2005-08-24 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27
28 #include "elf/x86-64.h"
29
30 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
31 #define MINUS_ONE (~ (bfd_vma) 0)
32
33 /* The relocation "howto" table. Order of fields:
34 type, size, bitsize, pc_relative, complain_on_overflow,
35 special_function, name, partial_inplace, src_mask, dst_pack, pcrel_offset. */
36 static reloc_howto_type x86_64_elf_howto_table[] =
37 {
38 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
39 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
40 FALSE),
41 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
42 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
43 FALSE),
44 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
45 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
46 TRUE),
47 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
48 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
49 FALSE),
50 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
51 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
52 TRUE),
53 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
54 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
55 FALSE),
56 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
57 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
58 MINUS_ONE, FALSE),
59 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
60 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
61 MINUS_ONE, FALSE),
62 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
63 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
64 MINUS_ONE, FALSE),
65 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
66 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
67 0xffffffff, TRUE),
68 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
69 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
70 FALSE),
71 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
72 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
73 FALSE),
74 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
76 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
77 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
78 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
80 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
81 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
82 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
84 MINUS_ONE, FALSE),
85 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
86 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
87 MINUS_ONE, FALSE),
88 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
89 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
90 MINUS_ONE, FALSE),
91 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
92 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
93 0xffffffff, TRUE),
94 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
95 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
96 0xffffffff, TRUE),
97 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
98 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
99 0xffffffff, FALSE),
100 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
101 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
102 0xffffffff, TRUE),
103 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
104 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
105 0xffffffff, FALSE),
106 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
108 TRUE),
109 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
111 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
112 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
114 FALSE, 0xffffffff, 0xffffffff, TRUE),
115
116 /* We have a gap in the reloc numbers here.
117 R_X86_64_standard counts the number up to this point, and
118 R_X86_64_vt_offset is the value to subtract from a reloc type of
119 R_X86_64_GNU_VT* to form an index into this table. */
120 #define R_X86_64_standard (R_X86_64_GOTPC32 + 1)
121 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
122
123 /* GNU extension to record C++ vtable hierarchy. */
124 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
125 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
126
127 /* GNU extension to record C++ vtable member usage. */
128 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
129 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
130 FALSE)
131 };
132
133 /* Map BFD relocs to the x86_64 elf relocs. */
134 struct elf_reloc_map
135 {
136 bfd_reloc_code_real_type bfd_reloc_val;
137 unsigned char elf_reloc_val;
138 };
139
140 static const struct elf_reloc_map x86_64_reloc_map[] =
141 {
142 { BFD_RELOC_NONE, R_X86_64_NONE, },
143 { BFD_RELOC_64, R_X86_64_64, },
144 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
145 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
146 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
147 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
148 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
149 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
150 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
151 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
152 { BFD_RELOC_32, R_X86_64_32, },
153 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
154 { BFD_RELOC_16, R_X86_64_16, },
155 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
156 { BFD_RELOC_8, R_X86_64_8, },
157 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
158 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
159 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
160 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
161 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
162 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
163 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
164 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
165 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
166 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
167 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
168 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
169 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
170 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
171 };
172
173
174 /* Given a BFD reloc type, return a HOWTO structure. */
175 static reloc_howto_type *
176 elf64_x86_64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
177 bfd_reloc_code_real_type code)
178 {
179 unsigned int i;
180
181 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
182 i++)
183 {
184 if (x86_64_reloc_map[i].bfd_reloc_val == code)
185 return &x86_64_elf_howto_table[i];
186 }
187 return 0;
188 }
189
190 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
191
192 static void
193 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
194 Elf_Internal_Rela *dst)
195 {
196 unsigned r_type, i;
197
198 r_type = ELF64_R_TYPE (dst->r_info);
199 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
200 || r_type >= (unsigned int) R_X86_64_max)
201 {
202 if (r_type >= (unsigned int) R_X86_64_standard)
203 {
204 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
205 abfd, (int) r_type);
206 r_type = R_X86_64_NONE;
207 }
208 i = r_type;
209 }
210 else
211 i = r_type - (unsigned int) R_X86_64_vt_offset;
212 cache_ptr->howto = &x86_64_elf_howto_table[i];
213 BFD_ASSERT (r_type == cache_ptr->howto->type);
214 }
215 \f
216 /* Support for core dump NOTE sections. */
217 static bfd_boolean
218 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
219 {
220 int offset;
221 size_t size;
222
223 switch (note->descsz)
224 {
225 default:
226 return FALSE;
227
228 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
229 /* pr_cursig */
230 elf_tdata (abfd)->core_signal
231 = bfd_get_16 (abfd, note->descdata + 12);
232
233 /* pr_pid */
234 elf_tdata (abfd)->core_pid
235 = bfd_get_32 (abfd, note->descdata + 32);
236
237 /* pr_reg */
238 offset = 112;
239 size = 216;
240
241 break;
242 }
243
244 /* Make a ".reg/999" section. */
245 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
246 size, note->descpos + offset);
247 }
248
249 static bfd_boolean
250 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
251 {
252 switch (note->descsz)
253 {
254 default:
255 return FALSE;
256
257 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
258 elf_tdata (abfd)->core_program
259 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
260 elf_tdata (abfd)->core_command
261 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
262 }
263
264 /* Note that for some reason, a spurious space is tacked
265 onto the end of the args in some (at least one anyway)
266 implementations, so strip it off if it exists. */
267
268 {
269 char *command = elf_tdata (abfd)->core_command;
270 int n = strlen (command);
271
272 if (0 < n && command[n - 1] == ' ')
273 command[n - 1] = '\0';
274 }
275
276 return TRUE;
277 }
278 \f
279 /* Functions for the x86-64 ELF linker. */
280
281 /* The name of the dynamic interpreter. This is put in the .interp
282 section. */
283
284 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
285
286 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
287 copying dynamic variables from a shared lib into an app's dynbss
288 section, and instead use a dynamic relocation to point into the
289 shared lib. */
290 #define ELIMINATE_COPY_RELOCS 1
291
292 /* The size in bytes of an entry in the global offset table. */
293
294 #define GOT_ENTRY_SIZE 8
295
296 /* The size in bytes of an entry in the procedure linkage table. */
297
298 #define PLT_ENTRY_SIZE 16
299
300 /* The first entry in a procedure linkage table looks like this. See the
301 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
302
303 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
304 {
305 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
306 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
307 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
308 };
309
310 /* Subsequent entries in a procedure linkage table look like this. */
311
312 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
313 {
314 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
315 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
316 0x68, /* pushq immediate */
317 0, 0, 0, 0, /* replaced with index into relocation table. */
318 0xe9, /* jmp relative */
319 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
320 };
321
322 /* The x86-64 linker needs to keep track of the number of relocs that
323 it decides to copy as dynamic relocs in check_relocs for each symbol.
324 This is so that it can later discard them if they are found to be
325 unnecessary. We store the information in a field extending the
326 regular ELF linker hash table. */
327
328 struct elf64_x86_64_dyn_relocs
329 {
330 /* Next section. */
331 struct elf64_x86_64_dyn_relocs *next;
332
333 /* The input section of the reloc. */
334 asection *sec;
335
336 /* Total number of relocs copied for the input section. */
337 bfd_size_type count;
338
339 /* Number of pc-relative relocs copied for the input section. */
340 bfd_size_type pc_count;
341 };
342
343 /* x86-64 ELF linker hash entry. */
344
345 struct elf64_x86_64_link_hash_entry
346 {
347 struct elf_link_hash_entry elf;
348
349 /* Track dynamic relocs copied for this symbol. */
350 struct elf64_x86_64_dyn_relocs *dyn_relocs;
351
352 #define GOT_UNKNOWN 0
353 #define GOT_NORMAL 1
354 #define GOT_TLS_GD 2
355 #define GOT_TLS_IE 3
356 unsigned char tls_type;
357 };
358
359 #define elf64_x86_64_hash_entry(ent) \
360 ((struct elf64_x86_64_link_hash_entry *)(ent))
361
362 struct elf64_x86_64_obj_tdata
363 {
364 struct elf_obj_tdata root;
365
366 /* tls_type for each local got entry. */
367 char *local_got_tls_type;
368 };
369
370 #define elf64_x86_64_tdata(abfd) \
371 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
372
373 #define elf64_x86_64_local_got_tls_type(abfd) \
374 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
375
376
377 /* x86-64 ELF linker hash table. */
378
379 struct elf64_x86_64_link_hash_table
380 {
381 struct elf_link_hash_table elf;
382
383 /* Short-cuts to get to dynamic linker sections. */
384 asection *sgot;
385 asection *sgotplt;
386 asection *srelgot;
387 asection *splt;
388 asection *srelplt;
389 asection *sdynbss;
390 asection *srelbss;
391
392 union {
393 bfd_signed_vma refcount;
394 bfd_vma offset;
395 } tls_ld_got;
396
397 /* Small local sym to section mapping cache. */
398 struct sym_sec_cache sym_sec;
399 };
400
401 /* Get the x86-64 ELF linker hash table from a link_info structure. */
402
403 #define elf64_x86_64_hash_table(p) \
404 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
405
406 /* Create an entry in an x86-64 ELF linker hash table. */
407
408 static struct bfd_hash_entry *
409 link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
410 const char *string)
411 {
412 /* Allocate the structure if it has not already been allocated by a
413 subclass. */
414 if (entry == NULL)
415 {
416 entry = bfd_hash_allocate (table,
417 sizeof (struct elf64_x86_64_link_hash_entry));
418 if (entry == NULL)
419 return entry;
420 }
421
422 /* Call the allocation method of the superclass. */
423 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
424 if (entry != NULL)
425 {
426 struct elf64_x86_64_link_hash_entry *eh;
427
428 eh = (struct elf64_x86_64_link_hash_entry *) entry;
429 eh->dyn_relocs = NULL;
430 eh->tls_type = GOT_UNKNOWN;
431 }
432
433 return entry;
434 }
435
