bfd/
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28
29 #include "elf/x86-64.h"
30
31 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
32 #define MINUS_ONE (~ (bfd_vma) 0)
33
34 /* The relocation "howto" table. Order of fields:
35 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
36 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
37 static reloc_howto_type x86_64_elf_howto_table[] =
38 {
39 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
40 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
41 FALSE),
42 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
43 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
44 FALSE),
45 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
46 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
47 TRUE),
48 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
49 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
50 FALSE),
51 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
52 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
53 TRUE),
54 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
55 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
56 FALSE),
57 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
58 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
59 MINUS_ONE, FALSE),
60 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
62 MINUS_ONE, FALSE),
63 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
64 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
65 MINUS_ONE, FALSE),
66 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
68 0xffffffff, TRUE),
69 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
70 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
71 FALSE),
72 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
73 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
74 FALSE),
75 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
77 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
79 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
80 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
81 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
82 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
83 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
84 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
85 MINUS_ONE, FALSE),
86 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
87 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
88 MINUS_ONE, FALSE),
89 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
90 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
91 MINUS_ONE, FALSE),
92 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
93 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
94 0xffffffff, TRUE),
95 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
96 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
97 0xffffffff, TRUE),
98 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
99 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
100 0xffffffff, FALSE),
101 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
103 0xffffffff, TRUE),
104 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
105 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
106 0xffffffff, FALSE),
107 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
108 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
109 TRUE),
110 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
111 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
112 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
113 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
114 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
115 FALSE, 0xffffffff, 0xffffffff, TRUE),
116 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
118 FALSE),
119 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
121 MINUS_ONE, TRUE),
122 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
124 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
125 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
126 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
127 MINUS_ONE, FALSE),
128 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
129 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
130 MINUS_ONE, FALSE),
131 EMPTY_HOWTO (32),
132 EMPTY_HOWTO (33),
133 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
134 complain_overflow_bitfield, bfd_elf_generic_reloc,
135 "R_X86_64_GOTPC32_TLSDESC",
136 FALSE, 0xffffffff, 0xffffffff, TRUE),
137 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
138 complain_overflow_dont, bfd_elf_generic_reloc,
139 "R_X86_64_TLSDESC_CALL",
140 FALSE, 0, 0, FALSE),
141 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
142 complain_overflow_bitfield, bfd_elf_generic_reloc,
143 "R_X86_64_TLSDESC",
144 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
145
146 /* We have a gap in the reloc numbers here.
147 R_X86_64_standard counts the number up to this point, and
148 R_X86_64_vt_offset is the value to subtract from a reloc type of
149 R_X86_64_GNU_VT* to form an index into this table. */
150 #define R_X86_64_standard (R_X86_64_TLSDESC + 1)
151 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
152
153 /* GNU extension to record C++ vtable hierarchy. */
154 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
155 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
156
157 /* GNU extension to record C++ vtable member usage. */
158 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
159 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
160 FALSE)
161 };
162
163 /* Map BFD relocs to the x86_64 elf relocs. */
164 struct elf_reloc_map
165 {
166 bfd_reloc_code_real_type bfd_reloc_val;
167 unsigned char elf_reloc_val;
168 };
169
170 static const struct elf_reloc_map x86_64_reloc_map[] =
171 {
172 { BFD_RELOC_NONE, R_X86_64_NONE, },
173 { BFD_RELOC_64, R_X86_64_64, },
174 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
175 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
176 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
177 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
178 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
179 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
180 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
181 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
182 { BFD_RELOC_32, R_X86_64_32, },
183 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
184 { BFD_RELOC_16, R_X86_64_16, },
185 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
186 { BFD_RELOC_8, R_X86_64_8, },
187 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
188 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
189 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
190 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
191 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
192 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
193 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
194 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
195 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
196 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
197 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
198 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
199 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
200 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
201 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
202 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
203 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
204 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
205 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
206 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
207 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
208 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
209 };
210
211 static reloc_howto_type *
212 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
213 {
214 unsigned i;
215
216 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
217 || r_type >= (unsigned int) R_X86_64_max)
218 {
219 if (r_type >= (unsigned int) R_X86_64_standard)
220 {
221 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
222 abfd, (int) r_type);
223 r_type = R_X86_64_NONE;
224 }
225 i = r_type;
226 }
227 else
228 i = r_type - (unsigned int) R_X86_64_vt_offset;
229 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
230 return &x86_64_elf_howto_table[i];
231 }
232
233 /* Given a BFD reloc type, return a HOWTO structure. */
234 static reloc_howto_type *
235 elf64_x86_64_reloc_type_lookup (bfd *abfd,
236 bfd_reloc_code_real_type code)
237 {
238 unsigned int i;
239
240 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
241 i++)
242 {
243 if (x86_64_reloc_map[i].bfd_reloc_val == code)
244 return elf64_x86_64_rtype_to_howto (abfd,
245 x86_64_reloc_map[i].elf_reloc_val);
246 }
247 return 0;
248 }
249
250 static reloc_howto_type *
251 elf64_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
252 const char *r_name)
253 {
254 unsigned int i;
255
256 for (i = 0;
257 i < (sizeof (x86_64_elf_howto_table)
258 / sizeof (x86_64_elf_howto_table[0]));
259 i++)
260 if (x86_64_elf_howto_table[i].name != NULL
261 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
262 return &x86_64_elf_howto_table[i];
263
264 return NULL;
265 }
266
267 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
268
269 static void
270 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
271 Elf_Internal_Rela *dst)
272 {
273 unsigned r_type;
274
275 r_type = ELF64_R_TYPE (dst->r_info);
276 cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type);
277 BFD_ASSERT (r_type == cache_ptr->howto->type);
278 }
279 \f
280 /* Support for core dump NOTE sections. */
281 static bfd_boolean
282 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
283 {
284 int offset;
285 size_t size;
286
287 switch (note->descsz)
288 {
289 default:
290 return FALSE;
291
292 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
293 /* pr_cursig */
294 elf_tdata (abfd)->core_signal
295 = bfd_get_16 (abfd, note->descdata + 12);
296
297 /* pr_pid */
298 elf_tdata (abfd)->core_pid
299 = bfd_get_32 (abfd, note->descdata + 32);
300
301 /* pr_reg */
302 offset = 112;
303 size = 216;
304
305 break;
306 }
307
308 /* Make a ".reg/999" section. */
309 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
310 size, note->descpos + offset);
311 }
312
313 static bfd_boolean
314 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
315 {
316 switch (note->descsz)
317 {
318 default:
319 return FALSE;
320
321 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
322 elf_tdata (abfd)->core_program
323 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
324 elf_tdata (abfd)->core_command
325 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
326 }
327
328 /* Note that for some reason, a spurious space is tacked
329 onto the end of the args in some (at least one anyway)
330 implementations, so strip it off if it exists. */
331
332 {
333 char *command = elf_tdata (abfd)->core_command;
334 int n = strlen (command);
335
336 if (0 < n && command[n - 1] == ' ')
337 command[n - 1] = '\0';
338 }
339
340 return TRUE;
341 }
342 \f
343 /* Functions for the x86-64 ELF linker. */
344
345 /* The name of the dynamic interpreter. This is put in the .interp
346 section. */
347
348 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
349
350 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
351 copying dynamic variables from a shared lib into an app's dynbss
352 section, and instead use a dynamic relocation to point into the
353 shared lib. */
354 #define ELIMINATE_COPY_RELOCS 1
355
356 /* The size in bytes of an entry in the global offset table. */
357
358 #define GOT_ENTRY_SIZE 8
359
360 /* The size in bytes of an entry in the procedure linkage table. */
361
362 #define PLT_ENTRY_SIZE 16
363
364 /* The first entry in a procedure linkage table looks like this. See the
365 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
366
367 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
368 {
369 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
370 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
371 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
372 };
373
374 /* Subsequent entries in a procedure linkage table look like this. */
375
376 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
377 {
378 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
379 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
380 0x68, /* pushq immediate */
381 0, 0, 0, 0, /* replaced with index into relocation table. */
382 0xe9, /* jmp relative */
383 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
384 };
385
386 /* The x86-64 linker needs to keep track of the number of relocs that
387 it decides to copy as dynamic relocs in check_relocs for each symbol.
388 This is so that it can later discard them if they are found to be
389 unnecessary. We store the information in a field extending the
390 regular ELF linker hash table. */
391
392 struct elf64_x86_64_dyn_relocs
393 {
394 /* Next section. */
395 struct elf64_x86_64_dyn_relocs *next;
396
397 /* The input section of the reloc. */
398 asection *sec;
399
400 /* Total number of relocs copied for the input section. */
401 bfd_size_type count;
402
403 /* Number of pc-relative relocs copied for the input section. */
404 bfd_size_type pc_count;
405 };
406
407 /* x86-64 ELF linker hash entry. */
408
409 struct elf64_x86_64_link_hash_entry
410 {
411 struct elf_link_hash_entry elf;
412
413 /* Track dynamic relocs copied for this symbol. */
414 struct elf64_x86_64_dyn_relocs *dyn_relocs;
415
416 #define GOT_UNKNOWN 0
417 #define GOT_NORMAL 1
418 #define GOT_TLS_GD 2
419 #define GOT_TLS_IE 3
420 #define GOT_TLS_GDESC 4
421 #define GOT_TLS_GD_BOTH_P(type) \
422 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
423 #define GOT_TLS_GD_P(type) \
424 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
425 #define GOT_TLS_GDESC_P(type) \
426 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
427 #define GOT_TLS_GD_ANY_P(type) \
428 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
429 unsigned char tls_type;
430
431 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
432 starting at the end of the jump table. */
433 bfd_vma tlsdesc_got;
434 };
435
436 #define elf64_x86_64_hash_entry(ent) \
437 ((struct elf64_x86_64_link_hash_entry *)(ent))
438
439 struct elf64_x86_64_obj_tdata
440 {
441 struct elf_obj_tdata root;
442
443 /* tls_type for each local got entry. */
444 char *local_got_tls_type;
445
446 /* GOTPLT entries for TLS descriptors. */
447 bfd_vma *local_tlsdesc_gotent;
448 };
449
450 #define elf64_x86_64_tdata(abfd) \
451 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
452
453 #define elf64_x86_64_local_got_tls_type(abfd) \
454 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
455
456 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
457 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
458
459 /* x86-64 ELF linker hash table. */
460
461 struct elf64_x86_64_link_hash_table
462 {
463 struct elf_link_hash_table elf;
464
465 /* Short-cuts to get to dynamic linker sections. */
466 asection *sgot;
467 asection *sgotplt;
468 asection *srelgot;
469 asection *splt;
470 asection *srelplt;
471 asection *sdynbss;
472 asection *srelbss;
473
474 /* The offset into splt of the PLT entry for the TLS descriptor
475 resolver. Special values are 0, if not necessary (or not found
476 to be necessary yet), and -1 if needed but not determined
477 yet. */
478 bfd_vma tlsdesc_plt;
479 /* The offset into sgot of the GOT entry used by the PLT entry
480 above. */
481 bfd_vma tlsdesc_got;
482
483 union {
484 bfd_signed_vma refcount;
485 bfd_vma offset;
486 } tls_ld_got;
487
488 /* The amount of space used by the jump slots in the GOT. */
489 bfd_vma sgotplt_jump_table_size;
490
491 /* Small local sym to section mapping cache. */
492 struct sym_sec_cache sym_sec;
493 };
494
495 /* Get the x86-64 ELF linker hash table from a link_info structure. */
496
497 #define elf64_x86_64_hash_table(p) \
498 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
499
500 #define elf64_x86_64_compute_jump_table_size(htab) \
501 ((htab)->srelplt->reloc_count * GOT_ENTRY_SIZE)
502
503 /* Create an entry in an x86-64 ELF linker hash table. */
504
505 static struct bfd_hash_entry *
506 link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
507 const char *string)
508 {
509 /* Allocate the structure if it has not already been allocated by a
510 subclass. */
511 if (entry == NULL)
512 {
513 entry = bfd_hash_allocate (table,
514 sizeof (struct elf64_x86_64_link_hash_entry));
