PR ld/5692
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "bfd_stdint.h"
29
30 #include "elf/x86-64.h"
31
32 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
33 #define MINUS_ONE (~ (bfd_vma) 0)
34
35 /* The relocation "howto" table. Order of fields:
36 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
37 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
38 static reloc_howto_type x86_64_elf_howto_table[] =
39 {
40 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
41 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
42 FALSE),
43 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
44 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
45 FALSE),
46 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
47 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
48 TRUE),
49 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
50 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
51 FALSE),
52 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
53 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
54 TRUE),
55 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
56 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
57 FALSE),
58 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
59 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
60 MINUS_ONE, FALSE),
61 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
63 MINUS_ONE, FALSE),
64 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
65 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
66 MINUS_ONE, FALSE),
67 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
68 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
69 0xffffffff, TRUE),
70 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
71 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
72 FALSE),
73 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
74 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
75 FALSE),
76 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
77 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
78 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
80 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
81 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
82 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
83 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
84 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
86 MINUS_ONE, FALSE),
87 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
89 MINUS_ONE, FALSE),
90 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
91 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
92 MINUS_ONE, FALSE),
93 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
94 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
95 0xffffffff, TRUE),
96 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
97 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
98 0xffffffff, TRUE),
99 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
101 0xffffffff, FALSE),
102 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
103 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
104 0xffffffff, TRUE),
105 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
106 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
107 0xffffffff, FALSE),
108 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
109 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
110 TRUE),
111 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
112 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
113 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
114 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
115 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
116 FALSE, 0xffffffff, 0xffffffff, TRUE),
117 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
118 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
119 FALSE),
120 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
121 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
122 MINUS_ONE, TRUE),
123 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
124 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
125 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
126 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
127 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
128 MINUS_ONE, FALSE),
129 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
130 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
131 MINUS_ONE, FALSE),
132 EMPTY_HOWTO (32),
133 EMPTY_HOWTO (33),
134 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
135 complain_overflow_bitfield, bfd_elf_generic_reloc,
136 "R_X86_64_GOTPC32_TLSDESC",
137 FALSE, 0xffffffff, 0xffffffff, TRUE),
138 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
139 complain_overflow_dont, bfd_elf_generic_reloc,
140 "R_X86_64_TLSDESC_CALL",
141 FALSE, 0, 0, FALSE),
142 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
143 complain_overflow_bitfield, bfd_elf_generic_reloc,
144 "R_X86_64_TLSDESC",
145 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
146
147 /* We have a gap in the reloc numbers here.
148 R_X86_64_standard counts the number up to this point, and
149 R_X86_64_vt_offset is the value to subtract from a reloc type of
150 R_X86_64_GNU_VT* to form an index into this table. */
151 #define R_X86_64_standard (R_X86_64_TLSDESC + 1)
152 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
153
154 /* GNU extension to record C++ vtable hierarchy. */
155 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
156 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
157
158 /* GNU extension to record C++ vtable member usage. */
159 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
160 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
161 FALSE)
162 };
163
164 /* Map BFD relocs to the x86_64 elf relocs. */
165 struct elf_reloc_map
166 {
167 bfd_reloc_code_real_type bfd_reloc_val;
168 unsigned char elf_reloc_val;
169 };
170
171 static const struct elf_reloc_map x86_64_reloc_map[] =
172 {
173 { BFD_RELOC_NONE, R_X86_64_NONE, },
174 { BFD_RELOC_64, R_X86_64_64, },
175 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
176 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
177 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
178 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
179 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
180 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
181 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
182 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
183 { BFD_RELOC_32, R_X86_64_32, },
184 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
185 { BFD_RELOC_16, R_X86_64_16, },
186 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
187 { BFD_RELOC_8, R_X86_64_8, },
188 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
189 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
190 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
191 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
192 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
193 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
194 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
195 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
196 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
197 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
198 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
199 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
200 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
201 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
202 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
203 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
204 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
205 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
206 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
207 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
208 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
209 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
210 };
211
212 static reloc_howto_type *
213 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
214 {
215 unsigned i;
216
217 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
218 || r_type >= (unsigned int) R_X86_64_max)
219 {
220 if (r_type >= (unsigned int) R_X86_64_standard)
221 {
222 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
223 abfd, (int) r_type);
224 r_type = R_X86_64_NONE;
225 }
226 i = r_type;
227 }
228 else
229 i = r_type - (unsigned int) R_X86_64_vt_offset;
230 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
231 return &x86_64_elf_howto_table[i];
232 }
233
234 /* Given a BFD reloc type, return a HOWTO structure. */
235 static reloc_howto_type *
236 elf64_x86_64_reloc_type_lookup (bfd *abfd,
237 bfd_reloc_code_real_type code)
238 {
239 unsigned int i;
240
241 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
242 i++)
243 {
244 if (x86_64_reloc_map[i].bfd_reloc_val == code)
245 return elf64_x86_64_rtype_to_howto (abfd,
246 x86_64_reloc_map[i].elf_reloc_val);
247 }
248 return 0;
249 }
250
251 static reloc_howto_type *
252 elf64_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
253 const char *r_name)
254 {
255 unsigned int i;
256
257 for (i = 0;
258 i < (sizeof (x86_64_elf_howto_table)
259 / sizeof (x86_64_elf_howto_table[0]));
260 i++)
261 if (x86_64_elf_howto_table[i].name != NULL
262 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
263 return &x86_64_elf_howto_table[i];
264
265 return NULL;
266 }
267
268 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
269
270 static void
271 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
272 Elf_Internal_Rela *dst)
273 {
274 unsigned r_type;
275
276 r_type = ELF64_R_TYPE (dst->r_info);
277 cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type);
278 BFD_ASSERT (r_type == cache_ptr->howto->type);
279 }
280 \f
281 /* Support for core dump NOTE sections. */
282 static bfd_boolean
283 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
284 {
285 int offset;
286 size_t size;
287
288 switch (note->descsz)
289 {
290 default:
291 return FALSE;
292
293 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
294 /* pr_cursig */
295 elf_tdata (abfd)->core_signal
296 = bfd_get_16 (abfd, note->descdata + 12);
297
298 /* pr_pid */
299 elf_tdata (abfd)->core_pid
300 = bfd_get_32 (abfd, note->descdata + 32);
301
302 /* pr_reg */
303 offset = 112;
304 size = 216;
305
306 break;
307 }
308
309 /* Make a ".reg/999" section. */
310 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
311 size, note->descpos + offset);
312 }
313
314 static bfd_boolean
315 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
316 {
317 switch (note->descsz)
318 {
319 default:
320 return FALSE;
321
322 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
323 elf_tdata (abfd)->core_program
324 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
325 elf_tdata (abfd)->core_command
326 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
327 }
328
329 /* Note that for some reason, a spurious space is tacked
330 onto the end of the args in some (at least one anyway)
331 implementations, so strip it off if it exists. */
332
333 {
334 char *command = elf_tdata (abfd)->core_command;
335 int n = strlen (command);
336
337 if (0 < n && command[n - 1] == ' ')
338 command[n - 1] = '\0';
339 }
340
341 return TRUE;
342 }
343 \f
344 /* Functions for the x86-64 ELF linker. */
345
346 /* The name of the dynamic interpreter. This is put in the .interp
347 section. */
348
349 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
350
351 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
352 copying dynamic variables from a shared lib into an app's dynbss
353 section, and instead use a dynamic relocation to point into the
354 shared lib. */
355 #define ELIMINATE_COPY_RELOCS 1
356
357 /* The size in bytes of an entry in the global offset table. */
358
359 #define GOT_ENTRY_SIZE 8
360
361 /* The size in bytes of an entry in the procedure linkage table. */
362
363 #define PLT_ENTRY_SIZE 16
364
365 /* The first entry in a procedure linkage table looks like this. See the
366 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
367
368 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
369 {
370 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
371 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
372 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
373 };
374
375 /* Subsequent entries in a procedure linkage table look like this. */
376
377 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
378 {
379 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
380 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
381 0x68, /* pushq immediate */
382 0, 0, 0, 0, /* replaced with index into relocation table. */
383 0xe9, /* jmp relative */
384 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
385 };
386
387 /* The x86-64 linker needs to keep track of the number of relocs that
388 it decides to copy as dynamic relocs in check_relocs for each symbol.
389 This is so that it can later discard them if they are found to be
390 unnecessary. We store the information in a field extending the
391 regular ELF linker hash table. */
392
393 struct elf64_x86_64_dyn_relocs
394 {
395 /* Next section. */
396 struct elf64_x86_64_dyn_relocs *next;
397
398 /* The input section of the reloc. */
399 asection *sec;
400
401 /* Total number of relocs copied for the input section. */
402 bfd_size_type count;
403
404 /* Number of pc-relative relocs copied for the input section. */
405 bfd_size_type pc_count;
406 };
407
408 /* x86-64 ELF linker hash entry. */
409
410 struct elf64_x86_64_link_hash_entry
411 {
412 struct elf_link_hash_entry elf;
413
414 /* Track dynamic relocs copied for this symbol. */
415 struct elf64_x86_64_dyn_relocs *dyn_relocs;
416
417 #define GOT_UNKNOWN 0
418 #define GOT_NORMAL 1
419 #define GOT_TLS_GD 2
420 #define GOT_TLS_IE 3
421 #define GOT_TLS_GDESC 4
422 #define GOT_TLS_GD_BOTH_P(type) \
423 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
424 #define GOT_TLS_GD_P(type) \
425 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
426 #define GOT_TLS_GDESC_P(type) \
427 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
428 #define GOT_TLS_GD_ANY_P(type) \
429 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
430 unsigned char tls_type;
431
432 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
433 starting at the end of the jump table. */
434 bfd_vma tlsdesc_got;
435 };
436
437 #define elf64_x86_64_hash_entry(ent) \
438 ((struct elf64_x86_64_link_hash_entry *)(ent))
439
440 struct elf64_x86_64_obj_tdata
441 {
442 struct elf_obj_tdata root;
443
444 /* tls_type for each local got entry. */
445 char *local_got_tls_type;
446
447 /* GOTPLT entries for TLS descriptors. */
448 bfd_vma *local_tlsdesc_gotent;
449 };
450
451 #define elf64_x86_64_tdata(abfd) \
452 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
453
454 #define elf64_x86_64_local_got_tls_type(abfd) \
455 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
456
457 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
458 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
459
460 #define is_x86_64_elf(bfd) \
461 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
462 && elf_tdata (bfd) != NULL \
463 && elf_object_id (bfd) == X86_64_ELF_TDATA)
464
465 static bfd_boolean
466 elf64_x86_64_mkobject (bfd *abfd)
467 {
468 return bfd_elf_allocate_object (abfd, sizeof (struct elf64_x86_64_obj_tdata),
469 X86_64_ELF_TDATA);
470 }
471
472 /* x86-64 ELF linker hash table. */
473
474 struct elf64_x86_64_link_hash_table
475 {
476 struct elf_link_hash_table elf;
477
478 /* Short-cuts to get to dynamic linker sections. */
479 asection *sgot;
480 asection *sgotplt;
481 asection *srelgot;
482 asection *splt;
483 asection *srelplt;
484 asection *sdynbss;
485 asection *srelbss;
486
487 /* The offset into splt of the PLT entry for the TLS descriptor
488 resolver. Special values are 0, if not necessary (or not found
489 to be necessary yet), and -1 if needed but not determined
490 yet. */
491 bfd_vma tlsdesc_plt;
492 /* The offset into sgot of the GOT entry used by the PLT entry
493 above. */
494 bfd_vma tlsdesc_got;
495
496 union {
497 bfd_signed_vma refcount;
498 bfd_vma offset;
499 } tls_ld_got;
500
501 /* The amount of space used by the jump slots in the GOT. */
502 bfd_vma sgotplt_jump_table_size;
503
504 /* Small local sym to section mapping cache. */
505 struct sym_sec_cache sym_sec;
506 };
507
508 /* Get the x86-64 ELF linker hash table from a link_info structure. */
509
510 #define elf64_x86_64_hash_table(p) \
511 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
512
513 #define elf64_x86_64_compute_jump_table_size(htab) \
514 ((htab)->srelplt->reloc_count * GOT_ENTRY_SIZE)
515
516 /* Create an entry in an x86-64 ELF linker hash table. */
517
518 static struct bfd_hash_entry *
519 link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
520 const char *string)
521 {
522 /* Allocate the structure if it has not already been allocated by a
523 subclass. */
524 if (entry == NULL)
525 {
526 entry = bfd_hash_allocate (table,
527 sizeof (struct elf64_x86_64_link_hash_entry));
528 if (entry == NULL)
529 return entry;
530 }
531
532 /* Call the allocation method of the superclass. */
533 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
534 if (entry != NULL)
535 {
536 struct elf64_x86_64_link_hash_entry *eh;
537
538 eh = (struct elf64_x86_64_link_hash_entry *) entry;
539 eh->dyn_relocs = NULL;
540 eh->tls_type = GOT_UNKNOWN;
541 eh->tlsdesc_got = (bfd_vma) -1;
542 }
543
544 return entry;
545 }
546
547 /* Create an X86-64 ELF linker hash table. */
548
549 static struct bfd_link_hash_table *
550 elf64_x86_64_link_hash_table_create (bfd *abfd)
551 {
552 struct elf64_x86_64_link_hash_table *ret;
553 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
554
555 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
556 if (ret == NULL)
557 return NULL;
558
559 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
560 sizeof (struct elf64_x86_64_link_hash_entry)))
561 {
562 free (ret);
563 return NULL;
564 }
565
566 ret->sgot = NULL;
567 ret->sgotplt = NULL;
568 ret->srelgot = NULL;
569 ret->splt = NULL;
570 ret->srelplt = NULL;
571 ret->sdynbss = NULL;
572 ret->srelbss = NULL;
573 ret->sym_sec.abfd = NULL;
574 ret->tlsdesc_plt = 0;
