PR 3958
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27
28 #include "elf/x86-64.h"
29
30 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
31 #define MINUS_ONE (~ (bfd_vma) 0)
32
33 /* The relocation "howto" table. Order of fields:
34 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
35 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
36 static reloc_howto_type x86_64_elf_howto_table[] =
37 {
38 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
39 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
40 FALSE),
41 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
42 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
43 FALSE),
44 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
45 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
46 TRUE),
47 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
48 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
49 FALSE),
50 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
51 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
52 TRUE),
53 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
54 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
55 FALSE),
56 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
57 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
58 MINUS_ONE, FALSE),
59 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
60 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
61 MINUS_ONE, FALSE),
62 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
63 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
64 MINUS_ONE, FALSE),
65 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
66 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
67 0xffffffff, TRUE),
68 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
69 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
70 FALSE),
71 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
72 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
73 FALSE),
74 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
75 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
76 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
77 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
78 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
80 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
81 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
82 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
83 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
84 MINUS_ONE, FALSE),
85 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
86 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
87 MINUS_ONE, FALSE),
88 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
89 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
90 MINUS_ONE, FALSE),
91 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
92 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
93 0xffffffff, TRUE),
94 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
95 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
96 0xffffffff, TRUE),
97 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
98 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
99 0xffffffff, FALSE),
100 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
101 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
102 0xffffffff, TRUE),
103 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
104 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
105 0xffffffff, FALSE),
106 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
108 TRUE),
109 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
111 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
112 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
113 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
114 FALSE, 0xffffffff, 0xffffffff, TRUE),
115 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
116 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
117 FALSE),
118 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
119 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
120 MINUS_ONE, TRUE),
121 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
122 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
123 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
124 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
125 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
126 MINUS_ONE, FALSE),
127 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
128 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
129 MINUS_ONE, FALSE),
130 EMPTY_HOWTO (32),
131 EMPTY_HOWTO (33),
132 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
133 complain_overflow_bitfield, bfd_elf_generic_reloc,
134 "R_X86_64_GOTPC32_TLSDESC",
135 FALSE, 0xffffffff, 0xffffffff, TRUE),
136 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
137 complain_overflow_dont, bfd_elf_generic_reloc,
138 "R_X86_64_TLSDESC_CALL",
139 FALSE, 0, 0, FALSE),
140 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
141 complain_overflow_bitfield, bfd_elf_generic_reloc,
142 "R_X86_64_TLSDESC",
143 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
144
145 /* We have a gap in the reloc numbers here.
146 R_X86_64_standard counts the number up to this point, and
147 R_X86_64_vt_offset is the value to subtract from a reloc type of
148 R_X86_64_GNU_VT* to form an index into this table. */
149 #define R_X86_64_standard (R_X86_64_TLSDESC + 1)
150 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
151
152 /* GNU extension to record C++ vtable hierarchy. */
153 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
154 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
155
156 /* GNU extension to record C++ vtable member usage. */
157 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
158 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
159 FALSE)
160 };
161
162 /* Map BFD relocs to the x86_64 elf relocs. */
163 struct elf_reloc_map
164 {
165 bfd_reloc_code_real_type bfd_reloc_val;
166 unsigned char elf_reloc_val;
167 };
168
169 static const struct elf_reloc_map x86_64_reloc_map[] =
170 {
171 { BFD_RELOC_NONE, R_X86_64_NONE, },
172 { BFD_RELOC_64, R_X86_64_64, },
173 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
174 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
175 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
176 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
177 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
178 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
179 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
180 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
181 { BFD_RELOC_32, R_X86_64_32, },
182 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
183 { BFD_RELOC_16, R_X86_64_16, },
184 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
185 { BFD_RELOC_8, R_X86_64_8, },
186 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
187 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
188 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
189 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
190 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
191 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
192 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
193 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
194 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
195 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
196 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
197 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
198 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
199 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
200 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
201 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
202 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
203 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
204 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
205 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
206 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
207 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
208 };
209
210 static reloc_howto_type *
211 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
212 {
213 unsigned i;
214
215 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
216 || r_type >= (unsigned int) R_X86_64_max)
217 {
218 if (r_type >= (unsigned int) R_X86_64_standard)
219 {
220 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
221 abfd, (int) r_type);
222 r_type = R_X86_64_NONE;
223 }
224 i = r_type;
225 }
226 else
227 i = r_type - (unsigned int) R_X86_64_vt_offset;
228 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
229 return &x86_64_elf_howto_table[i];
230 }
231
232 /* Given a BFD reloc type, return a HOWTO structure. */
233 static reloc_howto_type *
234 elf64_x86_64_reloc_type_lookup (bfd *abfd,
235 bfd_reloc_code_real_type code)
236 {
237 unsigned int i;
238
239 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
240 i++)
241 {
242 if (x86_64_reloc_map[i].bfd_reloc_val == code)
243 return elf64_x86_64_rtype_to_howto (abfd,
244 x86_64_reloc_map[i].elf_reloc_val);
245 }
246 return 0;
247 }
248
249 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
250
251 static void
252 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
253 Elf_Internal_Rela *dst)
254 {
255 unsigned r_type;
256
257 r_type = ELF64_R_TYPE (dst->r_info);
258 cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type);
259 BFD_ASSERT (r_type == cache_ptr->howto->type);
260 }
261 \f
262 /* Support for core dump NOTE sections. */
263 static bfd_boolean
264 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
265 {
266 int offset;
267 size_t size;
268
269 switch (note->descsz)
270 {
271 default:
272 return FALSE;
273
274 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
275 /* pr_cursig */
276 elf_tdata (abfd)->core_signal
277 = bfd_get_16 (abfd, note->descdata + 12);
278
279 /* pr_pid */
280 elf_tdata (abfd)->core_pid
281 = bfd_get_32 (abfd, note->descdata + 32);
282
283 /* pr_reg */
284 offset = 112;
285 size = 216;
286
287 break;
288 }
289
290 /* Make a ".reg/999" section. */
291 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
292 size, note->descpos + offset);
293 }
294
295 static bfd_boolean
296 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
297 {
298 switch (note->descsz)
299 {
300 default:
301 return FALSE;
302
303 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
304 elf_tdata (abfd)->core_program
305 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
306 elf_tdata (abfd)->core_command
307 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
308 }
309
310 /* Note that for some reason, a spurious space is tacked
311 onto the end of the args in some (at least one anyway)
312 implementations, so strip it off if it exists. */
313
314 {
315 char *command = elf_tdata (abfd)->core_command;
316 int n = strlen (command);
317
318 if (0 < n && command[n - 1] == ' ')
319 command[n - 1] = '\0';
320 }
321
322 return TRUE;
323 }
324 \f
325 /* Functions for the x86-64 ELF linker. */
326
327 /* The name of the dynamic interpreter. This is put in the .interp
328 section. */
329
330 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
331
332 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
333 copying dynamic variables from a shared lib into an app's dynbss
334 section, and instead use a dynamic relocation to point into the
335 shared lib. */
336 #define ELIMINATE_COPY_RELOCS 1
337
338 /* The size in bytes of an entry in the global offset table. */
339
340 #define GOT_ENTRY_SIZE 8
341
342 /* The size in bytes of an entry in the procedure linkage table. */
343
344 #define PLT_ENTRY_SIZE 16
345
346 /* The first entry in a procedure linkage table looks like this. See the
347 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
348
349 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
350 {
351 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
352 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
353 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
354 };
355
356 /* Subsequent entries in a procedure linkage table look like this. */
357
358 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
359 {
360 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
361 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
362 0x68, /* pushq immediate */
363 0, 0, 0, 0, /* replaced with index into relocation table. */
364 0xe9, /* jmp relative */
365 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
366 };
367
368 /* The x86-64 linker needs to keep track of the number of relocs that
369 it decides to copy as dynamic relocs in check_relocs for each symbol.
370 This is so that it can later discard them if they are found to be
371 unnecessary. We store the information in a field extending the
372 regular ELF linker hash table. */
373
374 struct elf64_x86_64_dyn_relocs
375 {
376 /* Next section. */
377 struct elf64_x86_64_dyn_relocs *next;
378
379 /* The input section of the reloc. */
380 asection *sec;
381
382 /* Total number of relocs copied for the input section. */
383 bfd_size_type count;
384
385 /* Number of pc-relative relocs copied for the input section. */
386 bfd_size_type pc_count;
387 };
388
389 /* x86-64 ELF linker hash entry. */
390
391 struct elf64_x86_64_link_hash_entry
392 {
393 struct elf_link_hash_entry elf;
394
395 /* Track dynamic relocs copied for this symbol. */
396 struct elf64_x86_64_dyn_relocs *dyn_relocs;
397
398 #define GOT_UNKNOWN 0
399 #define GOT_NORMAL 1
400 #define GOT_TLS_GD 2
401 #define GOT_TLS_IE 3
402 #define GOT_TLS_GDESC 4
403 #define GOT_TLS_GD_BOTH_P(type) \
404 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
405 #define GOT_TLS_GD_P(type) \
406 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
407 #define GOT_TLS_GDESC_P(type) \
408 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
409 #define GOT_TLS_GD_ANY_P(type) \
410 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
411 unsigned char tls_type;
412
413 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
414 starting at the end of the jump table. */
415 bfd_vma tlsdesc_got;
416 };
417
418 #define elf64_x86_64_hash_entry(ent) \
419 ((struct elf64_x86_64_link_hash_entry *)(ent))
420
421 struct elf64_x86_64_obj_tdata
422 {
423 struct elf_obj_tdata root;
424
425 /* tls_type for each local got entry. */
426 char *local_got_tls_type;
427
428 /* GOTPLT entries for TLS descriptors. */
429 bfd_vma *local_tlsdesc_gotent;
430 };
431
432 #define elf64_x86_64_tdata(abfd) \
433 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
434
435 #define elf64_x86_64_local_got_tls_type(abfd) \
436 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
437
438 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
439 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
440
441 /* x86-64 ELF linker hash table. */
442
443 struct elf64_x86_64_link_hash_table
444 {
445 struct elf_link_hash_table elf;
446
447 /* Short-cuts to get to dynamic linker sections. */
448 asection *sgot;
449 asection *sgotplt;
450 asection *srelgot;
451 asection *splt;
452 asection *srelplt;
453 asection *sdynbss;
454 asection *srelbss;
455
456 /* The offset into splt of the PLT entry for the TLS descriptor
457 resolver. Special values are 0, if not necessary (or not found
458 to be necessary yet), and -1 if needed but not determined
459 yet. */
460 bfd_vma tlsdesc_plt;
461 /* The offset into sgot of the GOT entry used by the PLT entry
462 above. */
463 bfd_vma tlsdesc_got;
464
465 union {
466 bfd_signed_vma refcount;
467 bfd_vma offset;
468 } tls_ld_got;
469
470 /* The amount of space used by the jump slots in the GOT. */
471 bfd_vma sgotplt_jump_table_size;
472
473 /* Small local sym to section mapping cache. */
474 struct sym_sec_cache sym_sec;
475 };
476
477 /* Get the x86-64 ELF linker hash table from a link_info structure. */
478
479 #define elf64_x86_64_hash_table(p) \
480 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
481
482 #define elf64_x86_64_compute_jump_table_size(htab) \
483 ((htab)->srelplt->reloc_count * GOT_ENTRY_SIZE)
484
485 /* Create an entry in an x86-64 ELF linker hash table. */
486
487 static struct bfd_hash_entry *
488 link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
489 const char *string)
490 {
491 /* Allocate the structure if it has not already been allocated by a
492 subclass. */
493 if (entry == NULL)
494 {
495 entry = bfd_hash_allocate (table,
496 sizeof (struct elf64_x86_64_link_hash_entry));
497 if (entry == NULL)
498 return entry;
499 }
500