436 /* Create an X86-64 ELF linker hash table. */
437
438 static struct bfd_link_hash_table *
439 elf64_x86_64_link_hash_table_create (bfd *abfd)
440 {
441 struct elf64_x86_64_link_hash_table *ret;
442 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
443
444 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
445 if (ret == NULL)
446 return NULL;
447
448 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
449 {
450 free (ret);
451 return NULL;
452 }
453
454 ret->sgot = NULL;
455 ret->sgotplt = NULL;
456 ret->srelgot = NULL;
457 ret->splt = NULL;
458 ret->srelplt = NULL;
459 ret->sdynbss = NULL;
460 ret->srelbss = NULL;
461 ret->sym_sec.abfd = NULL;
462 ret->tls_ld_got.refcount = 0;
463
464 return &ret->elf.root;
465 }
466
467 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
468 shortcuts to them in our hash table. */
469
470 static bfd_boolean
471 create_got_section (bfd *dynobj, struct bfd_link_info *info)
472 {
473 struct elf64_x86_64_link_hash_table *htab;
474
475 if (! _bfd_elf_create_got_section (dynobj, info))
476 return FALSE;
477
478 htab = elf64_x86_64_hash_table (info);
479 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
480 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
481 if (!htab->sgot || !htab->sgotplt)
482 abort ();
483
484 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
485 (SEC_ALLOC | SEC_LOAD
486 | SEC_HAS_CONTENTS
487 | SEC_IN_MEMORY
488 | SEC_LINKER_CREATED
489 | SEC_READONLY));
490 if (htab->srelgot == NULL
491 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
492 return FALSE;
493 return TRUE;
494 }
495
496 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
497 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
498 hash table. */
499
500 static bfd_boolean
501 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
502 {
503 struct elf64_x86_64_link_hash_table *htab;
504
505 htab = elf64_x86_64_hash_table (info);
506 if (!htab->sgot && !create_got_section (dynobj, info))
507 return FALSE;
508
509 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
510 return FALSE;
511
512 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
513 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
514 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
515 if (!info->shared)
516 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
517
518 if (!htab->splt || !htab->srelplt || !htab->sdynbss
519 || (!info->shared && !htab->srelbss))
520 abort ();
521
522 return TRUE;
523 }
524
525 /* Copy the extra info we tack onto an elf_link_hash_entry. */
526
527 static void
528 elf64_x86_64_copy_indirect_symbol (const struct elf_backend_data *bed,
529 struct elf_link_hash_entry *dir,
530 struct elf_link_hash_entry *ind)
531 {
532 struct elf64_x86_64_link_hash_entry *edir, *eind;
533
534 edir = (struct elf64_x86_64_link_hash_entry *) dir;
535 eind = (struct elf64_x86_64_link_hash_entry *) ind;
536
537 if (eind->dyn_relocs != NULL)
538 {
539 if (edir->dyn_relocs != NULL)
540 {
541 struct elf64_x86_64_dyn_relocs **pp;
542 struct elf64_x86_64_dyn_relocs *p;
543
544 if (ind->root.type == bfd_link_hash_indirect)
545 abort ();
546
547 /* Add reloc counts against the weak sym to the strong sym
548 list. Merge any entries against the same section. */
549 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
550 {
551 struct elf64_x86_64_dyn_relocs *q;
552
553 for (q = edir->dyn_relocs; q != NULL; q = q->next)
554 if (q->sec == p->sec)
555 {
556 q->pc_count += p->pc_count;
557 q->count += p->count;
558 *pp = p->next;
559 break;
560 }
561 if (q == NULL)
562 pp = &p->next;
563 }
564 *pp = edir->dyn_relocs;
565 }
566
567 edir->dyn_relocs = eind->dyn_relocs;
568 eind->dyn_relocs = NULL;
569 }
570
571 if (ind->root.type == bfd_link_hash_indirect
572 && dir->got.refcount <= 0)
573 {
574 edir->tls_type = eind->tls_type;
575 eind->tls_type = GOT_UNKNOWN;
576 }
577
578 if (ELIMINATE_COPY_RELOCS
579 && ind->root.type != bfd_link_hash_indirect
580 && dir->dynamic_adjusted)
581 {
582 /* If called to transfer flags for a weakdef during processing
583 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
584 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
585 dir->ref_dynamic |= ind->ref_dynamic;
586 dir->ref_regular |= ind->ref_regular;
587 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
588 dir->needs_plt |= ind->needs_plt;
589 dir->pointer_equality_needed |= ind->pointer_equality_needed;
590 }
591 else
592 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
593 }
594
595 static bfd_boolean
596 elf64_x86_64_mkobject (bfd *abfd)
597 {
598 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
599 abfd->tdata.any = bfd_zalloc (abfd, amt);
600 if (abfd->tdata.any == NULL)
601 return FALSE;
602 return TRUE;
603 }
604
605 static bfd_boolean
606 elf64_x86_64_elf_object_p (bfd *abfd)
607 {
608 /* Set the right machine number for an x86-64 elf64 file. */
609 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
610 return TRUE;
611 }
612
613 static int
614 elf64_x86_64_tls_transition (struct bfd_link_info *info, int r_type, int is_local)
615 {
616 if (info->shared)
617 return r_type;
618
619 switch (r_type)
620 {
621 case R_X86_64_TLSGD:
622 case R_X86_64_GOTTPOFF:
623 if (is_local)
624 return R_X86_64_TPOFF32;
625 return R_X86_64_GOTTPOFF;
626 case R_X86_64_TLSLD:
627 return R_X86_64_TPOFF32;
628 }
629
630 return r_type;
631 }
632
633 /* Look through the relocs for a section during the first phase, and
634 calculate needed space in the global offset table, procedure
635 linkage table, and dynamic reloc sections. */
636
637 static bfd_boolean
638 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec,
639 const Elf_Internal_Rela *relocs)
640 {
641 struct elf64_x86_64_link_hash_table *htab;
642 Elf_Internal_Shdr *symtab_hdr;
643 struct elf_link_hash_entry **sym_hashes;
644 const Elf_Internal_Rela *rel;
645 const Elf_Internal_Rela *rel_end;
646 asection *sreloc;
647
648 if (info->relocatable)
649 return TRUE;
650
651 htab = elf64_x86_64_hash_table (info);
652 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
653 sym_hashes = elf_sym_hashes (abfd);
654
655 sreloc = NULL;
656
657 rel_end = relocs + sec->reloc_count;
658 for (rel = relocs; rel < rel_end; rel++)
659 {
660 unsigned int r_type;
661 unsigned long r_symndx;
662 struct elf_link_hash_entry *h;
663
664 r_symndx = ELF64_R_SYM (rel->r_info);
665 r_type = ELF64_R_TYPE (rel->r_info);
666
667 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
668 {
669 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
670 abfd, r_symndx);
671 return FALSE;
672 }
673
674 if (r_symndx < symtab_hdr->sh_info)
675 h = NULL;
676 else
677 {
678 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
679 while (h->root.type == bfd_link_hash_indirect
680 || h->root.type == bfd_link_hash_warning)
681 h = (struct elf_link_hash_entry *) h->root.u.i.link;
682 }
683
684 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
685 switch (r_type)
686 {
687 case R_X86_64_TLSLD:
688 htab->tls_ld_got.refcount += 1;
689 goto create_got;
690
691 case R_X86_64_TPOFF32:
692 if (info->shared)
693 {
694 (*_bfd_error_handler)
695 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
696 abfd,
697 x86_64_elf_howto_table[r_type].name,
698 (h) ? h->root.root.string : "a local symbol");
699 bfd_set_error (bfd_error_bad_value);
700 return FALSE;
701 }
702 break;
703
704 case R_X86_64_GOTTPOFF:
705 if (info->shared)
706 info->flags |= DF_STATIC_TLS;
707 /* Fall through */
708
709 case R_X86_64_GOT32:
710 case R_X86_64_GOTPCREL:
711 case R_X86_64_TLSGD:
712 /* This symbol requires a global offset table entry. */
713 {
714 int tls_type, old_tls_type;
715
716 switch (r_type)
717 {
718 default: tls_type = GOT_NORMAL; break;
719 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
720 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
721 }
722
723 if (h != NULL)
724 {
725 h->got.refcount += 1;
726 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
727 }
728 else
729 {
730 bfd_signed_vma *local_got_refcounts;
731
732 /* This is a global offset table entry for a local symbol. */
733 local_got_refcounts = elf_local_got_refcounts (abfd);
734 if (local_got_refcounts == NULL)
735 {
736 bfd_size_type size;
737
738 size = symtab_hdr->sh_info;
739 size *= sizeof (bfd_signed_vma) + sizeof (char);
740 local_got_refcounts = ((bfd_signed_vma *)
741 bfd_zalloc (abfd, size));
742 if (local_got_refcounts == NULL)
743 return FALSE;
744 elf_local_got_refcounts (abfd) = local_got_refcounts;
745 elf64_x86_64_local_got_tls_type (abfd)
746 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
747 }
748 local_got_refcounts[r_symndx] += 1;
749 old_tls_type
750 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
751 }
752
753 /* If a TLS symbol is accessed using IE at least once,
754 there is no point to use dynamic model for it. */
755 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
756 && (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE))
757 {
758 if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
759 tls_type = old_tls_type;
760 else
761 {
762 (*_bfd_error_handler)
763 (_("%B: %s' accessed both as normal and thread local symbol"),
764 abfd, h ? h->root.root.string : "<local>");
765 return FALSE;
766 }
767 }
768
769 if (old_tls_type != tls_type)
770 {
771 if (h != NULL)
772 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
773 else
774 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
775 }
776 }
777 /* Fall through */
778
779 case R_X86_64_GOTOFF64:
780 case R_X86_64_GOTPC32:
781 create_got:
782 if (htab->sgot == NULL)
783 {
784 if (htab->elf.dynobj == NULL)
785 htab->elf.dynobj = abfd;
786 if (!create_got_section (htab->elf.dynobj, info))
787 return FALSE;
788 }
789 break;
790
791 case R_X86_64_PLT32:
792 /* This symbol requires a procedure linkage table entry. We
793 actually build the entry in adjust_dynamic_symbol,
794 because this might be a case of linking PIC code which is
795 never referenced by a dynamic object, in which case we
796 don't need to generate a procedure linkage table entry
797 after all. */
798
799 /* If this is a local symbol, we resolve it directly without
800 creating a procedure linkage table entry. */
801 if (h == NULL)
802 continue;
803
804 h->needs_plt = 1;
805 h->plt.refcount += 1;
806 break;
807
808 case R_X86_64_8:
809 case R_X86_64_16:
810 case R_X86_64_32:
811 case R_X86_64_32S:
812 /* Let's help debug shared library creation. These relocs
813 cannot be used in shared libs. Don't error out for
814 sections we don't care about, such as debug sections or
815 non-constant sections. */
816 if (info->shared
817 && (sec->flags & SEC_ALLOC) != 0
818 && (sec->flags & SEC_READONLY) != 0)
819 {
820 (*_bfd_error_handler)
821 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
822 abfd,
823 x86_64_elf_howto_table[r_type].name,
824 (h) ? h->root.root.string : "a local symbol");
825 bfd_set_error (bfd_error_bad_value);
826 return FALSE;
827 }
828 /* Fall through. */
829
830 case R_X86_64_PC8:
831 case R_X86_64_PC16:
832 case R_X86_64_PC32:
833 case R_X86_64_PC64:
834 case R_X86_64_64:
835 if (h != NULL && !info->shared)
836 {
837 /* If this reloc is in a read-only section, we might
838 need a copy reloc. We can't check reliably at this
839 stage whether the section is read-only, as input
840 sections have not yet been mapped to output sections.
841 Tentatively set the flag for now, and correct in
842 adjust_dynamic_symbol. */
843 h->non_got_ref = 1;
844
845 /* We may need a .plt entry if the function this reloc
846 refers to is in a shared lib. */
847 h->plt.refcount += 1;
848 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
849 h->pointer_equality_needed = 1;
850 }
851
852 /* If we are creating a shared library, and this is a reloc
853 against a global symbol, or a non PC relative reloc
854 against a local symbol, then we need to copy the reloc
855 into the shared library. However, if we are linking with
856 -Bsymbolic, we do not need to copy a reloc against a
857 global symbol which is defined in an object we are
858 including in the link (i.e., DEF_REGULAR is set). At
859 this point we have not seen all the input files, so it is
860 possible that DEF_REGULAR is not set now but will be set
861 later (it is never cleared). In case of a weak definition,
862 DEF_REGULAR may be cleared later by a strong definition in
863 a shared library. We account for that possibility below by
864 storing information in the relocs_copied field of the hash
865 table entry. A similar situation occurs when creating
866 shared libraries and symbol visibility changes render the
867 symbol local.
868
869 If on the other hand, we are creating an executable, we
870 may need to keep relocations for symbols satisfied by a
871 dynamic library if we manage to avoid copy relocs for the
872 symbol. */
873 if ((info->shared
874 && (sec->flags & SEC_ALLOC) != 0
875 && (((r_type != R_X86_64_PC8)
876 && (r_type != R_X86_64_PC16)
877 && (r_type != R_X86_64_PC32)
878 && (r_type != R_X86_64_PC64))
879 || (h != NULL
880 && (! info->symbolic
881 || h->root.type == bfd_link_hash_defweak
882 || !h->def_regular))))
883 || (ELIMINATE_COPY_RELOCS
884 && !info->shared
885 && (sec->flags & SEC_ALLOC) != 0
886 && h != NULL
887 && (h->root.type == bfd_link_hash_defweak
888 || !h->def_regular)))
889 {
890 struct elf64_x86_64_dyn_relocs *p;
891 struct elf64_x86_64_dyn_relocs **head;
892
893 /* We must copy these reloc types into the output file.
