PR ld/2754
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27
28 #include "elf/x86-64.h"
29
30 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
31 #define MINUS_ONE (~ (bfd_vma) 0)
32
33 /* The relocation "howto" table. Order of fields:
34 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
35 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
36 static reloc_howto_type x86_64_elf_howto_table[] =
37 {
38 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
39 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
40 FALSE),
41 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
42 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
43 FALSE),
44 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
45 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
46 TRUE),
47 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
48 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
49 FALSE),
50 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
51 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
52 TRUE),
53 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
54 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
55 FALSE),
56 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
57 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
58 MINUS_ONE, FALSE),
59 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
60 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
61 MINUS_ONE, FALSE),
62 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
63 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
64 MINUS_ONE, FALSE),
65 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
66 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
67 0xffffffff, TRUE),
68 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
69 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
70 FALSE),
71 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
72 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
73 FALSE),
74 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
76 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
77 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
78 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
80 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
81 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
82 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
84 MINUS_ONE, FALSE),
85 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
86 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
87 MINUS_ONE, FALSE),
88 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
89 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
90 MINUS_ONE, FALSE),
91 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
92 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
93 0xffffffff, TRUE),
94 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
95 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
96 0xffffffff, TRUE),
97 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
98 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
99 0xffffffff, FALSE),
100 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
101 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
102 0xffffffff, TRUE),
103 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
104 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
105 0xffffffff, FALSE),
106 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
108 TRUE),
109 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
111 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
112 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
114 FALSE, 0xffffffff, 0xffffffff, TRUE),
115 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
116 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
117 FALSE),
118 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
119 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
120 MINUS_ONE, TRUE),
121 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
122 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
123 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
124 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
125 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
126 MINUS_ONE, FALSE),
127 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
128 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
129 MINUS_ONE, FALSE),
130 EMPTY_HOWTO (32),
131 EMPTY_HOWTO (33),
132 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
133 complain_overflow_bitfield, bfd_elf_generic_reloc,
134 "R_X86_64_GOTPC32_TLSDESC",
135 FALSE, 0xffffffff, 0xffffffff, TRUE),
136 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
137 complain_overflow_dont, bfd_elf_generic_reloc,
138 "R_X86_64_TLSDESC_CALL",
139 FALSE, 0, 0, FALSE),
140 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
141 complain_overflow_bitfield, bfd_elf_generic_reloc,
142 "R_X86_64_TLSDESC",
143 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
144
145 /* We have a gap in the reloc numbers here.
146 R_X86_64_standard counts the number up to this point, and
147 R_X86_64_vt_offset is the value to subtract from a reloc type of
148 R_X86_64_GNU_VT* to form an index into this table. */
149 #define R_X86_64_standard (R_X86_64_TLSDESC + 1)
150 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
151
152 /* GNU extension to record C++ vtable hierarchy. */
153 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
154 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
155
156 /* GNU extension to record C++ vtable member usage. */
157 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
158 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
159 FALSE)
160 };
161
162 /* Map BFD relocs to the x86_64 elf relocs. */
163 struct elf_reloc_map
164 {
165 bfd_reloc_code_real_type bfd_reloc_val;
166 unsigned char elf_reloc_val;
167 };
168
169 static const struct elf_reloc_map x86_64_reloc_map[] =
170 {
171 { BFD_RELOC_NONE, R_X86_64_NONE, },
172 { BFD_RELOC_64, R_X86_64_64, },
173 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
174 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
175 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
176 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
177 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
178 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
179 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
180 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
181 { BFD_RELOC_32, R_X86_64_32, },
182 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
183 { BFD_RELOC_16, R_X86_64_16, },
184 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
185 { BFD_RELOC_8, R_X86_64_8, },
186 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
187 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
188 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
189 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
190 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
191 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
192 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
193 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
194 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
195 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
196 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
197 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
198 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
199 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
200 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
201 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
202 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
203 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
204 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
205 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
206 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
207 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
208 };
209
210 static reloc_howto_type *
211 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
212 {
213 unsigned i;
214
215 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
216 || r_type >= (unsigned int) R_X86_64_max)
217 {
218 if (r_type >= (unsigned int) R_X86_64_standard)
219 {
220 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
221 abfd, (int) r_type);
222 r_type = R_X86_64_NONE;
223 }
224 i = r_type;
225 }
226 else
227 i = r_type - (unsigned int) R_X86_64_vt_offset;
228 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
229 return &x86_64_elf_howto_table[i];
230 }
231
232 /* Given a BFD reloc type, return a HOWTO structure. */
233 static reloc_howto_type *
234 elf64_x86_64_reloc_type_lookup (bfd *abfd,
235 bfd_reloc_code_real_type code)
236 {
237 unsigned int i;
238
239 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
240 i++)
241 {
242 if (x86_64_reloc_map[i].bfd_reloc_val == code)
243 return elf64_x86_64_rtype_to_howto (abfd,
244 x86_64_reloc_map[i].elf_reloc_val);
245 }
246 return 0;
247 }
248
249 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
250
251 static void
252 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
253 Elf_Internal_Rela *dst)
254 {
255 unsigned r_type;
256
257 r_type = ELF64_R_TYPE (dst->r_info);
258 cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type);
259 BFD_ASSERT (r_type == cache_ptr->howto->type);
260 }
261 \f
262 /* Support for core dump NOTE sections. */
263 static bfd_boolean
264 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
265 {
266 int offset;
267 size_t size;
268
269 switch (note->descsz)
270 {
271 default:
272 return FALSE;
273
274 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
275 /* pr_cursig */
276 elf_tdata (abfd)->core_signal
277 = bfd_get_16 (abfd, note->descdata + 12);
278
279 /* pr_pid */
280 elf_tdata (abfd)->core_pid
281 = bfd_get_32 (abfd, note->descdata + 32);
282
283 /* pr_reg */
284 offset = 112;
285 size = 216;
286
287 break;
288 }
289
290 /* Make a ".reg/999" section. */
291 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
292 size, note->descpos + offset);
293 }
294
295 static bfd_boolean
296 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
297 {
298 switch (note->descsz)
299 {
300 default:
301 return FALSE;
302
303 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
304 elf_tdata (abfd)->core_program
305 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
306 elf_tdata (abfd)->core_command
307 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
308 }
309
310 /* Note that for some reason, a spurious space is tacked
311 onto the end of the args in some (at least one anyway)
312 implementations, so strip it off if it exists. */
313
314 {
315 char *command = elf_tdata (abfd)->core_command;
316 int n = strlen (command);
317
318 if (0 < n && command[n - 1] == ' ')
319 command[n - 1] = '\0';
320 }
321
322 return TRUE;
323 }
324 \f
325 /* Functions for the x86-64 ELF linker. */
326
327 /* The name of the dynamic interpreter. This is put in the .interp
328 section. */
329
330 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
331
332 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
333 copying dynamic variables from a shared lib into an app's dynbss
334 section, and instead use a dynamic relocation to point into the
335 shared lib. */
336 #define ELIMINATE_COPY_RELOCS 1
337
338 /* The size in bytes of an entry in the global offset table. */
339
340 #define GOT_ENTRY_SIZE 8
341
342 /* The size in bytes of an entry in the procedure linkage table. */
343
344 #define PLT_ENTRY_SIZE 16
345
346 /* The first entry in a procedure linkage table looks like this. See the
347 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
348
349 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
350 {
351 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
352 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
353 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
354 };
355
356 /* Subsequent entries in a procedure linkage table look like this. */
357
358 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
359 {
360 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
361 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
362 0x68, /* pushq immediate */
363 0, 0, 0, 0, /* replaced with index into relocation table. */
364 0xe9, /* jmp relative */
365 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
366 };
367
368 /* The x86-64 linker needs to keep track of the number of relocs that
369 it decides to copy as dynamic relocs in check_relocs for each symbol.
370 This is so that it can later discard them if they are found to be
371 unnecessary. We store the information in a field extending the
372 regular ELF linker hash table. */
373
374 struct elf64_x86_64_dyn_relocs
375 {
376 /* Next section. */
377 struct elf64_x86_64_dyn_relocs *next;
378
379 /* The input section of the reloc. */
380 asection *sec;
381
382 /* Total number of relocs copied for the input section. */
383 bfd_size_type count;
384
385 /* Number of pc-relative relocs copied for the input section. */
386 bfd_size_type pc_count;
387 };
388
389 /* x86-64 ELF linker hash entry. */
390
391 struct elf64_x86_64_link_hash_entry
392 {
393 struct elf_link_hash_entry elf;
394
395 /* Track dynamic relocs copied for this symbol. */
396 struct elf64_x86_64_dyn_relocs *dyn_relocs;
397
398 #define GOT_UNKNOWN 0
399 #define GOT_NORMAL 1
400 #define GOT_TLS_GD 2
401 #define GOT_TLS_IE 3
402 #define GOT_TLS_GDESC 4
403 #define GOT_TLS_GD_BOTH_P(type) \
404 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
405 #define GOT_TLS_GD_P(type) \
406 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
407 #define GOT_TLS_GDESC_P(type) \
408 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
409 #define GOT_TLS_GD_ANY_P(type) \
410 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
411 unsigned char tls_type;
412
413 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
414 starting at the end of the jump table. */
415 bfd_vma tlsdesc_got;
416 };
417
418 #define elf64_x86_64_hash_entry(ent) \
419 ((struct elf64_x86_64_link_hash_entry *)(ent))
420
421 struct elf64_x86_64_obj_tdata
422 {
423 struct elf_obj_tdata root;
424
425 /* tls_type for each local got entry. */
426 char *local_got_tls_type;
427
428 /* GOTPLT entries for TLS descriptors. */
429 bfd_vma *local_tlsdesc_gotent;
430 };
431
432 #define elf64_x86_64_tdata(abfd) \
433 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
434
435 #define elf64_x86_64_local_got_tls_type(abfd) \
436 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
437
438 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
439 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
440
441 /* x86-64 ELF linker hash table. */
442
443 struct elf64_x86_64_link_hash_table
444 {
445 struct elf_link_hash_table elf;
446
447 /* Short-cuts to get to dynamic linker sections. */
448 asection *sgot;
449 asection *sgotplt;
450 asection *srelgot;
451 asection *splt;
452 asection *srelplt;
453 asection *sdynbss;
454 asection *srelbss;
455
456 /* The offset into splt of the PLT entry for the TLS descriptor
457 resolver. Special values are 0, if not necessary (or not found
458 to be necessary yet), and -1 if needed but not determined
459 yet. */
460 bfd_vma tlsdesc_plt;
461 /* The offset into sgot of the GOT entry used by the PLT entry
462 above. */
463 bfd_vma tlsdesc_got;
464
465 union {
466 bfd_signed_vma refcount;
467 bfd_vma offset;
468 } tls_ld_got;
469
470 /* The amount of space used by the jump slots in the GOT. */
471 bfd_vma sgotplt_jump_table_size;
472
473 /* Small local sym to section mapping cache. */
474 struct sym_sec_cache sym_sec;
475 };
476
477 /* Get the x86-64 ELF linker hash table from a link_info structure. */
478
479 #define elf64_x86_64_hash_table(p) \
480 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
481
482 #define elf64_x86_64_compute_jump_table_size(htab) \
483 ((htab)->srelplt->reloc_count * GOT_ENTRY_SIZE)
484
485 /* Create an entry in an x86-64 ELF linker hash table. */
486
487 static struct bfd_hash_entry *
488 link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
489 const char *string)
490 {
491 /* Allocate the structure if it has not already been allocated by a
492 subclass. */
493 if (entry == NULL)
494 {
495 entry = bfd_hash_allocate (table,
496 sizeof (struct elf64_x86_64_link_hash_entry));
497 if (entry == NULL)
498 return entry;
499 }
500
501 /* Call the allocation method of the superclass. */
