* elf64-x86-64.c (allocate_dynrelocs): Don't allocate dynamic
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 #include "elf/x86-64.h"
28
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30 #define MINUS_ONE (~ (bfd_vma) 0)
31
32 /* The relocation "howto" table. Order of fields:
33 type, size, bitsize, pc_relative, complain_on_overflow,
34 special_function, name, partial_inplace, src_mask, dst_pack, pcrel_offset. */
35 static reloc_howto_type x86_64_elf_howto_table[] =
36 {
37 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
38 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
39 FALSE),
40 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
41 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
42 FALSE),
43 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
44 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
45 TRUE),
46 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
47 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
48 FALSE),
49 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
50 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
51 TRUE),
52 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
53 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
54 FALSE),
55 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
56 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
57 MINUS_ONE, FALSE),
58 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
59 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
60 MINUS_ONE, FALSE),
61 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
63 MINUS_ONE, FALSE),
64 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
65 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
66 0xffffffff, TRUE),
67 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
68 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
69 FALSE),
70 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
71 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
72 FALSE),
73 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
74 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
75 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
77 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
78 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
79 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
80 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
81 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
83 MINUS_ONE, FALSE),
84 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
86 MINUS_ONE, FALSE),
87 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
89 MINUS_ONE, FALSE),
90 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
91 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
92 0xffffffff, TRUE),
93 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
94 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
95 0xffffffff, TRUE),
96 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
97 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
98 0xffffffff, FALSE),
99 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
101 0xffffffff, TRUE),
102 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
103 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
104 0xffffffff, FALSE),
105
106 /* GNU extension to record C++ vtable hierarchy. */
107 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
108 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
109
110 /* GNU extension to record C++ vtable member usage. */
111 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
112 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
113 FALSE)
114 };
115
116 /* Map BFD relocs to the x86_64 elf relocs. */
117 struct elf_reloc_map
118 {
119 bfd_reloc_code_real_type bfd_reloc_val;
120 unsigned char elf_reloc_val;
121 };
122
123 static const struct elf_reloc_map x86_64_reloc_map[] =
124 {
125 { BFD_RELOC_NONE, R_X86_64_NONE, },
126 { BFD_RELOC_64, R_X86_64_64, },
127 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
128 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
129 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
130 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
131 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
132 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
133 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
134 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
135 { BFD_RELOC_32, R_X86_64_32, },
136 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
137 { BFD_RELOC_16, R_X86_64_16, },
138 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
139 { BFD_RELOC_8, R_X86_64_8, },
140 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
141 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
142 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
143 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
144 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
145 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
146 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
147 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
148 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
149 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
150 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
151 };
152
153 static reloc_howto_type *elf64_x86_64_reloc_type_lookup
154 PARAMS ((bfd *, bfd_reloc_code_real_type));
155 static void elf64_x86_64_info_to_howto
156 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
157 static bfd_boolean elf64_x86_64_grok_prstatus
158 PARAMS ((bfd *, Elf_Internal_Note *));
159 static bfd_boolean elf64_x86_64_grok_psinfo
160 PARAMS ((bfd *, Elf_Internal_Note *));
161 static struct bfd_link_hash_table *elf64_x86_64_link_hash_table_create
162 PARAMS ((bfd *));
163 static int elf64_x86_64_tls_transition
164 PARAMS ((struct bfd_link_info *, int, int));
165 static bfd_boolean elf64_x86_64_mkobject
166 PARAMS((bfd *));
167 static bfd_boolean elf64_x86_64_elf_object_p PARAMS ((bfd *abfd));
168 static bfd_boolean create_got_section
169 PARAMS((bfd *, struct bfd_link_info *));
170 static bfd_boolean elf64_x86_64_create_dynamic_sections
171 PARAMS((bfd *, struct bfd_link_info *));
172 static void elf64_x86_64_copy_indirect_symbol
173 PARAMS ((struct elf_backend_data *, struct elf_link_hash_entry *,
174 struct elf_link_hash_entry *));
175 static bfd_boolean elf64_x86_64_check_relocs
176 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
177 const Elf_Internal_Rela *));
178 static asection *elf64_x86_64_gc_mark_hook
179 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
180 struct elf_link_hash_entry *, Elf_Internal_Sym *));
181
182 static bfd_boolean elf64_x86_64_gc_sweep_hook
183 PARAMS ((bfd *, struct bfd_link_info *, asection *,
184 const Elf_Internal_Rela *));
185
186 static struct bfd_hash_entry *link_hash_newfunc
187 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
188 static bfd_boolean elf64_x86_64_adjust_dynamic_symbol
189 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
190
191 static bfd_boolean allocate_dynrelocs
192 PARAMS ((struct elf_link_hash_entry *, PTR));
193 static bfd_boolean readonly_dynrelocs
194 PARAMS ((struct elf_link_hash_entry *, PTR));
195 static bfd_boolean elf64_x86_64_size_dynamic_sections
196 PARAMS ((bfd *, struct bfd_link_info *));
197 static bfd_vma dtpoff_base
198 PARAMS ((struct bfd_link_info *));
199 static bfd_vma tpoff
200 PARAMS ((struct bfd_link_info *, bfd_vma));
201 static bfd_boolean elf64_x86_64_relocate_section
202 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
203 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
204 static bfd_boolean elf64_x86_64_finish_dynamic_symbol
205 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
206 Elf_Internal_Sym *sym));
207 static bfd_boolean elf64_x86_64_finish_dynamic_sections
208 PARAMS ((bfd *, struct bfd_link_info *));
209 static enum elf_reloc_type_class elf64_x86_64_reloc_type_class
210 PARAMS ((const Elf_Internal_Rela *));
211
212 /* Given a BFD reloc type, return a HOWTO structure. */
213 static reloc_howto_type *
214 elf64_x86_64_reloc_type_lookup (abfd, code)
215 bfd *abfd ATTRIBUTE_UNUSED;
216 bfd_reloc_code_real_type code;
217 {
218 unsigned int i;
219 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
220 i++)
221 {
222 if (x86_64_reloc_map[i].bfd_reloc_val == code)
223 return &x86_64_elf_howto_table[i];
224 }
225 return 0;
226 }
227
228 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
229
230 static void
231 elf64_x86_64_info_to_howto (abfd, cache_ptr, dst)
232 bfd *abfd ATTRIBUTE_UNUSED;
233 arelent *cache_ptr;
234 Elf_Internal_Rela *dst;
235 {
236 unsigned r_type, i;
237
238 r_type = ELF64_R_TYPE (dst->r_info);
239 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT)
240 {
241 BFD_ASSERT (r_type <= (unsigned int) R_X86_64_TPOFF32);
242 i = r_type;
243 }
244 else
245 {
246 BFD_ASSERT (r_type < (unsigned int) R_X86_64_max);
247 i = r_type - ((unsigned int) R_X86_64_GNU_VTINHERIT - R_X86_64_TPOFF32 - 1);
248 }
249 cache_ptr->howto = &x86_64_elf_howto_table[i];
250 BFD_ASSERT (r_type == cache_ptr->howto->type);
251 }
252 \f
253 /* Support for core dump NOTE sections. */
254 static bfd_boolean
255 elf64_x86_64_grok_prstatus (abfd, note)
256 bfd *abfd;
257 Elf_Internal_Note *note;
258 {
259 int offset;
260 size_t raw_size;
261
262 switch (note->descsz)
263 {
264 default:
265 return FALSE;
266
267 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
268 /* pr_cursig */
269 elf_tdata (abfd)->core_signal
270 = bfd_get_16 (abfd, note->descdata + 12);
271
272 /* pr_pid */
273 elf_tdata (abfd)->core_pid
274 = bfd_get_32 (abfd, note->descdata + 32);
275
276 /* pr_reg */
277 offset = 112;
278 raw_size = 216;
279
280 break;
281 }
282
283 /* Make a ".reg/999" section. */
284 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
285 raw_size, note->descpos + offset);
286 }
287
288 static bfd_boolean
289 elf64_x86_64_grok_psinfo (abfd, note)
290 bfd *abfd;
291 Elf_Internal_Note *note;
292 {
293 switch (note->descsz)
294 {
295 default:
296 return FALSE;
297
298 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
299 elf_tdata (abfd)->core_program
300 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
301 elf_tdata (abfd)->core_command
302 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
303 }
304
305 /* Note that for some reason, a spurious space is tacked
306 onto the end of the args in some (at least one anyway)
307 implementations, so strip it off if it exists. */
308
309 {
310 char *command = elf_tdata (abfd)->core_command;
311 int n = strlen (command);
312
313 if (0 < n && command[n - 1] == ' ')
314 command[n - 1] = '\0';
315 }
316
317 return TRUE;
318 }
319 \f
320 /* Functions for the x86-64 ELF linker. */
321
322 /* The name of the dynamic interpreter. This is put in the .interp
323 section. */
324
325 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
326
327 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
328 copying dynamic variables from a shared lib into an app's dynbss
329 section, and instead use a dynamic relocation to point into the
330 shared lib. */
331 #define ELIMINATE_COPY_RELOCS 1
332
333 /* The size in bytes of an entry in the global offset table. */
334
335 #define GOT_ENTRY_SIZE 8
336
337 /* The size in bytes of an entry in the procedure linkage table. */
338
339 #define PLT_ENTRY_SIZE 16
340
341 /* The first entry in a procedure linkage table looks like this. See the
342 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
343
344 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
345 {
346 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
347 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
348 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
349 };
350
351 /* Subsequent entries in a procedure linkage table look like this. */
352
353 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
354 {
355 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
356 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
357 0x68, /* pushq immediate */
358 0, 0, 0, 0, /* replaced with index into relocation table. */
359 0xe9, /* jmp relative */
360 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
361 };
362
363 /* The x86-64 linker needs to keep track of the number of relocs that
364 it decides to copy as dynamic relocs in check_relocs for each symbol.
