002 && !h->pointer_equality_needed)
5003 return FALSE;
5004
5005 return _bfd_elf_hash_symbol (h);
5006 }
5007
5008 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
5009
5010 static bfd_boolean
5011 elf_x86_64_relocs_compatible (const bfd_target *input,
5012 const bfd_target *output)
5013 {
5014 return ((xvec_get_elf_backend_data (input)->s->elfclass
5015 == xvec_get_elf_backend_data (output)->s->elfclass)
5016 && _bfd_elf_relocs_compatible (input, output));
5017 }
5018
5019 static const struct bfd_elf_special_section
5020 elf_x86_64_special_sections[]=
5021 {
5022 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5023 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5024 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
5025 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5026 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5027 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5028 { NULL, 0, 0, 0, 0 }
5029 };
5030
5031 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
5032 #define TARGET_LITTLE_NAME "elf64-x86-64"
5033 #define ELF_ARCH bfd_arch_i386
5034 #define ELF_TARGET_ID X86_64_ELF_DATA
5035 #define ELF_MACHINE_CODE EM_X86_64
5036 #define ELF_MAXPAGESIZE 0x200000
5037 #define ELF_MINPAGESIZE 0x1000
5038 #define ELF_COMMONPAGESIZE 0x1000
5039
5040 #define elf_backend_can_gc_sections 1
5041 #define elf_backend_can_refcount 1
5042 #define elf_backend_want_got_plt 1
5043 #define elf_backend_plt_readonly 1
5044 #define elf_backend_want_plt_sym 0
5045 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
5046 #define elf_backend_rela_normal 1
5047 #define elf_backend_plt_alignment 4
5048
5049 #define elf_info_to_howto elf_x86_64_info_to_howto
5050
5051 #define bfd_elf64_bfd_link_hash_table_create \
5052 elf_x86_64_link_hash_table_create
5053 #define bfd_elf64_bfd_link_hash_table_free \
5054 elf_x86_64_link_hash_table_free
5055 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
5056 #define bfd_elf64_bfd_reloc_name_lookup \
5057 elf_x86_64_reloc_name_lookup
5058
5059 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
5060 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
5061 #define elf_backend_check_relocs elf_x86_64_check_relocs
5062 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
5063 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
5064 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
5065 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
5066 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
5067 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
5068 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
5069 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
5070 #ifdef CORE_HEADER
5071 #define elf_backend_write_core_note elf_x86_64_write_core_note
5072 #endif
5073 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
5074 #define elf_backend_relocate_section elf_x86_64_relocate_section
5075 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
5076 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
5077 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
5078 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
5079 #define elf_backend_object_p elf64_x86_64_elf_object_p
5080 #define bfd_elf64_mkobject elf_x86_64_mkobject
5081
5082 #define elf_backend_section_from_shdr \
5083 elf_x86_64_section_from_shdr
5084
5085 #define elf_backend_section_from_bfd_section \
5086 elf_x86_64_elf_section_from_bfd_section
5087 #define elf_backend_add_symbol_hook \
5088 elf_x86_64_add_symbol_hook
5089 #define elf_backend_symbol_processing \
5090 elf_x86_64_symbol_processing
5091 #define elf_backend_common_section_index \
5092 elf_x86_64_common_section_index
5093 #define elf_backend_common_section \
5094 elf_x86_64_common_section
5095 #define elf_backend_common_definition \
5096 elf_x86_64_common_definition
5097 #define elf_backend_merge_symbol \
5098 elf_x86_64_merge_symbol
5099 #define elf_backend_special_sections \
5100 elf_x86_64_special_sections
5101 #define elf_backend_additional_program_headers \
