Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-nacl.h"
28 #include "bfd_stdint.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31 #include "dwarf2.h"
32 #include "libiberty.h"
33
34 #include "elf/x86-64.h"
35
36 #ifdef CORE_HEADER
37 #include <stdarg.h>
38 #include CORE_HEADER
39 #endif
40
41 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
42 #define MINUS_ONE (~ (bfd_vma) 0)
43
44 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
45 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
46 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
47 since they are the same. */
48
49 #define ABI_64_P(abfd) \
50 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
51
52 /* The relocation "howto" table. Order of fields:
53 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
54 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
55 static reloc_howto_type x86_64_elf_howto_table[] =
56 {
57 HOWTO(R_X86_64_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
58 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
59 FALSE),
60 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
62 FALSE),
63 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
64 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
65 TRUE),
66 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
68 FALSE),
69 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
70 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
71 TRUE),
72 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
73 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
74 FALSE),
75 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
77 MINUS_ONE, FALSE),
78 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
80 MINUS_ONE, FALSE),
81 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
83 MINUS_ONE, FALSE),
84 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
85 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
86 0xffffffff, TRUE),
87 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
88 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
89 FALSE),
90 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
91 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
92 FALSE),
93 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
94 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
95 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
97 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
99 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
101 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
102 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
103 MINUS_ONE, FALSE),
104 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
105 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
106 MINUS_ONE, FALSE),
107 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
108 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
109 MINUS_ONE, FALSE),
110 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
111 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
112 0xffffffff, TRUE),
113 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
114 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
115 0xffffffff, TRUE),
116 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
118 0xffffffff, FALSE),
119 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
121 0xffffffff, TRUE),
122 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
124 0xffffffff, FALSE),
125 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
126 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
127 TRUE),
128 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
129 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
130 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
131 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
132 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
133 FALSE, 0xffffffff, 0xffffffff, TRUE),
134 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
135 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
136 FALSE),
137 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
138 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
139 MINUS_ONE, TRUE),
140 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
141 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
142 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
143 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
144 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
145 MINUS_ONE, FALSE),
146 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
147 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
148 MINUS_ONE, FALSE),
149 HOWTO(R_X86_64_SIZE32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
150 bfd_elf_generic_reloc, "R_X86_64_SIZE32", FALSE, 0xffffffff, 0xffffffff,
151 FALSE),
152 HOWTO(R_X86_64_SIZE64, 0, 4, 64, FALSE, 0, complain_overflow_unsigned,
153 bfd_elf_generic_reloc, "R_X86_64_SIZE64", FALSE, MINUS_ONE, MINUS_ONE,
154 FALSE),
155 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
156 complain_overflow_bitfield, bfd_elf_generic_reloc,
157 "R_X86_64_GOTPC32_TLSDESC",
158 FALSE, 0xffffffff, 0xffffffff, TRUE),
159 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
160 complain_overflow_dont, bfd_elf_generic_reloc,
161 "R_X86_64_TLSDESC_CALL",
162 FALSE, 0, 0, FALSE),
163 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
164 complain_overflow_bitfield, bfd_elf_generic_reloc,
165 "R_X86_64_TLSDESC",
166 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
167 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
169 MINUS_ONE, FALSE),
170 HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
172 MINUS_ONE, FALSE),
173 HOWTO(R_X86_64_PC32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
174 bfd_elf_generic_reloc, "R_X86_64_PC32_BND", FALSE, 0xffffffff, 0xffffffff,
175 TRUE),
176 HOWTO(R_X86_64_PLT32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
177 bfd_elf_generic_reloc, "R_X86_64_PLT32_BND", FALSE, 0xffffffff, 0xffffffff,
178 TRUE),
179
180 /* We have a gap in the reloc numbers here.
181 R_X86_64_standard counts the number up to this point, and
182 R_X86_64_vt_offset is the value to subtract from a reloc type of
183 R_X86_64_GNU_VT* to form an index into this table. */
184 #define R_X86_64_standard (R_X86_64_PLT32_BND + 1)
185 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
186
187 /* GNU extension to record C++ vtable hierarchy. */
188 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
189 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
190
191 /* GNU extension to record C++ vtable member usage. */
192 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
193 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
194 FALSE),
195
196 /* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
197 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
198 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
199 FALSE)
200 };
201
202 #define IS_X86_64_PCREL_TYPE(TYPE) \
203 ( ((TYPE) == R_X86_64_PC8) \
204 || ((TYPE) == R_X86_64_PC16) \
205 || ((TYPE) == R_X86_64_PC32) \
206 || ((TYPE) == R_X86_64_PC32_BND) \
207 || ((TYPE) == R_X86_64_PC64))
208
209 /* Map BFD relocs to the x86_64 elf relocs. */
210 struct elf_reloc_map
211 {
212 bfd_reloc_code_real_type bfd_reloc_val;
213 unsigned char elf_reloc_val;
214 };
215
216 static const struct elf_reloc_map x86_64_reloc_map[] =
217 {
218 { BFD_RELOC_NONE, R_X86_64_NONE, },
219 { BFD_RELOC_64, R_X86_64_64, },
220 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
221 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
222 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
223 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
224 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
225 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
226 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
227 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
228 { BFD_RELOC_32, R_X86_64_32, },
229 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
230 { BFD_RELOC_16, R_X86_64_16, },
231 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
232 { BFD_RELOC_8, R_X86_64_8, },
233 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
234 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
235 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
236 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
237 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
238 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
239 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
240 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
241 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
242 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
243 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
244 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
245 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
246 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
247 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
248 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
249 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
250 { BFD_RELOC_SIZE32, R_X86_64_SIZE32, },
251 { BFD_RELOC_SIZE64, R_X86_64_SIZE64, },
252 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
253 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
254 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
255 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
256 { BFD_RELOC_X86_64_PC32_BND, R_X86_64_PC32_BND,},
257 { BFD_RELOC_X86_64_PLT32_BND, R_X86_64_PLT32_BND,},
258 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
259 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
260 };
261
262 static reloc_howto_type *
263 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
264 {
265 unsigned i;
266
267 if (r_type == (unsigned int) R_X86_64_32)
268 {
269 if (ABI_64_P (abfd))
270 i = r_type;
271 else
272 i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
273 }
274 else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
275 || r_type >= (unsigned int) R_X86_64_max)
276 {
277 if (r_type >= (unsigned int) R_X86_64_standard)
278 {
279 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
280 abfd, (int) r_type);
281 r_type = R_X86_64_NONE;
282 }
283 i = r_type;
284 }
285 else
286 i = r_type - (unsigned int) R_X86_64_vt_offset;
287 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
288 return &x86_64_elf_howto_table[i];
289 }
290
291 /* Given a BFD reloc type, return a HOWTO structure. */
292 static reloc_howto_type *
293 elf_x86_64_reloc_type_lookup (bfd *abfd,
294 bfd_reloc_code_real_type code)
295 {
296 unsigned int i;
297
298 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
299 i++)
300 {
301 if (x86_64_reloc_map[i].bfd_reloc_val == code)
302 return elf_x86_64_rtype_to_howto (abfd,
303 x86_64_reloc_map[i].elf_reloc_val);
304 }
305 return NULL;
306 }
307
308 static reloc_howto_type *
309 elf_x86_64_reloc_name_lookup (bfd *abfd,
310 const char *r_name)
311 {
312 unsigned int i;
313
314 if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
315 {
316 /* Get x32 R_X86_64_32. */
317 reloc_howto_type *reloc
318 = &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
319 BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
320 return reloc;
321 }
322
323 for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
324 if (x86_64_elf_howto_table[i].name != NULL
325 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
326 return &x86_64_elf_howto_table[i];
327
328 return NULL;
329 }
330
331 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
332
333 static void
334 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
335 Elf_Internal_Rela *dst)
336 {
337 unsigned r_type;
338
339 r_type = ELF32_R_TYPE (dst->r_info);
340 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
341 BFD_ASSERT (r_type == cache_ptr->howto->type);
342 }
343 \f
344 /* Support for core dump NOTE sections. */
345 static bfd_boolean
346 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
347 {
348 int offset;
349 size_t size;
350
351 switch (note->descsz)
352 {
353 default:
354 return FALSE;
355
356 case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
357 /* pr_cursig */
358 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
359
360 /* pr_pid */
361 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
362
363 /* pr_reg */
364 offset = 72;
365 size = 216;
366
367 break;
368
369 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
370 /* pr_cursig */
371 elf_tdata (abfd)->core->signal
372 = bfd_get_16 (abfd, note->descdata + 12);
373
374 /* pr_pid */
375 elf_tdata (abfd)->core->lwpid
376 = bfd_get_32 (abfd, note->descdata + 32);
377
378 /* pr_reg */
379 offset = 112;
380 size = 216;
381
382 break;
383 }
384
385 /* Make a ".reg/999" section. */
386 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
387 size, note->descpos + offset);
388 }
389
390 static bfd_boolean
391 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
392 {
393 switch (note->descsz)
394 {
395 default:
396 return FALSE;
397
398 case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
399 elf_tdata (abfd)->core->pid
400 = bfd_get_32 (abfd, note->descdata + 12);
401 elf_tdata (abfd)->core->program
402 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
403 elf_tdata (abfd)->core->command
404 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
405 break;
406
407 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
408 elf_tdata (abfd)->core->pid
409 = bfd_get_32 (abfd, note->descdata + 24);
410 elf_tdata (abfd)->core->program
411 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
412 elf_tdata (abfd)->core->command
413 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
414 }
415
416 /* Note that for some reason, a spurious space is tacked
417 onto the end of the args in some (at least one anyway)
418 implementations, so strip it off if it exists. */
419
420 {
421 char *command = elf_tdata (abfd)->core->command;
422 int n = strlen (command);
423
424 if (0 < n && command[n - 1] == ' ')
425 command[n - 1] = '\0';
426 }
427
428 return TRUE;
429 }
430
431 #ifdef CORE_HEADER
432 static char *
433 elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
434 int note_type, ...)
435 {
436 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
437 va_list ap;
438 const char *fname, *psargs;
439 long pid;
440 int cursig;
441 const void *gregs;
442
443 switch (note_type)
444 {
445 default:
446 return NULL;
447
448 case NT_PRPSINFO:
449 va_start (ap, note_type);
450 fname = va_arg (ap, const char *);
451 psargs = va_arg (ap, const char *);
452 va_end (ap);
453
454 if (bed->s->elfclass == ELFCLASS32)
455 {
456 prpsinfo32_t data;
457 memset (&data, 0, sizeof (data));
458 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
459 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
460 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
461 &data, sizeof (data));
462 }
463 else
464 {
465 prpsinfo64_t data;
466 memset (&data, 0, sizeof (data));
467 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
468 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
469 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
470 &data, sizeof (data));
471 }
472 /* NOTREACHED */
473
474 case NT_PRSTATUS:
475 va_start (ap, note_type);
476 pid = va_arg (ap, long);
477 cursig = va_arg (ap, int);
478 gregs = va_arg (ap, const void *);
479 va_end (ap);
480
481 if (bed->s->elfclass == ELFCLASS32)
482 {
483 if (bed->elf_machine_code == EM_X86_64)
484 {
485 prstatusx32_t prstat;
486 memset (&prstat, 0, sizeof (prstat));
487 prstat.pr_pid = pid;
488 prstat.pr_cursig = cursig;
489 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
490 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
491 &prstat, sizeof (prstat));
492 }
493 else
494 {
495 prstatus32_t prstat;
496 memset (&prstat, 0, sizeof (prstat));
497 prstat.pr_pid = pid;
498 prstat.pr_cursig = cursig;
499 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
500 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
501 &prstat, sizeof (prstat));
502 }
503 }
504 else
505 {
506 prstatus64_t prstat;
507 memset (&prstat, 0, sizeof (prstat));
508 prstat.pr_pid = pid;
509 prstat.pr_cursig = cursig;
510 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
511 return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
512 &prstat, sizeof (prstat));
513 }
514 }
515 /* NOTREACHED */
516 }
517 #endif
518 \f
519 /* Functions for the x86-64 ELF linker. */
520
521 /* The name of the dynamic interpreter. This is put in the .interp
522 section. */
523
524 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
525 #define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
526
527 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
528 copying dynamic variables from a shared lib into an app's dynbss
529 section, and instead use a dynamic relocation to point into the
530 shared lib. */
531 #define ELIMINATE_COPY_RELOCS 1
532
533 /* The size in bytes of an entry in the global offset table. */
534
535 #define GOT_ENTRY_SIZE 8
536
537 /* The size in bytes of an entry in the procedure linkage table. */
538
539 #define PLT_ENTRY_SIZE 16
540
541 /* The first entry in a procedure linkage table looks like this. See the
542 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
543
544 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
545 {
546 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
547 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
548 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
549 };
550
551 /* Subsequent entries in a procedure linkage table look like this. */
552
553 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
554 {
555 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
556 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
557 0x68, /* pushq immediate */
558 0, 0, 0, 0, /* replaced with index into relocation table. */
559 0xe9, /* jmp relative */
560 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
561 };
562
563 /* The first entry in a procedure linkage table with BND relocations
564 like this. */
565
566 static const bfd_byte elf_x86_64_bnd_plt0_entry[PLT_ENTRY_SIZE] =
567 {
568 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
569 0xf2, 0xff, 0x25, 16, 0, 0, 0, /* bnd jmpq *GOT+16(%rip) */
570 0x0f, 0x1f, 0 /* nopl (%rax) */
571 };
572
573 /* Subsequent entries for legacy branches in a procedure linkage table
574 with BND relocations look like this. */
575
576 static const bfd_byte elf_x86_64_legacy_plt_entry[PLT_ENTRY_SIZE] =
577 {
578 0x68, 0, 0, 0, 0, /* pushq immediate */
579 0xe9, 0, 0, 0, 0, /* jmpq relative */
580 0x66, 0x0f, 0x1f, 0x44, 0, 0 /* nopw (%rax,%rax,1) */
581 };
582
583 /* Subsequent entries for branches with BND prefx in a procedure linkage
584 table with BND relocations look like this. */
585
586 static const bfd_byte elf_x86_64_bnd_plt_entry[PLT_ENTRY_SIZE] =
587 {
588 0x68, 0, 0, 0, 0, /* pushq immediate */
589 0xf2, 0xe9, 0, 0, 0, 0, /* bnd jmpq relative */
590 0x0f, 0x1f, 0x44, 0, 0 /* nopl 0(%rax,%rax,1) */
591 };
592
593 /* Entries for legacy branches in the second procedure linkage table
594 look like this. */
595
596 static const bfd_byte elf_x86_64_legacy_plt2_entry[8] =
597 {
598 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
599 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
600 0x66, 0x90 /* xchg %ax,%ax */
601 };
602
603 /* Entries for branches with BND prefix in the second procedure linkage
604 table look like this. */
605
606 static const bfd_byte elf_x86_64_bnd_plt2_entry[8] =
607 {
608 0xf2, 0xff, 0x25, /* bnd jmpq *name@GOTPC(%rip) */
609 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
610 0x90 /* nop */
611 };
612
613 /* .eh_frame covering the .plt section. */
614
615 static const bfd_byte elf_x86_64_eh_frame_plt[] =
616 {
617 #define PLT_CIE_LENGTH 20
618 #define PLT_FDE_LENGTH 36
619 #define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
620 #define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
621 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
622 0, 0, 0, 0, /* CIE ID */
623 1, /* CIE version */
624 'z', 'R', 0, /* Augmentation string */
625 1, /* Code alignment factor */
626 0x78, /* Data alignment factor */
627 16, /* Return address column */
628 1, /* Augmentation size */
629 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
630 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
631 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
632 DW_CFA_nop, DW_CFA_nop,
633
634 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
635 PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
636 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
637 0, 0, 0, 0, /* .plt size goes here */
638 0, /* Augmentation size */
639 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
640 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
641 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
642 DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
643 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
644 11, /* Block length */
645 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
646 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
647 DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
648 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
649 DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
650 };
651
652 /* Architecture-specific backend data for x86-64. */
653
654 struct elf_x86_64_backend_data
655 {
656 /* Templates for the initial PLT entry and for subsequent entries. */
657 const bfd_byte *plt0_entry;
658 const bfd_byte *plt_entry;
659 unsigned int plt_entry_size; /* Size of each PLT entry. */
660
661 /* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
662 unsigned int plt0_got1_offset;
663 unsigned int plt0_got2_offset;
664
665 /* Offset of the end of the PC-relative instruction containing
666 plt0_got2_offset. */
667 unsigned int plt0_got2_insn_end;
668
669 /* Offsets into plt_entry that are to be replaced with... */
670 unsigned int plt_got_offset; /* ... address of this symbol in .got. */
671 unsigned int plt_reloc_offset; /* ... offset into relocation table. */
672 unsigned int plt_plt_offset; /* ... offset to start of .plt. */
673
674 /* Length of the PC-relative instruction containing plt_got_offset. */
675 unsigned int plt_got_insn_size;
676
677 /* Offset of the end of the PC-relative jump to plt0_entry. */
678 unsigned int plt_plt_insn_end;
679
680 /* Offset into plt_entry where the initial value of the GOT entry points. */
681 unsigned int plt_lazy_offset;
682
683 /* .eh_frame covering the .plt section. */
684 const bfd_byte *eh_frame_plt;
685 unsigned int eh_frame_plt_size;
686 };
687
688 #define get_elf_x86_64_arch_data(bed) \
689 ((const struct elf_x86_64_backend_data *) (bed)->arch_data)
690
691 #define get_elf_x86_64_backend_data(abfd) \
692 get_elf_x86_64_arch_data (get_elf_backend_data (abfd))
693
694 #define GET_PLT_ENTRY_SIZE(abfd) \
695 get_elf_x86_64_backend_data (abfd)->plt_entry_size
696
697 /* These are the standard parameters. */
698 static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
699 {
700 elf_x86_64_plt0_entry, /* plt0_entry */
701 elf_x86_64_plt_entry, /* plt_entry */
702 sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
703 2, /* plt0_got1_offset */
704 8, /* plt0_got2_offset */
705 12, /* plt0_got2_insn_end */
706 2, /* plt_got_offset */
707 7, /* plt_reloc_offset */
708 12, /* plt_plt_offset */
709 6, /* plt_got_insn_size */
710 PLT_ENTRY_SIZE, /* plt_plt_insn_end */
711 6, /* plt_lazy_offset */
712 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
713 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
714 };
715
716 static const struct elf_x86_64_backend_data elf_x86_64_bnd_arch_bed =
717 {
718 elf_x86_64_bnd_plt0_entry, /* plt0_entry */
719 elf_x86_64_bnd_plt_entry, /* plt_entry */
720 sizeof (elf_x86_64_bnd_plt_entry), /* plt_entry_size */
721 2, /* plt0_got1_offset */
722 1+8, /* plt0_got2_offset */
723 1+12, /* plt0_got2_insn_end */
724 1+2, /* plt_got_offset */
725 1, /* plt_reloc_offset */
726 7, /* plt_plt_offset */
727 1+6, /* plt_got_insn_size */
728 11, /* plt_plt_insn_end */
729 0, /* plt_lazy_offset */
730 elf_x86_64_eh_frame_plt, /* eh_frame_plt */
731 sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
732 };
733
734 #define elf_backend_arch_data &elf_x86_64_arch_bed
735
736 /* x86-64 ELF linker hash entry. */
737
738 struct elf_x86_64_link_hash_entry
739 {
740 struct elf_link_hash_entry elf;
741
742 /* Track dynamic relocs copied for this symbol. */
743 struct elf_dyn_relocs *dyn_relocs;
744
745 #define GOT_UNKNOWN 0
746 #define GOT_NORMAL 1
747 #define GOT_TLS_GD 2
748 #define GOT_TLS_IE 3
749 #define GOT_TLS_GDESC 4
750 #define GOT_TLS_GD_BOTH_P(type) \
751 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
752 #define GOT_TLS_GD_P(type) \
753 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
754 #define GOT_TLS_GDESC_P(type) \
755 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
756 #define GOT_TLS_GD_ANY_P(type) \
757 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
758 unsigned char tls_type;
759
760 /* TRUE if a weak symbol with a real definition needs a copy reloc.
