* elf-bfd.h (struct elf_link_local_dynamic_entry): Add init_refcount.
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25
26 #include "elf/x86-64.h"
27
28 /* We use only the RELA entries. */
29 #define USE_RELA
30
31 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
32 #define MINUS_ONE (~ (bfd_vma) 0)
33
34 /* The relocation "howto" table. Order of fields:
35 type, size, bitsize, pc_relative, complain_on_overflow,
36 special_function, name, partial_inplace, src_mask, dst_pack, pcrel_offset. */
37 static reloc_howto_type x86_64_elf_howto_table[] =
38 {
39 HOWTO(R_X86_64_NONE, 0, 0, 0, false, 0, complain_overflow_dont,
40 bfd_elf_generic_reloc, "R_X86_64_NONE", false, 0x00000000, 0x00000000,
41 false),
42 HOWTO(R_X86_64_64, 0, 4, 64, false, 0, complain_overflow_bitfield,
43 bfd_elf_generic_reloc, "R_X86_64_64", false, MINUS_ONE, MINUS_ONE,
44 false),
45 HOWTO(R_X86_64_PC32, 0, 4, 32, true, 0, complain_overflow_signed,
46 bfd_elf_generic_reloc, "R_X86_64_PC32", false, 0xffffffff, 0xffffffff,
47 true),
48 HOWTO(R_X86_64_GOT32, 0, 4, 32, false, 0, complain_overflow_signed,
49 bfd_elf_generic_reloc, "R_X86_64_GOT32", false, 0xffffffff, 0xffffffff,
50 false),
51 HOWTO(R_X86_64_PLT32, 0, 4, 32, true, 0, complain_overflow_signed,
52 bfd_elf_generic_reloc, "R_X86_64_PLT32", false, 0xffffffff, 0xffffffff,
53 true),
54 HOWTO(R_X86_64_COPY, 0, 4, 32, false, 0, complain_overflow_bitfield,
55 bfd_elf_generic_reloc, "R_X86_64_COPY", false, 0xffffffff, 0xffffffff,
56 false),
57 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, false, 0, complain_overflow_bitfield,
58 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", false, MINUS_ONE,
59 MINUS_ONE, false),
60 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, false, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", false, MINUS_ONE,
62 MINUS_ONE, false),
63 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, false, 0, complain_overflow_bitfield,
64 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", false, MINUS_ONE,
65 MINUS_ONE, false),
66 HOWTO(R_X86_64_GOTPCREL, 0, 4, 32, true,0 , complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", false, 0xffffffff,
68 0xffffffff, true),
69 HOWTO(R_X86_64_32, 0, 4, 32, false, 0, complain_overflow_unsigned,
70 bfd_elf_generic_reloc, "R_X86_64_32", false, 0xffffffff, 0xffffffff,
71 false),
72 HOWTO(R_X86_64_32S, 0, 4, 32, false, 0, complain_overflow_signed,
73 bfd_elf_generic_reloc, "R_X86_64_32S", false, 0xffffffff, 0xffffffff,
74 false),
75 HOWTO(R_X86_64_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_16", false, 0xffff, 0xffff, false),
77 HOWTO(R_X86_64_PC16,0, 1, 16, true, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_PC16", false, 0xffff, 0xffff, true),
79 HOWTO(R_X86_64_8, 0, 0, 8, false, 0, complain_overflow_signed,
80 bfd_elf_generic_reloc, "R_X86_64_8", false, 0xff, 0xff, false),
81 HOWTO(R_X86_64_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
82 bfd_elf_generic_reloc, "R_X86_64_PC8", false, 0xff, 0xff, true),
83
84 /* GNU extension to record C++ vtable hierarchy. */
85 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, false, 0, complain_overflow_dont,
86 NULL, "R_X86_64_GNU_VTINHERIT", false, 0, 0, false),
87
88 /* GNU extension to record C++ vtable member usage. */
89 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, false, 0, complain_overflow_dont,
90 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", false, 0, 0,
91 false)
92 };
93
94 /* Map BFD relocs to the x86_64 elf relocs. */
95 struct elf_reloc_map
96 {
97 bfd_reloc_code_real_type bfd_reloc_val;
98 unsigned char elf_reloc_val;
99 };
100
101 static const struct elf_reloc_map x86_64_reloc_map[] =
102 {
103 { BFD_RELOC_NONE, R_X86_64_NONE, },
104 { BFD_RELOC_64, R_X86_64_64, },
105 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
106 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
107 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
108 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
109 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
110 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
111 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
112 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
113 { BFD_RELOC_32, R_X86_64_32, },
114 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
115 { BFD_RELOC_16, R_X86_64_16, },
116 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
117 { BFD_RELOC_8, R_X86_64_8, },
118 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
119 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
120 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
121 };
122
123 static reloc_howto_type *elf64_x86_64_reloc_type_lookup
124 PARAMS ((bfd *, bfd_reloc_code_real_type));
125 static void elf64_x86_64_info_to_howto
126 PARAMS ((bfd *, arelent *, Elf64_Internal_Rela *));
127 static struct bfd_link_hash_table *elf64_x86_64_link_hash_table_create
128 PARAMS ((bfd *));
129 static boolean elf64_x86_64_elf_object_p PARAMS ((bfd *abfd));
130 static boolean elf64_x86_64_check_relocs
131 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
132 const Elf_Internal_Rela *));
133 static asection *elf64_x86_64_gc_mark_hook
134 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
135 struct elf_link_hash_entry *, Elf_Internal_Sym *));
136
137 static boolean elf64_x86_64_gc_sweep_hook
138 PARAMS ((bfd *, struct bfd_link_info *, asection *,
139 const Elf_Internal_Rela *));
140
141 static struct bfd_hash_entry *elf64_x86_64_link_hash_newfunc
142 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
143 static boolean elf64_x86_64_adjust_dynamic_symbol
144 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
145
146 static boolean elf64_x86_64_size_dynamic_sections
147 PARAMS ((bfd *, struct bfd_link_info *));
148 static boolean elf64_x86_64_relocate_section
149 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
150 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
151 static boolean elf64_x86_64_finish_dynamic_symbol
152 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
153 Elf_Internal_Sym *sym));
154 static boolean elf64_x86_64_finish_dynamic_sections
155 PARAMS ((bfd *, struct bfd_link_info *));
156 static enum elf_reloc_type_class elf64_x86_64_reloc_type_class
157 PARAMS ((const Elf_Internal_Rela *));
158
159 /* Given a BFD reloc type, return a HOWTO structure. */
160 static reloc_howto_type *
161 elf64_x86_64_reloc_type_lookup (abfd, code)
162 bfd *abfd ATTRIBUTE_UNUSED;
163 bfd_reloc_code_real_type code;
164 {
165 unsigned int i;
166 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
167 i++)
168 {
169 if (x86_64_reloc_map[i].bfd_reloc_val == code)
170 return &x86_64_elf_howto_table[i];
171 }
172 return 0;
173 }
174
175 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
176
177 static void
178 elf64_x86_64_info_to_howto (abfd, cache_ptr, dst)
179 bfd *abfd ATTRIBUTE_UNUSED;
180 arelent *cache_ptr;
181 Elf64_Internal_Rela *dst;
182 {
183 unsigned r_type, i;
184
185 r_type = ELF64_R_TYPE (dst->r_info);
186 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT)
187 {
188 BFD_ASSERT (r_type <= (unsigned int) R_X86_64_PC8);
189 i = r_type;
190 }
191 else
192 {
193 BFD_ASSERT (r_type < (unsigned int) R_X86_64_max);
194 i = r_type - ((unsigned int) R_X86_64_GNU_VTINHERIT - R_X86_64_PC8 - 1);
195 }
196 cache_ptr->howto = &x86_64_elf_howto_table[i];
197 BFD_ASSERT (r_type == cache_ptr->howto->type);
198 }
199 \f
200 /* Functions for the x86-64 ELF linker. */
201
202 /* The name of the dynamic interpreter. This is put in the .interp
203 section. */
204
205 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
206
207 /* The size in bytes of an entry in the global offset table. */
208
209 #define GOT_ENTRY_SIZE 8
210
211 /* The size in bytes of an entry in the procedure linkage table. */
212
213 #define PLT_ENTRY_SIZE 16
214
215 /* The first entry in a procedure linkage table looks like this. See the
216 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
217
218 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
219 {
220 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
221 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
222 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
223 };
224
225 /* Subsequent entries in a procedure linkage table look like this. */
226
227 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
228 {
229 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
230 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
231 0x68, /* pushq immediate */
232 0, 0, 0, 0, /* replaced with index into relocation table. */
233 0xe9, /* jmp relative */
234 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
235 };
236