575 ret->tlsdesc_got = 0;
576 ret->tls_ld_got.refcount = 0;
577 ret->sgotplt_jump_table_size = 0;
578
579 return &ret->elf.root;
580 }
581
582 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
583 shortcuts to them in our hash table. */
584
585 static bfd_boolean
586 create_got_section (bfd *dynobj, struct bfd_link_info *info)
587 {
588 struct elf64_x86_64_link_hash_table *htab;
589
590 if (! _bfd_elf_create_got_section (dynobj, info))
591 return FALSE;
592
593 htab = elf64_x86_64_hash_table (info);
594 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
595 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
596 if (!htab->sgot || !htab->sgotplt)
597 abort ();
598
599 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
600 (SEC_ALLOC | SEC_LOAD
601 | SEC_HAS_CONTENTS
602 | SEC_IN_MEMORY
603 | SEC_LINKER_CREATED
604 | SEC_READONLY));
605 if (htab->srelgot == NULL
606 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
607 return FALSE;
608 return TRUE;
609 }
610
611 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
612 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
613 hash table. */
614
615 static bfd_boolean
616 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
617 {
618 struct elf64_x86_64_link_hash_table *htab;
619
620 htab = elf64_x86_64_hash_table (info);
621 if (!htab->sgot && !create_got_section (dynobj, info))
622 return FALSE;
623
624 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
625 return FALSE;
626
627 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
628 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
629 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
630 if (!info->shared)
631 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
632
633 if (!htab->splt || !htab->srelplt || !htab->sdynbss
634 || (!info->shared && !htab->srelbss))
635 abort ();
636
637 return TRUE;
638 }
639
640 /* Copy the extra info we tack onto an elf_link_hash_entry. */
641
642 static void
643 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
644 struct elf_link_hash_entry *dir,
645 struct elf_link_hash_entry *ind)
646 {
647 struct elf64_x86_64_link_hash_entry *edir, *eind;
648
649 edir = (struct elf64_x86_64_link_hash_entry *) dir;
650 eind = (struct elf64_x86_64_link_hash_entry *) ind;
651
652 if (eind->dyn_relocs != NULL)
653 {
654 if (edir->dyn_relocs != NULL)
655 {
656 struct elf64_x86_64_dyn_relocs **pp;
657 struct elf64_x86_64_dyn_relocs *p;
658
659 /* Add reloc counts against the indirect sym to the direct sym
660 list. Merge any entries against the same section. */
661 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
662 {
663 struct elf64_x86_64_dyn_relocs *q;
664
665 for (q = edir->dyn_relocs; q != NULL; q = q->next)
666 if (q->sec == p->sec)
667 {
668 q->pc_count += p->pc_count;
669 q->count += p->count;
670 *pp = p->next;
671 break;
672 }
673 if (q == NULL)
674 pp = &p->next;
675 }
676 *pp = edir->dyn_relocs;
677 }
678
679 edir->dyn_relocs = eind->dyn_relocs;
680 eind->dyn_relocs = NULL;
681 }
682
683 if (ind->root.type == bfd_link_hash_indirect
684 && dir->got.refcount <= 0)
685 {
686 edir->tls_type = eind->tls_type;
687 eind->tls_type = GOT_UNKNOWN;
688 }
689
690 if (ELIMINATE_COPY_RELOCS
691 && ind->root.type != bfd_link_hash_indirect
692 && dir->dynamic_adjusted)
693 {
694 /* If called to transfer flags for a weakdef during processing
695 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
696 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
697 dir->ref_dynamic |= ind->ref_dynamic;
698 dir->ref_regular |= ind->ref_regular;
699 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
700 dir->needs_plt |= ind->needs_plt;
701 dir->pointer_equality_needed |= ind->pointer_equality_needed;
702 }
703 else
704 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
705 }
706
707 static bfd_boolean
708 elf64_x86_64_elf_object_p (bfd *abfd)
709 {
710 /* Set the right machine number for an x86-64 elf64 file. */
711 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
712 return TRUE;
713 }
714
715 typedef union
716 {
717 unsigned char c[2];
718 uint16_t i;
719 }
720 x86_64_opcode16;
721
722 typedef union
723 {
724 unsigned char c[4];
725 uint32_t i;
726 }
727 x86_64_opcode32;
728
729 /* Return TRUE if the TLS access code sequence support transition
730 from R_TYPE. */
731
732 static bfd_boolean
733 elf64_x86_64_check_tls_transition (bfd *abfd, asection *sec,
734 bfd_byte *contents,
735 Elf_Internal_Shdr *symtab_hdr,
736 struct elf_link_hash_entry **sym_hashes,
737 unsigned int r_type,
738 const Elf_Internal_Rela *rel,
739 const Elf_Internal_Rela *relend)
740 {
741 unsigned int val;
742 unsigned long r_symndx;
743 struct elf_link_hash_entry *h;
744 bfd_vma offset;
745
746 /* Get the section contents. */
747 if (contents == NULL)
748 {
749 if (elf_section_data (sec)->this_hdr.contents != NULL)
750 contents = elf_section_data (sec)->this_hdr.contents;
751 else
752 {
753 /* FIXME: How to better handle error condition? */
754 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
755 return FALSE;
756
757 /* Cache the section contents for elf_link_input_bfd. */
758 elf_section_data (sec)->this_hdr.contents = contents;
759 }
760 }
761
762 offset = rel->r_offset;
763 switch (r_type)
764 {
765 case R_X86_64_TLSGD:
766 case R_X86_64_TLSLD:
767 if ((rel + 1) >= relend)
768 return FALSE;
769
770 if (r_type == R_X86_64_TLSGD)
771 {
772 /* Check transition from GD access model. Only
773 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
774 .word 0x6666; rex64; call __tls_get_addr
775 can transit to different access model. */
776
777 static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } },
778 call = { { 0x66, 0x66, 0x48, 0xe8 } };
779 if (offset < 4
780 || (offset + 12) > sec->size
781 || bfd_get_32 (abfd, contents + offset - 4) != leaq.i
782 || bfd_get_32 (abfd, contents + offset + 4) != call.i)
783 return FALSE;
784 }
785 else
786 {
787 /* Check transition from LD access model. Only
788 leaq foo@tlsld(%rip), %rdi;
789 call __tls_get_addr
790 can transit to different access model. */
791
792 static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } };
793 x86_64_opcode32 op;
794
795 if (offset < 3 || (offset + 9) > sec->size)
796 return FALSE;
797
798 op.i = bfd_get_32 (abfd, contents + offset - 3);
799 op.c[3] = bfd_get_8 (abfd, contents + offset + 4);
800 if (op.i != ld.i)
801 return FALSE;
802 }
803
804 r_symndx = ELF64_R_SYM (rel[1].r_info);
805 if (r_symndx < symtab_hdr->sh_info)
806 return FALSE;
807
808 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
809 return (h != NULL
810 && h->root.root.string != NULL
811 && (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PC32
812 || ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
813 && (strcmp (h->root.root.string, "__tls_get_addr") == 0));
814
815 case R_X86_64_GOTTPOFF:
816 /* Check transition from IE access model:
817 movq foo@gottpoff(%rip), %reg
818 addq foo@gottpoff(%rip), %reg
819 */
820
821 if (offset < 3 || (offset + 4) > sec->size)
822 return FALSE;
823
824 val = bfd_get_8 (abfd, contents + offset - 3);
825 if (val != 0x48 && val != 0x4c)
826 return FALSE;
827
828 val = bfd_get_8 (abfd, contents + offset - 2);
829 if (val != 0x8b && val != 0x03)
830 return FALSE;
831
832 val = bfd_get_8 (abfd, contents + offset - 1);
833 return (val & 0xc7) == 5;
834
835 case R_X86_64_GOTPC32_TLSDESC:
836 /* Check transition from GDesc access model:
837 leaq x@tlsdesc(%rip), %rax
838
839 Make sure it's a leaq adding rip to a 32-bit offset
840 into any register, although it's probably almost always
841 going to be rax. */
842
843 if (offset < 3 || (offset + 4) > sec->size)
844 return FALSE;
845
846 val = bfd_get_8 (abfd, contents + offset - 3);
847 if ((val & 0xfb) != 0x48)
848 return FALSE;
849
850 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
851 return FALSE;
852
853 val = bfd_get_8 (abfd, contents + offset - 1);
854 return (val & 0xc7) == 0x05;
855
856 case R_X86_64_TLSDESC_CALL:
857 /* Check transition from GDesc access model:
858 call *x@tlsdesc(%rax)
859 */
860 if (offset + 2 <= sec->size)
861 {
862 /* Make sure that it's a call *x@tlsdesc(%rax). */
863 static x86_64_opcode16 call = { { 0xff, 0x10 } };
864 return bfd_get_16 (abfd, contents + offset) == call.i;
865 }
866
867 return FALSE;
868
869 default:
870 abort ();
871 }
872 }
873
874 /* Return TRUE if the TLS access transition is OK or no transition
875 will be performed. Update R_TYPE if there is a transition. */
876
877 static bfd_boolean
878 elf64_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
879 asection *sec, bfd_byte *contents,
880 Elf_Internal_Shdr *symtab_hdr,
881 struct elf_link_hash_entry **sym_hashes,
882 unsigned int *r_type, int tls_type,
883 const Elf_Internal_Rela *rel,
884 const Elf_Internal_Rela *relend,
885 struct elf_link_hash_entry *h)
886 {
887 unsigned int from_type = *r_type;
888 unsigned int to_type = from_type;
889 bfd_boolean check = TRUE;
890
891 switch (from_type)
892 {
893 case R_X86_64_TLSGD:
894 case R_X86_64_GOTPC32_TLSDESC:
895 case R_X86_64_TLSDESC_CALL:
896 case R_X86_64_GOTTPOFF:
897 if (!info->shared)
898 {
899 if (h == NULL)
900 to_type = R_X86_64_TPOFF32;
901 else
902 to_type = R_X86_64_GOTTPOFF;
903 }
904
905 /* When we are called from elf64_x86_64_relocate_section,
906 CONTENTS isn't NULL and there may be additional transitions
907 based on TLS_TYPE. */
908 if (contents != NULL)
909 {
910 unsigned int new_to_type = to_type;
911
912 if (!info->shared
913 && h != NULL
914 && h->dynindx == -1
915 && tls_type == GOT_TLS_IE)
916 new_to_type = R_X86_64_TPOFF32;
917
918 if (to_type == R_X86_64_TLSGD
919 || to_type == R_X86_64_GOTPC32_TLSDESC
920 || to_type == R_X86_64_TLSDESC_CALL)
921 {
922 if (tls_type == GOT_TLS_IE)
923 new_to_type = R_X86_64_GOTTPOFF;
924 }
925
926 /* We checked the transition before when we were called from
927 elf64_x86_64_check_relocs. We only want to check the new
928 transition which hasn't been checked before. */
929 check = new_to_type != to_type && from_type == to_type;
930 to_type = new_to_type;
931 }
932
933 break;
934
935 case R_X86_64_TLSLD:
936 if (!info->shared)
937 to_type = R_X86_64_TPOFF32;
938 break;
939
940 default:
941 return TRUE;
942 }
943
944 /* Return TRUE if there is no transition. */
945 if (from_type == to_type)
946 return TRUE;
947
948 /* Check if the transition can be performed. */
949 if (check
950 && ! elf64_x86_64_check_tls_transition (abfd, sec, contents,
951 symtab_hdr, sym_hashes,
952 from_type, rel, relend))
953 {
954 reloc_howto_type *from, *to;
955
956 from = elf64_x86_64_rtype_to_howto (abfd, from_type);
957 to = elf64_x86_64_rtype_to_howto (abfd, to_type);
958
959 (*_bfd_error_handler)
960 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
961 "in section `%A' failed"),
962 abfd, sec, from->name, to->name,
963 h ? h->root.root.string : "a local symbol",
964 (unsigned long) rel->r_offset);
965 bfd_set_error (bfd_error_bad_value);
966 return FALSE;
967 }
968
969 *r_type = to_type;
970 return TRUE;
971 }
972
973 /* Look through the relocs for a section during the first phase, and
974 calculate needed space in the global offset table, procedure
975 linkage table, and dynamic reloc sections. */
976
977 static bfd_boolean
978 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
979 asection *sec,
980 const Elf_Internal_Rela *relocs)
981 {
982 struct elf64_x86_64_link_hash_table *htab;
983 Elf_Internal_Shdr *symtab_hdr;
984 struct elf_link_hash_entry **sym_hashes;
985 const Elf_Internal_Rela *rel;
986 const Elf_Internal_Rela *rel_end;
987 asection *sreloc;
988
989 if (info->relocatable)
990 return TRUE;
991
992 BFD_ASSERT (is_x86_64_elf (abfd));
993
994 htab = elf64_x86_64_hash_table (info);
995 symtab_hdr = &elf_symtab_hdr (abfd);
996 sym_hashes = elf_sym_hashes (abfd);
997
998 sreloc = NULL;
999
1000 rel_end = relocs + sec->reloc_count;
1001 for (rel = relocs; rel < rel_end; rel++)
1002 {
1003 unsigned int r_type;
1004 unsigned long r_symndx;
1005 struct elf_link_hash_entry *h;
1006
1007 r_symndx = ELF64_R_SYM (rel->r_info);
1008 r_type = ELF64_R_TYPE (rel->r_info);
1009
1010 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1011 {
1012 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1013 abfd, r_symndx);
1014 return FALSE;
1015 }
1016
1017 if (r_symndx < symtab_hdr->sh_info)
1018 h = NULL;
1019 else
1020 {
1021 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1022 while (h->root.type == bfd_link_hash_indirect
1023 || h->root.type == bfd_link_hash_warning)
1024 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1025 }
1026
1027 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1028 symtab_hdr, sym_hashes,
1029 &r_type, GOT_UNKNOWN,
1030 rel, rel_end, h))
1031 return FALSE;
1032
1033 switch (r_type)
1034 {
1035 case R_X86_64_TLSLD:
1036 htab->tls_ld_got.refcount += 1;
1037 goto create_got;
1038
1039 case R_X86_64_TPOFF32:
1040 if (info->shared)
1041 {
1042 (*_bfd_error_handler)
1043 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1044 abfd,
1045 x86_64_elf_howto_table[r_type].name,
1046 (h) ? h->root.root.string : "a local symbol");
1047 bfd_set_error (bfd_error_bad_value);
1048 return FALSE;
1049 }
1050 break;
1051
1052 case R_X86_64_GOTTPOFF:
1053 if (info->shared)
1054 info->flags |= DF_STATIC_TLS;
1055 /* Fall through */
1056
1057 case R_X86_64_GOT32:
1058 case R_X86_64_GOTPCREL:
1059 case R_X86_64_TLSGD:
1060 case R_X86_64_GOT64:
1061 case R_X86_64_GOTPCREL64:
1062 case R_X86_64_GOTPLT64:
1063 case R_X86_64_GOTPC32_TLSDESC:
1064 case R_X86_64_TLSDESC_CALL:
1065 /* This symbol requires a global offset table entry. */
1066 {
1067 int tls_type, old_tls_type;
1068
1069 switch (r_type)
1070 {
1071 default: tls_type = GOT_NORMAL; break;
1072 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1073 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1074 case R_X86_64_GOTPC32_TLSDESC:
1075 case R_X86_64_TLSDESC_CALL:
1076 tls_type = GOT_TLS_GDESC; break;
1077 }
1078
1079 if (h != NULL)
1080 {
1081 if (r_type == R_X86_64_GOTPLT64)
1082 {
1083 /* This relocation indicates that we also need
1084 a PLT entry, as this is a function. We don't need
1085 a PLT entry for local symbols. */
1086 h->needs_plt = 1;
1087 h->plt.refcount += 1;
1088 }
1089 h->got.refcount += 1;
1090 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1091 }
1092 else
1093 {
1094 bfd_signed_vma *local_got_refcounts;
1095
1096 /* This is a global offset table entry for a local symbol. */
1097 local_got_refcounts = elf_local_got_refcounts (abfd);
1098 if (local_got_refcounts == NULL)
1099 {
1100 bfd_size_type size;
1101
1102 size = symtab_hdr->sh_info;
1103 size *= sizeof (bfd_signed_vma)
1104 + sizeof (bfd_vma) + sizeof (char);
1105 local_got_refcounts = ((bfd_signed_vma *)
1106 bfd_zalloc (abfd, size));
1107 if (local_got_refcounts == NULL)
1108 return FALSE;
1109 elf_local_got_refcounts (abfd) = local_got_refcounts;
1110 elf64_x86_64_local_tlsdesc_gotent (abfd)
1111 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1112 elf64_x86_64_local_got_tls_type (abfd)
1113 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1114 }
1115 local_got_refcounts[r_symndx] += 1;
1116 old_tls_type
1117 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
1118 }
1119
1120 /* If a TLS symbol is accessed using IE at least once,
1121 there is no point to use dynamic model for it. */
1122 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1123 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1124 || tls_type != GOT_TLS_IE))
1125 {
1126 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1127 tls_type = old_tls_type;
1128 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1129 && GOT_TLS_GD_ANY_P (tls_type))
1130 tls_type |= old_tls_type;
1131 else
1132 {
1133 (*_bfd_error_handler)
1134 (_("%B: '%s' accessed both as normal and thread local symbol"),
1135 abfd, h ? h->root.root.string : "<local>");
1136 return FALSE;
1137 }
1138 }
1139
1140 if (old_tls_type != tls_type)
1141 {
1142 if (h != NULL)
1143 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
1144 else
1145 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1146 }
1147 }
1148 /* Fall through */
1149
1150 case R_X86_64_GOTOFF64:
1151 case R_X86_64_GOTPC32:
1152 case R_X86_64_GOTPC64:
1153 create_got:
1154 if (htab->sgot == NULL)
1155 {
1156 if (htab->elf.dynobj == NULL)
1157 htab->elf.dynobj = abfd;
1158 if (!create_got_section (htab->elf.dynobj, info))
1159 return FALSE;
1160 }
1161 break;
1162
1163 case R_X86_64_PLT32:
1164 /* This symbol requires a procedure linkage table entry. We
1165 actually build the entry in adjust_dynamic_symbol,
1166 because this might be a case of linking PIC code which is
1167 never referenced by a dynamic object, in which case we
1168 don't need to generate a procedure linkage table entry
1169 after all. */
1170
1171 /* If this is a local symbol, we resolve it directly without
1172 creating a procedure linkage table entry. */
1173 if (h == NULL)
1174 continue;
1175
1176 h->needs_plt = 1;
1177 h->plt.refcount += 1;
1178 break;
1179
1180 case R_X86_64_PLTOFF64:
1181 /* This tries to form the 'address' of a function relative
1182 to GOT. For global symbols we need a PLT entry. */
1183 if (h != NULL)
1184 {
1185 h->needs_plt = 1;
1186 h->plt.refcount += 1;
1187 }
1188 goto create_got;
1189
1190 case R_X86_64_8:
1191 case R_X86_64_16:
1192 case R_X86_64_32:
1193 case R_X86_64_32S:
1194 /* Let's help debug shared library creation. These relocs
1195 cannot be used in shared libs. Don't error out for
1196 sections we don't care about, such as debug sections or
1197 non-constant sections. */
1198 if (info->shared
1199 && (sec->flags & SEC_ALLOC) != 0
1200 && (sec->flags & SEC_READONLY) != 0)
1201 {
1202 (*_bfd_error_handler)
1203 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1204 abfd,
1205 x86_64_elf_howto_table[r_type].name,
1206 (h) ? h->root.root.string : "a local symbol");
1207 bfd_set_error (bfd_error_bad_value);
1208 return FALSE;
1209 }
1210 /* Fall through. */
1211
1212 case R_X86_64_PC8:
1213 case R_X86_64_PC16:
1214 case R_X86_64_PC32:
1215 case R_X86_64_PC64:
1216 case R_X86_64_64:
1217 if (h != NULL && !info->shared)
1218 {
1219 /* If this reloc is in a read-only section, we might
1220 need a copy reloc. We can't check reliably at this
1221 stage whether the section is read-only, as input
1222 sections have not yet been mapped to output sections.