515 if (entry == NULL)
516 return entry;
517 }
518
519 /* Call the allocation method of the superclass. */
520 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
521 if (entry != NULL)
522 {
523 struct elf64_x86_64_link_hash_entry *eh;
524
525 eh = (struct elf64_x86_64_link_hash_entry *) entry;
526 eh->dyn_relocs = NULL;
527 eh->tls_type = GOT_UNKNOWN;
528 eh->tlsdesc_got = (bfd_vma) -1;
529 }
530
531 return entry;
532 }
533
534 /* Create an X86-64 ELF linker hash table. */
535
536 static struct bfd_link_hash_table *
537 elf64_x86_64_link_hash_table_create (bfd *abfd)
538 {
539 struct elf64_x86_64_link_hash_table *ret;
540 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
541
542 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
543 if (ret == NULL)
544 return NULL;
545
546 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
547 sizeof (struct elf64_x86_64_link_hash_entry)))
548 {
549 free (ret);
550 return NULL;
551 }
552
553 ret->sgot = NULL;
554 ret->sgotplt = NULL;
555 ret->srelgot = NULL;
556 ret->splt = NULL;
557 ret->srelplt = NULL;
558 ret->sdynbss = NULL;
559 ret->srelbss = NULL;
560 ret->sym_sec.abfd = NULL;
561 ret->tlsdesc_plt = 0;
562 ret->tlsdesc_got = 0;
563 ret->tls_ld_got.refcount = 0;
564 ret->sgotplt_jump_table_size = 0;
565
566 return &ret->elf.root;
567 }
568
569 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
570 shortcuts to them in our hash table. */
571
572 static bfd_boolean
573 create_got_section (bfd *dynobj, struct bfd_link_info *info)
574 {
575 struct elf64_x86_64_link_hash_table *htab;
576
577 if (! _bfd_elf_create_got_section (dynobj, info))
578 return FALSE;
579
580 htab = elf64_x86_64_hash_table (info);
581 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
582 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
583 if (!htab->sgot || !htab->sgotplt)
584 abort ();
585
586 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
587 (SEC_ALLOC | SEC_LOAD
588 | SEC_HAS_CONTENTS
589 | SEC_IN_MEMORY
590 | SEC_LINKER_CREATED
591 | SEC_READONLY));
592 if (htab->srelgot == NULL
593 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
594 return FALSE;
595 return TRUE;
596 }
597
598 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
599 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
600 hash table. */
601
602 static bfd_boolean
603 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
604 {
605 struct elf64_x86_64_link_hash_table *htab;
606
607 htab = elf64_x86_64_hash_table (info);
608 if (!htab->sgot && !create_got_section (dynobj, info))
609 return FALSE;
610
611 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
612 return FALSE;
613
614 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
615 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
616 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
617 if (!info->shared)
618 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
619
620 if (!htab->splt || !htab->srelplt || !htab->sdynbss
621 || (!info->shared && !htab->srelbss))
622 abort ();
623
624 return TRUE;
625 }
626
627 /* Copy the extra info we tack onto an elf_link_hash_entry. */
628
629 static void
630 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
631 struct elf_link_hash_entry *dir,
632 struct elf_link_hash_entry *ind)
633 {
634 struct elf64_x86_64_link_hash_entry *edir, *eind;
635
636 edir = (struct elf64_x86_64_link_hash_entry *) dir;
637 eind = (struct elf64_x86_64_link_hash_entry *) ind;
638
639 if (eind->dyn_relocs != NULL)
640 {
641 if (edir->dyn_relocs != NULL)
642 {
643 struct elf64_x86_64_dyn_relocs **pp;
644 struct elf64_x86_64_dyn_relocs *p;
645
646 /* Add reloc counts against the indirect sym to the direct sym
647 list. Merge any entries against the same section. */
648 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
649 {
650 struct elf64_x86_64_dyn_relocs *q;
651
652 for (q = edir->dyn_relocs; q != NULL; q = q->next)
653 if (q->sec == p->sec)
654 {
655 q->pc_count += p->pc_count;
656 q->count += p->count;
657 *pp = p->next;
658 break;
659 }
660 if (q == NULL)
661 pp = &p->next;
662 }
663 *pp = edir->dyn_relocs;
664 }
665
666 edir->dyn_relocs = eind->dyn_relocs;
667 eind->dyn_relocs = NULL;
668 }
669
670 if (ind->root.type == bfd_link_hash_indirect
671 && dir->got.refcount <= 0)
672 {
673 edir->tls_type = eind->tls_type;
674 eind->tls_type = GOT_UNKNOWN;
675 }
676
677 if (ELIMINATE_COPY_RELOCS
678 && ind->root.type != bfd_link_hash_indirect
679 && dir->dynamic_adjusted)
680 {
681 /* If called to transfer flags for a weakdef during processing
682 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
683 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
684 dir->ref_dynamic |= ind->ref_dynamic;
685 dir->ref_regular |= ind->ref_regular;
686 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
687 dir->needs_plt |= ind->needs_plt;
688 dir->pointer_equality_needed |= ind->pointer_equality_needed;
689 }
690 else
691 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
692 }
693
694 static bfd_boolean
695 elf64_x86_64_mkobject (bfd *abfd)
696 {
697 if (abfd->tdata.any == NULL)
698 {
699 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
700 abfd->tdata.any = bfd_zalloc (abfd, amt);
701 if (abfd->tdata.any == NULL)
702 return FALSE;
703 }
704 return bfd_elf_mkobject (abfd);
705 }
706
707 static bfd_boolean
708 elf64_x86_64_elf_object_p (bfd *abfd)
709 {
710 /* Set the right machine number for an x86-64 elf64 file. */
711 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
712 return TRUE;
713 }
714
715 static int
716 elf64_x86_64_tls_transition (struct bfd_link_info *info, int r_type, int is_local)
717 {
718 if (info->shared)
719 return r_type;
720
721 switch (r_type)
722 {
723 case R_X86_64_TLSGD:
724 case R_X86_64_GOTPC32_TLSDESC:
725 case R_X86_64_TLSDESC_CALL:
726 case R_X86_64_GOTTPOFF:
727 if (is_local)
728 return R_X86_64_TPOFF32;
729 return R_X86_64_GOTTPOFF;
730 case R_X86_64_TLSLD:
731 return R_X86_64_TPOFF32;
732 }
733
734 return r_type;
735 }
736
737 /* Look through the relocs for a section during the first phase, and
738 calculate needed space in the global offset table, procedure
739 linkage table, and dynamic reloc sections. */
740
741 static bfd_boolean
742 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec,
743 const Elf_Internal_Rela *relocs)
744 {
745 struct elf64_x86_64_link_hash_table *htab;
746 Elf_Internal_Shdr *symtab_hdr;
747 struct elf_link_hash_entry **sym_hashes;
748 const Elf_Internal_Rela *rel;
749 const Elf_Internal_Rela *rel_end;
750 asection *sreloc;
751
752 if (info->relocatable)
753 return TRUE;
754
755 htab = elf64_x86_64_hash_table (info);
756 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
757 sym_hashes = elf_sym_hashes (abfd);
758
759 sreloc = NULL;
760
761 rel_end = relocs + sec->reloc_count;
762 for (rel = relocs; rel < rel_end; rel++)
763 {
764 unsigned int r_type;
765 unsigned long r_symndx;
766 struct elf_link_hash_entry *h;
767
768 r_symndx = ELF64_R_SYM (rel->r_info);
769 r_type = ELF64_R_TYPE (rel->r_info);
770
771 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
772 {
773 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
774 abfd, r_symndx);
775 return FALSE;
776 }
777
778 if (r_symndx < symtab_hdr->sh_info)
779 h = NULL;
780 else
781 {
782 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
783 while (h->root.type == bfd_link_hash_indirect
784 || h->root.type == bfd_link_hash_warning)
785 h = (struct elf_link_hash_entry *) h->root.u.i.link;
786 }
787
788 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
789 switch (r_type)
790 {
791 case R_X86_64_TLSLD:
792 htab->tls_ld_got.refcount += 1;
793 goto create_got;
794
795 case R_X86_64_TPOFF32:
796 if (info->shared)
797 {
798 (*_bfd_error_handler)
799 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
800 abfd,
801 x86_64_elf_howto_table[r_type].name,
802 (h) ? h->root.root.string : "a local symbol");
803 bfd_set_error (bfd_error_bad_value);
804 return FALSE;
805 }
806 break;
807
808 case R_X86_64_GOTTPOFF:
809 if (info->shared)
810 info->flags |= DF_STATIC_TLS;
811 /* Fall through */
812
813 case R_X86_64_GOT32:
814 case R_X86_64_GOTPCREL:
815 case R_X86_64_TLSGD:
816 case R_X86_64_GOT64:
817 case R_X86_64_GOTPCREL64:
818 case R_X86_64_GOTPLT64:
819 case R_X86_64_GOTPC32_TLSDESC:
820 case R_X86_64_TLSDESC_CALL:
821 /* This symbol requires a global offset table entry. */
822 {
823 int tls_type, old_tls_type;
824
825 switch (r_type)
826 {
827 default: tls_type = GOT_NORMAL; break;
828 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
829 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
830 case R_X86_64_GOTPC32_TLSDESC:
831 case R_X86_64_TLSDESC_CALL:
832 tls_type = GOT_TLS_GDESC; break;
833 }
834
835 if (h != NULL)
836 {
837 if (r_type == R_X86_64_GOTPLT64)
838 {
839 /* This relocation indicates that we also need
840 a PLT entry, as this is a function. We don't need
841 a PLT entry for local symbols. */
842 h->needs_plt = 1;
843 h->plt.refcount += 1;
844 }
845 h->got.refcount += 1;
846 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
847 }
848 else
849 {
850 bfd_signed_vma *local_got_refcounts;
851
852 /* This is a global offset table entry for a local symbol. */
853 local_got_refcounts = elf_local_got_refcounts (abfd);
854 if (local_got_refcounts == NULL)
855 {
856 bfd_size_type size;
857
858 size = symtab_hdr->sh_info;
859 size *= sizeof (bfd_signed_vma)
860 + sizeof (bfd_vma) + sizeof (char);
861 local_got_refcounts = ((bfd_signed_vma *)
862 bfd_zalloc (abfd, size));
863 if (local_got_refcounts == NULL)
864 return FALSE;
865 elf_local_got_refcounts (abfd) = local_got_refcounts;
866 elf64_x86_64_local_tlsdesc_gotent (abfd)
867 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
868 elf64_x86_64_local_got_tls_type (abfd)
869 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
870 }
871 local_got_refcounts[r_symndx] += 1;
872 old_tls_type
873 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
874 }
875
876 /* If a TLS symbol is accessed using IE at least once,
877 there is no point to use dynamic model for it. */
878 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
879 && (! GOT_TLS_GD_ANY_P (old_tls_type)
880 || tls_type != GOT_TLS_IE))
881 {
882 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
883 tls_type = old_tls_type;
884 else if (GOT_TLS_GD_ANY_P (old_tls_type)
885 && GOT_TLS_GD_ANY_P (tls_type))
886 tls_type |= old_tls_type;
887 else
888 {
889 (*_bfd_error_handler)
890 (_("%B: %s' accessed both as normal and thread local symbol"),
891 abfd, h ? h->root.root.string : "<local>");
892 return FALSE;
893 }
894 }
895
896 if (old_tls_type != tls_type)
897 {
898 if (h != NULL)
899 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
900 else
901 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
902 }
903 }
904 /* Fall through */
905
906 case R_X86_64_GOTOFF64:
907 case R_X86_64_GOTPC32:
908 case R_X86_64_GOTPC64:
909 create_got:
910 if (htab->sgot == NULL)
911 {
912 if (htab->elf.dynobj == NULL)
913 htab->elf.dynobj = abfd;
914 if (!create_got_section (htab->elf.dynobj, info))
915 return FALSE;
916 }
917 break;
918
919 case R_X86_64_PLT32:
920 /* This symbol requires a procedure linkage table entry. We
921 actually build the entry in adjust_dynamic_symbol,
922 because this might be a case of linking PIC code which is
923 never referenced by a dynamic object, in which case we
924 don't need to generate a procedure linkage table entry
925 after all. */
926
927 /* If this is a local symbol, we resolve it directly without
928 creating a procedure linkage table entry. */
929 if (h == NULL)
930 continue;
931
932 h->needs_plt = 1;
933 h->plt.refcount += 1;
934 break;
935
936 case R_X86_64_PLTOFF64:
937 /* This tries to form the 'address' of a function relative
938 to GOT. For global symbols we need a PLT entry. */
939 if (h != NULL)
940 {
941 h->needs_plt = 1;
942 h->plt.refcount += 1;
943 }
944 goto create_got;
945
946 case R_X86_64_8:
947 case R_X86_64_16:
948 case R_X86_64_32:
949 case R_X86_64_32S:
950 /* Let's help debug shared library creation. These relocs
951 cannot be used in shared libs. Don't error out for
952 sections we don't care about, such as debug sections or
953 non-constant sections. */
954 if (info->shared
955 && (sec->flags & SEC_ALLOC) != 0
956 && (sec->flags & SEC_READONLY) != 0)
957 {
958 (*_bfd_error_handler)
959 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
960 abfd,
961 x86_64_elf_howto_table[r_type].name,
962 (h) ? h->root.root.string : "a local symbol");
963 bfd_set_error (bfd_error_bad_value);
964 return FALSE;
965 }
966 /* Fall through. */
967
968 case R_X86_64_PC8:
969 case R_X86_64_PC16:
970 case R_X86_64_PC32:
971 case R_X86_64_PC64:
972 case R_X86_64_64:
973 if (h != NULL && !info->shared)
974 {
975 /* If this reloc is in a read-only section, we might
976 need a copy reloc. We can't check reliably at this
977 stage whether the section is read-only, as input
978 sections have not yet been mapped to output sections.
979 Tentatively set the flag for now, and correct in
980 adjust_dynamic_symbol. */
981 h->non_got_ref = 1;
982
983 /* We may need a .plt entry if the function this reloc
984 refers to is in a shared lib. */
985 h->plt.refcount += 1;
986 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
987 h->pointer_equality_needed = 1;
988 }
989
990 /* If we are creating a shared library, and this is a reloc
991 against a global symbol, or a non PC relative reloc
992 against a local symbol, then we need to copy the reloc
993 into the shared library. However, if we are linking with
994 -Bsymbolic, we do not need to copy a reloc against a
995 global symbol which is defined in an object we are
996 including in the link (i.e., DEF_REGULAR is set). At
997 this point we have not seen all the input files, so it is
998 possible that DEF_REGULAR is not set now but will be set
999 later (it is never cleared). In case of a weak definition,
1000 DEF_REGULAR may be cleared later by a strong definition in
1001 a shared library. We account for that possibility below by
1002 storing information in the relocs_copied field of the hash
1003 table entry. A similar situation occurs when creating
1004 shared libraries and symbol visibility changes render the
1005 symbol local.
1006
1007 If on the other hand, we are creating an executable, we
1008 may need to keep relocations for symbols satisfied by a
1009 dynamic library if we manage to avoid copy relocs for the
1010 symbol. */
1011 if ((info->shared
1012 && (sec->flags & SEC_ALLOC) != 0
1013 && (((r_type != R_X86_64_PC8)
1014 && (r_type != R_X86_64_PC16)
1015 && (r_type != R_X86_64_PC32)
1016 && (r_type != R_X86_64_PC64))
1017 || (h != NULL
1018 && (! SYMBOLIC_BIND (info, h)
1019 || h->root.type == bfd_link_hash_defweak
1020 || !h->def_regular))))
1021 || (ELIMINATE_COPY_RELOCS
1022 && !info->shared
1023 && (sec->flags & SEC_ALLOC) != 0
1024 && h != NULL
1025 && (h->root.type == bfd_link_hash_defweak
1026 || !h->def_regular)))
1027 {
1028 struct elf64_x86_64_dyn_relocs *p;
1029 struct elf64_x86_64_dyn_relocs **head;
1030
1031 /* We must copy these reloc types into the output file.
1032 Create a reloc section in dynobj and make room for
1033 this reloc. */
1034 if (sreloc == NULL)
1035 {
1036 const char *name;
1037 bfd *dynobj;
1038
1039 name = (bfd_elf_string_from_elf_section
1040 (abfd,
1041 elf_elfheader (abfd)->e_shstrndx,
1042 elf_section_data (sec)->rel_hdr.sh_name));
1043 if (name == NULL)
1044 return FALSE;
1045
1046 if (! CONST_STRNEQ (name, ".rela")
1047 || strcmp (bfd_get_section_name (abfd, sec),
1048 name + 5) != 0)
1049 {
1050 (*_bfd_error_handler)
1051 (_("%B: bad relocation section name `%s\'"),
1052 abfd, name);
1053 }
1054
1055 if (htab->elf.dynobj == NULL)
1056 htab->elf.dynobj = abfd;
1057
1058 dynobj = htab->elf.dynobj;
1059
1060 sreloc = bfd_get_section_by_name (dynobj, name);
1061 if (sreloc == NULL)
1062 {
1063 flagword flags;
1064
1065 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1066 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1067 if ((sec->flags & SEC_ALLOC) != 0)
1068 flags |= SEC_ALLOC | SEC_LOAD;
1069 sreloc = bfd_make_section_with_flags (dynobj,
1070 name,
1071 flags);
1072 if (sreloc == NULL
1073 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1074 return FALSE;
1075 }
1076 elf_section_data (sec)->sreloc = sreloc;
1077 }
1078
1079 /* If this is a global symbol, we count the number of
1080 relocations we need for this symbol. */
1081 if (h != NULL)
1082 {
1083 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1084 }
1085 else
1086 {
1087 void **vpp;
1088 /* Track dynamic relocs needed for local syms too.
