Skip local IFUNC symbols when checking dynamic relocs in read-only sections.
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Jan Hubicka <jh@suse.cz>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "bfd_stdint.h"
30 #include "objalloc.h"
31 #include "hashtab.h"
32
33 #include "elf/x86-64.h"
34
35 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
36 #define MINUS_ONE (~ (bfd_vma) 0)
37
38 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the
39 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
40 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
41 since they are the same. */
42
43 #define ABI_64_P(abfd) \
44 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
45
46 /* The relocation "howto" table. Order of fields:
47 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
48 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
49 static reloc_howto_type x86_64_elf_howto_table[] =
50 {
51 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
52 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
53 FALSE),
54 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
55 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
56 FALSE),
57 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
58 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
59 TRUE),
60 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
61 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
62 FALSE),
63 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
64 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
65 TRUE),
66 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
67 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
68 FALSE),
69 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
70 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
71 MINUS_ONE, FALSE),
72 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
73 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
74 MINUS_ONE, FALSE),
75 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
77 MINUS_ONE, FALSE),
78 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
79 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
80 0xffffffff, TRUE),
81 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
82 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
83 FALSE),
84 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
85 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
86 FALSE),
87 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
89 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
90 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
91 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
92 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
93 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
94 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
95 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
96 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
97 MINUS_ONE, FALSE),
98 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
99 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
100 MINUS_ONE, FALSE),
101 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
102 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
103 MINUS_ONE, FALSE),
104 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
105 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
106 0xffffffff, TRUE),
107 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
108 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
109 0xffffffff, TRUE),
110 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
111 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
112 0xffffffff, FALSE),
113 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
114 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
115 0xffffffff, TRUE),
116 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
118 0xffffffff, FALSE),
119 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
120 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
121 TRUE),
122 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
123 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
124 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
125 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
126 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
127 FALSE, 0xffffffff, 0xffffffff, TRUE),
128 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
129 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
130 FALSE),
131 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
132 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
133 MINUS_ONE, TRUE),
134 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
135 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
136 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
137 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
138 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
139 MINUS_ONE, FALSE),
140 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
141 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
142 MINUS_ONE, FALSE),
143 EMPTY_HOWTO (32),
144 EMPTY_HOWTO (33),
145 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
146 complain_overflow_bitfield, bfd_elf_generic_reloc,
147 "R_X86_64_GOTPC32_TLSDESC",
148 FALSE, 0xffffffff, 0xffffffff, TRUE),
149 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
150 complain_overflow_dont, bfd_elf_generic_reloc,
151 "R_X86_64_TLSDESC_CALL",
152 FALSE, 0, 0, FALSE),
153 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
154 complain_overflow_bitfield, bfd_elf_generic_reloc,
155 "R_X86_64_TLSDESC",
156 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
157 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
158 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
159 MINUS_ONE, FALSE),
160
161 /* We have a gap in the reloc numbers here.
162 R_X86_64_standard counts the number up to this point, and
163 R_X86_64_vt_offset is the value to subtract from a reloc type of
164 R_X86_64_GNU_VT* to form an index into this table. */
165 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1)
166 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
167
168 /* GNU extension to record C++ vtable hierarchy. */
169 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
170 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
171
172 /* GNU extension to record C++ vtable member usage. */
173 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
174 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
175 FALSE)
176 };
177
178 #define IS_X86_64_PCREL_TYPE(TYPE) \
179 ( ((TYPE) == R_X86_64_PC8) \
180 || ((TYPE) == R_X86_64_PC16) \
181 || ((TYPE) == R_X86_64_PC32) \
182 || ((TYPE) == R_X86_64_PC64))
183
184 /* Map BFD relocs to the x86_64 elf relocs. */
185 struct elf_reloc_map
186 {
187 bfd_reloc_code_real_type bfd_reloc_val;
188 unsigned char elf_reloc_val;
189 };
190
191 static const struct elf_reloc_map x86_64_reloc_map[] =
192 {
193 { BFD_RELOC_NONE, R_X86_64_NONE, },
194 { BFD_RELOC_64, R_X86_64_64, },
195 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
196 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
197 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
198 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
199 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
200 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
201 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
202 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
203 { BFD_RELOC_32, R_X86_64_32, },
204 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
205 { BFD_RELOC_16, R_X86_64_16, },
206 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
207 { BFD_RELOC_8, R_X86_64_8, },
208 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
209 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
210 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
211 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
212 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
213 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
214 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
215 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
216 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
217 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
218 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
219 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
220 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
221 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
222 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
223 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
224 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
225 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
226 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
227 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
228 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
229 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
230 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
231 };
232
233 static reloc_howto_type *
234 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
235 {
236 unsigned i;
237
238 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
239 || r_type >= (unsigned int) R_X86_64_max)
240 {
241 if (r_type >= (unsigned int) R_X86_64_standard)
242 {
243 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
244 abfd, (int) r_type);
245 r_type = R_X86_64_NONE;
246 }
247 i = r_type;
248 }
249 else
250 i = r_type - (unsigned int) R_X86_64_vt_offset;
251 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
252 return &x86_64_elf_howto_table[i];
253 }
254
255 /* Given a BFD reloc type, return a HOWTO structure. */
256 static reloc_howto_type *
257 elf_x86_64_reloc_type_lookup (bfd *abfd,
258 bfd_reloc_code_real_type code)
259 {
260 unsigned int i;
261
262 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
263 i++)
264 {
265 if (x86_64_reloc_map[i].bfd_reloc_val == code)
266 return elf_x86_64_rtype_to_howto (abfd,
267 x86_64_reloc_map[i].elf_reloc_val);
268 }
269 return 0;
270 }
271
272 static reloc_howto_type *
273 elf_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
274 const char *r_name)
275 {
276 unsigned int i;
277
278 for (i = 0;
279 i < (sizeof (x86_64_elf_howto_table)
280 / sizeof (x86_64_elf_howto_table[0]));
281 i++)
282 if (x86_64_elf_howto_table[i].name != NULL
283 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
284 return &x86_64_elf_howto_table[i];
285
286 return NULL;
287 }
288
289 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
290
291 static void
292 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
293 Elf_Internal_Rela *dst)
294 {
295 unsigned r_type;
296
297 r_type = ELF32_R_TYPE (dst->r_info);
298 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
299 BFD_ASSERT (r_type == cache_ptr->howto->type);
300 }
301 \f
302 /* Support for core dump NOTE sections. */
303 static bfd_boolean
304 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
305 {
306 int offset;
307 size_t size;
308
309 switch (note->descsz)
310 {
311 default:
312 return FALSE;
313
314 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
315 /* pr_cursig */
316 elf_tdata (abfd)->core_signal
317 = bfd_get_16 (abfd, note->descdata + 12);
318
319 /* pr_pid */
320 elf_tdata (abfd)->core_lwpid
321 = bfd_get_32 (abfd, note->descdata + 32);
322
323 /* pr_reg */
324 offset = 112;
325 size = 216;
326
327 break;
328 }
329
330 /* Make a ".reg/999" section. */
331 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
332 size, note->descpos + offset);
333 }
334
335 static bfd_boolean
336 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
337 {
338 switch (note->descsz)
339 {
340 default:
341 return FALSE;
342
343 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
344 elf_tdata (abfd)->core_pid
345 = bfd_get_32 (abfd, note->descdata + 24);
346 elf_tdata (abfd)->core_program
347 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
348 elf_tdata (abfd)->core_command
349 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
350 }
351
352 /* Note that for some reason, a spurious space is tacked
353 onto the end of the args in some (at least one anyway)
354 implementations, so strip it off if it exists. */
355
356 {
357 char *command = elf_tdata (abfd)->core_command;
358 int n = strlen (command);
359
360 if (0 < n && command[n - 1] == ' ')
361 command[n - 1] = '\0';
362 }
363
364 return TRUE;
365 }
366 \f
367 /* Functions for the x86-64 ELF linker. */
368
369 /* The name of the dynamic interpreter. This is put in the .interp
370 section. */
371
372 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
373 #define ELF32_DYNAMIC_INTERPRETER "/lib/ld32.so.1"
374
375 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
376 copying dynamic variables from a shared lib into an app's dynbss
377 section, and instead use a dynamic relocation to point into the
378 shared lib. */
379 #define ELIMINATE_COPY_RELOCS 1
380
381 /* The size in bytes of an entry in the global offset table. */
382
383 #define GOT_ENTRY_SIZE 8
384
385 /* The size in bytes of an entry in the procedure linkage table. */
386
387 #define PLT_ENTRY_SIZE 16
388
389 /* The first entry in a procedure linkage table looks like this. See the
390 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
391
392 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
393 {
394 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
395 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
396 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
397 };
398
399 /* Subsequent entries in a procedure linkage table look like this. */
400
401 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
402 {
403 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
404 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
405 0x68, /* pushq immediate */
406 0, 0, 0, 0, /* replaced with index into relocation table. */
407 0xe9, /* jmp relative */
408 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
409 };
410
411 /* x86-64 ELF linker hash entry. */
412
413 struct elf_x86_64_link_hash_entry
414 {
415 struct elf_link_hash_entry elf;
416
417 /* Track dynamic relocs copied for this symbol. */
418 struct elf_dyn_relocs *dyn_relocs;
419
420 #define GOT_UNKNOWN 0
421 #define GOT_NORMAL 1
422 #define GOT_TLS_GD 2
423 #define GOT_TLS_IE 3
424 #define GOT_TLS_GDESC 4
425 #define GOT_TLS_GD_BOTH_P(type) \
426 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
427 #define GOT_TLS_GD_P(type) \
428 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
429 #define GOT_TLS_GDESC_P(type) \
430 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
431 #define GOT_TLS_GD_ANY_P(type) \
432 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
433 unsigned char tls_type;
434
435 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
436 starting at the end of the jump table. */
437 bfd_vma tlsdesc_got;
438 };
439
440 #define elf_x86_64_hash_entry(ent) \
441 ((struct elf_x86_64_link_hash_entry *)(ent))
442
443 struct elf_x86_64_obj_tdata
444 {
445 struct elf_obj_tdata root;
446
447 /* tls_type for each local got entry. */
448 char *local_got_tls_type;
449
450 /* GOTPLT entries for TLS descriptors. */
451 bfd_vma *local_tlsdesc_gotent;
452 };
453
454 #define elf_x86_64_tdata(abfd) \
455 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
456
457 #define elf_x86_64_local_got_tls_type(abfd) \
458 (elf_x86_64_tdata (abfd)->local_got_tls_type)
459
460 #define elf_x86_64_local_tlsdesc_gotent(abfd) \
461 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
462
463 #define is_x86_64_elf(bfd) \
464 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
465 && elf_tdata (bfd) != NULL \
466 && elf_object_id (bfd) == X86_64_ELF_DATA)
467
468 static bfd_boolean
469 elf_x86_64_mkobject (bfd *abfd)
470 {
471 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
472 X86_64_ELF_DATA);
473 }
474
475 /* x86-64 ELF linker hash table. */
476
477 struct elf_x86_64_link_hash_table
478 {
479 struct elf_link_hash_table elf;
480
481 /* Short-cuts to get to dynamic linker sections. */
482 asection *sdynbss;
483 asection *srelbss;
484
485 union
486 {
487 bfd_signed_vma refcount;
488 bfd_vma offset;
489 } tls_ld_got;
490
491 /* The amount of space used by the jump slots in the GOT. */
492 bfd_vma sgotplt_jump_table_size;
493
494 /* Small local sym cache. */
495 struct sym_cache sym_cache;
496
497 bfd_vma (*r_info) (bfd_vma, bfd_vma);
498 bfd_vma (*r_sym) (bfd_vma);
499 unsigned int pointer_r_type;
500 const char *dynamic_interpreter;
501 int dynamic_interpreter_size;
502
503 /* _TLS_MODULE_BASE_ symbol. */
504 struct bfd_link_hash_entry *tls_module_base;
505
506 /* Used by local STT_GNU_IFUNC symbols. */
507 htab_t loc_hash_table;
508 void * loc_hash_memory;
509
510 /* The offset into splt of the PLT entry for the TLS descriptor
511 resolver. Special values are 0, if not necessary (or not found
512 to be necessary yet), and -1 if needed but not determined
513 yet. */
514 bfd_vma tlsdesc_plt;
515 /* The offset into sgot of the GOT entry used by the PLT entry
516 above. */
517 bfd_vma tlsdesc_got;
518 };
519
520 /* Get the x86-64 ELF linker hash table from a link_info structure. */
521
522 #define elf_x86_64_hash_table(p) \
523 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
524 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
525
526 #define elf_x86_64_compute_jump_table_size(htab) \
527 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
528
529 /* Create an entry in an x86-64 ELF linker hash table. */
530
531 static struct bfd_hash_entry *
532 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
533 struct bfd_hash_table *table,
534 const char *string)
535 {
536 /* Allocate the structure if it has not already been allocated by a
537 subclass. */
538 if (entry == NULL)
539 {
540 entry = (struct bfd_hash_entry *)
541 bfd_hash_allocate (table,
542 sizeof (struct elf_x86_64_link_hash_entry));
543 if (entry == NULL)
544 return entry;
545 }
546
547 /* Call the allocation method of the superclass. */
548 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
549 if (entry != NULL)
550 {
551 struct elf_x86_64_link_hash_entry *eh;
552
553 eh = (struct elf_x86_64_link_hash_entry *) entry;
554 eh->dyn_relocs = NULL;
555 eh->tls_type = GOT_UNKNOWN;
556 eh->tlsdesc_got = (bfd_vma) -1;
557 }
558
559 return entry;
560 }
561
562 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
563 for local symbol so that we can handle local STT_GNU_IFUNC symbols
564 as global symbol. We reuse indx and dynstr_index for local symbol
565 hash since they aren't used by global symbols in this backend. */
566
567 static hashval_t
568 elf_x86_64_local_htab_hash (const void *ptr)
569 {
570 struct elf_link_hash_entry *h
571 = (struct elf_link_hash_entry *) ptr;
572 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
573 }
574
575 /* Compare local hash entries. */
576
577 static int
578 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
579 {
580 struct elf_link_hash_entry *h1
