daily update
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "bfd_stdint.h"
31 #include "objalloc.h"
32 #include "hashtab.h"
33 #include "dwarf2.h"
34 #include "libiberty.h"
35
36 #include "elf/x86-64.h"
37
38 #ifdef CORE_HEADER
39 #include <stdarg.h>
40 #include CORE_HEADER
41 #endif
42
43 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
44 #define MINUS_ONE (~ (bfd_vma) 0)
45
46 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
47 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
48 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
49 since they are the same. */
50
51 #define ABI_64_P(abfd) \
52 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
53
54 /* The relocation "howto" table. Order of fields:
55 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
56 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
57 static reloc_howto_type x86_64_elf_howto_table[] =
58 {
59 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
60 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
61 FALSE),
62 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
63 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
64 FALSE),
65 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
66 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
67 TRUE),
68 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
69 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
70 FALSE),
71 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
72 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
73 TRUE),
74 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
76 FALSE),
77 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
79 MINUS_ONE, FALSE),
80 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
82 MINUS_ONE, FALSE),
83 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
84 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
85 MINUS_ONE, FALSE),
86 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
87 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
88 0xffffffff, TRUE),
89 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
90 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
91 FALSE),
92 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
93 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
94 FALSE),
95 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
97 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
99 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
100 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
101 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
103 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
105 MINUS_ONE, FALSE),
106 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
108 MINUS_ONE, FALSE),
109 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
111 MINUS_ONE, FALSE),
112 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
114 0xffffffff, TRUE),
115 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
116 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
117 0xffffffff, TRUE),
118 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
119 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
120 0xffffffff, FALSE),
121 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
122 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
123 0xffffffff, TRUE),
124 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
125 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
126 0xffffffff, FALSE),
127 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
129 TRUE),
130 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
131 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
132 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
133 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
134 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
135 FALSE, 0xffffffff, 0xffffffff, TRUE),
136 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
138 FALSE),
139 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
140 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
141 MINUS_ONE, TRUE),
142 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
143 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
144 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
145 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
146 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
147 MINUS_ONE, FALSE),
148 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
149 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
150 MINUS_ONE, FALSE),
151 EMPTY_HOWTO (32),
152 EMPTY_HOWTO (33),
153 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
154 complain_overflow_bitfield, bfd_elf_generic_reloc,
155 "R_X86_64_GOTPC32_TLSDESC",
156 FALSE, 0xffffffff, 0xffffffff, TRUE),
157 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
158 complain_overflow_dont, bfd_elf_generic_reloc,
159 "R_X86_64_TLSDESC_CALL",
160 FALSE, 0, 0, FALSE),
161 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
162 complain_overflow_bitfield, bfd_elf_generic_reloc,
163 "R_X86_64_TLSDESC",
164 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
165 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
166 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
167 MINUS_ONE, FALSE),
168 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
170 MINUS_ONE, FALSE),
171
172 /* We have a gap in the reloc numbers here.
173 R_X86_64_standard counts the number up to this point, and
174 R_X86_64_vt_offset is the value to subtract from a reloc type of
175 R_X86_64_GNU_VT* to form an index into this table. */
176 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
177 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
178
179 /* GNU extension to record C++ vtable hierarchy. */
180 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
181 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
182
183 /* GNU extension to record C++ vtable member usage. */
184 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
185 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
186 FALSE),
187
188 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
189 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
191 FALSE)
192 };
193
194 #define IS_X86_64_PCREL_TYPE(TYPE) \
195 ( ((TYPE) == R_X86_64_PC8) \
196 || ((TYPE) == R_X86_64_PC16) \
197 || ((TYPE) == R_X86_64_PC32) \
198 || ((TYPE) == R_X86_64_PC64))
199
200 /* Map BFD relocs to the x86_64 elf relocs. */
201 struct elf_reloc_map
202 {
203 bfd_reloc_code_real_type bfd_reloc_val;
204 unsigned char elf_reloc_val;
205 };
206
207 static const struct elf_reloc_map x86_64_reloc_map[] =
208 {
209 { BFD_RELOC_NONE, R_X86_64_NONE, },
210 { BFD_RELOC_64, R_X86_64_64, },
211 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
212 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
213 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
214 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
215 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
216 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
217 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
218 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
219 { BFD_RELOC_32, R_X86_64_32, },
220 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
221 { BFD_RELOC_16, R_X86_64_16, },
222 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
223 { BFD_RELOC_8, R_X86_64_8, },
224 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
225 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
226 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
227 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
228 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
229 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
230 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
231 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
232 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
233 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
234 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
235 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
236 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
237 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
238 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
239 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
240 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
241 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
242 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
243 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
244 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
245 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
246 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
247 };
248
249 static reloc_howto_type *
250 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
251 {
252 unsigned i;
253
254 if (r_type == (unsigned int) R_X86_64_32)
255 {
256 if (ABI_64_P (abfd))
257 i = r_type;
258 else
259 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
260 }
261 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
262 || r_type >= (unsigned int) R_X86_64_max)
263 {
264 if (r_type >= (unsigned int) R_X86_64_standard)
265 {
266 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
267 abfd, (int) r_type);
268 r_type = R_X86_64_NONE;
269 }
270 i = r_type;
271 }
272 else
273 i = r_type - (unsigned int) R_X86_64_vt_offset;
274 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
275 return &x86_64_elf_howto_table[i];
276 }
277
278 /* Given a BFD reloc type, return a HOWTO structure. */
279 static reloc_howto_type *
280 elf_x86_64_reloc_type_lookup (bfd *abfd,
281 bfd_reloc_code_real_type code)
282 {
283 unsigned int i;
284
285 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
286 i++)
287 {
288 if (x86_64_reloc_map[i].bfd_reloc_val == code)
289 return elf_x86_64_rtype_to_howto (abfd,
290 x86_64_reloc_map[i].elf_reloc_val);
291 }
292 return 0;
293 }
294
295 static reloc_howto_type *
296 elf_x86_64_reloc_name_lookup (bfd *abfd,
297 const char *r_name)
298 {
299 unsigned int i;
300
301 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
302 {
303 /* Get x32 R_X86_64_32. */
304 reloc_howto_type *reloc
305 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
306 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
307 return reloc;
308 }
309
310 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
311 if (x86_64_elf_howto_table[i].name != NULL
312 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
313 return &x86_64_elf_howto_table[i];
314
315 return NULL;
316 }
317
318 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
319
320 static void
321 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
322 Elf_Internal_Rela *dst)
323 {
324 unsigned r_type;
325
326 r_type = ELF32_R_TYPE (dst->r_info);
327 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
328 BFD_ASSERT (r_type == cache_ptr->howto->type);
329 }
330 \f
331 /* Support for core dump NOTE sections. */
332 static bfd_boolean
333 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
334 {
335 int offset;
336 size_t size;
337
338 switch (note->descsz)
339 {
340 default:
341 return FALSE;
342
343 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
344 /* pr_cursig */
345 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
346
347 /* pr_pid */
348 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
349
350 /* pr_reg */
351 offset = 72;
352 size = 216;
353
354 break;
355
356 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
357 /* pr_cursig */
358 elf_tdata (abfd)->core_signal
359 = bfd_get_16 (abfd, note->descdata + 12);
360
361 /* pr_pid */
362 elf_tdata (abfd)->core_lwpid
363 = bfd_get_32 (abfd, note->descdata + 32);
364
365 /* pr_reg */
366 offset = 112;
367 size = 216;
368
369 break;
370 }
371
372 /* Make a ".reg/999" section. */
373 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
374 size, note->descpos + offset);
375 }
376
377 static bfd_boolean
378 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
379 {
380 switch (note->descsz)
381 {
382 default:
383 return FALSE;
384
385 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
386 elf_tdata (abfd)->core_pid
387 = bfd_get_32 (abfd, note->descdata + 12);
388 elf_tdata (abfd)->core_program
389 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
390 elf_tdata (abfd)->core_command
391 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
392 break;
393
394 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
395 elf_tdata (abfd)->core_pid
396 = bfd_get_32 (abfd, note->descdata + 24);
397 elf_tdata (abfd)->core_program
398 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
399 elf_tdata (abfd)->core_command
400 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
401 }
402
403 /* Note that for some reason, a spurious space is tacked
404 onto the end of the args in some (at least one anyway)
405 implementations, so strip it off if it exists. */
406
407 {
408 char *command = elf_tdata (abfd)->core_command;
409 int n = strlen (command);
410
411 if (0 < n && command[n - 1] == ' ')
412 command[n - 1] = '\0';
413 }
414
415 return TRUE;
416 }
417
418 #ifdef CORE_HEADER
419 static char *
420 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
421 int note_type, ...)
422 {
423 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
424 va_list ap;
425 const char *fname, *psargs;
426 long pid;
427 int cursig;
428 const void *gregs;
429
430 switch (note_type)
431 {
432 default:
433 return NULL;
434
435 case NT_PRPSINFO:
436 va_start (ap, note_type);
437 fname = va_arg (ap, const char *);
438 psargs = va_arg (ap, const char *);
439 va_end (ap);
440
441 if (bed->s->elfclass == ELFCLASS32)
442 {
443 prpsinfo32_t data;
444 memset (&data, 0, sizeof (data));
445 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
446 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
447 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
448 &data, sizeof (data));
449 }
450 else
451 {
452 prpsinfo64_t data;
453 memset (&data, 0, sizeof (data));
454 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
455 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
456 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
457 &data, sizeof (data));
458 }
459 /* NOTREACHED */
460
461 case NT_PRSTATUS:
462 va_start (ap, note_type);
463 pid = va_arg (ap, long);
464 cursig = va_arg (ap, int);
465 gregs = va_arg (ap, const void *);
466 va_end (ap);
467
468 if (bed->s->elfclass == ELFCLASS32)
469 {
470 if (bed->elf_machine_code == EM_X86_64)
471 {
472 prstatusx32_t prstat;
473 memset (&prstat, 0, sizeof (prstat));
474 prstat.pr_pid = pid;
475 prstat.pr_cursig = cursig;
476 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
477 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
478 &prstat, sizeof (prstat));
479 }
480 else
481 {
482 prstatus32_t prstat;
483 memset (&prstat, 0, sizeof (prstat));
484 prstat.pr_pid = pid;
485 prstat.pr_cursig = cursig;
486 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
487 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
488 &prstat, sizeof (prstat));
489 }
490 }
491 else
492 {
493 prstatus64_t prstat;
494 memset (&prstat, 0, sizeof (prstat));
495 prstat.pr_pid = pid;
496 prstat.pr_cursig = cursig;
497 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
498 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
499 &prstat, sizeof (prstat));
500 }
501 }
502 /* NOTREACHED */
503 }
504 #endif
505 \f
506 /* Functions for the x86-64 ELF linker. */
507
508 /* The name of the dynamic interpreter. This is put in the .interp
509 section. */
510
511 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
512 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
513
514 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
515 copying dynamic variables from a shared lib into an app's dynbss
516 section, and instead use a dynamic relocation to point into the
517 shared lib. */
518 #define ELIMINATE_COPY_RELOCS 1
519
520 /* The size in bytes of an entry in the global offset table. */
521
522 #define GOT_ENTRY_SIZE 8
523
524 /* The size in bytes of an entry in the procedure linkage table. */
525
526 #define PLT_ENTRY_SIZE 16
527
528 /* The first entry in a procedure linkage table looks like this. See the
529 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
530
531 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
532 {
533 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
534 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
535 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
536 };
537
538 /* Subsequent entries in a procedure linkage table look like this. */
539
540 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
541 {
542 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
543 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
544 0x68, /* pushq immediate */
545 0, 0, 0, 0, /* replaced with index into relocation table. */
546 0xe9, /* jmp relative */
547 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
548 };
549
550 /* .eh_frame covering the .plt section. */
551
552 static const bfd_byte elf_x86_64_eh_frame_plt[] =
553 {
554 #define PLT_CIE_LENGTH 20
555 #define PLT_FDE_LENGTH 36
556 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
557 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
558 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
559 0, 0, 0, 0, /* CIE ID */
560 1, /* CIE version */
561 'z', 'R', 0, /* Augmentation string */
562 1, /* Code alignment factor */
563 0x78, /* Data alignment factor */
564 16, /* Return address column */
565 1, /* Augmentation size */
566 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
567 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
568 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
569 DW_CFA_nop, DW_CFA_nop,
570
571 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
572 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
573 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
574 0, 0, 0, 0, /* .plt size goes here */
575 0, /* Augmentation size */
576 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
577 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
578 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
579 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
580 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
581 11, /* Block length */
582 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
583 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
584 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
585 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
586 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
587 };
588
589 /* Architecture-specific backend data for x86-64. */
590
591 struct elf_x86_64_backend_data
592 {
593 /* Templates for the initial PLT entry and for subsequent entries. */
594 const bfd_byte *plt0_entry;
595 const bfd_byte *plt_entry;
596 unsigned int plt_entry_size; /* Size of each PLT entry. */
597
598 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
599 unsigned int plt0_got1_offset;
600 unsigned int plt0_got2_offset;
601
602 /* Offset of the end of the PC-relative instruction containing
603 plt0_got2_offset. */
604 unsigned int plt0_got2_insn_end;
605
606 /* Offsets into plt_entry that are to be replaced with... */
607 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
608 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
609 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
610
611 /* Length of the PC-relative instruction containing plt_got_offset. */
612 unsigned int plt_got_insn_size;
613
614 /* Offset of the end of the PC-relative jump to plt0_entry. */
615 unsigned int plt_plt_insn_end;
616
617 /* Offset into plt_entry where the initial value of the GOT entry points. */
618 unsigned int plt_lazy_offset;
619
620 /* .eh_frame covering the .plt section. */
621 const bfd_byte *eh_frame_plt;
622 unsigned int eh_frame_plt_size;
623 };
624
625 #define get_elf_x86_64_backend_data(abfd) \
626 ((const struct elf_x86_64_backend_data *) \
627 get_elf_backend_data (abfd)->arch_data)
628
629 #define GET_PLT_ENTRY_SIZE(abfd) \
630 get_elf_x86_64_backend_data (abfd)->plt_entry_size
631
632 /* These are the standard parameters. */
633 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
634 {
635 elf_x86_64_plt0_entry, /* plt0_entry */
636 elf_x86_64_plt_entry, /* plt_entry */
637 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
638 2, /* plt0_got1_offset */
639 8, /* plt0_got2_offset */
640 12, /* plt0_got2_insn_end */
641 2, /* plt_got_offset */
642 7, /* plt_reloc_offset */
643 12, /* plt_plt_offset */
644 6, /* plt_got_insn_size */
645 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
646 6, /* plt_lazy_offset */
647 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
648 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
649 };
650
651 #define elf_backend_arch_data &elf_x86_64_arch_bed
652
653 /* x86-64 ELF linker hash entry. */
654
655 struct elf_x86_64_link_hash_entry
656 {
657 struct elf_link_hash_entry elf;
658
659 /* Track dynamic relocs copied for this symbol. */
660 struct elf_dyn_relocs *dyn_relocs;
661
662 #define GOT_UNKNOWN 0
663 #define GOT_NORMAL 1
664 #define GOT_TLS_GD 2
665 #define GOT_TLS_IE 3
666 #define GOT_TLS_GDESC 4
667 #define GOT_TLS_GD_BOTH_P(type) \
668 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
669 #define GOT_TLS_GD_P(type) \
670 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
671 #define GOT_TLS_GDESC_P(type) \
672 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
673 #define GOT_TLS_GD_ANY_P(type) \
674 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
675 unsigned char tls_type;
676
677 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
678 starting at the end of the jump table. */
679 bfd_vma tlsdesc_got;
680 };
681
682 #define elf_x86_64_hash_entry(ent) \
683 ((struct elf_x86_64_link_hash_entry *)(ent))
684
685 struct elf_x86_64_obj_tdata
686 {
687 struct elf_obj_tdata root;
688
689 /* tls_type for each local got entry. */
690 char *local_got_tls_type;
691
692 /* GOTPLT entries for TLS descriptors. */
693 bfd_vma *local_tlsdesc_gotent;
694 };
695
696 #define elf_x86_64_tdata(abfd) \
697 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
698
699 #define elf_x86_64_local_got_tls_type(abfd) \
700 (elf_x86_64_tdata (abfd)->local_got_tls_type)
701
702 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
703 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
704
705 #define is_x86_64_elf(bfd) \
706 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
707 && elf_tdata (bfd) != NULL \
708 && elf_object_id (bfd) == X86_64_ELF_DATA)
709
710 static bfd_boolean
711 elf_x86_64_mkobject (bfd *abfd)
712 {
713 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
714 X86_64_ELF_DATA);