501 /* Call the allocation method of the superclass. */
502 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
503 if (entry != NULL)
504 {
505 struct elf64_x86_64_link_hash_entry *eh;
506
507 eh = (struct elf64_x86_64_link_hash_entry *) entry;
508 eh->dyn_relocs = NULL;
509 eh->tls_type = GOT_UNKNOWN;
510 eh->tlsdesc_got = (bfd_vma) -1;
511 }
512
513 return entry;
514 }
515
516 /* Create an X86-64 ELF linker hash table. */
517
518 static struct bfd_link_hash_table *
519 elf64_x86_64_link_hash_table_create (bfd *abfd)
520 {
521 struct elf64_x86_64_link_hash_table *ret;
522 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
523
524 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
525 if (ret == NULL)
526 return NULL;
527
528 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
529 sizeof (struct elf64_x86_64_link_hash_entry)))
530 {
531 free (ret);
532 return NULL;
533 }
534
535 ret->sgot = NULL;
536 ret->sgotplt = NULL;
537 ret->srelgot = NULL;
538 ret->splt = NULL;
539 ret->srelplt = NULL;
540 ret->sdynbss = NULL;
541 ret->srelbss = NULL;
542 ret->sym_sec.abfd = NULL;
543 ret->tlsdesc_plt = 0;
544 ret->tlsdesc_got = 0;
545 ret->tls_ld_got.refcount = 0;
546 ret->sgotplt_jump_table_size = 0;
547
548 return &ret->elf.root;
549 }
550
551 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
552 shortcuts to them in our hash table. */
553
554 static bfd_boolean
555 create_got_section (bfd *dynobj, struct bfd_link_info *info)
556 {
557 struct elf64_x86_64_link_hash_table *htab;
558
559 if (! _bfd_elf_create_got_section (dynobj, info))
560 return FALSE;
561
562 htab = elf64_x86_64_hash_table (info);
563 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
564 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
565 if (!htab->sgot || !htab->sgotplt)
566 abort ();
567
568 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
569 (SEC_ALLOC | SEC_LOAD
570 | SEC_HAS_CONTENTS
571 | SEC_IN_MEMORY
572 | SEC_LINKER_CREATED
573 | SEC_READONLY));
574 if (htab->srelgot == NULL
575 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
576 return FALSE;
577 return TRUE;
578 }
579
580 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
581 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
582 hash table. */
583
584 static bfd_boolean
585 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
586 {
587 struct elf64_x86_64_link_hash_table *htab;
588
589 htab = elf64_x86_64_hash_table (info);
590 if (!htab->sgot && !create_got_section (dynobj, info))
591 return FALSE;
592
593 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
594 return FALSE;
595
596 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
597 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
598 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
599 if (!info->shared)
600 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
601
602 if (!htab->splt || !htab->srelplt || !htab->sdynbss
603 || (!info->shared && !htab->srelbss))
604 abort ();
605
606 return TRUE;
607 }
608
609 /* Copy the extra info we tack onto an elf_link_hash_entry. */
610
611 static void
612 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
613 struct elf_link_hash_entry *dir,
614 struct elf_link_hash_entry *ind)
615 {
616 struct elf64_x86_64_link_hash_entry *edir, *eind;
617
618 edir = (struct elf64_x86_64_link_hash_entry *) dir;
619 eind = (struct elf64_x86_64_link_hash_entry *) ind;
620
621 if (eind->dyn_relocs != NULL)
622 {
623 if (edir->dyn_relocs != NULL)
624 {
625 struct elf64_x86_64_dyn_relocs **pp;
626 struct elf64_x86_64_dyn_relocs *p;
627
628 /* Add reloc counts against the indirect sym to the direct sym
629 list. Merge any entries against the same section. */
630 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
631 {
632 struct elf64_x86_64_dyn_relocs *q;
633
634 for (q = edir->dyn_relocs; q != NULL; q = q->next)
635 if (q->sec == p->sec)
636 {
637 q->pc_count += p->pc_count;
638 q->count += p->count;
639 *pp = p->next;
640 break;
641 }
642 if (q == NULL)
643 pp = &p->next;
644 }
645 *pp = edir->dyn_relocs;
646 }
647
648 edir->dyn_relocs = eind->dyn_relocs;
649 eind->dyn_relocs = NULL;
650 }
651
652 if (ind->root.type == bfd_link_hash_indirect
653 && dir->got.refcount <= 0)
654 {
655 edir->tls_type = eind->tls_type;
656 eind->tls_type = GOT_UNKNOWN;
657 }
658
659 if (ELIMINATE_COPY_RELOCS
660 && ind->root.type != bfd_link_hash_indirect
661 && dir->dynamic_adjusted)
662 {
663 /* If called to transfer flags for a weakdef during processing
664 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
665 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
666 dir->ref_dynamic |= ind->ref_dynamic;
667 dir->ref_regular |= ind->ref_regular;
668 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
669 dir->needs_plt |= ind->needs_plt;
670 dir->pointer_equality_needed |= ind->pointer_equality_needed;
671 }
672 else
673 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
674 }
675
676 static bfd_boolean
677 elf64_x86_64_mkobject (bfd *abfd)
678 {
679 if (abfd->tdata.any == NULL)
680 {
681 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
682 abfd->tdata.any = bfd_zalloc (abfd, amt);
683 if (abfd->tdata.any == NULL)
684 return FALSE;
685 }
686 return bfd_elf_mkobject (abfd);
687 }
688
689 static bfd_boolean
690 elf64_x86_64_elf_object_p (bfd *abfd)
691 {
692 /* Set the right machine number for an x86-64 elf64 file. */
693 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
694 return TRUE;
695 }
696
697 static int
698 elf64_x86_64_tls_transition (struct bfd_link_info *info, int r_type, int is_local)
699 {
700 if (info->shared)
701 return r_type;
702
703 switch (r_type)
704 {
705 case R_X86_64_TLSGD:
706 case R_X86_64_GOTPC32_TLSDESC:
707 case R_X86_64_TLSDESC_CALL:
708 case R_X86_64_GOTTPOFF:
709 if (is_local)
710 return R_X86_64_TPOFF32;
711 return R_X86_64_GOTTPOFF;
712 case R_X86_64_TLSLD:
713 return R_X86_64_TPOFF32;
714 }
715
716 return r_type;
717 }
718
719 /* Look through the relocs for a section during the first phase, and
720 calculate needed space in the global offset table, procedure
721 linkage table, and dynamic reloc sections. */
722
723 static bfd_boolean
724 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec,
725 const Elf_Internal_Rela *relocs)
726 {
727 struct elf64_x86_64_link_hash_table *htab;
728 Elf_Internal_Shdr *symtab_hdr;
729 struct elf_link_hash_entry **sym_hashes;
730 const Elf_Internal_Rela *rel;
731 const Elf_Internal_Rela *rel_end;
732 asection *sreloc;
733
734 if (info->relocatable)
735 return TRUE;
736
737 htab = elf64_x86_64_hash_table (info);
738 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
739 sym_hashes = elf_sym_hashes (abfd);
740
741 sreloc = NULL;
742
743 rel_end = relocs + sec->reloc_count;
744 for (rel = relocs; rel < rel_end; rel++)
745 {
746 unsigned int r_type;
747 unsigned long r_symndx;
748 struct elf_link_hash_entry *h;
749
750 r_symndx = ELF64_R_SYM (rel->r_info);
751 r_type = ELF64_R_TYPE (rel->r_info);
752
753 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
754 {
755 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
756 abfd, r_symndx);
757 return FALSE;
758 }
759
760 if (r_symndx < symtab_hdr->sh_info)
761 h = NULL;
762 else
763 {
764 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
765 while (h->root.type == bfd_link_hash_indirect
766 || h->root.type == bfd_link_hash_warning)
767 h = (struct elf_link_hash_entry *) h->root.u.i.link;
768 }
769
770 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
771 switch (r_type)
772 {
773 case R_X86_64_TLSLD:
774 htab->tls_ld_got.refcount += 1;
775 goto create_got;
776
777 case R_X86_64_TPOFF32:
778 if (info->shared)
779 {
780 (*_bfd_error_handler)
781 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
782 abfd,
783 x86_64_elf_howto_table[r_type].name,
784 (h) ? h->root.root.string : "a local symbol");
785 bfd_set_error (bfd_error_bad_value);
786 return FALSE;
787 }
788 break;
789
790 case R_X86_64_GOTTPOFF:
791 if (info->shared)
792 info->flags |= DF_STATIC_TLS;
793 /* Fall through */
794
795 case R_X86_64_GOT32:
796 case R_X86_64_GOTPCREL:
797 case R_X86_64_TLSGD:
798 case R_X86_64_GOT64:
799 case R_X86_64_GOTPCREL64:
800 case R_X86_64_GOTPLT64:
801 case R_X86_64_GOTPC32_TLSDESC:
802 case R_X86_64_TLSDESC_CALL:
803 /* This symbol requires a global offset table entry. */
804 {
805 int tls_type, old_tls_type;
806
807 switch (r_type)
808 {
809 default: tls_type = GOT_NORMAL; break;
810 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
811 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
812 case R_X86_64_GOTPC32_TLSDESC:
813 case R_X86_64_TLSDESC_CALL:
814 tls_type = GOT_TLS_GDESC; break;
815 }
816
817 if (h != NULL)
818 {
819 if (r_type == R_X86_64_GOTPLT64)
820 {
821 /* This relocation indicates that we also need
822 a PLT entry, as this is a function. We don't need
823 a PLT entry for local symbols. */
824 h->needs_plt = 1;
825 h->plt.refcount += 1;
826 }
827 h->got.refcount += 1;
828 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
829 }
830 else
831 {
832 bfd_signed_vma *local_got_refcounts;
833
834 /* This is a global offset table entry for a local symbol. */
835 local_got_refcounts = elf_local_got_refcounts (abfd);
836 if (local_got_refcounts == NULL)
837 {
838 bfd_size_type size;
839
840 size = symtab_hdr->sh_info;
841 size *= sizeof (bfd_signed_vma)
842 + sizeof (bfd_vma) + sizeof (char);
843 local_got_refcounts = ((bfd_signed_vma *)
844 bfd_zalloc (abfd, size));
845 if (local_got_refcounts == NULL)
846 return FALSE;
847 elf_local_got_refcounts (abfd) = local_got_refcounts;
848 elf64_x86_64_local_tlsdesc_gotent (abfd)
849 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
850 elf64_x86_64_local_got_tls_type (abfd)
851 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
852 }
853 local_got_refcounts[r_symndx] += 1;
854 old_tls_type
855 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
856 }
857
858 /* If a TLS symbol is accessed using IE at least once,
859 there is no point to use dynamic model for it. */
860 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
861 && (! GOT_TLS_GD_ANY_P (old_tls_type)
862 || tls_type != GOT_TLS_IE))
863 {
864 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
865 tls_type = old_tls_type;
866 else if (GOT_TLS_GD_ANY_P (old_tls_type)
867 && GOT_TLS_GD_ANY_P (tls_type))
868 tls_type |= old_tls_type;
869 else
870 {
871 (*_bfd_error_handler)
872 (_("%B: %s' accessed both as normal and thread local symbol"),
873 abfd, h ? h->root.root.string : "<local>");
874 return FALSE;
875 }
876 }
877
878 if (old_tls_type != tls_type)
879 {
880 if (h != NULL)
881 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
882 else
883 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
884 }
885 }
886 /* Fall through */
887
888 case R_X86_64_GOTOFF64:
889 case R_X86_64_GOTPC32:
890 case R_X86_64_GOTPC64:
891 create_got:
892 if (htab->sgot == NULL)
893 {
894 if (htab->elf.dynobj == NULL)
895 htab->elf.dynobj = abfd;
896 if (!create_got_section (htab->elf.dynobj, info))
897 return FALSE;
898 }
899 break;
900
901 case R_X86_64_PLT32:
902 /* This symbol requires a procedure linkage table entry. We
903 actually build the entry in adjust_dynamic_symbol,
904 because this might be a case of linking PIC code which is
905 never referenced by a dynamic object, in which case we
906 don't need to generate a procedure linkage table entry
907 after all. */
908
909 /* If this is a local symbol, we resolve it directly without
910 creating a procedure linkage table entry. */
911 if (h == NULL)
912 continue;
913
914 h->needs_plt = 1;
915 h->plt.refcount += 1;
916 break;
917
918 case R_X86_64_PLTOFF64:
919 /* This tries to form the 'address' of a function relative
920 to GOT. For global symbols we need a PLT entry. */
921 if (h != NULL)
922 {
923 h->needs_plt = 1;
924 h->plt.refcount += 1;
925 }
926 goto create_got;
927
928 case R_X86_64_8:
929 case R_X86_64_16:
930 case R_X86_64_32:
931 case R_X86_64_32S:
932 /* Let's help debug shared library creation. These relocs
933 cannot be used in shared libs. Don't error out for
934 sections we don't care about, such as debug sections or
935 non-constant sections. */
936 if (info->shared
937 && (sec->flags & SEC_ALLOC) != 0
938 && (sec->flags & SEC_READONLY) != 0)
939 {
940 (*_bfd_error_handler)
941 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
942 abfd,
943 x86_64_elf_howto_table[r_type].name,
944 (h) ? h->root.root.string : "a local symbol");
945 bfd_set_error (bfd_error_bad_value);
946 return FALSE;
947 }
948 /* Fall through. */
949
950 case R_X86_64_PC8:
951 case R_X86_64_PC16:
952 case R_X86_64_PC32:
953 case R_X86_64_PC64:
954 case R_X86_64_64:
955 if (h != NULL && !info->shared)
956 {
957 /* If this reloc is in a read-only section, we might
958 need a copy reloc. We can't check reliably at this
959 stage whether the section is read-only, as input
960 sections have not yet been mapped to output sections.
961 Tentatively set the flag for now, and correct in
962 adjust_dynamic_symbol. */
963 h->non_got_ref = 1;
964
965 /* We may need a .plt entry if the function this reloc
966 refers to is in a shared lib. */
967 h->plt.refcount += 1;
968 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
969 h->pointer_equality_needed = 1;
970 }
971
972 /* If we are creating a shared library, and this is a reloc
973 against a global symbol, or a non PC relative reloc
974 against a local symbol, then we need to copy the reloc
975 into the shared library. However, if we are linking with
976 -Bsymbolic, we do not need to copy a reloc against a
977 global symbol which is defined in an object we are
978 including in the link (i.e., DEF_REGULAR is set). At
979 this point we have not seen all the input files, so it is
980 possible that DEF_REGULAR is not set now but will be set
981 later (it is never cleared). In case of a weak definition,
982 DEF_REGULAR may be cleared later by a strong definition in
983 a shared library. We account for that possibility below by
984 storing information in the relocs_copied field of the hash
985 table entry. A similar situation occurs when creating
986 shared libraries and symbol visibility changes render the
987 symbol local.
988
989 If on the other hand, we are creating an executable, we
990 may need to keep relocations for symbols satisfied by a
991 dynamic library if we manage to avoid copy relocs for the
992 symbol. */
993 if ((info->shared
994 && (sec->flags & SEC_ALLOC) != 0
995 && (((r_type != R_X86_64_PC8)
996 && (r_type != R_X86_64_PC16)
997 && (r_type != R_X86_64_PC32)
998 && (r_type != R_X86_64_PC64))
999 || (h != NULL
1000 && (! SYMBOLIC_BIND (info, h)
1001 || h->root.type == bfd_link_hash_defweak
1002 || !h->def_regular))))
1003 || (ELIMINATE_COPY_RELOCS
1004 && !info->shared
1005 && (sec->flags & SEC_ALLOC) != 0
1006 && h != NULL
1007 && (h->root.type == bfd_link_hash_defweak
1008 || !h->def_regular)))
1009 {
1010 struct elf64_x86_64_dyn_relocs *p;
1011 struct elf64_x86_64_dyn_relocs **head;
1012
1013 /* We must copy these reloc types into the output file.
1014 Create a reloc section in dynobj and make room for
1015 this reloc. */
1016 if (sreloc == NULL)
1017 {
1018 const char *name;
1019 bfd *dynobj;
1020
1021 name = (bfd_elf_string_from_elf_section
1022 (abfd,
1023 elf_elfheader (abfd)->e_shstrndx,
1024 elf_section_data (sec)->rel_hdr.sh_name));
1025 if (name == NULL)
1026 return FALSE;
1027
1028 if (! CONST_STRNEQ (name, ".rela")
1029 || strcmp (bfd_get_section_name (abfd, sec),
1030 name + 5) != 0)
1031 {
1032 (*_bfd_error_handler)
1033 (_("%B: bad relocation section name `%s\'"),
1034 abfd, name);
1035 }
1036
1037 if (htab->elf.dynobj == NULL)
1038 htab->elf.dynobj = abfd;
1039
1040 dynobj = htab->elf.dynobj;
1041
1042 sreloc = bfd_get_section_by_name (dynobj, name);
1043 if (sreloc == NULL)
1044 {
1045 flagword flags;
1046
1047 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1048 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1049 if ((sec->flags & SEC_ALLOC) != 0)
1050 flags |= SEC_ALLOC | SEC_LOAD;
1051 sreloc = bfd_make_section_with_flags (dynobj,
1052 name,
1053 flags);
1054 if (sreloc == NULL
1055 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1056 return FALSE;
1057 }
1058 elf_section_data (sec)->sreloc = sreloc;
1059 }
1060
1061 /* If this is a global symbol, we count the number of
1062 relocations we need for this symbol. */
1063 if (h != NULL)
1064 {
1065 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1066 }
1067 else
1068 {
1069 void **vpp;
1070 /* Track dynamic relocs needed for local syms too.