894 Create a reloc section in dynobj and make room for
895 this reloc. */
896 if (sreloc == NULL)
897 {
898 const char *name;
899 bfd *dynobj;
900
901 name = (bfd_elf_string_from_elf_section
902 (abfd,
903 elf_elfheader (abfd)->e_shstrndx,
904 elf_section_data (sec)->rel_hdr.sh_name));
905 if (name == NULL)
906 return FALSE;
907
908 if (strncmp (name, ".rela", 5) != 0
909 || strcmp (bfd_get_section_name (abfd, sec),
910 name + 5) != 0)
911 {
912 (*_bfd_error_handler)
913 (_("%B: bad relocation section name `%s\'"),
914 abfd, name);
915 }
916
917 if (htab->elf.dynobj == NULL)
918 htab->elf.dynobj = abfd;
919
920 dynobj = htab->elf.dynobj;
921
922 sreloc = bfd_get_section_by_name (dynobj, name);
923 if (sreloc == NULL)
924 {
925 flagword flags;
926
927 flags = (SEC_HAS_CONTENTS | SEC_READONLY
928 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
929 if ((sec->flags & SEC_ALLOC) != 0)
930 flags |= SEC_ALLOC | SEC_LOAD;
931 sreloc = bfd_make_section_with_flags (dynobj,
932 name,
933 flags);
934 if (sreloc == NULL
935 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
936 return FALSE;
937 }
938 elf_section_data (sec)->sreloc = sreloc;
939 }
940
941 /* If this is a global symbol, we count the number of
942 relocations we need for this symbol. */
943 if (h != NULL)
944 {
945 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
946 }
947 else
948 {
949 /* Track dynamic relocs needed for local syms too.
950 We really need local syms available to do this
951 easily. Oh well. */
952
953 asection *s;
954 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
955 sec, r_symndx);
956 if (s == NULL)
957 return FALSE;
958
959 head = ((struct elf64_x86_64_dyn_relocs **)
960 &elf_section_data (s)->local_dynrel);
961 }
962
963 p = *head;
964 if (p == NULL || p->sec != sec)
965 {
966 bfd_size_type amt = sizeof *p;
967 p = ((struct elf64_x86_64_dyn_relocs *)
968 bfd_alloc (htab->elf.dynobj, amt));
969 if (p == NULL)
970 return FALSE;
971 p->next = *head;
972 *head = p;
973 p->sec = sec;
974 p->count = 0;
975 p->pc_count = 0;
976 }
977
978 p->count += 1;
979 if (r_type == R_X86_64_PC8
980 || r_type == R_X86_64_PC16
981 || r_type == R_X86_64_PC32
982 || r_type == R_X86_64_PC64)
983 p->pc_count += 1;
984 }
985 break;
986
987 /* This relocation describes the C++ object vtable hierarchy.
988 Reconstruct it for later use during GC. */
989 case R_X86_64_GNU_VTINHERIT:
990 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
991 return FALSE;
992 break;
993
994 /* This relocation describes which C++ vtable entries are actually
995 used. Record for later use during GC. */
996 case R_X86_64_GNU_VTENTRY:
997 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
998 return FALSE;
999 break;
1000
1001 default:
1002 break;
1003 }
1004 }
1005
1006 return TRUE;
1007 }
1008
1009 /* Return the section that should be marked against GC for a given
1010 relocation. */
1011
1012 static asection *
1013 elf64_x86_64_gc_mark_hook (asection *sec,
1014 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1015 Elf_Internal_Rela *rel,
1016 struct elf_link_hash_entry *h,
1017 Elf_Internal_Sym *sym)
1018 {
1019 if (h != NULL)
1020 {
1021 switch (ELF64_R_TYPE (rel->r_info))
1022 {
1023 case R_X86_64_GNU_VTINHERIT:
1024 case R_X86_64_GNU_VTENTRY:
1025 break;
1026
1027 default:
1028 switch (h->root.type)
1029 {
1030 case bfd_link_hash_defined:
1031 case bfd_link_hash_defweak:
1032 return h->root.u.def.section;
1033
1034 case bfd_link_hash_common:
1035 return h->root.u.c.p->section;
1036
1037 default:
1038 break;
1039 }
1040 }
1041 }
1042 else
1043 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1044
1045 return NULL;
1046 }
1047
1048 /* Update the got entry reference counts for the section being removed. */
1049
1050 static bfd_boolean
1051 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1052 asection *sec, const Elf_Internal_Rela *relocs)
1053 {
1054 Elf_Internal_Shdr *symtab_hdr;
1055 struct elf_link_hash_entry **sym_hashes;
1056 bfd_signed_vma *local_got_refcounts;
1057 const Elf_Internal_Rela *rel, *relend;
1058
1059 elf_section_data (sec)->local_dynrel = NULL;
1060
1061 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1062 sym_hashes = elf_sym_hashes (abfd);
1063 local_got_refcounts = elf_local_got_refcounts (abfd);
1064
1065 relend = relocs + sec->reloc_count;
1066 for (rel = relocs; rel < relend; rel++)
1067 {
1068 unsigned long r_symndx;
1069 unsigned int r_type;
1070 struct elf_link_hash_entry *h = NULL;
1071
1072 r_symndx = ELF64_R_SYM (rel->r_info);
1073 if (r_symndx >= symtab_hdr->sh_info)
1074 {
1075 struct elf64_x86_64_link_hash_entry *eh;
1076 struct elf64_x86_64_dyn_relocs **pp;
1077 struct elf64_x86_64_dyn_relocs *p;
1078
1079 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1080 while (h->root.type == bfd_link_hash_indirect
1081 || h->root.type == bfd_link_hash_warning)
1082 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1083 eh = (struct elf64_x86_64_link_hash_entry *) h;
1084
1085 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1086 if (p->sec == sec)
1087 {
1088 /* Everything must go for SEC. */
1089 *pp = p->next;
1090 break;
1091 }
1092 }
1093
1094 r_type = ELF64_R_TYPE (rel->r_info);
1095 r_type = elf64_x86_64_tls_transition (info, r_type, h != NULL);
1096 switch (r_type)
1097 {
1098 case R_X86_64_TLSLD:
1099 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1100 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1101 break;
1102
1103 case R_X86_64_TLSGD:
1104 case R_X86_64_GOTTPOFF:
1105 case R_X86_64_GOT32:
1106 case R_X86_64_GOTPCREL:
1107 if (h != NULL)
1108 {
1109 if (h->got.refcount > 0)
1110 h->got.refcount -= 1;
1111 }
1112 else if (local_got_refcounts != NULL)
1113 {
1114 if (local_got_refcounts[r_symndx] > 0)
1115 local_got_refcounts[r_symndx] -= 1;
1116 }
1117 break;
1118
1119 case R_X86_64_8:
1120 case R_X86_64_16:
1121 case R_X86_64_32:
1122 case R_X86_64_64:
1123 case R_X86_64_32S:
1124 case R_X86_64_PC8:
1125 case R_X86_64_PC16:
1126 case R_X86_64_PC32:
1127 case R_X86_64_PC64:
1128 if (info->shared)
1129 break;
1130 /* Fall thru */
1131
1132 case R_X86_64_PLT32:
1133 if (h != NULL)
1134 {
1135 if (h->plt.refcount > 0)
1136 h->plt.refcount -= 1;
1137 }
1138 break;
1139
1140 default:
1141 break;
1142 }
1143 }
1144
1145 return TRUE;
1146 }
1147
1148 /* Adjust a symbol defined by a dynamic object and referenced by a
1149 regular object. The current definition is in some section of the
1150 dynamic object, but we're not including those sections. We have to
1151 change the definition to something the rest of the link can
1152 understand. */
1153
1154 static bfd_boolean
1155 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1156 struct elf_link_hash_entry *h)
1157 {
1158 struct elf64_x86_64_link_hash_table *htab;
1159 asection *s;
1160 unsigned int power_of_two;
1161
1162 /* If this is a function, put it in the procedure linkage table. We
1163 will fill in the contents of the procedure linkage table later,
1164 when we know the address of the .got section. */
1165 if (h->type == STT_FUNC
1166 || h->needs_plt)
1167 {
1168 if (h->plt.refcount <= 0
1169 || SYMBOL_CALLS_LOCAL (info, h)
1170 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1171 && h->root.type == bfd_link_hash_undefweak))
1172 {
1173 /* This case can occur if we saw a PLT32 reloc in an input
1174 file, but the symbol was never referred to by a dynamic
1175 object, or if all references were garbage collected. In
1176 such a case, we don't actually need to build a procedure
1177 linkage table, and we can just do a PC32 reloc instead. */
1178 h->plt.offset = (bfd_vma) -1;
1179 h->needs_plt = 0;
1180 }
1181
1182 return TRUE;
1183 }
1184 else
1185 /* It's possible that we incorrectly decided a .plt reloc was
1186 needed for an R_X86_64_PC32 reloc to a non-function sym in
1187 check_relocs. We can't decide accurately between function and
1188 non-function syms in check-relocs; Objects loaded later in
1189 the link may change h->type. So fix it now. */
1190 h->plt.offset = (bfd_vma) -1;
1191
1192 /* If this is a weak symbol, and there is a real definition, the
1193 processor independent code will have arranged for us to see the
1194 real definition first, and we can just use the same value. */
1195 if (h->u.weakdef != NULL)
1196 {
1197 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1198 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1199 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1200 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1201 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1202 h->non_got_ref = h->u.weakdef->non_got_ref;
1203 return TRUE;
1204 }
1205
1206 /* This is a reference to a symbol defined by a dynamic object which
1207 is not a function. */
1208
1209 /* If we are creating a shared library, we must presume that the
1210 only references to the symbol are via the global offset table.
1211 For such cases we need not do anything here; the relocations will
1212 be handled correctly by relocate_section. */
1213 if (info->shared)
1214 return TRUE;
1215
1216 /* If there are no references to this symbol that do not use the
1217 GOT, we don't need to generate a copy reloc. */
1218 if (!h->non_got_ref)
1219 return TRUE;
1220
1221 /* If -z nocopyreloc was given, we won't generate them either. */
1222 if (info->nocopyreloc)
1223 {
1224 h->non_got_ref = 0;
1225 return TRUE;
1226 }
1227
1228 if (ELIMINATE_COPY_RELOCS)
1229 {
1230 struct elf64_x86_64_link_hash_entry * eh;
1231 struct elf64_x86_64_dyn_relocs *p;
1232
1233 eh = (struct elf64_x86_64_link_hash_entry *) h;
1234 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1235 {
1236 s = p->sec->output_section;
1237 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1238 break;
1239 }
1240
1241 /* If we didn't find any dynamic relocs in read-only sections, then
1242 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1243 if (p == NULL)
1244 {
1245 h->non_got_ref = 0;
1246 return TRUE;
1247 }
1248 }
1249
1250 if (h->size == 0)
1251 {
1252 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1253 h->root.root.string);
1254 return TRUE;
1255 }
1256
1257 /* We must allocate the symbol in our .dynbss section, which will
1258 become part of the .bss section of the executable. There will be
1259 an entry for this symbol in the .dynsym section. The dynamic
1260 object will contain position independent code, so all references
1261 from the dynamic object to this symbol will go through the global
1262 offset table. The dynamic linker will use the .dynsym entry to
1263 determine the address it must put in the global offset table, so
1264 both the dynamic object and the regular object will refer to the
1265 same memory location for the variable. */
1266
1267 htab = elf64_x86_64_hash_table (info);
1268
1269 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1270 to copy the initial value out of the dynamic object and into the
1271 runtime process image. */
1272 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1273 {
1274 htab->srelbss->size += sizeof (Elf64_External_Rela);
1275 h->needs_copy = 1;
1276 }
1277
1278 /* We need to figure out the alignment required for this symbol. I
1279 have no idea how ELF linkers handle this. 16-bytes is the size
1280 of the largest type that requires hard alignment -- long double. */
1281 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
1282 this construct. */
1283 power_of_two = bfd_log2 (h->size);
1284 if (power_of_two > 4)
1285 power_of_two = 4;
1286
1287 /* Apply the required alignment. */
1288 s = htab->sdynbss;
1289 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1290 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1291 {
1292 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1293 return FALSE;
1294 }
1295
1296 /* Define the symbol as being at this point in the section. */
1297 h->root.u.def.section = s;
1298 h->root.u.def.value = s->size;
1299
1300 /* Increment the section size to make room for the symbol. */
1301 s->size += h->size;
1302
1303 return TRUE;
1304 }
1305
1306 /* Allocate space in .plt, .got and associated reloc sections for
1307 dynamic relocs. */
1308
1309 static bfd_boolean
1310 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1311 {
1312 struct bfd_link_info *info;
1313 struct elf64_x86_64_link_hash_table *htab;
1314 struct elf64_x86_64_link_hash_entry *eh;
1315 struct elf64_x86_64_dyn_relocs *p;
1316
1317 if (h->root.type == bfd_link_hash_indirect)
1318 return TRUE;
1319
1320 if (h->root.type == bfd_link_hash_warning)
1321 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1322
1323 info = (struct bfd_link_info *) inf;
1324 htab = elf64_x86_64_hash_table (info);
1325
1326 if (htab->elf.dynamic_sections_created
1327 && h->plt.refcount > 0)
1328 {
1329 /* Make sure this symbol is output as a dynamic symbol.