1089 We really need local syms available to do this
1090 easily. Oh well. */
1091
1092 asection *s;
1093 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1094 sec, r_symndx);
1095 if (s == NULL)
1096 return FALSE;
1097
1098 /* Beware of type punned pointers vs strict aliasing
1099 rules. */
1100 vpp = &(elf_section_data (s)->local_dynrel);
1101 head = (struct elf64_x86_64_dyn_relocs **)vpp;
1102 }
1103
1104 p = *head;
1105 if (p == NULL || p->sec != sec)
1106 {
1107 bfd_size_type amt = sizeof *p;
1108 p = ((struct elf64_x86_64_dyn_relocs *)
1109 bfd_alloc (htab->elf.dynobj, amt));
1110 if (p == NULL)
1111 return FALSE;
1112 p->next = *head;
1113 *head = p;
1114 p->sec = sec;
1115 p->count = 0;
1116 p->pc_count = 0;
1117 }
1118
1119 p->count += 1;
1120 if (r_type == R_X86_64_PC8
1121 || r_type == R_X86_64_PC16
1122 || r_type == R_X86_64_PC32
1123 || r_type == R_X86_64_PC64)
1124 p->pc_count += 1;
1125 }
1126 break;
1127
1128 /* This relocation describes the C++ object vtable hierarchy.
1129 Reconstruct it for later use during GC. */
1130 case R_X86_64_GNU_VTINHERIT:
1131 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1132 return FALSE;
1133 break;
1134
1135 /* This relocation describes which C++ vtable entries are actually
1136 used. Record for later use during GC. */
1137 case R_X86_64_GNU_VTENTRY:
1138 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1139 return FALSE;
1140 break;
1141
1142 default:
1143 break;
1144 }
1145 }
1146
1147 return TRUE;
1148 }
1149
1150 /* Return the section that should be marked against GC for a given
1151 relocation. */
1152
1153 static asection *
1154 elf64_x86_64_gc_mark_hook (asection *sec,
1155 struct bfd_link_info *info,
1156 Elf_Internal_Rela *rel,
1157 struct elf_link_hash_entry *h,
1158 Elf_Internal_Sym *sym)
1159 {
1160 if (h != NULL)
1161 switch (ELF64_R_TYPE (rel->r_info))
1162 {
1163 case R_X86_64_GNU_VTINHERIT:
1164 case R_X86_64_GNU_VTENTRY:
1165 return NULL;
1166 }
1167
1168 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1169 }
1170
1171 /* Update the got entry reference counts for the section being removed. */
1172
1173 static bfd_boolean
1174 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1175 asection *sec, const Elf_Internal_Rela *relocs)
1176 {
1177 Elf_Internal_Shdr *symtab_hdr;
1178 struct elf_link_hash_entry **sym_hashes;
1179 bfd_signed_vma *local_got_refcounts;
1180 const Elf_Internal_Rela *rel, *relend;
1181
1182 elf_section_data (sec)->local_dynrel = NULL;
1183
1184 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1185 sym_hashes = elf_sym_hashes (abfd);
1186 local_got_refcounts = elf_local_got_refcounts (abfd);
1187
1188 relend = relocs + sec->reloc_count;
1189 for (rel = relocs; rel < relend; rel++)
1190 {
1191 unsigned long r_symndx;
1192 unsigned int r_type;
1193 struct elf_link_hash_entry *h = NULL;
1194
1195 r_symndx = ELF64_R_SYM (rel->r_info);
1196 if (r_symndx >= symtab_hdr->sh_info)
1197 {
1198 struct elf64_x86_64_link_hash_entry *eh;
1199 struct elf64_x86_64_dyn_relocs **pp;
1200 struct elf64_x86_64_dyn_relocs *p;
1201
1202 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1203 while (h->root.type == bfd_link_hash_indirect
1204 || h->root.type == bfd_link_hash_warning)
1205 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1206 eh = (struct elf64_x86_64_link_hash_entry *) h;
1207
1208 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1209 if (p->sec == sec)
1210 {
1211 /* Everything must go for SEC. */
1212 *pp = p->next;
1213 break;
1214 }
1215 }
1216
1217 r_type = ELF64_R_TYPE (rel->r_info);
1218 r_type = elf64_x86_64_tls_transition (info, r_type, h != NULL);
1219 switch (r_type)
1220 {
1221 case R_X86_64_TLSLD:
1222 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1223 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1224 break;
1225
1226 case R_X86_64_TLSGD:
1227 case R_X86_64_GOTPC32_TLSDESC:
1228 case R_X86_64_TLSDESC_CALL:
1229 case R_X86_64_GOTTPOFF:
1230 case R_X86_64_GOT32:
1231 case R_X86_64_GOTPCREL:
1232 case R_X86_64_GOT64:
1233 case R_X86_64_GOTPCREL64:
1234 case R_X86_64_GOTPLT64:
1235 if (h != NULL)
1236 {
1237 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1238 h->plt.refcount -= 1;
1239 if (h->got.refcount > 0)
1240 h->got.refcount -= 1;
1241 }
1242 else if (local_got_refcounts != NULL)
1243 {
1244 if (local_got_refcounts[r_symndx] > 0)
1245 local_got_refcounts[r_symndx] -= 1;
1246 }
1247 break;
1248
1249 case R_X86_64_8:
1250 case R_X86_64_16:
1251 case R_X86_64_32:
1252 case R_X86_64_64:
1253 case R_X86_64_32S:
1254 case R_X86_64_PC8:
1255 case R_X86_64_PC16:
1256 case R_X86_64_PC32:
1257 case R_X86_64_PC64:
1258 if (info->shared)
1259 break;
1260 /* Fall thru */
1261
1262 case R_X86_64_PLT32:
1263 case R_X86_64_PLTOFF64:
1264 if (h != NULL)
1265 {
1266 if (h->plt.refcount > 0)
1267 h->plt.refcount -= 1;
1268 }
1269 break;
1270
1271 default:
1272 break;
1273 }
1274 }
1275
1276 return TRUE;
1277 }
1278
1279 /* Adjust a symbol defined by a dynamic object and referenced by a
1280 regular object. The current definition is in some section of the
1281 dynamic object, but we're not including those sections. We have to
1282 change the definition to something the rest of the link can
1283 understand. */
1284
1285 static bfd_boolean
1286 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1287 struct elf_link_hash_entry *h)
1288 {
1289 struct elf64_x86_64_link_hash_table *htab;
1290 asection *s;
1291
1292 /* If this is a function, put it in the procedure linkage table. We
1293 will fill in the contents of the procedure linkage table later,
1294 when we know the address of the .got section. */
1295 if (h->type == STT_FUNC
1296 || h->needs_plt)
1297 {
1298 if (h->plt.refcount <= 0
1299 || SYMBOL_CALLS_LOCAL (info, h)
1300 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1301 && h->root.type == bfd_link_hash_undefweak))
1302 {
1303 /* This case can occur if we saw a PLT32 reloc in an input
1304 file, but the symbol was never referred to by a dynamic
1305 object, or if all references were garbage collected. In
1306 such a case, we don't actually need to build a procedure
1307 linkage table, and we can just do a PC32 reloc instead. */
1308 h->plt.offset = (bfd_vma) -1;
1309 h->needs_plt = 0;
1310 }
1311
1312 return TRUE;
1313 }
1314 else
1315 /* It's possible that we incorrectly decided a .plt reloc was
1316 needed for an R_X86_64_PC32 reloc to a non-function sym in
1317 check_relocs. We can't decide accurately between function and
1318 non-function syms in check-relocs; Objects loaded later in
1319 the link may change h->type. So fix it now. */
1320 h->plt.offset = (bfd_vma) -1;
1321
1322 /* If this is a weak symbol, and there is a real definition, the
1323 processor independent code will have arranged for us to see the
1324 real definition first, and we can just use the same value. */
1325 if (h->u.weakdef != NULL)
1326 {
1327 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1328 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1329 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1330 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1331 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1332 h->non_got_ref = h->u.weakdef->non_got_ref;
1333 return TRUE;
1334 }
1335
1336 /* This is a reference to a symbol defined by a dynamic object which
1337 is not a function. */
1338
1339 /* If we are creating a shared library, we must presume that the
1340 only references to the symbol are via the global offset table.
1341 For such cases we need not do anything here; the relocations will
1342 be handled correctly by relocate_section. */
1343 if (info->shared)
1344 return TRUE;
1345
1346 /* If there are no references to this symbol that do not use the
1347 GOT, we don't need to generate a copy reloc. */
1348 if (!h->non_got_ref)
1349 return TRUE;
1350
1351 /* If -z nocopyreloc was given, we won't generate them either. */
1352 if (info->nocopyreloc)
1353 {
1354 h->non_got_ref = 0;
1355 return TRUE;
1356 }
1357
1358 if (ELIMINATE_COPY_RELOCS)
1359 {
1360 struct elf64_x86_64_link_hash_entry * eh;
1361 struct elf64_x86_64_dyn_relocs *p;
1362
1363 eh = (struct elf64_x86_64_link_hash_entry *) h;
1364 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1365 {
1366 s = p->sec->output_section;
1367 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1368 break;
1369 }
1370
1371 /* If we didn't find any dynamic relocs in read-only sections, then
1372 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1373 if (p == NULL)
1374 {
1375 h->non_got_ref = 0;
1376 return TRUE;
1377 }
1378 }
1379
1380 if (h->size == 0)
1381 {
1382 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1383 h->root.root.string);
1384 return TRUE;
1385 }
1386
1387 /* We must allocate the symbol in our .dynbss section, which will
1388 become part of the .bss section of the executable. There will be
1389 an entry for this symbol in the .dynsym section. The dynamic
1390 object will contain position independent code, so all references
1391 from the dynamic object to this symbol will go through the global
1392 offset table. The dynamic linker will use the .dynsym entry to
1393 determine the address it must put in the global offset table, so
1394 both the dynamic object and the regular object will refer to the
1395 same memory location for the variable. */
1396
1397 htab = elf64_x86_64_hash_table (info);
1398
1399 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1400 to copy the initial value out of the dynamic object and into the
1401 runtime process image. */
1402 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1403 {
1404 htab->srelbss->size += sizeof (Elf64_External_Rela);
1405 h->needs_copy = 1;
1406 }
1407
1408 s = htab->sdynbss;
1409
1410 return _bfd_elf_adjust_dynamic_copy (h, s);
1411 }
1412
1413 /* Allocate space in .plt, .got and associated reloc sections for
1414 dynamic relocs. */
1415
1416 static bfd_boolean
1417 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1418 {
1419 struct bfd_link_info *info;
1420 struct elf64_x86_64_link_hash_table *htab;
1421 struct elf64_x86_64_link_hash_entry *eh;
1422 struct elf64_x86_64_dyn_relocs *p;
1423
1424 if (h->root.type == bfd_link_hash_indirect)
1425 return TRUE;
1426
1427 if (h->root.type == bfd_link_hash_warning)
1428 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1429
1430 info = (struct bfd_link_info *) inf;
1431 htab = elf64_x86_64_hash_table (info);
1432
1433 if (htab->elf.dynamic_sections_created
1434 && h->plt.refcount > 0)
1435 {
1436 /* Make sure this symbol is output as a dynamic symbol.
1437 Undefined weak syms won't yet be marked as dynamic. */
1438 if (h->dynindx == -1
1439 && !h->forced_local)
1440 {
1441 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1442 return FALSE;
1443 }
1444
1445 if (info->shared
1446 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1447 {
1448 asection *s = htab->splt;
1449
1450 /* If this is the first .plt entry, make room for the special
1451 first entry. */
1452 if (s->size == 0)
1453 s->size += PLT_ENTRY_SIZE;
1454
1455 h->plt.offset = s->size;
1456
1457 /* If this symbol is not defined in a regular file, and we are
1458 not generating a shared library, then set the symbol to this
1459 location in the .plt. This is required to make function
1460 pointers compare as equal between the normal executable and
1461 the shared library. */
1462 if (! info->shared
1463 && !h->def_regular)
1464 {
1465 h->root.u.def.section = s;
1466 h->root.u.def.value = h->plt.offset;
1467 }
1468
1469 /* Make room for this entry. */
1470 s->size += PLT_ENTRY_SIZE;
1471
1472 /* We also need to make an entry in the .got.plt section, which
1473 will be placed in the .got section by the linker script. */
1474 htab->sgotplt->size += GOT_ENTRY_SIZE;
1475
1476 /* We also need to make an entry in the .rela.plt section. */
1477 htab->srelplt->size += sizeof (Elf64_External_Rela);
1478 htab->srelplt->reloc_count++;
1479 }
1480 else
1481 {
1482 h->plt.offset = (bfd_vma) -1;
1483 h->needs_plt = 0;
1484 }
1485 }
1486 else
1487 {
1488 h->plt.offset = (bfd_vma) -1;
1489 h->needs_plt = 0;
1490 }
1491
1492 eh = (struct elf64_x86_64_link_hash_entry *) h;
1493 eh->tlsdesc_got = (bfd_vma) -1;
1494
1495 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1496 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1497 if (h->got.refcount > 0
1498 && !info->shared
1499 && h->dynindx == -1
1500 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1501 h->got.offset = (bfd_vma) -1;
1502 else if (h->got.refcount > 0)
1503 {
1504 asection *s;
1505 bfd_boolean dyn;
1506 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1507
1508 /* Make sure this symbol is output as a dynamic symbol.
1509 Undefined weak syms won't yet be marked as dynamic. */
1510 if (h->dynindx == -1
1511 && !h->forced_local)
1512 {
1513 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1514 return FALSE;
1515 }
1516
1517 if (GOT_TLS_GDESC_P (tls_type))
1518 {
1519 eh->tlsdesc_got = htab->sgotplt->size
1520 - elf64_x86_64_compute_jump_table_size (htab);
1521 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
1522 h->got.offset = (bfd_vma) -2;
1523 }
1524 if (! GOT_TLS_GDESC_P (tls_type)
1525 || GOT_TLS_GD_P (tls_type))
1526 {
1527 s = htab->sgot;
1528 h->got.offset = s->size;
1529 s->size += GOT_ENTRY_SIZE;
1530 if (GOT_TLS_GD_P (tls_type))
1531 s->size += GOT_ENTRY_SIZE;
1532 }
1533 dyn = htab->elf.dynamic_sections_created;
1534 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1535 and two if global.