237 /* The x86-64 linker needs to keep track of the number of relocs that
238 it decides to copy in check_relocs for each symbol. This is so
239 that it can discard PC relative relocs if it doesn't need them when
240 linking with -Bsymbolic. We store the information in a field
241 extending the regular ELF linker hash table. */
242
243 /* This structure keeps track of the number of PC relative relocs we
244 have copied for a given symbol. */
245
246 struct elf64_x86_64_pcrel_relocs_copied
247 {
248 /* Next section. */
249 struct elf64_x86_64_pcrel_relocs_copied *next;
250 /* A section in dynobj. */
251 asection *section;
252 /* Number of relocs copied in this section. */
253 bfd_size_type count;
254 };
255
256 /* x86-64 ELF linker hash entry. */
257
258 struct elf64_x86_64_link_hash_entry
259 {
260 struct elf_link_hash_entry root;
261
262 /* Number of PC relative relocs copied for this symbol. */
263 struct elf64_x86_64_pcrel_relocs_copied *pcrel_relocs_copied;
264 };
265
266 /* x86-64 ELF linker hash table. */
267
268 struct elf64_x86_64_link_hash_table
269 {
270 struct elf_link_hash_table root;
271 };
272
273 /* Declare this now that the above structures are defined. */
274
275 static boolean elf64_x86_64_discard_copies
276 PARAMS ((struct elf64_x86_64_link_hash_entry *, PTR));
277
278 /* Traverse an x86-64 ELF linker hash table. */
279
280 #define elf64_x86_64_link_hash_traverse(table, func, info) \
281 (elf_link_hash_traverse \
282 (&(table)->root, \
283 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
284 (info)))
285
286 /* Get the x86-64 ELF linker hash table from a link_info structure. */
287
288 #define elf64_x86_64_hash_table(p) \
289 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
290
291 /* Create an entry in an x86-64 ELF linker hash table. */
292
293 static struct bfd_hash_entry *
294 elf64_x86_64_link_hash_newfunc (entry, table, string)
295 struct bfd_hash_entry *entry;
296 struct bfd_hash_table *table;
297 const char *string;
298 {
299 struct elf64_x86_64_link_hash_entry *ret =
300 (struct elf64_x86_64_link_hash_entry *) entry;
301
302 /* Allocate the structure if it has not already been allocated by a
303 subclass. */
304 if (ret == (struct elf64_x86_64_link_hash_entry *) NULL)
305 ret = ((struct elf64_x86_64_link_hash_entry *)
306 bfd_hash_allocate (table,
307 sizeof (struct elf64_x86_64_link_hash_entry)));
308 if (ret == (struct elf64_x86_64_link_hash_entry *) NULL)
309 return (struct bfd_hash_entry *) ret;
310
311 /* Call the allocation method of the superclass. */
312 ret = ((struct elf64_x86_64_link_hash_entry *)
313 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
314 table, string));
315 if (ret != (struct elf64_x86_64_link_hash_entry *) NULL)
316 {
317 ret->pcrel_relocs_copied = NULL;
318 }
319
320 return (struct bfd_hash_entry *) ret;
321 }
322
323 /* Create an X86-64 ELF linker hash table. */
324
325 static struct bfd_link_hash_table *
326 elf64_x86_64_link_hash_table_create (abfd)
327 bfd *abfd;
328 {
329 struct elf64_x86_64_link_hash_table *ret;
330 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
331
332 ret = ((struct elf64_x86_64_link_hash_table *) bfd_alloc (abfd, amt));
333 if (ret == (struct elf64_x86_64_link_hash_table *) NULL)
334 return NULL;
335
336 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
337 elf64_x86_64_link_hash_newfunc))
338 {
339 bfd_release (abfd, ret);
340 return NULL;
341 }
342
343 return &ret->root.root;
344 }
345
346 static boolean
347 elf64_x86_64_elf_object_p (abfd)
348 bfd *abfd;
349 {
350 /* Set the right machine number for an x86-64 elf64 file. */
351 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
352 return true;
353 }
354
355 /* Look through the relocs for a section during the first phase, and
356 allocate space in the global offset table or procedure linkage
357 table. */
358
359 static boolean
360 elf64_x86_64_check_relocs (abfd, info, sec, relocs)
361 bfd *abfd;
362 struct bfd_link_info *info;
363 asection *sec;
364 const Elf_Internal_Rela *relocs;
365 {
366 bfd *dynobj;
367 Elf_Internal_Shdr *symtab_hdr;
368 struct elf_link_hash_entry **sym_hashes;
369 bfd_signed_vma *local_got_refcounts;
370 const Elf_Internal_Rela *rel;
371 const Elf_Internal_Rela *rel_end;
372 asection *sgot;
373 asection *srelgot;
374 asection *sreloc;
375
376 if (info->relocateable)
377 return true;
378
379 dynobj = elf_hash_table (info)->dynobj;
380 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
381 sym_hashes = elf_sym_hashes (abfd);
382 local_got_refcounts = elf_local_got_refcounts (abfd);
383
384 sgot = srelgot = sreloc = NULL;
385 rel_end = relocs + sec->reloc_count;
386 for (rel = relocs; rel < rel_end; rel++)
387 {
388 unsigned long r_symndx;
389 struct elf_link_hash_entry *h;
390
391 r_symndx = ELF64_R_SYM (rel->r_info);
392 if (r_symndx < symtab_hdr->sh_info)
393 h = NULL;
394 else
395 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
396
397 /* Some relocs require a global offset table. */
398 if (dynobj == NULL)
399 {
400 switch (ELF64_R_TYPE (rel->r_info))
401 {
402 case R_X86_64_GOT32:
403 case R_X86_64_GOTPCREL:
404 elf_hash_table (info)->dynobj = dynobj = abfd;
405 if (! _bfd_elf_create_got_section (dynobj, info))
406 return false;
407 break;
408 }
409 }
410
411 switch (ELF64_R_TYPE (rel->r_info))
412 {
413 case R_X86_64_GOTPCREL:
414 case R_X86_64_GOT32:
415 /* This symbol requires a global offset table entry. */
416
417 if (sgot == NULL)
418 {
419 sgot = bfd_get_section_by_name (dynobj, ".got");
420 BFD_ASSERT (sgot != NULL);
421 }
422
423 if (srelgot == NULL && (h != NULL || info->shared))
424 {
425 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
426 if (srelgot == NULL)
427 {
428 srelgot = bfd_make_section (dynobj, ".rela.got");
429 if (srelgot == NULL
430 || ! bfd_set_section_flags (dynobj, srelgot,
431 (SEC_ALLOC
432 | SEC_LOAD
433 | SEC_HAS_CONTENTS
434 | SEC_IN_MEMORY
435 | SEC_LINKER_CREATED
436 | SEC_READONLY))
437 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
438 return false;
439 }
440 }
441
442 if (h != NULL)
443 {
444 if (h->got.refcount == 0)
445 {
446 /* Make sure this symbol is output as a dynamic symbol. */
447 if (h->dynindx == -1)
448 {
449 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
450 return false;
451 }
452
453 sgot->_raw_size += GOT_ENTRY_SIZE;
454 srelgot->_raw_size += sizeof (Elf64_External_Rela);
455 }
456 h->got.refcount += 1;
457 }
458 else
459 {
460 /* This is a global offset table entry for a local symbol. */
461 if (local_got_refcounts == NULL)
462 {
463 bfd_size_type size;
464
465 size = symtab_hdr->sh_info;
466 size *= sizeof (bfd_signed_vma);
467 local_got_refcounts = ((bfd_signed_vma *)
468 bfd_zalloc (abfd, size));
469 if (local_got_refcounts == NULL)
470 return false;
471 elf_local_got_refcounts (abfd) = local_got_refcounts;
472 }
473 if (local_got_refcounts[r_symndx] == 0)
474 {
475 sgot->_raw_size += GOT_ENTRY_SIZE;
476 if (info->shared)
477 {
478 /* If we are generating a shared object, we need to
479 output a R_X86_64_RELATIVE reloc so that the dynamic
480 linker can adjust this GOT entry. */
481 srelgot->_raw_size += sizeof (Elf64_External_Rela);
482 }
483 }
484 local_got_refcounts[r_symndx] += 1;
485 }
486 break;
487
488 case R_X86_64_PLT32:
489 /* This symbol requires a procedure linkage table entry. We
490 actually build the entry in adjust_dynamic_symbol,
491 because this might be a case of linking PIC code which is
492 never referenced by a dynamic object, in which case we
493 don't need to generate a procedure linkage table entry
494 after all. */
495
496 /* If this is a local symbol, we resolve it directly without
497 creating a procedure linkage table entry. */
498 if (h == NULL)
499 continue;
500
501 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
502 h->plt.refcount += 1;
503 break;
504
505 case R_X86_64_8:
506 case R_X86_64_16:
507 case R_X86_64_32:
508 case R_X86_64_64:
509 case R_X86_64_32S:
510 case R_X86_64_PC32:
511 if (h != NULL)
512 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
513
514 /* If we are creating a shared library, and this is a reloc
515 against a global symbol, or a non PC relative reloc
516 against a local symbol, then we need to copy the reloc
517 into the shared library. However, if we are linking with
518 -Bsymbolic, we do not need to copy a reloc against a
519 global symbol which is defined in an object we are
520 including in the link (i.e., DEF_REGULAR is set). At
521 this point we have not seen all the input files, so it is
522 possible that DEF_REGULAR is not set now but will be set
523 later (it is never cleared). We account for that
524 possibility below by storing information in the
525 pcrel_relocs_copied field of the hash table entry.