365 This is so that it can later discard them if they are found to be
366 unnecessary. We store the information in a field extending the
367 regular ELF linker hash table. */
368
369 struct elf64_x86_64_dyn_relocs
370 {
371 /* Next section. */
372 struct elf64_x86_64_dyn_relocs *next;
373
374 /* The input section of the reloc. */
375 asection *sec;
376
377 /* Total number of relocs copied for the input section. */
378 bfd_size_type count;
379
380 /* Number of pc-relative relocs copied for the input section. */
381 bfd_size_type pc_count;
382 };
383
384 /* x86-64 ELF linker hash entry. */
385
386 struct elf64_x86_64_link_hash_entry
387 {
388 struct elf_link_hash_entry elf;
389
390 /* Track dynamic relocs copied for this symbol. */
391 struct elf64_x86_64_dyn_relocs *dyn_relocs;
392
393 #define GOT_UNKNOWN 0
394 #define GOT_NORMAL 1
395 #define GOT_TLS_GD 2
396 #define GOT_TLS_IE 3
397 unsigned char tls_type;
398 };
399
400 #define elf64_x86_64_hash_entry(ent) \
401 ((struct elf64_x86_64_link_hash_entry *)(ent))
402
403 struct elf64_x86_64_obj_tdata
404 {
405 struct elf_obj_tdata root;
406
407 /* tls_type for each local got entry. */
408 char *local_got_tls_type;
409 };
410
411 #define elf64_x86_64_tdata(abfd) \
412 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
413
414 #define elf64_x86_64_local_got_tls_type(abfd) \
415 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
416
417
418 /* x86-64 ELF linker hash table. */
419
420 struct elf64_x86_64_link_hash_table
421 {
422 struct elf_link_hash_table elf;
423
424 /* Short-cuts to get to dynamic linker sections. */
425 asection *sgot;
426 asection *sgotplt;
427 asection *srelgot;
428 asection *splt;
429 asection *srelplt;
430 asection *sdynbss;
431 asection *srelbss;
432
433 union {
434 bfd_signed_vma refcount;
435 bfd_vma offset;
436 } tls_ld_got;
437
438 /* Small local sym to section mapping cache. */
439 struct sym_sec_cache sym_sec;
440 };
441
442 /* Get the x86-64 ELF linker hash table from a link_info structure. */
443
444 #define elf64_x86_64_hash_table(p) \
445 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
446
447 /* Create an entry in an x86-64 ELF linker hash table. */
448
449 static struct bfd_hash_entry *
450 link_hash_newfunc (entry, table, string)
451 struct bfd_hash_entry *entry;
452 struct bfd_hash_table *table;
453 const char *string;
454 {
455 /* Allocate the structure if it has not already been allocated by a
456 subclass. */
457 if (entry == NULL)
458 {
459 entry = bfd_hash_allocate (table,
460 sizeof (struct elf64_x86_64_link_hash_entry));
461 if (entry == NULL)
462 return entry;
463 }
464
465 /* Call the allocation method of the superclass. */
466 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
467 if (entry != NULL)
468 {
469 struct elf64_x86_64_link_hash_entry *eh;
470
471 eh = (struct elf64_x86_64_link_hash_entry *) entry;
472 eh->dyn_relocs = NULL;
473 eh->tls_type = GOT_UNKNOWN;
474 }
475
476 return entry;
477 }
478
479 /* Create an X86-64 ELF linker hash table. */
480
481 static struct bfd_link_hash_table *
482 elf64_x86_64_link_hash_table_create (abfd)
483 bfd *abfd;
484 {
485 struct elf64_x86_64_link_hash_table *ret;
486 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
487
488 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
489 if (ret == NULL)
490 return NULL;
491
492 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
493 {
494 free (ret);
495 return NULL;
496 }
497
498 ret->sgot = NULL;
499 ret->sgotplt = NULL;
500 ret->srelgot = NULL;
501 ret->splt = NULL;
502 ret->srelplt = NULL;
503 ret->sdynbss = NULL;
504 ret->srelbss = NULL;
505 ret->sym_sec.abfd = NULL;
506 ret->tls_ld_got.refcount = 0;
507
508 return &ret->elf.root;
509 }
510
511 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
512 shortcuts to them in our hash table. */
513
514 static bfd_boolean
515 create_got_section (dynobj, info)
516 bfd *dynobj;
517 struct bfd_link_info *info;
518 {
519 struct elf64_x86_64_link_hash_table *htab;
520
521 if (! _bfd_elf_create_got_section (dynobj, info))
522 return FALSE;
523
524 htab = elf64_x86_64_hash_table (info);
525 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
526 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
527 if (!htab->sgot || !htab->sgotplt)
528 abort ();
529
530 htab->srelgot = bfd_make_section (dynobj, ".rela.got");
531 if (htab->srelgot == NULL
532 || ! bfd_set_section_flags (dynobj, htab->srelgot,
533 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
534 | SEC_IN_MEMORY | SEC_LINKER_CREATED
535 | SEC_READONLY))
536 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
537 return FALSE;
538 return TRUE;
539 }
540
541 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
542 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
543 hash table. */
544
545 static bfd_boolean
546 elf64_x86_64_create_dynamic_sections (dynobj, info)
547 bfd *dynobj;
548 struct bfd_link_info *info;
549 {
550 struct elf64_x86_64_link_hash_table *htab;
551
552 htab = elf64_x86_64_hash_table (info);
553 if (!htab->sgot && !create_got_section (dynobj, info))
554 return FALSE;
555
556 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
557 return FALSE;
558
559 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
560 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
561 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
562 if (!info->shared)
563 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
564
565 if (!htab->splt || !htab->srelplt || !htab->sdynbss
566 || (!info->shared && !htab->srelbss))
567 abort ();
568
569 return TRUE;
570 }
571
572 /* Copy the extra info we tack onto an elf_link_hash_entry. */
573
574 static void
575 elf64_x86_64_copy_indirect_symbol (bed, dir, ind)
576 struct elf_backend_data *bed;
577 struct elf_link_hash_entry *dir, *ind;
578 {
579 struct elf64_x86_64_link_hash_entry *edir, *eind;
580
581 edir = (struct elf64_x86_64_link_hash_entry *) dir;
582 eind = (struct elf64_x86_64_link_hash_entry *) ind;
583
584 if (eind->dyn_relocs != NULL)
585 {
586 if (edir->dyn_relocs != NULL)
587 {
588 struct elf64_x86_64_dyn_relocs **pp;
589 struct elf64_x86_64_dyn_relocs *p;
590
591 if (ind->root.type == bfd_link_hash_indirect)
592 abort ();
593
594 /* Add reloc counts against the weak sym to the strong sym
595 list. Merge any entries against the same section. */
596 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
597 {
598 struct elf64_x86_64_dyn_relocs *q;
599
600 for (q = edir->dyn_relocs; q != NULL; q = q->next)
601 if (q->sec == p->sec)
602 {
603 q->pc_count += p->pc_count;
604 q->count += p->count;
605 *pp = p->next;
606 break;
607 }
608 if (q == NULL)
609 pp = &p->next;
610 }
611 *pp = edir->dyn_relocs;
612 }
613
614 edir->dyn_relocs = eind->dyn_relocs;
615 eind->dyn_relocs = NULL;
616 }
617
618 if (ind->root.type == bfd_link_hash_indirect
619 && dir->got.refcount <= 0)
620 {
621 edir->tls_type = eind->tls_type;
622 eind->tls_type = GOT_UNKNOWN;
623 }
624
625 if (ELIMINATE_COPY_RELOCS
626 && ind->root.type != bfd_link_hash_indirect
627 && (dir->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
628 /* If called to transfer flags for a weakdef during processing
629 of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
630 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
631 dir->elf_link_hash_flags |=
632 (ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
633 | ELF_LINK_HASH_REF_REGULAR
634 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
635 else
636 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
637 }
638
639 static bfd_boolean
640 elf64_x86_64_mkobject (abfd)
641 bfd *abfd;
642 {
643 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
644 abfd->tdata.any = bfd_zalloc (abfd, amt);
645 if (abfd->tdata.any == NULL)
646 return FALSE;
647 return TRUE;
648 }
649
650 static bfd_boolean
651 elf64_x86_64_elf_object_p (abfd)
652 bfd *abfd;
653 {
654 /* Allocate our special target data. */
655 struct elf64_x86_64_obj_tdata *new_tdata;
656 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
657 new_tdata = bfd_zalloc (abfd, amt);
658 if (new_tdata == NULL)
659 return FALSE;
660 new_tdata->root = *abfd->tdata.elf_obj_data;
661 abfd->tdata.any = new_tdata;
662 /* Set the right machine number for an x86-64 elf64 file. */
663 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
664 return TRUE;
665 }
666
667 static int
668 elf64_x86_64_tls_transition (info, r_type, is_local)
669 struct bfd_link_info *info;
670 int r_type;
671 int is_local;
672 {
673 if (info->shared)
674 return r_type;
675
676 switch (r_type)
677 {
678 case R_X86_64_TLSGD:
679 case R_X86_64_GOTTPOFF:
680 if (is_local)
681 return R_X86_64_TPOFF32;
682 return R_X86_64_GOTTPOFF;
683 case R_X86_64_TLSLD:
684 return R_X86_64_TPOFF32;
685 }
686
687 return r_type;
688 }
689
690 /* Look through the relocs for a section during the first phase, and
691 calculate needed space in the global offset table, procedure
692 linkage table, and dynamic reloc sections. */
693
694 static bfd_boolean
695 elf64_x86_64_check_relocs (abfd, info, sec, relocs)
696 bfd *abfd;
697 struct bfd_link_info *info;
698 asection *sec;
699 const Elf_Internal_Rela *relocs;
700 {
701 struct elf64_x86_64_link_hash_table *htab;
702 Elf_Internal_Shdr *symtab_hdr;
703 struct elf_link_hash_entry **sym_hashes;
704 const Elf_Internal_Rela *rel;
705 const Elf_Internal_Rela *rel_end;
706 asection *sreloc;
707
708 if (info->relocateable)
709 return TRUE;
710
711 htab = elf64_x86_64_hash_table (info);
712 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
713 sym_hashes = elf_sym_hashes (abfd);
714
715 sreloc = NULL;
716
717 rel_end = relocs + sec->reloc_count;
718 for (rel = relocs; rel < rel_end; rel++)
719 {
720 unsigned int r_type;
721 unsigned long r_symndx;
722 struct elf_link_hash_entry *h;
723
724 r_symndx = ELF64_R_SYM (rel->r_info);
725 r_type = ELF64_R_TYPE (rel->r_info);
726
727 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
728 {
729 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
730 bfd_archive_filename (abfd),
731 r_symndx);
732 return FALSE;
733 }
734
735 if (r_symndx < symtab_hdr->sh_info)
736 h = NULL;
737 else
738 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
739
740 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
741 switch (r_type)
742 {
743 case R_X86_64_TLSLD:
744 htab->tls_ld_got.refcount += 1;
745 goto create_got;
746
747 case R_X86_64_TPOFF32:
748 if (info->shared)
749 {
750 (*_bfd_error_handler)
751 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
752 bfd_archive_filename (abfd),
753 x86_64_elf_howto_table[r_type].name);
754 bfd_set_error (bfd_error_bad_value);
755 return FALSE;
756 }
757 break;
758
759 case R_X86_64_GOTTPOFF:
760 if (info->shared)
761 info->flags |= DF_STATIC_TLS;
762 /* Fall through */
763
764 case R_X86_64_GOT32:
765 case R_X86_64_GOTPCREL:
766 case R_X86_64_TLSGD:
767 /* This symbol requires a global offset table entry. */
768 {
769 int tls_type, old_tls_type;
770
771 switch (r_type)
772 {
773 default: tls_type = GOT_NORMAL; break;
774 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
775 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
776 }
777
778 if (h != NULL)
779 {
780 h->got.refcount += 1;
781 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
782 }
783 else
784 {
785 bfd_signed_vma *local_got_refcounts;
786
787 /* This is a global offset table entry for a local symbol. */
788 local_got_refcounts = elf_local_got_refcounts (abfd);
789 if (local_got_refcounts == NULL)
790 {
791 bfd_size_type size;
792
793 size = symtab_hdr->sh_info;
794 size *= sizeof (bfd_signed_vma) + sizeof (char);
795 local_got_refcounts = ((bfd_signed_vma *)
796 bfd_zalloc (abfd, size));
797 if (local_got_refcounts == NULL)
798 return FALSE;
799 elf_local_got_refcounts (abfd) = local_got_refcounts;
800 elf64_x86_64_local_got_tls_type (abfd)
801 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
802 }
803 local_got_refcounts[r_symndx] += 1;
804 old_tls_type
805 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
806 }
807
808 /* If a TLS symbol is accessed using IE at least once,
809 there is no point to use dynamic model for it. */
810 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
811 && (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE))
812 {
813 if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
814 tls_type = old_tls_type;
815 else
816 {
817 (*_bfd_error_handler)
818 (_("%s: %s' accessed both as normal and thread local symbol"),
819 bfd_archive_filename (abfd),
820 h ? h->root.root.string : "<local>");
821 return FALSE;
822 }
823 }
824
825 if (old_tls_type != tls_type)
826 {
827 if (h != NULL)
828 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
829 else
830 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
831 }
832 }
833 /* Fall through */
834
835 //case R_X86_64_GOTPCREL:
836 create_got:
837 if (htab->sgot == NULL)
838 {
839 if (htab->elf.dynobj == NULL)
840 htab->elf.dynobj = abfd;
841 if (!create_got_section (htab->elf.dynobj, info))
842 return FALSE;
843 }
844 break;
845
846 case R_X86_64_PLT32:
847 /* This symbol requires a procedure linkage table entry. We
848 actually build the entry in adjust_dynamic_symbol,
849 because this might be a case of linking PIC code which is
850 never referenced by a dynamic object, in which case we
851 don't need to generate a procedure linkage table entry
852 after all. */
853
854 /* If this is a local symbol, we resolve it directly without
855 creating a procedure linkage table entry. */
856 if (h == NULL)
857 continue;
858
859 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
860 h->plt.refcount += 1;
861 break;
862
863 case R_X86_64_8:
864 case R_X86_64_16:
865 case R_X86_64_32:
866 case R_X86_64_32S:
867 /* Let's help debug shared library creation. These relocs
868 cannot be used in shared libs. Don't error out for
869 sections we don't care about, such as debug sections or
870 non-constant sections. */
871 if (info->shared
872 && (sec->flags & SEC_ALLOC) != 0
873 && (sec->flags & SEC_READONLY) != 0)
874 {
875 (*_bfd_error_handler)
876 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
877 bfd_archive_filename (abfd),
878 x86_64_elf_howto_table[r_type].name);
879 bfd_set_error (bfd_error_bad_value);
880 return FALSE;
881 }
882 /* Fall through. */
883
884 case R_X86_64_PC8:
885 case R_X86_64_PC16:
886 case R_X86_64_PC32:
887 case R_X86_64_64:
888 if (h != NULL && !info->shared)
889 {
890 /* If this reloc is in a read-only section, we might
891 need a copy reloc. We can't check reliably at this
892 stage whether the section is read-only, as input
893 sections have not yet been mapped to output sections.