581 = (struct elf_link_hash_entry *) ptr1;
582 struct elf_link_hash_entry *h2
583 = (struct elf_link_hash_entry *) ptr2;
584
585 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
586 }
587
588 /* Find and/or create a hash entry for local symbol. */
589
590 static struct elf_link_hash_entry *
591 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
592 bfd *abfd, const Elf_Internal_Rela *rel,
593 bfd_boolean create)
594 {
595 struct elf_x86_64_link_hash_entry e, *ret;
596 asection *sec = abfd->sections;
597 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
598 htab->r_sym (rel->r_info));
599 void **slot;
600
601 e.elf.indx = sec->id;
602 e.elf.dynstr_index = htab->r_sym (rel->r_info);
603 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
604 create ? INSERT : NO_INSERT);
605
606 if (!slot)
607 return NULL;
608
609 if (*slot)
610 {
611 ret = (struct elf_x86_64_link_hash_entry *) *slot;
612 return &ret->elf;
613 }
614
615 ret = (struct elf_x86_64_link_hash_entry *)
616 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
617 sizeof (struct elf_x86_64_link_hash_entry));
618 if (ret)
619 {
620 memset (ret, 0, sizeof (*ret));
621 ret->elf.indx = sec->id;
622 ret->elf.dynstr_index = htab->r_sym (rel->r_info);
623 ret->elf.dynindx = -1;
624 *slot = ret;
625 }
626 return &ret->elf;
627 }
628
629 /* Create an X86-64 ELF linker hash table. */
630
631 static struct bfd_link_hash_table *
632 elf_x86_64_link_hash_table_create (bfd *abfd)
633 {
634 struct elf_x86_64_link_hash_table *ret;
635 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
636
637 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt);
638 if (ret == NULL)
639 return NULL;
640
641 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
642 elf_x86_64_link_hash_newfunc,
643 sizeof (struct elf_x86_64_link_hash_entry),
644 X86_64_ELF_DATA))
645 {
646 free (ret);
647 return NULL;
648 }
649
650 ret->sdynbss = NULL;
651 ret->srelbss = NULL;
652 ret->sym_cache.abfd = NULL;
653 ret->tlsdesc_plt = 0;
654 ret->tlsdesc_got = 0;
655 ret->tls_ld_got.refcount = 0;
656 ret->sgotplt_jump_table_size = 0;
657 ret->tls_module_base = NULL;
658
659 if (ABI_64_P (abfd))
660 {
661 ret->r_info = elf64_r_info;
662 ret->r_sym = elf64_r_sym;
663 ret->pointer_r_type = R_X86_64_64;
664 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
665 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
666 }
667 else
668 {
669 ret->r_info = elf32_r_info;
670 ret->r_sym = elf32_r_sym;
671 ret->pointer_r_type = R_X86_64_32;
672 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
673 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
674 }
675
676 ret->loc_hash_table = htab_try_create (1024,
677 elf_x86_64_local_htab_hash,
678 elf_x86_64_local_htab_eq,
679 NULL);
680 ret->loc_hash_memory = objalloc_create ();
681 if (!ret->loc_hash_table || !ret->loc_hash_memory)
682 {
683 free (ret);
684 return NULL;
685 }
686
687 return &ret->elf.root;
688 }
689
690 /* Destroy an X86-64 ELF linker hash table. */
691
692 static void
693 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
694 {
695 struct elf_x86_64_link_hash_table *htab
696 = (struct elf_x86_64_link_hash_table *) hash;
697
698 if (htab->loc_hash_table)
699 htab_delete (htab->loc_hash_table);
700 if (htab->loc_hash_memory)
701 objalloc_free ((struct objalloc *) htab->loc_hash_memory);
702 _bfd_generic_link_hash_table_free (hash);
703 }
704
705 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
706 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
707 hash table. */
708
709 static bfd_boolean
710 elf_x86_64_create_dynamic_sections (bfd *dynobj,
711 struct bfd_link_info *info)
712 {
713 struct elf_x86_64_link_hash_table *htab;
714
715 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
716 return FALSE;
717
718 htab = elf_x86_64_hash_table (info);
719 if (htab == NULL)
720 return FALSE;
721
722 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
723 if (!info->shared)
724 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
725
726 if (!htab->sdynbss
727 || (!info->shared && !htab->srelbss))
728 abort ();
729
730 return TRUE;
731 }
732
733 /* Copy the extra info we tack onto an elf_link_hash_entry. */
734
735 static void
736 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
737 struct elf_link_hash_entry *dir,
738 struct elf_link_hash_entry *ind)
739 {
740 struct elf_x86_64_link_hash_entry *edir, *eind;
741
742 edir = (struct elf_x86_64_link_hash_entry *) dir;
743 eind = (struct elf_x86_64_link_hash_entry *) ind;
744
745 if (eind->dyn_relocs != NULL)
746 {
747 if (edir->dyn_relocs != NULL)
748 {
749 struct elf_dyn_relocs **pp;
750 struct elf_dyn_relocs *p;
751
752 /* Add reloc counts against the indirect sym to the direct sym
753 list. Merge any entries against the same section. */
754 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
755 {
756 struct elf_dyn_relocs *q;
757
758 for (q = edir->dyn_relocs; q != NULL; q = q->next)
759 if (q->sec == p->sec)
760 {
761 q->pc_count += p->pc_count;
762 q->count += p->count;
763 *pp = p->next;
764 break;
765 }
766 if (q == NULL)
767 pp = &p->next;
768 }
769 *pp = edir->dyn_relocs;
770 }
771
772 edir->dyn_relocs = eind->dyn_relocs;
773 eind->dyn_relocs = NULL;
774 }
775
776 if (ind->root.type == bfd_link_hash_indirect
777 && dir->got.refcount <= 0)
778 {
779 edir->tls_type = eind->tls_type;
780 eind->tls_type = GOT_UNKNOWN;
781 }
782
783 if (ELIMINATE_COPY_RELOCS
784 && ind->root.type != bfd_link_hash_indirect
785 && dir->dynamic_adjusted)
786 {
787 /* If called to transfer flags for a weakdef during processing
788 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
789 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
790 dir->ref_dynamic |= ind->ref_dynamic;
791 dir->ref_regular |= ind->ref_regular;
792 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
793 dir->needs_plt |= ind->needs_plt;
794 dir->pointer_equality_needed |= ind->pointer_equality_needed;
795 }
796 else
797 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
798 }
799
800 static bfd_boolean
801 elf64_x86_64_elf_object_p (bfd *abfd)
802 {
803 /* Set the right machine number for an x86-64 elf64 file. */
804 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
805 return TRUE;
806 }
807
808 typedef union
809 {
810 unsigned char c[2];
811 uint16_t i;
812 }
813 x86_64_opcode16;
814
815 typedef union
816 {
817 unsigned char c[4];
818 uint32_t i;
819 }
820 x86_64_opcode32;
821
822 /* Return TRUE if the TLS access code sequence support transition
823 from R_TYPE. */
824
825 static bfd_boolean
826 elf_x86_64_check_tls_transition (bfd *abfd,
827 struct bfd_link_info *info,
828 asection *sec,
829 bfd_byte *contents,
830 Elf_Internal_Shdr *symtab_hdr,
831 struct elf_link_hash_entry **sym_hashes,
832 unsigned int r_type,
833 const Elf_Internal_Rela *rel,
834 const Elf_Internal_Rela *relend)
835 {
836 unsigned int val;
837 unsigned long r_symndx;
838 struct elf_link_hash_entry *h;
839 bfd_vma offset;
840 struct elf_x86_64_link_hash_table *htab;
841
842 /* Get the section contents. */
843 if (contents == NULL)
844 {
845 if (elf_section_data (sec)->this_hdr.contents != NULL)
846 contents = elf_section_data (sec)->this_hdr.contents;
847 else
848 {
849 /* FIXME: How to better handle error condition? */
850 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
851 return FALSE;
852
853 /* Cache the section contents for elf_link_input_bfd. */
854 elf_section_data (sec)->this_hdr.contents = contents;
855 }
856 }
857
858 htab = elf_x86_64_hash_table (info);
859 offset = rel->r_offset;
860 switch (r_type)
861 {
862 case R_X86_64_TLSGD:
863 case R_X86_64_TLSLD:
864 if ((rel + 1) >= relend)
865 return FALSE;
866
867 if (r_type == R_X86_64_TLSGD)
868 {
869 /* Check transition from GD access model. For 64bit, only
870 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
871 .word 0x6666; rex64; call __tls_get_addr
872 can transit to different access model. For 32bit, only
873 leaq foo@tlsgd(%rip), %rdi
874 .word 0x6666; rex64; call __tls_get_addr
875 can transit to different access model. */
876
877 static x86_64_opcode32 call = { { 0x66, 0x66, 0x48, 0xe8 } };
878 if ((offset + 12) > sec->size
879 || bfd_get_32 (abfd, contents + offset + 4) != call.i)
880 return FALSE;
881
882 if (ABI_64_P (abfd))
883 {
884 static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } };
885 if (offset < 4
886 || bfd_get_32 (abfd, contents + offset - 4) != leaq.i)
887 return FALSE;
888 }
889 else
890 {
891 static x86_64_opcode16 lea = { { 0x8d, 0x3d } };
892 if (offset < 3
893 || bfd_get_8 (abfd, contents + offset - 3) != 0x48
894 || bfd_get_16 (abfd, contents + offset - 2) != lea.i)
895 return FALSE;
896 }
897 }
898 else
899 {
900 /* Check transition from LD access model. Only
901 leaq foo@tlsld(%rip), %rdi;
902 call __tls_get_addr
903 can transit to different access model. */
904
905 static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } };
906 x86_64_opcode32 op;
907
908 if (offset < 3 || (offset + 9) > sec->size)
909 return FALSE;
910
911 op.i = bfd_get_32 (abfd, contents + offset - 3);
912 op.c[3] = bfd_get_8 (abfd, contents + offset + 4);
913 if (op.i != ld.i)
914 return FALSE;
915 }
916
917 r_symndx = htab->r_sym (rel[1].r_info);
918 if (r_symndx < symtab_hdr->sh_info)
919 return FALSE;
920
921 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
922 /* Use strncmp to check __tls_get_addr since __tls_get_addr
923 may be versioned. */
924 return (h != NULL
925 && h->root.root.string != NULL
926 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
927 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
928 && (strncmp (h->root.root.string,
929 "__tls_get_addr", 14) == 0));
930
931 case R_X86_64_GOTTPOFF:
932 /* Check transition from IE access model:
933 mov foo@gottpoff(%rip), %reg
934 add foo@gottpoff(%rip), %reg
935 */
936
937 /* Check REX prefix first. */
938 if (offset >= 3 && (offset + 4) <= sec->size)
939 {
940 val = bfd_get_8 (abfd, contents + offset - 3);
941 if (val != 0x48 && val != 0x4c)
942 {
943 /* X32 may have 0x44 REX prefix or no REX prefix. */
944 if (ABI_64_P (abfd))
945 return FALSE;
946 }
947 }
948 else
949 {
950 /* X32 may not have any REX prefix. */
951 if (ABI_64_P (abfd))
952 return FALSE;
953 if (offset < 2 || (offset + 3) > sec->size)
954 return FALSE;
955 }
956
957 val = bfd_get_8 (abfd, contents + offset - 2);
958 if (val != 0x8b && val != 0x03)
959 return FALSE;
960
961 val = bfd_get_8 (abfd, contents + offset - 1);
962 return (val & 0xc7) == 5;
963
964 case R_X86_64_GOTPC32_TLSDESC:
965 /* Check transition from GDesc access model:
966 leaq x@tlsdesc(%rip), %rax
967
968 Make sure it's a leaq adding rip to a 32-bit offset
969 into any register, although it's probably almost always
970 going to be rax. */
971
972 if (offset < 3 || (offset + 4) > sec->size)
973 return FALSE;
974
975 val = bfd_get_8 (abfd, contents + offset - 3);
976 if ((val & 0xfb) != 0x48)
977 return FALSE;
978
979 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
980 return FALSE;
981
982 val = bfd_get_8 (abfd, contents + offset - 1);
983 return (val & 0xc7) == 0x05;
984
985 case R_X86_64_TLSDESC_CALL:
986 /* Check transition from GDesc access model:
987 call *x@tlsdesc(%rax)
988 */
989 if (offset + 2 <= sec->size)
990 {
991 /* Make sure that it's a call *x@tlsdesc(%rax). */
992 static x86_64_opcode16 call = { { 0xff, 0x10 } };
993 return bfd_get_16 (abfd, contents + offset) == call.i;
994 }
995
996 return FALSE;
997
998 default:
999 abort ();
1000 }
1001 }
1002
1003 /* Return TRUE if the TLS access transition is OK or no transition
1004 will be performed. Update R_TYPE if there is a transition. */
1005
1006 static bfd_boolean
1007 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
1008 asection *sec, bfd_byte *contents,
1009 Elf_Internal_Shdr *symtab_hdr,
1010 struct elf_link_hash_entry **sym_hashes,
1011 unsigned int *r_type, int tls_type,
1012 const Elf_Internal_Rela *rel,
1013 const Elf_Internal_Rela *relend,
1014 struct elf_link_hash_entry *h,
1015 unsigned long r_symndx)
1016 {
1017 unsigned int from_type = *r_type;
1018 unsigned int to_type = from_type;
1019 bfd_boolean check = TRUE;
1020
1021 /* Skip TLS transition for functions. */
1022 if (h != NULL
1023 && (h->type == STT_FUNC
1024 || h->type == STT_GNU_IFUNC))
1025 return TRUE;
1026
1027 switch (from_type)
1028 {
1029 case R_X86_64_TLSGD:
1030 case R_X86_64_GOTPC32_TLSDESC:
1031 case R_X86_64_TLSDESC_CALL:
1032 case R_X86_64_GOTTPOFF:
1033 if (info->executable)
1034 {
1035 if (h == NULL)
1036 to_type = R_X86_64_TPOFF32;
1037 else
1038 to_type = R_X86_64_GOTTPOFF;
1039 }
1040
1041 /* When we are called from elf_x86_64_relocate_section,
1042 CONTENTS isn't NULL and there may be additional transitions
1043 based on TLS_TYPE. */
1044 if (contents != NULL)
1045 {
1046 unsigned int new_to_type = to_type;
1047
1048 if (info->executable
1049 && h != NULL
1050 && h->dynindx == -1
1051 && tls_type == GOT_TLS_IE)
1052 new_to_type = R_X86_64_TPOFF32;
1053
1054 if (to_type == R_X86_64_TLSGD
1055 || to_type == R_X86_64_GOTPC32_TLSDESC
1056 || to_type == R_X86_64_TLSDESC_CALL)
1057 {
1058 if (tls_type == GOT_TLS_IE)
1059 new_to_type = R_X86_64_GOTTPOFF;
1060 }
1061
1062 /* We checked the transition before when we were called from
1063 elf_x86_64_check_relocs. We only want to check the new
1064 transition which hasn't been checked before. */
1065 check = new_to_type != to_type && from_type == to_type;
1066 to_type = new_to_type;
1067 }
1068
1069 break;
1070
1071 case R_X86_64_TLSLD:
1072 if (info->executable)
1073 to_type = R_X86_64_TPOFF32;
1074 break;
1075
1076 default:
1077 return TRUE;
1078 }
1079
1080 /* Return TRUE if there is no transition. */
1081 if (from_type == to_type)
1082 return TRUE;
1083
1084 /* Check if the transition can be performed. */
1085 if (check
1086 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
1087 symtab_hdr, sym_hashes,
1088 from_type, rel, relend))
1089 {
1090 reloc_howto_type *from, *to;
1091 const char *name;
1092
1093 from = elf_x86_64_rtype_to_howto (abfd, from_type);
1094 to = elf_x86_64_rtype_to_howto (abfd, to_type);
1095
1096 if (h)
1097 name = h->root.root.string;
1098 else
1099 {
1100 struct elf_x86_64_link_hash_table *htab;
1101
1102 htab = elf_x86_64_hash_table (info);
1103 if (htab == NULL)
1104 name = "*unknown*";
1105 else
1106 {
1107 Elf_Internal_Sym *isym;
1108
1109 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1110 abfd, r_symndx);
1111 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1112 }
1113 }
1114
1115 (*_bfd_error_handler)
1116 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
1117 "in section `%A' failed"),
1118 abfd, sec, from->name, to->name, name,
1119 (unsigned long) rel->r_offset);
1120 bfd_set_error (bfd_error_bad_value);
1121 return FALSE;
1122 }
1123
1124 *r_type = to_type;
1125 return TRUE;
1126 }
1127
1128 /* Look through the relocs for a section during the first phase, and
1129 calculate needed space in the global offset table, procedure
1130 linkage table, and dynamic reloc sections. */
1131
1132 static bfd_boolean
1133 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
1134 asection *sec,
1135 const Elf_Internal_Rela *relocs)
1136 {
1137 struct elf_x86_64_link_hash_table *htab;
1138 Elf_Internal_Shdr *symtab_hdr;
1139 struct elf_link_hash_entry **sym_hashes;
1140 const Elf_Internal_Rela *rel;
1141 const Elf_Internal_Rela *rel_end;
1142 asection *sreloc;
1143
1144 if (info->relocatable)
1145 return TRUE;
1146
1147 BFD_ASSERT (is_x86_64_elf (abfd));
1148
1149 htab = elf_x86_64_hash_table (info);
1150 if (htab == NULL)
1151 return FALSE;
1152
1153 symtab_hdr = &elf_symtab_hdr (abfd);
1154 sym_hashes = elf_sym_hashes (abfd);
1155
1156 sreloc = NULL;
1157
1158 rel_end = relocs + sec->reloc_count;
1159 for (rel = relocs; rel < rel_end; rel++)
1160 {
1161 unsigned int r_type;
1162 unsigned long r_symndx;
1163 struct elf_link_hash_entry *h;
1164 Elf_Internal_Sym *isym;
1165 const char *name;
1166
1167 r_symndx = htab->r_sym (rel->r_info);
1168 r_type = ELF32_R_TYPE (rel->r_info);
1169
1170 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1171 {
1172 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1173 abfd, r_symndx);
1174 return FALSE;
1175 }
1176
1177 if (r_symndx < symtab_hdr->sh_info)
1178 {
1179 /* A local symbol. */
1180 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1181 abfd, r_symndx);
1182 if (isym == NULL)
1183 return FALSE;
1184
1185 /* Check relocation against local STT_GNU_IFUNC symbol. */
1186 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1187 {
1188 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
1189 TRUE);
1190 if (h == NULL)
1191 return FALSE;
1192
1193 /* Fake a STT_GNU_IFUNC symbol. */
1194 h->type = STT_GNU_IFUNC;
1195 h->def_regular = 1;
1196 h->ref_regular = 1;
1197 h->forced_local = 1;
1198 h->root.type = bfd_link_hash_defined;
1199 }
1200 else
1201 h = NULL;
1202 }
1203 else
1204 {
1205 isym = NULL;
1206 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1207 while (h->root.type == bfd_link_hash_indirect
1208 || h->root.type == bfd_link_hash_warning)
1209 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1210 }
1211
1212 /* Check invalid x32 relocations. */
1213 if (!ABI_64_P (abfd))
1214 switch (r_type)
1215 {
1216 default:
1217 break;
1218
1219 case R_X86_64_64:
1220 case R_X86_64_DTPOFF64:
1221 case R_X86_64_TPOFF64:
1222 case R_X86_64_PC64:
1223 case R_X86_64_GOTOFF64:
1224 case R_X86_64_GOT64:
1225 case R_X86_64_GOTPCREL64:
1226 case R_X86_64_GOTPC64:
1227 case R_X86_64_GOTPLT64:
1228 case R_X86_64_PLTOFF64:
1229 {
1230 if (h)
1231 name = h->root.root.string;
1232 else
1233 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1234 NULL);
1235 (*_bfd_error_handler)
1236 (_("%B: relocation %s against symbol `%s' isn't "
1237 "supported in x32 mode"), abfd,
1238 x86_64_elf_howto_table[r_type].name, name);
1239 bfd_set_error (bfd_error_bad_value);
1240 return FALSE;
1241 }
1242 break;
1243 }
1244
1245 if (h != NULL)
1246 {
1247 /* Create the ifunc sections for static executables. If we
1248 never see an indirect function symbol nor we are building
1249 a static executable, those sections will be empty and
1250 won't appear in output. */
1251 switch (r_type)
1252 {
1253 default:
1254 break;
1255
1256 case R_X86_64_32S:
1257 case R_X86_64_32:
1258 case R_X86_64_64:
1259 case R_X86_64_PC32:
1260 case R_X86_64_PC64:
1261 case R_X86_64_PLT32:
1262 case R_X86_64_GOTPCREL:
1263 case R_X86_64_GOTPCREL64:
1264 if (!_bfd_elf_create_ifunc_sections (abfd, info))
1265 return FALSE;
1266 break;
1267 }
1268
1269 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
1270 it here if it is defined in a non-shared object. */
1271 if (h->type == STT_GNU_IFUNC
1272 && h->def_regular)
1273 {
1274 /* It is referenced by a non-shared object. */
1275 h->ref_regular = 1;
1276 h->needs_plt = 1;
1277
1278 /* STT_GNU_IFUNC symbol must go through PLT. */
1279 h->plt.refcount += 1;
1280
1281 /* STT_GNU_IFUNC needs dynamic sections. */
1282 if (htab->elf.dynobj == NULL)
1283 htab->elf.dynobj = abfd;