526 A similar situation occurs when creating shared libraries
527 and symbol visibility changes render the symbol local. */
528 if (info->shared
529 && (sec->flags & SEC_ALLOC) != 0
530 && (((ELF64_R_TYPE (rel->r_info) != R_X86_64_PC8)
531 && (ELF64_R_TYPE (rel->r_info) != R_X86_64_PC16)
532 && (ELF64_R_TYPE (rel->r_info) != R_X86_64_PC32))
533 || (h != NULL
534 && (! info->symbolic
535 || (h->elf_link_hash_flags
536 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
537 {
538 /* When creating a shared object, we must copy these
539 reloc types into the output file. We create a reloc
540 section in dynobj and make room for this reloc. */
541 if (sreloc == NULL)
542 {
543 const char *name;
544
545 name = (bfd_elf_string_from_elf_section
546 (abfd,
547 elf_elfheader (abfd)->e_shstrndx,
548 elf_section_data (sec)->rel_hdr.sh_name));
549 if (name == NULL)
550 return false;
551
552 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
553 && strcmp (bfd_get_section_name (abfd, sec),
554 name + 5) == 0);
555
556 sreloc = bfd_get_section_by_name (dynobj, name);
557 if (sreloc == NULL)
558 {
559 flagword flags;
560
561 sreloc = bfd_make_section (dynobj, name);
562 flags = (SEC_HAS_CONTENTS | SEC_READONLY
563 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
564 if ((sec->flags & SEC_ALLOC) != 0)
565 flags |= SEC_ALLOC | SEC_LOAD;
566 if (sreloc == NULL
567 || ! bfd_set_section_flags (dynobj, sreloc, flags)
568 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
569 return false;
570 }
571 if (sec->flags & SEC_READONLY)
572 info->flags |= DF_TEXTREL;
573 }
574
575 sreloc->_raw_size += sizeof (Elf64_External_Rela);
576
577 /* If this is a global symbol, we count the number of PC
578 relative relocations we have entered for this symbol,
579 so that we can discard them later as necessary. Note
580 that this function is only called if we are using an
581 elf64_x86_64 linker hash table, which means that h is
582 really a pointer to an elf64_x86_64_link_hash_entry. */
583 if (h != NULL
584 && ((ELF64_R_TYPE (rel->r_info) == R_X86_64_PC8)
585 || (ELF64_R_TYPE (rel->r_info) == R_X86_64_PC16)
586 || (ELF64_R_TYPE (rel->r_info) == R_X86_64_PC32)))
587 {
588 struct elf64_x86_64_link_hash_entry *eh;
589 struct elf64_x86_64_pcrel_relocs_copied *p;
590
591 eh = (struct elf64_x86_64_link_hash_entry *) h;
592
593 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
594 if (p->section == sreloc)
595 break;
596
597 if (p == NULL)
598 {
599 p = ((struct elf64_x86_64_pcrel_relocs_copied *)
600 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
601 if (p == NULL)
602 return false;
603 p->next = eh->pcrel_relocs_copied;
604 eh->pcrel_relocs_copied = p;
605 p->section = sreloc;
606 p->count = 0;
607 }
608
609 ++p->count;
610 }
611 }
612 break;
613
614 /* This relocation describes the C++ object vtable hierarchy.
615 Reconstruct it for later use during GC. */
616 case R_X86_64_GNU_VTINHERIT:
617 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
618 return false;
619 break;
620
621 /* This relocation describes which C++ vtable entries are actually
622 used. Record for later use during GC. */
623 case R_X86_64_GNU_VTENTRY:
624 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend))
625 return false;
626 break;
627 }
628 }
629
630 return true;
631 }
632
633 /* Return the section that should be marked against GC for a given
634 relocation. */
635
636 static asection *
637 elf64_x86_64_gc_mark_hook (abfd, info, rel, h, sym)
638 bfd *abfd;
639 struct bfd_link_info *info ATTRIBUTE_UNUSED;
640 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED;
641 struct elf_link_hash_entry *h;
642 Elf_Internal_Sym *sym;
643 {
644 if (h != NULL)
645 {
646 switch (ELF64_R_TYPE (rel->r_info))
647 {
648 case R_X86_64_GNU_VTINHERIT:
649 case R_X86_64_GNU_VTENTRY:
650 break;
651
652 default:
653 switch (h->root.type)
654 {
655 case bfd_link_hash_defined:
656 case bfd_link_hash_defweak:
657 return h->root.u.def.section;
658
659 case bfd_link_hash_common:
660 return h->root.u.c.p->section;
661
662 default:
663 break;
664 }
665 }
666 }
667 else
668 {
669 if (!(elf_bad_symtab (abfd)
670 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
671 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
672 && sym->st_shndx != SHN_COMMON))
673 {
674 return bfd_section_from_elf_index (abfd, sym->st_shndx);
675 }
676 }
677
678 return NULL;
679 }
680
681 /* Update the got entry reference counts for the section being removed. */
682
683 static boolean
684 elf64_x86_64_gc_sweep_hook (abfd, info, sec, relocs)
685 bfd *abfd;
686 struct bfd_link_info *info ATTRIBUTE_UNUSED;
687 asection *sec;
688 const Elf_Internal_Rela *relocs;
689 {
690 Elf_Internal_Shdr *symtab_hdr;
691 struct elf_link_hash_entry **sym_hashes;
692 bfd_signed_vma *local_got_refcounts;
693 const Elf_Internal_Rela *rel, *relend;
694 unsigned long r_symndx;
695 struct elf_link_hash_entry *h;
696 bfd *dynobj;
697 asection *sgot;
698 asection *srelgot;
699
700 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
701 sym_hashes = elf_sym_hashes (abfd);
702 local_got_refcounts = elf_local_got_refcounts (abfd);
703
704 dynobj = elf_hash_table (info)->dynobj;
705 if (dynobj == NULL)
706 return true;
707
708 sgot = bfd_get_section_by_name (dynobj, ".got");
709 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
710
711 relend = relocs + sec->reloc_count;
712 for (rel = relocs; rel < relend; rel++)
713 switch (ELF64_R_TYPE (rel->r_info))
714 {
715 case R_X86_64_GOT32:
716 case R_X86_64_GOTPCREL:
717 r_symndx = ELF64_R_SYM (rel->r_info);
718 if (r_symndx >= symtab_hdr->sh_info)
719 {
720 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
721 if (h->got.refcount > 0)
722 {
723 h->got.refcount -= 1;
724 if (h->got.refcount == 0)
725 {
726 sgot->_raw_size -= GOT_ENTRY_SIZE;
727 srelgot->_raw_size -= sizeof (Elf64_External_Rela);
728 }
729 }
730 }
731 else if (local_got_refcounts != NULL)
732 {
733 if (local_got_refcounts[r_symndx] > 0)
734 {
735 local_got_refcounts[r_symndx] -= 1;
736 if (local_got_refcounts[r_symndx] == 0)
737 {
738 sgot->_raw_size -= GOT_ENTRY_SIZE;
739 if (info->shared)
740 srelgot->_raw_size -= sizeof (Elf64_External_Rela);
741 }
742 }
743 }
744 break;
745
746 case R_X86_64_PLT32:
747 r_symndx = ELF64_R_SYM (rel->r_info);
748 if (r_symndx >= symtab_hdr->sh_info)
749 {
750 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
751 if (h->plt.refcount > 0)
752 h->plt.refcount -= 1;
753 }
754 break;
755
756 default:
757 break;
758 }
759
760 return true;
761 }
762
763 /* Adjust a symbol defined by a dynamic object and referenced by a
764 regular object. The current definition is in some section of the
765 dynamic object, but we're not including those sections. We have to
766 change the definition to something the rest of the link can
767 understand. */
768
769 static boolean
770 elf64_x86_64_adjust_dynamic_symbol (info, h)
771 struct bfd_link_info *info;
772 struct elf_link_hash_entry *h;