1223 Tentatively set the flag for now, and correct in
1224 adjust_dynamic_symbol. */
1225 h->non_got_ref = 1;
1226
1227 /* We may need a .plt entry if the function this reloc
1228 refers to is in a shared lib. */
1229 h->plt.refcount += 1;
1230 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1231 h->pointer_equality_needed = 1;
1232 }
1233
1234 /* If we are creating a shared library, and this is a reloc
1235 against a global symbol, or a non PC relative reloc
1236 against a local symbol, then we need to copy the reloc
1237 into the shared library. However, if we are linking with
1238 -Bsymbolic, we do not need to copy a reloc against a
1239 global symbol which is defined in an object we are
1240 including in the link (i.e., DEF_REGULAR is set). At
1241 this point we have not seen all the input files, so it is
1242 possible that DEF_REGULAR is not set now but will be set
1243 later (it is never cleared). In case of a weak definition,
1244 DEF_REGULAR may be cleared later by a strong definition in
1245 a shared library. We account for that possibility below by
1246 storing information in the relocs_copied field of the hash
1247 table entry. A similar situation occurs when creating
1248 shared libraries and symbol visibility changes render the
1249 symbol local.
1250
1251 If on the other hand, we are creating an executable, we
1252 may need to keep relocations for symbols satisfied by a
1253 dynamic library if we manage to avoid copy relocs for the
1254 symbol. */
1255 if ((info->shared
1256 && (sec->flags & SEC_ALLOC) != 0
1257 && (((r_type != R_X86_64_PC8)
1258 && (r_type != R_X86_64_PC16)
1259 && (r_type != R_X86_64_PC32)
1260 && (r_type != R_X86_64_PC64))
1261 || (h != NULL
1262 && (! SYMBOLIC_BIND (info, h)
1263 || h->root.type == bfd_link_hash_defweak
1264 || !h->def_regular))))
1265 || (ELIMINATE_COPY_RELOCS
1266 && !info->shared
1267 && (sec->flags & SEC_ALLOC) != 0
1268 && h != NULL
1269 && (h->root.type == bfd_link_hash_defweak
1270 || !h->def_regular)))
1271 {
1272 struct elf64_x86_64_dyn_relocs *p;
1273 struct elf64_x86_64_dyn_relocs **head;
1274
1275 /* We must copy these reloc types into the output file.
1276 Create a reloc section in dynobj and make room for
1277 this reloc. */
1278 if (sreloc == NULL)
1279 {
1280 const char *name;
1281 bfd *dynobj;
1282
1283 name = (bfd_elf_string_from_elf_section
1284 (abfd,
1285 elf_elfheader (abfd)->e_shstrndx,
1286 elf_section_data (sec)->rel_hdr.sh_name));
1287 if (name == NULL)
1288 return FALSE;
1289
1290 if (! CONST_STRNEQ (name, ".rela")
1291 || strcmp (bfd_get_section_name (abfd, sec),
1292 name + 5) != 0)
1293 {
1294 (*_bfd_error_handler)
1295 (_("%B: bad relocation section name `%s\'"),
1296 abfd, name);
1297 }
1298
1299 if (htab->elf.dynobj == NULL)
1300 htab->elf.dynobj = abfd;
1301
1302 dynobj = htab->elf.dynobj;
1303
1304 sreloc = bfd_get_section_by_name (dynobj, name);
1305 if (sreloc == NULL)
1306 {
1307 flagword flags;
1308
1309 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1310 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1311 if ((sec->flags & SEC_ALLOC) != 0)
1312 flags |= SEC_ALLOC | SEC_LOAD;
1313 sreloc = bfd_make_section_with_flags (dynobj,
1314 name,
1315 flags);
1316 if (sreloc == NULL
1317 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1318 return FALSE;
1319 }
1320 elf_section_data (sec)->sreloc = sreloc;
1321 }
1322
1323 /* If this is a global symbol, we count the number of
1324 relocations we need for this symbol. */
1325 if (h != NULL)
1326 {
1327 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1328 }
1329 else
1330 {
1331 void **vpp;
1332 /* Track dynamic relocs needed for local syms too.
1333 We really need local syms available to do this
1334 easily. Oh well. */
1335
1336 asection *s;
1337 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1338 sec, r_symndx);
1339 if (s == NULL)
1340 return FALSE;
1341
1342 /* Beware of type punned pointers vs strict aliasing
1343 rules. */
1344 vpp = &(elf_section_data (s)->local_dynrel);
1345 head = (struct elf64_x86_64_dyn_relocs **)vpp;
1346 }
1347
1348 p = *head;
1349 if (p == NULL || p->sec != sec)
1350 {
1351 bfd_size_type amt = sizeof *p;
1352 p = ((struct elf64_x86_64_dyn_relocs *)
1353 bfd_alloc (htab->elf.dynobj, amt));
1354 if (p == NULL)
1355 return FALSE;
1356 p->next = *head;
1357 *head = p;
1358 p->sec = sec;
1359 p->count = 0;
1360 p->pc_count = 0;
1361 }
1362
1363 p->count += 1;
1364 if (r_type == R_X86_64_PC8
1365 || r_type == R_X86_64_PC16
1366 || r_type == R_X86_64_PC32
1367 || r_type == R_X86_64_PC64)
1368 p->pc_count += 1;
1369 }
1370 break;
1371
1372 /* This relocation describes the C++ object vtable hierarchy.
1373 Reconstruct it for later use during GC. */
1374 case R_X86_64_GNU_VTINHERIT:
1375 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1376 return FALSE;
1377 break;
1378
1379 /* This relocation describes which C++ vtable entries are actually
1380 used. Record for later use during GC. */
1381 case R_X86_64_GNU_VTENTRY:
1382 BFD_ASSERT (h != NULL);
1383 if (h != NULL
1384 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1385 return FALSE;
1386 break;
1387
1388 default:
1389 break;
1390 }
1391 }
1392
1393 return TRUE;
1394 }
1395
1396 /* Return the section that should be marked against GC for a given
1397 relocation. */
1398
1399 static asection *
1400 elf64_x86_64_gc_mark_hook (asection *sec,
1401 struct bfd_link_info *info,
1402 Elf_Internal_Rela *rel,
1403 struct elf_link_hash_entry *h,
1404 Elf_Internal_Sym *sym)
1405 {
1406 if (h != NULL)
1407 switch (ELF64_R_TYPE (rel->r_info))
1408 {
1409 case R_X86_64_GNU_VTINHERIT:
1410 case R_X86_64_GNU_VTENTRY:
1411 return NULL;
1412 }
1413
1414 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1415 }
1416
1417 /* Update the got entry reference counts for the section being removed. */
1418
1419 static bfd_boolean
1420 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1421 asection *sec,
1422 const Elf_Internal_Rela *relocs)
1423 {
1424 Elf_Internal_Shdr *symtab_hdr;
1425 struct elf_link_hash_entry **sym_hashes;
1426 bfd_signed_vma *local_got_refcounts;
1427 const Elf_Internal_Rela *rel, *relend;
1428
1429 if (info->relocatable)
1430 return TRUE;
1431
1432 elf_section_data (sec)->local_dynrel = NULL;
1433
1434 symtab_hdr = &elf_symtab_hdr (abfd);
1435 sym_hashes = elf_sym_hashes (abfd);
1436 local_got_refcounts = elf_local_got_refcounts (abfd);
1437
1438 relend = relocs + sec->reloc_count;
1439 for (rel = relocs; rel < relend; rel++)
1440 {
1441 unsigned long r_symndx;
1442 unsigned int r_type;
1443 struct elf_link_hash_entry *h = NULL;
1444
1445 r_symndx = ELF64_R_SYM (rel->r_info);
1446 if (r_symndx >= symtab_hdr->sh_info)
1447 {
1448 struct elf64_x86_64_link_hash_entry *eh;
1449 struct elf64_x86_64_dyn_relocs **pp;
1450 struct elf64_x86_64_dyn_relocs *p;
1451
1452 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1453 while (h->root.type == bfd_link_hash_indirect
1454 || h->root.type == bfd_link_hash_warning)
1455 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1456 eh = (struct elf64_x86_64_link_hash_entry *) h;
1457
1458 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1459 if (p->sec == sec)
1460 {
1461 /* Everything must go for SEC. */
1462 *pp = p->next;
1463 break;
1464 }
1465 }
1466
1467 r_type = ELF64_R_TYPE (rel->r_info);
1468 if (! elf64_x86_64_tls_transition (info, abfd, sec, NULL,
1469 symtab_hdr, sym_hashes,
1470 &r_type, GOT_UNKNOWN,
1471 rel, relend, h))
1472 return FALSE;
1473
1474 switch (r_type)
1475 {
1476 case R_X86_64_TLSLD:
1477 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1478 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1479 break;
1480
1481 case R_X86_64_TLSGD:
1482 case R_X86_64_GOTPC32_TLSDESC:
1483 case R_X86_64_TLSDESC_CALL:
1484 case R_X86_64_GOTTPOFF:
1485 case R_X86_64_GOT32:
1486 case R_X86_64_GOTPCREL:
1487 case R_X86_64_GOT64:
1488 case R_X86_64_GOTPCREL64:
1489 case R_X86_64_GOTPLT64:
1490 if (h != NULL)
1491 {
1492 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1493 h->plt.refcount -= 1;
1494 if (h->got.refcount > 0)
1495 h->got.refcount -= 1;
1496 }
1497 else if (local_got_refcounts != NULL)
1498 {
1499 if (local_got_refcounts[r_symndx] > 0)
1500 local_got_refcounts[r_symndx] -= 1;
1501 }
1502 break;
1503
1504 case R_X86_64_8:
1505 case R_X86_64_16:
1506 case R_X86_64_32:
1507 case R_X86_64_64:
1508 case R_X86_64_32S:
1509 case R_X86_64_PC8:
1510 case R_X86_64_PC16:
1511 case R_X86_64_PC32:
1512 case R_X86_64_PC64:
1513 if (info->shared)
1514 break;
1515 /* Fall thru */
1516
1517 case R_X86_64_PLT32:
1518 case R_X86_64_PLTOFF64:
1519 if (h != NULL)
1520 {
1521 if (h->plt.refcount > 0)
1522 h->plt.refcount -= 1;
1523 }
1524 break;
1525
1526 default:
1527 break;
1528 }
1529 }
1530
1531 return TRUE;
1532 }
1533
1534 /* Adjust a symbol defined by a dynamic object and referenced by a
1535 regular object. The current definition is in some section of the
1536 dynamic object, but we're not including those sections. We have to
1537 change the definition to something the rest of the link can
1538 understand. */
1539
1540 static bfd_boolean
1541 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1542 struct elf_link_hash_entry *h)
1543 {
1544 struct elf64_x86_64_link_hash_table *htab;
1545 asection *s;
1546
1547 /* If this is a function, put it in the procedure linkage table. We
1548 will fill in the contents of the procedure linkage table later,
1549 when we know the address of the .got section. */
1550 if (h->type == STT_FUNC
1551 || h->needs_plt)
1552 {
1553 if (h->plt.refcount <= 0
1554 || SYMBOL_CALLS_LOCAL (info, h)
1555 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1556 && h->root.type == bfd_link_hash_undefweak))
1557 {
1558 /* This case can occur if we saw a PLT32 reloc in an input
1559 file, but the symbol was never referred to by a dynamic
1560 object, or if all references were garbage collected. In
1561 such a case, we don't actually need to build a procedure
1562 linkage table, and we can just do a PC32 reloc instead. */
1563 h->plt.offset = (bfd_vma) -1;
1564 h->needs_plt = 0;
1565 }
1566
1567 return TRUE;
1568 }
1569 else
1570 /* It's possible that we incorrectly decided a .plt reloc was
1571 needed for an R_X86_64_PC32 reloc to a non-function sym in
1572 check_relocs. We can't decide accurately between function and
1573 non-function syms in check-relocs; Objects loaded later in
1574 the link may change h->type. So fix it now. */
1575 h->plt.offset = (bfd_vma) -1;
1576
1577 /* If this is a weak symbol, and there is a real definition, the
1578 processor independent code will have arranged for us to see the
1579 real definition first, and we can just use the same value. */
1580 if (h->u.weakdef != NULL)
1581 {
1582 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1583 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1584 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1585 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1586 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1587 h->non_got_ref = h->u.weakdef->non_got_ref;
1588 return TRUE;
1589 }
1590
1591 /* This is a reference to a symbol defined by a dynamic object which
1592 is not a function. */
1593
1594 /* If we are creating a shared library, we must presume that the
1595 only references to the symbol are via the global offset table.