1330 Undefined weak syms won't yet be marked as dynamic. */
1331 if (h->dynindx == -1
1332 && !h->forced_local)
1333 {
1334 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1335 return FALSE;
1336 }
1337
1338 if (info->shared
1339 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1340 {
1341 asection *s = htab->splt;
1342
1343 /* If this is the first .plt entry, make room for the special
1344 first entry. */
1345 if (s->size == 0)
1346 s->size += PLT_ENTRY_SIZE;
1347
1348 h->plt.offset = s->size;
1349
1350 /* If this symbol is not defined in a regular file, and we are
1351 not generating a shared library, then set the symbol to this
1352 location in the .plt. This is required to make function
1353 pointers compare as equal between the normal executable and
1354 the shared library. */
1355 if (! info->shared
1356 && !h->def_regular)
1357 {
1358 h->root.u.def.section = s;
1359 h->root.u.def.value = h->plt.offset;
1360 }
1361
1362 /* Make room for this entry. */
1363 s->size += PLT_ENTRY_SIZE;
1364
1365 /* We also need to make an entry in the .got.plt section, which
1366 will be placed in the .got section by the linker script. */
1367 htab->sgotplt->size += GOT_ENTRY_SIZE;
1368
1369 /* We also need to make an entry in the .rela.plt section. */
1370 htab->srelplt->size += sizeof (Elf64_External_Rela);
1371 }
1372 else
1373 {
1374 h->plt.offset = (bfd_vma) -1;
1375 h->needs_plt = 0;
1376 }
1377 }
1378 else
1379 {
1380 h->plt.offset = (bfd_vma) -1;
1381 h->needs_plt = 0;
1382 }
1383
1384 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1385 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1386 if (h->got.refcount > 0
1387 && !info->shared
1388 && h->dynindx == -1
1389 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1390 h->got.offset = (bfd_vma) -1;
1391 else if (h->got.refcount > 0)
1392 {
1393 asection *s;
1394 bfd_boolean dyn;
1395 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1396
1397 /* Make sure this symbol is output as a dynamic symbol.
1398 Undefined weak syms won't yet be marked as dynamic. */
1399 if (h->dynindx == -1
1400 && !h->forced_local)
1401 {
1402 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1403 return FALSE;
1404 }
1405
1406 s = htab->sgot;
1407 h->got.offset = s->size;
1408 s->size += GOT_ENTRY_SIZE;
1409 /* R_X86_64_TLSGD needs 2 consecutive GOT slots. */
1410 if (tls_type == GOT_TLS_GD)
1411 s->size += GOT_ENTRY_SIZE;
1412 dyn = htab->elf.dynamic_sections_created;
1413 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1414 and two if global.
1415 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1416 if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
1417 || tls_type == GOT_TLS_IE)
1418 htab->srelgot->size += sizeof (Elf64_External_Rela);
1419 else if (tls_type == GOT_TLS_GD)
1420 htab->srelgot->size += 2 * sizeof (Elf64_External_Rela);
1421 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1422 || h->root.type != bfd_link_hash_undefweak)
1423 && (info->shared
1424 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1425 htab->srelgot->size += sizeof (Elf64_External_Rela);
1426 }
1427 else
1428 h->got.offset = (bfd_vma) -1;
1429
1430 eh = (struct elf64_x86_64_link_hash_entry *) h;
1431 if (eh->dyn_relocs == NULL)
1432 return TRUE;
1433
1434 /* In the shared -Bsymbolic case, discard space allocated for
1435 dynamic pc-relative relocs against symbols which turn out to be
1436 defined in regular objects. For the normal shared case, discard
1437 space for pc-relative relocs that have become local due to symbol
1438 visibility changes. */
1439
1440 if (info->shared)
1441 {
1442 /* Relocs that use pc_count are those that appear on a call
1443 insn, or certain REL relocs that can generated via assembly.
1444 We want calls to protected symbols to resolve directly to the
1445 function rather than going via the plt. If people want
1446 function pointer comparisons to work as expected then they
1447 should avoid writing weird assembly. */
1448 if (SYMBOL_CALLS_LOCAL (info, h))
1449 {
1450 struct elf64_x86_64_dyn_relocs **pp;
1451
1452 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1453 {
1454 p->count -= p->pc_count;
1455 p->pc_count = 0;
1456 if (p->count == 0)
1457 *pp = p->next;
1458 else
1459 pp = &p->next;
1460 }
1461 }
1462
1463 /* Also discard relocs on undefined weak syms with non-default
1464 visibility. */
1465 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1466 && h->root.type == bfd_link_hash_undefweak)
1467 eh->dyn_relocs = NULL;
1468 }
1469 else if (ELIMINATE_COPY_RELOCS)
1470 {
1471 /* For the non-shared case, discard space for relocs against
1472 symbols which turn out to need copy relocs or are not
1473 dynamic. */
1474
1475 if (!h->non_got_ref
1476 && ((h->def_dynamic
1477 && !h->def_regular)
1478 || (htab->elf.dynamic_sections_created
1479 && (h->root.type == bfd_link_hash_undefweak
1480 || h->root.type == bfd_link_hash_undefined))))
1481 {
1482 /* Make sure this symbol is output as a dynamic symbol.
1483 Undefined weak syms won't yet be marked as dynamic. */
1484 if (h->dynindx == -1
1485 && !h->forced_local)
1486 {
1487 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1488 return FALSE;
1489 }
1490
1491 /* If that succeeded, we know we'll be keeping all the
1492 relocs. */
1493 if (h->dynindx != -1)
1494 goto keep;
1495 }
1496
1497 eh->dyn_relocs = NULL;
1498
1499 keep: ;
1500 }
1501
1502 /* Finally, allocate space. */
1503 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1504 {
1505 asection *sreloc = elf_section_data (p->sec)->sreloc;
1506 sreloc->size += p->count * sizeof (Elf64_External_Rela);
1507 }
1508
1509 return TRUE;
1510 }
1511
1512 /* Find any dynamic relocs that apply to read-only sections. */
1513
1514 static bfd_boolean
1515 readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1516 {
1517 struct elf64_x86_64_link_hash_entry *eh;
1518 struct elf64_x86_64_dyn_relocs *p;
1519
1520 if (h->root.type == bfd_link_hash_warning)
1521 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1522
1523 eh = (struct elf64_x86_64_link_hash_entry *) h;
1524 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1525 {
1526 asection *s = p->sec->output_section;
1527
1528 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1529 {
1530 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1531
1532 info->flags |= DF_TEXTREL;
1533
1534 /* Not an error, just cut short the traversal. */
1535 return FALSE;
1536 }
1537 }
1538 return TRUE;
1539 }
1540
1541 /* Set the sizes of the dynamic sections. */
1542
1543 static bfd_boolean
1544 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1545 struct bfd_link_info *info)
1546 {
1547 struct elf64_x86_64_link_hash_table *htab;
1548 bfd *dynobj;
1549 asection *s;
1550 bfd_boolean relocs;
1551 bfd *ibfd;
1552
1553 htab = elf64_x86_64_hash_table (info);
1554 dynobj = htab->elf.dynobj;
1555 if (dynobj == NULL)
1556 abort ();
1557
1558 if (htab->elf.dynamic_sections_created)
1559 {
1560 /* Set the contents of the .interp section to the interpreter. */
1561 if (info->executable)
1562 {
1563 s = bfd_get_section_by_name (dynobj, ".interp");
1564 if (s == NULL)
1565 abort ();
1566 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1567 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1568 }
1569 }
1570
1571 /* Set up .got offsets for local syms, and space for local dynamic
1572 relocs. */
1573 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1574 {
1575 bfd_signed_vma *local_got;
1576 bfd_signed_vma *end_local_got;
1577 char *local_tls_type;
1578 bfd_size_type locsymcount;
1579 Elf_Internal_Shdr *symtab_hdr;
1580 asection *srel;
1581
1582 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1583 continue;
1584
1585 for (s = ibfd->sections; s != NULL; s = s->next)
1586 {
1587 struct elf64_x86_64_dyn_relocs *p;
1588
1589 for (p = *((struct elf64_x86_64_dyn_relocs **)
1590 &elf_section_data (s)->local_dynrel);
1591 p != NULL;
1592 p = p->next)
1593 {
1594 if (!bfd_is_abs_section (p->sec)
1595 && bfd_is_abs_section (p->sec->output_section))
1596 {
1597 /* Input section has been discarded, either because
1598 it is a copy of a linkonce section or due to
1599 linker script /DISCARD/, so we'll be discarding
1600 the relocs too. */
1601 }
1602 else if (p->count != 0)
1603 {
1604 srel = elf_section_data (p->sec)->sreloc;
1605 srel->size += p->count * sizeof (Elf64_External_Rela);
1606 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1607 info->flags |= DF_TEXTREL;
1608
1609 }
1610 }
1611 }
1612
1613 local_got = elf_local_got_refcounts (ibfd);
1614 if (!local_got)
1615 continue;
1616
1617 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1618 locsymcount = symtab_hdr->sh_info;
1619 end_local_got = local_got + locsymcount;
1620 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1621 s = htab->sgot;
1622 srel = htab->srelgot;
1623 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1624 {
1625 if (*local_got > 0)
1626 {
1627 *local_got = s->size;
1628 s->size += GOT_ENTRY_SIZE;
1629 if (*local_tls_type == GOT_TLS_GD)
1630 s->size += GOT_ENTRY_SIZE;
1631 if (info->shared
1632 || *local_tls_type == GOT_TLS_GD
1633 || *local_tls_type == GOT_TLS_IE)
1634 srel->size += sizeof (Elf64_External_Rela);
1635 }
1636 else
1637 *local_got = (bfd_vma) -1;
1638 }
1639 }
1640
1641 if (htab->tls_ld_got.refcount > 0)
1642 {
1643 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
1644 relocs. */
1645 htab->tls_ld_got.offset = htab->sgot->size;
1646 htab->sgot->size += 2 * GOT_ENTRY_SIZE;
1647 htab->srelgot->size += sizeof (Elf64_External_Rela);
1648 }
1649 else
1650 htab->tls_ld_got.offset = -1;
1651
1652 /* Allocate global sym .plt and .got entries, and space for global
1653 sym dynamic relocs. */
1654 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1655
1656 /* We now have determined the sizes of the various dynamic sections.