5102 elf_x86_64_additional_program_headers
5103 #define elf_backend_hash_symbol \
5104 elf_x86_64_hash_symbol
5105
5106 #define elf_backend_post_process_headers _bfd_elf_set_osabi
5107
5108 #include "elf64-target.h"
5109
5110 /* FreeBSD support. */
5111
5112 #undef TARGET_LITTLE_SYM
5113 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
5114 #undef TARGET_LITTLE_NAME
5115 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
5116
5117 #undef ELF_OSABI
5118 #define ELF_OSABI ELFOSABI_FREEBSD
5119
5120 #undef elf64_bed
5121 #define elf64_bed elf64_x86_64_fbsd_bed
5122
5123 #include "elf64-target.h"
5124
5125 /* Solaris 2 support. */
5126
5127 #undef TARGET_LITTLE_SYM
5128 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
5129 #undef TARGET_LITTLE_NAME
5130 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5131
5132 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5133 objects won't be recognized. */
5134 #undef ELF_OSABI
5135
5136 #undef elf64_bed
5137 #define elf64_bed elf64_x86_64_sol2_bed
5138
5139 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5140 boundary. */
5141 #undef elf_backend_static_tls_alignment
5142 #define elf_backend_static_tls_alignment 16
5143
5144 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5145
5146 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5147 File, p.63. */
5148 #undef elf_backend_want_plt_sym
5149 #define elf_backend_want_plt_sym 1
5150
5151 #include "elf64-target.h"
5152
5153 /* Native Client support. */
5154
5155 #undef TARGET_LITTLE_SYM
5156 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_nacl_vec
5157 #undef TARGET_LITTLE_NAME
5158 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
5159 #undef elf64_bed
5160 #define elf64_bed elf64_x86_64_nacl_bed
5161
5162 #undef ELF_MAXPAGESIZE
5163 #undef ELF_MINPAGESIZE
5164 #undef ELF_COMMONPAGESIZE
5165 #define ELF_MAXPAGESIZE 0x10000
5166 #define ELF_MINPAGESIZE 0x10000
5167 #define ELF_COMMONPAGESIZE 0x10000
5168
5169 /* Restore defaults. */
5170 #undef ELF_OSABI
5171 #undef elf_backend_static_tls_alignment
5172 #undef elf_backend_want_plt_sym
5173 #define elf_backend_want_plt_sym 0
5174
5175 /* NaCl uses substantially different PLT entries for the same effects. */
5176
5177 #undef elf_backend_plt_alignment
5178 #define elf_backend_plt_alignment 5
5179 #define NACL_PLT_ENTRY_SIZE 64
5180 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
5181
5182 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
5183 {
5184 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
5185 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
5186 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5187 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5188 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5189
5190 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
5191 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopl %cs:0x0(%rax,%rax,1) */
5192
5193 /* 32 bytes of nop to pad out to the standard size. */
5194 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5195 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5196 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5197 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5198 0x66, /* excess data32 prefix */
5199 0x90 /* nop */
5200 };
5201
5202 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
5203 {
5204 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
5205 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5206 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5207 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5208
5209 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
5210 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5211 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5212
5213 /* Lazy GOT entries point here (32-byte aligned). */
5214 0x68, /* pushq immediate */
5215 0, 0, 0, 0, /* replaced with index into relocation table. */
5216 0xe9, /* jmp relative */
5217 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
5218