715 }
716
717 /* x86-64 ELF linker hash table. */
718
719 struct elf_x86_64_link_hash_table
720 {
721 struct elf_link_hash_table elf;
722
723 /* Short-cuts to get to dynamic linker sections. */
724 asection *sdynbss;
725 asection *srelbss;
726 asection *plt_eh_frame;
727
728 union
729 {
730 bfd_signed_vma refcount;
731 bfd_vma offset;
732 } tls_ld_got;
733
734 /* The amount of space used by the jump slots in the GOT. */
735 bfd_vma sgotplt_jump_table_size;
736
737 /* Small local sym cache. */
738 struct sym_cache sym_cache;
739
740 bfd_vma (*r_info) (bfd_vma, bfd_vma);
741 bfd_vma (*r_sym) (bfd_vma);
742 unsigned int pointer_r_type;
743 const char *dynamic_interpreter;
744 int dynamic_interpreter_size;
745
746 /* _TLS_MODULE_BASE_ symbol. */
747 struct bfd_link_hash_entry *tls_module_base;
748
749 /* Used by local STT_GNU_IFUNC symbols. */
750 htab_t loc_hash_table;
751 void * loc_hash_memory;
752
753 /* The offset into splt of the PLT entry for the TLS descriptor
754 resolver. Special values are 0, if not necessary (or not found
755 to be necessary yet), and -1 if needed but not determined
756 yet. */
757 bfd_vma tlsdesc_plt;
758 /* The offset into sgot of the GOT entry used by the PLT entry
759 above. */
760 bfd_vma tlsdesc_got;
761
762 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
763 bfd_vma next_jump_slot_index;
764 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
765 bfd_vma next_irelative_index;
766 };
767
768 /* Get the x86-64 ELF linker hash table from a link_info structure. */
769
770 #define elf_x86_64_hash_table(p) \
771 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
772 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
773
774 #define elf_x86_64_compute_jump_table_size(htab) \
775 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
776
777 /* Create an entry in an x86-64 ELF linker hash table. */
778
779 static struct bfd_hash_entry *
780 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
781 struct bfd_hash_table *table,
782 const char *string)
783 {
784 /* Allocate the structure if it has not already been allocated by a
785 subclass. */
786 if (entry == NULL)
787 {
788 entry = (struct bfd_hash_entry *)
789 bfd_hash_allocate (table,
790 sizeof (struct elf_x86_64_link_hash_entry));
791 if (entry == NULL)
792 return entry;
793 }
794
795 /* Call the allocation method of the superclass. */
796 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
797 if (entry != NULL)
798 {
799 struct elf_x86_64_link_hash_entry *eh;
800
801 eh = (struct elf_x86_64_link_hash_entry *) entry;
802 eh->dyn_relocs = NULL;
803 eh->tls_type = GOT_UNKNOWN;
804 eh->tlsdesc_got = (bfd_vma) -1;
805 }
806
807 return entry;
808 }
809
810 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
811 for local symbol so that we can handle local STT_GNU_IFUNC symbols
812 as global symbol. We reuse indx and dynstr_index for local symbol
813 hash since they aren't used by global symbols in this backend. */
814
815 static hashval_t
816 elf_x86_64_local_htab_hash (const void *ptr)
817 {
818 struct elf_link_hash_entry *h
819 = (struct elf_link_hash_entry *) ptr;
820 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
821 }
822
823 /* Compare local hash entries. */
824
825 static int
826 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
827 {
828 struct elf_link_hash_entry *h1
829 = (struct elf_link_hash_entry *) ptr1;
830 struct elf_link_hash_entry *h2
831 = (struct elf_link_hash_entry *) ptr2;
832
833 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
834 }
835
836 /* Find and/or create a hash entry for local symbol. */
837
838 static struct elf_link_hash_entry *
839 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
840 bfd *abfd, const Elf_Internal_Rela *rel,
841 bfd_boolean create)
842 {
843 struct elf_x86_64_link_hash_entry e, *ret;
844 asection *sec = abfd->sections;
845 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
846 htab->r_sym (rel->r_info));
847 void **slot;
848
849 e.elf.indx = sec->id;
850 e.elf.dynstr_index = htab->r_sym (rel->r_info);
851 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
852 create ? INSERT : NO_INSERT);
853
854 if (!slot)
855 return NULL;
856
857 if (*slot)
858 {
859 ret = (struct elf_x86_64_link_hash_entry *) *slot;
860 return &ret->elf;
861 }
862
863 ret = (struct elf_x86_64_link_hash_entry *)
864 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
865 sizeof (struct elf_x86_64_link_hash_entry));
866 if (ret)
867 {
868 memset (ret, 0, sizeof (*ret));
869 ret->elf.indx = sec->id;
870 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
871 ret->elf.dynindx = -1;
872 *slot = ret;
873 }
874 return &ret->elf;
875 }
876
877 /* Create an X86-64 ELF linker hash table. */
878
879 static struct bfd_link_hash_table *
880 elf_x86_64_link_hash_table_create (bfd *abfd)
881 {
882 struct elf_x86_64_link_hash_table *ret;
883 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
884
885 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
886 if (ret == NULL)
887 return NULL;
888
889 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
890 elf_x86_64_link_hash_newfunc,
891 sizeof (struct elf_x86_64_link_hash_entry),
892 X86_64_ELF_DATA))
893 {
894 free (ret);
895 return NULL;
896 }
897
898 ret->sdynbss = NULL;
899 ret->srelbss = NULL;
900 ret->plt_eh_frame = NULL;
901 ret->sym_cache.abfd = NULL;
902 ret->tlsdesc_plt = 0;
903 ret->tlsdesc_got = 0;
904 ret->tls_ld_got.refcount = 0;
905 ret->sgotplt_jump_table_size = 0;
906 ret->tls_module_base = NULL;
907 ret->next_jump_slot_index = 0;
908 ret->next_irelative_index = 0;
909
910 if (ABI_64_P (abfd))
911 {
912 ret->r_info = elf64_r_info;
913 ret->r_sym = elf64_r_sym;
914 ret->pointer_r_type = R_X86_64_64;
915 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
916 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
917 }
918 else
919 {
920 ret->r_info = elf32_r_info;
921 ret->r_sym = elf32_r_sym;
922 ret->pointer_r_type = R_X86_64_32;
923 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
924 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
925 }
926
927 ret->loc_hash_table = htab_try_create (1024,
928 elf_x86_64_local_htab_hash,
929 elf_x86_64_local_htab_eq,
930 NULL);
931 ret->loc_hash_memory = objalloc_create ();
932 if (!ret->loc_hash_table || !ret->loc_hash_memory)
933 {
934 free (ret);
935 return NULL;
936 }
937
938 return &ret->elf.root;
939 }
940
941 /* Destroy an X86-64 ELF linker hash table. */
942
943 static void
944 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
945 {
946 struct elf_x86_64_link_hash_table *htab
947 = (struct elf_x86_64_link_hash_table *) hash;
948
949 if (htab->loc_hash_table)
950 htab_delete (htab->loc_hash_table);
951 if (htab->loc_hash_memory)
952 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
953 _bfd_generic_link_hash_table_free (hash);
954 }
955
956 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
957 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
958 hash table. */
959
960 static bfd_boolean
961 elf_x86_64_create_dynamic_sections (bfd *dynobj,
962 struct bfd_link_info *info)
963 {
964 struct elf_x86_64_link_hash_table *htab;
965
966 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
967 return FALSE;
968
969 htab = elf_x86_64_hash_table (info);
970 if (htab == NULL)
971 return FALSE;
972
973 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
974 if (!info->shared)
975 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
976
977 if (!htab->sdynbss
978 || (!info->shared && !htab->srelbss))
979 abort ();
980
981 if (!info->no_ld_generated_unwind_info
982 && htab->plt_eh_frame == NULL
983 && htab->elf.splt != NULL)
984 {
985 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
986 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
987 | SEC_LINKER_CREATED);
988 htab->plt_eh_frame
989 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
990 if (htab->plt_eh_frame == NULL
991 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
992 return FALSE;
993 }
994 return TRUE;
995 }
996
997 /* Copy the extra info we tack onto an elf_link_hash_entry. */
998
999 static void
1000 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1001 struct elf_link_hash_entry *dir,
1002 struct elf_link_hash_entry *ind)
1003 {
1004 struct elf_x86_64_link_hash_entry *edir, *eind;
1005
1006 edir = (struct elf_x86_64_link_hash_entry *) dir;
1007 eind = (struct elf_x86_64_link_hash_entry *) ind;
1008
1009 if (eind->dyn_relocs != NULL)
1010 {
1011 if (edir->dyn_relocs != NULL)
1012 {
1013 struct elf_dyn_relocs **pp;
1014 struct elf_dyn_relocs *p;
1015
1016 /* Add reloc counts against the indirect sym to the direct sym
1017 list. Merge any entries against the same section. */
1018 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1019 {
1020 struct elf_dyn_relocs *q;
1021
1022 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1023 if (q->sec == p->sec)
1024 {
1025 q->pc_count += p->pc_count;
1026 q->count += p->count;
1027 *pp = p->next;
1028 break;
1029 }
1030 if (q == NULL)
1031 pp = &p->next;
1032 }
1033 *pp = edir->dyn_relocs;
1034 }
1035
1036 edir->dyn_relocs = eind->dyn_relocs;
1037 eind->dyn_relocs = NULL;
1038 }
1039
1040 if (ind->root.type == bfd_link_hash_indirect
1041 && dir->got.refcount <= 0)
1042 {
1043 edir->tls_type = eind->tls_type;
1044 eind->tls_type = GOT_UNKNOWN;
1045 }
1046
1047 if (ELIMINATE_COPY_RELOCS
1048 && ind->root.type != bfd_link_hash_indirect
1049 && dir->dynamic_adjusted)
1050 {
1051 /* If called to transfer flags for a weakdef during processing
1052 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1053 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1054 dir->ref_dynamic |= ind->ref_dynamic;
1055 dir->ref_regular |= ind->ref_regular;
1056 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1057 dir->needs_plt |= ind->needs_plt;
1058 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1059 }
1060 else
1061 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1062 }
1063
1064 static bfd_boolean
1065 elf64_x86_64_elf_object_p (bfd *abfd)
1066 {
1067 /* Set the right machine number for an x86-64 elf64 file. */
1068 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1069 return TRUE;
1070 }
1071
1072 static bfd_boolean
1073 elf32_x86_64_elf_object_p (bfd *abfd)
1074 {
1075 /* Set the right machine number for an x86-64 elf32 file. */
1076 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1077 return TRUE;
1078 }
1079
1080 /* Return TRUE if the TLS access code sequence support transition
1081 from R_TYPE. */
1082
1083 static bfd_boolean
1084 elf_x86_64_check_tls_transition (bfd *abfd,
1085 struct bfd_link_info *info,
1086 asection *sec,
1087 bfd_byte *contents,
1088 Elf_Internal_Shdr *symtab_hdr,
1089 struct elf_link_hash_entry **sym_hashes,
1090 unsigned int r_type,
1091 const Elf_Internal_Rela *rel,
1092 const Elf_Internal_Rela *relend)
1093 {
1094 unsigned int val;
1095 unsigned long r_symndx;
1096 struct elf_link_hash_entry *h;
1097 bfd_vma offset;
1098 struct elf_x86_64_link_hash_table *htab;
1099
1100 /* Get the section contents. */
1101 if (contents == NULL)
1102 {
1103 if (elf_section_data (sec)->this_hdr.contents != NULL)
1104 contents = elf_section_data (sec)->this_hdr.contents;
1105 else
1106 {
1107 /* FIXME: How to better handle error condition? */
1108 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1109 return FALSE;
1110
1111 /* Cache the section contents for elf_link_input_bfd. */
1112 elf_section_data (sec)->this_hdr.contents = contents;
1113 }
1114 }
1115
1116 htab = elf_x86_64_hash_table (info);
1117 offset = rel->r_offset;
1118 switch (r_type)
1119 {
1120 case R_X86_64_TLSGD:
1121 case R_X86_64_TLSLD:
1122 if ((rel + 1) >= relend)
1123 return FALSE;
1124
1125 if (r_type == R_X86_64_TLSGD)
1126 {
1127 /* Check transition from GD access model. For 64bit, only
1128 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1129 .word 0x6666; rex64; call __tls_get_addr
1130 can transit to different access model. For 32bit, only
1131 leaq foo@tlsgd(%rip), %rdi
1132 .word 0x6666; rex64; call __tls_get_addr
1133 can transit to different access model. */
1134
1135 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1136 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1137
1138 if ((offset + 12) > sec->size
1139 || memcmp (contents + offset + 4, call, 4) != 0)
1140 return FALSE;
1141
1142 if (ABI_64_P (abfd))
1143 {
1144 if (offset < 4
1145 || memcmp (contents + offset - 4, leaq, 4) != 0)
1146 return FALSE;
1147 }
1148 else
1149 {
1150 if (offset < 3
1151 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1152 return FALSE;
1153 }
1154 }
1155 else
1156 {
1157 /* Check transition from LD access model. Only
1158 leaq foo@tlsld(%rip), %rdi;
1159 call __tls_get_addr
1160 can transit to different access model. */
1161
1162 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1163
1164 if (offset < 3 || (offset + 9) > sec->size)
1165 return FALSE;
1166
1167 if (memcmp (contents + offset - 3, lea, 3) != 0
1168 || 0xe8 != *(contents + offset + 4))
1169 return FALSE;
1170 }
1171
1172 r_symndx = htab->r_sym (rel[1].r_info);
1173 if (r_symndx < symtab_hdr->sh_info)
1174 return FALSE;
1175
1176 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1177 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1178 may be versioned. */
1179 return (h != NULL
1180 && h->root.root.string != NULL
1181 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1182 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
1183 && (strncmp (h->root.root.string,
1184 "__tls_get_addr", 14) == 0));
1185
1186 case R_X86_64_GOTTPOFF:
1187 /* Check transition from IE access model:
1188 mov foo@gottpoff(%rip), %reg
1189 add foo@gottpoff(%rip), %reg
1190 */
1191
1192 /* Check REX prefix first. */
1193 if (offset >= 3 && (offset + 4) <= sec->size)
1194 {
1195 val = bfd_get_8 (abfd, contents + offset - 3);
1196 if (val != 0x48 && val != 0x4c)
1197 {
1198 /* X32 may have 0x44 REX prefix or no REX prefix. */
1199 if (ABI_64_P (abfd))
1200 return FALSE;
1201 }
1202 }
1203 else
1204 {
1205 /* X32 may not have any REX prefix. */
1206 if (ABI_64_P (abfd))
1207 return FALSE;
1208 if (offset < 2 || (offset + 3) > sec->size)
1209 return FALSE;
1210 }
1211
1212 val = bfd_get_8 (abfd, contents + offset - 2);
1213 if (val != 0x8b && val != 0x03)
1214 return FALSE;
1215
1216 val = bfd_get_8 (abfd, contents + offset - 1);
1217 return (val & 0xc7) == 5;
1218
1219 case R_X86_64_GOTPC32_TLSDESC:
1220 /* Check transition from GDesc access model:
1221 leaq x@tlsdesc(%rip), %rax
1222
1223 Make sure it's a leaq adding rip to a 32-bit offset
1224 into any register, although it's probably almost always
1225 going to be rax. */
1226
1227 if (offset < 3 || (offset + 4) > sec->size)
1228 return FALSE;
1229
1230 val = bfd_get_8 (abfd, contents + offset - 3);
1231 if ((val & 0xfb) != 0x48)
1232 return FALSE;
1233
1234 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1235 return FALSE;
1236
1237 val = bfd_get_8 (abfd, contents + offset - 1);
1238 return (val & 0xc7) == 0x05;
1239
1240 case R_X86_64_TLSDESC_CALL:
1241 /* Check transition from GDesc access model:
1242 call *x@tlsdesc(%rax)
1243 */
1244 if (offset + 2 <= sec->size)
1245 {
1246 /* Make sure that it's a call *x@tlsdesc(%rax). */
1247 static const unsigned char call[] = { 0xff, 0x10 };
1248 return memcmp (contents + offset, call, 2) == 0;
1249 }
1250
1251 return FALSE;
1252
1253 default:
1254 abort ();
1255 }
1256 }
1257
1258 /* Return TRUE if the TLS access transition is OK or no transition
1259 will be performed. Update R_TYPE if there is a transition. */
1260
1261 static bfd_boolean
1262 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1263 asection *sec, bfd_byte *contents,
1264 Elf_Internal_Shdr *symtab_hdr,
1265 struct elf_link_hash_entry **sym_hashes,
1266 unsigned int *r_type, int tls_type,
1267 const Elf_Internal_Rela *rel,
1268 const Elf_Internal_Rela *relend,
1269 struct elf_link_hash_entry *h,
1270 unsigned long r_symndx)
1271 {
1272 unsigned int from_type = *r_type;
1273 unsigned int to_type = from_type;
1274 bfd_boolean check = TRUE;
1275
1276 /* Skip TLS transition for functions. */
1277 if (h != NULL
1278 && (h->type == STT_FUNC
1279 || h->type == STT_GNU_IFUNC))
1280 return TRUE;
1281
1282 switch (from_type)
1283 {
1284 case R_X86_64_TLSGD:
1285 case R_X86_64_GOTPC32_TLSDESC:
1286 case R_X86_64_TLSDESC_CALL:
1287 case R_X86_64_GOTTPOFF:
1288 if (info->executable)
1289 {
1290 if (h == NULL)
1291 to_type = R_X86_64_TPOFF32;
1292 else
1293 to_type = R_X86_64_GOTTPOFF;
1294 }
1295
1296 /* When we are called from elf_x86_64_relocate_section,
1297 CONTENTS isn't NULL and there may be additional transitions
1298 based on TLS_TYPE. */
1299 if (contents != NULL)
1300 {
1301 unsigned int new_to_type = to_type;
1302
1303 if (info->executable
1304 && h != NULL
1305 && h->dynindx == -1
1306 && tls_type == GOT_TLS_IE)
1307 new_to_type = R_X86_64_TPOFF32;
1308
1309 if (to_type == R_X86_64_TLSGD
1310 || to_type == R_X86_64_GOTPC32_TLSDESC
1311 || to_type == R_X86_64_TLSDESC_CALL)
1312 {
1313 if (tls_type == GOT_TLS_IE)
1314 new_to_type = R_X86_64_GOTTPOFF;
1315 }
1316
1317 /* We checked the transition before when we were called from
1318 elf_x86_64_check_relocs. We only want to check the new
1319 transition which hasn't been checked before. */
1320 check = new_to_type != to_type && from_type == to_type;
1321 to_type = new_to_type;
1322 }
1323
1324 break;
1325
1326 case R_X86_64_TLSLD:
1327 if (info->executable)
1328 to_type = R_X86_64_TPOFF32;
1329 break;
1330
1331 default:
1332 return TRUE;
1333 }
1334
1335 /* Return TRUE if there is no transition. */
1336 if (from_type == to_type)
1337 return TRUE;
1338
1339 /* Check if the transition can be performed. */
1340 if (check
1341 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1342 symtab_hdr, sym_hashes,
1343 from_type, rel, relend))
1344 {
1345 reloc_howto_type *from, *to;
1346 const char *name;
1347
1348 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1349 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1350
1351 if (h)
1352 name = h->root.root.string;
1353 else
1354 {
1355 struct elf_x86_64_link_hash_table *htab;
1356
1357 htab = elf_x86_64_hash_table (info);
1358 if (htab == NULL)
1359 name = "*unknown*";
1360 else
1361 {
1362 Elf_Internal_Sym *isym;
1363
1364 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1365 abfd, r_symndx);
1366 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1367 }
1368 }
1369
1370 (*_bfd_error_handler)
1371 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1372 "in section `%A' failed"),
1373 abfd, sec, from->name, to->name, name,
1374 (unsigned long) rel->r_offset);
1375 bfd_set_error (bfd_error_bad_value);
1376 return FALSE;
1377 }
1378
1379 *r_type = to_type;
1380 return TRUE;
1381 }
1382
1383 /* Look through the relocs for a section during the first phase, and
1384 calculate needed space in the global offset table, procedure
1385 linkage table, and dynamic reloc sections. */
1386
1387 static bfd_boolean
1388 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1389 asection *sec,
1390 const Elf_Internal_Rela *relocs)
1391 {
1392 struct elf_x86_64_link_hash_table *htab;
1393 Elf_Internal_Shdr *symtab_hdr;
1394 struct elf_link_hash_entry **sym_hashes;
1395 const Elf_Internal_Rela *rel;
1396 const Elf_Internal_Rela *rel_end;
1397 asection *sreloc;
1398
1399 if (info->relocatable)
1400 return TRUE;
1401
1402 BFD_ASSERT (is_x86_64_elf (abfd));
1403
1404 htab = elf_x86_64_hash_table (info);
1405 if (htab == NULL)
1406 return FALSE;
1407
1408 symtab_hdr = &elf_symtab_hdr (abfd);
1409 sym_hashes = elf_sym_hashes (abfd);
1410
1411 sreloc = NULL;
1412
1413 rel_end = relocs + sec->reloc_count;
1414 for (rel = relocs; rel < rel_end; rel++)
1415 {
1416 unsigned int r_type;
1417 unsigned long r_symndx;
1418 struct elf_link_hash_entry *h;
1419 Elf_Internal_Sym *isym;
1420 const char *name;
1421
1422 r_symndx = htab->r_sym (rel->r_info);
1423 r_type = ELF32_R_TYPE (rel->r_info);
1424
1425 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1426 {
1427 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1428 abfd, r_symndx);
1429 return FALSE;
1430 }
1431
1432 if (r_symndx < symtab_hdr->sh_info)
1433 {
1434 /* A local symbol. */
1435 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1436 abfd, r_symndx);
1437 if (isym == NULL)
1438 return FALSE;
1439
1440 /* Check relocation against local STT_GNU_IFUNC symbol. */
1441 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1442 {
1443 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1444 TRUE);
1445 if (h == NULL)
1446 return FALSE;
1447
1448 /* Fake a STT_GNU_IFUNC symbol. */
1449 h->type = STT_GNU_IFUNC;
1450 h->def_regular = 1;
1451 h->ref_regular = 1;
1452 h->forced_local = 1;
1453 h->root.type = bfd_link_hash_defined;
1454 }
1455 else
1456 h = NULL;
1457 }
1458 else
1459 {
1460 isym = NULL;
1461 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1462 while (h->root.type == bfd_link_hash_indirect
1463 || h->root.type == bfd_link_hash_warning)
1464 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1465 }
1466
1467 /* Check invalid x32 relocations. */
1468 if (!ABI_64_P (abfd))
1469 switch (r_type)
1470 {
1471 default:
1472 break;
1473
1474 case R_X86_64_DTPOFF64:
1475 case R_X86_64_TPOFF64:
1476 case R_X86_64_PC64:
1477 case R_X86_64_GOTOFF64:
1478 case R_X86_64_GOT64:
1479 case R_X86_64_GOTPCREL64:
1480 case R_X86_64_GOTPC64:
1481 case R_X86_64_GOTPLT64:
1482 case R_X86_64_PLTOFF64:
1483 {
1484 if (h)
1485 name = h->root.root.string;
1486 else
1487 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1488 NULL);
1489 (*_bfd_error_handler)
1490 (_("%B: relocation %s against symbol `%s' isn't "
1491 "supported in x32 mode"), abfd,
1492 x86_64_elf_howto_table[r_type].name, name);
1493 bfd_set_error (bfd_error_bad_value);
1494 return FALSE;
1495 }
1496 break;
1497 }
1498
1499 if (h != NULL)
1500 {
1501 /* Create the ifunc sections for static executables. If we
1502 never see an indirect function symbol nor we are building
1503 a static executable, those sections will be empty and
1504 won't appear in output. */
1505 switch (r_type)
1506 {
1507 default:
1508 break;
1509
1510 case R_X86_64_32S:
1511 case R_X86_64_32:
1512 case R_X86_64_64:
1513 case R_X86_64_PC32:
1514 case R_X86_64_PC64:
1515 case R_X86_64_PLT32:
1516 case R_X86_64_GOTPCREL:
1517 case R_X86_64_GOTPCREL64:
1518 if (htab->elf.dynobj == NULL)
1519 htab->elf.dynobj = abfd;
1520 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1521 return FALSE;
1522 break;
1523 }
1524
1525 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1526 it here if it is defined in a non-shared object. */
1527 if (h->type == STT_GNU_IFUNC
1528 && h->def_regular)
1529 {
1530 /* It is referenced by a non-shared object. */
1531 h->ref_regular = 1;