761 When there is a weak symbol with a real definition, the processor
762 independent code will have arranged for us to see the real
763 definition first. We need to copy the needs_copy bit from the
764 real definition and check it when allowing copy reloc in PIE. */
765 unsigned int needs_copy : 1;
766
767 /* TRUE if symbol has at least one BND relocation. */
768 unsigned int has_bnd_reloc : 1;
769
770 /* Information about the GOT PLT entry. Filled when there are both
771 GOT and PLT relocations against the same function. */
772 union gotplt_union plt_got;
773
774 /* Information about the second PLT entry. Filled when has_bnd_reloc is
775 set. */
776 union gotplt_union plt_bnd;
777
778 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
779 starting at the end of the jump table. */
780 bfd_vma tlsdesc_got;
781 };
782
783 #define elf_x86_64_hash_entry(ent) \
784 ((struct elf_x86_64_link_hash_entry *)(ent))
785
786 struct elf_x86_64_obj_tdata
787 {
788 struct elf_obj_tdata root;
789
790 /* tls_type for each local got entry. */
791 char *local_got_tls_type;
792
793 /* GOTPLT entries for TLS descriptors. */
794 bfd_vma *local_tlsdesc_gotent;
795 };
796
797 #define elf_x86_64_tdata(abfd) \
798 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
799
800 #define elf_x86_64_local_got_tls_type(abfd) \
801 (elf_x86_64_tdata (abfd)->local_got_tls_type)
802
803 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
804 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
805
806 #define is_x86_64_elf(bfd) \
807 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
808 && elf_tdata (bfd) != NULL \
809 && elf_object_id (bfd) == X86_64_ELF_DATA)
810
811 static bfd_boolean
812 elf_x86_64_mkobject (bfd *abfd)
813 {
814 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
815 X86_64_ELF_DATA);
816 }
817
818 /* x86-64 ELF linker hash table. */
819
820 struct elf_x86_64_link_hash_table
821 {
822 struct elf_link_hash_table elf;
823
824 /* Short-cuts to get to dynamic linker sections. */
825 asection *sdynbss;
826 asection *srelbss;
827 asection *plt_eh_frame;
828 asection *plt_bnd;
829 asection *plt_got;
830
831 union
832 {
833 bfd_signed_vma refcount;
834 bfd_vma offset;
835 } tls_ld_got;
836
837 /* The amount of space used by the jump slots in the GOT. */
838 bfd_vma sgotplt_jump_table_size;
839
840 /* Small local sym cache. */
841 struct sym_cache sym_cache;
842
843 bfd_vma (*r_info) (bfd_vma, bfd_vma);
844 bfd_vma (*r_sym) (bfd_vma);
845 unsigned int pointer_r_type;
846 const char *dynamic_interpreter;
847 int dynamic_interpreter_size;
848
849 /* _TLS_MODULE_BASE_ symbol. */
850 struct bfd_link_hash_entry *tls_module_base;
851
852 /* Used by local STT_GNU_IFUNC symbols. */
853 htab_t loc_hash_table;
854 void * loc_hash_memory;
855
856 /* The offset into splt of the PLT entry for the TLS descriptor
857 resolver. Special values are 0, if not necessary (or not found
858 to be necessary yet), and -1 if needed but not determined
859 yet. */
860 bfd_vma tlsdesc_plt;
861 /* The offset into sgot of the GOT entry used by the PLT entry
862 above. */
863 bfd_vma tlsdesc_got;
864
865 /* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
866 bfd_vma next_jump_slot_index;
867 /* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
868 bfd_vma next_irelative_index;
869 };
870
871 /* Get the x86-64 ELF linker hash table from a link_info structure. */
872
873 #define elf_x86_64_hash_table(p) \
874 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
875 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
876
877 #define elf_x86_64_compute_jump_table_size(htab) \
878 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
879
880 /* Create an entry in an x86-64 ELF linker hash table. */
881
882 static struct bfd_hash_entry *
883 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
884 struct bfd_hash_table *table,
885 const char *string)
886 {
887 /* Allocate the structure if it has not already been allocated by a
888 subclass. */
889 if (entry == NULL)
890 {
891 entry = (struct bfd_hash_entry *)
892 bfd_hash_allocate (table,
893 sizeof (struct elf_x86_64_link_hash_entry));
894 if (entry == NULL)
895 return entry;
896 }
897
898 /* Call the allocation method of the superclass. */
899 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
900 if (entry != NULL)
901 {
902 struct elf_x86_64_link_hash_entry *eh;
903
904 eh = (struct elf_x86_64_link_hash_entry *) entry;
905 eh->dyn_relocs = NULL;
906 eh->tls_type = GOT_UNKNOWN;
907 eh->needs_copy = 0;
908 eh->has_bnd_reloc = 0;
909 eh->plt_bnd.offset = (bfd_vma) -1;
910 eh->plt_got.offset = (bfd_vma) -1;
911 eh->tlsdesc_got = (bfd_vma) -1;
912 }
913
914 return entry;
915 }
916
917 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
918 for local symbol so that we can handle local STT_GNU_IFUNC symbols
919 as global symbol. We reuse indx and dynstr_index for local symbol
920 hash since they aren't used by global symbols in this backend. */
921
922 static hashval_t
923 elf_x86_64_local_htab_hash (const void *ptr)
924 {
925 struct elf_link_hash_entry *h
926 = (struct elf_link_hash_entry *) ptr;
927 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
928 }
929
930 /* Compare local hash entries. */
931
932 static int
933 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
934 {
935 struct elf_link_hash_entry *h1
936 = (struct elf_link_hash_entry *) ptr1;
937 struct elf_link_hash_entry *h2
938 = (struct elf_link_hash_entry *) ptr2;
939
940 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
941 }
942
943 /* Find and/or create a hash entry for local symbol. */
944
945 static struct elf_link_hash_entry *
946 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
947 bfd *abfd, const Elf_Internal_Rela *rel,
948 bfd_boolean create)
949 {
950 struct elf_x86_64_link_hash_entry e, *ret;
951 asection *sec = abfd->sections;
952 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
953 htab->r_sym (rel->r_info));
954 void **slot;
955
956 e.elf.indx = sec->id;
957 e.elf.dynstr_index = htab->r_sym (rel->r_info);
958 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
959 create ? INSERT : NO_INSERT);
960
961 if (!slot)
962 return NULL;
963
964 if (*slot)
965 {
966 ret = (struct elf_x86_64_link_hash_entry *) *slot;
967 return &ret->elf;
968 }
969
970 ret = (struct elf_x86_64_link_hash_entry *)
971 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
972 sizeof (struct elf_x86_64_link_hash_entry));
973 if (ret)
974 {
975 memset (ret, 0, sizeof (*ret));
976 ret->elf.indx = sec->id;
977 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
978 ret->elf.dynindx = -1;
979 ret->plt_got.offset = (bfd_vma) -1;
980 *slot = ret;
981 }
982 return &ret->elf;
983 }
984
985 /* Destroy an X86-64 ELF linker hash table. */
986
987 static void
988 elf_x86_64_link_hash_table_free (bfd *obfd)
989 {
990 struct elf_x86_64_link_hash_table *htab
991 = (struct elf_x86_64_link_hash_table *) obfd->link.hash;
992
993 if (htab->loc_hash_table)
994 htab_delete (htab->loc_hash_table);
995 if (htab->loc_hash_memory)
996 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
997 _bfd_elf_link_hash_table_free (obfd);
998 }
999
1000 /* Create an X86-64 ELF linker hash table. */
1001
1002 static struct bfd_link_hash_table *
1003 elf_x86_64_link_hash_table_create (bfd *abfd)
1004 {
1005 struct elf_x86_64_link_hash_table *ret;
1006 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
1007
1008 ret = (struct elf_x86_64_link_hash_table *) bfd_zmalloc (amt);
1009 if (ret == NULL)
1010 return NULL;
1011
1012 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
1013 elf_x86_64_link_hash_newfunc,
1014 sizeof (struct elf_x86_64_link_hash_entry),
1015 X86_64_ELF_DATA))
1016 {
1017 free (ret);
1018 return NULL;
1019 }
1020
1021 if (ABI_64_P (abfd))
1022 {
1023 ret->r_info = elf64_r_info;
1024 ret->r_sym = elf64_r_sym;
1025 ret->pointer_r_type = R_X86_64_64;
1026 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
1027 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
1028 }
1029 else
1030 {
1031 ret->r_info = elf32_r_info;
1032 ret->r_sym = elf32_r_sym;
1033 ret->pointer_r_type = R_X86_64_32;
1034 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
1035 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
1036 }
1037
1038 ret->loc_hash_table = htab_try_create (1024,
1039 elf_x86_64_local_htab_hash,
1040 elf_x86_64_local_htab_eq,
1041 NULL);
1042 ret->loc_hash_memory = objalloc_create ();
1043 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1044 {
1045 elf_x86_64_link_hash_table_free (abfd);
1046 return NULL;
1047 }
1048 ret->elf.root.hash_table_free = elf_x86_64_link_hash_table_free;
1049
1050 return &ret->elf.root;
1051 }
1052
1053 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
1054 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
1055 hash table. */
1056
1057 static bfd_boolean
1058 elf_x86_64_create_dynamic_sections (bfd *dynobj,
1059 struct bfd_link_info *info)
1060 {
1061 struct elf_x86_64_link_hash_table *htab;
1062
1063 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
1064 return FALSE;
1065
1066 htab = elf_x86_64_hash_table (info);
1067 if (htab == NULL)
1068 return FALSE;
1069
1070 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
1071 if (!htab->sdynbss)
1072 abort ();
1073
1074 if (info->executable)
1075 {
1076 /* Always allow copy relocs for building executables. */
1077 asection *s = bfd_get_linker_section (dynobj, ".rela.bss");
1078 if (s == NULL)
1079 {
1080 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
1081 s = bfd_make_section_anyway_with_flags (dynobj,
1082 ".rela.bss",
1083 (bed->dynamic_sec_flags
1084 | SEC_READONLY));
1085 if (s == NULL
1086 || ! bfd_set_section_alignment (dynobj, s,
1087 bed->s->log_file_align))
1088 return FALSE;
1089 }
1090 htab->srelbss = s;
1091 }
1092
1093 if (!info->no_ld_generated_unwind_info
1094 && htab->plt_eh_frame == NULL
1095 && htab->elf.splt != NULL)
1096 {
1097 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
1098 | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1099 | SEC_LINKER_CREATED);
1100 htab->plt_eh_frame
1101 = bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
1102 if (htab->plt_eh_frame == NULL
1103 || !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
1104 return FALSE;
1105 }
1106 return TRUE;
1107 }
1108
1109 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1110
1111 static void
1112 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
1113 struct elf_link_hash_entry *dir,
1114 struct elf_link_hash_entry *ind)
1115 {
1116 struct elf_x86_64_link_hash_entry *edir, *eind;
1117
1118 edir = (struct elf_x86_64_link_hash_entry *) dir;
1119 eind = (struct elf_x86_64_link_hash_entry *) ind;
1120
1121 if (!edir->has_bnd_reloc)
1122 edir->has_bnd_reloc = eind->has_bnd_reloc;
1123
1124 if (eind->dyn_relocs != NULL)
1125 {
1126 if (edir->dyn_relocs != NULL)
1127 {
1128 struct elf_dyn_relocs **pp;
1129 struct elf_dyn_relocs *p;
1130
1131 /* Add reloc counts against the indirect sym to the direct sym
1132 list. Merge any entries against the same section. */
1133 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1134 {
1135 struct elf_dyn_relocs *q;
1136
1137 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1138 if (q->sec == p->sec)
1139 {
1140 q->pc_count += p->pc_count;
1141 q->count += p->count;
1142 *pp = p->next;
1143 break;
1144 }
1145 if (q == NULL)
1146 pp = &p->next;
1147 }
1148 *pp = edir->dyn_relocs;
1149 }
1150
1151 edir->dyn_relocs = eind->dyn_relocs;
1152 eind->dyn_relocs = NULL;
1153 }
1154
1155 if (ind->root.type == bfd_link_hash_indirect
1156 && dir->got.refcount <= 0)
1157 {
1158 edir->tls_type = eind->tls_type;
1159 eind->tls_type = GOT_UNKNOWN;
1160 }
1161
1162 if (ELIMINATE_COPY_RELOCS
1163 && ind->root.type != bfd_link_hash_indirect
1164 && dir->dynamic_adjusted)
1165 {
1166 /* If called to transfer flags for a weakdef during processing
1167 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1168 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1169 dir->ref_dynamic |= ind->ref_dynamic;
1170 dir->ref_regular |= ind->ref_regular;
1171 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1172 dir->needs_plt |= ind->needs_plt;
1173 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1174 }
1175 else
1176 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
1177 }
1178
1179 static bfd_boolean
1180 elf64_x86_64_elf_object_p (bfd *abfd)
1181 {
1182 /* Set the right machine number for an x86-64 elf64 file. */
1183 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
1184 return TRUE;
1185 }
1186
1187 static bfd_boolean
1188 elf32_x86_64_elf_object_p (bfd *abfd)
1189 {
1190 /* Set the right machine number for an x86-64 elf32 file. */
1191 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
1192 return TRUE;
1193 }
1194
1195 /* Return TRUE if the TLS access code sequence support transition
1196 from R_TYPE. */
1197
1198 static bfd_boolean
1199 elf_x86_64_check_tls_transition (bfd *abfd,
1200 struct bfd_link_info *info,
1201 asection *sec,
1202 bfd_byte *contents,
1203 Elf_Internal_Shdr *symtab_hdr,
1204 struct elf_link_hash_entry **sym_hashes,
1205 unsigned int r_type,
1206 const Elf_Internal_Rela *rel,
1207 const Elf_Internal_Rela *relend)
1208 {
1209 unsigned int val;
1210 unsigned long r_symndx;
1211 bfd_boolean largepic = FALSE;
1212 struct elf_link_hash_entry *h;
1213 bfd_vma offset;
1214 struct elf_x86_64_link_hash_table *htab;
1215
1216 /* Get the section contents. */
1217 if (contents == NULL)
1218 {
1219 if (elf_section_data (sec)->this_hdr.contents != NULL)
1220 contents = elf_section_data (sec)->this_hdr.contents;
1221 else
1222 {
1223 /* FIXME: How to better handle error condition? */
1224 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1225 return FALSE;
1226
1227 /* Cache the section contents for elf_link_input_bfd. */
1228 elf_section_data (sec)->this_hdr.contents = contents;
1229 }
1230 }
1231
1232 htab = elf_x86_64_hash_table (info);
1233 offset = rel->r_offset;
1234 switch (r_type)
1235 {
1236 case R_X86_64_TLSGD:
1237 case R_X86_64_TLSLD:
1238 if ((rel + 1) >= relend)
1239 return FALSE;
1240
1241 if (r_type == R_X86_64_TLSGD)
1242 {
1243 /* Check transition from GD access model. For 64bit, only
1244 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
1245 .word 0x6666; rex64; call __tls_get_addr
1246 can transit to different access model. For 32bit, only
1247 leaq foo@tlsgd(%rip), %rdi
1248 .word 0x6666; rex64; call __tls_get_addr
1249 can transit to different access model. For largepic
1250 we also support:
1251 leaq foo@tlsgd(%rip), %rdi
1252 movabsq $__tls_get_addr@pltoff, %rax
1253 addq $rbx, %rax
1254 call *%rax. */
1255
1256 static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
1257 static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
1258
1259 if ((offset + 12) > sec->size)
1260 return FALSE;
1261
1262 if (memcmp (contents + offset + 4, call, 4) != 0)
1263 {
1264 if (!ABI_64_P (abfd)
1265 || (offset + 19) > sec->size
1266 || offset < 3
1267 || memcmp (contents + offset - 3, leaq + 1, 3) != 0
1268 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1269 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1270 != 0)
1271 return FALSE;
1272 largepic = TRUE;
1273 }
1274 else if (ABI_64_P (abfd))
1275 {
1276 if (offset < 4
1277 || memcmp (contents + offset - 4, leaq, 4) != 0)
1278 return FALSE;
1279 }
1280 else
1281 {
1282 if (offset < 3
1283 || memcmp (contents + offset - 3, leaq + 1, 3) != 0)
1284 return FALSE;
1285 }
1286 }
1287 else
1288 {
1289 /* Check transition from LD access model. Only
1290 leaq foo@tlsld(%rip), %rdi;
1291 call __tls_get_addr
1292 can transit to different access model. For largepic
1293 we also support:
1294 leaq foo@tlsld(%rip), %rdi
1295 movabsq $__tls_get_addr@pltoff, %rax
1296 addq $rbx, %rax
1297 call *%rax. */
1298
1299 static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
1300
1301 if (offset < 3 || (offset + 9) > sec->size)
1302 return FALSE;
1303
1304 if (memcmp (contents + offset - 3, lea, 3) != 0)
1305 return FALSE;
1306
1307 if (0xe8 != *(contents + offset + 4))
1308 {
1309 if (!ABI_64_P (abfd)
1310 || (offset + 19) > sec->size
1311 || memcmp (contents + offset + 4, "\x48\xb8", 2) != 0
1312 || memcmp (contents + offset + 14, "\x48\x01\xd8\xff\xd0", 5)
1313 != 0)
1314 return FALSE;
1315 largepic = TRUE;
1316 }
1317 }
1318
1319 r_symndx = htab->r_sym (rel[1].r_info);
1320 if (r_symndx < symtab_hdr->sh_info)
1321 return FALSE;
1322
1323 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1324 /* Use strncmp to check __tls_get_addr since __tls_get_addr
1325 may be versioned. */
1326 return (h != NULL
1327 && h->root.root.string != NULL
1328 && (largepic
1329 ? ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLTOFF64
1330 : (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
1331 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32))
1332 && (strncmp (h->root.root.string,
1333 "__tls_get_addr", 14) == 0));
1334
1335 case R_X86_64_GOTTPOFF:
1336 /* Check transition from IE access model:
1337 mov foo@gottpoff(%rip), %reg
1338 add foo@gottpoff(%rip), %reg
1339 */
1340
1341 /* Check REX prefix first. */
1342 if (offset >= 3 && (offset + 4) <= sec->size)
1343 {
1344 val = bfd_get_8 (abfd, contents + offset - 3);
1345 if (val != 0x48 && val != 0x4c)
1346 {
1347 /* X32 may have 0x44 REX prefix or no REX prefix. */
1348 if (ABI_64_P (abfd))
1349 return FALSE;
1350 }
1351 }
1352 else
1353 {
1354 /* X32 may not have any REX prefix. */
1355 if (ABI_64_P (abfd))
1356 return FALSE;
1357 if (offset < 2 || (offset + 3) > sec->size)
1358 return FALSE;
1359 }
1360
1361 val = bfd_get_8 (abfd, contents + offset - 2);
1362 if (val != 0x8b && val != 0x03)
1363 return FALSE;
1364
1365 val = bfd_get_8 (abfd, contents + offset - 1);
1366 return (val & 0xc7) == 5;
1367
1368 case R_X86_64_GOTPC32_TLSDESC:
1369 /* Check transition from GDesc access model:
1370 leaq x@tlsdesc(%rip), %rax
1371
1372 Make sure it's a leaq adding rip to a 32-bit offset
1373 into any register, although it's probably almost always
1374 going to be rax. */
1375
1376 if (offset < 3 || (offset + 4) > sec->size)
1377 return FALSE;
1378
1379 val = bfd_get_8 (abfd, contents + offset - 3);
1380 if ((val & 0xfb) != 0x48)
1381 return FALSE;
1382
1383 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
1384 return FALSE;
1385
1386 val = bfd_get_8 (abfd, contents + offset - 1);
1387 return (val & 0xc7) == 0x05;
1388
1389 case R_X86_64_TLSDESC_CALL:
1390 /* Check transition from GDesc access model:
1391 call *x@tlsdesc(%rax)
1392 */
1393 if (offset + 2 <= sec->size)
1394 {
1395 /* Make sure that it's a call *x@tlsdesc(%rax). */
1396 static const unsigned char call[] = { 0xff, 0x10 };
1397 return memcmp (contents + offset, call, 2) == 0;
1398 }
1399
1400 return FALSE;
1401
1402 default:
1403 abort ();
1404 }
1405 }
1406
1407 /* Return TRUE if the TLS access transition is OK or no transition
1408 will be performed. Update R_TYPE if there is a transition. */
1409
1410 static bfd_boolean
1411 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1412 asection *sec, bfd_byte *contents,
1413 Elf_Internal_Shdr *symtab_hdr,
1414 struct elf_link_hash_entry **sym_hashes,
1415 unsigned int *r_type, int tls_type,
1416 const Elf_Internal_Rela *rel,
1417 const Elf_Internal_Rela *relend,
1418 struct elf_link_hash_entry *h,
1419 unsigned long r_symndx)
1420 {
1421 unsigned int from_type = *r_type;
1422 unsigned int to_type = from_type;
1423 bfd_boolean check = TRUE;
1424
1425 /* Skip TLS transition for functions. */
1426 if (h != NULL
1427 && (h->type == STT_FUNC
1428 || h->type == STT_GNU_IFUNC))
1429 return TRUE;
1430
1431 switch (from_type)
1432 {
1433 case R_X86_64_TLSGD:
1434 case R_X86_64_GOTPC32_TLSDESC:
1435 case R_X86_64_TLSDESC_CALL:
1436 case R_X86_64_GOTTPOFF:
1437 if (info->executable)
1438 {
1439 if (h == NULL)
1440 to_type = R_X86_64_TPOFF32;
1441 else
1442 to_type = R_X86_64_GOTTPOFF;
1443 }
1444
1445 /* When we are called from elf_x86_64_relocate_section,
1446 CONTENTS isn't NULL and there may be additional transitions
1447 based on TLS_TYPE. */
1448 if (contents != NULL)
1449 {
1450 unsigned int new_to_type = to_type;
1451
1452 if (info->executable
1453 && h != NULL
1454 && h->dynindx == -1
1455 && tls_type == GOT_TLS_IE)
1456 new_to_type = R_X86_64_TPOFF32;
1457
1458 if (to_type == R_X86_64_TLSGD
1459 || to_type == R_X86_64_GOTPC32_TLSDESC
1460 || to_type == R_X86_64_TLSDESC_CALL)
1461 {
1462 if (tls_type == GOT_TLS_IE)
1463 new_to_type = R_X86_64_GOTTPOFF;
1464 }
1465
1466 /* We checked the transition before when we were called from
1467 elf_x86_64_check_relocs. We only want to check the new
1468 transition which hasn't been checked before. */
1469 check = new_to_type != to_type && from_type == to_type;
1470 to_type = new_to_type;
1471 }
1472
1473 break;
1474
1475 case R_X86_64_TLSLD:
1476 if (info->executable)
1477 to_type = R_X86_64_TPOFF32;
1478 break;
1479
1480 default:
1481 return TRUE;
1482 }
1483
1484 /* Return TRUE if there is no transition. */
1485 if (from_type == to_type)
1486 return TRUE;
1487
1488 /* Check if the transition can be performed. */
1489 if (check
1490 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1491 symtab_hdr, sym_hashes,
1492 from_type, rel, relend))
1493 {
1494 reloc_howto_type *from, *to;
1495 const char *name;
1496
1497 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1498 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1499
1500 if (h)
1501 name = h->root.root.string;
1502 else
1503 {
1504 struct elf_x86_64_link_hash_table *htab;
1505
1506 htab = elf_x86_64_hash_table (info);
1507 if (htab == NULL)
1508 name = "*unknown*";
1509 else
1510 {
1511 Elf_Internal_Sym *isym;
1512
1513 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1514 abfd, r_symndx);
1515 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1516 }
1517 }
1518
1519 (*_bfd_error_handler)
1520 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1521 "in section `%A' failed"),
1522 abfd, sec, from->name, to->name, name,
1523 (unsigned long) rel->r_offset);
1524 bfd_set_error (bfd_error_bad_value);
1525 return FALSE;
1526 }
1527
1528 *r_type = to_type;
1529 return TRUE;
1530 }
1531
1532 /* Rename some of the generic section flags to better document how they
1533 are used here. */
1534 #define need_convert_mov_to_lea sec_flg0
1535
1536 /* Look through the relocs for a section during the first phase, and
1537 calculate needed space in the global offset table, procedure
1538 linkage table, and dynamic reloc sections. */
1539
1540 static bfd_boolean
1541 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1542 asection *sec,
1543 const Elf_Internal_Rela *relocs)
1544 {
1545 struct elf_x86_64_link_hash_table *htab;
1546 Elf_Internal_Shdr *symtab_hdr;
1547 struct elf_link_hash_entry **sym_hashes;
1548 const Elf_Internal_Rela *rel;
1549 const Elf_Internal_Rela *rel_end;
1550 asection *sreloc;
1551 bfd_boolean use_plt_got;
1552
1553 if (info->relocatable)
1554 return TRUE;
1555
1556 BFD_ASSERT (is_x86_64_elf (abfd));
1557
1558 htab = elf_x86_64_hash_table (info);
1559 if (htab == NULL)
1560 return FALSE;
1561
1562 use_plt_got = get_elf_x86_64_backend_data (abfd) == &elf_x86_64_arch_bed;
1563
1564 symtab_hdr = &elf_symtab_hdr (abfd);
1565 sym_hashes = elf_sym_hashes (abfd);
1566
1567 sreloc = NULL;
1568
1569 rel_end = relocs + sec->reloc_count;
1570 for (rel = relocs; rel < rel_end; rel++)
1571 {
1572 unsigned int r_type;
1573 unsigned long r_symndx;
1574 struct elf_link_hash_entry *h;
1575 Elf_Internal_Sym *isym;
1576 const char *name;
1577 bfd_boolean size_reloc;
1578
1579 r_symndx = htab->r_sym (rel->r_info);
1580 r_type = ELF32_R_TYPE (rel->r_info);
1581
1582 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1583 {
1584 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1585 abfd, r_symndx);
1586 return FALSE;
1587 }
1588
1589 if (r_symndx < symtab_hdr->sh_info)
1590 {
1591 /* A local symbol. */
1592 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1593 abfd, r_symndx);
1594 if (isym == NULL)
1595 return FALSE;
1596
1597 /* Check relocation against local STT_GNU_IFUNC symbol. */
1598 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1599 {
1600 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1601 TRUE);
1602 if (h == NULL)
1603 return FALSE;
1604
1605 /* Fake a STT_GNU_IFUNC symbol. */
1606 h->type = STT_GNU_IFUNC;
1607 h->def_regular = 1;
1608 h->ref_regular = 1;
1609 h->forced_local = 1;
1610 h->root.type = bfd_link_hash_defined;
1611 }
1612 else
1613 h = NULL;
1614 }
1615 else
1616 {
1617 isym = NULL;
1618 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1619 while (h->root.type == bfd_link_hash_indirect
1620 || h->root.type == bfd_link_hash_warning)
1621 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1622 }
1623
1624 /* Check invalid x32 relocations. */
1625 if (!ABI_64_P (abfd))
1626 switch (r_type)
1627 {
1628 default:
1629 break;
1630
1631 case R_X86_64_DTPOFF64:
1632 case R_X86_64_TPOFF64:
1633 case R_X86_64_PC64:
1634 case R_X86_64_GOTOFF64:
1635 case R_X86_64_GOT64:
1636 case R_X86_64_GOTPCREL64:
1637 case R_X86_64_GOTPC64:
1638 case R_X86_64_GOTPLT64:
1639 case R_X86_64_PLTOFF64:
1640 {
1641 if (h)
1642 name = h->root.root.string;
1643 else
1644 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1645 NULL);
1646 (*_bfd_error_handler)
1647 (_("%B: relocation %s against symbol `%s' isn't "
1648 "supported in x32 mode"), abfd,
1649 x86_64_elf_howto_table[r_type].name, name);
1650 bfd_set_error (bfd_error_bad_value);
1651 return FALSE;
1652 }
1653 break;
1654 }
1655
1656 if (h != NULL)
1657 {
1658 /* Create the ifunc sections for static executables. If we
1659 never see an indirect function symbol nor we are building
1660 a static executable, those sections will be empty and
1661 won't appear in output. */
1662 switch (r_type)
1663 {
1664 default:
1665 break;
1666
1667 case R_X86_64_PC32_BND:
1668 case R_X86_64_PLT32_BND:
1669 case R_X86_64_PC32:
1670 case R_X86_64_PLT32:
1671 case R_X86_64_32:
1672 case R_X86_64_64:
1673 /* MPX PLT is supported only if elf_x86_64_arch_bed
1674 is used in 64-bit mode. */
1675 if (ABI_64_P (abfd)
1676 && info->bndplt
1677 && (get_elf_x86_64_backend_data (abfd)
1678 == &elf_x86_64_arch_bed))
1679 {
1680 elf_x86_64_hash_entry (h)->has_bnd_reloc = 1;
1681
1682 /* Create the second PLT for Intel MPX support. */
1683 if (htab->plt_bnd == NULL)
1684 {
1685 unsigned int plt_bnd_align;
1686 const struct elf_backend_data *bed;
1687
1688 bed = get_elf_backend_data (info->output_bfd);
1689 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt2_entry) == 8
1690 && (sizeof (elf_x86_64_bnd_plt2_entry)
1691 == sizeof (elf_x86_64_legacy_plt2_entry)));
1692 plt_bnd_align = 3;
1693
1694 if (htab->elf.dynobj == NULL)
1695 htab->elf.dynobj = abfd;
1696 htab->plt_bnd
1697 = bfd_make_section_anyway_with_flags (htab->elf.dynobj,
1698 ".plt.bnd",
1699 (bed->dynamic_sec_flags
1700 | SEC_ALLOC
1701 | SEC_CODE
1702 | SEC_LOAD
1703 | SEC_READONLY));
1704 if (htab->plt_bnd == NULL
1705 || !bfd_set_section_alignment (htab->elf.dynobj,
1706 htab->plt_bnd,
1707 plt_bnd_align))
1708 return FALSE;
1709 }
1710 }
1711
1712 case R_X86_64_32S:
1713 case R_X86_64_PC64:
1714 case R_X86_64_GOTPCREL:
1715 case R_X86_64_GOTPCREL64:
1716 if (htab->elf.dynobj == NULL)
1717 htab->elf.dynobj = abfd;
1718 if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
1719 return FALSE;
1720 break;
1721 }
1722
1723 /* It is referenced by a non-shared object. */
1724 h->ref_regular = 1;
1725 h->root.non_ir_ref = 1;
1726 }
1727
1728 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1729 symtab_hdr, sym_hashes,
1730 &r_type, GOT_UNKNOWN,
1731 rel, rel_end, h, r_symndx))
1732 return FALSE;
1733
1734 switch (r_type)
1735 {
1736 case R_X86_64_TLSLD:
1737 htab->tls_ld_got.refcount += 1;
1738 goto create_got;
1739
1740 case R_X86_64_TPOFF32:
1741 if (!info->executable && ABI_64_P (abfd))
1742 {
1743 if (h)
1744 name = h->root.root.string;
1745 else
1746 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1747 NULL);
1748 (*_bfd_error_handler)
1749 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1750 abfd,
1751 x86_64_elf_howto_table[r_type].name, name);
1752 bfd_set_error (bfd_error_bad_value);
1753 return FALSE;
1754 }
1755 break;
1756
1757 case R_X86_64_GOTTPOFF:
1758 if (!info->executable)
1759 info->flags |= DF_STATIC_TLS;
1760 /* Fall through */
1761
1762 case R_X86_64_GOT32:
1763 case R_X86_64_GOTPCREL:
1764 case R_X86_64_TLSGD:
1765 case R_X86_64_GOT64:
1766 case R_X86_64_GOTPCREL64:
1767 case R_X86_64_GOTPLT64:
1768 case R_X86_64_GOTPC32_TLSDESC:
1769 case R_X86_64_TLSDESC_CALL:
1770 /* This symbol requires a global offset table entry. */
1771 {
1772 int tls_type, old_tls_type;
1773
1774 switch (r_type)
1775 {
1776 default: tls_type = GOT_NORMAL; break;
1777 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1778 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1779 case R_X86_64_GOTPC32_TLSDESC:
1780 case R_X86_64_TLSDESC_CALL:
1781 tls_type = GOT_TLS_GDESC; break;
1782 }
1783
1784 if (h != NULL)
1785 {
1786 h->got.refcount += 1;
1787 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1788 }
1789 else
1790 {
1791 bfd_signed_vma *local_got_refcounts;
1792
1793 /* This is a global offset table entry for a local symbol. */
1794 local_got_refcounts = elf_local_got_refcounts (abfd);
1795 if (local_got_refcounts == NULL)
1796 {
1797 bfd_size_type size;
1798
1799 size = symtab_hdr->sh_info;
1800 size *= sizeof (bfd_signed_vma)
1801 + sizeof (bfd_vma) + sizeof (char);
1802 local_got_refcounts = ((bfd_signed_vma *)
1803 bfd_zalloc (abfd, size));
1804 if (local_got_refcounts == NULL)
1805 return FALSE;
1806 elf_local_got_refcounts (abfd) = local_got_refcounts;
1807 elf_x86_64_local_tlsdesc_gotent (abfd)
1808 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1809 elf_x86_64_local_got_tls_type (abfd)
1810 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1811 }
1812 local_got_refcounts[r_symndx] += 1;
1813 old_tls_type
1814 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1815 }
1816
1817 /* If a TLS symbol is accessed using IE at least once,
1818 there is no point to use dynamic model for it. */
1819 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1820 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1821 || tls_type != GOT_TLS_IE))
1822 {
1823 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1824 tls_type = old_tls_type;
1825 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1826 && GOT_TLS_GD_ANY_P (tls_type))
1827 tls_type |= old_tls_type;
1828 else
1829 {
1830 if (h)
1831 name = h->root.root.string;
1832 else
1833 name = bfd_elf_sym_name (abfd, symtab_hdr,
1834 isym, NULL);
1835 (*_bfd_error_handler)
1836 (_("%B: '%s' accessed both as normal and thread local symbol"),
1837 abfd, name);
1838 bfd_set_error (bfd_error_bad_value);
1839 return FALSE;
1840 }
1841 }
1842
1843 if (old_tls_type != tls_type)
1844 {
1845 if (h != NULL)
1846 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1847 else
1848 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1849 }
1850 }
1851 /* Fall through */
1852
1853 case R_X86_64_GOTOFF64:
1854 case R_X86_64_GOTPC32:
1855 case R_X86_64_GOTPC64:
1856 create_got:
1857 if (htab->elf.sgot == NULL)
1858 {
1859 if (htab->elf.dynobj == NULL)
1860 htab->elf.dynobj = abfd;
1861 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1862 info))
1863 return FALSE;
1864 }
1865 break;
1866
1867 case R_X86_64_PLT32:
1868 case R_X86_64_PLT32_BND:
1869 /* This symbol requires a procedure linkage table entry. We
1870 actually build the entry in adjust_dynamic_symbol,
1871 because this might be a case of linking PIC code which is
1872 never referenced by a dynamic object, in which case we
1873 don't need to generate a procedure linkage table entry
1874 after all. */
1875
1876 /* If this is a local symbol, we resolve it directly without
1877 creating a procedure linkage table entry. */
1878 if (h == NULL)
1879 continue;
1880
1881 h->needs_plt = 1;
1882 h->plt.refcount += 1;
1883 break;
1884
1885 case R_X86_64_PLTOFF64:
1886 /* This tries to form the 'address' of a function relative
1887 to GOT. For global symbols we need a PLT entry. */
1888 if (h != NULL)
1889 {
1890 h->needs_plt = 1;
1891 h->plt.refcount += 1;
1892 }
1893 goto create_got;
1894
1895 case R_X86_64_SIZE32:
1896 case R_X86_64_SIZE64:
1897 size_reloc = TRUE;
1898 goto do_size;
1899
1900 case R_X86_64_32:
1901 if (!ABI_64_P (abfd))
1902 goto pointer;
1903 case R_X86_64_8:
1904 case R_X86_64_16:
1905 case R_X86_64_32S:
1906 /* Let's help debug shared library creation. These relocs
1907 cannot be used in shared libs. Don't error out for
1908 sections we don't care about, such as debug sections or
1909 non-constant sections. */
1910 if (info->shared
1911 && (sec->flags & SEC_ALLOC) != 0
1912 && (sec->flags & SEC_READONLY) != 0)
1913 {
1914 if (h)
1915 name = h->root.root.string;
1916 else
1917 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1918 (*_bfd_error_handler)
1919 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1920 abfd, x86_64_elf_howto_table[r_type].name, name);
1921 bfd_set_error (bfd_error_bad_value);
1922 return FALSE;
1923 }
1924 /* Fall through. */
1925
1926 case R_X86_64_PC8:
1927 case R_X86_64_PC16:
1928 case R_X86_64_PC32:
1929 case R_X86_64_PC32_BND:
1930 case R_X86_64_PC64:
1931 case R_X86_64_64:
1932 pointer:
1933 if (h != NULL && info->executable)
1934 {
1935 /* If this reloc is in a read-only section, we might
1936 need a copy reloc. We can't check reliably at this
1937 stage whether the section is read-only, as input
1938 sections have not yet been mapped to output sections.