1657 Allocate memory for them. */
1658 relocs = FALSE;
1659 for (s = dynobj->sections; s != NULL; s = s->next)
1660 {
1661 if ((s->flags & SEC_LINKER_CREATED) == 0)
1662 continue;
1663
1664 if (s == htab->splt
1665 || s == htab->sgot
1666 || s == htab->sgotplt
1667 || s == htab->sdynbss)
1668 {
1669 /* Strip this section if we don't need it; see the
1670 comment below. */
1671 }
1672 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
1673 {
1674 if (s->size != 0 && s != htab->srelplt)
1675 relocs = TRUE;
1676
1677 /* We use the reloc_count field as a counter if we need
1678 to copy relocs into the output file. */
1679 s->reloc_count = 0;
1680 }
1681 else
1682 {
1683 /* It's not one of our sections, so don't allocate space. */
1684 continue;
1685 }
1686
1687 if (s->size == 0)
1688 {
1689 /* If we don't need this section, strip it from the
1690 output file. This is mostly to handle .rela.bss and
1691 .rela.plt. We must create both sections in
1692 create_dynamic_sections, because they must be created
1693 before the linker maps input sections to output
1694 sections. The linker does that before
1695 adjust_dynamic_symbol is called, and it is that
1696 function which decides whether anything needs to go
1697 into these sections. */
1698
1699 s->flags |= SEC_EXCLUDE;
1700 continue;
1701 }
1702
1703 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1704 continue;
1705
1706 /* Allocate memory for the section contents. We use bfd_zalloc
1707 here in case unused entries are not reclaimed before the
1708 section's contents are written out. This should not happen,
1709 but this way if it does, we get a R_X86_64_NONE reloc instead
1710 of garbage. */
1711 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1712 if (s->contents == NULL)
1713 return FALSE;
1714 }
1715
1716 if (htab->elf.dynamic_sections_created)
1717 {
1718 /* Add some entries to the .dynamic section. We fill in the
1719 values later, in elf64_x86_64_finish_dynamic_sections, but we
1720 must add the entries now so that we get the correct size for
1721 the .dynamic section. The DT_DEBUG entry is filled in by the
1722 dynamic linker and used by the debugger. */
1723 #define add_dynamic_entry(TAG, VAL) \
1724 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1725
1726 if (info->executable)
1727 {
1728 if (!add_dynamic_entry (DT_DEBUG, 0))
1729 return FALSE;
1730 }
1731
1732 if (htab->splt->size != 0)
1733 {
1734 if (!add_dynamic_entry (DT_PLTGOT, 0)
1735 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1736 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1737 || !add_dynamic_entry (DT_JMPREL, 0))
1738 return FALSE;
1739 }
1740
1741 if (relocs)
1742 {
1743 if (!add_dynamic_entry (DT_RELA, 0)
1744 || !add_dynamic_entry (DT_RELASZ, 0)
1745 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1746 return FALSE;
1747
1748 /* If any dynamic relocs apply to a read-only section,
1749 then we need a DT_TEXTREL entry. */
1750 if ((info->flags & DF_TEXTREL) == 0)
1751 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1752 (PTR) info);
1753
1754 if ((info->flags & DF_TEXTREL) != 0)
1755 {
1756 if (!add_dynamic_entry (DT_TEXTREL, 0))
1757 return FALSE;
1758 }
1759 }
1760 }
1761 #undef add_dynamic_entry
1762
1763 return TRUE;
1764 }
1765
1766 /* Return the base VMA address which should be subtracted from real addresses
1767 when resolving @dtpoff relocation.
1768 This is PT_TLS segment p_vaddr. */
1769
1770 static bfd_vma
1771 dtpoff_base (struct bfd_link_info *info)
1772 {
1773 /* If tls_sec is NULL, we should have signalled an error already. */
1774 if (elf_hash_table (info)->tls_sec == NULL)
1775 return 0;
1776 return elf_hash_table (info)->tls_sec->vma;
1777 }
1778
1779 /* Return the relocation value for @tpoff relocation
1780 if STT_TLS virtual address is ADDRESS. */
1781
1782 static bfd_vma
1783 tpoff (struct bfd_link_info *info, bfd_vma address)
1784 {
1785 struct elf_link_hash_table *htab = elf_hash_table (info);
1786
1787 /* If tls_segment is NULL, we should have signalled an error already. */
1788 if (htab->tls_sec == NULL)
1789 return 0;
1790 return address - htab->tls_size - htab->tls_sec->vma;
1791 }
1792
1793 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
1794 branch? */
1795
1796 static bfd_boolean
1797 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
1798 {
1799 /* Opcode Instruction
1800 0xe8 call
1801 0xe9 jump
1802 0x0f 0x8x conditional jump */
1803 return ((offset > 0
1804 && (contents [offset - 1] == 0xe8
1805 || contents [offset - 1] == 0xe9))
1806 || (offset > 1
1807 && contents [offset - 2] == 0x0f
1808 && (contents [offset - 1] & 0xf0) == 0x80));
1809 }
1810
1811 /* Relocate an x86_64 ELF section. */
1812
1813 static bfd_boolean
1814 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
1815 bfd *input_bfd, asection *input_section,
1816 bfd_byte *contents, Elf_Internal_Rela *relocs,
1817 Elf_Internal_Sym *local_syms,
1818 asection **local_sections)
1819 {
1820 struct elf64_x86_64_link_hash_table *htab;
1821 Elf_Internal_Shdr *symtab_hdr;
1822 struct elf_link_hash_entry **sym_hashes;
1823 bfd_vma *local_got_offsets;
1824 Elf_Internal_Rela *rel;
1825 Elf_Internal_Rela *relend;
1826
1827 if (info->relocatable)
1828 return TRUE;
1829
1830 htab = elf64_x86_64_hash_table (info);
1831 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1832 sym_hashes = elf_sym_hashes (input_bfd);
1833 local_got_offsets = elf_local_got_offsets (input_bfd);
1834
1835 rel = relocs;
1836 relend = relocs + input_section->reloc_count;
1837 for (; rel < relend; rel++)
1838 {
1839 unsigned int r_type;
1840 reloc_howto_type *howto;
1841 unsigned long r_symndx;
1842 struct elf_link_hash_entry *h;
1843 Elf_Internal_Sym *sym;
1844 asection *sec;
1845 bfd_vma off;
1846 bfd_vma relocation;
1847 bfd_boolean unresolved_reloc;
1848 bfd_reloc_status_type r;
1849 int tls_type;
1850
1851 r_type = ELF64_R_TYPE (rel->r_info);
1852 if (r_type == (int) R_X86_64_GNU_VTINHERIT
1853 || r_type == (int) R_X86_64_GNU_VTENTRY)
1854 continue;
1855
1856 if (r_type >= R_X86_64_max)
1857 {
1858 bfd_set_error (bfd_error_bad_value);
1859 return FALSE;
1860 }
1861
1862 howto = x86_64_elf_howto_table + r_type;
1863 r_symndx = ELF64_R_SYM (rel->r_info);
1864 h = NULL;
1865 sym = NULL;
1866 sec = NULL;
1867 unresolved_reloc = FALSE;
1868 if (r_symndx < symtab_hdr->sh_info)
1869 {
1870 sym = local_syms + r_symndx;
1871 sec = local_sections[r_symndx];
1872
1873 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1874 }
1875 else
1876 {
1877 bfd_boolean warned;
1878
1879 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1880 r_symndx, symtab_hdr, sym_hashes,
1881 h, sec, relocation,
1882 unresolved_reloc, warned);
1883 }
1884 /* When generating a shared object, the relocations handled here are
1885 copied into the output file to be resolved at run time. */
1886 switch (r_type)
1887 {
1888 case R_X86_64_GOT32:
1889 /* Relocation is to the entry for this symbol in the global
1890 offset table. */
1891 case R_X86_64_GOTPCREL:
1892 /* Use global offset table as symbol value. */
1893 if (htab->sgot == NULL)
1894 abort ();
1895
1896 if (h != NULL)
1897 {
1898 bfd_boolean dyn;
1899
1900 off = h->got.offset;
1901 dyn = htab->elf.dynamic_sections_created;
1902
1903 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1904 || (info->shared
1905 && SYMBOL_REFERENCES_LOCAL (info, h))
1906 || (ELF_ST_VISIBILITY (h->other)
1907 && h->root.type == bfd_link_hash_undefweak))
1908 {
1909 /* This is actually a static link, or it is a -Bsymbolic
1910 link and the symbol is defined locally, or the symbol
1911 was forced to be local because of a version file. We
1912 must initialize this entry in the global offset table.
1913 Since the offset must always be a multiple of 8, we
1914 use the least significant bit to record whether we
1915 have initialized it already.
1916
1917 When doing a dynamic link, we create a .rela.got
1918 relocation entry to initialize the value. This is
1919 done in the finish_dynamic_symbol routine. */
1920 if ((off & 1) != 0)
1921 off &= ~1;
1922 else
1923 {
1924 bfd_put_64 (output_bfd, relocation,
1925 htab->sgot->contents + off);
1926 h->got.offset |= 1;
1927 }
1928 }
1929 else
1930 unresolved_reloc = FALSE;
1931 }
1932 else
1933 {
1934 if (local_got_offsets == NULL)
1935 abort ();
1936
1937 off = local_got_offsets[r_symndx];
1938
1939 /* The offset must always be a multiple of 8. We use
1940 the least significant bit to record whether we have
1941 already generated the necessary reloc. */
1942 if ((off & 1) != 0)
1943 off &= ~1;
1944 else
1945 {
1946 bfd_put_64 (output_bfd, relocation,
1947 htab->sgot->contents + off);
1948
1949 if (info->shared)
1950 {
1951 asection *s;
1952 Elf_Internal_Rela outrel;
1953 bfd_byte *loc;
1954
1955 /* We need to generate a R_X86_64_RELATIVE reloc
1956 for the dynamic linker. */
1957 s = htab->srelgot;
1958 if (s == NULL)
1959 abort ();
1960
1961 outrel.r_offset = (htab->sgot->output_section->vma
1962 + htab->sgot->output_offset
1963 + off);
1964 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
1965 outrel.r_addend = relocation;
1966 loc = s->contents;
1967 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
1968 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
1969 }
1970
1971 local_got_offsets[r_symndx] |= 1;
1972 }
1973 }
1974
1975 if (off >= (bfd_vma) -2)
1976 abort ();
1977
1978 relocation = htab->sgot->output_section->vma
1979 + htab->sgot->output_offset + off;
1980 if (r_type != R_X86_64_GOTPCREL)
1981 relocation -= htab->sgotplt->output_section->vma
1982 - htab->sgotplt->output_offset;
1983
1984 break;
1985
1986 case R_X86_64_GOTOFF64:
1987 /* Relocation is relative to the start of the global offset
1988 table. */
1989
1990 /* Check to make sure it isn't a protected function symbol
1991 for shared library since it may not be local when used
1992 as function address. */
1993 if (info->shared
1994 && h
1995 && h->def_regular
1996 && h->type == STT_FUNC
1997 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1998 {
1999 (*_bfd_error_handler)
2000 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2001 input_bfd, h->root.root.string);
2002 bfd_set_error (bfd_error_bad_value);
2003 return FALSE;
2004 }
2005
2006 /* Note that sgot is not involved in this
2007 calculation. We always want the start of .got.plt. If we
2008 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2009 permitted by the ABI, we might have to change this
2010 calculation. */
2011 relocation -= htab->sgotplt->output_section->vma
2012 + htab->sgotplt->output_offset;
2013 break;
2014
2015 case R_X86_64_GOTPC32:
2016 /* Use global offset table as symbol value. */
2017 relocation = htab->sgotplt->output_section->vma
2018 + htab->sgotplt->output_offset;
2019 unresolved_reloc = FALSE;
2020 break;
2021
2022 case R_X86_64_PLT32:
2023 /* Relocation is to the entry for this symbol in the