1596 For such cases we need not do anything here; the relocations will
1597 be handled correctly by relocate_section. */
1598 if (info->shared)
1599 return TRUE;
1600
1601 /* If there are no references to this symbol that do not use the
1602 GOT, we don't need to generate a copy reloc. */
1603 if (!h->non_got_ref)
1604 return TRUE;
1605
1606 /* If -z nocopyreloc was given, we won't generate them either. */
1607 if (info->nocopyreloc)
1608 {
1609 h->non_got_ref = 0;
1610 return TRUE;
1611 }
1612
1613 if (ELIMINATE_COPY_RELOCS)
1614 {
1615 struct elf64_x86_64_link_hash_entry * eh;
1616 struct elf64_x86_64_dyn_relocs *p;
1617
1618 eh = (struct elf64_x86_64_link_hash_entry *) h;
1619 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1620 {
1621 s = p->sec->output_section;
1622 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1623 break;
1624 }
1625
1626 /* If we didn't find any dynamic relocs in read-only sections, then
1627 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1628 if (p == NULL)
1629 {
1630 h->non_got_ref = 0;
1631 return TRUE;
1632 }
1633 }
1634
1635 if (h->size == 0)
1636 {
1637 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1638 h->root.root.string);
1639 return TRUE;
1640 }
1641
1642 /* We must allocate the symbol in our .dynbss section, which will
1643 become part of the .bss section of the executable. There will be
1644 an entry for this symbol in the .dynsym section. The dynamic
1645 object will contain position independent code, so all references
1646 from the dynamic object to this symbol will go through the global
1647 offset table. The dynamic linker will use the .dynsym entry to
1648 determine the address it must put in the global offset table, so
1649 both the dynamic object and the regular object will refer to the
1650 same memory location for the variable. */
1651
1652 htab = elf64_x86_64_hash_table (info);
1653
1654 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1655 to copy the initial value out of the dynamic object and into the
1656 runtime process image. */
1657 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1658 {
1659 htab->srelbss->size += sizeof (Elf64_External_Rela);
1660 h->needs_copy = 1;
1661 }
1662
1663 s = htab->sdynbss;
1664
1665 return _bfd_elf_adjust_dynamic_copy (h, s);
1666 }
1667
1668 /* Allocate space in .plt, .got and associated reloc sections for
1669 dynamic relocs. */
1670
1671 static bfd_boolean
1672 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1673 {
1674 struct bfd_link_info *info;
1675 struct elf64_x86_64_link_hash_table *htab;
1676 struct elf64_x86_64_link_hash_entry *eh;
1677 struct elf64_x86_64_dyn_relocs *p;
1678
1679 if (h->root.type == bfd_link_hash_indirect)
1680 return TRUE;
1681
1682 if (h->root.type == bfd_link_hash_warning)
1683 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1684
1685 info = (struct bfd_link_info *) inf;
1686 htab = elf64_x86_64_hash_table (info);
1687
1688 if (htab->elf.dynamic_sections_created
1689 && h->plt.refcount > 0)
1690 {
1691 /* Make sure this symbol is output as a dynamic symbol.
1692 Undefined weak syms won't yet be marked as dynamic. */
1693 if (h->dynindx == -1
1694 && !h->forced_local)
1695 {
1696 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1697 return FALSE;
1698 }
1699
1700 if (info->shared
1701 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1702 {
1703 asection *s = htab->splt;
1704
1705 /* If this is the first .plt entry, make room for the special
1706 first entry. */
1707 if (s->size == 0)
1708 s->size += PLT_ENTRY_SIZE;
1709
1710 h->plt.offset = s->size;
1711
1712 /* If this symbol is not defined in a regular file, and we are
1713 not generating a shared library, then set the symbol to this
1714 location in the .plt. This is required to make function
1715 pointers compare as equal between the normal executable and
1716 the shared library. */
1717 if (! info->shared
1718 && !h->def_regular)
1719 {
1720 h->root.u.def.section = s;
1721 h->root.u.def.value = h->plt.offset;
1722 }
1723
1724 /* Make room for this entry. */
1725 s->size += PLT_ENTRY_SIZE;
1726
1727 /* We also need to make an entry in the .got.plt section, which
1728 will be placed in the .got section by the linker script. */
1729 htab->sgotplt->size += GOT_ENTRY_SIZE;
1730
1731 /* We also need to make an entry in the .rela.plt section. */
1732 htab->srelplt->size += sizeof (Elf64_External_Rela);
1733 htab->srelplt->reloc_count++;
1734 }
1735 else
1736 {
1737 h->plt.offset = (bfd_vma) -1;
1738 h->needs_plt = 0;
1739 }
1740 }
1741 else
1742 {
1743 h->plt.offset = (bfd_vma) -1;
1744 h->needs_plt = 0;
1745 }
1746
1747 eh = (struct elf64_x86_64_link_hash_entry *) h;
1748 eh->tlsdesc_got = (bfd_vma) -1;
1749
1750 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1751 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1752 if (h->got.refcount > 0
1753 && !info->shared
1754 && h->dynindx == -1
1755 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1756 h->got.offset = (bfd_vma) -1;
1757 else if (h->got.refcount > 0)
1758 {
1759 asection *s;
1760 bfd_boolean dyn;
1761 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1762
1763 /* Make sure this symbol is output as a dynamic symbol.
1764 Undefined weak syms won't yet be marked as dynamic. */
1765 if (h->dynindx == -1
1766 && !h->forced_local)
1767 {
1768 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1769 return FALSE;
1770 }
1771
1772 if (GOT_TLS_GDESC_P (tls_type))
1773 {
1774 eh->tlsdesc_got = htab->sgotplt->size
1775 - elf64_x86_64_compute_jump_table_size (htab);
1776 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
1777 h->got.offset = (bfd_vma) -2;
1778 }
1779 if (! GOT_TLS_GDESC_P (tls_type)
1780 || GOT_TLS_GD_P (tls_type))
1781 {
1782 s = htab->sgot;
1783 h->got.offset = s->size;
1784 s->size += GOT_ENTRY_SIZE;
1785 if (GOT_TLS_GD_P (tls_type))
1786 s->size += GOT_ENTRY_SIZE;
1787 }
1788 dyn = htab->elf.dynamic_sections_created;
1789 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1790 and two if global.
1791 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1792 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
1793 || tls_type == GOT_TLS_IE)
1794 htab->srelgot->size += sizeof (Elf64_External_Rela);
1795 else if (GOT_TLS_GD_P (tls_type))
1796 htab->srelgot->size += 2 * sizeof (Elf64_External_Rela);
1797 else if (! GOT_TLS_GDESC_P (tls_type)
1798 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1799 || h->root.type != bfd_link_hash_undefweak)
1800 && (info->shared
1801 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1802 htab->srelgot->size += sizeof (Elf64_External_Rela);
1803 if (GOT_TLS_GDESC_P (tls_type))
1804 {
1805 htab->srelplt->size += sizeof (Elf64_External_Rela);
1806 htab->tlsdesc_plt = (bfd_vma) -1;
1807 }
1808 }
1809 else
1810 h->got.offset = (bfd_vma) -1;
1811
1812 if (eh->dyn_relocs == NULL)
1813 return TRUE;
1814
1815 /* In the shared -Bsymbolic case, discard space allocated for
1816 dynamic pc-relative relocs against symbols which turn out to be
1817 defined in regular objects. For the normal shared case, discard
1818 space for pc-relative relocs that have become local due to symbol
1819 visibility changes. */
1820
1821 if (info->shared)
1822 {
1823 /* Relocs that use pc_count are those that appear on a call
1824 insn, or certain REL relocs that can generated via assembly.
1825 We want calls to protected symbols to resolve directly to the
1826 function rather than going via the plt. If people want
1827 function pointer comparisons to work as expected then they
1828 should avoid writing weird assembly. */
1829 if (SYMBOL_CALLS_LOCAL (info, h))
1830 {
1831 struct elf64_x86_64_dyn_relocs **pp;
1832
1833 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1834 {
1835 p->count -= p->pc_count;
1836 p->pc_count = 0;
1837 if (p->count == 0)
1838 *pp = p->next;
1839 else
1840 pp = &p->next;
1841 }
1842 }
1843
1844 /* Also discard relocs on undefined weak syms with non-default
1845 visibility. */
1846 if (eh->dyn_relocs != NULL
1847 && h->root.type == bfd_link_hash_undefweak)
1848 {
1849 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1850 eh->dyn_relocs = NULL;
1851
1852 /* Make sure undefined weak symbols are output as a dynamic
1853 symbol in PIEs. */
1854 else if (h->dynindx == -1
1855 && !h->forced_local)
1856 {
1857 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1858 return FALSE;
1859 }
1860 }
1861 }
1862 else if (ELIMINATE_COPY_RELOCS)
1863 {
1864 /* For the non-shared case, discard space for relocs against
1865 symbols which turn out to need copy relocs or are not
1866 dynamic. */
1867
1868 if (!h->non_got_ref
1869 && ((h->def_dynamic
1870 && !h->def_regular)
1871 || (htab->elf.dynamic_sections_created
1872 && (h->root.type == bfd_link_hash_undefweak
1873 || h->root.type == bfd_link_hash_undefined))))
1874 {
1875 /* Make sure this symbol is output as a dynamic symbol.
1876 Undefined weak syms won't yet be marked as dynamic. */
1877 if (h->dynindx == -1
1878 && !h->forced_local)
1879 {
1880 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1881 return FALSE;
1882 }
1883
1884 /* If that succeeded, we know we'll be keeping all the
1885 relocs. */
1886 if (h->dynindx != -1)
1887 goto keep;
1888 }
1889
1890 eh->dyn_relocs = NULL;
1891
1892 keep: ;
1893 }
1894
1895 /* Finally, allocate space. */
1896 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1897 {
1898 asection *sreloc = elf_section_data (p->sec)->sreloc;
1899 sreloc->size += p->count * sizeof (Elf64_External_Rela);
1900 }
1901
1902 return TRUE;
1903 }
1904
1905 /* Find any dynamic relocs that apply to read-only sections. */
1906
1907 static bfd_boolean
1908 readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1909 {
1910 struct elf64_x86_64_link_hash_entry *eh;
1911 struct elf64_x86_64_dyn_relocs *p;
1912
1913 if (h->root.type == bfd_link_hash_warning)
1914 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1915
1916 eh = (struct elf64_x86_64_link_hash_entry *) h;
1917 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1918 {
1919 asection *s = p->sec->output_section;
1920
1921 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1922 {
1923 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1924
1925 info->flags |= DF_TEXTREL;
1926
1927 /* Not an error, just cut short the traversal. */
1928 return FALSE;
1929 }
1930 }
1931 return TRUE;
1932 }
1933
1934 /* Set the sizes of the dynamic sections. */
1935
1936 static bfd_boolean
1937 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1938 struct bfd_link_info *info)
1939 {
1940 struct elf64_x86_64_link_hash_table *htab;
1941 bfd *dynobj;
1942 asection *s;
1943 bfd_boolean relocs;
1944 bfd *ibfd;
1945
1946 htab = elf64_x86_64_hash_table (info);
1947 dynobj = htab->elf.dynobj;
1948 if (dynobj == NULL)
1949 abort ();
1950
1951 if (htab->elf.dynamic_sections_created)
1952 {
1953 /* Set the contents of the .interp section to the interpreter. */
1954 if (info->executable)
1955 {
1956 s = bfd_get_section_by_name (dynobj, ".interp");
1957 if (s == NULL)
1958 abort ();
1959 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1960 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1961 }
1962 }
1963
1964 /* Set up .got offsets for local syms, and space for local dynamic
1965 relocs. */
1966 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1967 {
1968 bfd_signed_vma *local_got;
1969 bfd_signed_vma *end_local_got;
1970 char *local_tls_type;
1971 bfd_vma *local_tlsdesc_gotent;
1972 bfd_size_type locsymcount;
1973 Elf_Internal_Shdr *symtab_hdr;
1974 asection *srel;
1975
1976 if (! is_x86_64_elf (ibfd))
1977 continue;
1978
1979 for (s = ibfd->sections; s != NULL; s = s->next)
1980 {
1981 struct elf64_x86_64_dyn_relocs *p;
1982
1983 for (p = (struct elf64_x86_64_dyn_relocs *)
1984 (elf_section_data (s)->local_dynrel);
1985 p != NULL;
1986 p = p->next)
1987 {
1988 if (!bfd_is_abs_section (p->sec)
1989 && bfd_is_abs_section (p->sec->output_section))
1990 {
1991 /* Input section has been discarded, either because
1992 it is a copy of a linkonce section or due to
1993 linker script /DISCARD/, so we'll be discarding
1994 the relocs too. */
1995 }
1996 else if (p->count != 0)
1997 {
1998 srel = elf_section_data (p->sec)->sreloc;
1999 srel->size += p->count * sizeof (Elf64_External_Rela);
2000 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2001 info->flags |= DF_TEXTREL;
2002
2003 }
2004 }
2005 }
2006
2007 local_got = elf_local_got_refcounts (ibfd);
2008 if (!local_got)
2009 continue;
2010
2011 symtab_hdr = &elf_symtab_hdr (ibfd);
2012 locsymcount = symtab_hdr->sh_info;
2013 end_local_got = local_got + locsymcount;
2014 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
2015 local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd);
2016 s = htab->sgot;
2017 srel = htab->srelgot;
2018 for (; local_got < end_local_got;
2019 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2020 {
2021 *local_tlsdesc_gotent = (bfd_vma) -1;
2022 if (*local_got > 0)
2023 {
2024 if (GOT_TLS_GDESC_P (*local_tls_type))
2025 {
2026 *local_tlsdesc_gotent = htab->sgotplt->size
2027 - elf64_x86_64_compute_jump_table_size (htab);
2028 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
2029 *local_got = (bfd_vma) -2;
2030 }
2031 if (! GOT_TLS_GDESC_P (*local_tls_type)
2032 || GOT_TLS_GD_P (*local_tls_type))
2033 {
2034 *local_got = s->size;
2035 s->size += GOT_ENTRY_SIZE;
2036 if (GOT_TLS_GD_P (*local_tls_type))
2037 s->size += GOT_ENTRY_SIZE;
2038 }
2039 if (info->shared
2040 || GOT_TLS_GD_ANY_P (*local_tls_type)
2041 || *local_tls_type == GOT_TLS_IE)
2042 {
2043 if (GOT_TLS_GDESC_P (*local_tls_type))
2044 {
2045 htab->srelplt->size += sizeof (Elf64_External_Rela);
2046 htab->tlsdesc_plt = (bfd_vma) -1;
2047 }
2048 if (! GOT_TLS_GDESC_P (*local_tls_type)
2049 || GOT_TLS_GD_P (*local_tls_type))
2050 srel->size += sizeof (Elf64_External_Rela);
2051 }
2052 }
2053 else
2054 *local_got = (bfd_vma) -1;
2055 }
2056 }
2057
2058 if (htab->tls_ld_got.refcount > 0)
2059 {
2060 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2061 relocs. */
2062 htab->tls_ld_got.offset = htab->sgot->size;
2063 htab->sgot->size += 2 * GOT_ENTRY_SIZE;
2064 htab->srelgot->size += sizeof (Elf64_External_Rela);
2065 }
2066 else
2067 htab->tls_ld_got.offset = -1;
2068
2069 /* Allocate global sym .plt and .got entries, and space for global
2070 sym dynamic relocs. */
2071 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
2072
2073 /* For every jump slot reserved in the sgotplt, reloc_count is
2074 incremented. However, when we reserve space for TLS descriptors,
2075 it's not incremented, so in order to compute the space reserved
2076 for them, it suffices to multiply the reloc count by the jump
2077 slot size. */
2078 if (htab->srelplt)
2079 htab->sgotplt_jump_table_size
2080 = elf64_x86_64_compute_jump_table_size (htab);
2081
2082 if (htab->tlsdesc_plt)
2083 {
2084 /* If we're not using lazy TLS relocations, don't generate the
2085 PLT and GOT entries they require. */
2086 if ((info->flags & DF_BIND_NOW))
2087 htab->tlsdesc_plt = 0;
2088 else
2089 {
2090 htab->tlsdesc_got = htab->sgot->size;
2091 htab->sgot->size += GOT_ENTRY_SIZE;
2092 /* Reserve room for the initial entry.