1939 Tentatively set the flag for now, and correct in
1940 adjust_dynamic_symbol. */
1941 h->non_got_ref = 1;
1942
1943 /* We may need a .plt entry if the function this reloc
1944 refers to is in a shared lib. */
1945 h->plt.refcount += 1;
1946 if (r_type != R_X86_64_PC32
1947 && r_type != R_X86_64_PC32_BND
1948 && r_type != R_X86_64_PC64)
1949 h->pointer_equality_needed = 1;
1950 }
1951
1952 size_reloc = FALSE;
1953 do_size:
1954 /* If we are creating a shared library, and this is a reloc
1955 against a global symbol, or a non PC relative reloc
1956 against a local symbol, then we need to copy the reloc
1957 into the shared library. However, if we are linking with
1958 -Bsymbolic, we do not need to copy a reloc against a
1959 global symbol which is defined in an object we are
1960 including in the link (i.e., DEF_REGULAR is set). At
1961 this point we have not seen all the input files, so it is
1962 possible that DEF_REGULAR is not set now but will be set
1963 later (it is never cleared). In case of a weak definition,
1964 DEF_REGULAR may be cleared later by a strong definition in
1965 a shared library. We account for that possibility below by
1966 storing information in the relocs_copied field of the hash
1967 table entry. A similar situation occurs when creating
1968 shared libraries and symbol visibility changes render the
1969 symbol local.
1970
1971 If on the other hand, we are creating an executable, we
1972 may need to keep relocations for symbols satisfied by a
1973 dynamic library if we manage to avoid copy relocs for the
1974 symbol. */
1975 if ((info->shared
1976 && (sec->flags & SEC_ALLOC) != 0
1977 && (! IS_X86_64_PCREL_TYPE (r_type)
1978 || (h != NULL
1979 && (! SYMBOLIC_BIND (info, h)
1980 || h->root.type == bfd_link_hash_defweak
1981 || !h->def_regular))))
1982 || (ELIMINATE_COPY_RELOCS
1983 && !info->shared
1984 && (sec->flags & SEC_ALLOC) != 0
1985 && h != NULL
1986 && (h->root.type == bfd_link_hash_defweak
1987 || !h->def_regular)))
1988 {
1989 struct elf_dyn_relocs *p;
1990 struct elf_dyn_relocs **head;
1991
1992 /* We must copy these reloc types into the output file.
1993 Create a reloc section in dynobj and make room for
1994 this reloc. */
1995 if (sreloc == NULL)
1996 {
1997 if (htab->elf.dynobj == NULL)
1998 htab->elf.dynobj = abfd;
1999
2000 sreloc = _bfd_elf_make_dynamic_reloc_section
2001 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
2002 abfd, /*rela?*/ TRUE);
2003
2004 if (sreloc == NULL)
2005 return FALSE;
2006 }
2007
2008 /* If this is a global symbol, we count the number of
2009 relocations we need for this symbol. */
2010 if (h != NULL)
2011 {
2012 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
2013 }
2014 else
2015 {
2016 /* Track dynamic relocs needed for local syms too.
2017 We really need local syms available to do this
2018 easily. Oh well. */
2019 asection *s;
2020 void **vpp;
2021
2022 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2023 abfd, r_symndx);
2024 if (isym == NULL)
2025 return FALSE;
2026
2027 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2028 if (s == NULL)
2029 s = sec;
2030
2031 /* Beware of type punned pointers vs strict aliasing
2032 rules. */
2033 vpp = &(elf_section_data (s)->local_dynrel);
2034 head = (struct elf_dyn_relocs **)vpp;
2035 }
2036
2037 p = *head;
2038 if (p == NULL || p->sec != sec)
2039 {
2040 bfd_size_type amt = sizeof *p;
2041
2042 p = ((struct elf_dyn_relocs *)
2043 bfd_alloc (htab->elf.dynobj, amt));
2044 if (p == NULL)
2045 return FALSE;
2046 p->next = *head;
2047 *head = p;
2048 p->sec = sec;
2049 p->count = 0;
2050 p->pc_count = 0;
2051 }
2052
2053 p->count += 1;
2054 /* Count size relocation as PC-relative relocation. */
2055 if (IS_X86_64_PCREL_TYPE (r_type) || size_reloc)
2056 p->pc_count += 1;
2057 }
2058 break;
2059
2060 /* This relocation describes the C++ object vtable hierarchy.
2061 Reconstruct it for later use during GC. */
2062 case R_X86_64_GNU_VTINHERIT:
2063 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2064 return FALSE;
2065 break;
2066
2067 /* This relocation describes which C++ vtable entries are actually
2068 used. Record for later use during GC. */
2069 case R_X86_64_GNU_VTENTRY:
2070 BFD_ASSERT (h != NULL);
2071 if (h != NULL
2072 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2073 return FALSE;
2074 break;
2075
2076 default:
2077 break;
2078 }
2079
2080 if (use_plt_got
2081 && h != NULL
2082 && h->plt.refcount > 0
2083 && h->got.refcount > 0
2084 && htab->plt_got == NULL)
2085 {
2086 /* Create the GOT procedure linkage table. */
2087 unsigned int plt_got_align;
2088 const struct elf_backend_data *bed;
2089
2090 bed = get_elf_backend_data (info->output_bfd);
2091 BFD_ASSERT (sizeof (elf_x86_64_legacy_plt2_entry) == 8
2092 && (sizeof (elf_x86_64_bnd_plt2_entry)
2093 == sizeof (elf_x86_64_legacy_plt2_entry)));
2094 plt_got_align = 3;
2095
2096 if (htab->elf.dynobj == NULL)
2097 htab->elf.dynobj = abfd;
2098 htab->plt_got
2099 = bfd_make_section_anyway_with_flags (htab->elf.dynobj,
2100 ".plt.got",
2101 (bed->dynamic_sec_flags
2102 | SEC_ALLOC
2103 | SEC_CODE
2104 | SEC_LOAD
2105 | SEC_READONLY));
2106 if (htab->plt_got == NULL
2107 || !bfd_set_section_alignment (htab->elf.dynobj,
2108 htab->plt_got,
2109 plt_got_align))
2110 return FALSE;
2111 }
2112
2113 if (r_type == R_X86_64_GOTPCREL
2114 && (h == NULL || h->type != STT_GNU_IFUNC))
2115 sec->need_convert_mov_to_lea = 1;
2116 }
2117
2118 return TRUE;
2119 }
2120
2121 /* Return the section that should be marked against GC for a given
2122 relocation. */
2123
2124 static asection *
2125 elf_x86_64_gc_mark_hook (asection *sec,
2126 struct bfd_link_info *info,
2127 Elf_Internal_Rela *rel,
2128 struct elf_link_hash_entry *h,
2129 Elf_Internal_Sym *sym)
2130 {
2131 if (h != NULL)
2132 switch (ELF32_R_TYPE (rel->r_info))
2133 {
2134 case R_X86_64_GNU_VTINHERIT:
2135 case R_X86_64_GNU_VTENTRY:
2136 return NULL;
2137 }
2138
2139 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2140 }
2141
2142 /* Update the got entry reference counts for the section being removed. */
2143
2144 static bfd_boolean
2145 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
2146 asection *sec,
2147 const Elf_Internal_Rela *relocs)
2148 {
2149 struct elf_x86_64_link_hash_table *htab;
2150 Elf_Internal_Shdr *symtab_hdr;
2151 struct elf_link_hash_entry **sym_hashes;
2152 bfd_signed_vma *local_got_refcounts;
2153 const Elf_Internal_Rela *rel, *relend;
2154
2155 if (info->relocatable)
2156 return TRUE;
2157
2158 htab = elf_x86_64_hash_table (info);
2159 if (htab == NULL)
2160 return FALSE;
2161
2162 elf_section_data (sec)->local_dynrel = NULL;
2163
2164 symtab_hdr = &elf_symtab_hdr (abfd);
2165 sym_hashes = elf_sym_hashes (abfd);
2166 local_got_refcounts = elf_local_got_refcounts (abfd);
2167
2168 htab = elf_x86_64_hash_table (info);
2169 relend = relocs + sec->reloc_count;
2170 for (rel = relocs; rel < relend; rel++)
2171 {
2172 unsigned long r_symndx;
2173 unsigned int r_type;
2174 struct elf_link_hash_entry *h = NULL;
2175
2176 r_symndx = htab->r_sym (rel->r_info);
2177 if (r_symndx >= symtab_hdr->sh_info)
2178 {
2179 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2180 while (h->root.type == bfd_link_hash_indirect
2181 || h->root.type == bfd_link_hash_warning)
2182 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2183 }
2184 else
2185 {
2186 /* A local symbol. */
2187 Elf_Internal_Sym *isym;
2188
2189 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2190 abfd, r_symndx);
2191
2192 /* Check relocation against local STT_GNU_IFUNC symbol. */
2193 if (isym != NULL
2194 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
2195 {
2196 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
2197 if (h == NULL)
2198 abort ();
2199 }
2200 }
2201
2202 if (h)
2203 {
2204 struct elf_x86_64_link_hash_entry *eh;
2205 struct elf_dyn_relocs **pp;
2206 struct elf_dyn_relocs *p;
2207
2208 eh = (struct elf_x86_64_link_hash_entry *) h;
2209
2210 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
2211 if (p->sec == sec)
2212 {
2213 /* Everything must go for SEC. */
2214 *pp = p->next;
2215 break;
2216 }
2217 }
2218
2219 r_type = ELF32_R_TYPE (rel->r_info);
2220 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
2221 symtab_hdr, sym_hashes,
2222 &r_type, GOT_UNKNOWN,
2223 rel, relend, h, r_symndx))
2224 return FALSE;
2225
2226 switch (r_type)
2227 {
2228 case R_X86_64_TLSLD:
2229 if (htab->tls_ld_got.refcount > 0)
2230 htab->tls_ld_got.refcount -= 1;
2231 break;
2232
2233 case R_X86_64_TLSGD:
2234 case R_X86_64_GOTPC32_TLSDESC:
2235 case R_X86_64_TLSDESC_CALL:
2236 case R_X86_64_GOTTPOFF:
2237 case R_X86_64_GOT32:
2238 case R_X86_64_GOTPCREL:
2239 case R_X86_64_GOT64:
2240 case R_X86_64_GOTPCREL64:
2241 case R_X86_64_GOTPLT64:
2242 if (h != NULL)
2243 {
2244 if (h->got.refcount > 0)
2245 h->got.refcount -= 1;
2246 if (h->type == STT_GNU_IFUNC)
2247 {
2248 if (h->plt.refcount > 0)
2249 h->plt.refcount -= 1;
2250 }
2251 }
2252 else if (local_got_refcounts != NULL)
2253 {
2254 if (local_got_refcounts[r_symndx] > 0)
2255 local_got_refcounts[r_symndx] -= 1;
2256 }
2257 break;
2258
2259 case R_X86_64_8:
2260 case R_X86_64_16:
2261 case R_X86_64_32:
2262 case R_X86_64_64:
2263 case R_X86_64_32S:
2264 case R_X86_64_PC8:
2265 case R_X86_64_PC16:
2266 case R_X86_64_PC32:
2267 case R_X86_64_PC32_BND:
2268 case R_X86_64_PC64:
2269 case R_X86_64_SIZE32:
2270 case R_X86_64_SIZE64:
2271 if (info->shared
2272 && (h == NULL || h->type != STT_GNU_IFUNC))
2273 break;
2274 /* Fall thru */
2275
2276 case R_X86_64_PLT32:
2277 case R_X86_64_PLT32_BND:
2278 case R_X86_64_PLTOFF64:
2279 if (h != NULL)
2280 {
2281 if (h->plt.refcount > 0)
2282 h->plt.refcount -= 1;
2283 }
2284 break;
2285
2286 default:
2287 break;
2288 }
2289 }
2290
2291 return TRUE;
2292 }
2293
2294 /* Adjust a symbol defined by a dynamic object and referenced by a
2295 regular object. The current definition is in some section of the
2296 dynamic object, but we're not including those sections. We have to
2297 change the definition to something the rest of the link can
2298 understand. */
2299
2300 static bfd_boolean
2301 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
2302 struct elf_link_hash_entry *h)
2303 {
2304 struct elf_x86_64_link_hash_table *htab;
2305 asection *s;
2306 struct elf_x86_64_link_hash_entry *eh;
2307 struct elf_dyn_relocs *p;
2308
2309 /* STT_GNU_IFUNC symbol must go through PLT. */
2310 if (h->type == STT_GNU_IFUNC)
2311 {
2312 /* All local STT_GNU_IFUNC references must be treate as local
2313 calls via local PLT. */
2314 if (h->ref_regular
2315 && SYMBOL_CALLS_LOCAL (info, h))
2316 {
2317 bfd_size_type pc_count = 0, count = 0;
2318 struct elf_dyn_relocs **pp;
2319
2320 eh = (struct elf_x86_64_link_hash_entry *) h;
2321 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2322 {
2323 pc_count += p->pc_count;
2324 p->count -= p->pc_count;
2325 p->pc_count = 0;
2326 count += p->count;
2327 if (p->count == 0)
2328 *pp = p->next;
2329 else
2330 pp = &p->next;
2331 }
2332
2333 if (pc_count || count)
2334 {
2335 h->needs_plt = 1;
2336 h->non_got_ref = 1;
2337 if (h->plt.refcount <= 0)
2338 h->plt.refcount = 1;
2339 else
2340 h->plt.refcount += 1;
2341 }
2342 }
2343
2344 if (h->plt.refcount <= 0)
2345 {
2346 h->plt.offset = (bfd_vma) -1;
2347 h->needs_plt = 0;
2348 }
2349 return TRUE;
2350 }
2351
2352 /* If this is a function, put it in the procedure linkage table. We
2353 will fill in the contents of the procedure linkage table later,
2354 when we know the address of the .got section. */
2355 if (h->type == STT_FUNC
2356 || h->needs_plt)
2357 {
2358 if (h->plt.refcount <= 0
2359 || SYMBOL_CALLS_LOCAL (info, h)
2360 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2361 && h->root.type == bfd_link_hash_undefweak))
2362 {
2363 /* This case can occur if we saw a PLT32 reloc in an input
2364 file, but the symbol was never referred to by a dynamic
2365 object, or if all references were garbage collected. In
2366 such a case, we don't actually need to build a procedure
2367 linkage table, and we can just do a PC32 reloc instead. */
2368 h->plt.offset = (bfd_vma) -1;
2369 h->needs_plt = 0;
2370 }
2371
2372 return TRUE;
2373 }
2374 else
2375 /* It's possible that we incorrectly decided a .plt reloc was
2376 needed for an R_X86_64_PC32 reloc to a non-function sym in
2377 check_relocs. We can't decide accurately between function and
2378 non-function syms in check-relocs; Objects loaded later in
2379 the link may change h->type. So fix it now. */
2380 h->plt.offset = (bfd_vma) -1;
2381
2382 /* If this is a weak symbol, and there is a real definition, the
2383 processor independent code will have arranged for us to see the
2384 real definition first, and we can just use the same value. */
2385 if (h->u.weakdef != NULL)
2386 {
2387 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2388 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2389 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2390 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2391 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
2392 {
2393 eh = (struct elf_x86_64_link_hash_entry *) h;
2394 h->non_got_ref = h->u.weakdef->non_got_ref;
2395 eh->needs_copy = h->u.weakdef->needs_copy;
2396 }
2397 return TRUE;
2398 }
2399
2400 /* This is a reference to a symbol defined by a dynamic object which
2401 is not a function. */
2402
2403 /* If we are creating a shared library, we must presume that the
2404 only references to the symbol are via the global offset table.
2405 For such cases we need not do anything here; the relocations will
2406 be handled correctly by relocate_section. */
2407 if (!info->executable)
2408 return TRUE;
2409
2410 /* If there are no references to this symbol that do not use the
2411 GOT, we don't need to generate a copy reloc. */
2412 if (!h->non_got_ref)
2413 return TRUE;
2414
2415 /* If -z nocopyreloc was given, we won't generate them either. */
2416 if (info->nocopyreloc)
2417 {
2418 h->non_got_ref = 0;
2419 return TRUE;
2420 }
2421
2422 if (ELIMINATE_COPY_RELOCS)
2423 {
2424 eh = (struct elf_x86_64_link_hash_entry *) h;
2425 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2426 {
2427 s = p->sec->output_section;
2428 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2429 break;
2430 }
2431
2432 /* If we didn't find any dynamic relocs in read-only sections, then
2433 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
2434 if (p == NULL)
2435 {
2436 h->non_got_ref = 0;
2437 return TRUE;
2438 }
2439 }
2440
2441 /* We must allocate the symbol in our .dynbss section, which will
2442 become part of the .bss section of the executable. There will be
2443 an entry for this symbol in the .dynsym section. The dynamic
2444 object will contain position independent code, so all references
2445 from the dynamic object to this symbol will go through the global
2446 offset table. The dynamic linker will use the .dynsym entry to
2447 determine the address it must put in the global offset table, so
2448 both the dynamic object and the regular object will refer to the
2449 same memory location for the variable. */
2450
2451 htab = elf_x86_64_hash_table (info);
2452 if (htab == NULL)
2453 return FALSE;
2454
2455 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2456 to copy the initial value out of the dynamic object and into the
2457 runtime process image. */
2458 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
2459 {
2460 const struct elf_backend_data *bed;
2461 bed = get_elf_backend_data (info->output_bfd);
2462 htab->srelbss->size += bed->s->sizeof_rela;
2463 h->needs_copy = 1;
2464 }
2465
2466 s = htab->sdynbss;
2467
2468 return _bfd_elf_adjust_dynamic_copy (info, h, s);
2469 }
2470
2471 /* Allocate space in .plt, .got and associated reloc sections for
2472 dynamic relocs. */
2473
2474 static bfd_boolean
2475 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2476 {
2477 struct bfd_link_info *info;
2478 struct elf_x86_64_link_hash_table *htab;
2479 struct elf_x86_64_link_hash_entry *eh;
2480 struct elf_dyn_relocs *p;
2481 const struct elf_backend_data *bed;
2482 unsigned int plt_entry_size;
2483
2484 if (h->root.type == bfd_link_hash_indirect)
2485 return TRUE;
2486
2487 eh = (struct elf_x86_64_link_hash_entry *) h;
2488
2489 info = (struct bfd_link_info *) inf;
2490 htab = elf_x86_64_hash_table (info);
2491 if (htab == NULL)
2492 return FALSE;
2493 bed = get_elf_backend_data (info->output_bfd);
2494 plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
2495
2496 /* We can't use the GOT PLT if pointer equality is needed since
2497 finish_dynamic_symbol won't clear symbol value and the dynamic
2498 linker won't update the GOT slot. We will get into an infinite
2499 loop at run-time. */
2500 if (htab->plt_got != NULL
2501 && h->type != STT_GNU_IFUNC
2502 && !h->pointer_equality_needed
2503 && h->plt.refcount > 0
2504 && h->got.refcount > 0)
2505 {
2506 /* Don't use the regular PLT if there are both GOT and GOTPLT
2507 reloctions. */
2508 h->plt.offset = (bfd_vma) -1;
2509
2510 /* Use the GOT PLT. */
2511 eh->plt_got.refcount = 1;
2512 }
2513
2514 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2515 here if it is defined and referenced in a non-shared object. */
2516 if (h->type == STT_GNU_IFUNC
2517 && h->def_regular)
2518 {
2519 if (_bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2520 &eh->dyn_relocs,
2521 plt_entry_size,
2522 plt_entry_size,
2523 GOT_ENTRY_SIZE))
2524 {
2525 asection *s = htab->plt_bnd;
2526 if (h->plt.offset != (bfd_vma) -1 && s != NULL)
2527 {
2528 /* Use the .plt.bnd section if it is created. */
2529 eh->plt_bnd.offset = s->size;
2530
2531 /* Make room for this entry in the .plt.bnd section. */
2532 s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2533 }
2534
2535 return TRUE;
2536 }
2537 else
2538 return FALSE;
2539 }
2540 else if (htab->elf.dynamic_sections_created
2541 && (h->plt.refcount > 0 || eh->plt_got.refcount > 0))
2542 {
2543 bfd_boolean use_plt_got = eh->plt_got.refcount > 0;
2544
2545 /* Make sure this symbol is output as a dynamic symbol.