894 Tentatively set the flag for now, and correct in
895 adjust_dynamic_symbol. */
896 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
897
898 /* We may need a .plt entry if the function this reloc
899 refers to is in a shared lib. */
900 h->plt.refcount += 1;
901 }
902
903 /* If we are creating a shared library, and this is a reloc
904 against a global symbol, or a non PC relative reloc
905 against a local symbol, then we need to copy the reloc
906 into the shared library. However, if we are linking with
907 -Bsymbolic, we do not need to copy a reloc against a
908 global symbol which is defined in an object we are
909 including in the link (i.e., DEF_REGULAR is set). At
910 this point we have not seen all the input files, so it is
911 possible that DEF_REGULAR is not set now but will be set
912 later (it is never cleared). In case of a weak definition,
913 DEF_REGULAR may be cleared later by a strong definition in
914 a shared library. We account for that possibility below by
915 storing information in the relocs_copied field of the hash
916 table entry. A similar situation occurs when creating
917 shared libraries and symbol visibility changes render the
918 symbol local.
919
920 If on the other hand, we are creating an executable, we
921 may need to keep relocations for symbols satisfied by a
922 dynamic library if we manage to avoid copy relocs for the
923 symbol. */
924 if ((info->shared
925 && (sec->flags & SEC_ALLOC) != 0
926 && (((r_type != R_X86_64_PC8)
927 && (r_type != R_X86_64_PC16)
928 && (r_type != R_X86_64_PC32))
929 || (h != NULL
930 && (! info->symbolic
931 || h->root.type == bfd_link_hash_defweak
932 || (h->elf_link_hash_flags
933 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
934 || (ELIMINATE_COPY_RELOCS
935 && !info->shared
936 && (sec->flags & SEC_ALLOC) != 0
937 && h != NULL
938 && (h->root.type == bfd_link_hash_defweak
939 || (h->elf_link_hash_flags
940 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
941 {
942 struct elf64_x86_64_dyn_relocs *p;
943 struct elf64_x86_64_dyn_relocs **head;
944
945 /* We must copy these reloc types into the output file.
946 Create a reloc section in dynobj and make room for
947 this reloc. */
948 if (sreloc == NULL)
949 {
950 const char *name;
951 bfd *dynobj;
952
953 name = (bfd_elf_string_from_elf_section
954 (abfd,
955 elf_elfheader (abfd)->e_shstrndx,
956 elf_section_data (sec)->rel_hdr.sh_name));
957 if (name == NULL)
958 return FALSE;
959
960 if (strncmp (name, ".rela", 5) != 0
961 || strcmp (bfd_get_section_name (abfd, sec),
962 name + 5) != 0)
963 {
964 (*_bfd_error_handler)
965 (_("%s: bad relocation section name `%s\'"),
966 bfd_archive_filename (abfd), name);
967 }
968
969 if (htab->elf.dynobj == NULL)
970 htab->elf.dynobj = abfd;
971
972 dynobj = htab->elf.dynobj;
973
974 sreloc = bfd_get_section_by_name (dynobj, name);
975 if (sreloc == NULL)
976 {
977 flagword flags;
978
979 sreloc = bfd_make_section (dynobj, name);
980 flags = (SEC_HAS_CONTENTS | SEC_READONLY
981 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
982 if ((sec->flags & SEC_ALLOC) != 0)
983 flags |= SEC_ALLOC | SEC_LOAD;
984 if (sreloc == NULL
985 || ! bfd_set_section_flags (dynobj, sreloc, flags)
986 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
987 return FALSE;
988 }
989 elf_section_data (sec)->sreloc = sreloc;
990 }
991
992 /* If this is a global symbol, we count the number of
993 relocations we need for this symbol. */
994 if (h != NULL)
995 {
996 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
997 }
998 else
999 {
1000 /* Track dynamic relocs needed for local syms too.
1001 We really need local syms available to do this
1002 easily. Oh well. */
1003
1004 asection *s;
1005 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1006 sec, r_symndx);
1007 if (s == NULL)
1008 return FALSE;
1009
1010 head = ((struct elf64_x86_64_dyn_relocs **)
1011 &elf_section_data (s)->local_dynrel);
1012 }
1013
1014 p = *head;
1015 if (p == NULL || p->sec != sec)
1016 {
1017 bfd_size_type amt = sizeof *p;
1018 p = ((struct elf64_x86_64_dyn_relocs *)
1019 bfd_alloc (htab->elf.dynobj, amt));
1020 if (p == NULL)
1021 return FALSE;
1022 p->next = *head;
1023 *head = p;
1024 p->sec = sec;
1025 p->count = 0;
1026 p->pc_count = 0;
1027 }
1028
1029 p->count += 1;
1030 if (r_type == R_X86_64_PC8
1031 || r_type == R_X86_64_PC16
1032 || r_type == R_X86_64_PC32)
1033 p->pc_count += 1;
1034 }
1035 break;
1036
1037 /* This relocation describes the C++ object vtable hierarchy.
1038 Reconstruct it for later use during GC. */
1039 case R_X86_64_GNU_VTINHERIT:
1040 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1041 return FALSE;
1042 break;
1043
1044 /* This relocation describes which C++ vtable entries are actually
1045 used. Record for later use during GC. */
1046 case R_X86_64_GNU_VTENTRY:
1047 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1048 return FALSE;
1049 break;
1050
1051 default:
1052 break;
1053 }
1054 }
1055
1056 return TRUE;
1057 }
1058
1059 /* Return the section that should be marked against GC for a given
1060 relocation. */
1061
1062 static asection *
1063 elf64_x86_64_gc_mark_hook (sec, info, rel, h, sym)
1064 asection *sec;
1065 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1066 Elf_Internal_Rela *rel;
1067 struct elf_link_hash_entry *h;
1068 Elf_Internal_Sym *sym;
1069 {
1070 if (h != NULL)
1071 {
1072 switch (ELF64_R_TYPE (rel->r_info))
1073 {
1074 case R_X86_64_GNU_VTINHERIT:
1075 case R_X86_64_GNU_VTENTRY:
1076 break;
1077
1078 default:
1079 switch (h->root.type)
1080 {
1081 case bfd_link_hash_defined:
1082 case bfd_link_hash_defweak:
1083 return h->root.u.def.section;
1084
1085 case bfd_link_hash_common:
1086 return h->root.u.c.p->section;
1087
1088 default:
1089 break;
1090 }
1091 }
1092 }
1093 else
1094 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1095
1096 return NULL;
1097 }
1098
1099 /* Update the got entry reference counts for the section being removed. */
1100
1101 static bfd_boolean
1102 elf64_x86_64_gc_sweep_hook (abfd, info, sec, relocs)
1103 bfd *abfd;
1104 struct bfd_link_info *info;
1105 asection *sec;
1106 const Elf_Internal_Rela *relocs;
1107 {
1108 Elf_Internal_Shdr *symtab_hdr;
1109 struct elf_link_hash_entry **sym_hashes;
1110 bfd_signed_vma *local_got_refcounts;
1111 const Elf_Internal_Rela *rel, *relend;
1112
1113 elf_section_data (sec)->local_dynrel = NULL;
1114
1115 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1116 sym_hashes = elf_sym_hashes (abfd);
1117 local_got_refcounts = elf_local_got_refcounts (abfd);
1118
1119 relend = relocs + sec->reloc_count;
1120 for (rel = relocs; rel < relend; rel++)
1121 {
1122 unsigned long r_symndx;
1123 unsigned int r_type;
1124 struct elf_link_hash_entry *h = NULL;
1125
1126 r_symndx = ELF64_R_SYM (rel->r_info);
1127 if (r_symndx >= symtab_hdr->sh_info)
1128 {
1129 struct elf64_x86_64_link_hash_entry *eh;
1130 struct elf64_x86_64_dyn_relocs **pp;
1131 struct elf64_x86_64_dyn_relocs *p;
1132
1133 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1134 eh = (struct elf64_x86_64_link_hash_entry *) h;
1135
1136 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1137 if (p->sec == sec)
1138 {
1139 /* Everything must go for SEC. */
1140 *pp = p->next;
1141 break;
1142 }
1143 }
1144
1145 r_type = ELF64_R_TYPE (rel->r_info);
1146 r_type = elf64_x86_64_tls_transition (info, r_type, h != NULL);
1147 switch (r_type)
1148 {
1149 case R_X86_64_TLSLD:
1150 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1151 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1152 break;
1153
1154 case R_X86_64_TLSGD:
1155 case R_X86_64_GOTTPOFF:
1156 case R_X86_64_GOT32:
1157 case R_X86_64_GOTPCREL:
1158 if (h != NULL)
1159 {
1160 if (h->got.refcount > 0)
1161 h->got.refcount -= 1;
1162 }
1163 else if (local_got_refcounts != NULL)
1164 {
1165 if (local_got_refcounts[r_symndx] > 0)
1166 local_got_refcounts[r_symndx] -= 1;
1167 }
1168 break;
1169
1170 case R_X86_64_8:
1171 case R_X86_64_16:
1172 case R_X86_64_32:
1173 case R_X86_64_64:
1174 case R_X86_64_32S:
1175 case R_X86_64_PC8:
1176 case R_X86_64_PC16:
1177 case R_X86_64_PC32:
1178 if (info->shared)
1179 break;
1180 /* Fall thru */
1181
1182 case R_X86_64_PLT32:
1183 if (h != NULL)
1184 {
1185 if (h->plt.refcount > 0)
1186 h->plt.refcount -= 1;
1187 }
1188 break;
1189
1190 default:
1191 break;
1192 }
1193 }
1194
1195 return TRUE;
1196 }
1197
1198 /* Adjust a symbol defined by a dynamic object and referenced by a
1199 regular object. The current definition is in some section of the
1200 dynamic object, but we're not including those sections. We have to
1201 change the definition to something the rest of the link can
1202 understand. */
1203
1204 static bfd_boolean
1205 elf64_x86_64_adjust_dynamic_symbol (info, h)
1206 struct bfd_link_info *info;
1207 struct elf_link_hash_entry *h;
1208 {
1209 struct elf64_x86_64_link_hash_table *htab;
1210 asection *s;
1211 unsigned int power_of_two;
1212
1213 /* If this is a function, put it in the procedure linkage table. We
1214 will fill in the contents of the procedure linkage table later,
1215 when we know the address of the .got section. */
1216 if (h->type == STT_FUNC
1217 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1218 {
1219 if (h->plt.refcount <= 0
1220 || (! info->shared
1221 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1222 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0
1223 && h->root.type != bfd_link_hash_undefweak
1224 && h->root.type != bfd_link_hash_undefined))
1225 {
1226 /* This case can occur if we saw a PLT32 reloc in an input
1227 file, but the symbol was never referred to by a dynamic
1228 object, or if all references were garbage collected. In
1229 such a case, we don't actually need to build a procedure
1230 linkage table, and we can just do a PC32 reloc instead. */
1231 h->plt.offset = (bfd_vma) -1;
1232 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1233 }
1234
1235 return TRUE;
1236 }
1237 else
1238 /* It's possible that we incorrectly decided a .plt reloc was
1239 needed for an R_X86_64_PC32 reloc to a non-function sym in
1240 check_relocs. We can't decide accurately between function and
1241 non-function syms in check-relocs; Objects loaded later in
1242 the link may change h->type. So fix it now. */
1243 h->plt.offset = (bfd_vma) -1;
1244
1245 /* If this is a weak symbol, and there is a real definition, the
1246 processor independent code will have arranged for us to see the
1247 real definition first, and we can just use the same value. */
1248 if (h->weakdef != NULL)
1249 {
1250 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1251 || h->weakdef->root.type == bfd_link_hash_defweak);
1252 h->root.u.def.section = h->weakdef->root.u.def.section;
1253 h->root.u.def.value = h->weakdef->root.u.def.value;
1254 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1255 h->elf_link_hash_flags
1256 = ((h->elf_link_hash_flags & ~ELF_LINK_NON_GOT_REF)
1257 | (h->weakdef->elf_link_hash_flags & ELF_LINK_NON_GOT_REF));
1258 return TRUE;
1259 }
1260
1261 /* This is a reference to a symbol defined by a dynamic object which
1262 is not a function. */
1263
1264 /* If we are creating a shared library, we must presume that the
1265 only references to the symbol are via the global offset table.