1532 h->needs_plt = 1;
1533
1534 /* STT_GNU_IFUNC symbol must go through PLT. */
1535 h->plt.refcount += 1;
1536
1537 /* STT_GNU_IFUNC needs dynamic sections. */
1538 if (htab->elf.dynobj == NULL)
1539 htab->elf.dynobj = abfd;
1540
1541 switch (r_type)
1542 {
1543 default:
1544 if (h->root.root.string)
1545 name = h->root.root.string;
1546 else
1547 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1548 NULL);
1549 (*_bfd_error_handler)
1550 (_("%B: relocation %s against STT_GNU_IFUNC "
1551 "symbol `%s' isn't handled by %s"), abfd,
1552 x86_64_elf_howto_table[r_type].name,
1553 name, __FUNCTION__);
1554 bfd_set_error (bfd_error_bad_value);
1555 return FALSE;
1556
1557 case R_X86_64_32:
1558 if (ABI_64_P (abfd))
1559 goto not_pointer;
1560 case R_X86_64_64:
1561 h->non_got_ref = 1;
1562 h->pointer_equality_needed = 1;
1563 if (info->shared)
1564 {
1565 /* We must copy these reloc types into the output
1566 file. Create a reloc section in dynobj and
1567 make room for this reloc. */
1568 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1569 (abfd, info, sec, sreloc,
1570 &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs);
1571 if (sreloc == NULL)
1572 return FALSE;
1573 }
1574 break;
1575
1576 case R_X86_64_32S:
1577 case R_X86_64_PC32:
1578 case R_X86_64_PC64:
1579 not_pointer:
1580 h->non_got_ref = 1;
1581 if (r_type != R_X86_64_PC32
1582 && r_type != R_X86_64_PC64)
1583 h->pointer_equality_needed = 1;
1584 break;
1585
1586 case R_X86_64_PLT32:
1587 break;
1588
1589 case R_X86_64_GOTPCREL:
1590 case R_X86_64_GOTPCREL64:
1591 h->got.refcount += 1;
1592 if (htab->elf.sgot == NULL
1593 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1594 info))
1595 return FALSE;
1596 break;
1597 }
1598
1599 continue;
1600 }
1601 }
1602
1603 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1604 symtab_hdr, sym_hashes,
1605 &r_type, GOT_UNKNOWN,
1606 rel, rel_end, h, r_symndx))
1607 return FALSE;
1608
1609 switch (r_type)
1610 {
1611 case R_X86_64_TLSLD:
1612 htab->tls_ld_got.refcount += 1;
1613 goto create_got;
1614
1615 case R_X86_64_TPOFF32:
1616 if (!info->executable && ABI_64_P (abfd))
1617 {
1618 if (h)
1619 name = h->root.root.string;
1620 else
1621 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1622 NULL);
1623 (*_bfd_error_handler)
1624 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1625 abfd,
1626 x86_64_elf_howto_table[r_type].name, name);
1627 bfd_set_error (bfd_error_bad_value);
1628 return FALSE;
1629 }
1630 break;
1631
1632 case R_X86_64_GOTTPOFF:
1633 if (!info->executable)
1634 info->flags |= DF_STATIC_TLS;
1635 /* Fall through */
1636
1637 case R_X86_64_GOT32:
1638 case R_X86_64_GOTPCREL:
1639 case R_X86_64_TLSGD:
1640 case R_X86_64_GOT64:
1641 case R_X86_64_GOTPCREL64:
1642 case R_X86_64_GOTPLT64:
1643 case R_X86_64_GOTPC32_TLSDESC:
1644 case R_X86_64_TLSDESC_CALL:
1645 /* This symbol requires a global offset table entry. */
1646 {
1647 int tls_type, old_tls_type;
1648
1649 switch (r_type)
1650 {
1651 default: tls_type = GOT_NORMAL; break;
1652 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1653 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1654 case R_X86_64_GOTPC32_TLSDESC:
1655 case R_X86_64_TLSDESC_CALL:
1656 tls_type = GOT_TLS_GDESC; break;
1657 }
1658
1659 if (h != NULL)
1660 {
1661 if (r_type == R_X86_64_GOTPLT64)
1662 {
1663 /* This relocation indicates that we also need
1664 a PLT entry, as this is a function. We don't need
1665 a PLT entry for local symbols. */
1666 h->needs_plt = 1;
1667 h->plt.refcount += 1;
1668 }
1669 h->got.refcount += 1;
1670 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1671 }
1672 else
1673 {
1674 bfd_signed_vma *local_got_refcounts;
1675
1676 /* This is a global offset table entry for a local symbol. */
1677 local_got_refcounts = elf_local_got_refcounts (abfd);
1678 if (local_got_refcounts == NULL)
1679 {
1680 bfd_size_type size;
1681
1682 size = symtab_hdr->sh_info;
1683 size *= sizeof (bfd_signed_vma)
1684 + sizeof (bfd_vma) + sizeof (char);
1685 local_got_refcounts = ((bfd_signed_vma *)
1686 bfd_zalloc (abfd, size));
1687 if (local_got_refcounts == NULL)
1688 return FALSE;
1689 elf_local_got_refcounts (abfd) = local_got_refcounts;
1690 elf_x86_64_local_tlsdesc_gotent (abfd)
1691 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1692 elf_x86_64_local_got_tls_type (abfd)
1693 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1694 }
1695 local_got_refcounts[r_symndx] += 1;
1696 old_tls_type
1697 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1698 }
1699
1700 /* If a TLS symbol is accessed using IE at least once,
1701 there is no point to use dynamic model for it. */
1702 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1703 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1704 || tls_type != GOT_TLS_IE))
1705 {
1706 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1707 tls_type = old_tls_type;
1708 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1709 && GOT_TLS_GD_ANY_P (tls_type))
1710 tls_type |= old_tls_type;
1711 else
1712 {
1713 if (h)
1714 name = h->root.root.string;
1715 else
1716 name = bfd_elf_sym_name (abfd, symtab_hdr,
1717 isym, NULL);
1718 (*_bfd_error_handler)
1719 (_("%B: '%s' accessed both as normal and thread local symbol"),
1720 abfd, name);
1721 return FALSE;
1722 }
1723 }
1724
1725 if (old_tls_type != tls_type)
1726 {
1727 if (h != NULL)
1728 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1729 else
1730 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1731 }
1732 }
1733 /* Fall through */
1734
1735 case R_X86_64_GOTOFF64:
1736 case R_X86_64_GOTPC32:
1737 case R_X86_64_GOTPC64:
1738 create_got:
1739 if (htab->elf.sgot == NULL)
1740 {
1741 if (htab->elf.dynobj == NULL)
1742 htab->elf.dynobj = abfd;
1743 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1744 info))
1745 return FALSE;
1746 }
1747 break;
1748
1749 case R_X86_64_PLT32:
1750 /* This symbol requires a procedure linkage table entry. We
1751 actually build the entry in adjust_dynamic_symbol,
1752 because this might be a case of linking PIC code which is
1753 never referenced by a dynamic object, in which case we
1754 don't need to generate a procedure linkage table entry
1755 after all. */
1756
1757 /* If this is a local symbol, we resolve it directly without
1758 creating a procedure linkage table entry. */
1759 if (h == NULL)
1760 continue;
1761
1762 h->needs_plt = 1;
1763 h->plt.refcount += 1;
1764 break;
1765
1766 case R_X86_64_PLTOFF64:
1767 /* This tries to form the 'address' of a function relative
1768 to GOT. For global symbols we need a PLT entry. */
1769 if (h != NULL)
1770 {
1771 h->needs_plt = 1;
1772 h->plt.refcount += 1;
1773 }
1774 goto create_got;
1775
1776 case R_X86_64_32:
1777 if (!ABI_64_P (abfd))
1778 goto pointer;
1779 case R_X86_64_8:
1780 case R_X86_64_16:
1781 case R_X86_64_32S:
1782 /* Let's help debug shared library creation. These relocs
1783 cannot be used in shared libs. Don't error out for
1784 sections we don't care about, such as debug sections or
1785 non-constant sections. */
1786 if (info->shared
1787 && (sec->flags & SEC_ALLOC) != 0
1788 && (sec->flags & SEC_READONLY) != 0)
1789 {
1790 if (h)
1791 name = h->root.root.string;
1792 else
1793 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1794 (*_bfd_error_handler)
1795 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1796 abfd, x86_64_elf_howto_table[r_type].name, name);
1797 bfd_set_error (bfd_error_bad_value);
1798 return FALSE;
1799 }
1800 /* Fall through. */
1801
1802 case R_X86_64_PC8:
1803 case R_X86_64_PC16:
1804 case R_X86_64_PC32:
1805 case R_X86_64_PC64:
1806 case R_X86_64_64:
1807 pointer:
1808 if (h != NULL && info->executable)
1809 {
1810 /* If this reloc is in a read-only section, we might
1811 need a copy reloc. We can't check reliably at this
1812 stage whether the section is read-only, as input
1813 sections have not yet been mapped to output sections.
1814 Tentatively set the flag for now, and correct in
1815 adjust_dynamic_symbol. */
1816 h->non_got_ref = 1;
1817
1818 /* We may need a .plt entry if the function this reloc
1819 refers to is in a shared lib. */
1820 h->plt.refcount += 1;
1821 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1822 h->pointer_equality_needed = 1;
1823 }
1824
1825 /* If we are creating a shared library, and this is a reloc
1826 against a global symbol, or a non PC relative reloc
1827 against a local symbol, then we need to copy the reloc
1828 into the shared library. However, if we are linking with
1829 -Bsymbolic, we do not need to copy a reloc against a
1830 global symbol which is defined in an object we are
1831 including in the link (i.e., DEF_REGULAR is set). At
1832 this point we have not seen all the input files, so it is
1833 possible that DEF_REGULAR is not set now but will be set
1834 later (it is never cleared). In case of a weak definition,
1835 DEF_REGULAR may be cleared later by a strong definition in
1836 a shared library. We account for that possibility below by
1837 storing information in the relocs_copied field of the hash
1838 table entry. A similar situation occurs when creating
1839 shared libraries and symbol visibility changes render the
1840 symbol local.
1841
1842 If on the other hand, we are creating an executable, we
1843 may need to keep relocations for symbols satisfied by a
1844 dynamic library if we manage to avoid copy relocs for the
1845 symbol. */
1846 if ((info->shared
1847 && (sec->flags & SEC_ALLOC) != 0
1848 && (! IS_X86_64_PCREL_TYPE (r_type)
1849 || (h != NULL
1850 && (! SYMBOLIC_BIND (info, h)
1851 || h->root.type == bfd_link_hash_defweak
1852 || !h->def_regular))))
1853 || (ELIMINATE_COPY_RELOCS
1854 && !info->shared
1855 && (sec->flags & SEC_ALLOC) != 0
1856 && h != NULL
1857 && (h->root.type == bfd_link_hash_defweak
1858 || !h->def_regular)))
1859 {
1860 struct elf_dyn_relocs *p;
1861 struct elf_dyn_relocs **head;
1862
1863 /* We must copy these reloc types into the output file.
1864 Create a reloc section in dynobj and make room for
1865 this reloc. */
1866 if (sreloc == NULL)
1867 {
1868 if (htab->elf.dynobj == NULL)
1869 htab->elf.dynobj = abfd;
1870
1871 sreloc = _bfd_elf_make_dynamic_reloc_section
1872 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1873 abfd, /*rela?*/ TRUE);
1874
1875 if (sreloc == NULL)
1876 return FALSE;
1877 }
1878
1879 /* If this is a global symbol, we count the number of
1880 relocations we need for this symbol. */
1881 if (h != NULL)
1882 {
1883 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1884 }
1885 else
1886 {
1887 /* Track dynamic relocs needed for local syms too.
1888 We really need local syms available to do this
1889 easily. Oh well. */
1890 asection *s;
1891 void **vpp;
1892
1893 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1894 abfd, r_symndx);
1895 if (isym == NULL)
1896 return FALSE;
1897
1898 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1899 if (s == NULL)
1900 s = sec;
1901
1902 /* Beware of type punned pointers vs strict aliasing
1903 rules. */
1904 vpp = &(elf_section_data (s)->local_dynrel);
1905 head = (struct elf_dyn_relocs **)vpp;
1906 }
1907
1908 p = *head;
1909 if (p == NULL || p->sec != sec)
1910 {
1911 bfd_size_type amt = sizeof *p;
1912
1913 p = ((struct elf_dyn_relocs *)
1914 bfd_alloc (htab->elf.dynobj, amt));
1915 if (p == NULL)
1916 return FALSE;
1917 p->next = *head;
1918 *head = p;
1919 p->sec = sec;
1920 p->count = 0;
1921 p->pc_count = 0;
1922 }
1923
1924 p->count += 1;
1925 if (IS_X86_64_PCREL_TYPE (r_type))
1926 p->pc_count += 1;
1927 }
1928 break;
1929
1930 /* This relocation describes the C++ object vtable hierarchy.
1931 Reconstruct it for later use during GC. */
1932 case R_X86_64_GNU_VTINHERIT:
1933 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1934 return FALSE;
1935 break;
1936
1937 /* This relocation describes which C++ vtable entries are actually
1938 used. Record for later use during GC. */
1939 case R_X86_64_GNU_VTENTRY:
1940 BFD_ASSERT (h != NULL);
1941 if (h != NULL
1942 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1943 return FALSE;
1944 break;
1945
1946 default:
1947 break;
1948 }
1949 }
1950
1951 return TRUE;
1952 }
1953
1954 /* Return the section that should be marked against GC for a given
1955 relocation. */
1956
1957 static asection *
1958 elf_x86_64_gc_mark_hook (asection *sec,
1959 struct bfd_link_info *info,
1960 Elf_Internal_Rela *rel,
1961 struct elf_link_hash_entry *h,
1962 Elf_Internal_Sym *sym)
1963 {
1964 if (h != NULL)
1965 switch (ELF32_R_TYPE (rel->r_info))
1966 {
1967 case R_X86_64_GNU_VTINHERIT:
1968 case R_X86_64_GNU_VTENTRY:
1969 return NULL;
1970 }
1971
1972 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1973 }
1974
1975 /* Update the got entry reference counts for the section being removed. */
1976
1977 static bfd_boolean
1978 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1979 asection *sec,
1980 const Elf_Internal_Rela *relocs)
1981 {
1982 struct elf_x86_64_link_hash_table *htab;
1983 Elf_Internal_Shdr *symtab_hdr;
1984 struct elf_link_hash_entry **sym_hashes;
1985 bfd_signed_vma *local_got_refcounts;
1986 const Elf_Internal_Rela *rel, *relend;
1987
1988 if (info->relocatable)
1989 return TRUE;
1990
1991 htab = elf_x86_64_hash_table (info);
1992 if (htab == NULL)
1993 return FALSE;
1994
1995 elf_section_data (sec)->local_dynrel = NULL;
1996
1997 symtab_hdr = &elf_symtab_hdr (abfd);
1998 sym_hashes = elf_sym_hashes (abfd);
1999 local_got_refcounts = elf_local_got_refcounts (abfd);
2000
2001 htab = elf_x86_64_hash_table (info);
2002 relend = relocs + sec->reloc_count;
2003 for (rel = relocs; rel < relend; rel++)
2004 {
2005 unsigned long r_symndx;
2006 unsigned int r_type;
2007 struct elf_link_hash_entry *h = NULL;
2008
2009 r_symndx = htab->r_sym (rel->r_info);
2010 if (r_symndx >= symtab_hdr->sh_info)
2011 {
2012 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2013 while (h->root.type == bfd_link_hash_indirect
2014 || h->root.type == bfd_link_hash_warning)
2015 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2016 }
2017 else
2018 {
2019 /* A local symbol. */
2020 Elf_Internal_Sym *isym;
2021
2022 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2023 abfd, r_symndx);
2024
2025 /* Check relocation against local STT_GNU_IFUNC symbol. */
2026 if (isym != NULL
2027 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
2028 {
2029 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
2030 if (h == NULL)
2031 abort ();
2032 }
2033 }
2034
2035 if (h)
2036 {
2037 struct elf_x86_64_link_hash_entry *eh;
2038 struct elf_dyn_relocs **pp;
2039 struct elf_dyn_relocs *p;
2040
2041 eh = (struct elf_x86_64_link_hash_entry *) h;
2042
2043 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
2044 if (p->sec == sec)
2045 {
2046 /* Everything must go for SEC. */
2047 *pp = p->next;
2048 break;
2049 }
2050 }
2051
2052 r_type = ELF32_R_TYPE (rel->r_info);
2053 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
2054 symtab_hdr, sym_hashes,
2055 &r_type, GOT_UNKNOWN,
2056 rel, relend, h, r_symndx))
2057 return FALSE;
2058
2059 switch (r_type)
2060 {
2061 case R_X86_64_TLSLD:
2062 if (htab->tls_ld_got.refcount > 0)
2063 htab->tls_ld_got.refcount -= 1;
2064 break;
2065
2066 case R_X86_64_TLSGD:
2067 case R_X86_64_GOTPC32_TLSDESC:
2068 case R_X86_64_TLSDESC_CALL:
2069 case R_X86_64_GOTTPOFF:
2070 case R_X86_64_GOT32:
2071 case R_X86_64_GOTPCREL:
2072 case R_X86_64_GOT64:
2073 case R_X86_64_GOTPCREL64:
2074 case R_X86_64_GOTPLT64:
2075 if (h != NULL)
2076 {
2077 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
2078 h->plt.refcount -= 1;
2079 if (h->got.refcount > 0)
2080 h->got.refcount -= 1;
2081 if (h->type == STT_GNU_IFUNC)
2082 {
2083 if (h->plt.refcount > 0)
2084 h->plt.refcount -= 1;
2085 }
2086 }
2087 else if (local_got_refcounts != NULL)
2088 {
2089 if (local_got_refcounts[r_symndx] > 0)
2090 local_got_refcounts[r_symndx] -= 1;
2091 }
2092 break;
2093
2094 case R_X86_64_8:
2095 case R_X86_64_16:
2096 case R_X86_64_32:
2097 case R_X86_64_64:
2098 case R_X86_64_32S:
2099 case R_X86_64_PC8:
2100 case R_X86_64_PC16:
2101 case R_X86_64_PC32:
2102 case R_X86_64_PC64:
2103 if (info->shared
2104 && (h == NULL || h->type != STT_GNU_IFUNC))
2105 break;
2106 /* Fall thru */
2107
2108 case R_X86_64_PLT32:
2109 case R_X86_64_PLTOFF64:
2110 if (h != NULL)
2111 {
2112 if (h->plt.refcount > 0)
2113 h->plt.refcount -= 1;
2114 }
2115 break;
2116
2117 default:
2118 break;
2119 }
2120 }
2121
2122 return TRUE;
2123 }
2124
2125 /* Adjust a symbol defined by a dynamic object and referenced by a
2126 regular object. The current definition is in some section of the
2127 dynamic object, but we're not including those sections. We have to
2128 change the definition to something the rest of the link can
2129 understand. */
2130
2131 static bfd_boolean
2132 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2133 struct elf_link_hash_entry *h)
2134 {
2135 struct elf_x86_64_link_hash_table *htab;
2136 asection *s;
2137
2138 /* STT_GNU_IFUNC symbol must go through PLT. */
2139 if (h->type == STT_GNU_IFUNC)
2140 {
2141 if (h->plt.refcount <= 0)
2142 {
2143 h->plt.offset = (bfd_vma) -1;
2144 h->needs_plt = 0;
2145 }
2146 return TRUE;
2147 }
2148
2149 /* If this is a function, put it in the procedure linkage table. We
2150 will fill in the contents of the procedure linkage table later,
2151 when we know the address of the .got section. */
2152 if (h->type == STT_FUNC
2153 || h->needs_plt)
2154 {
2155 if (h->plt.refcount <= 0
2156 || SYMBOL_CALLS_LOCAL (info, h)
2157 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2158 && h->root.type == bfd_link_hash_undefweak))
2159 {
2160 /* This case can occur if we saw a PLT32 reloc in an input
2161 file, but the symbol was never referred to by a dynamic
2162 object, or if all references were garbage collected. In
2163 such a case, we don't actually need to build a procedure
2164 linkage table, and we can just do a PC32 reloc instead. */
2165 h->plt.offset = (bfd_vma) -1;
2166 h->needs_plt = 0;
2167 }
2168
2169 return TRUE;
2170 }
2171 else
2172 /* It's possible that we incorrectly decided a .plt reloc was
2173 needed for an R_X86_64_PC32 reloc to a non-function sym in
2174 check_relocs. We can't decide accurately between function and
2175 non-function syms in check-relocs; Objects loaded later in
2176 the link may change h->type. So fix it now. */
2177 h->plt.offset = (bfd_vma) -1;
2178
2179 /* If this is a weak symbol, and there is a real definition, the
2180 processor independent code will have arranged for us to see the
2181 real definition first, and we can just use the same value. */
2182 if (h->u.weakdef != NULL)
2183 {
2184 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2185 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2186 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2187 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2188 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2189 h->non_got_ref = h->u.weakdef->non_got_ref;
2190 return TRUE;
2191 }
2192
2193 /* This is a reference to a symbol defined by a dynamic object which
2194 is not a function. */
2195
2196 /* If we are creating a shared library, we must presume that the
2197 only references to the symbol are via the global offset table.
2198 For such cases we need not do anything here; the relocations will
2199 be handled correctly by relocate_section. */
2200 if (info->shared)
2201 return TRUE;
2202
2203 /* If there are no references to this symbol that do not use the
2204 GOT, we don't need to generate a copy reloc. */
2205 if (!h->non_got_ref)
2206 return TRUE;
2207
2208 /* If -z nocopyreloc was given, we won't generate them either. */
2209 if (info->nocopyreloc)
2210 {
2211 h->non_got_ref = 0;
2212 return TRUE;
2213 }
2214
2215 if (ELIMINATE_COPY_RELOCS)
2216 {
2217 struct elf_x86_64_link_hash_entry * eh;
2218 struct elf_dyn_relocs *p;
2219
2220 eh = (struct elf_x86_64_link_hash_entry *) h;
2221 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2222 {
2223 s = p->sec->output_section;
2224 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2225 break;
2226 }
2227
2228 /* If we didn't find any dynamic relocs in read-only sections, then
2229 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2230 if (p == NULL)
2231 {
2232 h->non_got_ref = 0;
2233 return TRUE;
2234 }
2235 }
2236
2237 /* We must allocate the symbol in our .dynbss section, which will
2238 become part of the .bss section of the executable. There will be
2239 an entry for this symbol in the .dynsym section. The dynamic
2240 object will contain position independent code, so all references
2241 from the dynamic object to this symbol will go through the global
2242 offset table. The dynamic linker will use the .dynsym entry to
2243 determine the address it must put in the global offset table, so
2244 both the dynamic object and the regular object will refer to the
2245 same memory location for the variable. */
2246
2247 htab = elf_x86_64_hash_table (info);
2248 if (htab == NULL)
2249 return FALSE;
2250
2251 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2252 to copy the initial value out of the dynamic object and into the
2253 runtime process image. */
2254 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2255 {
2256 const struct elf_backend_data *bed;
2257 bed = get_elf_backend_data (info->output_bfd);
2258 htab->srelbss->size += bed->s->sizeof_rela;
2259 h->needs_copy = 1;
2260 }
2261
2262 s = htab->sdynbss;
2263
2264 return _bfd_elf_adjust_dynamic_copy (h, s);
2265 }
2266
2267 /* Allocate space in .plt, .got and associated reloc sections for
2268 dynamic relocs. */
2269
2270 static bfd_boolean
2271 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2272 {
2273 struct bfd_link_info *info;
2274 struct elf_x86_64_link_hash_table *htab;
2275 struct elf_x86_64_link_hash_entry *eh;
2276 struct elf_dyn_relocs *p;
2277 const struct elf_backend_data *bed;
2278 unsigned int plt_entry_size;
2279
2280 if (h->root.type == bfd_link_hash_indirect)
2281 return TRUE;
2282
2283 eh = (struct elf_x86_64_link_hash_entry *) h;
2284
2285 info = (struct bfd_link_info *) inf;
2286 htab = elf_x86_64_hash_table (info);
2287 if (htab == NULL)
2288 return FALSE;
2289 bed = get_elf_backend_data (info->output_bfd);
2290 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2291
2292 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2293 here if it is defined and referenced in a non-shared object. */
2294 if (h->type == STT_GNU_IFUNC
2295 && h->def_regular)
2296 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2297 &eh->dyn_relocs,
2298 plt_entry_size,
2299 GOT_ENTRY_SIZE);
2300 else if (htab->elf.dynamic_sections_created
2301 && h->plt.refcount > 0)
2302 {
2303 /* Make sure this symbol is output as a dynamic symbol.