2546 Undefined weak syms won't yet be marked as dynamic. */
2547 if (h->dynindx == -1
2548 && !h->forced_local)
2549 {
2550 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2551 return FALSE;
2552 }
2553
2554 if (info->shared
2555 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2556 {
2557 asection *s = htab->elf.splt;
2558 asection *bnd_s = htab->plt_bnd;
2559 asection *got_s = htab->plt_got;
2560
2561 if (use_plt_got)
2562 eh->plt_got.offset = got_s->size;
2563 else
2564 {
2565 /* If this is the first .plt entry, make room for the
2566 special first entry. */
2567 if (s->size == 0)
2568 s->size = plt_entry_size;
2569 h->plt.offset = s->size;
2570 if (bnd_s)
2571 eh->plt_bnd.offset = bnd_s->size;
2572 }
2573
2574 /* If this symbol is not defined in a regular file, and we are
2575 not generating a shared library, then set the symbol to this
2576 location in the .plt. This is required to make function
2577 pointers compare as equal between the normal executable and
2578 the shared library. */
2579 if (! info->shared
2580 && !h->def_regular)
2581 {
2582 if (use_plt_got)
2583 {
2584 /* We need to make a call to the entry of the GOT PLT
2585 instead of regular PLT entry. */
2586 h->root.u.def.section = got_s;
2587 h->root.u.def.value = eh->plt_got.offset;
2588 }
2589 else
2590 {
2591 if (bnd_s)
2592 {
2593 /* We need to make a call to the entry of the second
2594 PLT instead of regular PLT entry. */
2595 h->root.u.def.section = bnd_s;
2596 h->root.u.def.value = eh->plt_bnd.offset;
2597 }
2598 else
2599 {
2600 h->root.u.def.section = s;
2601 h->root.u.def.value = h->plt.offset;
2602 }
2603 }
2604 }
2605
2606 /* Make room for this entry. */
2607 if (use_plt_got)
2608 got_s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2609 else
2610 {
2611 s->size += plt_entry_size;
2612 if (bnd_s)
2613 bnd_s->size += sizeof (elf_x86_64_legacy_plt2_entry);
2614
2615 /* We also need to make an entry in the .got.plt section,
2616 which will be placed in the .got section by the linker
2617 script. */
2618 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2619
2620 /* We also need to make an entry in the .rela.plt
2621 section. */
2622 htab->elf.srelplt->size += bed->s->sizeof_rela;
2623 htab->elf.srelplt->reloc_count++;
2624 }
2625 }
2626 else
2627 {
2628 h->plt.offset = (bfd_vma) -1;
2629 h->needs_plt = 0;
2630 }
2631 }
2632 else
2633 {
2634 h->plt.offset = (bfd_vma) -1;
2635 h->needs_plt = 0;
2636 }
2637
2638 eh->tlsdesc_got = (bfd_vma) -1;
2639
2640 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2641 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2642 if (h->got.refcount > 0
2643 && info->executable
2644 && h->dynindx == -1
2645 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2646 {
2647 h->got.offset = (bfd_vma) -1;
2648 }
2649 else if (h->got.refcount > 0)
2650 {
2651 asection *s;
2652 bfd_boolean dyn;
2653 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2654
2655 /* Make sure this symbol is output as a dynamic symbol.
2656 Undefined weak syms won't yet be marked as dynamic. */
2657 if (h->dynindx == -1
2658 && !h->forced_local)
2659 {
2660 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2661 return FALSE;
2662 }
2663
2664 if (GOT_TLS_GDESC_P (tls_type))
2665 {
2666 eh->tlsdesc_got = htab->elf.sgotplt->size
2667 - elf_x86_64_compute_jump_table_size (htab);
2668 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2669 h->got.offset = (bfd_vma) -2;
2670 }
2671 if (! GOT_TLS_GDESC_P (tls_type)
2672 || GOT_TLS_GD_P (tls_type))
2673 {
2674 s = htab->elf.sgot;
2675 h->got.offset = s->size;
2676 s->size += GOT_ENTRY_SIZE;
2677 if (GOT_TLS_GD_P (tls_type))
2678 s->size += GOT_ENTRY_SIZE;
2679 }
2680 dyn = htab->elf.dynamic_sections_created;
2681 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2682 and two if global.
2683 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2684 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2685 || tls_type == GOT_TLS_IE)
2686 htab->elf.srelgot->size += bed->s->sizeof_rela;
2687 else if (GOT_TLS_GD_P (tls_type))
2688 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2689 else if (! GOT_TLS_GDESC_P (tls_type)
2690 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2691 || h->root.type != bfd_link_hash_undefweak)
2692 && (info->shared
2693 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2694 htab->elf.srelgot->size += bed->s->sizeof_rela;
2695 if (GOT_TLS_GDESC_P (tls_type))
2696 {
2697 htab->elf.srelplt->size += bed->s->sizeof_rela;
2698 htab->tlsdesc_plt = (bfd_vma) -1;
2699 }
2700 }
2701 else
2702 h->got.offset = (bfd_vma) -1;
2703
2704 if (eh->dyn_relocs == NULL)
2705 return TRUE;
2706
2707 /* In the shared -Bsymbolic case, discard space allocated for
2708 dynamic pc-relative relocs against symbols which turn out to be
2709 defined in regular objects. For the normal shared case, discard
2710 space for pc-relative relocs that have become local due to symbol
2711 visibility changes. */
2712
2713 if (info->shared)
2714 {
2715 /* Relocs that use pc_count are those that appear on a call
2716 insn, or certain REL relocs that can generated via assembly.
2717 We want calls to protected symbols to resolve directly to the
2718 function rather than going via the plt. If people want
2719 function pointer comparisons to work as expected then they
2720 should avoid writing weird assembly. */
2721 if (SYMBOL_CALLS_LOCAL (info, h))
2722 {
2723 struct elf_dyn_relocs **pp;
2724
2725 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2726 {
2727 p->count -= p->pc_count;
2728 p->pc_count = 0;
2729 if (p->count == 0)
2730 *pp = p->next;
2731 else
2732 pp = &p->next;
2733 }
2734 }
2735
2736 /* Also discard relocs on undefined weak syms with non-default
2737 visibility. */
2738 if (eh->dyn_relocs != NULL)
2739 {
2740 if (h->root.type == bfd_link_hash_undefweak)
2741 {
2742 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2743 eh->dyn_relocs = NULL;
2744
2745 /* Make sure undefined weak symbols are output as a dynamic
2746 symbol in PIEs. */
2747 else if (h->dynindx == -1
2748 && ! h->forced_local
2749 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2750 return FALSE;
2751 }
2752 /* For PIE, discard space for pc-relative relocs against
2753 symbols which turn out to need copy relocs. */
2754 else if (info->executable
2755 && (h->needs_copy || eh->needs_copy)
2756 && h->def_dynamic
2757 && !h->def_regular)
2758 {
2759 struct elf_dyn_relocs **pp;
2760
2761 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2762 {
2763 if (p->pc_count != 0)
2764 *pp = p->next;
2765 else
2766 pp = &p->next;
2767 }
2768 }
2769 }
2770 }
2771 else if (ELIMINATE_COPY_RELOCS)
2772 {
2773 /* For the non-shared case, discard space for relocs against
2774 symbols which turn out to need copy relocs or are not
2775 dynamic. */
2776
2777 if (!h->non_got_ref
2778 && ((h->def_dynamic
2779 && !h->def_regular)
2780 || (htab->elf.dynamic_sections_created
2781 && (h->root.type == bfd_link_hash_undefweak
2782 || h->root.type == bfd_link_hash_undefined))))
2783 {
2784 /* Make sure this symbol is output as a dynamic symbol.
2785 Undefined weak syms won't yet be marked as dynamic. */
2786 if (h->dynindx == -1
2787 && ! h->forced_local
2788 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2789 return FALSE;
2790
2791 /* If that succeeded, we know we'll be keeping all the
2792 relocs. */
2793 if (h->dynindx != -1)
2794 goto keep;
2795 }
2796
2797 eh->dyn_relocs = NULL;
2798
2799 keep: ;
2800 }
2801
2802 /* Finally, allocate space. */
2803 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2804 {
2805 asection * sreloc;
2806
2807 sreloc = elf_section_data (p->sec)->sreloc;
2808
2809 BFD_ASSERT (sreloc != NULL);
2810
2811 sreloc->size += p->count * bed->s->sizeof_rela;
2812 }
2813
2814 return TRUE;
2815 }
2816
2817 /* Allocate space in .plt, .got and associated reloc sections for
2818 local dynamic relocs. */
2819
2820 static bfd_boolean
2821 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2822 {
2823 struct elf_link_hash_entry *h
2824 = (struct elf_link_hash_entry *) *slot;
2825
2826 if (h->type != STT_GNU_IFUNC
2827 || !h->def_regular
2828 || !h->ref_regular
2829 || !h->forced_local
2830 || h->root.type != bfd_link_hash_defined)
2831 abort ();
2832
2833 return elf_x86_64_allocate_dynrelocs (h, inf);
2834 }
2835
2836 /* Find any dynamic relocs that apply to read-only sections. */
2837
2838 static bfd_boolean
2839 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2840 void * inf)
2841 {
2842 struct elf_x86_64_link_hash_entry *eh;
2843 struct elf_dyn_relocs *p;
2844
2845 /* Skip local IFUNC symbols. */
2846 if (h->forced_local && h->type == STT_GNU_IFUNC)
2847 return TRUE;
2848
2849 eh = (struct elf_x86_64_link_hash_entry *) h;
2850 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2851 {
2852 asection *s = p->sec->output_section;
2853
2854 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2855 {
2856 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2857
2858 info->flags |= DF_TEXTREL;
2859
2860 if ((info->warn_shared_textrel && info->shared)
2861 || info->error_textrel)
2862 info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'\n"),
2863 p->sec->owner, h->root.root.string,
2864 p->sec);
2865
2866 /* Not an error, just cut short the traversal. */
2867 return FALSE;
2868 }
2869 }
2870 return TRUE;
2871 }
2872
2873 /* Convert
2874 mov foo@GOTPCREL(%rip), %reg
2875 to
2876 lea foo(%rip), %reg
2877 with the local symbol, foo. */
2878
2879 static bfd_boolean
2880 elf_x86_64_convert_mov_to_lea (bfd *abfd, asection *sec,
2881 struct bfd_link_info *link_info)
2882 {
2883 Elf_Internal_Shdr *symtab_hdr;
2884 Elf_Internal_Rela *internal_relocs;
2885 Elf_Internal_Rela *irel, *irelend;
2886 bfd_byte *contents;
2887 struct elf_x86_64_link_hash_table *htab;
2888 bfd_boolean changed_contents;
2889 bfd_boolean changed_relocs;
2890 bfd_signed_vma *local_got_refcounts;
2891
2892 /* Don't even try to convert non-ELF outputs. */
2893 if (!is_elf_hash_table (link_info->hash))
2894 return FALSE;
2895
2896 /* Nothing to do if there is no need or no output. */
2897 if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
2898 || sec->need_convert_mov_to_lea == 0
2899 || bfd_is_abs_section (sec->output_section))
2900 return TRUE;
2901
2902 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2903
2904 /* Load the relocations for this section. */
2905 internal_relocs = (_bfd_elf_link_read_relocs
2906 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
2907 link_info->keep_memory));
2908 if (internal_relocs == NULL)
2909 return FALSE;
2910
2911 htab = elf_x86_64_hash_table (link_info);
2912 changed_contents = FALSE;
2913 changed_relocs = FALSE;
2914 local_got_refcounts = elf_local_got_refcounts (abfd);
2915
2916 /* Get the section contents. */
2917 if (elf_section_data (sec)->this_hdr.contents != NULL)
2918 contents = elf_section_data (sec)->this_hdr.contents;
2919 else
2920 {
2921 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
2922 goto error_return;
2923 }
2924
2925 irelend = internal_relocs + sec->reloc_count;
2926 for (irel = internal_relocs; irel < irelend; irel++)
2927 {
2928 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
2929 unsigned int r_symndx = htab->r_sym (irel->r_info);
2930 unsigned int indx;
2931 struct elf_link_hash_entry *h;
2932
2933 if (r_type != R_X86_64_GOTPCREL)
2934 continue;
2935
2936 /* Get the symbol referred to by the reloc. */
2937 if (r_symndx < symtab_hdr->sh_info)
2938 {
2939 Elf_Internal_Sym *isym;
2940
2941 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
2942 abfd, r_symndx);
2943
2944 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. */
2945 if (ELF_ST_TYPE (isym->st_info) != STT_GNU_IFUNC
2946 && irel->r_offset >= 2
2947 && bfd_get_8 (abfd, contents + irel->r_offset - 2) == 0x8b)
2948 {
2949 bfd_put_8 (abfd, 0x8d, contents + irel->r_offset - 2);
2950 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2951 if (local_got_refcounts != NULL
2952 && local_got_refcounts[r_symndx] > 0)
2953 local_got_refcounts[r_symndx] -= 1;
2954 changed_contents = TRUE;
2955 changed_relocs = TRUE;
2956 }
2957 continue;
2958 }
2959
2960 indx = r_symndx - symtab_hdr->sh_info;
2961 h = elf_sym_hashes (abfd)[indx];
2962 BFD_ASSERT (h != NULL);
2963
2964 while (h->root.type == bfd_link_hash_indirect
2965 || h->root.type == bfd_link_hash_warning)
2966 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2967
2968 /* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. We also
2969 avoid optimizing _DYNAMIC since ld.so may use its link-time
2970 address. */
2971 if (h->def_regular
2972 && h->type != STT_GNU_IFUNC
2973 && h != htab->elf.hdynamic
2974 && SYMBOL_REFERENCES_LOCAL (link_info, h)
2975 && irel->r_offset >= 2
2976 && bfd_get_8 (abfd, contents + irel->r_offset - 2) == 0x8b)
2977 {
2978 bfd_put_8 (abfd, 0x8d, contents + irel->r_offset - 2);
2979 irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
2980 if (h->got.refcount > 0)
2981 h->got.refcount -= 1;
2982 changed_contents = TRUE;
2983 changed_relocs = TRUE;
2984 }
2985 }
2986
2987 if (contents != NULL
2988 && elf_section_data (sec)->this_hdr.contents != contents)
2989 {
2990 if (!changed_contents && !link_info->keep_memory)
2991 free (contents);
2992 else
2993 {
2994 /* Cache the section contents for elf_link_input_bfd. */
2995 elf_section_data (sec)->this_hdr.contents = contents;
2996 }
2997 }
2998
2999 if (elf_section_data (sec)->relocs != internal_relocs)
3000 {
3001 if (!changed_relocs)
3002 free (internal_relocs);
3003 else
3004 elf_section_data (sec)->relocs = internal_relocs;
3005 }
3006
3007 return TRUE;
3008
3009 error_return:
3010 if (contents != NULL
3011 && elf_section_data (sec)->this_hdr.contents != contents)
3012 free (contents);
3013 if (internal_relocs != NULL
3014 && elf_section_data (sec)->relocs != internal_relocs)
3015 free (internal_relocs);
3016 return FALSE;
3017 }
3018
3019 /* Set the sizes of the dynamic sections. */
3020
3021 static bfd_boolean
3022 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
3023 struct bfd_link_info *info)
3024 {
3025 struct elf_x86_64_link_hash_table *htab;
3026 bfd *dynobj;
3027 asection *s;
3028 bfd_boolean relocs;
3029 bfd *ibfd;
3030 const struct elf_backend_data *bed;
3031
3032 htab = elf_x86_64_hash_table (info);
3033 if (htab == NULL)
3034 return FALSE;
3035 bed = get_elf_backend_data (output_bfd);
3036
3037 dynobj = htab->elf.dynobj;
3038 if (dynobj == NULL)
3039 abort ();
3040
3041 if (htab->elf.dynamic_sections_created)
3042 {
3043 /* Set the contents of the .interp section to the interpreter. */
3044 if (info->executable)
3045 {
3046 s = bfd_get_linker_section (dynobj, ".interp");
3047 if (s == NULL)
3048 abort ();
3049 s->size = htab->dynamic_interpreter_size;
3050 s->contents = (unsigned char *) htab->dynamic_interpreter;
3051 }
3052 }
3053
3054 /* Set up .got offsets for local syms, and space for local dynamic
3055 relocs. */
3056 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
3057 {
3058 bfd_signed_vma *local_got;
3059 bfd_signed_vma *end_local_got;
3060 char *local_tls_type;
3061 bfd_vma *local_tlsdesc_gotent;
3062 bfd_size_type locsymcount;
3063 Elf_Internal_Shdr *symtab_hdr;
3064 asection *srel;
3065
3066 if (! is_x86_64_elf (ibfd))
3067 continue;
3068
3069 for (s = ibfd->sections; s != NULL; s = s->next)
3070 {
3071 struct elf_dyn_relocs *p;
3072
3073 if (!elf_x86_64_convert_mov_to_lea (ibfd, s, info))
3074 return FALSE;
3075
3076 for (p = (struct elf_dyn_relocs *)
3077 (elf_section_data (s)->local_dynrel);
3078 p != NULL;
3079 p = p->next)
3080 {
3081 if (!bfd_is_abs_section (p->sec)
3082 && bfd_is_abs_section (p->sec->output_section))
3083 {
3084 /* Input section has been discarded, either because
3085 it is a copy of a linkonce section or due to
3086 linker script /DISCARD/, so we'll be discarding
3087 the relocs too. */
3088 }
3089 else if (p->count != 0)
3090 {
3091 srel = elf_section_data (p->sec)->sreloc;
3092 srel->size += p->count * bed->s->sizeof_rela;
3093 if ((p->sec->output_section->flags & SEC_READONLY) != 0
3094 && (info->flags & DF_TEXTREL) == 0)
3095 {
3096 info->flags |= DF_TEXTREL;
3097 if ((info->warn_shared_textrel && info->shared)
3098 || info->error_textrel)
3099 info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'\n"),
3100 p->sec->owner, p->sec);
3101 }
3102 }
3103 }
3104 }
3105
3106 local_got = elf_local_got_refcounts (ibfd);
3107 if (!local_got)
3108 continue;
3109
3110 symtab_hdr = &elf_symtab_hdr (ibfd);
3111 locsymcount = symtab_hdr->sh_info;
3112 end_local_got = local_got + locsymcount;
3113 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
3114 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
3115 s = htab->elf.sgot;
3116 srel = htab->elf.srelgot;
3117 for (; local_got < end_local_got;
3118 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
3119 {
3120 *local_tlsdesc_gotent = (bfd_vma) -1;
3121 if (*local_got > 0)
3122 {
3123 if (GOT_TLS_GDESC_P (*local_tls_type))
3124 {
3125 *local_tlsdesc_gotent = htab->elf.sgotplt->size
3126 - elf_x86_64_compute_jump_table_size (htab);
3127 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
3128 *local_got = (bfd_vma) -2;
3129 }
3130 if (! GOT_TLS_GDESC_P (*local_tls_type)
3131 || GOT_TLS_GD_P (*local_tls_type))
3132 {
3133 *local_got = s->size;
3134 s->size += GOT_ENTRY_SIZE;
3135 if (GOT_TLS_GD_P (*local_tls_type))
3136 s->size += GOT_ENTRY_SIZE;
3137 }
3138 if (info->shared
3139 || GOT_TLS_GD_ANY_P (*local_tls_type)
3140 || *local_tls_type == GOT_TLS_IE)
3141 {
3142 if (GOT_TLS_GDESC_P (*local_tls_type))
3143 {
3144 htab->elf.srelplt->size
3145 += bed->s->sizeof_rela;
3146 htab->tlsdesc_plt = (bfd_vma) -1;
3147 }
3148 if (! GOT_TLS_GDESC_P (*local_tls_type)
3149 || GOT_TLS_GD_P (*local_tls_type))
3150 srel->size += bed->s->sizeof_rela;
3151 }
3152 }
3153 else
3154 *local_got = (bfd_vma) -1;
3155 }
3156 }
3157
3158 if (htab->tls_ld_got.refcount > 0)
3159 {
3160 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
3161 relocs. */
3162 htab->tls_ld_got.offset = htab->elf.sgot->size;
3163 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
3164 htab->elf.srelgot->size += bed->s->sizeof_rela;
3165 }
3166 else
3167 htab->tls_ld_got.offset = -1;
3168
3169 /* Allocate global sym .plt and .got entries, and space for global
3170 sym dynamic relocs. */
3171 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
3172 info);
3173
3174 /* Allocate .plt and .got entries, and space for local symbols. */
3175 htab_traverse (htab->loc_hash_table,
3176 elf_x86_64_allocate_local_dynrelocs,
3177 info);
3178
3179 /* For every jump slot reserved in the sgotplt, reloc_count is
3180 incremented. However, when we reserve space for TLS descriptors,
3181 it's not incremented, so in order to compute the space reserved
3182 for them, it suffices to multiply the reloc count by the jump
3183 slot size.
3184
3185 PR ld/13302: We start next_irelative_index at the end of .rela.plt
3186 so that R_X86_64_IRELATIVE entries come last. */
3187 if (htab->elf.srelplt)
3188 {
3189 htab->sgotplt_jump_table_size
3190 = elf_x86_64_compute_jump_table_size (htab);
3191 htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
3192 }
3193 else if (htab->elf.irelplt)
3194 htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
3195
3196 if (htab->tlsdesc_plt)
3197 {
3198 /* If we're not using lazy TLS relocations, don't generate the
3199 PLT and GOT entries they require. */
3200 if ((info->flags & DF_BIND_NOW))
3201 htab->tlsdesc_plt = 0;
3202 else
3203 {
3204 htab->tlsdesc_got = htab->elf.sgot->size;
3205 htab->elf.sgot->size += GOT_ENTRY_SIZE;
3206 /* Reserve room for the initial entry.
3207 FIXME: we could probably do away with it in this case. */
3208 if (htab->elf.splt->size == 0)
3209 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3210 htab->tlsdesc_plt = htab->elf.splt->size;
3211 htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
3212 }
3213 }
3214
3215 if (htab->elf.sgotplt)
3216 {
3217 /* Don't allocate .got.plt section if there are no GOT nor PLT
3218 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
3219 if ((htab->elf.hgot == NULL
3220 || !htab->elf.hgot->ref_regular_nonweak)
3221 && (htab->elf.sgotplt->size
3222 == get_elf_backend_data (output_bfd)->got_header_size)
3223 && (htab->elf.splt == NULL
3224 || htab->elf.splt->size == 0)
3225 && (htab->elf.sgot == NULL
3226 || htab->elf.sgot->size == 0)
3227 && (htab->elf.iplt == NULL
3228 || htab->elf.iplt->size == 0)
3229 && (htab->elf.igotplt == NULL
3230 || htab->elf.igotplt->size == 0))
3231 htab->elf.sgotplt->size = 0;
3232 }
3233
3234 if (htab->plt_eh_frame != NULL
3235 && htab->elf.splt != NULL
3236 && htab->elf.splt->size != 0
3237 && !bfd_is_abs_section (htab->elf.splt->output_section)
3238 && _bfd_elf_eh_frame_present (info))
3239 {
3240 const struct elf_x86_64_backend_data *arch_data
3241 = get_elf_x86_64_arch_data (bed);
3242 htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
3243 }
3244
3245 /* We now have determined the sizes of the various dynamic sections.