1536 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1537 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
1538 || tls_type == GOT_TLS_IE)
1539 htab->srelgot->size += sizeof (Elf64_External_Rela);
1540 else if (GOT_TLS_GD_P (tls_type))
1541 htab->srelgot->size += 2 * sizeof (Elf64_External_Rela);
1542 else if (! GOT_TLS_GDESC_P (tls_type)
1543 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1544 || h->root.type != bfd_link_hash_undefweak)
1545 && (info->shared
1546 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1547 htab->srelgot->size += sizeof (Elf64_External_Rela);
1548 if (GOT_TLS_GDESC_P (tls_type))
1549 {
1550 htab->srelplt->size += sizeof (Elf64_External_Rela);
1551 htab->tlsdesc_plt = (bfd_vma) -1;
1552 }
1553 }
1554 else
1555 h->got.offset = (bfd_vma) -1;
1556
1557 if (eh->dyn_relocs == NULL)
1558 return TRUE;
1559
1560 /* In the shared -Bsymbolic case, discard space allocated for
1561 dynamic pc-relative relocs against symbols which turn out to be
1562 defined in regular objects. For the normal shared case, discard
1563 space for pc-relative relocs that have become local due to symbol
1564 visibility changes. */
1565
1566 if (info->shared)
1567 {
1568 /* Relocs that use pc_count are those that appear on a call
1569 insn, or certain REL relocs that can generated via assembly.
1570 We want calls to protected symbols to resolve directly to the
1571 function rather than going via the plt. If people want
1572 function pointer comparisons to work as expected then they
1573 should avoid writing weird assembly. */
1574 if (SYMBOL_CALLS_LOCAL (info, h))
1575 {
1576 struct elf64_x86_64_dyn_relocs **pp;
1577
1578 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1579 {
1580 p->count -= p->pc_count;
1581 p->pc_count = 0;
1582 if (p->count == 0)
1583 *pp = p->next;
1584 else
1585 pp = &p->next;
1586 }
1587 }
1588
1589 /* Also discard relocs on undefined weak syms with non-default
1590 visibility. */
1591 if (eh->dyn_relocs != NULL
1592 && h->root.type == bfd_link_hash_undefweak)
1593 {
1594 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1595 eh->dyn_relocs = NULL;
1596
1597 /* Make sure undefined weak symbols are output as a dynamic
1598 symbol in PIEs. */
1599 else if (h->dynindx == -1
1600 && !h->forced_local)
1601 {
1602 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1603 return FALSE;
1604 }
1605 }
1606 }
1607 else if (ELIMINATE_COPY_RELOCS)
1608 {
1609 /* For the non-shared case, discard space for relocs against
1610 symbols which turn out to need copy relocs or are not
1611 dynamic. */
1612
1613 if (!h->non_got_ref
1614 && ((h->def_dynamic
1615 && !h->def_regular)
1616 || (htab->elf.dynamic_sections_created
1617 && (h->root.type == bfd_link_hash_undefweak
1618 || h->root.type == bfd_link_hash_undefined))))
1619 {
1620 /* Make sure this symbol is output as a dynamic symbol.
1621 Undefined weak syms won't yet be marked as dynamic. */
1622 if (h->dynindx == -1
1623 && !h->forced_local)
1624 {
1625 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1626 return FALSE;
1627 }
1628
1629 /* If that succeeded, we know we'll be keeping all the
1630 relocs. */
1631 if (h->dynindx != -1)
1632 goto keep;
1633 }
1634
1635 eh->dyn_relocs = NULL;
1636
1637 keep: ;
1638 }
1639
1640 /* Finally, allocate space. */
1641 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1642 {
1643 asection *sreloc = elf_section_data (p->sec)->sreloc;
1644 sreloc->size += p->count * sizeof (Elf64_External_Rela);
1645 }
1646
1647 return TRUE;
1648 }
1649
1650 /* Find any dynamic relocs that apply to read-only sections. */
1651
1652 static bfd_boolean
1653 readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1654 {
1655 struct elf64_x86_64_link_hash_entry *eh;
1656 struct elf64_x86_64_dyn_relocs *p;
1657
1658 if (h->root.type == bfd_link_hash_warning)
1659 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1660
1661 eh = (struct elf64_x86_64_link_hash_entry *) h;
1662 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1663 {
1664 asection *s = p->sec->output_section;
1665
1666 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1667 {
1668 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1669
1670 info->flags |= DF_TEXTREL;
1671
1672 /* Not an error, just cut short the traversal. */
1673 return FALSE;
1674 }
1675 }
1676 return TRUE;
1677 }
1678
1679 /* Set the sizes of the dynamic sections. */
1680
1681 static bfd_boolean
1682 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1683 struct bfd_link_info *info)
1684 {
1685 struct elf64_x86_64_link_hash_table *htab;
1686 bfd *dynobj;
1687 asection *s;
1688 bfd_boolean relocs;
1689 bfd *ibfd;
1690
1691 htab = elf64_x86_64_hash_table (info);
1692 dynobj = htab->elf.dynobj;
1693 if (dynobj == NULL)
1694 abort ();
1695
1696 if (htab->elf.dynamic_sections_created)
1697 {
1698 /* Set the contents of the .interp section to the interpreter. */
1699 if (info->executable)
1700 {
1701 s = bfd_get_section_by_name (dynobj, ".interp");
1702 if (s == NULL)
1703 abort ();
1704 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1705 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1706 }
1707 }
1708
1709 /* Set up .got offsets for local syms, and space for local dynamic
1710 relocs. */
1711 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1712 {
1713 bfd_signed_vma *local_got;
1714 bfd_signed_vma *end_local_got;
1715 char *local_tls_type;
1716 bfd_vma *local_tlsdesc_gotent;
1717 bfd_size_type locsymcount;
1718 Elf_Internal_Shdr *symtab_hdr;
1719 asection *srel;
1720
1721 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1722 continue;
1723
1724 for (s = ibfd->sections; s != NULL; s = s->next)
1725 {
1726 struct elf64_x86_64_dyn_relocs *p;
1727
1728 for (p = (struct elf64_x86_64_dyn_relocs *)
1729 (elf_section_data (s)->local_dynrel);
1730 p != NULL;
1731 p = p->next)
1732 {
1733 if (!bfd_is_abs_section (p->sec)
1734 && bfd_is_abs_section (p->sec->output_section))
1735 {
1736 /* Input section has been discarded, either because
1737 it is a copy of a linkonce section or due to
1738 linker script /DISCARD/, so we'll be discarding
1739 the relocs too. */
1740 }
1741 else if (p->count != 0)
1742 {
1743 srel = elf_section_data (p->sec)->sreloc;
1744 srel->size += p->count * sizeof (Elf64_External_Rela);
1745 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1746 info->flags |= DF_TEXTREL;
1747
1748 }
1749 }
1750 }
1751
1752 local_got = elf_local_got_refcounts (ibfd);
1753 if (!local_got)
1754 continue;
1755
1756 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1757 locsymcount = symtab_hdr->sh_info;
1758 end_local_got = local_got + locsymcount;
1759 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1760 local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd);
1761 s = htab->sgot;
1762 srel = htab->srelgot;
1763 for (; local_got < end_local_got;
1764 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
1765 {
1766 *local_tlsdesc_gotent = (bfd_vma) -1;
1767 if (*local_got > 0)
1768 {
1769 if (GOT_TLS_GDESC_P (*local_tls_type))
1770 {
1771 *local_tlsdesc_gotent = htab->sgotplt->size
1772 - elf64_x86_64_compute_jump_table_size (htab);
1773 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
1774 *local_got = (bfd_vma) -2;
1775 }
1776 if (! GOT_TLS_GDESC_P (*local_tls_type)
1777 || GOT_TLS_GD_P (*local_tls_type))
1778 {
1779 *local_got = s->size;
1780 s->size += GOT_ENTRY_SIZE;
1781 if (GOT_TLS_GD_P (*local_tls_type))
1782 s->size += GOT_ENTRY_SIZE;
1783 }
1784 if (info->shared
1785 || GOT_TLS_GD_ANY_P (*local_tls_type)
1786 || *local_tls_type == GOT_TLS_IE)
1787 {
1788 if (GOT_TLS_GDESC_P (*local_tls_type))
1789 {
1790 htab->srelplt->size += sizeof (Elf64_External_Rela);
1791 htab->tlsdesc_plt = (bfd_vma) -1;
1792 }
1793 if (! GOT_TLS_GDESC_P (*local_tls_type)
1794 || GOT_TLS_GD_P (*local_tls_type))
1795 srel->size += sizeof (Elf64_External_Rela);
1796 }
1797 }
1798 else
1799 *local_got = (bfd_vma) -1;
1800 }
1801 }
1802
1803 if (htab->tls_ld_got.refcount > 0)
1804 {
1805 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
1806 relocs. */
1807 htab->tls_ld_got.offset = htab->sgot->size;
1808 htab->sgot->size += 2 * GOT_ENTRY_SIZE;
1809 htab->srelgot->size += sizeof (Elf64_External_Rela);
1810 }
1811 else
1812 htab->tls_ld_got.offset = -1;
1813
1814 /* Allocate global sym .plt and .got entries, and space for global
1815 sym dynamic relocs. */
1816 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1817
1818 /* For every jump slot reserved in the sgotplt, reloc_count is
1819 incremented. However, when we reserve space for TLS descriptors,
1820 it's not incremented, so in order to compute the space reserved
1821 for them, it suffices to multiply the reloc count by the jump
1822 slot size. */
1823 if (htab->srelplt)
1824 htab->sgotplt_jump_table_size
1825 = elf64_x86_64_compute_jump_table_size (htab);
1826
1827 if (htab->tlsdesc_plt)
1828 {
1829 /* If we're not using lazy TLS relocations, don't generate the
1830 PLT and GOT entries they require. */
1831 if ((info->flags & DF_BIND_NOW))
1832 htab->tlsdesc_plt = 0;
1833 else
1834 {
1835 htab->tlsdesc_got = htab->sgot->size;
1836 htab->sgot->size += GOT_ENTRY_SIZE;
1837 /* Reserve room for the initial entry.
1838 FIXME: we could probably do away with it in this case. */
1839 if (htab->splt->size == 0)
1840 htab->splt->size += PLT_ENTRY_SIZE;
1841 htab->tlsdesc_plt = htab->splt->size;
1842 htab->splt->size += PLT_ENTRY_SIZE;
1843 }
1844 }
1845
1846 /* We now have determined the sizes of the various dynamic sections.
1847 Allocate memory for them. */
1848 relocs = FALSE;
1849 for (s = dynobj->sections; s != NULL; s = s->next)
1850 {
1851 if ((s->flags & SEC_LINKER_CREATED) == 0)
1852 continue;
1853
1854 if (s == htab->splt
1855 || s == htab->sgot
1856 || s == htab->sgotplt
1857 || s == htab->sdynbss)
1858 {
1859 /* Strip this section if we don't need it; see the
1860 comment below. */
1861 }
1862 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
1863 {
1864 if (s->size != 0 && s != htab->srelplt)
1865 relocs = TRUE;
1866
1867 /* We use the reloc_count field as a counter if we need
1868 to copy relocs into the output file. */
1869 if (s != htab->srelplt)
1870 s->reloc_count = 0;
1871 }
1872 else
1873 {
1874 /* It's not one of our sections, so don't allocate space. */
1875 continue;
1876 }
1877
1878 if (s->size == 0)
1879 {
1880 /* If we don't need this section, strip it from the
1881 output file. This is mostly to handle .rela.bss and
1882 .rela.plt. We must create both sections in
1883 create_dynamic_sections, because they must be created
1884 before the linker maps input sections to output
1885 sections. The linker does that before
1886 adjust_dynamic_symbol is called, and it is that
1887 function which decides whether anything needs to go
1888 into these sections. */
1889
1890 s->flags |= SEC_EXCLUDE;
1891 continue;
1892 }
1893
1894 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1895 continue;
1896
1897 /* Allocate memory for the section contents. We use bfd_zalloc
1898 here in case unused entries are not reclaimed before the
1899 section's contents are written out. This should not happen,
1900 but this way if it does, we get a R_X86_64_NONE reloc instead
1901 of garbage. */
1902 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1903 if (s->contents == NULL)
1904 return FALSE;
1905 }
1906
1907 if (htab->elf.dynamic_sections_created)
1908 {
1909 /* Add some entries to the .dynamic section. We fill in the
1910 values later, in elf64_x86_64_finish_dynamic_sections, but we
1911 must add the entries now so that we get the correct size for
1912 the .dynamic section. The DT_DEBUG entry is filled in by the
1913 dynamic linker and used by the debugger. */
1914 #define add_dynamic_entry(TAG, VAL) \
1915 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1916
1917 if (info->executable)
1918 {
1919 if (!add_dynamic_entry (DT_DEBUG, 0))
1920 return FALSE;
1921 }
1922
1923 if (htab->splt->size != 0)
1924 {
1925 if (!add_dynamic_entry (DT_PLTGOT, 0)
1926 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1927 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1928 || !add_dynamic_entry (DT_JMPREL, 0))
1929 return FALSE;
1930
1931 if (htab->tlsdesc_plt
1932 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
1933 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
1934 return FALSE;
1935 }
1936
1937 if (relocs)
1938 {
1939 if (!add_dynamic_entry (DT_RELA, 0)
1940 || !add_dynamic_entry (DT_RELASZ, 0)
1941 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1942 return FALSE;
1943
1944 /* If any dynamic relocs apply to a read-only section,
1945 then we need a DT_TEXTREL entry. */
1946 if ((info->flags & DF_TEXTREL) == 0)
1947 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1948 (PTR) info);
1949
1950 if ((info->flags & DF_TEXTREL) != 0)
1951 {
1952 if (!add_dynamic_entry (DT_TEXTREL, 0))
1953 return FALSE;
1954 }
1955 }
1956 }
1957 #undef add_dynamic_entry
1958
1959 return TRUE;
1960 }
1961
1962 static bfd_boolean
1963 elf64_x86_64_always_size_sections (bfd *output_bfd,
1964 struct bfd_link_info *info)
1965 {
1966 asection *tls_sec = elf_hash_table (info)->tls_sec;
1967
1968 if (tls_sec)
1969 {
1970 struct elf_link_hash_entry *tlsbase;
1971
1972 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
1973 "_TLS_MODULE_BASE_",
1974 FALSE, FALSE, FALSE);
1975
1976 if (tlsbase && tlsbase->type == STT_TLS)
1977 {
1978 struct bfd_link_hash_entry *bh = NULL;
1979 const struct elf_backend_data *bed
1980 = get_elf_backend_data (output_bfd);
1981
1982 if (!(_bfd_generic_link_add_one_symbol
1983 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1984 tls_sec, 0, NULL, FALSE,
1985 bed->collect, &bh)))
1986 return FALSE;
1987 tlsbase = (struct elf_link_hash_entry *)bh;
1988 tlsbase->def_regular = 1;
1989 tlsbase->other = STV_HIDDEN;
1990 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1991 }
1992 }
1993
1994 return TRUE;
1995 }
1996
1997 /* Return the base VMA address which should be subtracted from real addresses
1998 when resolving @dtpoff relocation.