1071 We really need local syms available to do this
1072 easily. Oh well. */
1073
1074 asection *s;
1075 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1076 sec, r_symndx);
1077 if (s == NULL)
1078 return FALSE;
1079
1080 /* Beware of type punned pointers vs strict aliasing
1081 rules. */
1082 vpp = &(elf_section_data (s)->local_dynrel);
1083 head = (struct elf64_x86_64_dyn_relocs **)vpp;
1084 }
1085
1086 p = *head;
1087 if (p == NULL || p->sec != sec)
1088 {
1089 bfd_size_type amt = sizeof *p;
1090 p = ((struct elf64_x86_64_dyn_relocs *)
1091 bfd_alloc (htab->elf.dynobj, amt));
1092 if (p == NULL)
1093 return FALSE;
1094 p->next = *head;
1095 *head = p;
1096 p->sec = sec;
1097 p->count = 0;
1098 p->pc_count = 0;
1099 }
1100
1101 p->count += 1;
1102 if (r_type == R_X86_64_PC8
1103 || r_type == R_X86_64_PC16
1104 || r_type == R_X86_64_PC32
1105 || r_type == R_X86_64_PC64)
1106 p->pc_count += 1;
1107 }
1108 break;
1109
1110 /* This relocation describes the C++ object vtable hierarchy.
1111 Reconstruct it for later use during GC. */
1112 case R_X86_64_GNU_VTINHERIT:
1113 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1114 return FALSE;
1115 break;
1116
1117 /* This relocation describes which C++ vtable entries are actually
1118 used. Record for later use during GC. */
1119 case R_X86_64_GNU_VTENTRY:
1120 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1121 return FALSE;
1122 break;
1123
1124 default:
1125 break;
1126 }
1127 }
1128
1129 return TRUE;
1130 }
1131
1132 /* Return the section that should be marked against GC for a given
1133 relocation. */
1134
1135 static asection *
1136 elf64_x86_64_gc_mark_hook (asection *sec,
1137 struct bfd_link_info *info,
1138 Elf_Internal_Rela *rel,
1139 struct elf_link_hash_entry *h,
1140 Elf_Internal_Sym *sym)
1141 {
1142 if (h != NULL)
1143 switch (ELF64_R_TYPE (rel->r_info))
1144 {
1145 case R_X86_64_GNU_VTINHERIT:
1146 case R_X86_64_GNU_VTENTRY:
1147 return NULL;
1148 }
1149
1150 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1151 }
1152
1153 /* Update the got entry reference counts for the section being removed. */
1154
1155 static bfd_boolean
1156 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1157 asection *sec, const Elf_Internal_Rela *relocs)
1158 {
1159 Elf_Internal_Shdr *symtab_hdr;
1160 struct elf_link_hash_entry **sym_hashes;
1161 bfd_signed_vma *local_got_refcounts;
1162 const Elf_Internal_Rela *rel, *relend;
1163
1164 elf_section_data (sec)->local_dynrel = NULL;
1165
1166 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1167 sym_hashes = elf_sym_hashes (abfd);
1168 local_got_refcounts = elf_local_got_refcounts (abfd);
1169
1170 relend = relocs + sec->reloc_count;
1171 for (rel = relocs; rel < relend; rel++)
1172 {
1173 unsigned long r_symndx;
1174 unsigned int r_type;
1175 struct elf_link_hash_entry *h = NULL;
1176
1177 r_symndx = ELF64_R_SYM (rel->r_info);
1178 if (r_symndx >= symtab_hdr->sh_info)
1179 {
1180 struct elf64_x86_64_link_hash_entry *eh;
1181 struct elf64_x86_64_dyn_relocs **pp;
1182 struct elf64_x86_64_dyn_relocs *p;
1183
1184 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1185 while (h->root.type == bfd_link_hash_indirect
1186 || h->root.type == bfd_link_hash_warning)
1187 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1188 eh = (struct elf64_x86_64_link_hash_entry *) h;
1189
1190 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1191 if (p->sec == sec)
1192 {
1193 /* Everything must go for SEC. */
1194 *pp = p->next;
1195 break;
1196 }
1197 }
1198
1199 r_type = ELF64_R_TYPE (rel->r_info);
1200 r_type = elf64_x86_64_tls_transition (info, r_type, h != NULL);
1201 switch (r_type)
1202 {
1203 case R_X86_64_TLSLD:
1204 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1205 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1206 break;
1207
1208 case R_X86_64_TLSGD:
1209 case R_X86_64_GOTPC32_TLSDESC:
1210 case R_X86_64_TLSDESC_CALL:
1211 case R_X86_64_GOTTPOFF:
1212 case R_X86_64_GOT32:
1213 case R_X86_64_GOTPCREL:
1214 case R_X86_64_GOT64:
1215 case R_X86_64_GOTPCREL64:
1216 case R_X86_64_GOTPLT64:
1217 if (h != NULL)
1218 {
1219 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1220 h->plt.refcount -= 1;
1221 if (h->got.refcount > 0)
1222 h->got.refcount -= 1;
1223 }
1224 else if (local_got_refcounts != NULL)
1225 {
1226 if (local_got_refcounts[r_symndx] > 0)
1227 local_got_refcounts[r_symndx] -= 1;
1228 }
1229 break;
1230
1231 case R_X86_64_8:
1232 case R_X86_64_16:
1233 case R_X86_64_32:
1234 case R_X86_64_64:
1235 case R_X86_64_32S:
1236 case R_X86_64_PC8:
1237 case R_X86_64_PC16:
1238 case R_X86_64_PC32:
1239 case R_X86_64_PC64:
1240 if (info->shared)
1241 break;
1242 /* Fall thru */
1243
1244 case R_X86_64_PLT32:
1245 case R_X86_64_PLTOFF64:
1246 if (h != NULL)
1247 {
1248 if (h->plt.refcount > 0)
1249 h->plt.refcount -= 1;
1250 }
1251 break;
1252
1253 default:
1254 break;
1255 }
1256 }
1257
1258 return TRUE;
1259 }
1260
1261 /* Adjust a symbol defined by a dynamic object and referenced by a
1262 regular object. The current definition is in some section of the
1263 dynamic object, but we're not including those sections. We have to
1264 change the definition to something the rest of the link can
1265 understand. */
1266
1267 static bfd_boolean
1268 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1269 struct elf_link_hash_entry *h)
1270 {
1271 struct elf64_x86_64_link_hash_table *htab;
1272 asection *s;
1273 unsigned int power_of_two;
1274
1275 /* If this is a function, put it in the procedure linkage table. We
1276 will fill in the contents of the procedure linkage table later,
1277 when we know the address of the .got section. */
1278 if (h->type == STT_FUNC
1279 || h->needs_plt)
1280 {
1281 if (h->plt.refcount <= 0
1282 || SYMBOL_CALLS_LOCAL (info, h)
1283 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1284 && h->root.type == bfd_link_hash_undefweak))
1285 {
1286 /* This case can occur if we saw a PLT32 reloc in an input
1287 file, but the symbol was never referred to by a dynamic
1288 object, or if all references were garbage collected. In
1289 such a case, we don't actually need to build a procedure
1290 linkage table, and we can just do a PC32 reloc instead. */
1291 h->plt.offset = (bfd_vma) -1;
1292 h->needs_plt = 0;
1293 }
1294
1295 return TRUE;
1296 }
1297 else
1298 /* It's possible that we incorrectly decided a .plt reloc was
1299 needed for an R_X86_64_PC32 reloc to a non-function sym in
1300 check_relocs. We can't decide accurately between function and
1301 non-function syms in check-relocs; Objects loaded later in
1302 the link may change h->type. So fix it now. */
1303 h->plt.offset = (bfd_vma) -1;
1304
1305 /* If this is a weak symbol, and there is a real definition, the
1306 processor independent code will have arranged for us to see the
1307 real definition first, and we can just use the same value. */
1308 if (h->u.weakdef != NULL)
1309 {
1310 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1311 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1312 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1313 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1314 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1315 h->non_got_ref = h->u.weakdef->non_got_ref;
1316 return TRUE;
1317 }
1318
1319 /* This is a reference to a symbol defined by a dynamic object which
1320 is not a function. */
1321
1322 /* If we are creating a shared library, we must presume that the
1323 only references to the symbol are via the global offset table.
1324 For such cases we need not do anything here; the relocations will
1325 be handled correctly by relocate_section. */
1326 if (info->shared)
1327 return TRUE;
1328
1329 /* If there are no references to this symbol that do not use the
1330 GOT, we don't need to generate a copy reloc. */
1331 if (!h->non_got_ref)
1332 return TRUE;
1333
1334 /* If -z nocopyreloc was given, we won't generate them either. */
1335 if (info->nocopyreloc)
1336 {
1337 h->non_got_ref = 0;
1338 return TRUE;
1339 }
1340
1341 if (ELIMINATE_COPY_RELOCS)
1342 {
1343 struct elf64_x86_64_link_hash_entry * eh;
1344 struct elf64_x86_64_dyn_relocs *p;
1345
1346 eh = (struct elf64_x86_64_link_hash_entry *) h;
1347 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1348 {
1349 s = p->sec->output_section;
1350 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1351 break;
1352 }
1353
1354 /* If we didn't find any dynamic relocs in read-only sections, then
1355 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1356 if (p == NULL)
1357 {
1358 h->non_got_ref = 0;
1359 return TRUE;
1360 }
1361 }
1362
1363 if (h->size == 0)
1364 {
1365 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1366 h->root.root.string);
1367 return TRUE;
1368 }
1369
1370 /* We must allocate the symbol in our .dynbss section, which will
1371 become part of the .bss section of the executable. There will be
1372 an entry for this symbol in the .dynsym section. The dynamic
1373 object will contain position independent code, so all references
1374 from the dynamic object to this symbol will go through the global
1375 offset table. The dynamic linker will use the .dynsym entry to
1376 determine the address it must put in the global offset table, so
1377 both the dynamic object and the regular object will refer to the
1378 same memory location for the variable. */
1379
1380 htab = elf64_x86_64_hash_table (info);
1381
1382 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1383 to copy the initial value out of the dynamic object and into the
1384 runtime process image. */
1385 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1386 {
1387 htab->srelbss->size += sizeof (Elf64_External_Rela);
1388 h->needs_copy = 1;
1389 }
1390
1391 /* We need to figure out the alignment required for this symbol. I
1392 have no idea how ELF linkers handle this. 16-bytes is the size
1393 of the largest type that requires hard alignment -- long double. */
1394 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
1395 this construct. */
1396 power_of_two = bfd_log2 (h->size);
1397 if (power_of_two > 4)
1398 power_of_two = 4;
1399
1400 /* Apply the required alignment. */
1401 s = htab->sdynbss;
1402 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1403 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1404 {
1405 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1406 return FALSE;
1407 }
1408
1409 /* Define the symbol as being at this point in the section. */
1410 h->root.u.def.section = s;
1411 h->root.u.def.value = s->size;
1412
1413 /* Increment the section size to make room for the symbol. */
1414 s->size += h->size;
1415
1416 return TRUE;
1417 }
1418
1419 /* Allocate space in .plt, .got and associated reloc sections for
1420 dynamic relocs. */
1421
1422 static bfd_boolean
1423 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1424 {
1425 struct bfd_link_info *info;
1426 struct elf64_x86_64_link_hash_table *htab;
1427 struct elf64_x86_64_link_hash_entry *eh;
1428 struct elf64_x86_64_dyn_relocs *p;
1429
1430 if (h->root.type == bfd_link_hash_indirect)
1431 return TRUE;
1432
1433 if (h->root.type == bfd_link_hash_warning)
1434 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1435
1436 info = (struct bfd_link_info *) inf;
1437 htab = elf64_x86_64_hash_table (info);
1438
1439 if (htab->elf.dynamic_sections_created
1440 && h->plt.refcount > 0)
1441 {
1442 /* Make sure this symbol is output as a dynamic symbol.
1443 Undefined weak syms won't yet be marked as dynamic. */
1444 if (h->dynindx == -1
1445 && !h->forced_local)
1446 {
1447 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1448 return FALSE;
1449 }
1450
1451 if (info->shared
1452 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1453 {
1454 asection *s = htab->splt;
1455
1456 /* If this is the first .plt entry, make room for the special
1457 first entry. */
1458 if (s->size == 0)
1459 s->size += PLT_ENTRY_SIZE;
1460
1461 h->plt.offset = s->size;
1462
1463 /* If this symbol is not defined in a regular file, and we are
1464 not generating a shared library, then set the symbol to this
1465 location in the .plt. This is required to make function
1466 pointers compare as equal between the normal executable and
1467 the shared library. */
1468 if (! info->shared
1469 && !h->def_regular)
1470 {
1471 h->root.u.def.section = s;
1472 h->root.u.def.value = h->plt.offset;
1473 }
1474
1475 /* Make room for this entry. */
1476 s->size += PLT_ENTRY_SIZE;
1477
1478 /* We also need to make an entry in the .got.plt section, which
1479 will be placed in the .got section by the linker script. */
1480 htab->sgotplt->size += GOT_ENTRY_SIZE;
1481
1482 /* We also need to make an entry in the .rela.plt section. */
1483 htab->srelplt->size += sizeof (Elf64_External_Rela);
1484 htab->srelplt->reloc_count++;
1485 }
1486 else
1487 {
1488 h->plt.offset = (bfd_vma) -1;
1489 h->needs_plt = 0;
1490 }
1491 }
1492 else
1493 {
1494 h->plt.offset = (bfd_vma) -1;
1495 h->needs_plt = 0;
1496 }
1497
1498 eh = (struct elf64_x86_64_link_hash_entry *) h;
1499 eh->tlsdesc_got = (bfd_vma) -1;
1500
1501 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1502 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1503 if (h->got.refcount > 0
1504 && !info->shared
1505 && h->dynindx == -1
1506 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1507 h->got.offset = (bfd_vma) -1;
1508 else if (h->got.refcount > 0)
1509 {
1510 asection *s;
1511 bfd_boolean dyn;
1512 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1513
1514 /* Make sure this symbol is output as a dynamic symbol.