773 {
774 bfd *dynobj;
775 asection *s;
776 unsigned int power_of_two;
777
778 dynobj = elf_hash_table (info)->dynobj;
779
780 /* Make sure we know what is going on here. */
781 BFD_ASSERT (dynobj != NULL
782 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
783 || h->weakdef != NULL
784 || ((h->elf_link_hash_flags
785 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
786 && (h->elf_link_hash_flags
787 & ELF_LINK_HASH_REF_REGULAR) != 0
788 && (h->elf_link_hash_flags
789 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
790
791 /* If this is a function, put it in the procedure linkage table. We
792 will fill in the contents of the procedure linkage table later,
793 when we know the address of the .got section. */
794 if (h->type == STT_FUNC
795 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
796 {
797 if ((! info->shared
798 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
799 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
800 || (info->shared && h->plt.refcount <= 0))
801 {
802 /* This case can occur if we saw a PLT32 reloc in an input
803 file, but the symbol was never referred to by a dynamic
804 object, or if all references were garbage collected. In
805 such a case, we don't actually need to build a procedure
806 linkage table, and we can just do a PC32 reloc instead. */
807 h->plt.offset = (bfd_vma) -1;
808 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
809 return true;
810 }
811
812 /* Make sure this symbol is output as a dynamic symbol. */
813 if (h->dynindx == -1)
814 {
815 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
816 return false;
817 }
818
819 s = bfd_get_section_by_name (dynobj, ".plt");
820 BFD_ASSERT (s != NULL);
821
822 /* If this is the first .plt entry, make room for the special
823 first entry. */
824 if (s->_raw_size == 0)
825 s->_raw_size = PLT_ENTRY_SIZE;
826
827 /* If this symbol is not defined in a regular file, and we are
828 not generating a shared library, then set the symbol to this
829 location in the .plt. This is required to make function
830 pointers compare as equal between the normal executable and
831 the shared library. */
832 if (! info->shared
833 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
834 {
835 h->root.u.def.section = s;
836 h->root.u.def.value = s->_raw_size;
837 }
838
839 h->plt.offset = s->_raw_size;
840
841 /* Make room for this entry. */
842 s->_raw_size += PLT_ENTRY_SIZE;
843
844 /* We also need to make an entry in the .got.plt section, which
845 will be placed in the .got section by the linker script. */
846 s = bfd_get_section_by_name (dynobj, ".got.plt");
847 BFD_ASSERT (s != NULL);
848 s->_raw_size += GOT_ENTRY_SIZE;
849
850 /* We also need to make an entry in the .rela.plt section. */
851 s = bfd_get_section_by_name (dynobj, ".rela.plt");
852 BFD_ASSERT (s != NULL);
853 s->_raw_size += sizeof (Elf64_External_Rela);
854
855 return true;
856 }
857
858 /* If this is a weak symbol, and there is a real definition, the
859 processor independent code will have arranged for us to see the
860 real definition first, and we can just use the same value. */
861 if (h->weakdef != NULL)
862 {
863 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
864 || h->weakdef->root.type == bfd_link_hash_defweak);
865 h->root.u.def.section = h->weakdef->root.u.def.section;
866 h->root.u.def.value = h->weakdef->root.u.def.value;
867 return true;
868 }
869
870 /* This is a reference to a symbol defined by a dynamic object which
871 is not a function. */
872
873 /* If we are creating a shared library, we must presume that the
874 only references to the symbol are via the global offset table.
875 For such cases we need not do anything here; the relocations will
876 be handled correctly by relocate_section. */
877 if (info->shared)
878 return true;
879
880 /* If there are no references to this symbol that do not use the
881 GOT, we don't need to generate a copy reloc. */
882 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
883 return true;
884
885 /* We must allocate the symbol in our .dynbss section, which will
886 become part of the .bss section of the executable. There will be
887 an entry for this symbol in the .dynsym section. The dynamic
888 object will contain position independent code, so all references
889 from the dynamic object to this symbol will go through the global
890 offset table. The dynamic linker will use the .dynsym entry to
891 determine the address it must put in the global offset table, so
892 both the dynamic object and the regular object will refer to the
893 same memory location for the variable. */
894
895 s = bfd_get_section_by_name (dynobj, ".dynbss");
896 BFD_ASSERT (s != NULL);
897
898 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
899 to copy the initial value out of the dynamic object and into the
900 runtime process image. We need to remember the offset into the
901 .rela.bss section we are going to use. */
902 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
903 {
904 asection *srel;
905
906 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
907 BFD_ASSERT (srel != NULL);
908 srel->_raw_size += sizeof (Elf64_External_Rela);
909 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
910 }
911
912 /* We need to figure out the alignment required for this symbol. I
913 have no idea how ELF linkers handle this. 16-bytes is the size
914 of the largest type that requires hard alignment -- long double. */
915 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
916 this construct. */
917 power_of_two = bfd_log2 (h->size);
918 if (power_of_two > 4)
919 power_of_two = 4;
920
921 /* Apply the required alignment. */
922 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
923 if (power_of_two > bfd_get_section_alignment (dynobj, s))
924 {
925 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
926 return false;
927 }
928
929 /* Define the symbol as being at this point in the section. */
930 h->root.u.def.section = s;
931 h->root.u.def.value = s->_raw_size;
932
933 /* Increment the section size to make room for the symbol. */
934 s->_raw_size += h->size;
935
936 return true;
937 }
938
939 /* Set the sizes of the dynamic sections. */
940
941 static boolean
942 elf64_x86_64_size_dynamic_sections (output_bfd, info)
943 bfd *output_bfd ATTRIBUTE_UNUSED;
944 struct bfd_link_info *info;
945 {
946 bfd *dynobj;
947 asection *s;
948 boolean plt;
949 boolean relocs;
950
951 dynobj = elf_hash_table (info)->dynobj;
952 BFD_ASSERT (dynobj != NULL);
953
954 if (elf_hash_table (info)->dynamic_sections_created)
955 {
956 /* Set the contents of the .interp section to the interpreter. */
957 if (! info->shared)
958 {
959 s = bfd_get_section_by_name (dynobj, ".interp");
960 BFD_ASSERT (s != NULL);
961 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
962 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
963 }
964 }
965 else
966 {
967 /* We may have created entries in the .rela.got section.