2093 FIXME: we could probably do away with it in this case. */
2094 if (htab->splt->size == 0)
2095 htab->splt->size += PLT_ENTRY_SIZE;
2096 htab->tlsdesc_plt = htab->splt->size;
2097 htab->splt->size += PLT_ENTRY_SIZE;
2098 }
2099 }
2100
2101 /* We now have determined the sizes of the various dynamic sections.
2102 Allocate memory for them. */
2103 relocs = FALSE;
2104 for (s = dynobj->sections; s != NULL; s = s->next)
2105 {
2106 if ((s->flags & SEC_LINKER_CREATED) == 0)
2107 continue;
2108
2109 if (s == htab->splt
2110 || s == htab->sgot
2111 || s == htab->sgotplt
2112 || s == htab->sdynbss)
2113 {
2114 /* Strip this section if we don't need it; see the
2115 comment below. */
2116 }
2117 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2118 {
2119 if (s->size != 0 && s != htab->srelplt)
2120 relocs = TRUE;
2121
2122 /* We use the reloc_count field as a counter if we need
2123 to copy relocs into the output file. */
2124 if (s != htab->srelplt)
2125 s->reloc_count = 0;
2126 }
2127 else
2128 {
2129 /* It's not one of our sections, so don't allocate space. */
2130 continue;
2131 }
2132
2133 if (s->size == 0)
2134 {
2135 /* If we don't need this section, strip it from the
2136 output file. This is mostly to handle .rela.bss and
2137 .rela.plt. We must create both sections in
2138 create_dynamic_sections, because they must be created
2139 before the linker maps input sections to output
2140 sections. The linker does that before
2141 adjust_dynamic_symbol is called, and it is that
2142 function which decides whether anything needs to go
2143 into these sections. */
2144
2145 s->flags |= SEC_EXCLUDE;
2146 continue;
2147 }
2148
2149 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2150 continue;
2151
2152 /* Allocate memory for the section contents. We use bfd_zalloc
2153 here in case unused entries are not reclaimed before the
2154 section's contents are written out. This should not happen,
2155 but this way if it does, we get a R_X86_64_NONE reloc instead
2156 of garbage. */
2157 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2158 if (s->contents == NULL)
2159 return FALSE;
2160 }
2161
2162 if (htab->elf.dynamic_sections_created)
2163 {
2164 /* Add some entries to the .dynamic section. We fill in the
2165 values later, in elf64_x86_64_finish_dynamic_sections, but we
2166 must add the entries now so that we get the correct size for
2167 the .dynamic section. The DT_DEBUG entry is filled in by the
2168 dynamic linker and used by the debugger. */
2169 #define add_dynamic_entry(TAG, VAL) \
2170 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2171
2172 if (info->executable)
2173 {
2174 if (!add_dynamic_entry (DT_DEBUG, 0))
2175 return FALSE;
2176 }
2177
2178 if (htab->splt->size != 0)
2179 {
2180 if (!add_dynamic_entry (DT_PLTGOT, 0)
2181 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2182 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2183 || !add_dynamic_entry (DT_JMPREL, 0))
2184 return FALSE;
2185
2186 if (htab->tlsdesc_plt
2187 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2188 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2189 return FALSE;
2190 }
2191
2192 if (relocs)
2193 {
2194 if (!add_dynamic_entry (DT_RELA, 0)
2195 || !add_dynamic_entry (DT_RELASZ, 0)
2196 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
2197 return FALSE;
2198
2199 /* If any dynamic relocs apply to a read-only section,
2200 then we need a DT_TEXTREL entry. */
2201 if ((info->flags & DF_TEXTREL) == 0)
2202 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
2203 (PTR) info);
2204
2205 if ((info->flags & DF_TEXTREL) != 0)
2206 {
2207 if (!add_dynamic_entry (DT_TEXTREL, 0))
2208 return FALSE;
2209 }
2210 }
2211 }
2212 #undef add_dynamic_entry
2213
2214 return TRUE;
2215 }
2216
2217 static bfd_boolean
2218 elf64_x86_64_always_size_sections (bfd *output_bfd,
2219 struct bfd_link_info *info)
2220 {
2221 asection *tls_sec = elf_hash_table (info)->tls_sec;
2222
2223 if (tls_sec)
2224 {
2225 struct elf_link_hash_entry *tlsbase;
2226
2227 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2228 "_TLS_MODULE_BASE_",
2229 FALSE, FALSE, FALSE);
2230
2231 if (tlsbase && tlsbase->type == STT_TLS)
2232 {
2233 struct bfd_link_hash_entry *bh = NULL;
2234 const struct elf_backend_data *bed
2235 = get_elf_backend_data (output_bfd);
2236
2237 if (!(_bfd_generic_link_add_one_symbol
2238 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2239 tls_sec, 0, NULL, FALSE,
2240 bed->collect, &bh)))
2241 return FALSE;
2242 tlsbase = (struct elf_link_hash_entry *)bh;
2243 tlsbase->def_regular = 1;
2244 tlsbase->other = STV_HIDDEN;
2245 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2246 }
2247 }
2248
2249 return TRUE;
2250 }
2251
2252 /* Return the base VMA address which should be subtracted from real addresses
2253 when resolving @dtpoff relocation.
2254 This is PT_TLS segment p_vaddr. */
2255
2256 static bfd_vma
2257 dtpoff_base (struct bfd_link_info *info)
2258 {
2259 /* If tls_sec is NULL, we should have signalled an error already. */
2260 if (elf_hash_table (info)->tls_sec == NULL)
2261 return 0;
2262 return elf_hash_table (info)->tls_sec->vma;
2263 }
2264
2265 /* Return the relocation value for @tpoff relocation
2266 if STT_TLS virtual address is ADDRESS. */
2267
2268 static bfd_vma
2269 tpoff (struct bfd_link_info *info, bfd_vma address)
2270 {
2271 struct elf_link_hash_table *htab = elf_hash_table (info);
2272
2273 /* If tls_segment is NULL, we should have signalled an error already. */
2274 if (htab->tls_sec == NULL)
2275 return 0;
2276 return address - htab->tls_size - htab->tls_sec->vma;
2277 }
2278
2279 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2280 branch? */
2281
2282 static bfd_boolean
2283 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2284 {
2285 /* Opcode Instruction
2286 0xe8 call
2287 0xe9 jump
2288 0x0f 0x8x conditional jump */
2289 return ((offset > 0
2290 && (contents [offset - 1] == 0xe8
2291 || contents [offset - 1] == 0xe9))
2292 || (offset > 1
2293 && contents [offset - 2] == 0x0f
2294 && (contents [offset - 1] & 0xf0) == 0x80));
2295 }
2296
2297 /* Relocate an x86_64 ELF section. */
2298
2299 static bfd_boolean
2300 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
2301 bfd *input_bfd, asection *input_section,
2302 bfd_byte *contents, Elf_Internal_Rela *relocs,
2303 Elf_Internal_Sym *local_syms,
2304 asection **local_sections)
2305 {
2306 struct elf64_x86_64_link_hash_table *htab;
2307 Elf_Internal_Shdr *symtab_hdr;
2308 struct elf_link_hash_entry **sym_hashes;
2309 bfd_vma *local_got_offsets;
2310 bfd_vma *local_tlsdesc_gotents;
2311 Elf_Internal_Rela *rel;
2312 Elf_Internal_Rela *relend;
2313
2314 BFD_ASSERT (is_x86_64_elf (input_bfd));
2315
2316 htab = elf64_x86_64_hash_table (info);
2317 symtab_hdr = &elf_symtab_hdr (input_bfd);
2318 sym_hashes = elf_sym_hashes (input_bfd);
2319 local_got_offsets = elf_local_got_offsets (input_bfd);
2320 local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd);
2321
2322 rel = relocs;
2323 relend = relocs + input_section->reloc_count;
2324 for (; rel < relend; rel++)
2325 {
2326 unsigned int r_type;
2327 reloc_howto_type *howto;
2328 unsigned long r_symndx;
2329 struct elf_link_hash_entry *h;
2330 Elf_Internal_Sym *sym;
2331 asection *sec;
2332 bfd_vma off, offplt;
2333 bfd_vma relocation;
2334 bfd_boolean unresolved_reloc;
2335 bfd_reloc_status_type r;
2336 int tls_type;
2337
2338 r_type = ELF64_R_TYPE (rel->r_info);
2339 if (r_type == (int) R_X86_64_GNU_VTINHERIT
2340 || r_type == (int) R_X86_64_GNU_VTENTRY)
2341 continue;
2342
2343 if (r_type >= R_X86_64_max)
2344 {
2345 bfd_set_error (bfd_error_bad_value);
2346 return FALSE;
2347 }
2348
2349 howto = x86_64_elf_howto_table + r_type;
2350 r_symndx = ELF64_R_SYM (rel->r_info);
2351 h = NULL;
2352 sym = NULL;
2353 sec = NULL;
2354 unresolved_reloc = FALSE;
2355 if (r_symndx < symtab_hdr->sh_info)
2356 {
2357 sym = local_syms + r_symndx;
2358 sec = local_sections[r_symndx];
2359
2360 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2361 }
2362 else
2363 {
2364 bfd_boolean warned;
2365
2366 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2367 r_symndx, symtab_hdr, sym_hashes,
2368 h, sec, relocation,
2369 unresolved_reloc, warned);
2370 }
2371
2372 if (sec != NULL && elf_discarded_section (sec))
2373 {
2374 /* For relocs against symbols from removed linkonce sections,
2375 or sections discarded by a linker script, we just want the
2376 section contents zeroed. Avoid any special processing. */
2377 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2378 rel->r_info = 0;
2379 rel->r_addend = 0;
2380 continue;
2381 }
2382
2383 if (info->relocatable)
2384 continue;
2385
2386 /* When generating a shared object, the relocations handled here are
2387 copied into the output file to be resolved at run time. */
2388 switch (r_type)
2389 {
2390 asection *base_got;
2391 case R_X86_64_GOT32:
2392 case R_X86_64_GOT64:
2393 /* Relocation is to the entry for this symbol in the global
2394 offset table. */
2395 case R_X86_64_GOTPCREL:
2396 case R_X86_64_GOTPCREL64:
2397 /* Use global offset table entry as symbol value. */
2398 case R_X86_64_GOTPLT64:
2399 /* This is the same as GOT64 for relocation purposes, but
2400 indicates the existence of a PLT entry. The difficulty is,
2401 that we must calculate the GOT slot offset from the PLT
2402 offset, if this symbol got a PLT entry (it was global).
2403 Additionally if it's computed from the PLT entry, then that
2404 GOT offset is relative to .got.plt, not to .got. */
2405 base_got = htab->sgot;
2406
2407 if (htab->sgot == NULL)
2408 abort ();
2409
2410 if (h != NULL)
2411 {
2412 bfd_boolean dyn;
2413
2414 off = h->got.offset;
2415 if (h->needs_plt
2416 && h->plt.offset != (bfd_vma)-1
2417 && off == (bfd_vma)-1)
2418 {
2419 /* We can't use h->got.offset here to save
2420 state, or even just remember the offset, as
2421 finish_dynamic_symbol would use that as offset into
2422 .got. */
2423 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2424 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2425 base_got = htab->sgotplt;
2426 }
2427
2428 dyn = htab->elf.dynamic_sections_created;
2429
2430 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2431 || (info->shared
2432 && SYMBOL_REFERENCES_LOCAL (info, h))
2433 || (ELF_ST_VISIBILITY (h->other)
2434 && h->root.type == bfd_link_hash_undefweak))
2435 {
2436 /* This is actually a static link, or it is a -Bsymbolic
2437 link and the symbol is defined locally, or the symbol
2438 was forced to be local because of a version file. We
2439 must initialize this entry in the global offset table.
2440 Since the offset must always be a multiple of 8, we
2441 use the least significant bit to record whether we
2442 have initialized it already.