1515 Undefined weak syms won't yet be marked as dynamic. */
1516 if (h->dynindx == -1
1517 && !h->forced_local)
1518 {
1519 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1520 return FALSE;
1521 }
1522
1523 if (GOT_TLS_GDESC_P (tls_type))
1524 {
1525 eh->tlsdesc_got = htab->sgotplt->size
1526 - elf64_x86_64_compute_jump_table_size (htab);
1527 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
1528 h->got.offset = (bfd_vma) -2;
1529 }
1530 if (! GOT_TLS_GDESC_P (tls_type)
1531 || GOT_TLS_GD_P (tls_type))
1532 {
1533 s = htab->sgot;
1534 h->got.offset = s->size;
1535 s->size += GOT_ENTRY_SIZE;
1536 if (GOT_TLS_GD_P (tls_type))
1537 s->size += GOT_ENTRY_SIZE;
1538 }
1539 dyn = htab->elf.dynamic_sections_created;
1540 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1541 and two if global.
1542 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1543 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
1544 || tls_type == GOT_TLS_IE)
1545 htab->srelgot->size += sizeof (Elf64_External_Rela);
1546 else if (GOT_TLS_GD_P (tls_type))
1547 htab->srelgot->size += 2 * sizeof (Elf64_External_Rela);
1548 else if (! GOT_TLS_GDESC_P (tls_type)
1549 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1550 || h->root.type != bfd_link_hash_undefweak)
1551 && (info->shared
1552 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1553 htab->srelgot->size += sizeof (Elf64_External_Rela);
1554 if (GOT_TLS_GDESC_P (tls_type))
1555 {
1556 htab->srelplt->size += sizeof (Elf64_External_Rela);
1557 htab->tlsdesc_plt = (bfd_vma) -1;
1558 }
1559 }
1560 else
1561 h->got.offset = (bfd_vma) -1;
1562
1563 if (eh->dyn_relocs == NULL)
1564 return TRUE;
1565
1566 /* In the shared -Bsymbolic case, discard space allocated for
1567 dynamic pc-relative relocs against symbols which turn out to be
1568 defined in regular objects. For the normal shared case, discard
1569 space for pc-relative relocs that have become local due to symbol
1570 visibility changes. */
1571
1572 if (info->shared)
1573 {
1574 /* Relocs that use pc_count are those that appear on a call
1575 insn, or certain REL relocs that can generated via assembly.
1576 We want calls to protected symbols to resolve directly to the
1577 function rather than going via the plt. If people want
1578 function pointer comparisons to work as expected then they
1579 should avoid writing weird assembly. */
1580 if (SYMBOL_CALLS_LOCAL (info, h))
1581 {
1582 struct elf64_x86_64_dyn_relocs **pp;
1583
1584 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1585 {
1586 p->count -= p->pc_count;
1587 p->pc_count = 0;
1588 if (p->count == 0)
1589 *pp = p->next;
1590 else
1591 pp = &p->next;
1592 }
1593 }
1594
1595 /* Also discard relocs on undefined weak syms with non-default
1596 visibility. */
1597 if (eh->dyn_relocs != NULL
1598 && h->root.type == bfd_link_hash_undefweak)
1599 {
1600 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1601 eh->dyn_relocs = NULL;
1602
1603 /* Make sure undefined weak symbols are output as a dynamic
1604 symbol in PIEs. */
1605 else if (h->dynindx == -1
1606 && !h->forced_local)
1607 {
1608 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1609 return FALSE;
1610 }
1611 }
1612 }
1613 else if (ELIMINATE_COPY_RELOCS)
1614 {
1615 /* For the non-shared case, discard space for relocs against
1616 symbols which turn out to need copy relocs or are not
1617 dynamic. */
1618
1619 if (!h->non_got_ref
1620 && ((h->def_dynamic
1621 && !h->def_regular)
1622 || (htab->elf.dynamic_sections_created
1623 && (h->root.type == bfd_link_hash_undefweak
1624 || h->root.type == bfd_link_hash_undefined))))
1625 {
1626 /* Make sure this symbol is output as a dynamic symbol.
1627 Undefined weak syms won't yet be marked as dynamic. */
1628 if (h->dynindx == -1
1629 && !h->forced_local)
1630 {
1631 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1632 return FALSE;
1633 }
1634
1635 /* If that succeeded, we know we'll be keeping all the
1636 relocs. */
1637 if (h->dynindx != -1)
1638 goto keep;
1639 }
1640
1641 eh->dyn_relocs = NULL;
1642
1643 keep: ;
1644 }
1645
1646 /* Finally, allocate space. */
1647 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1648 {
1649 asection *sreloc = elf_section_data (p->sec)->sreloc;
1650 sreloc->size += p->count * sizeof (Elf64_External_Rela);
1651 }
1652
1653 return TRUE;
1654 }
1655
1656 /* Find any dynamic relocs that apply to read-only sections. */
1657
1658 static bfd_boolean
1659 readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1660 {
1661 struct elf64_x86_64_link_hash_entry *eh;
1662 struct elf64_x86_64_dyn_relocs *p;
1663
1664 if (h->root.type == bfd_link_hash_warning)
1665 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1666
1667 eh = (struct elf64_x86_64_link_hash_entry *) h;
1668 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1669 {
1670 asection *s = p->sec->output_section;
1671
1672 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1673 {
1674 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1675
1676 info->flags |= DF_TEXTREL;
1677
1678 /* Not an error, just cut short the traversal. */
1679 return FALSE;
1680 }
1681 }
1682 return TRUE;
1683 }
1684
1685 /* Set the sizes of the dynamic sections. */
1686
1687 static bfd_boolean
1688 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1689 struct bfd_link_info *info)
1690 {
1691 struct elf64_x86_64_link_hash_table *htab;
1692 bfd *dynobj;
1693 asection *s;
1694 bfd_boolean relocs;
1695 bfd *ibfd;
1696
1697 htab = elf64_x86_64_hash_table (info);
1698 dynobj = htab->elf.dynobj;
1699 if (dynobj == NULL)
1700 abort ();
1701
1702 if (htab->elf.dynamic_sections_created)
1703 {
1704 /* Set the contents of the .interp section to the interpreter. */
1705 if (info->executable)
1706 {
1707 s = bfd_get_section_by_name (dynobj, ".interp");
1708 if (s == NULL)
1709 abort ();
1710 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1711 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1712 }
1713 }
1714
1715 /* Set up .got offsets for local syms, and space for local dynamic
1716 relocs. */
1717 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1718 {
1719 bfd_signed_vma *local_got;
1720 bfd_signed_vma *end_local_got;
1721 char *local_tls_type;
1722 bfd_vma *local_tlsdesc_gotent;
1723 bfd_size_type locsymcount;
1724 Elf_Internal_Shdr *symtab_hdr;
1725 asection *srel;
1726
1727 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1728 continue;
1729
1730 for (s = ibfd->sections; s != NULL; s = s->next)
1731 {
1732 struct elf64_x86_64_dyn_relocs *p;
1733
1734 for (p = (struct elf64_x86_64_dyn_relocs *)
1735 (elf_section_data (s)->local_dynrel);
1736 p != NULL;
1737 p = p->next)
1738 {
1739 if (!bfd_is_abs_section (p->sec)
1740 && bfd_is_abs_section (p->sec->output_section))
1741 {
1742 /* Input section has been discarded, either because
1743 it is a copy of a linkonce section or due to
1744 linker script /DISCARD/, so we'll be discarding
1745 the relocs too. */
1746 }
1747 else if (p->count != 0)
1748 {
1749 srel = elf_section_data (p->sec)->sreloc;
1750 srel->size += p->count * sizeof (Elf64_External_Rela);
1751 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1752 info->flags |= DF_TEXTREL;
1753
1754 }
1755 }
1756 }
1757
1758 local_got = elf_local_got_refcounts (ibfd);
1759 if (!local_got)
1760 continue;
1761
1762 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1763 locsymcount = symtab_hdr->sh_info;
1764 end_local_got = local_got + locsymcount;
1765 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1766 local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd);
1767 s = htab->sgot;
1768 srel = htab->srelgot;
1769 for (; local_got < end_local_got;
1770 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
1771 {
1772 *local_tlsdesc_gotent = (bfd_vma) -1;
1773 if (*local_got > 0)
1774 {
1775 if (GOT_TLS_GDESC_P (*local_tls_type))
1776 {
1777 *local_tlsdesc_gotent = htab->sgotplt->size
1778 - elf64_x86_64_compute_jump_table_size (htab);
1779 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
1780 *local_got = (bfd_vma) -2;
1781 }
1782 if (! GOT_TLS_GDESC_P (*local_tls_type)
1783 || GOT_TLS_GD_P (*local_tls_type))
1784 {
1785 *local_got = s->size;
1786 s->size += GOT_ENTRY_SIZE;
1787 if (GOT_TLS_GD_P (*local_tls_type))
1788 s->size += GOT_ENTRY_SIZE;
1789 }
1790 if (info->shared
1791 || GOT_TLS_GD_ANY_P (*local_tls_type)
1792 || *local_tls_type == GOT_TLS_IE)
1793 {
1794 if (GOT_TLS_GDESC_P (*local_tls_type))
1795 {
1796 htab->srelplt->size += sizeof (Elf64_External_Rela);
1797 htab->tlsdesc_plt = (bfd_vma) -1;
1798 }
1799 if (! GOT_TLS_GDESC_P (*local_tls_type)
1800 || GOT_TLS_GD_P (*local_tls_type))
1801 srel->size += sizeof (Elf64_External_Rela);
1802 }
1803 }
1804 else
1805 *local_got = (bfd_vma) -1;
1806 }
1807 }
1808
1809 if (htab->tls_ld_got.refcount > 0)
1810 {
1811 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
1812 relocs. */
1813 htab->tls_ld_got.offset = htab->sgot->size;
1814 htab->sgot->size += 2 * GOT_ENTRY_SIZE;
1815 htab->srelgot->size += sizeof (Elf64_External_Rela);
1816 }
1817 else
1818 htab->tls_ld_got.offset = -1;
1819
1820 /* Allocate global sym .plt and .got entries, and space for global
1821 sym dynamic relocs. */
1822 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1823
1824 /* For every jump slot reserved in the sgotplt, reloc_count is
1825 incremented. However, when we reserve space for TLS descriptors,
1826 it's not incremented, so in order to compute the space reserved
1827 for them, it suffices to multiply the reloc count by the jump
1828 slot size. */
1829 if (htab->srelplt)
1830 htab->sgotplt_jump_table_size
1831 = elf64_x86_64_compute_jump_table_size (htab);
1832
1833 if (htab->tlsdesc_plt)
1834 {
1835 /* If we're not using lazy TLS relocations, don't generate the
1836 PLT and GOT entries they require. */
1837 if ((info->flags & DF_BIND_NOW))
1838 htab->tlsdesc_plt = 0;
1839 else
1840 {
1841 htab->tlsdesc_got = htab->sgot->size;
1842 htab->sgot->size += GOT_ENTRY_SIZE;
1843 /* Reserve room for the initial entry.
1844 FIXME: we could probably do away with it in this case. */
1845 if (htab->splt->size == 0)
1846 htab->splt->size += PLT_ENTRY_SIZE;
1847 htab->tlsdesc_plt = htab->splt->size;
1848 htab->splt->size += PLT_ENTRY_SIZE;
1849 }
1850 }
1851
1852 /* We now have determined the sizes of the various dynamic sections.
1853 Allocate memory for them. */
1854 relocs = FALSE;
1855 for (s = dynobj->sections; s != NULL; s = s->next)
1856 {
1857 if ((s->flags & SEC_LINKER_CREATED) == 0)
1858 continue;
1859
1860 if (s == htab->splt
1861 || s == htab->sgot
1862 || s == htab->sgotplt
1863 || s == htab->sdynbss)
1864 {
1865 /* Strip this section if we don't need it; see the
1866 comment below. */
1867 }
1868 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
1869 {
1870 if (s->size != 0 && s != htab->srelplt)
1871 relocs = TRUE;
1872
1873 /* We use the reloc_count field as a counter if we need
1874 to copy relocs into the output file. */
1875 if (s != htab->srelplt)
1876 s->reloc_count = 0;
1877 }
1878 else
1879 {
1880 /* It's not one of our sections, so don't allocate space. */
1881 continue;
1882 }
1883
1884 if (s->size == 0)
1885 {
1886 /* If we don't need this section, strip it from the
1887 output file. This is mostly to handle .rela.bss and
1888 .rela.plt. We must create both sections in
1889 create_dynamic_sections, because they must be created
1890 before the linker maps input sections to output
1891 sections. The linker does that before
1892 adjust_dynamic_symbol is called, and it is that
1893 function which decides whether anything needs to go
1894 into these sections. */
1895
1896 s->flags |= SEC_EXCLUDE;
1897 continue;
1898 }
1899
1900 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1901 continue;
1902
1903 /* Allocate memory for the section contents. We use bfd_zalloc
1904 here in case unused entries are not reclaimed before the
1905 section's contents are written out. This should not happen,
1906 but this way if it does, we get a R_X86_64_NONE reloc instead
1907 of garbage. */
1908 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1909 if (s->contents == NULL)
1910 return FALSE;
1911 }
1912
1913 if (htab->elf.dynamic_sections_created)
1914 {
1915 /* Add some entries to the .dynamic section. We fill in the
1916 values later, in elf64_x86_64_finish_dynamic_sections, but we
1917 must add the entries now so that we get the correct size for
1918 the .dynamic section. The DT_DEBUG entry is filled in by the
1919 dynamic linker and used by the debugger. */
1920 #define add_dynamic_entry(TAG, VAL) \
1921 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1922
1923 if (info->executable)
1924 {
1925 if (!add_dynamic_entry (DT_DEBUG, 0))
1926 return FALSE;
1927 }
1928
1929 if (htab->splt->size != 0)
1930 {
1931 if (!add_dynamic_entry (DT_PLTGOT, 0)
1932 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1933 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1934 || !add_dynamic_entry (DT_JMPREL, 0))
1935 return FALSE;
1936
1937 if (htab->tlsdesc_plt
1938 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
1939 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
1940 return FALSE;
1941 }
1942
1943 if (relocs)
1944 {
1945 if (!add_dynamic_entry (DT_RELA, 0)
1946 || !add_dynamic_entry (DT_RELASZ, 0)
1947 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1948 return FALSE;
1949
1950 /* If any dynamic relocs apply to a read-only section,
1951 then we need a DT_TEXTREL entry. */
1952 if ((info->flags & DF_TEXTREL) == 0)
1953 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1954 (PTR) info);
1955
1956 if ((info->flags & DF_TEXTREL) != 0)
1957 {
1958 if (!add_dynamic_entry (DT_TEXTREL, 0))
1959 return FALSE;
1960 }
1961 }
1962 }
1963 #undef add_dynamic_entry
1964
1965 return TRUE;
1966 }
1967
1968 static bfd_boolean
1969 elf64_x86_64_always_size_sections (bfd *output_bfd,
1970 struct bfd_link_info *info)
1971 {
1972 asection *tls_sec = elf_hash_table (info)->tls_sec;
1973
1974 if (tls_sec)
1975 {
1976 struct elf_link_hash_entry *tlsbase;
1977
1978 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
1979 "_TLS_MODULE_BASE_",
1980 FALSE, FALSE, FALSE);
1981
1982 if (tlsbase && tlsbase->type == STT_TLS)
1983 {
1984 struct bfd_link_hash_entry *bh = NULL;
1985 const struct elf_backend_data *bed
1986 = get_elf_backend_data (output_bfd);
1987
1988 if (!(_bfd_generic_link_add_one_symbol
1989 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1990 tls_sec, 0, NULL, FALSE,
1991 bed->collect, &bh)))
1992 return FALSE;
1993 tlsbase = (struct elf_link_hash_entry *)bh;
1994 tlsbase->def_regular = 1;
1995 tlsbase->other = STV_HIDDEN;
1996 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1997 }
1998 }
1999
2000 return TRUE;
2001 }
2002
2003 /* Return the base VMA address which should be subtracted from real addresses
2004 when resolving @dtpoff relocation.