968 However, if we are not creating the dynamic sections, we will
969 not actually use these entries. Reset the size of .rela.got,
970 which will cause it to get stripped from the output file
971 below. */
972 s = bfd_get_section_by_name (dynobj, ".rela.got");
973 if (s != NULL)
974 s->_raw_size = 0;
975 }
976
977 /* If this is a -Bsymbolic shared link, then we need to discard all
978 PC relative relocs against symbols defined in a regular object.
979 We allocated space for them in the check_relocs routine, but we
980 will not fill them in in the relocate_section routine. */
981 if (info->shared)
982 elf64_x86_64_link_hash_traverse (elf64_x86_64_hash_table (info),
983 elf64_x86_64_discard_copies,
984 (PTR) info);
985
986 /* The check_relocs and adjust_dynamic_symbol entry points have
987 determined the sizes of the various dynamic sections. Allocate
988 memory for them. */
989 plt = relocs = false;
990 for (s = dynobj->sections; s != NULL; s = s->next)
991 {
992 const char *name;
993 boolean strip;
994
995 if ((s->flags & SEC_LINKER_CREATED) == 0)
996 continue;
997
998 /* It's OK to base decisions on the section name, because none
999 of the dynobj section names depend upon the input files. */
1000 name = bfd_get_section_name (dynobj, s);
1001
1002 strip = false;
1003 if (strcmp (name, ".plt") == 0)
1004 {
1005 if (s->_raw_size == 0)
1006 {
1007 /* Strip this section if we don't need it; see the
1008 comment below. */
1009 strip = true;
1010 }
1011 else
1012 {
1013 /* Remember whether there is a PLT. */
1014 plt = true;
1015 }
1016 }
1017 else if (strncmp (name, ".rela", 5) == 0)
1018 {
1019 if (s->_raw_size == 0)
1020 {
1021 /* If we don't need this section, strip it from the
1022 output file. This is mostly to handle .rela.bss and
1023 .rela.plt. We must create both sections in
1024 create_dynamic_sections, because they must be created
1025 before the linker maps input sections to output
1026 sections. The linker does that before
1027 adjust_dynamic_symbol is called, and it is that
1028 function which decides whether anything needs to go
1029 into these sections. */
1030 strip = true;
1031 }
1032 else
1033 {
1034 if (strcmp (name, ".rela.plt") != 0)
1035 relocs = true;
1036
1037 /* We use the reloc_count field as a counter if we need
1038 to copy relocs into the output file. */
1039 s->reloc_count = 0;
1040 }
1041 }
1042 else if (strncmp (name, ".got", 4) != 0)
1043 {
1044 /* It's not one of our sections, so don't allocate space. */
1045 continue;
1046 }
1047
1048 if (strip)
1049 {
1050 _bfd_strip_section_from_output (info, s);
1051 continue;
1052 }
1053
1054 /* Allocate memory for the section contents. We use bfd_zalloc
1055 here in case unused entries are not reclaimed before the
1056 section's contents are written out. This should not happen,
1057 but this way if it does, we get a R_X86_64_NONE reloc instead
1058 of garbage. */
1059 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1060 if (s->contents == NULL && s->_raw_size != 0)
1061 return false;
1062 }
1063
1064 if (elf_hash_table (info)->dynamic_sections_created)
1065 {
1066 /* Add some entries to the .dynamic section. We fill in the
1067 values later, in elf64_x86_64_finish_dynamic_sections, but we
1068 must add the entries now so that we get the correct size for
1069 the .dynamic section. The DT_DEBUG entry is filled in by the
1070 dynamic linker and used by the debugger. */
1071 #define add_dynamic_entry(TAG, VAL) \
1072 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1073
1074 if (! info->shared)
1075 {
1076 if (!add_dynamic_entry (DT_DEBUG, 0))
1077 return false;
1078 }
1079
1080 if (plt)
1081 {
1082 if (!add_dynamic_entry (DT_PLTGOT, 0)
1083 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1084 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1085 || !add_dynamic_entry (DT_JMPREL, 0))
1086 return false;
1087 }
1088
1089 if (relocs)
1090 {
1091 if (!add_dynamic_entry (DT_RELA, 0)
1092 || !add_dynamic_entry (DT_RELASZ, 0)
1093 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1094 return false;
1095 }
1096
1097 if ((info->flags & DF_TEXTREL) != 0)
1098 {
1099 if (!add_dynamic_entry (DT_TEXTREL, 0))
1100 return false;
1101 }
1102 }
1103 #undef add_dynamic_entry
1104
1105 return true;
1106 }
1107
1108 /* This function is called via elf64_x86_64_link_hash_traverse if we are
1109 creating a shared object. In the -Bsymbolic case, it discards the
1110 space allocated to copy PC relative relocs against symbols which
1111 are defined in regular objects. For the normal non-symbolic case,
1112 we also discard space for relocs that have become local due to
1113 symbol visibility changes. We allocated space for them in the
1114 check_relocs routine, but we won't fill them in in the
1115 relocate_section routine. */
1116
1117 static boolean
1118 elf64_x86_64_discard_copies (h, inf)
1119 struct elf64_x86_64_link_hash_entry *h;
1120 PTR inf;
1121 {
1122 struct elf64_x86_64_pcrel_relocs_copied *s;
1123 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1124
1125 /* If a symbol has been forced local or we have found a regular
1126 definition for the symbolic link case, then we won't be needing
1127 any relocs. */
1128 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1129 && ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1130 || info->symbolic))
1131 {
1132 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1133 s->section->_raw_size -= s->count * sizeof (Elf64_External_Rela);
1134 }
1135
1136 return true;
1137 }
1138
1139 /* Relocate an x86_64 ELF section. */
1140
1141 static boolean
1142 elf64_x86_64_relocate_section (output_bfd, info, input_bfd, input_section,
1143 contents, relocs, local_syms, local_sections)
1144 bfd *output_bfd;
1145 struct bfd_link_info *info;
1146 bfd *input_bfd;
1147 asection *input_section;
1148 bfd_byte *contents;
1149 Elf_Internal_Rela *relocs;
1150 Elf_Internal_Sym *local_syms;
1151 asection **local_sections;
1152 {
1153 bfd *dynobj;
1154 Elf_Internal_Shdr *symtab_hdr;
1155 struct elf_link_hash_entry **sym_hashes;
1156 bfd_vma *local_got_offsets;
1157 asection *sgot;
1158 asection *splt;
1159 asection *sreloc;
1160 Elf_Internal_Rela *rela;
1161 Elf_Internal_Rela *relend;
1162
1163 dynobj = elf_hash_table (info)->dynobj;
1164 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1165 sym_hashes = elf_sym_hashes (input_bfd);
1166 local_got_offsets = elf_local_got_offsets (input_bfd);
1167
1168 sreloc = splt = sgot = NULL;
1169 if (dynobj != NULL)
1170 {
1171 splt = bfd_get_section_by_name (dynobj, ".plt");
1172 sgot = bfd_get_section_by_name (dynobj, ".got");
1173 }
1174
1175 rela = relocs;
1176 relend = relocs + input_section->reloc_count;
1177 for (; rela < relend; rela++)
1178 {
1179 int r_type;
1180 reloc_howto_type *howto;
1181 unsigned long r_symndx;
1182 struct elf_link_hash_entry *h;
1183 Elf_Internal_Sym *sym;
1184 asection *sec;
1185 bfd_vma relocation;
1186 bfd_reloc_status_type r;
1187 unsigned int indx;
1188
1189 r_type = ELF64_R_TYPE (rela->r_info);
1190 if (r_type == (int) R_X86_64_GNU_VTINHERIT
1191 || r_type == (int) R_X86_64_GNU_VTENTRY)
1192 continue;
1193
1194 if ((indx = (unsigned) r_type) >= R_X86_64_max)
1195 {
1196 bfd_set_error (bfd_error_bad_value);
1197 return false;
1198 }
1199 howto = x86_64_elf_howto_table + indx;
1200
1201 r_symndx = ELF64_R_SYM (rela->r_info);
1202
1203 if (info->relocateable)
1204 {
1205 /* This is a relocateable link. We don't have to change
1206 anything, unless the reloc is against a section symbol,
1207 in which case we have to adjust according to where the
1208 section symbol winds up in the output section. */
1209 if (r_symndx < symtab_hdr->sh_info)
1210 {
1211 sym = local_syms + r_symndx;
1212 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1213 {
1214 sec = local_sections[r_symndx];