502 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
503 if (entry != NULL)
504 {
505 struct elf64_x86_64_link_hash_entry *eh;
506
507 eh = (struct elf64_x86_64_link_hash_entry *) entry;
508 eh->dyn_relocs = NULL;
509 eh->tls_type = GOT_UNKNOWN;
510 eh->tlsdesc_got = (bfd_vma) -1;
511 }
512
513 return entry;
514 }
515
516 /* Create an X86-64 ELF linker hash table. */
517
518 static struct bfd_link_hash_table *
519 elf64_x86_64_link_hash_table_create (bfd *abfd)
520 {
521 struct elf64_x86_64_link_hash_table *ret;
522 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
523
524 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
525 if (ret == NULL)
526 return NULL;
527
528 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
529 sizeof (struct elf64_x86_64_link_hash_entry)))
530 {
531 free (ret);
532 return NULL;
533 }
534
535 ret->sgot = NULL;
536 ret->sgotplt = NULL;
537 ret->srelgot = NULL;
538 ret->splt = NULL;
539 ret->srelplt = NULL;
540 ret->sdynbss = NULL;
541 ret->srelbss = NULL;
542 ret->sym_sec.abfd = NULL;
543 ret->tlsdesc_plt = 0;
544 ret->tlsdesc_got = 0;
545 ret->tls_ld_got.refcount = 0;
546 ret->sgotplt_jump_table_size = 0;
547
548 return &ret->elf.root;
549 }
550
551 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
552 shortcuts to them in our hash table. */
553
554 static bfd_boolean
555 create_got_section (bfd *dynobj, struct bfd_link_info *info)
556 {
557 struct elf64_x86_64_link_hash_table *htab;
558
559 if (! _bfd_elf_create_got_section (dynobj, info))
560 return FALSE;
561
562 htab = elf64_x86_64_hash_table (info);
563 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
564 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
565 if (!htab->sgot || !htab->sgotplt)
566 abort ();
567
568 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
569 (SEC_ALLOC | SEC_LOAD
570 | SEC_HAS_CONTENTS
571 | SEC_IN_MEMORY
572 | SEC_LINKER_CREATED
573 | SEC_READONLY));
574 if (htab->srelgot == NULL
575 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
576 return FALSE;
577 return TRUE;
578 }
579
580 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
581 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
582 hash table. */
583
584 static bfd_boolean
585 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
586 {
587 struct elf64_x86_64_link_hash_table *htab;
588
589 htab = elf64_x86_64_hash_table (info);
590 if (!htab->sgot && !create_got_section (dynobj, info))
591 return FALSE;
592
593 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
594 return FALSE;
595
596 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
597 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
598 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
599 if (!info->shared)
600 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
601
602 if (!htab->splt || !htab->srelplt || !htab->sdynbss
603 || (!info->shared && !htab->srelbss))
604 abort ();
605
606 return TRUE;
607 }
608
609 /* Copy the extra info we tack onto an elf_link_hash_entry. */
610
611 static void
612 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
613 struct elf_link_hash_entry *dir,
614 struct elf_link_hash_entry *ind)
615 {
616 struct elf64_x86_64_link_hash_entry *edir, *eind;
617
618 edir = (struct elf64_x86_64_link_hash_entry *) dir;
619 eind = (struct elf64_x86_64_link_hash_entry *) ind;
620
621 if (eind->dyn_relocs != NULL)
622 {
623 if (edir->dyn_relocs != NULL)
624 {
625 struct elf64_x86_64_dyn_relocs **pp;
626 struct elf64_x86_64_dyn_relocs *p;
627
628 /* Add reloc counts against the indirect sym to the direct sym
629 list. Merge any entries against the same section. */
630 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
631 {
632 struct elf64_x86_64_dyn_relocs *q;
633
634 for (q = edir->dyn_relocs; q != NULL; q = q->next)
635 if (q->sec == p->sec)
636 {
637 q->pc_count += p->pc_count;
638 q->count += p->count;
639 *pp = p->next;
640 break;
641 }
642 if (q == NULL)
643 pp = &p->next;
644 }
645 *pp = edir->dyn_relocs;
646 }
647
648 edir->dyn_relocs = eind->dyn_relocs;
649 eind->dyn_relocs = NULL;
650 }
651
652 if (ind->root.type == bfd_link_hash_indirect
653 && dir->got.refcount <= 0)
654 {
655 edir->tls_type = eind->tls_type;
656 eind->tls_type = GOT_UNKNOWN;
657 }
658
659 if (ELIMINATE_COPY_RELOCS
660 && ind->root.type != bfd_link_hash_indirect
661 && dir->dynamic_adjusted)
662 {
663 /* If called to transfer flags for a weakdef during processing
664 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
665 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
666 dir->ref_dynamic |= ind->ref_dynamic;
667 dir->ref_regular |= ind->ref_regular;
668 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
669 dir->needs_plt |= ind->needs_plt;
670 dir->pointer_equality_needed |= ind->pointer_equality_needed;
671 }
672 else
673 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
674 }
675
676 static bfd_boolean
677 elf64_x86_64_mkobject (bfd *abfd)
678 {
679 if (abfd->tdata.any == NULL)
680 {
681 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
682 abfd->tdata.any = bfd_zalloc (abfd, amt);
683 if (abfd->tdata.any == NULL)
684 return FALSE;
685 }
686 return bfd_elf_mkobject (abfd);
687 }
688
689 static bfd_boolean
690 elf64_x86_64_elf_object_p (bfd *abfd)
691 {
692 /* Set the right machine number for an x86-64 elf64 file. */
693 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
694 return TRUE;
695 }
696
697 static int
698 elf64_x86_64_tls_transition (struct bfd_link_info *info, int r_type, int is_local)
699 {
700 if (info->shared)
701 return r_type;
702
703 switch (r_type)
704 {
705 case R_X86_64_TLSGD:
706 case R_X86_64_GOTPC32_TLSDESC:
707 case R_X86_64_TLSDESC_CALL:
708 case R_X86_64_GOTTPOFF:
709 if (is_local)
710 return R_X86_64_TPOFF32;
711 return R_X86_64_GOTTPOFF;
712 case R_X86_64_TLSLD:
713 return R_X86_64_TPOFF32;
714 }
715
716 return r_type;
717 }
718
719 /* Look through the relocs for a section during the first phase, and
720 calculate needed space in the global offset table, procedure
721 linkage table, and dynamic reloc sections. */
722
723 static bfd_boolean
724 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec,
725 const Elf_Internal_Rela *relocs)
726 {
727 struct elf64_x86_64_link_hash_table *htab;
728 Elf_Internal_Shdr *symtab_hdr;
729 struct elf_link_hash_entry **sym_hashes;
730 const Elf_Internal_Rela *rel;
731 const Elf_Internal_Rela *rel_end;
732 asection *sreloc;
733
734 if (info->relocatable)
735 return TRUE;
736
737 htab = elf64_x86_64_hash_table (info);
738 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
739 sym_hashes = elf_sym_hashes (abfd);
740
741 sreloc = NULL;
742
743 rel_end = relocs + sec->reloc_count;
744 for (rel = relocs; rel < rel_end; rel++)
745 {
746 unsigned int r_type;
747 unsigned long r_symndx;
748 struct elf_link_hash_entry *h;
749
750 r_symndx = ELF64_R_SYM (rel->r_info);
751 r_type = ELF64_R_TYPE (rel->r_info);
752
753 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
754 {
755 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
756 abfd, r_symndx);
757 return FALSE;
758 }
759
760 if (r_symndx < symtab_hdr->sh_info)
761 h = NULL;
762 else
763 {
764 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
765 while (h->root.type == bfd_link_hash_indirect
766 || h->root.type == bfd_link_hash_warning)
767 h = (struct elf_link_hash_entry *) h->root.u.i.link;
768 }
769
770 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
771 switch (r_type)
772 {
773 case R_X86_64_TLSLD:
774 htab->tls_ld_got.refcount += 1;
775 goto create_got;
776
777 case R_X86_64_TPOFF32:
778 if (info->shared)
779 {
780 (*_bfd_error_handler)
781 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
782 abfd,
783 x86_64_elf_howto_table[r_type].name,
784 (h) ? h->root.root.string : "a local symbol");
785 bfd_set_error (bfd_error_bad_value);
786 return FALSE;
787 }
788 break;
789
790 case R_X86_64_GOTTPOFF:
791 if (info->shared)
792 info->flags |= DF_STATIC_TLS;
793 /* Fall through */
794
795 case R_X86_64_GOT32:
796 case R_X86_64_GOTPCREL:
797 case R_X86_64_TLSGD:
798 case R_X86_64_GOT64:
799 case R_X86_64_GOTPCREL64:
800 case R_X86_64_GOTPLT64:
801 case R_X86_64_GOTPC32_TLSDESC:
802 case R_X86_64_TLSDESC_CALL:
803 /* This symbol requires a global offset table entry. */
804 {
805 int tls_type, old_tls_type;
806
807 switch (r_type)
808 {
809 default: tls_type = GOT_NORMAL; break;
810 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
811 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
812 case R_X86_64_GOTPC32_TLSDESC:
813 case R_X86_64_TLSDESC_CALL:
814 tls_type = GOT_TLS_GDESC; break;
815 }
816
817 if (h != NULL)
818 {
819 if (r_type == R_X86_64_GOTPLT64)
820 {
821 /* This relocation indicates that we also need
822 a PLT entry, as this is a function. We don't need
823 a PLT entry for local symbols. */
824 h->needs_plt = 1;
825 h->plt.refcount += 1;
826 }
827 h->got.refcount += 1;
828 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
829 }
830 else
831 {
832 bfd_signed_vma *local_got_refcounts;
833
834 /* This is a global offset table entry for a local symbol. */
835 local_got_refcounts = elf_local_got_refcounts (abfd);
836 if (local_got_refcounts == NULL)
837 {
838 bfd_size_type size;
839
840 size = symtab_hdr->sh_info;
841 size *= sizeof (bfd_signed_vma)
842 + sizeof (bfd_vma) + sizeof (char);
843 local_got_refcounts = ((bfd_signed_vma *)
844 bfd_zalloc (abfd, size));
845 if (local_got_refcounts == NULL)
846 return FALSE;
847 elf_local_got_refcounts (abfd) = local_got_refcounts;
848 elf64_x86_64_local_tlsdesc_gotent (abfd)
849 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
850 elf64_x86_64_local_got_tls_type (abfd)
851 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
852 }
853 local_got_refcounts[r_symndx] += 1;
854 old_tls_type
855 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
856 }
857
858 /* If a TLS symbol is accessed using IE at least once,
859 there is no point to use dynamic model for it. */
860 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
861 && (! GOT_TLS_GD_ANY_P (old_tls_type)
862 || tls_type != GOT_TLS_IE))
863 {
864 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
865 tls_type = old_tls_type;
866 else if (GOT_TLS_GD_ANY_P (old_tls_type)
867 && GOT_TLS_GD_ANY_P (tls_type))
868 tls_type |= old_tls_type;
869 else
870 {
871 (*_bfd_error_handler)
872 (_("%B: %s' accessed both as normal and thread local symbol"),
873 abfd, h ? h->root.root.string : "<local>");
874 return FALSE;
875 }
876 }
877
878 if (old_tls_type != tls_type)
879 {
880 if (h != NULL)
881 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
882 else
883 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
884 }
885 }
886 /* Fall through */
887
888 case R_X86_64_GOTOFF64:
889 case R_X86_64_GOTPC32:
890 case R_X86_64_GOTPC64:
891 create_got:
892 if (htab->sgot == NULL)
893 {
894 if (htab->elf.dynobj == NULL)
895 htab->elf.dynobj = abfd;
896 if (!create_got_section (htab->elf.dynobj, info))
897 return FALSE;
898 }
899 break;
900
901 case R_X86_64_PLT32:
902 /* This symbol requires a procedure linkage table entry. We
903 actually build the entry in adjust_dynamic_symbol,
904 because this might be a case of linking PIC code which is
905 never referenced by a dynamic object, in which case we
906 don't need to generate a procedure linkage table entry
907 after all. */
908
909 /* If this is a local symbol, we resolve it directly without
910 creating a procedure linkage table entry. */
911 if (h == NULL)
912 continue;
913
914 h->needs_plt = 1;
915 h->plt.refcount += 1;
916 break;
917
918 case R_X86_64_PLTOFF64:
919 /* This tries to form the 'address' of a function relative
920 to GOT. For global symbols we need a PLT entry. */
921 if (h != NULL)
922 {
923 h->needs_plt = 1;
924 h->plt.refcount += 1;
925 }
926 goto create_got;
927
928 case R_X86_64_8:
929 case R_X86_64_16:
930 case R_X86_64_32:
931 case R_X86_64_32S:
932 /* Let's help debug shared library creation. These relocs
933 cannot be used in shared libs. Don't error out for
934 sections we don't care about, such as debug sections or
935 non-constant sections. */
936 if (info->shared
937 && (sec->flags & SEC_ALLOC) != 0
938 && (sec->flags & SEC_READONLY) != 0)
939 {
940 (*_bfd_error_handler)
941 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
942 abfd,
943 x86_64_elf_howto_table[r_type].name,
944 (h) ? h->root.root.string : "a local symbol");
945 bfd_set_error (bfd_error_bad_value);
946 return FALSE;
947 }
948 /* Fall through. */
949
950 case R_X86_64_PC8:
951 case R_X86_64_PC16:
952 case R_X86_64_PC32:
953 case R_X86_64_PC64:
954 case R_X86_64_64:
955 if (h != NULL && !info->shared)
956 {
957 /* If this reloc is in a read-only section, we might
958 need a copy reloc. We can't check reliably at this
959 stage whether the section is read-only, as input
960 sections have not yet been mapped to output sections.
961 Tentatively set the flag for now, and correct in
962 adjust_dynamic_symbol. */
963 h->non_got_ref = 1;
964
965 /* We may need a .plt entry if the function this reloc
966 refers to is in a shared lib. */
967 h->plt.refcount += 1;
968 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
969 h->pointer_equality_needed = 1;
970 }
971
972 /* If we are creating a shared library, and this is a reloc
973 against a global symbol, or a non PC relative reloc
974 against a local symbol, then we need to copy the reloc
975 into the shared library. However, if we are linking with
976 -Bsymbolic, we do not need to copy a reloc against a
977 global symbol which is defined in an object we are
978 including in the link (i.e., DEF_REGULAR is set). At
979 this point we have not seen all the input files, so it is
980 possible that DEF_REGULAR is not set now but will be set
981 later (it is never cleared). In case of a weak definition,
982 DEF_REGULAR may be cleared later by a strong definition in
983 a shared library. We account for that possibility below by
984 storing information in the relocs_copied field of the hash
985 table entry. A similar situation occurs when creating
986 shared libraries and symbol visibility changes render the
987 symbol local.
988
989 If on the other hand, we are creating an executable, we
990 may need to keep relocations for symbols satisfied by a
991 dynamic library if we manage to avoid copy relocs for the
992 symbol. */
993 if ((info->shared
994 && (sec->flags & SEC_ALLOC) != 0
995 && (((r_type != R_X86_64_PC8)
996 && (r_type != R_X86_64_PC16)
997 && (r_type != R_X86_64_PC32)
998 && (r_type != R_X86_64_PC64))
999 || (h != NULL
1000 && (! info->symbolic
1001 || h->root.type == bfd_link_hash_defweak
1002 || !h->def_regular))))
1003 || (ELIMINATE_COPY_RELOCS
1004 && !info->shared
1005 && (sec->flags & SEC_ALLOC) != 0
1006 && h != NULL
1007 && (h->root.type == bfd_link_hash_defweak
1008 || !h->def_regular)))
1009 {
1010 struct elf64_x86_64_dyn_relocs *p;
1011 struct elf64_x86_64_dyn_relocs **head;
1012
1013 /* We must copy these reloc types into the output file.
1014 Create a reloc section in dynobj and make room for
1015 this reloc. */
1016 if (sreloc == NULL)
1017 {
1018 const char *name;
1019 bfd *dynobj;
1020
1021 name = (bfd_elf_string_from_elf_section
1022 (abfd,
1023 elf_elfheader (abfd)->e_shstrndx,
1024 elf_section_data (sec)->rel_hdr.sh_name));
1025 if (name == NULL)
1026 return FALSE;
1027
1028 if (strncmp (name, ".rela", 5) != 0
1029 || strcmp (bfd_get_section_name (abfd, sec),
1030 name + 5) != 0)
1031 {
1032 (*_bfd_error_handler)
1033 (_("%B: bad relocation section name `%s\'"),
1034 abfd, name);
1035 }
1036
1037 if (htab->elf.dynobj == NULL)
1038 htab->elf.dynobj = abfd;
1039
1040 dynobj = htab->elf.dynobj;
1041
1042 sreloc = bfd_get_section_by_name (dynobj, name);
1043 if (sreloc == NULL)
1044 {
1045 flagword flags;
1046
1047 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1048 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1049 if ((sec->flags & SEC_ALLOC) != 0)
1050 flags |= SEC_ALLOC | SEC_LOAD;
1051 sreloc = bfd_make_section_with_flags (dynobj,
1052 name,
1053 flags);
1054 if (sreloc == NULL
1055 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1056 return FALSE;
1057 }
1058 elf_section_data (sec)->sreloc = sreloc;
1059 }
1060
1061 /* If this is a global symbol, we count the number of
1062 relocations we need for this symbol. */
1063 if (h != NULL)
1064 {
1065 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1066 }
1067 else
1068 {
1069 void **vpp;
1070 /* Track dynamic relocs needed for local syms too.