1284
1285 switch (r_type)
1286 {
1287 default:
1288 if (h->root.root.string)
1289 name = h->root.root.string;
1290 else
1291 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1292 NULL);
1293 (*_bfd_error_handler)
1294 (_("%B: relocation %s against STT_GNU_IFUNC "
1295 "symbol `%s' isn't handled by %s"), abfd,
1296 x86_64_elf_howto_table[r_type].name,
1297 name, __FUNCTION__);
1298 bfd_set_error (bfd_error_bad_value);
1299 return FALSE;
1300
1301 case R_X86_64_32:
1302 if (ABI_64_P (abfd))
1303 goto not_pointer;
1304 case R_X86_64_64:
1305 h->non_got_ref = 1;
1306 h->pointer_equality_needed = 1;
1307 if (info->shared)
1308 {
1309 /* We must copy these reloc types into the output
1310 file. Create a reloc section in dynobj and
1311 make room for this reloc. */
1312 sreloc = _bfd_elf_create_ifunc_dyn_reloc
1313 (abfd, info, sec, sreloc,
1314 &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs);
1315 if (sreloc == NULL)
1316 return FALSE;
1317 }
1318 break;
1319
1320 case R_X86_64_32S:
1321 case R_X86_64_PC32:
1322 case R_X86_64_PC64:
1323 not_pointer:
1324 h->non_got_ref = 1;
1325 if (r_type != R_X86_64_PC32
1326 && r_type != R_X86_64_PC64)
1327 h->pointer_equality_needed = 1;
1328 break;
1329
1330 case R_X86_64_PLT32:
1331 break;
1332
1333 case R_X86_64_GOTPCREL:
1334 case R_X86_64_GOTPCREL64:
1335 h->got.refcount += 1;
1336 if (htab->elf.sgot == NULL
1337 && !_bfd_elf_create_got_section (htab->elf.dynobj,
1338 info))
1339 return FALSE;
1340 break;
1341 }
1342
1343 continue;
1344 }
1345 }
1346
1347 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1348 symtab_hdr, sym_hashes,
1349 &r_type, GOT_UNKNOWN,
1350 rel, rel_end, h, r_symndx))
1351 return FALSE;
1352
1353 switch (r_type)
1354 {
1355 case R_X86_64_TLSLD:
1356 htab->tls_ld_got.refcount += 1;
1357 goto create_got;
1358
1359 case R_X86_64_TPOFF32:
1360 if (!info->executable && ABI_64_P (abfd))
1361 {
1362 if (h)
1363 name = h->root.root.string;
1364 else
1365 name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
1366 NULL);
1367 (*_bfd_error_handler)
1368 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1369 abfd,
1370 x86_64_elf_howto_table[r_type].name, name);
1371 bfd_set_error (bfd_error_bad_value);
1372 return FALSE;
1373 }
1374 break;
1375
1376 case R_X86_64_GOTTPOFF:
1377 if (!info->executable)
1378 info->flags |= DF_STATIC_TLS;
1379 /* Fall through */
1380
1381 case R_X86_64_GOT32:
1382 case R_X86_64_GOTPCREL:
1383 case R_X86_64_TLSGD:
1384 case R_X86_64_GOT64:
1385 case R_X86_64_GOTPCREL64:
1386 case R_X86_64_GOTPLT64:
1387 case R_X86_64_GOTPC32_TLSDESC:
1388 case R_X86_64_TLSDESC_CALL:
1389 /* This symbol requires a global offset table entry. */
1390 {
1391 int tls_type, old_tls_type;
1392
1393 switch (r_type)
1394 {
1395 default: tls_type = GOT_NORMAL; break;
1396 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
1397 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
1398 case R_X86_64_GOTPC32_TLSDESC:
1399 case R_X86_64_TLSDESC_CALL:
1400 tls_type = GOT_TLS_GDESC; break;
1401 }
1402
1403 if (h != NULL)
1404 {
1405 if (r_type == R_X86_64_GOTPLT64)
1406 {
1407 /* This relocation indicates that we also need
1408 a PLT entry, as this is a function. We don't need
1409 a PLT entry for local symbols. */
1410 h->needs_plt = 1;
1411 h->plt.refcount += 1;
1412 }
1413 h->got.refcount += 1;
1414 old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
1415 }
1416 else
1417 {
1418 bfd_signed_vma *local_got_refcounts;
1419
1420 /* This is a global offset table entry for a local symbol. */
1421 local_got_refcounts = elf_local_got_refcounts (abfd);
1422 if (local_got_refcounts == NULL)
1423 {
1424 bfd_size_type size;
1425
1426 size = symtab_hdr->sh_info;
1427 size *= sizeof (bfd_signed_vma)
1428 + sizeof (bfd_vma) + sizeof (char);
1429 local_got_refcounts = ((bfd_signed_vma *)
1430 bfd_zalloc (abfd, size));
1431 if (local_got_refcounts == NULL)
1432 return FALSE;
1433 elf_local_got_refcounts (abfd) = local_got_refcounts;
1434 elf_x86_64_local_tlsdesc_gotent (abfd)
1435 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
1436 elf_x86_64_local_got_tls_type (abfd)
1437 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
1438 }
1439 local_got_refcounts[r_symndx] += 1;
1440 old_tls_type
1441 = elf_x86_64_local_got_tls_type (abfd) [r_symndx];
1442 }
1443
1444 /* If a TLS symbol is accessed using IE at least once,
1445 there is no point to use dynamic model for it. */
1446 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1447 && (! GOT_TLS_GD_ANY_P (old_tls_type)
1448 || tls_type != GOT_TLS_IE))
1449 {
1450 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
1451 tls_type = old_tls_type;
1452 else if (GOT_TLS_GD_ANY_P (old_tls_type)
1453 && GOT_TLS_GD_ANY_P (tls_type))
1454 tls_type |= old_tls_type;
1455 else
1456 {
1457 if (h)
1458 name = h->root.root.string;
1459 else
1460 name = bfd_elf_sym_name (abfd, symtab_hdr,
1461 isym, NULL);
1462 (*_bfd_error_handler)
1463 (_("%B: '%s' accessed both as normal and thread local symbol"),
1464 abfd, name);
1465 return FALSE;
1466 }
1467 }
1468
1469 if (old_tls_type != tls_type)
1470 {
1471 if (h != NULL)
1472 elf_x86_64_hash_entry (h)->tls_type = tls_type;
1473 else
1474 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
1475 }
1476 }
1477 /* Fall through */
1478
1479 case R_X86_64_GOTOFF64:
1480 case R_X86_64_GOTPC32:
1481 case R_X86_64_GOTPC64:
1482 create_got:
1483 if (htab->elf.sgot == NULL)
1484 {
1485 if (htab->elf.dynobj == NULL)
1486 htab->elf.dynobj = abfd;
1487 if (!_bfd_elf_create_got_section (htab->elf.dynobj,
1488 info))
1489 return FALSE;
1490 }
1491 break;
1492
1493 case R_X86_64_PLT32:
1494 /* This symbol requires a procedure linkage table entry. We
1495 actually build the entry in adjust_dynamic_symbol,
1496 because this might be a case of linking PIC code which is
1497 never referenced by a dynamic object, in which case we
1498 don't need to generate a procedure linkage table entry
1499 after all. */
1500
1501 /* If this is a local symbol, we resolve it directly without
1502 creating a procedure linkage table entry. */
1503 if (h == NULL)
1504 continue;
1505
1506 h->needs_plt = 1;
1507 h->plt.refcount += 1;
1508 break;
1509
1510 case R_X86_64_PLTOFF64:
1511 /* This tries to form the 'address' of a function relative
1512 to GOT. For global symbols we need a PLT entry. */
1513 if (h != NULL)
1514 {
1515 h->needs_plt = 1;
1516 h->plt.refcount += 1;
1517 }
1518 goto create_got;
1519
1520 case R_X86_64_32:
1521 if (!ABI_64_P (abfd))
1522 goto pointer;
1523 case R_X86_64_8:
1524 case R_X86_64_16:
1525 case R_X86_64_32S:
1526 /* Let's help debug shared library creation. These relocs
1527 cannot be used in shared libs. Don't error out for
1528 sections we don't care about, such as debug sections or
1529 non-constant sections. */
1530 if (info->shared
1531 && (sec->flags & SEC_ALLOC) != 0
1532 && (sec->flags & SEC_READONLY) != 0)
1533 {
1534 if (h)
1535 name = h->root.root.string;
1536 else
1537 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
1538 (*_bfd_error_handler)
1539 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1540 abfd, x86_64_elf_howto_table[r_type].name, name);
1541 bfd_set_error (bfd_error_bad_value);
1542 return FALSE;
1543 }
1544 /* Fall through. */
1545
1546 case R_X86_64_PC8:
1547 case R_X86_64_PC16:
1548 case R_X86_64_PC32:
1549 case R_X86_64_PC64:
1550 case R_X86_64_64:
1551 pointer:
1552 if (h != NULL && info->executable)
1553 {
1554 /* If this reloc is in a read-only section, we might
1555 need a copy reloc. We can't check reliably at this
1556 stage whether the section is read-only, as input
1557 sections have not yet been mapped to output sections.
1558 Tentatively set the flag for now, and correct in
1559 adjust_dynamic_symbol. */
1560 h->non_got_ref = 1;
1561
1562 /* We may need a .plt entry if the function this reloc
1563 refers to is in a shared lib. */
1564 h->plt.refcount += 1;
1565 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
1566 h->pointer_equality_needed = 1;
1567 }
1568
1569 /* If we are creating a shared library, and this is a reloc
1570 against a global symbol, or a non PC relative reloc
1571 against a local symbol, then we need to copy the reloc
1572 into the shared library. However, if we are linking with
1573 -Bsymbolic, we do not need to copy a reloc against a
1574 global symbol which is defined in an object we are
1575 including in the link (i.e., DEF_REGULAR is set). At
1576 this point we have not seen all the input files, so it is
1577 possible that DEF_REGULAR is not set now but will be set
1578 later (it is never cleared). In case of a weak definition,
1579 DEF_REGULAR may be cleared later by a strong definition in
1580 a shared library. We account for that possibility below by
1581 storing information in the relocs_copied field of the hash
1582 table entry. A similar situation occurs when creating
1583 shared libraries and symbol visibility changes render the
1584 symbol local.
1585
1586 If on the other hand, we are creating an executable, we
1587 may need to keep relocations for symbols satisfied by a
1588 dynamic library if we manage to avoid copy relocs for the
1589 symbol. */
1590 if ((info->shared
1591 && (sec->flags & SEC_ALLOC) != 0
1592 && (! IS_X86_64_PCREL_TYPE (r_type)
1593 || (h != NULL
1594 && (! SYMBOLIC_BIND (info, h)
1595 || h->root.type == bfd_link_hash_defweak
1596 || !h->def_regular))))
1597 || (ELIMINATE_COPY_RELOCS
1598 && !info->shared
1599 && (sec->flags & SEC_ALLOC) != 0
1600 && h != NULL
1601 && (h->root.type == bfd_link_hash_defweak
1602 || !h->def_regular)))
1603 {
1604 struct elf_dyn_relocs *p;
1605 struct elf_dyn_relocs **head;
1606
1607 /* We must copy these reloc types into the output file.
1608 Create a reloc section in dynobj and make room for
1609 this reloc. */
1610 if (sreloc == NULL)
1611 {
1612 if (htab->elf.dynobj == NULL)
1613 htab->elf.dynobj = abfd;
1614
1615 sreloc = _bfd_elf_make_dynamic_reloc_section
1616 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
1617 abfd, /*rela?*/ TRUE);
1618
1619 if (sreloc == NULL)
1620 return FALSE;
1621 }
1622
1623 /* If this is a global symbol, we count the number of
1624 relocations we need for this symbol. */
1625 if (h != NULL)
1626 {
1627 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
1628 }
1629 else
1630 {
1631 /* Track dynamic relocs needed for local syms too.
1632 We really need local syms available to do this
1633 easily. Oh well. */
1634 asection *s;
1635 void **vpp;
1636
1637 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1638 abfd, r_symndx);
1639 if (isym == NULL)
1640 return FALSE;
1641
1642 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
1643 if (s == NULL)
1644 s = sec;
1645
1646 /* Beware of type punned pointers vs strict aliasing
1647 rules. */
1648 vpp = &(elf_section_data (s)->local_dynrel);
1649 head = (struct elf_dyn_relocs **)vpp;
1650 }
1651
1652 p = *head;
1653 if (p == NULL || p->sec != sec)
1654 {
1655 bfd_size_type amt = sizeof *p;
1656
1657 p = ((struct elf_dyn_relocs *)
1658 bfd_alloc (htab->elf.dynobj, amt));
1659 if (p == NULL)
1660 return FALSE;
1661 p->next = *head;
1662 *head = p;
1663 p->sec = sec;
1664 p->count = 0;
1665 p->pc_count = 0;
1666 }
1667
1668 p->count += 1;
1669 if (IS_X86_64_PCREL_TYPE (r_type))
1670 p->pc_count += 1;
1671 }
1672 break;
1673
1674 /* This relocation describes the C++ object vtable hierarchy.
1675 Reconstruct it for later use during GC. */
1676 case R_X86_64_GNU_VTINHERIT:
1677 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1678 return FALSE;
1679 break;
1680
1681 /* This relocation describes which C++ vtable entries are actually
1682 used. Record for later use during GC. */
1683 case R_X86_64_GNU_VTENTRY:
1684 BFD_ASSERT (h != NULL);
1685 if (h != NULL
1686 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1687 return FALSE;
1688 break;
1689
1690 default:
1691 break;
1692 }
1693 }
1694
1695 return TRUE;
1696 }
1697
1698 /* Return the section that should be marked against GC for a given
1699 relocation. */
1700
1701 static asection *
1702 elf_x86_64_gc_mark_hook (asection *sec,
1703 struct bfd_link_info *info,
1704 Elf_Internal_Rela *rel,
1705 struct elf_link_hash_entry *h,
1706 Elf_Internal_Sym *sym)
1707 {
1708 if (h != NULL)
1709 switch (ELF32_R_TYPE (rel->r_info))
1710 {
1711 case R_X86_64_GNU_VTINHERIT:
1712 case R_X86_64_GNU_VTENTRY:
1713 return NULL;
1714 }
1715
1716 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1717 }
1718
1719 /* Update the got entry reference counts for the section being removed. */
1720
1721 static bfd_boolean
1722 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1723 asection *sec,
1724 const Elf_Internal_Rela *relocs)
1725 {
1726 struct elf_x86_64_link_hash_table *htab;
1727 Elf_Internal_Shdr *symtab_hdr;
1728 struct elf_link_hash_entry **sym_hashes;
1729 bfd_signed_vma *local_got_refcounts;
1730 const Elf_Internal_Rela *rel, *relend;
1731
1732 if (info->relocatable)
1733 return TRUE;
1734
1735 htab = elf_x86_64_hash_table (info);
1736 if (htab == NULL)
1737 return FALSE;
1738
1739 elf_section_data (sec)->local_dynrel = NULL;
1740
1741 symtab_hdr = &elf_symtab_hdr (abfd);
1742 sym_hashes = elf_sym_hashes (abfd);
1743 local_got_refcounts = elf_local_got_refcounts (abfd);
1744
1745 htab = elf_x86_64_hash_table (info);
1746 relend = relocs + sec->reloc_count;
1747 for (rel = relocs; rel < relend; rel++)
1748 {
1749 unsigned long r_symndx;
1750 unsigned int r_type;
1751 struct elf_link_hash_entry *h = NULL;
1752
1753 r_symndx = htab->r_sym (rel->r_info);
1754 if (r_symndx >= symtab_hdr->sh_info)
1755 {
1756 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1757 while (h->root.type == bfd_link_hash_indirect
1758 || h->root.type == bfd_link_hash_warning)
1759 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1760 }
1761 else
1762 {
1763 /* A local symbol. */
1764 Elf_Internal_Sym *isym;
1765
1766 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1767 abfd, r_symndx);
1768
1769 /* Check relocation against local STT_GNU_IFUNC symbol. */
1770 if (isym != NULL
1771 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
1772 {
1773 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
1774 if (h == NULL)
1775 abort ();
1776 }
1777 }
1778
1779 if (h)
1780 {
1781 struct elf_x86_64_link_hash_entry *eh;
1782 struct elf_dyn_relocs **pp;
1783 struct elf_dyn_relocs *p;
1784
1785 eh = (struct elf_x86_64_link_hash_entry *) h;
1786
1787 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1788 if (p->sec == sec)
1789 {
1790 /* Everything must go for SEC. */
1791 *pp = p->next;
1792 break;
1793 }
1794 }
1795
1796 r_type = ELF32_R_TYPE (rel->r_info);
1797 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
1798 symtab_hdr, sym_hashes,
1799 &r_type, GOT_UNKNOWN,
1800 rel, relend, h, r_symndx))
1801 return FALSE;
1802
1803 switch (r_type)
1804 {
1805 case R_X86_64_TLSLD:
1806 if (htab->tls_ld_got.refcount > 0)
1807 htab->tls_ld_got.refcount -= 1;
1808 break;
1809
1810 case R_X86_64_TLSGD:
1811 case R_X86_64_GOTPC32_TLSDESC:
1812 case R_X86_64_TLSDESC_CALL:
1813 case R_X86_64_GOTTPOFF:
1814 case R_X86_64_GOT32:
1815 case R_X86_64_GOTPCREL:
1816 case R_X86_64_GOT64:
1817 case R_X86_64_GOTPCREL64:
1818 case R_X86_64_GOTPLT64:
1819 if (h != NULL)
1820 {
1821 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1822 h->plt.refcount -= 1;
1823 if (h->got.refcount > 0)
1824 h->got.refcount -= 1;
1825 if (h->type == STT_GNU_IFUNC)
1826 {
1827 if (h->plt.refcount > 0)
1828 h->plt.refcount -= 1;
1829 }
1830 }
1831 else if (local_got_refcounts != NULL)
1832 {
1833 if (local_got_refcounts[r_symndx] > 0)
1834 local_got_refcounts[r_symndx] -= 1;
1835 }
1836 break;
1837
1838 case R_X86_64_8:
1839 case R_X86_64_16:
1840 case R_X86_64_32:
1841 case R_X86_64_64:
1842 case R_X86_64_32S:
1843 case R_X86_64_PC8:
1844 case R_X86_64_PC16:
1845 case R_X86_64_PC32:
1846 case R_X86_64_PC64:
1847 if (info->shared
1848 && (h == NULL || h->type != STT_GNU_IFUNC))
1849 break;
1850 /* Fall thru */
1851
1852 case R_X86_64_PLT32:
1853 case R_X86_64_PLTOFF64:
1854 if (h != NULL)
1855 {
1856 if (h->plt.refcount > 0)
1857 h->plt.refcount -= 1;
1858 }
1859 break;
1860
1861 default:
1862 break;
1863 }
1864 }
1865
1866 return TRUE;
1867 }
1868
1869 /* Adjust a symbol defined by a dynamic object and referenced by a
1870 regular object. The current definition is in some section of the
1871 dynamic object, but we're not including those sections. We have to
1872 change the definition to something the rest of the link can
1873 understand. */
1874
1875 static bfd_boolean
1876 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1877 struct elf_link_hash_entry *h)
1878 {
1879 struct elf_x86_64_link_hash_table *htab;
1880 asection *s;
1881
1882 /* STT_GNU_IFUNC symbol must go through PLT. */
1883 if (h->type == STT_GNU_IFUNC)
1884 {
1885 if (h->plt.refcount <= 0)
1886 {
1887 h->plt.offset = (bfd_vma) -1;
1888 h->needs_plt = 0;
1889 }
1890 return TRUE;
1891 }
1892
1893 /* If this is a function, put it in the procedure linkage table. We
1894 will fill in the contents of the procedure linkage table later,
1895 when we know the address of the .got section. */
1896 if (h->type == STT_FUNC
1897 || h->needs_plt)
1898 {
1899 if (h->plt.refcount <= 0
1900 || SYMBOL_CALLS_LOCAL (info, h)
1901 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1902 && h->root.type == bfd_link_hash_undefweak))
1903 {
1904 /* This case can occur if we saw a PLT32 reloc in an input
1905 file, but the symbol was never referred to by a dynamic
1906 object, or if all references were garbage collected. In
1907 such a case, we don't actually need to build a procedure
1908 linkage table, and we can just do a PC32 reloc instead. */
1909 h->plt.offset = (bfd_vma) -1;
1910 h->needs_plt = 0;
1911 }
1912
1913 return TRUE;
1914 }
1915 else
1916 /* It's possible that we incorrectly decided a .plt reloc was
1917 needed for an R_X86_64_PC32 reloc to a non-function sym in
1918 check_relocs. We can't decide accurately between function and
1919 non-function syms in check-relocs; Objects loaded later in
1920 the link may change h->type. So fix it now. */
1921 h->plt.offset = (bfd_vma) -1;
1922
1923 /* If this is a weak symbol, and there is a real definition, the
1924 processor independent code will have arranged for us to see the
1925 real definition first, and we can just use the same value. */
1926 if (h->u.weakdef != NULL)
1927 {
1928 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1929 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1930 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1931 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1932 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1933 h->non_got_ref = h->u.weakdef->non_got_ref;
1934 return TRUE;
1935 }
1936
1937 /* This is a reference to a symbol defined by a dynamic object which
1938 is not a function. */
1939
1940 /* If we are creating a shared library, we must presume that the
1941 only references to the symbol are via the global offset table.