1266 For such cases we need not do anything here; the relocations will
1267 be handled correctly by relocate_section. */
1268 if (info->shared)
1269 return TRUE;
1270
1271 /* If there are no references to this symbol that do not use the
1272 GOT, we don't need to generate a copy reloc. */
1273 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1274 return TRUE;
1275
1276 /* If -z nocopyreloc was given, we won't generate them either. */
1277 if (info->nocopyreloc)
1278 {
1279 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1280 return TRUE;
1281 }
1282
1283 if (ELIMINATE_COPY_RELOCS)
1284 {
1285 struct elf64_x86_64_link_hash_entry * eh;
1286 struct elf64_x86_64_dyn_relocs *p;
1287
1288 eh = (struct elf64_x86_64_link_hash_entry *) h;
1289 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1290 {
1291 s = p->sec->output_section;
1292 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1293 break;
1294 }
1295
1296 /* If we didn't find any dynamic relocs in read-only sections, then
1297 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1298 if (p == NULL)
1299 {
1300 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1301 return TRUE;
1302 }
1303 }
1304
1305 /* We must allocate the symbol in our .dynbss section, which will
1306 become part of the .bss section of the executable. There will be
1307 an entry for this symbol in the .dynsym section. The dynamic
1308 object will contain position independent code, so all references
1309 from the dynamic object to this symbol will go through the global
1310 offset table. The dynamic linker will use the .dynsym entry to
1311 determine the address it must put in the global offset table, so
1312 both the dynamic object and the regular object will refer to the
1313 same memory location for the variable. */
1314
1315 htab = elf64_x86_64_hash_table (info);
1316
1317 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1318 to copy the initial value out of the dynamic object and into the
1319 runtime process image. */
1320 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1321 {
1322 htab->srelbss->_raw_size += sizeof (Elf64_External_Rela);
1323 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1324 }
1325
1326 /* We need to figure out the alignment required for this symbol. I
1327 have no idea how ELF linkers handle this. 16-bytes is the size
1328 of the largest type that requires hard alignment -- long double. */
1329 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
1330 this construct. */
1331 power_of_two = bfd_log2 (h->size);
1332 if (power_of_two > 4)
1333 power_of_two = 4;
1334
1335 /* Apply the required alignment. */
1336 s = htab->sdynbss;
1337 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1338 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1339 {
1340 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1341 return FALSE;
1342 }
1343
1344 /* Define the symbol as being at this point in the section. */
1345 h->root.u.def.section = s;
1346 h->root.u.def.value = s->_raw_size;
1347
1348 /* Increment the section size to make room for the symbol. */
1349 s->_raw_size += h->size;
1350
1351 return TRUE;
1352 }
1353
1354 /* This is the condition under which elf64_x86_64_finish_dynamic_symbol
1355 will be called from elflink.h. If elflink.h doesn't call our
1356 finish_dynamic_symbol routine, we'll need to do something about
1357 initializing any .plt and .got entries in elf64_x86_64_relocate_section. */
1358 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1359 ((DYN) \
1360 && ((INFO)->shared \
1361 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1362 && ((H)->dynindx != -1 \
1363 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1364
1365 /* Allocate space in .plt, .got and associated reloc sections for
1366 dynamic relocs. */
1367
1368 static bfd_boolean
1369 allocate_dynrelocs (h, inf)
1370 struct elf_link_hash_entry *h;
1371 PTR inf;
1372 {
1373 struct bfd_link_info *info;
1374 struct elf64_x86_64_link_hash_table *htab;
1375 struct elf64_x86_64_link_hash_entry *eh;
1376 struct elf64_x86_64_dyn_relocs *p;
1377
1378 if (h->root.type == bfd_link_hash_indirect)
1379 return TRUE;
1380
1381 if (h->root.type == bfd_link_hash_warning)
1382 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1383
1384 info = (struct bfd_link_info *) inf;
1385 htab = elf64_x86_64_hash_table (info);
1386
1387 if (htab->elf.dynamic_sections_created
1388 && h->plt.refcount > 0)
1389 {
1390 /* Make sure this symbol is output as a dynamic symbol.
1391 Undefined weak syms won't yet be marked as dynamic. */
1392 if (h->dynindx == -1
1393 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1394 {
1395 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1396 return FALSE;
1397 }
1398
1399 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1400 || h->root.type != bfd_link_hash_undefweak)
1401 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1402 {
1403 asection *s = htab->splt;
1404
1405 /* If this is the first .plt entry, make room for the special
1406 first entry. */
1407 if (s->_raw_size == 0)
1408 s->_raw_size += PLT_ENTRY_SIZE;
1409
1410 h->plt.offset = s->_raw_size;
1411
1412 /* If this symbol is not defined in a regular file, and we are
1413 not generating a shared library, then set the symbol to this
1414 location in the .plt. This is required to make function
1415 pointers compare as equal between the normal executable and
1416 the shared library. */
1417 if (! info->shared
1418 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1419 {
1420 h->root.u.def.section = s;
1421 h->root.u.def.value = h->plt.offset;
1422 }
1423
1424 /* Make room for this entry. */
1425 s->_raw_size += PLT_ENTRY_SIZE;
1426
1427 /* We also need to make an entry in the .got.plt section, which
1428 will be placed in the .got section by the linker script. */
1429 htab->sgotplt->_raw_size += GOT_ENTRY_SIZE;
1430
1431 /* We also need to make an entry in the .rela.plt section. */
1432 htab->srelplt->_raw_size += sizeof (Elf64_External_Rela);
1433 }
1434 else
1435 {
1436 h->plt.offset = (bfd_vma) -1;
1437 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1438 }
1439 }
1440 else
1441 {
1442 h->plt.offset = (bfd_vma) -1;
1443 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1444 }
1445
1446 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1447 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1448 if (h->got.refcount > 0
1449 && !info->shared
1450 && h->dynindx == -1
1451 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1452 h->got.offset = (bfd_vma) -1;
1453 else if (h->got.refcount > 0)
1454 {
1455 asection *s;
1456 bfd_boolean dyn;
1457 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1458
1459 /* Make sure this symbol is output as a dynamic symbol.
1460 Undefined weak syms won't yet be marked as dynamic. */
1461 if (h->dynindx == -1
1462 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1463 {
1464 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1465 return FALSE;
1466 }
1467
1468 s = htab->sgot;
1469 h->got.offset = s->_raw_size;
1470 s->_raw_size += GOT_ENTRY_SIZE;
1471 /* R_X86_64_TLSGD needs 2 consecutive GOT slots. */
1472 if (tls_type == GOT_TLS_GD)
1473 s->_raw_size += GOT_ENTRY_SIZE;
1474 dyn = htab->elf.dynamic_sections_created;
1475 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1476 and two if global.
1477 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1478 if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
1479 || tls_type == GOT_TLS_IE)
1480 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1481 else if (tls_type == GOT_TLS_GD)
1482 htab->srelgot->_raw_size += 2 * sizeof (Elf64_External_Rela);
1483 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1484 || h->root.type != bfd_link_hash_undefweak)
1485 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1486 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1487 }
1488 else
1489 h->got.offset = (bfd_vma) -1;
1490
1491 eh = (struct elf64_x86_64_link_hash_entry *) h;
1492 if (eh->dyn_relocs == NULL)
1493 return TRUE;
1494
1495 /* In the shared -Bsymbolic case, discard space allocated for
1496 dynamic pc-relative relocs against symbols which turn out to be
1497 defined in regular objects. For the normal shared case, discard
1498 space for pc-relative relocs that have become local due to symbol
1499 visibility changes. */
1500
1501 if (info->shared)
1502 {
1503 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1504 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1505 || info->symbolic))
1506 {
1507 struct elf64_x86_64_dyn_relocs **pp;
1508
1509 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1510 {
1511 p->count -= p->pc_count;
1512 p->pc_count = 0;
1513 if (p->count == 0)
1514 *pp = p->next;
1515 else
1516 pp = &p->next;
1517 }
1518 }
1519 }
1520 else if (ELIMINATE_COPY_RELOCS)
1521 {
1522 /* For the non-shared case, discard space for relocs against
1523 symbols which turn out to need copy relocs or are not
1524 dynamic. */
1525
1526 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1527 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1528 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1529 || (htab->elf.dynamic_sections_created
1530 && (h->root.type == bfd_link_hash_undefweak
1531 || h->root.type == bfd_link_hash_undefined))))
1532 {
1533 /* Make sure this symbol is output as a dynamic symbol.