1071 We really need local syms available to do this
1072 easily. Oh well. */
1073
1074 asection *s;
1075 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1076 sec, r_symndx);
1077 if (s == NULL)
1078 return FALSE;
1079
1080 /* Beware of type punned pointers vs strict aliasing
1081 rules. */
1082 vpp = &(elf_section_data (s)->local_dynrel);
1083 head = (struct elf64_x86_64_dyn_relocs **)vpp;
1084 }
1085
1086 p = *head;
1087 if (p == NULL || p->sec != sec)
1088 {
1089 bfd_size_type amt = sizeof *p;
1090 p = ((struct elf64_x86_64_dyn_relocs *)
1091 bfd_alloc (htab->elf.dynobj, amt));
1092 if (p == NULL)
1093 return FALSE;
1094 p->next = *head;
1095 *head = p;
1096 p->sec = sec;
1097 p->count = 0;
1098 p->pc_count = 0;
1099 }
1100
1101 p->count += 1;
1102 if (r_type == R_X86_64_PC8
1103 || r_type == R_X86_64_PC16
1104 || r_type == R_X86_64_PC32
1105 || r_type == R_X86_64_PC64)
1106 p->pc_count += 1;
1107 }
1108 break;
1109
1110 /* This relocation describes the C++ object vtable hierarchy.
1111 Reconstruct it for later use during GC. */
1112 case R_X86_64_GNU_VTINHERIT:
1113 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1114 return FALSE;
1115 break;
1116
1117 /* This relocation describes which C++ vtable entries are actually
1118 used. Record for later use during GC. */
1119 case R_X86_64_GNU_VTENTRY:
1120 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1121 return FALSE;
1122 break;
1123
1124 default:
1125 break;
1126 }
1127 }
1128
1129 return TRUE;
1130 }
1131
1132 /* Return the section that should be marked against GC for a given
1133 relocation. */
1134
1135 static asection *
1136 elf64_x86_64_gc_mark_hook (asection *sec,
1137 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1138 Elf_Internal_Rela *rel,
1139 struct elf_link_hash_entry *h,
1140 Elf_Internal_Sym *sym)
1141 {
1142 if (h != NULL)
1143 {
1144 switch (ELF64_R_TYPE (rel->r_info))
1145 {
1146 case R_X86_64_GNU_VTINHERIT:
1147 case R_X86_64_GNU_VTENTRY:
1148 break;
1149
1150 default:
1151 switch (h->root.type)
1152 {
1153 case bfd_link_hash_defined:
1154 case bfd_link_hash_defweak:
1155 return h->root.u.def.section;
1156
1157 case bfd_link_hash_common:
1158 return h->root.u.c.p->section;
1159
1160 default:
1161 break;
1162 }
1163 }
1164 }
1165 else
1166 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1167
1168 return NULL;
1169 }
1170
1171 /* Update the got entry reference counts for the section being removed. */
1172
1173 static bfd_boolean
1174 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1175 asection *sec, const Elf_Internal_Rela *relocs)
1176 {
1177 Elf_Internal_Shdr *symtab_hdr;
1178 struct elf_link_hash_entry **sym_hashes;
1179 bfd_signed_vma *local_got_refcounts;
1180 const Elf_Internal_Rela *rel, *relend;
1181
1182 elf_section_data (sec)->local_dynrel = NULL;
1183
1184 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1185 sym_hashes = elf_sym_hashes (abfd);
1186 local_got_refcounts = elf_local_got_refcounts (abfd);
1187
1188 relend = relocs + sec->reloc_count;
1189 for (rel = relocs; rel < relend; rel++)
1190 {
1191 unsigned long r_symndx;
1192 unsigned int r_type;
1193 struct elf_link_hash_entry *h = NULL;
1194
1195 r_symndx = ELF64_R_SYM (rel->r_info);
1196 if (r_symndx >= symtab_hdr->sh_info)
1197 {
1198 struct elf64_x86_64_link_hash_entry *eh;
1199 struct elf64_x86_64_dyn_relocs **pp;
1200 struct elf64_x86_64_dyn_relocs *p;
1201
1202 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1203 while (h->root.type == bfd_link_hash_indirect
1204 || h->root.type == bfd_link_hash_warning)
1205 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1206 eh = (struct elf64_x86_64_link_hash_entry *) h;
1207
1208 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1209 if (p->sec == sec)
1210 {
1211 /* Everything must go for SEC. */
1212 *pp = p->next;
1213 break;
1214 }
1215 }
1216
1217 r_type = ELF64_R_TYPE (rel->r_info);
1218 r_type = elf64_x86_64_tls_transition (info, r_type, h != NULL);
1219 switch (r_type)
1220 {
1221 case R_X86_64_TLSLD:
1222 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1223 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1224 break;
1225
1226 case R_X86_64_TLSGD:
1227 case R_X86_64_GOTPC32_TLSDESC:
1228 case R_X86_64_TLSDESC_CALL:
1229 case R_X86_64_GOTTPOFF:
1230 case R_X86_64_GOT32:
1231 case R_X86_64_GOTPCREL:
1232 case R_X86_64_GOT64:
1233 case R_X86_64_GOTPCREL64:
1234 case R_X86_64_GOTPLT64:
1235 if (h != NULL)
1236 {
1237 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1238 h->plt.refcount -= 1;
1239 if (h->got.refcount > 0)
1240 h->got.refcount -= 1;
1241 }
1242 else if (local_got_refcounts != NULL)
1243 {
1244 if (local_got_refcounts[r_symndx] > 0)
1245 local_got_refcounts[r_symndx] -= 1;
1246 }
1247 break;
1248
1249 case R_X86_64_8:
1250 case R_X86_64_16:
1251 case R_X86_64_32:
1252 case R_X86_64_64:
1253 case R_X86_64_32S:
1254 case R_X86_64_PC8:
1255 case R_X86_64_PC16:
1256 case R_X86_64_PC32:
1257 case R_X86_64_PC64:
1258 if (info->shared)
1259 break;
1260 /* Fall thru */
1261
1262 case R_X86_64_PLT32:
1263 case R_X86_64_PLTOFF64:
1264 if (h != NULL)
1265 {
1266 if (h->plt.refcount > 0)
1267 h->plt.refcount -= 1;
1268 }
1269 break;
1270
1271 default:
1272 break;
1273 }
1274 }
1275
1276 return TRUE;
1277 }
1278
1279 /* Adjust a symbol defined by a dynamic object and referenced by a
1280 regular object. The current definition is in some section of the
1281 dynamic object, but we're not including those sections. We have to
1282 change the definition to something the rest of the link can
1283 understand. */
1284
1285 static bfd_boolean
1286 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1287 struct elf_link_hash_entry *h)
1288 {
1289 struct elf64_x86_64_link_hash_table *htab;
1290 asection *s;
1291 unsigned int power_of_two;
1292
1293 /* If this is a function, put it in the procedure linkage table. We
1294 will fill in the contents of the procedure linkage table later,
1295 when we know the address of the .got section. */
1296 if (h->type == STT_FUNC
1297 || h->needs_plt)
1298 {
1299 if (h->plt.refcount <= 0
1300 || SYMBOL_CALLS_LOCAL (info, h)
1301 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1302 && h->root.type == bfd_link_hash_undefweak))
1303 {
1304 /* This case can occur if we saw a PLT32 reloc in an input
1305 file, but the symbol was never referred to by a dynamic
1306 object, or if all references were garbage collected. In
1307 such a case, we don't actually need to build a procedure
1308 linkage table, and we can just do a PC32 reloc instead. */
1309 h->plt.offset = (bfd_vma) -1;
1310 h->needs_plt = 0;
1311 }
1312
1313 return TRUE;
1314 }
1315 else
1316 /* It's possible that we incorrectly decided a .plt reloc was
1317 needed for an R_X86_64_PC32 reloc to a non-function sym in
1318 check_relocs. We can't decide accurately between function and
1319 non-function syms in check-relocs; Objects loaded later in
1320 the link may change h->type. So fix it now. */
1321 h->plt.offset = (bfd_vma) -1;
1322
1323 /* If this is a weak symbol, and there is a real definition, the
1324 processor independent code will have arranged for us to see the
1325 real definition first, and we can just use the same value. */
1326 if (h->u.weakdef != NULL)
1327 {
1328 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1329 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1330 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1331 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1332 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1333 h->non_got_ref = h->u.weakdef->non_got_ref;
1334 return TRUE;
1335 }
1336
1337 /* This is a reference to a symbol defined by a dynamic object which
1338 is not a function. */
1339
1340 /* If we are creating a shared library, we must presume that the
1341 only references to the symbol are via the global offset table.
1342 For such cases we need not do anything here; the relocations will
1343 be handled correctly by relocate_section. */
1344 if (info->shared)
1345 return TRUE;
1346
1347 /* If there are no references to this symbol that do not use the
1348 GOT, we don't need to generate a copy reloc. */
1349 if (!h->non_got_ref)
1350 return TRUE;
1351
1352 /* If -z nocopyreloc was given, we won't generate them either. */
1353 if (info->nocopyreloc)
1354 {
1355 h->non_got_ref = 0;
1356 return TRUE;
1357 }
1358
1359 if (ELIMINATE_COPY_RELOCS)
1360 {
1361 struct elf64_x86_64_link_hash_entry * eh;
1362 struct elf64_x86_64_dyn_relocs *p;
1363
1364 eh = (struct elf64_x86_64_link_hash_entry *) h;
1365 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1366 {
1367 s = p->sec->output_section;
1368 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1369 break;
1370 }
1371
1372 /* If we didn't find any dynamic relocs in read-only sections, then
1373 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1374 if (p == NULL)
1375 {
1376 h->non_got_ref = 0;
1377 return TRUE;
1378 }
1379 }
1380
1381 if (h->size == 0)
1382 {
1383 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1384 h->root.root.string);
1385 return TRUE;
1386 }
1387
1388 /* We must allocate the symbol in our .dynbss section, which will
1389 become part of the .bss section of the executable. There will be
1390 an entry for this symbol in the .dynsym section. The dynamic
1391 object will contain position independent code, so all references
1392 from the dynamic object to this symbol will go through the global
1393 offset table. The dynamic linker will use the .dynsym entry to
1394 determine the address it must put in the global offset table, so
1395 both the dynamic object and the regular object will refer to the
1396 same memory location for the variable. */
1397
1398 htab = elf64_x86_64_hash_table (info);
1399
1400 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1401 to copy the initial value out of the dynamic object and into the
1402 runtime process image. */
1403 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1404 {
1405 htab->srelbss->size += sizeof (Elf64_External_Rela);
1406 h->needs_copy = 1;
1407 }
1408
1409 /* We need to figure out the alignment required for this symbol. I
1410 have no idea how ELF linkers handle this. 16-bytes is the size
1411 of the largest type that requires hard alignment -- long double. */
1412 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
1413 this construct. */
1414 power_of_two = bfd_log2 (h->size);
1415 if (power_of_two > 4)
1416 power_of_two = 4;
1417
1418 /* Apply the required alignment. */
1419 s = htab->sdynbss;
1420 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1421 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1422 {
1423 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1424 return FALSE;
1425 }
1426
1427 /* Define the symbol as being at this point in the section. */
1428 h->root.u.def.section = s;
1429 h->root.u.def.value = s->size;
1430
1431 /* Increment the section size to make room for the symbol. */
1432 s->size += h->size;
1433
1434 return TRUE;
1435 }
1436
1437 /* Allocate space in .plt, .got and associated reloc sections for
1438 dynamic relocs. */
1439
1440 static bfd_boolean
1441 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1442 {
1443 struct bfd_link_info *info;
1444 struct elf64_x86_64_link_hash_table *htab;
1445 struct elf64_x86_64_link_hash_entry *eh;
1446 struct elf64_x86_64_dyn_relocs *p;
1447
1448 if (h->root.type == bfd_link_hash_indirect)
1449 return TRUE;
1450
1451 if (h->root.type == bfd_link_hash_warning)
1452 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1453
1454 info = (struct bfd_link_info *) inf;
1455 htab = elf64_x86_64_hash_table (info);
1456
1457 if (htab->elf.dynamic_sections_created
1458 && h->plt.refcount > 0)
1459 {
1460 /* Make sure this symbol is output as a dynamic symbol.
1461 Undefined weak syms won't yet be marked as dynamic. */
1462 if (h->dynindx == -1
1463 && !h->forced_local)
1464 {
1465 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1466 return FALSE;
1467 }
1468
1469 if (info->shared
1470 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1471 {
1472 asection *s = htab->splt;
1473
1474 /* If this is the first .plt entry, make room for the special
1475 first entry. */
1476 if (s->size == 0)
1477 s->size += PLT_ENTRY_SIZE;
1478
1479 h->plt.offset = s->size;
1480
1481 /* If this symbol is not defined in a regular file, and we are
1482 not generating a shared library, then set the symbol to this
1483 location in the .plt. This is required to make function
1484 pointers compare as equal between the normal executable and
1485 the shared library. */
1486 if (! info->shared
1487 && !h->def_regular)
1488 {
1489 h->root.u.def.section = s;
1490 h->root.u.def.value = h->plt.offset;
1491 }
1492
1493 /* Make room for this entry. */
1494 s->size += PLT_ENTRY_SIZE;
1495
1496 /* We also need to make an entry in the .got.plt section, which
1497 will be placed in the .got section by the linker script. */
1498 htab->sgotplt->size += GOT_ENTRY_SIZE;
1499
1500 /* We also need to make an entry in the .rela.plt section. */
1501 htab->srelplt->size += sizeof (Elf64_External_Rela);
1502 htab->srelplt->reloc_count++;
1503 }
1504 else
1505 {
1506 h->plt.offset = (bfd_vma) -1;
1507 h->needs_plt = 0;
1508 }
1509 }
1510 else
1511 {
1512 h->plt.offset = (bfd_vma) -1;
1513 h->needs_plt = 0;
1514 }
1515
1516 eh = (struct elf64_x86_64_link_hash_entry *) h;
1517 eh->tlsdesc_got = (bfd_vma) -1;
1518
1519 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1520 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1521 if (h->got.refcount > 0
1522 && !info->shared
1523 && h->dynindx == -1
1524 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1525 h->got.offset = (bfd_vma) -1;
1526 else if (h->got.refcount > 0)
1527 {
1528 asection *s;
1529 bfd_boolean dyn;
1530 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1531
1532 /* Make sure this symbol is output as a dynamic symbol.