2024 procedure linkage table. */
2025
2026 /* Resolve a PLT32 reloc against a local symbol directly,
2027 without using the procedure linkage table. */
2028 if (h == NULL)
2029 break;
2030
2031 if (h->plt.offset == (bfd_vma) -1
2032 || htab->splt == NULL)
2033 {
2034 /* We didn't make a PLT entry for this symbol. This
2035 happens when statically linking PIC code, or when
2036 using -Bsymbolic. */
2037 break;
2038 }
2039
2040 relocation = (htab->splt->output_section->vma
2041 + htab->splt->output_offset
2042 + h->plt.offset);
2043 unresolved_reloc = FALSE;
2044 break;
2045
2046 case R_X86_64_PC8:
2047 case R_X86_64_PC16:
2048 case R_X86_64_PC32:
2049 if (info->shared
2050 && !SYMBOL_REFERENCES_LOCAL (info, h)
2051 && (input_section->flags & SEC_ALLOC) != 0
2052 && (input_section->flags & SEC_READONLY) != 0
2053 && (!h->def_regular
2054 || r_type != R_X86_64_PC32
2055 || h->type != STT_FUNC
2056 || ELF_ST_VISIBILITY (h->other) != STV_PROTECTED
2057 || !is_32bit_relative_branch (contents,
2058 rel->r_offset)))
2059 {
2060 if (h->def_regular
2061 && r_type == R_X86_64_PC32
2062 && h->type == STT_FUNC
2063 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2064 (*_bfd_error_handler)
2065 (_("%B: relocation R_X86_64_PC32 against protected function `%s' can not be used when making a shared object"),
2066 input_bfd, h->root.root.string);
2067 else
2068 (*_bfd_error_handler)
2069 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
2070 input_bfd, x86_64_elf_howto_table[r_type].name,
2071 h->root.root.string);
2072 bfd_set_error (bfd_error_bad_value);
2073 return FALSE;
2074 }
2075 /* Fall through. */
2076
2077 case R_X86_64_8:
2078 case R_X86_64_16:
2079 case R_X86_64_32:
2080 case R_X86_64_PC64:
2081 case R_X86_64_64:
2082 /* FIXME: The ABI says the linker should make sure the value is
2083 the same when it's zeroextended to 64 bit. */
2084
2085 /* r_symndx will be zero only for relocs against symbols
2086 from removed linkonce sections, or sections discarded by
2087 a linker script. */
2088 if (r_symndx == 0
2089 || (input_section->flags & SEC_ALLOC) == 0)
2090 break;
2091
2092 if ((info->shared
2093 && (h == NULL
2094 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2095 || h->root.type != bfd_link_hash_undefweak)
2096 && ((r_type != R_X86_64_PC8
2097 && r_type != R_X86_64_PC16
2098 && r_type != R_X86_64_PC32
2099 && r_type != R_X86_64_PC64)
2100 || !SYMBOL_CALLS_LOCAL (info, h)))
2101 || (ELIMINATE_COPY_RELOCS
2102 && !info->shared
2103 && h != NULL
2104 && h->dynindx != -1
2105 && !h->non_got_ref
2106 && ((h->def_dynamic
2107 && !h->def_regular)
2108 || h->root.type == bfd_link_hash_undefweak
2109 || h->root.type == bfd_link_hash_undefined)))
2110 {
2111 Elf_Internal_Rela outrel;
2112 bfd_byte *loc;
2113 bfd_boolean skip, relocate;
2114 asection *sreloc;
2115
2116 /* When generating a shared object, these relocations
2117 are copied into the output file to be resolved at run
2118 time. */
2119 skip = FALSE;
2120 relocate = FALSE;
2121
2122 outrel.r_offset =
2123 _bfd_elf_section_offset (output_bfd, info, input_section,
2124 rel->r_offset);
2125 if (outrel.r_offset == (bfd_vma) -1)
2126 skip = TRUE;
2127 else if (outrel.r_offset == (bfd_vma) -2)
2128 skip = TRUE, relocate = TRUE;
2129
2130 outrel.r_offset += (input_section->output_section->vma
2131 + input_section->output_offset);
2132
2133 if (skip)
2134 memset (&outrel, 0, sizeof outrel);
2135
2136 /* h->dynindx may be -1 if this symbol was marked to
2137 become local. */
2138 else if (h != NULL
2139 && h->dynindx != -1
2140 && (r_type == R_X86_64_PC8
2141 || r_type == R_X86_64_PC16
2142 || r_type == R_X86_64_PC32
2143 || r_type == R_X86_64_PC64
2144 || !info->shared
2145 || !info->symbolic
2146 || !h->def_regular))
2147 {
2148 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2149 outrel.r_addend = rel->r_addend;
2150 }
2151 else
2152 {
2153 /* This symbol is local, or marked to become local. */
2154 if (r_type == R_X86_64_64)
2155 {
2156 relocate = TRUE;
2157 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2158 outrel.r_addend = relocation + rel->r_addend;
2159 }
2160 else
2161 {
2162 long sindx;
2163
2164 if (bfd_is_abs_section (sec))
2165 sindx = 0;
2166 else if (sec == NULL || sec->owner == NULL)
2167 {
2168 bfd_set_error (bfd_error_bad_value);
2169 return FALSE;
2170 }
2171 else
2172 {
2173 asection *osec;
2174
2175 osec = sec->output_section;
2176 sindx = elf_section_data (osec)->dynindx;
2177 BFD_ASSERT (sindx > 0);
2178 }
2179
2180 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2181 outrel.r_addend = relocation + rel->r_addend;
2182 }
2183 }
2184
2185 sreloc = elf_section_data (input_section)->sreloc;
2186 if (sreloc == NULL)
2187 abort ();
2188
2189 loc = sreloc->contents;
2190 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2191 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2192
2193 /* If this reloc is against an external symbol, we do
2194 not want to fiddle with the addend. Otherwise, we
2195 need to include the symbol value so that it becomes
2196 an addend for the dynamic reloc. */
2197 if (! relocate)
2198 continue;
2199 }
2200
2201 break;
2202
2203 case R_X86_64_TLSGD:
2204 case R_X86_64_GOTTPOFF:
2205 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
2206 tls_type = GOT_UNKNOWN;
2207 if (h == NULL && local_got_offsets)
2208 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2209 else if (h != NULL)
2210 {
2211 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2212 if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE)
2213 r_type = R_X86_64_TPOFF32;
2214 }
2215 if (r_type == R_X86_64_TLSGD)
2216 {
2217 if (tls_type == GOT_TLS_IE)
2218 r_type = R_X86_64_GOTTPOFF;
2219 }
2220
2221 if (r_type == R_X86_64_TPOFF32)
2222 {
2223 BFD_ASSERT (! unresolved_reloc);
2224 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2225 {
2226 unsigned int i;
2227 static unsigned char tlsgd[8]
2228 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2229
2230 /* GD->LE transition.
2231 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2232 .word 0x6666; rex64; call __tls_get_addr@plt
2233 Change it into:
2234 movq %fs:0, %rax
2235 leaq foo@tpoff(%rax), %rax */
2236 BFD_ASSERT (rel->r_offset >= 4);
2237 for (i = 0; i < 4; i++)
2238 BFD_ASSERT (bfd_get_8 (input_bfd,
2239 contents + rel->r_offset - 4 + i)
2240 == tlsgd[i]);
2241 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2242 for (i = 0; i < 4; i++)
2243 BFD_ASSERT (bfd_get_8 (input_bfd,
2244 contents + rel->r_offset + 4 + i)
2245 == tlsgd[i+4]);
2246 BFD_ASSERT (rel + 1 < relend);
2247 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2248 memcpy (contents + rel->r_offset - 4,
2249 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2250 16);
2251 bfd_put_32 (output_bfd, tpoff (info, relocation),
2252 contents + rel->r_offset + 8);
2253 /* Skip R_X86_64_PLT32. */
2254 rel++;
2255 continue;
2256 }
2257 else
2258 {
2259 unsigned int val, type, reg;
2260
2261 /* IE->LE transition:
2262 Originally it can be one of:
2263 movq foo@gottpoff(%rip), %reg
2264 addq foo@gottpoff(%rip), %reg
2265 We change it into:
2266 movq $foo, %reg
2267 leaq foo(%reg), %reg
2268 addq $foo, %reg. */
2269 BFD_ASSERT (rel->r_offset >= 3);
2270 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 3);
2271 BFD_ASSERT (val == 0x48 || val == 0x4c);
2272 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2273 BFD_ASSERT (type == 0x8b || type == 0x03);
2274 reg = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2275 BFD_ASSERT ((reg & 0xc7) == 5);
2276 reg >>= 3;
2277 BFD_ASSERT (rel->r_offset + 4 <= input_section->size);
2278 if (type == 0x8b)
2279 {
2280 /* movq */
2281 if (val == 0x4c)
2282 bfd_put_8 (output_bfd, 0x49,
2283 contents + rel->r_offset - 3);
2284 bfd_put_8 (output_bfd, 0xc7,
2285 contents + rel->r_offset - 2);
2286 bfd_put_8 (output_bfd, 0xc0 | reg,
2287 contents + rel->r_offset - 1);
2288 }
2289 else if (reg == 4)
2290 {
2291 /* addq -> addq - addressing with %rsp/%r12 is
2292 special */
2293 if (val == 0x4c)
2294 bfd_put_8 (output_bfd, 0x49,
2295 contents + rel->r_offset - 3);
2296 bfd_put_8 (output_bfd, 0x81,
2297 contents + rel->r_offset - 2);
2298 bfd_put_8 (output_bfd, 0xc0 | reg,
2299 contents + rel->r_offset - 1);
2300 }
2301 else
2302 {
2303 /* addq -> leaq */
2304 if (val == 0x4c)
2305 bfd_put_8 (output_bfd, 0x4d,
2306 contents + rel->r_offset - 3);
2307 bfd_put_8 (output_bfd, 0x8d,
2308 contents + rel->r_offset - 2);
2309 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2310 contents + rel->r_offset - 1);
2311 }
2312 bfd_put_32 (output_bfd, tpoff (info, relocation),
2313 contents + rel->r_offset);
2314 continue;
2315 }
2316 }
2317
2318 if (htab->sgot == NULL)
2319 abort ();
2320
2321 if (h != NULL)
2322 off = h->got.offset;
2323 else
2324 {
2325 if (local_got_offsets == NULL)
2326 abort ();
2327
2328 off = local_got_offsets[r_symndx];
2329 }
2330
2331 if ((off & 1) != 0)
2332 off &= ~1;
2333 else
2334 {
2335 Elf_Internal_Rela outrel;
2336 bfd_byte *loc;
2337 int dr_type, indx;
2338
2339 if (htab->srelgot == NULL)
2340 abort ();
2341
2342 outrel.r_offset = (htab->sgot->output_section->vma
2343 + htab->sgot->output_offset + off);
2344
2345 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2346 if (r_type == R_X86_64_TLSGD)
2347 dr_type = R_X86_64_DTPMOD64;
2348 else
2349 dr_type = R_X86_64_TPOFF64;
2350
2351 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2352 outrel.r_addend = 0;
2353 if (dr_type == R_X86_64_TPOFF64 && indx == 0)
2354 outrel.r_addend = relocation - dtpoff_base (info);
2355 outrel.r_info = ELF64_R_INFO (indx, dr_type);
2356
2357 loc = htab->srelgot->contents;
2358 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2359 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2360
2361 if (r_type == R_X86_64_TLSGD)
2362 {
2363 if (indx == 0)
2364 {
2365 BFD_ASSERT (! unresolved_reloc);
2366 bfd_put_64 (output_bfd,
2367 relocation - dtpoff_base (info),
2368 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2369 }
2370 else
2371 {
2372 bfd_put_64 (output_bfd, 0,
2373 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2374 outrel.r_info = ELF64_R_INFO (indx,
2375 R_X86_64_DTPOFF64);
2376 outrel.r_offset += GOT_ENTRY_SIZE;
2377 htab->srelgot->reloc_count++;
2378 loc += sizeof (Elf64_External_Rela);
2379 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2380 }
2381 }
2382
2383 if (h != NULL)
2384 h->got.offset |= 1;
2385 else
2386 local_got_offsets[r_symndx] |= 1;
2387 }
2388
2389 if (off >= (bfd_vma) -2)
2390 abort ();
2391 if (r_type == ELF64_R_TYPE (rel->r_info))
2392 {
2393 relocation = htab->sgot->output_section->vma
2394 + htab->sgot->output_offset + off;
2395 unresolved_reloc = FALSE;
2396 }
2397 else
2398 {
2399 unsigned int i;
2400 static unsigned char tlsgd[8]
2401 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2402
2403 /* GD->IE transition.