1534 Undefined weak syms won't yet be marked as dynamic. */
1535 if (h->dynindx == -1
1536 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1537 {
1538 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1539 return FALSE;
1540 }
1541
1542 /* If that succeeded, we know we'll be keeping all the
1543 relocs. */
1544 if (h->dynindx != -1)
1545 goto keep;
1546 }
1547
1548 eh->dyn_relocs = NULL;
1549
1550 keep: ;
1551 }
1552
1553 /* Finally, allocate space. */
1554 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1555 {
1556 asection *sreloc = elf_section_data (p->sec)->sreloc;
1557 sreloc->_raw_size += p->count * sizeof (Elf64_External_Rela);
1558 }
1559
1560 return TRUE;
1561 }
1562
1563 /* Find any dynamic relocs that apply to read-only sections. */
1564
1565 static bfd_boolean
1566 readonly_dynrelocs (h, inf)
1567 struct elf_link_hash_entry *h;
1568 PTR inf;
1569 {
1570 struct elf64_x86_64_link_hash_entry *eh;
1571 struct elf64_x86_64_dyn_relocs *p;
1572
1573 if (h->root.type == bfd_link_hash_warning)
1574 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1575
1576 eh = (struct elf64_x86_64_link_hash_entry *) h;
1577 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1578 {
1579 asection *s = p->sec->output_section;
1580
1581 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1582 {
1583 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1584
1585 info->flags |= DF_TEXTREL;
1586
1587 /* Not an error, just cut short the traversal. */
1588 return FALSE;
1589 }
1590 }
1591 return TRUE;
1592 }
1593
1594 /* Set the sizes of the dynamic sections. */
1595
1596 static bfd_boolean
1597 elf64_x86_64_size_dynamic_sections (output_bfd, info)
1598 bfd *output_bfd ATTRIBUTE_UNUSED;
1599 struct bfd_link_info *info;
1600 {
1601 struct elf64_x86_64_link_hash_table *htab;
1602 bfd *dynobj;
1603 asection *s;
1604 bfd_boolean relocs;
1605 bfd *ibfd;
1606
1607 htab = elf64_x86_64_hash_table (info);
1608 dynobj = htab->elf.dynobj;
1609 if (dynobj == NULL)
1610 abort ();
1611
1612 if (htab->elf.dynamic_sections_created)
1613 {
1614 /* Set the contents of the .interp section to the interpreter. */
1615 if (! info->shared)
1616 {
1617 s = bfd_get_section_by_name (dynobj, ".interp");
1618 if (s == NULL)
1619 abort ();
1620 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1621 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1622 }
1623 }
1624
1625 /* Set up .got offsets for local syms, and space for local dynamic
1626 relocs. */
1627 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1628 {
1629 bfd_signed_vma *local_got;
1630 bfd_signed_vma *end_local_got;
1631 char *local_tls_type;
1632 bfd_size_type locsymcount;
1633 Elf_Internal_Shdr *symtab_hdr;
1634 asection *srel;
1635
1636 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1637 continue;
1638
1639 for (s = ibfd->sections; s != NULL; s = s->next)
1640 {
1641 struct elf64_x86_64_dyn_relocs *p;
1642
1643 for (p = *((struct elf64_x86_64_dyn_relocs **)
1644 &elf_section_data (s)->local_dynrel);
1645 p != NULL;
1646 p = p->next)
1647 {
1648 if (!bfd_is_abs_section (p->sec)
1649 && bfd_is_abs_section (p->sec->output_section))
1650 {
1651 /* Input section has been discarded, either because
1652 it is a copy of a linkonce section or due to
1653 linker script /DISCARD/, so we'll be discarding
1654 the relocs too. */
1655 }
1656 else if (p->count != 0)
1657 {
1658 srel = elf_section_data (p->sec)->sreloc;
1659 srel->_raw_size += p->count * sizeof (Elf64_External_Rela);
1660 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1661 info->flags |= DF_TEXTREL;
1662
1663 }
1664 }
1665 }
1666
1667 local_got = elf_local_got_refcounts (ibfd);
1668 if (!local_got)
1669 continue;
1670
1671 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1672 locsymcount = symtab_hdr->sh_info;
1673 end_local_got = local_got + locsymcount;
1674 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1675 s = htab->sgot;
1676 srel = htab->srelgot;
1677 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1678 {
1679 if (*local_got > 0)
1680 {
1681 *local_got = s->_raw_size;
1682 s->_raw_size += GOT_ENTRY_SIZE;
1683 if (*local_tls_type == GOT_TLS_GD)
1684 s->_raw_size += GOT_ENTRY_SIZE;
1685 if (info->shared
1686 || *local_tls_type == GOT_TLS_GD
1687 || *local_tls_type == GOT_TLS_IE)
1688 srel->_raw_size += sizeof (Elf64_External_Rela);
1689 }
1690 else
1691 *local_got = (bfd_vma) -1;
1692 }
1693 }
1694
1695 if (htab->tls_ld_got.refcount > 0)
1696 {
1697 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
1698 relocs. */
1699 htab->tls_ld_got.offset = htab->sgot->_raw_size;
1700 htab->sgot->_raw_size += 2 * GOT_ENTRY_SIZE;
1701 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1702 }
1703 else
1704 htab->tls_ld_got.offset = -1;
1705
1706 /* Allocate global sym .plt and .got entries, and space for global
1707 sym dynamic relocs. */
1708 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1709
1710 /* We now have determined the sizes of the various dynamic sections.
1711 Allocate memory for them. */
1712 relocs = FALSE;
1713 for (s = dynobj->sections; s != NULL; s = s->next)
1714 {
1715 if ((s->flags & SEC_LINKER_CREATED) == 0)
1716 continue;
1717
1718 if (s == htab->splt
1719 || s == htab->sgot
1720 || s == htab->sgotplt)
1721 {
1722 /* Strip this section if we don't need it; see the
1723 comment below. */
1724 }
1725 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
1726 {
1727 if (s->_raw_size != 0 && s != htab->srelplt)
1728 relocs = TRUE;
1729
1730 /* We use the reloc_count field as a counter if we need
1731 to copy relocs into the output file. */
1732 s->reloc_count = 0;
1733 }
1734 else
1735 {
1736 /* It's not one of our sections, so don't allocate space. */
1737 continue;
1738 }
1739
1740 if (s->_raw_size == 0)
1741 {
1742 /* If we don't need this section, strip it from the
1743 output file. This is mostly to handle .rela.bss and
1744 .rela.plt. We must create both sections in
1745 create_dynamic_sections, because they must be created
1746 before the linker maps input sections to output
1747 sections. The linker does that before
1748 adjust_dynamic_symbol is called, and it is that
1749 function which decides whether anything needs to go
1750 into these sections. */
1751
1752 _bfd_strip_section_from_output (info, s);
1753 continue;
1754 }
1755
1756 /* Allocate memory for the section contents. We use bfd_zalloc
1757 here in case unused entries are not reclaimed before the
1758 section's contents are written out. This should not happen,
1759 but this way if it does, we get a R_X86_64_NONE reloc instead
1760 of garbage. */
1761 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1762 if (s->contents == NULL)
1763 return FALSE;
1764 }
1765
1766 if (htab->elf.dynamic_sections_created)
1767 {
1768 /* Add some entries to the .dynamic section. We fill in the
1769 values later, in elf64_x86_64_finish_dynamic_sections, but we
1770 must add the entries now so that we get the correct size for
1771 the .dynamic section. The DT_DEBUG entry is filled in by the
1772 dynamic linker and used by the debugger. */
1773 #define add_dynamic_entry(TAG, VAL) \
1774 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1775
1776 if (! info->shared)
1777 {
1778 if (!add_dynamic_entry (DT_DEBUG, 0))
1779 return FALSE;
1780 }
1781
1782 if (htab->splt->_raw_size != 0)
1783 {
1784 if (!add_dynamic_entry (DT_PLTGOT, 0)
1785 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1786 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1787 || !add_dynamic_entry (DT_JMPREL, 0))
1788 return FALSE;
1789 }
1790
1791 if (relocs)
1792 {
1793 if (!add_dynamic_entry (DT_RELA, 0)
1794 || !add_dynamic_entry (DT_RELASZ, 0)
1795 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1796 return FALSE;
1797
1798 /* If any dynamic relocs apply to a read-only section,
1799 then we need a DT_TEXTREL entry. */
1800 if ((info->flags & DF_TEXTREL) == 0)
1801 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1802 (PTR) info);
1803
1804 if ((info->flags & DF_TEXTREL) != 0)
1805 {
1806 if (!add_dynamic_entry (DT_TEXTREL, 0))
1807 return FALSE;
1808 }
1809 }
1810 }
1811 #undef add_dynamic_entry
1812
1813 return TRUE;
1814 }
1815
1816 /* Return the base VMA address which should be subtracted from real addresses
1817 when resolving @dtpoff relocation.