1942 For such cases we need not do anything here; the relocations will
1943 be handled correctly by relocate_section. */
1944 if (info->shared)
1945 return TRUE;
1946
1947 /* If there are no references to this symbol that do not use the
1948 GOT, we don't need to generate a copy reloc. */
1949 if (!h->non_got_ref)
1950 return TRUE;
1951
1952 /* If -z nocopyreloc was given, we won't generate them either. */
1953 if (info->nocopyreloc)
1954 {
1955 h->non_got_ref = 0;
1956 return TRUE;
1957 }
1958
1959 if (ELIMINATE_COPY_RELOCS)
1960 {
1961 struct elf_x86_64_link_hash_entry * eh;
1962 struct elf_dyn_relocs *p;
1963
1964 eh = (struct elf_x86_64_link_hash_entry *) h;
1965 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1966 {
1967 s = p->sec->output_section;
1968 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1969 break;
1970 }
1971
1972 /* If we didn't find any dynamic relocs in read-only sections, then
1973 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1974 if (p == NULL)
1975 {
1976 h->non_got_ref = 0;
1977 return TRUE;
1978 }
1979 }
1980
1981 if (h->size == 0)
1982 {
1983 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1984 h->root.root.string);
1985 return TRUE;
1986 }
1987
1988 /* We must allocate the symbol in our .dynbss section, which will
1989 become part of the .bss section of the executable. There will be
1990 an entry for this symbol in the .dynsym section. The dynamic
1991 object will contain position independent code, so all references
1992 from the dynamic object to this symbol will go through the global
1993 offset table. The dynamic linker will use the .dynsym entry to
1994 determine the address it must put in the global offset table, so
1995 both the dynamic object and the regular object will refer to the
1996 same memory location for the variable. */
1997
1998 htab = elf_x86_64_hash_table (info);
1999 if (htab == NULL)
2000 return FALSE;
2001
2002 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
2003 to copy the initial value out of the dynamic object and into the
2004 runtime process image. */
2005 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2006 {
2007 const struct elf_backend_data *bed;
2008 bed = get_elf_backend_data (info->output_bfd);
2009 htab->srelbss->size += bed->s->sizeof_rela;
2010 h->needs_copy = 1;
2011 }
2012
2013 s = htab->sdynbss;
2014
2015 return _bfd_elf_adjust_dynamic_copy (h, s);
2016 }
2017
2018 /* Allocate space in .plt, .got and associated reloc sections for
2019 dynamic relocs. */
2020
2021 static bfd_boolean
2022 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
2023 {
2024 struct bfd_link_info *info;
2025 struct elf_x86_64_link_hash_table *htab;
2026 struct elf_x86_64_link_hash_entry *eh;
2027 struct elf_dyn_relocs *p;
2028 const struct elf_backend_data *bed;
2029
2030 if (h->root.type == bfd_link_hash_indirect)
2031 return TRUE;
2032
2033 if (h->root.type == bfd_link_hash_warning)
2034 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2035 eh = (struct elf_x86_64_link_hash_entry *) h;
2036
2037 info = (struct bfd_link_info *) inf;
2038 htab = elf_x86_64_hash_table (info);
2039 if (htab == NULL)
2040 return FALSE;
2041 bed = get_elf_backend_data (info->output_bfd);
2042
2043 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
2044 here if it is defined and referenced in a non-shared object. */
2045 if (h->type == STT_GNU_IFUNC
2046 && h->def_regular)
2047 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
2048 &eh->dyn_relocs,
2049 PLT_ENTRY_SIZE,
2050 GOT_ENTRY_SIZE);
2051 else if (htab->elf.dynamic_sections_created
2052 && h->plt.refcount > 0)
2053 {
2054 /* Make sure this symbol is output as a dynamic symbol.
2055 Undefined weak syms won't yet be marked as dynamic. */
2056 if (h->dynindx == -1
2057 && !h->forced_local)
2058 {
2059 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2060 return FALSE;
2061 }
2062
2063 if (info->shared
2064 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2065 {
2066 asection *s = htab->elf.splt;
2067
2068 /* If this is the first .plt entry, make room for the special
2069 first entry. */
2070 if (s->size == 0)
2071 s->size += PLT_ENTRY_SIZE;
2072
2073 h->plt.offset = s->size;
2074
2075 /* If this symbol is not defined in a regular file, and we are
2076 not generating a shared library, then set the symbol to this
2077 location in the .plt. This is required to make function
2078 pointers compare as equal between the normal executable and
2079 the shared library. */
2080 if (! info->shared
2081 && !h->def_regular)
2082 {
2083 h->root.u.def.section = s;
2084 h->root.u.def.value = h->plt.offset;
2085 }
2086
2087 /* Make room for this entry. */
2088 s->size += PLT_ENTRY_SIZE;
2089
2090 /* We also need to make an entry in the .got.plt section, which
2091 will be placed in the .got section by the linker script. */
2092 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
2093
2094 /* We also need to make an entry in the .rela.plt section. */
2095 htab->elf.srelplt->size += bed->s->sizeof_rela;
2096 htab->elf.srelplt->reloc_count++;
2097 }
2098 else
2099 {
2100 h->plt.offset = (bfd_vma) -1;
2101 h->needs_plt = 0;
2102 }
2103 }
2104 else
2105 {
2106 h->plt.offset = (bfd_vma) -1;
2107 h->needs_plt = 0;
2108 }
2109
2110 eh->tlsdesc_got = (bfd_vma) -1;
2111
2112 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
2113 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
2114 if (h->got.refcount > 0
2115 && info->executable
2116 && h->dynindx == -1
2117 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
2118 {
2119 h->got.offset = (bfd_vma) -1;
2120 }
2121 else if (h->got.refcount > 0)
2122 {
2123 asection *s;
2124 bfd_boolean dyn;
2125 int tls_type = elf_x86_64_hash_entry (h)->tls_type;
2126
2127 /* Make sure this symbol is output as a dynamic symbol.
2128 Undefined weak syms won't yet be marked as dynamic. */
2129 if (h->dynindx == -1
2130 && !h->forced_local)
2131 {
2132 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2133 return FALSE;
2134 }
2135
2136 if (GOT_TLS_GDESC_P (tls_type))
2137 {
2138 eh->tlsdesc_got = htab->elf.sgotplt->size
2139 - elf_x86_64_compute_jump_table_size (htab);
2140 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2141 h->got.offset = (bfd_vma) -2;
2142 }
2143 if (! GOT_TLS_GDESC_P (tls_type)
2144 || GOT_TLS_GD_P (tls_type))
2145 {
2146 s = htab->elf.sgot;
2147 h->got.offset = s->size;
2148 s->size += GOT_ENTRY_SIZE;
2149 if (GOT_TLS_GD_P (tls_type))
2150 s->size += GOT_ENTRY_SIZE;
2151 }
2152 dyn = htab->elf.dynamic_sections_created;
2153 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
2154 and two if global.
2155 R_X86_64_GOTTPOFF needs one dynamic relocation. */
2156 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
2157 || tls_type == GOT_TLS_IE)
2158 htab->elf.srelgot->size += bed->s->sizeof_rela;
2159 else if (GOT_TLS_GD_P (tls_type))
2160 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
2161 else if (! GOT_TLS_GDESC_P (tls_type)
2162 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2163 || h->root.type != bfd_link_hash_undefweak)
2164 && (info->shared
2165 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2166 htab->elf.srelgot->size += bed->s->sizeof_rela;
2167 if (GOT_TLS_GDESC_P (tls_type))
2168 {
2169 htab->elf.srelplt->size += bed->s->sizeof_rela;
2170 htab->tlsdesc_plt = (bfd_vma) -1;
2171 }
2172 }
2173 else
2174 h->got.offset = (bfd_vma) -1;
2175
2176 if (eh->dyn_relocs == NULL)
2177 return TRUE;
2178
2179 /* In the shared -Bsymbolic case, discard space allocated for
2180 dynamic pc-relative relocs against symbols which turn out to be
2181 defined in regular objects. For the normal shared case, discard
2182 space for pc-relative relocs that have become local due to symbol
2183 visibility changes. */
2184
2185 if (info->shared)
2186 {
2187 /* Relocs that use pc_count are those that appear on a call
2188 insn, or certain REL relocs that can generated via assembly.
2189 We want calls to protected symbols to resolve directly to the
2190 function rather than going via the plt. If people want
2191 function pointer comparisons to work as expected then they
2192 should avoid writing weird assembly. */
2193 if (SYMBOL_CALLS_LOCAL (info, h))
2194 {
2195 struct elf_dyn_relocs **pp;
2196
2197 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2198 {
2199 p->count -= p->pc_count;
2200 p->pc_count = 0;
2201 if (p->count == 0)
2202 *pp = p->next;
2203 else
2204 pp = &p->next;
2205 }
2206 }
2207
2208 /* Also discard relocs on undefined weak syms with non-default
2209 visibility. */
2210 if (eh->dyn_relocs != NULL
2211 && h->root.type == bfd_link_hash_undefweak)
2212 {
2213 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2214 eh->dyn_relocs = NULL;
2215
2216 /* Make sure undefined weak symbols are output as a dynamic
2217 symbol in PIEs. */
2218 else if (h->dynindx == -1
2219 && ! h->forced_local
2220 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2221 return FALSE;
2222 }
2223
2224 }
2225 else if (ELIMINATE_COPY_RELOCS)
2226 {
2227 /* For the non-shared case, discard space for relocs against
2228 symbols which turn out to need copy relocs or are not
2229 dynamic. */
2230
2231 if (!h->non_got_ref
2232 && ((h->def_dynamic
2233 && !h->def_regular)
2234 || (htab->elf.dynamic_sections_created
2235 && (h->root.type == bfd_link_hash_undefweak
2236 || h->root.type == bfd_link_hash_undefined))))
2237 {
2238 /* Make sure this symbol is output as a dynamic symbol.
2239 Undefined weak syms won't yet be marked as dynamic. */
2240 if (h->dynindx == -1
2241 && ! h->forced_local
2242 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2243 return FALSE;
2244
2245 /* If that succeeded, we know we'll be keeping all the
2246 relocs. */
2247 if (h->dynindx != -1)
2248 goto keep;
2249 }
2250
2251 eh->dyn_relocs = NULL;
2252
2253 keep: ;
2254 }
2255
2256 /* Finally, allocate space. */
2257 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2258 {
2259 asection * sreloc;
2260
2261 sreloc = elf_section_data (p->sec)->sreloc;
2262
2263 BFD_ASSERT (sreloc != NULL);
2264
2265 sreloc->size += p->count * bed->s->sizeof_rela;
2266 }
2267
2268 return TRUE;
2269 }
2270
2271 /* Allocate space in .plt, .got and associated reloc sections for
2272 local dynamic relocs. */
2273
2274 static bfd_boolean
2275 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
2276 {
2277 struct elf_link_hash_entry *h
2278 = (struct elf_link_hash_entry *) *slot;
2279
2280 if (h->type != STT_GNU_IFUNC
2281 || !h->def_regular
2282 || !h->ref_regular
2283 || !h->forced_local
2284 || h->root.type != bfd_link_hash_defined)
2285 abort ();
2286
2287 return elf_x86_64_allocate_dynrelocs (h, inf);
2288 }
2289
2290 /* Find any dynamic relocs that apply to read-only sections. */
2291
2292 static bfd_boolean
2293 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
2294 void * inf)
2295 {
2296 struct elf_x86_64_link_hash_entry *eh;
2297 struct elf_dyn_relocs *p;
2298
2299 if (h->root.type == bfd_link_hash_warning)
2300 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2301
2302 /* Skip local IFUNC symbols. */
2303 if (h->forced_local && h->type == STT_GNU_IFUNC)
2304 return TRUE;
2305
2306 eh = (struct elf_x86_64_link_hash_entry *) h;
2307 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2308 {
2309 asection *s = p->sec->output_section;
2310
2311 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2312 {
2313 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2314
2315 info->flags |= DF_TEXTREL;
2316
2317 /* Not an error, just cut short the traversal. */
2318 return FALSE;
2319 }
2320 }
2321 return TRUE;
2322 }
2323
2324 /* Set the sizes of the dynamic sections. */
2325
2326 static bfd_boolean
2327 elf_x86_64_size_dynamic_sections (bfd *output_bfd,
2328 struct bfd_link_info *info)
2329 {
2330 struct elf_x86_64_link_hash_table *htab;
2331 bfd *dynobj;
2332 asection *s;
2333 bfd_boolean relocs;
2334 bfd *ibfd;
2335 const struct elf_backend_data *bed;
2336
2337 htab = elf_x86_64_hash_table (info);
2338 if (htab == NULL)
2339 return FALSE;
2340 bed = get_elf_backend_data (output_bfd);
2341
2342 dynobj = htab->elf.dynobj;
2343 if (dynobj == NULL)
2344 abort ();
2345
2346 if (htab->elf.dynamic_sections_created)
2347 {
2348 /* Set the contents of the .interp section to the interpreter. */
2349 if (info->executable)
2350 {
2351 s = bfd_get_section_by_name (dynobj, ".interp");
2352 if (s == NULL)
2353 abort ();
2354 s->size = htab->dynamic_interpreter_size;
2355 s->contents = (unsigned char *) htab->dynamic_interpreter;
2356 }
2357 }
2358
2359 /* Set up .got offsets for local syms, and space for local dynamic
2360 relocs. */
2361 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2362 {
2363 bfd_signed_vma *local_got;
2364 bfd_signed_vma *end_local_got;
2365 char *local_tls_type;
2366 bfd_vma *local_tlsdesc_gotent;
2367 bfd_size_type locsymcount;
2368 Elf_Internal_Shdr *symtab_hdr;
2369 asection *srel;
2370
2371 if (! is_x86_64_elf (ibfd))
2372 continue;
2373
2374 for (s = ibfd->sections; s != NULL; s = s->next)
2375 {
2376 struct elf_dyn_relocs *p;
2377
2378 for (p = (struct elf_dyn_relocs *)
2379 (elf_section_data (s)->local_dynrel);
2380 p != NULL;
2381 p = p->next)
2382 {
2383 if (!bfd_is_abs_section (p->sec)
2384 && bfd_is_abs_section (p->sec->output_section))
2385 {
2386 /* Input section has been discarded, either because
2387 it is a copy of a linkonce section or due to
2388 linker script /DISCARD/, so we'll be discarding
2389 the relocs too. */
2390 }
2391 else if (p->count != 0)
2392 {
2393 srel = elf_section_data (p->sec)->sreloc;
2394 srel->size += p->count * bed->s->sizeof_rela;
2395 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2396 info->flags |= DF_TEXTREL;
2397 }
2398 }
2399 }
2400
2401 local_got = elf_local_got_refcounts (ibfd);
2402 if (!local_got)
2403 continue;
2404
2405 symtab_hdr = &elf_symtab_hdr (ibfd);
2406 locsymcount = symtab_hdr->sh_info;
2407 end_local_got = local_got + locsymcount;
2408 local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
2409 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
2410 s = htab->elf.sgot;
2411 srel = htab->elf.srelgot;
2412 for (; local_got < end_local_got;
2413 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
2414 {
2415 *local_tlsdesc_gotent = (bfd_vma) -1;
2416 if (*local_got > 0)
2417 {
2418 if (GOT_TLS_GDESC_P (*local_tls_type))
2419 {
2420 *local_tlsdesc_gotent = htab->elf.sgotplt->size
2421 - elf_x86_64_compute_jump_table_size (htab);
2422 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
2423 *local_got = (bfd_vma) -2;
2424 }
2425 if (! GOT_TLS_GDESC_P (*local_tls_type)
2426 || GOT_TLS_GD_P (*local_tls_type))
2427 {
2428 *local_got = s->size;
2429 s->size += GOT_ENTRY_SIZE;
2430 if (GOT_TLS_GD_P (*local_tls_type))
2431 s->size += GOT_ENTRY_SIZE;
2432 }
2433 if (info->shared
2434 || GOT_TLS_GD_ANY_P (*local_tls_type)
2435 || *local_tls_type == GOT_TLS_IE)
2436 {
2437 if (GOT_TLS_GDESC_P (*local_tls_type))
2438 {
2439 htab->elf.srelplt->size
2440 += bed->s->sizeof_rela;
2441 htab->tlsdesc_plt = (bfd_vma) -1;
2442 }
2443 if (! GOT_TLS_GDESC_P (*local_tls_type)
2444 || GOT_TLS_GD_P (*local_tls_type))
2445 srel->size += bed->s->sizeof_rela;
2446 }
2447 }
2448 else
2449 *local_got = (bfd_vma) -1;
2450 }
2451 }
2452
2453 if (htab->tls_ld_got.refcount > 0)
2454 {
2455 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2456 relocs. */
2457 htab->tls_ld_got.offset = htab->elf.sgot->size;
2458 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
2459 htab->elf.srelgot->size += bed->s->sizeof_rela;
2460 }
2461 else
2462 htab->tls_ld_got.offset = -1;
2463
2464 /* Allocate global sym .plt and .got entries, and space for global
2465 sym dynamic relocs. */
2466 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
2467 info);
2468
2469 /* Allocate .plt and .got entries, and space for local symbols. */
2470 htab_traverse (htab->loc_hash_table,
2471 elf_x86_64_allocate_local_dynrelocs,
2472 info);
2473
2474 /* For every jump slot reserved in the sgotplt, reloc_count is
2475 incremented. However, when we reserve space for TLS descriptors,
2476 it's not incremented, so in order to compute the space reserved
2477 for them, it suffices to multiply the reloc count by the jump
2478 slot size. */
2479 if (htab->elf.srelplt)
2480 htab->sgotplt_jump_table_size
2481 = elf_x86_64_compute_jump_table_size (htab);
2482
2483 if (htab->tlsdesc_plt)
2484 {
2485 /* If we're not using lazy TLS relocations, don't generate the
2486 PLT and GOT entries they require. */
2487 if ((info->flags & DF_BIND_NOW))
2488 htab->tlsdesc_plt = 0;
2489 else
2490 {
2491 htab->tlsdesc_got = htab->elf.sgot->size;
2492 htab->elf.sgot->size += GOT_ENTRY_SIZE;
2493 /* Reserve room for the initial entry.
2494 FIXME: we could probably do away with it in this case. */
2495 if (htab->elf.splt->size == 0)
2496 htab->elf.splt->size += PLT_ENTRY_SIZE;
2497 htab->tlsdesc_plt = htab->elf.splt->size;
2498 htab->elf.splt->size += PLT_ENTRY_SIZE;
2499 }
2500 }
2501
2502 if (htab->elf.sgotplt)
2503 {
2504 struct elf_link_hash_entry *got;
2505 got = elf_link_hash_lookup (elf_hash_table (info),
2506 "_GLOBAL_OFFSET_TABLE_",
2507 FALSE, FALSE, FALSE);
2508
2509 /* Don't allocate .got.plt section if there are no GOT nor PLT
2510 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
2511 if ((got == NULL
2512 || !got->ref_regular_nonweak)
2513 && (htab->elf.sgotplt->size
2514 == get_elf_backend_data (output_bfd)->got_header_size)
2515 && (htab->elf.splt == NULL
2516 || htab->elf.splt->size == 0)
2517 && (htab->elf.sgot == NULL
2518 || htab->elf.sgot->size == 0)
2519 && (htab->elf.iplt == NULL
2520 || htab->elf.iplt->size == 0)
2521 && (htab->elf.igotplt == NULL
2522 || htab->elf.igotplt->size == 0))
2523 htab->elf.sgotplt->size = 0;
2524 }
2525
2526 /* We now have determined the sizes of the various dynamic sections.