1999 This is PT_TLS segment p_vaddr. */
2000
2001 static bfd_vma
2002 dtpoff_base (struct bfd_link_info *info)
2003 {
2004 /* If tls_sec is NULL, we should have signalled an error already. */
2005 if (elf_hash_table (info)->tls_sec == NULL)
2006 return 0;
2007 return elf_hash_table (info)->tls_sec->vma;
2008 }
2009
2010 /* Return the relocation value for @tpoff relocation
2011 if STT_TLS virtual address is ADDRESS. */
2012
2013 static bfd_vma
2014 tpoff (struct bfd_link_info *info, bfd_vma address)
2015 {
2016 struct elf_link_hash_table *htab = elf_hash_table (info);
2017
2018 /* If tls_segment is NULL, we should have signalled an error already. */
2019 if (htab->tls_sec == NULL)
2020 return 0;
2021 return address - htab->tls_size - htab->tls_sec->vma;
2022 }
2023
2024 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2025 branch? */
2026
2027 static bfd_boolean
2028 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2029 {
2030 /* Opcode Instruction
2031 0xe8 call
2032 0xe9 jump
2033 0x0f 0x8x conditional jump */
2034 return ((offset > 0
2035 && (contents [offset - 1] == 0xe8
2036 || contents [offset - 1] == 0xe9))
2037 || (offset > 1
2038 && contents [offset - 2] == 0x0f
2039 && (contents [offset - 1] & 0xf0) == 0x80));
2040 }
2041
2042 /* Relocate an x86_64 ELF section. */
2043
2044 static bfd_boolean
2045 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
2046 bfd *input_bfd, asection *input_section,
2047 bfd_byte *contents, Elf_Internal_Rela *relocs,
2048 Elf_Internal_Sym *local_syms,
2049 asection **local_sections)
2050 {
2051 struct elf64_x86_64_link_hash_table *htab;
2052 Elf_Internal_Shdr *symtab_hdr;
2053 struct elf_link_hash_entry **sym_hashes;
2054 bfd_vma *local_got_offsets;
2055 bfd_vma *local_tlsdesc_gotents;
2056 Elf_Internal_Rela *rel;
2057 Elf_Internal_Rela *relend;
2058
2059 htab = elf64_x86_64_hash_table (info);
2060 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2061 sym_hashes = elf_sym_hashes (input_bfd);
2062 local_got_offsets = elf_local_got_offsets (input_bfd);
2063 local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd);
2064
2065 rel = relocs;
2066 relend = relocs + input_section->reloc_count;
2067 for (; rel < relend; rel++)
2068 {
2069 unsigned int r_type;
2070 reloc_howto_type *howto;
2071 unsigned long r_symndx;
2072 struct elf_link_hash_entry *h;
2073 Elf_Internal_Sym *sym;
2074 asection *sec;
2075 bfd_vma off, offplt;
2076 bfd_vma relocation;
2077 bfd_boolean unresolved_reloc;
2078 bfd_reloc_status_type r;
2079 int tls_type;
2080
2081 r_type = ELF64_R_TYPE (rel->r_info);
2082 if (r_type == (int) R_X86_64_GNU_VTINHERIT
2083 || r_type == (int) R_X86_64_GNU_VTENTRY)
2084 continue;
2085
2086 if (r_type >= R_X86_64_max)
2087 {
2088 bfd_set_error (bfd_error_bad_value);
2089 return FALSE;
2090 }
2091
2092 howto = x86_64_elf_howto_table + r_type;
2093 r_symndx = ELF64_R_SYM (rel->r_info);
2094 h = NULL;
2095 sym = NULL;
2096 sec = NULL;
2097 unresolved_reloc = FALSE;
2098 if (r_symndx < symtab_hdr->sh_info)
2099 {
2100 sym = local_syms + r_symndx;
2101 sec = local_sections[r_symndx];
2102
2103 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2104 }
2105 else
2106 {
2107 bfd_boolean warned;
2108
2109 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2110 r_symndx, symtab_hdr, sym_hashes,
2111 h, sec, relocation,
2112 unresolved_reloc, warned);
2113 }
2114
2115 if (sec != NULL && elf_discarded_section (sec))
2116 {
2117 /* For relocs against symbols from removed linkonce sections,
2118 or sections discarded by a linker script, we just want the
2119 section contents zeroed. Avoid any special processing. */
2120 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2121 rel->r_info = 0;
2122 rel->r_addend = 0;
2123 continue;
2124 }
2125
2126 if (info->relocatable)
2127 continue;
2128
2129 /* When generating a shared object, the relocations handled here are
2130 copied into the output file to be resolved at run time. */
2131 switch (r_type)
2132 {
2133 asection *base_got;
2134 case R_X86_64_GOT32:
2135 case R_X86_64_GOT64:
2136 /* Relocation is to the entry for this symbol in the global
2137 offset table. */
2138 case R_X86_64_GOTPCREL:
2139 case R_X86_64_GOTPCREL64:
2140 /* Use global offset table entry as symbol value. */
2141 case R_X86_64_GOTPLT64:
2142 /* This is the same as GOT64 for relocation purposes, but
2143 indicates the existence of a PLT entry. The difficulty is,
2144 that we must calculate the GOT slot offset from the PLT
2145 offset, if this symbol got a PLT entry (it was global).
2146 Additionally if it's computed from the PLT entry, then that
2147 GOT offset is relative to .got.plt, not to .got. */
2148 base_got = htab->sgot;
2149
2150 if (htab->sgot == NULL)
2151 abort ();
2152
2153 if (h != NULL)
2154 {
2155 bfd_boolean dyn;
2156
2157 off = h->got.offset;
2158 if (h->needs_plt
2159 && h->plt.offset != (bfd_vma)-1
2160 && off == (bfd_vma)-1)
2161 {
2162 /* We can't use h->got.offset here to save
2163 state, or even just remember the offset, as
2164 finish_dynamic_symbol would use that as offset into
2165 .got. */
2166 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2167 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2168 base_got = htab->sgotplt;
2169 }
2170
2171 dyn = htab->elf.dynamic_sections_created;
2172
2173 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2174 || (info->shared
2175 && SYMBOL_REFERENCES_LOCAL (info, h))
2176 || (ELF_ST_VISIBILITY (h->other)
2177 && h->root.type == bfd_link_hash_undefweak))
2178 {
2179 /* This is actually a static link, or it is a -Bsymbolic
2180 link and the symbol is defined locally, or the symbol
2181 was forced to be local because of a version file. We
2182 must initialize this entry in the global offset table.
2183 Since the offset must always be a multiple of 8, we
2184 use the least significant bit to record whether we
2185 have initialized it already.
2186
2187 When doing a dynamic link, we create a .rela.got
2188 relocation entry to initialize the value. This is
2189 done in the finish_dynamic_symbol routine. */
2190 if ((off & 1) != 0)
2191 off &= ~1;
2192 else
2193 {
2194 bfd_put_64 (output_bfd, relocation,
2195 base_got->contents + off);
2196 /* Note that this is harmless for the GOTPLT64 case,
2197 as -1 | 1 still is -1. */
2198 h->got.offset |= 1;
2199 }
2200 }
2201 else
2202 unresolved_reloc = FALSE;
2203 }
2204 else
2205 {
2206 if (local_got_offsets == NULL)
2207 abort ();
2208
2209 off = local_got_offsets[r_symndx];
2210
2211 /* The offset must always be a multiple of 8. We use
2212 the least significant bit to record whether we have
2213 already generated the necessary reloc. */
2214 if ((off & 1) != 0)
2215 off &= ~1;
2216 else
2217 {
2218 bfd_put_64 (output_bfd, relocation,
2219 base_got->contents + off);
2220
2221 if (info->shared)
2222 {
2223 asection *s;
2224 Elf_Internal_Rela outrel;
2225 bfd_byte *loc;
2226
2227 /* We need to generate a R_X86_64_RELATIVE reloc
2228 for the dynamic linker. */
2229 s = htab->srelgot;
2230 if (s == NULL)
2231 abort ();
2232
2233 outrel.r_offset = (base_got->output_section->vma
2234 + base_got->output_offset
2235 + off);
2236 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2237 outrel.r_addend = relocation;
2238 loc = s->contents;
2239 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2240 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2241 }
2242
2243 local_got_offsets[r_symndx] |= 1;
2244 }
2245 }
2246
2247 if (off >= (bfd_vma) -2)
2248 abort ();
2249
2250 relocation = base_got->output_section->vma
2251 + base_got->output_offset + off;
2252 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
2253 relocation -= htab->sgotplt->output_section->vma
2254 - htab->sgotplt->output_offset;
2255
2256 break;
2257
2258 case R_X86_64_GOTOFF64:
2259 /* Relocation is relative to the start of the global offset
2260 table. */
2261
2262 /* Check to make sure it isn't a protected function symbol
2263 for shared library since it may not be local when used
2264 as function address. */
2265 if (info->shared
2266 && h
2267 && h->def_regular
2268 && h->type == STT_FUNC
2269 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2270 {
2271 (*_bfd_error_handler)
2272 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2273 input_bfd, h->root.root.string);
2274 bfd_set_error (bfd_error_bad_value);
2275 return FALSE;
2276 }
2277
2278 /* Note that sgot is not involved in this
2279 calculation. We always want the start of .got.plt. If we
2280 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2281 permitted by the ABI, we might have to change this
2282 calculation. */
2283 relocation -= htab->sgotplt->output_section->vma
2284 + htab->sgotplt->output_offset;
2285 break;
2286
2287 case R_X86_64_GOTPC32:
2288 case R_X86_64_GOTPC64:
2289 /* Use global offset table as symbol value. */
2290 relocation = htab->sgotplt->output_section->vma
2291 + htab->sgotplt->output_offset;
2292 unresolved_reloc = FALSE;
2293 break;
2294
2295 case R_X86_64_PLTOFF64:
2296 /* Relocation is PLT entry relative to GOT. For local
2297 symbols it's the symbol itself relative to GOT. */
2298 if (h != NULL
2299 /* See PLT32 handling. */
2300 && h->plt.offset != (bfd_vma) -1
2301 && htab->splt != NULL)
2302 {
2303 relocation = (htab->splt->output_section->vma
2304 + htab->splt->output_offset
2305 + h->plt.offset);
2306 unresolved_reloc = FALSE;
2307 }
2308
2309 relocation -= htab->sgotplt->output_section->vma
2310 + htab->sgotplt->output_offset;
2311 break;
2312
2313 case R_X86_64_PLT32:
2314 /* Relocation is to the entry for this symbol in the
2315 procedure linkage table. */
2316
2317 /* Resolve a PLT32 reloc against a local symbol directly,
2318 without using the procedure linkage table. */
2319 if (h == NULL)
2320 break;
2321
2322 if (h->plt.offset == (bfd_vma) -1
2323 || htab->splt == NULL)
2324 {
2325 /* We didn't make a PLT entry for this symbol. This
2326 happens when statically linking PIC code, or when
2327 using -Bsymbolic. */
2328 break;
2329 }
2330
2331 relocation = (htab->splt->output_section->vma
2332 + htab->splt->output_offset
2333 + h->plt.offset);
2334 unresolved_reloc = FALSE;
2335 break;
2336
2337 case R_X86_64_PC8:
2338 case R_X86_64_PC16:
2339 case R_X86_64_PC32:
2340 if (info->shared
2341 && !SYMBOL_REFERENCES_LOCAL (info, h)
2342 && (input_section->flags & SEC_ALLOC) != 0
2343 && (input_section->flags & SEC_READONLY) != 0
2344 && (!h->def_regular
2345 || r_type != R_X86_64_PC32
2346 || h->type != STT_FUNC
2347 || ELF_ST_VISIBILITY (h->other) != STV_PROTECTED
2348 || !is_32bit_relative_branch (contents,
2349 rel->r_offset)))
2350 {
2351 if (h->def_regular
2352 && r_type == R_X86_64_PC32
2353 && h->type == STT_FUNC
2354 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2355 (*_bfd_error_handler)
2356 (_("%B: relocation R_X86_64_PC32 against protected function `%s' can not be used when making a shared object"),
2357 input_bfd, h->root.root.string);
2358 else
2359 (*_bfd_error_handler)
2360 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
2361 input_bfd, x86_64_elf_howto_table[r_type].name,
2362 h->root.root.string);
2363 bfd_set_error (bfd_error_bad_value);
2364 return FALSE;
2365 }
2366 /* Fall through. */
2367
2368 case R_X86_64_8:
2369 case R_X86_64_16:
2370 case R_X86_64_32:
2371 case R_X86_64_PC64:
2372 case R_X86_64_64:
2373 /* FIXME: The ABI says the linker should make sure the value is
2374 the same when it's zeroextended to 64 bit. */
2375
2376 if ((input_section->flags & SEC_ALLOC) == 0)
2377 break;
2378
2379 if ((info->shared
2380 && (h == NULL
2381 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2382 || h->root.type != bfd_link_hash_undefweak)
2383 && ((r_type != R_X86_64_PC8
2384 && r_type != R_X86_64_PC16
2385 && r_type != R_X86_64_PC32
2386 && r_type != R_X86_64_PC64)
2387 || !SYMBOL_CALLS_LOCAL (info, h)))
2388 || (ELIMINATE_COPY_RELOCS
2389 && !info->shared
2390 && h != NULL
2391 && h->dynindx != -1
2392 && !h->non_got_ref
2393 && ((h->def_dynamic
2394 && !h->def_regular)
2395 || h->root.type == bfd_link_hash_undefweak
2396 || h->root.type == bfd_link_hash_undefined)))
2397 {
2398 Elf_Internal_Rela outrel;
2399 bfd_byte *loc;
2400 bfd_boolean skip, relocate;
2401 asection *sreloc;
2402
2403 /* When generating a shared object, these relocations
2404 are copied into the output file to be resolved at run
2405 time. */
2406 skip = FALSE;
2407 relocate = FALSE;
2408
2409 outrel.r_offset =
2410 _bfd_elf_section_offset (output_bfd, info, input_section,
2411 rel->r_offset);
2412 if (outrel.r_offset == (bfd_vma) -1)
2413 skip = TRUE;
2414 else if (outrel.r_offset == (bfd_vma) -2)
2415 skip = TRUE, relocate = TRUE;
2416
2417 outrel.r_offset += (input_section->output_section->vma
2418 + input_section->output_offset);
2419
2420 if (skip)
2421 memset (&outrel, 0, sizeof outrel);
2422
2423 /* h->dynindx may be -1 if this symbol was marked to
2424 become local. */
2425 else if (h != NULL
2426 && h->dynindx != -1
2427 && (r_type == R_X86_64_PC8
2428 || r_type == R_X86_64_PC16
2429 || r_type == R_X86_64_PC32
2430 || r_type == R_X86_64_PC64
2431 || !info->shared
2432 || !SYMBOLIC_BIND (info, h)
2433 || !h->def_regular))
2434 {
2435 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2436 outrel.r_addend = rel->r_addend;
2437 }
2438 else
2439 {
2440 /* This symbol is local, or marked to become local. */
2441 if (r_type == R_X86_64_64)
2442 {
2443 relocate = TRUE;
2444 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2445 outrel.r_addend = relocation + rel->r_addend;
2446 }
2447 else
2448 {
2449 long sindx;
2450
2451 if (bfd_is_abs_section (sec))
2452 sindx = 0;
2453 else if (sec == NULL || sec->owner == NULL)
2454 {
2455 bfd_set_error (bfd_error_bad_value);
2456 return FALSE;
2457 }
2458 else
2459 {
2460 asection *osec;
2461
2462 /* We are turning this relocation into one
2463 against a section symbol. It would be
2464 proper to subtract the symbol's value,
2465 osec->vma, from the emitted reloc addend,
2466 but ld.so expects buggy relocs. */
2467 osec = sec->output_section;
2468 sindx = elf_section_data (osec)->dynindx;
2469 if (sindx == 0)
2470 {
2471 asection *oi = htab->elf.text_index_section;
2472 sindx = elf_section_data (oi)->dynindx;
2473 }
2474 BFD_ASSERT (sindx != 0);
2475 }
2476
2477 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2478 outrel.r_addend = relocation + rel->r_addend;
2479 }
2480 }
2481
2482 sreloc = elf_section_data (input_section)->sreloc;
2483 if (sreloc == NULL)
2484 abort ();
2485
2486 loc = sreloc->contents;
2487 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2488 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2489
2490 /* If this reloc is against an external symbol, we do
2491 not want to fiddle with the addend. Otherwise, we
2492 need to include the symbol value so that it becomes
2493 an addend for the dynamic reloc. */
2494 if (! relocate)
2495 continue;
2496 }
2497
2498 break;
2499
2500 case R_X86_64_TLSGD:
2501 case R_X86_64_GOTPC32_TLSDESC:
2502 case R_X86_64_TLSDESC_CALL:
2503 case R_X86_64_GOTTPOFF:
2504 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
2505 tls_type = GOT_UNKNOWN;
2506 if (h == NULL && local_got_offsets)
2507 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2508 else if (h != NULL)
2509 {
2510 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2511 if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE)
2512 r_type = R_X86_64_TPOFF32;
2513 }
2514 if (r_type == R_X86_64_TLSGD
2515 || r_type == R_X86_64_GOTPC32_TLSDESC
2516 || r_type == R_X86_64_TLSDESC_CALL)
2517 {
2518 if (tls_type == GOT_TLS_IE)
2519 r_type = R_X86_64_GOTTPOFF;
2520 }
2521
2522 if (r_type == R_X86_64_TPOFF32)
2523 {
2524 BFD_ASSERT (! unresolved_reloc);
2525 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2526 {
2527 unsigned int i;
2528 static unsigned char tlsgd[8]
2529 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2530 unsigned long tls_r_symndx;
2531 struct elf_link_hash_entry *tls_h;
2532
2533 /* GD->LE transition.