1533 Undefined weak syms won't yet be marked as dynamic. */
1534 if (h->dynindx == -1
1535 && !h->forced_local)
1536 {
1537 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1538 return FALSE;
1539 }
1540
1541 if (GOT_TLS_GDESC_P (tls_type))
1542 {
1543 eh->tlsdesc_got = htab->sgotplt->size
1544 - elf64_x86_64_compute_jump_table_size (htab);
1545 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
1546 h->got.offset = (bfd_vma) -2;
1547 }
1548 if (! GOT_TLS_GDESC_P (tls_type)
1549 || GOT_TLS_GD_P (tls_type))
1550 {
1551 s = htab->sgot;
1552 h->got.offset = s->size;
1553 s->size += GOT_ENTRY_SIZE;
1554 if (GOT_TLS_GD_P (tls_type))
1555 s->size += GOT_ENTRY_SIZE;
1556 }
1557 dyn = htab->elf.dynamic_sections_created;
1558 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1559 and two if global.
1560 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1561 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
1562 || tls_type == GOT_TLS_IE)
1563 htab->srelgot->size += sizeof (Elf64_External_Rela);
1564 else if (GOT_TLS_GD_P (tls_type))
1565 htab->srelgot->size += 2 * sizeof (Elf64_External_Rela);
1566 else if (! GOT_TLS_GDESC_P (tls_type)
1567 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1568 || h->root.type != bfd_link_hash_undefweak)
1569 && (info->shared
1570 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1571 htab->srelgot->size += sizeof (Elf64_External_Rela);
1572 if (GOT_TLS_GDESC_P (tls_type))
1573 {
1574 htab->srelplt->size += sizeof (Elf64_External_Rela);
1575 htab->tlsdesc_plt = (bfd_vma) -1;
1576 }
1577 }
1578 else
1579 h->got.offset = (bfd_vma) -1;
1580
1581 if (eh->dyn_relocs == NULL)
1582 return TRUE;
1583
1584 /* In the shared -Bsymbolic case, discard space allocated for
1585 dynamic pc-relative relocs against symbols which turn out to be
1586 defined in regular objects. For the normal shared case, discard
1587 space for pc-relative relocs that have become local due to symbol
1588 visibility changes. */
1589
1590 if (info->shared)
1591 {
1592 /* Relocs that use pc_count are those that appear on a call
1593 insn, or certain REL relocs that can generated via assembly.
1594 We want calls to protected symbols to resolve directly to the
1595 function rather than going via the plt. If people want
1596 function pointer comparisons to work as expected then they
1597 should avoid writing weird assembly. */
1598 if (SYMBOL_CALLS_LOCAL (info, h))
1599 {
1600 struct elf64_x86_64_dyn_relocs **pp;
1601
1602 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1603 {
1604 p->count -= p->pc_count;
1605 p->pc_count = 0;
1606 if (p->count == 0)
1607 *pp = p->next;
1608 else
1609 pp = &p->next;
1610 }
1611 }
1612
1613 /* Also discard relocs on undefined weak syms with non-default
1614 visibility. */
1615 if (eh->dyn_relocs != NULL
1616 && h->root.type == bfd_link_hash_undefweak)
1617 {
1618 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1619 eh->dyn_relocs = NULL;
1620
1621 /* Make sure undefined weak symbols are output as a dynamic
1622 symbol in PIEs. */
1623 else if (h->dynindx == -1
1624 && !h->forced_local)
1625 {
1626 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1627 return FALSE;
1628 }
1629 }
1630 }
1631 else if (ELIMINATE_COPY_RELOCS)
1632 {
1633 /* For the non-shared case, discard space for relocs against
1634 symbols which turn out to need copy relocs or are not
1635 dynamic. */
1636
1637 if (!h->non_got_ref
1638 && ((h->def_dynamic
1639 && !h->def_regular)
1640 || (htab->elf.dynamic_sections_created
1641 && (h->root.type == bfd_link_hash_undefweak
1642 || h->root.type == bfd_link_hash_undefined))))
1643 {
1644 /* Make sure this symbol is output as a dynamic symbol.
1645 Undefined weak syms won't yet be marked as dynamic. */
1646 if (h->dynindx == -1
1647 && !h->forced_local)
1648 {
1649 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1650 return FALSE;
1651 }
1652
1653 /* If that succeeded, we know we'll be keeping all the
1654 relocs. */
1655 if (h->dynindx != -1)
1656 goto keep;
1657 }
1658
1659 eh->dyn_relocs = NULL;
1660
1661 keep: ;
1662 }
1663
1664 /* Finally, allocate space. */
1665 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1666 {
1667 asection *sreloc = elf_section_data (p->sec)->sreloc;
1668 sreloc->size += p->count * sizeof (Elf64_External_Rela);
1669 }
1670
1671 return TRUE;
1672 }
1673
1674 /* Find any dynamic relocs that apply to read-only sections. */
1675
1676 static bfd_boolean
1677 readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1678 {
1679 struct elf64_x86_64_link_hash_entry *eh;
1680 struct elf64_x86_64_dyn_relocs *p;
1681
1682 if (h->root.type == bfd_link_hash_warning)
1683 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1684
1685 eh = (struct elf64_x86_64_link_hash_entry *) h;
1686 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1687 {
1688 asection *s = p->sec->output_section;
1689
1690 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1691 {
1692 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1693
1694 info->flags |= DF_TEXTREL;
1695
1696 /* Not an error, just cut short the traversal. */
1697 return FALSE;
1698 }
1699 }
1700 return TRUE;
1701 }
1702
1703 /* Set the sizes of the dynamic sections. */
1704
1705 static bfd_boolean
1706 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1707 struct bfd_link_info *info)
1708 {
1709 struct elf64_x86_64_link_hash_table *htab;
1710 bfd *dynobj;
1711 asection *s;
1712 bfd_boolean relocs;
1713 bfd *ibfd;
1714
1715 htab = elf64_x86_64_hash_table (info);
1716 dynobj = htab->elf.dynobj;
1717 if (dynobj == NULL)
1718 abort ();
1719
1720 if (htab->elf.dynamic_sections_created)
1721 {
1722 /* Set the contents of the .interp section to the interpreter. */
1723 if (info->executable)
1724 {
1725 s = bfd_get_section_by_name (dynobj, ".interp");
1726 if (s == NULL)
1727 abort ();
1728 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1729 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1730 }
1731 }
1732
1733 /* Set up .got offsets for local syms, and space for local dynamic
1734 relocs. */
1735 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1736 {
1737 bfd_signed_vma *local_got;
1738 bfd_signed_vma *end_local_got;
1739 char *local_tls_type;
1740 bfd_vma *local_tlsdesc_gotent;
1741 bfd_size_type locsymcount;
1742 Elf_Internal_Shdr *symtab_hdr;
1743 asection *srel;
1744
1745 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1746 continue;
1747
1748 for (s = ibfd->sections; s != NULL; s = s->next)
1749 {
1750 struct elf64_x86_64_dyn_relocs *p;
1751
1752 for (p = (struct elf64_x86_64_dyn_relocs *)
1753 (elf_section_data (s)->local_dynrel);
1754 p != NULL;
1755 p = p->next)
1756 {
1757 if (!bfd_is_abs_section (p->sec)
1758 && bfd_is_abs_section (p->sec->output_section))
1759 {
1760 /* Input section has been discarded, either because
1761 it is a copy of a linkonce section or due to
1762 linker script /DISCARD/, so we'll be discarding
1763 the relocs too. */
1764 }
1765 else if (p->count != 0)
1766 {
1767 srel = elf_section_data (p->sec)->sreloc;
1768 srel->size += p->count * sizeof (Elf64_External_Rela);
1769 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1770 info->flags |= DF_TEXTREL;
1771
1772 }
1773 }
1774 }
1775
1776 local_got = elf_local_got_refcounts (ibfd);
1777 if (!local_got)
1778 continue;
1779
1780 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1781 locsymcount = symtab_hdr->sh_info;
1782 end_local_got = local_got + locsymcount;
1783 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1784 local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd);
1785 s = htab->sgot;
1786 srel = htab->srelgot;
1787 for (; local_got < end_local_got;
1788 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
1789 {
1790 *local_tlsdesc_gotent = (bfd_vma) -1;
1791 if (*local_got > 0)
1792 {
1793 if (GOT_TLS_GDESC_P (*local_tls_type))
1794 {
1795 *local_tlsdesc_gotent = htab->sgotplt->size
1796 - elf64_x86_64_compute_jump_table_size (htab);
1797 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
1798 *local_got = (bfd_vma) -2;
1799 }
1800 if (! GOT_TLS_GDESC_P (*local_tls_type)
1801 || GOT_TLS_GD_P (*local_tls_type))
1802 {
1803 *local_got = s->size;
1804 s->size += GOT_ENTRY_SIZE;
1805 if (GOT_TLS_GD_P (*local_tls_type))
1806 s->size += GOT_ENTRY_SIZE;
1807 }
1808 if (info->shared
1809 || GOT_TLS_GD_ANY_P (*local_tls_type)
1810 || *local_tls_type == GOT_TLS_IE)
1811 {
1812 if (GOT_TLS_GDESC_P (*local_tls_type))
1813 {
1814 htab->srelplt->size += sizeof (Elf64_External_Rela);
1815 htab->tlsdesc_plt = (bfd_vma) -1;
1816 }
1817 if (! GOT_TLS_GDESC_P (*local_tls_type)
1818 || GOT_TLS_GD_P (*local_tls_type))
1819 srel->size += sizeof (Elf64_External_Rela);
1820 }
1821 }
1822 else
1823 *local_got = (bfd_vma) -1;
1824 }
1825 }
1826
1827 if (htab->tls_ld_got.refcount > 0)
1828 {
1829 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
1830 relocs. */
1831 htab->tls_ld_got.offset = htab->sgot->size;
1832 htab->sgot->size += 2 * GOT_ENTRY_SIZE;
1833 htab->srelgot->size += sizeof (Elf64_External_Rela);
1834 }
1835 else
1836 htab->tls_ld_got.offset = -1;
1837
1838 /* Allocate global sym .plt and .got entries, and space for global
1839 sym dynamic relocs. */
1840 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1841
1842 /* For every jump slot reserved in the sgotplt, reloc_count is
1843 incremented. However, when we reserve space for TLS descriptors,
1844 it's not incremented, so in order to compute the space reserved
1845 for them, it suffices to multiply the reloc count by the jump
1846 slot size. */
1847 if (htab->srelplt)
1848 htab->sgotplt_jump_table_size
1849 = elf64_x86_64_compute_jump_table_size (htab);
1850
1851 if (htab->tlsdesc_plt)
1852 {
1853 /* If we're not using lazy TLS relocations, don't generate the
1854 PLT and GOT entries they require. */
1855 if ((info->flags & DF_BIND_NOW))
1856 htab->tlsdesc_plt = 0;
1857 else
1858 {
1859 htab->tlsdesc_got = htab->sgot->size;
1860 htab->sgot->size += GOT_ENTRY_SIZE;
1861 /* Reserve room for the initial entry.
1862 FIXME: we could probably do away with it in this case. */
1863 if (htab->splt->size == 0)
1864 htab->splt->size += PLT_ENTRY_SIZE;
1865 htab->tlsdesc_plt = htab->splt->size;
1866 htab->splt->size += PLT_ENTRY_SIZE;
1867 }
1868 }
1869
1870 /* We now have determined the sizes of the various dynamic sections.
1871 Allocate memory for them. */
1872 relocs = FALSE;
1873 for (s = dynobj->sections; s != NULL; s = s->next)
1874 {
1875 if ((s->flags & SEC_LINKER_CREATED) == 0)
1876 continue;
1877
1878 if (s == htab->splt
1879 || s == htab->sgot
1880 || s == htab->sgotplt
1881 || s == htab->sdynbss)
1882 {
1883 /* Strip this section if we don't need it; see the
1884 comment below. */
1885 }
1886 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
1887 {
1888 if (s->size != 0 && s != htab->srelplt)
1889 relocs = TRUE;
1890
1891 /* We use the reloc_count field as a counter if we need
1892 to copy relocs into the output file. */
1893 if (s != htab->srelplt)
1894 s->reloc_count = 0;
1895 }
1896 else
1897 {
1898 /* It's not one of our sections, so don't allocate space. */
1899 continue;
1900 }
1901
1902 if (s->size == 0)
1903 {
1904 /* If we don't need this section, strip it from the
1905 output file. This is mostly to handle .rela.bss and
1906 .rela.plt. We must create both sections in
1907 create_dynamic_sections, because they must be created
1908 before the linker maps input sections to output
1909 sections. The linker does that before
1910 adjust_dynamic_symbol is called, and it is that
1911 function which decides whether anything needs to go
1912 into these sections. */
1913
1914 s->flags |= SEC_EXCLUDE;
1915 continue;
1916 }
1917
1918 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1919 continue;
1920
1921 /* Allocate memory for the section contents. We use bfd_zalloc
1922 here in case unused entries are not reclaimed before the
1923 section's contents are written out. This should not happen,
1924 but this way if it does, we get a R_X86_64_NONE reloc instead
1925 of garbage. */
1926 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1927 if (s->contents == NULL)
1928 return FALSE;
1929 }
1930
1931 if (htab->elf.dynamic_sections_created)
1932 {
1933 /* Add some entries to the .dynamic section. We fill in the
1934 values later, in elf64_x86_64_finish_dynamic_sections, but we
1935 must add the entries now so that we get the correct size for
1936 the .dynamic section. The DT_DEBUG entry is filled in by the
1937 dynamic linker and used by the debugger. */
1938 #define add_dynamic_entry(TAG, VAL) \
1939 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1940
1941 if (info->executable)
1942 {
1943 if (!add_dynamic_entry (DT_DEBUG, 0))
1944 return FALSE;
1945 }
1946
1947 if (htab->splt->size != 0)
1948 {
1949 if (!add_dynamic_entry (DT_PLTGOT, 0)
1950 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1951 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1952 || !add_dynamic_entry (DT_JMPREL, 0))
1953 return FALSE;
1954
1955 if (htab->tlsdesc_plt
1956 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
1957 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
1958 return FALSE;
1959 }
1960
1961 if (relocs)
1962 {
1963 if (!add_dynamic_entry (DT_RELA, 0)
1964 || !add_dynamic_entry (DT_RELASZ, 0)
1965 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1966 return FALSE;
1967
1968 /* If any dynamic relocs apply to a read-only section,
1969 then we need a DT_TEXTREL entry. */
1970 if ((info->flags & DF_TEXTREL) == 0)
1971 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1972 (PTR) info);
1973
1974 if ((info->flags & DF_TEXTREL) != 0)
1975 {
1976 if (!add_dynamic_entry (DT_TEXTREL, 0))
1977 return FALSE;
1978 }
1979 }
1980 }
1981 #undef add_dynamic_entry
1982
1983 return TRUE;
1984 }
1985
1986 static bfd_boolean
1987 elf64_x86_64_always_size_sections (bfd *output_bfd,
1988 struct bfd_link_info *info)
1989 {
1990 asection *tls_sec = elf_hash_table (info)->tls_sec;
1991
1992 if (tls_sec)
1993 {
1994 struct elf_link_hash_entry *tlsbase;
1995
1996 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
1997 "_TLS_MODULE_BASE_",
1998 FALSE, FALSE, FALSE);
1999
2000 if (tlsbase && tlsbase->type == STT_TLS)
2001 {
2002 struct bfd_link_hash_entry *bh = NULL;
2003 const struct elf_backend_data *bed
2004 = get_elf_backend_data (output_bfd);
2005
2006 if (!(_bfd_generic_link_add_one_symbol
2007 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2008 tls_sec, 0, NULL, FALSE,
2009 bed->collect, &bh)))
2010 return FALSE;
2011 tlsbase = (struct elf_link_hash_entry *)bh;
2012 tlsbase->def_regular = 1;
2013 tlsbase->other = STV_HIDDEN;
2014 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2015 }
2016 }
2017
2018 return TRUE;
2019 }
2020
2021 /* Return the base VMA address which should be subtracted from real addresses
2022 when resolving @dtpoff relocation.