2443
2444 When doing a dynamic link, we create a .rela.got
2445 relocation entry to initialize the value. This is
2446 done in the finish_dynamic_symbol routine. */
2447 if ((off & 1) != 0)
2448 off &= ~1;
2449 else
2450 {
2451 bfd_put_64 (output_bfd, relocation,
2452 base_got->contents + off);
2453 /* Note that this is harmless for the GOTPLT64 case,
2454 as -1 | 1 still is -1. */
2455 h->got.offset |= 1;
2456 }
2457 }
2458 else
2459 unresolved_reloc = FALSE;
2460 }
2461 else
2462 {
2463 if (local_got_offsets == NULL)
2464 abort ();
2465
2466 off = local_got_offsets[r_symndx];
2467
2468 /* The offset must always be a multiple of 8. We use
2469 the least significant bit to record whether we have
2470 already generated the necessary reloc. */
2471 if ((off & 1) != 0)
2472 off &= ~1;
2473 else
2474 {
2475 bfd_put_64 (output_bfd, relocation,
2476 base_got->contents + off);
2477
2478 if (info->shared)
2479 {
2480 asection *s;
2481 Elf_Internal_Rela outrel;
2482 bfd_byte *loc;
2483
2484 /* We need to generate a R_X86_64_RELATIVE reloc
2485 for the dynamic linker. */
2486 s = htab->srelgot;
2487 if (s == NULL)
2488 abort ();
2489
2490 outrel.r_offset = (base_got->output_section->vma
2491 + base_got->output_offset
2492 + off);
2493 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2494 outrel.r_addend = relocation;
2495 loc = s->contents;
2496 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2497 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2498 }
2499
2500 local_got_offsets[r_symndx] |= 1;
2501 }
2502 }
2503
2504 if (off >= (bfd_vma) -2)
2505 abort ();
2506
2507 relocation = base_got->output_section->vma
2508 + base_got->output_offset + off;
2509 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
2510 relocation -= htab->sgotplt->output_section->vma
2511 - htab->sgotplt->output_offset;
2512
2513 break;
2514
2515 case R_X86_64_GOTOFF64:
2516 /* Relocation is relative to the start of the global offset
2517 table. */
2518
2519 /* Check to make sure it isn't a protected function symbol
2520 for shared library since it may not be local when used
2521 as function address. */
2522 if (info->shared
2523 && h
2524 && h->def_regular
2525 && h->type == STT_FUNC
2526 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2527 {
2528 (*_bfd_error_handler)
2529 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2530 input_bfd, h->root.root.string);
2531 bfd_set_error (bfd_error_bad_value);
2532 return FALSE;
2533 }
2534
2535 /* Note that sgot is not involved in this
2536 calculation. We always want the start of .got.plt. If we
2537 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2538 permitted by the ABI, we might have to change this
2539 calculation. */
2540 relocation -= htab->sgotplt->output_section->vma
2541 + htab->sgotplt->output_offset;
2542 break;
2543
2544 case R_X86_64_GOTPC32:
2545 case R_X86_64_GOTPC64:
2546 /* Use global offset table as symbol value. */
2547 relocation = htab->sgotplt->output_section->vma
2548 + htab->sgotplt->output_offset;
2549 unresolved_reloc = FALSE;
2550 break;
2551
2552 case R_X86_64_PLTOFF64:
2553 /* Relocation is PLT entry relative to GOT. For local
2554 symbols it's the symbol itself relative to GOT. */
2555 if (h != NULL
2556 /* See PLT32 handling. */
2557 && h->plt.offset != (bfd_vma) -1
2558 && htab->splt != NULL)
2559 {
2560 relocation = (htab->splt->output_section->vma
2561 + htab->splt->output_offset
2562 + h->plt.offset);
2563 unresolved_reloc = FALSE;
2564 }
2565
2566 relocation -= htab->sgotplt->output_section->vma
2567 + htab->sgotplt->output_offset;
2568 break;
2569
2570 case R_X86_64_PLT32:
2571 /* Relocation is to the entry for this symbol in the
2572 procedure linkage table. */
2573
2574 /* Resolve a PLT32 reloc against a local symbol directly,
2575 without using the procedure linkage table. */
2576 if (h == NULL)
2577 break;
2578
2579 if (h->plt.offset == (bfd_vma) -1
2580 || htab->splt == NULL)
2581 {
2582 /* We didn't make a PLT entry for this symbol. This
2583 happens when statically linking PIC code, or when
2584 using -Bsymbolic. */
2585 break;
2586 }
2587
2588 relocation = (htab->splt->output_section->vma
2589 + htab->splt->output_offset
2590 + h->plt.offset);
2591 unresolved_reloc = FALSE;
2592 break;
2593
2594 case R_X86_64_PC8:
2595 case R_X86_64_PC16:
2596 case R_X86_64_PC32:
2597 if (info->shared
2598 && !SYMBOL_REFERENCES_LOCAL (info, h)
2599 && (input_section->flags & SEC_ALLOC) != 0
2600 && (input_section->flags & SEC_READONLY) != 0
2601 && (!h->def_regular
2602 || r_type != R_X86_64_PC32
2603 || h->type != STT_FUNC
2604 || ELF_ST_VISIBILITY (h->other) != STV_PROTECTED
2605 || !is_32bit_relative_branch (contents,
2606 rel->r_offset)))
2607 {
2608 if (h->def_regular
2609 && r_type == R_X86_64_PC32
2610 && h->type == STT_FUNC
2611 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2612 (*_bfd_error_handler)
2613 (_("%B: relocation R_X86_64_PC32 against protected function `%s' can not be used when making a shared object"),
2614 input_bfd, h->root.root.string);
2615 else
2616 (*_bfd_error_handler)
2617 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
2618 input_bfd, x86_64_elf_howto_table[r_type].name,
2619 h->root.root.string);
2620 bfd_set_error (bfd_error_bad_value);
2621 return FALSE;
2622 }
2623 /* Fall through. */
2624
2625 case R_X86_64_8:
2626 case R_X86_64_16:
2627 case R_X86_64_32:
2628 case R_X86_64_PC64:
2629 case R_X86_64_64:
2630 /* FIXME: The ABI says the linker should make sure the value is
2631 the same when it's zeroextended to 64 bit. */
2632
2633 if ((input_section->flags & SEC_ALLOC) == 0)
2634 break;
2635
2636 if ((info->shared
2637 && (h == NULL
2638 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2639 || h->root.type != bfd_link_hash_undefweak)
2640 && ((r_type != R_X86_64_PC8
2641 && r_type != R_X86_64_PC16
2642 && r_type != R_X86_64_PC32
2643 && r_type != R_X86_64_PC64)
2644 || !SYMBOL_CALLS_LOCAL (info, h)))
2645 || (ELIMINATE_COPY_RELOCS
2646 && !info->shared
2647 && h != NULL
2648 && h->dynindx != -1
2649 && !h->non_got_ref
2650 && ((h->def_dynamic
2651 && !h->def_regular)
2652 || h->root.type == bfd_link_hash_undefweak
2653 || h->root.type == bfd_link_hash_undefined)))
2654 {
2655 Elf_Internal_Rela outrel;
2656 bfd_byte *loc;
2657 bfd_boolean skip, relocate;
2658 asection *sreloc;
2659
2660 /* When generating a shared object, these relocations
2661 are copied into the output file to be resolved at run
2662 time. */
2663 skip = FALSE;
2664 relocate = FALSE;
2665
2666 outrel.r_offset =
2667 _bfd_elf_section_offset (output_bfd, info, input_section,
2668 rel->r_offset);
2669 if (outrel.r_offset == (bfd_vma) -1)
2670 skip = TRUE;
2671 else if (outrel.r_offset == (bfd_vma) -2)
2672 skip = TRUE, relocate = TRUE;
2673
2674 outrel.r_offset += (input_section->output_section->vma
2675 + input_section->output_offset);
2676
2677 if (skip)
2678 memset (&outrel, 0, sizeof outrel);
2679
2680 /* h->dynindx may be -1 if this symbol was marked to
2681 become local. */
2682 else if (h != NULL
2683 && h->dynindx != -1
2684 && (r_type == R_X86_64_PC8
2685 || r_type == R_X86_64_PC16
2686 || r_type == R_X86_64_PC32
2687 || r_type == R_X86_64_PC64
2688 || !info->shared
2689 || !SYMBOLIC_BIND (info, h)
2690 || !h->def_regular))
2691 {
2692 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2693 outrel.r_addend = rel->r_addend;
2694 }
2695 else
2696 {
2697 /* This symbol is local, or marked to become local. */
2698 if (r_type == R_X86_64_64)
2699 {
2700 relocate = TRUE;
2701 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2702 outrel.r_addend = relocation + rel->r_addend;
2703 }
2704 else
2705 {
2706 long sindx;
2707
2708 if (bfd_is_abs_section (sec))
2709 sindx = 0;
2710 else if (sec == NULL || sec->owner == NULL)
2711 {
2712 bfd_set_error (bfd_error_bad_value);
2713 return FALSE;
2714 }
2715 else
2716 {
2717 asection *osec;
2718
2719 /* We are turning this relocation into one
2720 against a section symbol. It would be
2721 proper to subtract the symbol's value,
2722 osec->vma, from the emitted reloc addend,
2723 but ld.so expects buggy relocs. */
2724 osec = sec->output_section;
2725 sindx = elf_section_data (osec)->dynindx;
2726 if (sindx == 0)
2727 {
2728 asection *oi = htab->elf.text_index_section;
2729 sindx = elf_section_data (oi)->dynindx;
2730 }
2731 BFD_ASSERT (sindx != 0);
2732 }
2733
2734 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2735 outrel.r_addend = relocation + rel->r_addend;
2736 }
2737 }
2738
2739 sreloc = elf_section_data (input_section)->sreloc;
2740 if (sreloc == NULL)
2741 abort ();
2742
2743 loc = sreloc->contents;
2744 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2745 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2746
2747 /* If this reloc is against an external symbol, we do
2748 not want to fiddle with the addend. Otherwise, we
2749 need to include the symbol value so that it becomes
2750 an addend for the dynamic reloc. */
2751 if (! relocate)
2752 continue;
2753 }
2754
2755 break;
2756
2757 case R_X86_64_TLSGD:
2758 case R_X86_64_GOTPC32_TLSDESC:
2759 case R_X86_64_TLSDESC_CALL:
2760 case R_X86_64_GOTTPOFF:
2761 tls_type = GOT_UNKNOWN;
2762 if (h == NULL && local_got_offsets)
2763 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2764 else if (h != NULL)
2765 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2766
2767 if (! elf64_x86_64_tls_transition (info, input_bfd,
2768 input_section, contents,
2769 symtab_hdr, sym_hashes,
2770 &r_type, tls_type, rel,
2771 relend, h))
2772 return FALSE;
2773
2774 if (r_type == R_X86_64_TPOFF32)
2775 {
2776 bfd_vma roff = rel->r_offset;
2777
2778 BFD_ASSERT (! unresolved_reloc);
2779
2780 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2781 {
2782 /* GD->LE transition.
2783 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2784 .word 0x6666; rex64; call __tls_get_addr
2785 Change it into:
2786 movq %fs:0, %rax
2787 leaq foo@tpoff(%rax), %rax */
2788 memcpy (contents + roff - 4,
2789 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2790 16);
2791 bfd_put_32 (output_bfd, tpoff (info, relocation),
2792 contents + roff + 8);
2793 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
2794 rel++;
2795 continue;
2796 }
2797 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
2798 {
2799 /* GDesc -> LE transition.
2800 It's originally something like:
2801 leaq x@tlsdesc(%rip), %rax
2802
2803 Change it to:
2804 movl $x@tpoff, %rax
2805 */
2806
2807 unsigned int val, type, type2;
2808
2809 type = bfd_get_8 (input_bfd, contents + roff - 3);
2810 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
2811 val = bfd_get_8 (input_bfd, contents + roff - 1);
2812 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
2813 contents + roff - 3);
2814 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
2815 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2816 contents + roff - 1);
2817 bfd_put_32 (output_bfd, tpoff (info, relocation),
2818 contents + roff);
2819 continue;
2820 }
2821 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
2822 {
2823 /* GDesc -> LE transition.
2824 It's originally:
2825 call *(%rax)
2826 Turn it into:
2827 xchg %ax,%ax. */
2828 bfd_put_8 (output_bfd, 0x66, contents + roff);
2829 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
2830 continue;
2831 }
2832 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
2833 {
2834 /* IE->LE transition:
2835 Originally it can be one of:
2836 movq foo@gottpoff(%rip), %reg
2837 addq foo@gottpoff(%rip), %reg
2838 We change it into:
2839 movq $foo, %reg
2840 leaq foo(%reg), %reg
2841 addq $foo, %reg. */
2842
2843 unsigned int val, type, reg;
2844
2845 val = bfd_get_8 (input_bfd, contents + roff - 3);
2846 type = bfd_get_8 (input_bfd, contents + roff - 2);
2847 reg = bfd_get_8 (input_bfd, contents + roff - 1);
2848 reg >>= 3;
2849 if (type == 0x8b)
2850 {
2851 /* movq */
2852 if (val == 0x4c)
2853 bfd_put_8 (output_bfd, 0x49,
2854 contents + roff - 3);
2855 bfd_put_8 (output_bfd, 0xc7,
2856 contents + roff - 2);
2857 bfd_put_8 (output_bfd, 0xc0 | reg,
2858 contents + roff - 1);
2859 }
2860 else if (reg == 4)
2861 {
2862 /* addq -> addq - addressing with %rsp/%r12 is
2863 special */
2864 if (val == 0x4c)
2865 bfd_put_8 (output_bfd, 0x49,
2866 contents + roff - 3);
2867 bfd_put_8 (output_bfd, 0x81,
2868 contents + roff - 2);
2869 bfd_put_8 (output_bfd, 0xc0 | reg,
2870 contents + roff - 1);
2871 }
2872 else
2873 {
2874 /* addq -> leaq */
2875 if (val == 0x4c)
2876 bfd_put_8 (output_bfd, 0x4d,
2877 contents + roff - 3);
2878 bfd_put_8 (output_bfd, 0x8d,
2879 contents + roff - 2);
2880 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2881 contents + roff - 1);
2882 }
2883 bfd_put_32 (output_bfd, tpoff (info, relocation),
2884 contents + roff);
2885 continue;
2886 }
2887 else
2888 BFD_ASSERT (FALSE);
2889 }
2890
2891 if (htab->sgot == NULL)
2892 abort ();
2893
2894 if (h != NULL)
2895 {
2896 off = h->got.offset;
2897 offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got;
2898 }
2899 else
2900 {
2901 if (local_got_offsets == NULL)
2902 abort ();
2903
2904 off = local_got_offsets[r_symndx];
2905 offplt = local_tlsdesc_gotents[r_symndx];
2906 }
2907
2908 if ((off & 1) != 0)
2909 off &= ~1;
2910 else
2911 {
2912 Elf_Internal_Rela outrel;
2913 bfd_byte *loc;
2914 int dr_type, indx;
2915 asection *sreloc;
2916
2917 if (htab->srelgot == NULL)
2918 abort ();
2919
2920 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2921
2922 if (GOT_TLS_GDESC_P (tls_type))
2923 {
2924 outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC);
2925 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
2926 + 2 * GOT_ENTRY_SIZE <= htab->sgotplt->size);
2927 outrel.r_offset = (htab->sgotplt->output_section->vma
2928 + htab->sgotplt->output_offset
2929 + offplt
2930 + htab->sgotplt_jump_table_size);
2931 sreloc = htab->srelplt;
2932 loc = sreloc->contents;
2933 loc += sreloc->reloc_count++
2934 * sizeof (Elf64_External_Rela);
2935 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2936 <= sreloc->contents + sreloc->size);
2937 if (indx == 0)
2938 outrel.r_addend = relocation - dtpoff_base (info);
2939 else
2940 outrel.r_addend = 0;
2941 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2942 }
2943
2944 sreloc = htab->srelgot;
2945
2946 outrel.r_offset = (htab->sgot->output_section->vma
2947 + htab->sgot->output_offset + off);
2948
2949 if (GOT_TLS_GD_P (tls_type))
2950 dr_type = R_X86_64_DTPMOD64;
2951 else if (GOT_TLS_GDESC_P (tls_type))
2952 goto dr_done;
2953 else
2954 dr_type = R_X86_64_TPOFF64;
2955
2956 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2957 outrel.r_addend = 0;
2958 if ((dr_type == R_X86_64_TPOFF64
2959 || dr_type == R_X86_64_TLSDESC) && indx == 0)
2960 outrel.r_addend = relocation - dtpoff_base (info);
2961 outrel.r_info = ELF64_R_INFO (indx, dr_type);
2962
2963 loc = sreloc->contents;
2964 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2965 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2966 <= sreloc->contents + sreloc->size);
2967 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2968
2969 if (GOT_TLS_GD_P (tls_type))
2970 {
2971 if (indx == 0)
2972 {
2973 BFD_ASSERT (! unresolved_reloc);
2974 bfd_put_64 (output_bfd,
2975 relocation - dtpoff_base (info),
2976 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2977 }
2978 else
2979 {
2980 bfd_put_64 (output_bfd, 0,
2981 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2982 outrel.r_info = ELF64_R_INFO (indx,
2983 R_X86_64_DTPOFF64);
2984 outrel.r_offset += GOT_ENTRY_SIZE;
2985 sreloc->reloc_count++;
2986 loc += sizeof (Elf64_External_Rela);
2987 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2988 <= sreloc->contents + sreloc->size);
2989 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2990 }
2991 }
2992
2993 dr_done:
2994 if (h != NULL)
2995 h->got.offset |= 1;
2996 else
2997 local_got_offsets[r_symndx] |= 1;
2998 }
2999
3000 if (off >= (bfd_vma) -2
3001 && ! GOT_TLS_GDESC_P (tls_type))
3002 abort ();
3003 if (r_type == ELF64_R_TYPE (rel->r_info))
3004 {
3005 if (r_type == R_X86_64_GOTPC32_TLSDESC
3006 || r_type == R_X86_64_TLSDESC_CALL)
3007 relocation = htab->sgotplt->output_section->vma
3008 + htab->sgotplt->output_offset
3009 + offplt + htab->sgotplt_jump_table_size;
3010 else
3011 relocation = htab->sgot->output_section->vma
3012 + htab->sgot->output_offset + off;
3013 unresolved_reloc = FALSE;
3014 }
3015 else
3016 {
3017 bfd_vma roff = rel->r_offset;
3018
3019 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3020 {
3021 /* GD->IE transition.