3246 Allocate memory for them. */
3247 relocs = FALSE;
3248 for (s = dynobj->sections; s != NULL; s = s->next)
3249 {
3250 if ((s->flags & SEC_LINKER_CREATED) == 0)
3251 continue;
3252
3253 if (s == htab->elf.splt
3254 || s == htab->elf.sgot
3255 || s == htab->elf.sgotplt
3256 || s == htab->elf.iplt
3257 || s == htab->elf.igotplt
3258 || s == htab->plt_bnd
3259 || s == htab->plt_got
3260 || s == htab->plt_eh_frame
3261 || s == htab->sdynbss)
3262 {
3263 /* Strip this section if we don't need it; see the
3264 comment below. */
3265 }
3266 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
3267 {
3268 if (s->size != 0 && s != htab->elf.srelplt)
3269 relocs = TRUE;
3270
3271 /* We use the reloc_count field as a counter if we need
3272 to copy relocs into the output file. */
3273 if (s != htab->elf.srelplt)
3274 s->reloc_count = 0;
3275 }
3276 else
3277 {
3278 /* It's not one of our sections, so don't allocate space. */
3279 continue;
3280 }
3281
3282 if (s->size == 0)
3283 {
3284 /* If we don't need this section, strip it from the
3285 output file. This is mostly to handle .rela.bss and
3286 .rela.plt. We must create both sections in
3287 create_dynamic_sections, because they must be created
3288 before the linker maps input sections to output
3289 sections. The linker does that before
3290 adjust_dynamic_symbol is called, and it is that
3291 function which decides whether anything needs to go
3292 into these sections. */
3293
3294 s->flags |= SEC_EXCLUDE;
3295 continue;
3296 }
3297
3298 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3299 continue;
3300
3301 /* Allocate memory for the section contents. We use bfd_zalloc
3302 here in case unused entries are not reclaimed before the
3303 section's contents are written out. This should not happen,
3304 but this way if it does, we get a R_X86_64_NONE reloc instead
3305 of garbage. */
3306 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3307 if (s->contents == NULL)
3308 return FALSE;
3309 }
3310
3311 if (htab->plt_eh_frame != NULL
3312 && htab->plt_eh_frame->contents != NULL)
3313 {
3314 const struct elf_x86_64_backend_data *arch_data
3315 = get_elf_x86_64_arch_data (bed);
3316
3317 memcpy (htab->plt_eh_frame->contents,
3318 arch_data->eh_frame_plt, htab->plt_eh_frame->size);
3319 bfd_put_32 (dynobj, htab->elf.splt->size,
3320 htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
3321 }
3322
3323 if (htab->elf.dynamic_sections_created)
3324 {
3325 /* Add some entries to the .dynamic section. We fill in the
3326 values later, in elf_x86_64_finish_dynamic_sections, but we
3327 must add the entries now so that we get the correct size for
3328 the .dynamic section. The DT_DEBUG entry is filled in by the
3329 dynamic linker and used by the debugger. */
3330 #define add_dynamic_entry(TAG, VAL) \
3331 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3332
3333 if (info->executable)
3334 {
3335 if (!add_dynamic_entry (DT_DEBUG, 0))
3336 return FALSE;
3337 }
3338
3339 if (htab->elf.splt->size != 0)
3340 {
3341 if (!add_dynamic_entry (DT_PLTGOT, 0)
3342 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3343 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3344 || !add_dynamic_entry (DT_JMPREL, 0))
3345 return FALSE;
3346
3347 if (htab->tlsdesc_plt
3348 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
3349 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
3350 return FALSE;
3351 }
3352
3353 if (relocs)
3354 {
3355 if (!add_dynamic_entry (DT_RELA, 0)
3356 || !add_dynamic_entry (DT_RELASZ, 0)
3357 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
3358 return FALSE;
3359
3360 /* If any dynamic relocs apply to a read-only section,
3361 then we need a DT_TEXTREL entry. */
3362 if ((info->flags & DF_TEXTREL) == 0)
3363 elf_link_hash_traverse (&htab->elf,
3364 elf_x86_64_readonly_dynrelocs,
3365 info);
3366
3367 if ((info->flags & DF_TEXTREL) != 0)
3368 {
3369 if (!add_dynamic_entry (DT_TEXTREL, 0))
3370 return FALSE;
3371 }
3372 }
3373 }
3374 #undef add_dynamic_entry
3375
3376 return TRUE;
3377 }
3378
3379 static bfd_boolean
3380 elf_x86_64_always_size_sections (bfd *output_bfd,
3381 struct bfd_link_info *info)
3382 {
3383 asection *tls_sec = elf_hash_table (info)->tls_sec;
3384
3385 if (tls_sec)
3386 {
3387 struct elf_link_hash_entry *tlsbase;
3388
3389 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
3390 "_TLS_MODULE_BASE_",
3391 FALSE, FALSE, FALSE);
3392
3393 if (tlsbase && tlsbase->type == STT_TLS)
3394 {
3395 struct elf_x86_64_link_hash_table *htab;
3396 struct bfd_link_hash_entry *bh = NULL;
3397 const struct elf_backend_data *bed
3398 = get_elf_backend_data (output_bfd);
3399
3400 htab = elf_x86_64_hash_table (info);
3401 if (htab == NULL)
3402 return FALSE;
3403
3404 if (!(_bfd_generic_link_add_one_symbol
3405 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
3406 tls_sec, 0, NULL, FALSE,
3407 bed->collect, &bh)))
3408 return FALSE;
3409
3410 htab->tls_module_base = bh;
3411
3412 tlsbase = (struct elf_link_hash_entry *)bh;
3413 tlsbase->def_regular = 1;
3414 tlsbase->other = STV_HIDDEN;
3415 tlsbase->root.linker_def = 1;
3416 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
3417 }
3418 }
3419
3420 return TRUE;
3421 }
3422
3423 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
3424 executables. Rather than setting it to the beginning of the TLS
3425 section, we have to set it to the end. This function may be called
3426 multiple times, it is idempotent. */
3427
3428 static void
3429 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
3430 {
3431 struct elf_x86_64_link_hash_table *htab;
3432 struct bfd_link_hash_entry *base;
3433
3434 if (!info->executable)
3435 return;
3436
3437 htab = elf_x86_64_hash_table (info);
3438 if (htab == NULL)
3439 return;
3440
3441 base = htab->tls_module_base;
3442 if (base == NULL)
3443 return;
3444
3445 base->u.def.value = htab->elf.tls_size;
3446 }
3447
3448 /* Return the base VMA address which should be subtracted from real addresses
3449 when resolving @dtpoff relocation.
3450 This is PT_TLS segment p_vaddr. */
3451
3452 static bfd_vma
3453 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
3454 {
3455 /* If tls_sec is NULL, we should have signalled an error already. */
3456 if (elf_hash_table (info)->tls_sec == NULL)
3457 return 0;
3458 return elf_hash_table (info)->tls_sec->vma;
3459 }
3460
3461 /* Return the relocation value for @tpoff relocation
3462 if STT_TLS virtual address is ADDRESS. */
3463
3464 static bfd_vma
3465 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
3466 {
3467 struct elf_link_hash_table *htab = elf_hash_table (info);
3468 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
3469 bfd_vma static_tls_size;
3470
3471 /* If tls_segment is NULL, we should have signalled an error already. */
3472 if (htab->tls_sec == NULL)
3473 return 0;
3474
3475 /* Consider special static TLS alignment requirements. */
3476 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
3477 return address - static_tls_size - htab->tls_sec->vma;
3478 }
3479
3480 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
3481 branch? */
3482
3483 static bfd_boolean
3484 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
3485 {
3486 /* Opcode Instruction
3487 0xe8 call
3488 0xe9 jump
3489 0x0f 0x8x conditional jump */
3490 return ((offset > 0
3491 && (contents [offset - 1] == 0xe8
3492 || contents [offset - 1] == 0xe9))
3493 || (offset > 1
3494 && contents [offset - 2] == 0x0f
3495 && (contents [offset - 1] & 0xf0) == 0x80));
3496 }
3497
3498 /* Relocate an x86_64 ELF section. */
3499
3500 static bfd_boolean
3501 elf_x86_64_relocate_section (bfd *output_bfd,
3502 struct bfd_link_info *info,
3503 bfd *input_bfd,
3504 asection *input_section,
3505 bfd_byte *contents,
3506 Elf_Internal_Rela *relocs,
3507 Elf_Internal_Sym *local_syms,
3508 asection **local_sections)
3509 {
3510 struct elf_x86_64_link_hash_table *htab;
3511 Elf_Internal_Shdr *symtab_hdr;
3512 struct elf_link_hash_entry **sym_hashes;
3513 bfd_vma *local_got_offsets;
3514 bfd_vma *local_tlsdesc_gotents;
3515 Elf_Internal_Rela *rel;
3516 Elf_Internal_Rela *relend;
3517 const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
3518
3519 BFD_ASSERT (is_x86_64_elf (input_bfd));
3520
3521 htab = elf_x86_64_hash_table (info);
3522 if (htab == NULL)
3523 return FALSE;
3524 symtab_hdr = &elf_symtab_hdr (input_bfd);
3525 sym_hashes = elf_sym_hashes (input_bfd);
3526 local_got_offsets = elf_local_got_offsets (input_bfd);
3527 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
3528
3529 elf_x86_64_set_tls_module_base (info);
3530
3531 rel = relocs;
3532 relend = relocs + input_section->reloc_count;
3533 for (; rel < relend; rel++)
3534 {
3535 unsigned int r_type;
3536 reloc_howto_type *howto;
3537 unsigned long r_symndx;
3538 struct elf_link_hash_entry *h;
3539 struct elf_x86_64_link_hash_entry *eh;
3540 Elf_Internal_Sym *sym;
3541 asection *sec;
3542 bfd_vma off, offplt, plt_offset;
3543 bfd_vma relocation;
3544 bfd_boolean unresolved_reloc;
3545 bfd_reloc_status_type r;
3546 int tls_type;
3547 asection *base_got, *resolved_plt;
3548 bfd_vma st_size;
3549
3550 r_type = ELF32_R_TYPE (rel->r_info);
3551 if (r_type == (int) R_X86_64_GNU_VTINHERIT
3552 || r_type == (int) R_X86_64_GNU_VTENTRY)
3553 continue;
3554
3555 if (r_type >= (int) R_X86_64_standard)
3556 {
3557 (*_bfd_error_handler)
3558 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
3559 input_bfd, input_section, r_type);
3560 bfd_set_error (bfd_error_bad_value);
3561 return FALSE;
3562 }
3563
3564 if (r_type != (int) R_X86_64_32
3565 || ABI_64_P (output_bfd))
3566 howto = x86_64_elf_howto_table + r_type;
3567 else
3568 howto = (x86_64_elf_howto_table
3569 + ARRAY_SIZE (x86_64_elf_howto_table) - 1);
3570 r_symndx = htab->r_sym (rel->r_info);
3571 h = NULL;
3572 sym = NULL;
3573 sec = NULL;
3574 unresolved_reloc = FALSE;
3575 if (r_symndx < symtab_hdr->sh_info)
3576 {
3577 sym = local_syms + r_symndx;
3578 sec = local_sections[r_symndx];
3579
3580 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
3581 &sec, rel);
3582 st_size = sym->st_size;
3583
3584 /* Relocate against local STT_GNU_IFUNC symbol. */
3585 if (!info->relocatable
3586 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
3587 {
3588 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
3589 rel, FALSE);
3590 if (h == NULL)
3591 abort ();
3592
3593 /* Set STT_GNU_IFUNC symbol value. */
3594 h->root.u.def.value = sym->st_value;
3595 h->root.u.def.section = sec;
3596 }
3597 }
3598 else
3599 {
3600 bfd_boolean warned ATTRIBUTE_UNUSED;
3601 bfd_boolean ignored ATTRIBUTE_UNUSED;
3602
3603 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3604 r_symndx, symtab_hdr, sym_hashes,
3605 h, sec, relocation,
3606 unresolved_reloc, warned, ignored);
3607 st_size = h->size;
3608 }
3609
3610 if (sec != NULL && discarded_section (sec))
3611 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3612 rel, 1, relend, howto, 0, contents);
3613
3614 if (info->relocatable)
3615 continue;
3616
3617 if (rel->r_addend == 0 && !ABI_64_P (output_bfd))
3618 {
3619 if (r_type == R_X86_64_64)
3620 {
3621 /* For x32, treat R_X86_64_64 like R_X86_64_32 and
3622 zero-extend it to 64bit if addend is zero. */
3623 r_type = R_X86_64_32;
3624 memset (contents + rel->r_offset + 4, 0, 4);
3625 }
3626 else if (r_type == R_X86_64_SIZE64)
3627 {
3628 /* For x32, treat R_X86_64_SIZE64 like R_X86_64_SIZE32 and
3629 zero-extend it to 64bit if addend is zero. */
3630 r_type = R_X86_64_SIZE32;
3631 memset (contents + rel->r_offset + 4, 0, 4);
3632 }
3633 }
3634
3635 eh = (struct elf_x86_64_link_hash_entry *) h;
3636
3637 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3638 it here if it is defined in a non-shared object. */
3639 if (h != NULL
3640 && h->type == STT_GNU_IFUNC
3641 && h->def_regular)
3642 {
3643 bfd_vma plt_index;
3644 const char *name;
3645
3646 if ((input_section->flags & SEC_ALLOC) == 0
3647 || h->plt.offset == (bfd_vma) -1)
3648 abort ();
3649
3650 /* STT_GNU_IFUNC symbol must go through PLT. */
3651 if (htab->elf.splt != NULL)
3652 {
3653 if (htab->plt_bnd != NULL)
3654 {
3655 resolved_plt = htab->plt_bnd;
3656 plt_offset = eh->plt_bnd.offset;
3657 }
3658 else
3659 {
3660 resolved_plt = htab->elf.splt;
3661 plt_offset = h->plt.offset;
3662 }
3663 }
3664 else
3665 {
3666 resolved_plt = htab->elf.iplt;
3667 plt_offset = h->plt.offset;
3668 }
3669
3670 relocation = (resolved_plt->output_section->vma
3671 + resolved_plt->output_offset + plt_offset);
3672
3673 switch (r_type)
3674 {
3675 default:
3676 if (h->root.root.string)
3677 name = h->root.root.string;
3678 else
3679 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
3680 NULL);
3681 (*_bfd_error_handler)
3682 (_("%B: relocation %s against STT_GNU_IFUNC "
3683 "symbol `%s' isn't handled by %s"), input_bfd,
3684 x86_64_elf_howto_table[r_type].name,
3685 name, __FUNCTION__);
3686 bfd_set_error (bfd_error_bad_value);
3687 return FALSE;
3688
3689 case R_X86_64_32S:
3690 if (info->shared)
3691 abort ();
3692 goto do_relocation;
3693
3694 case R_X86_64_32:
3695 if (ABI_64_P (output_bfd))
3696 goto do_relocation;
3697 /* FALLTHROUGH */
3698 case R_X86_64_64:
3699 if (rel->r_addend != 0)
3700 {
3701 if (h->root.root.string)
3702 name = h->root.root.string;
3703 else
3704 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
3705 sym, NULL);
3706 (*_bfd_error_handler)
3707 (_("%B: relocation %s against STT_GNU_IFUNC "
3708 "symbol `%s' has non-zero addend: %d"),
3709 input_bfd, x86_64_elf_howto_table[r_type].name,
3710 name, rel->r_addend);
3711 bfd_set_error (bfd_error_bad_value);
3712 return FALSE;
3713 }
3714
3715 /* Generate dynamic relcoation only when there is a
3716 non-GOT reference in a shared object. */
3717 if (info->shared && h->non_got_ref)
3718 {
3719 Elf_Internal_Rela outrel;
3720 asection *sreloc;
3721
3722 /* Need a dynamic relocation to get the real function
3723 address. */
3724 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
3725 info,
3726 input_section,
3727 rel->r_offset);
3728 if (outrel.r_offset == (bfd_vma) -1
3729 || outrel.r_offset == (bfd_vma) -2)
3730 abort ();
3731
3732 outrel.r_offset += (input_section->output_section->vma
3733 + input_section->output_offset);
3734
3735 if (h->dynindx == -1
3736 || h->forced_local
3737 || info->executable)
3738 {
3739 /* This symbol is resolved locally. */
3740 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
3741 outrel.r_addend = (h->root.u.def.value
3742 + h->root.u.def.section->output_section->vma
3743 + h->root.u.def.section->output_offset);
3744 }
3745 else
3746 {
3747 outrel.r_info = htab->r_info (h->dynindx, r_type);
3748 outrel.r_addend = 0;
3749 }
3750
3751 sreloc = htab->elf.irelifunc;
3752 elf_append_rela (output_bfd, sreloc, &outrel);
3753
3754 /* If this reloc is against an external symbol, we
3755 do not want to fiddle with the addend. Otherwise,
3756 we need to include the symbol value so that it
3757 becomes an addend for the dynamic reloc. For an
3758 internal symbol, we have updated addend. */
3759 continue;
3760 }
3761 /* FALLTHROUGH */
3762 case R_X86_64_PC32:
3763 case R_X86_64_PC32_BND:
3764 case R_X86_64_PC64:
3765 case R_X86_64_PLT32:
3766 case R_X86_64_PLT32_BND:
3767 goto do_relocation;
3768
3769 case R_X86_64_GOTPCREL:
3770 case R_X86_64_GOTPCREL64:
3771 base_got = htab->elf.sgot;
3772 off = h->got.offset;
3773
3774 if (base_got == NULL)
3775 abort ();
3776
3777 if (off == (bfd_vma) -1)
3778 {
3779 /* We can't use h->got.offset here to save state, or
3780 even just remember the offset, as finish_dynamic_symbol
3781 would use that as offset into .got. */
3782
3783 if (htab->elf.splt != NULL)
3784 {
3785 plt_index = h->plt.offset / plt_entry_size - 1;
3786 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3787 base_got = htab->elf.sgotplt;
3788 }
3789 else
3790 {
3791 plt_index = h->plt.offset / plt_entry_size;
3792 off = plt_index * GOT_ENTRY_SIZE;
3793 base_got = htab->elf.igotplt;
3794 }
3795
3796 if (h->dynindx == -1
3797 || h->forced_local
3798 || info->symbolic)
3799 {
3800 /* This references the local defitionion. We must
3801 initialize this entry in the global offset table.
3802 Since the offset must always be a multiple of 8,
3803 we use the least significant bit to record
3804 whether we have initialized it already.
3805
3806 When doing a dynamic link, we create a .rela.got
3807 relocation entry to initialize the value. This
3808 is done in the finish_dynamic_symbol routine. */
3809 if ((off & 1) != 0)
3810 off &= ~1;
3811 else
3812 {
3813 bfd_put_64 (output_bfd, relocation,
3814 base_got->contents + off);
3815 /* Note that this is harmless for the GOTPLT64
3816 case, as -1 | 1 still is -1. */
3817 h->got.offset |= 1;
3818 }
3819 }
3820 }
3821
3822 relocation = (base_got->output_section->vma
3823 + base_got->output_offset + off);
3824
3825 goto do_relocation;
3826 }
3827 }
3828
3829 /* When generating a shared object, the relocations handled here are
3830 copied into the output file to be resolved at run time. */
3831 switch (r_type)
3832 {
3833 case R_X86_64_GOT32:
3834 case R_X86_64_GOT64:
3835 /* Relocation is to the entry for this symbol in the global
3836 offset table. */
3837 case R_X86_64_GOTPCREL:
3838 case R_X86_64_GOTPCREL64:
3839 /* Use global offset table entry as symbol value. */
3840 case R_X86_64_GOTPLT64:
3841 /* This is obsolete and treated the the same as GOT64. */
3842 base_got = htab->elf.sgot;
3843
3844 if (htab->elf.sgot == NULL)
3845 abort ();
3846
3847 if (h != NULL)
3848 {
3849 bfd_boolean dyn;
3850
3851 off = h->got.offset;
3852 if (h->needs_plt
3853 && h->plt.offset != (bfd_vma)-1
3854 && off == (bfd_vma)-1)
3855 {
3856 /* We can't use h->got.offset here to save
3857 state, or even just remember the offset, as
3858 finish_dynamic_symbol would use that as offset into
3859 .got. */
3860 bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
3861 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3862 base_got = htab->elf.sgotplt;
3863 }
3864
3865 dyn = htab->elf.dynamic_sections_created;
3866
3867 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3868 || (info->shared
3869 && SYMBOL_REFERENCES_LOCAL (info, h))
3870 || (ELF_ST_VISIBILITY (h->other)
3871 && h->root.type == bfd_link_hash_undefweak))
3872 {
3873 /* This is actually a static link, or it is a -Bsymbolic
3874 link and the symbol is defined locally, or the symbol
3875 was forced to be local because of a version file. We
3876 must initialize this entry in the global offset table.
3877 Since the offset must always be a multiple of 8, we
3878 use the least significant bit to record whether we
3879 have initialized it already.