2304 Undefined weak syms won't yet be marked as dynamic. */
2305 if (h->dynindx == -1
2306 && !h->forced_local)
2307 {
2308 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2309 return FALSE;
2310 }
2311
2312 if (info->shared
2313 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2314 {
2315 asection *s = htab->elf.splt;
2316
2317 /* If this is the first .plt entry, make room for the special
2318 first entry. */
2319 if (s->size == 0)
2320 s->size += plt_entry_size;
2321
2322 h->plt.offset = s->size;
2323
2324 /* If this symbol is not defined in a regular file, and we are
2325 not generating a shared library, then set the symbol to this
2326 location in the .plt. This is required to make function
2327 pointers compare as equal between the normal executable and
2328 the shared library. */
2329 if (! info->shared
2330 && !h->def_regular)
2331 {
2332 h->root.u.def.section = s;
2333 h->root.u.def.value = h->plt.offset;
2334 }
2335
2336 /* Make room for this entry. */
2337 s->size += plt_entry_size;
2338
2339 /* We also need to make an entry in the .got.plt section, which
2340 will be placed in the .got section by the linker script. */
2341 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2342
2343 /* We also need to make an entry in the .rela.plt section. */
2344 htab->elf.srelplt->size += bed->s->sizeof_rela;
2345 htab->elf.srelplt->reloc_count++;
2346 }
2347 else
2348 {
2349 h->plt.offset = (bfd_vma) -1;
2350 h->needs_plt = 0;
2351 }
2352 }
2353 else
2354 {
2355 h->plt.offset = (bfd_vma) -1;
2356 h->needs_plt = 0;
2357 }
2358
2359 eh->tlsdesc_got = (bfd_vma) -1;
2360
2361 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2362 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2363 if (h->got.refcount > 0
2364 && info->executable
2365 && h->dynindx == -1
2366 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2367 {
2368 h->got.offset = (bfd_vma) -1;
2369 }
2370 else if (h->got.refcount > 0)
2371 {
2372 asection *s;
2373 bfd_boolean dyn;
2374 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2375
2376 /* Make sure this symbol is output as a dynamic symbol.
2377 Undefined weak syms won't yet be marked as dynamic. */
2378 if (h->dynindx == -1
2379 && !h->forced_local)
2380 {
2381 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2382 return FALSE;
2383 }
2384
2385 if (GOT_TLS_GDESC_P (tls_type))
2386 {
2387 eh->tlsdesc_got = htab->elf.sgotplt->size
2388 - elf_x86_64_compute_jump_table_size (htab);
2389 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2390 h->got.offset = (bfd_vma) -2;
2391 }
2392 if (! GOT_TLS_GDESC_P (tls_type)
2393 || GOT_TLS_GD_P (tls_type))
2394 {
2395 s = htab->elf.sgot;
2396 h->got.offset = s->size;
2397 s->size += GOT_ENTRY_SIZE;
2398 if (GOT_TLS_GD_P (tls_type))
2399 s->size += GOT_ENTRY_SIZE;
2400 }
2401 dyn = htab->elf.dynamic_sections_created;
2402 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2403 and two if global.
2404 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2405 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2406 || tls_type == GOT_TLS_IE)
2407 htab->elf.srelgot->size += bed->s->sizeof_rela;
2408 else if (GOT_TLS_GD_P (tls_type))
2409 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2410 else if (! GOT_TLS_GDESC_P (tls_type)
2411 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2412 || h->root.type != bfd_link_hash_undefweak)
2413 && (info->shared
2414 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2415 htab->elf.srelgot->size += bed->s->sizeof_rela;
2416 if (GOT_TLS_GDESC_P (tls_type))
2417 {
2418 htab->elf.srelplt->size += bed->s->sizeof_rela;
2419 htab->tlsdesc_plt = (bfd_vma) -1;
2420 }
2421 }
2422 else
2423 h->got.offset = (bfd_vma) -1;
2424
2425 if (eh->dyn_relocs == NULL)
2426 return TRUE;
2427
2428 /* In the shared -Bsymbolic case, discard space allocated for
2429 dynamic pc-relative relocs against symbols which turn out to be
2430 defined in regular objects. For the normal shared case, discard
2431 space for pc-relative relocs that have become local due to symbol
2432 visibility changes. */
2433
2434 if (info->shared)
2435 {
2436 /* Relocs that use pc_count are those that appear on a call
2437 insn, or certain REL relocs that can generated via assembly.
2438 We want calls to protected symbols to resolve directly to the
2439 function rather than going via the plt. If people want
2440 function pointer comparisons to work as expected then they
2441 should avoid writing weird assembly. */
2442 if (SYMBOL_CALLS_LOCAL (info, h))
2443 {
2444 struct elf_dyn_relocs **pp;
2445
2446 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2447 {
2448 p->count -= p->pc_count;
2449 p->pc_count = 0;
2450 if (p->count == 0)
2451 *pp = p->next;
2452 else
2453 pp = &p->next;
2454 }
2455 }
2456
2457 /* Also discard relocs on undefined weak syms with non-default
2458 visibility. */
2459 if (eh->dyn_relocs != NULL
2460 && h->root.type == bfd_link_hash_undefweak)
2461 {
2462 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2463 eh->dyn_relocs = NULL;
2464
2465 /* Make sure undefined weak symbols are output as a dynamic
2466 symbol in PIEs. */
2467 else if (h->dynindx == -1
2468 && ! h->forced_local
2469 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2470 return FALSE;
2471 }
2472
2473 }
2474 else if (ELIMINATE_COPY_RELOCS)
2475 {
2476 /* For the non-shared case, discard space for relocs against
2477 symbols which turn out to need copy relocs or are not
2478 dynamic. */
2479
2480 if (!h->non_got_ref
2481 && ((h->def_dynamic
2482 && !h->def_regular)
2483 || (htab->elf.dynamic_sections_created
2484 && (h->root.type == bfd_link_hash_undefweak
2485 || h->root.type == bfd_link_hash_undefined))))
2486 {
2487 /* Make sure this symbol is output as a dynamic symbol.
2488 Undefined weak syms won't yet be marked as dynamic. */
2489 if (h->dynindx == -1
2490 && ! h->forced_local
2491 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2492 return FALSE;
2493
2494 /* If that succeeded, we know we'll be keeping all the
2495 relocs. */
2496 if (h->dynindx != -1)
2497 goto keep;
2498 }
2499
2500 eh->dyn_relocs = NULL;
2501
2502 keep: ;
2503 }
2504
2505 /* Finally, allocate space. */
2506 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2507 {
2508 asection * sreloc;
2509
2510 sreloc = elf_section_data (p->sec)->sreloc;
2511
2512 BFD_ASSERT (sreloc != NULL);
2513
2514 sreloc->size += p->count * bed->s->sizeof_rela;
2515 }
2516
2517 return TRUE;
2518 }
2519
2520 /* Allocate space in .plt, .got and associated reloc sections for
2521 local dynamic relocs. */
2522
2523 static bfd_boolean
2524 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2525 {
2526 struct elf_link_hash_entry *h
2527 = (struct elf_link_hash_entry *) *slot;
2528
2529 if (h->type != STT_GNU_IFUNC
2530 || !h->def_regular
2531 || !h->ref_regular
2532 || !h->forced_local
2533 || h->root.type != bfd_link_hash_defined)
2534 abort ();
2535
2536 return elf_x86_64_allocate_dynrelocs (h, inf);
2537 }
2538
2539 /* Find any dynamic relocs that apply to read-only sections. */
2540
2541 static bfd_boolean
2542 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2543 void * inf)
2544 {
2545 struct elf_x86_64_link_hash_entry *eh;
2546 struct elf_dyn_relocs *p;
2547
2548 /* Skip local IFUNC symbols. */
2549 if (h->forced_local && h->type == STT_GNU_IFUNC)
2550 return TRUE;
2551
2552 eh = (struct elf_x86_64_link_hash_entry *) h;
2553 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2554 {
2555 asection *s = p->sec->output_section;
2556
2557 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2558 {
2559 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2560
2561 info->flags |= DF_TEXTREL;
2562
2563 if (info->warn_shared_textrel && info->shared)
2564 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
2565 p->sec->owner, h->root.root.string,
2566 p->sec);
2567
2568 /* Not an error, just cut short the traversal. */
2569 return FALSE;
2570 }
2571 }
2572 return TRUE;
2573 }
2574
2575 /* Convert
2576 mov foo@GOTPCREL(%rip), %reg
2577 to
2578 lea foo(%rip), %reg
2579 with the local symbol, foo. */
2580
2581 static bfd_boolean
2582 elf_x86_64_convert_mov_to_lea (bfd *abfd, asection *sec,
2583 struct bfd_link_info *link_info)
2584 {
2585 Elf_Internal_Shdr *symtab_hdr;
2586 Elf_Internal_Rela *internal_relocs;
2587 Elf_Internal_Rela *irel, *irelend;
2588 bfd_byte *contents;
2589 struct elf_x86_64_link_hash_table *htab;
2590 bfd_boolean changed_contents;
2591 bfd_boolean changed_relocs;
2592 bfd_signed_vma *local_got_refcounts;
2593
2594 /* Don't even try to convert non-ELF outputs. */
2595 if (!is_elf_hash_table (link_info->hash))
2596 return FALSE;
2597
2598 /* Nothing to do if there are no codes, no relocations or no output. */
2599 if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
2600 || sec->reloc_count == 0
2601 || discarded_section (sec))
2602 return TRUE;
2603
2604 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2605
2606 /* Load the relocations for this section. */
2607 internal_relocs = (_bfd_elf_link_read_relocs
2608 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
2609 link_info->keep_memory));
2610 if (internal_relocs == NULL)
2611 return FALSE;
2612
2613 htab = elf_x86_64_hash_table (link_info);
2614 changed_contents = FALSE;
2615 changed_relocs = FALSE;
2616 local_got_refcounts = elf_local_got_refcounts (abfd);
2617
2618 /* Get the section contents. */
2619 if (elf_section_data (sec)->this_hdr.contents != NULL)
2620 contents = elf_section_data (sec)->this_hdr.contents;
2621 else
2622 {
2623 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
2624 goto error_return;
2625 }
2626
2627 irelend = internal_relocs + sec->reloc_count;
2628 for (irel = internal_relocs; irel < irelend; irel++)
2629 {
2630 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
2631 unsigned int r_symndx = htab->r_sym (irel->r_info);
2632 unsigned int indx;
2633 struct elf_link_hash_entry *h;
2634
2635 if (r_type != R_X86_64_GOTPCREL)
2636 continue;
2637
2638 /* Get the symbol referred to by the reloc. */
2639 if (r_symndx < symtab_hdr->sh_info)
2640 {
2641 Elf_Internal_Sym *isym;
2642
2643 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2644 abfd, r_symndx);
2645
2646 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. */
2647 if (ELF_ST_TYPE (isym->st_info) != STT_GNU_IFUNC
2648 && bfd_get_8 (input_bfd,
2649 contents + irel->r_offset - 2) == 0x8b)
2650 {
2651 bfd_put_8 (output_bfd, 0x8d,
2652 contents + irel->r_offset - 2);
2653 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2654 if (local_got_refcounts != NULL
2655 && local_got_refcounts[r_symndx] > 0)
2656 local_got_refcounts[r_symndx] -= 1;
2657 changed_contents = TRUE;
2658 changed_relocs = TRUE;
2659 }
2660 continue;
2661 }
2662
2663 indx = r_symndx - symtab_hdr->sh_info;
2664 h = elf_sym_hashes (abfd)[indx];
2665 BFD_ASSERT (h != NULL);
2666
2667 while (h->root.type == bfd_link_hash_indirect
2668 || h->root.type == bfd_link_hash_warning)
2669 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2670
2671 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. We also
2672 avoid optimizing _DYNAMIC since ld.so may use its link-time
2673 address. */
2674 if (h->def_regular
2675 && h->type != STT_GNU_IFUNC
2676 && h != htab->elf.hdynamic
2677 && SYMBOL_REFERENCES_LOCAL (link_info, h)
2678 && bfd_get_8 (input_bfd,
2679 contents + irel->r_offset - 2) == 0x8b)
2680 {
2681 bfd_put_8 (output_bfd, 0x8d,
2682 contents + irel->r_offset - 2);
2683 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2684 if (h->got.refcount > 0)
2685 h->got.refcount -= 1;
2686 changed_contents = TRUE;
2687 changed_relocs = TRUE;
2688 }
2689 }
2690
2691 if (contents != NULL
2692 && elf_section_data (sec)->this_hdr.contents != contents)
2693 {
2694 if (!changed_contents && !link_info->keep_memory)
2695 free (contents);
2696 else
2697 {
2698 /* Cache the section contents for elf_link_input_bfd. */
2699 elf_section_data (sec)->this_hdr.contents = contents;
2700 }
2701 }
2702
2703 if (elf_section_data (sec)->relocs != internal_relocs)
2704 {
2705 if (!changed_relocs)
2706 free (internal_relocs);
2707 else
2708 elf_section_data (sec)->relocs = internal_relocs;
2709 }
2710
2711 return TRUE;
2712
2713 error_return:
2714 if (contents != NULL
2715 && elf_section_data (sec)->this_hdr.contents != contents)
2716 free (contents);
2717 if (internal_relocs != NULL
2718 && elf_section_data (sec)->relocs != internal_relocs)
2719 free (internal_relocs);
2720 return FALSE;
2721 }
2722
2723 /* Set the sizes of the dynamic sections. */
2724
2725 static bfd_boolean
2726 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2727 struct bfd_link_info *info)
2728 {
2729 struct elf_x86_64_link_hash_table *htab;
2730 bfd *dynobj;
2731 asection *s;
2732 bfd_boolean relocs;
2733 bfd *ibfd;
2734 const struct elf_backend_data *bed;
2735
2736 htab = elf_x86_64_hash_table (info);
2737 if (htab == NULL)
2738 return FALSE;
2739 bed = get_elf_backend_data (output_bfd);
2740
2741 dynobj = htab->elf.dynobj;
2742 if (dynobj == NULL)
2743 abort ();
2744
2745 if (htab->elf.dynamic_sections_created)
2746 {
2747 /* Set the contents of the .interp section to the interpreter. */
2748 if (info->executable)
2749 {
2750 s = bfd_get_linker_section (dynobj, ".interp");
2751 if (s == NULL)
2752 abort ();
2753 s->size = htab->dynamic_interpreter_size;
2754 s->contents = (unsigned char *) htab->dynamic_interpreter;
2755 }
2756 }
2757
2758 /* Set up .got offsets for local syms, and space for local dynamic
2759 relocs. */
2760 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2761 {
2762 bfd_signed_vma *local_got;
2763 bfd_signed_vma *end_local_got;
2764 char *local_tls_type;
2765 bfd_vma *local_tlsdesc_gotent;
2766 bfd_size_type locsymcount;
2767 Elf_Internal_Shdr *symtab_hdr;
2768 asection *srel;
2769
2770 if (! is_x86_64_elf (ibfd))
2771 continue;
2772
2773 for (s = ibfd->sections; s != NULL; s = s->next)
2774 {
2775 struct elf_dyn_relocs *p;
2776
2777 if (!elf_x86_64_convert_mov_to_lea (ibfd, s, info))
2778 return FALSE;
2779
2780 for (p = (struct elf_dyn_relocs *)
2781 (elf_section_data (s)->local_dynrel);
2782 p != NULL;
2783 p = p->next)
2784 {
2785 if (!bfd_is_abs_section (p->sec)
2786 && bfd_is_abs_section (p->sec->output_section))
2787 {
2788 /* Input section has been discarded, either because
2789 it is a copy of a linkonce section or due to
2790 linker script /DISCARD/, so we'll be discarding
2791 the relocs too. */
2792 }
2793 else if (p->count != 0)
2794 {
2795 srel = elf_section_data (p->sec)->sreloc;
2796 srel->size += p->count * bed->s->sizeof_rela;
2797 if ((p->sec->output_section->flags & SEC_READONLY) != 0
2798 && (info->flags & DF_TEXTREL) == 0)
2799 {
2800 info->flags |= DF_TEXTREL;
2801 if (info->warn_shared_textrel && info->shared)
2802 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
2803 p->sec->owner, p->sec);
2804 }
2805 }
2806 }
2807 }
2808
2809 local_got = elf_local_got_refcounts (ibfd);
2810 if (!local_got)
2811 continue;
2812
2813 symtab_hdr = &elf_symtab_hdr (ibfd);
2814 locsymcount = symtab_hdr->sh_info;
2815 end_local_got = local_got + locsymcount;
2816 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2817 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2818 s = htab->elf.sgot;
2819 srel = htab->elf.srelgot;
2820 for (; local_got < end_local_got;
2821 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2822 {
2823 *local_tlsdesc_gotent = (bfd_vma) -1;
2824 if (*local_got > 0)
2825 {
2826 if (GOT_TLS_GDESC_P (*local_tls_type))
2827 {
2828 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2829 - elf_x86_64_compute_jump_table_size (htab);
2830 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2831 *local_got = (bfd_vma) -2;
2832 }
2833 if (! GOT_TLS_GDESC_P (*local_tls_type)
2834 || GOT_TLS_GD_P (*local_tls_type))
2835 {
2836 *local_got = s->size;
2837 s->size += GOT_ENTRY_SIZE;
2838 if (GOT_TLS_GD_P (*local_tls_type))
2839 s->size += GOT_ENTRY_SIZE;
2840 }
2841 if (info->shared
2842 || GOT_TLS_GD_ANY_P (*local_tls_type)
2843 || *local_tls_type == GOT_TLS_IE)
2844 {
2845 if (GOT_TLS_GDESC_P (*local_tls_type))
2846 {
2847 htab->elf.srelplt->size
2848 += bed->s->sizeof_rela;
2849 htab->tlsdesc_plt = (bfd_vma) -1;
2850 }
2851 if (! GOT_TLS_GDESC_P (*local_tls_type)
2852 || GOT_TLS_GD_P (*local_tls_type))
2853 srel->size += bed->s->sizeof_rela;
2854 }
2855 }
2856 else
2857 *local_got = (bfd_vma) -1;
2858 }
2859 }
2860
2861 if (htab->tls_ld_got.refcount > 0)
2862 {
2863 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2864 relocs. */
2865 htab->tls_ld_got.offset = htab->elf.sgot->size;
2866 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2867 htab->elf.srelgot->size += bed->s->sizeof_rela;
2868 }
2869 else
2870 htab->tls_ld_got.offset = -1;
2871
2872 /* Allocate global sym .plt and .got entries, and space for global
2873 sym dynamic relocs. */
2874 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2875 info);
2876
2877 /* Allocate .plt and .got entries, and space for local symbols. */
2878 htab_traverse (htab->loc_hash_table,
2879 elf_x86_64_allocate_local_dynrelocs,
2880 info);
2881
2882 /* For every jump slot reserved in the sgotplt, reloc_count is
2883 incremented. However, when we reserve space for TLS descriptors,
2884 it's not incremented, so in order to compute the space reserved
2885 for them, it suffices to multiply the reloc count by the jump
2886 slot size.
2887
2888 PR ld/13302: We start next_irelative_index at the end of .rela.plt
2889 so that R_X86_64_IRELATIVE entries come last. */
2890 if (htab->elf.srelplt)
2891 {
2892 htab->sgotplt_jump_table_size
2893 = elf_x86_64_compute_jump_table_size (htab);
2894 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
2895 }
2896 else if (htab->elf.irelplt)
2897 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
2898
2899 if (htab->tlsdesc_plt)
2900 {
2901 /* If we're not using lazy TLS relocations, don't generate the
2902 PLT and GOT entries they require. */
2903 if ((info->flags & DF_BIND_NOW))
2904 htab->tlsdesc_plt = 0;
2905 else
2906 {
2907 htab->tlsdesc_got = htab->elf.sgot->size;
2908 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2909 /* Reserve room for the initial entry.