2404 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2405 .word 0x6666; rex64; call __tls_get_addr@plt
2406 Change it into:
2407 movq %fs:0, %rax
2408 addq foo@gottpoff(%rip), %rax */
2409 BFD_ASSERT (rel->r_offset >= 4);
2410 for (i = 0; i < 4; i++)
2411 BFD_ASSERT (bfd_get_8 (input_bfd,
2412 contents + rel->r_offset - 4 + i)
2413 == tlsgd[i]);
2414 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2415 for (i = 0; i < 4; i++)
2416 BFD_ASSERT (bfd_get_8 (input_bfd,
2417 contents + rel->r_offset + 4 + i)
2418 == tlsgd[i+4]);
2419 BFD_ASSERT (rel + 1 < relend);
2420 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2421 memcpy (contents + rel->r_offset - 4,
2422 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
2423 16);
2424
2425 relocation = (htab->sgot->output_section->vma
2426 + htab->sgot->output_offset + off
2427 - rel->r_offset
2428 - input_section->output_section->vma
2429 - input_section->output_offset
2430 - 12);
2431 bfd_put_32 (output_bfd, relocation,
2432 contents + rel->r_offset + 8);
2433 /* Skip R_X86_64_PLT32. */
2434 rel++;
2435 continue;
2436 }
2437 break;
2438
2439 case R_X86_64_TLSLD:
2440 if (! info->shared)
2441 {
2442 /* LD->LE transition:
2443 Ensure it is:
2444 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr@plt.
2445 We change it into:
2446 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
2447 BFD_ASSERT (rel->r_offset >= 3);
2448 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3)
2449 == 0x48);
2450 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2451 == 0x8d);
2452 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 1)
2453 == 0x3d);
2454 BFD_ASSERT (rel->r_offset + 9 <= input_section->size);
2455 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2456 == 0xe8);
2457 BFD_ASSERT (rel + 1 < relend);
2458 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2459 memcpy (contents + rel->r_offset - 3,
2460 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
2461 /* Skip R_X86_64_PLT32. */
2462 rel++;
2463 continue;
2464 }
2465
2466 if (htab->sgot == NULL)
2467 abort ();
2468
2469 off = htab->tls_ld_got.offset;
2470 if (off & 1)
2471 off &= ~1;
2472 else
2473 {
2474 Elf_Internal_Rela outrel;
2475 bfd_byte *loc;
2476
2477 if (htab->srelgot == NULL)
2478 abort ();
2479
2480 outrel.r_offset = (htab->sgot->output_section->vma
2481 + htab->sgot->output_offset + off);
2482
2483 bfd_put_64 (output_bfd, 0,
2484 htab->sgot->contents + off);
2485 bfd_put_64 (output_bfd, 0,
2486 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2487 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
2488 outrel.r_addend = 0;
2489 loc = htab->srelgot->contents;
2490 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2491 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2492 htab->tls_ld_got.offset |= 1;
2493 }
2494 relocation = htab->sgot->output_section->vma
2495 + htab->sgot->output_offset + off;
2496 unresolved_reloc = FALSE;
2497 break;
2498
2499 case R_X86_64_DTPOFF32:
2500 if (info->shared || (input_section->flags & SEC_CODE) == 0)
2501 relocation -= dtpoff_base (info);
2502 else
2503 relocation = tpoff (info, relocation);
2504 break;
2505
2506 case R_X86_64_TPOFF32:
2507 BFD_ASSERT (! info->shared);
2508 relocation = tpoff (info, relocation);
2509 break;
2510
2511 default:
2512 break;
2513 }
2514
2515 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2516 because such sections are not SEC_ALLOC and thus ld.so will
2517 not process them. */
2518 if (unresolved_reloc
2519 && !((input_section->flags & SEC_DEBUGGING) != 0
2520 && h->def_dynamic))
2521 (*_bfd_error_handler)
2522 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2523 input_bfd,
2524 input_section,
2525 (long) rel->r_offset,
2526 howto->name,
2527 h->root.root.string);
2528
2529 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2530 contents, rel->r_offset,
2531 relocation, rel->r_addend);
2532
2533 if (r != bfd_reloc_ok)
2534 {
2535 const char *name;
2536
2537 if (h != NULL)
2538 name = h->root.root.string;
2539 else
2540 {
2541 name = bfd_elf_string_from_elf_section (input_bfd,
2542 symtab_hdr->sh_link,
2543 sym->st_name);
2544 if (name == NULL)
2545 return FALSE;
2546 if (*name == '\0')
2547 name = bfd_section_name (input_bfd, sec);
2548 }
2549
2550 if (r == bfd_reloc_overflow)
2551 {
2552 if (h != NULL
2553 && h->root.type == bfd_link_hash_undefweak
2554 && howto->pc_relative)
2555 /* Ignore reloc overflow on branches to undefweak syms. */
2556 continue;
2557
2558 if (! ((*info->callbacks->reloc_overflow)
2559 (info, (h ? &h->root : NULL), name, howto->name,
2560 (bfd_vma) 0, input_bfd, input_section,
2561 rel->r_offset)))
2562 return FALSE;
2563 }
2564 else
2565 {
2566 (*_bfd_error_handler)
2567 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
2568 input_bfd, input_section,
2569 (long) rel->r_offset, name, (int) r);
2570 return FALSE;
2571 }
2572 }
2573 }
2574
2575 return TRUE;
2576 }
2577
2578 /* Finish up dynamic symbol handling. We set the contents of various
2579 dynamic sections here. */
2580
2581 static bfd_boolean
2582 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
2583 struct bfd_link_info *info,
2584 struct elf_link_hash_entry *h,
2585 Elf_Internal_Sym *sym)
2586 {
2587 struct elf64_x86_64_link_hash_table *htab;
2588
2589 htab = elf64_x86_64_hash_table (info);
2590
2591 if (h->plt.offset != (bfd_vma) -1)
2592 {
2593 bfd_vma plt_index;
2594 bfd_vma got_offset;
2595 Elf_Internal_Rela rela;
2596 bfd_byte *loc;
2597
2598 /* This symbol has an entry in the procedure linkage table. Set
2599 it up. */
2600 if (h->dynindx == -1
2601 || htab->splt == NULL
2602 || htab->sgotplt == NULL
2603 || htab->srelplt == NULL)
2604 abort ();
2605
2606 /* Get the index in the procedure linkage table which
2607 corresponds to this symbol. This is the index of this symbol
2608 in all the symbols for which we are making plt entries. The
2609 first entry in the procedure linkage table is reserved. */
2610 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2611
2612 /* Get the offset into the .got table of the entry that
2613 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
2614 bytes. The first three are reserved for the dynamic linker. */
2615 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
2616
2617 /* Fill in the entry in the procedure linkage table. */
2618 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
2619 PLT_ENTRY_SIZE);
2620
2621 /* Insert the relocation positions of the plt section. The magic
2622 numbers at the end of the statements are the positions of the
2623 relocations in the plt section. */
2624 /* Put offset for jmp *name@GOTPCREL(%rip), since the
2625 instruction uses 6 bytes, subtract this value. */
2626 bfd_put_32 (output_bfd,
2627 (htab->sgotplt->output_section->vma
2628 + htab->sgotplt->output_offset
2629 + got_offset
2630 - htab->splt->output_section->vma
2631 - htab->splt->output_offset
2632 - h->plt.offset
2633 - 6),
2634 htab->splt->contents + h->plt.offset + 2);
2635 /* Put relocation index. */
2636 bfd_put_32 (output_bfd, plt_index,
2637 htab->splt->contents + h->plt.offset + 7);
2638 /* Put offset for jmp .PLT0. */
2639 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2640 htab->splt->contents + h->plt.offset + 12);
2641
2642 /* Fill in the entry in the global offset table, initially this
2643 points to the pushq instruction in the PLT which is at offset 6. */
2644 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
2645 + htab->splt->output_offset
2646 + h->plt.offset + 6),
2647 htab->sgotplt->contents + got_offset);
2648
2649 /* Fill in the entry in the .rela.plt section. */
2650 rela.r_offset = (htab->sgotplt->output_section->vma
2651 + htab->sgotplt->output_offset
2652 + got_offset);
2653 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
2654 rela.r_addend = 0;
2655 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
2656 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2657
2658 if (!h->def_regular)
2659 {
2660 /* Mark the symbol as undefined, rather than as defined in
2661 the .plt section. Leave the value if there were any
2662 relocations where pointer equality matters (this is a clue
2663 for the dynamic linker, to make function pointer
2664 comparisons work between an application and shared
2665 library), otherwise set it to zero. If a function is only
2666 called from a binary, there is no need to slow down
2667 shared libraries because of that. */
2668 sym->st_shndx = SHN_UNDEF;
2669 if (!h->pointer_equality_needed)
2670 sym->st_value = 0;
2671 }
2672 }
2673
2674 if (h->got.offset != (bfd_vma) -1
2675 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_GD
2676 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
2677 {
2678 Elf_Internal_Rela rela;
2679 bfd_byte *loc;
2680
2681 /* This symbol has an entry in the global offset table. Set it
2682 up. */
2683 if (htab->sgot == NULL || htab->srelgot == NULL)
2684 abort ();
2685
2686 rela.r_offset = (htab->sgot->output_section->vma
2687 + htab->sgot->output_offset
2688 + (h->got.offset &~ (bfd_vma) 1));
2689
2690 /* If this is a static link, or it is a -Bsymbolic link and the
2691 symbol is defined locally or was forced to be local because
2692 of a version file, we just want to emit a RELATIVE reloc.
2693 The entry in the global offset table will already have been
2694 initialized in the relocate_section function. */
2695 if (info->shared
2696 && SYMBOL_REFERENCES_LOCAL (info, h))
2697 {
2698 BFD_ASSERT((h->got.offset & 1) != 0);
2699 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2700 rela.r_addend = (h->root.u.def.value
2701 + h->root.u.def.section->output_section->vma
2702 + h->root.u.def.section->output_offset);
2703 }
2704 else
2705 {
2706 BFD_ASSERT((h->got.offset & 1) == 0);
2707 bfd_put_64 (output_bfd, (bfd_vma) 0,
2708 htab->sgot->contents + h->got.offset);
2709 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
2710 rela.r_addend = 0;
2711 }
2712
2713 loc = htab->srelgot->contents;
2714 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2715 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2716 }
2717
2718 if (h->needs_copy)
2719 {
2720 Elf_Internal_Rela rela;
2721 bfd_byte *loc;
2722
2723 /* This symbol needs a copy reloc. Set it up. */
2724
2725 if (h->dynindx == -1
2726 || (h->root.type != bfd_link_hash_defined
2727 && h->root.type != bfd_link_hash_defweak)
2728 || htab->srelbss == NULL)
2729 abort ();
2730
2731 rela.r_offset = (h->root.u.def.value
2732 + h->root.u.def.section->output_section->vma
2733 + h->root.u.def.section->output_offset);
2734 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
2735 rela.r_addend = 0;
2736 loc = htab->srelbss->contents;
2737 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
2738 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2739 }
2740
2741 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2742 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2743 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2744 sym->st_shndx = SHN_ABS;
2745
2746 return TRUE;
2747 }
2748
2749 /* Used to decide how to sort relocs in an optimal manner for the
2750 dynamic linker, before writing them out. */
2751
2752 static enum elf_reloc_type_class
2753 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
2754 {
2755 switch ((int) ELF64_R_TYPE (rela->r_info))
2756 {
2757 case R_X86_64_RELATIVE:
2758 return reloc_class_relative;
2759 case R_X86_64_JUMP_SLOT:
2760 return reloc_class_plt;
2761 case R_X86_64_COPY:
2762 return reloc_class_copy;
2763 default:
2764 return reloc_class_normal;
2765 }
2766 }
2767
2768 /* Finish up the dynamic sections. */
2769
2770 static bfd_boolean
2771 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
2772 {
2773 struct elf64_x86_64_link_hash_table *htab;
2774 bfd *dynobj;
2775 asection *sdyn;
2776
2777 htab = elf64_x86_64_hash_table (info);
2778 dynobj = htab->elf.dynobj;
2779 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2780
2781 if (htab->elf.dynamic_sections_created)
2782 {
2783 Elf64_External_Dyn *dyncon, *dynconend;
2784
2785 if (sdyn == NULL || htab->sgot == NULL)
2786 abort ();
2787
2788 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2789 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2790 for (; dyncon < dynconend; dyncon++)
2791 {
2792 Elf_Internal_Dyn dyn;
2793 asection *s;
2794
2795 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2796
2797 switch (dyn.d_tag)
2798 {
2799 default:
2800 continue;
2801
2802 case DT_PLTGOT:
2803 s = htab->sgotplt;
2804 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2805 break;
2806
2807 case DT_JMPREL:
2808 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2809 break;
2810
2811 case DT_PLTRELSZ:
2812 s = htab->srelplt->output_section;
2813 dyn.d_un.d_val = s->size;
2814 break;
2815
2816 case DT_RELASZ:
2817 /* The procedure linkage table relocs (DT_JMPREL) should
2818 not be included in the overall relocs (DT_RELA).