2023 This is PT_TLS segment p_vaddr. */
2024
2025 static bfd_vma
2026 dtpoff_base (struct bfd_link_info *info)
2027 {
2028 /* If tls_sec is NULL, we should have signalled an error already. */
2029 if (elf_hash_table (info)->tls_sec == NULL)
2030 return 0;
2031 return elf_hash_table (info)->tls_sec->vma;
2032 }
2033
2034 /* Return the relocation value for @tpoff relocation
2035 if STT_TLS virtual address is ADDRESS. */
2036
2037 static bfd_vma
2038 tpoff (struct bfd_link_info *info, bfd_vma address)
2039 {
2040 struct elf_link_hash_table *htab = elf_hash_table (info);
2041
2042 /* If tls_segment is NULL, we should have signalled an error already. */
2043 if (htab->tls_sec == NULL)
2044 return 0;
2045 return address - htab->tls_size - htab->tls_sec->vma;
2046 }
2047
2048 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2049 branch? */
2050
2051 static bfd_boolean
2052 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2053 {
2054 /* Opcode Instruction
2055 0xe8 call
2056 0xe9 jump
2057 0x0f 0x8x conditional jump */
2058 return ((offset > 0
2059 && (contents [offset - 1] == 0xe8
2060 || contents [offset - 1] == 0xe9))
2061 || (offset > 1
2062 && contents [offset - 2] == 0x0f
2063 && (contents [offset - 1] & 0xf0) == 0x80));
2064 }
2065
2066 /* Relocate an x86_64 ELF section. */
2067
2068 static bfd_boolean
2069 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
2070 bfd *input_bfd, asection *input_section,
2071 bfd_byte *contents, Elf_Internal_Rela *relocs,
2072 Elf_Internal_Sym *local_syms,
2073 asection **local_sections)
2074 {
2075 struct elf64_x86_64_link_hash_table *htab;
2076 Elf_Internal_Shdr *symtab_hdr;
2077 struct elf_link_hash_entry **sym_hashes;
2078 bfd_vma *local_got_offsets;
2079 bfd_vma *local_tlsdesc_gotents;
2080 Elf_Internal_Rela *rel;
2081 Elf_Internal_Rela *relend;
2082
2083 if (info->relocatable)
2084 return TRUE;
2085
2086 htab = elf64_x86_64_hash_table (info);
2087 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2088 sym_hashes = elf_sym_hashes (input_bfd);
2089 local_got_offsets = elf_local_got_offsets (input_bfd);
2090 local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd);
2091
2092 rel = relocs;
2093 relend = relocs + input_section->reloc_count;
2094 for (; rel < relend; rel++)
2095 {
2096 unsigned int r_type;
2097 reloc_howto_type *howto;
2098 unsigned long r_symndx;
2099 struct elf_link_hash_entry *h;
2100 Elf_Internal_Sym *sym;
2101 asection *sec;
2102 bfd_vma off, offplt;
2103 bfd_vma relocation;
2104 bfd_boolean unresolved_reloc;
2105 bfd_reloc_status_type r;
2106 int tls_type;
2107
2108 r_type = ELF64_R_TYPE (rel->r_info);
2109 if (r_type == (int) R_X86_64_GNU_VTINHERIT
2110 || r_type == (int) R_X86_64_GNU_VTENTRY)
2111 continue;
2112
2113 if (r_type >= R_X86_64_max)
2114 {
2115 bfd_set_error (bfd_error_bad_value);
2116 return FALSE;
2117 }
2118
2119 howto = x86_64_elf_howto_table + r_type;
2120 r_symndx = ELF64_R_SYM (rel->r_info);
2121 h = NULL;
2122 sym = NULL;
2123 sec = NULL;
2124 unresolved_reloc = FALSE;
2125 if (r_symndx < symtab_hdr->sh_info)
2126 {
2127 sym = local_syms + r_symndx;
2128 sec = local_sections[r_symndx];
2129
2130 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2131 }
2132 else
2133 {
2134 bfd_boolean warned;
2135
2136 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2137 r_symndx, symtab_hdr, sym_hashes,
2138 h, sec, relocation,
2139 unresolved_reloc, warned);
2140 }
2141 /* When generating a shared object, the relocations handled here are
2142 copied into the output file to be resolved at run time. */
2143 switch (r_type)
2144 {
2145 asection *base_got;
2146 case R_X86_64_GOT32:
2147 case R_X86_64_GOT64:
2148 /* Relocation is to the entry for this symbol in the global
2149 offset table. */
2150 case R_X86_64_GOTPCREL:
2151 case R_X86_64_GOTPCREL64:
2152 /* Use global offset table entry as symbol value. */
2153 case R_X86_64_GOTPLT64:
2154 /* This is the same as GOT64 for relocation purposes, but
2155 indicates the existence of a PLT entry. The difficulty is,
2156 that we must calculate the GOT slot offset from the PLT
2157 offset, if this symbol got a PLT entry (it was global).
2158 Additionally if it's computed from the PLT entry, then that
2159 GOT offset is relative to .got.plt, not to .got. */
2160 base_got = htab->sgot;
2161
2162 if (htab->sgot == NULL)
2163 abort ();
2164
2165 if (h != NULL)
2166 {
2167 bfd_boolean dyn;
2168
2169 off = h->got.offset;
2170 if (h->needs_plt
2171 && h->plt.offset != (bfd_vma)-1
2172 && off == (bfd_vma)-1)
2173 {
2174 /* We can't use h->got.offset here to save
2175 state, or even just remember the offset, as
2176 finish_dynamic_symbol would use that as offset into
2177 .got. */
2178 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2179 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2180 base_got = htab->sgotplt;
2181 }
2182
2183 dyn = htab->elf.dynamic_sections_created;
2184
2185 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2186 || (info->shared
2187 && SYMBOL_REFERENCES_LOCAL (info, h))
2188 || (ELF_ST_VISIBILITY (h->other)
2189 && h->root.type == bfd_link_hash_undefweak))
2190 {
2191 /* This is actually a static link, or it is a -Bsymbolic
2192 link and the symbol is defined locally, or the symbol
2193 was forced to be local because of a version file. We
2194 must initialize this entry in the global offset table.
2195 Since the offset must always be a multiple of 8, we
2196 use the least significant bit to record whether we
2197 have initialized it already.
2198
2199 When doing a dynamic link, we create a .rela.got
2200 relocation entry to initialize the value. This is
2201 done in the finish_dynamic_symbol routine. */
2202 if ((off & 1) != 0)
2203 off &= ~1;
2204 else
2205 {
2206 bfd_put_64 (output_bfd, relocation,
2207 base_got->contents + off);
2208 /* Note that this is harmless for the GOTPLT64 case,
2209 as -1 | 1 still is -1. */
2210 h->got.offset |= 1;
2211 }
2212 }
2213 else
2214 unresolved_reloc = FALSE;
2215 }
2216 else
2217 {
2218 if (local_got_offsets == NULL)
2219 abort ();
2220
2221 off = local_got_offsets[r_symndx];
2222
2223 /* The offset must always be a multiple of 8. We use
2224 the least significant bit to record whether we have
2225 already generated the necessary reloc. */
2226 if ((off & 1) != 0)
2227 off &= ~1;
2228 else
2229 {
2230 bfd_put_64 (output_bfd, relocation,
2231 base_got->contents + off);
2232
2233 if (info->shared)
2234 {
2235 asection *s;
2236 Elf_Internal_Rela outrel;
2237 bfd_byte *loc;
2238
2239 /* We need to generate a R_X86_64_RELATIVE reloc
2240 for the dynamic linker. */
2241 s = htab->srelgot;
2242 if (s == NULL)
2243 abort ();
2244
2245 outrel.r_offset = (base_got->output_section->vma
2246 + base_got->output_offset
2247 + off);
2248 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2249 outrel.r_addend = relocation;
2250 loc = s->contents;
2251 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2252 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2253 }
2254
2255 local_got_offsets[r_symndx] |= 1;
2256 }
2257 }
2258
2259 if (off >= (bfd_vma) -2)
2260 abort ();
2261
2262 relocation = base_got->output_section->vma
2263 + base_got->output_offset + off;
2264 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
2265 relocation -= htab->sgotplt->output_section->vma
2266 - htab->sgotplt->output_offset;
2267
2268 break;
2269
2270 case R_X86_64_GOTOFF64:
2271 /* Relocation is relative to the start of the global offset
2272 table. */
2273
2274 /* Check to make sure it isn't a protected function symbol
2275 for shared library since it may not be local when used
2276 as function address. */
2277 if (info->shared
2278 && h
2279 && h->def_regular
2280 && h->type == STT_FUNC
2281 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2282 {
2283 (*_bfd_error_handler)
2284 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2285 input_bfd, h->root.root.string);
2286 bfd_set_error (bfd_error_bad_value);
2287 return FALSE;
2288 }
2289
2290 /* Note that sgot is not involved in this
2291 calculation. We always want the start of .got.plt. If we
2292 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2293 permitted by the ABI, we might have to change this
2294 calculation. */
2295 relocation -= htab->sgotplt->output_section->vma
2296 + htab->sgotplt->output_offset;
2297 break;
2298
2299 case R_X86_64_GOTPC32:
2300 case R_X86_64_GOTPC64:
2301 /* Use global offset table as symbol value. */
2302 relocation = htab->sgotplt->output_section->vma
2303 + htab->sgotplt->output_offset;
2304 unresolved_reloc = FALSE;
2305 break;
2306
2307 case R_X86_64_PLTOFF64:
2308 /* Relocation is PLT entry relative to GOT. For local
2309 symbols it's the symbol itself relative to GOT. */
2310 if (h != NULL
2311 /* See PLT32 handling. */
2312 && h->plt.offset != (bfd_vma) -1
2313 && htab->splt != NULL)
2314 {
2315 relocation = (htab->splt->output_section->vma
2316 + htab->splt->output_offset
2317 + h->plt.offset);
2318 unresolved_reloc = FALSE;
2319 }
2320
2321 relocation -= htab->sgotplt->output_section->vma
2322 + htab->sgotplt->output_offset;
2323 break;
2324
2325 case R_X86_64_PLT32:
2326 /* Relocation is to the entry for this symbol in the
2327 procedure linkage table. */
2328
2329 /* Resolve a PLT32 reloc against a local symbol directly,
2330 without using the procedure linkage table. */
2331 if (h == NULL)
2332 break;
2333
2334 if (h->plt.offset == (bfd_vma) -1
2335 || htab->splt == NULL)
2336 {
2337 /* We didn't make a PLT entry for this symbol. This
2338 happens when statically linking PIC code, or when
2339 using -Bsymbolic. */
2340 break;
2341 }
2342
2343 relocation = (htab->splt->output_section->vma
2344 + htab->splt->output_offset
2345 + h->plt.offset);
2346 unresolved_reloc = FALSE;
2347 break;
2348
2349 case R_X86_64_PC8:
2350 case R_X86_64_PC16:
2351 case R_X86_64_PC32:
2352 if (info->shared
2353 && !SYMBOL_REFERENCES_LOCAL (info, h)
2354 && (input_section->flags & SEC_ALLOC) != 0
2355 && (input_section->flags & SEC_READONLY) != 0
2356 && (!h->def_regular
2357 || r_type != R_X86_64_PC32
2358 || h->type != STT_FUNC
2359 || ELF_ST_VISIBILITY (h->other) != STV_PROTECTED
2360 || !is_32bit_relative_branch (contents,
2361 rel->r_offset)))
2362 {
2363 if (h->def_regular
2364 && r_type == R_X86_64_PC32
2365 && h->type == STT_FUNC
2366 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2367 (*_bfd_error_handler)
2368 (_("%B: relocation R_X86_64_PC32 against protected function `%s' can not be used when making a shared object"),
2369 input_bfd, h->root.root.string);
2370 else
2371 (*_bfd_error_handler)
2372 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
2373 input_bfd, x86_64_elf_howto_table[r_type].name,
2374 h->root.root.string);
2375 bfd_set_error (bfd_error_bad_value);
2376 return FALSE;
2377 }
2378 /* Fall through. */
2379
2380 case R_X86_64_8:
2381 case R_X86_64_16:
2382 case R_X86_64_32:
2383 case R_X86_64_PC64:
2384 case R_X86_64_64:
2385 /* FIXME: The ABI says the linker should make sure the value is
2386 the same when it's zeroextended to 64 bit. */
2387
2388 /* r_symndx will be zero only for relocs against symbols
2389 from removed linkonce sections, or sections discarded by
2390 a linker script. */
2391 if (r_symndx == 0
2392 || (input_section->flags & SEC_ALLOC) == 0)
2393 break;
2394
2395 if ((info->shared
2396 && (h == NULL
2397 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2398 || h->root.type != bfd_link_hash_undefweak)
2399 && ((r_type != R_X86_64_PC8
2400 && r_type != R_X86_64_PC16
2401 && r_type != R_X86_64_PC32
2402 && r_type != R_X86_64_PC64)
2403 || !SYMBOL_CALLS_LOCAL (info, h)))
2404 || (ELIMINATE_COPY_RELOCS
2405 && !info->shared
2406 && h != NULL
2407 && h->dynindx != -1
2408 && !h->non_got_ref
2409 && ((h->def_dynamic
2410 && !h->def_regular)
2411 || h->root.type == bfd_link_hash_undefweak
2412 || h->root.type == bfd_link_hash_undefined)))
2413 {