2534 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2535 .word 0x6666; rex64; call __tls_get_addr
2536 Change it into:
2537 movq %fs:0, %rax
2538 leaq foo@tpoff(%rax), %rax */
2539 BFD_ASSERT (rel->r_offset >= 4);
2540 for (i = 0; i < 4; i++)
2541 BFD_ASSERT (bfd_get_8 (input_bfd,
2542 contents + rel->r_offset - 4 + i)
2543 == tlsgd[i]);
2544 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2545 for (i = 0; i < 4; i++)
2546 BFD_ASSERT (bfd_get_8 (input_bfd,
2547 contents + rel->r_offset + 4 + i)
2548 == tlsgd[i+4]);
2549 BFD_ASSERT (rel + 1 < relend);
2550 tls_r_symndx = ELF64_R_SYM (rel[1].r_info);
2551 BFD_ASSERT (tls_r_symndx >= symtab_hdr->sh_info);
2552 tls_h = sym_hashes[tls_r_symndx - symtab_hdr->sh_info];
2553 BFD_ASSERT (tls_h != NULL
2554 && tls_h->root.root.string != NULL
2555 && strcmp (tls_h->root.root.string,
2556 "__tls_get_addr") == 0);
2557 BFD_ASSERT ((! info->shared
2558 && ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PC32)
2559 || ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2560 memcpy (contents + rel->r_offset - 4,
2561 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2562 16);
2563 bfd_put_32 (output_bfd, tpoff (info, relocation),
2564 contents + rel->r_offset + 8);
2565 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
2566 rel++;
2567 continue;
2568 }
2569 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
2570 {
2571 /* GDesc -> LE transition.
2572 It's originally something like:
2573 leaq x@tlsdesc(%rip), %rax
2574
2575 Change it to:
2576 movl $x@tpoff, %rax
2577
2578 Registers other than %rax may be set up here. */
2579
2580 unsigned int val, type, type2;
2581 bfd_vma roff;
2582
2583 /* First, make sure it's a leaq adding rip to a
2584 32-bit offset into any register, although it's
2585 probably almost always going to be rax. */
2586 roff = rel->r_offset;
2587 BFD_ASSERT (roff >= 3);
2588 type = bfd_get_8 (input_bfd, contents + roff - 3);
2589 BFD_ASSERT ((type & 0xfb) == 0x48);
2590 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
2591 BFD_ASSERT (type2 == 0x8d);
2592 val = bfd_get_8 (input_bfd, contents + roff - 1);
2593 BFD_ASSERT ((val & 0xc7) == 0x05);
2594 BFD_ASSERT (roff + 4 <= input_section->size);
2595
2596 /* Now modify the instruction as appropriate. */
2597 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
2598 contents + roff - 3);
2599 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
2600 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2601 contents + roff - 1);
2602 bfd_put_32 (output_bfd, tpoff (info, relocation),
2603 contents + roff);
2604 continue;
2605 }
2606 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
2607 {
2608 /* GDesc -> LE transition.
2609 It's originally:
2610 call *(%rax)
2611 Turn it into:
2612 nop; nop. */
2613
2614 unsigned int val, type;
2615 bfd_vma roff;
2616
2617 /* First, make sure it's a call *(%rax). */
2618 roff = rel->r_offset;
2619 BFD_ASSERT (roff + 2 <= input_section->size);
2620 type = bfd_get_8 (input_bfd, contents + roff);
2621 BFD_ASSERT (type == 0xff);
2622 val = bfd_get_8 (input_bfd, contents + roff + 1);
2623 BFD_ASSERT (val == 0x10);
2624
2625 /* Now modify the instruction as appropriate. Use
2626 xchg %ax,%ax instead of 2 nops. */
2627 bfd_put_8 (output_bfd, 0x66, contents + roff);
2628 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
2629 continue;
2630 }
2631 else
2632 {
2633 unsigned int val, type, reg;
2634
2635 /* IE->LE transition:
2636 Originally it can be one of:
2637 movq foo@gottpoff(%rip), %reg
2638 addq foo@gottpoff(%rip), %reg
2639 We change it into:
2640 movq $foo, %reg
2641 leaq foo(%reg), %reg
2642 addq $foo, %reg. */
2643 BFD_ASSERT (rel->r_offset >= 3);
2644 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 3);
2645 BFD_ASSERT (val == 0x48 || val == 0x4c);
2646 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2647 BFD_ASSERT (type == 0x8b || type == 0x03);
2648 reg = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2649 BFD_ASSERT ((reg & 0xc7) == 5);
2650 reg >>= 3;
2651 BFD_ASSERT (rel->r_offset + 4 <= input_section->size);
2652 if (type == 0x8b)
2653 {
2654 /* movq */
2655 if (val == 0x4c)
2656 bfd_put_8 (output_bfd, 0x49,
2657 contents + rel->r_offset - 3);
2658 bfd_put_8 (output_bfd, 0xc7,
2659 contents + rel->r_offset - 2);
2660 bfd_put_8 (output_bfd, 0xc0 | reg,
2661 contents + rel->r_offset - 1);
2662 }
2663 else if (reg == 4)
2664 {
2665 /* addq -> addq - addressing with %rsp/%r12 is
2666 special */
2667 if (val == 0x4c)
2668 bfd_put_8 (output_bfd, 0x49,
2669 contents + rel->r_offset - 3);
2670 bfd_put_8 (output_bfd, 0x81,
2671 contents + rel->r_offset - 2);
2672 bfd_put_8 (output_bfd, 0xc0 | reg,
2673 contents + rel->r_offset - 1);
2674 }
2675 else
2676 {
2677 /* addq -> leaq */
2678 if (val == 0x4c)
2679 bfd_put_8 (output_bfd, 0x4d,
2680 contents + rel->r_offset - 3);
2681 bfd_put_8 (output_bfd, 0x8d,
2682 contents + rel->r_offset - 2);
2683 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2684 contents + rel->r_offset - 1);
2685 }
2686 bfd_put_32 (output_bfd, tpoff (info, relocation),
2687 contents + rel->r_offset);
2688 continue;
2689 }
2690 }
2691
2692 if (htab->sgot == NULL)
2693 abort ();
2694
2695 if (h != NULL)
2696 {
2697 off = h->got.offset;
2698 offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got;
2699 }
2700 else
2701 {
2702 if (local_got_offsets == NULL)
2703 abort ();
2704
2705 off = local_got_offsets[r_symndx];
2706 offplt = local_tlsdesc_gotents[r_symndx];
2707 }
2708
2709 if ((off & 1) != 0)
2710 off &= ~1;
2711 else
2712 {
2713 Elf_Internal_Rela outrel;
2714 bfd_byte *loc;
2715 int dr_type, indx;
2716 asection *sreloc;
2717
2718 if (htab->srelgot == NULL)
2719 abort ();
2720
2721 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2722
2723 if (GOT_TLS_GDESC_P (tls_type))
2724 {
2725 outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC);
2726 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
2727 + 2 * GOT_ENTRY_SIZE <= htab->sgotplt->size);
2728 outrel.r_offset = (htab->sgotplt->output_section->vma
2729 + htab->sgotplt->output_offset
2730 + offplt
2731 + htab->sgotplt_jump_table_size);
2732 sreloc = htab->srelplt;
2733 loc = sreloc->contents;
2734 loc += sreloc->reloc_count++
2735 * sizeof (Elf64_External_Rela);
2736 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2737 <= sreloc->contents + sreloc->size);
2738 if (indx == 0)
2739 outrel.r_addend = relocation - dtpoff_base (info);
2740 else
2741 outrel.r_addend = 0;
2742 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2743 }
2744
2745 sreloc = htab->srelgot;
2746
2747 outrel.r_offset = (htab->sgot->output_section->vma
2748 + htab->sgot->output_offset + off);
2749
2750 if (GOT_TLS_GD_P (tls_type))
2751 dr_type = R_X86_64_DTPMOD64;
2752 else if (GOT_TLS_GDESC_P (tls_type))
2753 goto dr_done;
2754 else
2755 dr_type = R_X86_64_TPOFF64;
2756
2757 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2758 outrel.r_addend = 0;
2759 if ((dr_type == R_X86_64_TPOFF64
2760 || dr_type == R_X86_64_TLSDESC) && indx == 0)
2761 outrel.r_addend = relocation - dtpoff_base (info);
2762 outrel.r_info = ELF64_R_INFO (indx, dr_type);
2763
2764 loc = sreloc->contents;
2765 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2766 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2767 <= sreloc->contents + sreloc->size);
2768 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2769
2770 if (GOT_TLS_GD_P (tls_type))
2771 {
2772 if (indx == 0)
2773 {
2774 BFD_ASSERT (! unresolved_reloc);
2775 bfd_put_64 (output_bfd,
2776 relocation - dtpoff_base (info),
2777 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2778 }
2779 else
2780 {
2781 bfd_put_64 (output_bfd, 0,
2782 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2783 outrel.r_info = ELF64_R_INFO (indx,
2784 R_X86_64_DTPOFF64);
2785 outrel.r_offset += GOT_ENTRY_SIZE;
2786 sreloc->reloc_count++;
2787 loc += sizeof (Elf64_External_Rela);
2788 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2789 <= sreloc->contents + sreloc->size);
2790 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2791 }
2792 }
2793
2794 dr_done:
2795 if (h != NULL)
2796 h->got.offset |= 1;
2797 else
2798 local_got_offsets[r_symndx] |= 1;
2799 }
2800
2801 if (off >= (bfd_vma) -2
2802 && ! GOT_TLS_GDESC_P (tls_type))
2803 abort ();
2804 if (r_type == ELF64_R_TYPE (rel->r_info))
2805 {
2806 if (r_type == R_X86_64_GOTPC32_TLSDESC
2807 || r_type == R_X86_64_TLSDESC_CALL)
2808 relocation = htab->sgotplt->output_section->vma
2809 + htab->sgotplt->output_offset
2810 + offplt + htab->sgotplt_jump_table_size;
2811 else
2812 relocation = htab->sgot->output_section->vma
2813 + htab->sgot->output_offset + off;
2814 unresolved_reloc = FALSE;
2815 }
2816 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2817 {
2818 unsigned int i;
2819 static unsigned char tlsgd[8]
2820 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2821
2822 /* GD->IE transition.