3880
3881 When doing a dynamic link, we create a .rela.got
3882 relocation entry to initialize the value. This is
3883 done in the finish_dynamic_symbol routine. */
3884 if ((off & 1) != 0)
3885 off &= ~1;
3886 else
3887 {
3888 bfd_put_64 (output_bfd, relocation,
3889 base_got->contents + off);
3890 /* Note that this is harmless for the GOTPLT64 case,
3891 as -1 | 1 still is -1. */
3892 h->got.offset |= 1;
3893 }
3894 }
3895 else
3896 unresolved_reloc = FALSE;
3897 }
3898 else
3899 {
3900 if (local_got_offsets == NULL)
3901 abort ();
3902
3903 off = local_got_offsets[r_symndx];
3904
3905 /* The offset must always be a multiple of 8. We use
3906 the least significant bit to record whether we have
3907 already generated the necessary reloc. */
3908 if ((off & 1) != 0)
3909 off &= ~1;
3910 else
3911 {
3912 bfd_put_64 (output_bfd, relocation,
3913 base_got->contents + off);
3914
3915 if (info->shared)
3916 {
3917 asection *s;
3918 Elf_Internal_Rela outrel;
3919
3920 /* We need to generate a R_X86_64_RELATIVE reloc
3921 for the dynamic linker. */
3922 s = htab->elf.srelgot;
3923 if (s == NULL)
3924 abort ();
3925
3926 outrel.r_offset = (base_got->output_section->vma
3927 + base_got->output_offset
3928 + off);
3929 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3930 outrel.r_addend = relocation;
3931 elf_append_rela (output_bfd, s, &outrel);
3932 }
3933
3934 local_got_offsets[r_symndx] |= 1;
3935 }
3936 }
3937
3938 if (off >= (bfd_vma) -2)
3939 abort ();
3940
3941 relocation = base_got->output_section->vma
3942 + base_got->output_offset + off;
3943 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3944 relocation -= htab->elf.sgotplt->output_section->vma
3945 - htab->elf.sgotplt->output_offset;
3946
3947 break;
3948
3949 case R_X86_64_GOTOFF64:
3950 /* Relocation is relative to the start of the global offset
3951 table. */
3952
3953 /* Check to make sure it isn't a protected function or data
3954 symbol for shared library since it may not be local when
3955 used as function address or with copy relocation. We also
3956 need to make sure that a symbol is referenced locally. */
3957 if (info->shared && h)
3958 {
3959 if (!h->def_regular)
3960 {
3961 const char *v;
3962
3963 switch (ELF_ST_VISIBILITY (h->other))
3964 {
3965 case STV_HIDDEN:
3966 v = _("hidden symbol");
3967 break;
3968 case STV_INTERNAL:
3969 v = _("internal symbol");
3970 break;
3971 case STV_PROTECTED:
3972 v = _("protected symbol");
3973 break;
3974 default:
3975 v = _("symbol");
3976 break;
3977 }
3978
3979 (*_bfd_error_handler)
3980 (_("%B: relocation R_X86_64_GOTOFF64 against undefined %s `%s' can not be used when making a shared object"),
3981 input_bfd, v, h->root.root.string);
3982 bfd_set_error (bfd_error_bad_value);
3983 return FALSE;
3984 }
3985 else if (!info->executable
3986 && !SYMBOL_REFERENCES_LOCAL (info, h)
3987 && (h->type == STT_FUNC
3988 || h->type == STT_OBJECT)
3989 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3990 {
3991 (*_bfd_error_handler)
3992 (_("%B: relocation R_X86_64_GOTOFF64 against protected %s `%s' can not be used when making a shared object"),
3993 input_bfd,
3994 h->type == STT_FUNC ? "function" : "data",
3995 h->root.root.string);
3996 bfd_set_error (bfd_error_bad_value);
3997 return FALSE;
3998 }
3999 }
4000
4001 /* Note that sgot is not involved in this
4002 calculation. We always want the start of .got.plt. If we
4003 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
4004 permitted by the ABI, we might have to change this
4005 calculation. */
4006 relocation -= htab->elf.sgotplt->output_section->vma
4007 + htab->elf.sgotplt->output_offset;
4008 break;
4009
4010 case R_X86_64_GOTPC32:
4011 case R_X86_64_GOTPC64:
4012 /* Use global offset table as symbol value. */
4013 relocation = htab->elf.sgotplt->output_section->vma
4014 + htab->elf.sgotplt->output_offset;
4015 unresolved_reloc = FALSE;
4016 break;
4017
4018 case R_X86_64_PLTOFF64:
4019 /* Relocation is PLT entry relative to GOT. For local
4020 symbols it's the symbol itself relative to GOT. */
4021 if (h != NULL
4022 /* See PLT32 handling. */
4023 && h->plt.offset != (bfd_vma) -1
4024 && htab->elf.splt != NULL)
4025 {
4026 if (htab->plt_bnd != NULL)
4027 {
4028 resolved_plt = htab->plt_bnd;
4029 plt_offset = eh->plt_bnd.offset;
4030 }
4031 else
4032 {
4033 resolved_plt = htab->elf.splt;
4034 plt_offset = h->plt.offset;
4035 }
4036
4037 relocation = (resolved_plt->output_section->vma
4038 + resolved_plt->output_offset
4039 + plt_offset);
4040 unresolved_reloc = FALSE;
4041 }
4042
4043 relocation -= htab->elf.sgotplt->output_section->vma
4044 + htab->elf.sgotplt->output_offset;
4045 break;
4046
4047 case R_X86_64_PLT32:
4048 case R_X86_64_PLT32_BND:
4049 /* Relocation is to the entry for this symbol in the
4050 procedure linkage table. */
4051
4052 /* Resolve a PLT32 reloc against a local symbol directly,
4053 without using the procedure linkage table. */
4054 if (h == NULL)
4055 break;
4056
4057 if ((h->plt.offset == (bfd_vma) -1
4058 && eh->plt_got.offset == (bfd_vma) -1)
4059 || htab->elf.splt == NULL)
4060 {
4061 /* We didn't make a PLT entry for this symbol. This
4062 happens when statically linking PIC code, or when
4063 using -Bsymbolic. */
4064 break;
4065 }
4066
4067 if (h->plt.offset != (bfd_vma) -1)
4068 {
4069 if (htab->plt_bnd != NULL)
4070 {
4071 resolved_plt = htab->plt_bnd;
4072 plt_offset = eh->plt_bnd.offset;
4073 }
4074 else
4075 {
4076 resolved_plt = htab->elf.splt;
4077 plt_offset = h->plt.offset;
4078 }
4079 }
4080 else
4081 {
4082 /* Use the GOT PLT. */
4083 resolved_plt = htab->plt_got;
4084 plt_offset = eh->plt_got.offset;
4085 }
4086
4087 relocation = (resolved_plt->output_section->vma
4088 + resolved_plt->output_offset
4089 + plt_offset);
4090 unresolved_reloc = FALSE;
4091 break;
4092
4093 case R_X86_64_SIZE32:
4094 case R_X86_64_SIZE64:
4095 /* Set to symbol size. */
4096 relocation = st_size;
4097 goto direct;
4098
4099 case R_X86_64_PC8:
4100 case R_X86_64_PC16:
4101 case R_X86_64_PC32:
4102 case R_X86_64_PC32_BND:
4103 /* Don't complain about -fPIC if the symbol is undefined when
4104 building executable. */
4105 if (info->shared
4106 && (input_section->flags & SEC_ALLOC) != 0
4107 && (input_section->flags & SEC_READONLY) != 0
4108 && h != NULL
4109 && !(info->executable
4110 && h->root.type == bfd_link_hash_undefined))
4111 {
4112 bfd_boolean fail = FALSE;
4113 bfd_boolean branch
4114 = ((r_type == R_X86_64_PC32
4115 || r_type == R_X86_64_PC32_BND)
4116 && is_32bit_relative_branch (contents, rel->r_offset));
4117
4118 if (SYMBOL_REFERENCES_LOCAL (info, h))
4119 {
4120 /* Symbol is referenced locally. Make sure it is
4121 defined locally or for a branch. */
4122 fail = !h->def_regular && !branch;
4123 }
4124 else if (!(info->executable
4125 && (h->needs_copy || eh->needs_copy)))
4126 {
4127 /* Symbol doesn't need copy reloc and isn't referenced
4128 locally. We only allow branch to symbol with
4129 non-default visibility. */
4130 fail = (!branch
4131 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
4132 }
4133
4134 if (fail)
4135 {
4136 const char *fmt;
4137 const char *v;
4138 const char *pic = "";
4139
4140 switch (ELF_ST_VISIBILITY (h->other))
4141 {
4142 case STV_HIDDEN:
4143 v = _("hidden symbol");
4144 break;
4145 case STV_INTERNAL:
4146 v = _("internal symbol");
4147 break;
4148 case STV_PROTECTED:
4149 v = _("protected symbol");
4150 break;
4151 default:
4152 v = _("symbol");
4153 pic = _("; recompile with -fPIC");
4154 break;
4155 }
4156
4157 if (h->def_regular)
4158 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
4159 else
4160 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
4161
4162 (*_bfd_error_handler) (fmt, input_bfd,
4163 x86_64_elf_howto_table[r_type].name,
4164 v, h->root.root.string, pic);
4165 bfd_set_error (bfd_error_bad_value);
4166 return FALSE;
4167 }
4168 }
4169 /* Fall through. */
4170
4171 case R_X86_64_8:
4172 case R_X86_64_16:
4173 case R_X86_64_32:
4174 case R_X86_64_PC64:
4175 case R_X86_64_64:
4176 /* FIXME: The ABI says the linker should make sure the value is
4177 the same when it's zeroextended to 64 bit. */
4178
4179 direct:
4180 if ((input_section->flags & SEC_ALLOC) == 0)
4181 break;
4182
4183 /* Don't copy a pc-relative relocation into the output file
4184 if the symbol needs copy reloc or the symbol is undefined
4185 when building executable. */
4186 if ((info->shared
4187 && !(info->executable
4188 && h != NULL
4189 && (h->needs_copy
4190 || eh->needs_copy
4191 || h->root.type == bfd_link_hash_undefined)
4192 && IS_X86_64_PCREL_TYPE (r_type))
4193 && (h == NULL
4194 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4195 || h->root.type != bfd_link_hash_undefweak)
4196 && ((! IS_X86_64_PCREL_TYPE (r_type)
4197 && r_type != R_X86_64_SIZE32
4198 && r_type != R_X86_64_SIZE64)
4199 || ! SYMBOL_CALLS_LOCAL (info, h)))
4200 || (ELIMINATE_COPY_RELOCS
4201 && !info->shared
4202 && h != NULL
4203 && h->dynindx != -1
4204 && !h->non_got_ref
4205 && ((h->def_dynamic
4206 && !h->def_regular)
4207 || h->root.type == bfd_link_hash_undefweak
4208 || h->root.type == bfd_link_hash_undefined)))
4209 {
4210 Elf_Internal_Rela outrel;
4211 bfd_boolean skip, relocate;
4212 asection *sreloc;
4213
4214 /* When generating a shared object, these relocations
4215 are copied into the output file to be resolved at run
4216 time. */
4217 skip = FALSE;
4218 relocate = FALSE;
4219
4220 outrel.r_offset =
4221 _bfd_elf_section_offset (output_bfd, info, input_section,
4222 rel->r_offset);
4223 if (outrel.r_offset == (bfd_vma) -1)
4224 skip = TRUE;
4225 else if (outrel.r_offset == (bfd_vma) -2)
4226 skip = TRUE, relocate = TRUE;
4227
4228 outrel.r_offset += (input_section->output_section->vma
4229 + input_section->output_offset);
4230
4231 if (skip)
4232 memset (&outrel, 0, sizeof outrel);
4233
4234 /* h->dynindx may be -1 if this symbol was marked to
4235 become local. */
4236 else if (h != NULL
4237 && h->dynindx != -1
4238 && (IS_X86_64_PCREL_TYPE (r_type)
4239 || ! info->shared
4240 || ! SYMBOLIC_BIND (info, h)
4241 || ! h->def_regular))
4242 {
4243 outrel.r_info = htab->r_info (h->dynindx, r_type);
4244 outrel.r_addend = rel->r_addend;
4245 }
4246 else
4247 {
4248 /* This symbol is local, or marked to become local. */
4249 if (r_type == htab->pointer_r_type)
4250 {
4251 relocate = TRUE;
4252 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4253 outrel.r_addend = relocation + rel->r_addend;
4254 }
4255 else if (r_type == R_X86_64_64
4256 && !ABI_64_P (output_bfd))
4257 {
4258 relocate = TRUE;
4259 outrel.r_info = htab->r_info (0,
4260 R_X86_64_RELATIVE64);
4261 outrel.r_addend = relocation + rel->r_addend;
4262 /* Check addend overflow. */
4263 if ((outrel.r_addend & 0x80000000)
4264 != (rel->r_addend & 0x80000000))
4265 {
4266 const char *name;
4267 int addend = rel->r_addend;
4268 if (h && h->root.root.string)
4269 name = h->root.root.string;
4270 else
4271 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4272 sym, NULL);
4273 if (addend < 0)
4274 (*_bfd_error_handler)
4275 (_("%B: addend -0x%x in relocation %s against "
4276 "symbol `%s' at 0x%lx in section `%A' is "
4277 "out of range"),
4278 input_bfd, input_section, addend,
4279 x86_64_elf_howto_table[r_type].name,
4280 name, (unsigned long) rel->r_offset);
4281 else
4282 (*_bfd_error_handler)
4283 (_("%B: addend 0x%x in relocation %s against "
4284 "symbol `%s' at 0x%lx in section `%A' is "
4285 "out of range"),
4286 input_bfd, input_section, addend,
4287 x86_64_elf_howto_table[r_type].name,
4288 name, (unsigned long) rel->r_offset);
4289 bfd_set_error (bfd_error_bad_value);
4290 return FALSE;
4291 }
4292 }
4293 else
4294 {
4295 long sindx;
4296
4297 if (bfd_is_abs_section (sec))
4298 sindx = 0;
4299 else if (sec == NULL || sec->owner == NULL)
4300 {
4301 bfd_set_error (bfd_error_bad_value);
4302 return FALSE;
4303 }
4304 else
4305 {
4306 asection *osec;
4307
4308 /* We are turning this relocation into one
4309 against a section symbol. It would be
4310 proper to subtract the symbol's value,
4311 osec->vma, from the emitted reloc addend,
4312 but ld.so expects buggy relocs. */
4313 osec = sec->output_section;
4314 sindx = elf_section_data (osec)->dynindx;
4315 if (sindx == 0)
4316 {
4317 asection *oi = htab->elf.text_index_section;
4318 sindx = elf_section_data (oi)->dynindx;
4319 }
4320 BFD_ASSERT (sindx != 0);
4321 }
4322
4323 outrel.r_info = htab->r_info (sindx, r_type);
4324 outrel.r_addend = relocation + rel->r_addend;
4325 }
4326 }
4327
4328 sreloc = elf_section_data (input_section)->sreloc;
4329
4330 if (sreloc == NULL || sreloc->contents == NULL)
4331 {
4332 r = bfd_reloc_notsupported;
4333 goto check_relocation_error;
4334 }
4335
4336 elf_append_rela (output_bfd, sreloc, &outrel);
4337
4338 /* If this reloc is against an external symbol, we do
4339 not want to fiddle with the addend. Otherwise, we
4340 need to include the symbol value so that it becomes
4341 an addend for the dynamic reloc. */
4342 if (! relocate)
4343 continue;
4344 }
4345
4346 break;
4347
4348 case R_X86_64_TLSGD:
4349 case R_X86_64_GOTPC32_TLSDESC:
4350 case R_X86_64_TLSDESC_CALL:
4351 case R_X86_64_GOTTPOFF:
4352 tls_type = GOT_UNKNOWN;
4353 if (h == NULL && local_got_offsets)
4354 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
4355 else if (h != NULL)
4356 tls_type = elf_x86_64_hash_entry (h)->tls_type;
4357
4358 if (! elf_x86_64_tls_transition (info, input_bfd,
4359 input_section, contents,
4360 symtab_hdr, sym_hashes,
4361 &r_type, tls_type, rel,
4362 relend, h, r_symndx))
4363 return FALSE;
4364
4365 if (r_type == R_X86_64_TPOFF32)
4366 {
4367 bfd_vma roff = rel->r_offset;
4368
4369 BFD_ASSERT (! unresolved_reloc);
4370
4371 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4372 {
4373 /* GD->LE transition. For 64bit, change
4374 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4375 .word 0x6666; rex64; call __tls_get_addr
4376 into:
4377 movq %fs:0, %rax
4378 leaq foo@tpoff(%rax), %rax
4379 For 32bit, change
4380 leaq foo@tlsgd(%rip), %rdi
4381 .word 0x6666; rex64; call __tls_get_addr
4382 into:
4383 movl %fs:0, %eax
4384 leaq foo@tpoff(%rax), %rax
4385 For largepic, change:
4386 leaq foo@tlsgd(%rip), %rdi
4387 movabsq $__tls_get_addr@pltoff, %rax
4388 addq %rbx, %rax
4389 call *%rax
4390 into:
4391 movq %fs:0, %rax
4392 leaq foo@tpoff(%rax), %rax
4393 nopw 0x0(%rax,%rax,1) */
4394 int largepic = 0;
4395 if (ABI_64_P (output_bfd)
4396 && contents[roff + 5] == (bfd_byte) '\xb8')
4397 {
4398 memcpy (contents + roff - 3,
4399 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80"
4400 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4401 largepic = 1;
4402 }
4403 else if (ABI_64_P (output_bfd))
4404 memcpy (contents + roff - 4,
4405 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4406 16);
4407 else
4408 memcpy (contents + roff - 3,
4409 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
4410 15);
4411 bfd_put_32 (output_bfd,
4412 elf_x86_64_tpoff (info, relocation),
4413 contents + roff + 8 + largepic);
4414 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4415 rel++;
4416 continue;
4417 }
4418 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4419 {
4420 /* GDesc -> LE transition.
4421 It's originally something like:
4422 leaq x@tlsdesc(%rip), %rax
4423
4424 Change it to:
4425 movl $x@tpoff, %rax. */
4426
4427 unsigned int val, type;
4428
4429 type = bfd_get_8 (input_bfd, contents + roff - 3);
4430 val = bfd_get_8 (input_bfd, contents + roff - 1);
4431 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
4432 contents + roff - 3);
4433 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
4434 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
4435 contents + roff - 1);
4436 bfd_put_32 (output_bfd,
4437 elf_x86_64_tpoff (info, relocation),
4438 contents + roff);
4439 continue;
4440 }
4441 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4442 {
4443 /* GDesc -> LE transition.
4444 It's originally:
4445 call *(%rax)
4446 Turn it into:
4447 xchg %ax,%ax. */
4448 bfd_put_8 (output_bfd, 0x66, contents + roff);
4449 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4450 continue;
4451 }
4452 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
4453 {
4454 /* IE->LE transition:
4455 For 64bit, originally it can be one of:
4456 movq foo@gottpoff(%rip), %reg
4457 addq foo@gottpoff(%rip), %reg
4458 We change it into:
4459 movq $foo, %reg
4460 leaq foo(%reg), %reg
4461 addq $foo, %reg.
4462 For 32bit, originally it can be one of:
4463 movq foo@gottpoff(%rip), %reg
4464 addl foo@gottpoff(%rip), %reg
4465 We change it into:
4466 movq $foo, %reg
4467 leal foo(%reg), %reg
4468 addl $foo, %reg. */
4469
4470 unsigned int val, type, reg;
4471
4472 if (roff >= 3)
4473 val = bfd_get_8 (input_bfd, contents + roff - 3);
4474 else
4475 val = 0;
4476 type = bfd_get_8 (input_bfd, contents + roff - 2);
4477 reg = bfd_get_8 (input_bfd, contents + roff - 1);
4478 reg >>= 3;
4479 if (type == 0x8b)
4480 {
4481 /* movq */
4482 if (val == 0x4c)
4483 bfd_put_8 (output_bfd, 0x49,
4484 contents + roff - 3);
4485 else if (!ABI_64_P (output_bfd) && val == 0x44)
4486 bfd_put_8 (output_bfd, 0x41,
4487 contents + roff - 3);
4488 bfd_put_8 (output_bfd, 0xc7,
4489 contents + roff - 2);
4490 bfd_put_8 (output_bfd, 0xc0 | reg,
4491 contents + roff - 1);
4492 }
4493 else if (reg == 4)
4494 {
4495 /* addq/addl -> addq/addl - addressing with %rsp/%r12
4496 is special */
4497 if (val == 0x4c)
4498 bfd_put_8 (output_bfd, 0x49,
4499 contents + roff - 3);
4500 else if (!ABI_64_P (output_bfd) && val == 0x44)
4501 bfd_put_8 (output_bfd, 0x41,
4502 contents + roff - 3);
4503 bfd_put_8 (output_bfd, 0x81,
4504 contents + roff - 2);
4505 bfd_put_8 (output_bfd, 0xc0 | reg,
4506 contents + roff - 1);
4507 }
4508 else
4509 {
4510 /* addq/addl -> leaq/leal */
4511 if (val == 0x4c)
4512 bfd_put_8 (output_bfd, 0x4d,
4513 contents + roff - 3);
4514 else if (!ABI_64_P (output_bfd) && val == 0x44)
4515 bfd_put_8 (output_bfd, 0x45,
4516 contents + roff - 3);
4517 bfd_put_8 (output_bfd, 0x8d,
4518 contents + roff - 2);
4519 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
4520 contents + roff - 1);
4521 }
4522 bfd_put_32 (output_bfd,
4523 elf_x86_64_tpoff (info, relocation),
4524 contents + roff);
4525 continue;
4526 }
4527 else
4528 BFD_ASSERT (FALSE);
4529 }
4530
4531 if (htab->elf.sgot == NULL)
4532 abort ();
4533
4534 if (h != NULL)
4535 {
4536 off = h->got.offset;
4537 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
4538 }
4539 else
4540 {
4541 if (local_got_offsets == NULL)
4542 abort ();
4543
4544 off = local_got_offsets[r_symndx];
4545 offplt = local_tlsdesc_gotents[r_symndx];
4546 }
4547
4548 if ((off & 1) != 0)
4549 off &= ~1;
4550 else
4551 {
4552 Elf_Internal_Rela outrel;
4553 int dr_type, indx;
4554 asection *sreloc;
4555
4556 if (htab->elf.srelgot == NULL)
4557 abort ();
4558
4559 indx = h && h->dynindx != -1 ? h->dynindx : 0;
4560
4561 if (GOT_TLS_GDESC_P (tls_type))
4562 {
4563 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
4564 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
4565 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
4566 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
4567 + htab->elf.sgotplt->output_offset
4568 + offplt
4569 + htab->sgotplt_jump_table_size);
4570 sreloc = htab->elf.srelplt;
4571 if (indx == 0)
4572 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4573 else
4574 outrel.r_addend = 0;
4575 elf_append_rela (output_bfd, sreloc, &outrel);
4576 }
4577
4578 sreloc = htab->elf.srelgot;
4579
4580 outrel.r_offset = (htab->elf.sgot->output_section->vma
4581 + htab->elf.sgot->output_offset + off);
4582
4583 if (GOT_TLS_GD_P (tls_type))
4584 dr_type = R_X86_64_DTPMOD64;
4585 else if (GOT_TLS_GDESC_P (tls_type))
4586 goto dr_done;
4587 else
4588 dr_type = R_X86_64_TPOFF64;
4589
4590 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
4591 outrel.r_addend = 0;
4592 if ((dr_type == R_X86_64_TPOFF64
4593 || dr_type == R_X86_64_TLSDESC) && indx == 0)
4594 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
4595 outrel.r_info = htab->r_info (indx, dr_type);
4596
4597 elf_append_rela (output_bfd, sreloc, &outrel);
4598
4599 if (GOT_TLS_GD_P (tls_type))
4600 {
4601 if (indx == 0)
4602 {
4603 BFD_ASSERT (! unresolved_reloc);
4604 bfd_put_64 (output_bfd,
4605 relocation - elf_x86_64_dtpoff_base (info),
4606 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4607 }
4608 else
4609 {
4610 bfd_put_64 (output_bfd, 0,
4611 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4612 outrel.r_info = htab->r_info (indx,
4613 R_X86_64_DTPOFF64);
4614 outrel.r_offset += GOT_ENTRY_SIZE;
4615 elf_append_rela (output_bfd, sreloc,
4616 &outrel);
4617 }
4618 }
4619
4620 dr_done:
4621 if (h != NULL)
4622 h->got.offset |= 1;
4623 else
4624 local_got_offsets[r_symndx] |= 1;
4625 }
4626
4627 if (off >= (bfd_vma) -2
4628 && ! GOT_TLS_GDESC_P (tls_type))
4629 abort ();
4630 if (r_type == ELF32_R_TYPE (rel->r_info))
4631 {
4632 if (r_type == R_X86_64_GOTPC32_TLSDESC
4633 || r_type == R_X86_64_TLSDESC_CALL)
4634 relocation = htab->elf.sgotplt->output_section->vma
4635 + htab->elf.sgotplt->output_offset
4636 + offplt + htab->sgotplt_jump_table_size;
4637 else
4638 relocation = htab->elf.sgot->output_section->vma
4639 + htab->elf.sgot->output_offset + off;
4640 unresolved_reloc = FALSE;
4641 }
4642 else
4643 {
4644 bfd_vma roff = rel->r_offset;
4645
4646 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
4647 {
4648 /* GD->IE transition. For 64bit, change
4649 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
4650 .word 0x6666; rex64; call __tls_get_addr@plt
4651 into:
4652 movq %fs:0, %rax
4653 addq foo@gottpoff(%rip), %rax
4654 For 32bit, change
4655 leaq foo@tlsgd(%rip), %rdi
4656 .word 0x6666; rex64; call __tls_get_addr@plt
4657 into:
4658 movl %fs:0, %eax
4659 addq foo@gottpoff(%rip), %rax
4660 For largepic, change:
4661 leaq foo@tlsgd(%rip), %rdi
4662 movabsq $__tls_get_addr@pltoff, %rax
4663 addq %rbx, %rax
4664 call *%rax
4665 into:
4666 movq %fs:0, %rax
4667 addq foo@gottpoff(%rax), %rax
4668 nopw 0x0(%rax,%rax,1) */
4669 int largepic = 0;
4670 if (ABI_64_P (output_bfd)
4671 && contents[roff + 5] == (bfd_byte) '\xb8')
4672 {
4673 memcpy (contents + roff - 3,
4674 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05"
4675 "\0\0\0\0\x66\x0f\x1f\x44\0", 22);
4676 largepic = 1;
4677 }
4678 else if (ABI_64_P (output_bfd))
4679 memcpy (contents + roff - 4,
4680 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4681 16);
4682 else
4683 memcpy (contents + roff - 3,
4684 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
4685 15);
4686
4687 relocation = (htab->elf.sgot->output_section->vma
4688 + htab->elf.sgot->output_offset + off
4689 - roff
4690 - largepic
4691 - input_section->output_section->vma
4692 - input_section->output_offset
4693 - 12);
4694 bfd_put_32 (output_bfd, relocation,
4695 contents + roff + 8 + largepic);
4696 /* Skip R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4697 rel++;
4698 continue;
4699 }
4700 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
4701 {
4702 /* GDesc -> IE transition.
4703 It's originally something like:
4704 leaq x@tlsdesc(%rip), %rax
4705
4706 Change it to:
4707 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
4708
4709 /* Now modify the instruction as appropriate. To
4710 turn a leaq into a movq in the form we use it, it
4711 suffices to change the second byte from 0x8d to
4712 0x8b. */
4713 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
4714
4715 bfd_put_32 (output_bfd,
4716 htab->elf.sgot->output_section->vma
4717 + htab->elf.sgot->output_offset + off
4718 - rel->r_offset
4719 - input_section->output_section->vma
4720 - input_section->output_offset
4721 - 4,
4722 contents + roff);
4723 continue;
4724 }
4725 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
4726 {
4727 /* GDesc -> IE transition.
4728 It's originally:
4729 call *(%rax)
4730
4731 Change it to:
4732 xchg %ax, %ax. */
4733
4734 bfd_put_8 (output_bfd, 0x66, contents + roff);
4735 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
4736 continue;
4737 }
4738 else
4739 BFD_ASSERT (FALSE);
4740 }
4741 break;
4742
4743 case R_X86_64_TLSLD:
4744 if (! elf_x86_64_tls_transition (info, input_bfd,
4745 input_section, contents,
4746 symtab_hdr, sym_hashes,
4747 &r_type, GOT_UNKNOWN,
4748 rel, relend, h, r_symndx))
4749 return FALSE;
4750
4751 if (r_type != R_X86_64_TLSLD)
4752 {
4753 /* LD->LE transition:
4754 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
4755 For 64bit, we change it into:
4756 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
4757 For 32bit, we change it into:
4758 nopl 0x0(%rax); movl %fs:0, %eax.
4759 For largepic, change:
4760 leaq foo@tlsgd(%rip), %rdi
4761 movabsq $__tls_get_addr@pltoff, %rax
4762 addq %rbx, %rax
4763 call *%rax
4764 into:
4765 data32 data32 data32 nopw %cs:0x0(%rax,%rax,1)
4766 movq %fs:0, %eax */
4767
4768 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
4769 if (ABI_64_P (output_bfd)
4770 && contents[rel->r_offset + 5] == (bfd_byte) '\xb8')
4771 memcpy (contents + rel->r_offset - 3,
4772 "\x66\x66\x66\x66\x2e\x0f\x1f\x84\0\0\0\0\0"
4773 "\x64\x48\x8b\x04\x25\0\0\0", 22);
4774 else if (ABI_64_P (output_bfd))
4775 memcpy (contents + rel->r_offset - 3,
4776 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
4777 else
4778 memcpy (contents + rel->r_offset - 3,
4779 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
4780 /* Skip R_X86_64_PC32/R_X86_64_PLT32/R_X86_64_PLTOFF64. */
4781 rel++;
4782 continue;
4783 }
4784
4785 if (htab->elf.sgot == NULL)
4786 abort ();
4787
4788 off = htab->tls_ld_got.offset;
4789 if (off & 1)
4790 off &= ~1;
4791 else
4792 {
4793 Elf_Internal_Rela outrel;
4794
4795 if (htab->elf.srelgot == NULL)
4796 abort ();
4797
4798 outrel.r_offset = (htab->elf.sgot->output_section->vma
4799 + htab->elf.sgot->output_offset + off);
4800
4801 bfd_put_64 (output_bfd, 0,
4802 htab->elf.sgot->contents + off);
4803 bfd_put_64 (output_bfd, 0,
4804 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
4805 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
4806 outrel.r_addend = 0;
4807 elf_append_rela (output_bfd, htab->elf.srelgot,
4808 &outrel);
4809 htab->tls_ld_got.offset |= 1;
4810 }
4811 relocation = htab->elf.sgot->output_section->vma
4812 + htab->elf.sgot->output_offset + off;
4813 unresolved_reloc = FALSE;
4814 break;
4815
4816 case R_X86_64_DTPOFF32:
4817 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
4818 relocation -= elf_x86_64_dtpoff_base (info);
4819 else
4820 relocation = elf_x86_64_tpoff (info, relocation);
4821 break;
4822
4823 case R_X86_64_TPOFF32:
4824 case R_X86_64_TPOFF64:
4825 BFD_ASSERT (info->executable);
4826 relocation = elf_x86_64_tpoff (info, relocation);
4827 break;
4828
4829 case R_X86_64_DTPOFF64:
4830 BFD_ASSERT ((input_section->flags & SEC_CODE) == 0);
4831 relocation -= elf_x86_64_dtpoff_base (info);
4832 break;
4833
4834 default:
4835 break;
4836 }
4837
4838 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4839 because such sections are not SEC_ALLOC and thus ld.so will
4840 not process them. */
4841 if (unresolved_reloc
4842 && !((input_section->flags & SEC_DEBUGGING) != 0
4843 && h->def_dynamic)
4844 && _bfd_elf_section_offset (output_bfd, info, input_section,
4845 rel->r_offset) != (bfd_vma) -1)
4846 {
4847 (*_bfd_error_handler)
4848 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4849 input_bfd,
4850 input_section,
4851 (long) rel->r_offset,
4852 howto->name,
4853 h->root.root.string);
4854 return FALSE;
4855 }
4856
4857 do_relocation:
4858 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4859 contents, rel->r_offset,
4860 relocation, rel->r_addend);
4861
4862 check_relocation_error:
4863 if (r != bfd_reloc_ok)
4864 {
4865 const char *name;
4866
4867 if (h != NULL)
4868 name = h->root.root.string;
4869 else
4870 {
4871 name = bfd_elf_string_from_elf_section (input_bfd,
4872 symtab_hdr->sh_link,
4873 sym->st_name);
4874 if (name == NULL)
4875 return FALSE;
4876 if (*name == '\0')
4877 name = bfd_section_name (input_bfd, sec);
4878 }
4879
4880 if (r == bfd_reloc_overflow)
4881 {
4882 if (! ((*info->callbacks->reloc_overflow)
4883 (info, (h ? &h->root : NULL), name, howto->name,
4884 (bfd_vma) 0, input_bfd, input_section,
4885 rel->r_offset)))
4886 return FALSE;
4887 }
4888 else
4889 {
4890 (*_bfd_error_handler)
4891 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4892 input_bfd, input_section,
4893 (long) rel->r_offset, name, (int) r);
4894 return FALSE;
4895 }
4896 }
4897 }
4898
4899 return TRUE;
4900 }
4901
4902 /* Finish up dynamic symbol handling. We set the contents of various
4903 dynamic sections here. */
4904
4905 static bfd_boolean
4906 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
4907 struct bfd_link_info *info,
4908 struct elf_link_hash_entry *h,
4909 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
4910 {
4911 struct elf_x86_64_link_hash_table *htab;
4912 const struct elf_x86_64_backend_data *abed;
4913 bfd_boolean use_plt_bnd;
4914 struct elf_x86_64_link_hash_entry *eh;
4915
4916 htab = elf_x86_64_hash_table (info);
4917 if (htab == NULL)
4918 return FALSE;
4919
4920 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
4921 section only if there is .plt section. */
4922 use_plt_bnd = htab->elf.splt != NULL && htab->plt_bnd != NULL;
4923 abed = (use_plt_bnd
4924 ? &elf_x86_64_bnd_arch_bed
4925 : get_elf_x86_64_backend_data (output_bfd));
4926
4927 eh = (struct elf_x86_64_link_hash_entry *) h;
4928
4929 if (h->plt.offset != (bfd_vma) -1)
4930 {
4931 bfd_vma plt_index;
4932 bfd_vma got_offset, plt_offset, plt_plt_offset, plt_got_offset;
4933 bfd_vma plt_plt_insn_end, plt_got_insn_size;
4934 Elf_Internal_Rela rela;
4935 bfd_byte *loc;
4936 asection *plt, *gotplt, *relplt, *resolved_plt;
4937 const struct elf_backend_data *bed;
4938 bfd_vma plt_got_pcrel_offset;
4939
4940 /* When building a static executable, use .iplt, .igot.plt and
4941 .rela.iplt sections for STT_GNU_IFUNC symbols. */
4942 if (htab->elf.splt != NULL)
4943 {
4944 plt = htab->elf.splt;
4945 gotplt = htab->elf.sgotplt;
4946 relplt = htab->elf.srelplt;
4947 }
4948 else
4949 {
4950 plt = htab->elf.iplt;
4951 gotplt = htab->elf.igotplt;
4952 relplt = htab->elf.irelplt;
4953 }
4954
4955 /* This symbol has an entry in the procedure linkage table. Set
4956 it up. */
4957 if ((h->dynindx == -1
4958 && !((h->forced_local || info->executable)
4959 && h->def_regular
4960 && h->type == STT_GNU_IFUNC))
4961 || plt == NULL
4962 || gotplt == NULL
4963 || relplt == NULL)
4964 abort ();
4965
4966 /* Get the index in the procedure linkage table which
4967 corresponds to this symbol. This is the index of this symbol
4968 in all the symbols for which we are making plt entries. The
4969 first entry in the procedure linkage table is reserved.