1818 This is PT_TLS segment p_vaddr. */
1819
1820 static bfd_vma
1821 dtpoff_base (info)
1822 struct bfd_link_info *info;
1823 {
1824 /* If tls_segment is NULL, we should have signalled an error already. */
1825 if (elf_hash_table (info)->tls_segment == NULL)
1826 return 0;
1827 return elf_hash_table (info)->tls_segment->start;
1828 }
1829
1830 /* Return the relocation value for @tpoff relocation
1831 if STT_TLS virtual address is ADDRESS. */
1832
1833 static bfd_vma
1834 tpoff (info, address)
1835 struct bfd_link_info *info;
1836 bfd_vma address;
1837 {
1838 struct elf_link_tls_segment *tls_segment
1839 = elf_hash_table (info)->tls_segment;
1840
1841 /* If tls_segment is NULL, we should have signalled an error already. */
1842 if (tls_segment == NULL)
1843 return 0;
1844 return address - align_power (tls_segment->size, tls_segment->align)
1845 - tls_segment->start;
1846 }
1847
1848 /* Relocate an x86_64 ELF section. */
1849
1850 static bfd_boolean
1851 elf64_x86_64_relocate_section (output_bfd, info, input_bfd, input_section,
1852 contents, relocs, local_syms, local_sections)
1853 bfd *output_bfd;
1854 struct bfd_link_info *info;
1855 bfd *input_bfd;
1856 asection *input_section;
1857 bfd_byte *contents;
1858 Elf_Internal_Rela *relocs;
1859 Elf_Internal_Sym *local_syms;
1860 asection **local_sections;
1861 {
1862 struct elf64_x86_64_link_hash_table *htab;
1863 Elf_Internal_Shdr *symtab_hdr;
1864 struct elf_link_hash_entry **sym_hashes;
1865 bfd_vma *local_got_offsets;
1866 Elf_Internal_Rela *rel;
1867 Elf_Internal_Rela *relend;
1868
1869 if (info->relocateable)
1870 return TRUE;
1871
1872 htab = elf64_x86_64_hash_table (info);
1873 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1874 sym_hashes = elf_sym_hashes (input_bfd);
1875 local_got_offsets = elf_local_got_offsets (input_bfd);
1876
1877 rel = relocs;
1878 relend = relocs + input_section->reloc_count;
1879 for (; rel < relend; rel++)
1880 {
1881 unsigned int r_type;
1882 reloc_howto_type *howto;
1883 unsigned long r_symndx;
1884 struct elf_link_hash_entry *h;
1885 Elf_Internal_Sym *sym;
1886 asection *sec;
1887 bfd_vma off;
1888 bfd_vma relocation;
1889 bfd_boolean unresolved_reloc;
1890 bfd_reloc_status_type r;
1891 int tls_type;
1892
1893 r_type = ELF64_R_TYPE (rel->r_info);
1894 if (r_type == (int) R_X86_64_GNU_VTINHERIT
1895 || r_type == (int) R_X86_64_GNU_VTENTRY)
1896 continue;
1897
1898 if (r_type >= R_X86_64_max)
1899 {
1900 bfd_set_error (bfd_error_bad_value);
1901 return FALSE;
1902 }
1903
1904 howto = x86_64_elf_howto_table + r_type;
1905 r_symndx = ELF64_R_SYM (rel->r_info);
1906 h = NULL;
1907 sym = NULL;
1908 sec = NULL;
1909 unresolved_reloc = FALSE;
1910 if (r_symndx < symtab_hdr->sh_info)
1911 {
1912 sym = local_syms + r_symndx;
1913 sec = local_sections[r_symndx];
1914
1915 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1916 }
1917 else
1918 {
1919 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1920 while (h->root.type == bfd_link_hash_indirect
1921 || h->root.type == bfd_link_hash_warning)
1922 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1923
1924 if (h->root.type == bfd_link_hash_defined
1925 || h->root.type == bfd_link_hash_defweak)
1926 {
1927 sec = h->root.u.def.section;
1928 if (sec->output_section == NULL)
1929 {
1930 /* Set a flag that will be cleared later if we find a
1931 relocation value for this symbol. output_section
1932 is typically NULL for symbols satisfied by a shared
1933 library. */
1934 unresolved_reloc = TRUE;
1935 relocation = 0;
1936 }
1937 else
1938 relocation = (h->root.u.def.value
1939 + sec->output_section->vma
1940 + sec->output_offset);
1941 }
1942 else if (h->root.type == bfd_link_hash_undefweak)
1943 relocation = 0;
1944 else if (info->shared
1945 && !info->no_undefined
1946 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1947 relocation = 0;
1948 else
1949 {
1950 if (! ((*info->callbacks->undefined_symbol)
1951 (info, h->root.root.string, input_bfd,
1952 input_section, rel->r_offset,
1953 (!info->shared || info->no_undefined
1954 || ELF_ST_VISIBILITY (h->other)))))
1955 return FALSE;
1956 relocation = 0;
1957 }
1958 }
1959 /* When generating a shared object, the relocations handled here are
1960 copied into the output file to be resolved at run time. */
1961 switch (r_type)
1962 {
1963 case R_X86_64_GOT32:
1964 /* Relocation is to the entry for this symbol in the global
1965 offset table. */
1966 case R_X86_64_GOTPCREL:
1967 /* Use global offset table as symbol value. */
1968 if (htab->sgot == NULL)
1969 abort ();
1970
1971 if (h != NULL)
1972 {
1973 bfd_boolean dyn;
1974
1975 off = h->got.offset;
1976 dyn = htab->elf.dynamic_sections_created;
1977
1978 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1979 || (info->shared
1980 && (info->symbolic
1981 || h->dynindx == -1
1982 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1983 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1984 || (ELF_ST_VISIBILITY (h->other)
1985 && h->root.type == bfd_link_hash_undefweak))
1986 {
1987 /* This is actually a static link, or it is a -Bsymbolic
1988 link and the symbol is defined locally, or the symbol
1989 was forced to be local because of a version file. We
1990 must initialize this entry in the global offset table.
1991 Since the offset must always be a multiple of 8, we
1992 use the least significant bit to record whether we
1993 have initialized it already.
1994
1995 When doing a dynamic link, we create a .rela.got
1996 relocation entry to initialize the value. This is
1997 done in the finish_dynamic_symbol routine. */
1998 if ((off & 1) != 0)
1999 off &= ~1;
2000 else
2001 {
2002 bfd_put_64 (output_bfd, relocation,
2003 htab->sgot->contents + off);
2004 h->got.offset |= 1;
2005 }
2006 }
2007 else
2008 unresolved_reloc = FALSE;
2009 }
2010 else
2011 {
2012 if (local_got_offsets == NULL)
2013 abort ();
2014
2015 off = local_got_offsets[r_symndx];
2016
2017 /* The offset must always be a multiple of 8. We use
2018 the least significant bit to record whether we have
2019 already generated the necessary reloc. */
2020 if ((off & 1) != 0)
2021 off &= ~1;
2022 else
2023 {
2024 bfd_put_64 (output_bfd, relocation,
2025 htab->sgot->contents + off);
2026
2027 if (info->shared)
2028 {
2029 asection *s;
2030 Elf_Internal_Rela outrel;
2031 bfd_byte *loc;
2032
2033 /* We need to generate a R_X86_64_RELATIVE reloc
2034 for the dynamic linker. */
2035 s = htab->srelgot;
2036 if (s == NULL)
2037 abort ();
2038
2039 outrel.r_offset = (htab->sgot->output_section->vma
2040 + htab->sgot->output_offset
2041 + off);
2042 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2043 outrel.r_addend = relocation;
2044 loc = s->contents;
2045 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2046 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2047 }
2048
2049 local_got_offsets[r_symndx] |= 1;
2050 }
2051 }
2052
2053 if (off >= (bfd_vma) -2)
2054 abort ();
2055
2056 relocation = htab->sgot->output_offset + off;
2057 if (r_type == R_X86_64_GOTPCREL)
2058 relocation += htab->sgot->output_section->vma;
2059
2060 break;
2061
2062 case R_X86_64_PLT32:
2063 /* Relocation is to the entry for this symbol in the
2064 procedure linkage table. */
2065
2066 /* Resolve a PLT32 reloc against a local symbol directly,
2067 without using the procedure linkage table. */
2068 if (h == NULL)
2069 break;
2070
2071 if (h->plt.offset == (bfd_vma) -1
2072 || htab->splt == NULL)
2073 {
2074 /* We didn't make a PLT entry for this symbol. This
2075 happens when statically linking PIC code, or when
2076 using -Bsymbolic. */
2077 break;
2078 }
2079
2080 relocation = (htab->splt->output_section->vma
2081 + htab->splt->output_offset
2082 + h->plt.offset);
2083 unresolved_reloc = FALSE;
2084 break;
2085
2086 case R_X86_64_PC8:
2087 case R_X86_64_PC16:
2088 case R_X86_64_PC32:
2089 case R_X86_64_8:
2090 case R_X86_64_16:
2091 case R_X86_64_32:
2092 case R_X86_64_64:
2093 /* FIXME: The ABI says the linker should make sure the value is
2094 the same when it's zeroextended to 64 bit. */
2095
2096 /* r_symndx will be zero only for relocs against symbols
2097 from removed linkonce sections, or sections discarded by
2098 a linker script. */
2099 if (r_symndx == 0
2100 || (input_section->flags & SEC_ALLOC) == 0)
2101 break;
2102
2103 if ((info->shared
2104 && (h == NULL
2105 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2106 || h->root.type != bfd_link_hash_undefweak)
2107 && ((r_type != R_X86_64_PC8
2108 && r_type != R_X86_64_PC16
2109 && r_type != R_X86_64_PC32)
2110 || (h != NULL
2111 && h->dynindx != -1
2112 && (! info->symbolic
2113 || (h->elf_link_hash_flags
2114 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2115 || (ELIMINATE_COPY_RELOCS
2116 && !info->shared
2117 && h != NULL
2118 && h->dynindx != -1
2119 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2120 && (((h->elf_link_hash_flags
2121 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2122 && (h->elf_link_hash_flags
2123 & ELF_LINK_HASH_DEF_REGULAR) == 0)
2124 || h->root.type == bfd_link_hash_undefweak
2125 || h->root.type == bfd_link_hash_undefined)))
2126 {
2127 Elf_Internal_Rela outrel;
2128 bfd_byte *loc;
2129 bfd_boolean skip, relocate;
2130 asection *sreloc;
2131
2132 /* When generating a shared object, these relocations
2133 are copied into the output file to be resolved at run
2134 time. */
2135 skip = FALSE;
2136 relocate = FALSE;
2137
2138 outrel.r_offset =
2139 _bfd_elf_section_offset (output_bfd, info, input_section,
2140 rel->r_offset);
2141 if (outrel.r_offset == (bfd_vma) -1)
2142 skip = TRUE;
2143 else if (outrel.r_offset == (bfd_vma) -2)
2144 skip = TRUE, relocate = TRUE;
2145
2146 outrel.r_offset += (input_section->output_section->vma
2147 + input_section->output_offset);
2148
2149 if (skip)
2150 memset (&outrel, 0, sizeof outrel);
2151
2152 /* h->dynindx may be -1 if this symbol was marked to
2153 become local. */
2154 else if (h != NULL
2155 && h->dynindx != -1
2156 && (r_type == R_X86_64_PC8
2157 || r_type == R_X86_64_PC16
2158 || r_type == R_X86_64_PC32
2159 || !info->shared
2160 || !info->symbolic
2161 || (h->elf_link_hash_flags
2162 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2163 {
2164 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2165 outrel.r_addend = rel->r_addend;
2166 }
2167 else
2168 {
2169 /* This symbol is local, or marked to become local. */
2170 if (r_type == R_X86_64_64)
2171 {
2172 relocate = TRUE;
2173 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2174 outrel.r_addend = relocation + rel->r_addend;
2175 }
2176 else
2177 {
2178 long sindx;
2179
2180 if (h == NULL)
2181 sec = local_sections[r_symndx];
2182 else
2183 {
2184 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2185 || (h->root.type
2186 == bfd_link_hash_defweak));
2187 sec = h->root.u.def.section;
2188 }
2189 if (sec != NULL && bfd_is_abs_section (sec))
2190 sindx = 0;
2191 else if (sec == NULL || sec->owner == NULL)
2192 {
2193 bfd_set_error (bfd_error_bad_value);
2194 return FALSE;
2195 }
2196 else
2197 {
2198 asection *osec;
2199
2200 osec = sec->output_section;
2201 sindx = elf_section_data (osec)->dynindx;
2202 BFD_ASSERT (sindx > 0);
2203 }
2204
2205 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2206 outrel.r_addend = relocation + rel->r_addend;
2207 }
2208 }
2209
2210 sreloc = elf_section_data (input_section)->sreloc;
2211 if (sreloc == NULL)
2212 abort ();
2213
2214 loc = sreloc->contents;
2215 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2216 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2217
2218 /* If this reloc is against an external symbol, we do
2219 not want to fiddle with the addend. Otherwise, we
2220 need to include the symbol value so that it becomes
2221 an addend for the dynamic reloc. */
2222 if (! relocate)
2223 continue;
2224 }
2225
2226 break;
2227
2228 case R_X86_64_TLSGD:
2229 case R_X86_64_GOTTPOFF:
2230 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
2231 tls_type = GOT_UNKNOWN;
2232 if (h == NULL && local_got_offsets)
2233 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2234 else if (h != NULL)
2235 {
2236 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2237 if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE)
2238 r_type = R_X86_64_TPOFF32;
2239 }
2240 if (r_type == R_X86_64_TLSGD)
2241 {
2242 if (tls_type == GOT_TLS_IE)
2243 r_type = R_X86_64_GOTTPOFF;
2244 }
2245
2246 if (r_type == R_X86_64_TPOFF32)
2247 {
2248 BFD_ASSERT (! unresolved_reloc);
2249 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2250 {
2251 unsigned int i;
2252 static unsigned char tlsgd[8]
2253 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2254
2255 /* GD->LE transition.