1215 rela->r_addend += sec->output_offset + sym->st_value;
1216 }
1217 }
1218
1219 continue;
1220 }
1221
1222 /* This is a final link. */
1223 h = NULL;
1224 sym = NULL;
1225 sec = NULL;
1226 if (r_symndx < symtab_hdr->sh_info)
1227 {
1228 sym = local_syms + r_symndx;
1229 sec = local_sections[r_symndx];
1230 relocation = (sec->output_section->vma
1231 + sec->output_offset
1232 + sym->st_value);
1233 }
1234 else
1235 {
1236 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1237 while (h->root.type == bfd_link_hash_indirect
1238 || h->root.type == bfd_link_hash_warning)
1239 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1240 if (h->root.type == bfd_link_hash_defined
1241 || h->root.type == bfd_link_hash_defweak)
1242 {
1243 sec = h->root.u.def.section;
1244 if ((r_type == R_X86_64_PLT32
1245 && splt != NULL
1246 && h->plt.offset != (bfd_vma) -1)
1247 || ((r_type == R_X86_64_GOT32 || r_type == R_X86_64_GOTPCREL)
1248 && elf_hash_table (info)->dynamic_sections_created
1249 && (!info->shared
1250 || (! info->symbolic && h->dynindx != -1)
1251 || (h->elf_link_hash_flags
1252 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1253 || (info->shared
1254 && ((! info->symbolic && h->dynindx != -1)
1255 || (h->elf_link_hash_flags
1256 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1257 && (r_type == R_X86_64_8
1258 || r_type == R_X86_64_16
1259 || r_type == R_X86_64_32
1260 || r_type == R_X86_64_64
1261 || r_type == R_X86_64_PC8
1262 || r_type == R_X86_64_PC16
1263 || r_type == R_X86_64_PC32)
1264 && ((input_section->flags & SEC_ALLOC) != 0
1265 /* DWARF will emit R_X86_64_32 relocations in its
1266 sections against symbols defined externally
1267 in shared libraries. We can't do anything
1268 with them here. */
1269 || ((input_section->flags & SEC_DEBUGGING) != 0
1270 && (h->elf_link_hash_flags
1271 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))))
1272 {
1273 /* In these cases, we don't need the relocation
1274 value. We check specially because in some
1275 obscure cases sec->output_section will be NULL. */
1276 relocation = 0;
1277 }
1278 else if (sec->output_section == NULL)
1279 {
1280 (*_bfd_error_handler)
1281 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1282 bfd_archive_filename (input_bfd), h->root.root.string,
1283 bfd_get_section_name (input_bfd, input_section));
1284 relocation = 0;
1285 }
1286 else
1287 relocation = (h->root.u.def.value
1288 + sec->output_section->vma
1289 + sec->output_offset);
1290 }
1291 else if (h->root.type == bfd_link_hash_undefweak)
1292 relocation = 0;
1293 else if (info->shared
1294 && (!info->symbolic || info->allow_shlib_undefined)
1295 && !info->no_undefined
1296 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1297 relocation = 0;
1298 else
1299 {
1300 if (! ((*info->callbacks->undefined_symbol)
1301 (info, h->root.root.string, input_bfd,
1302 input_section, rela->r_offset,
1303 (!info->shared || info->no_undefined
1304 || ELF_ST_VISIBILITY (h->other)))))
1305 return false;
1306 relocation = 0;
1307 }
1308 }
1309
1310 /* When generating a shared object, the relocations handled here are
1311 copied into the output file to be resolved at run time. */
1312 switch (r_type)
1313 {
1314 case R_X86_64_GOT32:
1315 /* Relocation is to the entry for this symbol in the global
1316 offset table. */
1317 case R_X86_64_GOTPCREL:
1318 /* Use global offset table as symbol value. */
1319 BFD_ASSERT (sgot != NULL);
1320
1321 if (h != NULL)
1322 {
1323 bfd_vma off = h->got.offset;
1324 BFD_ASSERT (off != (bfd_vma) -1);
1325
1326 if (! elf_hash_table (info)->dynamic_sections_created
1327 || (info->shared
1328 && (info->symbolic || h->dynindx == -1)
1329 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1330 {
1331 /* This is actually a static link, or it is a -Bsymbolic
1332 link and the symbol is defined locally, or the symbol
1333 was forced to be local because of a version file. We
1334 must initialize this entry in the global offset table.
1335 Since the offset must always be a multiple of 8, we
1336 use the least significant bit to record whether we
1337 have initialized it already.
1338
1339 When doing a dynamic link, we create a .rela.got
1340 relocation entry to initialize the value. This is
1341 done in the finish_dynamic_symbol routine. */
1342 if ((off & 1) != 0)
1343 off &= ~1;
1344 else
1345 {
1346 bfd_put_64 (output_bfd, relocation,
1347 sgot->contents + off);
1348 h->got.offset |= 1;
1349 }
1350 }
1351 if (r_type == R_X86_64_GOTPCREL)
1352 relocation = sgot->output_section->vma + sgot->output_offset + off;
1353 else
1354 relocation = sgot->output_offset + off;
1355 }
1356 else
1357 {
1358 bfd_vma off;
1359
1360 BFD_ASSERT (local_got_offsets != NULL
1361 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1362
1363 off = local_got_offsets[r_symndx];
1364
1365 /* The offset must always be a multiple of 8. We use
1366 the least significant bit to record whether we have
1367 already generated the necessary reloc. */
1368 if ((off & 1) != 0)
1369 off &= ~1;
1370 else
1371 {
1372 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
1373
1374 if (info->shared)
1375 {
1376 asection *srelgot;
1377 Elf_Internal_Rela outrel;
1378
1379 /* We need to generate a R_X86_64_RELATIVE reloc
1380 for the dynamic linker. */
1381 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1382 BFD_ASSERT (srelgot != NULL);
1383
1384 outrel.r_offset = (sgot->output_section->vma
1385 + sgot->output_offset
1386 + off);
1387 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1388 outrel.r_addend = relocation;
1389 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
1390 (((Elf64_External_Rela *)
1391 srelgot->contents)
1392 + srelgot->reloc_count));
1393 ++srelgot->reloc_count;
1394 }
1395
1396 local_got_offsets[r_symndx] |= 1;
1397 }
1398
1399 if (r_type == R_X86_64_GOTPCREL)
1400 relocation = sgot->output_section->vma + sgot->output_offset + off;
1401 else
1402 relocation = sgot->output_offset + off;
1403 }
1404
1405 break;
1406
1407 case R_X86_64_PLT32:
1408 /* Relocation is to the entry for this symbol in the
1409 procedure linkage table. */
1410
1411 /* Resolve a PLT32 reloc against a local symbol directly,
1412 without using the procedure linkage table. */
1413 if (h == NULL)
1414 break;
1415
1416 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
1417 {
1418 /* We didn't make a PLT entry for this symbol. This
1419 happens when statically linking PIC code, or when
1420 using -Bsymbolic. */
1421 break;
1422 }
1423
1424 relocation = (splt->output_section->vma
1425 + splt->output_offset
1426 + h->plt.offset);
1427 break;
1428
1429 case R_X86_64_PC8:
1430 case R_X86_64_PC16:
1431 case R_X86_64_PC32:
1432 if (h == NULL || h->dynindx == -1
1433 || (info->symbolic
1434 && h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1435 break;
1436 /* Fall through. */
1437 case R_X86_64_8:
1438 case R_X86_64_16:
1439 case R_X86_64_32:
1440 case R_X86_64_64:
1441 /* FIXME: The ABI says the linker should make sure the value is
1442 the same when it's zeroextended to 64 bit. */
1443 if (info->shared && (input_section->flags & SEC_ALLOC) != 0)
1444 {
1445 Elf_Internal_Rela outrel;
1446 boolean skip, relocate;
1447
1448 /* When generating a shared object, these relocations
1449 are copied into the output file to be resolved at run
1450 time. */
1451
1452 if (sreloc == NULL)
1453 {
1454 const char *name;
1455
1456 name = (bfd_elf_string_from_elf_section
1457 (input_bfd,
1458 elf_elfheader (input_bfd)->e_shstrndx,
1459 elf_section_data (input_section)->rel_hdr.sh_name));
1460 if (name == NULL)
1461 return false;
1462
1463 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1464 && strcmp (bfd_get_section_name (input_bfd,
1465 input_section),
1466 name + 5) == 0);
1467