2527 Allocate memory for them. */
2528 relocs = FALSE;
2529 for (s = dynobj->sections; s != NULL; s = s->next)
2530 {
2531 if ((s->flags & SEC_LINKER_CREATED) == 0)
2532 continue;
2533
2534 if (s == htab->elf.splt
2535 || s == htab->elf.sgot
2536 || s == htab->elf.sgotplt
2537 || s == htab->elf.iplt
2538 || s == htab->elf.igotplt
2539 || s == htab->sdynbss)
2540 {
2541 /* Strip this section if we don't need it; see the
2542 comment below. */
2543 }
2544 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
2545 {
2546 if (s->size != 0 && s != htab->elf.srelplt)
2547 relocs = TRUE;
2548
2549 /* We use the reloc_count field as a counter if we need
2550 to copy relocs into the output file. */
2551 if (s != htab->elf.srelplt)
2552 s->reloc_count = 0;
2553 }
2554 else
2555 {
2556 /* It's not one of our sections, so don't allocate space. */
2557 continue;
2558 }
2559
2560 if (s->size == 0)
2561 {
2562 /* If we don't need this section, strip it from the
2563 output file. This is mostly to handle .rela.bss and
2564 .rela.plt. We must create both sections in
2565 create_dynamic_sections, because they must be created
2566 before the linker maps input sections to output
2567 sections. The linker does that before
2568 adjust_dynamic_symbol is called, and it is that
2569 function which decides whether anything needs to go
2570 into these sections. */
2571
2572 s->flags |= SEC_EXCLUDE;
2573 continue;
2574 }
2575
2576 if ((s->flags & SEC_HAS_CONTENTS) == 0)
2577 continue;
2578
2579 /* Allocate memory for the section contents. We use bfd_zalloc
2580 here in case unused entries are not reclaimed before the
2581 section's contents are written out. This should not happen,
2582 but this way if it does, we get a R_X86_64_NONE reloc instead
2583 of garbage. */
2584 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2585 if (s->contents == NULL)
2586 return FALSE;
2587 }
2588
2589 if (htab->elf.dynamic_sections_created)
2590 {
2591 /* Add some entries to the .dynamic section. We fill in the
2592 values later, in elf_x86_64_finish_dynamic_sections, but we
2593 must add the entries now so that we get the correct size for
2594 the .dynamic section. The DT_DEBUG entry is filled in by the
2595 dynamic linker and used by the debugger. */
2596 #define add_dynamic_entry(TAG, VAL) \
2597 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2598
2599 if (info->executable)
2600 {
2601 if (!add_dynamic_entry (DT_DEBUG, 0))
2602 return FALSE;
2603 }
2604
2605 if (htab->elf.splt->size != 0)
2606 {
2607 if (!add_dynamic_entry (DT_PLTGOT, 0)
2608 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2609 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2610 || !add_dynamic_entry (DT_JMPREL, 0))
2611 return FALSE;
2612
2613 if (htab->tlsdesc_plt
2614 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
2615 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
2616 return FALSE;
2617 }
2618
2619 if (relocs)
2620 {
2621 if (!add_dynamic_entry (DT_RELA, 0)
2622 || !add_dynamic_entry (DT_RELASZ, 0)
2623 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
2624 return FALSE;
2625
2626 /* If any dynamic relocs apply to a read-only section,
2627 then we need a DT_TEXTREL entry. */
2628 if ((info->flags & DF_TEXTREL) == 0)
2629 elf_link_hash_traverse (&htab->elf,
2630 elf_x86_64_readonly_dynrelocs,
2631 info);
2632
2633 if ((info->flags & DF_TEXTREL) != 0)
2634 {
2635 if (!add_dynamic_entry (DT_TEXTREL, 0))
2636 return FALSE;
2637 }
2638 }
2639 }
2640 #undef add_dynamic_entry
2641
2642 return TRUE;
2643 }
2644
2645 static bfd_boolean
2646 elf_x86_64_always_size_sections (bfd *output_bfd,
2647 struct bfd_link_info *info)
2648 {
2649 asection *tls_sec = elf_hash_table (info)->tls_sec;
2650
2651 if (tls_sec)
2652 {
2653 struct elf_link_hash_entry *tlsbase;
2654
2655 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
2656 "_TLS_MODULE_BASE_",
2657 FALSE, FALSE, FALSE);
2658
2659 if (tlsbase && tlsbase->type == STT_TLS)
2660 {
2661 struct elf_x86_64_link_hash_table *htab;
2662 struct bfd_link_hash_entry *bh = NULL;
2663 const struct elf_backend_data *bed
2664 = get_elf_backend_data (output_bfd);
2665
2666 htab = elf_x86_64_hash_table (info);
2667 if (htab == NULL)
2668 return FALSE;
2669
2670 if (!(_bfd_generic_link_add_one_symbol
2671 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
2672 tls_sec, 0, NULL, FALSE,
2673 bed->collect, &bh)))
2674 return FALSE;
2675
2676 htab->tls_module_base = bh;
2677
2678 tlsbase = (struct elf_link_hash_entry *)bh;
2679 tlsbase->def_regular = 1;
2680 tlsbase->other = STV_HIDDEN;
2681 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
2682 }
2683 }
2684
2685 return TRUE;
2686 }
2687
2688 /* _TLS_MODULE_BASE_ needs to be treated especially when linking
2689 executables. Rather than setting it to the beginning of the TLS
2690 section, we have to set it to the end. This function may be called
2691 multiple times, it is idempotent. */
2692
2693 static void
2694 elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
2695 {
2696 struct elf_x86_64_link_hash_table *htab;
2697 struct bfd_link_hash_entry *base;
2698
2699 if (!info->executable)
2700 return;
2701
2702 htab = elf_x86_64_hash_table (info);
2703 if (htab == NULL)
2704 return;
2705
2706 base = htab->tls_module_base;
2707 if (base == NULL)
2708 return;
2709
2710 base->u.def.value = htab->elf.tls_size;
2711 }
2712
2713 /* Return the base VMA address which should be subtracted from real addresses
2714 when resolving @dtpoff relocation.
2715 This is PT_TLS segment p_vaddr. */
2716
2717 static bfd_vma
2718 elf_x86_64_dtpoff_base (struct bfd_link_info *info)
2719 {
2720 /* If tls_sec is NULL, we should have signalled an error already. */
2721 if (elf_hash_table (info)->tls_sec == NULL)
2722 return 0;
2723 return elf_hash_table (info)->tls_sec->vma;
2724 }
2725
2726 /* Return the relocation value for @tpoff relocation
2727 if STT_TLS virtual address is ADDRESS. */
2728
2729 static bfd_vma
2730 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
2731 {
2732 struct elf_link_hash_table *htab = elf_hash_table (info);
2733 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
2734 bfd_vma static_tls_size;
2735
2736 /* If tls_segment is NULL, we should have signalled an error already. */
2737 if (htab->tls_sec == NULL)
2738 return 0;
2739
2740 /* Consider special static TLS alignment requirements. */
2741 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
2742 return address - static_tls_size - htab->tls_sec->vma;
2743 }
2744
2745 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2746 branch? */
2747
2748 static bfd_boolean
2749 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2750 {
2751 /* Opcode Instruction
2752 0xe8 call
2753 0xe9 jump
2754 0x0f 0x8x conditional jump */
2755 return ((offset > 0
2756 && (contents [offset - 1] == 0xe8
2757 || contents [offset - 1] == 0xe9))
2758 || (offset > 1
2759 && contents [offset - 2] == 0x0f
2760 && (contents [offset - 1] & 0xf0) == 0x80));
2761 }
2762
2763 /* Relocate an x86_64 ELF section. */
2764
2765 static bfd_boolean
2766 elf_x86_64_relocate_section (bfd *output_bfd,
2767 struct bfd_link_info *info,
2768 bfd *input_bfd,
2769 asection *input_section,
2770 bfd_byte *contents,
2771 Elf_Internal_Rela *relocs,
2772 Elf_Internal_Sym *local_syms,
2773 asection **local_sections)
2774 {
2775 struct elf_x86_64_link_hash_table *htab;
2776 Elf_Internal_Shdr *symtab_hdr;
2777 struct elf_link_hash_entry **sym_hashes;
2778 bfd_vma *local_got_offsets;
2779 bfd_vma *local_tlsdesc_gotents;
2780 Elf_Internal_Rela *rel;
2781 Elf_Internal_Rela *relend;
2782
2783 BFD_ASSERT (is_x86_64_elf (input_bfd));
2784
2785 htab = elf_x86_64_hash_table (info);
2786 if (htab == NULL)
2787 return FALSE;
2788 symtab_hdr = &elf_symtab_hdr (input_bfd);
2789 sym_hashes = elf_sym_hashes (input_bfd);
2790 local_got_offsets = elf_local_got_offsets (input_bfd);
2791 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
2792
2793 elf_x86_64_set_tls_module_base (info);
2794
2795 rel = relocs;
2796 relend = relocs + input_section->reloc_count;
2797 for (; rel < relend; rel++)
2798 {
2799 unsigned int r_type;
2800 reloc_howto_type *howto;
2801 unsigned long r_symndx;
2802 struct elf_link_hash_entry *h;
2803 Elf_Internal_Sym *sym;
2804 asection *sec;
2805 bfd_vma off, offplt;
2806 bfd_vma relocation;
2807 bfd_boolean unresolved_reloc;
2808 bfd_reloc_status_type r;
2809 int tls_type;
2810 asection *base_got;
2811
2812 r_type = ELF32_R_TYPE (rel->r_info);
2813 if (r_type == (int) R_X86_64_GNU_VTINHERIT
2814 || r_type == (int) R_X86_64_GNU_VTENTRY)
2815 continue;
2816
2817 if (r_type >= R_X86_64_max)
2818 {
2819 bfd_set_error (bfd_error_bad_value);
2820 return FALSE;
2821 }
2822
2823 howto = x86_64_elf_howto_table + r_type;
2824 r_symndx = htab->r_sym (rel->r_info);
2825 h = NULL;
2826 sym = NULL;
2827 sec = NULL;
2828 unresolved_reloc = FALSE;
2829 if (r_symndx < symtab_hdr->sh_info)
2830 {
2831 sym = local_syms + r_symndx;
2832 sec = local_sections[r_symndx];
2833
2834 relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
2835 &sec, rel);
2836
2837 /* Relocate against local STT_GNU_IFUNC symbol. */
2838 if (!info->relocatable
2839 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
2840 {
2841 h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
2842 rel, FALSE);
2843 if (h == NULL)
2844 abort ();
2845
2846 /* Set STT_GNU_IFUNC symbol value. */
2847 h->root.u.def.value = sym->st_value;
2848 h->root.u.def.section = sec;
2849 }
2850 }
2851 else
2852 {
2853 bfd_boolean warned ATTRIBUTE_UNUSED;
2854
2855 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2856 r_symndx, symtab_hdr, sym_hashes,
2857 h, sec, relocation,
2858 unresolved_reloc, warned);
2859 }
2860
2861 if (sec != NULL && elf_discarded_section (sec))
2862 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2863 rel, relend, howto, contents);
2864
2865 if (info->relocatable)
2866 continue;
2867
2868 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
2869 it here if it is defined in a non-shared object. */
2870 if (h != NULL
2871 && h->type == STT_GNU_IFUNC
2872 && h->def_regular)
2873 {
2874 asection *plt;
2875 bfd_vma plt_index;
2876 const char *name;
2877
2878 if ((input_section->flags & SEC_ALLOC) == 0
2879 || h->plt.offset == (bfd_vma) -1)
2880 abort ();
2881
2882 /* STT_GNU_IFUNC symbol must go through PLT. */
2883 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
2884 relocation = (plt->output_section->vma
2885 + plt->output_offset + h->plt.offset);
2886
2887 switch (r_type)
2888 {
2889 default:
2890 if (h->root.root.string)
2891 name = h->root.root.string;
2892 else
2893 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
2894 NULL);
2895 (*_bfd_error_handler)
2896 (_("%B: relocation %s against STT_GNU_IFUNC "
2897 "symbol `%s' isn't handled by %s"), input_bfd,
2898 x86_64_elf_howto_table[r_type].name,
2899 name, __FUNCTION__);
2900 bfd_set_error (bfd_error_bad_value);
2901 return FALSE;
2902
2903 case R_X86_64_32S:
2904 if (info->shared)
2905 abort ();
2906 goto do_relocation;
2907
2908 case R_X86_64_32:
2909 if (ABI_64_P (output_bfd))
2910 goto do_relocation;
2911 /* FALLTHROUGH */
2912 case R_X86_64_64:
2913 if (rel->r_addend != 0)
2914 {
2915 if (h->root.root.string)
2916 name = h->root.root.string;
2917 else
2918 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
2919 sym, NULL);
2920 (*_bfd_error_handler)
2921 (_("%B: relocation %s against STT_GNU_IFUNC "
2922 "symbol `%s' has non-zero addend: %d"),
2923 input_bfd, x86_64_elf_howto_table[r_type].name,
2924 name, rel->r_addend);
2925 bfd_set_error (bfd_error_bad_value);
2926 return FALSE;
2927 }
2928
2929 /* Generate dynamic relcoation only when there is a
2930 non-GOF reference in a shared object. */
2931 if (info->shared && h->non_got_ref)
2932 {
2933 Elf_Internal_Rela outrel;
2934 asection *sreloc;
2935
2936 /* Need a dynamic relocation to get the real function
2937 address. */
2938 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
2939 info,
2940 input_section,
2941 rel->r_offset);
2942 if (outrel.r_offset == (bfd_vma) -1
2943 || outrel.r_offset == (bfd_vma) -2)
2944 abort ();
2945
2946 outrel.r_offset += (input_section->output_section->vma
2947 + input_section->output_offset);
2948
2949 if (h->dynindx == -1
2950 || h->forced_local
2951 || info->executable)
2952 {
2953 /* This symbol is resolved locally. */
2954 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
2955 outrel.r_addend = (h->root.u.def.value
2956 + h->root.u.def.section->output_section->vma
2957 + h->root.u.def.section->output_offset);
2958 }
2959 else
2960 {
2961 outrel.r_info = htab->r_info (h->dynindx, r_type);
2962 outrel.r_addend = 0;
2963 }
2964
2965 sreloc = htab->elf.irelifunc;
2966 elf_append_rela (output_bfd, sreloc, &outrel);
2967
2968 /* If this reloc is against an external symbol, we
2969 do not want to fiddle with the addend. Otherwise,
2970 we need to include the symbol value so that it
2971 becomes an addend for the dynamic reloc. For an
2972 internal symbol, we have updated addend. */
2973 continue;
2974 }
2975 /* FALLTHROUGH */
2976 case R_X86_64_PC32:
2977 case R_X86_64_PC64:
2978 case R_X86_64_PLT32:
2979 goto do_relocation;
2980
2981 case R_X86_64_GOTPCREL:
2982 case R_X86_64_GOTPCREL64:
2983 base_got = htab->elf.sgot;
2984 off = h->got.offset;
2985
2986 if (base_got == NULL)
2987 abort ();
2988
2989 if (off == (bfd_vma) -1)
2990 {
2991 /* We can't use h->got.offset here to save state, or
2992 even just remember the offset, as finish_dynamic_symbol
2993 would use that as offset into .got. */
2994
2995 if (htab->elf.splt != NULL)
2996 {
2997 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2998 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2999 base_got = htab->elf.sgotplt;
3000 }
3001 else
3002 {
3003 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3004 off = plt_index * GOT_ENTRY_SIZE;
3005 base_got = htab->elf.igotplt;
3006 }
3007
3008 if (h->dynindx == -1
3009 || h->forced_local
3010 || info->symbolic)
3011 {
3012 /* This references the local defitionion. We must
3013 initialize this entry in the global offset table.
3014 Since the offset must always be a multiple of 8,
3015 we use the least significant bit to record
3016 whether we have initialized it already.
3017
3018 When doing a dynamic link, we create a .rela.got
3019 relocation entry to initialize the value. This
3020 is done in the finish_dynamic_symbol routine. */
3021 if ((off & 1) != 0)
3022 off &= ~1;
3023 else
3024 {
3025 bfd_put_64 (output_bfd, relocation,
3026 base_got->contents + off);
3027 /* Note that this is harmless for the GOTPLT64
3028 case, as -1 | 1 still is -1. */
3029 h->got.offset |= 1;
3030 }
3031 }
3032 }
3033
3034 relocation = (base_got->output_section->vma
3035 + base_got->output_offset + off);
3036
3037 goto do_relocation;
3038 }
3039 }
3040
3041 /* When generating a shared object, the relocations handled here are
3042 copied into the output file to be resolved at run time. */
3043 switch (r_type)
3044 {
3045 case R_X86_64_GOT32:
3046 case R_X86_64_GOT64:
3047 /* Relocation is to the entry for this symbol in the global
3048 offset table. */
3049 case R_X86_64_GOTPCREL:
3050 case R_X86_64_GOTPCREL64:
3051 /* Use global offset table entry as symbol value. */
3052 case R_X86_64_GOTPLT64:
3053 /* This is the same as GOT64 for relocation purposes, but
3054 indicates the existence of a PLT entry. The difficulty is,
3055 that we must calculate the GOT slot offset from the PLT
3056 offset, if this symbol got a PLT entry (it was global).
3057 Additionally if it's computed from the PLT entry, then that
3058 GOT offset is relative to .got.plt, not to .got. */
3059 base_got = htab->elf.sgot;
3060
3061 if (htab->elf.sgot == NULL)
3062 abort ();
3063
3064 if (h != NULL)
3065 {
3066 bfd_boolean dyn;
3067
3068 off = h->got.offset;
3069 if (h->needs_plt
3070 && h->plt.offset != (bfd_vma)-1
3071 && off == (bfd_vma)-1)
3072 {
3073 /* We can't use h->got.offset here to save
3074 state, or even just remember the offset, as
3075 finish_dynamic_symbol would use that as offset into
3076 .got. */
3077 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3078 off = (plt_index + 3) * GOT_ENTRY_SIZE;
3079 base_got = htab->elf.sgotplt;
3080 }
3081
3082 dyn = htab->elf.dynamic_sections_created;
3083
3084 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3085 || (info->shared
3086 && SYMBOL_REFERENCES_LOCAL (info, h))
3087 || (ELF_ST_VISIBILITY (h->other)
3088 && h->root.type == bfd_link_hash_undefweak))
3089 {
3090 /* This is actually a static link, or it is a -Bsymbolic
3091 link and the symbol is defined locally, or the symbol
3092 was forced to be local because of a version file. We
3093 must initialize this entry in the global offset table.
3094 Since the offset must always be a multiple of 8, we
3095 use the least significant bit to record whether we
3096 have initialized it already.