2256 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2257 .word 0x6666; rex64; call __tls_get_addr@plt
2258 Change it into:
2259 movq %fs:0, %rax
2260 leaq foo@tpoff(%rax), %rax */
2261 BFD_ASSERT (rel->r_offset >= 4);
2262 for (i = 0; i < 4; i++)
2263 BFD_ASSERT (bfd_get_8 (input_bfd,
2264 contents + rel->r_offset - 4 + i)
2265 == tlsgd[i]);
2266 BFD_ASSERT (rel->r_offset + 12 <= input_section->_raw_size);
2267 for (i = 0; i < 4; i++)
2268 BFD_ASSERT (bfd_get_8 (input_bfd,
2269 contents + rel->r_offset + 4 + i)
2270 == tlsgd[i+4]);
2271 BFD_ASSERT (rel + 1 < relend);
2272 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2273 memcpy (contents + rel->r_offset - 4,
2274 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2275 16);
2276 bfd_put_32 (output_bfd, tpoff (info, relocation),
2277 contents + rel->r_offset + 8);
2278 /* Skip R_X86_64_PLT32. */
2279 rel++;
2280 continue;
2281 }
2282 else
2283 {
2284 unsigned int val, type, reg;
2285
2286 /* IE->LE transition:
2287 Originally it can be one of:
2288 movq foo@gottpoff(%rip), %reg
2289 addq foo@gottpoff(%rip), %reg
2290 We change it into:
2291 movq $foo, %reg
2292 leaq foo(%reg), %reg
2293 addq $foo, %reg. */
2294 BFD_ASSERT (rel->r_offset >= 3);
2295 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 3);
2296 BFD_ASSERT (val == 0x48 || val == 0x4c);
2297 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2298 BFD_ASSERT (type == 0x8b || type == 0x03);
2299 reg = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2300 BFD_ASSERT ((reg & 0xc7) == 5);
2301 reg >>= 3;
2302 BFD_ASSERT (rel->r_offset + 4 <= input_section->_raw_size);
2303 if (type == 0x8b)
2304 {
2305 /* movq */
2306 if (val == 0x4c)
2307 bfd_put_8 (output_bfd, 0x49,
2308 contents + rel->r_offset - 3);
2309 bfd_put_8 (output_bfd, 0xc7,
2310 contents + rel->r_offset - 2);
2311 bfd_put_8 (output_bfd, 0xc0 | reg,
2312 contents + rel->r_offset - 1);
2313 }
2314 else if (reg == 4)
2315 {
2316 /* addq -> addq - addressing with %rsp/%r12 is
2317 special */
2318 if (val == 0x4c)
2319 bfd_put_8 (output_bfd, 0x49,
2320 contents + rel->r_offset - 3);
2321 bfd_put_8 (output_bfd, 0x81,
2322 contents + rel->r_offset - 2);
2323 bfd_put_8 (output_bfd, 0xc0 | reg,
2324 contents + rel->r_offset - 1);
2325 }
2326 else
2327 {
2328 /* addq -> leaq */
2329 if (val == 0x4c)
2330 bfd_put_8 (output_bfd, 0x4d,
2331 contents + rel->r_offset - 3);
2332 bfd_put_8 (output_bfd, 0x8d,
2333 contents + rel->r_offset - 2);
2334 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2335 contents + rel->r_offset - 1);
2336 }
2337 bfd_put_32 (output_bfd, tpoff (info, relocation),
2338 contents + rel->r_offset);
2339 continue;
2340 }
2341 }
2342
2343 if (htab->sgot == NULL)
2344 abort ();
2345
2346 if (h != NULL)
2347 off = h->got.offset;
2348 else
2349 {
2350 if (local_got_offsets == NULL)
2351 abort ();
2352
2353 off = local_got_offsets[r_symndx];
2354 }
2355
2356 if ((off & 1) != 0)
2357 off &= ~1;
2358 else
2359 {
2360 Elf_Internal_Rela outrel;
2361 bfd_byte *loc;
2362 int dr_type, indx;
2363
2364 if (htab->srelgot == NULL)
2365 abort ();
2366
2367 outrel.r_offset = (htab->sgot->output_section->vma
2368 + htab->sgot->output_offset + off);
2369
2370 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2371 if (r_type == R_X86_64_TLSGD)
2372 dr_type = R_X86_64_DTPMOD64;
2373 else
2374 dr_type = R_X86_64_TPOFF64;
2375
2376 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2377 outrel.r_addend = 0;
2378 if (dr_type == R_X86_64_TPOFF64 && indx == 0)
2379 outrel.r_addend = relocation - dtpoff_base (info);
2380 outrel.r_info = ELF64_R_INFO (indx, dr_type);
2381
2382 loc = htab->srelgot->contents;
2383 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2384 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2385
2386 if (r_type == R_X86_64_TLSGD)
2387 {
2388 if (indx == 0)
2389 {
2390 BFD_ASSERT (! unresolved_reloc);
2391 bfd_put_64 (output_bfd,
2392 relocation - dtpoff_base (info),
2393 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2394 }
2395 else
2396 {
2397 bfd_put_64 (output_bfd, 0,
2398 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2399 outrel.r_info = ELF64_R_INFO (indx,
2400 R_X86_64_DTPOFF64);
2401 outrel.r_offset += GOT_ENTRY_SIZE;
2402 htab->srelgot->reloc_count++;
2403 loc += sizeof (Elf64_External_Rela);
2404 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2405 }
2406 }
2407
2408 if (h != NULL)
2409 h->got.offset |= 1;
2410 else
2411 local_got_offsets[r_symndx] |= 1;
2412 }
2413
2414 if (off >= (bfd_vma) -2)
2415 abort ();
2416 if (r_type == ELF64_R_TYPE (rel->r_info))
2417 {
2418 relocation = htab->sgot->output_section->vma
2419 + htab->sgot->output_offset + off;
2420 unresolved_reloc = FALSE;
2421 }
2422 else
2423 {
2424 unsigned int i;
2425 static unsigned char tlsgd[8]
2426 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2427
2428 /* GD->IE transition.
2429 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2430 .word 0x6666; rex64; call __tls_get_addr@plt
2431 Change it into:
2432 movq %fs:0, %rax
2433 addq foo@gottpoff(%rip), %rax */
2434 BFD_ASSERT (rel->r_offset >= 4);
2435 for (i = 0; i < 4; i++)
2436 BFD_ASSERT (bfd_get_8 (input_bfd,
2437 contents + rel->r_offset - 4 + i)
2438 == tlsgd[i]);
2439 BFD_ASSERT (rel->r_offset + 12 <= input_section->_raw_size);
2440 for (i = 0; i < 4; i++)
2441 BFD_ASSERT (bfd_get_8 (input_bfd,
2442 contents + rel->r_offset + 4 + i)
2443 == tlsgd[i+4]);
2444 BFD_ASSERT (rel + 1 < relend);
2445 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2446 memcpy (contents + rel->r_offset - 4,
2447 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
2448 16);
2449
2450 relocation = (htab->sgot->output_section->vma
2451 + htab->sgot->output_offset + off
2452 - rel->r_offset
2453 - input_section->output_section->vma
2454 - input_section->output_offset
2455 - 12);
2456 bfd_put_32 (output_bfd, relocation,
2457 contents + rel->r_offset + 8);
2458 /* Skip R_X86_64_PLT32. */
2459 rel++;
2460 continue;
2461 }
2462 break;
2463
2464 case R_X86_64_TLSLD:
2465 if (! info->shared)
2466 {
2467 /* LD->LE transition:
2468 Ensure it is:
2469 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr@plt.
2470 We change it into:
2471 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
2472 BFD_ASSERT (rel->r_offset >= 3);
2473 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3)
2474 == 0x48);
2475 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2476 == 0x8d);
2477 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 1)
2478 == 0x3d);
2479 BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size);
2480 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2481 == 0xe8);
2482 BFD_ASSERT (rel + 1 < relend);
2483 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2484 memcpy (contents + rel->r_offset - 3,
2485 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
2486 /* Skip R_X86_64_PLT32. */
2487 rel++;
2488 continue;
2489 }
2490
2491 if (htab->sgot == NULL)
2492 abort ();
2493
2494 off = htab->tls_ld_got.offset;
2495 if (off & 1)
2496 off &= ~1;
2497 else
2498 {
2499 Elf_Internal_Rela outrel;
2500 bfd_byte *loc;
2501
2502 if (htab->srelgot == NULL)
2503 abort ();
2504
2505 outrel.r_offset = (htab->sgot->output_section->vma
2506 + htab->sgot->output_offset + off);
2507
2508 bfd_put_64 (output_bfd, 0,
2509 htab->sgot->contents + off);
2510 bfd_put_64 (output_bfd, 0,
2511 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2512 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
2513 outrel.r_addend = 0;
2514 loc = htab->srelgot->contents;
2515 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2516 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2517 htab->tls_ld_got.offset |= 1;
2518 }
2519 relocation = htab->sgot->output_section->vma
2520 + htab->sgot->output_offset + off;
2521 unresolved_reloc = FALSE;
2522 break;
2523
2524 case R_X86_64_DTPOFF32:
2525 if (info->shared || (input_section->flags & SEC_CODE) == 0)
2526 relocation -= dtpoff_base (info);
2527 else
2528 relocation = tpoff (info, relocation);
2529 break;
2530
2531 case R_X86_64_TPOFF32:
2532 BFD_ASSERT (! info->shared);
2533 relocation = tpoff (info, relocation);
2534 break;
2535
2536 default:
2537 break;
2538 }
2539
2540 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2541 because such sections are not SEC_ALLOC and thus ld.so will
2542 not process them. */
2543 if (unresolved_reloc
2544 && !((input_section->flags & SEC_DEBUGGING) != 0
2545 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2546 (*_bfd_error_handler)
2547 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2548 bfd_archive_filename (input_bfd),
2549 bfd_get_section_name (input_bfd, input_section),
2550 (long) rel->r_offset,
2551 h->root.root.string);
2552
2553 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2554 contents, rel->r_offset,
2555 relocation, rel->r_addend);
2556
2557 if (r != bfd_reloc_ok)
2558 {
2559 const char *name;
2560
2561 if (h != NULL)
2562 name = h->root.root.string;
2563 else
2564 {
2565 name = bfd_elf_string_from_elf_section (input_bfd,
2566 symtab_hdr->sh_link,
2567 sym->st_name);
2568 if (name == NULL)
2569 return FALSE;
2570 if (*name == '\0')
2571 name = bfd_section_name (input_bfd, sec);
2572 }
2573
2574 if (r == bfd_reloc_overflow)
2575 {
2576
2577 if (! ((*info->callbacks->reloc_overflow)
2578 (info, name, howto->name, (bfd_vma) 0,
2579 input_bfd, input_section, rel->r_offset)))
2580 return FALSE;
2581 }
2582 else
2583 {
2584 (*_bfd_error_handler)
2585 (_("%s(%s+0x%lx): reloc against `%s': error %d"),
2586 bfd_archive_filename (input_bfd),
2587 bfd_get_section_name (input_bfd, input_section),
2588 (long) rel->r_offset, name, (int) r);
2589 return FALSE;
2590 }
2591 }
2592 }
2593
2594 return TRUE;
2595 }
2596
2597 /* Finish up dynamic symbol handling. We set the contents of various
2598 dynamic sections here. */
2599
2600 static bfd_boolean
2601 elf64_x86_64_finish_dynamic_symbol (output_bfd, info, h, sym)
2602 bfd *output_bfd;
2603 struct bfd_link_info *info;
2604 struct elf_link_hash_entry *h;
2605 Elf_Internal_Sym *sym;
2606 {
2607 struct elf64_x86_64_link_hash_table *htab;
2608
2609 htab = elf64_x86_64_hash_table (info);
2610
2611 if (h->plt.offset != (bfd_vma) -1)
2612 {
2613 bfd_vma plt_index;
2614 bfd_vma got_offset;
2615 Elf_Internal_Rela rela;
2616 bfd_byte *loc;
2617
2618 /* This symbol has an entry in the procedure linkage table. Set
2619 it up. */
2620 if (h->dynindx == -1
2621 || htab->splt == NULL
2622 || htab->sgotplt == NULL
2623 || htab->srelplt == NULL)
2624 abort ();
2625
2626 /* Get the index in the procedure linkage table which
2627 corresponds to this symbol. This is the index of this symbol
2628 in all the symbols for which we are making plt entries. The
2629 first entry in the procedure linkage table is reserved. */
2630 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2631
2632 /* Get the offset into the .got table of the entry that
2633 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