2414 Elf_Internal_Rela outrel;
2415 bfd_byte *loc;
2416 bfd_boolean skip, relocate;
2417 asection *sreloc;
2418
2419 /* When generating a shared object, these relocations
2420 are copied into the output file to be resolved at run
2421 time. */
2422 skip = FALSE;
2423 relocate = FALSE;
2424
2425 outrel.r_offset =
2426 _bfd_elf_section_offset (output_bfd, info, input_section,
2427 rel->r_offset);
2428 if (outrel.r_offset == (bfd_vma) -1)
2429 skip = TRUE;
2430 else if (outrel.r_offset == (bfd_vma) -2)
2431 skip = TRUE, relocate = TRUE;
2432
2433 outrel.r_offset += (input_section->output_section->vma
2434 + input_section->output_offset);
2435
2436 if (skip)
2437 memset (&outrel, 0, sizeof outrel);
2438
2439 /* h->dynindx may be -1 if this symbol was marked to
2440 become local. */
2441 else if (h != NULL
2442 && h->dynindx != -1
2443 && (r_type == R_X86_64_PC8
2444 || r_type == R_X86_64_PC16
2445 || r_type == R_X86_64_PC32
2446 || r_type == R_X86_64_PC64
2447 || !info->shared
2448 || !info->symbolic
2449 || !h->def_regular))
2450 {
2451 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2452 outrel.r_addend = rel->r_addend;
2453 }
2454 else
2455 {
2456 /* This symbol is local, or marked to become local. */
2457 if (r_type == R_X86_64_64)
2458 {
2459 relocate = TRUE;
2460 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2461 outrel.r_addend = relocation + rel->r_addend;
2462 }
2463 else
2464 {
2465 long sindx;
2466
2467 if (bfd_is_abs_section (sec))
2468 sindx = 0;
2469 else if (sec == NULL || sec->owner == NULL)
2470 {
2471 bfd_set_error (bfd_error_bad_value);
2472 return FALSE;
2473 }
2474 else
2475 {
2476 asection *osec;
2477
2478 osec = sec->output_section;
2479 sindx = elf_section_data (osec)->dynindx;
2480 BFD_ASSERT (sindx > 0);
2481 }
2482
2483 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2484 outrel.r_addend = relocation + rel->r_addend;
2485 }
2486 }
2487
2488 sreloc = elf_section_data (input_section)->sreloc;
2489 if (sreloc == NULL)
2490 abort ();
2491
2492 loc = sreloc->contents;
2493 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2494 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2495
2496 /* If this reloc is against an external symbol, we do
2497 not want to fiddle with the addend. Otherwise, we
2498 need to include the symbol value so that it becomes
2499 an addend for the dynamic reloc. */
2500 if (! relocate)
2501 continue;
2502 }
2503
2504 break;
2505
2506 case R_X86_64_TLSGD:
2507 case R_X86_64_GOTPC32_TLSDESC:
2508 case R_X86_64_TLSDESC_CALL:
2509 case R_X86_64_GOTTPOFF:
2510 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
2511 tls_type = GOT_UNKNOWN;
2512 if (h == NULL && local_got_offsets)
2513 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2514 else if (h != NULL)
2515 {
2516 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2517 if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE)
2518 r_type = R_X86_64_TPOFF32;
2519 }
2520 if (r_type == R_X86_64_TLSGD
2521 || r_type == R_X86_64_GOTPC32_TLSDESC
2522 || r_type == R_X86_64_TLSDESC_CALL)
2523 {
2524 if (tls_type == GOT_TLS_IE)
2525 r_type = R_X86_64_GOTTPOFF;
2526 }
2527
2528 if (r_type == R_X86_64_TPOFF32)
2529 {
2530 BFD_ASSERT (! unresolved_reloc);
2531 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2532 {
2533 unsigned int i;
2534 static unsigned char tlsgd[8]
2535 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2536
2537 /* GD->LE transition.
2538 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2539 .word 0x6666; rex64; call __tls_get_addr@plt
2540 Change it into:
2541 movq %fs:0, %rax
2542 leaq foo@tpoff(%rax), %rax */
2543 BFD_ASSERT (rel->r_offset >= 4);
2544 for (i = 0; i < 4; i++)
2545 BFD_ASSERT (bfd_get_8 (input_bfd,
2546 contents + rel->r_offset - 4 + i)
2547 == tlsgd[i]);
2548 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2549 for (i = 0; i < 4; i++)
2550 BFD_ASSERT (bfd_get_8 (input_bfd,
2551 contents + rel->r_offset + 4 + i)
2552 == tlsgd[i+4]);
2553 BFD_ASSERT (rel + 1 < relend);
2554 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2555 memcpy (contents + rel->r_offset - 4,
2556 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2557 16);
2558 bfd_put_32 (output_bfd, tpoff (info, relocation),
2559 contents + rel->r_offset + 8);
2560 /* Skip R_X86_64_PLT32. */
2561 rel++;
2562 continue;
2563 }
2564 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
2565 {
2566 /* GDesc -> LE transition.
2567 It's originally something like:
2568 leaq x@tlsdesc(%rip), %rax
2569
2570 Change it to:
2571 movl $x@tpoff, %rax
2572
2573 Registers other than %rax may be set up here. */
2574
2575 unsigned int val, type, type2;
2576 bfd_vma roff;
2577
2578 /* First, make sure it's a leaq adding rip to a
2579 32-bit offset into any register, although it's
2580 probably almost always going to be rax. */
2581 roff = rel->r_offset;
2582 BFD_ASSERT (roff >= 3);
2583 type = bfd_get_8 (input_bfd, contents + roff - 3);
2584 BFD_ASSERT ((type & 0xfb) == 0x48);
2585 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
2586 BFD_ASSERT (type2 == 0x8d);
2587 val = bfd_get_8 (input_bfd, contents + roff - 1);
2588 BFD_ASSERT ((val & 0xc7) == 0x05);
2589 BFD_ASSERT (roff + 4 <= input_section->size);
2590
2591 /* Now modify the instruction as appropriate. */
2592 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
2593 contents + roff - 3);
2594 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
2595 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2596 contents + roff - 1);
2597 bfd_put_32 (output_bfd, tpoff (info, relocation),
2598 contents + roff);
2599 continue;
2600 }
2601 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
2602 {
2603 /* GDesc -> LE transition.
2604 It's originally:
2605 call *(%rax)
2606 Turn it into:
2607 nop; nop. */
2608
2609 unsigned int val, type;
2610 bfd_vma roff;
2611
2612 /* First, make sure it's a call *(%rax). */
2613 roff = rel->r_offset;
2614 BFD_ASSERT (roff + 2 <= input_section->size);
2615 type = bfd_get_8 (input_bfd, contents + roff);
2616 BFD_ASSERT (type == 0xff);
2617 val = bfd_get_8 (input_bfd, contents + roff + 1);
2618 BFD_ASSERT (val == 0x10);
2619
2620 /* Now modify the instruction as appropriate. */
2621 bfd_put_8 (output_bfd, 0x90, contents + roff);
2622 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
2623 continue;
2624 }
2625 else
2626 {
2627 unsigned int val, type, reg;
2628
2629 /* IE->LE transition:
2630 Originally it can be one of:
2631 movq foo@gottpoff(%rip), %reg
2632 addq foo@gottpoff(%rip), %reg
2633 We change it into:
2634 movq $foo, %reg
2635 leaq foo(%reg), %reg
2636 addq $foo, %reg. */
2637 BFD_ASSERT (rel->r_offset >= 3);
2638 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 3);
2639 BFD_ASSERT (val == 0x48 || val == 0x4c);
2640 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2641 BFD_ASSERT (type == 0x8b || type == 0x03);
2642 reg = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2643 BFD_ASSERT ((reg & 0xc7) == 5);
2644 reg >>= 3;
2645 BFD_ASSERT (rel->r_offset + 4 <= input_section->size);
2646 if (type == 0x8b)
2647 {
2648 /* movq */
2649 if (val == 0x4c)
2650 bfd_put_8 (output_bfd, 0x49,
2651 contents + rel->r_offset - 3);
2652 bfd_put_8 (output_bfd, 0xc7,
2653 contents + rel->r_offset - 2);
2654 bfd_put_8 (output_bfd, 0xc0 | reg,
2655 contents + rel->r_offset - 1);
2656 }
2657 else if (reg == 4)
2658 {
2659 /* addq -> addq - addressing with %rsp/%r12 is
2660 special */
2661 if (val == 0x4c)
2662 bfd_put_8 (output_bfd, 0x49,
2663 contents + rel->r_offset - 3);
2664 bfd_put_8 (output_bfd, 0x81,
2665 contents + rel->r_offset - 2);
2666 bfd_put_8 (output_bfd, 0xc0 | reg,
2667 contents + rel->r_offset - 1);
2668 }
2669 else
2670 {
2671 /* addq -> leaq */
2672 if (val == 0x4c)
2673 bfd_put_8 (output_bfd, 0x4d,
2674 contents + rel->r_offset - 3);
2675 bfd_put_8 (output_bfd, 0x8d,
2676 contents + rel->r_offset - 2);
2677 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2678 contents + rel->r_offset - 1);
2679 }
2680 bfd_put_32 (output_bfd, tpoff (info, relocation),
2681 contents + rel->r_offset);
2682 continue;
2683 }
2684 }
2685
2686 if (htab->sgot == NULL)
2687 abort ();
2688
2689 if (h != NULL)
2690 {
2691 off = h->got.offset;
2692 offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got;
2693 }
2694 else
2695 {
2696 if (local_got_offsets == NULL)
2697 abort ();
2698
2699 off = local_got_offsets[r_symndx];
2700 offplt = local_tlsdesc_gotents[r_symndx];
2701 }
2702
2703 if ((off & 1) != 0)
2704 off &= ~1;
2705 else
2706 {
2707 Elf_Internal_Rela outrel;
2708 bfd_byte *loc;
2709 int dr_type, indx;
2710 asection *sreloc;
2711
2712 if (htab->srelgot == NULL)
2713 abort ();
2714
2715 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2716
2717 if (GOT_TLS_GDESC_P (tls_type))
2718 {
2719 outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC);
2720 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
2721 + 2 * GOT_ENTRY_SIZE <= htab->sgotplt->size);
2722 outrel.r_offset = (htab->sgotplt->output_section->vma
2723 + htab->sgotplt->output_offset
2724 + offplt
2725 + htab->sgotplt_jump_table_size);
2726 sreloc = htab->srelplt;
2727 loc = sreloc->contents;
2728 loc += sreloc->reloc_count++
2729 * sizeof (Elf64_External_Rela);
2730 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2731 <= sreloc->contents + sreloc->size);
2732 if (indx == 0)
2733 outrel.r_addend = relocation - dtpoff_base (info);
2734 else
2735 outrel.r_addend = 0;
2736 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2737 }
2738
2739 sreloc = htab->srelgot;
2740
2741 outrel.r_offset = (htab->sgot->output_section->vma
2742 + htab->sgot->output_offset + off);
2743
2744 if (GOT_TLS_GD_P (tls_type))
2745 dr_type = R_X86_64_DTPMOD64;
2746 else if (GOT_TLS_GDESC_P (tls_type))
2747 goto dr_done;
2748 else
2749 dr_type = R_X86_64_TPOFF64;
2750
2751 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2752 outrel.r_addend = 0;
2753 if ((dr_type == R_X86_64_TPOFF64
2754 || dr_type == R_X86_64_TLSDESC) && indx == 0)
2755 outrel.r_addend = relocation - dtpoff_base (info);
2756 outrel.r_info = ELF64_R_INFO (indx, dr_type);
2757
2758 loc = sreloc->contents;
2759 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2760 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2761 <= sreloc->contents + sreloc->size);
2762 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2763
2764 if (GOT_TLS_GD_P (tls_type))
2765 {
2766 if (indx == 0)
2767 {
2768 BFD_ASSERT (! unresolved_reloc);
2769 bfd_put_64 (output_bfd,
2770 relocation - dtpoff_base (info),
2771 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2772 }
2773 else
2774 {
2775 bfd_put_64 (output_bfd, 0,
2776 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2777 outrel.r_info = ELF64_R_INFO (indx,
2778 R_X86_64_DTPOFF64);
2779 outrel.r_offset += GOT_ENTRY_SIZE;
2780 sreloc->reloc_count++;
2781 loc += sizeof (Elf64_External_Rela);
2782 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2783 <= sreloc->contents + sreloc->size);
2784 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2785 }
2786 }
2787
2788 dr_done:
2789 if (h != NULL)
2790 h->got.offset |= 1;
2791 else
2792 local_got_offsets[r_symndx] |= 1;
2793 }
2794
2795 if (off >= (bfd_vma) -2
2796 && ! GOT_TLS_GDESC_P (tls_type))
2797 abort ();
2798 if (r_type == ELF64_R_TYPE (rel->r_info))
2799 {
2800 if (r_type == R_X86_64_GOTPC32_TLSDESC
2801 || r_type == R_X86_64_TLSDESC_CALL)
2802 relocation = htab->sgotplt->output_section->vma
2803 + htab->sgotplt->output_offset
2804 + offplt + htab->sgotplt_jump_table_size;
2805 else
2806 relocation = htab->sgot->output_section->vma
2807 + htab->sgot->output_offset + off;
2808 unresolved_reloc = FALSE;
2809 }
2810 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2811 {
2812 unsigned int i;
2813 static unsigned char tlsgd[8]
2814 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2815
2816 /* GD->IE transition.