1468 sreloc = bfd_get_section_by_name (dynobj, name);
1469 BFD_ASSERT (sreloc != NULL);
1470 }
1471
1472 skip = false;
1473
1474 if (elf_section_data (input_section)->stab_info == NULL)
1475 outrel.r_offset = rela->r_offset;
1476 else
1477 {
1478 bfd_vma off;
1479
1480 off = (_bfd_stab_section_offset
1481 (output_bfd, &elf_hash_table (info)->stab_info,
1482 input_section,
1483 &elf_section_data (input_section)->stab_info,
1484 rela->r_offset));
1485 if (off == (bfd_vma) -1)
1486 skip = true;
1487 outrel.r_offset = off;
1488 }
1489
1490 outrel.r_offset += (input_section->output_section->vma
1491 + input_section->output_offset);
1492
1493 if (skip)
1494 {
1495 memset (&outrel, 0, sizeof outrel);
1496 relocate = false;
1497 }
1498 /* h->dynindx may be -1 if this symbol was marked to
1499 become local. */
1500 else if (h != NULL
1501 && ((! info->symbolic && h->dynindx != -1)
1502 || (h->elf_link_hash_flags
1503 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1504 {
1505 BFD_ASSERT (h->dynindx != -1);
1506 relocate = false;
1507 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
1508 outrel.r_addend = relocation + rela->r_addend;
1509 }
1510 else
1511 {
1512 if (r_type == R_X86_64_64)
1513 {
1514 relocate = true;
1515 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1516 outrel.r_addend = relocation + rela->r_addend;
1517 }
1518 else
1519 {
1520 long sindx;
1521
1522 if (h == NULL)
1523 sec = local_sections[r_symndx];
1524 else
1525 {
1526 BFD_ASSERT (h->root.type == bfd_link_hash_defined
1527 || (h->root.type
1528 == bfd_link_hash_defweak));
1529 sec = h->root.u.def.section;
1530 }
1531 if (sec != NULL && bfd_is_abs_section (sec))
1532 sindx = 0;
1533 else if (sec == NULL || sec->owner == NULL)
1534 {
1535 bfd_set_error (bfd_error_bad_value);
1536 return false;
1537 }
1538 else
1539 {
1540 asection *osec;
1541
1542 osec = sec->output_section;
1543 sindx = elf_section_data (osec)->dynindx;
1544 BFD_ASSERT (sindx > 0);
1545 }
1546
1547 relocate = false;
1548 outrel.r_info = ELF64_R_INFO (sindx, r_type);
1549 outrel.r_addend = relocation + rela->r_addend;
1550 }
1551
1552 }
1553
1554 bfd_elf64_swap_reloca_out (output_bfd, &outrel,
1555 (((Elf64_External_Rela *)
1556 sreloc->contents)
1557 + sreloc->reloc_count));
1558 ++sreloc->reloc_count;
1559
1560 /* If this reloc is against an external symbol, we do
1561 not want to fiddle with the addend. Otherwise, we
1562 need to include the symbol value so that it becomes
1563 an addend for the dynamic reloc. */
1564 if (! relocate)
1565 continue;
1566 }
1567
1568 break;
1569
1570 default:
1571 break;
1572 }
1573
1574 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1575 contents, rela->r_offset,
1576 relocation, rela->r_addend);
1577
1578 if (r != bfd_reloc_ok)
1579 {
1580 switch (r)
1581 {
1582 default:
1583 case bfd_reloc_outofrange:
1584 abort ();
1585 case bfd_reloc_overflow:
1586 {
1587 const char *name;
1588
1589 if (h != NULL)
1590 name = h->root.root.string;
1591 else
1592 {
1593 name = bfd_elf_string_from_elf_section (input_bfd,
1594 symtab_hdr->sh_link,
1595 sym->st_name);
1596 if (name == NULL)
1597 return false;
1598 if (*name == '\0')
1599 name = bfd_section_name (input_bfd, sec);
1600 }
1601 if (! ((*info->callbacks->reloc_overflow)
1602 (info, name, howto->name, (bfd_vma) 0,
1603 input_bfd, input_section, rela->r_offset)))
1604 return false;
1605 }
1606 break;
1607 }
1608 }
1609 }
1610
1611 return true;
1612 }
1613
1614 /* Finish up dynamic symbol handling. We set the contents of various
1615 dynamic sections here. */
1616
1617 static boolean
1618 elf64_x86_64_finish_dynamic_symbol (output_bfd, info, h, sym)
1619 bfd *output_bfd;
1620 struct bfd_link_info *info;
1621 struct elf_link_hash_entry *h;
1622 Elf_Internal_Sym *sym;
1623 {
1624 bfd *dynobj;
1625
1626 dynobj = elf_hash_table (info)->dynobj;
1627
1628 if (h->plt.offset != (bfd_vma) -1)
1629 {
1630 asection *splt;
1631 asection *sgot;
1632 asection *srela;
1633 bfd_vma plt_index;
1634 bfd_vma got_offset;
1635 Elf_Internal_Rela rela;
1636
1637 /* This symbol has an entry in the procedure linkage table. Set
1638 it up. */
1639
1640 BFD_ASSERT (h->dynindx != -1);
1641
1642 splt = bfd_get_section_by_name (dynobj, ".plt");
1643 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1644 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
1645 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
1646
1647 /* Get the index in the procedure linkage table which
1648 corresponds to this symbol. This is the index of this symbol
1649 in all the symbols for which we are making plt entries. The
1650 first entry in the procedure linkage table is reserved. */
1651 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1652
1653 /* Get the offset into the .got table of the entry that
1654 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
1655 bytes. The first three are reserved for the dynamic linker. */
1656 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
1657
1658 /* Fill in the entry in the procedure linkage table. */
1659 memcpy (splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
1660 PLT_ENTRY_SIZE);
1661
1662 /* Insert the relocation positions of the plt section. The magic
1663 numbers at the end of the statements are the positions of the
1664 relocations in the plt section. */
1665 /* Put offset for jmp *name@GOTPCREL(%rip), since the
1666 instruction uses 6 bytes, subtract this value. */
1667 bfd_put_32 (output_bfd,
1668 (sgot->output_section->vma
1669 + sgot->output_offset
1670 + got_offset
1671 - splt->output_section->vma
1672 - splt->output_offset
1673 - h->plt.offset
1674 - 6),
1675 splt->contents + h->plt.offset + 2);
1676 /* Put relocation index. */
1677 bfd_put_32 (output_bfd, plt_index,
1678 splt->contents + h->plt.offset + 7);
1679 /* Put offset for jmp .PLT0. */
1680 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1681 splt->contents + h->plt.offset + 12);
1682
1683 /* Fill in the entry in the global offset table, initially this
1684 points to the pushq instruction in the PLT which is at offset 6. */
1685 bfd_put_64 (output_bfd, (splt->output_section->vma + splt->output_offset
1686 + h->plt.offset + 6),
1687 sgot->contents + got_offset);
1688
1689 /* Fill in the entry in the .rela.plt section. */
1690 rela.r_offset = (sgot->output_section->vma
1691 + sgot->output_offset
1692 + got_offset);
1693 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
1694 rela.r_addend = 0;
1695 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1696 ((Elf64_External_Rela *) srela->contents
1697 + plt_index));
1698
1699 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1700 {
1701 /* Mark the symbol as undefined, rather than as defined in
1702 the .plt section. Leave the value alone. */
1703 sym->st_shndx = SHN_UNDEF;
1704 /* If the symbol is weak, we do need to clear the value.
1705 Otherwise, the PLT entry would provide a definition for
1706 the symbol even if the symbol wasn't defined anywhere,
1707 and so the symbol would never be NULL. */
1708 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
1709 == 0)
1710 sym->st_value = 0;
1711 }
1712 }
1713
1714 if (h->got.offset != (bfd_vma) -1)
1715 {
1716 asection *sgot;
1717 asection *srela;
1718 Elf_Internal_Rela rela;
1719
1720 /* This symbol has an entry in the global offset table. Set it
1721 up. */
1722
1723 sgot = bfd_get_section_by_name (dynobj, ".got");
1724 srela = bfd_get_section_by_name (dynobj, ".rela.got");
1725 BFD_ASSERT (sgot != NULL && srela != NULL);
1726
1727 rela.r_offset = (sgot->output_section->vma
1728 + sgot->output_offset
1729 + (h->got.offset &~ (bfd_vma) 1));
1730
1731 /* If this is a static link, or it is a -Bsymbolic link and the
1732 symbol is defined locally or was forced to be local because
1733 of a version file, we just want to emit a RELATIVE reloc.