2634 bytes. The first three are reserved for the dynamic linker. */
2635 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
2636
2637 /* Fill in the entry in the procedure linkage table. */
2638 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
2639 PLT_ENTRY_SIZE);
2640
2641 /* Insert the relocation positions of the plt section. The magic
2642 numbers at the end of the statements are the positions of the
2643 relocations in the plt section. */
2644 /* Put offset for jmp *name@GOTPCREL(%rip), since the
2645 instruction uses 6 bytes, subtract this value. */
2646 bfd_put_32 (output_bfd,
2647 (htab->sgotplt->output_section->vma
2648 + htab->sgotplt->output_offset
2649 + got_offset
2650 - htab->splt->output_section->vma
2651 - htab->splt->output_offset
2652 - h->plt.offset
2653 - 6),
2654 htab->splt->contents + h->plt.offset + 2);
2655 /* Put relocation index. */
2656 bfd_put_32 (output_bfd, plt_index,
2657 htab->splt->contents + h->plt.offset + 7);
2658 /* Put offset for jmp .PLT0. */
2659 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2660 htab->splt->contents + h->plt.offset + 12);
2661
2662 /* Fill in the entry in the global offset table, initially this
2663 points to the pushq instruction in the PLT which is at offset 6. */
2664 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
2665 + htab->splt->output_offset
2666 + h->plt.offset + 6),
2667 htab->sgotplt->contents + got_offset);
2668
2669 /* Fill in the entry in the .rela.plt section. */
2670 rela.r_offset = (htab->sgotplt->output_section->vma
2671 + htab->sgotplt->output_offset
2672 + got_offset);
2673 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
2674 rela.r_addend = 0;
2675 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
2676 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2677
2678 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2679 {
2680 /* Mark the symbol as undefined, rather than as defined in
2681 the .plt section. Leave the value alone. This is a clue
2682 for the dynamic linker, to make function pointer
2683 comparisons work between an application and shared
2684 library. */
2685 sym->st_shndx = SHN_UNDEF;
2686 }
2687 }
2688
2689 if (h->got.offset != (bfd_vma) -1
2690 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_GD
2691 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
2692 {
2693 Elf_Internal_Rela rela;
2694 bfd_byte *loc;
2695
2696 /* This symbol has an entry in the global offset table. Set it
2697 up. */
2698 if (htab->sgot == NULL || htab->srelgot == NULL)
2699 abort ();
2700
2701 rela.r_offset = (htab->sgot->output_section->vma
2702 + htab->sgot->output_offset
2703 + (h->got.offset &~ (bfd_vma) 1));
2704
2705 /* If this is a static link, or it is a -Bsymbolic link and the
2706 symbol is defined locally or was forced to be local because
2707 of a version file, we just want to emit a RELATIVE reloc.
2708 The entry in the global offset table will already have been
2709 initialized in the relocate_section function. */
2710 if (info->shared
2711 && (info->symbolic
2712 || h->dynindx == -1
2713 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2714 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2715 {
2716 BFD_ASSERT((h->got.offset & 1) != 0);
2717 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2718 rela.r_addend = (h->root.u.def.value
2719 + h->root.u.def.section->output_section->vma
2720 + h->root.u.def.section->output_offset);
2721 }
2722 else
2723 {
2724 BFD_ASSERT((h->got.offset & 1) == 0);
2725 bfd_put_64 (output_bfd, (bfd_vma) 0,
2726 htab->sgot->contents + h->got.offset);
2727 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
2728 rela.r_addend = 0;
2729 }
2730
2731 loc = htab->srelgot->contents;
2732 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2733 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2734 }
2735
2736 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2737 {
2738 Elf_Internal_Rela rela;
2739 bfd_byte *loc;
2740
2741 /* This symbol needs a copy reloc. Set it up. */
2742
2743 if (h->dynindx == -1
2744 || (h->root.type != bfd_link_hash_defined
2745 && h->root.type != bfd_link_hash_defweak)
2746 || htab->srelbss == NULL)
2747 abort ();
2748
2749 rela.r_offset = (h->root.u.def.value
2750 + h->root.u.def.section->output_section->vma
2751 + h->root.u.def.section->output_offset);
2752 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
2753 rela.r_addend = 0;
2754 loc = htab->srelbss->contents;
2755 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
2756 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2757 }
2758
2759 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2760 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2761 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2762 sym->st_shndx = SHN_ABS;
2763
2764 return TRUE;
2765 }
2766
2767 /* Used to decide how to sort relocs in an optimal manner for the
2768 dynamic linker, before writing them out. */
2769
2770 static enum elf_reloc_type_class
2771 elf64_x86_64_reloc_type_class (rela)
2772 const Elf_Internal_Rela *rela;
2773 {
2774 switch ((int) ELF64_R_TYPE (rela->r_info))
2775 {
2776 case R_X86_64_RELATIVE:
2777 return reloc_class_relative;
2778 case R_X86_64_JUMP_SLOT:
2779 return reloc_class_plt;
2780 case R_X86_64_COPY:
2781 return reloc_class_copy;
2782 default:
2783 return reloc_class_normal;
2784 }
2785 }
2786
2787 /* Finish up the dynamic sections. */
2788
2789 static bfd_boolean
2790 elf64_x86_64_finish_dynamic_sections (output_bfd, info)
2791 bfd *output_bfd;
2792 struct bfd_link_info *info;
2793 {
2794 struct elf64_x86_64_link_hash_table *htab;
2795 bfd *dynobj;
2796 asection *sdyn;
2797
2798 htab = elf64_x86_64_hash_table (info);
2799 dynobj = htab->elf.dynobj;
2800 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2801
2802 if (htab->elf.dynamic_sections_created)
2803 {
2804 Elf64_External_Dyn *dyncon, *dynconend;
2805
2806 if (sdyn == NULL || htab->sgot == NULL)
2807 abort ();
2808
2809 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2810 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2811 for (; dyncon < dynconend; dyncon++)
2812 {
2813 Elf_Internal_Dyn dyn;
2814 asection *s;
2815
2816 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2817
2818 switch (dyn.d_tag)
2819 {
2820 default:
2821 continue;
2822
2823 case DT_PLTGOT:
2824 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2825 break;
2826
2827 case DT_JMPREL:
2828 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2829 break;
2830
2831 case DT_PLTRELSZ:
2832 s = htab->srelplt->output_section;
2833 if (s->_cooked_size != 0)
2834 dyn.d_un.d_val = s->_cooked_size;
2835 else
2836 dyn.d_un.d_val = s->_raw_size;
2837 break;
2838
2839 case DT_RELASZ:
2840 /* The procedure linkage table relocs (DT_JMPREL) should
2841 not be included in the overall relocs (DT_RELA).
2842 Therefore, we override the DT_RELASZ entry here to
2843 make it not include the JMPREL relocs. Since the
2844 linker script arranges for .rela.plt to follow all
2845 other relocation sections, we don't have to worry
2846 about changing the DT_RELA entry. */
2847 if (htab->srelplt != NULL)
2848 {
2849 s = htab->srelplt->output_section;
2850 if (s->_cooked_size != 0)
2851 dyn.d_un.d_val -= s->_cooked_size;
2852 else
2853 dyn.d_un.d_val -= s->_raw_size;
2854 }
2855 break;
2856 }
2857
2858 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2859 }
2860
2861 /* Fill in the special first entry in the procedure linkage table. */
2862 if (htab->splt && htab->splt->_raw_size > 0)
2863 {
2864 /* Fill in the first entry in the procedure linkage table. */
2865 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
2866 PLT_ENTRY_SIZE);
2867 /* Add offset for pushq GOT+8(%rip), since the instruction
2868 uses 6 bytes subtract this value. */
2869 bfd_put_32 (output_bfd,
2870 (htab->sgotplt->output_section->vma
2871 + htab->sgotplt->output_offset
2872 + 8
2873 - htab->splt->output_section->vma
2874 - htab->splt->output_offset
2875 - 6),
2876 htab->splt->contents + 2);
2877 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
2878 the end of the instruction. */
2879 bfd_put_32 (output_bfd,
2880 (htab->sgotplt->output_section->vma
2881 + htab->sgotplt->output_offset
2882 + 16
2883 - htab->splt->output_section->vma
2884 - htab->splt->output_offset
2885 - 12),
2886 htab->splt->contents + 8);
2887
2888 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
2889 PLT_ENTRY_SIZE;
2890 }
2891 }
2892
2893 if (htab->sgotplt)
2894 {
2895 /* Fill in the first three entries in the global offset table. */
2896 if (htab->sgotplt->_raw_size > 0)
2897 {
2898 /* Set the first entry in the global offset table to the address of
2899 the dynamic section. */
2900 if (sdyn == NULL)
2901 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
2902 else
2903 bfd_put_64 (output_bfd,
2904 sdyn->output_section->vma + sdyn->output_offset,
2905 htab->sgotplt->contents);
2906 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
2907 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
2908 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
2909 }
2910
2911 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
2912 GOT_ENTRY_SIZE;
2913 }
2914
2915 return TRUE;
2916 }
2917
2918
2919 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
2920 #define TARGET_LITTLE_NAME "elf64-x86-64"
2921 #define ELF_ARCH bfd_arch_i386
2922 #define ELF_MACHINE_CODE EM_X86_64
2923 #define ELF_MAXPAGESIZE 0x100000
2924
2925 #define elf_backend_can_gc_sections 1
2926 #define elf_backend_can_refcount 1
2927 #define elf_backend_want_got_plt 1
2928 #define elf_backend_plt_readonly 1
2929 #define elf_backend_want_plt_sym 0
2930 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
2931 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2932 #define elf_backend_rela_normal 1
2933
2934 #define elf_info_to_howto elf64_x86_64_info_to_howto
2935
2936 #define bfd_elf64_bfd_link_hash_table_create \
2937 elf64_x86_64_link_hash_table_create
2938 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
2939
2940 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
2941 #define elf_backend_check_relocs elf64_x86_64_check_relocs
2942 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
2943 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
2944 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
2945 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
2946 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
2947 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
2948 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
2949 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
2950 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
2951 #define elf_backend_relocate_section elf64_x86_64_relocate_section
2952 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
2953 #define elf_backend_object_p elf64_x86_64_elf_object_p
2954 #define bfd_elf64_mkobject elf64_x86_64_mkobject
2955
2956 #include "elf64-target.h"
This page took 0.088056 seconds and 5 git commands to generate.