3022 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3023 .word 0x6666; rex64; call __tls_get_addr@plt
3024 Change it into:
3025 movq %fs:0, %rax
3026 addq foo@gottpoff(%rip), %rax */
3027 memcpy (contents + roff - 4,
3028 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3029 16);
3030
3031 relocation = (htab->sgot->output_section->vma
3032 + htab->sgot->output_offset + off
3033 - roff
3034 - input_section->output_section->vma
3035 - input_section->output_offset
3036 - 12);
3037 bfd_put_32 (output_bfd, relocation,
3038 contents + roff + 8);
3039 /* Skip R_X86_64_PLT32. */
3040 rel++;
3041 continue;
3042 }
3043 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3044 {
3045 /* GDesc -> IE transition.
3046 It's originally something like:
3047 leaq x@tlsdesc(%rip), %rax
3048
3049 Change it to:
3050 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax
3051 */
3052
3053 unsigned int val, type, type2;
3054
3055 type = bfd_get_8 (input_bfd, contents + roff - 3);
3056 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
3057 val = bfd_get_8 (input_bfd, contents + roff - 1);
3058
3059 /* Now modify the instruction as appropriate. To
3060 turn a leaq into a movq in the form we use it, it
3061 suffices to change the second byte from 0x8d to
3062 0x8b. */
3063 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3064
3065 bfd_put_32 (output_bfd,
3066 htab->sgot->output_section->vma
3067 + htab->sgot->output_offset + off
3068 - rel->r_offset
3069 - input_section->output_section->vma
3070 - input_section->output_offset
3071 - 4,
3072 contents + roff);
3073 continue;
3074 }
3075 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3076 {
3077 /* GDesc -> IE transition.
3078 It's originally:
3079 call *(%rax)
3080
3081 Change it to:
3082 xchg %ax,%ax. */
3083
3084 unsigned int val, type;
3085
3086 type = bfd_get_8 (input_bfd, contents + roff);
3087 val = bfd_get_8 (input_bfd, contents + roff + 1);
3088 bfd_put_8 (output_bfd, 0x66, contents + roff);
3089 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3090 continue;
3091 }
3092 else
3093 BFD_ASSERT (FALSE);
3094 }
3095 break;
3096
3097 case R_X86_64_TLSLD:
3098 if (! elf64_x86_64_tls_transition (info, input_bfd,
3099 input_section, contents,
3100 symtab_hdr, sym_hashes,
3101 &r_type, GOT_UNKNOWN,
3102 rel, relend, h))
3103 return FALSE;
3104
3105 if (r_type != R_X86_64_TLSLD)
3106 {
3107 /* LD->LE transition:
3108 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3109 We change it into:
3110 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3111
3112 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
3113 memcpy (contents + rel->r_offset - 3,
3114 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3115 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3116 rel++;
3117 continue;
3118 }
3119
3120 if (htab->sgot == NULL)
3121 abort ();
3122
3123 off = htab->tls_ld_got.offset;
3124 if (off & 1)
3125 off &= ~1;
3126 else
3127 {
3128 Elf_Internal_Rela outrel;
3129 bfd_byte *loc;
3130
3131 if (htab->srelgot == NULL)
3132 abort ();
3133
3134 outrel.r_offset = (htab->sgot->output_section->vma
3135 + htab->sgot->output_offset + off);
3136
3137 bfd_put_64 (output_bfd, 0,
3138 htab->sgot->contents + off);
3139 bfd_put_64 (output_bfd, 0,
3140 htab->sgot->contents + off + GOT_ENTRY_SIZE);
3141 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
3142 outrel.r_addend = 0;
3143 loc = htab->srelgot->contents;
3144 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3145 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
3146 htab->tls_ld_got.offset |= 1;
3147 }
3148 relocation = htab->sgot->output_section->vma
3149 + htab->sgot->output_offset + off;
3150 unresolved_reloc = FALSE;
3151 break;
3152
3153 case R_X86_64_DTPOFF32:
3154 if (info->shared || (input_section->flags & SEC_CODE) == 0)
3155 relocation -= dtpoff_base (info);
3156 else
3157 relocation = tpoff (info, relocation);
3158 break;
3159
3160 case R_X86_64_TPOFF32:
3161 BFD_ASSERT (! info->shared);
3162 relocation = tpoff (info, relocation);
3163 break;
3164
3165 default:
3166 break;
3167 }
3168
3169 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3170 because such sections are not SEC_ALLOC and thus ld.so will
3171 not process them. */
3172 if (unresolved_reloc
3173 && !((input_section->flags & SEC_DEBUGGING) != 0
3174 && h->def_dynamic))
3175 (*_bfd_error_handler)
3176 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3177 input_bfd,
3178 input_section,
3179 (long) rel->r_offset,
3180 howto->name,
3181 h->root.root.string);
3182
3183 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3184 contents, rel->r_offset,
3185 relocation, rel->r_addend);
3186
3187 if (r != bfd_reloc_ok)
3188 {
3189 const char *name;
3190
3191 if (h != NULL)
3192 name = h->root.root.string;
3193 else
3194 {
3195 name = bfd_elf_string_from_elf_section (input_bfd,
3196 symtab_hdr->sh_link,
3197 sym->st_name);
3198 if (name == NULL)
3199 return FALSE;
3200 if (*name == '\0')
3201 name = bfd_section_name (input_bfd, sec);
3202 }
3203
3204 if (r == bfd_reloc_overflow)
3205 {
3206 if (! ((*info->callbacks->reloc_overflow)
3207 (info, (h ? &h->root : NULL), name, howto->name,
3208 (bfd_vma) 0, input_bfd, input_section,
3209 rel->r_offset)))
3210 return FALSE;
3211 }
3212 else
3213 {
3214 (*_bfd_error_handler)
3215 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3216 input_bfd, input_section,
3217 (long) rel->r_offset, name, (int) r);
3218 return FALSE;
3219 }
3220 }
3221 }
3222
3223 return TRUE;
3224 }
3225
3226 /* Finish up dynamic symbol handling. We set the contents of various
3227 dynamic sections here. */
3228
3229 static bfd_boolean
3230 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3231 struct bfd_link_info *info,
3232 struct elf_link_hash_entry *h,
3233 Elf_Internal_Sym *sym)
3234 {
3235 struct elf64_x86_64_link_hash_table *htab;
3236
3237 htab = elf64_x86_64_hash_table (info);
3238
3239 if (h->plt.offset != (bfd_vma) -1)
3240 {
3241 bfd_vma plt_index;
3242 bfd_vma got_offset;
3243 Elf_Internal_Rela rela;
3244 bfd_byte *loc;
3245
3246 /* This symbol has an entry in the procedure linkage table. Set
3247 it up. */
3248 if (h->dynindx == -1
3249 || htab->splt == NULL
3250 || htab->sgotplt == NULL
3251 || htab->srelplt == NULL)
3252 abort ();
3253
3254 /* Get the index in the procedure linkage table which
3255 corresponds to this symbol. This is the index of this symbol
3256 in all the symbols for which we are making plt entries. The
3257 first entry in the procedure linkage table is reserved. */
3258 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3259
3260 /* Get the offset into the .got table of the entry that
3261 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3262 bytes. The first three are reserved for the dynamic linker. */
3263 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3264
3265 /* Fill in the entry in the procedure linkage table. */
3266 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
3267 PLT_ENTRY_SIZE);
3268
3269 /* Insert the relocation positions of the plt section. The magic
3270 numbers at the end of the statements are the positions of the
3271 relocations in the plt section. */
3272 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3273 instruction uses 6 bytes, subtract this value. */
3274 bfd_put_32 (output_bfd,
3275 (htab->sgotplt->output_section->vma
3276 + htab->sgotplt->output_offset
3277 + got_offset
3278 - htab->splt->output_section->vma
3279 - htab->splt->output_offset
3280 - h->plt.offset
3281 - 6),
3282 htab->splt->contents + h->plt.offset + 2);
3283 /* Put relocation index. */
3284 bfd_put_32 (output_bfd, plt_index,
3285 htab->splt->contents + h->plt.offset + 7);
3286 /* Put offset for jmp .PLT0. */
3287 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3288 htab->splt->contents + h->plt.offset + 12);
3289
3290 /* Fill in the entry in the global offset table, initially this
3291 points to the pushq instruction in the PLT which is at offset 6. */
3292 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
3293 + htab->splt->output_offset
3294 + h->plt.offset + 6),
3295 htab->sgotplt->contents + got_offset);
3296
3297 /* Fill in the entry in the .rela.plt section. */
3298 rela.r_offset = (htab->sgotplt->output_section->vma
3299 + htab->sgotplt->output_offset
3300 + got_offset);
3301 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
3302 rela.r_addend = 0;
3303 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
3304 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3305
3306 if (!h->def_regular)
3307 {
3308 /* Mark the symbol as undefined, rather than as defined in
3309 the .plt section. Leave the value if there were any
3310 relocations where pointer equality matters (this is a clue
3311 for the dynamic linker, to make function pointer
3312 comparisons work between an application and shared
3313 library), otherwise set it to zero. If a function is only
3314 called from a binary, there is no need to slow down
3315 shared libraries because of that. */
3316 sym->st_shndx = SHN_UNDEF;
3317 if (!h->pointer_equality_needed)
3318 sym->st_value = 0;
3319 }
3320 }
3321
3322 if (h->got.offset != (bfd_vma) -1
3323 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type)
3324 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
3325 {
3326 Elf_Internal_Rela rela;
3327 bfd_byte *loc;
3328
3329 /* This symbol has an entry in the global offset table. Set it
3330 up. */
3331 if (htab->sgot == NULL || htab->srelgot == NULL)
3332 abort ();
3333
3334 rela.r_offset = (htab->sgot->output_section->vma
3335 + htab->sgot->output_offset
3336 + (h->got.offset &~ (bfd_vma) 1));
3337
3338 /* If this is a static link, or it is a -Bsymbolic link and the
3339 symbol is defined locally or was forced to be local because
3340 of a version file, we just want to emit a RELATIVE reloc.
3341 The entry in the global offset table will already have been
3342 initialized in the relocate_section function. */
3343 if (info->shared
3344 && SYMBOL_REFERENCES_LOCAL (info, h))
3345 {
3346 BFD_ASSERT((h->got.offset & 1) != 0);
3347 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3348 rela.r_addend = (h->root.u.def.value
3349 + h->root.u.def.section->output_section->vma
3350 + h->root.u.def.section->output_offset);
3351 }
3352 else
3353 {
3354 BFD_ASSERT((h->got.offset & 1) == 0);
3355 bfd_put_64 (output_bfd, (bfd_vma) 0,
3356 htab->sgot->contents + h->got.offset);
3357 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
3358 rela.r_addend = 0;
3359 }
3360
3361 loc = htab->srelgot->contents;
3362 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3363 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3364 }
3365
3366 if (h->needs_copy)
3367 {
3368 Elf_Internal_Rela rela;
3369 bfd_byte *loc;
3370
3371 /* This symbol needs a copy reloc. Set it up. */
3372
3373 if (h->dynindx == -1
3374 || (h->root.type != bfd_link_hash_defined
3375 && h->root.type != bfd_link_hash_defweak)
3376 || htab->srelbss == NULL)
3377 abort ();
3378
3379 rela.r_offset = (h->root.u.def.value
3380 + h->root.u.def.section->output_section->vma
3381 + h->root.u.def.section->output_offset);
3382 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
3383 rela.r_addend = 0;
3384 loc = htab->srelbss->contents;
3385 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
3386 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3387 }
3388
3389 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3390 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3391 || h == htab->elf.hgot)
3392 sym->st_shndx = SHN_ABS;
3393
3394 return TRUE;
3395 }
3396
3397 /* Used to decide how to sort relocs in an optimal manner for the
3398 dynamic linker, before writing them out. */
3399
3400 static enum elf_reloc_type_class
3401 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
3402 {
3403 switch ((int) ELF64_R_TYPE (rela->r_info))
3404 {
3405 case R_X86_64_RELATIVE:
3406 return reloc_class_relative;
3407 case R_X86_64_JUMP_SLOT:
3408 return reloc_class_plt;
3409 case R_X86_64_COPY:
3410 return reloc_class_copy;
3411 default:
3412 return reloc_class_normal;
3413 }
3414 }
3415
3416 /* Finish up the dynamic sections. */
3417
3418 static bfd_boolean
3419 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
3420 {
3421 struct elf64_x86_64_link_hash_table *htab;
3422 bfd *dynobj;
3423 asection *sdyn;
3424
3425 htab = elf64_x86_64_hash_table (info);
3426 dynobj = htab->elf.dynobj;
3427 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3428
3429 if (htab->elf.dynamic_sections_created)
3430 {
3431 Elf64_External_Dyn *dyncon, *dynconend;
3432
3433 if (sdyn == NULL || htab->sgot == NULL)
3434 abort ();
3435
3436 dyncon = (Elf64_External_Dyn *) sdyn->contents;
3437 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
3438 for (; dyncon < dynconend; dyncon++)
3439 {
3440 Elf_Internal_Dyn dyn;
3441 asection *s;
3442
3443 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
3444
3445 switch (dyn.d_tag)
3446 {
3447 default:
3448 continue;
3449
3450 case DT_PLTGOT:
3451 s = htab->sgotplt;
3452 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
3453 break;
3454
3455 case DT_JMPREL:
3456 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3457 break;
3458
3459 case DT_PLTRELSZ:
3460 s = htab->srelplt->output_section;
3461 dyn.d_un.d_val = s->size;
3462 break;
3463
3464 case DT_RELASZ:
3465 /* The procedure linkage table relocs (DT_JMPREL) should
3466 not be included in the overall relocs (DT_RELA).