2819 Therefore, we override the DT_RELASZ entry here to
2820 make it not include the JMPREL relocs. Since the
2821 linker script arranges for .rela.plt to follow all
2822 other relocation sections, we don't have to worry
2823 about changing the DT_RELA entry. */
2824 if (htab->srelplt != NULL)
2825 {
2826 s = htab->srelplt->output_section;
2827 dyn.d_un.d_val -= s->size;
2828 }
2829 break;
2830 }
2831
2832 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2833 }
2834
2835 /* Fill in the special first entry in the procedure linkage table. */
2836 if (htab->splt && htab->splt->size > 0)
2837 {
2838 /* Fill in the first entry in the procedure linkage table. */
2839 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
2840 PLT_ENTRY_SIZE);
2841 /* Add offset for pushq GOT+8(%rip), since the instruction
2842 uses 6 bytes subtract this value. */
2843 bfd_put_32 (output_bfd,
2844 (htab->sgotplt->output_section->vma
2845 + htab->sgotplt->output_offset
2846 + 8
2847 - htab->splt->output_section->vma
2848 - htab->splt->output_offset
2849 - 6),
2850 htab->splt->contents + 2);
2851 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
2852 the end of the instruction. */
2853 bfd_put_32 (output_bfd,
2854 (htab->sgotplt->output_section->vma
2855 + htab->sgotplt->output_offset
2856 + 16
2857 - htab->splt->output_section->vma
2858 - htab->splt->output_offset
2859 - 12),
2860 htab->splt->contents + 8);
2861
2862 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
2863 PLT_ENTRY_SIZE;
2864 }
2865 }
2866
2867 if (htab->sgotplt)
2868 {
2869 /* Fill in the first three entries in the global offset table. */
2870 if (htab->sgotplt->size > 0)
2871 {
2872 /* Set the first entry in the global offset table to the address of
2873 the dynamic section. */
2874 if (sdyn == NULL)
2875 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
2876 else
2877 bfd_put_64 (output_bfd,
2878 sdyn->output_section->vma + sdyn->output_offset,
2879 htab->sgotplt->contents);
2880 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
2881 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
2882 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
2883 }
2884
2885 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
2886 GOT_ENTRY_SIZE;
2887 }
2888
2889 if (htab->sgot && htab->sgot->size > 0)
2890 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize
2891 = GOT_ENTRY_SIZE;
2892
2893 return TRUE;
2894 }
2895
2896 /* Return address for Ith PLT stub in section PLT, for relocation REL
2897 or (bfd_vma) -1 if it should not be included. */
2898
2899 static bfd_vma
2900 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
2901 const arelent *rel ATTRIBUTE_UNUSED)
2902 {
2903 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
2904 }
2905
2906 /* Handle an x86-64 specific section when reading an object file. This
2907 is called when elfcode.h finds a section with an unknown type. */
2908
2909 static bfd_boolean
2910 elf64_x86_64_section_from_shdr (bfd *abfd,
2911 Elf_Internal_Shdr *hdr,
2912 const char *name,
2913 int shindex)
2914 {
2915 if (hdr->sh_type != SHT_X86_64_UNWIND)
2916 return FALSE;
2917
2918 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2919 return FALSE;
2920
2921 return TRUE;
2922 }
2923
2924 /* Hook called by the linker routine which adds symbols from an object
2925 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
2926 of .bss. */
2927
2928 static bfd_boolean
2929 elf64_x86_64_add_symbol_hook (bfd *abfd,
2930 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2931 Elf_Internal_Sym *sym,
2932 const char **namep ATTRIBUTE_UNUSED,
2933 flagword *flagsp ATTRIBUTE_UNUSED,
2934 asection **secp, bfd_vma *valp)
2935 {
2936 asection *lcomm;
2937
2938 switch (sym->st_shndx)
2939 {
2940 case SHN_X86_64_LCOMMON:
2941 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
2942 if (lcomm == NULL)
2943 {
2944 lcomm = bfd_make_section_with_flags (abfd,
2945 "LARGE_COMMON",
2946 (SEC_ALLOC
2947 | SEC_IS_COMMON
2948 | SEC_LINKER_CREATED));
2949 if (lcomm == NULL)
2950 return FALSE;
2951 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
2952 }
2953 *secp = lcomm;
2954 *valp = sym->st_size;
2955 break;
2956 }
2957 return TRUE;
2958 }
2959
2960
2961 /* Given a BFD section, try to locate the corresponding ELF section
2962 index. */
2963
2964 static bfd_boolean
2965 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
2966 asection *sec, int *index)
2967 {
2968 if (sec == &_bfd_elf_large_com_section)
2969 {
2970 *index = SHN_X86_64_LCOMMON;
2971 return TRUE;
2972 }
2973 return FALSE;
2974 }
2975
2976 /* Process a symbol. */
2977
2978 static void
2979 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
2980 asymbol *asym)
2981 {
2982 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
2983
2984 switch (elfsym->internal_elf_sym.st_shndx)
2985 {
2986 case SHN_X86_64_LCOMMON:
2987 asym->section = &_bfd_elf_large_com_section;
2988 asym->value = elfsym->internal_elf_sym.st_size;
2989 /* Common symbol doesn't set BSF_GLOBAL. */
2990 asym->flags &= ~BSF_GLOBAL;
2991 break;
2992 }
2993 }
2994
2995 static bfd_boolean
2996 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
2997 {
2998 return (sym->st_shndx == SHN_COMMON
2999 || sym->st_shndx == SHN_X86_64_LCOMMON);
3000 }
3001
3002 static unsigned int
3003 elf64_x86_64_common_section_index (asection *sec)
3004 {
3005 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3006 return SHN_COMMON;
3007 else
3008 return SHN_X86_64_LCOMMON;
3009 }
3010
3011 static asection *
3012 elf64_x86_64_common_section (asection *sec)
3013 {
3014 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3015 return bfd_com_section_ptr;
3016 else
3017 return &_bfd_elf_large_com_section;
3018 }
3019
3020 static bfd_boolean
3021 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3022 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
3023 struct elf_link_hash_entry *h,
3024 Elf_Internal_Sym *sym,
3025 asection **psec,
3026 bfd_vma *pvalue ATTRIBUTE_UNUSED,
3027 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
3028 bfd_boolean *skip ATTRIBUTE_UNUSED,
3029 bfd_boolean *override ATTRIBUTE_UNUSED,
3030 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
3031 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
3032 bfd_boolean *newdef ATTRIBUTE_UNUSED,
3033 bfd_boolean *newdyn,
3034 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
3035 bfd_boolean *newweak ATTRIBUTE_UNUSED,
3036 bfd *abfd ATTRIBUTE_UNUSED,
3037 asection **sec,
3038 bfd_boolean *olddef ATTRIBUTE_UNUSED,
3039 bfd_boolean *olddyn,
3040 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
3041 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
3042 bfd *oldbfd,
3043 asection **oldsec)
3044 {
3045 /* A normal common symbol and a large common symbol result in a
3046 normal common symbol. We turn the large common symbol into a
3047 normal one. */
3048 if (!*olddyn
3049 && h->root.type == bfd_link_hash_common
3050 && !*newdyn
3051 && bfd_is_com_section (*sec)
3052 && *oldsec != *sec)
3053 {
3054 if (sym->st_shndx == SHN_COMMON
3055 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
3056 {
3057 h->root.u.c.p->section
3058 = bfd_make_section_old_way (oldbfd, "COMMON");
3059 h->root.u.c.p->section->flags = SEC_ALLOC;
3060 }
3061 else if (sym->st_shndx == SHN_X86_64_LCOMMON
3062 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
3063 *psec = *sec = bfd_com_section_ptr;
3064 }
3065
3066 return TRUE;
3067 }
3068
3069 static int
3070 elf64_x86_64_additional_program_headers (bfd *abfd)
3071 {
3072 asection *s;
3073 int count = 0;
3074
3075 /* Check to see if we need a large readonly segment. */
3076 s = bfd_get_section_by_name (abfd, ".lrodata");
3077 if (s && (s->flags & SEC_LOAD))
3078 count++;
3079
3080 /* Check to see if we need a large data segment. Since .lbss sections
3081 is placed right after the .bss section, there should be no need for
3082 a large data segment just because of .lbss. */
3083 s = bfd_get_section_by_name (abfd, ".ldata");
3084 if (s && (s->flags & SEC_LOAD))
3085 count++;
3086
3087 return count;
3088 }
3089
3090 static const struct bfd_elf_special_section
3091 elf64_x86_64_special_sections[]=
3092 {
3093 { ".gnu.linkonce.lb", 16, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3094 { ".gnu.linkonce.lr", 16, -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3095 { ".gnu.linkonce.lt", 16, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
3096 { ".lbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3097 { ".ldata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3098 { ".lrodata", 8, -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3099 { NULL, 0, 0, 0, 0 }
3100 };
3101
3102 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
3103 #define TARGET_LITTLE_NAME "elf64-x86-64"
3104 #define ELF_ARCH bfd_arch_i386
3105 #define ELF_MACHINE_CODE EM_X86_64
3106 #define ELF_MAXPAGESIZE 0x100000
3107
3108 #define elf_backend_can_gc_sections 1
3109 #define elf_backend_can_refcount 1
3110 #define elf_backend_want_got_plt 1
3111 #define elf_backend_plt_readonly 1
3112 #define elf_backend_want_plt_sym 0
3113 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
3114 #define elf_backend_rela_normal 1
3115
3116 #define elf_info_to_howto elf64_x86_64_info_to_howto
3117
3118 #define bfd_elf64_bfd_link_hash_table_create \
3119 elf64_x86_64_link_hash_table_create
3120 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
3121
3122 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
3123 #define elf_backend_check_relocs elf64_x86_64_check_relocs
3124 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
3125 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
3126 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
3127 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
3128 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
3129 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
3130 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
3131 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
3132 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
3133 #define elf_backend_relocate_section elf64_x86_64_relocate_section
3134 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
3135 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
3136 #define elf_backend_object_p elf64_x86_64_elf_object_p
3137 #define bfd_elf64_mkobject elf64_x86_64_mkobject
3138
3139 #define elf_backend_section_from_shdr \
3140 elf64_x86_64_section_from_shdr
3141
3142 #define elf_backend_section_from_bfd_section \
3143 elf64_x86_64_elf_section_from_bfd_section
3144 #define elf_backend_add_symbol_hook \
3145 elf64_x86_64_add_symbol_hook
3146 #define elf_backend_symbol_processing \
3147 elf64_x86_64_symbol_processing
3148 #define elf_backend_common_section_index \
3149 elf64_x86_64_common_section_index
3150 #define elf_backend_common_section \
3151 elf64_x86_64_common_section
3152 #define elf_backend_common_definition \
3153 elf64_x86_64_common_definition
3154 #define elf_backend_merge_symbol \
3155 elf64_x86_64_merge_symbol
3156 #define elf_backend_special_sections \
3157 elf64_x86_64_special_sections
3158 #define elf_backend_additional_program_headers \
3159 elf64_x86_64_additional_program_headers
3160
3161 #include "elf64-target.h"
This page took 0.09501 seconds and 5 git commands to generate.