3097
3098 When doing a dynamic link, we create a .rela.got
3099 relocation entry to initialize the value. This is
3100 done in the finish_dynamic_symbol routine. */
3101 if ((off & 1) != 0)
3102 off &= ~1;
3103 else
3104 {
3105 bfd_put_64 (output_bfd, relocation,
3106 base_got->contents + off);
3107 /* Note that this is harmless for the GOTPLT64 case,
3108 as -1 | 1 still is -1. */
3109 h->got.offset |= 1;
3110 }
3111 }
3112 else
3113 unresolved_reloc = FALSE;
3114 }
3115 else
3116 {
3117 if (local_got_offsets == NULL)
3118 abort ();
3119
3120 off = local_got_offsets[r_symndx];
3121
3122 /* The offset must always be a multiple of 8. We use
3123 the least significant bit to record whether we have
3124 already generated the necessary reloc. */
3125 if ((off & 1) != 0)
3126 off &= ~1;
3127 else
3128 {
3129 bfd_put_64 (output_bfd, relocation,
3130 base_got->contents + off);
3131
3132 if (info->shared)
3133 {
3134 asection *s;
3135 Elf_Internal_Rela outrel;
3136
3137 /* We need to generate a R_X86_64_RELATIVE reloc
3138 for the dynamic linker. */
3139 s = htab->elf.srelgot;
3140 if (s == NULL)
3141 abort ();
3142
3143 outrel.r_offset = (base_got->output_section->vma
3144 + base_got->output_offset
3145 + off);
3146 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3147 outrel.r_addend = relocation;
3148 elf_append_rela (output_bfd, s, &outrel);
3149 }
3150
3151 local_got_offsets[r_symndx] |= 1;
3152 }
3153 }
3154
3155 if (off >= (bfd_vma) -2)
3156 abort ();
3157
3158 relocation = base_got->output_section->vma
3159 + base_got->output_offset + off;
3160 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
3161 relocation -= htab->elf.sgotplt->output_section->vma
3162 - htab->elf.sgotplt->output_offset;
3163
3164 break;
3165
3166 case R_X86_64_GOTOFF64:
3167 /* Relocation is relative to the start of the global offset
3168 table. */
3169
3170 /* Check to make sure it isn't a protected function symbol
3171 for shared library since it may not be local when used
3172 as function address. */
3173 if (info->shared
3174 && h
3175 && h->def_regular
3176 && h->type == STT_FUNC
3177 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
3178 {
3179 (*_bfd_error_handler)
3180 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
3181 input_bfd, h->root.root.string);
3182 bfd_set_error (bfd_error_bad_value);
3183 return FALSE;
3184 }
3185
3186 /* Note that sgot is not involved in this
3187 calculation. We always want the start of .got.plt. If we
3188 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
3189 permitted by the ABI, we might have to change this
3190 calculation. */
3191 relocation -= htab->elf.sgotplt->output_section->vma
3192 + htab->elf.sgotplt->output_offset;
3193 break;
3194
3195 case R_X86_64_GOTPC32:
3196 case R_X86_64_GOTPC64:
3197 /* Use global offset table as symbol value. */
3198 relocation = htab->elf.sgotplt->output_section->vma
3199 + htab->elf.sgotplt->output_offset;
3200 unresolved_reloc = FALSE;
3201 break;
3202
3203 case R_X86_64_PLTOFF64:
3204 /* Relocation is PLT entry relative to GOT. For local
3205 symbols it's the symbol itself relative to GOT. */
3206 if (h != NULL
3207 /* See PLT32 handling. */
3208 && h->plt.offset != (bfd_vma) -1
3209 && htab->elf.splt != NULL)
3210 {
3211 relocation = (htab->elf.splt->output_section->vma
3212 + htab->elf.splt->output_offset
3213 + h->plt.offset);
3214 unresolved_reloc = FALSE;
3215 }
3216
3217 relocation -= htab->elf.sgotplt->output_section->vma
3218 + htab->elf.sgotplt->output_offset;
3219 break;
3220
3221 case R_X86_64_PLT32:
3222 /* Relocation is to the entry for this symbol in the
3223 procedure linkage table. */
3224
3225 /* Resolve a PLT32 reloc against a local symbol directly,
3226 without using the procedure linkage table. */
3227 if (h == NULL)
3228 break;
3229
3230 if (h->plt.offset == (bfd_vma) -1
3231 || htab->elf.splt == NULL)
3232 {
3233 /* We didn't make a PLT entry for this symbol. This
3234 happens when statically linking PIC code, or when
3235 using -Bsymbolic. */
3236 break;
3237 }
3238
3239 relocation = (htab->elf.splt->output_section->vma
3240 + htab->elf.splt->output_offset
3241 + h->plt.offset);
3242 unresolved_reloc = FALSE;
3243 break;
3244
3245 case R_X86_64_PC8:
3246 case R_X86_64_PC16:
3247 case R_X86_64_PC32:
3248 if (info->shared
3249 && ABI_64_P (output_bfd)
3250 && (input_section->flags & SEC_ALLOC) != 0
3251 && (input_section->flags & SEC_READONLY) != 0
3252 && h != NULL)
3253 {
3254 bfd_boolean fail = FALSE;
3255 bfd_boolean branch
3256 = (r_type == R_X86_64_PC32
3257 && is_32bit_relative_branch (contents, rel->r_offset));
3258
3259 if (SYMBOL_REFERENCES_LOCAL (info, h))
3260 {
3261 /* Symbol is referenced locally. Make sure it is
3262 defined locally or for a branch. */
3263 fail = !h->def_regular && !branch;
3264 }
3265 else
3266 {
3267 /* Symbol isn't referenced locally. We only allow
3268 branch to symbol with non-default visibility. */
3269 fail = (!branch
3270 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
3271 }
3272
3273 if (fail)
3274 {
3275 const char *fmt;
3276 const char *v;
3277 const char *pic = "";
3278
3279 switch (ELF_ST_VISIBILITY (h->other))
3280 {
3281 case STV_HIDDEN:
3282 v = _("hidden symbol");
3283 break;
3284 case STV_INTERNAL:
3285 v = _("internal symbol");
3286 break;
3287 case STV_PROTECTED:
3288 v = _("protected symbol");
3289 break;
3290 default:
3291 v = _("symbol");
3292 pic = _("; recompile with -fPIC");
3293 break;
3294 }
3295
3296 if (h->def_regular)
3297 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
3298 else
3299 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
3300
3301 (*_bfd_error_handler) (fmt, input_bfd,
3302 x86_64_elf_howto_table[r_type].name,
3303 v, h->root.root.string, pic);
3304 bfd_set_error (bfd_error_bad_value);
3305 return FALSE;
3306 }
3307 }
3308 /* Fall through. */
3309
3310 case R_X86_64_8:
3311 case R_X86_64_16:
3312 case R_X86_64_32:
3313 case R_X86_64_PC64:
3314 case R_X86_64_64:
3315 /* FIXME: The ABI says the linker should make sure the value is
3316 the same when it's zeroextended to 64 bit. */
3317
3318 if ((input_section->flags & SEC_ALLOC) == 0)
3319 break;
3320
3321 if ((info->shared
3322 && (h == NULL
3323 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3324 || h->root.type != bfd_link_hash_undefweak)
3325 && (! IS_X86_64_PCREL_TYPE (r_type)
3326 || ! SYMBOL_CALLS_LOCAL (info, h)))
3327 || (ELIMINATE_COPY_RELOCS
3328 && !info->shared
3329 && h != NULL
3330 && h->dynindx != -1
3331 && !h->non_got_ref
3332 && ((h->def_dynamic
3333 && !h->def_regular)
3334 || h->root.type == bfd_link_hash_undefweak
3335 || h->root.type == bfd_link_hash_undefined)))
3336 {
3337 Elf_Internal_Rela outrel;
3338 bfd_boolean skip, relocate;
3339 asection *sreloc;
3340
3341 /* When generating a shared object, these relocations
3342 are copied into the output file to be resolved at run
3343 time. */
3344 skip = FALSE;
3345 relocate = FALSE;
3346
3347 outrel.r_offset =
3348 _bfd_elf_section_offset (output_bfd, info, input_section,
3349 rel->r_offset);
3350 if (outrel.r_offset == (bfd_vma) -1)
3351 skip = TRUE;
3352 else if (outrel.r_offset == (bfd_vma) -2)
3353 skip = TRUE, relocate = TRUE;
3354
3355 outrel.r_offset += (input_section->output_section->vma
3356 + input_section->output_offset);
3357
3358 if (skip)
3359 memset (&outrel, 0, sizeof outrel);
3360
3361 /* h->dynindx may be -1 if this symbol was marked to
3362 become local. */
3363 else if (h != NULL
3364 && h->dynindx != -1
3365 && (IS_X86_64_PCREL_TYPE (r_type)
3366 || ! info->shared
3367 || ! SYMBOLIC_BIND (info, h)
3368 || ! h->def_regular))
3369 {
3370 outrel.r_info = htab->r_info (h->dynindx, r_type);
3371 outrel.r_addend = rel->r_addend;
3372 }
3373 else
3374 {
3375 /* This symbol is local, or marked to become local. */
3376 if (r_type == htab->pointer_r_type)
3377 {
3378 relocate = TRUE;
3379 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
3380 outrel.r_addend = relocation + rel->r_addend;
3381 }
3382 else
3383 {
3384 long sindx;
3385
3386 if (bfd_is_abs_section (sec))
3387 sindx = 0;
3388 else if (sec == NULL || sec->owner == NULL)
3389 {
3390 bfd_set_error (bfd_error_bad_value);
3391 return FALSE;
3392 }
3393 else
3394 {
3395 asection *osec;
3396
3397 /* We are turning this relocation into one
3398 against a section symbol. It would be
3399 proper to subtract the symbol's value,
3400 osec->vma, from the emitted reloc addend,
3401 but ld.so expects buggy relocs. */
3402 osec = sec->output_section;
3403 sindx = elf_section_data (osec)->dynindx;
3404 if (sindx == 0)
3405 {
3406 asection *oi = htab->elf.text_index_section;
3407 sindx = elf_section_data (oi)->dynindx;
3408 }
3409 BFD_ASSERT (sindx != 0);
3410 }
3411
3412 outrel.r_info = htab->r_info (sindx, r_type);
3413 outrel.r_addend = relocation + rel->r_addend;
3414 }
3415 }
3416
3417 sreloc = elf_section_data (input_section)->sreloc;
3418
3419 if (sreloc == NULL || sreloc->contents == NULL)
3420 {
3421 r = bfd_reloc_notsupported;
3422 goto check_relocation_error;
3423 }
3424
3425 elf_append_rela (output_bfd, sreloc, &outrel);
3426
3427 /* If this reloc is against an external symbol, we do
3428 not want to fiddle with the addend. Otherwise, we
3429 need to include the symbol value so that it becomes
3430 an addend for the dynamic reloc. */
3431 if (! relocate)
3432 continue;
3433 }
3434
3435 break;
3436
3437 case R_X86_64_TLSGD:
3438 case R_X86_64_GOTPC32_TLSDESC:
3439 case R_X86_64_TLSDESC_CALL:
3440 case R_X86_64_GOTTPOFF:
3441 tls_type = GOT_UNKNOWN;
3442 if (h == NULL && local_got_offsets)
3443 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
3444 else if (h != NULL)
3445 tls_type = elf_x86_64_hash_entry (h)->tls_type;
3446
3447 if (! elf_x86_64_tls_transition (info, input_bfd,
3448 input_section, contents,
3449 symtab_hdr, sym_hashes,
3450 &r_type, tls_type, rel,
3451 relend, h, r_symndx))
3452 return FALSE;
3453
3454 if (r_type == R_X86_64_TPOFF32)
3455 {
3456 bfd_vma roff = rel->r_offset;
3457
3458 BFD_ASSERT (! unresolved_reloc);
3459
3460 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3461 {
3462 /* GD->LE transition. For 64bit, change
3463 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3464 .word 0x6666; rex64; call __tls_get_addr
3465 into:
3466 movq %fs:0, %rax
3467 leaq foo@tpoff(%rax), %rax
3468 For 32bit, change
3469 leaq foo@tlsgd(%rip), %rdi
3470 .word 0x6666; rex64; call __tls_get_addr
3471 into:
3472 movl %fs:0, %eax
3473 leaq foo@tpoff(%rax), %rax */
3474 if (ABI_64_P (output_bfd))
3475 memcpy (contents + roff - 4,
3476 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3477 16);
3478 else
3479 memcpy (contents + roff - 3,
3480 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
3481 15);
3482 bfd_put_32 (output_bfd,
3483 elf_x86_64_tpoff (info, relocation),
3484 contents + roff + 8);
3485 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3486 rel++;
3487 continue;
3488 }
3489 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3490 {
3491 /* GDesc -> LE transition.
3492 It's originally something like:
3493 leaq x@tlsdesc(%rip), %rax
3494
3495 Change it to:
3496 movl $x@tpoff, %rax. */
3497
3498 unsigned int val, type;
3499
3500 type = bfd_get_8 (input_bfd, contents + roff - 3);
3501 val = bfd_get_8 (input_bfd, contents + roff - 1);
3502 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
3503 contents + roff - 3);
3504 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
3505 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
3506 contents + roff - 1);
3507 bfd_put_32 (output_bfd,
3508 elf_x86_64_tpoff (info, relocation),
3509 contents + roff);
3510 continue;
3511 }
3512 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3513 {
3514 /* GDesc -> LE transition.
3515 It's originally:
3516 call *(%rax)
3517 Turn it into:
3518 xchg %ax,%ax. */
3519 bfd_put_8 (output_bfd, 0x66, contents + roff);
3520 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3521 continue;
3522 }
3523 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
3524 {
3525 /* IE->LE transition:
3526 Originally it can be one of:
3527 movq foo@gottpoff(%rip), %reg
3528 addq foo@gottpoff(%rip), %reg
3529 We change it into:
3530 movq $foo, %reg
3531 leaq foo(%reg), %reg
3532 addq $foo, %reg. */
3533
3534 unsigned int val, type, reg;
3535
3536 val = bfd_get_8 (input_bfd, contents + roff - 3);
3537 type = bfd_get_8 (input_bfd, contents + roff - 2);
3538 reg = bfd_get_8 (input_bfd, contents + roff - 1);
3539 reg >>= 3;
3540 if (type == 0x8b)
3541 {
3542 /* movq */
3543 if (val == 0x4c)
3544 bfd_put_8 (output_bfd, 0x49,
3545 contents + roff - 3);
3546 else if (!ABI_64_P (output_bfd) && val == 0x44)
3547 bfd_put_8 (output_bfd, 0x41,
3548 contents + roff - 3);
3549 bfd_put_8 (output_bfd, 0xc7,
3550 contents + roff - 2);
3551 bfd_put_8 (output_bfd, 0xc0 | reg,
3552 contents + roff - 1);
3553 }
3554 else if (reg == 4)
3555 {
3556 /* addq -> addq - addressing with %rsp/%r12 is
3557 special */
3558 if (val == 0x4c)
3559 bfd_put_8 (output_bfd, 0x49,
3560 contents + roff - 3);
3561 else if (!ABI_64_P (output_bfd) && val == 0x44)
3562 bfd_put_8 (output_bfd, 0x41,
3563 contents + roff - 3);
3564 bfd_put_8 (output_bfd, 0x81,
3565 contents + roff - 2);
3566 bfd_put_8 (output_bfd, 0xc0 | reg,
3567 contents + roff - 1);
3568 }
3569 else
3570 {
3571 /* addq -> leaq */
3572 if (val == 0x4c)
3573 bfd_put_8 (output_bfd, 0x4d,
3574 contents + roff - 3);
3575 else if (!ABI_64_P (output_bfd) && val == 0x44)
3576 bfd_put_8 (output_bfd, 0x45,
3577 contents + roff - 3);
3578 bfd_put_8 (output_bfd, 0x8d,
3579 contents + roff - 2);
3580 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
3581 contents + roff - 1);
3582 }
3583 bfd_put_32 (output_bfd,
3584 elf_x86_64_tpoff (info, relocation),
3585 contents + roff);
3586 continue;
3587 }
3588 else
3589 BFD_ASSERT (FALSE);
3590 }
3591
3592 if (htab->elf.sgot == NULL)
3593 abort ();
3594
3595 if (h != NULL)
3596 {
3597 off = h->got.offset;
3598 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
3599 }
3600 else
3601 {
3602 if (local_got_offsets == NULL)
3603 abort ();
3604
3605 off = local_got_offsets[r_symndx];
3606 offplt = local_tlsdesc_gotents[r_symndx];
3607 }
3608
3609 if ((off & 1) != 0)
3610 off &= ~1;
3611 else
3612 {
3613 Elf_Internal_Rela outrel;
3614 int dr_type, indx;
3615 asection *sreloc;
3616
3617 if (htab->elf.srelgot == NULL)
3618 abort ();
3619
3620 indx = h && h->dynindx != -1 ? h->dynindx : 0;
3621
3622 if (GOT_TLS_GDESC_P (tls_type))
3623 {
3624 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
3625 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
3626 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
3627 outrel.r_offset = (htab->elf.sgotplt->output_section->vma
3628 + htab->elf.sgotplt->output_offset
3629 + offplt
3630 + htab->sgotplt_jump_table_size);
3631 sreloc = htab->elf.srelplt;
3632 if (indx == 0)
3633 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3634 else
3635 outrel.r_addend = 0;
3636 elf_append_rela (output_bfd, sreloc, &outrel);
3637 }
3638
3639 sreloc = htab->elf.srelgot;
3640
3641 outrel.r_offset = (htab->elf.sgot->output_section->vma
3642 + htab->elf.sgot->output_offset + off);
3643
3644 if (GOT_TLS_GD_P (tls_type))
3645 dr_type = R_X86_64_DTPMOD64;
3646 else if (GOT_TLS_GDESC_P (tls_type))
3647 goto dr_done;
3648 else
3649 dr_type = R_X86_64_TPOFF64;
3650
3651 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
3652 outrel.r_addend = 0;
3653 if ((dr_type == R_X86_64_TPOFF64
3654 || dr_type == R_X86_64_TLSDESC) && indx == 0)
3655 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
3656 outrel.r_info = htab->r_info (indx, dr_type);
3657
3658 elf_append_rela (output_bfd, sreloc, &outrel);
3659
3660 if (GOT_TLS_GD_P (tls_type))
3661 {
3662 if (indx == 0)
3663 {
3664 BFD_ASSERT (! unresolved_reloc);
3665 bfd_put_64 (output_bfd,
3666 relocation - elf_x86_64_dtpoff_base (info),
3667 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3668 }
3669 else
3670 {
3671 bfd_put_64 (output_bfd, 0,
3672 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3673 outrel.r_info = htab->r_info (indx,
3674 R_X86_64_DTPOFF64);
3675 outrel.r_offset += GOT_ENTRY_SIZE;
3676 elf_append_rela (output_bfd, sreloc,
3677 &outrel);
3678 }
3679 }
3680
3681 dr_done:
3682 if (h != NULL)
3683 h->got.offset |= 1;
3684 else
3685 local_got_offsets[r_symndx] |= 1;
3686 }
3687
3688 if (off >= (bfd_vma) -2
3689 && ! GOT_TLS_GDESC_P (tls_type))
3690 abort ();
3691 if (r_type == ELF32_R_TYPE (rel->r_info))
3692 {
3693 if (r_type == R_X86_64_GOTPC32_TLSDESC
3694 || r_type == R_X86_64_TLSDESC_CALL)
3695 relocation = htab->elf.sgotplt->output_section->vma
3696 + htab->elf.sgotplt->output_offset
3697 + offplt + htab->sgotplt_jump_table_size;
3698 else
3699 relocation = htab->elf.sgot->output_section->vma
3700 + htab->elf.sgot->output_offset + off;
3701 unresolved_reloc = FALSE;
3702 }
3703 else
3704 {
3705 bfd_vma roff = rel->r_offset;
3706
3707 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
3708 {
3709 /* GD->IE transition. For 64bit, change
3710 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3711 .word 0x6666; rex64; call __tls_get_addr@plt
3712 into:
3713 movq %fs:0, %rax
3714 addq foo@gottpoff(%rip), %rax
3715 For 32bit, change
3716 leaq foo@tlsgd(%rip), %rdi
3717 .word 0x6666; rex64; call __tls_get_addr@plt
3718 into:
3719 movl %fs:0, %eax
3720 addq foo@gottpoff(%rip), %rax */
3721 if (ABI_64_P (output_bfd))
3722 memcpy (contents + roff - 4,
3723 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3724 16);
3725 else
3726 memcpy (contents + roff - 3,
3727 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3728 15);
3729
3730 relocation = (htab->elf.sgot->output_section->vma
3731 + htab->elf.sgot->output_offset + off
3732 - roff
3733 - input_section->output_section->vma
3734 - input_section->output_offset
3735 - 12);
3736 bfd_put_32 (output_bfd, relocation,
3737 contents + roff + 8);
3738 /* Skip R_X86_64_PLT32. */
3739 rel++;
3740 continue;
3741 }
3742 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
3743 {
3744 /* GDesc -> IE transition.