4970
4971 Get the offset into the .got table of the entry that
4972 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
4973 bytes. The first three are reserved for the dynamic linker.
4974
4975 For static executables, we don't reserve anything. */
4976
4977 if (plt == htab->elf.splt)
4978 {
4979 got_offset = h->plt.offset / abed->plt_entry_size - 1;
4980 got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
4981 }
4982 else
4983 {
4984 got_offset = h->plt.offset / abed->plt_entry_size;
4985 got_offset = got_offset * GOT_ENTRY_SIZE;
4986 }
4987
4988 plt_plt_insn_end = abed->plt_plt_insn_end;
4989 plt_plt_offset = abed->plt_plt_offset;
4990 plt_got_insn_size = abed->plt_got_insn_size;
4991 plt_got_offset = abed->plt_got_offset;
4992 if (use_plt_bnd)
4993 {
4994 /* Use the second PLT with BND relocations. */
4995 const bfd_byte *plt_entry, *plt2_entry;
4996
4997 if (eh->has_bnd_reloc)
4998 {
4999 plt_entry = elf_x86_64_bnd_plt_entry;
5000 plt2_entry = elf_x86_64_bnd_plt2_entry;
5001 }
5002 else
5003 {
5004 plt_entry = elf_x86_64_legacy_plt_entry;
5005 plt2_entry = elf_x86_64_legacy_plt2_entry;
5006
5007 /* Subtract 1 since there is no BND prefix. */
5008 plt_plt_insn_end -= 1;
5009 plt_plt_offset -= 1;
5010 plt_got_insn_size -= 1;
5011 plt_got_offset -= 1;
5012 }
5013
5014 BFD_ASSERT (sizeof (elf_x86_64_bnd_plt_entry)
5015 == sizeof (elf_x86_64_legacy_plt_entry));
5016
5017 /* Fill in the entry in the procedure linkage table. */
5018 memcpy (plt->contents + h->plt.offset,
5019 plt_entry, sizeof (elf_x86_64_legacy_plt_entry));
5020 /* Fill in the entry in the second PLT. */
5021 memcpy (htab->plt_bnd->contents + eh->plt_bnd.offset,
5022 plt2_entry, sizeof (elf_x86_64_legacy_plt2_entry));
5023
5024 resolved_plt = htab->plt_bnd;
5025 plt_offset = eh->plt_bnd.offset;
5026 }
5027 else
5028 {
5029 /* Fill in the entry in the procedure linkage table. */
5030 memcpy (plt->contents + h->plt.offset, abed->plt_entry,
5031 abed->plt_entry_size);
5032
5033 resolved_plt = plt;
5034 plt_offset = h->plt.offset;
5035 }
5036
5037 /* Insert the relocation positions of the plt section. */
5038
5039 /* Put offset the PC-relative instruction referring to the GOT entry,
5040 subtracting the size of that instruction. */
5041 plt_got_pcrel_offset = (gotplt->output_section->vma
5042 + gotplt->output_offset
5043 + got_offset
5044 - resolved_plt->output_section->vma
5045 - resolved_plt->output_offset
5046 - plt_offset
5047 - plt_got_insn_size);
5048
5049 /* Check PC-relative offset overflow in PLT entry. */
5050 if ((plt_got_pcrel_offset + 0x80000000) > 0xffffffff)
5051 info->callbacks->einfo (_("%F%B: PC-relative offset overflow in PLT entry for `%s'\n"),
5052 output_bfd, h->root.root.string);
5053
5054 bfd_put_32 (output_bfd, plt_got_pcrel_offset,
5055 resolved_plt->contents + plt_offset + plt_got_offset);
5056
5057 /* Fill in the entry in the global offset table, initially this
5058 points to the second part of the PLT entry. */
5059 bfd_put_64 (output_bfd, (plt->output_section->vma
5060 + plt->output_offset
5061 + h->plt.offset + abed->plt_lazy_offset),
5062 gotplt->contents + got_offset);
5063
5064 /* Fill in the entry in the .rela.plt section. */
5065 rela.r_offset = (gotplt->output_section->vma
5066 + gotplt->output_offset
5067 + got_offset);
5068 if (h->dynindx == -1
5069 || ((info->executable
5070 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
5071 && h->def_regular
5072 && h->type == STT_GNU_IFUNC))
5073 {
5074 /* If an STT_GNU_IFUNC symbol is locally defined, generate
5075 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
5076 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
5077 rela.r_addend = (h->root.u.def.value
5078 + h->root.u.def.section->output_section->vma
5079 + h->root.u.def.section->output_offset);
5080 /* R_X86_64_IRELATIVE comes last. */
5081 plt_index = htab->next_irelative_index--;
5082 }
5083 else
5084 {
5085 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
5086 rela.r_addend = 0;
5087 plt_index = htab->next_jump_slot_index++;
5088 }
5089
5090 /* Don't fill PLT entry for static executables. */
5091 if (plt == htab->elf.splt)
5092 {
5093 bfd_vma plt0_offset = h->plt.offset + plt_plt_insn_end;
5094
5095 /* Put relocation index. */
5096 bfd_put_32 (output_bfd, plt_index,
5097 plt->contents + h->plt.offset + abed->plt_reloc_offset);
5098
5099 /* Put offset for jmp .PLT0 and check for overflow. We don't
5100 check relocation index for overflow since branch displacement
5101 will overflow first. */
5102 if (plt0_offset > 0x80000000)
5103 info->callbacks->einfo (_("%F%B: branch displacement overflow in PLT entry for `%s'\n"),
5104 output_bfd, h->root.root.string);
5105 bfd_put_32 (output_bfd, - plt0_offset,
5106 plt->contents + h->plt.offset + plt_plt_offset);
5107 }
5108
5109 bed = get_elf_backend_data (output_bfd);
5110 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
5111 bed->s->swap_reloca_out (output_bfd, &rela, loc);
5112 }
5113 else if (eh->plt_got.offset != (bfd_vma) -1)
5114 {
5115 bfd_vma got_offset, plt_offset, plt_got_offset, plt_got_insn_size;
5116 asection *plt, *got;
5117 bfd_boolean got_after_plt;
5118 int32_t got_pcrel_offset;
5119 const bfd_byte *got_plt_entry;
5120
5121 /* Set the entry in the GOT procedure linkage table. */
5122 plt = htab->plt_got;
5123 got = htab->elf.sgot;
5124 got_offset = h->got.offset;
5125
5126 if (got_offset == (bfd_vma) -1
5127 || h->type == STT_GNU_IFUNC
5128 || plt == NULL
5129 || got == NULL)
5130 abort ();
5131
5132 /* Use the second PLT entry template for the GOT PLT since they
5133 are the identical. */
5134 plt_got_insn_size = elf_x86_64_bnd_arch_bed.plt_got_insn_size;
5135 plt_got_offset = elf_x86_64_bnd_arch_bed.plt_got_offset;
5136 if (eh->has_bnd_reloc)
5137 got_plt_entry = elf_x86_64_bnd_plt2_entry;
5138 else
5139 {
5140 got_plt_entry = elf_x86_64_legacy_plt2_entry;
5141
5142 /* Subtract 1 since there is no BND prefix. */
5143 plt_got_insn_size -= 1;
5144 plt_got_offset -= 1;
5145 }
5146
5147 /* Fill in the entry in the GOT procedure linkage table. */
5148 plt_offset = eh->plt_got.offset;
5149 memcpy (plt->contents + plt_offset,
5150 got_plt_entry, sizeof (elf_x86_64_legacy_plt2_entry));
5151
5152 /* Put offset the PC-relative instruction referring to the GOT
5153 entry, subtracting the size of that instruction. */
5154 got_pcrel_offset = (got->output_section->vma
5155 + got->output_offset
5156 + got_offset
5157 - plt->output_section->vma
5158 - plt->output_offset
5159 - plt_offset
5160 - plt_got_insn_size);
5161
5162 /* Check PC-relative offset overflow in GOT PLT entry. */
5163 got_after_plt = got->output_section->vma > plt->output_section->vma;
5164 if ((got_after_plt && got_pcrel_offset < 0)
5165 || (!got_after_plt && got_pcrel_offset > 0))
5166 info->callbacks->einfo (_("%F%B: PC-relative offset overflow in GOT PLT entry for `%s'\n"),
5167 output_bfd, h->root.root.string);
5168
5169 bfd_put_32 (output_bfd, got_pcrel_offset,
5170 plt->contents + plt_offset + plt_got_offset);
5171 }
5172
5173 if (!h->def_regular
5174 && (h->plt.offset != (bfd_vma) -1
5175 || eh->plt_got.offset != (bfd_vma) -1))
5176 {
5177 /* Mark the symbol as undefined, rather than as defined in
5178 the .plt section. Leave the value if there were any
5179 relocations where pointer equality matters (this is a clue
5180 for the dynamic linker, to make function pointer
5181 comparisons work between an application and shared
5182 library), otherwise set it to zero. If a function is only
5183 called from a binary, there is no need to slow down
5184 shared libraries because of that. */
5185 sym->st_shndx = SHN_UNDEF;
5186 if (!h->pointer_equality_needed)
5187 sym->st_value = 0;
5188 }
5189
5190 if (h->got.offset != (bfd_vma) -1
5191 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
5192 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
5193 {
5194 Elf_Internal_Rela rela;
5195
5196 /* This symbol has an entry in the global offset table. Set it
5197 up. */
5198 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
5199 abort ();
5200
5201 rela.r_offset = (htab->elf.sgot->output_section->vma
5202 + htab->elf.sgot->output_offset
5203 + (h->got.offset &~ (bfd_vma) 1));
5204
5205 /* If this is a static link, or it is a -Bsymbolic link and the
5206 symbol is defined locally or was forced to be local because
5207 of a version file, we just want to emit a RELATIVE reloc.
5208 The entry in the global offset table will already have been
5209 initialized in the relocate_section function. */
5210 if (h->def_regular
5211 && h->type == STT_GNU_IFUNC)
5212 {
5213 if (info->shared)
5214 {
5215 /* Generate R_X86_64_GLOB_DAT. */
5216 goto do_glob_dat;
5217 }
5218 else
5219 {
5220 asection *plt;
5221
5222 if (!h->pointer_equality_needed)
5223 abort ();
5224
5225 /* For non-shared object, we can't use .got.plt, which
5226 contains the real function addres if we need pointer
5227 equality. We load the GOT entry with the PLT entry. */
5228 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
5229 bfd_put_64 (output_bfd, (plt->output_section->vma
5230 + plt->output_offset
5231 + h->plt.offset),
5232 htab->elf.sgot->contents + h->got.offset);
5233 return TRUE;
5234 }
5235 }
5236 else if (info->shared
5237 && SYMBOL_REFERENCES_LOCAL (info, h))
5238 {
5239 if (!h->def_regular)
5240 return FALSE;
5241 BFD_ASSERT((h->got.offset & 1) != 0);
5242 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
5243 rela.r_addend = (h->root.u.def.value
5244 + h->root.u.def.section->output_section->vma
5245 + h->root.u.def.section->output_offset);
5246 }
5247 else
5248 {
5249 BFD_ASSERT((h->got.offset & 1) == 0);
5250 do_glob_dat:
5251 bfd_put_64 (output_bfd, (bfd_vma) 0,
5252 htab->elf.sgot->contents + h->got.offset);
5253 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
5254 rela.r_addend = 0;
5255 }
5256
5257 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
5258 }
5259
5260 if (h->needs_copy)
5261 {
5262 Elf_Internal_Rela rela;
5263
5264 /* This symbol needs a copy reloc. Set it up. */
5265
5266 if (h->dynindx == -1
5267 || (h->root.type != bfd_link_hash_defined
5268 && h->root.type != bfd_link_hash_defweak)
5269 || htab->srelbss == NULL)
5270 abort ();
5271
5272 rela.r_offset = (h->root.u.def.value
5273 + h->root.u.def.section->output_section->vma
5274 + h->root.u.def.section->output_offset);
5275 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
5276 rela.r_addend = 0;
5277 elf_append_rela (output_bfd, htab->srelbss, &rela);
5278 }
5279
5280 return TRUE;
5281 }
5282
5283 /* Finish up local dynamic symbol handling. We set the contents of
5284 various dynamic sections here. */
5285
5286 static bfd_boolean
5287 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
5288 {
5289 struct elf_link_hash_entry *h
5290 = (struct elf_link_hash_entry *) *slot;
5291 struct bfd_link_info *info
5292 = (struct bfd_link_info *) inf;
5293
5294 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
5295 info, h, NULL);
5296 }
5297
5298 /* Used to decide how to sort relocs in an optimal manner for the
5299 dynamic linker, before writing them out. */
5300
5301 static enum elf_reloc_type_class
5302 elf_x86_64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
5303 const asection *rel_sec ATTRIBUTE_UNUSED,
5304 const Elf_Internal_Rela *rela)
5305 {
5306 switch ((int) ELF32_R_TYPE (rela->r_info))
5307 {
5308 case R_X86_64_RELATIVE:
5309 case R_X86_64_RELATIVE64:
5310 return reloc_class_relative;
5311 case R_X86_64_JUMP_SLOT:
5312 return reloc_class_plt;
5313 case R_X86_64_COPY:
5314 return reloc_class_copy;
5315 default:
5316 return reloc_class_normal;
5317 }
5318 }
5319
5320 /* Finish up the dynamic sections. */
5321
5322 static bfd_boolean
5323 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
5324 struct bfd_link_info *info)
5325 {
5326 struct elf_x86_64_link_hash_table *htab;
5327 bfd *dynobj;
5328 asection *sdyn;
5329 const struct elf_x86_64_backend_data *abed;
5330
5331 htab = elf_x86_64_hash_table (info);
5332 if (htab == NULL)
5333 return FALSE;
5334
5335 /* Use MPX backend data in case of BND relocation. Use .plt_bnd
5336 section only if there is .plt section. */
5337 abed = (htab->elf.splt != NULL && htab->plt_bnd != NULL
5338 ? &elf_x86_64_bnd_arch_bed
5339 : get_elf_x86_64_backend_data (output_bfd));
5340
5341 dynobj = htab->elf.dynobj;
5342 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
5343
5344 if (htab->elf.dynamic_sections_created)
5345 {
5346 bfd_byte *dyncon, *dynconend;
5347 const struct elf_backend_data *bed;
5348 bfd_size_type sizeof_dyn;
5349
5350 if (sdyn == NULL || htab->elf.sgot == NULL)
5351 abort ();
5352
5353 bed = get_elf_backend_data (dynobj);
5354 sizeof_dyn = bed->s->sizeof_dyn;
5355 dyncon = sdyn->contents;
5356 dynconend = sdyn->contents + sdyn->size;
5357 for (; dyncon < dynconend; dyncon += sizeof_dyn)
5358 {
5359 Elf_Internal_Dyn dyn;
5360 asection *s;
5361
5362 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
5363
5364 switch (dyn.d_tag)
5365 {
5366 default:
5367 continue;
5368
5369 case DT_PLTGOT:
5370 s = htab->elf.sgotplt;
5371 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
5372 break;
5373
5374 case DT_JMPREL:
5375 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
5376 break;
5377
5378 case DT_PLTRELSZ:
5379 s = htab->elf.srelplt->output_section;
5380 dyn.d_un.d_val = s->size;
5381 break;
5382
5383 case DT_RELASZ:
5384 /* The procedure linkage table relocs (DT_JMPREL) should
5385 not be included in the overall relocs (DT_RELA).
5386 Therefore, we override the DT_RELASZ entry here to
5387 make it not include the JMPREL relocs. Since the
5388 linker script arranges for .rela.plt to follow all
5389 other relocation sections, we don't have to worry
5390 about changing the DT_RELA entry. */
5391 if (htab->elf.srelplt != NULL)
5392 {
5393 s = htab->elf.srelplt->output_section;
5394 dyn.d_un.d_val -= s->size;
5395 }
5396 break;
5397
5398 case DT_TLSDESC_PLT:
5399 s = htab->elf.splt;
5400 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5401 + htab->tlsdesc_plt;
5402 break;
5403
5404 case DT_TLSDESC_GOT:
5405 s = htab->elf.sgot;
5406 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
5407 + htab->tlsdesc_got;
5408 break;
5409 }
5410
5411 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
5412 }
5413
5414 /* Fill in the special first entry in the procedure linkage table. */
5415 if (htab->elf.splt && htab->elf.splt->size > 0)
5416 {
5417 /* Fill in the first entry in the procedure linkage table. */
5418 memcpy (htab->elf.splt->contents,
5419 abed->plt0_entry, abed->plt_entry_size);
5420 /* Add offset for pushq GOT+8(%rip), since the instruction
5421 uses 6 bytes subtract this value. */
5422 bfd_put_32 (output_bfd,
5423 (htab->elf.sgotplt->output_section->vma
5424 + htab->elf.sgotplt->output_offset
5425 + 8
5426 - htab->elf.splt->output_section->vma
5427 - htab->elf.splt->output_offset
5428 - 6),
5429 htab->elf.splt->contents + abed->plt0_got1_offset);
5430 /* Add offset for the PC-relative instruction accessing GOT+16,
5431 subtracting the offset to the end of that instruction. */
5432 bfd_put_32 (output_bfd,
5433 (htab->elf.sgotplt->output_section->vma
5434 + htab->elf.sgotplt->output_offset
5435 + 16
5436 - htab->elf.splt->output_section->vma
5437 - htab->elf.splt->output_offset
5438 - abed->plt0_got2_insn_end),
5439 htab->elf.splt->contents + abed->plt0_got2_offset);
5440
5441 elf_section_data (htab->elf.splt->output_section)
5442 ->this_hdr.sh_entsize = abed->plt_entry_size;
5443
5444 if (htab->tlsdesc_plt)
5445 {
5446 bfd_put_64 (output_bfd, (bfd_vma) 0,
5447 htab->elf.sgot->contents + htab->tlsdesc_got);
5448
5449 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
5450 abed->plt0_entry, abed->plt_entry_size);
5451
5452 /* Add offset for pushq GOT+8(%rip), since the
5453 instruction uses 6 bytes subtract this value. */
5454 bfd_put_32 (output_bfd,
5455 (htab->elf.sgotplt->output_section->vma
5456 + htab->elf.sgotplt->output_offset
5457 + 8
5458 - htab->elf.splt->output_section->vma
5459 - htab->elf.splt->output_offset
5460 - htab->tlsdesc_plt
5461 - 6),
5462 htab->elf.splt->contents
5463 + htab->tlsdesc_plt + abed->plt0_got1_offset);
5464 /* Add offset for the PC-relative instruction accessing GOT+TDG,
5465 where TGD stands for htab->tlsdesc_got, subtracting the offset
5466 to the end of that instruction. */
5467 bfd_put_32 (output_bfd,
5468 (htab->elf.sgot->output_section->vma
5469 + htab->elf.sgot->output_offset
5470 + htab->tlsdesc_got
5471 - htab->elf.splt->output_section->vma
5472 - htab->elf.splt->output_offset
5473 - htab->tlsdesc_plt
5474 - abed->plt0_got2_insn_end),
5475 htab->elf.splt->contents
5476 + htab->tlsdesc_plt + abed->plt0_got2_offset);
5477 }
5478 }
5479 }
5480
5481 if (htab->plt_bnd != NULL)
5482 elf_section_data (htab->plt_bnd->output_section)
5483 ->this_hdr.sh_entsize = sizeof (elf_x86_64_bnd_plt2_entry);
5484
5485 if (htab->elf.sgotplt)
5486 {
5487 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
5488 {
5489 (*_bfd_error_handler)
5490 (_("discarded output section: `%A'"), htab->elf.sgotplt);
5491 return FALSE;
5492 }
5493
5494 /* Fill in the first three entries in the global offset table. */
5495 if (htab->elf.sgotplt->size > 0)
5496 {
5497 /* Set the first entry in the global offset table to the address of
5498 the dynamic section. */
5499 if (sdyn == NULL)
5500 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
5501 else
5502 bfd_put_64 (output_bfd,
5503 sdyn->output_section->vma + sdyn->output_offset,
5504 htab->elf.sgotplt->contents);
5505 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
5506 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
5507 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
5508 }
5509
5510 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
5511 GOT_ENTRY_SIZE;
5512 }
5513
5514 /* Adjust .eh_frame for .plt section. */
5515 if (htab->plt_eh_frame != NULL
5516 && htab->plt_eh_frame->contents != NULL)
5517 {
5518 if (htab->elf.splt != NULL
5519 && htab->elf.splt->size != 0
5520 && (htab->elf.splt->flags & SEC_EXCLUDE) == 0
5521 && htab->elf.splt->output_section != NULL
5522 && htab->plt_eh_frame->output_section != NULL)
5523 {
5524 bfd_vma plt_start = htab->elf.splt->output_section->vma;
5525 bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
5526 + htab->plt_eh_frame->output_offset
5527 + PLT_FDE_START_OFFSET;
5528 bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
5529 htab->plt_eh_frame->contents
5530 + PLT_FDE_START_OFFSET);
5531 }
5532 if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
5533 {
5534 if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
5535 htab->plt_eh_frame,
5536 htab->plt_eh_frame->contents))
5537 return FALSE;
5538 }
5539 }
5540
5541 if (htab->elf.sgot && htab->elf.sgot->size > 0)
5542 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
5543 = GOT_ENTRY_SIZE;
5544
5545 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
5546 htab_traverse (htab->loc_hash_table,
5547 elf_x86_64_finish_local_dynamic_symbol,
5548 info);
5549
5550 return TRUE;
5551 }
5552
5553 /* Return an array of PLT entry symbol values. */
5554
5555 static bfd_vma *
5556 elf_x86_64_get_plt_sym_val (bfd *abfd, asymbol **dynsyms, asection *plt,
5557 asection *relplt)
5558 {
5559 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5560 arelent *p;
5561 long count, i;
5562 bfd_vma *plt_sym_val;
5563 bfd_vma plt_offset;
5564 bfd_byte *plt_contents;
5565 const struct elf_x86_64_backend_data *bed;
5566 Elf_Internal_Shdr *hdr;
5567 asection *plt_bnd;
5568
5569 /* Get the .plt section contents. PLT passed down may point to the
5570 .plt.bnd section. Make sure that PLT always points to the .plt
5571 section. */
5572 plt_bnd = bfd_get_section_by_name (abfd, ".plt.bnd");
5573 if (plt_bnd)
5574 {
5575 if (plt != plt_bnd)
5576 abort ();
5577 plt = bfd_get_section_by_name (abfd, ".plt");
5578 if (plt == NULL)
5579 abort ();
5580 bed = &elf_x86_64_bnd_arch_bed;
5581 }
5582 else
5583 bed = get_elf_x86_64_backend_data (abfd);
5584
5585 plt_contents = (bfd_byte *) bfd_malloc (plt->size);
5586 if (plt_contents == NULL)
5587 return NULL;
5588 if (!bfd_get_section_contents (abfd, (asection *) plt,
5589 plt_contents, 0, plt->size))
5590 {
5591 bad_return:
5592 free (plt_contents);
5593 return NULL;
5594 }
5595
5596 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5597 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
5598 goto bad_return;
5599
5600 hdr = &elf_section_data (relplt)->this_hdr;
5601 count = relplt->size / hdr->sh_entsize;
5602
5603 plt_sym_val = (bfd_vma *) bfd_malloc (sizeof (bfd_vma) * count);
5604 if (plt_sym_val == NULL)
5605 goto bad_return;
5606
5607 for (i = 0; i < count; i++)
5608 plt_sym_val[i] = -1;
5609
5610 plt_offset = bed->plt_entry_size;
5611 p = relplt->relocation;
5612 for (i = 0; i < count; i++, p++)
5613 {
5614 long reloc_index;
5615
5616 /* Skip unknown relocation. */
5617 if (p->howto == NULL)
5618 continue;
5619
5620 if (p->howto->type != R_X86_64_JUMP_SLOT
5621 && p->howto->type != R_X86_64_IRELATIVE)
5622 continue;
5623
5624 reloc_index = H_GET_32 (abfd, (plt_contents + plt_offset
5625 + bed->plt_reloc_offset));
5626 if (reloc_index >= count)
5627 abort ();
5628 if (plt_bnd)
5629 {
5630 /* This is the index in .plt section. */
5631 long plt_index = plt_offset / bed->plt_entry_size;
5632 /* Store VMA + the offset in .plt.bnd section. */
5633 plt_sym_val[reloc_index] =
5634 (plt_bnd->vma
5635 + (plt_index - 1) * sizeof (elf_x86_64_legacy_plt2_entry));
5636 }
5637 else
5638 plt_sym_val[reloc_index] = plt->vma + plt_offset;
5639 plt_offset += bed->plt_entry_size;
5640 }
5641
5642 free (plt_contents);
5643
5644 return plt_sym_val;
5645 }
5646
5647 /* Similar to _bfd_elf_get_synthetic_symtab, with .plt.bnd section
5648 support. */
5649
5650 static long
5651 elf_x86_64_get_synthetic_symtab (bfd *abfd,
5652 long symcount,
5653 asymbol **syms,
5654 long dynsymcount,
5655 asymbol **dynsyms,
5656 asymbol **ret)
5657 {
5658 /* Pass the .plt.bnd section to _bfd_elf_ifunc_get_synthetic_symtab
5659 as PLT if it exists. */
5660 asection *plt = bfd_get_section_by_name (abfd, ".plt.bnd");
5661 if (plt == NULL)
5662 plt = bfd_get_section_by_name (abfd, ".plt");
5663 return _bfd_elf_ifunc_get_synthetic_symtab (abfd, symcount, syms,
5664 dynsymcount, dynsyms, ret,
5665 plt,
5666 elf_x86_64_get_plt_sym_val);