2817 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2818 .word 0x6666; rex64; call __tls_get_addr@plt
2819 Change it into:
2820 movq %fs:0, %rax
2821 addq foo@gottpoff(%rip), %rax */
2822 BFD_ASSERT (rel->r_offset >= 4);
2823 for (i = 0; i < 4; i++)
2824 BFD_ASSERT (bfd_get_8 (input_bfd,
2825 contents + rel->r_offset - 4 + i)
2826 == tlsgd[i]);
2827 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2828 for (i = 0; i < 4; i++)
2829 BFD_ASSERT (bfd_get_8 (input_bfd,
2830 contents + rel->r_offset + 4 + i)
2831 == tlsgd[i+4]);
2832 BFD_ASSERT (rel + 1 < relend);
2833 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2834 memcpy (contents + rel->r_offset - 4,
2835 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
2836 16);
2837
2838 relocation = (htab->sgot->output_section->vma
2839 + htab->sgot->output_offset + off
2840 - rel->r_offset
2841 - input_section->output_section->vma
2842 - input_section->output_offset
2843 - 12);
2844 bfd_put_32 (output_bfd, relocation,
2845 contents + rel->r_offset + 8);
2846 /* Skip R_X86_64_PLT32. */
2847 rel++;
2848 continue;
2849 }
2850 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
2851 {
2852 /* GDesc -> IE transition.
2853 It's originally something like:
2854 leaq x@tlsdesc(%rip), %rax
2855
2856 Change it to:
2857 movq x@gottpoff(%rip), %rax # before nop; nop
2858
2859 Registers other than %rax may be set up here. */
2860
2861 unsigned int val, type, type2;
2862 bfd_vma roff;
2863
2864 /* First, make sure it's a leaq adding rip to a 32-bit
2865 offset into any register, although it's probably
2866 almost always going to be rax. */
2867 roff = rel->r_offset;
2868 BFD_ASSERT (roff >= 3);
2869 type = bfd_get_8 (input_bfd, contents + roff - 3);
2870 BFD_ASSERT ((type & 0xfb) == 0x48);
2871 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
2872 BFD_ASSERT (type2 == 0x8d);
2873 val = bfd_get_8 (input_bfd, contents + roff - 1);
2874 BFD_ASSERT ((val & 0xc7) == 0x05);
2875 BFD_ASSERT (roff + 4 <= input_section->size);
2876
2877 /* Now modify the instruction as appropriate. */
2878 /* To turn a leaq into a movq in the form we use it, it
2879 suffices to change the second byte from 0x8d to
2880 0x8b. */
2881 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
2882
2883 bfd_put_32 (output_bfd,
2884 htab->sgot->output_section->vma
2885 + htab->sgot->output_offset + off
2886 - rel->r_offset
2887 - input_section->output_section->vma
2888 - input_section->output_offset
2889 - 4,
2890 contents + roff);
2891 continue;
2892 }
2893 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
2894 {
2895 /* GDesc -> IE transition.
2896 It's originally:
2897 call *(%rax)
2898
2899 Change it to:
2900 nop; nop. */
2901
2902 unsigned int val, type;
2903 bfd_vma roff;
2904
2905 /* First, make sure it's a call *(%eax). */
2906 roff = rel->r_offset;
2907 BFD_ASSERT (roff + 2 <= input_section->size);
2908 type = bfd_get_8 (input_bfd, contents + roff);
2909 BFD_ASSERT (type == 0xff);
2910 val = bfd_get_8 (input_bfd, contents + roff + 1);
2911 BFD_ASSERT (val == 0x10);
2912
2913 /* Now modify the instruction as appropriate. */
2914 bfd_put_8 (output_bfd, 0x90, contents + roff);
2915 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
2916
2917 continue;
2918 }
2919 else
2920 BFD_ASSERT (FALSE);
2921 break;
2922
2923 case R_X86_64_TLSLD:
2924 if (! info->shared)
2925 {
2926 /* LD->LE transition:
2927 Ensure it is:
2928 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr@plt.
2929 We change it into:
2930 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
2931 BFD_ASSERT (rel->r_offset >= 3);
2932 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3)
2933 == 0x48);
2934 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2935 == 0x8d);
2936 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 1)
2937 == 0x3d);
2938 BFD_ASSERT (rel->r_offset + 9 <= input_section->size);
2939 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2940 == 0xe8);
2941 BFD_ASSERT (rel + 1 < relend);
2942 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2943 memcpy (contents + rel->r_offset - 3,
2944 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
2945 /* Skip R_X86_64_PLT32. */
2946 rel++;
2947 continue;
2948 }
2949
2950 if (htab->sgot == NULL)
2951 abort ();
2952
2953 off = htab->tls_ld_got.offset;
2954 if (off & 1)
2955 off &= ~1;
2956 else
2957 {
2958 Elf_Internal_Rela outrel;
2959 bfd_byte *loc;
2960
2961 if (htab->srelgot == NULL)
2962 abort ();
2963
2964 outrel.r_offset = (htab->sgot->output_section->vma
2965 + htab->sgot->output_offset + off);
2966
2967 bfd_put_64 (output_bfd, 0,
2968 htab->sgot->contents + off);
2969 bfd_put_64 (output_bfd, 0,
2970 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2971 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
2972 outrel.r_addend = 0;
2973 loc = htab->srelgot->contents;
2974 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2975 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2976 htab->tls_ld_got.offset |= 1;
2977 }
2978 relocation = htab->sgot->output_section->vma
2979 + htab->sgot->output_offset + off;
2980 unresolved_reloc = FALSE;
2981 break;
2982
2983 case R_X86_64_DTPOFF32:
2984 if (info->shared || (input_section->flags & SEC_CODE) == 0)
2985 relocation -= dtpoff_base (info);
2986 else
2987 relocation = tpoff (info, relocation);
2988 break;
2989
2990 case R_X86_64_TPOFF32:
2991 BFD_ASSERT (! info->shared);
2992 relocation = tpoff (info, relocation);
2993 break;
2994
2995 default:
2996 break;
2997 }
2998
2999 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3000 because such sections are not SEC_ALLOC and thus ld.so will
3001 not process them. */
3002 if (unresolved_reloc
3003 && !((input_section->flags & SEC_DEBUGGING) != 0
3004 && h->def_dynamic))
3005 (*_bfd_error_handler)
3006 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3007 input_bfd,
3008 input_section,
3009 (long) rel->r_offset,
3010 howto->name,
3011 h->root.root.string);
3012
3013 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3014 contents, rel->r_offset,
3015 relocation, rel->r_addend);
3016
3017 if (r != bfd_reloc_ok)
3018 {
3019 const char *name;
3020
3021 if (h != NULL)
3022 name = h->root.root.string;
3023 else
3024 {
3025 name = bfd_elf_string_from_elf_section (input_bfd,
3026 symtab_hdr->sh_link,
3027 sym->st_name);
3028 if (name == NULL)
3029 return FALSE;
3030 if (*name == '\0')
3031 name = bfd_section_name (input_bfd, sec);
3032 }
3033
3034 if (r == bfd_reloc_overflow)
3035 {
3036 if (h != NULL
3037 && h->root.type == bfd_link_hash_undefweak
3038 && howto->pc_relative)
3039 /* Ignore reloc overflow on branches to undefweak syms. */
3040 continue;
3041
3042 if (! ((*info->callbacks->reloc_overflow)
3043 (info, (h ? &h->root : NULL), name, howto->name,
3044 (bfd_vma) 0, input_bfd, input_section,
3045 rel->r_offset)))
3046 return FALSE;
3047 }
3048 else
3049 {
3050 (*_bfd_error_handler)
3051 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3052 input_bfd, input_section,
3053 (long) rel->r_offset, name, (int) r);
3054 return FALSE;
3055 }
3056 }
3057 }
3058
3059 return TRUE;
3060 }
3061
3062 /* Finish up dynamic symbol handling. We set the contents of various
3063 dynamic sections here. */
3064
3065 static bfd_boolean
3066 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3067 struct bfd_link_info *info,
3068 struct elf_link_hash_entry *h,
3069 Elf_Internal_Sym *sym)
3070 {
3071 struct elf64_x86_64_link_hash_table *htab;
3072
3073 htab = elf64_x86_64_hash_table (info);
3074
3075 if (h->plt.offset != (bfd_vma) -1)
3076 {
3077 bfd_vma plt_index;
3078 bfd_vma got_offset;
3079 Elf_Internal_Rela rela;
3080 bfd_byte *loc;
3081
3082 /* This symbol has an entry in the procedure linkage table. Set
3083 it up. */
3084 if (h->dynindx == -1
3085 || htab->splt == NULL
3086 || htab->sgotplt == NULL
3087 || htab->srelplt == NULL)
3088 abort ();
3089
3090 /* Get the index in the procedure linkage table which
3091 corresponds to this symbol. This is the index of this symbol
3092 in all the symbols for which we are making plt entries. The
3093 first entry in the procedure linkage table is reserved. */
3094 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3095
3096 /* Get the offset into the .got table of the entry that
3097 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3098 bytes. The first three are reserved for the dynamic linker. */
3099 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3100
3101 /* Fill in the entry in the procedure linkage table. */
3102 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
3103 PLT_ENTRY_SIZE);
3104
3105 /* Insert the relocation positions of the plt section. The magic
3106 numbers at the end of the statements are the positions of the
3107 relocations in the plt section. */
3108 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3109 instruction uses 6 bytes, subtract this value. */
3110 bfd_put_32 (output_bfd,
3111 (htab->sgotplt->output_section->vma
3112 + htab->sgotplt->output_offset
3113 + got_offset
3114 - htab->splt->output_section->vma
3115 - htab->splt->output_offset
3116 - h->plt.offset
3117 - 6),
3118 htab->splt->contents + h->plt.offset + 2);
3119 /* Put relocation index. */
3120 bfd_put_32 (output_bfd, plt_index,
3121 htab->splt->contents + h->plt.offset + 7);
3122 /* Put offset for jmp .PLT0. */
3123 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3124 htab->splt->contents + h->plt.offset + 12);
3125
3126 /* Fill in the entry in the global offset table, initially this
3127 points to the pushq instruction in the PLT which is at offset 6. */
3128 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
3129 + htab->splt->output_offset
3130 + h->plt.offset + 6),
3131 htab->sgotplt->contents + got_offset);
3132
3133 /* Fill in the entry in the .rela.plt section. */
3134 rela.r_offset = (htab->sgotplt->output_section->vma
3135 + htab->sgotplt->output_offset
3136 + got_offset);
3137 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
3138 rela.r_addend = 0;
3139 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
3140 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3141
3142 if (!h->def_regular)
3143 {
3144 /* Mark the symbol as undefined, rather than as defined in
3145 the .plt section. Leave the value if there were any
3146 relocations where pointer equality matters (this is a clue
3147 for the dynamic linker, to make function pointer
3148 comparisons work between an application and shared
3149 library), otherwise set it to zero. If a function is only
3150 called from a binary, there is no need to slow down
3151 shared libraries because of that. */
3152 sym->st_shndx = SHN_UNDEF;
3153 if (!h->pointer_equality_needed)
3154 sym->st_value = 0;
3155 }
3156 }
3157
3158 if (h->got.offset != (bfd_vma) -1
3159 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type)
3160 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
3161 {
3162 Elf_Internal_Rela rela;
3163 bfd_byte *loc;
3164
3165 /* This symbol has an entry in the global offset table. Set it
3166 up. */
3167 if (htab->sgot == NULL || htab->srelgot == NULL)
3168 abort ();
3169
3170 rela.r_offset = (htab->sgot->output_section->vma
3171 + htab->sgot->output_offset
3172 + (h->got.offset &~ (bfd_vma) 1));
3173
3174 /* If this is a static link, or it is a -Bsymbolic link and the
3175 symbol is defined locally or was forced to be local because
3176 of a version file, we just want to emit a RELATIVE reloc.
3177 The entry in the global offset table will already have been
3178 initialized in the relocate_section function. */
3179 if (info->shared
3180 && SYMBOL_REFERENCES_LOCAL (info, h))
3181 {
3182 BFD_ASSERT((h->got.offset & 1) != 0);
3183 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3184 rela.r_addend = (h->root.u.def.value
3185 + h->root.u.def.section->output_section->vma
3186 + h->root.u.def.section->output_offset);
3187 }
3188 else
3189 {
3190 BFD_ASSERT((h->got.offset & 1) == 0);
3191 bfd_put_64 (output_bfd, (bfd_vma) 0,
3192 htab->sgot->contents + h->got.offset);
3193 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
3194 rela.r_addend = 0;
3195 }
3196
3197 loc = htab->srelgot->contents;
3198 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3199 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3200 }
3201
3202 if (h->needs_copy)
3203 {
3204 Elf_Internal_Rela rela;
3205 bfd_byte *loc;
3206
3207 /* This symbol needs a copy reloc. Set it up. */
3208
3209 if (h->dynindx == -1
3210 || (h->root.type != bfd_link_hash_defined
3211 && h->root.type != bfd_link_hash_defweak)
3212 || htab->srelbss == NULL)
3213 abort ();
3214
3215 rela.r_offset = (h->root.u.def.value
3216 + h->root.u.def.section->output_section->vma
3217 + h->root.u.def.section->output_offset);
3218 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
3219 rela.r_addend = 0;
3220 loc = htab->srelbss->contents;
3221 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
3222 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3223 }
3224
3225 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3226 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3227 || h == htab->elf.hgot)
3228 sym->st_shndx = SHN_ABS;
3229
3230 return TRUE;
3231 }
3232
3233 /* Used to decide how to sort relocs in an optimal manner for the
3234 dynamic linker, before writing them out. */
3235
3236 static enum elf_reloc_type_class
3237 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
3238 {
3239 switch ((int) ELF64_R_TYPE (rela->r_info))
3240 {
3241 case R_X86_64_RELATIVE:
3242 return reloc_class_relative;
3243 case R_X86_64_JUMP_SLOT:
3244 return reloc_class_plt;
3245 case R_X86_64_COPY:
3246 return reloc_class_copy;
3247 default:
3248 return reloc_class_normal;
3249 }
3250 }
3251
3252 /* Finish up the dynamic sections. */
3253
3254 static bfd_boolean
3255 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
3256 {
3257 struct elf64_x86_64_link_hash_table *htab;
3258 bfd *dynobj;
3259 asection *sdyn;
3260
3261 htab = elf64_x86_64_hash_table (info);
3262 dynobj = htab->elf.dynobj;
3263 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3264
3265 if (htab->elf.dynamic_sections_created)
3266 {
3267 Elf64_External_Dyn *dyncon, *dynconend;
3268
3269 if (sdyn == NULL || htab->sgot == NULL)
3270 abort ();
3271
3272 dyncon = (Elf64_External_Dyn *) sdyn->contents;
3273 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
3274 for (; dyncon < dynconend; dyncon++)
3275 {
3276 Elf_Internal_Dyn dyn;
3277 asection *s;
3278
3279 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
3280
3281 switch (dyn.d_tag)
3282 {
3283 default:
3284 continue;
3285
3286 case DT_PLTGOT:
3287 s = htab->sgotplt;
3288 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
3289 break;
3290
3291 case DT_JMPREL:
3292 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3293 break;
3294
3295 case DT_PLTRELSZ:
3296 s = htab->srelplt->output_section;
3297 dyn.d_un.d_val = s->size;
3298 break;
3299
3300 case DT_RELASZ:
3301 /* The procedure linkage table relocs (DT_JMPREL) should
3302 not be included in the overall relocs (DT_RELA).