2005 This is PT_TLS segment p_vaddr. */
2006
2007 static bfd_vma
2008 dtpoff_base (struct bfd_link_info *info)
2009 {
2010 /* If tls_sec is NULL, we should have signalled an error already. */
2011 if (elf_hash_table (info)->tls_sec == NULL)
2012 return 0;
2013 return elf_hash_table (info)->tls_sec->vma;
2014 }
2015
2016 /* Return the relocation value for @tpoff relocation
2017 if STT_TLS virtual address is ADDRESS. */
2018
2019 static bfd_vma
2020 tpoff (struct bfd_link_info *info, bfd_vma address)
2021 {
2022 struct elf_link_hash_table *htab = elf_hash_table (info);
2023
2024 /* If tls_segment is NULL, we should have signalled an error already. */
2025 if (htab->tls_sec == NULL)
2026 return 0;
2027 return address - htab->tls_size - htab->tls_sec->vma;
2028 }
2029
2030 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2031 branch? */
2032
2033 static bfd_boolean
2034 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2035 {
2036 /* Opcode Instruction
2037 0xe8 call
2038 0xe9 jump
2039 0x0f 0x8x conditional jump */
2040 return ((offset > 0
2041 && (contents [offset - 1] == 0xe8
2042 || contents [offset - 1] == 0xe9))
2043 || (offset > 1
2044 && contents [offset - 2] == 0x0f
2045 && (contents [offset - 1] & 0xf0) == 0x80));
2046 }
2047
2048 /* Relocate an x86_64 ELF section. */
2049
2050 static bfd_boolean
2051 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
2052 bfd *input_bfd, asection *input_section,
2053 bfd_byte *contents, Elf_Internal_Rela *relocs,
2054 Elf_Internal_Sym *local_syms,
2055 asection **local_sections)
2056 {
2057 struct elf64_x86_64_link_hash_table *htab;
2058 Elf_Internal_Shdr *symtab_hdr;
2059 struct elf_link_hash_entry **sym_hashes;
2060 bfd_vma *local_got_offsets;
2061 bfd_vma *local_tlsdesc_gotents;
2062 Elf_Internal_Rela *rel;
2063 Elf_Internal_Rela *relend;
2064
2065 htab = elf64_x86_64_hash_table (info);
2066 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2067 sym_hashes = elf_sym_hashes (input_bfd);
2068 local_got_offsets = elf_local_got_offsets (input_bfd);
2069 local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd);
2070
2071 rel = relocs;
2072 relend = relocs + input_section->reloc_count;
2073 for (; rel < relend; rel++)
2074 {
2075 unsigned int r_type;
2076 reloc_howto_type *howto;
2077 unsigned long r_symndx;
2078 struct elf_link_hash_entry *h;
2079 Elf_Internal_Sym *sym;
2080 asection *sec;
2081 bfd_vma off, offplt;
2082 bfd_vma relocation;
2083 bfd_boolean unresolved_reloc;
2084 bfd_reloc_status_type r;
2085 int tls_type;
2086
2087 r_type = ELF64_R_TYPE (rel->r_info);
2088 if (r_type == (int) R_X86_64_GNU_VTINHERIT
2089 || r_type == (int) R_X86_64_GNU_VTENTRY)
2090 continue;
2091
2092 if (r_type >= R_X86_64_max)
2093 {
2094 bfd_set_error (bfd_error_bad_value);
2095 return FALSE;
2096 }
2097
2098 howto = x86_64_elf_howto_table + r_type;
2099 r_symndx = ELF64_R_SYM (rel->r_info);
2100 h = NULL;
2101 sym = NULL;
2102 sec = NULL;
2103 unresolved_reloc = FALSE;
2104 if (r_symndx < symtab_hdr->sh_info)
2105 {
2106 sym = local_syms + r_symndx;
2107 sec = local_sections[r_symndx];
2108
2109 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2110 }
2111 else
2112 {
2113 bfd_boolean warned;
2114
2115 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2116 r_symndx, symtab_hdr, sym_hashes,
2117 h, sec, relocation,
2118 unresolved_reloc, warned);
2119 }
2120
2121 if (sec != NULL && elf_discarded_section (sec))
2122 {
2123 /* For relocs against symbols from removed linkonce sections,
2124 or sections discarded by a linker script, we just want the
2125 section contents zeroed. Avoid any special processing. */
2126 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2127 rel->r_info = 0;
2128 rel->r_addend = 0;
2129 continue;
2130 }
2131
2132 if (info->relocatable)
2133 continue;
2134
2135 /* When generating a shared object, the relocations handled here are
2136 copied into the output file to be resolved at run time. */
2137 switch (r_type)
2138 {
2139 asection *base_got;
2140 case R_X86_64_GOT32:
2141 case R_X86_64_GOT64:
2142 /* Relocation is to the entry for this symbol in the global
2143 offset table. */
2144 case R_X86_64_GOTPCREL:
2145 case R_X86_64_GOTPCREL64:
2146 /* Use global offset table entry as symbol value. */
2147 case R_X86_64_GOTPLT64:
2148 /* This is the same as GOT64 for relocation purposes, but
2149 indicates the existence of a PLT entry. The difficulty is,
2150 that we must calculate the GOT slot offset from the PLT
2151 offset, if this symbol got a PLT entry (it was global).
2152 Additionally if it's computed from the PLT entry, then that
2153 GOT offset is relative to .got.plt, not to .got. */
2154 base_got = htab->sgot;
2155
2156 if (htab->sgot == NULL)
2157 abort ();
2158
2159 if (h != NULL)
2160 {
2161 bfd_boolean dyn;
2162
2163 off = h->got.offset;
2164 if (h->needs_plt
2165 && h->plt.offset != (bfd_vma)-1
2166 && off == (bfd_vma)-1)
2167 {
2168 /* We can't use h->got.offset here to save
2169 state, or even just remember the offset, as
2170 finish_dynamic_symbol would use that as offset into
2171 .got. */
2172 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2173 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2174 base_got = htab->sgotplt;
2175 }
2176
2177 dyn = htab->elf.dynamic_sections_created;
2178
2179 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2180 || (info->shared
2181 && SYMBOL_REFERENCES_LOCAL (info, h))
2182 || (ELF_ST_VISIBILITY (h->other)
2183 && h->root.type == bfd_link_hash_undefweak))
2184 {
2185 /* This is actually a static link, or it is a -Bsymbolic
2186 link and the symbol is defined locally, or the symbol
2187 was forced to be local because of a version file. We
2188 must initialize this entry in the global offset table.
2189 Since the offset must always be a multiple of 8, we
2190 use the least significant bit to record whether we
2191 have initialized it already.
2192
2193 When doing a dynamic link, we create a .rela.got
2194 relocation entry to initialize the value. This is
2195 done in the finish_dynamic_symbol routine. */
2196 if ((off & 1) != 0)
2197 off &= ~1;
2198 else
2199 {
2200 bfd_put_64 (output_bfd, relocation,
2201 base_got->contents + off);
2202 /* Note that this is harmless for the GOTPLT64 case,
2203 as -1 | 1 still is -1. */
2204 h->got.offset |= 1;
2205 }
2206 }
2207 else
2208 unresolved_reloc = FALSE;
2209 }
2210 else
2211 {
2212 if (local_got_offsets == NULL)
2213 abort ();
2214
2215 off = local_got_offsets[r_symndx];
2216
2217 /* The offset must always be a multiple of 8. We use
2218 the least significant bit to record whether we have
2219 already generated the necessary reloc. */
2220 if ((off & 1) != 0)
2221 off &= ~1;
2222 else
2223 {
2224 bfd_put_64 (output_bfd, relocation,
2225 base_got->contents + off);
2226
2227 if (info->shared)
2228 {
2229 asection *s;
2230 Elf_Internal_Rela outrel;
2231 bfd_byte *loc;
2232
2233 /* We need to generate a R_X86_64_RELATIVE reloc
2234 for the dynamic linker. */
2235 s = htab->srelgot;
2236 if (s == NULL)
2237 abort ();
2238
2239 outrel.r_offset = (base_got->output_section->vma
2240 + base_got->output_offset
2241 + off);
2242 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2243 outrel.r_addend = relocation;
2244 loc = s->contents;
2245 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2246 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2247 }
2248
2249 local_got_offsets[r_symndx] |= 1;
2250 }
2251 }
2252
2253 if (off >= (bfd_vma) -2)
2254 abort ();
2255
2256 relocation = base_got->output_section->vma
2257 + base_got->output_offset + off;
2258 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
2259 relocation -= htab->sgotplt->output_section->vma
2260 - htab->sgotplt->output_offset;
2261
2262 break;
2263
2264 case R_X86_64_GOTOFF64:
2265 /* Relocation is relative to the start of the global offset
2266 table. */
2267
2268 /* Check to make sure it isn't a protected function symbol
2269 for shared library since it may not be local when used
2270 as function address. */
2271 if (info->shared
2272 && h
2273 && h->def_regular
2274 && h->type == STT_FUNC
2275 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2276 {
2277 (*_bfd_error_handler)
2278 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2279 input_bfd, h->root.root.string);
2280 bfd_set_error (bfd_error_bad_value);
2281 return FALSE;
2282 }
2283
2284 /* Note that sgot is not involved in this
2285 calculation. We always want the start of .got.plt. If we
2286 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2287 permitted by the ABI, we might have to change this
2288 calculation. */
2289 relocation -= htab->sgotplt->output_section->vma
2290 + htab->sgotplt->output_offset;
2291 break;
2292
2293 case R_X86_64_GOTPC32:
2294 case R_X86_64_GOTPC64:
2295 /* Use global offset table as symbol value. */
2296 relocation = htab->sgotplt->output_section->vma
2297 + htab->sgotplt->output_offset;
2298 unresolved_reloc = FALSE;
2299 break;
2300
2301 case R_X86_64_PLTOFF64:
2302 /* Relocation is PLT entry relative to GOT. For local
2303 symbols it's the symbol itself relative to GOT. */
2304 if (h != NULL
2305 /* See PLT32 handling. */
2306 && h->plt.offset != (bfd_vma) -1
2307 && htab->splt != NULL)
2308 {
2309 relocation = (htab->splt->output_section->vma
2310 + htab->splt->output_offset
2311 + h->plt.offset);
2312 unresolved_reloc = FALSE;
2313 }
2314
2315 relocation -= htab->sgotplt->output_section->vma
2316 + htab->sgotplt->output_offset;
2317 break;
2318
2319 case R_X86_64_PLT32:
2320 /* Relocation is to the entry for this symbol in the
2321 procedure linkage table. */
2322
2323 /* Resolve a PLT32 reloc against a local symbol directly,
2324 without using the procedure linkage table. */
2325 if (h == NULL)
2326 break;
2327
2328 if (h->plt.offset == (bfd_vma) -1
2329 || htab->splt == NULL)
2330 {
2331 /* We didn't make a PLT entry for this symbol. This
2332 happens when statically linking PIC code, or when
2333 using -Bsymbolic. */
2334 break;
2335 }
2336
2337 relocation = (htab->splt->output_section->vma
2338 + htab->splt->output_offset
2339 + h->plt.offset);
2340 unresolved_reloc = FALSE;
2341 break;
2342
2343 case R_X86_64_PC8:
2344 case R_X86_64_PC16:
2345 case R_X86_64_PC32:
2346 if (info->shared
2347 && !SYMBOL_REFERENCES_LOCAL (info, h)
2348 && (input_section->flags & SEC_ALLOC) != 0
2349 && (input_section->flags & SEC_READONLY) != 0
2350 && (!h->def_regular
2351 || r_type != R_X86_64_PC32
2352 || h->type != STT_FUNC
2353 || ELF_ST_VISIBILITY (h->other) != STV_PROTECTED
2354 || !is_32bit_relative_branch (contents,
2355 rel->r_offset)))
2356 {
2357 if (h->def_regular
2358 && r_type == R_X86_64_PC32
2359 && h->type == STT_FUNC
2360 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2361 (*_bfd_error_handler)
2362 (_("%B: relocation R_X86_64_PC32 against protected function `%s' can not be used when making a shared object"),
2363 input_bfd, h->root.root.string);
2364 else
2365 (*_bfd_error_handler)
2366 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
2367 input_bfd, x86_64_elf_howto_table[r_type].name,
2368 h->root.root.string);
2369 bfd_set_error (bfd_error_bad_value);
2370 return FALSE;
2371 }
2372 /* Fall through. */
2373
2374 case R_X86_64_8:
2375 case R_X86_64_16:
2376 case R_X86_64_32:
2377 case R_X86_64_PC64:
2378 case R_X86_64_64:
2379 /* FIXME: The ABI says the linker should make sure the value is
2380 the same when it's zeroextended to 64 bit. */
2381
2382 if ((input_section->flags & SEC_ALLOC) == 0)
2383 break;
2384
2385 if ((info->shared
2386 && (h == NULL
2387 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2388 || h->root.type != bfd_link_hash_undefweak)
2389 && ((r_type != R_X86_64_PC8
2390 && r_type != R_X86_64_PC16
2391 && r_type != R_X86_64_PC32
2392 && r_type != R_X86_64_PC64)
2393 || !SYMBOL_CALLS_LOCAL (info, h)))
2394 || (ELIMINATE_COPY_RELOCS
2395 && !info->shared
2396 && h != NULL
2397 && h->dynindx != -1
2398 && !h->non_got_ref
2399 && ((h->def_dynamic
2400 && !h->def_regular)
2401 || h->root.type == bfd_link_hash_undefweak
2402 || h->root.type == bfd_link_hash_undefined)))
2403 {
2404 Elf_Internal_Rela outrel;
2405 bfd_byte *loc;
2406 bfd_boolean skip, relocate;