2910 FIXME: we could probably do away with it in this case. */
2911 if (htab->elf.splt->size == 0)
2912 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2913 htab->tlsdesc_plt = htab->elf.splt->size;
2914 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
2915 }
2916 }
2917
2918 if (htab->elf.sgotplt)
2919 {
2920 /* Don't allocate .got.plt section if there are no GOT nor PLT
2921 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2922 if ((htab->elf.hgot == NULL
2923 || !htab->elf.hgot->ref_regular_nonweak)
2924 && (htab->elf.sgotplt->size
2925 == get_elf_backend_data (output_bfd)->got_header_size)
2926 && (htab->elf.splt == NULL
2927 || htab->elf.splt->size == 0)
2928 && (htab->elf.sgot == NULL
2929 || htab->elf.sgot->size == 0)
2930 && (htab->elf.iplt == NULL
2931 || htab->elf.iplt->size == 0)
2932 && (htab->elf.igotplt == NULL
2933 || htab->elf.igotplt->size == 0))
2934 htab->elf.sgotplt->size = 0;
2935 }
2936
2937 if (htab->plt_eh_frame != NULL
2938 && htab->elf.splt != NULL
2939 && htab->elf.splt->size != 0
2940 && !bfd_is_abs_section (htab->elf.splt->output_section)
2941 && _bfd_elf_eh_frame_present (info))
2942 {
2943 const struct elf_x86_64_backend_data *arch_data
2944 = (const struct elf_x86_64_backend_data *) bed->arch_data;
2945 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
2946 }
2947
2948 /* We now have determined the sizes of the various dynamic sections.
2949 Allocate memory for them. */
2950 relocs = FALSE;
2951 for (s = dynobj->sections; s != NULL; s = s->next)
2952 {
2953 if ((s->flags & SEC_LINKER_CREATED) == 0)
2954 continue;
2955
2956 if (s == htab->elf.splt
2957 || s == htab->elf.sgot
2958 || s == htab->elf.sgotplt
2959 || s == htab->elf.iplt
2960 || s == htab->elf.igotplt
2961 || s == htab->plt_eh_frame
2962 || s == htab->sdynbss)
2963 {
2964 /* Strip this section if we don't need it; see the
2965 comment below. */
2966 }
2967 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2968 {
2969 if (s->size != 0 && s != htab->elf.srelplt)
2970 relocs = TRUE;
2971
2972 /* We use the reloc_count field as a counter if we need
2973 to copy relocs into the output file. */
2974 if (s != htab->elf.srelplt)
2975 s->reloc_count = 0;
2976 }
2977 else
2978 {
2979 /* It's not one of our sections, so don't allocate space. */
2980 continue;
2981 }
2982
2983 if (s->size == 0)
2984 {
2985 /* If we don't need this section, strip it from the
2986 output file. This is mostly to handle .rela.bss and
2987 .rela.plt. We must create both sections in
2988 create_dynamic_sections, because they must be created
2989 before the linker maps input sections to output
2990 sections. The linker does that before
2991 adjust_dynamic_symbol is called, and it is that
2992 function which decides whether anything needs to go
2993 into these sections. */
2994
2995 s->flags |= SEC_EXCLUDE;
2996 continue;
2997 }
2998
2999 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3000 continue;
3001
3002 /* Allocate memory for the section contents. We use bfd_zalloc
3003 here in case unused entries are not reclaimed before the
3004 section's contents are written out. This should not happen,
3005 but this way if it does, we get a R_X86_64_NONE reloc instead
3006 of garbage. */
3007 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3008 if (s->contents == NULL)
3009 return FALSE;
3010 }
3011
3012 if (htab->plt_eh_frame != NULL
3013 && htab->plt_eh_frame->contents != NULL)
3014 {
3015 const struct elf_x86_64_backend_data *arch_data
3016 = (const struct elf_x86_64_backend_data *) bed->arch_data;
3017
3018 memcpy (htab->plt_eh_frame->contents,
3019 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
3020 bfd_put_32 (dynobj, htab->elf.splt->size,
3021 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
3022 }
3023
3024 if (htab->elf.dynamic_sections_created)
3025 {
3026 /* Add some entries to the .dynamic section. We fill in the
3027 values later, in elf_x86_64_finish_dynamic_sections, but we
3028 must add the entries now so that we get the correct size for
3029 the .dynamic section. The DT_DEBUG entry is filled in by the
3030 dynamic linker and used by the debugger. */
3031 #define add_dynamic_entry(TAG, VAL) \
3032 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3033
3034 if (info->executable)
3035 {
3036 if (!add_dynamic_entry (DT_DEBUG, 0))
3037 return FALSE;
3038 }
3039
3040 if (htab->elf.splt->size != 0)
3041 {
3042 if (!add_dynamic_entry (DT_PLTGOT, 0)
3043 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3044 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3045 || !add_dynamic_entry (DT_JMPREL, 0))
3046 return FALSE;
3047
3048 if (htab->tlsdesc_plt
3049 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
3050 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
3051 return FALSE;
3052 }
3053
3054 if (relocs)
3055 {
3056 if (!add_dynamic_entry (DT_RELA, 0)
3057 || !add_dynamic_entry (DT_RELASZ, 0)
3058 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
3059 return FALSE;
3060
3061 /* If any dynamic relocs apply to a read-only section,
3062 then we need a DT_TEXTREL entry. */
3063 if ((info->flags & DF_TEXTREL) == 0)
3064 elf_link_hash_traverse (&htab->elf,
3065 elf_x86_64_readonly_dynrelocs,
3066 info);
3067
3068 if ((info->flags & DF_TEXTREL) != 0)
3069 {
3070 if (!add_dynamic_entry (DT_TEXTREL, 0))
3071 return FALSE;
3072 }
3073 }
3074 }
3075 #undef add_dynamic_entry
3076
3077 return TRUE;
3078 }
3079
3080 static bfd_boolean
3081 elf_x86_64_always_size_sections (bfd *output_bfd,
3082 struct bfd_link_info *info)
3083 {
3084 asection *tls_sec = elf_hash_table (info)->tls_sec;
3085
3086 if (tls_sec)
3087 {
3088 struct elf_link_hash_entry *tlsbase;
3089
3090 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
3091 "_TLS_MODULE_BASE_",
3092 FALSE, FALSE, FALSE);
3093
3094 if (tlsbase && tlsbase->type == STT_TLS)
3095 {
3096 struct elf_x86_64_link_hash_table *htab;
3097 struct bfd_link_hash_entry *bh = NULL;
3098 const struct elf_backend_data *bed
3099 = get_elf_backend_data (output_bfd);
3100
3101 htab = elf_x86_64_hash_table (info);
3102 if (htab == NULL)
3103 return FALSE;
3104
3105 if (!(_bfd_generic_link_add_one_symbol
3106 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
3107 tls_sec, 0, NULL, FALSE,
3108 bed->collect, &bh)))
3109 return FALSE;
3110
3111 htab->tls_module_base = bh;
3112
3113 tlsbase = (struct elf_link_hash_entry *)bh;
3114 tlsbase->def_regular = 1;
3115 tlsbase->other = STV_HIDDEN;
3116 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
3117 }
3118 }
3119
3120 return TRUE;
3121 }
3122
3123 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
3124 executables. Rather than setting it to the beginning of the TLS
3125 section, we have to set it to the end. This function may be called
3126 multiple times, it is idempotent. */
3127
3128 static void
3129 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
3130 {
3131 struct elf_x86_64_link_hash_table *htab;
3132 struct bfd_link_hash_entry *base;
3133
3134 if (!info->executable)
3135 return;
3136
3137 htab = elf_x86_64_hash_table (info);
3138 if (htab == NULL)
3139 return;
3140
3141 base = htab->tls_module_base;
3142 if (base == NULL)
3143 return;
3144
3145 base->u.def.value = htab->elf.tls_size;
3146 }
3147
3148 /* Return the base VMA address which should be subtracted from real addresses
3149 when resolving @dtpoff relocation.
3150 This is PT_TLS segment p_vaddr. */
3151
3152 static bfd_vma
3153 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3154 {
3155 /* If tls_sec is NULL, we should have signalled an error already. */
3156 if (elf_hash_table (info)->tls_sec == NULL)
3157 return 0;
3158 return elf_hash_table (info)->tls_sec->vma;
3159 }
3160
3161 /* Return the relocation value for @tpoff relocation
3162 if STT_TLS virtual address is ADDRESS. */
3163
3164 static bfd_vma
3165 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3166 {
3167 struct elf_link_hash_table *htab = elf_hash_table (info);
3168 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3169 bfd_vma static_tls_size;
3170
3171 /* If tls_segment is NULL, we should have signalled an error already. */
3172 if (htab->tls_sec == NULL)
3173 return 0;
3174
3175 /* Consider special static TLS alignment requirements. */
3176 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3177 return address - static_tls_size - htab->tls_sec->vma;
3178 }
3179
3180 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3181 branch? */
3182
3183 static bfd_boolean
3184 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3185 {
3186 /* Opcode Instruction
3187 0xe8 call
3188 0xe9 jump
3189 0x0f 0x8x conditional jump */
3190 return ((offset > 0
3191 && (contents [offset - 1] == 0xe8
3192 || contents [offset - 1] == 0xe9))
3193 || (offset > 1
3194 && contents [offset - 2] == 0x0f
3195 && (contents [offset - 1] & 0xf0) == 0x80));
3196 }
3197
3198 /* Relocate an x86_64 ELF section. */
3199
3200 static bfd_boolean
3201 elf_x86_64_relocate_section (bfd *output_bfd,
3202 struct bfd_link_info *info,
3203 bfd *input_bfd,
3204 asection *input_section,
3205 bfd_byte *contents,
3206 Elf_Internal_Rela *relocs,
3207 Elf_Internal_Sym *local_syms,
3208 asection **local_sections)
3209 {
3210 struct elf_x86_64_link_hash_table *htab;
3211 Elf_Internal_Shdr *symtab_hdr;
3212 struct elf_link_hash_entry **sym_hashes;
3213 bfd_vma *local_got_offsets;
3214 bfd_vma *local_tlsdesc_gotents;
3215 Elf_Internal_Rela *rel;
3216 Elf_Internal_Rela *relend;
3217 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3218
3219 BFD_ASSERT (is_x86_64_elf (input_bfd));
3220
3221 htab = elf_x86_64_hash_table (info);
3222 if (htab == NULL)
3223 return FALSE;
3224 symtab_hdr = &elf_symtab_hdr (input_bfd);
3225 sym_hashes = elf_sym_hashes (input_bfd);
3226 local_got_offsets = elf_local_got_offsets (input_bfd);
3227 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3228
3229 elf_x86_64_set_tls_module_base (info);
3230
3231 rel = relocs;
3232 relend = relocs + input_section->reloc_count;
3233 for (; rel < relend; rel++)
3234 {
3235 unsigned int r_type;
3236 reloc_howto_type *howto;
3237 unsigned long r_symndx;
3238 struct elf_link_hash_entry *h;
3239 Elf_Internal_Sym *sym;
3240 asection *sec;
3241 bfd_vma off, offplt;
3242 bfd_vma relocation;
3243 bfd_boolean unresolved_reloc;
3244 bfd_reloc_status_type r;
3245 int tls_type;
3246 asection *base_got;
3247
3248 r_type = ELF32_R_TYPE (rel->r_info);
3249 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3250 || r_type == (int) R_X86_64_GNU_VTENTRY)
3251 continue;
3252
3253 if (r_type >= R_X86_64_max)
3254 {
3255 bfd_set_error (bfd_error_bad_value);
3256 return FALSE;
3257 }
3258
3259 if (r_type != (int) R_X86_64_32
3260 || ABI_64_P (output_bfd))
3261 howto = x86_64_elf_howto_table + r_type;
3262 else
3263 howto = (x86_64_elf_howto_table
3264 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3265 r_symndx = htab->r_sym (rel->r_info);
3266 h = NULL;
3267 sym = NULL;
3268 sec = NULL;
3269 unresolved_reloc = FALSE;
3270 if (r_symndx < symtab_hdr->sh_info)
3271 {
3272 sym = local_syms + r_symndx;
3273 sec = local_sections[r_symndx];
3274
3275 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3276 &sec, rel);
3277
3278 /* Relocate against local STT_GNU_IFUNC symbol. */
3279 if (!info->relocatable
3280 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3281 {
3282 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3283 rel, FALSE);
3284 if (h == NULL)
3285 abort ();
3286
3287 /* Set STT_GNU_IFUNC symbol value. */
3288 h->root.u.def.value = sym->st_value;
3289 h->root.u.def.section = sec;
3290 }
3291 }
3292 else
3293 {
3294 bfd_boolean warned ATTRIBUTE_UNUSED;
3295
3296 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3297 r_symndx, symtab_hdr, sym_hashes,
3298 h, sec, relocation,
3299 unresolved_reloc, warned);
3300 }
3301
3302 if (sec != NULL && discarded_section (sec))
3303 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3304 rel, 1, relend, howto, 0, contents);
3305
3306 if (info->relocatable)
3307 continue;
3308
3309 if (rel->r_addend == 0
3310 && r_type == R_X86_64_64
3311 && !ABI_64_P (output_bfd))
3312 {
3313 /* For x32, treat R_X86_64_64 like R_X86_64_32 and zero-extend
3314 it to 64bit if addend is zero. */
3315 r_type = R_X86_64_32;
3316 memset (contents + rel->r_offset + 4, 0, 4);
3317 }
3318
3319 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3320 it here if it is defined in a non-shared object. */
3321 if (h != NULL
3322 && h->type == STT_GNU_IFUNC
3323 && h->def_regular)
3324 {
3325 asection *plt;
3326 bfd_vma plt_index;
3327 const char *name;
3328
3329 if ((input_section->flags & SEC_ALLOC) == 0
3330 || h->plt.offset == (bfd_vma) -1)
3331 abort ();
3332
3333 /* STT_GNU_IFUNC symbol must go through PLT. */
3334 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
3335 relocation = (plt->output_section->vma
3336 + plt->output_offset + h->plt.offset);
3337
3338 switch (r_type)
3339 {
3340 default:
3341 if (h->root.root.string)
3342 name = h->root.root.string;
3343 else
3344 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3345 NULL);
3346 (*_bfd_error_handler)
3347 (_("%B: relocation %s against STT_GNU_IFUNC "
3348 "symbol `%s' isn't handled by %s"), input_bfd,
3349 x86_64_elf_howto_table[r_type].name,
3350 name, __FUNCTION__);
3351 bfd_set_error (bfd_error_bad_value);
3352 return FALSE;
3353
3354 case R_X86_64_32S:
3355 if (info->shared)
3356 abort ();
3357 goto do_relocation;
3358
3359 case R_X86_64_32:
3360 if (ABI_64_P (output_bfd))
3361 goto do_relocation;
3362 /* FALLTHROUGH */
3363 case R_X86_64_64:
3364 if (rel->r_addend != 0)
3365 {
3366 if (h->root.root.string)
3367 name = h->root.root.string;
3368 else
3369 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3370 sym, NULL);
3371 (*_bfd_error_handler)
3372 (_("%B: relocation %s against STT_GNU_IFUNC "
3373 "symbol `%s' has non-zero addend: %d"),
3374 input_bfd, x86_64_elf_howto_table[r_type].name,
3375 name, rel->r_addend);
3376 bfd_set_error (bfd_error_bad_value);
3377 return FALSE;
3378 }
3379
3380 /* Generate dynamic relcoation only when there is a
3381 non-GOT reference in a shared object. */
3382 if (info->shared && h->non_got_ref)
3383 {
3384 Elf_Internal_Rela outrel;
3385 asection *sreloc;
3386
3387 /* Need a dynamic relocation to get the real function
3388 address. */
3389 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3390 info,
3391 input_section,
3392 rel->r_offset);
3393 if (outrel.r_offset == (bfd_vma) -1
3394 || outrel.r_offset == (bfd_vma) -2)
3395 abort ();
3396
3397 outrel.r_offset += (input_section->output_section->vma
3398 + input_section->output_offset);
3399
3400 if (h->dynindx == -1
3401 || h->forced_local
3402 || info->executable)
3403 {
3404 /* This symbol is resolved locally. */
3405 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3406 outrel.r_addend = (h->root.u.def.value
3407 + h->root.u.def.section->output_section->vma
3408 + h->root.u.def.section->output_offset);
3409 }
3410 else
3411 {
3412 outrel.r_info = htab->r_info (h->dynindx, r_type);
3413 outrel.r_addend = 0;
3414 }
3415
3416 sreloc = htab->elf.irelifunc;
3417 elf_append_rela (output_bfd, sreloc, &outrel);
3418
3419 /* If this reloc is against an external symbol, we
3420 do not want to fiddle with the addend. Otherwise,
3421 we need to include the symbol value so that it
3422 becomes an addend for the dynamic reloc. For an
3423 internal symbol, we have updated addend. */
3424 continue;
3425 }
3426 /* FALLTHROUGH */
3427 case R_X86_64_PC32:
3428 case R_X86_64_PC64:
3429 case R_X86_64_PLT32:
3430 goto do_relocation;
3431
3432 case R_X86_64_GOTPCREL:
3433 case R_X86_64_GOTPCREL64:
3434 base_got = htab->elf.sgot;
3435 off = h->got.offset;
3436
3437 if (base_got == NULL)
3438 abort ();
3439
3440 if (off == (bfd_vma) -1)
3441 {
3442 /* We can't use h->got.offset here to save state, or
3443 even just remember the offset, as finish_dynamic_symbol
3444 would use that as offset into .got. */
3445
3446 if (htab->elf.splt != NULL)
3447 {
3448 plt_index = h->plt.offset / plt_entry_size - 1;
3449 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3450 base_got = htab->elf.sgotplt;
3451 }
3452 else
3453 {
3454 plt_index = h->plt.offset / plt_entry_size;
3455 off = plt_index * GOT_ENTRY_SIZE;
3456 base_got = htab->elf.igotplt;
3457 }
3458
3459 if (h->dynindx == -1
3460 || h->forced_local
3461 || info->symbolic)
3462 {
3463 /* This references the local defitionion. We must
3464 initialize this entry in the global offset table.
3465 Since the offset must always be a multiple of 8,
3466 we use the least significant bit to record
3467 whether we have initialized it already.
3468
3469 When doing a dynamic link, we create a .rela.got
3470 relocation entry to initialize the value. This
3471 is done in the finish_dynamic_symbol routine. */
3472 if ((off & 1) != 0)
3473 off &= ~1;
3474 else
3475 {
3476 bfd_put_64 (output_bfd, relocation,
3477 base_got->contents + off);
3478 /* Note that this is harmless for the GOTPLT64
3479 case, as -1 | 1 still is -1. */
3480 h->got.offset |= 1;
3481 }
3482 }
3483 }
3484
3485 relocation = (base_got->output_section->vma
3486 + base_got->output_offset + off);
3487
3488 goto do_relocation;
3489 }
3490 }
3491
3492 /* When generating a shared object, the relocations handled here are
3493 copied into the output file to be resolved at run time. */
3494 switch (r_type)
3495 {
3496 case R_X86_64_GOT32:
3497 case R_X86_64_GOT64:
3498 /* Relocation is to the entry for this symbol in the global
3499 offset table. */
3500 case R_X86_64_GOTPCREL:
3501 case R_X86_64_GOTPCREL64:
3502 /* Use global offset table entry as symbol value. */
3503 case R_X86_64_GOTPLT64:
3504 /* This is the same as GOT64 for relocation purposes, but
3505 indicates the existence of a PLT entry. The difficulty is,
3506 that we must calculate the GOT slot offset from the PLT
3507 offset, if this symbol got a PLT entry (it was global).
3508 Additionally if it's computed from the PLT entry, then that
3509 GOT offset is relative to .got.plt, not to .got. */
3510 base_got = htab->elf.sgot;
3511
3512 if (htab->elf.sgot == NULL)
3513 abort ();
3514
3515 if (h != NULL)
3516 {
3517 bfd_boolean dyn;
3518
3519 off = h->got.offset;
3520 if (h->needs_plt
3521 && h->plt.offset != (bfd_vma)-1
3522 && off == (bfd_vma)-1)
3523 {
3524 /* We can't use h->got.offset here to save
3525 state, or even just remember the offset, as
3526 finish_dynamic_symbol would use that as offset into
3527 .got. */
3528 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
3529 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3530 base_got = htab->elf.sgotplt;
3531 }
3532
3533 dyn = htab->elf.dynamic_sections_created;
3534
3535 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3536 || (info->shared
3537 && SYMBOL_REFERENCES_LOCAL (info, h))
3538 || (ELF_ST_VISIBILITY (h->other)
3539 && h->root.type == bfd_link_hash_undefweak))
3540 {
3541 /* This is actually a static link, or it is a -Bsymbolic
3542 link and the symbol is defined locally, or the symbol
3543 was forced to be local because of a version file. We
3544 must initialize this entry in the global offset table.
3545 Since the offset must always be a multiple of 8, we
3546 use the least significant bit to record whether we
3547 have initialized it already.