5219 /* 22 bytes of nop to pad out to the standard size. */
5220 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5221 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5222 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
5223 };
5224
5225 /* .eh_frame covering the .plt section. */
5226
5227 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
5228 {
5229 #if (PLT_CIE_LENGTH != 20 \
5230 || PLT_FDE_LENGTH != 36 \
5231 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
5232 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
5233 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
5234 #endif
5235 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
5236 0, 0, 0, 0, /* CIE ID */
5237 1, /* CIE version */
5238 'z', 'R', 0, /* Augmentation string */
5239 1, /* Code alignment factor */
5240 0x78, /* Data alignment factor */
5241 16, /* Return address column */
5242 1, /* Augmentation size */
5243 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
5244 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
5245 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
5246 DW_CFA_nop, DW_CFA_nop,
5247
5248 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
5249 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
5250 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
5251 0, 0, 0, 0, /* .plt size goes here */
5252 0, /* Augmentation size */
5253 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
5254 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
5255 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
5256 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
5257 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
5258 13, /* Block length */
5259 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
5260 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
5261 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
5262 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
5263 DW_CFA_nop, DW_CFA_nop
5264 };
5265
5266 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
5267 {
5268 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
5269 elf_x86_64_nacl_plt_entry, /* plt_entry */
5270 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
5271 2, /* plt0_got1_offset */
5272 9, /* plt0_got2_offset */
5273 13, /* plt0_got2_insn_end */
5274 3, /* plt_got_offset */
5275 33, /* plt_reloc_offset */
5276 38, /* plt_plt_offset */
5277 7, /* plt_got_insn_size */
5278 42, /* plt_plt_insn_end */
5279 32, /* plt_lazy_offset */
5280 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
5281 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
5282 };
5283
5284 #undef elf_backend_arch_data
5285 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
5286
5287 #undef elf_backend_modify_segment_map
5288 #define elf_backend_modify_segment_map nacl_modify_segment_map
5289 #undef elf_backend_modify_program_headers
5290 #define elf_backend_modify_program_headers nacl_modify_program_headers
5291
5292 #include "elf64-target.h"
5293
5294 /* Native Client x32 support. */
5295
5296 #undef TARGET_LITTLE_SYM
5297 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_nacl_vec
5298 #undef TARGET_LITTLE_NAME
5299 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
5300 #undef elf32_bed
5301 #define elf32_bed elf32_x86_64_nacl_bed
5302
5303 #define bfd_elf32_bfd_link_hash_table_create \
5304 elf_x86_64_link_hash_table_create
5305 #define bfd_elf32_bfd_link_hash_table_free \
5306 elf_x86_64_link_hash_table_free
5307 #define bfd_elf32_bfd_reloc_type_lookup \
5308 elf_x86_64_reloc_type_lookup
5309 #define bfd_elf32_bfd_reloc_name_lookup \
5310 elf_x86_64_reloc_name_lookup
5311 #define bfd_elf32_mkobject \
5312 elf_x86_64_mkobject
5313
5314 #undef elf_backend_object_p
5315 #define elf_backend_object_p \
5316 elf32_x86_64_elf_object_p
5317
5318 #undef elf_backend_bfd_from_remote_memory
5319 #define elf_backend_bfd_from_remote_memory \
5320 _bfd_elf32_bfd_from_remote_memory
5321
5322 #undef elf_backend_size_info
5323 #define elf_backend_size_info \
5324 _bfd_elf32_size_info
5325