5667 }
5668
5669 /* Handle an x86-64 specific section when reading an object file. This
5670 is called when elfcode.h finds a section with an unknown type. */
5671
5672 static bfd_boolean
5673 elf_x86_64_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
5674 const char *name, int shindex)
5675 {
5676 if (hdr->sh_type != SHT_X86_64_UNWIND)
5677 return FALSE;
5678
5679 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5680 return FALSE;
5681
5682 return TRUE;
5683 }
5684
5685 /* Hook called by the linker routine which adds symbols from an object
5686 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
5687 of .bss. */
5688
5689 static bfd_boolean
5690 elf_x86_64_add_symbol_hook (bfd *abfd,
5691 struct bfd_link_info *info,
5692 Elf_Internal_Sym *sym,
5693 const char **namep ATTRIBUTE_UNUSED,
5694 flagword *flagsp ATTRIBUTE_UNUSED,
5695 asection **secp,
5696 bfd_vma *valp)
5697 {
5698 asection *lcomm;
5699
5700 switch (sym->st_shndx)
5701 {
5702 case SHN_X86_64_LCOMMON:
5703 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
5704 if (lcomm == NULL)
5705 {
5706 lcomm = bfd_make_section_with_flags (abfd,
5707 "LARGE_COMMON",
5708 (SEC_ALLOC
5709 | SEC_IS_COMMON
5710 | SEC_LINKER_CREATED));
5711 if (lcomm == NULL)
5712 return FALSE;
5713 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
5714 }
5715 *secp = lcomm;
5716 *valp = sym->st_size;
5717 return TRUE;
5718 }
5719
5720 if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
5721 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)
5722 && (abfd->flags & DYNAMIC) == 0
5723 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
5724 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
5725
5726 return TRUE;
5727 }
5728
5729
5730 /* Given a BFD section, try to locate the corresponding ELF section
5731 index. */
5732
5733 static bfd_boolean
5734 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5735 asection *sec, int *index_return)
5736 {
5737 if (sec == &_bfd_elf_large_com_section)
5738 {
5739 *index_return = SHN_X86_64_LCOMMON;
5740 return TRUE;
5741 }
5742 return FALSE;
5743 }
5744
5745 /* Process a symbol. */
5746
5747 static void
5748 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5749 asymbol *asym)
5750 {
5751 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5752
5753 switch (elfsym->internal_elf_sym.st_shndx)
5754 {
5755 case SHN_X86_64_LCOMMON:
5756 asym->section = &_bfd_elf_large_com_section;
5757 asym->value = elfsym->internal_elf_sym.st_size;
5758 /* Common symbol doesn't set BSF_GLOBAL. */
5759 asym->flags &= ~BSF_GLOBAL;
5760 break;
5761 }
5762 }
5763
5764 static bfd_boolean
5765 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
5766 {
5767 return (sym->st_shndx == SHN_COMMON
5768 || sym->st_shndx == SHN_X86_64_LCOMMON);
5769 }
5770
5771 static unsigned int
5772 elf_x86_64_common_section_index (asection *sec)
5773 {
5774 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5775 return SHN_COMMON;
5776 else
5777 return SHN_X86_64_LCOMMON;
5778 }
5779
5780 static asection *
5781 elf_x86_64_common_section (asection *sec)
5782 {
5783 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
5784 return bfd_com_section_ptr;
5785 else
5786 return &_bfd_elf_large_com_section;
5787 }
5788
5789 static bfd_boolean
5790 elf_x86_64_merge_symbol (struct elf_link_hash_entry *h,
5791 const Elf_Internal_Sym *sym,
5792 asection **psec,
5793 bfd_boolean newdef,
5794 bfd_boolean olddef,
5795 bfd *oldbfd,
5796 const asection *oldsec)
5797 {
5798 /* A normal common symbol and a large common symbol result in a
5799 normal common symbol. We turn the large common symbol into a
5800 normal one. */
5801 if (!olddef
5802 && h->root.type == bfd_link_hash_common
5803 && !newdef
5804 && bfd_is_com_section (*psec)
5805 && oldsec != *psec)
5806 {
5807 if (sym->st_shndx == SHN_COMMON
5808 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) != 0)
5809 {
5810 h->root.u.c.p->section
5811 = bfd_make_section_old_way (oldbfd, "COMMON");
5812 h->root.u.c.p->section->flags = SEC_ALLOC;
5813 }
5814 else if (sym->st_shndx == SHN_X86_64_LCOMMON
5815 && (elf_section_flags (oldsec) & SHF_X86_64_LARGE) == 0)
5816 *psec = bfd_com_section_ptr;
5817 }
5818
5819 return TRUE;
5820 }
5821
5822 static int
5823 elf_x86_64_additional_program_headers (bfd *abfd,
5824 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5825 {
5826 asection *s;
5827 int count = 0;
5828
5829 /* Check to see if we need a large readonly segment. */
5830 s = bfd_get_section_by_name (abfd, ".lrodata");
5831 if (s && (s->flags & SEC_LOAD))
5832 count++;
5833
5834 /* Check to see if we need a large data segment. Since .lbss sections
5835 is placed right after the .bss section, there should be no need for
5836 a large data segment just because of .lbss. */
5837 s = bfd_get_section_by_name (abfd, ".ldata");
5838 if (s && (s->flags & SEC_LOAD))
5839 count++;
5840
5841 return count;
5842 }
5843
5844 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5845
5846 static bfd_boolean
5847 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
5848 {
5849 if (h->plt.offset != (bfd_vma) -1
5850 && !h->def_regular
5851 && !h->pointer_equality_needed)
5852 return FALSE;
5853
5854 return _bfd_elf_hash_symbol (h);
5855 }
5856
5857 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
5858
5859 static bfd_boolean
5860 elf_x86_64_relocs_compatible (const bfd_target *input,
5861 const bfd_target *output)
5862 {
5863 return ((xvec_get_elf_backend_data (input)->s->elfclass
5864 == xvec_get_elf_backend_data (output)->s->elfclass)
5865 && _bfd_elf_relocs_compatible (input, output));
5866 }
5867
5868 static const struct bfd_elf_special_section
5869 elf_x86_64_special_sections[]=
5870 {
5871 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5872 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5873 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
5874 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5875 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
5876 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
5877 { NULL, 0, 0, 0, 0 }
5878 };
5879
5880 #define TARGET_LITTLE_SYM x86_64_elf64_vec
5881 #define TARGET_LITTLE_NAME "elf64-x86-64"
5882 #define ELF_ARCH bfd_arch_i386
5883 #define ELF_TARGET_ID X86_64_ELF_DATA
5884 #define ELF_MACHINE_CODE EM_X86_64
5885 #define ELF_MAXPAGESIZE 0x200000
5886 #define ELF_MINPAGESIZE 0x1000
5887 #define ELF_COMMONPAGESIZE 0x1000
5888
5889 #define elf_backend_can_gc_sections 1
5890 #define elf_backend_can_refcount 1
5891 #define elf_backend_want_got_plt 1
5892 #define elf_backend_plt_readonly 1
5893 #define elf_backend_want_plt_sym 0
5894 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
5895 #define elf_backend_rela_normal 1
5896 #define elf_backend_plt_alignment 4
5897 #define elf_backend_extern_protected_data 1
5898
5899 #define elf_info_to_howto elf_x86_64_info_to_howto
5900
5901 #define bfd_elf64_bfd_link_hash_table_create \
5902 elf_x86_64_link_hash_table_create
5903 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
5904 #define bfd_elf64_bfd_reloc_name_lookup \
5905 elf_x86_64_reloc_name_lookup
5906
5907 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
5908 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
5909 #define elf_backend_check_relocs elf_x86_64_check_relocs
5910 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
5911 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
5912 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
5913 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
5914 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
5915 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
5916 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
5917 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
5918 #ifdef CORE_HEADER
5919 #define elf_backend_write_core_note elf_x86_64_write_core_note
5920 #endif
5921 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
5922 #define elf_backend_relocate_section elf_x86_64_relocate_section
5923 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
5924 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
5925 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
5926 #define elf_backend_object_p elf64_x86_64_elf_object_p
5927 #define bfd_elf64_mkobject elf_x86_64_mkobject
5928 #define bfd_elf64_get_synthetic_symtab elf_x86_64_get_synthetic_symtab
5929
5930 #define elf_backend_section_from_shdr \
5931 elf_x86_64_section_from_shdr
5932
5933 #define elf_backend_section_from_bfd_section \
5934 elf_x86_64_elf_section_from_bfd_section
5935 #define elf_backend_add_symbol_hook \
5936 elf_x86_64_add_symbol_hook
5937 #define elf_backend_symbol_processing \
5938 elf_x86_64_symbol_processing
5939 #define elf_backend_common_section_index \
5940 elf_x86_64_common_section_index
5941 #define elf_backend_common_section \
5942 elf_x86_64_common_section
5943 #define elf_backend_common_definition \
5944 elf_x86_64_common_definition
5945 #define elf_backend_merge_symbol \
5946 elf_x86_64_merge_symbol
5947 #define elf_backend_special_sections \
5948 elf_x86_64_special_sections
5949 #define elf_backend_additional_program_headers \
5950 elf_x86_64_additional_program_headers
5951 #define elf_backend_hash_symbol \
5952 elf_x86_64_hash_symbol
5953
5954 #include "elf64-target.h"
5955
5956 /* CloudABI support. */
5957
5958 #undef TARGET_LITTLE_SYM
5959 #define TARGET_LITTLE_SYM x86_64_elf64_cloudabi_vec
5960 #undef TARGET_LITTLE_NAME
5961 #define TARGET_LITTLE_NAME "elf64-x86-64-cloudabi"
5962
5963 #undef ELF_OSABI
5964 #define ELF_OSABI ELFOSABI_CLOUDABI
5965
5966 #undef elf64_bed
5967 #define elf64_bed elf64_x86_64_cloudabi_bed
5968
5969 #include "elf64-target.h"
5970
5971 /* FreeBSD support. */
5972
5973 #undef TARGET_LITTLE_SYM
5974 #define TARGET_LITTLE_SYM x86_64_elf64_fbsd_vec
5975 #undef TARGET_LITTLE_NAME
5976 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
5977
5978 #undef ELF_OSABI
5979 #define ELF_OSABI ELFOSABI_FREEBSD
5980
5981 #undef elf64_bed
5982 #define elf64_bed elf64_x86_64_fbsd_bed
5983
5984 #include "elf64-target.h"
5985
5986 /* Solaris 2 support. */
5987
5988 #undef TARGET_LITTLE_SYM
5989 #define TARGET_LITTLE_SYM x86_64_elf64_sol2_vec
5990 #undef TARGET_LITTLE_NAME
5991 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
5992
5993 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
5994 objects won't be recognized. */
5995 #undef ELF_OSABI
5996
5997 #undef elf64_bed
5998 #define elf64_bed elf64_x86_64_sol2_bed
5999
6000 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
6001 boundary. */
6002 #undef elf_backend_static_tls_alignment
6003 #define elf_backend_static_tls_alignment 16
6004
6005 /* The Solaris 2 ABI requires a plt symbol on all platforms.
6006
6007 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
6008 File, p.63. */
6009 #undef elf_backend_want_plt_sym
6010 #define elf_backend_want_plt_sym 1
6011
6012 #include "elf64-target.h"
6013
6014 /* Native Client support. */
6015
6016 static bfd_boolean
6017 elf64_x86_64_nacl_elf_object_p (bfd *abfd)
6018 {
6019 /* Set the right machine number for a NaCl x86-64 ELF64 file. */
6020 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64_nacl);
6021 return TRUE;
6022 }
6023
6024 #undef TARGET_LITTLE_SYM
6025 #define TARGET_LITTLE_SYM x86_64_elf64_nacl_vec
6026 #undef TARGET_LITTLE_NAME
6027 #define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
6028 #undef elf64_bed
6029 #define elf64_bed elf64_x86_64_nacl_bed
6030
6031 #undef ELF_MAXPAGESIZE
6032 #undef ELF_MINPAGESIZE
6033 #undef ELF_COMMONPAGESIZE
6034 #define ELF_MAXPAGESIZE 0x10000
6035 #define ELF_MINPAGESIZE 0x10000
6036 #define ELF_COMMONPAGESIZE 0x10000
6037
6038 /* Restore defaults. */
6039 #undef ELF_OSABI
6040 #undef elf_backend_static_tls_alignment
6041 #undef elf_backend_want_plt_sym
6042 #define elf_backend_want_plt_sym 0
6043
6044 /* NaCl uses substantially different PLT entries for the same effects. */
6045
6046 #undef elf_backend_plt_alignment
6047 #define elf_backend_plt_alignment 5
6048 #define NACL_PLT_ENTRY_SIZE 64
6049 #define NACLMASK 0xe0 /* 32-byte alignment mask. */
6050
6051 static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
6052 {
6053 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
6054 0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
6055 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
6056 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
6057 0x41, 0xff, 0xe3, /* jmpq *%r11 */
6058
6059 /* 9-byte nop sequence to pad out to the next 32-byte boundary. */
6060 0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw 0x0(%rax,%rax,1) */
6061
6062 /* 32 bytes of nop to pad out to the standard size. */
6063 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6064 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6065 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6066 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6067 0x66, /* excess data32 prefix */
6068 0x90 /* nop */
6069 };
6070
6071 static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
6072 {
6073 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
6074 0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
6075 0x4d, 0x01, 0xfb, /* add %r15, %r11 */
6076 0x41, 0xff, 0xe3, /* jmpq *%r11 */
6077
6078 /* 15-byte nop sequence to pad out to the next 32-byte boundary. */
6079 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6080 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6081
6082 /* Lazy GOT entries point here (32-byte aligned). */
6083 0x68, /* pushq immediate */
6084 0, 0, 0, 0, /* replaced with index into relocation table. */
6085 0xe9, /* jmp relative */
6086 0, 0, 0, 0, /* replaced with offset to start of .plt0. */
6087
6088 /* 22 bytes of nop to pad out to the standard size. */
6089 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
6090 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
6091 0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
6092 };
6093
6094 /* .eh_frame covering the .plt section. */
6095
6096 static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
6097 {
6098 #if (PLT_CIE_LENGTH != 20 \
6099 || PLT_FDE_LENGTH != 36 \
6100 || PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
6101 || PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
6102 # error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
6103 #endif
6104 PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
6105 0, 0, 0, 0, /* CIE ID */
6106 1, /* CIE version */
6107 'z', 'R', 0, /* Augmentation string */
6108 1, /* Code alignment factor */
6109 0x78, /* Data alignment factor */
6110 16, /* Return address column */
6111 1, /* Augmentation size */
6112 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
6113 DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
6114 DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
6115 DW_CFA_nop, DW_CFA_nop,
6116
6117 PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
6118 PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
6119 0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
6120 0, 0, 0, 0, /* .plt size goes here */
6121 0, /* Augmentation size */
6122 DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
6123 DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
6124 DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
6125 DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
6126 DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
6127 13, /* Block length */
6128 DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
6129 DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
6130 DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
6131 DW_OP_lit3, DW_OP_shl, DW_OP_plus,
6132 DW_CFA_nop, DW_CFA_nop
6133 };
6134
6135 static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
6136 {
6137 elf_x86_64_nacl_plt0_entry, /* plt0_entry */
6138 elf_x86_64_nacl_plt_entry, /* plt_entry */
6139 NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
6140 2, /* plt0_got1_offset */
6141 9, /* plt0_got2_offset */
6142 13, /* plt0_got2_insn_end */
6143 3, /* plt_got_offset */
6144 33, /* plt_reloc_offset */
6145 38, /* plt_plt_offset */
6146 7, /* plt_got_insn_size */
6147 42, /* plt_plt_insn_end */
6148 32, /* plt_lazy_offset */
6149 elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
6150 sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
6151 };
6152
6153 #undef elf_backend_arch_data
6154 #define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
6155
6156 #undef elf_backend_object_p
6157 #define elf_backend_object_p elf64_x86_64_nacl_elf_object_p
6158 #undef elf_backend_modify_segment_map
6159 #define elf_backend_modify_segment_map nacl_modify_segment_map
6160 #undef elf_backend_modify_program_headers
6161 #define elf_backend_modify_program_headers nacl_modify_program_headers
6162 #undef elf_backend_final_write_processing
6163 #define elf_backend_final_write_processing nacl_final_write_processing
6164
6165 #include "elf64-target.h"
6166
6167 /* Native Client x32 support. */
6168
6169 static bfd_boolean
6170 elf32_x86_64_nacl_elf_object_p (bfd *abfd)
6171 {
6172 /* Set the right machine number for a NaCl x86-64 ELF32 file. */
6173 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32_nacl);
6174 return TRUE;
6175 }
6176
6177 #undef TARGET_LITTLE_SYM
6178 #define TARGET_LITTLE_SYM x86_64_elf32_nacl_vec
6179 #undef TARGET_LITTLE_NAME
6180 #define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
6181 #undef elf32_bed
6182 #define elf32_bed elf32_x86_64_nacl_bed
6183
6184 #define bfd_elf32_bfd_link_hash_table_create \
6185 elf_x86_64_link_hash_table_create
6186 #define bfd_elf32_bfd_reloc_type_lookup \
6187 elf_x86_64_reloc_type_lookup
6188 #define bfd_elf32_bfd_reloc_name_lookup \
6189 elf_x86_64_reloc_name_lookup
6190 #define bfd_elf32_mkobject \
6191 elf_x86_64_mkobject
6192 #define bfd_elf32_get_synthetic_symtab \
6193 elf_x86_64_get_synthetic_symtab
6194
6195 #undef elf_backend_object_p
6196 #define elf_backend_object_p \
6197 elf32_x86_64_nacl_elf_object_p
6198
6199 #undef elf_backend_bfd_from_remote_memory
6200 #define elf_backend_bfd_from_remote_memory \
6201 _bfd_elf32_bfd_from_remote_memory
6202
6203 #undef elf_backend_size_info
6204 #define elf_backend_size_info \
6205 _bfd_elf32_size_info
6206
6207 #include "elf32-target.h"
6208
6209 /* Restore defaults. */
6210 #undef elf_backend_object_p
6211 #define elf_backend_object_p elf64_x86_64_elf_object_p
6212 #undef elf_backend_bfd_from_remote_memory
6213 #undef elf_backend_size_info
6214 #undef elf_backend_modify_segment_map
6215 #undef elf_backend_modify_program_headers
6216 #undef elf_backend_final_write_processing
6217
6218 /* Intel L1OM support. */
6219
6220 static bfd_boolean
6221 elf64_l1om_elf_object_p (bfd *abfd)
6222 {
6223 /* Set the right machine number for an L1OM elf64 file. */
6224 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
6225 return TRUE;
6226 }
6227
6228 #undef TARGET_LITTLE_SYM
6229 #define TARGET_LITTLE_SYM l1om_elf64_vec
6230 #undef TARGET_LITTLE_NAME
6231 #define TARGET_LITTLE_NAME "elf64-l1om"
6232 #undef ELF_ARCH
6233 #define ELF_ARCH bfd_arch_l1om
6234
6235 #undef ELF_MACHINE_CODE
6236 #define ELF_MACHINE_CODE EM_L1OM
6237
6238 #undef ELF_OSABI
6239
6240 #undef elf64_bed
6241 #define elf64_bed elf64_l1om_bed
6242
6243 #undef elf_backend_object_p
6244 #define elf_backend_object_p elf64_l1om_elf_object_p
6245
6246 /* Restore defaults. */
6247 #undef ELF_MAXPAGESIZE
6248 #undef ELF_MINPAGESIZE
6249 #undef ELF_COMMONPAGESIZE
6250 #define ELF_MAXPAGESIZE 0x200000
6251 #define ELF_MINPAGESIZE 0x1000
6252 #define ELF_COMMONPAGESIZE 0x1000
6253 #undef elf_backend_plt_alignment
6254 #define elf_backend_plt_alignment 4
6255 #undef elf_backend_arch_data
6256 #define elf_backend_arch_data &elf_x86_64_arch_bed
6257
6258 #include "elf64-target.h"
6259
6260 /* FreeBSD L1OM support. */
6261
6262 #undef TARGET_LITTLE_SYM
6263 #define TARGET_LITTLE_SYM l1om_elf64_fbsd_vec
6264 #undef TARGET_LITTLE_NAME
6265 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
6266
6267 #undef ELF_OSABI
6268 #define ELF_OSABI ELFOSABI_FREEBSD
6269
6270 #undef elf64_bed
6271 #define elf64_bed elf64_l1om_fbsd_bed
6272
6273 #include "elf64-target.h"
6274
6275 /* Intel K1OM support. */
6276
6277 static bfd_boolean
6278 elf64_k1om_elf_object_p (bfd *abfd)
6279 {
6280 /* Set the right machine number for an K1OM elf64 file. */
6281 bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
6282 return TRUE;
6283 }
6284
6285 #undef TARGET_LITTLE_SYM
6286 #define TARGET_LITTLE_SYM k1om_elf64_vec
6287 #undef TARGET_LITTLE_NAME
6288 #define TARGET_LITTLE_NAME "elf64-k1om"
6289 #undef ELF_ARCH
6290 #define ELF_ARCH bfd_arch_k1om
6291
6292 #undef ELF_MACHINE_CODE
6293 #define ELF_MACHINE_CODE EM_K1OM
6294
6295 #undef ELF_OSABI
6296
6297 #undef elf64_bed
6298 #define elf64_bed elf64_k1om_bed
6299
6300 #undef elf_backend_object_p
6301 #define elf_backend_object_p elf64_k1om_elf_object_p
6302
6303 #undef elf_backend_static_tls_alignment
6304
6305 #undef elf_backend_want_plt_sym
6306 #define elf_backend_want_plt_sym 0
6307
6308 #include "elf64-target.h"
6309
6310 /* FreeBSD K1OM support. */
6311
6312 #undef TARGET_LITTLE_SYM
6313 #define TARGET_LITTLE_SYM k1om_elf64_fbsd_vec
6314 #undef TARGET_LITTLE_NAME
6315 #define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
6316
6317 #undef ELF_OSABI
6318 #define ELF_OSABI ELFOSABI_FREEBSD
6319
6320 #undef elf64_bed
6321 #define elf64_bed elf64_k1om_fbsd_bed
6322
6323 #include "elf64-target.h"
6324
6325 /* 32bit x86-64 support. */
6326
6327 #undef TARGET_LITTLE_SYM
6328 #define TARGET_LITTLE_SYM x86_64_elf32_vec
6329 #undef TARGET_LITTLE_NAME
6330 #define TARGET_LITTLE_NAME "elf32-x86-64"
6331 #undef elf32_bed
6332
6333 #undef ELF_ARCH
6334 #define ELF_ARCH bfd_arch_i386
6335
6336 #undef ELF_MACHINE_CODE
6337 #define ELF_MACHINE_CODE EM_X86_64
6338
6339 #undef ELF_OSABI
6340
6341 #undef elf_backend_object_p
6342 #define elf_backend_object_p \
6343 elf32_x86_64_elf_object_p
6344
6345 #undef elf_backend_bfd_from_remote_memory
6346 #define elf_backend_bfd_from_remote_memory \
6347 _bfd_elf32_bfd_from_remote_memory
6348
6349 #undef elf_backend_size_info
6350 #define elf_backend_size_info \
6351 _bfd_elf32_size_info
6352
6353 #include "elf32-target.h"
This page took 0.163545 seconds and 4 git commands to generate.