3303 Therefore, we override the DT_RELASZ entry here to
3304 make it not include the JMPREL relocs. Since the
3305 linker script arranges for .rela.plt to follow all
3306 other relocation sections, we don't have to worry
3307 about changing the DT_RELA entry. */
3308 if (htab->srelplt != NULL)
3309 {
3310 s = htab->srelplt->output_section;
3311 dyn.d_un.d_val -= s->size;
3312 }
3313 break;
3314
3315 case DT_TLSDESC_PLT:
3316 s = htab->splt;
3317 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3318 + htab->tlsdesc_plt;
3319 break;
3320
3321 case DT_TLSDESC_GOT:
3322 s = htab->sgot;
3323 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3324 + htab->tlsdesc_got;
3325 break;
3326 }
3327
3328 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
3329 }
3330
3331 /* Fill in the special first entry in the procedure linkage table. */
3332 if (htab->splt && htab->splt->size > 0)
3333 {
3334 /* Fill in the first entry in the procedure linkage table. */
3335 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
3336 PLT_ENTRY_SIZE);
3337 /* Add offset for pushq GOT+8(%rip), since the instruction
3338 uses 6 bytes subtract this value. */
3339 bfd_put_32 (output_bfd,
3340 (htab->sgotplt->output_section->vma
3341 + htab->sgotplt->output_offset
3342 + 8
3343 - htab->splt->output_section->vma
3344 - htab->splt->output_offset
3345 - 6),
3346 htab->splt->contents + 2);
3347 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
3348 the end of the instruction. */
3349 bfd_put_32 (output_bfd,
3350 (htab->sgotplt->output_section->vma
3351 + htab->sgotplt->output_offset
3352 + 16
3353 - htab->splt->output_section->vma
3354 - htab->splt->output_offset
3355 - 12),
3356 htab->splt->contents + 8);
3357
3358 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
3359 PLT_ENTRY_SIZE;
3360
3361 if (htab->tlsdesc_plt)
3362 {
3363 bfd_put_64 (output_bfd, (bfd_vma) 0,
3364 htab->sgot->contents + htab->tlsdesc_got);
3365
3366 memcpy (htab->splt->contents + htab->tlsdesc_plt,
3367 elf64_x86_64_plt0_entry,
3368 PLT_ENTRY_SIZE);
3369
3370 /* Add offset for pushq GOT+8(%rip), since the
3371 instruction uses 6 bytes subtract this value. */
3372 bfd_put_32 (output_bfd,
3373 (htab->sgotplt->output_section->vma
3374 + htab->sgotplt->output_offset
3375 + 8
3376 - htab->splt->output_section->vma
3377 - htab->splt->output_offset
3378 - htab->tlsdesc_plt
3379 - 6),
3380 htab->splt->contents + htab->tlsdesc_plt + 2);
3381 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
3382 htab->tlsdesc_got. The 12 is the offset to the end of
3383 the instruction. */
3384 bfd_put_32 (output_bfd,
3385 (htab->sgot->output_section->vma
3386 + htab->sgot->output_offset
3387 + htab->tlsdesc_got
3388 - htab->splt->output_section->vma
3389 - htab->splt->output_offset
3390 - htab->tlsdesc_plt
3391 - 12),
3392 htab->splt->contents + htab->tlsdesc_plt + 8);
3393 }
3394 }
3395 }
3396
3397 if (htab->sgotplt)
3398 {
3399 /* Fill in the first three entries in the global offset table. */
3400 if (htab->sgotplt->size > 0)
3401 {
3402 /* Set the first entry in the global offset table to the address of
3403 the dynamic section. */
3404 if (sdyn == NULL)
3405 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
3406 else
3407 bfd_put_64 (output_bfd,
3408 sdyn->output_section->vma + sdyn->output_offset,
3409 htab->sgotplt->contents);
3410 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
3411 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
3412 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
3413 }
3414
3415 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
3416 GOT_ENTRY_SIZE;
3417 }
3418
3419 if (htab->sgot && htab->sgot->size > 0)
3420 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize
3421 = GOT_ENTRY_SIZE;
3422
3423 return TRUE;
3424 }
3425
3426 /* Return address for Ith PLT stub in section PLT, for relocation REL
3427 or (bfd_vma) -1 if it should not be included. */
3428
3429 static bfd_vma
3430 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
3431 const arelent *rel ATTRIBUTE_UNUSED)
3432 {
3433 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
3434 }
3435
3436 /* Handle an x86-64 specific section when reading an object file. This
3437 is called when elfcode.h finds a section with an unknown type. */
3438
3439 static bfd_boolean
3440 elf64_x86_64_section_from_shdr (bfd *abfd,
3441 Elf_Internal_Shdr *hdr,
3442 const char *name,
3443 int shindex)
3444 {
3445 if (hdr->sh_type != SHT_X86_64_UNWIND)
3446 return FALSE;
3447
3448 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
3449 return FALSE;
3450
3451 return TRUE;
3452 }
3453
3454 /* Hook called by the linker routine which adds symbols from an object
3455 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
3456 of .bss. */
3457
3458 static bfd_boolean
3459 elf64_x86_64_add_symbol_hook (bfd *abfd,
3460 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3461 Elf_Internal_Sym *sym,
3462 const char **namep ATTRIBUTE_UNUSED,
3463 flagword *flagsp ATTRIBUTE_UNUSED,
3464 asection **secp, bfd_vma *valp)
3465 {
3466 asection *lcomm;
3467
3468 switch (sym->st_shndx)
3469 {
3470 case SHN_X86_64_LCOMMON:
3471 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
3472 if (lcomm == NULL)
3473 {
3474 lcomm = bfd_make_section_with_flags (abfd,
3475 "LARGE_COMMON",
3476 (SEC_ALLOC
3477 | SEC_IS_COMMON
3478 | SEC_LINKER_CREATED));
3479 if (lcomm == NULL)
3480 return FALSE;
3481 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
3482 }
3483 *secp = lcomm;
3484 *valp = sym->st_size;
3485 break;
3486 }
3487 return TRUE;
3488 }
3489
3490
3491 /* Given a BFD section, try to locate the corresponding ELF section
3492 index. */
3493
3494 static bfd_boolean
3495 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
3496 asection *sec, int *index)
3497 {
3498 if (sec == &_bfd_elf_large_com_section)
3499 {
3500 *index = SHN_X86_64_LCOMMON;
3501 return TRUE;
3502 }
3503 return FALSE;
3504 }
3505
3506 /* Process a symbol. */
3507
3508 static void
3509 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
3510 asymbol *asym)
3511 {
3512 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
3513
3514 switch (elfsym->internal_elf_sym.st_shndx)
3515 {
3516 case SHN_X86_64_LCOMMON:
3517 asym->section = &_bfd_elf_large_com_section;
3518 asym->value = elfsym->internal_elf_sym.st_size;
3519 /* Common symbol doesn't set BSF_GLOBAL. */
3520 asym->flags &= ~BSF_GLOBAL;
3521 break;
3522 }
3523 }
3524
3525 static bfd_boolean
3526 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
3527 {
3528 return (sym->st_shndx == SHN_COMMON
3529 || sym->st_shndx == SHN_X86_64_LCOMMON);
3530 }
3531
3532 static unsigned int
3533 elf64_x86_64_common_section_index (asection *sec)
3534 {
3535 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3536 return SHN_COMMON;
3537 else
3538 return SHN_X86_64_LCOMMON;
3539 }
3540
3541 static asection *
3542 elf64_x86_64_common_section (asection *sec)
3543 {
3544 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3545 return bfd_com_section_ptr;
3546 else
3547 return &_bfd_elf_large_com_section;
3548 }
3549
3550 static bfd_boolean
3551 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3552 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
3553 struct elf_link_hash_entry *h,
3554 Elf_Internal_Sym *sym,
3555 asection **psec,
3556 bfd_vma *pvalue ATTRIBUTE_UNUSED,
3557 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
3558 bfd_boolean *skip ATTRIBUTE_UNUSED,
3559 bfd_boolean *override ATTRIBUTE_UNUSED,
3560 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
3561 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
3562 bfd_boolean *newdef ATTRIBUTE_UNUSED,
3563 bfd_boolean *newdyn,
3564 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
3565 bfd_boolean *newweak ATTRIBUTE_UNUSED,
3566 bfd *abfd ATTRIBUTE_UNUSED,
3567 asection **sec,
3568 bfd_boolean *olddef ATTRIBUTE_UNUSED,
3569 bfd_boolean *olddyn,
3570 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
3571 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
3572 bfd *oldbfd,
3573 asection **oldsec)
3574 {
3575 /* A normal common symbol and a large common symbol result in a
3576 normal common symbol. We turn the large common symbol into a
3577 normal one. */
3578 if (!*olddyn
3579 && h->root.type == bfd_link_hash_common
3580 && !*newdyn
3581 && bfd_is_com_section (*sec)
3582 && *oldsec != *sec)
3583 {
3584 if (sym->st_shndx == SHN_COMMON
3585 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
3586 {
3587 h->root.u.c.p->section
3588 = bfd_make_section_old_way (oldbfd, "COMMON");
3589 h->root.u.c.p->section->flags = SEC_ALLOC;
3590 }
3591 else if (sym->st_shndx == SHN_X86_64_LCOMMON
3592 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
3593 *psec = *sec = bfd_com_section_ptr;
3594 }
3595
3596 return TRUE;
3597 }
3598
3599 static int
3600 elf64_x86_64_additional_program_headers (bfd *abfd,
3601 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3602 {
3603 asection *s;
3604 int count = 0;
3605
3606 /* Check to see if we need a large readonly segment. */
3607 s = bfd_get_section_by_name (abfd, ".lrodata");
3608 if (s && (s->flags & SEC_LOAD))
3609 count++;
3610
3611 /* Check to see if we need a large data segment. Since .lbss sections
3612 is placed right after the .bss section, there should be no need for
3613 a large data segment just because of .lbss. */
3614 s = bfd_get_section_by_name (abfd, ".ldata");
3615 if (s && (s->flags & SEC_LOAD))
3616 count++;
3617
3618 return count;
3619 }
3620
3621 static const struct bfd_elf_special_section
3622 elf64_x86_64_special_sections[]=
3623 {
3624 { ".gnu.linkonce.lb", 16, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3625 { ".gnu.linkonce.lr", 16, -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3626 { ".gnu.linkonce.lt", 16, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
3627 { ".lbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3628 { ".ldata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3629 { ".lrodata", 8, -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3630 { NULL, 0, 0, 0, 0 }
3631 };
3632
3633 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
3634 #define TARGET_LITTLE_NAME "elf64-x86-64"
3635 #define ELF_ARCH bfd_arch_i386
3636 #define ELF_MACHINE_CODE EM_X86_64
3637 #define ELF_MAXPAGESIZE 0x200000
3638 #define ELF_MINPAGESIZE 0x1000
3639 #define ELF_COMMONPAGESIZE 0x1000
3640
3641 #define elf_backend_can_gc_sections 1
3642 #define elf_backend_can_refcount 1
3643 #define elf_backend_want_got_plt 1
3644 #define elf_backend_plt_readonly 1
3645 #define elf_backend_want_plt_sym 0
3646 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
3647 #define elf_backend_rela_normal 1
3648
3649 #define elf_info_to_howto elf64_x86_64_info_to_howto
3650
3651 #define bfd_elf64_bfd_link_hash_table_create \
3652 elf64_x86_64_link_hash_table_create
3653 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
3654
3655 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
3656 #define elf_backend_check_relocs elf64_x86_64_check_relocs
3657 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
3658 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
3659 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
3660 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
3661 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
3662 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
3663 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
3664 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
3665 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
3666 #define elf_backend_relocate_section elf64_x86_64_relocate_section
3667 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
3668 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
3669 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
3670 #define elf_backend_object_p elf64_x86_64_elf_object_p
3671 #define bfd_elf64_mkobject elf64_x86_64_mkobject
3672
3673 #define elf_backend_section_from_shdr \
3674 elf64_x86_64_section_from_shdr
3675
3676 #define elf_backend_section_from_bfd_section \
3677 elf64_x86_64_elf_section_from_bfd_section
3678 #define elf_backend_add_symbol_hook \
3679 elf64_x86_64_add_symbol_hook
3680 #define elf_backend_symbol_processing \
3681 elf64_x86_64_symbol_processing
3682 #define elf_backend_common_section_index \
3683 elf64_x86_64_common_section_index
3684 #define elf_backend_common_section \
3685 elf64_x86_64_common_section
3686 #define elf_backend_common_definition \
3687 elf64_x86_64_common_definition
3688 #define elf_backend_merge_symbol \
3689 elf64_x86_64_merge_symbol
3690 #define elf_backend_special_sections \
3691 elf64_x86_64_special_sections
3692 #define elf_backend_additional_program_headers \
3693 elf64_x86_64_additional_program_headers
3694
3695 #include "elf64-target.h"
This page took 0.13583 seconds and 5 git commands to generate.