2407 asection *sreloc;
2408
2409 /* When generating a shared object, these relocations
2410 are copied into the output file to be resolved at run
2411 time. */
2412 skip = FALSE;
2413 relocate = FALSE;
2414
2415 outrel.r_offset =
2416 _bfd_elf_section_offset (output_bfd, info, input_section,
2417 rel->r_offset);
2418 if (outrel.r_offset == (bfd_vma) -1)
2419 skip = TRUE;
2420 else if (outrel.r_offset == (bfd_vma) -2)
2421 skip = TRUE, relocate = TRUE;
2422
2423 outrel.r_offset += (input_section->output_section->vma
2424 + input_section->output_offset);
2425
2426 if (skip)
2427 memset (&outrel, 0, sizeof outrel);
2428
2429 /* h->dynindx may be -1 if this symbol was marked to
2430 become local. */
2431 else if (h != NULL
2432 && h->dynindx != -1
2433 && (r_type == R_X86_64_PC8
2434 || r_type == R_X86_64_PC16
2435 || r_type == R_X86_64_PC32
2436 || r_type == R_X86_64_PC64
2437 || !info->shared
2438 || !SYMBOLIC_BIND (info, h)
2439 || !h->def_regular))
2440 {
2441 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2442 outrel.r_addend = rel->r_addend;
2443 }
2444 else
2445 {
2446 /* This symbol is local, or marked to become local. */
2447 if (r_type == R_X86_64_64)
2448 {
2449 relocate = TRUE;
2450 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2451 outrel.r_addend = relocation + rel->r_addend;
2452 }
2453 else
2454 {
2455 long sindx;
2456
2457 if (bfd_is_abs_section (sec))
2458 sindx = 0;
2459 else if (sec == NULL || sec->owner == NULL)
2460 {
2461 bfd_set_error (bfd_error_bad_value);
2462 return FALSE;
2463 }
2464 else
2465 {
2466 asection *osec;
2467
2468 /* We are turning this relocation into one
2469 against a section symbol. It would be
2470 proper to subtract the symbol's value,
2471 osec->vma, from the emitted reloc addend,
2472 but ld.so expects buggy relocs. */
2473 osec = sec->output_section;
2474 sindx = elf_section_data (osec)->dynindx;
2475 if (sindx == 0)
2476 {
2477 asection *oi = htab->elf.text_index_section;
2478 sindx = elf_section_data (oi)->dynindx;
2479 }
2480 BFD_ASSERT (sindx != 0);
2481 }
2482
2483 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2484 outrel.r_addend = relocation + rel->r_addend;
2485 }
2486 }
2487
2488 sreloc = elf_section_data (input_section)->sreloc;
2489 if (sreloc == NULL)
2490 abort ();
2491
2492 loc = sreloc->contents;
2493 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2494 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2495
2496 /* If this reloc is against an external symbol, we do
2497 not want to fiddle with the addend. Otherwise, we
2498 need to include the symbol value so that it becomes
2499 an addend for the dynamic reloc. */
2500 if (! relocate)
2501 continue;
2502 }
2503
2504 break;
2505
2506 case R_X86_64_TLSGD:
2507 case R_X86_64_GOTPC32_TLSDESC:
2508 case R_X86_64_TLSDESC_CALL:
2509 case R_X86_64_GOTTPOFF:
2510 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
2511 tls_type = GOT_UNKNOWN;
2512 if (h == NULL && local_got_offsets)
2513 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2514 else if (h != NULL)
2515 {
2516 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2517 if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE)
2518 r_type = R_X86_64_TPOFF32;
2519 }
2520 if (r_type == R_X86_64_TLSGD
2521 || r_type == R_X86_64_GOTPC32_TLSDESC
2522 || r_type == R_X86_64_TLSDESC_CALL)
2523 {
2524 if (tls_type == GOT_TLS_IE)
2525 r_type = R_X86_64_GOTTPOFF;
2526 }
2527
2528 if (r_type == R_X86_64_TPOFF32)
2529 {
2530 BFD_ASSERT (! unresolved_reloc);
2531 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2532 {
2533 unsigned int i;
2534 static unsigned char tlsgd[8]
2535 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2536
2537 /* GD->LE transition.
2538 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2539 .word 0x6666; rex64; call __tls_get_addr@plt
2540 Change it into:
2541 movq %fs:0, %rax
2542 leaq foo@tpoff(%rax), %rax */
2543 BFD_ASSERT (rel->r_offset >= 4);
2544 for (i = 0; i < 4; i++)
2545 BFD_ASSERT (bfd_get_8 (input_bfd,
2546 contents + rel->r_offset - 4 + i)
2547 == tlsgd[i]);
2548 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2549 for (i = 0; i < 4; i++)
2550 BFD_ASSERT (bfd_get_8 (input_bfd,
2551 contents + rel->r_offset + 4 + i)
2552 == tlsgd[i+4]);
2553 BFD_ASSERT (rel + 1 < relend);
2554 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2555 memcpy (contents + rel->r_offset - 4,
2556 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2557 16);
2558 bfd_put_32 (output_bfd, tpoff (info, relocation),
2559 contents + rel->r_offset + 8);
2560 /* Skip R_X86_64_PLT32. */
2561 rel++;
2562 continue;
2563 }
2564 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
2565 {
2566 /* GDesc -> LE transition.
2567 It's originally something like:
2568 leaq x@tlsdesc(%rip), %rax
2569
2570 Change it to:
2571 movl $x@tpoff, %rax
2572
2573 Registers other than %rax may be set up here. */
2574
2575 unsigned int val, type, type2;
2576 bfd_vma roff;
2577
2578 /* First, make sure it's a leaq adding rip to a
2579 32-bit offset into any register, although it's
2580 probably almost always going to be rax. */
2581 roff = rel->r_offset;
2582 BFD_ASSERT (roff >= 3);
2583 type = bfd_get_8 (input_bfd, contents + roff - 3);
2584 BFD_ASSERT ((type & 0xfb) == 0x48);
2585 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
2586 BFD_ASSERT (type2 == 0x8d);
2587 val = bfd_get_8 (input_bfd, contents + roff - 1);
2588 BFD_ASSERT ((val & 0xc7) == 0x05);
2589 BFD_ASSERT (roff + 4 <= input_section->size);
2590
2591 /* Now modify the instruction as appropriate. */
2592 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
2593 contents + roff - 3);
2594 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
2595 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2596 contents + roff - 1);
2597 bfd_put_32 (output_bfd, tpoff (info, relocation),
2598 contents + roff);
2599 continue;
2600 }
2601 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
2602 {
2603 /* GDesc -> LE transition.
2604 It's originally:
2605 call *(%rax)
2606 Turn it into:
2607 nop; nop. */
2608
2609 unsigned int val, type;
2610 bfd_vma roff;
2611
2612 /* First, make sure it's a call *(%rax). */
2613 roff = rel->r_offset;
2614 BFD_ASSERT (roff + 2 <= input_section->size);
2615 type = bfd_get_8 (input_bfd, contents + roff);
2616 BFD_ASSERT (type == 0xff);
2617 val = bfd_get_8 (input_bfd, contents + roff + 1);
2618 BFD_ASSERT (val == 0x10);
2619
2620 /* Now modify the instruction as appropriate. Use
2621 xchg %ax,%ax instead of 2 nops. */
2622 bfd_put_8 (output_bfd, 0x66, contents + roff);
2623 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
2624 continue;
2625 }
2626 else
2627 {
2628 unsigned int val, type, reg;
2629
2630 /* IE->LE transition:
2631 Originally it can be one of:
2632 movq foo@gottpoff(%rip), %reg
2633 addq foo@gottpoff(%rip), %reg
2634 We change it into:
2635 movq $foo, %reg
2636 leaq foo(%reg), %reg
2637 addq $foo, %reg. */
2638 BFD_ASSERT (rel->r_offset >= 3);
2639 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 3);
2640 BFD_ASSERT (val == 0x48 || val == 0x4c);
2641 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2642 BFD_ASSERT (type == 0x8b || type == 0x03);
2643 reg = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2644 BFD_ASSERT ((reg & 0xc7) == 5);
2645 reg >>= 3;
2646 BFD_ASSERT (rel->r_offset + 4 <= input_section->size);
2647 if (type == 0x8b)
2648 {
2649 /* movq */
2650 if (val == 0x4c)
2651 bfd_put_8 (output_bfd, 0x49,
2652 contents + rel->r_offset - 3);
2653 bfd_put_8 (output_bfd, 0xc7,
2654 contents + rel->r_offset - 2);
2655 bfd_put_8 (output_bfd, 0xc0 | reg,
2656 contents + rel->r_offset - 1);
2657 }
2658 else if (reg == 4)
2659 {
2660 /* addq -> addq - addressing with %rsp/%r12 is
2661 special */
2662 if (val == 0x4c)
2663 bfd_put_8 (output_bfd, 0x49,
2664 contents + rel->r_offset - 3);
2665 bfd_put_8 (output_bfd, 0x81,
2666 contents + rel->r_offset - 2);
2667 bfd_put_8 (output_bfd, 0xc0 | reg,
2668 contents + rel->r_offset - 1);
2669 }
2670 else
2671 {
2672 /* addq -> leaq */
2673 if (val == 0x4c)
2674 bfd_put_8 (output_bfd, 0x4d,
2675 contents + rel->r_offset - 3);
2676 bfd_put_8 (output_bfd, 0x8d,
2677 contents + rel->r_offset - 2);
2678 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2679 contents + rel->r_offset - 1);
2680 }
2681 bfd_put_32 (output_bfd, tpoff (info, relocation),
2682 contents + rel->r_offset);
2683 continue;
2684 }
2685 }
2686
2687 if (htab->sgot == NULL)
2688 abort ();
2689
2690 if (h != NULL)
2691 {
2692 off = h->got.offset;
2693 offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got;
2694 }
2695 else
2696 {
2697 if (local_got_offsets == NULL)
2698 abort ();
2699
2700 off = local_got_offsets[r_symndx];
2701 offplt = local_tlsdesc_gotents[r_symndx];
2702 }
2703
2704 if ((off & 1) != 0)
2705 off &= ~1;
2706 else
2707 {
2708 Elf_Internal_Rela outrel;
2709 bfd_byte *loc;
2710 int dr_type, indx;
2711 asection *sreloc;
2712
2713 if (htab->srelgot == NULL)
2714 abort ();
2715
2716 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2717
2718 if (GOT_TLS_GDESC_P (tls_type))
2719 {
2720 outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC);
2721 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
2722 + 2 * GOT_ENTRY_SIZE <= htab->sgotplt->size);
2723 outrel.r_offset = (htab->sgotplt->output_section->vma
2724 + htab->sgotplt->output_offset
2725 + offplt
2726 + htab->sgotplt_jump_table_size);
2727 sreloc = htab->srelplt;
2728 loc = sreloc->contents;
2729 loc += sreloc->reloc_count++
2730 * sizeof (Elf64_External_Rela);
2731 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2732 <= sreloc->contents + sreloc->size);
2733 if (indx == 0)
2734 outrel.r_addend = relocation - dtpoff_base (info);
2735 else
2736 outrel.r_addend = 0;
2737 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2738 }
2739
2740 sreloc = htab->srelgot;
2741
2742 outrel.r_offset = (htab->sgot->output_section->vma
2743 + htab->sgot->output_offset + off);
2744
2745 if (GOT_TLS_GD_P (tls_type))
2746 dr_type = R_X86_64_DTPMOD64;
2747 else if (GOT_TLS_GDESC_P (tls_type))
2748 goto dr_done;
2749 else
2750 dr_type = R_X86_64_TPOFF64;
2751
2752 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2753 outrel.r_addend = 0;
2754 if ((dr_type == R_X86_64_TPOFF64
2755 || dr_type == R_X86_64_TLSDESC) && indx == 0)
2756 outrel.r_addend = relocation - dtpoff_base (info);
2757 outrel.r_info = ELF64_R_INFO (indx, dr_type);
2758
2759 loc = sreloc->contents;
2760 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2761 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2762 <= sreloc->contents + sreloc->size);
2763 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2764
2765 if (GOT_TLS_GD_P (tls_type))
2766 {
2767 if (indx == 0)
2768 {
2769 BFD_ASSERT (! unresolved_reloc);
2770 bfd_put_64 (output_bfd,
2771 relocation - dtpoff_base (info),
2772 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2773 }
2774 else
2775 {
2776 bfd_put_64 (output_bfd, 0,
2777 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2778 outrel.r_info = ELF64_R_INFO (indx,
2779 R_X86_64_DTPOFF64);
2780 outrel.r_offset += GOT_ENTRY_SIZE;
2781 sreloc->reloc_count++;
2782 loc += sizeof (Elf64_External_Rela);
2783 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2784 <= sreloc->contents + sreloc->size);
2785 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2786 }
2787 }
2788
2789 dr_done:
2790 if (h != NULL)
2791 h->got.offset |= 1;
2792 else
2793 local_got_offsets[r_symndx] |= 1;
2794 }
2795
2796 if (off >= (bfd_vma) -2
2797 && ! GOT_TLS_GDESC_P (tls_type))
2798 abort ();
2799 if (r_type == ELF64_R_TYPE (rel->r_info))
2800 {
2801 if (r_type == R_X86_64_GOTPC32_TLSDESC
2802 || r_type == R_X86_64_TLSDESC_CALL)
2803 relocation = htab->sgotplt->output_section->vma
2804 + htab->sgotplt->output_offset
2805 + offplt + htab->sgotplt_jump_table_size;
2806 else
2807 relocation = htab->sgot->output_section->vma
2808 + htab->sgot->output_offset + off;
2809 unresolved_reloc = FALSE;
2810 }
2811 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2812 {
2813 unsigned int i;
2814 static unsigned char tlsgd[8]
2815 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2816
2817 /* GD->IE transition.