5326 #include "elf32-target.h"
5327
5328 /* Restore defaults. */
5329 #undef elf_backend_object_p
5330 #define elf_backend_object_p elf64_x86_64_elf_object_p
5331 #undef elf_backend_bfd_from_remote_memory
5332 #undef elf_backend_size_info
5333 #undef elf_backend_modify_segment_map
5334 #undef elf_backend_modify_program_headers
5335
5336 /* Intel L1OM support. */
5337
5338 static bfd_boolean
5339 elf64_l1om_elf_object_p (bfd *abfd)
5340 {
5341 /* Set the right machine number for an L1OM elf64 file. */
5342 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
5343 return TRUE;
5344 }
5345
5346 #undef TARGET_LITTLE_SYM
5347 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
5348 #undef TARGET_LITTLE_NAME
5349 #define TARGET_LITTLE_NAME "elf64-l1om"
5350 #undef ELF_ARCH
5351 #define ELF_ARCH bfd_arch_l1om
5352
5353 #undef ELF_MACHINE_CODE
5354 #define ELF_MACHINE_CODE EM_L1OM
5355
5356 #undef ELF_OSABI
5357
5358 #undef elf64_bed
5359 #define elf64_bed elf64_l1om_bed
5360
5361 #undef elf_backend_object_p
5362 #define elf_backend_object_p elf64_l1om_elf_object_p
5363
5364 /* Restore defaults. */
5365 #undef ELF_MAXPAGESIZE
5366 #undef ELF_MINPAGESIZE
5367 #undef ELF_COMMONPAGESIZE
5368 #define ELF_MAXPAGESIZE 0x200000
5369 #define ELF_MINPAGESIZE 0x1000
5370 #define ELF_COMMONPAGESIZE 0x1000
5371 #undef elf_backend_plt_alignment
5372 #define elf_backend_plt_alignment 4
5373 #undef elf_backend_arch_data
5374 #define elf_backend_arch_data &elf_x86_64_arch_bed
5375
5376 #include "elf64-target.h"
5377
5378 /* FreeBSD L1OM support. */
5379
5380 #undef TARGET_LITTLE_SYM
5381 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
5382 #undef TARGET_LITTLE_NAME
5383 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
5384
5385 #undef ELF_OSABI
5386 #define ELF_OSABI ELFOSABI_FREEBSD
5387
5388 #undef elf64_bed
5389 #define elf64_bed elf64_l1om_fbsd_bed
5390
5391 #include "elf64-target.h"
5392
5393 /* Intel K1OM support. */
5394
5395 static bfd_boolean
5396 elf64_k1om_elf_object_p (bfd *abfd)
5397 {
5398 /* Set the right machine number for an K1OM elf64 file. */
5399 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
5400 return TRUE;
5401 }
5402
5403 #undef TARGET_LITTLE_SYM
5404 #define TARGET_LITTLE_SYM bfd_elf64_k1om_vec
5405 #undef TARGET_LITTLE_NAME
5406 #define TARGET_LITTLE_NAME "elf64-k1om"
5407 #undef ELF_ARCH
5408 #define ELF_ARCH bfd_arch_k1om
5409
5410 #undef ELF_MACHINE_CODE
5411 #define ELF_MACHINE_CODE EM_K1OM
5412
5413 #undef ELF_OSABI
5414
5415 #undef elf64_bed
5416 #define elf64_bed elf64_k1om_bed
5417
5418 #undef elf_backend_object_p
5419 #define elf_backend_object_p elf64_k1om_elf_object_p
5420
5421 #undef elf_backend_static_tls_alignment
5422
5423 #undef elf_backend_want_plt_sym
5424 #define elf_backend_want_plt_sym 0
5425
5426 #include "elf64-target.h"
5427
5428 /* FreeBSD K1OM support. */
5429
5430 #undef TARGET_LITTLE_SYM
5431 #define TARGET_LITTLE_SYM bfd_elf64_k1om_freebsd_vec
5432 #undef TARGET_LITTLE_NAME
5433 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
5434
5435 #undef ELF_OSABI
5436 #define ELF_OSABI ELFOSABI_FREEBSD
5437
5438 #undef elf64_bed
5439 #define elf64_bed elf64_k1om_fbsd_bed
5440
5441 #include "elf64-target.h"
5442
5443 /* 32bit x86-64 support. */
5444
5445 #undef TARGET_LITTLE_SYM
5446 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
5447 #undef TARGET_LITTLE_NAME
5448 #define TARGET_LITTLE_NAME "elf32-x86-64"
5449 #undef elf32_bed
5450
5451 #undef ELF_ARCH
5452 #define ELF_ARCH bfd_arch_i386
5453
5454 #undef ELF_MACHINE_CODE
5455 #define ELF_MACHINE_CODE EM_X86_64
5456
5457 #undef ELF_OSABI
5458
5459 #undef elf_backend_object_p
5460 #define elf_backend_object_p \
5461 elf32_x86_64_elf_object_p
5462
5463 #undef elf_backend_bfd_from_remote_memory
5464 #define elf_backend_bfd_from_remote_memory \
5465 _bfd_elf32_bfd_from_remote_memory
5466
5467 #undef elf_backend_size_info
5468 #define elf_backend_size_info \
5469 _bfd_elf32_size_info
5470
5471 #include "elf32-target.h"
This page took 0.159263 seconds and 4 git commands to generate.