3745 It's originally something like:
3746 leaq x@tlsdesc(%rip), %rax
3747
3748 Change it to:
3749 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
3750
3751 /* Now modify the instruction as appropriate. To
3752 turn a leaq into a movq in the form we use it, it
3753 suffices to change the second byte from 0x8d to
3754 0x8b. */
3755 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
3756
3757 bfd_put_32 (output_bfd,
3758 htab->elf.sgot->output_section->vma
3759 + htab->elf.sgot->output_offset + off
3760 - rel->r_offset
3761 - input_section->output_section->vma
3762 - input_section->output_offset
3763 - 4,
3764 contents + roff);
3765 continue;
3766 }
3767 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
3768 {
3769 /* GDesc -> IE transition.
3770 It's originally:
3771 call *(%rax)
3772
3773 Change it to:
3774 xchg %ax, %ax. */
3775
3776 bfd_put_8 (output_bfd, 0x66, contents + roff);
3777 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
3778 continue;
3779 }
3780 else
3781 BFD_ASSERT (FALSE);
3782 }
3783 break;
3784
3785 case R_X86_64_TLSLD:
3786 if (! elf_x86_64_tls_transition (info, input_bfd,
3787 input_section, contents,
3788 symtab_hdr, sym_hashes,
3789 &r_type, GOT_UNKNOWN,
3790 rel, relend, h, r_symndx))
3791 return FALSE;
3792
3793 if (r_type != R_X86_64_TLSLD)
3794 {
3795 /* LD->LE transition:
3796 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3797 For 64bit, we change it into:
3798 .word 0x6666; .byte 0x66; movq %fs:0, %rax.
3799 For 32bit, we change it into:
3800 nopl 0x0(%rax); movl %fs:0, %eax. */
3801
3802 BFD_ASSERT (r_type == R_X86_64_TPOFF32);
3803 if (ABI_64_P (output_bfd))
3804 memcpy (contents + rel->r_offset - 3,
3805 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3806 else
3807 memcpy (contents + rel->r_offset - 3,
3808 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
3809 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3810 rel++;
3811 continue;
3812 }
3813
3814 if (htab->elf.sgot == NULL)
3815 abort ();
3816
3817 off = htab->tls_ld_got.offset;
3818 if (off & 1)
3819 off &= ~1;
3820 else
3821 {
3822 Elf_Internal_Rela outrel;
3823
3824 if (htab->elf.srelgot == NULL)
3825 abort ();
3826
3827 outrel.r_offset = (htab->elf.sgot->output_section->vma
3828 + htab->elf.sgot->output_offset + off);
3829
3830 bfd_put_64 (output_bfd, 0,
3831 htab->elf.sgot->contents + off);
3832 bfd_put_64 (output_bfd, 0,
3833 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
3834 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
3835 outrel.r_addend = 0;
3836 elf_append_rela (output_bfd, htab->elf.srelgot,
3837 &outrel);
3838 htab->tls_ld_got.offset |= 1;
3839 }
3840 relocation = htab->elf.sgot->output_section->vma
3841 + htab->elf.sgot->output_offset + off;
3842 unresolved_reloc = FALSE;
3843 break;
3844
3845 case R_X86_64_DTPOFF32:
3846 if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
3847 relocation -= elf_x86_64_dtpoff_base (info);
3848 else
3849 relocation = elf_x86_64_tpoff (info, relocation);
3850 break;
3851
3852 case R_X86_64_TPOFF32:
3853 BFD_ASSERT (info->executable);
3854 relocation = elf_x86_64_tpoff (info, relocation);
3855 break;
3856
3857 default:
3858 break;
3859 }
3860
3861 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3862 because such sections are not SEC_ALLOC and thus ld.so will
3863 not process them. */
3864 if (unresolved_reloc
3865 && !((input_section->flags & SEC_DEBUGGING) != 0
3866 && h->def_dynamic))
3867 (*_bfd_error_handler)
3868 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3869 input_bfd,
3870 input_section,
3871 (long) rel->r_offset,
3872 howto->name,
3873 h->root.root.string);
3874
3875 do_relocation:
3876 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3877 contents, rel->r_offset,
3878 relocation, rel->r_addend);
3879
3880 check_relocation_error:
3881 if (r != bfd_reloc_ok)
3882 {
3883 const char *name;
3884
3885 if (h != NULL)
3886 name = h->root.root.string;
3887 else
3888 {
3889 name = bfd_elf_string_from_elf_section (input_bfd,
3890 symtab_hdr->sh_link,
3891 sym->st_name);
3892 if (name == NULL)
3893 return FALSE;
3894 if (*name == '\0')
3895 name = bfd_section_name (input_bfd, sec);
3896 }
3897
3898 if (r == bfd_reloc_overflow)
3899 {
3900 if (! ((*info->callbacks->reloc_overflow)
3901 (info, (h ? &h->root : NULL), name, howto->name,
3902 (bfd_vma) 0, input_bfd, input_section,
3903 rel->r_offset)))
3904 return FALSE;
3905 }
3906 else
3907 {
3908 (*_bfd_error_handler)
3909 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3910 input_bfd, input_section,
3911 (long) rel->r_offset, name, (int) r);
3912 return FALSE;
3913 }
3914 }
3915 }
3916
3917 return TRUE;
3918 }
3919
3920 /* Finish up dynamic symbol handling. We set the contents of various
3921 dynamic sections here. */
3922
3923 static bfd_boolean
3924 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3925 struct bfd_link_info *info,
3926 struct elf_link_hash_entry *h,
3927 Elf_Internal_Sym *sym)
3928 {
3929 struct elf_x86_64_link_hash_table *htab;
3930
3931 htab = elf_x86_64_hash_table (info);
3932 if (htab == NULL)
3933 return FALSE;
3934
3935 if (h->plt.offset != (bfd_vma) -1)
3936 {
3937 bfd_vma plt_index;
3938 bfd_vma got_offset;
3939 Elf_Internal_Rela rela;
3940 bfd_byte *loc;
3941 asection *plt, *gotplt, *relplt;
3942 const struct elf_backend_data *bed;
3943
3944 /* When building a static executable, use .iplt, .igot.plt and
3945 .rela.iplt sections for STT_GNU_IFUNC symbols. */
3946 if (htab->elf.splt != NULL)
3947 {
3948 plt = htab->elf.splt;
3949 gotplt = htab->elf.sgotplt;
3950 relplt = htab->elf.srelplt;
3951 }
3952 else
3953 {
3954 plt = htab->elf.iplt;
3955 gotplt = htab->elf.igotplt;
3956 relplt = htab->elf.irelplt;
3957 }
3958
3959 /* This symbol has an entry in the procedure linkage table. Set
3960 it up. */
3961 if ((h->dynindx == -1
3962 && !((h->forced_local || info->executable)
3963 && h->def_regular
3964 && h->type == STT_GNU_IFUNC))
3965 || plt == NULL
3966 || gotplt == NULL
3967 || relplt == NULL)
3968 return FALSE;
3969
3970 /* Get the index in the procedure linkage table which
3971 corresponds to this symbol. This is the index of this symbol
3972 in all the symbols for which we are making plt entries. The
3973 first entry in the procedure linkage table is reserved.
3974
3975 Get the offset into the .got table of the entry that
3976 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3977 bytes. The first three are reserved for the dynamic linker.
3978
3979 For static executables, we don't reserve anything. */
3980
3981 if (plt == htab->elf.splt)
3982 {
3983 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3984 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3985 }
3986 else
3987 {
3988 plt_index = h->plt.offset / PLT_ENTRY_SIZE;
3989 got_offset = plt_index * GOT_ENTRY_SIZE;
3990 }
3991
3992 /* Fill in the entry in the procedure linkage table. */
3993 memcpy (plt->contents + h->plt.offset, elf_x86_64_plt_entry,
3994 PLT_ENTRY_SIZE);
3995
3996 /* Insert the relocation positions of the plt section. The magic
3997 numbers at the end of the statements are the positions of the
3998 relocations in the plt section. */
3999 /* Put offset for jmp *name@GOTPCREL(%rip), since the
4000 instruction uses 6 bytes, subtract this value. */
4001 bfd_put_32 (output_bfd,
4002 (gotplt->output_section->vma
4003 + gotplt->output_offset
4004 + got_offset
4005 - plt->output_section->vma
4006 - plt->output_offset
4007 - h->plt.offset
4008 - 6),
4009 plt->contents + h->plt.offset + 2);
4010
4011 /* Don't fill PLT entry for static executables. */
4012 if (plt == htab->elf.splt)
4013 {
4014 /* Put relocation index. */
4015 bfd_put_32 (output_bfd, plt_index,
4016 plt->contents + h->plt.offset + 7);
4017 /* Put offset for jmp .PLT0. */
4018 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
4019 plt->contents + h->plt.offset + 12);
4020 }
4021
4022 /* Fill in the entry in the global offset table, initially this
4023 points to the pushq instruction in the PLT which is at offset 6. */
4024 bfd_put_64 (output_bfd, (plt->output_section->vma
4025 + plt->output_offset
4026 + h->plt.offset + 6),
4027 gotplt->contents + got_offset);
4028
4029 /* Fill in the entry in the .rela.plt section. */
4030 rela.r_offset = (gotplt->output_section->vma
4031 + gotplt->output_offset
4032 + got_offset);
4033 if (h->dynindx == -1
4034 || ((info->executable
4035 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
4036 && h->def_regular
4037 && h->type == STT_GNU_IFUNC))
4038 {
4039 /* If an STT_GNU_IFUNC symbol is locally defined, generate
4040 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
4041 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
4042 rela.r_addend = (h->root.u.def.value
4043 + h->root.u.def.section->output_section->vma
4044 + h->root.u.def.section->output_offset);
4045 }
4046 else
4047 {
4048 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
4049 rela.r_addend = 0;
4050 }
4051
4052 bed = get_elf_backend_data (output_bfd);
4053 loc = relplt->contents + plt_index * bed->s->sizeof_rela;
4054 bed->s->swap_reloca_out (output_bfd, &rela, loc);
4055
4056 if (!h->def_regular)
4057 {
4058 /* Mark the symbol as undefined, rather than as defined in
4059 the .plt section. Leave the value if there were any
4060 relocations where pointer equality matters (this is a clue
4061 for the dynamic linker, to make function pointer
4062 comparisons work between an application and shared
4063 library), otherwise set it to zero. If a function is only
4064 called from a binary, there is no need to slow down
4065 shared libraries because of that. */
4066 sym->st_shndx = SHN_UNDEF;
4067 if (!h->pointer_equality_needed)
4068 sym->st_value = 0;
4069 }
4070 }
4071
4072 if (h->got.offset != (bfd_vma) -1
4073 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
4074 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
4075 {
4076 Elf_Internal_Rela rela;
4077
4078 /* This symbol has an entry in the global offset table. Set it
4079 up. */
4080 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
4081 abort ();
4082
4083 rela.r_offset = (htab->elf.sgot->output_section->vma
4084 + htab->elf.sgot->output_offset
4085 + (h->got.offset &~ (bfd_vma) 1));
4086
4087 /* If this is a static link, or it is a -Bsymbolic link and the
4088 symbol is defined locally or was forced to be local because
4089 of a version file, we just want to emit a RELATIVE reloc.
4090 The entry in the global offset table will already have been
4091 initialized in the relocate_section function. */
4092 if (h->def_regular
4093 && h->type == STT_GNU_IFUNC)
4094 {
4095 if (info->shared)
4096 {
4097 /* Generate R_X86_64_GLOB_DAT. */
4098 goto do_glob_dat;
4099 }
4100 else
4101 {
4102 asection *plt;
4103
4104 if (!h->pointer_equality_needed)
4105 abort ();
4106
4107 /* For non-shared object, we can't use .got.plt, which
4108 contains the real function addres if we need pointer
4109 equality. We load the GOT entry with the PLT entry. */
4110 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
4111 bfd_put_64 (output_bfd, (plt->output_section->vma
4112 + plt->output_offset
4113 + h->plt.offset),
4114 htab->elf.sgot->contents + h->got.offset);
4115 return TRUE;
4116 }
4117 }
4118 else if (info->shared
4119 && SYMBOL_REFERENCES_LOCAL (info, h))
4120 {
4121 if (!h->def_regular)
4122 return FALSE;
4123 BFD_ASSERT((h->got.offset & 1) != 0);
4124 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
4125 rela.r_addend = (h->root.u.def.value
4126 + h->root.u.def.section->output_section->vma
4127 + h->root.u.def.section->output_offset);
4128 }
4129 else
4130 {
4131 BFD_ASSERT((h->got.offset & 1) == 0);
4132 do_glob_dat:
4133 bfd_put_64 (output_bfd, (bfd_vma) 0,
4134 htab->elf.sgot->contents + h->got.offset);
4135 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
4136 rela.r_addend = 0;
4137 }
4138
4139 elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
4140 }
4141
4142 if (h->needs_copy)
4143 {
4144 Elf_Internal_Rela rela;
4145
4146 /* This symbol needs a copy reloc. Set it up. */
4147
4148 if (h->dynindx == -1
4149 || (h->root.type != bfd_link_hash_defined
4150 && h->root.type != bfd_link_hash_defweak)
4151 || htab->srelbss == NULL)
4152 abort ();
4153
4154 rela.r_offset = (h->root.u.def.value
4155 + h->root.u.def.section->output_section->vma
4156 + h->root.u.def.section->output_offset);
4157 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
4158 rela.r_addend = 0;
4159 elf_append_rela (output_bfd, htab->srelbss, &rela);
4160 }
4161
4162 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
4163 be NULL for local symbols. */
4164 if (sym != NULL
4165 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4166 || h == htab->elf.hgot))
4167 sym->st_shndx = SHN_ABS;
4168
4169 return TRUE;
4170 }
4171
4172 /* Finish up local dynamic symbol handling. We set the contents of
4173 various dynamic sections here. */
4174
4175 static bfd_boolean
4176 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
4177 {
4178 struct elf_link_hash_entry *h
4179 = (struct elf_link_hash_entry *) *slot;
4180 struct bfd_link_info *info
4181 = (struct bfd_link_info *) inf;
4182
4183 return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
4184 info, h, NULL);
4185 }
4186
4187 /* Used to decide how to sort relocs in an optimal manner for the
4188 dynamic linker, before writing them out. */
4189
4190 static enum elf_reloc_type_class
4191 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
4192 {
4193 switch ((int) ELF32_R_TYPE (rela->r_info))
4194 {
4195 case R_X86_64_RELATIVE:
4196 return reloc_class_relative;
4197 case R_X86_64_JUMP_SLOT:
4198 return reloc_class_plt;
4199 case R_X86_64_COPY:
4200 return reloc_class_copy;
4201 default:
4202 return reloc_class_normal;
4203 }
4204 }
4205
4206 /* Finish up the dynamic sections. */
4207
4208 static bfd_boolean
4209 elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
4210 struct bfd_link_info *info)
4211 {
4212 struct elf_x86_64_link_hash_table *htab;
4213 bfd *dynobj;
4214 asection *sdyn;
4215
4216 htab = elf_x86_64_hash_table (info);
4217 if (htab == NULL)
4218 return FALSE;
4219
4220 dynobj = htab->elf.dynobj;
4221 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4222
4223 if (htab->elf.dynamic_sections_created)
4224 {
4225 bfd_byte *dyncon, *dynconend;
4226 const struct elf_backend_data *bed;
4227 bfd_size_type sizeof_dyn;
4228
4229 if (sdyn == NULL || htab->elf.sgot == NULL)
4230 abort ();
4231
4232 bed = get_elf_backend_data (dynobj);
4233 sizeof_dyn = bed->s->sizeof_dyn;
4234 dyncon = sdyn->contents;
4235 dynconend = sdyn->contents + sdyn->size;
4236 for (; dyncon < dynconend; dyncon += sizeof_dyn)
4237 {
4238 Elf_Internal_Dyn dyn;
4239 asection *s;
4240
4241 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
4242
4243 switch (dyn.d_tag)
4244 {
4245 default:
4246 continue;
4247
4248 case DT_PLTGOT:
4249 s = htab->elf.sgotplt;
4250 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4251 break;
4252
4253 case DT_JMPREL:
4254 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
4255 break;
4256
4257 case DT_PLTRELSZ:
4258 s = htab->elf.srelplt->output_section;
4259 dyn.d_un.d_val = s->size;
4260 break;
4261
4262 case DT_RELASZ:
4263 /* The procedure linkage table relocs (DT_JMPREL) should
4264 not be included in the overall relocs (DT_RELA).