3548
3549 When doing a dynamic link, we create a .rela.got
3550 relocation entry to initialize the value. This is
3551 done in the finish_dynamic_symbol routine. */
3552 if ((off & 1) != 0)
3553 off &= ~1;
3554 else
3555 {
3556 bfd_put_64 (output_bfd, relocation,
3557 base_got->contents + off);
3558 /* Note that this is harmless for the GOTPLT64 case,
3559 as -1 | 1 still is -1. */
3560 h->got.offset |= 1;
3561 }
3562 }
3563 else
3564 unresolved_reloc = FALSE;
3565 }
3566 else
3567 {
3568 if (local_got_offsets == NULL)
3569 abort ();
3570
3571 off = local_got_offsets[r_symndx];
3572
3573 /* The offset must always be a multiple of 8. We use
3574 the least significant bit to record whether we have
3575 already generated the necessary reloc. */
3576 if ((off & 1) != 0)
3577 off &= ~1;
3578 else
3579 {
3580 bfd_put_64 (output_bfd, relocation,
3581 base_got->contents + off);
3582
3583 if (info->shared)
3584 {
3585 asection *s;
3586 Elf_Internal_Rela outrel;
3587
3588 /* We need to generate a R_X86_64_RELATIVE reloc
3589 for the dynamic linker. */
3590 s = htab->elf.srelgot;
3591 if (s == NULL)
3592 abort ();
3593
3594 outrel.r_offset = (base_got->output_section->vma
3595 + base_got->output_offset
3596 + off);
3597 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3598 outrel.r_addend = relocation;
3599 elf_append_rela (output_bfd, s, &outrel);
3600 }
3601
3602 local_got_offsets[r_symndx] |= 1;
3603 }
3604 }
3605
3606 if (off >= (bfd_vma) -2)
3607 abort ();
3608
3609 relocation = base_got->output_section->vma
3610 + base_got->output_offset + off;
3611 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3612 relocation -= htab->elf.sgotplt->output_section->vma
3613 - htab->elf.sgotplt->output_offset;
3614
3615 break;
3616
3617 case R_X86_64_GOTOFF64:
3618 /* Relocation is relative to the start of the global offset
3619 table. */
3620
3621 /* Check to make sure it isn't a protected function symbol
3622 for shared library since it may not be local when used
3623 as function address. */
3624 if (!info->executable
3625 && h
3626 && !SYMBOLIC_BIND (info, h)
3627 && h->def_regular
3628 && h->type == STT_FUNC
3629 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3630 {
3631 (*_bfd_error_handler)
3632 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3633 input_bfd, h->root.root.string);
3634 bfd_set_error (bfd_error_bad_value);
3635 return FALSE;
3636 }
3637
3638 /* Note that sgot is not involved in this
3639 calculation. We always want the start of .got.plt. If we
3640 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3641 permitted by the ABI, we might have to change this
3642 calculation. */
3643 relocation -= htab->elf.sgotplt->output_section->vma
3644 + htab->elf.sgotplt->output_offset;
3645 break;
3646
3647 case R_X86_64_GOTPC32:
3648 case R_X86_64_GOTPC64:
3649 /* Use global offset table as symbol value. */
3650 relocation = htab->elf.sgotplt->output_section->vma
3651 + htab->elf.sgotplt->output_offset;
3652 unresolved_reloc = FALSE;
3653 break;
3654
3655 case R_X86_64_PLTOFF64:
3656 /* Relocation is PLT entry relative to GOT. For local
3657 symbols it's the symbol itself relative to GOT. */
3658 if (h != NULL
3659 /* See PLT32 handling. */
3660 && h->plt.offset != (bfd_vma) -1
3661 && htab->elf.splt != NULL)
3662 {
3663 relocation = (htab->elf.splt->output_section->vma
3664 + htab->elf.splt->output_offset
3665 + h->plt.offset);
3666 unresolved_reloc = FALSE;
3667 }
3668
3669 relocation -= htab->elf.sgotplt->output_section->vma
3670 + htab->elf.sgotplt->output_offset;
3671 break;
3672
3673 case R_X86_64_PLT32:
3674 /* Relocation is to the entry for this symbol in the
3675 procedure linkage table. */
3676
3677 /* Resolve a PLT32 reloc against a local symbol directly,
3678 without using the procedure linkage table. */
3679 if (h == NULL)
3680 break;
3681
3682 if (h->plt.offset == (bfd_vma) -1
3683 || htab->elf.splt == NULL)
3684 {
3685 /* We didn't make a PLT entry for this symbol. This
3686 happens when statically linking PIC code, or when
3687 using -Bsymbolic. */
3688 break;
3689 }
3690
3691 relocation = (htab->elf.splt->output_section->vma
3692 + htab->elf.splt->output_offset
3693 + h->plt.offset);
3694 unresolved_reloc = FALSE;
3695 break;
3696
3697 case R_X86_64_PC8:
3698 case R_X86_64_PC16:
3699 case R_X86_64_PC32:
3700 if (info->shared
3701 && (input_section->flags & SEC_ALLOC) != 0
3702 && (input_section->flags & SEC_READONLY) != 0
3703 && h != NULL)
3704 {
3705 bfd_boolean fail = FALSE;
3706 bfd_boolean branch
3707 = (r_type == R_X86_64_PC32
3708 && is_32bit_relative_branch (contents, rel->r_offset));
3709
3710 if (SYMBOL_REFERENCES_LOCAL (info, h))
3711 {
3712 /* Symbol is referenced locally. Make sure it is
3713 defined locally or for a branch. */
3714 fail = !h->def_regular && !branch;
3715 }
3716 else
3717 {
3718 /* Symbol isn't referenced locally. We only allow
3719 branch to symbol with non-default visibility. */
3720 fail = (!branch
3721 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3722 }
3723
3724 if (fail)
3725 {
3726 const char *fmt;
3727 const char *v;
3728 const char *pic = "";
3729
3730 switch (ELF_ST_VISIBILITY (h->other))
3731 {
3732 case STV_HIDDEN:
3733 v = _("hidden symbol");
3734 break;
3735 case STV_INTERNAL:
3736 v = _("internal symbol");
3737 break;
3738 case STV_PROTECTED:
3739 v = _("protected symbol");
3740 break;
3741 default:
3742 v = _("symbol");
3743 pic = _("; recompile with -fPIC");
3744 break;
3745 }
3746
3747 if (h->def_regular)
3748 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3749 else
3750 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3751
3752 (*_bfd_error_handler) (fmt, input_bfd,
3753 x86_64_elf_howto_table[r_type].name,
3754 v, h->root.root.string, pic);
3755 bfd_set_error (bfd_error_bad_value);
3756 return FALSE;
3757 }
3758 }
3759 /* Fall through. */
3760
3761 case R_X86_64_8:
3762 case R_X86_64_16:
3763 case R_X86_64_32:
3764 case R_X86_64_PC64:
3765 case R_X86_64_64:
3766 /* FIXME: The ABI says the linker should make sure the value is
3767 the same when it's zeroextended to 64 bit. */
3768
3769 if ((input_section->flags & SEC_ALLOC) == 0)
3770 break;
3771
3772 if ((info->shared
3773 && (h == NULL
3774 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3775 || h->root.type != bfd_link_hash_undefweak)
3776 && (! IS_X86_64_PCREL_TYPE (r_type)
3777 || ! SYMBOL_CALLS_LOCAL (info, h)))
3778 || (ELIMINATE_COPY_RELOCS
3779 && !info->shared
3780 && h != NULL
3781 && h->dynindx != -1
3782 && !h->non_got_ref
3783 && ((h->def_dynamic
3784 && !h->def_regular)
3785 || h->root.type == bfd_link_hash_undefweak
3786 || h->root.type == bfd_link_hash_undefined)))
3787 {
3788 Elf_Internal_Rela outrel;
3789 bfd_boolean skip, relocate;
3790 asection *sreloc;
3791
3792 /* When generating a shared object, these relocations
3793 are copied into the output file to be resolved at run
3794 time. */
3795 skip = FALSE;
3796 relocate = FALSE;
3797
3798 outrel.r_offset =
3799 _bfd_elf_section_offset (output_bfd, info, input_section,
3800 rel->r_offset);
3801 if (outrel.r_offset == (bfd_vma) -1)
3802 skip = TRUE;
3803 else if (outrel.r_offset == (bfd_vma) -2)
3804 skip = TRUE, relocate = TRUE;
3805
3806 outrel.r_offset += (input_section->output_section->vma
3807 + input_section->output_offset);
3808
3809 if (skip)
3810 memset (&outrel, 0, sizeof outrel);
3811
3812 /* h->dynindx may be -1 if this symbol was marked to
3813 become local. */
3814 else if (h != NULL
3815 && h->dynindx != -1
3816 && (IS_X86_64_PCREL_TYPE (r_type)
3817 || ! info->shared
3818 || ! SYMBOLIC_BIND (info, h)
3819 || ! h->def_regular))
3820 {
3821 outrel.r_info = htab->r_info (h->dynindx, r_type);
3822 outrel.r_addend = rel->r_addend;
3823 }
3824 else
3825 {
3826 /* This symbol is local, or marked to become local. */
3827 if (r_type == htab->pointer_r_type)
3828 {
3829 relocate = TRUE;
3830 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3831 outrel.r_addend = relocation + rel->r_addend;
3832 }
3833 else if (r_type == R_X86_64_64
3834 && !ABI_64_P (output_bfd))
3835 {
3836 relocate = TRUE;
3837 outrel.r_info = htab->r_info (0,
3838 R_X86_64_RELATIVE64);
3839 outrel.r_addend = relocation + rel->r_addend;
3840 /* Check addend overflow. */
3841 if ((outrel.r_addend & 0x80000000)
3842 != (rel->r_addend & 0x80000000))
3843 {
3844 const char *name;
3845 int addend = rel->r_addend;
3846 if (h && h->root.root.string)
3847 name = h->root.root.string;
3848 else
3849 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3850 sym, NULL);
3851 if (addend < 0)
3852 (*_bfd_error_handler)
3853 (_("%B: addend -0x%x in relocation %s against "
3854 "symbol `%s' at 0x%lx in section `%A' is "
3855 "out of range"),
3856 input_bfd, input_section, addend,
3857 x86_64_elf_howto_table[r_type].name,
3858 name, (unsigned long) rel->r_offset);
3859 else
3860 (*_bfd_error_handler)
3861 (_("%B: addend 0x%x in relocation %s against "
3862 "symbol `%s' at 0x%lx in section `%A' is "
3863 "out of range"),
3864 input_bfd, input_section, addend,
3865 x86_64_elf_howto_table[r_type].name,
3866 name, (unsigned long) rel->r_offset);
3867 bfd_set_error (bfd_error_bad_value);
3868 return FALSE;
3869 }
3870 }
3871 else
3872 {
3873 long sindx;
3874
3875 if (bfd_is_abs_section (sec))
3876 sindx = 0;
3877 else if (sec == NULL || sec->owner == NULL)
3878 {
3879 bfd_set_error (bfd_error_bad_value);
3880 return FALSE;
3881 }
3882 else
3883 {
3884 asection *osec;
3885
3886 /* We are turning this relocation into one
3887 against a section symbol. It would be
3888 proper to subtract the symbol's value,
3889 osec->vma, from the emitted reloc addend,
3890 but ld.so expects buggy relocs. */
3891 osec = sec->output_section;
3892 sindx = elf_section_data (osec)->dynindx;
3893 if (sindx == 0)
3894 {
3895 asection *oi = htab->elf.text_index_section;
3896 sindx = elf_section_data (oi)->dynindx;
3897 }
3898 BFD_ASSERT (sindx != 0);
3899 }
3900
3901 outrel.r_info = htab->r_info (sindx, r_type);
3902 outrel.r_addend = relocation + rel->r_addend;
3903 }
3904 }
3905
3906 sreloc = elf_section_data (input_section)->sreloc;
3907
3908 if (sreloc == NULL || sreloc->contents == NULL)
3909 {
3910 r = bfd_reloc_notsupported;
3911 goto check_relocation_error;
3912 }
3913
3914 elf_append_rela (output_bfd, sreloc, &outrel);
3915
3916 /* If this reloc is against an external symbol, we do
3917 not want to fiddle with the addend. Otherwise, we
3918 need to include the symbol value so that it becomes
3919 an addend for the dynamic reloc. */
3920 if (! relocate)
3921 continue;
3922 }
3923
3924 break;
3925
3926 case R_X86_64_TLSGD:
3927 case R_X86_64_GOTPC32_TLSDESC:
3928 case R_X86_64_TLSDESC_CALL:
3929 case R_X86_64_GOTTPOFF:
3930 tls_type = GOT_UNKNOWN;
3931 if (h == NULL && local_got_offsets)
3932 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3933 else if (h != NULL)
3934 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3935
3936 if (! elf_x86_64_tls_transition (info, input_bfd,
3937 input_section, contents,
3938 symtab_hdr, sym_hashes,
3939 &r_type, tls_type, rel,
3940 relend, h, r_symndx))
3941 return FALSE;
3942
3943 if (r_type == R_X86_64_TPOFF32)
3944 {
3945 bfd_vma roff = rel->r_offset;
3946
3947 BFD_ASSERT (! unresolved_reloc);
3948
3949 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3950 {
3951 /* GD->LE transition. For 64bit, change
3952 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3953 .word 0x6666; rex64; call __tls_get_addr
3954 into:
3955 movq %fs:0, %rax
3956 leaq foo@tpoff(%rax), %rax
3957 For 32bit, change
3958 leaq foo@tlsgd(%rip), %rdi
3959 .word 0x6666; rex64; call __tls_get_addr
3960 into:
3961 movl %fs:0, %eax
3962 leaq foo@tpoff(%rax), %rax */
3963 if (ABI_64_P (output_bfd))
3964 memcpy (contents + roff - 4,
3965 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3966 16);
3967 else
3968 memcpy (contents + roff - 3,
3969 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3970 15);
3971 bfd_put_32 (output_bfd,
3972 elf_x86_64_tpoff (info, relocation),
3973 contents + roff + 8);
3974 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3975 rel++;
3976 continue;
3977 }
3978 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3979 {
3980 /* GDesc -> LE transition.
3981 It's originally something like:
3982 leaq x@tlsdesc(%rip), %rax
3983
3984 Change it to:
3985 movl $x@tpoff, %rax. */
3986
3987 unsigned int val, type;
3988
3989 type = bfd_get_8 (input_bfd, contents + roff - 3);
3990 val = bfd_get_8 (input_bfd, contents + roff - 1);
3991 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3992 contents + roff - 3);
3993 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3994 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3995 contents + roff - 1);
3996 bfd_put_32 (output_bfd,
3997 elf_x86_64_tpoff (info, relocation),
3998 contents + roff);
3999 continue;
4000 }
4001 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4002 {
4003 /* GDesc -> LE transition.
4004 It's originally:
4005 call *(%rax)
4006 Turn it into:
4007 xchg %ax,%ax. */
4008 bfd_put_8 (output_bfd, 0x66, contents + roff);
4009 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4010 continue;
4011 }
4012 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
4013 {
4014 /* IE->LE transition:
4015 Originally it can be one of:
4016 movq foo@gottpoff(%rip), %reg
4017 addq foo@gottpoff(%rip), %reg
4018 We change it into:
4019 movq $foo, %reg
4020 leaq foo(%reg), %reg
4021 addq $foo, %reg. */
4022
4023 unsigned int val, type, reg;
4024
4025 val = bfd_get_8 (input_bfd, contents + roff - 3);
4026 type = bfd_get_8 (input_bfd, contents + roff - 2);
4027 reg = bfd_get_8 (input_bfd, contents + roff - 1);
4028 reg >>= 3;
4029 if (type == 0x8b)
4030 {
4031 /* movq */
4032 if (val == 0x4c)
4033 bfd_put_8 (output_bfd, 0x49,
4034 contents + roff - 3);
4035 else if (!ABI_64_P (output_bfd) && val == 0x44)
4036 bfd_put_8 (output_bfd, 0x41,
4037 contents + roff - 3);
4038 bfd_put_8 (output_bfd, 0xc7,
4039 contents + roff - 2);
4040 bfd_put_8 (output_bfd, 0xc0 | reg,
4041 contents + roff - 1);
4042 }
4043 else if (reg == 4)
4044 {
4045 /* addq -> addq - addressing with %rsp/%r12 is
4046 special */
4047 if (val == 0x4c)
4048 bfd_put_8 (output_bfd, 0x49,
4049 contents + roff - 3);
4050 else if (!ABI_64_P (output_bfd) && val == 0x44)
4051 bfd_put_8 (output_bfd, 0x41,
4052 contents + roff - 3);
4053 bfd_put_8 (output_bfd, 0x81,
4054 contents + roff - 2);
4055 bfd_put_8 (output_bfd, 0xc0 | reg,
4056 contents + roff - 1);
4057 }
4058 else
4059 {
4060 /* addq -> leaq */
4061 if (val == 0x4c)
4062 bfd_put_8 (output_bfd, 0x4d,
4063 contents + roff - 3);
4064 else if (!ABI_64_P (output_bfd) && val == 0x44)
4065 bfd_put_8 (output_bfd, 0x45,
4066 contents + roff - 3);
4067 bfd_put_8 (output_bfd, 0x8d,
4068 contents + roff - 2);
4069 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
4070 contents + roff - 1);
4071 }
4072 bfd_put_32 (output_bfd,
4073 elf_x86_64_tpoff (info, relocation),
4074 contents + roff);
4075 continue;
4076 }
4077 else
4078 BFD_ASSERT (FALSE);
4079 }
4080
4081 if (htab->elf.sgot == NULL)
4082 abort ();
4083
4084 if (h != NULL)
4085 {
4086 off = h->got.offset;
4087 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
4088 }
4089 else
4090 {
4091 if (local_got_offsets == NULL)
4092 abort ();
4093
4094 off = local_got_offsets[r_symndx];
4095 offplt = local_tlsdesc_gotents[r_symndx];
4096 }
4097
4098 if ((off & 1) != 0)
4099 off &= ~1;
4100 else
4101 {
4102 Elf_Internal_Rela outrel;
4103 int dr_type, indx;
4104 asection *sreloc;
4105
4106 if (htab->elf.srelgot == NULL)
4107 abort ();
4108
4109 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4110
4111 if (GOT_TLS_GDESC_P (tls_type))
4112 {
4113 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
4114 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
4115 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
4116 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
4117 + htab->elf.sgotplt->output_offset
4118 + offplt
4119 + htab->sgotplt_jump_table_size);
4120 sreloc = htab->elf.srelplt;
4121 if (indx == 0)
4122 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4123 else
4124 outrel.r_addend = 0;
4125 elf_append_rela (output_bfd, sreloc, &outrel);
4126 }
4127
4128 sreloc = htab->elf.srelgot;
4129
4130 outrel.r_offset = (htab->elf.sgot->output_section->vma
4131 + htab->elf.sgot->output_offset + off);
4132
4133 if (GOT_TLS_GD_P (tls_type))
4134 dr_type = R_X86_64_DTPMOD64;
4135 else if (GOT_TLS_GDESC_P (tls_type))
4136 goto dr_done;
4137 else
4138 dr_type = R_X86_64_TPOFF64;
4139
4140 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
4141 outrel.r_addend = 0;
4142 if ((dr_type == R_X86_64_TPOFF64
4143 || dr_type == R_X86_64_TLSDESC) && indx == 0)
4144 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4145 outrel.r_info = htab->r_info (indx, dr_type);
4146
4147 elf_append_rela (output_bfd, sreloc, &outrel);
4148
4149 if (GOT_TLS_GD_P (tls_type))
4150 {
4151 if (indx == 0)
4152 {
4153 BFD_ASSERT (! unresolved_reloc);
4154 bfd_put_64 (output_bfd,
4155 relocation - elf_x86_64_dtpoff_base (info),
4156 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4157 }
4158 else
4159 {
4160 bfd_put_64 (output_bfd, 0,
4161 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4162 outrel.r_info = htab->r_info (indx,
4163 R_X86_64_DTPOFF64);
4164 outrel.r_offset += GOT_ENTRY_SIZE;
4165 elf_append_rela (output_bfd, sreloc,
4166 &outrel);
4167 }
4168 }
4169
4170 dr_done:
4171 if (h != NULL)
4172 h->got.offset |= 1;
4173 else
4174 local_got_offsets[r_symndx] |= 1;
4175 }
4176
4177 if (off >= (bfd_vma) -2
4178 && ! GOT_TLS_GDESC_P (tls_type))
4179 abort ();
4180 if (r_type == ELF32_R_TYPE (rel->r_info))
4181 {
4182 if (r_type == R_X86_64_GOTPC32_TLSDESC
4183 || r_type == R_X86_64_TLSDESC_CALL)
4184 relocation = htab->elf.sgotplt->output_section->vma
4185 + htab->elf.sgotplt->output_offset
4186 + offplt + htab->sgotplt_jump_table_size;
4187 else
4188 relocation = htab->elf.sgot->output_section->vma
4189 + htab->elf.sgot->output_offset + off;
4190 unresolved_reloc = FALSE;
4191 }
4192 else
4193 {
4194 bfd_vma roff = rel->r_offset;
4195
4196 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4197 {
4198 /* GD->IE transition. For 64bit, change
4199 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4200 .word 0x6666; rex64; call __tls_get_addr@plt
4201 into:
4202 movq %fs:0, %rax
4203 addq foo@gottpoff(%rip), %rax
4204 For 32bit, change
4205 leaq foo@tlsgd(%rip), %rdi
4206 .word 0x6666; rex64; call __tls_get_addr@plt
4207 into:
4208 movl %fs:0, %eax
4209 addq foo@gottpoff(%rip), %rax */
4210 if (ABI_64_P (output_bfd))
4211 memcpy (contents + roff - 4,
4212 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4213 16);
4214 else
4215 memcpy (contents + roff - 3,
4216 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4217 15);
4218
4219 relocation = (htab->elf.sgot->output_section->vma
4220 + htab->elf.sgot->output_offset + off
4221 - roff
4222 - input_section->output_section->vma
4223 - input_section->output_offset
4224 - 12);
4225 bfd_put_32 (output_bfd, relocation,
4226 contents + roff + 8);
4227 /* Skip R_X86_64_PLT32. */
4228 rel++;
4229 continue;
4230 }
4231 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4232 {
4233 /* GDesc -> IE transition.
4234 It's originally something like:
4235 leaq x@tlsdesc(%rip), %rax
4236
4237 Change it to:
4238 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4239
4240 /* Now modify the instruction as appropriate. To
4241 turn a leaq into a movq in the form we use it, it
4242 suffices to change the second byte from 0x8d to
4243 0x8b. */
4244 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4245
4246 bfd_put_32 (output_bfd,
4247 htab->elf.sgot->output_section->vma
4248 + htab->elf.sgot->output_offset + off
4249 - rel->r_offset
4250 - input_section->output_section->vma
4251 - input_section->output_offset
4252 - 4,
4253 contents + roff);
4254 continue;
4255 }
4256 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4257 {
4258 /* GDesc -> IE transition.