3467 Therefore, we override the DT_RELASZ entry here to
3468 make it not include the JMPREL relocs. Since the
3469 linker script arranges for .rela.plt to follow all
3470 other relocation sections, we don't have to worry
3471 about changing the DT_RELA entry. */
3472 if (htab->srelplt != NULL)
3473 {
3474 s = htab->srelplt->output_section;
3475 dyn.d_un.d_val -= s->size;
3476 }
3477 break;
3478
3479 case DT_TLSDESC_PLT:
3480 s = htab->splt;
3481 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3482 + htab->tlsdesc_plt;
3483 break;
3484
3485 case DT_TLSDESC_GOT:
3486 s = htab->sgot;
3487 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3488 + htab->tlsdesc_got;
3489 break;
3490 }
3491
3492 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
3493 }
3494
3495 /* Fill in the special first entry in the procedure linkage table. */
3496 if (htab->splt && htab->splt->size > 0)
3497 {
3498 /* Fill in the first entry in the procedure linkage table. */
3499 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
3500 PLT_ENTRY_SIZE);
3501 /* Add offset for pushq GOT+8(%rip), since the instruction
3502 uses 6 bytes subtract this value. */
3503 bfd_put_32 (output_bfd,
3504 (htab->sgotplt->output_section->vma
3505 + htab->sgotplt->output_offset
3506 + 8
3507 - htab->splt->output_section->vma
3508 - htab->splt->output_offset
3509 - 6),
3510 htab->splt->contents + 2);
3511 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
3512 the end of the instruction. */
3513 bfd_put_32 (output_bfd,
3514 (htab->sgotplt->output_section->vma
3515 + htab->sgotplt->output_offset
3516 + 16
3517 - htab->splt->output_section->vma
3518 - htab->splt->output_offset
3519 - 12),
3520 htab->splt->contents + 8);
3521
3522 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
3523 PLT_ENTRY_SIZE;
3524
3525 if (htab->tlsdesc_plt)
3526 {
3527 bfd_put_64 (output_bfd, (bfd_vma) 0,
3528 htab->sgot->contents + htab->tlsdesc_got);
3529
3530 memcpy (htab->splt->contents + htab->tlsdesc_plt,
3531 elf64_x86_64_plt0_entry,
3532 PLT_ENTRY_SIZE);
3533
3534 /* Add offset for pushq GOT+8(%rip), since the
3535 instruction uses 6 bytes subtract this value. */
3536 bfd_put_32 (output_bfd,
3537 (htab->sgotplt->output_section->vma
3538 + htab->sgotplt->output_offset
3539 + 8
3540 - htab->splt->output_section->vma
3541 - htab->splt->output_offset
3542 - htab->tlsdesc_plt
3543 - 6),
3544 htab->splt->contents + htab->tlsdesc_plt + 2);
3545 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
3546 htab->tlsdesc_got. The 12 is the offset to the end of
3547 the instruction. */
3548 bfd_put_32 (output_bfd,
3549 (htab->sgot->output_section->vma
3550 + htab->sgot->output_offset
3551 + htab->tlsdesc_got
3552 - htab->splt->output_section->vma
3553 - htab->splt->output_offset
3554 - htab->tlsdesc_plt
3555 - 12),
3556 htab->splt->contents + htab->tlsdesc_plt + 8);
3557 }
3558 }
3559 }
3560
3561 if (htab->sgotplt)
3562 {
3563 /* Fill in the first three entries in the global offset table. */
3564 if (htab->sgotplt->size > 0)
3565 {
3566 /* Set the first entry in the global offset table to the address of
3567 the dynamic section. */
3568 if (sdyn == NULL)
3569 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
3570 else
3571 bfd_put_64 (output_bfd,
3572 sdyn->output_section->vma + sdyn->output_offset,
3573 htab->sgotplt->contents);
3574 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
3575 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
3576 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
3577 }
3578
3579 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
3580 GOT_ENTRY_SIZE;
3581 }
3582
3583 if (htab->sgot && htab->sgot->size > 0)
3584 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize
3585 = GOT_ENTRY_SIZE;
3586
3587 return TRUE;
3588 }
3589
3590 /* Return address for Ith PLT stub in section PLT, for relocation REL
3591 or (bfd_vma) -1 if it should not be included. */
3592
3593 static bfd_vma
3594 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
3595 const arelent *rel ATTRIBUTE_UNUSED)
3596 {
3597 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
3598 }
3599
3600 /* Handle an x86-64 specific section when reading an object file. This
3601 is called when elfcode.h finds a section with an unknown type. */
3602
3603 static bfd_boolean
3604 elf64_x86_64_section_from_shdr (bfd *abfd,
3605 Elf_Internal_Shdr *hdr,
3606 const char *name,
3607 int shindex)
3608 {
3609 if (hdr->sh_type != SHT_X86_64_UNWIND)
3610 return FALSE;
3611
3612 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
3613 return FALSE;
3614
3615 return TRUE;
3616 }
3617
3618 /* Hook called by the linker routine which adds symbols from an object
3619 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
3620 of .bss. */
3621
3622 static bfd_boolean
3623 elf64_x86_64_add_symbol_hook (bfd *abfd,
3624 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3625 Elf_Internal_Sym *sym,
3626 const char **namep ATTRIBUTE_UNUSED,
3627 flagword *flagsp ATTRIBUTE_UNUSED,
3628 asection **secp, bfd_vma *valp)
3629 {
3630 asection *lcomm;
3631
3632 switch (sym->st_shndx)
3633 {
3634 case SHN_X86_64_LCOMMON:
3635 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
3636 if (lcomm == NULL)
3637 {
3638 lcomm = bfd_make_section_with_flags (abfd,
3639 "LARGE_COMMON",
3640 (SEC_ALLOC
3641 | SEC_IS_COMMON
3642 | SEC_LINKER_CREATED));
3643 if (lcomm == NULL)
3644 return FALSE;
3645 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
3646 }
3647 *secp = lcomm;
3648 *valp = sym->st_size;
3649 break;
3650 }
3651 return TRUE;
3652 }
3653
3654
3655 /* Given a BFD section, try to locate the corresponding ELF section
3656 index. */
3657
3658 static bfd_boolean
3659 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
3660 asection *sec, int *index)
3661 {
3662 if (sec == &_bfd_elf_large_com_section)
3663 {
3664 *index = SHN_X86_64_LCOMMON;
3665 return TRUE;
3666 }
3667 return FALSE;
3668 }
3669
3670 /* Process a symbol. */
3671
3672 static void
3673 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
3674 asymbol *asym)
3675 {
3676 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
3677
3678 switch (elfsym->internal_elf_sym.st_shndx)
3679 {
3680 case SHN_X86_64_LCOMMON:
3681 asym->section = &_bfd_elf_large_com_section;
3682 asym->value = elfsym->internal_elf_sym.st_size;
3683 /* Common symbol doesn't set BSF_GLOBAL. */
3684 asym->flags &= ~BSF_GLOBAL;
3685 break;
3686 }
3687 }
3688
3689 static bfd_boolean
3690 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
3691 {
3692 return (sym->st_shndx == SHN_COMMON
3693 || sym->st_shndx == SHN_X86_64_LCOMMON);
3694 }
3695
3696 static unsigned int
3697 elf64_x86_64_common_section_index (asection *sec)
3698 {
3699 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3700 return SHN_COMMON;
3701 else
3702 return SHN_X86_64_LCOMMON;
3703 }
3704
3705 static asection *
3706 elf64_x86_64_common_section (asection *sec)
3707 {
3708 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3709 return bfd_com_section_ptr;
3710 else
3711 return &_bfd_elf_large_com_section;
3712 }
3713
3714 static bfd_boolean
3715 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3716 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
3717 struct elf_link_hash_entry *h,
3718 Elf_Internal_Sym *sym,
3719 asection **psec,
3720 bfd_vma *pvalue ATTRIBUTE_UNUSED,
3721 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
3722 bfd_boolean *skip ATTRIBUTE_UNUSED,
3723 bfd_boolean *override ATTRIBUTE_UNUSED,
3724 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
3725 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
3726 bfd_boolean *newdef ATTRIBUTE_UNUSED,
3727 bfd_boolean *newdyn,
3728 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
3729 bfd_boolean *newweak ATTRIBUTE_UNUSED,
3730 bfd *abfd ATTRIBUTE_UNUSED,
3731 asection **sec,
3732 bfd_boolean *olddef ATTRIBUTE_UNUSED,
3733 bfd_boolean *olddyn,
3734 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
3735 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
3736 bfd *oldbfd,
3737 asection **oldsec)
3738 {
3739 /* A normal common symbol and a large common symbol result in a
3740 normal common symbol. We turn the large common symbol into a
3741 normal one. */
3742 if (!*olddyn
3743 && h->root.type == bfd_link_hash_common
3744 && !*newdyn
3745 && bfd_is_com_section (*sec)
3746 && *oldsec != *sec)
3747 {
3748 if (sym->st_shndx == SHN_COMMON
3749 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
3750 {
3751 h->root.u.c.p->section
3752 = bfd_make_section_old_way (oldbfd, "COMMON");
3753 h->root.u.c.p->section->flags = SEC_ALLOC;
3754 }
3755 else if (sym->st_shndx == SHN_X86_64_LCOMMON
3756 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
3757 *psec = *sec = bfd_com_section_ptr;
3758 }
3759
3760 return TRUE;
3761 }
3762
3763 static int
3764 elf64_x86_64_additional_program_headers (bfd *abfd,
3765 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3766 {
3767 asection *s;
3768 int count = 0;
3769
3770 /* Check to see if we need a large readonly segment. */
3771 s = bfd_get_section_by_name (abfd, ".lrodata");
3772 if (s && (s->flags & SEC_LOAD))
3773 count++;
3774
3775 /* Check to see if we need a large data segment. Since .lbss sections
3776 is placed right after the .bss section, there should be no need for
3777 a large data segment just because of .lbss. */
3778 s = bfd_get_section_by_name (abfd, ".ldata");
3779 if (s && (s->flags & SEC_LOAD))
3780 count++;
3781
3782 return count;
3783 }
3784
3785 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
3786
3787 static bfd_boolean
3788 elf64_x86_64_hash_symbol (struct elf_link_hash_entry *h)
3789 {
3790 if (h->plt.offset != (bfd_vma) -1
3791 && !h->def_regular
3792 && !h->pointer_equality_needed)
3793 return FALSE;
3794
3795 return _bfd_elf_hash_symbol (h);
3796 }
3797
3798 static const struct bfd_elf_special_section
3799 elf64_x86_64_special_sections[]=
3800 {
3801 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3802 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3803 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
3804 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3805 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3806 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3807 { NULL, 0, 0, 0, 0 }
3808 };
3809
3810 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
3811 #define TARGET_LITTLE_NAME "elf64-x86-64"
3812 #define ELF_ARCH bfd_arch_i386
3813 #define ELF_MACHINE_CODE EM_X86_64
3814 #define ELF_MAXPAGESIZE 0x200000
3815 #define ELF_MINPAGESIZE 0x1000
3816 #define ELF_COMMONPAGESIZE 0x1000
3817
3818 #define elf_backend_can_gc_sections 1
3819 #define elf_backend_can_refcount 1
3820 #define elf_backend_want_got_plt 1
3821 #define elf_backend_plt_readonly 1
3822 #define elf_backend_want_plt_sym 0
3823 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
3824 #define elf_backend_rela_normal 1
3825
3826 #define elf_info_to_howto elf64_x86_64_info_to_howto
3827
3828 #define bfd_elf64_bfd_link_hash_table_create \
3829 elf64_x86_64_link_hash_table_create
3830 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
3831 #define bfd_elf64_bfd_reloc_name_lookup \
3832 elf64_x86_64_reloc_name_lookup
3833
3834 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
3835 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
3836 #define elf_backend_check_relocs elf64_x86_64_check_relocs
3837 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
3838 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
3839 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
3840 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
3841 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
3842 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
3843 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
3844 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
3845 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
3846 #define elf_backend_relocate_section elf64_x86_64_relocate_section
3847 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
3848 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
3849 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
3850 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
3851 #define elf_backend_object_p elf64_x86_64_elf_object_p
3852 #define bfd_elf64_mkobject elf64_x86_64_mkobject
3853
3854 #define elf_backend_section_from_shdr \
3855 elf64_x86_64_section_from_shdr
3856
3857 #define elf_backend_section_from_bfd_section \
3858 elf64_x86_64_elf_section_from_bfd_section
3859 #define elf_backend_add_symbol_hook \
3860 elf64_x86_64_add_symbol_hook
3861 #define elf_backend_symbol_processing \
3862 elf64_x86_64_symbol_processing
3863 #define elf_backend_common_section_index \
3864 elf64_x86_64_common_section_index
3865 #define elf_backend_common_section \
3866 elf64_x86_64_common_section
3867 #define elf_backend_common_definition \
3868 elf64_x86_64_common_definition
3869 #define elf_backend_merge_symbol \
3870 elf64_x86_64_merge_symbol
3871 #define elf_backend_special_sections \
3872 elf64_x86_64_special_sections
3873 #define elf_backend_additional_program_headers \
3874 elf64_x86_64_additional_program_headers
3875 #define elf_backend_hash_symbol \
3876 elf64_x86_64_hash_symbol
3877
3878 #include "elf64-target.h"
3879
3880 /* FreeBSD support. */
3881
3882 #undef TARGET_LITTLE_SYM
3883 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
3884 #undef TARGET_LITTLE_NAME
3885 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
3886
3887 #undef ELF_OSABI
3888 #define ELF_OSABI ELFOSABI_FREEBSD
3889
3890 #undef elf_backend_post_process_headers
3891 #define elf_backend_post_process_headers _bfd_elf_set_osabi
3892
3893 #undef elf64_bed
3894 #define elf64_bed elf64_x86_64_fbsd_bed
3895
3896 #include "elf64-target.h"
This page took 0.106273 seconds and 5 git commands to generate.