2823 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2824 .word 0x6666; rex64; call __tls_get_addr@plt
2825 Change it into:
2826 movq %fs:0, %rax
2827 addq foo@gottpoff(%rip), %rax */
2828 BFD_ASSERT (rel->r_offset >= 4);
2829 for (i = 0; i < 4; i++)
2830 BFD_ASSERT (bfd_get_8 (input_bfd,
2831 contents + rel->r_offset - 4 + i)
2832 == tlsgd[i]);
2833 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2834 for (i = 0; i < 4; i++)
2835 BFD_ASSERT (bfd_get_8 (input_bfd,
2836 contents + rel->r_offset + 4 + i)
2837 == tlsgd[i+4]);
2838 BFD_ASSERT (rel + 1 < relend);
2839 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2840 memcpy (contents + rel->r_offset - 4,
2841 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
2842 16);
2843
2844 relocation = (htab->sgot->output_section->vma
2845 + htab->sgot->output_offset + off
2846 - rel->r_offset
2847 - input_section->output_section->vma
2848 - input_section->output_offset
2849 - 12);
2850 bfd_put_32 (output_bfd, relocation,
2851 contents + rel->r_offset + 8);
2852 /* Skip R_X86_64_PLT32. */
2853 rel++;
2854 continue;
2855 }
2856 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
2857 {
2858 /* GDesc -> IE transition.
2859 It's originally something like:
2860 leaq x@tlsdesc(%rip), %rax
2861
2862 Change it to:
2863 movq x@gottpoff(%rip), %rax # before nop; nop
2864
2865 Registers other than %rax may be set up here. */
2866
2867 unsigned int val, type, type2;
2868 bfd_vma roff;
2869
2870 /* First, make sure it's a leaq adding rip to a 32-bit
2871 offset into any register, although it's probably
2872 almost always going to be rax. */
2873 roff = rel->r_offset;
2874 BFD_ASSERT (roff >= 3);
2875 type = bfd_get_8 (input_bfd, contents + roff - 3);
2876 BFD_ASSERT ((type & 0xfb) == 0x48);
2877 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
2878 BFD_ASSERT (type2 == 0x8d);
2879 val = bfd_get_8 (input_bfd, contents + roff - 1);
2880 BFD_ASSERT ((val & 0xc7) == 0x05);
2881 BFD_ASSERT (roff + 4 <= input_section->size);
2882
2883 /* Now modify the instruction as appropriate. */
2884 /* To turn a leaq into a movq in the form we use it, it
2885 suffices to change the second byte from 0x8d to
2886 0x8b. */
2887 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
2888
2889 bfd_put_32 (output_bfd,
2890 htab->sgot->output_section->vma
2891 + htab->sgot->output_offset + off
2892 - rel->r_offset
2893 - input_section->output_section->vma
2894 - input_section->output_offset
2895 - 4,
2896 contents + roff);
2897 continue;
2898 }
2899 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
2900 {
2901 /* GDesc -> IE transition.
2902 It's originally:
2903 call *(%rax)
2904
2905 Change it to:
2906 nop; nop. */
2907
2908 unsigned int val, type;
2909 bfd_vma roff;
2910
2911 /* First, make sure it's a call *(%eax). */
2912 roff = rel->r_offset;
2913 BFD_ASSERT (roff + 2 <= input_section->size);
2914 type = bfd_get_8 (input_bfd, contents + roff);
2915 BFD_ASSERT (type == 0xff);
2916 val = bfd_get_8 (input_bfd, contents + roff + 1);
2917 BFD_ASSERT (val == 0x10);
2918
2919 /* Now modify the instruction as appropriate. Use
2920 xchg %ax,%ax instead of 2 nops. */
2921 bfd_put_8 (output_bfd, 0x66, contents + roff);
2922 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
2923
2924 continue;
2925 }
2926 else
2927 BFD_ASSERT (FALSE);
2928 break;
2929
2930 case R_X86_64_TLSLD:
2931 if (! info->shared)
2932 {
2933 unsigned long tls_r_symndx;
2934 struct elf_link_hash_entry *tls_h;
2935
2936 /* LD->LE transition:
2937 Ensure it is:
2938 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
2939 We change it into:
2940 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
2941 BFD_ASSERT (rel->r_offset >= 3);
2942 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3)
2943 == 0x48);
2944 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2945 == 0x8d);
2946 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 1)
2947 == 0x3d);
2948 BFD_ASSERT (rel->r_offset + 9 <= input_section->size);
2949 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2950 == 0xe8);
2951 BFD_ASSERT (rel + 1 < relend);
2952 tls_r_symndx = ELF64_R_SYM (rel[1].r_info);
2953 BFD_ASSERT (tls_r_symndx >= symtab_hdr->sh_info);
2954 tls_h = sym_hashes[tls_r_symndx - symtab_hdr->sh_info];
2955 BFD_ASSERT (tls_h != NULL
2956 && tls_h->root.root.string != NULL
2957 && strcmp (tls_h->root.root.string,
2958 "__tls_get_addr") == 0);
2959 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PC32
2960 || ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2961 memcpy (contents + rel->r_offset - 3,
2962 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
2963 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
2964 rel++;
2965 continue;
2966 }
2967
2968 if (htab->sgot == NULL)
2969 abort ();
2970
2971 off = htab->tls_ld_got.offset;
2972 if (off & 1)
2973 off &= ~1;
2974 else
2975 {
2976 Elf_Internal_Rela outrel;
2977 bfd_byte *loc;
2978
2979 if (htab->srelgot == NULL)
2980 abort ();
2981
2982 outrel.r_offset = (htab->sgot->output_section->vma
2983 + htab->sgot->output_offset + off);
2984
2985 bfd_put_64 (output_bfd, 0,
2986 htab->sgot->contents + off);
2987 bfd_put_64 (output_bfd, 0,
2988 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2989 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
2990 outrel.r_addend = 0;
2991 loc = htab->srelgot->contents;
2992 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2993 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2994 htab->tls_ld_got.offset |= 1;
2995 }
2996 relocation = htab->sgot->output_section->vma
2997 + htab->sgot->output_offset + off;
2998 unresolved_reloc = FALSE;
2999 break;
3000
3001 case R_X86_64_DTPOFF32:
3002 if (info->shared || (input_section->flags & SEC_CODE) == 0)
3003 relocation -= dtpoff_base (info);
3004 else
3005 relocation = tpoff (info, relocation);
3006 break;
3007
3008 case R_X86_64_TPOFF32:
3009 BFD_ASSERT (! info->shared);
3010 relocation = tpoff (info, relocation);
3011 break;
3012
3013 default:
3014 break;
3015 }
3016
3017 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3018 because such sections are not SEC_ALLOC and thus ld.so will
3019 not process them. */
3020 if (unresolved_reloc
3021 && !((input_section->flags & SEC_DEBUGGING) != 0
3022 && h->def_dynamic))
3023 (*_bfd_error_handler)
3024 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3025 input_bfd,
3026 input_section,
3027 (long) rel->r_offset,
3028 howto->name,
3029 h->root.root.string);
3030
3031 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3032 contents, rel->r_offset,
3033 relocation, rel->r_addend);
3034
3035 if (r != bfd_reloc_ok)
3036 {
3037 const char *name;
3038
3039 if (h != NULL)
3040 name = h->root.root.string;
3041 else
3042 {
3043 name = bfd_elf_string_from_elf_section (input_bfd,
3044 symtab_hdr->sh_link,
3045 sym->st_name);
3046 if (name == NULL)
3047 return FALSE;
3048 if (*name == '\0')
3049 name = bfd_section_name (input_bfd, sec);
3050 }
3051
3052 if (r == bfd_reloc_overflow)
3053 {
3054 if (! ((*info->callbacks->reloc_overflow)
3055 (info, (h ? &h->root : NULL), name, howto->name,
3056 (bfd_vma) 0, input_bfd, input_section,
3057 rel->r_offset)))
3058 return FALSE;
3059 }
3060 else
3061 {
3062 (*_bfd_error_handler)
3063 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3064 input_bfd, input_section,
3065 (long) rel->r_offset, name, (int) r);
3066 return FALSE;
3067 }
3068 }
3069 }
3070
3071 return TRUE;
3072 }
3073
3074 /* Finish up dynamic symbol handling. We set the contents of various
3075 dynamic sections here. */
3076
3077 static bfd_boolean
3078 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3079 struct bfd_link_info *info,
3080 struct elf_link_hash_entry *h,
3081 Elf_Internal_Sym *sym)
3082 {
3083 struct elf64_x86_64_link_hash_table *htab;
3084
3085 htab = elf64_x86_64_hash_table (info);
3086
3087 if (h->plt.offset != (bfd_vma) -1)
3088 {
3089 bfd_vma plt_index;
3090 bfd_vma got_offset;
3091 Elf_Internal_Rela rela;
3092 bfd_byte *loc;
3093
3094 /* This symbol has an entry in the procedure linkage table. Set
3095 it up. */
3096 if (h->dynindx == -1
3097 || htab->splt == NULL
3098 || htab->sgotplt == NULL
3099 || htab->srelplt == NULL)
3100 abort ();
3101
3102 /* Get the index in the procedure linkage table which
3103 corresponds to this symbol. This is the index of this symbol
3104 in all the symbols for which we are making plt entries. The
3105 first entry in the procedure linkage table is reserved. */
3106 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3107
3108 /* Get the offset into the .got table of the entry that
3109 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3110 bytes. The first three are reserved for the dynamic linker. */
3111 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3112
3113 /* Fill in the entry in the procedure linkage table. */
3114 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
3115 PLT_ENTRY_SIZE);
3116
3117 /* Insert the relocation positions of the plt section. The magic
3118 numbers at the end of the statements are the positions of the
3119 relocations in the plt section. */
3120 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3121 instruction uses 6 bytes, subtract this value. */
3122 bfd_put_32 (output_bfd,
3123 (htab->sgotplt->output_section->vma
3124 + htab->sgotplt->output_offset
3125 + got_offset
3126 - htab->splt->output_section->vma
3127 - htab->splt->output_offset
3128 - h->plt.offset
3129 - 6),
3130 htab->splt->contents + h->plt.offset + 2);
3131 /* Put relocation index. */
3132 bfd_put_32 (output_bfd, plt_index,
3133 htab->splt->contents + h->plt.offset + 7);
3134 /* Put offset for jmp .PLT0. */
3135 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3136 htab->splt->contents + h->plt.offset + 12);
3137
3138 /* Fill in the entry in the global offset table, initially this
3139 points to the pushq instruction in the PLT which is at offset 6. */
3140 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
3141 + htab->splt->output_offset
3142 + h->plt.offset + 6),
3143 htab->sgotplt->contents + got_offset);
3144
3145 /* Fill in the entry in the .rela.plt section. */
3146 rela.r_offset = (htab->sgotplt->output_section->vma
3147 + htab->sgotplt->output_offset
3148 + got_offset);
3149 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
3150 rela.r_addend = 0;
3151 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
3152 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3153
3154 if (!h->def_regular)
3155 {
3156 /* Mark the symbol as undefined, rather than as defined in
3157 the .plt section. Leave the value if there were any
3158 relocations where pointer equality matters (this is a clue
3159 for the dynamic linker, to make function pointer
3160 comparisons work between an application and shared
3161 library), otherwise set it to zero. If a function is only
3162 called from a binary, there is no need to slow down
3163 shared libraries because of that. */
3164 sym->st_shndx = SHN_UNDEF;
3165 if (!h->pointer_equality_needed)
3166 sym->st_value = 0;
3167 }
3168 }
3169
3170 if (h->got.offset != (bfd_vma) -1
3171 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type)
3172 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
3173 {
3174 Elf_Internal_Rela rela;
3175 bfd_byte *loc;
3176
3177 /* This symbol has an entry in the global offset table. Set it
3178 up. */
3179 if (htab->sgot == NULL || htab->srelgot == NULL)
3180 abort ();
3181
3182 rela.r_offset = (htab->sgot->output_section->vma
3183 + htab->sgot->output_offset
3184 + (h->got.offset &~ (bfd_vma) 1));
3185
3186 /* If this is a static link, or it is a -Bsymbolic link and the
3187 symbol is defined locally or was forced to be local because
3188 of a version file, we just want to emit a RELATIVE reloc.
3189 The entry in the global offset table will already have been
3190 initialized in the relocate_section function. */
3191 if (info->shared
3192 && SYMBOL_REFERENCES_LOCAL (info, h))
3193 {
3194 BFD_ASSERT((h->got.offset & 1) != 0);
3195 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3196 rela.r_addend = (h->root.u.def.value
3197 + h->root.u.def.section->output_section->vma
3198 + h->root.u.def.section->output_offset);
3199 }
3200 else
3201 {
3202 BFD_ASSERT((h->got.offset & 1) == 0);
3203 bfd_put_64 (output_bfd, (bfd_vma) 0,
3204 htab->sgot->contents + h->got.offset);
3205 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
3206 rela.r_addend = 0;
3207 }
3208
3209 loc = htab->srelgot->contents;
3210 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3211 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3212 }
3213
3214 if (h->needs_copy)
3215 {
3216 Elf_Internal_Rela rela;
3217 bfd_byte *loc;
3218
3219 /* This symbol needs a copy reloc. Set it up. */
3220
3221 if (h->dynindx == -1
3222 || (h->root.type != bfd_link_hash_defined
3223 && h->root.type != bfd_link_hash_defweak)
3224 || htab->srelbss == NULL)
3225 abort ();
3226
3227 rela.r_offset = (h->root.u.def.value
3228 + h->root.u.def.section->output_section->vma
3229 + h->root.u.def.section->output_offset);
3230 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
3231 rela.r_addend = 0;
3232 loc = htab->srelbss->contents;
3233 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
3234 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3235 }
3236
3237 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3238 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3239 || h == htab->elf.hgot)
3240 sym->st_shndx = SHN_ABS;
3241
3242 return TRUE;
3243 }
3244
3245 /* Used to decide how to sort relocs in an optimal manner for the
3246 dynamic linker, before writing them out. */
3247
3248 static enum elf_reloc_type_class
3249 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
3250 {
3251 switch ((int) ELF64_R_TYPE (rela->r_info))
3252 {
3253 case R_X86_64_RELATIVE:
3254 return reloc_class_relative;
3255 case R_X86_64_JUMP_SLOT:
3256 return reloc_class_plt;
3257 case R_X86_64_COPY:
3258 return reloc_class_copy;
3259 default:
3260 return reloc_class_normal;
3261 }
3262 }
3263
3264 /* Finish up the dynamic sections. */
3265
3266 static bfd_boolean
3267 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
3268 {
3269 struct elf64_x86_64_link_hash_table *htab;
3270 bfd *dynobj;
3271 asection *sdyn;
3272
3273 htab = elf64_x86_64_hash_table (info);
3274 dynobj = htab->elf.dynobj;
3275 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3276
3277 if (htab->elf.dynamic_sections_created)
3278 {
3279 Elf64_External_Dyn *dyncon, *dynconend;
3280
3281 if (sdyn == NULL || htab->sgot == NULL)
3282 abort ();
3283
3284 dyncon = (Elf64_External_Dyn *) sdyn->contents;
3285 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
3286 for (; dyncon < dynconend; dyncon++)
3287 {
3288 Elf_Internal_Dyn dyn;
3289 asection *s;
3290
3291 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
3292
3293 switch (dyn.d_tag)
3294 {
3295 default:
3296 continue;
3297
3298 case DT_PLTGOT:
3299 s = htab->sgotplt;
3300 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
3301 break;
3302
3303 case DT_JMPREL:
3304 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3305 break;
3306
3307 case DT_PLTRELSZ:
3308 s = htab->srelplt->output_section;
3309 dyn.d_un.d_val = s->size;
3310 break;
3311
3312 case DT_RELASZ:
3313 /* The procedure linkage table relocs (DT_JMPREL) should
3314 not be included in the overall relocs (DT_RELA).