2818 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2819 .word 0x6666; rex64; call __tls_get_addr@plt
2820 Change it into:
2821 movq %fs:0, %rax
2822 addq foo@gottpoff(%rip), %rax */
2823 BFD_ASSERT (rel->r_offset >= 4);
2824 for (i = 0; i < 4; i++)
2825 BFD_ASSERT (bfd_get_8 (input_bfd,
2826 contents + rel->r_offset - 4 + i)
2827 == tlsgd[i]);
2828 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2829 for (i = 0; i < 4; i++)
2830 BFD_ASSERT (bfd_get_8 (input_bfd,
2831 contents + rel->r_offset + 4 + i)
2832 == tlsgd[i+4]);
2833 BFD_ASSERT (rel + 1 < relend);
2834 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2835 memcpy (contents + rel->r_offset - 4,
2836 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
2837 16);
2838
2839 relocation = (htab->sgot->output_section->vma
2840 + htab->sgot->output_offset + off
2841 - rel->r_offset
2842 - input_section->output_section->vma
2843 - input_section->output_offset
2844 - 12);
2845 bfd_put_32 (output_bfd, relocation,
2846 contents + rel->r_offset + 8);
2847 /* Skip R_X86_64_PLT32. */
2848 rel++;
2849 continue;
2850 }
2851 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
2852 {
2853 /* GDesc -> IE transition.
2854 It's originally something like:
2855 leaq x@tlsdesc(%rip), %rax
2856
2857 Change it to:
2858 movq x@gottpoff(%rip), %rax # before nop; nop
2859
2860 Registers other than %rax may be set up here. */
2861
2862 unsigned int val, type, type2;
2863 bfd_vma roff;
2864
2865 /* First, make sure it's a leaq adding rip to a 32-bit
2866 offset into any register, although it's probably
2867 almost always going to be rax. */
2868 roff = rel->r_offset;
2869 BFD_ASSERT (roff >= 3);
2870 type = bfd_get_8 (input_bfd, contents + roff - 3);
2871 BFD_ASSERT ((type & 0xfb) == 0x48);
2872 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
2873 BFD_ASSERT (type2 == 0x8d);
2874 val = bfd_get_8 (input_bfd, contents + roff - 1);
2875 BFD_ASSERT ((val & 0xc7) == 0x05);
2876 BFD_ASSERT (roff + 4 <= input_section->size);
2877
2878 /* Now modify the instruction as appropriate. */
2879 /* To turn a leaq into a movq in the form we use it, it
2880 suffices to change the second byte from 0x8d to
2881 0x8b. */
2882 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
2883
2884 bfd_put_32 (output_bfd,
2885 htab->sgot->output_section->vma
2886 + htab->sgot->output_offset + off
2887 - rel->r_offset
2888 - input_section->output_section->vma
2889 - input_section->output_offset
2890 - 4,
2891 contents + roff);
2892 continue;
2893 }
2894 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
2895 {
2896 /* GDesc -> IE transition.
2897 It's originally:
2898 call *(%rax)
2899
2900 Change it to:
2901 nop; nop. */
2902
2903 unsigned int val, type;
2904 bfd_vma roff;
2905
2906 /* First, make sure it's a call *(%eax). */
2907 roff = rel->r_offset;
2908 BFD_ASSERT (roff + 2 <= input_section->size);
2909 type = bfd_get_8 (input_bfd, contents + roff);
2910 BFD_ASSERT (type == 0xff);
2911 val = bfd_get_8 (input_bfd, contents + roff + 1);
2912 BFD_ASSERT (val == 0x10);
2913
2914 /* Now modify the instruction as appropriate. Use
2915 xchg %ax,%ax instead of 2 nops. */
2916 bfd_put_8 (output_bfd, 0x66, contents + roff);
2917 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
2918
2919 continue;
2920 }
2921 else
2922 BFD_ASSERT (FALSE);
2923 break;
2924
2925 case R_X86_64_TLSLD:
2926 if (! info->shared)
2927 {
2928 /* LD->LE transition:
2929 Ensure it is:
2930 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr@plt.
2931 We change it into:
2932 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
2933 BFD_ASSERT (rel->r_offset >= 3);
2934 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3)
2935 == 0x48);
2936 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2937 == 0x8d);
2938 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 1)
2939 == 0x3d);
2940 BFD_ASSERT (rel->r_offset + 9 <= input_section->size);
2941 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2942 == 0xe8);
2943 BFD_ASSERT (rel + 1 < relend);
2944 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2945 memcpy (contents + rel->r_offset - 3,
2946 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
2947 /* Skip R_X86_64_PLT32. */
2948 rel++;
2949 continue;
2950 }
2951
2952 if (htab->sgot == NULL)
2953 abort ();
2954
2955 off = htab->tls_ld_got.offset;
2956 if (off & 1)
2957 off &= ~1;
2958 else
2959 {
2960 Elf_Internal_Rela outrel;
2961 bfd_byte *loc;
2962
2963 if (htab->srelgot == NULL)
2964 abort ();
2965
2966 outrel.r_offset = (htab->sgot->output_section->vma
2967 + htab->sgot->output_offset + off);
2968
2969 bfd_put_64 (output_bfd, 0,
2970 htab->sgot->contents + off);
2971 bfd_put_64 (output_bfd, 0,
2972 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2973 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
2974 outrel.r_addend = 0;
2975 loc = htab->srelgot->contents;
2976 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2977 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2978 htab->tls_ld_got.offset |= 1;
2979 }
2980 relocation = htab->sgot->output_section->vma
2981 + htab->sgot->output_offset + off;
2982 unresolved_reloc = FALSE;
2983 break;
2984
2985 case R_X86_64_DTPOFF32:
2986 if (info->shared || (input_section->flags & SEC_CODE) == 0)
2987 relocation -= dtpoff_base (info);
2988 else
2989 relocation = tpoff (info, relocation);
2990 break;
2991
2992 case R_X86_64_TPOFF32:
2993 BFD_ASSERT (! info->shared);
2994 relocation = tpoff (info, relocation);
2995 break;
2996
2997 default:
2998 break;
2999 }
3000
3001 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3002 because such sections are not SEC_ALLOC and thus ld.so will
3003 not process them. */
3004 if (unresolved_reloc
3005 && !((input_section->flags & SEC_DEBUGGING) != 0
3006 && h->def_dynamic))
3007 (*_bfd_error_handler)
3008 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3009 input_bfd,
3010 input_section,
3011 (long) rel->r_offset,
3012 howto->name,
3013 h->root.root.string);
3014
3015 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3016 contents, rel->r_offset,
3017 relocation, rel->r_addend);
3018
3019 if (r != bfd_reloc_ok)
3020 {
3021 const char *name;
3022
3023 if (h != NULL)
3024 name = h->root.root.string;
3025 else
3026 {
3027 name = bfd_elf_string_from_elf_section (input_bfd,
3028 symtab_hdr->sh_link,
3029 sym->st_name);
3030 if (name == NULL)
3031 return FALSE;
3032 if (*name == '\0')
3033 name = bfd_section_name (input_bfd, sec);
3034 }
3035
3036 if (r == bfd_reloc_overflow)
3037 {
3038 if (! ((*info->callbacks->reloc_overflow)
3039 (info, (h ? &h->root : NULL), name, howto->name,
3040 (bfd_vma) 0, input_bfd, input_section,
3041 rel->r_offset)))
3042 return FALSE;
3043 }
3044 else
3045 {
3046 (*_bfd_error_handler)
3047 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3048 input_bfd, input_section,
3049 (long) rel->r_offset, name, (int) r);
3050 return FALSE;
3051 }
3052 }
3053 }
3054
3055 return TRUE;
3056 }
3057
3058 /* Finish up dynamic symbol handling. We set the contents of various
3059 dynamic sections here. */
3060
3061 static bfd_boolean
3062 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3063 struct bfd_link_info *info,
3064 struct elf_link_hash_entry *h,
3065 Elf_Internal_Sym *sym)
3066 {
3067 struct elf64_x86_64_link_hash_table *htab;
3068
3069 htab = elf64_x86_64_hash_table (info);
3070
3071 if (h->plt.offset != (bfd_vma) -1)
3072 {
3073 bfd_vma plt_index;
3074 bfd_vma got_offset;
3075 Elf_Internal_Rela rela;
3076 bfd_byte *loc;
3077
3078 /* This symbol has an entry in the procedure linkage table. Set
3079 it up. */
3080 if (h->dynindx == -1
3081 || htab->splt == NULL
3082 || htab->sgotplt == NULL
3083 || htab->srelplt == NULL)
3084 abort ();
3085
3086 /* Get the index in the procedure linkage table which
3087 corresponds to this symbol. This is the index of this symbol
3088 in all the symbols for which we are making plt entries. The
3089 first entry in the procedure linkage table is reserved. */
3090 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3091
3092 /* Get the offset into the .got table of the entry that
3093 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3094 bytes. The first three are reserved for the dynamic linker. */
3095 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3096
3097 /* Fill in the entry in the procedure linkage table. */
3098 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
3099 PLT_ENTRY_SIZE);
3100
3101 /* Insert the relocation positions of the plt section. The magic
3102 numbers at the end of the statements are the positions of the
3103 relocations in the plt section. */
3104 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3105 instruction uses 6 bytes, subtract this value. */
3106 bfd_put_32 (output_bfd,
3107 (htab->sgotplt->output_section->vma
3108 + htab->sgotplt->output_offset
3109 + got_offset
3110 - htab->splt->output_section->vma
3111 - htab->splt->output_offset
3112 - h->plt.offset
3113 - 6),
3114 htab->splt->contents + h->plt.offset + 2);
3115 /* Put relocation index. */
3116 bfd_put_32 (output_bfd, plt_index,
3117 htab->splt->contents + h->plt.offset + 7);
3118 /* Put offset for jmp .PLT0. */
3119 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3120 htab->splt->contents + h->plt.offset + 12);
3121
3122 /* Fill in the entry in the global offset table, initially this
3123 points to the pushq instruction in the PLT which is at offset 6. */
3124 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
3125 + htab->splt->output_offset
3126 + h->plt.offset + 6),
3127 htab->sgotplt->contents + got_offset);
3128
3129 /* Fill in the entry in the .rela.plt section. */
3130 rela.r_offset = (htab->sgotplt->output_section->vma
3131 + htab->sgotplt->output_offset
3132 + got_offset);
3133 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
3134 rela.r_addend = 0;
3135 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
3136 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3137
3138 if (!h->def_regular)
3139 {
3140 /* Mark the symbol as undefined, rather than as defined in
3141 the .plt section. Leave the value if there were any
3142 relocations where pointer equality matters (this is a clue
3143 for the dynamic linker, to make function pointer
3144 comparisons work between an application and shared
3145 library), otherwise set it to zero. If a function is only
3146 called from a binary, there is no need to slow down
3147 shared libraries because of that. */
3148 sym->st_shndx = SHN_UNDEF;
3149 if (!h->pointer_equality_needed)
3150 sym->st_value = 0;
3151 }
3152 }
3153
3154 if (h->got.offset != (bfd_vma) -1
3155 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type)
3156 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
3157 {
3158 Elf_Internal_Rela rela;
3159 bfd_byte *loc;
3160
3161 /* This symbol has an entry in the global offset table. Set it
3162 up. */
3163 if (htab->sgot == NULL || htab->srelgot == NULL)
3164 abort ();
3165
3166 rela.r_offset = (htab->sgot->output_section->vma
3167 + htab->sgot->output_offset
3168 + (h->got.offset &~ (bfd_vma) 1));
3169
3170 /* If this is a static link, or it is a -Bsymbolic link and the
3171 symbol is defined locally or was forced to be local because
3172 of a version file, we just want to emit a RELATIVE reloc.
3173 The entry in the global offset table will already have been
3174 initialized in the relocate_section function. */
3175 if (info->shared
3176 && SYMBOL_REFERENCES_LOCAL (info, h))
3177 {
3178 BFD_ASSERT((h->got.offset & 1) != 0);
3179 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3180 rela.r_addend = (h->root.u.def.value
3181 + h->root.u.def.section->output_section->vma
3182 + h->root.u.def.section->output_offset);
3183 }
3184 else
3185 {
3186 BFD_ASSERT((h->got.offset & 1) == 0);
3187 bfd_put_64 (output_bfd, (bfd_vma) 0,
3188 htab->sgot->contents + h->got.offset);
3189 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
3190 rela.r_addend = 0;
3191 }
3192
3193 loc = htab->srelgot->contents;
3194 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3195 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3196 }
3197
3198 if (h->needs_copy)
3199 {
3200 Elf_Internal_Rela rela;
3201 bfd_byte *loc;
3202
3203 /* This symbol needs a copy reloc. Set it up. */
3204
3205 if (h->dynindx == -1
3206 || (h->root.type != bfd_link_hash_defined
3207 && h->root.type != bfd_link_hash_defweak)
3208 || htab->srelbss == NULL)
3209 abort ();
3210
3211 rela.r_offset = (h->root.u.def.value
3212 + h->root.u.def.section->output_section->vma
3213 + h->root.u.def.section->output_offset);
3214 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
3215 rela.r_addend = 0;
3216 loc = htab->srelbss->contents;
3217 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
3218 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3219 }
3220
3221 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3222 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3223 || h == htab->elf.hgot)
3224 sym->st_shndx = SHN_ABS;
3225
3226 return TRUE;
3227 }
3228
3229 /* Used to decide how to sort relocs in an optimal manner for the
3230 dynamic linker, before writing them out. */
3231
3232 static enum elf_reloc_type_class
3233 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
3234 {
3235 switch ((int) ELF64_R_TYPE (rela->r_info))
3236 {
3237 case R_X86_64_RELATIVE:
3238 return reloc_class_relative;
3239 case R_X86_64_JUMP_SLOT:
3240 return reloc_class_plt;
3241 case R_X86_64_COPY:
3242 return reloc_class_copy;
3243 default:
3244 return reloc_class_normal;
3245 }
3246 }
3247
3248 /* Finish up the dynamic sections. */
3249
3250 static bfd_boolean
3251 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
3252 {
3253 struct elf64_x86_64_link_hash_table *htab;
3254 bfd *dynobj;
3255 asection *sdyn;
3256
3257 htab = elf64_x86_64_hash_table (info);
3258 dynobj = htab->elf.dynobj;
3259 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3260
3261 if (htab->elf.dynamic_sections_created)
3262 {
3263 Elf64_External_Dyn *dyncon, *dynconend;
3264
3265 if (sdyn == NULL || htab->sgot == NULL)
3266 abort ();
3267
3268 dyncon = (Elf64_External_Dyn *) sdyn->contents;
3269 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
3270 for (; dyncon < dynconend; dyncon++)
3271 {
3272 Elf_Internal_Dyn dyn;
3273 asection *s;
3274
3275 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
3276
3277 switch (dyn.d_tag)
3278 {
3279 default:
3280 continue;
3281
3282 case DT_PLTGOT:
3283 s = htab->sgotplt;
3284 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
3285 break;
3286
3287 case DT_JMPREL:
3288 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3289 break;
3290
3291 case DT_PLTRELSZ:
3292 s = htab->srelplt->output_section;
3293 dyn.d_un.d_val = s->size;
3294 break;
3295
3296 case DT_RELASZ:
3297 /* The procedure linkage table relocs (DT_JMPREL) should
3298 not be included in the overall relocs (DT_RELA).