1734 The entry in the global offset table will already have been
1735 initialized in the relocate_section function. */
1736 if (! elf_hash_table (info)->dynamic_sections_created
1737 || (info->shared
1738 && (info->symbolic || h->dynindx == -1)
1739 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1740 {
1741 BFD_ASSERT((h->got.offset & 1) != 0);
1742 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1743 rela.r_addend = (h->root.u.def.value
1744 + h->root.u.def.section->output_section->vma
1745 + h->root.u.def.section->output_offset);
1746 }
1747 else
1748 {
1749 BFD_ASSERT((h->got.offset & 1) == 0);
1750 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
1751 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
1752 rela.r_addend = 0;
1753 }
1754
1755 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1756 ((Elf64_External_Rela *) srela->contents
1757 + srela->reloc_count));
1758 ++srela->reloc_count;
1759 }
1760
1761 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1762 {
1763 asection *s;
1764 Elf_Internal_Rela rela;
1765
1766 /* This symbol needs a copy reloc. Set it up. */
1767
1768 BFD_ASSERT (h->dynindx != -1
1769 && (h->root.type == bfd_link_hash_defined
1770 || h->root.type == bfd_link_hash_defweak));
1771
1772 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1773 ".rela.bss");
1774 BFD_ASSERT (s != NULL);
1775
1776 rela.r_offset = (h->root.u.def.value
1777 + h->root.u.def.section->output_section->vma
1778 + h->root.u.def.section->output_offset);
1779 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
1780 rela.r_addend = 0;
1781 bfd_elf64_swap_reloca_out (output_bfd, &rela,
1782 ((Elf64_External_Rela *) s->contents
1783 + s->reloc_count));
1784 ++s->reloc_count;
1785 }
1786
1787 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
1788 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1789 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1790 sym->st_shndx = SHN_ABS;
1791
1792 return true;
1793 }
1794
1795 /* Finish up the dynamic sections. */
1796
1797 static boolean
1798 elf64_x86_64_finish_dynamic_sections (output_bfd, info)
1799 bfd *output_bfd;
1800 struct bfd_link_info *info;
1801 {
1802 bfd *dynobj;
1803 asection *sdyn;
1804 asection *sgot;
1805
1806 dynobj = elf_hash_table (info)->dynobj;
1807
1808 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1809 BFD_ASSERT (sgot != NULL);
1810 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1811
1812 if (elf_hash_table (info)->dynamic_sections_created)
1813 {
1814 asection *splt;
1815 Elf64_External_Dyn *dyncon, *dynconend;
1816
1817 BFD_ASSERT (sdyn != NULL);
1818
1819 dyncon = (Elf64_External_Dyn *) sdyn->contents;
1820 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
1821 for (; dyncon < dynconend; dyncon++)
1822 {
1823 Elf_Internal_Dyn dyn;
1824 const char *name;
1825 asection *s;
1826
1827 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
1828
1829 switch (dyn.d_tag)
1830 {
1831 default:
1832 continue;
1833
1834 case DT_PLTGOT:
1835 name = ".got";
1836 goto get_vma;
1837
1838 case DT_JMPREL:
1839 name = ".rela.plt";
1840
1841 get_vma:
1842 s = bfd_get_section_by_name (output_bfd, name);
1843 BFD_ASSERT (s != NULL);
1844 dyn.d_un.d_ptr = s->vma;
1845 break;
1846
1847 case DT_RELASZ:
1848 /* FIXME: This comment and code is from elf64-alpha.c: */
1849 /* My interpretation of the TIS v1.1 ELF document indicates
1850 that RELASZ should not include JMPREL. This is not what
1851 the rest of the BFD does. It is, however, what the
1852 glibc ld.so wants. Do this fixup here until we found
1853 out who is right. */
1854 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
1855 if (s)
1856 {
1857 /* Subtract JMPREL size from RELASZ. */
1858 dyn.d_un.d_val -=
1859 (s->_cooked_size ? s->_cooked_size : s->_raw_size);
1860 }
1861 break;
1862
1863 case DT_PLTRELSZ:
1864 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
1865 BFD_ASSERT (s != NULL);
1866 dyn.d_un.d_val =
1867 (s->_cooked_size != 0 ? s->_cooked_size : s->_raw_size);
1868 break;
1869 }
1870 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
1871 }
1872
1873 /* Initialize the contents of the .plt section. */
1874 splt = bfd_get_section_by_name (dynobj, ".plt");
1875 BFD_ASSERT (splt != NULL);
1876 if (splt->_raw_size > 0)
1877 {
1878 /* Fill in the first entry in the procedure linkage table. */
1879 memcpy (splt->contents, elf64_x86_64_plt0_entry, PLT_ENTRY_SIZE);
1880 /* Add offset for pushq GOT+8(%rip), since the instruction
1881 uses 6 bytes subtract this value. */
1882 bfd_put_32 (output_bfd,
1883 (sgot->output_section->vma
1884 + sgot->output_offset
1885 + 8
1886 - splt->output_section->vma
1887 - splt->output_offset
1888 - 6),
1889 splt->contents + 2);
1890 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
1891 the end of the instruction. */
1892 bfd_put_32 (output_bfd,
1893 (sgot->output_section->vma
1894 + sgot->output_offset
1895 + 16
1896 - splt->output_section->vma
1897 - splt->output_offset
1898 - 12),
1899 splt->contents + 8);
1900
1901 }
1902
1903 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
1904 PLT_ENTRY_SIZE;
1905 }
1906
1907 /* Set the first entry in the global offset table to the address of
1908 the dynamic section. */
1909 if (sgot->_raw_size > 0)
1910 {
1911 if (sdyn == NULL)
1912 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
1913 else
1914 bfd_put_64 (output_bfd,
1915 sdyn->output_section->vma + sdyn->output_offset,
1916 sgot->contents);
1917 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
1918 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + GOT_ENTRY_SIZE);
1919 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + GOT_ENTRY_SIZE*2);
1920 }
1921
1922 elf_section_data (sgot->output_section)->this_hdr.sh_entsize =
1923 GOT_ENTRY_SIZE;
1924
1925 return true;
1926 }
1927
1928 static enum elf_reloc_type_class
1929 elf64_x86_64_reloc_type_class (rela)
1930 const Elf_Internal_Rela *rela;
1931 {
1932 switch ((int) ELF64_R_TYPE (rela->r_info))
1933 {
1934 case R_X86_64_RELATIVE:
1935 return reloc_class_relative;
1936 case R_X86_64_JUMP_SLOT:
1937 return reloc_class_plt;
1938 case R_X86_64_COPY:
1939 return reloc_class_copy;
1940 default:
1941 return reloc_class_normal;
1942 }
1943 }
1944
1945 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
1946 #define TARGET_LITTLE_NAME "elf64-x86-64"
1947 #define ELF_ARCH bfd_arch_i386
1948 #define ELF_MACHINE_CODE EM_X86_64
1949 #define ELF_MAXPAGESIZE 0x100000
1950
1951 #define elf_backend_can_gc_sections 1
1952 #define elf_backend_can_refcount 1
1953 #define elf_backend_want_got_plt 1
1954 #define elf_backend_plt_readonly 1
1955 #define elf_backend_want_plt_sym 0
1956 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
1957 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
1958
1959 #define elf_info_to_howto elf64_x86_64_info_to_howto
1960
1961 #define bfd_elf64_bfd_final_link _bfd_elf64_gc_common_final_link
1962 #define bfd_elf64_bfd_link_hash_table_create \
1963 elf64_x86_64_link_hash_table_create
1964 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
1965
1966 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
1967 #define elf_backend_check_relocs elf64_x86_64_check_relocs
1968 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
1969 #define elf_backend_finish_dynamic_sections \
1970 elf64_x86_64_finish_dynamic_sections
1971 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
1972 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
1973 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
1974 #define elf_backend_relocate_section elf64_x86_64_relocate_section
1975 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
1976 #define elf_backend_object_p elf64_x86_64_elf_object_p
1977 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
1978
1979 #include "elf64-target.h"
This page took 0.068338 seconds and 5 git commands to generate.