3315 Therefore, we override the DT_RELASZ entry here to
3316 make it not include the JMPREL relocs. Since the
3317 linker script arranges for .rela.plt to follow all
3318 other relocation sections, we don't have to worry
3319 about changing the DT_RELA entry. */
3320 if (htab->srelplt != NULL)
3321 {
3322 s = htab->srelplt->output_section;
3323 dyn.d_un.d_val -= s->size;
3324 }
3325 break;
3326
3327 case DT_TLSDESC_PLT:
3328 s = htab->splt;
3329 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3330 + htab->tlsdesc_plt;
3331 break;
3332
3333 case DT_TLSDESC_GOT:
3334 s = htab->sgot;
3335 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3336 + htab->tlsdesc_got;
3337 break;
3338 }
3339
3340 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
3341 }
3342
3343 /* Fill in the special first entry in the procedure linkage table. */
3344 if (htab->splt && htab->splt->size > 0)
3345 {
3346 /* Fill in the first entry in the procedure linkage table. */
3347 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
3348 PLT_ENTRY_SIZE);
3349 /* Add offset for pushq GOT+8(%rip), since the instruction
3350 uses 6 bytes subtract this value. */
3351 bfd_put_32 (output_bfd,
3352 (htab->sgotplt->output_section->vma
3353 + htab->sgotplt->output_offset
3354 + 8
3355 - htab->splt->output_section->vma
3356 - htab->splt->output_offset
3357 - 6),
3358 htab->splt->contents + 2);
3359 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
3360 the end of the instruction. */
3361 bfd_put_32 (output_bfd,
3362 (htab->sgotplt->output_section->vma
3363 + htab->sgotplt->output_offset
3364 + 16
3365 - htab->splt->output_section->vma
3366 - htab->splt->output_offset
3367 - 12),
3368 htab->splt->contents + 8);
3369
3370 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
3371 PLT_ENTRY_SIZE;
3372
3373 if (htab->tlsdesc_plt)
3374 {
3375 bfd_put_64 (output_bfd, (bfd_vma) 0,
3376 htab->sgot->contents + htab->tlsdesc_got);
3377
3378 memcpy (htab->splt->contents + htab->tlsdesc_plt,
3379 elf64_x86_64_plt0_entry,
3380 PLT_ENTRY_SIZE);
3381
3382 /* Add offset for pushq GOT+8(%rip), since the
3383 instruction uses 6 bytes subtract this value. */
3384 bfd_put_32 (output_bfd,
3385 (htab->sgotplt->output_section->vma
3386 + htab->sgotplt->output_offset
3387 + 8
3388 - htab->splt->output_section->vma
3389 - htab->splt->output_offset
3390 - htab->tlsdesc_plt
3391 - 6),
3392 htab->splt->contents + htab->tlsdesc_plt + 2);
3393 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
3394 htab->tlsdesc_got. The 12 is the offset to the end of
3395 the instruction. */
3396 bfd_put_32 (output_bfd,
3397 (htab->sgot->output_section->vma
3398 + htab->sgot->output_offset
3399 + htab->tlsdesc_got
3400 - htab->splt->output_section->vma
3401 - htab->splt->output_offset
3402 - htab->tlsdesc_plt
3403 - 12),
3404 htab->splt->contents + htab->tlsdesc_plt + 8);
3405 }
3406 }
3407 }
3408
3409 if (htab->sgotplt)
3410 {
3411 /* Fill in the first three entries in the global offset table. */
3412 if (htab->sgotplt->size > 0)
3413 {
3414 /* Set the first entry in the global offset table to the address of
3415 the dynamic section. */
3416 if (sdyn == NULL)
3417 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
3418 else
3419 bfd_put_64 (output_bfd,
3420 sdyn->output_section->vma + sdyn->output_offset,
3421 htab->sgotplt->contents);
3422 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
3423 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
3424 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
3425 }
3426
3427 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
3428 GOT_ENTRY_SIZE;
3429 }
3430
3431 if (htab->sgot && htab->sgot->size > 0)
3432 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize
3433 = GOT_ENTRY_SIZE;
3434
3435 return TRUE;
3436 }
3437
3438 /* Return address for Ith PLT stub in section PLT, for relocation REL
3439 or (bfd_vma) -1 if it should not be included. */
3440
3441 static bfd_vma
3442 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
3443 const arelent *rel ATTRIBUTE_UNUSED)
3444 {
3445 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
3446 }
3447
3448 /* Handle an x86-64 specific section when reading an object file. This
3449 is called when elfcode.h finds a section with an unknown type. */
3450
3451 static bfd_boolean
3452 elf64_x86_64_section_from_shdr (bfd *abfd,
3453 Elf_Internal_Shdr *hdr,
3454 const char *name,
3455 int shindex)
3456 {
3457 if (hdr->sh_type != SHT_X86_64_UNWIND)
3458 return FALSE;
3459
3460 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
3461 return FALSE;
3462
3463 return TRUE;
3464 }
3465
3466 /* Hook called by the linker routine which adds symbols from an object
3467 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
3468 of .bss. */
3469
3470 static bfd_boolean
3471 elf64_x86_64_add_symbol_hook (bfd *abfd,
3472 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3473 Elf_Internal_Sym *sym,
3474 const char **namep ATTRIBUTE_UNUSED,
3475 flagword *flagsp ATTRIBUTE_UNUSED,
3476 asection **secp, bfd_vma *valp)
3477 {
3478 asection *lcomm;
3479
3480 switch (sym->st_shndx)
3481 {
3482 case SHN_X86_64_LCOMMON:
3483 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
3484 if (lcomm == NULL)
3485 {
3486 lcomm = bfd_make_section_with_flags (abfd,
3487 "LARGE_COMMON",
3488 (SEC_ALLOC
3489 | SEC_IS_COMMON
3490 | SEC_LINKER_CREATED));
3491 if (lcomm == NULL)
3492 return FALSE;
3493 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
3494 }
3495 *secp = lcomm;
3496 *valp = sym->st_size;
3497 break;
3498 }
3499 return TRUE;
3500 }
3501
3502
3503 /* Given a BFD section, try to locate the corresponding ELF section
3504 index. */
3505
3506 static bfd_boolean
3507 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
3508 asection *sec, int *index)
3509 {
3510 if (sec == &_bfd_elf_large_com_section)
3511 {
3512 *index = SHN_X86_64_LCOMMON;
3513 return TRUE;
3514 }
3515 return FALSE;
3516 }
3517
3518 /* Process a symbol. */
3519
3520 static void
3521 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
3522 asymbol *asym)
3523 {
3524 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
3525
3526 switch (elfsym->internal_elf_sym.st_shndx)
3527 {
3528 case SHN_X86_64_LCOMMON:
3529 asym->section = &_bfd_elf_large_com_section;
3530 asym->value = elfsym->internal_elf_sym.st_size;
3531 /* Common symbol doesn't set BSF_GLOBAL. */
3532 asym->flags &= ~BSF_GLOBAL;
3533 break;
3534 }
3535 }
3536
3537 static bfd_boolean
3538 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
3539 {
3540 return (sym->st_shndx == SHN_COMMON
3541 || sym->st_shndx == SHN_X86_64_LCOMMON);
3542 }
3543
3544 static unsigned int
3545 elf64_x86_64_common_section_index (asection *sec)
3546 {
3547 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3548 return SHN_COMMON;
3549 else
3550 return SHN_X86_64_LCOMMON;
3551 }
3552
3553 static asection *
3554 elf64_x86_64_common_section (asection *sec)
3555 {
3556 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3557 return bfd_com_section_ptr;
3558 else
3559 return &_bfd_elf_large_com_section;
3560 }
3561
3562 static bfd_boolean
3563 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3564 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
3565 struct elf_link_hash_entry *h,
3566 Elf_Internal_Sym *sym,
3567 asection **psec,
3568 bfd_vma *pvalue ATTRIBUTE_UNUSED,
3569 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
3570 bfd_boolean *skip ATTRIBUTE_UNUSED,
3571 bfd_boolean *override ATTRIBUTE_UNUSED,
3572 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
3573 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
3574 bfd_boolean *newdef ATTRIBUTE_UNUSED,
3575 bfd_boolean *newdyn,
3576 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
3577 bfd_boolean *newweak ATTRIBUTE_UNUSED,
3578 bfd *abfd ATTRIBUTE_UNUSED,
3579 asection **sec,
3580 bfd_boolean *olddef ATTRIBUTE_UNUSED,
3581 bfd_boolean *olddyn,
3582 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
3583 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
3584 bfd *oldbfd,
3585 asection **oldsec)
3586 {
3587 /* A normal common symbol and a large common symbol result in a
3588 normal common symbol. We turn the large common symbol into a
3589 normal one. */
3590 if (!*olddyn
3591 && h->root.type == bfd_link_hash_common
3592 && !*newdyn
3593 && bfd_is_com_section (*sec)
3594 && *oldsec != *sec)
3595 {
3596 if (sym->st_shndx == SHN_COMMON
3597 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
3598 {
3599 h->root.u.c.p->section
3600 = bfd_make_section_old_way (oldbfd, "COMMON");
3601 h->root.u.c.p->section->flags = SEC_ALLOC;
3602 }
3603 else if (sym->st_shndx == SHN_X86_64_LCOMMON
3604 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
3605 *psec = *sec = bfd_com_section_ptr;
3606 }
3607
3608 return TRUE;
3609 }
3610
3611 static int
3612 elf64_x86_64_additional_program_headers (bfd *abfd,
3613 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3614 {
3615 asection *s;
3616 int count = 0;
3617
3618 /* Check to see if we need a large readonly segment. */
3619 s = bfd_get_section_by_name (abfd, ".lrodata");
3620 if (s && (s->flags & SEC_LOAD))
3621 count++;
3622
3623 /* Check to see if we need a large data segment. Since .lbss sections
3624 is placed right after the .bss section, there should be no need for
3625 a large data segment just because of .lbss. */
3626 s = bfd_get_section_by_name (abfd, ".ldata");
3627 if (s && (s->flags & SEC_LOAD))
3628 count++;
3629
3630 return count;
3631 }
3632
3633 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
3634
3635 static bfd_boolean
3636 elf64_x86_64_hash_symbol (struct elf_link_hash_entry *h)
3637 {
3638 if (h->plt.offset != (bfd_vma) -1
3639 && !h->def_regular
3640 && !h->pointer_equality_needed)
3641 return FALSE;
3642
3643 return _bfd_elf_hash_symbol (h);
3644 }
3645
3646 static const struct bfd_elf_special_section
3647 elf64_x86_64_special_sections[]=
3648 {
3649 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3650 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3651 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
3652 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3653 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3654 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3655 { NULL, 0, 0, 0, 0 }
3656 };
3657
3658 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
3659 #define TARGET_LITTLE_NAME "elf64-x86-64"
3660 #define ELF_ARCH bfd_arch_i386
3661 #define ELF_MACHINE_CODE EM_X86_64
3662 #define ELF_MAXPAGESIZE 0x200000
3663 #define ELF_MINPAGESIZE 0x1000
3664 #define ELF_COMMONPAGESIZE 0x1000
3665
3666 #define elf_backend_can_gc_sections 1
3667 #define elf_backend_can_refcount 1
3668 #define elf_backend_want_got_plt 1
3669 #define elf_backend_plt_readonly 1
3670 #define elf_backend_want_plt_sym 0
3671 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
3672 #define elf_backend_rela_normal 1
3673
3674 #define elf_info_to_howto elf64_x86_64_info_to_howto
3675
3676 #define bfd_elf64_bfd_link_hash_table_create \
3677 elf64_x86_64_link_hash_table_create
3678 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
3679 #define bfd_elf64_bfd_reloc_name_lookup \
3680 elf64_x86_64_reloc_name_lookup
3681
3682 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
3683 #define elf_backend_check_relocs elf64_x86_64_check_relocs
3684 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
3685 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
3686 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
3687 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
3688 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
3689 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
3690 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
3691 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
3692 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
3693 #define elf_backend_relocate_section elf64_x86_64_relocate_section
3694 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
3695 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
3696 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
3697 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
3698 #define elf_backend_object_p elf64_x86_64_elf_object_p
3699 #define bfd_elf64_mkobject elf64_x86_64_mkobject
3700
3701 #define elf_backend_section_from_shdr \
3702 elf64_x86_64_section_from_shdr
3703
3704 #define elf_backend_section_from_bfd_section \
3705 elf64_x86_64_elf_section_from_bfd_section
3706 #define elf_backend_add_symbol_hook \
3707 elf64_x86_64_add_symbol_hook
3708 #define elf_backend_symbol_processing \
3709 elf64_x86_64_symbol_processing
3710 #define elf_backend_common_section_index \
3711 elf64_x86_64_common_section_index
3712 #define elf_backend_common_section \
3713 elf64_x86_64_common_section
3714 #define elf_backend_common_definition \
3715 elf64_x86_64_common_definition
3716 #define elf_backend_merge_symbol \
3717 elf64_x86_64_merge_symbol
3718 #define elf_backend_special_sections \
3719 elf64_x86_64_special_sections
3720 #define elf_backend_additional_program_headers \
3721 elf64_x86_64_additional_program_headers
3722 #define elf_backend_hash_symbol \
3723 elf64_x86_64_hash_symbol
3724
3725 #include "elf64-target.h"
3726
3727 /* FreeBSD support. */
3728
3729 #undef TARGET_LITTLE_SYM
3730 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
3731 #undef TARGET_LITTLE_NAME
3732 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
3733
3734 #undef ELF_OSABI
3735 #define ELF_OSABI ELFOSABI_FREEBSD
3736
3737 #undef elf_backend_post_process_headers
3738 #define elf_backend_post_process_headers _bfd_elf_set_osabi
3739
3740 #undef elf64_bed
3741 #define elf64_bed elf64_x86_64_fbsd_bed
3742
3743 #include "elf64-target.h"
This page took 0.10738 seconds and 5 git commands to generate.