4265 Therefore, we override the DT_RELASZ entry here to
4266 make it not include the JMPREL relocs. Since the
4267 linker script arranges for .rela.plt to follow all
4268 other relocation sections, we don't have to worry
4269 about changing the DT_RELA entry. */
4270 if (htab->elf.srelplt != NULL)
4271 {
4272 s = htab->elf.srelplt->output_section;
4273 dyn.d_un.d_val -= s->size;
4274 }
4275 break;
4276
4277 case DT_TLSDESC_PLT:
4278 s = htab->elf.splt;
4279 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4280 + htab->tlsdesc_plt;
4281 break;
4282
4283 case DT_TLSDESC_GOT:
4284 s = htab->elf.sgot;
4285 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
4286 + htab->tlsdesc_got;
4287 break;
4288 }
4289
4290 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
4291 }
4292
4293 /* Fill in the special first entry in the procedure linkage table. */
4294 if (htab->elf.splt && htab->elf.splt->size > 0)
4295 {
4296 /* Fill in the first entry in the procedure linkage table. */
4297 memcpy (htab->elf.splt->contents, elf_x86_64_plt0_entry,
4298 PLT_ENTRY_SIZE);
4299 /* Add offset for pushq GOT+8(%rip), since the instruction
4300 uses 6 bytes subtract this value. */
4301 bfd_put_32 (output_bfd,
4302 (htab->elf.sgotplt->output_section->vma
4303 + htab->elf.sgotplt->output_offset
4304 + 8
4305 - htab->elf.splt->output_section->vma
4306 - htab->elf.splt->output_offset
4307 - 6),
4308 htab->elf.splt->contents + 2);
4309 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
4310 the end of the instruction. */
4311 bfd_put_32 (output_bfd,
4312 (htab->elf.sgotplt->output_section->vma
4313 + htab->elf.sgotplt->output_offset
4314 + 16
4315 - htab->elf.splt->output_section->vma
4316 - htab->elf.splt->output_offset
4317 - 12),
4318 htab->elf.splt->contents + 8);
4319
4320 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize =
4321 PLT_ENTRY_SIZE;
4322
4323 if (htab->tlsdesc_plt)
4324 {
4325 bfd_put_64 (output_bfd, (bfd_vma) 0,
4326 htab->elf.sgot->contents + htab->tlsdesc_got);
4327
4328 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
4329 elf_x86_64_plt0_entry,
4330 PLT_ENTRY_SIZE);
4331
4332 /* Add offset for pushq GOT+8(%rip), since the
4333 instruction uses 6 bytes subtract this value. */
4334 bfd_put_32 (output_bfd,
4335 (htab->elf.sgotplt->output_section->vma
4336 + htab->elf.sgotplt->output_offset
4337 + 8
4338 - htab->elf.splt->output_section->vma
4339 - htab->elf.splt->output_offset
4340 - htab->tlsdesc_plt
4341 - 6),
4342 htab->elf.splt->contents + htab->tlsdesc_plt + 2);
4343 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
4344 htab->tlsdesc_got. The 12 is the offset to the end of
4345 the instruction. */
4346 bfd_put_32 (output_bfd,
4347 (htab->elf.sgot->output_section->vma
4348 + htab->elf.sgot->output_offset
4349 + htab->tlsdesc_got
4350 - htab->elf.splt->output_section->vma
4351 - htab->elf.splt->output_offset
4352 - htab->tlsdesc_plt
4353 - 12),
4354 htab->elf.splt->contents + htab->tlsdesc_plt + 8);
4355 }
4356 }
4357 }
4358
4359 if (htab->elf.sgotplt)
4360 {
4361 if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
4362 {
4363 (*_bfd_error_handler)
4364 (_("discarded output section: `%A'"), htab->elf.sgotplt);
4365 return FALSE;
4366 }
4367
4368 /* Fill in the first three entries in the global offset table. */
4369 if (htab->elf.sgotplt->size > 0)
4370 {
4371 /* Set the first entry in the global offset table to the address of
4372 the dynamic section. */
4373 if (sdyn == NULL)
4374 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
4375 else
4376 bfd_put_64 (output_bfd,
4377 sdyn->output_section->vma + sdyn->output_offset,
4378 htab->elf.sgotplt->contents);
4379 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
4380 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
4381 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
4382 }
4383
4384 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
4385 GOT_ENTRY_SIZE;
4386 }
4387
4388 if (htab->elf.sgot && htab->elf.sgot->size > 0)
4389 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
4390 = GOT_ENTRY_SIZE;
4391
4392 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
4393 htab_traverse (htab->loc_hash_table,
4394 elf_x86_64_finish_local_dynamic_symbol,
4395 info);
4396
4397 return TRUE;
4398 }
4399
4400 /* Return address for Ith PLT stub in section PLT, for relocation REL
4401 or (bfd_vma) -1 if it should not be included. */
4402
4403 static bfd_vma
4404 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
4405 const arelent *rel ATTRIBUTE_UNUSED)
4406 {
4407 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
4408 }
4409
4410 /* Handle an x86-64 specific section when reading an object file. This
4411 is called when elfcode.h finds a section with an unknown type. */
4412
4413 static bfd_boolean
4414 elf_x86_64_section_from_shdr (bfd *abfd,
4415 Elf_Internal_Shdr *hdr,
4416 const char *name,
4417 int shindex)
4418 {
4419 if (hdr->sh_type != SHT_X86_64_UNWIND)
4420 return FALSE;
4421
4422 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
4423 return FALSE;
4424
4425 return TRUE;
4426 }
4427
4428 /* Hook called by the linker routine which adds symbols from an object
4429 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
4430 of .bss. */
4431
4432 static bfd_boolean
4433 elf_x86_64_add_symbol_hook (bfd *abfd,
4434 struct bfd_link_info *info,
4435 Elf_Internal_Sym *sym,
4436 const char **namep ATTRIBUTE_UNUSED,
4437 flagword *flagsp ATTRIBUTE_UNUSED,
4438 asection **secp,
4439 bfd_vma *valp)
4440 {
4441 asection *lcomm;
4442
4443 switch (sym->st_shndx)
4444 {
4445 case SHN_X86_64_LCOMMON:
4446 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
4447 if (lcomm == NULL)
4448 {
4449 lcomm = bfd_make_section_with_flags (abfd,
4450 "LARGE_COMMON",
4451 (SEC_ALLOC
4452 | SEC_IS_COMMON
4453 | SEC_LINKER_CREATED));
4454 if (lcomm == NULL)
4455 return FALSE;
4456 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
4457 }
4458 *secp = lcomm;
4459 *valp = sym->st_size;
4460 return TRUE;
4461 }
4462
4463 if ((abfd->flags & DYNAMIC) == 0
4464 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
4465 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
4466 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4467
4468 return TRUE;
4469 }
4470
4471
4472 /* Given a BFD section, try to locate the corresponding ELF section
4473 index. */
4474
4475 static bfd_boolean
4476 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4477 asection *sec, int *index_return)
4478 {
4479 if (sec == &_bfd_elf_large_com_section)
4480 {
4481 *index_return = SHN_X86_64_LCOMMON;
4482 return TRUE;
4483 }
4484 return FALSE;
4485 }
4486
4487 /* Process a symbol. */
4488
4489 static void
4490 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
4491 asymbol *asym)
4492 {
4493 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
4494
4495 switch (elfsym->internal_elf_sym.st_shndx)
4496 {
4497 case SHN_X86_64_LCOMMON:
4498 asym->section = &_bfd_elf_large_com_section;
4499 asym->value = elfsym->internal_elf_sym.st_size;
4500 /* Common symbol doesn't set BSF_GLOBAL. */
4501 asym->flags &= ~BSF_GLOBAL;
4502 break;
4503 }
4504 }
4505
4506 static bfd_boolean
4507 elf_x86_64_common_definition (Elf_Internal_Sym *sym)
4508 {
4509 return (sym->st_shndx == SHN_COMMON
4510 || sym->st_shndx == SHN_X86_64_LCOMMON);
4511 }
4512
4513 static unsigned int
4514 elf_x86_64_common_section_index (asection *sec)
4515 {
4516 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4517 return SHN_COMMON;
4518 else
4519 return SHN_X86_64_LCOMMON;
4520 }
4521
4522 static asection *
4523 elf_x86_64_common_section (asection *sec)
4524 {
4525 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
4526 return bfd_com_section_ptr;
4527 else
4528 return &_bfd_elf_large_com_section;
4529 }
4530
4531 static bfd_boolean
4532 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4533 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
4534 struct elf_link_hash_entry *h,
4535 Elf_Internal_Sym *sym,
4536 asection **psec,
4537 bfd_vma *pvalue ATTRIBUTE_UNUSED,
4538 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
4539 bfd_boolean *skip ATTRIBUTE_UNUSED,
4540 bfd_boolean *override ATTRIBUTE_UNUSED,
4541 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
4542 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
4543 bfd_boolean *newdef ATTRIBUTE_UNUSED,
4544 bfd_boolean *newdyn,
4545 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
4546 bfd_boolean *newweak ATTRIBUTE_UNUSED,
4547 bfd *abfd ATTRIBUTE_UNUSED,
4548 asection **sec,
4549 bfd_boolean *olddef ATTRIBUTE_UNUSED,
4550 bfd_boolean *olddyn,
4551 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
4552 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
4553 bfd *oldbfd,
4554 asection **oldsec)
4555 {
4556 /* A normal common symbol and a large common symbol result in a
4557 normal common symbol. We turn the large common symbol into a
4558 normal one. */
4559 if (!*olddyn
4560 && h->root.type == bfd_link_hash_common
4561 && !*newdyn
4562 && bfd_is_com_section (*sec)
4563 && *oldsec != *sec)
4564 {
4565 if (sym->st_shndx == SHN_COMMON
4566 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
4567 {
4568 h->root.u.c.p->section
4569 = bfd_make_section_old_way (oldbfd, "COMMON");
4570 h->root.u.c.p->section->flags = SEC_ALLOC;
4571 }
4572 else if (sym->st_shndx == SHN_X86_64_LCOMMON
4573 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
4574 *psec = *sec = bfd_com_section_ptr;
4575 }
4576
4577 return TRUE;
4578 }
4579
4580 static int
4581 elf_x86_64_additional_program_headers (bfd *abfd,
4582 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4583 {
4584 asection *s;
4585 int count = 0;
4586
4587 /* Check to see if we need a large readonly segment. */
4588 s = bfd_get_section_by_name (abfd, ".lrodata");
4589 if (s && (s->flags & SEC_LOAD))
4590 count++;
4591
4592 /* Check to see if we need a large data segment. Since .lbss sections
4593 is placed right after the .bss section, there should be no need for
4594 a large data segment just because of .lbss. */
4595 s = bfd_get_section_by_name (abfd, ".ldata");
4596 if (s && (s->flags & SEC_LOAD))
4597 count++;
4598
4599 return count;
4600 }
4601
4602 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
4603
4604 static bfd_boolean
4605 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
4606 {
4607 if (h->plt.offset != (bfd_vma) -1
4608 && !h->def_regular
4609 && !h->pointer_equality_needed)
4610 return FALSE;
4611
4612 return _bfd_elf_hash_symbol (h);
4613 }
4614
4615 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
4616
4617 static bfd_boolean
4618 elf_x86_64_relocs_compatible (const bfd_target *input,
4619 const bfd_target *output)
4620 {
4621 return ((xvec_get_elf_backend_data (input)->s->elfclass
4622 == xvec_get_elf_backend_data (output)->s->elfclass)
4623 && _bfd_elf_relocs_compatible (input, output));
4624 }
4625
4626 static const struct bfd_elf_special_section
4627 elf_x86_64_special_sections[]=
4628 {
4629 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4630 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4631 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
4632 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4633 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
4634 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
4635 { NULL, 0, 0, 0, 0 }
4636 };
4637
4638 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
4639 #define TARGET_LITTLE_NAME "elf64-x86-64"
4640 #define ELF_ARCH bfd_arch_i386
4641 #define ELF_TARGET_ID X86_64_ELF_DATA
4642 #define ELF_MACHINE_CODE EM_X86_64
4643 #define ELF_MAXPAGESIZE 0x200000
4644 #define ELF_MINPAGESIZE 0x1000
4645 #define ELF_COMMONPAGESIZE 0x1000
4646
4647 #define elf_backend_can_gc_sections 1
4648 #define elf_backend_can_refcount 1
4649 #define elf_backend_want_got_plt 1
4650 #define elf_backend_plt_readonly 1
4651 #define elf_backend_want_plt_sym 0
4652 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
4653 #define elf_backend_rela_normal 1
4654
4655 #define elf_info_to_howto elf_x86_64_info_to_howto
4656
4657 #define bfd_elf64_bfd_link_hash_table_create \
4658 elf_x86_64_link_hash_table_create
4659 #define bfd_elf64_bfd_link_hash_table_free \
4660 elf_x86_64_link_hash_table_free
4661 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
4662 #define bfd_elf64_bfd_reloc_name_lookup \
4663 elf_x86_64_reloc_name_lookup
4664
4665 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
4666 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
4667 #define elf_backend_check_relocs elf_x86_64_check_relocs
4668 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
4669 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
4670 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
4671 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
4672 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
4673 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
4674 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
4675 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
4676 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
4677 #define elf_backend_relocate_section elf_x86_64_relocate_section
4678 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
4679 #define elf_backend_always_size_sections elf_x86_64_always_size_sections
4680 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4681 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
4682 #define elf_backend_object_p elf64_x86_64_elf_object_p
4683 #define bfd_elf64_mkobject elf_x86_64_mkobject
4684
4685 #define elf_backend_section_from_shdr \
4686 elf_x86_64_section_from_shdr
4687
4688 #define elf_backend_section_from_bfd_section \
4689 elf_x86_64_elf_section_from_bfd_section
4690 #define elf_backend_add_symbol_hook \
4691 elf_x86_64_add_symbol_hook
4692 #define elf_backend_symbol_processing \
4693 elf_x86_64_symbol_processing
4694 #define elf_backend_common_section_index \
4695 elf_x86_64_common_section_index
4696 #define elf_backend_common_section \
4697 elf_x86_64_common_section
4698 #define elf_backend_common_definition \
4699 elf_x86_64_common_definition
4700 #define elf_backend_merge_symbol \
4701 elf_x86_64_merge_symbol
4702 #define elf_backend_special_sections \
4703 elf_x86_64_special_sections
4704 #define elf_backend_additional_program_headers \
4705 elf_x86_64_additional_program_headers
4706 #define elf_backend_hash_symbol \
4707 elf_x86_64_hash_symbol
4708
4709 #undef elf_backend_post_process_headers
4710 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4711
4712 #include "elf64-target.h"
4713
4714 /* FreeBSD support. */
4715
4716 #undef TARGET_LITTLE_SYM
4717 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
4718 #undef TARGET_LITTLE_NAME
4719 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
4720
4721 #undef ELF_OSABI
4722 #define ELF_OSABI ELFOSABI_FREEBSD
4723
4724 #undef elf64_bed
4725 #define elf64_bed elf64_x86_64_fbsd_bed
4726
4727 #include "elf64-target.h"
4728
4729 /* Solaris 2 support. */
4730
4731 #undef TARGET_LITTLE_SYM
4732 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
4733 #undef TARGET_LITTLE_NAME
4734 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
4735
4736 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
4737 objects won't be recognized. */
4738 #undef ELF_OSABI
4739
4740 #undef elf64_bed
4741 #define elf64_bed elf64_x86_64_sol2_bed
4742
4743 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
4744 boundary. */
4745 #undef elf_backend_static_tls_alignment
4746 #define elf_backend_static_tls_alignment 16
4747
4748 /* The Solaris 2 ABI requires a plt symbol on all platforms.
4749
4750 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
4751 File, p.63. */
4752 #undef elf_backend_want_plt_sym
4753 #define elf_backend_want_plt_sym 1
4754
4755 #include "elf64-target.h"
4756
4757 /* Intel L1OM support. */
4758
4759 static bfd_boolean
4760 elf64_l1om_elf_object_p (bfd *abfd)
4761 {
4762 /* Set the right machine number for an L1OM elf64 file. */
4763 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
4764 return TRUE;
4765 }
4766
4767 #undef TARGET_LITTLE_SYM
4768 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
4769 #undef TARGET_LITTLE_NAME
4770 #define TARGET_LITTLE_NAME "elf64-l1om"
4771 #undef ELF_ARCH
4772 #define ELF_ARCH bfd_arch_l1om
4773
4774 #undef ELF_MACHINE_CODE
4775 #define ELF_MACHINE_CODE EM_L1OM
4776
4777 #undef ELF_OSABI
4778
4779 #undef elf64_bed
4780 #define elf64_bed elf64_l1om_bed
4781
4782 #undef elf_backend_object_p
4783 #define elf_backend_object_p elf64_l1om_elf_object_p
4784
4785 #undef elf_backend_post_process_headers
4786 #undef elf_backend_static_tls_alignment
4787
4788 #undef elf_backend_want_plt_sym
4789 #define elf_backend_want_plt_sym 0
4790
4791 #include "elf64-target.h"
4792
4793 /* FreeBSD L1OM support. */
4794
4795 #undef TARGET_LITTLE_SYM
4796 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
4797 #undef TARGET_LITTLE_NAME
4798 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
4799
4800 #undef ELF_OSABI
4801 #define ELF_OSABI ELFOSABI_FREEBSD
4802
4803 #undef elf64_bed
4804 #define elf64_bed elf64_l1om_fbsd_bed
4805
4806 #undef elf_backend_post_process_headers
4807 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4808
4809 #include "elf64-target.h"
4810
4811 /* 32bit x86-64 support. */
4812
4813 static bfd_boolean
4814 elf32_x86_64_elf_object_p (bfd *abfd)
4815 {
4816 /* Set the right machine number for an x86-64 elf32 file. */
4817 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
4818 return TRUE;
4819 }
4820
4821 #undef TARGET_LITTLE_SYM
4822 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
4823 #undef TARGET_LITTLE_NAME
4824 #define TARGET_LITTLE_NAME "elf32-x86-64"
4825
4826 #undef ELF_ARCH
4827 #define ELF_ARCH bfd_arch_i386
4828
4829 #undef ELF_MACHINE_CODE
4830 #define ELF_MACHINE_CODE EM_X86_64
4831
4832 #define bfd_elf32_bfd_link_hash_table_create \
4833 elf_x86_64_link_hash_table_create
4834 #define bfd_elf32_bfd_link_hash_table_free \
4835 elf_x86_64_link_hash_table_free
4836 #define bfd_elf32_bfd_reloc_type_lookup \
4837 elf_x86_64_reloc_type_lookup
4838 #define bfd_elf32_bfd_reloc_name_lookup \
4839 elf_x86_64_reloc_name_lookup
4840 #define bfd_elf32_mkobject \
4841 elf_x86_64_mkobject
4842
4843 #undef ELF_OSABI
4844
4845 #undef elf_backend_post_process_headers
4846
4847 #undef elf_backend_object_p
4848 #define elf_backend_object_p \
4849 elf32_x86_64_elf_object_p
4850
4851 #undef elf_backend_bfd_from_remote_memory
4852 #define elf_backend_bfd_from_remote_memory \
4853 _bfd_elf32_bfd_from_remote_memory
4854
4855 #undef elf_backend_size_info
4856 #define elf_backend_size_info \
4857 _bfd_elf32_size_info
4858
4859 #include "elf32-target.h"
This page took 0.147069 seconds and 5 git commands to generate.