4259 It's originally:
4260 call *(%rax)
4261
4262 Change it to:
4263 xchg %ax, %ax. */
4264
4265 bfd_put_8 (output_bfd, 0x66, contents + roff);
4266 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4267 continue;
4268 }
4269 else
4270 BFD_ASSERT (FALSE);
4271 }
4272 break;
4273
4274 case R_X86_64_TLSLD:
4275 if (! elf_x86_64_tls_transition (info, input_bfd,
4276 input_section, contents,
4277 symtab_hdr, sym_hashes,
4278 &r_type, GOT_UNKNOWN,
4279 rel, relend, h, r_symndx))
4280 return FALSE;
4281
4282 if (r_type != R_X86_64_TLSLD)
4283 {
4284 /* LD->LE transition:
4285 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4286 For 64bit, we change it into:
4287 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4288 For 32bit, we change it into:
4289 nopl 0x0(%rax); movl %fs:0, %eax. */
4290
4291 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4292 if (ABI_64_P (output_bfd))
4293 memcpy (contents + rel->r_offset - 3,
4294 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4295 else
4296 memcpy (contents + rel->r_offset - 3,
4297 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4298 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
4299 rel++;
4300 continue;
4301 }
4302
4303 if (htab->elf.sgot == NULL)
4304 abort ();
4305
4306 off = htab->tls_ld_got.offset;
4307 if (off & 1)
4308 off &= ~1;
4309 else
4310 {
4311 Elf_Internal_Rela outrel;
4312
4313 if (htab->elf.srelgot == NULL)
4314 abort ();
4315
4316 outrel.r_offset = (htab->elf.sgot->output_section->vma
4317 + htab->elf.sgot->output_offset + off);
4318
4319 bfd_put_64 (output_bfd, 0,
4320 htab->elf.sgot->contents + off);
4321 bfd_put_64 (output_bfd, 0,
4322 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4323 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4324 outrel.r_addend = 0;
4325 elf_append_rela (output_bfd, htab->elf.srelgot,
4326 &outrel);
4327 htab->tls_ld_got.offset |= 1;
4328 }
4329 relocation = htab->elf.sgot->output_section->vma
4330 + htab->elf.sgot->output_offset + off;
4331 unresolved_reloc = FALSE;
4332 break;
4333
4334 case R_X86_64_DTPOFF32:
4335 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4336 relocation -= elf_x86_64_dtpoff_base (info);
4337 else
4338 relocation = elf_x86_64_tpoff (info, relocation);
4339 break;
4340
4341 case R_X86_64_TPOFF32:
4342 case R_X86_64_TPOFF64:
4343 BFD_ASSERT (info->executable);
4344 relocation = elf_x86_64_tpoff (info, relocation);
4345 break;
4346
4347 default:
4348 break;
4349 }
4350
4351 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4352 because such sections are not SEC_ALLOC and thus ld.so will
4353 not process them. */
4354 if (unresolved_reloc
4355 && !((input_section->flags & SEC_DEBUGGING) != 0
4356 && h->def_dynamic)
4357 && _bfd_elf_section_offset (output_bfd, info, input_section,
4358 rel->r_offset) != (bfd_vma) -1)
4359 {
4360 (*_bfd_error_handler)
4361 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4362 input_bfd,
4363 input_section,
4364 (long) rel->r_offset,
4365 howto->name,
4366 h->root.root.string);
4367 return FALSE;
4368 }
4369
4370 do_relocation:
4371 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4372 contents, rel->r_offset,
4373 relocation, rel->r_addend);
4374
4375 check_relocation_error:
4376 if (r != bfd_reloc_ok)
4377 {
4378 const char *name;
4379
4380 if (h != NULL)
4381 name = h->root.root.string;
4382 else
4383 {
4384 name = bfd_elf_string_from_elf_section (input_bfd,
4385 symtab_hdr->sh_link,
4386 sym->st_name);
4387 if (name == NULL)
4388 return FALSE;
4389 if (*name == '\0')
4390 name = bfd_section_name (input_bfd, sec);
4391 }
4392
4393 if (r == bfd_reloc_overflow)
4394 {
4395 if (! ((*info->callbacks->reloc_overflow)
4396 (info, (h ? &h->root : NULL), name, howto->name,
4397 (bfd_vma) 0, input_bfd, input_section,
4398 rel->r_offset)))
4399 return FALSE;
4400 }
4401 else
4402 {
4403 (*_bfd_error_handler)
4404 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4405 input_bfd, input_section,
4406 (long) rel->r_offset, name, (int) r);
4407 return FALSE;
4408 }
4409 }
4410 }
4411
4412 return TRUE;
4413 }
4414
4415 /* Finish up dynamic symbol handling. We set the contents of various
4416 dynamic sections here. */
4417
4418 static bfd_boolean
4419 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4420 struct bfd_link_info *info,
4421 struct elf_link_hash_entry *h,
4422 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
4423 {
4424 struct elf_x86_64_link_hash_table *htab;
4425 const struct elf_x86_64_backend_data *const abed
4426 = get_elf_x86_64_backend_data (output_bfd);
4427
4428 htab = elf_x86_64_hash_table (info);
4429 if (htab == NULL)
4430 return FALSE;
4431
4432 if (h->plt.offset != (bfd_vma) -1)
4433 {
4434 bfd_vma plt_index;
4435 bfd_vma got_offset;
4436 Elf_Internal_Rela rela;
4437 bfd_byte *loc;
4438 asection *plt, *gotplt, *relplt;
4439 const struct elf_backend_data *bed;
4440
4441 /* When building a static executable, use .iplt, .igot.plt and
4442 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4443 if (htab->elf.splt != NULL)
4444 {
4445 plt = htab->elf.splt;
4446 gotplt = htab->elf.sgotplt;
4447 relplt = htab->elf.srelplt;
4448 }
4449 else
4450 {
4451 plt = htab->elf.iplt;
4452 gotplt = htab->elf.igotplt;
4453 relplt = htab->elf.irelplt;
4454 }
4455
4456 /* This symbol has an entry in the procedure linkage table. Set
4457 it up. */
4458 if ((h->dynindx == -1
4459 && !((h->forced_local || info->executable)
4460 && h->def_regular
4461 && h->type == STT_GNU_IFUNC))
4462 || plt == NULL
4463 || gotplt == NULL
4464 || relplt == NULL)
4465 abort ();
4466
4467 /* Get the index in the procedure linkage table which
4468 corresponds to this symbol. This is the index of this symbol
4469 in all the symbols for which we are making plt entries. The
4470 first entry in the procedure linkage table is reserved.
4471
4472 Get the offset into the .got table of the entry that
4473 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4474 bytes. The first three are reserved for the dynamic linker.
4475
4476 For static executables, we don't reserve anything. */
4477
4478 if (plt == htab->elf.splt)
4479 {
4480 got_offset = h->plt.offset / abed->plt_entry_size - 1;
4481 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4482 }
4483 else
4484 {
4485 got_offset = h->plt.offset / abed->plt_entry_size;
4486 got_offset = got_offset * GOT_ENTRY_SIZE;
4487 }
4488
4489 /* Fill in the entry in the procedure linkage table. */
4490 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
4491 abed->plt_entry_size);
4492
4493 /* Insert the relocation positions of the plt section. */
4494
4495 /* Put offset the PC-relative instruction referring to the GOT entry,
4496 subtracting the size of that instruction. */
4497 bfd_put_32 (output_bfd,
4498 (gotplt->output_section->vma
4499 + gotplt->output_offset
4500 + got_offset
4501 - plt->output_section->vma
4502 - plt->output_offset
4503 - h->plt.offset
4504 - abed->plt_got_insn_size),
4505 plt->contents + h->plt.offset + abed->plt_got_offset);
4506
4507 /* Fill in the entry in the global offset table, initially this
4508 points to the second part of the PLT entry. */
4509 bfd_put_64 (output_bfd, (plt->output_section->vma
4510 + plt->output_offset
4511 + h->plt.offset + abed->plt_lazy_offset),
4512 gotplt->contents + got_offset);
4513
4514 /* Fill in the entry in the .rela.plt section. */
4515 rela.r_offset = (gotplt->output_section->vma
4516 + gotplt->output_offset
4517 + got_offset);
4518 if (h->dynindx == -1
4519 || ((info->executable
4520 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4521 && h->def_regular
4522 && h->type == STT_GNU_IFUNC))
4523 {
4524 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4525 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4526 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4527 rela.r_addend = (h->root.u.def.value
4528 + h->root.u.def.section->output_section->vma
4529 + h->root.u.def.section->output_offset);
4530 /* R_X86_64_IRELATIVE comes last. */
4531 plt_index = htab->next_irelative_index--;
4532 }
4533 else
4534 {
4535 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4536 rela.r_addend = 0;
4537 plt_index = htab->next_jump_slot_index++;
4538 }
4539
4540 /* Don't fill PLT entry for static executables. */
4541 if (plt == htab->elf.splt)
4542 {
4543 /* Put relocation index. */
4544 bfd_put_32 (output_bfd, plt_index,
4545 plt->contents + h->plt.offset + abed->plt_reloc_offset);
4546 /* Put offset for jmp .PLT0. */
4547 bfd_put_32 (output_bfd, - (h->plt.offset + abed->plt_plt_insn_end),
4548 plt->contents + h->plt.offset + abed->plt_plt_offset);
4549 }
4550
4551 bed = get_elf_backend_data (output_bfd);
4552 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4553 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4554
4555 if (!h->def_regular)
4556 {
4557 /* Mark the symbol as undefined, rather than as defined in
4558 the .plt section. Leave the value if there were any
4559 relocations where pointer equality matters (this is a clue
4560 for the dynamic linker, to make function pointer
4561 comparisons work between an application and shared
4562 library), otherwise set it to zero. If a function is only
4563 called from a binary, there is no need to slow down
4564 shared libraries because of that. */
4565 sym->st_shndx = SHN_UNDEF;
4566 if (!h->pointer_equality_needed)
4567 sym->st_value = 0;
4568 }
4569 }
4570
4571 if (h->got.offset != (bfd_vma) -1
4572 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4573 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4574 {
4575 Elf_Internal_Rela rela;
4576
4577 /* This symbol has an entry in the global offset table. Set it
4578 up. */
4579 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4580 abort ();
4581
4582 rela.r_offset = (htab->elf.sgot->output_section->vma
4583 + htab->elf.sgot->output_offset
4584 + (h->got.offset &~ (bfd_vma) 1));
4585
4586 /* If this is a static link, or it is a -Bsymbolic link and the
4587 symbol is defined locally or was forced to be local because
4588 of a version file, we just want to emit a RELATIVE reloc.
4589 The entry in the global offset table will already have been
4590 initialized in the relocate_section function. */
4591 if (h->def_regular
4592 && h->type == STT_GNU_IFUNC)
4593 {
4594 if (info->shared)
4595 {
4596 /* Generate R_X86_64_GLOB_DAT. */
4597 goto do_glob_dat;
4598 }
4599 else
4600 {
4601 asection *plt;
4602
4603 if (!h->pointer_equality_needed)
4604 abort ();
4605
4606 /* For non-shared object, we can't use .got.plt, which
4607 contains the real function addres if we need pointer
4608 equality. We load the GOT entry with the PLT entry. */
4609 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4610 bfd_put_64 (output_bfd, (plt->output_section->vma
4611 + plt->output_offset
4612 + h->plt.offset),
4613 htab->elf.sgot->contents + h->got.offset);
4614 return TRUE;
4615 }
4616 }
4617 else if (info->shared
4618 && SYMBOL_REFERENCES_LOCAL (info, h))
4619 {
4620 if (!h->def_regular)
4621 return FALSE;
4622 BFD_ASSERT((h->got.offset & 1) != 0);
4623 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4624 rela.r_addend = (h->root.u.def.value
4625 + h->root.u.def.section->output_section->vma
4626 + h->root.u.def.section->output_offset);
4627 }
4628 else
4629 {
4630 BFD_ASSERT((h->got.offset & 1) == 0);
4631 do_glob_dat:
4632 bfd_put_64 (output_bfd, (bfd_vma) 0,
4633 htab->elf.sgot->contents + h->got.offset);
4634 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4635 rela.r_addend = 0;
4636 }
4637
4638 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4639 }
4640
4641 if (h->needs_copy)
4642 {
4643 Elf_Internal_Rela rela;
4644
4645 /* This symbol needs a copy reloc. Set it up. */
4646
4647 if (h->dynindx == -1
4648 || (h->root.type != bfd_link_hash_defined
4649 && h->root.type != bfd_link_hash_defweak)
4650 || htab->srelbss == NULL)
4651 abort ();
4652
4653 rela.r_offset = (h->root.u.def.value
4654 + h->root.u.def.section->output_section->vma
4655 + h->root.u.def.section->output_offset);
4656 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4657 rela.r_addend = 0;
4658 elf_append_rela (output_bfd, htab->srelbss, &rela);
4659 }
4660
4661 return TRUE;
4662 }
4663
4664 /* Finish up local dynamic symbol handling. We set the contents of
4665 various dynamic sections here. */
4666
4667 static bfd_boolean
4668 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4669 {
4670 struct elf_link_hash_entry *h
4671 = (struct elf_link_hash_entry *) *slot;
4672 struct bfd_link_info *info
4673 = (struct bfd_link_info *) inf;
4674
4675 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4676 info, h, NULL);
4677 }
4678
4679 /* Used to decide how to sort relocs in an optimal manner for the
4680 dynamic linker, before writing them out. */
4681
4682 static enum elf_reloc_type_class
4683 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4684 {
4685 switch ((int) ELF32_R_TYPE (rela->r_info))
4686 {
4687 case R_X86_64_RELATIVE:
4688 case R_X86_64_RELATIVE64:
4689 return reloc_class_relative;
4690 case R_X86_64_JUMP_SLOT:
4691 return reloc_class_plt;
4692 case R_X86_64_COPY:
4693 return reloc_class_copy;
4694 default:
4695 return reloc_class_normal;
4696 }
4697 }
4698
4699 /* Finish up the dynamic sections. */
4700
4701 static bfd_boolean
4702 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4703 struct bfd_link_info *info)
4704 {
4705 struct elf_x86_64_link_hash_table *htab;
4706 bfd *dynobj;
4707 asection *sdyn;
4708 const struct elf_x86_64_backend_data *const abed
4709 = get_elf_x86_64_backend_data (output_bfd);
4710
4711 htab = elf_x86_64_hash_table (info);
4712 if (htab == NULL)
4713 return FALSE;
4714
4715 dynobj = htab->elf.dynobj;
4716 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4717
4718 if (htab->elf.dynamic_sections_created)
4719 {
4720 bfd_byte *dyncon, *dynconend;
4721 const struct elf_backend_data *bed;
4722 bfd_size_type sizeof_dyn;
4723
4724 if (sdyn == NULL || htab->elf.sgot == NULL)
4725 abort ();
4726
4727 bed = get_elf_backend_data (dynobj);
4728 sizeof_dyn = bed->s->sizeof_dyn;
4729 dyncon = sdyn->contents;
4730 dynconend = sdyn->contents + sdyn->size;
4731 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4732 {
4733 Elf_Internal_Dyn dyn;
4734 asection *s;
4735
4736 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4737
4738 switch (dyn.d_tag)
4739 {
4740 default:
4741 continue;
4742
4743 case DT_PLTGOT:
4744 s = htab->elf.sgotplt;
4745 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4746 break;
4747
4748 case DT_JMPREL:
4749 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4750 break;
4751
4752 case DT_PLTRELSZ:
4753 s = htab->elf.srelplt->output_section;
4754 dyn.d_un.d_val = s->size;
4755 break;
4756
4757 case DT_RELASZ:
4758 /* The procedure linkage table relocs (DT_JMPREL) should
4759 not be included in the overall relocs (DT_RELA).