3299 Therefore, we override the DT_RELASZ entry here to
3300 make it not include the JMPREL relocs. Since the
3301 linker script arranges for .rela.plt to follow all
3302 other relocation sections, we don't have to worry
3303 about changing the DT_RELA entry. */
3304 if (htab->srelplt != NULL)
3305 {
3306 s = htab->srelplt->output_section;
3307 dyn.d_un.d_val -= s->size;
3308 }
3309 break;
3310
3311 case DT_TLSDESC_PLT:
3312 s = htab->splt;
3313 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3314 + htab->tlsdesc_plt;
3315 break;
3316
3317 case DT_TLSDESC_GOT:
3318 s = htab->sgot;
3319 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3320 + htab->tlsdesc_got;
3321 break;
3322 }
3323
3324 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
3325 }
3326
3327 /* Fill in the special first entry in the procedure linkage table. */
3328 if (htab->splt && htab->splt->size > 0)
3329 {
3330 /* Fill in the first entry in the procedure linkage table. */
3331 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
3332 PLT_ENTRY_SIZE);
3333 /* Add offset for pushq GOT+8(%rip), since the instruction
3334 uses 6 bytes subtract this value. */
3335 bfd_put_32 (output_bfd,
3336 (htab->sgotplt->output_section->vma
3337 + htab->sgotplt->output_offset
3338 + 8
3339 - htab->splt->output_section->vma
3340 - htab->splt->output_offset
3341 - 6),
3342 htab->splt->contents + 2);
3343 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
3344 the end of the instruction. */
3345 bfd_put_32 (output_bfd,
3346 (htab->sgotplt->output_section->vma
3347 + htab->sgotplt->output_offset
3348 + 16
3349 - htab->splt->output_section->vma
3350 - htab->splt->output_offset
3351 - 12),
3352 htab->splt->contents + 8);
3353
3354 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
3355 PLT_ENTRY_SIZE;
3356
3357 if (htab->tlsdesc_plt)
3358 {
3359 bfd_put_64 (output_bfd, (bfd_vma) 0,
3360 htab->sgot->contents + htab->tlsdesc_got);
3361
3362 memcpy (htab->splt->contents + htab->tlsdesc_plt,
3363 elf64_x86_64_plt0_entry,
3364 PLT_ENTRY_SIZE);
3365
3366 /* Add offset for pushq GOT+8(%rip), since the
3367 instruction uses 6 bytes subtract this value. */
3368 bfd_put_32 (output_bfd,
3369 (htab->sgotplt->output_section->vma
3370 + htab->sgotplt->output_offset
3371 + 8
3372 - htab->splt->output_section->vma
3373 - htab->splt->output_offset
3374 - htab->tlsdesc_plt
3375 - 6),
3376 htab->splt->contents + htab->tlsdesc_plt + 2);
3377 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
3378 htab->tlsdesc_got. The 12 is the offset to the end of
3379 the instruction. */
3380 bfd_put_32 (output_bfd,
3381 (htab->sgot->output_section->vma
3382 + htab->sgot->output_offset
3383 + htab->tlsdesc_got
3384 - htab->splt->output_section->vma
3385 - htab->splt->output_offset
3386 - htab->tlsdesc_plt
3387 - 12),
3388 htab->splt->contents + htab->tlsdesc_plt + 8);
3389 }
3390 }
3391 }
3392
3393 if (htab->sgotplt)
3394 {
3395 /* Fill in the first three entries in the global offset table. */
3396 if (htab->sgotplt->size > 0)
3397 {
3398 /* Set the first entry in the global offset table to the address of
3399 the dynamic section. */
3400 if (sdyn == NULL)
3401 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
3402 else
3403 bfd_put_64 (output_bfd,
3404 sdyn->output_section->vma + sdyn->output_offset,
3405 htab->sgotplt->contents);
3406 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
3407 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
3408 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
3409 }
3410
3411 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
3412 GOT_ENTRY_SIZE;
3413 }
3414
3415 if (htab->sgot && htab->sgot->size > 0)
3416 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize
3417 = GOT_ENTRY_SIZE;
3418
3419 return TRUE;
3420 }
3421
3422 /* Return address for Ith PLT stub in section PLT, for relocation REL
3423 or (bfd_vma) -1 if it should not be included. */
3424
3425 static bfd_vma
3426 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
3427 const arelent *rel ATTRIBUTE_UNUSED)
3428 {
3429 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
3430 }
3431
3432 /* Handle an x86-64 specific section when reading an object file. This
3433 is called when elfcode.h finds a section with an unknown type. */
3434
3435 static bfd_boolean
3436 elf64_x86_64_section_from_shdr (bfd *abfd,
3437 Elf_Internal_Shdr *hdr,
3438 const char *name,
3439 int shindex)
3440 {
3441 if (hdr->sh_type != SHT_X86_64_UNWIND)
3442 return FALSE;
3443
3444 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
3445 return FALSE;
3446
3447 return TRUE;
3448 }
3449
3450 /* Hook called by the linker routine which adds symbols from an object
3451 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
3452 of .bss. */
3453
3454 static bfd_boolean
3455 elf64_x86_64_add_symbol_hook (bfd *abfd,
3456 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3457 Elf_Internal_Sym *sym,
3458 const char **namep ATTRIBUTE_UNUSED,
3459 flagword *flagsp ATTRIBUTE_UNUSED,
3460 asection **secp, bfd_vma *valp)
3461 {
3462 asection *lcomm;
3463
3464 switch (sym->st_shndx)
3465 {
3466 case SHN_X86_64_LCOMMON:
3467 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
3468 if (lcomm == NULL)
3469 {
3470 lcomm = bfd_make_section_with_flags (abfd,
3471 "LARGE_COMMON",
3472 (SEC_ALLOC
3473 | SEC_IS_COMMON
3474 | SEC_LINKER_CREATED));
3475 if (lcomm == NULL)
3476 return FALSE;
3477 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
3478 }
3479 *secp = lcomm;
3480 *valp = sym->st_size;
3481 break;
3482 }
3483 return TRUE;
3484 }
3485
3486
3487 /* Given a BFD section, try to locate the corresponding ELF section
3488 index. */
3489
3490 static bfd_boolean
3491 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
3492 asection *sec, int *index)
3493 {
3494 if (sec == &_bfd_elf_large_com_section)
3495 {
3496 *index = SHN_X86_64_LCOMMON;
3497 return TRUE;
3498 }
3499 return FALSE;
3500 }
3501
3502 /* Process a symbol. */
3503
3504 static void
3505 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
3506 asymbol *asym)
3507 {
3508 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
3509
3510 switch (elfsym->internal_elf_sym.st_shndx)
3511 {
3512 case SHN_X86_64_LCOMMON:
3513 asym->section = &_bfd_elf_large_com_section;
3514 asym->value = elfsym->internal_elf_sym.st_size;
3515 /* Common symbol doesn't set BSF_GLOBAL. */
3516 asym->flags &= ~BSF_GLOBAL;
3517 break;
3518 }
3519 }
3520
3521 static bfd_boolean
3522 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
3523 {
3524 return (sym->st_shndx == SHN_COMMON
3525 || sym->st_shndx == SHN_X86_64_LCOMMON);
3526 }
3527
3528 static unsigned int
3529 elf64_x86_64_common_section_index (asection *sec)
3530 {
3531 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3532 return SHN_COMMON;
3533 else
3534 return SHN_X86_64_LCOMMON;
3535 }
3536
3537 static asection *
3538 elf64_x86_64_common_section (asection *sec)
3539 {
3540 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3541 return bfd_com_section_ptr;
3542 else
3543 return &_bfd_elf_large_com_section;
3544 }
3545
3546 static bfd_boolean
3547 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3548 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
3549 struct elf_link_hash_entry *h,
3550 Elf_Internal_Sym *sym,
3551 asection **psec,
3552 bfd_vma *pvalue ATTRIBUTE_UNUSED,
3553 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
3554 bfd_boolean *skip ATTRIBUTE_UNUSED,
3555 bfd_boolean *override ATTRIBUTE_UNUSED,
3556 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
3557 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
3558 bfd_boolean *newdef ATTRIBUTE_UNUSED,
3559 bfd_boolean *newdyn,
3560 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
3561 bfd_boolean *newweak ATTRIBUTE_UNUSED,
3562 bfd *abfd ATTRIBUTE_UNUSED,
3563 asection **sec,
3564 bfd_boolean *olddef ATTRIBUTE_UNUSED,
3565 bfd_boolean *olddyn,
3566 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
3567 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
3568 bfd *oldbfd,
3569 asection **oldsec)
3570 {
3571 /* A normal common symbol and a large common symbol result in a
3572 normal common symbol. We turn the large common symbol into a
3573 normal one. */
3574 if (!*olddyn
3575 && h->root.type == bfd_link_hash_common
3576 && !*newdyn
3577 && bfd_is_com_section (*sec)
3578 && *oldsec != *sec)
3579 {
3580 if (sym->st_shndx == SHN_COMMON
3581 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
3582 {
3583 h->root.u.c.p->section
3584 = bfd_make_section_old_way (oldbfd, "COMMON");
3585 h->root.u.c.p->section->flags = SEC_ALLOC;
3586 }
3587 else if (sym->st_shndx == SHN_X86_64_LCOMMON
3588 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
3589 *psec = *sec = bfd_com_section_ptr;
3590 }
3591
3592 return TRUE;
3593 }
3594
3595 static int
3596 elf64_x86_64_additional_program_headers (bfd *abfd,
3597 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3598 {
3599 asection *s;
3600 int count = 0;
3601
3602 /* Check to see if we need a large readonly segment. */
3603 s = bfd_get_section_by_name (abfd, ".lrodata");
3604 if (s && (s->flags & SEC_LOAD))
3605 count++;
3606
3607 /* Check to see if we need a large data segment. Since .lbss sections
3608 is placed right after the .bss section, there should be no need for
3609 a large data segment just because of .lbss. */
3610 s = bfd_get_section_by_name (abfd, ".ldata");
3611 if (s && (s->flags & SEC_LOAD))
3612 count++;
3613
3614 return count;
3615 }
3616
3617 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
3618
3619 static bfd_boolean
3620 elf64_x86_64_hash_symbol (struct elf_link_hash_entry *h)
3621 {
3622 if (h->plt.offset != (bfd_vma) -1
3623 && !h->def_regular
3624 && !h->pointer_equality_needed)
3625 return FALSE;
3626
3627 return _bfd_elf_hash_symbol (h);
3628 }
3629
3630 static const struct bfd_elf_special_section
3631 elf64_x86_64_special_sections[]=
3632 {
3633 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3634 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3635 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
3636 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3637 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3638 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3639 { NULL, 0, 0, 0, 0 }
3640 };
3641
3642 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
3643 #define TARGET_LITTLE_NAME "elf64-x86-64"
3644 #define ELF_ARCH bfd_arch_i386
3645 #define ELF_MACHINE_CODE EM_X86_64
3646 #define ELF_MAXPAGESIZE 0x200000
3647 #define ELF_MINPAGESIZE 0x1000
3648 #define ELF_COMMONPAGESIZE 0x1000
3649
3650 #define elf_backend_can_gc_sections 1
3651 #define elf_backend_can_refcount 1
3652 #define elf_backend_want_got_plt 1
3653 #define elf_backend_plt_readonly 1
3654 #define elf_backend_want_plt_sym 0
3655 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
3656 #define elf_backend_rela_normal 1
3657
3658 #define elf_info_to_howto elf64_x86_64_info_to_howto
3659
3660 #define bfd_elf64_bfd_link_hash_table_create \
3661 elf64_x86_64_link_hash_table_create
3662 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
3663
3664 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
3665 #define elf_backend_check_relocs elf64_x86_64_check_relocs
3666 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
3667 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
3668 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
3669 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
3670 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
3671 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
3672 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
3673 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
3674 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
3675 #define elf_backend_relocate_section elf64_x86_64_relocate_section
3676 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
3677 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
3678 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
3679 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
3680 #define elf_backend_object_p elf64_x86_64_elf_object_p
3681 #define bfd_elf64_mkobject elf64_x86_64_mkobject
3682
3683 #define elf_backend_section_from_shdr \
3684 elf64_x86_64_section_from_shdr
3685
3686 #define elf_backend_section_from_bfd_section \
3687 elf64_x86_64_elf_section_from_bfd_section
3688 #define elf_backend_add_symbol_hook \
3689 elf64_x86_64_add_symbol_hook
3690 #define elf_backend_symbol_processing \
3691 elf64_x86_64_symbol_processing
3692 #define elf_backend_common_section_index \
3693 elf64_x86_64_common_section_index
3694 #define elf_backend_common_section \
3695 elf64_x86_64_common_section
3696 #define elf_backend_common_definition \
3697 elf64_x86_64_common_definition
3698 #define elf_backend_merge_symbol \
3699 elf64_x86_64_merge_symbol
3700 #define elf_backend_special_sections \
3701 elf64_x86_64_special_sections
3702 #define elf_backend_additional_program_headers \
3703 elf64_x86_64_additional_program_headers
3704 #define elf_backend_hash_symbol \
3705 elf64_x86_64_hash_symbol
3706
3707 #include "elf64-target.h"
3708
3709 /* FreeBSD support. */
3710
3711 #undef TARGET_LITTLE_SYM
3712 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
3713 #undef TARGET_LITTLE_NAME
3714 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
3715
3716 /* The kernel recognizes executables as valid only if they carry a
3717 "FreeBSD" label in the ELF header. So we put this label on all
3718 executables and (for simplicity) also all other object files. */
3719
3720 static void
3721 elf64_x86_64_fbsd_post_process_headers (bfd * abfd,
3722 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
3723 {
3724 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
3725
3726 i_ehdrp = elf_elfheader (abfd);
3727
3728 /* Put an ABI label supported by FreeBSD >= 4.1. */
3729 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_FREEBSD;
3730 }
3731
3732 #undef elf_backend_post_process_headers
3733 #define elf_backend_post_process_headers elf64_x86_64_fbsd_post_process_headers
3734
3735 #undef elf64_bed
3736 #define elf64_bed elf64_x86_64_fbsd_bed
3737
3738 #include "elf64-target.h"
This page took 0.105193 seconds and 5 git commands to generate.