4760 Therefore, we override the DT_RELASZ entry here to
4761 make it not include the JMPREL relocs. Since the
4762 linker script arranges for .rela.plt to follow all
4763 other relocation sections, we don't have to worry
4764 about changing the DT_RELA entry. */
4765 if (htab->elf.srelplt != NULL)
4766 {
4767 s = htab->elf.srelplt->output_section;
4768 dyn.d_un.d_val -= s->size;
4769 }
4770 break;
4771
4772 case DT_TLSDESC_PLT:
4773 s = htab->elf.splt;
4774 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4775 + htab->tlsdesc_plt;
4776 break;
4777
4778 case DT_TLSDESC_GOT:
4779 s = htab->elf.sgot;
4780 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4781 + htab->tlsdesc_got;
4782 break;
4783 }
4784
4785 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4786 }
4787
4788 /* Fill in the special first entry in the procedure linkage table. */
4789 if (htab->elf.splt && htab->elf.splt->size > 0)
4790 {
4791 /* Fill in the first entry in the procedure linkage table. */
4792 memcpy (htab->elf.splt->contents,
4793 abed->plt0_entry, abed->plt_entry_size);
4794 /* Add offset for pushq GOT+8(%rip), since the instruction
4795 uses 6 bytes subtract this value. */
4796 bfd_put_32 (output_bfd,
4797 (htab->elf.sgotplt->output_section->vma
4798 + htab->elf.sgotplt->output_offset
4799 + 8
4800 - htab->elf.splt->output_section->vma
4801 - htab->elf.splt->output_offset
4802 - 6),
4803 htab->elf.splt->contents + abed->plt0_got1_offset);
4804 /* Add offset for the PC-relative instruction accessing GOT+16,
4805 subtracting the offset to the end of that instruction. */
4806 bfd_put_32 (output_bfd,
4807 (htab->elf.sgotplt->output_section->vma
4808 + htab->elf.sgotplt->output_offset
4809 + 16
4810 - htab->elf.splt->output_section->vma
4811 - htab->elf.splt->output_offset
4812 - abed->plt0_got2_insn_end),
4813 htab->elf.splt->contents + abed->plt0_got2_offset);
4814
4815 elf_section_data (htab->elf.splt->output_section)
4816 ->this_hdr.sh_entsize = abed->plt_entry_size;
4817
4818 if (htab->tlsdesc_plt)
4819 {
4820 bfd_put_64 (output_bfd, (bfd_vma) 0,
4821 htab->elf.sgot->contents + htab->tlsdesc_got);
4822
4823 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4824 abed->plt0_entry, abed->plt_entry_size);
4825
4826 /* Add offset for pushq GOT+8(%rip), since the
4827 instruction uses 6 bytes subtract this value. */
4828 bfd_put_32 (output_bfd,
4829 (htab->elf.sgotplt->output_section->vma
4830 + htab->elf.sgotplt->output_offset
4831 + 8
4832 - htab->elf.splt->output_section->vma
4833 - htab->elf.splt->output_offset
4834 - htab->tlsdesc_plt
4835 - 6),
4836 htab->elf.splt->contents
4837 + htab->tlsdesc_plt + abed->plt0_got1_offset);
4838 /* Add offset for the PC-relative instruction accessing GOT+TDG,
4839 where TGD stands for htab->tlsdesc_got, subtracting the offset
4840 to the end of that instruction. */
4841 bfd_put_32 (output_bfd,
4842 (htab->elf.sgot->output_section->vma
4843 + htab->elf.sgot->output_offset
4844 + htab->tlsdesc_got
4845 - htab->elf.splt->output_section->vma
4846 - htab->elf.splt->output_offset
4847 - htab->tlsdesc_plt
4848 - abed->plt0_got2_insn_end),
4849 htab->elf.splt->contents
4850 + htab->tlsdesc_plt + abed->plt0_got2_offset);
4851 }
4852 }
4853 }
4854
4855 if (htab->elf.sgotplt)
4856 {
4857 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4858 {
4859 (*_bfd_error_handler)
4860 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4861 return FALSE;
4862 }
4863
4864 /* Fill in the first three entries in the global offset table. */
4865 if (htab->elf.sgotplt->size > 0)
4866 {
4867 /* Set the first entry in the global offset table to the address of
4868 the dynamic section. */
4869 if (sdyn == NULL)
4870 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4871 else
4872 bfd_put_64 (output_bfd,
4873 sdyn->output_section->vma + sdyn->output_offset,
4874 htab->elf.sgotplt->contents);
4875 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4876 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4877 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4878 }
4879
4880 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4881 GOT_ENTRY_SIZE;
4882 }
4883
4884 /* Adjust .eh_frame for .plt section. */
4885 if (htab->plt_eh_frame != NULL
4886 && htab->plt_eh_frame->contents != NULL)
4887 {
4888 if (htab->elf.splt != NULL
4889 && htab->elf.splt->size != 0
4890 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
4891 && htab->elf.splt->output_section != NULL
4892 && htab->plt_eh_frame->output_section != NULL)
4893 {
4894 bfd_vma plt_start = htab->elf.splt->output_section->vma;
4895 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
4896 + htab->plt_eh_frame->output_offset
4897 + PLT_FDE_START_OFFSET;
4898 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
4899 htab->plt_eh_frame->contents
4900 + PLT_FDE_START_OFFSET);
4901 }
4902 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
4903 {
4904 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
4905 htab->plt_eh_frame,
4906 htab->plt_eh_frame->contents))
4907 return FALSE;
4908 }
4909 }
4910
4911 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4912 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4913 = GOT_ENTRY_SIZE;
4914
4915 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4916 htab_traverse (htab->loc_hash_table,
4917 elf_x86_64_finish_local_dynamic_symbol,
4918 info);
4919
4920 return TRUE;
4921 }
4922
4923 /* Return address for Ith PLT stub in section PLT, for relocation REL
4924 or (bfd_vma) -1 if it should not be included. */
4925
4926 static bfd_vma
4927 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4928 const arelent *rel ATTRIBUTE_UNUSED)
4929 {
4930 return plt->vma + (i + 1) * GET_PLT_ENTRY_SIZE (plt->owner);
4931 }
4932
4933 /* Handle an x86-64 specific section when reading an object file. This
4934 is called when elfcode.h finds a section with an unknown type. */
4935
4936 static bfd_boolean
4937 elf_x86_64_section_from_shdr (bfd *abfd,
4938 Elf_Internal_Shdr *hdr,
4939 const char *name,
4940 int shindex)
4941 {
4942 if (hdr->sh_type != SHT_X86_64_UNWIND)
4943 return FALSE;
4944
4945 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4946 return FALSE;
4947
4948 return TRUE;
4949 }
4950
4951 /* Hook called by the linker routine which adds symbols from an object
4952 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4953 of .bss. */
4954
4955 static bfd_boolean
4956 elf_x86_64_add_symbol_hook (bfd *abfd,
4957 struct bfd_link_info *info,
4958 Elf_Internal_Sym *sym,
4959 const char **namep ATTRIBUTE_UNUSED,
4960 flagword *flagsp ATTRIBUTE_UNUSED,
4961 asection **secp,
4962 bfd_vma *valp)
4963 {
4964 asection *lcomm;
4965
4966 switch (sym->st_shndx)
4967 {
4968 case SHN_X86_64_LCOMMON:
4969 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4970 if (lcomm == NULL)
4971 {
4972 lcomm = bfd_make_section_with_flags (abfd,
4973 "LARGE_COMMON",
4974 (SEC_ALLOC
4975 | SEC_IS_COMMON
4976 | SEC_LINKER_CREATED));
4977 if (lcomm == NULL)
4978 return FALSE;
4979 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4980 }
4981 *secp = lcomm;
4982 *valp = sym->st_size;
4983 return TRUE;
4984 }
4985
4986 if ((abfd->flags & DYNAMIC) == 0
4987 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4988 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
4989 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4990
4991 return TRUE;
4992 }
4993
4994
4995 /* Given a BFD section, try to locate the corresponding ELF section
4996 index. */
4997
4998 static bfd_boolean
4999 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5000 asection *sec, int *index_return)
5001 {
5002 if (sec == &_bfd_elf_large_com_section)
5003 {
5004 *index_return = SHN_X86_64_LCOMMON;
5005 return TRUE;
5006 }
5007 return FALSE;
5008 }
5009
5010 /* Process a symbol. */
5011
5012 static void
5013 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5014 asymbol *asym)
5015 {
5016 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5017
5018 switch (elfsym->internal_elf_sym.st_shndx)
5019 {
5020 case SHN_X86_64_LCOMMON:
5021 asym->section = &_bfd_elf_large_com_section;
5022 asym->value = elfsym->internal_elf_sym.st_size;
5023 /* Common symbol doesn't set BSF_GLOBAL. */
5024 asym->flags &= ~BSF_GLOBAL;
5025 break;
5026 }
5027 }
5028
5029 static bfd_boolean
5030 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
5031 {
5032 return (sym->st_shndx == SHN_COMMON
5033 || sym->st_shndx == SHN_X86_64_LCOMMON);
5034 }
5035
5036 static unsigned int
5037 elf_x86_64_common_section_index (asection *sec)
5038 {
5039 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5040 return SHN_COMMON;
5041 else
5042 return SHN_X86_64_LCOMMON;
5043 }
5044
5045 static asection *
5046 elf_x86_64_common_section (asection *sec)
5047 {
5048 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5049 return bfd_com_section_ptr;
5050 else
5051 return &_bfd_elf_large_com_section;
5052 }
5053
5054 static bfd_boolean
5055 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5056 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
5057 struct elf_link_hash_entry *h,
5058 Elf_Internal_Sym *sym,
5059 asection **psec,
5060 bfd_vma *pvalue ATTRIBUTE_UNUSED,
5061 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
5062 bfd_boolean *skip ATTRIBUTE_UNUSED,
5063 bfd_boolean *override ATTRIBUTE_UNUSED,
5064 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
5065 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
5066 bfd_boolean *newdyn ATTRIBUTE_UNUSED,
5067 bfd_boolean *newdef,
5068 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
5069 bfd_boolean *newweak ATTRIBUTE_UNUSED,
5070 bfd *abfd ATTRIBUTE_UNUSED,
5071 asection **sec,
5072 bfd_boolean *olddyn ATTRIBUTE_UNUSED,
5073 bfd_boolean *olddef,
5074 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
5075 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
5076 bfd *oldbfd,
5077 asection **oldsec)
5078 {
5079 /* A normal common symbol and a large common symbol result in a
5080 normal common symbol. We turn the large common symbol into a
5081 normal one. */
5082 if (!*olddef
5083 && h->root.type == bfd_link_hash_common
5084 && !*newdef
5085 && bfd_is_com_section (*sec)
5086 && *oldsec != *sec)
5087 {
5088 if (sym->st_shndx == SHN_COMMON
5089 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
5090 {
5091 h->root.u.c.p->section
5092 = bfd_make_section_old_way (oldbfd, "COMMON");
5093 h->root.u.c.p->section->flags = SEC_ALLOC;
5094 }
5095 else if (sym->st_shndx == SHN_X86_64_LCOMMON
5096 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
5097 *psec = *sec = bfd_com_section_ptr;
5098 }
5099
5100 return TRUE;
5101 }
5102
5103 static int
5104 elf_x86_64_additional_program_headers (bfd *abfd,
5105 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5106 {
5107 asection *s;
5108 int count = 0;
5109
5110 /* Check to see if we need a large readonly segment. */
5111 s = bfd_get_section_by_name (abfd, ".lrodata");
5112 if (s && (s->flags & SEC_LOAD))
5113 count++;
5114
5115 /* Check to see if we need a large data segment. Since .lbss sections
5116 is placed right after the .bss section, there should be no need for
5117 a large data segment just because of .lbss. */
5118 s = bfd_get_section_by_name (abfd, ".ldata");
5119 if (s && (s->flags & SEC_LOAD))
5120 count++;
5121
5122 return count;
5123 }
5124
5125 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5126
5127 static bfd_boolean
5128 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
5129 {
5130 if (h->plt.offset != (bfd_vma) -1
5131 && !h->def_regular
5132 && !h->pointer_equality_needed)
5133 return FALSE;
5134
5135 return _bfd_elf_hash_symbol (h);
5136 }
5137
5138 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
5139
5140 static bfd_boolean
5141 elf_x86_64_relocs_compatible (const bfd_target *input,
5142 const bfd_target *output)
5143 {
5144 return ((xvec_get_elf_backend_data (input)->s->elfclass
5145 == xvec_get_elf_backend_data (output)->s->elfclass)
5146 && _bfd_elf_relocs_compatible (input, output));
5147 }
5148
5149 static const struct bfd_elf_special_section
5150 elf_x86_64_special_sections[]=
5151 {
5152 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5153 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5154 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
5155 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5156 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5157 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5158 { NULL, 0, 0, 0, 0 }
5159 };
5160
5161 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
5162 #define TARGET_LITTLE_NAME "elf64-x86-64"
5163 #define ELF_ARCH bfd_arch_i386
5164 #define ELF_TARGET_ID X86_64_ELF_DATA
5165 #define ELF_MACHINE_CODE EM_X86_64
5166 #define ELF_MAXPAGESIZE 0x200000
5167 #define ELF_MINPAGESIZE 0x1000
5168 #define ELF_COMMONPAGESIZE 0x1000
5169
5170 #define elf_backend_can_gc_sections 1
5171 #define elf_backend_can_refcount 1
5172 #define elf_backend_want_got_plt 1
5173 #define elf_backend_plt_readonly 1
5174 #define elf_backend_want_plt_sym 0
5175 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
5176 #define elf_backend_rela_normal 1
5177 #define elf_backend_plt_alignment 4
5178
5179 #define elf_info_to_howto elf_x86_64_info_to_howto
5180
5181 #define bfd_elf64_bfd_link_hash_table_create \
5182 elf_x86_64_link_hash_table_create
5183 #define bfd_elf64_bfd_link_hash_table_free \
5184 elf_x86_64_link_hash_table_free
5185 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
5186 #define bfd_elf64_bfd_reloc_name_lookup \
5187 elf_x86_64_reloc_name_lookup
5188
5189 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
5190 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
5191 #define elf_backend_check_relocs elf_x86_64_check_relocs
5192 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
5193 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
5194 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
5195 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
5196 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
5197 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
5198 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
5199 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
5200 #ifdef CORE_HEADER
5201 #define elf_backend_write_core_note elf_x86_64_write_core_note
5202 #endif
5203 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
5204 #define elf_backend_relocate_section elf_x86_64_relocate_section
5205 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
5206 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
5207 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
5208 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
5209 #define elf_backend_object_p elf64_x86_64_elf_object_p
5210 #define bfd_elf64_mkobject elf_x86_64_mkobject
5211
5212 #define elf_backend_section_from_shdr \
5213 elf_x86_64_section_from_shdr
5214
5215 #define elf_backend_section_from_bfd_section \
5216 elf_x86_64_elf_section_from_bfd_section
5217 #define elf_backend_add_symbol_hook \
5218 elf_x86_64_add_symbol_hook
5219 #define elf_backend_symbol_processing \
5220 elf_x86_64_symbol_processing
5221 #define elf_backend_common_section_index \
5222 elf_x86_64_common_section_index
5223 #define elf_backend_common_section \
5224 elf_x86_64_common_section
5225 #define elf_backend_common_definition \
5226 elf_x86_64_common_definition
5227 #define elf_backend_merge_symbol \
5228 elf_x86_64_merge_symbol
5229 #define elf_backend_special_sections \
5230 elf_x86_64_special_sections
5231 #define elf_backend_additional_program_headers \
5232 elf_x86_64_additional_program_headers
5233 #define elf_backend_hash_symbol \
5234 elf_x86_64_hash_symbol
5235
5236 #define elf_backend_post_process_headers _bfd_elf_set_osabi
5237
5238 #include "elf64-target.h"
5239
5240 /* FreeBSD support. */
5241
5242 #undef TARGET_LITTLE_SYM
5243 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
5244 #undef TARGET_LITTLE_NAME
5245 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
5246
5247 #undef ELF_OSABI
5248 #define ELF_OSABI ELFOSABI_FREEBSD
5249
5250 #undef elf64_bed
5251 #define elf64_bed elf64_x86_64_fbsd_bed
5252
5253 #include "elf64-target.h"
5254
5255 /* Solaris 2 support. */
5256
5257 #undef TARGET_LITTLE_SYM
5258 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
5259 #undef TARGET_LITTLE_NAME
5260 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5261
5262 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5263 objects won't be recognized. */
5264 #undef ELF_OSABI
5265
5266 #undef elf64_bed
5267 #define elf64_bed elf64_x86_64_sol2_bed
5268
5269 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
5270 boundary. */
5271 #undef elf_backend_static_tls_alignment
5272 #define elf_backend_static_tls_alignment 16
5273
5274 /* The Solaris 2 ABI requires a plt symbol on all platforms.
5275
5276 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
5277 File, p.63. */
5278 #undef elf_backend_want_plt_sym
5279 #define elf_backend_want_plt_sym 1
5280
5281 #include "elf64-target.h"
5282
5283 /* Native Client support. */
5284
5285 #undef TARGET_LITTLE_SYM
5286 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_nacl_vec
5287 #undef TARGET_LITTLE_NAME
5288 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
5289 #undef elf64_bed
5290 #define elf64_bed elf64_x86_64_nacl_bed
5291
5292 #undef ELF_MAXPAGESIZE
5293 #undef ELF_MINPAGESIZE
5294 #undef ELF_COMMONPAGESIZE
5295 #define ELF_MAXPAGESIZE 0x10000
5296 #define ELF_MINPAGESIZE 0x10000
5297 #define ELF_COMMONPAGESIZE 0x10000
5298
5299 /* Restore defaults. */
5300 #undef ELF_OSABI
5301 #undef elf_backend_static_tls_alignment
5302 #undef elf_backend_want_plt_sym
5303 #define elf_backend_want_plt_sym 0
5304
5305 /* NaCl uses substantially different PLT entries for the same effects. */
5306
5307 #undef elf_backend_plt_alignment
5308 #define elf_backend_plt_alignment 5
5309 #define NACL_PLT_ENTRY_SIZE 64
5310 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
5311
5312 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
5313 {
5314 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
5315 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
5316 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5317 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5318 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5319
5320 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
5321 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopl %cs:0x0(%rax,%rax,1) */
5322
5323 /* 32 bytes of nop to pad out to the standard size. */
5324 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5325 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5326 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5327 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5328 0x66, /* excess data32 prefix */
5329 0x90 /* nop */
5330 };
5331
5332 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
5333 {
5334 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
5335 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
5336 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
5337 0x41, 0xff, 0xe3, /* jmpq *%r11 */
5338
5339 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
5340 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5341 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5342
5343 /* Lazy GOT entries point here (32-byte aligned). */
5344 0x68, /* pushq immediate */
5345 0, 0, 0, 0, /* replaced with index into relocation table. */
5346 0xe9, /* jmp relative */
5347 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
5348
5349 /* 22 bytes of nop to pad out to the standard size. */
5350 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
5351 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
5352 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
5353 };
5354
5355 /* .eh_frame covering the .plt section. */
5356
5357 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
5358 {
5359 #if (PLT_CIE_LENGTH != 20 \
5360 || PLT_FDE_LENGTH != 36 \
5361 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
5362 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
5363 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
5364 #endif
5365 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
5366 0, 0, 0, 0, /* CIE ID */
5367 1, /* CIE version */
5368 'z', 'R', 0, /* Augmentation string */
5369 1, /* Code alignment factor */
5370 0x78, /* Data alignment factor */
5371 16, /* Return address column */
5372 1, /* Augmentation size */
5373 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
5374 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
5375 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
5376 DW_CFA_nop, DW_CFA_nop,
5377
5378 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
5379 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
5380 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
5381 0, 0, 0, 0, /* .plt size goes here */
5382 0, /* Augmentation size */
5383 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
5384 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
5385 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
5386 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
5387 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
5388 13, /* Block length */
5389 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
5390 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
5391 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
5392 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
5393 DW_CFA_nop, DW_CFA_nop
5394 };
5395
5396 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
5397 {
5398 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
5399 elf_x86_64_nacl_plt_entry, /* plt_entry */
5400 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
5401 2, /* plt0_got1_offset */
5402 9, /* plt0_got2_offset */
5403 13, /* plt0_got2_insn_end */
5404 3, /* plt_got_offset */
5405 33, /* plt_reloc_offset */
5406 38, /* plt_plt_offset */
5407 7, /* plt_got_insn_size */
5408 42, /* plt_plt_insn_end */
5409 32, /* plt_lazy_offset */
5410 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
5411 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
5412 };
5413
5414 #undef elf_backend_arch_data
5415 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
5416
5417 #undef elf_backend_modify_segment_map
5418 #define elf_backend_modify_segment_map nacl_modify_segment_map
5419 #undef elf_backend_modify_program_headers
5420 #define elf_backend_modify_program_headers nacl_modify_program_headers
5421
5422 #include "elf64-target.h"
5423
5424 /* Native Client x32 support. */
5425
5426 #undef TARGET_LITTLE_SYM
5427 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_nacl_vec
5428 #undef TARGET_LITTLE_NAME
5429 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
5430 #undef elf32_bed
5431 #define elf32_bed elf32_x86_64_nacl_bed
5432
5433 #define bfd_elf32_bfd_link_hash_table_create \
5434 elf_x86_64_link_hash_table_create
5435 #define bfd_elf32_bfd_link_hash_table_free \
5436 elf_x86_64_link_hash_table_free
5437 #define bfd_elf32_bfd_reloc_type_lookup \
5438 elf_x86_64_reloc_type_lookup
5439 #define bfd_elf32_bfd_reloc_name_lookup \
5440 elf_x86_64_reloc_name_lookup
5441 #define bfd_elf32_mkobject \
5442 elf_x86_64_mkobject
5443
5444 #undef elf_backend_object_p
5445 #define elf_backend_object_p \
5446 elf32_x86_64_elf_object_p
5447
5448 #undef elf_backend_bfd_from_remote_memory
5449 #define elf_backend_bfd_from_remote_memory \
5450 _bfd_elf32_bfd_from_remote_memory
5451
5452 #undef elf_backend_size_info
5453 #define elf_backend_size_info \
5454 _bfd_elf32_size_info
5455
5456 #include "elf32-target.h"
5457
5458 /* Restore defaults. */
5459 #undef elf_backend_object_p
5460 #define elf_backend_object_p elf64_x86_64_elf_object_p
5461 #undef elf_backend_bfd_from_remote_memory
5462 #undef elf_backend_size_info
5463 #undef elf_backend_modify_segment_map
5464 #undef elf_backend_modify_program_headers
5465
5466 /* Intel L1OM support. */
5467
5468 static bfd_boolean
5469 elf64_l1om_elf_object_p (bfd *abfd)
5470 {
5471 /* Set the right machine number for an L1OM elf64 file. */
5472 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
5473 return TRUE;
5474 }
5475
5476 #undef TARGET_LITTLE_SYM
5477 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
5478 #undef TARGET_LITTLE_NAME
5479 #define TARGET_LITTLE_NAME "elf64-l1om"
5480 #undef ELF_ARCH
5481 #define ELF_ARCH bfd_arch_l1om
5482
5483 #undef ELF_MACHINE_CODE
5484 #define ELF_MACHINE_CODE EM_L1OM
5485
5486 #undef ELF_OSABI
5487
5488 #undef elf64_bed
5489 #define elf64_bed elf64_l1om_bed
5490
5491 #undef elf_backend_object_p
5492 #define elf_backend_object_p elf64_l1om_elf_object_p
5493
5494 /* Restore defaults. */
5495 #undef ELF_MAXPAGESIZE
5496 #undef ELF_MINPAGESIZE
5497 #undef ELF_COMMONPAGESIZE
5498 #define ELF_MAXPAGESIZE 0x200000
5499 #define ELF_MINPAGESIZE 0x1000
5500 #define ELF_COMMONPAGESIZE 0x1000
5501 #undef elf_backend_plt_alignment
5502 #define elf_backend_plt_alignment 4
5503 #undef elf_backend_arch_data
5504 #define elf_backend_arch_data &elf_x86_64_arch_bed
5505
5506 #include "elf64-target.h"
5507
5508 /* FreeBSD L1OM support. */
5509
5510 #undef TARGET_LITTLE_SYM
5511 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
5512 #undef TARGET_LITTLE_NAME
5513 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
5514
5515 #undef ELF_OSABI
5516 #define ELF_OSABI ELFOSABI_FREEBSD
5517
5518 #undef elf64_bed
5519 #define elf64_bed elf64_l1om_fbsd_bed
5520
5521 #include "elf64-target.h"
5522
5523 /* Intel K1OM support. */
5524
5525 static bfd_boolean
5526 elf64_k1om_elf_object_p (bfd *abfd)
5527 {
5528 /* Set the right machine number for an K1OM elf64 file. */
5529 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
5530 return TRUE;
5531 }
5532
5533 #undef TARGET_LITTLE_SYM
5534 #define TARGET_LITTLE_SYM bfd_elf64_k1om_vec
5535 #undef TARGET_LITTLE_NAME
5536 #define TARGET_LITTLE_NAME "elf64-k1om"
5537 #undef ELF_ARCH
5538 #define ELF_ARCH bfd_arch_k1om
5539
5540 #undef ELF_MACHINE_CODE
5541 #define ELF_MACHINE_CODE EM_K1OM
5542
5543 #undef ELF_OSABI
5544
5545 #undef elf64_bed
5546 #define elf64_bed elf64_k1om_bed
5547
5548 #undef elf_backend_object_p
5549 #define elf_backend_object_p elf64_k1om_elf_object_p
5550
5551 #undef elf_backend_static_tls_alignment
5552
5553 #undef elf_backend_want_plt_sym
5554 #define elf_backend_want_plt_sym 0
5555
5556 #include "elf64-target.h"
5557
5558 /* FreeBSD K1OM support. */
5559
5560 #undef TARGET_LITTLE_SYM
5561 #define TARGET_LITTLE_SYM bfd_elf64_k1om_freebsd_vec
5562 #undef TARGET_LITTLE_NAME
5563 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
5564
5565 #undef ELF_OSABI
5566 #define ELF_OSABI ELFOSABI_FREEBSD
5567
5568 #undef elf64_bed
5569 #define elf64_bed elf64_k1om_fbsd_bed
5570
5571 #include "elf64-target.h"
5572
5573 /* 32bit x86-64 support. */
5574
5575 #undef TARGET_LITTLE_SYM
5576 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
5577 #undef TARGET_LITTLE_NAME
5578 #define TARGET_LITTLE_NAME "elf32-x86-64"
5579 #undef elf32_bed
5580
5581 #undef ELF_ARCH
5582 #define ELF_ARCH bfd_arch_i386
5583
5584 #undef ELF_MACHINE_CODE
5585 #define ELF_MACHINE_CODE EM_X86_64
5586
5587 #undef ELF_OSABI
5588
5589 #undef elf_backend_object_p
5590 #define elf_backend_object_p \
5591 elf32_x86_64_elf_object_p
5592
5593 #undef elf_backend_bfd_from_remote_memory
5594 #define elf_backend_bfd_from_remote_memory \
5595 _bfd_elf32_bfd_from_remote_memory
5596
5597 #undef elf_backend_size_info
5598 #define elf_backend_size_info \
5599 _bfd_elf32_size_info
5600
5601 #include "elf32-target.h"
This page took 0.14877 seconds and 4 git commands to generate.